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ZUSAMMENFASSUNG  i 

Zusammenfassung 

 

Der Indische Monsun beeinflusst weite Teile unserer Weltbevölkerung. Allerdings sind 

kurzfristige Monsunschwankungen auf für den Menschen relevanten Zeitskalen (Jahrzehnte 

bis Jahrhunderte) bisher wenig untersucht. Ziel dieser Arbeit ist es, holozäne Schwankungen 

in der Entwicklung des Sommer- und des Wintermonsuns in hoher Auflösung zu 

rekonstruieren. Hierfür wurden verschiedene Sedimentkerne aus unterschiedlichen Gebieten 

im Arabischen Meer analysiert. Die Ozeanographie des Arabischen Meeres und die dort 

vorherrschenden biogeochemischen Prozesse, wie Oberflächenwassertemperaturen (SST), 

Primärproduktion, Intensität der Zwischenwasser-Sauerstoffminimumzone sowie 

Denitrifizierung in der Wassersäule sind eng an den saisonalen Monsunzyklus gekoppelt. 

Primärproduktion und SST im nordwestlichen Arabischen Meer werden hauptsächlich 

durch Auftriebsprozesse gesteuert, die mit dem Sommermonsun einhergehen, wohingegen 

niedrige SST und erhöhte Primärproduktion im nordöstlichen Arabischen Meer vor Pakistan 

an die nordöstlichen Winde des Wintermonsuns gekoppelt sind. In dieser Arbeit wurde ein 

fein laminierter Sedimentkern vom Pakistanischen Kontinentalhang genutzt, um die Intensität 

des Wintermonsuns während des späten Holozäns in hoher Auflösung zu rekonstruieren. 

Hierfür habe ich verschiedene Primärproduktions-Indikatoren (organischer Kohlenstoff, 

Karbonate/Opal, δ15N) sowie Alkenone zur Bestimmung von SST-Änderungen analysiert 

(Kapitel 3). Die rekonstruierten SST nehmen während der letzten 2400 Jahre ab, wohingegen 

die Primärproduktion zunimmt, was auf eine lang anhaltende Verstärkung des 

Wintermonsuns zurückzuführen ist. Ein Vergleich meiner Wintermonsun-Rekonstruktion mit 

Aufzeichnungen zur Sommermonsunaktivität zeigt, dass es in der asiatischen Monsunregion 

während des späten Holozäns einen inversen Zusammenhang zwischen Sommermonsunstärke 

und Wintermonsunintensität gegeben hat. Dieser Zusammenhang zwischen Sommer- und 

Wintermonsunaktivität wird höchstwahrscheinlich durch langfristige Verschiebungen in der 

Breitengradposition der Intertropischen Konvergenz Zone (ITCZ) verursacht, die wiederum 

durch Änderungen in der solaren Einstrahlung angetrieben werden. 

Der Vergleich von zwei SST-Rekonstruktionen, die anhand von Alkenon-Analysen an 

einem Sedimentkern aus dem Sommermonsun dominierten nordwestlichen Arabischen Meer 

und an einem Sedimentkern aus dem vom Wintermonsun beeinflussten nordöstlichen 

Arabischen Meer durchgeführt wurden, zeigt, dass dieses antagonistische Verhalten von 

Sommer- und Wintermonsunstärke auch während der letzten 25000 Jahre existiert hat 

(Kapitel 4). Starker Auftrieb vor der Küste des nördlichen Oman spiegelt eine verstärkte 
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Aktivität des Sommermonsuns während des frühen Holozänen Klimaoptimums wider. 

Zeitgleich dazu lassen ansteigende SST vor Pakistan auf eine Abnahme der 

Wintermonsunstärke schließen. Die seit dem frühen Holozän einsetzende Verstärkung der 

Wintermonsunaktivität wurde höchst wahrscheinlich durch eine südwärts gerichtete 

Verschiebung der ITCZ angetrieben. 

Die Alkenone-SST-Rekonstruktion des späten Holozäns aus dem nordöstlichen 

Arabischen Meer zeigt eine enge Korrelation zu den Klimaaufzeichnungen des asiatischen 

Kontinents und der höheren Breiten der Nordhemisphäre auf Zeitskalen von Jahrzehnten und 

Jahrhunderten. Dabei führen kältere Klimabedingungen, wie sie z. B. während der kleinen 

Eiszeit beobachtet wurden, zu einer Verstärkung der nordöstlichen Monsunwinde und zu 

einer Abnahme der SST im nordöstlichen Arabischen Meer. 

Kapitel 5 befasst sich mit der zeitlichen und räumlichen Variabilität der 

Sauerstoffminimumzone (OMZ) im Arabischen Meer während des Holozäns. Weiterhin 

wurde der Zusammenhang zwischen OMZ-Intensität und Änderungen in der Monsunstärke 

untersucht. Hierfür wurde ein Sedimentkern vom Kontinentalhang vor Nord-Oman, der das 

späte und mittlere Holozän umfasst, auf unterschiedliche Indikatoren zur Zwischenwasser-

Sauerstoffanreicherung und Südwestmonsunstärke analysiert. Der Vergleich meiner δ15N und 

Mn/Al Daten mit anderen Datensätzen zur Denitrifizierung und Sauerstoffversorgung aus 

dem nördlichen Arabischen Meer zeigt, dass sich der Kern der OMZ während des Holozäns 

von Nordwestern (frühes Holozän) nach Nordosten (spätes Holozän) verlagert hat. Diese 

Verschiebung wird zum einem durch eine Reorganisation der Zwischenwasser-Zirkulation 

(Sauerstoffzufuhr) im nördlichen Arabischen Meer verursacht, die durch den Anstieg des 

Meeresspiegels hervorgerufen wurde. Hinzu kommen Änderungen in der Monsunintensität, 

die sich regional unterschiedlich auf die Primarproduktion (Sauerstoffbedarf) des Arabischen 

Meeres ausgewirkt haben. 
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Abstract 

 

The Indian monsoon climate influences large parts of the world’s population. But 

relatively little is known about its decadal to centennial scale variation at time scales of 

societal relevance. The aim of this study was to reconstruct the Holocene history of summer 

and winter monsoon variability in high-resolution by analyzing sediment cores from different 

locations in the Arabian Sea (northern Indian Ocean). Oceanic properties and biogeochemical 

processes in the Arabian Sea, such as sea surface temperature (SST), primary productivity and 

the intensity of the mid-water oxygen minimum zone and water column denitrification are 

closely coupled to the seasonal monsoon cycle.  

While primary productivity and SST in the northwestern Arabian Sea are mainly 

impacted by upwelling processes associated with the summer monsoon, in the northeastern 

Arabian Sea off Pakistan low SST and high primary productivity are driven by the north-

easterly winds of the winter monsoon. Based on this modern setting, I analyzed alkenone-

derived SST changes together with proxies of primary productivity (organic carbon, 

carbonate/opal, δ15N) in a well-laminated sediment core from the Pakistan continental margin 

to establish a high-resolution record of winter monsoon strength for the late Holocene 

(chapter 3). Over the last 2400 years reconstructed SST decreased whereas productivity 

increased, reflecting a long-term trend of winter monsoon strengthening. A comparison of my 

winter monsoon record with records of summer monsoon strength shows that an inverse 

relationship of summer and winter monsoon strength exists in the Asian monsoon region over 

the late Holocene. The linked variation of summer and winter monsoon strength most likely 

was caused by shifts in the long-term latitudinal position of the Intertropical Convergence 

Zone (ITCZ), forced by changes in solar output. 

Reconstruction and comparison of alkenone-derived SST patterns from two sediment 

cores, one from the summer monsoon dominated northwestern Arabian Sea and one from the 

winter monsoon influenced northeastern Arabian Sea, reveal that this antagonistic behavior of 

summer and winter monsoon strength was also evident over the last 25,000 years (chapter 4). 

Strong upwelling at the coast of northern Oman reflects intensified summer monsoon activity 

during the early Holocene climate optimum, contemporaneous with a decline in winter 

monsoon strength as indicated by increasing SST off Pakistan. Strengthening of winter 

monsoon activity since the early Holocene was forced by a southward displacement of the 

ITCZ throughout the Holocene.  
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The late Holocene alkenone-based SST record from the northeastern Arabian Sea shows 

a close correlation to decadal to centennial scale climate variability recorded on the Asian 

continent and the high-latitude Northern Hemisphere. Colder climate conditions (as observed 

during the Little Ice Age) increase the strength of northeast monsoonal winds and lower SST 

in the northeastern Arabian Sea. 

Chapter 5 deals with the temporal and spatial variability of the Arabian Sea oxygen 

minimum zone (OMZ) over the Holocene and its relation to varying monsoon strength. 

Proxies of mid-water oxygenation and southwest monsoon strength were analyzed in a 

sediment core from the northern Oman Margin representing the late and mid Holocene. The 

comparison of my δ15N and Mn/Al records with other records of denitrification and 

oxygenation from the northern Arabian Sea shows that the location of the core OMZ has 

shifted from the northwest (early Holocene) to the northeast (late Holocene) throughout the 

Holocene. This shift was caused by a reorganization of mid-water circulation (oxygen supply) 

in the northern Arabian Sea due to sea level rise together with spatial differences in the 

response of primary productivity (oxygen demand) to varying monsoon activity.  
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CHAPTER 1: INTRODUCTION  1 

CHAPTER 1 

 
1. Introduction 

 
 
 
 
 
 

1.1. The Indian monsoon system 

The Indian monsoon is a major component of our global climate system that affects large 

parts of the world’s population. In the monsoon region almost 80% of the total annual 

precipitation is supplied during the summer monsoon season with far-reaching consequences 

for the environment, economy and society of southern and southeast Asia. Variations in the 

onset of summer monsoon rains but also in the amount of precipitation can seriously affect 

the livelihood of people living in countries influenced by a monsoon climate (e.g., Clift and 

Plumb, 2008). Thus, it is important to understand the controls of the monsoon and how it has 

changed in the past.  

The monsoon circulation is driven by solar triggered differential heating of land and 

ocean and the resultant development of atmospheric pressure gradients. Increased solar 

insolation in spring forces the Asian continent to heat faster than the Indian Ocean due to 

differences in heat capacity and specific heat of water and land (Webster, 1987). The warm air 

over the continent starts to rise and a low atmospheric pressure cell develops over the 

continent and a cell of high pressure over the southern Indian Ocean, marking the onset of the 

summer monsoon with low-level winds blowing from the southwest (SW) (Figure 1.1a). Near 

the equator the low-level trade winds converge into a band of low pressure, forming the 

Intertropical Convergence Zone (ITCZ) that shifts seasonally with the course of the sun. 

Northward migration of the ITCZ at the beginning of the summer monsoon supplies moisture 

from the Indian Ocean to the Asian continent where it causes heavy rainfall. The cross-

equatorial monsoon circulation and rainfall pattern are further strengthened by the orography 

and high elevation of the Himalayan mountains (Prell and Kutzbach, 1992). In boreal winter 
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the atmospheric pressure gradient reverses due to low solar insolation and faster cooling of 

the Asian continent than the southern Indian Ocean. The ITCZ migrates to the south and dry, 

continental, north-easterly winds prevail over large parts of India and the northern Indian 

Ocean (Figure 1.2b).  
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Figure 1.1: The Indian monsoon system during (a) Northern Hemisphere summer and (b) Northern Hemisphere 

winter. Differences in atmospheric pressure force an annual reversal of low-level winds (gray arrows) and 

seasonal shifts in the Intertropical Convergence Zone (red dotted line). This drives the seasonal reversal of 

surface circulation in the Arabian Sea (dashed black arrows; redrawn from Schott and McCreary (2001)).  

 
 
 

1.2. The northern Arabian Sea and the seasonal monsoon cycle 

The Arabian Sea is a semi-enclosed oceanic basin in the northern Indian Ocean, bordered 

by the African continent in the west, the Arabian Peninsula in the north and Pakistan and 

India in the east. Oceanic properties and biogeochemical processes in the Arabian Sea are 

closely coupled to the seasonal monsoon cycle. The south-westerly winds of the summer 

monsoon cause that the surface circulation in the Arabian Sea is clockwise during summer 

while it reverses; now being anti-clockwise, during the northeast monsoon in winter (Figure 

1.1). The main monsoon driven oceanic properties of the Arabian Sea will be described 

below. 

Sea surface temperature – Sea surface temperature (SST) changes in the northern 

Arabian Sea are mainly governed by upwelling processes in summer and convective mixing 

in winter (Figures 1.2a and 1.2c). The summer low-level jet stream over the northwestern 
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(NW) Arabian Sea (Findlater Jet; Findlater, 1969) induces upwelling of cold and nutrient rich 

waters along the coast of Somalia and Oman, so that SST in this region is low from July to 

August (Hastenrath and Lamb, 1979). While the northeastern (NE) Arabian Sea is not 

influenced by upwelling processes and SST remains warm during summer, low solar 

insolation together with enhanced evaporation due to dry and continental winds from the 

northeast cause convective deepening of the mixed layer and sea surface cooling off Pakistan 

during the winter monsoon season (Prasanna Kumar and Prasad, 1996). 

Primary productivity  – The Arabian Sea is one of the most productive oceanic regions 

worldwide. Primary productivity is highly seasonal and closely coupled to the seasonal 

monsoon cycle (Figures 1.2b and 1.2d). In the coastal region of the NW Arabian Sea primary 

production is elevated during the summer monsoon, when upwelling of mid-waters associated 

to south-westerly winds provides nutrients to fuel high rates of biological productivity. 

Sediment trap studies from this region show that particle fluxes reach values of up to 600 mg 

m-2 day-1 from June to September (Haake et al., 1993; Nair et al., 1989; Rixen et al., 1996). In 

the NE Arabian Sea, on the other hand, primary productivity is most pronounced during the 

winter monsoon (Banse and McClain, 1986; Madhupratap et al., 1996). This second peak in 

primary productivity is supported by the additional supply of nutrients into the euphotic zone 

through convective winter mixing. 

Oxygen minimum zone – High rates of primary production and the subsequent oxygen-

consuming mineralization of sinking organic matter together with sluggish intermediate water 

circulation (and thus low oxygen supply) favor a stable mid-water oxygen minimum zone 

(OMZ) between 200 and 1200 m water depth in the northern Arabian Sea (e.g., Olson et al., 

1993). Although primary productivity is highest in the NW Arabian Sea, oxygen 

concentrations at intermediate water depth are lowest in the NE basin due to the inflow of 

saline and warm water masses from the Red Sea and Persian Gulf and resultant weak 

ventilation of the NE Arabian Sea. 

Nitrogen cycle – Stable and year-round oxygen deficient conditions at intermediate 

water depth make the Arabian Sea to one of the major denitrification regions of the world 

ocean (Bange et al., 2000; Bulow et al., 2010; Ward et al., 2009). Denitrification reduces 

nitrate ( −
3NO ) to nitrite ( −

2NO ) and gaseous nitrogen (N2) and thus accounts for the main loss 

of fixed nitrogen from the biosphere with implications for carbon cycling and the biological 

pump (Altabet et al., 2002). The Arabian Sea, furthermore, contributes to the oceanic loss of 

nitrous oxide (N2O) to the atmosphere since N2O, an important green house gas, is produced 

as a by-product of denitrification (Bange et al., 2001). Overall, nitrogen cycling in the 
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Arabian Sea is primarily dominated by denitrification (nitrogen loss) and advective input of 

nitrogen from the south (major nitrogen source) (Bange et al., 2000). 
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Figure 1.2: Sea surface temperature (SST) and primary productivity in the northern Arabian Sea during summer 

(left panels) and winter monsoon (right panels), respectively. SST data are obtained from the World Ocean Atlas 

2009 (Locarnini et al., 2010). Primary productivity changes are indicated by the chlorophyll a distribution 

(satellite observations, available from http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean 

_month). Black arrows indicate prevailing wind directions.  

 
 
 

1.3. Past climate variability and the Indian monsoon system 

The strength of the Indian monsoon system was not stable through time but changed in 

line with past global climate variability. Past changes in the Earth climate, such as the 

occurrence of glacial/interglacial cycles, were triggered by changes in the seasonal 

distribution of solar radiation driven by long-term variations in the Earth’s orbit (eccentricity, 

obliquity and precession), known as Milankovitch cycles. Glaciation of the Northern 
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Hemisphere high-latitudes due to varying solar radiation has also affected the intensity of the 

Indian summer monsoon through internal climate feedback mechanisms including snow 

cover, surface albedo, land-sea thermal contrast and the long-term position of the ITCZ 

(Figure 1.3). Thus, monsoon strength has varied on glacial/interglacial cycles as a response to 

changes in Northern Hemisphere solar insolation and glacial boundary conditions (Clemens et 

al., 1991; Prell and Kutzbach, 1992). Climate over the last 100 kyrs fluctuated not only on 

orbital time scales, but exhibits several abrupt warming events (Dansgaard-Oeschger events) 

that were followed by more gradual cooling (Heinrich event) on sub-orbital time scales 

(Dansgaard et al., 1993), and that were also reflected in the intensity of the Indian summer 

monsoon. 
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Figure 1.3: Simplified overview of climate variability in the Arabian Sea region as a function of changing solar 

radiation driven by long-term variations in the Earth’s orbit.  

 
 
 

Summer monsoon intensity over southern Asia was strengthened during periods of high 

solar insolation and warm climate conditions on the Northern Hemisphere (interglacial, 

interstadial), while times of low solar insolation and relatively colder climate on the Northern 

Hemisphere (glacial, stadial) were linked to weak summer monsoon winds (Clemens and 

Prell, 1990; Schulz et al., 1998). Strong SW monsoonal winds have driven intense upwelling, 

high primary production and a pronounced OMZ and elevated denitrification in the Arabian 
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Sea over interglacial and interstadial periods (e.g., Emeis et al., 1995; Reichart et al., 1998; 

Rostek et al., 1997). On the other hand, denitrification was nearly absent (Altabet et al., 1999; 

Suthhof et al., 2001) and primary production was low during glacial and stadial periods 

(Figure 1.3). 

Recent studies have further shown that Holocene climate was far from stable: Centennial 

scale variations in the Asian summer monsoon seem to be linked to cold, ice-rafting events in 

the North Atlantic ('Bond event'; Bond et al., 2001) that occurred with a cyclicity of about 

1500 years (Gupta et al., 2003; Hong et al., 2003). The initial forcing for the centennial to 

decadal scale climate fluctuations over the Holocene is still unclear but may be related to solar 

activity associated with sunspot cycles (Bond et al., 2001; Neff et al., 2001). 

 

1.4. Arabian Sea sediments – a recorder for monsoon variability 

Arabian Sea sediments provide a unique climate archive of past monsoon variability. The 

composition of sediments records the environmental and climate conditions that prevailed 

during their deposition. Elevated (monsoon driven) primary productivity and a pronounced 

OMZ cause high sedimentation rates and well preserved sediments at the continental margins 

that enable the reconstruction of monsoon strength at decadal to centennial scale resolution. 

To reconstruct past variations in the oceanic environment of the Arabian Sea, I used different 

sediment cores (Table 1.1) and analyzed different paleoceanographic proxies, which are 

described below (Figure 1.4). 

 

1.4.1. Alkenones as an indicator for sea surface temperature variations 

Long-chain alkenones (C37-C39), synthesized by haptophyte algae, provide a well-

established proxy to estimate present and past sea surface temperatures in the ocean (Brassell 

et al., 1986; Prahl and Wakeham, 1987). The alkenone-SST proxy is based on the ratio of di- 

and tri-unsaturated C37-alkenones that changes as a function of growth temperature. The 

alkenone-producing coccolithophorids Emiliania huxleyi and Geophyrocapsa oceanica 

respond to an increase of growth temperature by producing relatively higher amounts of di-

unsaturated C37-alkenones, which is expressed in the alkenone unsaturation index 
K'
37U =C37:2/(C37:2 + C37:3). The K'

37U -SST relationship can vary between oceanic regions and is 

determined through culture, water column and sediment core top calibrations (Herbert, 2003). 

For this PhD thesis, I used a sediment core top calibration from the Indian Ocean (Sonzogni et 
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al., 1997b) to translate the K'
37U -index to sea surface temperature (SST = (K'

37U -0.043)/0.033)). 

In Arabian Sea sediments alkenones reflect an annual mean temperature signal of the upper 

mixed layer (Sonzogni et al., 1997b). 

 

1.4.2. The estimation of primary productivity changes 

Several approaches exist to reconstruct past changes in oceanic primary production 

(contents and fluxes of biogenic remnants, organic marker molecules, elements like Ba, Cd, 

Cu, species composition of phytoplankton, proxies of surface nutrient concentrations), each 

on them having their own limitations and advantages (Berger et al., 1994). Applicability of 

the respective primary productivity proxies strongly depend on the studied oceanic region and 

the prevailing environmental conditions. 

One direct indicator of primary productivity is based on the production of organic matter 

by phytoplankton growth under the availability of nutrients and light at the sea surface and the 

subsequent flow of particulate organic matter through the water column to the seafloor. 

However, only a small fraction of the organic matter produced by phytoplankton is preserved 

in marine sediments. The content of organic matter that is buried in marine sediments is 

further influenced by organic matter remineralization in the water column and sediment-water 

interface and by its preservation in the sediments; both processes primarily being a function of 

oxygen availability and sedimentation rate (Müller and Suess, 1979; Paropkari et al., 1992). 

Nevertheless, sedimentary contents and fluxes of biogenic components, such as organic 

carbon, opal and carbonate, trace past variations in primary productivity in the highly 

productive and oxygen poor waters of the Arabian Sea (e.g., Emeis et al., 1995; Schulz et al., 

1998). 

 

1.4.3. Stable nitrogen isotopes 

Nitrogen consists of the two stable isotopes 14N and 15N that occur with an natural 

abundance of 99.64% and 0.36%, respectively (Hoefs, 2009). The ratio of the two stable 

isotopes of nitrogen (15N/14N) is expressed as δ15N, which is given as the per mil difference 

from the N-isotope composition of atmospheric N2 that has a δ15N values of 0‰: δ15N = 

[(RSample-RStandard)/RStandard)]*1000, where RSample is the 15N/14N ratio of the sample and RStandard 

is the 15N/14N ratio of atmospheric N2. 
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Incomplete transformation of nitrogen in the marine nitrogen cycle (including nitrogen 

fixation, ammonium and nitrate assimilation, ammonification, nitrification, denitrification, 

anammox) is often associated with a kinetic fractionation of stable nitrogen isotopes because 

marine organisms usually prefer the lighter stable isotope 14N over the heavier 15N isotope. 

Thus, measurements of δ15N are used to study fluxes and processes in the marine nitrogen 

cycle (e.g., Ganeshram et al., 2000; Gaye et al., 2013; Naqvi et al., 1998). In this study, 

sedimentary δ15N is used as a tracer for denitrification that primarily reflects the intensity of 

the OMZ. In oxygenated waters of the open ocean nitrate has an average δ15N value of about 

5‰ (Sigman et al., 2000). Under low oxygen concentrations denitrification fractionates 

nitrogen isotopes leaving the remaining nitrate enriched in δ15N. This isotopically enriched 

nitrate is transported into the euphotic zone via upwelling and mixing, gets assimilated by 

phytoplankton uptake and sinks to the seafloor, enhancing the δ15N signature of marine 

sediments (Altabet et al., 1995; Naqvi et al., 1998).  
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Figure 1.4: Overview of the different paleo-proxies (red) that are used in this study to reconstruct monsoon 

driven processes in the northern Arabian Sea. Processes that are mainly driven by the SW monsoon are 

illustrated in gray (Oman Margin) and NE monsoon induced processes are marked in black (Pakistan Margin). 

Biogeochemical processes related to oxygen minimum zone intensity are shown in blue. Further shown is the 

location of sediment cores that are investigated in this study. 
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1.4.4. Elemental composition of sediments 

Most of the major and trace metals in the ocean are involved in biogeochemical cycles 

and thus provide information about the climatic and oceanic processes they are linked to. The 

elemental composition of sediments is often expressed as the element to aluminium ratio in 

order to account for possible dilution with CaCO3. In Arabian Sea sediments major and trace 

elements can be attributed to mainly three sources and thus can be used as provenance 

indicators: (1) terrigenous sources (eolian and fluviatil), (2) biogenic carbonates and (3) 

primary productivity (Reichart et al., 1997; Shimmield and Mowbray, 1991; Sirocko et al., 

2000). Elements such as Mn, Mo and V are further sensitive to redox processes that occur at 

the boundary of the OMZ and trace changes in the Arabian Sea oxygen minimum zone (e.g., 

Reichart et al., 2002b; Suthhof et al., 2001). In this study, I used the elemental composition of 

sediments to gain information about past variations in dust input (Mg/Al, Ti/Al), monsoon 

wind strength (Zr/Al), OMZ intensity (Mn/Al) and winter mixing (Sr/Ca). A detailed 

description of the respective element indicator is given in chapters 3 and 5. 

 
 
 
Table 1.1: Basic information of the sediment cores investigated in this study.   

Core Latitude Longitude water depth depth time period Resolution
N° E° [m] interval [cm] [yrs BP] [yrs]

SO90-39KG 24°50.01 65°55.01 695 15 -38 - 56 6-8

SO130-275KL 24°49.31 65°54.60 782 188 60 - 2400 5-80

SO90-93KL 23°35 64°13 1802 245 1000 - 24 600 ~100

M74/1b-163SL 21°55.97 59°48.15 650 400 160 - 2700 100-300

5700 - 8000 10-50

MD00-2354 21°02.55 61°28.51 2740 400 1300 - 24 900 100-300

MC680 22°37.16 59°41.50 789 50 80 - 1000 25 -150

5700 - 6100 60 - 120  

KG = box core, KL = piston core, SL = gravity core, MC = multicorer 
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CHAPTER 2 

 
2. Project, objectives and thesis outline 

 
 
 
 
 
 

Project - The research presented in this PhD thesis is part of the BMBF funded Research 

Unit CARIMA (Natural versus anthropogenic controls of past monsoon variability in central 

Asia recorded in marine archives) that involves five German and one Indian Research Groups. 

As a subproject of the research program CAME (Central Asia and Tibet: Monsoon dynamics 

and geo-ecosystems), CARIMA provides the ‘marine part’ of CAME by studying monsoon 

impacts on the marine environment. The main aim of CARIMA is to quantify the natural 

monsoon variability at inter-annual to centennial time scales over the Holocene to gain a 

better understanding of monsoon dynamics at time scales of societal relevance. In my study, I 

used different sediment cores from two regions in the Arabian Sea that are differentially 

impacted by the SW and NE monsoon as unique monsoon archives. I analyzed and 

reconstructed monsoon driven oceanic processes such as primary productivity, upwelling and 

winter mixing, denitrification and OMZ intensity and the input of lithogenic material to 

Arabian Sea sediments. 

 
 
 

 

Objectives – The key objectives that are addressed in this dissertation are the following:  

- I aim to investigate and reconstruct monsoon variability over the late Holocene (last 2000 

years) in high-resolution. Therefore, I reconstructed SST and primary productivity 

variations that are mainly driven by changing NE monsoon activity on the Pakistan 

continental margin (chapter 3). 
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- Past variations in summer and winter monsoon strength revealed an antagonistic 

relationship over glacial/interglacial and stadial/interstadial cycles (Rostek et al., 1997; 

Schulte and Müller, 2001; Schulz et al., 1998). I aim to disentangle signals of SW and NE 

monsoon in order to investigate if this antagonistic relationship of summer and winter 

monsoon strength has also existed throughout the Holocene (chapters 3 and 4). 

- Past studies have shown that the monsoon was impacted by North Atlantic climate change 

over sub-Milankovitch time scales (Gupta et al., 2003; Schulz et al., 1998). I aim to 

investigate if centennial scale changes in monsoon activity over the Arabian Sea were also 

linked to Northern Hemisphere climate change over the last 2000 years (chapters 3 and 4). 

- I will discuss possible forcing mechanisms (solar activity, position of the ITCZ) that link 

SW and NE monsoon strength on the one hand, and monsoon activity to global climate 

variability on the other hand (chapters 3 and 4). 

- Future climate scenarios predict a strengthening SW monsoon and resultant enhancement 

of primary production in the Arabian Sea under global warming conditions (Goes et al., 

2005). This scenario implies an expanding OMZ with possible feedback mechanisms for 

global climate change through N2O emissions. In this context, I aim to investigate the past 

variability and spatial extension of the Arabian Sea OMZ and its relation to short-term 

(decadal to centennial scale) fluctuations of monsoon intensity over the Holocene (chapter 

5). 

 
 
 
 

Thesis outline – The following chapters present the results of this PhD thesis and 

correspond to 3 manuscripts that are accepted in, submitted to or will be submitted to peer-

reviewed scientific journals. 

 

Chapter 3 

Late Holocene primary productivity and sea surface temperature variations: 

implications for winter monsoon variability  

Böll, A., Lückge, A., Munz, P., Forke, S., Schulz, H., Ramaswamy, V., Rixen, T., Gaye, B., 

Emeis, K.-C. (Paleoceanography 29, 778-794. doi:10.1002/2013PA002579) 
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Chapter 4 

Contrasting sea surface temperature of summer and winter monsoon variability in the 

northern Arabian Sea over the last 25 ka  

Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., Emeis, K.–C. (submitted to 

Palaeogeography, Palaeoclimatology, Palaeoecology) 

 

 

Chapter 5 

Spatial and temporal variability of the Arabian Sea oxygen minimum zone over the 

Holocene 

Böll, A., Munz, P., Lückge, A., Schulz, H., Gaye, B., Emeis, K.-C. (submitted to Quaternary 

Science Reviews)  
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CHAPTER 3 
 
3. Late Holocene primary productivity and sea surface 

temperature variations: implications for winter monsoon 

variability  

 
 
 
 
 
 

Abstract 

Variability in the oceanic environment of the Arabian Sea region is strongly influenced 

by the seasonal monsoon cycle of alternating wind directions. Prominent and well studied is 

the summer monsoon, but much less is known about late Holocene changes in winter 

monsoon strength with winds from the northeast that drive convective mixing and high 

surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution 

record of winter monsoon variability for the late Holocene, we analyzed alkenone-derived sea 

surface temperature (SST) variations and proxies of primary productivity (organic carbon and 

δ
15N) in a well-laminated sediment core from the Pakistan continental margin. Weak winter 

monsoon intensities off Pakistan are indicated from 400 B.C. to 250 A.D. by reduced 

productivity and relatively high SST. At about 250 A.D., the intensity of the winter monsoon 

increased off Pakistan as indicated by a trend to lower SST. We infer that monsoon conditions 

were relatively unstable from ~500 to 1300 A.D., because primary production and SST were 

highly variable. Declining SST and elevated biological production from 1400 to 1900 A.D. 

suggest invigorated convective winter mixing by strengthening winter monsoon circulation, 

most likely a regional expression of colder climate conditions during the Little Ice Age on the 

Northern Hemisphere. The comparison of winter monsoon intensity with records of summer 

monsoon intensity suggests that an inverse relationship between summer and winter monsoon 

strength exists in the Asian monsoon system during the late Holocene, effected by shifts in the 

Intertropical Convergence Zone. 
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3.1. Introduction 

The Asian monsoon system is one of the most important components of global climate. 

