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Zusammenfassung

In dieser Arbeit wird der kohärente Quantentransport von Elektronen durch zweidimen-
sionale mesoskopische Strukturen in Abhängigkeit des Wechselspiels zwischen der ein-
schränkenden Geometrie und dem Einfluss angewandter Magnetfelder untersucht mit dem
Ziel, die Leitfähigkeit zu kontrollieren. Umfangreiche Untersuchungen des Magnetotrans-
ports in einem hoch aufgelösten parametrischen Raum werden mittels eines Rechenver-
fahrens durchgeführt, das multiterminale Strukturen willkürlicher Geometrie und Topolo-
gie behandelt. Die Methode basiert auf die modulare Zusammensetzung elektronischer
Propagatoren von inter- oder intra-verbundenen Subsystemen und schafft somit eine große
Flexibilität in den Systemanordnungen sowie hohe Recheneffizienz. Leitfähigkeitskontrolle
wird zuerst für elongierte Quantenbilliards und -reihen dargestellt, die eingeschränkte
Zustände von quasi-entarteten, an den Leitungen stark gekoppelten Zuständen geometrisch
abtrennen. Ein schwaches Magnetfeld bestimmt hier den Strom durch Phasenmodulation
interferierender Zustände. Weiter wird gezeigt, wie Weichwand-Potentiale für ein effizientes
und robustes Schalten der Leitfähigkeit genutzt werden können, indem energiepersistente,
kollimierte oder magnetisch gebeugte Elektronenbahnen von Fano-Resonanzen im tiefen
Quantenregime isoliert werden. In einer multiterminalen Konfiguration ermöglicht die leit-
ende und fokussierende Eigenschaft gekrümmter Grenzsektionen einen magnetisch kontrol-
lierten, direktionalen Transport wo eingehende Elektronenwellen exklusiv an ausgewählte
Ausgänge strömen und dabei einen Strom-Kreuzschalter schaffen. Zusammen mit einer um-
fassenden Analyse der charakteristischen Transportmerkmale und räumlichen Verteilungen
von Streuzuständen demonstrieren die Ergebnisse einen geometrisch unterstützten Aufbau
von Kontrollelementen magnetischer Leitfähigkeit in dem Regime der linearen Antwort.

Abstract

In this thesis the coherent quantum transport of electrons through two-dimensional meso-
scopic structures is explored in dependence of the interplay between the confining geometry
and the impact of applied magnetic fields, aiming at conductance controllability. Extensive
magnetotransport investigations in a highly resolved parameter space are performed with
a developed computational technique which treats multiterminal structures of arbitrary ge-
ometry and topology. The method relies on the modular assembly of the electronic propa-
gators of subsystems which are inter- or intra-connected, thereby providing large flexibility
in system setups combined with high efficiency in computation. Conductance control is first
demonstrated for elongated quantum billiards and arrays thereof which geometrically sep-
arate confined states from quasi-degenerate states coupled strongly to the attached leads.
A weak magnetic field here tunes the current by phase modulation of interfering states. It
is further shown how soft-wall potentials can be employed for efficient and robust conduc-
tance switching by isolating energy persistent collimated or magnetically deflected electron
paths from Fano resonances in the deep quantum regime. In a multiterminal configura-
tion, the guiding and focusing property of curved boundary sections enables magnetically
controlled directional transport with input electron waves flowing exclusively to selected
outputs, thereby realizing a current cross-junction. Together with a comprehensive analysis
of characteristic transport features and spatial distributions of scattering states, the results
demonstrate the geometrically assisted design of magnetoconductance control elements in
the linear response regime.
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0
Introduction

All knowledge degenerates into probability.
— David Hume

A Treatise of Human Nature, 1738

When writing that “all knowledge degenerates into probability”, 18th century philoso-
pher David Hume could barely have anticipated to what literal extent this statement would
be carried two centuries later with the establishment of quantum theory in the description
of nature. The claim as such, expanded beyond its original context as the epitome of em-
piricism, indeed applies to what has become the standard concept by which the realm of
the microscopic is approached. Regardless of its interpretation as a fundament of nature
or as an emergence of still obscure origin, it is the inherent probability of events which re-
mains deterministically accessible at scales where particles reveal their wavy self—even if
empirical ability to sense physical phenomena has been pushed to extreme accuracy. The
probabilistic character of a system’s behavior immediately brings the question of its con-
trollability into a very specific dichotomy: Absolute certainty about a property prior to its
measurement is achieved only by forcing the associated probability to the limit of zero or
unity.

0.1 Electron waves at the nanoscale

Although ubiquitously desirable in science, controllable system response is of particular
relevance in the field of electronic transport in fabricated semiconductor nanostructures.
Here, the property to be controlled is the electronic flow between the electrodes attached to
an effectively two-dimensional region of nanoscale confinement. Such devices are usually
electrostatically defined by nanoscale patterned metallic gates on top of a semiconductor
heterostructure junction where electrons have been restricted to move forming an effectively
two-dimensional free electron system. The size of a typical device is large enough to treat
the surrounding crystal lattice as continuous, but small enough for the quantum features of
the transported electrons to become important or even dominate the system response. In
this mesoscopic regime, where the electronic De Broglie wavelength is comparable to the
size of the confinement, the system can be treated in the framework of scattering theory, as
applied to waves propagating coherently within given geometrical constraints provided that
inelastic processes are suppressed. Probability in transport accordingly enters in the form
of transition rates from ingoing to outgoing waves in the presence of multiple electrode
terminals. This identification of transmission probabilities as the essential component of
electronic conductance is due to the pioneering work of Landauer [1] and Büttiker [2] and
has since become a successful conceptual and technical basis in treating quantum coherent
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Chapter 0. Introduction

transport as well as modeling decoherence processes [3, 4]. Vanishing and maximal current
flow between two terminals is here translated to a transmission probability of zero and
unity, respectively, at the Fermi energy of the incoming electrons. Given the underlying
theoretical description of transport, the challenge posed here is to identify, understand and
ultimately manipulate the mechanisms which may enable its controllability.

Though simple and in many ways intuitive, the Landauer-Büttiker picture of mesoscopic
transport was far from obvious when proposed, owing to the non-equilibrium situation of
current flow as well as the complications added by many-body interactions in actual ex-
perimental settings. An important test of the theory was the experimental confirmation of
the quantized conductance in narrow quasi-one-dimensional channels by Wharem et al. in
1988 [5], repeated and refined later in shorter nanoscale constriction (so-called quantum
point contacts) [6]. Relying on the simple geometry of these systems and the ballistic trans-
port achieved, transmission is mediated by practically decoupled channels leading to char-
acteristic plateaus in the measured conductance. Regarding current control, in such a setting
the charge flow current can be switched on and of by tuning the gates defining the quantum
point contacts. This requires, however, a real-time gate operation on local scale to alter the
electrostatic confinement of the device and is further subject to geometrical restrictions in
applying the gate voltages. Moreover, deviations from the ideal plateaus is generally caused
by imperfections such as impurity scattering [7], and the observed quantization steps may
also break down depending on the confining potential configuration [8]. As shown already
in Refs. [5, 6], another possibility to control the current is to apply a global magnetic field
which successively depopulates the magnetoelectric subbands. The practical disadvantage
is here that a very high field strength is needed to raising the Landau subbands through the
Fermi level. Apart from these considerations, it clear that the suppression of current is here
forced essentially by imposing electrostatic or magnetic energy barriers on the electron flow.
An alternative route to nanoelectronic current control is to exploit the wave dynamics in the
device determined by weaker magnetic fields in combination with a confinement potential
which in general couples individual scattering states.

0.2 Open quantum billiards

Prominent candidate elements for such a type of conductance control are so called open elec-
tron ‘billiards’ [9–15]. As the name suggests, these are two-dimensional structures which
confine ballistically moving particles within a region of space of certain geometry, with
openings along their boundary through which the particle can escape. In their classical
version, the dynamics of a point particle is defined by the shape of the boundary, and so
the phase space of trajectories in billiards have served as a paradigm in studying nonlinear
dynamics and chaos [16]. Such constructs would be of little relevance to electronic trans-
port devices if it were not for the immense technological progress in nanoscale fabrication
techniques over the last few decades: Nowadays, electrons can be restricted with very high
accuracy to move along a two-dimensional semiconductor interface [17], and the confine-
ment potential defining an electron billiard can be patterned to almost arbitrary profile and
well below the electronic mean free path and coherence length [18–21]. In other words, the
idealized billiard potential can practically be drawn directly in the laboratory.

Quantum billiards, in which moving point particles are replaced by waves, have thereby
been used to model nanoscale transport devices and set the grounds for the theoretical de-
scription and experimental investigation of coherent transport in the mesoscopic regime.
They are also widely known as effectively zero-dimensional quantum ‘dots’ (or even ‘artifi-
cial atoms’ [22]), though we will mostly use the term ‘billiard’ which emphasizes their spatial

2



0.2. Open quantum billiards

extent in the form of 2D cavities. It should be pointed out that, in the absence of magnetic
fields and inelastic processes, the stationary scattering framework is formally equivalent
for matter and light waves; many aspects of transmission are therefore investigated in mi-
crowave billiards rather than electron billiards, since the experimental setup is incomparably
easier to construct and free from the inherent imperfections of solid state. Motivated by its
classical counterpart, this unified quantum billiard model provides a unique platform to
explore the quantum-to-classical crossover in the form of quasi-bound states [23] and wave
function scars [24–26], the role of integrability in transmission statistics [27, 28] and shot
noise [29] as well as signatures of quantum chaos [16,30–32]. At higher energies the relation
of wave patterns to classical trajectories and the resulting transmission spectra are explained
successfully using semiclassical techniques [32–34] which provide valuable insight into the
dynamics taking place. Billiard systems are also convenient for the study of the ubiquitous
phenomenon of Fano interference [35, 36], because of its clear connection to geometrically
defined quasi-bound states [11] whose coupling to the leads can vary the spectral width
from isolated Fano peaks [37–42] to the overlapping regime [14,43,44]. In the latter case the
effect of resonance trapping [45–48] can be induced where the widths of Fano resonances bi-
furcate [48] as a function of system parameters, meaning that lineshapes of vanishing width
can be superimposed on broader resonances. In the opposite extreme, broad resonances
overlap and the interference of the associated strongly lead-coupled states in general lead
to a highly irregular transmission profile in varying energy.

A promising aspect of electron billiards with respect to conductance control is the drastic
modification of their transport properties by an externally applied magnetic field [49–55],
and they therefore dominate the intense investigation of coherent magnetotransport in the
mesoscopic regime, where quantum interference meets and overlaps with the notion of ori-
ented paths. Aharonov-Bohm (AB) interference [56] at weak magnetic fields is generalized
from its occurrence in ring-shaped devices [57–59] to billiard setups [60,61] where the inter-
ference of spatially extended states at the lead openings give rise to multimode transmission
oscillations in varying field strength. The combination of quantum dots or wires with ring
geometries into hybrid structures has been used to study the intricate interplay between
Fano and AB interference [62–66]. At intermediate field strengths the electronic dynam-
ics is dominated by the Lorentz deflection which becomes particularly important in the
case of multiterminal structures [67–69] where the Onsager reciprocity relations [70] take
effect [2]. For strong magnetic fields, where well spaced Landau levels occupy the bulk,
transport is mediated by edge states [50, 71] localized at the billiard boundary and multi-
terminal transmission is determined by the device topology and remains largely unaffected
by the potential landscape caused, e. g. by impurities. An early manifestation of edge state
transport was the quantum Hall effect [72, 73] , an extraordinary example of precision in
conductance quantization. Since edge states are essentially of one-dimensional nature, their
interference may lead to well defined AB oscillations in structures where they are caused
to couple among each other, as by diffraction at sharp lead openings [50]. The above three
regimes of magnetotransport are in general not separated but combine depending on the
confining geometry and the lead attachment which may lead to enhanced irregularities in
the conductance profile. The above magnetically related phenomena acquire an additional
twist when the electronic spin is taken into account, and ‘spintronics’ has developed into a
field of its own [74]. However, the small Zeeman splitting in weak magnetic fields does not
alter the overall conductance much at finite temperatures; Spin-orbit coupling is also rela-
tively weak in conventional semiconductors like GaAs and is usually neglected for transport
of conduction band electrons [75].

Assembling individual dots into linear arrays via coupling QPCs gives rise to new fea-
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tures such as the precursor of bands in the transmission spectra [76] and magnetically in-
duced Bragg scattering [77], resonant transmission and reflection [51] and the formation of
coupling-induced bipartite states [78], depending on the type and strength of coupling [79].
Lateral arrays of dots or antidots (closed areas expelling instead of confining electrons) lead
to even more complex band structures [80, 81] and interesting properties in the presence of
magnetic fields such as alternative versions of the quantum Hall effect [82] modulated by AB
interference [83]. Connected dots also reveal the importance of electron-electron interactions
in the observed response [84–88] which may lead to Coulomb blockade [89, 90] of electron
transport for sufficiently isolated dots. For strongly lead-coupled systems interactions are
otherwise widely treated on a mean field level through self-consistent calculations [91, 92].
Together with the finite potential of the gates defining the device, they lead to an effec-
tive softening of the electron billiard boundaries [93] which is taken into account in more
realistic simulations [8, 94]. The dynamics within soft-wall billiards may correspondingly
show pronounced differences with respect to the hard-wall counterpart, such as stabiliza-
tion of particular trajectories [51,95], suppression (quenching) of the Hall resistance [94] and
enhanced occurrence of sharp Fano resonances [12].

0.3 Taming wave propagation in the deep quantum regime

From the above—by no means exhaustive—listing of theoretical and experimental progress
in the field of quantum transport it becomes clear that a large diversity of phenomena are
available with a remarkable impact on the transmission in billiard systems. It is plausible
to think of these effects as a toolkit to control conductance in nanostructures: Once the
corresponding mechanism in each case is understood and verified, it can in principle be
used to manipulate the transport behavior under given circumstances. In most cases, how-
ever, the findings show a non-trivial energy dependence of transmittivity as a result of the
complex nature of wave propagation. Indeed, a statistical treatment of generic transport
devices reveals the manifestation of universal conductance fluctuations [96], both in vary-
ing Fermi energy and applied magnetic field, as a result of elastic impurity scattering at low
temperatures. Another consequence of wave interference in disordered structures is the phe-
nomenon of weak localization [97,98] which is lifted by a magnetic field. In fact, localization
effects [99–102] and conductance fluctuations [10, 30] are also present in a large variety of
ballistic open quantum dot systems. Such universal characteristics are well described in the
framework of random matrix theory (RMT) [103,104] and by semiclassical methods [32,104]
where a distinction between symmetry classes and integrability is concluded.

In view of this inherent irregularity of conductance characteristics for generic systems,
the quest for transport controllability inevitably finds its way to the exploitation of non-
universal properties based on specific device design. This is in accordance with the fact that,
apart from the generic effect of disorder and chaotic scattering, sample-specific properties
are largely determined by the system geometry and the placement of attached leads. An
illuminating example is the use of Fano interference in structures with certain geometrical
features as a current switching mechanism [66, 105], tunable by a magnetic field [62, 106] or
by a controllable coupling to continuum [42] or resonant [39] states. Indeed, an isolated Fano
resonance lineshape reaches the two desired limits of zero and unit transmission in a single-
channel scattering setting. Resonant control of transport has also been proposed in terms of
cascading of transmitting or reflecting states in billiard arrays [51,77]. Nevertheless, resonant
effects are in general sensitive to energy variations and prone to attenuation by imperfections
in the setup. Moreover, they are eventually washed away from the conductance profile due
to thermal contribution of neighboring states around the Fermi level at finite temperatures.
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0.3. Taming wave propagation in the deep quantum regime

With respect to multiterminal conductance control, there have been proposals utilizing
window-coupled quantum waveguides as an electronic directional coupler [107–111], also
by use of magnetic fields [112–115], or three-terminal junctions [116]. For example, in Ref.
[114] the electronic flow can be altered by modifying the window opening and thereby
changing the coupling of the scattered wave to the outputs, and then switched by a magnetic
field. Again, however, such setups are based on resonant-like features or show strongly
fluctuating transmission, and in general feature a relatively small directivity. In Ref. [109]
the operation is performed on ingoing Gaussian wave packets and thus of little applicability
[114] in a stationary picture of transport. Moreover, the magnetic fields used must typically
be strong enough to force the electrons into the edge states regime [112, 114, 115] or raise
magnetic barriers [113].

A remarkable demonstration of transport control is given in a recent work by Rotter
et al. [117] where incoming waves can be completely transmitted to the output terminal
following exclusively classical trajectories. These non-universal states have definite Wigner-
Smith delay times and are accessed as exceptional points in parameter space away from
RMT predictions. Their incoming momentum components are determined via a systematic
protocol and belong to relatively high channels in the attached leads in order to resolve clas-
sical phase space. Since the constructed waves behave like particles (with the deterministic
destiny to escape through the input or output lead), the transmission equals zero or unity.
Although the approach could be envisaged as a means of beam-like classical wave propa-
gation [117], its application to electronic devices is questionable since it would demand the
selective population of reservoir-coupled channels.

In the present work, the aim is to reach the same limits of zero and unity in non-resonant
transmission, though in the deep quantum regime, that is, in the ground transversal mode of
the attached leads, at electronic wavelengths comparable to the geometrical characteristics
of the transport device. The states at such low energy are in general spatially extended,
only occasionally resembling classical counterparts, and the challenge is to suppress the
otherwise ubiquitous current fluctuations mentioned above. We investigate the possibility
to achieve a smooth background transmission spectrum in appropriately designed billiard
setups and its magnetically induced switching between zero and one.

As outlined below, efficient magnetic control of coherent transport in the linear response
regime and at low temperatures is demonstrated numerically and analyzed by means of
different underlying mechanisms. For a linear array of hard-wall elongated billiards we ex-
ploit the geometry to induce destructive interference between quasi-degenerate states which
are phase-modulated by a weak field into maximal transmission, in a broad energy range.
A soft-wall potential is then used in a similar geometry to create energetically persistent
collimated or backscattered motion. Here the deflecting property of the field is combined
with the decoupling of quasi-bound states from the leads, resulting in totally suppressed
conductance over the whole first channel at zero field which is switched to its maximal
value by turning on the field. The challenge of efficient conductance control is increased in
multiterminal devices since scattering states in general couple to all leads and thereby for
any lead pair the other leads act like sink s for the probability flux. Here, efficient direc-
tional conductance is demonstrated for a four-terminal setup through the selective coupling
of scattering states to different lead pairs at zero field and their switching by weak or strong
fields. Transport control is in total achieved by simple means utilizing the interplay of the
effect of the magnetic field with the specific geometry and potential design of the system.
In all cases a relative robustness of the switching effect against small variations in the con-
fining potential is shown, certifying the functionality of the devices as nanoelectronic circuit
elements.
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Chapter 0. Introduction

0.4 The necessity of efficient computational techniques

The pursuit of conductance controllability in terms of non-universal mechanisms as de-
scribed above is tightly connected to the ability of performing extensive investigations of
device setups in highly resolved parameter space of with varying potential configurations,
input energy and applied magnetic field strength. In particular, the needed flexibility in
geometry variations and lead positioning renders necessary the use of equally flexible as
well as powerful numerical techniques to arrive at the quantities of interest. A particu-
lar computational technique which has been established as a standard in quantum trans-
port simulations due to its conceptual simplicity and numerical robustness is the recursive
Green function (RGF) method [118]. Based on the Green function approach to scattering in
confined geometries, it used a recursion scheme to compute the relevant part of the single-
particle propagator from an effective tight-binding Hamiltonian where the effect of the leads
attached to the device (open boundary conditions) is accounted for by non-Hermitian self-
energy matrices. Since its first formulation more than three decades ago [97,119,120], it has
been refined and extended in various ways depending on the physical situation at hand, as
briefly reviewed below in Chap. 4. A particular advantage is the possibility to perform the
recursion on the level of subsystems of a composite structure by effectively solving a ma-
trix Dyson equation [121], thereby reducing significantly the computational cost—especially
when the system can be decomposed into partly repeated sections, as is the case for the
billiard systems studied here. Rotter et al. [50, 122] specialized this technique to the case of
connected modules of simple (analytically solvable) regular geometries, thereby achieving
transport calculations at very high energies and field strengths. Another version of remark-
able flexibility is the ‘knitting’ algorithm by Kazymyrenko et al. [123] where, conversely,
single sites are added one by to build the complete device structure. We here develop an
extended RGF scheme which combines these two approaches by connecting multiterminal
modules, though of arbitrary form, into composite structures of arbitrary topology, with
a block-reordered version of the standard RGF at the core computing the single-module
propagators. This enables the rapid investigation of large diversity of device structures with
continuously varying geometry parameters in highly resolved energy and field variation,
making the method tailor-made for system optimization with respect to transport control-
lability.

0.5 Outline of the thesis

Each chapter of the thesis starts with an introductory passage which motivates its content
and provides its main highlights. In brief, the structure and content of the chapters are as
follows:

Chapters 1, 2, and 3 provide a relatively self-contained account on the theory of coherent
electronic transport in mesoscopic systems, adapted to the needs of the present work and
discussed in the context of quantum billiards. The presentation follows a top-down order:
Chapter 1 introduces the basic principles of nanoscale semiconductor structures and the
circumstances under which two-dimensional open electron billiards are realized, within the
approximations used in following applications.
Chapter 2 reviews the Landauer-Büttiker picture of transport where conductance is de-
duced from transmission, clarifying the concept of electron reservoirs and the connection
of multiterminal devices to wave scattering.
Chapter 3 presents the Green function formalism pertaining to the scattering matrix and
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0.5. Outline of the thesis

other quantities relevant to transport, with emphasis on the considerations applicable to
lead-coupled systems. It closes with a discussion of the main interference effects encoun-
tered in the setups to be studied as well as a brief presentation of the newly developed
theory of scattering in locally symmetric systems.

Chapter 4 is devoted to the numerical computation of the Green function within a
tight-binding effective Hamiltonian approach. We here develop an extended version of
the recursive Green function (RGF) technique which enables the assembly of multiply
connected composite structures from given subsystems, with arbitrarily positioned multiple
leads. It is based on a block-Gaussian elimination scheme for solving the matrix Dyson
associated with the inter- and intra-connection of subsystems. The subsystem propagators
are found using a block-reordered RGF method which enables a selective computation
of local quantities (state and current densities) in addition to global ones (transmission).
In combination, the two methods provide a powerful tool to study structures of arbitrary
geometry and topology with high flexibility.

Chapter 5 explores the magnetotransport through arrays of two-terminal oval-shaped
quantum billiards and demonstrates their functionality as a conductance switch in the
linear response regime. The effect relies on a systematic suppression of the field-free
transmission due to destructive interference of lead-coupled states, which is lifted by a
weak phase-modulating field. Resonances in the coupled-dot system, whose splitting
saturates into banded spectra for large dot number, are analyzed in terms of characteristic
local density distributions. Present already for a single quantum dot, the conductance
switching ratio is drastically enhanced for a double-dot system and proves robust against
remote impurity disorder at low temperatures.

Chapter 6 shows how the use of soft-wall boundaries in elongated billiards can be combined
with orbital magnetism to achieve efficient current control in varying Fermi energy. The
underlying mechanism is the energy persistent backscattering of magnetically deflected
states which are geometrically rescaled by the soft walls, in combination with the collima-
tion of forward propagation at zero field. In this manner, the omnipresent conductance
fluctuations at low energies are suppressed in favor of a smooth and tunable transport due
to the complete decoupling of quasi-bound states from the leads. The robustness of the
switching functionality is certified by variations in the shape and potential profile of the
billiard.

Chapter 7 takes a challenging step to investigate the possibility of magnetoconductance
control in multiterminal electronic devices. A semi-elliptic four-terminal billiard is here
chosen, where the key property is the separation of scattering states which are strongly
coupled to different pairs of leads in the field-free case. The transmitted electrons are
thereby mediated by rotator and librator modes which are guided and focused by the
convex boundary, respectively. By tuning the magnetic field strength, the ingoing electron
waves are then directed to selected leads via extended Lorenz-deflected states or edge
states. The device thus functions as a unique, magnetically operated, directional current
junction.

Chapter 8 summarizes the results of the thesis, concludes on the presented aspects of current
control in mesoscopic devices and points at open perspectives.
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1
Electrons in low-dimensional
mesoscopic systems

In this chapter the basic principles of nanoscale semiconductor structures are presented
along with the circumstances under which quantum effects dominate the properties of
current-carrying electrons. Within this mesoscopic regime, the concept of an ‘open electron
billiard’ is introduced as a prototype, idealized nanoelectronic transport device in which
quantum coherence is maintained. Under the associated approximations to the system
Hamiltonian, we finally analyze the characteristics of quantum states resulting from low-
dimensional confinement.

1.1 Two-dimensional electron systems

The constriction of freely moving electrons to a plane, and their further confinement into
desired geometric structures at the nanoscale, provide a unique platform for the theoretical
investigation and experimental observation of quantum effects. We now briefly outline
the basic ingredients which enable the realization of such systems at the interface between
semiconductor crystals. We make brief use of capitalized notation R = (x, y, z) ≡ (r, z)
and R = (kx, ky, kz) ≡ (k, kz) for three-dimensional vectors, before separating out the planar
vectors r and k of the actual 2D transport system.

1.1.1 Band structure and effective mass

The dynamics of electrons within solids is governed by their interaction with the atoms
of the crystal lattice and with all other electrons, and the determination of their spectral
properties and response to external forces constitute a complicated quantum many-body
problem. The essential electronic behavior is, however, successfully described in using ef-
fective potentials in a single-particle picture. In the presence of the periodic crystal potential
Vcr(R) in a solid, electrons occupy Bloch eigenstates

ΨK(R) = eiK·RuK(R), (1.1)

labeled by the crystal momentum h̄K, where uK(R) follows the periodicity of Vcr. The cor-
responding energy levels arrange into bands En(K), the form of the n-th band in a certain
direction K being determined by the type of atoms in the solid and their structure within
the unit cell of the lattice. For intrinsic semiconductors, the chemical potential µ lies within
the gap between the top EV of a (set of) fully populated valence band(s) and the bottom EC
of a (set of) empty conduction band(s), so that there are no free charge carriers at low tem-
peratures. Free carriers are provided by doping the crystal with donor (acceptor) impurities
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Chapter 1. Electrons in mesoscopic low-dimensional systems

which yield available states within the gap close to EC (EV) and can thereby excite electrons
(holes) into the principal minimum (maximum) of the conduction (valence) band. A ‘gas’
of electrons (or holes) is thus created, with motion along wave vectors around the Fermi
surface in the Brillouin zone. In Fig. 1.1 (a) the band structure of the semiconductor GaAs is
shown together with its Brillouin zone (resulting from its zincblende crystal structure), with
focus on the direct primary band gap.

In the vicinity of a local band extremum (E0
n, K0), the dispersion relation can be described

by a quadratic form

En(K) = E0
n +

h̄2

2 ∑
ij

M−1
ij (ki − k0

i )(k j − k0
j ), (1.2)

where M is the (inertial) effective mass tensor,

Mij = h̄2
[

∂2En(K)

∂ki∂k j

]−1

= h̄2
[

∂vj

∂ki

]−1

, (1.3)

defined by equating the rate of change in crystal momentum with externally acting forces
F, and comparing to the change in the group velocity V = (vx, vy, vz) = ∇KEn(K)/h̄,

F =
d
dt

h̄K ⇔ d
dt

vi = ∑
j

M−1
ij Fj, (1.4)

in analogy to semiclassical dynamics [124]. For a semiconductor with a direct gap between
EV and EC at the center point Γ (K = 0) of the Brillouin zone, such as GaAs (see Fig. 1.1 (a)),
the dispersion around the principal minimum of the conduction band is parabolic with an
isotropic, diagonal effective mass Mij = m∗δij,

E(K) = EC +
h̄2

2m∗
K2 (1.5)

(we now drop the band index n, since we will focus exclusively on the conduction band).
Thus, the electron gas forming at just above EC effectively consists of particles moving
freely on a spherical equienergetic surface, just like they would in free space, but with a
(typically smaller) mass m∗ 6= me determined by the curvature of the dispersion E(K) at the
band minimum. The corresponding electron dynamics under the impact of, e.g., impurities,
charge accumulation, or externally applied voltages, can therefore effectively be described
by a potential term V(R) in a single-particle Hamiltonian, where the effect of the crystal
potential Vcr(R) has been incorporated through the mass tensor M.

1.1.2 Heterojunctions and band engineering

To further manipulate the behavior of the freely moving conduction band electrons (or va-
lence band holes), different semiconducting crystals can be combined to form heterostruc-
tures with typically planar interfaces, or ‘junctions’, between materials of altering composi-
tion. The band structure of such inhomogeneous systems, and primarily the band edges EC
and EV relevant for the effectively free motion, become spatially dependent in the direction
where the material changes, or direction of ‘growth’ of the heterostructure, which we will
take to be the z-axis. The aim of this ‘band engineering’ is to design desirable and con-
trollable charge carrier properties by combining layers of suitable material parameters and
thickness, and appropriately doped with donor or acceptor impurities. More specifically, the
3D motion of the effectively free electrons can be restricted to the 2D plane defined by a het-
erojunction along the z-axis between materials with different band gaps. We now describe
the formation of such a 2D electron system (2DES) in a GaAs/AlGaAs heterostructure.

10



1.1. Two-dimensional electron systems

a b

EF

ε0

Figure 1.1: (a) Band structure of GaAs along the directions in K-space indicated on the Brillouin
zone shown in the lower inset (reproduced from Ref. [125]). The upper inset shows the (direct) band
gap between the approximately parabolic conduction and valence bands for electrons with energies
close to the band gap edges, with a spherical Fermi surface at the center of the Brillouin zone (lower
inset). (b) Upon contact with n-doped AlGaAs (upper panel) with ionized donors (+), which has a
larger band gap aligned with that of GaAs, conduction electrons (-) from the n-AlGaAs diffuse into
the GaAs, and a charge accumulation at the interface induces an electrostatic potential which bends
the band edges downwards along z (lower panel). When the chemical potential (dashed line) on
both sides equilibrates, the conduction band edge develops a quantum well on the GaAs side due
to the band edge discontinuity across the heterojunction. If the well supports bound states (ground
state density shown), then a 2DEG along the (x, y)-interface can form for Fermi energies within the
well.

The most commonly used methods to grow a heterostructure are molecular beam epi-
taxy (MBE) and metal-organic chemical vapor deposition (MOCVD), by which high quality
interfaces with minimal roughness and imperfections can be fabricated [75], of great impor-
tant for controllable electron transport along heterojunctions. In MBE, beams containing the
heterostructure constituents (here Ga, As and Al, as well as a potential donor dopant Si) at
tunable concentration impinge on a substrate in ultrahigh vacuum. In MOCVD, the con-
stituents are carried by hydrogen in gaseous form and consecutively deposited on a heated
substrate by chemical reaction. In order to avoid structural defects at the heterojunctions
arising from a mismatch in the lattice spacing between the grown materials, constituents are
suitably chosen so that the resulting compound crystals will have similar lattice constant.1

Moreover, in order to form a 2DES at a heterojunction, the contacted materials should opti-
mally have aligned band gaps with relatively small conduction band edge difference, which
in turn requires similar electron affinity, the energy needed for an electron at EC to escape
from the crystal [75]. These requirements are fulfilled for the growth of AlxGa1−xAs on a
GaAs substrate, where a mixing portion x = 0.3 retains the direct band gap of GaAs and
induces a conduction band edge difference ∆EC = 0.33 eV. The difference in band gap
and edge energies for the separate materials—or connected over a heterojunction, but be-

1 The strong effect of mechanical strain resulting from lattice constant mismatch between the materials of
a heterostructure can in fact also be used as an advantage in terms of flexibility in fabrication, larger ∆EC or
increased mobility (smaller effective mass m∗), but are not as widely as the standard GaAs/AlGaAs setting we
focus on here.
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Chapter 1. Electrons in mesoscopic low-dimensional systems

fore thermally equilibrating—is schematically shown in the upper panel of Fig. 1.1(b) for an
AlGaAs layer grown on top of GaAs.

To introduce free charge carriers to the system, the AlGaAs layer is doped with donor
impurities (typically Si), which ionize to release electrons into the conduction band mini-
mum and thereby elevate the local chemical potential [124]. The donor-doped material is
denoted n-AlGaAs, and the simplified process resulting in a 2DES, sketched in Fig. 1.1 (b),
is as follows [75]. When the n-AlGaAs layer brought into contact with the GaAs substrate
through the growth procedure, the conduction band edge becomes a function of the depth,
EC(z), where we set z = 0 at the heterojunction. Part of the ionized donor electrons now
diffuse across the junction into the GaAs region. There they lose part of their kinetic energy,
as dictated by the discontinuity ∆EC in the band edge between the materials, which prevents
them from returning to the n-AlGaAs layer. The system therefore equilibrates, with aligned
chemical potential, into an accumulation of electrons at the heterojunction, resulting in an
electrostatic potential barrier which suppresses further diffusion of electrons into the GaAs
and bends EC(z) across the band edge discontinuity.

Finally, a narrow potential well of approximately triangular profile, which we separately
denote as VJ(z), has formed over a small width wJ across the heterojunction. Within this
junction well, motion along the z-axis is quantized into (a finite number of) energy levels εn,
measured from the bottom EC(z = 0) ≡ E0

C of the well, with corresponding (bound) wave
functions ζn(z). In the narrow well these levels will have relatively large energy spacing,
so that, at sufficiently low temperature, the electrons occupy only the lowest level ε0, with
a nodeless wave function ζ0(z). They are thus restricted to a small vertical width at the
interface but can move freely, with their effective mass m∗, in the x- and y-directions, thus
constituting a 2D free electron gas. Since the transversally confining potential separates out,
the single-electron wave function can generally be written as

Ψ(R) = eik·rζ0(z), (1.6)

and the 3D free-electron-like dispersion in Eq. (1.5) accordingly reduces to a 2D version,

E(k) = E0
C + ε0 +

h̄2

2m∗
k2, (1.7)

which, in practice, will be offset to the ground level of the junction well, E0
C + ε0 ≡ 0.

1.1.3 Modulation doping and band diagram

The above procedure of doping a region in the heterostructure while populating another
region with the provided charge carriers is called ‘remote doping’. Although the donor
impurities in the n-AlGaAs layer provide the free electrons in the spatially separated 2DES,
the positively charged ions left back still form a disordered potential landscape in the plane
of the 2DES which causes (in general undesired) random elastic scattering effects. Therefore,
in practice an additional, undoped AlGaAs layer (a ‘spacer’) is grown between the GaAs
and n-AlGaAs layers, which separates the donor impurity ions further from the 2DES (see
Fig. 1.2). With this so called ‘modulation doping’, the properties charge carriers in the 2DES
can be adjusted according to the needs and purpose of the setup. A thick spacer reduces
the density of electrons in the 2DES, but at the same time increases their mobility, the latter
being of higher importance for the lateral (i.e., within the xy-plane) electronic transport we
will concentrate on.

The electrostatic Coulomb potential of each donor impurity ion in the plane of the 2DES
is now weakened by the presence of the spacer, and further screened by the electrons them-
selves. For a spacer thickness d, the effective potential that an electron feels at 3D distance
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Figure 1.2: (a) Band diagram EC(z) (black line) of a heterostructure consisting of a GaAs substrate on
top of which an undoped AlGaAs spacer layer, a doped n-AlGaAs layer and a GaAs cap are grown,
with band edge discontinuity ∆EC between GaAs and AlGaAs. (b) Section of a nanoelectronic device
defined (on the left) by top gate voltages VG1,2,3 applied to independent cap electrodes. For sufficiently
negative voltages, the band diagram in (a) is modified (yellow line) locally below the top gates such
that the Fermi level µ lies below the ground energy level ε0 of the heterojunction well at z = 0. The
2DEG is thus depleted below the top gates leading to an effective confinement potential defining the
device. As shown on the right, confinement can alternatively be achieved by etching away material
(e.g., by electron-beam lithography) from the heterostructure, with depletion being caused by highly
occupied surface states (see text).

Rimp =
√

r2
imp + d2 from a pointlike impurity can modeled by [75]

Vscr(Rimp) =
A(d)
R3

imp
=

e2

4πε0εb

qTF(1 + qTFd)
q3

TF

1

(r2
imp + d2)

3
2

, (1.8)

where εb denotes the relative permittivity of the material. The Thomas-Fermi screening
wave number qTF is, for the low temperatures we will consider, approximated by qTF ≈ 2/aB,
where aB is the effective Bohr radius. Typical values for a GaAs semiconductor are εb = 13.8
and aB = 9.8 nm.

Above the doped n-AlGaAs layer, the heterostructure is typically further equipped with
an undoped ‘cap’ layer (GaAs in Fig. 1.2) which shields the donor charges from the sample
surface, on top of which metallic gates at tunable voltage may be positioned. The band edge
EC(z), which has bended upwards along z in the doped later due to the accumulation of
positive charges, develops a discontinuity at the interface to the cap, much like the one at
z = 0; see Fig. 1.2 (a). This well is, however, empty of occupying electrons, since it lies above
the Fermi level µ in the present configuration. The chemical potential µG at the metal gate
on the surface of the heterostructure is usually ‘pinned’ by partly occupied surface states
below the conduction band edge, and µ = µG + eVG can be controlled by an applied gate
bias voltage VG (note that the electron charge is set to qe = −e < 0). Besides the above
general characteristics, the exact form of the band diagram sketched in Fig. 1.2 (a) requires a
full self-consistent determination of the electrostatic potential building up and the associated
charge density, with the layer thicknesses and dopant concentration as inputs [75].

1.2 Coherent transport devices

Having established a simple picture of effectively free electronic motion at heterostructure
interfaces, we now briefly describe how 2D transport devices can be designed and under
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Chapter 1. Electrons in mesoscopic low-dimensional systems

what circumstances quantum effects can be observed in such setups. These conditions will
provide the basis for the modeling of electronic transport in the following chapters.

1.2.1 Shaping the 2DES

Once a 2DES has formed at the heterojunction between two semiconductors, as described
above, the effectively free 2D electrons can be further restricted into areas of desirable shape.
As will be seen in Chaps. 5, 6 and 7, the particular form of the confinement of the electron
gas in the xy-plane, in combination with an externally applied magnetic field, may lead
to interesting quantum transport effects and enable their controllability. Two common ex-
perimental techniques to create confinement patterns into a 2DES are biased top gates and
chemical etching [126].

By assembling a metallic gate on top of the cap layer of the heterostructure, the Fermi
energy at the 2DES, and in turn its electronic density, can be adjusted by application of a
bias voltage on the gate, as alluded to previously. Thus, if the bias is such that the Fermi
level lies sufficiently below the lowest quantized level of the transversal well, µ < ε0, then at
low temperature the level remains unpopulated and the 2DES becomes depleted under the
gate. A top gate with a particular geometry or even different top gates next to each other can
then be used to deplete the electron gas and thereby give it a desirable shape by adjusting
the gate bias. This approach is schematically shown on the left side of Fig. 1.2, where µ > ε0

(populated 2DES) is assumed for zero gate bias (or absence of gate), while the electron gas
is depleted below some negative threshold voltage. In a simplified picture one can think
of a spatially dependent well ground level ε0(r), whose difference from the Fermi level ε0

defines an effective potential V(r) which confines 2DES in the xy-plane. Note, however,
that the gate voltage does not only shift the ε0 alone (and thus the Fermi energy), but also
modifies the band diagram of the heterostructure in total. Moreover, the depletion profile of
the 2DES does not follow exactly that of the gate(s) on top, but depends on the thickness of
the intervening layers and on the applied bias. In other words, the lateral shape of confining
potential V(r) will be smoothened with respect to the top gates and characterized by some
boundary softness, that is, a gradual rather than stepwise variation under the top gate edges.

Instead of depleting the 2DES via gate voltages, the in-plane motion of electrons can
alternatively be restricted by ‘cutting away’ parts of the heterostructure material itself, as
shown in Fig. 1.2. This is done by lithographically marking (e.g., by electron-beam lithog-
raphy) a desired pattern on a layer of material which can afterwards be removed by wet
or dry chemical etching (that is, dissolving the material in solution or in a plasma). In this
way, patterned devices can be grown where vertical sidewalls restrict the 2DES. If the all
layers are cut down to the substrate, then the 2DES is physically terminated at the sidewall
and further depleted by surface states. For some materials (e.g., GaAs), such surface states
can be so highly occupied that only the cap layer needs to be etched, with the 2DES then
depleted similarly to the case of a negative top gate bias. In fact, also the top gates deposited
onto a grown heterostructure are generally patterned by etching. An advantage of using top
gates is the ability to vary the effective confining potential V(r) during an experiment by
tuning their bias voltage. On the other hand, etched heterostructures can provide sharper
confinement and thus a more precise definition of the device geometry.

To serve as a transport device, the 2D confinement leaves two or more openings, usu-
ally in the form of narrow constrictions called ‘quantum point contacts’, to areas connected
to metallic electrodes (the terminals), between which a charge current can flow. In a two-
terminal setup, e.g., the current flows from a ‘source’ to a ‘drain’ side gate under an applied
voltage difference VSD (see Fig. 1.2 (b)). If the confinement forms a straight segment of
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Figure 1.3: (a) Two-terminal transport device defined by top gate electrodes with tunable voltages
VGi=1,..,6 which confine the 2DEG at a heterojunction underneath. A source electrode at voltage VS and
a drain electrode at voltage VD are attached to the part of the 2DEG extending into the device region
at the center. (b) The device is theoretically treated as an open system connected to electrodes at
chemical potentials µS,D = eVS,D. The current I = GVSD = G(VS −VD) flowing through the device,
where G its conductance, is determined in the Landauer-Büttiker theory of transport developed in
Chap. 2.

constant width, along which the (in-plane) transversal potential profile does not vary, the
system is referred to as a quasi-1D ‘quantum wire’ and is of particular conceptual impor-
tance in transport theory, as we will see in the following. Further confining the 2DES in all
directions creates a quasi-0D ‘quantum dot’ of controllable geometry, whose quasi-bound
levels typically mediate resonant transport, and also multiply connected (ring-shaped) sys-
tems can be formed which provide spatially separated pathways for the electronic motion.
Finally, elements such as the above can be connected into arrays and lattices, adding to the
plethora of transport structures which can be fabricated.

1.2.2 Mesoscopic length scales

With the fabrication techniques described above, the 2DES can be confined to regions of size
as small as tenths of nanometers, and so the created devices are called ‘nanoelectronic’. At
such system sizes, electronic behavior can thus no longer be described by assigning macro-
scopic material (bulk) properties; at the same time, the devices are formed over lengths con-
siderably larger than the material lattice constant and cannot be treated at the microscopic
level of isolated atoms or molecules. They therefore belong to an intermediate, mesoscopic
regime, where quantum effects drastically enter the description of electronic transport. Two
length scales of fundamental importance for the transport properties of a mesoscopic system
are the elastic and inelastic mean free paths of electrons.

The elastic mean free path
le = vFτe (1.9)

is the average length an electron travels at Fermi velocity vF = h̄kF/m∗ =
√

2EF/m∗ before
being elastically scattered, e.g., by a (static) potential of (remote) impurities, within a scat-
tering time τe. The latter can be found from the mobility µ = eτe/m∗ of a sample, which
in turn depends on the charge density of the 2D electron gas at a particular heterojunction,
and yields the diffusion constant D = v2

Fτe/d = vFle/d in d dimensions. Irrespective of its
strength, static potential disorder does not break the phase coherence of the electronic wave
function, leading to sample-specific (reproducible) quantum interference effects. It imposes,
however, limitations on the controllability of transport in a designed confinement poten-
tial, since the randomly (though coherently) scattered waves lead to substantial quantum
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fluctuations in measured quantities as system parameters are varied, such as the so-called
universal conductance fluctuations [118].

The inelastic mean free path
lin = vFτϕ (1.10)

is the length an electron travels during the phase-breaking time τϕ, the mean time between
consecutive dephasing events, without being elastically scattered, and can be combined with
le into the phase coherence (Thouless) length

lϕ =
√

Dτϕ =
√

linle. (1.11)

Such are the inelastic scattering of electrons with lattice phonons or with other electrons,
upon which the phase coherence of the scattered electron is lost, other processes which
entangle the electronic states with the environment, or even scattering in an applied time-
dependent potential which in general also breaks coherence.2 The inelastic and phase co-
herence lengths are thus not universally determined for a (doped) material, but depend
basically on the properties of a particular setup. They also decrease with increasing temper-
ature, usually being of the order of a few µm at about 1 Kelvin, but can also be made larger
in a high-mobility 2DES (e.g., lin = 5µm and lϕ = 1.62µm at a GaAs/AlGaAs heterojunction
with mobility µ = 105cm2/Vs [118]).

For a typical mesoscopic semiconductor, the characteristic length scales are typically
related as

le < lϕ < lin (1.12)

at low temperatures [128].
If the size L (the maximal lateral length) of mesoscopic device designed on a heterostruc-

ture is smaller than the phase coherence length (or inelastic mean free path), L < lϕ (lin), then
the wave function in a single electron picture remains coherent during scattering within the
confining potential V(r). This gives rise to observable interference phenomena and thereby
a manifestation of the quantum mechanical nature of electronic transport. With the fabrica-
tion techniques outlined above (modulation-doped heterostructures), mesoscopic transport
systems can be realized where also the remote impurity potential becomes negligible in the
plane of the 2DES, so that also the elastic mean free path exceeds the system size even at
small Fermi wavelength λF = 2π/kF. Under such circumstances we thus have

λ < L < le, lϕ (1.13)

and transport is said to be ballistic [128], with the electron waves in the 2DES scattered only
by the boundaries of the confining potential (and not in the bulk of the device). This is the
regime we will consider primarily here, with an investigation of the impact of disorder in
Chap. 5.

The potential used to simulate such ballistic transport devices is usually chosen uni-
form (zero) within a 2D region of certain geometry, and the model systems are coined
open quantum billiards, in resemblance of particle billiards used to study classical dynam-
ics. In this spirit, treating the same system quantum mechanically has established evi-
dence of a quantum-to-classical ‘crossover’ [23, 27, 29] as well as signatures of ‘quantum
chaos’ [16, 32, 129]. Regarding electronic transport, the basic experimental probes of quan-
tum interference effects are the shape of the billiard (and the confining potential in general),
the positions of the terminal openings, the Fermi energy, and an externally applied magnetic
field [128], all of which affect the relative phases between propagating waves in the system.

2 Note that each type of inelastic scattering is generally characterized by a different dephasing time depend-
ing on the circumstances, with τφ determined from an average inelastic scattering rate [127].
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1.2. Coherent transport devices

1.2.3 Approximations to the Hamiltonian

The effective mass approximation, described above, remains valid if the 3D single-electron
envelope [130, 131] wave function Ψ(R) varies slowly over length scales of the size of the
unit lattice cell(s) of the heterostructure. For a heterostructure grown in the z-direction with
diagonal mass tensor M and spherical Fermi surface (as is the simple case for an [Al]GaAs
heterostructure), the conduction band electrons are then described by a time-independent
Schrödinger equation

HeffΨ(R) = E Ψ(R), (1.14)

governed by the effective single-particle Hamiltonian

Heff =
1

2m∗

[
h̄
i
∇r + eA(r)

]2

+
1
2

h̄
i

∂

∂z
1

m∗(z)
h̄
i

∂

∂z
+ Veff(R), (1.15)

where a magnetic vector potential A(r) has been included through the (in-plane) minimal-
coupling [132] canonical momentum

p = π + qe A = π − eA =
h̄
i
∇r, (1.16)

(π = p + eA ≡ mv being the kinetic momentum), to produce a perpendicular magnetic
field

B = ∇× A ⊥ r = (x, y). (1.17)

The effective mass is assumed to change only along the direction of growth (z) of the differ-
ent materials, acquiring the value m∗(z 6 0) ≡ m∗0 in the layer just below the heterojunction
(where the 2DES forms) with the corresponding kinetic operator allowing for current con-
servation along z [118].

The effective 3D potential

Veff(R) = EC(z) + Vimp(R) + Vdev(R) + Vint(R) (1.18)

is here taken to include:

(i) the conduction band edge profile EC(z) resulting from the sample growth,

(ii) the total potential Vimp(R) produced by any donor (or acceptor) impurity distribution
(screened in the region of the 2DES),

(iii) the effective potential Vdev(R) induced by metallic gates or surface charges at etched
edges of the transport device, used to confine the 2DES, and

(iv) a contribution Vint(R) from many-body interactions, as approximated by a self-
consistent Hartree potential or by density-functional theory [118].

In the vicinity 0 6 z 6 wJ of the 2DES at the heterojunction, we assume the total effective
potential to acquire a separable form for motion in the junction plane and normal to it,

Veff(r, wJ 6 z 6 0) = VJ(z) + V(r), (1.19)

where VJ(z) is the (approximately triangular) junction potential well trapping the 2DES and
V(r) is the lateral potential defining the 2D transport device setup.

Since we will primarily be studying the impact of the quantum billiard geometry at low
energies, we will further mostly assume billiards with ‘hard walls’, that is, a very steep
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Chapter 1. Electrons in mesoscopic low-dimensional systems

lateral potential change in Vdev(r, wJ 6 z 6 0) at the confining boundaries. The impact,
and advantages, of a ‘soft wall’ boundary will be investigated in Chap. 6. Experimentally,
current technology indeed allows for the fabrication of very sharp nanoelectronic device
patterns, with potential slope of several meV/nm [18–20], which can be tuned by additional
gates [18, 19].

To include the coupling of the electron spin, represented by the Pauli matrix vector σ, to
the magnetic field, a Zeeman term

Hσ = gLµBσ · B (1.20)

should be included, where gL is the effective Landé factor of the material [130, 133] and
µB = eh̄/2mc is the Bohr magneton, which shifts the energy levels of spin-up and spin-down
electrons (the z-component in the perpendicular field) by ± 1

2 gLµBB. Spin also couples to
the orbital motion of the electrons, which further shifts the energy bands and lifts band
degeneracies in the presence of inversion asymmetry in the (crystal or confining) potential,
even for B = 0. Spin-orbit coupling is therefore particularly relevant for the splitting of
heavy and light hole bands and thus for the impact of excitons on the optical properties of
low-dimensional heterostructures near band gaps [75]. For a 2DES in the xy-plane, spin-
orbit interaction is usually described by a Rashba Hamiltonian [134]

HSO = α(σ × k) · ẑ, (1.21)

where the coupling constant α depends on the heterostructure details [130]. The effect
can be tuned by external gates [135] and thus be used to study spin-dependent transport
[136–140]. Here, we will restrict ourselves to ‘spinless electrons’, thus neglecting the Zeeman
splitting and spin-orbit coupling terms in the Hamiltonian, which can be justified for not too
strong magnetic fields and highly symmetric structures with adjustable 2DES density [139],
respectively. Even in cases where this does not apply, however, the impact of spin coupling
is of secondary relevance to the particular aspects of transport controllability to be studied
in Chaps. 5–7: Specifically, our aim will be to control smooth (background) variations of
transport in varying Fermi energy, so that fine shifts (spin-dependent or not) of resonant
features are not expected to affect qualitatively the overall behavior.

1.3 Magnetoelectric subbands and transport channels

For energies within junction well, E < VJ(−wJ), the effective Schrödinger equation 1.14 for
the 2DES in a static setup simplifies to{

1
2m∗0

[
h̄
i
∇r + eA(r)

]2

+ V(r)− h̄2

2m∗0

∂2

∂z2 + VJ(z)

}
Ψ(R) = E Ψ(R), (1.22)

now with a single effective mass m∗0 and with a separable solution of the form

Ψ(R) = ψ(r)ζn(z), (1.23)

where ζn(z) is the n-th bound state wave function in the junction well corresponding to the
energy level εn, and ψ(r) is the scattering wave function of the lateral open transport system
(open billiard) with continuous in-plane wave vector k.

Approximating the junction by a triangular well (see Fig. 1.2(a)), that is, a linear potential
(VJ(z < 0) ∝ −z) emerging from a hard wall (VJ(z = 0) → ∞), the transversal solutions are
given by Airy functions [75, 141], sketched in Fig. 1.4 (b). These vanish at the z = 0 interface
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1.3. Magnetoelectric subbands and transport channels

and are, with increasing energy, increasingly localized towards the substrate bulk (more
negative z), into which they decay exponentially. In absence of the ‘device’ potential and for
weak impurity scattering at the 2DES plane, we can set V(r) = 0 in Eq. (1.19) to obtain, at
zero magnetic field, free-electron plane wave solutions ψ(r) = eir·k for the in-plane motion.
The energy is then given by

E = En,k = εn +
h̄2

2m∗0
k2, (Q2D) (1.24)

where εn are the Airy eigenenergies [141], whose level spacing reduces as energy increases
since the well widens (note that the energy is here offset to the band edge minimum, E0

C ≡ 0).
With a given (Fermi) energy E, an electron can now move in subbands corresponding to the
transversal energies with εn < E, with in-plane momentum magnitude h̄k =

√
2m∗0(E− εn)

in the n-th subband. The higher the transversal subband occupied, the lower the available
kinetic energy for in-plane motion. Since the junction well can be made relatively narrow,
its levels lie enough apart that only the first subband is occupied at low temperature and
Fermi energy, ε0 < E < ε1, and we arrive at the previous Eqs. (1.6) and (1.7).

In a similar manner, if the 2DES is further confined into a quantum wire (as described
in Sec. 1.2.1), say, along the x-axis, motion is quantized also laterally in the y-direction.
Considering a steep confining potential V(r) = Vw(x, y) in Eq. (1.22), we will assume, for
simplicity, an ideal quantum wire with hard walls separated by a width w,

Vw(x, y) = V0
w θ
(
|y| − w

2

)
=

{
0, |y| < w

2 (inside the wire)
V0

w, |y| > w
2 (otherwise)

, V0
w → ∞ (1.25)

where θ is the unit step (Heaviside) function. As explained later in Sec. 2.1, the infinite extent
of the wire in each longitudinal (±x) direction represents the connection of the transport
device to an electrode.

Under the boundary conditions imposed by this wire potential (vanishing wave function
at the planes y = ±w/2), the in-plane part of the total wave function can now be written

ψ(x, y) = χm(y)eikxx ≡ Φ(x, y), (1.26)

where

χm(y) =

√
2
w
×
{

cos(ky,my), m odd,
sin(ky,my), m even,

ky,m =
mπ

w
(1.27)

are the transversal modes of the quantum wire (in analogy to the modes of the electromag-
netic field in a light waveguide) with eigenenergies

Em =
h̄2

2m∗0
k2

y,m =
m2π2h̄2

2m∗0w2 , m = 1, 2, ... (1.28)

whose level spacing now increases with m. For the total energy we thus have

E = En,m,kx = εn + Em +
h̄2

2m∗0
k2

x, (Q1D) (1.29)

so that, for each subband n of the heterojunction well, we now have motion along the wire in
parabolic subbands m with longitudinal momentum h̄kx =

√
2m∗0(E− Em − εn), as shown

in Fig. 1.4. Considering the width of the wire to be larger than that of the heterojunction,
w > wJ , we can assume that the level spacing of the lowest levels is smaller for the wire
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Chapter 1. Electrons in mesoscopic low-dimensional systems

confinement, so that the energy can cover a number N of multiple wire-subbands within
the first junction-subband, ε0 < E1 < E2 < ... < EN < ε1.

The quantization of the 3D effectively-free-electron momentum into heterojunction and
QW subbands is schematically shown in Fig. 1.4. While the confinement at the heterojunc-
tion plane allows for the formation of the 2DES, the motion in the subbands of the QW
confinement provides the origin of transport channels and the associated quantization of con-
ductance in mesoscopic structures, as will be shown in Chap. 2.

Landau levels

For a homogeneous field B normal to the xy-plane, the vector potential can be chosen to be
of the form

A(x, y) = (ν− 1)By x̂ + νBx ŷ, (1.30)

where ν = 0 or 1 yields the Landau gauges A = (−By, 0, 0) or (0, Bx, 0) and ν = 1/2 yields
the symmetric gauge A = (−By/2, Bx/2, 0). Setting ν = 0, the stationary Schrödinger
equation for ψ(r) becomes{

h̄2

2m∗0

∂2

∂y2 +
1
2

m∗0ω2
c [y− yc]

2 + V(x, y)

}
ψ(x, y) = Eψ(x, y), (1.31)

where ωc = eB/m∗0 is the classical cyclotron frequency and

yc = −
px

qeB
=

h̄
ieB

∂

∂x
. (1.32)

In the absence of confinement, V(x, y) = 0, the Hamiltonian commutes with px and thus
has eigensolutions of the form

ψ(x, y) = χl(y)eikxx, (1.33)

where the χl(y) are now the eigenfunctions (a Gaussian function times Hermite polynomi-
als) of a harmonic oscillator shifted by yc = h̄kx/eB, which in turn is the (conserved) center
ordinate of a classical cyclotron orbit [71]. Consequently, the states arrange into infinitely
degenerate Landau levels with eigenenergies

El =

(
l − 1

2

)
h̄ωc, l = 1, 2, ... (1.34)

yielding zero group velocity, with the corresponding classical cyclotron radii being rl =

v/ωc =
√

2m∗0El/eB. The magnetic length `m = r0 =
√

h̄/eB is the radius of a disk enclosing
the magnetic flux quantum φ0 = h/e, and the degeneracy of the ground Landau level is
counted by the number of such disks resulting in flux density B for a given area of the
2DES.

Edge states

In the presence of a QW confinement along the x-axis, V(r) = V(y), the longitudinal mo-
mentum h̄kx (and thus the cyclotron center ordinate yc) is still conserved under the chosen
gauge ν = 0 in Eq. (1.30), but the degeneracy of the Landau levels is lifted and Q1D mag-
netoelectric subbands form. This is seen analytically [142, 143] for a harmonic confinement
potential V(y) = m∗0ω2y2/2, which can be combined with the magnetic one into an oscilla-
tor potential with hybrid frequency ω̃ =

√
ω2 + ω2

c , such that a continuous term is added
to the total energy [118],

E = En,l,kx = εn + Ẽl +
h̄2

2m̃∗
k2

x, l = 1, 2, ..., (1.35)
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Figure 1.4: Energy quantization into subbands. (a) Energy (blue lines) and momentum (red lines)
quantization for simultaneous confinement in a triangular junction well VJ(z) and a square quantum
wire well Vw(y), respectively. For a given energy, the motion of a state in the first level ε0 of VJ(z) is
further quantized in the y-direction, with allowed values of k along the red lines. (b) Energy levels
and wavefunctions of VJ(z) (top), corresponding subbands of in-plane motion (middle) and density
of states (bottom). (c) Energy levels and wavefunctions of Vw(y) (top), corresponding subbands of
motion along x (middle) and density of states (bottom), where the shown energy range is assumed
to lie within the first subband of the z-confinement.

in similarity to Eq. (1.29) but with magnetically defined band thresholds through Ẽl = (l −
1/2)h̄ω̃, and with rescaled effective mass m̃∗ = m∗0(ω̃/ω)2 and cyclotron center ordinate
ỹc = ycωc/ω̃. Note that, for a given field strength B and energy E, states with larger |kx| are
transversally localized (as approximated by their cyclotron center ordinate) closer the edges
of the wire, with positive (negative) group velocity vn,l = h̄kx/m̃∗ = ±[2(E− εn− Ẽl)/m̃∗]1/2

at the upper (lower) border, since yc ∝ kx.
These edge states are more clearly visualized in association to their classical counter-

parts in a hard-wall QW potential, Eq. (1.25), where reflection is specular at the bound-
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h̄ωc
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Figure 1.5: Energy dispersion with magnetoelectric subbands for a hard-wall quantum wire of width
w in a magnetic field corresponding to cyclotron frequency ωc (right), and selected traversing (1),
skipping (2) and cyclotron (3) classical trajectories with guiding centers yc = px/eB corresponding
to points in the dispersion subbands. Right- and left-moving skipping orbits (corresponding to edge
states) lie within the upper and lower parabolas 2m∗0 E = [eB(yc ∓ w/2)]2 [71], with cyclotron orbits
between them and traversing orbits in their overlap.

aries. The dispersion can here be found numerically [118] and is sketched in Fig. 1.5 for a
relatively strong field together with characteristic classical trajectories. The bands are no
longer parabolic: The lower the band, the more it tends to flatten in the bulk (around
the axis) of the wire, so that these states have vanishing group velocity. Closer to the
wire edges, the bands bend upwards and the associated states thus propagate in oppo-
site x-directions on opposite edges. Edge states correspond to classical skipping orbits with
w/2− |yc| < rl < w/2 + |yc|, bulk-confined states (with no contribution to transport) to cy-
clotron orbits with rl < w/2− |yc|, and transversally extended states to traversing trajectories
with rl > w/2 + |yc|.

