UNIVERSITÄTSKLINIKUM HAMBURG-EPPENDORF

Onkologisches Zentrum Klinik für Strahlentherapie und Radioonkologie (Direktorin: Prof. Dr. Cordula Petersen) Labor für Strahlenbiologie und Experimentelle Radioonkologie (Leitung: Prof. Dr. Ekkehard Dikomey)

Immuncytochemischer Nachweis residueller Doppelstrangbrüche zur Bestimmung der zellulären Strahlenempfindlichkeit unter Berücksichtigung der Chromatinstruktur bei humanen Fibroblasten

Dissertation

zur Erlangung des Grades eines Doktors der Medizin an der Medizinischen Fakultät der Universität Hamburg

vorgelegt von:

Nadia Ibbich aus Velbert

Hamburg 2014

Angenommen von der Medizinischen Fakultät der Universität Hamburg am:

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende:	PD Dr. A. Raabe
Prüfungsausschuss, zweite/r Gutachter/in:	PD. Dr. K. Borgmann
Prüfungsausschuss, dritte/r Gutachter/in:	Prof. Dr. Chr. Kubisch

Inhaltsverzeichnis

1. EINLEITUNG	
1.1. Zielsetzung der Arbeit	1
1.2. Strahlenwirkung auf das Normalgewebe	
1.3. Zelluläre Strahlenwirkung	
1.3.1. Strahleninduzierte Schäden der DNA	
1.3.2. Zellinaktivierung und Zelltod nach Bestrahlung	7
1.4. DNA-Schadenserkennung und Reparatur	
1.4.1. DNA-Schadenserkennung	
1.4.2. Reparatur von DNA-Doppelstrangbrüchen	
1.4.3. Methoden zur Bestimmung der zellulären Strahlenempf	indlichkeit . 16
1.5. Das Chromatin	
1.5.1. Zusammensetzung des Chromatins	
1.5.2. Heterochromatin	
1.5.3. Chromatinmodifikationen	
1.5.4. Der Heterochromatin-bildende Repressor KAP1	
1.5.5. Das Heterochromatin-Protein 1	
1.5.6. Einfluss der Chromatinstruktur auf die Doppelstrangbruc	chreparatur26
2. MATERIAL UND METHODEN	
2.1. Materialien und Geräte	
2.2. Chemikalien und Lösungen	
2.2.1. Chemikalien	
2.2.2. Lösungen, Puffer und Nährmedien	
2.2.3. Antikörper	
2.3. Zelllinien und Zellkultur	
2.3.1. Zelllinien	
2.3.2. Zellkultur	
2.4. Bestrahlung	
2.5. Zellzyklusanalyse mittels FACS	
2.6. Koloniebildungstest	
2.7. Immunfluoreszenzfärbung	
2.7.1. Darstellung von strahleninduzierten residuellen Doppels	strangbrüchen 36
2.7.2. Darstellung von heterochromatischen Bereichen	

3.	ERGEBNISSE	39
	3.1. Charakterisierung der zellulären Strahlenempfindlichkeit humanen Fibroblasten mittels immunhistologischen Nachweises residueller Doppelstrangbrüche	r 39
	3.2. Nukleäre Lokalisation der residuellen Doppelstrangbrüche unter besonderer Berücksichtigung der Chromatinstruktur	51
	3.2.1. Untersuchung der Spezifität der zum Nachweis von Heterochroma verwendeten Antikörper	tin 51
	3.2.2. Bestimmung der zur Quantifizierung des HP1α-Signals geeigneten Parameter	า 54
	3.2.3. Einfluss von Bestrahlung auf den Heterochromatinstatus	58
	3.2.4. Lokalisation residueller γH2AX-Foci in Abhängigkeit vom Heterochromatinstatus	60
	3.3. Residuelle Foci als Surrogatmarker der zellulären Strahlenempfindlichkeit	65
	3.3.1. Zellzyklusbestimmung mittels FACS	65
	3.3.2. Bestimmung der zellulären Strahlenempfindlichkeit mittels Koloniebildungstest	67
	3.3.3. Surrogatmarker der zellulären Strahlenempfindlichkeit	71
4.	DISKUSSION	77
	4.1. Immuncytochemischer Nachweis und mikroskopische Darstellung residueller Doppelstrangbrüche mittels γH2AX-, 53BP1- und pATM-Fo	g ci 82
	4.2. Nachweis und Quantifizierung der heterochromatischen Bereiche	86
	4.2.1. Identifizierung der optimalen immunhistochemischen Färbungsmethode	86
	4.2.2. Implementierung geeigneter Auswerteverfahren zur Quantifizierung des Heterochromatins	g 88
	4.3. Untersuchungen zu Veränderungen des heterochromatomatische Anteils nach Bestrahlung und Untersuchung der Lokalisation residueller Doppelstranbrüche	n 91
	4.4. Vergleich der verschiedenen Surrogatmarker der zellulären Strahlenempfindlichkeit	97
	4.4.1. Residuelle Foci als Surrogatmarker der Strahlenempfindlichkeit	97
	4.4.2. Der Heterochromatin- Status als Surrogatmarker der zellulären Strahlenempfindlichkeit	99
5.	ZUSAMMENFASSUNG UND AUSBLICK	02
	5.1. Zusammenfassung 1	02
	5.2. Ausblick	05

5.2.1. Implementierung des Nachweises von HP1α mittels Fluss	szytometrie 105
5.2.2. Bestimmung der Konzentrationsänderung von Heterochro Bestrahlung in Abhängigkeit von Dosis und Zeit	omatin nach 106
6. ABKÜRZUNGSVERZEICHNIS	107
7. LITERATURVERZEICHNIS	109
8. ANHANG	120
8.1. Versuchsprotokolle	120
8.2. Häufigkeitsverteilungen der γH2AX-, 53BP1- und pATM-F	oci aller
untersuchten Zelllinien	127
8.3. Danksagung	156
8.4. Lebenslauf	158
8.5. Eidesstattliche Versicherung	159

1. EINLEITUNG

1.1. Zielsetzung der Arbeit

Die Strahlentherapie ist derzeit bei vielen Tumorerkrankungen ein wichtiger Bestandteil des therapeutischen Konzeptes. Dabei wird die einsetzbare Dosis vor allem durch die unvermeidbare Mitbestrahlung von Normalgewebe und dem damit verbundenen Risiko von akuten und späten Normalgewebereaktionen limitiert. Darüber hinaus muss berücksichtigt werden, dass auch bei identischen Therapieschemata erhebliche individuelle Unterschiede in der Häufigkeit und Intensität der akuten und späten Normalgewebereaktionen beobachtet werden, im Wesentlichen auf Unterschiede welche in der zellulären Strahlenempfindlichkeit der Patienten¹ zurückgeführt werden (Tucker et al., 1992). Die individuelle Strahlenempfindlichkeit wird somit maßgeblich durch die zelluläre, genetisch determinierte bzw. intrinsische Strahlenempfindlichkeit bestimmt (Borgmann et al., 2008). Eine Maßnahme zur Reduktion der Normalgewebsreaktionen wäre somit die Identifizierung strahlensensitiver Patienten. Wünschenswert wäre hierbei die verlässliche Quantifizierung der zellulären Strahlenempfindlichkeit mittels einer geeigneten Methode, die im Idealfall in der klinischen Situation vor Beginn der Strahlentherapie Auskunft über das individuelle Risiko strahleninduzierter Nebenwirkungen geben kann. Durch die Bestimmung der intrinsischen Strahlenempfindlichkeit im Vorfeld könnte eine Individualisierung der Strahlentherapie und die Vermeidung von Strahlenschäden mit dem Ziel der Therapieoptimierung erreicht werden. Vor der Implementation geeigneter Screening-Methoden gilt es jedoch zu klären, welche Faktoren für die Unterschiede der zellulären Strahlenempfindlichkeit verantwortlich sind. In diesem Zusammenhang sind systematische und vergleichende Untersuchungen an geeigneten Zellsystemen nötig, um optimale Methoden zu entwickeln und verlässliche Endpunkte zu identifizieren, deren

¹ Bei allen Bezeichnungen, die auf Personen bezogen sind, meint die Formulierung beide Geschlechter, unabhängig von der in der Formulierung verwendeten konkreten geschlechtsspezifischen Bezeichnung.

Anwendung die Bestimmung der individuellen Strahlenempfindlichkeit ermöglicht.

Von maßgeblicher Bedeutung für die individuelle Strahlenempfindlichkeit ist die Effektivität der zellulären Reparaturprozesse von DNA-Schäden. Hierbei wird aktuell der Chromatinstruktur besondere Bedeutung beigemessen, da das kompakte Heterochromatin im Gegensatz zu dem locker organisierten Euchromatin die DNA-Reparatur möglicherweise behindert und somit als morphologischer Hinweis auf eine verminderte DNA-Reparatur diskutiert wird.

Bezüglich der Bestimmung der zellulären Strahlenempfindlichkeit steht eine Reihe von Methoden zur Verfügung. Zum einen wird der in der Strahlenbiologie als Goldstandard geltende in-vitro-Kolonietest, mit dessen Hilfe das zelluläre Überleben nach Bestrahlung quantifiziert werden kann, angewendet. Zum anderen steht seit einigen Jahren mit dem Nachweis sogenannter Ionizing Radiation-induced Foci (IRIF) eine Methode zur Verfügung, residuelle DNA-Schädigungen als lokale Ereignisse darzustellen und zu quantifizieren. Diese Methode erfährt durch die Verfügbarkeit neuer Antikörper zum Nachweis verschiedener reparatur-assoziierter Proteine kontinuierliche Optimierung.

Ziel dieser Arbeit war die Optimierung des Nachweises residueller DNA-Schäden unter Verwendung spezifischer Antikörper gegen die reparaturassoziierten Proteine γH2AX, 53BP1 und den neuerdings kommerziell erwerbbaren Antikörper gegen pATM.

Neben den methodischen Aspekten wurde darüber hinaus die Bedeutung der Chromatinstruktur für die zelluläre Strahlenempfindlichkeit untersucht. Ziel war die Klärung der Fragestellung, ob ein Zusammenhang zwischen dem Anteil an Heterochromatin und der zellulären Strahlenempfindlichkeit besteht. Außerdem sollte die Hypothese, dass Heterochromatin eine Barriere für die DNA-Reparatur darstellt und folglich residuelle Doppelstrangbrüche vorzugsweise im Heterochromatin lokalisiert sind, überprüft werden. Als methodische Voraussetzung galt es zunächst, den immuncytochemischen Heterochromatin-Nachweis zu implementieren sowie eine Methode der Quantifizierung des Heterochromatinanteils zu entwickeln und geeignete Parameter zur Charakterisierung des Heterochromatin-Status zu identifizieren.

1.2. Strahlenwirkung auf das Normalgewebe

Das Ziel der Strahlentherapie bei der Behandlung maligner Erkrankungen ist die lokoregionale Tumorkontrolle unter weitgehender Schonung des normalen Gewebes zur Vermeidung so genannter Normalgewebereaktionen.

Im Hinblick auf die radiogenen Folgen an Normalgeweben wird im Allgemeinen zwischen Frühund Spätreaktionen unterschieden. Die akuten Normalgewebereaktionen treten meist schon während der Therapie oder unmittelbar danach auf. Bevorzugt betroffen sind Umsatzgewebe mit einer hohen Zellteilungsrate, wie beispielsweise die Schleimhaut (z.B. mit der Folge der Mukositis) oder das Knochenmark (z.B. mit der Folge der Panzytopenie). Die Höhe der Strahlendosis bestimmt hierbei die Zahl der überlebenden Stammzellen und die damit verbundene Zellneubildung und dadurch das Ausmaß der akuten Reaktionen. Nach Beendigung der Strahlentherapie kommt es bei den Frühreaktionen des Normalgewebes jedoch in der Regel zur folgenlosen Abheilung. Bei den Spätreaktionen spontanen und des Normalgewebes handelt es sich hingegen meist um irreversible und progrediente Schäden, die mit einer Latenz von mehreren Monaten bis Jahren nach Ende der Strahlentherapie auftreten. Betroffen sind vor allem Organe und Gewebe mit geringer Proliferationsrate wie Lunge, Leber oder Nieren. Typische späte Komplikationen nach Strahlentherapie sind hierbei fibrotische Veränderungen, wie zum Beispiel Lungenfibrose.

Die Wahrscheinlichkeit für das Auftreten von Normalgewebereaktionen wird durch patientenbezogene und behandlungsabhängige Faktoren (Delanian und Lefaix, 2004) sowie die individuelle Strahlenempfindlichkeit beeinflusst. Zu den patientenabhängigen Faktoren gehören beispielweise der Allgemeinzustand und das Ausmaß der Vorerkrankungen, wie Diabetes, Hypertonus (Chon und Loeffler, 2002) oder die Einschränkung der Lungenfunktion (Inoue et al., 2001). Zu den behandlungsabhängigen Faktoren gehören u.a. die Fraktionierung der Bestrahlung, ein ausreichendes Zeitintervall zwischen den Fraktionen und die Größe des Bestrahlungsvolumens (Rancati et al., 2003). Hinsichtlich der behandlungsabhängigen Faktoren kann die Bestrahlung von Normalgewebe vor allem durch die Optimierung der Lagerung, die Anwendung mehrerer Strahlenfelder und die Verbesserung der Fraktionierungsschemata erheblich reduziert werden (Garden, 2001; Kosaka et al., 2010).

Trotz dieser Maßnahmen zur Prävention von Strahlenschäden kommt es jedoch nach wie vor zu unerwünschten Nebenwirkungen. Auch bei identischen Therapieschemata sind zum Teil erhebliche Unterschiede bezüglich des Auftretens der späten Normalgewebereaktionen zwischen den einzelnen Patienten zu verzeichnen (Tucker et al., 1992). Diese Tatsache wird u.a. auf die individuelle Strahlenempfindlichkeit der einzelnen Patienten zurückgeführt (Andreassen et al., 2002; Borgmann et al., 2002).

Derzeit steht die Prädiktion der individuellen Strahlenempfindlichkeit im Mittelpunkt diverser aktueller Forschungsprojekte:

- 1. Es konnte ein Zusammenhang zwischen der zellulären und der individuellen Strahlenempfindlichkeit nachgewiesen werden (Borgmann et al., 2008). Patientinnen Dabei wiesen mit einer höheren zellulären Strahlenempfindlichkeit auch ein höheres Risiko für späte Normalgewebereaktionen auf.
- 2. Die Identifikation von Genen, die die zelluläre Strahlenempfindlichkeit beeinflussen, und die Bestimmung von Expressionsprofilen aller dieser Gene sind als weiterer Ansatz zu erwähnen. Hier ist die Bestimmung der Expression bestimmter Zytokine, wie TGFβ1, TNFα, IL-6 und IL-1 als Surrogatmarker der individuellen Strahlenempfindlichkeit, zu nennen (Okunieff et al., 2008). Außerdem erstrecken sich die Forschungen auf den Einfluss von Polymorphismen einzelner Nukleotide (Single Nukleotide Polymorphismen, SNP's) in bestimmten Genen, wie z.B. im TGFβ1-Gen (Andreassen et al., 2003; De Ruyck et al., 2005; Zschenker et al., 2010).
- Neuere Untersuchungen werden hinsichtlich des Einflusses des Heterochromatins auf die Doppelstrangbruchreparatur und das damit verbundene Zellüberleben durchgeführt (Goodarzi et al., 2009; Storch et al., 2010).

1.3. Zelluläre Strahlenwirkung

Die Erforschung der Strahlenwirkung auf Zellen ist eine wesentliche Fragestellung in der klinischen Strahlenbiologie und hat erheblich dazu beigetragen, die Wirkung ionisierender Strahlung auf Normalgewebe und Tumoren zu verstehen. Für die Entstehung unerwünschter akuter und später Nebenwirkungen ist ausschließlich die strahleninduzierte Zellinaktivierung von Bedeutung. Dabei wird das Zellüberleben nach Bestrahlung von einer Reihe physikalischer Faktoren beeinflusst. Hierzu zählen u.a. die Strahlendosis, die Dauer der Bestrahlung, die Strahlenart und die Fraktionierungsparameter. Hauptsächlich beruht es jedoch auf der intrinsischen, zellulären Strahlenempfindlichkeit, welche genetisch determiniert ist und wesentlich von der Fähigkeit zur Reparatur strahleninduzierter DNA-Schädigungen bestimmt wird (Borgmann et al., 2008; Dikomey et al., 1998; Dikomey und Brammer, 2000; Dikomey, 1999).

1.3.1. Strahleninduzierte Schäden der DNA

Das wichtigste intrazelluläre Target der Strahlenwirkung stellt die DNA dar. Ionisierende Strahlung kann hierbei zu direkten oder indirekten Schäden an der DNA führen. Die direkte Schädigung der DNA ist durch die Absorption der desselben nachfolgenden Schädigung Energie und der Moleküls gekennzeichnet. Bei indirekten DNA-Schäden kommt es zunächst durch die ionisierende Strahlung zur Bildung eines Radikals, welches dann über eine Radikalkettenreaktion ein anderes Molekül schädigt (Kauffmann 2011). Meist bleiben Strahlenschäden an der DNA folgenlos, da die Zelle über effiziente Reparaturmechanismen verfügt. Versagen diese Mechanismen jedoch, so stirbt der Großteil der Zellen nicht sofort. Die meisten Zellen können sich noch wenige Male teilen, bevor sie ihre Teilungsfähigkeit verlieren.

Durch ionisierende Bestrahlung wird eine Vielzahl an DNA-Schäden induziert. Abbildung 1 veranschaulicht die verschiedenen Typen der DNA-Schäden. Sehr häufig sind Schädigungen wie Basenverluste oder -veränderungen sowie Einzelstrangbrüche (ESBs). Diese Arten der DNA-Schäden werden mittels Basenexzisionsreparatur effektiv und in der Regel fehlerfrei beseitigt. Dagegen stellt sich vor allem die Reparatur von Doppelstrangbrüchen (DSBs) als weitaus schwieriger dar, da hier, wie in Abbildung 1 gezeigt, beide Stränge der DNA geschädigt sind (s.u.). Nicht reparierte oder fehlerhaft reparierte DSBs werden aus diesem Grund als Hauptursachen für die biologische Wirkung ionisierender Strahlung verstanden (Foray et al., 1997). Bulky Lesions stellen gehäufte Läsionen in unmittelbarer Nähe zueinander dar, sodass unterschiedliche Kombinationsformen bei der Reparatur möglich sind. Außerdem kann es zu Crosslinks kommen. Diese stellen DNA-Protein-Quervernetzungen dar (Kauffmann 2011).

Ward beschreibt in seiner Arbeit, dass nach Bestrahlung pro Gy und Zelle etwa 4000 bis 5000 DNA-Schäden auftreten, darunter etwa 1000 bis 3000 Basenschäden, 600 bis 1000 ESBs und 16 bis 40 DSBs (Ward, 1990). Zudem beschreibt er einen linearen Anstieg der Schädigungen mit steigender Dosis. Aufgrund eines effizienten Reparatursystems ist die durch Bestrahlung verursachte initiale DNA-Schädigung jedoch weitaus größer als die Zahl von Ereignissen, die zum klonogenen Zelltod und Mutationen führt.

1.3.2. Zellinaktivierung und Zelltod nach Bestrahlung

Als wesentlicher Mechanismus der zellulären Inaktivierung nach Bestrahlung wird der funktionelle Zelltod, der durch den Verlust der unbegrenzten Teilungsfähigkeit gekennzeichnet ist, beschrieben. Dieser geht mit dem Verlust der Koloniebildungsfähigkeit einher und wird daher auch als klonogener Zelltod bezeichnet.

Der wichtigste Mechanismus der Zellinaktivierung nach Bestrahlung von Fibroblasten ist der Mitosetod. Dieser ist dadurch gekennzeichnet, dass die betroffenen Zellen nicht unmittelbar nach der Bestrahlung absterben, sondern zunächst morphologisch intakt bleiben und noch einige Mitosen durchlaufen, bevor der Verlust von genetischem Material in Form von azentrischen Chromosomen-Fragmenten die reproduktive Integrität unterbindet. Residuelle DNA-Schäden können somit in der Mitose letale Chromosomenaberrationen bedingen und zu einer sekundären, postmitotischen Arretierung der Zelle in der nächsten G1- bzw. G0- Phase des Zellzyklus führen.

Neben dem mitotischen Zelltod ist bei Fibroblasten nach Bestrahlung, der G1-Arrest beschrieben. Beim G1-Arrest wird zwischen einem transienten und einem permanenten Arrest unterschieden. Beim transienten Arrest kommt es zum vorübergehenden Anhalten des Zellzyklus, während die Reparatur der geschädigten DNA stattfindet (Kastan et al., 1991). Der transiente Arrest trägt somit nicht zur dauerhaften Zellinaktivierung bei. Der permanente Arrest hingegen führt zu einer primären Arretierung der Zelle in der G1-Phase und bewirkt den Verlust der Koloniebildungsfähigkeit. Er ist bei Fibroblasten besonders ausgeprägt (Di Leonardo et al., 1994). Zusätzlich wird angenommen, dass der permanente G1-Arrest ein essentieller Schritt bei der Einleitung der terminalen Differenzierung von Fibroblasten ist. Es kommt zur Ausbildung terminaler Funktionszellen, die keine Kolonien mehr ausbilden können. Diese strahleninduzierte terminale Differenzierung scheint eine wichtige Rolle bei der Entstehung der radiogenen Fibrose als Spätfolge nach Bestrahlung zu spielen (Rodemann und Bamberg, 1995).

Zudem kann es nach Bestrahlung, vermittelt über p53, zur Initiierung des intrinsischen Wegs des programmierten Zelltodes, der sogenannten Apoptose, kommen (Kim et al. 2006). Diese Form der Zellinaktivierung ist allerdings nur bei hämatopoetischen Zellen wie beispielsweise Lymphozyten von Bedeutung. Bei humanen Fibroblasten, als Form des primären Zelltods, rückt sie in den Hintergrund. (Dewey et al. 1995). Ausschließlich bei der Selektion ausdifferenzierter, dem Proliferationspool bereits entzogener Fibrozyten kommt es zur Apoptose (Bayreuther et al. 1992).

1.4. DNA-Schadenserkennung und Reparatur

1.4.1. DNA-Schadenserkennung

Bei der Induktion von DNA-Doppelstrangbrüchen (DSB) durch ionisierende Strahlung kommt es zur Bildung von sogenannten Ionizing Radiation-induced Foci (IRIF). Bei diesen Foci handelt es sich um Akkumulationen reparaturassoziierter Proteine, die sich immuncytologisch mit Hilfe geeigneter Antikörper darstellen oder auch floureszenzmikroskopisch quantifizieren lassen.

Ein Doppelstrangbruch der DNA hat zunächst die Modifikation des Chromatins zur Folge. Die Dekondensation des DNA-Bezirks ist Ausgangspunkt für die den Erkennung und Reparatur von DSBs, da sie Zugang von Reparaturproteinen erleichtert bzw. ermöglicht. Dazu wird zunächst die Histonvariante H2AX zu vH2AX phosphoryliert. Dem voraus geht die Aktivierung von Ataxia Telangiectasia Mutated (ATM). Dies geschieht durch die Monomerisierung des inaktiven ATM-Dimers, einhergehend mit der Autophosphorilierung an den Serinresten Ser367, Ser1893, Ser1981 (Bakkenist und Kastan, 2003). Zusätzlich kommt es zur Dissoziation der konstitutiv mit ATM assoziierten Protein-Phosphatase-2A (PP2A), die in Abwesenheit eines DSB die Autophosphorilierung von ATM hemmt (Goodarzi et al., 2004). Des Weiteren findet im Verlauf der ATM-Aktivierung die Acetylierung am Lysinrest 3016 durch die, ebenfalls mit ATM konstitutiv assoziierte Acetyltransferase TIP60 statt, die infolge eines DSB aktiviert wird (Sun et al., 2005). Die ATM-Aktivierung führt zu einer Phosphorylierung multipler, an der DNA-Reparatur beteiligter Proteine. Zum einen hat ATM durch Phosphorylierung und der damit einhergehenden Aktivierung der Checkpointkinase 2 (Chk2) Einfluss auf den Zellzyklus. Durch eine zusätzlich direkte Phosphorylierung von p53 kann ATM ebenfalls den G1-Checkpoint initiieren (Kastan et al., 1992).

Im Rahmen der DSB-Reparatur bindet ATM an den Mre11-Rad50-Nbs1-Komplex (MRN), der als primärer Sensor der Schadensmarkierung fungiert. Die Assoziation von ATM mit dem MRN-Komplex erfolgt über Nibrin (Nbs1). Die Bindung des MRN-Komplexes an die DNA wird durch Mre11 vermittelt. Rad50 sorgt für die Annäherung der beiden DNA-Enden. Nach erfolgreicher Bindung

9

von ATM an den MRN-Komplex kommt es zur Phosphorylierung der Histonvariante H2AX. Dies ermöglicht dem mediator of DNA-damage checkpoint protein 1 (MDC1) wiederum mit dem C-Terminuns von γH2AX zu interagieren (Stucki et al., 2005). MDC1 fungiert als Plattform für die Fixierung von Reparaturproteinen wie dem MRN-Komplex und führt über direkte Assoziation mit ATM zur zusätzlichen Phosphorylierung von H2AX. Dies hat wiederum die verstärkte Rekrutierung von MDC1 zur Folge, was eine positive Rückkopplung bewirkt.

Zwei weitere an der DNA-damage-response (DDR) beteiligte Proteine sind 53BP1 und BRCA1, die beide ebenfalls ATM-Substrate darstellen. Die Bindung von 53BP1 und BRCA1 wird durch die RING-finger-Ubiquitinligase RNF8 erleichtert. Sie interagiert mit phosphoryliertem MDC1 und führt zur Ubiquitilierung von γH2AX (Panier und Durocher, 2009). Eine Übersicht der oben beschriebenen Signalkaskade wird in Abbildung 2 veranschaulicht. Dargestellt ist der Ablauf der Rekrutierung der einzelnen an der Schadensantwort beteiligten Reparaturproteine.

Abbildung 2: Rekrutierung von DNA-damage-response-Proteinen am Ort des DNA-DSBs (Lavin, 2008)

1.4.2. Reparatur von DNA-Doppelstrangbrüchen

Prinzipiell ist die Zelle in der Lage, alle Schadensformen zu erkennen und zu reparieren. DSBs stellen jedoch die am stärksten zytotoxische Art der DNA-Schäden dar. Aufgrund dessen, dass beide DNA-Stränge unterbrochen sind, ist die Reparatur wesentlich komplexer als die der ESBs. DSBs können durch verschiedene exogene Einwirkungen, wie ionisierende Bestrahlung oder Chemotherapeutika (Topoisomerase-Hemmer) entstehen. Auch im Rahmen physiologischer endogener Prozesse, wie bei der DNA-Replikation, der V(D)J-Rekombination oder durch reaktive Sauerstoffspezies kann es zu DSBs kommen. Werden strahleninduzierte DSBs nicht oder nur fehlerhaft repariert, kann dies u.a. zum Verlust der Proliferationsfähigkeit (klonogener Zelltod), zur Apoptose oder durch Translokation zur Entartung führen (Povirk, 2006). Aus

diesem Grund wird davon ausgegangen, dass residuelle DSBs den wichtigsten Mechanismus für die biologische Wirkung der Bestrahlung bilden.

In Säugetierzellen gibt es zwei Hauptwege für die Reparatur von strahleninduzierten DSBs. Zum einen ist die Homologe Rekombination (HR) zu nennen. Zum anderen gibt es die Möglichkeit des Non-Homologous-End-Joining (NHEJ).

1.4.2.1. Die Homologe Rekombination (HR)

Außer durch exogene Einflüsse, wie beispielsweise durch ionisierende Bestrahlung hervorgerufen, kommt es besonders im Rahmen der Replikation zu DSBs, da die DNA-Stränge im Bereich der Replikationsgabel als Einzelstränge vorliegen und daher besonders vulnerabel sind.

Die Homologe Rekombination dient der fehlerfreien Reparatur von DSBs. Hierbei dient das unbeschädigte komplementäre Schwester-Chromatid als Template.