Although variations in the Asian monsoon have a great impact on climatological and 

biogeochemical processes in the ocean as well as on land, there are yet few high-resolution 

studies recording monsoon variability during the last 2000 years. One opportunity to establish 

such high-resolution records of late Holocene climate change comes from laminated 

sediments deposited on the Makran continental margin in the northeastern Arabian Sea 

(Doose-Rolinski et al., 2001; Lückge et al., 2001; von Rad et al., 1999a).  

Primary productivity in the Arabian Sea is high and is tightly linked to the seasonal 

dynamics of the Asian monsoon system. Forced by reversing atmospheric pressure gradients 

between central Asia and the southern Indian Ocean and accompanied by shifts in the 

Intertropical Convergence Zone (ITCZ) (Clemens et al., 1991), low-level winds reverse 

direction in the course of the year. Strong south-westerly winds during the summer months 

caused by differential land-ocean heating in spring (Hastenrath and Lamb, 1979) induce 

clockwise surface water circulation in the Arabian Sea. As a consequence, upwelling of 

nutrient-rich waters along the coast off Somalia, Oman, and southwest India supports high 

biological productivity during the months June to September (Haake et al., 1993; Nair et al., 

1989; Rixen et al., 1996). A secondary primary productivity peak in the northern basin is 

initiated when the wind direction reverses due to faster cooling of the continent in fall (Rixen 

et al., 2005). Prevailing moderate and dry north-easterly winds in winter drive a 

counterclockwise surface circulation and cool Arabian Sea surface waters (Wyrtki, 1973), 

thereby initiating convective winter mixing that provides nutrients for seasonally and 

regionally enhanced biological productivity (Banse and McClain, 1986; Madhupratap et al., 

1996).  

Whereas most sediment trap studies in the central Arabian Sea indeed indicate highest 

biological productivity during the summer monsoon (Broerse et al., 2000; Prahl et al., 2000; 

Wakeham et al., 2002); highest particle fluxes in the northeastern Arabian Sea are observed 

during the winter monsoon season (Andruleit et al., 2000; Lückge et al., 2002; Rixen et al., 

2005; Schulz et al., 2002b) and are associated with sea surface cooling down to about 23°C. 

Hence, periods of low sea surface temperatures (SSTs) in the northeastern Arabian Sea are 

linked to the cool northeast monsoonal winds during winter.  

We know today that monsoon activity varied not only on Milankovitch time scales but 

also during the late Holocene, as evident in Arabian Sea sediments (Agnihotri et al., 2008; 

Anderson et al., 2010, 2002; Chauhan et al., 2010; Gupta et al., 2011, 2003; Lückge et al., 
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2001; von Rad et al., 1999a) and in various cave records from Oman (Burns et al., 2002; 

Fleitmann et al., 2004), Yemen (Van Rampelbergh et al., 2013), India (Berkelhammer et al., 

2010; Sinha et al., 2011b, 2007), and China (Zhang et al., 2008). Similarly, primary 

productivity in the Arabian Sea was not uniform on time scales of a few hundred thousand 

years but tracked monsoon variations caused by glacial/interglacial cycles (Rostek et al., 

1997; Schulte and Müller, 2001; Schulte et al., 1999; Schulz et al., 1998). Although some 

knowledge exists about summer monsoon related changes in primary productivity over the 

last 2000 years from the Oman Margin (Anderson et al., 2010, 2002; Gupta et al., 2003) and 

the southwestern coast off India (Agnihotri et al., 2008), paleoceanographic responses to late 

Holocene winter monsoon variability in the northeastern Arabian Sea are unknown.  

 

 

Figure 3.1: Study area in the northeastern Arabian Sea off Pakistan with core locations 275KL and 39KG and 

sediment trap station EPT-2. The shaded area indicates OMZ impinging on the continental slope. Bathymetry is 

shown in meters. Inset: vertical profile of core 275KL showing varve-like lamination. This map is produced by 

using Ocean Data View (Schlitzer, 2013). 

 
 
 
Here we report a high-resolution record of winter monsoon variability for the late 

Holocene discerned from changes in primary productivity and sea surface temperature for the 

mainly winter monsoon dominated northeastern Arabian Sea. We analyzed a 188 cm long 

section of a well-laminated sediment core from the Pakistan Margin (Figure 3.1) for bulk 
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components (organic carbon, carbonate, and opal), stable nitrogen isotopes, and alkenone 

unsaturation ratios to reconstruct the productivity and monsoon variability throughout the last 

2400 years. A key proxy for the winter monsoon intensity is the alkenone-derived SST 

estimate, which we validate by analyzing the seasonality of the alkenone-based SST signal at 

eastern PAKOMIN sediment trap station (EPT-2) close to our core location. Our detailed 

objectives are to (1) examine the relationship between SST and alkenone unsaturation ratios 

in sediment trap material for the northeastern Arabian Sea, (2) reconstruct late Holocene 

(winter monsoon dominated) SST and paleoproductivity changes for the northeastern Arabian 

Sea, (3) compare the winter monsoon dominated record with records of summer monsoon 

variability to learn about the dynamics of the monsoon low-level wind system, and (4) 

examine possible links in the regional wind and surface ocean system to Northern 

Hemisphere climate change in historical time.  

 

3.2. Study Area 

Unlike offshore the coast of Somalia, Oman, and southeast India, upwelling does not 

occur during the southwest (SW) monsoon season on the Pakistan Margin, so that SSTs are 

warm during summer (27.8 to 29.3°C). In the northeastern Arabian Sea, high productivity 

during the SW monsoon in summer is partly supported by the lateral advection of nutrient-

rich surface waters from the upwelling area off Oman (Schulz et al., 1996). Cool winter SSTs 

(~23°C) during the northeast (NE) monsoon season are accompanied by a deepening of the 

mixed layer through convective mixing (Figure 3.2) that stimulates a second peak in primary 

production (Banse and McClain, 1986; Madhupratap et al., 1996). During this season reduced 

solar insolation together with enhanced evaporation lead to density increase of surface waters 

and convective deepening of the mixed layer over the Pakistan Margin. Concentrations of 

nitrate and chlorophyll a and primary production in the surface layer here correlate with 

mixed layer depth and wind speeds (Madhupratap et al., 1996; Prasanna Kumar and Prasad, 

1996; Prasanna Kumar et al., 2001). Increased particle fluxes during the months of January 

and February indicate even higher production during the NE monsoon season than during the 

SW monsoon season over the Pakistan Margin (Andruleit et al., 2000; Schulz et al., 2002b; 

see Figure 3.2). 

In the northern Arabian Sea, a stable mid-water oxygen minimum zone (OMZ) between 

200 and 1200 m water depth is maintained by high organic matter (OM) fluxes and 

subsequent oxygen consumption during mineralization of organic matter, combined with 
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reduced vertical mixing caused by the input of warm, saline water masses from the Persian 

Gulf and the Red Sea to intermediate water depths (Olson et al., 1993; Schulz et al., 1996). 

High organic matter fluxes from the euphotic zone raise rates of denitrification in the OMZ, 

which in turn raise the δ15N values of thermocline nitrate mixed into the surface layer and 

assimilated by phytoplankton. Intensification of the OMZ thus results in high sedimentary 

δ
15N values upon burial of particulate N, whereas weakening of the OMZ and reduced 

denitrification intensity lead to low sedimentary δ
15N values (e.g., Altabet et al., 1995; Gaye-

Haake et al., 2005; Naqvi et al., 1998; Suthhof et al., 2001).  

 

 

Figure 3.2: Annual variability of mixed layer depth and SST for site 275KL extracted from the World Ocean 

Atlas (Levitus and Boyer, 1994) and total particle flux measured in sediment trap EPT-2 after Andruleit et al. 

(2000). Increased particle fluxes occur during the NE monsoon season when strong convective winter mixing 

deepens the mixed layer and SST decreases.  
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Sediments deposited within the OMZ depth interval on the Pakistan Margin are 

laminated with alternating dark and light sediment layers and record high input of lithogenic 

material originating from dust storms and/or river runoff (Schulz et al., 1996; von Rad et al., 

1999a, 1995). Lückge et al. (2002) showed that dark laminae are deposited over large parts of 

the year and reflect primary production of marine organic matter, whereas light-colored 

laminae contain almost exclusively land-derived materials which are deposited in the winter 

season during short-term heavy rainfall events.  

 

3.3. Methods 

3.3.1. Sample collection and stratigraphy 

 In this study we investigated piston core 275KL and box core 39KG, both located within 

the center of the OMZ off the Pakistan coast (Figure 3.1). The box core 39KG (24°50.01’N, 

65°55.01’E; 695 m water depth) was collected in 1993 during SONNE cruise 90, and results 

were published by Doose-Rolinski et al. (2001), Lückge et al. (2001), and von Rad et al. 

(1999a). The piston core 275KL was retrieved from the same position in 1998 during SONNE 

cruise 130 (24°49.31’N, 65°54.60’E; 782 m water depth). We studied the top 188 cm interval 

of core 275KL and the top 15 cm of core 39KG, which together yield a continuous record of 

environmental conditions on the Pakistan Margin over the last 2400 years. Core 275KL was 

continuously sampled in 0.5 cm intervals (sample resolution of 5 to 80 years) for bulk 

analyses (organic carbon and carbonate), and every third or fourth sample (of this sample 

series) was analyzed for opal concentrations and stable nitrogen isotope measurements. 

Alkenones were measured at continuous 2 cm intervals in core 275KL. In core 39KG, all 

parameters were analyzed on 1 cm intervals (6 to 8 year resolution). All samples were freeze 

dried and homogenized with mortar and pestle prior to chemical treatment and analyses.  

In addition to seasonal varves, core 275KL exhibits reddish brown silt turbidites up to 9 

cm thick and light gray short event deposits (>1 mm thick) consisting of allochthonous 

lithotypes interpreted as “plume deposits” by episodically heavy river floods that transport 

mud suspensions across the narrow shelf onto the steep upper slope (Lückge et al., 2002; von 

Rad et al., 2002b). Sediments containing these event deposits or turbidites were excluded 

from our sample set.  

Varves, turbidites, and event layers in our core are equivalent to the lithostratigraphy 

observed in core 56KA from the same position. Core 56KA has been dated by von Rad et al. 

(1999a) by varve counting and several conventional and accelerated mass spectrometry 
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(AMS) 14C datings. Our age model is based on the visual correlation of event deposit layers 

from both cores as stratigraphic tie points and interpolation between these tie points. 

We also analyzed alkenones and calculated alkenone fluxes as well as the K'
37U -index of 

samples from the Eastern PAKOMIN sediment trap mooring station (EPT-2; 24°45.6’N, 

65°48.7E; 590 m water depth) to ascertain the validity of sea surface temperatures estimated 

in sediment core samples. The EPT-2 trap was deployed from May 1995 to February 1996 

and was previously studied by Andruleit et al. (2000) and Schulz et al. (2002b). 

 

3.3.2. Bulk components (organic carbon, carbonate, and opal) 

Total carbon was analyzed on a Carlo Erba 1500 elemental analyzer (Milan, Italy) with a 

precision of 0.2%. Total organic carbon (TOC) was measured with the same instrument after 

samples were treated with 1 M hydrochloric acid (HCl) to remove inorganic carbon. 

Analytical precision for organic carbon was 0.02%. Carbonate carbon was calculated as the 

difference between total carbon and organic carbon. 

Biogenic opal was determined by wet alkaline extraction of biogenic silica (BSi) using a 

variation of the DeMaster method (DeMaster, 1981). About 30 g sediment per sample was 

digested in 40 mL of 1% sodium carbonate solution (Na2CO3) in a shaking bath at 85°C. 

After 3 h, the supernatant was withdrawn and neutralized in 0.021 M HCl. The concentration 

of dissolved silica in subsamples was determined photometrically. Biogenic opal was 

calculated by multiplying the BSi concentrations with a factor of 2.4. The mean standard 

deviation based on duplicate measurements of samples is 0.17%. To ensure that BSi is not 

overestimated by mineral dissolution at low BSi concentrations, we analyzed representative 

samples after 3, 4, and 5 h and used a slope correction for the determination of BSi 

concentrations (Conley, 1998). The amount of BSi was then estimated from the intercept of 

the line through the time course aliquots (DeMaster, 1981). Results of slope-corrected opal 

estimates showed that our method slightly overestimated opal concentrations by a mean of 

0.13%. All bulk components are presented as weight percent. 

Mass accumulation rates of organic carbon were calculated by multiplying the dry bulk 

densities of the sediments (measured at the Department of Geosciences, University of 

Tübingen) with calculated sedimentation rates and the weight fraction of organic carbon.  
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3.3.3. X-ray elemental analysis 

X-ray fluorescence (XRF) core scanner data were collected by XRF core scanner I at 

MARUM-Center for Marine Environmental Sciences (University of Bremen) using a Kevex 

Psi Peltier cooled silicon detector and a Kevex X-ray tube with the target material 

molybdenum (Mo). Counts were acquired directly at the split core surface of the archive half 

every 2 mm down-core over an area of 0.2 cm2 with an instrument slit size of 2 mm using a 

generator setting of 20 kV, 0.087 mA, and a sampling time of 30 s. The split core surface was 

covered with a polypropylene foil to avoid contamination of the XRF measurement unit and 

desiccation of the sediment.  

 

3.3.4. Nitrogen stable isotope ratios 

The ratio of the two stable isotopes of nitrogen (15N/14N) is expressed as δ15N, which is 

given as the per mil deviation from the N-isotope composition of atmospheric N2 (δ15N = 

0‰): δ15N = [(RSample-RStandard)/RStandard]*1000, where RSample is the 15N/14N ratio of the sample 

and RStandard is the 15N/14N ratio of atmospheric N2. δ
15N values were determined using a 

Finnigan MAT 252 gas isotope mass spectrometer after high-temperature flash combustion in 

a Carlo Erba NA-2500 elemental analyzer at 1100°C. Pure tank N2 calibrated against the 

International Atomic Energy Agency reference standards IAEA-N-1 and IAEA-N-2, which 

were, in addition to an internal sediment standard, also used as working standards. Analytical 

precision based on replicate measurements of a reference standard was better than 0.1‰. 

Duplicate measurements of samples resulted in a mean standard deviation of 0.07‰.  

 

3.3.5. Alkenones  

Freeze-dried and homogenized sediment samples (1 to 3g) were extracted twice for 5 

min with methylene chloride (DCM) using an accelerated solvent extractor (Dionex; 

temperature 75°C, pressure 70 bar). Directly after extraction, a known amount of internal 

standard (14-heptacosanone) was added to the extracts. The extracts were then rotary 

evaporated until near dryness and saponified with 5% methanolic potassium hydroxide 

(KOH) solution overnight. The KOH solution was dried under a nitrogen flow, dissolved in 

DCM, and cleaned over a silica gel column using DCM as eluent. The clean fraction 

containing the alkenones was dried under N2 and taken up in n-hexane (50-150µL) prior to 
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analysis. Alkenones were analyzed by gas chromatography on an Agilent 6850 gas 

chromatograph (GC) equipped with a split-splitless inlet system and flame ionization detector 

(310°C). Separation was achieved on a silica column (30 m x 0.1 µm film thickness x 0.32 

mm ID; Optima1; Macherey-Nagel) using hydrogen as carrier gas (1 mL min-1). The GC oven 

maintained 50°C for the first minute and was then programmed from 50° to 230°C at 20°C 

min-1, from 230° to 260°C at 4.5°C min-1, and from 260° to 320°C at 1.5°C min-1 followed by 

an isothermal period of 15 min. C37:2- and C37:3- alkenones were identified by comparing peak 

retention times between sediment samples and a working sediment standard. Quantification of 

alkenones was achieved by integrating the peak areas of the C37-alkenones and that of the 

internal standard (14-heptacosanone). Since both the C37-alkenones and the internal standard 

are very similar in structure, no different response factors between the C27-ketone and the C37-

alkenones are assumed. Alkenones were translated into sea surface temperature using the core 

top calibration for the Indian Ocean from Sonzogni et al. (1997b): SST = (K'
37U -0.043)/0.033 

with K'
37U =C37:2/(C37:2 + C37:3). Replicate extraction and measurement of a working sediment 

standard resulted in a mean standard deviation of estimated SST of 0.5°C.  

 

3.4. Results 

3.4.1. Alkenone fluxes and K'
37U  in sediment traps 

Alkenone fluxes in EPT-2 between May 1995 and February 1996 ranged from 0.15 µg 

m-2 d-1 to 1.21 µg m-2 d-1 (Figure 3.3a). Peak fluxes occurred in May 1995 (1.21 µg m-2 d-1) 

and during the late NE monsoon in January 1996 (0.92 µg m-2 d-1) and February 1996 (0.94 

µg m-2 d-1). Alkenone fluxes for the months September and October could not be determined 

due to low amounts of sample material. Alkenone fluxes on the Pakistan continental margin 

track coccolith fluxes during the seasonal cycle (Andruleit et al., 2000) with maxima at the 

onset of the summer and of the winter monsoon. This underscores a strong link between 

primary and alkenone production. Alkenone (C37) fluxes on the Pakistan Margin match those 

from the Oman Margin (Wakeham et al., 2002) but are slightly lower than the total alkenone 

(C37, C38 and C39) fluxes in the central Arabian Sea (Prahl et al., 2000). Sediment trap studies 

from different parts of the Arabian Sea thus showed a strong coupling between 

coccolithophore (and alkenone) production and the seasonal cycle in this area (Andruleit et 

al., 2000; Broerse et al., 2000; Prahl et al., 2000; Wakeham et al., 2002). 
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This seasonality may bias the SST signal in sediments toward seasonal flux maxima, so 

that it may not be representative of the annual mean SST (AM-SST). In our set of trap 

samples covering the period from May 1995 to February 1996, the seasonal variability of 

alkenone-derived SST (26.1°C to 28.1°C; K'
37U  from 0.904 to 0.971; Figure 3.3b) is attenuated 

compared to observed SSTs which vary from 23.0°C to 29.2°C (Reynolds et al., 2002). The 

observed mismatch between alkenone-based SST in sediment trap samples and regional 

seasonal SST patterns seems to be a general phenomenon independent on oceanic region 

(central Arabian Sea (Prahl et al., 2000); Sea of Okhotsk, northwest Pacific (Seki et al., 2007), 

subtropical oligotrophic North Pacific (Prahl et al., 2005)). In general, these studies found that 

alkenone-based SST produces a warm SST bias in winter and a cold SST bias in summer 

concordant with our observations from the northeastern Arabian Sea, where monthly average 

alkenone-based SSTs deviate most from modern observed SSTs during the cold winter 

months of the trapping period in 1995/1996. The overestimation of winter SST by alkenones 

may be explained by a change in the coccolithophore community to alkenone-producing 

species that exhibit a different response to growth temperature, thus altering the relationship 

of K'
37U  ratio to SST (Prahl et al., 2005). At the Pakistan Margin, changes in the 

coccolithophore assemblage (including the alkenone-producing species Emiliania huxleyi and 

Gephyrocapsa oceanica) are mainly controlled by variations in the mean mixed layer depth 

and total nutrient availability (Andruleit et al., 2004). A change in the alkenone-producing 

coccolithophore community due to mixed layer deepening at site EPT-2 is well reflected in 

the ratio of G. oceanica to E. huxleyi that show an increasing abundance of G. oceanica 

relative to E. huxleyi in winter (see Figure 3.4; coccolithore flux data were taken from 

Andruleit et al. (2000)). Although relative species composition of the two alkenone-producing 

coccolithophorides seems to be stable in the Indian Ocean sedimentary record (spatially 

(Sonzogni et al., 1997b) as well as through time (Doose-Rolinski et al., 2001)), we suggest 

that it might be of importance for K'
37U calibration on a seasonal scale on the Pakistan 

continental margin. If we use a linear offset of 0.085 (instead of 0.043) to calibrate the K'
37U  

index to SST as suggested by Prahl et al. (2005) for the deeply mixed wintertime, alkenone-

based SST were much closer to observed SST at 10 m water depth (Figure 3.4). On the other 

hand, the slight cold bias of alkenone-based SST in our trap samples during summer is best 

explained by alkenone production in the upper mixed layer between 0 to 30 m water depths. 
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Figure 3.3: (a) Total coccolith (gray bars; Andruleit et al., 2000) and alkenone fluxes (open circles) at trap EPT-

2 in the northeastern Arabian Sea off Pakistan. (b) Alkenone-derived SST measured in EPT-2 samples (triangle) 

compared to 1995/1996 monthly SST (circle; extracted from the web-site http://ingrid.ldgo.columbia.edu). Mean 

alkenone-based SST is about 0.4°C higher than mean temperature over May 1995 to February 1996.  

 
 
 

Albeit the complexity of processes that plays a role in seasonal alkenone-based SST 

estimates, we state that sedimentary K'
37U  measurements on the Pakistan Margin are best 

approximated by AM-SST. The average alkenone-derived SST of the sampling period is 

27.4°C, which (considering an uncertainty of 0.5°C) matches well with the mean modern SST 

(27.0°C; see Figure 3.3b), which in turn is very close to the average mean SST from May to 

February obtained from the Levitus climatology (26.9°C (Levitus and Boyer, 1994)). 

Climatological annual mean SST (including the months missing in the trap investigation) is 

26.4°C (Levitus and Boyer, 1994). But because alkenones reflect an integrated signal of the 

upper 0 to 50 m of the water column (Sonzogni et al., 1997b), small deviations from actual 

sea surface temperature measurements are to be expected. 

Our interpretation of sedimentary K'
37U  measurements as an AM-SST signal is supported 

by K'
37U  estimates for sediment trap samples from the central Arabian Sea (Prahl et al., 2000) 
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and by a compilation of sediment trap time series distributed over different oceanic regions 

worldwide (Rosell-Melé and Prahl, 2013). Furthermore, measurements of sediment core tops, 

which were used to develop an alkenone calibration equation for the Indian Ocean, showed no 

significant differences between calculated production-weighted temperature and AM-SST 

(Sonzogni et al., 1997a, 1997b). According to Doose-Rolinski et al. (2001), alkenone-derived 

SSTs measured in a Holocene section of a sediment core from the Pakistan Margin were best 

approximated by annual mean temperature as well.  

 

 
Figure 3.4: (a) Alkenone SST bias (circle; difference between monthly observed SST at 10 m water depth 

(Levitus and Boyer, 1994) and alkenone-derived SST measured in EPT-2 samples) compared to the ratio of G. 

oceanica to E. huxleyi (square, data were taken from Andruleit et al. (2000)) at trap EPT-2. Red shaded area 

indicates overestimation of SST by alkenones in winter. This overestimation is significantly reduced by the use 

of a different SST calibration (filled circle; SST = ( K'
37U - 0.085)/0.033). (b) Seasonal variations of mixed layer 

depth at site 39KG/275KL showing a strong mixed layer deepening during winter. 
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3.4.2. Alkenone SST record in core 39KG/275KL 

Alkenone SST vary between 26.9°C and 28.4°C (K'
37U  from 0.932 to 0.981) over the last 

2400 years and thus lie well above the modern annual mean of 26.4°C (Levitus and Boyer, 

1994). Conte et al. (2006) stated that a positive offset of reconstructed core top temperature 

(27.6°C for SO90-39KG) compared to atlas temperature is observed in several areas 

worldwide. It is alternatively explained by diagenetic alteration of alkenone ratios in the water 

column and/or surficial sediments, by lateral advection, or by variations in the seasonality and 

depth of alkenone production. In our view, diagenesis can be ruled out as a significant process 

affecting our K'
37U  estimates, because the offset was also observed between trap alkenone SST 

and modern AM-SST and was furthermore confirmed by Mg/Ca temperatures (Dahl and 

Oppo, 2006). Biasing of the alkenone signal by alkenones produced and advected from the 

upwelling area off Oman may be a factor (Andruleit et al., 2000), but coccolithophore fluxes 

on the Pakistan Margin are only slightly enhanced during the SW monsoon season, and the 

associated bias in the alkenone signal must be of minor importance. As SSTs in the 

southeastern Arabian Sea remain relatively high during winter, lateral advection of water 

masses and alkenones from the southwest Indian coast (following the counterclockwise 

surface current established during the NE monsoon) on the other hand would result in a warm 

bias of alkenone SST on the Pakistan Margin during the winter. However, based on a 

comparison of coccolith fluxes with coccosphere fluxes (which should present a vertical flux 

signal), Andruleit et al. (2000) suggested that coccolithophore assemblages were not 

influenced by resuspension processes during this time of the year.    

Regardless of the absolute SST, Figure 3.7 illustrates relative SST variations around the 

overall mean of 27.7°C over the last 2 millennia. Although the amplitude of the alkenone-

derived SST signal is small in our record, our SST reconstruction exhibits statistical 

significant periods of long-term SST changes. SSTs were high at around 28.2°C until 250 

A.D., rapidly decreased and outlined a time period of low SST that lasted from 400 to 1000 

A.D. After a rebound to >28°C between 1000 and 1300 A.D., the decline in SST continued 

until minimum temperatures (26.9°C) are registered during the 18th century. The minimum of 

our SST reconstruction at this time agrees with the results obtained from a global climate 

proxy network, which suggests 0.3°C cooler SSTs than present during the Little Ice Age in 

the northeastern Arabian Sea (Mann et al., 2009). Our SST estimates, after this minimum, 

suggest a northern Arabian Sea warming tendency that persists to the present.  



28                           CHAPTER 3: LATE HOLOCENE WINTER MONSOON VARIATIONS  

3.4.3. Records of Productivity 

Our analytical approach to trace the past productivity changes were based on TOC 

concentrations, δ15N values, and the ratio of carbonate to opal. The range of TOC 

concentrations (1.0 and 2.0%) and δ
15N values (7.1 to 8.5‰) in the sediment cores at sites 

39KG/275KL (Figure 3.6) is a characteristic of high-productivity areas with a well-developed 

OMZ and water column denitrification (e.g., Altabet et al., 1999; Gaye-Haake et al., 2005; 

Naqvi et al., 1998) such as the northern Arabian Sea (Cowie et al., 1999). Organic carbon 

concentrations in sediments on the Pakistan Margin (and elsewhere) are influenced by surface 

productivity but also by dilution with lithogenic material, bottom water oxygen 

concentrations, bulk accumulation rate, sediment texture, refractory of organic matter, and the 

mineral surface area (e.g., Keil and Cowie, 1999; Paropkari et al., 1992; Suthhof et al., 2000; 

van der Weijden et al., 1999).  

At our core site the use of organic carbon mass accumulation rates (TOC MAR) as a 

productivity indicator that theoretically remove an influence of dilution is complicated by 

strongly fluctuating sedimentation rates (SR) (ranging from 87 to 212 cm kyr-1). Sediment 

mass accumulation rates (71 to 203 g cm-2 kyr-1; event deposits excluded) calculated from SR 

and bulk densities are even higher than glacial/interglacial variations reported from the 

western (SR ranging from 6 to 38 cm kyr-1 and MAR ranging from 5 to 50 g cm-2 kyr-1 

(Emeis et al., 1995)) and eastern Arabian Sea (SR ranging from 4 to 9 cm kyr-1 (Rostek et al., 

1997)). SR and MAR at our study site are caused by highly variable input of lithogenic matter 

(range from 81 to 86%) from river runoff and/or dust storms (Schulz et al., 1996; von Rad et 

al., 1999a). Even though sedimentary OM in our core mainly consists of marine OM (δ13C 

measured in core 275KL ranges from -21.5 to -19.5‰), significant positive correlations 

between TOC MAR and SR (R2=0.56) and TOC MAR and sedimentary mass accumulation 

rates (R2=0.76) indicate a dominant influence of bulk MAR (and thus alternating input of 

organic matter transported with mineral matter on its passage across the shelf) on organic 

carbon accumulation rates (Emeis et al., 1995; Müller and Suess, 1979). This conclusion is 

supported by the good agreement between down-core variations in TOC MAR and varve 

thickness, which is an indicator for precipitation and river runoff (von Rad et al., 1999a; see 

Figure 3.5b). Thus, we infer that in our study area, TOC contents can be used as a tracer for 

the past primary productivity changes rather than the organic carbon accumulation rates. 

Although measured TOC contents during the period 400 to 900 A.D. might partly be affected 

by dilution as indicated by visual comparison of organic carbon concentrations with MAR 

(Figure 3.5a), no significant correlation between TOC contents and mass accumulation rates 
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(R2=0.008) could be observed indicating no significant control of the dilution on down-core 

variations in TOC concentrations. 

 

 

Figure 3.5: (a) Late Holocene variability of TOC contents compared to bulk mass accumulation rates in core 

SO130-275KL. (b) Down-core variations of organic carbon mass accumulation rates for core SO130-275KL 

compared to varve thickness data (dotted line) measured in core SO90-56KA (von Rad et al., 1999a) from the 

same location (both turbidite/event deposit free).  

 
 
 
Over the last 2400 years of our record, elevated TOC concentrations coincide with 

increased δ15N values and vice versa, a relationship described for Holocene sediments 

(Agnihotri et al., 2003) and over glacial/interglacial cycles (Altabet et al., 1995; Ganeshram et 

al., 2000; Suthhof et al., 2001) in the northern Indian Ocean. Parallel changes in TOC 

concentrations and δ15N are both related to the productivity variations caused by variable 

access to the subthermocline nitrate pool. That nitrate pool has a high δ15N resulting from 

denitrification within the upper part of the OMZ (Gaye et al., 2013). Upwelling does not 

occur at our core location, so that variable deepening of the mixed layer due to convective 

winter mixing during the NE monsoon season is the most likely process transporting the 15N-

enriched nitrate to the ocean surface and enabling productivity. Together, δ15N values and 

TOC concentrations in our sediment cores thus reflect productivity changes associated with 

mixed layer deepening due to NE monsoon conditions. A third indirect signal of productivity 
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is the ratio of the biogenic constituents carbonate (ranging from 6 to 15.5%) and opal (ranging 

from 0.5 to 0.9%), because high nutrient availability induces diatom blooms and high flux 

rates or organic matter, whereas high carbonate rain rates indicate low nutrient availability. 

The carbonate to opal ratio ranges from 14 to 29 and indicates a dominance of carbonate 

primary producers (coccolithophores) at our study site that decreases over time relative to 

opal from diatoms (Ramaswamy and Gaye, 2006). In this general trend, declining carbonate 

to opal ratios indicate a shift to higher productivity around 1400 A.D. (Figure 3.6).  

 

 

Figure 3.6: Late Holocene productivity record for cores 39KG and 275KL from the northeastern Arabian Sea. 

