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Abstract

Passive microwave remote sensing of sea ice concentrations has proven to be the back-

bone to understand the polar sea ice covers, which are key elements in the global climate

system. In over 30 years of remote sensing of sea ice, several retrieval algorithms have

been developed using brightness temperature measurements for the investigation of

the sea ice covered area by means of the sea ice concentration. Knowledge about the

uncertainty of the retrieved ice concentrations is essential to quantify observed trends

in sea ice area against the background of natural variability and for the assimilation

of sea ice concentrations into numerical weather prediction models. Changes in sur-

face emissivity and variations in atmospheric parameters, like water vapour and cloud

cover, are known to have an influence on the accuracy of the retrieved ice concentration.

Additionally, the quality of retrieved sea ice concentrations depends on an appropriate

choice of the tie-points, which are defined as typical brightness temperatures measured

over the surfaces involved.

We investigate uncertainties of a near 90GHz retrieval algorithm, called the

ARTIST Sea Ice algorithm (ASI), by intercomparison with other sea ice concentra-

tion data sets. First, we compare ASI and sea ice concentrations retrieved from other

retrieval algorithms with visual ship-based observation of the sea ice concentration

around Antarctica. After adapting ASI to the new Advanced Microwave Scanning

Radiometer 2 (AMSR2) that recently started to provide brightness temperature mea-

surements, we compare the new ASI sea ice concentrations with the Comiso Bootstrap

(BST) retrieval, which performed best in the first comparison, and with satellite optical

imagery and ice surface temperatures in the Arctic. ASI shows a higher agreement with

the other data than BST. Both comparisons show that ASI performs well for different

satellite sensors and in different hemispheres. In addition, we present the influence of

changing surface emissivities and variations due to changing atmospheric parameters

on the ASI retrieval. For a consolidated ice cover during winter, when uncertainties

were thought to be limited to variations in surface emissivity, the changes in the snow

surface and atmospheric parameters have a considerable influence on ASI and its error

estimation. While fresh snow on sea ice that very often reduces the snow surface density

tends to decrease retrieved sea ice concentrations, increased atmospheric water vapour

increases retrieved sea ice concentrations. We suggest to derive a new set of tie-points

separately for both hemispheres and reconsider the current interpolation approach for

values between consolidated ice and open water.
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Zusammenfassung

Passive Mikrowellenradiometrie bildet die Grundlage die Meereiskonzentrationen in

den Polargebieten zu ermitteln. Das Meereis ist eine der wichtigsten Kenngrößen im

globalen Klimasystem. In über 30 Jahren Eisforschung mit Fernerkundungsdaten wur-

den eine Vielzahl von Verfahren zur Bestimmung der Meereiskonzentrationen entwi-

ckelt. Diese Verfahren nutzen die vom Satelliten gemessenen Helligkeitstemperaturen

zur Berechnung der Eiskonzentrationen. Grundlegend dabei ist auch eine Kenntnis

über die Unsicherheit der abgeleiteten Eiskonzentrationen, um die Signifikanz beob-

achteter Ab- oder Zunahmen der Eisfläche vor dem Hintergrund natürlicher Schwan-

kungen abzuschätzen. Die Unsicherheit wird aber auch benötigt für die Assimilierung

von Eiskonzentration in numerische Wettermodelle. Dabei wird die Unsicherheit in

der Eiskonzentration vor allem verursacht durch Schwankungen der Emissivität an der

Oberfläche und den Einfluß atmosphärischer Größen wie Wasserdampf und Wolken-

bedeckung. Darüber hinaus hängen die verschiedenen Verfahren zur Bestimmung der

Eiskonzentration von der Wahl der Referenzpunkte ab. Diese stellen typische Hellig-

keitstemperaturen der involvierten Oberflächentypen dar.

In dieser Arbeit werden die Unsicherheiten des ARTIST Sea Ice (ASI) Verfahrens

im Vergleich mit anderen Datensätzen der Eiskonzentration untersucht. ASI nutzt Hel-

ligkeittemperaturen, die bei 90GHz gemessen werden. In einer ersten Studie werden

ASI-Eiskonzentrationen und die Eiskonzentrationen aus anderen Verfahren mit in-situ

Beobachtungen der Einskonzentrationen von Schiffsfahrten um die Antarktis vergli-

chen. Nach einer Erweiterung von ASI um die Nutzung der Helligkeitstemperaturen

des neuen Advanced Microwave Scanning Radiometer 2 (AMSR2) vergleichen wir ASI

in einer zweiten Studie für die Arktis mit Eiskonzentrationen abgeleitet mit dem Co-

miso Bootstrap Verfahren (BST). Das BST Verfahren hat im ersten Vergleich mit den

Schiffsbeobachtungen die besten Ergebnisse erzielt. In dem Vergleich für die Arktis

ziehen wir zudem Daten aus optischen Verfahren und abgeleitete Eishelligkeitstem-

peraturen hinzu. Hier erweist sich ASI als das genauere Verfahren. Beide Vergleiche

zeigen, dass ASI in der Lage ist mit Helligkeitstemperaturen verschiedener Radiometer

und in beiden Hemisphären gute Ergebnisse zu erzielen. In einer dritten Untersuchung

stellen wir den Einfluß variabler Emissivitäten an der Oberfläche und den Einfluß at-

mosphärischer Größen wie der Wasserdampf und die Wolkenbedeckung auf das ASI

Verfahren dar. Bisherige Untersuchungen geschlossener Eisbedeckungen im Winter zei-

gen, dass die Schwankungen der abgeleiteten Eiskonzentrationen durch Schwankungen

der Emissivität an der Oberfläche verursacht werden. Es wird gezeigt, dass für das ASI

Verfahren darüber hinaus atmosphärischer Wasserdampf und die Wolkenbedeckung

einen beträchtlichen Einfluß auf das Verfahren haben. Während eine Neuschneedecke

auf dem Meereis die berechntete Eiskonzentration reduziert, erhöhen zusätzlicher Was-

serdampf und Wolken die berechnete Eiskonzentration. Aufgrund der Ergebnisse für

die soeben genannten Sensitivitäten wird eine Neuberechunung der oben genannten

Referenzpunkte unabhängig für beide Hemisphären vorgeschlagen. Außerdem sollte
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untersucht werden, ob die derzeitige Interpolierung zwischen diesen Referenzpunkten

verbessert werden kann.
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Chapter 1

Introduction

The polar ice covers have shown considerable changes since the start of satellite obser-

vations in the 1970s (Cavalieri and Parkinson, 2012; Parkinson and Cavalieri, 2012).

Climate model simulations of the sea ice extent and its trends contradict these ob-

servations, especially in the Arctic, where sea ice declines much faster than expected

(Kattsov et al., 2010; Stroeve et al., 2012). To improve climate model simulations, a

comprehensive knowledge of the sea ice cover is essential, including knowledge about the

uncertainties of the data. Recently, state-of-the-art earth system models have shown a

considerable mismatch between model simulations and the true SIC as observed from

satellites (Turner et al., 2013).

Passive microwave (PM) radiometers onboard polar-orbiting satellites are the back-

bone of today’s sea ice concentration (SIC) retrievals. The radiometers measure raw

antenna counts from which one derives the antenna temperature and then calculates

the brightness temperatures (TB) of the Earth radiated to space. Based on these mea-

surements of TB, once can obtain daily SIC on a hemispheric scale (e.g., Hallikainen

and Winebrenner, 1992; Tucker et al., 1992; Winebrenner et al., 1992; Eppler et al.,

1992; Steffen et al., 1992). In more than 30 years of research on PM radiometry,

multiple SIC retrieval algorithms have been developed , e.g., NASA Team (Cavalieri

et al., 1984), enhanced NASA Team (Markus and Cavalieri, 2000), Bootstrap (Comiso,

1986), NORSEX (Svendsen et al., 1983), SVENDSEN (Svendsen et al., 1987), and ASI

(Kaleschke et al., 2001). These retrievals use TB measured at frequencies at 18/19GHz,

36/37GHz and near 90GHz. Due to physical processes in the sea ice and snow cover

(e.g., Barber et al., 1998; Wiesmann and Mätzler, 1999; Mätzler and Wiesmann, 1999;

Markus and Cavalieri, 2000), varying atmospheric liquid water and water vapor content

(e.g., Oelke, 1997; Fuhrhop et al., 1998; Kern, 2004; Andersen et al., 2006), and the

influence of wind-induced surface roughness (e.g., Kern, 2004; Andersen et al., 2006),

microwave emissivities from both the surface and the atmosphere show substantial

variability, reduce the accuracy of SIC estimates. This leads to uncertainties specific

for each retrieval algorithm due to the different frequencies involved.

The different retrieval algorithms use different sets of TB measuring at different
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frequencies. Each frequency has a specific instantaneous field-of-view (IFOV), which

is the area on the ground observed with one measurement. This leads to considerable

differences in sensitivities to atmospheric opacity and to the variability in surface emis-

sivities for measurements between 18/19GHz or near 90GHz. The different IFOV lead

to different capabilities in retrieving inhomogeneities that actually define the surface

properties. Such inhomogeneities can be leads, which occur on different spatial and

temporal scales, ranging from a few tens of meters to kilometers and from hours to

days. Other inhomogeneities can be different types and forms of ice, like newly-formed

plane nilas, grease ice, pancake ice, snow-covered first-year ice, and old sea ice that

eventually has deformed to rafted ice or pressure ridges due to shear forces. Addi-

tionally, the sensitivities to atmospheric opacity and surface variations are different at

different frequencies (e.g., Oelke, 1997; Fuhrhop et al., 1998; Andersen et al., 2006).

While lower frequency channels, for example 18/19GHz, tend to be less sensitive to

atmospheric contamination, higher frequency channels, for example near 90GHz, are

more sensitive (e.g., Lubin et al., 1997; Kern, 2004; Andersen et al., 2006). While the

higher frequencies penetrate less into the ice or snow cover, the lower frequencies have a

higher penetration depth and, thus, can be more sensitive to layering in the snow cover

and intrusions in the sea ice from air bubbles, for example (Wiesmann and Mätzler,

1999; Mätzler and Wiesmann, 1999).

During the last 30 years, there have been a number of studies comparing differ-

ent retrieval algorithms and multiple improvements for single algorithms. We present

some that show sources of uncertainties. The widely used NASA Team and Bootstrap

algorithm were found to exhibit considerable differences, the first due to layering ef-

fects in the snow, the second due to an influence of the physical temperature at the

surface (Comiso et al., 1997). Andersen et al. (2006) investigated the performance of

several retrieval algorithms regarding their sensitivity to the atmospheric influence by

clouds and water vapour. They found the highest sensitivity for algorithms that use

the horizontally-polarized channels at near 90GHz. In another study, Andersen et al.

(2007) explained variances in SIC close to 100% to result from the variations of surface

properties and not from changes in the real ice concentration. Ivanova et al. (2014)

showed for 11 SIC retrieval algorithms that the negative trend in SIC is similar, but

that individual retrieval algorithms can have considerable biases from the mean.

Although the higher frequency channels show higher sensitivities to atmospheric

water vapour and clouds, near 90GHz-based SIC algorithms have the advantage of

considerably higher spatial resolution due to smaller IFOV. Svendsen et al. (1983) and

(Svendsen et al., 1987, hereafter called SVENDSEN) were the first to use the higher

frequencies that provide a higher spatial resolution. Improvements to SVENDSEN were

presented in Lomax et al. (1995) and Lubin et al. (1997). Kern (2004) introduced a

near 90GHz retrieval algorithm that uses a radiative transfer model to reduce the error

due to atmospheric contamination. The ARTIST Sea Ice (ASI) algorithm (Kaleschke

et al., 2001) augments the SVENDSEN algorithm with a weather correction based

on lower-frequency channels. It has been developed for TB measurements from the
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Special Sensor Microwave/Imager (SSM/I) by Kaleschke et al. (2001) and adapted for

measurements from Advanced Microwave Scanning Radiometer onboard EOS (AMSR-

E) by Spreen et al. (2008).

In this thesis, we seek to

� enhance the ARTIST sea ice algorithm by using the new Advanced Microwave

Scanning Radiometer 2 (AMSR2) TB measurements. With these data we are

able to provide SICs at 3.125 km grid resolution which has only been possible

before by considerable oversampling of available PM measurements;

� compare the most used SIC retrieval algorithms with a long surface-based obser-

vational record of ship-based observation of SIC to establish knowledge on the

performance of the different algorithms;

� quantify the effect of varying surface emissivities and atmospheric contamina-

tion on the near 90GHz ARTIST sea ice algorithm and assess the algorithm’s

uncertainties.

Based on these objectives, we address the following research questions:

1. What is the gain of information from a higher-resolution sea ice concentration

retrieval?

2. Apart from the known advantages and disadvantages of lower- and higher-

frequency-based sea ice retrievals, what is the actual performance when compared

with a long data set of in-situ measurements?

3. Which parameters exhibit the highest influence on the variation of retrieved SIC

under winter conditions? Can we estimate their influence?

Thesis outline

This thesis is organized as follows:

In Chapter 2, we provide the basic information to comprehend the investigations

of this study by presenting the areas of interest, principles of remote sensing of sea

ice concentration, and an overview of the data and methods used to answer the above

presented research questions.

In Chapter 3, we compare different PM-derived sea ice concentrations with ship-

based observations of the sea ice cover acquired around Antarctica. With this in-

vestigation, we quantify the differences among frequently-used sea ice concentration

retrievals.



4 Introduction

In Chapter 4, we introduce a new sea ice concentration data set, which is based on

TB measured at 89GHz from AMSR2, which has been placed in orbit in 2012. We

investigate whether the new data reproduce surface details like leads that are visible

on Moderate Resolution Imaging Spectroradiometer images under clear sky conditions

and that are not captured by another frequently-used sea ice concentration data set.

In Chapter 5, we investigate the uncertainties of a near 90GHz retrieval stemming

from varying surface emissivities and atmospheric contamination by using simulations

of a combined thermodynamic and emissivity model. We show how the differences and

uncertainties that have been derived can be combined into a an uncertainty estimate

for ASI and specify conditions under which ASI doe snot provide robust results .

In Chapter 6, we summarize the investigations presented before.

Publications

In the course of the research that has lead to this thesis, the following articles were

published or accepted for publication:

Beitsch, A., Kaleschke, L., and Kern, S., 2014: Investigating High-Resolution

AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the

Beaufort Sea. Remote Sens., 6(5), 3841–3856, doi:10.3390/rs6053841.

Beitsch, A., Kern, S., and Kaleschke, L., 2015: Comparison of SSM/I and

AMSR-E Sea Ice Concentrations with ASPeCt Ship Observations around Antarc-

tica. IEEE Transactions On Geoscience And Remote Sensing, 53(4), 1985–1996,

doi:10.1109/TGRS.2014.2351497.
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Chapter 2

Fundamentals

The sections of this chapter give an overview on and present the necessary principles to

understand the focus and the outcome of this work. The first section (Section 2.1) in-

troduces the regions of the interest, the polar regions. The second section (Section 2.2)

introduces principles of remote sensing to measure the sea ice concentration from space.

The third section (Section 2.3) gives an overview of the data basis that we use in this

work—the remote sensing data and the in-situ data. In the last section (Section 2.4),

we introduce the microwave emission model MEMLSI that is used in this thesis.

2.1 The Regions of Interest

The Arctic and the Antarctic regions depict the polar regions of the Earth and con-

stitute essential parts of the global climate system. Differential heating of the Earth’s

surface and resulting meridional heat transports of the excess heat in the tropics leaves

the polar regions as the heat sinks to counterbalance the unequal distribution of energy

on the globe. Their geographic position exposes the polar regions to extended periods

of dark (polar night) and light (polar day) which has consequences for the general

synopsis in the mid-latitudes. The widespread coverage of ice—be it glaciers on land,

land-fast shelve ice or sea ice—imposes a high albedo onto the polar regions.

The dry, cold climate of the polar regions leads to another important characteristics

for its role in the global climate system: the production of intermediate and deep water

masses (e.g., Marshall and Schott, 1999). These water masses are in turn essential for

the global heat distribution and the occur where a very cold atmosphere supports

strong heat loss of the the upper ocean, which increases the upper layer density and

leads to convection. The Nordic Seas (Greenland Sea, Iceland Sea, and Norwegian Sea)

and the Labrador Sea in the Northern Hemisphere (see Figure 2.1), the Wedell and

the Ross Seas in the Southern Hemisphere (see Figure 2.2) constitute regions for the

production of deep-water masses. Considering environmental issues, the polar regions
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gain more and more attentions due to the accumulation of waste, chemicals and other

disposals.

The polar regions also play a crucial role in current climate change: they indicate

climate changes far earlier than other regions of the globe mainly due to the so-called

Arctic Amplification (e.g., see Serreze and Francis, 2006; Serreze and Barry, 2011).

Central to the polar regions is the the cryosphere which constitutes a complex system

of water in its solid form ice including the above mentioned glaciers, shelve ice, and

sea ice.

Apart from these similarities, the Arctic and the Antarctic region have very different

characteristics. While the Arctic region can be characterized as an ocean surrounded

by continents, Antarctica is a continent surrounded by oceans (Figures 2.1-2.2). The

Arctic Ocean is a deep basin encompassed by the shallow marginal seas Beaufort Sea,

Chukchi Sea, East Siberian Sea, Laptev Sea, Kara Sea, and Barents Sea. Deep-water

masses enter the Arctic Ocean through Fram Strait. A shallower passage for water



8 Fundamentals

masses are the Bering Strait, and the Canadian Arctic Archipelago (CAA). In contrast,

the Antarctic is mostly surrounded by the deep basins from the Cosmonaut Sea, the

Cooperation Sea, the Amundsen Sea, and the Bellingshausen Sea. Only parts of the

Ross Sea and the Wedell Sea are shallow continental shelves. The different geographies

of the two polar regions lead to very different characteristics : the Arctic is affected by

warm ocean currents importing heat from the Atlantic ocean, while the Antarctic region

is surrounded by a circumpolar current system, which inhibits heat import from lower

latitudes and leads to extremely low temperatures on the continent. While cyclones

can occur all year and penetrate the Antarctic sea ice cover with ocean swells breaking

up the ice, the sea ice cover in the central Arctic Ocean is protected from ocean swell

by the surrounding continents when the sea ice has developed. This has important

implications for the sea ice formation, which is quite different for both hemispheres.

2.2 Sea Ice

While regional sea ice coverage have been shown to change significantly on interannual

time-scales (Walsh and Chapman, 2001), the overall trend of Arctic sea ice extent

and area are negative for the 30 years of observation (Cavalieri and Parkinson, 2012)

and positive for Antarctica (Parkinson and Cavalieri, 2012). The knowledge of the

hemispheric evolution of the sea ice during the last 30 years is to most parts based on

passive microwave remote sensing of sea ice concentrations, which we introduce in the

following section.

2.2.1 Principles of Remote Sensing of Sea Ice Concentrations

The sea ice concentration retrieval algorithms that we consider in this thesis are based

on the radiative transfer equation, simplified for the microwave regime:

TB = (1− ǫ) Tspc + ǫTsfc (1− τatm) + τatm δTatm + (1− ǫ) δTatm τatm (1− τatm) (2.1)

which is demonstrated following Svendsen et al. (1983). The brightness temperature

TB measured in space is composed of four terms. The first term depicts the radiation

from space Tspc that is, based on the emissivity ǫ, reflected from the surface and

passes the atmosphere two times. The second term depicts the brightness temperature

Tsfc emitted from the surface and attenuated through the atmosphere by the total

atmospheric opacity τatm. The third term depicts the upwelling radiation from the

atmosphere, where δTatm is the weighted average atmospheric temperature in the lower

troposphere. The fourth term depicts the downwelling atmospheric radiation reflected

at the surface and transmitted back through the atmosphere. The emissivity ǫ can be
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considered an effective emissivity, which is the emissivity that a PM radiometer detects

in one measurement. The effective emissivity averages individual emissivities from

different layers within the radiation’s path. The contribution from space is very small

and generally neglected. Since τatm is small for polar atmospheres, it is approximated

by e−τa = 1− τa.

The brightness temperature TBsurf , which is measured by a radiometer just above

the surface or in the ideal case of a fully transparent atmosphere, can be expressed as

the product of an effective temperature Teff and the emissivity of the surface ǫsurf :

TBsurf = ǫsurf Teff . (2.2)

Here, the effective temperature Teff contains the influence of the different temperatures

within the profile of snow or snow and sea-ice: depending on the microwave frequency,

the radiation received at the radiometer originates from different layers within the

profile.

ARTIST Sea Ice Algorithm

Since the start of the Special Sensor Microwave/Imager (SSM/I), the 85GHz data with

a higher resolution than lower-frequency channels became available. The ARTIST Sea

Ice algorithm (ASI Kaleschke et al., 2001) is an enhancement of the SVENDSEN al-

gorithm (Svendsen et al., 1987), which was the first algorithm to use higher-frequency

channels to retrieve SIC. ASI was adapted for measurements at 89GHz from the Ad-

vanced Microwave Scanning Radiometer onboard EOS (AMSR-E Spreen et al., 2008).

Here, we shortly explain how ASI derives sea ice concentrations (SIC) following Spreen

et al. (2008):

Surface emissivity differences are similar for most ice types and considerably smaller

than for open water. With the physical temperature having the same influence for hor-

izontally and vertically polarized brightness temperatures (TB), the emissivity controls

changes in TB. One can distinguish the different surface types ice and water also by

using the brightness temperature polarization difference (at 89GHz for AMSR-E) P89,

which is defined as

P89 = TB89V − TB89H (2.3)

with V for vertical and H for horizontal polarization. Svendsen et al. (1987) intro-

duced an approximation for the influence of the atmosphere on P89, which is valid for

the horizontally stratified Arctic atmosphere and a diffusely reflecting surface for an

incidence angle of ≈ 50°. Then, the vertical atmospheric temperature profile can be

replaced by an effective temperature and the atmospheric influence can be described

by
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P89 = P89,s ac = P89,s e
−τ (1.1 e−τ − 0.11) (2.4)

where τ denotes the atmospheric opacity and P89,s the surface polarization differ-

ence. Not only is the atmospheric influence a function of the ice concentration C, but

also P89 depends on the atmosphere:

P89(C) = P89,s ac = (CP89,s,i + (1− C)P89,s,w) ac (2.5)

where Ps,i and Ps,w denote surface polarization differences for ice and water, respec-

tively. The atmospheric influence is a function of the sea ice concentration (Svendsen

et al., 1987), because the water vapour content and cloud liquid water decrease with

increasing ice cover. This is because reduced open water areas decrease evaporation.

Using Equation 2.5, the polarization difference for an open water surface at 90GHz

becomes

Pw = aw P89,s,w (2.6)

where the atmospheric influence and the surface polarization for open water are de-

noted as aw and P89,s,w. For a closed ice surface, the polarization difference accordingly

becomes

Pi = aw P89,s,i. (2.7)

These polarization differences define the so-called tie-points for the surface types

open water (w, C=0) and sea ice (i, C=1). Using Taylor expansion of Equation 2.5 for

values around open water (C=0) leads to

P89 = aw C (P89,s,i − P89,s,w) + Pw for C → 0. (2.8)

For values of sea ice (C=1), Equation 2.5 leads to

P89 = ai (C− 1) (P89,s,i − P89,s,w) + Pi for C → 1. (2.9)

In Equation 2.8 and Equation 2.9, higher order terms and the derivatives of the

atmospheric influence a’w=0 for C=0 and a’i = 0 for C=1 can be neglected (Spreen

et al., 2008). We can rearrange Equation 2.8 and Equation 2.9 and substitute the

atmospheric influence:

C =

(

P89

Pw

− 1

)(

P89,s,w

P89,s,i − P89,s,w

)

for C → 0 (2.10)
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C =
P89

Pi

+

(

P89

Pi

− 1

)(

P89,s,w

P89,s,i − P89,s,w

)

for C → 1. (2.11)

Svendsen et al. (1987) derived P89,s,w/(P89,s,i − P89,s,w = −1.14 from typical sea ice

signatures. ASI interpolates between the solutions for C=0 (Equation 2.10) and C=1

(Equation 2.11) to retrieve SIC between open water and 100% ice concentration using

a third-order polynomial (Kaleschke et al., 2001),

C = d3 P
3
89 + d2 P

2
89 + d1 P89 + d0. (2.12)

The factors d0 to d3 are found by solving a linear equation system, which is de-

termined by using Equation 2.10 and Equation 2.11 and their first derivatives. Then

Equation 2.12 can be used to calculate the sea ice concentration C. For polarization

differences outside a range between 0 and 1, C is set equal to zero for P89 > Pw and

equal to one for P89 > Pi.

Several studies have shown how sensitive the choice of the tie-points is on the re-

trieval (e.g., Lomax et al., 1995; Lubin et al., 1997; Kaleschke et al., 2001). Kaleschke

et al. (2001) and Spreen et al. (2008) improved the retrieval by using several weather

filters based on lower-frequency measurements of TB to reduce the influence of weather

on the retrieval. For AMSR-E (Spreen et al., 2008), these filters include a threshold

using the gradient ratio (GR) of the 36.5 and 18.7GHz channels (Gloersen and Cava-

lieri, 1986), a threshold using GR of the 23.8 and 18.7GHz channels (Cavalieri et al.,

1995), and a filter, where ASI pixels were set to zero, when corresponding Bootstrap

pixel (Comiso et al., 2003) are equal zero.

Spreen et al. (2008) introduced an error estimation for ASI using the standard

deviations of the surface polarization differences P89,s,w and P89,s,i and the atmospheric

opacity over open water τw and the atmospheric opacity over sea ice τi measured during

the ship campaigns NORSEX and MIZEX (Svendsen et al., 1987), when all required

quantities were measured simultaneously. The standard deviation in P89 is then given

as

σP89
=

√

(

∂P89

∂τ

)2

σ2
τ +

(

∂P89

∂P89,s,w

)2

σ2
P89,s,w

+

(

∂P89

∂P89,s,i

)2

σ2
P89,s,i

=[(CP89,s,i + (1− C)P89,s,w)
2

(−2.2 e−2 τ + 0.11 e−τ )2 σ2
τ

+ (e−τ (1.1 e−τ − 0.11)(1− C))2 σ2
P89,s,w

+ (e−τ (1.1 e−τ − 0.11)C)2 σ2
P89,s,i

]1/2 (2.13)
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The standard deviation of the ice concentration C follows from the polynomial in

Equation 2.12:

σC = |
∂C

∂P89

σP| = |
(

3 d3 P
2
89 + 2d2 P89 + d1

)

σP|. (2.14)

Spreen et al. (2008) showed that σC decreases from 25% to 5.7% when C increases

from 0% to 100% using the tie-points derived for SSM/I. Augmented with an es-

timation of the radiometric accuracy of lower frequency algorithms to a measuring

uncertainty of 1K for AMSR-E at 89GHz, Spreen et al. (2008) assumes an overall

accuracy of lower frequency algorithms of approximately 7%. However, Cavalieri et al.

(2006b) found discrepancies reaching 30%. In general, Andersen et al. (2006, 2007)

showed that for near 90GHz retrieval this range is suitable at high SIC. But for cases

with high cloud liquid water in the atmosphere, retrieval algorithms using TB at near

90GHz may considerably overestimate sea ice concentration at low SIC.

2.3 Data Basis

In this section, we introduce the data sets used for the investigations in this thesis.

These data sets can be grouped into the following classes:

� Remote sensing data from passive microwave radiometers on-board a platform

in orbit around the Earth; we use brightness temperatures that are derived from

the radiometer’s measurements.

� In-situ observation of the sea ice cover from vessels navigating through the ice.

� Brightness temperature and emissivity data simulated by a combined thermody-

namic snow/ice and emissivity model.

2.3.1 Passive Microwave Data

As explained in the previous Section, ASI uses near 90GHz TB measurements to de-

rive SIC. TB measurements at 85GHz became available with the start of the Special

Sensor Microwave/Imager (SSM/I), which has been launched onboard the Defense

Meteorological Satellite Program (DMSP) satellites. The Special Sensor Microwave

Imager/Sounder (SSMIS) replaced the SSM/I in 2003 and augments the SSM/I with

several higher frequency channels to retrieve atmospheric parameters. The 85GHz

channels were replaced with channels at 91.655GHz. The Advanced Microwave Scan-

ning Radiometer onboard EOS (AMSR-E) started in 2003 and provided an improved

spatial resolution. AMSR-E’s near 90GHz channels measured at 89.0GHz. In 2012,

Advanced Microwave Scanning Radiometer 2 (AMSR2) started measuring with im-

proved spatial resolution at 89.0GHz. Further explanation on SSM/I, SSMIS, and

AMSR-E are provided in Section 3.2.2. AMSR2 will be further explained in Section 4.2.
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2.3.2 ASPeCt Ship Observations

In this thesis, we compare passive-microwave derived SIC with visual ship-based obser-

vations of SIC around Antarctica. The ship-based observation were comprised in the

Antarctic Sea Ice Processes and Climate (ASPeCt) program. The ASPeCt data will

be further explained in Section 3.2.1.

2.4 Microwave Emission Modeling of Layered

Snowpacks on Sea Ice (MEMLSI)

To quantify the influence of varying surface emissivities and changing atmospheric

water content on the ASI algorithm, we use simulated data of emissivities and TB

from a combined thermodynamic snow/ice and emissivity model, the Microwave Emis-

sion Modeling of Layered Snowpacks on Sea Ice (MEMLSI Tonboe, 2010; Tonboe

et al., 2011) with an atmospheric radiative transfer model (Wentz and Meissner, 2000).

MEMLSI is a sea ice version of the Microwave Emission Model of Layered Snowpacks

(MEMLS) (Wiesmann and Mätzler, 1999; Mätzler and Wiesmann, 1999). MEMLS was

developed for snow cover on land surfaces; MEMLSI is augmented to include models

for sea ice dielectric properties and is valid in the 1-183GHz region. The model con-

siders scattering within snow and sea ice layers and distinguishes small brine pockets

and air bubbles that serve as scatters in first-year ice and multi-year ice, respectively.

The sea ice emission model relates microwave emissivity to physical properties in the

sea ice and the overlying snow cover. Such properties include density, temperature,

inclusions of snow crystals and brine. These properties directly influence the radiation

in the microwave spectrum through attenuation, scattering and reflectivity.

The data that we use were simulated for the ESA-CCI Sea Ice Essential Climate

Variable Project Round Robin Data Package (RRDP, Pedersen and Saldo, 2012). For

the simulations with MEMLSI, the thermodynamic snow and ice model is driven by

European Centre for Medium Range Weather Forecast (ECMWF) reanalysis ERA40

data. Parameters that drive MEMLSI include the surface air pressure, the 2m air

temperature, the dew point temperature, the 10m wind speed, the incoming short-

wave solar radiation and long-wave radiation, and the precipitation data. From these

parameters, the thermodynamic model provides the microphysical variables needed in

the emission model for a time step of 6 hours.

Based on the physical snow and ice properties like density, temperature, snow crys-

tal, and brine inclusion size from the thermodynamic model, the emission model simu-

lates the microwave attenuation, scattering and reflectivity in the snow and ice. Indi-

vidual precipitation events and subsequent snow metamorphosis determine the vertical

resolution in the snow. The model retains precipitation until a threshold of 1 kgm−2

is reached. The vertical resolution in the ice is 5 cm. From the simulated microwave
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parameters—attenuation, scattering and reflectivity—surface emissivities and TBs are

calculated for different frequency channels according to the scanning characteristics of

the AMSR-E sensor. The atmospheric emission that contributes to TB as they are

measured from space is simulated by using an atmospheric radiative transfer model

(Wentz and Meissner, 2000).
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Chapter 3

Comparison of SSM/I and

AMSR-E Sea Ice Concentrations

with ASPeCt Ship Observations

around Antarctica1

We compare passive-microwave (PM) derived sea ice concentrations (SIC) with more

than 21600 ship-based observations (OBS) of SIC acquired around Antarctica. PM SIC

are derived from SSM/I-SSMIS and AMSR-E measurements in 1991–2009 and 2002–

2010, respectively, with ARTIST Sea Ice (ASI), Comiso Bootstrap (BST), NASA-Team

(NT), enhanced NASA-Team (NT2), and EUMETSAT OSI-SAF (OSI). We compare

correlation coefficients (CC), root-mean-square-deviations (RMSD) and biases, sepa-

rately for SSM/I-SSMIS data for algorithms ASI, BST, OSI, and NT, and for AMSR-E

data for algorithms ASI, BST and NT2. With OBS SIC and PM SIC being on fun-

damentally different spatio-temporal scales, we develop a new co-location approach

using daily-average along-ship-track SIC values. CC between OBS SIC and PM SIC

agree within their uncertainty for all algorithms and sensors. Year-round CC values are

around 0.85 (AMSR-E) and 0.82 (SSM/I); CC values are similar during summer, but

drop significantly during winter. Year-round RMSD values range from 13% (BST and

OSI) to 17% (NT) for SSM/I and from 12% (BST) to 16% (NT2) for AMSR-E. RMSD

values are similar during summer, but decrease for winter: BST: 8% for AMSR-E and

10% for SSM/I. For AMSR-E, biases are below 0.5% for BST and ASI but between

5% (winter) and 9% (summer) for NT2. For SSM/I, biases are smaller during sum-

mer: -0.7% for BST to -7.8% for NT, than winter: -3.6% for BST to -13.9% for NT.

Overall, best agreement between OBS and PM SIC is found for BST.

1 This chapter is published as: Beitsch, A., Kern, S., and Kaleschke, L., 2015: Comparison of SSM/I

and AMSR-E Sea Ice Concentrations with ASPeCt Ship Observations around Antarctica. IEEE Trans-

actions On Geoscience And Remote Sensing, 53(4), 1985–1996, doi:10.1109/TGRS.2014.2351497.
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3.1 Introduction

The Antarctic continent and surrounding sea ice covered regions are vast and remote.

Precise knowledge about the sea ice extent and concentration is needed for many appli-

cations in geoscientific research, e.g., for modeling the formation of deep water masses

(Stossel, 2010), and for providing realistic boundary conditions for modeling quantities

that are dependent on sea surface and ice conditions (Uotila et al., 2011; Donlon et al.,

2012). The only tool to receive weather- and daylight-independent daily coverage of the

current ice situation is satellite microwave radiometry. Measured brightness tempera-

tures are input to retrieval algorithms that detect sea ice concentration (SIC), which,

among other differences, use distinct combinations of frequencies and polarization to

retrieve SIC. Validation of retrieved SIC is possible by comparing with ground truth

data, for example from vessels navigating through the sea ice cover. The longest ship-

based observation (OBS) data set of the Antarctic sea ice cover is available through

the Antarctic Sea Ice Processes and Climate (ASPeCt) program, which collects ob-

servations that have been carried out following the ASPeCt standards, that are also

known as the ASPeCt protocol. Several studies have been using single or sequences

of cruises that contribute to the ASPeCt data as a ground truth data source for com-

parison with satellite passive microwave (PM) SIC products based on Special Sensor

Microwave/Imager (SSM/I), Special Sensor Microwave Imager/Sounder (SSMIS) and

Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)

measurements (Worby and Comiso, 2004; Knuth and Ackley, 2006; Ozsoy-Cicek et al.,

2009). However, to our knowledge, there has not been a study using all available

ASPeCt data extended by OBS from cruises in recent years and comparing them with

the most used SIC retrieval algorithms. In this study, we want to assess the quality and

performance of the most used SIC retrieval algorithms by comparing with an extended

ASPeCt data set around Antarctica. Moreover, we want to infer if there are significant

differences among the tested algorithms or if there exists one algorithm that we can

recommend as the most reliable algorithm providing data of daily PM-derived SIC.

Prior to this work, Worby and Comiso (2004) investigated the sea ice edge derived

from SIC data with two different algorithms, namely enhanced NASA Team (NT2)

and Bootstrap (BST), based on SSM/I measurements and ASPeCt data in the years

1989–2000. Regarding geographical latitude, they find an accurate detection of the ice

edge between March and October with maximum mean differences of 0.11°. Sea ice

concentrations that are derived using BST give best results. Correlations are reduced

during the melt season (November–February), when the sea ice and its snow cover

become wet and flooded, so that surface signatures appear as a mixture of ice and

open water to microwave sensors. Tekeli et al. (2011) examine data from field cruises

in West Antarctica, comparing snow and ice properties derived by Envisat Advanced

Synthetic Aperture Radar (ASAR), AMSR-E measurements and ASPeCt observations.

Especially during the melt season, radar properties of thick first-year and multi-year

ice are altered and a correct interpretation of observed radar backscatter values and
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their variation over time becomes difficult to make. Kern (2004) compares about 850

OBS taken during several cruises in 1994–1998 with BST, the PELICON algorithm

(Heygster et al., 1996), and the SEA LION algorithm (Kern, 2001; Kern and Heygster,

2001). All algorithms underestimate OBS SIC by 5% to 17% and show correlations

below 0.6. Knuth and Ackley (2006) compare SSM/I-based NT SIC and BST SIC with

OBS SIC from 3 cruises and 1 helicopter-based data set during 1999–2004. While from

December to mid-February PM SIC over- and underestimate OBS SIC to an equal

amount, PM SIC provide better estimates of OBS SIC during mid-February to April,

when air temperatures drop. Correlations tend to be higher for fall data. Estimates of

NT’s maximum error (∼15%) exceed those of BST (∼10%) and the ∼10% observation

error for OBS. Weissling et al. (2009) confirm the average accuracy of ASPeCt SIC

observations to be 10% or better. In accordance with Nihashi et al. (2005), Knuth

and Ackley (2006) find floe size and resolution as the most contributing factors of PM

SIC’s underestimation in a medium range sea ice concentration regime (<70%). Ozsoy-

Cicek et al. (2009) examine AMSR-E-based SIC of NT2 and BST for their accuracy

in detecting the sea ice concentration, the sea ice extent and the location of the sea

ice edge and compare them with ASPeCt protocol-based OBS. A good correlation was

found inside the ice pack, but the correlation reduced in the Marginal Ice Zone (MIZ).

Both sets of SIC, NT2 and BST, tend to underestimate low ice concentrations and show

the location of the ice edge further south than in-situ measurements. This becomes

especially apparent during melting conditions. Ozsoy-Cicek et al. (2011) make similar

investigations for other cruises finding a low ice concentration bias with AMSR-E-

based sea ice extents showing the tendency to underestimate US National Ice Center

ice edges.

Despite this number of studies using single cruise observational data sets or a limited

number of years from the ASPeCt data, there has not been—to our knowledge—a

comparison of the full record of ASPeCt ship-based SIC observations with SSM/I-

SSMIS and AMSR-E SIC. Here, we present a comparison of OBS SIC from extended

ASPeCt data—that we regard as ground truth—with different PM SIC products. We

append additional OBS SIC to the freely available ASPeCt data set (http://aspect.

antarctica.gov.au/) from other cruises in 2006–2011 where SIC has been observed

according to the ASPeCt protocol (Worby et al., 1999). For the comparison, we use

different PM SIC to compare with the extended ASPeCt data. Four of the PM SIC

data sets are based on SSM/I-SSMIS measurements and three data sets are based

on AMSR-E measurements. We do a third comparison, in which we compare two

algorithms, namely BST and ASI, that provide SIC that are based on measurements of

both sensors, SSM/I-SSMIS and AMSR-E. This henceforth called sensor comparison

emphasizes differences due to the different spatial resolutions of the sensors. We assess

the performance of PM SIC by calculating correlation coefficients, root-mean-square-

deviations (RMSD) and bias with respect to OBS SIC. Eventually, we are able to rank

the sea ice concentration retrieval algorithms used for comparison in this study.

The paper proceeds in the following way: Section 2 gives details about the sensors

http://aspect.antarctica.gov.au/
http://aspect.antarctica.gov.au/
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and the PM sea ice concentration data used, as well as an explanation of the method

we apply to compare those data sets with ship-based observation. Section 3 describes

the results for the different comparisons, namely the SSM/I-SSMIS-based comparison,

the AMSR-E-based comparison, and the sensor comparison. In Section 4, we discuss

our results and we end with our conclusions in Section 5.

3.2 Data and Methods

3.2.1 The Reference Ground-Truth Data Det: the extended

ASPeCt Data Set

The ASPeCt data archive contains data from 81 voyages and 1663 aircraft-based obser-

vations for the period 1980–2005 (Worby et al., 2008). The data contain each individual

observation, including characteristics of different ice types and snow cover. We use the

total SIC, which—among other quantities—is estimated visually from the ship’s bridge

typically every hour while the ship is within an ice cover. A single ship observation

accounts for an elliptically shaped area with about 1 km semi-minor axis. The ellipse’s

semi-major axis is aligned along the ship track. Ideally, the observation area should be

a disc of 1 km radius. However, due to the ship’s movement and the average duration

of each observation of 5 to 10 minutes, this disc is distorted to an ellipse. With reduced

visibility due to fog, clouds or precipitation, the area of observation can be even further

reduced. Each individual OBS SIC is compared with the value from a PM SIC grid

cell co-located to that location as will be described later.

We extend the ASPeCt data set with sea ice observations from cruises in 2006–2011.

The ice observations on these cruises have been carried out according to the ASPeCt

protocol. The appended data were collected on the following cruises:

� WWOS (September–October 2006; S. Willmes, pers. comm.; Haas et al. (2009)),

� SIMBA and SIPEX (September–October 2007; B. Ozsoy-Cicek, pers. comm.;

Ozsoy-Cicek et al. (2011)),

� ODEN and PALMER (December 2007–January 2008, December 2008–January

2009, January–February 2009; A. H. Tekeli, pers. comm.; Tekeli et al. (2011)),

� ICEBELL (November–December 2010; S. Ackley, pers. comm.)

� ODEN (December 2010–January 2011; S. Ackley, pers. comm.)

Limitations exist for the accuracy of the ASPeCt observations, i.e., OBS SIC. Total

SIC is estimated to the nearest 10%, which can give a rounding error of up to 5%.

A human ice observation is subjective and prone to contain errors which may vary
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between observers and which are difficult to quantify. However, tests with different

observers have shown that simultaneous observations of total SIC rarely differ by more

than 10% (Worby and Comiso, 2004). Due to the duration of a single ice observation,

the SIC estimate can represent an average of the real ice situation (Weissling et al.,

2009). Especially in the MIZ, SIC changes can be abrupt over short time scales with

alternating bands of open water and consolidated ice. Depending on the weather

situation, visibility can be low, reducing the validity of the observed SIC value. To

ensure as much consistency as possible, the ASPeCt data have been taken through

quality control processes (Worby et al., 1999). The analysis carried out by Weissling

et al. (2009) further that the average accuracy of ASPeCt SIC observations is 10% or

better.

3.2.2 Sea Ice Concentrations from Satellite Data

The SSM/I instrument has been launched onboard the Defense Meteorological Satellite

Program (DMSP) satellites. These satellites circuit the Earth in a sun-synchronous,

near-circular, polar orbit. During one day, a complete coverage of the polar regions is

achieved. The instrument is a multichannel PM radiometer scanning the ground scene

at constant angle of about 53 °incidence angle (Hollinger et al., 1987). With the launch

of DMSP F-16, SSM/I has been replaced by its successor, the SSMIS instrument.

SSMIS augments SSM/I’s imaging channels by several atmospheric sounding channels,

but still holds SSM/I’s capabilities in recording brightness temperatures (TB) with

imaging channels that are relevant for sea ice concentration retrievals, namely the

19GHz, the 22GHz, the 37GHz and the 85GHz imaging channels. The 85GHz data

provide higher spatial resolution and thus a finer grid resolution in contrast to the

low-frequency channels usually used for sea ice concentration retrievals; the area of one

85GHz grid cell is just one fourth of the grid cell area of the low-frequency channels.

85GHz data became only usable with DMSP F-11 in late 1991; for SSM/I on DMSP-

F8 and DMSP-F10, the 85GHz channels were too noisy at time and could not be used

(Tateyama and Enomoto, 2001). For coherency, data from SSM/I and SSMIS have

been inter-calibrated (Yan and Weng, 2008).

The AMSR-E instrument has been launched aboard the Aqua satellite (Kawanishi

et al., 2003). Like the DMSP satellites, Aqua is on a sun-synchronous, near-circular,

polar orbit. The AMSR-E instrument scans at similar frequencies and at a similar

incidence angle like the SSM/I and SSMIS instruments but has an improved spatial

resolution in comparison to SSM/I and SSMIS instruments (see Table 3.1). For in-

stance, the resolution of the AMSR-E 89GHz channels is about three times finer than

for the SSM/I 85GHz channels, which reduces the 85/89GHz footprint area by a factor

of 8 (Spreen et al., 2008).

From here onwards, we refer to the combined SIC data based on SSM/I and SSMIS

measurements when we mention SSM/I.
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Table 3.1: Footprint sizes of the different channels of SSM/I (Hollinger et al., 1990), SSMIS

(Grumman, 2002), and AMSR-E (Kawanishi et al., 2003).

Frequency (GHz) 19.35(SSM/I)

19.35(SSMIS)

18.7(AMSR-E)

22.235(SSM/I)

22.235(SSMIS)

23.8(AMSR-E)

37.0(SSM/I)

37.0(SSMIS)

36.5(AMSR-E)

85.5(SSM/I)

91.655(SSMIS)

89.0(AMSR-E)

SSM/I (km x km) 43x69 40x60 28x37 13x15

SSMIS (km x km) 45x74 45x74 28x45 13x15

AMSR-E (km x km) 16x27 18x32 8x14 4x6

3.2.3 Sea Ice Concentration Retrieval Algorithms

The sea ice concentration data used in the SSM/I comparison are based on the ARTIST

Sea Ice (ASI), the NASA Team (NT), the Bootstrap (BST) and EUMETSAT’s OSI-

SAF (OSI) retrieval algorithms. In the AMSR-E comparison, we use the enhanced

NASA Team (NT2) algorithm instead of NT. Moreover, OSI SIC are not available based

on AMSR-E data. An overview of the algorithms that we compare is given in Table 3.2.

All algorithms use a set of brightness temperature values—so-called tie-points—that

account for 0% and 100% ice concentration. These tie-points have been derived from

observations of different surface types like open water and sea ice separately for each

of the algorithms. Tie-points represent typical radiometric signatures of these surface

types. However, these signatures may vary considerably due to temperature changes,

ice and snow property changes and water vapor in the atmospheric column between

the surface and the radiometer onboard a satellite . These variations can result in sea

ice concentration biases and differences among the different algorithms.

NT uses 19GHz and 37GHz TB values to compute TB polarization ratios (PR) and

gradient ratios (originally described in Cavalieri et al. (1984); Gloersen and Cavalieri

(1986)). The main SIC information comes from PR at 19GHz. NT SIC has a grid

resolution of 12.5 km x 12.5 km for AMSR-E and 25 km x 25 km for SSM/I.

NT2 is an enhancement of the NT algorithm that has been designed to mitigate

some of the problems inherent to NT (Markus and Cavalieri, 2000). Besides 19GHz

and 37GHz channels, it uses 85GHz (SSM/I) or 89GHz (AMSR-E) TB values to

compute TB polarization ratios (PR) and gradient ratios. The main SIC information

again comes from PR at 19GHz. The other channels included mitigate the influence of

different ice types and layering in the snow that caused problems with NT. A weather-

correction is applied that uses a catalogue of simulated SIC depending on standard

atmospheric states. NT2 SIC has a grid resolution of 12.5 km x 12.5 km for AMSR-E

and 25 km x 25 km for SSM/I.

For Antarctica, BST utilizes vertically polarized TB values measured by the 19GHz

and 37GHz channels (Comiso, 1995; Comiso et al., 2003). The BST algorithm inter-

polates between TB value pair clusters forming for 0% and 100% SIC in TB space.
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BST SIC has a grid resolution of 12.5 km x 12.5 km for AMSR-E and 25 km x 25 km

for SSM/I.

OSI SIC (EUMETSAT, 2011; Eastwood et al., 2011) are retrieved from a hybrid

algorithm based on BST and the Bristol algorithm (Smith, 1996). It uses TB values

measured by the 19GHz and 37GHz channels. Instead of a weather filter, OSI incor-

porates an atmospheric correction through the use of a radiative transfer model. OSI

SIC has a grid resolution of 10 km x 10 km for SSM/I.

ASI uses 85GHz (SSM/I) and 89GHz (AMSR-E) TB polarization difference to

calculate SIC from tie-points for 0% and 100% ice concentration (Kaleschke et al.,

2001; Spreen et al., 2008). Using the higher-frequency TB measurements reduces the

footprint size and leads to an increased spatial resolution. As a trade-off, these channels

are more sensitive to influences from atmospheric cloud liquid water and water vapor

on TB (Oelke, 1997). ASI SIC has a grid resolution of 6.25 km x 6.25 km for AMSR-E

and 12.5 km x 12.5 km for SSM/I.

Except OSI, the SIC retrieval algorithms use the gradient ratio of vertically polar-

ized 19GHz and 37GHz TB values to filter out spurious SIC over open water (Gloersen

and Cavalieri, 1986; Cavalieri et al., 1995). A second weather filter involves vertically

polarized 19GHz and 22GHz (AMSR-E: 23GHz) TB values. However, these filters

can lead to a truncation of low SIC and of SIC associated with new ice due to the

contribution from atmospheric parameters like cloud liquid water or water vapor (An-

dersen et al., 2006). But, an increase of such parameters can also lead to erroneously

increased SIC. This increase is more pronounced for low SIC (Andersen et al., 2006).

For AMSR-E, NT2 and BST data were obtained from the National Snow and Ice

Data Center (NSIDC) as part of the (AMSR-E/Aqua Daily L3 12.5 km Brightness

Temperature, Sea Ice Concentration, & Snow Depth Polar Grids data set ; Cavalieri

et al., 2003). The ASI SIC used here originate from a re-processing of the AMSR-E TB

time series until 2011. This data set is available via the Integrated Climate Data Center

at the University of Hamburg (ICDC, http://icdc.zmaw.de). Note that the tie-

points used for this re-processing have been developed for the Arctic and have not yet

been adapted to meet the perhaps different conditions in the Antarctic (Spreen et al.,

2008). For SSM/I, NT and BST, were obtained from NSIDC, as part of the (Sea Ice

Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave

Data; Cavalieri, D. J., and C. Parkinson, and P. Gloersen, and H. J. Zwally, 1996)

and the (Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-

SSMIS data sets ; Comiso, 1999). OSI-SAF SIC (EUMETSAT, 2011) were downloaded

from ICDC (http://icdc.zmaw.de), as were ASI SIC (Integrated Climate Data Center

(ICDC), 2012).

http://icdc.zmaw.de
http://icdc.zmaw.de
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Figure 3.1: Scheme of the co-location method. See text for explanation.
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Table 3.2: Overview of the sea ice concentration algorithms; ”V” and ”H” refer to vertical

and horizontal polarization, respectively.

Algorithm Acronym Frequencies References

ARTIST Sea Ice ASI 85/89V,

85/89H

Svendsen et al. (1987),

Kaleschke et al. (2001),

Spreen et al. (2008)

Bootstrap Comiso BST 19V, 37V Comiso et al. (1997),

and references therein

Bristol BRI 19V, 19H,

37V, 37H

Smith (1996)

EUMETSAT OSI-SAF OSI 19V, 19H,

37V, 37H

EUMETSAT (2011),

Eastwood et al. (2011),

Tonboe and Nielsen (2011)

NASA-Team NT 19V, 19H, 37V Comiso et al. (1997),

and references therein

NASA-Team-2 NT2 19V, 19H,

37V, 37H,

85/89V, 85/89H

Markus and Cavalieri (2000)

3.2.4 Co-location and Comparison Method

Ship OBS represent sea ice conditions on a scale on the order of 1 km for a defined

time. An average speed of 4 knots (about 7 km/h) is a reasonable assumption, if a

ship crosses the sea ice cover during navigable sea ice conditions. Therefore, during

one day, a ship is able to transit a distance of 150-200 km, which corresponds to 12-16

grid cells with 12.5 km resolution; during light ice conditions, the ship’s speed and the

distance traveled are accordingly larger. In contrast, PM SIC are daily averages. Data

from several satellite overpasses from different times of one day are combined into one

PM SIC value. In addition, this PM SIC value represents sea ice conditions on a scale

on the order of 10-50 km. Temporal and spatial scales between OBS SIC and PM SIC

are therefore quite different. It can be expected that OBS SIC is more variable than

PM SIC, and a direct comparison of OBS SIC and PM SIC as they are is therefore

questionable. As a solution of this caveat, we suggest to compare both data sets on

a daily along-track average basis to align the different spatial and temporal scales of

ship-based observations with the satellite data.

Throughout this paper, the co-location of OBS SIC with PM SIC is as follows: PM

SIC are transformed onto a Cartesian grid (Fig. 3.1). The distance to the center of

the surrounding PM SIC grid cells is computed for each OBS SIC location, as shown

in Fig. 3.1 by the hatched pixels for the last ship position on day N. The grid cell
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Figure 3.2: The analysis structure in this investigation shown in flow chart form.

with the minimum distance is selected for the comparison, which is shown by the blue

colored pixels in Fig. 3.1. After the co-location, we compute the average along-ship

track OBS SIC for all observations of one day (Nday) and the average PM SIC for all

Nday co-located PM SIC grid cells (see Fig. 3.2).

For a single point in time, we require all data sets to provide a value: if one of the

data sets has a missing value, the specific point in time is not used for the comparison.

For the SSM/I comparison, this procedure yields a period from December 1991 until

February 2009 with 21625 OBS/PM SIC data pairs. Limits in the comparison time

frame are due the 85GHz channels only being reliably available from the start of DMSP

F-11 in December 1991 (see Section 3.2.2) and from the reprocessed OSI data ending

in 2009. For the AMSR-E comparison, we investigate the period from August 2002

until December 2010 with 3871 OBS/PM SIC data pairs. For the daily along-track

averaging, cases with Nday < 3 were discarded. This led to 1132 SIC daily averages

in total to be used for our SSM/I comparison, 516 of which were from winter months

(April–September) and 616 from summer months (October–March). For the AMSR-E

comparison, we obtain 320 SIC daily averages, 84 of which were from winter months

and 236 from summer months.
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3.2.5 Statistical Comparison

We assess the performance of the different PM SIC methods compared to OBS SIC

by calculating the correlation coefficient, the root-mean-square-deviation (RMSD) and

the bias, which we define here as the mean difference between PM SIC and OBS SIC.

Since SIC data are not normally distributed (see in Fig. 3.4, Fig. 3.7 and Fig. 3.9), we

calculate Spearman rank correlation coefficients (denoted as r from hereon) instead of

Pearson’s product moment correlation coefficients for our comparison of PM SIC and

OBS SIC.

3.3 Results

3.3.1 SSM/I period

The tracks of the ships from which the ice concentration data used in our comparison

are shown in Fig. 3.3. Positions are overlaid onto an ASI sea ice extent map for 7

September 2005 based on SSM/I data. Due to the advantage of a long comparison

period, SIC were collected all around Antarctica. Only an area between 0° and 30°E

and 60° and 55° S shows no ship tracks. This area is usually covered by sea ice only at

the end of the cold season.

The distribution of daily mean SIC in tenth of 100% for OBS, ASI, OSI, NT,

and BST shows only little differences among the compared SIC algorithms in the 5-

15% to 55-65% bins (Fig. 3.4, upper panel). In other bins in the histogram, several

differences exist. In general, the PM data tend to overestimate SIC values below 25%,

while for high SIC values individual differences occur. In the 75-85%-bin, NT tends

to overestimate SIC. In the >95%-bin, besides BST, all PM data sets underestimate

OBS SIC. During summer, differences only exist in the very low SIC regime (0-5%-bin)

and for very high SIC (>95%-bin) (Fig. 3.4, middle panel). During winter, however,

differences are more pronounced: NT strongly overestimates OBS in the 75-85%-bin,

ASI and OSI overestimate OBS in the 85-95%-bin and in the >95%-bin, only BST

comes close to the number of SIC values accounted for by OBS (Fig. 3.4, lower panel).

Fig. 3.5 and Table 3.3 summarize the statistical comparison between the individual

PM SIC and OBS SIC for the SSM/I data. The differences in the correlation coefficients

r lie within the uncertainty of the correlation: BST: r = 0.82±0.03, OSI: r = 0.83±0.03,

ASI: r = 0.80 ± 0.03, NT: r = 0.80 ± 0.03. The uncertainty is estimated separately

for each satellite product by a Monte-Carlo simulation of the data and 1000 repeated

calculations of r. During winter, correlations drop down to r = 0.67 ± 0.04 for BST,

r = 0.70±0.04 for OSI, r = 0.60±0.05 for ASI, and r = 0.65±0.04 for NT, respectively.

During summer, correlations slightly increase, although the different values for r usually

stay within the uncertainty range (BST: r = 0.86 ± 0.04, OSI: r = 0.87 ± 0.04, ASI:
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Figure 3.3: ASPeCt ship tracks (OBS) during the SSM/I comparison period (1991–2009)

projected onto an ASI sea ice extent map of September 7, 2005.
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Figure 3.4: Histogram of daily mean along-ship track SIC that are used in the SSM/I-

comparison. Top panel: all data, middle panel: data from summer months (October–March),

lower panel: data from winter months (April–September). Legends indicate the different

algorithms. In each panel, the number of days, N, used in the comparison is shown.
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Figure 3.5: Statistics of the comparison of daily mean along-ship track average SIC from PM

and OBS for SSM/I. Top panel: correlation coefficient, middle panel: RMSD, lower panel:

bias.
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Table 3.3: Summary of statistical numbers for SSM/I comparison.

BST OSI ASI NT

CC 0.82± 0.03 0.83± 0.03 0.80± 0.03 0.80± 0.03

all data RMSD 13.2± 0.4 13.2± 0.4 14.3± 0.4 16.7± 0.5

bias −2.0± 0.9 −5.0± 0.9 −3.2± 0.9 −10.6± 0.9

CC 0.86± 0.04 0.87± 0.04 0.85± 0.04 0.86± 0.04

summer RMSD 15.3± 0.6 13.8± 0.6 16.5± 0.7 16.4± 0.7

bias −0.7± 1.2 −2.4± 1.2 −2.1± 1.2 −7.8± 1.2

CC 0.67± 0.04 0.70± 0.04 0.60± 0.05 0.65± 0.04

winter RMSD 10.1± 0.4 12.5± 0.5 11.2± 0.5 17.1± 0.8

bias −3.6± 1.3 −8.1± 1.3 −4.5± 1.3 −13.9± 1.3

r = 0.85± 0.04, NT: r = 0.86± 0.04). RMSD and bias show larger differences between

the satellite data. Notably, NT shows high values for bias and RMSD: the bias is

at least -10% in all data and almost -14% in summer months, the RMSD is more

than 16% in all seasons. BST has a very low bias, only increasing to -3.6% in winter

months. RMSD values for OSI range between 12.5% in winter and 13.8% in summer.

ASI shows a greater RMSD value in summer than winter. The bias is generally slightly

lower for ASI than compared to OSI. Both ASI and OSI range between the minimum

values for BST and the maximum values for NT. Besides NT, all algorithms show a

lower winter than summer bias, but NT’s winter bias increases to 17.1%.

3.3.2 AMSR-E Period

The positions of OBS used for the AMSR-E comparison are overlaid onto a AMSR-E-

based ASI sea ice extent map for 7 September 2005 (Fig. 3.6). Due to the limited

number of years available for this comparison, OBS SIC were only collected in the

Weddell Sea, around the Antarctic Peninsula, Bellingshausen Sea, Amundsen Sea,

Ross Sea and the South Indian Ocean.

The distribution of daily mean SIC for OBS, ASI, NT2, and BST shows almost

no discrepancies among the compared SIC algorithms in the 5-15% to 55-65% bins

(Fig. 3.7, upper panel). The NT2 algorithm detects more sea ice in the >95%-bin

than the other SIC algorithms. Furthermore, all algorithms overestimate very sparse

ice concentration of OBS. The overestimation of >95% OBS SIC by PM data is most

pronounced in summer, especially for NT2 (Fig. 3.7, middle panel). Note that OBS

SIC have a maximum probability in the 85-95%-bin with a following decrease in the

>95%-bin. This is not matched by the PM data. In contrast to NT2’s overestimation

of SIC >95%, NT2 underestimates the number of SIC values falling into the 85-95%-
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Figure 3.6: ASPeCt ship tracks (OBS) during the AMSR-E comparison period (2002–2009)

projected onto an ASI sea ice extent map of September 7, 2005.
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Figure 3.7: Same as Fig. 3.4, but for the AMSR-E comparison.
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Table 3.4: Summary of statistical numbers for AMSR-E comparison.

BST ASI NT2

CC 0.85± 0.06 0.84± 0.06 0.84± 0.06

all data RMSD 11.6± 0.7 13.3± 0.7 15.8± 0.9

bias 0.3± 1.7 0.0± 1.7 8.1± 1.7

CC 0.88± 0.06 0.89± 0.07 0.87± 0.06

summer RMSD 12.7± 0.8 14.5± 0.9 17.7± 1.2

bias 0.3± 2.0 0.1± 2.0 9.4± 2.0

CC 0.60± 0.11 0.51± 0.11 0.55± 0.11

winter RMSD 7.8± 0.8 9.3± 1.0 8.7± 0.9

bias 0.3± 3.3 −0.1± 3.3 4.7± 3.3

bin. ASI and BST also show this discrepancy, but not as pronounced as NT2. In

summer months, there is a peak of OBS SIC in the 45-55%-bin that is not reproduced

by PM SIC. During winter, NT2 again overestimates very high ice concentration and

underestimates the number of observations in the bin below, the 85-95%-bin (Fig. 3.7,

lower panel). However, due to the small number of data pairs during winter months,

these differences are not as significant as in summer.

Fig. 3.8 and Table 3.4 summarize the statistical comparison between the individual

PM SIC and OBS SIC for the AMSR-E period. In contrast to the SSM/I comparison,

correlation coefficients are slightly increased (BST: r = 0.85±0.06, ASI: r = 0.84±0.06,

NT: r = 0.84± 0.06), but with a concurrent increase of the uncertainty in r, which is

due to the lower number of data pairs for the AMSR-E period. Correlation coefficients

in summer increase even further to almost 0.9 for all PM SIC, while they decrease

in winter to about 0.5 for ASI and 0.6 for BST. As for SSM/I, we recognize the same

tendency for RMSD: summer values are greater than winter values. While there is only

very little bias for BST and ASI in both summer and winter, NT2 has a pronounced

summer bias, almost twice as large as the 5% bias in winter.

3.3.3 Sensor Comparison

In a third comparison done is this study, we assess the performance of two PM SIC

retrieval algorithms that are applicable to SSM/I and AMSR-E data. We choose BST

and ASI for this comparison, as they tend to provide the best results in the previous

comparisons. The positions of OBS used for this comparison are identical to those

shown in Fig. 3.6.

The distribution of daily mean SIC for OBS, ASI-AMSR-E, ASI-SSM/I,

BST-AMSR-E, and BST-SSM/I show the largest differences for both seasons in the
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Figure 3.8: Same as Fig. 3.5, but for the AMSR-E comparison.
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Figure 3.9: Same as Fig. 3.4, but for the sensor-comparison.
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Figure 3.10: Same as Fig. 3.5, but for the sensor-comparison.
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Table 3.5: Summary of statistical numbers for inter-sensor comparison for ASI and BST SIC.

BST/AMSR-E BST/SSMI ASI/AMSR-E ASI/SSMI

CC 0.84± 0.06 0.83± 0.05 0.84± 0.06 0.81± 0.06

all data RMSD 11.6± 0.7 12.4± 0.7 13.3± 0.7 13.2± 0.7

bias 0.3± 1.7 0.5± 1.7 0.1± 1.7 −0.8± 1.7

CC 0.87± 0.07 0.85± 0.06 0.89± 0.06 0.86± 0.06

summer RMSD 12.8± 0.8 13.8± 0.9 14.6± 1.0 14.2± 0.9

bias 0.3± 2.0 0.7± 2.0 0.2± 2.0 0.3± 2.0

CC 0.59± 0.11 0.59± 0.11 0.52± 0.11 0.53± 0.11

winter RMSD 7.7± 0.8 7.8± 0.8 9.2± 1.0 9.7± 1.0

bias 0.4± 3.2 0.1± 3.2 0.0± 3.2 −3.8± 3.2

high SIC regime (SIC >85%) (Fig. 3.9, upper panel). These differences are more pro-

nounced in winter months. However, winter contains a much lower number (N=86)

of data pairs than summer (N=320). In addition, PM SIC tend to overestimate very

low SIC (<5%). This is more pronounced in summer, which depicts the season with

a higher fraction of open water within the sea ice cover. Contrary to this, sea ice is

often wet in this season and thus difficult to be detected in PM data. It seems that

navigating through very open ice areas during summer (and thus causing a low bias)

is outweighed by the effect of wet ice being invisible for PM but visible for OBS.

Fig. 3.10 and Table 3.5 summarize the statistical comparison between the individual

PM SIC and OBS SIC for the sensor comparison, covering the years 2002–2010. There

is no significant difference in accuracy between either different algorithms applied to

the same sensor data or the same algorithm applied to different sensor data. A few

tendencies, however, are recognizable: considering all statistical numbers, BST shows

more congruency to OBS with lower RMSD values, a better correlation in winter, and

a near-zero bias. SIC based on AMSR-E data tend to agree better with OBS SIC than

SIC based on SSM/I data. Similar to the other two comparisons, RMSD values and

correlations are reduced during winter.

3.4 Discussion

In the previous section we have presented the results of our comparison between OBS

SIC and co-located satellite PM SIC based on several algorithms. The results turned

out to be quite different for the different retrieval algorithms used. But, are the ob-

tained results sufficient to give a recommendation about which SIC retrieval algorithm

is best to use based on a comparison with OBS SIC? This is going to be discussed in

the following section.
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Retrieval algorithms for SIC differ in how ice concentration values are derived from

PM-measured brightness temperatures. They use different combinations of different

channels that have distinct characteristics, e.g., the frequencies differ in their sensitivity

to atmospheric water vapor and liquid water content, both of which influence the

radiation received at the radiometer. Additionally, the algorithms need to use tie-

points that represent typical radiometric signatures of ice and open water. These tie

points are usually derived from satellite measurements and contain the influence of the

mean atmospheric state. In atmospheric conditions that are different from this mean

atmospheric state, the derived tie-points will lead to biased SIC values. While the open

water tie-point is generally influenced by atmospheric variability, the ice tie-point is

influenced by sea ice emissivity variations. Therefore, concentrations retrieved at low

ice concentrations are most sensitive to the choice of the open water tie-point and high

ice concentrations are prone to surface processes (Andersen et al., 2006). Generally,

one seeks for a high signal-to-noise ratio when choosing the tie-points aiming for a high

sensitivity in retrieving PM SIC. Open water tie-points are usually set very close to

a minimum brightness temperature or maximum brightness temperature polarization

difference or ratio, which corresponds to a clear-sky, dry atmosphere and a smooth

water surface. The use of weather filters reduces the influence of atmospheric water

and wind on the emissivity of the open water surface. However, this can lead to a

cut-off of low SIC values. Only the reprocessed OSI data provide SIC without a cut-

off by using dynamic tie-points that, for instance, minimize the effect of atmospheric

emission (Eastwood et al., 2011).

Improvements of AMSR-E data over SSM/I data that are relevant for this com-

parison include higher spatial resolution at all scanned frequencies and a wider swath

width. The wider swath width leads to more brightness temperature measurements

that are used to calculate a daily-mean SIC value from the specific algorithm and,

thus, can increase the significance of a calculated daily-mean SIC value during static

ice conditions. In the MIZ, this can still lead to a smearing of the ice edge, especially

under very dynamic ice conditions, e.g., during the passing of a cyclone. When retriev-

ing geophysical parameters like the sea ice concentration, the higher spatial resolution

of AMSR-E reduces uncertainties. Such uncertainties can partly be due to smaller

spatial variability of differently emitting surfaces, e.g., different ice types, snow cover

or water surfaces. These different surface types particularly influence the use of mixing

algorithms (Comiso and Nishio, 2008), especially in the MIZ, where the higher spatial

resolution of the AMSR-E sensor allows for a more precise detection of the ice edge

(Worby and Comiso, 2004). In our case, with a finer spatial resolution one should get a

better representation of leads and open water areas in high ice concentration regimes,

i.e., of SIC in the range >85%. The same applies to using 85GHz (SSM/I) or 89GHz

(AMSR-E) data compared to using the standard frequencies 19GHz and 37GHz as

was demonstrated for SSM/I by Kaleschke et al. (2001) and Kern (2004).

Sea ice continuously changes its emissivity from its initial growth stage to thick first-

year ice (Perovich et al., 1998; Grenfell et al., 1998; Hwang et al., 2007). In particular
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thin sea ice with thicknesses below about 20 cm often has lower microwave emissivities

than thicker sea ice or snow covered sea ice. Therefore, PM SIC retrieval algorithms

can underestimate SIC in areas of thin sea ice by an unknown amount (Cavalieri, 1994;

Comiso et al., 2003; Spreen et al., 2008).

We have shown SIC values in the histograms (Fig. 3.4, Fig. 3.7 and Fig. 3.9) sorted

in bins for 0%-5%, 5%-15%, 15%-25% · · · 85%-95%, and 95%-100% sea ice concen-

tration according to the increments used in the ASPeCt protocol when observing SIC.

Due to the daily averaging, we have values that differ from this quantization into 10%

increments. In order to keep this quantization visible and to also consider the accuracy

of the ASPeCt observations, we used as division of PM SIC the same increments that

were used in the ASPeCt protocol. However, the differences between PM SIC and OBS

SIC shown in the histograms (Fig. 3.4, Fig. 3.7, and Fig. 3.9) are highest in neighboring

bins: 85-95% and >95%. We cannot exclude that using a different binning like 0%-

10%, 10%-20% · · · 90%-100% might change the results of the histograms. However

we are confident that the main results of our study, which are summarized in Fig. 3.5,

Fig. 3.8, and Fig. 3.10, will not change due to a different binning.

The number of data pairs differs for the different seasons. Especially in the AMSR-E

comparison, only 25% of the data fall into winter months. However, due to the number

of data points, with at least 3 observations required for a daily-average value, the results

for the winter season can still be regarded as significant.

Ship-based observations are often biased towards thin ice regions, because ships tend

to avoid thick and ridged ice areas and rather follow leads and openings (Ozsoy-Cicek

et al., 2011). Ridged ice areas can correspond to regions of convergent ice motion and,

thus, high ice concentrations while regions with many leads and openings correspond

to divergent ice motion and can have lower ice concentrations. Therefore, we cannot

exclude that OBS SIC are slightly biased towards low ice concentrations, particularly

during summer when leads and openings do not freeze over. At the same time, however,

PM SIC might also be biased low in areas with leads and openings due to the higher

fraction of thin ice; this effect would be more pronounced during winter though.
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Figure 3.11: Example of a daily track crossing the sea ice edge in the Weddell Sea on November 14, 2004. Sea ice concentrations based on

AMSR-E are shown for (left to right): ASI (grid resolution: 6.25 km), BST (grid resolution: 12.5 km), and NT2 (grid resolution: 12.5 km).

The daily mean and the daily standard deviation for OBS, ASI, BST and NT2 are 49.1% ± 33.1%, 64.0% ± 26.3%, 52.5% ± 8.4%, and

89.9 % ± 15.7%, respectively.
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In this study, we do not distinguish between different regions and potentially differ-

ent sea ice regimes. The Bellingshausen Sea, for instance, is known for more compact,

thicker, and less mobile first year sea ice (Worby et al., 2011). Distinguishing be-

tween different regions could help to understand where different algorithms have their

strengths or limitations. However, this is not intended in this study, which rather

looks at the performance of different algorithms compared to a long-term basin-scale

ground-truth data set. Due to the number of observations, we regard our conclusion as

robust and being generally true for the Antarctic sea ice as a whole. If we had looked

at different ice types or had tried to distinguish between different regions, the number

of data pairs would have dropped substantially and the results would have been less

robust.

In all 3 comparisons shown in this study, BST SIC has the closest correspondence

to OBS SIC, both for SSM/I and AMSR-E data. However, the higher resolution of the

ASI algorithm can provide more information than algorithms using the lower frequency

channels for their retrievals. One aspect is the higher spatial variability that is more

accurately reproduced by ASI (see Fig. 3.11). This can be an advantage for navigational

purposes and for mesoscale process studies (Kaleschke et al., 2001).

3.5 Conclusion

We compare passive microwave (PM) derived sea ice concentration (SIC) with those

from ship-based observations (OBS) and we focus on different retrieval algorithms

that are based on SSM/I-SSMIS and AMSR-E measurements. OBS SIC are collected

according to the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol. We

assess the quality of PM SIC by calculating correlation coefficients, root-mean-square-

deviations (RMSD) and biases with respect to OBS SIC. In contrast to previous studies,

we apply a different method to compare the co-located OBS SIC with PM SIC to

account for the different temporal and spatial scales between locally observed SIC on

a scale on the order of 1 km and those derived with PM sensors on a scale on the order

of 10 km. We use daily along-ship track average SIC.

According to our analysis, we can rank the investigated retrieval algorithms: in

the SSM/I comparison, Bootstrap (BST) SIC reveal a high correlation, the smallest

RMSD, and a very low negative bias compared to OBS SIC and thus again performs

best out. EUMETSAT’s OSI-SAF (OSI) SIC show a similar RMSD, but a larger

absolute bias than BST and thus OSI ranks as second best algorithm. ARTIST Sea

Ice (ASI) SIC show a significantly larger RMSD and also a very low bias. NASA Team

(NT) SIC, while providing a similarly high correlation, clearly perform worst out of

our choice with highest RMSD values and a significantly larger bias of -10% or more.

In the AMSR-E comparison, BST SIC reveal the smallest RMSD, and a near zero

bias compared to OBS SIC and thus perform best out of our choice of algorithms.
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ASI SIC show a significantly larger RMSD and also a near zero bias. Like NT in

the SSM/I-SSMIS comparison, enhanced NASA Team (NT2) SIC provide a similarly

high correlation, but perform worst out of our choice of algorithms with RMSD values,

except for winter, above those for ASI SIC and a significantly larger bias of roughly

8%.

Due to the length of the different PM SIC time series, we have an overlap of OBS

SIC and PM SIC that leads to periods of investigation spanning 1991–2009 for SSM/I

data, a total of 21625 data pairs, and spanning 2002–2010 for AMSR-E data, a total

of 3871 data pairs. To our knowledge, there has not been a comparison with this

number of ship-based observations of sea ice concentrations with PM-derived sea ice

concentrations and we therefore regard our results as robust. This work is an important

contribution to sea ice concentration evaluation in the in-situ data sparse region of the

Southern Ocean.
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Chapter 4

Investigating high-resolution

AMSR2 sea ice concentrations

during the February 2013 fracture

event in the Beaufort Sea1

Leads with a length on the order of 1000 km occurred in the Beaufort Sea in February

2013. These leads can be observed in Moderate Resolution Imaging Spectroradiometer

(MODIS) images under predominantly clear sky conditions. Sea ice concentrations

(SIC) derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2) using

the Bootstrap (BST) algorithm fail to show the lead occurrences, as is visible in the

MODIS images. In contrast, SIC derived from AMSR2 using the Arctic Radiation

and Turbulence Interaction Study (ARTIST) sea ice algorithm (ASI) reveal the lead

structure, due to the higher spatial resolution possible when using 89GHz channel

data. The ASI SIC are calculated from brightness temperatures interpolated on three

different grids with resolutions of 3.125 km (ASI-3k), 6.25 km (ASI-6k) and 12.5 km

(ASI-12k) to investigate the effect of the spatial resolution. Single-swath data is used

to study the effect of temporal sampling in comparison to daily averages. For a region

of interest in the Beaufort Sea, BST and ASI-3k show area-averaged SIC of 97%± 0.7%

and 93%± 7.0%, respectively. For ASI-6k, the area-averaged SIC are similar to ASI-3k,

while ASI-12k data show more agreement with BST. Visual comparison with MODIS

True Color imagery exhibits good agreement with ASI-3k. In particular, ASI-3k are

able to reproduce lead structure and size in the sea ice cover, which are not or are less

visible in the other SIC data. The results will be valuable for selecting a SIC data

product for studies of the interaction between ocean, ice, and atmosphere in the polar

regions.

1 This chapter is published as: Beitsch, A., Kaleschke, L., and Kern, S., 2014: Investigating High-

Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort

Sea. Remote Sens., 6(5), 3841–3856, doi:10.3390/rs6053841.
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4.1 Introduction

The polar regions are essential components of the global climate system. The Arctic

and Antarctic sea ice cover have considerable effects on ocean-atmosphere heat trans-

fer (Maykut, 1982) and on the formation of deep water masses (Stossel, 2010). The

albedo of the polar ice cover is crucial for the global heat balance of the Earth’s cli-

mate (Curry et al., 1995). During the last three decades, the use of remote sensing

products to understand key processes in the global climate system has substantially

increased (Stroeve et al., 2012). For instance, sea ice concentrations (SIC) are used

for investigations in climate research and for data assimilation in Numerical Weather

Prediction (Uotila et al., 2011; Donlon et al., 2012). Additionally, changes in sea ice

extent have large impacts on the Arctic climate system, e.g., the connection of and

interaction between sea ice, air temperature and permafrost on continents and ocean

shelves is a matter of current research (Parmentier et al., 2013). Since the 1970s, nu-

merous satellite missions have been launched and a considerable number of algorithms

has been developed to derive SIC from passive-microwave (PM) data. These algorithms

use approximations of the radiative transfer equation for electromagnetic waves in the

microwave regime, empirical approaches that consider relationships between brightness

temperatures (TB) and SIC, or a combination of both (Steffen et al., 1992).

In the course of the “Arctic Radiation and Turbulence Interaction Study”

(ARTIST), the ARTIST sea ice algorithm (ASI) was developed using the 85GHz chan-

nels of the Special Sensor Microwave/Imager (SSM/I) to provide high spatial resolution

SIC (Kaleschke et al., 2001). The algorithm is based on the Svendsen sea ice algo-

rithm for near 90GHz frequencies (Svendsen et al., 1987). With the start of NASA’s

Advanced Microwave Scanning Radiometer (AMSR-E) on-board the Aqua satellite,

the spatial resolution at 89GHz became nearly three times higher than for SSM/I at

85GHz (Spreen et al., 2008). Consequently, the ASI algorithm was adapted for the

use of 89GHz measurements (Spreen et al., 2008). Despite the enhanced sensitivity to

the atmospheric influence at these frequencies compared to lower microwave frequen-

cies, this algorithm provides almost weather-independent SIC (Kaleschke et al., 2001;

Spreen et al., 2008). A detailed description and derivation of the algorithm and the

weather filtering can be found in Kaleschke et al. (2001) and Spreen et al. (2008).

AMSR-E-based ASI SIC provide a horizontal resolution that is up to four times

higher than another algorithm that is widely used to retrieve SIC, the Bootstrap al-

gorithm (Comiso et al., 1997, 2003; Comiso, 2004). The Bootstrap algorithm (BST)

mainly utilizes the TB measured at the frequencies of 18.7 and 36.5GHz and, there-

fore, depends on a larger footprint size of the measured TB data, which reduces the

spatial resolution of the retrieved SIC. With the launch of the Japan Aerospace Ex-

ploration Agency’s (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2),

the improved successor of AMSR-E, the spatial resolution of ASI SIC has even further

improved, due to both scans available from the feedhorns measuring at 89GHz.
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This work studies the effect of spatial resolution and temporal sampling in ASI SIC

on the ability to resolve local structures, like leads within the sea ice cover. Leads are

large, elongated or linear-like fractures in a formerly solid sea ice cover that develop

due to divergence and shear forces within the sea ice cover (Marcq and Weiss, 2012).

Through uncovering the relatively warmer ocean surface to the cold winter atmosphere,

leads are of significant importance for the local near-surface heat balance of the winter

Arctic atmosphere (Marcq and Weiss, 2012). From a modeling study of atmosphere-

ocean heat exchange due to lead openings, it is inferred that a change in SIC of 1%

can cause a near-surface temperature increase of up to 3.5K (Lüpkes et al., 2008).

The paper proceeds in the following way: Section 2 briefly reports new features

of the AMSR2 sensors. Section 3 introduces the new 3.125 km ASI SIC and lower

resolution derivatives of ASI and JAXA’s AMSR2-based SIC that are used in this

study for comparison. In Section 4, we present the comparison, and we end with a

discussion in Section 5.

4.2 AMSR2

The AMSR2 on-board the Global Change Observation Mission 1st-Water (GCOM-W1)

satellite is the successor instrument of AMSR-E (Japan Aerospace Exploration Agency,

2013). It was launched in May 2012 and placed into the Afternoon Constellation (A-

Train Japan Aerospace Exploration Agency, 2013). The A-Train consists of a number

of Earth observing satellites that orbit the Earth in a sun-synchronous orbit in close

proximity at about a 700 km height above the Earth’s surface. The constellation crosses

the equator at around 1:30 p.m. mean solar time (L’Ecuyer, 2011). AMSR2 Level-1 TB

data are available for the period starting in July 2012 via JAXA’s GCOM-W1 Data

Providing Service.

The AMSR2 instrument is a conically-scanning PM radiometer system that mea-

sures in seven frequency bands ranging between 6.925 GHz and 89.0 GHz at both

horizontal and vertical polarization. The antenna’s different feedhorns scan at an in-

cidence angle of 55°and provide a 1450 km swath width at the Earth’s surface (Japan

Aerospace Exploration Agency, 2013). Compared to AMSR-E, AMSR2 provides im-

proved characteristics (Japan Aerospace Exploration Agency, 2013):

� The size of its main reflector has increased from 1.6m (for AMSR-E) to 2.0m (for

AMSR2), which leads to smaller footprints and, thus, higher spatial resolutions

for the different frequencies;

� Its calibration system has improved, leading to higher temperature stability when

calculating TB from sensor data, due to a more homogeneously calibrated warm

load—the High Temperature Noise Source (HTS); and
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� A redundant momentum wheel has been added to the system to increase relia-

bility.

4.3 AMSR2-Based Sea Ice Concentrations

4.3.1 Processing of Sea Ice Concentrations using ASI

For the new ASI AMSR2 SIC, we process single swaths of Level-1R TB data that are

based on Level-1B TB data. In the Level-1B data, the center of a footprint at each

frequency that corresponds to the same scan number or pixel can differ in its location

on the Earth’s surface by several kilometers (Maeda and Taniguchi, 2013). For the

Level-1R data, the different channel’s footprints have been resampled to match the

same location and the resolution of lower frequency channels. For that, Level-1B TB

data are recalculated using the Backus–Gilbert method (see Japan Aerospace Explo-

ration Agency, 2013; Stogryn, 1978; Hunewinkel et al., 1998)). This method improves

the retrieval accuracy of higher level products, and we expect the weather filters to give

more consistent results when the 18.7GHz, the 23.8GHz and the 36.5GHz channels

are georeferenced and Backus–Gilbert-interpolated to the same footprint location. To

interpolate the satellite measurements onto a regular grid, we resample the swath-based

TB using a nearest neighbor approach. From the gridded swath-based TB data, we

calculate daily-mean TB maps. Based on these daily-mean TB maps, SIC are calcu-

lated, and the weather filters are applied. For single-swath SIC, the single-swath TBs

are processed accordingly without calculating daily-mean TB maps. Then, monthly

maximum-extent masks from the National Snow And Ice Data Center (NSIDC User

Service, 2013)) are used to remove false SIC that may still exist over open water areas.

These monthly maximum-extent masks are provided on the original 25 km grid used

for the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and SSM/I

SIC. We interpolate these masks to the 12.5 km, 6.25 km and 3.125 km grids that are

used for our data and manually correct for coarse coastlines stemming from the original

25 km resolution. Due to the long-term decline in sea ice extent and SIC (Cavalieri and

Parkinson, 2012), we consider the potential very unlikely that the used climatology cuts

off sea ice outside of the masked regime. Note that the tie-points used in the AMSR2

SIC processing have not been adapted to the new sensor, and the former AMSR-E

derived tie-points (Spreen et al., 2008) are still used. This is a valid approach in this

study, because of the similarities of the AMSR2 instrument to the AMSR-E instru-

ment. For long-term time series analysis using data from both sensors, an adjustment

would be needed. We provide ASI-AMSR2 3.125 km SIC for both hemispheres on a

daily basis through the Integrated Climate Data Center (ICDC) of the University of

Hamburg (see http://icdc.zmaw.de).

For this study, we also calculate ASI SIC at 6.25 km (ASI-6k) and 12.5 km (ASI-12k)

resolution. ASI-6k is intended to simulate AMSR-E-based SIC by only considering

http://icdc.zmaw.de
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Table 4.1: Advanced Microwave Scanning Radiometer 2 (AMSR2) footprint sizes at the

different frequencies according to the Global Change Observation Mission 1st-Water (GCOM-

W1) “SHIZUKU” Data Users Handbook (Japan Aerospace Exploration Agency, 2013).

Center Frequency (GHz) 6.925 7.3 10.65 18.7 23.8 36.5 89.0 (A&B)

Field of view (km2) 35 × 62 35 × 62 24 × 42 14 × 22 15 × 26 7 × 12 3 × 5

89GHz B-scan measurements to derive SIC. The A-scan of the 89GHz feedhorn of

AMSR-E measurements started producing corrupted measurements from the period

starting in November 2004. For ASI-12k, we simulate the larger footprint size of the

18GHz channel (see Table 4.1) by resampling multiple 89GHz scans within a search

radius that matches the 18GHz footprint size. The scans found within the search

radius are averaged by Gaussian weighting considering the distance to the center of

the search field. Then, the resampled TB data are input to the SIC retrieval. Thereby,

we investigate the effect of the larger footprint on the SIC retrieval. The 18GHz TB

data, together with 36GHz TB data, provide the main ice information in the BST

processing (see Section 4.3.2).

4.3.2 AMSR2 BST Sea Ice Concentrations

The ASI-based SIC are compared with SIC that are derived using the Bootstrap algo-

rithm provided as Level-3 data by JAXA (Comiso and Cho, 2013). Daily-mean SIC

are provided separately for ascending and descending swaths at 10 km resolution via

JAXA’s GCOM-W1 Data Providing Service. We average both daily products to one

daily-mean SIC map to compare with the ASI-based daily-mean SIC maps.

4.4 Comparison of the High-Resolution ASI SIC

with MODIS Data, BST SIC and ASI SIC at

Coarser Resolutions

To evaluate the performance of the new high-resolution SIC, we compare ASI-3k with

ASI-6k, ASI-12k and AMSR2-based BST SIC for a period in February 2013 in the Beau-

fort Sea. Additionally, these SIC are compared with 250-m resolution MODIS True

Color (MODIS VIS) and 4 km resolution MODIS ice surface temperatures (MODIS

IST Hall et al., 2006, Figures 4.1–4.3).

All maps in Figures 4.1–4.3 display a part of the southern Beaufort Sea for 25, 26

and 27 February, respectively. From 21 February onwards, the sea ice cover started

moving towards the Bering Strait, with several leads appearing every day in the west-

ern area shown in the maps. During the following days, progressively more leads
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Figure 4.1: Comparison of 250-m MODIS True Color (MODIS VIS), 4 km MODIS ice surface

temperature (MODIS IST), ASI-3k, ASI-6k, ASI-12k and Bootstrap (BST) sea ice concen-

trations (SIC) for 25 February 2013. All maps display a part of the southern Beaufort Sea,

with the Canadian and Alaskan coasts in the upper and left parts of the maps. The northern

tip of Banks Island can be seen at the lower margin of the maps. An image inset with a

zoom of a specified region (170 km× 170 km ) is placed on the continental areas for a closer

examination of the individual data sets. An arrow depicts the direction to the North Pole.

The white areas in MODIS IST depict missing data.
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Figure 4.2: Same as Figure 4.1, but for 26 Februar 2013.
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appeared towards the Canadian Arctic Archipelago (CAA), until, on 27 February, re-

cently formed and partly refrozen leads pervaded the sea ice cover of the whole Western

Arctic. Only the land-fast ice close to the Canadian coast and the sea ice in the CAA

was intact. In this study, we focus on a ∼1000 km-long lead (henceforth called Feb-

26-lead) that developed between 25 February and 26 February and is located between

76°N and 135°W in the lower right part of the maps and close to the coast of Alaska,

near Prudhoe Bay (approximately at 70°N and 148°W, Figure 4.2).

In MODIS VIS (Figure 4.2), the Feb-26-lead appears as a dark opening in the

otherwise bright sea ice cover. Distinct temperature differences exist between the partly

open and partly refrozen areas of the Feb-26-lead and the surrounding solid ice cover,

visible in the MODIS IST map. These temperature differences are 20K maximum

for the inset area. In this inset, parts of the temperature data close to the location

of the Feb-26-lead have been filtered due to a cloud mask or because the surface is

detected as open water. However, the structure and the position of the Feb-26-lead

are recognizable. Most of the full MODIS tile is cloud free and provides clear-sky

conditions enabling comparison with the different AMSR2 SIC data.

Other leads, which had formed on 25 February (see Figure 4.1), are located west

of the Feb-26-lead and show a higher albedo, indicating a refrozen ice surface. On

26 February, the albedo in the Feb-26-lead increases from left to right (MODIS VIS,

Figure 4.2); this suggests the presence of open water at the windward side and a

new ice cover becoming progressively thicker, building up towards the leeward side.

Additionally, open water patches can be identified at some locations in this new ice

cover. The moisture and heat input through the openings into the atmosphere generates

clouds. These clouds spread westward by the easterly winds and form cloud streets in

the lee of the openings. Most of these clouds are detected by the cloud mask used in

the MODIS IST data set (see the inset in MODIS IST, Figure 4.2). The MODIS IST

data from within the Feb-26-lead suggest a mixture of open water and thin ice, but

the grid resolution of 4 km is too large to adequately discriminate both surface types.

The Feb-26-lead shows a higher albedo on 27 February (MODIS IST in Figure 4.3),

indicating thickening of the new ice cover. Additionally, MODIS IST exhibits lower

temperatures for the lead area (MODIS IST, Figure 4.3). For the solid sea ice cover, ice

surface temperatures decrease with increasing latitude, mirroring the low near-surface

air temperatures during the period of investigation (not shown).

The lower four panels of Figures 4.1 and 4.2 exhibit quite substantial differences

among the SIC data. For the three ASI maps—ASI-12k, ASI-6k and ASI-3k—these

differences result from the different grid resolutions and, therefore, from the sampling

routines applied (see Section 4.3.1). Most details of the Feb-26-lead are visible in the

ASI-3k map. In contrast, BST shows only reduced SIC for the area of the Feb-26-lead.

Only close to the Alaskan coast, where the lead has its maximum width, BST SIC are

as low as ∼50% SIC. The difference between BST and ASI-3k in area-averaged SIC

for the zoomed area in the insets is ∼4% on 26 February (numbers are shown in the
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Figure 4.3: Same as Figure 4.1, but for 26 Februar 2013.
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Figure 4.4: Histogram of the relative probability of SIC in the insets shown in Figures 4.1–

4.3, respectively. Sea ice concentrations from ASI-3k, ASI-6k, ASI-12k and BST are shown

in bins of 10%, for ranges 21%–30%, 31%–40%, ... 91%–100%. A legend in the lowest panel

indicates the different data. Note that the abscissa in the three panels start with 20%.
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Figure 4.5: Evolution of the Feb-26-lead in ASI-3k from 25 February until 27 February 2013.

We choose individual swaths, which cover the region of interest and depict the opening and

refreeze of the Feb-26-lead. The date and start time of the individual swaths is displayed in

the individual maps. The same projection and labeling as in Figures 4.1–4.3 apply. The gray

areas depict missing data.
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upper right corner of the individual insets for SIC data in Figures 4.1–4.3). For single

pixels within this lead, differences between ASI-3k and BST can be 60% in sea ice

concentration. In contrast, ASI-12k data look very similar to BST, suggesting that the

footprints at 18 and 36 GHz are too large to resolve the Feb-26-lead. These footprint’s

signatures include contributions from the nearby thick sea ice.

The gain of information due to the higher resolution in SIC data is shown in his-

tograms in Figure 4.4. ASI-3k and ASI-6k are able to detect SIC in the range of

30–80% on 25 February and 26 February, respectively. These low- to mid-level SIC

stem from the lead, which is westward of the Feb-26-lead (see Figure 4.1). In the high

SIC bin (>90%), all ASI-based SIC data reveal less ice than BST. ASI-12k shows the

lowest relative probability in this bin due to the larger grid size, but, in contrast to

ASI-3k and ASI-6k, ASI-12k is not able to detect SIC less than 60%. The differences

in relative probability between ASI-3k and ASI-6k are quite small for 25–26 February.

On 27 February, the area in the inset is almost completely refrozen according to the

SIC data with only ASI-3k and ASI-6k displaying SIC in the 80%–90%-bin.

The dynamic evolution of the ice cover complicates a comparison on a daily-mean

basis. Considering ASI-3k SIC retrieved from single-swath TB data reveals more details

on the development of the Feb-26-lead and its refreezing (Figure 4.5). The Feb-26-lead

develops between 21:02 UTC on 25 February and 12:41 UTC on 26 February. The

MODIS scene, which most of the tile shown (MODIS VIS, Figure 4.2) is based on,

was recorded at 20:55 UTC. The lead shows a higher albedo and, therefore, a refrozen

surface in the northern part of the image. The southern part, also partly visible in the

inset, has substantial open water fractions on the windward side and within the new

ice on the leeward side of the lead. We investigate the size of the Feb-26-lead in the

SIC data by calculating the open water fraction of the lead separately for each of the

swaths shown in Figure 4.5. For that, we select a region around the Feb-26-lead and

generate a mask that only considers SIC values below 50% in this region based on the

daily-mean ASI-3k data. Note that this analysis is based on the assumption of no drift.

This would introduce an error when the lead is displaced. From 25 to 27 February, the

open water fraction increases from 0% on 25 February to ∼80% on 26 February and

decreases to ∼15% on 27 February. Based on this calculation, the Feb-26-lead reaches

its maximum size on 26 February between the AMSR2 overflights at 14:20 UTC and

20:06 UTC.

4.5 Discussion

In the previous section, we presented a case study using a new 3.125 km passive-

microwave sea ice concentration (SIC) data set that is calculated based on AMSR2

Level-1R brightness temperature (TB) measurements. In November 2004, the A-scan

of the 89GHz feedhorn of AMSR-E measurements started producing corrupted data,
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after which these scan data had to be discarded. With AMSR2, we provide twice the

resolution of the previous 6.25 km grid resolution that was used for AMSR-E.

We compared different data sets for a late winter situation when several elongated

and relatively wide leads occurred in the Beaufort Sea. One of those leads, the Feb-26-

lead, was on the order of 1000 km long. The ASI SIC data on a 3.125 km grid (ASI-3k)

resemble the pattern of the fractured sea ice cover as it is visible in a MODIS True

Color image (MODIS VIS) and the MODIS ice surface temperatures (MODIS IST).

Discrepancies exist when comparing ASI-3k to JAXA’s Bootstrap-based SIC data.

Bootstrap (BST) is a mature, well-validated algorithm that is known to represent local

SIC very accurately (Beitsch et al., 2014). In this particular case, however, BST SIC

do not show the Feb-26-lead structures as they are visible in MODIS VIS, the ASI-3k,

and the ASI-6k images. ASI-3k and ASI-6k show a considerable open water fraction

in the southern part of the Feb-26-lead (above the inset in the maps shown). Our

analysis suggests the differences to BST SIC arising from the larger footprints of the

lower frequencies that are used in the BST retrieval. At these lower frequencies, the

TB signal of pixels located within the Feb-26-lead is influenced by surrounding thicker

sea ice, which is characterized by much higher TB than the open water surface and

new ice in the lead. Therefore, these pixels show a temperature mix of the open water,

new ice, and thick sea ice. Additionally, the microwave signal is very sensitive to the

location of one measurement, i.e., the location of the footprint; this can result in large

differences for the calculation of SIC if the center of a footprint is located within the

open water area or if it is located at the margin of a lead with a considerable influence

of the thicker sea ice surface. In the ASI-3k and ASI-6k maps, more structural details

of the Feb-26-lead are visible than in the BST SIC map and in the ASI-12k data.

ASI-12k simulates the larger footprint of the 18GHz measurements that are input to

the BST retrieval. This simulation confirms the disadvantage of lower-frequency-based

SIC retrievals in resolving the details of lead structures during the period that we show

in our case study.

We cannot determine quantitatively if and how much ASI-3k overestimates the open

water in the Feb-26-lead. The east-west gradient in the albedo within the Feb-26-lead

visible in the MODIS True Color maps indicates the presence of both open water and

new ice. The albedo of the new ice part of the Feb-26-lead seems to suggest relatively

thick new ice, like light nilas or grey ice. However, such a high albedo can also be

caused by frost flowers growing on thin new ice, like dark nilas under cold conditions

(Nghiem et al., 2012). The existence of cloud streets advected downwind of the Feb-

26-lead ensures that a substantial amount of open water existed to which the two used

SIC retrieval algorithms are sensitive, provided that the achieved spatial resolution is

fine enough. Only with the new ASI SIC data set with 3.125 km grid resolution, the

structure, position and size of all the leads displayed in MODIS imagery shown for the

tree consecutive days in February 2013 (Figures 4.1–4.3) are depicted correctly.

Larger uncertainties or even biases can be expected in the retrieved SIC, because
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the radiometric surface properties of thin ice differ from those of thick ice, whose

radiometric properties determine the sea ice tie points used in the SIC algorithms.

Evidence for a thin ice SIC bias have been found in a number of studies (Shokr and

Kaleschke, 2012; Cavalieri, 1994; Shokr and Markus, 2006; Cavalieri et al., 2006a). In

the present study, emphasis is put on the occurrence and structure of the leads rather

than onto a correct quantification of SIC in the lead itself. Natural variability in sea ice

properties, e.g., due to snow metamorphism or ice-snow interface roughness changes,

causes a variability in the retrieved SIC of a few percent (Andersen et al., 2007). This

is an uncertainty high enough to make the detection of changes by 1–2% in high ice

concentration areas, e.g., due to leads, impossible. In the present study, however, the

short duration of the investigation period of three days and the constantly cold, dry

conditions ensure minimum day-to-day variation in SIC due to the above-mentioned

property changes.

Reductions in winter SIC of a few percent are known to already induce great effects

in the lower atmospheric heat budget because of increased ocean-atmosphere heat

exchange (Marcq and Weiss, 2012). With a high resolution SIC data set, it is more

likely to correctly detect such SIC variations and, hence, to provide the basis for a more

realistic quantification of winter-time ocean-atmosphere heat exchange. The ASI-3k is

able to depict smaller-scale openings in the sea ice cover and shows an open water

fraction, which is 4% higher than the one from BST for our area of interest of size

170 km× 170 km in the Beaufort Sea. Within this area, differences for single pixels are

up 60% in sea ice concentration.

4.6 Conclusion

In summary, we present a new high-resolution sea ice concentration data set based on

satellite microwave radiometry that is able to provide more details of a fractured sea ice

cover than sea ice concentration data at lower spatial resolutions. This is achieved by

applying the ARTIST Sea Ice (ASI) algorithm to brightness temperatures measured at

a frequency of 89GHz by the Advanced Microwave Scanning Radiometer-2 (AMSR2).

This enables to retrieve sea ice concentrations at 3.125 km grid resolution (ASI-3k

SIC). The data set has the potential to provide a more realistic boundary condition

when calculating atmosphere-ice-ocean exchange processes. A high-resolution SIC data

set is an advantage for navigation through the sea ice cover, as well as for mesoscale

process studies (Kaleschke et al., 2001), and daily-mean ASI-3k SIC provide a high

level of details about the ice pack. However, if knowledge about sea ice concentration

for a specific point in time is required (e.g., for data assimilation), we recommend,

based on our investigation of spatial resolution and temporal sampling, using ASI-3k

SIC calculated from individual swath data if available, because more details of an ice

situation for a defined time can then be obtained.
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Chapter 5

Snow Surface and Atmospheric

Influences on retrieving Sea Ice

Concentrations

5.1 Introduction

Uncertainties of up to 5% for retrieved sea ice ice concentrations have been found

during winter when the ice cover is near 100% (Andersen et al., 2007). Most of the un-

certainty can be attributed to surface emissivity variations. Even for 89GHz-channels,

which are especially sensitive to atmospheric water vapour and cloud liquid water, the

surface influence very often dominates over the atmospheric influence during winter

(Andersen et al., 2007). The atmospheric effects decrease linearly with increasing ice

concentrations and are thought to become insignificant near 100% ice concentration.

Therefore, surface emissivity variations are expected to dominate the uncertainty of

sea ice retrievals at high ice concentrations due to physical processes in the snow and

ice cover.

The polar sea ice is usually covered by a snow layer. Besides increasing the sea

ice’s insulation of the atmosphere from the ocean, a snow cover usually influences

microwave radiation at most frequencies, depending on snow layer depth, snow density,

snow grain sizes, liquid water content, and salt intrusion from the ice cover beneath the

snow (see Mätzler et al., 1984; Warren et al., 1999; Massom et al., 2001, and references

therein). The microwave signature of a snow surface is defined by the attenuation and

scattering of the radiation within the ice and snow cover. These processes depend on

temperature gradient, the amount of layers of ice and snow, and the bulk physical

properties thickness of a single layer, temperature, and salinity (e.g., Wiesmann et al.,

2000).

The 89GHz measurements that are used in the ASI algorithm, i.e., the brightness

temperature polarization difference P89 (see Section 2.2.1, Chapter 3, and Chapter 4),
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are sensitive to snow cover on sea ice. The sea ice has a considerable salinity, which

leads to high absorption coefficients and, thus, limits any further penetration. The

penetration depth in snow on sea ice is a function of the liquid water content and

also depends on the size of the snow grains. In general, the interaction of microwave

radiation with snow depend on the frequency of the radiation. While the dielectric

loss of snow is small, the attenuation of radiation in dry snow is mainly controlled

by scattering. The effect of scattering increases at higher frequencies, for larger parti-

cles, and drier snow. Additionally, the higher the liquid water content, the higher is

the loss of the radiation in the medium, which eventually dominates over scattering.

This means for 89GHz, increasing wetness in snow leads to a decrease in penetration

depth. In summary, the 89GHz measurements have passive microwave signatures that

are ultimately linked to the surface snow. Thus, variations in P89 at near 100% ice

concentrations are mostly due to physical changes in the snow cover on top of the sea

ice. Linking the observed variations in P89 to known changes in snow cover parameters

can help to estimate the uncertainty in retrieved sea ice concentrations during winter.

Additionally, periods exist with no or very small variations in surface emissivities but

simultaneous variations in retrieved brightness temperatures. Then, these variations

are caused by increased atmospheric contamination due to water vapour and cloud

liquid water droplets.

An example for increased atmospheric water and changes in surface emissivities

on retrieving SIC with ASI is given in Figure 5.1. During the period shown, a low-

pressure system passed the East Siberian Sea (see Figure 2.1), increased cloudiness

and precipitated snow in parts of the Central Arctic close to the Laptev Sea. ASI

SIC are reduced for these regions during this period. As we know from previous

investigations, this is most probably not a true variability in SIC and can very likely be

attributed to a weather effect on the brightness temperatures, which reduces retrieved

SIC (Andersen et al., 2007). Weather influences the radiation received at the radiometer

directly and indirectly. The direct effect results from the atmospheric contamination;

the signal received by the sensor is attenuated when passing through the atmosphere.

Another effect is indirect by changing surface properties and, hence, the emissivity

of the surface due to precipitation or snow metamorphism or both. The strongest

reductions are stationary and, therefore, linked to surface emissivity changes, while

other visible reductions travel east-west, starting near Chukchi Sea and moving to the

western Arctic, indicating atmospheric parameters to interfere with the retrieval. But

how much of these uncertainties can actually be attributed to atmospheric or surface

processes? And can we deduce an order of magnitude of the changes linked to variations

in SIC?

In this study, we investigate the impact of physical snow and ice parameters, and

changing atmospheric opacities on simulated emissivities and simulated brightness tem-

peratures (TBs) from the ESA-CCI Sea Ice Essential Climate Variable Project Round

Robin Data Package (RRDP, Pedersen and Saldo, 2012). The data are based on simula-

tions with the combined thermodynamic and emissivity model MEMLSI (described in
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(a) 28 April (b) 29 April

(c) 30 April (d) 1 May

Figure 5.1: A series of four daily sea ice concentration (SIC) maps for (a) 28 April, (b) 29

April, (c) 30 April, and (d) 1 May 2014 in the Central Arctic when different processes influence

the accuracy of retrieving SIC. The maps are based on SIC retrieved with the ARTIST sea ice

algorithm (ASI) using data from the Advanced Microwave Scanning Radiometer 2 (AMSR2).

To increase the visibility of changes in SIC in the Central Arctic, we limit the colorbar to

SIC values 50-100%. Continental areas are displayed in coral.
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Figure 5.2: Locations for the simulations with MEMLSI marked on a ASI sea ice concentration

map for Jan 1, 2014. The red cross denotes a multi-year ice (MYI) location north of Fram

Strait (FS), the black cross denotes a MYI location in the Central Arctic (CA), and the green

cross denotes a first-year ice (FYI) location in the northern Laptev Sea (LS).

Chapter 2). Based on these simulations, we can estimate the sensitivity of the 89GHz

measurements, and thus on the retrieved sea ice concentrations, to physical changes in

the surface snow cover and variations in atmospheric opacity due to water vapour and

clouds.

5.2 Influence of Snow Fall Events on retrieving Sea

Ice Concentrations at 89GHz

Penetration of microwave radiation into snow and ice depends on the attenuation and

scattering of the microwaves in the media. At 89GHz, the penetration is very limited
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due to strong attenuation by scattering (Barber et al., 1998; Grenfell et al., 1998). If

liquid water is present in the snow cover, attenuation increases due to higher extinction

in the media. This means that microwave penetration at 89GHz is usually limited

to the snow layer. Therefore, snow surface emissivity variations depend on physical

processes within the snow cover. Besides microphysical parameters in the snow profile

like physical temperature, salinity, and density, the size of the grains in the snow

directly influences the emissivity of the snow. But with all of these parameters being

linked to the density, only considering surface snow density changes can serve as a

proxy for microphysical snow changes and their impact on microwave radiation.

To estimate the sensitivity of P89 to physical changes in the snow, we investigate

snow fall events and consequent changes in emissivity polarization difference Pe89 for

three locations in the Arctic (Figure 5.2). In contrast to P89, Pe89 is not influenced

by the atmosphere and we can directly link changes in microwave signals to physical

changes in the surface snow layer(s). For two of the three locations, the evolution for

multi-year ice (MYI) and its snow cover is simulated starting with a 2.5m-thick ice

layer on 1 September. These simulations are located in the Central Arctic at 85°N and

120°W and north of Fram Strait at 85°N and 0°E. For the third location, the evolution

of first-year ice (FYI) and its snow cover is simulated starting with no ice cover on 1

October. This simulation is located in the Laptev Sea at 82.5°N and 120°E as defined

in Figure 5.2.

Abrupt changes in Pe89 are associated with snow fall events (Figure 5.3). We

mark snow fall events according to increases in the snow thickness hsnow in all time

series displayed here (Figures 5.3-5.4) color-coded for the three locations as defined in

Figure 5.2.

5.2.1 Simulation in the Central Arctic (CA)

For the location in the Central Arctic (CA), Table 5.1 shows changes in Pe89, surface

snow density ρsnow (Figure 5.3), and average snow density ρ̄snow (Figure 5.4) for seven

snow fall events. Additionally, numbers are provided for the 2m air temperature Ta

just before the snow fall event happens, the 2m air temperature change ∆Ta, the mass

of precipitation Ms, and the change in snow thickness ∆hsnow. We have three criteria

to choose a snow fall event for further investigation. First, the time series of Pe89

shows a considerable change compared to the values before the event, second, values

of Pe89 show microwave signatures of and can be attributed to snow on sea ice, and

third, we regard only snow fall events with a minimum snow thickness increase of 1 cm.

These criteria are fulfilled for the events 1–7 labeled in Figures 5.3–5.4. For events 1,

3, 6, and 7, the new surface snow layer has a lower density than the old surface snow

layer and we find a decrease of the polarization difference at 89GHz (see Table 5.1 and

the panels in Figure 5.3). A new snow layer with lower density than the old surface

snow layer decreases the average snow density of all snow layers ρ̄snow (see Table 5.1 and
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Figure 5.3: Time series of the density of the surface snow layer ρsnow (top), the polarization

difference of emissivities at 89GHz Pe89 (middle), and the snow thickness hsnow (bottom),

from MEMLSI modeled for three locations in the Arctic (Figure 5.2). Colors denote the three

locations as indicated in the legend. The dashed vertical lines and the color-coded numbers

denote certain dates for the individual locations, which we will refer to in the following.
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Figure 5.4: Same as Figure 5.3, but only for the average density of the snow, ρ̄snow.

Figure 5.4). However, a new snow layer with denser snow decreases Pe89 (compare with

events 2, 4, and 5). The density of a new surface snow layer formed by precipitation is

a function of Ta, and the wind speed (Tonboe et al., 2011). With every snow fall event,

air temperatures increase but stay below freezing during all events. The temperature

increase is due to the entrainment of warmer air layers above the Arctic inversion. The

air aloft the inversion is also warmer due to latent heat release from snow formation

in the upper layers and because a precipitation events can often be attributed to an

approaching low-pressure system that leads to advection of warmer air.

But how does Pe89 develop during the periods between the snow fall events? Not

only instantaneous changes in Pe89 due to snow fall events but also the evolution of

the density of the surface snow layer between snow fall events has an influence on

simulated Pe89. Table 5.2 shows the changes in hsnow, Pe89, ρsnow, and ρ̄snow between

new snow fall events. Leaving out periods when there is no clear tendency in Pe89

during a period, the periods between events 1–2 and the period after event 7 show

an increase in ρsnow due to snow metamorphism (Figure 5.3). Consequently, snow

thickness reduces. But more importantly, Pe89 increases when the surface snow layer

ages, and mean grain sizes and density increase (Figure 5.3). Especially for a long

period starting end of February, a concurrent increase in ρsnow and Pe89 can been seen.

The mean grain size in the different snow layers increases over time as a function of

temperature gradient, temperature and density (Tonboe, 2010). As a consequence of

the snow metamorphism, the density increase of the other snow layers leads to the

simulated decrease in snow thickness. We do not investigate the other periods because

of either no or no considerable changes in Pe89 or ρsnow.
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Table 5.1: Qualitative (upper) and quantitative (lower) parameter changes in the snow cover

due to the snow fall events at the location CA (Figure 5.2). The investigated parameters

include the polarization difference of emissivities at 89GHz Pe89, the density of the surface

snow layer ρsnow, the average density of all snow layers ρsnow, the (2m) air temperature Ta

just before a snow fall event happens, the (2m) air temperature change ∆Ta, the mass of

precipitation Ms, and the increase in snow thickness ∆hsnow. Numbers refer to black labels

at snow fall events, shown in Figures 5.3-5.4. An increase or a decrease of a property is

indicated by ↑ or ↓, respectively.

Snow event 1 2 3 4 5 6 7

Pe89 ↓ ↑ ↓ ↑ ↑ ↓ ↓

ρsnow ↓ ↑ ↓ ↑ ↑ ↓ ↓

ρ̄snow ↓ ↓ ↓ - - - ↓

∆Ta [K] +1.1 +2.1 +2.6 +1.5 +1.4 +5.6 +2.3

Ta [K] 265 269 271 265 257 254 252

Ms [kg/m2] 5.0 21.0 2.1 10.4 12.5 6.1 25.5

∆hsnow [cm] +1.3 +5.1 +1.0 +4.3 +3.0 +2.4 +14.2

Table 5.2: Qualitative parameter changes between the snow fall events at location CA (shown

in Figure 5.2). Numbers indicate periods between the events depicted in Table 5.1. In contrast

to Table 5.1, where abrupt changes are considered, an increase or a decrease of a property

is now indicated by ր or ց, respectively, because of transient changes during the periods.¯indicate no change; parentheses indicate insignificant changes.

Period –1 1–2 2–3 3–4 4–5 5–6 6–7 7–

∆Pe89 - ր ց ց ց - - ր

∆ ρsnow ր ր (ր) ր (ր) ր ր ր

∆ ρ̄snow ր ր - ր ր ր ր ր

∆hsnow - ց ց ց ց ց ց ց
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Table 5.3: Same as Table 5.1, but for location FS.

Snow event 1 2 3 4 5 6

Pe89 ↓ ↓ ↑ ↑ ↓ ↑ ↑

ρsnow ↑ ↓ ↑ ↑ ↓ ↑ ↑

ρ̄snow ↓ ↓ ↓ ↓ ↓ ↓

∆Ta [K] +2.0 +2.1 +0.3 +15.1 -1.7 +1.0

Ta [K] 256 263 255 255 266 269

Ms [kg/m2] 17.3 8.5 4.0 12.1 3.9 3.5

∆hsnow [cm] +6.8 +3.4 +1.6 +4.4 +1.3 +1.4

Snow event 7 8 9 10 11 12

Pe89 ↑ ↓ ↑ ↓ ↑ ↑

ρsnow ↑ ↓ ↑ ↓ ↑ ↑

ρ̄snow ↓ ↓ ↓ ↓ ↓ ↓

∆Ta [K] +1.0 +6.3 -0.55 +2.0 +0.9 +2.3

Ta [K] 250 245 269 256 266 252

Ms [kg/m2] 6.0 14.4 11.4 15.0 8.7 6.7

∆hsnow [cm] +2.2 +8.6 +5.6 +7.7 +3.8 +2.6

5.2.2 Simulation in the north of Fram Strait (FS)

The location north of Fram Strait (FS) experiences 12 snow fall events that fulfill our

criteria. This is considerable more precipitation events as for the MYI location CA,

and they usually happen during colder temperatures (Table 5.3). Note that we do not

take into account the snow fall event at the end of September, because the surface

signatures at 89GHz do not show values corresponding to a fully covered ice or snow

surface (values exceed the range of Pe89 shown in Figure 5.3). The snow fall events 2,

8, and 10 provide a new snow layer with lower density than the old surface snow layer

and show a decrease in Pe89 (see Table 5.3 and Figure 5.3). During snow fall events 3,

5, 6, 7, 9, 11, and 12, ρsnow and Pe89 decrease. The event 4 is special in that it shows

an increase in ρsnow and Pe89 followed by a sudden decrease after 2 time steps.

The periods between events 8–9, 9–10, 10–11, and after event 12 show a considerable

increase in ρsnow and Pe89 (Table 5.4 and Figure 5.3). The periods between events 1

–2, 6–7, and 7–8 show increasing ρsnow with a decrease in Pe89. The tendency in both

parameters are small for these periods, however, they contrast our findings so far. We

do not discuss the other periods, because we can not find a clear tendency in ρsnow or

Pe89.

5.2.3 Simulation in the Laptev Sea (LS)

The third location in the Laptev Sea (LS), experiences 4 snow fall events (Table 5.5).

We mark only one of the snow fall events in the time series (event 2 in Figures 5.3-
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Table 5.4: Same as Table 5.2, but for location FS.

Period –1 1–2 2–3 3–4 4–5 5–6 6–7

∆Pe89 ր ց - - - - ց

∆ ρsnow ր ր - - - - ր

∆ ρ̄snow ր ր - - - - ր

∆hsnow ց ց - ց ց ց ց

Period 7–8 8–9 9–10 10–11 11–12 12–

∆Pe89 ց ր ր ր - ր

∆ ρsnow ր ր ր ր - ր

∆ ρ̄snow ր ր ր ր ր ր

∆hsnow ց ց ց ց ց ց

5.4) because the snow cover was very thin during October, the first month of the

simulation. However, both of the not marked snow events show a concurrent decrease

in ρsnow or Pe89. During the second half of May, the last snow fall event happens with

air temperatures close to and partly above freezing (not shown). Since MEMLSI is

not intended to simulate melt processes and simulated brightness temperatures and

emissivities cannot be attributed to surface snow density changes alone, we discard

this event. Event 1, although not a snow fall event, is outstanding in that it shows

a considerable change in Pe89 with no concurrent snow fall. During this event, the

temperature gradient within the snow cover changes sign and exhibits values close

-80K/m for 2 modeling time steps (not shown). Because the snow layer is already

quite thin, the increased snow metamorphosis due to the extreme temperature gradient

does not result in a considerable change in hsnow, but in ρsnow and therefore Pe89. For

the snow fall event 2 that provides a considerable snow thickness increase of 25 cm, we

observe a considerable decrease in ρsnow and Pe89. The period after the event 2 shows a

considerable increase in Pe89 until above freezing temperature are reached in mid-May

(Figure 5.3 and Table 5.5).

During the period between events 1–2 snow thickness only slightly decreases, and

ρsnow and Pe89 slightly increase. In contrast, the period after event 2 (increase in snow

layer height of ∼25 cm) experiences a considerable increase in Pe89 and considerable

snow metamorphosis afterwards (Table 5.4). During this period, ρsnow and Pe89 show

a strong increase within 10 days (Figure 5.3).

5.2.4 Summary

Snow surface layer density changes due to snow fall events are associated with a change

in emissivity polarization difference at 89GHz Pe89 of the same sign. Pe89 decreases if

the snow surface layer density decreases and Pe89 increases if the snow surface layer den-

sity increases. After snow fall events, Pe89 often increases due to snow metamorphism

in an aging surface snow layer.
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Table 5.5: Qualitative (upper) and quantitative (lower) parameter changes in the snow cover

due to the snow fall events (left table) and qualitative parameter changes between snow fall

events (right table) at location LS (shown in Figure 5.2). Numbers refer to green labels at

snow fall events, shown in Figures 5.3-5.4. An increase or a decrease of a property is indicated

by ↑ or ↓ for the snow fall events, respectively. Tendencies during periods in between snow

fall events are indicated by ր or ց, respectively.

Snow event 1 2 Period -1 1-2 2-

∆Pe89 ց ր ր

Pe89 ↑ ↓ ∆ ρsnow ր ր ր

ρsnow ↑ ↓ ∆ ρ̄snow ր ր ր

ρ̄snow ↑ ↓ ∆hsnow ց ց ց

∆Ta [K] +3.4 +1.7

Ta [K] 250 267

Ms [kg/m2] 0.0 46.6

∆hsnow [cm] -0.1 +24.5
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Figure 5.5: Sensitivity of Pe89 to surface snow density ρsnow for the three locations in the

Arctic as defined in Figure 5.2. The correlation between the data and a linear least-squares

regression line are shown color-coded for the three locations. Gray dots indicate the data

outside the investigated periods and are not considered in the regression. The equations of

the individual regression lines are shown in the upper left corner in the figure; the coefficients

of determination are given in the lower right corner.
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Table 5.6: Sensitivity of Pe89 to surface snow density ρsnow for the three locations according

to the regressions calculated in Figure 5.5). The sensitivity is estimated as the inverse of the

slope of the regression. Note that the uncertainties in the regressions are two magnitudes

lower than the estimate from the regression. The uncertainty in the MYI mean response are

estimated from averaging estimates at locations CA and FS.

Location regression line ∆Pe89/∆ρsnow

CA y = 5.2× 103x+ 115 (1.9± 0.0)10−2 m3/ kg

FS y = 4.5× 103x+ 131 (2.2± 0.0)10−2 m3/ kg

(2.1± 0.2)10−2 m3/ kg

LS y = 6.4× 103x− 129 (1.6± 0.0)10−2 m3/ kg

We derive a sensitivity of Pe89 to changes in ρsnow by calculating a linear least-

squares regression for the data points from the investigated periods, in which we find

accordant and considerable changes in Pe89 and ρsnow as shown in the previous sections

(Figure 5.5). We use the surface snow density changes as a proxy for microphysical

changes in the snow due to fall events and snow metamorphism from aging. Coefficients

of determination R2 for these periods are around 0.97 for the two MYI locations and p-

values are 0, indicating statistical significance (not shown). The regression for the FYI

location LS shows a similar slope, however, the regression’s R2 is 0.80. We regard this

regression as less meaningful than for the MYI locations and consider it a separate case

for two reasons: first, the period at LS does not start with a fresh snow cover (event

1 for LS), and second, the period shows only a small increase in Pe89 with superposed

short-term variability in the polarization difference that stems from stronger signals in

the h-polarized emissivity at 89GHz than in the v-polarized emissivity at 89GHz (not

shown). However, the relation that an increase in ρsnow increases Pe89 is also confirmed

for this period.

Based on these regressions, we calculate the sensitivity of Pe89 to surface snow

density changes ∆Pe89/∆ρsnow separately for each location and calculate the av-

erage response for MYI (Table 5.6). The mean sensitivity of the emissivity po-

larization difference Pe89 to snow density changes and its standard deviation are

∆Pe89/∆ρsnow = (2.1± 0.2) 10−4 m3/kg for MYI and ∆Pe89/∆ρsnow = 1.6 10−4 m3/kg

for FYI. With equation 2.2 and using the simulated mean effective temperature at

89GHz, T̄eff,89, for each location and the periods used in the regression, we estimate

the sensitivity of brightness temperature polarization difference at 89GHz to surface

snow density changes (Table 5.7).

The mean sensitivity of the brightness temperature polarization difference at

89GHz to surface snow density changes for locations CA and FS gives a change of

∼2.6K if the change in surface snow density is 50 kg/m3. For the FYI location LS,

we estimate a sensitivity of ∼2.2K if the change in surface snow density is 50 kg/m3.

Note that typical changes in in surface snow density range between 30 km/m3 and
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Table 5.7: List of mean effective temperature at 89GHz T̄eff,89 and its standard deviation

(middle column) for the data points at each location that are considered in Figure 5.5. T̄eff,89

is used to estimate the brightness temperatures polarization difference at 89GHz to surface

snow density (right column).

Location T̄eff,89 ± σT̄,eff89 ∆P89/∆ρsnow

CA 250.0± 9.2 (4.8± 0.2)10−2 Km3/ kg

FS 256.6± 8.9 (5.7± 0.2)10−2 Km3/ kg

(5.2± 0.3)10−2 Km3/ kg

LS 268.6± 1.6 (4.3± 0.0)10−2 Km3/ kg

Oct Nov Dec Jan
2000

Feb Mar Apr May Jun
0

5

10

15

20

25

P
8
9

[K
]

1 2 3 4 5 6 7 8 9 10 11 121 21 23 4 5 6 7

FS - 85N/0E

LS - 82.5N/120E

CA - 85N/120W

Figure 5.6: Time series of the polarization difference of brightness temperatures at 89GHz

P89 from MEMLSI for the three locations in the Arctic as defined in Figure 5.2.

100 km/m3 (Figure 5.3). We have considered the FYI and MYI locations separately.

However, the similarity of the sensitivities for both ice types seems very close if not

indistinguishable. However, we suggest to regard the to sensitivities separately for two

reasons. First, the FYI location LS shows Pe89 values considerably higher than for the

MYI locations (Figure 5.5). And second, the snow cover at the FYI location LS is

considerably lower than for the MYI locations, possibly having an influence on Pe89

from the underlying ice.

5.3 Atmospheric Influence on Emission Variability

Variations in brightness temperature polarization difference P89 (Figure 5.6) can be

linked to the atmospheric parameters integrated water vapour IWP, liquid water path

LWP, and air temperature Ta (Oelke, 1997; Andersen et al., 2007). These parameters
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Table 5.8: Sensitivity of P89 to the liquid water path in the atmosphere LWP for the three

locations according to the regressions calculated in Figures 5.7-5.9 and summarized in Fig-

ure 5.10. The sensitivity is estimated as the inverse of the slope of the regression; the uncer-

tainty of the inverse is estimated from the error of the regression (not shown). Note that we

only show two number of digits after the decimal point, but we calculate the sensitivity with

all digits calculated in the regression. An explanation why we calculate separate sensitivities

for FYI and MYI locations is given in the text.

Location regression line ∆P89/∆LWP

CA y = −0.07x+ 0.37 −(18.9± 1.5)Km2/ kg

FS y = −0.05x+ 0.32 −(17.2± 1.7)Km2/ kg

−(18.1± 2.3)Km2/ kg

LS y = −0.03x+ 0.37 −(29.0± 3.6)Km2/ kg

affect sea ice concentration retrievals by increased atmospheric emission and absorption

of the microwave radiation or changes imposed on the surface emissivity due to the

influence of physical temperature at the surface. Especially at 89GHz, atmospheric

opacity is increased in comparison with 19 or 37GHz (Lubin et al., 1997)—the fre-

quencies that are used for most other sea ice concentration retrieval algorithms (see

Chapter 3). Therefore, frequencies at 89GHz are sensitive to increased amounts of

water vapour and cloud liquid water in the atmospheric column (Oelke, 1997, and

Section 2.2.1). By using brightness temperature polarization differences, the effect of

surface temperature variations on retrieving ice concentrations is reduced (Cavalieri

et al., 1984). However, an influence of the surface temperature on brightness tempera-

tures and, thus, on the polarization difference exists and has not yet been quantified for

P89 and in the ASI algorithm. We investigate the sensitivity of brightness temperature

polarization difference P89 to integrated water vapour IWP, liquid water path LWP,

and air temperature Ta.

We examine periods with approximately constant surface conditions, i.e., σP̄e89
≈ 0,

and a considerable increase in one of the atmospheric parameters LWP, IWP, and Ta

in a short period of about a few days (Table A.1 for LWP, Table A.2 for IWP, and

Table A.3 for Ta). For these periods, we assume variability in P89 to be induced by

atmospheric parameters that interact with microwave radiation at 89GHz. For the

individual periods, we calculate the regression to quantify the sensitivity of P89 to

one of the atmospheric parameters. Based on multiple regressions at each location

and for each parameter, we calculate a mean sensitivity at each location and for each

parameter weighted by the coefficients of determination R2, which are calculated from

the individual regressions.
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Figure 5.7: Sensitivity of P89 on liquid water path in the atmosphere LWP for location CA.

The equations of the regression lines and coefficients of determination are shown color-coded

for the different periods specified in Table A.1. The weighted mean regression is shown color-

coded following the previous color-codes for the location CA (and FS and LS in the following

Figures). Gray dots indicate the data outside the periods investigated and are not considered

in the regression.
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Figure 5.8: Same as Figure 5.7, but for location FS.
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Figure 5.9: Same as Figure 5.7, but for location LS.
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Figure 5.10: Summary of Figures 5.7-5.9: sensitivity of P89 to liquid water path in the

atmosphere LWP for the three locations. Mean regression lines and mean coefficients of

determination are shown color-coded for the three locations. Gray dots indicate the data

outside the periods investigated and are not considered in the regression.
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5.3.1 Liquid Water Path

The regressions in Figures 5.7-5.9 are based on periods with a considerable increase in

LWP during approximately constant surface conditions (see Table A.1). We find most

of such periods at the MYI location in the Central Arctic with maximum values of

0.16 kg/m2 for LWP. Similarly high values for LWP but a smaller number of periods

are investigated at location FS. At location LS, the highest values for LWP can be

found in November (Table A.1). At location CA, there is a considerable spread among

the individual regression lines (Figure 5.7); slopes of the individual regressions are

shallowest in fall and steepest in spring. Exceptions to this tendency are the periods

CA-5, CA-6, CA-7, CA-10, CA-11, and CA-13; these exhibit a lower coefficient of

determination and a smaller range of values in LWP. For locations FS and LS—the

locations with fewer periods of investigation—, there is generally less spread among

the individual regression lines and high coefficients of determination (Figure 5.8 and

Figure 5.9). A summary for the mean regression of the three locations is shown in

Figure 5.10 and subsequently derived sensitivities are given in Table 5.8. For the MYI

locations, which have smaller polarization differences than the FYI location LS, there

is a tendency to be less sensitive to changes in LWP, simply because there is not much

more potential for further depolarization at 89GHz.

Considering a typical change of 0.1 kg/m2 for LWP (Fuhrhop et al., 1998, and

Table A.1), the mean sensitivity of the brightness temperature polarization difference

at 89GHz to the liquid water path in the atmosphere for locations CA and FS indicates

a decrease of ∼1.8K for an increase in liquid water path of 0.1 kg/m2 (Table 5.8). For

the FYI location in the Laptev Sea, we estimate a decrease of ∼2.9K if the liquid water

path increases by 0.1 kg/m2.

5.3.2 Integrated Water Vapour

Similarly to the investigation of the sensitivity of P89 to LWP, we examine the sen-

sitivity of the brightness temperature polarization difference at 89GHz to integrated

water vapour in the atmosphere IWP. The regressions in Figures 5.11-5.13 are based

on periods with a considerable increase in IWP during approximately constant surface

conditions (see Table A.2). Again, most of such periods can be found at the MYI loca-

tion CA with maximum values of ∼5.9 kg/m2 for IWP during winter. The maximum

values for IWP at locations FS and LS do not exceed ∼4.3 kg/m2 and ∼4.0 kg/m2

during winter, respectively. The spread in regression lines is again largest at location

CA with one regression showing a positive slope, contrasting the other periods at this

locations with negative slopes in the regression. At locations FS and LS, the slopes

of all regressions are negative. In general, most regressions have a low coefficient of

determination and results for the sensitivity must be considered with care. A summary

for the mean regression of the three locations is shown in Figure 5.14 and subsequently

derived sensitivities are given in Table 5.9. Like for LWP, we find the same tendency
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Figure 5.11: Sensitivity of P89 on integrated water vapour in the atmosphere IWP for location

CA. The equations of the regression lines and coefficients of determination are shown color-

coded for the different periods specified in Table A.2. Gray dots indicate the data outside

the periods investigated and are not considered in the regression.

that at MYI locations the polarization difference is less sensitive to changes in LWP,

because of the missing potential for further depolarization at 89GHz.

The mean sensitivity of the brightness temperature polarization difference at

89GHz to integrated water vapour in the atmosphere for locations CA and FS in-

dicates a decrease of ∼0.9K for a typical increase in the integrated water vapour of

1.0 kg/m2 (see Table 5.9). For the FYI location in the Laptev Sea, we estimate a

decrease of ∼2.3K if the integrated water vapour increases by 1.0 kg/m2. Low coeffi-

cients of determination for the individual and the location-averaged regressions indicate

a substantial uncertainty in these estimates. Additionally, the difference between both

MYI locations is large in this case.

5.3.3 2m Air Temperature

Finally, we investigate the sensitivity of P89 on changes in 2m air temperatures Ta.

The use of P89 for sea ice concentration retrieval algorithms is supposed to reduce the

effect of physical temperature on measured brightness temperatures. But the sensitiv-

ity of the H- and V-polarizations can be different, leaving a temperature imprint on

the brightness temperature polarization difference. The regressions P89 to Ta shown

in Figures 5.15-5.17 are based on periods with a minimum increase in Ta of 3.5K dur-
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Figure 5.12: Same as Figure 5.11, but for location FS.
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Figure 5.13: Same as Figure 5.11, but for location LS.
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Figure 5.14: Summary of Figures 5.11-5.13: sensitivity of P89 to integrated water vapour

in the atmosphere IWP for all locations. Mean regression lines and mean coefficients of

determination are shown color-coded for the three locations. Gray dots indicate the data

outside the periods investigated and are not considered in the regression.

Table 5.9: Sensitivity of P89 to integrated water vapour in the atmosphere IWP for the

three locations according to the regressions calculated in Figures 5.11-5.13 and summarized

in Figure 5.14). The sensitivity is estimated as the inverse of the slope of the regression; the

uncertainty of the inverse is estimated from the error of the regression (not shown). Due to

the differences in the regressions among the three locations, we expect different sensitivities

for FYI and MYI surfaces, and, hence, we calculate a mean sensitivity for the MYI location,

CA and FS.

Location regression line ∆P89/∆IWP

CA y = −1.66x+ 10.84 −(0.6± 0.1)Km2/ kg

FS y = −0.83x+ 7.03 −(1.2± 0.2)Km2/ kg

−(0.9± 0.2)Km2/ kg

LS y = −0.44x+ 7.03 −(2.3± 0.7)Km2/ kg
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Figure 5.15: Sensitivity of P89 on air temperature Ta for location CA. The equations of

the regression lines and coefficients of determination are shown color-coded for the different

periods specified in Table A.3. Gray dots indicate the data outside the periods investigated

and are not considered in the regression.

ing approximately constant surface conditions (see Table A.3). The location-averaged

regressions are summarized in Figure 5.18. The coefficients of determination indicate

higher confidence than in the sensitivity analysis for IWP. However, the spread among

the different regressions for same locations is very large, especially at location LS (Fig-

ure 5.17). This suggests a more complex relationship between P89 and Ta. Some

regression lines indicate increasing P89 with increasing Ta, but most of the regression

lines indicate decreasing P89 with increasing Ta. However, the positively correlated

periods show a lower R2 and, therefore, have a lower significance.

At locations CA and FS, the data point cluster shows more coherency than the

data point cluster for the location LS. And also due to the low significance at location

LS, we only derive a temperature sensitivity for the two MYI locations (Table 5.10).

The mean sensitivity of the brightness temperature polarization difference at 89GHz

to air temperature for locations CA and FS indicates a decrease of ∼1.1K for a typical

increase in the air temperature of 10K (see Table 5.10). Like for IWP, low coefficients

of determination for the individual and the location-averaged regressions indicate a

substantial uncertainty in these estimates.
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Figure 5.16: Same as Figure 5.15, but for location FS.
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Figure 5.17: Same as Figure 5.15, but for location LS.
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Figure 5.18: Summary of investigating the sensitivity of P89 on air temperature Ta for all

locations. Mean regression lines and mean coefficients of determination are shown color-coded

for the three locations. Gray dots indicate the data outside the periods investigated and are

not considered in the regression.

Table 5.10: Sensitivity of P89 to air temperature Ta for the two MYI locations according to

the regressions in Figure 5.18). The sensitivity is estimated as the inverse of the slope of the

regression; the uncertainty of the inverse is estimated from the error of the regression (not

shown).

Location regression line ∆P89/∆Ta

CA y = −8.75x+ 292.76 −(0.11± 0.03)K/K

FS y = −9.52x+ 310.02 −(0.11± 0.02)K/K

−(0.11± 0.04)K/K
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Table 5.11: Summary of sensitivities of the brightness temperature polarization difference

at 89GHz P89 to surface snow density ρsnow and the weather-related parameters cloud liq-

uid water path LWP and integrated water vapour IWP for FYI and MYI locations, and

(2m) air temperature Ta for a FYI location derived from simulated data with the combined

thermodynamic and emissivity model MEMLSI.

∆P89/∆ρsnow ∆P89

for ∆ ρsnow = 50 kg/m3

FYI (4.30± 0.03)10−2 Km3/ kg 2.2K

MYI (5.20± 0.27)10−2 Km3/ kg 2.6K

∆P89/∆LWP ∆P89

for ∆LWP= 0.1 kg/m2

FYI −(29.4± 3.6)Km2/ kg -2.9K

MYI −(18.1± 2.3)Km2/ kg -1.8K

∆P89/∆IWP ∆P89

for ∆ IWP= 1.0 kg/m2

FYI −(2.3± 0.7)Km2/ kg -2.3K

MYI −(0.9± 0.2)Km2/ kg -0.9K

∆P89/∆Ta ∆P89

for ∆Ta = 10K

MYI −(0.11± 0.04)K/K -1.1K

5.4 Discussion and Conclusion

We investigated the influence of the surface snow density ρsnow and the weather-related

parameters cloud liquid water path LWP, integrated water vapour IWP, and air temper-

ature Ta, on the brightness temperature polarization difference P89. Our investigation

serves as another step towards an improved error estimation of a near-90GHz sea ice

concentration retrieval during winter. The link between changes in one physical pa-

rameter at the surface or in the atmosphere and uncertainties in sea ice concentrations

has been investigated in several studies (Oelke, 1997; Fuhrhop et al., 1998; Kern, 2004).

We use the combined thermodynamic and emission model MEMLSI to investigate the

impact of changing surface and atmospheric parameters on brightness temperatures at

89GHz.

The sensitivities of P89 to ρsnow, LWP, IWP, and Ta are summarized in Table 5.11.

We find different sensitivities for FYI and MYI locations. MYI locations show higher

sensitivities for snow fall events. Clouds and water vapour depolarize the radiation

at 89GHz almost twice as large for a FYI cover. Due to the low significance of the

regressions, we cannot determine a temperature sensitivity at FYI locations. We note

that, based on the RRDP simulations, we are not able to investigate isolated condi-

tions, for example the impact of increased water vapour on the brightness temperature

polarization difference alone. Periods of considerably increased values for IWP and
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LWP are partly identical, for example periods FS-4 and FS-5 for LWP (Table A.1)

and periods FS-2 and FS-3 for IWP (Table A.2), and there may exist a coupling of

the sensitivities for LWP and IWP. Considering other filters for a selection of periods

does not necessarily lead to better results. Using a minimum range of 10K for the

selection of periods to investigate sensitivities of P89 to Ta or using a maximum length

of 3 days, would exclude periods—depending on the location—for which we found

higher coefficients of determinations. This would eventually decrease the significance

of our results. As a next step, one should investigate periods with no coupling in the

investigated parameters to exclude covariances in the sensitivities.

We use the sensitivities derived from simulations with the combined thermodynamic

snow/ice and emissivity model to enhance the error estimation of ASI SIC carried out

by Spreen et al. (2008), which is expressed in terms of the standard deviation of the

polarization difference at 89GHz in Spreen et al. (2008), as has been introduced in

Section 2.2.1 (Eq. 2.14).

Variations in LWP and IWP are linked to variations in the opacity of the atmosphere

over sea ice στ ,i. However, as we are not able to derive the opacity as a function of the ice

concentration, we treat the derived sensitivities to LWP and IWP as direct influences

on TB over sea ice and, hence, on the ice tie-point Ps,i. Therefore, we change the

standard deviation of the ice tie-point Ps,i in Equation 2.14. The significance in the

sensitivity of P89 on Ta was considerably lower than for the other parameters, and

we were not able to derive a sensitivity over FYI. Therefore, we only consider the

sensitivities derived for ρsnow, IWP, and LWP. Because of potential coupling between

the sensitivities of P89 to IWP and P89 to LWP, we estimate a mean sensitivity to both

parameters, expressed as the standard deviation in SIC caused by atmospheric water

σH2O. We treat the sensitivities to the snow and to atmospheric water as independent

factors that contribute to the function that defines the standard deviation of the ice tie-

point, i.e., σPs,i
= f(ρsnow, {LWP, IWP}) = f(ρsnow, {atm.water}), and we change the

standard deviation in the last term of the error estimation for P89 (see Section 2.2.1,

Equation 2.13) according to the derived sensitivities:

σPs,i
=

√

σ2
ρsnow + σ2

atm.water =

√

σ2
ρsnow +

σ2
LWP + σ2

IWP

2
(5.1)

where we use the sensitivities derived for ρsnow, IWP, and LWP as typical standard

deviations of these parameters. Then, we use Equation 2.14 to derive a new SIC

uncertainty.

For the situation at the end of April 2014, which we presented in Section 5.1, maps

of the uncertainty estimate confirm a higher uncertainty for the region influenced by

a new snow layer and higher LWP and IWP (Figure 5.19). Highest uncertainties are

located in an area between the Central Arctic and the East Siberian Sea. Uncertainties

are largest on 29 April and decay during the following days. A pattern of uncertainties

with values around 6% moves from the eastern Arctic to the western Arctic. While the
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(a) 28 April (b) 29 April

(c) 30 April (d) 1 May

Figure 5.19: A series of four daily uncertainty estimates for ASI AMSR2 SIC for (a) 28 April,

(b) 29 April, (c) 30 April, and (d) 1 May 2014 in the Central Arctic when different processes

influence the accuracy of the SIC retrieval. These maps depict the uncertainty for the series

of SIC maps displayed in Figure 5.1 assuming all sea ice to be FYI. Note that the uncertainty

estimate differs for MYI. Continental areas are displayed in gray.
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(a) ASI polynomial for TB measured with

AMSR-E.
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(b) ASI polynomial for TB measured with SSM/I.
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(c) Error estimation using AMSR-E tie-points.
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(d) Error estimation using SSM/I tie-points.

Figure 5.20: Comparison of the ASI polynomials (upper panel) and the error estimations for

the sea ice fraction C (lower panels) using the tie-points based on measurements for AMSR-E

(P0 =46.0K and P1 =7.4K; Spreen et al., 2008) (left column) and for SSMI (P0 =47.0K

and P1 =11.7K; Kaleschke et al., 2001) (right column). Here, sea ice concentration is shown

in fractions of 1. The black and the red curve in the lower panel shows the total expected

standard deviation of FYI and MYI, σC,FYI and σC,MYI, respectively. The other, not solid

curves show the uncertainty contributions of the atmosphere (cyan long-dashed line, σC,τ ),

and of the surface polarization differences of open water (green long-dotted line, σPs,w
) and

sea ice (blue long-dashed line, shown separately for FYI and MYI, σPs,i,FYI
and σPs,i,FYI

,

respectively).
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first uncertainty pattern can probably be attributed to snow fall starting on 28 April

(not shown), the latter indicates that atmospheric parameters increase the uncertainty

in the SIC retrieval probably due to a traveling cloud system with increased LWP and

IWP.

Uncertainties of up to 5% for different SIC retrieval algorithms including ASI have

been found during winter when the ice cover is in excess of 99% (Andersen et al., 2007).

Spreen et al. (2008) estimate a minimum error of 7% for ASI based on the input data

into the algorithm and the radiometric accuracy of the AMSR-E sensor. The low error

of around 1% where 100% SIC were detected seems therefore unrealistic.

Considering the polynomials (Figure 5.20(a) using AMSR-E tie-points, Fig-

ure 5.20(b) using SSM/I tie-points) that provide SIC for values between the tie-points

for open water and for 100% SIC and the related error estimations (Figure 5.20(c) for

AMSR-E, Figure 5.20(d) for SSM/I) following Spreen et al. (2008), we find the error for

the AMSR-E-based tie-points to approach values around 1% when the ice fraction ap-

proaches 1 (= 100% SIC). For values approaching 100%, the slope in the polynomial—

based on P89, Ps,w, and Ps,i—reduces and might loose sensitivity for changes in P89.

For the set of SSM/I tie-points, the error near 100% SIC is between 5% for MYI and

8% for FYI (Figure 5.20(d)). This is of the order of the minimum error estimated by

Spreen et al. (2008). Thus, the choice of the tie-points has a strong influence on the

polynomial and on the derived error estimation.
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Chapter 6

Summary and Concluding Remarks

In this thesis, we investigated uncertainties in sea ice concentrations (SIC) that are

derived from measurements of brightness temperatures using passive-microwave (PM)

radiometers. These uncertainties can arise from various sources. Among them are dif-

ferences in the resolution of the measurements at different frequencies and from different

PM radiometers, influences of atmospheric properties on the radiation as it passes the

atmospheric column and reaches a radiometer in space, and surface properties, which

alter the signature of the emitted radiation.

In a first investigation, we presented a comparison of sea ice concentration (SIC)

retrieval algorithms, which are frequently used, with visual ship-based observations

of SIC around Antarctica (Chapter 3). We compare correlation coefficients (CC),

root-mean-square-deviations (RMSD) and biases, separately for SSM/I-SSMIS data

and for AMSR-E data for a number of algorithms. In contrast to previous studies,

we apply a different method to compare the co-located ship-based observations of

SIC with satellite-based SIC. To account for the different temporal and spatial scales

between in-situ observed SIC on a scale on the order of 1 km and those derived with PM

sensors on a scale on the order of 10 km. Therefore, we calculate daily along-ship track

average SIC. This comparison indicated that the Bootstrap algorithm (BST) provides

the highest agreement with in-situ data based on the visual SIC estimates. The higher-

resolution ARTIST Sea Ice algorithm (ASI) tended to deviate more from the ship-based

observations, but was more successful in representing the local variability in SIC. The

differences among the different algorithms agree within the uncertainty range of the

CC, the RMSD, and the bias. The agreement between OBS and PM SIC is best during

winter.

In a second investigation, we examined the effect of the instrument’s resolution on

uncertainties in SIC. A new generation of radiometers—the series of Global Change

Observation Mission, as part of a series of JAXA’s Earth Observation Missions—with

reduced sample footprint size allows retrieval algorithms to provide increased spatial

resolution of retrieved SIC. One of these radiometers, the Advanced Microwave Scan-

ning Radiometer 2 (AMSR2), enables to compute ASI SIC at 3.125 km grid resolution.



88 Summary and Concluding Remarks

This improved resolution increases the potential to resolve kilometer-scale inhomo-

geneities within the ice cover, for example larger leads in a previously compact sea

ice cover (Chapter 4). We investigated such features in a subsequent analysis. We

compared the ability of ASI and BST for representing leads in a highly consolidated

ice cover. ASI showed a higher agreement with MODIS images of the same leads than

BST. The difference between ASI and BST in a high SIC regime was about 4% in

area-averaged SIC and up to 60% for single pixels in the lead. With features such

as leads being represented more accurately, high-resolution sea ice concentration data

have the potential to provide a more realistic boundary condition when calculating

atmosphere-ice-ocean exchange processes using these SIC data.

In a third investigation, we showed an assessment of the uncertainties of SIC that

are caused by the influence of weather on the sea ice cover and on the snow on top of the

sea ice cover (see Chapter 5). For example, snow fall events directly change the surface

emissivity. An indirect effect is generated from atmospheric water that influences the

signal received at the radiometer in space. Variations of surface properties are the

largest error sources during winter. So far, the effect of atmospheric water was thought

to be secondary (Andersen et al., 2007). However, a passing cyclone increases the

atmospheric water content considerably, and thus, the uncertainty in SIC considerably

increases, too. We derived sensitivities for typical changes in surface emissivity, liquid

water and water vapour in the atmosphere on changes in SIC. These changes are

different for first-year ice (FYI) and multi-year ice (MYI). Variations in the snow surface

have more influence on ASI SIC over MYI than over FYI. Over FYI, however, ASI SIC is

more sensitive to atmospheric contamination than over MYI. This sensitivity analysis

led to estimates of changes in the brightness temperature polarization difference at

89GHz due to surface snow density changes, variations in liquid water path, integrated

water vapour, and surface air temperature, which we used to present an error estimation

for ASI SIC. For winter sea ice covers with SIC close to 100%, we estimate a minimum

uncertainty of 7% for ASI SIC based on the assumptions of the algorithm and the

radiometric accuracy of the sensor.

We have shown that the ASI algorithm provides good results of SIC in different

hemispheres and based on measurements from different satellite sensors in comparison

with in-situ observations and independent data like MODIS. We investigated the sen-

sitivities to surface emissivity changes and atmospheric water vapour in winter using

model simulations of sea ice and snow brightness temperatures and emissivities. This

investigation led to an enhanced error estimate for ASI. In addition, the choice of the

tie-points influences the retrieval of very consolidated ice near 100% or close to open

water. Moreover, the choice of the tie-points has implications for the error estimation,

which is very sensitive to the polynomial used in ASI. We suggest to derive a new set

of tie-points for AMSR2 measurements separately for both hemispheres. It should be

investigated if a polynomial is the best choice to interpolate between values of 100%

SIC and open water.
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Table A.1: Mean polarization difference of 89-GHz emissivities, P̄e89, and its standard de-

viation, σP̄e89
, mean polarization difference of 89-GHz brightness temperatures, P̄89 (in K),

and its standard deviation, σP̄89
, and minimum and maximum values for liquid water path in

the atmosphere, LWP (in kg/m2), for periods of approximately constant surface conditions

(σP̄e89
≈ 0) and an increase in LWP of at least >0.03 kg/m3.The periods that are examined

at each location are labeled in successive order for identification in Figures 5.7-5.9.

Period P̄e89 ± σP̄e89
P̄89 ± σP̄89

min(LWP) max(LWP)

CA

CA-1 1999-10-24–1999-10-26 0.025 ± 0.0 4.76 ± 0.39 0.01 0.07

CA-2 1999-10-27–1999-10-29 0.025 ± 0.0 4.71 ± 0.32 0.01 0.08

CA-3 1999-11-05–1999-11-07 0.025 ± 0.0 4.36 ± 0.31 0.01 0.07

CA-4 1999-11-12–1999-11-13 0.025 ± 0.0 4.48 ± 0.52 0.01 0.11

CA-5 1999-11-14–1999-11-17 0.025 ± 0.0 4.74 ± 0.26 0.01 0.09

CA-6 1999-11-18–1999-11-27 0.026 ± 0.0 4.90 ± 0.37 0.01 0.07

CA-7 1999-12-02–1999-12-04 0.026 ± 0.0 4.91 ± 0.20 0.01 0.05

CA-8 1999-12-05–1999-12-08 0.026 ± 0.0 5.03 ± 0.31 0.01 0.07

CA-9 1999-12-28–1999-12-31 0.027 ± 0.0 4.44 ± 0.41 0.02 0.16

CA-10 2000-01-01–2000-01-10 0.027 ± 0.0 4.59 ± 0.31 0.01 0.15

CA-11 2000-02-01–2000-02-02 0.027 ± 0.0 4.84 ± 0.30 0.01 0.06

CA-12 2000-02-14–2000-02-15 0.027 ± 0.0 4.99 ± 0.14 0.01 0.04

CA-13 2000-02-17–2000-02-20 0.028 ± 0.0 5.14 ± 0.39 0.01 0.06

FS

FS-1 1999-12-03–1999-12-11 0.035 ± 0.0 6.06 ± 0.75 0.02 0.14

FS-2 1999-12-15–1999-12-17 0.034 ± 0.0 6.18 ± 0.43 0.01 0.07

FS-3 1999-12-24–1999-12-25 0.028 ± 0.0 4.89 ± 2.30 0.01 0.18

FS-4 2000-03-21–2000-03-24 0.024 ± 0.0 4.11 ± 0.65 0.01 0.15

FS-5 2000-04-04–2000-04-09 0.023 ± 0.0 4.19 ± 0.50 0.00 0.13

LS

LS-1 1999-11-13–1999-11-15 0.049 ± 0.0 9.75 ± 0.31 0.01 0.04

LS-2 1999-11-19–1999-11-21 0.050 ± 0.0 9.27 ± 0.54 0.01 0.08

LS-3 1999-11-23–1999-11-24 0.050 ± 0.0 8.31 ± 0.68 0.02 0.11

LS-4 2000-02-27–2000-02-28 0.059 ± 0.0 10.96 ± 0.41 0.01 0.04

LS-5 2000-03-08–2000-03-11 0.059 ± 0.0 10.23 ± 1.17 0.01 0.12
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Table A.2: Same as Table A.1, but for integrated water vapour in the atmosphere IWP (in

kg/m2) and a minimum increase of >0.7 kg/m3. The periods that are examined at each

location are labeled in successive order for identification in Figures 5.11-5.13.

Period P̄e89 ± σP̄e89
P̄89 ± σP̄89

min(IWP) max(IWP)

CA

CA-1 1999-10-24–1999-10-26 0.025 ± 0.0 4.71 ± 0.37 1.7 5.0

CA-2 1999-10-27–1999-11-04 0.025 ± 0.0 4.90 ± 0.28 1.6 3.0

CA-3 1999-11-09–1999-11-13 0.025 ± 0.0 4.88 ± 0.47 1.5 3.4

CA-4 1999-11-15–1999-11-18 0.025 ± 0.0 4.83 ± 0.31 1.8 4.5

CA-5 1999-11-19–1999-11-21 0.026 ± 0.0 4.59 ± 0.38 2.3 5.0

CA-6 1999-12-05–1999-12-09 0.026 ± 0.0 5.14 ± 0.27 1.7 3.6

CA-7 1999-12-26–2000-01-10 0.027 ± 0.0 4.66 ± 0.42 1.6 5.9

FS

FS-1 1999-12-03–1999-12-09 0.035 ± 0.0 5.92 ± 0.83 2.1 4.1

FS-2 2000-03-21–2000-03-24 0.024 ± 0.0 4.25 ± 0.67 2.1 4.3

FS-3 2000-04-05–2000-04-09 0.023 ± 0.0 4.16 ± 0.54 1.8 3.2

LS

LS-1 1999-11-11–1999-11-16 0.049 ± 0.0 10.09 ± 0.39 1.6 2.3

LS-2 1999-11-19–1999-11-24 0.050 ± 0.0 9.18 ± 0.86 2.0 4.0

LS-3 2000-02-18–2000-02-19 0.058 ± 0.0 11.59 ± 0.33 2.2 2.9

LS-4 2000-02-26–2000-02-29 0.058 ± 0.0 11.16 ± 0.44 1.4 3.0

LS-5 2000-03-08–2000-03-13 0.059 ± 0.0 10.92 ± 1.03 1.4 3.9
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Table A.3: Same as Table A.1, but for the air temperature Ta (in K) and a minimum increase

of 3.5K. The periods that are examined at each location are labeled in successive order for

identification in Figures 5.15-5.17.

Period P̄e89 ± σP̄e89
P̄89 ± σP̄89

min(Ta) max(Ta)

CA

CA-1 1999-11-01–1999-11-05 0.025 ± 0.0 5.10 ± 0.22 239.7 248.8

CA-2 1999-11-05–1999-11-07 0.025 ± 0.0 4.45 ± 0.38 241.0 250.7

CA-3 1999-11-22–1999-12-01 0.026 ± 0.0 5.17 ± 0.25 241.8 257.1

CA-4 1999-12-28–1999-12-30 0.027 ± 0.0 4.46 ± 0.44 240.2 258.7

CA-5 1999-12-31–2000-01-01 0.027 ± 0.0 5.18 ± 0.57 244.7 254.8

CA-6 2000-01-01–2000-01-02 0.027 ± 0.0 4.55 ± 0.38 250.9 260.6

CA-7 2000-01-09–2000-01-15 0.027 ± 0.0 5.15 ± 0.31 242.4 264.4

CA-8 2000-02-03–2000-02-05 0.027 ± 0.0 5.00 ± 0.20 234.0 240.5

FS

FS-1 1999-12-05–1999-12-08 0.035 ± 0.0 6.50 ± 0.35 250.8 259.4

FS-2 1999-12-11–1999-12-15 0.034 ± 0.0 6.79 ± 0.22 243.5 255.7

FS-3 1999-12-15–1999-12-17 0.034 ± 0.0 6.00 ± 0.29 247.6 252.9

FS-4 1999-12-17–1999-12-21 0.034 ± 0.0 7.20 ± 0.15 241.8 251.0

FS-5 2000-03-22–2000-03-26 0.023 ± 0.0 4.81 ± 0.26 246.2 256.7

LS

LS-1 1999-11-15–1999-11-17 0.049 ± 0.0 9.85 ± 0.30 238.2 245.3

LS-2 1999-11-19–1999-11-20 0.049 ± 0.0 9.14 ± 0.68 242.0 253.4

LS-3 1999-11-22–1999-11-23 0.050 ± 0.0 9.98 ± 0.56 245.8 249.4

LS-4 2000-02-26–2000-02-28 0.058 ± 0.0 11.06 ± 0.43 243.9 248.9

LS-5 2000-03-03–2000-03-05 0.058 ± 0.0 11.65 ± 0.13 237.7 241.2

LS-6 2000-03-08–2000-03-09 0.059 ± 0.0 9.73 ± 1.20 240.0 251.8
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Acronyms

AMSR-E Advanced Microwave Scanning Radiometer onboard EOS

AMSR2 Advanced Microwave Scanning Radiometer 2

AO Arctic Oscillation

ASPeCt Antarctic Sea Ice Processes & Climate

DMSP Defense Meteorological Satellite Program

GCOM Global Change Observation Mission

ECMWF European Center for Medium-Range Weather Forecast

EUMETSAT European Organisation for the Exploitation of Meteorological

Satellites

ESA European Space Agency

GHz Gigahertz

H Horizontal Polarization

IFOV Instantaneous Field-of-view

MODIS Moderate Resolution Imaging Spectroradiometer

MEMLSI Microwave Emission Modeling of Layered Snowpacks on Sea Ice

MIZ Marginal Ice Zone

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration

NH Northern Hemisphere
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NPC North Polar Cap

NSIDC National Snow and Ice Data Center

OSISAF Ocean and Sea Ice Satellite Application Facility

PM Passive microwave

SH Southern Hemisphere

SIC Sea Ice Concentration

SST Sea surface temperature

SSM/I Special Sensor Microwave/Imager

SSMIS Special Sensor Microwave Imager/Sounder

TB Brightness Temperature

V Vertical Polarization
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der letzten Jahre begleitet hat. Ich wünsche mir, dass das für immer so bleibt!



Erklärung
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