Nach Prozessierung der doppelsträngigen DNA-Enden entstehen zwei 3 ' Einzelstrangenden, an denen die Rekombinaseproteine helikale Filamente bilden. Diese Nukleoproteinfilamente stellen die entscheidende Struktur der homologen Rekombination dar. Bei dem wesentlichen Bestandteil dieses helikalen Komplexes handelt es sich um die Rekombinase RAD51, da diese die Rekombination des prozessierten Einzelstranges mit dem Schwesterchromatid ermöglicht. Hierbei werden homologe Sequenzen in der intakten doppelsträngigen DNA erkannt und mit dem Einzelstrang gepaart. Im letzten Schritt findet ein Austausch der DNA-Stränge statt (Nagaraju und Scully, 2007; Wyman und Kanaar, 2004).

Aufgrund dessen, dass die Homologe Rekombination jedoch auf ein Schwesterchromatid angewiesen ist und somit nur im Rahmen der späten S-Phase sowie der G2-Phase bei proliferierenden Zellen relevant ist, wird auf die Darstellung von Einzelheiten verzichtet.

1.4.2.2. Das Non-Homologous-End-Joining (NHEJ)

Das NHEJ gilt als das häufigste und wichtigste Reparaturverfahren von Doppelstrangbrüchen in Säugetierzellen, da es in der gesamten Interphase möglich ist, während die homologe Rekombination wie beschrieben nur in der Synthese- und der G2-Phase des Zellzyklus vorkommt. Besondere Relevanz hat das NHEJ bei nicht proliferierenden Zellen, da in der G1- bzw. G0-Phase kein Schwesterchromatid zur Verfügung steht. Einfache DSBs können durch einfache End-zu-End-Verbindung wieder legiert werden. Handelt es sich um komplexe DSBs mit überhängenden Enden, kann ein Prozessierungsschritt notwendig werden, der zu einem Verlust von Nukleotiden führt. Das NHEJ ist somit eine z.T. fehlerbehaftete Reparatur.

Für das NHEJ werden Ku (Ku70/80-Heterodimer), DNA-PKcs [catalytic subunit of DNA-PK (DNA-dependent protein kinase)], XRCC4 (X-ray-complementing Chinese hamster gene 4), XLF (XRCC4-like factor), DNA ligase IV und ggf. PNK (polynucleotide kinase), WRN (Werner's syndrome helicase) sowie DNA-Polymerase μ und λ benötigt. Der Verlust einer dieser Komponenten geht u.a. mit einer erhöhten Sensitivität gegenüber ionisierender Bestrahlung einher (Bassing und Alt, 2004; O'driscoll und Jeggo, 2006).

Abbildung 3 zeigt ein vereinfachtes Schema für das Non-Homologous-End-Joining (Downs et al., 2007).

Abbildung 3: Darstellung zur Reparatur von DNA-Doppelstangbrüchen mit Hilfe von NHEJ (Downs et al., 2007).

Kommt es nun beispielsweise im Rahmen ionisierender Bestrahlung zu einem DSB, werden die beiden entstandenen DNA-Enden von jeweils einem Heterodimer, bestehend aus der Ku70- und Ku80-Untereinheit, erkannt. Das Dimer bindet mit hoher Affinität an die DNA-Enden und umschließt diese, indem es eine Ringstruktur ausbildet (Downs und Jackson, 2004). Nachfolgend kommt es zur Bindung der DNA-PKcs an das Dimer, was durch die Einwärtsdrehung des Ku-Ringes ermöglicht wird. Hierdurch kommt es zu einer verbunden Autophosphorylierung der DNA-PKcs, mit einer Konformationsänderung. Die DNA-PKcs sorgt zusammen mit dem Ku-Heterodimer für die Annäherung der beiden DNA-Stränge (Cary et al., 1997; Yoo und Dynan, 1999). Dieser Prozess ist für die weitere Bindung von für den Ablauf des NHJE essentiellen Proteinen, ausschlaggebend. Anschließend folgt die Rekrutierung des X4-L4-Komplexes bestehend aus XRCC4 und der DNA-Ligase IV. Die DNA-Ligase IV sorgt für die Wiederherstellung der Verbindung zwischen den beiden DNA-Strängen. XRCC4 weist keinerlei enzymatische Aktivität auf und dient lediglich als Plattform für die Rekrutierung weiterer, für das NHEJ essentieller Proteine (Junop et al., 2000). Zusätzlich dienen XRCC4 und XLF vermutlich der Stabilisierung der DNA-Ligase IV und stimulieren dessen Aktivität (Grawunder et al., 1997).

Im Rahmen ionisierender Bestrahlung kommt es jedoch häufig zur Bildung komplexer DNA-Schäden, die aufgrund nicht legierbarer Enden kein geeignetes Substrat für DNA-Ligase darstellen. Diese Situation macht die Anwesenheit der Endonuklease Artemis, der DNA-Polymerasen μ sowie λ , der PNK Polynucleotide Kinase (PNK) und der Werner's syndrome helicase (WRN) erforderlich, die für die Prozessierung der DNA-Enden benötigt werden. Artemis interagiert hierbei mit der DNA-PKcs, was zu dessen Phosphorylierung führt (Mahaney et al., 2009). Artemis verfügt über eine $5 \rightarrow 3$ -Exonukleaseaktivität und eine von DNA-PKcs und ATM abhängigen Endonukleaseaktivität (Ma et al., 2005). Artemisdefiziente Zellen weisen eine erhöhte Radiosensitivität auf. Jedoch konnte kein großer Defekt der DSB-Reparatur nachgewiesen werden. Diese Tatsache macht deutlich, dass Artemis lediglich für einen kleinen Teil der DSB benötigt wird (Wang et al., 2005). Die PNK interagiert mit XRCC4 und besitzt eine 3'-DNA-Phosphatase- und 5'-DNA-Kinaseaktivität, mit dessen Hilfe sie ebenfalls nicht legierbare Enden entfernt (Bernstein et al., 2008). Auch die Helikase WRN dient der DNA-Prozessierung. Sie verfügt dazu über eine ATPase, 3'- \rightarrow 5'-DNA-Helikase und eine 3'- \rightarrow 5'-Exonukleaseaktivität (Li und Comai, 2001).

Bei der Prozessierung entstandene DNA-Lücken werden anschließend mit Hilfe der DNA- Polymerase μ und λ , die durch Interaktion mit Ku und dem X4-L4-Komplex rekrutiert werden, gefüllt (Mueller et al., 2008).

Im Anschluss daran müssen die beiden DNA-Enden wieder miteinander verbunden werden. Dies kann in diesem Fall mit Hilfe der DNA-Ligase IV, die zusammen im Komplex mit XRCC4 vorliegt, geschehen.

1.4.3. Methoden zur Bestimmung der zellulären Strahlenempfindlichkeit

Die zelluläre Strahlenempfindlichkeit kann mit Hilfe verschiedener standardisierter Methoden untersucht werden. Im Rahmen dieser Arbeit wird zum einen der Koloniebildungstest angewendet. Des Weiteren wird, als Surrogatmarker der zellulären Strahlenresponse, der immuncytochemische Nachweis reparaturassoziierter Proteine wie γH2AX, 53BP1 und pATM verwendet.

Als Goldstandard zur Bestimmung der zellulären Inaktivierung gilt der Koloniebildungstest. Mit Hilfe von Überlebenskurven wird hierbei die Fraktion überlebender klonogener Zellen nach Applikation verschiedener Strahlendosen quantitativ erfasst. Der Vergleich einer unbestrahlten Kontrolle mit einer bestrahlten Probe ermöglicht hierbei die Ermittlung der Überlebensrate, auch als Surviving Fraction (SF) bezeichnet. Das Prinzip beruht darauf, dass Zellen die einen, durch ionisierende Strahlung induzierten DNA-Schaden erlitten haben, nicht mehr zur Bildung von Kolonien befähigt sind. Je nach Schadensausmaß, das u.a. durch die Dosis der applizierten Strahlung und die individuelle Strahlensensibilität bestimmt wird, sind die bestrahlten Zellen in der Lage, eine unterschiedliche Anzahl von Kolonien auszubilden. Bei proliferierenden Zellen ist zusätzlich von Interesse, in welcher Wachstumsphase sich die Zellkultur befindet. So konnte Dikomey et al. (Dikomey und Brammer, 2000) nachweisen, dass konfluente und proliferierende Zellkulturen Unterschiede in ihrer Strahlenempfindlichkeit aufweisen. Aus diesem Grund wurden im Rahmen der vorliegenden Arbeit ausschließlich Zellen in Konfluenz untersucht.

Eine neuere Methode zur Bestimmung der zellulären Strahlenempfindlichkeit stellt die immuncytochemische Darstellung von reparaturassoziierten Foci dar (Kuo und Yang, 2008; Lobrich et al., 2010; Mah et al., 2010). Hierbei werden DNA-Doppelstrangbrüche mittels Nachweis reparaturassoziierter Proteine wie γH2AX, 53BP1 und pATM, die der DNA-Schadenserkennung dienen (siehe oben), angefärbt, was somit eine Quantifizierung dieser ermöglicht. Die Detektion der genannten Proteine erfolgt mit Hilfe spezifischer Antikörper, die

gegen das zu detektierende Protein gerichtet sind. Zusätzlich wird ein zweiter Fluoreszenzantikörper benötigt, der anschließend durch Bindung des Ersten zu einem sichtbaren Signal führt. Unter dem Fluoreszenzmikroskop können die Doppelstrangbrüche als Foci ausgezählt und quantifiziert werden.

Strahleninduzierte Foci sind direkt nach Bestrahlung nachzuweisen und erreichen eine maximale Anzahl nach etwa 30 Minuten. Eine deutliche Abnahme der Foci lässt sich im Zeitraum von 6-8 Stunden beobachten, wobei ein Minimum nach ca. 18 Stunden erreicht wird (Mahrhofer et al., 2006). Für die Bestimmung der individuellen Strahlenempfindlichkeit ist dabei vor allem die Anzahl der Foci nach Ablauf der DNA-Reparatur, also nach mindestens 6-8 Stunden von Interesse.

Ein wesentlicher Vorteil der Darstellung von Foci ist die relativ einfache Durchführbarkeit. Die Detektion von Foci wird daher nicht nur als Indikator für die Bestimmung der zellulären Strahlenempfindlichkeit erforscht, sondern auch zur Bestimmung des Ausmaßes nach stattgehabter radioaktiver Strahlenexposition verwendet (Asaithamby und Chen, 2009; Rothkamm, K. et al., 2007).

1.5. Das Chromatin

Die Struktur und der Grad der Kondensation des Chromatins beeinflusst diverse Prozesse innerhalb der Zelle. Neben der Transkription von Genen übt die Chromatinstruktur einen wichtigen Einfluss auf die DNA-Reparatur aus.

1.5.1. Zusammensetzung des Chromatins

In eukaryotischen Zellen ist das genetische Material bzw. die DNA in einer komplexen Struktur, dem Chromatin (khroma griech. für gefärbt) verpackt. Die Nukleosomen stellen die kleinste Einheit des Chromatins dar. Sie bestehen aus den basischen Histonproteinen H2A, H2B, H3 und H4 sowie doppelsträngiger DNA. Jeweils zwei der Histone H2A, H2B, H3 und H4 lagern sich zu einem oktameren Komplex zusammen, um den sich die DNA mit der Länge von 147bp 1,65 mal windet (Kouzarides, 2007). Die Kondensation der DNA in Form von Nukleosomen gilt als erste Stufe der DNA-Verpackung. Aufgrund ihres Aufbaus wird diese 11nm-Fibrille auch mit "Beads on a string" betitelt. Die nächsthöhere Verpackungseinheit bildet die 30nm-Fibrille, die mit Hilfe des Histon H1 gebildet wird (Jenuwein und Allis, 2007; Woodcock und Ghosh, 2010). Entgegen der zuvor vermuteten Annahme, Chromatin sei eine statische Struktur, handelt es sich bei Chromatin um ein flexibles und dynamisches Gebilde, was in der Lage ist, umgehend auf äußere Einflüsse zu reagieren (Jenuwein und Allis, 2001). Eine Übersicht über die Organisation des Chromatins in eukaryotischen Zellen wird in Abbildung 4 dargestellt.

Abbildung 4: Verpackung der DNA in eukaryotischen Zellen (Sparmann und Van Lohuizen, 2006)

1.5.2. Heterochromatin

Basierend auf mikroskopischen Betrachtungen wird das Chromatin in Euchromatin und Heterochromatin eingeteilt, wobei heterochromatische Regionen Bereiche bezeichnen, die außerhalb des Zellzyklus kondensiert bleiben. Euchromatin hingegen liegt während der Interphase dekondensiert vor. Es wird beschrieben, dass 10-25% der eukaryotischen DNA transkriptionell inaktiv und in Form von Heterochromatin in der Zelle vorliegt (Yunis und Yasmineh, 1971).

Der DNA-Bezirk im Bereich des Zentromers, der für die Formation des Kinetochors verantwortlich ist, wird als perizentrisches Heterochromatin bezeichnet. In Zellen der Maus können diese Bereiche durch ihre intensive 4'6diamidino-2-phenylindole (DAPI)-Anreicherung einfach identifiziert werden. Während der Interphase zeigen diese Regionen Chromosomencluster, die man auch als Chromozentren bezeichnet. Perizentrisches Heterochromatin ist wie telomere DNA ein typisches Beispiel für konstitutives Heterochromatin. Konstitutives Heterochromatin ist transkriptionell inaktiv und hat genomstabilisierende Funktionen (Maison und Almouzni, 2004). Es findet sich in nicht kodierenden repetetiven Bereichen. Abbildung 5 zeigt beschriebene Chromozentren innerhalb eines Zellkerns embryonaler Mausfibroblasten der Zelllinie NIH3T3 anhand einer DAPI-Färbung, die im Rahmen der Arbeit durchgeführt wurde.

Abbildung 5: Chromozentren als Beispiel für konstitutives Heterochromatin in embryonalen Mausfibroblasten der Zelllinie NIH3T3

Fakultatives Heterochromatin hingegen umfasst Gene, die ursprünglich transkriptionell aktiv waren und während der Entwicklung bzw. der Ausdifferenzierung still gelegt wurden. Ein klassisches Beispiel für fakultatives Heterochromatin ist das inaktive Barr-Körperchen weiblicher Säugetierzellen. Ein X-Chromosom wird während der Embryogenese zufällig ausgewählt und still gelegt, um funktionale Aneuploidie von x-chromosomalen Genen zu verhindern (Yunis und Yasmineh, 1971). Abbildung 6 verdeutlicht anhand eines Modells verschiedene Formen der Geninaktivierung und die damit verbundene Chromatinmorphologie innerhalb des Nukleus.

Abbildung 6: Verschiedene Formen der Geninaktivierung

Sowohl fakultatives als auch konstitutives Heterochromatin bilden sich durch Cluster innerhalb des Nucleus ab, wohingegen inaktive euchromatische Bereiche nicht anhand der Morphologie identifiziert werden können (Jenuwein und Allis, 2007).

Obwohl Heterochromatin transkriptionell inaktiv ist, ist es für eukaryotische Zellen essentiell. Aufgrund seiner regulatorischen Aufgaben während der Mitose (zentromere/ perizentrische DNA), bei der Genexpression, bei der Ribosomenbiogenese, der Stabilität der Telomere und die Gesamtarchitektur des Kerns übernimmt es unerlässliche Funktionen (Grewal und Jia, 2007).

1.5.3. Chromatinmodifikationen

Histone setzen sich aus einem globulären und einem N-terminalen Anteil zusammen. Der globuläre Anteil ist für die Assoziation mit der DNA und für die Organisation des oktameren Komplexes verantwortlich. Der N-terminale Anteil hingegen ragt aus der kompakten Nukleosmenstruktur heraus und ist unstrukturiert. Er stellt die Plattform für ausgiebige posttranslationale Modifikationen dar. Die posttranslationalen Modifikationen und assoziierten Proteine beeinflussen die Struktur des Chromatins und damit die Transkription, Replikation und DNA-Reparatur.

Von besonderer Bedeutung für die Chromatinstruktur ist die Acetylierung und Methylierung von Histonen. Die Acetylierung von Lysinresten beispielsweise führt zur Neutralisierung der positiven Ladung der Lysinreste. Dies hat zur Folge, dass sich die Histone von der negativ geladenen DNA lösen. Die damit einhergehende Entfaltung des Chromatins bewirkt die Aktivierung der Transkription. Typisch für euchromatische Bereiche ist beispielsweise die Triacetylierung von Lysin 9 des Histons 3 (H3K9ac3). Die Entfernung von Acetylresten führt umgekehrt zu einer Kondensation des Chromatins und hemmt die Transkription. Die Acetylierung wird von Histon-Acetyltransferasen (HATs), die Deacetylierung von Histon- Deacetylasen (HDACs) katalysiert.

Neben der Acetylierung können Lysinreste in Histonen methyliert werden. Hierbei kann ein Lysinrest bis zu drei Methylgruppen tragen. Diese Methylierung kann sich hemmend, aber auch fördernd auf die Transkription auswirken. So bewirkt beispielsweise die Trimethylierung von Lysinresten des Histons 3 in Position 4 (H3K4me3) eine Stimulation und in den Positionen 9, 27 und 79 (H3K9me3, H3K27me3, H3K79me3) eine Hemmung der Transkription. Der Methylierungsgrad wird von Histon-Methyltransferasen und -Demethylasen reguliert. Die Aktivität dieser Enzyme wird über Koaktivatoren und Korepressoren wie KAP1 und HP1α geregelt (Kouzarides, 2007; Lachner et al.). Abbildung 7 zeigt exemplarische Beispiele für die Methylierung und Acetylierung von Lysinresten am Histon H3 und ihre Funktionen.

Abbildung 7: Exemplarische Bereiche der Histonmethylierung und -acetylierung mit ihren Bindungspartnern und ihren Funktionen.

Das rot gekennzeichnete methylierte Lysin 9 von H3 wird aufgrund seiner Relevanz hervorgehoben markiert. Die Methylierung bewirkt die transkriptionelle Inaktivität. Bei dem dargestellten Bindungspartner handelt es sich um das Heterochromatinprotein 1 (HP1) (Cui und Miao, 2010; Jenuwein und Allis, 2007).

1.5.4. Der Heterochromatin-bildende Repressor KAP1

Bei der KRAB (Kruppel-associated box)-Domäne handelt es sich um eine potente Repressionsdomäne, welche in nahezu einem Drittel der Zinkfinger-Transkriptionsfaktoren nachgewiesen werden kann (Bellefroid et al.). Wie viele andere Repressionsdomänen enthält die KRAB-Repressionsdomäne erst ihre Repressoraktivität, wenn sie an einem entsprechenden DNA-Abschnitt bindet. Bei KAP1 handelt es sich um einen Korepressor für die KRAB-Domäne (Venturini et al.). KAP1 steht für KRAB Associated Protein 1 und ist ein 97 kDa großes nukleäres Phosphoprotein mit starker Repressoraktivität. Am Amino-Ende befindet sich die RBCC-Multidomäne, die einen RING-Finger, zwei B-Boxen und eine Coiledcoil-Domäne umfasst. Die RBCC-Einheit ist essentiell für die Bindung der KRAB-Domäne und ermöglicht die Multimerisierung von KAP1-Proteinen (Friedman et al.; Peng et al.). Eine Plant-like-Homeodomäne (PHD) und eine Bromodomäne befinden sich am Carboxy-Ende. Die zentrale Region von KAP1 wird durch die HP1BD-Region gebildet und dient der suffizienten Bindung an die Chromoshadowdomäne (CSD) des HP1 (siehe unten). Die vorausgehende Dimerisierung der CSD führt dazu, dass HP1 in einem Verhältnis von 2:1 an die HP1BD des KAP1 bindet.

Abbildung 8 zeigt KAP1 in linearer Darstellung mit seinen konservierten Domänen.

Abbildung 8: Schematische Darstellung des KAP1- Proteins (Lechner et al., 2000)

Zusammenfassend kann festgehalten werden, dass KRAB-Zinkfinger-Proteine, KAP1-Korepressoren an die DNA rekrutieren. Dieser Komplex wiederum bindet das Heterochromatinprotein 1 (HP1), was zu einer lokalen Heterochromatin-Bildung und zum Gen-Silencing führt (Lechner et al., 2000).

1.5.5. Das Heterochromatin-Protein 1

Das Heterochromatin-Protein 1 (HP1) ist für die Regulierung von Transkription, Replikation und Chromatinorganisation essentiell. Es handelt sich hierbei um ein nicht-histones Adaptermolekül, was in erster Linie mit Gen-Silencing und Chromosomenkondensation assoziiert ist (Maison und Almouzni, 2004).

In Säugetierzellen werden drei HP1-Isoformen unterschieden: HP1a, HP1ß und HP1y. Sie sind vor allem im konstitutiven Heterochromatin, wie den Centromeren und den Telomeren, lokalisiert (Dinant und Luijsterburg, 2009). HP1-Proteine haben eine Größe von etwa 25kDa. Sie besitzen alle eine konservierte N-terminale Chromodomäne (CD), gefolgt von einer variablen Hinge-Region und einer konservierten C-terminalen Chromoshadowdomäne (CSD). Beide Domänen dienen der Protein-Protein-Interaktion. Die CD vermittelt die Bindung von HP1 am trimethylierten Lysin 9 von Histon 3 (H3K9me3) (Bannister et al., 2001; Lachner et al., 2001). Die CSD ermöglicht u.a. die Dimerisierung der HP1-Proteine, was die Bildung von Homo- und Heterodimeren ermöglicht. Den hydrophoben Molekülen ist es nun, an Proteinen mit einem PXVXL-Motif zu binden. Dies befähigt u.a. zur Interaktion mit dem Korepressor KAP-1 (siehe oben) und der Histon-Methyltransferase SUV39H (Fuks et al.; Murzina et al., 1999; Yamamoto und Sonoda). Die variable Hinge-Region interagiert mit DNA, RNA und Chromatin (Muchardt et al.). Abbildung 9 zeigt HP1 in linearem Format mit seinen konservierten Domänen.

Abbildung 9: HP1-Domänen und deren Interaktionspartner (Maison und Almouzni, 2004)

1.5.6. Einfluss der Chromatinstruktur auf die Doppelstrangbruchreparatur

Untersuchungen Einfluss Chromatinstruktur auf die zum der Doppelstrangbruchreparatur bilden aktuell einen zentralen Forschungsschwerpunkt diverser Arbeitsgruppen. Bekannt ist. dass Doppelstrangbrüche mit mindestens zwei Kinetiken repariert werden. Die Mehrheit der DSBs (ca. 85%) wird mit schneller Kinetik repariert. Für die übrigen 15% werden langsame Reparaturkinetiken festgestellt. Es wird beschrieben, dass jene DSBs, die eine langsame Reparaturkinetik aufweisen, in peripheren Gebieten des Heterochromatins lokalisiert sind. Somit deuten diverse Aspekte darauf hin, dass die Ursache für die langsame Doppelstrangbruchreparatur, entgegen der zuvor vermuteten Annahme, die Reparaturkinetik sei von der Komplexität des Schadens abhängig, in der Komplexität der Chromatinstruktur, an der es zum Schadensereignis kommt, zu sehen ist (Goodarzi et al., 2010). Diskutiert wird, dass das kompakte Heterochromatin im Gegensatz zu dem locker organisierten Euchromatin die DNA-Reparatur möglicherweise behindert und somit als morphologischer Hinweis auf eine erschwerte bzw. verminderte DNA-Reparatur dient. Hierbei wird die Kinase ATM als essentieller Faktor der langsamen Heterochromatinassoziierten Reparaturkinetik gesehen. Die Arbeitsgruppe Goodarzi beschreibt einen direkten Zusammenhang zwischen Chromatinveränderungen nach Schadensinduktion und ATM. Hierbei wird ATM für die Phosphorylierung des transkriptionalen Korepressors KAP-1, was die lokale Chromatinrelaxation zur Folge hat und somit den Zugang für Reparaturproteine erleichtert, verantwortlich gemacht. KAP-1 interagiert u.a. mit Heterochromatin-assoziierten Proteinen wie HP1 und ist für die Formation von Heterochromatin verantwortlich (Goodarzi et al., 2008).

Einen zentralen Aspekt dieser Arbeit stellt in dem Zusammenhang die Untersuchung der Bedeutung der Chromatinstruktur für die zelluläre Strahlenempfindlichkeit dar. Ziel ist die Klärung der Fragestellung, ob ein Zusammenhang zwischen dem Anteil an Heterochromatin und der zellulären Strahlenempfindlichkeit besteht. Außerdem soll die Hypothese, dass Heterochromatin eine Barriere für die DNA-Reparatur darstellt und folglich residuelle Doppelstrangbrüche vorzugsweise im Heterochromatin lokalisiert sind, überprüft werden. Als methodische Voraussetzung galt es zunächst, den immuncytochemischen Heterochromatin-Nachweis zu implementieren sowie eine Methode der Quantifizierung des Heterochromatinanteils zu entwickeln und geeignete Parameter zur Charakterisierung des Heterochromatin-Status zu identifizieren.

2. MATERIAL UND METHODEN

In dem folgenden Kapitel werden die im Verlauf der Experimente verwendeten Materialien und Methoden beschrieben. Eine ausführliche Darstellung der Methoden befindet sich in Form der Protokolle im Anhang.