Carbonate/opal ratios, δ15N values (bold line: running mean of 3) and smoothed TOC contents (running average 

of 5) were used as productivity indicators. The gray shaded areas indicate good agreement between productivity 

proxies. The dashed lines indicate the respective mean over the complete dataset. Further illustrated are 

characteristic climate periods known from the Northern Hemisphere: Little Ice Age (LIA), Medieval Warm 

Period (MWP), Cold Dark Ages (CDA), and Roman Warm Period (RWP). 
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As discussed above, proxies indicative of productivity changes are influenced by a lot of 

processes. To minimize the effect of processes not related to productivity variations and to 

better filter out the signal caused by productivity changes, a productivity index (combining 

TOC, δ15N, and carbonate/opal) was calculated. First, the range of values for all three 

parameters was standardized to values between 0 and 1, so that the respective productivity 

indicators were equally weighted and comparable to each other. The sum of the standardized 

values was calculated and again standardized to values between 0 (low productivity) and 1 

(high productivity). High productivity from 1400 to 1950 A.D. and periods of decreased 

productivity from about 200 B.C. to 250 A.D., as recorded by all individual productivity 

parameters (Figure 3.6, indicated by the gray shaded areas), are well reflected by our 

productivity index (Figure 3.7, not reverse y axis). In addition, superimposed on short-term 

variability, the productivity index shows a gradual trend to increasing primary production in 

the northeastern Arabian Sea over the late Holocene.  

 

3.4.4. Variability in Sr/Ca ratios 

The relationship between elevated Sr/Ca ratios and increased winter monsoon activity 

was first proposed for glacial/interglacial intervals by Reichart et al. (1998) and was later 

adapted for Holocene sediments by Lückge et al. (2001). These authors proposed that 

elevated Sr/Ca ratios image variations in mixed layer depths. Because aragonite has a higher 

Sr content than calcite, variations in Sr/Ca track the depth interval of the aragonite 

compensation depth (ACD), and the deepening of the ACD and higher Sr/Ca ratios indicate 

intensified deep winter mixing due to elevated winter monsoon activity (Reichart et al., 1998). 

A different mechanism for changes in Sr/Ca on millennial time scales was proposed by 

Böning and Bard (2009), who attributed the variations in Sr/Ca in the northeastern Arabian 

Sea to changes in the formation of Antarctic Intermediate Waters. Today, Antarctic 

Intermediate Water in the Arabian Sea can only be traced up to 5°N (You, 1998), so that for 

the 2400-year record here, this long-term variability is most likely irrelevant.  

The Sr/Ca ratio in the sediment cores vary between 0.023 and 0.032 at sites 

39KG/275KL (Figure 3.7), which are in the range of previously measured values for 

Holocene sediments from the Makran area (Lückge et al., 2001). The increase in Sr/Ca ratios 

indicates a shift to winter monsoon conditions on the Pakistan Margin around 700 A.D. 

 



32                           CHAPTER 3: LATE HOLOCENE WINTER MONSOON VARIATIONS  

3.5. Discussion 

3.5.1. Productivity and SST variability: evidence for monsoonal change 

Winter monsoon activity affects both sea surface temperature and mixed layer depth over 

the Pakistan Margin and thus controls the amount of thermocline nutrients entrained into the 

mixed layer (Figure 3.2). As a result, primary productivity changes in the northeastern 

Arabian Sea are strongly coupled to the intensity of the NE monsoon season. Whereas 

primary production is unambiguously related to monsoon strength, SST in the northeastern 

Arabian Sea, although primarily controlled by monsoon related processes, can also be 

impacted by global temperature variations. A decrease in the alkenone-based SST signal at 

sites 39KG/275KL can thus be caused either by local strengthening of NE monsoon 

conditions or by globally lowered atmospheric temperature. If SST was changing as a 

response to varying NE monsoon intensity, then this should also be noted in our primary 

productivity reconstruction because intensified NE monsoon strength induces high rates of 

primary production at the Pakistan continental margin. The general trend of decreasing SST 

and increasing productivity seen in our record over the last 2400 years (Figure 3.7) confirms 

that alkenone SST primarily reflect changes in the NE monsoon strength. This coupling of 

SST and productivity is particularly pronounced during the periods from 400 B.C. to 300 

A.D. and from 1400 A.D. until the present, while it is less clear between ~500 and 1300 A.D. 

Furthermore, alkenone SSTs follow the same pattern as reconstructed winter SSTs (based on 

planktic foraminifera transfer functions measured in the same sediment core; unpublished 

data) confirming the strong influence of the winter season on alkenone SST in this region. 

A link between NE monsoon conditions, decreasing SSTs, and increasing productivity 

can be observed not only on a seasonal scale and over the last 2400 years but also on time 

scales of several hundreds of thousands of years. In the northeastern Arabian Sea, relatively 

high productivity and sea surface cooling appear to correspond to glacial stages due to 

elevated NE monsoon activity (e.g., Rostek et al., 1997; Schulte and Müller, 2001; Schulte et 

al., 1999).  

 

3.5.2. Local monsoon dynamics in the northeastern Arabian Sea during the last 2400 

years 

On the basis of the above-mentioned considerations, our multi-proxy study from the 

northeastern Arabian Sea indicates three main periods of changing monsoon intensities 
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throughout the late Holocene (Figure 3.7). Winter monsoon intensity was low before about 

250 A.D. and is recorded by high SSTs and generally low primary production due to 

diminished north-easterly winds and reduced convective winter mixing in the northeastern 

Arabian Sea. Winter monsoon mixing strengthened after 250 A.D., which caused a cooling of 

the sea surface and slightly increased primary production. Finally, winter monsoon conditions 

started to predominate off Pakistan at about 700 A.D., as indicated by a shift to higher Sr/Ca 

ratios in core 275KL (Figure 3.7, note reverse Sr/Ca y axis). Weak correlation between SST 

and primary productivity from ~500 to 1300 A.D. suggests a “transition period” from weak to 

strengthening NE monsoon, characterized by unstable and fluctuating environmental 

conditions on the Pakistan Margin. Strong winter monsoon activity prevailed during the Little 

Ice Age (LIA) from 1400 to 1900 A.D., as indicated by low SSTs and a peak in biological 

productivity due to strong convective winter mixing. Low SSTs during the LIA as well as 

relatively high SSTs due to diminished NE monsoon conditions occurring 2000 years ago 

agree with another northeastern Arabian Sea (alkenone-based) SST reconstruction (Doose-

Rolinski et al., 2001). Although both SST records differ in detail, possibly as a result of proxy 

uncertainty, they display similar trends of warming at around 0 A.D. and cooling during the 

LIA. This small-scale variability between both records might further be caused by the analysis 

of different core sections and thus variations in the time interval which is integrated by the 

alkenones.  

The dynamics of the monsoon low-level wind system on the Pakistan Margin throughout 

the last 2400 years affect marine processes as well as moisture changes in this area. Variable 

but relatively low-salinity values after 500 A.D. probably reflect diminished SW monsoon 

and/or enhanced NE monsoon conditions (Doose-Rolinski et al., 2001). Lückge et al. (2001) 

proposed a shift from SW monsoon dominated precipitation to NE monsoon precipitation in 

the Makran area around 500 A.D. These findings match our interpretation of predominating 

NE monsoon conditions since ~700 A.D. 

Enhanced NE monsoonal activity during the LIA was most likely induced by an 

increased influence of westerlies in the Makran area during this period. Today, winter rainfall 

brought by westerly winds and connected to cyclonic storms originating in the Mediterranean 

significantly contributes to the total annual precipitation in the study area (Lückge et al., 

2001; von Rad et al., 2002c, and references therein). Higher precipitation implicating stronger 

westerlies on the coast off Pakistan after 1600 A.D. and during the LIA was deduced from 

varve thickness data from the nearby core SO90/56KA (von Rad et al., 1999a) and in a cave 

record from the central Kumaun Himalaya (Sanwal et al., 2013). A significant feature 
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preceding the LIA in the northeastern Arabian Sea is a distinct phase of increased SST (1050 

to 1300 A.D.; see Figure 3.7) that coincides with the Medieval Warm Period (MWP), a time 

of generally warm climate conditions observed in the Northern Hemisphere.  

 

 

Figure 3.7: Reconstruction of winter monsoon variability in the northeastern Arabian Sea over the last 2400 

years compared to long-term movements of the Intertropical Convergence Zone (ITCZ). (a) Smoothed Sr/Ca 

ratios (21 point running mean), (b) alkenone SST record (bold line: 3 point running mean), and (c) productivity 

index for cores 39KG/275KL. (d) Titanium content of Cariaco Basin sediments as an indicator for latitudinal 

shifts in the ITCZ (Haug et al., 2001) compared to global temperature anomalies (Marcott et al., 2013). The 

dashed lines indicate the respective mean over the studied time interval.     
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The response of the marine system to regional monsoon dynamics is best explained by 

the reactions of the surface ocean to seasonal shifts in the ITCZ. The reversal of low-level 

winds in the Arabian Sea during the seasonal cycle is accompanied by a shift in the location 

of the ITCZ. Core sites 39KG/275KL are located at the average northern latitudinal position 

of the ITCZ, and thus, surface ocean processes in this area are sensitive to the long-term 

movements of the annual mean position of the ITCZ and the associate change in prevailing 

low-level winds. Northward migration of the ITCZ in spring (SW monsoon) and southward 

retreat in autumn (NE monsoon) differentially impact on surface ocean salinity and 

temperature and thus thermocline depth in the northeastern Arabian Sea. At times when the 

northern position of the ITCZ slightly shifts south of the average position, the duration of NE 

monsoon influence at site 275KL during winter is prolonged. This would enhance the 

influence of the winter monsoon on surface ocean conditions in this area.  

Different studies widely distributed over the low-latitude region (e.g., Fleitmann et al., 

2007; Haug et al., 2001; Russell and Johnson, 2005) indicate a general southward shift of the 

annual mean position of the ITCZ over the late Holocene in response to global climate 

variability. We argue that long-term southward movement of the ITCZ throughout the late 

Holocene is responsible for the long-term trends of declining sea surface temperature and 

rising productivity seen in our record (Figure 3.7). In this long-term trend, times of the 

southernmost ITCZ displacements were contemporaneous with the periods of highest primary 

productivity and lowest SST on the Pakistan continental margin. Both reflect an increasing 

regional influence of the NE monsoon and a reaction of the surface ocean by progressive 

winter deepening of convective mixing. This argument is supported by Jung et al. (2004), 

who attributed coherent basin-wide decadal to century scale temperature variations in the 

Arabian Sea during the Holocene (based on a correlation between SST variations off Somalia 

and Pakistan) to a shift in the mean position of the ITCZ throughout the Holocene. Such a 

connection between a southward migrating annual mean position of the ITCZ and monsoon as 

well as precipitation changes throughout the Holocene was proposed by several authors 

(Fleitmann et al., 2007, 2003; Haug et al., 2001; Lückge et al., 2001; Russell and Johnson, 

2005; Sinha et al., 2011b; Wang et al., 2005b; Yancheva et al., 2007).  
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3.5.3. Reversed behavior between summer and winter monsoon strength during the late 

Holocene 

The mechanism above argues for an inverse relationship between summer and winter 

monsoon strength throughout the Indian and East Asian monsoon domain in the time-variant 

location of the ITCZ, expressed by the decreasing summer monsoon intensity with increasing 

winter monsoon activity and vice versa (e.g., Reichart et al., 2002b; Yancheva et al., 2007). Is 

this inverse relationship evident in a comparison of our winter monsoon record with records 

of summer monsoon strength? The regions influenced most drastically by the SW monsoon 

are the Oman and the Somalia upwelling systems, that both registered a gradual warming of 

sea surface temperatures during the last 2400 years (Huguet et al., 2006), in contrast to 

decreasing SST on the Pakistan Margin over this period. This points to a general antagonistic 

behavior in the millennial trend of summer and winter monsoon strength over the late 

Holocene. However, summer and winter monsoons were more variable on centennial time 

scales, particularly during the time intervals of greatest climate contrast over the last 2000 

years on the Northern Hemisphere, namely, the MWP (950 to 1250 A.D.) and the LIA (1400 

to 1800 A.D.). Evidence for increased summer monsoon intensity during the MWP comes 

from the northwestern Arabian Sea (Anderson et al., 2010, 2002; Gupta et al., 2003), from 

Oman (Fleitmann et al., 2004), India (Sinha et al., 2011b, 2007), as well as from China 

(Zhang et al., 2008). Changes in winter monsoon strength off Pakistan during this time are 

less pronounced. While higher SST argues for diminished NE monsoon activity over the 

northeastern Arabian Sea, slightly enhanced primary production and relatively higher Sr/Ca 

ratios might be indicative of NE monsoon intensification. One possible explanation for this 

mismatch might be that primary productivity on the Pakistan Margin during this time is fueled 

by lateral advection of nutrients from the upwelling area off Oman due to intensified summer 

monsoon circulation. On the other hand, most studies reconstructed diminished SW monsoon 

strength during the LIA (Fleitmann et al., 2004; Sinha et al., 2011a; Zhang et al., 2008), when 

our record suggests increased NE monsoon activity over the Pakistan Margin.  

During the last 400 years, however, SW monsoon strengthens again in the northwestern 

Arabian Sea, probably as a result of a general warming trend (Anderson et al., 2002). 

Speleothem δ18O from Kahf Defore in southern Oman indicates summer monsoon rainfall 

generally above the long-term average since 1660 A.D. and supports this hypothesis 

(Fleitmann et al., 2004). However, in the Pakistan Margin record, winter monsoon indicators 

continue to dominate over the last 400 years. Only most recently (since 1900 A.D.), primary 

productivity on the Pakistan Margin appears to decrease and SSTs increase slightly, 
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suggestive of diminished NE monsoon conditions in the northeastern Arabian Sea. The Oman 

cave record on land may be more sensitive to summer monsoon changes than the marine 

record in the Makran area, which is dominated by winter monsoon variability.  

 

 

Figure 3.8: (a) Late Holocene alkenone-derived SST variations (cores 39KG and 275KL) from the northeastern 

Arabian Sea compared to (b) Mg/Ca-SST variations reconstructed for the Markassar Strait (Indonesia) by Oppo 

et al. (2009) and (c) a smoothed δ18O record (15-point moving average) of Wanxiang Cave (China) as an 

indicator for summer monsoon intensity from Zhang et al. (2008). Dashed lines indicate the respective mean 

over the studied time interval. 
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The antagonism of SW and NE monsoon is evidenced by the comparison of our winter 

monsoon record with other monsoon reconstructions in the Arabian Sea and beyond. Based 

on the assumption that the δ18O signal measured in speleothems from Wanxiang Cave is 

mainly influenced by summer monsoon precipitation, Zhang et al. (2008) compiled a 1810 

year long record of summer monsoon intensity for central China. Their δ18O variations show a 

strong resemblance to our reconstructed SST curve with lower SST in the northeastern 

Arabian Sea, coinciding with a decline in summer monsoon rainfall in central China due to 

weaker East Asian summer monsoon intensity (Figure 3.8). Furthermore, SST variations in 

the northeastern Arabian Sea are not only related to changes in East Asian summer monsoon 

over central China but also to changes in SSTs from the Indo-Pacific warm pool (Oppo et al., 

2009, Figure 3.8). In accordance with our interpretation, Oppo et al. (2009) suggested that 

strong sea surface cooling in the Markassar Strait during the LIA was caused by intensified 

winter monsoon conditions rather than by monsoon induced upwelling. We thus conclude that 

a linkage between summer and winter monsoon strength exists over the whole Asian 

monsoon system during the late Holocene, reflecting long-term and short-term shifts in the 

ITCZ. 

 

3.5.4. Global connections: The LIA climate feature  

The monsoon record from the Pakistan Margin is in phase with characteristic, northern 

hemispheric climate periods of the late Holocene, such as the Little Ice Age, the Medieval 

Warm Period, and the Roman Warm Period (RWP). It reveals a consistent pattern of 

diminished winter monsoon activity in the northeastern Arabian Sea during northern 

hemispheric warm periods (MWP and RWP) and strengthened winter monsoon activity 

during hemispheric colder periods (LIA). Our high-resolution record implies that this 

consistent link between the North Atlantic and the Indian Ocean, which was described for 

glacial/interglacial (e.g., Schulte and Müller, 2001; Schulz et al., 1998; Sirocko et al., 1993) to 

climatological (Gupta et al., 2003) time scales, appears to operate during historical times as 

well. It causes the SW monsoon to weaken and the NE monsoon to gain strength during 

colder climate conditions over the North Atlantic. 

One of the most prominent climate features in the northeastern Arabian Sea over the last 

2400 years was the sharp decrease in SST due to the strengthening NE monsoon conditions 

between 1400 and 1850 A.D., contemporaneous with the LIA. Once described as a climate 

period restricted only to the northern extratropical hemisphere (e.g., Keigwin, 1996), LIA 
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climate conditions appear to have impacted on SST in low-latitude regions as well (Black et 

al., 2007; DeMenocal, 2000; Oppo et al., 2009). A recently published global data set of proxy 

records indeed confirms a global cooling trend between 1580 and 1880 A.D. (PAGES 2k 

Consortium, 2013) that is preceded by a phase of low solar irradiance between 1450 and 1750 

A.D. (Bard et al., 2000), suggesting that LIA climate conditions may at least partly be 

influenced by solar forcing. Solar radiation has been proposed as a forcing mechanism 

controlling both North Atlantic climate (Bond et al., 2001) as well as variations in monsoon 

intensity during the Holocene (Agnihotri et al., 2002; Fleitmann et al., 2003; Gupta et al., 

2005; Neff et al., 2001; Wang et al., 2005b). We thus infer that the decline in SST and 

increased NE monsoonal wind strength in the northeastern Arabian Sea during the LIA were 

triggered by global colder climate conditions (as a response to radiative forcing such as solar 

output, aerosols, and greenhouse gases), accompanied by southward displacement of the 

ITCZ.  

 

3.6. Conclusions 

Our high-resolution reconstruction of primary productivity and alkenone-derived SST 

from the northeastern Arabian Sea provides a unique record of winter monsoon variability 

throughout the late Holocene. In this area, primary production and sea surface temperatures 

are linked to winter monsoon intensity that cools the sea surface and increases its salinity so 

that thermocline deepening entrains more nutrients into the mixed layer and raises 

productivity. Because core 275KL is located in a sensitive region at the modern northern 

mean latitudinal position of the ITCZ, observed changes in surface ocean properties in 

response to the monsoonal wind regime on the Pakistan Margin track long-term and short-

term movements of the ITCZ throughout the late Holocene. Reconstructed SST decreased 

whereas productivity increased over the last 2400 years, imaging a long-term trend of NE 

monsoon strengthening in response to insolation-induced southward migration of the ITCZ. 

Comparison of our winter monsoon record with records of summer monsoon intensity 

confirms an antagonistic relationship between summer and winter monsoon strength during 

the last 2400 years.  

Reconstructed monsoon variability supports the growing body of evidence that 

significant climate variability occurs not only on time scales of several hundred of thousand 

years but also through the late Holocene. Before 250 A.D., winter monsoon activity in the 

northeastern Arabian Sea was generally weak, and convective winter mixing was shallow, 
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indicated by high SSTs (~28.3°C) and reduced primary productivity. Winter monsoon 

conditions started to predominate off Pakistan at about 700 A.D., in response to the overall 

southward movement of average ITCZ location during the late Holocene. While winter 

monsoon activity was relatively unstable from ~500 to 1300 A.D., strong sea surface cooling 

down to 26.9°C and a peak in primary productivity indicated strong and prevailing winter 

monsoon activity during the LIA from 1400 to 1900 A.D. The coherence between monsoon-

induced variations over the Pakistan Margin with other monsoon records indicates a strong 

linkage of climate variability in the entire Asian monsoon system during the late Holocene, 

caused by migration of the ITCZ.  
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CHAPTER 4 
 
4. Contrasting sea surface temperature of summer and winter 

monsoon variability in the northern Arabian Sea over the last 25 

ka 

 
 
 
 
 
 

Abstract 

The seasonal monsoon cycle with winds from the southwest (SW) in summer and from 

the northeast (NE) in winter strongly impacts on modern regional sea surface temperature 

(SST) patterns in the Arabian Sea (northern Indian Ocean). To reconstruct the temporal and 

spatial variation in the dynamically coupled winter and summer monsoon strength over the 

last 25 ka, we analyzed alkenone-derived SST variations in one sediment core from the 

northwestern Arabian Sea, that is influenced by the summer monsoon (SST affected by 

upwelling processes), and in one core from the northeastern Arabian Sea, where SST is 

mainly governed by the winter monsoon (no upwelling). Comparison of the SST records 

reveals an antagonistic relationship of summer and winter monsoon strength throughout the 

late deglaciation and the Holocene. Upwelling along the Arabian Peninsula associated with 

peak SW monsoonal wind strength was strongest during the early Holocene climate optimum 

between 11 to 8 ka, and coincided with the northernmost position of the Intertropical 

Convergence Zone (ITCZ) marked by maximum precipitation over northern Oman. The SW 

monsoon weakened over the middle to late Holocene, while the NE monsoon gained strength. 

This different evolution was caused by the southward displacement of the ITCZ throughout 

the Holocene. Superimposed over the long-term trend are variations in northeast monsoon 

wind strength at time scales of centuries that were synchronous with late Holocene climate 

variations recorded on the Asian continent and in the high-latitude Northern Hemisphere. 

Their likely driving forces are insolation changes associated with sunspot cycles. Enhanced 
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by feedback mechanisms (e.g. land-sea thermal contrast) they enforced centennial scale 

fluctuations in wind strength and temperature in the northern Arabian Sea monsoon system.  

 

4.1. Introduction 

The oceanic environment and surface ocean properties of the Arabian Sea are directly 

coupled to the seasonal monsoon cycle. Alternating wind directions with low-level winds 

from the southwest in summer and from the northeast in winter cause regional differences in 

Arabian Sea sea surface temperature patterns. South-westerly winds are generated by the 

atmospheric pressure difference between the cold southern Indian Ocean and the heat low 

over central Asia in spring and summer. They drive upwelling of cold, nutrient-rich waters 

along the coasts of Somalia, Oman and southwest India and wind-stress curl-driven upwelling 

offshore (Hastenrath and Lamb, 1979; Rixen et al., 2000). These upwelling regions exhibit 

sea surface cooling during Northern Hemisphere (NH) summer (Levitus and Boyer, 1994) 

and high rates of primary production by upwelled nutrients (Haake et al., 1993; Rixen et al., 

1996). In the northeastern Arabian Sea off Pakistan, on the other hand, no upwelling occurs 

and SST remains warm during NH summer. The seasonal SST pattern in the northern Arabian 

Sea is furthermore governed by the NE monsoon in NH winter. During this part of the year 

moderately strong, cold and dry north-easterly winds (caused by the reversal of atmospheric 

pressure gradients between central Asia and the southern Indian Ocean in fall (Clemens et al., 

1991)) prevail in this region. The resultant increase in evaporation rates together with a 

reduction in solar insolation lower SST and increase the density of surface waters 

(Madhupratap et al., 1996; Prasanna Kumar and Prasad, 1996). Thus, while SSTs on the 

Pakistan Margin show a clear seasonal signal with high SST in summer (~28.5°C) and low 

SST (~23.5°C) in winter (Figure 4.1c; Levitus and Boyer, 1994), this seasonal pattern is less 

pronounced on the Oman Margin due to upwelling induced cooling during the summer 

monsoon season (Figure 4.1b). 

The seasonally variable SST pattern of the Arabian Sea thus reflects monsoon dynamics 

and relative monsoon strength, so that SST changes determined in sediment records track past 

variations in monsoon strength over glacial/interglacial cycles (Emeis et al., 1995; Rostek et 

al., 1997; Schulte and Müller, 2001) and during the Holocene (e.g., Anand et al., 2008; Dahl 

and Oppo, 2006; Huguet et al., 2006; Naidu and Malmgren, 2005; Saher et al., 2007a; 

Saraswat et al., 2013). From these reconstructions, a general pattern emerged of increased NE 

monsoon strength during cold glacial stages and stadials, and vigorous SW monsoon strength 
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during warm interglacials and interstadial periods (e.g., Reichart et al., 1998; Rostek et al., 

1997; Schulte and Müller, 2001; Schulz et al., 1998; Wang et al., 2001). This change in wind 

patterns had consequences beyond SST: Interglacials and interstadials also marked 

productivity maxima and an expanded oxygen minimum zone (OMZ) with intense 

denitrification in the Arabian Sea sub-thermocline, as reflected in maxima of organic carbon 

burial and δ15N in sediments (Altabet et al., 2002; Suthhof et al., 2001). Monsoon activity in 

the Arabian Sea region varied not only on Milankovitch and millennial time scales during the 

Pleistocene, but also (with smaller amplitude) during the Holocene (e.g., Anderson et al., 

2010, 2002; Fleitmann et al., 2004; Gupta et al., 2003; Lückge et al., 2001; Overpeck et al., 

1996; Sirocko et al., 1993). Strongest SW monsoon activity was recorded in the early 

Holocene insolation maximum when air temperatures (Marcott et al., 2013) and summer 

precipitation in Asia were high (Fleitmann et al., 2003; Herzschuh, 2006). Most of these 

studies aimed to reconstruct summer monsoon strength, that determines the state of the 

upwelling system in the western Arabian Sea (Anderson et al., 2010, 2002; Gupta et al., 2003; 

Naidu and Malmgren, 1996). Much less attention has been given to the response of the NE 

monsoon to changing mid-latitude glacial/interglacial boundary conditions, and the dynamic 

evolution of the coupled winter and summer monsoon throughout the Holocene (Liu et al., 

2009; Reichart et al., 2002b; Yancheva et al., 2007).  

Since SST provide a signal for both monsoon seasons (i.e., determined by the intensity of 

summer upwelling versus deep winter mixing), several authors reconstructed time series of 

seasonal SST variations to distinguish between summer and winter monsoon strength (Anand 

et al., 2008; Naidu and Malmgren, 2005; Saher et al., 2007b). An alternative approach was 

used by Dahl and Oppo (2006), who investigated the spatial SST history of the Arabian Sea 

basin for different time slices. These authors showed that comparing SST variations in areas 

today affected by upwelling with areas not affected by upwelling is a viable approach to 

distinguish sea surface cooling caused by SW monsoonal upwelling from cooling caused by 

the northeasterly winds of the winter monsoon. 

Here we add to this knowledge by presenting two new high-resolution alkenone-based 

SST records, one from the northern Oman Margin and one from the Pakistan Margin, 

spanning the last deglaciation and Holocene period. Alkenones are a robust and well studied 

indicator for past SST changes, but there are yet only a few alkenone-based SST records that 

document the Holocene SST history of the Arabian Sea (Huguet et al., 2006; Schulte and 

Müller, 2001; Sonzogni et al., 1998), and none of them with sufficient resolution or location 

to track Holocene changes in upwelling intensity. By comparing our high-resolution 
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alkenone-based SST record from the northern Oman Margin (SST affected by upwelling 

processes, Figure 4.1b) with that from the Pakistan Margin (no upwelling, Figure 4.1c) we 

aim to disentangle SST signals of the SW and NE monsoon to examine the relationship 

between both monsoon seasons over the last 25 ka. We furthermore seek for SST signals that 

(1) would document a response of the NE monsoon to changing glacial/interglacial boundary 

conditions and (2) would imply an influence of Asian and high-latitude Northern Hemisphere 

climate on northeast monsoonal wind strength during the Holocene epoch. To these ends, we 

compared our SST record of the last 25 ka (this study) together with our previously published 

high-resolution SST record of the late Holocene (Böll et al., 2014), both from the northeastern 

Arabian Sea, with records of air temperature variability from Asia and the NH, as well as with 

records of NH solar insolation. 

 

 

 

Figure 4.1: (a) Study area with core location MD00-2354 from the northwestern (NW) Arabian Sea and 93KL 

and 275KL from the northeastern (NE) Arabian Sea. Illustrated is the sea surface temperature pattern during the 

summer monsoon season (Jul-Sep). Shaded areas indicate regions of upwelling. This map was produced by 

using Ocean Data View (Schlitzer, 2013). (b) Annual SST variability for site MD2354 and (c) sites 93KL and 

275KL extracted from the Wold Ocean Atlas (Levitus and Boyer, 1994). 
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4.2. Material and Methods 

4.2.1. Sediment cores and stratigraphy 

Piston core 93KL (23°35’N, 64°13’E; 1802 m water depth) was collected in 1993 during 

SONNE cruise 90 from the northern Murray Ridge near the coast of Pakistan (Schulz et al., 

2002a, 1998; von Rad et al., 2002a). Calypso core MD00-2354 (21°02.55’N, 61°28.51’E; 

2740 m water depth) was obtained from the northernmost section of the Owen Ridge, ~210 

km offshore the Oman Margin by the research vessel MARION DUFRESNE in 2000. Both 

cores were sampled in 2.5 cm intervals (sample resolution of 100 to 300 years in core 

MD2354 and ~100 years in core 93KL) and alkenone unsaturation ratios were measured at 

the Institute for Baltic Sea Research Warnemünde (see below). Core SO130-275KL 

representing the late Holocene was analyzed at the Institute of Geology in Hamburg and 

results were published by (Böll et al., 2014).  

Pronounced sediment facies changes between laminated, organic carbon rich and 

bioturbated, hemipelagic sediments are observed in the northern Arabian Sea at shallow to 

intermediate water depths within the oxygen minimum zone off Pakistan. Their relative 

dominance varied in phase with Northern Hemisphere climate depicted by the Greenland ice 

cores (e.g., Grootes and Stuiver, 1997). The change in depositional conditions is also seen in 

cores from deeper water and is represented by various sediment properties, such as sediment 

color, sediment geochemistry, or physical properties. A detailed chronology of core SO90-

93KL, based on a correlation of sediment facies to the GISP2 ice core record has been 

published by Schulz et al. (1998, 2002a) for the past 110,000 years. Following this correlation 

a series of events (Table 4.1) has been recognized and dated by AMS 14C and by high-

resolution planktonic δ18O records of the northern Indian Ocean (Sirocko et al., 1993). For the 

present study, that stratigraphic framework (using these parameters in addition to δ18O 

stratigraphy) has been adopted. 5 to 25 specimens of Globigerinodes ruber white were picked 

from the 315-400 µm size fraction. Tests were cracked and cleaned in methanol and 

ultrasonic bath and were analyzed at the Kiel University Leibniz Institute for isotope research. 

The stable planktic isotope record for the Arabian Sea displays the established scheme of the 

two-step deglaciation with rapid shifts in δ18O centered at ~15.0 and 11.0 kyr BP, framing a 

~3 kyr-long plateau of δ18O values of -0.7‰ (MD2354) and -1.0‰ (93KL). We estimate that 

the precision of our approach is less than 1 kyr, and thus comparable to individual AMS 14C 

dating (where available) of stratigraphic match points. 
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Benthic stable isotope records in the Indopacific region show more divergent results 

(Skinner and Shackleton, 2005; Waelbroeck et al., 2006) and imply that distant and/or 

regional circulation changes occurred during the last deglaciation. A deep hydrological front 

at about 2000 m water depth, for instance, may have existed in the Indian Ocean (Kallel et al., 

1988). Our two cores from 2740 m and 1802 m water depth are close to that inferred interface 

between a deep water and an intermediate-shallow water mass (Labeyrie et al., 2005) and 

benthic δ18O records could be diachronous by up to 3000 years. 