1.4 Density of states

Apart from the reduction and controllability of scattering processes in the 2DES (compared
to 3D systems), its lower dimensionality also simplifies the observation and description
of quantum effects in electron transport due to its modified density of states (DOS). The
DOS in energy, N (E), is a simple property characterized by the dimensionality of a system,
and provides information about the distribution of states, even when details of the states
themselves and their energy levels are unknown. It is determined by the number of states
N (E)dE available in the energy interval from E to E+ dE, and can thus be generally defined
as a sum

N (E) = ∑
n

δ(E− En) (1.36)

on the levels En of any system, which is converted to an integral for (quasi-) continuous
spectra. In the case of a band structure En(K), the sum runs over all crystal momenta h̄K
and all bands n as well as eventual band and spin degeneracies.

To obtain the DOS per unit volume, D(E), states can be counted first in d-dimensional
K-space, the wave vectors being quantized by imposed (periodic) boundary conditions on a
box, and then transformed to a DOS in energy through the system’s dispersion relation. This
gives a density Dd(K) = 2/(2π)d per unit (length)d in K-space, where the factor 2 accounts
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1.4. Density of states

for electronic spin degeneracy. For a ‘truly’ free-electron dispersion relation E = h̄2

2m∗ ∑d
i=1 k2

i ,
the DOS in energy E > 0 per unit volume becomes [75]

D1(E) =
1

πh̄

√
2m∗

E
, D2(E) =

m∗

πh̄2 , D3(E) =
m∗

π2h̄3

√
2m∗E (1.37)

for d = 1, 2, 3 dimensions, respectively. Here, the 1/
√

E divergence of the 1D density as
well as the constancy of the 2D density are to be noted, which have important implications
for the theory of transport to be developed. A common feature in all dimensions is that the
density increases with the effective mass m∗.

For the confined Q1D and Q2D systems discussed previously, the dimensional charac-
teristics in Eq. (1.37) are repeated in each subband. Inserting the corresponding dispersions,
Eqs. (1.29), (1.24), into the defining Eq. (1.36) and integrating over the wave vectors (times 2
for spin, and accounting for both positive and negative kx in Q1D), we obtain, respectively,

DQ1D(E) =
m∗0
πh̄2

√
2h̄2

m∗0
∑
n,m

θ(E− εn − Em)√
E− εn − Em

, DQ2D(E) =
m∗0
πh̄2 ∑

n
θ(E− εn). (1.38)

The density thus increases stepwise for each populated subband of the unconfined 2DES,
and with subband threshold divergencies (which are attenuated under more realistic condi-
tions) for the ideal QW confinement.

In the presence of a magnetic field, the unconfined 2DES of (piecewise) constant DOS
condenses into the discrete Landau levels, each level l populated by all states between El ±
h̄ωc/2, so that the Fermi level is discontinuously (for an ideal 2DES) pinned to the successive
lower Landau levels with increasing field B to keep the number of electrons constant [75]. In
the Q1D confinement, the density behaves like DQ1D(E) above, though with magnetoelectric
subband thresholds.

Charge density

The density of electrons in energy and space of a system at chemical potential µ is obtained
by multiplying the DOS with the probability density for an electron to occupy a state of
energy E at temperature Θ, given by the Fermi-Dirac distribution (or occupation) function,

f (E; µ, Θ) =

[
1 + exp

(
E− µ

kBΘ

)]−1

, (1.39)

where kB is Boltzmann’s constant. Integrated over all available energies, the spatial elec-
tronic density for a homogeneous system (with a spatially invariant D) is thus defined as

n(µ) =
∫

E
dE D(E) f (E; µ, Θ), (1.40)

where, for the conduction electrons relevant here, the lower limit of integration is set to the
bottom EC of the conduction band. In the case of a 2DEG, we insert DQ2D into Eq. (1.40) to
obtain

nQ2D(µ) = ∑
n

ni(µ) =
m∗0
πh̄2 kBΘ ∑

i
ln
[

1 + exp
(

µ− εi

kBΘ

)]
, (1.41)

where nn is the charge carrier density in the n-th subband of the heterojunction confinement
and energies are offset to EC.

In the limit of zero temperature, the Fermi-Dirac distribution approaches a step function
at µ,

f (E; µ, Θ→ 0)→ θ(µ− E), (1.42)
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meaning that, at very low temperatures, only states close to the Fermi level can contribute to
dynamical phenomena such as transport, since all other states are either completely empty
or completely occupied, and the electron gas is referred to as ‘degenerate’. The electron
density is then practically given by integrating up to µ in Eq. (1.40), or, alternatively, taking
the limit Θ→ 0 in Eq. (1.41)), which yields

nQ2D(µ) = ∑
i

ni(µ)|Θ→0 =
m∗0
πh̄2 ∑

i
(µ− εi)θ(µ− εi). (1.43)

Further, in the so called ‘quantum limit’ of low electronic energy, to which we will restrict
ourselves here, only the first subband i = 1 is populated, which yields a density directly
proportional to the Fermi energy EF = µ− ε1,

nQ2D = n2D = n1(µ, Θ→ 0) =
m∗0
πh̄2 EF =

k2
F

2π
, (1.44)

that is, the 2D density 2/(2π)2 in k-space times the area πk2
F of the Fermi surface (a circle in

2D). Note here that, since the electron density normally does not vary with temperature [75],
Eq. (1.41) for the first subband (i = 1) can be divided by Eq. (1.44) to give a temperature
dependence of the chemical potential,

µ(Θ) = ε1 + ln
[

exp
(

ΘF

Θ

)
− 1
]

, (1.45)

where ΘF = EF/kB is the Fermi temperature, so that EF ≡ µ(Θ)− ε1. This dependence of
µ is negligible, however, for the low temperatures Θ � ΘF which establish the degenerate
2DEG.
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2
Coherent electronic transport:
Landauer-Büttiker formalism

Having described the transverse quantization of motion into subbands in low-dimensional
mesoscopic systems, we will now see how these are utilized to describe coherent transport
through devices like quantum billiards within the effective independent-electron picture.
This is done within the Landauer-Büttiker theory of transport in multiterminal structures,
which relates the scattering matrix of the system to its electrical conductance. After present-
ing the general framework, we focus on the linear response regime of transport.

2.1 Leads and reservoirs

In order to cause the electrons of a 2DES to flow through a designed transport device, a
bias voltage VSD is applied between a source and a drain electrode attached to it through
metallic contacts. The contacts are typically attached to regions of the 2DES which extend
spatially beyond the mean free path and, more importantly, the coherence length of the
electrons, and connected to the actively coherent (and ballistic) region of the device–in our
case a quantum billiard structure–via constrictions in the form of quantum point contacts,
the terminals. Any phase relation between distant points during scattering within the device
is thus completely lost upon exiting through one of the device terminals, and the contacts
are thus said to be ‘decohering’. Since inelastic scattering takes place in the contact regions,
energy can be redistributed among the charge carriers, allowing for dissipation of the power
generated by a flowing current.

In the state of current flow, the total system is not in equilibrium, and therefore no true
Fermi level can be assigned to it. However, if the applied bias voltage VSD is small enough,
the system is not driven strongly out of equilibrium, and local quasi-Fermi levels [75] µS and
µD can be assigned to the source and drain reservoirs, respectively, energetically separated
by the potential energy due to the bias,

µS − µD = eVSD. (2.1)

Recall that we define the electron charge as qe = −e < 0, so that a positive voltage on the
drain lowers the electronic energy by −eV. The quasi-Fermi levels themselves depend on
the local charge concentration and on the temperature Θ, but for the weak deviations from
equilibrium and low temperatures we will be considering, it is commonly assumed that
the electrons provided by each reservoir for transport through the device are distributed
according to a corresponding Fermi-Dirac occupation function,

fp(E; Θ) ≡ f (E; µp, Θ), p = S, D. (2.2)
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Electrons that arrive at or emerge from the terminals are thus statistically distributed in
the Fermi sea of available electronic levels. Therefore, the contact regions can be thought
of as electron reservoirs releasing or accepting electrons without practically affecting the lo-
cal chemical potentials µp. Electrons entering a contact region from the side of the device
through the connecting terminal cannot be coherently re-entered (backscattered) into the de-
vice, but are rather absorbed by the Fermi sea in the reservoir. For an individual electron,
the situation would be equivalent if the terminal were connected to a still perfectly coher-
ent contact, but in the form of a ideal quantum wire extending to infinity, a semi-infinite
lead. The connection of a general multiterminal transport device to electron reservoirs can
therefore be represented by attaching an equal number of such semi-infinite leads, each
lead p lying at a Fermi level µp, as shown in Fig. 2.1 (a), with energies occupied according
to fp(E; Θ). In dependence of the width of the terminal constriction wp, the representing

lead supports propagation in corresponding (magnetoelectric) subbands E(p)
m (kx), where the

x-axis is locally aligned along each lead.

2.2 Scattering matrix and transmission function

With leads representing the connection to electron reservoirs, which in turn correspond to
the attached (biased) electrodes, the open 2D cavity of the transport device alone can now be
treated as a scattering system: Electron waves incident in one of the leads enter the cavity,
scatter off the 2D confining potential and are transmitted into other leads or reflected into
the same lead, as shown in Fig. 2.1 (b).

2.2.1 Lead eigenmodes

Supplying each lead p with an in-plane coordinate system (xp, yp), in the asymptotic region
xp → ∞ of the p-th lead the scattering wave function ψ(r) at energy E can be written as

ψ(xp, yp) =
Np

∑
m=1

∑
s=+,−

a(p)
m,sΦ

(p)
m,s(xp, yp), xp → ∞ (2.3)

with the lead eigenfunctions now defined as

Φ
(p)
m,s(xp, yp) =

ϕ
(p)
m (yp)√

v(p)
m

eisk(p)
x,mxp , s = +,− (2.4)

where v(p)
m = h̄k(p)

x,m/me (we will denote the in-plane effective mass by me from here on) is
the longitudinal velocity in the m-th channel of the lead with transverse wave function ϕ

(p)
m ,

and the sign s = + (−) denotes propagation outwards (inwards) within the lead.
The lead eigenstates are now flux normalized [144, 145] with respect to the longitudinal

motion along xp,

〈Φ(q)
n,s′(E′)|Φ(p)

m,s(E)〉 = δqpδnmδs′sδ(E′ − E), (2.5)

so that the probability current carried by a mode with unit amplitude is simply

ĵ(p)
m,s = s x̂p, (2.6)

independent of the channel momentum h̄k(p)
x,m.
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µ1

µ2

µ3

a b

SV(r)

xp

yp

Figure 2.1: Sketch of a three-terminal transport device. (a) The gate-induced confinement potential
separates the 2DEG in the device region from electrodes at local quasi-Fermi levels µ1,2,3, which cor-
respond to decohering electron reservoirs. (b) The device is modeled by a quantum billiard attached
(at the dotted lines) to straight semi-infinite leads of widths corresponding to the constrictions in the
device. An incoming wave (here from lead 3) is scattered via the S-matrix of the system outwards
into all channels of all leads.

For simplicity, we will assume ‘flat’ leads of widths wp with zero (infinite) potential in-
side (outside), as described by the ideal QW potential (1.25) along x = xp, so that the corre-

sponding transversal wave functions ϕ
(p)
m (yp) and energy levels E(p)

m are given by Eqs. (1.27)
and (1.28). The modes m are summed up to the total number of open channels in the lead

Np(E) = ∑
m

θ
(

E− E(p)
m

)
= int

[
k̃p(E)

]
, (2.7)

where the scaled momentum k̃p = wpk/π (for the flat leads considered) serves as a continu-
ous channel number for lead p. Note here that the energy is offset to the zero-point energy
of the Q2D confinement of the 2DES above the conduction band minimum at z = 0, that is,
we set ε0 ≡ 0 in Eq. (1.29). Higher channels with m > Np are closed for propagation since the

longitudinal wavenumber in that case becomes imaginary, k(p)
x,m = ±i|κ(p)

x,m|; the correspond-
ing (physically allowed) solutions, called evanescent modes, decay exponentially as xp → ∞
and are therefore not included in the asymptotic expansion (2.3).

2.2.2 Transmission amplitudes and coefficients

It is the linearity of the (effective) Schrödinger equation that allows for its general solution
to be written in the form of the superposition (2.3), and the amplitudes a(p)

m,s, which will
generally vary among different leads and modes, are thus linearly interrelated in the basis
{|Φ(p)

m,s〉} of the eigenchannels. In a transport setting, it is natural to treat the electrons
coming out from the device at a given energy E as the response of the system to those
injected, on which one usually has an experimental handle. Accordingly, the amplitudes
of outwards scattered states |Φ(p)

m,+〉 in all leads p = 1, 2, ..., NL are expressed as a linear

combination of the ingoing ones |Φ(p)
m,−〉 through a square scattering matrix S of dimension

NS = ∑NL
p=1 Np,

~a+(E) = S(E)~a−(E), (2.8)
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where the NS × 1 column ‘vectors’ ~a± collect all in- and outgoing amplitudes,

~as =


a(1)

s

a(2)
s
...

a(NL)
s

 , a(p)
s =


a(p)

1,s

a(p)
2,s
...

a(p)
Np,s

 , s = +,−. (2.9)

Denoting by |ψ(p)
n,+〉 the scattering state with ingoing wave only in mode n of lead p and

scattered outgoing waves in all leads and modes, and by |ψ(p)
n,−〉 the time reversed state, with

outgoing wave only in mode n of lead p and ingoing in all leads and modes, the (energetically
‘on-shell’) scattering matrix (S-matrix) elements can be expressed as the projection [128]

〈ψ(q)
n,−(E′)|ψ(p)

m,+(E)〉 = Snm
qp δ(E′ − E), (2.10)

and the asymptotic (xq → ∞) wave function in lead q of a scattering state |ψ(p)
m,s〉 at energy E

is

ψ
(p)
m,s(xq, yq) = δqpΦ

(q)
m,−s(xq, yq) +

Nq

∑
n=1
Snm

qp Φ
(q)
n,s (xq, yq), s = +,−. (2.11)

In other words, Snm
qp represents the probability amplitude to scatter from ingoing mode m in

lead p into outgoing mode n in lead q at a given energy E. This becomes evident in terms
of the probability flux

j(p) =
Np

∑
n=1

(j(p)
n,+ + j(p)

n,−) =
Np

∑
n=1

(|a(p)
n,+|2 − |a

(p)
n,−|2)x̂p, (2.12)

of the asymptotic state (2.3): The probability of an ingoing flux in (lead,mode)= (p, m) to
transmit into (lead,mode)= (q, n) is given by the partial transmission coefficient

Tnm
qp =

|jq
n,+|
|jp

m,−|
=
|aq

n,+|2

|ap
m,+|2

= |Snm
qp |2. (2.13)

The total transmission coefficient, or transmission function Tqp(E), from lead p to lead q is
obtained by summing over all channels,

Tqp ≡∑
n

∑
m

Tnm
qp = Tr[ Sqp

† Sqp ], (2.14)

where Sqp is the sub-matrix of S connecting the mode amplitudes of leads p and q.

Unitarity

Each of the two sets of scattering states {|ψ(p)
m,s〉} with s = +,− (the ‘physical’ one with

outgoing scattered waves, s = +, being more closely connected to experiment), forms a
complete orthonormal basis [144, 146, 147], and are therefore connected by a unitary trans-
formation. The connection is given by Eq. (2.10), which means that the total S-matrix is
unitary,

S†S = INS . (2.15)

This is also seen from a more physical perspective in terms of the probability flux through
the system. Indeed, unitarity of S ensures the conservation flux, as seen directly from
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Eq. (2.8): The total ingoing flux is given by ‖~a−‖2 = ~a†
−~a−, and this norm is preserved

under the transformation,

∑
p

∑
n
|jq

n,+| = ‖~a+‖2 = S†S‖~a−‖2 = ‖~a−‖2 = ∑
q

∑
n
|jq

n,−|, (2.16)

only if Eq. (2.15) holds, so that the outgoing flux equals the ingoing one.
Choosing a particular mode m in a lead p, the unitarity of S implies that its partial

transmission coefficients to all modes in all leads, but also conversely, the coefficients from
all leads and modes to the chosen one, will add to unity,

∑
q

∑
n

Tnm
qp = ∑

q
∑
n

Tmn
pq = 1 ∀ m, p. (2.17)

Summing over all open channels m = 1, 2, ..., Np in lead p (assuming that Np 6 Nq), this
leads to the sum rule

∑
q

Tqp(E) = ∑
q

Tpq(E) = Np(E) (2.18)

for the transmission functions of a multiterminal setup at energy E.

Symmetry

In the absence of a magnetic field and assuming a real, static potential, the Hamiltonian of
the system is time-reversal invariant, that is, it commutes with the anti-unitary operator T
of time reversal. In a stationary picture, and disregarding the electron spin, the operation of
T reduces to complex conjugation [148]. With application of T on an asymptotic scattering
state, we can use Eq. (2.10) to get [149]

Snm
qp = 〈ψ(q)

n,−|ψ
(p)
m,+〉 = 〈T ψ

(q)
n,−|T ψ

(p)
m,+〉∗ = 〈ψ

(p)
m,−|ψ

(q)
n,+〉 = Smn

pq , (2.19)

meaning that the S-matrix is, apart from unitary, also symmetric,

S> = S . (2.20)

To see this from the amplitudes in Eq. (2.8), we notice that, if the Hamiltonian obeys time re-
versal invariance, then the complex conjugate of a scattering state solution with asymptotics
(2.3) will be a solution of the same Schrödinger equation at the same energy. Its (modified)
in- and outgoing asymptotic amplitudes will thereby be connected by the same S-matrix,
yielding (by use of Eq. (2.8))

~a∗− = S~a∗+ ⇒ ~a+ = [S∗]−1~a− ⇒ S∗S = I , (2.21)

which, combined with Eq. (2.15), leads to the symmetry of S , Eq. (2.20).
Time-reversal invariance is broken in the presence of an external magnetic field B, since

the Hamiltonian (in general) becomes complex by the coupling of the magnetic vector po-
tential with the momentum operator; this breaking is evident classically, where the Lorentz
force deflects oppositely moving charges in opposite directions. However, one can aptly
argue that, since any magnetic field is itself produced by moving charges, its direction
would also be reversed under time reversal. Thus, following the considerations leading to
Eq. (2.21), we now have S∗(−B)S(B) = I , which, since the unitarity condition still applies,
S†(B)S(B) = I , leads to the reciprocity relation

Snm
qp (B) = Smn

pq (−B) (2.22)
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Chapter 2. Coherent electronic transport: Landauer-Büttiker formalism

for the S-matrix [2,150], which is related to the principle of microscopic reversibility [151]. In
fact, relation (2.22) follows directly from the Schrödinger equation (1.22) by considering the
scattering eigenstates in Eq. (2.10): the complex conjugate of a state |ψ(p)

m,s〉 is an eigenstate
of the same Hamiltonian at the same energy but with the vector potential (and thereby also
the magnetic field) reversed, that is A→ −A in Eq. (1.22).

2.2.3 Connected scatterers

We now consider the case where two scatterers S1 and S2, described by the S-matrices S (1)
and S (2), respectively, are connected through a number of leads, such that each connection
lead of S1 is prolonged into a connection lead of S2 of equal width (in other words, no
additional scattering is caused within the connected leads). This is illustrated in Fig. 2.2 for
a single connection lead. To find the total S-matrix of the connected system in terms of S (1)
and S (2), we regroup the lead amplitudes, in- and outgoing (s = ±), of the total system of
both scatterers before being connected into those in the lead(s) to be connected,~ac, and those
in the leads that remain unconnected, ~au, and partition the total (unconnected) S-matrix S◦
accordingly,

~a+ = S◦~a− ; ~as =

(
~au

s
~ac

s

)
, S◦ =

(
S◦uu S◦uc
S◦cu S◦cc

)
, s = +,−. (2.23)

The u- and c-blocks of the total S-matrix of the unconnected system are in turn block-
diagonal in the two scatterers, connecting only ingoing to outgoing amplitudes of the same
scatterer 1 or 2,

~al
s =

(
~al

s,1
~al

s,2

)
, S◦kl =

(
S (1)kl 0

0 S (2)kl

)
, k, l = u, c. (2.24)

When the scatterers are connected, the outgoing amplitudes ~ac
+,1 of S1 are coupled to the

ingoing amplitudes ~ac
−,2 of S2, and similarly ~ac

−,1 to ~ac
+,2, by a connection matrix C which is

block-antidiagonal in the scatterers,

~ac
+ = C~ac

− ; C =
(

0 C12

C†
12 0

)
= C−1, C12 = diag

(
eiδ(p)

n
)

, (2.25)

where the block C12 is a diagonal matrix (for appropriate numbering of the connection
leads p) containing phase shifts for each channel n which depend on the length of the
connection lead(s), the longitudinal channel momenta, as well as on any applied magnetic
vector potential.

Inserting the connection condition (2.25) into Eq. (2.23) yields a system of equations,(
~au
+

C~ac
−

)
=

(
S◦uu S◦uc
S◦cu S◦cc

)(
~au
−

~ac
−

)
, (2.26)

from which the amplitudes~ac
− in the connected lead(s) can be eliminated, in order to directly

relate the amplitudes ~au
± in the unconnected leads. We finally obtain

~au
+ = Suu~au

−, (2.27)

where
Suu = S◦uu + S◦uc[C − S◦cc]

−1S◦cu = S◦uu + S◦ucRS◦cu (2.28)

is the desired S-matrix of the connected system, of the dimension of the unconnected part
of S◦. We see that the connection between the scatterers acts as a ‘perturbation’ on the
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S (1)

S (2)

Figure 2.2: Two three-terminal scatterers with individual scattering matrices S (1) and S (2) connected
via single lead. An incoming wave in one of the unconnected (outer) leads is scattered via the total
scattering matrix Suu of Eq. (2.28) into all unconnected leads, with multiple reflections taking place
within the connected (inner) lead.

original S-matrix, by contributing additional scattering ‘paths’ for incoming waves: They
can either scatter directly to the outgoing leads, as represented by S◦uu, or they can scatter to
the connection leads (through S◦uc), where they are multiply reflected (as expressed by S◦cc),
to finally be scattered back to the outgoing leads (through Sca). The multiple reflection in
the connection region is more intuitively illustrated by writing the matrix R in Eq. (2.28) in
its power series representation (recall that C2 = I),

R = [C − S◦cc]
−1 = C[I − S◦ccC]−1 = C

{
I +

∞

∑
n=1

[S◦ccC]n
}

, (2.29)

where successive terms contribute scattering ‘paths’ with increasing number of reflections
within the connection, picking up the channel phases of C upon each reflection.

The general form (2.28) for connected scatterers will be encountered once more when we
treat the complete (as opposed to asymptotic) scattering problem computationally in Chap. 4
(and in particular Sec. 4.5), with the S-matrix replaced by the resolvent (Green function) of
the Hamiltonian. It should be noted here that the connected S-matrix (2.28) is approxi-
mative, since the individual matrices S (1) and S (2) have been defined here asymptotically,
for open channels only. For short enough connection leads, evanescent modes of closed
channels decaying from one scatterer can still have substantial amplitude when reaching
the other scatterer and ‘leak’ into it, thereby contributing to the scattering and in the con-
nected system. Moreover, evanescent modes from two scatterers decaying into a common
connecting lead can ‘interfere’ into a contribution to the total current.1

1 Consider, for example, an open (1) and a closed (2) channel in a lead segment (along x and around x = 0)
connecting two scatterers, where the wave function can be written as

ψ = ψ1 + ψ2 ; ψ1 = χ1(aeikx + be−ikx), ψ1 = χ2(ce−κx + deκx), k, κ > 0,

χ1 and χ2 being the corresponding orthonormal transversal modes. The exponentially increasing part is here
physical because of the finite extent of the segment, and originates from the state decaying into it from the right.
In contrast to the probability density, where the counterpropagating waves interfere while the decaying modes
do not, the total current density consists of an incoherent sum of the propagating mode currents and a coherent
combination 2Im(cd∗)κ from the decaying modes,

j ∝ (|a| − |b|)k + (cd∗ − d∗c)iκ,

which separate upon the y-integration over the orthonormal transversal wave functions. Thus, unless cd∗

happens to be real, there is a contribution to transport from the closed channels between the scatterers.
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Chapter 2. Coherent electronic transport: Landauer-Büttiker formalism

As becomes clear in Sec. 3.2.2, S-matrix can be generalized naturally to include evanes-
cent modes [14, 128] from the projection of the system’s propagator (Green function) onto
eigenstates of closed channels. We will not make explicit use of this version here, but treat
connected scatterers directly and uniformly within the Green function approach, Sec. 4.5. In
this framework the total S-matrix, and thus (multiterminal) transmission function, will be
determined for an arbitrary device potential.

2.2.4 Two-terminal system

For a device with NL = 2 leads, which we take to be identical supporting equal number
of open channels N1 = N2 = N(E) at a given energy E, the lead state amplitudes ~a± are
connected by the unitary and symmetric two-terminal S-matrix

S =

(
S11 S12

S21 S22

)
=

(
r t
t r′

)
, (2.30)

partitioned into four N × N matrices containing the transmission amplitudes (t) to scatter
between the modes of different leads and reflection amplitudes to scatter from the modes
of lead 1 (r) or lead 2 (r′) back to the same lead. Due to the unitarity of S (conservation of
probability flux), Eq. (2.15), the transmission function (2.14),

T(E) = T12(E) = T21(E) = Tr[t†(E)t(E)], (2.31)

adds up with the total reflection to the number of open channels,

T(E) + R(E) = N(E), (2.32)

where R = T11 = T22 = Tr[r†r] = Tr[(r′)†r′].
In the presence of a magnetic field, the reciprocity relation (2.22) for two attached leads

together with the unitarity condition (2.32) leads to a total transmission from lead 1 to lead
2

T21(B) = N − T11(B) = N − T11(−B) = T21(−B) = T12(B), (2.33)

that is, equal to the transmission from 2 to 1. In a two-terminal setup the symmetry of
the transmission coefficient in Eq. (2.31) is thus preserved even when a magnetic field breaks
time-reversal invariance an thereby also the symmetry of the S-matrix. Alternatively, trans-
mission is independent of the sign (direction along a fixed axis) of the field, regardless of
the geometrical symmetry of the confining potential.

This symmetry might seem counterintuitive in terms of the classical dynamics of a
charged particle deflected by a magnetic field within an arbitrary confinement (asymmet-
ric with respect to the two lead positions), since the (ballistic) trajectories would in general
be completely different for opposite fields. However, note that each reflected trajectory (re-
turning to the incoming lead) coincides with a time-reversed reflected trajectory at opposite
field [152]. Baring in mind that R expresses a probability of reflection, it corresponds to a
sum over all possible reflected trajectories in the classical counterpart (supplied with phases
in a semiclassical treatment), thus yielding the symmetry of R (and of T by particle con-
servation) in B-field. Further, the two-terminal magnetic symmetry of transmission relies
on the (coherent) single-particle picture employed, and is generally broken by the effects of
many-body interactions [152].

2.3 Two-terminal Landauer formula

We now derive the relation between electrical current and transmission for two electrodes
connected to the device, and examine the cases of low temperature and applied bias.

32



2.3. Two-terminal Landauer formula

2.3.1 General case of coherent transport

Considering a two-terminal setup, the electronic current I flowing through the device under
a small (positive) bias voltage VSD applied between source and drain contacts will be equal,
due to charge conservation, to the net current IS traversing the source terminal of the device.
This will in turn consist of the net current Iin flowing inwards from the source terminal to
the device, minus the current Iout flowing outwards from the device to the source terminal
and originating from the drain contact,

I = IS = Iin − Iout. (2.34)

We here assume that the voltage drop VSD is measured at the contacts between which the
current I flows (a two-terminal measurement), and further, that no scattering occurs between
the contacts and the terminals, so that the leads attached to the device lie at the chemical
potentials (quasi-Fermi levels) µS and µD of the source and drain reservoirs.

The ingoing current per unit energy consists of the electrons in all open channels
m = 1, 2, ..., NS(E) of the Q1D source lead with partial (per channel and direction) state
densities DQ1D,m(E) and occupation weight fS(E) (given in Eq. (1.39)) which move inwards
(thus 1/2 of the total states) with velocities vS

m(E) without being reflected into the lead (with
probability Rmn into channel m). Since the electrons originate from the thermalizing (deco-
hering) contacts, each contribution is added incoherently, and integration over energy gives

Iin = e
∫ ∞

0
dE fS(E)

NS

∑
m=1

DS
Q1D,m(E)vS

m(E)

(
1−

NS

∑
n=1

Rnm
SS (E)

)
, (2.35)

where the sign of the charge −e is dropped with the convention that the direction of current
is opposite to the motion of electrons. For brevity, the lower limit of integration is set to 0,
though only energies E > E0

C + ε0 (above the ground state of the junction confinement) con-
tribute. Similarly, the outgoing current is given by the states m of the drain lead transmitted
to the source (with probability Tnm into channel n),

Iout = e
∫ ∞

0
dE fD(E)

ND

∑
m=1

DD
Q1D,m(E)vD

m(E)
ND

∑
n=1

Tnm
SD (E), (2.36)

where ES
NS

> ED
ND

has been assumed for the highest channel thresholds (so that all drain
channels are open for transmission into the source lead).

These expressions simplify significantly by noticing that the product of the partial DOS
(including spin degeneracy) with the channel velocity in a Q1D is an invariant (see Eqs. (1.38)
and (1.29), with energy offset at E0

C + ε0),

Dp
Q1D,m(E)vp

m =
me

πh̄2

√
h̄2

2me(E− Em)

h̄kx,m

me
=

1
πh̄

∀ m, p = S, D (2.37)

independent of the details of the leads such as type of Q1D confinement, material etc.
[124,153]. Taking into account also the two-terminal transmission symmetry TSD = TDS ≡ T
and the unitarity condition T + R = NS, the total current acquires the form

I =
e

πh̄

∫ ∞

0
dE T(E) [ f (E; µS, Θ)− f (E; µD, Θ)], (2.38)

in dependence of the bias through the difference µS − µD = eVSD in local Fermi levels
entering the distributions fS,D. Equation (2.38) is a Q1D form of the Tsu-Esaki formula
originally applied for tunneling, but is more commonly referred to as the Landauer formula
after its use in (planar) mesoscopic nanostructures.
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Low temperature limit

At very low temperatures, the Fermi-Dirac occupation function can be approximated by
step functions for each lead,

f (E; µp, Θ→ 0)→ θ(µp − E), p = S, D, (2.39)

so that only electrons from the reservoirs with energies within the sharp interval µD < E <

µS contribute effectively to the charge flow, since all states below µD in the source lead are
occupied. The current then takes the form

I =
e

πh̄

∫ µS

µD

dE T(E), (2.40)

a simple integral of the transmission function profile over the finite energy interval equal to
the applied bias, ∆E = eVSD. If the bias is strong enough to push the quasi-Fermi level in
the drain lead below E0

C + ε0 (the lowest available level of the heterojunction confinement
above the bottom of the conduction band), then no states are available in the source lead for
the electrons from the drain to occupy, so that only electrons from the source above E0

C + ε0

contribute.
In general, the charge carrier density in the source and drain contact regions will depend

on the transmission of the device, since the latter determines the portion of electrons on
either side of the scatterer during transport: Considering the case of a single channel, NS =

ND = 1, the density on the source (drain) side will be weighted by (1 + R) fS(D) + T fD(S),
respectively [118]. This will in turn modify the ‘local equilibrium’ quasi-Fermi levels of the
leads in the immediate vicinity of the scatterer on the source and drain side to µ′S and µ′D,
respectively, which will lie less far apart than µS and µD. In the present low temperature
limit, step functions can replace the Fermi-Dirac distributions (now with the new levels
µ′S,D), and the potential drop across the scatterer can be simply approximated by [118]

µ′S − µ′D = (1− T)(µS − µD) (2.41)

for sufficiently small bias voltage.

2.3.2 Linear response regime

For very small bias, µS − µD = eVSD → 0, though still at finite temperature, the Fermi
functions can be expanded in series around the equilibrium chemical potential taken to
be the average µ = (µD + µS)/2. To first order in V, the difference in Eq. (2.38) can be
approximated as [75]

f (E; µS, Θ)− f (E; µD, Θ) = f
(

E; µ + e
VSD

2
, Θ

)
− f

(
E; µ− e

VSD

2
, Θ

)
(2.42)

≈ eVSD FΘ(E− µ), VSD → 0 (2.43)

where

FΘ(E) ≡ ∂ f (E; µ, Θ)

∂µ

∣∣∣∣
µ=0

= − ∂ f (E′; µ, Θ)

∂E′

∣∣∣∣
E′=E+µ

=
1

4kBΘ
sech2

(
E

2kBΘ

)
(2.44)

is the thermal broadening function [127]. The current then becomes proportional to the small
applied bias at given temperature and chemical potential,

Ilin = G(µ, Θ)VSD, (2.45)
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with the proportionality factor G(µ, Θ) being the conductance function given by the convolu-
tion of the transmission function with the thermal broadening function in energy,

G(µ, Θ) = G0 (T ◦ FΘ)(µ) = G0

∫ ∞

0
dE T(E) FΘ(µ− E, Θ), (2.46)

using the fact that FΘ(E) is even in E, where

G0 =
e2

πh̄
= 2

e2

h
(2.47)

is the conductance quantum for spin-degenerate electronic transport (for each spin component
alone, or for “spinless” electrons, the factor 2 is absent). When Eq. (2.45) applies, the trans-
port is said to be in ‘linear response’, with the charge flow determined by the equilibrium
properties of the system (such as µ and Θ), and it is this regime we will address in Chaps. 5,
6 and 7.

The (shifted) thermal broadening function FΘ(µ − E) (also known as the Fermi-Dirac
probability density function [153]) is peaked symmetrically at E = µ, it is normalized to
unity,

∫ +∞
−∞ dE FΘ = 1, and its full width at half maximum is proportional to kBΘ. It is

plotted (scaled by its maximum 4kBΘ) in Fig. 2.3 together with its effect on the transmission
profile of a type of quantum billiard device studied later in Chap. 5, producing conductance
profiles in varying Fermi energy EF = µ− E0

C − ε0 at different temperatures. It is clear that
FΘ has a smearing effect on the transmission function, increasingly washing away detailed
features in T(EF) as Θ is raised; the transmission is said to be ‘thermally averaged’ around
a given value of EF.

The conductance function (2.46) can be used to write the general expression for the
current for finite bias and temperature, Eq. (2.38), as [127, 153]

I =
1
e

∫ µS

µD

dε G(ε, Θ), (2.48)

where µ in Eq. (2.46) is now treated just as a variable of integration ε. This shows that linear
response of the current to the applied voltage can be established even at finite bias (that
is, not restricted to the limit VSD → 0, as in Eq. (2.42)), under the condition that G(ε, Θ)

is constant in energy within the interval µD < ε < µS, which leads again to the linear
I-V-relation, Eq. (2.45).

The smoothness of G(ε, Θ) depends on the profile of the transmission function T(E), in
combination with the smearing effect of the thermal averaging in Eq. (2.46). Due to impurity
scattering, with mean free path smaller than then coherence length, le < lϕ in a mesoscopic
system (see Sec. 1.2.2), T(E) typically varies rapidly as a result of multiple interference of
scattered waves. Even in the absence of elastic disorder, realized, e.g., by a thick spacer layer
(see Fig. 1.2), multiple scattering at the boundaries within an electron billiard usually leads
to a strongly fluctuating transmission function. Therefore, linear response at a given tem-
perature Θ is retained only for a bias far below the thermal width, eVSD = µS − µD � kBΘ,
so that any variation in T(E) has been smeared out by the thermal average in G(ε, Θ). The
challenge to maintain linear response in a coherent transport device over larger bias (even
larger than the thermal width) thus relies on the elimination of random strong fluctua-
tions in the transmission, despite multiple wave interference. This consists in (i) depleting
resonance widths to a minimum, since narrow resonant features are smeared out already
by a small thermal width, and (ii) keeping the overall (background) transmission profile
smooth. In fact, this twofold task will constitute a central aim in Chaps. 5, 6 and 7, where
the strategy will be to use the shape of the electron billiard (including confinement potential
and lead positioning) to decouple resonant states from a magnetically controlled transmission
background.
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Figure 2.3: Conductance G/G0 of a circular hard-wall billiard of radius R = 220nm with two sym-
metrically attached leads of width w = 0.3 R, at temperatures Θ = 0 (black), 0.1, 0.5, 1.0, 1.5 K (red to
orange), as a function of dimensionless total momentum (channel number) kπ/w. The scaled thermal
broadening function F̃Θ = sech2( kπ/w

2kBΘ ) is shown on the right; its convolution with T = G(Θ = 0)/G0
yields the corresponding G-profiles.

2.3.3 Transmission as conductance

In the limit of zero temperature, the shifted thermal broadening function FΘ(µ− E) repre-
sents a Dirac δ-function peaked at µ,

FΘ→0(µ− E) = δ(µ− E), (2.49)

which, when inserted into Eq. (2.46), yields that the linear conductance coincides with the
transmission function evaluated at the Fermi energy,

G(µ, Θ→ 0) = G0T(µ) =
e2

πh̄
T(µ), (2.50)

when measured in units of G0. This is referred to as the zero-temperature Landauer formula.
Considering a prefect quantum wire as the device, with N(µ) open channels at the Fermi

level in which electrons transmit perfectly (R = 0), current conservation gives T(µ) = N(µ).
Thus, assuming that the voltage drop along the device is measured between the source and
contacts (thereby coinciding with VSD in Eq. (2.45)), the conductance I/VVS will increase in
steps of G0 as µ crosses (e.g., by tuning an applied top gate voltage) the subband thresholds
of the wire. In other words, G0 constitutes the conductance of a single, perfect 1D chan-
nel, and therefore a ‘conductance quantum’. The experimental observation of conductance
quantization [5, 6] was an important step to corroborate the present formalism of coherent
transport.

Note that, in spite of its intuitive form (since T indeed simply expresses the ease with
which electrons transmit through the device), Eq. (2.50) should not be considered obvi-
ous [154], since it gives the conductance between the decohering source and drain electrodes
in terms of the scattering matrix elements connecting only the idealized leads in between.
There has been no treatment here of the contacts where these leads connect to electron
reservoirs, apart from the contacts being reflectionless. This assumption further raises the
question why there should be a conductance quantum at all, as manifest in Eq. (2.50) for a
QW: An ideal, perfectly transmitting wire above would be expected to provide zero resis-
tance to the current flux.

In fact, it is essential to assume measurement of current and voltage drop at the same
contacts (that is, connected through the same leads to the scatterer) to arrive at Eq. (2.38)
and thus its limit in Eq. (2.50). If the voltage drop were measured only across the device
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2.4. Multiterminal conductance

itself by separate voltage probes, attached though a different pair of ‘non-invasive’ contacts
to the ideal leads (in the sense that they do not affect T(E)), then the modified local quasi-
Fermi levels µ′S,D of Eq. (2.41) should be assigned (considering a single open channel). The
alternative current-voltage relation I = G′V ′SD in turn yields a four-terminal single-channel
conductance

G′ = G0
T

1− T
=

G
R

, (2.51)

which is the one originally derived by Landauer. Using this formula, the resistance (G′)−1

of a single-channel perfect QW indeed vanishes. The total resistance of the device can now
be written as a series addition

G−1 = (G′)−1 + G−1
0 (2.52)

of the resistance of the scatterer itself and of a contact resistance G−1
0 corresponding to the

additional voltage drop in the leads. The origin, and quantization, of the contact resistance
for a single channel can be traced to the broadening of a single isolated energy level when
brought in contact with a reservoir of many closely spaced levels [127]. The concept of
broadening will be introduced below in the effective Hamiltonian treatment of scattering,
Sec. 3.3. For the multi-channel version of Eqs. (2.51) and (2.52), the individual channel ve-
locities are taken into account [118]. However, by treating T as the average transmission per
channel, the N-channel case can be approximated by the replacement G0 → G0N [127].

2.4 Multiterminal conductance

The discussion above concerning the different expressions of the conductance for two- and
four-terminal measurements, summarized in Eq. (2.51), calls for a general approach to coher-
ent transport in devices with more than two attached leads, as the one depicted in Fig. 2.1.
In the four-terminal Landauer formula, current flows between the source and drain contacts,
and the additional leads attached on either side of the scatterer are assumed to be ideal volt-
age probes that draw (or contribute) no net current, though remain in a local equilibrium
with the quasi-Fermi levels µ′S,D whose difference is measured. Büttiker [150] introduced
a unifying framework in which such current and voltage probes are treated equivalently
as decohering contacts connected to the mesoscopic device, between which the coherent
electronic propagation is described by the S-matrix of the scattering region.

2.4.1 Current from scattering states

Considering a structure with NL leads connected to current or voltage probes, we can thus
make use of the multiterminal S-matrix and the associated scattering states of Sec. 2.2 to
arrive at the currents in the terminals p = 1, 2, ..., NL. Taking into account the cancellation of
channel velocity and DOS, Eq. (2.37), the charge current carried by a scattering state |Φ(q)

n,+〉
in lead p at energy E > En (so that channel n is open) is given by (see Eq. (2.11))

i(q)n,+;p(E) =
e

πh̄

δpq −
Np(E)

∑
m=1
|Smn

pq (E)|2
 , (2.53)

that is, an incident flux if p = q minus the fluxes transmitted from mode n in lead q into
any mode (including the incident one for p = q) in lead p. Each scattering state |Φ(q)

n,+〉 is
in equilibrium with the corresponding reservoir [127] at chemical potential µq, which feeds
the device with electrons according to its occupation function fp(E; Θ) (given in Eq. (1.39)
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Chapter 2. Coherent electronic transport: Landauer-Büttiker formalism

with q = 1, 2, ..., NL). Thus, the total current in terminal p is obtained by summing over all
scattering states (i.e., over n for each q and over all q), each weighted by its corresponding
occupation function fq, and integrating over energy,

Ip =
∫

E
dE

NL

∑
q=1

Nq

∑
n=1

i(q)n,+;p(E) fq(E; Θ) (2.54)

=
∫

E
dE

e
πh̄

(
Np(E) fp(E; Θ)−

NL

∑
q=1

Tpq(E) fq(E; Θ)

)
, (2.55)

where Eq. (2.14) has been used. Taking flux conservation into account, expressed in the form
of the sum rule in Eq. (2.18), the current can intuitively be written as the difference between
the total flux transmitted from lead p to all other leads and the total weighted flux from all
other leads into lead p (noticing that the reflected flux q = p back to lead p cancels out),

Ip =
e

πh̄

∫
E

dE

(
NL

∑
q=1

Tqp(E) fp(E; Θ)−
NL

∑
q=1

Tpq(E) fq(E; Θ)

)
, (2.56)

but also as the total flux from all leads to lead p, weighted by the corresponding differences
in occupation functions (note that fp(E) is a common factor of all summands in the sum
over q),

Ip =
e

πh̄

∫
E

dE
NL

∑
q=1

Tpq(E)
[

fp(E; Θ)− fq(E; Θ)
]

. (2.57)

This last form generalizes the two-terminal current, Eq. (2.38), to the multiterminal case.
Equation (2.57) could, in fact, be arrived at equivalently by starting with an argument simi-
lar to that in Eqs. (2.34), (2.35) and (2.36), that is, treating in- and outflow separately. We have
chosen here to treat the elementary current as that carried by a scattering state, Eq. (2.53),
which includes in- and outflow simultaneously since the wave function of the scattering
state generally extends into all leads, though occupied according to the lead of incidence.
Forming a complete set, scattering states thus describe transport naturally without intro-
ducing ambiguities concerning the Pauli exclusion principle for the lead state occupation
of electrons ‘arriving’ at a terminal [92, 127], since an electron (or two of opposite spin)
occupying a scattering state automatically occupies lead states in all leads.

2.4.2 Conductance matrix

Assigning a voltage Vp to each quasi-Fermi level µp, in the limit of small voltage differences
between the leads all levels tend to a common one, µp → µ ∀ p, and the difference fp − fq

in Eq. (2.57) can be approximated through the thermal broadening function (2.44), like in
the two-terminal case. The current in terminal p thus becomes a linear combination of
the voltage differences Vpq to all other terminals (the contribution of the same terminal
obviously vanishes),

Ip =
NL

∑
q=1

GpqVpq, Vpq ≡ Vp −Vq =
µp − µq

e
→ 0 (2.58)

where the two-terminal conductance from lead q to lead p is given in direct analogy to
Eq. (2.46),

Gpq(µ, Θ) = G0 (Tpq ◦ FΘ)(µ) =
e2

πh̄

∫ ∞

0
dE Tpq(E) FΘ(µ− E, Θ). (2.59)
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2.4. Multiterminal conductance

Collecting all currents and voltages into NL × 1 vectors I = (I1, I2, ..., INL)
> and V =

(V1, V2, ..., VNL)
>, Eq. (2.58) can be written in the matrix form [118, 155]

I = ΛV , Λpq ≡ δpq ∑
q′

Gpq′ − Gpq. (2.60)

Due to current conservation, the elements of any row or column of Λ add to zero (since
the sum in Eq. (2.18) commutes with the integration in Eq. (2.59)). This becomes more evi-
dent in the limit of zero temperature, where the (dimensionless) conductance and transmis-
sion coefficients coincide, and Λ becomes

Λpq(µ, Θ→ 0) =
e2

πh̄
(δpqNp − Tpq). (2.61)

Further, since the derivation of Λ was based on the multiterminal scattering matrix S , the
associated reciprocity relations in the presence of a magnetic field carry over to the general
conductance coefficients,

Gpq(µ, Θ; B) = Gqp(µ, Θ;−B), (2.62)

thus demonstrating the Onsager-Casimir microreversibility principle [151, 156] for coherent
electron transport.

2.4.3 Current and (fictitious) voltage probes

Once the linear response conductance matrix Λ has been determined from the scattering
matrix of the system, with contacts at a given temperature and close to the common chem-
ical potential µ, the distinction between current and voltage probes (which were treated
equivalently) can be reintroduced: Considering a device with NL probes in total, current
probes are those upon which externally set voltages Ve

p (p = 1, 2, ..., Ne) are applied, and
at which the flowing currents Ie

p measured, whereas voltage probes ideally let no current
through, Ii

p′ = 0 (p′ = 1, 2, ..., Ni = NL − Ne), in order to reliably measure their voltages
Vi

p′ which are determined internally by the system. With this grouping of the elements of
current and voltage vectors I and V , the matrix equation (2.60) can be written as(

Ie

Ii

)
=

(
Λee Λei

Λie Λii

)(
V e

V i

)
, (2.63)

where the diagonal blocks Λee(ii) connect external (internal) currents and voltages, while
the off-diagonal blocks provide the coupling between external and internal probes. Setting
Ii = 0 for the internal (voltage probe) currents, and eliminating V i from the system of
equations (2.63), we obtain the external currents in terms of the external voltages alone, but
through an effective conductance matrix Λ̃ (of dimension Ne),

Ie = Λ̃V e, Λ̃ = Λee −Λei(Λii)−1Λie. (2.64)

This form of Λ̃ is in analogy to the combined scattering matrix (2.28) of two connected
scatterers (with unconnected/connected amplitudes playing the role of external/internal
probes), and is quite general when treating the effect of a subsystem (or perturbation) on the
(linear) response of a system. We will encounter it again when partitioning the Hamiltonian
of the system in the Green function approach to scattering in Sec. 3.3.

Since the current through (ideal) voltage probes is zero, their only effect on the electronic
transport between other terminals is that they constitute sources of decoherence: Electrons
reinjected from the voltage probes (to maintain Ii = 0 above) have no phase relation to the
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Chapter 2. Coherent electronic transport: Landauer-Büttiker formalism

ones entering them, assuming that the contacts are reflectionless (see Sec. 2.1). The Büttiker
formalism has therefore been used to phenomenologically model decoherence, that is, to
introduce incoherent scattering without treating the microscopic phase-breaking processes
[150, 157]. The internal probes are now fictitious: They need no longer be attached to the
device through real contacts (although they might), but can be distributed over the system
as localized scatterers which destroy the phase information of the electron waves (since
multiterminal transmission coefficients are added incoherently). After determining the total
conductance matrix Λ, internal voltages are eliminated by imposing zero internal currents,
and the conductance matrix of between the ‘real’ terminals is given by Λ̃.

In the multiterminal systems studied here in Chaps. 4 and 7, we will not apply fictitious
Büttiker probes to model decoherence; each (real) terminal will itself serve as a source of
decoherence, but also of dissipation (since net flux will be transmitted through it), for the
electron transport between other terminals.
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3
Stationary scattering in confining
planar geometries

In the Landauer-Büttiker formalism developed previously, the multiterminal transmission
function of a mesoscopic device constitutes the core of the description of coherent electron
transport. In this chapter it will be seen how the asymptotic scattering matrix of the system
as well as spatially resolved quantities of interest such as the full scattering wave function
can be formally determined and practically calculated from the system Hamiltonian. This
is achieved within the Green function formalism in terms of an effective, energy-dependent
and non-Hermitian Hamiltonian describing the scattering region connected to the periph-
eral leads. The theoretical framework is reviewed from the particular viewpoint of (planar)
confinement with generic, geometrically defined asymptotic scattering channels, highlight-
ing the involved concepts and the main observable interference effects in transmission, Fano
resonances and Aharonov-Bohm oscillations. We close with a brief analysis of scattering in
locally symmetric systems through a formalism recently developed in Ref. [158].

3.1 In-plane Hamiltonian

As alluded to in Sec. 1.2.3, we will assume a total effective single-electron potential that is
separable into its z-dependence along the vertical direction of growth of the heterostruc-
ture and the in-plane xy-dependence; see Eq. (1.19). Considering the quantum limit of a
2DES, motion is restricted to the lowest subband of the vertical confinement, as explained in
Sec. 1.3, and we now work with the 2D projected Hamiltonian simply denoted as H, which
reads

H =
1

2m
[p− qe A(r)]2 + V(r) =

1
2m

[
h̄
i
∇r + eA(r)

]2

+ V(r), (3.1)

where r = (x, y) = xx̂ + yŷ, with in-plane effective mass m and vector potential A. The
electrostatic potential V(r) is here the sum

V(r) = Vdev(r) + Vint(r), (3.2)

where Vdev(r) is the in-plane confinement potential resulting from the device design through
depleting gates or direct etching, and Vint(r) is the effective single-particle potential approx-
imating electron-electron interactions, see Sec. 1.2.3. Interactions are usually included as the
mean field, or Hartree, electrostatic potential Vint(r) ≈ VH(r) created by the average density
n(r) of all electrons in the system through Poisson’s equation,

∇r[ε0ε(r)∇rVH(r)] = −e2n(r), (3.3)
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Chapter 3. Stationary scattering in planar confining geometries

where ε(r) is the relative permittivity of the semiconducting medium which can vary spa-
tially for the inhomogeneous device composition [124, 159]. The spatially varying electron
density in the open system is generally given by

n(r) = ∑
p

Np

∑
m=1

∫ +∞

−∞
dE fp(E; Θ)|ψ(p)

m,+;E(r)|
2 (3.4)

in terms of the wave functions of the scattering states |ψ(p)
m,+;E〉 ≡ |ψ

(p)
m,+(E)〉 with incident

wave in mode m of lead p, weighted by the occupation functions fp of the corresponding
reservoir and added incoherently in the Landauer-Büttiker framework (see Sec. 2.4). The
scattering states are in turn energy eigenstates of the stationary Schrödinger equation

[ E−H ]ψ(r) = 0 (3.5)

with the corresponding (asymptotic) boundary conditions.1 Equations (3.3) and (3.5) can
then be solved self-consistently by iteratively updating VH(r) in Eq. (3.5) from the solution
of Eq. (3.3) with n(r) previously obtained from Eq. (3.5), until VH(r) converges–a procedure
known as a ‘Schrödinger-Poisson solver’.

Since the focus in later chapters will primarily on the combined effects of the device ge-
ometry and magnetic fields in a highly resolved parameter space, we will simply consider
a fixed potential from the beginning (usually of the hard-wall billiard type). The exten-
sive work on self-consistent device potentials [118, 160, 161] can then be consulted to add
approximative potential gradients to simulate more realistic setups, as done in Chap. 6.

3.2 Greenian formulation of scattering

Let us now introduce some elemental concepts of Green functions in single-particle scatter-
ing theory, in part following Refs. [124, 127, 128, 146, 162]. Instead of exposing the subject
in its formal rigor, we will adapt the description to a more intuitive understanding of the
elastic scattering processes in terms of propagators in time and space.

3.2.1 Green functions

For a linear differential operator L acting in (2D) space r and time t, the inhomogeneous
differential equation

Lψ(r, t) = Φ(r, t) (3.6)

expresses the spatiotemporal evolution, or response, of the function ψ(r, t) governed by L
in the presence of the ‘source’ term Φ(r, t). The Green function G(r, r′; t, t′) associated with
L is defined as the response to a source localized at r′ at time t′,

LG(r, r′; t, t′) = δ(r− r′)δ(t− t′). (3.7)

It can be interpreted as the function that transfers, or propagates, the effect of the source Φ

on the response ψ from (r′, t′) to (r, t), in the form

ψ(r, t) =
∫

dr′
∫

dt′ G(r, r′; t, t′)Φ(r′, t′), (3.8)

1 The subband energy of the vertical z-confinement is here included in the potential, and the energy E is thus
the total energy of the in-plane motion, that is, offset to the ground level ε0 of heterojunction well.
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3.2. Greenian formulation of scattering

as can be verified from Eqs. (3.6) and (3.7). In other words, G resolves the total effect of
the source Φ on ψ at a point (r, t) under the action of L into the partial effects of Φ from
individual points (r′, t′), which added produce the total response.

In many-body quantum theory, Green functions are defined as (various types of inter-
dependent) correlation functions between field operators of interacting particles [124, 127,
163]. In the effective single-electron picture we have adapted to in Chap. 1, we start with the
time-dependent Schrödinger equation,[

ih̄
∂

∂t
−H

]
ψ(r, t) = 0, (3.9)

and the Green function for the differential operator L = ih̄ ∂
∂t −H thus obeys the Green

equation [
ih̄

∂

∂t
−H

]
G(r, r′; t, t′) = δ(r− r′)δ(t− t′). (3.10)

In the presence of an excitation Φ(r, t) = Φ(r)δ(t− ti) at some initial time ti, the solution
ψ(r, t) of the associated inhomogeneous equation,[

ih̄
∂

∂t
−H

]
ψ(r, t) = Φ(r)δ(t− ti), (3.11)

will have a temporal discontinuity at t = ti [124],

ih̄ [ψ(r, t+i )− ψ(r, t−i )] = Φ(r). (3.12)

Treating ti as the time signifying an initial (+) or final (−) condition, we can define corre-
sponding wave functions ψ±(r, t) ≡ ψ(r, t)θ(±(t − ti)) to be the solutions to Eq. (3.11) at
times t ≷ ti. The spatial part Φ of the inhomogeneous term in (3.11) then simply imposes,
through (3.12), the initial or final condition on ψ+(r, t) or ψ−(r, t), respectively,

± ih̄ ψ±(r, t±i ) = Φ(r). (3.13)

From Eq. (3.8), ψ+(r, t) and ψ−(r, t) are then given by

ψ±(r, t) = ±ih̄
∫

dr′
∫

dt′ G±(r, r′; t, t′)ψ±(r′, ti)δ(t′ − ti)

= ±ih̄
∫

dr′ G±(r, r′; t, ti)ψ
±(r′, ti) (3.14)

in terms of the associated retarded and advanced Green functions G+(r, r′; t, t′) and
G−(r, r′; t, t′), respectively, which in turn are solutions to Eq. (3.10). This is written in
representation-independent form as

|ψ±(t)〉 = ±ih̄ G±(t, ti) |ψ±(ti)〉 , (3.15)

such that G±(r, r′; t, t′) = 〈r| G±(t, t′) |r′〉 is the spatial representation of the operator
G±(t, t′), which we call the resolvent, or Greenian2, of the Hamiltonian operator (strictly
speaking, of the operator L = ih̄ ∂

∂t −H). In view of the general unitary evolution of the
state |ψ(t)〉 from time t′ to time t,

|ψ(t)〉 = U (t, t′) |ψ(t′)〉 , (3.16)

2In order to avoid a multitude of naming for G, since it is encountered as the Green operator acting on states,
as the Green function in spatial representation, or even as the Green (function) matrix in the discretized (spatial)
representation to follow, we will use the relatively unconventional though unifying term ‘Greenian’, just as is
commonly done for the Hamiltonian.
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we identify the time-dependent Greenian in Eq. (3.15) as the unitary evolution operator U
associated to H, supplied with the information on the initial condition at t = ti due to the
source,

G±(t, ti) = ±
1
ih̄
U (t, ti)θ(±(t− ti)). (3.17)

Considering a time independent Hamiltonian, the evolution operator reads

U (t, t′) = exp
[
− i

h̄
(t− t′)H

]
, (3.18)

so that an eigenstate |ψE(t)〉 of the Hamiltonian with eigenenergy E evolves simply as

|ψE(t)〉 = e−
i
h̄H(t−t′) |ψE(t′)〉 = e−

i
h̄ E(t−t′) |ψE(t′)〉 ≡ e−iω(t−t′) |ψE(t′)〉 , (3.19)

that is, with a (relative) probability density ψE(t′) constant in time, or stationary.

Spectral expansion

We can now use the (limiting) integral representation of the Heaviside step function in
Eq. (3.17) with τ = t− ti,

θ(τ) = ± i
2π

lim
η→0

∫ +∞

−∞
dε

e−iετ/h̄

ε± iη
, η > 0, (3.20)

together with the completeness and orthonormality of the eigenstates |φn〉 of the Hermitian
operator H,3

∑
∫
n,k

|φn,k〉 〈φn,k| = 1; H |φn,k〉 = En,k |φn,k〉 , (3.21)

to obtain the energy dependent Greenian from the Fourier transform of Eq. (3.17), as follows
(setting ti ≡ 0 for simplicity):

G±(E) =
∫ +∞

−∞
dteiEt/h̄G±(t, ti = 0) (3.22)

=
1

2πh̄
lim
η→0

∫ +∞

−∞
dteiEt/h̄U (t, ti = 0)

∫ +∞

−∞
dε

e−iεt/h̄

ε± iη
(3.23)

=
1

2πh̄
lim
η→0

∫ +∞

−∞
dε
∫ +∞

−∞
dt

ei(E−H−ε)t/h̄

ε± iη
(3.24)

= lim
η→0

∫ +∞

−∞
dε

δ(E−H− ε)

ε± iη
(3.25)

= lim
η→0

[E−H± iη]−1. (3.26)

The retarded and advanced Greenians are thus obtained by taking the real limit of the
complex (energy) argument ζ = E± iη of the resolvent operator G,

G±(E) = lim
η→0
G(E± iη), G(ζ) ≡ [ζ −H]−1. (3.27)

3The symbol ∑
∫

n,k is here used explicitly to denote the summation over discrete eigenstates n together with
the integration over continuous (momentum) eigenvalues k. For notational simplicity, we also use 1 throughout
to denote the identity operator.
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3.2. Greenian formulation of scattering

The completeness of the eigenstates ofH, already used implicitly in the steps (3.24)→ (3.25)
→ (3.26) above, allows the Greenian to be written in its spectral expansion

G(ζ) = ∑
∫
n,k

|φn,k〉 〈φn,k|
ζ − En,k

, (3.28)

a form that provides a powerful tool to calculate the Green function in spatial representation,

G(r, r′; ζ) = 〈r| G(ζ) |r′〉 , (3.29)

for the Hamiltonian under consideration (once its eigenstate wave functions 〈r|φn,k〉 are
known), usually by contour integration in the complex k-plane for a continuous energy
spectrum En(k).