2.1. Materialien und Geräte

Brutschrank (10% CO2)	Automatic CO2 Incubator Model 160
CCD-Kamera	CFI/1 FMCC, Kappa-Messtechnik
Computergestützte Imaging Bildauswertungssoftware	Axio Vision Rel. 4.8.1, Carl Zeiss Solutions GmbH
Coulter Counter	Coulter Particle Count and Size Analyser Z 2, Beckman Coulter Inc.
Culture Slides	BD Falcon™
Deckgläschen	Marienfeld, 24x60mm
Durchflusszytometer	Becton Dickinson FACScanTM
Elektrophoresegel	CriterionTM Precast Gel, 4-15% Tris- HCL
Elektrophoresekammer	Citerion™ CELL, No.765/2297, Bio- Rad
Filterpapier	9,5x15,2cm, Bio-Rad
Fluoreszenz-Mikroskop	Zeiss Axioplan2, Zeiss Axioskop
FACS	FACSCantoTM, Becton/Dickinson
FACS-Auswertungssoftware	FACSDivaTM 6.1.2, Becton/Dickinson
FACS-Röhrchen	Reagenz- und Zentrifugenröhrchen mit rundem Boden, 5ml, Sarstedt
Heating Block	Incubator, Thermostat 5320, Eppendorf
Immersions-Öl	
Inkubationskammer	Sarstedt
Küvette für Photometer	Polyserol, 10x4x5mm, Sarstedt
Magnetrührer	Ikamag® Ret
Membran for protein transfer	Amersham Hybond™- P, GE

	Healthcare
Nagellack	
Night Oil	EG & G Berthold, Molecular Light Imager
Objektträger	Karl Hecht
Photometer	Bio Photometer, Eppendorf
Pipetten	1ml, 2ml, 5ml, 10ml, Falcon, Becton/Dickinson Labware
Pipetten	1µl, 10µl, 100µl, 1000µl, Eppendorf Reference
Pipettenspitzen	normal und Elektrophoresespitzen, Sarstedt
Pipettierhilfe	accu- jet® Pro, Brand
Reagiergefäß	1,5ml, 2ml, Sarstedt
Röntgenfilmentwicklungsmaschine	Curix 60, Agfa
Röntgenröhre 0,5 mm starker Kupferfilter und Duplexdosimeter (PTW)	RT200 200 kV, C. H. F. Müller, HH bei einem Röntgenstrom von 20 mA einer Spannung von 200kV
Schüttler	 1. KM-2, Edmund Bühler 2. Rotmax 120, Heidolph 3. Wippenschüttler, ST5 CAT, neoLab
Spannungsgeber	E835, Consort
Statistik-Software	GraphPad Prism 4, Statcon
Steril-Bench	Zyto-Sicherheitswerkbank KI.2, HERA Heraeus Instruments safe
Transferkammer	Citerion™ Blotter, No.560BR 06070, Bio-Rad
Vakuumpumpe	VNC1, Vacuubrand
Vortex	Reax top, Heidolph
Waage	1. Mittler AM 100 2. Mittler AM 160 3. Kern EMB 1200-1
X- Ray Film	CL-XposureTM Film, Thermo Scientific
Zellkultur-Flaschen	T-75, Sarstedt
Zentrifuge	1. Megafuge 1.OR, Heraeus Sepateck

	 Laborfuge 400 R FunctionLine, Heraeus instruments Kühlzentrifuge, Eppendorf 5804R
Zentrifugenröhrchen	Cellstar® Tubes 15ml, PP, konischer Boden mit Schraubverschluss, greiner bio-one

2.2. Chemikalien und Lösungen

2.2.1. Chemikalien

1,4-Dithiothreit	Roth
2-Propanol pro analysis	Merck
Bradford- Reagenz	Sigma
Bromphenolblau 0,1%	Sigma
BSA	Bovine Serum Fraktion V, PAA
Chloroform	Merck
DAPI	4´- 6- Diamidino-2- phenylindole, AppliChem
Ethanol absolute for analysis	Merck
Formaldehyd solution	37%, Merck
Fx Cycle Far Red stain	#547473, invitrogen
Glycin	M=75,07 g/mol, Roth
Glycerol	Sigma
Guanidin hydrochlorid	Sigma
Kaleidoscope Prestained standards	#161-0324, Bio-Rad
Magermilchpulver	Sinnrad
Methanol	J. T. Baker
Mounting Medium	Vectashield H- 1000, Vector Laboratories
peqGOLD Trifast	peqlab
Ponceau S	Sigma
Propidium Jodide	Cat #537059, Calbiochem
RNAse	Ribonuclease A from bovine, Serva

RNAse freies Wasser	Gibco
SDS, Sodium dodecyl sulfate	Sigma
TCA, Trochloressigsäure	Merck
Tris base	Sigma
Triton X-100	Serva
Trizma hydrochloride	Sigma
Trypsin-EDTA-Lösung	Difco
Tween20	Sigma- Aldrich
Urea	Sigma
Western Blotting Detection Reagents	Amersham ECL™, GE Healthcare, RPN2106

2.2.2. Lösungen, Puffer und Nährmedien

DMEM	Dulbecco-minimal-essential-Medium, Gibco
FCS	10%, fetales Kälberserum, Biochrom AG
L- Glutamin	2%, Gibco
PBS, phosphate buffered saline	8 g Natriumchlorid (J.T. Baker) 0.2 g Kaliumchlorid (Merck) 1.15 g Natriumhydrogenphosphat (Merck) 0.2 g Kaliumhydrogenphosphat (Merck) gelöst in 1 Liter Aqua dest.
Immunfluoreszenz und FACS:	
Fixierlösung:	2% bzw. 4% Formaldehyd PBS
Permeabilitätslösung:	0,1% TritonX-100 PBS
Blockierlösung:	5 % BSA PBS
Waschlösung I :	0,5% BSA 0,1% Tween20
	PBS
-----------------	-------------------------------
Waschlösung II:	0,1% Tween20 PBS
DAPI-Lösung:	1000µl Vectashield + 1µl DAPI

2.2.3. Antikörper

mouse-anti-yH2AX IgG (Ser139), Upstate (#687619), 1:100 rabbit-anti-53BP1 IgG, Novus Biologicals (NB100-305), 1:100 rabbit-anti-ATM IgG, Cell Signaling Technology (#2873), 1:1000 für WB rabbit-anti-pATM (phospho Ser1981) IgG, Epitomics (Q13315), 1:100 (für WB 1:2000) rabbit-anti-HP1α IgG, Cell Signaling Technology (#2616), 1:200 rabbit-anti-KAP1 IgG, Abcam (ab10484), 1:600 mouse-anti-KAP1 IgG, Abcam (ab22553), 1:500 rabbit-anti-pKAP1 IgG (phospho Ser824), Abcam (ab84077), 1:200 rabbit-anti-Histon H3 (tri methyl K9) IgG, Abcam (ab8898), 1:800 mouse-anti-Histon H3 (acetyl K9) IgG, Abcam (ab12179), 1:500 rabbit-anti-Aktin IgG, Cell Signaling Technology (#9272), 1:5000 goat-anti-rabbit IgG (H+L) Alexa Fluor 488, Cell Signaling Technology (#4412), 1:800 goat-anti-rabbit IgG (H+L), GE Healthcare (N1031), 1:100 goat-anti-rabbit IgG (H+L) FITC, Abcam (ab6717), 1:600 Amersham ECL anti-rabbit IgG, GE Healthcare (NA934), 1:1000 für WB goat-anti-mouse IgG (H+L) Alexa-Fluor 594, Invitrogen (A11005), 1:600 Amersham ECL anti-mouse IgG, GE Healthcare (NA931), 1:5000 für WB

2.3. Zelllinien und Zellkultur

2.3.1. Zelllinien

Während der Labortätigkeit werden 9 humane Fibroblastenzelllinien hinsichtlich ihrer Strahlensensibilität untersucht. Die Linien F98, F162, F181, F184, F185 und F190 wurden aus Biopsien kindlicher Vorhaut in der Dermatologie des Universitätsklinikums Hamburg Eppendorf gewonnen. Die Zelllinien Fib14, Fib32 und Fib39 wurden von der Georg-August-Universität in Göttingen zur Verfügung gestellt.

Als Referenz dient der Wildtyp mit der Bezeichnung WT1BR. Die Negativkontrolle stellt die AT1BR-Zelllinie dar. AT1BR-Zellen sind primäre humane Hautfibroblasten mit einer homozygoten Mutation im ATM-Gen (751insSQX + D1853N; Sasaki et al. 1998). Sie wurden aus einem Patienten mit der Krankheit Ataxia telangiectasia (AT) isoliert.

Zur Untersuchung des Heterochromatins und zur Darstellung der Chromocentren dienen embryonale Mausfibroblasten der Linie NIH3T3.

In Kultur bilden die Zelllinien, einen für Fibroblasten typischen einschichtigen Zellrasen (Monolayer). Durch Kontaktinhibition wird die Synchronisation der Fibroblasten in der G1-Phase des Zellzyklus erreicht. Aufgrund einer fehlenden Kontaktinhibition sind die AT1BR-Zellen hiervon ausgenommen.

2.3.2. Zellkultur

Alle Zellen werden in Gewebekulturflaschen der Größe T-75 kultiviert. Als Nährmedium dient DMEM-Medium mit einem Zusatz von 10% fetalem Kälberserum (FCS) und 2% L-Glutamin. Die Zellkulturen werden bei 37°C, 100% Luftfeuchtigkeit und 10% CO₂ im Brutschrank inkubiert. Je nach Zelllinie wird am 5. bis 6. Tag die Konfluenz erreicht. Definitionsgemäß liegt Konfluenz dann vor, wenn kein freier Flaschenboden zwischen den Zellen zu sehen ist. Dies wird lichtmikroskopisch kontrolliert. Flusszytometrische Kontrollmessungen zeigen, dass 98% der Zellen dann den DNA-Gehalt von G1- bzw G0-Phasezellen aufweisen.

Für die Stammhaltung werden die Zellen einmal pro Woche gesplittet und in einer Dichte von 3x10⁵ in einer neuen Kulturflasche ausgesät. Das regelmäßige Umsetzen der Fibroblasten ist wichtig, da die Zellen bei sehr hoher Dichte in die G0-Phase übergehen.

Durch so genanntes Abtrypsinieren, wird der Zellrasen vom Flaschenboden gelöst. Hierbei wird nach Absaugen des Mediums unter einer sterilen Bench, Trypsin-EDTA-Lösung in die Kulturflaschen pipettiert. Nach ca. 30 bis 60 sec Inkubationszeit wird dies abgesaugt. Die Kulturflaschen werden nun bei 37°C in den Wärmeschrank gegeben, bis sich die Zellen deutlich abkugeln. Dies ist im Lichtmikroskop zu beobachten. Die Zugabe von Zellmedium stoppt die Trypsinreaktion und verhindert die Zelllyse. Durch mehrmaliges Aufziehen mit der Pipette werden die Zellen vereinzelt und vom Flaschenboden gelöst. Mit Hilfe eines Zellzählers erfolgt die Bestimmung der sich im Medium befindlichen Zellzahl. Hierzu wird die Zellsuspension in einer Verdünnung von 1:50 (200µl der Zellsuspension und 9,8ml 0,9% NaCl) in den Counter gegeben.

2.4. Bestrahlung

Die Bestrahlung an der Röntgenröhre erfolgt bei Raumtemperatur mit einer Röhrenspannung von 200kV, einem Röhrenstrom von 20mA und unter Verwendung eines 0,5mm starken Kupferfilters. Die Zellen werden mit jeweils verschiedenen Dosen in einem Bereich von 1 bis 6 Gy behandelt.

Für die Proteinextraktion werden konfluente T-75-Kulturflaschen bei einer Tischhöhe von 398mm bestrahlt. Bei der mittleren Dosisrate von 1,2 Gy/min erzielt man beispielsweise nach einer fünfminütigen Bestrahlungszeit eine Gesamtdosis von 6 Gy.

Die konfluenten Colture Slides bzw. T-25-Kulturflaschen werden ebenfalls mit einer Gesamtdosis von1-6 Gy behandelt. Die einzustellende Tischhöhe beträgt hier 299mm. Bei einer mittleren Dosisrate von 2 Gy/min beträgt die verabreichte Strahlung nach 3 min beispielsweise 6 Gy.

2.5. Zellzyklusanalyse mittels FACS

Für die Experimente sollten ausschließlich G1-Phase-Zellen verwendet werden. Zur Überprüfung der Übereinstimmung zwischen lichtmikroskopischer Konfluenz und Zellzyklus wurde eine Zellzyklusanalyse mittels Fluorescence-Activated-Cell-Sorter (FACS) durchgeführt. Hierzu werden die konfluenten Zellen zunächst vom Boden der Zellkulturflasche abtrypsiniert und in Medium überführt. Nach mehrmaliger Waschung in PBS erfolgt die Fixierung der Zellen. Dazu wird das Pellet in 4%-igem Formaldehyd resuspendiert und für 10 min bei Raumtemperatur inkubiert. Die DNA kann anschließend mit Hilfe von Fx Cycle Far Red stain oder Propidium Jodide markiert werden. Zur Messung am FACS wird die Zellsuspension in die FACS-Röhrchen überführt.

2.6. Koloniebildungstest

Um die Koloniebildungsfähigkeit zu bestimmen, werden jeweils 1,5x10⁵ Zellen in einer T-25-Zellkulturflasche ausgesät und bis zur Konfluenz (s.o.) inkubiert. Eine Flasche wird anschließend mit 6 Gy bestrahlt, eine zweite Flasche dient als unbestrahlte Kontrolle. Nach 24 h wird der Zellrasen vom Flaschenboden abtrypsiniert, die Zellzahl mit Hilfe des Counters bestimmt und anschließend eine Verdünnungsreihe angesetzt, um Konzentrationen von 1000 Zellen/ml (unbestrahlt) bzw. 10.000 Zellen/ml (bestrahlt) zu erhalten. Nun erfolgt die Aussaat von 300 bis 5000 Zellen in eine neue T-25-Kulturflasche. Pro Zelllinie werden eine bestrahlte und eine unbestrahlte Probe in Dreifachbestimmung angesetzt (technische Dreifachbestimmung). Die Zellkulturflaschen werden danach zur Bildung von Kolonien 14 Tage im Brutschrank bei 37°C und 10% CO2 inkubiert. Nach Ablauf dieser Zeit werden die Zellen mit 0,9% NaCl gewaschen und anschließend für 5 min mit 70% Ethanol fixiert. Die Anfärbung der Zellkolonien erfolgt mit 5ml Kristallviolett 0,1%. Nach zehn Minuten wird der Farbstoff mit Wasser abgespült. Mit Hilfe einer Zählhilfe und eines Leuchttisches werden die Kolonien per Hand ausgezählt, wobei nur Kolonien, bestehend aus mehr als 50 Zellen, berücksichtigt werden. Zur biologischen

Dreifachbestimmung wird der Kolonietest für jede Zelllinie dreimal wiederholt. Die Überlebensrate lässt sich aus dem Verhältnis der gebildeten Kolonien zur Anzahl der eingegebenen Zellen bestimmen. Bilden sich beispielsweise pro 100 eingegebener Zellen 90 Kolonien, liegt eine Plating Efficiency von 90% vor. Die SF6, die das mittlere Strahlenüberleben bei 6 Gy bezeichnet, kann mit Hilfe des Quotienten der gebildeten Kolonien bei 0 Gy und der gebildeten Kolonien bei 6 Gy berechnet werden.

2.7. Immunfluoreszenzfärbung

2.7.1. Darstellung von strahleninduzierten residuellen Doppelstrangbrüchen

Strahleninduzierte Doppelstrangbrüche können mit verschiedenen Antikörpern detektiert werden. Zur Darstellung von residuellen DSB wird für diese Arbeit die Fluoreszenz- Markierung von yH2AX, pATM und 53BP1 genutzt.

Zunächst werden jeweils 10⁵ Fibroblasten auf Culture Slides ausplatiert und mit 2ml Medium versehen. Durch die Aussaat in einer kleineren Zelldichte werden die Zellen zur Proliferation stimuliert. Ist die Konfluenz und somit die Arretierung in der G1-Phase erreicht, erfolgt die Bestrahlung. Nach Applikation der gewünschten Dosis (0-6 Gy) inkubieren die Kulturen 24 Stunden im Brutschrank. Diese Zeit dient der DNA-Reparatur und gewährleistet die Darstellung der residuellen DSB. Nach Ablauf der Reparaturzeit wird das Medium auf den einzelnen Culture Slides abgesaugt und es folgt die Fixierung mit 2%-iger Formaldehydlösung. Dies muss umgehend geschehen, da sonst die Gefahr der Austrocknung der Zellen besteht. Im Anschluss daran werden die Zellen mit einer Lösung aus 0,1% Triton X-100 in PBS permeabilisiert. Dieser Schritt ermöglicht den Antikörpern die Penetration der Zellmembran. Die Blockierung potentieller unspezifischer Antikörperbindungsstellen erfolgt für eine Stunde mit 3% BSA bei Raumtemperatur auf dem Schüttler. Anschließend können die Objektträger mit dem ersten Antikörper versehen werden. Da es sich bei pATM und 53BP1 um "rabbit-" und bei vH2AX um einen "mouse-Antikörper" handelt, können pATM und vH2AX bzw. 53BP1 und vH2AX kombiniert auf einem Objektträger dargestellt werden. Zur besseren Verteilung

der Antikörperlösung und um ein Austrocknen der Zellen zu verhindern, werden die Objektträger mit einem Deckgläschen abgedeckt. Die sich anschließende einstündige Inkubation erfolgt in einer dunklen, feuchten Inkubationskammer bei Raumtemperatur. Anschließend werden die Objektträger dreimal 10 min unter ständiger Schüttlung gewaschen. Nun kann der zweite Antikörper aufgetragen werden. Seine Lichtempfindlichkeit macht die Arbeit in einem abgedunkelten Raum obligat. Auch hier werden die Objektträger mit jeweils 50µl Antikörperlösung versehen und bei Raumtemperatur für eine Stunde in einer dunklen, feuchten Kammer inkubiert. Im Anschluss daran werden die Objektträger erneut auf dem Schüttler gewaschen.

Nach der Antikörperreaktion erfolgt die Gegenfärbung mit DAPI. Bei DAPI handelt es sich um einen DNA-bindenden Farbstoff, der unter UV-Anregung blaues Licht emittiert. Dies ermöglicht die Beurteilung der Zellkernmorphologie. Pro Objektträger werden 25µl einer DAPI-Vectashieldlösung aufgetropft und mit einem Deckgläschen versehen. Die Objektträger werden anschließend in Trockenblöcken ausgestrichen und mit Nagellack an den Seiten versiegelt. Die Eindeckung der Objektträger dient der besseren Handhabung, Konservierung und Lagerung. Bis zur Auswertung am Fluoreszenzmikroskop verbleiben die Objektträger bei 4°C in Dunkelheit.

Die Zellkerne erscheinen durch die Gegenfärbung mit DAPI bläulich, γH2AX-Foci stellen sich als rote, pATM- und 53BP1-Foci als grüne Punkte dar. Bei der Auszählung werden pro Objektträger 100 Zellen ausgezählt, wobei darauf geachtet wird, dass der Zellkern intakt (oval und klar begrenzt) ist. Pro Versuch wird jeweils die mittlere Zahl der Foci bestimmt.

2.7.2. Darstellung von heterochromatischen Bereichen

Heterochromatische Bezirke der DNA sind kondensiert und transkriptionell inaktiv. Zur Darstellung dieser kompakten Chromatinform werden verschiedene Antikörper herangezogen. Zunächst werden KAP-1, H3K9me3 und HP1α in embryonalen Mausfibroblasten und anschließend in humanen Fibroblasten mit Hilfe der Immuncytochemie detektiert. Bei der Austitration der optimalen

Verdünnung der Antikörperlösung orientierte man sich in einem Bereich, der die Herstellerangaben umfasste. Ziel war es die unspezifische Hintergrundfärbung, bei deutlichem spezifischem Signal gering zu halten.

Die Immunfloureszenzfärbung wird ansonsten nach einem ähnlichen Schema durchgeführt wie oben dargestellt. Ein ausführliches Protokoll findet sich im Anhang.

3. ERGEBNISSE

3.1. Charakterisierung der zellulären Strahlenempfindlichkeit humaner Fibroblasten mittels immunhistologischen Nachweises residueller Doppelstrangbrüche

Die Erkennung und Prozessierung strahleninduzierter Doppelstrangbrüche wird durch die Dekondensation des betroffenen DNA-Abschnitts eingeleitet und durch die ATM-vermittelte Phosphorylierung der Histonvariante H2AX am Serin 139 zu γH2AX charakterisiert. Dieses stellt wiederum die Plattform für weitere Reparaturproteine wie z.B. 53BP1 dar. Die Akkumulation reparatur-assoziierter Proteine lässt sich als sogenannte Ionizing Radiation-induced Foci (IRIF) immuncytologisch mittels geeigneter Antikörper darstellen und floureszenzmikroskopisch quantifizieren. Neben den zum Nachweis residueller Doppelstrangbrüche etablierten Antikörper gegen γH2AX und 53BP1 wurde in dieser Arbeit auch der Nachweis von pATM etabliert.

Abbildung 10 veranschaulicht exemplarisch für eine der untersuchten Fibroblastenzelllinien (F181) den Nachweis von yH2AX-, 53BP1- und pATM-Foci. Die DNA-Färbung mittels DAPI (blau) dient der Beurteilung der Zellkernmorphologie. Durch die Wahl der floureszenzmarkierten Sekundärantikörper werden yH2AX-Foci rot und 53BP1- bzw. pATM-Foci grün dargestellt. Unbestrahlte Zellen (links) weisen nur vereinzelt Akkumulationen reparatur-assoziierter Proteine auf, während 24 h nach Bestrahlung mit 6 Gy sieben residuelle vH2AX-Foci nachgewiesen werden, welche alle ebenfalls durch die Akkumulation von 53BP1 charakterisiert werden (obere Zeile), dies wird durch die Überlagerung beider Signale und Darstellung als gelbe Strukturen (rechts) verdeutlicht. Vergleichbares gilt für die kombinierte Darstellung von yH2AX- und pATM-Foci (untere Zeile). Im gewählten Beispiel kommt es zur Ausbildung von sechs yH2AX-Foci, welche ebenfalls durch Anreicherung von pATM charakterisiert sind.

Abbildung 10: Exemplarische Darstellung strahleninduzierter Foci am Beispiel der Zelllinie F181

Es wurde jeweils in Doppelfärbung 24 h nach Bestrahlung mit 6 Gy γH2AX in Kombination mit 53BP1 sowie γH2AX in Kombination mit pATM nachgewiesen. Im Zellkern (DAPI, blau) stellen sich diese rot (γH2AX) bzw. grün (53BP1, pATM) und in der überlagernden Darstellung (rechts) gelb dar. Unbestrahlte Zellen (links) lassen keine bzw. nur vereinzelt Foci erkennen.

Die quantitative Auswertung erfolgte durch Auszählung der Foci am Fluoreszenzmikroskop bei einer 63-fachen Vergrößerung. Es wurde die Anzahl der Foci pro Zellkern von jeweils 100 Zellkernen pro Objektträger ausgezählt. Die Häufigkeitsverteilung der vH2AX- bzw. 53BP1-/pATM-Foci wurde hierbei in einer EXCEL-Tabelle protokolliert. Die Ergebnisse wurden zunächst als Häufigkeitsverteilung dargestellt, auf Konsistenz überprüft der und arithmetische Mittelwert (+SEM) der Verteilung bestimmt. Abbildung 11 veranschaulicht exemplarisch die Häufigkeitsverteilungen von yH2AX- (Panel A), 53BP1- (Panel B) und pATM-Foci (Panel C) für die Zelllinie F181. Während die linke Spalte jeweils die Häufigkeit spontaner Foci in unbestrahlten Proben darstellt, sind rechts die Histogramme für die Verteilung der Foci 24 h nach einer Bestrahlung mit 6 Gy abgebildet.

Abbildung 11: Exemplarische Darstellung der Häufigkeitsverteilungen von γH2AX- (Panel A), 53BP1- (Panel B) und pATM-Foci (Panel C) am Beispiel der Zelllinie F181

Es sind jeweils die Häufigkeiten spontaner Foci unbestrahlter Zellen (links) sowie residueller Foci 24 Stunden nach Bestrahlung mit 6 Gy dargestellt. Die durchgezogene Linie beschreibt die Anpassung der Daten nach Poisson.

Wie bei der unbehandelten Kontrolle deutlich zu sehen ist, können unbestrahlte Zellen in geringem Ausmaß spontane Foci aufweisen. Beispielsweise zeigt die Zelllinie F181 bei 0 Gy im Mittel 0.27 γH2AX-Foci pro Zellkern (SE: 0.058). 24 h nach einer Bestrahlung mit 6 Gy werden im Mittel 5,99 γH2AX-Foci (SE: 0,13) nachgewiesen.

Da der Treffertheorie folgend zu erwarten ist, dass die Anzahl der residuellen Foci pro Zelle einer Poissonverteilung folgt, wurden die Daten unter Verwendung der Poisson-Statistik angepasst. Die resultierenden Verteilungen werden als durchgezogene Linie in jedem Histogramm dargestellt. Die Ergebnisse dokumentieren, dass die Häufigkeitsverteilungen der Foci pro Zelle tatsächlich den nach der Treffertheorie zu erwarteten Verteilungskurven gut entsprechen. Für den Vergleich der Zelllinien bezüglich ihrer Anzahl an Foci wird des Weiteren jedoch der arithmetische Mittelwert der Verteilung als Parameter verwendet. Dies wird dadurch gerechtfertigt, dass der arithmetische Mittelwert (MW) und der Mittelwert der Poisson-Verteilung (M0) nahezu identische Werte erreichen. Für das oben beschriebene Beispiel der residuellen yH2AX-Foci nach Bestrahlung mit 6 Gy beträgt der arithmetische Mittelwert 5,99 (SE: 0,13). M0 ergibt einen Wert 6,26 (SE: 0,72). Die Korrelation beider Parameter wird in Abbildung 12. Veranschaulicht. Bei einem Korrelationskoeffizienten von 0,997 ergibt sich eine nahezu ideale lineare Korrelation.

Abbildung 12: Übereinstimmung von arithmetischem Mittelwert (MW) und Mittelwert der Poisson-Verteilung (M0).

Abbildung 13 veranschaulicht am Beispiel der Zelllinie F181 die Zunahme residueller Foci mit steigender applizierter Strahlendosis. Die unbestrahlten Kontrollen wurden generell analog zu den bestrahlten Proben behandelt, mit dem Unterschied, dass keine Strahlendosis appliziert wurde. Im dargestellten Beispiel nimmt die mittlere Anzahl residueller γH2AX-Foci von 1,34 (SE: 0,11) nach Bestrahlung mit 1 Gy (Panel B), über 2,05 (SE: 0,12) Foci nach 2 Gy (Panel C) bzw. 3,79 (SE: 0,14) nach 4 Gy (Panel D) auf eine mittlere Anzahl von 5,99 (SE: 0,13) nach Bestrahlung mit 6 Gy (Panel D) zu. Panel F zeigt die dosisabhängige Zunahme residueller Foci, nach Korrektur mittels der individuellen Kontrolle (Panel A) Vergleichbare Ergebnisse ergeben sich für die Zunahme residueller Foci im Dosisbereich zwischen 0 und 6 Gy bestimmt. Die Ergebnisse sind in Form von Dosis-Effektkurven in Abbildung 14 dargestellt.

Abbildung 13: Verteilung von γH2AX- Foci nach Bestrahlungen mit Gesamtdosen von 0 Gy, (Panel A), 1 Gy (Panel B) 2 Gy (Panel C) 4 Gy (Panel D) und 6 Gy (Panel E)). Panel F zeigt die Zunahme residueller Foci mit der Dosis, nach Korrektur der Werte mittels der individuellen Kontrolle (0 Gy).

Abbildung 14: Zunahme residueller Doppelstrangbrüche im Dosisbereich von 0 bis 6 Gy

Dargestellt sind die Ergebnisse von sieben Zelllinien. Die Daten wurden mittels linearer Regression angepasst: γH2AX (Qudrat), pATM (Dreieck) bzw. 53BP1 (Kreis).

Für jede untersuchte Zelllinie sind die Mittelwerte residueller vH2AX- und pATM-Foci als Funktion der Dosis dargestellt. Um einen Einfluss der individuell variierenden Anzahl spontaner Foci auf die Ergebnisse der residuellen Foci nach Bestrahlung auszuschließen, wurden diese jeweils um den individuell erfassten 0-Gy-Wert korrigiert. Die Ergebnisse bezeichnen somit die zusätzlichen strahleninduzierten Foci. Für die Zelllinien F185 und Fib32 erfolgte zusätzlich der Nachweis von residuellen 53BP1-Foci. Generell lassen sich die allen Fällen mittels linearer Korrelation Daten in anpassen. Mit Regressionskoeffizienten (r²) von 0,941 bis 0,999 besteht eine nahezu ideale Linearität. Vergleicht man die einzelnen Foci-Enititäten, so ist festzustellen, dass, wenn auch minimal, generell höhere Mittelwerte für vH2AX-Foci erreicht werden.

Generell ist zu fordern, dass individuelle Unterschiede in der zellulären Strahlenempfindlichkeit unabhängig von der applizierten Gesamtdosis bestehen. Dies lässt sich graphisch darstellen, indem die individuellen Werte des verwendeten Parameters, z.B. die Anzahl residueller Foci, für zwei deutlich unterschiedliche Gesamtdosen korreliert werden. Dies ist in Abbildung 15 für residuelle γH2AX-Foci (Panel A) bzw. pATM- Foci (Panel B) dargestellt. Aufgetragen sind die Mittelwerte von acht der untersuchten Zelllinien. Wie gefordert, besteht eine Korrelation der residuellen Foci nach 4 Gy und nach 6 Gy. Die Güte dieser Korrelation wird durch Korrelationskoeffizienten von 0,68 für γH2AX und 0,74 für pATM charakterisiert und erreicht mit p-Werten von 0,011 bzw. 0,006 deutlich statistische Signifikanz.

Abbildung 15: Zusammenhang der residuellen Foci nach 4 und 6 Gy

Es ist jeweils der Mittelwert und Standardfehler der Auszählung von 100 Zellen pro Zellinie für γ H2AX (Panel A) und pATM (Panel B) dargestellt. Die Anpassung der Daten erfolgte mittels linearer Regression. Es wurden Regressionskoeffizienten r² von 0,68 bzw. 0,74 erreicht. Die 95%-Konfidenzintervalle werden durch die gestrichelten Linien angegeben.

Für jede der untersuchten Zelllinien wurde in Mehrfachbestimmung von mindestens drei unabhängigen Experimenten die Anzahl residueller γH2AX-, 53BP1- und pATM Foci nach Bestrahlung mit 6 Gy bestimmt. Abbildung 16 fasst alle Ergebnisse zusammen.