 

Table 4.1: Age models (0-25 Kyr) for Arabian Sea cores SO90-93KL* and MD00-2354. 

GISP 2 SO90-93KL MD00-2354 Comment
AGE (Kyr BP) Depth (cm) Depth (cm)
1.00 #  0.0 0.0 Core Top

9.7 5 58.0 80.0 Start Early Holocene

11.45 4 70.0 115.0 Start Termination IB
12.6 76.0 130.0 Younger Dryas Maximum

12.9 82.0 142.5 Younger Dryas Start

14.5 97.5 165.0 IS1=B/A Maximum
16.1 3 124.0 197.5 H 1 Maximum

17.2 2 137.5 227.5 H 1 Base

23.3 159.0 297.5 IS 2
24.0 221.0 375.0 H 2 Maximum

24.7 233.0 390.0 H 2 Midpoint

* Schulz et al., 1998.
# suggested age of intact core top, indicated by bronish-colored top layer.

5, 4, 3, 2 correlative isotope events to Sirocko (Table I, 1993).  

B/A=Bølling/Allerød Epoch, IS=Interstadial, H=Heinrich chronozones.  

 
 
 

4.2.2. Alkenone analysis 

Sample preparation and analytical methods for alkenone analysis of cores SO90-93KL 

and MD2354 are detailed in Emeis et al. (2000). Sample preparation and analytical methods 

for core 275KL are those in Böll et al. (2014). Replicate extraction and measurement of a 

working sediment standard resulted in a mean standard deviation of estimated SST of 0.5°C. 

The alkenone index for all cores was translated to SST using the Indian Ocean core top 

equation of (Sonzogni et al., 1997b): SST=(K'
37U -0.043)/0.033 with K'

37U =C37:2/(C37:2 + C37:3). 
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4.3. Results  

Alkenone-derived SST estimates agree well with modern annual mean SST in the Indian 

Ocean (Sonzogni et al., 1997b), and in our records the SST at site 93KL (NE Arabian Sea off 

Pakistan) ranged between 23.2°C and 28.0°C over the last 25 ka (Figure 4.2b). In the interval 

representing the last glacial in core 93KL in the NE Arabian Sea, SST were high (25 to 26°C) 

during the Bølling-Allerød and Dansgaard-Oeschger events 1 and 2 and low (23 to 24°C) 

during Heinrich events 1 and 2 (H1, H2). The Last Glacial Maximum (LGM) to Holocene 

transition started at about 17 ka and is marked by a temperature increase of 4°C, which is 

slightly higher than the temperature increase found in other Arabian Sea alkenone-SST 

reconstructions (Emeis et al., 1995; Rostek et al., 1997; Sonzogni et al., 1998). After a 

maximum at 8 ka during the early Holocene SW monsoon maximum, SST were relatively 

stable and showed a slight decrease until today. The general Holocene SST trend seen in core 

93KL is similar to the SST reconstruction of the nearby core 136KL (Schulte and Müller, 

2001). Since the SST history of the last 2.5 ka is not very well resolved in core 93KL, 

alkenone-SST data from the recently published, nearby high-resolution core 275KL (Böll et 

al., 2014) were used to better resolve the late Holocene SST evolution. That record reveals a 

late Holocene SST cooling trend in the NE Arabian Sea, in line with the long-term 

temperature trend seen in core 93KL.  

The range of SST at site MD2354 in the NW Arabian Sea (between 22.7°C and 26.1°C) 

is smaller than SST variations observed in core 93KL (Figure 4.2b). SST at both study sites 

was similar low during the LGM and H1, but showed a different evolution over Interstadial 1, 

when SST increased at site 93KL but remained low at site MD2354. On the other hand, SST 

at site MD2354 evolved simultaneously with SST at site 93KL during the transition to 

Holocene conditions and increased by up to 3°C from 17 to 15 ka. But whereas SST 

continued to rise until 8 ka at site 93KL, SST at site MD2354 reached maximum temperatures 

at ~14 ka, followed by a SST decrease to 24.5°C at around 9.5 ka. This SST decrease signal 

intensified upwelling caused by enhanced SW monsoon strength during the early Holocene 

(e.g., Gupta et al., 2003; Naidu and Malmgren, 1996; Sirocko et al., 1993). Following peak 

intensity during the Holocene climate optimum, upwelling and, by inference, wind strength 

weakened and SST gradually increased at site MD2354 off northern Oman.  
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Figure 4.2: (a) δ15N record of cores RC27-23 and RC27-14 from the Oman Margin (Altabet et al., 2002), (b) 

alkenone-derived SST reconstruction for the northwestern Arabian Sea (core MD2354) and for the northeastern 

Arabian Sea (core 93KL). Both SST records are equally affected by winter cooling but only SST at site MD2354 

is influenced by upwelling-induced cooling. Gray shading indicates the occurrence of upwelling at site MD2354. 

Dashed gray lines indicate the timing of maximum SW and minimum NE monsoon strength, respectively. 

Further illustrated are Heinrich events (H1 and H2), Dansgaard-Oeschger event 2 and the Younger Dryas (YD; 

stippled area). 
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4.4. Discussion 

4.4.1. Dynamic evolution of SW and NE monsoon intensity during the last 25 ka 

Both the NE (site 93KL) and NW Arabian Sea (site MD2354) sites experienced low 

SSTs during the LGM compared to Holocene values (Figure 4.2b). Other late Quaternary 

reconstructions of temperatures in the Arabian Sea mixed layer (Anand et al., 2008; Dahl and 

Oppo, 2006; Huguet et al., 2006; Naidu and Malmgren, 2005; Rostek et al., 1997; Saher et al., 

2007a, 2007b; Saraswat et al., 2013; Schulte and Müller, 2001) also evidence basin-wide low 

SSTs during the LGM. Similar annual mean SST of sites 93KL and MD2354 indicates that 

this cooling was controlled by glacial boundary conditions and intensified NE monsoon 

strength, and not by intense upwelling (Emeis et al., 1995; Schulte and Müller, 2001; Schulz 

et al., 1998). SST at both of our study sites today are equally affected by the NE monsoon in 

winter, but SW monsoonal upwelling lower annual mean (AM) SST at site MD2354 

compared to site 93KL (Figure 4.1b,c). The past onset of upwelling processes in the northern 

Arabian Sea thus should be reflected in an AM SST difference between our two study sites 

(i.e. lower AM SST at site MD2354 compared to site 93KL; see also gray shaded areas in 

Figure 4.2b).   

One further argument against intensified upwelling and high primary production during 

the LGM is the variation in δ15N, an indicator for the extent of denitrification in the OMZ. 

Low δ15N values were recorded from 21 to 15 ka at the upwelling sites RC 27/23 and 14 and 

suggest a less intense OMZ and significant reduction or even absence of mid-water 

denitrification than in the modern situation (Altabet et al., 2002), most likely associated with 

reduced particle export from the mixed layer (Figure 4.2a).  

The strong SST contrast between sites 93KL and MD2354 from 23 to 21.5 ka together 

with high δ15N reveal that this glacial situation was interrupted by upwelling processes in the 

northern Arabian Sea during IS 1 (Figure 4.2a, b). While diminished north-easterly winds 

caused a SST increase at site 93KL off Pakistan during this period, the SST increase was 

suppressed at site MD2354 due to the intensification of SW monsoon winds and the 

accompanied onset of upwelling offshore northern Oman.  

The northern Arabian Sea began to warm at about 17 ka, most likely as a result of 

weakening NE monsoon forcing together with strengthening SW monsoon winds. This SST 

rise lagged the increase of NH solar insolation by about 5000 years and can be attributed to 

glacial boundary conditions and NE monsoon forcing (Figure 4.2b). The overall increase in 

SST was interrupted by a short-term period of SW monsoon weakening (and/or NE monsoon 
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strengthening) induced by NH cooling during the Younger Dryas, which is expressed in 

decreased precipitation in Oman (Fuchs and Buerkert, 2008) and northeast Asia (Dykoski et 

al., 2005; Wang et al., 2001), and also by reduced upwelling (relatively low δ15N, see Figure 

4.2a (Altabet et al., 2002)) and low organic carbon flux rates in the Arabian Sea (e.g., 

Ivanochko et al., 2005; Schulte and Müller, 2001). Whereas SST in the NE Arabian Sea (site 

93KL) gradually increased until 8 ka due to weakening NE monsoon strength, SST off Oman 

(site MD2354) decreased after its maximum during the Bølling-Allerød at ~14 ka. Significant 

lower SST at site MD2354 than at site 93KL since 13 ka mark the onset of oceanic conditions 

in the northern Arabian Sea that are characterized by SW monsoon induced upwelling 

offshore Somalia and Oman (gray shaded area in Figure 4.2b). Thus, the SST decrease from 

14 to 9.5 ka at site MD2354 tracks intensified upwelling offshore Oman caused by 

invigorated SW monsoon winds. Our alkenone-derived SST record is the first one to confirm 

an early Holocene upwelling increase with a SST minimum. The SST estimate of 24.5°C at 

~9 ka suggests that upwelling was much more vigorous than today, because modern annual 

average SST are around 26°C in the Oman upwelling area (Levitus and Boyer, 1994). Other 

evidence, such as peak abundances of G. bulloides (Gupta et al., 2003; Naidu and Malmgren, 

1996) and maximum δ15N (Altabet et al., 2002; Suthhof et al., 2001) also suggest that 

upwelling was intense during the early Holocene. Terrestrial records, moreover, indicate an 

early Holocene SW monsoon maximum throughout the Asian monsoon domain: Wet climate 

conditions with high rates of summer monsoonal rainfall were recorded in southern China 

(Dykoski et al., 2005), India (Kessarkar et al., 2013), Oman (Fleitmann et al., 2007, 2003; 

Fuchs and Buerkert, 2008) and Yemen (Lézine et al., 2007). Fleitmann et al. (2007) and Van 

Rampelbergh et al. (2013) pointed out that maximum rainfall in southern and northern Oman 

cave records is related to a shift of the northernmost position of the Intertropical Convergence 

Zone (ITCZ) to northern Oman. We believe that this has not only intensified, but also led to a 

longer duration of seasonal upwelling.  

The early Holocene upwelling intensification indicated by SST cooling at site MD2354 is 

in line with the δ15N record from the Oman Margin during the period from 12 to 10 ka (Figure 

4.2a). High δ15N values during this time indicate intensified denitrification in an expanding 

OMZ caused by enhanced particle export from the mixed layer due to increased upwelling 

strength. But this period was followed by an interval of decreasing δ15N from 10 to 9 ka that 

is embedded in the decreasing temperature trend (Figure 4.2a,b). The deviation from the long-

term (glacial-interglacial) antagonistic pattern of SST and δ15N is in our interpretation due to 

adjustments in intermediate water mass origin and circulation in the northern Arabian Sea. 
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Pichevin et al. (2007) pointed out that the extension and position of the OMZ is the 

expression of an interplay between productivity and ventilation, and Rixen et al. (2013) 

showed that enhanced upwelling is accompanied with enhanced inflow of well-ventilated 

Indian Central Water into the OMZ from the south. Furthermore, sea level rise in the early 

Holocene triggered the outflow of Persian Gulf intermediate water into the thermocline of the 

Arabian Sea, which today adds to OMZ ventilation (Lambeck, 1996).   

Temperatures in the sea surface of the NE Arabian Sea (site 93KL) evolved differently. 

Over the time of maximum upwelling and SW monsoon strength in the NW Arabian Sea from 

12 to 9 ka, SSTs here continue to rise and indicate waning NE monsoon strength. This 

decoupling of conditions in the mixed layers over the Oman and Pakistan margins on sub-

Milankovitch time scales has been previously observed in productivity records (Reichart et 

al., 2002b).  

SST at site MD2354 increased again over the middle to late Holocene (since ~8 ka) but 

slightly decreased at site 93KL pointing to a decline in SW monsoon strength (weakened 

upwelling) at invigorated NE monsoon conditions as a response to decreasing NH summer 

solar insolation (e.g., Fleitmann et al., 2003; Gupta et al., 2005; Neff et al., 2001). Over this 

period intense (weak) winter monsoon activity in the northern Arabian Sea coincides with 

strong (weak) East Asian winter monsoons (Yancheva et al., 2007). Minimum NE monsoon 

intensity (~8 ka), however, occurred 1500 years later than peak SW monsoon strength (~9.5 

ka) and the general opposing trend of summer and winter monsoon activity was less clear 

between 9.5 to 8 ka (Figure 4.2b). This antagonistic pattern of summer and winter monsoon 

variability is best explained by long-term movements of the annual mean position of the ITCZ 

(Yancheva et al., 2007), as proposed previously by Böll et al. (2014) for the late Holocene. 

Northern Hemisphere cooling in response to decreasing solar irradiance moves the mean 

position of the ITCZ southward (Broccoli et al., 2006), thus reducing the northward extent of 

the Asian SW monsoon and reducing summer monsoon precipitation over the Asian continent 

(Yancheva et al., 2007). The NE Arabian Sea is located within the northern limit of the long-

term annual mean position of the ITCZ, so that long-term southward displacement of the 

ITCZ throughout the Holocene (Haug et al., 2001) shortens the summer monsoon season and 

strengthens or prolongs the influence of NE monsoon winds over the northern Arabian Sea, 

causing low annual mean SST off Pakistan (site 93KL). Insolation-triggered ITCZ 

movements thus do not only affect the rainfall patterns over land, but apparently also 

influence upper ocean properties in the northern Arabian Sea by modulating monsoon 

strength.  
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4.4.2. Monsoon variability in the NE Arabian Sea and Asian air temperature variations 

during the last deglaciation and over the last 2500 years 

SST offshore Pakistan today is strongly influenced by ocean-atmosphere interaction. 

Comparison of our northern Arabian Sea SST record (site 93KL) with records of air 

temperature variability from Asia (Peterse et al., 2011; Thompson et al., 1997; Wen et al., 

2010) shows that this relationship was less pronounced during the last deglaciation (Figure 

4.3b,c). Whereas air temperatures recorded on the Asian continent closely tracked NH 

summer solar insolation during the last deglaciation (Figure 4.3b), maximum SST at site 

93KL (and thus minimum NE monsoon strength) in the NE Arabian Sea lagged air 

temperature and maximum solar insolation by about 3.5 ka (Figure 4.3c). Longer records have 

shown that the timing of maximum summer monsoon strength lagged peak NH summer solar 

insolation by ~8 ka at the precession band over the last 350,000 years (e.g., Clemens and 

Prell, 2003; Clemens et al., 2010; Wang et al., 2005a). However, high-resolution records 

indicate a phase lag of about 2-3 ka between maximum summer monsoon strength and peak 

summer solar insolation for the last glacial to Holocene transition (Dykoski et al., 2005; 

Fleitmann et al., 2007; Overpeck et al., 1996), that is in line with our SST data from the 

northern Arabian Sea. This lag has been attributed to internal climate forcing by glacial 

boundary conditions, such as North Atlantic temperature and global ice coverage and to the 

extent of latent heat export from the southern subtropical Indian Ocean associated with the 

precession and obliquity band (Clemens and Prell, 2003).  

Monsoon intensity off Pakistan (site 93KL) apparently was still influenced by glacial 

boundary conditions during the last deglaciation that suppressed direct insolation forcing on 

monsoon intensity and thus SST. Slightly decreasing SST at site 93KL indicative of increased 

NE monsoon strength off Pakistan from about 8 to 4 ka (Figure 4.3c), on the other hand, 

match very well with contemporaneous cooling on the Tibetan Plateau as indicated by a 

depletion of ice core δ18O in the Guliya ice cap (Figure 4.3; Thompson et al., 1997). This 

would imply that during the mid to late Holocene, when glacial boundary conditions were 

negligible, NE monsoon intensity in the NE Arabian Sea may have directly (and without a 

time lag) responded to atmospheric forcing, such as air temperature and solar insolation. To 

test this hypothesis for centennial scale climate variability, below we compared our 

previously published, high-resolution SST reconstruction of core 275KL (Böll et al., 2014) 

with air temperature variations recorded in Asia over the last 2000 years (Figure 4.4). 
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Figure 4.3: SST variations in the northeastern Arabian Sea over the last 25 ka compared to air temperature 

variations in Asia and the Northern Hemisphere. (a) temperature reconstructions for the North Atlantic (GISP2 

ice core; Grootes and Stuiver, 1997) (black line) and the extratropical Northern Hemisphere (30°N-90°N; 

Marcott et al., 2013) (green line), (b) record of continental air temperature for central China (black curve; Peterse 

et al., 2011) and the Tibetan Plateau (gray curve; Thompson et al., 1997) compared to Northern Hemisphere 

(NH) summer solar insolation (Berger and Loutre, 1991) (red curve; same scale as in 3c) and (c) alkenone-

derived SST reconstructions of core 93KL (last 25 ka) and cores 39KG/275KL (last 2.5 ka; Böll et al., 2014) 

compared to NH summer solar insolation (red curve; Berger and Loutre, 1991).  
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Comparison of alkenone-SST from the northeastern Arabian Sea (core 275KL; Böll et 

al., 2014) with tree-ring-derived temperature anomalies (PAGES 2k Consortium, 2013) 

reveals similar century-long temperature trends over the last 1200 years (Figure 4.4a, b). 

Furthermore, temperature changes in China (Ge et al., 2013) compiled from different types of 

terrestrial proxies (ice cores, stalagmites, tree-rings, lake sediments and historical documents) 

agree very well with NE Arabian Sea SST variations on centennial time scales (Figure 4.4c). 

Over the past 2000 years increased (decreased) SSTs in the NE Arabian Sea coincided with 

warm (cold) temperature excursions in China. This relationship is less significant during time 

periods of small-scale temperature variability (e.g. 1.6 to 1.1 ka), but well pronounced during 

late Holocene climate periods, such as the Roman Warm Period (RWP), Medieval Warm 

Period (MWP) and Little Ice Age (LIA) (see dashed gray lines in Figure 4.4). In general, both 

regions exhibited relatively warm climate conditions during NH warm periods (RWP and 

MWP), as well as recent warming over the last 100 years. On the other hand, cold climatic 

conditions are registered in both records during the LIA from 0.55 to 0.1 ka (1400 to 1850 

A.D.), whereas climate was more variable in China from 1.55 to 1.15 ka (400 to 800 A.D.). 

Supporting evidence for LIA cooling and medieval warming comes not only from China (Ge 

et al., 2013; Yang et al., 2002), but also from other regions in Asia such as the northwest 

Karakorum (western Asia; Esper et al., 2002), the Tibetan Plateau (Bao et al., 2003) and the 

entire temperate East Asian region (PAGES 2k Consortium, 2013).  

These coherent temperature changes between the NE Arabian Sea and the Asian 

continent imply a strong linkage between land and ocean during the last two millennia by the 

Asian monsoon system. Low SSTs on the Pakistan Margin indicate times of strengthened NE 

monsoonal winds in winter and/or weaker SW monsoon in summer (see chapter 4.4.1). Most 

studies in the Asian monsoon domain show intensified SW monsoon activity during the warm 

MWP, but diminished SW monsoon (increased NE monsoon) conditions during the cold LIA 

(e.g., Anderson et al., 2010; Gupta et al., 2003; Zhang et al., 2008). Modelling studies suggest 

that low air temperatures over Pakistan, north-west India and beyond were associated with 

strong north-easterly monsoon winds, the advection of cold, dry air over the Arabian Sea and 

low SST in the northern Arabian Sea during boreal winter (Marathayil et al., 2013). Thus, 

cold climate conditions over land during the LIA (Figure 4.4a, c) (Esper et al., 2002; Ge et al., 

2013; PAGES 2k Consortium, 2013; Yang et al., 2002) increased NE monsoonal wind 

strength over the NE Arabian Sea and caused low SST off the coast of Pakistan (Figure 4.4b). 

Decadal- to centennial scale variations in NE monsoon strength over the NE Arabian Sea 
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were thus directly influenced by Asian climate via atmospheric teleconnections over the last 

two millennia. 

 

 

Figure 4.4: Temperature variability over the Asian monsoon domain during the last two millennia derived from 

(a) tree-rings (smoothed by calculating the respective mean value over the time interval which is represented by 

the alkenones) from  PAGES 2k Consortium, (2013), (b) marine sediments from the northeastern Arabian Sea 

(alkenone-derived SST in cores 39KG/275KL; Böll et al., 2014), and (c) a combination of different continental 

proxy types (Ge et al., 2013). Dashed lines indicate the respective mean over the studied time interval. Dashed 

gray lines suggest correlations between the archives. Further illustrated are characteristic climate periods known 

from the Northern Hemisphere: Little Ice Age (LIA), Medieval Warm Period (MWP), Cold Dark Ages (CDA), 

and Roman Warm Period (RWP).  
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4.4.3. NE monsoon intensity and Northern Hemisphere climate change 

Monsoon strength is closely coupled to North Atlantic climate over glacial/interglacial 

cycles, but Holocene millennial scale changes in NE monsoon intensity (core 93KL, Figure 

4.3b) are not reflected in GISP2 ice core data (Grootes and Stuiver, 1997) that indicate 

relative stable climate conditions over the Holocene (Figure 4.3a). Nevertheless, a recently 

published multi-proxy temperature reconstruction from the extratropical NH (Marcott et al., 

2013) exhibits gradual NH cooling since the beginning of the Holocene that parallels 

strengthening of NE monsoon intensity over the NE Arabian Sea (as indicated by lowered 

SST at site 93KL; Figure 4.3a, c). The NE monsoon weakened during the early Holocene 

when temperatures in the extratropical NH (30°N to 90°N) were high. On the other hand, 

decreasing temperatures in the NH from 5.5 to 0.1 ka match strengthened winter monsoon 

intensity over the northern Arabian Sea and East Asia (Yancheva et al., 2007). This linkage 

was also recognised in variations in summer monsoon strength and related to NH climate 

during the Holocene (e.g., Gupta et al., 2003; Hong et al., 2003; Wang et al., 2005b).  

Similar features of the high-resolution SST record from core 275KL and NH temperature 

reconstructions suggest that the linkage between Asian climate variability and high-latitude 

climate change also exists on centennial time scales during the late Holocene (Figure 4.5). 

Variations in NE monsoon strength in the NE Arabian Sea (core 275KL; Figure 4.5d) are 

coeval and similar in sign as in air temperatures over Central Greenland (Figure 4.5b; Alley, 

2000) and the entire NH (Figure 4.5a; Christiansen and Ljungqvist, 2012; Moberg et al., 

2005), and track sea surface temperature (Sicre et al., 2008) and drift ice in the North Atlantic 

(Figure 4.5c; Bond et al., 2001). These expressions of high-latitude and North Atlantic 

climate coincide with climate variations (such as monsoon strength and temperature) of the 

Asian continent (Ge et al., 2013; PAGES 2k Consortium, 2013; Yang et al., 2002; Zhang et 

al., 2008). The linking mechanism is yet unclear, but may be related to solar activity. SST at 

site 275KL in the NE Arabian Sea gradually decrease over the past 2000 years, in accord with 

global SST cooling (PAGES/Ocean2k Working Group, 2012) and in response to decreasing 

NH summer insolation (Figure 4.5d). Thus, NE monsoon strength closely mirrors long-term 

as well as centennial scale variations in irradiance by responding to solar triggered feedback 

mechanisms such as the position of the ITCZ and Eurasian snow cover that determine the 

land-sea thermal contrast between the Asian continent and Indian Ocean. 
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Figure 4.5: (a) Northern Hemisphere temperature reconstructions (Christiansen and Ljungqvist, 2012; Moberg 

et al., 2005), (b) Temperature record for Central Greenland from the GISP2 ice core (Alley, 2000), (c) Stack of 4 

drift ice records from the North Atlantic (Bond et al., 2001), (d) Alkenone-SST record for cores 39KG/275KL 

from the northeastern Arabian Sea (black curve; Böll et al., 2014) compared to Northern Hemisphere summer 

solar insolation (red curve; Berger and Loutre, 1991), and (e) Sunspot numbers (smoothed by a 11-point running 

mean) as an indicator for changes in solar output (Solanki et al., 2004). Dashed lines indicate the respective 

mean over the studied time interval.  
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In-step cooling over the North Atlantic, Asia and the Tibetan Plateau (Feng and Hu, 

2005) triggered by reduced solar insolation leads to expanded snow cover over Eurasia, a 

delayed warming in spring and a reduced pressure gradient between central Asia and the 

southern Indian Ocean (Meehl, 1994). The reduced land-sea thermal contrast causes the SW 

monsoon to weaken, so that annual mean SST in the NE Arabian Sea is shifted to lower 

temperatures. A physical mechanism linking North Atlantic SST and monsoonal climate was 

recently proposed by Goswami et al. (2006): Cold phases of the Atlantic Multidecadal 

Oscillation (AMO) result in a decrease of the meridional gradient of tropospheric temperature 

and thus to an early retreat of the SW monsoon, causing decreased monsoonal rainfall and 

cold atmospheric temperatures in Asia (Wang et al., 2013). As pointed out above, this would 

enhance the influence of NE monsoonal winds and lower SST off Pakistan. Although the 

exact teleconnection mechanism between climate variations of the high-latitude NH and the 

NE monsoon remains to be identified, SST in the northern Arabian Sea indicate that they are 

linked on orbital and shorter time scales during the Holocene.   

 

4.5. Conclusions  

Alkenone-based SST records from the NW Arabian Sea influenced by the summer 

monsoon (SST affected by upwelling processes) and from the NE Arabian Sea, where SST is 

mainly governed by the winter monsoon (no upwelling), depict the dynamic evolution of the 

SW and NE monsoon over last 25 ka. The strength of summer monsoon activity was inversely 

related to winter monsoon intensity over the Holocene. SW monsoon intensity began to 

increase at the start of the last deglaciation and reached maximum strength between 11 to 8 ka 

during the early Holocene climate optimum, as indicated by SST changes offshore northern 

Oman. This is to our knowledge the first alkenone-based SST record that provides sufficient 

temporal resolution to show an early Holocene intensification of SW monsoon induced 

upwelling that caused lower than today annual mean SSTs in the northern Arabian during this 

time. The NE monsoon on the other hand was strongest during the Last Glacial Maximum but 

diminished since ~17 ka. Throughout the middle to late Holocene, SW monsoon activity 

weakened while the NE monsoon gained strength again. This interplay between SW and NE 

monsoon strength was forced by a southward displacement of the Intertropical Convergence 

Zone throughout the Holocene. 

Millennial to centennial scale monsoon dynamics over the northern Arabian Sea were 

linked to climate variations recorded on the Asian continent, such as variations in the East 
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Asian monsoon and changes in air temperature. The increase of SST in the NE Arabian Sea 

during the last deglaciation lagged that of NH summer solar insolation and of Asian air 

temperature for about 2 to 3 ka because monsoon intensity was still influenced by glacial 

boundary conditions during this time. However, a strong linkage between northeast 

monsoonal wind strength over the northern Arabian Sea (as indicated by SST changes), 

temperature variations in Asia and climate of the high-latitude NH exists over the last 2000 

years. Colder climate conditions over land increase the strength of northeast monsoonal winds 

and lower SST in the NE Arabian Sea. These centennial scale variations in the strength of the 

northeast monsoon over the northern Arabian Sea seem to be coupled to solar changes over 

the last 2000 years. 
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CHAPTER 5 
 
5. Spatial and temporal variability of the Arabian Sea oxygen 

minimum zone over the Holocene 

 
 
 
 
 
 

Abstract 

The northern Arabian Sea is one of the main oceanic regions with a permanent low 

oxygen layer at intermediate water depth that results in water column denitrification. While 

glacial/interglacial variations in the Arabian Sea oxygen minimum zone (OMZ) are relatively 

well studied, little is known about the spatial and temporal extent of mid-water oxygen 

throughout the Holocene. Here we analyzed parameters indicative of mid-water oxygenation 

together with records of southwest monsoon strength in two sediment cores from the northern 

Oman Margin to reconstruct the temporal variability of the Arabian Sea OMZ and its relation 

to changing SW monsoon activity over the Holocene. Comparison of δ15N and Mn/Al records 

with other reconstructions of denitrification and oxygenation from the northern Arabian Sea 

reveals a Holocene shift in the location of the core OMZ from the northwest (early Holocene) 

to the northeast Arabian Sea (late Holocene). This shift was caused by the interplay of spatial 

differences in oxygen demand, caused by varying responses of primary productivity to SW 

monsoonal upwelling, and changes in mid-water ventilation due to sea level rise. Regional 

short-term (centennial scale) fluctuations in the oxygen inventory of the northern Arabian Sea 

were linked to variations in SW monsoon activity over the mid Holocene: Phases of strong 

wind intensity triggered intense upwelling in the coastal region of northern Oman that 

induced high rates of primary productivity and invigorated denitrification. Although it is 

unknown how the Arabian Sea OMZ will change in the future, our data infer that future short-

term fluctuations in monsoonal wind strength might induce regional changes in mid-water 

oxygen.   
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5.1. Introduction 

The Arabian Sea in the northern Indian Ocean exhibits one of the most pronounced 

oxygen minimum zones (OMZ) of the world’s ocean. Permanent, year round low oxygen 

levels in Arabian Sea intermediate waters are accompanied by high rates of water column 

denitrification (Bange et al., 2000; Bulow et al., 2010; Codispoti et al., 2001; Ward et al., 

2009), a process that removes biologically available nitrogen from the biosphere (Altabet et 

al., 1995). Moreover, nitrous oxide (N2O), an important green house gas, is produced as a by-

product of denitrification, thus making changes in the Arabian Sea OMZ a potential driver of 

climate change (Altabet et al., 2002; Bange et al., 2001; Naqvi et al., 1998). 

The oceanic properties of the Arabian Sea that maintain the OMZ are closely coupled to 

the seasonal monsoon cycle. Differential land-ocean heating and the annual reversal of the 

atmospheric pressure gradient between central Asia and the southern Indian Ocean cause the 

seasonal reversal of low-level winds over the Arabian Sea (Clemens et al., 1991; Hastenrath 

and Lamb, 1979). The strong south-westerly winds of the summer monsoon induce upwelling 

and elevated primary production in the northwestern Arabian Sea (e.g., Haake et al., 1993; 

Nair et al., 1989; Rixen et al., 2000). Although mid-waters are faster replenished during this 

time of the year (Rixen et al., 2013), oxygen consumption during mineralization of sinking 

organic matter is the main, monsoon driven process in modulating OMZ intensity on seasonal 

to inter-decadal time scales.  