Greenian as a spatial propagator

Let us start now with an initial excitation |Φ0〉 which is stationary at energy E (that is,
time-periodic with constant density) but under some other Hamiltonian H0, |Φ0(t′)〉 =

e−iEt′/h̄ |Φ0〉. This state is here simply imposed as a source. The state |ψ(t)〉 at time t > t′ of
the system governed by H will be given by the contribution of all times up to t through the
propagator G+(t, t′), which is now the inverse Fourier transform of G+(E) [146], causally
evolving the excitation:

|ψ(t)〉 =
∫ t

−∞
dt′ G+(t, t′) |Φ0(t′)〉 (3.30)

= lim
ς→0+

1
2πh̄

∫ t

−∞
dt′
∫ +∞

−∞
dE′ G+(E′) e−(iE

′+ς)(t−t′)/h̄ e−iEt′/h̄ |Φ0〉 , (3.31)

where a convergence parameter ς > 0 has been included which is taken to zero in the end,

= lim
ς→0+

1
2πh̄

∫ +∞

−∞
dE′ G+(E′) e−i(E′−iς)t/h̄

∫ t

−∞
dt′ e−i(E−E′+iς)t′/h̄ |Φ0〉 (3.32)

= lim
ς→0+

1
2πi

∫ +∞

−∞
dE′

G+(E′)
E′ − E− iς

e−iEt/h̄ |Φ0〉 (3.33)

= lim
ς→0+

G(E + iς) e−iEt/h̄ |Φ0〉 ⇒ |ψ(t)〉 = G+(E) e−iEt/h̄ |Φ0〉 . (3.34)

Projected in position space, Eq. (3.34) shows that the retarded (causal) Green function
G+(r, r′; E) can also be regarded as a spatial propagator of an initial time-periodic excitation
from r′ to r at energy E, such that the temporal oscillation (that is, the energy) remains
invariant. In the general case of an excitation |Φ0(E)〉 =

∫ +∞
−∞ dt′ exp(iEt′/h̄) |Φ0(t′)〉 which

is not (necessarily) periodic, the response will be a superposition of harmonic phases [164],

|ψ(t)〉 = 1
2πh̄

∫ +∞

−∞
dE e−iEt |Φ(E)〉 , (3.35)

where each weighing component is propagated by the Greenian, |Φ(E)〉 = G+(E) |Φ0(E)〉.
In the cases of elastic scattering to be studied here, we will consider lead eigenstates at
energy E, of the form (2.4), to be the excitation, that is, apart from a phase dependent on the
longitudinal position in the lead, we have transversal modes in one (or more) of the leads
as source, and Eq. (3.34) can be used.

From Eq. (3.27) it is seen immediately that the Greenian fulfills the property

G+(E) = [G−(E)]∗ (3.36)
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S

xp r′p = (x′p, y′p)

c(p)
m,+(r

′
p) c(p)

m,−(r
′
p)Snm

pp c(p)
m,+(r

′
p)

Snm
qp c(p)

m,+(r
′
p)

Figure 3.1: The response G+(rq, r′p; E) to an excitation at point r′p = (x′p, y′p) in a lead p of

a multiterminal scatterer will generate partial waves with expansion coefficients c(p)
m,s(r′p), with

s = sgn(xq=p − x′p), which are scattered via the scattering matrix S into the modes of all leads.

which, in its spatial representation, yields the reciprocity relation [118, 164]

G+(r, r′; E, B) = [G−(r′, r; E,−B)]∗, (3.37)

in similarity to the one for the S-matrix, Eq. (2.22). Thus, complex conjugation corresponds
to the time reversal of propagation in the system. We have again included the magnetic field
reversal accompanying time reversal, since the complex conjugated eigenstates, which are
inserted in the spectral representation (3.28), are solutions of the same Schrödinger equation
with reversed magnetic field [127].

3.2.2 Scattering matrix from Greenian

As we have seen, the retarded Greenian G+(E) acts in the form of a generalized ‘scattering
matrix’, which connects wave function amplitudes not only asymptotically (in the leads in
the case of an open quantum billiard) and between specific eigenmodes, but the amplitudes
at any two points in the system. The Greenian thus carries the information of the scatter-
ing process continuously through the system and, evaluated at its asymptotic regions, will
naturally be related to the S-matrix elements.

To arrive at this relation for an open quantum billiard, we consider the response from a
localized (δ-like) excitation in one of the leads connected to the scatterer, as shown schemat-
ically in Fig. 3.1, which is given by the spatial representation of G+(E), as seen previously.
An excitation at point r′p = (x′p, y′p) in lead p will generate a wave in the form of a superpo-

sition of partial waves (in its channels m) with expansion coefficients c(p)
m,s(x′p, y′p), as given

in A.1 where the Green function of a perfect wire is derived. The sign s for each wave is
the opposite of the direction of that wave; see (A.13) and (A.14). The partial waves going
inwards are scattered in the cavity and transmitted to all channels n of the other leads q 6= p
or reflected back to same lead q = p, according to the S-matrix of the system. Each lead p
is equipped with a local Cartesian coordinate system (xp, yp) with unit vector x̂p pointing
outwards from the scatterer.

Since we aim at the scattering matrix elements, we consider the ‘final’ points rq = (xq, yq)

to be in the asymptotic region of leads, so that the asymptotic expression of the scattering
wave function Eq. (2.11) can be used for the transmitted and reflected amplitudes, taking into
account only open channels. Some ambiguity seems to arise from the fact that the ‘initial’
point of excitation within lead p can be chosen to lie closer [124] or farther [145, 165] from
the scatterer than the point of evaluation of G+(E) in the same lead, that is, xq=p − x′p > 0
or < 0, respectively. We here treat both cases simultaneously and show that the result is
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3.2. Greenian formulation of scattering

independent of this choice. In the absence of magnetic fields, the response at rq = (xq, yq)

at energy E will be, according to the above (see Eqs. (2.11) and (A.13)),

G+(rq, r′p; E) = ∑
m

[
ψ̃
(p)
m,+(rq) − δqpθ(xq − x′p)Φ̃

(q)
m,−(rq)

]
c(p)

m,+(r
′
p)

+ ∑
m

δqpθ(xq − x′p)Φ̃
(q)
m,+(rq) c(p)

m,−(r
′
p) (3.38)

= ∑
m

δqpΦ̃
(q)
m,sc

(p)
m,−s + ∑

m
∑
n
S̃nm

qp Φ̃
(q)
n,+(rq)c

(p)
m,+(r

′
p), (3.39)

with the sign
s = sgn(xq=p − x′p) (3.40)

determined by the relative position of excitation and evaluation point in lead p, where

c(p)
m,±(r

′
p) =

Φ̃
(p)
m,±(r

′
p)

ih̄v(p)
m

, Φ̃
(q)
n,±(rq) ≡

√
v(q)n Φ

(q)
n,±(rq) = χ

(q)
n (yq) exp(±ik(q)n xq). (3.41)

Note that the ingoing wave Φ̃
(p)
m,− of the scattering state ψ̃

(p)
m,+ is replaced by an outgoing

wave for xq=p − x′p > 0 (there is here no wave coming in from xp → ∞), but with opposite

phase −ik(q)m xq of the plane wave coefficient.
In order to use the form of the quantum wire response G+qw (see A) in lead p, and to

preserve the symmetry of channel indices in Snm
qp (see below), the asymptotic scattering

states used in the expression for G+ above,

ψ̃
(p)
m,s(rq) = δqpΦ̃

(q)
m,−s(rq) + ∑

n
S̃nm

qp Φ̃
(q)
n,s (rq), s = +,− (3.42)

(cf. Eq. (2.11)), are given in terms of ‘rescaled’ lead eigenstates (cf. Eq. (2.4)) Φ̃
(p)
m,± which

are not flux normalized [124, 145, 166], and whose amplitudes in generic lead states are
connected by a non-unitary scattering matrix

S̃nm
qp =

√√√√v(p)
m

v(q)n

Snm
qp . (3.43)

As mentioned above, the Greenian resembles a generalized scattering matrix which con-
nects spatially separated wave amplitudes at arbitrary positions and not only asymptoti-
cally. However, the flux normalization pertaining to the unitarity of the associated S-matrix
(whose elements are current transmission amplitudes) relies on the well defined (asymp-
totic) velocities vm in the channels, and can be incorporated in the connection between the
corresponding mode amplitudes. This is not the case for the connection of wave amplitudes
between arbitrary spatial points, to which no particular velocity is assigned; this becomes
obvious for points inside the scatterer, where there are no channels to begin with. Therefore,
it is more natural to express Green functions in terms of ‘bare’ eigenfunctions which are not
flux normalized (though possibly space-normalized) and thus independent of the presence
or not of a geometry with asymptotic leads.

Inserting the c(p)
m,±(r

′
p) and Φ̃

(q)
n,±(rq) into Eq. (3.38), we obtain

G+(xq, yq, x′p, y′p; E) = ∑
m

1

ih̄v(p)
m

δqpχ
q
m(yq)χ

p
m(y′p)e

is(kq
mxq−kp

mx′p)

+ ∑
m

∑
n

1

ih̄v(p)
m

S̃nm
qp χ

q
n(yq)χ

p
m(y′p)e

i(kq
nxq+kp

mx′p), (3.44)
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Chapter 3. Stationary scattering in planar confining geometries

and it is now clearly seen that the excitation in lead p has caused scattered outgoing states
at rq in all leads q plus the directly generated outgoing (s = +) or ingoing (s = −) wave
in lead q = p. The initially generated amplitudes are given by the lead Green function in
lead p and are proportional to the transversal wave function at the excitation point r′p, as
expected [127]. Note also that G+ is symmetric under the exchange rq ↔ r′p (recall that we
have assumed zero magnetic field in the leads).

We can now use the orthogonality of the transversal eigenstates of the leads in order to
isolate the desired S-matrix elements: multiplying by χ

q
n0(yq)χ

p
m0(y

′
p) and integrating over

the cross section of lead q at xq and lead p at x′p, we have∫
dyq

∫
dy′p χ

q
n0(yq)G+(xq, yq, x′p, y′p; E)χp

m0(y
′
p)

= δqp ∑
m

δmn0 δmm0

eis(kq
mxq−kp

mx′p)

ih̄v(p)
m

+ ∑
m

∑
n

√√√√v(p)
m

v(q)n

Snm
qp δnn0 δmm0

ei(kq
nxq+kp

mx′p)

ih̄v(p)
m

(3.45)

= δqpδn0m0

ei|kq
n0 xq−kp

m0 x′p|

ih̄
√

v(q)n0 v(p)
m0

+ Sn0m0
qp

ei(kq
n0 xq+kp

m0 x′p)

ih̄
√

v(q)n0 v(p)
m0

, (3.46)

where the first term has been symmetrized in the indices since it vanishes for q 6= p or
n0 6= m0. We thus arrive at the desired relation between the S-matrix elements and the
Green function (dropping now the prime on r′p above),

Snm
qp (E) =

[
ih̄
√

v(q)n v(p)
m

∫
dyq

∫
dyp χ

q
n(yq) G+(xq, yq, xp, yp; E)χp

m(yp)

− δqpδnmei|kq
nxq−kp

mxp|
]

e−i(kq
nxq+kp

mxp), (3.47)

confirming that S is symmetric (see Eq. (2.20)), Snm
qp = Smn

pq , in the considered time-reversal
invariant setting. It is here implicit that

E
m,k(p)

m
= E

n,k(q)n
= E, E

m,k(p)
m

= E(p)
m +

h̄2

2me
k(p)

m , (3.48)

so that energy is conserved during the elastic scattering. Equation (3.47) is usually attributed
to Fisher and Lee [166] who derived it for an effectively 1D setting. The case of an arbi-
trary confinement geometry with attached leads connected to reservoirs (the ‘quantum bil-
liards’ described in Sec. 1.2) introduces conceptual implications, to be discussed at the end
of Sec. 3.2.3. A generalized multiterminal version of the Fisher-Lee relation for such systems
was developed subsequently by Stone and Szafer [165] and analyzed in a time-dependent
picture by Sols [145].

As we see from Eq. (3.47), the S-matrix elements depend on the coordinates rp, rq where
G+ is evaluated. In 1D scattering, this dependence is conventional since it only introduces
constant phases fixed by the choice of the (common) spatial origin. In the present 2D scat-
tering, this is not the case: Considering the spectral expansion of G+(E) into (scattering)
eigenstates of the system Hamiltonian, Eq. (3.28), we anticipate that its projection onto the
lead eigenmodes in Eq. (3.47) can generally contain contributions from evanescent modes
in the leads and not only from propagating ones. Although we started out to obtain the
(asymptotic) S-matrix, there is no formal reason to truncate the sums over m and n above to
open channels, and thus the matrix elements Snm

qp in Eq. (3.47) are generalized to evanescent

modes m for which E(p)
m > E (and which thus have an imaginary longitudinal wave vector
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3.2. Greenian formulation of scattering

k(p)
m ) causing exponential decay into lead p. An extended S-matrix is thus defined which

includes evanescent modes by analytic continuation of the channel momenta in the complex
k-plane [128]. This extended S-matrix is, however, non-unitary, since the evanescent modes
do not allow for the propagation of flux away from the system in order to conserve the total
current.

To extract the S-matrix elements between open channels only, the points of evaluation of
G+(E) should be taken to the asymptotics xp, xq → ∞, where the evanescent contributions
have vanished. Alternatively, though, one can simply discard matrix elements correspond-
ing to closed channels by multiplying (3.47) with step functions θ(E− E(p)

m ) and θ(E− E(q)
n ).

Doing so, the positions xp, xq indeed become a matter of convention, introducing only phase
factors. They could be set at the origins of the attached leads, xp, xq ≡ 0p, which in turn are
put right after the opening of the quantum billiard into each lead (or shifted outwards to
points where any applied magnetic field has vanished; see below). The final formula to be
used for obtaining the S-matrix elements from the Greenian can then be compactly written
as

Snm
qp (E) = ih̄

√
v(q)n v(p)

m 〈χ
q
n|G+(E)|χp

m〉 − δqpδnm, (3.49)

where the shorthand notation

〈χq
n|G+(E)|χp

m〉 =
∫

dyq

∫
dyp χ

q
n(yq)G+(xq ≡ 0, yq, xp ≡ 0, yp; E)χp

m(yp) (3.50)

for the chosen projection of the Greenian onto the lead modes has been used, and it is
implicitly understood that only open channels m and n are taken into account.

Scattering matrix in magnetic fields

Throughout the above discussion the absence of magnetic field has been assumed. In par-
ticular, the steps pertaining to the simple relation of the S-matrix elements to the spatial
projection of the Greenian on the lead modes relies on a zero magnetic field in the leads,
which renders the transversal mode eigenfunction orthogonal. In the presence of a mag-
netic field in the leads, the orthogonality is broken [127] due to the coupling of spatial and
motional degrees of freedom (see Sec. 1.3), and thus transversal modes cannot be simply
projected out as in Eq. (3.46). More precisely, a modified orthogonality relation and asso-
ciated projection can be used to extract S-matrix elements in terms of G+, as shown by
Baranger and Stone [167], implemented also more recently [50] to study transport through
quantum billiards at high magnetic fields.

A simpler approach, which we will make use of here, is to let the applied magnetic field
in the model system spatially attenuate within the leads along their directions x̂p, until it

vanishes at distant points xp = L(p)
B . If this adaptation region is long enough, so that the

field drops off very gradually outside the billiard confinement geometry, the setup qualifies
in simulating a transport device where a homogeneous field is applied; the stronger the
simulated field, the longer the required adaptation regions.4 In practice, this ‘adaptation’
region for the magnetic field in the leads is included as part of the scattering structure itself,
and the origins xp = 0p of the actual attached leads are shifted by the length L(p)

B . The

4 Although the adaptation region for the magnetic field attenuation is usually implemented in practice to
describe a homogeneous applied field, it is by far no extraordinary challenge for current technology to produce
local magnetic field gradients, even at the nanoscale [168]. This can be achieved, e. g., by fabrication of hybrid
structures with superconducting nanopatterned components [169] which expel the magnetic field locally, or by
using ferromagnetic microstructures which produce field variation patterns [170,171] with large field gradients.
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Chapter 3. Stationary scattering in planar confining geometries

Fisher-Lee formula for zero field, Eq. (3.49), is then used with G+ projected on the lead
modes at the shifted positions where B(xp = 0p, yp) = 0. Employing a linear decrease of
the magnetic field in simulations, the following form of the peripheral vector potential in
the lead coordinates rp can be used:

A(rp) = −Byp

(
1−

xp + L(p)
B

L(p)
B

)
x̂p, (3.51)

where B is the field strength in the billiard region, which will be homogeneous in the
studies undertaken here. It is appropriate to choose set vector potential in the local Landau
gauge A(rp) ‖ x̂p so that no spurious contributions from ∂Ay/∂xp enter the field B(rp) =

∇× A(rp) [127, 172].
This approach had early proved sufficient for the study of magnetotransport in multi-

terminal devices [91, 94] and is particularly suitable for the investigation of the combined
effects of the applied field and the geometry of the billiard itself, as pursued in Chaps. 5, 6
and 7. These effects are determined by the dynamics within the billiard region together with
positioning of the lead openings. The magnetic field adaptation region merely provides a
very smooth ‘magnetic ramp’ for the incoming electrons, since they need to overcome the
Landau energy in the magnetoelectric subbands, which becomes relevant at higher fields
(see Sec. 1.3). In other words, once the electron wave has made it into the billiard, the
transport properties (including orbital and interference effects) are determined by the ho-
mogeneous field there. If the field had extended homogeneously into the leads then this
energy threshold would just be a sharp one instead; the dynamics of electrons just above
the magnetoelectric threshold is not expected to alter much for a small field gradient in the
model. The actual length of the adaptation region in simulations may be determined by the
convergence of the transmission function with varying field gradient.

Apart from using the simple zero-field Fisher-Lee formula, the method described has
the further advantage that analytical expressions can be derived for the (semi-infinite) lead
Green function in the considered case of flat, hard-wall model leads, as is done in A. Note,
however, that for leads p and q in different directions, x̂p ∦ x̂q, an implication is added by the
adaptation regions by the different local gauges for the vector potential. In order to avoid
artificial field components from discontinuities of A(r) at the lead openings, the gauge in
each lead must match the one of the billiard just before the opening, which can be achieved
in two different ways: Either

(i) a smooth function A(r) is determined that matches the gauges at each lead opening
for a given billiard geometry and lead positioning, or

(ii) the total device structure is ‘dissected’ into the main scatterer, the lead parts with
the field adaptation regions, and the semi-infinite leads with zero field, and then the
propagators for the different parts are successively ‘combined’ into a total G+ after
being transformed to a common gauge,

where one of the two approaches can be followed according to the needs of each individual
case. Method (i) is obviously more restricted, since it is specific for given lead positions.
Method (ii) can be uniformly used for treating arbitrary billiard geometries and lead po-
sitions, which renders it particularly powerful for the cases of interest here, but requires a
procedure for ‘combining’ spatially separated Greenians—this will partially be the objective
of the computational approach in Chap. 4.
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3.2. Greenian formulation of scattering

3.2.3 Elements of formal scattering theory

In most scattering systems, the total Hamiltonian of the system is written as the sum of
an ‘unperturbed’ part H0 and a ‘perturbing’ part V which causes the actual scattering pro-
cesses considered. In potential scattering, H0 usually describes the kinetic energy of a free
particle, and V(r) = δ(r − r′) 〈r|V|r′〉 = 〈r|V|r〉 is the local (diagonal) potential off which
it is scattered. Alternatively, H0 might already include a potential for which the solution is
already known, like the (ideal) confining potential of a quantum wire. In any case, with this
separation the Schrödinger equation can be written[

ih̄
∂

∂t
−H0

]
|ψ〉 = V |ψ〉 , H0 + V ≡ H, (3.52)

so that, in analogy with Eq. (3.11), the term V |ψ〉 takes the form of a source for the system
governed by H0. The general stationary state of the system is then formally written in terms
of the Greenian G0 = (ζ−H0)−1, with ζ = E± iη, associated to the unperturbed Hamiltonian
H0 in the form of a ‘response’ [173]

|ψ〉 = |ψ0〉+ G0V |ψ〉 (3.53)

to the ‘source term’ V |ψ〉 with retarded and advanced versions

|ψ±(E)〉 = |ψ0(E)〉+ G±0 (E)V |ψ±(E)〉 (3.54)

= |ψ0(E)〉+ 1
E−H0 ± iη

V |ψ±(E)〉 , (3.55)

where a solution |ψ0〉 to the homogeneous problem (E−H0) |ψ0〉 = 0 has been added and,
as usual, it is understood that the limit η → 0 is taken, as in Eq. (3.27). Of course, the ‘source’
term V |ψ〉 is here unknown, and Eq. (3.53) constitutes an integral equation for |ψ〉, known
as the Lippmann-Schwinger equation [148, 174]; in spatial representation, it reads

ψ±(r; E) = ψ0(r, E) +
∫

dr′G±(r, r′; E)V(r′)ψ(r′; E). (3.56)

Recursion of Eq. (3.56), that is, repeated re-insertion of ψ±(r; E), yields the so-called
Brillouin-Wigner series for ψ± [173].

An analogous integral equation can be formed for the Greenian itself: With A0 ≡ ζ−H0,
and assuming the existence of the power series expansion of [A0 − V ]−1, we can make use
of the identity [148]

A0 − V−1 = A−1
0 +A−1

0 V [A0 − V ]−1 = A−1
0 + [A0 − V ]−1VA−1

0 (3.57)

to write an integral (Lippmann-Schwinger-like) equation for G in terms of the unperturbed
Greenian G0,

G = G0 + G0VG = G0 + GVG0, (3.58)

which in spatial representation becomes

G(r, r′) = G0(r, r′) +
∫

ds G0(r, s)V(s)G(s, r′). (3.59)

Equation (3.58) is often referred to as the Dyson equation for the single-particle picture of the
scattering system considered [173] due to its similarity to the form obtained in diagrammatic
perturbation theory for many-body systems: The associated so-called ‘self-energy’ operator
Σ, which modifies the vacuum propagator in the presence of interactions, reduces here
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simply to the influence of the external perturbing potential V . We will encounter a more
suggestive form of the analogue of a self-energy in Sec. 3.3.2 after spatially partitioning the
scattering system.

We can write Eq. (3.58) alternatively as

G = G0 + G0T G0 (3.60)

in terms of the transition operator [175]

T = V + VG0V + VG0 + VG0V + · · · = V [1− G0V ]−1 = [1− VG0]
−1V (3.61)

satisfying the equations
T = V + VG0T = V + T G0V . (3.62)

The transition operator plays a central role in scattering off finite-range potentials since
its matrix elements between an initial and a final unperturbed (asymptotic) state yields
the corresponding scattering amplitude. Here, in Eq. (3.60), we see that T represents the
multiple (virtual) scattering processes (expressed by V in the scattering region connected by
the unperturbed propagator G0.

To obtain a ‘closed form’ for |ψ±〉, though necessarily containing the full propagator
G of the system, we can restate Eq. (3.52) for the unperturbed system (assuming stationary
scattering) as [148]

A |ψ0〉 ≡ [ ζ −H ] |ψ0〉 = −V |ψ0〉 , (3.63)

and express its formal solution in terms of G = A−1 by adding a solution |ψ〉 to the homo-
geneous problem A |ψ0〉 = 0, just as was done equivalently in Eq. (3.53). This yields

|ψ〉 = |ψ0〉+ GV |ψ0〉 (3.64)

= [1 + G0 + G0VG0 + . . . ]V |ψ0〉 , (3.65)

where in the second equality the full propagator G has been expanded into a (Born) series
in the potential by its recursive insertion into Eq. (3.58). Keeping only the first order in V
in Eq. (3.65) gives the (first) Born approximation to the scattering state.5 The counterpart of
Eq. (3.54) now becomes

|ψ±(E)〉 =W±(E) |ψ0(E)〉 , (3.66)

where (from the series expansion in Eq. (3.65))

W±(E) = 1 + G±(E)V =
1

1− G±0 (E)V
(3.67)

is the wave (or Møller) operator, parametrized here in energy for the stationary (time-
independent) picture considered. W± is in turn closely connected to the transition operator
through the relations [175]

T± = VW± =W±V , (3.68)

where the ± sign corresponds to taking G±0 in Eq. (3.61), meaning that their matrix elements
provide equivalent information for a given potential.

In correspondence to a time-dependent picture [177], |ψ0〉 in Eq. (3.66) represents either
an initial state |Φi〉 or a final state |Φ f 〉 of the system described by the Hamiltonian H0,
transformed by W± to the scattering state |ψ+〉 or |ψ−〉, respectively, of the actual system

5 This approximation was employed by Born in the same paper [176] where, in a footnote, the interpretation
of the squared absolute wave function amplitude as a probability (density) was originally proposed.
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3.2. Greenian formulation of scattering

described by H at the same energy E. In this sense, the wave operators define the system’s
scattering operator S as

S =W†
−W+, (3.69)

whose matrix elements (constituting the S-matrix introduced previously) in the basis of
unperturbed states are given by the projection of the outgoing on the ingoing scattering
state,

Sβα = 〈Φ f ;β|S|Φi;α〉 = 〈Φ f ;β|W†
−W+|Φi;α〉 = 〈ψ−β |ψ

+
α 〉 , (3.70)

where the indices α, β denote (asymptotic) quantum numbers such as channels and mo-
menta. This is in direct analogy to Eq. (2.10), with α, β representing (collectively) the lead
and mode indices associated with an open quantum billiard system.

The need for a spatial decomposition of confined systems connected to leads

We have seen how, in the framework of stationary scattering theory, the asymptotic response
of an open system to an incoming excitation, given by its S-matrix, is directly related to the
resolvent (the Greenian) of the governing Hamiltonian. It also provides the general ap-
proach for treating modifications or additional contributions to a given Hamiltonian in the
form of recursive (Dyson-like) expressions for the Greenian, as in Eq. (3.58), which will be
utilized in the following chapters to efficiently assemble desired system setups. More impor-
tantly, however, the above outline of the formalities of scattering theory reveal an essential
peculiarity of the generic case of the open system we consider, that is, a 2D confining poten-
tial with openings into semi-infinite leads: Contrary to the case of scattering off a potential
which vanishes asymptotically, allowing for the inclusion of solutions |ψ0〉 of the homo-
geneous Schrödinger equation (E−H0) |ψ0〉 to the scattering states |ψ〉, here the potential
V(r) by definition extends to infinity in the form of the (multiple) perfect lead confinement.
Since perturbed and unperturbed states must obey common (asymptotic) boundary condi-
tions, the latter are necessarily identified as eigenstates of an ‘unperturbed’ Hamiltonian H0

which includes, however, the asymptotic confinement; any additional modification V is then
added to the active scattering region upon which the leads are attached. In fact, the original
generalization of the Fisher-Lee formula in Ref. [165] to multiterminal geometries, Eq. (3.47),
made use of a disorder potential present in the scattering region, with the derivation based
essentially on Eq. (3.70); once the general relation between the S-matrix amplitudes and G+
is established, it naturally holds also for vanishing disorder, that is, for the geometrically
defined scatterer alone.6

The particular implications of asymptotic confinement in modeling quantum transport
is underlined when commonly expressing the on-shell scattering operator in terms of the
(causal) transition operator T+ ≡ T for scattering off a finite-range potential (a localized
scatterer in otherwise free space) as [175, 177]

S(E) = 1− 2πδ(E−H0)T , (3.71)

6 In a derivation of the Fisher-Lee formula based on the scattering formalism of the present chapter, which
will not be repeated here, flux normalized asymptotic lead states can be used throughout: Since the scattering
state is initially expressed in terms of the spatially represented Greenian [165, 166] and then projected on the
lead eigenstates to obtain the S-matrix (and not vice versa), the lead indices present in the corresponding fluxes
enter symmetrically among the leads. In the (perhaps more intuitive) derivation presented in Sec. 3.2.2, the
selective evaluation of the Green function from a selected lead n carries this index via the flux normalization in

this lead, which would replace
√

v(q)n v(p)
m with v(q)n in Eq. (3.47). To avoid this technical issue, the rescaled (in

general non-unitary) S-matrix Eq. (3.43) has to be used in Eq. (3.42).
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Chapter 3. Stationary scattering in planar confining geometries

with matrix elements thus given by

Sβα = δβα − 2πδ(Eβ − Eα) 〈Φ f ;β|T |Φi;α〉 . (3.72)

The role of T is here clearly revealed: It is responsible for the actual scattering part of the
S-matrix arising due to the presence of the potential. This also holds for a potential with
translationally invariant asymptotic confinement, such as a perfect quantum wire with a
finite scatterer within it. For V = 0 (and thus T = 0 in Eq. (3.71)), any incoming state is
preserved and no scattering occurs.

For a generic multiterminal system, the term δβα in Eq. (3.72) at most expresses the or-
thogonality of ‘unperturbed’ scattering eigenstates |ψ0;α〉 of H0 (containing the asymptotic
confinement), which would be transformed into ‘perturbed’ states |ψ±α 〉 in the presence of an
additional potential V . Since we want, however, Sβα to express scattering between different
lead states, as in Eq. (2.10) (that is, with α ≡ (m, p)), the form in Eq. (3.72) cannot be used
here appropriately because the term δβα would imply total reflection into the incoming lead
at any energy.7

In other words, there are no ‘free’ states corresponding to unperturbed wave propagation
in the total system of the 2D cavity connected to leads, since the corresponding Hamiltonian
causes scattering already due to the geometric confinement alone. The closest notion of free
wave propagation is that of the isolated lead states, that is, eigenstates of separate leads
disregarding the cavity, which were indeed used to obtain the S-matrix in Sec. 3.2.2. It thus
becomes clear that, in order to treat the multiterminal system within integral scattering
theory (using the resolvents of the Hamiltonian), a spatial decomposition of the total system
into the scattering region and the connected leads on the level of the Hamiltonian itself
is needed. As will be seen in the following, this scheme will allow for the formulation
of the scattering problem in terms of an effective Hamiltonian for the isolated scatterer
which incorporates the presence of the semi-infinite leads. Conceptually, we turn from a
description through eigenstates of different Hamiltonians (perturbed and unperturbed in
the presence and absence of a scattering potential, respectively) with the same boundary
conditions to a description through eigenstates of the same total Hamiltonian but with
different boundary conditions (corresponding to the separate parts of configuration space).

3.3 Non-Hermitian approach to scattering

Following the discussion above, we now outline the formulation of the scattering problem
in terms of a propagator for the scattering region alone which incorporates the coupling to
the attached leads, based on the motivated spatial decomposition.

3.3.1 Decomposition of configuration space

As before, we start with the total Hamiltonian H describing single-electron motion within a
potential V(r) = 〈r|V|r〉 consisting of a 2D cavity attached to NL semi-infinite leads which in
turn represent the connection to (separate) electron reservoirs. We now consider a connected
spatial domain DS ⊂ R2 containing the scattering (or ‘reaction’) region (the region where
coherent transport is assumed for a mesoscopic device), enclosed by a fictitious boundary
∂DS which cuts the attached leads transversally at some depth into each lead, as shown in
Fig. 3.2. The leads (starting from ∂DS) thus belong to the complement D̄S = R2−DS of DS,

7 On the other hand, if the total confining potential is included in V , as was done in Chap. 2, δβα would have
no meaning since no leads would exist for V = 0.
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DS

Dext

Dq

HS

Hq

τq

τ†
q

HS + Σ

Σq

a b

Figure 3.2: (a) Decomposition of a multiterminal system into a scatterer domain DS attached to
NL = 3 non-overlapping lead domains Dq, q = 1, 2, 3, with DL =

⋃NL
q=1 Dq. The scatterer projected

Hamiltonian HS is coupled to the lead-projected Hamiltonian HL ∑NL
q=1Hq through a coupling oper-

ator τ ∑NL
q=1 τq. (b) The scattering system can be mapped to an isolated scatterer with non-Hermitian

Hamiltonian H̃S = HS + Σ, where the self-energy operator Σ = ∑NL
q=1 Σq represents the coupling to

the leads.

which can be further refined into the actual (rectangular) regions Dq of the different leads q
and the ‘exterior’ space Dext between them. In summary:

DS ∪ D̄S = R2, D̄S = Dext ∪DL, DL =
NL⋃

q=1

Dq. (3.73)

In order to maintain a representation-independent formulation here, we define spatial pro-
jection operators [178] Q and P as

Q = Q2 =
∫

DS

dr |r〉 〈r| , (3.74)

P = P2 =
∫

D̄S

dr |r〉 〈r| =
∫

Dext

dr |r〉 〈r|+ PL, (3.75)

which project any state onto the scattering and lead regions, respectively, with

PL =
NL

∑
q
Pq, Pq =

∫
Dq

drq |rq〉 〈rq| , (3.76)

projecting onto the leads. Since Q and P cover the whole configuration space, and since
any lead state vanishes in the exterior region D̄ext, the completeness relations

Q+ P = 1 = Q+ PL, (3.77)

are fulfilled (recall that the symbol 1 is used to denote the identity operator), as is the
‘complementarity’

QP = 0 = PQ (3.78)

of the projections.
Writing a total stationary scattering state of the system (at energy E) as

|ψE〉 = (Q+ P) |ψE〉 ≡ |ψ〉+ |Φ〉 , (3.79)
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Chapter 3. Stationary scattering in planar confining geometries

where Q |ψE〉 = |ψ〉 and P |ψE〉 = |Φ〉 = ∑q |Φq〉 are cavity and (collectively expressed) lead
states at energy E, respectively, the associated stationary Schrödinger equation

(E−H) |ψE〉 = (E−H)(Q |ψ〉+ P |Φ〉) = 0 (3.80)

is decomposed, by acting from the left with Q or P , respectively, as

HQQ |ψ〉+HQP |Φ〉 = E |ψ〉 , (3.81)

HPP |Φ〉+HPQ |ψ〉 = E |Φ〉 . (3.82)

The projected parts
HQQ = QHQ ≡ HS, HPP = PHP ≡ HL (3.83)

of the Hamiltonian govern the system in the isolated scatterer and lead regions, respectively,
while

HQP = QHP = [PHQ]† = H†
PQ ≡ τ (3.84)

stands for the coupling between the two subdomains, which ensures hermiticity of H in any
representation.

3.3.2 Effective scattering Hamiltonian for finite system

The above decomposition scheme for configuration space is the basis of the reaction matrix
(R-matrix) theory of scattering [179], originally developed by Wigner and Eisenbud [180],
which has been applied extensively to quantum transport in open billiards [178, 181–183].
In this context, the scatterer- and lead-projected states are expanded in the corresponding
eigenbases, and an explicit (singular [178]) form of the coupling operators Eq. (3.84) is as-
sumed. Our target here is the Greenian of the scatterer, in the presence of the leads, for a
generic transport device setup, to be represented on a discretized spatial basis (tight-binding
lattice) in Chap. 4. With this in mind, we keep the present approach at the general level of
decomposition.

It is instructive, nevertheless, to make a conceptual distinction between the scatterer
and the leads, in that the latter are connected to (large) electron reservoirs in the transport
model, following [159]. Without the distinction, the system of equations (3.81) and (3.82) is
completely symmetric in the two subdomains, and can be solved equivalently for either |ψ〉
or |Φ〉 in terms of the coupling to the complementary subdomain. Let us now write the lead
state as

|Φ〉 = |ΦL〉+ |ΦS〉 , (3.85)

where |ΦL〉 represents the state of the isolated lead (occupied by electrons originating
from the reservoir) and |ΦS〉 the contribution from the scatterer into the lead upon their
connection (through the coupling τ), and consider for a moment the eigenvalue problem
(E−HL) |ΦL〉 = 0 of the isolated lead.8 Adding and subtracting an imaginary part iη to the
lead Hamiltonian HL, this becomes a ‘scattering’ problem for |ΦL〉 at a given energy E,

(E−HL + iη) |ΦL〉 = |ΦR〉 , (3.86)

where +iη represents an outflow (loss) of electrons from the lead, compensated by an inflow
(gain) of electrons from the reservoir represented by the source term |ΦR〉 = iη |ΦL〉. The
rate η, which adds a width to each energy level of the isolated lead, is to be taken to zero in

8 Treating all leads on an equal footing, we have dropped here the index q of an individual lead, and describe
all leads collectively by HL.
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3.3. Non-Hermitian approach to scattering

a final calculation, as usual, but it is conceptually important here that even its infinitesimal
presence does not alter the description: In contrast to the isolated scatterer, whose density
of states would be affected by the level broadening due to its finite energy level spacing
(depending on the confining potential), the leads connected to the large reservoirs have
practically (and semi-infinite leads truly) continuous density of states, with level spacing
smaller than any fictitious η. With this distinction, it becomes natural to add the infinitesimal
−iη to the lead Hamiltonian, to determine the state in the scatterer after the connection.

The system of equations (3.81) and (3.82) can now be written in operator-matrix notation
(recall that no representation has yet been chosen) as(

E−HS −τ

−τ† E−HL + iη

)(
|ψ〉
|Φ〉

)
=

(
0
|ΦR〉

)
, (3.87)

where the equilibrating in- and outflow±iη |ΦL〉 between leads and reservoirs just discussed
is assumed unaffected by the presence of the scattered state |ΦS〉 in the leads. Eliminating
|ΦR〉 from (3.86) and (3.87) we obtain(

E−HS −τ

−τ† E−HL + iη

)(
|ψ〉
|ΦS〉

)
=

(
τ |ΦL〉

0

)
≡
(
|ψL〉

0

)
, (3.88)

whose lower equation yields
|ΦS〉 = G+L τ† |ψ〉 , (3.89)

where
G+L (E) = [E−HL + iη]−1 (3.90)

is the retarded Greenian of the lead region. We thus see that the billiard state |ψ〉 is coupled
onto the leads by τ† and acts a source which excites the scattered state |ΦS〉 in the lead by
action of its propagator GL.

We can now reinsert Eq. (3.89) into Eq. (3.88) to arrive at the following equation for |ψ〉:

[E−HS − Σ+(E)] |ψ〉 = |ψL〉 , (3.91)

where
Σ±(E) = τG±L (E)τ† (3.92)

is the so-called self-energy operator (including here both its retarded (+) and advanced (-)
version), with the formal solution

|ψ〉 = G̃S |ψL〉 = G̃Sτ |ΦL〉 , (3.93)

where
G̃S(E) = [E−HS − Σ+(E)]−1. (3.94)

is the Greenian of a modified Hamiltonian describing the scatterer coupled to the leads. In
similarity to Eq. (3.89), |ψL〉 now represents an inhomogeneous source term from (incident)
states in the leads which give rise to the scattering state |ψ〉 in the billiard region. The de-
composition scheme has thus allowed for a description of scattering in the total (infinitely
extended) system in terms of the projection to the system of interest–the scatterer constitut-
ing the active transport device. In the (discretized) spatial representation to be employed in
Chap. 4, this truncates the dimension of the Hamiltonian matrix from infinity to that of the
scatterer alone. The price to pay is that the scatterer is now governed by a Hamiltonian

H̃+
S (E) = HS + Σ+(E) (3.95)

which is non-hermitian and energy dependent due to the presence of the lead propagator G+L
in Σ+.
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Chapter 3. Stationary scattering in planar confining geometries

Self-energy, broadening and spectral operators

The Greenians associated with the modified scatterer Hamiltonian are written (see Eq. (3.57))

G̃S = [E− H̃S]
−1 = GS + GSΣG̃S = GS + G̃SΣGS (3.96)

(with the retarded/advanced ± sign suppressed), where no infinitesimal iη is now needed
since H̃S is already complex and thus moves the poles away from the real E-axis. The above
form gives the self-energy Σ its name more suggestively due to the formal similarity of
Eq. (3.96) to Dyson’s equation, as mentioned below Eq. (3.58): The self-energy here repre-
sents the influence of the ‘environment’ of the attached leads on the unperturbed propagator
GS = [ζ−HS]

−1 of the isolated scatterer by coupling (through τ) the single particle to ‘itself’
in a separate spatial region (the lead propagator GL). Distinguishing again between different
leads in a multiterminal setup, the total self-energy is given by the sum

Σ(E) =
NL

∑
p

Σp(E), Σp = τpGpτ†
p (3.97)

of the (in general different) self-energies due to individual leads, meaning that their influ-
ences on the scatterer state are independent. It should be noted here that Eq. (3.96) is so far
an exact result within the employed single-electron picture. In contrast to self-energies in
many-body theory, which provide an approximative account of electron-electron or electron-
phonon interactions [173], here the effect of the (externally defined) leads is taken into ac-
count exactly through the self-energy terms.9

To deduce the connection between the self-energy and the spectral properties of the
scattering system, we write the effective (non-hermitian, energy dependent) Hamiltonian
H̃+

S (E) and its adjoint H̃−S (E) as [159]

H̃±S (E) = HS + Σ±(E) = HS + ∆HS(E)∓ i
2

Γ(E), (3.98)

where
∆HS = ΣH =

1
2
[Σ+ + Σ−] (3.99)

is the hermitian component of the self-energy, while its anti-hermitian component is used
to define the broadening operator

Γ = 2iΣA = i[Σ+ − Σ−] = −i[(G̃+S )−1 − (G̃−S )−1] (3.100)

which determines the broadening (resonant widths) of the scatterer states due to their cou-
pling to the lead continua. To illustrate this, we consider the generalized eigenvalue problem
for the effective Hamiltonian [184]

H̃±S (E) |ψ(±)
n 〉 = [HS + Σ±(E)] |ψ(±)

n 〉 = Ẽ±n |ψ
(±)
n 〉 , (3.101)

where the right (+) and left (-) eigenstates |ψ(±)
n 〉 (not to be confused with the out- and in-

going scattering states of the hermitian Hamiltonian of previous sections) have the property

|ψ(−)
n (ζ)〉 = |ψ(+)

n (ζ∗)〉 (3.102)

9 Moreover, one of the reasons for maintaining a representation-independent description here is to separate
the notion of the effective scatterer propagator from its discrete spatial (matrix) representation to be used in the
next chapter. Using the more common [118, 127] matrix formulation from the beginning might suggest that its
validity is subject to the approximative tight-binding approach, which is not the case.
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3.3. Non-Hermitian approach to scattering

in the complex energy ζ-plane and the (quasi-particle) eigenenergies are proper solutions
[184–186] of

Ẽ+
n (ζ) = ζ (3.103)

with
Ẽ+

n (ζ
∗) = [Ẽ+

n (ζ)]
∗, Ẽ−n = [Ẽ+

n ]
∗ (3.104)

The energy dependent ‘eigenvalues’ are complex due to the non-hermiticity of H̃±S (E) and
can be written as

Ẽ±n (E) = 〈ψ(±)
n |H̃±S (E)|ψ(±)

n 〉 = En + ∆En(E)∓ i
2

γn(E). (3.105)

The presence of the leads thus shifts the eigenlevels En of the isolated scatterer by ∆En

and broadens them to finite widths γn (proportional to the escape rate from the scatterer
in a time dependent picture), according to the real and imaginary parts of the self-energy,
respectively. Being eigenstates of adjoint non-hermitian Hamiltonian operators, the states
|ψ(±)

n 〉 fulfill the bi-orthonormality relation [164]

〈ψ(+)
n |ψ(−)

m 〉 = δnm, (3.106)

and therefore the spectral expansion of the Greenian (see Eq. (3.28)) is now written [184,187]

G̃±S (E) = ∑
n

|ψ(±)
n 〉 〈ψ(∓)

n |
E− En −∆En(E)± i

2 γn(E)
. (3.107)

The spectral effects of the leads become more explicit if we consider the spectral operator
of the scatterer, defined here as

F ≡ i[G̃+S − G̃
−
S ] = G̃+S ΓG̃−S = G̃−S ΓG̃+S , (3.108)

where Eq. (3.100) has been used in the latter equalities. With the right/left eigenstate expan-
sion of G̃±S (E), Eq. (3.107), it can be written as [127, 184]

F (E) = ∑
n

|ψ(+)
n 〉 γn 〈ψ(−)

n |
(E− En −∆En)2 + (γn/2)2 . (3.109)

The spectral operator describes the response of the system upon an external excitation,
taking the role of a generalized density of states in a given representation which incorporates
the presence of the leads (the openness of the system). We see from Eq. (3.109) that, if the
self-energy operator were constant or slowly varying in E, then F would have a Lorentzian
form peaked at En + ∆En. The energy dependence of the shifts ∆En and broadenings γn,
however, which is enhanced for stronger coupling to the leads (represented by the operator
Γ), typically leads to a drastically varying (and largely unpredictable) energy-dependent
response. This will be seen in practice when studying the transmission through the open
billiard setups in the following chapters, where the challenge will be to control the energy
dependent transport properties.

Local density of states

The role of the spectral operator as a generalized density operator is illuminated if we write
it in the form [159]

F (E) = 2πδ(E− H̃S) (3.110)
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where the eigenbasis of the scatterer Hamiltonian has implicitly been used. The
(representation-independent) trace of F indeed gives the DOS in energy for the open sys-
tem, which becomes the usual DOS (see Eq. (1.36)) in the limit of vanishing coupling to the
leads,

N (E) =
1

2π
Tr[F (E)] =∑

n

γn

(E− En −∆En)2 + (γn/2)2 (3.111)

→∑
n

δ(E− En −∆En) (γn → 0). (3.112)

In real-space representation, the local density of states (LDOS) is given by the diagonal
elements of the spectral function,

ρ(r; E) =
1

2π
〈r|F (E)|r〉 = 1

2π
F (r, r; E) = − 1

π
Im G̃+S (r, r; E). (3.113)

Again using the spectral expansion of F , the LDOS reads

ρ(r; E) =∑
n

ψ
(+)
n (r)ψ(−)∗

n (r)
γn

(E− En −∆En)2 + (γn/2)2 (3.114)

→∑
n
|ψn(r)|2δ(E− En −∆En) (γn → 0), (3.115)

and hence is also determined by the coupling to the leads, while converging to the DOS with
each state weighted by its (isolated) probability density when the lead couplings vanish.

Since, now, the self-energies due to different leads are additive, see Eq. (3.97), the same
holds for the broadening operators, and the spectral operator can therefore also be viewed
as a sum of contributions Fp from all leads p = 1, 2, ...NL:

F =
NL

∑
p=1
Fp, Fp = G̃+S ΓpG̃−S , (3.116)

where

Γp = i[Σ+
p − Σ−p ],

NL

∑
p=1

Γp = Γ. (3.117)

A partial LDOS can then be defined as

ρp(r; E) =
1

2π
〈r|Fp(E)|r〉 = 1

2π
〈r|G̃+S ΓpG̃−S |r〉 , (3.118)

representing the spatially resolved response of the system upon an excitation (that is, an
incoming matter wave) selectively in lead p.

As we will see, the LDOS provides a unique tool to gain insight into the transport prop-
erties and spectral features of the open quantum billiards to be studied. It also constitutes a
quantity which is accessible experimentally for typical quantum transport setups by prob-
ing the charge density with the device under bias. Indeed, the spectral function entering
(3.113) and Eq. (3.118) can be measured via the differential conductance of a device [188],
and even direct imaging of spatially resolved densities in electron billiards via scanning gate
microscopy [54] has recently been reported.

3.3.3 Connection to electronic transport

With the spatial decomposition of the total system into scatterer and attached leads, the for-
malism presented can be embedded into the Landauer-Büttiker picture of electronic trans-
port, that is, by considering coherent transport–within the scatterer region–of matter waves
emitted and absorbed incoherently from the leads, each of which is in local equilibrium with
an electron reservoir.
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3.3. Non-Hermitian approach to scattering

Local charge density

The actual local charge density in the scattering region is obtained by weighing the partial
LDOS from each lead by the Fermi distribution function of the reservoir with which the
lead is in equilibrium,

n(r) = ∑
p

∫ +∞

−∞
dE ρp(r) fp(E; Θ) (3.119)

where a factor 2 (not present) may be included to account for spin degeneracy.10 This is in
accordance with the Landauer picture of transport developed in Chap. 2, where electrons are
emitted incoherently from the reservoirs, and thus the corresponding probability densities
instead of the scattering wave functions themselves are added in the charge density; see
Eq. (3.4) where the lead channels are explicitly summed over.

This result is rigorously obtained as the space-represented diagonal of the (single-
particle) density operator in non-equilibrium Green function theory [163, 172, 188], origi-
nally developed by Keldysh [189] and Kadanoff and Baym [190] and appropriately for-
mulated and extensively employed later for stationary electronic transport in mesoscopic
devices [3,4,191–193] and molecular junctions [194,195] as well as for time dependent trans-
port [196–201]. It relies on the so-called fluctuation-dissipation theorem [163, 188] for the
equilibrium single-particle propagators in many-fermion systems,

Ge
0(E) ≡ −iG<(E) = F (E) f0(E) (electrons), (3.120)

Gh
0 (E) ≡ iG>(E) = F (E)[1− f0(E)] (holes), (3.121)

which connects the (Fourier transformed) two-time electron and hole correlation functions
G<ij (t, t′) ≡ −i 〈c†

j (t
′)ci(t)〉 and G>ij (t, t′) ≡ i 〈ci(t)c†

j (t
′)〉 (c†

j and ci being electronic creation
and annihilation operators), respectively, describing fluctuations of the particle numbers, to
their dissipation to the environment described by F (through the broadening operator Γ,
as seen above).11 The equilibrium condition is described by the Fermi distribution function
f0(E), suppressing here the temperature dependence Θ.

For a system in equilibrium with a single reservoir at chemical potential µ0 (which we
imagine to be connected to the system through a perfect lead), we thus have the electronic
density operator [159]

$0 = ∑
n
|ψn〉 f0(En) 〈ψn| = f0(H̃S) =

∫ dE
2π
F (E) f0(E) =

∫ dE
2π
Ge

0(E) (3.123)

where Eq. (3.110) has been used.
The non-equilibrium character of the system now enters when the device is connected

to multiple reservoirs, each at equilibrium with a different chemical potential µp. In the
multiterminal setup, the spectral function is split into the contributions from each lead,

10 In the considered 2D system the charge density naturally has units [area]−1 (integrated over some area
it gives the average number of enclosed electrons), though it is occasionally explicitly multiplied also with
electronic charge e (in order to give the enclosed charge when integrated).

11 G<ij (t, t′) and G>ij (t, t′) are the so-called lesser and greater Green functions, respectively, defined as the
corresponding expectation values of products of creation and annihilation operators (that is, as correlation
functions) in the second quantization picture for many-body systems. They are related, owing to the fluctuation-
dissipation theorem, to the retarded and advanced Green functions through the relation

G> − G< = G+ − G−, (3.122)

which connects the occupancy of states (represented by G≷) to their spectral features (represented by G±).
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Eq. (3.116), and the reduced density operator for the scatterer is a weighted sum [202] of the
operators |ψp

m〉 〈ψ
p
m| due to each lead p,

$ = ∑
p

∑
m
|ψp

m〉 fp(Em) 〈ψp
m| (3.124)

= ∑
p

∫
dE fp(E)∑

m
δ(E− Em) |ψp

m〉 〈ψ
p
m| (3.125)

= ∑
p

∫
dE fp(E)G̃+S τ

[
∑
m

δ(E− Em) |Φp
m〉 〈Φ

p
m|
]

τ†G̃−S (3.126)

= ∑
p

∫ dE
2π

fp(E)G̃+S τF (L)
p (E)τ†G̃−S , (3.127)

where F (L)
p (E) = 2πδ(E−Hp) = i[G+p − G−p ] is the spectral function of the isolated lead p,

in analogy to Eqs. (3.110) and (3.108), and where scatterer state |ψp
m〉 is excited by a source

term τ |Φp
m〉 from lead p, see Eq. (3.93) [159]. With τF (L)

p (E)τ† = i[Σ+
p − Σ−p ] = Γp, and

writing the non-equilibrium electronic correlator as (see Eq. (3.116))

Ge(E) = ∑
p
Ge

p(E) = ∑
p
Fp(E) fp(E), (3.128)

we have, finally, the multiterminal charge density operator

$ = ∑
p

∫ dE
2π
Fp(E) fp(E) =

∫ dE
2π
Ge(E), (3.129)

whose space-represented diagonal yields the electron density in Eq. (3.119), n(r) = 〈r|$|r〉 .
Since we will be focusing on the effects of geometry on magnetotransport in the linear

response regime, as described in Sec. 2.3.2, the chemical potential will be the same in all
attached reservoirs, so that the spatial distribution of electrons within the device is effec-
tively described by the LDOS (3.113) alone. The non-equilibrium case outlined above also
provides, however, the generic connection of the effective scatterer Hamiltonian (and an as-
sociated transmission function) to the electronic current in the Landauer-Büttiker picture, as
is shown next.

Transmission trace formula

To express the charge current Iq at a terminal p of a multiterminal device in terms of the ele-
ments in the present spatial decomposition scheme, it is natural to start from the continuity
equation for the total net current

I∂DS =
NL

∑
p

Ip = 0 (3.130)

flowing between the defined scatterer domain DS and the surrounding leads (see Fig. 3.2),
which vanishes for the steady state transport we consider according to Kirchoff’s law (con-
servation of charge). I∂DS equals the rate of change of the total charge Q within the scatterer,
that is, the probability density integrated over DS, in which the projected state is |ψ〉, see
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3.3. Non-Hermitian approach to scattering

Eqs. (3.79) and (3.93); applying also the divergence theorem we have12

I∂DS

−e
≡ d

dt
Q
e
= − d

dt
〈ψ|ψ〉 = − d

dt

∫
DS

dr |ψ(r)|2 (3.131)

=
∫

DS

dr∇ · j(r) =
∫

∂DS

ds j(s) · n̂∂DS =
NL

∑
p

∫
dyp j(xp ∈ ∂DS, yp) · x̂p, (3.132)

with the probability current density (generally in the presence of a vector potential A(r))

j(r) =
1

2mi
[ψ∗(r)(∇+ ieA)ψ(r)− ψ(r)(∇− ieA)ψ∗(r)] (3.133)

=
1
m

Re[ψ∗(r)∇ψ(r)] +
e
m

A(r)|ψ(r)|2, (3.134)

simply showing that the total net current is indeed the sum of net currents flowing at the
terminals. Using the relation

ih̄∇ · j(r) = ψ(r)[HSψ(r)]∗ − ψ∗(r)[HSψ(r)], (3.135)

and substituting 〈r|HS|ψ〉 from Eq. (3.82) the total charge current can be written as

I∂DS = − e
h̄
(2Im 〈ψ|ψL〉 − 〈ψ|Γ|ψ〉) , (3.136)

which illustrates the role of the broadening Γ as an escape rate which balances the outgoing
flux to that corresponding to the incident source state(s) |ψL〉.

To establish the direct connection of the terminal currents to the scatterer Greenian, we
define a total charge current operator [159, 202]

J =
d
dt

$ = ∑
p
Jp, (3.137)

whose trace gives the charge current I = −e Tr(J ). Employing the time-dependent
Schrödinger equation corresponding to Eq. (3.87),

ih̄
d
dt
|ψ〉 = (HS + Σ+) |ψ〉+ τ |ΦL〉 (3.138)

to substitute the eigenstates |ψp
m〉 in Eq. (3.124), the partial current operator of lead p becomes

(with energy arguments dropped for clarity) 13

Jp =
1
ih̄

∫ dE
2π

{
[HS,Ge] + Σ+

p Ge − GeΣ−p + fp(ΓpG̃−S − G̃
+
S Γp)

}
(3.139)

where Eqs. (3.127), (3.129) and τF (L)
p τ† = Γp have been used. The net current at terminal p,

including the factor 2 for spin degeneracy, is then given by

Ip = 2eTr =
e

πh̄

∫
dE Tr[ fpΓpF − ΓpGe], (3.140)

12 Note that the symbol dr is used simply as a shorthand for the 2D volume element of integration dr ≡ dxdy
(and not to denote an infinitesimal vector); ds is the 1D surface element on ∂DS with outward normal unit
vector n̂∂DS coinciding with the direction x̂p in each (straight) lead p.

13 We here use d
dt |ψ〉 〈ψ| = ( d

dt |ψ〉) 〈ψ|+ |ψ〉 (
d
dt 〈ψ|) and the fact that the Hamiltonian of the isolated scatterer

is hermitian.
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Chapter 3. Stationary scattering in planar confining geometries

which, using Eqs. (3.128) and (3.116), can be written as a sum of weighted differences ( fp −
fq) over all leads q 6= p (excluding the terminal of incidence),

Ip =
e

πh̄

∫
dE

NL

∑
q
( fp − fq)Tr[ΓpFq], (3.141)

while the contribution from the same terminal q = p obviously vanishes. We have thus
arrived at the multiterminal Landauer-Büttiker formula, Eq. (2.57), where the transmission
function has acquired the compact form

Tpq = Tr[ΓpFq] = Tr[ΓpG̃+S ΓqG̃−S ], p 6= q (3.142)

known as the Meir-Wingreen [203] (or Caroli [204]) formula. It is important to notice that
the trace formula for Tpq is a general result relying here only on the assumption of coherent
transport within the scattering region and the incoherent contribution of electrons from
the terminals. Indeed, the presence of the open boundaries (leads) has been incorporated
exactly in the stationary scattering through the self energies.14 Note further that, although
the trace is representation-independent, the information of the spatial decomposition of the
total Hamiltonian is necessarily carried over via the lead indices p, q. In particular, the
reciprocity relation of Tpq in a magnetic field, following from Eq. (3.37), can be rigorously
shown [92] in a real-space representation.

3.4 Multi-state interference effects

Having developed the framework of scattering through a multiterminal confined system, we
now briefly outline the general effects arising from the interference between multiple avail-
able states and the particular aspects of these effects for the electron billiard systems to be
studied. Multi-state interference in electron billiard manifests itself when varying either the
wave vector of the incoming wave or the strength of the magnetic field penetrating the bil-
liard, giving rise to Fano resonances [35] and Aharonov-Bohm oscillations [56], respectively.
When the geometry of the billiard or generally the parameters of the confining potential are
varied, these two effects are effectively combined, since the underlying interfering states are
collectively modified. In essence, characteristic fluctuations of the linear response conduc-
tance of mesoscopic systems arising from coherent transport, such as the so-called universal
conductance fluctuations [155], can be deduced from combined multi-state interference.

3.4.1 Fano interference

In a generic setting of stationary potential (single-particle) scattering, a resonance occurs
when the incoming scattering state becomes energetically degenerate with a quasi-bound
state supported by the potential. Quasi-bound states are here to be thought of as states
which would be truly bound in the absence of the coupling of the reaction region to its
environment. In the present context, we saw that this coupling is expressed by the self-
energy operator Σ, with matrix elements whose real and imaginary part cause a shift and
a broadening of a the energy level of given state ν, respectively. On the one hand, the level
broadening expresses the rate at which a particle in this state can escape from the reaction

14 Equation (3.142) is often derived directly from the Fisher-Lee formula (3.49) by considering explicit self-
energy matrices in a specific representation, usually within a certain approximation scheme such as the tight-
binding approach which we will employ in practice in the following chapters.
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Figure 3.3: Fano resonance lineshape. (a,b) Plot of the normalized Fano lineshape formula σ =
(ε + q)(ε2 + 1)−1(1 + q2

ν)
−1 for different values of the asymmetry parameter q. The curve has a zero

at ε = −q, is antisymmetric in ±q and becomes a symmetric Lorentzian dip or peak for q = 0 or
|q| → ∞, respectively. (c) Plot of the transmission function (3.147) across an isolated Fano resonance,
choosing a constant background transmission T̄ = |S12|2 = 0.2 and lead couplings γ1 =

√
S12/2

and γ2 = (1 + 2i)
√
S12/2, for different resonance width parameters Γ. For Γ > 1, the asymmetry

parameter q12 becomes complex, such that the maximum is lowered from one and the Fano minimum
is raised from zero.

region, and on the other hand it signifies the accessibility of the same state by a particle
impinging from the outside.

