

Real-time Machine Listening

and Segmental Re-synthesis

for Networked Music Performance

Dissertation

zur Erlangung der Würde des

Doktors der Philosophie

des Fachbereichs Kulturgeschichte

und Kulturkunde

der Universität Hamburg

vorgelegt von

Chrisoula Alexandraki

aus Athen, Griechenland

Hamburg, 2014

2

1. Gutachter: Herr Prof. Dr. Rolf Bader

2. Gutachter: Herr Prof. Dr. Albrecht Schneider

Datum der Disputation:

 17. November 2014

Tag des Vollzugs der Promotion:

 26. November 2014

3

Abstract

The general scope of this work is to investigate potential benefits of Networked Music

Performance (NMP) systems by employing techniques commonly found in Machine

Musicianship. Machine Musicianship is a research area aiming at developing software

systems exhibiting some musical skill such as listening, composing or performing

music. A distinct track of this research line, mostly relevant to this work, is computer

accompaniment systems. Such systems are expected to accompany human musicians by

causally analysing the music being performed and timely responding by synthesizing an

accompaniment, or the part of one or more of the remaining members of a performance

ensemble. The objective of the present work is to investigate the possibility of

representing each performer of a dispersed NMP ensemble, by a local computer-based

musician, which constantly listens to the local performance, receives network

notifications from remote locations and re-synthesizes the performance of remote peers.

Whenever a new musical construct is recognized at the location of each performer, a

code representing that construct is communicated to all of the remaining musicians, as

low-bandwidth information. Upon reception, the remote audio signal is re-synthesized

by splicing pre-recorded audio segments corresponding to the musical construct

identified by the received code. Computer accompaniment systems may use any

conventional audio synthesis technique to generate the accompaniment. In this work,

investigations focus on concatenative music synthesis, in an attempt to preserve all

expressive nuances introduced by the interpretation of individual performers. Hence, the

research carried out and presented in this dissertation lies on the intersection of three

domains, which are NMP, Machine Musicianship and Concatenative Music Synthesis.

The dissertation initially presents an analysis of the current trends in all three research

domains, and then elaborates on the methodology that was followed to realize the

intended scenario. Research efforts have led to the development of BoogieNet, a

preliminary software prototype implementing the proposed communication scheme for

networked musical interactions. Real-time music analysis is achieved by means of

audio-to-score alignment techniques and re-synthesis at the receiving end takes place by

concatenating pre-recorded and automatically segmented audio units, generated by

means of onset detection algorithms. The methodology of the entire process is presented

and contrasted with competing analysis/synthesis techniques. Finally, the dissertation

presents important implementation details and an experimental evaluation to

demonstrate the feasibility of the proposed approach.

4

Acknowledgements

First of all, I want to thank my advisor Prof. Rolf Bader for his valuable guidance,

continuous help, encouragement, inspiration and understanding during all phases of my

doctorate research.

I would also like to thank the members of the examining committee: Prof. Albrecht

Schneider for thoroughly reviewing this dissertation, and also Prof. Georg Hajdu, Prof.

Christiane Neuhaus and Prof. Udo Zölzer for their time and expertise.

Many thanks to my friend and former classmate Esben Skovenborg for helping me to

disambiguate some audio signal processing concepts and for reviewing certain chapters

of this dissertation.

I owe a great thank you to my colleague Prof. Demosthenes Akoumianakis for his

continuous encouragement and support to pursue my research visions.

When thinking over the last few years, I think the most difficult part of this work was to

define the precise research problem I wanted tackle. In trying to solve this puzzle, I had

the valuable support of my former colleague Alexandros Paramythis. Although

researching in different domains, he suggested some key concepts that helped me to

determine what I really wanted to do. So, I want to deeply thank him for that!

There are also two people living in the beautiful city of Hamburg that I would like to

thank: Prof. George Hajdu, whom I first met in Belfast during the 2008 International

Computer Music Conference (ICMC), for suggesting me to work with Prof. Bader and

for all our interesting discussions on Networked Music Performance. I also want to

thank Konstantina Orlandatou for welcoming me in Hamburg and for helping me cope

with the administrative regulations of the University of Hamburg.

Many thanks also go to my colleague Panagiotis Zervas for his patience when I had to

give second priority to our common work obligations. I also owe gratitude to additional

members of academic and administration staff of the Technological Educational

Institute of Crete, who helped to take a sabbatical leave from my position at the

Department of Music Technology and Acoustics Engineering. This possibility has

greatly helped me to complete this work within a reasonable period of time. Special

thanks to Evangelos Kapetanakis, Nektarios Papadogiannis and Georgia Kokkineli.

Last but not least, I want to express my deepest gratitude and love to my mother Poppi

and my brother Dionysis, for understanding my stress and frustration during the last few

years.

Finally, I want to dedicate this work to the memory of my father Lazaros.

5

6

Table of Contents

1 INTRODUCTION .. 14

1.1 FROM SCORE TO AUDIO-BASED MUSICAL ANALYSIS.. 15

1.2 TEXTURE, DEVIATIONS AND LEVELS OF MUSIC PERFORMANCE .. 16

1.3 MUSICAL ANTICIPATION IN ENSEMBLE PERFORMANCE ... 17

1.4 COLLABORATIVE PERFORMANCE ACROSS DISTANCE .. 18

1.5 DISSERTATION STRUCTURE ... 19

PART I: RELATED WORK .. 21

2 NETWORKED MUSIC PERFORMANCE .. 22

2.1 EARLY ATTEMPTS AND FOLLOW-UP ADVANCEMENTS ... 22

2.2 RESEARCH CHALLENGES ... 23

2.3 REALISTIC VS. NON-REALISTIC NMP... 24

2.4 LATENCY TOLERANCE IN ENSEMBLE PERFORMANCE... 25

2.5 FUNDAMENTALS OF NMP SYSTEM DEVELOPMENT ... 27

2.5.1 Software applications .. 27

2.5.1.1 Client Software .. 28

2.5.1.2 Server Software .. 30

2.5.2 Network infrastructures ... 31

2.5.2.1 QoS issues ... 31

2.5.2.1.1 Network throughput ... 31

2.5.2.1.2 Latency and Jitter... 31

2.5.2.1.3 Packet Loss ... 32

2.5.2.2 Network protocols .. 33

2.6 OPEN ISSUES IN NMP RESEARCH ... 36

3 MACHINE MUSICIANSHIP .. 39

3.1 MACHINE LISTENING APPROACHES ... 39

3.2 MUSIC LISTENING AND RELEVANT COMPUTATIONAL AFFORDANCES 43

3.2.1 Automatic music transcription ... 44

3.2.2 Audio-to-score alignment ... 46

3.2.3 Audio-to-audio alignment .. 48

3.2.4 Computer accompaniment and robotic performance ... 49

3.3 MACHINE MUSICIANSHIP IN THE CONTEXT OF NMP ... 51

4 CONCATENATIVE MUSIC SYNTHESIS... 54

4.1 GENERAL METHODOLOGY ... 54

4.1.1 Audio segmentation ... 56

4.1.2 Segment analysis and tagging .. 57

4.1.3 Target analysis .. 58

4.1.4 Matching (Unit Selection) .. 58

4.1.5 Concatenation ... 59

4.2 CONCATENATION IN SPEECH SYNTHESIS AND CODING .. 59

4.3 CONTEMPORARY RELEVANT INITIATIVES .. 61

4.3.1 Compositional approaches ... 62

7

4.3.1.1 Jamming with Plunderphonics .. 62

4.3.1.2 CataRT .. 63

4.3.1.3 Input-Driven explorative synthesis .. 63
4.3.2 High fidelity instrumental simulation ... 64

4.3.2.1 Expressive Performance of monophonic Jazz Recordings .. 64

4.3.2.2 Synful Orchestra... 65

4.3.2.3 Vocaloid .. 65

4.4 COMPARISON WITH THE PRESENT WORK .. 66

PART II: RESEARCH METHODOLOGY ... 68

5 RESEARCH FOCUS AND SYSTEM OVERVIEW ... 69

5.1 RATIONALE AND OBJECTIVE ... 69

5.2 COMPUTATIONAL CHALLENGES .. 70

5.2.1 Real-time constraints ... 70

5.2.2 Audio quality constraints ... 72

5.3 ASSUMPTIONS - PREREQUISITES .. 73

5.4 ADOPTED METHODOLOGY .. 74

6 ONLINE AUDIO FEATURE EXTRACTION .. 77

6.1 FEATURE EXTRACTION AND VISUALISATION .. 77

6.2 MATHEMATICAL NOTATION .. 79

6.3 A NOTE ON FREQUENCY TRANSFORMS ... 79

6.4 ENERGY FEATURES .. 87

6.4.1 Energy (E) ... 87

6.4.2 RMS amplitude .. 87

6.4.3 Log Energy (LE) .. 88

6.5 ONSET FEATURES ... 89

6.5.1 High Frequency Content (HFC) ... 89

6.5.2 Spectral Activity (SA) ... 90

6.5.3 Spectral Flux (SF) ... 91

6.5.4 Phase Deviation (PD) .. 93

6.5.5 Complex Domain Distance (CDD) ... 94

6.5.6 Modified Kullback-Leibler Divergence (MKLD) ... 95

6.6 PITCH FEATURES .. 96

6.6.1 Wavelet Pitch (WP) ... 97

6.6.2 Peak-Structure Match (PSM) ... 98

7 OFFLINE AUDIO SEGMENTATION ... 100

7.1 BLIND VS. BY-ALIGNMENT APPROACHES .. 100

7.2 ONSETS AND TRANSIENT PHENOMENA ... 101

7.3 TYPICAL BLIND ONSET DETECTION METHODOLOGY .. 104

7.3.1 Pre-processing .. 105

7.3.2 Reduction .. 105

7.3.3 Peak-picking.. 109

7.4 OFFLINE SEGMENTATION IN THE PROPOSED SYSTEM ... 110

7.4.1 A Robust onset detection algorithm .. 110

7.4.2 Generating Segment Descriptions .. 112

8

8 HMM SCORE FOLLOWING ... 113

8.1 THE HMM APPROACH .. 113

8.2 MATHEMATICAL FOUNDATION ... 115

8.2.1 Definition of an HMM.. 115

8.2.2 Hypothesis and computational approach .. 115

8.3 DESIGN CONSIDERATIONS ... 117

8.3.1 States, transitions and HMM topologies ... 117

8.3.2 Observations and observation Probabilities ... 120

8.3.3 Training Process ... 122

8.3.3.1 Multiple observation sequences... 124

8.3.3.2 Obtaining an initial alignment ... 125

8.3.3.3 Numerical instability .. 126

8.3.3.4 Memory Requirements ... 126

8.3.4 Decoding Process .. 127

8.4 HMM IN THE PROPOSED SYSTEM ... 129

8.4.1 Offline HMM training .. 129

8.4.2 Real-time HMM Decoding ... 131

9 SEGMENTAL RE-SYNTHESIS ... 133

9.1 RENDERING EXPRESSIVE MUSICAL PERFORMANCE ... 133

9.2 TECHNICAL APPROACHES TO SEGMENTAL RE-SYNTHESIS.. 135

9.2.1 Segment transformations.. 136

9.2.1.1 Phase Vocoder Transformations .. 137

9.2.1.2 SOLA transformations .. 139
9.2.2 Eliminating perceptual discontinuities ... 140

9.2.3 Real-time approaches and the need for anticipation ... 141

9.3 SYNTHESIS IN THE PRESENT SYSTEM .. 142

9.3.1 Performance Monitoring and future event estimation ... 144

9.3.2 Segment Transformations... 145

9.3.3 Concatenation ... 150

PART III: IMPLEMENTATION & VALIDATION .. 152

10 THE BOOGIENET SOFTWARE PROTOTYPE ... 153

10.1 SOFTWARE AVAILABILITY ... 153

10.2 USING BOOGIENET ... 154

10.2.1 Offline Audio Segmentation (oas)... 155

10.2.2 Performance Model Acquisition (pma) ... 156

10.2.3 Train Performance Model (tpm) .. 157

10.2.4 Offline Audio to Score Alignment (oasa) .. 157

10.2.5 Real-time analysis/synthesis (rtas): single-peer .. 158

10.2.6 Real-time UDP communication (udp): udp-peer... 162

10.3 SYSTEM OVERVIEW .. 164

10.3.1 C++ Classes ... 164

10.3.2 Data Files ... 166

10.3.2.1 ARFF File .. 166

10.3.2.2 Model file .. 167

10.3.2.3 Performance Description file... 169

9

10.4 THIRD PARTY LIBRARIES .. 170

11 EXPERIMENTAL EVALUATION .. 172

11.1 CONSIDERATIONS ON THE EVALUATION METHODOLOGY .. 172

11.1.1 The lack of a formal user evaluation .. 172

11.1.2 Standard evaluation metrics and significance of results .. 173

11.1.3 Lack of multiple training sequences ... 174

11.1.4 Algorithm fine tuning ... 175

11.2 EVALUATION OF ALGORITHMIC PERFORMANCE .. 175

11.2.1 Dataset.. 176

11.2.2 Measures ... 178

11.2.3 Experimental setup .. 180

11.2.4 Offline Audio Segmentation (OAS) ... 181

11.2.5 Real-time Audio to Score Alignment ... 184

11.2.5.1 Results prior to HMM training (RTAS-INIT) .. 184

11.2.5.2 Results after HMM training (RTAS-TRAINED).. 187
11.2.6 Comparison of Results ... 189

11.2.7 On the performance of segmental re-synthesis .. 191

11.3 NETWORK EXPERIMENT .. 192

11.3.1 Bandwidth consumption ... 194

11.3.2 Network latency and jitter .. 196

11.3.3 The effect of packet loss ... 197

11.4 CONSOLIDATION OF RESULTS .. 197

12 CONCLUSIONS .. 201

12.1 SUMMARY AND CONCLUDING REMARKS .. 201

12.2 CONTRIBUTIONS ... 207

12.3 IMPLICATIONS, SHORTCOMINGS AND FUTURE PERSPECTIVES .. 208

13 APPENDIX: NUMERICAL DATA OBTAINED IN THE EVALUATION EXPERIMENTS

 212

14 REFERENCES... 217

10

List of Figures

Figure 2-1: Typical components of an NMP client application. .. 28
Figure 2-2: Peer-to-peer vs. centralised media communication in NMP. .. 30
Figure 2-3: The format of the IP header... 33
Figure 2-4: The format of the UDP header. ... 34
Figure 2-5: Structure of an Ethernet frame carrying an RTP packet. The numbers indicate the minimum

size for each header. ... 35
Figure 2-6: A GUI offering virtual collaboration capabilities in NMP. ... 37
Figure 3-1: Perception, reasoning and action in machine listening systems. ... 42
Figure 4-1: Data-flow of processes taking place prior to synthesis ... 55
Figure 4-2: Data-flow of processes taking place during synthesis ... 56
Figure 4-3: Classification of text-to-speech synthesis techniques ... 59
Figure 5-1: Block diagram of the processes that take place offline, prior to collaborative performance. .. 74
Figure 5-2: Block diagram of the processes taking place during live NMP. .. 75
Figure 6-1: The musical score of the audio signal used for visualising the values of the audio features. .. 78
Figure 6-2: The windowing function delays the detection of the onset on subsequent hops, resulting in

detection latency corresponding to approximately 30-4 hops. .. 81
Figure 6-3: Waveform derived from a piano recording. Two 4096-point windows are chosen to

demonstrate the behaviour of STFT during a nearly periodic portion of a signal and a portion for

which a note onset occurs at the last 512 samples representing the hop. ... 82
Figure 6-4: Different parameterisations of the STFT for the nearly periodic segment of the piano signal

shown on Figure 6-3. .. 85
Figure 6-5: Different parameterisations of the STFT for the segment of the piano signal that contains a

note onset as shown on Figure 6-3. ... 86
Figure 6-6: Temporal evolution of the Energy feature and its first order difference for a short musical

phrase performed by a flute. ... 87
Figure 6-7: Temporal evolution of the RMS amplitude feature and its first order difference for a short

musical phrase performed by a flute. .. 88
Figure 6-8: Temporal evolution of the Log Energy feature and its first order difference for a short musical

phrase performed by a flute. ... 89
Figure 6-9: Temporal evolution of the HFC feature and its first order difference for a short musical phrase

performed by a flute. .. 90
Figure 6-10: Temporal evolution of the SA feature and its first order difference for a short musical phrase

performed by a flute. .. 91
Figure 6-11: Temporal evolution of the different versions of the Spectral Flux feature for a short musical

phrase performed by a flute. ... 92
Figure 6-12: Temporal evolution of the PD feature and its first order difference for a short musical phrase

performed by a flute. .. 93
Figure 6-13: Temporal evolution of the CDD feature and its first order difference for a short musical

phrase performed by a flute. ... 95
Figure 6-14: Temporal evolution of the MKL feature and its first order difference for a short musical

phrase performed by a flute. ... 96
Figure 6-15: The Haar wavelet. ... 97
Figure 6-16: Temporal evolution of the WP feature and its first order difference for a short musical phrase

performed by a flute. .. 98
Figure 6-17: Temporal evolution of the PSM(440Hz) feature and its first order difference for a short

musical phrase performed by a flute. .. 99
Figure 7-1: Salient onsets and subtle onsets. The left part of the figure shows 7 onsets of a snare drum

recording, while the right part shows 4 note onsets of a flute performance. 103
Figure 7-2: The physical onset occurs at 2ms, but the new note will not be audible until about 40ms. ... 104

11

Figure 7-3: Onset Detection Functions for a drum and a flute sound snippet computed using a 4096-point

STFT with a hop-size of 512 samples and a Hanning windowing function. 106
Figure 7-4: Onset Detection Functions for a drum and a flute sound snippet computed using 2048 samples

with a hop size of 512 samples, zero padded to form a 4096 point window. No windowing function

is used for this transform. ... 107
Figure 7-5: Block diagram of the offline audio segmentation process in the implemented system. 111
Figure 8-1: HMM topologies. Image derived from Fink (2008) ... 118
Figure 8-2: The HMM topology used in the current system. Letter ‘A’ indicates an attack state, ‘S’ a

sustain state and ‘R’ an optional rest state. .. 119
Figure 8-3: A forward-backward score representation ... 120
Figure 8-4: A musical passage for which HMM training will hinder the recognition of the C4->G3 note

transition .. 120
Figure 8-5: Block diagram of the HMM training process. .. 130
Figure 8-6: Block diagram of the HMM decoding process. .. 132
Figure 9-1: Block diagram depicting the functionality for segmental re-synthesis on the receiver thread of

the present prototype system. .. 143
Figure 9-2: Time stretching (top) and time-shrinking (bottom)... 148
Figure 9-3: Pitch synchronous time domain transformations. ... 149
Figure 9-4: Linear cross-fade over a single audio block at the junction point of consecutive note segments.

 .. 150
Figure 10-1: The call graph of BoogieNet::segmentNotes function. ... 155

Figure 10-2: The call graph of the BoogieNet::buildHMModel function 156

Figure 10-3: The call graph of the BoogieNet::train function. .. 157

Figure 10-4: The call graph of the BoogieNet::hmmOfflineDecode function. 158

Figure 10-5: Audio routing with Jack for the real-time analysis/synthesis functionality of the boogienet

application in ‘single-peer’ mode. ... 159
Figure 10-6: A running instance of the Rezound audio editor. .. 160
Figure 10-7: The required configuration of the Jack daemon for the current version of BoogieNet.. 161
Figure 10-8: The call graph of the BoogieNet::rtConcatenate function. 161

Figure 10-9: Typical connection for UDP communications in BoogieNet. ... 163
Figure 10-10: The call graph of the BoogieNet::udpPerform function. 163
Figure 11-1: Average F-measure per instrument class for the offline audio segmentation algorithm...... 182
Figure 11-2: Mean and standard deviation values for the timing offset of the detected onsets for the of

offline audio segmentation algorithm. ... 183
Figure 11-3: Average F-measure per instrument class for real-time audio to score alignment algorithm

without HMM training. .. 185
Figure 11-4: Mean and standard deviation values for the timing offset of the detected onsets during real-

time audio to score alignment without HMM training. .. 185
Figure 11-5: The sequence of processes that take place during real-time audio to score alignment. 186
Figure 11-6: Average F-measure per instrument class for real-time audio to score alignment algorithm

after HMM training. ... 188
Figure 11-7: Mean and standard deviation values for the timing offset of the detected onsets during real-

time audio to score alignment after HMM training. ... 188
Figure 11-8: Box plot depicting the F-measure performance of the three algorithms (OAS, RTAS-INIT

and RTAS-TRAIN) for the task of onset detection. ... 189
Figure 11-9: Average of F-measure per instrument class for the task of onset detection for the three

algorithms (OAS, RTAS-INIT and RTAS-TRAIN) used in the evaluation. 190
Figure 11-10: The score of the music duet performed over the Ethernet. .. 193
Figure 11-11: Wireshark screenshot showing UDP network traffic during the experiment. 194

12

List of Tables

Table 4-1: Comparison of CSS approaches initiatives with respect to meeting the requirements of the

proposed system. .. 66
Table 10-1: Usage of the boogienet command line application. .. 154
Table 10-2: The key classes of the BoogieNet framework ... 164
Table 10-3: An extract of an ARFF file used for audio file annotations in the BoogieNet framework. ... 166
Table 10-4: An extract of a model file, used for maintaining HMM probabilities. 168
Table 10-5: A desc file describing the audio segments of a solo performance. 169
Table 10-6: Third party C++ libraries used in the implementation of BoogieNet 170
Table 10-7: Library dependencies of the BoogieNet framework... 171
Table 11-1: The music pieces of the dataset used for the evaluation of algorithmic performance. 177
Table 11-2: Class Averages of the evaluation metrics for the offline audio segmentation algorithm. 182
Table 11-3: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm

without HMM training. .. 184
Table 11-4: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm

after HMM training. ... 187
Table 11-5: Comparison table for bandwidth consumption. ... 195
Table 11-6: RTT reported by pinging different network locations from the city Heraklion Greece. 196
Table 11-7: Summary of the dataset and the evaluation results for the task of onset detection for MIREX

2013 and for the present evaluation... 198
Table 11-8: Summary of the evaluation dataset and the results for the task of real-time audio to score

alignment, performed by the MIREX 2013 contest and for the present evaluation. 199
Table 13-1: Piecewise, instrument-class and global evaluation results for the offline audio segmentation

algorithm. .. 213
Table 13-2: Piecewise, instrument-class and global evaluation results for the real-time audio to score

alignment algorithm without HMM training (RTAS-INIT).. 214
Table 13-3: Piecewise, instrument-class and global evaluation results for the real-time audio to score

alignment algorithm after HMM training (RTAS-TRAINED). .. 215
Table 13-4: UDP traffic during the network experiment as captured by Wireshark 216

13

14

1 Introduction

Within the last decades, the ever-increasing availability of affordable computational

resources and networked media communications have thoroughly altered the way music

is created, distributed and analysed. Similarly to alternative information domains, the

impact of technological developments on musical content interactions is twofold: firstly

it has permitted to overcome well-known limitations of conventional music distribution

and handling and secondly it has led to the emergence of novel and previously

unforeseen affordances, offered to music consumers and music professionals. For

instance in the case of musicology, the digitization of recorded music and the wide

availability of tools for computational processing have allowed analysing music on the

sound level, rather than on the score level. Although sound is the most prevalent means

for analysing music, sound-analysis was neither feasible nor anticipated in traditional

musicology.

At the same time, recent technological advances have enabled new types of applications

and services that do not attempt to replicate or substitute conventional interactions with

music content. Currently, a large number of online music repositories, containing tens

of millions of music tracks and a notably large number of related applications and

services are considered commonplace for the average consumer. These services allow a

plethora of user affordances both in terms of individual man-machine interactions as

well as in terms of social and collaborative enactments that are not limited to music

distribution and sharing or mere exchange of musically informed metadata.

Personalized music recommendations (e.g. last.fm), identification of music tracks by

their acoustic fingerprint (e.g. SoundHound) and prediction of the popularity of one’s

own musical works (e.g. uplaya.com) present examples of novel functionalities offered

to music consumers and music professionals.

Yet a further perspective in this track of new developments relates to the primary

activity of music making, that of music performance. In musicology, technological

innovations have allowed for the computational modelling of expressive music

performance. Performer identification using rule-based models and machine learning

methods presents an example application of this research line. In terms of real-time

human-machine interactions, technological advancements have encouraged the

development of agents that are able to engage in collaborative music performance and

artificially accompany human musicians. Furthermore, in terms of human-to-human

musical interactions, the increasing availability of networked communications has

allowed for music collaborations taking place across geographical distance.

This dissertation aims at establishing a connection between computer accompaniment

and networked music performance systems. There are several possible ways to support

15

networked music performance by means of computer accompaniment or more generally

machine musicianship. This work focuses on experimenting with the idea of

substituting each performer of a distributed music ensemble with an artificial performer,

replicated across all remote peers. These replicas are constantly informed about the live

music performed at the corresponding network location and lively produce a faithful

rendition of the remote performance at the network sites of collaborating peers.

1.1 From score to audio-based musical analysis

Seen from a musicological perspective, the vast digitization of music sources and the

developments in area of audio signal processing have led to a sound-based rather than

the conventional score-based analysis of musical works. There are many reasons why

this discipline shift was essential. Firstly, in popular music, as well as in

ethnomusicological studies, there is no score at all describing musicians’ performance.

Although Western researchers have often transcribed orally transmitted music, these

transcriptions are often influenced by the musical orientation of the transcribing

researcher and may therefore be seen as one of several possible interpretations. Also, as

many of the crucial parameters of musical pieces do not have a standard notation,

transcribers often devise new symbols producing transcriptions that are often too hard to

read. This holds for scores trying to fix microtunings of non-Western musical scales and

of pitch articulations of any kind. It also holds for rhythmic deviations and

polyrhythmic structures. Most Western notation assumes a divisive rhythmic structure.

For music of the Balkan including Greece and some parts of Turkey, additive notations

have been proposed (Fracile 2003). For African music, ethnomusicological research

often uses the notion of elementary pulses introduced by Alfons Dauer (see e.g. Arom

1991). Still these are again Western interpretations and may not correspond to the

cognitive structure of music in the minds of the musicians.

Secondly, scores have only very rough notions of timbre. Only few performance rules

like sul ponticello or sul tasto or indications of musical instruments in orchestral scores

are given. Performance nuances adopted by musicians cannot be notated in a simple

way. Although over the last fifty years many investigations about musical timbre have

been performed, up to now there is no music theory of timbre widely accepted and used

in practice. Indeed, algorithms and results of Music Information Retrieval systems come

more closely to a representation of musical timbre.

So, naturally music on the sound level includes all aspects of pitch, rhythm, and timbre

and is therefore the ideal starting point for analysing music. The algorithms developed

over the last decades are quite robust in many ways and so feasible to address musical

features often fast and convenient, and, more importantly, with much more information

and content than traditional scores or oral transcriptions.

16

1.2 Texture, deviations and levels of music
performance

Early music theory analysts like Meyer (1956) discerned that musical meaning may be

found either within the structure of a musical work or when certain musical constructs

are referential and therefore informed by extra-musical concepts, actions, emotional

states and character. In fact, such references may originate from the listeners own

experience or they may be intentionally driven by the composer by facilitating extra-

musical narratives or quasi-linguistic references, as for example in programme music.

Meyer goes further to discern two types of psychological effects generated by music:

intellectual music perception (i.e. musical meaning generated purely by the musical

relationships set forth by the work of art) and expressional music perception (i.e.

musical relationships capable of exciting particular feelings and emotions of the

listener). Still for Meyer meaning is within the musical texture, the score of pitches

played by different instruments over time.

The other approach is to find meaning not in the texture itself but in the deviations in

terms of pitch and rhythm as proposed by Keil & Feld (1994). They call these

deviations Participatory Discrepancies to point to the social meaning of music

participating with the audience. Others had similar approaches discussing the

relationship between texture and its deviations (Stephen 1994, Gabrielsson 1982,

Timmers 2002, etc.). Many studies have been performed to follow this reasoning and

measure deviations in music, e.g. investigate the Jazz swing feel (Prögler 1995, Ellis

1991, Friberg and Sundström 2002, Waadeland 2001, Collier and Collier 2002, Rose

1998, among others), but also discuss pitch deviations (Gabrielsson and Lindström

2010, Folio and Weisberg 2006, Dannenberg 2002). It was found that much of the

information of musical performance is within these fine structures and that performing a

score strictly like a simple MIDI sequencer is neither realistic nor appreciated by

listeners.

Studies of expressive musical performance (Widmer & Goebl 2004) address two levels

of computational analysis: note-level and multi-level. Expression at the note level

concerns deviations in the timing, dynamics and articulation of the performance of

individual notes. Note-level observations are then supplemented by higher-level

expressive strategies related to shaping an entire musical phrase. These ideas of the

relationships between musical levels go back to Heinrich Schenker, who proposed an

‘Ursatz’ and ‘Urmelodie’, a basic texture and melody of music. His ideas form the basis

of the mainstream of American Music Theory nowadays called Schenkerism. Still in his

model there are no explicit rules for extracting the Ursatz from a given piece.

To go beyond Schenkerism, generative models have been developed, inspired by the

generative grammar of Noam Chomsky, most prominent the Generative Theory of

Tonal Music by Lerdahl & Jackendoff (1983). There, well-formatness rules according

to Gestalt principles are heuristically given to explain scores of Vienna Classical Music.

17

In terms of multilayer textures, prolongation and reduction rules are formulated. Also

Clarke (2001) claims that professional performers develop strategies for their

performance and that these strategies are generative as well as hierarchical and

especially so when a piece is performed from memory. At the same time Clarke

acknowledges that considering the knowledge processes of performers are entirely

hierarchical is rather implausible due to the high complexity of musical works. He

explains that it is more likely that some part of the entire structure is activated at any

given time, and that this part is related to the structure of isolated phrases or the

connection between successive phrases.

In agreement with Clark’s notion of structure and interpretation, Widmer and Goebl

(2004) consider examples of multi-level musical interpretation such as using abrupt

tempo turns combined with rather constant dynamics, combining crescendo with

ritardando, repetition of a certain phrase totally different in the second time, and so on.

Consequently, the perception of musical expression is realized on the structural

components within which it occurs. It is therefore of vital importance to preserve

contextual information when attempting to generate expressive performances, instead of

modelling isolated notes. Approaches to rendering expressive music performance are

further discussed in the main part of the dissertation, in section 9.1.

1.3 Musical anticipation in ensemble performance

As many problems of Music Information Retrieval have been approached quite

successfully today, like pitch detection, beat tracking, etc., many problems of musical

performance are still to be discussed. One is the correlations occurring between the

different levels of musical performance, the note or beat level and higher levels like

meter, bar, phrase or form. As already discussed, these problems appear often over the

last hundred of years or so, starting with Schenkerism and being discussed again in the

80’s with the Generative Theory of Tonal Music. It is reasonable to assume a

dependency between these levels and cognitive structures that act on performance

details on the note level by also considering the development of higher levels. So

models are needed to explain these relations or at least give a clue to basic problems and

features.

As higher-order levels also need to deal with expectations of what will come next not

only on a note but also on a phrase and further a form level, models explaining

performance also consider ensemble playing. When the members of an ensemble do

know each other’s performance styles very well, it is evident that the musicians know

when exactly a co-musician will play a note in advance, so before the note is actually

played. This type of intelligence emanates from different knowledge processes,

including the cognitive understanding of the performance plan (i.e. the score or any

alternative form of pre-existing arrangement), the built-up of the music piece up to that

time and finally the experience gained through past rehearsals of the ensemble.

18

Collectively, these processes allow hearing the performance of others in advance. This

type of anticipation is a fundamental characteristic of ensemble performance and is

further elaborated in section 9.2.3.

The idea here is that if a computational model would be able to perform such a task, it

would be very much suitable operate in networked collaborations, where the

transmission delay between performers across the globe is so large that it is audible to

the musicians playing together via computer networks. The models discussed in this

dissertation are not to answer all questions addressed above, still performances possible

with them in ensemble playing via a network gives some ideas about success and

restrictions and therefore may add some answers to this field.

1.4 Collaborative performance across distance

Networked Music Performance targets the implementation of systems that allow

musicians to collaborate from distance using computer networks. The concept of

dislocated collaborative performances dates back to the years of John Cage (Carôt,

Rebelo and Renaud 2007). However, realistic bidirectional music collaborations across

distance became possible only around 2000 with the advent of the Interrnet2 network

backbone (Chafe et al. 2000).

Although, there is evidence that such network infrastructures allow transatlantic musical

collaborations
1
 (Carôt and Werner 2007), networked music performance still remains a

challenge. The experimental nature of these performances shows that the main

technological constraints limiting wide use of NMP systems have not been defeated.

Specifically, the main technological barriers to implementing realistic NMP systems

concern the fact that these systems are highly sensitive in terms of latency and

synchronization, because of the requirement for ‘real-time’ communication, as well as

highly demanding in terms of bandwidth availability and error alleviation, because of

the acoustic properties of music signals. Moreover, an equally important challenge

relates to sustaining musician engagement in synchronous computer-mediated

collaboration in the absence of physical co-presence.

Meanwhile, in an adjacent research track, the concept of the ‘synthetic performer’

appears in mid 1980s through the inspiring works of Vercoe (1984), Vercoe and

Puckette (1985) and Dannenberg (1985). The motivation in these works is grounded on

a computer system which will be able to replace any member of a music ensemble

through its ability to listen, perform and learn musical structures in a way which is

comparable to the one employed by humans. The concept of the synthetic performer

was later extended to ‘machine musicianship’ (Rowe 2001). Relevant terms referring to

the capability of computers to demonstrate musical comprehension are ‘computational

audition’ (in an analogy to ‘computer vision’) and ‘machine listening’ (Rowe 1994).

1 http://networkmusicfestival.org/

http://networkmusicfestival.org/

19

Machine listening pictures a computer system that, in response to an audio input,

discards inaudible information and maps audible signal attributes to higher-level

musical constructs such as notes, chords, phrases. Machine listening is not constrained

to musical signals. It may also concern speech signals (i.e. speech recognition) as well

as environmental sounds. With respect to music, machine listening techniques are

relevant to the majority of Music Information Retrieval (MIR) tasks (Downie 2008).

Nevertheless, in comparison to MIR research, the verb ‘listening’ presents an implicit

bias towards the detection of musical constructs that temporally evolve within a music

piece. Hence, relevant MIR tasks include music transcription and score following, as

opposed to more general classification tasks, such as genre classification or mood

detection. Moreover, the implicit embodiment of artificially intelligent agents in

machine listening systems (Whalley 2009), qualifies them as being able to infer musical

knowledge while music is sequentially generated or acquired, therefore subsuming

online behaviour. Even further, when these systems are expected to react (e.g. perform)

in response to musical knowledge acquisition and do so within certain time constraints,

their requirement for real-time behaviour is additionally manifested. The relevant

literature refers to these systems as ‘real-time machine listening’ systems (Collins 2006)

and their capabilities are collectively referred to as ‘real-time machine musicianship’.

The challenges of implementing real-time musicianship in computer systems are

analogous to those of networked music performance systems. This fact presents a

compelling urge to investigate their evolution in parallel. In short, this dissertation will

explore the perspective of incorporating machine musicianship so as to meet the

requirements of networked music performance architectures.

1.5 Dissertation structure

This dissertation is organized in three parts:

The first part is entitled ‘Related Work’ and comprises three chapters that present

research initiatives and achievements in three domains that are highly relevant to the

present research: Networked Music Performance, Machine Musicianship and

Concatenative Music Synthesis. Examples of successful developments are presented

and compared with the objectives of the present work and the prototype system to be

developed.

The second part, entitled ‘Research Methodology’, describes the methodology that was

followed to realize the intended scenario for live music collaborations across the

Internet. It consists of five chapters. The first one, entitled ‘Research Focus and System

Overview’, elaborates on the research challenges being confronted as compared to

alternative research initiatives, and provides an overview of the system to be developed

with respect real-time audio analysis, network transmissions and re-synthesis of the live

performance of remote peers. As audio feature extraction is a pre-processing step in any

audio analysis task, the chapter that follows is dedicated to computational methods and

20

mathematical definitions of features that were investigated in the context of the present

work. The remaining three chapters describe the adopted methodology with respect to

three algorithmic processes, which are offline audio segmentation, real-time audio

analysis by alignment to a music score and segmental re-synthesis to take place at

remote network locations.

Then, the third part is entitled ‘Implementation & Validation’. Chapter 10 provides

details on the object oriented design and the implementation of the final prototype

system. All third party libraries and source code used to implement the final system

have been clearly indicted and appropriately referenced (section 10.4). The chapter that

follows reports on evaluation experiments therefore providing evidence for the

feasibility of the proposed communication scheme for NMP.

Finally, the concluding chapter consolidates the work presented in this dissertation,

outlines contributions and research achievements and presents future perspectives for

further work in the proposed research direction.

21

PART I:

RELATED WORK

22

2 Networked Music Performance

This chapter provides an overview of past, current and ongoing research initiatives on

NMP. Initially, the chapter elaborates on the origins of NMP and the follow-up

advancements. It presents research challenges and discusses the most important

impediment of distributed ensemble performances, that of communication latencies.

Following, the chapter concentrates on delineating fundamental issues in the

development of NMP systems with respect to software architectures and network

infrastructures. These issues are revisited in the final part of the dissertation providing

details on the implementation and validation of the system under investigation. Finally,

the chapter is concluded by discussing open issues pending further attention.

2.1 Early attempts and follow-up advancements

Physical proximity of musicians and co-location in physical space are typical pre-

requisites for collaborative music performance. Nevertheless, the idea of music

performers collaborating across geographical distance was remarkably intriguing since

the early days of computer music research.

The relevant literature appoints the first experimental attempts for interconnected

musical collaboration to the years of John Cage. Specifically, the 1951 piece “Imaginary

Landscape No. 4 for twelve radios” is regarded as the earliest attempt for remote music

collaborations (Carôt, Rebelo and Renaud 2007). The piece was using interconnected

radio transistors which were influencing each other in respect with their amplitude and

timbre variations (Pritchett 1993). A further example, the first attempt of performing

music using a computer network, in fact a Local Area Network (LAN), was the

networked music performed by the League of Automatic Music Composers, which was

a band/collective of electronic music experimentalists active in the San Francisco Bay

Area between 1977 and 1983 (Barbosa 2003; Follmer 2005). The League realised the

computer network as an interactive musical instrument made up of independently

programmed automatic music machines, producing a music that was noisy, difficult,

often unpredictable, and occasionally beautiful (Bischoff, Gold, and Horton 1978).

These early experimental attempts are predominantly anchored on exploring the

aesthetics of musical interaction in a conceptually ‘dissolved and interconnected’

musical instrument. The focus seems to be placed on machine interaction rather than on

the absence of co-presence, as in both of these initiatives the performers were in fact co-

located. Telepresence across geographical distance initially appeared in the late 1990s

(Kapur, Wang and Cook 2005) either as control data transmission, noticeably using

protocols such as the Remote Music Control Protocol (RMCP) (Goto, Neyama, and

23

Muraoka 1997) and later the OpenSound Control (Wright and Freed 1997), or as one

way transmissions from an orchestra to a remotely located audience (Xu et al. 2000) or

a recording studio (Cooperstock and Spackman 2001).

True bidirectional audio interactions across geographical distance became possible with

the advent of broadband academic network infrastructures in 2001, the Internet2 in the

US and later the European GEANT. In music, these networks enabled the development

of frameworks that allowed remotely located musicians to collaborate as if they were

co-located. As presented by the Wikipedia
2
, currently known systems of this kind are

the Jacktrip application developed by the SoundWire research group at CCRMA in the

University of Stanford (Cáceres and Chafe 2009), the Distributed Immersive

Performance (DIP) project at the Integrated Systems Center of the University of

Southern California (Sawchuck et al. 2003) as well as the DIAMOUSES project

conceived and developed at the Dept. of Music Technology and Acoustics Engineering

of the Technological Educational Institute of Crete (Alexandraki et al. 2008).

These systems permitted the realization of distributed music collaborations across

distance. In practical terms, this translates to audio signals generated at one site reaching

a different network site with an acceptable sound quality and within an acceptable time

interval, so as effectively resemble collocated music performance. Unfortunately, the

widely available Digital Subscriber Lines (xDSL) are not capable of coping with the

requirements of live music performance, thus musicians are not offered the possibility

to experiment with such setups.

2.2 Research challenges

Despite technological advancements and the proliferation of the Internet, networked

music performance still remains a challenge. The main technological obstacles to

implementing realistic NMP systems concern the fact that these systems are highly

sensitive in terms of latency and synchronization, because of the requirement for real-

time communication, and highly demanding in terms of bandwidth availability and error

alleviation, because of the acoustic properties of music signals. Latency is the most

important obstacle hindering the collaboration of performers and it is introduced

throughout the entire process of capturing, transmitting, receiving, and reproducing

audio streams. Existing latency may be due to hardware and software equipment,

network infrastructures, and the physical distance separating collaborating peers. Even

worse, latency variation, referred as network jitter, forms an additional barrier in

ensuring smooth and timely signal delivery. Furthermore, an additional challenge

relates to the actual experience of collaborative NMP and the value resulting from

making this practice a virtual endeavour in cyberspace. Specifically, networked media

may facilitate mechanisms such as sharing, feedback, and feed-through, thus catalyzing

2 http://en.wikipedia.org/wiki/Networked_music_performance

http://en.wikipedia.org/wiki/Networked_music_performance

24

not only how music is produced and marketed but also how it is conceived, negotiated,

made sense of, and ultimately created.

It is therefore plausible to distinguish between two types of challenges, which can be

summarised as technical impediments and collaboration deficiencies. Technical

impediments render currently available consumer networks inappropriate for NMP.

Consequently at the time of this writing, reliable NMP is restricted within academic

community boundaries having access to broadband and highly reliable network

infrastructures. As a result, NMP research is not offered to its intended target users and

thus has not yet revealed its full potential to music expression.

Collaboration deficiencies on the other hand, constraint the usability of these systems

hence discouraging the sustainability of user communities once these have been

established. The majority of professional musicians, although initially fascinated by the

idea of remote collaborative performance, become sceptic when asked to do so on a

regular basis. In their point of view, music performers should be able to see, feel, touch

and smell each other during a collaborative performance (Alexandraki and Kalantizs

2007). This reflection suggests that co-presence should be enforced by the

collaboration environment, by facilitating mechanisms that allow instant exchange of

information which is supplementary to the auditory or visual communication. Such

mechanisms must be tailored to the practice of real-time music making. For example,

online score generation, score scrolling or adaptable metronomes can provide valuable

tools for overcoming the lack of spatial proximity.

2.3 Realistic vs. Non-realistic NMP

A substantial body of research articles (Carôt and Werner 2007; Carôt, Rebelo and

Renaud 2007) classifies NMP systems by considering their approach to dealing with

audio latency, thereby distinguishing between realistic NMP solutions and latency-

accepting approaches. The first category refers to systems that aim to provide low-

latency conditions comparable to those of co-located performances. The distinguishing

characteristic of such systems is that the audio latency between performers is kept

below the so-called Ensemble Performance Threshold (EPT), which has been

psychoacoustically measured and estimated to be in the range of 20-40ms (Schuett

2002). The second category of NMP systems refers to solutions that accept

compromises in audio latency. These latency-accepting solutions are anchored either in

investigating how well users can adapt to the introduced latencies or in exploring how

to creatively manipulate latencies in experimental music performances (Cáceres and

Renaud 2008; Tanaka 2006).

The first systems to take advantage of the reliability of the Internet2 backbone in order

to conduct realistic NMP experiments were the Jacktrip application (Cáceres and Chafe

2009) and the Distributed Immersive Performance (DIP) project (Sawchuck et al. 2003).

Both of these systems focus on delivering high-quality and low-latency audio stream

25

exchange. Jacktrip is currently available as an open source software application, while

DIP focused on transmitting multiple channels of audio and video for the purpose of

creating an immersive experience. Although technically competent, neither of these

systems integrates different communication channels (audio, video, and chat) and

collaboration practices (community awareness, score manipulation, etc.) in a single

software application. As a result, they require extra effort on behalf of the performers to

cope with the graphic representations of the various running programs that are necessary

for efficient multimodal communication and collaboration. In multipart performances,

this task may be considerably bothersome.

Alternatively, non-realistic NMP approaches handle latency by requiring some or all of

the musicians participating in a performance session to adapt to their auditory feedback

being delayed with respect to their motor-sensory interaction with their musical

instruments. Systems of this kind, though less interesting academically, form the main

bulk of the currently popular solutions for NMP. Representative examples are

eJamming AUDiiO
3
 and Ninjam

4
. The former company has released versions that claim

to minimize latencies, whereas the latter system adopted an approach of increasing

latencies even further and requires performers to adapt to performing one measure

ahead of what they are hearing (Carôt, Rebelo and Renaud 2007).

In respect with adapting to latency, significant research has been carried out in the

neurological domain to investigate the relationships between auditory feedback and

motor interactions in music performance (Zatorre, Chen, and Penhune 2007). These

relationships are being studied for different kinds of music, which are characterized by

the speed with which pitches and rhythms change. As indicated by Lazzaro and

Wawryznek (2001), as the pipe organ has a sound generation latency of the order of

seconds, delays may be tolerable even in high values, depending on the participating

instruments and the kind of music performed. However, although musicians can learn to

adapt to constant latencies, they cannot adapt to varying latencies, caused by network

jitter, which is why some approaches (e.g. Ninjam) prefer to further increase latency so

as to reach more stable values.

2.4 Latency tolerance in ensemble performance

Since the advent of networked music collaborations a number of studies are being

performed for the purpose of effectively measuring latency tolerance in ensemble

performance. For Schuett (2002), this objective was defined as identifying an Ensemble

Performance Threshold (EPT), or “the level of delay at which effective real-time

musical collaboration shifts from possible to impossible”. Schuett observed that

musicians would start to slow down performance tempo when the communication delay

was raised above 30ms. However, he acknowledged that the actual threshold is likely to

3 http://www.ejamming.com
4 http://www.cockos.com/ninjam/

http://www.ejamming.com/
http://www.cockos.com/ninjam/

26

be affected by several characteristics of the music being performed such as tempo, genre

and instrumentation, most notably with respect to the impulsive properties of the

participating instruments.

This fact was further confirmed by the study of Mäki-Patola (2005), who presented a

review concerning asynchronies between motor interactions and generated auditory

feedback by one’s own instrument. They showed that asynchronies of up to 30ms do not

seem to cause problems for most acoustic instruments, while when dealing with

continuous sound instruments even latencies of 60ms may be tolerable and that the

absence of tactile feedback (as for example in the Theremin) may further increase

latency tolerance (Mäki-Patola and Hämäläinen 2004). In a further study, Chafe et al.

(2004) measured the rhythmic accuracy of a clapping session between two musicians

and showed that delays longer than 11.5ms would result in performers slowing down

tempo, while delays shorter than 11.5ms would cause performers to accelerate.

It is generally acknowledged that the amount of slowdown depends on the actual

performance tempo. Hence, Chew et al. (2005) used not only tempo difference but also

tempo scaling to characterise the effects of latency on ensemble performance. More

recently, Driessen, Darcie and Pillay (2011) observed an amount of tempo slowdown, of

approximately 58% for latencies between 30 and 90 ms, of two performers engaged in a

clapping session and attempted to model this effect using theories of coupled oscillators

with delay.

An interesting aspect concerning the effect of latency in the tempo of ensemble

performance would be to investigate how it relates to musical anticipation; an issue has

already been discussed in section 1.3. In the article of Chafe et al. (2004), it is explicitly

stated that if one considers the problem as simple as that of performer A waiting for

performer B who is again waiting for performer A, then we would observe a steadily

decreasing tempo, which is not really the case. The fluctuations of the observed tempo

are attributed to the fact that performers often anticipate, push back or intermittently

ignore one another. The article suggests that these phenomenona could be explained by

musical expressivity and cognitive models of rhythm perception and beat anticipation,

as for example elaborated by Large and Palmer (2002).

Assuming a value of 30ms for the EPT, which was observed in most studies, it is worth

noticing that this value is in fact lower that the 50ms echo threshold. This value is an

established threshold in several studies addressing audio perception. It is considered as

the integration time of the ear as well as the threshold of rhythm perception. Within this

time all sensory inputs of the ear are integrated in one sensation. So if two acoustic

events occur within a time interval of 50ms, they are perceived as a single event. In the

domain of experimental psychology, Albert Michotte (Card, Moran and Newell 1983)

showed that if the time separating the occurrence of two events is less than 50ms, then

the events are perceived as connected with immediate causality. With respect to audio

perception, the Haas effect (a.k.a. precedence effect) showed that the perceived

direction of a sound source will be altered, if it is followed by a second sound of a

27

different direction and within a time interval of 50ms (see for example Litovsky et al.

1999). Furthermore, it seems that 50ms also corresponds to the threshold of rhythm

perception. Bader (2013b) reports that one of the fastest tempi found in empirical

musicology is that of 1200bpm (beats per minute), which correspond to one beat per

50ms. This tempo was found in Uganda and is presumably generated by an interlocking

of several players to a common rhythmic pattern. The time interval of 50ms corresponds

to a frequency of 20Hz, the lower limit of audible frequencies. Hence, if two sound

events occur within less than 50ms the audible result would correspond to a pitch

alteration rather than affecting the perceived rhythmic pattern. Consequently, it is

reasonable to deduce that the value of the EPT should be less than the threshold of 50ms

for all musical events to be clearly perceived. This is in fact in agreement with the

threshold found in the previous studies.

2.5 Fundamentals of NMP system development

In NMP research, the introduced latency is often thought of as comprising local

latencies and network latencies. Respectively, two distinct entities are studied when

developing NMP systems: the software facilitated by music performers and the

communication medium, i.e. the computer network. In the majority of cases, NMP

progress is concentrated on software development. Issues that are inherently related to

the communication medium are less often addressed (e.g. Kurtisi and Wolf 2008;

Lazzaro and Wawryznek 2001).

2.5.1 Software applications

NMP systems are intrinsically related to teleconferencing systems. In teleconferencing,

delay requirements are dictated by the needs for speech-based human interaction, and

are of the order of approximately 150 ms (Wu, Dhara and Krishnaswamy 2007).

Compared to teleconferencing, NMP systems have a much lower tolerance to latency

and much higher requirements in audio quality. For example, in telephony speech

signals are sampled at the rate of 8 kHz with 8 bits per sample, while music quality is

generally considered unacceptable when sampled at a rate below 44.1 kHz,

corresponding to ten times more information in the case of monophonic audio encoded

using with 16 bits per sample.

Consequently, by overlooking their focus on musical interaction, NMP systems could

be categorized as “ultra low-delay” and “ultra high-quality” teleconferencing systems.

As in teleconferencing, NMP commonly necessitates the use of video, in addition to

audio communication. Evidently, musicians establish eye-contact to synchronize their

performance especially after a pause. Such visual communication is also time-critical

(Sawchuck et al. 2003). If the software application used by music performers does not

support video communication, then some external teleconferencing application (e.g.

Skype) is often facilitated for their visual communication (Chafe 2011).

28

2.5.1.1 Client Software

Typically, the NMP client, i.e. the software application used by music performers to

engage in distributed performances, implements the functionalities depicted on Figure

2-1.

In most cases, a dedicated Graphical User Interface (GUI) will be facilitated by

musicians to activate the different communication channels. Communication is

achieved by means of media (i.e. audio and video) transmission, media reception and

signaling. Signaling messages serve the purpose of easing user contact by automatically

configuring various connection parameters that are seamless to users. For example,

signaling alleviates from the need of knowing each other’s IP address and available

network ports, overcoming firewall issues such as NAT traversal and automatically

configuring media codec parameters. As a result, signaling allows offering user

functionalities such as maintaining a list of contacts, showing the status of other users

(e.g., online, busy, etc.) and initiating audio-visual communications without the need for

specialised configuration. Signaling is mostly used in videoconferencing systems, but

has also been used in the context of NMP research (e.g. Lazzaro and Wawrzynek 2001).

Figure 2-1: Typical components of an NMP client application.

With respect to media communication, Figure 2-1 depicts the processes that need to

take place prior to network transmission and subsequent to network reception. Each of

these processes adds to the local latency, hence having its own contribution to the total

mouth-ear latency, a common term in audio telecommunications.

Focusing on audio communication and the transmission direction, the delay introduced

by the audio capturing process can be further broken down to: the delay of the physical

distance of the performer to the microphone, that of analogue to digital conversion and

more importantly the buffering delay. Before further processing, a sufficient portion of

the signal needs to be obtained. The size of this portion corresponds to a time interval

commonly referred to as buffering or blocking delay. For example, in the case of

capturing monophonic 44.1kHz audio, a buffer of 64 samples corresponds to 1.4ms, 256

29

samples correspond to 5.8ms and 1024 samples correspond to 23.2ms. Hence, the size

of the audio buffer should be appropriately eliminated to correspond to latencies that are

sufficiently lower than the EPT.

In some cases, audio capturing is followed by compression encoding. Audio

compression aims at reducing the size of the information to be transmitted, hence

eliminating the required network bandwidth. It is straightforward to estimate that raw

monophonic CD quality audio (44.1kHz/16bit) corresponds to a bit rate of 705.6kbps,

while the stereo signal requires 1.41Mbps. Clearly, requiring more audio channels or

higher quality audio in terms of sampling rate or bit resolution further increases the data

rate and hence the required network throughput.

These bitrates cannot be continuously available during NMP. Thus, some NMP

approaches employ compression encoding to reduce the required bandwidth (e.g.

Polycom 2011; Kurtisi and Wolf 2008; Kraemer et al. 2007). Nevertheless, some NMP

systems, and especially those intended for use over academic networks (Alexandraki

and Akoumianakis 2010; Cáceres and Chafe 2009; Sawchuck et al. 2003) do not use

audio compression. The choice of whether or not to use audio compression is primarily

determined by the latencies introduced by the compression codec. Encoding latencies

comprise both delays caused by the algorithmic complexity of the encoder as well as

buffering delays. Compression schemes conventionally require a sufficient amount of

data (hence increasing the buffer size), so as to effectively encode data streams and

offer commendable data reduction.

Further to compression encoding, an NMP client may optionally perform multiplexing.

Multiplexing serves the purpose of combining multiple data streams in one stream, so as

to eliminate the need for using an additional network port, hence a separate

configuration at the receiving end, for each individual stream. For example multiple

streams of audio or video could be combined in a single stream. Multiplexing is

generally a lightweight process that does not significantly add to the overall latency.

Finally, before departing to the network the possibly encoded and multiplexed audio

chucks are wrapped in network packets. Apart from the main data, i.e. the payload,

network packets include header information. Header information is determined and

structured according to network protocol facilitated for media transmission. Header

information is necessary and among other things defines the destination of each network

packet. The network protocols used by NMP applications are briefly discussed in

section 2.5.2.2. It is important to note that header information adds to the total data rate,

hence increasing the required network bandwidth. A research initiative attempting to

reduce header overhead in NMP is presented by Kurtisi and Wolf (2008).

It can be seen from Figure 2-1, that the inverse processes takes place in the direction of

media reception. Although processes such as audio decoding and audio rendering are

more lightweight than encoding or capturing, media reception is not necessarily more

efficient than media transmission. This is due to the fact that in the event of multiple

30

network nodes participating in an NMP session, a separate reception thread is

instantiated for each one of the remaining collaborators.

2.5.1.2 Server Software

Although a number of NMP systems facilitate peer-to-peer communication topologies

(e.g. Jacktrip), some approaches facilitate a server so as to ease media communications.

The server may undertake various duties, such as media transcoding, media

synchronization or media mixing (Kurtisi and Wolf 2008; Alexandraki and

Akoumianakis 2010). As each of these functionalities has a certain amount of

computational complexity, hence requiring increased processing resources that may

further add to the overall latency, it is most often preferred to reduce server

functionality to mere forward the incoming media streams to the intended recipients

This mechanism known as media relaying.

Figure 2-2: Peer-to-peer vs. centralised media communication in NMP.

As shown on Figure 2-2 and experienced in the DIAMOUSES architecture

(Alexandraki and Akoumianakis 2010), if N network nodes participate in an NMP

session, then a peer-to-peer topology requires each node to transmit the media streams

locally produced to the remaining N-1 nodes, and at the same time receive the streams

from the remaining N-1 participants. This is particularly burdensome and even more so

in widely available network infrastructures (i.e. xDSL), in which the uplink suffers from

serious bandwidth limitations. An alternative is to use the star topology depicted in

Figure 2-2. In this case, each network node transmits the streams produced locally to a

single network location, i.e., to the server. The responsibility of this server is to relay

each received stream to the remaining nodes in a single-source-multiple-destination

communication scheme. This topology offers the advantage of significantly relieving

the client node from high outbound bandwidth requirements.

A further elimination of bandwidth requirements may be achieved by adopting the third

topology depicted in Figure 2-2. In this topology, the server does not relay the received

streams, but mixes them to produce a different stream that contains contributions from

all participants. Although this topology reduces the requirements in inbound bandwidth

availability (in addition to outbound), it suffers from a serious disadvantage: the

possibility of participants to control their audio-mix is eliminated. Especially in music,

this may prove to be a serious deficiency, hindering the collaboration of music

31

performers. During live performances, musicians may need to occasionally increase the

audio level of certain ensemble members or even mute or solo the playback of one of

them. Evidently, the position of musicians in orchestral settings is deliberately such that

musicians collaborating more closely, e.g., woodwind, strings etc. are positioned closer

to each other. An alternative to providing a single mix to all participants, would be to

require that an audio mixing server provides a different mix for each participating

network node, which can controlled by that node. Unfortunately, this approach requires

a great amount of signal processing performed on the server, as all streams need to be

decoded, mixed or composited according to each participant’s requirements and then re-

encoded. This scheme not only requires considerable processing resources but also

introduces a considerable amount of delay. For all these reasons, it is generally more

efficient to adopt the solution depicted in the centre of Figure 2-2, which is for example

realized in the Ninjam framework
5
.

2.5.2 Network infrastructures

Besides software architectures, the prevalent problems of NMP are related to the actual

medium of communication, the network. The next section describes these problems in

more detail, while the section that follows gives a brief description of the network

protocols that are most commonly facilitated in NMP.

2.5.2.1 QoS issues

The term Quality of Service (QoS) is used to describe the means to prioritize network

traffic, so as to help ensure that the most important data gets through the network as

quickly as possible. To quantitatively measure QoS several related aspects of the

network service are often considered, such as error rates, network throughput,

transmission delay, jitter, etc. In the following, QoS is discussed in terms of bandwidth

availability, latency and jitter as well as packet loss.

2.5.2.1.1 Network throughput

Bandwidth availability or network throughput refers to the capacity of the network to

accommodate certain data rates. As already discussed, using raw CD quality audio

requires a continuous throughput of more than 1.41Mbps (as this value excludes header

overhead). Due to varying load from disparate users sharing the same network

resources, the bit rate that can be provided to a certain data stream may be too low for

real-time multimedia services if all data streams get the same scheduling priority. When

the load of the network is greater than its capacity can handle, the network becomes

congested. Characteristics of a congested network path are queuing delays, packet loss

and sometimes the blockage of new connections.

2.5.2.1.2 Latency and Jitter

Network latency refers to the time elapsed for a network packet to reach its intended

destination. In the widely used connectionless packet-switching network connections,

5 http://www.cockos.com/ninjam/

http://www.cockos.com/ninjam/

32

the routing path of a network packet is neither known beforehand nor can be controlled.

Depending on the actual transmission path, a packet may require a long time to reach its

destination, because it may be held up in long queues, or take a less direct route to avoid

congestion. This is different from throughput, as the delay can build up over time, even

if the throughput is almost normal. In some cases, excessive latency can render the

application unusable.