Location, spatial extension and intensity of the mid-water oxygen minimum zone in the 

Arabian Sea was not stable through time, but varied in accordance with changes in southwest 

monsoon strength. Several studies report the existence of a pronounced OMZ and elevated 

denitrification during interstadials and interglacial stages, whereas the Arabian Sea was well 

ventilated and denitrification was suppressed during stadials and glacial stages (Altabet et al., 

1999, 2002; Pichevin et al., 2007; Reichart et al., 1997; Schulte et al., 1999; Suthhof et al., 

2001). This has been attributed to a reorganization of mid-water circulation (partly because of 

Red Sea water entrainment in reaction to sea level change) (Böning and Bard, 2009; Jung et 

al., 2009; Pichevin et al., 2007) combined with primary productivity changes due to varying 

SW monsoon intensity at glacial/interglacial transitions (Altabet et al., 2002). Changing 

denitrification rates indicated by δ15N measurements further imply that Arabian Sea N2O 

emissions may have contributed to past atmospheric N2O fluctuations (e.g., Altabet et al., 

1995). While the history of mid-water oxygenation in the Arabian Sea is well studied on 

longer time scales, relatively little is known about the spatial and temporal variability of the 
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Arabian Sea OMZ over the Holocene on sub-millennial time scales (e.g., Reichart et al., 

2002b). 

Here we present two new high-resolution records of δ
15N and Mn/Al from the northern 

Arabian Sea off northern Oman that offer insights into the regional history of mid-water 

oxygenation in two time slices from the mid and late Holocene. These new δ15N and Mn/Al 

records were compared to published records of δ
15N and Mn/Al from different locations in the 

Arabian Sea (Pichevin et al., 2007), which together track short-term variations in the spatial 

and temporal extent of the Arabian Sea OMZ over the Holocene. The influence of SW 

monsoon activity on long-term (Holocene trends) and short-term (centennial scale 

fluctuations) variations in OMZ intensity was investigated by the reconstruction of monsoon 

driven parameters such as upwelling (alkenone-derived sea surface temperatures) and wind 

strength (Zr/Al), primary productivity changes (biogenic content of sediments) and the 

relative input of continental dust to our study site (accumulation of lithogenic material, 

Mg/Al, Ti/Al).    

    

 

Figure 5.1: Study area of the Arabian Sea with core locations M74/1b-163SL and MC680 (red dots) and 

locations of cores discussed in the main text (black squares). Illustrated by color shading is the oxygen content in 

300 m water depth indicating strongest oxygen deficiency in the northeastern basin. The main ventilation sources 

at intermediate water depth in the northern Arabian Sea are Indian Ocean Central Water (IOCW), Red Sea Water 

(RSW) and Persian Gulf Water (PGW). This map was produced by using Ocean Data View (Schlitzer, 2013). 
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5.2. The present-day OMZ in the northern Arabian Sea 

Stable OMZ conditions in the northern Arabian Sea at water depths between 200 and 

1200 m are maintained by the balanced interaction of oxygen demand (organic matter 

degradation) and oxygen supply (ventilation) (e.g., Olson et al., 1993; Sarma, 2002). The 

degradation of high sinking fluxes of organic matter from the mixed layer consumes oxygen 

and is the dominant oxygen sink. Primary productivity and particle flux in the northern 

Arabian Sea are highly seasonal and more than 50% of annual particle fluxes occur during the 

summer season, when strong southwest monsoon winds induce upwelling of cold, nutrient-

rich water masses along the coast of Somalia and Oman (Haake et al., 1993; Nair et al., 1989; 

Rixen et al., 1996). The northeastern Arabian Sea off Pakistan is not influenced by upwelling. 

Here, vertical mixing through convection processes and upward transport of nutrients in 

winter sustain the main part of primary production. The northern Arabian Sea OMZ persists 

throughout the year, although primary production is highly variable and strongly impacted by 

the seasonal monsoon cycle.  

The main sources of oxygen at intermediate water depth in the northern Arabian Sea are 

the outflows from the marginal seas in the north and Indian Ocean Central Water (IOCW) 

from the south (Olson et al., 1993). Persian Gulf Water (PGW, 200-400 m water depth) and 

Red Sea Water (RSW, 600-800 m water depth) have high salinities and are comparatively 

rich in oxygen, because they form at the surface and have atmospheric contact shortly before 

entering the Arabian Sea through the Strait of Hormuz (50 m sill depth) and Strait of Bab-el-

Mandeb (137 m sill depth), respectively (Rohling and Zachariasse, 1996; Sarma, 2002; and 

references therein). IOCW combines Antarctic Intermediate Water, Subantarctic Mode Water 

and Indonesian Intermediate Water and is transported to the northern Arabian Sea from the 

southwest during the summer monsoon as part of the Somali current (You, 1998). 

Intermediate water from the southern sources is originally rich in oxygen, but becomes 

oxygen depleted (and nutrient rich) on its path to the Arabian Sea owing to oxygen loss 

during the mineralization of sinking organic matter. Further oxygen loss on its way through 

the Arabian Sea results in higher oxygen concentrations in the NW basin and lower oxygen 

concentrations in the NE basin of the Arabian Sea (Figure 5.1).  

Oxygen concentrations at intermediate water depth restrict water column denitrification 

to the NE Arabian Sea, although particle flux from productivity is highest in the NW basin 

(e.g., Gaye-Haake et al., 2005). Denitrification that reduces nitrate to nitrite and gaseous 

nitrogen is triggered when oxygen concentration falls below 5µM O2 (Devol, 1978). In 

general, oxygen deficient conditions enable denitrification below 100 m water depth (Figure 
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5.2). At our study site, intrusion of PGW that flows in southward direction along the coast of 

Oman can supply oxygen and occasionally suppresses denitrification, as was the case during 

the late SW monsoon 2007 between 250 and 400 m water depth (Gaye et al., 2013). 

Denitrification strongly fractionates nitrogen isotopes and the remaining nitrate is enriched in 

δ
15N. Off Oman, SW monsoon upwelling forces nitrate deficient water masses to the surface, 

so that the high δ15N signal of nitrate is effectively transported into the euphotic zone. The 

isotopically enriched nitrate is assimilated into particulate matter by phytoplankton and sinks 

through the water column to the seafloor. The signal of denitrification and OMZ intensity is 

thus preserved in marine sediments (Altabet et al., 1995; Gaye-Haake et al., 2005; Naqvi et 

al., 1998; Suthhof et al., 2001). 

 

 

Figure 5.2: Water column profiles of (a) oxygen concentration, (b) NO3
- deficit and (c) δ15N at sites M74/1b-

163SL (black) and #957 (gray) during the late SW monsoon 2007 (Gaye et al., 2013). Increase of oxygen 

between 250 and 400 m water depth indicate intrusion of Persian Gulf Water to our study site.  
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5.3. Methods 

5.3.1. Sample collection  

In this study, we analyzed the first 400 cm of gravity core 163SL and the first 50 cm of 

multicorer MC680. Core 163SL (21°55.97’N, 59°48.15’E, 650 m water depth) and multicorer 

MC680 (22°37.16’N, 59°41.50’E, 789 m water depth) both were retrieved in 2007 during 

Meteor cruise M74/1b within the OMZ on the continental margin off northern Oman. The 

first 400 cm of core 163SL were sampled in continuous 3 cm intervals (resolution of 10 to 50 

years). We analyzed bulk parameters (TOC, carbonate, opal), alkenones and stable nitrogen 

isotopes (δ15N) in all sediment samples. The elemental composition of sediments was 

analyzed in 1 cm intervals for the upper part of the core (0-70 cm) and every third to forth 

sample in the lower part (70 to 400 cm). The elemental composition of MC680 was 

determined in 1 cm down-core resolution and δ
15N was analyzed in every second sample. All 

sediment samples were freeze-dried and homogenized prior to chemical treatment and 

analyses.  

 

5.3.2. Bulk components 

Total carbon and total organic carbon (TOC) were measured on a Carlo Erba 1500 

elemental analyzer (Milan, Italy). Total organic carbon was analyzed after samples were 

treated with 1 molar hydrochloric acid (HCl) to eliminate inorganic carbon. Analytical 

precision for carbon was 0.02%. Carbonate carbon was calculated as the difference between 

total carbon and organic carbon.  

Biogenic opal was determined photometrically after wet alkaline extraction of biogenic 

silica (BSi) using a modification of the DeMaster method (DeMaster, 1981). About 30 g 

sediment per sample was digested in 40 mL of 1% sodium carbonate solution (Na2CO3) in a 

shaking bath at 85°C. The neutralized supernatant (after treatment with 0.021 molar HCl) was 

analyzed after 3, 4 and 5 hours and the amount of BSi was estimated from the intercept of the 

line through the time course aliquots. This slope correction was used to prevent an 

overestimation of BSi by mineral dissolution at low BSi concentrations (Conley, 1998). 

Biogenic opal was determined by multiplying the BSi concentrations with a factor of 2.4. 

Duplicate measurement of samples resulted in a mean standard deviation of 0.13%.  
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The biogenic fraction of the sediments was calculated as the sum of TOC, carbonate and 

opal, and the lithogenic fraction was determined as follows: wt% lithogenic = 100 - wt% opal 

– wt% carbonate – (wt% TOC*1.8). 

Mass accumulation rates (MAR) of the bulk components were calculated as the product 

of the dry bulk densities of the sediments (measured at the Department of Geosciences – 

University of Tübingen), linear sedimentation rates and the weight fraction of the respective 

bulk component. All bulk components are presented as weight percent. 

 

5.3.3. Stable nitrogen isotopes 

The ratio of the two stable isotopes of nitrogen (15N/14N) is expressed as δ15N, which is 

the per mil deviation from the N-isotope composition of atmospheric N2 (δ
15N = 0‰): δ15N = 

[(RSample-RStandard)/RStandard]*1000, where RSample is the 15N/14N ratio of the sample and RStandard 

is the 15N/14N ratio of atmospheric N2. δ
15N values were determined using a Finnigan MAT 

252 gas isotope mass spectrometer after high-temperature flash combustion in a Carlo Erba 

NA-2500 elemental analyzer at 1100°C. Pure tank N2 calibrated against the International 

Atomic Energy Agency reference standards IAEA-N-1 and IAEA-N-2, which were, in 

addition to an internal sediment standard, also used as working standards. Replicate 

measurements of a reference standard resulted in an analytical precession better than 0.1‰. 

The mean standard deviation based on duplicate measurements of samples is 0.07‰. 

 

5.3.4. Alkenones 

Purified lipid extracts of between 1.5 to 5 g freeze-dried and homogenized sediment 

samples were analyzed for alkenones using an Agilent 6850 gas chromatograph (GC) 

equipped with a split-splitless inlet system, a silica column (30 m x 0.25 µm film thickness x 

0.32 mm ID; HP-1; Agilent) and a flame ionisation detector (310°C). Sample preparation and 

detailed analytical procedure for alkenone identification is described in Böll et al. (2014). 

Alkenones were translated into sea surface temperature using the core top calibration for the 

Indian Ocean of Sonzogni et al. (1997b): SST=(K'
37U -0.043)/0.033, with K'

37U =C37:2/(C37:2 + 

C37:3). All lipid extracts were analyzed twice resulting in a mean standard deviation of 0.2°C. 

The mean standard deviation of estimated SST based on replicate extraction and measurement 

of a working sediment standard is 0.5°C.  
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5.3.5. Major and trace element analysis 

Bulk chemical sediment analyses were performed with X-ray fluorescence (XRF) using 

Philips PW 2400 and PW 1480 wavelength dispersive spectrometers at the Federal Institute 

for Geosciences and Natural Resources in Hannover. Concentrations of 42 major and trace 

elements were quantitatively analyzed after fusion of the samples with lithium metaborate at 

1200°C for 20 minutes (sample/LiBO2 = 1/5). Quality of the results was controlled with 

certified reference materials (i.e., BCR, Community Bureau of Reference, Brussels). The 

precision for major elements was generally better than ±0.5% and better than 5% for trace 

elements. 

 

 

 

 

Figure 5.3: Age-depth dependency of core 163SL and MC681 of the same station. MC681 was tied to 163SL by 

correlating Vanadium levels between both cores. The stratigraphic framework of each core was established by 
14C accelerator mass spectrometry datings (diamond symbols, with age uncertainties). Stippled line indicates a 

sedimentary hiatus at 56 cm core depth. 
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5.4. Age model 

Age models of both cores are based on nineteen (163SL; Figure 5.3) and four (MC680; 

Figure 5.4) AMS 14C datings from different core depths, measured at Beta Analytics, 

Miami/FL, the Leibniz Laboratory in Kiel and the Ion Beam Physics Laboratory at ETH 

Zurich (Table 5.1). Depending on the availability of sufficient foraminiferal shells, 14C was 

either measured in carbon from monospecific samples of Neogloboquadrina dutertrei, from 

mixed planktonic foraminifera, or from the sedimentary bulk organic carbon fraction. To 

exclude a potential bias by the use of different methodologies and carbon compounds, one 

sample was dated twice using two different techniques (see Table 5.1). Both measurements 

revealed almost the same radiocarbon age, and thus comparability of ages obtained from 

planktonic foraminiferal calcite and the bulk organic carbon fraction. The uppermost 15 cm of 

163SL were correlated with multicorer MC681 from the same station by the visual matching 

of variations in element concentrations (Figure 5.3). Due to the higher temporal resolution 

and lower probability of sediment compaction, MC681 was given priority for age dating of 

deposits near the sediment-water-interface.  

 

 

 

 

Figure 5.4: Chronology of core MC680, established by four 14C AMS datings (diamond symbols, with age 

uncertainties). A sedimentary hiatus (stippled line) was located at 37 cm, by a sharp increase of heavy mineral 

element ratios (see chapter 5.4). 
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Table 5.1: Results of radiocarbon AMS datings. Beta refers to Beta Analytics, Miami, FL/USA, KIA to the 

Leibniz Laboratory, Kiel/Germany and ETH to the ETH Laboratory of Ion Beam Physics, 

Zurich/Switzerland 

Core Depth Lab Code Material Conventional Reservoir corrected  

(cmbsf) 14C age calibrated age

 (yr BP) (cal BP)

MC680 1 ± 1 Beta340286 mixed planktics 80 ± 30 post 1950

MC680 12 ± 2 Beta357279 N.dutertrei 600 ± 30 15 ± 38

MC680 20.5 ± 1.5 Beta357280 mixed planktics 810 ± 30 239 ± 179

MC680 40 ± 1 Beta357281 mixed planktics 5600 ± 40 5758 ± 156

MC681 1 ± 1 Beta342813 mixed planktics 650 ± 30 30 ± 30

MC681 1 ± 1 Beta342812 bulk organic fraction 630 ± 30 10 ± 30

MC681 11.5 ± 0.5 Beta342814 bulk organic fraction 1300 ± 30 584 ± 84

MC681 33.5 ± 0.5 Beta342815 bulk organic fraction 1960 ± 30 1202 ± 125

163SL 22.5 ± 0 ETH N.dutertrei 1996 ± 67 1234.5 ± 182.5

163SL 31.5 ± 0.5 Beta346602 bulk organic fraction 1980 ± 30 1226 ± 126

163SL 52.5 ± 0.5 Beta346603 bulk organic fraction 2100 ± 30 1372.5 ± 123.5

163SL 58.5 ± 0.5 Beta346604 bulk organic fraction 5740 ± 30 5798 ± 139

163SL 77.75 ± 1.25 KIA47119 N.dutertrei 5760 ± 30 5832.5 ± 142.5

163SL 141.25 ± 1.25 Beta319751 N.dutertrei 5990 ± 30 6097 ± 149

163SL 193.75 ± 1.25 Beta319752 N.dutertrei 6350 ± 40 6474 ± 156

163SL 252.75 ± 2.75 KIA47120 N.dutertrei 6715 ± 35 6909.5 ± 177.5

163SL 278.75 ± 1.25 Beta319753 N.dutertrei 6670 ± 40 6839 ± 170

163SL 295 ± 0 Beta319754 N.dutertrei 7030 ± 40 7274 ± 129

163SL 326.25 ± 1.25 Beta319755 N.dutertrei 6990 ± 40 7223.5 ± 155.5

163SL 353.75 ± 1.25 KIA47121 N.dutertrei 7420 ± 40 7598 ± 128

163SL 392.5 ± 0 KIA47122 N.dutertrei 8090 ± 40 8257.5 ± 133.5

163SL 395 ± 0 Beta319756 N.dutertrei 8090 ± 40 8257.5 ± 133.5

163SL 417.5 ± 0 Beta342816 N.dutertrei 8500 ± 40 8740 ± 200  

 
 
 

Conventional 14C ages were calibrated to calendar ages using the CALIB 7.0 software 

(Stuiver and Reimer, 1993) with the MARINE09 calibration dataset (Reimer et al., 2009). 

One sample with a negative radiocarbon age was corrected with the postbomb calibration 

curve of Northern Hemisphere Zone 3 (Hua and Barbetti, 2004). Reservoir ages in surface 

water masses in the western Arabian Sea are older than the global reservoir age due to 

admixture of intermediate waters by strong upwelling (Southon et al., 2002). For the slightly 

northward location of MC680, we assume a regional reservoir correction of ∆R=200±62 

years, which is the weighted mean of the 10 closest ∆R determination points from the Marine 

Reservoir Correction database (http://calib.qub.ac.uk/marine/), but ignoring the highest and 
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lowest values. The core site of 163SL is under the influence of a highly productive coastal 

upwelling zone. Therefore, we applied a comparatively high reservoir correction of 

∆R=297±51 years from Southon et al. (2002) that was determined from the station closest to 

the core site. This correction factor is consistent with the corrected age of our undisturbed 

surface sample of MC681 (Table 5.1).  

Both cores have a conspicuous sedimentation hiatus around 5700 years BP (Figures 5.3 

and 5.4), indicated by the dense succession of dating points. In core MC680 the hiatus was 

positioned at 37 cm, and is expressed by a sharp increase of Zr/Al and Ti/Al ratios, suggesting 

an erosional surface. The missing sedimentary sequence in core 163SL is 1.5 m thick (1.9 m 

for MC680), based on the accumulation rates above and below the unconformity. 

 

5.5. Results 

5.5.1. Indicators for OMZ variability ( δ15N, Mn/Al) 

Variations in the intensity of the OMZ over the Holocene are expressed in stable nitrogen 

isotope ratios (δ15N values) and Mn/Al ratios. δ15N ranges from 7.4 to 9.4‰ in core 163SL 

(Figures 5.6 and 5.8) and is indicative of water column denitrification associated with suboxic 

conditions in Arabian Sea intermediate waters (e.g., Altabet et al., 1999; Gaye-Haake et al., 

2005). Core top values of 8.9‰ (163SL) and 8.0‰ (MC680) are well within the range of 

modern surface sediment δ15N values for this region (Gaye-Haake et al., 2005). δ15N values 

(7.4 to 8.5‰) in the early to middle Holocene age interval (from 8 to 5.8 ka) are about 1‰ 

lower than the δ15N values (8.9 to 9.4‰) of the late Holocene section of core 163SL. The 

increase in δ15N is further evident in MC680 that show mid Holocene δ15N values of about 

7‰ compared to late Holocene values of ~8.5‰ (Figure 5.8). This suggests elevated 

denitrification due to more intense OMZ conditions off northern Oman during the late 

Holocene, which is in line with results from the NE Arabian Sea off Pakistan (Pichevin et al., 

2007), but in contrast to decreasing δ
15N in the NW Arabian Sea over the same time period 

(Ivanochko et al., 2005; Suthhof et al., 2001).  

Decreased oxygen levels of intermediate water during the late Holocene relative to mid 

Holocene conditions are further traced by decreasing Mn/Al ratios in cores 163SL and 

MC680. Manganese deposition in marine sediments is highly redox sensitive. Under suboxic 

bottom water conditions (when the OMZ impinges on the continental slope) insoluble Mn 

(IV) oxyhydroxides are reduced to soluble Mn (II), which is mobilized and removed from the 

sediments (e.g., Calvert and Pedersen, 1993; Schnetger et al., 2000). Relatively lower 
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sedimentary Mn/Al ratios in the late Holocene intervals of cores 163SL and MC680 (Figure 

5.8, note reversed y axis) thus indicate less oxygenated bottom waters and imply a more 

intense OMZ in this sector of the Arabian Sea compared to the mid Holocene.  

 

 

Figure 5.5: Sedimentary records of core M74/1b-163SL over the mid Holocene. (a) Ti/Al as a tracer for the 

input of lithogenic material, (b) bulk mass accumulation rates (MAR), (c) biogenic content of sediments, and (d) 

mass accumulation of the biogenic sediment fraction. The shaded areas indicate phases of increased eolian input. 

 
 
 

5.5.2. Marine primary productivity changes (biogenic content) 

To track Holocene changes in primary productivity off Oman we used the sedimentary 

fraction of biogenic material. The biogenic fraction was calculated as the sum of organic 

carbon, opal (diatoms) and carbonate (coccolithophores) and thus accounts for past changes 

or shifts in the primary producer community. Similar patterns of wt% biogenic and bulk MAR 

imply that the biogenic fraction of sediments is not affected by dilution (Figure 5.5), although 
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mass accumulation rates at our coring sites are strongly influenced by the input of lithogenic 

material (see chapter 5.5.3.). 

The biogenic fraction in core 163SL ranges from 31 to 52%. Primary productivity 

decreased from the middle to late Holocene as indicated by relatively higher biogenic contents 

in the mid Holocene fraction of core 163SL (Figure 5.6). Short-term primary productivity 

fluctuations on decadal to centennial time scales correlate well with SST and δ15N patterns 

over the mid Holocene and suggest that short-term variations in OMZ intensity are coupled to 

upwelling induced primary productivity changes during this time (Figure 5.7).  

 

5.5.3. Continental aridity, dust input (Mg/Al, Zr/A l, lithogenic MAR) 

To examine the role of varying SW monsoon strength on OMZ conditions we 

investigated the input of eolian material to our sediments. Dust deposited on the Oman 

Margin is primarily transported from Arabia by the Northwesterlies that overlie the low-level 

winds of the SW monsoon (Sirocko et al., 1991). In this region the input of eolian material is 

characterized by Mg-bearing minerals such as palygorskite and dolomite that are transported 

with dust plumes from Arabia to the northern Arabian Sea (Sirocko et al., 2000, 1991). Since 

titanium is preferentially incorporated into heavy minerals and concentrated in the coarse-

grained sediment fraction (and is not affected by early diagenesis), Mg/Al and Ti/Al ratios in 

Arabian Sea sediments trace the input of eolian dust from the Arabian Peninsula and Somalia 

(Shimmield and Mowbray, 1991). Zr/Al ratios (parallel to Ti/Al) can be used as an indirect 

tracer for wind strength, because zirconium is usually enriched in heavy minerals such as 

zircon that is associated with the coarse grained sediment fraction and thus could only be 

transported at vigorous wind speeds (Shimmield and Mowbray, 1991; Sirocko et al., 2000). 

This interpretation is supported by a study from Deplazes et al. (2014), which found that the 

Zr/Al ratio is well correlated with grain size in a sediment core from the Pakistan continental 

margin. Furthermore, the input of lithogenic material (46 to 67%) at site 163SL determines 

sediment mass accumulation rates and correlates closely with bulk MAR and Ti/Al (Figure 

5.5). Terrigenous matter deposited on the Oman Margin is almost exclusively of eolian origin 

due to the absence of river systems in this region, and we argue that lithogenic mass 

accumulation rates in core SL163 reflect the changing input of dust near the coast of northern 

Oman.  

Deposition of dust in Arabian Sea sediments intensified over the Holocene as a direct 

result of increased continental aridity due to diminishing SW monsoon strength (Prins et al., 
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2000; Sirocko et al., 2000). Lithogenic MAR at site 163SL started to increase at about 7.6 ka 

(23 g cm-2 kyr-1) to values of up to 126 g cm-2 kyr-1 at 5.9 ka (Figure 5.7), in line with 

continental aridification on the Arabian Peninsula (e.g., Berger et al., 2012; Fleitmann et al., 

2007; Fuchs and Buerkert, 2008). Moreover, the steep increase in lithogenic MAR at 6.1 ka 

closely mirrors the moisture history of northern Oman, where the transition from more humid 

to arid conditions was not gradual but occurred relative abruptly at around 6 ka (Bray and 

Stokes, 2004; Fleitmann et al., 2007). Aridification continued until the late Holocene as 

shown by high Mg/Al ratios in the late Holocene section of core 163SL (Figure 5.6). 

Superimposed on the long-term trend were several short-term events of high eolian 

activity (high lithogenic MAR and high Ti/Al) at 7.15 ka, 6.25 ka and 5.95 ka (Figures 5.5 

and 5.7). Increased upwelling (low SST) and elevated Zr/Al ratios suggest that these were 

times of intensified wind strength. 

 

5.5.4. Sea surface temperatures 

Alkenone-derived SST estimates in our record vary between 23.8 and 27.8°C (Figure 

5.6) and fluctuated around the modern annual mean value of 26.2°C (Levitus and Boyer, 

1994) during the late Holocene and from 8 to 6.6 ka. In contrast, SSTs were almost constantly 

below modern values in the period from 6.5 to 5.7 ka. The close correlation between small 

scale SST changes and variations in δ
15N (increased denitrification) implicates that upwelling 

processes are the main driver for short-term SST fluctuations in this region (Figure 5.7). 

Decreasing SSTs from 6.5 to 5.7 ka thus most likely reflect a regional strengthening of 

upwelling at the coast of northern Oman. 
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Figure 5.6: Monsoon reconstruction of core M74/1b-163SL showing strongest southwest monsoon activity 

during the mid to early Holocene. (a) speleothem δ
18O of Qunf Cave in Southern Oman (Fleitmann et al., 2007), 

(b) Mg/Al as an indicator for continental dust input, (c) biogenic content of sediments, (d) Mn/Al as a tracer for 

oxygen variability, (e) sedimentary δ15N, and (f) alkenone-derived SST estimates for core M74/1b-163SL. 

Dashed line indicates modern SST of 26.2°C (Levitus and Boyer, 1994). 
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5.6. Discussion 

5.6.1. OMZ variability at the northern Oman Margin and SW monsoon strength 

In today’s situation, low mid-water oxygen levels in the NE Arabian Sea are maintained 

by the interplay between oxygen consumption below the mixed layer and low oxygen supply 

caused by sluggish replenishment of intermediate waters (Olson et al., 1993; Sarma, 2002; 

Wyrtki, 1962).  

One controlling factor for OMZ variability in the Arabian Sea thus are variations in SW 

monsoon activity that result in variable rates of primary productivity, particle export from the 

euphotic zone and oxygen demand below the mixed layer (Altabet et al., 1999, 2002; Reichart 

et al., 1998, 1997; Schulte et al., 1999; Suthhof et al., 2001). Our records of summer monsoon 

strength and OMZ intensity shed light on the relative importance of the two factors during the 

Holocene.  

 

5.6.1.1. Mid Holocene versus late Holocene 

The long-term development of local OMZ intensity on the northern Oman Margin is not 

primary governed by varying SW monsoon strength. When comparing the mid Holocene time 

slice with that from the late Holocene in core 163SL, stronger SW monsoon activity (intense 

upwelling, high primary production and relatively low dust input) is indicated during the 

middle Holocene, whereas most intense OMZ conditions occurred during the late Holocene 

(Figure 5.6). This mismatch suggests that intermediate water ventilation must have been 

stronger during the middle than during the late Holocene off northern Oman. Other studies 

from the northern Arabian Sea also report an overriding role of ventilation changes in 

modulating glacial to interglacial OMZ variability (Böning and Bard, 2009; Jung et al., 2009; 

Pichevin et al., 2007; Schulte et al., 1999).  
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Figure 5.7: Short-term climate variability at site M74/1b-163SL over the middle Holocene. (a) speleothem δ
18O 

of Hoti Cave (Northern Oman) as an indicator for precipitation (Neff et al., 2001), (b) mass accumulation of 

lithogenic material (black) compared to Mg/Al ratios (green) in core 163SL, (c) record of Zr/Al as an indirect 

tracer for wind strength, (d) biogenic content of sediments (productivity tracer), (e) alkenone-derived SST 

estimates, and (f) sedimentary δ15N of core 163SL. Short-term events of strong wind intensity trigger intense 

upwelling that is accompanied by high primary productivity and elevated denitrification (shaded areas). 
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5.6.1.2. Short-term control on local OMZ intensity during the mid Holocene 

Regional short-term fluctuations in the oxygen inventory of the northern Arabian Sea 

were linked to variations in SW monsoon activity over the middle Holocene (Figure 5.7). This 

suggests that the centennial scale variability of oceanic properties on the northern Oman 

Margin was significantly controlled by atmospheric processes (and that ventilation changes 

probably only played a minor role in modulating regional short-term oxygen levels). Core 

163SL recorded several events of intensified wind velocity during the mid Holocene, dated 

around 7.15 ka, 6.25 ka and 5.95 ka. Increased wind strengths during these events 

strengthened the upwelling of cold, nutrient-rich waters near the coast of Oman that in turn 

enhanced regional biological productivity, as evidenced by negative SST excursions and high 

sedimentary contents of biogenic matter. Periods of low SST were essentially anti-correlated 

with δ15N indicating that invigorated upwelling increased oxygen consumption and 

denitrification during mineralization of elevated organic matter fluxes. Phases of most intense 

oxygen deficient conditions in the coastal region off northern Oman thus were coupled to 

elevated wind strength over the northern Arabian Sea throughout the mid Holocene.  

Strong winds, furthermore, enable the entrainment of dust to our study area as indicated 

by high Ti/Al ratios (Figure 5.5) and elevated accumulation of lithogenic matter during times 

of increased wind velocities (Figure 5.7). Although the increased input of dust to Arabian Sea 

sediments is attributed to decreased SW monsoon activity over longer time scales (e.g., 

Deplazes et al., 2014; Prins et al., 2000; Sirocko et al., 2000, 1991), the short-term events of 

high eolian activity observed here most likely reflect times of elevated SW monsoon activity. 

Sirocko et al. (1991) stated that dust transported to the NW Arabian Sea is mainly controlled 

by continental aridity together with wind strength. Clemens and Prell (1990) showed that 

lithogenic MAR mainly reflects source area aridity, whereas lithogenic grain size (which is 

tightly linked to Zr/Al (Deplazes et al., 2014)) is indicative of SW monsoon wind strength. 

The gradual increase of lithogenic MAR at our study site thus reflects a long-term trend of 

SW monsoon weakening over the Holocene and is in line with cave records (recorders of 

continental aridity; Fleitmann et al., 2007, 2003) and other studies from the northern Arabian 

Sea (e.g., Gupta et al., 2003; Overpeck et al., 1996; Sirocko et al., 1993).  