In collision theory, it is usually the case that the target (or projectile, or both) possesses
internal structure, with internal states corresponding to individual scattering potentials—in
most cases differing through a shift in energy—which then constitute different channels of
scattering. Now, bound states of higher lying channels may energetically lie in the con-
tinuum of lower lying channels, and their coupling to this continuum renders them quasi-
bound.15

If an energy eigenstate in the continuum of one channel becomes energetically degen-
erate (that is, within the spectral width) with a quasi-bound state of another (higher lying)
channel, then scattering can occur either through the direct path of the continuum or the in-
direct path of the resonant quasi-bound state, with the total scattering cross section (the 3D
counterpart of transmission) resulting from the superposition of the two paths. As shown by
Fano [35], the interference between the a resonant path and a background continuum neces-
sarily results in a zero of scattering cross section within the spectral width of the resonance,
since the two states interfere with opposite phase on one side of the resonance position.16 This
is schematically illustrated in Fig. 3.3.

As a result of the coexistence with a zero in the scattering intensity, the usual symmet-
ric lineshape of a Lorentzian peak around Er

ν = Eν + ∆Eν is generically modified into an

15 The type of coupling between states in different channels is specific to the system considered; Fano used
the general notion of (many-body) configuration interaction between the quasi-bound state and the continuum
in the context of atomic auto-ionization [35]. In the simplest case, the coupling amounts to the (real-space)
projection between the state wave functions via the (single-particle effective) Hamiltonian in the reaction region
of the scattering potential [14, 40, 44].

16 Fano originally [205, 206] considered a single channel and neglected the energy shift of the quasi-bound
state, and treated the subject later more rigorously [35]. A generalization to multiple channels and overlapping
resonances was provided by Feshbach [207] in the context of nuclear reaction theory, using a projection scheme
as here in Sec. 3.3.1 but in state space (into closed and open channels) instead of configuration space. The
subject of discrete states coupled to the continuum by configuration interaction was firstly treated, however, by
Majorana in 1931 [208–210]
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asymmetric lineshape, with the degree of asymmetry determined by the ratio

qν =
1

πV∗E;ν

〈ψr
ν|T |φi〉

〈ψE|T |φi〉
, (3.143)

between the transition matrix elements of an initial state |φi〉 to the resonant state |ψr
ν〉

and to the non-resonant continuum state |ψE〉, where VE;ν is the (energy dependent and in
general complex) coupling between the latter two (Γν = 2π|VE;ν|2 being the spectral width
of the resonant state). The lineshape of the scattering cross section σν in the vicinity of the
resonance then acquires the form

σν =
(ε + qν)2

ε2 + 1
, ε =

E− Er
ν

Γν/2
(3.144)

in terms of the dimensionless energy variable ε. This is Fano’s famous lineshape formula,
with its ubiquitous presence across various fields of physics owing to its general applicabil-
ity to wave propagation in systems with many degrees of freedom (supporting simultaneous
resonant and non-resonant paths). In particular, with the advent of mesoscopic physics, it
has found numerous applications in the investigation of nanoscale structures [36]. The peak
and zero are given by

σν,max(ε = 1/qν) = 1 + q2
ν (3.145)

σν,min(ε = −qν) = 0, (3.146)

so that qν determines the asymmetry of the lineshape, which becomes a (symmetric)
Lorentzian dip or peak for qν = 0 or |qν| → ∞, respectively; see Fig. 3.3.

The Fano asymmetry parameter qν, introduced phenomenologically in the general line-
shape formula, depends on the specific characteristics of the system under consideration.
Recently, however, a general classification of Fano resonances with respect to the types of
complex poles of a system’s Green functions has been proposed, with microscopically de-
termined asymmetry parameters using model Hamiltonians [211].

Adapted to the quantum billiard system with asymptotic Q1D lead confinement consid-
ered here, the Fano formula for the partial transmission coefficients Tnm

qp = |Snm
qp |2 from

(lead,mode) = (p, m) to (q, n) in the vicinity of the resonant energy Er
ν can be written

as [40, 65]

Tnm
qp = T̄nm

qp
|ε + qnm

qp;ν|2

ε2 + 1
, qnm

qp;ν = i− 2i
S̄nm

qp

γn
q;νγ̃m

p;ν

Γν
, (3.147)

where γn
q;ν = 〈Φ(q)

n |ψ+
ν 〉 , γ̃m

p;ν = 〈Φ(p)
m |ψ−ν 〉 are the projections of the resonant left and right

eigenstates of the effective Hamiltonian H̃S on the lead eigenstates. This expression arises
from a superposition

Snm
qp = S̄nm

qp + i
γn

q;νγ̃m
p;ν

E− Er
ν + iΓν/2

(3.148)

of a non-resonant background S-matrix element S̄nm
qp (with T̄nm

qp = |S̄nm
qp |2), not including the

resonant state ν, and the resonant one expressed via the (bi-orthonormal) spectral expansion
of the open system’s Green function; see Eq. (3.107).

In the case of an isolated Fano resonance in single-channel scattering, as in the case of a
long-lived resonant state ν in a two-terminal quantum dot in the first channel of the leads,
the asymmetry parameter qν is real [40] and the Fano zero occurs. In the case of multiple
channels or leads qν is in general complex and the lineshape minimum is lifted from zero.
The same occurs for overlapping resonances, that is, with resonant widths larger than their
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spacing in energy [44]. Further, considering that additional leads/channels act effectively
as sources of decoherence for a selected channel in the Landauer-Büttiker transport picture,
complex asymmetry parameters in single-channel transport can be used as probes of deco-
herence in the system [212]; Fano resonances have even been used to identify the type of
decoherence (dissipation versus unitary dephasing) according to the loci of q-parameters in
the complex plane [213].

To make the connection between Fano interference and the spectral and self-energy op-
erators of the previous sections, we note that the diagonal matrix element of the retarded
Greenian G̃+S with respect to a resonant state |ψ+

ν 〉 can be written, in the vicinity of the
(complex) resonant energy Ẽ+

ν , as [185, 186]

G̃νν ≈
Zνν

ζ − Ẽ+
ν (ζ)

∣∣∣∣
ζ=Ẽ+

ν

, Zνν ≡
[

1− ∂Σ+
νν(ζ)

∂ζ

]−1

, (3.149)

so that the corresponding matrix element of the spectral operator becomes

Fνν(E) =
1
π

|ImẼ+
ν ReZνν − (E− ReẼ+

ν )ImZνν|
(E− ReẼ+

ν )2 + (ImẼ+
ν )2

. (3.150)

We thus identify the appearance of a Fano energy dependence with resonant width Γν =

2|ImẼ+
ν | and strength |ReZνν|, and with |ImZνν| determining the asymmetry of the lineshape

[186]. The asymmetric lineshape is then carried over to the transmission function through
the trace formula (3.142) once taking into account the coupling to the relevant leads p and
q.

A conceptual difference should here be noted between channel-coupled scattering in free
space due to the internal structure of the reactants and scattering through a geometrically
confined structure via attached leads: In the former case, scattering occurs with different
potentials (energetically shifted) in channels defined globally, with channel thresholds deter-
mined by the portion of energy attributed to the internal structure (e. g., the Zeeman energy
of spins in a magnetic field). In contrast, electron transport through a quantum billiard de-
vice occurs in channels defined only in the attached leads and through a common scattering
potential defined by the confinement in the billiard region. Here, the total energy, which was
partitioned into transversal modes in the leads, becomes available for propagation within
the cavity. Moreover, as discussed above, there is no freely propagating component in the
scattered wave: the background, non-resonant part in the Fano interference consists here
simply of another, broader resonant state coupled very strongly to the leads.

In fact, the whole transmission spectrum of a single quantum billiard will in principle
consist of multiple overlapping Fano resonances [14, 44] with complex asymmetry param-
eters, which collectively give rise to a highly fluctuating transport response in a typical
mesoscopic structure. The central challenge addressed in later chapters will be to gain con-
trol over the transport behavior in this overlapping Fano regime through the geometry of
the confining potential.

3.4.2 Aharonov-Bohm oscillations

The fundamental importance of potentials in quantum theory, as opposed to the fields they
produce, was underlined by Aharonov and Bohm [56, 214] by considering electrons inter-
fering at the intersection of distinct paths. The so-called Aharonov-Bohm effect consists in
the influence of a magnetic vector potential (or time dependent scalar potential) on the ob-
servable quantum behavior of a charged particle, even when it moves in regions where the
magnetic (or electric) field vanishes. The effect can be suitably demonstrated for an electron
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a b c

Figure 3.4: Aharonov-Bohm interference. (a) In an ideal 1D loop (here a circular ring), an incoming
wave ψ from the left follows the two possible paths along the arms of the ring, with wavefunction ψ1
and ψ2 on the upper and lower arm, respectively. The interference of the two waves at the exit on the
right, and in turn the transmission amplitude, depends periodically on the flux φ piercing the loop,
even if does not overlap with the arms. (b) In a loop structure with arms of finite width, several
paths are available within the arms leading to multimode AB interference, and in applications the
(uniform) magnetic field is usually present also within the leads and arms. (c) For a singly connected
device structure, paths along the boundary additionally interfere with bulk paths, but also bulk paths
with other bulk paths, leading to collective overlapping AB oscillations in the transmission.

moving on a line containing an ideal 1D ring (or a loop of arbitrary shape) penetrated by
a magnetic flux φ whose density B vanishes on the ring, as shown in Fig. 3.4. The spatially
confined magnetic field B = ∇× A is produced by a vector potential A(r) which modifies
the (minimal coupling) kinetic momentum into π = p− qA = p + eA.

Assuming zero reflection at the connecting nodes, an incident stationary electronic wave
of unit amplitude from the left will propagate through the upper (1) and lower (2) arm of
the ring with wave functions17

ψi =
1
2

exp
[

i
h̄
(pi · ri + eA · ri)

]
, i = 1, 2. (3.151)

While being in-phase at the entrance point rin of the loop, along the two (oriented) paths C1

and C2 the two waves ψ1 and ψ2 acquire different phase shifts, which at the exit point rout

become
ϑi =

1
h̄

∫
Ci

pi · dr +
e
h̄

∫
Ci

A · dr ≡ ξi + ϕi, i = 1, 2, (3.152)

in dependence of the gauge of A, where ξi = ϑi(A = 0) are the phase shifts due to the
momentum alone.

The total wave function at the exit will be the superposition of ψ1 and ψ2 with square
modulus (equal here to the transmission coefficient)

T = |ψ(rout)|2 = |ψ1(rout) + ψ2(rout)|2 =
1
2
(1 + cos(∆ξ + ∆ϕ)). (3.153)

The phase difference between the two paths due to the vector potential, ∆ϕ, is proportional
to the gauge-independent total flux φ of the field through the surface S enclosed by the loop:

∆ϕ = ϕ1 − ϕ2 =
e
h̄

(∫
C1

A · dr−
∫
C2

A · dr
)
=

e
h̄

(∫
C1

A · dr +
∫
−C2

A · dr
)

=
e
h̄

∮
loop

A · dr =
e
h̄

∫
S

B · ds =
e
h̄

φ = 2π
φ

φ0
, (3.154)

where we define φ0 ≡ h/e as the magnetic flux quantum. The transmission thus oscillates
in varying magnetic flux with period φ0.18

17The normalization is chosen such that |ψ1(rin) + ψ2(rin)|2 = 1 at the entrance point rin of the loop.
18 Note that this is the ‘first order’ AB effect for the loop system considered: There will in principle be

contributions from any number of windings of paths around the loop, including half windings if reflection at
the nodes is included [124]. As a result, higher frequencies appear in the AB oscillations; these are, however,
suppressed in experimental spectra due to the finite electronic coherence length.
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Since the experimental verification of such AB oscillations [215], they have been exten-
sively studied in various mesoscopic ring-like systems [131] in the context of magnetotrans-
port. The experimental setups, of course, far from fulfill the simplistic assumptions of the
toy model above, which has posed challenges for the unambiguous confirmation of the ef-
fect [216]. The following variations on the above description, among other more system
specific ones, modify the observed oscillations:

(i) Even for ideally controllable systems used in simulations, the elements composing
the structure (the ring and the attached leads) are not strictly 1D but have finite
width [155], as shown schematically in Fig. 3.4 (b). In the picture of interfering paths,
there will thus be an infinite set of trajectories contributing to the interference at the
exit. Alternatively, propagation in the leads and ring arms occurs in different transver-
sal modes [68], and there will be a finite coupling between modes in the leads to modes
in the ring caused by the connecting nodes, but also coupling between the modes in
each arm due to its curvature [217]. Finally, each transmission coefficient Tnm between
modes m and n of the leads will be a coherent (squared) sum of transmission ampli-
tudes between the leads and the ring arms [127], introducing additional frequencies
in the observed oscillations.

(ii) Although the original aim was the manifestation of the influence of A in regions of
vanishing B, most experiments as well as simulations are carried out with an external
magnetic field covering the whole structure (since it is not trivial to confine the flux
to an area in the interior of the loop), though still referring to AB oscillations in the
transport. The presence of the field in the ring arms further alters the oscillations
by modifying the couplings between transversal modes and by deforming the wave
function at higher field strengths.

(iii) The nodes connecting the loop to the leads are in general not reflectionless (also in
a 1D model [218]), meaning that the AB oscillation pattern changes in energy due to
(broad or narrow) single-channel resonant states in the ring arms. Even for a fixed
energy, however, the AB oscillations may be modified due to the B-field dependence
of resonant states. In particular, Fano resonances will inevitably form due to quasi-
bound states in the connecting node regions or in the arms, whose energy position
and width in general varies with the magnetic field. Specifically, a Fano resonance
may generally be shifted [37] onto the fixed energy considered by varying B, thus
drastically affecting the AB oscillations in transmission. In fact, the interplay between
the AB effect and Fano interference from scatterers connected to the arm(s) of a quan-
tum ring has been a topic of intensive interest [62–65], not least as a mechanism for
tunable magnetotransport.

The above aspects of AB oscillations in quantum rings are generalized for the quantum
billiard systems studied here, as will be seen in Chaps. 5, 6 and 7. There are now additional
(semiclassical) paths in the bulk of the billiard interfering with each other and with those
along the boundary, as illustrated in Fig. Fig. 3.4 (c), leading to a superposition of AB oscil-
lations with frequencies corresponding to the virtual loops formed by the paths. In the full
quantum picture at low energies, the wave functions are in general spatially extended across
the whole 2D area of the billiard and cannot be identified with well defined paths as for the
ring systems. AB-like oscillations in transmission can here be recognized as the interference
of quasi-degenerate (close in energy) states at the terminals, with the phase of each modu-
lated by the applied magnetic field. In fact, specific confining geometries may lead to spatial
distributions of states at zero field which are localized along (wide but distinct) paths along
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Chapter 3. Stationary scattering in planar confining geometries

the periphery of the billiard or in its interior, allowing for an association of the resulting
transmission oscillations in B-field to the flux penetrating the system. An extreme case is
that of interfering edge states at high field strengths: Interestingly, the transport in the ex-
tended system is then mediated by effectively 1D states like in the toy model we started
with above, and clear oscillations with definite periodicity are induced in the magnetotrans-
port [60]. Finally, AB-like interference can occur along effective loop structures forming
around potential hills of the potential landscape in the 2DEG of electronic nanostructures,
caused by (remote) impurities or other sources of disorder. Such loops, whose coherent
coupling is modulated by a magnetic field, appear and disappear in a random manner with
varying Fermi energy (as it enters valleys or covers hills in the potential, respectively) and
can form the basis for an intuitive understanding of the widely investigated phenomena of
weak localization [98,219] and universal conductance fluctuations [96] in disordered mesoscopic
systems [118].

3.5 Scattering in locally symmetric structures

Let us end this chapter with a note on scattering in systems which are locally symmetric,
meaning that they obey a certain spatial symmetry within one or more finite spatial do-
mains. Although important phenomenological properties of physical systems are often
explained through a model with global symmetry, in the most general case a symmetry
of a system under spatial transformations is globally broken but retained on a local scale.
Local symmetries are indeed generic for many forms of matter, such as groups of atoms
within large molecules or impurities and defects in within crystals. But also artificially de-
signed systems can usually be decomposed into locally symmetric pieces, a representative
example being the nanoelectronic devices described previously in Chap. 1. Further, struc-
turally complex systems such as quasicrystals, systems with long-range aperiodic order or
even partially disordered systems have inherent local symmetries. The pursuit to develop
a theoretical framework for generic (and thereby also matter) wave propagation in locally
symmetric systems has recently been undertaken in collaboration with F. K. Diakonos and
P. A. Kalozoumis and led to a series of joint works, Refs. [158, 220–222]. The focus has so
far been on 1D systems, and therefore the topic will only be briefly presented here since
the quantum billiard systems to be studied in the following chapters are 2D structures by
definition. Nevertheless, the developed formalism and the introduced key concepts render
a generalization to Q1D and 2D systems such as nanoelectronic transport devices plausible,
making it instructive to demonstrate some main considerations and findings.

3.5.1 Local symmetry induced invariants

Considering scattering in one dimension, there are two discrete symmetry transformations
which can be rendered local, inversion through a given point and translation by a given
length. In a unified wave-mechanical framework, 1D stationary scattering of a complex
wave field ψ(x) in absence of sinks and sources is described by the Helmholtz equation

ψ′′(x) + V(x)ψ(x) = 0, (3.155)

where the prime denotes differentiation with respect to the spatial variable x, and where
the real potential V(x) is assumed to be overall finite and asymptotically positive. We now
consider the spatial symmetry of V(x) under inversion through a point α and translation by
a length L, which can be treated uniformly by defining the linear transformation

F : x → x = F(x) = σx + ρ, (3.156)
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Figure 3.5: Different types of symmetry under inversion (Π) through α or translation (T) by L, map-
ping a domain D to D: (a) global symmetry, (b) simple local symmetry, (c) gapped local symmetry,
(d) complete local symmetry.

whose type is determined by the parameters σ and ρ as follows:

σ = −1, ρ = 2α ⇒ F = Π : inversion through α (3.157)

σ = +1, ρ = L ⇒ F = T : translation by L (3.158)

Assume now that the potential V(x) obeys the symmetry

V(x) = V(F(x)) ∀ x ∈ D, (3.159)

for an arbitrary domain D ⊆ R. If D = R, then the above symmetry is global, otherwise the
symmetry is called local. The latter can be of different types (see Fig. 3.5), as discussed below.
The transformations F generally map a domain D to a different one, F(D) = D 6= D, the
exception being inversion of a connected domain through its center α (as seen in Fig. 3.5 (a)
and (b) for F = Π).

The general local symmetry property of the potential can be exploited to construct locally
spatial invariant quantities from the field ψ(x), as follows. Evaluating Eq. (3.155) at a point
x and at its image x = F(x), we construct the difference ψ(x)ψ′′(x) − ψ(x)ψ′′(x), which
in general is non-zero and varies in x. For a potential V(x), however, which fulfills the
considered symmetry property in Eq. (3.159), this expression vanishes for all x ∈ D,

ψ(x)ψ′′(x)− ψ(x)ψ′′(x) = 2iQ′(x) = 0, (3.160)

which implies that the complex quantity

Q =
1
2i
[
σψ(x)ψ′(x)− ψ(x)ψ′(x)

]
(3.161)
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is spatially invariant (constant in x) within the domain D. Here ψ′(x) = dψ(x)
dx |x=x denotes

the derivative function evaluated at x = F(x), so that σ distinguishes between the Q’s for
inversion (F = Π) and translation (F = T).

The procedure can be repeated using the complex conjugate of Eq. (3.155) evaluated at x
to obtain another invariant in the same domain,

Q̃ =
1
2i
[
σψ∗(x)ψ′(x)− ψ(x)ψ′∗(x)

]
. (3.162)

The invariants defined by Eqs. (3.161) and (3.162) have the form of a ‘non-local current’
involving points connected by the corresponding symmetry transformation. Note that, be-
cause of their constancy in D, Q and Q̃ can be evaluated from any chosen symmetry-related
points x and x in this domain. The non-local currents within a symmetry domain D are
related, for each of the two cases F = Π, T (σ = −1,+1), by

|Q̃|2 − |Q|2 = σJ2, (3.163)

where J is the usual 1D probability (or energy) current carried by the matter (or electromag-
netic) wave,

J =
1
2i
[
ψ∗(x)ψ′(x)− ψ(x)ψ′∗(x)

]
, (3.164)

which is locally defined and globally invariant in one dimension for the real potential V(x).
The assumptions on the potential provided above guarantee that we have a propagating
scattering state with J 6= 0.

3.5.2 Generalized parity and Bloch theorems

We can now use the invariants Q, Q̃ to obtain a definite relation between the wave field ψ(x)
and its image ψ(x) under a symmetry transformation. Let us define an operator ÔF which
acts on ψ(x) by transforming its argument through F = Π or T as given in Eqs. (3.156)-
(3.158), ÔFψ(x) = ψ(x = F(x)). The image ψ(x) can then be solved for from the system of
Eqs. (3.161), (3.162), which finally yields

ÔFψ(x) = ψ(x) =
1
J

[
Q̃ψ(x)−Qψ∗(x)

]
(3.165)

for all x ∈ D. Equation (3.165), which remains valid in any type of domain D for states with
J 6= 0, is a central result of the introduced local symmetry formalism. It explicitly gives
the image ψ(x) in the target domain D as a linear combination of ψ(x) and its complex
conjugate in D, with the constant weights determined exclusively by Q and Q̃ (recall that
J is given from Eq. (3.163)). In other words, the invariant non-local currents Q and Q̃,
induced by the local symmetry of V(x) in Eq. (3.159), provide the mapping between the
field amplitudes at points related by this symmetry, regardless if the symmetry is global or
not. This transformation of the field can therefore be identified as a remnant of symmetry
in the case when it is globally broken.

To anticipate the meaning of Eq. (3.165), consider the scenario where ÔF commutes with
the Helmholtz operator Ĥ = d2

dx2 +V(x), and thus V(x) obeys global symmetry under F with
D = R in Eq. (3.159), but the (asymptotic) boundary conditions on the field ψ(x) prevent
it from being an eigenfunction of ÔF. This is typically the case in a scattering situation,
where incident waves are considered only on one side of the potential, thus breaking the Π-
symmetry of the problem even if the potential is globally inversion symmetric. Remarkably,
within the present framework the benefit of an underlying symmetry is retained in the
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treatment of the problem: In spite of the asymptotic conditions breaking global symmetry,
the quantities Q and Q̃ are constant in the entire space, relying on the global symmetry of
V(x), and Eq. (3.165) still provides the mapping of the most general wave function under
the action of ÔF.

From Eq. (3.165) it is now clearly seen that a nonvanishing Q is a manifestation of broken
global symmetry under the discrete transformation F. As shown in Ref. [158], this leads
us to the recovery of the usual parity and Bloch theorems for globally Π- and T-symmetric
systems. Indeed, when Q = 0, the field ψ(x) becomes an eigenfunction of the symmetry
operation, ÔFψ(x) = λFψ(x), with definite parity eigenvalues λΠ = ±1 for inversion sym-
metry and the Bloch phase λΠ = eikL (up to multiples of π) for translation symmetry [158].

3.5.3 Types of locally symmetric potentials

We end this section by illustrating the possible local symmetry structure of a system and the
induced invariants Q and Q̃ which explicitly relate the symmetry information to the scat-
tering wave amplitudes via Eq. (3.165). In the extreme case of total F-symmetry breaking,
there is no remnant of symmetry present in V(x), and therefore also no domain D with con-
stant Q. Although one can still define spatial functions Q(x), Q̃(x) as in Eqs. (3.161), (3.162),
leading to Eq. (3.165), their non-constancy brings no advantage to the representation of the
scattering problem. If local symmetry is present in V(x), we can distinguish the following
characteristic cases, which are sketched in Fig. 3.5.

(i) Simple local symmetries: In this case, a symmetry domain D either coincides, over-
laps, or connects with its image D = F(D) (that is, D ∪ D is connected). There can exist
one or many such domains of symmetry along the total potential landscape V(x), in gen-
eral with non-symmetric parts in between; see Fig. 3.5 (b). To each local symmetry domain
Di (i = 1, 2, .., N) a pair of spatially invariant (within Di) non-local currents Qi and Q̃i is
associated, whose different values change with energy. Within each domain, Eq. (3.165)
spatially maps ψ(x) to its image under the corresponding symmetry transformation: For
local Π-symmetry, the field in one half of Di is determined from the field in the other half
through the Qi and Q̃i, which can be evaluated at the center of inversion αi. For local T-
symmetry, the field within the first interval of length L in Di successively determines its
images along a locally periodic part of V(x), and the pair of invariants can be evaluated at
the corresponding boundaries.

(ii) Gapped local symmetries: In this case, a domain D has no overlap with its symmetry-
related image (D ∩ D = ∅). In other words, there is a gap between them in configuration
space, within which V(x) can obey another or no symmetry; see Fig. 3.5 (c). This can of
course occur if the source domain D is not connected, that is, already has gaps in it. For
connected D, gapped Π-symmetry occurs if the inversion point lies outside the associated
domain (α /∈ D), and gapped T-symmetry if the translation length L exceeds the size of D.
Interestingly, once Q and Q̃ have been evaluated from a pair of symmetry-connected points,
Eq. (3.165) maps the wave function from one part of the potential to a remote part, although
there is an arbitrary field variation in the intervening gap.

(iii) Complete local symmetry (CLS): An appealing situation occurs when the potential
V(x) can be completely decomposed into locally symmetric domains, each one characterized
by a remnant of the broken symmetry; see Fig. 3.5 (d). This can be realized by attached
domains of simple local Π- or T-symmetry, of a single kind or mixed. Also gapped local
symmetries can be part of such a structure, with the gaps between their source (Di) and
image (Di) domains all filled either by simple local symmetry domains or by the source
or image domain of other gapped symmetries. The latter case can then result in multiply
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Figure 3.6: Local inversion symmetries in 1D. Schematic of a completely locally symmetric potential
composed of three different arbitrary mirror-symmetric scatterers, labeled A, B, C, and intervening
potential-free regions (gaps). The circular arcs above the scatterer array provide all possible spa-
tial decompositions into local symmetry domains Dn, of lengths Ln and center positions αn, which
completely cover the potential region (up to variations including part of the intervening gaps). Two
selected decompositions are shown below the array (solid red and dashed green lines), demonstrat-
ing the presence of nested local symmetries within the same system. In a scattering setup, unit
amplitude plane waves incident on the left are transmitted and reflected with amplitudes t and r,
respectively.

intertwined symmetry domains, in a way that makes even the presence of a local symmetry
structure far from evident. The non-local currents Q, Q̃ can then be utilized as a detection
tool for local symmetry: Calculating them for every pair (x, x̄), using different α or L, their
constancy would reveal underlying symmetry domains, if present.

A schematic of a completely locally Π-symmetric 1D potential is shown in Fig. 3.6, where
the multitude of local symmetries at different scales as well as their possible nested config-
urations are depicted. In the context of mesoscopic electronic systems, the setup could
correspond to an inhomogeneous array of different types of quantum dots or (equivalently)
to a quantum wire with locally symmetric transverse confinement modulation. For the case
of 1D complete local Π-symmetry, in Ref. [221] it was demonstrated how the local invari-
ants Qn within different domains Dn can be used to classify perfectly transmitting (resonant)
states in 1D setups in terms of the spatial profile of the scattered wave. An immediate ex-
tension of the local symmetry framework to Q1D would yield a similar relation of resonant
transmission to symmetries in single-channel scattering, and opens up the perspective of
application to multichannel transport. Finally, it is noted that a promising platform for
the systematic construction of non-trivial CLS structures is provided by aperiodic symbolic
sequences: As shown in Ref. [222], local (inversion) symmetries are not only dense in 1D
scatterer lattices with typical long-range aperiodic order, but their distribution also follows
exactly the renormalized discrete dynamics of the underlying aperiodic sequence.
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4
Computational quantum transport in
multiterminal and multiply connected
structures

In this chapter we will address the actual determination of the propagator of a system, in
terms of which all quantities of interest for coherent transport are derived. To maintain
a high flexibility in setup variations, the numerical computation is performed on a tight-
binding grid upon which arbitrary device confining potentials can be defined. After a brief
review of relevant computational schemes, we introduce the matrix form of the discretized
theory, and then develop a block-partitioning technique for computing transport as well
as local density properties of multiterminal systems with arbitrary geometry and topology.
The approach constitutes an extended version of the recursive Green function method based
on the assembly of multiply connected structures from given inter- and intra-connected sub-
systems with multiple leads. It is combined with a block-reordered recursive computation
of subsystem propagators, thus enabling the efficient investigation of a large diversity of
system setups in a highly resolved parameter space.

4.1 Computational schemes for quantum transport

The computation of the stationary propagator of the active scattering region of a mesoscopic
device in the presence of attached leads lies at the core of the Landauer picture of transport
based on the Greenian formulation of confined scattering. Formally, the propagator is ob-
tained by a straightforward inversion of the discretized Hamiltonian matrix once the effect
of the leads have been incorporated via self-energies. However, for the grid resolution re-
quired to describe arbitrary potential variations and also to remain close to the continuum
of the effective mass description, the cost of a direct inversion becomes prohibitive, both in
terms of computational time and storage. In fact, though, only parts of the full Greenian are
relevant for the description of the response of the system upon an external excitation. More-
over, within the tight-binding approximation, used in the vast majority of approaches, the
grid Hamiltonian matrix is sparse which makes its full storage and processing redundant.

An approach which takes into the sparse structure of the Hamiltonian is the so-called re-
cursive Green function (RGF) method which has become a standard in nanoelectronic device
modeling [118]. The original formulation of the method [97, 119, 120] addressed the com-
putation of transport properties in terms of the inter-terminal part of the propagator, while
later implementations [223, 224] have included the computation of local device quantities
such as the LDOS and current densities derived from the terminal-to-interior propagator.
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In its standard form, the RGF technique is based on a decomposition of the grid-discretized
scatterer into (vertical) slices of sites [121,225,226], which are recursively appended by solv-
ing a matrix Dyson equation involving the isolated slice Greenians. This scheme can be
extended to the case where the connected parts are extended (rectangular) stacks of slices
(of constant potential) whose Greenians can be obtained analytically [121].

The computational efficiency in the standard RGF implementation is essentially deter-
mined by the (vertical) extent along the slices whose isolated Hamiltonians are inverted.
The modeled systems thus preferably have an elongated geometry composed of long (hor-
izontal) arrays of short connected slices. For systems with considerable extent in both di-
rections, such as quantum antidot superlattices [227], hybrid versions of the RGF have been
developed [80, 81, 228, 229] where the slices are computed in their eigenstate representation,
adapted to straight boundaries or smooth boundary variations.

A specialization of the connection of extended units is the ‘modular’ RGF method de-
veloped by Rotter et al. [122], where the eigenstate expansion of individual parts is used
and allows for ballistic transport computations at high energies [117] and strong magnetic
fields [50]. Although a multitude of geometries and interesting effects can be studied, the
advantage in performance is here practically obtained for structures that can be dissected
into basic module shapes (rectangles, circles etc.) and potentials (e. g. parabolic confine-
ment [12]) with analytically known eigenfunctions, or separable potentials with rapidly
calculated eigenfunctions.

For large system sizes of arbitrary potential, efficient computations with high perfor-
mance can be achieved through parallelized computation of the device propagator among
multiple communicating processors. A parallel implementation of the RGF algorithm was
developed by Drouvelis et al. [230] based on a Schur complement partitioning scheme for
the Hamiltonian and generalized to multiple terminals by D. Buchholz. Other renormal-
ization schemes for parallel solvers of sparse systems have also been proposed [231, 232].
In parallel processing the communication between processors must be taken into account,
which may limit the performance advantage for smaller systems. Especially when a well
resolved parameter space is desired (such as energy, magnetic field, and geometry/potential
parameters), it can be preferable to let independent processors perform serial computations
for different parameters (thus avoiding communication overhead) instead of parallelized
computations for fewer parameters.

An important development of Greenian based methods is the generalization to multiple
attached electrodes on the boundary of the device scattering region instead of only source
and drain contacts on opposite ends. Multiterminal computations were initially adapted to
specific geometries such as Hall bars [91,94,233] and have been further generalized since. In
a method by Mamaluy et al. [234,235] the eigenstate expansion of the Greenian is computed
numerically for arbitrary dot potentials and coupled to multiple attached leads. Within
the tight-binding approach, Wimmer et al. [236] have developed an optimal matrix reorder-
ing algorithm for efficient transport computations based on graph partitioning. Another
recent method for multiterminal transport utilizes a circular slicing procedure [237]. Fi-
nally, the ‘knitting’ algorithm by Kazymyrenko et al. [123] provides a computational scheme
for generic device geometries with arbitrary lead attachment, where the scatterer sites are
appended (knitted) one by one onto the part already included.

In the present work, we develop a hybrid computational scheme which combines the
latter knitting concept with a modular decomposition of the transport device region. The
method enables the assembly of multiply connected composite structures from a finite num-
ber of different module types, with arbitrarily positioned multiple lead terminals. The prop-
agator of a single multiterminal module is computed via a block-reordered RGF iteration

76



4.2. From operators to matrices

which separates the surface (lead-connected) part from the interior allowing for a selective
computation of local quantities (state and current densities). The assembly of modules is
based on a block-Gaussian elimination scheme to solve the matrix Dyson equation for inter-
connection between two modules or intra-connection of a module with itself. This provides
a flexible and efficient way to perform transport computations on generic looped devices
with internal structure assembled from different or repeated units.

4.2 From operators to matrices

To start with the description of a numerical approach to the transport problem, we now
introduce the tight-binding grid on which abstract operators of the previously developed
theory are represented. This gives the opportunity to define the notation and theoretical
formalities of the resulting matrix formulation, but also to address particular considerations
arising from the system discretization.

4.2.1 Grid discretization and tight-binding Hamiltonian

In order to treat the scattering system numerically, we need to ‘discretize’ it, meaning that
we select a discrete set of points in 2D space, the grid, on which any spatially represented
quantity is evaluated. The points of the grid on which the wave function of interest will
actually reside we call sites, and, since we will ultimately express the scattering problem
within a finite 2D domain D (see Sec. 3.3.1), those sites can be counted by a single running
index α. Considering a uniform square grid oriented as the Cartesian coordinate system
(x, y), we can represent each site position as

rα = (xα, yα) = (sa0, ra0)⇒ α↔ (s, r), (4.1)

each site index α thus corresponding to a pair (s, r), where the index s counts y-oriented
‘slices’ of the grid along the x-direction and r counts x-oriented ‘rows’ along the y-direction,
with common distance a0 (the lattice constant) between consecutive gridpoints in each direc-
tion. For the infinitely extended scattering system the total number of slices ns and rows nr

is of course infinite, ns = ∑s = nr = ∑r = ∞.1 Further, we consider states |rα〉, localized on
each site α, which form a complete orthonormal set,

〈rα|rβ〉 = δαβ, ∑
α

|rα〉 〈rα| = 1, (4.2)

so that any state |ψ〉 is represented as a column vector Ψ with components

Ψα = 〈rα|ψ〉 . (4.3)

The Hamiltonian of the system
H = ∑

α,β
|rα〉Hαβ 〈rβ| (4.4)

1 Note that, for a system infinitely extended in both x- and y-directions, like the generic multiterminal
scatterer attached to semi-infinite leads, the coordinates (s, r) can in general not be counted in a slice- or row-
major scheme (e.g., bottom to top and then left to right) by a single site index α, since some slice or row may
contain infinite sites. The only alternative would be a rather inconvenient outward spiral-like counting scheme
for α. With the decomposition scheme used here, together with the tight-binding approximation to follow, only
sites of the finite scatterer domain will be used in the description, such that a single-index counting is well
defined.
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is now represented by the square matrix

H = K + V, (4.5)

where Vαβ = δαβV(rα) is the (local) potential at site α and K is the grid-represented kinetic
energy operator.2 The stationary Schrödinger equation in the single-band effective mass
picture of the 2DEG is now written in the matrix form

(E−H)Ψ = 0 ⇒ ∑
β

(Eδαβ −Hαβ)Ψβ = 0 ∀α ∈ D, (4.6)

where E = EI and I is the identity matrix of dimension equal to the number of sites within
the total domain

D = DS ∪DL = DS ∪
NL⋃

q=1

D̄q (4.7)

of the scatterer (DS) attached to NL leads, which in turn will be determined by the imposed
boundary conditions.

Tight-binding approximation

Employing a finite difference approximation to the first one-dimensional partial derivative
of an arbitrary function f (x, y),

∂ f
∂x

∣∣∣∣
r=(xα+a0/2,y)

=
1
a0
[ f (xα + a0, y)− f (xα, y)], (4.8)

we get the second derivative on slice s as

∂2 f
∂x2

∣∣∣∣
r=(xα,y)

=
1
a2

0
[ f (xα + a0, y)− 2 f (xα, y) + f (xα − a0, y)], (4.9)

and similarly for row r, so that the five-point stencil Laplacian evaluated at site α becomes

∇2 f
∣∣
r=rα=(sa0,ra0)

=
1
a2

0
[ f(s+1,r) + f(s−1,r) + f(s,r+1) + f(s,r−1) − 4 f(s,r)], (4.10)

where we have defined f(s,r) ≡ f (sa0, ra0). In the absence of a magnetic vector potential the
Hamiltonian matrix elements on the grid are thus given by

Hαα′ = H(s,r)(s′,r′) = K(s,r)(s′,r′) + V(s,r)(s′,r′) (4.11)

= − h̄2

2ma2
0
[δs±1,s′δr,r′ + δs,s′δr±1,r′ − 4δs,s′δr,r′ ] + V(s,r)δs,s′δr,r′ (4.12)

= [4t + V(s,r)]δs,s′δr,r′ − t[δs±1,s′δr,r′ + δs,s′δr±1,r′ ] (4.13)

where t ≡ h̄2

2ma2
0

is the hopping energy. Writing the Hamiltonian as

H = ∑
α

|rα〉Uα 〈rα|+ ∑
α 6=β

|rα〉 Jαβ 〈rβ| (4.14)

2 Bold upright letters (H,Ψ), possibly with sub- or superscripts, will be used to denote matrices represented
on the spatial grid, with their thin variant (Hαβ,Ψα) denoting individual matrix elements.
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we see that the approximation procedure used for the kinetic term K effectively contributes
an energy t (which increases when the grid nodes come closer) to the ‘on-site’ energy of site
α from each one of its four nearest neighbors,

Uα = V(rα) + 4t, (4.15)

while ‘hopping’ to one of those sites costs energy t,

Jαβ = −t, |rα − rβ| = a0. (4.16)

In other words, we have obtained the simplest form of a tight-binding Hamiltonian, used
widely as an approximation to describe a lattice of atoms where only interactions with
the closest neighboring atoms are taken into account [238, 239]—though here the ‘atoms’
have no internal structure. Despite this similarity, the mathematical grid used here does
not simulate the atomic lattice of the material (heterojunction between two semiconductors)
where electrons propagate; it merely approximates numerically the continuous medium
within the effective mass picture we started out with, and approaches this continuum as
a0 → 0.

Peierls phase factor

In the presence of a magnetic vector potential

A(rα) = Aα = Ax(rα)x̂ + Ay(rα)ŷ = Ax
α x̂ + Ay

αŷ, (4.17)

the diagonal (on-site) matrix elements of the lattice Hamiltonian remain unchanged, and the
off-diagonal (hopping) elements acquire a local Aharonov-Bohm-like phase factor, known
as the Peierls phase factor [240], corresponding to the straight path from a site α to a nearest
neighbor α′,

JA 6=0
αα′ = JA=0

αα′ exp
(

i
e
h̄

∫ rα

rα′
dr · A(r)

)
. (4.18)

Relying on the gauge invariance of the Schrödinger equation (and thus of observable quan-
tities), Peierls’ phase factor is here exact and unambiguous [241] for the (trivially) orthonor-
mal basis set of the grid, within the tight-binding framework. An approximation does enter
for generic spatially varying magnetic fields if we evaluate the path integral by means of the
trapezoidal rule, ∫ rα

rα′
dr · A(r) ≈ 1

2
(rα − rα′) · (Aα + Aα′), (4.19)

for adjacent grid points α and α′. However, for the cases of homogeneous (in the billiard)
or linearly varying (in the leads) B(r), which we will consider here, also this interpolation
becomes exact. It yields the following explicit form of hopping elements:

J(s,r)(s′,r′) = −t
(

δs+1,s′δr,r′ e
−iπa0[Ax

(s,r)+Ax
(s+1,r)]/φ0

+δs−1,s′δr,r′ e
+iπa0[Ax

(s,r)+Ax
(s−1,r)]φ0

+δs,s′δr+1,r′ e
−iπa0[A

y
(s,r)+Ay

(s,r+1)]/φ0

+δs,s′δr−1,r′ e
+iπa0[A

y
(s,r)+Ay

(s,r+1)]/φ0
)

, (4.20)

where φ0 is the flux quantum.
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Figure 4.1: Schematic of a two-dimensional device discretized on a uniform square grid of lattice
constant a0. The scatterer is contained in the spatial domain DS with 1059 internal sites (blue) and
21 surface sites (red) connected to three leads (yellow, domain DL) which together with the scatterer
make u the total domain D of the model device defined by hard-wall boundary conditions. An
arbitrary scatterer potential (e. g. with smooth boundaries) is generally contained within a finite
rectangular computational box (gray sites), and after its design slices and rows are counted within
D. The schematic illustrates that (i) the device can have multiple, arbitrarily positioned semi-infinite
leads attached along the x- or y-direction, (ii) a tilted lead (p = 3) can be implemented by smooth
(adiabatic) continuation in a larger computational box into a straight horizontal or vertical outer lead,
(iii) leads can be attached directly on appropriate boundary segments of the device (p = 1) or after
lead stubs (p = 2, 3) extending to the box boundary, (iv) the scatterer can contain hard-wall holes
(antidots) whose sites are discarded from the Hamiltonian.

Hard-wall boundaries

As its name implies, a ‘hard wall’ along the boundary of a given 2D domain D means
that any wave inside the domain is perfectly reflected at the boundary, that is, the wave
function ψ(r; E) describing it vanishes just outside the boundary for arbitrarily high energies
E. This is achieved by letting V(r) → ∞ for r /∈ D in the theoretical model, leading to
(homogeneous) Dirichlet boundary conditions along the boundary,

ψ(r) = 0, r ∈ ∂D, (4.21)
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4.2. From operators to matrices

due to the required continuity of the wave function.
In the spatially discretized system, the boundary ∂D is drawn between gridpoints lying

inside (∈ D) an outside (∈ D̄) the scatterer, and the Dirichlet condition amounts to setting
the wave function of those outside to zero. In the tight-binding scheme, this is equivalent
to setting the hopping elements between nearest neighbor gridpoints on either side of the
boundary to zero,

Ψα = 0, rα ∈ D̄ ⇔ Jαβ = 0, rβ ∈ D. (4.22)

The discrete Schrödinger equation (4.6) is then solved only for the scattering domain of
interest (including the leads) D = DS ∪DL which is separated from the surrounding grid-
points. In other words, gridpoints outside the hard-wall boundary are simply discarded
from the Hamiltonian matrix. A schematic of an arbitrary multiterminal device—with very
crude grid resolution—is shown in Fig. 4.1, with a scattering region (blue nodes) attached
to three leads (yellow nodes) and the rest of the grid (white nodes) discarded.

Note that the Dirichlet boundary need not necessarily define the active confinement
geometry: It can just as well be used as a finite grid section on which a smooth potential is
defined, which becomes large enough along a designed boundary to practically confine the
wave function (i.e., cause it to drop off exponentially to zero before reaching the hard-wall
boundary of the finite grid) at energies of interest. Any chosen scatterer potential should
also match the potential in the leads at the terminal openings.

4.2.2 Dispersion relation

The degree of approximation in the tight-binding approach can be estimated more quan-
titatively by comparing the dispersion relations for a ‘free’ 2D matter wave (in the sense
of an electron in a 2DEG) in the continuous and discrete space. In the continuous case,
the free particle stationary wave function ψk(r) ∝ eik·r yields the parabolic dispersion
E(k) = h̄2k2/2m. In the discrete case, the corresponding plane wave Ψα = Ψ(s,r) ∝ eikxsa0 eikyra0

is a solution of the free Schrödinger equation (4.6) (that is, in the absence of confinement
or magnetic field), with tight-binding Hamiltonian matrix elements (4.13), if the energy is
related to the (discrete) wave vectors as [118, 127]

E(kx, ky) = 2t[1− cos(kxa0)] + 2t[1− cos(kya0)] (4.23)

a0→0−−−→ t(k2
x + k2

y)a2
0 =

h̄2k2

2m
. (4.24)

The discrete dispersion thus becomes parabolic in the continuum limit a0 → 0, as expected,
and the deviation for finite a0 provides an estimate for the accuracy of the simulation in
terms of spatial resolution: The larger the energy of the incoming matter wave, the finer the
grid should be in order to simulate the energy continuum in the effective mass picture of
the 2DEG.

When the confinement potential is introduced to create the quantum billiard, wave prop-
agation is free only along the attached Q1D leads. Just like in the continuum case, we
then obtain a free particle dispersion relation for the longitudinal direction for each energy
subband of the transversal lead confinement. For flat leads (zero potential) with hard-wall
boundaries, we have the sinusoidal transverse eigenfunctions (1.27), now with discrete wave
numbers

kp
y,m =

mπ

(Np
w + 1)a0

, (4.25)
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where Np
w is the number of transversal sites in the wire.3 The total, mode-resolved dispersion

relation thus becomes

Ep
m(kx) = 4t− 2t cos(kxa0)− 2t cos

(
mπ

Np
w + 1

)
, (4.26)

which yields the corresponding velocity

vp
m =

1
h̄

∂Ep
m

∂kx

∣∣∣∣
kx=kp

x,m

=
2ta0

h̄
sin
(
kp

x,ma0
)
=

h̄
meffa0

sin
(
kp

x,ma0
)

(4.27)

in mode m of lead p, to be used in the following, where kp
x,m for a given energy E is obtained

as

kp
x,m =

1
a0

arccos
[

2− E
2t
− cos

(
mπ

Np
w + 1

)]
(4.28)

by inverting Eq. (1.29).
Note here that, although the full dispersion relation determines kp

x,m, the channel thresh-
olds alone are given by the energies Em = 2t[1− cos(ky,ma0)]. The relative deviation between
the continuum and discrete channel thresholds ∆Em/Econt

m = 1− 2[1− cos(ky,ma0)]/(ky,ma0)2

with ky,m = mπ/(Nw + 1) illustrates the approximation introduced in dependence of the
number of transversal sites used in a lead: For Nw = 32, as will be the case in following
implementations, we have relative deviation ∆Em/Econt

m = 0.000755, 0.003017, 0.006779 for
thresholds m = 1, 2, 3, respectively.

4.3 Scattering via spatial decomposition

We will now use the decomposition scheme developed in Sec. 3.3 to express the scattering
problem in terms of an effective Hamiltonian projected on the scattering region DS alone.
Within the tight-binding approximation, this will provide an exact mapping of the infinite-
dimensional, grid-represented scattering problem to a finite-dimensional one, though de-
scribed by an energy-dependent and non-Hermitian Hamiltonian. The corresponding Gree-
nian will then provide any quantity of interest such as transmission functions and state
densities.

4.3.1 Truncation of the Hamiltonian

Although imposing Dirichlet boundary conditions—either as a hard-wall scatterer boundary
or around a computational box within which a smooth confining potential is defined—
discards most part of the 2D grid, the Hamiltonian matrix (4.5) is still of infinite dimension
due to the formal semi-infinite extent of the leads: y-oriented leads yield a finite number
ns < ∞ of infinite slices (nr = ∞) of sites within the total scattering domain D, and x-
oriented (or any non-y-oriented) leads yield an infinite number ns = ∞ of finite slices (nr <

∞).
We now consider the decomposition of the total scattering domain into that containing

the actual scatterer, DS, and the one containing all leads, DL. As shown in Sec. 3.3 the open
scatterer system can be described by a modified Hamiltonian H̃+

S (E) = HS + Σ+(E), where
the (generally energy-dependent and non-Hermitian) retarded self-energy operator Σ takes

3 On the grid, one can think of the boundary ∂D as drawn in the middle between gridpoints (see inset of
Fig. 4.1), so that hard-wall (Dirichlet) boundaries for lead p are implemented by setting ψ(xp, yp = −a0/2) =
ψ(xp, yp = Nwa0 + a0/2) = 0 at the gridpoints just outside the lead; the effective width of the lead is thus
w = (Np

w + 1)a0.
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4.3. Scattering via spatial decomposition

into account exactly the presence of the attached leads, achieved formally by using operators
that project any state onto DS and DL. Represented on the introduced discrete spatial grid,
this effective Hamiltonian becomes a matrix

H̃(E) = H + Σ(E) = H + τ g(E) τ† (4.29)

where the matrix τ provides the coupling from sites in DL to sites in DS and g is the
Greenian of the isolated leads (describing propagation between sites in DL in the absence
of the coupling, τ = 0).4 The subscript S indicating the scatterer is here omitted; adapting
to matrix notation, we also suppress the ‘retarded’ superscript + on Σ and g, with the
‘advanced’ superscript − replaced by Hermitian conjugation, Σ+ ≡ Σ⇒ Σ− = Σ†.

The Hamiltonian H of the isolated scatterer has dimension N equal to the number of
sites within DS, and in the tight-binding approximation arising from the finite-difference
scheme for the kinetic operator it acquires the block-tri-diagonal form

H =



... ...

... Hs−1,s−1 Hs−1,s

0

Hs,s−1 Hs,s Hs,s+1

0
Hs+1,s Hs+1,s+1

...
... ...


, s = 1 : Ns, (4.30)

where each block Hs,s on the diagonal is in turn a tri-diagonal matrix

Hs,s =



. . . . . .

. . . U(s,s)(r−1,r−1) J(s,s)(r−1,r)

0

J(s,s)(r,r−1) U(s,s)(r,r) J(s,s)(r,r+1)

0
J(s,s)(r+1,r) U(s,s)(r+1,r+1)

. . .

. . . . . .


, r = 1 : N(s)

r , (4.31)

corresponding to a slice s of N(s)
r scatterer sites (s, r = 1 : N(s)

r ), so that

N =
Ns

∑
s=1

N(s)
r (4.32)

is the dimension of H and the total ‘size’ of the linear problem to solve, where we use the
shorthand notation a : b ≡ a, a + 1, a + 2, ..., b. Counting s = 1 : Ns along x from the leftmost
slice of the finite scatterer domain, the double indexing can be mapped unambiguously to
a single index α↔ (s, r).

Note that the domain DS, whose sites are exclusively included in representing H, may
be multiply connected, that is, contain ‘holes’ where Ψ vanishes due to an internal hard-

4 Note that, in the tight-binding grid representation, and for a uniform grid, each matrix product is accom-
panied by a constant factor a2

0, corresponding to the element of 2D spatial integration of matrix elements in the
continuum limit. To simplify notation, we choose to absorb these constants in the corresponding multiplied
matrices; for example, the symbol G will denote the grid-represented Green function multiplied by the surface
element a2

0.
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wall boundary, as shown in Fig. 4.1.5 Thus, although the diagonals of the blocks Hs,s are
always full, with the sites enclosed in the hole being discarded, the side-diagonals (upper
and lower) may contain zeros corresponding to unconnected sites on either side of the hole.

Also, since the slices of included sites are generally of different lengths N(s)
r , the blocks

Hs,s±1 on the side-block-diagonals of H are sparse (with at most one non-zero element per
row or column) but in general rectangular N(s)

r × N(s±1)
r matrices, and not square diagonal

as would be the case for a rectangular domain DS.
With the addition of the self energies representing the connection to the semi-infinite

leads, the total Hamiltonian matrix H̃ acquires blocks which do not follow the above struc-
ture, to be discussed next. It should be noted, however, that the matrix elements of Σ are
assigned solely to sites within the scatterer domain DS, independently of whether a tight-
binding approximation is employed or not. In other words, the truncation of the Hamilto-
nian matrix itself relies only on the projection scheme applied to the domain decomposition
into scatterer and leads, and the approximation involved is independently determined by
the type of coupling and grid resolution.6

Self-energies

The coupling matrix τ is the sum of matrices τp coupling the leads p to the scatterer, which,
in the tight-binding approach, consist simply of the hopping elements Jαβ across the lead
interfaces,

τ =
NL

∑
p=1

τp, τp;αβ = Jαβ, α ∈ DS, β ∈ Dp, (4.33)

and τp;αβ = 0 otherwise. Thus, the self-energy matrix

Σ =
NL

∑
p=1

Σp, Σp = τp g(E) τ†
p, (4.34)

also has nonzero elements only for sites adjacent (nearest neighbors) to the first sites in the
leads at local coordinates rα;p ≡ (xp = a0, yp). It couples, however, all such ‘surface’ or ‘lead-
coupled’ sites of the scatterer connected to a terminal p to each other via the matrix elements
gαpβp of the lead Greenian along the interface,

Σp;αβ = τp;ααp gαpβp τ
†
p;βp β = t2 gαpβp . (4.35)

With the self-energy due to the leads, the scatterer thus effectively interacts with ‘itself’,
beyond nearest neighbors at the surface sites.

A schematic of a four-terminal toy scatterer with 42 sites is shown in Fig. 4.2 (a), with the
corresponding effective Hamiltonian H̃ (or the structurally equivalent matrix ∆ ≡ E − H̃,
ultimately to be inverted) shown in Fig. 4.2 (b). For horizontal leads attached to a single
slice on the left or on the right of the scatterer, the self-energy contributes full blocks on the

5 Such structures are called ‘antidots’ in the context of nanoelectronic systems, since they expel the electrons
instead of trapping them like quantum dots do. If their (negative) potential is low, then their appearance may
depend on the quasi-Fermi level in the 2DEG, leading to fluctuating Aharonov-Bohm-like loops, as discussed
in Sec. 3.4.2. For strong and steep enough potential, the antidot can be modeled by a correspondingly shaped
closed hard wall, with the enclosed sites discarded from the Hamiltonian matrix, as done in Fig. 4.1 and Fig. 4.2

6 For example, if next-to-nearest-neighbor coupling were included (that is, via a higher order, nine-point
stencil approximation to the 2D Laplacian), the coupling matrix τ would ‘reach’ further (by one more site in
each direction) across the interfaces to the leads, but since τ† projects back onto the scatterer domain (see
Eq. (3.84)), the matrix Σ remains of the size of H.
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4.3. Scattering via spatial decomposition

diagonal of H̃, and the block-tri-diagonal structure is preserved. For vertical leads (more
than two sites wide), however, the self-energy couples slices with sites which are not near-
est neighbors, and H̃ is no longer block-tridiagonal: In principle, any block of H̃ can be
populated sparsely by the elements of Σ.

For the flat hard-wall semi-infinite leads considered here, the Green function for zero
magnetic field is derived in App. A.2; in the grid representation, the lead Greenian connect-
ing sites αp, βp along the interface of lead p to the scatterer is then [127]

g
p
∂D

= −1
t ∑

m
χ

p
meikp

x,ma0χ
p†
m ⇒ g

p
αpβp

= −1
t ∑

m
χ

p
m;αp eikp

x,ma0χ
p∗
m;βp

(4.36)

where χ
p
m is the Np

w × 1 transversal wave function column vector of lead p (which is chosen
real for zero magnetic field). The self-energy matrix for the scatterer sites connected to lead
p thus becomes

Σp = −t ∑
m

χ
p
meikp

x,ma0χ
p†
m ⇒ Σp;αβ = −t ∑

m
χ

p
m;αp eikp

x,ma0χ
p∗
m;βp

, (4.37)

which is seen to be manifestly non-Hermitian and energy-dependent. The sum is here
over all modes in lead p, which, in the discretized system, are restricted to the number of
considered transversal sites Np

w. Note that evanescent modes with Ep
m > E, corresponding

to exponential decay through an imaginary kp
x,m, are here inherently taken into account in

the summation.

4.3.2 Open system propagator

With the self-energies Σp added to the truncated scatterer Hamiltonian H, the Greenian of
the open system is given by the grid-represented form of Eq. (3.94),

G̃ = (E− H̃)−1 = (E−H−Σ)−1. (4.38)

which is obtained here equivalently by matrix algebra after decomposing the system into
scatterer and attached leads, as shown below in Sec. 4.4.1 Formally, the propagator is thus
obtained by a single matrix inversion. In view of the spatial grid resolution needed to sim-
ulate a quantum device accurately, however, the resulting N × N matrix is usually too large
to be directly inverted in an efficient way. Recall that matrix inversion and its underlying
matrix multiplication are ‘level 3’ operations [242] with computational cost C, or ‘numerical
complexity’, scaling asymptotically as

C ∝ f N3, N � 1 (4.39)

for large N, meaning that the number of floating point operations (addition or multiplication
of two scalars) performed is approximately proportional to f N3, where the factor f depends
on the particular algorithm used [243]. For example, even for a moderately resolved circular
billiard with a radius of 100 gridpoints we have N ≈ 31415 and a direct inversion is already
computationally expensive. Apart from the computational cost, only storing the inverse
(which, in contrast to the sparse Hamiltonian H̃, is generally a full matrix) requires too
much memory to be practicable.

In fact, though, only a small fraction of the matrix elements of the full Greenian G̃ are
relevant for describing transport through the system: Since transport in principle regards the
response of the system upon an incident excitation in one of the attached leads, the essential
part of G̃ is the one which propagates from surface (lead-connected) sites to the interior of
the scatterer and to other surface sites. We will now briefly list the lattice forms of quantities
employed directly or indirectly in the description of transport, and in the following sections
the computational procedure to efficiently obtain the needed blocks of G̃ will be presented.
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Scattering wave function

To find the wave function within the scatterer domain as a response to an incoming wave
in one or more leads at energy E, just like in Sec. 3.3.2, we write the matrix Schrödinger
equation for the total system (scatterer + leads) as(

E−HS −τ
−τ† E−HL

)(
Ψ

ΦS + ΦL

)
=

(
0
0

)
, (4.40)

where ΦL = ∑p Φp is an eigenstate of the isolated lead(s), HLφL = EΦL. Upon connection
of the lead(s) via τ to the scatterer, ΦL acts as an excitation giving rise to a wave Ψ in the
scatterer and a wave ΦS in the leads. From the lower equation we have

ΦS = (E−HL)
−1τ†Ψ = gτ†Ψ, (4.41)

where g = (E−HL)
−1 is the Greenian of the isolated leads.7 Inserting ΦS into the upper

equation in (4.40) yields the scattering wave function in the scatterer region,

Ψ = (E−H−Σ)−1τΦL = G̃τΦL, (4.42)

as the response to a source ΨL = τΦL at the interface to the leads, propagated by the
Greenian G̃ of the connected scatterer. Since, in the Landauer-Büttiker picture of transport,
electrons are injected incoherently in different lead channels from different reservoirs, in
practice ΦL is the wave function of a single mode m in a single lead p, and the response
becomes

Ψ = G̃τΦ
p
m, Φ

p
m = χ

p
meiθ , (4.43)

where the phase θ = −kp
mxp ≡ 0 of the incoming wave is conventionally set to zero consid-

ering the origin of the lead at the interface to the scatterer. Further, since only surface sites
are coupled to the leads via τ in the tight-binding approach, it is clear that only the part of
the propagator G̃ connecting the surface sites at terminal p to the scatterer interior is needed
above for computing Ψ.

Probability current density

Because of its non-local character in the discretized spatial representation (due the finite-
difference approximation to the gradient ∇ψ), the lattice current density is not defined
at a single site but on the link between two neighboring sites α and β. Using the spatial
representation of the velocity operator v = [r,H], the link current from rβ to rα can be
written as [94, 244]

jαβ =
1

2ih̄
(rα − rβ)[ψ

∗(rα) 〈rα|H̃|rβ〉ψ(rβ)− ψ∗(rβ) 〈rβ|H̃|rα〉ψ(rα)], (4.44)

where |rα − rβ| = a0. In the finite-difference scheme considered, the x- and y-components
of the current vector between internal lattice sites (not connected to leads) become

jx
αβ = j(s,r)(s±1,r) = ±

a0

2ih̄
[Ψ∗(s,r)J(s,r)(s±1,r)Ψ(s±1,r) −Ψ∗(s±1,r)J(s±1,r)(s,r)Ψ(s,r)], (4.45)

j
y
αβ = j(s,r)(s,r±1) = ±

a0

2ih̄
[Ψ∗(s,r)J(s,r)(s,r±1)Ψ(s,r±1) −Ψ∗(s,r±1)J(s,r±1)(s,r)Ψ(s,r)], (4.46)

7 The coupling of the leads themselves to reservoirs is here implicit, with a corresponding imaginary term iη
absorbed in HL which makes g convergent, as shown in App. A.2.
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where the hopping matrix elements J(s,r)(s′,r′) are given in Eq. (4.20). For surface sites con-
nected to the leads also the self-energy coupling elements Σ(s,r)(s±1,r±1) should be included.