Measuring network latencies is not a trivial task especially due to synchronization

inaccuracies and clock drifts. Network latencies are often measured either as one way

packet delivery or as round trip delay times. One way latency refers to measuring the

time elapsed between sending a packet from one location and receiving it at a different

location. In this case, accurate measurements require synchronizing the clocks of the

transmitter and the receiver, which is a difficult task in its own behalf. Alternatively, the

parameter Round-Trip Time (RTT) refers to the time elapsed between sending a packet

to a remote location and receiving it back. In this case, time is measured from a single

point and the need for synchronization is eliminated. However, measuring the actual

transmission latency is still inaccurate, since the RTT values contain the time taken by

processing the packet at its destination and before sending back the response. The ping

utility offers a solution to this problem as it performs no packet processing at the the

receiving end. It merely sends a response back as soon as it receives an ICMP packet.

The Internet Control Messaging Protocol (ICMP) is the protocol used by the ping

utility. However, ICMP packets are normally given low priority by network devices

such as routers and switches. Hence, their delivery may be delayed by queuing them

between subsequent hops which does not commonly occur in the transmission of actual

TCP or UDP data packets. For this reason, RTT values reported by the ping utility

present a theoretical maximum in the delivery of actual TCP or UDP packets. The ping

utility is the most frequently method for measuring communication latencies in NMP

and has also been adopted in the evaluation of BoogieNet, the prototype system under

investigation (section 11.3.2).

Further to latency, a more important obstruction in NMP and teleconferencing

applications stems from the fact that the different network packets will reach their

destination with different delays. Variation in the delivery time of different packets is

known as network jitter or more formally Packet Delay Variation (PDV). PDV may be

due to queuing network packets on different network devices across the transmission

path, or due to packets being driven in different routing paths. Since media playback

requires a steady pace, PDV must be eliminated either in the network, or at the end host.

Playing the received packets at a steady pace can compensate for network PDV.

Reducing PDV in the network requires QoS guarantees and stable routes, which are

generally not feasible on the Internet on an end-to-end basis.

2.5.2.1.3 Packet Loss

Finally, packet loss occurs when one or more packets of data travelling across a

computer network fail to reach their destination. In Wide Area Networks packet loss is

33

frequently observed and caused by congested network paths or data corruption by faulty

networking hardware across the path. In the case of audio, losing network packets will

result in audio dropouts on the waveform rendered after de-packetisation and possible

de-multiplexing and decoding (see Figure 2-1). The distortion introduced by audio

dropouts can seriously hinder the collaboration of music performers.

Some network transport protocols, such as TCP, provide mechanisms for reliable

delivery of packets. In the event of a lost packet, the receiver asks for retransmission or

the sender automatically resends any segments that have not been acknowledged. This

method of error handling is known as Automatic Repeat reQuest (ARQ). Clearly, ARQ

is not an appropriate error correction method for real-time multimedia communications,

as in VoIP or NMP the packets received after retransmission will be outdated. This is

the main reason why, instead of TCP the more lightweight and less reliable UDP

transport protocol is preferred in applications involving real-time media

communications. Protocols such as UDP provide no mechanisms for recovering lost

packets. Applications that use UDP are expected to define their own mechanisms for

handling packet loss.

2.5.2.2 Network protocols

The User Datagram Protocol (UDP) is one of the core members of the Internet

Protocol suite (the set of network protocols used for the Internet). With UDP, computer

applications can send messages, in this case referred to as datagrams, to other hosts on

an Internet Protocol (IP) network without prior communications to set up special

transmission channels or data paths.

Figure 2-3: The format of the IP header. The numbers on top indicate the number of bits required for each

field. The fields appearing on the 6
th

 layer are optional.

In comparison to Transmission Control Protocol (TCP), UDP is a simpler message-

based connectionless protocol. Connectionless protocols do not set up a dedicated end-

to-end connection. Communication is achieved by transmitting information in one

direction from source to destination without verifying the readiness or state of the

receiver. Compared to TCP, UDP does not offer any mechanism for ensuring the

delivery of network packets to its intended recipient, which is why UDP is considered

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol

34

an unreliable protocol. Its main advantages stem from the fact that it is a lightweight

protocol, which does not require verification of receiver and re-transmissions and

therefore results in lower transmission latencies and eliminated network jitter. For this

reason it is the most widely used transport layer protocol in time-critical applications,

for which fast delivery is more important than data loss. Indeed, for Voice over IP,

videoconferencing and NMP applications a packet becomes useless if it arrives out of

time, and hence there is no need to ensure packet delivery at the expense of increasing

transmission delays.

Figure 2-4: The format of the UDP header. The numbers on top indicate the number of bits required for each

field.

A UDP datagram is carried in a single IP packet and is hence limited to a maximum

payload of 65,507 bytes for IPv4 and 65,527 bytes for IPv6. To construct a network

packet one needs to include an IP header followed by a header concerning the transport

layer protocol, such as TCP or UDP. IP header information requires 24 bytes as shown

on Figure 2-3, or more commonly 20 bytes as the optional fields ‘Options’ and

‘Padding’ rarely used. Out of the various fields ‘Source Address’ defines the IP address

of the machine that delivers the network packet, while ‘Destination Address’ defines the

recipient of information.

As shown on Figure 2-4, UDP header information comprises 8 bytes. To transmit a

UDP datagram, a computer completes the appropriate fields in the UDP header and

forwards the data together with the header for transmission by the IP network layer. The

UDP header consists of four fields each of 2 bytes in length:

 Source Port: UDP packets use this number to indicate the service on the local

computer from which the network packet originated.

 Destination Port: UDP packets use this number to identify the service to which

the network packet needs to be delivered. In other words, as two networked

computers may establish connections for a number of different applications and

services, port numbers are used in addition to IP addresses, so as to indicate the

application for which each packet is intended

 UDP length: The number of bytes comprising the combined UDP header

information and payload data

 UDP Checksum: (A checksum to verify that the end to end data has not been

corrupted by routers or bridges in the network or by the processing in an end

system. This allows the receiver to verify that it was the intended destination of

the packet, because it covers the IP addresses, port numbers and protocol

35

number, and it verifies that the packet is not truncated or padded, because it

covers the size field. Therefore, this protects an application against receiving

corrupted payload data in place of, or in addition to, the data that was sent. In the

cases where this check is not required, the value of 0x0000 is placed in this field,

in which case the data is not checked by the receiver.

NMP or more generally teleconferencing applications may either utilise the UDP

protocol for media connections as for example in Jacktrip (Cáceres and Chafe 2009) or

may use the Real-Time Transport Protocol (RTP) which is built on top of UDP. In

comparison to UDP, RTP was specifically designed for delivering real-time multimedia

and has built in capabilities for detecting out of sequence packets and jitter

compensation. Hence, an application wishing to make use of these features to

compensate for poor QoS may prefer to use RTP. The RTP is the most frequent choice

in NMP system development (Alexandraki and Akoumianakis 2010; Kurtisi and Wolf

2008; Sawchuck et al. 2003). Explaining the specificities of the RTP is beyond the

scope of this chapter. Nevertheless, it is important to keep in mind that RTP headers

have a minimum size of 12 bytes.

Figure 2-5: Structure of an Ethernet frame carrying an RTP packet. The numbers indicate the minimum size

for each header.

When calculating header overhead it important to remember that each network packet is

encapsulated in an Ethernet Frame. Each Ethernet frame contains the network packet

and its own frame header. The frame header contains information about the physical

layer of the network, in other words the hardware devices involved in the transmission

of a network packet. Specifically, every time data is transferred from one network

location to another, a number of hardware devices such as routers and switches are

visited. Each step from one device to another is called a hop and the Time to Live (TTL)

field of the IP header (which can be seen in Figure 2-3) defines the maximum allowed

number of hops, which is decreased by one at every hop. Once the maximum number of

hops is reached (i.e. when TTL becomes zero) the frame is discarded. This prevents data

from endlessly travelling within networks. The header of the Ethernet frame contains

the physical (MAC) addresses of the source and the destination device. These fields are

changed at every hop. Frame header information, permits tracing the route of a network

packet. Hence, although the frame header changes among successive hops, the network

36

packet (e.g. UDP or RTP packet) remains unchanged until it reaches its final

destination.

The structure of a complete Ethernet frame that contains an RTP packet is shown on

Figure 2-5. It can be seen that when using RTP, the minimum size of the RTP headers is

54 bytes, while in plain UDP header overhead amounts to 42 bytes. Header overhead

significantly adds to the required bandwidth. Kurtisi and Wolf (2008) studied

investigated the possibility of reducing header overhead in NMP communications.

2.6 Open issues in NMP research

NMP is a multifaceted endeavour with many open research challenges across various

disciplines. This chapter attempted to portray the present status of NMP research and to

sketch challenges and new perspectives as revealed through continuous research and

development. The progress of NMP research largely depends on network technologies

and the way they are marketed. Computer networks have reached a point which allows

for real-time uninterrupted high fidelity audio-visual signal flows. However, such

networks have not yet become widely available to the average consumer. This fact

inhibits NMP research from progressing to the next level, as the systems that have been

developed have not reached their intended audience and therefore user requirements for

forming and sustaining NMP communities have not been effectively analysed.

One possible solution to accelerate availability of NMP systems is attempted at the

audio coding domain. At present, a substantial body of research efforts are being

invested in developing compression algorithms intended to eliminate the requirements

in network bandwidth, without significantly affecting audio quality or overall

processing latency. Examples of such work are presented by the Soundjack application
6
,

which uses the Fraunhofer Ultra-Low Delay (ULD) Codec (Kraemer et al. 2007) and

the integration of the WavPack codec by researchers at the Technical University of

Braunschweig (Kurtisi and Wolf 2008). Increasingly, the development of new audio

codecs is taking into account the real-time requirements of NMP systems. The royalty

free Constrained-Energy Lapped Transform (CELT) codec (Valin et al. 2009) provides

evidence of this tendency. The CELT codec has been recently integrated in the OPUS

codec, which, at the time of this writing, provides a de facto standard for interactive

audio applications over the Internet (IETF 2012).

Further, to network availability and audio compression, man machine interfaces must be

studied so as to meet the requirements of musicians and provide intelligent

collaboration environments that will alleviate performers from the distraction caused by

being physically separated. Clearly, different contexts of use raise different

requirements in terms of the interaction practices that must be supported. For instance,

in remote music-learning scenarios the research focus is on providing appropriate

6 http://www.soundjack.eu

http://www.soundjack.eu/

37

pedagogical paradigms and on exploring methods for the evaluation of student progress

(Ng and Nesi 2008). Furthermore, in collaborative music composition (Hajdu 2005), a

key challenge relates to representing musical events effectively and devising appropriate

musical notations (Hajdu 2006). In the context of the DIAMOUSES framework

(Alexandraki and Akoumianakis 2010) research investigations focused on

accommodating diverse user requirements in music performance across different

collaboration scenarios such as rehearsals, stage performances and music lessons.

Graphical User Interfaces such as the one depicted in Figure 2-6 present innovative

approaches in dealing with collaboration deficiencies (see section 2.2). Such interfaces

integrate the audiovisual communication of musicians with shared collaborative objects

(e.g. a shared music score or metronome) that allow synchronous manipulations

accessible to all participants, hence maintaining a sense of user focus and promoting a

collaborative perspective. Computer Supported Collaborative Work (CSCW) is a focal

point of research for several application domains, including e-gaming, e-learning and

enterprise groupware, to name a few. The limited availability of reliable NMP systems

does not provide sufficient motivation for instantiating CSCW research in distributed

music performances.

Figure 2-6: A GUI offering virtual collaboration capabilities in NMP.

In the light of the above, a significant contribution to easing performers’ collaboration

across distance can be made through the development intelligent user interfaces that are

capable of extracting musically meaningful information from the audio signals

38

generated and exchanged in the course of a distributed performance. For example, the

‘performance worm’ devised by Langer and Goebl (2003) provides a visualization of

live performances, represented as the trajectory of a point on a two dimensional plane

depicting loudness versus tempo. The depicted trajectories are automatically derived

from audio analysis. Such real-time visualisations of the expressive performance can

create performance anticipations that may greatly enhance the collaboration of

musicians, for example in the presence of high communication delays or in the absence

of adequate visual contact.

Alternative possibilities may be devised by examining different collaboration scenarios

and contexts of use. Ultimately, incremental progress on machine listening systems and

computational music performance can directly translate to intelligent interfaces for

NMP. As further discussed in the next chapter, functionalities such as automatic music

transcription, automatic score scrolling and computer accompaniment may reveal their

full potential in the context of remote musical collaborations.

39

3 Machine Musicianship

Machine listening refers to the computational understanding of sounds (including

music, speech as well as environmental sounds) at a comparable level to the sound

understanding occurring in humans. In comparison, Machine musicianship focuses on

musical sounds, assumes musical machine listening capabilities and addresses

supplementary musical skills such as performance and composition. In line with human

musicianship, these skills require knowledge of musical concepts, which may be

inherent, learnt or developed through practice.

This chapter presents the overall research directions and perspectives in two areas.

Specifically, the first section discusses the general algorithmic processes taking place in

machine listening systems, while the second section presents previous and state-of-the-

art research achievements in machine musicianship for different musical skills which

are: music transcription, score following, audio synchronisation and computer

accompaniment. Finally, the third section attempts to track down research initiatives

that are relevant to the present work, hence investigating machine musicianship in

distributed performance context.

3.1 Machine Listening Approaches

Machine listening research deals with the computational modelling of sound

understanding. The objective of this area is to implement systems that are capable of

generating meaning in response to sound input, similarly to the cognitive understanding

of sound carried out by human listeners. In attempt to further refine the notion of

meaning, media theorist Hansen (2006) elucidates that the human body acts as a central

point for various sensory modalities. It essentially selects and subtracts from the totality

of images available and it is this act of subtraction and selection which is a meaning-

giving act that ‘in-forms’ our perception of information.

Equivalently, digital media represent the sensory stimuli of models of computational

intelligence, and indeed there is strong evidence in a plethora of information domains,

including music (Toiviainen et al. 1998; Bharucha & Todd 1989), that these models are

successful in deriving perceptually meaningful information. However, although

meaning-giving in computer intelligence may be successfully modelled, this does not

mean that the mechanisms employed by humans are similar to the algorithms employed

in computational intelligence. For example, although Artificial Neural Networks are

inspired from biological neurons, their biological counterparts are significantly more

complex. In a similar line, Hidden Markov Models use observation and transition

probabilities to perform abstraction of digital stimuli; nevertheless, it is not clear

40

whether similar processes occur in humans whose perception and cognition is strongly

influenced by complex psychological, physiological and neurological processes.

To this end, two distinct trends may be identified in machine listening research. The

first relates to initiatives developing computer models that simulate certain

characteristics of auditory perception (e.g. tonal or harmonic expectancies, judging

timbral similarities etc.) with the aim of understanding musical perception and

cognition, while the second relates to developing systems that extract perceptually

meaningful information for further use. Although the ultimate objective is common in

the two perspectives (i.e. to enable computers manipulate sound at a comparable level to

humans), however the adopted methodologies are profoundly different.

Computational simulations of the auditory perception commonly entail dynamic models

that describe perception as adaptation and synchronization, where sometimes only one

step is needed from a low-level to high-level feature estimations. Examples are neural

networks, both of the connectionist side of the perceptron model (e.g. Bharucha &Todd

1989; Gjerdingen 1990) and the Kohonen map side (e.g. Leman & Carreras 1997;

Toiviainen 1998; Kostek 2005) of self-organizing maps, modelling tonality, musical

phrases, or timbre perception. A similar idea about modelling memory in music that of

an echoic short-term memory, where a perceptual input is echoing in the brain, like an

impulse echoes in a concert hall, modelling short-time memory (Snyer 2000). This is

similar to the perceptron model, as in both an input echoes through the model until it

has decayed. A relatively new approach is the free-energy principle (Friston 2010;

Friston et al. 2010) which is a self-organizing perception model based on the principle

of minimizing surprise when adapting an internal state to a perception, taking memory

and also motion into consideration.

On the other hand, the development of computational models that aim at extracting

perceptually meaningful information from audio signals adopts a fairly application

oriented bottom-up approach, in which data reduction occurs in successive steps thereby

reducing the dimensionality of sound to higher level constructs. Such systems are said

to perform Computational Auditory Scene Analysis (CASA), a roughly coincident area

of research that aims at identifying the various sound events contained in a mixture of

sounds. Challenges arise when these events are simultaneous, masked by other sounds

or highly distorted.

According to Wang (2007), in humans scene analysis entails two basic perceptual

processes: the segmentation of a scene into a set of coherent patterns (objects) and the

recognition of memorized ones. Following, in the same article Wang states:

Human intelligence can be broadly divided into three aspects: Perception, reasoning, and

action. The first is mainly concerned with analyzing the information in the environment

gathered by the five senses, and the last is primarily concerned with acting on the

environment. In other words, perception and action are about input and output,

respectively, from the viewpoint of the intelligent agent (i.e. a human being). Reasoning

involves higher cognitive functions such as memory, planning, language understanding,

41

and decision making, and is at the core of traditional artificial intelligence. Reasoning also

serves to connect perception and action, and the three aspects interact with one another to

form the whole of intelligence.

In line with Wang’s comprehension of human intelligence, machine listening systems

manifest their intelligence in three sequential processes, namely:

 Perception: Detection of sound objects by segmenting an auditory scene into its

constituent events based on the variation of a number of perceptually relevant

acoustic features

 Reasoning: Identification of the context of one or more sound objects by

recognising patterns that have been registered and memorised in the course of

prior initialisation or training

 Action: deliver custom functionalities based on the identified patterns

The content of sound to be processed in machine listening systems commonly falls in

one of the three categories, namely speech, environmental sound and music or

combinations of these. As depicted in Figure 3-1, although for different domains the

structural components of sound differ, the methodology for reducing the dimensionality

of an input signal to acquiring information that is semantically meaningful for the

application at hand is fundamentally the same. Starting from an audio signal, feature

extraction takes place so as to compute a number of acoustically relevant properties

corresponding to a small frame of audio. Following feature extraction, individual sound

events carrying structural information of interest are detected through a process called

temporal segmentation. Temporal segmentation concerns the detection of the

boundaries of sound events (i.e. onset and end-times) using the temporal behaviour of

acoustic features. These features must be carefully selected in order to efficiently reveal

segment boundaries. For example a sudden elevation of noise levels is typically caused

by a mechanical excitation and is often followed by a stationary sound event.

Consequently, acoustic features representing noisy components in the signal are highly

appropriate for detecting the onsets of sound events.

Once sound events have been detected their frequency or timing of occurrence is used

by pattern recognition methodologies to convey their context. Such contextual

information characterises the information content carried by longer signal portions

(compared to audio segments) or the audio signal in its entity. Depending on the target

application, different levels of information content are used to determine or initiate

system actions. Some applications use the output of pattern recognition to offer user

functionalities while others, especially those requiring action that is constraint within

time limits, use directly the output of the temporal segmentation process. The following

paragraphs elaborate further on these processes and how they are realised for different

audio domains.

Most feature extraction schemes rely on a frame-based analysis, where overlapping

audio frames of 10–100 ms are windowed and used as the input for feature extraction.

In such short frames, dynamic audio sources tend to be stationary therefore allowing to

42

evaluate the instant behaviour of a signal. Acoustic features of interest are selected so as

to reveal various perceptual qualities conveyed through the temporal (e.g.

autocorrelation, zero-crossing rates, signal energy etc.) or spectral evolution (e.g.

spectral flux, chroma features, brightness, MFCCs etc.) of the signal. Several features

have been proposed for different target applications. In general, feature selection does

not substantially differ in speech, music and environmental audio applications.

Figure 3-1: Perception, reasoning and action in machine listening systems.

Temporal segmentation aims at finding the fundamental elements constituting an audio

stream. In speech these elements are phonemes, syllables words or sentences, in music

they are notes, chords, beats, phrases while in environmental sounds the more generic

term ‘sound event’ is used to refer to a sound of relatively short duration, while the term

‘semantic scene’ is used to refer to the ambient sound of a certain environmental setting

(e.g. supermarket, meeting room, library etc.) (Wichern et al. 2010). The resulting audio

segments are annotated using the information they convey. For instance in music this

information is pitch, loudness or duration, while in speech it is the textual representation

of a phoneme or a syllable.

Further to temporal segmentation, pattern recognition methodologies are employed so

as to infer higher level information by finding a contextual label yielding the maximum

probability for a given pattern of segments. In speech for example, patterns of

phonemes or words are used for identifying qualities such as language or dialect (Rouas

2007), speaker identity (Srinivasan 2012) or speaker emotion (Fu, Mao and Chen 2008).

43

In environmental sounds sequences of sound events are used to determine the presence

of certain types of human or other activity such as footsteps (Radhakrishnan, Divakaran

and Smaragdis 2005), car collisions, gun shots (Cai et al. 2006) or heart and lung

sounds (Yadollahi and Moussavi 2006) for medical applications. In the music domain,

pattern recognition applied on note, beat or phrase sequences leads to the identification

of contextual properties such as rhythmic structures (Goto 2001a), instrumentation

(Tetsuro et al. 2005), genre (Silla Koerich and Kaestner 2008) or mood (Oliveira and

Cardoso 2010) for a given piece of music.

Finally at the application level, Figure 3-1 shows potential functionalities offered by

systems receiving and analysing auditory input. In speech listening, prominent

functionalities are automatic speech recognition (Scharenborg 2007) and speech

restoration from noisy, reversed or corrupted sources (Srinivasan and Wang 2005). In

environmental audio, popular application domains include security surveillance (Harma,

Mc inney and Skowronek 2005), traffic monitoring (Fagerlönn and Alm 2010),

medical applications (Yadollahi and Moussavi 2006) and urban planning (Hedfors et al.

1998.). Generally, environmental auditory scene analysis is commonly used in

situations where visual information is either costly (e.g. inside the human body), limited

(e.g. dark places) or too broad (e.g. countryside), or alternatively in multimodal systems

in which monitoring and analysing the auditory information channel complements the

visual or some other sensory channel (Sanderson et al. 2004).

3.2 Music listening and relevant computational
affordances

In the music domain, machine listening functionalities are similar to those addressed by

content-based music information retrieval. Content-based MIR approaches focus on

analysing music sources, which may be either music signals or symbolic representations

(MIDI, score etc.), so as derive music semantics characterising these sources (Casey et

al. 2008). The connotation ‘content-based’ is facilitated so as to distinguish from

‘context-based’ MIR approaches, in which musical metadata, such as lyrics, artists’

cultural background, band biographies etc., useful for indexing music, are derived by

employing Natural Language Processing (NLP) techniques on web-mined resources

(Schedl et al., 2011).

According to Rowe (2001), the term musicianship refers to the collective intelligence

relating to musical concepts that underlie the skills of listening (analysis), performance

and composition. Subsequently, machine musicianship refers to computational

programs designed to implement any of these skills. Relevant affordances of machine

musicianship systems that are potentially useful in distributed performance settings

include:

 Automatic Music Transcription

 Audio-to-score alignment

44

 Audio-to-audio alignment

 Computer Accompaniment

The following subsections discuss applications, challenges and methodologies related to

these capabilities and elaborate on previous and state-of-the-art research initiatives and

computational approaches.

3.2.1 Automatic music transcription

Automatic Music Transcription (AMT) refers to the possibility of generating a music

score given an audio signal. A music score, whether using the notation of the Western

music tradition or some other notation such as chord symbols, piano rolls or tablatures,

should, as a basic requirement, define the pitch, the timing and the musical instrument

for each music event in a piece of music. In comparison with humans, AMT systems are

required to perform equally or better than a well-trained and gifted musician. This is

made apparent if we consider that when listening to a piece of music, we can perceive

the melodic line, tap or sing along, recognise long-term structural parts such as chorus

and verse but more precise information such as timing of notes, harmonic changes and

detailed description of all concurrent melodic lines is less consciously perceived. As

generating a complete transcription of a music piece can be an extremely challenging

task, often impossible to achieve and especially in cases of polyphonic and poly-

instrumental music recordings, the objective of these systems is commonly constrained

in finding as many musical events as possible (complete transcription) or finding the

most dominant part of the sound such as the drum strokes or the bass-line (partial

transcription). An elaborate account of AMT approaches may be found in (Klapuri and

Davy 2006).

Regardless the approach, an AMT system is required to detect pitch, relative loudness

and timbre of sound events. Clearly, all of these attributes are related to human

perception and the correspondences with their physical counterparts (i.e. sound) are not

straightforward. Generally, the mapping of physical stimuli to psychological percepts,

since Fechner (1860), is called psychophysics and in terms of audition, psychoacoustics.

This mapping is not at all trivial. The psychological perception of pitch corresponds to

multiple acoustic features, most prominent the frequency presented, but also the

amplitude of this frequency. These two physical dimensions, frequency and amplitude,

are independent or orthogonal one to another on the physics side. Still they are no

longer independent in perception, where an increase of the amplitude of a sine wave

with a constant frequency leads to a perception of an increasing pitch (for a general

description and model see Garner 1974). Such phenomena are found nearly everywhere

in music perception, with pitch, timbre, rhythm, etc. Additionally, perception can also

be ambiguous, depending on listeners. As an example of pitch perception, Goldstein

proposed a statistical model of pitch perception, based on the harmonic overtone

content, amplitude, and slight frequency deviations (Goldstein 1973). Still pitch

perception may be simplified, as listeners tend to correct pitches which are deviating

45

from a ‘perfect’ pitch by categorizing tones into pitch classes, such as the twelve semi-

tones of an octave in Western music. So in AMT, to identify the pitch class does not

necessarily require to get into the details of pitch perception when it comes to

transforming the sound to a MIDI representation. Still, polyphonic texture instruments

or the singing voice tend to perform simple interval ratios using free intonation, in

which case it may be important to detect the precise pitch. Timbre on the other hand is

more difficult to model, as there is no single leading feature to account for the

instrument producing the sound. Timbre therefore is often found to be multi-

dimensional (Grey 1977; Bader 2013a), thus represented as vectors of acoustic features.

In addition to pitch and timbre, an AMT system is expected to account for the rhythmic

properties of a music piece, as these are depicted by the relative duration of note events.

In fact, instead of note durations, rhythm detection uses the variation of the Inter-Onset

Intervals (IOI) defined as the time intervals between the beginnings of two successive

notes (Goto 2001a). Although important for music transcription, note duration itself

does not always provide valuable indicator to rhythm detection. This is because in

percussive sounds with fast exponentially decaying envelopes, note durations are not

uniquely defined and in non-percussive sounds durations may be altered due to

performance articulation, for example in using legato and staccato notes. Evidently,

onset detection and therefore the accurate computation of IOIs can be a complicated

task by itself (Bello et al. 2005).

AMT has been the subject of several PhD theses since the seventies. The earliest

systematic attempt for the development of an AMT system is found in James Moorer’s

PhD thesis (1975). Moorer dealt with polyphony of two voices whose harmonic

relations were constrained to non-overlapping overtones, therefore disallowing unisons,

octaves, twelfths and some other intervals for which disambiguation of the two voices

would be significantly obscured. Following, the works of Pisczcalski and Geller (1977)

and Chafe et al. (1982) proposed certain improvements, however still limiting the

musical material to two-voice polyphony. Notably, in the first of these works

computational intelligence was employed to statistically infer the musical notes that

could best account for the observed frequency amplitude and time variations. Later in

1985, Schloss in his PhD thesis (Schloss 1985) focused on percussive musical

instruments and was therefore oriented towards the identification of rhythmic patterns.

Finally, Anssi lapuri’s PhD (2004) dealt with polyphonic music including but not

constraint in percussive sounds. Moreover, lapuri’s work considered musical meter

estimation and proposed certain techniques for the subtasks of multiple f0 estimation

(i.e. pitch of simultaneous notes) and onset detection.

Current AMS systems offer various improvements, however still suffering from several

limitations. In particular, significant accuracy has been achieved in the transcription of

either percussive or pitched instruments for recordings comprising of a limited number

of instruments (Davy and Godsill 2002; Tolonel and Karjalainen 2000) or for a single

instrument (Raphael 2002). More promising works dealing with more generic, less

46

constrained musical signals are those of Ryynänen and lapuri (2008) and Goto

(2001b). In fact, Goto (2001b) presents a system for transcribing the melody and

baseline of an unconstraint CD recording in real-time. Finally, another attempt for real-

time music transcription is presented in (Dessein, Cont and Lemaitre 2010), where

transcription is carried out for a live piano performance.

Score transcription often employs computational methods that are not instrument

specific, thereby disregarding the fact that different timbral characteristics may not be

captured equally well by a single computational model (Benetos et al. 2012).

Configuring these models for specific instruments requires that the instrument is known

or identifiable from the audio signal. Identifying instruments in poly-phonic and poly-

instrumental recordings is a particularly cumbersome task, related to sound source

separation. To this end Eggink and Brown (2003) proposed generating time-frequency

masks that isolate the spectral regions of specific instruments which can then be

classified more accurately.

An implementation of AMT is not attempted in current work. However, the continuous

evolution of techniques towards robust music transcription can provide a significant

improvement in the collaboration of dislocated music performers.

3.2.2 Audio-to-score alignment

Audio-to-score alignment seeks to find correspondences between a symbolic music

representation and an audio performance of the same piece of music. There are two

different approaches of the same problem, namely offline audio-to-score alignment,

often referred to as score matching and online audio-to-score alignment, often referred

to as score following or score scrolling.

In offline settings, both score and audio representations are available prior to matching.

Hence the matching algorithm is able to search the entire waveform in order to match

each score event. There are several applications sought by score matching, such as

easing digital audio editing and post-processing that often requires knowledge of the

location of a particular note or phrase in the score (Liu, Dannenberg and Cai 2010),

allowing automatic annotation in music libraries for search and retrieval (Miotto and

Lanckriet, 2012), or more generally providing automatic audio segmentations

(Dannenberg 2006), a task that is a prerequisite to most applications of machine

musicianship.

Online or real-time audio-to-score alignment assumes the score is available prior to

matching but the audio signal is progressively acquired. Thus, at any time only past and

present knowledge about the signal is available and the goal is to identify the musical

events depicted on the score as soon as they appear on the audio waveform, with high

temporal accuracy and within the minimum possible latency. Mainly, two applications

are sought in this context: aiding musicians with enhanced score visualizations such as

47

page turners (Arzt, Widmer and Dixon 2008; Dannenbeg et al. 1993) and live computer

accompaniment (Raphael 2001; Dannenberg and Raphael 2006).

The most popular computational techniques employed in audio-to-score alignment are

Dynamic Time Warping (DTW), Hidden Markov Models (HMM) and more recently

Particle Filters. Each approach is briefly described in the following paragraphs:

DTW was originally applied to identify speech patterns in speech recognition (Rabiner

and Juang 1993). It is a consolidated technique that finds the best match between two

sequences according to a number of constraints. Typically (Müller 2010), these

constraints concern boundary conditions (i.e. both sequences are bounded and assumed

to match both at their starting and at their ending point), a monotonicity condition

(requiring that the matching path progresses in the same direction i.e. it does not move

back and forth) and a step wise condition (requiring continuity of the matching path i.e.

no jumps). DTW has been extensively used for offline audio matching (Hu, Dannenberg

and Tzanetakis 2003; Soulez, Rodet, Schwarz 2003; Orio and Scwarz 2001). Generally

DTW is highly robust in offline settings but it is very inaccurate in real-time settings.

Online variants of the DTW algorithm have been sporadically presented in the relevant

literature (Dixon 2005; Marcae and Dixon 2010a). However, these variants are applied

in audio-to-audio synchronisation instead of score following. Even in the work of

Marcae and Dixon (2010b), where the ultimate goal is to provide score following, this is

achieved by synchronising the real-time waveform with an alternative audio signal

which has been synthesized from MIDI and is therefore an audio-to-audio alignment

task.

HMMs, although generally less accurate than DTW approaches, are more appropriate

for real-time alignments. HMMs are probably the most widely used technique in audio-

to-score alignment (both offline and online) and is the one used in the prototype system

developed in this work. An elaborate description of HMM mathematical foundations

and their use for audio-to-score alignment is provided in a Chapter 8. One of the main

issues concerning HMM score following is the fact that the Markovian model used for

alignment is associated with various probability values, which must be estimated prior

to alignment, during an offline process called training. HMMs may be trained using a

pre-existing manual alignment of a score to an audio file (i.e. supervised learning),

without any pre-existing alignment (i.e. using techniques of unsupervised learning)

(Raphael 1999) or using discriminative training, namely estimating an approximate

alignment and then further improving it using some training technique. Approximate

alignments may for example be estimated from an offline DTW alignment or blindly

from feature values. For example in (Cont 2004) the YIN pitch detection algorithm (de

Cheveigné and Kawahara 2002) is used to estimate the occurrence of notes on the audio

waveform. HMM probabilities are initially estimated according the produced alignment

and further refined by an iterative training process prior to using the model for real-time

alignment. Yet, more recent works of Cont (2010) present an HMM alignment system

that does not require any prior training. It uses a hybrid Markov/Semi Markov Model

48

which deals explicitly with tempo estimation and does not require any training of HMM

probabilities.

A further computational technique employed in audio-to-score alignment, is presented

by Particle Filter approaches. Particle filters do not require any training and are

remarkably appropriate for real-time alignments. Particle filters, also known as

Sequential Monte Carlo methods, operate by recursively approximating the alignment

of two sequences assumed to have a Markovian state evolution (i.e. the current state

depends only on the previous state and the current observation). In the context of

statistical models such as HMM and Particle filters, ‘filtering’ refers to determining the

distribution of a latent variable (i.e. score position) at a specific time (i.e. on the audio

signal), given all observations up to that time. An explanation of the theory of Particle

Filters is beyond the scope of this dissertation and it can be found in dedicated tutorials

(e.g. Arulampalam, Maskell and Gordon 2002). Particle filters have been recently used

for score following (Montecchio and Cont 2011a; Duan and Pardo 2011a) as well as for

real-time robotic performance enabled by means of score following (Otsuka et al. 2011).

3.2.3 Audio-to-audio alignment

Audio-to-audio alignment or audio synchronization aims at temporally aligning two

waveforms representing different interpretations of the same piece of music. Audio

synchronization has received less attention than audio-to-score alignment. However,

from a user oriented perspective, this task can also offer several practical applications.

The prevalent application of this task relates to the possibility of comparing different

interpretations of the same piece of music. Such comparison may be useful in the

context of computational musicology, for example by investigating expressive aspects

of music performances or the individualities of the performance by different artists.

Audio synchronization meets its full potential in digital music libraries offering efficient

browsing and random access within music recordings. A further application of audio

synchronization is additionally presented in the domain of studio engineering, for

example by allowing to time align different recording takes of a reference performance

during digital mixing (Montecchio and Cont 2011b).

In respect with the adopted computational techniques, most approaches use DTW, while

some more recent works have attempted audio synchronization using particle filters.

HMMs are not an appropriate strategy for directly aligning audio streams. As will be

seen in Chapter 8, HMMs aim at finding a sequence of hidden variables from within a

sequence of observable variables. In such cases as in audio-to-score alignment

observable variables are represented as sequences of feature vectors and hidden

variables are represented by higher –level and information of lower dimension such as

notes or chords. In audio-to-audio alignment, such higher–level representation is neither

available nor needs to be identified. The following paragraphs provide some

representative initiatives in this research track.

49

Match (Dixon and Widmer 2005), is a freely available software program for audio to

audio alignment developed in Java. It is based on an efficient DTW algorithm which has

time and space costs that are linear with respect to the length of the performances to be

aligned. The audio data is represented by positive spectral difference vectors. Frames of

audio input are converted to a frequency domain representation using a Short Time

Fourier Transform, and then mapped to a non-linear frequency scale, which is linear at

low frequencies and logarithmic at high frequencies. The time derivative of this

spectrum is then half-wave rectified and the resulting vector is used in the dynamic time

warping algorithm’s cost function, using a Euclidean metric.

In a similar line, Muller, Mattes and Kurth (2006), propose an alternative variant of

DTW, called Multi-Scale-DTW. They use an overlap-add technique based on waveform

similarity (WSOLA) to produce a stereo file in which the left channel carries one of the

recordings to be aligned and the right channel contains a time-warped version of the

second recording, using the results of their DTW algorithm. In a more recent work

Muller and Appelt (2008), aimed at synchronizing recordings having significant

structural differences such as omissions of repetitions, insertion of additional parts (soli,

cadenzas), or differences in the number of stanzas in popular, folk, or art songs.

Typically, DTW requires the complete series of both input streams in advance and has

quadratic time requirements. As such, DTW is unsuitable for real-time applications and

is inefficient for aligning long sequences. Nevertheless, Marcae and Dixon (2010)

presented a real-time variant of the DTW. Unfortunately, they used a hop size of 50ms

or more to derive their chroma features used for calculating sequence similarities. As a

result, time precision may not be sufficient for real-time applications.

Recent works on audio synchronization using particle filter approaches (Xion and

Izmirli 2012; Montecchio and Cont 2011a) seem to advance the development of real-

time synchronization. For instance the present work, as well as most research initiatives

in computer-based musical accompaniment could benefit from aligning the live audio

stream with a reference recording instead of requiring the presence of the score, which

is undoubtedly less informative in terms of tempo variability and expressive

articulations.

3.2.4 Computer accompaniment and robotic performance

Computer accompaniment aims at the development of techniques that allow a computer

system to listen to a live performer and synchronously reproduce an existing

accompaniment.

In line with the Turing test
7
, Barry Vercoe (1984) defines this objective as:

7 The Turing test is a test of a machine's ability to exhibit intelligent behaviour equivalent to, or

indistinguishable from that of an actual human. It involves a human judge who engages in a natural

50

to understand the dynamics of live ensemble performance well enough to

replace any member of the group by a synthetic performer (i.e. a computer

model) so that the remaining live members cannot tell the difference.

That same work reports on an accompaniment system which follows the live

performance of a flutist. Tracking the live performance was achieved using pitch

detection assisted by fingering information captured by optical sensors and score

information. Finally, the synthetic sound was generated using the 4X real-time audio

processor of that time. In the same article, Vercoe further reports on his intensions to

incorporate learning strategies so that the synthetic performer can progressively improve

from past experiences.

At the same time, Dannenberg (1984) presents an implementation of matching a live

monophonic keyboard performance to a score using dynamic programming techniques

inspired from string matching. His algorithm of note matching allows ignoring wrong

notes played by the performer. Output is synthesized using conventional digital

synthesizers of that time. Later, Bloch and Dannenberg (1985) attempted to extend their

system to polyphonic keyboard matching, while Vercoe and Puckette (1985) employed

an offline training method using data from past rehearsals, so as to allow the

anticipation of certain tempo deviations from the predefined score tempo.

In the years that followed, most research efforts concentrated in audio-to-score

alignment of monophonic (Raphael 1999) and polyphonic music (Raphael 2004),

without however abandoning the ultimate goal which was to develop real-time

computer-based performers. In 2001, Raphael presents his Music-Plus-One
8
 system

(Raphael 2001a) for the first time. Music-Plus-One is currently available as a free

software application that provides an orchestral accompaniment of a soloist using a big

repertoire of recordings, which can be purchased online. It uses phase vocoder

techniques to synchronize the orchestral recordings to the live solo, which is analysed

using HMM score following. In his work, the research focus is concentrated on

predicting the future evolution of the live performance before it actually occurs. This

type of prediction is necessary in order to allow for smooth synchronization between the

soloist and the accompaniment. Without prediction, part of the note must be perceived

before it is detectable by the corresponding algorithms, therefore leading to poor

synchronization. Early approaches to guiding prediction used heuristic rules

(Dannenberg 1989). Raphael used Bayesian Belief Networks to achieve performance

predictions (Raphael 2001b).

The name Music-Plus-One was devised to contrast with Music-Minus-One
9
, which is a

commercial online store offering orchestral recordings of a big repertoire of classical

language conversation with a human and a machine. If the judge cannot reliably distinguish the machine

from the human, the machine is said to have passed the test.
8 http://music-plus-one.com/
9 http://musicminusone.com

http://music-plus-one.com/
http://musicminusone.com/

51

music. In these recordings, the parts of one of more of the instruments are missing, and

interested musicians can purchase to play their part along with the orchestra. In the

Music-Minus-One approach the soloist is required to synchronize with the recording

rather than the other way round, as in Music-Plus-One. The criticism addressed by

Raphael, is a common place in the era of live electronics (Stropa 1999). In such

contemporary music works, a common practice is that live electronic instruments follow

tape music instead of the musician having full control on the playback tempo. A

solution to this problematic is offered by a tool called ‘Antescofo’ (Cont 2008a).

Collectively, the works of Arshia Cont (2008a, 2008b) emphasize on computational

anticipation, and Antescofo extrapolates the future of a performance by explicitly

modelling tempo on hybrid Markov/Semi-Markov chains.

More recently, Dannenberg (2011;2012) classifies computer accompaniment systems

under the more general term ‘Human Computer Music Performance’, referring to all

forms of live music performance involving humans and computers. Consequently,

computer accompaniment systems are integrated to a more general class of systems that

support multiple modalities both as input (audio, visual, gesture) as well as output. In

this direction, a new tendency has recently made its appearance as ‘coplayer music

robots’. For example in the work of Otsuka et al. (2011), particle filter score following

of a human flutist is used to guide the Thereminist (Mizumoto et al. 2009), a humanoid

robot playing the Theremin. In the work of Lim et al. (2010) the same robot is guided

by visual cues and gestures of the human flutist.

Although research in computer accompaniment has a history of more than two decades,

and it continuously progresses to new approaches and computational techniques,

Human Computer Music Performance still remains a vision rather than a practice

(Dannenberg 2012). Hence, the progress made is not sufficient to address all types of

complexities in music performance and there are still many challenges to be confronted.

3.3 Machine Musicianship in the context of NMP

This section attempts to investigate research initiatives that lie on the intersection of

real-time machine listening systems and networked music performance. The perspective

of analysing what is being locally performed and exploiting the results of this analysis

for informing remote peers in synchronous musical collaboration has very rarely

appeared in scholar publications and has not been adequately considered or investigated.

It has to be made clear, that in this context we are not interested in analysis and

transmission over low-bandwidth transmission channels, as for instance in structured

audio research and the relevant MPEG-4 standard (Vercoe et al. 1998). The focus is

neither on networked collaborative manipulation of shared musical instruments (Vallis

et al. 2012; Barbosa 2006). This section concentrates on systems that aim at

synchronously analysing the content of real-time audio streams and transmitting this

52

information remotely for various purposes, such as informing performance context or

using it with the ultimate goal of re-synthesis. Only three works specifically addressing

this perspective have been found in the relevant literature and are elaborated in the

following paragraphs.

Possibly the profoundly most relevant perspective in this direction is a system called

‘TablaNet’ (Sarkar and Vercoe 2007). TablaNet is a real-time online musical

collaboration system for the tabla, a pair of North Indian hand drums. These two drums

produce twelve pitched and unpitched sounds called bols. The system recognises bols

using supervised training and k-means clustering on a set of features extracted from

drum strokes. The recognised bols are subsequently sent as symbols over the network.

A computer at the receiving end identifies the musical structure from the incoming

sequence of symbols by mapping them dynamically to known musical constructs. To

cope with transmission delays, the receiver predicts the next events by analyzing

previous patterns before receiving the original events. This prediction is done using

Dynamic Bayesian Networks. Finally, an audio output estimate is synthesized by

triggering the playback of pre-recorded samples.

More recently, the work of Dansereau, Brock and Cooperstock (2013) attempt to

mitigate the effects of latency in distributed orchestral performances, based on

generation of a predicted version of the conductor’s baton trajectory. The prediction

step is the most fundamental problem in this scheme, for which the use of conventional

machine learning techniques, such as particle filters and an extended Kalman filter

allow tracking the location of the baton’s tip and predict it multiple beats into the future.

They also describe a generic two-part framework that prescribes the incorporation of

rehearsal data into a probabilistic model, which is then adapted during live performance.

Validation of the methodology concentrates on the accuracy of predictions for

conductor movements. Unfortunately, the effectiveness of the method in assisting

networked performances was not assessed in the article.

Yet an alternative perspective has been presented for a networked piano duo (Hadjakos,

Aitenbichler and Mühlhäuser 2008). In this approach, data generated from two MIDI

pianos is matched to a score. Matching is achieved using the dynamic programming

algorithm of Bloch and Dannenberg (1985). During matching, three types of deviations

of the performance to the score are detected, namely tempo deviations (based on the

detected inter-onset intervals), dynamics deviations (based the velocity of note on MIDI

messages) and articulations (in terms of note duration). Subsequently, these deviations

are transmitted across the network and they are used to control a MIDI sequencer

reproducing the score of the remote performer. Although this is an inspiring work in

studying expressive aspects of music performance, it is not made clear why transmitting

score deviations is more advantageous than sending the live MIDI stream of each

pianist.

No further works have been found to specifically address real-time audio analysis and

network transmission, neither for re-synthesis nor for informing performance context, to

53

geographically dispersed music collaborators. Consequently, the perspective

demonstrated in the current work provides a potential for advancing a new path of

investigations, possibly revealing highly novel and previously undermined research

challenges.

54

4 Concatenative Music Synthesis

In the relevant literature, Concatenative Sound Synthesis (CSS) is often distinguished

from the other sound synthesis techniques as an entirely different approach.

Subsequently, sound synthesis techniques are often classified into two categories:

functional or modelling techniques and sampling or concatenative techniques

(Lindemann 2007; Simon et al. 2005; Bonada and Serra 2007). Functional synthesizers

generate sound waveforms by incorporating a mathematical model of the sound to be

synthesized. In contrast, sampling synthesizers generate waveforms by combining

recordings of pre-existing sound material. Especially when synthesizing acoustical

sounds, sampling synthesizers often outperform functional synthesizers as, identifying

and implementing the mathematical model that simulates the processes of generating

and sustaining a sound as convincingly as possible is a highly complex task. Instead, the

sound samples used in sampling synthesizers already incorporate the dynamics of these

processes.

This chapter is structured as follows: Firstly, the general methodology of CSS systems

is presented. As CSS techniques originate from speech synthesis and processing, the

section that follows is devoted to concatenative approaches in speech technology. Then,

some successful examples of concatenative synthesis in music are presented. The

section distinguishes between synthesis for the purposes of compositional exploration

and synthesis for efficient reconstruction of music generated by acoustic instruments.

Finally, the chapter is concluded by comparing these approaches with the present work,

hence highlighting the research challenges being confronted by the system under

investigation.

4.1 General methodology

The objective of CSS systems is to generate a waveform by concatenating segments of

pre-recorded sound material, given a target specification (most commonly provided as

an audio stream or a symbolic representation, e.g. a score) so that the resulting

waveform will optimally resemble the target, in some sense which depends on the

application at hand. Specifically, when used for high fidelity instrumental synthesis the

goal is to generate waveforms that are as realistic as possible. In this case, the emphasis

is placed on efficiently rendering expressive performance, including for example noise

components that are generated due to performers’ intentional gestures such as forceful

bow scratches or sustained breath effects in wind instruments (Lindemann 2007).

Alternatively, when a CSS system is used for compositional purposes the goal is to

generate a sound which is by no means identical to the target. For example, in the

approach presented by Puckette (2004) the aim is not to re-synthesize the performance

55

of a live performer. Instead, the synthesized sound is expected to project the

intentionality of the performer in some aspects such as timbre variations so that it will

be interesting for the musician to control the output sound. In the same line,

Dannenberg (2006) presents a system which given a target score generates sounds that

are harmonically and rhythmically identical to the score, yet timbraly dissimilar in an

attempt to explore new sound textures.

Regardless the objectives of each approach, CSS systems commonly adopt a

methodology that comprises the following processing phases:

 Audio segmentation

 Segment analysis and tagging (Forming a data corpus)

 Analysis of target

 Segment selection

 Segment Concatenation

The first two processes essentially take place prior to sound synthesis, so as to allow

generating the audio samples that will be later used for signal concatenation (Figure

4-1). A number of recordings are segmented in appropriate sizes and the resulting

segments (usually referred to as audio units) are analysed for deriving descriptive

information regarding their content. The units and their descriptions are maintained in a

repository, to be to be used during synthesis. Corpus-based approaches use large sound

repositories and sometimes a database to index sound descriptions.

Figure 4-1: Data-flow of processes taking place prior to synthesis

Then during synthesis (Figure 4-2), the given target is analysed in order to determine its

association with segment descriptors. Subsequently, the data-corpus is searched in order

to determine the segments that match the given prototype in some optimal way. Finally,

the selected segments are concatenated in order to form the synthesized audio stream.

56

Figure 4-2: Data-flow of processes taking place during synthesis

The data-corpus or simply the pool of audio segments (n the absence of a database)

generally determines the use and the scope of a CSS system. The scope of a CSS system

may for example be to synthesize waveforms of monophonic music (Simon et al. 2005),

melodies of the singing voice (Lee et al. 2002), music performances of a specific

musical instrument (Maestre et al. 2009) or some combination of instruments

(Lindemann 2007) or even speech sequences in some human language (Carvalho et al.

1998) in the case of concatenative speech synthesis systems.

The sections that follow focus on musical material and describe each of the processing

phases in more detail.

4.1.1 Audio segmentation

Audio segmentation aims at generating audio signal segments that carry some piece of

information which can be autonomously identified within the entire waveform. The

content and therefore the granularity of these segments can be heterogeneous, for

example containing a note, a beat or even an entire music phrase. However more often

they correspond to homogeneous constructs such as notes, possibly with the exception

of a-temporal music events such as trills, appoggiaturas or grace notes which are

included in the same segment as the corresponding temporal event (i.e. an event having

a predefined duration within the piece). Interestingly, some approaches (Simon et al.

2005) use segments that correspond to pairs of notes. Specifically, these dinotes start

during the sustain part of one note and end within the sustain part of the next note. This

is similar to diphone speech synthesis and there are two reasons for using paired

constructs. Firstly, in monophonic instruments some energy of the previous note may be

retained after the attack of a new note, a phenomenon usually caused by the

reverberation of the recording environment or the body of the musical instrument. The

other reason for using dinotes is because concatenation at the sustain part of a note

57

reduces undesired audible artefacts (e.g. discontinuities perceived as glitches) which are

often unavoidable when concatenating at the location of note onsets (Schwarz 2007).

Different systems use different segmentation methodologies. Some even use manual

segmentation (Lindemann 2007; Simon et al. 2005). However, as manual segmentation

is labour intensive and therefore constrains the scalability of a CSS system to using

additional audio material, the majority of approaches use automatic segmentation

algorithms.

Automatic segmentation algorithms are commonly distinguished in two categories:

blind segmentation and segmentation by alignment. Blind segmentation algorithms do

not take into account any prior information about the signal or the information carried

within the signal. They commonly compute a number of acoustic features for detecting

note onsets or pitch changes (Lazier and Cook 2003). Alternatively, segmentation by

alignment may be performed by score matching (see section 3.2.2), which can be used

to reveal the boundaries of note or a phrase (Schwarz 200b).

4.1.2 Segment analysis and tagging

Each of the audio units produced during segmentation, normally undergoes an analysis

process which allows determining segment characteristics and therefore associating it

with appropriate descriptions within the pool of audio segments or the database. In

certain cases, the number of audio segments is generally small; their selection is pre-

determined and mere indexing takes place instead of analysis and tagging. Such a case

is for example presented when reconstructing a certain piece of music by concatenating

the segments of a pre-existing reference performance, as in the present work.

However in the majority of CSS systems, each audio segment is tagged with

information accounting for multiple levels of description. Schwarz (2007) discerns three

levels of descriptors which are categorical, static and dynamic. Categorical descriptors

concern the category of musical sounds to which an audio unit belongs and are usually

provided as manual annotations. Categorical descriptors may for example be the

instrument class or some subjective metadata such as ‘mellow’, ‘bright’ etc. Static

descriptors are values that are constant over the entire duration of a unit and they

commonly correspond to perceptual attributes such as pitch or duration. Dynamic

descriptors on the other hand are those having a temporal evolution within an audio unit

and they are usually represented as feature vectors. Examples are the fundamental

frequency, the signal energy or some other time or spectral domain feature.

In some cases not just the description of samples is considered, but also the musical

context within which they occur. For instance in the work of Maestre et al. (2009),

where the emphasis is on rendering musical expressivity, each note segment is

associated with information such as the metrical strength in which it appears and the

pitch of the preceding and the successive note.

58

4.1.3 Target analysis

The target specification of a CSS system is usually represented by a score in the form of

a MIDI file, or by real-time MIDI input using some MIDI controller. Less often it is

represented as an audio excerpt (Pucket 2004; Schwarz et al. 2006). The approaches that

use a sound excerpt as input are usually artistically explorative and the target forms a

prototype for generating or controlling a sound which is different than the original, yet

maintains certain timbral, harmonic and possibly rhythmic similarity.

In both cases (i.e. MIDI or audio input), the target is segmented at the same granularity

as the audio units to be used for concatenation and the analysis provides descriptors

and/or audio features that are equivalent to those describing the audio units in the data

corpus.

4.1.4 Matching (Unit Selection)

Once the target is analysed, the corpus or pool of audio segments is searched to find

matching candidates. Categorical descriptors are usually required to have a one-to-one

correspondence between target and selected units. For scalar descriptors, the matching

quality is assessed using distance functions of the respective descriptions. Common

distance functions are the Euclidean distance, for variables assumed to have no

correlation, or the Mahalanobis distance for variables such as vector sequences,

assumed to follow some multivariate probability distribution (Schwarz 2007).

Given these quality assessment measures for matching, also referred as cost functions,

the data corpus is searched in order to find the sequence of audio units that minimizes

the cost. There are two strategies for searching the data corpus: path search unit

selection and constrain satisfaction programming (CSP). Path search approaches

(Schwarz 2000a; Simon et al. 2005) represent the corpus as a fully-connected state-

transition diagram. The optimal path is searched using a Viterbi algorithm which is

based on state-occupancy cost and transition cost, calculated using the aforementioned

distance metrics.

On the other hand, CSP approaches to unit selection (Zils and Pachet 2001; Aucouturier

and Pachet 2006) find the best match by recursively rejecting match candidates

according to local and global constraints derived from Euclidean distances of descriptor

values between target and matching candidates. Local constraints hold for the current

segment selection and global constraints hold for the selection of the entire sequence

realized as the sum of local distances (costs).

As mentioned in (Zils and Pachet 2001), when dealing with large databases of samples a

complete search method is absolutely prohibited. Therefore CSP approaches start with a

random selection and recursively improve matching quality until the global cost

becomes lower than a pre-defined threshold or until a maximum number of permitted

iterations is reached.

59

4.1.5 Concatenation

Subsequent to unit selection, unit concatenation takes place in order to generate the

synthesized waveform. Clearly, some blending needs to be applied at the junction point

of consecutive units in order to avoid signal discontinuities resulting in audible clicks.

Such blending may range from a simple amplitude cross-fade (Dannenberg 2006), to

more sophisticated phase and spectral shape interpolation techniques (Bonada and

Loscos 2003).

Furthermore, in some cases (Maestre et al. 2009), unit transformation may take place

prior to concatenation so that the selected units will better match the desired target

concerning amplitude, pitch or duration. Although amplitude scaling is straightforward,

pitch and duration transformations commonly use phase vocoder techniques (Flanagan

and Golden 1966), as in (Bonada and Serra 2007), or some variation of the Pitch

Synchronous Overlap – Add transform (Roucos and Wilgus 1985), as in Simon et al.

(2005).

4.2 Concatenation in speech synthesis and coding

From an engineering perspective, concatenative sound synthesis has its origins in

speech synthesis, where signal concatenation is an established technique for offering

improved naturalness and intelligibility of synthesized voice compared to alternative

parametric models of speech (Sak et al. 2006; Bulut et al. 2002). It is therefore essential

to outline here some relevant approaches from the speech synthesis domain.

Figure 4-3: Classification of text-to-speech synthesis techniques

60

Text-To-Speech (TTS) synthesis is broadly classified in parametric and corpus-based

approaches (Figure 4-3). Parametric approaches generate a speech waveform based on

signal and physical modelling. For example formant synthesis is based on filtering

sinusoidal or noise components in order to better simulate the spectral envelope of vocal

utterances. Accordingly, articulatory synthesis approaches use a physical model to

simulate the flow of air in the vocal tract. In contrast, corpus-based approaches use a

pool of pre-recorded speech segments that approximate the target speech signal. In this

respect, three approaches may be found in the relevant literature (Dutoit 2008): fixed-

inventory, unit selection and statistical parametric (or HMM) synthesis. In fixed

inventory approaches the data corpus consists of small snippets of voice sounds that

correspond to phonemes, diphones or syllables. Unit selection approaches use much

larger databases for which each speech utterance is represented by several segments of

speech corresponding to different segmentation granularities. Therefore the data corpus

contains sounds ranging from diphones and syllables to words or entire sentences.

During waveform generation, a ‘unit selection’ algorithm is employed in order to find

the chain of units that best accounts for the target prototype. This type of synthesis

yields improved naturalness and intelligibility compared to fixed inventory approaches,

as the segments that are finally selected for concatenation capture not only the phonetic

content but also the contextual and prosodic characteristics of the target signal. Finally,

in statistical parametric coding or simply HMM synthesis, the speech corpus is used for

training an HMM that relates speech utterances to parametric representations

corresponding to pitch, intonation and duration information (Zen et al. 2009). During

synthesis, the speech waveform is generated using the induced parametric

representation of sound and some parametric approach such as formant or articulatory

synthesis. Therefore HMM speech synthesis is not a concatenative approach in respect

with waveform generation.

Besides TTS, concatenative sound synthesis may also be utilized for low bit-rate speech

coding. Generally, speech coding concerns the compression of speech signals for the

purposes of transmitting them over low-bandwidth communication channels as in

mobile or Voice over IP communications, and is thereby highly relevant to the present

work. There are several approaches to speech coding and they may be classified

according to a number of attributes (Spanias 1994; Hasegawa and Alwan 2003).

Roughly they can be divided into waveform coders and model based or parametric

coders (or vocoders). Waveform coders are based on removing the statistical

redundancies of the signal and do not assume any prior knowledge about the signal

generation mechanism. Typical examples of waveform coders are based on Pulse Code

Modulation (PCM) such as Differential PCM (DPCM) and Adaptive Differential PCM

(ADPCM) as well as Delta Modulation. They have relatively low complexity in the

encoding process but yield higher bit-rates (16-64 kbps) in comparison to other

encoding schemes (Hasewaga and Alwan 2003). Vocoders on the other hand are

speech-specific perceptual coders, as they aim at rejecting perceptual redundancies in

the speech signals. Vocoders are capable of providing intelligible speech at bitrates 2.4

kbps and below, but cannot provide natural sounding speech at any bit rate. Typical

61

examples are Homophonic Vocoders, Formant Vocoders encompassing spectral

envelop modelling techniques and Linear Predictive Coders (LPC) using analysis,

synthesis and articulatory models to model the speech signal.

In speech coding, a third category is defined by hybrid coders, which exploit the

advantages of both strategies (i.e. waveform and speech-specific coders). Modern

hybrid coders can achieve communication quality speech at 8 kbps and below at the

expense of increased complexity. There are several hybrid codecs including the CELP

(Code-Excited Linear Prediction) codec (Schroeder and Atal 1985), which is one of the

most widely used speech codec.

Yet a further category of speech codecs, mostly relevant to the present work are

segmental speech coders, also known as very-low bitrate (VLBR) speech coders or

corpus-based coders. In segmental voice coding, feature vectors are calculated for

segments of the speech signal to be encoded. These feature vectors are compared to the

pre-calculated feature vectors of speech segments residing in a database. The index of

the segment in the database which is closest to the original segment is transmitted. To

recreate the speech signal, the successive transmitted indices are mapped to speech

segments which are subsequently concatenated to reproduce the original speech

waveform. Approaches to segmental speech coding were presented since the late 90s

(Cernocky, Baudoin and Chollet 1998).