Abbildung 16: Residuelle Doppelstrangbrüche nach 6 Gy nachgewiesen für 10 untersuchte Fibroblasten-Zelllinien als γH2AX (Panel A), 53BP1 (Panel B) und pATM-Foci (Panel C).

Die Abbildung 16 veranschaulicht sowohl die interindividuellen als auch die intraindividuellen Unterschiede zwischen den einzelnen Zelllinien. Bei der Ermittlung residueller γH2AX-Foci wurden für die Zelllinie F181 minimale

Mittelwerte von 5,4 bestimmt, während für die Zelllinie F185 mit im Mittel 6,8 die meisten γH2AX-Foci nachgewiesen wurden. Vergleichbare Unterschiede wurden teilweise auch innerhalb einzelner Zelllinien beobachtet. So wurden z.B. für die Zelllinie Fib39 innerhalb von sechs einzelnen Experimenten Mittelwerte von 5.8 bis 6.4 Foci bestimmt. In Panel B und C sind unter Beibehaltung der in Panel A gewählten Rangfolge die Werte residueller pATM- und 53BP1-Foci dargestellt. Generell lässt sich dabei feststellen, dass die Rangfolge für 53BP1-Foci erhalten bleibt, während es für pATM-Foci vereinzelt zu Abweichungen von der Rangfolge kommt.

Dieser Zusammenhang wird detailliert in Abbildung 17 dargestellt, welche die Fragestellung untersucht, inwieweit der Nachweis von vH2AX-, 53BP1- und pATM-Foci zur Quantifizierung residueller Doppelstrangbrüche als gleichwertig anzusehen ist. Der Vergleich zeigt, dass generell eine sehr gute Übereinstimmung der Ergebnisse besteht. Sowohl für pATM-Foci (Panel A) als auch für 53BP1-Foci (Panel B) konnte mit Korrelationskoeffizienten von 0,79 bzw. 0,94 eine streng lineare Assoziation mit der Anzahl residueller vH2AX-Foci nachgewiesen werden. Unterschiede bestehen dennoch in einer geringfügigen Erhöhung der Mittelwerte für residuelle yH2AX-Foci. Dies wird dadurch verdeutlicht, dass die entsprechenden Werte rechts neben der Winkelhalbierenden liegen, welche eine eins-zu-eins-Korrelation kennzeichnet. Die Erhöhung übersetzt sich in einem zusätzlichen vH2AX-Focus im Vergleich zu pATM bzw. 53BP1. Diesem steht der Vergleich von 53BP1- und pATM-Foci (Panel C) gegenüber. Neben der strengen linearen Korrelation (r²=0,87) werden keine systematischen Unterschiede der Focizahlen beobachtet. Es besteht eine klare eins-zu-eins-Assoziation.

Abbildung 17: Residuelle Doppelstrangbrüche, nachgewiesen als γH2AX-, 53PB1- bzw. pATM-Foci nach 6 Gy

Dargestellt sind die Mittelwerte und Standardfehler von γH2AX-Foci in Abhängigkeit der korrespondierenden Anzahl an pATM-Foci (Panel A) bzw. 53BP1-Foci (Panel C), sowie der Zusammenhang von 53BP1 und pATM-Foci (Panel C).

3.2. Nukleäre Lokalisation der residuellen Doppelstrangbrüche unter besonderer Berücksichtigung der Chromatinstruktur

Wie bereits erwähnt, wird das Chromatin, basierend auf mikroskopischen Charakteristiken, in Euchromatin und Heterochromatin eingeteilt, wobei als heterochromatische Regionen, solche Bereiche bezeichnet werden, die unabhängig vom Zellzyklus kondensiert bleiben. Der Rolle des Heterochromatins wird durch seine Barrierefunktion besondere Bedeutung für die Prozessierung von DNA-Schäden und somit der zellulären Strahlenempfindlichkeit zugesprochen. Im Rahmen dieser Arbeit sollte untersucht werden, ob sich humane Fibroblasten bezüglich des Anteils an Heterochromatin unterscheiden und ob eventuell vorhandene Unterschiede im Heterochromatinstatus mit denen der zellulären Strahlenempfindlichkeit assoziiert sind. Grundlage für diese Untersuchung war zunächst die Implementation geeigneter Nachweisverfahren von Heterochromatin sowie dessen Quantifizierung. Der immuncytochemische Nachweis wurde zunächst für Zellen der Linie NIH3T3 etabliert. Diese embryonalen Mausfibroblasten bieten sich insofern als Modellsystem zum Nachweis von Heterochromatin an, da sie sich durch akrozentrische Chromosomen auszeichnen, welche verstärkt DAPI anreichern und somit schon mittels einfachen Chromatinnachweises identifiziert werden können. Diese als Heterochromatin zu charakterisierenden Chromozentren können Kontrolle der somit zur Spezifität von Heterochromatinmarkern wie KAP-1, HP1a und H3K9me3 verwendet werden.

3.2.1. Untersuchung der Spezifität der zum Nachweis von Heterochromatin verwendeten Antikörper

Abbildung 18 zeigt die immunzytochemische Anfärbung von embryonalen Mausfibroblasten der Zelllinie NIH3T3 unter Verwendung floureszenzgekoppelter heterochromatin-spezifischer Antikörper gegen KAP1, HP1a und H3K9me3. In der oberen Zeile ist mit Hilfe einer kombinierten Antikörperfärbung die Überlagerung der Chromozentren, welche mittels DAPI-Färbung als intensive blaue Herde zur Darstellung kommen, mit KAP1 (rot)- und HP1α (grün)-Anreicherungen dargestellt. Die untere Zeile veranschaulicht den spezifischen Nachweis des Heterochromatins mittels H3K9me3 (grün), welches ebenfalls, wie aus der DAPI-Färbung ersichtlich, ausschließlich in Bereichen mit Chromozentren angereichert wird.

Abbildung 18: immunzytochemische Anfärbung von embryonalen Mausfibroblasten der Zelllinie NIH 3T3 zur Darstellung heterochromatischer Bereiche. Veranschaulichung der Überlappung zwischen Bereichen mit intensiver DAPI- Anreicherung und der Antikörperfärbung

Oben ist die Überlappung von Chromozentren mit KAP-1 und HP1α dargestellt. Zur Anwendung kam eine kombinierte Antikörperfärbung.

Veranschaulichung der Überlappung von Chromozentren mit H3K9me3 in der unteren Zeile.

Nachdem die Spezifität der verwendeten Antikörper zum Nachweis von Heterochromatin prinzipiell bestätigt werden konnte, wurden diese nun zur Charakterisierung des Heterochromatinstatus der verschiedenen Fibroblastenzelllinien verwendet. In Ergänzung zu den Heterochromatinmarkern KAP1, HP1α und H3K9me3 wurde in diesem experimentellen Ansatz der euchromatin-spezifische Marker H3K9ac3 verwendet, um eine zusätzliche Abgrenzung von hetero- und euchromatischen Bereichen sicherzustellen. Die Ergebnisse der verschiedenen Färbungen werden in Abbildung 19 veranschaulicht. Die obere Zeile verdeutlicht die Überlagerung von KAP1 (rot)und HP1a (grün)-Anreicherungen. Auffällig ist, dass die HP1a-Färbung kaum unspezifischen Hintergrund aufweist, während KAP1 viel unspezifisches Signal im Zellkern erkennen lässt. In der unteren Zeile kommt der heterochromatische Marker H3K9me3 zur Darstellung. Mit Hilfe der Kombinationsfärbung ist es möglich, simultan hetero- und euchromatische Regionen abzubilden. Es wird deutlich, dass die Gegenfärbung mit dem euchromatischen Marker H3K9ac3 heterochromatische Bereiche ausspart bzw. weniger stark anfärbt. Die überlagerte Darstellung beider Signale (rechts) veranschaulicht, dass Bereiche mit intensiver Anreicherung des Antikörpers gegen H3K9ac3 (rot) frei vom heterochromatin-spezifischen Antikörper H3K9me3 (grün) sind und vice versa. Bei dem Vergleich der verwendeten heterochromatin-spezifischen Marker wird deutlich, dass alle verwendeten Antikörper das perizentrische bzw. konstitutive Heterochromatin in Form von Herden abbilden. Da jedoch sowohl H3K9me3 als auch KAP1 mit erheblichen unspezifischen Reaktionen im Zellkern relativ viel Hintergrund darstellen und nur der Einsatz von HP1a die Darstellung von distinkten und gut abgrenzbaren und somit auszählbaren Anreicherungen ermöglicht, wurde dieser Antikörper für die weiteren Versuche verwendet.

Abbildung 19: Immunzytochemische Anfärbung von humanen Fibroblasten zur Darstellung heterochromatischer Bereiche

Die Fotos zeigen exemplarisch die Zelllinie F185. In der oberen Zeile ist die Überlagerung der Heterochromatinmarker KAP1 (rot) sowie HP1 α (grün) im Bereich des Zellkerns (DAPI, blau) dargestellt. Die untere Zeile demonstriert in der überlagerten Darstellung beider Signale (rechts), dass heterochromatische Bereiche (H3K9me3, grün) keine Anreicherung der euchromatin- spezifischen Signale (H3K9ac3, rot) aufweisen.

3.2.2. Bestimmung der zur Quantifizierung des HP1α-Signals geeigneten Parameter

Nach Wahl des geeigneten Antikörpers und Etablierung der Färbemethode, dessen detailliertes Protokoll dieser Arbeit als Anhang beigefügt ist, sollte die Auswertung der Heterochromatin-Anreicherungen standardisiert werden. Wesentlich hierfür war die Festlegung geeigneter Parameter zur Quantifizierung der Heterochromatin-Anreicherungen pro Zellkern. Generell ist dies - analog zur Auszählung der reparaturassoziierten-Foci - durch Auszählung der Bereiche spezifischer HP1α-Anreicherung möglich. Alternativ dazu besteht die Möglichkeit, die mittlere Gesamtintensität des HP1α-Signals eines Zellkerns zu bestimmen. Dies wird durch die verwendete Software möglich, welche pro Zelle die als Zellkern definierte Fläche als eine diskrete Anzahl von Pixel darstellt, den Intensitätswert der Fluoreszenz pro Pixel quantifiziert, und den Quotient aus der Summe der Intensitäten aller Pixel und der Gesamtzahl aller Pixel als mittlere Gesamtintensität pro Zellkern ausgibt.

Beide Verfahren wurden durchgeführt und die Ergebnisse auf Konstanz überprüft. Zur Bestimmung der mittleren Anzahl an HP1α-Anreicherungen pro Zellkern wurden Kachelaufnahmen mit fünf Z-Stapeln ie am Fluoreszenzmikroskop 100 Zellkerne aufgenommen und pro Zelllinie ausgezählt. Zellen, anhand derer die Anzahl an HP1a-Anreicherungen bestimmt wurde, dienten ebenfalls zur Ermittlung der mittleren Gesamtintensität. Dazu wurde die Fläche jedes Zellkerns anhand der Zellmorphologie festgelegt und die mittlere Gesamtintensität des HP1a-Signals in diesem umschriebenen Areal mit Hilfe des Bildverarbeitungssystems AxioVision Rel. 4.8 bestimmt.

Exemplarisch für Zelllinie F98 ist in Abbildung 20 der Kern eines Fibroblasten dargestellt. In diesem Fall sind in der Fläche von 201,5 µm² etwa 30 teilweise sehr kleine und diffuse heterochromatische Bereiche erkennbar. Die mittlere Gesamtintensität wird als dimensionsloser Wert ausgeben und beträgt in diesem Beispiel 28,92.

Abbildung 20: Exemplarische Darstellung der heterochromatischen Bereiche.

Das Beispiel zeigt einen einzelnen Zellkern der Fibroblastenlinie F98 mit einer Fläche von 201,5 μ m. Das Heterochromatin wurde mittels HP1 α (grün) nachgewiesen.

Sowohl die Anzahl an heterochromatischen Bereichen als auch die mittlere Gesamtintensität des HP1α-Signals variiert zwischen den einzelnen Zellen einer Zelllinie. Zur Charakterisierung des Heterochromatinstatus wurden pro Zelllinie für jeweils 100 Zellkerne die Anzahl an HP1α-Anreicherungen sowie die mittlere Gesamtintensität bestimmt. Die Ergebnisse sind in Form von Häufigkeitsverteilungen exemplarisch für die Zelllinie F98 in Abbildung 21 dargestellt.

Abbildung 21: Quantifizierung des basalen HP1 α -Signals am Beispiel der Zelllinie F98.

Panel A: Häufigkeitsverteilung der HP1α- Anreicherungen. Panel B: Häufigkeitsverteilung der Gesamtintensität des HP1α- Signals pro Zellkern von jeweils 100 Zellen.

Panel A veranschaulicht die Verteilung der Anzahl von HP1α-Anreicherungen. Die Einzelwerte folgen einer Normalverteilung und variieren zwischen 12 und 37 Anreicherungen pro Zelle. Der Mittelwert beträgt im dargestellten Beispiel 22,62 bei einem Standardfehler von 0,46. Die Verteilung der mittleren Gesamtintensitäten der einzelnen Zellen ist in Panel B dargestellt und wird durch einen Mittelwert von 39,96 bei einem Standardfehler von 0,57 gekennzeichnet. Zur Überprüfung, inwieweit beide oben beschriebenen Methoden zur Bestimmung des HP1a-Signals zu vergleichbaren Ergebnissen führen, wurden deren Ergebnisse miteinander korreliert. Unter der Voraussetzung, dass beide Methoden den Anteil an Heterochromatin verlässlich quantifizieren, sollten die Auswertverfahren, d.h. die mittlere Werte beider Anzahl an HP1α-Anreicherungen sowie die mittlere Gesamtintensität des HP1a-Signals, korrelieren. Wie in Abbildung 22 dargestellt, besteht aber keinerlei Assoziation, wenn die Werte der HP1α-Gesamtintensität als Funktion der Anzahl der HP1α-Anreicherungen aufgetragen werden. Offensichtlich sind beide Methoden nicht generell vergleichbar und führen zu unterschiedlichen Ergebnissen.

Abbildung 22: Vergleich beider Methoden zur Bestimmung der Intensität des HP1α-Signals.

Korrelation der Messwerte für die Gesamtintensität (Ordinate) und der mittleren Anzahl der HP1 α - Anreicherungen (Abzisse) bei 0 Gy

3.2.3. Einfluss von Bestrahlung auf den Heterochromatinstatus

Es wurde die Veränderung des Heterochromatinstatus durch Bestrahlung untersucht. Dazu wurden die Zellen zunächst in Konfluenz gebracht, mit 6 Gy bestrahlt und nach 24 Stunden das Heterochromatin mittels fluoreszenzgekoppelter Antikörper gegen HP1 α detektiert. Mikroskopisch ließen sich Unterschiede zwischen unbestrahlten Kontrollen und bestrahlten Fibroblasten insofern erkennen, dass nach Bestrahlung eine Verstärkung des HP1 α -Signals sowohl in der Anzahl als auch in der Intensität zu beobachten war. Abbildung 23 gibt exemplarisch diesen Eindruck für die Zelllinie F181 wieder. Die obere Abbildung (Panel A) zeigt unbestrahlte Zellen, wohingegen in Panel B die Situation 24 h nach Bestrahlung dargestellt wird. Im Vergleich fällt auf, dass bestrahlte Zellen intensivere und größere HP1 α -Anreicherungen präsentieren. Zusätzlich zum Heterochromatin wurden residuelle Doppelstrangbrüche als γ H2AX-Foci (Panel B, rote Foci) detektiert.

Abbildung 23: Vergleich des Heterochromatins nachgewiesen mittels HP1α.

Das Beispiel zeigt unbestrahlte Fibroblasten (Panel A), sowie Fibroblasten 24 h nach Bestrahlung mit 6 Gy (Panel B) am Beispiel der Zelllinie F98. In Kombination mit HP1 α wurden residuelle γ H2AX-Foci dargestellt (rot).

Zur Quantifizierung der vermuteten Zunahme des HP1a-Signals nach Bestrahlung wurde für alle elf untersuchte Fibroblastenzelllinien die mittlere Gesamtintensität vor und nach Bestrahlung bestimmt. Als Parameter der Auswertung wurde die mittlere Gesamtintensität gewählt, da dieser Parameter auch solche HP1α-Anreicherungen quantifiziert, die für die numerische Auszählung zu diffus und/oder klein erscheinen. Abbildung 24 zeigt das Ergebnis in Form eines Balkendiagramms, in dem für jede Zelllinie die basale mittlere Gesamtintensität der unbestrahlten Kontrolle (weiße Balken) jeweils dem Wert gegenüber gestellt wird, der 24 Stunden nach Bestrahlung mit 6 Gy bestimmt wurde (grau Balken). Der Eindruck der Zunahme von heterochromatischen Bereichen Bestrahlung nach wird durch diese quantifizierende Auswertung für die Mehrzahl der untersuchten Zelllinien bestätigt: Für sieben der untersuchten Zelllinien konnte eine Erhöhung der mittleren Maximalintensität nachwiesen werden, wobei diese für die Zelllinie Fib14 am stärksten ausgeprägt ist. Im Falle der Zelllinien F185 und F190 und Fib 39 hingegen wurde eine Reduktion bzw. keine Veränderung der HP1a-Anreicherung beobachtet.

Abbildung 24: Vergleich der mittleren HP1α-Gesamtintensität aller untersuchten Zelllinien vor und 24Stunden nach Bestrahlung mit 6 Gy

3.2.4. Lokalisation residueller γH2AX-Foci in Abhängigkeit vom Heterochromatinstatus

Zur Überprüfung der Hypothese, nach der residuelle Doppelstrangbrüche vorzugsweise in heterochromatischen Bereichen lokalisiert sind, wurde bei der Erfassung residueller vH2AX-Foci gleichzeitig der Anteil an Foci bestimmt, welche sich in unmittelbarer Nähe zu einem heterochromatischen Bereich befanden. Die enge Nachbarschaft von γH2AX-Foci und HP1α-Anreicherungen ist exemplarisch in Abbildung 25 dargestellt. Anhand des Fotos ist bereits erkennbar, dass die Mehrzahl der residuellen vH2AX-Foci in direkter Nachbarschaft zu HP1a-Anreicherungen liegt. Panel A zeigt am Beispiel der Zelllinie F98 einen Zellkern mit 28 HP1α-Anreicherungen (grün). Parallel dazu können neun yH2AX-Foci (rot) nachgewiesen werden. In der überlagerten Darstellung wird deutlich, dass acht der neun Foci in unmittelbarer Nähe zu heterochromatischen Bereichen liegen. Regionen, in denen es zur

Überschneidung zwischen HP1α und γH2AX kommt, stellen sich in dieser Ansicht gelb dar.

Panel B verdeutlicht die Ermittlung der genauen Beziehung zwischen HP1 α -Anreicherungen und γ H2AX-Foci. Die Software AxioVision Rel. 4.8 ermöglicht die Darstellung eines detaillierten Profils eines eingezeichneten Querschnitts (rote Linie, links in Panel B) und damit verbunden die Beurteilung, ob eine Überschneidung zwischen HP1 α -Anreicherung und γ H2AX-Foci vorliegt. Rechts in Panel B ist ein solches Profil, das anhand des eingezeichneten Querschnitts erstellt wurde, dargestellt. Es zeigt die Signale als Höhenlinien, zum einen für das blaue Signal der DAPI-Färbung und darunter die Darstellung der Intensität von zwei γ H2AX-Signalen (rot), welche auf gleicher Ebene mit dem Signal für konstitutives Heterochromatin liegen. Dies wird durch das grüne HP1 α -Signal veranschaulicht. Diese Art der Darstellung dokumentiert, dass die Signale nicht übereinander und voneinander unabhängig im Zellkern vorliegen, sondern dass tatsächlich im Bereich des angefärbten Heterochromatins das immunzytochemische Signal eines residuellen Doppelstrangbruchs lokalisiert ist.

Abbildung 25: Heterochromatische Bereiche zeigen eine Assoziation mit yH2AX-Foci

Panel A: Mikroskopisches Bild in 63facher Vergrößerung verdeutlicht die unmittelbare Nähe von γ H2AX-Foci und HP1 α -Anreicherungen, exemplarisch für die Zelllinie F98. Panel B: Ermittlung der räumlichen Beziehung zwischen HP1 α -Anreicherungen (grün) und γ H2AX-Foci (rot). Eine Überlappung stellt sich gelb dar (oben). Im Profil (unten) können diese Überlappungen als Höhenlinien schematisch dargestellt werden.

Durch getrenntes Erfassen aller und der sich in direkter räumlicher Nähe zu HP1α-Anreicherung befindlichen γH2AX-Foci wurde der Anteil an kolokalisierten residuellen γH2AX-Foci nach Bestrahlung mit 6 Gy bestimmt. Die Ergebnisse sind in Abbildung 26 in Form eines Balkendiagramms dargestellt. Für jede Zelllinie ist jeweils der Mittelwert aller γH2AX-Foci (helle Balken) dem Mittelwert Heterochromatin-assoziierter γH2AX-Foci (dunkle Balken) gegenübergestellt.

Abbildung 26: Residuelle Doppelstrangbrüche nach 6 Gy sind mit konstitutivem Heterochromatin assoziiert

Mittlere Anzahl residueller γH2AX- Foci (helle Balken) in Gegenüberstellung zu γH2AX-Foci, welche im Bereich des konstitutiven Heterochromatins lokalisiert sind (dunkle Balken).

In Abbildung 26 ist die Auswertung der räumlichen Beziehung von residuellen γ H2AX-Foci mit HP1 α -Herden dargestellt. Veranschaulicht wird für alle untersuchten Zelllinien die räumliche Nähe der residuellen Doppelstrangbrüche zum konstitutiven Heterochromatin nach Bestrahlung mit 6 Gy. So haben beispielsweise im Fall der Zelllinie Fib39 5,8 von insgesamt 6,9 residuellen γ H2AX-Foci einen direkten Bezug zum konstitutiven Heterochromatin. Auch bei der Zelllinie F184, welche die größte Differenz zwischen der Gesamtzahl und heterochromatin-assoziierten Foci aufweist, waren im Mittel 4,6 von 7,2 Foci mit heterochromatischen Bereichen assoziiert.

Abbildung 27: Übersicht über den prozentualen Anteil kolokalisierender Foci vor und nach Bestrahlung mit 6 Gy

Bei den unbestrahlten Kontrollen sind durchschnittlich 85,71% der spontanen Foci mit HP1 α -Anreicherungen assoziiert. Nach Bestrahlung sind durchschnittlich sind 75,05% der residuellen γ H2AX- Foci mit HP1 α -Anreicherungen assoziiert (vgl. gesamt, rechts).

Abbildung 27 stellt eine Übersicht über den prozentualen Anteil kolokalisierender Foci dar. Gegenübergestellt sind die Ergebnisse für den Zustand vor und nach Bestrahlung. In der vorliegenden Abbildung werden alle 11 untersuchten Zelllinien berücksichtigt. Generell kann beobachtet werden, dass über 80 % der spontanen und über 65% der residuellen γH2AX-Foci in heterochromatischen Bereichen lokalisiert sind.

Die AT-defiziente Zelllinie AT1BR, die in dieser Untersuchung als zusätzliche Kontrolle mitgeführt wurde, stellt insofern eine Ausnahme dar, dass eine dezente Zunahme der Assoziation von residuellen Foci zu HP1α nach Bestrahlung beobachtet wurde.

Neben den individuellen Werten der einzelnen Zelllinien sind in Abbildung 27 die Mittelwerte vor und nach Bestrahlung aller untersuchten Zelllinien dokumentiert (rechter Balken 'gesamt'). Während in unbestrahlten Zellen im Mittel durchschnittlich 85,71% der spontanen Foci in unmittelbarer Nachbarschaft zum konstitutiven Heterochromatin liegen, werden nach Bestrahlung 75,51% der residuellen Foci in Assoziation mit HP1 α beobachtet, dabei ergibt sich für die Zelllinie Fib39 ein maximaler Wert von 84,25%, während für die Zelllinie F184 lediglich 64,27% der residuellen γ H2AX-Foci mit HP1 α -Anreicherungen assoziiert sind.

3.3. Residuelle Foci als Surrogatmarker der zellulären Strahlenempfindlichkeit

Neben der Frage, inwieweit residuelle Doppelstrangbrüche in konfluenten Fibroblasten als Akkumulationen von γ H2AX-, 53BP1- sowie pATM-Protein quantifiziert werden können (siehe Kapitel 3.1) und ob diese bevorzugt im Heterochromatin lokalsiert sind (siehe Kapitel 3.2.), wurde im Rahmen dieser Arbeit die Eignung residueller Doppelstrangbrüche als Surrogatmarker der zellulären Strahlenempfindlichkeit untersucht. Als klassische Methode zur Bestimmung der zellulären Strahlenempfindlichkeit wurde die Überlebensrate der Fibroblasten nach Bestrahlung mittels Koloniebildungstest ermittelt und die individuellen Unterschiede zwischen den untersuchten Zelllinien mit denen des γ H2AX-, 53BP1- bzw. pATM-Nachweis verglichen.

3.3.1. Zellzyklusbestimmung mittels FACS

Alle Experimente wurden an konfluenten Fibroblasten durchgeführt. Zur Sicherstellung, dass sich die verwendeten Zellen in Konfluenz und somit in Teilungsruhe befanden, wurden vor jedem Experiment die Zellkulturen lichtmikroskopisch hinsichtlich ihrer Konfluenz beurteilt. Zur Überprüfung dieses nicht-quantitativen Verfahrens wurde die Zellzyklusverteilung der im Experiment eingesetzten Zellen mittels FACS bestimmt. Hierzu wurde die DNA mit Hilfe von

Fx Cycle Far Red stain oder Propidium Jodide markiert und flusszytometrisch der DNA-Gehalt der Zellen bestimmt.

Abbildung **28** zeigt exemplarisch ein DNA-Histogramm der Zelllinie F184. Die untersuchte Zellkultur befand sich lichtmikroskopisch in Konfluenz. Nicht proliferierende Zellen zeichnen sich durch einen einfachen relativen DNA-Gehalt aus und bilden den so genannten G1-Peak, während proliferierende Zellen in der G2-Phase den doppelten DNA-Gehalt aufweisen und in doppelter Entfernung vom G1-Peak als G2-Peak dargestellt werden. Für die in

Abbildung **28** dargestellte Zellpopulation bestätigt sich die mit der Konfluenz verbundene Proliferationsruhe durch den hohen Anteil von Zellen in der G1-Phase (93,7%). Nur 4,1% der Zellen befinden sich in der G2-Phase und somit im Zellzyklus.

Abbildung 28: Exemplarische Darstellung der Zellzyklusverteilung einer Fibroblastenkultur in Konfluenz

3.3.2. Bestimmung der zellulären Strahlenempfindlichkeit mittels Koloniebildungstest

Die strahleninduzierte Zellinaktivierung lässt sich nach in-vitro-Bestrahlung experimentell mittels Koloniebildungstest bestimmen. Dazu werden die Zellen in Konfluenz gebracht, mit Gesamtdosen von bis zu 8 Gy bestrahlt und der Anteil überlebender Zellen bestimmt, indem nach einem genügend langen Zeitintervall von 14 Tagen unter Kulturbedingungen die entstandenen Kolonien durch Anfärben und Auszählen quantifiziert werden. Eine mitgeführte unbestrahlte Kontrolle dient zur Bestimmung der Platierungseffizienz, unter deren Berücksichtigung der Anteil überlebender Zellen (Überlebensfraktion, SF, engl. Surviving fraction) bestimmt wird. Die Ergebnisse werden in so genannten Dosis-Effekt-Kurven dargestellt, indem die Überlebensrate halblogarithmisch als Funktion der Dosis aufgetragen wird.

Abbildung 29 veranschaulicht in den Panels A bis K die Dosis-Effekt-Kurven aller untersuchten Zelllinien für Gesamtdosen von 2, 4, 6 und 8 Gy. Aufgetragen ist jeweils die Überlebensrate in Abhängigkeit von der applizierten Dosis sowie die linear-quadratische Anpassung an die Datenpunkte. Generell nimmt die Überlebensrate mit der Dosis ab, wobei die Güte der linear-quadratischen Anpassung durch ein r² von 0.90 bis 0.99 charakterisiert wird. Zum Vergleich der Unterschiede im klonogenen Überleben der einzelnen Zelllinien sind in Panel Κ die Dosis-Effekt-Kurven aller untersuchten Fibroblasten zusammengefasst dargestellt. Während im Bereich niedriger Dosen die Unterschiede in der zellulären Inaktivierung zwischen den einzelnen Zelllinien relativ gering ausfallen, sind diese bei Dosen von mehr als 4 Gy deutlich ausgeprägter: So liegt die Überlebensrate nach 2 Gy zwischen 0,47 und 0,61, während die Überlebensrate nach 8 Gy über zwei Dekaden mit Werten von 0,002 bis 0,07 variiert.