 

5.6.2. Spatial and temporal variability of the Arabian Sea OMZ during the Holocene 

The comparison of δ15N and Mn/Al records throughout the northern Arabian Sea helps to 

decipher changes in the spatial and temporal development of the Arabian Sea OMZ over the 
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Holocene (Figure 5.8). Variations in the sedimentary δ15N signal are not only caused by 

changing denitrification rates and thus oxygen availability, but also by other processes that 

influence the absolute δ15N signal in the sedimentary record such as (1) δ
15N reduction 

through N2 fixation (Karl et al., 2002), (2) isotopic fractionation during incomplete nitrogen 

uptake (Schäfer and Ittekkot, 1993), (3) input of terrigenous matter with a reduced δ15N 

signature (Gaye-Haake et al., 2005), (4) δ
15N increase with distance from the upwelling center 

(‘Rayleigh-type fractionation’; Altabet and Francois, 1994) and (5) diagenetic alteration in the 

sediment (Gaye-Haake et al., 2005; Möbius et al., 2011). In Arabian Sea sediments from the 

continental slope δ15N values are not primarily driven by diagenesis (Möbius et al., 2011) and 

for the δ15N records considered here a δ
15N bias through terrigenous organic matter input by 

river runoff is unlikely, because sediment cores were not obtained in the proximity of large 

river mouths. Moreover, nitrate is completely utilized by phytoplankton on an annual basis in 

the NW Arabian Sea (Schäfer and Ittekkot, 1993). We thus assume that δ15N is primary 

modulated by mid-water oxygen availability. This interpretation is strengthened by the good 

agreement of δ15N with the records of Mn/Al (Figure 5.8). The Mn/Al ratio is the result of 

complex redox dynamics at the boundary of the OMZ. Within the OMZ Mn (II) is mobilized 

and removed from the sediment, so that lowered sedimentary Mn/Al ratios reflect more 

intense oxygen deficient conditions (see also chapter 5.5.1.; cores MC680 and 163SL). On the 

other hand, strong OMZ conditions are reflected in enriched manganese concentrations in 

sediments deposited below the OMZ (cores 74KL and NIOP 905). Extension of the OMZ 

would result in mobilization of Mn that was previously deposited in sediments below the 

OMZ, lateral transportation of the released Mn (II) and reoxidation and transformation of Mn 

(II) to particulate Mn (IV) outside the OMZ (Schnetger et al., 2000; Suthhof et al., 2001). 

Sedimentary δ15N together with changes in Mn/Al thus indicate spatial and temporal 

variations of mid-water oxygenation in the Arabian Sea (that will be discussed below).  

 

5.6.2.1. Early Holocene (11-8 ka) 

The northern Arabian Sea was well oxygenated during the Younger Dryas and last 

glaciation, but oxygen deficient conditions developed in the northern Arabian Sea during the 

early Holocene (Altabet et al., 1999, 2002; Suthhof et al., 2001). Deglacial lowering of the 

oxygen inventory in Arabian Sea intermediate waters was caused by (1) high production of 

organic matter induced by strong southwest monsoonal upwelling (e.g., Altabet et al., 2002), 

(2) decreased northward intrusion of intermediate waters from the south (e.g. Antarctic 
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Intermediate Water) due to sea level rise and increased influence of highly saline waters from 

the marginal seas (RSW and PGW) (Böning and Bard, 2009; Jung et al., 2009; Pichevin et al., 

2007; Schulte et al., 1999) and (3) thermocline ventilation due to deep convective winter 

mixing in the northeastern part of the Arabian Sea (Reichart et al., 2002a). 

OMZ conditions were most intense in the NW Arabian Sea during the early Holocene as 

shown by enhanced denitrification off Somalia and Oman (Figure 5.8; period 1). Sea level at 

this time was about 40 m below present level (Figure 5.8; Bard et al., 1996; Siddall et al., 

2003) and inflow of RSW and PGW was still weaker than under modern conditions 

(Lambeck, 1996; Rohling and Zachariasse, 1996). Instead, oxygen was probably supplied to 

the northeastern basin by IOCW, which represents southern intermediate water sources and 

enters the northern Arabian Sea at the southwestern boundary with the Somali current. 

Advection of this intermediate water mass weakened the OMZ in the NE Arabian Sea 

(Böning and Bard, 2009; Pichevin et al., 2007). This scenario further implies better 

ventilation of the NW basin (inferred from the modern flowing path of IOCW), and in 

consequence OMZ intensity in the NW Arabian Sea should have been low. But a comparison 

of different δ15N and Mn/Al records from the NW basin (Altabet et al., 2002; Ivanochko et 

al., 2005; Ivanochko, 2004a; Suthhof et al., 2001) and the NE basin of the Arabian Sea 

(Pichevin et al., 2007) shows that the O2 deficit was most pronounced in the northwestern part 

of the Arabian Sea (Figure 5.8). We argue that O2 loss and build up of intensely oxygen 

deficient conditions in the NW Arabian Sea was caused by an increased demand of oxygen 

due to elevated primary production and associated mineralization of sinking organic matter in 

the upwelling regions off Somalia and Oman. SST records from these regions reveal that 

upwelling during this time was much more vigorous than today (Böll et al., submitted; Huguet 

et al., 2006) driven by a contemporaneous maximum in SW monsoon strength during the 

early Holocene (Fleitmann et al., 2003; Overpeck et al., 1996; Sirocko et al., 1993). 

Upwelling processes trigger high rates of primary productivity off Somalia (Ivanochko et al., 

2005) as well as off Oman (Gupta et al., 2003; Naidu and Malmgren, 1996).  

Modern SST patterns show no indication of upwelling in reaction to the SW monsoon on 

the Pakistan Margin (Levitus and Boyer, 1994), and sediment trap studies indicate higher 

productivity during the NE monsoon season in winter (Andruleit et al., 2000; Schulz et al., 

2002b). Von Rad et al. (1999b) indeed found evidence of reduced primary production 

together with oxygenated bottom water conditions off Pakistan between 10.5 to 7 ka. 

Strengthened SW monsoon winds during the early Holocene thus only slightly impacted the 

NE Arabian Sea productivity. Although northern Arabian Sea intermediate water was better 
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ventilated from southern sources during the early Holocene than today, the increased rain rate 

of organic matter due to strong SW monsoonal upwelling caused pronounced oxygen 

deficiency in the NW Arabian Sea, where most intense OMZ conditions are today observed in 

the NE basin. 

 

5.6.2.2. Early- to mid Holocene (8-6 ka) 

Organic matter production as the main control on oxygen levels at intermediate water 

depth probably declined with gradual weakening of SW monsoon strength (e.g., Fleitmann et 

al., 2007; Gupta et al., 2003) over the early to middle Holocene. Changes in intermediate 

water ventilation became more important than productivity and oxygen demand as driving 

factors for mid-water oxygen levels. In consequence, the west-east gradient of the Arabian 

Sea OMZ decreased, and the OMZ intensified in the NE Arabian Sea and weakened in the 

NW Arabian Sea (Figure 5.8; period 2). Gradual reduction of SW monsoon intensity is well 

documented at site 163SL where increasing amounts of dust signalling continental 

aridification were deposited between 8 to 6 ka (Berger et al., 2012; Fleitmann et al., 2007; 

Fuchs and Buerkert, 2008). Upwelling intensity decreased and lowered surface ocean 

productivity in the NW Arabian Sea (Gupta et al., 2003; Ivanochko et al., 2005), so that 

oxygen concentrations at intermediate water depths increased and denitrification was reduced 

(see Figure 5.8). On the other hand, increased inflow of PGW and RSW due to rising sea level 

(Lambeck, 1996; Rohling and Zachariasse, 1996) constricted intrusion of IOCW to the NE 

basin (Pichevin et al., 2007), whereas the NW basin continued to receive intermediate water 

of southern provenance. This leads to a stabilization of the OMZ and a continuous expansion 

of oxygen deficiency in the NE Arabian Sea, whereas the NW Arabian Sea remained 

ventilated.  
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Figure 5.8: Comparison of δ15N and Mn/Al (when available) records of several cores obtained from the northern 

Arabian Sea. From the bottom up: NIOP 905 off Somalia (Ivanochko et al., 2005; Ivanochko, 2004), SO42-

74KL (Suthhof et al., 2001) and RC27-23 from the Oman Margin (Altabet et al., 2002), M74/1b-163SL and 

MC680 off northern Oman (this study) and MD04-2876 off Pakistan (Pichevin et al., 2007). The comparison 

allows the reconstruction of the temporal and spatial variability of the Arabian Sea oxygen minimum zone over 

the Holocene (indicated by color shading). Further illustrated is the relative Holocene sea level change 

reconstructed by Siddall et al. (2003) (black curve) and Bard et al. (1996) (gray curve). Numbers indicate climate 

periods discussed in the main text. 
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5.6.2.3. Mid Holocene (6-2.5 ka) 

Present sea level was reached shortly before 6 ka (Bard et al., 1996; Siddall et al., 2003) 

and thermocline circulation over the middle Holocene most likely was similar to modern 

conditions. Detailed comparison of denitrification patterns for the northern Arabian Sea points 

to a gradual southward retreat of intermediate water ventilation from southern sources 

(IOCW) until modern circulation patterns were established around 2.5 ka before present 

(Figure 5.8; period 3). While denitrification and thus oxygen deficiency increased again on 

the Oman Margin since ~6 ka (site RC27-23; Altabet et al., 2002), ongoing water column 

oxygenation is indicated by the contemporaneous decline of δ15N and Mn/Al at southern 

stations (site 74KL (Suthhof et al., 2001) and site NIOP 905 (Ivanochko, 2004)). Oxygen 

supply by IOCW probably plays a substantial role for mid-water ventilation south of about 

15°N, whereas its influence diminished in the northern part of the Arabian Sea at the coast of 

northern Oman and Pakistan. Our spatial comparison of δ15N data suggests that the OMZ 

expanded from the northeastern basin of the Arabian Sea to the northwest resulting in a 

reversal of the early Holocene west-east gradient of OMZ intensity throughout the middle 

Holocene. 

 

5.6.2.4. Late Holocene (since 2.5 ka) 

The modern OMZ, which is characterized by permanent low oxygen concentrations and 

associated high denitrification rates in the NE Arabian Sea and weaker OMZ conditions in the 

NW Arabian Sea, was established at about 2.5 ka (Figure 5.8; period 4). Maximum primary 

production (northwestern upwelling regions) and intense denitrification (northeastern basin) 

were spatially decoupled over the late Holocene. Thus, low oxygen levels and increased 

denitrification in the NE Arabian Sea can not primarily be attributed to enhanced production 

and subsequent loss of oxygen due to mineralization of sinking organic matter. SW monsoon 

activity at site 163SL off northern Oman was relatively low during the late Holocene 

compared to early Holocene conditions, as indicated by weak upwelling intensities (higher 

SST) and decreased primary production and an increased input of continental dust to the 

163SL sedimentary record (Figure 5.6). The gradual weakening of Arabian Sea upwelling is 

concurrent with other SST reconstructions that show a sea surface warming tendency 

throughout the Holocene (Böll et al., submitted; Huguet et al., 2006). At the coast of Pakistan, 

where oceanic processes are mainly controlled by winter monsoon activity, SST decreased 

and primary productivity increased over the late Holocene (imaging a long-term trend of NE 
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monsoon strengthening) (Böll et al., 2014). Low mid-water oxygen concentrations in this 

region thus must be coupled to increased productivity caused by strong NE monsoonal winds. 

Nevertheless, spatial differences in the late Holocene oxygen deficiency in the northern 

Arabian Sea were significantly governed by weak ventilation at intermediate water depth that 

is minimal in the northeastern part of the Arabian Sea.  

 

5.6.3. Present development of the Arabian Sea OMZ and implications for future climate 

change 

Climate models (Matear and Hirst, 2003) predict a decrease of dissolved oxygen 

concentrations in the oceans and expanding oxygen minimum zones under global warming 

conditions. Measurements of dissolved oxygen over the last 50 years show more divergent 

results, but indicate an overall oxygen decline in the tropical oceans, while oxygen 

concentrations generally increased in the subtropical oceans (Keeling et al., 2010; Stramma et 

al., 2012). Ocean ‘deoxygenation’ in response to global warming is mainly attributed to lower 

oxygen solubility in warmer waters and to an increase of upper ocean stratification (Keeling 

et al., 2010; and references therein). Since the Arabian Sea is one of the main denitrification 

regions of the world’s ocean (e.g., Bange et al., 2000; Codispoti et al., 2001) and significantly 

contributes to the oceanic loss of N2O to the atmosphere (Bange et al., 2001), changes in the 

Arabian Sea OMZ would have implications for future climate change. A study by Levitus et 

al. (2005) revealed that the Indian Ocean has warmed since the mid-1960s (see Figure 5.9b) 

and the question arises if and how this warming has effected the present development of the 

Arabian Sea OMZ. Stable nitrogen isotopic measurements spanning the period from 1950 to 

1990 A.D. from the NE Arabian Sea (Böll et al., 2014) indicate a slight increase of 

denitrification over this time interval, in line with a regional sea surface warming tendency 

(that is also reflected in air temperature measurements from this region; Figure 5.9a). This 

regional increase of denitrification at the coast of Pakistan thus may be a consequence of a 

recently observed expansion of the Arabian Sea denitrification zone (Rixen et al., 2013). 

Recent and ongoing warming further strengthen the southwest monsoonal winds and are 

expected to enhance primary productivity in the Arabian Sea (Goes et al., 2005). In analogy 

with the patterns observed over the Holocene, we expect an intensified mid-water oxygen 

minimum due to enhanced oxygen demand below the thermocline. Interestringly, Banse et al. 

(2014) found no clear trend in the -
2NO  distribution of the Arabian Sea between 1959 and 

2004 A.D. that would signal enhanced denitrification and intensified OMZ conditions. Also a 



CHAPTER 5: HOLOCENE VARIATIONS IN THE ARABIAN SEA OMZ 85   

 

global compilation of oceanic dissolved oxygen measurements for the last 50 years shows no 

substantial change in the Indian Ocean OMZ (Stramma et al., 2008). Thus, the future 

development of the Arabian Sea OMZ remains an open question that needs to be further 

studied, especially since denitrification in the Arabian Sea accounts for a significant part of 

global N2O emissions. 
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Figure 5.9: (a) Air temperature of Karachi (Pakistan) (gray curve; data from Deutscher Wetterdienst) and 

ERSST (extended reconstructed sea surface temperatures derived from in situ observations and improved 

statistical methods; Smith and Reynolds, 2003) for the Pakistan continental margin (black curve), (b) Heat 

content anomaly of the Indian Ocean for the period 1955-2003 (Levitus et al., 2005) and (c) δ
15N of core SO130-

275KL from the northeastern Arabian Sea (Böll et al., 2014).  
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5.7. Conclusions 

The joint examination of our δ15N and Mn/Al records together with published 

reconstructions (Altabet et al., 2002; Ivanochko et al., 2005; Ivanochko, 2004; Pichevin et al., 

2007; Suthhof et al., 2001) indicative of mid-water oxygenation reveal new insights into the 

spatial and temporal variability of the Arabian Sea OMZ over the Holocene. Oxygen 

concentrations in Arabian Sea intermediate waters varied not only in intensity but experienced 

spatial changes in the regional location of strongest oxygen deficiency. Unlike today, when 

oxygen levels are lowest in the NE Arabian Sea, core OMZ conditions with elevated 

denitrification occurred in the northwestern part of the Arabian Sea over the early Holocene. 

This regional shift was caused by a changing interplay of mid-water ventilation (oxygen 

supply) and primary productivity (oxygen sink): Strong SW monsoon activity during the early 

Holocene drives upwelling and high rates of primary productivity at the coast of Oman and 

Somalia while SW monsoon driven primary productivity was comparable weak in the NE 

Arabian Sea. On the other hand, low sea level (Bard et al., 1996; Siddall et al., 2003) and 

reduced inflow from the marginal seas in the north enable IOCW to replenish oxygen at 

intermediate water depth from the south farther to the northeast. Better ventilation of the 

northeast basin together with spatial differences in oxygen demand causes an early Holocene 

OMZ, being most intense in the NW Arabian Sea. Over the middle Holocene, SW monsoon 

activity weakened and the influence of primary production on maintaining OMZ conditions 

decreased. This was accompanied by a gradual retreat of mid-water ventilation from southern 

sources due to sea level rise and increased inflow of warm and saline PGW and RSW. 

Oxygen supply to the northeast Arabian Sea declined while the NW Arabian Sea was still 

well ventilated, so that most severe oxygen minimum conditions developed in the 

northeastern basin over the late Holocene. The shift from the northeast to the northwest of the 

core OMZ implied a spatial decoupling of regions with highest primary productivity and 

lowest mid-water oxygen concentrations (highest denitrification), as evident in modern 

observations from the Arabian Sea (Gaye-Haake et al., 2005). 

Mid Holocene short-term fluctuations in mid-water oxygen at the northern Oman Margin 

were mainly governed by atmospheric forcing related to SW monsoon activity. Intensified 

wind strength drives coastal upwelling that induces phases of high primary production, 

elevated loss of oxygen at intermediate water depth and increased water column 

denitrification.  

Until now, it is unclear if and how the OMZ of the Arabian Sea may respond to future 

climate change. Our high-resolution reconstruction of the middle Holocene, however, shows 
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that regional variations of mid-water oxygen in the Arabian Sea are sensitive to short-term 

fluctuations in monsoon wind strength. A predicted increase in global temperature may 

strengthen the land-sea thermal contrast that drives the low-level winds of the SW monsoon 

(Goes et al., 2005), with possible consequences for the Arabian Sea OMZ. 
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CHAPTER 6 
 
6. Conclusions and Outlook 

 
 
 
 
 
 

6.1. Conclusions 

The analysis of different sediment cores from two regions in the northern Arabian Sea 

that are differentially impacted by the summer and winter monsoon, respectively, was 

successfully used to disentangle signals of summer and winter monsoon strength. While 

summer monsoon winds drive intense upwelling and high rates of primary productivity in the 

northwestern Arabian Sea, the influence of the winter monsoon is most pronounced in the 

northeastern Arabian Sea off Pakistan, where north-easterly winds induce convective winter 

mixing and high primary productivity during the winter season. 

My high-resolution reconstruction of primary productivity and alkenone-derived SST 

variability from the NE Arabian Sea provides a unique record of winter monsoon variability 

for the late Holocene, a climate period from which information about winter monsoon 

strength is scarce. Winter monsoon activity intensified over the last 2400 years and was 

strongest during the LIA from 1400 to 1900 A.D. The decadal to centennial scale variability 

in winter monsoon strength reported here supports the growing body of evidence that 

significant climate variability occurs not only on time scales of several hundred of thousand 

years but also throughout the late Holocene. 

Comparison of my alkenone-SST reconstructions from the NW and NE Arabian Sea 

confirms an antagonistic relationship of summer and winter monsoon strength over the 

Holocene, which was so far only reported for glacial/interglacial cycles (Rostek et al., 1997; 

Schulz et al., 1998). Summer monsoon activity was strongest during the early Holocene 

climate optimum as indicated by low SST and strong upwelling offshore Oman. Winter 

monsoon activity, on the other hand, was diminished during this time (high SST off Pakistan) 

but increased again since the early to mid Holocene. This reversed relationship of summer 
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and winter monsoon strength did not only exist on millennial time scales throughout the 

Holocene, but was also evidenced in the centennial scale monsoon variability of the last two 

millennia, as indicated by the comparison of my late Holocene winter monsoon record with 

records of summer monsoon strength. The dynamical interplay between summer and winter 

monsoon strength over the Arabian Sea was most likely caused by solar triggered shifts in the 

long-term latitudinal position of the ITCZ. The northern Arabian Sea is located in a sensitive 

region at the northern latitudinal boundary of the ITCZ: A southward displacement of the 

ITCZ due to low solar insolation would have shortened the duration of the summer monsoon 

season and strengthened the influence of northeast monsoonal winds over the northern 

Arabian Sea. 

Holocene monsoon activity in the northern Arabian Sea varied in line with Northern 

Hemisphere climate change. A general picture emerged of increased winter monsoon strength 

corresponding to colder climate conditions on the Northern Hemisphere (LGM and LIA) and 

strong summer monsoon activity correlating with periods of comparatively warmer climate 

conditions (early Holocene and MWP). Their likely driving forces might be related to 

insolation changes. Climate variability in the high and low-latitudes probably was either 

directly (and thus simultaneously) influenced by varying solar activity or was linked through 

solar triggered internal climate feedback mechanisms, such as movements in the position of 

the ITCZ or snow cover that determines the land-sea thermal contrast between the Asian 

continent and the southern Indian Ocean. The data of this thesis show that the monsoon 

climate of the low-latitudes has responded to short-term (decadal to centennial) changes in 

global climate variability over the last 2000 years. 

The Arabian Sea hosts one of the main OMZ of the world’s ocean, which make monsoon 

induced changes in the Arabian Sea OMZ a potential driver of climate change. Reconstruction 

of mid-water oxygenation and monsoon intensity from the northern Oman Margin and its 

comparison to other records indicative of mid-water oxygenation from the northern Arabian 

Sea shows that the Arabian Sea OMZ has varied in intensity and location (northwest to 

northeast shift) over the Holocene. This variability was most likely caused by changes in 

intermediate water ventilation due to sea level rise combined with spatial differences in the 

response of primary productivity to varying monsoon strength. While monsoon activity thus 

was not the only driver for millennial scale variations in OMZ intensity, strong southwest 

monsoon winds were significantly linked to regionally low oxygen levels (increased 

denitrification) at intermediate water depth over decadal to centennial time scales during the 

middle Holocene. My high-resolution record of the mid Holocene infers that regional future 
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changes in mid-water oxygen might be sensitive to short-term fluctuations in monsoon wind 

strength. 

 

6.2. Outlook 

The data presented in this PhD thesis show that changing monsoon activity have played a 

substantial role in modulating mid-water oxygen in the northern Arabian Sea over the 

Holocene. Although the spatial comparison of δ
15N records from the northern Arabian Sea 

suggests that changes in mid-water ventilation might have been of equal importance for the 

development of the OMZ, direct data reflecting mid-water ventilation from the northern 

Arabian Sea are lacking. For instance, further investigation of δ13C on benthic foraminifers in 

different sediment cores, spanning a transect from the northwestern to the northeastern 

Arabian Sea, could be used to trace past variations in the pathway of IOCW. This could 

provide further information about the extent of the northward intrusion of IOCW into the 

northern Arabian Sea (which, unlike today, might have reached the northeastern basin of the 

Arabian Sea during the early Holocene). Since mid-water ventilation most likely was coupled 

to sea level change over the Holocene this analysis might further help to evaluate the role of 

sea level on OMZ intensity in the northern Arabian Sea.  

 

This PhD thesis presents a high-resolution record of decadal to centennial scale 

variations in NE monsoon strength over the last 2400 years. The comparison of this record 

with published records of SW monsoon strength from the northwestern Arabian Sea provides 

some insights into the dynamical interplay between NE and SW monsoon strength over the 

late Holocene. Previous late Holocene reconstructions indicative of SW monsoon strength, 

however, are often of lower resolution and are based on different proxies (which might be 

influenced by different monsoon-unrelated factors) than our NE monsoon reconstruction. It 

would thus be beneficial to locate new coring stations in the northwestern Arabian Sea that 

would provide undisturbed sedimentation and high sedimentation rates to enable the 

reconstruction of SW monsoon activity in comparable high resolution. The analysis of the 

same SST (alkenones) and primary productivity proxies (δ15N, bulk components) in cores 

from the northwestern Arabian Sea in similar resolution and its comparison to the NE 

monsoon record could help to identify SW and NE monsoon dynamics in more detail on time 

scales of societal relevance.  
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An issue that could not be addressed in this study, but that needs further investigation is 

the future development of the monsoon system and its influence on the Arabian Sea oceanic 

environment. A predicted increase in global temperature might intensify the strength of SW 

monsoon winds with implication for SST, primary productivity and OMZ intensity (and 

associated emission of N2O) in the Arabian Sea. The investigation of new high-resolution 

sediment cores that would cover the recent 30 years (which are missing in the sediment cores 

investigated in this thesis) might be able to capture a possible signal of global warming in the 

Arabian Sea. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LIST OF FIGURES  93 

List of Figures        

 

Figure 1.1: The Indian monsoon system during (a) Northern Hemisphere summer and 

(b) Northern Hemisphere winter. Differences in atmospheric pressure force an annual 

reversal of low-level winds (gray arrows) and seasonal shifts in the Intertropical 

Convergence Zone (red dotted line). This drives the seasonal reversal of surface 

circulation in the Arabian Sea (dashed black arrows; redrawn from Schott and McCreary 

(2001)). ....................................................................................................................................... 2 

Figure 1.2: Sea surface temperature (SST) and primary productivity in the northern 

Arabian Sea during summer (left panels) and winter monsoon (right panels), 

respectively. SST data are obtained from the World Ocean Atlas 2009 (Locarnini et al., 

2010). Primary productivity changes are indicated by the chlorophyll a distribution 

(satellite observations, available from http://gdata1.sci.gsfc.nasa.gov/daac-

bin/G3/gui.cgi?instance_id=ocean _month). Black arrows indicate prevailing wind 

directions. ................................................................................................................................... 4 

Figure 1.3: Simplified overview of climate variability in the Arabian Sea region as a 

function of changing solar radiation driven by long-term variations in the Earth’s orbit.......... 5 

Figure 1.4: Overview of the different paleo-proxies (red) that are used in this study to 

reconstruct monsoon driven processes in the northern Arabian Sea. Processes that are 

mainly driven by the SW monsoon are illustrated in gray (Oman Margin) and NE 

monsoon induced processes are marked in black (Pakistan Margin). Biogeochemical 

processes related to oxygen minimum zone intensity are shown in blue. Further shown is 

the location of sediment cores that are investigated in this study. ............................................. 8 

Figure 3.1: Study area in the northeastern Arabian Sea off Pakistan with core locations 

275KL and 39KG and sediment trap station EPT-2. The shaded area indicates OMZ 

impinging on the continental slope. Bathymetry is shown in meters. Inset: vertical profile 

of core 275KL showing varve-like lamination. This map is produced by using Ocean 

Data View (Schlitzer, 2013)..................................................................................................... 17 



94  LIST OF FIGURES 

Figure 3.2: Annual variability of mixed layer depth and SST for site 275KL extracted 

from the World Ocean Atlas (Levitus and Boyer, 1994) and total particle flux measured 

in sediment trap EPT-2 after Andruleit et al. (2000). Increased particle fluxes occur 

during the NE monsoon season when strong convective winter mixing deepens the mixed 

layer and SST decreases........................................................................................................... 19 

Figure 3.3: (a) Total coccolith (gray bars; Andruleit et al., 2000) and alkenone fluxes 

(open circles) at trap EPT-2 in the northeastern Arabian Sea off Pakistan. (b) Alkenone-

derived SST measured in EPT-2 samples (triangle) compared to 1995/1996 monthly SST 

(circle; extracted from the web-site http://ingrid.ldgo.columbia.edu). Mean alkenone-

based SST is about 0.4°C higher than mean temperature over May 1995 to February 

1996.......................................................................................................................................... 25 

Figure 3.4: (a) Alkenone SST bias (circle; difference between monthly observed SST at 

10 m water depth (Levitus and Boyer, 1994) and alkenone-derived SST measured in 

EPT-2 samples) compared to the ratio of G. oceanica to E. huxleyi (square, data were 

taken from Andruleit et al. (2000)) at trap EPT-2. Red shaded area indicates 

overestimation of SST by alkenones in winter. This overestimation is significantly 

reduced by the use of a different SST calibration (filled circle; SST = ( K'
37U - 

0.085)/0.033). (b) Seasonal variations of mixed layer depth at site 39KG/275KL showing 

a strong mixed layer deepening during winter. ........................................................................ 26 

Figure 3.5: (a) Late Holocene variability of TOC contents compared to bulk mass 

accumulation rates in core SO130-275KL. (b) Down-core variations of organic carbon 

mass accumulation rates for core SO130-275KL compared to varve thickness data 

(dotted line) measured in core SO90-56KA (von Rad et al., 1999a) from the same 

location (both turbidite/event deposit free). ............................................................................. 29 

Figure 3.6: Late Holocene productivity record for cores 39KG and 275KL from the 

northeastern Arabian Sea. Carbonate/opal ratios, δ
15N values (bold line: running mean of 

3) and smoothed TOC contents (running average of 5) were used as productivity 

indicators. The gray shaded areas indicate good agreement between productivity proxies. 

The dashed lines indicate the respective mean over the complete dataset. Further 

illustrated are characteristic climate periods known from the Northern Hemisphere: Little 



LIST OF FIGURES  95   

 

Ice Age (LIA), Medieval Warm Period (MWP), Cold Dark Ages (CDA), and Roman 

Warm Period (RWP). ............................................................................................................... 30 

Figure 3.7: Reconstruction of winter monsoon variability in the northeastern Arabian 

Sea over the last 2400 years compared to long-term movements of the Intertropical 

Convergence Zone (ITCZ). (a) Smoothed Sr/Ca ratios (21 point running mean), (b) 

alkenone SST record (bold line: 3 point running mean), and (c) productivity index for 

cores 39KG/275KL. (d) Titanium content of Cariaco Basin sediments as an indicator for 

latitudinal shifts in the ITCZ (Haug et al., 2001) compared to global temperature 

anomalies (Marcott et al., 2013). The dashed lines indicate the respective mean over the 

studied time interval. ................................................................................................................ 34 

Figure 3.8: (a) Late Holocene alkenone-derived SST variations (cores 39KG and 

275KL) from the northeastern Arabian Sea compared to (b) Mg/Ca-SST variations 

reconstructed for the Markassar Strait (Indonesia) by Oppo et al. (2009) and (c) a 

smoothed δ18O record (15-point moving average) of Wanxiang Cave (China) as an 

indicator for summer monsoon intensity from Zhang et al. (2008). Dashed lines indicate 

the respective mean over the studied time interval.................................................................. 37 

Figure 4.1: (a) Study area with core location MD00-2354 from the northwestern (NW) 

Arabian Sea and 93KL and 275KL from the northeastern (NE) Arabian Sea. Illustrated is 

the sea surface temperature pattern during the summer monsoon season (Jul-Sep). 

Shaded areas indicate regions of upwelling. This map was produced by using Ocean Data 

View (Schlitzer, 2013). (b) Annual SST variability for site MD2354 and (c) sites 93KL 

and 275KL extracted from the Wold Ocean Atlas (Levitus and Boyer, 1994)........................ 44 

Figure 4.2: (a) δ15N record of cores RC27-23 and RC27-14 from the Oman Margin 

(Altabet et al., 2002), (b) alkenone-derived SST reconstruction for the northwestern 

Arabian Sea (core MD2354) and for the northeastern Arabian Sea (core 93KL). Both 

SST records are equally affected by winter cooling but only SST at site MD2354 is 

influenced by upwelling-induced cooling. Gray shading indicates the occurrence of 

upwelling at site MD2354. Dashed gray lines indicate the timing of maximum SW and 

minimum NE monsoon strength, respectively. Further illustrated are Heinrich events (H1 

and H2), Dansgaard-Oeschger event 2 and the Younger Dryas (YD; stippled area)............... 48 



96  LIST OF FIGURES 

Figure 4.3: SST variations in the northeastern Arabian Sea over the last 25 ka compared 

to air temperature variations in Asia and the Northern Hemisphere. (a) temperature 

reconstructions for the North Atlantic (GISP2 ice core; Grootes and Stuiver, 1997) (black 

line) and the extratropical Northern Hemisphere (30°N-90°N; Marcott et al., 2013) 

(green line), (b) record of continental air temperature for central China (black curve; 

Peterse et al., 2011) and the Tibetan Plateau (gray curve; Thompson et al., 1997) 

compared to Northern Hemisphere (NH) summer solar insolation (Berger and Loutre, 

1991) (red curve; same scale as in 3c) and (c) alkenone-derived SST reconstructions of 

core 93KL (last 25 ka) and cores 39KG/275KL (last 2.5 ka; Böll et al., 2014) compared 

to NH summer solar insolation (red curve; Berger and Loutre, 1991). ...................................53 

Figure 4.4: Temperature variability over the Asian monsoon domain during the last two 

millennia derived from (a) tree-rings (smoothed by calculating the respective mean value 

over the time interval which is represented by the alkenones) from  PAGES 2k 

Consortium, (2013), (b) marine sediments from the northeastern Arabian Sea (alkenone-

derived SST in cores 39KG/275KL; Böll et al., 2014), and (c) a combination of different 

continental proxy types (Ge et al., 2013). Dashed lines indicate the respective mean over 

the studied time interval. Dashed gray lines suggest correlations between the archives. 