Segmental coders achieve extremely low bit rates but have the disadvantage of being

speaker dependent and have high memory costs due to the size of the speech corpus.

However, Baudoin and El Chami (2003) presented a speech coder which achieves a

bitrate of 400bps using a speech corpus summing in one hour of speech. Another reason

assumed to have hindered the proliferation of segmental codecs is related to the fact that

these codecs generally yield variable bit rates, which is unacceptable in certain

communication applications involving low bandwidth channels with their limit on

maximum rate. However, some recent approaches have presented algorithms for

employing segmental coding at fixed rates (e.g. Kumar et al. 2008). Moreover,

segmental coders are considered rather unsuitable for real-time applications (e.g.

teleconferencing) due to the computational complexity of unit selection algorithms,

even though relevant optimizations have been occasionally proposed (Roucos et al.

1987).

4.3 Contemporary Relevant Initiatives

In the music domain, concatenative synthesis has attracted a lot of research interest for

more than a decade. Comprehensive reviews on the origins and the evolution of relevant

research initiatives have been published in dedicated scholar publications (Schwarz

2006; Schwarz 2007). Hence, there is no need to reproduce another such review in this

section. Instead, the present section will focus on understanding the current state of the

62

art, so as to gain insight on the best practices that may be applicable to our target

domain of Networked Music Performance.

Like most directions in computer music research, the focus of concatenative music

synthesis is either to compositionally explore new sound textures or to efficiently

reproduce musical acoustics. Clearly, the target application of the present work belongs

to the second category of approaches, thus emphasising on reproducing musical

expression as faithfully as possible. Furthermore, the present work has to deal with two

further challenges: firstly the target prototype to be synthesized is provided as an audio

signal (instead of a symbolic representation) and secondly both analysis of target as well

as re-synthesis must take place within strict time constraints imposed by the EPT of

30ms (see section 2.4), therefore qualifying the system under investigation as a real-

time system.

No research initiatives attempting to satisfy all three requirements (i.e. faithful

instrumental synthesis, audio target and real-time operation) have been reported in the

relevant literature thus far. It will be seen that audio target and real-time operation has

been attempted exclusively in compositionally explorative approaches, therefore not

having the requirement of high fidelity audio renditions.

Both compositional and high-fidelity approaches are presented below, in attempt to gain

understanding on the challenges of the present work. The following two subsections

outline some of the most relevant approaches for both approaches. Then, the section that

follows provides a comparison of the presented systems in order to emphasize on their

similarities and differences.

4.3.1 Compositional approaches

This section reports on three research initiatives that focus on explorative music

composition by means of sample concatenation. Specifically, the aim is not to

accurately reproduce acoustic sounds but instead to produce interesting textures that

retain some perceptual relevance to the given audio or symbolic target.

These initiatives are considered relevant to this dissertation only because they allow for

synthesizing an output while the input is acquired, and are therefore presented as real-

time CSS approaches.

4.3.1.1 Jamming with Plunderphonics

Aucouturier and Pachet (2006) present a real-time interactive extension of their older

work on Musical Mosaicing (Zils and Pachet 2001). The output sound is generated in

real-time from MIDI or audio input using a Constraint Satisfaction Programming

technique (section 4.1.4) and constraints that may be asynchronously added or removed

to a CPS solver module. The article presents an example application in which a virtual

drummer is able to interact with real-time MIDI input. This is not a case of musical

accompaniment, it rather uses MIDI input (e.g. from keyboard) to control the drum

63

beats that are selected for audio playback, according to the energy and pitch values of

the MIDI controller, based on the previously provided constraints.

The sound units correspond to 4 –beat drum samples automatically segmented from

drum solos of popular or jazz music pieces. The drum solos within the piece are also

automatically detected. They do not report on any specific transformation such as phase

vocoder taking place prior to synthesis, presumably due to the percussive nature and

noisy content of drum sounds.

This work is classified in compositional approaches as it does not aim at simulating a

specific instrumental sound. It is rather meant as an explorative, controlled synthesis

system.

4.3.1.2 CataRT

CataRT (Schwarz et al. 2006) is a real-time extension of the Caterpillar system, which

was developed by Schwarz (2004) for his PhD dissertation. CataRT plays grains from a

large corpus of segmented and descriptor-analysed sounds according to their proximity

to a target position in the descriptor space. The target application is described as an

‘interactive explorative synthesis’ approach. It allows exploring the corpus interactively

or via a target audio file, a live audio input or through gestural control. CataRT is

implemented in MaxMSP and is distributed as free and open source software under a

GNU GPL
10

 licence.

Audio units are segmented from violin sounds, environmental noises and speech.

Segmentation is achieved by audio-to-score alignment in the case of musical sounds,

and by blind segmentation for the other sounds. Units are annotated using the MPEG-7

low level descriptor set and indexed in a relational SQL database. Unit selection is

achieved using a Viterbi path-search algorithm that seeks to minimize the Euclidean

distance between the descriptors of the target and those of the database units. A short

fade-in and fade out is applied to the selected units. It is also reported that pitch and

loudness transformations are possible prior to unit concatenation.

4.3.1.3 Input-Driven explorative synthesis

This section refers to the work of Puckette (2004). This work is considered relevant to

the present context because synthesis is driven by real-time audio input. The reported

application scenario concerns the possibility of producing sounds that have similar

timbral variations as the input sound. The sound units were based on vocal recordings

that were analyzed in 30ms time frames to yield 11 frequency bands. The output of

these bands was subsequently used to form a 10-dimensional timbre space, by means of

multidimensional scaling. During synthesis the trajectory of the input sound on the same

timbre space was used to derive the sound units by minimizing the Euclidean distance

between the analyzed and the re-synthesized timbre. Finally, the output sound was

formed by concatenating the selected units using phase vocoder overlap-add. The shape

10 GNU General Public License - http://www.gnu.org/licenses/gpl.html

http://www.gnu.org/licenses/gpl.html

64

of the controlling input sound could be identified in the output, while the output did not

maintain any phonetic intelligibility.

4.3.2 High fidelity instrumental simulation

This section focuses on the currently most popular CSS solutions that aim at efficiently

rendering the performance of acoustic instruments. These systems are clearly more

relevant to the system under investigation. However in most cases synthesis takes place

offline. The only exception is the Synful synthesizer, for which the target specification

may be provided from a MIDI keyboard in real-time. In this real-time approach, no

audio analysis needs to take place prior to unit selection and concatenation.

4.3.2.1 Expressive Performance of monophonic Jazz Recordings

 The system described by Maestre et al. (2009) aims at rendering expressive saxophone

recordings given a music score. It uses a database of automatically segmented

recordings at note level. Notes are blindly segmented using onset features and

fundamental frequency estimation. The resulting segments are annotated using different

levels of description. Apart from conventional melodic descriptors (i.e. pitch, duration,

loudness and some spectral features indicating timbre variations), the system

additionally uses descriptors concerning intra-note structure and transition duration.

This information is acquired by automatic intra-note segmentation using envelop

characterization. Moreover, an additional type of descriptors, of particular importance to

expressive performance rendering, is the context within which an audio segment occurs.

Contextual descriptors are, for instance, the metrical strength in which the segment

appears and the pitch and duration of the previous and the following notes. All these

descriptors are finally processed by a k-means clustering algorithm which clusters note

segments in groups that are likely to be perceptually similar. The cluster label is stored

as an additional descriptor of the note segment.

Rendering musical expression in this work is informed by Narmour’s (1990)

implication/realization theory. Contextual descriptors are informed by three Narmour

structures declaring the expectations created by a note segment. Narmour’s structures

are based on melodic expectations created by intervallic difference and registral

direction (upward or downward interval) between consecutive notes.

Subsequently to audio database construction, the solo recordings that were used to

produce the segments together with the cluster labels of the notes are used to train

expressive performance models using inductive logic programming. During synthesis,

the given score is enriched by predictions of the expressive performance models,

yielding not only pitch and loudness contained in the score but further parameters

regarding expression such as note energy and articulation.

Following, for each note in the score a candidate list of all possible matching segments

is generated. Then, the best matching segment is determined by applying a path-search

algorithm considering both the “cost” of the transformations to be applied and also the

65

concatenation cost. Each retrieved note is transformed in terms of amplitude, pitch and

duration in order to better match the required expressivity. Finally, the transformed

units are concatenated using amplitude and spectral-shape interpolation so as to

eliminate undesirable signal discontinuities.

4.3.2.2 Synful Orchestra

Synful Orchestra
11

 is a commercial software application providing expressive musical

performances in response to MIDI file (‘look-ahead mode’) or real-time input generated

by a controller such as a keyboard (‘live-mode’). It is used by composers and

performers as a ‘virtual orchestra in a box’. The emphasis is placed on faithfully re-

synthesizing the idiomatic use of music articulation found in note transition-slurs, legato

playing, bow changes etc.

The audio corpus consists of pre-recorded audio passages instead of isolated notes.

These passages are acquired from solo recordings that represent all kinds of articulation

and phrasing: detached, slurred, portamento, sharp attacks, soft attacks, etc. The

recorded phrases are manually annotated, using a graphical editing tool. Their

descriptive labels concern pitches, length and intensity of notes as well as type of note

transitions. During synthesis, the input MIDI stream is parsed to identify musical

phrases consisting of two to eight notes. Subsequently, the corpus is searched for a

matching phrase using a path search algorithm. The selection of matches is based on the

description of pitch, duration and transition type of the phrases contained in the corpus.

As it is highly unlikely that an exact match will be found in the database,

transformations such as intensity, pitch and duration stretching and shifting, take place

prior to synthesis. During synthesis, pitches, amplitudes and durations identified from

the MIDI input stream are generated using additive synthesis. On this additive, ‘tonal’

signal the phrases that were selected from the database are superimposed to give the

final realistic result. This technique is referred as Reconstructive Phrase Modelling

(RPM) by its inventor (Lindemann 2007).

In ‘live-mode’, the system has no advance knowledge of when a new note is coming,

and so it does its best to react as expressively as possible with low latency when a new

note occurs, using only past history of the input stream as a guide to phrasing.

4.3.2.3 Vocaloid

Bonada and Serra (2007) in cooperation with Yamaha, have been working on a software

synthesizer, the Vocaloid
12

. The objective of this research is to synthesize expressive

performances of the singing voice given the song lyrics and the music score.

The system, based on phase-vocoder techniques and spectral concatenation, searches the

most convenient sequence of diphonemes (samples) of an annotated database of singing

voice excerpts, recorded at different tempi and dynamics, to render the performance.

These segments are produced from singer recordings which are further segmented by

11 http://www.synful.com/
12 http://www.vocaloid.com/en/

http://www.synful.com/
http://www.vocaloid.com/en/

66

automatic alignment to the corresponding text. During synthesis, sample selection is

based on phonetic units, pitch content and loudness envelopes, by minimizing the

required sample transformations. These transformations include tone transposition,

loudness and time scaling. Traits of the original voice and articulation characteristics are

impressively retained after transformations, owing to a refined source-filter spectral

model.

4.4 Comparison with the present work

The previous section presented some of the most popular research and development

efforts in concatenative music synthesis that have some relevance with the approach

investigated in this dissertation. Specifically, it was discussed that the software

prototype to be developed needs to satisfy the following three constraints. Firstly, the

target sequence will be provided as an audio signal instead of a symbolic representation

and thus audio analysis needs to take place prior to synthesis. Clearly, the proposed

communication scheme aims at enabling performers to communicate using their own

acoustic instruments, instead of some MIDI replicas. Secondly, the focus is on

instrumental as opposed to compositional exploratory synthesis. In other words we wish

to render the expressive performance of each musician as faithfully as possible. Finally,

the third constraint relates to the online and real-time behaviour of the approach being

investigated.

Table 4-1: Comparison of CSS approaches initiatives with respect to meeting the requirements of the proposed

system.

 Audio Target Instrumental

Synthesis

Online

Operation

4.3.1.1 Jamming with Plunderphonics

4.3.1.2 CataRT

4.3.1.3 Input-Driven explorative synthesis

4.3.2.1 Expressive Performance of monophonic
Jazz Recordings

4.3.2.2 Synful Orchestra

4.3.2.3 Vocaloid

The compositionally explorative perspectives presented in section 4.3.1, as well as the

Synful Orchestra system permit real-time interactions by generating the output sound

while the input is generated. Indeed, these approaches must render the output with low

latency so as to successfully support the intended usage scenario, which in all four cases

amounts to lively controlling a synthetic sound based on audio or MIDI input.

Nevertheless, none of these works consider response times, as the introduced latencies

67

do not really render the intended application unusable. Therefore these systems cannot

be literally considered as real-time approaches.

Table 4-1 summarises the features of the presented systems with respect to satisfying

the three constraints of the system under investigation. It can be seen that none of the

currently popular approaches in concatenative synthesis satisfies all three constraints.

Yet, these systems present a number of alternative novelties that can inform current and

future implementations of the proposed system.

All of the approaches aiming at exploratory composition place the research focus on

unit selection algorithms. As unit selection determines the type of perceptual similarities

to be retained in the output sound, it is made clear that the synthesized sound must be

compositionally interesting instead of presenting a faithful rendition of the input. On the

other hand, in high-level instrument synthesis approaches the research focus is placed

on the rendering quality of the audio stream and specifically on reproducing the

expressive nuances generated by performers’ gestures and musical instrument

manipulations.

As will be seen in the next part of the dissertation, the system investigated in the present

work does not facilitate an audio corpus of considerable size, neither a database to store

audio units and associated descriptors. The units used for concatenation are acquired

from a prior solo recording of the performer playing the specific piece of music. These

units are automatically segmented and their selection is predetermined. However, as a

future enhancement, and in order to allow for arbitrary interactions among distributed

musicians a data corpus of previous recordings for each performer will need to be

generated. Consequently, real-time unit selection algorithms must be employed so as to

allow selecting appropriate data units representing the live music stream.

Moreover, the fact that networked musical interactions take place in real-time, presents

a limitation on the quality of concatenation. Specifically, in high-level instrument

synthesis approaches (section 4.3.2), transformation of units always takes place prior to

concatenation so as to alleviate cope with two problems: differences in amplitude, pitch

or duration between the selected unit and the desired output, and perceivable

discontinuities between successive sound units. Within the real-time requirements of the

present system it is impossible to perform sophisticated transformations, unless a

prediction mechanism is incorporated. Consequently, the point of concatenation needs

to be predicted before it actually occurs on the input sound. This issue and the approach

adopted by the system under investigation are discussed explicit in Chapter 9.

68

PART II:

RESEARCH METHODOLOGY

69

5 Research Focus and System Overview

This chapter elucidates the research focus of the present dissertation and provides an

overview of the adopted methodology and the prototype software application to be

developed. The first section recapitulates on the conclusions of the previous chapters

and illustrates the objectives of the present work. Following, the computational

challenges of achieving these objectives are enumerated. The final section presents the

overall methodology and the block diagram of the prototype system to be developed.

5.1 Rationale and Objective

The effectiveness of NMP systems to offer musical collaborations comparable to those

of collocated music performances is constrained by two types of problems (section 2.2).

The first relates to the availability of network resources, while the second concerns the

lack of suitable software tools and interfaces for permitting distributed musicians to

effectively collaborate across distance (section 2.6).

On the other hand, machine listening approaches aim at offering computational

affordances that can significantly assist or enhance the experience of musicians during

live performance. For example, automatic music transcription, audio alignment and

computer accompaniment present innovative system capabilities both in offline as well

as in online settings. As real-time functionalities, they can augment the experience of

musicians in several music performance contexts, such as learning, jamming,

rehearsing, etc. The perspective of encompassing capabilities of machine musicianship

systems in the context of NMP research has not been widely addressed (section 3.3).

In a similar line, a number of initiatives in concatenative music synthesis research aim

at rendering expressive music performances. Unfortunately, the relevant initiatives are

rarely implemented in real-time settings, and even if they are, a symbolic description of

the sound to be synthesized is provided instead of an audio stream (section 4.4).

The objective of the present work is to explicitly suggest the exploitation of

contemporary research achievements in the areas of machine listening and

concatenative music synthesis, so as to alleviate from the complexities of NMP systems.

In fact, it could be that progress made in one domain can directly translate to the other

domains. So for example, making progress on expressive performance rendering by

means of audio segment concatenation, can directly translate to improving computer

accompaniment. Improving computational models of musical expectation and

anticipation directly suggests the possibility of eliminating communication latencies,

which is the main barrier of communication in NMP systems. Progress in NMP allows

investigating features of man-machine collaboration also applicable to machine

70

musicianship, and so on. Eventually, there are numerous possibilities in combining the

research achievements of these three domains.

This work investigates one such possibility by experimenting with the idea of

representing each performer of a dispersed NMP system by a local computer-based

musician. For each musician participating in an NMP session, a local agent ‘listens’ to

the local performance, ‘notifies’ remote collaborators and ‘performs’ the music

reproduced at remote ends, therefore eliminating the need for audio stream exchange.

Listening involves detecting the occurrence of a new note in real-time (i.e. at the onset).

Notifying involves informing remote peers about the arrival of a new note using low

bandwidth information. Finally, performing involves receiving notifications about the

remote occurrence of notes and rendering the performance of the corresponding

musicians using pre-recorded solo tracks. These tracks are adapted in terms of tempo

and loudness, so as to better reflect the live performance of remote musicians.

Assuming that the algorithms implementing the functionalities of ‘listening’ and

‘performing’ can become sufficiently robust, this type of communication can provide

superior sound quality compared to alternative low bit-rate communication of music,

such as MIDI. Equivalently, assuming that the algorithmic complexity of the proposed

scheme can be effectively reduced to accommodate the requirement of the Ensemble

Performance Threshold (section 2.4), communication based on notifications can prove

more efficient than facilitating audio compression schemes, in terms of network

resource consumption.

5.2 Computational Challenges

The main challenge of the approach being investigated is to meet the technical

requirements of low-latency, low-bitrate and high quality audio communication. The

following subsections attempt to quantify the requirements in terms of latency and

audio-quality and highlight the differences of the current approach with alternative

techniques employed in remote musical interactions.

5.2.1 Real-time constraints

It is important to elucidate the implications of qualifying the proposed implementation

as a real-time approach. A few of the works cited in the ‘Related Work’ part of this

dissertation (e.g. Raphael 2001b; Schwarz et al. 2006) are characterized as real-time

implementations, without however explicitly addressing or assessing the real-time

performance of the proposed systems. Of course the term real-time may also have the

legitimate meaning of reacting ‘without perceivable delay’, and this is in fact the

meaning implied in computer accompaniment or concatenative input driven synthesis

systems.

71

However, more formally and in the context of digital signal processing, a real-time

system has to at least satisfy the following two requirements (Kuo, Lee and Tian 2006):

a) The system must be causal. Causality implies that at any time only the current

and the previous values of the system are available. The term online, used

throughout this document refers to causal behaviour.

b) The required processing latency per each input frame should be less than or

equal to the time span represented by that frame for all possible frame lengths.

In other words the average processing time per sample should be no longer than

the sampling period.

Clearly, the first of these requirements has an influence on the robustness of the

implemented algorithms. This is primarily caused by the fact that no signal overview is

available prior to processing and therefore operations such as DC removal or signal

normalization are not possible. Moreover, as most of the algorithms considered here are

essentially statistical, data distribution measures such as means and variances are

computed from insufficient data and are therefore suboptimal to those computed from

offline procedures.

The second constraint demands using algorithms of reduced computational complexity

such that processing latencies do not exceed the time corresponding to the length of the

audio buffer. For instance, processing a block of 1024 samples of monophonic 16-bit

audio with a rate of 44.1 kHz should not require more time than 23.22ms to execute on

the target processing machine, otherwise processing becomes ineffective as audio

blocks are collected faster than processed, thus necessitating to queue them in an ever

increasing memory stack.

In addition to the above constraints, the target application scenario presents a third

limitation. Specifically, in NMP settings the sum of the latencies of all the processes in

the capture-analysis-transmission-reception-synthesis-playback cycle must be kept

below the Ensemble Performance Threshold (EPT), i.e. approximately below 30ms (see

also section 2.4), including buffering delays. This third constraint enforces limitations

not only in processing latencies but also on the length of the audio buffers. For example,

buffering in blocks of 1024 samples at the rate of 44.1 kHz yields a latency of 23.22ms

which is already close to the EPT and therefore strictly prohibited for the target

application. Consequently, the audio processing algorithms investigated and presented

in this dissertation are constraint to use a maximum block size of 512 samples, which

corresponds to a buffering latency of 11.6ms.

Unfortunately, the limitation imposed on the length of the audio buffer further degrades

the performance of real-time analysis/synthesis algorithms, especially when these

operate on the frequency domain of the signal. Specifically, when applying Fourier

Transforms a 512-samples frame length at the rate of 44.1 kHz results in a linear

frequency resolution of 86.13Hz per frequency band. Consequently at the frequency of

220Hz (i.e. A note before middle C) which lies within the frequency range of most

72

acoustic instruments, the frequency band spans more than four semitones, and therefore

spectral features provide little information about the pitch of the notes being performed.

A common approach to dealing with this problem is to either employ multi-resolution

frequency analysis, as in the wavelet transform (see section 6.6.1), or to attempt

estimating pitch content based on the energy of harmonic overtone structure (section

6.6.2).

When the system is expected to react within certain time limits, as in computer

accompaniment systems, a common practice to reducing latency is to employ prediction

mechanisms. For instance Raphael (2001b) uses Bayesian Belief Networks in order to

predict the performance of a soloist, so as to timely adjust the tempo of the orchestral

accompaniment. This is achieved during an offline training phase, which yields a

performer-specific model for a specific piece of music using past rehearsal recordings.

In a similar line the work of Sarkar and Vercoe (2007), uses a Dynamic Bayesian

Network to predict the next note of a musical phrase on the Indian drum tabla, based on

rules that define rhythmic phrases for the specific instrument and music genre.

As will be seen in Chapter 9, in the present work an alternative mechanism to

progressively predict the energy and duration of a note is employed at the time instant

when its onset occurs. The problem is simplified by assuming that duration and energy

deviations from one performance to another will be consistently propagated based on

the deviations observed on the past four or five notes.

5.2.2 Audio quality constraints

The second challenge to be met by the target system is to maintain high quality audio

communication, comparable to that of live audio stream exchange, while reducing

information bandwidth to significantly low bitrates. Conventionally, low bitrate

communication requires the use of signal descriptions instead of raw audio streams.

When considering acoustic music, descriptive representations are commonly manifested

by the score of a music piece or equivalently its MIDI counterpart. Although highly

compact, such descriptions fail to maintain the expressive aspects of music performed

using acoustic musical instruments.

The focus is clearly on musical acoustics as opposed to performances using electronic

instruments, for which musical communication protocols such as MIDI or the

OpenSound Control provide established solutions in low-bandwidth musical

interactions. As was discussed in the Introduction (section 1.2), the expressive nuances

of music interpretation using acoustic instruments are predominantly attributed to the

idiomatic use of articulation, dynamics and also deviations from predefined musical

tempi (Widmer and Goebl 2004). Such expressive utterances are impossible to

sufficiently reconstruct from any symbolic representation alone. Moreover, the

originality of sound produced by acoustic instrument manipulations is not easy to

replicate when using functional sound synthesis methodologies. Therefore

73

concatenative music synthesis is the single choice in order to preserve the expressive

qualities of musical performance.

In the present context, high-fidelity music synthesis amounts to being able to re-

synthesize the live performance as closely as possible. As the methodology uses a prior

recording of the same piece of music performed by the same performer, retaining the

expressive qualities of the live performance requires careful transformations of the

audio segments to be concatenated in terms of loudness (i.e. dynamics) and duration

(revealing tempo deviations). As for timbral nuances we assume that they are

sufficiently captured in the original solo recording. Clearly, transformations degrade

signal quality and therefore they should be kept as minimal as possible. Furthermore,

careful processing must take place in order to eliminate perceivable artefacts caused by

signal discontinuities at the junction point of consecutive audio segments.

Equivalently, in the context of NMP undesirable artefacts are caused by audio dropouts

owing to network packet loss (see section 2.5.2.1.3). As in the proposed system

bandwidth requirements are fairly eliminated, packet loss can be entirely eliminated by

transmitting redundant information in addition to onset notifications. Clearly, it is not

acceptable to eliminate distortions that are commonly found in NMP and introduce new

types of distortions attributed to segment transformation or signal concatenation.

Consequently, implementing the required transformations and applying them within the

aforementioned time constraints presents a significant challenge for the system under

investigation.

5.3 Assumptions - Prerequisites

Due to the fact that the prototype system developed in the present work has not been

previously investigated in its entity, and in order to efficiently cope with the

aforementioned computational challenges, a number of assumptions are made on the

application context so as to allow for producing some useful research results.

Undoubtedly, these assumptions correspond to usage constraints in their own behalf.

However, eliminating these constraints and providing more generic solutions to the

proposed approach is the main focus of ongoing and future research efforts.

Up to the time of this writing, the proposed approach has been applied to solo

recordings (i.e. assuming a single musician is located at each network node) of

monophonic instruments, although provisions are made for additionally accommodating

polyphonic instruments. Moreover, no unit selection process is involved, other than

concatenating an automatically pre-segmented performance of the reference music

piece.

The entire concept might seem rather simplistic, as the segmentation of the solo

performance to units; the online analysis of the live solo as well as the real-time

concatenation of segments could be performed using a single algorithm for robust real-

74

time onset detection. However, such an algorithm should provide increased accuracy in

detecting note onsets as soon as they occur and before they are really perceivable.

Unfortunately, the robustness of onset detection algorithms is highly unstable and even

more so in online and real-time settings (Glover, Lazzarini and Timoney 2011). The

methodology presented in the next section seeks to increase the robustness of real-time

onset detection by progressively accumulating a trained model, able to predict onsets

before they are truly detectable.

To sum up, the present implementation assumes that the following prerequisites hold:

 Each instrument is located at a different networked site (i.e. audio signals

correspond to solo performances)

 Every participating instrument is monophonic (i.e. no chords or polyphony are

presently taken into account)

 A solo recording of each instrument and performer playing the specific piece of

music is available prior to performance

 The music score of each part is also available prior to performance

5.4 Adopted Methodology

The methodology adopted by the prototype system under investigation consists of an

offline phase, that takes place prior to collaborative performance and an online phase,

taking place during collaborative performance.

Figure 5-1: Block diagram of the processes that take place offline, prior to collaborative performance. Solid

lines represent audio data flows while dashed lines represent numerical or textual data flow.

75

The purpose of the offline phase is to generate a pool of audio segments and their

associated descriptions as well as a Hidden Markov Model representing the

performance of each performer.

As depicted in Figure 5-1, for each musician his/her solo recording is segmented to its

constituent note segments using an algorithm for offline blind onset detection (described

in section 7.4.1). This detection is informed and assisted by the score of the piece

performed by the solo performer. At the same time, a textual description of each note is

generated (section 7.4.2). This description concerns note duration, RMS amplitude, and

pitch frequency and is maintained in a text file (described in section 10.3.2.3). Note

descriptions are needed during concatenative re-synthesis in order to allow for

transforming the note segments in terms of amplitude and duration so as to more

effectively match the notes being played during the live session.

Subsequently to offline segmentation, feature extraction is applied on the same solo

recording. The extracted features are combined with note descriptions (derived from the

offline segmentation process) to form an annotated dataset. This dataset is used for

initializing an HMM that models the temporal evolution of the music piece as

interpreted in the offline solo recording. After, initializing the HMM, an unsupervised

training algorithm is applied in order to improve the accuracy of the model (section

8.4.1). The trained HMM is finally stored in an additional text file (described in section

10.3.2.2).

Figure 5-2: Block diagram of the processes taking place during live NMP. Solid lines represent audio data

flows while dashed lines represent numerical or textual data flow.

As illustrated on Figure 5-2, during live performance, at the location of each performer,

the trained HMM corresponding to that performer is used to decode the instant score

76

position of the live performance in real-time (the real-time decoding process is

described in section 8.4.2). If the decoded position corresponds to a note onset, then a

description (the note duration and the RMS amplitude) of the previous note is

communicated to the remaining performers participating in the live session. These

remote peers, upon receiving the description of the previous note, attempt to predict the

attributes (i.e. RMS and duration) of the current note (see section 9.3.1). These

attributes correspond to expressive deviations in tempo and loudness during live

performance. Following, the corresponding note segment is retrieved from the pool of

audio segments along with its description. This segment is transformed so that it better

matches the predictions for the current note (section 9.3.2). Finally, the transformed

segment is concatenated to the audio stream being reproduced (section 9.3.3).

 At the location of each participating peer, a single transmitter decoding the local

performance is executed and as many receivers as the other the number of remote peers.

For instance for a session of four performers, at the location of each performer a single

transmitter and another three receivers are instantiated. Low latency audio capturing and

playback is achieved using audio buffers of 512 samples per channel at the sampling

rate of 44.1 kHz, corresponding to a buffering latency of 11.6ms. This latency is a good

compromise between small buffering delays and improved performance of the audio

analysis algorithms.

The following chapters provide details on the precise methodology followed by each of

these processes. Specifically, Chapter 7 describes the offline segmentation process.

Chapter 8 describes the score following process using HMMs, i.e. the ‘listening’

component. The representation of the performance model, the offline training as well as

the process of real-time decoding are presented in detail. Finally, chapter 9 describes the

synthesis process including the type of information transmitted as network notifications

(i.e. the ‘notify’ component), acquisition of predictions for the current note attributes, of

segment transformations to account for tempo and loudness deviations as well as the

technique used for eliminating signal discontinuities at the junction point of consecutive

segments (i.e. the ‘perform’ component). As audio feature extraction is a pre-processing

step employed whenever descriptive information needs to be inferred from an audio

signal, the next chapter 6 describes the feature extraction process and provides the

definitions of the acoustic features that were used for experimentation and

implementation throughout the development of the final system.

77

6 Online Audio Feature Extraction

The present chapter is intended as a reference for the chapters that follow. Specifically,

it provides definitions for a number of audio features that were used throughout this

work, those used during experimentation as well as those that were selected to inform

computations in the final prototype system. Definitions are provided as mathematical

formulas. Besides the mathematical definition, the following sections provide

visualizations of the temporal evolution of each feature for an example melodic phrase.

These visualisations effectively depict the performance of the different features for the

tasks of audio segmentation and audio to score alignment, which are presented in

subsequent chapters.

6.1 Feature extraction and visualisation

In contrast to directly using audio samples, machine listening approaches use a set of

attributes for signal representation, known as audio features. In principle, an audio

feature is a signal property computed over successive audio blocks having a constant

predefined length of the order of 10-50ms. At the sampling rate of 44.1kHz, commonly

used values for the length of audio blocks are those of 2048, 1024 or 512 samples. The

use of blocks having a length of some power of two is imposed by the fact that these

features are often computed on the frequency domain of the signal, which is usually

obtained by the Fourier Transform. The fast implementation of the Fourier transform

(FFT) is based on computational optimisations assuming that the length of the audio

blocks is some power of two.

At this point it is important to disambiguate the use of the terms audio block versus

audio frame. The term frame is sometime used to refer to a small signal chunk.

However, in audio engineering technology the term audio frame is usually used to refer

to a time instance across all audio channels, i.e. 8 channels would result in an audio

frame of 8 samples, one at each audio channel. Hence, when a signal has a single

channel, a frame refers to an audio sample. Throughout the present document the term

audio block will be consistently used, so as to avoid confusion with multichannel audio

frames.

The reason for using audio features, as opposed to signal samples is twofold: firstly

features offer a rate reduction on the data to be processed, and secondly they can be

cautiously selected to effectively reveal the desired structure of the signal depending on

the information that needs to be found. Small block lengths result in increased time

resolution therefore allowing the detection of sudden bursts of feature values even if

they span short time intervals. Unfortunately, as already elaborated (section 5.2.1),

78

increased time resolution results in poor frequency resolution and especially in low

frequencies (i.e. the range of frequencies corresponding to note pitches). This fact

presents a major problem in feature extraction, especially in cases requiring increased

frequency resolution, so as for example to allow detecting pitch variation in a melodic

or a harmonic musical progression. In the context of online and real-time machine

musicianship, using small block lengths is additionally imposed by the fact that system

actions (e.g. accompaniment) should be performed without perceivable delays.

In the following sections, the online and real-time requirements presented by

networked music performances, constraint the computation of feature values to using a)

block lengths up to 512 samples, and b) causal properties assuming knowledge only for

the current and preceding signal frames. Hence, it is important to note that signal

processes such as DC removal and normalisation of the entire waveform prior to feature

extraction are only applicable to offline processes, such as the audio segmentation

performed prior to music performance.

Different features account for different perceptual qualities of the signal that may be

strongly correlated with loudness, pitch and timbre perception. The sections that follow

present a definition of the features that were used during experimentation as well as

those that were finally implemented in the software prototype that has been developed.

Some of the features were used to investigate blind audio segmentation, while others

were used in the audio-to-score alignment algorithm. As there exist numerous audio

features that can be combined in numerous ways, the choice of which features to use for

each approach was based on personal experience, which was significantly informed by

citing works as well as by hours of experimentation with a variety of audio files.

Figure 6-1: The musical score of the audio signal used for visualising the values of the audio features.

The features presented in the following sections are organised in three categories:

energy features, onset features and pitch features. Energy features are computed on the

time domain and have been used to track the amplitude envelope of the signal, hence

distinguishing between the attack and the steady or release state of notes, depending on

the instrument. Features classified as onset features were used to indicate the occurrence

of note onsets. Finally, pitch features were used to provide cues for pitch detection. In

this work, pitch detection was used to increase the robustness of onset detection

algorithms in the two algorithmic tasks of blind onset detection and onset detection by

alignment to a music score.

In order to demonstrate the effectiveness of the audio features presented here, the

following sections present the mathematical definition of each feature followed by a

diagram depicting the temporal evolution of that feature and its first order difference for

79

an example melodic phrase. The signal is a flute performance of the melody shown on

Figure 6-1. The fifth note is performed as a subtle pitch change, i.e. a legato articulation.

The signal has a total duration of 4.12sec and the features have been estimated on audio

blocks having a length of 11.6ms (i.e. 512 samples of 44100/16bit audio).

6.2 Mathematical notation

The definition of features in the next sections, comply with the following mathematical

notation:

 : denotes the length of the audio block

 : denotes the sample index within an audio block

 : denotes the block index starting from 0

 : denotes the number of frequency bins in the spectrum up to the Nyquist

frequency

 : denotes the index of frequency bins

 : denotes the signal value at time instant t

 : denotes the k
th
 frequency bin of the complex Fourier spectrum of the n

th

audio block

 : denotes the spectral magnitude of the k
th

 frequency bin of the n
th

block

 : denotes the phase of the k
th
 frequency bin of the signal at block n

 : denotes the value of feature F at block n

 : denotes the first order difference of feature F at

block n

 : denotes the second order difference of feature

F at block n.

The last two differences values (the equivalent of the first and the second derivative in

analogue signals) are often used in combination with the actual feature value, so as to

allow monitoring the monotonicity of the corresponding features along with their local

values.

6.3 A note on frequency transforms

This section discusses the importance of proper parameterisation of the Fourier

transform for the proposed application scenario on NMP. The Fourier transform is used

to compute spectral features, which are monitored in real-time in order to indicate the

occurrence of note onsets. For the application scenario addressed here, it is important to

realize that note onsets need to be detected as soon as they occur. This requirement is

imposed by the fact following the detection of an onset, a notification will be

transmitted to all remote network ends and re-synthesis of the corresponding note

80

segment needs to take place immediately. The time taken by the entire process of

detection, transmission of notifications and re-synthesis at remote ends should not

exceed the Ensemble Performance Threshold of 30ms (see section 2.4) otherwise the

collaboration of performers will be severely hindered by communication latencies. As

shown in the following, the commonly used parameterization of the Fourier transform

may lead to delayed onset detection, namely to detecting an onset a couple of blocks

after it actually occurs.

Although certain audio features may be computed in the time domain, such as for

example the energy or the zero-crossing rate of an audio signal, most features are

computed on the frequency domain of a signal. The most common transform used in

this case is the Short Term Fourier Transform (STFT). Using the notation provided in

the previous section, the STFT may be mathematically formulated as:

This transform partitions the signal in small windows of predefined length N. At each

step, the window is slid on the audio signal by an amount of h samples called the hop

size. Consequently, successive windows overlap by N-h samples. In general, the hop

size defines the number of new samples participating in each window and therefore in

real-time applications the hop size must equal the length of the buffer used for audio

capturing, so as to perform exactly one transform on each audio capturing cycle.

As the STFT assumes that the signal is stationary, therefore repeating itself outside the

analysis window, slicing the signal results in end-point discontinuities due to the fact

that the analysis window does not contain an integer number of periods of the

fundamental frequency of the signal. This causes spectral leakage appearing as ripples

around the main frequency lobes. To alleviate this effect, each window is multiplied by

a ‘bell-shaped’ symmetric windowing function w that smoothly fades out the signal at

the end-points of each analysis window. The derived complex spectrum X(k) has a

constant resolution across the entire frequency spectrum (up to the sampling frequency

Fs) which equals Fs/N. Consequently, the length of the window N is inversely

proportional to the frequency resolution and defines the distance among consecutive

spectral bins denoted as k.

Although the methodology followed is essentially the same, different research works

use different parameterization for deriving the Fourier spectrum. Commonly, non-real-

time approaches use longer windows than real-time approaches so as to achieve

increased frequency resolution. For instance Hainsworth and Macleaod (2003) used a

4096-point STFT with an overlap of 87.5% (i.e. 512 samples) to detect onsets based on

spectral features. In a similar line Soulez, Rodet and Schwarz (2003) used a 4096-point

STFT with a hop size of 256 samples to compute spectral features that are subsequently

used for offline audio-to-score alignment, while Dixon (2006) used a 2048-point STFT

with an overlap of 78.5% for offline onset detection. In real-time settings, Stowell and

81

Plumbley (2007) used a 512-point STFT with a 50% overlap. Brossier, Bello and

Plumbley (2004) used a 1024-point STFT with an overlap of 512 samples for fast onset

detection, however to reliably identify note pitches they used a window which was four

times longer (i.e. 4096 samples) than the window used for onset detection.

As a rule of thumb, onset detection requires increased time resolution, while reliable

pitch detection demands for high frequency resolution. Furthermore, the requirements

of real-time applications necessitate the use of relatively small audio blocks. In the

present work, high resolution in both time and frequency domains is critical for the

robustness of the employed methodology. A limit of 11.6ms (512 samples at a rate of

44.1 kHz) is imposed on the length of the audio block captured in real-time to account

for the EPT requirement of 30ms maximum latency during music performance (section

2.4).

With respect to frequency resolution, the possibility of resolving spectral components in

the pitch range of most acoustic instruments increases the robustness of the audio-to-

score alignment method. Specifically, it is desirable to have a frequency resolution

which allows for separating notes of the well-tempered chromatic scale in pitch

frequencies that can go as low as 220Hz. For example, the A# note which is one

semitone above 220Hz corresponds to the pitch frequency of 233,08Hz, hence the

frequency resolution of the STFT should be at most 13Hz. As the STFT window needs

to be a power of two so as to exploit speed optimizations of its fast implementation, the

length of the window cannot be less than 4096 samples, which yields a frequency

resolution of 10.77Hz across all frequency bins.

Figure 6-2: The windowing function delays the detection of the onset on subsequent hops, resulting in

detection latency corresponding to approximately 30-4 hops.

82

To summarize, the requirements of the target application in NMP necessitate the use of

a 4096-point STFT with a hop size of 512 samples and hence an overlap of 87.5%. This

means that in real-time settings, every-time a new audio block becomes available; it will

contribute by 1/8
th

 or 12.5% to the computed spectral features. This may be problematic

especially in cases when the captured 512-samples block contains an onset. Especially,

in percussive instruments which exhibit salient onsets associated with sudden bursts of

high frequency energy that are rapidly decayed, onsets may be lost or appear in

subsequent blocks if the current block has such a small contribution in the computation

of spectral features. Moreover, if a windowing function is used, then the onsets will be

detectable when the transient part of the signal appears in the centre of the analysis

window. With an analysis window of 4096 samples and a hop size of 512 this transient

part of the signal will be detectable after three to four hops, corresponding to a latency

of approximately 40ms. This is shown on Figure 6-2. The onset appears for the first

time in the last 512 samples of the n
th

 window. However, due to small contribution

(512/4096 = 12.5%) the energy increase due to the onset may be insignificant.

Moreover, the bell-shaped windowing function further decreases the contribution of the

onset on the n
th
 window. It is more likely the onset will be detected 3 or 4 hops of the

n
th

 window.

Figure 6-3: Waveform derived from a piano recording. Two 4096-point windows are chosen to demonstrate

the behaviour of STFT during a nearly periodic portion of a signal and a portion for which a note onset occurs

at the last 512 samples representing the hop.

For this reason, the present work chooses to partition the signal in blocks of 2048 audio

samples using a hop size of 512 samples. These 2048 samples are then zero padded to

4096 points. It is known that although zero padding does not literary increase the

frequency resolution of the signal, it has the effect of spectral interpolation therefore

allowing a finer localization of the maxima of the frequency spectra, the spectral lobes.

With the proposed approach the energy of each audio block of 512-samples contributes

83

by 25% to the computed spectral features, which provides a good compromise between

time and frequency resolution. Moreover, the windowing function w(n) corresponds to a

rectangular window which is equivalent to not using a windowing function.

The superiority of the proposed transform over the conventional STFT for the task of

onset detection is demonstrated using an example audio signal. The signal shown on

Figure 6-3 has been derived from a piano recording playing a monophonic tune.

Specifically, two 4096-point windows have been chosen: the first one is derived from

the steady, nearly periodic, part of a note and the second one contains the onset of the

next note within the last hop of 512 samples. For the computation of the STFT a

Hanning windowing function has been used, which is mathematically formulated as:

where N equals the number of samples used in the analysis window. Four

parameterisations of the STFT have been chosen for demonstration:

1. 512-point STFT using a Hanning window

2. 4096-point STFT using a Hanning window

3. 2048-point STFT using a Hanning window of 2048-points (i.e. N = 2048) and a

Fourier analysis window which is zero padded to 4096

4. 2048-point STFT using a rectangular windowing function (i.e. which is

equivalent to no windowing function) and a Fourier analysis window which is

zero padded to 4096

Figure 6-4 shows the frequency spectra of the periodic part of the signal derived using

the above parameterisations, while Figure 6-5 contains the same plot but with the

transforms applied on the window that contains an onset during the last 512 samples.

Note that the first parameterisation of the Fourier transform is applied on the last 512

samples of the window, the second on the entire window while the third and the fourth

parameterisations are applied on the second half (i.e. the last 2048 samples) of each

window.

The following conclusions may be drawn from these spectra:

 Window Size and Frequency Resolution: The 512 transform (1) has a very

coarse frequency resolution, hindering the separation of pitches in the task of

audio to score alignment. The remaining parameterisations give a better estimate

of the main spectral lobe (in this case corresponding to the fundamental

frequency) as well as the next three harmonics.

 Window Shape and Spectral Leakage: The use of the rectangular window in the

fourth parameterisation (4), introduces ripples around the main spectral lobes,

which is caused by spectral leakage introduced by signal discontinuities at the

end points of the analysis window. This effect is suppressed when using a

84

Hanning window that smoothly fades out the signal at the end points of the

analysis window.

 Zero Padding vs. Not Zero Padding: The 2048 signal zero padded to form a

4096 point analysis window (3) yields an identical spectral shape to the 4096

point STFT (2) which however contains less energy, due to fewer samples with

non-zero amplitude. Mere zero-padding does not appear to significantly

contribute to early onset detection.

 Periodicity and divergence: The most important conclusion drawn from these

two diagrams is that both the 4096 Hanning STFT (2) as well as the 2048

Hanning STFT (3) parameterisations have a very similar spectrum in the two

signal regions, therefore providing no hint for the occurrence of the onset on the

last 512 samples of the second spectrum. In both cases, the onset is attenuated

by the Hanning windowing function. In contrast, the 2048 STFT using a

rectangular window (4), provides a very different spectrum in the two figures,

which contains a substantial percentage of energy in higher frequencies as well

as in frequencies between the main lobes, thus clearly indicating the occurrence

of the onset. In the periodic part of the signal it has a spectrum which is very

close to the 4096 Hanning STFT (2), therefore clearly depicting that the signal is

highly periodic. It can also be seen that the 512 parameterisation (1) yields a

spectrum of higher energy than that of the periodic part of the spectrum. This

energy increase may also be used to inform onset detection. However, as the

present application additionally uses pitch identification to increase the

robustness of audio to score alignment, the last parameterisation (4) yields better

results both for onset detection as well as for audio to score alignment. It can be

argued that the same performance may be achieved by using a rectangular

window on 4096 samples, thus omitting zero padded. However, as previously

discussed, using 2048 samples is preferred due to each 512-hop having a greater

contribution to the resulting spectrum, i.e. twice than that without zero padding.

All of the algorithms presented in the rest of this dissertation use an STFT applied on

analysis windows for which the first 2048 points are audio samples and the second half

is zero padded. Out of the 2048 samples, 512 correspond to the audio block captured in

real-time (i.e. yielding a 75% overlap factor). No windowing function is used in order to

avoid eliminating transient phenomena at the time of their occurrence. Experiments on a

number of acoustic instruments confirmed that this parameterisation offers a good

compromise between timely identification of note onsets and frequency resolution to

allowing distinguishing note pitches in the frequency range of interest.

The spectral features defined and visualised in the sections that follow are computed

using the proposed parameterisation of the Fourier transform. The rest of the features,

namely those computed on the time domain (i.e. E, RMS, LE) and the WP feature

(which uses a Discrete Wavelet Transform instead of the Fourier transform) are

computed on consecutive 512-sample blocks.

85

Figure 6-4: Different parameterisations of the STFT for the nearly periodic segment of the piano signal shown on Figure 6-3.

86

Figure 6-5: Different parameterisations of the STFT for the segment of the piano signal that contains a note onset as shown on Figure 6-3.

87

6.4 Energy Features

The following three energy features have been used to characterise the amplitude

envelope of a music signal. They have been computed on the time domain of the signals

and they help distinguishing between the attack and the remaining parts of a note, as

well as between silent and louder passages of music performances.

6.4.1 Energy (E)

The linear energy is computed in the time domain as:

As depicted in Figure 6-6, this function is in fact an envelope follower, therefore

allowing to monitor amplitude variations at a higher rate than the signal itself.

Figure 6-6: Temporal evolution of the Energy feature and its first order difference for a short musical phrase

performed by a flute.

6.4.2 RMS amplitude

Root Mean Square (RMS) amplitude corresponds to the square root of the block energy:

88

In this work, the RMS feature is used instead of the energy in order to estimate a gain

factor to be applied on the audio segments during concatenative re-synthesis and prior

to signal concatenation.

Figure 6-7: Temporal evolution of the RMS amplitude feature and its first order difference for a short musical

phrase performed by a flute.

Figure 6-7 shows that this feature is also an envelope follower.

6.4.3 Log Energy (LE)

The logarithm of the energy, effectively measuring the sound pressure level of the

signal in dB, is computed as:

From Figure 6-8 it can be seen that the Log Energy feature is smoother than the energy,

therefore keeping only perceptually significant variations in the envelope of the signal,

Consequently, the LE feature is more appropriate to discriminate between note and rest

and its first order difference can be used for the identification of attack or sustain parts

of a note which is why it is being extensively used in audio to score alignment

approaches.

89

Figure 6-8: Temporal evolution of the Log Energy feature and its first order difference for a short musical

phrase performed by a flute.

6.5 Onset Features

As will be seen in section 7.3, blind onset detection methods are based on monitoring

the evolution of certain features over time. Such features must be carefully selected to

have different behaviour at the location of onsets than at the remaining steady parts of a

waveform. In most cases, onsets are associated with peaks (i.e. local maxima) of the

onset features. This section presents various features that have been used for onset

detection in the relevant literature. Most of them provide an indication for the timbral

properties of a signal. As will be elaborated in section 7.2, different instruments exhibit

different timbral behaviour at note onsets, which is characterised by their sound

generation mechanism. Consequently, the choice of which feature to use for onset

detection is primarily determined by the instrument that needs to be analysed.

6.5.1 High Frequency Content (HFC)

High Frequency Content (Marsi and Bateman 1996) is perhaps the most straightforward

feature used in blind onset detection algorithms and is computed by summing the

linearly-weighted values of the spectral magnitudes of the audio block. It emphasizes on

the magnitudes of the highest frequency bins of the spectrum, therefore presenting

peaks for note onsets that are associated with noise components. Apparently, HFC

yields good results in blind onset detection of percussive onsets but it does not work

well with subtle onsets, as is the case with voice portamento or legato phrases.

90

Figure 6-9, depicts the evolution of the HFC and of its first order difference for the

reference passage. In wind instruments, such as the flute, onsets are commonly

associated with energy changes in low frequency bands, namely in the area of notes

pitches. The HFC feature fails to depict such onsets as it is emphasizing energy changes

at high frequencies, thereby neglecting the changes in low frequency areas. As will be

shown in section 7.3.2, the HFC feature works well for salient onsets such as those

produced by percussive instruments, which are accompanied with energy bursts in high

frequency areas.

Figure 6-9: Temporal evolution of the HFC feature and its first order difference for a short musical phrase

performed by a flute.

6.5.2 Spectral Activity (SA)

Spectral Activity has been introduced by Cont (2004), as a measure of the spectral

burstiness of the signal, emphasizing on the difference of low and high from the mid-

frequency range.

In fact as the total number of frequency bins K corresponds to the Nyquist frequency,

which is 22050Hz for a signal sampled at 44.1kHz, the three frequency ranges

correspond to the intervals [0, 7350], (7350, 14700], (14700, 22050) in Hz.

91

Figure 6-10: Temporal evolution of the SA feature and its first order difference for a short musical phrase

performed by a flute.

From Figure 6-10 it can be seen that the Spectral Activity feature is close to 1 for most

parts of the spectrum as the energy of the signal is concentrated in the first frequency

range. However, at the location of onsets the SA feature takes smaller values as some

energy leaks to the second frequency range (having a minus sign on the above formula).

Deviations from 1 are also depicted by the first order difference of the feature. It is

important to note that as the fifth note of the flute phrase corresponds to a legato note

introduced by a subtle pitch change, no energy is detected in the mid-frequencies range,

hence no hint is provided by the SA feature.

In contrast with most of the other audio features, SA results in minimum values at the

location of note onsets.

6.5.3 Spectral Flux (SF)

Spectral Flux measures the change in spectrum among consecutive audio blocks. It has

been extensively used for the task of onset detection in different variations, most

notably, the L-1 norm used by Dixon (2006):

And the L-2 norm used by Duxbury, Sandler and Davies (2002a):

92

In both cases, H is the half-wave rectifier function:

With rectification only the frequency bins in which the energy increases are taken into

account, as this is in fact the expected behaviour of frequency spectra at the location of

note onsets.

In this work, an alternative representation of the spectral flux feature has been devised.

It is based on the L-1 norm divided by the sum of the spectral magnitudes of the entire

audio block:

Although, this division does not literally provide feature normalization, as it is not

divided by the all times maximum of the spectral magnitude, however it provides a

useful measure for detecting peaks of the spectral flux regardless the loudness of the

block being processed. The advantage offered by this representation is that only timbral

changes are taken into account and that spurious detections due to performance

dynamics are effectively eliminated.

Figure 6-11: Temporal evolution of the different versions of the Spectral Flux feature for a short musical

phrase performed by a flute.

Figure 6-11 shows the temporal evolution of the three versions of the Spectral Flux

feature. The SF1 version has a rather noisy behaviour without clear peaks at note onsets.

The SF2 feature intensifies the peaks of SF1, hence providing cues for the location of

onsets. However, there is a strong peak around 1.1 sec which is not related to an onset.

This peak indicates a raise in the spectral envelop of the signal, possibly introduced by a

93

crescendo occurring within the duration of the note due to phrasing or by tremolo or

vibrato effects. This peak does not appear on the SF3 feature which is independent of

the global magnitude of the audio block. In contrast, the SF3 feature presents clear

peaks for every onset which is strictly related to timbral changes while disregarding

spectral changes due to amplitude variations. However, the peak of the 5
th
 legato onset

is less apparent than the remaining peaks, which is why as discussed in section 7.4.1,

audio segmentation at onset locations in the final prototype system uses a pitch detector

to account for legato onsets associated with smooth pitch changes.

6.5.4 Phase Deviation (PD)

This feature was proposed by Bello and Sandler (2003) for the detection of note onsets.

A stationary sinusoid is expected to have a phase constantly turning around the unit

circle with a constant angular velocity and zero phase acceleration. The angular velocity

is defined as:

Figure 6-12: Temporal evolution of the PD feature and its first order difference for a short musical phrase

performed by a flute.

Thus, phase changes can be obtained from phase acceleration:

94

The function princarg maps the phase into the [-π, π] interval. As phase is in fact a

discrete value, the above equation can be re-written as follows:

Bello and Sandler (2003) used the instantaneous probability distribution of phase

deviations across the frequency domain. However, in subsequent works (Bello 2005;

Brossier 2006) the mean of phase acceleration over all frequency bins was used to

provide a feature for onset detection. This feature may be defined as:

Figure 6-12 shows that the phase deviation feature does not provide any significant

information for the task of onset detection on the example musical phrase. The resulting

feature values are rather noisy, which is caused by the fact that most spectral bins have

dominating noisy components rather than locally stationary sinusoids implied by phase

deviations.

6.5.5 Complex Domain Distance (CDD)

As an alternative to using either amplitude or phases, Bello et al. (2004) proposed using

both Fourier coefficients in the complex domain. Specifically, this feature provides a

measure of the Euclidean distance between the current complex domain signal and the

one predicted from the previous frame as:

The complex signal is represented as

and its prediction as

with being the predicted phase

assuming a zero phase acceleration . With a little bit of algebra, it follows

that:

95

Figure 6-13: Temporal evolution of the CDD feature and its first order difference for a short musical phrase

performed by a flute.

Again, according to Figure 6-13 the CDD feature does not provide useful information

for the reference sound used here, which can be attributed to the fact that sinusoids are

not the dominating components of the estimated spectral bins.

6.5.6 Modified Kullback-Leibler Divergence (MKLD)

In statistics and information theory, the Kullback-Leibler divergence provides a non-

symmetric measure for the distance of two distributions P and Q. Specifically, the

Kullback–Leibler divergence of Q from P, denoted DKL(P||Q), is a measure of the

information lost when Q is used to approximate P. In general and for discrete

probability distributions P and Q, the KL divergence of Q from P is defined as:

As onset detection methods seek to identify abrupt changes in audio signals, an onset

detection function based on KL divergence can be defined as:

therefore estimating the statistical difference of the spectral magnitudes of the current

audio block from the spectral magnitudes of the previous block. The quantity appearing

in the logarithm accentuates positive magnitude changes of spectral bins, however using

the spectral bin of the second block as a weighting factor. Hainsworth and Macleod

96

(2003) proposed removing the weighting factor, thereby simply reflecting the rate of

positive amplitude evolution between successive blocks:

Based on this measure, Brossier (2006) proposed a modified version formulated as:

which firstly prevents negative values and introduces the term ε=10
-6

 to ensure that the

feature is still defined in very low energy levels approaching zero.

Figure 6-14: Temporal evolution of the MKL feature and its first order difference for a short musical phrase

performed by a flute.

As will be seen in section 7.3.2, the MKL feature is highly effective for percussive

onset detection. Unfortunately, as shown on Figure 6-14 it does not effectively depict

onsets for non-percussive sounds, as it appears that the variation of spectral envelopes at

onset locations is not significantly different than at the remaining parts of the signal.

6.6 Pitch Features

The prototype system developed in this work uses two audio features related to pitch.

These are the pitch values determined using a discrete wavelet transform and the PSM

feature, which is based on the Fourier transform and provides a measure for the

presence of a given pitch in the audio block over which it is computed.

97

Several pitch detection techniques can be found in a long history of relevant

publications. Some of them operate purely on the time domain of the signal (e.g. using

the zero crossing rate or autocorrelation of the signal) (Amado and Filho 2008; de

Cheveigné and awahara 2002) and some of them use the frequency domain (e.g.

cepstral analysis) (de la Cuadra, Master and Sapp 2001)

Generally, blind pitch detection algorithms are highly error prone and even more so for

polyphonic signals. As stated by Dannenberg (2006), a program that could determine

the pitch content from an arbitrary audio piece, would need to solve the audio

transcription problem. In the present research the focus is neither on pitch detection, nor

in audio transcription. Nevertheless, pitch information may assist the task of onset

detection both during offline segmentation as well as during score following. The

following two chapters elucidate the way pitch features may increase the robustness of

the onset detection task.

6.6.1 Wavelet Pitch (WP)

A pitch value is computed over successive audio blocks of small length based on the

Fast Lifting Wavelet Transform (FLWT) using the Haar wavelet, shown on Figure 6-15,

as the basis function. This type of wavelet transform is mathematically equivalent to

low-pass filtering and down-sampling producing an approximation (i.e. a smoothed

version of the signal) and then high-pass filtering and down-sampling to provide the

detailed component of the signal (Daubechies and Sweldens 1998). The algorithm used

here is a re-implementation of the algorithm reported by Maddox and Larson (2005),

which finds the distance between the local maxima/minima after each zero-crossing of

the approximation component at various levels of filtering/down-sampling operations.

From these distances, the most prominent frequency component of the signal is

estimated as corresponding to the pitch of the signal.

The wavelet transform, as a multi-resolution frequency analysis technique aiming at

overcoming the problem of constant frequency resolution of the Fourier transform, can

yield increased performance for pitch detection in small audio blocks. The implemented

algorithm resulted in very good performance for the facilitated block length of 512

samples (at the rate of 44.1kHz).

Figure 6-15: The Haar wavelet.

98

Figure 6-16 depicts the value of this feature for the example musical phrase. It can be

seen that the pitch values provided by WP are effectively those depicted by the score of

Figure 6-1. Moreover, it is worth noticing that the WP feature yields almost constant

pitch values over the duration of each note, which is also evident by the first order

difference of this feature denoted as ΔWP, which can additionally be used to improve

the identification of onset locations in pitched sounds. Specifically, the 5
th

 legato note of

this signal is represented as an abrupt change of the WP feature, from a constant value

to a second value which is consistently held over the duration of the 5
th
 note.

Figure 6-16: Temporal evolution of the WP feature and its first order difference for a short musical phrase

performed by a flute.

6.6.2 Peak-Structure Match (PSM)

The PSM feature provides a measure for the presence of a given pitch in the audio block

over which it is estimated. It has been extensively used for score following most notably

by the IRCAM Real-time applications group, firstly introduced in (Orio and Schwarz

2001; Cont 2004).

The idea is that instead of attempting to detect pitch, it is easier to detect whether a

signal contains the specific pitch or not. So if f0 denotes the pitch frequency of a note, it

is expected that most of the energy of the signal will be concentrated in the spectral bins

that correspond to the harmonic series of that frequency. Consequently, the PSM feature

of a certain pitch can be mathematically formulated as:

99

where i corresponds to the frequency bins within which the harmonic overtones of

fundamental f0 reside. Commonly, the first eight harmonic partials are taken into

account and therefore h=7.

In contrast to directly using pitch, the PSM feature is known to easily extend to

polyphonic music, by accounting for the percentage of the energy found in the harmonic

structure of two or more notes (Soulez, Rodet and Schwarz 2003).