Abbildung 29: Überlebensraten aller Fibroblastenlinien

In Panel A bis I sind die Dosis-Effekt-Kurven der einzelnen Zelllinien und in Panel K der Vergleich aller Linien dargestellt.

Die individuellen Unterschiede der zellulären Strahlenempfindlichkeit zwischen den einzelnen Fibroblastenzelllinien werden in Abbildung 30 zusammengefasst. Die mittleren Überlebensraten nach 6 Gy lagen bei maximal 0,147 für die Zelllinie F162 (SE: 0,007) und bei minimal 0,084 (SE: 0,01) für die Zelllinie Fib14. Die SF6 variiert somit innerhalb einer Dekade. Es sei darauf hingewiesen, dass zur Quantifizierung der Unterschiede in der Überlebensrate nach 6 Gy alle Messwerte, welche der Bestimmung der Dosis-Effekt-Kurve zugrunde liegen, berücksichtigt wurden, indem der Wert aus der linear-quadratischen Anpassung, an die Daten für den Dosispunkt von 6 Gy verwendet wurde.

Abbildung 30: Überlebensraten der einzelnen Fibroblastenlinien nach 6 Gy

Die Experimente erfolgten in Mehrfachbestimmung, mit bis zu fünf Wiederholungen. Dargestellt ist die mittlere Überlebensrate (+SE). Es wurden die Werte der linear-quadratischen Anpassung bei 6 Gy verwendet.

Zusätzlich zu Abbildung 30 bietet Tabelle 1 eine Übersicht über die Unterschiede der zellulären Strahlenempfindlichkeit.

Tabelle 1: Übersicht der Überlebensraten nach 6 Gy ermittelt über die linear-quadratische Anpassung (+SE)

	Mittlere	Std.
Zelllinie	SF6	Error
F98	0,095	0,006
F162	0,147	0,007
F181	0,146	0,017
F184	0,090	0,006
F185	0,106	0,018
F190	0,123	0,015
Fib14	0,084	0,010
Fib32	0,120	0,018
Fib39	0,095	0,007
WT1BR	0.085	0
mean		
SF6	0,109	0,010

3.3.3. Surrogatmarker der zellulären Strahlenempfindlichkeit

Im Rahmen dieser Arbeit wurden die Unterschiede in der zellulären Strahlenempfindlichkeit für zehn Fibroblasten-Zelllinien mittels Koloniebildungstest sowie durch den Nachweis residueller Doppelstrangbrüche bestimmt, wobei wiederum für den Nachweis residueller Doppelstrangbrüche 53BP1 die reparatur-assoziierten Proteine γH2AX, und pATM immuncytochemisch nachgewiesen wurden. Darüber hinaus wurde der Heterochromatinstatus der Zelllinien durch Anfärben und Quantifizierung des heterochromatin-spezifischen Proteins HP1a erfasst. Durch Zusammenführen dieser Daten soll überprüft werden, welche dieser Parameter als Indikatoren der zellulären Strahlenempfindlichkeit zu werten sind.

3.3.3.1. Residuelle Doppelstrangbrüche im Nachweis als γH2AX-, 53BP1und pATM-Foci als Indikatoren der zellulären Strahlenempfindlichkeit

Die zelluläre Inaktivierung ist letztlich Folge residueller, nicht-reparierter Doppelstrangbrüche und sollte somit sowohl mit Hilfe des Koloniebildungstests als auch mittels residueller γ H2AX-, 53BP1- bzw. pATM-Foci quantifiziert werden können. Durch die Assoziation der Überlebensrate nach 6 Gy mit den Daten der residuellen Foci 24 h nach Bestrahlung, kann dargestellt werden, inwieweit sich diese als Surrogatmarker der zellulären Strahlenempfindlichkeit eignen und ob Unterschiede bestehen bezüglich der zum Nachweis verwendeten reparatur-assoziierten Proteine γ H2AX, 53BP1- bzw. pATM. In Abbildung 31 wird die Assoziation der residuellen γH2AX- (Panel A), pATM-(Panel B) und 53BP1-Foci (Panel C) mit der Überlebensrate nach 6 Gy für alle 10 untersuchten Zelllinien dargestellt.

Abbildung 31: Korrelation der Überlebensrate nach 6 Gy mit residuellen Doppelstrangbrüchen

Nachweis von yH2AX- (Panel A), pATM- (Panel B) und 53 BP1-Foci (Panel C)

Panel A zeigt die residuellen yH2AX-Foci nach 6 Gy in Abhängigkeit von der Überlebensrate nach 6 Gy (SF6) sowie eine mittels linearer Regression ermittelte Anpassung an die Daten. Analog zu Panel A veranschaulichen Panel B und C den Zusammenhang zwischen der mittleren Anzahl an pATM- bzw. 53BP1-Foci und dem zellulären Überleben. Zu erwarten ist, dass geringe Überlebensraten mit hohen Mittelwerten an residuellen Foci einhergehen und vice versa. Dieser Zusammenhang wird generell in allen Fällen dargestellt, erreicht aber mit Korrelationskoeffizienten von r²= 0,33 für γH2AX, 0,37 für pATM und 0,23 für 53BP1 und p-Werten von 0,10 bzw. 0,08 und 0,19 keine statistische Signifikanz.

3.3.3.2. Der Heterochromatin-Status als Indikator der zellulären Strahlenempfindlichkeit

Im Folgenden werden die Ergebnisse bezüglich des Zusammenhangs zwischen Heterochromatinstatus und zellulärer Strahlenempfindlichkeit dargestellt. Da die Ergebnisse bezüglich der Vergleichbarkeit der zur Quantifizierung des HP1 α -Signals verwendeten Parameter, mittlere Anzahl der HP1 α -Anreicherungen bzw. mittlere HP1 α -Gesamtintensität, keine Entscheidung darüber zulassen, welcher der beiden Parameter zur Charakterisierung des Heterochromatinstatus geeigneter ist (siehe Abbildung 20), wurden die Parameter zur Beschreibung der zellulären Strahlenempfindlichkeit - mittlere Anzahl residueller γ H2AX-, pATM-, 53BP1-Foci bzw. die Überlebensrate nach Bestrahlung mit 6 Gy jeweils sowohl mit der mittleren Anzahl der HP1 α -Anreicherungen als auch mit der mittleren HP1 α -Gesamtintensität korreliert. Die Ergebnisse sind in Abbildung 32 dargestellt.

5

20

P value

18 19 20 21 22 23 24 25 26 27 28

HP1a- Anreicherungen, 0 Gy

5

0.0003

30 40 50 60 70 80 90 100 110

HP1α- Gesamtintensität, 0 Gy

Abbildung 32: Zusammenhang zwischen basalem Heterochromatinstatus und der zellulären Strahlenempfindlichkeit

Der Heterochromatinstatus wurde sowohl als Mittelwert der HP1 α -Anreicherungen (linke Spalte) als auch als mittlere Gesamtintensität des HP1 α -Signals (rechte Spalten) quantifiziert und mit der Anzahl residueller Foci nach 6 Gy nachgewiesen als γ H2AX- (Panel A und B), pATM- (Panel C und D) bzw. 53BP1-Akkumulation(E und F) sowie der Überlebensrate nach 6 Gy korreliert.

Die Abbildung verdeutlicht, dass der Heterochromatinstatus der Fibroblasten deutlich mit der zellulären Strahlenempfindlichkeit korreliert, wenn dieser in Form der mittleren Gesamtintensität quantifiziert wird. Eine statistisch signifikante Korrelation mit Regressionskoeffizienten von 0,63 bzw. 0,44 und 0,82 und p-Werten von 0,006 bzw. 0,037 und 0,0003 wurde sowohl für residuelle γ H2AX-, als auch für 53BP1- und pATM-Foci beobachtet. Im Gegensatz dazu konnte in keinem Fall eine signifikante Korrelation nachgewiesen werden, wenn die residuellen Foci mit der mittleren Anzahl an HP1 α -Anreicherungen assoziiert wurden. Die Korrelation der zellulären Strahlenempfindlichkeit mit dem Heterochromatinstatus fällt für die Assoziation mit der Überlebensrate nach 6 Gy wesentlich schwächer aus: Dennoch lässt sich eine nicht signifikante Abnahme der Überlebensrate mit zunehmender HP1 α -Gesamtintensität erkennen.

4. DISKUSSION

Voraussetzung für den Erfolg einer Strahlentherapie ist die Inaktivierung aller klonogenen Tumorzellen. Da die Bestrahlung immer auch das an den Tumor angrenzende gesunde Gewebe erreicht, ist die Zellinaktivierung/-schädigung in den umliegenden Normalgeweben unvermeidbar. Dabei variiert die Strahlenempfindlichkeit zwischen den Geweben und wird in erster Linie durch die Anzahl der Bestrahlungen und die intrinsische Strahlenempfindlichkeit der Zielzellen definiert (Herrmann, Baumann, Dörr: Klinische Strahlenbiologie 4. Auflage, Urban und Fischer 2006, Seite 87).

Wird dabei die Toleranzdosis der gesunden Organe und Gewebe überschritten, kommt es zu unerwünschten Nebenwirkungen. Da es in der klinischen Strahlentherapie schwierig ist, statistisch gesicherte Daten von - insbesondere späten - strahleninduzierten Nebenwirkungen zu erhalten, entsprechen die publizierten Toleranzdosen eher der allgemein akzeptieren Konvention als einer echten Inzidenz (Herrmann, Baumann, Dörr: Klinische Strahlenbiologie 4. Auflage, Urban und Fischer 2006, Seite 88). Dennoch spielen die Toleranzdosen in der klinischen Strahlentherapie eine wichtige Rolle und sind Ausdruck für das Risiko von Nebenwirkungen eines Patientenkollektivs. Die klinische Erfahrung zeigt, dass trotz gleicher Therapieschemata deutliche Unterschiede in der Ausprägung der Nebenwirkungen zwischen individuellen Patienten bestehen. Selbst wenn die Wahrscheinlichkeit, eine unerwünschte Nebenwirkung zu entwickeln, nur wenige Prozent beträgt, besteht ein individuelles Risiko schweren Ausprägung der einer Nebenwirkung. Wünschenswert wäre demzufolge die Anpassung der Bestrahlungsdosis an das individuelle Risiko des einzelnen Patienten, Nebenwirkungen zu erleiden. Dieses ist nur unter der Voraussetzung einer verlässlichen Bestimmung der individuellen Strahlenempfindlichkeit möglich. Generell wird dieses durch die Tatsache erschwert. dass die Unterschiede in der intrinsischen Strahlenempfindlichkeit humaner Normalzellen, obwohl sie das Risiko von Normalgewebeschäden nach Strahlentherapie determinieren (Borgmann et al., 2008; Hoeller et al., 2003), zum Teil nur gering ausgeprägt sind.

Die individuelle Strahlenempfindlichkeit wird hauptsächlich von der Sensibilität der Zellen gegenüber ionisierender Strahlung bestimmt und lässt sich daher mittels Charakterisierung der zellulären Strahlenempfindlichkeit bestimmen.

Zur Bestimmung der zellulären Strahlenempfindlichkeit stehen verschiedene experimentelle Methoden zur Verfügung. Der Koloniebildungstest ist die älteste Methode zur Bestimmung der Strahlensensibilität von Zellen in Kultur. Er wird schon seit nahezu 50 Jahren angewendet und obwohl er aufgrund der langen Inkubationszeiten extrem zeitaufwändig und mit einigen Zelllinien nicht durchführbar ist, gilt er - die Standardisierung der Versuchsbedingung als Goldstandard Beurteilung der vorausgesetzt zur zellulären Strahlenempfindlichkeit (Pomp et al., 1996). Er stellt ein Testsystem für die durch Bestrahlung entstanden Schäden dar. Informationen bezüglich der Art der Inaktivierungsmechanismen können jedoch nicht erhoben werden, da letztendlich alle Ereignisse, die einen reproduktiven Zelltod bewirken, zu einer reduzierten Koloniebildungsrate führen (siehe Kapitel 1.1.3.). Nachteile des Kolonietests sind, neben der großen Menge benötigter Zellen, die langen Inkubationszeiten sowie der Umstand, dass sich einige Zelllinien nicht in einem Zellkultursystem anzüchten lassen. Darüber hinaus sind, wie bereits erwähnt, keine Rückschlüsse über die an der Zellinaktivierung beteiligten molekularen Mechanismen möglich.

Die zelluläre Inaktivierung wird letztlich über DNA-Doppelstrangbrüche vermittelt. Daher gilt der Nachweis von DNA-Doppelstrangbrüchen als Surrogatmarker der zellulären Strahlenempfindlichkeit. Das momentan sensitivste Detektionsverfahren von DNA-Doppelstrangbrüchen stellt der Nachweis sogenannter IRIF (irradiation induced foci) dar. Es beruht auf dem fluoreszenzmikroskopischen Nachweis reparaturassoziierter Proteine, welche große Bereiche des Chromatins in der Umgebung DNAdes Doppelstrangbruchs flankieren.

Im Gegensatz zum Koloniebildungstest bietet der Nachweis reparaturassoziierter Foci den großen Vorteil, dass die chromosomale Schädigung als lokales Ereignis dargestellt werden kann. Immunzytochemisch können dabei diverse Proteine, welche an der Erkennung und Prozessierung von DNA-Doppelstrangbrüchen beteiligt sind, detektiert werden.

Die Methode wurde zunächst für das reparaturassoziierte Histon yH2AX entwickelt. Erste Versuche kamen 1980 (West und Bonner, 1980) zur Darstellung und zwei Jahrzehnte später wurde dessen Bedeutung für die Reparatur von Doppelstrangbrüchen dokumentiert (Rogakou et al., 1998). Mit der kommerziellen Verfügbarkeit spezifischer Antikörper gegen vH2AX stand eine relativ einfache und hochsensitive Nachweismethode von DNA-Doppelstrangbrüchen zur Verfügung. Der Nachweis, vH2AXdass Akkumulationen auch unabhängig von DNA-Doppelstrangbrüchen auftreten (Han et al., 2006; Mcmanus und Hendzel, 2005; Suzuki et al., 2006), zog die Etablierung weiterer Antikörper zum Nachweis reparaturassoziierter Proteine nach sich. Es folgte die kommerzielle Verfügbarkeit von Antikörpern gegen 53BP1. Dieses erwies sich im Nachweis von DNA-Doppelstrangbrüchen bei proliferierenden Zellen dem Nachweis mittels yH2AX als überlegen, da es keine S-Phase-assoziierten Signale erzeugt. Für nicht proliferierende Zellen, wie kontaktinhibierte konfluente Fibroblasten, wird eine vollständige Kolokalisation von vH2AX und 53BP1 beschrieben (Rube et al., 2008; Rube et al., 2010; Schanz et al., 2012), dies wird von den Ergebnissen der eigenen Arbeitsgruppe bestätigt (Metzke, 2011).

Mit der kommerziellen Verfügbarkeit eines hochspezifischen Antikörpers gegen pATM besteht nun die Möglichkeit, ein in der Signalkaskade über dem γH2AX stehendes reparaturassoziiertes Protein zum Nachweis von DNA-Doppelstrangbrüchen zu nutzen. Es gilt daher zu überprüfen, inwieweit Antikörper gegen pATM zum Nachweis von DNA-Doppelstrangbrüchen besser geeignet sind als γH2AX- bzw. 53BP1-spezifische Antikörper.

Ein weiterer maßgeblicher Vorteil der Bestimmung der zellulären Strahlenempfindlichkeit mittels des Nachweises strahleninduzierter Foci besteht darin, dass auch Zellen untersucht werden können, welche nicht in Kultur gehalten und somit nicht mit Hilfe des Kolonietests untersucht werden können. Optimal zur Bestimmung der individuellen zellulären Strahlenempfindlichkeit von Patienten wären Lymphozyten des peripheren Bluts, da diese ohne viel Aufwand gewonnen werden können und nicht in Kultur gehalten werden müssen. Doch bevor ein entsprechendes Testsystem an Lymphozyten etabliert werden kann, gilt es nachzuweisen, dass die zum Teil sehr geringen Unterschiede in der individuellen zellulären Strahlenempfindlichkeit generell mit dem Foci-Nachweis aufgelöst werden können. Dies setzt homogene Versuchsbedingungen und die Minimierung des Einflusses möglicher konfundierender Faktoren wie Lebensstil und Gesundheitsstatus der Probanden voraus und kann somit nur mit Hilfe von etablierten humanen Zelllinien in Kultur erfolgen.

Die zelluläre Inaktivierung wird maßgeblich von der Effektivität der DNA-DSB-Reparatur bestimmt (Chua et al., 2011; Dikomey und Brammer, 2000; Menegakis et al., 2011; Olive, 2011). Diese verläuft typischerweise biphasisch mit einer schnellen sowie einer langsamen Komponente. Insbesondere die langsame Komponente wird als Ausdruck der Verzögerung der Reparaturkinetik komplexer Schäden gewertet, welche als residuelle DNA-DSBs verbleiben und letztlich zur Zellinaktivierung führen.

Die residuellen Doppelstrangbrüche gelten daher als adäquater Endpunkt zur Bestimmung der zellulären Strahlenempfindlichkeit. Somit ist das experimentelle Design so zu wählen, dass das Zeitintervall zwischen Bestrahlung und Aufbereitung der Zellen lang genug ist, um eine vollständige DNA-Reparatur zu gewährleisten. Dies gilt auch für die Bestimmung der zellulären Strahlenempfindlichkeit mittels Koloniebildungstest, wobei die Technik des sogenannten delayed-plating verwendetet wird.

DNA-Neuesten Studien zufolge wird der Prozess der Doppelstrangbruchreparatur maßgeblich von der Chromatinstruktur beeinflusst. In den letzten Jahren wurde zunehmend die These, nach der die Komplexität des Doppelstrangbruchs die Kinetik der Reparatur bestimmt, abgelöst von der Komplexität des Chromatins die Vorstellung, dass die Kinetik der Doppelstrangbruchreparatur bestimmt (Goodarzi et al., 2009). Die Beobachtung, dass Heterochromatin-assoziierte Doppelstrangbrüche von dem Reparatursystem verzögert detektiert und mit deutlich langsamerer Kinetik repariert werden (Costes et al., 2010; Goodarzi et al.; Lorat et al., 2012

)führt zur Hypothese, dass residuelle Doppelstrangbrüche hauptsächlich im Heterochromatin lokalisiert sind.

Auf Grundlage der dargestellten Zusammenhänge wurden im Rahmen der vorliegenden Arbeit folgende Fragestellungen untersucht:

1. Ist der Nachweis von residuellen pATM-Foci besser zur Quantifizierung der zellulären Strahlenempfindlichkeit humaner Fibroblasten geeignet als der bereits etablierte Nachweis von γHAX bzw. 53BP1?

2. Besteht für die untersuchten humanen Fibroblasten ein genereller Zusammenhang zwischen zellulärer Strahlenempfindlichkeit und dem Anteil an Heterochromatin?

3. Lassen sich für die verwendeten humanen Fibroblasten Veränderungen im Heterochromatin nach Bestrahlung nachweisen und sind residuelle Doppelstrangbrüche bevorzugt im Heterochromatin lokalisiert?

Die Bearbeitung der ersten Fragestellung benötigt neben der Etablierung des pATM-Nachweises die Quantifizierung sowohl der residuellen pATM- als auch der vH2AX- und 53BP1-Foci sowie darüber hinaus die Bestimmung der zellulären Überlebensrate mittels Kolonietest, da dieser als Goldstandard des Nachweises des zellulären Überlebens nach Bestrahlung angesehen wird.

Die Untersuchung der zweiten Fragestellung setzt neben der Etablierung des immunzytochemischen Nachweises von Heterochromatin auch die Implementierung einer Methode zur Quantifizierung des Anteils heterochromatischer Bereiche voraus.

Alle hierfür nötigen Untersuchungen erfolgten an humanen Fibroblasten in Kultur. Dies hat den Vorteil, dass für verschiedene Zelllinien die Quantifizierung der zellulären Strahlenempfindlichkeit mit Hilfe des Koloniebildungstests und mittels strahleninduzierter Foci möglich ist und die Ergebnisse des Foci-Assay direkt mit dem klonogenen Überleben nach Bestrahlung verglichen werden können.

Im Folgenden werden die Ergebnisse unter Berücksichtigung der aktuellen und relevanten Literatur diskutiert.

4.1. Immuncytochemischer Nachweis und mikroskopische Darstellung residueller Doppelstrangbrüche mittels γH2AX-, 53BP1- und pATM-Foci

Wie Abbildung 10 dargestellt, konnten in mit den verwendeten fluoreszenzmarkierten Antikörpern gegen yH2AX, 53BP1 bzw. pATM residuelle Foci eindeutig nachgewiesen werden. Eine zusätzliche Kernfärbung mittels DAPI gewährleistete die Identifizierung und Abgrenzung einzelner Fibroblastenkerne. Zellkerne, welche morphologische Veränderungen wie z.B. Kerndeformationen oder auffällige Vergrößerung der Strukturen aufwiesen, konnten so von der Auswertung ausgeschlossen werden, da es sich bei diesen um proliferierende oder apoptotische Zellen handeln kann.

Wie das Beispiel in Abbildung 10 dokumentiert, zeichnen sich alle verwendeten Antikörper durch eine außerordentlich hohe Spezifität aus. Allein der Nachweis von pATM-Foci war mit einem geringen unspezifischen Hintergrund verbunden, welcher aber nicht die Abgrenzung einzelner Foci nennenswert beeinträchtigte. Generell konnte eine Kolokalisation aller drei verwendeten Antikörper beobachtet werden. Diese wird im weiteren Verlauf ausführlich besprochen. Die hohe Spezifität der verwendeten Antikörper wird aktuell von verschiedenen Autoren bestätigt (Bekker-Jensen und Mailand) und die eigenen Ergebnisse belegen, dass die Anwendung der beschriebenen Methode in der vorliegenden Untersuchung mit höchster Qualität gelungen und somit ein Vergleich der eigenen Daten mit denen aus der aktuellen Literatur gerechtfertigt ist.

Die quantitative Auswertung erfolgte durch Auszählen der Foci am Mikroskop. Für jede Auszählung wurden die Ergebnisse als Häufigkeitsverteilung dargestellt und der arithmetische Mittelwert sowie der Standardfehler bestimmt. Auch wenn generell Konsens darüber besteht, dass die Verteilung strahleninduzierter residueller Doppelstrangbrüche einer Poissonverteilung folgt (Rothkamm und Lobrich, 2003, Horn, #26, Edwards, 1979 #27), wird in allen relevanten Arbeiten in der Literatur der arithmetische Mittelwert zur Quantifizierung verwendet (Horn et al., Menegakis, 2011 #2, Rothkamm, 2003 #25, Rube, 2010 #22, Rube, 2008 #23). Daher wird auch in dieser Arbeit der arithmetische Mittelwert verwendet. Um einen systematischen Fehler auszuschließen, wurde zuvor jedoch überprüft, ob die Wahl des Parameters einen Einfluss auf die Ergebnisse hat. Wie in Abbildung 12 dargestellt, besteht zwischen beiden Parametern eine nahezu ideale Korrelation. Somit ist gewährleistet, dass die Wahl des verwendeten Parameters die Ergebnisse nicht systematisch beeinflusst.

der Neben dem Nachweis, dass arithmetische Mittelwert und der Erwartungswert der Poissonverteilung als gleichwertig zur Quantifizierung zu bewerten sind, zeigen die Ergebnisse gute Übereinstimmung mit der Literatur. Für unbestrahlte Fibroblasten wurden von Rothkamm und Löbrich 2003 mit 0,04 bis 0,08 Foci pro Zellkern sehr geringe Werte für spontane vH2AX-Foci berichtet (Rothkamm und Lobrich, 2003). Wilson et al. (Wilson et al.) dagegen wiesen in ihren Untersuchungen von 25 Fibroblastenzelllinien zwischen 0,21 und 2,61 Foci pro Zelle (Mittelwert 0,96, SE 0,12) deutlich mehr spontane Die Rahmen dieser Arbeit untersuchten vH2AX-Foci nach. im 10 Fibroblastenlinien zeigten mit im Mittel 0,33 Foci pro Zellkern relativ wenig spontane Foci auf. Auch waren die Unterschiede diesbezüglich relativ gering ausgeprägt, was durch den Standardfehler von 0,03 zum Ausdruck kommt. Der quantitative Nachweis residueller Foci nach Bestrahlung ergab nach Dosen von 1, 2, 4 und 6 Gy Mittelwerte von 1,35, 2,08, 4,08 bzw. 6,33 residuelle yH2AX Foci. Damit liegen diese erhobenen Werte sehr nahe an denen, die in der Literatur beschrieben sind und lassen etwa einen residuellen Doppelstrangbruch pro Gy und Zelle nachweisen (Dikomey und Brammer, 2000).

Die Zunahme residueller Doppelstrangbrüche mit der Dosis wurde für sieben der untersuchten Zelllinien bestimmt. Es konnte in allen Fällen ein linearer Anstieg mit der Dosis nachgewiesen werden (Abbildung 14). Sowohl für yH2AX- als auch für pATM-Foci zeigt sich diese lineare Korrelation. Die

erhobenen Ergebnisse finden wiederholt Bestätigung in der Literatur. So wurde für residuelle als auch für initiale γH2AX-Foci ein linearer Anstieg der Foci pro Zellkern bei Fibroblasten und Tumorzelllinien dokumentiert (Andrievski und Wilkins, 2009; Banath et al., 2004; Beels et al., 2010; Golfier et al., 2009; Löbrich et al., 2005; Macphail et al., 2003). Lediglich die Arbeit von Markova et al. zeigt einen nicht- linearen Anstieg der Foci mit zunehmender Dosis nach 12 Stunden Reparaturzeit. Nach 24 Stunden wurde jedoch ebenfalls ein linearer Anstieg bei den untersuchten Fibroblasten beobachtet (Markova et al., 2007).

Generell ist von dem zur Quantifizierung der Strahlenempfindlichkeit verwendeten Parametern zu fordern, dass individuelle Unterschiede, die unabhängig von der applizierten Gesamtdosis bestehen, aufgezeigt werden können. Um diesen Nachweis zu erbringen, wurde die Anzahl residueller Foci nach 4 und nach 6 Gy korreliert. Das Ergebnis dieser Auswertung (Abbildung 15) belegt, dass der Nachweis residueller Doppelstrangbrüche sowohl mit Hilfe von yH2AX- als auch mit Hilfe von pATM-Foci zur Quantifizierung der Strahlenempfindlichkeit geeignet ist. In beiden Fällen besteht eine statistisch Korrelation, diese für pATM signifikante wobei mit einem Regressionskoeffizienten von 0,74 etwas stärker ausgeprägt ist. Dieses Ergebnis weist darauf hin, dass der Nachweis von pATM-Foci zur Darstellung residueller Doppelstrangbrüche dem Nachweis von 53BP1-Foci überlegen ist. Diese Schlussfolgerung wird von der in der Literatur dokumentierten Beobachtung unterstützt, nach der vH2AX besonders in proliferierenden Zellen auch reparatur-unabhängige S-phase-spezifische Signale nachweist (Cowell 2007, Löbrich 2010).