Further illustrated are characteristic climate periods known from the Northern 

Hemisphere: Little Ice Age (LIA), Medieval Warm Period (MWP), Cold Dark Ages 

(CDA), and Roman Warm Period (RWP)................................................................................ 55 

Figure 4.5: (a) Northern Hemisphere temperature reconstructions (Christiansen and 

Ljungqvist, 2012; Moberg et al., 2005), (b) Temperature record for Central Greenland 

from the GISP2 ice core (Alley, 2000), (c) Stack of 4 drift ice records from the North 

Atlantic (Bond et al., 2001), (d) Alkenone-SST record for cores 39KG/275KL from the 

northeastern Arabian Sea (black curve; Böll et al., 2014) compared to Northern 

Hemisphere summer solar insolation (red curve; Berger and Loutre, 1991), and (e) 

Sunspot numbers (smoothed by a 11-point running mean) as an indicator for changes in 

solar output  (Solanki et al., 2004). Dashed lines indicate the respective mean over the 

studied time interval. ................................................................................................................ 57 

Figure 5.1: Study area of the Arabian Sea with core locations M74/1b-163SL and 

MC680 (red dots) and locations of cores discussed in the main text (black squares). 

Illustrated by color shading is the oxygen content in 300 m water depth indicating 



LIST OF FIGURES  97   

 

strongest oxygen deficiency in the northeastern basin. The main ventilation sources at 

intermediate water depth in the northern Arabian Sea are Indian Ocean Central Water 

(IOCW), Red Sea Water (RSW) and Persian Gulf Water (PGW). This map was produced 

by using Ocean Data View (Schlitzer, 2013). .......................................................................... 63 

Figure 5.2: Water column profiles of (a) oxygen concentration, (b) NO3
- deficit and (c) 

δ
15N at sites M74/1b-163SL (black) and #957 (gray) during the late SW monsoon 2007 

(Gaye et al., 2013). Increase of oxygen between 250 and 400 m water depth indicate 

intrusion of Persian Gulf Water to our study site..................................................................... 65 

Figure 5.3: Age-depth dependency of core 163SL and MC681 of the same station. 

MC681 was tied to 163SL by correlating Vanadium levels between both cores. The 

stratigraphic framework of each core was established by 14C accelerator mass 

spectrometry datings (diamond symbols, with age uncertainties). Stippled line indicates a 

sedimentary hiatus at 56 cm core depth. .................................................................................. 68 

Figure 5.4: Chronology of core MC680, established by four 14C AMS datings (diamond 

symbols, with age uncertainties). A sedimentary hiatus (stippled line) was located at 37 

cm, by a sharp increase of heavy mineral element ratios (see chapter 5.4). ............................69 

Figure 5.5: Sedimentary records of core M74/1b-163SL over the mid Holocene. (a) 

Ti/Al as a tracer for the input of lithogenic material, (b) bulk mass accumulation rates 

(MAR), (c) biogenic content of sediments, and (d) mass accumulation of the biogenic 

sediment fraction. The shaded areas indicate phases of increased eolian input....................... 72 

Figure 5.6: Monsoon reconstruction of core M74/1b-163SL showing strongest southwest 

monsoon activity during the mid to early Holocene. (a) speleothem δ18O of Qunf Cave in 

Southern Oman (Fleitmann et al., 2007), (b) Mg/Al as an indicator for continental dust 

input, (c) biogenic content of sediments, (d) Mn/Al as a tracer for oxygen variability, (e) 

sedimentary δ15N, and (f) alkenone-derived SST estimates for core M74/1b-163SL. 

Dashed line indicates modern SST of 26.2°C (Levitus and Boyer, 1994)............................... 75 

Figure 5.7: Short-term climate variability at site M74/1b-163SL over the middle 

Holocene. (a) speleothem δ18O of Hoti Cave (Northern Oman) as an indicator for 

precipitation (Neff et al., 2001), (b) mass accumulation of lithogenic material (black) 



98  LIST OF FIGURES 

compared to Mg/Al ratios (green) in core 163SL, (c) record of Zr/Al as an indirect tracer 

for wind strength, (d) biogenic content of sediments (productivity tracer), (e) alkenone-

derived SST estimates, and (f) sedimentary δ
15N of core 163SL. Short-term events of 

strong wind intensity trigger intense upwelling that is accompanied by high primary 

productivity and elevated denitrification (shaded areas).......................................................... 77 

Figure 5.8: Comparison of δ15N and Mn/Al (when available) records of several cores 

obtained from the northern Arabian Sea. From the bottom up: NIOP 905 off Somalia 

(Ivanochko et al., 2005; Ivanochko, 2004), SO42-74KL (Suthhof et al., 2001) and RC27-

23 from the Oman Margin (Altabet et al., 2002), M74/1b-163SL and MC680 off northern 

Oman (this study) and MD04-2876 off Pakistan (Pichevin et al., 2007). The comparison 

allows the reconstruction of the temporal and spatial variability of the Arabian Sea 

oxygen minimum zone over the Holocene (indicated by color shading). Further 

illustrated is the relative Holocene sea level change reconstructed by Siddall et al. (2003) 

(black curve) and Bard et al. (1996) (gray curve). Numbers indicate climate periods 

discussed in the main text......................................................................................................... 82 

Figure 5.9: (a) Air temperature of Karachi (Pakistan) (gray curve; data from Deutscher 

Wetterdienst) and ERSST (extended reconstructed sea surface temperatures derived from 

in situ observations and improved statistical methods; Smith and Reynolds, 2003) for the 

Pakistan continental margin (black curve), (b) Heat content anomaly of the Indian Ocean 

for the period 1955-2003 (Levitus et al., 2005) and (c) δ15N of core SO130-275KL from 

the northeastern Arabian Sea (Böll et al., 2014). ..................................................................... 85 

 

 
 
 
 
 
 
 
 



LIST OF TABLES  99 

List of Tables 

 

Table 1.1: Basic information of the sediment cores investigated in this study. ........................ 9 

Table 4.1: Age models (0-25 Kyr) for Arabian Sea cores SO90-93KL* and MD00-2354. ... 46 

Table 5.1: Results of radiocarbon AMS datings. Beta refers to Beta Analytics, Miami, 

FL/USA, KIA to the Leibniz Laboratory, Kiel/Germany and ETH to the ETH Laboratory 

of Ion Beam Physics, Zurich/Switzerland................................................................................ 70 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



100  LIST OF ABBREVIATIONS   

List of Abbreviations 

 
 

ACD   aragonite compensation depth 

A.D.   Anno Domini 

AMO   Atlantic Multidecadal Oscillation 

AMS   accelerator mass spectrometry 

AM-SST  annual mean sea surface temperature 

B/A   Bølling/Allerød epoch 

B.C.   Before Christ 

BMBF   Bundesministerium für Bildung und Forschung 

BP   Before Present 

BSi   biogenic silica 

CAME   Central Asia and Tibet: Monsoon dynamics and geo-ecosystems 

CARIMA  Natural versus anthropogenic controls of past monsoon variability in  

central Asia recorded in marine archives 

CDA   Cold Dark Ages 

DCM   methylene chloride 

EPT-2   Eastern PAKOMIN sediment trap station 2 

GC   gas chromatograph 

GISP   Greenland Ice Sheet Project  

H1, H2   Heinrich event 1 und 2 

HCl   hydrochlorid acid 

IAEA   International Atomic Energy Agency 

ID   inner diameter 

IOCW   Indian Ocean Central Water 

IS   Interstadial 

ITCZ   Intertropical Convergence Zone 

ka   kiloannus (thousand years) 

KG   box core 

KL   kasten lot 

KOH   potassium hydroxide 

kyr   thousand years 



LIST OF ABBREVIATIONS  101   

 

LGM   Last Glacial Maximum 

LIA   Little Ice Age 

MAR   mass accumulation rates 

MARUM  Zentrum für Marine Umweltwissenschaften 

MC   multicorer 

MWP   Medieval Warm Period 

NE   northeast 

NH   Northern Hemisphere 

NIOP   Netherlands Indian Ocean Programme 

NW   northwest 

OM   organic matter 

OMZ   oxygen minimum zone 

PGW   Persian Gulf Water 

R   isotope ratio 

RSW   Red Sea Water 

RWP   Roman Warm Period 

SL   gravity core 

SR   sedimentation rate 

SST   sea surface temperature  

SW   southwest 

TOC   total organic carbon 

XRF   X-ray fluorescence 

YD   Younger Dryas 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



102  REFERENCES   

References 

 

Agnihotri, R., Bhattacharya, S.K., Sarin, M.M., Somayajulu, B.L.K., 2003. Changes in 
surface productivity and subsurface denitrification during the Holocene: a multiproxy 
study from the eastern Arabian Sea. The Holocene 13, 701–713. 
doi:10.1191/0959683603hl656rp. 

Agnihotri, R., Dutta, K., Bhushan, R., Somayajulu, B.L.K., 2002. Evidence for solar forcing 
on the Indian monsoon during the last millennium. Earth Planet. Sci. Lett. 198, 521–527. 

Agnihotri, R., Kurian, S., Fernandes, M., Reshma, K., D’Souza, W., Naqvi, S.W.A., 2008. 
Variability of subsurface denitrification and surface productivity in the coastal eastern 
Arabian Sea over the past seven centuries. The Holocene 18, 755–764. 
doi:10.1177/0959683608091795. 

Alley, R.B., 2000. The Younger Dryas cold interval as viewed from central Greenland. Quat. 
Sci. Rev. 19, 213–226. 

Altabet, A., Murray, D.W., Prell, W.L., 1999. Climatically linked oscillation in Arabian Sea 
denitrification over the past 1 m.y.: Implications for the marine N cycle. 
Paleoceanography 14, 732–743. 

Altabet, M.A., Francois, R., 1994. Sedimentary nitrogen isotopic ratio as a recorder for 
surface ocean nitrate utilization. Global Biogeochem. Cycles 8, 103–116. 

Altabet, M.A., Francois, R., Murray, D.W., Prell, W.L., 1995. Climate-related variations in 
denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509. 

Altabet, M.A., Higginson, M.J., Murray, D.W., 2002. The effect of millennial-scale changes 
in Arabian Sea denitrification on atmospheric CO2. Nature 415, 159–162. 

Anand, P., Kroon, D., Singh, A.D., Ganeshram, R.S., Ganssen, G., Elderfield, H., 2008. 
Coupled sea surface temperature-seawater δ

18O reconstructions in the Arabian Sea at the 
millennial scale for the last 35 ka. Paleoceanography 23, PA4207. 
doi:10.1029/2007PA001564. 

Anderson, D.M., Baulcomb, C.K., Duvivier, A.K., Gupta, A.K., 2010. Indian summer 
monsoon during the last two millennia. J. Quat. Sci. 25, 911–917. doi:10.1002/jqs.1369. 

Anderson, D.M., Overpeck, J.T., Gupta, A.K., 2002. Increase in the Asian Southwest 
Monsoon during the past Four Centuries. Science 297, 596–599. 

Andruleit, H., Rogalla, U., Stäger, S., 2004. From living communities to fossil assemblages: 
origin and fate of coccolithophores in the northern Arabian Sea. Micropaleontology 50, 
5–21. 



REFERENCES  103   

 

Andruleit, H.A., von Rad, U., Bruns, A., Ittekkot, V., 2000. Coccolithophore fluxes from 
sediment traps in the northeastern Arabian Sea off Pakistan. Mar. Micropaleontol. 38, 
285–308. 

Bange, H.W., Andreae, M.O., Lal, S., Law, C.S., Naqvi, S.W.A., Patra, P.K., Rixen, T., 
Upstill-Goddard, R.C., 2001. Nitrous oxide emissions from the Arabian Sea: A 
synthesis. Atmos. Chem. Phys. 1, 61–71. doi:10.5194/acpd-1-167-2001. 

Bange, H.W., Rixen, T., Johansen, A.M., Siefert, R.L., Ramesh, R., Ittekkot, V., Hoffmann, 
M.R., Andreae, M.O., 2000. A revised nitrogen budget for the Arabian Sea. Global 
Biogeochem. Cycles 14, 1283–1297. 

Banse, K., McClain, C.R., 1986. Winter blooms of phytoplankton in the Arabian Sea as 
observed by the Coastal Zone Color Scanner. Mar. Ecol. - Prog. Ser. 34, 201–211. 

Banse, K., Naqvi, S.W.A., Narvekar, P. V., Postel, J.R., Jayakumar, D.A., 2014. Oxygen 
minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to 
decadal timescales. Biogeosciences 11, 2237–2261. doi:10.5194/bg-11-2237-2014. 

Bao, Y., Bräuning, A., Yafeng, S., 2003. Late Holocene temperature fluctuations on the 
Tibetan Plateau. Quat. Sci. Rev. 22, 2335–2344. doi:10.1016/S0277-3791(03)00132-X. 

Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F., 
1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater 
discharge. Nature 382, 241–244. 

Bard, E., Raisbeck, G., Yiou, F., Jouzel, J., 2000. Solar irradiance during the last 1200 years 
based on cosmogenic nuclides. Tellus 52B, 985–992. doi:10.1034/j.1600-
0889.2000.d01-7.x. 

Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. 
Quat. Sci. Rev. 10, 297–317. 

Berger, J.-F., Bravard, J.-P., Purdue, L., Benoist, A., Mouton, M., Braemer, F., 2012. Rivers 
of the Hadramawt watershed (Yemen) during the Holocene: Clues of late functioning. 
Quat. Int. 266, 142–161. doi:10.1016/j.quaint.2011.10.037. 

Berger, W.H., Herguera, J.C., Lange, C.B., Schneider, R., 1994. Paleoproductivity: Flux 
proxies versus nutrient proxies and other problems concerning the quaternary 
productivity record, in: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (Eds.), 
Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global 
Change. NATO ASI Series. Springer-Verlag, Berlin-Heiderlberg, New York, pp. 385-
412. 

Berkelhammer, M., Sinha, A., Mudelsee, M., Cheng, H., Edwards, R.L., Cannariato, K.G., 
2010. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. 
Lett. 290, 166–172. doi:10.1016/j.epsl.2009.12.017. 

Black, D.E., Abahazi, M.A, Thunell, R.C., Kaplan, A., Tappa, E.J., Peterson, L.C., 2007. An 
8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, 



104  REFERENCES 

twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22, 
PA4204. doi:10.1029/2007PA001427. 

Böll, A., Lückge, A., Munz, P., Forke, S., Schulz, H., Ramaswamy, V., Rixen, T., Gaye, B., 
Emeis, K.-C., 2014. Late Holocene primary productivity and sea surface temperature 
variations in the northeastern Arabian Sea: implications for winter monsoon variability. 
Paleoceanography 29, 778-794. doi:10.1002/2013PA002579. 

Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., Emeis, K.-C., 2014. Contrasting sea 
surface temperature of summer and winter monsoon variability in the northern Arabian 
Sea over the last 25 ka. submitted to Palaeogeogr. Palaeoclimatol. Palaeoecol. 

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., 
Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent Solar Influence on North Atlantic 
Climate During the Holocene. Science 294, 2130–2136. doi:10.1126/science.1065680. 

Böning, P., Bard, E., 2009. Millennial/centennial-scale thermocline ventilation changes in the 
Indian Ocean as reflected by aragonite preservation and geochemical variations in 
Arabian Sea sediments. Geochim. Cosmochim. Acta 73, 6771–6788. 
doi:10.1016/j.gca.2009.08.028. 

Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., Sarnthein, M., 1986. Molecular 
stratigraphy: a new tool for climate assessment. Nature 320, 129–133. 

Bray, H.E., Stokes, S., 2004. Temporal patterns of arid-humid transitions in the south-eastern 
Arabian Peninsula based on optical dating. Geomorphology 59, 271–280. 
doi:10.1016/j.geomorph.2003.07.022. 

Broccoli, A.J., Dahl, K.A., Stouffer, R.J., 2006. Response of the ITCZ to Northern 
Hemisphere cooling. Geophys. Res. Lett. 33, L01702. doi:10.1029/2005GL024546. 

Broerse, A.T.C., Brummer, G.-J.A., Van Hinte, J.E., 2000. Coccolithophore export 
production in response to monsoonal upwelling off Somalia (northwestern Indian 
Ocean). Deep Sea Res. II 47, 2179–2205. doi:10.1016/S0967-0645(00)00021-7. 

Bulow, S.E., Rich, J.J., Naik, H.S., Pratihary, A.K., Ward, B.B., 2010. Denitrification exceeds 
anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep 
Sea Res. I 57, 384–393. doi:10.1016/j.dsr.2009.10.014. 

Burns, S.J., Fleitmann, D., Mudelsee, M., Neff, U., Matter, A., Mangini, A., 2002. A 780-year 
annually resolved record of Indian Ocean monsoon precipitation from a speleothem from 
south Oman. J. Geophys. Res. 107, 4434. doi:10.1029/2001JD001281. 

Calvert, S., Pedersen, T., 1993. Geochemistry of Recent oxic and anoxic marine sediments: 
Implications for the geological record. Mar. Geol. 113, 67–88. doi:10.1016/0025-
3227(93)90150-T. 

Chauhan, O.S., Vogelsang, E., Basavaiah, N., Kader, U.S.A., 2010. Reconstruction of the 
variability of the southwest monsoon during the past 3 ka, from the continental margin of 
the southeastern Arabian Sea. J. Quat. Sci. 25, 798–807. 



REFERENCES  105   

 

Christiansen, B., Ljungqvist, F.C., 2012. The extra-tropical Northern Hemisphere temperature 
in the last two millennia: reconstructions of low-frequency variability. Clim. Past 8, 765–
786. doi:10.5194/cp-8-765-2012. 

Clemens, S., Prell, W.L., Murray, D.W., Shimmield, G., Weedon, G., 1991. Forcing 
mechanisms of the Indian Ocean monsoon. Nature 353, 720–725. 

Clemens, S.C., Prell, W.L., 1990. Late Pleistocene variability of Arabian Sea summer 
monsoon winds and continental aridity: Eolian records from the lithogenic component of 
deep-sea sediments. Paleoceanography 5, 109–145. 

Clemens, S.C., Prell, W.L., 2003. A 350,000 year summer-monsoon multi-proxy stack from 
the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51. doi:10.1016/S0025-
3227(03)00207-X. 

Clemens, S.C., Prell, W.L., Sun, Y., 2010. Orbital-scale timing and mechanism driving Late 
Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O. 
Paleoceanography 25, doi:10.1029/2010PA001926. 

Clift, P.D., Plumb, R.A., 2008. The Asian Monsoon: Causes, History and Effects. Cambridge 
University Press, New York. 

Codispoti, L.A., Brandes, J.A.Y.A., Christensen, J.P., Devol, A.H., 2001. The oceanic fixed 
nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. 
Mar. 65, 85–105. 

Conley, D.J., 1998. An interlaboratory comparison for the measurement of biogenic silica in 
sediments. Mar. Chem. 63, 39–48. doi:10.1016/S0304-4203(98)00049-8. 

Conte, M.H., Sicre, M.-A., Rühlemann, C., Weber, J.C., Schulte, S., Schulz-Bull, D., Blanz, 
T., 2006. Global temperature calibration of the alkenone unsaturation index (K'

37U ) in 
surface waters and comparison with surface sediments. Geochemistry, Geophys. 
Geosystems 7, Q02005. doi:10.1029/2005GC001054. 

Cowie, G.L., Calvert, S.E., Pedersen, T.F., Schulz, H., von Rad, U., 1999. Organic content 
and preservational controls in surficial shelf and slope sediments from the Arabian Sea 
(Pakistan margin). Mar. Geol. 161, 23–38. 

Dahl, K.A., Oppo, D.W., 2006. Sea surface temperature pattern reconstructions in the Arabian 
Sea. Paleoceanography 21, PA1014. doi:10.1029/2005PA001162. 

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, 
C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., 
1993. Evidence for general instability of past climate from a 250-kyr ice-core record. 
Nature 364, 218–220. 

DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. 
Geochim. Cosmochim. Acta 45, 1715–1732. doi:10.1016/0016-7037(81)90006-5. 

DeMenocal, P., 2000. Coherent High- and Low-Latitude Climate Variability During the 
Holocene Warm Period. Science 288, 2198–2202. doi:10.1126/science.288.5474.2198. 



106  REFERENCES 

Deplazes, G., Lückge, A., Stuut, J.-B.W., Pätzold, J., Kuhlmann, H., Husson, D., Fant, M., 
Haug, G.H., 2014. Weakening and strengthening of the Indian monsoon during Heinrich 
events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114. 
doi:10.1002/2013PA002509. 

Devol, A.H., 1978. Bacterial oxygen uptake kinetics as related to biological processes in 
oxygen deficient zones of the oceans. Deep Sea Res. 25, 137–146. 

Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A., von Rad, U., 2001. High-
resolution temperature and evaporation changes during the late Holocene in the 
northeastern Arabian Sea. Paleoceanography 16, 358–367. 

Dykoski, C., Edwards, R., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., 
Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian 
monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 233, 71–86. 
doi:10.1016/j.epsl.2005.01.036. 

Emeis, K.-C., Anderson, D.M., Doose-Rolinski, H., Kroon, D., Schulz-Bull, D., 1995. Sea-
Surface Temperatures and the History of Monsoon Upwelling in the Northwest Arabian 
Sea during the Last 500,000 Years. Quat. Res. 43, 355–361. 

Emeis, K.-C., Struck, U., Schulz, H.-M., Rosenberg, R., Bernasconi, S., Erlenkeuser, H., 
Sakamoto, T., Martinez-Ruiz, F., 2000. Temperature and salinity variations of 
Mediterranean Sea surface waters over the last 16,000 years from records of planktonic 
stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeogr. Palaeoclimatol. 
Palaeoecol. 158, 259–280. 

Esper, J., Schweingruber, F.H., Winiger, M., 2002. 1300 years of climate history for Western 
Central Asia inferred from tree-rings. The Holocene 12, 267–277. 

Feng, S., Hu, Q., 2005. Regulation of Tibetan Plateau heating on variation of Indian summer 
monsoon in the last two millennia. Geophys. Res. Lett. 32, L02702. 
doi:10.1029/2004GL021246. 

Findlater, J., 1969. A major low-level air current near the Indian Ocean during the northern 
summer. Q. J. R. Meteorol. Soc. 95, 362–380. doi:10.1002/qj.49709540409. 

Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-
Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian 
monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. 
Rev. 26, 170–188. doi:10.1016/j.quascirev.2006.04.012. 

Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 
2003. Holocene Forcing of Indian Monsoon Recorded in a Stalagmite from Southern 
Oman. Science 300, 1737–1739. 

Fleitmann, D., Burns, S.J., Neff, U., Mudelsee, M., Mangini, A., Matter, A., 2004. 
Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from 
annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 23, 935–945. 



REFERENCES  107   

 

Fuchs, M., Buerkert, A., 2008. A 20 ka sediment record from the Hajar Mountain range in N-
Oman, and its implication for detecting arid–humid periods on the southeastern Arabian 
Peninsula. Earth Planet. Sci. Lett. 265, 546–558. doi:10.1016/j.epsl.2007.10.050. 

Ganeshram, S., Pedersen, F., Calvert, E., McNeill, W., Fontugne, M.R., 2000. Glacial-
interglacial variability in denitrification in the world’s oceans: Causes and consequences. 
Paleoceanography 15, 361–376. 

Gaye, B., Nagel, B., Dähnke, K., Rixen, T., Emeis, K.-C., 2013. Evidence of parallel 
denitrification and nitrite oxidation in the ODZ of the Arabian Sea from paired stable 
isotopes of nitrate and nitrite. Global Biogeochem. Cycles 27, 1059–1071. 
doi:10.1002/2011GB004115. 

Gaye-Haake, B., Lahajnar, N., Emeis, K.-C., Unger, D., Rixen, T., Suthhof, A., Ramaswamy, 
V., Schulz, H., Paropkari, A.L., Guptha, M.V.S., Ittekkot, V., 2005. Stable nitrogen 
isotopic ratios of sinking particles and sediments from the northern Indian Ocean. Mar. 
Chem. 96, 243–255. doi:10.1016/j.marchem.2005.02.001. 

Ge, Q., Hao, Z., Zheng, J., Shao, X., 2013. Temperature changes over the past 2000 yr in 
China and comparison with the Northern Hemisphere. Clim. Past 9, 1153–1160. 
doi:10.5194/cp-9-1153-2013. 

Goes, J.I., Thoppil, P.G., Gomes, H. do R., Fasullo, J.T., 2005. Warming of the Eurasian 
Landmass is Making the Arabian Sea More Productive. Science 308, 545–547. 

Goswami, B.N., Madhusoodanan, M.S., Neema, C.P., Sengupta, D., 2006. A physical 
mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. 
Res. Lett. 33, L02706. doi:10.1029/2005GL024803. 

Grootes, P.M., Stuiver, M., 1997. Oxygen 18/16 variability in Greenland snow and ice with 
10-3- to 105-year time resolution. J. Geophys. Res. 102, 26455–26470. 

Gupta, A.K., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the Asian southwest 
monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 
354–356. 

Gupta, A.K., Das, M., Anderson, D.M., 2005. Solar influence on the Indian summer monsoon 
during the Holocene. Geophys. Res. Lett. 32, L17703. doi:10.1029/2005GL022685. 

Gupta, A.K., Mohan, K., Sarkar, S., Clemens, S.C., Ravindra, R., Uttam, R.K., 2011. East–
West similarities and differences in the surface and deep northern Arabian Sea records 
during the past 21 Kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 301, 75–85. 
doi:10.1016/j.palaeo.2010.12.027. 

Haake, B., Ittekkot, V., Rixen, T., Ramaswamy, V., Nair, R.R., Curry, W.B., 1993. 
Seasonality and interannual variability of particle fluxes to the deep Arabian Sea. Deep 
Sea Res. I 40, 1323–1344. 

Hastenrath, S., Lamb, P.J., 1979. Climate Atlas of the Indian Ocean, Volume 1: Surface 
Climate and Atmospheric Circulation. University of Wisconsin Press, Madison. 



108  REFERENCES 

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward 
migration of the intertropical convergence zone through the Holocene. Science 293, 
1304–1308. doi:10.1126/science.1059725. 

Herbert, T.D., 2003. Alkenone Paleotemperature Determinations, in: Holland, H.D., Turekian, 
K.K. (Ed.), Treatise on Geochemistry, Volume 6: The Oceans and Marine Geochemistry. 
Elsevier, New York, pp. 391–432. 

Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 
50,000 years. Quat. Sci. Rev. 25, 163–178. doi:10.1016/j.quascirev.2005.02.006. 

Hoefs, J., 2009. Stable Isotope Geochemistry, 6th ed. Springer. 

Hong, Y.T., Hong, B., Lin, Q.H., Zhu, Y.X., Shibata, Y., Hirota, M., Uchida, M., Leng, X.T., 
Jiang, H.B., Xu, H., Wang, H., Yi, L., 2003. Correlation between Indian Ocean summer 
monsoon and North Atlantic climate during the Holocene. Earth Planet. Sci. Lett. 211, 
371–380. 

Hua, Q., Barbetti, M., 2004. Review of tropospheric bomb 14C data for carbon cycle modeling 
and age calibration purposes. Radiocarbon 46, 1273–1298. 

Huguet, C., Kim, J.-H., Sinninghe Damsté, J.S., Schouten, S., 2006. Reconstruction of sea 
surface temperature variations in the Arabian Sea over the last 23 kyr using organic 
proxies (TEX86 and K'

37U ). Paleoceanography 21, PA3003, doi:10.1029/2005PA001215. 

Ivanochko, T., Ganeshram, R.S., Brummer, G.-J.A., Ganssen, G., Jung, S.J.A., Moreton, S.G., 
Kroon, D., 2005. Variations in tropical convection as an amplifier of global climate 
change at the millennial scale. Earth Planet. Sci. Lett. 235, 302–314. 
doi:10.1016/j.epsl.2005.04.002. 

Ivanochko, T.S., 2004. Sub-orbital variations in the intensity of the Arabian Sea monsoon. 
Ph.D. thesis. 230 pp. University of Edinburgh. 

Jung, S.J.A., Kroon, D., Ganssen, G., Peeters, F., Ganeshram, R., 2009. Enhanced Arabian 
Sea intermediate water flow during glacial North Atlantic cold phases. Earth Planet. Sci. 
Lett. 280, 220–228. doi:10.1016/j.epsl.2009.01.037. 

Jung, S.J.A., Davies, G.R., Ganssen, G., Kroon, D., 2004. Synchronous Holocene sea surface 
temperature and rainfall variations in the Asian monsoon system. Quat. Sci. Rev. 23, 
2207–2218. 

Kallel, N., Labeyrie, L.D., Juillet-Leclerc, A., Duplessy, J.C., 1988. A deep hydrological front 
between intermediate and deep-water masses in the glacial Indian Ocean. Nature 333, 
651–655. 

Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., 
Paerl, H., Sigman, D., Stal, L., 2002. Dinitrogen fixation in the world’s oceans. 
Biogeochemistry 57, 47–98. 

Keeling, R.E., Körtzinger, A., Gruber, N., 2010. Ocean deoxygenation in a warming world. 
Ann. Rev. Mar. Sci. 2, 199–229. doi:10.1146/annurev.marine.010908.163855. 



REFERENCES  109   

 

Keigwin, L.D., 1996. The Little Ice Age and Medieval Warm Period in the Sargasso Sea. 
Science 274, 1504–1508. 

Keil, R.G., Cowie, G.L., 1999. Organic matter preservation through the oxygen-deficient zone 
of the NE Arabian Sea as discerned by organic carbon:mineral surface area ratios. Mar. 
Geol. 161, 13–22. doi:10.1016/S0025-3227(99)00052-3. 

Kessarkar, P.M., Rao, V.P., Naqvi, S.W.A., Karapurkar, S.G., 2013. Variation in the Indian 
summer monsoon intensity during the Bølling-Ållerød and Holocene. Paleoceanography 
28, 413-425. doi:10.1002/palo.20040. 