Figure 6-17: Temporal evolution of the PSM(440Hz) feature and its first order difference for a short musical

phrase performed by a flute.

Figure 6-17 shows the PSM feature for A3 note (i.e. f = 440Hz). This value corresponds

to the fundamental frequency of the first and the sixth note of the example musical

phrase (see also Figure 6-1). It can be seen that these notes have higher values of the

PSM(440Hz) feature approaching 80% of the total energy of the audio block. Therefore

this feature can significantly assist the identification of note pitches in the audio to score

alignment algorithm.

100

7 Offline Audio Segmentation

This chapter presents the methodology that was adopted for segmenting the solo

recording of each musician in the target prototype system. The resulting segments are

needed during live performance to remotely re-synthesize the performance of each

musician in real-time by means of segmental re-synthesis, which is presented in chapter

9.

The chapter initially emphasizes on the importance of blind onset detection methods as

a necessary pre-processing step for any audio analysis task on a fully automated system.

The section that follows discusses the behaviour of music signals at the location of note

onsets which may or may not be accompanied by strong initial transients. This

behaviour is determined by the tone production mechanism of acoustic instruments or

may be intentionally altered by the performer due to expressive articulation. Following,

an overview of existing blind onset detection methodologies is presented and the

performance of various onset features is briefly discussed. It is demonstrated that the

SF3 feature computed using an STFT of 2048-sample windows zero-padded to 4096-

points and a hop size of 512 samples (section 6.5.3) provides superior performance both

for signals exhibiting strong transients as well as for instrumental sounds that contain

softer onsets due to articulation. Subsequently, section 7.4 presents the offline audio

segmentation algorithm that was implemented in the final software prototype. This

algorithm besides computing SF3 values, exploits information derived from the score of

each solo recording so as increase the robustness of onset detection. Moreover, it uses

the instant pitch values as estimated by a wavelet transform (section 6.6.1) to identify

subtle pitch changes that are not accompanied by strong initial transients. The algorithm

was implemented and integrated into the system under development. An evaluation of

the computational performance of this algorithm is provided in Chapter 11.

7.1 Blind vs. by-alignment approaches

Producing a temporal segmentation that accounts for the musical events contained in an

audio waveform requires accurate identification of note onsets. As already mentioned in

section 4.1.1, audio segmentation is usually performed either by blind segmentation or

by aligning the waveform to a music score or to an alternative ‘reference’ waveform.

Blind audio segmentation methodologies assume no prior information about the content

of the audio signal being analysed and attempt to locate onsets by observing abrupt

changes in the values of certain audio features. On the other hand, segmentation by

alignment approaches use either Dynamic Time Warping to align the waveform to an

additional reference waveform of the same musical content (i.e. another recording of the

101

same piece of music), or Hidden Markov Models to align the waveform to the

corresponding musical score.

Blind onset detection is an essential step for any automatic segmentation methodology.

Although more robust, alignment approaches assume that manual annotations of the

reference material are available prior to the alignment task. If the identification of onsets

and therefore the segmentation task needs to be fully automated, then employing blind

detection is unavoidable.

Specifically, DTW approaches can achieve high accuracy in the alignment of an audio

signal to a reference waveform. However, in order to locate the onsets on the signal

being processed, it is necessary to know onset locations on the reference waveform.

Equivalently, HMM approaches can provide good accuracy in locating onsets and even

do so in real-time. However, the model needs to be trained prior to alignment. Although

unsupervised training methods exist, it is crucial that one initializes the model in a

reasonable state prior to training, so that the patterns it can learn correspond to the states

one is trying to infer. This issue is further elaborated in section 8.3.3.2. To acquire this

‘reasonable initial state’, either manual annotations must be available or blind

segmentation methods must be employed to indicate the beginning of different notes.

Consequently, a blind segmentation method even if not fully accurate must essentially

take place in any fully automated system. Subsequently to blind detection, alignment

approaches such as HMM score following may be used to further improve the accuracy

of onset detections.

7.2 Onsets and transient phenomena

Note onsets are closely associated with the notion of transients. According to

Thornburg (2005) musical signals concern two types of transient phenomena: abrupt

changes in spectral information usually associated with musical onsets, and transient

regions, during which spectral information undergoes persistent, often rapid, change.

Thus transients are short signal regions exhibiting sudden spectral changes, while onsets

are single time instants marking the beginning of transient regions. In another work

(Duxbury, Davies and Sandler 2001), transients are more formally defined as “the

residual once the steady state part of the signal has been analyzed, re-synthesized and

subtracted” (analysis/re-synthesis in this context refers to conventional phase vocoder

approaches). Hence, transient regions are complex non-stationary processes that cannot

be modelled using the conventional frequency domain representations.

Each musical instrument family has a distinguished tone production mechanism and

therefore certain initial transient characteristics. Plucked instruments amplified by a

resonator like guitars or lutes show the eigenvalues of the resonating body within the

initial phase. Also the plucking noise is present. Bowed instruments need to establish

the Helmholtz motion during a tone transient. As the bow-string interaction is a self-

organizing process, different regimes are passed during the transient with often very

102

complex, still not perfectly chaotic or noisy regions. Here, establishing the lower

partials is especially difficult and therefore the higher ones appear first in the spectrum.

Wind instruments are also self-organizing, where before a blowing pressure threshold

only noise is produced, while after passing this threshold a periodic oscillation occurs.

The establishment of this periodic motion is then passing from coloured noise to a

steady periodicity. Additionally, e.g. saxophones have a characteristic amplitude drop

after about 100ms. The singing voice is also self-organizing, showing the same

threshold and therefore transients also pass through certain phases. This also holds for

the transition to falsetto. Within the transients of piano tones, the pitch of the string

length cut by the piano hammer is present in the sound. Here, longitudinal waves of the

string are most important to the sound and therefore strongly present, too. With church

bells, the eigenfrequencies of the clapper are heard in the initial transient, the same

holds for instruments struck by a hard stick, like Balinese gender instruments. When

modelling musical instruments as self-organized systems and when assuming an

impulse-like character of the energy distributed in the instruments, an Impulse Pattern

can be calculated using a general formula holding for all instruments (Bader 2013a).

There, the basic character of initial transients can be found. The complexity of the initial

transient can also be calculated using Fractal Correlation dimensions, which count the

amount of harmonic overtone series and additionally all inharmonic components above

a certain amplitude threshold. Then the chaoticity of initial transients can be calculated

and compared between different musical instruments (Bader 2013a).

To summarize, initial transients reveal the distinguishing characteristics of the timbral

quality of each instrument. In particular, percussive or plucked and struck instruments

are associated with strong transients as their physical excitation produces complex,

inharmonic vibrations, which is an intrinsic characteristic of their timbral qualities. In

contrast, in the case of blown instruments or of the singing voice the pitch of a note may

be more subtly transformed therefore introducing new notes without the presence of a

salient transient. Moreover, transient regions may also be intentionally altered by the

performer due to expressive articulation. Bowed and blown instrumentalists are often

taught to perform a soft attack by increasing the tone volume only after the initial

transient. This is, because for these instruments it is nearly impossible to produce a

transient which is not noisy. At the other extreme, percussion instruments or staccato

playing are associated with strong transients therefore revealing note changes by the

presence of broadband noise.

Consequently, the methodology followed by onset detection algorithms should take into

account both the timbral characteristics of the instrument as well as their variations

introduced by performance style and articulation nuances. The relevant literature

distinguishes between two types of onsets. For instance (Duxburry, Sandler, Davies

2002) differentiate between hard onsets appearing as wide band noise in the

spectrogram and soft onsets, primarily detectable by a change in low frequency content.

In the same line, Brossier (2006), distinguishes between percussive onsets and tonal

onsets. Clearly, hard or percussive onsets are followed by strong initial transients and

103

may be detected by sudden changes in the high frequency bands, whereas soft or tonal

onsets are identified by changes in lower frequency bands, specifically at the

frequencies corresponding to note pitches. Therefore, in poly-instrumental recordings

different techniques must be employed so as to effectively detect onsets of both types.

Figure 7-1: Salient onsets and subtle onsets. The left part of the figure shows 7 onsets of a snare drum

recording, while the right part shows 4 note onsets of a flute performance.

Figure 7-1, presents two waveforms and their spectrograms: one with salient onsets and

one with subtle onsets. The left part of the diagram shows a section of a snare drum

recording. There are seven onsets in the signal, all of them followed by strong transient

regions appearing as broadband bursts of energy on the spectrogram. These bursts

eventually fade out at the release part of the amplitude envelope. The right part of the

diagram displays four note onsets of a flute waveform. Clearly, there is no remarkable

change of the energy of high frequency bands between note attacks and steady states.

There is a gradual increase of the energy of low frequency bands also revealed on the

amplitude envelope, which however cannot be instantly detected until part of the attack

section has been elapsed.

An additional aspect related to note onsets, concerns the temporal precision of the

detection algorithms. Gordon (1987) and Schloss (1985) observed that there is a small

latency between the time instant in which the physical excitation occurs (physical onset)

and the time when the event caused by this excitation is made perceivable (perceptual

onset). This latency is known as Perceptual Attack Time (PAT). PAT was identified by

Schloss (1985) to be of the order of 5ms, however different studies (Moore 1997;

Gordon 1987) showed that PAT depends on timbre, loudness and pitch as well as on the

context in which the sound occurs, with respect to the presence of simultaneous events.

From a psychoacoustic perspective, if the inter-onset interval of two sounds is of the

order of 50ms or below, then the sounds are perceived as simultaneous (Bregman 1990).

104

Consequently, more recent studies (Klapuri 1999; Duxbury, Sandler and Davies 2002a;

as well as the MIREX evaluation measures) consider an onset as accurately detected, if

it falls within a 50ms time window around the actual physical onset. However, it is

clearly stated by MIREX that as onset detection is a pre-processing step, the real cost of

an error depends on the application following the task of onset detection
13

.

Figure 7-2: The physical onset occurs at 2ms, but the new note will not be audible until about 40ms.

As was also discussed in section 2.4, 50 ms corresponds to a frequency of 20 Hz, which

is the lowest threshold of pitch perception. Also in vision, 50 ms is a basic integration

time, all events occurring within this 50 ms are integrated to one sensation. Therefore a

video stream needs to have a frame rate of at least 18 fps to appear as continuous.

Figure 7-2 presents an onset of a flute note, in which the physical excitation occurs at

2ms. The attack is not audible until about 50ms. Nevertheless, it is important to

highlight that for the purposes of the target application on NMP, the onset must be

detected as early as possible so as to allow concatenation to take place before the actual

note is made audible.

7.3 Typical blind onset detection methodology

Blind onset detection algorithms operate in three steps, which are: pre-processing,

reduction and peak-picking (Bello et al. 2005). Pre-processing is an optional step,

mostly appropriate to offline onset detection of music recordings. The reduction step

concerns the computation of an Onset Detection Function (ODF) as the value of one or

more temporal or spectral features computed over successive audio blocks of predefined

13 http://www.music-ir.org/mirex/wiki/2011:Audio_Onset_Detection

http://www.music-ir.org/mirex/wiki/2011:Audio_Onset_Detection

105

length. Finally, onsets are identified as the local maxima of the ODF using various

peak-picking algorithms.

7.3.1 Pre-processing

Pre-processing may include signal adjustments such as amplitude normalization, DC

removal or noise reduction, so as to clean up the signal from artefacts that are irrelevant

note onsets. Alternatively, pre-processing sometimes aims at emphasizing certain

aspects of the signal such as attack information thus narrowing the regions to look for

potential onsets. In such cases, pre-processing commonly involves processing the signal

in multiple frequency bands, or separating the transient from the stationary parts of the

signal.

For example, Klapuri (1999) uses a filter-bank to divide the signal in 21 non-

overlapping frequency bands roughly corresponding to the critical bands of hearing.

Subsequently, his algorithm detects onset components at each band and determines their

intensity. The resulting onset candidates are combined using a psychoacoustic model of

loudness perception, so as to determine the actual onsets from a number of potential

candidates. Alternatively, Duxbury, Davies and Sandler (2001), used the phase vocoder

to produce a signal using only transient components, identified as the points of non-zero

phase acceleration (see section 6.5.4). After applying an inverse FFT the resulting signal

was searched for onsets using the HFC feature (defined section 6.5.1).

In terms of online/causal pre-processing, Stowell and Plumbley (2007) demonstrated

substantial improvement of standard reduction/peak-picking techniques when a

technique called adaptive whitening was incorporated. Adaptive whitening builds a

‘Peak Spectral Profile’ of the signal which contains the maximum value for each STFT

frequency bin. Peak Spectral Profiles were computed from past audio blocks and then

each bin of the block being processed was divided by the previously observed

maximum for that bin. Subsequently, different features were used for computing ODFs.

It was shown that adaptive whitening yields improved performance compared to the

detection without whitening for most instrumental sounds.

7.3.2 Reduction

Common features used for onset detection are the HFC feature (Marsi and Bateman

1996), the spectral flux in the SF1 (Dixon 2006) and the SF2 (Duxbury, Sandler, Davies

2002a) form, the phase deviation (Bello and Sandler 2003), the complex domain

distance (Duxbury et al. 2003) and the Modified Kullback-Leibler divergence presented

by Brossier (2006). In some cases the ODF is computed as the product of two audio

features. For example Brossier, Bello and Plumbley (2004), showed a performance

improvement for an ODF computed as the product of HFC and complex domain

distance features, as compared to any single audio feature.

106

Figure 7-3: Onset Detection Functions for a drum and a flute sound snippet computed using a 4096-point

STFT with a hop-size of 512 samples and a Hanning windowing function.

107

Figure 7-4: Onset Detection Functions for a drum and a flute sound snippet computed using 2048 samples with

a hop size of 512 samples, zero padded to form a 4096 point window. No windowing function is used for this

transform.

108

Plenty of experimentation was conducted prior to designing the onset detection

algorithm to be used in the current system. A formal evaluation of the performance of

each feature for the task of onset detection is beyond the scope of this dissertation, as it

has been previously reported in several related publications (Brossier 2006; Brossier,

Bello and Plumbley 2004; Bello et al. 2005). However, for reasons of consistency and

in order to provide reasoning for the approach adopted in the present system, the

remaining part of this section demonstrates the performance of each feature for the

example drum and flute sound snippet of Figure 7-1.Specifically, the performance of

these features is demonstrated using two parameterisations of the STFT (see section

6.3): a) the commonly used STFT of 4096 samples having a hop size of 512 samples

and multiplied by a Hanning window and b) the parameterisation that was proposed for

early detections which uses 2048 samples zero padded to 4096 and a hop size of 512

samples, without multiplying by any windowing function (equivalent to using a

rectangular window). Figure 7-3 illustrates the ODFs computed using the

parameterisation (a), while Figure 7-4 illustrates the ODFs computed with the proposed

parameterisation (b). Although it is not obvious from the following figures it was

experimentally verified that using parameterisation (b) yields earlier detections, i.e.

closer to the physical onsets.

By observing these figures the following conclusions may be drawn: Firstly, it is a lot

easier to detect onsets on the drum sound, associated with percussive onsets having

salient initial transients. For this sound all features have a maximum value at the

location of onsets which is clearly not the case for the flute sound. For the flute sound

the most appropriate features are those based on Spectral Flux (i.e. SF1, SF2, and SF3).

Out of these three features, the SF3 feature seems to more successfully account for

onsets of both sounds, as it is independent of amplitude variations (see also section

6.5.3).

Finally, with respect to the parameterisation of the Fourier transform, it can be seen that

when using parameterisation (b), feature values are more ‘noisy’ than in

parameterisation (a). This noisy behaviour is caused by spectral leakage owing to the

use of a rectangular window, which does not fade out end-point discontinuities. In the

percussive drum sound, the noisy behaviour is less apparent because of dominating

noisy components of the signal itself. However, in both parameterisations the dominant

peaks of feature values owing to note onsets are clearly distinguishable. As was

discussed in section 6.3, parameterization (b) is preferred because, due to using fewer

audio samples (i.e. 2048 instead of 4096) on the analysis window, each captured block

(of 512 samples) has a higher contribution to the computed spectral features and more

importantly because, due to the rectangular window, it allows early detections, namely

before the onset appears in the center of the analysis window.

109

7.3.3 Peak-picking

Subsequently to reduction, temporal peak-peaking is applied in order to identify onsets

as the local maxima of the computed ODF.

Before computing the local maxima, post processing the ODF may be optionally

performed. In such cases, post-processing involves normalisation and DC removal so

that the ODF varies within the interval [0, 1] and possibly some smoothing in order to

remove unwanted noise. Obviously, normalisation and DC removal is applied only in

offline settings, while smoothing may be effectively and causally implemented in online

settings using for example a Finite Impulse Response (FIR) filter (Brossier 2006; Bello

et al. 2005).

Peak-picking aims at computing a threshold value, so that values of the ODF exceeding

that threshold are identified as onsets. The threshold may be either fixed (i.e. a constant

value over the entire duration of the signal) or it may be dynamically computed based

on previous ODF values, so as to account for variations owing to performance

dynamics.

Bello et al. (2005), used normalisation, DC removal and low-pass filtering for post-

processing various ODFs and then used a median filter to compute a dynamic threshold.

This median filter can be formulated as:

where D(n) is the ODF value of audio block n, δ and λ are positive constants and M

corresponds to the longest time interval on which the dynamics of the signal are not

expected to evolve, typically around 100ms. The computation of this threshold is non-

causal and therefore not applicable to online settings.

In causal settings, considering the mean value, in addition to the median, for the

computation of the dynamic threshold was proposed as a way to compensate for the

lack of DC removal and normalization (Brossier 2006; Brossier, Bello and Plumbley

2004). The corresponding dynamic threshold was formulated as:

In the respective implementation, namely the open source Aubio library
14

, Brossier uses

α = 5

and b=1, therefore computing the threshold using a window which starts five

blocks before the current block and one block after the current block. Unfortunately,

this threshold is non–causal, but using b=1 introduces a latency of a single block in the

detection of onsets.

14 http://aubio.org/

http://aubio.org/

110

Subsequently to the computation of the dynamic threshold, two further constraints may

be applied to the values exceeding the threshold. Specifically, in order to minimize false

detections Brossier (2006) proposed the use of a silence gate so as to reject spurious

detections in low energy areas, as well as rejection of an onset when it is detected very

close to another onset, based on a so called minimum Inter-Onset-Interval (IOI)

criterion.

7.4 Offline segmentation in the proposed system

For the application being investigated, robust onset detection is essential for producing

the audio segments that will be concatenated during live performance in order to

remotely re-synthesize the performance of each musician in real-time. For this purpose

and since the target usage scenario permits it, the respective algorithm exploits

information derived from the music score in order to increase the robustness of the blind

detection methodology. Hence, the resulting onset detection algorithm cannot be

considered ‘blind’ per se. However, it does not perform any score alignment either. The

score information exploited concerns the total number of notes the appearing in the

signal (i.e. the number of onsets that need to be found). This possibility simplifies the

peak-picking step of the blind detection methodology. As was discussed in section 0

peak-picking involves configuring a number of parameters (α, δ, λ) which need careful

consideration to successfully depict ODF thresholds for different instrumental timbres

and performance articulations. Consequently, the adopted approach can be regarded as a

hybrid onset detection scheme, which is based on the blind detection methodology,

however exploiting score information so as to provide increased robustness and allow

for a broad variety of instrumental sounds to be accurately segmented using the same

algorithm and the same parameterisation.

As shown on Figure 5-1, audio segmentation takes place offline and prior to NMP with

the objective of generating a pool of audio segments for each performer together with

their associated descriptors. The following subsection describes the onset detection

algorithm used for detecting segment boundaries and the one that follows describes the

process of computing segment descriptions.

7.4.1 A Robust onset detection algorithm

The ‘blind’ part of the algorithm uses the SF3 feature computed with an STFT of 2048-

samples zero-padded to form a 4096-point analysis window, which is not multiplied by

any windowing function (i.e. uses a rectangular window). The hop size is deliberately

small in order to provide increased time resolution in the detection of onsets, while zero

padding is used instead of highly overlapping signal windows to accentuate early

detections. As elaborated in section 7.3.2 and illustrated in Figure 7-4, this feature was

proven more effective in depicting onsets as local maxima of the corresponding ODF, in

comparison to alternative audio features. In the case of subtle pitch onsets as in the

111

example flute sound, the SF3 feature exhibits dominating peaks with the exception of

legato onsets associated with less prevailing peaks (see also Figure 6-11). To account

for such onsets, the final algorithm uses the wavelet pitch feature (section 6.6.1), also

computed over successive 512-sample blocks, to identify smooth changes between

regions having constant pitch.

Figure 7-5: Block diagram of the offline audio segmentation process in the implemented system. Solid lines

represent audio data flow while dashed lines represent numerical or textual data flow.

Extensive experimentation showed that even when using the SF3 feature for the

computation of the ODF, peak-picking algorithms need different parameters for

different signals in order to accurately indicate the location of onsets. For this reason,

instead of computing a dynamic threshold, the algorithm queries the score to find out

how many onsets are to be found and then searches the ODF to find as many ‘top’

maxima as there are notes in the score. Moreover, in order to avoid spurious detections

maxima found in areas for which the log energy feature LE (section 6.4.3) is below a

predefined silence threshold or in intervals that are smaller than a predefined minimum

allowed IOI, are rejected and the SF3 feature is searched again for the remaining

maximum values.

The entire process of offline audio segmentation is schematically depicted on Figure 7-5

and it comprises the following steps:

a) The signal undergoes a pre-processing step which involves DC-removal and

amplitude normalization.

112

b) Feature extraction is applied in order to derive three features which are: the

instant wavelet pitch (WP), the normalized version of spectral flux (SF3), and

the log-energy (LE)

c) Subtle pitch changes are detected by examining the instant pitch WP. In specific,

a non-percussive onset is located at pitch changes for which the old pitch is

maintained for at least 100ms before the potential onset and the new pitch for at

least 100ms after the onset.

d) The score is parsed to determine the number of notes that must be detected, for

example M-notes.

e) If m-notes are detected as subtle pitch onsets, then the SF3 feature is searched

for the top M-m maximum values

f) For each such maximum value, the algorithm examines satisfaction of two

constraints: a) that the detected maximum is at least 50ms (defined by a global

constant named MINIMUM_IOI) apart from any previously detected onset and

that b) for the next 50ms (i.e. ATTACK_DURATION) there is at least one audio

block having a Log Energy (LE) value that exceeds -40dB (i.e.

SILENCE_THRESHOLD). If the detected maximum satisfies these constrained

it is recorded in the list of detected onsets, otherwise it is recorded in a list of

discarded candidates.

g) When the list of detected onsets reaches the desired length M, it is ordered in

time, so that earlier onsets appear in the list before later onsets.

h) For every onset in the ordered list, a new segment is stored in the pool of audio

segments and a line is added in the corresponding description file.

7.4.2 Generating Segment Descriptions

While segmenting each solo recording, the system generates a text file that describes the

duration, the RMS amplitude and the pitch of the note contained in each audio segment.

As described in section 9.3, these descriptions are used for computing expressive

deviations of the note performed during live NMP, compared to the corresponding note

segment maintained in the segment pool. The estimated deviations are subsequently

used to transform the retrieved segment in terms of loudness and duration, so as to more

closely match expressive utterances employed during live collaborative performance.

A precise description of the contents of the description file as well as an excerpt of an

example file is provided in section 10.3.2.3.

113

8 HMM Score Following

This chapter describes the methodology that was adopted for tracking the performance

of each musician during distributed live performance. Performance tracking was

achieved by means of score following based on Hidden Markov Models. Initially, the

chapter discusses the general conceptual approach and the applications targeted by

HMMs. The section that follows formulates their mathematical definition and the

adopted computational approach. As there are several alternative representations of

HMMs in tackling specific problems, the section that follows elaborates on several

design considerations that were confronted while experimenting with the system under

investigation. Finally, the last section of this chapter presents the model that was

implemented in the present system, as well as the methodology that was adopted for

efficiently training that model and using it in order to allow detecting note onsets in

real-time.

8.1 The HMM approach

A Hidden Markov Model (HMM) is a statistical model for determining the current state

of a system, which is assumed to be governed by a Markov process. A Markov process

is a stochastic process satisfying the Markov property, which requires that the process is

memoriless, meaning that future states depend exclusively on the present state and not

on preceding states. More concisely stated, HMMs assume that the current state is only

conditioned on the previous state.

In particular, HMMs attempt to extrapolate versatile information within data series.

Such versatile information is represented in system states. System states are not directly

observable and they are considered as hidden or latent variables of the model. However,

what is observable is a series of system measurements, termed as observations or

emissions, which are assumed to be highly correlated with the hidden states. To sum up,

an HMM determines the current state of a system, given its previous state and the

current system observations. Clearly, the design of an HMM for a specific task needs

careful consideration with respect to selecting appropriate system states and system

observations, so that states effectively match the information that needs to be

extrapolated and that observations are sufficiently correlated to system states so that

different states are associated with highly uncorrelated system observations.

HMMs are extensively used in pattern recognition and time series prediction in a variety

of disciplines ranging from financial forecasting (Park et al. 2009) to biological

sequence analysis (Bi 2009). In the audio domain and specifically in speech research,

HMMs have been widely used for the task of speech recognition as well as for speech

114

synthesis. In speech recognition, observations are formed from audio feature vectors

and states correspond to phonemes, syllables, or words. Therefore, given a feature

vector as well as the previously decoded state, the HMM determines the current

phoneme, or syllable (Rabiner and Juang 1993). In speech synthesis HMMs are used to

determine parametric representations of speech signals induced from textual

compounds. Subsequently, the determined parameters are applied on a parametric

model such as an articulatory or formant model of speech which generates the speech

signal (see also section 4.2).

In music, HMMs have been widely used for the task of audio-to-score alignment

(section 3.2.2). By the time of this writing no evidence has been found that HMMs can

be used for direct audio-to-audio alignment (i.e. without assuming the presence of a

score). This is inherently related to the types of problems addressed by HMMs, which

are not to align two sequences of the same data rate (as for example in DTW), but to

find correspondences among two series of related data, one of which represents system

observations and the other represents higher level models of reduced data rate such as

notes or chords. Accordingly, the audio signal to be aligned needs a higher level

structural representation, which is effectively provided by its music score.

In these systems the audio file is sliced in a number of audio blocks. Feature extraction

is applied on each block so as to provide a number of feature values per block. These

feature values form a feature vector and each feature vector is an HMM observation

symbol. Given the sequence of observations (feature vectors) the goal of audio-to-score

alignment is to find the most probable sequence of notes. In HMM terminology notes

are represented as states, therefore the idea is to find the note sequence that yields the

maximum probability for a given sequence of feature vectors. There are three types of

probabilities related with HMMs: initial probabilities, transition probabilities and

observation probabilities. Initial probabilities determine the initial state of the sequence,

namely the state at time zero. Transition probabilities determine the possible transitions

among states, e.g. which note follows the current note. Finally, observation probabilities

associate observations symbols with system states, i.e. determine whether a symbol may

be emitted while the system is in a specific state.

Whether or not the HMM corresponds to perception is still a question under debate. In

terms of melody, the implementation-realization theory of Narmour (1990) also

assumes a transition probability imposed by melodic expectations between adjacent

musical intervals, similarly to HMMs. Also the Goldstein optimum processor of pitch

perception presents a statistical model in which, pitch estimations of complex tones are

successfully derived using Gaussian probabilities for the observed harmonic structure

and a maximum likelihood criterion (Goldstein 1973). As early as 1956, Mayer

remarked that musical style and also the mental processes involved in the perception of

music may be regarded as a complex system of probabilities. Such probabilities model

expectations and tendencies upon which musical meaning relies (Meyer 1956). A

115

statistical approach on how probabilities shape music perception is more

comprehensively investigated in the book of Temperley (2007).

8.2 Mathematical Foundation

There are numerous of mathematical resources on Hidden Markov Models. This section

does attempt to provide elaborate mathematical details on the realization of HMMs.

Instead, it provides the basic mathematical concepts that are necessary for describing

how HMMs were represented and integrated in the present work. The section firstly

provides the mathematical definition of HMMs, and then it summarises the

computational approach employed in alignment tasks. The notation as well as the

computational approach presented here is based on two widely known tutorials on

HMMs (Rabiner 1989; Bilmes 1998).

8.2.1 Definition of an HMM

Mathematically formulated, if O = {o1, o2,..., oT} is a sequence of observations drawn

from an observation vocabulary V = {v1, v2, ..., vM} and Q = {q1, q2, …, qT} is a

sequence of hidden states derived from a set of possible states S = {s1, s2, ...,sN}, in

other words if at each time t, where Tt 1 ,then Vot and Sqt , the HMM is

defined as the tuple),,,,(BAMN , where:

 N: is the number of possible states in the model

 M: is the number of possible observations symbols

 A = {aij }:is the state transition probability matrix, namely the matrix

that contains the probabilities of moving from state si to state sj, for each

pair of states: NjiforsqsqP itjtij ,1),|(a 1

 B = { bik }: is the observation probability matrix, namely the matrix that

contains the probabilities of observation symbols ok emitted while the

system is in state si for each pair of symbol and state:

MkandNiforsqvopb itktik 11),|(

 π = {πi }: is initial state distribution, defining the probabilities that at time

1t the system is at state i , for each such state:

NiforsqP i 1),(1

8.2.2 Hypothesis and computational approach

From a statistical point of view, an HMM is a probabilistic model of the joint

probability of two distributions of random variables O and Q. This joint probability is

made tractable (i.e. efficiently evaluated), due to two conditional independence

assumptions:

116

1. The t
th
 hidden state qt depends exclusively on the previous hidden state, qt-1 :

2. The t
th

observation symbol depends exclusively on the t
th
 hidden state:

Computationally, the theory of HMMs tackles three problems:

1. Compute the probability of an observation sequence given the model, P(O|λ).

2. Find the optimal state sequence that best explains a series of observations given

the model. That is find Q = {q1, q2, …, qT}, when O = {o1, o2,..., oT} and λ are

known.

3. Find the optimal parameters of model λ that best explains the observation

sequence. This problem translates to computing the model

 which out of all possible models maximizes the

probability of a given sequence of observations.

The second problem is often referred as HMM decoding and the third as HMM training.

This is not necessarily the order followed in solving an HMM problem. Usually,

problem 3 and 1 are performed prior to HMM Decoding (problem 2). Each of these

problems is efficiently solved using: the forward or the backward procedure (problem

1), the Viterbi algorithm (problem 2), the Baum-Welch algorithm also called

Expectation-Maximization (EM) algorithm for HMMs, or forward-backward algorithm

(problem 3). Problem 3 is by far the most difficult to compute. The EM-algorithm has

proven to be a robust way to estimate model probabilities given an observation

sequence. The idea of EM is to view these probabilities as part of the given

observations, so as part of a time series. As these probabilities and distributions are only

a small amount of parameters compared to the number of observations, the EM

estimates them as if there were missing data points in a long time series. The elaborate

mathematical description of these algorithms can be found elsewhere and is beyond the

scope of this document; however some essential key concepts are presented in the next

section.

Considering the case of audio to score alignment as an example, the main goal is to find

the sequence of states (e.g. notes) that corresponds to the sequence of observations (i.e.

feature vectors) per audio block, so to say per 512 samples of a monophonic audio

signal. This target is depicted in the second problem, which however assumes that the

model is known prior to determining the hidden states. Therefore, before approaching

the second problem, one needs to consider the third problem in order to find the optimal

model for the given sequence of feature vectors. However, in order to solve the third

problem, an efficient method for evaluating the probability of observations given a

model, i.e. the first problem needs to be tackled. Hence, all three problems must be

essentially addressed for any alignment task.

117

8.3 Design considerations

In order to design a model for a specific task, it is necessary to determine a number of

HMM attributes from a broad range of different alternatives. In fact, all models used in

the relevant literature allow for numerous variations in the representation of HMMs.

This section outlines the design questions that were confronted during the

implementation of the prototype system being investigated and summarizes the

conclusions drawn from extensive experimentation with different HMM

representations.

8.3.1 States, transitions and HMM topologies

HMM states must essentially correspond to the information that needs to be found by

the HMM. In audio-to-score alignment approaches, states are directly derived from

score events. For example, in monophonic audio segmentation by alignment, which

aims at identifying the instants of note onsets, three states such as attack, sustain and

rest are used for the representation of each note of the score (Schwarz, Cont and Orio

2006; Raphael 1999). When dealing with polyphonic music (Raphael 2004; Cont 2010)

the score is represented as a single pitch, a chord (pitches occurring simultaneously) or

silence at every change of polyphony (i.e. at each note start and note end). Alternatively,

in the work of Bello and Pickens (2005) and later Cho and Bello (2009) as the HMM is

used for harmonic content recognition instead of score alignment, states correspond to

24 major and minor triads, i.e. a pair of triads for each of the 12 pitches of the chromatic

scale.

Determining how to represent states also determines the types of transitions permitted

between system states. The overall behaviour with regard to process movement between

states, in other words the number of states and their associated transitions, constitute an

HMM topology. Different HMM topologies are appropriate for different types of

applications.

Figure 8-1, illustrates some popular HMM topologies derived from the book of Gernot

Fink (2008). In such diagrams, non-zero transition probabilities are depicted with

directed arrows and the sum of all probabilities departing from any single state is

always 1. It can be seen that all states are associated with self-transitions or loops. In the

case of forward topologies (i.e. when transitions move in one direction), self-transition

probabilities effectively depict the time spent at each state. Consequently in audio to

score alignment approaches, transition probabilities are informed by the rhythmic

structure of the score (Raphael 1999).

The simplest HMM topology is the linear topology (i.e. the system can either stay on

the same state or proceed to the next one) and the most complex is the ergodic model

(i.e. any state can be reached from any other state). The Bakis topology allows for

skipping individual states, while the left-right model provides more flexibility by

118

allowing skipping an arbitrary number of states in forward direction within the

sequence.

Figure 8-1: HMM topologies. Image derived from Fink (2008)

An important problem of these models is their computational complexity, which

depends on the number of non-zero transition probabilities. This can be realized if one

considers a large number of states. For example, 200 states will be associated with a

200x200=40,000 floating point (or double precision) numbers representing transition

probabilities. The consequences of such long sequences are not merely on increased

memory requirements but more importantly on the number of computations that need to

be performed during HMM training and decoding. Specifically, during HMM decoding

only non-zero probabilities need to be taken into account in the computation of total

probabilities, while during HMM training a zero transition probability remains zero

throughout the entire iterative training process and therefore needs not be taken into

account with respect to the overall computational complexity of the model (Rabiner

1989). Ultimately and as explicitly stated by Fink (2008), the choice of a certain

baseline topology always represents a compromise between flexibility and tractability

of the problem at hand.

When tracking performances of monophonic instruments, the chosen topology should

be flexible enough to accommodate deviations in the articulations of different notes.

Hence, a linear model is not appropriate as expressive deviations during performance

may result in different succession of note states. For instance, in some performances a

note may be played as legato whereas in others as staccato and therefore it is not known

whether each note will be followed by a low energy rest state or directly by the attack of

the next note. As a result, it is essential to introduce optional states such as rests or

silences that may skipped as in the Bakis or the left-right model of Figure 8-1.

119

Figure 8-2: The HMM topology used in the current system. Letter ‘A’ indicates an attack state, ‘S’ a sustain

state and ‘R’ an optional rest state.

Moreover, as the alignment to be decoded by the HMM is not only based on transition

probabilities, but also on observation probabilities, and as the states to be decoded need

to have a high correlation with observations so as to produce accurate alignments, there

should be a clear separation between the different parts of the note. The sustain part of a

note has an roughly constant energy and is highly periodic. In contrast, the attack part of

a note is associated with increasing energy and can be quite noisy as in the case of

plucked or struck instruments.

In the prototype system under investigation, the Bakis model has been adopted in which

every note is represented by three states: attack, sustain and an optional rest state. The

resulting topology is depicted in Figure 8-2. The model starts from rest (i.e. silence),

and proceeds by the three states of each score note. It can be seen that for each state an

equal probability is given to all possible transitions. These transition probabilities can be

improved and re-estimated during the HMM training process (section 8.3.3). In

previous works, Raphael (1999) uses a negative binomial distribution to estimate the

time spent in each state and Schwarz, Cont and Orio (2006) use the binomial

distribution to obtain transition probabilities, without performing subsequent training on

these probabilities.

The problem with these models is that as the number of notes in the piece increases, the

number of states is multiplied by three. For example, a piece containing 200 notes

would correspond to 301 states (one is due to the first rest accounting for initial silence)

and therefore the transition matrix would require 301x301 = 90,601 coefficients of

which thankfully only 1400 would be non-zero. However, as several computations need

to additionally take place for observation probabilities, the alignment problem may

become seriously intractable.

In an attempt to reduce the required number of computations, an alternative topology

was attempted. This topology uses three states (attack, sustain and optional rest) per

each pitch appearing on the score, instead of each note event, as depicted in Figure 8-3.

Designing this topology was based on the assumption that, as a few note events of a

score correspond to the same pitch (e.g. determined by the tonality of the piece), the

number of states can be significantly reduced by modelling pitches instead of note

events. In this case, the model does not move in one direction, as a pitch value may be

revisited several times within a certain piece of music.

120

Figure 8-3: A forward-backward score representation

Unfortunately, as this model does not effectively capture the temporal evolution of the

score, it results in state transitions which, although possible according to the HMM

topology, are not possible according to the score. However, it is likely that this effect

can be alleviated by training the model on multiple performances. Moreover, as some

note transitions appear more often than others, training the HMM results in over fitting

those transitions, therefore excluding transitions that appear less often. For example, for

note passages such as the one depicted on Figure 8-4, training the HMM will yield

improved probability estimation for note transitions C4->E4 and C4->B4, therefore

hindering the decoding of the C4->G3 note transition, which appears only once.

Figure 8-4: A musical passage for which HMM training will hinder the recognition of the C4->G3 note

transition

To summarize, the Bakis model of Figure 8-2 was chosen and implemented in the final

prototype system, using three states, attack, sustain and an optional rest, for each note

event of the music score. The main shortcoming of this model is its inability to train and

decode long score sequences, a problem that is further elaborated in section 8.3.3.4.

8.3.2 Observations and observation Probabilities

As previously discussed, system observations correspond to system measurements and

must be highly correlated with the states the HMM is trying to infer. In the domain of

audio signals, system measurements are audio features and an observation symbol may

be formed using a number of different features (i.e. a feature vector) per audio block.

The computational approach followed, i.e. training and decoding is significantly

different when using continuous rather than discrete/categorical observations. It can be

readily seen, that the definition of an HMM in section 8.2.1 assumes that observation

symbols are categorical, in other words that they are derived from an observation

121

vocabulary of finite length. Clearly, this is not the case for features vectors, as feature

values are continuous.

Consequently, the observation matrix B={bij, 1 ≤ i ≤ N and 1 ≤ j ≤ M } cannot be

computed because the number of possible observation symbols M is infinite. Moreover,

the observation probabilities cannot be represented using discrete probability

distributions summing to 1, as was the case of transition probabilities. Instead, the

model is associated with a number of probability density functions, most commonly

represented by their mean values and variances (or standard deviations), which may be

used to estimate the probability of a feature vector being observed from a specific

system state.

The most common approach in respect with probability density functions is to use a

multivariate Gaussian distribution, which is a generalization of the one-dimensional

(univariate) normal distribution to higher dimensions. In this case the dimension of the

multivariate distribution equals the dimension of the vector space from which

observation symbols are derived. In other words, if the observation symbol consists of L

features, i.e. ot = (f1, f2, ... ,fL}, then an L-multivariate Gaussian is used to derive the

observation probability of symbol ot emitted while the system is in state i as:

Where ot is the feature vector at time t and is the probability density of a

multivariate Gaussian with mean vector μi and covariance matrix Σ. Finally, |Σ| denotes

the determinant of the covariance matrix.

In particular, when observations are continuous, the HMM instead of having an NxM

observation matrix B, consists of an NxL mean matrix μ ={μil} describing the mean

value of feature l in state i and an LxL covariance matrix Σ ={σld} describing the

correlations among pairs of features. The formulas used to derive these matrices are

provided in the following section in equations (8.2) and (8.3).

Subsequently, the main design choice to be made in respect with observations is which

features to use in order to more effectively allow detection of specific states according

to the observed features. In the present prototype system the following audio features

have been chosen to account for HMM observations:

 LE (section 6.4.3). The Log energy feature permits distinguishing between

states corresponding to notes and those corresponding to rests. Rests are

associated with lower LE values than the attack or sustain parts of a note.

 ΔLE(n) = LE(n) – LE(n-1). This is the first order difference of the Log

Energy feature. It allows distinguishing between note attacks that are

expected to have a positive value of ΔLE and sustain parts of a note,

expected to have a value of ΔLE which is close to zero.

http://en.wikipedia.org/wiki/Univariate
http://en.wikipedia.org/wiki/Normal_distribution

122

 SA (section 6.5.2): The spectral activity feature is primarily used as an onset

feature. In Figure 6-10, it can be seen that the distribution of this feature is

rather constant at all places except the location of onsets where local minima

are observed. Consequently, this feature can significantly improve the

probability of inferring a transition from a rest or sustain state to an attack

state (i.e. the onset)

 SF3 (section 6.5.3). The same applies to the Spectral Flux feature which is

also used to increase the probability of an onset related transition.

 ΔSF3: Experimentation showed that the first order difference of spectral flux

improves the quality of HMM alignment.

 PSM (section 6.6.2) for each unique note present in the score. This feature

helps to distinguish among different pitches, and therefore among the states

corresponding to different notes.

 ΔPSM for each unique note present in the score. As shown on Figure 6-17,

the distribution of this feature is constant throughout the signal apart from

the location of note onsets, where a sudden fluctuation is observed.

Therefore, in the current HMM implementation, the number of features L depends on

the number of unique notes appearing on the score. For example, if the score contains

50 notes of which 10 correspond to unique pitches then the dimension of the

observation symbol ot is L = 5+2x10 = 25 features and the number of states are N =

3x50+1= 151. The corresponding mean matrix will have a dimension of 151x25 and the

covariance matrix that of 25x25.

These features are computed for monophonic signals sampled at 44.1kHz and using a

16-bit sample resolution in audio blocks of 512 samples. For the computation of

spectral features, an STFT of 2048-sample windows zero-padded to 4096-points and a

hop size of 512 samples was used (section 6.3). Unfortunately, experimentation showed

that 256 sample blocks resulted in degradation of the alignment accuracy, as the

corresponding features do not contain enough information to sufficiently correlate with

HMM states. For example, if an attack state is expected to last while the logarithmic

energy is increasing and therefore the ΔLE feature is positive, then 256 samples may

not be enough to provide a positive value due to intermediate signal oscillations within

the 256-samples block.

8.3.3 Training Process

Training involves the estimation of HMM probabilities prior to HMM decoding. This

estimation concerns the initial probability matrix π, the transition probability matrix A,

and the emission probability matrix B. As we use continuous observations, instead of an

emission probability matrix we seek to estimate the mean vector matrix μ = {μil} and

the covariance matrix Σ = {σld}, where i is the state index and l, d are audio feature

indices. During decoding, the matrices μ and Σ are used to compute the probability bi(o-

t) of a feature vector ot being observed in state i using equation (8.1).

123

If for a given observation sequence O = {o1, o2, …, oT} the hidden state sequence Q =

{q1, q2, … qT } is known, then the mean vector μ and the covariance matrix Σ can be

easily computed for each state and for each feature as follows:

where fl(t) is the value of feature l at time t when the system is found in state si, and ni is

the number of audio blocks (out of the duration T of the entire sequence) spent in state

si.

The implementation of audio to score alignment in the current system uses a transition

probability matrix A which complies with the HMM topology shown on Figure 8-2.

Additionally, as the model follows a left-right direction and assuming the sequence

starts from the initial rest state, the initial probability matrix can be defined as π = {1.0,

0.0, ….,0.0}. This matrix corresponds to a system that starts from the initial (prior to

performing) rest and has zero probability in all other states at time t=1.

Consequently, if an accurate alignment is available prior to decoding it is possible to

estimate the model, including all probability matrices. However, in most cases no such

alignment exists, neither is easy to obtain. For this reason, several approaches (Raphael

1999; Cho and Bello 2005) employ unsupervised training methods in order to estimate

HMM probabilities. As already mentioned in section 8.2.2 the algorithm to efficiently

compute the HMM probabilities that best explain a sequence of observations is known

as Baum-Welch algorithm or Expectation Maximization for HMMs, or forward-

backward algorithm.

This algorithm is mathematically complex and involves the intermediate computation of

probabilities that are supplementary to π, A and B, known as forward and backward

probabilities. However, for reasons of consistency this section attempts to give a

simplistic and intuitive explanation of the entire process.

The idea is that the HMM model λ = (π, A, B) can be initialized by taking an initial

guess on the various probability values. Given this ‘guessed’ model, an alignment may

be computed using either the Viterbi algorithm used for decoding a sequence when the

model is known, or by computing the forward and the backward probabilities, which

provides an efficient procedure for computing the probability of a sequence P(O|λ) for

all possible state sequences. Then, given the resulting alignment Q, a new model λ’ =

(π’, A’, B’) can be estimated from λ as:

124

or equivalently, instead of estimating b’jk, using equations (8.2) and (8.3) that apply to

continuous observations.

It has been mathematically proven that the new model λ’ has a higher probability for the

observation sequence O, in other words P(Ο|λ’) > P(O|λ), as the above estimates are

derived by maximizing (i.e. zeroing the first derivative with respect to λ’) the quantity:

which is known as the log-likelihood function. Therefore repeating this procedure

iteratively improves the probability of the observation sequence O = {o1, o2, …, oT}

until some critical, convergence point is obtained.

HMMs have been successfully applied in several signal processing applications. Their

success however depends on a number of implementation issues that are related to the

training process. These issues have been addressed by relevant publications and they

have also been encountered during the experimental validation of the present system. It

is therefore important to highlight these issues, the research works within which they

are addressed and how they affect the HMM implementation of the present system.

8.3.3.1 Multiple observation sequences

In the above we assumed that the parameters of the HMM are re-estimated from a single

observation sequence O. In practice, in order to get a good estimate of the model many

example observation sequences need to be taken into account. As stated by Rabiner

(1989) and found out during experimentation with the present system, training on a

single observation sequence is inhibiting especially for left-right HMM topologies.

This is because of the transient nature of states within the model only allowing a small

number of observations for any state until a transition is made to a successor state.

Hence, in order to have sufficient data to make reliable estimates of all model

parameters one has to use multiple observation sequences.

Although including more training sequences involves repeating the same procedure

without increasing the computational complexity of the algorithm, it is nevertheless

particularly difficult to find several observation sequences to reliably train the model.

This is especially true for the application scenario being investigated here. Because of

this, and due to the fact that in the reference scenario only a single performance (i.e. the

solo recording) is available as a training sequence, the current implementation for score

125

follower does not train transition probabilities. The Baum-Welch algorithm is only used

to train observation probabilities. However, in a more elaborate scenario, recordings

obtained during offline rehearsals can be incorporated in training the model, therefore

providing a better estimate for all types of probabilities.

8.3.3.2 Obtaining an initial alignment

Previously, at the description of the training process it was mentioned that one should

start the iterative training process by taking an initial guess on model parameters (i.e.

initial, transition and observation probabilities). It is generally acknowledged that,

regardless the application domain, the initialization of model parameters is critical to the

performance of the model after training (Nathan, Senior and Subrahmonia 1996). In

fact, correct model initialization is essential when dealing with continuous system

observations (Rabiner 1989). Techniques such as clustering algorithms (e.g. segmental

k-mean clustering), Gaussian Mixture Models or the use of random values (Rabiner

1989; Rosa et al. 2007) have been proposed for different HMM tasks.

Correct model initialization largely depends on the task at hand. For example Bello and

Pickens (2005) used musical knowledge to inform the parameters of their HMM for

chord recognition, while previously Sheh and Ellis (2003) used random initializers for

the same task. For the task of audio to score alignment Cont (2004) used the Yin

algorithm (de Cheveigne 2002) for blind pitch detection to discriminate among different

pitch classes informing score states. Alternative approaches include generating a correct

alignment by synthesizing an audio waveform from the score, using a software program

or an API such as Timidity++
15

 (Hu, Dannenberg and Tzanetakis 2003), and optionally

aligning the synthesized waveform to an alternative recording using audio-to-audio

alignment techniques such as DTW or directly initialising the model based on the

synthesized waveform.

It is important to realize that this initial alignment should be as accurate as possible, so

that the patterns the HMM learns during training correspond to the states that need to be

inferred during HMM decoding. In the current HMM implementation, model

initialization is based on the offline audio segmentation algorithm that was used for

segmenting the solo recording (section 7.4.1). Based on the detected onsets, an

approximate alignment is inferred, which is further used for computing the mean vector

and covariance matrix from equations (8.2) and (8.3). The initial values of transition

probabilities are those depicted on Figure 8-2 and initial state probabilities are all zero

except from that of the first state which equals 1.0. Subsequently, the Baum-Welch

algorithm is applied on that initial model, so as to further refine observation

probabilities.

It is quite reasonable to wonder about what is the benefit of HMMs if a correct

alignment needs to be available prior to their decoding process. There are two benefits

in this respect: firstly that training on an accurate alignment/recognition will enable

15 http://timidity.sourceforge.net/

http://timidity.sourceforge.net/

126

aligning/recognizing additional sequences bearing the same information content and

secondly that with HMMs it is possible to do so causally (i.e. online) and in real-time.

A further issue which is quite important to consider in the initialisation phase, is related

to the fact only transitions that are absolutely impossible should be assigned a zero

transition probability. It was previously mentioned (section 8.3.1) that zero-transition

probabilities remain zero throughout the entire iterative training process. This also holds

for observation probabilities (Rabiner 1989). Hence, in the present system, if the initial

alignment contains a skipped rest state, which is valid according to the topology of

Figure 8-2, then the computed observation probabilities of that state will be zero and

will remain zero after training. However, in an alternative performance, variations in

music interpretation may be such that the specific rest state is actually visited. In this

case the model will be unable to decode the performance further to the state having a

zero observation probability. To alleviate this problem in the implementation of the

final prototype, a common observation probability is computed for all rests, in other

words the mean values of features in rest states are computed based on all rests of the

initial alignment, regardless the preceding or following note and this also applies to the

computation of the covariance matrix. Therefore an equal observation probability is

obtained for all rest states using equations (8.2) and (8.3). Subsequently, Baum-Welch

training provides more accurate estimation of these probabilities resulting in different

values for different rest states. These trained values do not become zero so as to exclude

the possibility of expressive deviations in a different performance interpretation.

8.3.3.3 Numerical instability

As HMM training involves computing the product of a large number of probabilities

(i.e. forward and backward probabilities) that are numbers significantly smaller than

one, exceeding the machine’s numerical precision is a common problem during HMM

training.

The most common technique followed in order to avoid numerical underflow is to scale

these probabilities, by dividing them after each training iteration by their sum over all

states (Rabiner 1989). Alternatively, Mann (2006) proposes working with the

logarithms of probabilities. Unfortunately, as verified in the system under investigation,

working with logarithms in long sequences and left-right models increases the

computational complexity of the algorithm, and may therefore render the training

process entirely intractable.

8.3.3.4 Memory Requirements

One of the problems of Baum-Welch training is the inhibiting memory requirements

when attempting to model long audio sequences. These requirements stem from the fact

that for each audio block a number of multidimensional arrays holding forward and

backward probabilities per audio feature and per HMM state must be allocated.

Moreover, due to the numerical instability issued mentioned in the previous section,

these arrays must be of double precision (64 bit), otherwise it will be impossible to

perform computations on small probability values.

127

In order to realize the magnitude of this problem it is easy to find that one minute of

monophonic 44.1 kHz audio corresponds to (44100x60)/512 = 5,168 blocks of 512

samples. If we now consider the number of notes, for example 50 notes, of which ten

correspond to unique pitch values, we have 25 features and 151 states (see also section

8.3.2). One of the probability matrices ξt(i, j) used during training, records the

probability of being in state si at time t and in state sj at time t+1. Only this matrix

requires recording 5168x151x151 = 117,835,568 doubles that correspond to almost

943MB of computer memory, and this is only for one of the arrays!

Although this is a well known problem in biological sequence analysis (Miklós and

Meyer 2005) and several algorithms for reducing memory requirements have been

proposed (Khreich and Granger 2010), the problem has not been sufficiently addressed

for the task of audio–to-score alignment. A solution could be to split the observation

sequence into smaller and possibly overlapping segments and perform Baum-Welch

training for each of these segments. This has not been attempted in the implementation

of the system being investigated.

8.3.4 Decoding Process

HMM decoding involves finding the state sequence that best explains a given

observation sequence, when the model λ = (Ν, Μ, Α, Β, π) is known. This problem is

efficiently solved using the Viterbi algorithm, which is a dynamic programming

technique aiming at finding the optimal hidden state sequence by maximizing the

forward probability based on initial, transition and observation probabilities.

Mathematically stated, for a given λ and a given observation sequence O = {o1, o2, …,

oT}, the algorithm determines the single best state path Q = {q1, q2, … qT} by

maximizing P(Q|O, λ), which is equivalent to maximizing P(Q, O| λ). If the maximum

probability of the system reaching state si at time t is denoted as

then the optimal state sequence can be found by maximizing δt(i) at all times 1≤t≤T.

This probability can be computed by induction as:

It is reminded that aij is the transition probability from state i to state j and that bj(ot) is

the observation probability of symbol ot being emitted when the system is in state j.

If ψt(j) is an array that holds the state index i at time t-1 that optimizes the probability of

being at state j at time t, if in other words it holds the previous state for every current

state, then the complete Viterbi algorithm comprises four steps that can be formulated

as follows:

1) Initialization:

128

2) Recursion:

3) Termination:

4) Backtracking:

),

The backtracking step serves to adjust the preceding states once the terminating state

has been found, hence identifying the globally optimal state sequence. Clearly the

backtracking step is not causal, which renders the entire algorithm inappropriate for

real-time alignments. In respect with providing a causal equivalent Cho and Bello

(2009) proposed using an observation buffer of a small fixed length of the order of 5 to

15 blocks within which they performed backtracking, therefore decoding the state which

is 5 to 15 blocks past the current audio block. Alternatively, Orio and Dechelle (2001)

implemented their score scrolling algorithm by maximizing the probability of the state

sequence up to time t, known as forward probability:

which is computed recursively as:

Therefore, as a new block becomes available its state is determined from the previous

state by maximizing equation (8.5). As the forward probabilities αt(i) can become quite

large, it is necessary to scale, in other words normalize the probabilities among all

states j at each time step t, so as to avoid numerical overflow.

In the current system, two methods have been attempted for the implementation of real-

time decoding. The first attempts to maximize the value provided by equation (8.4) and

the second attempts to maximize the value of (8.5). Clearly both methods yield less

accurate alignments than the offline Viterbi algorithm due to probability maximization

on incomplete sequences. It should be noted that maximizing (8.4) or (8.5) is similar.

The major difference is the summation appearing in the formula (8.5) as opposed to

maximisation in formula (8.4). Experimental results showed maximizing (8.4) yields the

same alignment as maximizing (8.5).

129

A further optimization that reduces the computational complexity of the real-time

Viterbi algorithm implemented in the proposed system is permitted by imposing the

following constraint: For each upcoming audio block, only the observation probabilities

of neighbouring states sj to the previously identified state si are computed, such that that

j-3 ≤ i ≤ j+3. In other words all observation probabilities are considered zero apart from

that of the previous state, three preceding and three following states. This may be

considered a form of path pruning, also facilitated in DTW Viterbi alignments (Soulez,

Rodet and Schwarz 2003). As estimating bi(ot) is computationally expensive due to the

exponent appearing in formula (8.1) this constraint results in significant speed

improvements of the Viterbi algorithm, regardless if it maximizes the quantity δt(j)

defined by (8.4) or αt(j) defined by (8.5). For the target application the globally optimal

path becomes useless if note onsets are identified later than their occurrence. Hence the

reducing computational complexity of Viterbi decoding by imposing this constraint

comes at no cost for the application at hand.

Subsequently to the identification of the current state, a process is executed to identify

whether that state corresponds to a note onset, identified as an attack state following a

non-attack state. To avoid spurious detections the corresponding function checks

whether the current block is at least 50ms apart from the previously identified onset

block, therefore imposing a minimum inter-onset-interval constraint. The specificities of

the score scrolling functionality of the final prototype system are summarised in the

next section.

8.4 HMM in the proposed system

This section outlines the main processes that take place for the purposes of tracking the

performance of each musician in real-time, during live NMP in the proposed prototype

system. Performance tracking is based on HMM score following and requires an offline

HMM training phase prior to the real-time decoding phase. Both phases are described in

more detail in the sections that follow.

8.4.1 Offline HMM training

Prior to real-time performance an offline training process takes place in order to acquire

an HMM able to decode each musician’s performance. For this purpose the solo

recording and the score of each music part undergo the process shown in the block

diagram of Figure 8-5.

Initially, a training dataset is created and stored in a text file using the Attribute Relation

File Format (ARFF). Specifically, each solo recording is partitioned in 512-sample

blocks and each audio block corresponds to a different row in the ARFF file. This row

contains the values of the audio features as comma separated values constituting a

feature vector, followed by an annotation concerning the HMM state of that block.

130

HMM states are textually represented as (MIDI pitch, state) pairs following the

topology depicted on Figure 8-2. In order to generate the feature vectors, feature

extraction is performed on the solo recording, while generating state annotations for the

initial alignment is achieved using the same algorithm for onset detection that was used

for the purposes of segmenting the solo recording and which was described in section

7.4.1.

Figure 8-5: Block diagram of the HMM training process. Solid lines represent audio data flows while dashed

lines represent numerical or textual data flow.

Annotations start with an initial rest state (0, Rest) until the audio block corresponding

to the first onset. The subsequent blocks up until 50ms (defined by a global constant

named ATTACK_DURATION) after the onset are marked as an attack state, for

example (60, Attack) for a MIDI pitch corresponding to middle C. The blocks that

follow are marked as sustain blocks (60, Sustain) up until the block where the Log

Energy feature falls below the threshold of -40dB (i.e. SILENCE_THRESHOLD). If

that or any previous sustain block corresponds to the next onset, the attack state of the

next onset is annotated, otherwise if after -40dB no onset has arrived, the blocks until

the next onset are marked as rest states as (60, Rest). Finally the annotated dataset is

stored in the ARFF file. A description of the use of ARFF files in the prototype system

as well as an extract of an example file is provided in section 10.3.2.1.

Following, the ARFF file is read and a model file describing the HMM is generated.

This file contains the names of the audio features that were used as well as the

131

probability values of all matrices: π, Α, μ, Σ. Initial probabilities are all zero apart from

the probability of the initial rest state, transition probabilities are those depicted on

Figure 8-2, while the mean vector and the covariance matrix are computed from

equations (8.2) and (8.3) using the annotated alignment provided by the ARFF file. A

description and an extract of an example model file are provided in section 10.3.2.2.

This initial model is denoted as λinit on the block diagram. The probability matrices of

that model as well as the feature vectors of the ARFF file are finally delivered to the

Baum-Welch algorithm. The Baum-Welch algorithm after running a number of

iterations which depends on the accuracy of λinit, converges to a new set of probability

matrices μ, Σ for the observation probabilities. This trained model λtrained is finally

stored in an additional model file.

With respect to the implementation of the training process, it is important to recapitulate

on two key points. Firstly, transition probabilities are not trained but instead retain the

values of Figure 8-2 so as to alleviate from problems caused by the fact that training is

performed on a single observation sequence (i.e. the solo recording), which is generally

inhibiting for training left-to-right HMM topologies, an issue that was elaborated in

section 8.3.3.1. Secondly, during the estimation of the initial model λinit, an equal

observation probability is computed out of all possible rest states, so as to avoid zero-

initialisation of the observation probabilities of certain rest states. As previously

discussed in section 8.3.3.2, these rest states may not be visited in one performance, but

visited in another performance. Initializing the corresponding probabilities to zero, may

lead to errors in the decoding process.