Die Wertigkeit der zum Nachweis residueller Doppelstrangbrüche verwendeten Antikörper vH2AX, 53BP1 und pATM wurde durch den Vergleich der im Mittel pro Zelllinie nachgewiesenen residuellen Doppelstrangbrüche bestimmt (Abbildung 17). Es besteht in allen Fällen eine nahezu ideale lineare Korrelation, wobei vH2AX- und 53BP1-Foci sowie 53BP1- und pATM-Foci eine völlige Übereinstimmung im Sinne einer eins-zu-eins-Korrelation zeigen. Nur der Vergleich von vH2AX und pATM weist eine Abweichung von dieser eins-zueins-Korrelation um etwa einen zusätzlichen vH2AX-Fokus auf. Diese Ergebnisse werden durch die Literatur sowohl in ruhenden Zellen wie konfluenten Fibroblasten, aber auch in nicht-proliferativ aktiven Geweben in situ bestätigt. Es wird von einer vollständigen Kolokalisation von γH2AX- und 53BP1-Foci berichtet (Rube et al., 2010). Die geringfügige Abweichung im Falle der γH2AX- und pATM-Kolokalisation ist als ein weiterer Hinweis darauf zu werten, dass pATM im Nachweis von residuellen Doppelstrangbrüchen den Vorteil bietet, keine reparaturunabhängigen Signale zu liefern.

4.2. Nachweis und Quantifizierung der heterochromatischen Bereiche

4.2.1. Identifizierung der optimalen immunhistochemischen Färbungsmethode

Zur Quantifizierung heterochromatischer Bereiche innerhalb des Zellkerns, mussten diese zunächst markiert werden und spezifisch von euchromatischen Arealen differenziert werden. Die Etablierung der dafür geeigneten immuncytochemischen Nachweismethode erfolgte zunächst an embryonalen Mausfibroblasten der Zelllinie NIH3T3. Der Vorteil bei dieser Zelllinie, im ist. Fibroblasten dass Gegensatz zu humanen konstitutives bzw. perizentrisches Heterochromatin, aufgrund seines speziellen Aufbaus als Regionen verdichteten Chromatins, bereits mit Hilfe von DAPI dargestellt werden können.

Diese, auch als Chromozentren bezeichneten Areale, befinden sich im Bereich des Centromers und setzen sich aus repetitiven A-T-reichen DNA-Sequenzen zusammen. Bei der Maus werden diese Areale auch Major-Satelliten genannt. Sie bestehen aus 234 Basenpaaren umfassenden Monomeren, die sich zu Strukturen mit einer Länge von über 2000 kb anordnen (Maison und Almouzni, 2004).

Diese Vorgehensweise bot somit gleichzeitig die Möglichkeit der Überprüfung, ob das vom Antikörper markierte konstitutive Heterochromatin mit den Bereichen intensiver DAPI-Anreicherung deckungsgleich ist. Das Ergebnis war die erfolgreiche Verifizierung der Tatsache, dass DAPI-dichte Regionen reich an heterochromatischen Faktoren, wie HP1α, KAP1 und H3K9me3 sind. In Abbildung 18 ist exemplarisch die deutliche Kolokalisation der genannten Antikörper mit denen, durch DAPI markierten, Chromozentren veranschaulicht. Zu vergleichbaren Ergebnissen kamen auch Goodarzi et al., die eine ähnliche Vorgehensweise wählte. Die Autoren bestätigten in ihrer Arbeit (Goodarzi et al., 2008) neben der Kolokalisation dichter DAPI-Regionen mit H3K9me3, HP1 und KAP1, die Kolokalisation mit dem centromerischen Protein CENP-A. Chromatinbereiche, die eine Anreicherung mit dem Transkriptionsfaktor E2F1 oder, dem ebenfalls an der Genexpression beteiligten, HMGB1 zeigten, hingegen waren frei von heterochromatischen Arealen. Goodarzi et al. belegten mit dieser Untersuchung die Kolokalisation von Chromozentren und heterochromatischen Faktoren, beschränkten die Versuche jedoch auf embryonale Mausfibroblasten, bei denen das konstitutive Heterochromatin mit Hilfe von DAPI darstellt, und anschließend die Lokalisation residueller DSBs in Bezug zu Chromozentren näher untersucht wurde (Goodarzi et al., 2009).

Im Rahmen der vorliegenden Arbeit konnte die Spezifität dieser Heterochromatinmarker auch für deren Anwendung an humanen Fibroblasten bestätigt und die entsprechenden Färbeprotokolle (vgl. Anhang) etabliert und optimiert werden. Wie in Abbildung 19. veranschaulicht, wurde zusätzlich der euchromatin- spezifische Marker H3K9ac3 verwendet, um eine Abgrenzung von hetero- und euchromatischen Bereichen sicherzustellen. Die überlagerte Darstellung beider Signale (rechts) macht deutlich, dass Bereiche mit intensiver Anreicherung des Antikörpers gegen H3K9ac3 (rot) frei vom heterochromatinspezifischen Antikörper H3K9me3 (grün) sind und vice versa.

Die Charakterisierung des Heterochromatinstatus der verschiedenen humanen Fibroblastenzelllinien erfolgte unter Verwendung des Antikörpers gegen HP1α da dieser zu dem geringsten unspezifischen Hintergrund führte und somit die Abgrenzung der einzelnen HP1α-Herde deutlich erleichterte.

Jedoch konnte trotz optimaler Färbeergebnisse und der Gegenfärbung mit dem Euchromatinmarker H3K9ac3 nicht abschließend geklärt werden, ob es heterochromatische Bereiche ohne HP1α-Anreicherung gibt. Es ist davon auszugehen, dass nicht gefärbte Bereiche innerhalb des Zellkerns euchromatische Areale darstellen. Jedoch stellt sich das H3K9ac3-Signal als sehr diffus dar, was die Quantifizierung erheblich einschränkt und die Methode z.Zt. nur bedingt verwendbar macht. An dieser Stelle sei anzuregen, die Optimierung des Euchromatin-Nachweises in einem nächsten Projekt zu bearbeiten, um die Frage zu klären, ob Chromatin möglicherweise auch unabhängig von den HP1α- angereicherten fokalen Bereichen vorliegt.

Trotz dieser Einschränkungen ist abschließen festzustellen, dass mittels immunzytochemischen Nachweises von HP1α, heterochromatische Bereiche im Zellkern humaner Fibroblasten sehr gut abgrenzbar sind und dies generell

durch die aktuelle Literatur Bestätigung findet (Goodarzi et al., 2008; Storch et al., 2010).

4.2.2. Implementierung geeigneter Auswerteverfahren zur Quantifizierung des Heterochromatins

Neben der Identifizierung des optimalen Antikörpers und Optimierung der Färbemethode, musste eine Methode zur Quantifizierung des HP1α-Signals implementiert werden.

Generell ist die Quantifizierung des HP1α-Signals, analog zur Bestimmung der residuellen Foci, durch Auszählung der Bereiche spezifischer HP1α-Anreicherung möglich. Alternativ dazu besteht jedoch auch die Möglichkeit die mittlere Gesamtintensität des HP1α-Signals pro Zellkern zu bestimmen. Dies wird durch die verwendete Software möglich, welche pro Zelle, die als Zellkern definierte Fläche als eine diskrete Anzahl von Pixel darstellt, den Intensitätswert der Fluoreszenz pro Pixel quantifiziert, und den Quotient aus der Summe der Intensitäten aller Pixel, und der Gesamtzahl aller Pixel als mittlere Gesamtintensität pro Zellkern ausgibt.

Das Prinzip der Bestimmung der mittleren Gesamtintensität pro Zellkern ist letztendlich mit der Verwendung des flusszytometrischen Nachweises vergleichbar. In diversen aktuellen Untersuchungen wird die Verwendung des Flusszytometers Bestimmung mittleren Fluoreszenzintensität zur der beschrieben. Die Arbeiten der AG Cordes beispielsweise zeigten mit Hilfe dieser Methode eine Zunahme des HP1a-Signals, in Abhängigkeit von den Kulturbedingungen. Auch Zarebski et al verwenden die mittlere Fluoreszenzintensität pro Zellkern zur Quantifizierung des HP1a- Signals. (Zarebski et al., 2009).

Vorteil der Quantifizierung mit Hilfe der Bestimmung der mittleren Gesamtintensität ist, dass auch geringfügige Anreicherungen, die aufgrund räumlicher Struktur nicht erkannt werden, durch diese Auswertung berücksichtigt werden. Darüber hinaus besteht bei der Auszählung prinzipiell das Problem, dass überlagerte Anreicherungen nicht getrennt erfasst werden

können was zu einer Unterschätzung des HP1α -Signals führen kann. Eine mögliche Zu- oder Abnahme der Signalstärke innerhalb eines einzelnen HP1α-Herdes ohne Änderung der Gesamtzahl der HP1α- Herde, würde ebenfalls nur bei der Bestimmung der mittleren Gesamtintensität zur Berücksichtigung kommen. Ein wesentlicher Vorteil dieser Methode liegt in der Möglichkeit ihrer Automatisierung mit entsprechender Zeit- und Arbeitsersparnis und optionalen Anwendung als Screeningmethode in der klinischen Anwendung.

Da entsprechende systematische Untersuchungen bisher nicht vorlagen und auch in der Literatur diesbezüglich keine Ergebnisse dokumentiert sind, wurden beide Parameter bestimmt um zu überprüfen inwieweit sie gleichwertig sind.

Wie Abbildung 21 veranschaulicht, zeigen sowohl die mittlere Anzahl von HP1 α -Herden pro Zellkern als auch die mittlere Gesamtintensität pro Zellkern eine Normalverteilung der Einzelwerte, was darauf hinweist, dass in beiden Fällen eine Abbildung des gegebenen Wertes möglich zu sein scheint. Exemplarisch zeigt die Zelllinie F98 im Mittel 22,62 HP1 α -Herde pro Zellkern. Der Standardfehler liegt hierbei bei 0,46 und die Variationsbreite umfasst einen Bereich von 12 bis 37 HP1 α -Herden pro Zellkern. Bei der Bestimmung der mittleren Gesamtintensität des Signals pro Zellkern wird ein Mittelwert von 39,96 erhoben. Der Standardfehler liegt in diesem Fall bei 0,57 und die Variationsbreite umfasst einen Bereich von 24 bis 58.

Es fällt auf, dass die mittlere Gesamtintensität größere Fehlerbalken aufweist (Abbildung 22). Ein möglicher Grund dafür könnte sein, dass die Anzahl der ausgewerteten Zellen zu gering ist, um einen Zusammenhang aufzuzeigen. Wie bereits beschrieben schließen die vorliegenden Versuche lediglich Zellpopulationen von 100 Zellen ein. Die Ergebnisse weisen darauf hin, dass eine mit Hilfe der Flusszytometrie automatisierte Bestimmung der durchschnittlichen Signalstärke pro Zellkern prinzipiell möglich sein sollte. Unter der Voraussetzung der erfolgreichen Implementation dieser Methode, könnten große Zellzahlen untersucht werden, was zu einer Verringerung der Varianz der Daten führen würde.

Unter der Voraussetzung, dass beide Methoden die heterochromatischen Areale verlässlich quantifizieren, sollten die Werte beider Auswerteverfahren korrelieren. Es ist jedoch festzuhalten, dass keine Korrelation zwischen HP1a-Anreicherungen und der mittleren HP1α-Gesamtintensität besteht. Wie in Abbildung 22 abgebildet, stellt sich bei der Darstellung eines möglichen Zusammenhangs beider Methoden lediglich eine Datenkeule dar. Dieses Ergebnis ist methodisch von großer Relevanz, da es belegt, dass beide Methoden nicht als gleichwertig anzusehen sind. Eine Bewertung dieses Ergebnisses anhand der Literatur ist nicht möglich, da entsprechende vergleichende Untersuchungen nicht publiziert sind. Aufgrund dieses Ergebnisses wurde bei den folgenden Auswertungen jeweils die Korrelationen zwischen den Parametern der zellulären Strahlenempfindlichkeit und des Anteils an Heterochromatin sowohl für die Ergebnisse der mittleren HP1a-Gesamtintensität als auch der numerischen Anreicherung durchgeführt, mit dem Ergebnis, dass ausschließlich die Assoziation der Daten mit der mittleren Gesamtintensität zu systematischen statistischen signifikanten Korrelationen führt. Der Übersichtlichkeit halber wird auf die Darstellung nicht signifikanter Korrelationen verzichtet. Auch wenn dieses Vorgehen prinzipiell die Gefahr der selektiven Dateninterpretation beinhaltet, ist es methodisch ein erster Schritt zur Hypothesengenerierung, welche durch weiterführende Versuche und Überprüfungen untermauert werden muss.

4.3. Untersuchungen zu Veränderungen des heterochromatomatischen Anteils nach Bestrahlung und Untersuchung der Lokalisation residueller Doppelstranbrüche

Wie bereits einleitend (Kapitel 1.3.2) beschrieben, sind ca. 10-25% der eukaryotischen DNA transkriptionell inaktiv und in Form von Heterochromatin kondensiert.

Mit Ausnahme kurzer Perioden während der DNA-Replikation und der Mitose bleibt die allgemeine Integrität des Heterochromatins unverändert. Nach Induktion eines DSBs wird jedoch eine aufwändige Serie von Ereignissen innerhalb des Heterochromatins initiiert. Bei fehlerhafter Umsetzung dieser dynamischen, lokalen Änderungen kann es zu einer mangelhaften DSB-Reparatur innerhalb heterochromatischer Regionen kommen. Es gibt zunehmend Hinweise dafür, dass die Komplexität des Chromatins und nicht die Komplexität des Doppelstrangbruchs für residuelle Doppelstrangbrüche mit langsamer Reperaturkinetik verantwortlich ist (Goodarzi et al., 2009).

Der folgende Abschnitt der Arbeit diente vor allem der Überprüfung der Hypothese, dass heterochromatische Bezirke eine Barriere für die Reparatur von DSBs darstellen und residuelle IRIFs somit vorzugsweise im Heterochromatin lokalisiert sind. Dazu wurde zunächst der heterochromatische Anteil mittels des zuvor etablierten HP1α-Antikörpers vor und 24 h nach Bestrahlung mit 6 Gy bestimmt. Zusätzlich wurde die Lokalisation residueller DSBs und deren Verhältnis zum Heterochromatin näher untersucht.

Ein wesentliches Ergebnis dieser Untersuchung ist zum einen die Beobachtung, dass der Anteil an heterochromatisch organisiertem Chromatin nach Bestrahlung zunimmt (Abbildung 23, Abbildung 24). Hierbei werden die Ergebnisse der Bestimmung der mittleren Gesamtintensität des HP1α-Signals dargestellt (s.o.), da diese am besten die im mikroskopischen Bild erkennbaren zellmorphologischen Veränderungen widerspiegeln.

Wie in Abbildung 23 veranschaulicht wird, wurden bereits mikroskopisch Unterschiede erkennbar. Nach Bestrahlung ließ sich eine deutliche Zunahme des HP1α-Signals erkennen (vgl. Panel B).

92

Auch aus theoretischen Überlegungen wäre diese Methode der Bestimmung der HP1α-Gesamtintensität zu überlegen, da diese auch solche Signale erfasst, die gegebenenfalls für die numerische Auszählung zu diffus und/oder zu klein ausgebildet sind. Wie in Abbildung 24 zu sehen ist, wird für sieben der untersuchten Zelllinien eine Erhöhung der mittleren HP1a-Gesamtintensität nachgewiesen, wobei diese für die Zelllinie Fib14 am stärksten ausgeprägt ist. Diese Beobachtung weist darauf hin, dass HP1a am Prozess der DNA-Reparatur beteiligt sein könnte. Unterstützung findet diese Schlussfolgerung sowohl in den Ergebnissen von Dinant und Luijsterburg (Dinant und Luijsterburg, 2009) als auch von Goodarzi et al. (Goodarzi et al., 2008), welche der Verlust sämtlicher HP1-Isoformen zu einer demonstrieren, dass verbesserten DNA-Reparatur in heterochromatischen Bereichen führt. Dies wird durch eine Chromatinrelaxation und dem damit verbundenen besseren Zugang der Reparaturproteine an die betroffenen heterochromatischen Bereiche erklärt. Die Beobachtung, dass ein Knockdown von KAP-1 zu vergleichbaren führte, verdeutlicht. dass beide Proteine Ergebnissen am selben Wirkmechanismus beteiligt sind und einen entsprechend vergleichbaren Einfluss auf die DNA-Reparatur haben. Schlussfolgernd ergibt sich daraus, dass heterochromatische Proteine sich inhibierend auf die Reparatur von DSB auswirken und dass ihre durch Phosphorylierung induzierte Dissoziation vom Heterochromatin und die damit einhergehende Chromatinrelaxation die DSB-Reparatur erleichtert. HP1a ist somit maßgeblich an der Ausbildung von Heterochromatin beteiligt. Darüber hinaus wird HP1a auch eine aktive Rolle im Prozess der DNA-Reparatur zugeschrieben. So konnten Luijsterburg et al (Luijsterburg et al., 2009) nachweisen, dass es zu einer De-novo-Akkumulation von HP1-Proteinen am Ort des DSB kommt. Entsprechend der Ansicht der Autoren ist diese Interaktion unabhängig von der Chromodomäne und H3K9me3, jedoch über die Chromoshadow-Domäne vermittelt. Nach einem von den Autoren entworfenen Modell (Abbildung 33) bindet HP1 entweder direkt an das Chromatin (oben in der Abbildung dargestellt, rote Markierung), oder es kommt zu einer indirekten Interaktion (unterer Weg in der Abbildung, schwarze Markierung) von HP1a mit dem Chromatin über ein so genanntes

Damagebinding-Protein, welches ein PxVxL-Motif enthält (rosa dargestellt). KAP-1 enthält beispielsweise ein solches Motif und kann somit als Adaptermolekül fungieren. Beide möglichen Wege sind im folgenden Modell (Abbildung 33) veranschaulicht.

Abbildung 33: Modell für die Rekrutierung von DNA- damage- response- (DDR) Proteinen an phosphoriliertem HP1, welches den DSB flankiert (Dinant und Luijsterburg, 2009)

Der obere Weg veranschaulicht die direkte Bindung (rot) von HP1 an das Chromatin. Im unteren Weg ist die indirekte Bindung von HP1 an das Chromatin mit Hilfe eines PxVxL- Motif tragenden DNA- Damagebinding Proteins dargestellt (schwarz).

Die Autoren konkretisieren das Modell auf molekularer Ebene und erklären die temporäre Zunahme des HP1-Signals am beschädigten Chromatin wie folgt:

Ein DNA-Schaden bewirkt die Dissoziation von HP1, hervorgerufen durch dessen Phosphorylierung am Thr51 mit dem Resultat der lokalen Chromatinrelaxation und gleichzeitig die Anreicherung von HP1 mit dem Ziel, Damage-Response-Proteine zu rekrutieren. Dabei wird darauf hingewiesen,

dass die Zahl der HP1-Moleküle, die über die CSD am Chromatin bindet, deutlich über der Zahl liegt, die vom H3K9me3 dissoziiert, sodass es zu einem Nettozuwachs von HP1 an der Stelle der DNA-Schädigung kommt.

Vergleichbare Ergebnisse und damit eine ähnliche Hypothese zeigen die Arbeiten von Zarebski et al. Der Autor beschreibt die Rekrutierung von HP1 α am Ort des DSB nach Schadensinduktion als einen dynamischen Prozess. (Zarebski et al., 2009). Das Fluoreszenzprofil der flusszytometrischen Messung zeigt dabei eine Zunahme des HP1 α -Signals am Ort des geschädigten Chromatins und eine Abnahme in der unbeschädigten euchromatischen Umgebung. Die Autoren gehen davon aus, dass es nach Bestrahlung zu einer Abnahme des H3K9me3-gebundenen HP1 α , verbunden mit der gleichzeitigen Zunahme des freien ungebundenen HP1 α kommt. Zusätzlich beschreiben sie eine De-novo-Rekrutierung von HP1 α am Ort des Schadens.

Auch die Untersuchungen von Ayoub et al. (Ayoub et al., 2008) bezüglich der Bedeutung von HP1 β in dem Prozess der DNA-Damage-Response lassen vergleichbare Schlussfolgerungen zu. Sie beschreiben eine Mobilisierung von H3K9me3-gebundenem HP1 β nach Schadensinduktion durch Phosphorylierung von Thr51, vermittelt durch die Caseinkinase 2 (CK2), welche an der Erkennung und Reparatur von DNA-Schäden beteiligt ist. Die Inhibition von CK2 bewirkte das Ausbleiben der Thr51-Phosphorylierung und die damit verbundene HP1-Dissoziation. Zudem wird gezeigt, dass sowohl die Inhibierung von CK2 als auch das Einbringen einer konstitutiv gebundenen HP1 β -Mutante die Phosphorylierung von H2AX und damit die Ausbildung von γ H2AX-Foci verhindert (Ayoub et al., 2008). Somit wird auch hier wieder eine enge Assoziation von HP1 in der Doppelstrangbruch-Reparatur demonstriert.

Wie oben bereits erwähnt, konnte lediglich für 7 der untersuchten 10 Zelllinien eine Zunahme der HP1α-Konzentration 24 h nach Bestrahlung festgestellt werden. Dies ist möglicherweise dadurch zu erklären, dass sich die Untersuchungen der AG Zarebski auf einen Zeitraum von 25 min nach Bestrahlung beschränken. Auch die Versuche der AG Dinant decken lediglich einen Zeitraum von 30 min (Dinant und Luijsterburg, 2009) bzw. 800 bis 10000 sec (Luijsterburg et al., 2009) nach Bestrahlung ab. Somit wäre die Erstellung

einer Kinetik, die die Konzentrationsänderung von HP1α nach Bestrahlung mit der Zeit abbildet, ein sinnvoller weiterer Schritt. Da es sich um einen dynamischen Prozess handelt, könnten möglicherweise 24 h nach Schadensinduktion bereits stattgehabte Vorgänge teilweise nicht mehr nachweisbar sein.

Des Weiteren wurde die Lokalisation der DSBs in Bezug auf die räumliche Ausdehnung der heterochromatischen Bereiche untersucht. Hierzu wurden bei der Erfassung residueller γH2AX-Foci diejenigen Foci, die in direkter räumlicher Nähe zu heterochromatischen Bereichen lagen, getrennt erfasst und als Anteil der γH2AX-Foci mit Bezug zu Heterochromatin dargestellt (Abbildung 25, Abbildung 26). Die Überschneidung des γH2AX- und des HP1α-Signals konnte durch die Auswertung der mikroskopischen Bilder mit Hilfe der Software AxioVision Rel. 4.8. eindeutig belegt werden.

Die Quantifizierung des Anteils von residuellen DSBs in Assoziation mit Heterochromatin ist in Abbildung 26 dargestellt und lässt deutlich werden, dass im Mittel 75,05% und somit der überwiegende Anteil der nicht-reparierten Doppelstrangbrüche im Heterochromatin lokalisiert ist.

Dieses Ergebnis kann als Bestätigung der Hypothese gewertet werden, nach der die komplexe Struktur des Heterochromatins eine Barriere für die Doppelstrangbruchreparatur darstellt.

Goodarzi et al. belegen in ihren Arbeiten, wie bereits andere Autoren zuvor (Iliakis et al., 1991; Löbrich et al., 1995), dass ca. 80% der induzierten DSBs mit schneller Kinetik innerhalb der ersten 4 bis 6 h repariert werden. Die verbleibenden 15% bis 20% der Schäden hingegen werden mit einer langsamen Kinetik repariert, die das Vorhandensein zusätzlicher Proteine wie ATM und Artemis erfordert. Die Untersuchungen zur Rolle des Heterochromatins im Rahmen der Doppelstrangbruchreparatur haben in der jüngsten Vergangenheit zu einem Paradigmenwechsel geführt. Während bislang angenommen wurde, dass die Komplexität des DSBs die Reparaturkinetik bestimmt, wird nun die Komplexität des Chromatins, d. h. der Grad der Kondensation, als Determinante der Effektivität der DNA-

Doppelstrangbruchreparatur angesehen (Goodarzi et al., 2010; Goodarzi und Jeggo, 2012).

Doppelstrangbrüche, die mit langsamer Kinetik repariert werden, machen ein Fünftel der DNA-Schäden aus und umfassen einen Reparaturzeitraum von 8 h bis >7 d. Sie sind somit als residuelle DSBs nachweisbar. Die in der vorliegenden Arbeit nachgewiesene enge Assoziation von HP1α und γH2AX bestätigt somit die Hypothese, dass residuelle Doppelstrangbrüche Schadensereignisse darstellen, welche aufgrund ihrer Lokalisation im Heterochromatin der DNA-Reparatur unzugänglich sind.

Jedoch ist HP1a neben seiner Funktion in der Ausbildung von konstitutivem Heterochromatin an der DNA-Damage-Response beteiligt (Dinant und Luijsterburg, 2009). Folglich könnte die deutliche Assoziation von HP1a und yH2AX auch dadurch bedingt sein, dass es sich bei beiden Markern um Reparaturproteine handelt. HP1a würde in diesem Fall dann allgemein residuelle DSB anzeigen und sich nicht ausschließlich auf die im Heterochromatin befindlichen beschränken. Dagegen spricht jedoch die Tatsache, dass nicht alle residuellen Schäden einen HP1α-Bezug aufweisen. So weisen beispielsweise bei der Zelllinie Fib39 lediglich 5,8 der durchschnittlich 6,9 residuellen DSBs eine HP1a-Assoziation auf. Dies würde auch der Theorie der AG Goodarzi widersprechen, nach der residuelle DSBs mit denen im Heterochromatin gleichzusetzen sind. In der vorliegenden Arbeit zeigte lediglich der Großteil, nämlich durchschnittlich 75,05% der residuellen Foci, eine Assoziation mit Bereichen hoher Chromatinkondensation, angezeigt durch HP1a.

Des Weiteren konnte im Rahmen dieser Arbeit festgestellt werden, dass spontane, nicht durch Bestrahlung induzierte Foci anzahlmäßig zwar sehr viel geringer sind, jedoch durchschnittlich zu 85,71% im Heterochromatin lokalisiert, sind (vgl. Abbildung 27). Das weist darauf hin, dass diese spontanen Foci DNA-Schäden charakterisieren, die der Reparatur unzugänglich bzw. erschwert zugänglich sind und aus diesem Grund verbleiben bzw. mit langsamer Kinetik repariert werden.

4.4. Vergleich der verschiedenen Surrogatmarker der zellulären Strahlenempfindlichkeit

Ein Ziel dieser Arbeit war es zu überprüfen, ob zur Quantifizierung der zellulären Strahlenempfindlichkeit der Nachweis residueller pATM-Foci besser geeignet ist als der Nachweis residueller 53BP1- bzw. yH2AX-Foci. Als Goldstandard wurde zu diesem Zweck die zelluläre Überlebensrate mittels Koloniebildungstest bestimmt, sodass im direkten Vergleich die Wertigkeit des Foci-Nachweises beurteilt werden konnte. Als wesentliche methodische Grundlage musste zunächst sichergestellt werden, dass die untersuchten Zellen sich in einem nicht-proliferativen Zustand befanden. Dies wurde mit der mikroskopischen Überprüfung und mit Hilfe flusszytometrischer Untersuchungen sichergestellt. Das Ergebnis bestätigte, dass der Anteil an Zellen in der G1-Phase generell mit Werten von über 90% konstant hoch war. Somit kann ein störender Einfluss von proliferierenden Zellen auf das Ergebnis des Koloniebildungstestes ausgeschlossen werden.

4.4.1. Residuelle Foci als Surrogatmarker der Strahlenempfindlichkeit

Die zelluläre Überlebensrate wurde sowohl mittels Dosis-Effekt-Kurven im Dosisbereich von 2 bis 8 Gy als auch in einem unabhängigen experimentellen Durchlauf als Überlebensrate nach 6 Gy bestimmt. So war es möglich, für 10 Zelllinien die Korrelation der Überlebensraten mit den Ergebnissen für residuelle Foci zu untersuchen.

Die Dosis-Effekt-Kurven (Abbildung 29) zeigen, wie zu erwarten, eine linear-Abnahme der Überlebensrate mit der quadratische Dosis. Mit zwischen 0.90 0.99 Regressionskoeffizienten und wird dabei eine außerordentlich hohe Güte an Übereinstimmung zwischen den Datenpunkten und der mathematischen Anpassung erreicht. Im Vergleich zu früheren Arbeiten (Borgmann et al., 2004; Dikomey et al., 2000) ist festzustellen, dass generell der linear-quadratische Verlauf der Dosis-Effekt-Beziehungen bestätigt wird. Es bestehen jedoch Unterschiede bezüglich der Form der Dosis-Effekt-Kurve.