Labeyrie, L., Waelbroeck, C., Cortijo, E., Michel, E., Duplessy, J.-C., 2005. Changes in deep 
water hydrology during the Last Deglaciation. Comptes Rendus Geosci. 337, 919–927. 
doi:10.1016/j.crte.2005.05.010. 

Lambeck, K., 1996. Shoreline reconstructions for the Persian Gulf since the last glacial 
maximum. Earth Planet. Sci. Lett. 142, 43–57. doi:10.1016/0012-821X(96)00069-6. 

Levitus, S., Antonov, J., Boyer, T., 2005. Warming of the world ocean, 1955–2003. Geophys. 
Res. Lett. 32, L02604. doi:10.1029/2004GL021592. 

Levitus, S., Boyer, T., 1994. World Ocean Atlas, Volume 4: Temperature. NOAA Atlas 
NESDIS, U.S. department of Commerce, Washington, D.C. 

Lézine, A.-M., Tiercelin, J.-J., Robert, C., Saliège, J.-F., Cleuziou, S., Inizan, M.-L., Braemer, 
F., 2007. Centennial to millennial-scale variability of the Indian monsoon during the 
early Holocene from a sediment, pollen and isotope record from the desert of Yemen. 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 235–249. 
doi:10.1016/j.palaeo.2006.05.019 

Liu, X., Dong, H., Yang, X., Herzschuh, U., Zhang, E., Stuut, J.-B.W., Wang, Y., 2009. Late 
Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy 
records from the northern Qinghai–Tibetan Plateau. Earth Planet. Sci. Lett. 280, 276–
284. doi:10.1016/j.epsl.2009.01.041. 

Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., 
Zweng, M.M., Johnson, D.R., 2010. World Ocean Atlas 2009, Volume 1: Temperature, 
in: Levitus, S. (Ed.), NOAA Atlas NESDIS 68. U.S. Government Printing Office, 
Washington, D.C., p. 184. 

Lückge, A., Doose-Rolinski, H., Khan, A.A., Schulz, H., von Rad, U., 2001. Monsoonal 
variability in the northeastern Arabian Sea during the past 5000 years: geochemical 
evidence from laminated sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167, 273–
286. 

Lückge, A., Reinhardt, L., Andruleit, H., Doose-Rolinski, H., von Rad, U., Schulz, H., 
Treppke, U., 2002. Formation of varve-like laminae off Pakistan: decoding 5 years of 
sedimentation. Geol. Soc. London, Spec. Publ. 195, 421–431. 



110  REFERENCES 

Madhupratap, M., Prasanna Kumar, S., Bhattathiri, P.M.A., Dileep Kumar, M., Raghukumar, 
S., Nair, K.K.C., Ramaiah, N., 1996. Mechanism of the biological response to winter 
cooling in the northeastern Arabian Sea. Nature 384, 549–552. 

Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, 
C., Faluvegi, G., Ni, F., 2009. Global Signatures and Dynamical Origins of the Little Ice 
Age and Medieval Climate Anomaly. Science 326, 1256–1260. 
doi:10.1126/science.1177303 

Marathayil, D., Turner, A.G., Shaffrey, L.C., Levine, R.C., 2013. Systematic winter sea-
surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 
models. Environ. Res. Lett. 8, 014028. doi:10.1088/1748-9326/8/1/014028. 

Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A Reconstruction of Regional and 
Global Temperature for the Past 11,300 Years. Science 339, 1198–1201. 
doi:10.1126/science.1228026 

Matear, R.J., Hirst, A.C., 2003. Long-term changes in dissolved oxygen concentrations in the 
ocean caused by protracted global warming. Global Biogeochem. Cycles 17, 1125. 
doi:10.1029/2002GB001997. 

Meehl, G.A., 1994. Influence of the Land Surface in the Asian Summer Monsoon: External 
Conditions versus Internal Feedbacks. J. Clim. 7, 1033–1049. 

Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Karlén, W., 2005. Highly 
variable Northern Hemisphere temperatures reconstructed from low- and high-resolution 
proxy data. Nature 433, 613–617. doi:10.1038/nature03298.1. 

Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., Emeis, K.-C., 2011. Influence of diagenesis 
on sedimentary δ15N in the Arabian Sea over the last 130 kyr. Mar. Geol. 284, 127-138. 
doi: 10.1016/j.margeo.2011.03.013. 

Müller, P.J., Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter 
in the oceans-I. Organic carbon preservation. Deep Sea Res. 26A, 1347–1362. 

Naidu, P.D., Malmgren, A., 1996. A high-resolution record of late Quaternary upwelling 
along the Oman Margin, Arabian Sea based on planktonic foraminifera. 
Palaeogeography 11, 129–140. doi:10.1029/95PA03198. 

Naidu, P.D., Malmgren, B.A., 2005. Seasonal sea surface temperature contrast between the 
Holocene and last glacial period in the western Arabian Sea (Ocean Drilling Project Site 
723A): Modulated by monsoon upwelling. Paleoceanography 20, PA1004, 
doi:10.1029/2004PA001078. 

Nair, R.R., Ittekkot, V., Manganini, S.J., Ramaswamy, V., Haake, B., Degens, E.T., Desai, 
B.N., Honjo, S., 1989. Increased particle flux to the deep ocean related to monsoons. 
Nature 338, 749–751. 

Naqvi, S.W.A., Yoshinari, T., Jayakumar, D.A., Altabet, M.A., Narvekar, P.V., Devol, A.H., 
Brandes, J.A., Codispoti, L.A., 1998. Budgetary and biogeochemical implications of 
N2O isotope signatures in the Arabian Sea. Nature 394, 462–464. 



REFERENCES  111   

 

Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter, A., 2001. Strong 
coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. 
Nature 411, 290–293. doi:10.1038/35077048. 

Olson, D.B., Hitchcock, G.L., Fine, R.A., Warren, B.A., 1993. Maintenance of the low-
oxygen layer in the central Arabian Sea. Deep Sea Res. II 40, 673–685. 

Oppo, D.W., Rosenthal, Y., Linsley, B.K., 2009. 2,000-year-long temperature and hydrology 
reconstructions from the Indo-Pacific warm pool. Nature 460, 1113–1116. 
doi:10.1038/nature08233. 

Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian Monsoon 
over the last 18 000 years. Clim. Dyn. 12, 213–225. doi:10.1007/BF00211619. 

PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two 
millennia. Nat. Geosci. 6, 339–346. doi:10.1038/NGEO1797. 

PAGES/Ocean2k Working Group, 2012. Synthesis of marine sediment-derived SST records 
for the past 2 millennia: First-order results from the PAGES/Ocean2k project. AGU Fall 
Meet. abstr. PP1. 

Paropkari, A.L., Babu, C.P., Mascarenhas, A., 1992. A critical evaluation of depositional 
parameters controlling the variability of organic carbon in Arabian Sea sediments. Mar. 
Geol. 107, 213–226. 

Peterse, F., Prins, M.A., Beets, C.J., Troelstra, S.R., Zheng, H., Gu, Z., Schouten, S., 
Sinninghe Damsté, J.S., 2011. Decoupled warming and monsoon precipitation in East 
Asia over the last deglaciation. Earth Planet. Sci. Lett. 301, 256–264. 
doi:10.1016/j.epsl.2010.11.010. 

Pichevin, L., Bard, E., Martinez, P., Billy, I., 2007. Evidence of ventilation changes in the 
Arabian Sea during the late Quaternary: Implication for denitrification and nitrous oxide 
emission. Global Biogeochem. Cycles 21, GB4008. doi:10.1029/2006GB002852. 

Prahl, F.G., Dymond, J., Sparrow, M.A., 2000. Annual biomarker record for export 
production in the central Arabian Sea. Deep Sea Res. II 47, 1581–1604. 
doi:10.1016/S0967-0645(99)00155-1. 

Prahl, F.G., Popp, B.N., Karl, D.M., Sparrow, M.A., 2005. Ecology and biogeochemistry of 
alkenone production at Station ALOHA. Deep Sea Res. I 52, 699–719. 
doi:10.1016/j.dsr.2004.12.001. 

Prahl, F.G., Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone 
compositions for palaeotemperature asessment. Nature 330, 367–369. 

Prasanna Kumar, S., Prasad, T.G., 1996. Winter cooling in the northern Arabian Sea. Curr. 
Sci. 71, 834–841. 

Prasanna Kumar, S., Ramaiah, N., Gauns, M., Sarma, V.V.S.S., Muraleedharan, P.M., 
Raghukumar, S., Dileep Kumar, M., Madhupratap, M., 2001. Physical forcing of 



112  REFERENCES 

biological productivity in the Northern Arabian Sea during the Northeast Monsoon. Deep 
Sea Res. II 48, 1115–1126. doi:10.1016/S0967-0645(00)00133-8. 

Prell, W.L., Kutzbach, J.E., 1992. Sensitivity of the Indian monsoon to forcing parameters 
and implications for its evolution. Nature 360, 647–652. 

Prins, M., Postma, G., Weltje, G., 2000. Controls on terrigenous sediment supply to the 
Arabian Sea during the late Quaternary: the Makran continental slope. Mar. Geol. 169, 
351–371. doi:10.1016/S0025-3227(00)00087-6. 

Ramaswamy, V., Gaye, B., 2006. Regional variations in the fluxes of foraminifera carbonate, 
coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea 
Res. I 53, 271–293. doi:10.1016/j.dsr.2005.11.003. 

Reichart, G.J., den Dulk, M., Visser, H.J., van der Weijden, C.H., Zachariasse, W.J., 1997. A 
225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the 
Murray Ridge (northern Arabian Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 
149–169. doi:10.1016/S0031-0182(97)00071-0. 

Reichart, G.J., Lourens, L.J., Zachariasse, W.J., 1998. Temporal variability in the northern 
Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years. 
Paleoceanography 13, 607–621. doi:10.1029/98PA02203. 

Reichart, G.J., Nortier, J., Versteegh, G., Zachariasse, W.J., 2002a. Periodical breakdown of 
the Arabian Sea oxygen minimum zone caused by deep convective mixing. Geol. Soc. 
London, Spec. Publ. 195, 407–419. doi:10.1144/GSL.SP.2002.195.01.22. 

Reichart, G.J., Schenau, S.J., de Lange, G.J., Zachariasse, W.J., 2002b. Synchroneity of 
oxygen minimum zone intensity on the Oman and Pakistan Margins at sub-Milankovitch 
time scales. Mar. Geol. 185, 403–415. doi:10.1016/S0025-3227(02)00184-6. 

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk 
Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., 
Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., 
Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, 
J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., 2009. IntCal09 
and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 
51, 1111–1150. 

Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W., 2002. An Improved In 
Situ and Satellite SST Analysis for Climate. J. Clim. 15, 1609–1625. 

Rixen, T., Baum, A., Gaye, B., Nagel, B., 2013. Seasonal and interannual variations of the 
nitrogen cycle in the Arabian Sea. Biogeosciences Discuss. 10, 19541–19570. 
doi:10.5194/bgd-10-19541-2013. 

Rixen, T., Guptha, M.V.S., Ittekkot, V., 2005. Deep ocean fluxes and their link to surface 
ocean processes and the biological pump. Prog. Oceanogr. 65, 240–259. 
doi:10.1016/j.pocean.2005.03.006. 



REFERENCES  113   

 

Rixen, T., Haake, B., Ittekkot, V., Guptha, M.V.S., Nair, R.R., Schlüssel, P., 1996. Coupling 
between SW monsoon-related surface and deep ocean processes as discerned from 
continuous particle flux measurements and correlated satellite data. J. Geophys. Res. 
101, 569–582. 

Rixen, T., Ittekkot, V., Haake-Gaye, B., Schäfer, P., 2000. The influence of the SW monsoon 
on the deep-sea organic carbon cycle in the Holocene. Deep Sea Res. II 47, 2629–2651. 

Rohling, E.J., Zachariasse, W.J., 1996. Red Sea outflow during the last glacial maximum. 
Quat. Int. 31, 77–83. doi:10.1016/1040-6182(95)00023-C. 

Rosell-Melé, A., Prahl, F.G., 2013. Seasonality of K'
37U  temperature estimates as inferred from 

sediment trap data. Quat. Sci. Rev. 72, 128–136. doi:10.1016/j.quascirev.2013.04.017. 

Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., Ganssen, G., 1997. Sea surface temperature 
and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Res. II 44, 
1461–1480. 

Russell, J.M., Johnson, T.C., 2005. Late Holocene climate change in the North Atlantic and 
equatorial Africa: Millennial-scale ITCZ migration. Geophys. Res. Lett. 32, L17705. 
doi:10.1029/2005GL023295. 

Saher, M.H., Jung, S.J.A., Elderfield, H., Greaves, M.J., Kroon, D., 2007a. Sea surface 
temperatures of the western Arabian Sea during the last deglaciation. Paleoceanography 
22, PA2208. doi:10.1029/2006PA001292. 

Saher, M.H., Peeters, F.J.C., Kroon, D., 2007b. Sea surface temperatures during the SW and 
NE monsoon seasons in the western Arabian Sea over the past 20,000 years. 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 249, 216–228. 
doi:10.1016/j.palaeo.2007.01.014. 

Sanwal, J., Kotlia, B.S., Rajendran, C., Ahmad, S.M., Rajendran, K., Sandiford, M., 2013. 
Climatic variability in Central Indian Himalaya during the last 1800 years: Evidence 
from a high resolution speleothem record. Quat. Int. 304, 183-192. 
doi:10.1016/j.quaint.2013.03.029. 

Saraswat, R., Lea, D.W., Nigam, R., Mackensen, A., Naik, D.K., 2013. Deglaciation in the 
tropical Indian Ocean driven by interplay between the regional monsoon and global 
teleconnections. Earth Planet. Sci. Lett. 375, 166–175. doi:10.1016/j.epsl.2013.05.022. 

Sarma, V.V.S.S., 2002. An evaluation of physical and biogeochemical processes regulating 
perennial suboxic conditions in the water column of the Arabian Sea. Global 
Biogeochem. Cycles 16, 1082. doi:10.1029/2001GB001461. 

Schäfer, P., Ittekkot, V., 1993. Seasonal Variability of δ15N in Settling Particles in the 
Arabian Sea and Its Palaeogeochemical Significance. Naturwissenschaften 80, 511–513. 

Schlitzer, R., 2013. Ocean Data View. (Available at http://odv.awi-bremerhaven.de) 



114  REFERENCES 

Schnetger, B., Brumsack, H.-J., Schale, H., Hinrichs, J., Dittert, L., 2000. Geochemical 
characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study. 
Deep Sea Res. II 47, 2735–2768. doi:10.1016/S0967-0645(00)00047-3. 

Schott, F.A., McCreary, J.P., 2001. The monsoon circulation of the Indian Ocean. Prog. 
Oceanogr. 51, 1–123. 

Schulte, S., Müller, P., 2001. Variations of sea surface temperature and primary productivity 
during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-
Marine Lett. 21, 168–175. doi:10.1007/s003670100080. 

Schulte, S., Rostek, F., Bard, E., Rullkötter, J., Marchal, O., 1999. Variations of oxygen-
minimum and primary productivity recorded in sediments of the Arabian Sea. Earth 
Planet. Sci. Lett. 173, 205–221. doi:10.1016/S0012-821X(99)00232-0. 

Schulz, H., Emeis, K.-C., Erlenkeuser, H., von Rad, U., Rolf, C., 2002a. The Toba Volcanic 
Event and Interstadial/Stadial Climates at the Marine Isotopic Stage 5 to 4 Transition in 
the Northern Indian Ocean. Quat. Res. 57, 22–31. 

Schulz, H., von Rad, U., Erlenkeuser, H., 1998. Correlation between Arabian Sea and 
Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57. 

Schulz, H., von Rad, U., Ittekkot, V., 2002b. Planktic foraminifera, particle flux and oceanic 
productivity off Pakistan, NE Arabian Sea: modern analogues and application to the 
palaeoclimatic record. Geol. Soc. London, Spec. Publ. 195, 499–516. 
doi:10.1144/GSL.SP.2002.195.01.27. 

Schulz, H., von Rad, U., von Stackelberg, U., 1996. Laminated sediments from the oxygen-
minimum zone of the northeastern Arabian Sea. Geol. Soc. London, Spec. Publ. 116, 
185–207. doi:10.1144/GSL.SP.1996.116.01.16. 

Seki, O., Nakatsuka, T., Kawamura, K., Saitoh, S.-I., Wakatsuchi, M., 2007. Time-series 
sediment trap record of alkenones from the western Sea of Okhotsk. Mar. Chem. 104, 
253–265. doi:10.1016/j.marchem.2006.12.002. 

Shimmield, G.B., Mowbray, S.R., 1991. The inorganic geochemical record of the northwest 
Arabian Sea: A history of productivity variation over the last 400 k.y. from sites 722 and 
724. Proc. Ocean Drill. Program, Sci. Results 117, 409–420. 

Sicre, M.-A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiríksson, J., Knudsen, K.L., 
Jansen, E., Turon, J.-L., 2008. Decadal variability of sea surface temperatures off North 
Iceland over the last 2000 years. Earth Planet. Sci. Lett. 268, 137–142. 
doi:10.1016/j.epsl.2008.01.011. 

Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., 
Smeed, D.A., 2003. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–
858. doi:10.1038/nature01687.1. 

Sigman, D.M., Altabet, M.A., McCorkle, D.C., Francois, R., Fischer, G., 2000. The δ15N of 
nitrate in the Southern Ocean: Nitrogen cycling and surface circulation in the ocean 
interior. J. Geophys. Res. 105, 19599–19614. 



REFERENCES  115   

 

Sinha, A., Berkelhammer, M., Stott, L.D., Mudelsee, M., Cheng, H., Biswas, J., 2011a. The 
leading mode of Indian Summer Monsoon precipitation variability during the last 
millennium. Geophys. Res. Lett. 38, L15703. doi:10.1029/2011GL047713. 

Sinha, A., Cannariato, K.G., Stott, L.D., Cheng, H., Edwards, R.L., Yadava, M.G., Ramesh, 
R., Singh, I.B., 2007. A 900-year (600 to 1500 A.D.) record of the Indian summer 
monsoon precipitation from the core monsoon zone of India. Geophys. Res. Lett. 34, 
L16707. doi:10.1029/2007GL030431. 

Sinha, A., Stott, L.D., Berkelhammer, M., Cheng, H., Edwards, R.L., Buckley, B., 
Aldenderfer, M., Mudelsee, M., 2011b. A global context of megadroughts in monsoon 
Asia during the past millennium. Quat. Sci. Rev. 30, 47–62. 

Sirocko, F., Garbe-Schönberg, D., Devey, C., 2000. Processes controlling trace element 
geochemistry of Arabian Sea sediments during the last 25,000 years. Glob. Planet. 
Change 26, 217–303. 

Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C., 1993. 
Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322–
324. 

Sirocko, F., Sarnthein, M., Lange, H., Erlenkeuser, H., 1991. Atmospheric Summer 
Circulation and Coastal Upwelling in the Arabian Sea during the Holocene and the Last 
Glaciation. Quat. Res. 36, 72–93. 

Skinner, L.C., Shackleton, N.J., 2005. An Atlantic lead over Pacific deep-water change across 
Termination I: implications for the application of the marine isotope stage stratigraphy. 
Quat. Sci. Rev. 24, 571–580. doi:10.1016/j.quascirev.2004.11.008. 

Smith, T.M., Reynolds, R.W., 2003. Extended Reconstruction of Global Sea Surface 
Temperatures Based on COADS Data (1854–1997). J. Clim. 16, 1495–1510. 

Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J., 2004. Unusual activity of 
the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–
1087. doi:10.1038/nature02995. 

Sonzogni, C., Bard, E., Rostek, F., 1998. Tropical sea-surface temperatures during the last 
glacial period: a view based on alkenones in Indian Ocean sediments. Quat. Sci. Rev. 17, 
1185–1201. 

Sonzogni, C., Bard, E., Rostek, F., Dollfus, D., Rosell-Melé, A., Eglinton, G., 1997a. 
Temperature and Salinity Effects on Alkenone Ratios Measured in Surface Sediments 
from the Indian Ocean. Quat. Res. 47, 344–355. 

Sonzogni, C., Bard, E., Rostek, F., Lafont, R., Rosell-Melé, A., Eglinton, G., 1997b. Core-top 
calibrations of the alkenone index vs sea surface temperature in the Indian Ocean. Deep 
Sea Res. II 44, 1445–1460. 

Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., Yim, W.W.-S., 2002. Marine 
reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180. 



116  REFERENCES 

Stramma, L., Johnson, G.C., Sprintall, J., Mohrholz, V., 2008. Expanding oxygen-minimum 
zones in the tropical oceans. Science 320, 655–658. doi:10.1126/science.1153847. 

Stramma, L., Oschlies, A., Schmidtko, S., 2012. Mismatch between observed and modeled 
trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 9, 4045–
4057. doi:10.5194/bg-9-4045-2012. 

Stuiver, M., Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age 
calibration program. Radiocarbon 35, 215–230. 

Suthhof, A., Ittekkot, V., Gaye-Haake, B., 2001. Millennial-scale oscillation of denitrification 
intensity in the Arabian Sea during the late Quaternary and its potential influence on 
atmospheric N2O and global climate. Global Biogeochem. Cycles 15, 637–649. 
doi:10.1029/2000GB001337. 

Suthhof, A., Jennerjahn, T.C., Schäfer, P., Ittekkot, V., 2000. Nature of organic matter in 
surface sediments from the Pakistan continental margin and the deep Arabian Sea: amino 
acids. Deep. Res. II 47, 329–351. 

Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.-N., 
Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical Climate Instability: The 
Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science 276, 1821–1825. 
doi:10.1126/science.276.5320.1821. 

van der Weijden, C.H., Reichart, G.J., Visser, H.J., 1999. Enhanced preservation of organic 
matter in sediments deposited within the oxygen minimum zone in the northeastern 
Arabian Sea. Deep Sea Res. I 46, 807–830. doi:10.1016/S0967-0637(98)00093-4. 

Van Rampelbergh, M., Fleitmann, D., Verheyden, S., Cheng, H., Edwards, L., De Geest, P., 
De Vleeschouwer, D., Burns, S.J., Matter, A., Claeys, P., Keppens, E., 2013. Mid- to late 
Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra 
Island, Yemen. Quat. Sci. Rev. 65, 129–142. doi:10.1016/j.quascirev.2013.01.016. 

von Rad, U., Burgarth, K.-P., Pervaz, M., Schulz, H., 2002a. Discovery of the Toba Ash (c. 
70 ka) in a high-resolution core recovering millennial monsoonal variability off Pakistan. 
Geol. Soc. London, Spec. Publ. 195, 445–461. doi:10.1144/GSL.SP.2002.195.01.25. 

von Rad, U., Delisle, G., Lückge, A., 2002b. Comment - On the formation of laminated 
sediments on the continental margin off Pakistan. Mar. Geol. 192, 425–429. 

von Rad, U., Khan, A.A., Berger, W.H., Rammlmair, D., Treppke, U., 2002c. Varves, 
turbidites and cycles in upper Holocene sediments (Makran slope, northern Arabian 
Sea). Geol. Soc. London, Spec. Publ. 195, 387–406. 
doi:10.1144/GSL.SP.2002.195.01.21. 

von Rad, U., Schaaf, M., Michels, K.H., Schulz, H., Berger, W.H., Sirocko, F., 1999a. A 
5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum 
Zone off Pakistan, Northeastern Arabian Sea. Quat. Res. 51, 39–53. 

von Rad, U., Schulz, H., Riech, V., den Dulk, M., Berner, U., Sirocko, F., 1999b. Multiple 
monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 



REFERENCES  117   

 

years documented in laminated sediments off Pakistan. Palaeogeogr. Palaeoclimatol. 
Palaeoecol. 152, 129–161. 

von Rad, U., Schulz, H., SONNE 90 Scientific Party, 1995. Sampling the oxygen minimum 
zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary 
results, SONNE 90 cruise). Mar. Geol. 125, 7–19. 

Waelbroeck, C., Levi, C., Duplessy, J., Labeyrie, L., Michel, E., Cortijo, E., Bassinot, F., 
Guichard, F., 2006. Distant origin of circulation changes in the Indian Ocean during the 
last deglaciation. Earth Planet. Sci. Lett. 243, 244–251. doi:10.1016/j.epsl.2005.12.031. 

Wakeham, S.G., Peterson, M.L., Hedges, J.I., Lee, C., 2002. Lipid biomarker fluxes in the 
Arabian Sea, with a comparison to the equatorial Pacific Ocean. Deep Sea Res. II 49, 
2265–2301. doi:10.1016/S0967-0645(02)00037-1. 

Wang, J., Yang, B., Ljungqvist, F.C., Zhao, Y., 2013. The relationship between the Atlantic 
Multidecadal Oscillation and temperature variability in China during the last millennium. 
J. Quat. Sci. 28, 653-658. doi:10.1002/jqs.2658. 

Wang, P., Clemens, S.C., Beaufort, L., Braconnot, P., Ganssen, G., Zhimin, J., Kershaw, P., 
Sarnthein, M., 2005a. Evolution and variability of the Asian monsoon system: state of 
the art and outstanding issues. Quat. Sci. Rev. 24, 595–629. 

Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, 
C.A., Li, X., 2005b. The Holocene Asian Monsoon: Links to Solar Changes and North 
Atlantic Climate. Science 308, 854–857. doi:10.1126/science.1106296. 

Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A 
high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. 
Science 294, 2345–2348. doi:10.1126/science.1064618. 

Ward, B.B., Devol, A.H., Rich, J.J., Chang, B.X., Bulow, S.E., Naik, H., Pratihary, A., 
Jayakumar, A., 2009. Denitrification as the dominant nitrogen loss process in the 
Arabian Sea. Nature 461, 78–81. doi:10.1038/nature08276. 

Webster, P.J., 1987. The Elementary Monsoon, in: Fein, J.S., Stephens, P.L. (Eds.), 
Monsoons. John Wiley, New York, pp. 3–32. 

Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., Itoh, S., 2010. Holocene precipitation 
and temperature variations in the East Asian monsoonal margin from pollen data from 
Hulun Lake in northeastern Inner Mongolia, China. Boreas 39, 262–272. 
doi:10.1111/j.1502-3885.2009.00125.x. 

Wyrtki, K., 1962. The oxygen minima in relation to ocean circulation. Deep Sea Res. 9, 11–
23. doi:10.1016/0011-7471(62)90243-7. 

Wyrtki, K., 1973. Physical Oceanography of the Indian Ocean, in: Zeitzschel, B. (Ed.), The 
Biology of the Indian Ocean. Springer, Berlin, pp. 18–36. 

Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., 
Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., 2007. Influence of the intertropical 



118  REFERENCES 

convergence zone on the East Asian monsoon. Nature 445, 74–77. 
doi:10.1038/nature05431. 

Yang, B., Bräuning, A., Johnson, K.R., Yafeng, S., 2002. General characteristics of 
temperature variation in China during the last two millennia. Geophys. Res. Lett. 29, 
doi:10.1029/2001GL014485. 

You, Y., 1998. Intermediate water circulation and ventilation of the Indian Ocean derived 
from water-mass contributions. J. Mar. Res. 56, 1029–1067. 
doi:10.1357/002224098765173455. 

Zhang, P., Cheng, H., Edwards, R.L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, 
X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., Johnson, K.R., 2008. A 
Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave 
Record. Science 322, 940–942. 

 



  119 

Curriculum vitae 

 

Anna Böll 

 

Born:    02.08.1985 in Hamburg 

Nationality:   German 

Home address:  Redingskamp 113, 22523 Hamburg 

 

 

Education 

Since May 2011  Ph.D. student, Institute of Geology (section Biogeochemistry) 

    University of Hamburg 

   Thesis subject: Reconstruction of the Holocene monsoon  

climate variability in the Arabian Sea based on alkenone sea  

surface temperature, primary productivity and denitrification  

proxies 

 

Oct 2009 – Jan 2011  Studies of Marine Environmental Sciences (Master of Science) 

    University of Oldenburg 

    Emphasis on Geochemistry 

    Master thesis: Bestimmung des terrestrischen Eintrags von  

organischem Material in die oberflächennahen Sedimente der 

Nordsee anhand von Archaeen- und Bakterienlipiden 

 

Oct 2005 – Sep 2009  Studies of Environmental Sciences (Bachelor of Science) 

    University of Oldenburg 

    Emphasis on Environmental Chemistry 

    Bachelor thesis: Dynamik und Zusammensetzung von  

Bakteriengemeinschaften im Tidezyklus im Wattenmeer 

 

2005    Abitur at Graf Anton Günther Gymnasium Oldenburg 

 

  



120   

List of Publications 

 

Böll, A., Lückge, A., Munz, P., Forke, S., Schulz, H., Ramaswamy, V., Rixen, T., Gaye, B., 

Emeis, K.-C., 2014. Late Holocene primary productivity and sea surface temperature 

variations in the northeastern Arabian Sea: implications for winter monsoon variability. 

Paleoceanography 29, 778-794. doi:10.1002/2013PA002579. 

Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., Emeis, K.-C., submitted 2014. 

Contrasting sea surface temperature of summer and winter monsoon variability in the 

northern Arabian Sea over the last 25 ka. submitted to Palaeogeography, 

Palaeoclimatology, Palaeoecology. 

Böll, A., Munz, P., Lückge, A., Schulz, H., Gaye, B., Emeis, K.-C., submitted 2014. Spatial 

and temporal variability of the Arabian Sea oxygen minimum zone over the Holocene. 

submitted to Quaternary Science Reviews. 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



  121   

 

Acknowledgements 

 
I would like to thank Prof. Dr. Kay-Christian Emeis for the supervision of my thesis and for 

his constant support during the writing process of my manuscripts which greatly improved the 

quality of this thesis. I also thank for enabling the financial support during the last part of my 

work that helped me to complete this thesis.  

 

I thank Dr. Birgit Gaye for the opportunity to write this thesis, for supervision, many fruitful 

scientific discussions and her encouragement, guidance and constant support. I very much 

appreciate that she were always open for questions and willing to listen to the little problems 

that emerged during my scientific work. I thank for providing the opportunity to participate in 

international conferences which offered valuable experiences and provided first insight into 

the scientific world.  

   

Frauke Langenberg, Sabine Beckmann and Dr. Niko Lahajnar are thanked for their assistance 

during my laboratory work and analytical measurements.  

 

I thank all my colleagues from the Institute of Geology (formerly Institute of 

Biogeochemistry and Marine Chemistry) and from the CARIMA project for the nice working 

atmosphere, their help, discussion and diversion.  

 

I would like to thank the members of the CARIMA project for the good collaboration, data 

exchange and scientific discussion. A special thanks goes to Dr. Hartmut Schulz and Dr. 

Andreas Lückge for providing additional sample material and for sample analyses.  

 

Funding of this project by the BMBF is gratefully acknowledged.  

 

Finally I thank all my friends, my boyfriend and family for their consistent support and 

diversion during the last years.  

 

 



   

 
 

Eidesstattliche Erklärung 
 
 
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst 

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. 

 

 

 

Hamburg, den      ________________________ 

        Anna Böll 

 

 