8.4.2 Real-time HMM Decoding

Figure 8-6 depicts the processes that take place during HMM decoding. These processes

are implemented on the transmitter of Figure 5-2.

The trained model file λtrained is loaded to memory prior to decoding, including feature

names and all HMM related matrices. Real-time audio capturing is based on callback

functions configured to use a buffer of 512 samples of monophonic 44.1kHz/16-bit

audio. As soon as a new block of audio becomes available, feature extraction takes

place to compute the features specified in the model file. Subsequently to the

computation of the feature vector, an observation probability bi(ot) is computed for each

score state from equation (8.1) using the values of μ, Σ provided by the model file. In

fact, as the computation of observation probabilities is based on exponents and the

number of score states may be quite high, in order to eliminate the number of

computations, bi(ot) is estimated only for neighbouring states of the one identified for

the previous audio block. As mentioned in section 8.3.4, this is a form of path pruning,

which is necessary to allow identifying HMM states before the next block of audio

becomes available.

132

Figure 8-6: Block diagram of the HMM decoding process. Solid lines represent audio data flows while dashed

lines represent numerical or textual data flow.

The computed observation probabilities as well as the transition probabilities are

fetched to the real-time Viterbi algorithm, which estimates the score state of the current

block. If that score state corresponds to an attack state following a non-attack state and

occurring after 50ms (i.e. greater than the MIMINUM_IOI global constant) from a

previously identified onset, then the current block is identified as an onset block and a

notification is sent over the network to indicate that the next audio segment must be

concatenated to the audio stream reproduced at the location of remote NMP

collaborators. This notification carries information about the RMS amplitude as well as

the duration of the previous note approximated by the corresponding Inter-Onset-

Interval (i.e. RMS (m-1), IOI(m-1)). As described in the next chapter, these two

attributes are used by remote receivers in order predict a gain factor and a time-scaling

factor that needs to be applied to the current segment, prior to signal concatenation.

133

9 Segmental Re-Synthesis

The title of this chapter has been deliberately chosen to distinguish the methodology

presented here from Concatenative Sound Synthesis (CSS) approaches. Conventionally,

and as was presented in chapter 4, CSS approaches imply the presence of an audio

corpus as well as a unit selection algorithm for selecting the units that best match the

specified target. As the problem addressed in the present work is a lot simpler in that

respect, using the term concatenative re-synthesis would be misleading given the

abundance of informative resources on CSS systems reported in the relevant research

literature.

The term segmental was found to more appropriately represent the methodology

employed in the present work and has been previously used in the speech coding

domain (see section 4.2). In the present context, the aim of the synthesis step is to

generate the performance of each musician at remote network locations using the audio

segments of his/her solo recording, which were accumulated using automatic offline

audio segmentation techniques. Clearly, the pre-segmented solo performance will be

very different from the live performance, not only because the latter is collaborative and

therefore follows the performance of other musicians, but also because music

interpretation is greatly influenced by the instantaneous mental and emotional state of

performers, and is therefore unique every time a piece is performed, even by the same

performer.

Thus, the present chapter initially discusses theoretical studies on expressive

performance, in an attempt to discern the type of interpretive deviations that may

introduced in different performances of the same piece of music. Then, the chapter

provides an overview of the processes undertaken during unit concatenation in relevant

concatenative music synthesis and computer accompaniment research initiatives. The

final section presents the approach adopted by the prototype system under investigation

and discusses the quality of the synthesized audio signals..

9.1 Rendering expressive musical performance

It is well known that faithful rendition of a musical score sounds machine-like and

musically uninteresting. In the western tradition, music scores have been a necessary

means of communicating composers’ intentions to potential performers. However, the

performer is offered plenty of freedom to interpret the music score using his/her own

understanding of musical meaning. Consequently, in the cases of non-improvisatory

music, musical expression may be attributed to deviations from a pre-transcribed

musical score. The prevalent deviations are related to inter- and intra-note attributes

134

such as timing duration and loudness (Ramírez et al. 2007), therefore accounting for

tempo deviations, dynamics, articulation (i.e. the type of transition among consecutive

notes) and less often deviations in pitch or intonation. However, depending on the

instrument, performers employ additional cues to manifest their intentions with respect

to expressive interpretation. For example, chord asynchronies (i.e. slight timing

deviations in the playback of different voices in polyphonic or harmonic context), the

use of piano pedal, or alternative deviations such as slight portamenti, tremolo or

vibratos present examples that define the unique character of a music performance.

Nevertheless, most of these intentions are subliminal and not readily tractable.

To provide an understanding on the expressive aspects introduced by deviating from a

score, music performance is often compared to speaking or reading from text (Delgado,

Fajardo and Solana 2011). If multiple people are asked to read the same text, the

produced sounds will be considerably different in terms of prosodic nuances rhythmic

stress or intonation. This analogy has been inspiring for several research initiatives. For

example in the work of Thompson, Schellenberg and Husain (2004), it was shown that

musically trained adults performed better than untrained in identifying emotions

conveyed by speech prosody. In another work, Coutinho and Dibben (2012) showed

that emotions in music and speech prosody can be predicted from seven

psychoacoustically relevant features: loudness, tempo/speech rate, melody/prosody

contour, spectral centroid, spectral flux, sharpness, and roughness.

Interestingly, expression of music emotion is predominantly, although not exclusively,

driven by performers’ intentions. For example, Widmer and Goebl (2004) defined

expressive music performance as “the deliberate shaping of the music by the performer

by means of continuous variations of timing loudness and articulation.” Skilled

professional performers apply such deliberate warping of expressive parameters so as to

develop their own signature-sound that distinguishes them from other performers. In

this line, a number of research efforts are being invested in developing machine learning

models that are able to recognize individual artists from their recordings (Saunders et al.

2008; Molina-Solana, Arcos and Gomez 2008). However, performances of the same

piece of music, even by the same performer may be very different from one another

depending on other factors, such as performer’s psychological mood (Gabrielson 1995;

Rigg 1964), fatigue or even the acoustics of the physical location in which music is

performed. Although sparsely investigated (e.g. Kalkandjiev 2013; Hatlevik 2012),

room acoustics may play an important role on how performers communicate music to

their surrounding environment.

Notably, a large number of studies on expressive performance approach music

expression from the structure residing within the music piece. Musicological studies

such as those of Sloboda (1983) observed that pianists tend to play louder and more

legato the notes at beginning of measures. Moreover, it was noticed that the beginning

and end of phrases are slower than the rest. With respect to harmonic progressions and

135

musical expression, Palmer (1996) showed that melodic expectation is influenced by the

energy used in playing the different notes.

Besides their musicological interest, studies in expressive music performance are often

conducted for the purposes of computational modelling to be ultimately applied in the

design of systems capable of rendering expressive performances. Evidently,

computational models of expressive music performance are already capable of

emulating human performances. In 2002, the Rencon, performance rendering contest

was created to offer subjective evaluations of systems generating expressive

performances. The contest employs a human judge to determine whether a performance

is artificial or human in accordance with the Turing test (Hiraga et al. 2004), as well as

to evaluate these systems in terms of their capability to demonstrate different factors

such as conveying emotional content or highlighting musical structure (Katayose et al.

2012).

Delgado, Fajardo and Mollina-Solana (2011) present a comprehensive review of

approaches in computational music performance and discern three research strategies:

(a) analysis-by-synthesis, (b) analysis-by-measurement and (c) performance systems

based on artificial intelligence. Analysis-by-synthesis is concerned with embedding

performance rules defined by the experience of an expert musician (Friberg Bresin and

Frydén 1998; Zanon and Poli 2003). Analysis-by-measurement systems derive

performance rules from acoustic analysis and statistical processing of recorded

performances (e.g. Todd 1992). In contrast to these approaches, the works of Widmer

(2003; Grachten and Widmer 2012) propose the use inductive machine learning applied

on large music corpora.

Expressive music performance is not the main focal point of this work. However,

synthesizing an audio stream from a pre-segmented performance requires careful

consideration of expressive aspects in order to retain the interpretive nuances of the live

recording in the synthesized audio stream. The sections that follow describe this process

from the perspective of audio signal processing.

9.2 Technical approaches to segmental re-synthesis

Re-synthesis of audio from pre-recorded segments is a task relevant both to CSS, as

well as computer accompaniment systems. In computer accompaniment, synthesis is

essentially performed in real-time while in CSS systems it may be performed either

offline or in real-time context, depending on the application scenario. As was seen in

section 4.4, most real-time CSS approaches aim at artistic exploration rather than high-

fidelity instrumental synthesis. Consequently in these initiatives, signal inconsistencies

due to poor concatenation quality are neither critical nor necessarily undesirable.

This section reviews alternative methodologies that are commonly adopted when

synthesizing a waveform using audio samples, so as to highlight differences among

136

methodologies and provide an understanding on the choices that were made in the

present work. When re-synthesizing a signal from audio segments, sample processing

needs to take place for two reasons: firstly to transform each segment in terms of

amplitude, duration and sometimes pitch, so as to better match the required target, and

secondly to eliminate perceivable artefacts that are caused by amplitude, pitch and

possibly timbre discontinuities at the junction point of two consecutive segments. In the

approach proposed here, it is important to elucidate that the occurrence of

discontinuities is caused by timing deviations in the occurrence of note onsets between

the pre-segmented solo performance and the live performance of each musician. These

timing deviations require time-scaling applied on note segments. Apart from time-

scaling amplitude transformations are also applied to account for deviations in

performance dynamics. Collectively, these two transformations are the reason of

consecutive segment discontinuities. If there were no transformations, then no

discontinuities would occur, but that would be equivalent to rendering the original audio

file without adapting it to the context of the live performance.

The next two subsections describe solutions to these two problems (i.e. transformation

and concatenation), while the section that follows describes the adaptation of this

problem to real-time settings. Representative examples from the relevant literature are

also provided.

9.2.1 Segment transformations

This stage is meant to transform the audio segment, most commonly in terms of

amplitude and duration and sometimes in terms of pitch as well, so as to better match

the desired target waveform. Amplitude transformations are pretty straightforward and

they conventionally involve multiplication of the entire segment by a gain or attenuation

factor. Regarding duration and pitch, the rudimentary approach involves re-sampling the

signal at a different rate than the one it was originally sampled. This technique is

inspired from the old days of analogue recording technology, where the ratio of

recording and playback rates alters the signal both in terms of duration as well as in

terms of pitch.

To perform duration and pitch modifications independently of each other, two

established techniques are commonly used: the phase vocoder which operates on the

spectral domain of the signal and the Pitch Synchronous Overlap Add (PSOLA)

transform, which operates on the time domain. Implementations of these two techniques

may greatly vary depending on the content of the signals being processed as well as on

potential requirements for low computational cost and real-time operation.

As will be seen in the next section, none of these methods has been precisely integrated

in the prototype system under investigation. The assumptions holding for the signals

being treated in this work (see section 5.3), largely simplify the problem of segment

transformations, for which a novel and intuitive approach has been adopted.

137

Consequently, no detailed mathematic or algorithmic description of phase vocoder and

PSOLA methods is provided in this chapter. However for reasons of consistency, a

qualitative and hopefully intuitive explanation of these techniques is provided in the

following subsections.

9.2.1.1 Phase Vocoder Transformations

The phase vocoder, originally introduced by Flanagan and Golden (1966), is a

technique for independently varying the pitch and the duration of an audio waveform

using the Short Term Fourier Transform (STFT), i.e. the Fourier Transform of

consecutive windowed and overlapped blocks of audio.

Phase vocoder time scaling is achieved by performing STFT analysis of the audio signal

and then applying the inverse transform by using a different amount of overlap than the

one used in the analysis step. Precisely, given a time scaling factor α, the analysis hop-

size Ra is varied with respect to the synthesis hop-size Rs, such that their ratio yields the

scaling factor, i.e. α = Rs/Ra. Conventionally, a 75% overlap at the output is considered

a good practice so as to avoid amplitude modulation due to phase inconsistencies.

Hence, Ra is varied in respect to Rs which remains constant at 75% of the STFT window

function.

Clearly, using a different amount of overlap between analysis and synthesis yields phase

discontinuities in the synthesized output, which can be corrected by applying the inverse

STFT using the analyzed spectral magnitudes and a phase which is estimated from the

phases of the original signal and adjusted by an amount that corresponds to the new hop

size. This is known as phase propagation and it ensures horizontal phase coherence,

namely phase consistency between successive audio blocks for each frequency

component. Unfortunately, this phase correction ruins the phase relationships between

different frequency components of the same audio block, known as vertical phase

coherence. In phase propagation, the same amount of phase correction is applied to all

frequency bins. However, as generally the signals being processed contain non-

stationary sinusoidal components, phases are not linearly related to the different

frequency bands. Absence of vertical phase coherence results in a degradation of

timbral quality, so that the resulting signal sounds more ‘smeary’ or ‘phasey’. For this

reason, an improved phase vocoder implementation (Laroche and Dolson 1999)

proposes a technique known as phase locking. Phase locking attempts to find the

sinusoidal components of the signal as the most dominant peaks of the spectrum of each

frame. Then it updates the phases of the non-sinusoidal components by preserving their

phase relationship to the closest sinusoidal component, after the last has been phase

corrected for horizontal phase coherence.

The most prominent application of the phase vocoder is on speech signals and the

synthesis of the singing voice (Laroch 2003; Bonada and Loscos 2003). This is

probably related to the spectral content of speech signals which are dominated by voice

formants corresponding to the acoustic resonances of the vocal tract. Formants appear

as dominating sinusoidal components; hence phase locking to these components

138

provides a more realistic phase approximation. In the case of music however, sinusoidal

components may be less apparent and even more so for percussive sounds as well as

during the initial transients. The duration of percussive sounds, such as drum sounds

cannot be controlled by the performer (no sustain state is present in the amplitude

envelope). Therefore, when for example stretching or shrinking a percussive sample in

time, one should simply increase or decrease the spacing among consecutive events

rather than performing a uniform stretch or shrink on the entire waveform. This is not

taken into account by phase vocoder time scaling and has to be treated in dedicated

implementations. When time scaling a percussive sound or a transient, even if perfectly

reconstructing its spectral content, its timbre will sound unnatural and therefore

perceptually distorted.

This problem has been addressed by (Duxbury, Davies and Sandler 2002b), where a

signal is firstly separated into its transient and steady state parts by means of multi-

resolution analysis, and then phase vocoder time scaling with phase locking is applied

to the steady (quasi-stationary) parts of the signal. This is clearly an offline, non-causal

process. However, in (Barry, Dorran and Coyle 2008) a real-time solution is provided

called transient hoping. In this work a measure of the ‘percussivity’ of the sound is

defined which looks at the rise of energy in dB between successive hops, summed for

all frequency bins. The audio frames for which this measure exceeds a predefined

threshold are characterized as transient and retained in the times-scaled signal without

any modification.

Phase vocoder pitch scaling on the other hand, is conventionally performed in two steps

which are re-sampling the signal to achieve the required pitch and then perform phase

vocoder time scaling to regain its original duration. For example to raise the pitch by a

factor of two one would half the sampling rate (i.e. skip every other sample of the

original waveform) and then time stretch the resulting signal by a factor of two (Laroche

2002). However, direct manipulation of the frequency partials of the signal has also

been proposed (Laroche and Dolson 1999). Direct frequency domain manipulations are

less favoured due to the fact that, firstly, they require a very high frequency resolution

and secondly that they are computationally more expensive due to the large number of

multiplications involved (Laroche 2002).

A real-time version of phase vocoder pitch shifting that does not require time scaling is

presented in (Barry, Dorran and Coyle 2008). In this paper, re-sampling at the required

rate is performed within a window that has a length which is multiplied by the pitch

scaling factor (i.e. βΝ where β is the pitch scaling factor and Ν the length of the FFT

window), therefore the duration is not affected. However, such re-sampling requires

phase correction by an amount affected by β and subsequent phase locking to

additionally maintain vertical phase coherence.

The phase vocoder is by far the most commonly used technique in CSS and computer

accompaniment systems. In CSS it has been used by Maestre et al. (2009) in offline

context for synthesizing expressive saxophone performances from contextually

139

informed note segments (see also section 4.3.2.1). In computer accompaniment systems,

the Music-Plus-One system developed by Raphael (section 3.2.4) uses the phase

vocoder to control the playback rate of the orchestral accompaniment of a live solo

performer. In this case the orchestral recording has been manually indexed and an

HMM of its alignment to the corresponding score is constructed offline. During live

performance a different HMM that corresponds to the soloist (trained during rehearsals)

is used to detect new onsets of the live solo. Subsequently, the duration of the orchestral

recording is appropriately scaled to synchronize with the solo performance at certain

points that represent short-term synchronization goals (Raphael 2003). This system does

not report on any mechanism for eliminating signal discontinuities. This is due to the

fact that no parts of the orchestral recording are skipped and therefore no discontinuities

are introduced, its only the playback rate that is continuously adjusted.

9.2.1.2 SOLA transformations

The SOLA (Synchronized OverLap Add) method was originally proposed by Roucos

and Wilgus (1985). It exists in many variations such as Waveform Similarity Overlap

Add (WSOLA) (Verhelst and Roelands 1993), Time Domain TD-PSOLA (Moulines

and Charpentier 1990), MultiBand Resynthesis Overlap Add (MBROLA) (Dutoit

1996), etc. The principle is essentially the same: Firstly, the pitch frequency of the

signal is detected by an f0 estimation algorithm. Following, the signal is windowed

commonly by using a Hanning window spanning two periods of the fundamental

frequency and centered on the maxima of signal energy. To increase or decrease the

pitch of the signal, consecutive windows are placed closer together or further apart

respectively. Finally, the overlapping parts of the signal are added to produce the final

waveform. In the case of time scaling, certain windows are duplicated to achieve

lengthening or skipped to achieve shortening. In both cases the resulting signal is

overlapped-added.

SOLA is commonly used in text-to-speech synthesis and has been impressively used in

synthesizing a choir in real-time from recordings of solo singers (Schnell et al. 2000). A

main problem of the algorithm arises when the sounds to be treated are not periodic, as

is the case of ‘unvoiced’ sounds. In such cases, a default window length of 10ms is used

while caution must be taken to avoid introducing artificial pitch correlations resulting in

a flanging-like effect. Common techniques in avoiding such correlations include phase

randomization (Richard and d’Alessandro 1996) at the non-periodic parts of the signal.

In the case of acoustic instruments, the same problem arises during note transients as

well as percussive sounds. In respect with preserving the distinctive timbre of note

transients and avoiding their repetitions, the same method as in phase vocoder is applied

by subtracting the transient components before PSOLA and then re-applying them after

synthesis (von dem nesebeck, Ziraksaz and Zölzer 2010).

Generally, most SOLA approaches are highly computationally efficient but their

performance relies on the periodicity of the signals being processed, as well as the

amount of required scaling. It is well known that scaling up or down by more than a

140

factor of two may result in considerable signal degradation. Modifications of the main

algorithms are occasionally proposed to allow high quality of transformations within a

wider scaling range (Cabral and Oliveira 2005; Bárdi 2006).

SOLA has been used in offline context in the Audio Analogies project (Simon et al.

2005). This project uses individual notes or pairs of notes to construct the waveform of

a music piece given its music score. Audio segments are re-sampled to achieve pitch

transformations, while their duration is scaled by means of SOLA.

Additionally as already mentioned, Schnell et al. (2000) used PSOLA in real-time

context to reproduce a choir sound from a single recording of a solo choir singer.

Analysis of the solo recording is performed offline and it comprises two phases:

separation between voiced (harmonic) and unvoiced parts and detection of marker

positions on the harmonic parts. These PSOLA markers indicate windowing positions

and they are placed pitch-synchronously (i.e. so that their distance corresponds to the

period of the fundamental frequency) and centered on the local maxima of signal

energy. Finally during synthesis, a marker file and the corresponding waveform are read

and a real-time algorithm applies replication of voices and PSOLA transformations so

as to obtain a distinctive character for each replicated voice. Unvoiced signal parts are

re-synthesized using some variation of granular synthesis.

9.2.2 Eliminating perceptual discontinuities

When concatenating transformed audio frames, phase and spectral shape discontinuities

occur. Such discontinuities are easy to handle in offline context but become more

difficult in real-time applications.

Solutions range from a simple amplitude cross-fade within a range of 10-100ms

(Schwarz et al. 2006; Dannenberg 2006) to more complex phase and spectral shape

interpolation spanning several frames in order to provide a smooth transition (Bonada

and Loscos 2003). In the work of Maestre et al. (2009) amplitude and pitch

discontinuities are smoothed using cubic spline curves so as to synthesize legato notes.

A simpler approach is presented by (Simon et al. 2005) where the optimal point of

intersecting the two segments is estimated by calculating their cross correlation. The

two segments are then intersected at the maximum of their cross correlation and

smoothed by a linear cross fade.

In real-time settings it is impossible to prepare the elimination of discontinuities

beforehand because the point of intersection is not known until the next segment needs

to be rendered. Therefore any time or spectral domain interpolations can only occur

within a single audio frame.

141

9.2.3 Real-time approaches and the need for anticipation

Several studies are being conducted with the aim of understanding the cognitive

processes that enable musicians to synchronise during ensemble performance (Rasch

1988; Keller 2007; Goebl and Palmer 2009). Studies of computational music

performance confirm tempo and dynamics as the most prominent resources available for

musicians to convey emotion and meaning in non-improvisatory music (Widmer and

Goebl 2004). As ensemble performance involves actions coordinated within small

fractions of seconds, collaborating musicians employ a great amount of cognitive

anticipation. Anticipating and therefore scheduling tempo and dynamic deviations both

at the macroscopic (i.e. for the overall piece) and the microscopic level (i.e. within small

groups of note events in a way that does not contribute to the macroscopic level) is

informed by three types of information sources: rehearsals, the score of the music work

and by continuously monitoring musical events during live performance (Marchini,

Papiotis and Maestre 2012).

Rehearsals help members of ensemble performance establish a common goal; a unified

concept of the ideal sound (Keller 2007). Performance goals are developed through

individual practice and collaborative rehearsals and aim at establishing a plan that

guides the motor processes involved in translating goal representations into appropriate

body movements (Gabrielson 1999).

Regarding the score, Raphael (2003) highlights that the music score should not be

viewed as a rigid grid prescribing the precise times at which musical events occur;

rather the score gives the basic elastic material which will be stretched in various ways

to produce the actual performance. The score simply does not address most interpretive

aspects of performance.

During live ensemble performance, Keller (2007) uses the term ‘adaptive timing’ to

refer to the process of adjusting musical performance according to the temporal

evolution of performance up to that time. Specifically, Keller assumes that the human

brain is capable of instantiating timekeepers that can be used to control the temporal

aspects of perception and action. These timekeepers are adjusted using error correction

processes that are initiated upon the occurrence of asynchronies in the timing of actions

undertaken by the various performers.

A more elaborate account on psychological and cognitive theories of timing

synchronisation is provided in Bader (2013b). It appears that traditional theories on

rhythm perception (Wing and Kristofferson 1973) show that when tapping on a

rhythmic pattern the timing deviation of each event depends on the deviation of the

previous event, so that an IOI arriving later (or earlier) than dictated by the rhythmic

pattern will be followed by an IOI arriving earlier (or later respectively) in a attempt to

correct the previous tap. This could be very well represented by a Markov chain as each

note event depends exclusively on the previous event. Yet, subsequent studies

investigating longer tapping series (e.g. Haken, elso and Bunz 1985; Delignières,

142

Lemoine and Torre 2004) showed that long–term memory is likely to further influence

the perception of rhythm. Notably, this is interpreted as the 1/f noise pattern of human

cognition (Gilden 2001). For example Pressing (1999) suggested using a moving

average to model this type of behaviour. As will be seen in section 9.3.1, a similar

approach has been employed in the system under investigation, for which the most

recent IOI deviations have a greater influence on the estimation of the IOI of future note

events.

When involving a computer performer, as in the case of computer accompaniment

systems as well as in the present system, the same type of anticipation and scheduling

must be developed by the virtual performer. Equivalently, such anticipation may be

built based on three knowledge sources, namely (a) past musical events in the live solo

(i.e. up to the time of scheduling), (b) the music score and (c) a pre-existing recording of

that same piece of music possibly acquired in the course of a rehearsal session.

Early works on musical accompaniment (Vercoe 1984; Grubb and Dannenberg 1998)

estimated a running tempo which was matched on the score and they used that tempo to

predict upcoming events. A more sophisticated perspective is presented by Raphael

(2001), who uses a Bayesian network to anticipate future events and adjust the playback

rate accordingly. This network is a linear directed acyclic graph, built on the timeline of

the music piece, with a number of observed variables, which are the onset times of the

solo recording and those of the available accompaniment projected on a common

musical alignment, which is partitioned according to bar positions and beat structures.

Based on the observed variables, which may be acquired from a past rehearsal, the

network estimates a collection of Gaussian distributions (i.e. means and variances) for

the hidden variables, which are the tempo and duration deviations of each note event

(concurrent events of the solo and the accompaniment are assumed to have same

measure position). These Gaussians are estimated during an offline training phase.

Subsequently, during live performance the arrival of a pending note is predicted based

on the conditional distributions of these Gaussians conditioned on the past (already

observed) musical events.

Generally, most research initiatives on computer accompaniment emphasize on timing

synchronisation, which is critical to performance. However, for a truly collaborative

experience, additional aspects of musical expression must be incorporated in the

synthesis phase, such as variations in dynamics and articulation, collectively referred to

as ‘phrasing’. Articulation is more difficult to address as it requires accurate and

instrument specific detection of note offsets, besides the challenging task of real-time

onset detection.

9.3 Synthesis in the present system

Remote re-synthesis from audio segments in the final prototype system occurs by

monitoring the RMS amplitude and the Inter-Onset-Interval (IOI) of each note on the

143

live audio stream and estimating the RMS amplitude and IOI for the next note to be

rendered based on the previously performed notes. This estimation allows for

transforming audio segments in terms of amplitude and duration before they are

concatenated to the playback stream.

Figure 9-1: Block diagram depicting the functionality for segmental re-synthesis on the receiver thread of the

present prototype system. Solid lines represent audio data flows while dashed lines represent numerical or

textual data flow.

As was seen in Figure 5-2, during live performance the software executed at each

network node comprises two independent threads: a transmitter and a receiver. In the

simplest case of facilitating a decentralized peer-to-peer communication topology, at the

location of each peer a separate receiver thread must be running for each of the

remaining active peers. Re-synthesis takes place at each receiver thread, so as to

synthesize the performance of each remote peer.

The detailed block diagram depicting the processes that take place for each receiver

thread is depicted on Figure 9-1. Notifications of new onsets received from the network

are accompanied with the RMS amplitude value (section 6.4.2) and the IOI in samples

of the note preceding the detected onset. The previous note is indicated on the diagram

as m-1. These values are used by a process which attempts to estimate the RMS and IOI

of the current note, namely the one for which the onset notification has been received

and needs to be rendered. This future event estimation is based on the RMS and IOI

deviations of the previously performed notes, compared to the RMS and IOI properties

of the note segments maintained in the audio pool. Information for the notes maintained

144

in the pool is derived from the corresponding performance description file (see sections

7.4.2 and 10.3.2.3).

Following, the segment that corresponds to that note is loaded from the segment pool

and transformations apply to account for the estimated RMS amplitude and duration.

Finally, a short linear cross-fade is applied between the currently rendered audio and the

first audio block of the newly loaded segment, which is subsequently appended to the

playback stream that corresponds to the performer from which the notification arrived.

In the case of multiple performers (i.e. remote peers) mixing of all synthesized streams

is performed prior to playback.

The next sub-sections describe these algorithmic processes in more detail.

9.3.1 Performance Monitoring and future event estimation

Performance monitoring provides information related to deviations in tempo and

dynamics between the live performance and the pre-segmented solo performance,

maintained in a pool of audio segments. Different segment pools correspond to the solo

recording of different performers. For this reason, a performance description-file

(section 10.3.2.3) describing the note segments that correspond to a particular performer

is parsed during the creation of each receiver thread. The information contained in this

file is maintained in memory during live performance.

Notifications of note onsets at remote ends carry information about the RMS amplitude

and the IOI of the note preceding the received onset for the live audio stream generated

at a remote network location. When receiving such a notification the deviation of that

previous note from the corresponding note in the pool of audio segments is estimated

from two ratios:

where m-1 is the index of the previous note, while the subscript live refers to the note of

the live remote stream and the subscript pool refers to the corresponding note segment

maintained in pool.

Hence, the g ratio depicts expressive deviations in music dynamics while h is related to

tempo deviations in the live performance compared to the pre-segmented solo

performance. The IOI values do not actually provide information about note durations

but only on tempo deviations, as a note may actually decay long before the occurrence

of the next onset. In fact, whether an IOI value relates to note duration is a matter of

articulation (i.e. legato, staccato, tenuto etc.) as well as a matter of timbre (e.g.

percussive instruments do not have a controllable duration).

Due to the fact that performance monitoring takes place online (i.e. causally), these

ratios are available only for the past notes. Subsequently, RMS and IOI ratios of

145

previous notes are used to predict the same ratios for the current note. In the present

implementation of the software, this prediction is based on the mean value of the

previous L notes, as:

The number of notes L over which the mean values are estimated can change or remain

constant over the duration of the piece. For instance, the mean value may be estimated

using all previous notes or it may be based on the preceding four or five notes to

account for the fact that deviations in tempo and dynamics can be constant within music

phrases, but varying over the duration of the piece. Another possibility could be to

compute a weighted mean, such as a recursive average, for which more recent notes

would have a greater influence to the estimation of future notes. For the moment the

number L=4 appeared to give satisfactory estimates.

Clearly, these techniques provide very rough estimates and are not literally predictive,

as no probabilities are involved in the computation of future estimates. A more

sophisticated mechanism for making predictions in expressive performance needs to be

incorporated. This issue is addressed in current and ongoing research efforts.

9.3.2 Segment Transformations

Based on the estimated g(m) and h(m) ratios for the next note to be rendered, i.e. the one

for which the onset was just detected, two types of transformations are applied after

loading the corresponding note from the pool of audio segments: amplitude and

duration transformations. Amplitude is transformed by multiplying the entire segment

by g(m), which is a gain or attenuation factor, depending on its value.

For duration transformations a time-domain pitch-synchronous approach that requires a

minimal amount of signal processing has been adopted. Time scaling is performed by

repeating or skipping parts of the signal having a length that corresponds to one period

of the pitch frequency (pitch synchronous transformations), while omitting the overlap-

add phase of conventional PSOLA approaches. In the present application scenario, the

pitch frequency of the segment is known before performing transformations. It is

extracted from the score file during offline segmentation and maintained in the

performance-description file (section 10.3.2.3) of the solo recording. As the target

application scenario deals with monophonic instruments the corresponding signals are

highly periodic and therefore pitch synchronous time scaling is highly appropriate.

The employed time-scaling technique is similar to PSOLA but without the overlap-add

part of the algorithm. There is one disadvantage of the proposed algorithm compared to

PSOLA, which is however not relevant for the target application scenario. The

disadvantage concerns the fact that as entire periods are added or skipped from the note,

time-scaling will not precisely provide the intended duration. It will instead have a

146

granularity that depends on the period of the periodic signal. This fact was also

addressed by the original publication introducing the PSOLA transform (Roucos and

Wilgus 1985).

In the present scenario, as the required time-scaling factor h(m) forms an approximate

estimation of the actual segment duration, imprecise time-scaling is not critical.

Moreover, omitting the overlap-add process is preferred both in respect with the

resulting computational complexity as well as in terms of the quality of the synthesized

audio stream. Future improvements of the proposed approach, such as incorporating

more sophisticated prediction algorithms and less constrained signals (i.e. in terms of

their periodicity) will require more accurate time-scaling techniques.

The rest of this section describes the algorithm for time-scaling implemented in the

present prototype system. It is important to highlight that both when time stretching (i.e.

h(m)>1) as well as when time shrinking (i.e. h(m)<1) the first part of the segment is left

unprocessed, as it is assumed to carry the initial transient of the note. As discussed in

the previous sections, initial transients should remain unprocessed to time/pitch scaling

operations due to two reasons: firstly, because they are not periodic and therefore pitch

synchronous time-domain transformations are not possible and secondly because, as

initial transients are related to the sound production mechanism of acoustic instruments,

they are important in terms of timbre perception. As they always span a small region of

the signal, time scaling initial transients would result in an unnatural audio effect.

Given an audio segment S(m) having a length of |S(m)| samples (note that |x| accounts

for the length of signal x), a time-scaling factor h(m) and a length of an initial transient

Δ, a new scaling factor h’(n), which applies only to the steady state part of the signal is

calculated as:

Intuitively, although it can also be deduced from the above formula, in the case of time

stretching, excluding the initial transient will require the remaining part to be even more

stretched (i.e. h’(n) > h(n)). In the opposite case of time shrinking less scaling will be

required on the steady state part (i.e. h’(m) < h(m)) in order to shrink by the same

amount.

The h’(m) factor will generally be a non-integer value. Achieving a final length which is

as close as possible to the desired length by repeating or omitting an integer number of

periods cannot be easily solved with algebraic calculations. Firstly, repeated or omitted

periods must be evenly distributed within the duration of the note segment in order to

maintain the overall amplitude envelope of the corresponding signal. Secondly, the

number of periods to be repeated or omitted will not necessarily be an integer multiple

of the number of existing periods in the signal. For this reason and in order to yield a

duration that is as close as possible to the intended duration, periods to be repeated or

skipped are distributed using two steps.

147

Specifically, in the case of time stretching, we define two integers as follows:

In other words α(m) is the integer/truncated (the symbol denotes integer truncation,

namely the floor() function) part of the new scaling factor h’(m), whereas β(m) is the

rounded reciprocal of the decimal part of the h’(m). Note that for any positive number

x>0, round(x) = floor(x+0.5). Then, to achieve time scaling one must repeat each

period following the initial transient of the signal α(m) times and once again at multiples

of β(m) periods of the original signal. This is shown at the top diagram of Figure 9-2.

If T(m) is the pitch period of the note segment in samples, then

denotes the number of complete (i.e. truncated) periods contained in the original

segment after the initial transient. Subsequently, the new duration of the signal can be

computed as:

In other words the new duration equals the original duration increased by the number of

extra periods.

As an example consider a note segment sampled at 44.1kHz having a length of

|S(m)|=15872 samples (i.e. 0.34 sec) with an initial transient of Δ=3584 (i.e. 81ms), a

pitch period of T(m)=100 samples (i.e. for a pitch frequency of 441Hz). A time scaling

factor of h(m)=2.23, yields a factor of h’(m)=2.59 stretching for the steady state and

therefore α(m)=2 and β(m)=2. This means that time stretching will repeat every period

(i.e. every 100 samples) following the initial transient twice and for every two of the

periods of the original signal a third repetition will be performed. As there exist

γ(m)=122 complete periods in the periodic part of the signal, the resulting segment

length will be |S’(m)|=34172, therefore yielding a scaling factor |S’(m)|/|S(m)| = 2.153,

which is 96% close to the original h(m) = 2.23.

In the case of time-shrinking (i.e. h(m) <1) a different strategy needs to be employed for

reducing the steady state up to half length, than for reducing it below half length. In the

following it is assumed that h’(n) > 0.5.

Assuming that shrinking can be achieved by removing an integer number of periods

denoted as x(m) from the periodic steady part of the segment, the following must hold:

148

Figure 9-2: Time stretching (top) and time-shrinking (bottom). Stretching is achieved by repeating each period of the periodic part of the signal for α(m) times and once more

at integer multiples of β(m). Shrinking is achieved by removing one complete period every α(m) periods and one more at integer multiples of β(m).

149

In other words, the number of periods to remove is the rounded integer of the quantity

defined above. If after the initial transient the segment contains γ(m) periods defined as

previously, the following skipping coefficients are defined:

So that one period is removed at integer multiples of α(m) and again at integer multiples

of β(m).

The length of the resulting segment in samples can then be computed as:

For the same segment that was used to provide a time-stretching example, if we

consider a shrinking factor of h(m)=0.73, then this yields a factor of h’(m) =0.65

shrinking for the part of the segment following the transient, which can be achieved by

skipping x(m)=43 periods out of γ(m)=122 existing periods. This can be attained by

omitting one period every α(m)=3 periods of the signal and one more every β(m)=52.

Figure 9-3: Pitch synchronous time domain transformations. The top waveform shows the original segment,

the middle waveform shows the same segment stretched by a factor of 2.23 while the bottom waveform is

shrunk by a factor of 0.73. The vertical dotted lines show the end of the transient region. Up to that point the

three waveforms are identical.

This results in a new duration of |S’(m)|=11572 and therefore a total scaling of

h(m)=0.73, which has the same value as the intended shrinking factor. However, it is

150

important to highlight that the above strategy is valid only for time scales above 0.5 and

less than 1.

The above example is illustrated on Figure 9-3. The illustrated audio segment as well as

the transformed versions have been derived from the implementation of the software

prototype. Notice that the three signals are identical during the region assumed to carry

the initial transient, in which case it lasts for last for 3584 samples, and also that the

overall shape of the amplitude envelop of the original segment is faithfully retained in

the transformed note segments. This is achieved by the fact that period repetitions and

omissions are evenly distributed within the steady state of the note segment.

9.3.3 Concatenation

To summarise there is one pool of audio segments for each performer. The segments

have been derived from a solo recording of that performer by means of automatic

segmentation. Whenever a new note onset is detected at the network location of that

performer a notification is sent to the remaining musicians. This notification activates

segment loading, amplitude and duration transformations and finally segment

concatenation on the audio stream corresponding to the particular performer.

Figure 9-4: Linear cross-fade over a single audio block at the junction point of consecutive note segments.

Concatenation occurs at sample 1025 up until sample 1537, both indicated by the dotted vertical line.

Whenever a new onset notification arrives at some network location, the audio stream

corresponding to the performer from which the notification arrived will hold the

segment of the previous note. Ideally, if duration estimation for that note was correct,

then at the time of concatenation part of the release state of the previous note will be

contained in the playback buffer. If duration was estimated to be shorter than it was,

then the concatenation point would contain silence, while if it was estimated to be much

151

longer than it actually was then the steady part of the note would be active at the

concatentation point. In all of these cases, concatenation will result in an audible

distortion perceived as a ‘click’, due to the discontinuity occurring at the junction point

of two segments.

As shown on Figure 9-4, the effect of this discontinuity is mitigated by applying a short

linear cross-fade spanning a single audio block, i.e. 512 samples of 44.1 kHz. It can be

seen that the block starting at 1025 up until 1537 contains both signals, while before and

after that block the waveforms are identical to the non-crossfaded audio streams

depicted at the top of the diagram.

As seen in section 9.2.2, offline approaches to concatenative music synthesis often

encompass more sophisticated techniques to smooth discontinuities in the range of

several audio blocks around the concatenation point. This is not possible for the current

application as the concatenation point is not known or predicted beforehand. Instead it

only becomes available when a note onset is remotely detected. Segment blending could

however expand in audio blocks following the concatenation point. Again this is not

applicable for the current scenario, because the concatenation point corresponds to the

note onset and hence the subsequent blocks most likely contain the initial transient of

the signal, which, as already elaborated in several places within this chapter, needs to

remain unprocessed in order to preserve the distinctive character of the acoustic

instrument and the performer. After all, this simple low-complexity waveform blending

solution appeared to be adequate for the target monophonic signals, as it achieves to

eliminate perceivable click distortions.

152

PART III:

 IMPLEMENTATION & VALIDATION

153

10 The BoogieNet software prototype

This chapter describes the implementation details of a software prototype called

BoogieNet, which has been developed in the context of the current doctoral research.

BoogieNet provides algorithmic implementations for the functionalities of ‘Offline

Audio Segmentation’, ‘HMM Score Following’ and ‘Segmental Re-Synthesis’ as these

were presented in the previous three chapters of the dissertation. In addition to the

implementation of the algorithms, BoogieNet provides two operational modes for real-

time audio communication using notifications for detected note onsets. The first,

‘single-peer’ mode uses live audio capturing to re-synthesize the captured stream on the

same computer using onset information and segmental re-synthesis. The second, ‘udp-

peer’ operational mode permits networked musical interactions among two network

locations using HMM score following, UDP sockets and segmental re-synthesis. In this

mode, the same software application is executed at both network locations. Both peers

are capable of transmitting and at the same time receiving onset information in the form

of UDP packets. Network transmissions are initiated whenever a new note onset is

detected on the captured audio signal (e.g. from a microphone), while network reception

controls the parameters used for synthesizing the local audio stream, which are

subsequently delievered to the audio out port of the sound card. The complete prototype

is offered as an open source Application Programming Interface (API), which includes a

command line application permitting the execution of the various functional processes.

The chapter initially provides some general information on the availability of the

software prototype and a user guide explaining how to use the provided command line

application to execute the various functionalities. Then it describes important

implementation details concerning data files, data structures and the object oriented

design of the API. Finally, project dependencies and the third party libraries are

appropriately listed and cited.

10.1 Software availability

The final prototype system has been implemented in the C++ object oriented

programming language and the Linux operating system and has been thoroughly tested

on a CentOS 5 distribution. The BoogieNet prototype
16

 is available for download as free

and open source software under a GNU/GPL v3 license
17

. The downloadable package

can be compiled and installed from source on any Linux distribution as long as the

16 http://www.teicrete.gr/diamouses/ca/phd/
17 http://www.gnu.org/licenses/gpl.html

http://www.teicrete.gr/diamouses/ca/phd/
http://www.gnu.org/licenses/gpl.html

154

necessary third-party library dependencies (see section 10.4) have been previously

installed. Compilation results in two binary files:

 libboogienet.so: A dynamically linked shared object library that

integrates the entire functionality

 boogienet: An executable file, linked to this library, which can be used as a

command line application

10.2 Using BoogieNet

The BoogieNet prototype implements six functional processes, which can be executed

by attaching the appropriate option flags to the boogienet command line application, or

by invoking the corresponding C++ functions of the libboogie.so software API. The

options of this application are outlined in Table 10-1, while a short description of each

functional process and directions on how to invoke it are provided in the subsections

that follow.

Table 10-1: Usage of the boogienet command line application.

root@mosquito ~]# boogienet -h

usage: BoogieNet [options]

 -h --help Display this message.

 -v --verbose Be verbose.

 -p --process The process to execute.

 -a --audio The name of an audio file

 -m --model The name of a model file

 -s --score The name of a MIDI file

 -i --ip The IP of the remote network peer (required if -p udp)

 -t --transformations Apply segment transformations. (optional)

 -n --description The name of descriptions file (required if -t)

 -o --output The name of an output audio file representing

 the synthesized stream (optional)

 -d --dir The audio segment pool directory.

Examples:

=========

1) Offline Audio Segmentation (oas):

 boogienet -p oas -a flute.wav -s flute.mid -d /tmp

2) Performance Model Acquisition (pma):

 boogienet -p pma -a flute.wav -s flute.mid -m flute.model

3) Train Performance Model (tpm):

 boogienet -p tpm -m flute.model -a flute.wav

4) Offline Audio to Score Alignment (oasa):

 boogienet -p oasa -m flute.model -a flute.wav

5) Real-time analysis/synthesis (rtas):

 boogienet -p rtas -m flute.model -d /tmp -t -n flute.wav.desc -o test.wav

6) Real-time UDP communication (udp): bidirectional local analysis and remote re-

synthesis

 boogienet -p udp –i 193.39.127.4 -m flute.model -d /tmp -t -n flute.wav.desc -

o test.wav

The functional processes (5) and (6) shown on Table 10-1 represent the two operational

modes of the application. The ‘rtas’ process allows single-peer musical interactions,

while the ‘udp’ process allows networked interactions using UDP network packet. The

remaining processes (1-4) serve as a prerequisite for (5) and (6) as they mainly aim at

155

generating the required pool of audio segments as well as the trained HMM, which is

used during live performance to detect local onsets.

10.2.1 Offline Audio Segmentation (oas)

This process, abbreviated as oas, aims at generating a pool of audio segments for the

solo recording of each performer as well as a performance description file. The precise

description of this algorithm is provided in section 7.4. Each segment corresponds to a

different note, while the description file is used during real-time analysis/re-synthesis so

as to estimate the deviations of each note in the live audio stream, compared to the

corresponding audio file in the pool of audio segments, therefore determining

appropriate segment transformation during re-synthesis. Segmentation is performed

using the offline onset detection algorithm described in section 7.4.1, which is

implemented in a class named OfflineOnsetDetector.

The following is an example of a command applying this process.

boogienet –p oas –a flute.aif –s flute.mid –d /tmp

Figure 10-1: The call graph of BoogieNet::segmentNotes function.

This command segments the audio file flute.aif by finding as many notes as

contained in the score file flute.mid and stores the resulting segment files as well as

their description in the /tmp directory. The description file will have the same name as

the original audio file appended by the extension .desc, hence in the specific example

the name of that file would be flute.aif.desc.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

BoogieNet::segmentNotes (“flute.aif”, “flute.mid”, “/tmp”);

156

or equivalently invoke the commands contained within this function. Figure 10-1 shows

the call graph of this function.

10.2.2 Performance Model Acquisition (pma)

This process aims at generating an initial HMM (see section 8.3.3.2) given an audio file

and a score (MIDI) file. The model is stored in the given model filename. The process

does not apply Baum-Welch training. Instead, it generates annotations for the audio file

by applying the offline onset detection algorithm of section 7.4.1 implemented in the

class OfflineOnsetDetector and uses the class HMMAnnotator which aligns

the score to the audio file using certain heuristics. These heuristics have been described

in detail in section 8.4.1.

This initial model may be directly used for HMM decoding (offline or online) or

formerly trained with a Train Performance Model tpm process (described in the next

section) in order to refine the HMM probabilities of the initial model.

Figure 10-2: The call graph of the BoogieNet::buildHMModel function

The following is an example of a command applying the pma process.

boogienet –p pma –a flute.aif –s flute.mid –m flute.model

This command uses the flute.aif audio file and the flute.mid MIDI file to

generate an untrained model file with the name flute.model.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

BoogieNet::buildHMModel (“flute.aif”, “flute.mid”, “flute.model”);

or equivalently invoke the commands called within this function. Figure 10-2 depicts

the call graph of this function.

157

10.2.3 Train Performance Model (tpm)

This process applies the Baum-Welch algorithm to train a previously built model given

an audio file. This audio file can be either the same file that was annotated and used

during model acquisition, or it may be a different performance of the same piece of

music. This operation may be applied several times using different performances of the

same piece so as to provide a better estimation of HMM probabilities.

The following is an example of a command applying the tpm process.

boogienet –p tpm –m flute.model –a flute2.aif

This command uses the flute2.aif audio file to train the HMM maintained in the

flute.model file.

Figure 10-3: The call graph of the BoogieNet::train function.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

BoogieNet::train (“flute.model”, “flute2.aif”);

or equivalently invoke the commands called within this function. Figure 10-3 depicts

the call graph of this function.

10.2.4 Offline Audio to Score Alignment (oasa)

This process applies the offline Viterbi algorithm to align an audio file to its score,

based on a given model file. If verbose is enabled, then calling this process will print on

standard output the time instants in which onsets appear. In this case the MIDI file to

use for alignment does not need to be provided as a command line argument, because

the name and the path to that file are maintained in the model file (see section 10.3.2.2).

However, the MIDI file indicated by the provided model file must be available on the

file system and readable by the application.

The following is an example of a command applying the oasa process.

158

boogienet –p oasa –m flute.model –a flute3.aif

This command uses the flute.model file to align the audio file flute3.aif.

Figure 10-4: The call graph of the BoogieNet::hmmOfflineDecode function.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

BoogieNet::hmmOfflineDecode (“flute3.aif”, “flute.model”);

or equivalently invoke the commands called within this function. Figure 10-4 depicts

the call graph of this function.

10.2.5 Real-time analysis/synthesis (rtas): single-peer

This is the ‘single-peer’ operational mode of BoogieNet. Given a model file, this

process receives real-time audio input and aligns each block to a score state (the

sequence of score states is generated according to the MIDI filename indicated by the

model file), using the online version of the Viterbi algorithm (as described in 8.3.4). If

the detected state corresponds to an onset (based on the conditions outlined in section

8.4.2) the next audio segment is loaded from the given pool of audio segments. If

segment transformations are enabled, then that segment is transformed in terms of RMS

amplitude and duration (using the process described in section 9.3) and concatenated to

the audio output port provided by the application.

Driving audio from the soundcard to the application and vice versa, uses the Jack audio

server daemon. Jack
18

 is an open source software framework that allows routing audio

streams among different software applications and audio devices. For an application to

communicate with Jack, therefore acquiring or disposing audio to other jack ports (that

can be hardware or software ports), it should become a Jack client exposing the

18 http://jackaudio.org/

http://jackaudio.org/

159

appropriate number of input and output ports, for audio acquisition and disposal

respectively.

Figure 10-5: Audio routing with Jack for the real-time analysis/synthesis functionality of the boogienet

application in ‘single-peer’ mode.

The rtas process of the BoogieNet framework is implemented in a class called

HMMSynthesizer, which uses Jack to receive input from any jack-compliant audio

output port and sends the resulting synthesized audio stream to any jack audio input

port. In the example setup depicted on Figure 10-5, the output ports are those providing

audio to the jack daemon, while the input ports are those which jack uses to deliver

output audio. The input and output ports that belong to the group called alsa_pcm,

correspond to the line in and line out hardware ports of the soundcard. In this particular

setup, the group rezound corresponds to the Rezound
19

 application, which is an open

source audio editor that provides two output ports to the jack daemon corresponding to

the left and the right channel of any stereo file loaded on Rezound. The boogienet-

single operational mode provides one output port and one input port, as in the current

implementation processing is limited to mono signals.

On Figure 10-5, the groups alsa_pcm for input and output ports represent the

physical line in (or mic) and line out ports of the soundcard. It can be seen that the left

channel of Rezound (i.e. resound:output_1), is connected both to the left output

channel of the soundcard (alsa_pcm:playback_1) as well as to the input port of

the BoogieNet application (boogienet-single:in). Therefore every time the

button ‘play’ is activated on Rezound, the reproduced signal is sent to both of these

destinations. The BoogieNet application processes the signal provided from the output

19 http://rezound.sourceforge.net/

http://rezound.sourceforge.net/

160

of Rezound and produces a concatenated output which is sent to the right output

channel of the soundcard. This setup will result in a stereo signal which contains the

original waveform on the left channel and the analyzed/re-synthesized waveform on the

right channel. Clearly, connections may be altered from qjackctl (which is the Graphical

User Interface controlling the Jack daemon), so for example one could disable

outputting the original waveform from Rezound and connect the signal provided by

BoogieNet to both output channels of the soundcard. Alternatively, to Rezound the

alsa_pcm:capture_1 output port may be connected to boogienet-

single:in to allow real-time analysis/re-synthesis on the signal arriving to the

microphone.

Figure 10-6: A running instance of the Rezound audio editor.

For such signal connections to work, it is important that the Jack daemon is configured

in real-time mode and to process signals sampled at 44.1 kHz in blocks of 512 samples,

as shown on Figure 10-7.

The following is an example of a command applying the rtas process.

boogienet –p rtas –m flute.model –d /tmp –t –n

flute.aif.desc –o test.wav

161

Figure 10-7: The required configuration of the Jack daemon for the current version of BoogieNet..

This command uses the flute.model file to re-synthesize the audio signal received

online using segments retrieved from the directory /tmp. The –t flag indicates

activation of segment transformations taking place prior to segment concatenation. If

this flag is not provided, pure concatenation of segments will be applied without any

transformations and without cross-fading at the junction point of consecutive segments.

If the –t flag is provided, then it is necessary to provide an argument for the –n flag.

This argument specifies the location of the description file of the note segments

maintained in the audio pool (i.e. in the directory /tmp). As was discussed in section

9.3 these descriptions are necessary in order to estimate the required transformations in

terms of duration and amplitude. The flag –o indicates that the synthesized stream

should be written in an audio file, which in the above case is called test.wav. If no –

o flag is provided the synthesized audio stream will only be delivered as playback and

will not be written in an audio file.

Figure 10-8: The call graph of the BoogieNet::rtConcatenate function.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

162

BoogieNet::rtConcatenate (“flute.model”, “/tmp”, “flute.aif.desc”,

true, “test.wav”);

or equivalently invoke the commands called within this function. Figure 10-8 depicts

the call graph of this function.

10.2.6 Real-time UDP communication (udp): udp-peer

This is the same as the previous functionality with the exception that notifications of

note onsets are send to remote network locations using the UDP communication

protocol. The fundamentals of this protocol have been discussed in section 2.5.2.2.

The actual data exchanged in BoogieNet communications comprise two floating point

numbers RMS(m-1) and IOI(m-1), which as was discussed in section 9.3, concern the

Root Mean Square amplitude and the Inter Onset Interval of the note preceding the

onset for which the UDP packet represents a notification. As floating point numbers in

C++, each of these parameters has a size of 32 bits and hence 8 bytes are required for

transmitting the actual data. This results in a UDP packet having a size of 50 bytes (i.e.

14 bytes for the Ethernet header, 20 bytes for the IP header , 8 bytes for the UDP

header and 8 bytes for RMS(m-1), IOI(m-1)). The structure of Ethernet frames carrying

UDP packets has been described in section 2.5.2.2.

In BoogieNet, UDP connections are established by invoking a command such as the

following:

boogienet –p udp –i 193.39.127.4 –m flute.model –d /tmp –t

–n violin.aif.desc –o test.wav

This functionality is implemented in a class named HMMUDPPeer. The destination port

is set to 1000 by default, while for the source port a random number is usually chosen

due to firewall settings. To activate UDP onset notifications between two machines,

both clients must be running the Jack daemon and the previous command with the

appropriate options.

Assuming the local performer plays the flute part and the remote performer, located by

the IP 193.39.127.4, plays the violin part, this command uses the flute.model file

analyse the local audio signal and send the values RMS(m-1) and IOI(m-1) using UDP

packets at the remote performer at every onset detection. At the same time this process

listens for notifications of remote onset detections by that same remote performer. As

the flag –t is provided, the received RMS(m-1) and IOI(m-1) for the remote

performance of the violin are used in combination with the performance description file

violin.aif.desc to predict the RMS and IOI values for the note to be next

concatenated to the locally reproduced audio stream. Audio segments are loaded from

the directory /tmp. The flag –o indicates that the synthesized stream should be written

in an audio file with the name test.wav. If no –o flag is provided the synthesized

audio stream will only be delivered as playback and will not be written in an audio file.

163

Figure 10-9: Typical connection for UDP communications in BoogieNet.

Figure 10-9 shows a typical setup of jack connections in the case of BoogieNet

interactions using the ‘udp-peer’ operational mode. In this case, the audio arriving at the

microphone alsa_pcm:capture_1 is provided as an input to the boogienet-

udp jack client. The same client provides an output port which delivers the segmentally

re-synthesized performance of the remote network peer.

Alternatively, the process may be invoked by an external application by calling the

static C++ function of the BoogieNet class as:

BoogieNet::udpPerform (“193.39.127.4”, “flute.model”, “/tmp”,

“violin.aif.desc”, true, “test.wav”);

or equivalently invoke the commands called within this function. The functionality is

implemented in a class named HMMUDPPeer.

Figure 10-10: The call graph of the BoogieNet::udpPerform function.

Figure 10-10 depicts the call graph of the udpPerform function.

164

10.3 System Overview

This section presents the various modules of the BoogieNet software architecture so as

to give an understanding on important implementation details and how it can be used or

integrated in NMP software programs. The framework comprises a number of C++

classes containing algorithm implementations, as well as a number of ASCII text files

that are used to make the necessary information persistent across different executions.

The next subsections provide brief descriptions for the C++ classes and the ASCII files.

10.3.1 C++ Classes

Table 10-2 lists the key classes of the BoogieNet framework and provides a brief

description of their functionality. For the complete list of classes and the way they are

implemented, interested users or developers may consult the API documentation,

automatically generated from the source code using Doxygen
20

, and provided on the

website of this project.

Table 10-2: The key classes of the BoogieNet framework

idx Name Description

1 AudioFile A representation of an uncompressed audio file. Allows reading
and writing audio samples in successive blocks of user defined
length.

2 MIDIFileReader A class providing access to the information contained in a standard
MIDI file.

3 Score A representation of a music score. Objects of this class will
maintain the entire HMM topology (i.e. states and transition
probabilities) for a certain musical piece.

4 HMMScoreModel A representation of a Hidden Markov Model. Specifically, this
class provides information about which HMM states and which
audio features are used as observations in the HMM as well as all
of the associated probabilities (initial, transition, observation).

Essentially this class holds an instance of the Score class. Instances
of this class may be stored in an ASCII file (with the extension
‘.model’) and re-used during training and decoding.

5 HMMAnnotatator Produces an annotated ARFF file, given an audio file and the
corresponding MIDI file. Audio block annotations may be

produced either using the OffilineOnsetDetector class or

from the start/end times of note events given in the MIDI file. The

latter annotations may be used for annotating an audio file which is
synthesized from MIDI and therefore preserves the timing of note
events.

6 HMMTrainer Applies the Baum-Welch algorithm in order to train the

probabilities of an HMMScoreModel instance.

7 HMMDecoder Applies the Viterbi algorithm in order to decode the HMM states

of a given audio stream according to a given HMMScoreModel.

Decoding may be applied offline, therefore providing a score
alignment of an audio file or online as new audio blocks are
progressively accumulated.

8 Segmentor Segments an audio file into several files, each containing a
different note. Note boundaries are identified using an instance of

the OfflineOnsetDetector class. Apart from the

constituent segment files, the Segmentor object produces a

performance description file that contains information about the

20 http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/

165

length, the RMS amplitude and the pitch of the note contained in
each segment. These descriptions are used during synthesis to
apply segment transformations prior to concatenation.

9 OfflineOnsetDetector Detects the location of note onsets in an audio waveform by
applying the blind onset detection algorithm provided in section
7.4.1.

10 PitchDetector Provides a C++ implementation of the Maddox and Larson (2005)
algorithm for pitch detection using wavelets.

11 Concatenator Instances of this class perform segmental synthesis by loading the
audio files that correspond to note segments. This class is invoked

by the HMMSynthesizer everytime new audio data must be

sent to the output. The Concatenator will load a new audio

segment every time it is notified for the occurrence of a new onset.
If amplitude and duration transformations are enabled it perform

then when loading a new audio segment. If no onset occurs, it will
provide the next audio block of the current segment to the

HMMSynthesizer object.

12 HMMSynthesizer It performs segmental analysis and re-synthesis based on audio
blocks received in real-time. It holds an instance of an

HMMDecoder as well as an instance of the Concatenator

class. The HMMSynthesizer class is a subclass of a Jack Client,

exposing an audio input as well as an audio output port. It receives
input from any Jack output port such as the microphone or line in
of the sound card or any jack compliant audio player (e.g.

JackTrip, Audacity, rezound) and it calls the HMMDecoder class

to decode the received audio block and find its score position as
the corresponding HMM state. If that state corresponds to a note

onset it instructs its Concatenator object to load the next

segment from the pool of audio segments, otherwise it asks for the
next audio block from the current possibly transformed audio
segment in order to forward it to the line out of the audio device.

HMMSynthesizer may additionally save the concatenated audio

to a sound file, if created by calling the appropriate constructor.