Einige Zelllinien zeigen eine nahezu exponentiell verlaufende DEK (Abbildung 29, Panel E). Generell zeichnen sich die resultierenden Dosis-Effekt-Kurven durch eine geringe Krümmung aus, was als typisch für Fibroblasten angesehen wird.

Bei der Bestimmung der zellulären Strahlenempfindlichkeit durch den Koloniebildungstest hat sich die Überlebensrate nach 6 Gy (SF6) als optimaler Parameter etabliert. Er ermöglicht einerseits den Einsatz einer Strahlendosis, die hoch genug ist, um individuelle Unterschiede bezüglich der zellulären Strahlenempfindlichkeit darzustellen. Andererseits nimmt mit weiter steigender Dosis auch der Fehler der einzelnen Messungen zu, sodass sich der Einsatz höherer Dosen als ungünstig erwiesen hat. Die SF6 vereint daher den Vorteil einer hohen Strahlendosis mit einem relativ kleinen Standardfehler und ist somit zur Korrelation mit den Daten residueller Foci geeignet.

Betrachtet man die Überlebensraten der untersuchten Zelllinien, so variiert die SF6 zwischen 0,084 und 0,147. Die SF6 variiert somit um weniger als eine Dekade. Der Vergleich dieser Werte mit denen aus der Literatur verdeutlicht, dass die individuellen Unterschiede innerhalb des untersuchten Fibroblastenkollektivs in der vorliegenden Arbeit nur sehr gering ausgeprägt sind. So werden in der Literatur Variationskoeffizienten von 67,2 bzw. 112,1 (Dikomey et al., 2000; Fertil et al., 1988) berichtet, während der CV der eigenen Untersuchung nur 20.8 beträgt.

Die ermittelten geringen Unterschiede in der zellulären Strahlenempfindlichkeit sind für die Ergebnisse der Korrelationen von Überlebensrate und residuellen Foci von maßgeblicher Bedeutung. Obwohl generell Konsens darüber besteht, dass residuelle Foci als Surrogatmarker der zellulären Strahlenempfindlichkeit gelten, konnte für die entsprechende Assoziation in Abbildung 31 keine statistische signifikante Korrelation erreicht werden. Dennoch zeichnet sich ab, dass generell hohe Werte der Zellüberlebensrate mit geringeren Anzahlen residueller Foci assoziiert sind und vice versa. Da mit Hilfe des Foci-Nachweises prinzipiell sehr geringe individuelle Unterschiede detektiert werden können (Lobrich et al., 2010; Roch-Lefevre et al., 2010; Rothkamm, Kai et al., 2007), liegt die Vermutung nahe, dass diese möglicherweise nicht mit dem invitro-Kolonietest aufgelöst werden können.

Es bestehen geringfügige Unterschiede bezüglich der verschiedenen Foci-Entitäten, wobei die Assoziation für pATM-Foci stärker ausgeprägt zu sein scheint als für γH2AX- oder 53BP1-Foci. Diese Beobachtung kann als weiterer Hinweis darauf gewertet werden, dass pATM möglicherweise besser zum Nachweis residueller Foci geeignet ist.

4.4.2. Der Heterochromatin- Status als Surrogatmarker der zellulären Strahlenempfindlichkeit

Wie bereits dargestellt, sind beide zur Quantifizierung des Heterochromatin-Status verwendeten Parameter, die Anzahl der HP1α-Anreicherungen und die HP1α-Gesamtintensität, nicht gleichwertig (Abbildung 22). Die in Abbildung 32 dargestellten Korrelationen mit den funktionellen Endpunkten der zellulären Strahlenempfindlichkeit erlangen ausschließlich unter Verwendung des Endpunktes 'Gesamtintensität' statistische Signifikanz. Hierbei korreliert die Gesamtintensität für basales Heterochromatin statistisch hochsignifikant mit residuellen Doppelstrangbrüchen, wobei diese für den vH2AX- und 53BP1-Nachweis mit Regressionskoeffizienten von 0.63 bzw. 0.82 ausgeprägter sind als für den Nachweis mittels pATM. Dieses Ergebnis wird dahingehend dass nur der Parameter der basalen Heterochromatininterpretiert, Gesamtintensität biologische Mechanismen abzubilden vermag und zur Beschreibung des Heterochromatin-Status geeignet ist. Wichtig ist anzumerken, dass es sich dabei um den initialen, d.h. basalen HP1α-Status handelt und den Effekt der Bestrahlung auf die Ausbildung von Heterochromatin somit ausschließt. Eine analoge Auswertung unter Verwendung der HP1a-Quantifizierung 24 h nach Bestrahlung mit 6 Gy führt zu keinem statistisch signifikanten Ergebnis. Demgegenüber bestehen eindeutige und hochsignifikante Korrelationen zwischen der basalen HP1α-Gesamtintensität und residuellen Foci. Da diese Korrelation nicht nach Bestrahlung bestehen bleibt, ist davon auszugehen, dass es nicht die Beteiligung von HP1α am

Reparaturprozess widerspiegelt, sondern Ausdruck dessen ist, dass heterochromatische Bereiche Barriere für die generell eine Doppelstrangbruchreparatur darstellen und dass mit Zunahme dieser heterochromatischen Anteile die Anzahl residueller Doppelstrangbrüche ansteigt.

Es wäre zu erwarten, dass inbesondere unter der Voraussetzung, dass die Überlebensrate mit der Anzahl residueller Foci korreliert (Abbildung 31), eine ebensolche Assoziation zwischen basalen HP1α-Anreicherungen und der Überlebensrate nach 6 Gy besteht. Diese ist jedoch nur in Andeutungen erkennbar (Abbildung 32, Panel H). Dies kann darin begründet sein, dass die Unterschiede der zellulären Strahlenempfindlichkeit zwischen den untersuchten Zelllinien zu gering ist (Tabelle 1), um mit dem in-vitro-Kolonietest dargestellt zu werden (s.o.).

Ein Zusammenhang von Heterochromatin und zellulärer Strahlenempfindlichkeit ist in der Literatur belegt. Sowohl Dinant und Lujisterburg (Dinant und Luijsterburg, 2009) als auch Goodarzi et al. (Goodarzi et al., 2008) demonstrieren in ihren Arbeiten, dass der Verlust sämtlicher HP1-Isoformen zu einer verbesserten DNA-Reparatur in heterochromatischen Bereichen führt. Dies wird durch eine Chromatinrelaxation und den damit verbundenen besseren Zugang der Reparaturproteine an die betroffenen heterochromatischen Bereiche erklärt. Schlussfolgernd ergibt sich daraus, dass heterochromatische Proteine sich inhibierend auf die Reparatur von DSB auswirken. Auch Storch et al (Storch et al., 2010) konnte einen Zusammenhang zwischen dem Anteil an Heterochromatin und der zellulären Strahlenempfindlichkeit nachweisen. So zeichnen sich 3D-Zellkulturen im Vergleich zu 2D-Zellkulturen, durch einen erhöhten Anteil an Heterochromatin bzw. ein intensiveres Signal für HP1α aus, welches mit einer Erhöhung der Radioresistenz und einer Reduktion letaler Chromosomenschädigungen einhergeht. Demgegenüber konnte in der vorliegenden Arbeit ein Anstieg der residuellen Doppelstrangbrüche bei steigender Heterochromatin-Gesamtintensität gleichzeitig nachgewiesen werden (Abbildung 32). Diese Widersprüche können aktuell anhand der vorliegenden Literatur nicht geklärt werden. Angemerkt sei jedoch, dass es sich bei dem untersuchten Zellsystem bei Storch et al. um 3D-Zellkulturen handelt. Möglicherweise gibt es prinzipielle Unterschiede im Zellverhalten und es müssen weitere Faktoren berücksichtigt werden. Dennoch gilt festzuhalten, dass generell die zelluläre Strahlenempfindlichkeit von dem Heterochromatin-Status nicht unabhängig zu sein scheint, jedoch sind weitere Untersuchungen zur Aufklärung der beteiligten Prozesse notwendig.

5. ZUSAMMENFASSUNG UND AUSBLICK

5.1. Zusammenfassung

Ziel der vorliegenden Arbeit war die Untersuchung methodischer Aspekte zur Methode Optimierung der zur Bestimmung der individuellen Strahlenempfindlichkeit humaner Fibroblasten mit Hilfe des Nachweises residueller Doppelstrangbrüche besonderer nach Bestrahlung unter Rolle des Berücksichtigung der Heterochromatins für die zelluläre Strahlenempfindlichkeit.

Folgende Fragstellungen bzw. Themen wurden experimentell bearbeitet:

1. Klärung der Fragestellung, ob der Nachweis von residuellen pATM-Foci zur Quantifizierung der zellulären Strahlenempfindlichkeit humaner Fibroblasten besser geeignet ist als der bereits etablierte Nachweis von γHAX- bzw. 53BP1-Foci.

2. Implementierung des immuncytochemischen Nachweises von Heterochromatin in humanen Fibroblasten und Untersuchung des Zusammenhangs zwischen zellulärer Strahlenempfindlichkeit und dem Anteil an Heterochromatin.

3. Untersuchung, ob und inwiefern Veränderungen im Heterochromatin nach Bestrahlung nachzuweisen sind, sowie Untersuchung der Lokalisation residueller Doppelstrangbrüche zum Heterochromatin.

Als wesentliche Ergebnisse der Arbeit sind zu nennen:

Residuelle Doppelstrangbrüche sind als Surrogatmarker der zellulären Strahlenempfindlichkeit geeignet. Ein gering ausgeprägter Vorteil für pATM konnte beobachtet werden

Das Überleben von primären humanen Hautfibroblasten nach ionisierender Bestrahlung wurde mittels Koloniebildungstest bestimmt. Für alle untersuchten Zelllinien wurden zusätzlich residuelle Doppelstrangbrüche mittels immuncytochemischen Nachweises der reparatur-assoziierten Proteine γH2AX, 53BP1 und pATM bestimmt. Alle Zelllinien wurden dazu unter standardisierten Zellkulturbedingungen gehalten, sodass allein die intrinsische zelluläre

Strahlenempfindlichkeit untersucht werden konnte. Die Ergebnisse des Koloniebildungstest werden in Abbildung 30 zusammengefasst. Die mittleren Überlebensraten nach 6 Gy lagen zwischen maximal 0,147 (SE: 0,007) und minimal 0,084 (SE: 0,01). Mittels immuncytochemischem Nachweis reparaturassoziierter Proteine konnte erwartungsgemäß ein Anstieg residueller Doppelstrangbrüche mit der Dosis beobachtet werden (Abbildung 13, Abbildung 14). Zusätzlich konnte nachgewiesen werden, dass die Darstellung von vH2AX-, 53BP1- und pATM-Foci zur Quantifizierung residueller Doppelstrangbrüche als nahezu gleichwertig anzusehen ist. Der Vergleich zeigt, dass mit Korrelationskoeffizienten im Bereich von 0,79 bis 0,94 generell eine sehr gute Übereinstimmung der Ergebnisse besteht (Abbildung 17), wobei eine geringfügige Abweichung der idealen 1:1-Korrelation für vH2AX zu beobachten ist, was als geringfügiger Vorteil für den Einsatz von pATM angesehen werden mit Bezüglich Korrelation der SF6 kann. der den residuellen Doppelstrangbrüchen wäre zu erwarten, dass geringe Überlebensraten mit hohen Mittelwerten residueller Foci verbunden sind. Dieser Zusammenhang wird generell beobachtet, erreicht mit Korrelationskoeffizienten von r²= 0,33 für vH2AX, 0.37 für pATM, und 0,23 für 53BP1 jedoch keine statistische Signifikanz.

Zur Darstellung des Heterochromatins wurde der immuncytoschemische Nachweis mittels HP1α etabliert

Des Weiteren wurde im Rahmen dieser Arbeit untersucht, ob ein genereller Zusammenhang zwischen der zellulären Strahlenempfindlichkeit und der Chromatinstruktur besteht. Dazu wurden heterochromatische Bereiche mittels immuncytochemischer Färbung dargestellt. Der Vergleich der verwendeten Heterochromatin-spezifischen Marker verdeutlicht, dass alle verwendeten Antikörper das konstitutive Heterochromatin in Form von Herden abbilden. Da jedoch sowohl H3K9me3 als auch KAP1 relativ viel Hintergrund darstellen und nur der Einsatz von HP1a die Darstellung gut abgrenzbarer und somit auszählbarer Anreicherungen ermöglicht, wurde dieser Antikörper für die 19). Zur Charakterisierung Versuche verwendet (Abbildung des Heterochromatinstatus wurde für jede Zelllinie die mittlere Anzahl an HP1a-Anreicherungen, sowie die mittlere Gesamtintensität bestimmt. Wie in
Abbildung 22 dargestellt, kann jedoch ausschließlich für den Parameter der Gesamtintensität eine Assoziation mit der zellulären Strahlenempfindlichkeit dargestellt werden.

Es besteht ein ausgeprägter Zusammenhang zwischen dem Anteil an basalem Heterochromatin und der zellulären Strahlenempfindlichkeit

Zwischen der zellulären Strahlenempfindlichkeit, nachgewiesen als residuelle Doppelstrangbrüche, und dem basalem Heterochromatinstatus besteht eine statistisch hochsignifikante Korrelation, wenn dieser in Form der mittleren Gesamtintensität guantifiziert wird. Dieses Ergebnis wird dahingehend interpretiert, dass nur der Parameter der basalen Heterochromatin-Gesamtintensität biologische Mechanismen abzubilden vermag und zur Beschreibung des Heterochromatin-Status geeignet ist. Die Korrelation des Heterochromatin-Status mit der Überlebensrate nach 6 Gy fällt wesentlich schwächer aus, dennoch lässt sich eine Abnahme der Überlebensrate mit zunehmender HP1α-Gesamtintensität erkennen (Abbildung 32). Somit kann zusammenfassend festgehalten werden, dass es zu einer erhöhten Anzahl residueller Doppelstrangbrüche einhergehend mit einer geringeren Überlebensrate kommt, je mehr Heterochromatin in der unbestrahlten Zelle vorliegt.

Nach Bestrahlung nimmt der Anteil an Heterochromatin zu

Bei dem Vergleich des Heterochromatinstatus, nachgewiesen als mittlere Gesamtintensität des HP1 α -Signals vor und nach Bestrahlung, konnte für sieben der zehn untersuchten Zelllinien eine Erhöhung der mittleren Gesamtintensität nachwiesen werden. Diese Beobachtung weist darauf hin, dass HP1 α am Prozess der DNA-Reparatur beteiligt sein könnte und deckt sich mit den Untersuchungen von Dinant und Lujisterburg sowie Goodarzi et al.

Der Großteil residueller Foci ist mit heterochromatischen Bereichen assoziiert

Neben diesem Nachweis des Zusammenhangs zwischen dem Heterochromatinstatus und der zellulären Strahlenempfindlichkeit wurde anhand der mikroskopischen Darstellung von residuellen γH2AX-Foci und HP1α-Anreicherungen die in der Literatur formulierte These überprüft, nach der

residuelle Doppelstrangbrüche vorzugsweise im Heterochromatin lokalisiert sind (Goodarzi et al., 2009). Generell kann hier festgehalten werden, dass 75,5% und damit der Großteil der residuellen yH2AX-Foci in heterochromatischen Bereichen lokalisiert sind. Somit findet sich auch hier die enge Assoziation von HP1a und residuellen Doppelstrangbrüchen bestätigt. Ob die enge Assoziation jedoch dadurch bedingt ist, dass es sich bei HP1a um ein Reparaturprotein handelt, oder dass die mit Hilfe von HP1α gekennzeichneten heteochromatischen Bereiche eine Barriere für die DSB-Reparatur darstellen, konnte nicht abschließend geklärt werden.

5.2. Ausblick

5.2.1. Implementierung des Nachweises von HP1a mittels Flusszytometrie

Bei der Darstellung des Zusammenhangs der Überlebensrate nach Bestrahlung mit 6 Gy mit den residuellen Doppelstrangbrüchen wäre zu erwarten, dass geringe Überlebensraten mit hohen Mittelwerten an residuellen Foci einhergehen und vice versa. Dieser Zusammenhang wird generell in allen Fällen dargestellt, erreicht aber mit Korrelationskoeffizienten von r^2 = 0,33 für γH2AX, 0,37 für pATM, und 0,23 für 53BP1 jedoch keine statistische Signifikanz. Zur Absicherung der Ergebnisse wäre es notwendig, die Versuchsreihe unter Verwendung einer größeren Anzahl untersuchter Zelllinien zu wiederholen.

Das Prinzip der Bestimmung der mittleren Gesamtintensität pro Zellkern ist letztendlich mit der Methode des flusszytometrischen Nachweises vergleichbar. In diversen aktuellen Untersuchungen wird der flusszytometrische Nachweis zur Bestimmung der mittleren Fluoreszenzintensität beschrieben. Die Arbeiten von Cordes et al. beispielsweise zeigten mit Hilfe dieser Methode eine Zunahme des HP1α-Signals, in Abhängigkeit der Kulturbedingungen. Auch Zarebski et al verwenden die mittlere Fluoreszenzintensität pro Zellkern zur Quantifizierung des HP1α-Signals. (Zarebski et al., 2009). Vorteil der Quantifizierung mit Hilfe der Bestimmung der mittleren Gesamtintensität ist, dass auch minimale Anreicherungen durch diese Auswertung berücksichtigt werden. Darüber hinaus

besteht bei der numerischen Auszählung prinzipiell das Problem, dass überlagerte Anreicherungen nicht getrennt erfasst werden können, was zu einer Unterschätzung des HP1 α -Signals führen kann. Eine mögliche Zu- oder Abnahme der Signalstärke innerhalb eines einzelnen HP1 α -Herdes ohne Änderung der Gesamtzahl der HP1 α -Herde würde ebenfalls nur bei der Bestimmung der mittleren Gesamtintensität zur Berücksichtigung kommen. Ein wesentlicher Vorteil dieser Methode liegt zudem in der Möglichkeit ihrer Automatisierung mit entsprechender Zeit- und Arbeitsersparnis und der optionalen Anwendung als Screeningmethode für die klinische Anwendung. Die Etablierung eines flusszytometrisch-basierten Nachweises von HP1 α wäre daher zu empfehlen.

5.2.2. Bestimmung der Konzentrationsänderung von Heterochromatin nach Bestrahlung in Abhängigkeit von Dosis und Zeit

Für sieben der zehn untersuchten Zelllinien konnte eine strahleninduzierte Erhöhung der mittleren Gesamtintensität für HP1 α nachgewiesen werden. Zur Überprüfung der Hypothese, dass HP1 α direkt an der DNA-Reparatur beteiligt ist, bietet sich die Untersuchung der Zeit- und Dosisabhängigkeit des HP1 α -Signals nach Bestrahlung an.

6. ABKÜRZUNGSVERZEICHNIS

Abb.	Abbildung	
Ak	Antikörper	
АТМ	Ataxia Telangiectasia Mutated	
BSA	Bovine serum albumine	
Chk1/2	Checkpointkinase 1/2	
CD	Chromodomäne	
CDK	cyclin- dependent- kinase	
CSD	Chromoshadowdomäne	
DDR	DNA- damage- response	
DEK	Dosis- Effekt- Kurve	
DMEM	Dulbecco-minimal-essential-Medium	
DNA	Desoxyribonucleinacid	
DNA- PKcs	catalytic subunit of DNA-dependent protein kinase	
DSB	Doppelstrangbruch	
ESB	Einzelstrangbruch	
FACS	flourescence activated cell sorting	
FCS	fetales Kälberserum	
Gy	Gray	
HP1	Heterochromatin- Protein 1	
HR	Homologe Rekombination	
IR	Ionizing Radiation	
IRIF	Ionizing Radiation- induced Foci	
KAP1	KRAB Associated Protein 1	
kDa	Kilodalton	
KRAB	Kruppel-associated box	
MDC1	mediator of DNA- damage checkpoint protein 1	
hð	Mikrogramm	
ml	Milliliter	
MRN- Komplex	Mre11- Rad50- Nbs1- Komplex	
ng	Nanogramm	

Nbs1	Nibrin	
NHEJ	Non- Homologous- End- Joining	
ОТ	Objektträger	
PBS	Phosphat buffered saline	
PCR	polymerase chain reaction	
pg	Picogramm	
PNK	Polynucleotide kinase	
Rb	Retinoblastom- Protein	
RT	Raumtemperatur	
SF6	surviving fraction nach 6 Gray	
SNP'S	Single Nukleotide Poymorphismen	
S.O.	siehe oben	
s.u.	siehe unten	
u.a.	unter anderem	
vgl.	vergleiche	
WRN	Werner's syndrome helicase	
XLF	XRCC4-like factor	
XRCC4	X-ray-complementing Chinese hamster gene 4	

7. LITERATURVERZEICHNIS

1. Andreassen CN, Alsner J, Overgaard J. Does variability in normal tissue reactions have a genetic basis - where and how to look for it? Radiotherapy and Oncology. 2002;64:131-40.

2. Andreassen CN, Alsner J, Overgaard M, Overgaard J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiotherapy and Oncology. 2003;69(2):127-35.

3. Andrievski A, Wilkins RC. The response of -H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol. 2009;85(4):369-76.

4. Asaithamby A, Chen JC. Cellular response to DNA double-strand breaks after low-dose y-irradiation. Nucleic Acids Research. 2009;37(12):3912-23.

5. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR. HP1-[bgr] mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008;453(7195):682-6.

6. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499-506.

7. Banath JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Research. 2004;64(19):7144-9.

8. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001;410(6824):120-4.

9. Bassing CH, Alt FW. The cellular response to general and programmed DNA double strand breaks. DNA Repair. 2004;3(8–9):781-96.

10. Beels L, Werbrouck J, Thierns H. Dose response and repair kinetics of gammaH2AX-Foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and y-radiation. Int J Radiat Biol. 2010;86(9):760-8.

11. Bekker-Jensen S, Mailand N. Assembly and function of DNA doublestrand break repair foci in mammalian cells. DNA Repair (Amst) 2010 Dec 10;9(12):1219-28 Epub 2010 Oct 28. 12. Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA. The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A 1991 May 1;88(9):3608-12.

13. Bernstein NK, Karimi-Busheri F, Rasouli-Nia A, Mani R, Dianov G, Glover JN, et al. Polynucleotide kinase as a potential target for enhancing cytotoxicity by ionizing radiation and topoisomerase I inhibitors. Anticancer Agents Med Chem. 2008;8(4):358-67.

14. Borgmann K, Röper B, El-Awady RA, Brackrock S, Bigalke M, Dörk T, et al. Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosom abberations. Radiotherapy and Oncology. 2002;64:141-52.

15. Borgmann K, Dede M, Wrona A, Brammer I, Overgaard J, Dikomey E. For X-irradiated normal human fibroblasts, only half of cell inactivation results from chomosomal damage. Int J Radiat Oncol Biol Phy. 2004;58(2):445-52.

16. Borgmann K, Hoeller U, Nowack S, Bernhard M, Roper B, Brackrock S, et al. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaction after radiotherapy. International journal of radiation oncology, biology, physics. 2008;71(1):256-64.

17. Borgmann K, Hoeller U, Nowack S, Bernhard M, Röper B, Brackrock S, et al. Individual radiosensitivity measured with lymphocytes may predict the risk of acute reaktion after radiotherapy. Int J Radiat Oncol Biol Phy. 2008;71(1):256-64.

18. Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ. DNA looping by Ku and the DNA-dependent protein kinase. Proceedings of the National Academy of Sciences. 1997;94(9):4267-72.

19. Chon BH, Loeffler JS. The effect of nonmalignant systhemic disease on tolerance to radiation therapy. The Oncologist. 2002;7:136-43.

20. Chua ML, Somaiah N, Bourne S, Daley F, A'Hern R, Nuta O, et al. Interindividual and inter-cell type variation in residual DNA damage after in vivo irradiation of human skin. Radiother Oncol. 2011;99(2):225-30.

21. Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutation research. 2010;704(1-3):78-87.

22. Cui L, Miao J. Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell. 2010;9(8):1138-49.

23. de Ruyck K, van Eijkeren M, Claes K, Marthier R, de Paepe A, Vral A, et al. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nulcleotide polymorphismas in XRCC1, XRCC3, and OGG1 genes and in vitro radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phy. 2005;62(4):1140-9.

24. Delanian S, Lefaix J-L. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiotherapy and Oncology. 2004;73:119-31.

25. Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8(21):2540-51.

26. Dikomey E, Dahm-Daphi J, Brammer I, Martensen R, Kaina B. Correlation between cellular radiosensitivity and non-repaired double-strand breaks studied in nine mammalian cell lines. Int J Radiat Biol. 1998;73(3):269-78.

27. Dikomey E, Brammer I. Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal human fibroblast line. Int J Radiat Biol. 2000;76(6):773-81.

28. Dikomey E, Brammer I, Johansen J, Bentzen SM, Overgaard J. Relationship between DNA double-strand breaks, cell killing, and fibrosis studied in confluent skin fibroblasts derived from breast cancer patients. Int J Radiat Oncol Biol Phy. 2000;46(2):481-90.

29. Dikomey Eea. Int Journal Radiat Oncol Biol Phys. 1999;6:481-90.

30. Dinant C, Luijsterburg MS. The Emerging Role of HP1 in the DNA Damage Response. 2009. p. 6335-40.

31. Downs JA, Jackson SP. A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol. 2004;5(5):367-78.

32. Downs JA, Nussenzweig MC, Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature. 2007;447(7147):951-8.

33. Fertil B, Deschavanne PJ, Debieu D, Malaise EP. Correlation between PLD repair capacity and the survival curve of human fibroblasts in exponential

growth phase: analysis in terms of several parameters. Radiat Res. 1988;116(1):74-88.

34. Foray N, Arlett CF, Malaise EP. Radiation-induced DNA double-strand breaks and the radiosensitivity of human cells: a closer look. Biochimie. 1997;79(9):567-75.

35. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996 Aug 15;10(16):2067-78.

36. Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003 May 1;31(9):2305-12.

37. Garden AS. Altered fractionation for head and neck cancer. Oncology. 2001;15(10):1339-41.

38. Golfier S, Jost G, Pietsch H, Lengsfeld P, Schupp E, Schmid E, et al. Dicentric chromosomes and y-H2AX foci formation in lymphocytes of human blood samples exposed a CT scanner: a direct comparison of dose response relationships. Radiation Protection Dosimetry. 2009;134(1):55-61.

39. Goodarzi AA, Jeggo P, Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair.In Press, Corrected Proof.

40. Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GBG, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 2004;23(22):4451-61.

41. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, et al. ATM Signaling Facilitates Repair of DNA Double-Strand Breaks Associated with Heterochromatin. Molecular Cell. 2008;31(2):167-77.

42. Goodarzi AA, Noon AT, Jeggo PA. The impact of heterochromatin on DSB repair. 2009. p. 569-76.

43. Goodarzi AA, Jeggo P, Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst). 2010;9(12):1273-82.

44. Goodarzi AA, Jeggo PA. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. International journal of molecular sciences. 2012;13(9):11844-60.

45. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature. 1997;388(6641):492-5.

46. Grewal SIS, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8(1):35-46.

47. Han J, Hendzel MJ, Allalunis-Turner J. Quantitative analysis reveals asynchronous and more than DSB-associated histone H2AX phosphorylation after exposure to ionizing radiation. Radiation research. 2006;165(3):283-92.

48. Hoeller U, Borgmann K, Bonacker M, Kuhlmey A, Bajrovic A, Jung H, et al. Individual radiosensitivity measured with lymphocytes may be used to predict the risk of fibrosis after radiotherapy for breast cancer. Radiother Oncol. 2003;69(2):137-44.

49. Horn S, Barnard S, Rothkamm K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PloS one. 2011;6(9):e25113.

50. Iliakis GE, Cicilioni O, Metzger L. Measurement of DNA Double-strand Breaks in CHO Cells at Various Stages of the Cell Cycle Using Pulsed Field Gel Electrophoresis: Calibration by Means of 125I Decay. International Journal of Radiation Biology. 1991;59(2):343-57.