Although the discrete current defined along links between sites, it is convenient (e. g.,
in order to visualize current flow) to assign to each site itself a current vector equal to the
sum of the currents on the links connected to the site; this yields a total ‘on-site’ current
vector [80]

jα = j(s,r) = [ j(s,r)(s−1,r) + j(s,r)(s+1,r) ]x̂ + [ j(s,r)(s,r−1) + j(s,r)(s,r+1) ]ŷ (4.47)

=
h̄

2ma0
Im{ Ψ∗(s,r)[e

iγs
−Ψ(s−1,r) − e−iγs

+Ψ(s+1,r)]x̂

+Ψ∗(s,r)[e
iγr
−Ψ(s,r−1) − e−iγr

+Ψ(s,r+1)]ŷ } (4.48)

at site α↔ (s, r), where the Peierls phases γs
± = πa0[Ax

(s,r) + Ax
(s±1,r)]/φ0, γr

± = πa0[A
y
(s,r) +

Ay
(s,r±1)]/φ0 depend on the chosen gauge for the vector potential A. Thus, once the scattering

wave function Ψ has been determined as a response to an incoming wave from Eq. (4.43),
the current within the scatterer region is computed from Eq. (4.48) (in the same gauge, of
course).8

Broadening matrices and spectral function

The quantities relevant for the actual observables in an electron transport setting are ob-
tained in their discrete form simply by representing the corresponding operators, derived
in the general framework of Sec. 3.3, on the tight-binding lattice.

Resonant widths (equivalent to decay rates) of quasibound states in the scattering region
are described by the anti-Hermitian part of the self-energy matrix,

Γ =
NL

∑
p=1

Γp, Γp = i[Σp −Σ†
p], (4.49)

with each partial broadening matrix Γ having non-zero on-site and hopping elements only
for sites coupled to the corresponding leads. For flat hard-wall leads, with the self-energy
given by Eq. (4.37), their explicit form becomes

Γp = 2t ∑
m

χ
p
m sin[kp

x,ma0]χ
p†
m =

h̄
a0

∑
m

χ
p
mvp

mχ
p†
m , (4.50)

where the discrete dispersion relation (4.26) was used.
Together with the propagator G̃, the broadening matrices determine the lattice spectral

function of the system, which also can be written as the sum of partial spectral matrices (see
Eq. (3.116)),

F =
NL

∑
p=1

Fp, Fp = G̃ΓpG̃
†, (4.51)

with each part Fp determining the observable response upon an excitation (incoming elec-
tron) in the corresponding lead p. Note here that, since Γp has nonzero elements only for
sites connected to lead p, to obtain Fp only the corresponding part of the propagator G̃ needs

8 Note that the Ψ is determined from the effective Hamiltonian H̃, and only the evaluation of the current at
surface points is skipped here for simplicity, since they do not affect the current streamline pattern in the interior
which is of interest. If leadpoints were added as Büttiker decoherence probes in the bulk of the scatterer, then
the current should be evaluated at those sites as well, including the corresponding self-energy couplings on the
links.
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to be computed (like for Ψ in Eq. (4.43)); that is, the part propagating from the interior of the
scatterer to lead p (or its Hermitian conjugate propagating from the lead to the interior), and
not the (comparatively huge) part propagating between sites in the interior. Nevertheless,
the Fp are generally full matrices of the dimension N of the scattering region, providing the
spatial correlations between all site upon excitations at the terminals. In practice, however,
not all of their elements are required for the analysis of transport properties.

Local density of states

The diagonal elements of the spectral matrix F provide the total LDOS of the scatterer (cf.
Eq. (3.113)),9

ρ =
1

2π
diag(F) ⇒ ρα =

1
2π

Fαα = − 1
π

Im Gαα, (4.52)

which can be viewed as a generalized probability density with incoherent contributions
from excitations in the lead channels. As seen in Sec. 3.3.3, these contributions are weighted
by the Fermi occupation functions of the reservoirs connected through the corresponding
terminals in order to obtain the charge distribution in the device. For equilibrium transport,
where all reservoirs are assumed at the same chemical potential, the (scaled) charge density
is effectively described by ρ above. We will here, however, still use the partial LDOS

ρp =
1

2π
diag(Fp) ⇒ ρp;α =

1
2π

Fp;αα =
1

2π ∑
β,β′

GαβΓp;ββ′G
∗
αβ′ , (4.53)

as a tool to analyze the spatial distribution of the response from an incident wave in a lead
p.

Scattering matrix and transmission function

The mode-resolved S-matrix of a multiterminal scatterer in the tight-binding grid repre-
sentation is given by the discrete version of the Fisher-Lee formula (3.49) (choosing the
convention of setting the origin in each lead at the terminal interface),

Snm
qp = ih̄

√
v(q)n vp

m χ
q†
n G̃qpχ

p
m − δqpδnm (4.54)

where G̃qp is the part of the scatterer Greenian propagating from lead p to lead q, with
the mode velocities vp

m given in Eq. (4.27) (recall here that the factor a0 from the matrix
product in the first term is absorbed in G̃qp, so that the result is indeed dimensionless). The
transmission function Tqp(E) = ∑n,m Tnm

qp (E) = ∑n,m |Snm
qp (E)|2 (see Eq. (2.14)) determines,

upon thermal averaging, the linear-response conductance between terminals p and q, as was
seen in Sec. 2.3.2, which is of primary interest in equilibrium transport.

If resolution into channel transmission coefficients Tnm
qp is not needed, some computa-

tional cost (and storage) is saved by employing directly the trace formula (3.142) for the
transmission, which in the discretized tight-binding case reads

Tpq = Tr[ΓpFq] = Tr[ΓpG̃ΓqG̃
†
], p 6= q, (4.55)

with the trace taken explicitly over the diagonal elements of grid-represented matrices; that
is, a single number is computed and stored for each lead pair instead of an S-matrix of
dimension equal to the number of transversal sites in the leads. In fact, Eq. (4.55) is readily

9 The symbol diag( ) denotes (with a single matrix argument) the column vector of the diagonal elements or
(with multiple arguments) the (block-) diagonal matrix with elements (matrices) on the diagonal.
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4.4. Computation of the propagator

obtained from Eq. (4.54) by taking the absolute square and using Eq. (4.50). As noted pre-
viously, however, it should be kept in mind that the trace formula is of general validity for
coherent transport and does not rely on the tight-binding approximation.

Whether we want to determine resolved matrix elements Snm
qp or the transmission Tpq, it

is clear that only the part G̃qp of propagator connecting leads p and q needs to be computed,
which is typically a very small portion of the full G̃-matrix. This fact will be exploited in the
computational method developed in the following sections.

Natural units

For convenience as well as numerical stability in computations, but also as a means of
presenting results in an easily scalable fashion, in the following we adapt to a ‘natural’
system of units where the length scale is defined by the lattice constant a0, that is, we set
a0 ≡ 1. In addition, we set

h̄ = meff = e = a0 ≡ 1 (4.56)

in terms of which all other units of interest are defined.10 In particular, the natural units of
energy and magnetic flux density become

[E] =
h̄2

meffa2
0

, [B] =
h̄

ea2
0

, (4.57)

respectively, that is, both scale as a−2
0 . In this manner, E- or B-resolved results can be

scaled according to the size of the system in correspondence to realistic length scales, taking
into account the conditions under which coherent transport would be achieved experimen-
tally. Appendix E provides tables including derived natural units for relevant quantities (Ta-
ble E.1), the conversion factors for certain quantities for an experimentally relevant choice
a0 = 2 nm (Table E.2), as well as the numerical values of relevant constants (Table E.3) for
easy reference. In natural units, the hopping energy has the value t = h̄2

2meffa2
0
= 1

2 .

4.4 Computation of the propagator

Having established the grid-discretized versions of quantities of interest and their relation
to the open system Greenian, we will now address its actual computation for a generic
multiterminal quantum billiard system. First, we describe a generic partitioning scheme for
the matrix Hamiltonian pertaining to a solution based on block-Gaussian elimination (BGE),
and then present two alternative computational procedures for the relevant multiterminal
G̃-matrix parts.

4.4.1 Block-partitioning of the Hamiltonian

An often recurring concept in the following will be the partitioning of a grid-discretized
Hamiltonian matrix H̃, which could be the total (effective) Hamiltonian matrix of the sys-
tem or some part of it, into blocks H1 and H2 on the block-diagonal coupled by a block-
antidiagonal matrix W,

H̃ =

(
H̃11 H̃12

H̃21 H̃22

)
≡ H + W =

(
H1 W12

W21 H2

)
, (4.58)

10 Note that, in contrast to the units used in the theory of previous chapters, here we do not set c = 1 for the
speed of light. In fact, since [length] = a0 and time = h̄/[E] = meffa2

0/h̄, velocity scales as a−1
0 .
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Chapter 4. Computational quantum transport

for which the corresponding Greenian G̃ is to be computed in terms of the Greenians G1 of
H1 and G2 of H2 as well the couplings W12 and W21. As shown in App. B, the total Greenian
of the connected subdomains D1 and D2, described by H1 and H2 when isolated, is found
by BGE to be

G̃ =

(
G̃11 G̃12

G̃21 G̃22

)
=

(
G̃11 G̃11W12G2

G2W21G̃11 G2 + G2W21G̃11W12G2

)
(4.59)

=

(
G1 + G1W12G̃22W21G1 G1W12G̃22

G̃22W21G1 G̃22

)
, (4.60)

with

G̃11 = [E1 − (H1 + Σ1)]
−1, Σ1 ≡W12G2W21, (4.61)

G̃22 = [E2 − (H2 + Σ2)]
−1, Σ2 ≡W21G1W12, (4.62)

where Σ1 and Σ2 are the self-energies of subsystems 1 and 2 due to the coupling to 2 and 1,
respectively. This is equivalent to solving the matrix Dyson equation

G̃ = G + GWG̃ = G + G̃WG (4.63)

for the disconnected subsystems [121] with block-diagonal propagator

G̃ =

(
G1 0

0 G2

)
, (4.64)

perturbed by the interaction W between them. Solving in terms of Σ1, the explicit propaga-
tors between sites in the domains D1 and D2 then read

G̃21 = G2W21(I1 −G1Σ1)
−1G1, (4.65)

G̃11 = G1 + G1Σ1(I1 −G1Σ1)
−1G1, (4.66)

G̃12 = G1(I1 −Σ1G1)
−1W12G2, (4.67)

G̃22 = G2 + G2W21G1(I1 −Σ1G1)
−1W12G2, (4.68)

as shown in App. B.2, where I1 is the identity matrix of the dimension of H1.
A particular case of the above partition scheme arises when decomposing the infinitely

extended scattering system into scatterer and attached semi-infinite leads. We then obtain
the Greenian of the open scatterer G̃S ≡ G̃11 in terms of the self-energy Σ ≡ Σ1 due to
coupling to the leads in the familiar form of Eq. (4.38), with coupling matrix τ ≡ W12 and
lead Greenian G22 = GL = g. The partitioning here simply consists in implicitly counting
first all the sites within DS and then those in DL.

For actually computing the parts of the inverse G̃S = (E− H̃S) needed for the observables
relevant to transport (such as transmission and LDOS), the scatterer Hamiltonian is further
partitioned into blocks H̃s,s′ corresponding to slices s, s′ of DS. In the present context, the
subsystems 1 and 2 will correspond to subdomains D1 and D2 of the discretized scatterer
domain D consisting of one or more slices of (internal or lead-connected) sites. The BGE
procedure will then be applied on the level of single slices and parts of connected slices.
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Hαα
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Figure 4.2: (a) Toy device with 26 internal sites (blue) and 16 surface sites (red) of which 14 are
connected to four terminals (yellow) and two represent decoherence probes. The scatterer also has
a hole of 4 discarded sites. The legend on the right indicates the effective Hamiltonian on-site and
hopping matrix elements describing the truncated scatterer, where lead sites (yellow) participate via
the their Green function in the self-energy Σ. (b) Effective Hamiltonian matrix H̃ (or equivalently
∆̃ = E− H̃) of the lead-connected scatterer with all sites (including red surface sites) indexed from
left to right by slice numbers s = 1 : 9 and from bottom to top by row number r = 1 : N(s)

r in each
slice. Self-energies (on-site = red, nearest-neighbor coupling = orange, remote coupling = brown)
contribute full diagonal blocks for horizontal leads (attached on the left or right) and scattered off-
diagonal blocks for vertical leads (attached on the bottom or top). (c) Block-reordered ∆̃-matrix
by indexing first internal sites and then surface sites as numbered in (a), with leads numbered as
encountered from left to right and bottom to top. The reordered matrix has block-tridiagonal internal
superblock ∆̃

ιι, block-diagonal surface superblock ∆̃
σσ and surface-internal coupling ∆̃

ισ
= [∆̃

σι
]†.

Indicated subblocks ∆̃
ιι
s,s, ∆̃

ιι
s,s+1 and ∆̃

ισ
s = [∆̃

σι
s ]† are used in s-th iteration of the BGE process.
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Chapter 4. Computational quantum transport

4.4.2 Standard recursive Green function method

Considering the toy scatterer in Fig. 4.2 (a), if we count all sites of the scatterer (internal/blue
and lead-connected/red) from left to right (starting from the leftmost slice s ≡ 1) and bot-
tom to top (starting from the lowest site (s, r = 1) in each slice), we obtain the effective
Hamiltonian matrix illustrated in Fig. 4.2 (b). It consists of a block-tridiagonal matrix cor-
responding to the internal sites, with self-energy elements Σαβ added including hoppings
between all surface sites connected to a each lead; the Σαβ can thus, in general, occupy any
block of H̃, since remote (not nearest-neighbor) slices can be coupled by vertical leads.

We can now assemble the scatterer slice by slice, starting from the left and, for each slice
s + 1 added to the part of already assembled slices 1 : s, solve the Dyson equation (4.63) by
identifying

G =

(
G1:s 0

0 Gs+1

)
, W =

(
0 H(1:s,s+1) + Σ(1:s,s+1)

H(s+1,1:s) + Σ(s+1,1:s) 0

)
(4.69)

as the propagator of the isolated domains D1:s ∪Ds and the coupling between them, re-
spectively. The solution for G̃ ≡ G̃1:s+1 is given by performing BGE on the corresponding
block-partitioned Hamiltonian H̃ ≡ H̃1:s+1 in Eq. (4.58) and, since the slice s + 1 being at-
tached is the smaller of the two subsystems, the solution form in Eq. (4.59) with Eq. (4.61)
is chosen where G2 ≡ Gs+1 must be computed while G1 ≡ G1:s is already known from the
previous iteration. The explicit forms of the propagators between sites in the connected do-
mains are then given by Eqs. (4.65)–(4.68) For each added slice s + 1, the same computational
steps are performed using, as input, the output G̃1:s from the previous iteration, and so the
procedure is referred to as the recursive Green function (RGF) method.

Let us now assume that we are only interested in the transmission function Tqp (or
the mode-resolved scattering matrix Snm

qp ) between the terminals of a transport device. We
then only need the propagator between surface (lead-connected) gridpoints of the scatterer.
Considering the toy scatterer in Fig. 4.2 (a), with the first (horizontal) lead connected to the
first slice, according to the above procedure we start by computing the Greenian G̃s=1 =

(Es=1 −Hs=1 −Σs=1)
−1 and G̃s=2 = (Es=2 −Hs=2 −Σs=2)−1 of the first and second slices

(here Σs=2 happens to be zero) which become the inputs G1 and G1 to compute G̃ ≡ G̃1:2

from Eq. (4.59). In the same manner G̃1:3 is computed in the next step, with slice s = 3 being
connected to the second lead (which happens here to be a decoherence probe).

In performing the computation, we may discard the computation of the propagator be-
tween internal sites of slices 2 and 3 which is not required. However, in order to obtain the
lead-to-lead parts of the propagator G̃1:3 needed, we have now also computed the propaga-
tor between internal sites of slice 3 to surface sites of slice 1. In other words, with the standard
RGF method the complete BGE including back-substitution is performed for each added slice
in the recursion in order to obtain the corresponding Greenian, even though the added slice
contains internal points.

We next introduce a scheme which avoids this issue by a further block-partitioning of
the Hamiltonian into internal and surface blocks, enabling selective computation of needed
propagators.

4.4.3 Reordered block-Gaussian elimination scheme

In order to separate the computation of the surface-surface part from the internal-surface
part of the scatterer propagator, we reorder the matrix

∆̃ = E− H̃ = ∆−Σ = E−H−Σ (4.70)
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4.4. Computation of the propagator

as shown in Fig. 4.2 (c) for the toy scatterer in Fig. 4.2 (a). The reordering essentially consists
in scanning through the scatterer domain from the left slice-by-slice (and from bottom to
top in each slice), though first only indexing all internal sites of the scatterer; the surface
sites are then indexed lead-by-lead in the order they are encountered from left to right and
then from bottom to top, with the index following the local y-coordinate in each lead (that
is, anti-clockwise), as shown by the numbers on the red sites in Fig. 4.2 (a).

The ∆̃-matrix (or, equivalently, Hamiltonian) then acquires the large-scale block-
partitioned form

∆̃ =

(
∆̃

ιι
∆̃

ισ

∆̃
σι

∆̃
σσ

)
, (4.71)

where the off-diagonal blocks ∆̃
ισ
= [∆̃

σι
]† couple the surface part (labeled σ) to the internal

part (labeled ι).
Since the self-energy matrix elements are now exclusively contained in the ∆̃

σσ block,
the Hermitian internal part ∆̃

ιι now retains the block-tridiagonal structure of the isolated
scatterer Hamiltonian (4.30). Considering no coupling between sites of different leads, the
non-Hermitian surface block ∆̃

σσ is block-diagonal,11

∆̃
σσ

= diagNL
p=1(∆̃

σσ
p ) = diagNL

p=1(Ep −Hp −Σp), (4.72)

where Σp is the full Np
w × Np

w self-energy matrix for lead p and Hp the corresponding tridi-
agonal isolated Hamiltonian matrix for the straight site array connected to lead p.12 The
coupling block ∆̃

ισ
= [∆̃

σι
]† is a block-column of block-rows ∆̃

ισ
s (s = 1 : Ns) of sizes

N(s)
r ×∑p Np

w,

∆̃
ισ
=



∆̃
ισ
1
...

∆̃
ισ
s
...

∆̃
ισ
Ns

 , ∆̃
ισ
s =

(
∆̃

ισ
s;1 · · · ∆̃

ισ
s;p · · · ∆̃

ισ
s;NL

)
, (4.73)

where s now counts only the slices of internal sites in the reordered indexing.
In the internal-surface block-partitioning scheme, the Green equation to be solved be-

comes (
∆̃

ισ
∆̃

ισ

∆̃
σι

∆̃
σσ

)(
G̃

ιι
G̃

ισ

G̃
σι

G̃
σσ

)
=

(
Iιι 0ισ

0σι Iσσ

)
, (4.74)

11 Note that this is in accordance with the Landauer-Büttiker framework for transport, on which the formu-
lation of the scattering problem is based: Recall that semi-infinite leads merely represent an (ideal form of)
electron reservoirs, which in turn correspond to electrodes attached to the transport device. Coupling (that is,
hopping elements) between surface (lead-connected) sites of two different leads would, in the continuum limit
a0, correspond to a connection between the respective electrodes, in which case they would equilibrate (short-
circuit) to the same chemical potential and effectively constitute a single attached electrode, to be modeled by a
single semi-infinite lead.

12 For simplicity, we consider only horizontal or vertical semi-infinite leads attached to the computational box
containing the scatterer, for which the lead Greenians are easily evaluated. That surface sites connected to one
lead are then y- or x-collinear, respectively, leading the tridiagonal Hp. Leads at arbitrary angles can be imple-
mented by ‘adiabatic bending’ into a horizontal or vertical lead by enlarging the computational box accordingly,
as shown schematically (for very low grid resolution) in Fig. 4.1. With sufficiently smooth bending, the Fano
resonance width of quasi-bound states in the bent wire becomes negligible (that is, affects the transmission
profile of the system only at distinct points in energy). If the lattice Greenian for a tilted lead is known, then
attaching the lead can be trivially implemented in the present scheme and would simply introduce zeros on the
side-diagonals of Hp.
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with obvious superscript notation. We can now perform BGE on this high-level-partitioned
total ∆̃-matrix, as shown generically in Sec. 4.4.1. The part G̃

σσ of the full Greenian propa-
gating between surface sites (from lead to lead) is then simply given by the inverse Schur
complement of the internal ∆̃

ιι-block,

G̃
σσ

=
[
∆̃

σσ − ∆̃
σι
[∆̃

ιι
]−1∆̃

ισ
]−1

, (4.75)

while the part G̃
ισ propagating from the surface to the interior is given by

G̃
ισ
= −[∆̃ιι

]−1∆̃
ισ

G̃
σσ (4.76)

as shown in App. B (see Eq. (B.6)). Thus, if only the scattering matrix (4.54) or the transmis-
sion function (4.55) of the system are desired, then only forward elimination needs to be
carried out to obtain G̃

σσ; to compute, additionally, the scattering wave function (4.43) (and
in turn the current density (4.48)) or the LDOS (4.53), backward substitution is performed
which yields G̃

σσ.

Forward elimination

The final (outer) inversion to be computed in Eq. (4.75) is of the relatively small dimension
Nσ = ∑NL

p=1 Np
w, equal to the number of sites of the total interface to the attached leads,

and can be carried out directly using an efficient inversion scheme such as via LU (lower-
upper-triangular) factorization; we use the standard routines zgetrf (LU factorization) and
zgetri (inversion of LU-factorized matrix) from the Linear Algebra PACKage [245]. On the
contrary, the intermediate (inner) inversion [∆̃

ιι
]−1 is, despite being sparse, computationally

expensive, with dimension Nι equal to the internal sites of the whole scatterer. This is not
evident in the toy example in Fig. 4.2, of course, where Nι = 26, Nσ = 16. Already in the
schematic of Fig. 4.1, though, which has Nι = 1059, Nσ = 21, the difference in order of
magnitude is anticipated. In actual simulations we will usually have Nι ∼ O(104) while
Nσ = O(101) (in applications presented here we use Nσ = 25 = 32), for which (i) the
confinement is enough resolved for computed results to be converged and (ii) the deviation
of the discrete dispersion from the continuum limit is negligibly small at the considered
energies.

More importantly, however, we do not need the full inverse [∆̃
ιι
]−1 to obtain G̃

σσ and
G̃

ισ, as Eqs. (4.75) and (4.76) above might suggest. Indeed, the strategy to compute [∆̃
ιι
]−1

is, in similarity to the standard RGF, to perform BGE on the total matrix ∆̃ on the level of
blocks corresponding to slices of the internal part of the scatterer, though only carrying out
the forward elimination steps to obtain the surface propagator.

With Fig. 4.2 as a guide: The block updates are done until ∆̃
ιι becomes upper triangular

and the large-scale lower off-diagonal block ∆̃
σι is eliminated, which leaves the Schur com-

plement [G̃σσ
]−1 on the lower right (in the place of ∆̃

σσ). The pseudocode for the explicit
steps of the forward elimination algorithm and the final inversion of Schur’s complement
is as follows (←− denoting assignment of the expression on the right to the variable on the
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left):

for s = 1 : Ns − 1

Z ←− [∆̃
ιι
s,s]
−1 (4.77)

∆̃
ιι
s,s+1 ←− Z ∆̃

ιι
s,s+1 F (4.78)

∆̃
ιι
s+1,s+1 ←− ∆̃

ιι
s+1,s+1 − ∆̃

ιι
s+1,s∆̃

ιι
s,s+1 (4.79)

∆̃
ισ
s ←− Z ∆̃

ισ
s F (4.80)

∆̃
ισ
s+1 ←− ∆̃

ισ
s+1 − ∆̃

ιι
s+1,s∆̃

ισ
s (4.81)

∆̃
σσ ←− ∆̃

σσ − ∆̃
σι
s ∆̃

ισ
s (4.82)

end

G̃
σσ ←− [∆̃

σσ
]−1 (4.83)

where s counts the blocks corresponding to slices of internal sites. The colored blocks ∆̃
ιι
s,s+1

and ∆̃
ισ
s of the ∆̃-matrix are updated and used in the same iteration. Note that the blocks

are generally overwritten (or finally deleted) in memory when no longer needed. However,
the recurring and final inversions are assigned to separate variables Z and G̃

σσ, respectively,
in order to check the inversion for numerical accuracy (by comparing Z∆̃

ιι
s,s and G̃

σσ
∆σσ

with the identity matrix). In particular, the starred (F) expressions saved to the offdiagonal
blocks ∆̃

ισ
s and ∆̃

ιι
s,s+1 are selectively stored if the corresponding part G̃

ισ of the propagator
is to be computer by backward substitution.

The inversions of the slice blocks are performed directly using the standard routines
zgetrf and zgetri of LAPACK. The numerical complexity of the forward block-elimination
follows the scaling (4.39) of level-3 operations on the N(s)

r -dimensional matrices of the slices
for large Ns,

CFE ∝ 6 f
Ns

∑
s=1

[N(s)
r ]3, Ns � 1, (4.84)

for the 1 matrix inversion + 5 matrix products in each s-iteration.13 This means that the
scatterer is preferably oriented such that it is narrower (has less internal sites) in the vertical
x-direction. This scaling is the same as for the standard RGF method. The advantage
is here that no backward substitution steps are (unnecessarily) performed for computing
terminal properties (transport coefficients), in contrast to a standard implementation of the
RGF method where back-substitution is performed internally for each slice iteration. Thus,
although the asymptotic scaling of the complexity is the same, the proportionality factor in
Eq. (4.84) is smaller since the back-substitution multiplications are discarded.

Backward substitution

The backward substitution following forward BGE consists simply of matrix products of
the stored offdiagonal blocks ∆̃

ισ
s with the (common) computed surface propagator G̃

σσ,
performed backwards from the last internal slice to the first (Ns : 1 = Ns, Ns − 1, ..., 1):

for s = Ns : 1

G̃
ισ
s ←− − ∆̃

ισ
s G̃

σσ (4.85)

G̃
ισ
s ←− − ∆̃

ιι
s,s+1G̃

σσ (4.86)

end

13 Note here that the proportionality factor is affected by the matrix additions, scaling as [N(s)
r ]2, but mostly

by the fact that the offdiagonal blocks are usually not square.
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In the same manner, parts G̃
ιι
s,s′ of the full propagator between internal sites could be com-

puted, but they are not used in the present context of transport to obtain relevant observ-
ables. The two iterated matrix multiplications above yield an asymptotic numerical cost

CBS ∝ 2 f
Ns

∑
s=1

[N(s)
r ]3, Ns � 1, (4.87)

which is avoided in the present reordered BGE scheme by performing only the forward
elimination if only surface properties are desired. The exact amount of computational gain
depends, of course, on the particular system setup in terms of its geometry and topology
and, more importantly, on the relative width of the attached leads determining the size of
the (total) terminal interface.

Another advantage of the reordered block partitioning, which is of practical nature
rather than computationally essential, is that the two propagator parts G̃

ισ and G̃
σσ are

automatically separated a priori by the indexing order of the sites in the scatterer. In other
words, having counted the sites in the order described above (see Fig. 4.2), there is no need
to keep track of internal versus surface propagator elements during computation. Further,
the indexing convention for the surface sites (continuous index for each lead) readily yields
the multiterminal blocks of G̃

σσ.

Once the recursion is done, the respective parts of G̃
ισ are used in the post-processing

shown in Sec. 4.3.2 to obtain the scattering wave function (4.43) (and in turn the current
density (4.48)) and the (partial) LDOS (4.53), while G̃

σσ yields the scattering matrix (4.54)
and the transmission function (4.55).

4.5 Extended recursive Green function method for multiterminal,
multiply connected structures

The slice-by-slice recursion in the RGF method, in its standard form or in the internal-surface
block-reordered scheme above, constitutes an efficient way to compute the system propaga-
tor which takes into account the sparsity of the tight-binding Hamiltonian. There are cases,
however, where it is advantageous to partition the Hamiltonian on a higher level, decom-
posing the system into subsystems containing several slices each. In this section, we present
a computational method based on the general BGE scheme of Sec. 4.4.1 to treat generic
structures with singly or multiply connected subsystems and with multiple terminals.

4.5.1 Modular partitioning

Relying on the lateral structure of the confining potential, a nanoelectronic device can be
virtually cut into smaller pieces whose individual propagators are computed with less com-
putational effort in total than for the composite system. The propagator of the composite
system can then be expressed in terms of the propagators of the individual parts; as dis-
cussed in Sec. 4.4.1, this is achieved in the tight-binding approach by introducing appropri-
ate coupling elements between the parts and then solving the corresponding matrix Dyson
equation. With the individual, spatially extended parts connected one by one to obtain the
total propagator, this procedure is known as an extended RGF method [118, 121].

A special case arises when the propagator of one or more parts can be determined ana-
lytically, in which case the computation is effectively reduced to the connection of the parts.
Such a method has been developed by Rotter et al. [122], where the system constituents
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Figure 4.3: Assembly of three different module types A, B and C into a multiterminal looped scat-
terer (doubly connected on the level of modules) via five inter-connections and one intra-connection.
A possible order of connections is indicated by the numbers 1 to 6. Blue boundary segments on
the modules indicate internal (inter- or intra-) connection interfaces and red segments denote sur-
face (lead-connected) interfaces. The straight stub module C is used as a magnetic field adaptation
region where the field strength drops to zero outwards. In each inter-connection, the module to be
connected (or equivalently the already assembled part) is shifted and rotated into place (so that the
blue connection segments match), and its Greenian is accordingly gauge transformed prior to con-
nection. Note that here module A is already doubly connected and could itself have been assembled
by appropriate sub-modules.

are coined modules. Since the grid discretization is virtually effectively circumvented, this
method allows for wave transport calculations at high energies and magnetic fields [50],
but is restricted to structures which are decomposable into analytically solvable subsystems
(such as rectangles and (semi-) circles). We will here use the term ‘module’, meaning though
a generic part of the system which has not necessarily regular geometry, since our aim will
be the study of magnetotransport in devices with the full flexibility of varying geometry
parameters at low energies.

Another particular case arises when the total system consists of units which occur re-
peatedly at different locations. Then, the computation is effectively restricted to the number
of different units, since their computed propagators can be reused in the extended recur-
sion. Consider for example the schematic scatterer shown in Fig. 4.3, which consists of three
different types of connected modules. One of the modules is a ‘peripheral’ one which forms
a lead stub connected to the semi-infinite leads; in the applications to follow, it will serve
(being of appropriate length) as the magnetic field adaptation region described in Sec. 3.2.2.
The other two modules are of arbitrary geometry/potential and can be connected to any
number of arbitrarily placed (vertical or horizontal) leads. With the three module types
composing the total structure, we only need to compute the corresponding three individual
propagators GA, GB and GC; the remaining computational effort comes from the connection
between the modules along their interfaces.

Connectivity: inter- and intra-connection of modules

Note now that the schematic scatterer in Fig. 4.3 is doubly connected, that is, the connected
modules form a loop in the total system. This gives rise to an implication in applying the
standard form of an extended [118, 121] or modular [50, 122] version of the RGF method:
Using the matrix Dyson equation (4.63) and its solution, Eqs. (4.65)–(4.68), for two connected
modules, the present setup cannot be assembled in the considered modular partitioning
connecting the modules one by one over a single connection interface in each step. Letting
the lead stub modules aside for a moment: We would either have to connect A and B into
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AB and then connect the two AB-modules over a double interface, or assemble, say, ABA
and connect it to B, again over a double interface.

Apart from complicating the implementation of the connection, a larger interface leads
to larger computational cost through the matrix inversions involved (which are of the di-
mension of the interface; see Eq. (4.61)). In order to have only single connections in each
step, after inter-connecting ABA to B over a single interface, we need to intra-connect the
resulting module ABAB with itself over the interface between the outer (left) A and B, as
shown in Fig. 4.3. However, in view of the standard Dyson equation for connecting two sep-
arate subsystems [121], it is not obvious which paths along the connected structure should
now be selected in order order to solve for the total propagator elements.

We now present a unified approach for the inter-connection of two modules and intra-
connection of a module with itself, based on BGE of correspondingly partitioned ∆̃-matrix
of the total system.

4.5.2 Inter-connection

For the case of inter-connection, the grid-represented Hamiltonian Hi of each of two mod-
ules i = 1, 2 is partitioned into a part describing the section to be connected (denoted c) and
a part describing the section which remains unconnected (denoted u) with respect to the
present connection procedure,

Hi =

(
Huu

i Huc
i

Hcu
i Hcc

i

)
, i = 1, 2, (4.88)

where Huc = [Hcu]† is the coupling between them; see Fig. 4.4 (a). Here, Hcc
i contains matrix

elements for the internal scatterer sites along the boundary of the module specified for
connection, and Huu

i the elements for all other internal sites as well as the surface sites
attached to leads or interface sites to be connected to other modules (or to the module itself
via intra-connection).

The inter-connection between the two modules is defined through a Hermitian coupling
matrix W which, in the above partitioning, couples the connection sections (c) of H1 and H2.
The total Hamiltonian matrix describing the connected subsystems then becomes

H̃ = H + W =



Huu
1 Huc

1 0 0

Hcu
1 Hcc

1 0 Wcc
12

0 0 Huu
2 Huc

2

0 Wcc
21 Hcu

2 Hcc
2


, (4.89)

where the blocks Wcc
12 and Wcc

21 contain the ordinary tight-binding hopping matrix elements
Jαβ (see Eq. (4.20)) corresponding to the sites to be connected (evaluated in a common gauge
of the vector potential, as discussed below).

Following the BGE procedure given in App. C.1, the propagator of the connected system
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cu c u u
c1

c2

Wc1c2

Wcc
21

1 2
Wc2c1

Wcc
12

a b

Figure 4.4: Inter- and intra-connection of modules represented by lines (propagators of disconnected
system) containing the parts c to be connected and u to remain unconnected in the present con-
nection. (a) Inter-connection of two modules 1 and 2: The parts c of the disconnected modules are
connected to each other via the coupling Wcc

12 = [Wcc
21]

†. (b) Intra-connection of a module: The
parts c1 and c2, while already indirectly coupled via u, are directly connected to each other via the
coupling Wc1c2 = [Wc2c1 ]†. In both cases, the part u may contain sections (to be) connected to leads
(represented by outgoing lines), to other modules, or to each other.

in terms of the propagators G1 and G2 of the isolated modules reads

G̃ =

Guu
1 + Guc

1 σ̃1Gcu
1 Guc

1 + Guc
1 σ̃1Gcc

1 Guc
1 Wcc

12G̃
cu
22 Guc

1 Wcc
12G̃

cc
22

Gcu
1 + Gcc

1 σ̃1Gcu
1 Gcc

1 + Gcc
1 σ̃1Gcc

1 Gcc
1 Wcc

12G̃
cu
22 Gcc

1 Wcc
12G̃

cc
22

G̃
uc
22Wcc

21Gcu
1 G̃

uc
22Wcc

21Gcc
1 Guu

2 + Guc
2 σ2G̃

cu
22 Guc

2 + Guc
2 σ2G̃

cc
22

G̃
cc
22Wcc

21Gcu
1 G̃

cc
22Wcc

21Gcc
1 γGcu

2 γGcc
2


, (4.90)

where
σ̃1 = Wcc

12G̃
cc
22Wcc

21 = Wcc
12γGcc

2 Wcc
21, (4.91)

with
γ = (Icc −Gcc

2 σ2)
−1, σ2 = Wcc

21Gcc
1 Wcc

12. (4.92)

The matrix σ2 is here the self-energy of module 2 due to the coupling to module 1, in
analogy to the case where subsystem 1 is a semi-infinite lead. Note that the subsystems 1
and 2 are equivalent with respect to the connection, and the form of G̃ simply results from
a ‘lower-major’ elimination order of ∆̃ (see App. B). In other words, G̃ is invariant under
simultaneous exchange of indices (1 ↔ 2) and (left ↔ right) block-columns and (upper ↔
lower) block-rows.

Note also that G̃ in the present form is nested, in the sense that G̃
cc
22 = γGcc

2 is (indirectly)
present in the other blocks G̃

xy
ij (i, j = 1, 2, x, y = u, c). This dictates the following order in

the computation of the surface part of the connected propagator, starting with σ2:

σ2 −→ γ −→ G̃
cc
22, G̃

cu
22 −→ σ̃1, G̃

uc
22, G̃

uu
22

−→ G̃
uu
ij , i, j = 1, 2. (4.93)

Thus, six matrix multiplications and a single matrix inversion of the dimension of the con-
nection interface need to be performed to arrive at σ̃1, and then further matrix multiplica-
tions are needed depending on the part of the propagator required.

The connected system propagator G̃qp from lead p to lead q (which might be attached
to the same module or the connected one) is contained in G̃

uu
ij . If only the transmission is

needed, then only the surface section uσ of the unconnected parts u need to be considered
(discarding the interior sections uι). If also the LDOS (or wave function) is needed, then the
parts G̃

uιuσ

ij and G̃
cuσ

ij are required.
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Gauge transformation of the Green function

Note that connecting two modules, whose separate propagators were computed in their
individual coordinate systems, implies that one of the modules is shifted and rotated so that
the c-sites along its boundary, to be connected, become adjacent to the corresponding ones
of the other module. In fact, the modules are no longer ‘real grid’ modules, in the sense that
there is no specific coordinate system associated with the modules in the process of connect-
ing them (the matrix H̃ is never set up explicitly); they are abstractly represented by their
propagators G1 and G2. However, the shift and rotation of, say, module 2 to match module
1 at the connection interface requires a gauge transformation to be applied to G2, so that the
new gauge matches the gauge in which G1 was computed (and no artificial magnetic field
components are introduced at the interface). The explicit form of this gauge transformation
is derived in App. D. The coupling elements in W are then determined according to the
common gauge (coinciding with that of G1 in this example).

4.5.3 Intra-connection

For the case of intra-connection, the Hamiltonian H of a single module is partitioned into
a part u describing the section which remains unconnected and two parts c1 and c2 de-
scribing the sections to be connected in the present connection procedure; see Fig. 4.4 (b).
The interface sections c1 and c2 must be of equal size and the sites of c1 must be pairwise
nearest neighbors with the sites of c2 on the tight-binding lattice. Upon connection, they
are coupled through a Hermitian matrix W contributing blocks Wc1c2 = [Wc2c1 ]† to the total
Hamiltonian of the connected module which reads

H̃ = H + W =


Huu Huc1 Huc2

Hc1u Hc1c1 Wc1c2

Hc2u Wc2c1 Hc2c2

 . (4.94)

Here, Hcici contains the matrix elements for sites along side i of the connection interface and
Huu the elements for all other internal sites, surface (lead-connected) sites, or connection
interface sites to be connected in another connection procedure. Huci = [Hciu]† (i = 1, 2)
couples the interior of the module as well as any surface sites to the present connection
interface. W again contains simply the tight-binding hopping matrix elements Jαβ for the
nearest neighbor connection sites on each side of the interface. Note that, since the connec-
tion interface sections are here (neighboring) sections of one and the same module, there is
obviously no need to shift or rotate any module part, and thus no need for a gauge trans-
formation of any of the propagators Guu, Guci etc. of the disconnected module, since they
are already in the same gauge.

The disconnected module Hamiltonian H is here not block-diagonal, and so the corre-
sponding Greenian G is generally already a full matrix describing the propagation between
all sections u, c1 and c2. It is thus expected that some more matrix algebra, in the form
of matrix inversion, will be needed to solve the Dyson equation associated with the con-
nected module. The derivation given in App. C.2 now yields the following propagator of
the connected module in terms of the disconnected module propagator (having set ci → i
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for brevity):

G̃ =
Guu + G̃

uu
W Gu1 + G̃

u1
W Gu2 + G̃

u2
W

θ(G1u + G11W12G̃
2u
) θ(G11 + G11W12G̃

21
) θ(G12 + G11W12G̃

22
)

λ(G2u + G22W21θG1u) λ(G21 + G22W21θG11) λ(G22 + G22W21θG12)

 , (4.95)

using the shorthand notation

G̃
uz
W = Gu1W12G̃

2z
+ Gu2W21G̃

1z, (z = 1, 2, u) (4.96)

where

θ = [I−G12W21]−1, (4.97)

λ = [I−G21W12 −G22W21θG11W12]−1. (4.98)

Again, the block-matrix G̃ follows the symmetry of H̃ under simultaneous index exchange
(1↔ 2) and block-column/row permutations.

We now indeed have two matrix inversions of the dimension of the connection interface
in total instead of one, together with six matrix multiplication of the same dimension to
arrive at λ. Like in the inter-connection case, there is an ordered procedure to obtain the
surface propagator, now starting with θ:

θ −→ λ −→ G̃
2u, (G̃

21
), (G̃

22
) −→ G̃

1u, (G̃
11
), (G̃

12
)

−→ G̃
uu, (G̃

u1
), (G̃

u2
) (4.99)

where the blocks in brackets are additionally to be computed to obtain internal properties
(LDOS).

The connected system propagator G̃qp from lead p to lead q (which might be attached
to the same module or the connected one) is contained in G̃

uu
ij . If only the transmission is

needed, then only the surface section uσ of the unconnected parts u need to be considered
(discarding the interior sections uι). If also the LDOS (or wave function) is needed, then the
parts G̃

uιuσ

ij and G̃
cuσ

ij are required.

4.5.4 Computational efficiency and considerations

From the above it becomes clear that, for a typical composite setup consisting of connected
modules, the total computational cost is essentially determined by the number of different
modules used in the assembly. Once the computation of all necessary elimination steps in
the bulk of a module have been carried out pertaining to its propagator, then the latter can be
reused with the relatively very small cost of operations of the dimension of its connecting
interface to another module. Thus, if the absolute number of modules participating in
the total structure is small enough (i. e., if the number of connection interface operations
is negligible compared to the total number of internal slice operations), then the cost for
computing the surface propagator will scale as

Cmod ∝ 6 f
M

∑
m=1

Nm
s

∑
s=1

[N(s)
r ]3, Nm

s � 1, (4.100)
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where M is the number of different modules used and Nm
s is the (average) number of slices

in the m-th of these modules. The preliminary task for a given transport device geometry
is therefore to identify in which way the total structure can be decomposed into as few
different modules as possible, though each with the smallest possible size.

As mentioned above in reference to the schematic in Fig. 4.3, a composite structure could
in general be assembled by means of inter-connections only, though over multiple con-
nection interfaces (for example, by connecting modules A and B in Fig. 4.3 first and then
perform connections 2 and 4 in a single inter-connection step over the double interface).
However, for larger number of connected modules, such multiple interfaces will increase
in total size rendering their one-step connection inefficient. More importantly, this alterna-
tive reduces the flexibility in assembling diverse setups from a set of modules: only fixed
groups of combined modules would be available as building blocks (like the fixed group
AB in the above example). Such a specialized connection protocol could be useful when
assembling a uniform lattice of identical modules, by connecting modules into a row (over
single interfaces) and then rows to each other (over multiple interfaces). With the use of
intra-connections, modules are added one at a time and can be chosen freely from the set of
different modules as long as their interfaces match (in Fig. 4.3, for example, we could have
put module B on the lower right in the place of A). A useful application thereof could be
the insertion of modules with prescribed defects at desired positions in a composite struc-
ture such as a quantum dot lattice. In total, the developed scheme of combined inter- and
intra-connections thus provides a high flexibility in assembling multiterminal and multiply
connected transport structures of high diversity.

4.6 Transport through multiterminal and multiply connected bil-
liard systems

We close this chapter with an exemplifying demonstration of the use of the developed com-
putational techniques on a multiterminal quantum billiard which is then multiply connected
into a multiterminal composite structure, for varying input energy E and applied magnetic
field B. For the single billiard we briefly analyze the origin of the transmission features and
the impact of a magnetic field on the mode-resolved transmission coefficients. The multiter-
minal transmission of the looped transport device is not directly relevant for the controllable
(and thereby desirably smooth in parameter variations) conductance profiles aimed at in the
following chapters. It rather serves to illustrate the very complex transmission features that
may typically arise from the combination of Fano and AB interference processes, but also
gives the opportunity to explore spatial electron density patterns at individual (E, B)-points.

4.6.1 Single three-terminal elliptic billiard

As a building block of the composite system we choose a tilted elliptically shaped hard-wall
billiard with two horizontal and one vertical attached leads of equal width w, as shown in
the upper inset of Fig. 4.5. The orientation and positioning of the lead openings are chosen
such that one and the same scatterer can be easily used repeatedly as a module for inter-
and intra-connections later.

For this single multiterminal billiard we compute the mode-resolved transmission coeffi-
cients Tnm

qp from (lead, mode) = (p, m) to (q, n) for energies in the first three open channels of
the leads, at zero and finite field strength, as shown compactly in Fig. 4.5. The energy vari-
able is here scaled into a dimensionless total incoming momentum κ = kw/π =

√
2Ew/π

(recall that h̄ = m∗ = 1 in our natural units; see Table E.1).
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B = 0

B = 0.003 n.u.m

n

Tnm
21

Tnm
31

κ

Figure 4.5: Mode resolved transmission as a function of κ = kw/π through a three-terminal tilted
elliptic billiard (upper inset) with semi-axes (a, b) = (100, 52) and common lead width w = 32 grid
points, at B = 0 (upper panel) and B = 0.003 n.u. (lower panel). The lower inset shows the color
code for transmission from mode m to mode n which are open for propagation for κ > m, n. In each
panel, Tnm

21 is plotted from below and Tnm
31 is plotted from above, with the black area in the middle

representing the total (summed over all modes) reflection R1 = ∑m,n Tnm
11 = T11 back to the incoming

lead 1. The sum R1 + T21 + T31 increases by unity for each new open mode n at κ = n.

The modular version of the RGF technique with inter-connections comes in handy al-
ready for the single scatterer in the transmission computation at finite magnetic field: The
scatterer module is inter-connected at each interface to a finite and straight lead module (not
shown) along which the magnetic field drops off to zero over an appropriate length (large
enough for the transmission results to have converged) and which is in turn connected
to the outer semi-infinite leads through the contribution of corresponding (zero-field) self-
energies. Upon each inter-connection to the lead module, the Green function of the already
assembled part is gauge-transformed into the axial gauge of the lead module as described
previously.

Regular response from geometric focusing

Let us first concentrate on the first open channel with the single-mode transmission coef-
ficients T11

21 (plotted from below in each plot) and T11
31 (plotted from above, such that the

black region in between represents the reflection coefficient R1 = T11
11 ). We see that the

transmission lineshape of T11
21 for B = 0 varies rather smoothly in energy with a regular

oscillation within a low envelope, apart from occasional superimposed very sharp dips and
peaks. This is not a universal transmission feature, but relies on the chosen elongated shape
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of the hard-wall billiard together with the positioning of leads 1 and 2: As will be demon-
strated in Chap. 5 for oval billiards, the elongated shape causes a geometric separation of
energetically available states within the billiard into states that are strongly coupled to the
leads (with amplitude that ‘leaks’ into them) and those that are very weakly coupled to the
leads (because of their confinement away from the lead openings). The former type of states
interfere with each other leading to the smooth oscillation of the background, and the latter
constitute long-lived quasi-bound states whose (weak) coupling to the continuum results
in sharp Fano resonances in the transmission lineshape. Note that, since the setup with
attached leads has no mirror symmetry, and thereby no parity eigenstates in the direction
transverse to any pair of attached leads, in principle all energetically available eigenstates of
the isolated billiard contribute here to transmission.

Boundary guiding

The transmission T11
31 to lead 3 is complementary to T11

21 in the chosen setup: The reflection
back into lead 1 is overall small (apart from energies at the lower threshold), so that any
probability flux not going into lead 2 leaves through lead 3 14. This is again due to the de-
sign of the setup: Leads 1 and 3 constitute a continuation of the upper convex boundary of
the ellipse, and therefore a wave incident in lead 1 is ‘guided’ along the smooth boundary
into lead 3. This mechanism will be exploited in Chap. 7 to achieve directional magneto-
transport in a four-terminal device. In the present setup, boundary guiding is disturbed by
the presence of lead 2, whose sharp openings (and especially the lower right corner) cause
strong diffraction of the guided wave back into the cavity.

The Fano resonance dips and peaks in T11
31 are also complementary to those in T11

21 ; it
is clear that, since leads 2 and 3 are closely placed at the far end of the billiard, confined
quasi-bound states will have similar coupling strengths to those leads and thereby similar
resonant shifts and widths. Note, however, that the Fano minima are lifted from zero, since
the two output leads effectively provide two different scattering channels (already in the
first energy subband of the leads) for the quasi-bound states to couple to and lead to a
complex asymmetry parameter; see Sec. 3.4.1 and Refs. [40, 65].15 For the same reason, the
Fano maxima do not reach unity. Essentially, each lead constitutes a source of decoherence
due to dissipation for the transmission between the other two [213].

Magnetically dependent multimode coupling

In the second and third transport channels of the leads, 2 < κ < 4, the zero-field transmis-
sion Tn1

21 in the first mode of leads 1 and 2 is almost completely suppressed, and transmission
is mediated by higher common modes (T22

21 and T33
21 ) but also by cross-mode coupling; es-

pecially T13
21 is enhanced in the third channel 3 < κ < 4 (light green in upper panel of

Fig. 4.5). On the contrary, the first mode transmission T11
31 to lead 3 remains high throughout

all channels: it has the largest longitudinal momentum in the ingoing lead 1 and is thus less
affected by diffraction when guided along the upper billiard boundary. Additionally, there
is large contribution from higher modes to T31 in the higher channels.

The effect of an applied magnetic field on the transmission spectra is twofold: It mod-
ulates the AB-like phase interference between transmitting states of the billiard, and simul-
taneously gives rise to Lorentz deflection of the spatial density distribution if the field is
strong enough. We have here chosen a moderate field B = 0.003 n.u. corresponding to a

14 Note that conservation of flux implies T11
21 + T11

31 + R1 = 1 in the first channel.
15 The resolution in this transmission spectrum is not fine enough to resolve all Fano resonances, and the ones

that are visible are also not resolved in full detail.
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cyclotron radius rc ≈ b at the center κ = 1.5 of the first channel, where b is the minor ellipse
semi-axis.

In the first channel, the combination of the two effects causes an increased transmission
T11

21 in the lower half of the channel, while T11
31 there becomes suppressed and vice versa. This

can be understood qualitatively as the dominance of a skipping orbit which first matches
the distance to lead 2 and then skips over to lead 3 when energy increases, although it
should be noted that such classical descriptions have only a very rough correspondence
to the quantum result at the low energies considered. In the second channel, the partial
transmission Tm2

q1 from mode 2 (blue area) is almost completely transferred from lead 3 to
lead 2 when the field is switched on, while the total lowest mode components (red area)
remain largely intact. In the third channel, although the total transmission coefficients T21

and T31 are not much affected on average by the field, there is a drastic redistribution of
the partial coefficients that contribute: Switching on the field suppresses completely the
transmission from mode 3 into lead 2 (Tn3

21 , green areas) and from mode 2 into lead 3 (Tn2
31 ,

blue areas).
The multiterminal linear-response conductance of the device is proportional to the to-

tal transmission functions summed over all contributing modes. The above mode-resolved
analysis, however, provides insight into what components of the scattering matrix actually
contribute and how these are affected by the applied field. This in turn adds to an under-
standing of what processes in the billiard area are responsible for transport, which can be
also be useful in applications. In the present setup, for example, an additional transversal
constriction could be applied to the incoming lead 1 such that only the third mode is let
through. Then, only the Tn3

qp (green areas) partial coefficients would be non-zero and, ac-
cording to the above, the chosen field would switch the conductance from finite to zero in
the third channel.

4.6.2 Transmission and localization patterns in a looped multiterminal structure

We now use the previous three-terminal elliptic billiard as a building block to assemble a
composite structure of eight identical ellipses doubly connected into the structure shown in
the inset of Fig. 4.6 (a). The connected structure consists of two large loops, each containing
the two ellipses on the upper and lower arm, which are further connected via a smaller loop
in the middle. The assembly is done in analogy to the procedure in Fig. 4.3, using here three
intra-connections (since we have three loops in total), with connecting ‘bridges’ between
the ellipses of common length d = w.16 Note that, apart from the peripheral lead modules
which are used as magnetic field adaptation regions (not shown), we here actually have two
different modules to compute, the three-terminal ellipse and its mirror image with respect
to the x-axis (vertical). This is because, in the presence of magnetic field, the propagators of
mirror images are not equivalent and cannot be obtained by gauge transformation through
shift and/or rotation. With the above setup specifications, the multiply connected modular
RGF method was applied to compute the multiterminal surface propagator and extracted
the transmission coefficients for an (E, B) grid of (1400, 2001) points. The average CPU
time with the modular connection algorithm was ≈ 1.72 s per point on a modern quad-

16 We have here in fact also separated the lead stubs from the previous three-terminal module, which now
serve as separate bridge modules, in order to be able to vary the bridge length without re-computing the ellipse
module. This increases the number of inter-connections in the assembly, but does not practically affect the
computation time.
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core processor.17 In comparison, the corresponding average CPU time for the composite
structure computed directly as a single large module (including the long magnetic field
adaptation stubs at the outer leads) is ≈ 22.70 s, more than 10 times longer, demonstrating
the performance advantage of the modular inter- and intra-connection algorithm.

The transmission function of the structure from lead 1 (upper left) to lead 2 (upper right)
and to lead 4 (lower right) within the first channel 1 < κ < 2 is plotted in the central panels
of Fig. 4.6 (a) and (b), respectively, for the magnetic field in both ±z-directions with field
strength varying in the interval 0 < |B| < 0.01 n.u.. We refer to these plots of Tqp(B, κ) as
transmission maps.

Regimes of magnetotransport

Although the transmission maps contain irregular detail features, to be addressed next,
there is an overall large-scale structure which is typical and qualitatively similar for most
coherent transport devices.

For low magnetic field strengths, the maps are dominated by multi-state interference in
varying field and energy which leads to complicated and non-universal features depending
on the geometry of the device (on the present case, of the individual connected billiards).

For intermediate fields the Lorentz deflection of the electron paths becomes dominant,
which leads to a large-scale stripe-like pattern (within the V-like area between the points
(B, κ) = (0, 0) and (max,±max)). For a hard-wall structure, the stripes have approximately
constant slope and are characteristic of the commensurability between the bouncing of (qual-
itatively associated) skipping orbits and the distance between lead openings: For higher
energy, a stronger magnetic field is needed to maintain a skipping orbit escaping through a
given output lead. This regime is thus largely determined by the lead positioning along the
billiard boundaries.

For even stronger field we enter the edge-state regime, where transmission is determined
by the topology of the structure: Independently of the detailed geometry of a hard-wall flat
billiard (with zero potential inside), an edge state will be mostly transmitted into the next
encountered lead on the boundary. As explained in Sec. 1.3, edge states have their origin
in Landau levels which become dispersive in the vicinity of a boundary. In the Tqp(B, κ)-
maps they are recognized as transmission stripes with slope opposite to B (visible here in
the lower part 1 < κ < 1.25 of the channel): Their energy is lowered with increasing field
strength until they ‘condense’ into bulk Landau levels [49] whose energy then increases
with the field strength. For the present setup, we see that T21 is overall maximal (→ 1) in the
edge-state area between the first and second Landau level on the right side of the map in
Fig. 4.6 (a). At low energies there is, however, a small portion of the edge states transmitted
into lead 4, as seen in the bottom part of the map in Fig. 4.6 (b).18

Fano and Aharonov-Bohm interference

The resolution of the computed transmission maps is high enough to discern the fine struc-
ture of the transmission features in varying energy and magnetic field which arise from the

17 This is about twice the time ≈ 0.75 s needed for each ellipse module (the original one and its mirror image)
plus some additional time ≈ 0.31 s for a 1024 gridpoints long magnetic field adaptation module intervening
between the billiard and each attached lead.

18 Note here that, due to the geometrical x and y mirror symmetry (or symmetry under an in-plane rotation
through π) of the setup, transmission between leads 1 and 4 is symmetric in B, T41(B) = T41(−B). This is a
consequence of the reciprocity relation T41(−B) = T14(B) and the fact that the symmetry operation exchanging
leads 1 and 4 brings B ‖ ẑ to itself.
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Figure 4.6: Transmission maps (a) T21(B, κ) and (b) T21(B, κ) in the first channel 1 < κ < 2 (1400
points) and at magnetic field strengths −0.01 6 B 6 0.01 n.u. (2001 points), for the four-terminal
structure shown in the upper inset composed of the three-terminal billiard of Fig. 4.5 connected via
bridges of common length l = w. The upper, right and left panels in (a) show T21(B, κ) along the
cuts (B, κ = 1.5), (B = −0.001, κ) and (B = 0, κ) through the maps, respectively, indicated by dotted
lines. The panels (i)–(x) on the left and right of (b) show the LDOS for an incoming wave in the upper
left lead 1 of the setup at the (B, κ)-points indicated in the transmission maps, with the colormap
normalized to the maximum in each subplot and scaled as

√
ρ(x, y) to increase contrast.
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geometry and topology of the composite structure. These are determined by the Fano in-
terference between quasi-bound states of each of the connected billiards in varying energy,
and by the AB interference along the various closed paths present in the looped topology.

The energy dependence of the T21 is more clearly seen in the vertical cuts through the
map at zero field and at a finite negative (pointing inwards) field, shown on the right and left
panels of Fig. 4.6, respectively. In the connected system, the resonant states of the individual
elliptic dots are coupled through the connecting bridges and therefore the corresponding
sharp Fano resonances in energy are multiply split, with the splitting proportional to the
strength of this inter-dot coupling. The background transmission is also affected by devel-
oping additional shape resonances due to multiple reflection within the bridges. This effect
will be studied in more detail in Chap. 5 for a singly connected dot array, where these shape
(or Breit-Wigner) resonances form transmission bands with increasing number of connected
dots. In the present setup the multiple connectivity leads to a highly irregular transmission
function compared to the one of the single billiard of the previous subsection. This is be-
cause both transmission profiles Ts

21 and Ts
31 of the single billiard are effectively present in

any path taken between leads of the composite system, and thus the corresponding features
are mixed in the final output T21.

The field strength dependence of the transmission coefficients is characterized by a su-
perposition of AB oscillations with dominant frequencies corresponding to the approximate
area of the loop structures in the setup (note that any pair of neighboring loops also forms
a further larger loop). In particular, the larger loops containing the elliptic dots give rise to
the very fine vertical stripes which are present essentially over the whole map. The details
of this superimposed AB interference pattern varies along the κ-axis due to the energy de-
pendence of the dot states leaking into the connecting bridges, as discussed previously in
Sec. 3.4.2. The upper panel in Fig. 4.6 (a) shows T21(B) at the middle κ = 1.5 of the channel,
where the fine oscillations are seen on top of the larger transmission feature in the interme-
diate field regime. AB oscillations also arise in the strong-field regime from the interference
between (effectively 1D) edge states [49] which is caused by their diffraction [50] at abrupt
changes (corners in the present setup) of the confining boundary. An applicational perspec-
tive of the multiply connected RGF method developed is the study of such AB oscillations
in extended lattices (or networks) of loops with internal structure.

Density localization patterns

The rather complex features of the transmission maps of the particular looped setup sim-
ulated here do not contribute to the controllable conductance aimed at in the following
chapters. However, it provides a means to study the controllability of the electronic spatial
distribution among the constituent dots of the structure. In the panels (i)-(x) of Fig. 4.6 the
partial LDOS for an incoming wave in lead 1 (upper left) of the device is shown for different
points in (B, κ)-space, computed via the reordered BGE scheme of Sec. 4.4.3. We see that, de-
pending on the regime of energy and magnetic field, different kinds of localization patterns
can be induced.19 States (i), (iii), (iv), (v), (viii), for example, are dominantly localized in the
interior of the constituent ellipses, though each in a different constellation along the loops—
state (viii) additionally shows a strong localization on the central small connecting loop.
States (ii), (vi), (vii), (ix) and (x) are primarily localized along the boundaries of the ellipses.
The latter two are examples of edge state propagation; in (x), different edge states interfere
into a skipping-like pattern leading to AB oscillations in the transmission (see correspond-

19 To have a qualitative picture of the effect of moderate to strong fields, recall that classical trajectories are
deflected anticlockwise for B > 0 and clockwise for B < 0.
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ing point in the upper map T21(B, κ)); in (ix), a single edge state transmits completely from
1 to 2, though after ‘hopping’ (at the narrow input constriction) onto the inner boundary of
the loops where it builds up a high density. State (vi) displays the wave guiding caused by
the convex elliptic boundary alone (at zero magnetic field), which extends onto both outer
loops. Finally, an interesting non-local pattern is induced in state (vii), also at zero field: The
incoming wave populates the boundary of the first encountered dot and the remote lower
central dots, though with almost completely depleted density in between. With the above
patterns for this small looped structure at hand, further explorations could reveal possible
manipulation of localized electron waves in larger looped networks with embedded dot
structures.
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5
Magnetoconductance switching by
phase modulation in arrays of oval
quantum billiards

In this chapter we employ oval shaped quantum billiards connected by quantum wires as
the building blocks of a linear quantum dot array which allows for the control of magneto-
conductance in the linear response regime. In particular, we aim at a maximal finite- over
zero-field ratio of the magnetoconductance, achieved by optimizing the geometry of the bil-
liards. The switching effect arises from a relative phase change of scattering states in the
single oval quantum dot through the applied magnetic field, which lifts a suppression of
the transmission characteristic for a certain range of geometry parameters. A sustainable
switching ratio is reached for a very low field strength, which is drastically enhanced al-
ready in the double-dot array. The impact of disorder is addressed in the form of remote
impurity scattering, which poses a temperature dependent lower bound for the switching
ratio. The results are partially published in Ref. [246]

5.1 System setup, approximations and computational approach

We consider a linear array of identical oval billiards connected via bridges of common
length, as shown in Fig. 5.1. The confining potential of the structure is taken to be of hard-
wall character, leading to Dirichlet boundary conditions for the wave function, with zero
potential inside. The shape of an individual oval billiard is parametrized as [247]

x(φ) =R
[(

δ

2
+ 1
)

sin(φ) +
δ

6
sin(3φ)

]
,

y(φ) =R
[(

δ

2
− 1
)

cos(φ)− δ

6
cos(3φ)

]
, (5.1)

with 0 6 φ < 2π; note that the parametric curve starts at (x, y) = (0,−R(1− δ/3)). The
parameter δ tunes the deformation of the dot, which becomes a circular billiard of radius
R if δ = 0. In this case the classical dynamics of the closed system is integrable, whereas
for δ > 0 it becomes non-integrable with mixed phase space [247, 248]. For reference with
respect to device specific parameters, a mesoscopic size of R = 220 nm is used. For the
single dot setup, at the right and left ends of the elongated structure semi-infinite leads
of width w = 0.3 R are connected along the x-axis, representing the coupling to electron
reservoirs. The use of semi-infinite leads models the ideal case of vanishing reflection of the
electrons upon reaching the reservoirs.
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Figure 5.1: Geometry of the model hard-wall potential for (a) a single billiard attached to semi-
infinite leads and (b) an array of N connected billiards, with L = w = 0.3 R and oval deformation
parameter δ = 0.5.

In the multidot case, the single cavity is replaced by a chain of N identical oval dots
connected to each other through lead bridges of common length L between adjacent oval
edges, as shown in Fig. 5.1. The bridges have width w and are aligned with the outer semi-
infinite leads.

Restricting ourselves to low temperatures and a small system size we neglect inelastic
processes, and do not account for electron-electron or electron-phonon interactions. The
single particle Hamiltonian is, within an effective mass approach, of the form

H =
1

2m∗

[
h̄
i
∇+ eA(r)

]2

+ V(r), (5.2)

where an effective electron mass m∗ = 0.069 me is chosen corresponding to a GaAs/AlGaAs
heterojunction. V(r) is the total electrostatic potential comprised of the hard-wall boundary
of the structure as well as the potential induced by impurities to be included later. The
vector potential A produces a magnetic field perpendicular to the plane of the structure
(pointing in the positive z-direction). The field extends homogeneously with strength B
in the device region and drops off linearly to zero in the outer leads; the length of the
magnetic field adaptation region is chosen long enough to effectively simulate an overall
homogeneous field. We will concentrate on the magnetoconductance switching effect at
a very low magnetic field strength (∼ 0.02 T), where the Zeeman splitting for GaAs (∼
3.6 µeV) is negligible (∼ 0.1%) with respect to the Fermi energies we consider; thereby the
coupling of the electronic spin to the magnetic field is not taken into account. The weak
spin-orbit coupling of the simulated heterostructure is also neglected.

The transmission through the device and the LDOS within it are determined from the
single particle Greenian

G(E) = [E− (H+ Σr + Σl)]
−1 (5.3)

of the system at energy E after discretizing the Hamiltonian on a square tight-binding lattice,
with the magnetic vector potential incorporated through Peierls phase factors [240,241] (see
Sec. 4.2.1). The self-energies Σl/r account for the coupling of the truncated system to the
external semi-infinite leads placed on the left (l) and right (r); they are analytically obtained
for B = 0 and contribute non-Hermitian blocks to the Hamiltonian matrix, as discussed in
Sec. 4.3.1.

The part Grl = 〈rr|G|rl〉 describing the propagation from the left to the right lead (where
rr/l are points at the corresponding interfaces) for the single dot is computed using the re-
ordered block-Gaussian elimination scheme of the recursive Green function method (RGM)
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5.1. System setup, approximations and computational approach

presented in Sec. 4.4.3. In the multidot case, the chain is built up by a repeated module con-
sisting of the oval cavity with lead stubs of length d = L/2 on the right and left (see Fig. 5.1).
Having found Grl for one module (with no attached outer leads yet), the Green function con-
necting the two outer leads in the assembled system is computed using the modular variant
of the RGM described in Sec. 4.5, where the propagator for each inter-connected module is
the solution of a matrix Dyson equation.

The transmission of the device is finally evaluated via the two-terminal trace formula
[166, 203, 204]

T(E) = Tr[ΓrGΓlG†] (5.4)

with left/right broadening operators Γl/r = i[Σl/r − Σ†
l/r]. It is worthwhile noting that in

the two-terminal device studied, even in the presence of a magnetic field, the transmission
function is symmetric under exchange of the outer leads, i. e. the transmission from left to
right equals that from right to left [150]. The computed propagator from the leads to the
interior of the device is used to obtain the LDOS at site r through the relation

ρ(r, E) =
1

2π
〈r|F (E)|r〉 , F = GΓG†, (5.5)

where F is the spectral operator and Γ generally a weighted sum of Γl and Γr according to
the Fermi distributions of incoming states in the two leads. In the cases presented here, we
have chosen Γ = Γl , i. e. ρ(r, E) corresponds to the probability density resulting from an
incoming monochromatic wave of energy E from the left lead.

The calculated transmission determines the macroscopically measurable conductance of
the device. In the linear response regime at low temperature Θ, the conductance for given
Fermi energy EF is obtained by the Landauer formula [1, 249] in the form

G(EF, Θ) = G0

∫ ∞

0
dE T(E) FΘ(E; EF, Θ), (5.6)

where G0 = e2

πh̄ is the (spin-degenerate) conductance quantum and

FΘ(E; EF, Θ) =
1

4kBΘ
sech2

(
E− EF

2kBΘ

)
(5.7)

is the thermal broadening function [127, 153]. The conductance in this regime is thus essen-
tially given by the thermally averaged transmission around the electron Fermi energy, with
a thermal width determined by the temperature Θ (see Sec. 2.3.2).

Within the above theoretical and computational framework, in the following we will
investigate the magnetotransport properties of the single- and multi-dot system in terms
of geometry variations. In Sec. 5.2 we explore the transmission of the single oval dot and
identify the mechanisms underlying the spectral features, in particular the suppression of
zero-field transmission. In Sec. 5.3 the transmission properties induced by the inter-dot cou-
pling in the array setup are discussed together with corresponding LDOS characteristics.
In Sec. 5.4 we analyze the magnetoconductance switching effect in dependence of the oval
deformation, the magnetic field strength and the length of the multidot chain at different
temperatures, in order to determine a device setup optimal for switching within an achiev-
able parameter range. The modification of the switching ratio in the presence of disorder is
studied in Sec. 5.5, and Sec. 5.6 provides a summary of results, concluding on the function-
ality of the switching mechanism.
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Figure 5.2: Transmission function T(κ) of the single oval billiard of Fig. 5.1 (a) in the first channel
1 < κ < 2 of the attached leads, for varying deformation parameter δ (with relatively large step
∆δ = 0.01 causing discontinuities along δ). The colormap ranges from black (T = 0) to yellow
(T = 1).

5.2 Single oval billiard: transmission suppression from selective
eigenstate interference

We start by exploring the transmission characteristics of the single oval open dot without
magnetic field in terms of the eigenstates of its closed dot counterpart, in order to obtain
an understanding of the mechanism underlying the conductance switching effect aimed at
later. This eigenstate analysis of the single-dot transmission was thoroughly carried out by
Buchholz et al. in Ref. [52], and is here summarized and supplemented with an investigation
of further parametric dependences.

In Fig. 5.2 the transmission function T(κ) is shown for scaled dimensionless momenta
κ =
√

2m∗Ew/h̄/π in the first channel of the attached leads, 1 < κ = 2, as a function of the
deformation parameter δ of the oval at zero magnetic field. For the size of the device spec-
ified, the first channel corresponds to a Fermi energy in the range 1.2 meV < EF < 5 meV.
As the channel number κ measures the wave number in units of π/w, T(κ) depends only
on the ratio w/R. Our calculations show that changing w/R within 0.2 . w/R . 0.4 intro-
duces mainly a shift in T(κ) according to the implicit energy scaling, i. e. the transmission is
largely determined by the geometry of the billiard and not by the leadwidth. For values of
w/R > 2, the transmission obviously has to acquire the value of the unperturbed quantum
wire. In the following we restrict ourselves to the case of w/R = 0.3.

The aim of this plot is to provide the overall change of T in this 2D (κ, δ) parametric
space which is rather coarse: very fine resonant features along κ are not resolved, and the
evolution with δ shows discontinuities due to a large variation step.

For large δ the oval is very elongated, so that it essentially constitutes a (non-adiabatic)
perturbation of a homogeneous quantum wire (e. g., for δ = 1.2 the vertical extent of the oval
is 2w). T is then practically maximal (unity) along the whole channel, apart from distinct
narrow resonant dips corresponding to quasi-bound states which are very weakly coupled
to the leads. The dips correspond to the zeros of Fano resonances, described in Sec. 3.4.1,
arising here from the coupling of the quasi-bound states to the highly transmitting back-
ground continuum. As δ is decreased, these resonances respectively are shifted to lower
energies, since the transversal wavelength of the quasi-bound states overall increases, and
become broader due to a stronger coupling to the leads. Additionally, further narrower res-
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onances appear which are also shifted (with a faster pace) with varying δ. Apart from the
resonant features, also the background transmission is drastically modified: As δ decreases,
a κ-range of highly suppressed transmission appears in the upper part of the channel and
is shifted downwards. For δ ≈ 0.5 (dotted line in Fig. 5.2), this ‘suppression valley’ is ap-
proximately centered around the middle κ ≈ 1.5 of the channel. As δ is further decreased,
broad overlapping resonances appear which ultimately lead to a highly irregular transmis-
sion spectrum for the circular billiard (δ = 0). Note that the transmission features in varying
dota elongation is not specific to the exact oval shape, but qualitatively similar for, e.g., an
elliptical billiard.1

The geometry-induced features of the transmission function can be qualitatively ex-
plained [52] in terms of the eigenstates of the closed oval billiard (that is, where the semi-
infinite leads have been blocked by hard walls at some distance d from the oval boundary),
by analyzing how these contribute to the transmission in the open system. The closed dot
eigenstates for the oval with δ = 1/2 and with a short lead stubs (d = w/2) are shown
in Fig. 5.3. Eigenenergies and eigenvectors of the closed system Hamiltonian are obtained
with standard sparse eigenproblem solvers from the ARnoldi PACKage [251]. Due to the
x- and y-mirror-symmetry and the elongated shape of the oval, approximate longitudinal
and vertical quantum numbers m and n, respectively, can be assigned to the eigenstates at
low energies according to the spatial pattern of their probability density: State (m, n) has
approximately m − 1 and n − 1 nodes in the x- and y-directions, respectively, within the
billiard region.2

Although there are many eigenstates within the energy range of the first propagating
channel, only few contribute substantially to the zero-field transmission. First of all, any
eigenstate with even n has vanishing overlap with the ground transversal lead states due
to its negative y-parity, which yields effectively zero coupling to the leads and thereby no
contribution to the transmission for 1 < κ < 2. This symmetry is broken in the presence of
the magnetic field, as will be seen in the next section.

Of the remaining states with odd n, the majority (for the chosen δ = 1/2) has a spatial
distribution which practically vanishes in the region of the lead openings and is concen-
trated (symmetrically) about the y-axis of the oval; we refer to such states as ‘confined’
states. They lead to the sharp Fano resonances in the transmission profile mentioned above,
with widths typically much smaller than the level spacing. For fixed n, the x-extent of the
confined states and thereby their coupling to the leads increases with m, leading to increas-
ing resonant width at higher energies, as seen in Fig. 5.2.

The eigenstates (with positive y-parity) which determine the overall (background)
transmission–and hence the linear response conductance through thermal averaging–are
those with a large density at the lead openings leading to a strong coupling to the leads in
the open system; we refer to these states as ‘leaking’ states. The width of the resonances
corresponding to such short-lived states exceeds the level spacing, and the resulting trans-
mission from the multiply overlapping resonances is no longer described by a simple Fano
lineshape as the isolated ones. The transmission function is rather determined by the inter-
ference of leaking states at the lead openings.

1 In Ref. [250] the transmission through a two-terminal elliptical cavity is investigated in terms of the effect
of finite leads, and for particular values of the semiaxes a clear suppression of transmission is indeed seen which
becomes more irregular close to the circular limit.

2 Note that, although the symmetry of the dot (and thereby parity of the eigenstates) and the lead positioning
are essential in the description of the transmission features, the nomenclature of nodal pairs serves simply as a
handy way of labeling the states for convenient reference. It becomes unambiguous at higher energies where
the number of nodes varies along cross-sections in each direction; see, e. g., state ν = 102 in the upper row of
Fig. 5.3.
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Figure 5.3: Probability densities of eigenstates ν = 1 : 105 (from left to right and bottom to top) of
the closed oval billiard with deformation parameter δ = 0.5 and added stubs of width w = 0.3R and
length d = w/2 on the left and right. Levels ν = 22 to 98 (rows 4 to 14 from the bottom) for this
stub length lie within the first channel of transport, 1 6 κν 6 2. Solid and dotted boxes indicate
leaking states of a common type characterized by approximate (longitudinal, vertical) pairs of quan-
tum numbers (m, n = 1) and (m, n = 3) at low energies, respectively (see text). The transmission
background of the open billiard in the first channel is determined by the terminal interference of
pairs of quasi-degenerate (closest in energy) (m, 1)-states (light red) and (m, 3)-states (light blue).
The grayscale is normalized to the total maximum in the plot and scales as

√
ρν(r).
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Figure 5.4: (a) Scaled energy levels κν =
√

2m∗Eνw/h̄/π of the closed billiard of Fig. 5.3 for varying
length d of the added lead stubs. The right panel shows the transmission for the open billiard
at the dotted cut at δ = 1/2 in Fig. 5.2. (b) Closeup of the eigenspectrum κν(d) indicated in (a)
around the stub length d = 16 a0 (indicated by the vertical line) to be used for the array setup. The
probability densities of all eigenstates within the inset range are shown in the right panel together
with their eigenenergy number ν and their approximate (m, n) quantum numbers labeling the (x, y)
nodal patterns. Two pairs of destructively x-interfering leaking states (colored) are indicated by
dotted lines.

For δ > 1, there are only leaking eigenstates of the type (m, n = 1) which are energetically
well separated and lead to the high transmission background. As δ decreases, however, also
(m, n = 3) states become leaking, and their interference with the (m, n = 1) ones drastically
modifies the non-resonant transmission. These two types of leaking states constitute two
scattering channels which interfere constructively or destructively at the outgoing lead. In
particular, when δ ≈ 0.5, the series of (m, 1) and (m, 3) states (indicated by red dotted
and blue solid boxes in Fig. 5.3, respectively) are pairwise degenerate, with paired states
of opposite parity [52]: Their destructive interference causes the wide suppression valley in
the transmission function around the middle of the channel.

The ‘leakiness’ of the leaking states can be anticipated by varying the length d of the
lead stubs of the closed billiard, as is done in Fig. 5.4. As a consequence of the perturb-
ing lead stubs (but also of the non-integrable shape of the oval itself), the spectrum κν as
a function of d consists of lines undergoing avoided crossings, upon which the character
(m, n nodal pattern) of the corresponding states is exchanged. The more an eigenstate leaks
into the lead stub, the more it is affected by the imposed Dirichlet boundary condition at
the stub end, and the larger is the shift of the eigenenergy. The slopes of the κν(d) lines
thus provide a relative estimate for the coupling of the zero-field eigenstates to the leads
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within the first channel. Confined states and even-n (odd-y-parity) states correspond to flat
lines, as expected from their negligible coupling to the leads.3 The leaking states yield lines
with varying slope depending on the details of their nodal pattern and corresponding en-
ergy distribution in the vertical and longitudinal direction. As we see, they indeed come
in quasi-degenerate pairs (10 pairs for the indicated stub length d = 16 a0); the closeup
in Fig. 5.4 (b) shows the two (m, n)-pairs (11,1),(8,3) and (9,3)(12,1), surrounded by confined
and even-n states. Note that there is no correspondence here of the limit d → ∞ with the
semi-infinite leads: The open boundary conditions in the scattering system are qualitatively
different. As d is increased, more leaking eigenstates simply enter the range of the first
channel and become denser in energy. However, we notice that on average (that is, consid-
ering a finite d-range in Fig. 5.4 (a)) the destructively interfering leaking states within each
pair lie energetically closer in the middle of the channel for the chosen δ = 0.5, which qual-
itatively explains the according enhanced suppression in the transmission function (plotted
for comparison in the right panel of Fig. 5.4 (a)).

It should here be pointed out that this mechanism for conductance suppression does
not rely on the exact shape of the oval used, but is robust against moderate changes of the
geometry [52] (such as an elliptic billiard of the same aspect ratio and size relative to the
leads): The decisive ingredient is the geometric separation of pairwise destructively interfer-
ing leaking states from weakly lead-coupled ones. When δ is further decreased towards the
circular limit, this scheme is perturbed by further eigenstates which become leaking, and
then the multiple mixed (not pairwise destructive) interference of quasi-degenerate states
yield an irregular fluctuating transmission, as seen in Fig. 5.2.

5.3 Quantum dot array: composite resonant states and magneti-
cally controlled transmission bands

Having analyzed the origin of the suppression valley in the single-dot transmission func-
tion, we now focus on the modification of the transmission when dots are connected to
form an array as well as the impact of an applied magnetic field. The zero- and finite-field
transmission T(κ) through the coupled-dot device is shown in Fig. 5.5 for different numbers
of dots N in the chain, with deformation parameter δ = 0.5 and interdot distance L = w. As
discussed previously, the zero-field transmission in the single dot case consists of a rather
smoothly varying background, on which sharp Fano resonances are superimposed. In the
multi-oval case the sharp Fano resonances corresponding to confined billiard eigenstates
are N-fold split (this very small splitting is generally not resolved on the scale of Fig. 5.5);
additionally, Breit-Wigner (BW) type resonances of varying width emerge. The latter subse-
quently undergo a splitting into N − 1 sub-peaks for an array of N dots. The resonances of
BW type, although generally asymmetric on a varying background, are distinguished from
the Fano resonances by the absence of the accompanying zero in the transmission. Their
origin is the resonant scattering of the incoming wave through the system on the level of
the connected dots, as will be demonstrated in the following for our setup. For sufficiently
many dots (represented in Fig. 5.5 by the case of N = 20), the multiply split resonances
saturate into bands of densely positioned peaks, which is reminiscent of the band structure
of energy levels in a periodic quantum system. In the presence of the weak field the smooth
background transmission is overall increased, the sharp resonances are slightly shifted in

3 In this case, the practically vanishing influence of varying d on the even-n states is not due to a zero overlap
with an even y-parity lead state, but due to the fact that odd y-parity billiard states decay exponentially in the
lead stubs (and thus reach the ends with practically zero amplitude).
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Figure 5.5: Transmission spectra in the first transversal channel for varying number of dots N with
deformation parameter δ = 0.5 and connecting lead length L = w = 0.3 R, at B = 0 (solid black line)
and B = Bc ≈ 20 mT (dotted red line).

energy and the transmittive bands for large N are broader.
As seen in the previous section, the interference of leaking states belonging to different

transversal billiard excitations generates a smooth oscillation in the single dot transmission
T(κ), with constructive interference hills of substantial T separated by destructive interfer-
ence dips of vanishing T. The slowly varying envelope behavior of the transmission spec-
trum exhibits a wide energy range where the overall transmission is strongly suppressed.
For the specific shape of the cavity corresponding to the chosen value of δ = 0.5, this sup-
pression valley is centered around the middle of the first channel.

In order to analyze the transmission of the multidot chain, in Fig. 5.6 (A) we focus on
the transmission around the BW resonance appearing for N = 2 at κ = κp ≈ 1.384, and
show its (N − 1)-fold splitting for increasing N. Also the sharp Fano resonance just below
is included, whose splitting (of the order of ∆κ ∼ 2 × 10−5 or ∆E ∼ 0.1 µeV) remains
unresolved even at this scale. The N-fold splitting of the Fano resonances is a consequence
of the degeneracy of the confined single dot eigenstates in the case of N dots, which are
coupled very weakly through the connecting lead due to their strong localization within the
ovals. It is thus similar to the splitting of the energy levels of atoms brought together to form
a weakly bound molecule, with an energy split proportional to the interatomic coupling.
The BW type resonances of the multidot case, which are narrower (wider) at energies where
the single dot transmission T(N=1)(κ) is lower (higher), are of different origin: They arise
from the resonant scattering of the incoming wave through the system of the ovals and the
connecting bridges via leaking states (which are strongly coupled to the bridges). Indeed,
the emergence of these resonances and their (N− 1)-fold splitting can effectively be deduced
from the 1D scattering through N potential barriers (or equivalently, N − 1 resonators),
where the transmission amplitude of scattering through each barrier possesses an energy
dependent norm and phase. Two barriers α, β with transmissions Tα, Tβ give the total
transmission [127]

Tαβ =
TαTβ

1 + RαRβ − 2
√

RαRβ cos θ
, (5.8)
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Figure 5.6: (A) T(κ) for B = 0 (solid black line) and B = Bc (dotted red line) for L = w and varying
N, in the vicinity of κp ≈ 1.384, with labels a, b, c, d, e for the transmission resonances referred to in
the text. (B) T(κ) (solid black line) and g(Θ = 0.2 K ; κF) (dashed blue line) for a single dot (bottom)
and for two dots with varying bridge length L, within a small window of the channel number κ
covering the energy range of a smooth hill in the single dot transmission.

where Rα/β = 1− Tα/β and θ is the phase shift acquired by reflection from β to α and back
to β. For Tα = Tβ = T(N=1) and θ ∝ κ this gives rise to resonance peaks in T(N=2) which
are equidistant in κ and have a width that increases with T(1). In our case though, due
to the structure of the ovals that constitute the barriers, the phase shift θ is not linear in
κ. This perturbs the periodicity of the resonances, as we observe for T(2)(κ) in Fig. 5.5, or
equivalently, yields an energy dependent effective resonator length L̃(κ) ∝ θ(κ)/κ. Formula
(5.8) can be iterated to obtain the transmission for N > 2 ovals, i. e.

T(N) = Tαβ; Tα = T(1), Tβ = T(N−1), θα,β = θ1,N−1, (5.9)

where θ now results from reflections between 1 and N− 1 barriers. The (N− 1)-fold splitting
of the T(2) resonance, shown in Fig. 5.6 (A), and the saturation into a band in the transmis-
sion spectrum for large N, are then reproduced for a system that is symmetric under the
exchange α ↔ β (which, in our case, renders the dots identical), provided that the phase
difference between transmission and reflection amplitude of the single barrier is equal to
±π/2, as is the case for the single oval with symmetrically attached leads.

Varying the resonator length modifies the conditions for resonant transmission by shift-
ing the resonances in energy and changing their periodicity. In Fig. 5.6 (B) the transmission
through N = 2 connected dots, as well as the normalized conductance at Θ = 0.2 K, are
plotted over the energy range of a single-dot transmission hill, for varying connecting bridge
length L. With a slight increase in L (L/w = 1.0, 1.1, 1.2, 1.3) the BW resonances are shifted to
lower energy, and for longer bridges (L/w = 10, 100) the number of resonances in the same
interval increases. We notice that the center positions of the (split) Fano resonances are unaf-
fected by the variation of the bridge length. Detailed features of the transmission lineshape,
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Figure 5.7: Zero-field LDOS for N = 1, 2, 3, 4 dots with δ = 0.5 and L = w for energies in the vicinity
of the (N − 1)-fold split resonance peak at κ = κp ≈ 1.384, with incoming electron on the left. Rows
(a), (b), (c), (d), (e) correspond to the energies of the resonances labeled with the same letters in
Fig. 5.6 (A). The colormap for each sub-plot is normalized to its maximal value and scales as

√
ρ to

enhance contrast.

such as the Fano resonances and the BW resonance peaks for large L, are washed out at
finite temperature Θ by thermal averaging through formula (5.6), making their contribution
to the conductance G(EF) negligible compared to the smooth background.

As we see in Fig. 5.6 (A), the addition of a dot to the existing chain of N dots at resonance
energy lowers the transmission from unity to the single oval value T(1)(κ) at that energy
(note that the transmission at the dips between the resonances in T(N>4)(κ) can acquire
values even lower than T(1)(κ)). In particular, the transmission at the energy position of
the central resonance at κ = κp oscillates between unity and T(1)(κp) with even and odd N,
respectively:

T(N even)(κp) = 1, T(N odd)(κp) = T(1)(κp). (5.10)

Furthermore, the resonances for each N are positioned symmetrically around κp, so that the
forming bands in the transmission for large N are centered around the T(2)(κ) resonance
peaks.

In Fig. 5.7 this behavior of the transmission function for varying number of dots is illus-
trated in terms of the states forming in the system for N = 1, 2, 3, 4 dots, by plotting the
zero-field LDOS at the energies (rows a,b,c,d,e) of the resonance peaks labeled (with the
same letters) in Fig. 5.6 (A), for an electron incident on the left. The spatial oscillations of
the LDOS in the incoming lead come from the interference of the incoming wave with the
wave that is backscattered from the dot array. Their absence is a signature of a resonance
peak in the transmission spectrum, as there is no overall backscattering and transmission
is unity. Starting with the single oval in the first column [Fig. 5.7 (a1)–(e1)], we see that the
incoming wave is reflected at all energies (a) to (e) around κp, leading to a transmission
significantly less than unity (T(1)(κp) ≈ 0.07). When a second oval is added, there is an
energy between (a) and (e), namely κ = κp represented by row (c), for which the backscat-
tering of the single oval is canceled by the presence of the added oval and the connecting
bridge: The wave is multiply reflected between the two ovals through the bridge, resulting
in a quasi-standing wave along the chain [see (c2)] that constitutes a resonant state for the
open system, leading to a transmission of unity. A third oval added in front of the two
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Chapter 5. Magnetoconductance switching by phase modulation

introduces the backscattering again at κp [see (c3)], while the transmitted part from this first
oval is perfectly propagated through the remaining two as in (c2). Thus the transmission in
(c3) equals the single dot transmission, T(3)(κp) = T(1)(κp). The backscattering of the third
oval at κp is canceled by addition of a fourth oval [see (c4)], just as we went from (c1) to (c2),
so that the T(2)(κp) resonance peak is recovered in T(4)(κp), although with a smaller width.

Thus, the sequential cancellation of the backscattered wave leads to the even-odd oscil-
lations of T(N)(κp) seen in Fig. 5.6 (A). Resonant states are also accessed for 3 and 4 dots
in (b3) and (a4) below κp and in (d3) and (e4) symmetrically above κp. Similarly, for each
number of dots N there are N− 1 accessible resonant states, including the one at κp for even
N, at energies symmetrically positioned with respect to κp. Just as the T(2) resonance is re-
covered in T(4), each T(N) resonance is recovered at multiples of N, where the resonant state
in the chain can be decomposed into multiple connected resonant states. We notice that the
two branches of resonances, one below and one above κp, are associated with two different
leaking eigenstates of the isolated single oval with lead stubs, with the closest nodal label-
ing (m, n) being (8,3) and (11,1)– they inhabit, for example, the central oval in (b3) and (d3),
respectively.4 Their interference in the open single oval system forms the scattering wave in
column (1). These three wave patterns are combined among the N ovals in the open chain,
to form the N− 1 resonant states leading to the peaks around κp. The formation of resonant
states occurs similarly around all T(2) resonances of BW type (seen in Fig. 5.5). Character-
istically, moving from a T(2) resonance to the next one at higher energy adds a node in the
quasi-standing wave within the two ovals and the connecting bridge. Increasing the length
of the bridge shifts the resonances to lower energies and reduces the κ-distance between
them, as the wavelength in the quasi-standing wave overall increases, in accordance to the
effective resonator picture described above.

Conclusively, there are two types of resonances to be distinguished in the transmission
spectra for the array of N dots:

(i) the series of equidistant Fano resonances, arising from the confined single dot excita-
tion modes in the continuum of the channel, which are N-fold split due to coupling
between the ovals, and

(ii) the series of nonequidistant BW resonances, resulting from resonant bridge-coupled
states that form in the chain, which are (N − 1)-fold split.

Modulation in a magnetic field

Following the discussion above, we now consider the influence of a weak perpendicular
homogeneous magnetic field on the transport through the device. When the field is switched
on, although the density distributions of the oval eigenstates remain largely unaffected at
this low field strength, their phases are modulated and consequently the interference of
the states contributing to transmission changes. Thus, depending on the field strength, the
transmission spectra for the single and multiple dots are accordingly modified. In particular,
while the pairs of the (m, 1) and (m, 3) leaking states responsible for the suppression valley
in T(κ) still remain close in energy, the field changes their Aharonov-Bohm-like phases and
prevents the destructive interference [52]. Also, the even-m states, which did not mediate
transport due to symmetry at zero field, now couple to the leads and in general contribute
to the transmission.

4 Note that the resonant energies in the open system do not happen to coincide with the energies of the
corresponding closed dot eigenstates for the stub length chosen in Fig. 5.6 (b), but for smaller stub lengths. This
shows that the transmission spectrum cannot generally be deduced from a given closed dot eigenspectrum.
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5.4. Conductance switching

As seen in Fig. 5.5 (dotted line) for the chosen field strength the slowly varying back-
ground of the single oval case is indeed generally raised throughout the channel, removing
the characteristic suppression around its middle in the absence of the field. The overall
very high transmission is interrupted by series of dips in its lineshape. The existing sharp
Fano resonances undergo only a very slight energy shift (visible for the Fano resonance in
Fig. 5.6 (A)), because the spatial distribution of the wave function remains practically unaf-
fected at this weak field. Again the multidot chain provides a more complex transmission
spectrum, resulting from the subsequent matching conditions for the wave function at the
connections between the dots. The BW and Fano resonances are multiply split like in the
field free case, and dips and plateaus become sharper and more pronounced as dots are
added to the chain, saturating into a banded transmission. In contrast to the field free case,
the transmission pattern is now dominated by narrower gaps and wider transmittive bands.
Thus, also for the long chain of dots the overall transmission is drastically raised by the
applied field. A more detailed analysis of the modification of the conductance with varying
field will be presented in the next subsection.

5.4 Conductance switching

The conductance G(Θ; EF) at temperature Θ and Fermi energy EF is calculated by ther-
mally averaging the transmission T(E) around EF according to Eq. (5.6). For direct
comparison to T(κ), the dashed curve in Fig. 5.6 (B) shows the normalized conductance
g(Θ; κF) = G(Θ; κF)/G0 = πh̄

e2 G(Θ; κF) as a function of the Fermi channel number

κ = κF =
√

2m∗EF/h̄2 w/π for Θ = 0.2 K. At zero temperature the conductance coin-
cides with the transmission, but as Θ is increased peaks and dips in the conductance be-
come less pronounced due to the increasing width of the thermal broadening function (5.7).
Already at the low temperature chosen in Fig. 5.6 (B) (Θ = 0.2 K), the detailed structure
of the transmission is essentially lost: the sharp resonant peaks are washed out, reflecting
their negligible contribution to the conductance. Also the formation of sharp transmittive
bands for the multidot chain is relaxed with thermal averaging. For long interdot leads
(L/w = 10, 100 in Fig. 5.6 (B)) the conductance features follow the trend of the single dot
case, that is, it exhibits similar hills in energy, yet with smaller amplitude. Similar modi-
fications of the transmission spectra through thermal averaging hold for the conductance
profile in the presence of the magnetic field (not shown).

A key feature of the oval shaped cavity is the formation of the wide suppression valley
in the transmission spectrum of the first transversal channel, which is essentially retained
also for the conductance at low temperature. In order to demonstrate the suitability of
the chain of dots as a magnetically induced conductance switch, we exploit the lifting of
this suppression when the field is turned on, aiming at a high ratio of finite- over zero-
field conductance. In the following we optimize the switching ratio taking into account all
relevant parameters (δ, B, L, N) as well as finite temperature and impurity scattering effects
(see Sec. 5.5). First we consider the quantity Gmin

off which is the zero-field finite temperature
conductance minimized with respect to the position of the Fermi energy in the first channel.

In Fig. 5.8, gmin
off = Gmin

off /G0 is plotted as a function of δ at different temperatures for a
single oval dot. We see that an optimal value for gmin

off is obtained around δ = 0.5, with a
small dip at δ = 0.55, while it increases for larger or smaller deformation of the oval. It
should be noted here that the modification in the spatial extension of the oval for a change
∆δ ≈ 0.05 is of the order of 1%, a challenging accuracy for an experimental realization of
the device. We therefore keep the roughly optimized value of δ = 0.5 as a reference for
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Figure 5.8: Minimal zero-field conductance gmin
off (see text) as a function of the deformation parameter

δ for a single dot, at temperatures (bottom to top) Θ = 1.0, 1.1, ..., 2.0 K; the inset shows the change
of the optimized channel number κmin with δ at Θ = 2 K (the dependence is the same for the other
temperature values).

the following analysis. As shown in the inset of Fig. 5.8, the channel number κmin of this
minimum depends approximately linearly on δ where the corresponding Fermi energies are
located close to the center of the first channel. For δ = 0.5 we have κc = κmin(δ = 0.5) ≈ 1.46
in the single dot case (N = 1). This shift of the optimal Fermi energy, that holds for all
temperatures considered, is due to the modification of transversal modes inside the dot,
which are shifted to higher energies as the oval becomes narrower with increasing δ.

The single dot switching ratio S(N=1)(B) = G(N=1)
on (B)/G(N=1)

off at κ = κc is shown in
Fig. 5.9 for varying magnetic field strength at different temperatures. As S(1)(B) equals the
finite field conductance normalized to G(1)

off , it describes the changes of the conductance in-
duced by the field. For low field strengths (inset of Fig. 5.9) the modulation of the phase of
the leaking states in the dot leads to Aharonov-Bohm (AB) like oscillations in the conduc-
tance. At the energies we consider here, only three of these leaking states are present [52].
However, the presence of more than two scattering channels inside the dot gives rise to
the superposition of magnetoconductance oscillations, so that S(1)(B) loses the periodicity
expected for AB oscillations of a 1D quantum ring. As the field strength is increased, apart
from their phase, also the spatial distribution of the states in the dot is affected. Confined
states are eventually deformed into leaking ones, opening further channels for the trans-
mission. The first magnetoconductance peak at Bc ≈ 0.02 T is seen to be the highest in the
low field regime, giving a switching ratio of S(1)(B = Bc) ≈ 65 at Θ = 0.7 K. For higher
field strengths the transmittive states are gradually localized into edge states (with classical
cyclotron radius . R/4 for B & 0.8 T) along the border of the cavity, all within the first
Landau level [50]. Following the edges of the billiard, the electrons are now more easily
transmitted, resulting in an increased overall conductance. At a field strength of B ≈ 1.2 T
these modes become perfectly transmittive along the edges of the structure, and the switch-
ing ratio reaches a plateau of maximal value ( S(1)(1.2 T . B . 2.2 T) ≈ 70 at Θ = 0.7 K ).
For even higher magnetic field strength the transmission decreases drastically as the incom-
ing electrons gradually fail to overcome the magnetic barrier provided by the first Landau
level, and the conductance drops to zero. At higher temperatures the features of the mag-
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Figure 5.9: Single dot switching ratio S(1) at κ = κc ≈ 1.46 as a function of the magnetic field, for
temperatures (top to bottom) Θ = 0.7, 1.0, 1.4 K. The inset shows the irregular oscillations for low
field strengths.

netoconductance remain; however, as a broader energy window with higher transmission
parts is contributing to the thermal averaging in (5.6) through the broadening function (5.7),
the switching ratio is generally lowered, because G(1)

off increases. Also the amplitude of the
oscillations decreases with temperature, as the magnetically induced changes in the detailed
structure of the transmission have a smaller impact on average. For N > 1 the magnetocon-
ductance behaves similarly, but the switching ratio overall acquires higher values, because
of the even lower zero-field conductance G(N)

off resulting from the formation of gaps in the
transmission spectra.

The magnetoconductance is calculated for spinless particles and hence does not describe
electronic transport for high magnetic field strengths. But, as we are aiming at a high
switching ratio, we concentrate in the following on the first maximum S(N)

c = S(N)(B =

Bc), which occurs approximately at the same field strength Bc ≈ 20 mT for all considered
numbers of dots N. For this weak magnetic field we can neglect the Zeeman splitting. In
Fig. 5.10, S(N)

c is presented for a varying number of dots in the chain, again at different
temperatures. We allow for the parameter κ

(N)
c , which represents the scaled Fermi energy

of the incoming electrons, to be optimized individually in order to minimize G(N)
off for each

dot number N. At sufficiently low temperature, by connecting a second oval to the single
one we gain a substantial factor with respect to the increase from S(1)

c to S(2)
c ( ≈ 320 for

Θ = 0.7 K), which, as pointed out, results from the lower zero-field conductance. For N > 2
the switching ratio fluctuates around a temperature dependent mean value, due to its high
sensitivity with respect to the optimized G(N)

off at low temperatures, which changes for each

N. At higher temperatures the fluctuations are weakened, but S(N)
c is then also lowered

drastically.
It is obvious that the optimization of the switching ratio strongly depends on the tem-

perature: High switching ratios require low temperatures, Θ . 2 K for our setup. Neverthe-
less, we see that the current switching functionality of the device is significantly enhanced
throughout the temperature range considered already with only two connected dots instead
of a single one. This is of advantage in an experimental realization of the system, since
optimal switching can be achieved with a relatively small double-dot system (instead of a
long multidot chain) where phase coherence is more easily maintained.
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Figure 5.10: Switching ratio S(N)
c = S(N)(B = Bc ≈ 20 mT) for varying number of dots N with

connecting bridge length L = w, for different temperatures Θ.

5.5 The impact of impurities

Let us now explore the impact of potential disorder on the magnetoconductance. This is
implemented in the form of remote impurity scattering in the presence of a modulation-
doped layer above the 2D structure. We consider pointlike negatively charged impurities
of 2D density nimp distributed on a plane at distance d above the 2D electron gas (2DEG),
excluding them from the region of the semi-infinite leads. The plane is partitioned into
small pieces of area 1/nimp, within each of which one impurity is placed at random position,
thus constituting a quasi-random distribution of impurities, with an upper bound on their
local concentration. The electrostatic potential of each impurity is screened by the 2DEG at
the plane of the device structure; for the effective potential that an electron feels at lateral
distance rimp from the impurity we use the model screening potential of Sec. 1.1.3,

Vscr(rimp) =
e2

4πε0εb

qTF(1 + qTFd)
q3

TF

1

(r2
imp + d2)

3
2

, (5.11)

where qTF = 2/aB is the low-Θ Thomas-Fermi screening wave number, with relative permit-
tivity εb = 13.8 and effective Bohr radius aB = 9.8 nm for a GaAs [75].

As the distance d of the impurity layer is made very short (d . 30 nm in the present scal-
ing), the corresponding transmission spectra (not shown here) are drastically changed with
respect to the clean case (see Fig. 5.5), as a result of the influence of the impurity potential
on the transport through the device. The randomized potential landscape in the dot chain
leads to a spatial deformation of the existing states and a breaking of the symmetries present
in the clean system: The sharp Fano resonances are shifted due to the perturbation of the
confined eigenstates in each dot, differently for each individual impurity configuration. The
impurity potential also changes the energies of the leaking states, which results in modi-
fied conditions for their coupling to the leads, so that the broad transmission maxima are
shifted, too. Additionally, new transmission peaks are introduced by leaking states that did
not contribute in the clean case due to their symmetry [52]. For not too short impurity layer
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Figure 5.11: Mean value and standard deviation (for 27 impurity configurations) of the switching
ratio S(2)

imp(B = Bc) of two connected dots as a function of the impurity layer distance d at different

temperatures. The dashed lines give the values S(2)
c of the disorder free case.

distance d though, the described suppression valley in the conductance of the clean system
is retained, still making valid the concept of magnetic conductance switching. As expected,
the effects of disorder are enhanced as the impurity density is increased (not shown); in
the present analysis we use a value of nimp = 0.0025 nm−2. This rather high density of
remote impurities is employed here in order to intensify their impact on transport in our
simulations, whereas in practice cleaner samples are realizable for use in semiconductor
nanostructures [21, 252].

In Fig. 5.11 the switching ratio in the presence of remote impurities S(2)
imp(B = Bc) is

shown as a function of the distance d from the impurity layer, for two connected ovals. The
values of S(2)

imp for each d are the average over 27 configurations of the randomly distributed
impurities. When the impurity layer is closer to the 2D conducting structure, the average
switching ratio is in general lower than its value in the clean system, the latter being prac-
tically reached for a distance d & d0(Θ), depending on the temperature. For Θ ≈ 1 K we
have d0 ≈ 100 nm, corresponding to a transport mean free path le ≈ 24 µm in the first Born
approximation [75]. Nevertheless, the relatively large deviations from the mean indicate
that, for each d . d0(Θ), there are certain impurity configurations that provide a switching
ratio much higher or lower than the average. This is due to the high sensitivity of Goff with
respect to the potential pattern that is formed on the plane of the array. If the impurity
configuration is, for example, such that a potential maximum is blocking the opening of
a cavity to a lead, then Goff is suppressed, as the wave coming from the lead is strongly
backscattered. This backscattering can be lifted when the magnetic field is turned on, lead-
ing to an overall increased switching ratio for this configuration. On the other hand, when
the configuration of the impurities does not block the leads, Goff in the suppression valley is
slightly higher compared to the clean case due to the additional resonances in the transmis-
sion, causing a reduced switching ratio. Thus, at distances where the potential on the 2DEG
plane is not too strong to permit transmission at all, the randomly distributed impurities
lie within a broad variation between the cases of blocking and non-blocking configurations,
keeping the deviations from the mean high. When the impurities are put too close to the
2D structure (d . 30 nm), the shape specific suppression feature of the zero-field transmis-
sion is essentially lost, so that the overall conductance is practically unaffected by the field
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strength, which thus minimizes the switching effect. For larger impurity layer distances the
mean S(2)

imp eventually saturates into the clean case value with decreasing deviations, as the
potential becomes too weak to affect the transmittive states in the dots.

Using random impurity distributions to investigate the functionality of magnetic current
switching in a more realistic environment, one can speak of a temperature dependent lower
bound of the switching ratio (see Fig. 5.11) depending on the specific setup. This lower
bound is increased as the influence of disorder is suppressed, that is, when a longer mean
free path for the electrons is achieved. Technological progress actually makes it feasible
to reach mean free paths in heterostructures comparable to the size of realizable nanoscale
devices [21, 253, 254]. The almost ballistic nature of electron transport then allows for con-
trollable conductance switching at low temperatures, in the sense that it is determined by
the specific shape of the conducting device, the electron energy and the applied magnetic
field.

5.6 Summary and conclusions

Having investigated the transmission properties of a linear array of equidistant identical
oval shaped quantum dots, we demonstrated the functionality of such a structure as a mag-
netically controlled switching device in the deep quantum regime. The switching effect
arises from the lifting of a deformation specific suppression in the transmission of the oval
when a weak perpendicular field is turned on. The suppression valley in the transmission
results from the destructive interference of states in the dots that are strongly coupled to
the leads, and is specific to the elongated shape of the single billiard. This makes the effect
relevant in systems of similarly shaped dots, e.g. elliptical. The switching ratio oscillates
with the magnetic field strength, but as the effect is prominently present even at very weak
fields, we have concentrated on its first peak. We have shown that the extension of the single
dot into a chain of dots causes a much higher switching ratio, due to a stronger suppression
of the zero-field conductance. However, we point out that almost optimal switching can be
obtained by connecting only one more dot to the single one, giving a multiple value for the
switching ratio while keeping the system size small. This could make the device practically
advantageous but also favors quantum coherence itself, which is the principal requirement
for the interference effects to take place.

The efficiency of switching is lowered with increasing temperature, as the desired shape
specific characteristics of the transmission spectra are thermally washed out, which poses a
limitation to low temperatures (up to about 2 Kelvin). In spite of the possibility to achieve
mean free paths of the 2DEG much longer than the extent of the studied system, we have
additionally investigated the robustness of the switching ratio in the presence of impurity
scattering. The switching ratio acquires a higher or lower value than in the clean case de-
pending, respectively, on whether the impurity configuration is blocking transport at zero
magnetic field or not. Thus, for randomly distributed impurities a temperature dependent
lower bound for the switching ratio of a sample can be set. The efficiency of magnetocon-
ductance tuning then remains to be specified for the individual device.

Conclusively, it was demonstrated that electron billiards of specific elongated geometry
and chains thereof can be used, due to interference-induced regularities in the suppression
of their transmission, to design low temperature magnetoconductance.
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6
Current control in soft-wall electron
billiards: energy-persistent scattering
in the deep quantum regime

In this chapter we use ‘soft-wall’ boundary confinement, that is, a potential profile with
finite slope, to induce charge current controllability in a two-terminal transport setup. In
particular, the isolation of energetically persistent scattering pathways from the resonant
manifold of an elongated electron billiard in the deep quantum regime is demonstrated. This
in turn enables efficient conductance switching at varying temperature and Fermi velocity,
using a weak magnetic field. The effect relies on the interplay between the elongated soft-
wall confinement and magnetic focusing, which together rescale the scattering pathways
and decouple quasi-bound states from the attached leads. The mechanism proves robust
against billiard shape variations and qualifies as a nanoelectronic current control element.
The results of this chapter are partially published in Ref. [255].

6.1 Persistent switching via geometric rescaling at low energies

In Chap. 5 it was shown how the elongated (oval) shape of a hard-wall open billiard may be
utilized to switch conductance by means of quantum interference: quasi-degenerate, lead-
coupled states were selectively brought into destructive output interference, thereby sup-
pressing conductance, with a phase-modulating magnetic field causing high overall trans-
mittivity. The effect was shown to be relatively robust with respect to small changes in
shape deformation and weak disorder and requires only a very weak field. However, the
fulfillment of the required interference conditions relies on the steepness of the wall bound-
aries and is naturally sensitive to small variations in the field strength. Furthermore, the
geometrically induced suppression valley in conductance fixes the optimal switching Fermi
energy to the center of the first propagation channel.

We will now demonstrate an alternative way to achieve conductance control by exploit-
ing the orbital magnetism in a billiard with appropriately designed soft wall boundary:
In contrast to the previous phase-dominated transport properties at low field strength, the
magnetoconductance will now be controlled via path-dominated dynamics while remain-
ing in the same energetic regime. Conceptually, we now pursue the separation of these
two types of magnetotransport dynamics, phase- versus path-dominated, in a regime where
they strongly overlap, corresponding to a suppression of quantum fluctuations in favor
of directed pathways at wavelengths comparable to the system size—the ‘deep quantum
regime’.

129



Chapter 6. Current control in soft-wall electron billiards

a a’

cb

d

b

d/2

π2/2w2

V(x = 0, y)

R2R1

B = Bsẑ
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Figure 6.1: System setup and sketch of magnetically focused pathways. (a) Electron billiard defined
by hard-wall confinement (solid line) and a soft-wall potential V(x, y) decreasing along elliptical
contours to zero (dotted contour), with wall width d in the x- and y-directions. The wall opens up
along y = 0 to attached leads of width w, and its central contour (dashed) has semi-axes a and b.
(a′) Cross section at x = 0 for linear wall potential, with central contour lying at the threshold of the
first propagating channel. (b) Without the soft wall, a magnetically focused, backscattered pathway
(with cyclotron radius R1, red arrows) eventually turns into a transmitted pathway (with cyclotron
radius R2 < R1, orange arrows) for sufficient decrease in energy, while (c) backscattering would be
retained for a correspondingly smaller billiard. With appropriately chosen potential in (a), similar
backscattered paths can persist with varying energy for a common field strength Bs, with forward
propagation favored for B = 0 (blue arrow). Note that the sketched arrows do not correspond to
quantitative classical trajectories, but qualitatively indicate the background overall electronic motion.

From an experimental viewpoint, the magnetic field provides a unique macroscopic
handle on those mesoscopic processes determining the conductance of the system, and the
challenge is to find a way to control them under ‘comfortable’ conditions. In other words:
How can a weak magnetic field switch the current flow through a sizable electron billiard at
low bias and finite temperature, and over a broad Fermi level variation? The answer lies in
identifying and designing transport mechanisms which respond reliably to changes in the
field strength while remaining robust against variations in energy, and at the same time stay
separated from omnipresent quantum fluctuations. The key feature in the observable re-
sponse consists in a controllable background transmission, magnetically switched between
its extrema, upon which only narrow interference-induced Fano resonances [35] are super-
imposed [12, 14, 36]. This requires energetically persistent scattering pathways that mediate
transport or cause complete reflection, but couple only weakly to resonant states.

This scenario is realized in an open electron billiard with an elliptical soft-wall poten-
tial (see Fig. 6.1). The experimental setup in mind is a quantum dot with steep boundary
potential [19, 20] supplied with additional peripheral gates [18] which further deplete the
internal 2D electronic motion. With a perpendicular magnetic field B piercing the dot, the
combination of the elongated lateral shape with the soft wall enables an energy-invariant
switching mechanism by isolating the required scattering pathways from the manifold of
resonant levels. In short: For B = 0, the elliptic soft walls collimate the electronic motion
into the longitudinal direction, causing high overall transmission. At a special ‘switching’
field strength B = Bs, the incoming electrons are focused [71] into a completely backscat-
tered pathway, which becomes geometrically rescaled in the presence of the soft wall (as
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6.2. Decoupling of resonances and controllable finite-temperature conductance

sketched by the arrows in Fig. 6.1). In both cases, the crucial role of the soft wall is thus to
create energetically persistent scattering pathways while decoupling localized resonant states
from the openings. As a result, the setup enables efficient finite-temperature current switch-
ing for varying Fermi energy, by turning on a weak external magnetic field.1

It should be pointed out that, for the purely hard-wall billiard boundary (Figs. 6.1 (b),
(c)), this type of geometrical rescaling of the magnetically focused path is not possible: At a
given field strength, the electronic path is less deflected for lower energy (shown schemati-
cally by the orange path in (b)), and its specular reflection on the boundary eventually leads
to complete or partial transmission of the electron. To keep the backscattering character
of the focused wave, the hard-wall billiard (and in turn the scattered electron path) would
have to be rescaled as shown in (c). For an appropriately chosen soft-wall potential profile,
as shown quantitatively in the following, the penetration depth of the backscattered wave
into the wall is reduced with decreasing energy, such that the boundary length is effectively
reduced and focused trajectory retained (rescaled to smaller size) without modifying the
dot confinement.

The chapter is structured as follows. In Sec. 6.2 we present the transmission spectrum
of a chosen soft-wall billiard as a function of magnetic field and compare it to the one in
absence of the soft-wall boundary, thus demonstrating the conductance switching efficiency
of the proposed setup. The form of the transmission spectrum is analyzed in terms of the
closed billiard eigenspectrum in Sec. 6.3. In Sec. 6.4 the persistent switching mechanism is
elucidated by the spatial distribution of the scattering states and their current density. The
alternative current switching properties of connected billiards are investigated in Sec. 6.5.
Finally, Sec. 6.6 explores the modification and robustness of the switching efficiency in terms
of variations in the billiard shape and soft-wall potential profile. Section 6.7 summarizes the
chapter and concludes on the experimental functionality of the switching device.

6.2 Decoupling of resonances and controllable finite-temperature
conductance

With decohering electrodes implemented by attached semi-infinite leads, the effective (en-
ergy dependent and non-Hermitian [127]) Hamiltonian of the open system is represented
on a tight-binding lattice, and the transmission function T is computed via the extended
(modular) recursive Green function scheme developed in Chap. 4. This allows for efficient
and accurate transport calculations in a highly resolved parameter space for the considered
low-energy regime. The conductance G at Fermi energy EF and temperature Θ is then ob-
tained from T(E) within the Landauer-Büttiker framework presented in Chap. 2; specifically,
we use the linear response formula, Eq. (2.46). As seen in Chaps. 3 and 4, upon an excitation
in the leads, the appropriate parts of the Greenian further provide the local density of states
ρ(r) as well as the scattering wave function which in turn yields the probability current
density j(r), adapted here to the lattice model [80, 94]. The choice h̄ = e = m = a0 ≡ 1 fixes
the units of energy E0 = h̄2/ma2

0 and magnetic field strength B0 = h̄/ea2
0 for given effective

mass m and lattice constant a0.
The transmission through the soft-wall billiard is shown in Fig. 6.2 (a) as function of field

strength B for the scaled electronic momentum κ varying within the first propagating chan-
nel of the attached leads; we refer to this kind of plot as a ‘transmission map’. Qualitatively,

1 Note that the switching here is the opposite to that of Chap. 5, where the zero-field conductance was
suppressed and raised by the field: we here have the on-state of the switch in absence of the field, and the
off-state for finite field strength.
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Figure 6.2: Transmission (from 0-black to 1-white) as a function of magnetic field strength B (or flux
quanta φ) and scaled incoming momentum κ = pinw/π within the first open channel 1 < κ < 2
of the attached leads, for (a) a billiard with the soft-wall potential of Fig. 6.1 (a′) with (a, b, d, w) =
(128, 84, 96, 32) a0, and (b) the same billiard without soft wall. Right panels: cuts through the T(B, κ)-
maps at zero field (marked ©) and at the switching field Bs = 0.63× 10−3 B0 (marked �) or flux
φs = 7.32 φ0 (where φ0 = h/e is the flux quantum). For a reference length unit a0 = 2 nm, the field
strength unit is B0 = h̄/ea2

0 = 164.55 T.
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6.2. Decoupling of resonances and controllable finite-temperature conductance

the T(B, κ)-map for the soft-wall setup shares certain features with the corresponding map
in absence of the soft wall, shown in Fig. 6.2 (b): At strong fields and sufficiently low energy
(lower right corner of T(B, κ)-maps), transport is mediated by edge states which increas-
ingly interfere with quasi-degenerate states [50] as energy increases (lower diagonal half).
The slope of the resulting broad reflection and transmission stripes in the T(B, κ)-maps
portray the formation of skipping orbits [71] in the billiard: Since their cyclotron radius

scales like R ∼
√

p2
in − 2V/B, where pin denotes the magnitude of the incoming electron

momentum, the (approximate) commensurability between the skipping intervals and the
(half) length of the hard-wall boundary is preserved along lines of positive slope in the B-
κ-plane, along which high reflection (transmission) occurs. This behavior is evident also for
the soft-wall billiard at higher energies (upper right quadrant of Fig. 6.2 (a)), where its hard-
wall character dominates. However, the stripes are now ‘bent’ outwards (to higher B) at
lower energies where the soft wall significantly influences the electron dynamics: Since the
low-energy states are more confined by the soft wall, the billiard size effectively decreases,
and consequently the transmission map features broaden along the B-axis (e.g., the isolated
edge states in Fig. 6.2 (a) form at larger B-intervals), causing the interference stripes to bend.
In other words, a stronger focusing field is generally needed to maintain the high or low T
for increasing κ in the presence of the soft wall.

Both with and without soft wall, these stripes generally become less prominent and fi-
nally destroyed at weaker fields and higher energies (upper diagonal half of maps). This
is because more billiard states become available above the bulk Landau levels (as seen in
the closed billiard eigenspectrum discussed below in Sec. 6.3) which are spatially extended
and whose multiple interference leads to broad but highly irregular resonant transmission
features in both B and κ. In spite of the very complex dynamics in this regime, the presence
of the soft wall induces a remarkable feature in the T(B, κ)-map (Fig. 6.2 (a)): At a relatively
weak field B = Bs, backscattered states almost completely dominate the background trans-
mission spectrum of the open billiard, forming a vertical and broad reflection stripe covering
the whole channel, upon which only very narrow Fano resonances are superimposed. The
inverse profile is acquired if the field is turned off: At B = 0, a highly transmitting back-
ground is perturbed only by very narrow resonant dips. Both features, the transmission and
reflection stripes at B = 0 and B = Bs, respectively, are absent without the soft wall (see
Fig. 6.2 (b)). This is highlighted by the cuts through T(B, κ)-maps on the right of Fig. 6.2,
where overall T(B = 0) ≈ 1 and T(B = 0) ≈ 0 for the soft-wall billiard while T(κ) shows
strong oscillations and broad irregular resonances for the purely hard-wall billiard.

At finite temperature, the narrow resonant dips (peaks) at B = 0 (B = Bs) are effectively
washed away by the thermal contribution of the highly transmitted (reflected) background
states around the Fermi level. This is seen in Fig. 6.3 (a,b), where the normalized conduc-
tance is kept close to unity (zero) over a broad range in EF even at considerable thermal
width kBΘ. It is important to note that the efficiency of the effect is actually enhanced at
finite temperature compared to the zero-Θ transmission spectra, in contrast to conductance
control via resonant features which attenuate even at very low temperatures. In other words,
although multiple sharp Fano resonances can be viewed as individual transmission switches
(at different energies), they become inoperative as such for thermal widths comparable to
the resonant widths. The smearing of sharp resonances is a desired ingredient for the type
of control proposed here, where the whole background is uniformly switched between zero
and maximum. The implemented soft wall potential thus enables a uniquely robust con-
ductance switching effect, for a large quantum dot (i.e., accommodating a large number of
resonant levels), and in a regime where quantum fluctuations typically dominate transport,
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Figure 6.3: Dimensionless conductance g = G/G0 (with quantum G0 = e2/πh̄) in the first open
channel (a) for B = 0 and (b) for B = Bs, for the same billiard as in Fig. 6.2 (a), at different temper-
atures Θ. With a0 = 2 nm and m = 0.069 me (transport at a GaAs/AlGaAs interface): E0 = 276 meV
and Θ = 0, 0.5, 1.0, 3.0 K. Vertical lines indicate sample non-resonant momenta κ1,2,3 at which the
LDOS and current density are shown in Fig. 6.5.

using a weak magnetic field.

6.3 Closed billiard eigenspectrum

The general characteristic features of the transmission maps T(B, κ) (which are common in
the presence and absence of the soft-wall boundary) can be anticipated by comparison of
the maps with the discrete eigenspectrum of the corresponding closed billiard, as shown
in Fig. 6.4 for the soft-wall billiard, where the levels are plotted on top of its T(B, κ)-map.
The scaled billiard eigenenergies as a function of magnetic field strength, κν(B), constitute
a generalization of the well known Darwin-Fock [256, 257] spectrum (obtained analytically
for parabolic confinement) to arbitrary confining potential. In the present general case,
the angular momentum is not conserved and generally avoided crossings occur between
the different levels, upon which the anticrossing quasi-degenerate states exchange their
character (that is, their spatial density distribution). However, the symmetry of the studied
billiards implies the conservation of x- and y-parity. In variation of the single parameter
B, states of opposite parity can become degenerate leading to exact crossings in the κν(B)-
spectrum, since they remain uncoupled, while states of the same parity lead exclusively to
avoided crossings [178, 258] (see also Ref. [259] for the case of a spatially periodic magnetic
field).

The structure of the eigenspectrum has regular characteristics for large B and small κ:
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Figure 6.4: Energy levels κν of the closed soft-wall billiard (with the same potential as in Fig. 6.2 (a),
but with the elliptic hard-wall boundary closing the lead openings) within the energy range of the
first transport channel, for varying magnetic field strength B. For increasing B, the levels condense
(asymptotically) into the bulk Landau levels (of the unconfined electron) indicated by their number
l. The discrete spectrum is plotted on top of a faint copy of the T(B, κ)-map of Fig. 6.2 (a).

The energy levels are regularly spaced and gather together asymptotically for increasing B
into bundles corresponding to the Landau levels l of the unconfined system (see Sec. 1.3).2

Within the confining potential, these states become increasingly ‘condensed’ in the bulk of
the billiard for increasing B and consequently their energy increases (positive slope in the
κν(B) diagram); they are thus of ‘paramagnetic’ type, corresponding to classical cyclotron
orbits (circulating anti-clockwise for positive B). On the contrary, states which are delocal-
ized and extend to the billiard boundary correspond to classical skipping orbits which form
an inner arc of clockwise circulation (for positive B) [260] when bouncing off the boundary
and can be assigned a ‘diamagnetic’ type; their energy decreases with B, and for sufficiently
large B and low κ they can be identified as edge states localized at the billiard boundary
(negative slope in the κν(B) diagram). The above two types of states coexist in increasing
number as the energy successively rises above the Landau level ‘caustics’ in the spectrum,
and for low B and large κ (upper left corner of Fig. 6.4), their crossings and anticrossings
form a complicated and irregular level structure [60].

2 For the κ- and B-ranges plotted in Fig. 6.4, only the bundles demarcating the very lowest Landau levels are
clearly discernible (e.g. l = 2, 3); they become fainter with increasing κ at fixed low B because of the participation
of an increasing number of crossing or anticrossing levels which obscure the structure of the spectrum (see, e.g.,
l = 4, 5, 6).
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It is clear that the (diamagnetic) states localized closer to the boundary are the ones
that dominate the overall transport in the open system, since they reach the lead open-
ings with an increased amplitude. Their strong coupling to the leads causes their energy
levels to broaden and shift significantly, so that the correspondence of eigenenergies and
transmission peaks and dips is lost [15]; the transmission profile is rather determined by
the interference of quasi-degenerate lead-coupled states. Indeed, we see that the characteris-
tic broad transmission and reflection stripes in the T(B, κ)-map generally occur when level
lines of negative slope become quasi-degenerate in the κν(B) diagram (see, e.g., the area be-
tween the l = 3 and l = 4 bundles); the fewer the lines that meet, the clear the interference
pattern in T. The condensed (paramagnetic) bulk states, on the other hand, correspond to
narrow resonances in the transmission spectrum of the open billiard; their weak coupling to
the leads leads to small shifts in resonant energy and the correspondence to closed billiard
states is immediate. Indeed, level lines with large positive slope practically coincide with
the sharp antiresonance lines in the T(B, κ)-map. Note that bulk states with small (or zero)
slope are still extended enough to contribute to the interference in transmission; see, e.g.,
the area between the l = 2 and l = 3 bundles, where strongly coupled (large level repulsion
at anticrossings) diamagnetic and paramagnetic states coincide with the formation (tails) of
the reflection stripes in T.

It is finally remarked that, in terms of closed billiard eigenstates, the very distinct vertical
reflection stripe around B = Bs in the T(B, κ)-map, allowing for energy-persistent conduc-
tance suppression, is not of the simple origin of the tilted stripes at larger B. Indeed, we
now have a maximal number of interfering levels (even discarding the bulk-confined ones of
positive slope) which, nevertheless, produce a well-defined backscattered amplitude whose
spatial character persists in energy (to be analyzed in the next section). This behavior evi-
dently originates from the impact of the soft wall: In the purely hard-wall billiard, although
the level diagram is qualitatively similar, the multiple interference of low-B extended states
simply produces a complicated irregular transmission variation (see Fig. 6.2 around B = Bs).
Note that, in the lower half of the reflection stripe in Fig. 6.4, the large reflection can partially
be attributed to the absence of available states between successive multilevel crossings.3 The
special impact of the soft wall is most striking in the upper half of the stripe where diamag-
netic states cover the energy interval.

6.4 Switching between collimated and backscattered wave propa-
gation

To understand the influence of the proposed type of soft wall potential along the transmis-
sion (reflection) stripes around B = 0 (B = Bs), and the induced mechanism underlying
conductance control, let us analyze the electronic scattering states responsible for high (low)
background transmission in the absence (presence) of the field. Fig. 6.5 (a,b) displays the
local density of states (LDOS) ρ(x, y; κ) for electrons incident in the left lead of the billiard
at sample non-resonant energies.

For B = 0 (Fig. 6.5 (a)), we see that the effect of the finite potential is to direct the motion
along the axis connecting the leads, thus enhancing transmission. This is achieved in a
twofold way: (i) The special shape of the potential around the lead openings, forming a stub

3 The level diagram here strongly resembles the original Darwin-Fock spectrum, since at such low energy
the wave function poorly resolves the difference of the used confinement from a parabolic one. The resulting
nearly exact multilevel crossings have been studied experimentally for two [261] and three [53] mixing levels
which can coherently form a ‘dark’ state (complete cancellation of resonance amplitude).
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a
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b

Figure 6.5: (a) Scaled LDOS
√

ρ and (a′) scaled probability current density
√
|j| (the flow of j is

depicted by directed streamlines) shown at momenta κ1,2,3 indicated by vertical lines in Fig. 6.3, for
electrons incident in the left lead (colormap normalized to maximum value in each plot). (b,b′)
Same as above, but for B = Bs. The dashed (dotted) lines in (a,b) show the potential contour at
V = π2/2w2 (V = 0).

of free motion into the billiard as a prolongation of each lead, suppresses the transversal
component of the electronic local momentum, thereby collimating [94, 262] the motion in
forward direction (in other words, the soft wall reduces the diffractive effect of the hard-
wall lead openings). (ii) Owing to its elliptic contour, the soft wall depletes the scattering
state along the billiard boundary and further confines it into an elongated profile leaking
into both leads. For the same reason, states corresponding to distinct Fano resonances
become well decoupled from the leads, and thus isolated from a significant (subtractive)
contribution to the overall transport.

For B = Bs (Fig. 6.5 (b)), the scattering state profiles reveal the key role of the soft wall in
energetically sustaining the backscattered pathways. Again, the mechanism is twofold: (i)
States strongly coupled to the incoming lead are now magnetically focused onto the billiard
boundary, so that the electron follows a pathway which is backscattered after ‘bouncing’
twice off the boundary [15,51]. The soft wall here crucially comes to the aid of conductance
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suppression by ‘rescaling’ the dynamics and thus keeping the non-resonant backscattered
pathway energetically invariant: With increasing (decreasing) kinetic energy, the electron
undergoes weaker (stronger) Lorentz deflection at constant B = Bs, but at the same time
penetrates more (less) into the soft wall potential towards the boundary (compare outer
lobes of ρ in Fig. 6.5 (b;1,2,3)). The soft wall thus effectively increases the billiard size with
energy, and as a result, the magnetically focused, backscattered pathway persists over the
whole channel. (ii) As in the field-free case, any long-lived resonant states are further
confined away from both leads by the soft wall, rendering the corresponding Fano peaks
extremely narrow.

The actual (stationary) electronic motion in the billiard is depicted in Fig. 6.5 (a′,b′))
through its probability current density j(x, y; κ). With or without magnetic field, the wave
nature of transport leads to multiple complex vortex structures covering the billiard, which
change dramatically in energy. This detailed charge flow is, of course, totally different from
that of classical particles moving in the billiard area. Nevertheless, we see that the parts
of the flow with maximal density indeed favor motion along the above described pathways
needed for conductance switching in varying EF, that is, a forward collimated current for
B = 0 and a circulating backscattered current for B = Bs.

It should be pointed out that, although the soft wall succeeds in geometrically rescal-
ing the low-field (two-bounce) backscattered pathway, the motion is in general drastically
modified from that in a corresponding purely hard-wall billiard with spectral boundary re-
flection [54]. In the present case, the further into the soft wall the electron reaches, the more
it is magnetically deflected due to its reduced (local) momentum, and the motion is further
affected by continuous electrostatic refraction [263]. These effects are enhanced at stronger
fields which localize the scattering states closer to the boundary over longer parts (unlike
the two-bounce paths, which predominantly enter the wall radially). Therefore, such higher
order (four-bounce, six-bounce, etc.) backscattered pathways [51, 264] cannot persist over
large energy intervals for the same potential. Indeed, in Fig. 6.2 (a) vertical reflection stripes
tend to form also at higher field strengths (B/B0 ≈ 1.8, 2.2, etc.), but are eventually tilted or
destroyed as energy varies. Switching efficiency is thus restricted to smaller κF-range and
lower Θ at these fields.

Mode-resolved higher channel transmission

A closer look at the higher energy backscattered state in Fig. 6.5 (b,3) reveals that its tail in
the right lead belongs the second channel which is closed for propagation for κ < 2. The
suppressed transmission of the state could thus be interpreted purely quantum mechani-
cally (that is, disregarding that the multiply interfering billiard eigenlevels seen in Fig. 6.4
happen to produce a state qualitatively resembling a magnetically deflected classical trajec-
tory) as the consequence of vanishing coupling to ground transversal mode of the outgoing
lead due to opposite y-parity.

Indeed, this is confirmed by the mode-resolved transmission coefficients Tmn(κ) plotted
in the first three channels in Fig. 6.6. We see that the lowest mode partial coefficient T11 (dark
red), which is the only non-vanishing one in the first channel, largely continues its trend also
in the second channel: the background (non-resonant) T11 is switched from practically one
to zero over a large energy range. Now there are, however, contributions of scattering from
(Tm2) and to (T2n) the second mode in the leads as well.4 In particular, there is a strong
contribution of either of T21, T12 or T22 in different parts of the second channel for B = Bs,

4 Note that for B = 0 only odd→odd or even→even mode transitions survive due to the conserved x-parity
of the stationary scattering eigenstates (as evident, e.g., from Fig. 6.5 (a)).
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Figure 6.6: Mode-resolved transmission coefficients Tmn from transversal mode n to mode m of the
attached leads within the first three channels of transport, 1 6 κ 6 4, for (a) B = 0 and (b) B = Bs.
The individual coefficients are plotted cumulatively (on top of each other, with each Tmn offset to the
previous one) with area colors for each mode pair (m, n) indicated in the inset of (a).

leading to an overall total T around unity. Although transmission for B = 0 in the second
channel is overall larger, one can clearly no longer speak of an efficient and energy-persistent
conductance switching.

In the third channel transmission coefficients are even more dramatically altered with
respect to the regularity in the first channel. Now the zero-field T11 component (dark red) is
lowered from unity (in fact, performs a slow oscillation pattern in energy), and at B = Bs it
no longer overall suppressed (it forms a slow oscillation opposite to the field-free case, with
superimposed broad resonant features). The higher channel components are substantial
at both B = 0 and B = Bs, and the resulting total transmission (the sum of all partial
coefficients) is of similar overall magnitude (the channel-averaged T is only slightly larger
without the field), and so the switching functionality of this particular setup is evidently lost
at this higher energy. We underline here the importance of the isolation of the classical-like
collimated and backscattered electron paths in the deep quantum regime of the first channel
from resonant contributions: Although the quantum-classical correspondence generically
sets in at higher energies [12, 50], it is here achieved persistently–in the sense of spatially
broad but still well defined wave propagation paths–in the very low energy regime.

6.5 Conductance switching in soft-wall billiard arrays

We now briefly investigate how the switching functionality of the soft-wall potential is al-
tered when the electron billiards are connected into an N-dot array like in Chap. 5. In Fig. 6.7
the switching contrast ∆g = g(B = 0)− g(B = Bs) of the single soft-wall billiard analyzed
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Figure 6.7: Conductance switching contrast ∆g = g(B = 0)− g(B = Bs) in the first channel for (a)
the single soft-wall billiard of Fig. 6.2, and for an array of (b) N = 2 and (c) N = 10 identical billiards
connected via bridges (flat point contacts) aligned to the external leads and of common length d = w,
at different temperatures Θ (units defined by a0 = 2 nm and m = 0.069 me).

so far is compared to a double-dot setup (N = 2) and to a longer array of N = 10 connected
dots, in the first transport channel. Since g(B = Bs) is overall very close to zero for finite tem-
perature, the switching contrast essentially coincides here with the field-free conductance,
∆g ≈ g(B = 0) over most part of the channel. Only in the pure transmission spectrum
(g(Θ = 0), thin black line) the smooth background is perturbed by the narrow resonance
features; these are in fact also the only energies at which we may have negative transmis-
sion switching ∆g(Θ = 0) < 0, while conductance switching is positive, ∆g(Θ > 0) > 0,
practically everywhere for any considered temperature.

The connecting ‘bridges’ again consist of simple straight point contacts of zero potential
and hard-wall boundaries, aligned with the outer leads and of equal width. As in the oval
billiard array of the previous chapter, the dots now act as effective potential barriers of
energy-dependent strength and extent. The common length of the bridges is chosen small,
equal to their width, so that the induced shape (Breit-Wigner) resonances in the transmission
spectrum of the double-dot setup have a large spacing and do not perturb severely the
overall high single-dot transmission (recall the dependence of Breit-Wigner peak spacing on
bridge length in Fig. 5.6). Indeed, let us concentrate on the Θ = 0.1 K profiles (red lines)
in Fig. 6.7, which essentially show the field-free transmission without the very sharp Fano
resonances. The profile for N = 1 is retained in the N = 2 case, with the difference that dips
become occasionally deeper and, more importantly for switching, wide peaks now approach
unity (corresponding to the bridge induced Breit-Wigner resonances). For the long array of
N = 10 dots the formation of bands with ∆g ≈ 1 and gaps with ∆g ≈ 0 is evident. This
shows that, at very low temperature, the maximal switching contrast of unity can be achieved
in the soft-wall billiard array, though restricted to specific and relatively small Fermi energy
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ranges.
As the temperature is raised, the details of the ∆g profiles wash out and the differ-

ence in energy variation between different N is diminished. Ultimately, the variation in κ

saturates to a very smooth line for any N (here around the temperature Θ = 3 K for the
parameters considered, thick orange lines); the magnitude of the line, however, is largest
for the single-dot setup. In other words, the finite-temperature switching efficiency in the
proposed billiard system does not rely on banded transmission induced by an array geom-
etry (where resonant transmission is forced to unity by local periodicity [118]), but rather on
the design of the single-dot confinement. This brings the experimental advantage that the
transport device, which need only consist of a single dot, can be more easily fabricated at
a size below the electronic coherence length (making the utilized coherent transport model
more accurate) as well as the elastic mean free path (partly eliminating the need for impurity
scattering in the description of the switching effect) for a given heterojunction setup.

6.6 Billiard geometry and soft-wall potential variations

Having demonstrated and explained the proposed mechanism for finite-temperature,
energy-invariant conductance switching, including the modification of the effect for setups
with connected electron billiards, we finally analyze the impact of variations in the shape
of the confining potential as well as the soft-wall boundary profile. The shape of the bil-
liard is altered by varying the semi-axes a and b of the elliptic boundary, and in order to
present the changes in transport properties compactly we utilize the average transmission
T =

∫ 2
1 T(κ) dκ in the first channel (instead of the full transmission spectra) as a simple esti-

mate of the overall transmittivity through the device.5 This way we plot the single numbers
T for each shape parameter pair (a, b), as done in Fig. 6.8 (a) for B = 0 and (a′) for B = Bs.
As we see, the field-free average transmittivity is largest for smaller b for any given a, where
the billiard shape is more elongated along the x-axis and thus increasingly favors the de-
sired forward collimation of the incoming electron wave. As discussed, the spectra in this
region have a uniform background close to unity with superimposed sharp resonances of
quasi-bound states decoupled from the leads. When b is increased, more and more billiard
states leak into the leads and their multiple interference lead to an increasingly irregular
transmission background; Fig. 6.8 (a) shows that their channel average decreases almost uni-
formly in increasing b, with a global minimum for the largest billiard considered (both a
and b maximal).

At the switching field B = Bs, the transmittivity has a global minimum for an interme-
diate degree of elongation of the billiard, for which the boundary shape combined with the
soft wall supports backscattered states similar to the ones analyzed above. The appropri-
ate shape range can here be roughly estimated by the commensurability of the bouncing
pattern of classical orbits with a given cyclotron radius of deflection, where also the con-
tinuous diffraction of the paths within the wall potential has to be taken into account (see,
e.g., classical trajectories computed in Ref. [51, 54]). We see that the global minimum in
transmittivity is relatively broad in both a and b, meaning that the needed backscattered
states are highly present, on average, for a substantial range of elongated shapes around

5 This estimate gives a fairly accurate account of the transport properties relevant for switching for the billiard
shape and soft-wall used so far, since the background transmission is practically constant at B = 0, Bs. This holds
also in the immediate vicinity of this setup in parameter space. If the shape is drastically modified, however, T
is a rough estimate and the actual background variation in T(κ) (and the corresponding conductance) for every
individual case should be considered to conclude on energy-dependent switching contrast; this is done here for
sample soft-wall profiles.
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Figure 6.8: (a,a′): Mean transmission in the first channel, T, for varying mid-wall semi-axes a and
b of the billiard with the linear wall potential of Fig. 6.1 (a′) with d = 96 a0, at (a) B = 0 and (a′)
B = Bs. The dotted lines indicate the geometry (a, b) = (128, 84) a0 chosen in Figs. 6.2, 6.3 and below.
(b, c, d): Cross-section V(x = 0, y) for (b) varying wall width and (c) varying wall slope for a linear
wall profile and (d) varying steepness for a parabolic soft wall profile with Wood-Saxon-type [265]
boundary (thin dashed line). (b′, c′, d′): corresponding conductance change ∆g = gB=0 − gB=Bs at
kBΘ/E0 = 0.312× 10−3 for optimal switching field strengths Bs (shown in the legends in units of
10−3B0), within the first open channel (channel threshold indicated by vertical lines). Both dotted and
dash-dotted lines in (d′) correspond to the dotted potential profile in (d), but for different Bs. Arrows
indicate the maximum of each curve. Lengths are in units of a0. For a0 = 2 nm and m = 0.069 me:
E0 = 276 meV and Θ = 1.0 K.

the one chosen here (indicated by the dotted lines in Fig. 6.8 (a,a′)). More importantly, this
(a, b)-area of low T at B = Bs has a large overlap with high T areas at B = 0. This indicates
a high degree of robustness of the conductance switching mechanism against alteration of
the dot shape, which would be important in an experimental realization.

For the shape (a, b) chosen in the previous sections, Fig. 6.8 (b′, c′, d′) shows the switch-
ing contrast ∆g at a reference thermal width kBΘ for the different soft wall profiles shown
in Fig. 6.8 (b, c, d) (as cross sections along y > 0 at x = 0), respectively, including smooth
ones (d) that more closely simulate an experimentally fabricated device [18–20]. As ex-
pected from the complicated dynamics in the low-B regime where switching is pursued,
there is a substantial variability in switching efficiency among the various soft-wall profiles.
We stress here that high switching efficiency is achieved for a broad variety of soft wall
profiles at substantial thermal width, and relies on the enhanced g(B = 0) and suppressed
g(B = Bs) of a single and relatively large billiard (of area � w2) containing many resonant
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levels (> 130 within the first channel at B = 0) which become isolated from the leads.6 The
optimal switching field Bs generally increases with the steepness of the wall potential, in
accordance with the stronger confinement of low-energy backscattered billiard states. Fur-
ther, the various curves demonstrate that optimal switching (maximal ∆g, see arrows in
Fig. 6.8 (b′, c′, d′)) can be adjusted to different EF by changing the soft wall parameters. For
certain setups (dotted line in (d)), energy-persistent backscattering (large ∆g) occurs for dis-
tinct Bs-values along separate parts of the channel, meaning that optimal EF for switching
can be magnetically tuned in this case; see dotted and dash-dotted lines in (d′), showing
large ∆g in the upper and lower channel half, respectively.

6.7 Summary and conclusions

In this chapter we demonstrated a simple way of isolating the magnetically controllable scat-
tering continuum from the manifold of resonant levels of a many-level two-terminal electron
billiard, persistently in energy. The underlying mechanism relies on the combined action
of an elongated (elliptic) billiard boundary and a designed soft-wall potential, which to-
gether decouple quasi-bound states from the attached leads while simultaneously directing
forward field-free transport or geometrically rescaling magnetically deflected, backscattered
paths. This behavior enables efficient switching of transport over variable Fermi energy
from a full conductance quantum (on-state) to practically zero (off-state) by turning on a
weak magnetic field.

The experimental realization of the proposed switching device is feasible, e.g., in
Ga[Al]As heterostructures by a combination of local oxidation techniques with optical or
electron-beam lithography [18–20]. This provides a high precision in lateral dot shape with
steep soft-wall potential corresponding to a depletion length ∼ 15 nm [19]. The quantum dot
can be tuned by additional top or planar gates [18, 19], and large electron mean free paths
are achievable at low temperature (e.g., 3–5 µm at 4.2 K [20]), which is important in order
to maintain as high degree of ballisticity as possible [266]. Since the proposed switching
device consists of a single dot, its fabrication is also facilitated below the electronic coher-
ence length above Θ ∼ 1 K [18, 71, 118]. Even in the presence of (weak) dephasing, though,
the desired switching effect should in fact be enhanced, since it relies on the suppression of
resonant interference: In similarity to the thermal averaging taken into account, dephasing
would attenuate the Fano extrema [213] and thus contribute to the overall high versus low
conductance needed for robust switching.

In conclusion, the proposed setup constitutes an efficient and robust conductance switch-
ing device operating at finite temperature, weak magnetic field and over broad Fermi level
variation, and is realizable with current experimental techniques.

6 In Ref. [51], a magnetoresistance resonance is caused by cascading of similar backscattered states in an
array of smaller billiards (relative to lead openings) with a different kind of soft-wall potential; this resonant
property occurs at very low temperature and is attributed to classical dynamics through a parabolic model
potential. In Ref. [54], the same peak is attenuated for a single billiard, and another peak appears for B = 0,
lowering switching efficiency. This is in contrast to the mechanism proposed here which relies on decoupling
of resonances from an efficiently switchable, energetically robust scattering continuum of a single billiard.
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7
Directional magnetotransport control
in multiterminal focusing quantum
billiards

In this chapter we explore the four-terminal transmission of a semi-elliptic open quantum
billiard in dependence of its geometry and an applied magnetic field, and show that a con-
trollable switching of currents between the four terminals can be obtained. Depending on
the eccentricity of the semi-ellipse and the width and placement of the leads, high trans-
mittivity at zero magnetic field is reached either through states guided along the curved
boundary or focused onto the straight boundary of the billiard. For small eccentricity, at-
tachment of leads at the ellipse foci can yield optimized corresponding transmission, while
departures from this behavior demonstrate the inapplicability of solely classical considera-
tions in the deep quantum regime. The geometrically determined transmission is altered by
the phase-modulating and deflecting effect of the magnetic field, which switches the pairs of
leads connected by high transmittivity. It is shown that the elliptic boundary is responsible
for these very special transport properties. At higher field strengths edge states form and
the multiterminal transmission coefficients are determined by the topology of the billiard.
The combination of magnetotransport with geometrically optimized transmission behavior
leads to an efficient control of the current through the multiterminal structure. In particular,
the electron flow can be directed from any input terminal to any output terminal at low tem-
perature via the applied magnetic field, and at low field strength a current cross-junction is
realizable. The results are partially published in Ref. [267].

7.1 From two-terminal to multiterminal conductance control: di-
rectional coupling by wave guiding and focusing

In the previous two chapters we demonstrated the ability to control the linear-response
electronic current through billiard setups with two outer terminals connected to dehohering
electrodes. This controllability was based on the separation of resonant billiard (confined)
states weakly coupled to the leads from strongly coupled (leaking) ones through the de-
sign of the shape and potential profile of the billiard, and the tunability of the transmission
background by a magnetic field (via phase modulation in Chap. 5 and magnetic focusing in
Chap. 6). An implicit ingredient of the conductance switching efficiency was the symmet-
ric attachment of the two outer leads on the device region. This way, stationary states at
zero magnetic field are assured to be equally coupled to both leads by symmetry, thereby
uniformly enhancing or diminishing their transport contribution. Specifically, an incoming
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Chapter 7. Directional transport in multiterminal billiards

wave in the input lead populating a leaking state will also transmit well into the output
lead, with the same terminal interference to energetically neighboring states. The cou-
pling strength symmetry between the two terminals is then broken by the applied magnetic
field, thus providing a handle on the conductance switching. Moreover, in two-terminal
setups conservation of charge flux ensures that the conductance is symmetric between the
terminals (that is, the current from left to right equals that from right to left at the same
energy), regardless of the placement of the leads (which can be asymmetric in general) and
the complex dynamics within the billiard (such as magnetically deflected paths which are
completely different for left and right incoming waves).

This situation changes drastically when more than two leads are attached to the billiard.
First of all, any state in the billiard (leaking or confined) will have a finite coupling to all
attached leads. This poses a challenge already to the achievement of high transmission be-
tween two selected leads, let alone its switching, since in principle a portion of the incoming
flux will always escape through the other leads. It is true that resonant states which happen
to couple strongly to the chosen two leads will lead to high (though not reaching unity)
transmission peaks. Such features do not survive thermal averaging, however, and large
conductance relies on the continuous accessibility of states that are coupled to a selected
lead pair and decoupled from the other leads. For a fixed billiard potential (that is, without
applying localized gates which block lead openings at will), the coupling of the states to
two selected leads is governed by the boundary geometry and lead placement which must
be appropriately designed; the coupling strength can then be altered via the applied field.

The possibility to magnetically switch the current directionally from any input lead to
any other output lead clearly becomes a highly demanding task. The billiard geometry now
has to be such that (i) the applied field selectively induces strong coupling to a particular
output lead while suppressing the coupling to the other output leads, for a given input
lead, and (ii) enables this scheme for any chosen input lead. Apart from the key role of
the form of billiard boundary geometry, an important role is here played by the geometrical
symmetry of the device, by which the reciprocity relations for multiterminal conductance
(see Eq. (2.62)) can be exploited.

We here investigate the transmission behavior of a 4-terminal semi-elliptic quantum bil-
liard in dependence of its geometrical characteristics and examine how an injected wave can
be directed selectively to a chosen output terminal using a magnetic field. For the sake of
simplicity in recognizing the mechanisms responsible for the transport behavior, we here
consider hard-wall boundary confinement. With the (semi-) elliptic geometry chosen, the
classical dynamics of the closed billiard is regular, with ballistic particle trajectories divided
into so called librators and rotators, which intersect its major axis at the segment between the
foci and the segments between the foci and the boundary, respectively [247, 268]. Librators
and rotators correspond to quantum eigenmodes [269] localized about the minor semi-axis
(also called ’bouncing ball modes’) and along the elliptic boundary (also called ’whispering
gallery modes’ [270]), respectively. Attaching leads to the straight boundary of the semi-
ellipse results in a generalized open mushroom [271] (Bunimovich) billiard with multiple
stems of infinite length. The chaotic trajectories of the closed mushroom, entering its stems,
escape into the leads in the open billiard and contribute to transmission. The crucial role
of the convex billiard boundary in the quantum transmittivity of rotator states has been
described in Ref. [270] for a 2-terminal semi-circular billiard. It is shown here that the zero-
field multiterminal transport between leads attached to the billiard highly depends on the
accessibility, through their coupling to these leads, of both librator and rotator modes.

To analyze this dependence, we calculate the 4-terminal transmission coefficients for
varying eccentricity of the semi-ellipse, exploring the dependence of the multilead trans-
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mittivity on the curvature of the boundary. The crossover from librator to rotator modes
being the dominant transmission mediators is revealed by altering the lead positions along
the straight part of the billiard boundary. It is shown that an optimal transmittivity be-
tween both pairs of symmetrically placed leads can be achieved by an appropriate choice of
eccentricity and lead positioning. This relies on the guiding and focusing effect of the semi-
elliptic boundary on the rotator and librator modes, respectively. For small eccentricity, the
placement of attached leads at the foci of the ellipse yields a high corresponding overall
transmission coefficient, as would be expected classically. As a result of wave interference
and diffraction, though, this condition does not apply for a generic setup, which implies a
departure from solely classical considerations. The importance of the rotator and librator
modes is further assessed by gradually perturbing the billiard with a circular disk placed
on the curved boundary or in the interior.

With restrictions due to symmetry, the magnetic field changes each transmission coef-
ficient differently; the question thus arises whether the multiterminal setup can function
as a selective switch between the terminals by tuning the magnetic field, in the sense that
transmission of an incoming particle is efficiently favored to specific leads and suppressed
to others, as described above. Calculating the multiterminal transmission coefficients of
selected setups for varying magnetic field, we show that such output controllability is in-
deed achieved: Highly efficient directional conductance for any input-output lead pair can
be achieved at low temperature, as a consequence of the interplay between the magnetic
deflection of electronic orbits, the geometrically induced effects on the scattering wave func-
tion, and the partial symmetry of the device.

The chapter is organized as follows. In Sec. 7.2 the geometrical setup of the 2D billiard
is specified together with a brief reminder of the basic theoretical and computational frame-
work for multiterminal quantum transport. Section 7.3 summarizes the consequences of
the symmetries of the system with respect to the multiterminal transmission. In Sec. 7.4 the
main features of the obtained multilead transmission spectra are discussed, along with a de-
scription of the underlying mechanisms.1 This is followed by an analysis of the mean trans-
mission components in dependence of the geometric properties of the billiard in Sec. 7.5.
The impact of the magnetic field on transport is discussed in Sec. 7.6, concluding on the
induced controllability of transmission to selected output leads. The necessity of the bil-
liard properties for controllable combined output is demonstrated in Sec. 7.7 by comparison
to a four-terminal setup of geometrically coupled quantum wires. Finally, the directional
switching functionality of the semi-elliptic electron billiard is shown in Sec. 7.8 in terms
of the linear conductance at finite temperature. Section 7.9 contains a brief summary and
conclusions.

7.2 Setup and computational approach

The geometry of the 4-terminal hard-wall billiard is shown in Fig. 7.1. It consists of a semi-
ellipse of eccentricity ε =

√
1− b2/a2, where a and b are the major and minor semi-axes

respectively, on the straight border of which four vertical semi-infinite leads of equal width
w < a/2 are attached, symmetrically about the minor axis of the ellipse x = 0. The elliptic
boundary is smoothly continued into the outer leads 1 and 2, between which the inner leads
3 and 4 are centered at distance l from the origin. Recall that the semi-infinite leads attached

1 It is pointed out that the subject of this work are the quantum effects of transport through the four-
terminal semiellipse; classical considerations, including the classical librator and rotator trajectories as well as
the cyclotron radius of deflected orbits, provide a means of interpretation and comparison of limited validity,
since we do not focus on the semiclassical regime.
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Figure 7.1: Geometry of the open billiard with indicated length parameters and lead labeling for
eccentricity ε = f /a =

√
1− b2/a2 = 0.35, lead width w = a/5, and inner lead positions ±l = ±a/2.

The two dots at (x, y) = (± f , 0) are the foci of the (semi-) ellipse and the dashed lines correspond to
alternative setups (see text).

to the closed billiard represent the coupling to particle reservoirs, from which there is no
reflection back into the billiard.

To calculate the multi-terminal transmission coefficients of the system, Dirichlet bound-
ary conditions are imposed on the scattering wave function along the boundary of the
billiard, defined by a hard-wall potential V(r).2 Adapting to our natural units de-
fined by h̄ = e = m = a0 = 1 (see App. E), the single-particle Hamiltonian is writ-
ten H = (−i∇ + A)2/2 + V(r) where the vector potential A generates a magnetic field
B = ∇× A = Bẑ which is perpendicular to the plane of the structure and homogeneous
over the extent of the billiard area. The incoming electron wave is incident in one of the four
leads with energy

E =
k2

2
=

1
2

[
(kn

y)
2 +

(nπ

w

)2
]
=

1
2

(π

w

)2
κ2 , (7.1)

where n = 1, 2, ... labels the subbands of the longitudinal momentum kn
y along the unper-

turbed leads, generated by the transversal confinement to their common width w. The scaled
momentum κ = kw/π =

√
2Ew/π thus varies continuously in the interval n < κ < n+ 1 for

motion in the n-th subband. As before, considering electronic transport at a GaAs/AlGaAs
(m = 0.069 me) interface and setting the lattice constant unit to a0 = 2 nm, the unit of energy
becomes E0 = h̄2/ma2

0 = 276 meV and the unit of field strength B0 = h̄/ea2
0 = 164.55 T; the

lengths in the system are scaled by a reference ellipse major semi-axis a = 100 a0 = 200 nm.
The transmission coefficients Tij(E) from lead j to lead i are given by the Greenian G of

the system via the multiterminal trace formula

Tij(E) = Tr[ΓiGΓjG†] (i 6= j) (7.2)

with Γi = i[Σi − Σ†
i ], where Σi is the partial self-energy due to the i-th attached lead. For

2 We here concentrate on the geometric focusing effect of the boundary, separately from the effect of its
softness in experimental realizations; the latter quantitatively modifies, but does not eliminate, the geometrically
induced transport characteristics, and will not be considered here.
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i = j, the reflection coefficient of each lead j, Tjj ≡ Rj, is given by the sum rule

n(E) = ∑
i

Tji(E) = ∑
i

Tij(E) = ∑
i 6=j

Tij(E) + Rj(E), (7.3)

where n(E) = int[κ(E)] (integer part of κ(E)) denotes here the number of open channels in
the leads (of common width w) at energy E, resulting from the unitarity of the scattering
matrix of the system. Note that, in the presence of a magnetic field, the magnetoelectric
subband thresholds raise in energy with increasing field strength B: in the bulk of the in-
coming leads, the energy must overcome the successive Landau levels, which bend upwards
in energy when approaching the lead boundaries (see Sec. 1.3 and Fig. 1.5).

The relevant parts of the open system propagator G are computed in the tight-binding
approximation of the effective (non-Hermitian and energy dependent) Hamiltonian Heff =

H + ∑4
i=1 Σi using the modular recursive Green function technique presented in Chap. 4.

The considered setup is assembled using two types of modules: the semi-elliptic scatterer
at constant magnetic field strength B, and a lead part of length 30 w where the magnetic
field decreases linearly to zero (its length ensures that we effectively simulate a device in
a homogeneous field; see Sec. 3.2.2). The modules are subsequently connected to form the
complete setup (consisting of the semi-elliptic module and the four B-field adaptation mod-
ules), with the Green function of the connected modules obtained in each step by solving
the associated matrix Dyson by means of the block-Gaussian elimination scheme developed
in Sec. 4.5.

From lead-to-interior part of the propagator G we also compute the partial local density
of states (LDOS) as the diagonal elements of the partial spectral operator Fi,

ρi(r, E) =
1

2π
〈r|Fi|r〉 =

1
2π
〈r|GΓiG†|r〉 , (7.4)

corresponding to the scattering probability density resulting from an incoming monochro-
matic wave of energy E in lead i.

7.3 Symmetries of the transmission coefficients

Before investigating the multiterminal transmission coefficients in varying geometry and
field, we show how symmetries present in the system can be used to reduce the number of
independent coefficients to be calculated. Time reversal symmetry (TRS) yields transpose
scattering matrix under inversion of the magnetic field (see Sec. 2.2.2), implying for the
transmission coefficients [127]:

Tij(E; B) = Tji(E;−B). (7.5)

This reciprocity relation halves the number of independent transmission coefficients Ti 6=j,j
when both field directions are considered. The reflection coefficients Rj = Ti=j,j are given
by the sum rule Eq. (7.3) and remain the same under field reversal [cf. Eq. (7.5)], reducing
the number of independent coefficients by the number of leads. For a 4-terminal billiard the
4× 4 = 16 coefficients are thus reduced to 6 independent ones.

In our billiard the spatial reflection symmetry about the y-axis introduces additional
relations between symmetric pairs of leads. If leads i (at xi) and j (at xj) are placed symmet-
rically to leads i′ (at −xi) and j′ (at −xj), then

Tij(E; B) = Ti′ j′(E;−B), (7.6)
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Table 7.1: Multiterminal transmission coefficients Tij(B) from lead j (columns) to lead i (rows),
deduced from the coefficients T21, T32, T13 and T34 at magnetic field strength B (see text). The
surrounding boxes of the Ti 6=j,j correspond to the plotted line types in Figs. 7.3–7.9.

as the equations of motion for a (charged) particle are invariant under the transformation
(x, B) → (−x,−B) in the symmetric billiard. Explicitly, we get the two additional relations
T24(B) = T13(−B) and T41(B) = T32(−B), reducing the number of independent coefficients
to 4 (if i′ = j and j′ = i, this reflection symmetry coincides with the TRS).

In the following, we will work explicitly with the coefficients T21, T32, T13 and T34 with
input in each one of the four leads, because this set serves best for our discussion of the
results. In Table 7.1 all transmission coefficients Tij(B) are explicitly expressed in terms of
these four.

7.4 Transmission spectra at zero magnetic field

The generic features of the zero-field multiterminal transmission spectra are presented for
a geometric setup with relatively high overall transmission between inner leads, since this
will prove to be a key property for the desired controllability of output terminal. The Tij(κ)

are shown in Fig. 7.2 (A) for κ within the first channel (n = 1). All terminal combinations are
represented, since their relations in Table 7.1 simplify accordingly for B = −B. Fig. 7.2 (B)
shows the LDOS at selected energies for different leads of incident wave. Note that the
presence of interference fringes in a lead signifies back-reflection into that lead.

As we see in T21(κ), transmission is overall close to unity between the outer leads. This
results from rotator modes of the semi-elliptic billiard that would leak into finite stems at the
outer lead positions, and therefore are strongly coupled to these leads in the open system.
These leaking states constitute non-resonant pathways for transport, whose superposition
leads to a high transmission background in T21 [see LDOS in Fig. 7.2 (B) (i,d)], smoothly
varying in energy [52, 246].

States weakly coupled to the outer leads [see LDOS in Fig. 7.2 (B) (i,a) and (i,b)] consti-
tute resonant pathways, whose interference with the non-resonant pathways leads to sharp
resonances in T21(κ) of width proportional to their coupling, which possess the character-
istic Fano lineshape asymmetry [35–37]. In the case of a single non-resonant pathway, the
asymmetry is caused by a transmission zero close to the resonant energy, owing to complete
destructive interference between the resonant and non-resonant state. In our system each
quasi-bound state (resonant pathway) in general couples to multiple multiterminal leaking
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Figure 7.2: (A) The four independent transmission coefficients Tij at zero magnetic field, as a function
of the scaled energy κ = k · w/π =

√
2E · w/π, for the elliptic (ε = ε3 = 0.35, black solid line) and

circular (blue dotted line) billiard border, both with w = a/5 and l = ε3a. (B) LDOS for the semi-
elliptic billiard at different energies (a), (b), (c), (d) indicated by the vertical lines in (A), with the
particle incident in the (i) outer and (ii) inner left lead. The colormap scales with

√
ρ(x, y) from

white (ρ = 0) to black (ρ = max) and is normalized to its maximal value in each plot.

states (non-resonant pathways), which renders the total interference partially destructive
and thus raises the minimum of the Fano resonance from zero [35]. Corresponding to the
eigenstates of the closed semi-ellipse, the resonances superimposed on the transmission
background appear in series of different quasi-periodicity in κ, determined by the quantiza-
tion of the wave-number of the semi-elliptic modes (in analogy with the detailed description
in Ref. [52] for the oval billiard).

The coefficient T34 is also overall high in the first channel for the chosen eccentricity and
lead positioning, in this case resulting from the strong coupling mostly of librator modes to
the inner leads. The convexity of the boundary plays a crucial role for this behavior, since
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it focuses the scattering wave function, incident in an inner lead, around the middle of the
straight boundary of the billiard [see Fig. 7.2 (B) (ii,c) at which energy T34 practically reaches
unity]. Note that, since the leads in this setup are centered at the foci of the ellipse, classically
both librators and rotators intersect the lead openings; quantum mechanically though, there
is a larger number of eigenmodes of librator type with maxima at the foci [269]. Due to
interference between these modes, setting l = f = εa is not a necessity for the acquired high
inner-lead transmission; it depends also on the chosen ε, as will be shown in Sec. 7.5.

In T34 the sharp resonant dips in the high background are at the same positions as in T21

but generally of different width, arising from the same quasi-bound states coupling with
different strength to the inner leads. Also, the Fano minima in T34 are of different height
than in T21, since different non-resonant transport paths are provided by the librator modes,
interfering with the resonant states. For some sharp resonances in T34 (e.g. at κ ≈ 1.145
and 1.365) the Fano asymmetry is more distinct, as they lie within a dip of the transmission
background.

As a consequence of probability flux conservation [Eq. (7.3)], unit transmission in either
T21 = T12 or T34 = T43 leads to vanishing transmission in both T32 = T23 = T41 = T14 and
T13 = T31 = T24 = T42. Thus, transmission between an outer and an inner lead, represented
by the coefficients T32 and T13 in Fig. 7.2 (A), is almost zero over the whole channel for
the chosen geometric parameters. It exhibits resonant peaks, coinciding with dips for the
symmetric lead pairs, albeit of rather low amplitude, since the incoming wave is mostly
reflected into the same lead [see Fig. 7.2 (B) (a)] or transmitted to the symmetrically placed
lead [see Fig. 7.2 (B) (b)]. As each eigenstate of the semi-elliptic billiard is symmetric, it
generically couples with different strength to inner and outer leads; desymmetrized lead
positions then lead to lower transmittivity of the corresponding resonant states in the open
system [270].

When the eccentricity of the billiard is slightly changed, the eigenstate wavelength in
the elliptic coordinates is accordingly modified [269] and consequently the corresponding
transmission resonances shift in κ. This is evident in Fig. 7.2 (A) for the semi-circular billiard
(dotted cyan line): its area is slightly larger than the semi-ellipse, so that the resonances are
shifted to lower κ. The dips in T21 and T34 (or peaks in T32 and T13) are overall broader for
the semi-circular billiard, owing to the enhanced coupling of its eigenstates to both inner
and outer leads. It also shows a pronounced imbalance between T32 and T13 at low energy:
resonant transmission is larger from an outer lead to the inner lead which is closer to the
opposite outer lead, where rotator modes can be accessed.

7.5 Geometry dependent mean transmission

Having presented the zero-field spectral features and their origins, we proceed to investigate
the overall multiterminal transmittivity in dependence of the geometry of the setup by com-
puting, for each set of parameters, the channel-integrated mean transmission coefficients

T(n)
ij =

∫ κ=n+1

κ=n
Tij(κ) (7.7)

of the n-th transversal subband, which constitute a measure of the overall response of the
system upon an incoming wave in one of the leads.

In order to confirm the role of rotator and librator modes in coupling symmetrically
placed leads we first explore the effect of a perturbing disk on the mean transmission coeffi-

cients. In Fig. 7.3 the T(n=1)
ij ≡ Tij (the channel superscript is dropped for n = 1) are shown

as a function of varying radius of the disk, for three different eccentricities. In Fig. 7.3 (a)
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Figure 7.3: Zero-field channel-averaged transmission coefficients Tij between terminals (i, j) = (2, 1)
(red dashed-dotted line), (3, 4) (blue solid line), (1, 3) (cyan dotted line), (3, 2) (green dashed line)
with lead widths and positions as in Fig. 7.2 and eccentricities (from top to bottom row) ε1 = 0.78,
ε2 = 0.65, ε3 = 0.35, for the semi-elliptic billiard with a disk inserted in the billiard (a) centered at
(x, y) = (0, b) with radius r varying from 0 to b and (b) centered at (x, y) = (0, b/2) with r varying
from 0 to b/2. The vertical lines denote the threshold radius rt for tunneling within the first channel
(see text).

the disk constitutes a circular recess of the elliptic boundary, and in Fig. 7.3 (b) it leaves the
boundary of the billiard unperturbed, but partially blocks direct transport in its bulk.

In case (a) the rotator modes are gradually destroyed with increasing r, because incom-
ing waves from an outer lead are deflected on the concave part of the boundary into the
billiard interior (an analogous situation is presented in Ref. [270] for a fixed rectangular
cut). Similarly, the librator modes are destroyed since they rely on the focusing ability, pre-
dominantly around the y-axis, of the convex boundary. As a result, the direct pathways
between symmetric leads are depleted, leading to an abrupt decrease in T21(r) and T34(r)
above a critical disk radius, which is about rc ≈ w/3 for all ε [note that the scaling r/b
stretches the plots horizontally for larger ε: rc(ε1) ≈ 0.10 b, rc(ε2) ≈ 0.08 b, rc(ε3) ≈ 0.06 b].
Below this critical disk radius, efficient guiding of rotator modes and focusing of librator
modes can be considered robust to boundary perturbations.3 For smaller ε, T34(r) remains

3 The hard-wall disk barriers considered here represent drastic perturbations of the billiard geometry, con-
stituting device imperfections that modify its transport properties. The more realistic case of disorder from
impurity distributions was previously modeled in Chap. 5 and shown to allow for robustness of interference-
induced magnetotransport up to a limiting disorder strength.
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Figure 7.4: Tij for varying ratio b/a, with equidistantly attached leads of width (a) w0 = a/3.5 and
(b) w2 = a/7. The light (orange) dashed line shows the eccentricity ε. The lower horizontal edge of
the billiard here lies at y = −w (see Fig. 7.1), and the upper edge is varied from straight (b = 0) to
elliptic (0 < b < a) to circular (b = a), as illustrated by the inset pictures in (b).

substantial over larger r, since the larger billiard can support a larger number of direct scat-
tering pathways between the inner leads. Deflection on the perturbed boundary enhances
scattering to asymmetrically placed leads, leading to increased T32 and T13 from zero for
r 6= 0.

In case (b) the librator modes are again rapidly destroyed by the disk, resulting in a
decrease of T34(r) similar to that in (a). Rotator modes sufficiently localized along the elliptic
boundary survive up to some disk size and still connect the outer leads; especially in (b,
ε3), T21(r) forms a characteristic high plateau until decreasing abruptly when the remaining
free width between disk and boundary becomes smaller than the leadwidth w = a/5.

The latter condition is met above a threshold radius rt given by (a) rt/b = 1 −
(5
√

1− ε2)−1 and (b) 2rt/b = 1 − 2(5
√

1− ε2)−1, denoted by vertical lines in Fig. 7.3, at
which the energy threshold for transport between opposite sides of the disk enters the
first channel in the leads. When this threshold rises above κ = 2 (for free width smaller
than w/2), only tunneling through the constrictions contributes to T21, T34 and T32, which
then practically vanish; in contrast, T13 is enhanced for large r, particularly in case (b, ε1).
Furthermore, larger number of accessible eigenstates causes more resonant features in the
transmission spectra, leading to increased fluctuations of the Tij in continuously varying
geometry for larger billiards (row ε3).

Librator- and rotator-like eigenmodes of the billiard were shown to be necessary for high
inner and outer lead transmission; nevertheless, their coupling to the leads further depends
on the eccentricity of the unperturbed billiard for a given lead positioning. In Fig. 7.4 the Tij

are plotted against the ratio b/a =
√

1− ε2 for different w. In order to access the limit of zero
curvature (ε = 1), the straight edge of the billiard is lowered by one leadwidth (see dashed
line in Fig. 7.1). For the true semi-elliptic setup the features in Tij(b/a) are shifted to larger
b (and thus smaller ε), so that the change in size is compensated and the corresponding
eigenmodes remain approximately at the same energies. T21 and T34 overall increase with
b, as rotator- and librator-like modes start to form which couple outer and inner leads;
in contrast, T32 and T13 overall decrease and possess a common broad minimum. For a
certain eccentricity range a separation between inner and outer leads is thus possible, in the
sense that cross-coupling between them (i.e. between an outer and an inner lead) is almost
eliminated in zero magnetic field. Further, depending on ε, rotator-like modes leaking
into the outer leads can interfere into a suppressed transmission background, causing the
characteristic wide dip in T21 for b ≈ a/3. By decreasing w the transversal subbands are
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Figure 7.5: Tij in the unperturbed semi-elliptic billiard, for lead widths (left to right column) w1 =
a/5, w2 = a/7, w3 = a/10.5 and eccentricities (top to bottom row) ε1 = 0.78, ε2 = 0.65, ε3 = 0.35,
as a function of the displacement l of the inner leads from the origin. The vertical lines show the
position of the focal points f /a = ε for each setup.

shifted up in energy and the wavelength of the incoming particle decreases relatively to the
billiard size, so that a larger number of eigenstates is spanned within the first channel. This
leads to increased fluctuations of the Tij in Fig. 7.4 (b), similar to those in Fig. 7.3 (row ε3).

Let us now investigate the overall transmission behavior in dependence of the placement
of the inner leads, which determines their coupling to the different billiard eigenmodes.
As the inner leads are moved away from the center, there is a gradual crossover of the
direct transport paths from librator- to rotator-type states. The question arises whether it is
sufficient, or even necessary, to place the inner leads at the ellipse foci in order to achieve
high transmission between them, as shown in Fig. 7.2. In the classical picture the separation
of librators and rotators by the focal points is sharp, and in the limit of zero leadwidth,
all trajectories coming in from one focus are scattered directly (by only one reflection at
the elliptic boundary) to the other, leading to unit transmission. For a finite leadwidth,
a portion of the incoming trajectories is scattered onto the straight segments between the
leads and eventually into an outer lead, so that the inner lead transmission is lowered from
unity. In the quantum case, additionally, the spatial separation between librator and rotator
modes is not sharp, especially at the low energies considered; thus, however narrow, the
inner leads couple to both types of modes. Most importantly, though, the transmission
coefficients highly depend on interference phenomena between the resonant states coupling
to the leads. Even if the inner leads are placed close to the foci, where most eigenmodes
possess a probability maximum [269], multiple destructive interference between them may
lead to low overall transmission.

In Fig. 7.5 the variation of the mean transmission components with the inner lead dis-
placement l is shown for different leadwidths and eccentricities. For large ε, T34(l) increases
to maximum when the inner leads are next to the outer ones, though with transport domi-
nated by librator modes since the foci lie within the outer lead openings (w1, ε1). This trend
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is inverted for smaller ε, where the foci come closer to the origin and allow for the coupling
to rotator modes. Then (w1, ε3) T34(l) is maximal for the inner leads close to the origin
and decreases to minimum for large l, as a result of destructive interference in combination
with diffraction at the lead openings [101]. For narrower leads (columns w2 and w3) these
features remain, with enhanced fluctuations like in Fig. 7.4.

We indeed see that placing the inner leads close to the foci does not necessarily lead
to high overall transmission between these leads, demonstrating the departure from the
classically expected behavior of our billiard in the deep quantum regime. Some of the
setups, in particular of Fig. 7.5 (w3, ε1), even exhibit a wide minimum in T34 around l = f .

T21(l) overall increases with w and ε, but remains largely unaffected by the variations in
l. It decreases slightly only when l is large enough for the inner leads to couple to the same
modes as the outer leads, which causes a corresponding increase in T32 and T13.

For the magnetic control of multiterminal transmission, to be discussed in the following
section, it is important to achieve high inner- and outer-lead zero-field transmission, while
cross-coupling is suppressed; we see that these conditions are met in our setup by combining
small l and ε with relatively large w.

7.6 Transmission in a magnetic field

To understand how conductivity between terminals can be selectively manipulated with the
magnetic field, we first analyze its impact on the transmission spectra and its interplay with
the geometric properties. In the presence of the field the resonant states accordingly shift
in energy [272], while its influence on their phase modifies their coupling to the leads and
the interference with other states. Therefore, the widths of sharp Fano resonances generally
change, and the non-resonant pathways interfere into a different transmission background.
If the field is very weak, the spatial distribution of the eigenmodes remains practically un-
affected, as does their individual coupling to the lead openings. A drastic change in the
overall transmission in a weak field can still take place, though, when a small number of
leaking modes interfere [52]. For a stronger magnetic field the spatial distribution of the
states changes enough to generally yield a completely modified transmission spectrum. In
the classical picture the charged particle moving in the billiard is deflected into circular or-
bits of cyclotron (Larmor) radius rL = k/|B|, making the classification of trajectories into
rotators and librators inapplicable. When the field strength is further increased, rL even-
tually becomes so small that the particle moves along skipping trajectories at the billiard
edges [71]. The corresponding quantum scattering wave function is localized into edge
states [50], which enable almost reflectionless transport along the boundary.

In Fig. 7.6 (a) the transmission spectra at (i) zero, (ii - iii) intermediate and (iv) high mag-
netic field strength are shown for the unperturbed billiard. As in Sec. 7.4, the geometry
is adjusted for high inner- and outer-lead zero-field transmission; in order to concentrate
on magnetically induced spectral changes, even wider leads are used, avoiding increased
fluctuations from multiple interference of billiard eigenmodes. The three first channels
n = 1, 2, 3 are addressed, showing the typical stepwise increase of (maximal) transmission
with n and the effect of channel mode coupling. T21 and T34 are overall high in the first chan-
nel at B = 0 [(a) (iii)], as previously discussed, but get modulated in the higher channels by
increasingly wide dips and lowered background transmission caused by multimode inter-
ference. The field strength for (a) (ii) is chosen to suppress inner-lead transmission, which
enables the control of multiterminal transport, as will be shown in Sec. 7.8. Waves coming
in from lead 1 are deflected onto the curved boundary, which decouples them further from
the inner leads, reducing the width of the dips in T21. T34 is overall lowered, since waves
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Figure 7.6: Transmission coefficients T21 (red), T34 (blue), T32 (green), T13 (cyan), with offsets 3, 2, 1, 0
respectively, as a function of κ within the first three transversal subbands n = 1, 2, 3 of leads of width
w = w0 = a/3.5, attached equidistantly with l = (a−w/2)/3 = 0.84 f , (a) for the unperturbed semi-
ellipse billiard with ε = 0.35 and (b) for the same geometry with a disk of radius r = b/2− 2w/3
centered at (0, b/2), at magnetic field (i) B = 0, (ii) B = 0.002, (iii) B = 0.005, (iv) B = 0.010, with
B = Bẑ. Arrows and vertical dashed lines indicate κ-values at which the LDOS is shown in Figs. 7.7
and 7.10, respectively.
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a b

Figure 7.7: Partial LDOS corresponding to the κ-values indicated by the (a) left and (b) right arrow
in Fig. 7.6 (b) (iv), for a wave incident in the leftmost (i = 1) lead.

coming in from lead 4 (containing the right ellipse focus) are no longer focused into lead
3: the librator modes are destroyed in the presence of the deflecting field. On the contrary,
T32 = T14 is drastically increased and T12 (not shown) is accordingly reduced: the Larmor
radius at this field is, approximately, the one needed to deflect classical trajectories from
lead 4 into lead 1 (or from lead 2 to lead 3) without reflection at the boundary, for energies
in the first channel. This condition is not fulfilled anymore at the even higher field strength
in (a) (iii), where edge states start to form. In the first channel, transmission is then favored
to the next neighboring lead (T21, T34 and T13 = T42) and suppressed between other lead
pairs. The complementarity between the multi-terminal coefficients is here clearly manifest
in the coincidence of the dips in T34 and T13 = T42 with the peaks in T32 = T14. These
resonances appear when the nodal pattern of interfering edge states (or a multiple of the
diameter of the classical skipping orbits) matches the distance of leads 2 and 3 instead of
adjacent leads (this behavior is described in detail in Ref. [50] for a 2-terminal billiard). In
the second and third channel, interference of a larger number of accessible modes enhances
again fluctuations in the transmission background. At very high field strength [(a) (iv)] the
edge states lie so far apart in energy (and classically rL is so small) that plateaus of unit
transmission to clockwise subsequent leads appear for energies in the lowest magnetoelec-
tric (Landau) subband. When more edge states are energetically accessible we observe a
difference between scattering at smooth and sharp lead openings. Diffraction at the sharp
edges causes mixing and interference of the different edge states [50], leading to oscillations
in T34, T32 and T13. Only the T21 coefficient exhibits perfect transmission even at higher en-
ergy, since the edge states adiabatically follow the smooth elliptic boundary from lead 1 to
2. The stepwise increase of transmission with n, most pronounced in T21, is shifted to higher
κ with increasing field strength, following the threshold energies of the magnetic subbands.

To illustrate the effects of geometry in combination with the magnetic field on the scat-
tering states, the LDOS at a chosen κ (vertical dashed lines in Fig. 7.6 (a)) is shown later in
Fig. 7.10 in connection to directed multiterminal conductance.

As in Sec. 7.5, a disk inside the semi-elliptic billiard drastically changes its transmission
properties by blocking direct transport paths between the leads. In Fig. 7.6 (b) the field
dependent spectra are shown for this setup, with the disk leaving constrictions of minimal
width 2w/3 with the boundary. The transmission threshold is then essentially shifted from
n to 3n/2, as can be seen by replacing w with 2w/3 in Eq. (7.1). Thus, T21, T34, or T32 > n− 1
below κ = 3n/2 results from tunneling of the wave function through the constrictions.
Distinct resonant tunneling peaks are seen below this threshold for n = 2 (that is, 1.5 < κ <

3) in T21 and T34 at high field strength [Fig. 7.6 (b) (iii) and (iv)], mediated by edge states that
are localized on the disk edges (similar to the states leading to sharp reflection resonances,
due to different geometrical setup, in Ref. [106]). The LDOS for an incoming electron wave
in the leftmost lead is shown in Fig. 7.7 for such a resonant state (a) and for a state between
the resonances (b). The effective resonator length is, approximately, the mean periphery
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Figure 7.8: Mean transmission coefficients Tij as a function of the applied magnetic field B for the
billiard of Fig. 7.6 with increasing disk radius r in the n = 1 subband (top to bottom panels in left
column); for zero and maximal r (top and bottom row, respectively) also the n = 2 and n = 3

subbands are shown. Each plot is of height max[T(n)
ij ] = n. The light (orange) dashed line in the

bottom row panels shows the scaled Larmor radius rL/a at the n-th channel’s center κ = n + 1/2.

2π(r + w/3), leading to the observed peak spacing ∆κ ≈ 0.247 in Fig. 7.6 (b) (iv). On the
other hand, scattering upon the disk favors transmission between leads on the same side of
it, so that T13 overall increases and qualitatively approaches the unperturbed case for strong
fields.

In Fig. 7.8 the four independent channel mean components Tij are plotted as a function

of B for different radii r of the inserted disk [rows (i) to (v)]. The T(2)
ij and T(3)

ij are shown
for r = 0 (unperturbed billiard) and r = b/2− w/3 (almost divided billiard), where also
the Larmor radius rL(B) = π/w · (n + 1

2 )/|B| at each channel center is plotted to show the
field impact on the classical trajectories. In absence of the disk [row (i)], T21 is close to
unity for B > 0, falling off slowly at large B as the magnetic threshold enters the channel
[see Fig. 7.6 (a) (iv)]. For B < 0 it decreases abruptly with field strength when rL < a, since
the incoming waves in lead 1 are deflected away from the elliptic boundary. T34, which is
also large at B = 0, decreases to a prominent local minimum at B ≈ +0.002, corresponding
to the spectrum in Fig. 7.6 (a) (ii). At the minimum, a large portion of the wave coming
in from lead 4 is deflected into lead 1, leading to a corresponding maximum in T14 [with
T14(B) = T41(−B) = T32(B), see Table 7.1], which is otherwise close to zero. It is this drastic
change at the intermediate field strength B ≈ +0.002, different for each mean transmission
component, that will serve as a key property to enable multiterminal transport control for
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the geometrical parameters used. At even stronger field the waves from lead 4 follow edge
states directly into lead 3, so that T34 increases again, while T14 = T32 decreases. For B < 0,
T34 remains high over the local minimum of T21 around B = −0.002, before it too falls off
for stronger fields. T13, on the other hand, remains close to zero for all B < 0, increases
with the field strength for B > 0, and finally follows T34 in the edge state regime, where the
pathways 4 → 3 and 3 → 1 are almost equivalent along the boundary: indeed, the T34 and
T13 spectra practically coincide in Fig. 7.6 (a) (iv).

On all Tij(B) curves, though more visible in T21 and T34, relatively small fluctuations in
B are superimposed, which can be regarded as generalized collective AB oscillations from
interference between spatially extended leaking states: the oscillations in Tij(B) at each κ

add up to a large-scale oscillation of the channel average. The characteristics of Tij remain
qualitatively the same in the higher channels (with maximum = n), mapped onto a larger
B-scale: at higher energy larger field strength yields the same Larmor radius and similar
variations as in Tij(B). From the above we see that, depending on B, overall transmission is
favored from each lead to certain other leads and suppressed to the rest. We will address
this possibility for directed multiterminal transport in detail in Sec. 7.8.

The modification of the Tij(B) profiles by the perturbing disk is shown in Fig. 7.8 (i) to
(v), where its radius r is increased so that transmission between leads on opposite sides
is suppressed, as previously described [see Figs. 7.3 (b) and 7.6 (b)]. Thus T21(B), T34(B)
and T32(B), although retaining their trends, gradually decrease to zero for any B when the
constrictions become narrower than the leads. In contrast, T13 increases with r at B = 0, as
seen also in Fig. 7.3 (b), and remains large at strong B > 0. Also at strong B < 0, though,
T13 increases with r, because the edge states (now clockwise deflected classical orbits) can
guide the particle from lead 3 onto the disk edge and then onto the elliptic boundary to
the left of the disk, which it follows into lead 1. Interestingly, for large enough disk [as in
Fig. 7.8 (v), where the constriction width is w/3] the 4-terminal billiard is effectively divided
into two 2-terminal billiards for n = 1, so that transmission between leads on the same
side of the disk becomes symmetric in B: T13(B) = T13(−B) and T24(B) = T24(−B), as a
consequence of the sum rule Eq. (7.3) and the symmetry relation Eq. (7.5) for the special case
of a system with two leads [150]. This 2-terminal symmetry is not present in the higher
channels [n = 2, 3 in row (v)], where the smaller transversal wavelength enables transport
through the constrictions.

Conclusively, the disk reduces the difference between the (independent) Tij(B), thereby
weakening the controllability of mutliterminal transmission. Nevertheless, an appropriate
disk-like blocking potential switches output from lead 2 to lead 3 (from lead 3 to lead 2) with
input in lead 1 (in lead 4) at strong B > 0, which, in the context of directed transport, con-
stitutes an additional (electric) switching mechanism based on the geometry-independent
behavior of edge states.

7.7 Bent coupled wires

Magnetically induced directed transport in our setup was shown to rely on the convexity
of its boundary, which enables highly transmittive pathways at low field strength by the
formation of librator- and rotator-like modes. These coexist in the semi-ellipse, so in order
to separately investigate the role of boundary-localized modes in the overall transmission,
and the impact of their interference with gradually upcoming bulk modes, we consider
the following setup: two circularly bent parallel quantum wires coupled through a smooth
opening of adjustable width d at the bend [see sketch in Fig. 7.9 (a)]. The Tij(B) are plotted
in Fig. 7.9 (a) without the opening (top) and for increasing opening width (second from top
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Figure 7.9: Tij(B) for two parallel wires at distance equal to their common width w = a/3.5, coupled
by a smooth opening of width d and circular edges of radius w/2, (a) with the wires bent by an
angle π across the coupling and (b) in straight configuration (parallel and equidistant to the x-axis).
In the top plots there is no opening, and then the opening width is increased in steps of w/4 from
d = w/4 to d = 3w (second from top to bottom, with transmission offsets decreasing by one), the
latter yielding in (a) the semi-circular billiard with smooth lead openings.

to bottom), and are compared to the case of straight coupled wires [109, 273] in Fig. 7.9 (b),
where curvature is absent and additional y-symmetry is present. With no opening the trans-
mission in the two disconnected bent wires at B = 0 is almost perfect: T21 and T34 depart
from unity only due to narrow resonances caused by the curvature of the wires, which ef-
fectively induces an attractive potential [274]. T21 is slightly smaller than T34, because the
resonances for the longer bent part lie closer in κ. Both slowly decrease at stronger fields,
as the magnetoelectric subband threshold rises [like in Fig. 7.6 (a) (iv)]. A detailed study
of transmission of similarly bent waveguides in uniform magnetic fields can be found in
Ref. [275].
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When the wires couple, the 2-terminal B-symmetry of the isolated wires is broken. As
the opening is widened, the rotating modes connecting the outer and inner leads increas-
ingly interfere with states that extend into the opening, leading to enhanced back-scattering
dips in the corresponding transmission coefficients and a following decrease in T21 and T34.
The role of rotator- and librator-like modes is here manifest in the inner-lead transmission
as d is varied at B ≈ 0. T34 is high for d ≈ 0, where transport is dominated by rotator-like
modes, decreases at intermediate d, where the rotators are destroyed by the opening in the
inner convex boundary, and increases again for large d (& 6w/4), where the outer convex
boundary focuses the wave function into librator-like modes. At appropriate strength, the
magnetic field favors transport between terminals on either side of opening by deflection of
the particle orbits. T32 increases to a local maximum at intermediate B > 0, which rises for
larger d. T13, on the other hand, rises significantly only at high B > 0 where the particle is
guided by edge states.

For maximal opening d = 3w the setup becomes the 4-terminal semi-circular billiard,
now with smooth lead openings. Controllability of output terminal, as described in Sec. 7.6,
then becomes optimal, and the Tij(B) profiles are very similar to the ones in Fig. 7.8 (i). This
shows that the smoothness of the lead openings, as well as the small change in eccentricity
and size, although clearly affecting the dynamics in the scattering system and thereby the
detailed spectral features, leave the overall field dependence qualitatively unchanged.

In Fig. 7.9 (b) the strong field asymptotics of the Tij(B) for the straight coupled wires
coincide with those of the bent wires, since transport through edge states is rather affected
by the topology, and not by the geometry, of the scatterer. The first obvious difference here
is that the additional reflection symmetry about the x-axis renders the components T21 and
T34, whose difference was central in the discussion so far, identical. That is, regardless of
the field strength, high transmission between the outer leads can never be combined with
low transmission between the inner leads, as it can for the bent wires. Also due to spatial
symmetry, T32 must now be symmetric in B, and its broad peak around B = +0.002 for the
bent wires is shifted to B = 0. As a result, crossed-lead transmission (between leads 2, 3
or 1, 4) can no longer be switched from high to low by inverting the field. At weak fields,
T34(B) varies similarly for bent and straight wires for small d . 6w/4; for large d though,
the straight wires, unlike the bent wires, yield low T34 = T21 around B = 0, because of
the absence of modes that are focused at the lead openings or guide the incoming wave
along the boundary. We conclude that the increased symmetry of the straight leads and the
absence of the convex boundary reduce the possible combinations of magnetically induced
transport directions between the terminals.

7.8 Directed conductance

In the discussion so far we have utilized the channel-integrated mean transmission [Eq. (7.7)]
as a tool to compactly describe the average response of the transmission to parameter
changes. The actual measurable conductance coefficients gij connecting the current flowing
inwards at terminal i with the voltage differences to all other terminals j are, in the linear
response regime at temperature Θ, given by the multiterminal Landauer-Büttiker formula
(see Eq. (2.59)) in units of the (spin-degenerate) conductance quantum G0 = e2/πh̄,

gij(Θ; EF) =
∫ +∞

−∞
Tij(E)F(Θ, EF; E) dE, (7.8)

where F(Θ, EF; E) is the thermal broadening function in the form given in Eq. (5.7). Thus,
gij essentially equals the thermally averaged multiterminal transmission around the electron
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Figure 7.10: Partial LDOS for incoming wave in lead i = 1, 2, 3, 4 (indicated by N) for (a) B = 0, (b)
B = 0.002, and (c) B = 010 n.u., corresponding to the vertical lines at κ = 1.425 in Fig. 7.6 (a) (i), (ii),
and (iv), respectively, for the same billiard geometry.

Fermi energy, with a width proportional to Θ, and coincides with Tij at Θ = 0.
The output controllability described in Sec. 7.6 can be enhanced in terms of the conduc-

tance at low temperature and low Fermi energy, where transmission features are resolved
in a smaller κ-range than the whole channel. While the local maxima (minima) of T32

and T34 in Fig. 7.8 (i) suggest a maximal efficiency for magnetically directed transport of
about 50% in the unperturbed elliptic setup, adjusting temperature and Fermi energy ap-
propriately can yield corresponding conductance maxima (minima) close to unity (zero) at
these field strengths. To provide an example, we choose the Fermi energy corresponding to
κ = κF =

√
2EF ·w/π = 1.425, indicated by dashed vertical lines in the transmission spectra

of Fig. 7.6 (a) (i), (ii), and (iv). The LDOS profiles for electrons incident in each terminal at
the corresponding field strengths are shown in Fig. 7.10, revealing the variable directional
coupling of the scattering states between the terminals. Note the contribution of rotator-
and librator-like states at zero field in Fig. 7.10 (a), the magnetically deflected states at mod-
erate field in (b), and the edge states at strong field in (c). At a temperature Θ = 100 mK,
the resulting conductance coefficients for the same field strengths are shown in Fig. 7.11 as
grayscale cells for the individual gij ordered like in Table 7.1. The diagonal elements gii
following from Eq. (7.8) do not contribute to calculated currents, but indicate the degree of
reflectance for ballistic transport and show the depart from unity of the sum of conduc-
tances from or to the other ( 6= i) terminals. For the chosen parameters the conductance
coefficients practically reach unity (black cells) for specific terminal combinations i→ j and
practically vanish for the rest (white cells), depending on the direction and strength of the
field. In particular, for each input lead i, the output can be switched selectively to any lead
j 6= i by appropriately tuning B (as indicated by the sketched arrows in the lower panels
of Fig. 7.11). This relies on the above discussed interplay of geometry and magnetic field
effects. For large |B| (see B = ±0.010 blocks in Fig. 7.11) edge states form and conductance
is determined by the topology of the boundary (in general directed edge state transport can
also be implemented, but with finite potential barriers [71, 113, 115] at the lead openings).
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B = −0.010 B = −0.002 B = 0 B = +0.002 B = +0.010

j

i

gij

Figure 7.11: Multiterminal conductance coefficients gij at scaled Fermi energy κF = w/π ·
√

2EF =
1.425 and temperature Θ = 100 mK, for B = 0, B = ±0.002 and B = ±0.010. In each 4× 4 block,
row i labels the input and column j the output current terminal. The sketched arrows in the lower
panel indicate the directional coupling of electron flow (not trajectories) between the terminals in the
billiard (opposite direction to the charge current).

At zero and intermediate |B| the output is governed by interference of spatially extended
scattering states leading, for this billiard, to overall high transmittivity between certain non-
neighboring terminals, as seen in the B = 0 and B = ±0.002 blocks in Fig. 7.11.

This shows that the current can be efficiently directed from a given input to a selected
output terminal. Especially for zero and intermediate magnetic field strength it is even
possible to construct a controllable cross-junction for the currents: choosing, e.g., leads 1
and 3 as input terminals and leads 2 and 4 as output, current is flowing from lead 1 to 2 and
from lead 3 to 4 for B = 0. For B = +0.002 current is flowing mostly from lead 1 to lead 4
and from lead 3 to lead 2, thus exchanging the directed connections between the terminals
with applied magnetic field.

For higher Θ the gij(Θ; EF) in Fig. 7.11 are generally shifted to more intermediate values,
because F(Θ, EF; E) is broadened and additional spectral features are included in the inte-
gration around EF in Eq. (7.8). On the other hand, for very low Θ the transmission spectrum
is highly resolved by F(Θ, EF; E) and the gij become sensitive to small changes in EF. These

dependencies are not present in the channel means T(n)
ij , which therefore serve to estimate

the field strength values suitable for directed transport in a given billiard; with adjusted
temperature and Fermi energy, the effect can then be optimized by slightly modifying the
transmission features through fine-tuning of B, in order to controllably obtain maximal and
minimal gij.

7.9 Summary and conclusions

We have investigated the ballistic transport properties and low-temperature magnetocon-
ductance of a 4-terminal semi-elliptic quantum billiard. Analyzing the strong dependency
of the transmission on the magnetic field and geometrical parameters like eccentricity of the
semi-ellipse and placement and width of the leads, we have shown how electrons can effec-
tively and controllably be guided from one input lead to any other output lead, including
the cross-switching of output from combined input.

At zero field strength electrons are guided between the two outer or the two inner leads
by modes corresponding to classical rotator or librator trajectories, respectively. The role
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of rotator and librator modes has been clarified by introducing a perturbing disk, thereby
destroying modes selectively. In this context we have shown that the transmission is robust
under small perturbations and that the disk offers additional possibilities of transmission
control. The efficiency of the selective transmission has been optimized with respect to the
geometric parameters. Here it turns out that the optimal position of the inner leads deviates
from the classically expected one at the focal points of the ellipse and that an eccentricity of
about 0.35 for equidistant terminals is optimal.

The application of the magnetic field allows to controllably change the conductance
coefficients: at appropriate field strengths electrons coming from one input lead can be
guided to any other output lead. This results from the deflecting effect of the field at
intermediate strength. Further, by increasing the field strength to the edge state regime,
conductance is mostly determined by the topology of the billiard. In this regime sharp
edges cause mixing and interference of multiple edge states, leading to oscillations in the
transmission spectra, while a smooth boundary guides the individual edge states without
mixing.

To further examine the role of the elliptic boundary, i.e. of the existence of rotator and
librator modes, we have investigated the transmission through a pair of bent coupled quan-
tum wires and compared it to the topological equivalent setup of two straight coupled wires.
The bent wires show a degree of control superior to the straight setup, but the semi-ellipse
allows for the highest degree of conductance control. While the channel-averaged trans-
mission clearly shows the possibility of directed transport, very high switching efficiency
is achieved at low but realistic temperatures and appropriate values of the Fermi energy.
The semi-ellipse qualifies as a magnetically controllable cross-junction for ballistic quantum
transport.
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8
Summary, conclusions, and
perspectives

In this thesis the magnetotransport through electronic billiard devices was studied in depen-
dence of the characteristics of the confining potential. Focusing on the interplay between
the geometry of the setups and the effects of the magnetic field, it was demonstrated that
special non-universal features in the transmission spectra arise which enable the efficient
control of conductance by different underlying mechanisms.

Review of coherent quantum transport theory of electronic billiard systems

We started with a top-bottom presentation of the employed theoretical approach to coherent
transport in two-dimensional nanoelectronic structures: In Chap. 1 the concepts and meth-
ods of band engineering as well as the approximations used to arrive at the two-dimensional
electron gas were reviewed, together with the consequences of reduced dimensionality for
quantum states. In Chap. 2 we introduced the Landauer-Büttiker picture of transport and
the identification of transmission as the main component of conductance, discussing also the
associated conceptual issues of modeling attached electrodes and the low- temperature and
-bias limits of the theory. In Chap. 3 the treatment of the resulting scattering problem in the
Green function framework was selectively reproduced in its general form, highlighting the
implications of multiterminal setups with generic asymptotic lead confinement. This gave
us the opportunity to discuss the main types of interference-induced phenomena inherent
in magnetotransport, namely Fano resonances and Aharonov-Bohm (AB) oscillations, from
the viewpoint of billiard systems. We closed this theoretical part with a note on scattering
in locally symmetric structures, developed recently for one-dimensional systems.

Modular Green function method for multiterminal, multiply connected structures

The actual numerical method developed for the computation of the system propagator,
pertaining to all quantities of interest, was presented in Chap. 4 within the tight-binding
approach. We here showed how an extended version of the recursive Green function tech-
nique, in which subsystems are inter- and intra-connected into a composite structure, can
be formulated uniformly in terms of a block-Gaussian elimination scheme enabling efficient
assembly of setups of arbitrary topology. A low-level reordered block-Gaussian elimination
scheme was further developed for the core computation of single multiterminal subsys-
tems of arbitrary geometry, with selective output of global quantities (scattering matrix and
transmission) as opposed to local ones (wave function and state and current densities). The
method is tailor-made for efficient transport computations of planar connected structures

167



Chapter 8. Summary, conclusions, and perspectives

of complex geometry and topology in a highly resolved parameter space. As example se-
tups we studied a three-terminal elliptic billiard and its multiple connection into a looped
composite billiard structure. This setup features complex combinations of Fano and AB
interference in the resulting multiterminal transmission maps (as a function of energy and
magnetic field) as well as characteristic local density patterns.

Conductance control by geometric state separation and magnetic phase modulation in
quantum billiard arrays

In Chap. 5 we showed that efficient switching of magnetoconductance in the linear response
regime can be achieved with two-terminal linear arrays of oval quantum billiards. The
switching effect relies on the property of the single oval to separate confined states from
states leaking into the attached leads. The leaking states interfere destructively over a broad
energy range causing a suppressed transmission which becomes maximal by the phase
modulating effect of a very weak magnetic field. In the array setup Breit-Wigner peaks were
distinguished from Fano resonances and analyzed in terms of the local density. The forma-
tion of bands in the transmission spectra were shown to enhance the switching ratio which
is large already for the double-dot system. The robustness of the conductance control func-
tionality was examined in the presence of weak disorder, showing a temperature dependent
lower bound of the switching ratio.

Soft-wall billiards as robust and efficient current switching elements at varying Fermi
energy and temperature

In Chap. 6 we supplied a similarly elongated billiard with soft wall boundaries whose ap-
propriate design leads to a very efficient control of the electronic current over the whole first
transport channel of the leads. Here the electron flow is forwardly collimated for zero field
and backscattered at a certain switching field, persistently in energy. The role of the soft
wall is to isolate the resonant manifold of quasi-bound states of the billiard from the scat-
tering continuum and simultaneously to rescale the magnetically deflected path-like states
which retain their backscattering character. The mechanism enables enhanced switching
contrast at varying temperature and Fermi energy and proves robust against billiard shape
and soft-wall variations.

Directional quantum magnetotransport by geometric focusing and guiding in multiter-
minal billiards

In Chap. 7 we undertook the challenging task of multiterminal conductance control using
a hard-wall semi-elliptic billiard with four leads attached to the straight edge, showing
that magnetically controllable current switching between the terminals can be obtained.
High field-free transmission is here reached via guiding or focusing by the curved billiard
boundary which couples rotator and librator modes to the outer and inner leads, respec-
tively. A thorough investigation of this behavior in terms of the geometry parameters
and lead positioning was performed concluding on optimal combinations. The lead pairs
connected by maximal transmission coefficients are switched by the deflecting effect of the
magnetic field. Including the field-free operating state of the device, the electronic flow
can be selectively directed from any input terminal to any output terminal. In particular,
the device realizes a directional current cross-junction switched by a weak field at low
temperatures.
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In conclusion, it has been demonstrated that efficient and robust electronic current con-
trol may be achieved with appropriately designed quantum billiards through the interplay
between confinement-induced transmission properties and the effects of applied magnetic
fields—from the phase-modulating via the Lorentz-deflecting to the edge-state regime of
magnetotransport. The proposed two- or four-terminal conductance switching nanoelec-
tronic elements are of relatively simple geometric form and can be realized with current
technologies. In particular, fabrication of such devices should be feasible in GaAs/AlGaAs
heterostructures by combining local oxidation techniques with optical or electron-beam
lithography [18–21] which enable precise lateral dot shape and steep boundaries, with the
shape tuned by additional top or planar gates [18,19] and with size well below the electronic
mean free path [20, 21]. The work finally gives the message that wave propagation can be
tamed into deterministic and tunable transport features even in the deep quantum regime
by selectively suppressing universal fluctuation features in favor of desired non-universal
behavior.

Outlook

An immediate and promising extension of the present work is to consider combinations
of the elements investigated in terms of current control in new types of structures. In par-
ticular, the remarkable efficiency of switching induced by certain soft wall profiles in the
two-terminal elongated dot makes it tempting to apply a similar soft boundary to the mul-
titerminal setup studied (along its convex boundary) to see if it may stabilize and enhance
the cross-junction functionality. Another variation would be to add finite potential barriers
or tunable constrictions—which are also easily realizable—to the lead openings in order
to investigate alternative aspects of controllability. Indeed, the mechanisms pertaining to
conductance control were seen to rely partially on the specific decoupling of billiard states
from the leads, and this effect would be enhanced by such modifications. Along these lines,
a perspective opened is to explore the occurrence of the very special interference-induced
current suppression in the hard-wall oval billiard also for other geometries and potentials:
Similar systematic degeneracies of opposite- or equal-parity states might exist for different
billiard shapes and lead to tunable regularities in transport. Earlier work by Drouvelis et
al. [276] here comes to the aid of mapping closed billiard spectra to their shapes.

Keeping the two-dimensional billiard type confinement and multiterminal topology, a
departure to qualitatively different effects is possible by adding ‘ingredients’ to the compu-
tational method: One of the advantages of the Green function method in its tight-binding
form is the straightforward generalization and/or modification to alternative Hamiltonians.
For example, the electronic spin can be included essentially by substituting the matrix ele-
ments with spinor blocks, opening the perspective to study spin-dependent transport and
its possible controllability. Apart from the Zeeman coupling to applied magnetic fields,
the different types of states (confined and leaking, bulk- or boundary-localized) seen in
the elongated billiards may lead to non-trivial alterations in transport caused by spin-orbit
coupling [136, 137]. In a similar manner, hybrid structures with superconducting elements
and partial Andreev reflection processes [277, 278] may be effectively studied in the light of
confinement-induced transport control by implementing a Bogoliubov-de Gennes Hamilto-
nian [279]. Another easy modification of the square lattice Hamiltonian is to appropriately
delete on-site and modify hopping elements to transform it to a simple tight-binding honey-
comb lattice Hamiltonian to study similar billiards defined on graphene [123, 280, 281] (the
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mathematical grid used so far now becomes a simple approximation to the atomic lattice
itself). A more advanced modification would even be to incorporate a Floquet Hamiltonian
into the real space one, following the recent work in Ref. [282], to simulate periodically
driven (irradiated) billiards. Apart from the above extensions on the level of the system
Hamiltonian, a promising perspective would finally be to investigate current controllabil-
ity and the underlying mechanisms beyond the linear response regime utilizing the full
non-equilibrium Green function formalism [3, 4, 191–193] in a multiterminal setting.

Returning to the presently developed computational tools, and in particular the inter-
and intra-connection technique of the extended Green function scheme proposed in Chap. 4,
appealing mesoscopic setups to study are multiply dot-connected double quantum wire
systems: two straight quantum wires coupled via multiple short lead stubs containing em-
bedded quantum dots. This would implement an array of coupled AB ring-like building
blocks [59, 283] with four outer terminals, alternatively seen as a nanoelectronic ‘ladder’
setup [111, 284], though with nodes and arms of non-trivial geometric structure. The setup
would give the opportunity to study the interrelation between Fano and AB interference
by modifying the confining potential of the embedded dots (e.g., to separate leaking from
confined states, as was done here for a single dot) in multiply connected topologies. An
alternative two-terminal looped setup is the electronic Mach-Zehnder interferometer [285]
which could be coupled to peripheral quantum dots (thus realizing a Mach-Zehnder-Fano
interferometer [286]) in the form of billiards of designed geometries to tune the interference-
induced output.

Finally, we recall that the main advantage of the developed inter- and intra-connection
Green function method is the ability to connect a large number of few types of arbitrary
blocks into multiply connected structures. An interesting perspective would therefore be
to explore the (magneto-) transport properties of larger networks of connected quantum
dots (or antidot superlattices [227]) with dots of individual internal structure. This type of
system reveals the present method as an ideal applicational tool to accompany the intended
generalization of the newly developed theory of local symmetries, briefly outlined in Sec. 3.5,
to two-dimensional systems. Typical locally symmetric setups would be, e. g., quantum
dot lattices with distributed defects in terms of deformed dots or clusters of different dot
types. Together with further development of the local symmetry concepts and formalism,
such systems may be described and understood from a novel viewpoint and trigger further
explorations of complex structures.
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A
Green functions of leads

In this appendix the spatially represented Green functions of an infinite and semi-infinite
ideal lead (quantum wire) are derived, which are used in Secs. 3.2.2 and 4.3.1, respectively.

A.1 Green function of an infinite Q1D wire

We consider an infinite wire parallel to the x-direction, described by a confining potential
Vw(x, y) = Vw(y) (in zero magnetic field). Motion along the wire is separated from that in
the transversal direction, and the solutions of the stationary Schrödinger equation can be
written in the form

Φn,k(x, y) = χn(y)eikx, (A.1)

where the transversal wave functions χn(y) are orthonormal solutions of[
− 1

2m
∂2

∂y2 + Vw(z)
]

χn(y) = Enχ(y), (A.2)

and k is a continuous wave number yielding energy eigenvalues

En,k = En +
h̄2

2m
k2 (A.3)

for the total Hamiltonian Hw. The transversal potential can be of arbitrary profile, but we
assume that it supports bound states along y and choose the χn to be real; for the hard-wall
leads we will consider, they are given by Eq. (1.27).

The retarded Green function

G+(r, r′; E) = lim
η→0
〈r| G(E + iη) |r′〉 (A.4)

is given through the spectral representation of G in the eigenbasis {Φn,k},

〈r| G(E + iη) |r′〉 = ∑
n,k

〈r|Φn,k〉 〈Φn,k|r′〉
E−Hw + iη

= ∑
n,k

Φn,k(r)Φn,k
∗ (r′)

E− En,k + iη
. (A.5)

Inserting Eq. (A.1) into Eq. (A.2) and replacing the sum over continuous k-values by an inte-
gral weighted by the 1D density of states in k-space, we have

G+qw(x, y, x′, y′; E) = lim
η→0

∑
n

∫ +∞

−∞

dk
2π

χn(y)χn(y′)
eik(x−x′)

E− En − h̄2k2/2m + iη
, (A.6)

= − m
πh̄2 lim

ς→0
∑
n

χn(y)χn(y′)
∫ +∞

−∞
dk

eik(x−x′)

k2 − k2
n(1 + iς)

, (A.7)
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for the quantum wire, where

h̄2

2m
k2

n = E− En =
η

ς
(A.8)

and the integrand has two poles at

k±ς = ±kn
√

1 + iς ≈ ±kn

(
1 + i

ς

2

)
, ς→ 0 (A.9)

which are located in the upper (+) and lower (−) half plane.
The integral can now be solved by contour integration: For x > x′ (x < x′), the inte-

grand is bounded in the upper (lower) half plane since eik(x−x′) ∝ e∓Imk|x−x′| with Imk > 0
(Imk < 0), and we define a semicircular anticlockwise (clockwise) integration contour which
encloses the pole at k+ς (k−ς ) with the straight segment on the real k-axis. With the contri-
bution from the semicircular arcs vanishing at |k| → ∞, the integral evaluates, from the
residues R± of the poles at k±ς , respectively, to

±2πiR± = ±2πi lim
k→k±ς

(k− k±ς )
eik(x−x′)

(k− k+ς )(k− k−ς )
= ±2πi

eik±ς (x−x′)

k±ς − k∓ς
, x ≷ x′ (A.10)

=
2πi

2kn
√

1 + iς
eikn
√

1+iς|x−x′| ς→0−−→ iπ
kn

eikn|x−x′| ∀x, x′, (A.11)

where in the end the limit required in Eq. (A.4) is taken. We thus finally obtain

G±qw(x, y, x′, y′; E) = ±∑
n

1
ih̄vn

χn(y)χn(y′)e±ikn|x−x′|, (A.12)

where vn = h̄kn/m =
√

2(E− En)/m is the longitudinal velocity in the n-th channel Here
also the advanced Green function has been included through the reciprocity relation G− =

[G+]∗, where we notice the symmetry in r ↔ r′ for each G±qw.
For a given position x′ of the initial point relative to the position x of the final point along

the wire, G+qw in Eq. (A.12) can be viewed as an (x, y)-dependent wave function expanded in
the eigenstates Φn,k(x, y) of the wire, with (x′, y′)-dependent expansion coefficients [124]; or
vice versa for G−qw. Considering, for definiteness, the retarded Greenian, we have

G+qw(x, y, x′, y′; E) = ∑
n

Φn,s(x, y) cn,−s(x′, y′), (A.13)

where

cn,s(x′, y′) =
Φn,s(x′, y′)

ih̄vn
, s =

{
+, x > x′

−, x < x′
, (A.14)

with Φn,± = Φn,±kn . In view of the general discussion on Green functions, this superposition
of wire eigenstates is the response of the system at (x, y) to a δ-like excitation at (x′, y′) at
energy E. If these partial waves, while generated at (x′, y′), are additionally transmitted
through or reflected by some obstacle, then their total amplitudes upon reaching (x, y) will
be modified by corresponding transmission or reflection amplitudes. This is the case for the
S-matrix elements entering Eq. (3.38).
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A.2 Interface Green function of a semi-infinite Q1D wire

For a semi-infinite quantum wire in the positive x-direction starting at x = 0, like the leads
attached to the scatterer domain in modeling a transport device, we theoretically assume
V(x < 0, y) = ∞ so that the wave function vanishes for x < 0 and thus obeys the Dirichlet
boundary condition Φ(x = 0, y) = 0.

The stationary Schrödinger equation now has eigensolutions

Φn,k(x, y) = χn(y) sin(kx), (A.15)

where the transversal wave functions χn(y) form an orthonormal set, like in the infinite
wire, and are chosen real in the absence of a magnetic field. Considering hard-wall leads of
width w, the transversal modes are given by Eq. (1.27). In practice, however, we will set the
origin y = 0 at the lead boundary (the right boundary when viewed in the x-direction) so
that the modes are phase shifted into

χn(y) =

√
2
w

sin(ky,ny), ky,n =
nπ

w
. (A.16)

The retarded Green function is thus given by

G+sqw(x, y, x′, y′; E) = lim
η→0

∑
n

∫ +∞

0

dk
π

χn(y)χn(y′)
sin(kx) sin(kx′)

E− En − h̄2k2/2m + iη
, (A.17)

where two counter-propagating waves with wavenumbers ±k have been taken into account
for the standing wave along the wire.

Since we aim at the interface part of the lattice Greenian only (at sites adjacent to the
surface sites of the scatterer domain) which is used for the self-energy in Sec. 4.3.1, we set
x = x′ > 0 [127] (the value is specified shortly). This x-local part can then be written

G+sqw(x, y, x, y′; E) = lim
η→0

∑
n

∫ +∞

−∞

dk
π

χn(y)χn(y′)
1− e2ikx

E− En − h̄2k2/2m + iη
(A.18)

= − m
4πh̄2 lim

ς→0
∑
n

χn(y)χn(y′)
∫ +∞

−∞
dk

1− e2ikx

k2 − k2
n(1 + iς)

, (A.19)

with the substitution h̄2k2
n/2m = E− En = η/ς, where the identity

2i sin(kx) = eikx − e−ikx ⇒ 4 sin2(kx) = 1− e2ikx + 1− e−2ikx (A.20)

and the symmetry of sin2(kx) in k have been used.
The integral has the same poles k±ς = ±kn

√
1 + iς as for the infinite wire, but now x > 0

so the contour integration is performed only in the upper half of the complex k-plane. In
similarity to the calculation in Eqs. (A.10) and (A.11), the residue theorem yields

G+sqw(x, y, x, y′; E) = −∑
n

2
h̄vn

χn(y)eiknxχn(y′) (A.21)

after rewriting 1− e2iknx = eiknx(e−iknx − eiknx) = 2ieiknx sin(knx).
On the tight-binding lattice, the gridpoints along the edge of the semi-infinite lead (at the

interface to the scatterer) are located at x = a0 [127], that is, one lattice constant away from
where the grid-represented wave function (A.15), with the Q1D energy dispersion (4.26), is
set to zero (at the first gridpoints outside the lead, which coincide with the last gridpoints
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of the attached scatterer). Taking into account also the mode velocity vn = 2ta0 sin(kna0)/h̄
(see Eq. (4.27)), the retarded and advanced semi-infinite lead Green functions along the lead
edge become

G±sqw(a0, y, a0, y′; E) = − 1
ta0

∑
n

χn(y, E)e±ikn(E)a0 χn(y′, E) ≡ g±(y, y′, E), (A.22)

or, in the matrix element notation of Chap. 4,

g±αβ = −1
t ∑

n
χn;αe±ikna0χn;β (A.23)

for (any) sites α, β along the edge, where the lattice constant a0 has been absorbed in the
matrix g± on the uniform grid.
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B
Block-matrix inversion and Schur
complement

In this appendix we derive the inverse of a general block matrix in terms of its individual
blocks, a tool of matrix algebra appearing recurrently in the computation of lattice Greenians
of composite systems. The application to a general decomposition of a lattice Hamiltonian
matrix is included for clarity.

B.1 Inversion by block-Gaussian elimination

Consider a square N × N matrix M which has the block structure

M =

(
A B

C D

)
(B.1)

where A is an (N − n)× (N − n) matrix and D is an n× n matrix.
If existent, the inverse M−1 of M, with MM−1 = M−1M = IN , where IN is the N × N

identity matrix, can be found by block-Gaussian elimination which is equivalent to multi-
plying the equation (

A B

C D

)
M−1 =

(
IN−n 0

0 In

)
(B.2)

from the left by suitable matrices depending on whether the lower block of the first block-
column or the upper block of the second block-column is to be eliminated initially. We call
these procedures ‘lower-major’ and ‘upper-major’ elimination, respectively.

Lower-major elimination

For lower-major elimination, we multiply Eq. (B.2) from the left by the matrix product

PBPDPCPA, (B.3)

with

PA =

(
A−1 0

0 In

)
, PB =

(
IN−n −A−1B

0 In

)

PC =

(
IN−n 0

−C In

)
, PD =

(
IN−n 0

0 S−1
A

)
,

(B.4)

where
SA = D−CA−1B (B.5)
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is the Schur complement [243] of the block A in M. Consecutive multiplication from the left
by the matrices PA, PC, PD, PB introduces blocks IN−n, 0, In, 0 in the positions A, C, D,
B of the original matrix M, respectively, thus constituting the block-Gaussian elimination
procedure starting with the left block-column. Provided that A and SA are invertible, the
result is

M−1 = PBPDPCPA =

(
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
, (B.6)

showing that the lower diagonal block of the inverse matrix equals the inverse of the Schur
complement of the upper diagonal block of the original matrix.

The first three steps of the full lower-major elimination, multiplying by PDPCPA, requires
two matrix inversions A−1 and S−1

A and constitutes a forward elimination which brings M to
an upper-triangular form. The last step of multiplying by PB is called backward substitution
and consists in substituting the already computed outcome of the forward elimination into
the final inverse M−1, which requires matrix multiplications but no further matrix inversion.

Upper-major elimination

For upper-major elimination, we multiply Eq. (B.2) from the left by the matrix product

P′CP′AP′BP′D, (B.7)

with

P′A =

(
S−1

A 0

0 In

)
, P′B =

(
IN−n −B

0 In

)

P′C =

(
IN−n 0

−D−1C In

)
, P′D =

(
IN−n 0

0 D−1

)
,

(B.8)

where
SD = A−BD−1C (B.9)

is the Schur complement of the block D in M. Consecutive multiplication from the left by
the matrices P′D, P′B, P′A, P′C introduces blocks In, 0, IN−n, 0 in the positions D, B, A, C of the
original matrix M, respectively, thus constituting the block-Gaussian elimination procedure
starting with the right block-column. Provided that D and SD are invertible, the result is

M−1 = P′CP′AP′BP′D =

(
S−1

D −S−1
D BD−1

−D−1CS−1
D D−1 + D−1CS−1

D BD−1

)
, (B.10)

showing that the upper diagonal block of the inverse matrix equals the inverse of the Schur
complement of the lower diagonal block of the original matrix.

The first three steps of the full upper-major elimination, multiplying by P′AP′BP′D, re-
quires two matrix inversions D−1 and S−1

D and constitutes a backward elimination which
brings M to a lower-triangular form. The last step of multiplying by P′C is called forward
substitution and consists in substituting the already computed outcome of the backward
elimination into the final inverse M−1, which requires matrix multiplications but no further
matrix inversion.

Relation between Schur complements

The two alternative routes of block-Gaussian elimination above lead to an evident symmetry
in the block-structure of the inverse M−1: The results in Eqs. (B.6) and (B.10) are mapped
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B.2. Application to block-partitioned lattice Hamiltonian

to each other by simultaneously exchanging A ↔ D, B ↔ C and (upper ↔ lower) block-
rows, (left↔ right) block-columns. In particular, Eqs. (B.6) and (B.10) yield the block-matrix
identities

S−1
D = A−1 + A−1BS−1

A CA−1, (B.11)

S−1
A = D−1 + D−1CS−1

D BA−1 (B.12)

and

S−1
D BD−1 = A−1BS−1

A , (B.13)

D−1CS−1
D = S−1

A CA−1, (B.14)

which relate the two Schur complements via the blocks of M.

B.2 Application to block-partitioned lattice Hamiltonian

The above general matrix-algebraic manipulations acquire physical meaning in the context
of Greenians if we identify the block matrix M as the matrix EI− H̃ = ∆ in the lattice Green
equation

∆G̃ = I ⇒
(

EIN−n − H̃11 −H̃12

−H̃21 EIn − H̃22

)
G̃ =

(
IN−n 0

0 In

)
, (B.15)

with the Hamiltonian matrix

H̃ =

(
H̃11 H̃12

H̃21 H̃22

)
(B.16)

≡ H + W =

(
H1 0

0 H2

)
+

(
0 W12

W21 0

)
=

(
H1 W12

W21 H2

)
(B.17)

describing a discretized system of size N (number of sites) decomposed into two domains
D1 of size N − n (described by H1 when isolated), and D2 of size n (described by H2 when
isolated) whose sites are coupled via the block-antidiagonal matrix W.

The blocks B and C of App. B.1 thus become the coupling matrices between the domains,
while the inverses of the blocks A and D are the Greenians of the isolated domains,

G1 = ∆−1
1 = (EIN−n −H1)

−1, G2 = ∆−1
2 = (EIn −H2)

−1, (B.18)

which are assumed existent; either because the energy E does not coincide with real poles
of the G1,2, or because the G1,2 have only complex poles (i. e., away from the real E-axis) due
to non-hermiticity of H1,2 (caused, e. g., by coupling to an open boundary).

Although the domains D1 and D2 can in principle be treated in a symmetric manner,
the order in which to perform the block-Gaussian elimination to obtain G̃ is now dictated,
in practice, by the relative size of the domains: Assuming n < N, is it computationally
preferable to perform (direct) inversion of the smaller matrix ∆2, following the upper-major
elimination route of App. B.1. The analogue of Eq. (B.10) then yields

G̃ =

(
G̃11 G̃12

G̃21 G̃22

)
=

(
G̃11 G̃11W12G2

G2W21G̃11 G2 + G2W21G̃11W12G2

)
, (B.19)

where
G̃11 = (EIN−n −H1 −W12G2W21)

−1 (B.20)

is the inverse of the Schur complement of the block EIn −H2 in ∆.
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Appendix B. Block-matrix inversion and Schur complement

Self-energy from subsystem

We recognize that the Hamiltonian for subsystem 1 is effectively modified by the (non-
hermitian and energy dependent) self-energy

Σ1 ≡W12G2W21 (B.21)

due to the coupling to subsystem 2, with resolvent

G̃11 = [EIN−n − (H̃1 + Σ1)]
−1 (B.22)

in the coupled system.
In the case where subsystem 2 is a semi-infinite lead, we thus recover the (grid-

represented) formulation of an open scatterer in Secs. 3.3 and 4.3. The Greenian of sub-
system 2 is then given analytically, so that no inversion needs to be computed to obtain it.
If D2 is a slice to be added to an existing domain during assembly of the grid-represented
scatterer, then G2 requires the inversion of a relatively small matrix. On the other hand, if
D1 and D2 are extended domains whose isolated propagators have already been computed,
then the order of block-Gaussian elimination does not matter.

Relation to Dyson equation

The propagator from sites in D1 to sites in D2 is given by

G̃21 = G2W21G̃11 = G2W21(G
−1
1 −Σ1)

−1 (B.23)

= G2W21(IN−n −G1Σ1)
−1G1, (B.24)

and the identities (B.11) and (B.14), which become

G̃11 = G1 + G1W12G̃22W21G1 (B.25)

and
G2W21G̃11 = G̃22W21G1, (B.26)

respectively, yield the propagator between sites in D1,

G̃11 = G1 + G1Σ1G̃11 (B.27)

= G1 + G1Σ1(IN−n −G1Σ1)
−1G1. (B.28)

Similarly, we find the propagators

G̃12 = G1(IN−n −Σ1G1)
−1W12G2 (B.29)

and
G̃22 = G2 + G2W21G1(IN−n −Σ1G1)

−1W12G2. (B.30)

We have thus shown that the block-Gaussian elimination scheme applied on the block
Hamiltonian matrix of two connected domains D1 and D2 is equivalent to solving the cor-
responding Dyson equation (4.63) of Sec. 4.4.1.
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C
Inter- and intra-connection of modules

In this appendix we apply the block-Gaussian elimination scheme of App. B to solve the
tight-binding matrix Dyson equation for two the total Greenian of two inter-connected mod-
ules (subsystems of the total systems) and of a module intra-connected to itself.

C.1 Inter-connection between two modules

Assuming that the Greenians G1 and G2 of two separate modules 1 and 2 have already been
computed as solutions of the uncoupled Green equation

G(E−H) = (E−H)G = I, (C.1)

where

H =

(
H1 0

0 H2

)
= H̃(W=0) = diag

[(
Huu

1 Huc
1

Hcu
1 Hcc

1

)
,
(

Huu
2 Huc

2
Hcu

2 Hcc
2

)]
, (C.2)

G =

(
G1 0

0 G2

)
=

(
∆−1

1 0

0 ∆−1
2

)
= diag

[(
Guu

1 Guc
1

Gcu
1 Gcc

1

)
,
(

Guu
2 Guc

2
Gcu

2 Gcc
2

)]
(C.3)

the Greenian G̃ of the connected system is expressed in terms of G1, G2 and the coupling
W between them by solving the associated matrix Dyson equation (4.63) (the dimension of
I, E = EI and 0 at different instances is here to be understood from the respective block
matrix structure). As discussed in Sec. 4.4.1 and App. B.2, this is equivalent to perform a
block-Gaussian elimination on the large-scale partitioned matrix Green equation

(E− H̃)G̃ = I (C.4)

with the connected system Hamiltonian

H̃ = H + W =



Huu
1 Huc

1 0 0

Hcu
1 Hcc

1 0 Wcc
12

0 0 Huu
2 Huc

2

0 Wcc
21 Hcu

2 Hcc
2


, (C.5)

where c and u denote the sections of the corresponding module to be connected and to
remain unconnected, respectively, with the Hermitian matrix

W =

(
0 W12

W21 0

)
= antidiag

[(
0 0

0 Wcc
12

)
,
(

0 0

0 Wcc
21

)]
(C.6)
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Appendix C. Inter- and intra-connection of modules

coupling the c-sections. The blocks Wcc
12 and Wcc

21 are square matrices of dimension equal to
the (common) number of sites in each module to be connected.

Since both G1 and G2 are known, we use an alternative route essentially combining the
lower- and upper-major elimination orders of App. B, by first multiplying Eq. (C.4) from the
left by G, which allows us to exploit the sparsity and block-symmetry of the matrix

G∆̃ = G(E− H̃) =



I 0 0 puc
12

0 I 0 pcc
12

0 puc
21 I 0

0 pcc
21 0 I


, (C.7)

where

puc
21 = −Guc

2 Wcc
21, pcc

21 = −Gcc
2 Wcc

21, pcc
12 = −Gcc

1 Wcc
12, puc

12 = −Guc
1 Wcc

2 . (C.8)

To proceed with the block-elimination, the equation

G(E− H̃)G̃ = G (C.9)

is now acted upon from the left with the product

P = Puc
12 Pcc

12 R Pcc
21 Puc

21, (C.10)

containing the row-operator matrices

Puc
21 =

 I 0 0 0
0 I 0 0
0 −puc

21 I 0
0 0 0 I

, Pcc
21 =

 I 0 0 0
0 I 0 0
0 0 I 0
0 −pcc

21 0 I



Pcc
12 =

 I 0 0 0
0 I 0 −pcc

12
0 0 I 0
0 0 0 I

, Pcc
12 =

 I 0 0 −puc
12

0 I 0 0
0 0 I 0
0 0 0 I

,

(C.11)

which eliminate the blocks puc
21, pcc

21, pcc
12, puc

12 of G∆̃, respectively. The block-diagonal central
matrix

R = diag

 I 0

0 I

 ,

 I −Guc
2 σ2γ

0 γ

 , (C.12)

which is the one providing the inverse Schur complement of H1, contains the self-energy

σ2 = Wcc
21Gcc

1 Wcc
12 (C.13)

of module 2 due to the coupling to module 1 as well as the inverse

γ = (Icc −Gcc
2 σ2)

−1 (C.14)
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C.2. Intra-connection of a module

of the size of the connection interface. The propagator for the connected system is finally
given by

G̃ = PG =



G̃
uu
11 G̃

uc
11 G̃

uu
12 G̃

uc
12

G̃
cu
11 G̃

cc
11 G̃

cu
12 G̃

cc
12

G̃
uu
21 G̃

uc
21 G̃

uu
22 G̃

uc
22

G̃
cu
21 G̃

cc
21 G̃

cu
22 G̃

cc
22


= (C.15)



Guu
1 + Guc

1 σ̃1Gcu
1 Guc

1 + Guc
1 σ̃1Gcc

1 Guc
1 Wcc

12G̃
cu
22 Guc

1 Wcc
12G̃

cc
22

Gcu
1 + Gcc

1 σ̃1Gcu
1 Gcc

1 + Gcc
1 σ̃1Gcc

1 Gcc
1 Wcc

12G̃
cu
22 Gcc

1 Wcc
12G̃

cc
22

G̃
uc
22Wcc

21Gcu
1 G̃

uc
22Wcc

21Gcc
1 Guu

2 + Guc
2 σ2G̃

cu
22 Guc

2 + Guc
2 σ2G̃

cc
22

G̃
cc
22Wcc

21Gcu
1 G̃

cc
22Wcc

21Gcc
1 γGcu

2 γGcc
2


, (C.16)

where
σ̃1 = Wcc

12G̃
cc
22Wcc

21 = Wcc
12γGcc

2 Wcc
21 (C.17)

is a modified form of self-energy of module 1 due to its coupling to module 2.

C.2 Intra-connection of a module

For the intra-connection between two (equally sized) boundary sections c1 and c2 (with the
sites of the one being pairwise nearest neighbors to the sites of the other) of a single module,
we apply the same concept as for the inter-connection but with the block-partitioning

H =

Huu Huc1 Huc2

Hc1u Hc1c1 0

Hc2u 0 Hc2c2

 , (C.18)

G =

Guu Guc1 Guc2

Gc1u Gc1c1 Gc1c2

Gc2u Gc2c1 Gc2c2

 (C.19)

for the disconnected module, where u denotes the part of the module to remain unconnected
(all sites except for the c1- and c2-sites of the connection interface). Note that G is here
already a full matrix, since propagation between the sections c1 and c2 occurs, of course, via
the interior u of one and the same module.

The tight-binding matrix Dyson equation (4.63) is now solved for the Greenian G̃ of the
connected system in terms of the blocks of G and of the coupling matrix

W =

0 0 0

0 0 Wc1c2

0 Wc2c1 0

 , (C.20)

where again Wcc
12 and Wcc

21 are square matrices of the dimension of the connection interface
which couple sections c1 and c2.
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Appendix C. Inter- and intra-connection of modules

We thus solve the Dyson equation by performing block-Gaussian elimination on the
partitioned Green equation (E− H̃)G̃ = I with the connected system Hamiltonian

H̃ = H + W =


Huu Huc1 Huc2

Hc1u Hc1c1 Wc1c2

Hc2u Wc2c1 Hc2c2

 ≡


Huu Hu1 Hu2

H1u H11 W12

H2u W21 H22

 , (C.21)

where we have replaced the connected section superscripts as

c1 → 1, c2 → 2 (C.22)

to simplify notation in the expressions to follow.
We first multiply Eq. (C.4) from the left with G which already eliminates the first block-

column of ∆̃ = E− H̃,

G∆̃ = G(E− H̃) =


I pu1 pu1

0 p11 p12

0 p21 p22

 , (C.23)

where

pu1 = −Gu2W21, pu2 = −Gu1W12,

p11 = I−G12W21, p12 = −G11W12, (C.24)

p21 = −G22W21, p22 = I−G21W12.

The equation G(E− H̃)G̃ = G is then acted upon from the left with the product

P = Pu1 Pu2 P12 Λ P21 Θ, (C.25)

where the row-operator matrices

P21 =

 I 0 0

0 I 0

0 −p21 I

 , P12 =

 I 0 0

0 I −p12

0 0 I

 ,

Pu2 =

 I 0 −pu2

0 I 0

0 0 I

 , Pu1 =

 I −p21 0

0 I 0

0 0 I

 ,

(C.26)

eliminate the offdiagonal blocks p21, p12, pu2, pu1 of G∆̃, respectively. The block-diagonal
matrices

Θ =


I 0 0

0 θ 0

0 0 I

 , Λ =


I 0 0

0 I 0

0 0 λ

 (C.27)

contain the inverses

θ = [p11]−1 = [I−G12W21]−1, (C.28)

λ = [p22 − p21θp12]−1 = [I−G21W12 −G22W21θG11W12]−1 (C.29)
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C.2. Intra-connection of a module

of the size of the connection interface. The propagator for the connected module is then
given by

G̃ = PG =


G̃

uu
G̃

u1
G̃

u2

G̃
1u

G̃
11

G̃
12

G̃
2u

G̃
21

G̃
22

 = (C.30)


Guu + G̃

uu
W Gu1 + G̃

u1
W Gu2 + G̃

u2
W

θ(G1u + G11W12G̃
2u
) θ(G11 + G11W12G̃

21
) θ(G12 + G11W12G̃

22
)

λ(G2u + G22W21θG1u) λ(G21 + G22W21θG11) λ(G22 + G22W21θG12)

 , (C.31)

where the shorthand notation

G̃
uz
W = Gu1W12G̃

2z
+ Gu2W21G̃

1z
(z = 1, 2, u) (C.32)

has been used for the upper block-row.

183





D
Gauge transformation of the Greenian

In this appendix we show how the Green function is gauge transformed between two given
axial gauges and derive the general generating function for the transformation of the Green
function of a module into the gauge of another module, as used in the inter-connection
scheme presented in Sec. 4.5.

D.1 Gauge transformation of the Green function between two dif-
ferent axial gauges

Observable quantities in quantum theory, such as probability densities, should be indepen-
dent of gauge transformations of the electromagnetic potential, and therefore the wavefunc-
tion under such a transformation acquires at most a phase factor. Specifically, in the sta-
tionary picture used, if the magnetic vector potential is transformed via a scalar generating
function Λ(r) of space as

A(r) −→ A′(r) = A(r) +∇Λ(r), (D.1)

then the wave function is transformed as [148]

ψ(r) −→ ψ′(r) = ψ(r) exp
[
i
e
h̄

Λ(r)
]

. (D.2)

From the general eigenstate expansion of the Green function propagating from point rβ to
point rα

G(rα, rβ; E) = ∑
n

ψn(rα)ψ∗n(rβ)

E− En ± iη
, (η → 0), (D.3)

the corresponding gauge transformation of the Green function is

G(rα, rβ; E) −→ G ′(rα, rβ; E) = exp
[
i
e
h̄

Λ(rα)
]
G(rα, rβ; E) exp

[
−i

e
h̄

Λ(rβ)
]

. (D.4)

For the rectangular grid on which the Hamiltonian is discretized, it is convenient to use
an axial gauge

A(r) =

Ax

Ay

Az

 =

 −νBy
(1− ν)Bx

0

 (D.5)

for the vector potential, where the real parameter ν is freely chosen. Upon a gauge transfor-
mation of the vector potential from a gauge A(r) with parameter ν to another gauge A′(r)

185



Appendix D. Gauge transformation of the Greenian

with parameter ν′, we imply that their difference is the gradient of a generating function
Λ(r),

A′(r)− A(r) =

(ν− ν′)By
(ν− ν′)Bx

0

 = ∇Λ(r). (D.6)

The simplest choice for the generating function is then

Λ(r) = (ν− ν′)Bxy, (D.7)

which leads to the following explicit gauge transformation for the Green function:

G ′(rα, rβ; E) = exp
[
i
e
h̄
(ν− ν′)Bxαyα

]
G(rα, rβ; E) exp

[
−i

e
h̄
(ν− ν′)Bxβyβ

]
. (D.8)

Note that the coordinate system here is common for the two axial gauges. Next, we will
derive the generating function for a gauge transformation following an initial coordinate
transformation.

D.2 Gauge transformation for the inter-connection of two modules

In the modular version of the computational method, the propagator of each module is
computed in its own coordinate system. It is preferably aligned so that the vertical extent
is smaller on average (since it corresponds to the size of internal slice block-matrices to
be inverted), and the origin is conventionally set to the center of the computational box
containing the module. When a module is inter-connected to another module, it is thus
in general necessary to shift and rotate the coordinates of the first module to match the
coordinates of the second module at the connection (equivalently, the second module could
be rotated and shifted, or both; we choose to transform the first module by convention). The
rotation and shift of the coordinate system, r → r′, introduces a new effective gauge in the
first module, A(r) → A′(r′) (which is not necessarily of the axial form (D.5); see below). In
order to connect the shifted and rotated first module to the second, this new effective gauge
has to be transformed to match the gauge A′′(r′) (with gauge parameter ν′′) of the second
module in the common coordinate system r′. We will now determine a complete generating
function Λ(r) for this gauge transformation.

The coordinate transformation of the first module generally consists of a rotation by an
angle ϑ and an additional shift d,(

x
y

)
−→

(
x′

y′

)
=

(
c −s
s c

)(
x
y

)
+

(
dx

dy

)
(D.9)

where we use the shorthands c ≡ cos(ϑ), s ≡ sin(ϑ). The z-coordinate is omitted in the
following since we do not consider in-plane magnetic fields and thereby set Az(r) ≡ 0. The
vector potential in the new coordinates in terms of the old one is

A′(r′) =

(
A′x(x′, y′)
A′y(x′, y′)

)
=

(
c −s
s c

)(
Ax(r(x′, y′))
Ay(r(x′, y′))

)
, (D.10)

which, when choosing the initial axial gauge (D.5), takes the explicit form

A′(r′) = B
(

sc(2ν− 1) −ν′

1− ν′ −sc(2ν− 1)

)(
x′ − dx

y′ − dy

)
= B

(
−ν′(y′ − dy)

(1− ν′)(x′ − dx)

)
+ Bsc(2ν− 1)

(
x′ − dx

−(y′ − dy)

)
, (D.11)
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D.2. Gauge transformation for the inter-connection of two modules

where a new gauge parameter
ν′ ≡ s2 − ν(s2 − c2) (D.12)

has been defined. As we see, because of the rotation, the new gauge is generally not of the
axial from in the shifted coordinates, but has an additional term (second term in Eq. (D.11))
depending on the original gauge parameter ν. Only the axial term (first term in Eq. (D.11))
generates the magnetic field B, but the additional term introduces a gauge transformation
to the wavefunction. Note that for a symmetric initial gauge, ν = ν′ = 1/2, the additional
term vanishes for any rotation angle and the gauge remains axial. The non-axial term also
vanishes for arbitrary ν if we rotate by multiples of π/2, as will indeed be the case for the
square lattice.

We now consider the connection of the shifted and rotated first module to a second
module in an axial gauge with parameter ν′′ in the new coordinate system,

A′′(r′) = B
(
−ν′′y′

(1− ν′′)x′

)
, (D.13)

which differs from the general transformed vector potential of the first module by

A′′(r′)− A′(r′) = ∇r′Λ(r′) (D.14)

= B(ν′ − ν′′)

(
y′

x′

)
+ B

(
−ν′dy

(1− ν′)dx

)
+ Bsc(2ν− 1)

(
−(x′ − dx)

y′ − dy

)
. (D.15)

The generating function for arbitrary rotation angle can thus be chosen as

Λ(x′, y′) = B(ν′ − ν′′)x′y′ + B[−ν′dyx′ + (1− ν′)dxy′]

+ Bsc(2ν− 1)
(

dxx′ − dyy′ − x′2 − y′2

2

)
, (D.16)

to be used in the general transformation (D.4) of the Green function of the first module into
module into new coordinates and gauge.

On the square grid with vertical or horizontal connection interfaces we will only have
rotation angles of 0, π/2, π, or 3π/2 radians, in which case the last terms including sc
above vanish. Taking also into account the values of ν′ from Eq. (D.12) in terms of the
original parameter ν (which are invariant under rotations by π), the explicit form of the
generating function for these four rotation angles simplifies to:

Λθ=0(x′, y′) = Λθ=π(x′, y′) = B[(ν− ν′′)x′y′ − νdyx′ + (1− ν)dxy′], (D.17)

Λθ= π
2
(x′, y′) = Λθ= 3π

2
(x′, y′) = B[(1− ν− ν′′)x′y′(ν− 1)dyx′ + νdxy′]. (D.18)

Note finally that, for the inter-connection of multiple modules, the ‘first’ module in a con-
nection is an already assembled module which has obtained its origin and gauge parameter
ν from the last connected module.

187





E
Natural units

This appendix provides reference tables with relevant quantities (Table E.1), conversion
factors to SI units (Table E.2), as well as physical constants (Table E.3), for the system of
natural units (n.u.) used in the text. These are obtained by setting

h̄ = m = e = a0 ≡ 1 (E.1)

for Planck’s constant (h̄), the electronic effective mass in the medium considered (m), the
elementary charge (e), and the lattice constant (a0) of the square computational grid, and
choosing an appropriate value for a0.

Quantity n.u. SI

Length a0 m

Mass m kg

Action h̄ J s =
kg m2

s

Charge e C

Time
ma2

0
h̄

s

Energy
h̄2

ma2
0

J =
kg m2

s2

Magnetic flux density
h̄

ea2
0

T =
J s

C m2

Charge current
eh̄

ma2
0

A =
C
s

Table E.1: Natural units of commonly used quantities based on setting h̄ = m = e = a0 ≡ 1, and
their equivalent in the International System (SI) of units.
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Appendix E. Natural units

Quantity n.u SI

Length 1 [a0] 2 · 10−9 m

Mass 1 [m] 6.28556 · 10−32 kg

Time 1
[

ma2
0

h̄

]
2.38405 · 10−15 s

Energy 1

[
h̄2

ma2
0

]
4.42356 · 10−20 J
= 0.27609 meV

Magnetic flux density 1
[

h̄
ea2

0

]
164.555 T

Charge current 1
[

eh̄
ma2

0

]
6.72044 · 10−5 A

Table E.2: Conversion factors from our natural units to SI units for the choice a0 = 2 nm and
m = 0.069 me (GaAs/AlGaAs interface).

Physical constant n.u SI

Elementary charge e 1 1.6022 · 10−19 C

Planck constant h̄ 1 1.0546 · 10−34 kg

Magnetic flux quantum h/e 2π 4.13567 · 10−15 Wb

Boltzmann constant kB 3.12124 K−1 1.3807 · 10−23 J K−1

= 8.6175 · 10−5 eV K−1

Speed of light c 357.36025 2.99792 · 108 m s−1

Table E.3: Physical constants in natural units, independent of a0 and m (e, h̄, h/e) or determined by
the choice a0 = 2 nm, m = 0.069 me (kB, c), and their corresponding value in SI units.
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