13 HMMUDPPeer This is similar to the HMMSynthesizer class and it additionally

implements UDP communications. It holds an instance of an

HMMDecoder and an instance of the Concatenator class and

it is a subclass of JackClient exposing one input and one

output audio port to Jack. At the same time this class opens the
1000 UDP ports for listening, hence waiting to receive remote
onset notifications. Every time an onset is detected on the local
performance a notification is sent to port 1000 of the remote peer
identified by the provided IP address.

14 FeatureExtractor Extracts the requested audio features either offline (i.e. from an
audio file) or online (i.e. from successive audio blocks).

15 SpectrumAnalyser Performs the Fourier transform of a given audio segment. This is
an abstract class subclassed by different classes implementing
different parameterisations of the STFT, which are described in
section 6.3.

16 PerformanceMonitor This class loads a performance description file and gets notified by

the HMMDecoder every time a new onset occurs. For every new

note it maintains its divergence from the corresponding audio

segment in the pool of audio segments in terms of duration (in
samples) and RMS amplitude. These divergences are made

available to the Concatenator object which then attempts to

predict the divergence of an upcoming note when its onset occurs.

17 BoogieNet This is a main class provided for testing purposes. It allows
executing the functionalities of offline audio segmentation,
performance model acquisition, training a performance model,

performing offline audio-to-score alignment using an HMM and
finally, real-time analysis re-synthesis. This main class when
executed with the appropriate flags allows testing the
corresponding functionalities in a stand-alone application. In real-
time operation it requires communication with the jack audio
daemon.

166

10.3.2 Data Files

The BoogieNet framework handles a number of data files. Apart from media files, i.e.

raw PCM audio files such as wav or aiff as well as MIDI files, it uses some ASCII files

which contain information in the form of comma separated values. In the following, a

small excerpt of each ASCII file used by the framework is shown and its content and

syntax are briefly explained.

10.3.2.1 ARFF File

An ARFF (Attribute-Relation File Format) file is an ASCII file that describes a list of

instances sharing a set of attributes. ARFF files were devised by the Machine Learning

Project at the Department of Computer Science of The University of Waikato for use

with the Weka machine learning software application
21

.

Table 10-3: An extract of an ARFF file used for audio file annotations in the BoogieNet framework.

@relation /home/users/ca/datasets/flute.aif

@attribute LogEnergy real

@attribute DeltaLogEnergy real

@attribute SpectralActivity real

@attribute SpectralFlux real

@attribute DeltaSpectralFlux real

@attribute PSM69 real

@attribute DeltaPSM69 real

@attribute PSM70 real

@attribute DeltaPSM70 real

@attribute PSM73 real

@attribute DeltaPSM73 real

@attribute PSM74 real

@attribute DeltaPSM74 real

@attribute PSM75 real

@attribute DeltaPSM75 real

@attribute PSM76 real

@attribute DeltaPSM76 real

@attribute PSM77 real

@attribute DeltaPSM77 real

@attribute PSM79 real

@attribute DeltaPSM79 real

@attribute Note real

@attribute Class {Attack, Sustain, Rest}

@data

-69.9569,1.98457,0.995256, ...,0.000123933,-0.000426952,0,Rest

-72.558,-2.6011,0.991661, ...,0.000314932,0.000190999,0,Rest

-73.3054,-0.747421,0.992765, ...,0.000629949,0.000315017,0,Rest

-64.876,8.42943,0.750538, ...,0.000645801,1.59E-05,0,Rest

-42.3356,22.5404,0.969086, ...,0.000300704,-0.000345097,69,Attack

-39.8124,2.52316,0.998545, ...,0.000404436,0.000103732,69,Attack

-38.3534,1.45903,0.999411, ...,0.000133598,-0.000270839,69,Attack

-37.7309,0.62249,0.99758, ...,0.000329701,0.000196103,69,Attack

-32.1735,5.55746,0.995569, ...,0.000302766,-2.69E-05,69,Attack

-26.8541,5.31936,0.995144, ...,0.000447779,0.000145013,69,Sustain

-23.5472,3.30685,0.994849, ...,0.000523989,7.62E-05,69,Sustain

-21.8958,1.65143,0.995397, ...,0.000456628,-6.74E-05,69,Sustain

-21.1547,0.741125,0.996622, ...,0.000330994,-0.000125634,69,Sustain

21 http://www.cs.waikato.ac.nz/~ml/

http://www.cs.waikato.ac.nz/~ml/

167

-20.8199,0.334755,0.998147, ...,0.000247711,-8.33E-05,69,Sustain

-20.7477,0.0722046,0.999388, ...,0.000152443,-9.53E-05,69,Sustain

-20.3141,0.433622,0.999819, ...,7.41E-05,-7.83E-05,69,Sustain

...

BoggieNet has used this file format in associating each 512-sample audio block with an

HMM state related to the score of specific music pieces. Specifically each block is

described in terms of its audio features, which represent HMM observations (see section

8.3.2), and labelled by as a single HMM score state (see section 8.3.1).The functional

processes previously described use the data provided by an ARFF file, but do not

necessarily make this file persistent as they actually use the model file that contains

probabilities instead of raw feature values. The pma functionality presented in section

10.2.2, may optionally generate an ARFF file for manual inspection of the computed

feature values and the corresponding state annotation.

Table 10-3 presents an extract of such an arff file generated from an audio file with the

name flute.aif. Note that the full path for that file is used as a relation name, so as

to allow for unambiguously identifying the corresponding audio file. Following, the

name of the audio features that form the HMM observations are listed. Pitch specific

features (i.e. PSM and DeltaPSM) are included only for the MIDI notes that appear in

the score (i.e. the MIDI file). The pair of the last two attributes (i.e. Note, Class) defines

the HMM state associated with the specific audio block. Annotations, associating audio

blocks with HMM states may be derived in two ways:

 From the class HMMAnnotator, which uses the class

OfflineOnsetDetector to locate note onsets and subsequently annotate

each block according to onset locations and certain heuristic rules. (see section

8.4.1), or

 By training an HMMScoreModel using the class HMMTrainer that applies

the Baum-Welch algorithm and subsequently deriving an offline audio to score

alignment by applying the Viterbi algorithm of the HMMDecoder class.

After the @data directive, a separate row is inserted for each audio block. The numbers

shown on each row are the values of the audio features of that block in the order that

they appear at the header part of the ARFF file. In this table, three dots have been used

to save space within the listing. In the original ARFF file there are as many data rows as

there are audio blocks in the corresponding audio file and as many columns as the

number of audio features plus two. The last two columns of each row describe the

HMM state assigned to that audio block as a MIDI note-number, part of note (i.e.

attack, sustain rest) pair.

10.3.2.2 Model file

The model file is an ASCII file which maintains all the information related to the HMM

of a specific piece of music. The file is a text representation of instances of the

HMMScoreModel class.

168

An extract of an example model file is depicted on Table 10-4. The file contains the

absolute path for the MIDI file that represents the score of that piece, then it displays the

number and names of HMM states per note and also the number and names of audio

features that are used as part of the observation vectors of the HMM. Following these

descriptions, four matrices are provided: the initial probability matrix (denoted as p0),

the transition probability matrix (denoted as a), the mean vector (denoted as mu) and the

covariance matrix (denoted as cov) of the multivariate Gaussian distribution that

models observation probabilities (see section 8.3.2).

Table 10-4: An extract of a model file, used for maintaining HMM probabilities.

MIDIFile=/home/users/ca/datasets/flute.mid

nStates=3

Attack,Sustain,Rest

nFeats=21

LogEnergy,0

DeltaLogEnergy,0

SpectralActivity,0

SpectralFlux,0

DeltaSpectralFlux,0

PSM69,69

DeltaPSM69,69

PSM70,70

DeltaPSM70,70

PSM73,73

DeltaPSM73,73

PSM74,74

DeltaPSM74,74

PSM75,75

DeltaPSM75,75

PSM76,76

DeltaPSM76,76

PSM77,77

DeltaPSM77,77

PSM79,79

DeltaPSM79,79

p0:

1.000000 0.000000 0.000000 0.000000 0.000000 ...

a:

0.50000 0.50000 0.00000 0.00000 0.00000 ...

0.00000 0.50000 0.50000 0.00000 0.00000 ...

0.00000 0.00000 0.33333 0.33333 0.33333 ...

0.00000 0.00000 0.00000 0.50000 0.50000 ...

0.00000 0.00000 0.00000 0.00000 0.50000 ...

0.00000 0.00000 0.00000 0.00000 0.00000 ...

0.00000 0.00000 0.00000 0.00000 0.00000 ...

0.00000 0.00000 0.00000 0.00000 0.00000 ...

0.00000 0.00000 0.00000 0.00000 0.00000 ...

0.00000 0.00000 0.00000 0.00000 0.00000 ...

mu:

-63.208406 0.381151 0.962896 0.311629 -0.004058 ...

-33.954838 4.517003 0.999157 0.392310 -0.104939 ...

-20.634231 -0.024127 0.997005 0.123757 -0.008532 ...

-41.446407 -1.889078 0.991709 0.308036 0.062606 ...

-29.103718 7.709429 0.995239 0.559812 0.076057 ...

-17.574793 -0.530137 0.997698 0.112649 -0.026490 ...

-44.089676 -11.392345 0.897277 0.195670 0.185049 ...

...

cov:

28.545770 4.875830 0.010100 -0.012941 -0.049372 ...

169

4.875830 6.137186 -0.005596 0.165062 0.057392 ...

0.010100 -0.005596 0.001290 -0.000863 -0.001225 ...

-0.012941 0.165062 -0.000863 0.009030 0.004351 ...

-0.049372 0.057392 -0.001225 0.004351 0.010372 ...

...

It can be seen that normally the initial probability matrix p0 would have a value of 1 at

the first HMM state, assuming that the piece will start from a rest state preceding the

attack of the first note. Transition probabilities are those depicted in Figure 8-2. For the

reasons explained in section 8.3.3.1, transition probabilities are not affected by the

training process. The mean and the covariance matrices allow the estimation of

observation probabilities for each audio block. These probabilities are evaluated using

the initial model, for instance from the annotated ARFF file and can be further refined

using the HMMTrainer class that applies the Baum-Welch algorithm.

10.3.2.3 Performance Description file

Performance description files are named using the name of audio file that was

segmented appended by the extension .desc. They are maintained in the same

directory as the segment files, i.e. inside the audio segment pool. These files describe

the segments that were produced by the Segmentor class. As shown in Table 10-5,

such a file contains three fields per note segment. The first field is the length of the

segment is audio samples, which corresponds to the inter-onset interval IOI estimated

during automatic segmentation. The second field is the RMS amplitude for that segment

and the third is the pitch value of the note contained in that segment. Pitch values are

provided as number of samples per period of the pitch frequency. For example the first

note is an A note of the frequency of 440Hz, resulting in a period of 100.23 rounded to

100 samples for the sampling rate of 44.1kHz.

Table 10-5: A desc file describing the audio segments of a solo performance.

notesTotal=24

51712, 0.000854069, 100

25088, 0.119251, 75

42496, 0.205841, 79

17920, 0.172292, 75

19456, 0.214057, 63

16896, 0.173594, 100

16896, 0.106406, 94

80896, 0.139083, 56

18432, 0.157215, 63

17920, 0.23894, 66

17920, 0.271435, 75

18944, 0.215549, 100

36352, 0.103, 66

18432, 0.113069, 75

15360, 0.215656, 63

16896, 0.184322, 100

15360, 0.133848, 94

36864, 0.15892, 66

15872, 0.118017, 56

16384, 0.167385, 63

15360, 0.123328, 75

14848, 0.142593, 70

36864, 0.148469, 100

15872, 0.101323, 75

80896, 0.171443, 0

170

The description file is used during the live performance to apply segment

transformations before segment concatenation as described in section 9.3.2.

10.4 Third Party Libraries

The downloadable code provided within the BoogieNet framework has been entirely

implemented by me, however using some third-party libraries, which are listed in Table

10-6.

Table 10-6: Third party C++ libraries used in the implementation of BoogieNet

Library

Name

URL Purpose Used by Class

Jack http://jackaudio.org/ Real-time audio patching JackClient
JackSignalProcessor
JackSignalProvider
JackSignalFromInput
HMMDecoder

Concatenator
HMMSynthesizer

FFTW http://www.fftw.org/ Perform Fourier
Transforms

SpectrumAnalyser

libsndfile http://www.mega-
nerd.com/libsndfile/

Reading PCM audio files AudioFile

midifile

http://www.sreal.com/~div/midi-
utilities/

Reading MIDI files MIDIFIleReader

qm-dsp http://code.soundsoftware.ac.uk/proje
cts/qm-dsp/repository/show/hmm

HMM structures, Baum-
Welch training and Viterbi
decoding

HMMScoreModel
HMMDecoder
HMMTrainer

For compiling and installing BoogieNet from the downloadable source package, the

first three libraries may be installed using the package manager of the installation

machine (e.g. yum, apt-get or synaptic). The fourth, namely the midifile

library is in fact part of a larger library called midi-utils, which is originally

compiled for windows. So users wishing to install BoggieNet may download an

additional package called midifile from the BoogieNet website. I have packaged

midifile using the necessary source files from the midi-utilities library (i.e.

midifile.c, midifile.h), and the necessary scripts for building a

corresponding dynamic library from these sources. Finally, from the library qm-dsp,

two source files are used (i.e. hmm.c and hmm.h), which I had to modify in order to

provide a real-time implementation for the Viterbi algorithm. The files that contain my

modifications are embedded in the BoogieNet source package. Therefore there is no

need for compiling or installing the qm-dsp library. However, it is expected that the

libraries and cblas
22

 and clapack
23

 performing linear algebra calculations and required

22 http://www.gnu.org/software/gsl/manual/html_node/BLAS-Support.html#BLAS-Support
23 http://www.netlib.org/clapack/

http://jackaudio.org/
http://www.fftw.org/
http://www.mega-nerd.com/libsndfile/
http://www.mega-nerd.com/libsndfile/
http://www.sreal.com/~div/midi-utilities/
http://www.sreal.com/~div/midi-utilities/
http://code.soundsoftware.ac.uk/projects/qm-dsp/repository/show/hmm
http://code.soundsoftware.ac.uk/projects/qm-dsp/repository/show/hmm
http://www.gnu.org/software/gsl/manual/html_node/BLAS-Support.html#BLAS-Support
http://www.netlib.org/clapack/

171

by the HMM part of the qm-dsp library have been previously installed on the target

machine, which can be done using the available package manager.

Table 10-7: Library dependencies of the BoogieNet framework

[root@mosquito ~]# ldd /usr/local/lib/libboogienet.so

 linux-gate.so.1 => (0x0070e000)

 libjack.so.0 => /usr/local/lib/libjack.so.0 (0x0018c000)

 libsndfile.so.1 => /usr/local/lib/libsndfile.so.1 (0x00afa000)

 libmidifile.so.0 => /usr/local/lib/libmidifile.so.0 (0x005c5000)

 libgslcblas.so.0 => /usr/lib/libgslcblas.so.0 (0x00a95000)

 liblapack.so.3 => /usr/lib/liblapack.so.3 (0x00b53000)

 libudp.so.0 => /usr/local/lib/libudp.so.0 (0x00478000)

 libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x001a4000)

 libm.so.6 => /lib/libm.so.6 (0x00424000)

 libc.so.6 => /lib/libc.so.6 (0x00850000)

 libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00110000)

 librt.so.1 => /lib/librt.so.1 (0x00703000)

 libpthread.so.0 => /lib/libpthread.so.0 (0x00527000)

 libdl.so.2 => /lib/libdl.so.2 (0x0011c000)

 libblas.so.3 => /usr/lib/libblas.so.3 (0x00121000)

 libgfortran.so.1 => /usr/lib/libgfortran.so.1 (0x0028f000)

 /lib/ld-linux.so.2 (0x003b3000)

[root@mosquito ~]# ldd `which boogienet`

 linux-gate.so.1 => (0x00ed5000)

 libboogienet.so.0 => /usr/local/lib/libboogienet.so.0 (0x00730000)

 libjack.so.0 => /usr/local/lib/libjack.so.0 (0x0098b000)

 librt.so.1 => /lib/librt.so.1 (0x00901000)

 libpthread.so.0 => /lib/libpthread.so.0 (0x00563000)

 libdl.so.2 => /lib/libdl.so.2 (0x0055c000)

 libsamplerate.so.0 => /usr/lib/libsamplerate.so.0 (0x03254000)

 libcelt.so.0 => /usr/lib/libcelt.so.0 (0x0057f000)

 libsndfile.so.1 => /usr/local/lib/libsndfile.so.1 (0x00110000)

 libmidifile.so.0 => /usr/local/lib/libmidifile.so.0 (0x00431000)

 libgslcblas.so.0 => /usr/lib/libgslcblas.so.0 (0x00169000)

 liblapack.so.3 => /usr/lib/liblapack.so.3 (0x009a3000)

 libudp.so.0 => /usr/local/lib/libudp.so.0 (0x0019b000)

 libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x0019d000)

 libm.so.6 => /lib/libm.so.6 (0x00531000)

 libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00288000)

 libc.so.6 => /lib/libc.so.6 (0x0058e000)

 /lib/ld-linux.so.2 (0x003b3000)

 libblas.so.3 => /usr/lib/libblas.so.3 (0x00294000)

 libgfortran.so.1 => /usr/lib/libgfortran.so.1 (0x002e7000)

[root@mosquito ~]#

Listing the library dependencies of the boogienet library and the command line

application provides the output shown on Table 10-7.

172

11 Experimental Evaluation

This chapter presents the evaluation of the BoogieNet framework. Specifically, it

provides the results of a number of evaluation experiments assessing the performance of

the algorithms presented in the previous chapters, as well as an experiment of a

collaborative performance over the network. The evaluation of the algorithmic

performance serves to reveal shortcomings of the current implementation that need to be

addressed in future developments. The network experiment reveals the benefits offered

by the proposed communication scheme compared to direct audio stream exchange,

which is the prevalent means of audio communication in Network Music Performances.

The chapter initially discusses some concerns related to the evaluation methodology

which is unavoidably constrained in many respects. Then, the results of the evaluation

of algorithmic performance are presented. The section that follows presents the network

experiment. Finally, the last section consolidates the results and discusses the efficacy

of the proposed communication scheme for NMP.

11.1 Considerations on the evaluation methodology

The comprehensiveness of the evaluation methodology presented in this chapter may be

considered debatable due to a number of reasons. Firstly, it was not possible to perform

a formal user evaluation involving human musicians collaborating over computer

networks, due to the robustness of the implemented algorithms being currently

inadequate for the intended scenario. Secondly, it was not possible to draw conclusions

with respect to practical significance of results due to the limited availability of

appropriate musical material to use in experimental validations. Thirdly, due to the

same reason it was not possible to assess the improvement of the HMM algorithm by

using sufficient training datasets. Finally, minor modifications of algorithm parameters

were required in order to effectively cope with the variability of the temporal

characteristics of different music performances. These issues are further elaborated in

the subsections that follow.

11.1.1 The lack of a formal user evaluation

As the system under investigation integrates achievements from different research

domains, different methodologies may be employed to evaluate its performance. A

formal user evaluation requires for conducting NMP experiments involving human

musicians. Such experiments commonly amount to some music ensemble engaged in

collaborative music performance using an NMP software framework (Alexandraki and

Akoumianakis 2010) or some software/hardware setup that artificially simulates

173

network conditions in terms of one or more parameters such as latency, jitter (Chew et

al. 2005; Driessen, Darcie and Pillay 2011; Chafe et al. 2004) or packet loss.

Subsequently to collaborative performance, the evaluation findings are obtained either

from user ratings provided by performers as responses to a number of questions relating

to their ability to synchronize (Buillot 2007), or by analyzing performance data captured

by appropriate MIDI (Chew et al. 2005) or audio (Driessen, Darcie and Pillay 2011)

apparatus facilitated to capture the live performance. Unfortunately, conducting NMP

experiments is highly expensive in terms of costly human resources. In particular, NMP

experiments requires the participation of professional music ensembles (so as to

eliminate biased conclusions owing to musician’s effort to adapt to each other’s

performance), network engineers (in order to resolve firewall issues and activate the

necessary network ports for audio and possibly video communication), as well as sound

engineers (to appropriately setup audio equipment therefore avoiding feedback loops or

unwanted noise consuming network resources).

The approach under investigation does not literary provide a networking solution, as

there are no contributions in terms of networking technologies (e.g. network protocols

or data routing optimisations). Additionally, the current implementation is far from

being a fully functional software application. Unfortunately, the facilitated algorithms

are not yet sufficiently robust to support the intended scenario. Conversely, the

implemented prototype is the result of early investigations on a new musical interaction

paradigm, which may be used to experiment with new musical ideas, for instance by

alternating between transmitting audio streams and onset notifications. Consequently,

conducting a formal user evaluation (i.e. NMP experiments) is neither feasible for the

current status of this work, nor can it provide any useful information for the task at

hand.

For this reason, the main part of this chapter focuses on evaluating the algorithmic

performance of the methodology presented in the previous chapters. For reasons of

consistency, a network experiment has also been conducted. This experiment involves

the collaboration of two musicians, namely a flutist and a violinist, collaborating across

a Local Area Network (LAN). The evaluation of the algorithmic performance reveals

shortcomings of the current implementation, therefore motivating future research and

development efforts, while the network experiment shows the benefits of employing the

proposed communication scheme over conventional audio stream exchange, which is

the prevalent means of communication in NMP.

11.1.2 Standard evaluation metrics and significance of results

For the evaluation of the algorithmic performance, standard MIR evaluation procedures

have been employed. MIREX (Music Information Retrieval Evaluation eXchange) is a

community-based framework which organises annual contests that provide a de facto

standard for evaluating algorithmic performance in a number of MIR tasks. These MIR

174

tasks
24

 range from ‘genre recognition’ and ‘music similarity and retrieval’ applied on

large music collections, to tasks focusing on specific music pieces and machine

musicianship such as ‘melody extraction’, ‘beat tracking’ or ‘chord detection’. With

respect to the performance of algorithms operating in real-time, the only relevant task in

MIREX is that of ‘score following’.

MIREX annual contests allow making meaningful comparisons for the performance of

different algorithms targeting a specific task. As the algorithms are evaluated on the

same dataset, an estimator for the best algorithmic performance for each task is

provided on an annual basis. For instance, the maximum total precision for the task of

‘Real-time audio to score alignment (aka score following)’ was 67.11% in 2011,

83.01% in 2012 and 86.70% in 2013. Although these rankings are not necessarily

increasing every year for all of the tasks under evaluation, evaluation metrics are

derived by applying the algorithms on the same audio dataset. Unfortunately, the

majority of MIREX datasets are not freely available to researchers due to musical

intellectual property copyright enforcement. As a result, to compare to the annual

rankings in MIR tasks one should submit their algorithm to the MIREX community

(Downie 2008).

An important issue relating to MIREX evaluation procedures is related to whether such

algorithmic rankings correspond to truly significant differences in performance. To

account for this concern, since 2006 MIREX employed significance tests that measure

the global and pair-wise significance of differences in algorithmic rankings (Downie

2008). As the significance tests used by MIREX are inspired by TREC (Text REtrieval

Conference), a community on text retrieval, significance tests have only been applied to

the tasks that have a closer resemblance to text retrieval. For the tasks of ‘Audio Onset

Detection’ and ‘Real-time Audio to Score Alignment’ that are mostly relevant to the

present work, no significance tests have been applied up to 2013.

Furthermore, with respect to the relationship of user satisfaction in an application

targeted by a MIR task and the algorithmic performance of a system in that task,

Urbano et al. (2012) showed that, for the example task of ‘music similarity and

retrieval’, differences in user satisfaction may be so subtle that statistical significance is

not sufficient to prove the superiority of one algorithm over another. In such cases, one

needs to evaluate for practical significance (i.e. on large-scale datasets) in order to truly

prove real-world user satisfaction. Clearly, practical significance is a lot more difficult

in MIR research, as the systems under evaluation need to have access to large

collections of copyrighted material.

11.1.3 Lack of multiple training sequences

Yet a further concern related to the evaluation of algorithmic performance relates to the

fact that, due to the lack of different recordings for the same piece of music, HMM

24 http://www.music-ir.org/mirex/wiki/2013:Main_Page

http://www.music-ir.org/mirex/wiki/2013:Main_Page

175

training and HMM decoding was performed on the same audio file. This causes two

problems. Firstly, as elaborated in section 8.3.3.1, for HMMs having a left-right

topology it is essential that multiple sequences are used so as to accurately train the

model. Hence, the performance measures of audio to score alignment are suboptimal

than those obtained when training on multiple performances of the same piece of music,

as for example in the course of a music rehearsal.

Secondly, in classification problems, testing the performance of a trained classifier on

the data used for training is a method known as resubstitution and it is well known that

performance measures estimated in this way are usually overoptimistic (Flexer 2006

and the references therein). Preferably, a method known as K-fold cross-validation is

employed for evaluating trained classifiers. K-fold cross-validation amounts to dividing

the data into K equally-sized parts and using each part as a test set for the classifier

trained with the remaining data. The performance measures are then the average of

performance measures over the K different runs.

Unfortunately, it was not possible to obtain multiple performances of the same piece of

music so as to use multiple training sequences for each model or to perform a K-fold

cross validation test. In the following experiments the HMM is initialised using the

output of the offline segmentation process as described in section 8.4.1. Subsequently,

the performance of real-time audio to score alignment is evaluated prior to training and

after Baum-Welch training. Finally, a pair-wise t-test is performed to evaluate the

significance of performance improvement through the training process.

11.1.4 Algorithm fine tuning

A further aspect relating to the performed evaluation relates to the number of changes

that may be required when algorithms need to analyse different audio streams. It is

widely known that such algorithms require human supervision in order effectively to

cope with variability in the timbral and temporal variations of each music performance.

In the present evaluation of algorithmic performance, a single parameter was adjusted,

namely the value of the minimum Inter-Onset-Interval. This parameter is used by the

offline audio segmentation algorithm as well as by the HMM score following algorithm

to reduce the number of falsely detected onsets. In future implementations, the value of

this parameter may be automatically estimated by employing techniques for tempo

induction.

11.2 Evaluation of algorithmic performance

This section presents the evaluation of the performance of the algorithms presented in

the previous chapters. These algorithms have been applied on a small dataset that I had

to assemble from various publicly available music sources and manually annotate to

provide ground truth data for the location of note onsets. As elaborated in section

176

11.1.2, the results of this evaluation are not comparable to officially evaluated

algorithms. However, they serve to provide some insight with regards to feasibility of

the proposed communication scheme for NMP. More importantly, the results presented

in the following sections reveal weaknesses of the current implementation to be

addressed in future developments. Evaluation metrics are those used by MIREX

evaluations for the tasks of ‘Audio Onset Detection’ and ‘Real-time Audio to Score

Alignment’, supplemented by some measures that are relevant to the intended

application scenario on Networked Music Performance.

11.2.1 Dataset

At present, a substantial number of music datasets are available on the Internet, some of

them free, without any payment fee. Unfortunately, most of these datasets have been

assembled for more generic music information retrieval tasks, such as genre

classification or music similarity. Assembling an appropriate evaluation dataset for the

present system imposes a number of restrictions that are not commonly met in existing

datasets. These restrictions concern the following aspects:

 All sound files should correspond to the performance of a single instrument

 The instruments should be monophonic, as no chords or polyphony is being

considered at the present implementation

 All sound files should be accompanied by a corresponding MIDI file (i.e. a

music score)

 The dataset should contain recordings from different types of instruments so as

to provide insight on potential differences in algorithmic performance for

different musical timbres

In order to satisfy the above restrictions, an evaluation dataset was assembled using

some files from publicly available datasets and some of my own recordings. This

dataset comprises 23 music pieces summing to a total of 969 notes and a total duration

of 9.63 minutes, as listed on Table 11-1. All audio files are uncompressed files in WAV

encoding format, having a sample rate of 44.1 kHz, a bit resolution of 16 bits per

sample, and a single audio channel.

The column entitled ‘FILE-ID provides the filename for the audio file and

corresponding MIDI file and additionally depicts the musical instrument that was used

for the solo recording. Ground truth onset annotations were performed manually and

assisted by Sonic Visualizer
25

, an open source software program designed to aid audio

file annotation.

The column entitled ‘SRC’ indicates the dataset from which audio and MIDI files were

derived. Specifically, the files having SRC=1 were derived from the TRIOS
26

 publicly

25 http://www.sonicvisualiser.org/
26 http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27

http://www.sonicvisualiser.org/
http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27

177

available dataset. From this dataset certain extracts of monophonic instrument

recordings were selected. The TRIOS dataset was originally used for score-informed

source separation (Fritsch 2012).

Table 11-1: The music pieces of the dataset used for the evaluation of algorithmic performance.

 ind FILE-ID PIECE SRC #Notes DUR(s)
WOODWIND 1 FLUTE1 Gabriel Negrin/Ex1_take002 4 24 17.83

2 FLUTE2 Gabriel Negrin/Ex2_take010 4 26 22.50

3 TENORSAX1 unknown 2 9 9.30

4
BARITONESAX
1 unknown 2 35 13.49

5 BASOON1
Mathieu Lussier (op.8) - trio for
trumpet, bassoon and piano 1 65 18.00

6 BASOON2 Bach Chorale "Ach Gottund Herr" 3 36 25.23

7 CLARINET2 unknown 2 94 36.27

8 CLARINET3 Bach Chorale "Ach Gottund Herr" 3 34 25.23

9 SAX2 Bach Chorale "Ach Gottund Herr" 3 38 25.23
BRASS

10 TRUMPET1
Mathieu Lussier (op.8) - trio for
trumpet, bassoon and piano 1 24 18

11 TRUMPET2 unknown 2 24 8.73

12 HORN1
Johannes Brahms (op.40) - trio for
violin, French horn and piano 1 42 34.02

13 TROMBONE1 unknown 2 23 40.01
BOWED 14 VIOLIN4 Bach Chorale "Ach Gottund Herr" 3 36 25.23

15 VIOLA1
Wolfgang A. Mozart (K.498) - trio
for clarinet, viola and piano 1 32 25.23

16 VIOLIN7 Bach Chorale "Die Nacht" 3 40 35.88
PLUCKED 17 GUITAR1 unknown 2 25 11.56

18 GUITAR2
Bach BWV1013 Partita in A minor
(Allemande) 4 63 20.29

PERCUSSION

19 KICK1
Take Five by Paul Desmond, for alto
sax, piano and drums 1 25 43.50

20 SNARE1
Take Five by Paul Desmond, for alto
sax, piano and drums 1 103 43.50

21 RIDE2

Take Five by Paul Desmond, for alto
sax, piano and drums (first 84
notes) 1 84 22.54

VOICE 22 VOICE1 Female singing “Happy birthday” 4 25 20.19

23 VOICE2
Female signing the notes of a MIDI
file 4 62 35.69

TOTAL 969 577.45

The files having a property of SRC=2 are demo files
27

 of a proprietary software

program called Inst2MIDI, which converts audio recordings of monophonic instruments

to MIDI data in real-time and can therefore be classified as an audio transcription

software. The downloaded audio files were converted from mp3 to wav encoding

format. Additionally, some minor corrections were required on the distributed MIDI

27 http://nerds.de/en/examples.html

http://nerds.de/en/examples.html

178

files, which were generated by the Inst2MIDI software and had some minor

imperfections.

The files having a property of SRC=3 have been derived from the Bach10 dataset
28

,

which contains audio recordings for ten Bach Chorales for which the four voices

(Soprano, Alto, Tenor and Bass) of each piece are performed by the instruments violin,

clarinet, saxophone and bassoon, respectively. The Bach10 dataset has been assembled

for the purposes of multi-pitch estimation and tracking (Duan, Pardo and Zhang 2010)

as well as for the purposes of score informed audio source separation (Duan and Pardo

2011). The MIDI files of this dataset comprise four channels that correspond to the four

voices of the chorale. Hence, to use them in the present evaluation, different channels

had to be saved in separate MIDI files.

Finally, the files having a property of SRC=4 were recorded for the purposes of the

present evaluation.

With respect to timbral specificities, the following instrument classes were used in the

evaluation dataset:

 Woodwind: 8 woodwind solo performances comprising 361 notes in total

 Brass: 4 solo performances comprising 113 notes in total

 Bowed String: 3 solo performances comprising 108 notes in total

 Plucked String: 2 guitar solo comprising 88 notes in total

 Percussive: 3 instrument performances comprising 212 notes in total

 Vocal: 2 pieces comprising 87 notes in total

11.2.2 Measures

The measures that were used to evaluate the present system are based on the evaluation

measures used by the yearly annual MIREX contests for the tasks of ‘Audio Onset

Detection’
29

 and ‘Real-time Audio to Score Alignment (a.k.a. Score Following)’
30

 with

minor changes that are relevant to the intended scenario for networked musical

interactions. Specifically, MIREX uses the following measures to compare the detected

onsets with ground-truth ones:

 Ocd: Number of correctly detected onsets (CD). For a given ground-truth onset

time, if there is a detection in a tolerance time-window around it, it is considered

as a correct detection. This tolerance time-window conventionally spans a range

of ±50ms around the ground-truth onset. It is generally not possible to evaluate

on more accurate timing tolerance due to weak precision in ground truth

annotations.

28 http://music.cs.northwestern.edu/data/Bach10.html
29 http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection
30 http://www.music-ir.org/mirex/wiki/2013:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following)

http://music.cs.northwestern.edu/data/Bach10.html
http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection
http://www.music-ir.org/mirex/wiki/2013:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following)

179

 Ofn: Number of False Negatives (FN). This is the number of ground-truth

onsets that were not detected. In other words, it is the number of ground-truth

onsets for which no onset was detected within a time window ±50ms around

them.

 Ofp: Number of False Positives (FP). The number of detections that fall outside

all tolerance windows, namely the number of spurious detections.

MIREX additionally uses the measures of ‘doubled onsets’ (two detections for one

ground-truth onset) and merged onsets (a single detection for two ground-truth onsets).

Doubled onsets are a subset of the FP onsets, and merged onsets a subset of FN onsets.

These measures were not used in the present evaluation because all algorithms impose a

minimum Inter-Onset-Interval criterion of permitting detections only if they are

separated by a predefined threshold value (which was 50ms or higher), therefore

execution of the algorithms did not yield any doubled or merged detections.

The above numbers are used to calculate the F-measure (F), which is a common metric

of algorithm performance in information retrieval and pattern recognition tasks. The F-

measure is computed here as the harmonic mean of Precision (P) and Recall (R)

measures:

 , where

 and

 (11.1)

In the case of score following, two additional metrics have been computed to allow

comparing with the annual reporting of MIREX results in the task of score following.

These are the piecewise precision rate, which is the percentage of ground truth onsets

minus the number of missed onsets of each piece, averaged for all pieces in the dataset,

as well as the overall precision rate, which is the percentage of the total number of

ground truth notes in the dataset minus the total number of missed notes during the

evaluation.

The following values were also computed to provide metrics related to the time

precision of correct onset detections:

 Avg. Abs. Offset: The average of the absolute value of the time difference

between a correctly detected onset and the corresponding ground truth onset.

This is always a value below 50ms. The average is calculated for all correct

detections within a specific audio file.

 Mean Offset: The mean value of the time difference between a correct detection

and the corresponding ground truth onset. This quantity can have negative

values hence indicating detected onsets may precede the corresponding ground-

truth onsets. The mean is calculated for the total of correct detections within a

certain audio file.

 Std Offset: The standard deviation of the timing offset. It gives an idea for the

variability of offset values. Like the mean value the standard deviation is

computed for the total of correct detections within a piece of music.

180

Finally, for the purposes of measuring algorithm speed and related complexity three

measures have been recorded. The first one provides a metric for the speed of the offline

audio segmentation process, the second provides a metric for the speed of real-time

audio to score alignment (also used by MIREX score following evaluations), while the

third one provides a metric for the speed of real-time audio analysis and segmental re-

synthesis in the current system:

 Time Elapsed: This provides a speed measurement of the task of offline audio

segmentation, which comprises both onset detection and saving the segments in

different audio files on disk space. Hence, more notes in a music piece are

generally expected to yield higher values of this quantity.

 Avg. Latency 1: The latency of the score follower, i.e. difference between

detection time and the time when the system captures an audio block. This

measurement is recorded at onset detections and averaged for all detected onsets

within the audio file.

 Avg. Latency 2: This is the time elapsed between the arrival of a new audio

block and the rendering of a transformed audio segment recorded at every onset

detection and averaged for all detected onsets. In other words this refers to the

total latency that may be decomposed to latency for the detection of the new

onset (i.e. Avg. Latency 1) and the latency introduced by segmental re-synthesis

during the live performance. This measure is intended for comparison with the

Ensemble Performance Threshold (see section 2.4), as it incorporates all

processing latencies apart from network transmission. The latency of re-

synthesis alone is thus equal to the difference Avg_Latency_2 – Avg_Latency_1

11.2.3 Experimental setup

All of the experiments were performed on the same computer, a Lenovo Thinkpad with

an Intel Core Duo 2GHz processor, 2GB RAM and a CentOS5 Linux distribution.

Three processes were executed to assess the performance of the algorithms under

evaluation:

 OAS: Offline Audio Segmentation, i.e. by issuing the following command line

process:

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp

 RTAS-INIT: Real-time Audio to Score Alignment based on an HMM, which is

initialised according to annotations based on the note onsets detected during

offline audio segmentation and a number of heuristics (see section 8.4.1). The

evaluation of this process involved issuing the following commands:

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp

o boogienet –p pma –a FLUTE1.wav –s FLUTE1.mid –m

FLUTE1.model

181

o boogienet –p rtas –m FLUTE1.model –d /tmp –t –n

FLUTE1.wav.desc

 RTAS-TRAINED: Real-time Audio to Score Alignment based on a

performance model initialised as previously and subsequently trained to obtain

more accurate estimations of HMM probabilities. The evaluation of this process

involved issuing the following commands:

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp

o boogienet –p pma –a FLUTE1.wav –s FLUTE1.mid –m

FLUTE1.model

o boogienet –p tpm –m FLUTE1.model –a FLUTE1.wav

o boogienet –p rtas –m FLUTE1.model –d /tmp –t –n

FLUTE1.wav.desc

In the above, the command line process invocation is shown for an example audio/MIDI

file pair ‘FLUTE1.wav’ and ‘FLUTE1.mid’. Real-time audio capturing and playback

was appropriately routed to the BoogieNet application using the Jack Audio Connection

Kit, as explained in section 10.2.5. This process does not involve any network

transmissions. The –n flag for the processes RTAS-INIT and RTAS-TRAINED

indicates that segment transformations were activated during segmental re-synthesis.

Each of these processes was setup to print on standard output the location of the

detected onsets as well as the speed of the algorithms (i.e. ‘Time Elapsed’ for the OAS

process and ‘Latency 1’, ‘Latency 2’ for every onset detected by the processes RTAS-

INIT and RTAS-TRAINED). Subsequently, to the execution of these programs a utility

program (implemented for this purpose) was executed to automatically compute the

remaining evaluation metrics (e.g. correct detections, false positives, F-Measure,

averages of timing offsets etc.).

11.2.4 Offline Audio Segmentation (OAS)

The detailed (i.e. piecewise) results of the offline audio segmentation process are shown

on Table 13-1 of the Appendix. A summary of these results is provided on Table 11-2,

which shows the most important measures estimated for all pieces within an instrument

class. The column %TP refers to the percentage of true positives, while %FP refers to

the percentage of false positives summed for the total of number of onsets appearing in

all pieces of music within the instrument class. The column ‘Avg. F’ refers to the value

of the F-measure per piece, which is averaged for all the pieces of an instrument class.

F-measure averages are also depicted in Figure 11-1. While %TP refers to the global

percentage of correct detections, ‘Avg. F’ refers to the average of correct detections as

estimated by equations (11.1). Also, the averages appearing at the bottom row of Table

11-2 are class averages, while the bottom row of Table 13-1 refers to piecewise

averages.

182

Evidently, as the offline audio segmentation algorithm is forced to identify as many

onsets as there are notes in the score, the numbers %TP and %FP are complementary.

Table 11-2: Class Averages of the evaluation metrics for the offline audio segmentation algorithm.

INSTR. CLASS %TP %FP Avg. F Mean
Offset
(ms)

Std Offset
(ms)

Time
Elapsed

(ms)

WOODWIND 92.80 7.20 0.96 7.50 12.47 852.83

BRASS 93.81 6.19 0.95 6.85 10.31 806.25

BOWED 83.33 16.67 0.83 7.06 13.07 942.51

PLUCKED 82.95 17.05 0.84 5.80 10.71 845.26

PERCUSSION 100.00 0.00 1.00 0.70 5.65 997.60

VOICE 90.80 9.20 0.88 12.75 11.29 959.27

AVERAGE 90.62 9.38 0.91 6.78 10.58 900.62

As expected and discussed in section 7.3.2 the best performance is reached for

percussive sounds, for which all onsets have been correctly identified. This is a common

observation when dealing with onset detection algorithms, which is confirmed by Bello

et al. (2005) as well as by the MIREX 2013 results on the ‘Audio Onset Detection

task’
31

. Nine out of the eleven algorithms evaluated in MIREX 2013 reach the peak of

their performance for the instrument classes named ‘Solo Drum’ and ‘Bars and Bells’.

Besides percussive sounds, the present evaluation provides satisfactory performance for

wind instruments and vocals, while strings (i.e. bowed and plucked) yield the worst

performance in the offline audio segmentation algorithm.

Figure 11-1: Average F-measure per instrument class for the offline audio segmentation algorithm.

In terms of overall performance, the global percentage of true positives of 90.62% is

comparable to the onset detection results shown in the evaluation of Bello et al. (2005).

Compared to MIREX 2013 global results of ‘Audio Onset Detection’, the average F-

31 http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/resultsperclass.html

http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/resultsperclass.html

183

measure is higher than all the eleven algorithms evaluated
32

. Clearly, this does not mean

that the algorithm evaluated here is superior to the algorithms evaluated by MIREX,

since a significant amount of performance degradation should be expected when

evaluating on larger datasets.

With respect to the timing precision of the detected onsets, Figure 11-2 shows the mean

and standard deviation values of the offset between the time of correct onset detections

and that of the corresponding ground truth annotation, computed for all pieces

belonging to an instrument class. It can be seen that the offset does not increase beyond

25ms compared to the ground truth onset, while again percussive instruments have the

smallest timing offset and the smallest variance. Evaluations of onset detection

algorithms reported elsewhere do not provide results for this measure, as due to weak

precision of the ground truth annotation process, timing offsets considered rather

unimportant. However, it is worth noticing here that bowed instruments exhibit the

largest variation while percussive instruments exhibit the shortest variation.

Figure 11-2: Mean and standard deviation values for the timing offset of the detected onsets for the of offline

audio segmentation algorithm.

Finally in terms of speed, the algorithm runs in less than two seconds in all the cases

evaluated, i.e. with the number of notes per piece ranging between 9 and 103. As

confirmed by Table 13-1, the number of notes to be found increases the execution time,

which can go up to 1.5sec for the 103 notes of the snare drum (SNARE1). This time

interval includes onset detections as well as reading the audio and MIDI file and writing

audio segments on disk space.

32 http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/summary.html

http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/summary.html

184

11.2.5 Real-time Audio to Score Alignment

Again, piecewise results for the task of real-time audio to score alignment are shown in

the Appendix. Specifically, Table 13-2 shows the results of this process when no

training is applied to the HMM (RTAS-INIT), while Table 13-3 shows the same results

obtained after applying the Baum-Welch algorithm for unsupervised training (RTAS-

TRAINED).

11.2.5.1 Results prior to HMM training (RTAS-INIT)

As previously, Table 11-3 shows the averages per instrument class with %TP and %FP

showing global piecewise percentage of true and false positives respectively and ‘Avg.

F’ depicting the average of the F-measure obtained by averaging the F-measures of the

pieces within the instrument class. The value of ‘Avg. F’ for the different instrument

classes is also shown on Figure 11-3. Unlike the offline audio segmentation process,

here the numbers %TP and %FP are not complementary, as the number of note onsets

that need to be detected is not taken into account by the HMM alignment algorithm.

Table 11-3: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm

without HMM training.

INSTR. CLASS %TP %FP Avg. F Mean
Offset
(ms)

Std
Offset
(ms)

Avg.
Latency1

(ms)

Avg.
Latency2

(ms)

WOODWIND 75.90 20.78 0.83 7.82 15.60 0.98 2.14

BRASS 83.19 17.70 0.84 -6.95 10.98 1.02 1.86

BOWED 49.07 31.48 0.54 5.21 14.65 0.98 1.99

PLUCKED 31.82 4.55 0.52 8.04 15.65 1.13 1.76

PERCUSSION 91.04 6.13 0.85 0.55 3.49 0.65 1.85

VOICE 60.92 40.23 0.58 9.35 17.58 0.97 3.23

AVERAGE 65.32 20.14 0.69 4.00 12.99 0.95 2.14

Both the ‘%TP’ and the ‘Avg. F’ measures show a performance degradation of more

than 20% compared to the offline onset detection algorithm. In this case, the

observation probabilities of the HMM used for the real-time alignment are estimated

assuming that a correct annotation may be obtained using the onsets detected during the

offline segmentation process and no iterative process is applied for re-estimating a more

precise alignment. Consequently, all errors introduced during onset detections are

further propagated to this process. Moreover, as the alignment algorithm attempts to

correlate features such as LogEnergy and its first order difference (see section 6.4.3) as

well as pitch features such as the PSM (see section 6.6.2) to the detected note

boundaries, the probability of correctly identifying an HMM state is further reduced.

185

Figure 11-3: Average F-measure per instrument class for real-time audio to score alignment algorithm without

HMM training.

Figure 11-4 shows the estimated mean and standard deviation values in the timing

precision (i.e. the timing offset between correct detections and the corresponding

ground truth annotations). In this case, the average of the mean value (4ms) is slightly

lower than in the previous process (6.78ms) and the standard deviation is higher.

However, differences are rather insignificant, especially if one considers the weak

precision of manual ground truth annotations. Again, percussive instruments are more

accurately detected both in terms of the number of correct detections as well as in terms

of their timing precision. Also the Brass instrument class has a negative mean offset,

which means that for this class the HMM detects onsets earlier than the ground truth

ones.

Figure 11-4: Mean and standard deviation values for the timing offset of the detected onsets during real-time

audio to score alignment without HMM training.

With respect to the measured latencies, ‘Avg. Latency1’ refers to the latency of the

score follower, also shown on Figure 11-5. It is the time elapsed between identifying an

186

HMM state from the time when the corresponding audio block becomes available,

measured whenever an onset is detected. This is the latency of the real-time

implementation of the Viterbi algorithm for HMM decoding measured only at the

location of note onsets and averaged for the total number of onsets within the piece

(Table 13-2) and again averaged for all pieces within an instrument class (Table 11-3).

As elaborated in section 8.3.4, the main optimizations to the Viterbi algorithm concern

eliminating the backtracking step of the algorithm, so as to provide a causal

implementation, as well as applying path pruning to constrain the alignment paths

within close neighbours of the previously identified state. Path pruning reduces the

algorithmic complexity of Viterbi alignments especially when the HMM uses a large

number of states. As shown on Table 11-3, this decoding latency is less than 1ms,

therefore having a rather insignificant contribution to the entire communication latency.

Hence, no further constraints are required for reducing the complexity of the real-time

Viterbi algorithm.

Figure 11-5: The sequence of processes that take place during real-time audio to score alignment. Latency1

refers to the latency of the score follower, while Latency2 refers to the entire communication latency excluding

network transmission.

The measurement ‘Avg. Latency2’ of Table 11-3 refers to the so called mouth-to-ear

latency, a common term in audio telecommunications. As shown on Figure 11-5, in the

present experiment ‘Avg. Latency2’ represents the time elapsed between capturing an

audio block and rendering another audio block which has been retrieved from the pool

of audio segments and transformed to accommodate the expected loudness and tempo

deviations, as estimated by the process of future event estimation (described in section

9.3.1). This measure is intended for comparison with the Ensemble Performance

Threshold (section 2.4), which imposes an upper limit of approximately 30ms in the

overall audio communication latency. This value includes latencies introduced during

network transmission. As shown on Table 11-3 or Table 13-2, ‘Avg. Latency2’ is

approximately 2-3 ms, hence leaving plenty of room for accommodating transmission

187

delays along the network path. A rough estimation of network delays is provided in

section 11.3.2 describing the network experiment.

Finally concerning precision rates, the algorithm results in a piecewise precision rate of

69.63% and an overall precision rate of 71.72%. This is reported in Table 13-2.

11.2.5.2 Results after HMM training (RTAS-TRAINED)

This section reflects on the same results as the previous section, for which however

Baum-Welch training has been applied to more precisely estimate HMM probabilities

prior to using them for real-time alignment. Table 11-4 shows the evaluation results per

instrument class, Figure 11-6 shows the average F-measure and Figure 11-7 shows

mean and standard deviation values for the temporal precision of correct detections.

When observing class averages, a 12.64% improvement is demonstrated in the value of

%TP compared to the same value without HMM training and 12.66% performance

degradation compared to the offline audio segmentation algorithm. This confirms the

fact that, correct model initialization is crucial for the performance of the HMM after

training when dealing with continuous system observations. This issue was elaborated

in section 8.3.3.2.

Table 11-4: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm after

HMM training.

INSTR. CLASS %TP %FP Avg. F Mean
Offset
(ms)

Std
Offset
(ms)

Avg.
Latency1

(ms)

Avg.
Latency2

(ms)

WOODWIND 84.76 11.91 0.90 8.28 14.12 0.98 2.82

BRASS 88.50 8.85 0.92 -5.69 11.74 1.01 1.85

BOWED 71.30 40.74 0.67 8.81 14.30 0.99 2.02

PLUCKED 64.77 22.73 0.69 6.65 15.86 1.30 2.01

PERCUSSION 82.55 10.38 0.85 0.14 3.90 0.64 4.36

VOICE 75.86 32.18 0.64 11.51 17.61 0.93 2.26

AVERAGE 77.96 21.13 0.78 4.95 12.92 0.98 2.55

When observing individual results, it can be seen that all instrument classes have an

improved performance to the same process without prior HMM training, apart from the

percussive instruments for which the value of %TP is reduced by 8.49% and the

Average F-measure remains constant at the value of 0.85. The difference of modelling

percussive instruments compared to modelling the remaining instrument classes is that

the percussive instruments that were used in this evaluation (i.e. kick drum, ride cymbal

and snare drum) are not associated with any pitch value and the sounds produced are not

periodic.

188

Figure 11-6: Average F-measure per instrument class for real-time audio to score alignment algorithm after

HMM training.

According to the General MIDI standard, non-chromatic percussion use MIDI Channel

10 and a different pitch value to define the instrument timbre to use when synthesizing

the output sound. The MIDI files used in this case had the note number of 36 for the

kick drum, 59 for the ride cymbal and 38 for the snare drum. Therefore, each piece

evaluated in the percussion class holds a single pitch value, which corresponds to the

instrument rather than the dominating pitch. As a result, the PSM feature and its first

order difference (section 6.6.2) used in the computation of emission probabilities, have

little or no correlation to the actual notes performed in the audio file, which explains the

poor performance of the model in percussive instruments both before as well as after

Baum-Welch training. Conversely, it may be assumed that, as the PSM features are

important for the performance of HMM alignments, the more the pitches used in a

certain piece of music the better the performance of the HMM.

Figure 11-7: Mean and standard deviation values for the timing offset of the detected onsets during real-time

audio to score alignment after HMM training.

189

Other than the improvement in the number of correct onset detections, there are no

significant differences in the temporal precision or in algorithmic latencies.

Finally concerning precision rates, the algorithm yields a piecewise precision rate of

79.14% and an overall precision rate of 80.60%. These values are reported in Table 13-

3. Compared to real-time audio to score alignment without training there is an

approximate improvement of 10% in both rates.

11.2.6 Comparison of Results

The previous sections provided evidence that the performance of the Offline Audio

Segmentation (OAS) process determines the quality of the Real-time Audio to Score

Alignments (RTAS). When the probabilities of the HMM were initialized based on the

onsets detected by the OAS process (RTAS-INIT), the performance of the real-time

HMM alignment was degraded compared to that of the OAS process by approximately

25% in terms of the %TP measure and by 22% in terms of the F-measure (which takes

into account both false positives and false negatives). By applying Baum-Welch

training, subsequently to model initialization and before the alignment (RTAS-

TRAINED), this performance was improved by 12.64% in terms of %TP and 11% in

the F-measure, compared to the alignment performance without training (RTAS-INIT).

Figure 11-8: Box plot depicting the F-measure performance of the three algorithms (OAS, RTAS-INIT and

RTAS-TRAIN) for the task of onset detection. Distributions concern the F-measure values for each music

piece of the evaluation dataset.

This is further verified by the box plot of Figure 11-8 showing the distribution of the

value of F-measure for all music pieces that have been evaluated. It can be seen that

more than 50% of the pieces had an F-measure of more than 0.95 in OAS, 0.74 in

190

RTAS-INIT and 0.86 in RTAS-TRAINED. There is a negative skew for all three

processes, which is evident by the fact that the lower whisker is longer than the higher,

hence indicating that out of the 23 pieces of the dataset, the majority had a performance

towards the maximum than towards the minimum of F-measure values.

To examine the statistical significance of the hypothesis that Baum-Welch training

improves the performance of the real-time audio to score alignment algorithm, a one-

tailed paired t-test has been performed. The N=23 pieces of music correspond to df=N-

1=22 degrees of freedom. By considering the differences di = FRTAS-TRAINED – FRTAS-INIT

in performance as depicted by the values of the F-measure for the total of the pieces

evaluated, the t-value may be computed as:

This yields a result of t(22)=2.4314. With a help of a t-table, it can seen that the critical

values for significance levels α=5% is 1.7172 and for α=1% is 2.5083. Consequently, it

can be concluded that the probability of Baum-Welch training improving the

performance of the real-time alignment algorithm in terms of the estimated F-measures

is above 95%.

Figure 11-9: Average of F-measure per instrument class for the task of onset detection for the three algorithms

(OAS, RTAS-INIT and RTAS-TRAIN) used in the evaluation.

This fact is also verified by the F-measures averages per instrument class. Figure 11-9

shows that for all instrument classes, apart the percussive instruments, the Average F-

measure increases with Baum-Welch training. However, the performance of the OAS

process is always superior to that of HMM alignment, which again confirms the fact

that correct model initialisation is crucial to the performance of the model both with and

without HMM training.

191

Regarding the instruments of the percussion class, the absence of performance

differences before and after training, which can also be seen in Table 13-2 and Table

13-3, is caused by the fact that there is only one pitch value per piece, which does not

even correspond to the dominating pitch of the notes. As discussed in the previous

section, sounds of percussive instruments do not correspond to periodic waveforms, and

therefore the use of PSM features in the computation of the emission probabilities is

misleading for the performance of the model both before and after Baum-Welch

training. An alternative model, relying solely on timbral features needs to be employed

for more accurate score following of non-chromatic percussion instruments.

11.2.7 On the performance of segmental re-synthesis

The research methodology employed for the development of the BoogieNet framework

comprises three computational processes: offline audio segmentation (described in

chapter 7 and evaluated in section 11.2.4), HMM score following (described in chapter

8 and evaluated in section 11.2.5) and segmental re-synthesis (described in chapter 9).

An evaluation of the algorithmic performance of segmental re-synthesis has not been

performed.

The segmental re-synthesis technique that was devised for the system under

investigation has been optimized for speed and algorithmic complexity, but the quality

of the synthesized audio is heavily dependent on the algorithmic performance of the

offline audio segmentation and the score following algorithms.

Duration transformations are applied pitch synchronously assuming that each audio

segment is highly periodic having the period specified in the performance description

file (section 10.3.2.3). As a result, if the offline segmentation process misses an onset

(i.e. false negative detection) then the segment being transformed will contain two

notes, which most likely will have different pitch. Applying duration transformations on

that segment will assume the pitch of the first note to be valid over two notes, hence

resulting in audible distortion during the second note owing to signal discontinuities.

Conversely, if the offline audio segmentation process yields a false positive (i.e. a

spurious detection), then the corresponding audio segment will contain part of that note

and the subsequent segment will contain the remaining part of that note and possibly the

next note. Time scaling the second segment will be performed using the pitch of the

second note for the entire duration of the segment, again resulting in audible signal

distortions.

If the offline segmentation process does not provide any wrong detections (i.e. missed

or spurious onsets), then errors in the score following process do not necessarily result

in audible distortion. For example, missing an onset of the live performance will result

in the previous note being rendered longer than needed, while detecting a false positive

on the live performance will result in the next note being rendered remotely while the

192

previous note still holds. Of course, this assumes that note durations are precisely

estimated.

As was described in section 9.3.1, the estimated note duration at the time of real-time

onset detections is not very precise and it is based on averaging tempo deviations for the

previous notes. This clearly does not reflect true tempo deviations and in the event of a

note of the live performance holding longer than estimated, silence will be appended to

the concatenated note segment. This introduces an additional disturbance in the case of

live performance.

Clearly, the segmental re-synthesis algorithm needs several improvements. Techniques

for instant tempo estimation need to be employed in order to more precisely estimate

the expected tempo deviations of the live performance compared to the pre-existing

recording. Moreover, the evaluation showed that the offline segmentation process needs

to be further improved for robustness, or a synthesis technique based on the phase

vocoder needs to be incorporated in order to eliminate the distortion caused by errors

during the offline audio segmentation algorithm.

11.3 Network experiment

The evaluation of algorithmic performance demonstrated that although the algorithms

implemented in this work do not yield sub-optimal performance to alternative

algorithms for the MIR tasks of onset detection and score following, they are inefficient

for unconditionally supporting the intended communication scheme during NMP. The

algorithms need further improvements in terms of correctly identifying note onsets both

in offline and in real-time contexts and in certain cases, for example the synthesis

algorithm, need to be re-designed in order to more effectively cope with variations in

musical performance. However, as the proposed communication scheme offers

significant benefits compared to conventional raw or encoded audio stream exchange,

this section presents a basic networked experiment that provides insight to the expected

network traffic in an ideal (with respect to algorithmic performance) scenario of

segmental machine listening and re-synthesis over the network.

The experiment involves two music performers, a flutist and a violinist, performing the

same piece of music over the Ethernet. The score of the music piece is depicted on

Figure 11-10. It can be seen that the performance of the flute is associated with 24

onsets, while the performance of the violin has 22 onsets (i.e. 23 notes including ties).

This piece was composed for the purposes of this experiment.

The “Real-time UDP Communication” functionality of the BoogieNet framework

(section 10.2.6) was used for the communication between performers. Network traffic

was captured using Wireshark
33

, which is a free, open source and cross platform

33 http://www.wireshark.org

http://www.wireshark.org/

193

application for analyzing network packets. Both performers were using an identical

computer device (i.e. a Lenovo ThinkPad with an Intel Core Duo 2GHz processor, 2GB

RAM and a CentOS5 Linux distribution). Audio capturing/rendering used the ALSA

Linux driver and the onboard soundcard. The flutist was using the computer with the IP

address 192.168.1.101 and the violinist was using the computer with an IP address

192.168.1.103.

Figure 11-10: The score of the music duet performed over the Ethernet.

At the location of the flutist, the following command was executed:

boogienet –p udp –i 192.168.1.103 –m flute.model –d /tmp –t –n

/tmp/violin.wav.desc

while at the location of the violinist the executed command was:

boogienet –p udp –i 192.168.1.101 –m violin.model –d /tmp –t –n

/tmp/flute.wav.desc

At each location, the model file of the local performer was provided to inform the

HMM used for decoding the local live performance, while the description file of the

remote performance was provided to allow estimating segment transformations when

re-synthesizing the performance of the remote peer. At both locations, the Jack Audio

Server daemon was running to provide audio routing from the microphone to the

BoogieNet application (i.e. the transmitter thread, transmitting onset notifications

concerning the local performance) and from the BoogieNet application (i.e. the receiver

thread, which was receiving onset notifications for the remote performance) to the

sound card and further to the speakers.

194

Figure 11-11: Wireshark screenshot showing UDP network traffic during the experiment. The top panel shows

list of the UDP packets that were exchanged between the two performers. The bottom panel shows the

structure of the 4
th

 Ethernet frame and the enclosed UDP packet.

Figure 11-11, shows UDP network traffic during the experiment as captured by

Wireshark. In total, 46 Ethernet frames were exchanged. 24 were in the direction of the

flutist to the violinist and 22 in the opposite direction. The full list of network packets is

shown on Table 13-4 of the Appendix.

The list of the exchanged Ethernet frames shown in the top-panel of Figure 11-11

displays the following information in the order from left to right: the frame index, the

number of seconds elapsed since the transmission of the first packet, the IP address and

network port from which the packet was transmitted and the IP address and the network

port where the packet was delivered. The remaining columns are the transport protocol,

the frame length in bytes and some general information about the frame.

The following subsections discuss the findings of this experiment with respect to the

observed network traffic and the QoS properties of bandwidth consumption, latency and

packet loss. An elaborate description of these properties has been provided in section

2.5.2.1.

11.3.1 Bandwidth consumption

As shown on Table 13-4, all Ethernet frames exchanged during the experiment had a

total length of 50 bytes. The content of these frames have been discussed in section

195

10.2.6. In every frame, 42 bytes were used as header information and 8 bytes were used

for payload (i.e. the actual data that needs to be transferred). Ethernet frames were

transmitted every-time an onset was detected.

Evidently, bandwidth consumption using the proposed communication scheme is highly

dependent on performance tempo. For example, at the performance tempo of 60bpm

and assuming there is one note at every beat, a different 50bytes Ethernet frame needs to

be transmitted per second from the network location of the music performer. This tempo

results in 400bps (bits per second) transmitted and received at each network end. Hence,

the expected bandwidth consumption would be 400bps in both directions, i.e. outbound

(in the transmission direction) and inbound (i.e. in the direction of receiving, towards

the computer). Obviously, this represents an approximate estimation, as the piece does

not always have a single note at every beat (e.g. assuming four semiquavers per beat

yields a bit rate of 1.6 kbps, which is four times higher) and tempo deviations due to

expressive performance will have an effect the actual bit rate. Moreover, errors in the

HMM score scrolling algorithm such as missed or erroneous onsets can significantly

influence the observed bandwidth consumption.

Table 11-5: Comparison table for bandwidth consumption.

 Outbound

(kbps)

Inbound

(kbps)

Expected at a performance tempo of 60bpm 0.4 0.4

Expected at a performance tempo of 200bpm 1.3 1.3

Actual measurement at flute location 0.607 0.581
Raw monophonic audio sampled at 44.1kHz and a sample

resolution of 16bit packaged in 512 samples

735 735

Equivalently, when playing at a fast tempo such as 200bpm, the expected bandwidth

can be approximated by 1.3kbps. With respect to the actual traffic measurements

recorded in the experiment, it can be seen from Table 13-4 that, at the location of the

flutist 24 messages having a length of 50bytes were transmitted to the violist in

15.821831sec and 22 messages were received in 15.146773sec. This results in an

outbound bandwidth of 607bps (roughly corresponding to a tempo of 90bpm) and an

inbound bandwidth 581bps for the flutist and vice versa for the violinist.

Table 11-5 depicts bandwidth consumption for outbound and inbound traffic in the

experiment. The benefit offered by the proposed communication scheme in terms of

bandwidth consumption becomes clear if these values are compared with the required

bit rate in the communication of raw audio streams. If the experiment was carried out

using the audio streams captured at each site (i.e. single channel audio, sampled at

44.1kHz and with a resolution of 16 bits per sample), then bandwidth consumption

would be 716kbps in both directions. This is calculated as follows: if each UDP packet

comprises 512 audio samples (which is the temporal resolution of the analysis/re-

synthesis algorithms in the proposed approach), then the size of each Ethernet frame

would be:

196

[512 x 2 (bytes per sample) + 42 (bytes header)] x 8 (bits per sample) = 8528 bits

Which would need to be sent every 512/44100 = 0.0116s for real-time communication.

This corresponds to a bit rate of approximately 735kbps, which is roughly 565 times

larger than the expected bandwidth consumption at the performance tempo of 200bpm!

11.3.2 Network latency and jitter

Network latency and jitter were discussed in section 2.5.2.1.2. As the network

experiment reported here was performed within a Local Area Network, the latencies

observed in Wireshark captures were generally comparable to those owing to

synchronisation inaccuracies between the clocks of the two computers. Hence, it is not

possible to report on latency values. Moreover, in LAN settings latencies are generally

negligible. However, to provide an indication for the expected network latency in the

communication of onset notifications within commonly available ADSL domestic or

small office network infrastructures, a number of ping requests were transmitted to

different geographical locations. Table 11-6 provides the RTT values derived from

pinging network locations accessible through the network used for the experiment. The

ping utility was executed with the following command line options:

ping <ip_address> -s 42 –c 100

The –s flag defines the size of the ICMP packets to use when pinging, excluding the

ICMP packet header that has a length of 8 bytes. The –c flag defines the number of

packets to send. Therefore the values reported in Table 11-6 have been estimated by

transmitting 100 packets, each having a total size of 50 bytes, which is the same as the

size of the UDP packets carrying onset notifications.

Table 11-6: RTT reported by pinging different network locations from the city Heraklion Greece.

Destination/RTT(ms) Min. Avg. Max. MDev.

192.168.1.101

Within LAN (WiFi)

(Heraklion, GR)

2.236 3.990 56.578 6.249

147.102.222.211

ftp.ntua.gr

(Athens, GR)

22.950 25.723 76.635 7.253

139.7.147.41

www.vodafone.de

(Frankfurt, DE)

104.242 109.760 196.368 13.633

The command was executed from the city of Heraklion in Crete, Greece. The actual

latency in the one way communication is the RTT divided by two. It can be seen that in

all three cases, there is a wide variation in the RTT times depicted by the mean

deviation as well as by the difference of the minimum from the maximum value. This

variation provides an indication for the expected network jitter.

ftp://ftp.ntua.gr/
http://www.vodafone.de/

197

The theoretical maxima in the communication of onset notifications as observed by

RTT mean times of Table 11-6 is 2 ms within LAN, 13 ms from Crete to Athens and

55ms from Crete to Frankfurt over a domestic ADSL connection. To these values the

algorithmic latency of approximately 3ms (see for example ‘Avg. Latency 2’ values of

Table 11-4) should be added to account for the complete communication latency among

performers. Clearly, these values are general observations that do not relate to the

proposed communication scheme. There is a single common property between

BoogieNet UDP communications and ping requests, namely the packet size.

Nevertheless, it can be concluded that although in terms of network and processing

latencies it is feasible to facilitate NMP using segmental analysis/re-synthesis over

commonly available xDSL lines and short geographical distances, cross-country

communications such as for example for the Crete-Frankfurt route require more reliable

network infrastructures offering QoS guarantees and stable network routes.

11.3.3 The effect of packet loss

No packet loss was observed in the network experiment and in general little or no

packet loss is observed in LAN communications. However in Wide Area Networks

packet loss is a frequent phenomenon. As was discussed in section 2.5.2.1.3, UDP does

not inherently provide any mechanism for recovering lost packets and that it is up to the

applications to handle errors caused by packet loss.

In this case, alternative error recovery methods need to be employed. Widely adopted

methods of this kind include error concealment (Tatlas et al. 2007) and Forward Error

Correction (FEC) (Xiao et al. 2011). Error concealment attempts to recover missing

signal portions by using signal processing techniques such as interpolation, pattern

repetition or silence substitution. Conversely, Forward Error Correction methods

transmit redundant information in addition to actual data packets and attempt to recover

losses by reading this redundant information. Information redundancy may be

systematic, if it is a verbatim copy of the original data, or non-systematic, if it represents

some code that can be facilitated to recover the original data.

In the proposed communication scheme the data exchanged through the network does

not directly translate to audio signals. Moreover, as the required bandwidth for

transmitting network notifications is very low (of the order of 1-2 kbps), each packet

may be transmitted twice, so as to entirely compensate for possible packet loss without

imposing additional processing latencies.

11.4 Consolidation of results

The evaluation of the BoogieNet prototype system comprises an evaluation of the

algorithmic performance and a rudimentary experiment over a computer network.

198

The evaluation of the algorithmic performance focused on monitoring onset detections

using the algorithms of offline audio segmentation and HMM score following as these

were described in the corresponding chapters and implemented in the final prototype

system. Standard MIREX evaluation measures were used to inform the performance of

these algorithms. As MIREX evaluation datasets are not publicly available due to

copyright restrictions, a small music dataset was assembled and manually annotated for

the purposes of this evaluation. This dataset is significantly smaller than MIREX

datasets and therefore it is not possible to perform meaningful comparisons between the

algorithms implemented in the BoogieNet prototype and those evaluated by MIREX.

Table 11-7: Summary of the dataset and the evaluation results for the task of onset detection for MIREX 2013

and for the present evaluation.

 MIREX 2013 BoogieNet

Task Audio Onset Detection OAS

Dataset

 Number of pieces 85 23

 Total Duration 14 min 9.62 min

 Number of notes NOT REPORTED 969

Results

Average for the 11 algorithms

-

 Average F-measure 0.74 0.93

 Average precision 0.79 0.93

 Average recall 0.76 0.93

Nevertheless, the results of the present evaluation provide some preliminary findings

concerning the algorithms under evaluation. Table 11-7 summarizes properties of the

music dataset and results of the offline segmentation process of the BoogieNet

prototype aligned with those of the MIREX 2013 contest for the task of Audio Onset

Detection. Table 11-8 shows a summary of data and results for the evaluation of the

Real-time Audio to Score Alignment task, performed by MIREX 2013 and the

BoogieNet HMM score following algorithm, after HMM training. Compared to MIREX

2013 evaluation results, the offline audio segmentation process of BoogieNet resulted in

higher values for the metrics Precision, Recall and F-measure, while for score following

roughly equivalent values of piecewise and overall precision rates have been observed.

It is emphasized that a fair amount of degradation should be expected when evaluating

on larger datasets, therefore the performance of the BoogieNet algorithms could be

lower than that of the algorithms evaluated in MIREX 2013 contests.

Concerning, the facilitation of these algorithms for the intended scenario on NMP, the

network experiment revealed the following aspects. Firstly, in terms of bandwidth a 50

bytes network frame is transmitted every time an onset is detected. This comprises 42

bytes header overhead and 8 bytes of actual data. Hence, at an extreme estimate of

having four semiquavers (sixteenth notes) per beat at the tempo of 200bpm the

bandwidth consumption would be 5.3kbps (four times the rate reported on Table 11-5).

199

This is 138 times less than the required bandwidth when transmitting raw audio streams

(as calculated for 512 sample buffers of 44.1kHz, 16 bit, monophonic audio).

Table 11-8: Summary of the evaluation dataset and the results for the task of real-time audio to score

alignment, performed by the MIREX 2013 contest and for the present evaluation.

 MIREX 2013 BoogieNet

Task

Real-time audio to score alignment RTAS-TRAINED

Dataset

 Number of pieces 46 23

 Total Duration NOT REPORTED 9.62 min

 Number of notes 11061 969

Results

average of the 2 algorithms

-

 Piecewise precision rate 76.90% 79.14%

 Overall precision rate 80.20% 80.60%

This type of communication is associated with a total algorithmic latency of 2-3ms as

shown on Table 11-4. Network latencies should be added to this value to account for the

total communication latency. In section 11.3.2, it was shown that a theoretical average

of 13ms one-way latency should be expected for intra-country communications using

commonly available xDSL infrastructures. Hence, the total communication latency of

15-20ms is generally below the Ensemble Performance Threshold of 30ms discussed in

section 2.4.

Finally, one of the main benefits offered by the proposed communication scheme for

NMP is the fact that due to the very low bit rates, it is possible to transmit each network

packet twice, thereby eliminating signal distortions owing to packet loss.

In comparison with contemporary compression codecs, the Opus royalty free codec

(Valin et al. 2013) provides a de facto standard for interactive audio applications over

the Internet. It is standardised by the Internet Engineering Task Force (IETF) as RFC

6716 (IETF 2012). It uses Skype’s SIL codec that is based on Linear Prediction (LP)

for speech audio and Xiph.org’s CELT codec which is based on a Modified Discrete

Cosine Transform (MDCT) to encode music. This codec is highly versatile and intended

for applications including VoIP as well as distributed music performances. It can

seamlessly scale from bit rates that are as low as 6kbps for narrowband mono speech to

510kbps for full-band stereo music, with algorithmic delays ranging from 5ms to

65.2ms (Gibson 2014). Clearly, the Opus codec will enable new applications and

services involving audio telecommunications.

The BoogieNet prototype offers lower bit rates and algorithmic latencies than that of the

Opus codec. In the absence of algorithmic errors in the audio analysis phase, BoogieNet

could offer a guaranteed audio quality (determined by the segments used for re-

synthesis) at a bit rate which is lower than that of Opus-encoded narrowband speech.

Unfortunately, the limited robustness of the implemented algorithms proved that the

200

intended scenario was over-optimistic. However, it is envisaged that this research work

suggests a new and previously undermined research direction that will be realized in

upcoming developments.

201

12 Conclusions

This chapter summarizes the work presented in this dissertation, outlines contributions

and discusses various innovative perspectives in networked music research emerging

from recent achievements in the domain of machine musicianship.

12.1 Summary and concluding remarks

This dissertation proposes a novel scheme for audio communication in synchronous

musical performances carried out over computer networks. The research approach uses

techniques inspired from computer accompaniment systems, in which a software agent

follows the performance of a human musician in real-time, by synchronizing a pre-

recorded musical accompaniment to the live performance. In networked settings, each

performer participating in the distributed session is represented by a software agent,

which adapts a pre-recorded solo performance of each musician to the live music

performed at the corresponding remote location. Hence, this research focuses on the

development of software agents supporting networked music performances by their

ability to autonomously listen to the performance of each musician, notify remaining

collaborators and perform the live music based on the received notifications.

This writing builds up from contemporary musicological perspectives enabled by the

proliferation of digital media and the wide availability of network communications in

Chapter 1, the ‘Introduction’. It is shown that technological achievements have severely

altered the way music is created, distributed and analysed with respect to overcoming

conventional limitations, as well as permitting new and previously unforeseen

possibilities for interacting with musical content. Concerning music analysis,

innovations have permitted analysing music on the sound level rather than conventional

score based analysis. Sound essentially captures all expressive aspects of music

performance including expressive deviations from a predefined musical score.

Computational sound analysis allows for unambiguously observing these deviations

both at the note level (e.g. note articulations, rhythmic deviations) as well as at higher-

levels including the development of strategies for shaping a musical phrase or an entire

movement during performance. Collectively, these observations allow investigating

traditional theories on perception and cognition of musical meaning. Based solely on

signal observations, machine learning processes allow modelling expressive

performance using mathematical models. Although such models do not directly

translate to the cognitive processes undertaken by humans, they manage to successfully

deliver musical semantics in response to sound stimuli. An interesting perspective in

this direction is to develop computer musicians capable of predicting or anticipating the

future evolution of a music performance, hence simulating anticipatory processes such

202

as those taking place in the collaboration among the members of a performance

ensemble. Computational models for musical anticipation can considerably alleviate

communication problems especially when music performers are physically separated.

Following, Chapter 2 entitled ‘Networked Music Performance’ provides an overview of

research and development efforts in this domain. The chapter initially provides a brief

historical overview of research initiatives and discusses that, although expert musicians

become sceptical about remote performance collaboration, experimentalists have always

been intrigued with the idea of musical interplay across distance. The chapter outlines

the main research challenges manifested in this research domain by distinguishing

between technical impediments and collaboration deficiencies. With respect to technical

impediments, the most important obstacle impeding wide availability of NMP is the

latency observed in the communication among musicians. It is discussed that the total

communication latency comprises local latencies at the location of the transmitter and

the receiver of digital media, as well as network latencies owing to volatile network

paths and the actual geographical distance separating musicians. A separate section is

devoted to studies attempting to measure latency tolerance in ensemble performance,

known as Ensemble Performance Threshold (EPT), hence implicitly delineating the

temporal limits of performers’ musical anticipation. These studies acknowledge that the

precise value of the EPT depends on characteristic properties of the music being

performed (e.g. tempo, instrumentation), however in most cases they agree that for

uninterrupted ensemble performance communication latencies should not exceed an

approximate value of 30ms. Following, the chapter outlines the fundamental

constituents of an NMP system in terms of software architectures and network

infrastructures. This description permits tracing potential causes of technical

impediments throughout the entire route of real-time audio communication. Finally in

terms of collaboration deficiencies, it is shown that developing intelligent user

interfaces for NMP, subsuming machine listening capabilities, can significantly improve

the experience of musicians and foster a plethora of novel perspectives in computer-

assisted musical collaboration.

Machine musicianship is discussed in Chapter 3. The chapter begins by defining the

terms machine listening and machine musicianship and further distinguishing between

computational approaches with the objective of understanding musical cognition in

humans and those aiming at extrapolating meaningful information from audio signals to

be further used in a wide range of practical software applications. Then, the overall

methodology followed by machine listening and auditory scene analysis systems is

described using examples on how they are realized in different disciplines concerning

speech, environmental sounds and music. The section that follows focuses on four

functionalities of machine musicianship, namely on automatic music transcription,

audio to score alignment, audio synchronisation and computer accompaniment. For

each of these functionalities, existing research initiatives and computational techniques

are discussed so as to provide a baseline for the possibilities available for

experimentation with the research approach under investigation. Finally, the chapter is

203

concluded by discussing that - at the time of this writing - there are very few research

initiatives attempting to exploit machine musicianship in the context of NMP.

An additional research domain considered relevant to the present work, is that of

Concatenative Sound Synthesis (CSS) and it is presented in Chapter 4. The objective of

CSS systems is to generate a waveform by concatenating segments of pre-recorded

sound material, given a target specification (most commonly provided as an audio

stream or a symbolic representation, e.g. a score), so that the resulting waveform will

optimally resemble the target, in some sense which depends on the target application.

Initially, the chapter presents the overall methodology employed by CSS systems and

the alternative computational techniques that have been facilitated in different

applications and reported in the relevant literature. As this type of sound synthesis

originates from speech synthesis systems, a brief overview of relevant speech synthesis

and coding techniques is additionally provided. Following, the chapter concentrates on

music synthesis and some of the most popular approaches are presented and contrasted

with the synthesis method to be implemented for the intended communication in NMP.

The chapter concludes by showing that none of the currently popular CSS approaches

attempts to satisfy all three challenges confronted by the system under investigation,

which are the requirement for high quality instrumental synthesis, the fact that the target

to be synthesis is provided as an audio signal (hence requiring prior analysis) and the

fact that analysis of target and re-synthesis needs to take place within strict time

constraints imposed by the EPT.

The remaining part of the dissertation provides details on the research and development

efforts carried out for the purposes of implementing the intended communication

scheme for distributed music collaborations.

Chapter 5 describes this research objective and presents the challenges to be confronted

including strict real-time requirements, constrained not only in terms of using causal

algorithmic processes, but also by restricting the total end-to-end communication delay

that needs to be kept below the EPT. Concerning benefits, it is deduced that if the

algorithms implementing the functionalities of ‘listening’ and ‘performing’ can become

sufficiently robust, this type of communication can provide superior sound quality

compared to alternative low bit-rate communication of music, such as MIDI.

Equivalently, assuming that the algorithmic complexity of the proposed scheme can be

effectively reduced to accommodate the requirement of the EPT, communication based

on note notifications can prove more efficient, in terms of network resource

consumption, than facilitating audio compression schemes. Following, a number of

assumptions/prerequisites are set on the usage scenario, so as to allow early

investigations carried out in the present dissertation to produce some useful research

results. These assumptions are mainly concerned with the fact that the signals to be

analysed are constrained to mono-timbral and monophonic music and that the

performance needs to be a precise interpretation of a pre-defined music score. The last

section presents the block diagram of the entire prototype system to be developed.

204

The next chapter is devoted to audio features. It is intended as a reference for the

chapters that follow and it provides definitions for a number of audio features that are

commonly used in audio segmentation and machine listening research. Besides

mathematical definitions, the chapter attempts to provide insight to the expected

temporal behaviour of the various features. This is achieved using diagrams depicting

the evolution of audio features for an example musical phrase. Possibly the most

significant contribution of this chapter is a discussion on the importance of the

parameterisation of the Fourier transform when computing spectral features intended for

real-time music analysis. Specifically, it is shown that as audio should be captured in

sufficiently small chunks to mitigate the effect of long buffering delays, zero-padding

may be preferred to highly overlapping analysis windows, as it increases the

contribution of each chunk to the overall spectral energy. Moreover, it is shown that a

rectangular windowing functions may be more appropriate to a bell-shaped window

when the emphasis is on early onset detection. Specifically, an onset occurring at the

location of a ‘window-hop’ may be dumped due to windowing functions that are

smoothly attenuating the amplitude near the boundaries of the analysis window, where

the hop actually occurs. It is therefore more likely that indications of sudden energy

bursts are detected earlier in the signal, when using a rectangular window.

Subsequently, chapter 7 is devoted to the offline audio segmentation process. This

process aims at automatically generating a pool of audio segments, each corresponding

to a different note of the solo recording of each musician participating in an NMP

session. During NMP, these segments are transformed in terms of duration and

amplitude and appropriately concatenated to re-synthesize the performance of each

musician at the location of remote collaborators. The chapter initially discusses the

acoustic characteristics of note onsets and how these diverge depending on the

instrument timbre as well as on expressive articulation. It is discussed that the relevant

literature distinguishes between two types of onsets, namely salient onsets associated

with strong transients corresponding to energy bursts in the high frequency spectrum

and subtle onsets that do not exhibit such abrupt behaviour and correspond to smooth

sound generation mechanisms or subtle pitch changes. Following the general

methodology of blind onset detection algorithms is presented in three steps (i.e. pre-

processing, reduction and peak-picking) along with representative examples of how

these steps have been implemented in previous research initiatives. Finally, the chapter

presents the offline audio segmentation algorithm that was devised and implemented in

the final software prototype. It is shown that this algorithm is informed by the number

of notes that need to be found (as provided by the corresponding score of the music

piece) and that subtle onsets are detected using instantaneous pitch detection by means

of a wavelet transform. In comparison with conventional onset detection algorithms,

these two aspects are intended to increase the robustness of onset detections for a wide

variety of instrument timbres and expressive articulations.

Chapter 8 is devoted to the methodology followed for the purposes of tracking the

performance of each musician in real-time. This represents the ‘listening’ component of

205

the system. As listening is achieved by means of HMM score following, the chapter

provides an elaborate discussion on the mathematical representation of these models. Of

particular importance is a section devoted to design considerations manifested when

developing HMMs for machine listening tasks. This includes a number of challenges I

was confronted with, during extensive experimentation with various model

representations. Among other things, the section discusses HMM topologies, and

problems related to numerical instability, increased memory requirements and the lack

of sufficient data to effectively train such models. This discussion is informed by

examples of how these problems have been approached in the relevant literature and the

workarounds I employed in my implementation, so as to increase the computational

performance of the real-time performance tracking component. Finally, implementation

specific details are recapitulated in the last section, which additionally presents the

block diagrams for the processes of HMM training and the real-time decoding.

Chapter 9 presents the methodology followed for re-synthesizing the live performance

of each musician by using the segments of a prior solo recording. This constitutes the

‘performing’ component of the system. The employed methodology is called segmental

re-synthesis, so as to avoid confusion with well-known concatenative sound synthesis

approaches. The chapter initially elaborates on relevant studies in expressive music

performance. It is argued that there are numerous possibilities in deviating from mere

score rendition, including the timing of different events, chord asynchronies, slight pitch

deviations, variations in dynamics, note articulations and so on. It is discussed that, in

line with Meyer’s (1956) notion of structural meaning, most of these studies emphasize

on the importance of musical structure driving performers’ intentions with respect to

musical expression. The most conscious and readily tractable expressive nuances are

concerned with loudness and tempo variations within a melodic or harmonic

progression. Consequently, these are the main properties addressed in expression-aware

audio systems. The chapter also discusses that applying audio transformations in

expressive musical collaboration, as for example in computer accompaniment systems,

necessitates the implementation of anticipatory processes predicting the transformations

that need to be applied prior to rendering, similarly to the musical anticipation occurring

between the members of a performance ensemble. Then, the chapter provides an

overview of the most widely used waveform time-scaling techniques, which are the

phase vocoder and the PSOLA transforms, and presents the approach implemented in

the context of this work, regarding the anticipation of expressive deviations, amplitude

and time-scaling transformations as well as techniques for eliminating signal

discontinuities at the junction point of consecutive audio segments.

The remaining two chapters are devoted to the implementation details and the

experimental evaluation of the software prototype that was implemented as a result of

this doctoral research.

Chapter 10 describes the implementation of this software framework. It is given the

name BoogieNet and it has been implemented in C++. BoogieNet is downloadable from

206

a personal webpage as open source software, packaged using a GNU/GPL license. The

chapter provides a user manual, for researchers wishing to experiment with this

framework and further describes its object-oriented design in terms of the implemented

classes and some associated text files that are generated by the software. Finally, the

chapter lists all third party libraries that have been used in the implementation of

BoogieNet.

Chapter 11 presents the evaluation of the BoogieNet software prototype. Specifically,

BoogieNet has been evaluated for its algorithmic performance in the machine listening

task, comprising the functionalities of offline audio segmentation and HMM score

following as well as for its efficiency in terms of network resource consumption, in

permitting music performers to communicate across distance. Algorithmic performance

has been evaluated on a small dataset of solo monophonic instrument performances

comprising 23 music pieces. In terms of actual performance measures it was shown that

BoogieNet yields a similar performance, to onset detection and score following

algorithms reported in the relevant literature. Specifically, it was shown that as the

results of the offline audio segmentation process are further used for initialising the

HMM model for each music piece, the performance of the score following algorithm is

determined by that of the offline segmentation. Errors of the offline segmentation

process are propagated to the score following process, yielding an approximate 25%

degradation in the number of correct detections. Although the score following algorithm

has a performance that is suboptimal to that of audio segmentation, it was found that

training the model prior to real-time decoding improves the performance of real-time

decoding by an approximate factor of 12%. To statistically confirm this fact, a

significance test revealed a 95% significance of the hypothesis that the implementation

of the Baum-Welch algorithm for training the HMM, improves the performance of

score following compared to the performance achieved prior to Baum-Welch training.

With respect to evaluating different instrument timbres, it was shown that the offline

audio segmentation algorithm yields superior performance for percussive instruments

and reaches the minimum of its performance for bowed string instruments. This does

not hold for the score following process which is heavily dependent on pitch

information. Non-chromatic percussive instruments produce highly in-harmonic sounds

and therefore the observation probabilities of the HMM should not rely on pitch

information. Finally, the algorithm for segmental re-synthesis was not evaluated for

algorithmic performance, however it was discussed that the main shortcoming of its

current implementation is the fact that time-scaling transformations assume that the

offline segmentation process is fully accurate. Errors introduced during offline audio

segmentation will result in distortions on the synthesised signal. Thus, a more robust

approach needs to be incorporated both for the anticipation of expressive deviations in

music performance as well as for time scaling the pre-existing solo recording.

In addition to experiments evaluating the algorithmic performance of BoogieNet, a

network experiment was conducted to provide some insight the expected network

207

traffic, while disregarding errors in algorithmic performance. It was elucidated that the

proposed communication scheme has a variable bit rate, which depends on the rate of

detected onsets. The implemented UDP communication mechanism results in a separate

network packet of 50 bytes transmitted at every onset detection. It is discussed that the

actual bit-rate may be computed based on the instant tempo and the score structure, as a

function of the number of the score events per second. It is for example estimated that

having four semiquavers per beat at a tempo of 200bpm will result in an expected bit

rate of 5.3kbps. In comparison, transmitting monophonic audio of CD quality requires

730kbps. As for audio compression, the Opus codec, which is the present state of the art

in low-latency and low-bit rate communication, requires a minimum bit rate of 6kbps

for speech quality audio. Hence, in terms of bandwidth consumption the proposed

scheme is superior to alternative state of the art schemes in audio communication.

However, the benefits offered by the BoogieNet approach are not really on bandwidth

consumption, but rather on extremely low algorithmic complexity, resulting in

processing latencies of up to 3ms and the fact that, as the communication bit rate is very

low, it is possible to transmit multiple replicas of each notification, so as to entirely

alleviate from the effects of network packet loss. Latencies owing to network

transmission are not directly addressed by the present work, as the proposed

optimisations are not related to network routes or communication protocols. However,

low algorithmic delays in the lifecycle of an audio chuck, allow for accommodating

higher delays during transmission. Respecting the value of the EPT, this results in a

range of allowable transmission delays up to approximately 27ms. Using ping requests

that provide a theoretical maximum on transmission delays, it was found that this is in

the range of expected delays when using xDSL connections and geographical distances

that are roughly within the same country. However, in cross-country communications,

as for example between Greece and Germany, it is necessary to also apply optimisations

on the network paths. Nevertheless, allowing intra-country communications using

commonly available xDSL lines and complete elimination of the effects of network

packet loss, offers a significant advantage in the communication of music collaborators.

12.2 Contributions

The main contribution of this work is the investigation of a novel paradigm for musical

collaboration across computer networks and it is encapsulated in the implementation of

the BoogieNet software prototype. This prototype has been made available as open

source software, hoping that researchers and practitioners will be keen to experiment

with the proposed idea and further contribute to the realisation of this type of artificially

intelligent musical communications. To increase visibility, this work has been presented

and published in the proceedings of two international conferences (Alexandraki and

Bader 2014; Alexandraki and Bader 2013).

The following list recapitulates some contributions and findings of this work:

208

 An elaborate discussion on the importance of the parameterisation of the Fourier

transform when it is used for extrapolating musical information in real-time

context, as described in section 6.3.

 An offline onset detection algorithm, presented in section 7.4.1, which takes into

account both salient onsets, associated with strong initial transients, as well as

subtle pitch changes.

 An elaborate discussion on design issues to consider when implementing HMMs

for music performance following, in section 8.3.

 An implementation of an HMM score following algorithm for monophonic

instruments, presented in section 8.4

 A new method for lightweight low-distortion time scaling of monophonic music,

informed by the timing of note onsets and their pitch frequencies, presented in

section 9.3.2

Although, offering robust and unconstraint communication in music performance using

the proposed scheme is still a long way off, this dissertation is a first step towards this

important long-term goal. Throughout various investigations it was found out that

realizing the intended scenario was highly optimistic in terms of the expected

algorithmic performance of the audio analysis algorithms. It was shown, that like the

main bulk of Music Information Retrieval research initiatives, the algorithms

implemented in BoogieNet cannot fully cope with the abundance of timbral and

temporal complexities introduced in the music performance of acoustic instruments and

human musicians. Although the implemented algorithms achieve to successfully

recognize the majority of musical events, they are not meant to be 100% robust.

This is probably the most outstanding challenge encountered when aiming to derive

perceptually meaningful information using mathematical models and computational

prototyping. No such algorithm can fully model the complexities of the human brain.

Therefore, when aiming to develop applications that require high accuracy, emphasis

should be given to copying with inaccuracies. This can be done either by integrating

human knowledge in the implementation of these models, for example heuristics rules,

or by implementing algorithms that are able detect their failures and re-adjust their

parameters during functional operation, i.e. without failing to carry on .

12.3 Implications, shortcomings and future perspectives

The motivation of the work presented in this dissertation lies in the development of a

system which will be able to progressively learn and model the individualities of each

performer, with respect to music expression. The original idea was to implement an

artificial ‘clone’ of each musician, capable of developing musical skills and increasingly

improving its resemblance to the human performer though continuous use. In such an

ideal scenario, musicians would be able to travel with their clones and use them to

collaborate with their peers from different locations across the globe.

209

This vision raised a number of questions, clearly not possible to address within the time

limits of a doctoral dissertation. For example, is it possible to formulate general rules of

how performers develop strategies to shape their personal interpretation of any given

music work? What are the distinguishing characteristics of each individual performance

of the same music work when it is performed by the same artist? In other words, what

are the parameters that are susceptible to change from one performance to another?

How does collaboration between the members of a performance ensemble reshape one’s

own intentions with respect to musical expression? As already elaborated in various

places within this dissertation, there is an abundance of possibilities in deviating from

faithful score rendition. Is it possible to define subsets of such deviations that are more

commonly adopted by certain artists? If so, how could these personal deviations relate

to the actual structure residing in a music piece?

It is well known that expressive performance is an extremely complex cognitive and

artistic phenomenon, not possible to explain using general rules. In this regard, two

research tendencies are being pursuit: the one aiming at understanding the specificities

of this complex phenomenon and that aiming at developing expression-aware audio

systems. It may be argued that artificial intelligence and inductive machine learning

applied on large music corpora can provide successful developments of expression-

aware audio systems, without requiring full comprehension of the underlying

mechanisms of music perception. Nevertheless, and almost by definition, the maximum

performance that can be achieved by machine learning models will always be

suboptimal to our perception of music. A plausible question in this direction relates to

whether inaccuracies of such models lead to systems failing to deliver their intended

functionality.

The perspective investigated in this dissertation falls in this category of highly

challenging applications, with respect to the required accuracy of the algorithms of

machine listening and expression-aware audio rendering. This is probably the reason

why the proposed perspective has not been previously investigated and the reason why

the most popular applications of inductive machine learning in music are concerned

with either music similarity and recommendation or with general purpose beat tracking,

chord recognition, music transcription etc., thereby presenting solutions that are less

vulnerable to algorithmic failures. It is likely that certain applications, such as the one

investigated here, require a better understanding of human psychology and cognition in

order to cope with the inaccuracies of mathematical models and recover from

algorithmic failures. Yet, the performance model generated for each musician by the

system implemented here may be regarded as a ‘fingerprint’, which is unique to each

particular performer and therefore encapsulates all distinctive aspects of his/her own

understanding to music expression.

Ultimately, there are a number of shortcomings in the present work, to be addressed in

ongoing and future research efforts. These shortcomings have been discussed in

210

different places within the document and they are summarised here, along with some

ideas on how they can be addressed in future developments.

The most important limitations of the current approach are outlined in the pre-requisites

that were set forth during the initial phases of research investigations (section 5.3). For

instance, one straightforward extension of the investigated algorithms is to

accommodate polyphonic, in addition to monophonic, musical instruments. At present,

there are numerous research works addressing polyphonic music alignment (e.g. Hu,

Dannenber and Tzanetakis 2003; Soulez, Rodet and Schwarz 2003; Niedermayer 2009),

with a few of them presenting online and real-time approaches (e.g. Otsuka et al. 2011,

Duan and Pardo 2011a; Montecchio and Cont 2011a; Cont 2010). However, these

works do not clearly address real-time constraints in terms of the time taken by the

system to respond to an alignment decision.

Notably, recent approaches to score scrolling and real-time audio synchronisation

increasingly suggest Particle Filter based models instead of conventional DTW or

HMM approaches. Particle Filters approaches were briefly discussed in section 3.2.2

and offer several advantages over conventional models, including the fact that they are

capable of modelling both audio-to-audio as well as audio-to-score alignments, they are

highly efficient in real-time operation, they are robust to performance discrepancies

both at the note level as well as the structural level (e.g. omitted repetitions) (Xiong and

Izmirli 2012), and also the fact that they do not require prior training.

In fact, an alternative approach to the one investigated in this dissertation would be to

implement a Particle Filter solution to directly align the live recording of each

performer to the pre-existing solo recording, thus alleviating from the requirement of

obtaining a score representation of the piece to be performed. As there is evidence that

Particle Filters can cope with performance deviations, including performance errors,

such an approach would alleviate from an additional deficiency of the current

implementation, which is concerned with the fact that performers are assumed to

precisely interpret the score without any errors. Clearly, this is a rather ideal situation

that rarely ever occurs. The employed algorithms need to take into account performance

errors as well as the fact that, in cases where collaboration occurs for the purposes of a

music rehearsal, a music lesson or an improvisation session, musicians will occasionally

stop before the end or repeatedly perform certain phrases or sections within a music

piece.

Finally with respect to real-time re-synthesis, it could have been more appropriate to

time stretch or otherwise transform the original solo recording without prior

segmentation and segment concatenation, in a similar approach to the one employed for

example by Raphael (2003). In this case, phase vocoder time-scaling techniques offer a

widely adopted solution. However, the reason for choosing prior segmentation and

segment concatenation in the present investigations originates from the initial idea of

ultimately allowing a performer to perform arbitrary music pieces and facilitating a data

corpus to re-synthesize one’s expressive performance from previously recorded phrases

211

or note articulations of that same performer and do so in real-time. Time-stretching a

pre-existing recording would preclude the possibility of employing the proposed

communication scheme for improvisational music. In contrast, when concatenating

small segments of audio, any audio stream can be potentially rendered by means of

concatenative sound synthesis. Hence, in terms of segmental re-synthesis, future

research efforts are oriented towards generating a larger and appropriately annotated

audio corpus for each musician and implementing algorithms for real-time unit

selection. This also gives greater flexibility to the types of interpreted nuances that may

be accommodated by the proposed approach.

Clearly, there are endless possibilities in experimenting with the idea of communicating

performance intentions, to be rendered at remote locations. These perspectives demand

further research on how to encode or represent such intentions and how to process

existing signals to more appropriately reflect these intentions. This could go up to

modelling the cognitive skills employed when developing music improvisation

strategies (William and Wallace 2004; Pressing 1987), human-computer music

improvisation (Young 2010; Walker 1997) or even computer musicians autonomously

collaborating from distance with or without human supervision controlling the evolving

musical structures.

212

13 Appendix: Numerical data obtained in the

evaluation experiments

This appendix provides details on the numerical data obtained throughout the evaluation

experiments of the BoogieNet prototype. This data is maintained in the dissertation so

as to provide a more elaborate account on the acquisition of the aggregated results

presented and discussed in Chapter 11, as well as for possible use in future

investigations.

Specifically, Table 13-1 presents the evaluation measures obtained by applying the

offline audio segmentation algorithm to the music dataset that was used in the

evaluation. The detailed explanation of the facilitated measures is provided in section

11.2.2. The table lists the number of correct onset detections, false positive and false

negative detections, as well as timing precision and algorithmic complexity, in terms of

the time required to segment the audio recording. These results are summed or averaged

(depending on the measure depicted on each column) for the audio files belonging to

each instrument class and also summed/averaged for all the pieces in the dataset.

Table 13-2 and Table 13-3 present the results of the HMM score following algorithm

before and after Baum Welch training, respectively. In this case, the last two rows of the

‘Precision Rate’ column depict piecewise precision rate and overall precision rate for

the two algorithms.

Finally, Table 13-4 tabulates the UDP traffic observed during the network experiment

described in section 11.3. This data has been captured using Wireshark, an open source

network protocol analyser.

The experiments were performed using two identical Lenovo Thinkpad laptop

computers having an Intel Core Duo 2GHz processor, 2GB RAM and a CentOS5 Linux

distribution.

213

Table 13-1: Piecewise, instrument-class and global evaluation results for the offline audio segmentation algorithm.

FILE Ogt Ocd Ofn Ofp Avg. Abs.
Offset (ms)

Mean
Offset
(ms)

Std
Offset
(ms)

P R F Time
Elapsed

(ms)

WOODWIND FLUTE1 24 24 0 0 14.51 0.97 18.02 1.00 1.00 1.00 657.00

FLUTE2 26 26 0 0 11.12 4.46 16.38 1.00 1.00 1.00 486.12

TENORSAX1 9 9 0 0 13.93 5.80 15.87 1.00 1.00 1.00 400.23
BARITONESAX1 35 34 1 1 5.02 0.68 8.25 0.97 0.97 0.97 662.72

BASOON1 65 62 3 3 13.68 13.68 6.95 0.95 0.95 0.95 599.09

BASOON2 36 34 2 2 6.43 5.06 10.97 0.94 0.94 0.94 954.25

CLARINET2 94 77 17 17 10.99 8.28 13.58 0.82 0.82 0.82 1382.18

CLARINET3 34 33 1 1 15.90 13.92 14.62 0.97 0.97 0.97 1231.20

SAX2 38 36 2 2 14.67 14.67 7.57 0.95 0.95 0.95 1002.70

TOTAL /AVG 361 335 26 26 11.80 7.50 12.47 0.96 0.96 0.96 852.83

BRASS TRUMPET1 24 24 0 0 7.07 0.75 10.49 1.00 1.00 1.00 856.45
TRUMPET2 24 24 0 0 12.78 11.93 8.30 1.00 1.00 1.00 756.45

HORN1 42 36 6 6 10.57 6.44 14.13 0.86 0.86 0.86 958.63

TROMBONE1 23 22 1 1 8.59 8.28 8.32 0.96 0.96 0.96 653.48

TOTAL /AVG 113 106 7 7 9.75 6.85 10.31 0.95 0.95 0.95 806.25

BOWED VIOLIN4 36 34 2 2 7.08 6.32 10.78 0.94 0.94 0.94 765.69

VIOLA1 32 24 8 8 9.53 6.22 14.00 0.75 0.75 0.75 856.47

VIOLIN7 40 32 8 8 11.78 8.63 14.43 0.80 0.80 0.80 1205.38
TOTAL /AVG 108 90 18 18 9.46 7.06 13.07 0.83 0.83 0.83 942.51

PLUCKED GUITAR1 25 22 3 3 11.37 10.35 9.69 0.88 0.88 0.88 845.26

GUITAR2 63 51 12 12 4.40 1.24 11.73 0.81 0.81 0.81 845.26

TOTAL /AVG 88 73 15 15 7.88 5.80 10.71 0.84 0.84 0.84 845.26

PERCUSSION KICK1 25 25 0 0 4.75 -4.63 3.14 1.00 1.00 1.00 756.40

SNARE1 103 103 0 0 7.93 7.93 8.03 1.00 1.00 1.00 1466.50

RIDE2 84 84 0 0 4.81 -1.19 5.79 1.00 1.00 1.00 769.89
TOTAL /AVG 212 212 0 0 5.83 0.70 5.65 1.00 1.00 1.00 997.60

VOICE VOICE1 25 20 5 5 13.94 13.94 10.66 0.80 0.80 0.80 764.45

VOICE2 62 59 3 3 11.55 11.55 11.91 0.95 0.95 0.95 1154.10

TOTAL /AVG 87 79 8 8 12.75 12.75 11.29 0.88 0.88 0.88 959.27

GLOBAL PIECEWISE TOTAL /AVG 969 895 74 74 10.10 6.75 11.03 0.93 0.93 0.93 883.91

214

Table 13-2: Piecewise, instrument-class and global evaluation results for the real-time audio to score alignment algorithm without HMM training (RTAS-INIT).

FILE Ogt Ocd Ofn Ofp Avg. Abs.
Offset (ms)

Mean
Offset (ms)

Std
Offset
(ms)

P R F Precision
Rate

Avg.
Latency1

(ms)

Avg.
Latency2

(ms)

WOODWIND FLUTE1 24 24 0 0 17.90 -7.26 22.44 1.00 1.00 1.00 100.00% 0.62 1.38

FLUTE2 26 22 4 2 12.71 0.22 19.85 0.92 0.85 0.88 84.62% 1.18 2.86

TENORSAX1 9 8 1 1 11.07 8.71 10.45 0.89 0.89 0.89 88.89% 0.79 2.54
BARITONESAX1 35 29 6 1 10.87 6.83 13.49 0.97 0.83 0.89 82.86% 0.94 1.97

BASOON1 65 55 10 8 19.15 16.07 13.74 0.87 0.85 0.86 84.62% 1.12 1.80

BASOON2 36 25 11 19 9.73 6.24 14.40 0.57 0.69 0.63 69.44% 0.90 1.41

CLARINET2 94 46 48 35 16.79 10.57 17.29 0.57 0.49 0.53 48.94% 1.40 2.49

CLARINET3 34 30 4 1 16.16 13.26 14.25 0.97 0.88 0.92 88.24% 0.89 2.56

SAX2 38 35 3 8 19.73 15.75 14.47 0.81 0.92 0.86 92.11% 0.99 2.22

TOTAL /AVG 361 274 87 75 14.90 7.82 15.60 0.84 0.82 0.83 82.19% 0.98 2.14

BRASS TRUMPET1 24 24 0 0 23.24 -22.47 10.71 1.00 1.00 1.00 100.00% 1.32 3.00
TRUMPET2 24 22 2 2 11.66 11.29 7.30 0.92 0.92 0.92 91.67% 0.86 1.61

HORN1 42 31 11 10 20.27 -19.04 12.87 0.76 0.74 0.75 73.81% 1.07 1.52

TROMBONE1 23 17 6 8 8.55 2.40 13.05 0.68 0.74 0.71 73.91% 0.85 1.29

TOTAL /AVG 113 94 19 20 15.93 -6.95 10.98 0.84 0.85 0.84 84.85% 1.02 1.86

BOWED VIOLIN4 36 22 14 8 7.37 5.33 10.92 0.73 0.61 0.67 61.11% 1.01 2.14

VIOLA1 32 11 21 6 16.05 -0.61 20.95 0.65 0.34 0.45 34.38% 0.95 1.35

VIOLIN7 40 20 20 20 12.66 10.92 12.09 0.50 0.50 0.50 50.00% 0.97 2.48
TOTAL /AVG 108 53 55 34 12.03 5.21 14.65 0.63 0.48 0.54 48.50% 0.98 1.99

PLUCKED GUITAR1 25 16 9 4 20.19 15.12 18.36 0.80 0.64 0.71 64.00% 1.04 1.46

GUITAR2 63 12 51 0 10.64 0.97 12.94 1.00 0.19 0.32 19.05% 1.22 2.06

TOTAL /AVG 88 28 60 4 15.42 8.04 15.65 0.90 0.42 0.52 41.52% 1.13 1.76

PERCUSSION KICK1 25 13 12 2 4.59 -4.35 3.32 0.87 0.52 0.65 52.00% 0.57 2.06

SNARE1 103 99 4 8 6.19 6.13 4.92 0.93 0.96 0.94 96.12% 0.69 2.03

RIDE2 84 81 3 3 0.43 -0.14 2.23 0.96 0.96 0.96 96.43% 0.68 1.46
TOTAL /AVG 212 193 19 13 3.74 0.55 3.49 0.92 0.82 0.85 81.52% 0.65 1.85

VOICE VOICE1 25 14 11 16 22.53 14.65 21.57 0.47 0.56 0.51 56.00% 1.01 4.27

VOICE2 62 39 23 19 9.99 4.06 13.59 0.67 0.63 0.65 62.90% 0.92 2.19

TOTAL /AVG 87 53 34 35 16.26 9.35 17.58 0.57 0.59 0.58 59.45% 0.97 3.23

GLOBAL PIECEWISE TOTAL /AVG 969 695 274 181 12.85 3.94 12.72 0.77 0.70 0.72 69.63% 0.92 2.01

OVERALL PRECISION RATE 71.72%

215

Table 13-3: Piecewise, instrument-class and global evaluation results for the real-time audio to score alignment algorithm after HMM training (RTAS-TRAINED).

FILE Ogt Ocd Ofn Ofp Avg. Abs.
Offset (ms)

Mean
Offset (ms)

Std
Offset
(ms)

P R F Precisio
n Rate

Avg.
Latency
1 (ms)

Avg.
Latency2

(ms)

WOODWIND FLUTE1 24 23 1 1 12.62 -0.50 17.28 0.96 0.96 0.96 95.83% 0.62 1.38

FLUTE2 26 22 4 2 11.83 1.81 18.18 0.92 0.85 0.88 84.62% 1.21 2.92

TENORSAX1 9 8 1 1 10.16 10.16 13.10 0.89 0.89 0.89 88.89% 0.84 2.66
BARITONESAX1 35 32 3 3 8.12 0.81 12.85 0.91 0.91 0.91 91.43% 0.91 1.95

BASOON1 65 53 12 7 18.36 15.30 13.29 0.88 0.82 0.85 81.54% 1.09 1.82

BASOON2 36 36 0 3 5.60 4.31 8.72 0.92 1.00 0.96 100.00% 0.91 1.42

CLARINET2 94 64 30 23 17.45 13.77 16.95 0.74 0.68 0.71 68.09% 1.36 8.25

CLARINET3 34 32 2 1 14.26 12.27 11.81 0.97 0.94 0.96 94.12% 0.92 2.54

SAX2 38 36 2 2 20.47 16.60 14.88 0.95 0.95 0.95 94.74% 0.99 2.39

TOTAL /AVG 361 306 55 43 13.21 8.28 14.12 0.90 0.89 0.90 88.80% 0.98 2.82

BRASS TRUMPET1 24 24 0 0 20.82 -20.05 11.71 1.00 1.00 1.00 100.00% 1.31 3.01
TRUMPET2 24 24 0 0 12.11 10.97 8.29 1.00 1.00 1.00 100.00% 0.81 1.55

HORN1 42 31 11 8 17.93 -14.35 14.33 0.79 0.74 0.77 73.81% 1.07 1.52

TROMBONE1 23 21 2 2 7.91 0.69 12.65 0.91 0.91 0.91 91.30% 0.86 1.31

TOTAL /AVG 113 100 13 10 14.69 -5.69 11.74 0.93 0.91 0.92 91.28% 1.01 1.85

BOWED VIOLIN4 36 25 11 14 7.99 3.92 10.61 0.64 0.69 0.67 69.44% 1.02 1.47

VIOLA1 32 20 12 9 12.39 8.68 14.41 0.69 0.63 0.66 62.50% 0.98 1.48

VIOLIN7 40 32 8 21 18.07 13.81 17.89 0.60 0.80 0.69 80.00% 0.97 3.13
TOTAL /AVG 108 77 31 44 12.82 8.81 14.30 0.64 0.71 0.67 70.65% 0.99 2.02

PLUCKED GUITAR1 25 19 6 10 16.02 6.39 19.21 0.66 0.76 0.70 76.00% 1.08 1.51

GUITAR2 63 38 25 10 9.97 6.91 12.52 0.79 0.60 0.68 60.32% 1.53 2.50

TOTAL /AVG 88 57 31 20 12.99 6.65 15.86 0.72 0.68 0.69 68.16% 1.30 2.01

PERCUSSION KICK1 25 22 3 6 4.67 -4.53 3.14 0.79 0.88 0.83 88.00% 0.59 1.10

SNARE1 103 73 30 13 6.60 5.39 6.35 0.85 0.71 0.77 70.87% 0.67 10.59

RIDE2 84 80 4 3 0.44 -0.44 2.21 0.96 0.95 0.96 95.24% 0.67 1.41
TOTAL /AVG 212 175 37 22 3.90 0.14 3.90 0.87 0.85 0.85 84.70% 0.64 4.36

VOICE VOICE1 25 11 14 18 20.47 13.71 21.16 0.38 0.44 0.41 44.00% 0.95 2.31

VOICE2 62 55 7 10 13.47 9.30 14.07 0.85 0.89 0.87 88.71% 0.92 2.20

TOTAL /AVG 87 66 21 28 16.97 11.51 17.61 0.61 0.66 0.64 66.35% 0.93 2.26

GLOBAL PIECEWISE TOTAL /AVG 969 781 188 167 11.99 4.79 12.32 0.79 0.79 0.79 79.14% 0.93 2.52

OVERALL PRECISSION RATE 80.60%

216

Table 13-4: UDP traffic during the network experiment as captured by Wireshark

No. Time (sec) Source Src. Port Destination Dst. Port Protocol Frame Length (bytes)

1 0 192.168.1.101 46214 192.168.1.103 1000 UDP 50

2 0.099819 192.168.1.103 54751 192.168.1.101 1000 UDP 50

3 0.823857 192.168.1.101 39496 192.168.1.103 1000 UDP 50

4 1.83393 192.168.1.101 39366 192.168.1.103 1000 UDP 50

5 1.934338 192.168.1.103 44488 192.168.1.101 1000 UDP 50

6 2.321186 192.168.1.101 42963 192.168.1.103 1000 UDP 50

7 2.432878 192.168.1.103 42233 192.168.1.101 1000 UDP 50

8 2.583623 192.168.1.103 60150 192.168.1.101 1000 UDP 50

9 2.831974 192.168.1.101 43647 192.168.1.103 1000 UDP 50

10 3.001732 192.168.1.103 55515 192.168.1.101 1000 UDP 50

11 3.199005 192.168.1.103 47863 192.168.1.101 1000 UDP 50

12 3.319713 192.168.1.101 50155 192.168.1.103 1000 UDP 50

13 3.431206 192.168.1.103 58718 192.168.1.101 1000 UDP 50

14 3.865326 192.168.1.101 49326 192.168.1.103 1000 UDP 50

15 4.976182 192.168.1.103 36217 192.168.1.101 1000 UDP 50

16 6.125333 192.168.1.103 34362 192.168.1.101 1000 UDP 50

17 6.199962 192.168.1.101 37245 192.168.1.103 1000 UDP 50

18 6.275751 192.168.1.103 40336 192.168.1.101 1000 UDP 50

19 6.582174 192.168.1.101 52430 192.168.1.103 1000 UDP 50

20 7.081526 192.168.1.101 48704 192.168.1.103 1000 UDP 50

21 7.460547 192.168.1.103 38030 192.168.1.101 1000 UDP 50

22 7.545815 192.168.1.101 60286 192.168.1.103 1000 UDP 50

23 8.056818 192.168.1.101 58852 192.168.1.103 1000 UDP 50

24 8.168506 192.168.1.103 43647 192.168.1.101 1000 UDP 50

25 9.2064 192.168.1.101 56888 192.168.1.103 1000 UDP 50

26 9.658851 192.168.1.101 48437 192.168.1.103 1000 UDP 50

27 9.724748 192.168.1.103 36313 192.168.1.101 1000 UDP 50

28 10.170239 192.168.1.101 57288 192.168.1.103 1000 UDP 50

29 10.257437 192.168.1.103 43147 192.168.1.101 1000 UDP 50

30 10.634132 192.168.1.101 51485 192.168.1.103 1000 UDP 50

31 10.734271 192.168.1.103 59466 192.168.1.101 1000 UDP 50

32 11.047644 192.168.1.103 48207 192.168.1.101 1000 UDP 50

33 11.133359 192.168.1.101 50795 192.168.1.103 1000 UDP 50

34 11.628323 192.168.1.103 51335 192.168.1.101 1000 UDP 50

35 12.1508 192.168.1.103 35529 192.168.1.101 1000 UDP 50

36 12.457709 192.168.1.101 37895 192.168.1.103 1000 UDP 50

37 12.557053 192.168.1.103 32989 192.168.1.101 1000 UDP 50

38 12.932 192.168.1.101 60641 192.168.1.103 1000 UDP 50

39 13.160908 192.168.1.103 51235 192.168.1.101 1000 UDP 50

40 13.3393 192.168.1.101 60829 192.168.1.103 1000 UDP 50

41 13.636846 192.168.1.103 52262 192.168.1.101 1000 UDP 50

42 13.781274 192.168.1.101 36422 192.168.1.103 1000 UDP 50

43 14.256666 192.168.1.101 59088 192.168.1.103 1000 UDP 50

44 15.146773 192.168.1.103 37179 192.168.1.101 1000 UDP 50

45 15.220425 192.168.1.101 45198 192.168.1.103 1000 UDP 50

46 15.821831 192.168.1.101 37243 192.168.1.103 1000 UDP 50

217

14 References

Akoumianakis, D. and C. Alexandraki. 2012. “Collective Practices in Common

Information Spaces: Insight from Two Case Studies,” Human-Computer

Interaction Journal. 27(4): 311-351.

Alexandraki C. and R. Bader. 2014. "Using computer accompaniment to assist

networked music performance," Proceedings of the AES 53rd Conference on

Semantic Audio, pp. 1-10. [Best Poster Award]

Alexandraki, C. and R. Bader. 2013. "Real-time concatenative synthesis for networked

musical interactions," Proceedings of Meetings on Acoustics, 19, art. no. 035040,

9 p.

Alexandraki, C. and D. Akoumianakis. 2010. “Exploring New Perspectives in Network

Music Performance: The DIAMOUSES Framework,” Computer Music Journal,

34(2): 66-83.

Alexandraki, C., Koutlemanis, P., Gasteratos, P., Valsamakis, N., Akoumianakis, D.,

Milolidakis, G., Vellis, G. and D. otsalis, D. 2008. “Towards the

Implementation of a Generic Platform for Networked Music Performance: The

DIAMOUSES approach,” Proceedings of the ICMC 2008 International Computer

Music Conference. pp. 251-258.

Alexandraki, C., and I. alantzis. 2007. “Requirements and Application Scenarios in

the Context of Network Based Music Collaboration,” Proceedings of the

AXMEDIS 2007 Conference. Florence: Firenze University Press, pp. 39–46.

Amado, R. G., and J. V. Filho. 2008. “Pitch detection algorithms based on zero-cross

rate and autocorrelation function for musical notes,” 2008 International

Conference on Audio Language and Image Processing, pp. 449-454.

Arom, S. 1991. African polyphony and polyrhythm: Musical structure and

methodology. Cambridge University Press.

Arulampalam, M. S., Maskell, S. and N. Gordon. 2002. “A tutorial on particle filters for

online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal

Processing, 10(2): 174–188

Arzt, A., Widmer, G. and S. Dixon. 2008 “Automatic page turning for musicians via

real-time machine listening,” In Proceedings of the European Conference on

Artificial Intelligence, pp. 241–245.

Aucouturier, J.-J., and F. Pachet. 2006. "Jamming with Plunderphonics: Interactive

Concatenative Synthesis of Music" Journal of New Music Research 35(1): 35-50.

Bader R. 2013a. “Timbre.” In Nonlinearities and Synchronization in Musical Acoustics

and Music Psychology, edited by Rolf Bader, 329-379. Springer series on Current

Research in Systematic Musicology, Springer.

218

Bader R. 2013b. “Rhythm.” In Nonlinearities and Synchronization in Musical Acoustics

and Music Psychology, edited by Rolf Bader, 329-379. Springer series on Current

Research in Systematic Musicology, Springer.

Barbosa, A. 2006. “Computer-Supported Cooperative Work for Music Applications”.

PhD diss., Pompeu Fabra University, Barcelona, Spain

Barbosa, A. 2003. “Displaced Soundscapes: A Survey of Network Systems for Music

and Sonic Art Creation.,” Leonardo Music Journal 13:53–59.

Bárdi T. 2006. "High Resolution Speech F0 Modification," 3rd Speech Prosody Intl.

Conference

Barry, D., Dorran, D. and Coyle, E. 2008. “Time and pitch scale modification: a real-

time framework and tutorial,” Proceedings of the 11th. International Conference

on Digital Audio Effects (DAFx-08), pp. 103-110.

Baudoin, G. and El Chami F. 2003 “Corpus based very low bit rate speech coding.” In

Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, pp. 792-795.

Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M. and M. B. Sandler. 2005.

“A Tutorial on Onset Detection in Music Signals,” IEEE Transactions On Speech

And Audio Processing, 13(5): 1035-1047.

Bello, J. P., and J. Pickens. 2005. “A Robust Mid-level Representation for Harmonic

Content in Music Signals.” In Proc ISMIR, ed. Joshua D Reiss and Geraint A

Wiggins, pp: 304-311.

Bello, J.P., Duxbury, C., Davies, M. and M. Sandler. 2004. “On the use of phase and

energy for musical onset detection in the complex domain,” IEEE Signal

Processing Letters, 4(6): 553–556.

Bello, J. P., and M Sandler. 2003. “Phase-based note onset detection for music signals.”

In Proc IEEE International Conference on Acoustics Speech and Signal

Processing (ICASSP 03), pp. 441-444.

Benetos, E., Dixon, S., Giannoulis, D., irchhoff, H. And lapuri, A. 2012. “Automatic

Music Transcription: Breaking the glass ceiling” In 13th International Conference

on Music Information Retrieval (ISMIR 2012), pp. 379-384.

Bi, C. 2009. “DNA motif alignment by evolving a population of Markov chains,” BMC

Bioinformatics 10, no. Suppl 1: S13.

Bilmes, Jeff A. 1998. “A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mixture and Hidden Markov Models,”

International Computer Science Institute 4, no. 510: 126.

Bischoff, J., Gold, R., and J. Horton. 1978. “Music for an Interactive Network of

Microcomputers,” Computer Music Journal, 2(3), 24–29

219

Bloch, J. B. and Dannenberg, R.B., 1985. “Real-Time Computer Accompaniment of

Keyboard Performances.” In Proceedings of the 1985 International Computer

Music Conference, International Computer Music Association, pp. 279-289

Bonada, J. And X. Serra. 2007. “Synthesis of the Singing Voice by Performance

Sampling and Spectral Models”, IEEE Signal Processing Magazine, 24(2): 67-79

Bonada , J., and A. Loscos. 2003. “Sample-Based Singing Voice Synthesis Based in

Spectral Concatenation.” Proceedings of the 2003 Stockholm Music and Acoustics

Conference. Stockholm: KTH, pp. 439–442.

Bharucha, J. J. And P. Todd.1989. “Modeling the perception of tonal structures with

neural nets,” Computer Music Journal 13: 44-53

Bregman, Albert S. 1990. Auditory Scene Analysis: The Perceptual Organization of

Sound. MIT Press.

Brossier, P. 2006. “Automatic annotation of musical audio for interactive applications.”

PhD diss., Queen Mary, University of London.

Brossier, P., Bello, J.P. and M.D Plumbley. 2004. ”Fast labelling of notes in music

signals,” In 5th International Conference on Music Information Retrieval (ISMIR-

04).

Buillot N. 2007. “nJam user experiments: enabling Remote Musical Interaction from

milliseconds to seconds.” In New Interfaces for Musical Expression (NIME'07),

6p.

Cabral, J. P. and Oliveira, L. C., "Pitch-Synchronous Time-Scaling for Prosodic and

Voice Quality Transformations", Proc. Interspeech'2005.

Cáceres, J. P., and C. Chafe. 2009. “JackTrip: Under the Hood of an Engine for

Network Audio.” Proceedings of the 2009 International Computer Music

Conference. San Francisco, California: International Computer Music

Association, pp. 509–512.

Cáceres, J.P. and A. Renaud. 2008. “Playing the network: the use of time delays as

musical devices.” In Proceedings of International Computer Music Conference,

pp. 244–250.

Cai, R., Lu, L., Hanjalic, A., Zhang H-J. and L-H Cai. 2006. “A flexible framework for

key audio effects detection and auditory context inference,” IEEE Transactions

on Audio Speech and Language Processing, 14(3):1026-1039.

Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C. and M. Slaney. 2008.

“Content-Based Music Information Retrieval: Current Directions and Future

Challenges,” Proceedings of the IEEE, 96(4): 668-696.

Carôt, A., Rebelo, P. and A. Renaud. 2007. “Networked Music Performance: State of

the Art.” Proceedings of the AES 30th International Conference.

Saariselka, Finland: Audio Engineering Society. pp. 16-22.

Carôt, A., and C. Werner. 2007. “Network Music Performance—Problems, Approaches

and Perspectives.” Proceedings of the Music in the Global Village Conference.

220

Available online:

http://globalvillagemusic.net/2007/wp-content/uploads/carot_paper.pdf

Carôt, A., Renaud, A. and B. Verbrugghe. (2006) Network Music Performance (NMP)

with Soundjack, in Proceedings of the 6th NIME Conference, Paris, France, 2006

Carôt, A., rämer, U. and G. Schuller. 2006. “Network Music Performance (NMP) in

Narrow Band Networks,” Proceedings of the 120th AES convention.

Carvalho, P., Trancoso, I.M., and L.C. Oliveira. 1998. "Automatic Segment Alignment

for Concatenative Speech Synthesis in Portuguese", Proc. of the 10
th

 Portuguese

Conference on Pattern Recognition, RECPAD'98, pp. 221-226.

Cernocky, J., Baudoin, G., and G. Chollet, G. 1998. “Segmental Vocoder – Going

Beyond the Phonetic Approach.” IEEE ICASSP, pp. 605-608.

Chafe C. 2011. “Living with Net Lag,” In Proceedings of the 43rd AES International

Conference: Audio for Wirelessly Networked Personal Devices.

Chafe, C., Gurevich, M., Leslie, G. and S. Tyan. 2004. “Effect of Time Delay on

Ensemble Accuracy.” In Proceedings of the International Symposium on Musical

Acoustics.

Chafe, C. 2003. “Distributed Internet Reverberation for Audio Collaboration,”

Proceedings of the 24
th

 AES International Conference, pp. 13-19.

Chafe, C., Wilson, S., Leistikow, R., Chisholm, D. And G. Scavone. 2000. “A

Simplified Approach to High Quality Music and Sound Over IP.” Proc. COSTG6

Conference on Digital Audio Effects (DAFx-00).

Chafe, C., Mont-Reynaud, B. and L. Rush. 1982. “Toward an Intelligent Editor of

Digital Audio: Recognition of Musical Structures,” Computer Music Journal

6(1): 30-41.

de Cheveigné A. and H. awahara. 2002. “YIN, A Fundamental Frequency Estimator

for Speech and Music,” Journal of the Acoustical Society of America, vol. 111,

pp. 1917–1930.

Chew, E., Sawchuk, A. Tanoue, C. and R. Zimmermann. 2005. “Segmental Tempo

Analysis of Performances in User-Centered Experiments in the Distributed

Immersive Performance Project,” In Proceedings of the Sound and Music

Computing Conference, 12 p.

Cho, T. and J. P. Bello. 2008. “Real-time implementation of HMM-based chord

estimation in musical audio,” Proceedings of the International Computer Music

Conference ICMC, pp: 16–21.

Clarke, Eric F. 2001. Generative principles in music performance. In Generative

Processes in Music: The Psychology of Performance , Improvisation, and

Composition, ed. John Sloboda, 1-26. Oxford University Press.

Collier, G. L. And J. L. Collier. 2002. “A Study of Timing in two Louis Armstrong

Solos.“ In: Music Perception 19(3): 463-483.

221

Collins, N.S 2006. “Towards Autonomous Agents for Live Computer Music: Realtime

Machine Listening and Interactive Music Systems”, PhD diss., University of

Cambridge

Cont, A. 2010. “A Coupled Duration-Focused Architecture for Real-Time Music-to-

Score Alignment,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(6): 974-987.

Cont, A. 2008a. “ANTESCOFO: Anticipatory Synchronization and Control of

Interactive Parameters in Computer Music,” Proceedings of the International

Computer Music Conference.

Cont, A. 2008b. “Modeling Musical Anticipation: From the time of music to the music

of time” PhD thesis, University of Paris 6 and University of California in San

Diego

Cont A. 2004. “Improvement of Observation Modeling for Score Following.” IRCAM.

Available online:
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4970&rep=rep1&type=pdf

Cooperstock, J., and S. Spackman. 2001. “The Recording Studio that Spanned a

Continent.” In Proceedings of the International Conference on Web Delivering of

Music (WEDELMUSIC 2001). Florence, Italy:Wedelmusic, pp. 161–167.

de la Cuadra, P., Master, A. and C. Sapp. 2001. “Efficient Pitch Detection Techniques

for Interactive Music,” Proceedings of the International Computer Music

Conference, pp: 403–406.

Dannenberg R.B. 2012. “Human Computer Music Performance” . In Multimodal Music

Processing, edited by Müller M., Goto M., Schedl M., 121- 133, Wadern:

Dagstuhl - Leibniz Center for computer science GmbH.

Dannenberg, R.B. 2011. ”A Vision of Creative Computation in Music Performance,” in

Proceedings of the Second International Conference on Computational Creativity,

pp. 84-89.

Dannenberg, R. B, and C. Raphael. 2006. “Music score alignment and computer

accompaniment,” Communications of the ACM 49(8): 38.

Dannenberg R. 2006. “Concatenative Synthesis using Score-Aligned Transcriptions,”

Proceedings of the 2006 International Computer Music Conference, Computer

Music Association, pp. 352-355.

Dannenberg, R.. 2002. “Listening to “Naima”: An Automated Structural Analysis of

Music from Recorded Audio.” In Proceedings of the International Computer

Music Conference (ICMC), pp. 28-34.

Dannenberg, R., Sanchez, M., Joseph, A., Capell, P., Joseph, R. and R. Saul.1993. “A

computer-based multi-media tutor for beginning piano students,” Journal of New

Music Research, 19(2-3): 155–173

Dannenberg, R. B. 1989. “Real-Time Scheduling and Computer Accompaniment.” In

Mathews, M.and Pierce, J. eds. Current Research in Computer Music, MIT Press,

Cambridge, pp. 225-261.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4970&rep=rep1&type=pdf

222

Dannenberg R. 1984. “An On-Line Algorithm for Real-Time Accompaniment,”

Proceedings of the 1984 International Computer Music Conference, Computer

Music Association, pp. 193-198.

Dansereau, D.G., Brock, N. and J.R. Cooperstock. 2013. “Predicting an Orchestral

Conductor’s Baton Movements Using Machine Learning,” Computer Music

Journal, 37(2): 28-45

Daubechies, I., and W. Sweldens. 1998. “Factoring wavelet transforms into lifting

steps,” The Journal of Fourier Analysis and Applications 4(3): 247-269.

Delgado, M., Fajardo, W. and M. Molina-Solana. 2011. “A state of the art on

computational music performance,” Expert Systems with Applications 38(1): 155-

160.

Delignières, D., Lemoine, L. And K. Torre. 2004. “Time intervals production in tapping

and oscillatory motion,” Human Movement Science 23: 87–103

Dessein, A., Cont, A., and G. Lemaitre. 2010. “Real-time polyphonic music

transcription with non-negative matrix factorization and beta-divergence,”

In Proceedings of the 11th International Society for Music Information Retrieval

Conference (ISMIR), pp. 489–494.

Dixon, S. 2006. “Onset detection revisited.” In Proc of the Int Conf on Digital Audio

Effects DAFx06, pp. 133–137.

Dixon, S. 2005. “Live Tracking of Musical Performances using On-Line Time

Warping”, Proceedings of the 8th International Conference on Digital Audio

Effects (DAFx05), pp 92-97.

Dixon, S. and Widmer, G. 2005. “MATCH : A Music Alignment Tool Chest”, 6th

International Conference on Music Information Retrieval (ISMIR 2005).

Downie, J S. 2008. “The music information retrieval evaluation exchange (2005–2007):

A window into music information retrieval research,” Acoustical Science And

Technology, 29(4): 247-255.

Driessen, P. F., Darcie, T. E. And B. Pillay. 2011. “The Effects of Network Delay on

Tempo in Musical Performance.” Computer Music Joural, 35(1): 76-89

Duan Z. and B. Pardo. 2011a. “A state space model for online polyphonic audio-score

alignment,” Proceedings of IEEE ICASSP 2011, pp. 197-200.

Duan, Z. and B. Pardo. 2011b. “Soundprism: an online system for score-informed

source separation of music audio,” IEEE Journal of Selected Topics in Signal

Process., 5(6): 1205-1215.

Duan, Z., Pardo B. and C. Zhang. 2010. “Multiple fundamental frequency estimation

by modeling spectral peaks and non-peak regions,” IEEE Trans. Audio Speech

Language Process., 18(8): 2121-2133

Dutoit T. 2008. “Corpus-based Speech Synthesis.” In Springer Handbook of Speech

Processing edited by Benesty Jacob, Sondhi, M. M. and Huang, Yiteng, 437-453.

Springer: Springer Handbooks.

223

Dutoit T. 1996. An Introduction to Text-to-Speech Synthesis. Dordrecht: Kluwer

Academic Publishers.

Duxbury, C., Davies, M. and M. Sandler. 2003. “Complex domain onset detection for

musical signals,” In Proceedings of the International Conference on Digital Audio

Effects (DAFx-03), pp. 90–93.

Duxbury, C, Sandler, M, and M Davies. 2002a. “A hybrid approach to musical note

onset detection,” In Proc. of the 5th Int. Conference on Digital Audio Effects

(DAFx-02), pp. 33-38.

Duxbury, C., Davies, M. and M. Sandler. 2002b. “Improved time-scaling of musical

audio using phase locking at transients”. In Proceedings of the 112th AES

Convention. Paper 5530.

Duxbury, C., Davies, M. and M. Sandler. 2001. “Separation of transient information in

musical audio using multiresolution analysis techniques.” In Proceedings of the

COST G-6 Conference on Digital Audio Effects (DAFX-01), pp. 6-9.

Eggink J. and G.J. Brown. 2003. “A missing feature approach to instrument

identification in polyphonic music.” In ICASSP, volume 5, pp. 553–556, 2003.

Ellis, M. 1991. “An Analysis of 'Swing' Subdivisions and Asynchronization in Three

Jazz Saxophonists.” In: Perceptual and Motor Skills, 73(3): 707-713.

Fagerlönn, J, and H Alm. 2010. Auditory signs to support traffic awareness. IET

Intelligent Transport Systems, 4(4), 262

Fechner, G T. 1860. Elemente der Psychophysik. Ed. H E Adler, D H Howes, and E G

Boring. Search. Vol. 3. Breitkopf und Härtel.

Fink, G.A. 2008. “Configuration oh Hidden Markov Models.” In Markov Models for

Pattern Recognition, 127-136, Springer.

Flanagan J.L. and R. M. Golden. 1966. ‘Phase vocoder’. Bell System Technical Journal,

vol. 45, pp. 1493-1509.

Flexer A. 2006. “Statistical Evaluation of Music Information Retrieval Experiements,”

Journal of New Music Research, 35(2): 113-120

Follmer, G. 2005. “Electronic, Aesthetic and Social Factors in Net Music,” Organised

Sound, 10(3):185–192.

Folio C. and R.W. Weisberg. 2006. "Billie Holiday's Art of Paraphrase: A Study in

Consistency," In: New Musicology, Poland: Poznan Press, pp. 249-277.

Forney G.T. 1973. “The Viterbi algorithm,” Proc IEEE, vol. 61, pp. 268-178.

Fracile, N. 2003. "The 'Aksak' Rhythm, a Distinctive Feature of the Balkan Folklore".

Studia Musicologica Academiae Scientiarum Hungaricae 44 (1 and 2):197–210

Friberg, A. and A. Sundström. 2002. “Swing Ratios and Ensemble Timing in Jazz

Performacne: Evidence for a Common Rhythmic Pattern.” In: Music Perception

19(3): 333-49.

224

Friberg, A., Bresin, R. and L. Frydén. 1998. “Musical Punctuation on the Microlevel:

Automatic Identification and Performance of Small Melodic Units.” Journal of

New Music Research 27(3):217–292

Friston, arl J. 2010. “The free-energy principle: a unified brain theory?” Nature

Reviews Neuroscience 11: 127-138

Friston, K.J., Daunizeau, J., Kilner, J., and S.J. Kiebel. 2010. “Action and behaviour: a

free-energy formulation,” Biological Cybernetics 102: 227-260

Fritsch, J. 2012. “High Quality Musical Audio Source Separation.” Master’sthesis,

UPMC / IRCAM / Telecom Paristech.

Fu, L., Mao, X. and L. Chen. 2008. “Speaker independent emotion recognition based

on SVM/HMMS fusion system,” Audio Language and Image Processing 2008

ICALIP 2008 International Conference on, pp. 61–65.

Fu, Z., Lu, G., Ting, . and D. Zhang, D. 2011.”A survey of audio-based music

classification and annotation,” IEEE Transactions on Multimedia, 2(13): 303-319.

Gabrielsson, A. and E. Lindström. 2010. “The role of structure in musical expression of

emotions.” In: Sloboda, John A. & Juslin, Patrik N. (eds.): Handbook of Music

and Emotion. Theory, Research, Applications. Oxford University Press, pp. 367-

395.

Gabrielsson, A. 1999. “The performance of music.” In D.Deutsch (Ed.), The

Psychology of Music (2nd ed.), pp. 501-602. San Diego, CA: Academic Press.

Gabrielsson, A. 1982. “Perception and Performance of Musical Rhythm.” In: Manfred

Clynes (ed): Music, Mind and the Brain: The Neurophsychology of Music. NY,

Plenum Press, 159-169.

Garner, W. R. 1974. The processing of information and structure. Wiley & Sons, 1974.

Gibson D.B. 2014. “Challenges in Speech Coding.” In Speech and Audio Processing for

Coding, Enhancement and Recognition, edited by Tokunbo Ogunfunmi, Roberto

Togneri and Madihally Narasimha, Springer.

Gilden, D.L. 2001. “Cognitive Emissions of 1/f Noise,” Psychological Review 108(1):

33–56

Gjerdingen, R.O. 1990. “Categorization of musical patterns by self-organizing

neuronlike networks,” Music Perception 8: 339-370

Glover, J, Lazzarini, V. And J. Timoney. 2011. “Real-time detection of musical onsets

with linear prediction and sinusoidal modelling,” EURASIP Journal of advances

in Signal Processing, 60(1):1-13.

Goebl, W. and C. Palmer. 2009. “Synchronization of timing and motion among

performing musicians,” Music Perception, 26(5):427–438.

Goldstein, J L. 1973. “An optimum processor theory for the central formation of the

pitch of complex tones,” Journal of the Acoustical Society of America 54(6):

1496-1516.

225

Goldstein, J L. 1973. “An optimum processor theory for the central formation of the

pitch of complex tones,” Journal of the Acoustical Society of America 54(6):

1496-1516.

Gordon, J W. 1987. “The perceptual attack time of musical tones.” Journal of the

Acoustical Society of America 82(1): 88-105.

Goto, M. 2001a. “An Audio-based Real-time Beat Tracking System for Music With or

Without Drum-sounds,” Journal of New Music Research 30(2): 159-171

Goto, M. 2001b. “A predominant-f0 estimation method for real-world musical audio

signals: MAP estimation for incorporating prior knowledge about f0s and tone

models,” In Proc Workshop on Consistent and reliable acoustic cues for sound, 1-

4

Goto, M., Neyama, R., and Y. Muraoka. 1997. “RMCP: Remote Music Control

Protocol – design and Interactive Network Performance applications,” Proc. of the

1997 Int. Computer Music Conf. Thessaloniki, Hellas: ICMA, pp. 446–449.

Gotzen, A., Bernardini, N. and D. Arfib. 2000. “Traditional (?) implementations of a

phase vocoder: the tricks of the trade.” In Proceedings of the International

Conference on Digital Audio Effects (DAFx-00), pp. 37–44.

Grey, J M. 1977. “Multidimensional perceptual scaling of musical timbres,” Journal of

the Acoustical Society of America 61(5): 1270-1277.

Grachten, M. and Widmer G. 2012. “Linear Basis Models for Prediction and Analysis

of Musical Expression,” Journal of New Music Research 41(4): 311-322

Grubb, L. And R. Dannenberg. 1998. “Enhanced Vocal Performance Tracking Using

Multiple Information Sources”, Proceedings of the ICMC 1998 International

Computer Music Conference. pp. 37-44.

Gu, X., Dick, M., Kurtisi, Z., Noyer, U. and L. Wolf. 2005. "Network-centric Music

Performance: Practice and Experiments," IEEE Communications Magazine,

43(6): 86-93.

Hadjakos, A., Aitenbichler, E. and M. Mühlhäuser. 2008. "Parameter Controlled

Remote Performance (PCRP): Playing Together Despite High Delay". In

Proceedings of the 2008 International Computer Music Conference (ICMC), pp.

259-264.

Hainsworth S. and M. Macleod. 2003. “Onset detection in music audio signals,” In

Proceedings of the International Computer Music Conference (ICMC), pp. 163-

166.

Hajdu, G. 2006. “Automatic Composition and Notation in Network Music

Environments.” Proceedings of the 2006 Sound and Music Computing

Conference. Marseille: Centre National de Creation Musicale, pp. 109–114.

Hajdu, G. 2005. “Quintet.net: An Environment for Composing and Performing Music

on the Internet.” Leonardo Music Journal 38(1):23–30

226

Haken, H., Kelso, J.A.S. and H. Bunz, H. 1985. “A theoretical model of phase

transitions in human hand movements,” Biological Cybernetics 51: 347–356

Hansen, Mark M. B. 2006. New Philosophy for New Media. Cambridge: MIT Press.

Harma, A., Mc inney, M. F. and J. Skowronek. 2005. “Automatic surveillance of the

acoustic activity in our living environment,” in IEEE Int. Conf. Multimedia and

Expo, Amsterdam, The Netherlands, Jul. 2005.

Hasegawa-Johnson M. Alwan A. 2003. “Speech Codding: Fundamental and

Applications” In Wiley Encyclopedia of Telecommunications, edited by John G.

Proakis, John Wiley & Sons, Inc.

Hatlevik, E. 2012. “Are Musicians Affected by Room Acoustics in Rehearsal Rooms?”,

Master Thesis, Norwegian University of Science and Technology.

Hedfors, P., Grahn, P., Schafer, R. and H. Jarviluoma, Eds. 1998. “Soundscapes in

urban and rural planning and design—A brief communication of a research

project,” in Northern Soundscapes: Yearbook of Soundscape Studies, vol. 1, pp.

67–82.

Hiraga, R., Bresin, R., Hirata, ., and atayose, H. 2004. “Rencon 2004: Turing test for

musical expression,” In Proceedings of the 2004 conference on new interfaces for

musical expression (NIME04), pp. 120–123.

Hu, N., Dannenberg, R. B. and G Tzanetakis. 2003. “Polyphonic audio matching and

alignment for music retrieval.” In 2003 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics, pp. 185-188.

IETF (Internet Engineering Task Force). 2012. “RFC 6716: Definition of the Opus

Codec”. Available at: http://tools.ietf.org/html/rfc6716 (Last visit: 11/1/2014).s

Jensen, J. 2009. Feature Extraction for Music Information Retrieval, PhD dissertation,

Aalborg, Denmark, Aalborg University.

Jensen, . 2007. “Multiple scale music segmentation using rhythm, timbre, and

harmony,” EURASIP Journal on Advances on Signal Processing, 2007(1): 159-

170.

Kapur, A., Wang, G. and P. Cook. 2005. “Interactive Network Performance: a dream

worth dreaming?,” Organised Sound 10(3): 209-219.

 atayose, H. Hashida, M. De Poli, G. and . Hirata. 2012 “On Evaluating Systems for

Generating Expressive Music Performance: the Rencon Experience,” Journal of

New Music Reserach 41(4): 299-310.

Kalkandjiev, Z. S. and S. Weinzierl. 2013. “Room acoustics viewed from the stage:

Solo performers' adjustments to the acoustical environment,“ Proceedings of the

International Symposium on Room Acoustics, p. 10

Keil, C. and S. Feld. 1994. Music Grooves. Essays and Dialogues. University of

Chicago Press.

http://tools.ietf.org/html/rfc6716

227

 eller P. 2007. “Musical Ensemble Synchronisation,” In Proceedings of the

International Conference on Music Communication Science, pp. 80-83.

 hreich, W., Granger, E., Miri, A. and R. Sabourin. 2010. “On the memory complexity

of the forward-backward algorithm,” Pattern Recognition Letters, 31: 91-99.

 iranyaz, S., Qureshi, A.F. and M. Gabbouj. 2006. “A generic audio classification and

segmentation approach for multimedia indexing and retrieval,” IEEE

Transactions on Audio, Speech, and Language Processing, 14 (3): 1062–1081.

Klapuri, A, and M Davy. 2006. Signal Processing Methods for Music Transcription.

Ed. Anssi Klapuri and Manuel Davy. Signal Processing. Springer-Verlag New

York Inc.

Klapuri A. 2004. Signal Processing Methods for the Automatic Transcription of Music.

PhD Dissertation, Tampere University of Technology.

 lapuri, A. 1999. “Sound onset detection by applying psychoacoustic knowledge.”

1999 IEEE International Conference on Acoustics Speech and Signal Processing

Proceedings ICASSP99 Cat No99CH36258 6, pp. 3089-3092.

von dem nesebeck, A., Ziraksaz, P. and U. Zölzer. 2010. “High quality time-domain

pitch shifting using PSOLA and transient preservation,” in Proc. 129th Audio

Eng. Soc. Convention, paper 8202.

Kostek, B. 2005. Perception-based data processing in acoustics. Applications to Music

Information Retrieval and Psychophysiology of Hearing. Springer.

 raemer, U., Hirschfeld, J., Schuller, G., Wabnik, S., Carôt, A. And C. Werner. 2007.

“Network Music Performance with Ultra-Low-Delay Audio Coding under

Unreliable Network Conditions.” Proceedings of the 123rd Audio Engineering

Society Convention. New York: Curran Associates, pp. 338–348.

 umar, R. S., Tamrakar N. and P. Rao.2008. “Segment based MBE speech coding at

1000 bps,” Proc. of National Conference on Communications (NCC).

Kuo, S.M., Lee, B.H. and W. Tian. 2006. “Introduction to Real-time Digital Signal

Processing.” In Real-Time Digital Signal Processing: Implementations and

Applications, edited by Kuo, S.M., Lee, B.H. and W. Tian, 1-48, John Wiley &

Sons, Ltd

 urtisi, Z., and L. Wolf. 2008. “Using WavPack for Real-time Audio Coding in

Interactive Applications.” Proceedings of the 2008 International Conference on

Multimedia & Expo (IEEE ICME 2008). Hannover: IEEE Publishing, pp. 1381–

1384.

 urtisi, Z., Gu, X. and L. C. Wolf 2006. “Enabling network-centric music performance

in wide-area networks,” ACM Communications Mag. 49(11): 52-54.

Langner J. and W. Goebl. 2003. “Visualizing expressive performance in tempo-

loudness space.” Computer Music Journal, 27(4): 69–83

228

Large, E. W. and C. Palmer. 2002. “Perceiving temporal regularity in music,” Cognitive

Science 26: 1 – 37

Laroche, J. 2003. “Frequency-Domain Techniques for High-Quality Voice

Modification.” Proceedings of the 2003 DAFx (Digital Audio Effects) Conference.

London: Queen Mary, University of London, pp. 328–332.

Laroche, J. 2002. “Time and pitch scale modification of audio signals,” in Applications

of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K.

Brandenburg, Eds. Kluwer Academic Publishers.

Laroche, J.; “Dolson, M. 1999 “Improved phase vocoder. Time-Scale Modification of

Audio”, In IEEE Transactions on Speech and Audio Processing, 7(3): 323 –332.

Lazier, A. And P. Cook. 2003. “MOSIEVIUS: feature driven interactive audio

mosaicing,” Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03)

Lazzaro, J., and J. Wawrzynek. 2001. “A Case for Network Musical Performance.”

Proceedings of ACM NOSSDAV [International Workshop on Network and

Operating Systems Support for Digital Audio and Video] 01. Port Jefferson, New

York: Association for Computing Machinery, pp. 157–166.

Lee M. E. and M. J. T. Smith 2002. “Digital Voice Synthesis using a new alternating

reflection Model,” IEEE International Symposium on Circuits and Systems,

IEEE-ISCAS 2002, pp. 863-866.

Leman, M. and F. Carreras. 1997. “Schema and Gestalt: Testing the hypothesis of

Psychoneural Isomorphism by Computer Simulation.” In: Marc Leman (ed.):

Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology,

144-168. . Springer, Berlin.

Lerdahl, F. and R. Jackendoff. 1983. A Generative Theory of Tonal Music, Cambridge,

Mass.: MIT Press.

Lim, A., Mizumoto, T., Cahier, L., Otsuka, T., Takahashi, T., Komatani, K., Ogata,

K. and H. Okuno. 2010. "Robot musical accompaniment: integrating audio and

visual cues for real-time synchronization with a human flutist," In Intelligent

Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,

pp. 1964-1969.

Lindemann, E. 2007. “Music Synthesis with Reconstructive Phrase Modeling.” IEEE

Signal Processing Magazine, 24(2): 80-91

Litovsky, R.Y., Colburn, H.S., Yost, W.A., and S. J. Guzman. 1999. "The precedence

effect". The Journal of the Acoustical Society of America 106: 1633–16.

Liu, Y., Dannenberg, R. and L Cai. 2010. “The Intelligent Music Editor: Towards an

Automated Platform for Music Analysis and Editing,” In Advanced Intelligent

Computing Theories and Applications With Aspects of Artificial Intelligence,

editied by Huang, D.-S.; Zhang, X.; Reyes Garcia, C.A.; Zhang, L., Springer:

Lecture Notes on Artificial Intelligence, Vol: 6216, pp.:123-131.

229

Maddox R. . and Larson, E. 2005. “Real-time time-domain pitch tracking using

wavelets,”

http://courses.physics.illinois.edu/phys406/NSF_REU_Reports/2005_reu/ Real-

Time_Time-Domain_Pitch_Tracking_Using_Wavelets.pdf (Last viewed 21 Apr.

2013)

Maestre, E., Ramírez, R., ersten, S., and X. Serra 2009. “Expressive Concatenative

Synthesis by Reusing Samples from Real Performance Recordings.” Computer

Music Journal, 33(4): 23-42.

Maia, R., Toda, T., Zen, H., Nankaku, Y. and K Tokuda. 2007. An excitation model for

HMM-based speech synthesis based on residual modeling. In ISCA SSW,

6(2):131-136.

Mäki-Patola T. 2005. “Musical Effects Of Latency.” Swomen Musiikintutkijoiden 9:82–

85.

Mäki-Patola, T. and P. Hämäläinen. 2004. “Effect of Latency on Playing Accuracy of

two Gesture Controlled Continuous Sound Instruments Without Tactile

Feedback.” Proceedings of the 7th International Conference on Digital Audio

Effects (DAFx'04), pp. 11-16.

Mann, T. P. 2006. “Numerically Stable Hidden Markov Model Implementation,”

Available online at:

http://bozeman.genome.washington.edu/compbio/mbt599_2006/hmm_scaling_rev

ised.pd (Last visit: 26/4/2013)

Marcae, R. and S. Dixon. 2010a. “Accurate Real-time Windowed Time Warping,” 11th

International Society for Music Information Retrieval Conference (ISMIR 2010),

pp. 423-428.

Macrae, R, and S Dixon. 2010b. “A guitar tablature score follower.” IEEE

International Conference on Multimedia and Expo ICME 2010, pp. 725-726.

Marchini , M. Papiotis, P. And E. Maestre. 2012. “Timing synchronization in string

quartet performance: a preliminary study,” In Proceedings of the International

Symposium on Computer Music Modelling and Retrieval (CMMR2012), pp. 177-

185.

Masri, P., Bateman, A., 1996. “Improved Modelling of Attack Transients in Music

Analysis-Resynthesis”, Proc.International Computer Music Conference

(ICMC96), pp. 100 – 103.

Mathews, M. 1991. “The Radio Baton and Conductor program, or: Pith, the most

important and least expressive part of music,” Computer Music Journal, 15(4):

37-46.

Mathews, M. 1989. “The Radio Drum as a synthesizer controller,” In Proc. Int.

Computer Music Conference, pp. 42-45.

Mcennis, D., C. Mckay, I. Fujinaga, and P. Depalle (2005). “jAudio: An feature

extraction library.” In 6th International Conference on Music Information

Retrieval (ISMIR).

http://bozeman.genome.washington.edu/compbio/mbt599_2006/hmm_scaling_revised.pd
http://bozeman.genome.washington.edu/compbio/mbt599_2006/hmm_scaling_revised.pd

230

Mendonça, David, and William A. Wallace. 2004. “Cognition in Jazz Improvisation:

An Exploratory Study.” In 26th Annual Meeting of the Cognitive Science Society,

pp. 1-6.

Meyer, L. B. 1956. Musical meaning and emotion in music. University of Chicago

Press.

Miklós, István, and Irmtraud M Meyer. 2005. “A linear memory algorithm for Baum-

Welch training,” BMC Bioinformatics 6, no. 1471-2105: 231.

Miotto, R. and Lanckriet, G. 2012. “A Generative Context Model for Semantic Music

Annotation and Retrieval,” IEEE Transactions on Audio, Speech and Language

Processing, 20(4): 1096-1108

Mizumoto, T., Hiroshi, T., Takahashi, T., Ogata, T. and H. Okuno. 2009. "Thereminist

robot: Development of a robot theremin player with feedforward and feedback

arm control based on a theremin's pitch model," in Intelligent Robots and Systems

(IROS), 2009 IEEE/RSJ International Conference on. IEEE, pp. 2297-2302.

Montecchio, N. and A. Cont. 2011a. “A unified approach to real time audio-to-score

and audio-to-audio alignment using sequential Montecarlo inference techniques,”

Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, pp. 193-196

Montecchio, N., and A. Cont. 2011b. “Accelerating the Mixing Phase in Studio

Recording Productions by Automatic Audio Alignment,” 12th International

Society for Music Information Retrieval Conference (ISMIR 2011), pp. 627–632.

Moore, Brian C J. 2003. An Introduction to the Psychology of Hearing. Boston

Academic Press. Vol. 3. Academic Press.

Moorer J. A. 1975. “On the segmentation and analysis of continuous musical sound

bysigitl Computer.” PhD Dissertation, Stanford University.

Moulines, E. and F. Charpentier. 1990. “Pitch-synchronous waveform processing

techniques for text-to-speech synthesis using diphones,” Speech Communications,

9 (5-6): 453-467.

Müller, M. 2010. “Dynamic Time Warping.” In Information Retrieval for Music and

Motion, edited by Meinard Müller, 69-84, Springer

Müller, M. and D. Appelt. 2008. “Path-constrained partial music synchronization,”

Proceedings of the 34th International Conference on Acoustics, Speech and

Signal Processing (ICASSP), vol. 1, Las Vegas, Nevada, USA, pp. 65-68.

Müller, M., Mattes, H. and F. urth. 2006. “An efficient multiscale approach to audio

synchronization,” Proceedings of the 7th International Conference on Music

Information Retrieval (ISMIR), Victoria, Canada, pp. 192-197.

Narmour, E. 1990. The Analysis and Cognition of Basic Melodic Structures: The

Implication Realization Model. Chicago, Illinois: University of Chicago Press.

231

Nathan, K., Senior, A. and J. Subrahmonia. 1996. “Initialization of hidden Markov

models for unconstrained on-line handwriting recognition,” In Proceedings of

IEEE International Conference on Acoustics, Speech, and Signal Processing,

ICASSP-96, vol.6, pp: 3502-3505.

Niedermayer, B. 2009. “Improving Accuracy of Polyphonic Music-To-Score

Alignment,” Proceedings of the 10th International Society for Music Information

Retrieval Conference (ISMIR 2009), pp: 585-590.

Oliveira, A. P., and A. Cardoso. 2010. “A musical system for emotional expression,”

Knowledge-Based Systems 23(8): 901-913.

Orio, N. and F. Déchelle. 2001. “Score Following Using Spectral Analysis and Hidden

Markov Models,” In Proceedings of the International Computer Music

Conference ICMC, 27:1708-1710.

Orio, N. and D. Schwarz. 2001. “Alignment of monophonic and polyphonic music to a

score,” In Proceedings of the International Computer Music Conference.

Otsuka, T., Nakadai, K., Takahashi, T., Ogata, T. and H.G. Okuno. 2011. “Real-Time

Audio-to-Score Alignment Using Particle Filter for Coplayer Music

Robots,” EURASIP Journal on Advances in Signal Processing, 2011: 384651

doi:10.1155/2011/384651

Pachet, F. 1999. “Music listening: What is in the air?” Sony Computer Science

Laboratory internal Report.

Page, M. A. 1994. “Modeling the perception of musical sequences with self-organizing

neural networks,” Connection Science 6: 223-246

Park, S-H, Ju-Hong Lee, Jae-Won Song, and T-S Park. 2009. “Forecasting Change

Directions for Financial Time Series Using Hidden Markov Model,” Change,

5589 {LNAI, 184-191.

Pisczcalski M. and B. Geller. 1977. “Automatic Music Transcription,” Computer Music

Journal, 1(4): 24-31

Polycom. 2011. “Music Performance and Instruction over High-Speed Networks,” A

Polycom WhitePaper. Electronically available at:
http://docs.polycom.com/global/documents/whitepapers/music_performance_and_instruction_over

_highspeed_networks.pdf

Pressing, J. 1999. “Sources of 1/f noise eff ects in human cognition and performance,”
Paideusis, 2: 42–59

Pressing, J. 1988. “Improvisation: Methods and Models.” In Generative Processes in

Music, edited by John Sloboda, 129-178, Clarendon, Oxford.

Pritchett, J. (1993). The Music Of John Cage. Cambridge University Press, Cambridge,

UK.

Prögler, J.A. 1995. “Searching for Swing: Participatory Discrepeancies in the Jazz

Rhythm Section.” In Ethnomusicology 39(1): 21-54.

232

Rabiner L. R. and B. H. Juang 1993. Fundamentals of Speech Recognition, Prentice

Hall Signal Processing Series.

Rabiner, L. R. 1989. “A tutorial on Hidden Markov Models and selected applications in

speech recognition,” Proceedings of the IEEE 77 (2): 257–285.

Radhakrishnan, R., Divakaran, A. and P. Smaragdis. 2005. “Audio analysis for

surveillance applications,” IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics 2005, pp. 158-161

Ramírez, R., Maestre, E., Pertusa, A., Gómez, E., & Serra, X. 2007. Performance-based

interpreter identification in saxophone audio recordings. IEEE Transactions on

Circuits and Systems for Video Technology 17(3): 356–364.

Raphael, C. 2004. “A Hybrid Graphical Model for Aligning Polyphonic Audio with

Musical Scores”, in Proceedings of the International Conference on Music

Information Retrieval, pp. 387–94.

Raphael, C. 2003. “Orchestral Musical Accompaniment from Synthesized Audio,"

Proceedings of the International Computer Music Conference, Singapore.

Raphael, C. 2002. “Automatic Transcription of Piano Music,” In Proc ISMIR, ed.

Michael Fingerhut, 2:13–17. Ircam - Centre Pompidou.

Raphael, C. 2001a. “Music Plus One: A System for Expressive and Flexible Musical

Accompaniment,” In Proceedings of the International Computer Music

Conference, pp. 159-162.

Raphael, C. 2001b. “A Bayesian Network for Real-Time Musical Accompaniment.” In

Proceedings of Advanced in Neural Information Processing Systems, pp. 1433-

1440.

Raphael, C. 1999. “Automatic segmentation of acoustic musical signals using hidden

Markov models,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(4): 360-370

Rasch, R. A. 1988. “Timing and synchronization in ensemble performance.” In J. A.

Sloboda (Ed.), Generative processes in music: The psychology of performance,

improvisation and composition (pp. 70-90). Oxford: Clarendon Press.

Richard G. and C. d’Alessandro. 1996. “Analysis/Synthesis and Modification of the

Speech Aperiodic Component,” Speech Communication (19):221–244

Rosa, A.A., Andrade, A.O, Soares, A.B. and S.J. Nasuto. 2007. “On the initialization of

parameters of Hidden Markov Models,” Available online at:

http://www.biolab.eletrica.ufu.br/admin/downloads/AngelaCeel2007.pdf (Last

visit: 25/4/2013)

Rose, R.F. 1989. “An Analysis of Timing in Jazz Rhythm Section Performance.” PhD

diss., University of Texas, Austin.

Rouas, J L. 2007. “Automatic Prosodic Variations Modeling for Language and Dialect

Discrimination,” IEEE Transactions On Audio Speech And Language Processing,

15(6): 1904-1911.

http://www.biolab.eletrica.ufu.br/admin/downloads/AngelaCeel2007.pdf

233

Roucos S. and A. Wilgus. 1985. “High quality time-scale modification for speech,” In

Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, pp: 493–496.

Roucos, S., Wilgus, A. and W. Russell. 1987. “A Segment Vocoder Algorithm for

Real-Time Implementation,” In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, pp. 1949-1952.

Rowe, R. 2001. Machine Musicianship. Cambridge, MA: The MIT Press

Rowe, R. 1992. Interactive Music Systems: Machine Listening and Composing.

Cambridge, MA: The MIT Press

Sanderson, P., Crawford, J., Savill, A., Watson, M. And W.J. Russell, W.J. 2004.

“Visual and auditory attention in patient monitoring: a formative analysis,”

Cognition, Technology & Work 2004(6): 172-185.

Sarkar, M., and B. Vercoe. 2007. “Recognition and prediction in a network music

performance system for Indian percussion,” Proceedings of the 7th international

conference on New interfaces for musical expression NIME 07, pp. 317-320.

Sawchuk, A. A., Chew, E., Zimmermann, R., Papadopoulos, C. and C. Kyriakakis.

2003. “From Remote Media Immersion to Distributed Immersive Performance,”

Proceedings of the ACM SIGMM 2003. Workshop on Experiential Telepresence.

New York: ACM Press, pp. 110–120.

Schaeffer, P. 1966. “Traité des Objets Musicaux.” Editions Du Seuil.

Scharenborg, O. 2007. “Reaching over the gap: A review of efforts to link human and

automatic speech recognition research,” Speech Communication 49(5): 336-347.

Schedl, M., Widmer, G., nees, P. and T. Pohle. 2011. “A music information system

automatically generated via Web content mining techniques,” Information

Processing & Management 47(3): 426-439.

Schnell, N., Peeters, G., Lemouton, S. and X Rodet. 2000. “Synthesizing a choir in real-

time using Pitch Synchronous Overlap Add,” Proceedings of the International

Computer Music Conference

Schroeder M. R. and B. S. Atal. 1985. "Code-excited linear prediction (CELP): high-

quality speech at very low bit rates," in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 10, pp.

937–940.

Schuett, N. 2002. “The effects of latency on ensemble performance.” Available online

at:https://ccrma.stanford.edu/groups/soundwire/publications/papers/schuett_honor

Thesis2002.pdf (Last visit: 25/6/2012)

Schwarz, D. 2007. Corpus-Based Concatenative Synthesis. (S.-F. Chang, Ed.) IEEE

Signal Processing Magazine, 24(2): 92-104.

Schwarz, D., Beller, G., Verbrugghe, B. and S. Britton. 2006. “Real-time corpus-based

concatenative synthesis with CataRT,” In Proc of the Int. Conf on Digital Audio

Effects DAFx06, pp: 279-282.

https://ccrma.stanford.edu/groups/soundwire/publications/papers/schuett_honorThesis2002.pdf
https://ccrma.stanford.edu/groups/soundwire/publications/papers/schuett_honorThesis2002.pdf

234

Schwarz, D. 2006. Concatenative Sound Synthesis: The Early Years. Journal of New

Music Research, 35(1), 3-22

Schwarz, D. 2004. “Data-Driven Concatenative Sound Synthesis.” PhD diss., Universite

Paris 6.

Schwarz, D. 2000a. “A system for data-driven concatenative sound synthesis,” In

Proceedings of COST-G6 Conference on Digital Audio Effects (DAFx) pp. 97 –

102.

Schwarz, D. 2000b. “A System for Data-Driven Concatenative Sound Synthesis,” In

Proc COST G6 Conf on Digital Audio Effects, pp. 97-102.

Scloss W.A. 1985. On the Automatic Transcription of Percussive Music - From

Acoustic Signal to High-Level Analysis. PhD Dissertation, Stanford University

Sheh and D. P.W. Ellis. 2003. “Chord segmentation and recognition using em-trained

hidden markov models,” In Proceedings of the 4th ISMIR, pp. 183–189.

Simon, I., Basu, S., Salesin, D., and M. Agrawala 2005. “Audio Analogies: Creating

new music from an existing performance by concatenative synthesis.”

Proceedings of the International Computer Music Conference ICMC’05.

Silla Jr., C. N., Koerich, A. L. and C. A. A. aestner. 2008. “A Machine Learning

Approach to Automatic Music Genre Classification,” Journal of the Brazilian

Computer Society, 14(3): 7–18.

Snyer, B. 2000. Music and memory. Cambridge University Press.

Soulez, F., Rodet, X. and D. Schwarz. 2003. “Improving Polyphonic and Poly-

Instrumental Music to Score Alignment.” Ed. Holger H Hoos and David

Bainbridge. International Conference on Music Information Retrieval (ISMIR),

pp: 143-148.

Spanias A. 1994. “Speech coding: A Tutorial Review,” Proceedings of the IEEE

82(10): 1541-1582

Srinivasan, S, and D Wang. 2005. “A schema-based model for phonemic

restoration,” Speech Communication, 45(1): 63-8

Srinivasan, A. 2012. “Speaker Identification and Verification using Vector Quantization

and Mel Frequency Cepstral Coefficients,” Engineering and Technology 4(1): 33-

40.

Steven, D. 1994. Musical Meaning and Expression. Ithaka: Cornell University Press.

Stowell, D. and M. Plumbley. 2007. “Adaptive whitening for improved real-time audio

onset detection.” Proceedings of the International Computer Music Conference

ICMC’07.

Stroppa, M. 1999. “Live electronics or live music? Towards a critique of interaction,”

Contemporary Music Review, 18(3):41–77.

235

Tanaka, A. 2006. “Interaction, Experience, and the Future of Music.” In . O’ Hara and

B. Brown, eds. Consuming Music Together: Social and Collaborative Aspects of Music

Consumption Technologies. Dordrecht, Netherlands: Springer, pp. 267–288.

Tatlas, N., Floros, A. Zarouchas, T. and John Mourjopoulos. 2007. “Perceptually-

Optimized Error Concealment for Audio Over WLANs.” The Mediterranean

Journal of Electronics and Communications 3(3): 77-86

Temperley, D. 2007. Music and Probability. The MIT Press.

Tetsuro, ., Goto, M., omatani, ., Ogata, T. and H.G Okuno. 2005. “Instrument

Identification in Polyphonic Music: Feature Weighting with Mixed Sounds, Pitch-

Dependent Timbre Modeling, and Use of Musical Context,” In Science And

Technology, ed. Joshua D Reiss and Geraint A Wiggins, 558-563.

Thompson, W. F., Schellenberg, E. G. and G. Husain. 2004. “Decoding speech prosody:

do music lessons help?” Emotion 4(1): 46-64.

Thornburg H. 2005. “Detection and Modeling of Transient Audio Signals With Prior

Information.” PhD diss., Stanford University.

Timmers, R. 2002. Freedom and constraints in timing and ornamentation:

investigations of music performance. Maastricht, Shaker.

Todd, N. P. 1992. The dynamics of dynamics: A model of musical expression. Journal

of the Acoustical Society of America 91(6): 3540-3550.

Toiviainen, P., Tervaniemi, M., Louhvuori, J., Saher, M., Huotilainen, M. and

Näätänen. 1998. “Timbre similarity: convergence of neural, behavioral, and

computational approaches,” Music Perception 16: 223-241

Tzanetakis G. and P. Cook. 2002. “Musical Genre Classification of Audio Signals,”

IEEE Transactions on Speech and Audio Processing, 10(5): 293-302.

Urbano J., Downie J., McFee B., Schedl M. 2012. “How Significant is Statistically

Significant? The Case of Audio Music Similarity and Retrieval,” in: Proceedings

of the 13th International Society for Music Information Retrieval Conference

(ISMIR 2012), 6p.

Valin, J. M., Maxwell, G., Vos, K. and T. B. Terriberry. 2013. “High-Quality, Low-

Delay Music Coding in the Opus Codec”, Proceedings of the 135th Audio

Engineering Society Convention, New York City.

Valin, J. M., Terriberry, T. B., Montgomery, C. and G. Maxwell. 2009. “A High-

Quality Speech and Audio Codec With Less Than 10 ms Delay.” IEEE

Transactions on Audio, Speech and Language Processing. 18(1): 58-67.

Vallis, O., Diakopoulos, D., Hochenbaum, J. And A. Kapur. 2012. “Building on the

Foundations of Network Music: Exploring Interaction Contexts and Shared

Robotic Instruments,” Organised Sound, 17(1):62-72

236

Vercoe, B. L., Gardner, W. G. and E. D. Scheirer. 1998. “Structured audio: Creation,

transmission, and rendering of parametric sound representations,” Proeedings of

IEEE, 86(3): 922–940.

Vercoe, B.L., and M.S. Puckette, (1985) “Synthetic Rehearsal: Training the Synthetic

Performer,” in Proceedings, ICMC, Burnaby, BC, Canada, pp. 275-278.

Vercoe, B.L. (1984) “The Synthetic Performer in the Context of Live Performance,” in

Proceedings, International Computer Music Conference, Paris, pp. 199-200.

Verhelst, W. and M. Roelands. 1993. “An Overlap-add Technique Based on Waveform

Similarity (WSOLA) for High Quality Time-Scale Modification of Speech,”

Proc. IEEE ICASSP-93, pp. 554–557.

Waadeland, C. H. 2001. “It Don't Mean a Thing If It Ain't Got That Swing: Simulation

Expressive timing Through Modulated Movements.” In Journal of New Music

Research 30(1), 23-37.

Wang, De L. 2007. “Computational scene analysis,” Challenges for computational

intelligence 191: 163-191.

Walker, W. F. 1997. “A Computer Participant in Musical Improvisation,” Proceedings

of the ACM Conference on Human Factors in Computing Systems (CHIʼ97), pp.

14-17.

Whalley I.2009. “Software Agents in Music and Sound Art Research/Creative Work:

current state and a possible direction,” Organised Sound, 14(2): 156-167.

Wichern, G., Jiachen, X., Thornburg H., Mechtley, B. and A Spanias. 2010.

“Segmentation, Indexing, and Retrieval for Environmental and Natural

Sounds,” IEEE Transactions On Audio Speech And Language Processing, 18(3):

688-707.

Widmer, G. and W. Goebl. 2004. “Computational models of expressive music

performance: The state of the art,” Journal of New Music Research, 33(3):203–

216.

Widmer, G. 2003. “Discovering simple rules in complex data: A meta-learning

algorithm and some surprising musical discoveries,” Artificial Intelligence 146(2):

129–148

Wing, A.M. and A.B. ristofferson. 1973. “Response delays and the timing of discrete

motor responses,” Perception and Psychophysics 14: 5–12

Wright, M., and A. Freed. 1997. “Open Sound Control: a new protocol for

communicating with sound synthesizers,” Proc. of the 1997 Int. Computer Music

Conf. Thessaloniki, Hellas: ICMA, pp. 101–104.

Wu, X., Dhara, K.K. and V. rishnaswamy. 2007. “Enhancing Application-Layer

Multicast for P2P Conferencing,” In Proceedings of the 4
th

 IEEE Consumer

Communications and Networking Conference, pp. 986-990.

237

Xiao, J., Tammam, T., Chunyu, L., and Yao Zhao. 2011. “Real-time forward error

correction for video transmission,” 2011 Visual Communications and Image

Processing (VCIP). IEEE.

Xiong, B. and O. Izmirli. 2012. “Audio-To-Audio Alignment Using Particle Filters to

Handle Small and Large Scale Performance Discrepancies,” Proceedings of the

International Computer Music Conference, pp. 539-542.

Xu, A., Woszczyk, W., Settel, Z., Pennycook, B., Rowe, R., Galanter, P., Bary, J.,

Martin, G., Corey, J., and J. Cooperstock. 2000. “Real time streaming of multi-

channel audio data through the Internet,” Journal of the Audio Engineering

Society, 48(7/8): 627-641.

Yadollahi, A., and Z. M. . Moussavi. 2006. “A robust method for heart sounds

localization using lung sounds entropy,” IEEE Transactions on Biomedical

Engineering, 53(3): 497-502.

Young, M. W. 2010. “Identity and Intimacy in Human-Computer Improvisation.”

Leonardo Music Journal, 20: 97-103

Zanon, P. and G. D. Poli. 2003. “Estimation of parameters in rule systems for

expressive rendering in musical performance,” Computer Music Journal 27(1):

29–46

Zatorre, R. J., J. L. Chen, and V. B. Penhune. 2007. “When the Brain Plays Music:

Auditory–Motor Interactions in Music Perception and Production.” Nature

Reviews Neuroscience, 8(7):547–558.

Zen, Heiga, eiichi Tokuda, and Alan W Black. 2009. “Statistical parametric speech

synthesis,” Speech Communication 51(11): 1039-1064.

Zils, A. and F. Pachet. 2001, "Musical Mosaicing", Proceedings of the COST G-6

Conference on Digital Audio Effects (DaFx-01), pp: 39–44.

238

Eidesstattliche Erklärung

Ich versichere an Eides Statt durch meine eigenhändige Unterschrift, dass ich die

beiliegende Arbeit selbstständig und ohne fremde Hilfe angefertigt und alle Stellen, die

wörtlich oder annähernd wörtlich aus Veröffentlichungen entnommen sind, als solche

kenntlich gemacht habe. Außerdem habe ich mich keiner anderen als der angegebenen

Literatur bedient. Diese Versicherung bezieht sich ebenfalls auf die dazu gehörigen

Zeichnungen, Skizzen und bildliche Darstellungen dieser Arbeit.

... ...

Datum Chrisoula Alexandraki

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 From score to audio-based musical analysis
	1.2 Texture, deviations and levels of music performance
	1.3 Musical anticipation in ensemble performance
	1.4 Collaborative performance across distance
	1.5 Dissertation structure

	PART I: RELATED WORK
	2 Networked Music Performance
	2.1 Early attempts and follow-up advancements
	2.2 Research challenges
	2.3 Realistic vs. Non-realistic NMP
	2.4 Latency tolerance in ensemble performance
	2.5 Fundamentals of NMP system development
	2.5.1 Software applications
	2.5.1.1 Client Software
	2.5.1.2 Server Software

	2.5.2 Network infrastructures
	2.5.2.1 QoS issues
	2.5.2.1.1 Network throughput
	2.5.2.1.2 Latency and Jitter
	2.5.2.1.3 Packet Loss

	2.5.2.2 Network protocols

	2.6 Open issues in NMP research

	3 Machine Musicianship
	3.1 Machine Listening Approaches
	3.2 Music listening and relevant computational affordances
	3.2.1 Automatic music transcription
	3.2.2 Audio-to-score alignment
	3.2.3 Audio-to-audio alignment
	3.2.4 Computer accompaniment and robotic performance

	3.3 Machine Musicianship in the context of NMP

	4 Concatenative Music Synthesis
	4.1 General methodology
	4.1.1 Audio segmentation
	4.1.2 Segment analysis and tagging
	4.1.3 Target analysis
	4.1.4 Matching (Unit Selection)
	4.1.5 Concatenation

	4.2 Concatenation in speech synthesis and coding
	4.3 Contemporary Relevant Initiatives
	4.3.1 Compositional approaches
	4.3.1.1 Jamming with Plunderphonics
	4.3.1.2 CataRT
	4.3.1.3 Input-Driven explorative synthesis

	4.3.2 High fidelity instrumental simulation
	4.3.2.1 Expressive Performance of monophonic Jazz Recordings
	4.3.2.2 Synful Orchestra
	4.3.2.3 Vocaloid

	4.4 Comparison with the present work

	PART II: RESEARCH METHODOLOGY
	5 Research Focus and System Overview
	5.1 Rationale and Objective
	5.2 Computational Challenges
	5.2.1 Real-time constraints
	5.2.2 Audio quality constraints

	5.3 Assumptions - Prerequisites
	5.4 Adopted Methodology

	6 Online Audio Feature Extraction
	6.1 Feature extraction and visualisation
	6.2 Mathematical notation
	6.3 A note on frequency transforms
	6.4 Energy Features
	6.4.1 Energy (E)
	6.4.2 RMS amplitude
	6.4.3 Log Energy (LE)

	6.5 Onset Features
	6.5.1 High Frequency Content (HFC)
	6.5.2 Spectral Activity (SA)
	6.5.3 Spectral Flux (SF)
	6.5.4 Phase Deviation (PD)
	6.5.5 Complex Domain Distance (CDD)
	6.5.6 Modified Kullback-Leibler Divergence (MKLD)

	6.6 Pitch Features
	6.6.1 Wavelet Pitch (WP)
	6.6.2 Peak-Structure Match (PSM)

	7 Offline Audio Segmentation
	7.1 Blind vs. by-alignment approaches
	7.2 Onsets and transient phenomena
	7.3 Typical blind onset detection methodology
	7.3.1 Pre-processing
	7.3.2 Reduction
	7.3.3 Peak-picking

	7.4 Offline segmentation in the proposed system
	7.4.1 A Robust onset detection algorithm
	7.4.2 Generating Segment Descriptions

	8 HMM Score Following
	8.1 The HMM approach
	8.2 Mathematical Foundation
	8.2.1 Definition of an HMM
	8.2.2 Hypothesis and computational approach

	8.3 Design considerations
	8.3.1 States, transitions and HMM topologies
	8.3.2 Observations and observation Probabilities
	8.3.3 Training Process
	8.3.3.1 Multiple observation sequences
	8.3.3.2 Obtaining an initial alignment
	8.3.3.3 Numerical instability
	8.3.3.4 Memory Requirements

	8.3.4 Decoding Process

	8.4 HMM in the proposed system
	8.4.1 Offline HMM training
	8.4.2 Real-time HMM Decoding

	9 Segmental Re-Synthesis
	9.1 Rendering expressive musical performance
	9.2 Technical approaches to segmental re-synthesis
	9.2.1 Segment transformations
	9.2.1.1 Phase Vocoder Transformations
	9.2.1.2 SOLA transformations

	9.2.2 Eliminating perceptual discontinuities
	9.2.3 Real-time approaches and the need for anticipation

	9.3 Synthesis in the present system
	9.3.1 Performance Monitoring and future event estimation
	9.3.2 Segment Transformations
	9.3.3 Concatenation

	PART III: IMPLEMENTATION & VALIDATION
	10 The BoogieNet software prototype
	10.1 Software availability
	10.2 Using BoogieNet
	10.2.1 Offline Audio Segmentation (oas)
	10.2.2 Performance Model Acquisition (pma)
	10.2.3 Train Performance Model (tpm)
	10.2.4 Offline Audio to Score Alignment (oasa)
	10.2.5 Real-time analysis/synthesis (rtas): single-peer
	10.2.6 Real-time UDP communication (udp): udp-peer

	10.3 System Overview
	10.3.1 C++ Classes
	10.3.2 Data Files
	10.3.2.1 ARFF File
	10.3.2.2 Model file
	10.3.2.3 Performance Description file

	10.4 Third Party Libraries

	11 Experimental Evaluation
	11.1 Considerations on the evaluation methodology
	11.1.1 The lack of a formal user evaluation
	11.1.2 Standard evaluation metrics and significance of results
	11.1.3 Lack of multiple training sequences
	11.1.4 Algorithm fine tuning

	11.2 Evaluation of algorithmic performance
	11.2.1 Dataset
	11.2.2 Measures
	11.2.3 Experimental setup
	11.2.4 Offline Audio Segmentation (OAS)
	11.2.5 Real-time Audio to Score Alignment
	11.2.5.1 Results prior to HMM training (RTAS-INIT)
	11.2.5.2 Results after HMM training (RTAS-TRAINED)

	11.2.6 Comparison of Results
	11.2.7 On the performance of segmental re-synthesis

	11.3 Network experiment
	11.3.1 Bandwidth consumption
	11.3.2 Network latency and jitter
	11.3.3 The effect of packet loss

	11.4 Consolidation of results

	12 Conclusions
	12.1 Summary and concluding remarks
	12.2 Contributions
	12.3 Implications, shortcomings and future perspectives

	13 Appendix: Numerical data obtained in the evaluation experiments
	14 References