51. Inoue A, Sekine M, Sumi M, Tokuuye K, Saijo N. Radiation pneumonistis in lung cancer patients: a retrospective study of risk factors and the long-term prognosis. Int J Radiat Oncol Biol Phy. 2001;49(3):649-55.

52. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074-80.

53. Jenuwein T, Allis CD. Epigenetics: Cold Spring Harbor, New York; 2007.

54. Junop MS, Modesti M, Guarne A, Ghirlando R, Gellert M, Yang W. Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. EMBO J. 2000;19(22):5962-70.

55. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51(23 Pt 1):6304-11.

56. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71(4):587-97.

57. Kauffmann S, Weber. Bildgebende Verfahren, Strahlentherapie, Nuklearmedizin und Strahlenschutz Urban und Fischer Verlag: Elsevier; 2011.

58. Kosaka Y, Okuno Y, Tagawa Y, Ueki N, Itoh K, Shinohara S, et al. Osteoradionecrosis of the cervical vertebrae in patients irradiated for head and neck cancers. Jpn J Radiol. 2010;28(5):388-94.

59. Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007;128(4):693-705.

60. Kuo LJ, Yang L-X. y-H2AX - A novel biomarker for DNA double-strand breaks. In vivo. 2008;22:305-10.

61. Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci 2003 Jun 1;116(Pt 11):2117-24.

62. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116-20.

63. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9(10):759-69.

64. Lechner MS, Begg GE, Speicher DW, Rauscher FJ, III. Molecular Determinants for Targeting Heterochromatin Protein 1-Mediated Gene Silencing: Direct Chromoshadow Domain-KAP-1 Corepressor Interaction Is Essential. 2000. p. 6449-65.

65. Li B, Comai L. Requirements for the Nucleolytic Processing of DNA Ends by the Werner Syndrome Protein-Ku70/80 Complex. Journal of Biological Chemistry. 2001;276(13):9896-902.

66. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell cycle (Georgetown, Tex. 2010;9(4):662-9.

67. Löbrich M, Rydberg B, Cooper PK. Repair of x-ray-induced DNA doublestrand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proceedings of the National Academy of Sciences. 1995;92(26):12050-4.

68. Löbrich M, Rief N, Kühne M, Heckmann M, Fleckstein J, Rübe C, et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA. 2005;102(25):8984-9.

69. Lorat Y, Schanz S, Schuler N, Wennemuth G, Rube C, Rube CE. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PloS one. 2012 7(5):e38165.

70. Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, et al. Heterochromatin protein 1 is recruited to various types of DNA damage. 2009. p. 577-86.

71. Ma Y, Schwarz K, Lieber MR. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair. 2005;4(7):845-51.

72. Macphail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003;79(5):351-8.

73. Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679-86.

74. Mahaney BL, Meek K, Lees-miller SP. Repair of ionizing radiationinduced DNA double-strand breaks by non-homologous end-joining. 2009. p. 639-50.

75. Mahrhofer H, Bürger S, Oppitz U, Flentje M, Djuzenova C. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phy. 2006;64(2):573-80.

76. Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol. 2004;5(4):296-305.

77. Markova E, Schultz N, Belyaev IY. Kinetics and dose-response of residual 53BP1/yH2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Oncol Biol Phy. 2007;83(5):319-29.

78. McManus KJ, Hendzel MJ. ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Molecular biology of the cell. 2005;16(10):5013-25.

79. Menegakis A, Eicheler W, Yaromina A, Thames HD, Krause M, Baumann M. Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours. Radiother Oncol. 2011;100(1):137-44.

80. Metzke M-E. Einfluss der TGFβ1 Gen- und Proteinexpression auf die zelluläre Strahlenempfindlichkeit humaner Fibroblasten. 2011.

81. Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep 2002 Oct;3(10):975-81 Epub 2002 Sep 13.

82. Mueller GA, Moon AF, DeRose EF, Havener JM, Ramsden DA, Pedersen LC, et al. A comparison of BRCT domains involved in nonhomologous end-joining: Introducing the solution structure of the BRCT domain of polymerase lambda. DNA Repair. 2008;7(8):1340-51.

83. Murzina N, Verreault A, Laue E, Stillman B. Heterochromatin Dynamics in Mouse Cells: Interaction between Chromatin Assembly Factor 1 and HP1 Proteins. Molecular Cell. 1999;4(4):529-40.

84. Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair. 2007;6(7):1018-31.

85. O'Driscoll M, Jeggo PA. The role of double-strand break repair [mdash] insights from human genetics. Nat Rev Genet. 2006;7(1):45-54.

86. Okunieff P, Chen Y, Maguire DJ, Huser AK. Molecular markers of radiation related normal tissue toxicity. Cancer Metastasis Rev. 2008;27(3):363-74.

87. Olive PL. Retention of gammaH2AX foci as an indication of lethal DNA damage. Radiother Oncol. 2011;101(1):18-23.

88. Panier S, Durocher D. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair. 2009;8(4):436-43.

89. Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 2000 Feb 4;295(5):1139-62.

90. Pomp J, Wike JL, Ouwerkerk IJ, Hoogstraten C, Davelaar J, Schrier PI, et al. Cell density dependent plating efficiency affects outcome and interpretation of colony forming assays. Radiother Oncol. 1996;40(2):121-5.

91. Povirk LF. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair. 2006;5(9–10):1199-212.

92. Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation pneumonitis in lung cancer studies: a retrospective study. Radiotherapy and Oncology. 2003;67(3):275-83.

93. Roch-Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, et al. Quantification of gamma-H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiation research. 2010;174(2):185-94.

94. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiotherapy and Oncology. 1995;35(2):83-90.

95. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA doublestranded breaks induce histone H2AX phosphorylation on serine 139. The Journal of biological chemistry. 1998;273(10):5858-68.

96. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057-62.

97. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. Leucocyte DNA damage after multi-detector row CT: A quantitative biomaker of low-level radioation exposure. Radiology. 2007;242(1):244-51.

98. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. Leukocyte DNA Damage after Multi–Detector Row CT: A Quantitative Biomarker of Low-Level Radiation Exposure1. Radiology. 2007;242(1):244-51.

99. Rube CE, Grudzenski S, Kuhne M, Dong X, Rief N, Lobrich M, et al. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res. 2008;14(20):6546-55.

100. Rube CE, Fricke A, Wendorf J, Stutzel A, Kuhne M, Ong MF, et al. Accumulation of DNA double-strand breaks in normal tissues after fractionated irradiation. International journal of radiation oncology, biology, physics. 2010;76(4):1206-13.

101. Schanz S, Schuler N, Lorat Y, Fan L, Kaestner L, Wennemuth G, et al. Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair (Amst). 2012;11(10):823-32.

102. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846-56.

103. Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K, et al. Three-Dimensional Cell Growth Confers Radioresistance by Chromatin Density Modification. Cancer Research. 2010;70(10):3925-34.

104. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks. Cell. 2005;123(7):1213-26.

105. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(37):13182-7.

106. Suzuki M, Suzuki K, Kodama S, Watanabe M. Phosphorylated histone H2AX foci persist on rejoined mitotic chromosomes in normal human diploid cells exposed to ionizing radiation. Radiation research. 2006;165(3):269-76.

107. Tucker SL, Turesson I, Thames HD. Evidence for individual differences in the radiosensitivity of human skin. Eur J Cancer. 1992;28A(11):1783-91.

108. Venturini L, You J, Stadler M, Galien R, Lallemand V, Koken MH, et al. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999 Feb 4;18(5):1209-17.

109. Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair. 2005;4(5):556-70.

110. Ward JF. The Yield of DNA Double-strand Breaks Produced Intracellularly by Ionizing Radiation: A Review. International Journal of Radiation Biology. 1990;57(6):1141-50.

111. West MH, Bonner WM. Histone 2A, a heteromorphous family of eight protein species. Biochemistry. 1980;19(14):3238-45.

112. Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH. Interindividual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Mutation research.683(1-2):91-7.

113. Woodcock CL, Ghosh RP. Chromatin Higher-order Structure and Dynamics. Cold Spring Harbor Perspectives in Biology. 2010;2(5).

114. Wyman C, Kanaar R. Homologous Recombination: Down to the Wire. Current biology : CB. 2004;14(15):R629-R31.

115. Yamamoto K, Sonoda M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem Biophys Res Commun 2003 Feb 7;301(2):287-92.

116. Yoo S, Dynan WS. Geometry of a complex formed by double strand break repair proteins at a single DNA end: Recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic acids research. 1999;27(24):4679-86.

117. Yunis JJ, Yasmineh WG. Heterochromatin, Satellite DNA, and Cell Function. 1971. p. 1200-9.

118. Zarebski M, Wiernasz E, Dobrucki JW. Recruitment of heterochromatin protein 1 to DNA repair sites. Cytometry Part A. 2009;75A(7):619-25.

119. Zschenker O, Raabe A, Boeckelmann IK, Borstelmann S, Szymczak S, Wellek S, et al. Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD, and XRCC1 with clinical and cellular radiosensitivity. Radiotherapy and Oncology. 2010;in press.

8. ANHANG

8.1. Versuchsprotokolle

8.1.1. Protokoll zur Immunfluoreszenzfärbung von HP1α/ KAP-1/ H3K9me3/ H3K9ac3

I. Fixierung:

- 1. Medium absaugen
- 2. Objektträger für 30sec in 0,1% TritonX (für KAP-1 nur PBS)
- 3. 12-15min mit 2% Formaldehyd fixieren
- 4. 3 mal 10min in PBS waschen

II. Permeabilisierung:

5. 10min in 0,1% TritonX

III. Blockierung:

6. Für 1h in 5% BSA auf dem Schüttler inkubieren (während dessen kann schon die Feuchtkammer vorbereitet werden)

IV. Antikörperfärbung:

- 7. Objektträger vorsichtig abtropfen und in die Feuchtkammer legen
- jeweils 50 bis 100µl des 1.AK auf die Objektträger geben und mit einem Plastikdeckgläschen versehen (sorgt für gleichmäßige Verteilung der Antikörperlösung).

HP1a (rabbit): 1:200 in Waschlösungl KAP-1 (rabbit): 1:600 in Waschlösungl KAP-1 (mouse): 1:500 in Waschlösungl H3K9me3 (rabbit): 1:800 in Waschlösungl H3K9ac3 (mouse): 1:500 in Waschlösungl

- 9. für 1h in der Feuchtkammer inkubieren
- 10.3 mal für 10 min in Waschlösung I auf dem Schüttler waschen

Waschlösung I	600ml	1400ml	100ml
PBS	591ml	1393	99,5ml
BSA (1 %)	6g	14g	1g
Tween 20 (0,5%)	3ml	7ml	0,5ml

ab jetzt lichtgeschützt arbeiten!!!!

11. jeweils 50 bis 100µl des 2.AK auf die Objektträger geben und mit einem Plastikdeckgläschen versehen (sorgt für gleichmäßige Verteilung der Antikörperlösung).

Alexa (anti-mouse): 1:600 in Waschlösungl

FITC (anti- rabbit): 1:800 in Waschlösungl 12. für 1h in der Feuchtkammer inkubieren

13.4 mal 10 min in Waschlösung II auf dem Schüttler waschen

Waschlösung II	1000ml	1600ml	1500ml	1200ml
PBS	995ml	1592ml	1492,5ml	1194ml
Tween 20 (0,5%)	5ml	8ml	7,5ml	6ml

14.25µl einer DAPI- Vectashieldlösung (1000µl Vectashield + 1µl DAPI) auf die Objektträger geben, mit einem Deckgläschen versehen und die Ränder mit Nagellack versiegeln.

8.1.2. Protokoll zur Immunfluoreszenzfärbung von γH2AX, 53BP1 und pATM

Bestrahlen der Objektträger mit der gewünschten Dosis (ein OT dient als unbestrahlte Kontrolle)

24 Stunden bei 37°C mit 10% CO² inkubieren (dient der DSB- Reparatur)

I. Fixierung:

- 1. Glasaufsatz der OT entfernen
- 2. Medium entfernen
- 3. kurz in PBS spülen
- 4. 12-15min mit 2% Formaldehyd fixieren
- 3 mal 10min in PBS waschen (dabei auf dem Schüttler leicht schwenken, falls die Objektträger jetzt nicht mehr weiter bearbeitet werden Sollen, ist eine Lagerung bei -20°C möglich)

II. Permeabilisierung:

- 6. 10min in 0,1% TritonX auf Eis permeabilisieren
- 7. kurz in 1xPBS+1%BSA spülen

III. Blockierung:

8. Für 1h in 5% BSA auf dem Schüttler inkubieren (während dessen kann schon die Feuchtkammer vorbereitet werden)

IV. Antikörperfärbung:

- 9. Objektträger vorsichtig abtropfen und in die Feuchtkammer legen
- 10. jeweils 50 bis 100µl des 1.AK auf die Objektträger geben und mit einem Plastikdeckgläschen versehen (sorgt für gleichmäßige Verteilung der Antikörperlösung und schützt zusätzlich vor Austrocknung).

1. Antikörper (≈50μl/OT) in WL I <u>pATM + γH2AX</u>	300µl	600µl
WLI	297µl	588µI
Antikörper Epitopics pATM (pS1981) rabbit monoclonal in WL I (1:100) <i>(TK 8)</i>	ЗµІ	6µI
Antikörper γH2AX in WL I (1:100) (KS)	3µl	6µl

- 11. für 1h in der Feuchtkammer bei RT inkubieren
- 12.3 mal für 10 min in Waschlösung I auf dem Schüttler waschen (siehe oben)

ab jetzt lichtgeschützt arbeiten!

13. jeweils 50 bis 100µl des 2.AK auf die Objektträger geben und mit einem Plastikdeckgläschen versehen (sorgt für gleichmäßige Verteilung der Antikörperlösung).

2. Antikörper (≈50µl/OT) in WL I LICHTEMPFINDLICH <u>pATM + γH2AX</u>	300µl	600µl
WLI	296µl	592µl
Fluorescein, anti-rabbit in WL I (1:100) (KS)	3µl	6µl
Antikörper Alexa in WL I (1:600) (TK 5)	0,5µl	1µI

- 14. für 1h in der Feuchtkammer inkubieren
- 15.4 mal 10 min in Waschlösung II auf dem Schüttler waschen (siehe oben)
- 16.25µl einer DAPI- Vectashieldlösung (1000µl Vectashield + 1µl DAPI) auf die Objektträger geben, mit einem Deckgläschen versehen und zwischen Trockenblockpapier unter Druck trocknen (dient auch zur Entfernung von überschüssiger Vectashieldlösung)
- 17. die Ränder der Deckgläschen mit Nagellack versiegeln.
- 18. Lagerung im Kühlschrank (4°C) bis zur Auswertung

8.1.3. Protokoll zur Durchführung des Koloniebildungstests

- 1. Zellkulturflasche mit 6 Gy bestrahlen (eine zweite Flasche dient als unbestrahlte Kontrolle)
- 2. 24 Stunden bei 37°C mit 10 % CO2 inkubieren
- 3. Kolonietest ansetzen
- 4. Medium absaugen
- 5. jeweils 2 ml PBS auf die T25- Flaschen geben und kurz spülen
- 6. PBS absaugen
- 7. 2 ml Trypsin hinzugeben und bis auf einen kleinen Rest unmittelbar wieder absaugen
- 8. wenn die Zellen sich unter dem Invertmikroskop sichtbar ablösen (Zellen kugeln sich ab), 2 ml Medium hingegeben um den Vorgang der Trypsinierung zu stoppen.
- 9. Zellzahl im Coulter bei 13-30 µm bestimmen
- 11. Verdünnungsreihe ansetzen (1x3 und 1x2 Falcons), dazu im ersten Falcon-Röhrchen die Zellsuspension soweit mit Medium verdünnen, dass man eine Konzentration von 100000 Zellen/ml erhält
- 12. in das zweite Falcon-Röhrchen 4,5 ml Medium füllen und 0,5 ml Zellsuspension aus dem ersten Falcon hinzufügen, sodass man eine Verdünnung von 1:10 erhält
- 13.bei der unbestrahlten Probe das Ganze mit einem dritten Falcon wiederholen, sodass man eine Zellzahl von 10²/ml erhält
- 14.bei der unbestrahlten Probe in drei T25-Flaschen jeweils 300 bzw. 500 Zellen geben
- 15.bei den mit 6 Gy bestrahlten Zellen drei mal 3000 bzw. 5000 Zellen in einer T25-Flasche ansetzen
- 16. Zellen 14 Tage bei 37°C mit 10% CO² inkubieren
- 17. mit 2 ml PBS spülen
- 18. mit 2 ml Ethanol (70%) für 10 min fixieren
- 19. Ethanol abgießen und Flaschen trocknen lassen
- 20. ca. 4 ml Kristallviolettlösung auf jede Flasche geben und 5 min einwirken lassen
- 21. Lösung abgießen und Flasche mehrmals mit Leitungswasser spülen
- 22. über Nacht trocknen lassen

Erstellung der Dosis-Effekt-Kurven

- je eine Zellkulturflasche mit 2 Gy, 4 Gy, 6 Gy, bzw. 8 Gy bestrahlen und für weitere 24 Stunden bei 37°C mit 10% CO² inkubieren (eine weitere Flasche dient als unbestrahlte Kontrolle)
- 2. Medium absaugen
- 3. jeweils 2 ml PBS auf die T25-Flaschen geben und kurz waschen
- 4. PBS absaugen und 2 ml Trypsin hinzugeben und bis auf einen kleinen Rest unmittelbar wieder absaugen

- 5. wenn die Zellen sich unter dem Invertmikroskop sichtbar ablösen, 2 ml Medium hingeingeben um den Vorgang der Trypsinierung zu stoppen
- 6. Zellzahl im Coulter bei 13-30 µm bestimmen
- 7. Verdünnungsreihe ansetzen (3x3 und 2x2 Falcons), im ersten Falcon-Röhrchen die Zellsuspension soweit mit Medium verdünnen, sodass eine Konzentration von 100.000 Zellen/ml entsteht.
- 8. die mit 0 Gy, 2 Gy und 4 Gy bestrahlten Zellen bis auf 100 Zellen/ml verdünnen, die mit 6 Gy und 8 Gy bestrahlten Zellen nur bis auf 1000 Zellen/ml verdünnen (dazu 0,5 ml aus dem vorangegangenen Falcon in das nächste geben und mit 4,5 ml Medium verdünnen)
- 9. folgende Zellzahlen in jeweils drei Zellkulturflaschen gegeben:
 - 0 Gy: 300/500 Zellen
 - 2 Gy: 500/800 Zellen
 - 4 Gy: 800/2000 Zellen
 - 6 Gy: 2000/4000 Zellen
 - 8 Gy: 4000/8000 Zellen
- 10. 14 Tage bei 37°C mit 10% CO² inkubieren
- 11. mit 2 ml PBS spülen
- 12. mit 2 ml Ethanol (70%) für 10 min fixieren
- 13. Ethanol abgießen und Flaschen trocknen lassen
- 14. ca. 4 ml Kristallviolettlösung auf jede Flasche geben
- 15. 5 min einwirken lassen
- 16. Lösung abgießen und Flasche mehrmals mit Leitungswasser spülen
- 17. über Nacht trocknen lassen
- 18. Auszählung der angefärbten Kolonien

8.1.4. Protokoll für die Zellzyklusanalyse mittels FACS

I. Trypsinierung:

- 1. Zellen wie üblich bei 37°C abtrypsinieren und nach vollständiger Lösung der Zellen vom Flaschenboden in DMEM aufnehmen, um den Prozess der Trypsinierung zu stoppen.
- 2. Zellen mit Medium in Falcon- Röhrchen überführen
- 3. bei 1100U/Min für 5min zentrifugieren
- 4. Überstand abgießen
- 5. Das Pellet in 5ml PBS resuspendieren
- 6. bei 1100U/Min zentrifugieren
- 7. Überstand abgießen

II. Fixierung:

- 8. Pellet in 4% Formaldehyd mit PBS resuspendieren und 10min bei RT inkubieren
- 9. bei 1100U/Min für 5min zentrifugieren
- 10. Überstand abgießen

III. Waschen:

11. Pellet 3mal in 0,1% Tween20 in PBS resuspendieren und bei 1100U/Min für 5min zentrifugieren, Überstand vorsichtig abpipettieren und verwerfen

IV. DNA- Färbung:

- 12. Die DNA kann anschließend mit Hilfe von Fx Cycle Far Red stain oder Propidium Jodide markiert werden (Fx Cycle Far Red stain ist für das neue FACS besser geeignet: 500µl PBS+ 5µl RNAse+1,5µl Fx Cycle Far Red stain; alternativ können 0,5 ml Propidiumiodid-Farbstoff hinzugebenwerden)
- 13. Inkubation für 30min bei RT
- 14. Zur Messung am FACS wird die Zellsuspension durch Gaze in die FACS- Röhrchen überführt.

8.2. Häufigkeitsverteilungen der γH2AX-, 53BP1- und pATM-Foci aller untersuchten Zelllinien

F98, γH2AX, 53BP1

F162, γ**H2AX**

pATM 0 Gy pATM 1 Gy 80 50 70 60 Anzahl von Zellen 0 0 Mean Std. Deviation Std. Error 0.28 0.551948 0.055195 0.87 1.001564 0.100156 Mean Anzahl von Zellen Std. Deviation Std. Error 50 40 30 20 10 10 ٦0 0. 15 20 25 30 Foci pro Zelle 20 25 30 Foci pro Zelle 35 ò 5 10 30 35 40 45 50 10 15 40 45 50 Ō 5 pATM 2 Gy pATM 4 Gy 30. 40 25 30 3.68 1.469419 Mean Std. Deviation Anzahl von Zellen Anzahl von Zellen 1.36 1.218709 Mean Std. Deviation 20 Std. Error 0.146942 Std. Error 0.121871 15 20 10 10 0-0.4 ò 5 10 15 20 25 30 35 40 45 50 ò 5 10 15 20 25 30 35 40 45 50 Foci pro Zelle Foci pro Zelle pATM 6 Gy 35 30 Anzahl von Zellen 10 12 12 11 10 9 8 7 6 5 Mean Std. Deviation Std. Error 5.54 1.546714 0.154671 F162 γH2AX r²= 0,9901
F162 pATM r²= 0,9847 MW Foci 10 4 3 2-1-0-20 25 30 Foci pro Zelle 15 30 35 40 45 50 ò 5 10 3 4 Dosis, Gy 4 7 2 5

F162, pATM

F181, γ**H2AX**

F181, pATM

F185, γ**H2AX**, **pATM**

F190, γ**H2AX**

F190, pATM

F190, γH2AX, 53BP1

Fib14, γH2AX

Anzahl von Zellen

Anzahl von Zellen

Anzahl von Zellen

10-8

> 20 25 30 35 40 45 50

Foci pro Zelle

10 15

5 0

50

50

pATM 1 Gy pATM 0 Gy 90 80 70 Anzahl von Zellen 0.18 Mean Mean Std. Deviation 1.09 0.985706 0.098571 60 Std. Deviation 0.43531 50 Std. Error 0.043531 Std. Error 40 30 10 20 10 0-0-20 25 30 Foci pro Zelle 20 25 30 Foci pro Zelle ò 10 15 35 40 45 ò 5 10 15 35 40 45 50 5 pATM 2 Gy pATM 4 Gy 33-40 30 28 25 30 Anzahl von Zellen 23-20-18-15-13-10-1.95 1.282162 0.128216 Mean Mean Std. Deviation Std. Error 3.8 1.442501 0.14425 Std. Deviation Std. Error 20 10 5 3 للبلاه 0ò 5 10 15 20 25 30 35 40 45 50 ò 5 10 15 20 25 30 35 40 45 Foci pro Zelle Foci pro Zelle pATM 6 Gy 28-25 23 Fib14 γH2AX r²= 0,9868
Fib14 pATM r²= 0,9971
Fib14 53BP1 r²= 0,9964 12 20 6.05 1.822281 11 Mean Std. Deviation Std. Error 18 10 9 8 7 6 5 0.182228 15-13-MW Foci

> 3 2-1-0-

3 Dosis, Gy

4

5

7

ż

Fib14, pATM

Fib14, 53BP1

Fib32, γH2AX

pATM 0 Gy pATM 2 Gy 45 Mean Std. Deviation Std. Error 0.15 0.411329 0.041133 Mean Std. Deviation Std. Error 1.14 1.197809 Anzahl von Zellen 30 0.119781 25 20 15 10 5 0 20 25 30 Foci pro Zelle 20 25 30 Foci pro Zelle ò 5 10 15 35 40 45 50 10 15 35 40 45 50 Ō 5 pATM 6 Gy pATM 4 Gy 18-17-16-15-14-13-12-11-10-9-8-7-6-5-25. 20 Anzahl von Zellen 5.65 2.544056 Anzahl von Zellen Mean Std. Deviation Mean Std. Deviation Std. Error 3.64 1.743791 0.174379 0.254406 Std. Error 3 2 1 0 20 25 30 Foci pro Zelle 25 30 35 40 45 50 15 35 40 45 50 ò 5 10 15 20 10 5 Foci pro Zelle Fib32 γ H2AX r²= 0,9865 Fib32 pATM r²= 0,9751 Fib32 53BP1 12 . 11-10-9-8-7-6-5r²= 0,9933 ۶ MW Foci Ŧ 1:--4-3-2-1-0-3 4 Dosis, Gy 7 2 4 5 6 ò i

Fib32, pATM

0-

0

3 4 Dosis, Gy

4 5 6

2

7

20 25 30 Foci pro Zelle

30 35 40 45 50

15

0 5 10

Fib32, 53BP1

Fib39, γH2AX

Fib39, pATM

WT1BR, γH2AX

WT1BR, pATM

WT1BR, 53BP1

AT1BR, γH2AX

AT1BR, 53BP1

8.3. Danksagung

Die vorliegende Arbeit wurde im Labor für Strahlenbiologie und Experimentelle Radioonkologie der Universitätsklinik Hamburg-Eppendorf durchgeführt. Für die Ermöglichung dieser Doktorarbeit möchte ich Herrn Prof. Dr. Ekkehard Dikomey danken.

Mein ganz besonderer Dank gilt Frau Dr. A. Raabe, die mich bei der Durchführung dieser Arbeit hervorragend betreut hat. Nicht nur beim wissenschaftlichen Teil, sondern auch bei allen anderen Herausforderungen hat sie mir zur Seite gestanden und mich mit Rat und Tat unterstützt. Neue Ideen konnte man jederzeit in Ihrem Büro bei einem Kaffee besprechen. Danke dafür.

Des Weiteren danke ich Herrn Dr. Sebastian Reuther, der immer zur Stelle war, wenn es Probleme am Mikroskop gab, und Dr. Wael Yassin Mansour, der mich bei der Durchführung von Western Blots unterstützt hat. Außerdem gilt Herrn Dr. Yarob Saker und Herrn Dr. Thorsten Riekmann mein Dank. Bei Fragen zur Immunfluoreszenz hatten sie immer ein offenes Ohr. Danke auch für die aufschlussreichen Gespräche am Mikroskop, Herr Saker.

Ebenso möchte ich mich bei den Medizinisch-technischen Assistentinnen Frau Maria Omniczynski, Frau Britta Riepen, Frau Alexandra Zielinski und Herrn Konstantin Hoffer bedanken, die mich hervorragend in den Laboralltag eingeführt und während meiner praktischen Arbeit im Labor betreut haben. Auch über so manche Pilzkrise haben sie mir durch ihren Beistand hinweggeholfen.

Außerdem danke ich allen weiteren Mitarbeitern des Labors für ihre ständige Hilfsbereitschaft und die nette Zusammenarbeit. Es war eine schöne erfahrungsreiche Zeit, die ich nicht missen möchte.

Ebenfalls danken möchte ich Julia Hoffmann. Als Leidensgenossin verbrachten wir viele Abende zusammen im dunklen leeren Labor. Durch Ihre Anwesenheit und Schokolade verging die Zeit viel schneller.

Vielen Dank auch meiner Familie und meinen Freunden, denen ich immer vom Laboralltag berichten durfte und die dabei auch noch gespannt zugehört haben. Ganz besonders gilt meinem Freund Jan Schmidt mein Dank, da er es immer toleriert hat, wenn ich erst spät nach Hause gekommen bin und ihm von meinen Zellen berichtet habe.

8.4. Lebenslauf

8.5. Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: