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Abstract 

The general scope of this work is to investigate potential benefits of Networked Music 

Performance (NMP) systems by employing techniques commonly found in Machine 

Musicianship. Machine Musicianship is a research area aiming at developing software 

systems exhibiting some musical skill such as listening, composing or performing 

music. A distinct track of this research line, mostly relevant to this work, is computer 

accompaniment systems. Such systems are expected to accompany human musicians by 

causally analysing the music being performed and timely responding by synthesizing an 

accompaniment, or the part of one or more of the remaining members of a performance 

ensemble. The objective of the present work is to investigate the possibility of 

representing each performer of a dispersed NMP ensemble, by a local computer-based 

musician, which constantly listens to the local performance, receives network 

notifications from remote locations and re-synthesizes the performance of remote peers. 

Whenever a new musical construct is recognized at the location of each performer, a 

code representing that construct is communicated to all of the remaining musicians, as 

low-bandwidth information. Upon reception, the remote audio signal is re-synthesized 

by splicing pre-recorded audio segments corresponding to the musical construct 

identified by the received code. Computer accompaniment systems may use any 

conventional audio synthesis technique to generate the accompaniment. In this work, 

investigations focus on concatenative music synthesis, in an attempt to preserve all 

expressive nuances introduced by the interpretation of individual performers. Hence, the 

research carried out and presented in this dissertation lies on the intersection of three 

domains, which are NMP, Machine Musicianship and Concatenative Music Synthesis.  

The dissertation initially presents an analysis of the current trends in all three research 

domains, and then elaborates on the methodology that was followed to realize the 

intended scenario. Research efforts have led to the development of BoogieNet, a 

preliminary software prototype implementing the proposed communication scheme for 

networked musical interactions. Real-time music analysis is achieved by means of 

audio-to-score alignment techniques and re-synthesis at the receiving end takes place by 

concatenating pre-recorded and automatically segmented audio units, generated by 

means of onset detection algorithms. The methodology of the entire process is presented 

and contrasted with competing analysis/synthesis techniques. Finally, the dissertation 

presents important implementation details and an experimental evaluation to 

demonstrate the feasibility of the proposed approach.   
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1 Introduction 

Within the last decades, the ever-increasing availability of affordable computational 

resources and networked media communications have thoroughly altered the way music 

is created, distributed and analysed. Similarly to alternative information domains, the 

impact of technological developments on musical content interactions is twofold: firstly 

it has permitted to overcome well-known limitations of conventional music distribution 

and handling and secondly it has led to the emergence of novel and previously 

unforeseen affordances, offered to music consumers and music professionals. For 

instance in the case of musicology, the digitization of recorded music and the wide 

availability of tools for computational processing have allowed analysing music on the 

sound level, rather than on the score level. Although sound is the most prevalent means 

for analysing music, sound-analysis was neither feasible nor anticipated in traditional 

musicology.  

At the same time, recent technological advances have enabled new types of applications 

and services that do not attempt to replicate or substitute conventional interactions with 

music content. Currently, a large number of online music repositories, containing tens 

of millions of music tracks and a notably large number of related applications and 

services are considered commonplace for the average consumer. These services allow a 

plethora of user affordances both in terms of individual man-machine interactions as 

well as in terms of social and collaborative enactments that are not limited to music 

distribution and sharing or mere exchange of musically informed metadata. 

Personalized music recommendations (e.g. last.fm), identification of music tracks by 

their acoustic fingerprint (e.g. SoundHound) and prediction of the popularity of one’s 

own musical works (e.g. uplaya.com) present examples of novel functionalities offered 

to music consumers and music professionals.   

Yet a further perspective in this track of new developments relates to the primary 

activity of music making, that of music performance. In musicology, technological 

innovations have allowed for the computational modelling of expressive music 

performance. Performer identification using rule-based models and machine learning 

methods presents an example application of this research line. In terms of real-time 

human-machine interactions, technological advancements have encouraged the 

development of agents that are able to engage in collaborative music performance and 

artificially accompany human musicians. Furthermore, in terms of human-to-human 

musical interactions, the increasing availability of networked communications has 

allowed for music collaborations taking place across geographical distance. 

This dissertation aims at establishing a connection between computer accompaniment 

and networked music performance systems. There are several possible ways to support 
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networked music performance by means of computer accompaniment or more generally 

machine musicianship. This work focuses on experimenting with the idea of 

substituting each performer of a distributed music ensemble with an artificial performer, 

replicated across all remote peers. These replicas are constantly informed about the live 

music performed at the corresponding network location and lively produce a faithful 

rendition of the remote performance at the network sites of collaborating peers. 

1.1 From score to audio-based musical analysis 

Seen from a musicological perspective, the vast digitization of music sources and the 

developments in area of audio signal processing have led to a sound-based rather than 

the conventional score-based analysis of musical works. There are many reasons why 

this discipline shift was essential. Firstly, in popular music, as well as in 

ethnomusicological studies, there is no score at all describing musicians’ performance. 

Although Western researchers have often transcribed orally transmitted music, these 

transcriptions are often influenced by the musical orientation of the transcribing 

researcher and may therefore be seen as one of several possible interpretations. Also, as 

many of the crucial parameters of musical pieces do not have a standard notation, 

transcribers often devise new symbols producing transcriptions that are often too hard to 

read. This holds for scores trying to fix microtunings of non-Western musical scales and 

of pitch articulations of any kind. It also holds for rhythmic deviations and 

polyrhythmic structures. Most Western notation assumes a divisive rhythmic structure. 

For music of the Balkan including Greece and some parts of Turkey, additive notations 

have been proposed (Fracile 2003). For African music, ethnomusicological research 

often uses the notion of elementary pulses introduced by Alfons Dauer (see e.g. Arom 

1991). Still these are again Western interpretations and may not correspond to the 

cognitive structure of music in the minds of the musicians. 

Secondly, scores have only very rough notions of timbre. Only few performance rules 

like sul ponticello or sul tasto or indications of musical instruments in orchestral scores 

are given. Performance nuances adopted by musicians cannot be notated in a simple 

way. Although over the last fifty years many investigations about musical timbre have 

been performed, up to now there is no music theory of timbre widely accepted and used 

in practice. Indeed, algorithms and results of Music Information Retrieval systems come 

more closely to a representation of musical timbre.  

So, naturally music on the sound level includes all aspects of pitch, rhythm, and timbre 

and is therefore the ideal starting point for analysing music. The algorithms developed 

over the last decades are quite robust in many ways and so feasible to address musical 

features often fast and convenient, and, more importantly, with much more information 

and content than traditional scores or oral transcriptions. 
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1.2 Texture, deviations and levels of music 
performance  

Early music theory analysts like Meyer (1956) discerned that musical meaning may be 

found either within the structure of a musical work or when certain musical constructs 

are referential and therefore informed by extra-musical concepts, actions, emotional 

states and character. In fact, such references may originate from the listeners own 

experience or they may be intentionally driven by the composer by facilitating extra-

musical narratives or quasi-linguistic references, as for example in programme music. 

Meyer goes further to discern two types of psychological effects generated by music: 

intellectual music perception (i.e. musical meaning generated purely by the musical 

relationships set forth by the work of art) and expressional music perception (i.e. 

musical relationships capable of exciting particular feelings and emotions of the 

listener). Still for Meyer meaning is within the musical texture, the score of pitches 

played by different instruments over time. 

The other approach is to find meaning not in the texture itself but in the deviations in 

terms of pitch and rhythm as proposed by Keil & Feld (1994). They call these 

deviations Participatory Discrepancies to point to the social meaning of music 

participating with the audience. Others had similar approaches discussing the 

relationship between texture and its deviations (Stephen 1994, Gabrielsson 1982, 

Timmers 2002, etc.). Many studies have been performed to follow this reasoning and 

measure deviations in music, e.g. investigate the Jazz swing feel (Prögler 1995, Ellis 

1991, Friberg and Sundström 2002, Waadeland 2001, Collier and Collier 2002, Rose 

1998, among others), but also discuss pitch deviations (Gabrielsson and Lindström 

2010, Folio and Weisberg 2006, Dannenberg 2002). It was found that much of the 

information of musical performance is within these fine structures and that performing a 

score strictly like a simple MIDI sequencer is neither realistic nor appreciated by 

listeners. 

Studies of expressive musical performance (Widmer & Goebl 2004) address two levels 

of computational analysis: note-level and multi-level. Expression at the note level 

concerns deviations in the timing, dynamics and articulation of the performance of 

individual notes. Note-level observations are then supplemented by higher-level 

expressive strategies related to shaping an entire musical phrase. These ideas of the 

relationships between musical levels go back to Heinrich Schenker, who proposed an 

‘Ursatz’ and ‘Urmelodie’, a basic texture and melody of music. His ideas form the basis 

of the mainstream of American Music Theory nowadays called Schenkerism. Still in his 

model there are no explicit rules for extracting the Ursatz from a given piece.  

To go beyond Schenkerism, generative models have been developed, inspired by the 

generative grammar of Noam Chomsky, most prominent the Generative Theory of 

Tonal Music by Lerdahl & Jackendoff (1983). There, well-formatness rules according 

to Gestalt principles are heuristically given to explain scores of Vienna Classical Music. 
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In terms of multilayer textures, prolongation and reduction rules are formulated. Also 

Clarke (2001) claims that professional performers develop strategies for their 

performance and that these strategies are generative as well as hierarchical and 

especially so when a piece is performed from memory. At the same time Clarke 

acknowledges that considering the knowledge processes of performers are entirely 

hierarchical is rather implausible due to the high complexity of musical works. He 

explains that it is more likely that some part of the entire structure is activated at any 

given time, and that this part is related to the structure of isolated phrases or the 

connection between successive phrases.  

In agreement with Clark’s notion of structure and interpretation, Widmer and Goebl 

(2004) consider examples of multi-level musical interpretation such as using abrupt 

tempo turns combined with rather constant dynamics, combining crescendo with 

ritardando, repetition of a certain phrase totally different in the second time, and so on.  

Consequently, the perception of musical expression is realized on the structural 

components within which it occurs. It is therefore of vital importance to preserve 

contextual information when attempting to generate expressive performances, instead of 

modelling isolated notes. Approaches to rendering expressive music performance are 

further discussed in the main part of the dissertation, in section 9.1. 

1.3 Musical anticipation in ensemble performance 

As many problems of Music Information Retrieval have been approached quite 

successfully today, like pitch detection, beat tracking, etc., many problems of musical 

performance are still to be discussed. One is the correlations occurring between the 

different levels of musical performance, the note or beat level and higher levels like 

meter, bar, phrase or form. As already discussed, these problems appear often over the 

last hundred of years or so, starting with Schenkerism and being discussed again in the 

80’s with the Generative Theory of Tonal Music. It is reasonable to assume a 

dependency between these levels and cognitive structures that act on performance 

details on the note level by also considering the development of higher levels. So 

models are needed to explain these relations or at least give a clue to basic problems and 

features. 

As higher-order levels also need to deal with expectations of what will come next not 

only on a note but also on a phrase and further a form level, models explaining 

performance also consider ensemble playing. When the members of an ensemble do 

know each other’s performance styles very well, it is evident that the musicians know 

when exactly a co-musician will play a note in advance, so before the note is actually 

played. This type of intelligence emanates from different knowledge processes, 

including the cognitive understanding of the performance plan (i.e. the score or any 

alternative form of pre-existing arrangement), the built-up of the music piece up to that 

time and finally the experience gained through past rehearsals of the ensemble. 
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Collectively, these processes allow hearing the performance of others in advance. This 

type of anticipation is a fundamental characteristic of ensemble performance and is 

further elaborated in section 9.2.3. 

The idea here is that if a computational model would be able to perform such a task, it 

would be very much suitable operate in networked collaborations, where the 

transmission delay between performers across the globe is so large that it is audible to 

the musicians playing together via computer networks. The models discussed in this 

dissertation are not to answer all questions addressed above, still performances possible 

with them in ensemble playing via a network gives some ideas about success and 

restrictions and therefore may add some answers to this field. 

1.4 Collaborative performance across distance 

Networked Music Performance targets the implementation of systems that allow 

musicians to collaborate from distance using computer networks. The concept of 

dislocated collaborative performances dates back to the years of John Cage (Carôt, 

Rebelo and Renaud 2007). However, realistic bidirectional music collaborations across 

distance became possible only around 2000 with the advent of the Interrnet2 network 

backbone (Chafe et al. 2000).   

Although, there is evidence that such network infrastructures allow transatlantic musical 

collaborations
1
 (Carôt and Werner 2007), networked music performance still remains a 

challenge. The experimental nature of these performances shows that the main 

technological constraints limiting wide use of NMP systems have not been defeated. 

Specifically, the main technological barriers to implementing realistic NMP systems 

concern the fact that these systems are highly sensitive in terms of latency and 

synchronization, because of the requirement for ‘real-time’ communication, as well as 

highly demanding in terms of bandwidth availability and error alleviation, because of 

the acoustic properties of music signals. Moreover, an equally important challenge 

relates to sustaining musician engagement in synchronous computer-mediated 

collaboration in the absence of physical co-presence. 

Meanwhile, in an adjacent research track, the concept of the ‘synthetic performer’ 

appears in mid 1980s through the inspiring works of Vercoe (1984), Vercoe and 

Puckette (1985) and Dannenberg (1985). The motivation in these works is grounded on 

a computer system which will be able to replace any member of a music ensemble 

through its ability to listen, perform and learn musical structures in a way which is 

comparable to the one employed by humans. The concept of the synthetic performer 

was later extended to ‘machine musicianship’ (Rowe 2001). Relevant terms referring to 

the capability of computers to demonstrate musical comprehension are ‘computational 

audition’ (in an analogy to ‘computer vision’) and ‘machine listening’ (Rowe 1994). 

                                                
1 http://networkmusicfestival.org/ 

http://networkmusicfestival.org/
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Machine listening pictures a computer system that, in response to an audio input, 

discards inaudible information and maps audible signal attributes to higher-level 

musical constructs such as notes, chords, phrases. Machine listening is not constrained 

to musical signals. It may also concern speech signals (i.e. speech recognition) as well 

as environmental sounds.  With respect to music, machine listening techniques are 

relevant to the majority of Music Information Retrieval (MIR) tasks (Downie 2008). 

Nevertheless, in comparison to MIR research, the verb ‘listening’ presents an implicit 

bias towards the detection of musical constructs that temporally evolve within a music 

piece. Hence, relevant MIR tasks include music transcription and score following, as 

opposed to more general classification tasks, such as genre classification or mood 

detection. Moreover, the implicit embodiment of artificially intelligent agents in 

machine listening systems (Whalley 2009), qualifies them as being able to infer musical 

knowledge while music is sequentially generated or acquired, therefore subsuming 

online behaviour. Even further, when these systems are expected to react (e.g. perform) 

in response to musical knowledge acquisition and do so within certain time constraints, 

their requirement for real-time behaviour is additionally manifested. The relevant 

literature refers to these systems as ‘real-time machine listening’ systems (Collins 2006) 

and their capabilities are collectively referred to as ‘real-time machine musicianship’.  

The challenges of implementing real-time musicianship in computer systems are 

analogous to those of networked music performance systems. This fact presents a 

compelling urge to investigate their evolution in parallel. In short, this dissertation will 

explore the perspective of incorporating machine musicianship so as to meet the 

requirements of networked music performance architectures. 

1.5 Dissertation structure 

This dissertation is organized in three parts: 

The first part is entitled ‘Related Work’ and comprises three chapters that present 

research initiatives and achievements in three domains that are highly relevant to the 

present research: Networked Music Performance, Machine Musicianship and 

Concatenative Music Synthesis. Examples of successful developments are presented 

and compared with the objectives of the present work and the prototype system to be 

developed. 

The second part, entitled ‘Research Methodology’, describes the methodology that was 

followed to realize the intended scenario for live music collaborations across the 

Internet. It consists of five chapters. The first one, entitled ‘Research Focus and System 

Overview’, elaborates on the research challenges being confronted as compared to 

alternative research initiatives, and provides an overview of the system to be developed 

with respect real-time audio analysis, network transmissions and re-synthesis of the live 

performance of remote peers. As audio feature extraction is a pre-processing step in any 

audio analysis task, the chapter that follows is dedicated to computational methods and 



 

20 

 

mathematical definitions of features that were investigated in the context of the present 

work. The remaining three chapters describe the adopted methodology with respect to 

three algorithmic processes, which are offline audio segmentation, real-time audio 

analysis by alignment to a music score and segmental re-synthesis to take place at 

remote network locations. 

Then, the third part is entitled ‘Implementation & Validation’. Chapter 10 provides 

details on the object oriented design and the implementation of the final prototype 

system. All third party libraries and source code used to implement the final system 

have been clearly indicted and appropriately referenced (section 10.4). The chapter that 

follows reports on evaluation experiments therefore providing evidence for the 

feasibility of the proposed communication scheme for NMP. 

Finally, the concluding chapter consolidates the work presented in this dissertation, 

outlines contributions and research achievements and presents future perspectives for 

further work in the proposed research direction. 
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PART I: 

RELATED WORK  
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2 Networked Music Performance  

This chapter provides an overview of past, current and ongoing research initiatives on 

NMP. Initially, the chapter elaborates on the origins of NMP and the follow-up 

advancements. It presents research challenges and discusses the most important 

impediment of distributed ensemble performances, that of communication latencies. 

Following, the chapter concentrates on delineating fundamental issues in the 

development of NMP systems with respect to software architectures and network 

infrastructures. These issues are revisited in the final part of the dissertation providing 

details on the implementation and validation of the system under investigation. Finally, 

the chapter is concluded by discussing open issues pending further attention.  

2.1 Early attempts and follow-up advancements 

Physical proximity of musicians and co-location in physical space are typical pre-

requisites for collaborative music performance.  Nevertheless, the idea of music 

performers collaborating across geographical distance was remarkably intriguing since 

the early days of computer music research.   

The relevant literature appoints the first experimental attempts for interconnected 

musical collaboration to the years of John Cage. Specifically, the 1951 piece “Imaginary 

Landscape No. 4 for twelve radios” is regarded as the earliest attempt for remote music 

collaborations (Carôt, Rebelo and Renaud 2007). The piece was using interconnected 

radio transistors which were influencing each other in respect with their amplitude and 

timbre variations (Pritchett 1993). A further example, the first attempt of performing 

music using a computer network, in fact a Local Area Network (LAN), was the 

networked music performed by the League of Automatic Music Composers, which was 

a band/collective of electronic music experimentalists active in the San Francisco Bay 

Area between 1977 and 1983 (Barbosa 2003; Follmer 2005). The League realised the 

computer network as an interactive musical instrument made up of independently 

programmed automatic music machines, producing a music that was noisy, difficult, 

often unpredictable, and occasionally beautiful (Bischoff, Gold, and Horton 1978). 

These early experimental attempts are predominantly anchored on exploring the 

aesthetics of musical interaction in a conceptually ‘dissolved and interconnected’ 

musical instrument.  The focus seems to be placed on machine interaction rather than on 

the absence of co-presence, as in both of these initiatives the performers were in fact co-

located. Telepresence across geographical distance initially appeared in the late 1990s 

(Kapur, Wang and Cook 2005) either as control data transmission, noticeably using 

protocols such as the Remote Music Control Protocol (RMCP) (Goto, Neyama, and 
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Muraoka 1997) and later the OpenSound Control (Wright and Freed 1997), or as one 

way transmissions from an orchestra to a remotely located audience (Xu et al. 2000) or 

a recording studio (Cooperstock and Spackman 2001).  

True bidirectional audio interactions across geographical distance became possible with 

the advent of broadband academic network infrastructures in 2001, the Internet2 in the 

US and later the European GEANT. In music, these networks enabled the development 

of frameworks that allowed remotely located musicians to collaborate as if they were 

co-located. As presented by the Wikipedia
2
, currently known systems of this kind are 

the Jacktrip application developed by the SoundWire research group at CCRMA in the 

University of Stanford (Cáceres and Chafe 2009), the Distributed Immersive 

Performance (DIP) project at the Integrated Systems Center of the University of 

Southern California (Sawchuck et al. 2003) as well as the DIAMOUSES project 

conceived and developed at the Dept. of Music Technology and Acoustics Engineering 

of the Technological Educational Institute of Crete (Alexandraki et al. 2008).  

These systems permitted the realization of distributed music collaborations across 

distance. In practical terms, this translates to audio signals generated at one site reaching 

a different network site with an acceptable sound quality and within an acceptable time 

interval, so as effectively resemble collocated music performance. Unfortunately, the 

widely available Digital Subscriber Lines (xDSL) are not capable of coping with the 

requirements of live music performance, thus musicians are not offered the possibility 

to experiment with such setups. 

2.2 Research challenges 

Despite technological advancements and the proliferation of the Internet, networked 

music performance still remains a challenge. The main technological obstacles to 

implementing realistic NMP systems concern the fact that these systems are highly 

sensitive in terms of latency and synchronization, because of the requirement for real-

time communication, and highly demanding in terms of bandwidth availability and error 

alleviation, because of the acoustic properties of music signals. Latency is the most 

important obstacle hindering the collaboration of performers and it is introduced 

throughout the entire process of capturing, transmitting, receiving, and reproducing 

audio streams. Existing latency may be due to hardware and software equipment, 

network infrastructures, and the physical distance separating collaborating peers. Even 

worse, latency variation, referred as network jitter, forms an additional barrier in 

ensuring smooth and timely signal delivery.  Furthermore, an additional challenge 

relates to the actual experience of collaborative NMP and the value resulting from 

making this practice a virtual endeavour in cyberspace. Specifically, networked media 

may facilitate mechanisms such as sharing, feedback, and feed-through, thus catalyzing 

                                                
2 http://en.wikipedia.org/wiki/Networked_music_performance 

http://en.wikipedia.org/wiki/Networked_music_performance
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not only how music is produced and marketed but also how it is conceived, negotiated, 

made sense of, and ultimately created. 

It is therefore plausible to distinguish between two types of challenges, which can be 

summarised as technical impediments and collaboration deficiencies. Technical 

impediments render currently available consumer networks inappropriate for NMP. 

Consequently at the time of this writing, reliable NMP is restricted within academic 

community boundaries having access to broadband and highly reliable network 

infrastructures. As a result, NMP research is not offered to its intended target users and 

thus has not yet revealed its full potential to music expression.  

Collaboration deficiencies on the other hand, constraint the usability of these systems 

hence discouraging the sustainability of user communities once these have been 

established. The majority of professional musicians, although initially fascinated by the 

idea of remote collaborative performance, become sceptic when asked to do so on a 

regular basis. In their point of view, music performers should be able to see, feel, touch 

and smell each other during a collaborative performance (Alexandraki and Kalantizs 

2007).  This reflection suggests that co-presence should be enforced by the 

collaboration environment, by facilitating mechanisms that allow instant exchange of 

information which is supplementary to the auditory or visual communication. Such 

mechanisms must be tailored to the practice of real-time music making. For example, 

online score generation, score scrolling or adaptable metronomes can provide valuable 

tools for overcoming the lack of spatial proximity. 

2.3 Realistic vs. Non-realistic NMP 

A substantial body of research articles (Carôt and Werner 2007; Carôt, Rebelo and 

Renaud 2007) classifies NMP systems by considering their approach to dealing with 

audio latency, thereby distinguishing between realistic NMP solutions and latency-

accepting approaches. The first category refers to systems that aim to provide low-

latency conditions comparable to those of co-located performances. The distinguishing 

characteristic of such systems is that the audio latency between performers is kept 

below the so-called Ensemble Performance Threshold (EPT), which has been 

psychoacoustically measured and estimated to be in the range of 20-40ms (Schuett 

2002). The second category of NMP systems refers to solutions that accept 

compromises in audio latency. These latency-accepting solutions are anchored either in 

investigating how well users can adapt to the introduced latencies or in exploring how 

to creatively manipulate latencies in experimental music performances (Cáceres and 

Renaud 2008; Tanaka 2006). 

The first systems to take advantage of the reliability of the Internet2 backbone in order 

to conduct realistic NMP experiments were the Jacktrip application (Cáceres and Chafe 

2009) and the Distributed Immersive Performance (DIP) project (Sawchuck et al. 2003). 

Both of these systems focus on delivering high-quality and low-latency audio stream 
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exchange. Jacktrip is currently available as an open source software application, while 

DIP focused on transmitting multiple channels of audio and video for the purpose of 

creating an immersive experience. Although technically competent, neither of these 

systems integrates different communication channels (audio, video, and chat) and 

collaboration practices (community awareness, score manipulation, etc.) in a single 

software application. As a result, they require extra effort on behalf of the performers to 

cope with the graphic representations of the various running programs that are necessary 

for efficient multimodal communication and collaboration. In multipart performances, 

this task may be considerably bothersome. 

Alternatively, non-realistic NMP approaches handle latency by requiring some or all of 

the musicians participating in a performance session to adapt to their auditory feedback 

being delayed with respect to their motor-sensory interaction with their musical 

instruments. Systems of this kind, though less interesting academically, form the main 

bulk of the currently popular solutions for NMP. Representative examples are 

eJamming AUDiiO
3
 and Ninjam

4
. The former company has released versions that claim 

to minimize latencies, whereas the latter system adopted an approach of increasing 

latencies even further and requires performers to adapt to performing one measure 

ahead of what they are hearing (Carôt, Rebelo and Renaud 2007).  

In respect with adapting to latency, significant research has been carried out in the 

neurological domain to investigate the relationships between auditory feedback and 

motor interactions in music performance (Zatorre, Chen, and Penhune 2007). These 

relationships are being studied for different kinds of music, which are characterized by 

the speed with which pitches and rhythms change. As indicated by Lazzaro and 

Wawryznek (2001), as the pipe organ has a sound generation latency of the order of 

seconds, delays may be tolerable even in high values, depending on the participating 

instruments and the kind of music performed. However, although musicians can learn to 

adapt to constant latencies, they cannot adapt to varying latencies, caused by network 

jitter, which is why some approaches (e.g. Ninjam) prefer to further increase latency so 

as to reach more stable values. 

2.4 Latency tolerance in ensemble performance 

Since the advent of networked music collaborations a number of studies are being 

performed for the purpose of effectively measuring latency tolerance in ensemble 

performance. For Schuett (2002), this objective was defined as identifying an Ensemble 

Performance Threshold (EPT), or “the level of delay at which effective real-time 

musical collaboration shifts from possible to impossible”. Schuett observed that 

musicians would start to slow down performance tempo when the communication delay 

was raised above 30ms. However, he acknowledged that the actual threshold is likely to 

                                                
3 http://www.ejamming.com  
4 http://www.cockos.com/ninjam/ 

http://www.ejamming.com/
http://www.cockos.com/ninjam/


 

26 

 

be affected by several characteristics of the music being performed such as tempo, genre 

and instrumentation, most notably with respect to the impulsive properties of the 

participating instruments.  

This fact was further confirmed by the study of Mäki-Patola (2005), who presented a 

review concerning asynchronies between motor interactions and generated auditory 

feedback by one’s own instrument. They showed that asynchronies of up to 30ms do not 

seem to cause problems for most acoustic instruments, while when dealing with 

continuous sound instruments even latencies of 60ms may be tolerable and that the 

absence of tactile feedback (as for example in the Theremin) may further increase 

latency tolerance (Mäki-Patola and Hämäläinen 2004). In a further study, Chafe et al. 

(2004) measured the rhythmic accuracy of a clapping session between two musicians 

and showed that delays longer than 11.5ms would result in performers slowing down 

tempo, while delays shorter than 11.5ms would cause performers to accelerate.  

It is generally acknowledged that the amount of slowdown depends on the actual 

performance tempo. Hence, Chew et al. (2005) used not only tempo difference but also 

tempo scaling to characterise the effects of latency on ensemble performance. More 

recently, Driessen, Darcie and Pillay (2011) observed an amount of tempo slowdown, of 

approximately 58% for latencies between 30 and 90 ms, of two performers engaged in a 

clapping session and attempted to model this effect using theories of coupled oscillators 

with delay.    

An interesting aspect concerning the effect of latency in the tempo of ensemble 

performance would be to investigate how it relates to musical anticipation; an issue has 

already been discussed in section 1.3. In the article of Chafe et al. (2004), it is explicitly 

stated that if one considers the problem as simple as that of performer A waiting for 

performer B who is again waiting for performer A, then we would observe a steadily 

decreasing tempo, which is not really the case. The fluctuations of the observed tempo 

are attributed to the fact that performers often anticipate, push back or intermittently 

ignore one another. The article suggests that these phenomenona could be explained by 

musical expressivity and cognitive models of rhythm perception and beat anticipation, 

as for example elaborated by Large and Palmer (2002). 

Assuming a value of 30ms for the EPT, which was observed in most studies, it is worth 

noticing that this value is in fact lower that the 50ms echo threshold. This value is an 

established threshold in several studies addressing audio perception. It is considered as 

the integration time of the ear as well as the threshold of rhythm perception. Within this 

time all sensory inputs of the ear are integrated in one sensation. So if two acoustic 

events occur within a time interval of 50ms, they are perceived as a single event. In the 

domain of experimental psychology, Albert Michotte (Card, Moran and Newell 1983) 

showed that if the time separating the occurrence of two events is less than 50ms, then 

the events are perceived as connected with immediate causality. With respect to  audio 

perception, the Haas effect (a.k.a. precedence effect) showed that the perceived 

direction of a sound source will be altered, if it is followed by a second sound of a 
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different direction and within a time interval of 50ms (see for example Litovsky et al. 

1999). Furthermore, it seems that 50ms also corresponds to the threshold of rhythm 

perception. Bader (2013b) reports that one of the fastest tempi found in empirical 

musicology is that of 1200bpm (beats per minute), which correspond to one beat per 

50ms. This tempo was found in Uganda and is presumably generated by an interlocking 

of several players to a common rhythmic pattern. The time interval of 50ms corresponds 

to a frequency of 20Hz, the lower limit of audible frequencies. Hence, if two sound 

events occur within less than 50ms the audible result would correspond to a pitch 

alteration rather than affecting the perceived rhythmic pattern. Consequently, it is 

reasonable to deduce that the value of the EPT should be less than the threshold of 50ms 

for all musical events to be clearly perceived. This is in fact in agreement with the 

threshold found in the previous studies. 

2.5 Fundamentals of NMP system development 

In NMP research, the introduced latency is often thought of as comprising local 

latencies and network latencies. Respectively, two distinct entities are studied when 

developing NMP systems: the software facilitated by music performers and the 

communication medium, i.e. the computer network. In the majority of cases, NMP 

progress is concentrated on software development. Issues that are inherently related to 

the communication medium are less often addressed (e.g. Kurtisi and Wolf 2008; 

Lazzaro and Wawryznek 2001). 

2.5.1 Software applications 

NMP systems are intrinsically related to teleconferencing systems. In teleconferencing, 

delay requirements are dictated by the needs for speech-based human interaction, and 

are of the order of approximately 150 ms (Wu, Dhara and Krishnaswamy 2007). 

Compared to teleconferencing, NMP systems have a much lower tolerance to latency 

and much higher requirements in audio quality. For example, in telephony speech 

signals are sampled at the rate of 8 kHz with 8 bits per sample, while music quality is 

generally considered unacceptable when sampled at a rate below 44.1 kHz, 

corresponding to ten times more information in the case of monophonic audio encoded 

using with 16 bits per sample.  

Consequently, by overlooking their focus on musical interaction, NMP systems could 

be categorized as “ultra low-delay” and “ultra high-quality” teleconferencing systems. 

As in teleconferencing, NMP commonly necessitates the use of video, in addition to 

audio communication. Evidently, musicians establish eye-contact to synchronize their 

performance especially after a pause. Such visual communication is also time-critical 

(Sawchuck et al. 2003). If the software application used by music performers does not 

support video communication, then some external teleconferencing application (e.g. 

Skype) is often facilitated for their visual communication (Chafe 2011). 
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2.5.1.1 Client Software 

Typically, the NMP client, i.e. the software application used by music performers to 

engage in distributed performances, implements the functionalities depicted on Figure 

2-1.  

In most cases, a dedicated Graphical User Interface (GUI) will be facilitated by 

musicians to activate the different communication channels. Communication is 

achieved by means of media (i.e. audio and video) transmission, media reception and 

signaling. Signaling messages serve the purpose of easing user contact by automatically 

configuring various connection parameters that are seamless to users. For example, 

signaling alleviates from the need of knowing each other’s IP address and available 

network ports, overcoming firewall issues such as NAT traversal and automatically 

configuring media codec parameters. As a result, signaling allows offering user 

functionalities such as maintaining a list of contacts, showing the status of other users 

(e.g., online, busy, etc.) and initiating audio-visual communications without the need for 

specialised configuration. Signaling is mostly used in videoconferencing systems, but 

has also been used in the context of NMP research (e.g. Lazzaro and Wawrzynek 2001). 

 

Figure 2-1: Typical components of an NMP client application. 

With respect to media communication, Figure 2-1 depicts the processes that need to 

take place prior to network transmission and subsequent to network reception. Each of 

these processes adds to the local latency, hence having its own contribution to the total 

mouth-ear latency, a common term in audio telecommunications.  

Focusing on audio communication and the transmission direction, the delay introduced 

by the audio capturing process can be further broken down to: the delay of the physical 

distance of the performer to the microphone, that of analogue to digital conversion and 

more importantly the buffering delay. Before further processing, a sufficient portion of 

the signal needs to be obtained. The size of this portion corresponds to a time interval 

commonly referred to as buffering or blocking delay. For example, in the case of 

capturing monophonic 44.1kHz audio, a buffer of 64 samples corresponds to 1.4ms, 256 
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samples correspond to 5.8ms and 1024 samples correspond to 23.2ms. Hence, the size 

of the audio buffer should be appropriately eliminated to correspond to latencies that are 

sufficiently lower than the EPT.  

In some cases, audio capturing is followed by compression encoding. Audio 

compression aims at reducing the size of the information to be transmitted, hence 

eliminating the required network bandwidth. It is straightforward to estimate that raw 

monophonic CD quality audio (44.1kHz/16bit) corresponds to a bit rate of 705.6kbps, 

while the stereo signal requires 1.41Mbps. Clearly, requiring more audio channels or 

higher quality audio in terms of sampling rate or bit resolution further increases the data 

rate and hence the required network throughput. 

These bitrates cannot be continuously available during NMP. Thus, some NMP 

approaches employ compression encoding to reduce the required bandwidth (e.g. 

Polycom 2011; Kurtisi and Wolf 2008; Kraemer et al. 2007). Nevertheless, some NMP 

systems, and especially those intended for use over academic networks (Alexandraki 

and Akoumianakis 2010; Cáceres and Chafe 2009; Sawchuck et al. 2003) do not use 

audio compression. The choice of whether or not to use audio compression is primarily 

determined by the latencies introduced by the compression codec. Encoding latencies 

comprise both delays caused by the algorithmic complexity of the encoder as well as 

buffering delays. Compression schemes conventionally require a sufficient amount of 

data (hence increasing the buffer size), so as to effectively encode data streams and 

offer commendable data reduction. 

Further to compression encoding, an NMP client may optionally perform multiplexing. 

Multiplexing serves the purpose of combining multiple data streams in one stream, so as 

to eliminate the need for using an additional network port, hence a separate 

configuration at the receiving end, for each individual stream. For example multiple 

streams of audio or video could be combined in a single stream. Multiplexing is 

generally a lightweight process that does not significantly add to the overall latency. 

Finally, before departing to the network the possibly encoded and multiplexed audio 

chucks are wrapped in network packets. Apart from the main data, i.e. the payload, 

network packets include header information. Header information is determined and 

structured according to network protocol facilitated for media transmission. Header 

information is necessary and among other things defines the destination of each network 

packet. The network protocols used by NMP applications are briefly discussed in 

section 2.5.2.2. It is important to note that header information adds to the total data rate, 

hence increasing the required network bandwidth. A research initiative attempting to 

reduce header overhead in NMP is presented by Kurtisi and Wolf (2008). 

It can be seen from Figure 2-1, that the inverse processes takes place in the direction of 

media reception. Although processes such as audio decoding and audio rendering are 

more lightweight than encoding or capturing, media reception is not necessarily more 

efficient than media transmission. This is due to the fact that in the event of multiple 
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network nodes participating in an NMP session, a separate reception thread is 

instantiated for each one of the remaining collaborators. 

2.5.1.2 Server Software 

Although a number of NMP systems facilitate peer-to-peer communication topologies 

(e.g. Jacktrip), some approaches facilitate a server so as to ease media communications. 

The server may undertake various duties, such as media transcoding, media 

synchronization or media mixing (Kurtisi and Wolf 2008; Alexandraki and 

Akoumianakis 2010). As each of these functionalities has a certain amount of 

computational complexity, hence requiring increased processing resources that may 

further add to the overall latency, it is most often preferred to reduce  server 

functionality to mere forward the incoming media streams to the intended recipients 

This  mechanism known as media relaying. 

 

 

Figure 2-2: Peer-to-peer vs. centralised media communication in NMP. 

As shown on Figure 2-2 and experienced in the DIAMOUSES architecture 

(Alexandraki and Akoumianakis 2010), if N network nodes participate in an NMP 

session, then a peer-to-peer topology requires each node to transmit the media streams 

locally produced to the remaining N-1 nodes, and at the same time receive the streams 

from the remaining N-1 participants. This is particularly burdensome and even more so 

in widely available network infrastructures (i.e. xDSL), in which the uplink suffers from 

serious bandwidth limitations. An alternative is to use the star topology depicted in 

Figure 2-2. In this case, each network node transmits the streams produced locally to a 

single network location, i.e., to the server. The responsibility of this server is to relay 

each received stream to the remaining nodes in a single-source-multiple-destination 

communication scheme. This topology offers the advantage of significantly relieving 

the client node from high outbound bandwidth requirements.  

A further elimination of bandwidth requirements may be achieved by adopting the third 

topology depicted in Figure 2-2. In this topology, the server does not relay the received 

streams, but mixes them to produce a different stream that contains contributions from 

all participants. Although this topology reduces the requirements in inbound bandwidth 

availability (in addition to outbound), it suffers from a serious disadvantage: the 

possibility of participants to control their audio-mix is eliminated. Especially in music, 

this may prove to be a serious deficiency, hindering the collaboration of music 
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performers. During live performances, musicians may need to occasionally increase the 

audio level of certain ensemble members or even mute or solo the playback of one of 

them. Evidently, the position of musicians in orchestral settings is deliberately such that 

musicians collaborating more closely, e.g., woodwind, strings etc. are positioned closer 

to each other.  An alternative to providing a single mix to all participants, would be to 

require that an audio mixing server provides a different mix for each participating 

network node, which can controlled by that node. Unfortunately, this approach requires 

a great amount of signal processing performed on the server, as all streams need to be 

decoded, mixed or composited according to each participant’s requirements and then re-

encoded. This scheme not only requires considerable processing resources but also 

introduces a considerable amount of delay. For all these reasons, it is generally more 

efficient to adopt the solution depicted in the centre of Figure 2-2, which is for example 

realized in the Ninjam framework
5
.  

2.5.2 Network infrastructures 

Besides software architectures, the prevalent problems of NMP are related to the actual 

medium of communication, the network. The next section describes these problems in 

more detail, while the section that follows gives a brief description of the network 

protocols that are most commonly facilitated in NMP.  

2.5.2.1 QoS issues 

The term Quality of Service (QoS) is used to describe the means to prioritize network 

traffic, so as to help ensure that the most important data gets through the network as 

quickly as possible. To quantitatively measure QoS several related aspects of the 

network service are often considered, such as error rates, network throughput, 

transmission delay, jitter, etc. In the following, QoS is discussed in terms of bandwidth 

availability, latency and jitter as well as packet loss.  

2.5.2.1.1 Network throughput 

Bandwidth availability or network throughput refers to the capacity of the network to 

accommodate certain data rates. As already discussed, using raw CD quality audio 

requires a continuous throughput of more than 1.41Mbps (as this value excludes header 

overhead). Due to varying load from disparate users sharing the same network 

resources, the bit rate that can be provided to a certain data stream may be too low for 

real-time multimedia services if all data streams get the same scheduling priority. When 

the load of the network is greater than its capacity can handle, the network becomes 

congested. Characteristics of a congested network path are queuing delays, packet loss 

and sometimes the blockage of new connections.  

2.5.2.1.2 Latency and Jitter 

Network latency refers to the time elapsed for a network packet to reach its intended 

destination. In the widely used connectionless packet-switching network connections, 

                                                
5 http://www.cockos.com/ninjam/ 

http://www.cockos.com/ninjam/
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the routing path of a network packet is neither known beforehand nor can be controlled. 

Depending on the actual transmission path, a packet may require a long time to reach its 

destination, because it may be held up in long queues, or take a less direct route to avoid 

congestion. This is different from throughput, as the delay can build up over time, even 

if the throughput is almost normal. In some cases, excessive latency can render the 

application unusable. 

Measuring network latencies is not a trivial task especially due to synchronization 

inaccuracies and clock drifts. Network latencies are often measured either as one way 

packet delivery or as round trip delay times.  One way latency refers to measuring the 

time elapsed between sending a packet from one location and receiving it at a different 

location. In this case, accurate measurements require synchronizing the clocks of the 

transmitter and the receiver, which is a difficult task in its own behalf. Alternatively, the 

parameter Round-Trip Time (RTT) refers to the time elapsed between sending a packet 

to a remote location and receiving it back. In this case, time is measured from a single 

point and the need for synchronization is eliminated. However, measuring the actual 

transmission latency is still inaccurate, since the RTT values contain the time taken by 

processing the packet at its destination and before sending back the response. The ping 

utility offers a solution to this problem as it performs no packet processing at the the 

receiving end. It merely sends a response back as soon as it receives an ICMP packet. 

The Internet Control Messaging Protocol (ICMP) is the protocol used by the ping 

utility. However, ICMP packets are normally given low priority by network devices 

such as routers and switches. Hence, their delivery may be delayed by queuing them 

between subsequent hops which does not commonly occur in the transmission of actual 

TCP or UDP data packets. For this reason, RTT values reported by the ping utility 

present a theoretical maximum in the delivery of actual TCP or UDP packets. The ping 

utility is the most frequently method for measuring communication latencies in NMP 

and has also been adopted in the evaluation of BoogieNet, the prototype system under 

investigation (section 11.3.2). 

Further to latency, a more important obstruction in NMP and teleconferencing 

applications stems from the fact that the different network packets will reach their 

destination with different delays. Variation in the delivery time of different packets is 

known as network jitter or more formally Packet Delay Variation (PDV). PDV may be 

due to queuing network packets on different network devices across the transmission 

path, or due to packets being driven in different routing paths. Since media playback 

requires a steady pace, PDV must be eliminated either in the network, or at the end host. 

Playing the received packets at a steady pace can compensate for network PDV. 

Reducing PDV in the network requires QoS guarantees and stable routes, which are 

generally not feasible on the Internet on an end-to-end basis.  

2.5.2.1.3 Packet Loss 

Finally, packet loss occurs when one or more packets of data travelling across a 

computer network fail to reach their destination.  In Wide Area Networks packet loss is 
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frequently observed and caused by congested network paths or data corruption by faulty 

networking hardware across the path. In the case of audio, losing network packets will 

result in audio dropouts on the waveform rendered after de-packetisation and possible 

de-multiplexing and decoding (see Figure 2-1). The distortion introduced by audio 

dropouts can seriously hinder the collaboration of music performers. 

Some network transport protocols, such as TCP, provide mechanisms for reliable 

delivery of packets. In the event of a lost packet, the receiver asks for retransmission or 

the sender automatically resends any segments that have not been acknowledged. This 

method of error handling is known as Automatic Repeat reQuest (ARQ). Clearly, ARQ 

is not an appropriate error correction method for real-time multimedia communications, 

as in VoIP or NMP the packets received after retransmission will be outdated. This is 

the main reason why, instead of TCP the more lightweight and less reliable UDP 

transport protocol is preferred in applications involving real-time media 

communications. Protocols such as UDP provide no mechanisms for recovering lost 

packets. Applications that use UDP are expected to define their own mechanisms for 

handling packet loss. 

2.5.2.2 Network protocols 
 

The User Datagram Protocol (UDP) is one of the core members of the Internet 

Protocol suite (the set of network protocols used for the Internet). With UDP, computer 

applications can send messages, in this case referred to as datagrams, to other hosts on 

an Internet Protocol (IP) network without prior communications to set up special 

transmission channels or data paths. 

 

Figure 2-3: The format of the IP header. The numbers on top indicate the number of bits required for each 

field. The fields appearing on the 6
th

 layer are optional. 

In comparison to Transmission Control Protocol (TCP), UDP is a simpler message-

based connectionless protocol. Connectionless protocols do not set up a dedicated end-

to-end connection. Communication is achieved by transmitting information in one 

direction from source to destination without verifying the readiness or state of the 

receiver. Compared to TCP, UDP does not offer any mechanism for ensuring the 

delivery of network packets to its intended recipient, which is why UDP is considered 

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Internet_Protocol
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an unreliable protocol. Its main advantages stem from the fact that it is a lightweight 

protocol, which does not require verification of receiver and re-transmissions and 

therefore results in lower transmission latencies and eliminated network jitter. For this 

reason it is the most widely used transport layer protocol in time-critical applications, 

for which fast delivery is more important than data loss. Indeed, for Voice over IP, 

videoconferencing and NMP applications a packet becomes useless if it arrives out of 

time, and hence there is no need to ensure packet delivery at the expense of increasing 

transmission delays. 

 

Figure 2-4: The format of the UDP header. The numbers on top indicate the number of bits required for each 

field. 

A UDP datagram is carried in a single IP packet and is hence limited to a maximum 

payload of 65,507 bytes for IPv4 and 65,527 bytes for IPv6. To construct a network 

packet one needs to include an IP header followed by a header concerning the transport 

layer protocol, such as TCP or UDP. IP header information requires 24 bytes as shown 

on Figure 2-3, or more commonly 20 bytes as the optional fields ‘Options’ and 

‘Padding’ rarely used. Out of the various fields ‘Source Address’ defines the IP address 

of the machine that delivers the network packet, while ‘Destination Address’ defines the 

recipient of information.  

As shown on Figure 2-4, UDP header information comprises 8 bytes. To transmit a 

UDP datagram, a computer completes the appropriate fields in the UDP header and 

forwards the data together with the header for transmission by the IP network layer. The 

UDP header consists of four fields each of 2 bytes in length: 

 Source Port: UDP packets use this number to indicate the service on the local 

computer from which the network packet originated.  

 Destination Port: UDP packets use this number to identify the service to which 

the network packet needs to be delivered. In other words, as two networked 

computers may establish connections for a number of different applications and 

services, port numbers are used in addition to IP addresses, so as to indicate the 

application for which each packet is intended 

 UDP length: The number of bytes comprising the combined UDP header 

information and payload data 

 UDP Checksum: (A checksum to verify that the end to end data has not been 

corrupted by routers or bridges in the network or by the processing in an end 

system. This allows the receiver to verify that it was the intended destination of 

the packet, because it covers the IP addresses, port numbers and protocol 
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number, and it verifies that the packet is not truncated or padded, because it 

covers the size field. Therefore, this protects an application against receiving 

corrupted payload data in place of, or in addition to, the data that was sent. In the 

cases where this check is not required, the value of 0x0000 is placed in this field, 

in which case the data is not checked by the receiver. 

NMP or more generally teleconferencing applications may either utilise the UDP 

protocol for media connections as for example in Jacktrip (Cáceres and Chafe 2009) or 

may use the Real-Time Transport Protocol (RTP) which is built on top of UDP. In 

comparison to UDP, RTP was specifically designed for delivering real-time multimedia 

and has built in capabilities for detecting out of sequence packets and jitter 

compensation. Hence, an application wishing to make use of these features to 

compensate for poor QoS may prefer to use RTP. The RTP is the most frequent choice 

in NMP system development (Alexandraki and Akoumianakis 2010; Kurtisi and Wolf 

2008; Sawchuck et al. 2003). Explaining the specificities of the RTP is beyond the 

scope of this chapter. Nevertheless, it is important to keep in mind that RTP headers 

have a minimum size of 12 bytes. 

 

Figure 2-5: Structure of an Ethernet frame carrying an RTP packet. The numbers indicate the minimum size 

for each header. 

When calculating header overhead it important to remember that each network packet is 

encapsulated in an Ethernet Frame. Each Ethernet frame contains the network packet 

and its own frame header. The frame header contains information about the physical 

layer of the network, in other words the hardware devices involved in the transmission 

of a network packet. Specifically, every time data is transferred from one network 

location to another, a number of hardware devices such as routers and switches are 

visited. Each step from one device to another is called a hop and the Time to Live (TTL) 

field of the IP header (which can be seen in Figure 2-3) defines the maximum allowed 

number of hops, which is decreased by one at every hop. Once the maximum number of 

hops is reached (i.e. when TTL becomes zero) the frame is discarded. This prevents data 

from endlessly travelling within networks.  The header of the Ethernet frame contains 

the physical (MAC) addresses of the source and the destination device.  These fields are 

changed at every hop. Frame header information, permits tracing the route of a network 

packet. Hence, although the frame header changes among successive hops, the network 
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packet (e.g. UDP or RTP packet) remains unchanged until it reaches its final 

destination. 

The structure of a complete Ethernet frame that contains an RTP packet is shown on 

Figure 2-5. It can be seen that when using RTP, the minimum size of the RTP headers is 

54 bytes, while in plain UDP header overhead amounts to 42 bytes. Header overhead 

significantly adds to the required bandwidth. Kurtisi and Wolf (2008) studied 

investigated the possibility of reducing header overhead in NMP communications. 

2.6 Open issues in NMP research 

NMP is a multifaceted endeavour with many open research challenges across various 

disciplines. This chapter attempted to portray the present status of NMP research and to 

sketch challenges and new perspectives as revealed through continuous research and 

development. The progress of NMP research largely depends on network technologies 

and the way they are marketed. Computer networks have reached a point which allows 

for real-time uninterrupted high fidelity audio-visual signal flows. However, such 

networks have not yet become widely available to the average consumer. This fact 

inhibits NMP research from progressing to the next level, as the systems that have been 

developed have not reached their intended audience and therefore user requirements for 

forming and sustaining NMP communities have not been effectively analysed. 

One possible solution to accelerate availability of NMP systems is attempted at the 

audio coding domain. At present, a substantial body of research efforts are being 

invested in developing compression algorithms intended to eliminate the requirements 

in network bandwidth, without significantly affecting audio quality or overall 

processing latency. Examples of such work are presented by the Soundjack application
6
, 

which uses the Fraunhofer Ultra-Low Delay (ULD) Codec (Kraemer et al. 2007) and 

the integration of the WavPack codec by researchers at the Technical University of 

Braunschweig (Kurtisi and Wolf 2008). Increasingly, the development of new audio 

codecs is taking into account the real-time requirements of NMP systems. The royalty 

free Constrained-Energy Lapped Transform (CELT) codec (Valin et al. 2009) provides 

evidence of this tendency. The CELT codec has been recently integrated in the OPUS 

codec, which, at the time of this writing, provides a de facto standard for interactive 

audio applications over the Internet (IETF 2012). 

Further, to network availability and audio compression, man machine interfaces must be 

studied so as to meet the requirements of musicians and provide intelligent 

collaboration environments that will alleviate performers from the distraction caused by 

being physically separated. Clearly, different contexts of use raise different 

requirements in terms of the interaction practices that must be supported. For instance, 

in remote music-learning scenarios the research focus is on providing appropriate 

                                                
6 http://www.soundjack.eu  

http://www.soundjack.eu/
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pedagogical paradigms and on exploring methods for the evaluation of student progress 

(Ng and Nesi 2008). Furthermore, in collaborative music composition (Hajdu 2005), a 

key challenge relates to representing musical events effectively and devising appropriate 

musical notations (Hajdu 2006).  In the context of the DIAMOUSES framework 

(Alexandraki and Akoumianakis 2010) research investigations focused on 

accommodating diverse user requirements in music performance across different 

collaboration scenarios such as rehearsals, stage performances and music lessons. 

Graphical User Interfaces such as the one depicted in Figure 2-6 present innovative 

approaches in dealing with collaboration deficiencies (see section 2.2). Such interfaces 

integrate the audiovisual communication of musicians with shared collaborative objects 

(e.g. a shared music score or metronome) that allow synchronous manipulations 

accessible to all participants, hence maintaining a sense of user focus and promoting a 

collaborative perspective. Computer Supported Collaborative Work (CSCW) is a focal 

point of research for several application domains, including e-gaming, e-learning and 

enterprise groupware, to name a few. The limited availability of reliable NMP systems 

does not provide sufficient motivation for instantiating CSCW research in distributed 

music performances. 

 

Figure 2-6: A GUI offering virtual collaboration capabilities in NMP.  

In the light of the above, a significant contribution to easing performers’ collaboration 

across distance can be made through the development intelligent user interfaces that are 

capable of extracting musically meaningful information from the audio signals 
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generated and exchanged in the course of a distributed performance. For example, the 

‘performance worm’ devised by Langer and Goebl (2003) provides a visualization of 

live performances, represented as the trajectory of a point on a two dimensional plane 

depicting loudness versus tempo. The depicted trajectories are automatically derived 

from audio analysis. Such real-time visualisations of the expressive performance can 

create performance anticipations that may greatly enhance the collaboration of 

musicians, for example in the presence of high communication delays or in the absence 

of adequate visual contact. 

Alternative possibilities may be devised by examining different collaboration scenarios 

and contexts of use. Ultimately, incremental progress on machine listening systems and 

computational music performance can directly translate to intelligent interfaces for 

NMP. As further discussed in the next chapter, functionalities such as automatic music 

transcription, automatic score scrolling and computer accompaniment may reveal their 

full potential in the context of remote musical collaborations. 
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3 Machine Musicianship 

Machine listening refers to the computational understanding of sounds (including 

music, speech as well as environmental sounds) at a comparable level to the sound 

understanding occurring in humans. In comparison, Machine musicianship focuses on 

musical sounds, assumes musical machine listening capabilities and addresses 

supplementary musical skills such as performance and composition. In line with human 

musicianship, these skills require knowledge of musical concepts, which may be 

inherent, learnt or developed through practice. 

This chapter presents the overall research directions and perspectives in two areas. 

Specifically, the first section discusses the general algorithmic processes taking place in 

machine listening systems, while the second section presents previous and state-of-the-

art research achievements in machine musicianship for different musical skills which 

are: music transcription, score following, audio synchronisation and computer 

accompaniment. Finally, the third section attempts to track down research initiatives 

that are relevant to the present work, hence investigating machine musicianship in 

distributed performance context. 

3.1 Machine Listening Approaches 

Machine listening research deals with the computational modelling of sound 

understanding. The objective of this area is to implement systems that are capable of 

generating meaning in response to sound input, similarly to the cognitive understanding 

of sound carried out by human listeners. In attempt to further refine the notion of 

meaning, media theorist Hansen (2006) elucidates that the human body acts as a central 

point for various sensory modalities. It essentially selects and subtracts from the totality 

of images available and it is this act of subtraction and selection which is a meaning-

giving act that ‘in-forms’ our perception of information.  

Equivalently, digital media represent the sensory stimuli of models of computational 

intelligence, and indeed there is strong evidence in a plethora of information domains, 

including music (Toiviainen et al. 1998; Bharucha & Todd 1989), that these models are 

successful in deriving perceptually meaningful information. However, although 

meaning-giving in computer intelligence may be successfully modelled, this does not 

mean that the mechanisms employed by humans are similar to the algorithms employed 

in computational intelligence. For example, although Artificial Neural Networks are 

inspired from biological neurons, their biological counterparts are significantly more 

complex. In a similar line, Hidden Markov Models use observation and transition 

probabilities to perform abstraction of digital stimuli; nevertheless, it is not clear 
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whether similar processes occur in humans whose perception and cognition is strongly 

influenced by complex psychological, physiological and neurological processes. 

To this end, two distinct trends may be identified in machine listening research. The 

first relates to initiatives developing computer models that simulate certain 

characteristics of auditory perception (e.g. tonal or harmonic expectancies, judging 

timbral similarities etc.) with the aim of understanding musical perception and 

cognition, while the second relates to developing systems that extract perceptually 

meaningful information for further use. Although the ultimate objective is common in 

the two perspectives (i.e. to enable computers manipulate sound at a comparable level to 

humans), however the adopted methodologies are profoundly different.  

Computational simulations of the auditory perception commonly entail dynamic models 

that describe perception as adaptation and synchronization, where sometimes only one 

step is needed from a low-level to high-level feature estimations. Examples are neural 

networks, both of the connectionist side of the perceptron model (e.g. Bharucha &Todd 

1989; Gjerdingen 1990) and the Kohonen map side (e.g. Leman & Carreras 1997; 

Toiviainen 1998; Kostek 2005) of self-organizing maps, modelling tonality, musical 

phrases, or timbre perception. A similar idea about modelling memory in music that of 

an echoic short-term memory, where a perceptual input is echoing in the brain, like an 

impulse echoes in a concert hall, modelling short-time memory (Snyer 2000). This is 

similar to the perceptron model, as in both an input echoes through the model until it 

has decayed. A relatively new approach is the free-energy principle (Friston 2010; 

Friston et al. 2010) which is a self-organizing perception model based on the principle 

of minimizing surprise when adapting an internal state to a perception, taking memory 

and also motion into consideration. 

On the other hand, the development of computational models that aim at extracting 

perceptually meaningful information from audio signals adopts a fairly application 

oriented bottom-up approach, in which data reduction occurs in successive steps thereby 

reducing the dimensionality of sound to higher level constructs. Such systems are said 

to perform Computational Auditory Scene Analysis (CASA), a roughly coincident area 

of research that aims at identifying the various sound events contained in a mixture of 

sounds. Challenges arise when these events are simultaneous, masked by other sounds 

or highly distorted. 

According to Wang (2007), in humans scene analysis entails two basic perceptual 

processes: the segmentation of a scene into a set of coherent patterns (objects) and the 

recognition of memorized ones. Following, in the same article Wang states: 

Human intelligence can be broadly divided into three aspects: Perception, reasoning, and 

action. The first is mainly concerned with analyzing the information in the environment 

gathered by the five senses, and the last is primarily concerned with acting on the 

environment. In other words, perception and action are about input and output, 

respectively, from the viewpoint of the intelligent agent (i.e. a human being). Reasoning 

involves higher cognitive functions such as memory, planning, language understanding, 
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and decision making, and is at the core of traditional artificial intelligence. Reasoning also 

serves to connect perception and action, and the three aspects interact with one another to 

form the whole of intelligence. 

In line with Wang’s comprehension of human intelligence, machine listening systems 

manifest their intelligence in three sequential processes, namely: 

 Perception: Detection of sound objects by segmenting an auditory scene into its 

constituent events based on the variation of a number of perceptually relevant 

acoustic features 

 Reasoning: Identification of the context of one or more sound objects by 

recognising patterns that have been registered and memorised in the course of 

prior  initialisation  or training 

 Action: deliver custom functionalities based on the identified patterns  

The content of sound to be processed in machine listening systems commonly falls in 

one of the three categories, namely speech, environmental sound and music or 

combinations of these. As depicted in Figure 3-1, although for different domains the 

structural components of sound differ, the methodology for reducing the dimensionality 

of an input signal to acquiring information that is semantically meaningful for the 

application at hand is fundamentally the same. Starting from an audio signal, feature 

extraction takes place so as to compute a number of acoustically relevant properties 

corresponding to a small frame of audio. Following feature extraction, individual sound 

events carrying structural information of interest are detected through a process called 

temporal segmentation. Temporal segmentation concerns the detection of the 

boundaries of sound events (i.e. onset and end-times) using the temporal behaviour of 

acoustic features. These features must be carefully selected in order to efficiently reveal 

segment boundaries. For example a sudden elevation of noise levels is typically caused 

by a mechanical excitation and is often followed by a stationary sound event. 

Consequently, acoustic features representing noisy components in the signal are highly 

appropriate for detecting the onsets of sound events.  

Once sound events have been detected their frequency or timing of occurrence is used 

by pattern recognition methodologies to convey their context. Such contextual 

information characterises the information content carried by longer signal portions 

(compared to audio segments) or the audio signal in its entity. Depending on the target 

application, different levels of information content are used to determine or initiate 

system actions. Some applications use the output of pattern recognition to offer user 

functionalities while others, especially those requiring action that is constraint within 

time limits, use directly the output of the temporal segmentation process. The following 

paragraphs elaborate further on these processes and how they are realised for different 

audio domains. 

Most feature extraction schemes rely on a frame-based analysis, where overlapping 

audio frames of 10–100 ms are windowed and used as the input for feature extraction. 

In such short frames, dynamic audio sources tend to be stationary therefore allowing to 
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evaluate the instant behaviour of a signal. Acoustic features of interest are selected so as 

to reveal various perceptual qualities conveyed through the temporal (e.g. 

autocorrelation, zero-crossing rates, signal energy etc.) or spectral evolution (e.g. 

spectral flux, chroma features, brightness, MFCCs etc.) of the signal. Several features 

have been proposed for different target applications. In general, feature selection does 

not substantially differ in speech, music and environmental audio applications.  

 

Figure 3-1: Perception, reasoning and action in machine listening systems. 

Temporal segmentation aims at finding the fundamental elements constituting an audio 

stream. In speech these elements are phonemes, syllables words or sentences, in music 

they are notes, chords, beats, phrases while in environmental sounds the more generic 

term ‘sound event’ is used to refer to a sound of relatively short duration, while the term 

‘semantic scene’ is used to refer to the ambient sound of a certain environmental setting 

(e.g. supermarket, meeting room, library etc.) (Wichern et al. 2010). The resulting audio 

segments are annotated using the information they convey. For instance in music this 

information is pitch, loudness or duration, while in speech it is the textual representation 

of a phoneme or a syllable.  

Further to temporal segmentation, pattern recognition methodologies are employed so 

as to infer higher level information by finding a contextual label yielding the maximum 

probability for a given pattern of segments.  In speech for example, patterns of 

phonemes or words are used for identifying qualities such as language or dialect (Rouas 

2007), speaker identity (Srinivasan 2012) or speaker emotion (Fu, Mao and Chen 2008). 
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In environmental sounds sequences of sound events are used to determine the presence 

of certain types of human or other activity such as footsteps (Radhakrishnan, Divakaran 

and Smaragdis 2005),  car collisions, gun shots (Cai et al. 2006) or heart and lung 

sounds (Yadollahi and Moussavi 2006) for medical applications. In the music domain, 

pattern recognition applied on note, beat or phrase sequences leads to the identification 

of contextual properties such as rhythmic structures (Goto 2001a), instrumentation 

(Tetsuro et al. 2005), genre (Silla Koerich and Kaestner 2008) or mood (Oliveira and 

Cardoso 2010) for a given piece of music.  

Finally at the application level, Figure 3-1 shows potential functionalities offered by 

systems receiving and analysing auditory input. In speech listening, prominent 

functionalities are automatic speech recognition (Scharenborg 2007) and speech 

restoration from noisy, reversed or corrupted sources (Srinivasan and Wang 2005). In 

environmental audio, popular application domains include security surveillance (Harma, 

Mc inney and Skowronek 2005), traffic monitoring (Fagerlönn and Alm 2010), 

medical applications (Yadollahi and Moussavi 2006) and urban planning (Hedfors et al. 

1998.). Generally, environmental auditory scene analysis is commonly used in 

situations where visual information is either costly (e.g. inside the human body), limited 

(e.g. dark places) or too broad (e.g. countryside), or alternatively in multimodal systems 

in which monitoring and analysing the auditory information channel complements the 

visual or some other sensory channel (Sanderson et al. 2004).  

3.2 Music listening and relevant computational 
affordances 

In the music domain, machine listening functionalities are similar to those addressed by 

content-based music information retrieval. Content-based MIR approaches focus on 

analysing music sources, which may be either music signals or symbolic representations 

(MIDI, score etc.), so as derive music semantics characterising these sources (Casey et 

al. 2008). The connotation ‘content-based’ is facilitated so as to distinguish from 

‘context-based’ MIR approaches, in which musical metadata, such as lyrics, artists’ 

cultural background, band biographies etc., useful for indexing music, are derived by 

employing Natural Language Processing (NLP) techniques on web-mined resources 

(Schedl et al., 2011).  

According to Rowe (2001), the term musicianship refers to the collective intelligence 

relating to musical concepts that underlie the skills of listening (analysis), performance 

and composition. Subsequently, machine musicianship refers to computational 

programs designed to implement any of these skills. Relevant affordances of machine 

musicianship systems that are potentially useful in distributed performance settings 

include:  

 Automatic Music Transcription 

 Audio-to-score alignment 
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 Audio-to-audio alignment  

 Computer Accompaniment  

The following subsections discuss applications, challenges and methodologies related to 

these capabilities and elaborate on previous and state-of-the-art research initiatives and 

computational approaches. 

3.2.1 Automatic music transcription  

Automatic Music Transcription (AMT) refers to the possibility of generating a music 

score given an audio signal. A music score, whether using the notation of the Western 

music tradition or some other notation such as chord symbols, piano rolls or tablatures, 

should, as a basic requirement, define the pitch, the timing and the musical instrument 

for each music event in a piece of music. In comparison with humans, AMT systems are 

required to perform equally or better than a well-trained and gifted musician. This is 

made apparent if we consider that when listening to a piece of music, we can perceive 

the melodic line, tap or sing along, recognise long-term structural parts such as chorus 

and verse but more precise information such as timing of notes, harmonic changes and 

detailed description of all concurrent melodic lines is less consciously perceived. As 

generating a complete transcription of a music piece can be an extremely challenging 

task, often impossible to achieve and especially in cases of polyphonic and poly-

instrumental music recordings, the objective of these systems is commonly constrained 

in finding as many musical events as possible (complete transcription) or finding the 

most dominant part of the sound such as the drum strokes or the bass-line (partial 

transcription). An elaborate account of AMT approaches may be found in (Klapuri and 

Davy 2006). 

Regardless the approach, an AMT system is required to detect pitch, relative loudness 

and timbre of sound events. Clearly, all of these attributes are related to human 

perception and the correspondences with their physical counterparts (i.e. sound) are not 

straightforward. Generally, the mapping of physical stimuli to psychological percepts, 

since Fechner (1860), is called psychophysics and in terms of audition, psychoacoustics. 

This mapping is not at all trivial. The psychological perception of pitch corresponds to 

multiple acoustic features, most prominent the frequency presented, but also the 

amplitude of this frequency. These two physical dimensions, frequency and amplitude, 

are independent or orthogonal one to another on the physics side. Still they are no 

longer independent in perception, where an increase of the amplitude of a sine wave 

with a constant frequency leads to a perception of an increasing pitch (for a general 

description and model see Garner 1974). Such phenomena are found nearly everywhere 

in music perception, with pitch, timbre, rhythm, etc. Additionally, perception can also 

be ambiguous, depending on listeners. As an example of pitch perception, Goldstein 

proposed a statistical model of pitch perception, based on the harmonic overtone 

content, amplitude, and slight frequency deviations (Goldstein 1973). Still pitch 

perception may be simplified, as listeners tend to correct pitches which are deviating 
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from a ‘perfect’ pitch by categorizing tones into pitch classes, such as the twelve semi-

tones of an octave in Western music. So in AMT, to identify the pitch class does not 

necessarily require to get into the details of pitch perception when it comes to 

transforming the sound to a MIDI representation. Still, polyphonic texture instruments 

or the singing voice tend to perform simple interval ratios using free intonation, in 

which case it may be important to detect the precise pitch. Timbre on the other hand is 

more difficult to model, as there is no single leading feature to account for the 

instrument producing the sound. Timbre therefore is often found to be multi-

dimensional (Grey 1977; Bader 2013a), thus represented as vectors of acoustic features. 

In addition to pitch and timbre, an AMT system is expected to account for the rhythmic 

properties of a music piece, as these are depicted by the relative duration of note events. 

In fact, instead of note durations, rhythm detection uses the variation of the Inter-Onset 

Intervals (IOI) defined as the time intervals between the beginnings of two successive 

notes (Goto 2001a). Although important for music transcription, note duration itself 

does not always provide valuable indicator to rhythm detection. This is because in 

percussive sounds with fast exponentially decaying envelopes, note durations are not 

uniquely defined and in non-percussive sounds durations may be altered due to 

performance articulation, for example in using legato and staccato notes. Evidently, 

onset detection and therefore the accurate computation of IOIs can be a complicated 

task by itself (Bello et al. 2005).   

AMT has been the subject of several PhD theses since the seventies. The earliest 

systematic attempt for the development of an AMT system is found in James Moorer’s 

PhD thesis (1975). Moorer dealt with polyphony of two voices whose harmonic 

relations were constrained to non-overlapping overtones, therefore disallowing unisons, 

octaves, twelfths and some other intervals for which disambiguation of the two voices 

would be significantly obscured. Following, the works of Pisczcalski and Geller (1977) 

and Chafe et al. (1982) proposed certain improvements, however still limiting the 

musical material to two-voice polyphony. Notably, in the first of these works 

computational intelligence was employed to statistically infer the musical notes that 

could best account for the observed frequency amplitude and time variations. Later in 

1985, Schloss in his PhD thesis (Schloss 1985) focused on percussive musical 

instruments and was therefore oriented towards the identification of rhythmic patterns. 

Finally, Anssi  lapuri’s PhD (2004) dealt with polyphonic music including but not 

constraint in percussive sounds. Moreover,  lapuri’s work considered musical meter 

estimation and proposed certain techniques for the subtasks of multiple f0 estimation 

(i.e. pitch of simultaneous notes) and onset detection. 

Current AMS systems offer various improvements, however still suffering from several 

limitations. In particular, significant accuracy has been achieved in the transcription of 

either percussive or pitched instruments for recordings comprising of a limited number 

of instruments (Davy and Godsill 2002; Tolonel and Karjalainen 2000) or for a single 

instrument (Raphael 2002). More promising works dealing with more generic, less 
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constrained musical signals are those of Ryynänen and  lapuri (2008) and Goto 

(2001b). In fact, Goto (2001b) presents a system for transcribing the melody and 

baseline of an unconstraint CD recording in real-time. Finally, another attempt for real-

time music transcription is presented in (Dessein, Cont and Lemaitre 2010), where 

transcription is carried out for a live piano performance. 

Score transcription often employs computational methods that are not instrument 

specific, thereby disregarding the fact that different timbral characteristics may not be 

captured equally well by a single computational model (Benetos et al. 2012).  

Configuring these models for specific instruments requires that the instrument is known 

or identifiable from the audio signal. Identifying instruments in poly-phonic and poly-

instrumental recordings is a particularly cumbersome task, related to sound source 

separation. To this end Eggink and Brown (2003) proposed generating time-frequency 

masks that isolate the spectral regions of specific instruments which can then be 

classified more accurately. 

An implementation of AMT is not attempted in current work. However, the continuous 

evolution of techniques towards robust music transcription can provide a significant 

improvement in the collaboration of dislocated music performers.  

3.2.2 Audio-to-score alignment 

Audio-to-score alignment seeks to find correspondences between a symbolic music 

representation and an audio performance of the same piece of music. There are two 

different approaches of the same problem, namely offline audio-to-score alignment, 

often referred to as score matching and online audio-to-score alignment, often referred 

to as score following or score scrolling.  

In offline settings, both score and audio representations are available prior to matching. 

Hence the matching algorithm is able to search the entire waveform in order to match 

each score event. There are several applications sought by score matching, such as 

easing digital audio editing and post-processing that often requires knowledge of the 

location of a particular note or phrase in the score (Liu, Dannenberg and Cai 2010), 

allowing automatic annotation in music libraries for search and retrieval (Miotto and 

Lanckriet, 2012), or more generally providing automatic audio segmentations 

(Dannenberg 2006), a task that is a prerequisite to most applications of machine 

musicianship.  

Online or real-time audio-to-score alignment assumes the score is available prior to 

matching but the audio signal is progressively acquired. Thus, at any time only past and 

present knowledge about the signal is available and the goal is to identify the musical 

events depicted on the score as soon as they appear on the audio waveform, with high 

temporal accuracy and within the minimum possible latency. Mainly, two applications 

are sought in this context:  aiding musicians with enhanced score visualizations such as 
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page turners (Arzt, Widmer and Dixon 2008; Dannenbeg et al. 1993) and live computer 

accompaniment (Raphael 2001; Dannenberg and Raphael 2006).  

The most popular computational techniques employed in audio-to-score alignment are 

Dynamic Time Warping (DTW), Hidden Markov Models (HMM) and more recently 

Particle Filters. Each approach is briefly described in the following paragraphs: 

DTW was originally applied to identify speech patterns in speech recognition (Rabiner 

and Juang 1993). It is a consolidated technique that finds the best match between two 

sequences according to a number of constraints. Typically (Müller 2010), these 

constraints concern boundary conditions (i.e. both sequences are bounded and assumed 

to match both at their starting and at their ending point), a monotonicity condition 

(requiring that the matching path progresses in the same direction i.e. it does not move 

back and forth) and a step wise condition (requiring continuity of the matching path i.e. 

no jumps). DTW has been extensively used for offline audio matching (Hu, Dannenberg 

and Tzanetakis 2003; Soulez, Rodet, Schwarz 2003; Orio and Scwarz 2001). Generally 

DTW is highly robust in offline settings but it is very inaccurate in real-time settings. 

Online variants of the DTW algorithm have been sporadically presented in the relevant 

literature (Dixon 2005; Marcae and Dixon 2010a).  However, these variants are applied 

in audio-to-audio synchronisation instead of score following. Even in the work of 

Marcae and Dixon (2010b), where the ultimate goal is to provide score following, this is 

achieved by synchronising the real-time waveform with an alternative audio signal 

which has been synthesized from MIDI and is therefore an audio-to-audio alignment 

task.  

HMMs, although generally less accurate than DTW approaches, are more appropriate 

for real-time alignments. HMMs are probably the most widely used technique in audio-

to-score alignment (both offline and online) and is the one used in the prototype system 

developed in this work. An elaborate description of HMM mathematical foundations 

and their use for audio-to-score alignment is provided in a Chapter 8. One of the main 

issues concerning HMM score following is the fact that the Markovian model used for 

alignment is associated with various probability values, which must be estimated prior 

to alignment, during an offline process called training. HMMs may be trained using a 

pre-existing manual alignment of a score to an audio file (i.e. supervised learning), 

without any pre-existing alignment (i.e. using techniques of unsupervised learning) 

(Raphael 1999) or using discriminative training, namely estimating an approximate 

alignment and then further improving it using some training technique. Approximate 

alignments may for example be estimated from an offline DTW alignment or blindly 

from feature values. For example in (Cont 2004) the YIN pitch detection algorithm (de 

Cheveigné and Kawahara 2002) is used to estimate the occurrence of notes on the audio 

waveform. HMM probabilities are initially estimated according the produced alignment 

and further refined by an iterative training process prior to using the model for real-time 

alignment. Yet, more recent works of Cont (2010) present an HMM alignment system 

that does not require any prior training. It uses a hybrid Markov/Semi Markov Model 
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which deals explicitly with tempo estimation and does not require any training of HMM 

probabilities. 

A further computational technique employed in audio-to-score alignment, is presented 

by Particle Filter approaches. Particle filters do not require any training and are 

remarkably appropriate for real-time alignments. Particle filters, also known as 

Sequential Monte Carlo methods, operate by recursively approximating the alignment 

of two sequences assumed to have a Markovian state evolution (i.e. the current state 

depends only on the previous state and the current observation). In the context of 

statistical models such as HMM and Particle filters, ‘filtering’ refers to determining the 

distribution of a latent variable (i.e. score position) at a specific time (i.e. on the audio 

signal), given all observations up to that time. An explanation of the theory of Particle 

Filters is beyond the scope of this dissertation and it can be found in dedicated tutorials 

(e.g. Arulampalam, Maskell and Gordon 2002). Particle filters have been recently used 

for score following (Montecchio and Cont 2011a; Duan and Pardo 2011a) as well as for 

real-time robotic performance enabled by means of score following (Otsuka et al. 2011). 

3.2.3 Audio-to-audio alignment 

Audio-to-audio alignment or audio synchronization aims at temporally aligning two 

waveforms representing different interpretations of the same piece of music. Audio 

synchronization has received less attention than audio-to-score alignment. However, 

from a user oriented perspective, this task can also offer several practical applications. 

The prevalent application of this task relates to the possibility of comparing different 

interpretations of the same piece of music. Such comparison may be useful in the 

context of computational musicology, for example by investigating expressive aspects 

of music performances or the individualities of the performance by different artists. 

Audio synchronization meets its full potential in digital music libraries offering efficient 

browsing and random access within music recordings. A further application of audio 

synchronization is additionally presented in the domain of studio engineering, for 

example by allowing to time align different recording takes of a reference performance 

during digital mixing (Montecchio and Cont 2011b).  

In respect with the adopted computational techniques, most approaches use DTW, while 

some more recent works have attempted audio synchronization using particle filters. 

HMMs are not an appropriate strategy for directly aligning audio streams. As will be 

seen in Chapter 8, HMMs aim at finding a sequence of hidden variables from within a 

sequence of observable variables. In such cases as in audio-to-score alignment 

observable variables are represented as sequences of feature vectors and hidden 

variables are represented by higher –level and information of lower dimension such as 

notes or chords. In audio-to-audio alignment, such higher–level representation is neither 

available nor needs to be identified. The following paragraphs provide some 

representative initiatives in this research track. 
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Match (Dixon and Widmer 2005), is a freely available software program for audio to 

audio alignment developed in Java. It is based on an efficient DTW algorithm which has 

time and space costs that are linear with respect to the length of the performances to be 

aligned. The audio data is represented by positive spectral difference vectors. Frames of 

audio input are converted to a frequency domain representation using a Short Time 

Fourier Transform, and then mapped to a non-linear frequency scale, which is linear at 

low frequencies and logarithmic at high frequencies. The time derivative of this 

spectrum is then half-wave rectified and the resulting vector is used in the dynamic time 

warping algorithm’s cost function, using a Euclidean metric.  

In a similar line, Muller, Mattes and Kurth (2006), propose an alternative variant of 

DTW, called Multi-Scale-DTW. They use an overlap-add technique based on waveform 

similarity (WSOLA) to produce a stereo file in which the left channel carries one of the 

recordings to be aligned and the right channel contains a time-warped version of the 

second recording, using the results of their DTW algorithm. In a more recent work  

Muller and Appelt (2008), aimed at synchronizing recordings having significant 

structural differences such as omissions of repetitions, insertion of additional parts (soli, 

cadenzas), or differences in the number of stanzas in popular, folk, or art songs. 

Typically, DTW requires the complete series of both input streams in advance and has 

quadratic time requirements. As such, DTW is unsuitable for real-time applications and 

is inefficient for aligning long sequences. Nevertheless, Marcae and Dixon (2010) 

presented a real-time variant of the DTW. Unfortunately, they used a hop size of 50ms 

or more to derive their chroma features used for calculating sequence similarities. As a 

result, time precision may not be sufficient for real-time applications. 

Recent works on audio synchronization using particle filter approaches (Xion and 

Izmirli 2012; Montecchio and Cont 2011a) seem to advance the development of real-

time synchronization. For instance the present work, as well as most research initiatives 

in computer-based musical accompaniment could benefit from aligning the live audio 

stream with a reference recording instead of requiring the presence of the score, which 

is undoubtedly less informative in terms of tempo variability and expressive 

articulations. 

3.2.4 Computer accompaniment and robotic performance 

Computer accompaniment aims at the development of techniques that allow a computer 

system to listen to a live performer and synchronously reproduce an existing 

accompaniment.  

In line with the Turing test
7
, Barry Vercoe (1984) defines this objective as: 

                                                
7 The Turing test is a test of a machine's ability to exhibit intelligent behaviour equivalent to, or 

indistinguishable from that of an actual human. It involves a human judge who engages in a natural 
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to understand the dynamics of live ensemble performance well enough to 

replace any member of the group by a synthetic performer (i.e. a computer 

model) so that the remaining live members cannot tell the difference. 

That same work reports on an accompaniment system which follows the live 

performance of a flutist.  Tracking the live performance was achieved using pitch 

detection assisted by fingering information captured by optical sensors and score 

information. Finally, the synthetic sound was generated using the 4X real-time audio 

processor of that time. In the same article, Vercoe further reports on his intensions to 

incorporate learning strategies so that the synthetic performer can progressively improve 

from past experiences. 

At the same time, Dannenberg (1984) presents an implementation of matching a live 

monophonic keyboard performance to a score using dynamic programming techniques 

inspired from string matching. His algorithm of note matching allows ignoring wrong 

notes played by the performer. Output is synthesized using conventional digital 

synthesizers of that time. Later, Bloch and Dannenberg (1985) attempted to extend their 

system to polyphonic keyboard matching, while Vercoe and Puckette (1985) employed 

an offline training method using data from past rehearsals, so as to allow the 

anticipation of certain tempo deviations from the predefined score tempo. 

In the years that followed, most research efforts concentrated in audio-to-score 

alignment of monophonic (Raphael 1999) and polyphonic music (Raphael 2004), 

without however abandoning the ultimate goal which was to develop real-time 

computer-based performers. In 2001, Raphael presents his Music-Plus-One
8
 system 

(Raphael 2001a) for the first time. Music-Plus-One is currently available as a free 

software application that provides an orchestral accompaniment of a soloist using a big 

repertoire of recordings, which can be purchased online. It uses phase vocoder 

techniques to synchronize the orchestral recordings to the live solo, which is analysed 

using HMM score following. In his work, the research focus is concentrated on 

predicting the future evolution of the live performance before it actually occurs. This 

type of prediction is necessary in order to allow for smooth synchronization between the 

soloist and the accompaniment. Without prediction, part of the note must be perceived 

before it is detectable by the corresponding algorithms, therefore leading to poor 

synchronization. Early approaches to guiding prediction used heuristic rules 

(Dannenberg 1989). Raphael used Bayesian Belief Networks to achieve performance 

predictions (Raphael 2001b). 

The name Music-Plus-One was devised to contrast with Music-Minus-One
9
, which is a 

commercial online store offering orchestral recordings of a big repertoire of classical 

                                                                                                                                          

language conversation with a human and a machine. If the judge cannot reliably distinguish the machine 

from the human, the machine is said to have passed the test. 
8 http://music-plus-one.com/ 
9 http://musicminusone.com 

http://music-plus-one.com/
http://musicminusone.com/
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music. In these recordings, the parts of one of more of the instruments are missing, and 

interested musicians can purchase to play their part along with the orchestra. In the 

Music-Minus-One approach the soloist is required to synchronize with the recording 

rather than the other way round, as in Music-Plus-One. The criticism addressed by 

Raphael, is a common place in the era of live electronics (Stropa 1999). In such 

contemporary music works, a common practice is that live electronic instruments follow 

tape music instead of the musician having full control on the playback tempo. A 

solution to this problematic is offered by a tool called ‘Antescofo’ (Cont 2008a). 

Collectively, the works of Arshia Cont (2008a, 2008b) emphasize on computational 

anticipation, and Antescofo extrapolates the future of a performance by explicitly 

modelling tempo on hybrid Markov/Semi-Markov chains. 

More recently, Dannenberg (2011;2012) classifies computer accompaniment systems 

under the more general term ‘Human Computer Music Performance’, referring to all 

forms of live music performance involving humans and computers. Consequently, 

computer accompaniment systems are integrated to a more general class of systems that 

support multiple modalities both as input (audio, visual, gesture) as well as output. In 

this direction, a new tendency has recently made its appearance as ‘coplayer music 

robots’. For example in the work of Otsuka et al. (2011), particle filter score following 

of a human flutist is used to guide the Thereminist (Mizumoto et al. 2009), a humanoid 

robot playing the Theremin. In the work of Lim et al. (2010) the same robot is guided 

by visual cues and gestures of the human flutist.  

Although research in computer accompaniment has a history of more than two decades, 

and it continuously progresses to new approaches and computational techniques, 

Human Computer Music Performance still remains a vision rather than a practice 

(Dannenberg 2012).  Hence, the progress made is not sufficient to address all types of 

complexities in music performance and there are still many challenges to be confronted. 

3.3 Machine Musicianship in the context of NMP 

This section attempts to investigate research initiatives that lie on the intersection of 

real-time machine listening systems and networked music performance. The perspective 

of analysing what is being locally performed and exploiting the results of this analysis 

for informing remote peers in synchronous musical collaboration has very rarely 

appeared in scholar publications and has not been adequately considered or investigated.  

It has to be made clear, that in this context we are not interested in analysis and 

transmission over low-bandwidth transmission channels, as for instance in structured 

audio research and the relevant MPEG-4 standard (Vercoe et al. 1998). The focus is 

neither on networked collaborative manipulation of shared musical instruments (Vallis 

et al. 2012; Barbosa 2006). This section concentrates on systems that aim at 

synchronously analysing the content of real-time audio streams and transmitting this 



 

52 

 

information remotely for various purposes, such as informing performance context or 

using it with the ultimate goal of re-synthesis.  Only three works specifically addressing 

this perspective have been found in the relevant literature and are elaborated in the 

following paragraphs. 

Possibly the profoundly most relevant perspective in this direction is a system called 

‘TablaNet’ (Sarkar and Vercoe 2007). TablaNet is a real-time online musical 

collaboration system for the tabla, a pair of North Indian hand drums. These two drums 

produce twelve pitched and unpitched sounds called bols. The system recognises bols 

using supervised training and k-means clustering on a set of features extracted from 

drum strokes. The recognised bols are subsequently sent as symbols over the network.  

A computer at the receiving end identifies the musical structure from the incoming 

sequence of symbols by mapping them dynamically to known musical constructs. To 

cope with transmission delays, the receiver predicts the next events by analyzing 

previous patterns before receiving the original events. This prediction is done using 

Dynamic Bayesian Networks. Finally, an audio output estimate is synthesized by 

triggering the playback of pre-recorded samples. 

More recently, the work of Dansereau, Brock and Cooperstock (2013) attempt to 

mitigate the effects of latency in distributed orchestral performances, based on 

generation of a predicted version of the conductor’s baton trajectory. The prediction 

step is the most fundamental problem in this scheme, for which the use of conventional 

machine learning techniques, such as particle filters and an extended Kalman filter 

allow tracking the location of the baton’s tip and predict it multiple beats into the future. 

They also describe a generic two-part framework that prescribes the incorporation of 

rehearsal data into a probabilistic model, which is then adapted during live performance. 

Validation of the methodology concentrates on the accuracy of predictions for 

conductor movements. Unfortunately, the effectiveness of the method in assisting 

networked performances was not assessed in the article. 

Yet an alternative perspective has been presented for a networked piano duo (Hadjakos, 

Aitenbichler and Mühlhäuser 2008). In this approach, data generated from two MIDI 

pianos is matched to a score. Matching is achieved using the dynamic programming 

algorithm of Bloch and Dannenberg (1985). During matching, three types of deviations 

of the performance to the score are detected, namely tempo deviations (based on the 

detected inter-onset intervals), dynamics deviations (based the velocity of note on MIDI 

messages) and articulations (in terms of note duration). Subsequently, these deviations 

are transmitted across the network and they are used to control a MIDI sequencer 

reproducing the score of the remote performer. Although this is an inspiring work in 

studying expressive aspects of music performance, it is not made clear why transmitting 

score deviations is more advantageous than sending the live MIDI stream of each 

pianist. 

No further works have been found to specifically address real-time audio analysis and 

network transmission, neither for re-synthesis nor for informing performance context, to 
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geographically dispersed music collaborators. Consequently, the perspective 

demonstrated in the current work provides a potential for advancing a new path of 

investigations, possibly revealing highly novel and previously undermined research 

challenges. 
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4 Concatenative Music Synthesis 

In the relevant literature, Concatenative Sound Synthesis (CSS) is often distinguished 

from the other sound synthesis techniques as an entirely different approach. 

Subsequently, sound synthesis techniques are often classified into two categories: 

functional or modelling techniques and sampling or concatenative techniques 

(Lindemann 2007; Simon et al. 2005; Bonada and Serra 2007). Functional synthesizers 

generate sound waveforms by incorporating a mathematical model of the sound to be 

synthesized. In contrast, sampling synthesizers generate waveforms by combining 

recordings of pre-existing sound material. Especially when synthesizing acoustical 

sounds, sampling synthesizers often outperform functional synthesizers as, identifying 

and implementing the mathematical model that simulates the processes of generating 

and sustaining a sound as convincingly as possible is a highly complex task. Instead, the 

sound samples used in sampling synthesizers already incorporate the dynamics of these 

processes.  

This chapter is structured as follows: Firstly, the general methodology of CSS systems 

is presented. As CSS techniques originate from speech synthesis and processing, the 

section that follows is devoted to concatenative approaches in speech technology. Then, 

some successful examples of concatenative synthesis in music are presented. The 

section distinguishes between synthesis for the purposes of compositional exploration 

and synthesis for efficient reconstruction of music generated by acoustic instruments. 

Finally, the chapter is concluded by comparing these approaches with the present work, 

hence highlighting the research challenges being confronted by the system under 

investigation. 

4.1 General methodology 

The objective of CSS systems is to generate a waveform by concatenating segments of 

pre-recorded sound material, given a target specification (most commonly provided as 

an audio stream or a symbolic representation, e.g. a score) so that the resulting 

waveform will optimally resemble the target, in some sense which depends on the 

application at hand. Specifically, when used for high fidelity instrumental synthesis the 

goal is to generate waveforms that are as realistic as possible. In this case, the emphasis 

is placed on efficiently rendering expressive performance, including for example noise 

components that are generated due to performers’ intentional gestures such as forceful 

bow scratches or sustained breath effects in wind instruments (Lindemann 2007). 

Alternatively, when a CSS system is used for compositional purposes the goal is to 

generate a sound which is by no means identical to the target. For example, in the 

approach presented by Puckette (2004) the aim is not to re-synthesize the performance 
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of a live performer. Instead, the synthesized sound is expected to project the 

intentionality of the performer in some aspects such as timbre variations so that it will 

be interesting for the musician to control the output sound. In the same line, 

Dannenberg (2006) presents a system which given a target score generates sounds that 

are harmonically and rhythmically identical to the score, yet timbraly dissimilar in an 

attempt to explore new sound textures. 

Regardless the objectives of each approach, CSS systems commonly adopt a 

methodology that comprises the following processing phases: 

 Audio segmentation  

 Segment analysis and tagging (Forming a data corpus) 

 Analysis of target  

 Segment selection 

 Segment Concatenation 

The first two processes essentially take place prior to sound synthesis, so as to allow 

generating the audio samples that will be later used for signal concatenation (Figure 

4-1). A number of recordings are segmented in appropriate sizes and the resulting 

segments (usually referred to as audio units) are analysed for deriving descriptive 

information regarding their content. The units and their descriptions are maintained in a 

repository, to be to be used during synthesis. Corpus-based approaches use large sound 

repositories and sometimes a database to index sound descriptions. 

 

Figure 4-1: Data-flow of processes taking place prior to synthesis 

Then during synthesis (Figure 4-2), the given target is analysed in order to determine its 

association with segment descriptors. Subsequently, the data-corpus is searched in order 

to determine the segments that match the given prototype in some optimal way. Finally, 

the selected segments are concatenated in order to form the synthesized audio stream. 
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Figure 4-2: Data-flow of processes taking place during synthesis 

The data-corpus or simply the pool of audio segments (n the absence of a database) 

generally determines the use and the scope of a CSS system. The scope of a CSS system 

may for example be to synthesize waveforms of monophonic music (Simon et al. 2005), 

melodies of the singing voice (Lee et al. 2002), music performances of a specific 

musical instrument (Maestre et al. 2009) or some combination of instruments 

(Lindemann 2007) or even speech sequences in some human language (Carvalho et al. 

1998) in the case of concatenative speech synthesis systems.  

The sections that follow focus on musical material and describe each of the processing 

phases in more detail. 

4.1.1 Audio segmentation 

Audio segmentation aims at generating audio signal segments that carry some piece of 

information which can be autonomously identified within the entire waveform. The 

content and therefore the granularity of these segments can be heterogeneous, for 

example containing a note, a beat or even an entire music phrase. However more often 

they correspond to homogeneous constructs such as notes, possibly with the exception 

of a-temporal music events such as trills, appoggiaturas or grace notes which are 

included in the same segment as the corresponding temporal event (i.e. an event having 

a predefined duration within the piece). Interestingly, some approaches (Simon et al. 

2005) use segments that correspond to pairs of notes. Specifically, these dinotes start 

during the sustain part of one note and end within the sustain part of the next note. This 

is similar to diphone speech synthesis and there are two reasons for using paired 

constructs. Firstly, in monophonic instruments some energy of the previous note may be 

retained after the attack of a new note, a phenomenon usually caused by the 

reverberation of the recording environment or the body of the musical instrument. The 

other reason for using dinotes is because concatenation at the sustain part of a note 
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reduces undesired audible artefacts (e.g. discontinuities perceived as glitches) which are 

often unavoidable when concatenating at the location of note onsets (Schwarz 2007). 

Different systems use different segmentation methodologies. Some even use manual 

segmentation (Lindemann 2007; Simon et al. 2005). However, as manual segmentation 

is labour intensive and therefore constrains the scalability of a CSS system to using 

additional audio material, the majority of approaches use automatic segmentation 

algorithms.  

Automatic segmentation algorithms are commonly distinguished in two categories: 

blind segmentation and segmentation by alignment. Blind segmentation algorithms do 

not take into account any prior information about the signal or the information carried 

within the signal. They commonly compute a number of acoustic features for detecting 

note onsets or pitch changes (Lazier and Cook 2003). Alternatively, segmentation by 

alignment may be performed by score matching (see section 3.2.2), which can be used 

to reveal the boundaries of note or a phrase (Schwarz 200b). 

4.1.2 Segment analysis and tagging 

Each of the audio units produced during segmentation, normally undergoes an analysis 

process which allows determining segment characteristics and therefore associating it 

with appropriate descriptions within the pool of audio segments or the database.  In 

certain cases, the number of audio segments is generally small; their selection is pre-

determined and mere indexing takes place instead of analysis and tagging. Such a case 

is for example presented when reconstructing a certain piece of music by concatenating 

the segments of a pre-existing reference performance, as in the present work. 

However in the majority of CSS systems, each audio segment is tagged with 

information accounting for multiple levels of description. Schwarz (2007) discerns three 

levels of descriptors which are categorical, static and dynamic. Categorical descriptors 

concern the category of musical sounds to which an audio unit belongs and are usually 

provided as manual annotations. Categorical descriptors may for example be the 

instrument class or some subjective metadata such as ‘mellow’, ‘bright’ etc. Static 

descriptors are values that are constant over the entire duration of a unit and they 

commonly correspond to perceptual attributes such as pitch or duration. Dynamic 

descriptors on the other hand are those having a temporal evolution within an audio unit 

and they are usually represented as feature vectors. Examples are the fundamental 

frequency, the signal energy or some other time or spectral domain feature. 

In some cases not just the description of samples is considered, but also the musical 

context within which they occur. For instance in the work of Maestre et al. (2009), 

where the emphasis is on rendering musical expressivity, each note segment is 

associated with information such as the metrical strength in which it appears and the 

pitch of the preceding and the successive note. 
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4.1.3 Target analysis 

The target specification of a CSS system is usually represented by a score in the form of 

a MIDI file, or by real-time MIDI input using some MIDI controller. Less often it is 

represented as an audio excerpt (Pucket 2004; Schwarz et al. 2006). The approaches that 

use a sound excerpt as input are usually artistically explorative and the target forms a 

prototype for generating or controlling a sound which is different than the original, yet 

maintains certain timbral, harmonic and possibly rhythmic similarity. 

In both cases (i.e. MIDI or audio input), the target is segmented at the same granularity 

as the audio units to be used for concatenation and the analysis provides descriptors 

and/or audio features that are equivalent to those describing the audio units in the data 

corpus. 

4.1.4 Matching (Unit Selection) 

Once the target is analysed, the corpus or pool of audio segments is searched to find 

matching candidates. Categorical descriptors are usually required to have a one-to-one 

correspondence between target and selected units. For scalar descriptors, the matching 

quality is assessed using distance functions of the respective descriptions. Common 

distance functions are the Euclidean distance, for variables assumed to have no 

correlation, or the Mahalanobis distance for variables such as vector sequences, 

assumed to follow some multivariate probability distribution (Schwarz 2007). 

Given these quality assessment measures for matching, also referred as cost functions, 

the data corpus is searched in order to find the sequence of audio units that minimizes 

the cost. There are two strategies for searching the data corpus: path search unit 

selection and constrain satisfaction programming (CSP). Path search approaches 

(Schwarz 2000a; Simon et al. 2005) represent the corpus as a fully-connected state-

transition diagram. The optimal path is searched using a Viterbi algorithm which is 

based on state-occupancy cost and transition cost, calculated using the aforementioned 

distance metrics.  

On the other hand, CSP approaches to unit selection (Zils and Pachet 2001; Aucouturier 

and Pachet 2006) find the best match by recursively rejecting match candidates 

according to local and global constraints derived from Euclidean distances of descriptor 

values between target and matching candidates. Local constraints hold for the current 

segment selection and global constraints hold for the selection of the entire sequence 

realized as the sum of local distances (costs). 

As mentioned in (Zils and Pachet 2001), when dealing with large databases of samples a 

complete search method is absolutely prohibited. Therefore CSP approaches start with a 

random selection and recursively improve matching quality until the global cost 

becomes lower than a pre-defined threshold or until a maximum number of permitted 

iterations is reached. 
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4.1.5 Concatenation 

Subsequent to unit selection, unit concatenation takes place in order to generate the 

synthesized waveform. Clearly, some blending needs to be applied at the junction point 

of consecutive units in order to avoid signal discontinuities resulting in audible clicks. 

Such blending may range from a simple amplitude cross-fade (Dannenberg 2006), to 

more sophisticated phase and spectral shape interpolation techniques (Bonada and 

Loscos 2003).   

Furthermore, in some cases (Maestre et al. 2009), unit transformation may take place 

prior to concatenation so that the selected units will better match the desired target 

concerning amplitude, pitch or duration. Although amplitude scaling is straightforward, 

pitch and duration transformations commonly use phase vocoder techniques (Flanagan 

and Golden 1966), as in (Bonada and Serra 2007), or some variation of the Pitch 

Synchronous Overlap – Add transform (Roucos and Wilgus 1985), as in Simon et al. 

(2005). 

4.2 Concatenation in speech synthesis and coding 

From an engineering perspective, concatenative sound synthesis has its origins in 

speech synthesis, where signal concatenation is an established technique for offering 

improved naturalness and intelligibility of synthesized voice compared to alternative 

parametric models of speech (Sak et al. 2006; Bulut et al. 2002). It is therefore essential 

to outline here some relevant approaches from the speech synthesis domain.  

 

Figure 4-3: Classification of text-to-speech synthesis techniques 
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Text-To-Speech (TTS) synthesis is broadly classified in parametric and corpus-based 

approaches (Figure 4-3). Parametric approaches generate a speech waveform based on 

signal and physical modelling. For example formant synthesis is based on filtering 

sinusoidal or noise components in order to better simulate the spectral envelope of vocal 

utterances. Accordingly, articulatory synthesis approaches use a physical model to 

simulate the flow of air in the vocal tract. In contrast, corpus-based approaches use a 

pool of pre-recorded speech segments that approximate the target speech signal. In this 

respect, three approaches may be found in the relevant literature (Dutoit 2008): fixed-

inventory, unit selection and statistical parametric (or HMM) synthesis. In fixed 

inventory approaches the data corpus consists of small snippets of voice sounds that 

correspond to phonemes, diphones or syllables. Unit selection approaches use much 

larger databases for which each speech utterance is represented by several segments of 

speech corresponding to different segmentation granularities. Therefore the data corpus 

contains sounds ranging from diphones and syllables to words or entire sentences. 

During waveform generation, a ‘unit selection’ algorithm is employed in order to find 

the chain of units that best accounts for the target prototype. This type of synthesis 

yields improved naturalness and intelligibility compared to fixed inventory approaches, 

as the segments that are finally selected for concatenation capture not only the phonetic 

content but also the contextual and prosodic characteristics of the target signal. Finally, 

in statistical parametric coding or simply HMM synthesis, the speech corpus is used for 

training an HMM that relates speech utterances to parametric representations 

corresponding to pitch, intonation and duration information (Zen et al. 2009). During 

synthesis, the speech waveform is generated using the induced parametric 

representation of sound and some parametric approach such as formant or articulatory 

synthesis. Therefore HMM speech synthesis is not a concatenative approach in respect 

with waveform generation. 

Besides TTS, concatenative sound synthesis may also be utilized for low bit-rate speech 

coding. Generally, speech coding concerns the compression of speech signals for the 

purposes of transmitting them over low-bandwidth communication channels as in 

mobile or Voice over IP communications, and is thereby highly relevant to the present 

work. There are several approaches to speech coding and they may be classified 

according to a number of attributes (Spanias 1994; Hasegawa and Alwan 2003). 

Roughly they can be divided into waveform coders and model based or parametric 

coders (or vocoders). Waveform coders are based on removing the statistical 

redundancies of the signal and do not assume any prior knowledge about the signal 

generation mechanism. Typical examples of waveform coders are based on Pulse Code 

Modulation (PCM) such as Differential PCM (DPCM) and Adaptive Differential PCM 

(ADPCM) as well as Delta Modulation. They have relatively low complexity in the 

encoding process but yield higher bit-rates (16-64 kbps) in comparison to other 

encoding schemes (Hasewaga and Alwan 2003). Vocoders on the other hand are 

speech-specific perceptual coders, as they aim at rejecting perceptual redundancies in 

the speech signals.  Vocoders are capable of providing intelligible speech at bitrates 2.4 

kbps and below, but cannot provide natural sounding speech at any bit rate. Typical 
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examples are Homophonic Vocoders, Formant Vocoders encompassing spectral 

envelop modelling techniques and Linear Predictive Coders (LPC) using analysis, 

synthesis and articulatory models to model the speech signal. 

In speech coding, a third category is defined by hybrid coders, which exploit the 

advantages of both strategies (i.e. waveform and speech-specific coders). Modern 

hybrid coders can achieve communication quality speech at 8 kbps and below at the 

expense of increased complexity. There are several hybrid codecs including the CELP 

(Code-Excited Linear Prediction) codec (Schroeder and Atal 1985), which is one of the 

most widely used speech codec. 

Yet a further category of speech codecs, mostly relevant to the present work are 

segmental speech coders, also known as very-low bitrate (VLBR) speech coders or 

corpus-based coders. In segmental voice coding, feature vectors are calculated for 

segments of the speech signal to be encoded. These feature vectors are compared to the 

pre-calculated feature vectors of speech segments residing in a database. The index of 

the segment in the database which is closest to the original segment is transmitted. To 

recreate the speech signal, the successive transmitted indices are mapped to speech 

segments which are subsequently concatenated to reproduce the original speech 

waveform. Approaches to segmental speech coding were presented since the late 90s 

(Cernocky, Baudoin and Chollet 1998).  

Segmental coders achieve extremely low bit rates but have the disadvantage of being 

speaker dependent and have high memory costs due to the size of the speech corpus. 

However, Baudoin and El Chami (2003) presented a speech coder which achieves a 

bitrate of 400bps using a speech corpus summing in one hour of speech. Another reason 

assumed to have hindered the proliferation of segmental codecs is related to the fact that 

these codecs generally yield variable bit rates, which is unacceptable in certain 

communication applications involving low bandwidth channels with their limit on 

maximum rate. However, some recent approaches have presented algorithms for 

employing segmental coding at fixed rates (e.g. Kumar et al. 2008). Moreover, 

segmental coders are considered rather unsuitable for real-time applications (e.g. 

teleconferencing) due to the computational complexity of unit selection algorithms, 

even though relevant optimizations have been occasionally proposed (Roucos et al.  

1987).   

4.3 Contemporary Relevant Initiatives  

In the music domain, concatenative synthesis has attracted a lot of research interest for 

more than a decade. Comprehensive reviews on the origins and the evolution of relevant 

research initiatives have been published in dedicated scholar publications (Schwarz 

2006; Schwarz 2007). Hence, there is no need to reproduce another such review in this 

section. Instead, the present section will focus on understanding the current state of the 
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art, so as to gain insight on the best practices that may be applicable to our target 

domain of Networked Music Performance. 

Like most directions in computer music research, the focus of concatenative music 

synthesis is either to compositionally explore new sound textures or to efficiently 

reproduce musical acoustics. Clearly, the target application of the present work belongs 

to the second category of approaches, thus emphasising on reproducing musical 

expression as faithfully as possible. Furthermore, the present work has to deal with two 

further challenges: firstly the target prototype to be synthesized is provided as an audio 

signal (instead of a symbolic representation) and secondly both analysis of target as well 

as re-synthesis must take place within strict time constraints imposed by the EPT of 

30ms (see section 2.4), therefore qualifying the system under investigation as a real-

time system.  

No research initiatives attempting to satisfy all three requirements (i.e. faithful 

instrumental synthesis, audio target and real-time operation) have been reported in the 

relevant literature thus far. It will be seen that audio target and real-time operation has 

been attempted exclusively in compositionally explorative approaches, therefore not 

having the requirement of high fidelity audio renditions.  

Both compositional and high-fidelity approaches are presented below, in attempt to gain 

understanding on the challenges of the present work. The following two subsections 

outline some of the most relevant approaches for both approaches. Then, the section that 

follows provides a comparison of the presented systems in order to emphasize on their 

similarities and differences.  

4.3.1 Compositional approaches 

This section reports on three research initiatives that focus on explorative music 

composition by means of sample concatenation. Specifically, the aim is not to 

accurately reproduce acoustic sounds but instead to produce interesting textures that 

retain some perceptual relevance to the given audio or symbolic target.   

These initiatives are considered relevant to this dissertation only because they allow for 

synthesizing an output while the input is acquired, and are therefore presented as real-

time CSS approaches. 

4.3.1.1 Jamming with Plunderphonics 

Aucouturier and Pachet (2006) present a real-time interactive extension of their older 

work on Musical Mosaicing (Zils and Pachet 2001). The output sound is generated in 

real-time from MIDI or audio input using a Constraint Satisfaction Programming 

technique (section 4.1.4) and constraints that may be asynchronously added or removed 

to a CPS solver module.  The article presents an example application in which a virtual 

drummer is able to interact with real-time MIDI input. This is not a case of musical 

accompaniment, it rather uses MIDI input (e.g. from keyboard) to control the drum 
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beats that are selected for audio playback, according to the energy and pitch values of 

the MIDI controller, based on the previously provided constraints.   

The sound units correspond to 4 –beat drum samples automatically segmented from 

drum solos of popular or jazz music pieces. The drum solos within the piece are also 

automatically detected. They do not report on any specific transformation such as phase 

vocoder taking place prior to synthesis, presumably due to the percussive nature and 

noisy content of drum sounds. 

This work is classified in compositional approaches as it does not aim at simulating a 

specific instrumental sound. It is rather meant as an explorative, controlled synthesis 

system. 

4.3.1.2 CataRT 

CataRT (Schwarz et al. 2006) is a real-time extension of the Caterpillar system, which 

was developed by Schwarz (2004) for his PhD dissertation. CataRT plays grains from a 

large corpus of segmented and descriptor-analysed sounds according to their proximity 

to a target position in the descriptor space. The target application is described as an 

‘interactive explorative synthesis’ approach. It allows exploring the corpus interactively 

or via a target audio file, a live audio input or through gestural control. CataRT is 

implemented in MaxMSP and is distributed as free and open source software under a 

GNU GPL
10

 licence. 

Audio units are segmented from violin sounds, environmental noises and speech. 

Segmentation is achieved by audio-to-score alignment in the case of musical sounds, 

and by blind segmentation for the other sounds. Units are annotated using the MPEG-7 

low level descriptor set and indexed in a relational SQL database. Unit selection is 

achieved using a Viterbi path-search algorithm that seeks to minimize the Euclidean 

distance between the descriptors of the target and those of the database units. A short 

fade-in and fade out is applied to the selected units. It is also reported that   pitch and 

loudness transformations are possible prior to unit concatenation. 

4.3.1.3 Input-Driven explorative synthesis 

This section refers to the work of Puckette (2004). This work is considered relevant to 

the present context because synthesis is driven by real-time audio input. The reported 

application scenario concerns the possibility of producing sounds that have similar 

timbral variations as the input sound. The sound units were based on vocal recordings 

that were analyzed in 30ms time frames to yield 11 frequency bands. The output of 

these bands was subsequently used to form a 10-dimensional timbre space, by means of 

multidimensional scaling. During synthesis the trajectory of the input sound on the same 

timbre space was used to derive the sound units by minimizing the Euclidean distance 

between the analyzed and the re-synthesized timbre. Finally, the output sound was 

formed by concatenating the selected units using phase vocoder overlap-add. The shape 

                                                
10 GNU General Public License - http://www.gnu.org/licenses/gpl.html 

http://www.gnu.org/licenses/gpl.html
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of the controlling input sound could be identified in the output, while the output did not 

maintain any phonetic intelligibility. 

4.3.2 High fidelity instrumental simulation 

This section focuses on the currently most popular CSS solutions that aim at efficiently 

rendering the performance of acoustic instruments.  These systems are clearly more 

relevant to the system under investigation. However in most cases synthesis takes place 

offline. The only exception is the Synful synthesizer, for which the target specification 

may be provided from a MIDI keyboard in real-time. In this real-time approach, no 

audio analysis needs to take place prior to unit selection and concatenation. 

4.3.2.1 Expressive Performance of monophonic Jazz Recordings 

 The system described by Maestre et al. (2009) aims at rendering expressive saxophone 

recordings given a music score. It uses a database of automatically segmented 

recordings at note level. Notes are blindly segmented using onset features and 

fundamental frequency estimation. The resulting segments are annotated using different 

levels of description. Apart from conventional melodic descriptors (i.e. pitch, duration, 

loudness and some spectral features indicating timbre variations), the system 

additionally uses descriptors concerning intra-note structure and transition duration. 

This information is acquired by automatic intra-note segmentation using envelop 

characterization. Moreover, an additional type of descriptors, of particular importance to 

expressive performance rendering, is the context within which an audio segment occurs. 

Contextual descriptors are, for instance, the metrical strength in which the segment 

appears and the pitch and duration of the previous and the following notes. All these 

descriptors are finally processed by a k-means clustering algorithm which clusters note 

segments in groups that are likely to be perceptually similar. The cluster label is stored 

as an additional descriptor of the note segment. 

Rendering musical expression in this work is informed by Narmour’s (1990) 

implication/realization theory. Contextual descriptors are informed by three Narmour 

structures declaring the expectations created by a note segment.  Narmour’s structures 

are based on melodic expectations created by intervallic difference and registral 

direction (upward or downward interval) between consecutive notes.   

Subsequently to audio database construction, the solo recordings that were used to 

produce the segments together with the cluster labels of the notes are used to train 

expressive performance models using inductive logic programming. During synthesis, 

the given score is enriched by predictions of the expressive performance models, 

yielding not only pitch and loudness contained in the score but further parameters 

regarding expression such as note energy and articulation.  

Following, for each note in the score a candidate list of all possible matching segments 

is generated. Then, the best matching segment is determined by applying a path-search 

algorithm considering both the “cost” of the transformations to be applied and also the 



 

65 

 

concatenation cost. Each retrieved note is transformed in terms of amplitude, pitch and 

duration in order to better match the required expressivity. Finally, the transformed 

units are concatenated using amplitude and spectral-shape interpolation so as to 

eliminate undesirable signal discontinuities. 

4.3.2.2 Synful Orchestra 

Synful Orchestra
11

 is a commercial software application providing expressive musical 

performances in response to MIDI file (‘look-ahead mode’) or real-time input generated 

by a controller such as a keyboard (‘live-mode’). It is used by composers and 

performers as a ‘virtual orchestra in a box’. The emphasis is placed on faithfully re-

synthesizing the idiomatic use of music articulation found in note transition-slurs, legato 

playing, bow changes etc.  

The audio corpus consists of pre-recorded audio passages instead of isolated notes. 

These passages are acquired from solo recordings that represent all kinds of articulation 

and phrasing: detached, slurred, portamento, sharp attacks, soft attacks, etc. The 

recorded phrases are manually annotated, using a graphical editing tool. Their 

descriptive labels concern pitches, length and intensity of notes as well as type of note 

transitions. During synthesis, the input MIDI stream is parsed to identify musical 

phrases consisting of two to eight notes. Subsequently, the corpus is searched for a 

matching phrase using a path search algorithm. The selection of matches is based on the 

description of pitch, duration and transition type of the phrases contained in the corpus. 

As it is highly unlikely that an exact match will be found in the database, 

transformations such as intensity, pitch and duration stretching and shifting, take place 

prior to synthesis. During synthesis, pitches, amplitudes and durations identified from 

the MIDI input stream are generated using additive synthesis. On this additive, ‘tonal’ 

signal the phrases that were selected from the database are superimposed to give the 

final realistic result. This technique is referred as Reconstructive Phrase Modelling 

(RPM) by its inventor (Lindemann 2007). 

In ‘live-mode’, the system has no advance knowledge of when a new note is coming, 

and so it does its best to react as expressively as possible with low latency when a new 

note occurs, using only past history of the input stream as a guide to phrasing. 

4.3.2.3 Vocaloid  

Bonada and Serra (2007) in cooperation with Yamaha, have been working on a software 

synthesizer, the Vocaloid
12

. The objective of this research is to synthesize expressive 

performances of the singing voice given the song lyrics and the music score. 

The system, based on phase-vocoder techniques and spectral concatenation, searches the 

most convenient sequence of diphonemes (samples) of an annotated database of singing 

voice excerpts, recorded at different tempi and dynamics, to render the performance. 

These segments are produced from singer recordings which are further segmented by 

                                                
11 http://www.synful.com/ 
12 http://www.vocaloid.com/en/ 

http://www.synful.com/
http://www.vocaloid.com/en/
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automatic alignment to the corresponding text. During synthesis, sample selection is 

based on phonetic units, pitch content and loudness envelopes, by minimizing the 

required sample transformations. These transformations include tone transposition, 

loudness and time scaling. Traits of the original voice and articulation characteristics are 

impressively retained after transformations, owing to a refined source-filter spectral 

model.  

4.4 Comparison with the present work 

The previous section presented some of the most popular research and development 

efforts in concatenative music synthesis that have some relevance with the approach 

investigated in this dissertation. Specifically, it was discussed that the software 

prototype to be developed needs to satisfy the following three constraints. Firstly, the 

target sequence will be provided as an audio signal instead of a symbolic representation 

and thus audio analysis needs to take place prior to synthesis. Clearly, the proposed 

communication scheme aims at enabling performers to communicate using their own 

acoustic instruments, instead of some MIDI replicas. Secondly, the focus is on 

instrumental as opposed to compositional exploratory synthesis. In other words we wish 

to render the expressive performance of each musician as faithfully as possible. Finally, 

the third constraint relates to the online and real-time behaviour of the approach being 

investigated. 

Table 4-1: Comparison of CSS approaches initiatives with respect to meeting the requirements of the proposed 

system. 

 Audio Target Instrumental 

Synthesis 

Online 

Operation 

4.3.1.1 Jamming with Plunderphonics    

4.3.1.2 CataRT    

4.3.1.3 Input-Driven explorative synthesis    

4.3.2.1 Expressive Performance of monophonic 
Jazz Recordings 

   

4.3.2.2 Synful Orchestra    

4.3.2.3 Vocaloid    

 

The compositionally explorative perspectives presented in section 4.3.1, as well as the 

Synful Orchestra system permit real-time interactions by generating the output sound 

while the input is generated. Indeed, these approaches must render the output with low 

latency so as to successfully support the intended usage scenario, which in all four cases 

amounts to lively controlling a synthetic sound based on audio or MIDI input. 

Nevertheless, none of these works consider response times, as the introduced latencies 
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do not really render the intended application unusable. Therefore these systems cannot 

be literally considered as real-time approaches. 

Table 4-1 summarises the features of the presented systems with respect to satisfying 

the three constraints of the system under investigation. It can be seen that none of the 

currently popular approaches in concatenative synthesis satisfies all three constraints. 

Yet, these systems present a number of alternative novelties that can inform current and 

future implementations of the proposed system.  

All of the approaches aiming at exploratory composition place the research focus on 

unit selection algorithms. As unit selection determines the type of perceptual similarities 

to be retained in the output sound, it is made clear that the synthesized sound must be 

compositionally interesting instead of presenting a faithful rendition of the input. On the 

other hand, in high-level instrument synthesis approaches the research focus is placed 

on the rendering quality of the audio stream and specifically on reproducing the 

expressive nuances generated by performers’ gestures and musical instrument 

manipulations.  

As will be seen in the next part of the dissertation, the system investigated in the present 

work does not facilitate an audio corpus of considerable size, neither a database to store 

audio units and associated descriptors. The units used for concatenation are acquired 

from a prior solo recording of the performer playing the specific piece of music. These 

units are automatically segmented and their selection is predetermined. However, as a 

future enhancement, and in order to allow for arbitrary interactions among distributed 

musicians a data corpus of previous recordings for each performer will need to be 

generated. Consequently, real-time unit selection algorithms must be employed so as to 

allow selecting appropriate data units representing the live music stream.  

Moreover, the fact that networked musical interactions take place in real-time, presents 

a limitation on the quality of concatenation. Specifically, in high-level instrument 

synthesis approaches (section 4.3.2), transformation of units always takes place prior to 

concatenation so as to alleviate cope with two problems: differences in amplitude, pitch 

or duration between the selected unit and the desired output, and perceivable 

discontinuities between successive sound units. Within the real-time requirements of the 

present system it is impossible to perform sophisticated transformations, unless a 

prediction mechanism is incorporated. Consequently, the point of concatenation needs 

to be predicted before it actually occurs on the input sound. This issue and the approach 

adopted by the system under investigation are discussed explicit in Chapter 9. 
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PART II: 

RESEARCH METHODOLOGY  
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5 Research Focus and System Overview  

This chapter elucidates the research focus of the present dissertation and provides an 

overview of the adopted methodology and the prototype software application to be 

developed. The first section recapitulates on the conclusions of the previous chapters 

and illustrates the objectives of the present work. Following, the computational 

challenges of achieving these objectives are enumerated. The final section presents the 

overall methodology and the block diagram of the prototype system to be developed.  

5.1 Rationale and Objective 

The effectiveness of NMP systems to offer musical collaborations comparable to those 

of collocated music performances is constrained by two types of problems (section 2.2). 

The first relates to the availability of network resources, while the second concerns the 

lack of suitable software tools and interfaces for permitting distributed musicians to 

effectively collaborate across distance (section 2.6). 

On the other hand, machine listening approaches aim at offering computational 

affordances that can significantly assist or enhance the experience of musicians during 

live performance. For example, automatic music transcription, audio alignment and 

computer accompaniment present innovative system capabilities both in offline as well 

as in online settings. As real-time functionalities, they can augment the experience of 

musicians in several music performance contexts, such as learning, jamming, 

rehearsing, etc. The perspective of encompassing capabilities of machine musicianship 

systems in the context of NMP research has not been widely addressed (section 3.3). 

In a similar line, a number of initiatives in concatenative music synthesis research aim 

at rendering expressive music performances. Unfortunately, the relevant initiatives are 

rarely implemented in real-time settings, and even if they are, a symbolic description of 

the sound to be synthesized is provided instead of an audio stream (section 4.4).  

The objective of the present work is to explicitly suggest the exploitation of 

contemporary research achievements in the areas of machine listening and 

concatenative music synthesis, so as to alleviate from the complexities of NMP systems. 

In fact, it could be that progress made in one domain can directly translate to the other 

domains. So for example, making progress on expressive performance rendering by 

means of audio segment concatenation, can directly translate to improving computer 

accompaniment. Improving computational models of musical expectation and 

anticipation directly suggests the possibility of eliminating communication latencies, 

which is the main barrier of communication in NMP systems. Progress in NMP allows 

investigating features of man-machine collaboration also applicable to machine 
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musicianship, and so on. Eventually, there are numerous possibilities in combining the 

research achievements of these three domains.  

This work investigates one such possibility by experimenting with the idea of 

representing each performer of a dispersed NMP system by a local computer-based 

musician. For each musician participating in an NMP session, a local agent ‘listens’ to 

the local performance, ‘notifies’ remote collaborators and ‘performs’ the music 

reproduced at remote ends, therefore eliminating the need for audio stream exchange. 

Listening involves detecting the occurrence of a new note in real-time (i.e. at the onset). 

Notifying involves informing remote peers about the arrival of a new note using low 

bandwidth information. Finally, performing involves receiving notifications about the 

remote occurrence of notes and rendering the performance of the corresponding 

musicians using pre-recorded solo tracks. These tracks are adapted in terms of tempo 

and loudness, so as to better reflect the live performance of remote musicians. 

Assuming that the algorithms implementing the functionalities of ‘listening’ and 

‘performing’ can become sufficiently robust, this type of communication can provide 

superior sound quality compared to alternative low bit-rate communication of music, 

such as MIDI. Equivalently, assuming that the algorithmic complexity of the proposed 

scheme can be effectively reduced to accommodate the requirement of the Ensemble 

Performance Threshold (section 2.4), communication based on notifications can prove 

more efficient than facilitating audio compression schemes, in terms of network 

resource consumption. 

5.2 Computational Challenges 

The main challenge of the approach being investigated is to meet the technical 

requirements of low-latency, low-bitrate and high quality audio communication. The 

following subsections attempt to quantify the requirements in terms of latency and 

audio-quality and highlight the differences of the current approach with alternative 

techniques employed in remote musical interactions. 

5.2.1 Real-time constraints 

It is important to elucidate the implications of qualifying the proposed implementation 

as a real-time approach. A few of the works cited in the ‘Related Work’ part of this 

dissertation  (e.g. Raphael 2001b; Schwarz et al. 2006) are characterized as real-time 

implementations, without however explicitly addressing or assessing the real-time 

performance of the proposed systems.  Of course the term real-time may also have the 

legitimate meaning of reacting ‘without perceivable delay’, and this is in fact the 

meaning implied in computer accompaniment or concatenative input driven synthesis 

systems. 



 

71 

 

However, more formally and in the context of digital signal processing, a real-time 

system has to at least satisfy the following two requirements (Kuo, Lee and Tian 2006): 

a) The system must be causal. Causality implies that at any time only the current 

and the previous values of the system are available. The term online, used 

throughout this document refers to causal behaviour. 

b) The required processing latency per each input frame should be less than or 

equal to the time span represented by that frame for all possible frame lengths. 

In other words the average processing time per sample should be no longer than 

the sampling period.  

Clearly, the first of these requirements has an influence on the robustness of the 

implemented algorithms. This is primarily caused by the fact that no signal overview is 

available prior to processing and therefore operations such as DC removal or signal 

normalization are not possible. Moreover, as most of the algorithms considered here are 

essentially statistical, data distribution measures such as means and variances are 

computed from insufficient data and are therefore suboptimal to those computed from 

offline procedures.  

The second constraint demands using algorithms of reduced computational complexity 

such that processing latencies do not exceed the time corresponding to the length of the 

audio buffer. For instance, processing a block of 1024 samples of monophonic 16-bit 

audio with a rate of 44.1 kHz should not require more time than 23.22ms to execute on 

the target processing machine, otherwise processing becomes ineffective as audio 

blocks are collected faster than processed, thus necessitating to queue them in an ever 

increasing memory stack. 

In addition to the above constraints, the target application scenario presents a third 

limitation. Specifically, in NMP settings the sum of the latencies of all the processes in 

the capture-analysis-transmission-reception-synthesis-playback cycle must be kept 

below the Ensemble Performance Threshold (EPT), i.e. approximately below 30ms (see 

also section 2.4), including buffering delays. This third constraint enforces limitations 

not only in processing latencies but also on the length of the audio buffers. For example, 

buffering in blocks of 1024 samples at the rate of 44.1 kHz yields a latency of 23.22ms 

which is already close to the EPT and therefore strictly prohibited for the target 

application. Consequently, the audio processing algorithms investigated and presented 

in this dissertation are constraint to use a maximum block size of 512 samples, which 

corresponds to a buffering latency of 11.6ms. 

Unfortunately, the limitation imposed on the length of the audio buffer further degrades 

the performance of real-time analysis/synthesis algorithms, especially when these 

operate on the frequency domain of the signal. Specifically, when applying Fourier 

Transforms a 512-samples frame length at the rate of 44.1 kHz results in a linear 

frequency resolution of 86.13Hz per frequency band. Consequently at the frequency of 

220Hz (i.e. A note before middle C) which lies within the frequency range of most 
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acoustic instruments, the frequency band spans more than four semitones, and therefore 

spectral features provide little information about the pitch of the notes being performed. 

A common approach to dealing with this problem is to either employ multi-resolution 

frequency analysis, as in the wavelet transform (see section 6.6.1), or to attempt 

estimating pitch content based on the energy of harmonic overtone structure (section 

6.6.2).  

When the system is expected to react within certain time limits, as in computer 

accompaniment systems, a common practice to reducing latency is to employ prediction 

mechanisms. For instance Raphael (2001b) uses Bayesian Belief Networks in order to 

predict the performance of a soloist, so as to timely adjust the tempo of the orchestral 

accompaniment. This is achieved during an offline training phase, which yields a 

performer-specific model for a specific piece of music using past rehearsal recordings. 

In a similar line the work of Sarkar and Vercoe (2007), uses a Dynamic Bayesian 

Network to predict the next note of a musical phrase on the Indian drum tabla, based on 

rules that define rhythmic phrases for the specific instrument and music genre. 

As will be seen in Chapter 9, in the present work an alternative mechanism to 

progressively predict the energy and duration of a note is employed at the time instant 

when its onset occurs. The problem is simplified by assuming that duration and energy 

deviations from one performance to another will be consistently propagated based on 

the deviations observed on the past four or five notes. 

5.2.2 Audio quality constraints 

The second challenge to be met by the target system is to maintain high quality audio 

communication, comparable to that of live audio stream exchange, while reducing 

information bandwidth to significantly low bitrates. Conventionally, low bitrate 

communication requires the use of signal descriptions instead of raw audio streams. 

When considering acoustic music, descriptive representations are commonly manifested 

by the score of a music piece or equivalently its MIDI counterpart. Although highly 

compact, such descriptions fail to maintain the expressive aspects of music performed 

using acoustic musical instruments.  

The focus is clearly on musical acoustics as opposed to performances using electronic 

instruments, for which musical communication protocols such as MIDI or the 

OpenSound Control provide established solutions in low-bandwidth musical 

interactions. As was discussed in the Introduction (section 1.2), the expressive nuances 

of music interpretation using acoustic instruments are predominantly attributed to the 

idiomatic use of articulation, dynamics and also deviations from predefined musical 

tempi (Widmer and Goebl 2004). Such expressive utterances are impossible to 

sufficiently reconstruct from any symbolic representation alone. Moreover, the 

originality of sound produced by acoustic instrument manipulations is not easy to 

replicate when using functional sound synthesis methodologies. Therefore 
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concatenative music synthesis is the single choice in order to preserve the expressive 

qualities of musical performance. 

In the present context, high-fidelity music synthesis amounts to being able to re-

synthesize the live performance as closely as possible. As the methodology uses a prior 

recording of the same piece of music performed by the same performer, retaining the 

expressive qualities of the live performance requires careful transformations of the 

audio segments to be concatenated in terms of loudness (i.e. dynamics) and duration 

(revealing tempo deviations). As for timbral nuances we assume that they are 

sufficiently captured in the original solo recording. Clearly, transformations degrade 

signal quality and therefore they should be kept as minimal as possible. Furthermore, 

careful processing must take place in order to eliminate perceivable artefacts caused by 

signal discontinuities at the junction point of consecutive audio segments.  

Equivalently, in the context of NMP undesirable artefacts are caused by audio dropouts 

owing to network packet loss (see section 2.5.2.1.3). As in the proposed system 

bandwidth requirements are fairly eliminated, packet loss can be entirely eliminated by 

transmitting redundant information in addition to onset notifications. Clearly, it is not 

acceptable to eliminate distortions that are commonly found in NMP and introduce new 

types of distortions attributed to segment transformation or signal concatenation. 

Consequently, implementing the required transformations and applying them within the 

aforementioned time constraints presents a significant challenge for the system under 

investigation.  

5.3 Assumptions - Prerequisites 

Due to the fact that the prototype system developed in the present work has not been 

previously investigated in its entity, and in order to efficiently cope with the 

aforementioned computational challenges, a number of assumptions are made on the 

application context so as to allow for producing some useful research results. 

Undoubtedly, these assumptions correspond to usage constraints in their own behalf. 

However, eliminating these constraints and providing more generic solutions to the 

proposed approach is the main focus of ongoing and future research efforts. 

Up to the time of this writing, the proposed approach has been applied to solo 

recordings (i.e. assuming a single musician is located at each network node) of 

monophonic instruments, although provisions are made for additionally accommodating 

polyphonic instruments. Moreover, no unit selection process is involved, other than 

concatenating an automatically pre-segmented performance of the reference music 

piece.  

The entire concept might seem rather simplistic, as the segmentation of the solo 

performance to units; the online analysis of the live solo as well as the real-time 

concatenation of segments could be performed using a single algorithm for robust real-
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time onset detection. However, such an algorithm should provide increased accuracy in 

detecting note onsets as soon as they occur and before they are really perceivable. 

Unfortunately, the robustness of onset detection algorithms is highly unstable and even 

more so in online and real-time settings (Glover, Lazzarini and Timoney 2011). The 

methodology presented in the next section seeks to increase the robustness of real-time 

onset detection by progressively accumulating a trained model, able to predict onsets 

before they are truly detectable. 

To sum up, the present implementation assumes that the following prerequisites hold: 

 Each instrument is located at a different networked site (i.e. audio signals 

correspond to solo performances) 

 Every participating instrument is monophonic (i.e. no chords or polyphony are 

presently taken into account) 

 A solo recording of each instrument and performer playing the specific piece of 

music is available prior to performance  

 The music score of each part is also available prior to performance 

5.4 Adopted Methodology 

The methodology adopted by the prototype system under investigation consists of an 

offline phase, that takes place prior to collaborative performance and an online phase, 

taking place during collaborative performance.  

 

Figure 5-1: Block diagram of the processes that take place offline, prior to collaborative performance. Solid 

lines represent audio data flows while dashed lines represent numerical or textual data flow.  
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The purpose of the offline phase is to generate a pool of audio segments and their 

associated descriptions as well as a Hidden Markov Model representing the 

performance of each performer.  

As depicted in Figure 5-1, for each musician his/her solo recording is segmented to its 

constituent note segments using an algorithm for offline blind onset detection (described 

in section 7.4.1). This detection is informed and assisted by the score of the piece 

performed by the solo performer. At the same time, a textual description of each note is 

generated (section 7.4.2). This description concerns note duration, RMS amplitude, and 

pitch frequency and is maintained in a text file (described in section 10.3.2.3). Note 

descriptions are needed during concatenative re-synthesis in order to allow for 

transforming the note segments in terms of amplitude and duration so as to more 

effectively match the notes being played during the live session.  

Subsequently to offline segmentation, feature extraction is applied on the same solo 

recording. The extracted features are combined with note descriptions (derived from the 

offline segmentation process) to form an annotated dataset. This dataset is used for 

initializing an HMM that models the temporal evolution of the music piece as 

interpreted in the offline solo recording. After, initializing the HMM, an unsupervised 

training algorithm is applied in order to improve the accuracy of the model (section 

8.4.1). The trained HMM is finally stored in an additional text file (described in section 

10.3.2.2).  

 

Figure 5-2: Block diagram of the processes taking place during live NMP. Solid lines represent audio data 

flows while dashed lines represent numerical or textual data flow. 

As illustrated on Figure 5-2, during live performance, at the location of each performer, 

the trained HMM corresponding to that performer is used to decode the instant score 
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position of the live performance in real-time (the real-time decoding process is 

described in section 8.4.2). If the decoded position corresponds to a note onset, then a 

description (the note duration and the RMS amplitude) of the previous note is 

communicated to the remaining performers participating in the live session. These 

remote peers, upon receiving the description of the previous note, attempt to predict the 

attributes (i.e. RMS and duration) of the current note (see section 9.3.1). These 

attributes correspond to expressive deviations in tempo and loudness during live 

performance. Following, the corresponding note segment is retrieved from the pool of 

audio segments along with its description. This segment is transformed so that it better 

matches the predictions for the current note (section 9.3.2). Finally, the transformed 

segment is concatenated to the audio stream being reproduced (section 9.3.3).  

 At the location of each participating peer, a single transmitter decoding the local 

performance is executed and as many receivers as the other the number of remote peers. 

For instance for a session of four performers, at the location of each performer a single 

transmitter and another three receivers are instantiated. Low latency audio capturing and 

playback is achieved using audio buffers of 512 samples per channel at the sampling 

rate of 44.1 kHz, corresponding to a buffering latency of 11.6ms. This latency is a good 

compromise between small buffering delays and improved performance of the audio 

analysis algorithms. 

The following chapters provide details on the precise methodology followed by each of 

these processes. Specifically, Chapter 7 describes the offline segmentation process. 

Chapter 8 describes the score following process using HMMs, i.e. the ‘listening’ 

component. The representation of the performance model, the offline training as well as 

the process of real-time decoding are presented in detail. Finally, chapter 9 describes the 

synthesis process including the type of information transmitted as network notifications 

(i.e. the ‘notify’ component), acquisition of predictions for the current note attributes, of 

segment transformations to account for tempo and loudness deviations as well as the 

technique used for eliminating signal discontinuities at the junction point of consecutive 

segments (i.e. the ‘perform’ component). As audio feature extraction is a pre-processing 

step employed whenever descriptive information needs to be inferred from an audio 

signal, the next chapter 6 describes the feature extraction process and provides the 

definitions of the acoustic features that were used for experimentation and 

implementation throughout the development of the final system. 
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6 Online Audio Feature Extraction 

The present chapter is intended as a reference for the chapters that follow. Specifically, 

it provides definitions for a number of audio features that were used throughout this 

work, those used during experimentation as well as those that were selected to inform 

computations in the final prototype system. Definitions are provided as mathematical 

formulas. Besides the mathematical definition, the following sections provide 

visualizations of the temporal evolution of each feature for an example melodic phrase. 

These visualisations effectively depict the performance of the different features for the 

tasks of audio segmentation and audio to score alignment, which are presented in 

subsequent chapters.  

6.1 Feature extraction and visualisation 

In contrast to directly using audio samples, machine listening approaches use a set of 

attributes for signal representation, known as audio features. In principle, an audio 

feature is a signal property computed over successive audio blocks having a constant 

predefined length of the order of 10-50ms. At the sampling rate of 44.1kHz, commonly 

used values for the length of audio blocks are those of 2048, 1024 or 512 samples. The 

use of blocks having a length of some power of two is imposed by the fact that these 

features are often computed on the frequency domain of the signal, which is usually 

obtained by the Fourier Transform. The fast implementation of the Fourier transform 

(FFT) is based on computational optimisations assuming that the length of the audio 

blocks is some power of two.  

At this point it is important to disambiguate the use of the terms audio block versus 

audio frame. The term frame is sometime used to refer to a small signal chunk. 

However, in audio engineering technology the term audio frame is usually used to refer 

to a time instance across all audio channels, i.e. 8 channels would result in an audio 

frame of 8 samples, one at each audio channel. Hence, when a signal has a single 

channel, a frame refers to an audio sample.   Throughout the present document the term 

audio block will be consistently used, so as to avoid confusion with multichannel audio 

frames. 

The reason for using audio features, as opposed to signal samples is twofold: firstly 

features offer a rate reduction on the data to be processed, and secondly they can be 

cautiously selected to effectively reveal the desired structure of the signal depending on 

the information that needs to be found. Small block lengths result in increased time 

resolution therefore allowing the detection of sudden bursts of feature values even if 

they span short time intervals. Unfortunately, as already elaborated (section 5.2.1), 
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increased time resolution results in poor frequency resolution and especially in low 

frequencies (i.e. the range of frequencies corresponding to note pitches). This fact 

presents a major problem in feature extraction, especially in cases requiring increased 

frequency resolution, so as for example to allow detecting pitch variation in a melodic 

or a harmonic musical progression. In the context of online and real-time machine 

musicianship, using small block lengths is additionally imposed by the fact that system 

actions (e.g. accompaniment) should be performed without perceivable delays. 

In the following sections,  the online and real-time requirements presented by 

networked music performances, constraint the computation of feature values to using a) 

block lengths up to 512 samples, and b) causal properties assuming knowledge only for 

the current and preceding signal frames. Hence, it is important to note that signal 

processes such as DC removal and normalisation of the entire waveform prior to feature 

extraction are only applicable to offline processes, such as the audio segmentation 

performed prior to music performance. 

Different features account for different perceptual qualities of the signal that may be 

strongly correlated with loudness, pitch and timbre perception. The sections that follow 

present a definition of the features that were used during experimentation as well as 

those that were finally implemented in the software prototype that has been developed. 

Some of the features were used to investigate blind audio segmentation, while others 

were used in the audio-to-score alignment algorithm. As there exist numerous audio 

features that can be combined in numerous ways, the choice of which features to use for 

each approach was based on  personal experience, which was significantly informed by 

citing works as well as by hours of experimentation with a variety of audio files. 

 

Figure 6-1: The musical score of the audio signal used for visualising the values of the audio features. 

The features presented in the following sections are organised in three categories: 

energy features, onset features and pitch features. Energy features are computed on the 

time domain and have been used to track the amplitude envelope of the signal, hence 

distinguishing between the attack and the steady or release state of notes, depending on 

the instrument. Features classified as onset features were used to indicate the occurrence 

of note onsets. Finally, pitch features were used to provide cues for pitch detection. In 

this work, pitch detection was used to increase the robustness of onset detection 

algorithms in the two algorithmic tasks of blind onset detection and onset detection by 

alignment to a music score. 

In order to demonstrate the effectiveness of the audio features presented here, the 

following sections present the mathematical definition of each feature followed by a 

diagram depicting the temporal evolution of that feature and its first order difference for 
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an example melodic phrase. The signal is a flute performance of the melody shown on 

Figure 6-1. The fifth note is performed as a subtle pitch change, i.e. a legato articulation.  

The signal has a total duration of 4.12sec and the features have been estimated on audio 

blocks having a length of 11.6ms (i.e. 512 samples of 44100/16bit audio).  

6.2 Mathematical notation  

The definition of features in the next sections, comply with the following mathematical 

notation: 

  : denotes the length of the audio block  

        : denotes the sample index within an audio block 

  : denotes the block index starting from 0 

  : denotes the number of frequency bins in the spectrum up to the Nyquist 

frequency 

        : denotes the index of frequency bins 

     : denotes the signal value at time instant t 

       : denotes the k
th
 frequency bin of the complex Fourier spectrum of the n

th
 

audio block 

         : denotes the spectral magnitude of the k
th

 frequency bin of the n
th

 

block 

       : denotes the phase of the k
th
 frequency bin of the signal at block n 

     : denotes the value of feature F at block n 

                   : denotes the first order difference of feature F at 

block n  

                      : denotes the second order difference of feature 

F at block n. 

The last two differences values (the equivalent of the first and the second derivative in 

analogue signals) are often used in combination with the actual feature value, so as to 

allow monitoring the monotonicity of the corresponding features along with their local 

values. 

6.3 A note on frequency transforms 

This section discusses the importance of proper parameterisation of the Fourier 

transform for the proposed application scenario on NMP. The Fourier transform is used 

to compute spectral features, which are monitored in real-time in order to indicate the 

occurrence of note onsets. For the application scenario addressed here, it is important to 

realize that note onsets need to be detected as soon as they occur. This requirement is 

imposed by the fact following the detection of an onset, a notification will be 

transmitted to all remote network ends and re-synthesis of the corresponding note 
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segment needs to take place immediately. The time taken by the entire process of 

detection, transmission of notifications and re-synthesis at remote ends should not 

exceed the Ensemble Performance Threshold of 30ms (see section 2.4) otherwise the 

collaboration of performers will be severely hindered by communication latencies. As 

shown in the following, the commonly used parameterization of the Fourier transform 

may lead to delayed onset detection, namely to detecting an onset a couple of blocks 

after it actually occurs. 

Although certain audio features may be computed in the time domain, such as for 

example the energy or the zero-crossing rate of an audio signal, most features are 

computed on the frequency domain of a signal. The most common transform used in 

this case is the Short Term Fourier Transform (STFT). Using the notation provided in 

the previous section, the STFT may be mathematically formulated as: 

         

   

   

            
  
 

               

This transform partitions the signal in small windows of predefined length N. At each 

step, the window is slid on the audio signal by an amount of h samples called the hop 

size. Consequently, successive windows overlap by N-h samples. In general, the hop 

size defines the number of new samples participating in each window and therefore in 

real-time applications the hop size must equal the length of the buffer used for audio 

capturing, so as to perform exactly one transform on each audio capturing cycle.  

As the STFT assumes that the signal is stationary, therefore repeating itself outside the 

analysis window, slicing the signal results in end-point discontinuities due to the fact 

that the analysis window does not contain an integer number of periods of the 

fundamental frequency of the signal. This causes spectral leakage appearing as ripples 

around the main frequency lobes. To alleviate this effect, each window is multiplied by 

a ‘bell-shaped’ symmetric windowing function w that smoothly fades out the signal at 

the end-points of each analysis window. The derived complex spectrum X(k) has a 

constant resolution across the entire frequency spectrum (up to the sampling frequency 

Fs) which equals Fs/N. Consequently, the length of the window N is inversely 

proportional to the frequency resolution and defines the distance among consecutive 

spectral bins denoted as k. 

Although the methodology followed is essentially the same, different research works 

use different parameterization for deriving the Fourier spectrum. Commonly, non-real-

time approaches use longer windows than real-time approaches so as to achieve 

increased frequency resolution. For instance Hainsworth and Macleaod (2003) used a 

4096-point STFT with an overlap of 87.5% (i.e. 512 samples) to detect onsets based on 

spectral features. In a similar line Soulez, Rodet and Schwarz (2003) used a 4096-point 

STFT with a hop size of 256 samples to compute spectral features that are subsequently 

used for offline audio-to-score alignment, while Dixon (2006) used a 2048-point STFT 

with an overlap of 78.5% for offline onset detection. In real-time settings, Stowell and 
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Plumbley (2007) used a 512-point STFT with a 50% overlap. Brossier, Bello and 

Plumbley (2004) used a 1024-point STFT with an overlap of 512 samples for fast onset 

detection, however to reliably identify note pitches they used a window which was four 

times longer (i.e. 4096 samples) than the window used for onset detection. 

As a rule of thumb, onset detection requires increased time resolution, while reliable 

pitch detection demands for high frequency resolution. Furthermore, the requirements 

of real-time applications necessitate the use of relatively small audio blocks. In the 

present work, high resolution in both time and frequency domains is critical for the 

robustness of the employed methodology. A limit of 11.6ms (512 samples at a rate of 

44.1 kHz) is imposed on the length of the audio block captured in real-time to account 

for the EPT requirement of 30ms maximum latency during music performance (section 

2.4).  

With respect to frequency resolution, the possibility of resolving spectral components in 

the pitch range of most acoustic instruments increases the robustness of the audio-to-

score alignment method. Specifically, it is desirable to have a frequency resolution 

which allows for separating notes of the well-tempered chromatic scale in pitch 

frequencies that can go as low as 220Hz. For example, the A# note which is one 

semitone above 220Hz corresponds to the pitch frequency of 233,08Hz, hence the 

frequency resolution of the STFT should be at most 13Hz. As the STFT window needs 

to be a power of two so as to exploit speed optimizations of its fast implementation, the 

length of the window cannot be less than 4096 samples, which yields a frequency 

resolution of 10.77Hz across all frequency bins.  

 

Figure 6-2: The windowing function delays the detection of the onset on subsequent hops, resulting in 

detection latency corresponding to approximately 30-4 hops. 
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To summarize, the requirements of the target application in NMP necessitate the use of 

a 4096-point STFT with a hop size of 512 samples and hence an overlap of 87.5%. This 

means that in real-time settings, every-time a new audio block becomes available; it will 

contribute by 1/8
th

 or 12.5% to the computed spectral features. This may be problematic 

especially in cases when the captured 512-samples block contains an onset. Especially, 

in percussive instruments which exhibit salient onsets associated with sudden bursts of 

high frequency energy that are rapidly decayed, onsets may be lost or appear in 

subsequent blocks if the current block has such a small contribution in the computation 

of spectral features.  Moreover, if a windowing function is used, then the onsets will be 

detectable when the transient part of the signal appears in the centre of the analysis 

window. With an analysis window of 4096 samples and a hop size of 512 this transient 

part of the signal will be detectable after three to four hops, corresponding to a latency 

of approximately 40ms. This is shown on Figure 6-2. The onset appears for the first 

time in the last 512 samples of the n
th

 window. However, due to small contribution 

(512/4096 = 12.5%) the energy increase due to the onset may be insignificant. 

Moreover, the bell-shaped windowing function further decreases the contribution of the 

onset on the n
th
 window.  It is more likely the onset will be detected 3 or 4 hops of the 

n
th

 window.  

 

Figure 6-3: Waveform derived from a piano recording. Two 4096-point windows are chosen to demonstrate 

the behaviour of STFT during a nearly periodic portion of a signal and a portion for which a note onset occurs 

at the last 512 samples representing the hop.  

For this reason, the present work chooses to partition the signal in blocks of 2048 audio 

samples using a hop size of 512 samples. These 2048 samples are then zero padded to 

4096 points. It is known that although zero padding does not literary increase the 

frequency resolution of the signal, it has the effect of spectral interpolation therefore 

allowing a finer localization of the maxima of the frequency spectra, the spectral lobes. 

With the proposed approach the energy of each audio block of 512-samples contributes 



 

83 

 

by 25% to the computed spectral features, which provides a good compromise between 

time and frequency resolution. Moreover, the windowing function w(n) corresponds to a 

rectangular window which is equivalent to not using a windowing function. 

The superiority of the proposed transform over the conventional STFT for the task of 

onset detection is demonstrated using an example audio signal. The signal shown on 

Figure 6-3 has been derived from a piano recording playing a monophonic tune. 

Specifically, two 4096-point windows have been chosen: the first one is derived from 

the steady, nearly periodic, part of a note and the second one contains the onset of the 

next note within the last hop of 512 samples. For the computation of the STFT a 

Hanning windowing function has been used, which is mathematically formulated as: 

                 
   

 
               

where N equals the number of samples used in the analysis window. Four 

parameterisations of the STFT have been chosen for demonstration: 

1. 512-point STFT using a Hanning window 

2. 4096-point STFT using a Hanning window 

3. 2048-point STFT using a Hanning window of 2048-points (i.e. N = 2048) and a 

Fourier analysis window which is zero padded to 4096 

4. 2048-point STFT using a rectangular windowing function (i.e. which is 

equivalent to no windowing function) and a Fourier analysis window which is 

zero padded to 4096 

Figure 6-4 shows the frequency spectra of the periodic part of the signal derived using 

the above parameterisations, while Figure 6-5 contains the same plot but with the 

transforms applied on the window that contains an onset during the last 512 samples. 

Note that the first parameterisation of the Fourier transform is applied on the last 512 

samples of the window, the second on the entire window while the third and the fourth 

parameterisations are applied on the second half (i.e. the last 2048 samples) of each 

window. 

The following conclusions may be drawn from these spectra: 

 Window Size and Frequency Resolution: The 512 transform (1) has a very 

coarse frequency resolution, hindering the separation of pitches in the task of 

audio to score alignment. The remaining parameterisations give a better estimate 

of the main spectral lobe (in this case corresponding to the fundamental 

frequency) as well as the next three harmonics. 

 Window Shape and Spectral Leakage: The use of the rectangular window in the 

fourth parameterisation (4), introduces ripples around the main spectral lobes, 

which is caused by spectral leakage introduced by signal discontinuities at the 

end points of the analysis window. This effect is suppressed when using a 
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Hanning window that smoothly fades out the signal at the end points of the 

analysis window. 

 Zero Padding vs. Not Zero Padding: The 2048 signal zero padded to form a 

4096 point analysis window (3) yields an identical spectral shape to the 4096 

point STFT (2) which however contains less energy, due to fewer samples with 

non-zero amplitude. Mere zero-padding does not appear to significantly 

contribute to early onset detection. 

 Periodicity and divergence: The most important conclusion drawn from these 

two diagrams is that both the 4096 Hanning STFT (2) as well as the 2048 

Hanning STFT (3) parameterisations have a very similar spectrum in the two 

signal regions, therefore providing no hint for the occurrence of the onset on the 

last 512 samples of the second spectrum. In both cases, the onset is attenuated 

by the Hanning windowing function. In contrast, the 2048 STFT using a 

rectangular window (4), provides a very different spectrum in the two figures, 

which contains a substantial percentage of energy in higher frequencies as well 

as in frequencies between the main lobes, thus clearly indicating the occurrence 

of the onset. In the periodic part of the signal it has a spectrum which is very 

close to the 4096 Hanning STFT (2), therefore clearly depicting that the signal is 

highly periodic. It can also be seen that the 512 parameterisation (1) yields a 

spectrum of higher energy than that of the periodic part of the spectrum. This 

energy increase may also be used to inform onset detection. However, as the 

present application additionally uses pitch identification to increase the 

robustness of audio to score alignment, the last parameterisation (4) yields better 

results both for onset detection as well as for audio to score alignment. It can be 

argued that the same performance may be achieved by using a rectangular 

window on 4096 samples, thus omitting zero padded. However, as previously 

discussed, using 2048 samples is preferred due to each 512-hop having a greater 

contribution to the resulting spectrum, i.e. twice than that without zero padding. 

All of the algorithms presented in the rest of this dissertation use an STFT applied on 

analysis windows for which the first 2048 points are audio samples and the second half 

is zero padded. Out of the 2048 samples, 512 correspond to the audio block captured in 

real-time (i.e. yielding a 75% overlap factor). No windowing function is used in order to 

avoid eliminating transient phenomena at the time of their occurrence. Experiments on a 

number of acoustic instruments confirmed that this parameterisation offers a good 

compromise between timely identification of note onsets and frequency resolution to 

allowing distinguishing note pitches in the frequency range of interest. 

The spectral features defined and visualised in the sections that follow are computed 

using the proposed parameterisation of the Fourier transform. The rest of the features, 

namely those computed on the time domain (i.e. E, RMS, LE) and the WP feature   

(which uses a Discrete Wavelet Transform instead of the Fourier transform) are 

computed on consecutive 512-sample blocks.  
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Figure 6-4: Different parameterisations of the STFT for the nearly periodic segment of the piano signal shown on Figure 6-3.  
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Figure 6-5: Different parameterisations of the STFT for the segment of the piano signal that contains a note onset as shown on Figure 6-3.  
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6.4 Energy Features 

The following three energy features have been used to characterise the amplitude 

envelope of a music signal. They have been computed on the time domain of the signals 

and they help distinguishing between the attack and the remaining parts of a note, as 

well as between silent and louder passages of music performances. 

6.4.1 Energy (E) 

The linear energy is computed in the time domain as: 

      
 

 
        
   

   

 

As depicted in Figure 6-6, this function is in fact an envelope follower, therefore 

allowing to monitor amplitude variations at a higher rate than the signal itself. 

 

Figure 6-6: Temporal evolution of the Energy feature and its first order difference for a short musical phrase 

performed by a flute. 

6.4.2 RMS amplitude 

Root Mean Square (RMS) amplitude corresponds to the square root of the block energy:  
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In this work, the RMS feature is used instead of the energy in order to estimate a gain 

factor to be applied on the audio segments during concatenative re-synthesis and prior 

to signal concatenation. 

 

Figure 6-7: Temporal evolution of the RMS amplitude feature and its first order difference for a short musical 

phrase performed by a flute. 

Figure 6-7 shows that this feature is also an envelope follower.  

6.4.3 Log Energy (LE) 

The logarithm of the energy, effectively measuring the sound pressure level of the 

signal in dB, is computed as: 

                  

From Figure 6-8 it can be seen that the Log Energy feature is smoother than the energy, 

therefore keeping only perceptually significant variations in the envelope of the signal, 

Consequently, the LE feature is more appropriate to discriminate between note and rest 

and its first order difference can be used for the identification of attack or sustain parts 

of a note which is why it is being extensively used in audio to score alignment 

approaches.  
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Figure 6-8: Temporal evolution of the Log Energy feature and its first order difference for a short musical 

phrase performed by a flute. 

6.5 Onset Features 

As will be seen in section 7.3, blind onset detection methods are based on monitoring 

the evolution of certain features over time. Such features must be carefully selected to 

have different behaviour at the location of onsets than at the remaining steady parts of a 

waveform. In most cases, onsets are associated with peaks (i.e. local maxima) of the 

onset features. This section presents various features that have been used for onset 

detection in the relevant literature. Most of them provide an indication for the timbral 

properties of a signal. As will be elaborated in section 7.2, different instruments exhibit 

different timbral behaviour at note onsets, which is characterised by their sound 

generation mechanism. Consequently, the choice of which feature to use for onset 

detection is primarily determined by the instrument that needs to be analysed. 

6.5.1 High Frequency Content (HFC) 

High Frequency Content (Marsi and Bateman 1996) is perhaps the most straightforward 

feature used in blind onset detection algorithms and is computed by summing the 

linearly-weighted values of the spectral magnitudes of the audio block. It emphasizes on 

the magnitudes of the highest frequency bins of the spectrum, therefore presenting 

peaks for note onsets that are associated with noise components. Apparently, HFC 

yields good results in blind onset detection of percussive onsets but it does not work 

well with subtle onsets, as is the case with voice portamento or legato phrases.  
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Figure 6-9, depicts the evolution of the HFC and of its first order difference for the 

reference passage. In wind instruments, such as the flute, onsets are commonly 

associated with energy changes in low frequency bands, namely in the area of notes 

pitches. The HFC feature fails to depict such onsets as it is emphasizing energy changes 

at high frequencies, thereby neglecting the changes in low frequency areas. As will be 

shown in section 7.3.2, the HFC feature works well for salient onsets such as those 

produced by percussive instruments, which are accompanied with energy bursts in high 

frequency areas. 

 

Figure 6-9: Temporal evolution of the HFC feature and its first order difference for a short musical phrase 

performed by a flute. 

6.5.2 Spectral Activity (SA) 

Spectral Activity has been introduced by Cont (2004), as a measure of the spectral 

burstiness of the signal, emphasizing on the difference of low and high from the mid-

frequency range. 

       

          
   
               

    

  
 
 
  

              
      

             
   

 

In fact as the total number of frequency bins K corresponds to the Nyquist frequency, 

which is 22050Hz for a signal sampled at 44.1kHz, the three frequency ranges 

correspond to the intervals [0, 7350], (7350, 14700], (14700, 22050) in Hz. 
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Figure 6-10: Temporal evolution of the SA feature and its first order difference for a short musical phrase 

performed by a flute. 

From Figure 6-10 it can be seen that the Spectral Activity feature is close to 1 for most 

parts of the spectrum as the energy of the signal is concentrated in the first frequency 

range. However, at the location of onsets the SA feature takes smaller values as some 

energy leaks to the second frequency range (having a minus sign on the above formula). 

Deviations from 1 are also depicted by the first order difference of the feature. It is 

important to note that as the fifth note of the flute phrase corresponds to a legato note 

introduced by a subtle pitch change, no energy is detected in the mid-frequencies range, 

hence no hint is provided by the SA feature.  

In contrast with most of the other audio features, SA results in minimum values at the 

location of note onsets. 

6.5.3 Spectral Flux (SF) 

Spectral Flux measures the change in spectrum among consecutive audio blocks. It has 

been extensively used for the task of onset detection in different variations, most 

notably, the L-1 norm used by Dixon (2006): 

                  

   

   

                

And the L-2 norm used by Duxbury, Sandler and Davies (2002a): 
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In both cases, H is the half-wave rectifier function: 

     
     

 
 

With rectification only the frequency bins in which the energy increases are taken into 

account, as this is in fact the expected behaviour of frequency spectra at the location of 

note onsets.  

In this work, an alternative representation of the spectral flux feature has been devised. 

It is based on the L-1 norm divided by the sum of the spectral magnitudes of the entire 

audio block: 

       
              

                  

            
   

 

Although, this division does not literally provide feature normalization, as it is not 

divided by the all times maximum of the spectral magnitude, however it provides a 

useful measure for detecting peaks of the spectral flux regardless the loudness of the 

block being processed. The advantage offered by this representation is that only timbral 

changes are taken into account and that spurious detections due to performance 

dynamics are effectively eliminated. 

 

Figure 6-11: Temporal evolution of the different versions of the Spectral Flux feature for a short musical 

phrase performed by a flute. 

Figure 6-11 shows the temporal evolution of the three versions of the Spectral Flux 

feature. The SF1 version has a rather noisy behaviour without clear peaks at note onsets. 

The SF2 feature intensifies the peaks of SF1, hence providing cues for the location of 

onsets. However, there is a strong peak around 1.1 sec which is not related to an onset. 

This peak indicates a raise in the spectral envelop of the signal, possibly introduced by a 
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crescendo occurring within the duration of the note due to phrasing or by tremolo or 

vibrato effects. This peak does not appear on the SF3 feature which is independent of 

the global magnitude of the audio block. In contrast, the SF3 feature presents clear 

peaks for every onset which is strictly related to timbral changes while disregarding 

spectral changes due to amplitude variations. However, the peak of the 5
th
 legato onset 

is less apparent than the remaining peaks, which is why as discussed in section 7.4.1, 

audio segmentation at onset locations in the final prototype system uses a pitch detector 

to account for legato onsets associated with smooth pitch changes. 

6.5.4 Phase Deviation (PD) 

This feature was proposed by Bello and Sandler (2003) for the detection of note onsets. 

A stationary sinusoid is expected to have a phase constantly turning around the unit 

circle with a constant angular velocity and zero phase acceleration. The angular velocity 

is defined as: 

   
  

  
 

 

Figure 6-12: Temporal evolution of the PD feature and its first order difference for a short musical phrase 

performed by a flute. 

Thus, phase changes can be obtained from phase acceleration: 
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The function princarg maps the phase into the [-π, π] interval. As phase is in fact a 

discrete value, the above equation can be re-written as follows: 

                                                 

Bello and Sandler (2003) used the instantaneous probability distribution of phase 

deviations across the frequency domain. However, in subsequent works (Bello 2005; 

Brossier 2006) the mean of phase acceleration over all frequency bins was used to 

provide a feature for onset detection. This feature may be defined as:  

      
 

 
           

   

   

 

Figure 6-12 shows that the phase deviation feature does not provide any significant 

information for the task of onset detection on the example musical phrase. The resulting 

feature values are rather noisy, which is caused by the fact that most spectral bins have 

dominating noisy components rather than locally stationary sinusoids implied by phase 

deviations. 

6.5.5 Complex Domain Distance (CDD) 

As an alternative to using either amplitude or phases, Bello et al. (2004) proposed using 

both Fourier coefficients in the complex domain. Specifically, this feature provides a 

measure of the Euclidean distance between the current complex domain signal and the 

one predicted from the previous frame as: 

                         
 

   

   

 

The complex signal is represented as 

                         

and its prediction as  

                             

with                                       being the predicted phase 

assuming a zero phase acceleration          . With a little bit of algebra, it follows 

that:  
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Figure 6-13: Temporal evolution of the CDD feature and its first order difference for a short musical phrase 

performed by a flute. 

Again, according to Figure 6-13 the CDD feature does not provide useful information 

for the reference sound used here, which can be attributed to the fact that sinusoids are 

not the dominating components of the estimated spectral bins. 

6.5.6 Modified Kullback-Leibler Divergence (MKLD) 

In statistics and information theory, the Kullback-Leibler divergence provides a non-

symmetric measure for the distance of two distributions P and Q. Specifically, the 

Kullback–Leibler divergence of Q from P, denoted DKL(P||Q), is a measure of the 

information lost when Q is used to approximate P. In general and for discrete 

probability distributions P and Q, the KL divergence of Q from P is defined as: 

               
    

    
     

 

 

As onset detection methods seek to identify abrupt changes in audio signals, an onset 

detection function based on KL divergence can be defined as: 

            
        

          
 

   

   

          

therefore estimating the statistical difference of the spectral magnitudes of the current 

audio block from the spectral magnitudes of the previous block. The quantity appearing 

in the logarithm accentuates positive magnitude changes of spectral bins, however using 

the spectral bin of the second block as a weighting factor. Hainsworth and Macleod 
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(2003) proposed removing the weighting factor, thereby simply reflecting the rate of 

positive amplitude evolution between successive blocks: 

             
        

          
 

   

   

 

Based on this measure, Brossier (2006) proposed a modified version formulated as: 

                
        

            
 

   

   

 

which firstly prevents negative values and introduces the term ε=10
-6

 to ensure that the 

feature is still defined in very low energy levels approaching zero.  

 

Figure 6-14: Temporal evolution of the MKL feature and its first order difference for a short musical phrase 

performed by a flute. 

As will be seen in section 7.3.2, the MKL feature is highly effective for percussive 

onset detection. Unfortunately, as shown on Figure 6-14 it does not effectively depict 

onsets for non-percussive sounds, as it appears that the variation of spectral envelopes at 

onset locations is not significantly different than at the remaining parts of the signal. 

6.6 Pitch Features 

The prototype system developed in this work uses two audio features related to pitch. 

These are the pitch values determined using a discrete wavelet transform and the PSM 

feature, which is based on the Fourier transform and provides a measure for the 

presence of a given pitch in the audio block over which it is computed.  
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Several pitch detection techniques can be found in a long history of relevant 

publications. Some of them operate purely on the time domain of the signal (e.g. using 

the zero crossing rate or autocorrelation of the signal) (Amado and Filho 2008; de 

Cheveigné and  awahara 2002) and some of them use the frequency domain (e.g. 

cepstral analysis) (de la Cuadra, Master and Sapp 2001) 

Generally, blind pitch detection algorithms are highly error prone and even more so for 

polyphonic signals. As stated by Dannenberg (2006), a program that could determine 

the pitch content from an arbitrary audio piece, would need to solve the audio 

transcription problem. In the present research the focus is neither on pitch detection, nor 

in audio transcription. Nevertheless, pitch information may assist the task of onset 

detection both during offline segmentation as well as during score following. The 

following two chapters elucidate the way pitch features may increase the robustness of 

the onset detection task. 

6.6.1 Wavelet Pitch (WP) 

A pitch value is computed over successive audio blocks of small length based on the 

Fast Lifting Wavelet Transform (FLWT) using the Haar wavelet, shown on Figure 6-15, 

as the basis function. This type of wavelet transform is mathematically equivalent to 

low-pass filtering and down-sampling producing an approximation (i.e. a smoothed 

version of the signal) and then high-pass filtering and down-sampling to provide the 

detailed component of the signal (Daubechies and Sweldens 1998). The algorithm used 

here is a re-implementation of the algorithm reported by Maddox and Larson (2005), 

which finds the distance between the local maxima/minima after each zero-crossing of 

the approximation component at various levels of filtering/down-sampling operations. 

From these distances, the most prominent frequency component of the signal is 

estimated as corresponding to the pitch of the signal.  

The wavelet transform, as a multi-resolution frequency analysis technique aiming at 

overcoming the problem of constant frequency resolution of the Fourier transform, can 

yield increased performance for pitch detection in small audio blocks. The implemented 

algorithm resulted in very good performance for the facilitated block length of 512 

samples (at the rate of 44.1kHz). 

 

Figure 6-15: The Haar wavelet. 
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Figure 6-16 depicts the value of this feature for the example musical phrase. It can be 

seen that the pitch values provided by WP are effectively those depicted by the score of 

Figure 6-1. Moreover, it is worth noticing that the WP feature yields almost constant 

pitch values over the duration of each note, which is also evident by the first order 

difference of this feature denoted as ΔWP, which can additionally be used to improve 

the identification of onset locations in pitched sounds. Specifically, the 5
th

 legato note of 

this signal is represented as an abrupt change of the WP feature, from a constant value 

to a second value which is consistently held over the duration of the 5
th
 note. 

 

Figure 6-16: Temporal evolution of the WP feature and its first order difference for a short musical phrase 

performed by a flute. 

6.6.2 Peak-Structure Match (PSM) 

The PSM feature provides a measure for the presence of a given pitch in the audio block 

over which it is estimated. It has been extensively used for score following most notably 

by the IRCAM Real-time applications group, firstly introduced in (Orio and Schwarz 

2001; Cont 2004).  

The idea is that instead of attempting to detect pitch, it is easier to detect whether a 

signal contains the specific pitch or not. So if f0 denotes the pitch frequency of a note, it 

is expected that most of the energy of the signal will be concentrated in the spectral bins 

that correspond to the harmonic series of that frequency. Consequently, the PSM feature 

of a certain pitch can be mathematically formulated as: 
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where i corresponds to the frequency bins within which the harmonic overtones of 

fundamental f0 reside. Commonly, the first eight harmonic partials are taken into 

account and therefore h=7. 

In contrast to directly using pitch, the PSM feature is known to easily extend to 

polyphonic music, by accounting for the percentage of the energy found in the harmonic 

structure of two or more notes (Soulez, Rodet and Schwarz 2003). 

 

Figure 6-17: Temporal evolution of the PSM(440Hz) feature and its first order difference for a short musical 

phrase performed by a flute.  

Figure 6-17 shows the PSM feature for A3 note (i.e. f = 440Hz). This value corresponds 

to the fundamental frequency of the first and the sixth note of the example musical 

phrase (see also Figure 6-1). It can be seen that these notes have higher values of the 

PSM(440Hz) feature approaching 80% of the total energy of the audio block. Therefore 

this feature can significantly assist the identification of note pitches in the audio to score 

alignment algorithm. 
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7 Offline Audio Segmentation 

This chapter presents the methodology that was adopted for segmenting the solo 

recording of each musician in the target prototype system. The resulting segments are 

needed during live performance to remotely re-synthesize the performance of each 

musician in real-time by means of segmental re-synthesis, which is presented in chapter 

9.  

The chapter initially emphasizes on the importance of blind onset detection methods as 

a necessary pre-processing step for any audio analysis task on a fully automated system. 

The section that follows discusses the behaviour of music signals at the location of note 

onsets which may or may not be accompanied by strong initial transients. This 

behaviour is determined by the tone production mechanism of acoustic instruments or 

may be intentionally altered by the performer due to expressive articulation. Following, 

an overview of existing blind onset detection methodologies is presented and the 

performance of various onset features is briefly discussed. It is demonstrated that the 

SF3 feature computed using an STFT of 2048-sample windows zero-padded to 4096-

points and a hop size of 512 samples (section 6.5.3) provides superior performance both 

for signals exhibiting strong transients as well as for instrumental sounds that contain 

softer onsets due to articulation. Subsequently, section 7.4 presents the offline audio 

segmentation algorithm that was implemented in the final software prototype. This 

algorithm besides computing SF3 values, exploits information derived from the score of 

each solo recording so as increase the robustness of onset detection. Moreover, it uses 

the instant pitch values as estimated by a wavelet transform (section 6.6.1) to identify 

subtle pitch changes that are not accompanied by strong initial transients. The algorithm 

was implemented and integrated into the system under development. An evaluation of 

the computational performance of this algorithm is provided in Chapter 11. 

7.1 Blind vs. by-alignment approaches 

Producing a temporal segmentation that accounts for the musical events contained in an 

audio waveform requires accurate identification of note onsets. As already mentioned in 

section 4.1.1, audio segmentation is usually performed either by blind segmentation or 

by aligning the waveform to a music score or to an alternative ‘reference’ waveform.  

Blind audio segmentation methodologies assume no prior information about the content 

of the audio signal being analysed and attempt to locate onsets by observing abrupt 

changes in the values of certain audio features. On the other hand, segmentation by 

alignment approaches use either Dynamic Time Warping to align the waveform to an 

additional reference waveform of the same musical content (i.e. another recording of the 
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same piece of music), or Hidden Markov Models to align the waveform to the 

corresponding musical score.  

Blind onset detection is an essential step for any automatic segmentation methodology. 

Although more robust, alignment approaches assume that manual annotations of the 

reference material are available prior to the alignment task. If the identification of onsets 

and therefore the segmentation task needs to be fully automated, then employing blind 

detection is unavoidable.  

Specifically, DTW approaches can achieve high accuracy in the alignment of an audio 

signal to a reference waveform. However, in order to locate the onsets on the signal 

being processed, it is necessary to know onset locations on the reference waveform. 

Equivalently, HMM approaches can provide good accuracy in locating onsets and even 

do so in real-time. However, the model needs to be trained prior to alignment. Although 

unsupervised training methods exist, it is crucial that one initializes the model in a 

reasonable state prior to training, so that the patterns it can learn correspond to the states 

one is trying to infer. This issue is further elaborated in section 8.3.3.2. To acquire this 

‘reasonable initial state’, either manual annotations must be available or blind 

segmentation methods must be employed to indicate the beginning of different notes. 

Consequently, a blind segmentation method even if not fully accurate must essentially 

take place in any fully automated system. Subsequently to blind detection, alignment 

approaches such as HMM score following may be used to further improve the accuracy 

of onset detections.  

7.2 Onsets and transient phenomena 

Note onsets are closely associated with the notion of transients. According to 

Thornburg (2005) musical signals concern two types of transient phenomena: abrupt 

changes in spectral information usually associated with musical onsets, and transient 

regions, during which spectral information undergoes persistent, often rapid, change.  

Thus transients are short signal regions exhibiting sudden spectral changes, while onsets 

are single time instants marking the beginning of transient regions. In another work 

(Duxbury, Davies and Sandler 2001), transients are more formally defined as “the 

residual once the steady state part of the signal has been analyzed, re-synthesized and 

subtracted” (analysis/re-synthesis in this context refers to conventional phase vocoder 

approaches). Hence, transient regions are complex non-stationary processes that cannot 

be modelled using the conventional frequency domain representations.  

Each musical instrument family has a distinguished tone production mechanism and 

therefore certain initial transient characteristics. Plucked instruments amplified by a 

resonator like guitars or lutes show the eigenvalues of the resonating body within the 

initial phase. Also the plucking noise is present. Bowed instruments need to establish 

the Helmholtz motion during a tone transient. As the bow-string interaction is a self-

organizing process, different regimes are passed during the transient with often very 
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complex, still not perfectly chaotic or noisy regions. Here, establishing the lower 

partials is especially difficult and therefore the higher ones appear first in the spectrum. 

Wind instruments are also self-organizing, where before a blowing pressure threshold 

only noise is produced, while after passing this threshold a periodic oscillation occurs. 

The establishment of this periodic motion is then passing from coloured noise to a 

steady periodicity. Additionally, e.g. saxophones have a characteristic amplitude drop 

after about 100ms. The singing voice is also self-organizing, showing the same 

threshold and therefore transients also pass through certain phases. This also holds for 

the transition to falsetto. Within the transients of piano tones, the pitch of the string 

length cut by the piano hammer is present in the sound. Here, longitudinal waves of the 

string are most important to the sound and therefore strongly present, too. With church 

bells, the eigenfrequencies of the clapper are heard in the initial transient, the same 

holds for instruments struck by a hard stick, like Balinese gender instruments. When 

modelling musical instruments as self-organized systems and when assuming an 

impulse-like character of the energy distributed in the instruments, an Impulse Pattern 

can be calculated using a general formula holding for all instruments (Bader 2013a). 

There, the basic character of initial transients can be found. The complexity of the initial 

transient can also be calculated using Fractal Correlation dimensions, which count the 

amount of harmonic overtone series and additionally all inharmonic components above 

a certain amplitude threshold. Then the chaoticity of initial transients can be calculated 

and compared between different musical instruments (Bader 2013a). 

To summarize, initial transients reveal the distinguishing characteristics of the timbral 

quality of each instrument. In particular, percussive or plucked and struck instruments 

are associated with strong transients as their physical excitation produces complex, 

inharmonic vibrations, which is an intrinsic characteristic of their timbral qualities. In 

contrast, in the case of blown instruments or of the singing voice the pitch of a note may 

be more subtly transformed therefore introducing new notes without the presence of a 

salient transient. Moreover, transient regions may also be intentionally altered by the 

performer due to expressive articulation. Bowed and blown instrumentalists are often 

taught to perform a soft attack by increasing the tone volume only after the initial 

transient. This is, because for these instruments it is nearly impossible to produce a 

transient which is not noisy. At the other extreme, percussion instruments or staccato 

playing are associated with strong transients therefore revealing note changes by the 

presence of broadband noise. 

Consequently, the methodology followed by onset detection algorithms should take into 

account both the timbral characteristics of the instrument as well as their variations 

introduced by performance style and articulation nuances. The relevant literature 

distinguishes between two types of onsets. For instance (Duxburry, Sandler, Davies 

2002) differentiate between hard onsets appearing as wide band noise in the 

spectrogram and soft onsets, primarily detectable by a change in low frequency content. 

In the same line, Brossier (2006), distinguishes between percussive onsets and tonal 

onsets. Clearly, hard or percussive onsets are followed by strong initial transients and 
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may be detected by sudden changes in the high frequency bands, whereas soft or tonal 

onsets are identified by changes in lower frequency bands, specifically at the 

frequencies corresponding to note pitches. Therefore, in poly-instrumental recordings 

different techniques must be employed so as to effectively detect onsets of both types.  

 

Figure 7-1: Salient onsets and subtle onsets. The left part of the figure shows 7 onsets of a snare drum 

recording, while the right part shows 4 note onsets of a flute performance. 

Figure 7-1, presents two waveforms and their spectrograms: one with salient onsets and 

one with subtle onsets. The left part of the diagram shows a section of a snare drum 

recording. There are seven onsets in the signal, all of them followed by strong transient 

regions appearing as broadband bursts of energy on the spectrogram. These bursts 

eventually fade out at the release part of the amplitude envelope. The right part of the 

diagram displays four note onsets of a flute waveform. Clearly, there is no remarkable 

change of the energy of high frequency bands between note attacks and steady states. 

There is a gradual increase of the energy of low frequency bands also revealed on the 

amplitude envelope, which however cannot be instantly detected until part of the attack 

section has been elapsed. 

An additional aspect related to note onsets, concerns the temporal precision of the 

detection algorithms. Gordon (1987) and Schloss (1985) observed that there is a small 

latency between the time instant in which the physical excitation occurs (physical onset) 

and the time when the event caused by this excitation is made perceivable (perceptual 

onset). This latency is known as Perceptual Attack Time (PAT). PAT was identified by 

Schloss (1985) to be of the order of 5ms, however different studies (Moore 1997; 

Gordon 1987) showed that PAT depends on timbre, loudness and pitch as well as on the 

context in which the sound occurs, with respect to the presence of simultaneous events.  

From a psychoacoustic perspective, if the inter-onset interval of two sounds is of the 

order of 50ms or below, then the sounds are perceived as simultaneous (Bregman 1990). 



 

104 

 

Consequently, more recent studies (Klapuri 1999; Duxbury, Sandler and Davies 2002a; 

as well as the MIREX evaluation measures) consider an onset as accurately detected, if 

it falls within a 50ms time window around the actual physical onset. However, it is 

clearly stated by MIREX that as onset detection is a pre-processing step, the real cost of 

an error depends on the application following the task of onset detection
13

.  

 

Figure 7-2: The physical onset occurs at 2ms, but the new note will not be audible until about 40ms.  

As was also discussed in section 2.4, 50 ms corresponds to a frequency of 20 Hz, which 

is the lowest threshold of pitch perception. Also in vision, 50 ms is a basic integration 

time, all events occurring within this 50 ms are integrated to one sensation. Therefore a 

video stream needs to have a frame rate of at least 18 fps to appear as continuous.  

Figure 7-2 presents an onset of a flute note, in which the physical excitation occurs at 

2ms. The attack is not audible until about 50ms. Nevertheless, it is important to 

highlight that for the purposes of the target application on NMP, the onset must be 

detected as early as possible so as to allow concatenation to take place before the actual 

note is made audible.  

7.3 Typical blind onset detection methodology 

Blind onset detection algorithms operate in three steps, which are: pre-processing, 

reduction and peak-picking (Bello et al. 2005). Pre-processing is an optional step, 

mostly appropriate to offline onset detection of music recordings. The reduction step 

concerns the computation of an Onset Detection Function (ODF) as the value of one or 

more temporal or spectral features computed over successive audio blocks of predefined 

                                                
13 http://www.music-ir.org/mirex/wiki/2011:Audio_Onset_Detection 

http://www.music-ir.org/mirex/wiki/2011:Audio_Onset_Detection
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length. Finally, onsets are identified as the local maxima of the ODF using various 

peak-picking algorithms. 

7.3.1 Pre-processing 

Pre-processing may include signal adjustments such as amplitude normalization, DC 

removal or noise reduction, so as to clean up the signal from artefacts that are irrelevant 

note onsets. Alternatively, pre-processing sometimes aims at emphasizing certain 

aspects of the signal such as attack information thus narrowing the regions to look for 

potential onsets. In such cases, pre-processing commonly involves processing the signal 

in multiple frequency bands, or separating the transient from the stationary parts of the 

signal.  

For example, Klapuri (1999) uses a filter-bank to divide the signal in 21 non-

overlapping frequency bands roughly corresponding to the critical bands of hearing. 

Subsequently, his algorithm detects onset components at each band and determines their 

intensity. The resulting onset candidates are combined using a psychoacoustic model of 

loudness perception, so as to determine the actual onsets from a number of potential 

candidates. Alternatively, Duxbury, Davies and Sandler (2001), used the phase vocoder 

to produce a signal using only transient components, identified as the points of non-zero 

phase acceleration (see section 6.5.4). After applying an inverse FFT the resulting signal 

was searched for onsets using the HFC feature (defined section 6.5.1).  

In terms of online/causal pre-processing, Stowell and Plumbley (2007) demonstrated 

substantial improvement of standard reduction/peak-picking techniques when a 

technique called adaptive whitening was incorporated. Adaptive whitening builds a 

‘Peak Spectral Profile’ of the signal which contains the maximum value for each STFT 

frequency bin. Peak Spectral Profiles were computed from past audio blocks and then 

each bin of the block being processed was divided by the previously observed 

maximum for that bin. Subsequently, different features were used for computing ODFs.  

It was shown that adaptive whitening yields improved performance compared to the 

detection without whitening for most instrumental sounds. 

7.3.2 Reduction 

Common features used for onset detection are the HFC feature (Marsi and Bateman 

1996), the spectral flux in the SF1 (Dixon 2006) and the SF2 (Duxbury, Sandler, Davies 

2002a) form, the phase deviation (Bello and Sandler 2003), the complex domain 

distance (Duxbury et al. 2003) and the Modified Kullback-Leibler divergence presented 

by Brossier (2006). In some cases the ODF is computed as the product of two audio 

features. For example Brossier, Bello and Plumbley (2004), showed a performance 

improvement for an ODF computed as the product of HFC and complex domain 

distance features, as compared to any single audio feature.  
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Figure 7-3: Onset Detection Functions for a drum and a flute sound snippet computed using a 4096-point 

STFT with a hop-size of 512 samples and a Hanning windowing function. 
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Figure 7-4: Onset Detection Functions for a drum and a flute sound snippet computed using 2048 samples with 

a hop size of 512 samples, zero padded to form a 4096 point window. No windowing function is used for this 

transform. 
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Plenty of experimentation was conducted prior to designing the onset detection 

algorithm to be used in the current system. A formal evaluation of the performance of 

each feature for the task of onset detection is beyond the scope of this dissertation, as it 

has been previously reported in several related publications (Brossier 2006; Brossier, 

Bello and Plumbley 2004; Bello et al. 2005). However, for reasons of consistency and 

in order to provide reasoning for the approach adopted in the present system, the 

remaining part of this section demonstrates the performance of each feature for the 

example drum and flute sound snippet of Figure 7-1.Specifically, the performance of 

these features is demonstrated using two parameterisations of the STFT (see section 

6.3): a) the commonly used STFT of 4096 samples having a hop size of 512 samples 

and multiplied by a Hanning window and b) the parameterisation that was proposed for 

early detections which uses 2048 samples zero padded to 4096 and a hop size of 512 

samples, without multiplying by any windowing function (equivalent to using a 

rectangular window). Figure 7-3 illustrates the ODFs computed using the 

parameterisation (a), while Figure 7-4 illustrates the ODFs computed with the proposed 

parameterisation (b). Although it is not obvious from the following figures it was 

experimentally verified that using parameterisation (b) yields earlier detections, i.e. 

closer to the physical onsets. 

By observing these figures the following conclusions may be drawn: Firstly, it is a lot 

easier to detect onsets on the drum sound, associated with percussive onsets having 

salient initial transients. For this sound all features have a maximum value at the 

location of onsets which is clearly not the case for the flute sound. For the flute sound 

the most appropriate features are those based on Spectral Flux (i.e. SF1, SF2, and SF3). 

Out of these three features, the SF3 feature seems to more successfully account for 

onsets of both sounds, as it is independent of amplitude variations (see also section 

6.5.3).  

Finally, with respect to the parameterisation of the Fourier transform, it can be seen that 

when using parameterisation (b), feature values are more ‘noisy’ than in 

parameterisation (a). This noisy behaviour is caused by spectral leakage owing to the 

use of a rectangular window, which does not fade out end-point discontinuities. In the 

percussive drum sound, the noisy behaviour is less apparent because of dominating 

noisy components of the signal itself. However, in both parameterisations the dominant 

peaks of feature values owing to note onsets are clearly distinguishable. As was 

discussed in section 6.3, parameterization (b) is preferred because, due to using fewer 

audio samples (i.e. 2048 instead of 4096) on the analysis window, each captured block 

(of 512 samples) has a higher contribution to the computed spectral features and more 

importantly because, due to the rectangular window, it allows early detections, namely 

before the onset appears in the center of the analysis window. 
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7.3.3 Peak-picking 

Subsequently to reduction, temporal peak-peaking is applied in order to identify onsets 

as the local maxima of the computed ODF. 

Before computing the local maxima, post processing the ODF may be optionally 

performed. In such cases, post-processing involves normalisation and DC removal so 

that the ODF varies within the interval [0, 1] and possibly some smoothing in order to 

remove unwanted noise. Obviously, normalisation and DC removal is applied only in 

offline settings, while smoothing may be effectively and causally implemented in online 

settings using for example a Finite Impulse Response (FIR) filter (Brossier 2006; Bello 

et al. 2005). 

Peak-picking aims at computing a threshold value, so that values of the ODF exceeding 

that threshold are identified as onsets. The threshold may be either fixed (i.e. a constant 

value over the entire duration of the signal) or it may be dynamically computed based 

on previous ODF values, so as to account for variations owing to performance 

dynamics.  

Bello et al. (2005), used normalisation, DC removal and low-pass filtering for post-

processing various ODFs and then used a median filter to compute a dynamic threshold. 

This median filter can be formulated as: 

                                             

where D(n) is the ODF value of audio block n, δ and λ are  positive constants and M 

corresponds to the longest time interval on which the dynamics of the signal are not 

expected to evolve, typically around 100ms. The computation of this threshold is non-

causal and therefore not applicable to online settings. 

In causal settings, considering the mean value, in addition to the median, for the 

computation of the dynamic threshold was proposed as a way to compensate for the 

lack of DC removal and normalization (Brossier 2006; Brossier, Bello and Plumbley 

2004). The corresponding dynamic threshold was formulated as: 

                                           

                                                

                

In the respective implementation, namely the open source Aubio library
14

, Brossier uses 

α = 5
 
and b=1, therefore computing the threshold using a window which starts five 

blocks  before the current block and one block after the current block. Unfortunately, 

this threshold is non–causal, but using b=1 introduces a latency of a single block in the 

detection of onsets. 

                                                
14 http://aubio.org/ 

http://aubio.org/


 

110 

 

Subsequently to the computation of the dynamic threshold, two further constraints may 

be applied to the values exceeding the threshold. Specifically, in order to minimize false 

detections Brossier (2006) proposed the use of a silence gate so as to reject spurious 

detections in low energy areas, as well as rejection of an onset when it is detected very 

close to another onset, based on a so called minimum Inter-Onset-Interval (IOI) 

criterion.  

7.4 Offline segmentation in the proposed system 

For the application being investigated, robust onset detection is essential for producing 

the audio segments that will be concatenated during live performance in order to 

remotely re-synthesize the performance of each musician in real-time. For this purpose 

and since the target usage scenario permits it, the respective algorithm exploits 

information derived from the music score in order to increase the robustness of the blind 

detection methodology. Hence, the resulting onset detection algorithm cannot be 

considered ‘blind’ per se. However, it does not perform any score alignment either. The 

score information exploited concerns the total number of notes the appearing in the 

signal (i.e. the number of onsets that need to be found). This possibility simplifies the 

peak-picking step of the blind detection methodology. As was discussed in section 0 

peak-picking involves configuring a number of parameters (α, δ, λ) which need careful 

consideration to successfully depict ODF thresholds for different instrumental timbres 

and performance articulations. Consequently, the adopted approach can be regarded as a 

hybrid onset detection scheme, which is based on the blind detection methodology, 

however exploiting score information so as to provide increased robustness and allow 

for a broad variety of instrumental sounds to be accurately segmented using the same 

algorithm and the same parameterisation. 

As shown on Figure 5-1, audio segmentation takes place offline and prior to NMP with 

the objective of generating a pool of audio segments for each performer together with 

their associated descriptors. The following subsection describes the onset detection 

algorithm used for detecting segment boundaries and the one that follows describes the 

process of computing segment descriptions. 

7.4.1 A Robust onset detection algorithm 

The ‘blind’ part of the algorithm uses the SF3 feature computed with an STFT of 2048-

samples zero-padded to form a 4096-point analysis window, which is not multiplied by 

any windowing function (i.e. uses a rectangular window). The hop size is deliberately 

small in order to provide increased time resolution in the detection of onsets, while zero 

padding is used instead of highly overlapping signal windows to accentuate early 

detections. As elaborated in section 7.3.2 and illustrated in Figure 7-4, this feature was 

proven more effective in depicting onsets as local maxima of the corresponding ODF, in 

comparison to alternative audio features. In the case of subtle pitch onsets as in the 
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example flute sound, the SF3 feature exhibits dominating peaks with the exception of 

legato onsets associated with less prevailing peaks (see also Figure 6-11). To account 

for such onsets, the final algorithm uses the wavelet pitch feature (section 6.6.1), also 

computed over successive 512-sample blocks, to identify smooth changes between 

regions having constant pitch.  

 

Figure 7-5: Block diagram of the offline audio segmentation process in the implemented system. Solid lines 

represent audio data flow while dashed lines represent numerical or textual data flow. 

Extensive experimentation showed that even when using the SF3 feature for the 

computation of the ODF, peak-picking algorithms need different parameters for 

different signals in order to accurately indicate the location of onsets. For this reason, 

instead of computing a dynamic threshold, the algorithm queries the score to find out 

how many onsets are to be found and then searches the ODF to find as many ‘top’ 

maxima as there are notes in the score. Moreover, in order to avoid spurious detections 

maxima found in areas for which the log energy feature LE (section 6.4.3) is below a 

predefined  silence threshold or in intervals that are smaller than a predefined minimum 

allowed IOI, are rejected and the SF3 feature is searched again for the remaining 

maximum values.  

The entire process of offline audio segmentation is schematically depicted on Figure 7-5 

and it comprises the following steps: 

a) The signal undergoes a pre-processing step which involves DC-removal and 

amplitude normalization.  
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b) Feature extraction is applied in order to derive three features which are: the 

instant wavelet pitch (WP), the normalized version of spectral flux (SF3), and 

the log-energy (LE) 

c) Subtle pitch changes are detected by examining the instant pitch WP. In specific, 

a non-percussive onset is located at pitch changes for which the old pitch is 

maintained for at least 100ms before the potential onset and the new pitch for at 

least 100ms after the onset. 

d) The score is parsed to determine the number of notes that must be detected, for 

example M-notes. 

e) If m-notes are detected as subtle pitch onsets, then the SF3 feature is searched 

for the top M-m maximum values  

f) For each such maximum value, the algorithm examines satisfaction of two 

constraints: a) that the detected maximum is at least 50ms (defined by a global 

constant named MINIMUM_IOI) apart from any previously detected onset and 

that b) for the next 50ms (i.e. ATTACK_DURATION) there is at least one audio 

block having a Log Energy (LE) value that exceeds -40dB (i.e. 

SILENCE_THRESHOLD). If the detected maximum satisfies these constrained 

it is recorded in the list of detected onsets, otherwise it is recorded in a list of 

discarded candidates. 

g) When the list of detected onsets reaches the desired length M, it is ordered in 

time, so that earlier onsets appear in the list before later onsets. 

h) For every onset in the ordered list, a new segment is stored in the pool of audio 

segments and a line is added in the corresponding description file. 

7.4.2 Generating Segment Descriptions 

While segmenting each solo recording, the system generates a text file that describes the 

duration, the RMS amplitude and the pitch of the note contained in each audio segment. 

As described in section 9.3, these descriptions are used for computing expressive 

deviations of the note performed during live NMP, compared to the corresponding note 

segment maintained in the segment pool. The estimated deviations are subsequently 

used to transform the retrieved segment in terms of loudness and duration, so as to more 

closely match expressive utterances employed during live collaborative performance. 

A precise description of the contents of the description file as well as an excerpt of an 

example file is provided in section 10.3.2.3. 
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8 HMM Score Following 

This chapter describes the methodology that was adopted for tracking the performance 

of each musician during distributed live performance. Performance tracking was 

achieved by means of score following based on Hidden Markov Models. Initially, the 

chapter discusses the general conceptual approach and the applications targeted by 

HMMs. The section that follows formulates their mathematical definition and the 

adopted computational approach.  As there are several alternative representations of 

HMMs in tackling specific problems, the section that follows elaborates on several 

design considerations that were confronted while experimenting with the system under 

investigation. Finally, the last section of this chapter presents the model that was 

implemented in the present system, as well as the methodology that was adopted for 

efficiently training that model and using it in order to allow detecting note onsets in 

real-time.   

8.1 The HMM approach  

A Hidden Markov Model (HMM) is a statistical model for determining the current state 

of a system, which is assumed to be governed by a Markov process. A Markov process 

is a stochastic process satisfying the Markov property, which requires that the process is 

memoriless, meaning that future states depend exclusively on the present state and not 

on preceding states. More concisely stated, HMMs assume that the current state is only 

conditioned on the previous state. 

In particular, HMMs attempt to extrapolate versatile information within data series. 

Such versatile information is represented in system states. System states are not directly 

observable and they are considered as hidden or latent variables of the model. However, 

what is observable is a series of system measurements, termed as observations or 

emissions, which are assumed to be highly correlated with the hidden states. To sum up, 

an HMM determines the current state of a system, given its previous state and the 

current system observations. Clearly, the design of an HMM for a specific task needs 

careful consideration with respect to selecting appropriate system states and system 

observations, so that states effectively match the information that needs to be 

extrapolated and that observations are sufficiently correlated  to system states so that 

different states are associated with  highly uncorrelated system observations. 

HMMs are extensively used in pattern recognition and time series prediction in a variety 

of disciplines ranging from financial forecasting (Park et al. 2009) to biological 

sequence analysis (Bi 2009). In the audio domain and specifically in speech research, 

HMMs have been widely used for the task of speech recognition as well as for speech 
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synthesis. In speech recognition, observations are formed from audio feature vectors 

and states correspond to phonemes, syllables, or words. Therefore, given a feature 

vector as well as the previously decoded state, the HMM determines the current 

phoneme, or syllable (Rabiner and Juang 1993). In speech synthesis HMMs are used to 

determine parametric representations of speech signals induced from textual 

compounds. Subsequently, the determined parameters are applied on a parametric 

model such as an articulatory or formant model of speech which generates the speech 

signal (see also section 4.2).  

In music, HMMs have been widely used for the task of audio-to-score alignment 

(section 3.2.2). By the time of this writing no evidence has been found that HMMs can 

be used for direct audio-to-audio alignment (i.e. without assuming the presence of a 

score). This is inherently related to the types of problems addressed by HMMs, which 

are not to align two sequences of the same data rate (as for example in DTW), but to 

find correspondences among two series of related data, one of which represents system 

observations and the other represents higher level models of reduced data rate such as 

notes or chords. Accordingly, the audio signal to be aligned needs a higher level 

structural representation, which is effectively provided by its music score.  

In these systems the audio file is sliced in a number of audio blocks. Feature extraction 

is applied on each block so as to provide a number of feature values per block. These 

feature values form a feature vector and each feature vector is an HMM observation 

symbol. Given the sequence of observations (feature vectors) the goal of audio-to-score 

alignment is to find the most probable sequence of notes. In HMM terminology notes 

are represented as states, therefore the idea is to find the note sequence that yields the 

maximum probability for a given sequence of feature vectors. There are three types of 

probabilities related with HMMs: initial probabilities, transition probabilities and 

observation probabilities. Initial probabilities determine the initial state of the sequence, 

namely the state at time zero. Transition probabilities determine the possible transitions 

among states, e.g. which note follows the current note. Finally, observation probabilities 

associate observations symbols with system states, i.e. determine whether a symbol may 

be emitted while the system is in a specific state. 

Whether or not the HMM corresponds to perception is still a question under debate. In 

terms of melody, the implementation-realization theory of Narmour (1990) also 

assumes a transition probability imposed by melodic expectations between adjacent 

musical intervals, similarly to HMMs. Also the Goldstein optimum processor of pitch 

perception presents a statistical model in which, pitch estimations of complex tones are 

successfully derived using Gaussian probabilities for the observed harmonic structure 

and a maximum likelihood criterion (Goldstein 1973). As early as 1956, Mayer 

remarked that musical style and also the mental processes involved in the perception of 

music may be regarded as a complex system of probabilities. Such probabilities model 

expectations and tendencies upon which musical meaning relies (Meyer 1956). A 
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statistical approach on how probabilities shape music perception is more 

comprehensively investigated in the book of Temperley (2007). 

8.2 Mathematical Foundation 

There are numerous of mathematical resources on Hidden Markov Models. This section 

does attempt to provide elaborate mathematical details on the realization of HMMs. 

Instead, it provides the basic mathematical concepts that are necessary for describing 

how HMMs were represented and integrated in the present work. The section firstly 

provides the mathematical definition of HMMs, and then it summarises the 

computational approach employed in alignment tasks. The notation as well as the 

computational approach presented here is based on two widely known tutorials on 

HMMs (Rabiner 1989; Bilmes 1998). 

8.2.1 Definition of an HMM 

Mathematically formulated, if O = {o1, o2,..., oT} is a sequence of observations drawn 

from an observation vocabulary V = {v1, v2, ..., vM} and Q = {q1, q2, …, qT} is a 

sequence of hidden states derived from a set of possible states S = {s1, s2, ...,sN}, in 

other words if at each time t, where Tt 1 ,then Vot  and Sqt   , the HMM is 

defined as the tuple ),,,,(  BAMN , where:  

 N: is the number of possible states in the model  

 M: is the number of possible observations symbols  

 A = {aij }:is the state  transition probability matrix, namely the matrix 

that contains the probabilities of moving from state si  to state sj, for each 

pair of states: NjiforsqsqP itjtij   ,1),|(a 1  

 B = { bik }: is the observation probability matrix, namely the matrix that 

contains the probabilities of observation symbols ok emitted while the 

system is in state si for each pair of symbol and state:

MkandNiforsqvopb itktik  11),|(  

 π = {πi }: is initial state distribution, defining the probabilities that at time 

1t  the system is at state i , for each such state: 

NiforsqP i  1),( 1  

8.2.2 Hypothesis and computational approach 

From a statistical point of view, an HMM is a probabilistic model of the joint 

probability of two distributions of random variables O and Q. This joint probability is 

made tractable (i.e. efficiently evaluated), due to two conditional independence 

assumptions: 
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1. The t
th
 hidden state qt depends exclusively on the previous hidden state, qt-1 : 

                                                  

2. The t
th   

observation symbol depends exclusively on the t
th
  hidden state: 

                                                                

Computationally, the theory of HMMs tackles three problems: 

1. Compute the probability of an observation sequence given the model, P(O|λ). 

2. Find the optimal state sequence that best explains a series of observations given 

the model. That is find Q = {q1, q2, …, qT}, when O = {o1, o2,..., oT} and λ are 

known. 

3. Find the optimal parameters of model λ that best explains the observation 

sequence. This problem translates to computing the model 

                   which out of all possible models maximizes the 

probability of a given sequence of observations. 

The second problem is often referred as HMM decoding and the third as HMM training. 

This is not necessarily the order followed in solving an HMM problem. Usually, 

problem 3 and 1 are performed prior to HMM Decoding (problem 2). Each of these 

problems is efficiently solved using: the forward or the backward procedure (problem 

1), the Viterbi algorithm (problem 2), the Baum-Welch algorithm also called 

Expectation-Maximization (EM) algorithm for HMMs, or forward-backward algorithm 

(problem 3). Problem 3 is by far the most difficult to compute. The EM-algorithm has 

proven to be a robust way to estimate model probabilities given an observation 

sequence. The idea of EM is to view these probabilities as part of the given 

observations, so as part of a time series. As these probabilities and distributions are only 

a small amount of parameters compared to the number of observations, the EM 

estimates them as if there were missing data points in a long time series. The elaborate 

mathematical description of these algorithms can be found elsewhere and is beyond the 

scope of this document; however some essential key concepts are presented in the next 

section.   

Considering the case of audio to score alignment as an example, the main goal is to find 

the sequence of states (e.g. notes) that corresponds to the sequence of observations (i.e. 

feature vectors) per audio block, so to say per 512 samples of a monophonic audio 

signal. This target is depicted in the second problem, which however assumes that the 

model is known prior to determining the hidden states.  Therefore, before approaching 

the second problem, one needs to consider the third problem in order to find the optimal 

model for the given sequence of feature vectors. However, in order to solve the third 

problem, an efficient method for evaluating the probability of observations given a 

model, i.e. the first problem needs to be tackled. Hence, all three problems must be 

essentially addressed for any alignment task.  
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8.3 Design considerations 

In order to design a model for a specific task, it is necessary to determine a number of 

HMM attributes from a broad range of different alternatives. In fact, all models used in 

the relevant literature allow for numerous variations in the representation of HMMs.  

This section outlines the design questions that were confronted during the 

implementation of the prototype system being investigated and summarizes the 

conclusions drawn from extensive experimentation with different HMM 

representations. 

8.3.1 States, transitions and HMM topologies 

HMM states must essentially correspond to the information that needs to be found by 

the HMM. In audio-to-score alignment approaches, states are directly derived from 

score events.  For example, in monophonic audio segmentation by alignment, which 

aims at identifying the instants of note onsets, three states such as attack, sustain and 

rest are used for the representation of each note of the score (Schwarz, Cont and Orio 

2006; Raphael 1999). When dealing with polyphonic music (Raphael 2004; Cont 2010) 

the score is represented as a single pitch, a chord (pitches occurring simultaneously) or 

silence at every change of polyphony (i.e. at each note start and note end). Alternatively, 

in the work of Bello and Pickens (2005) and later Cho and Bello (2009) as the HMM is 

used for harmonic content recognition instead of score alignment, states correspond to 

24 major and minor triads, i.e. a pair of triads for each of the 12 pitches of the chromatic 

scale.  

Determining how to represent states also determines the types of transitions permitted 

between system states. The overall behaviour with regard to process movement between 

states, in other words the number of states and their associated transitions, constitute an 

HMM topology. Different HMM topologies are appropriate for different types of 

applications.  

Figure 8-1, illustrates some popular HMM topologies derived from the book of Gernot 

Fink (2008). In such diagrams, non-zero transition probabilities are depicted with 

directed arrows and the sum of all probabilities departing from any single state is 

always 1. It can be seen that all states are associated with self-transitions or loops. In the 

case of forward topologies (i.e. when transitions move in one direction), self-transition 

probabilities effectively depict the time spent at each state. Consequently in audio to 

score alignment approaches, transition probabilities are informed by the rhythmic 

structure of the score (Raphael 1999).  

The simplest HMM topology is the linear topology (i.e. the system can either stay on 

the same state or proceed to the next one) and the most complex is the ergodic model 

(i.e. any state can be reached from any other state). The Bakis topology allows for 

skipping individual states, while the left-right model provides more flexibility by 
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allowing skipping an arbitrary number of states in forward direction within the 

sequence.  

 

Figure 8-1: HMM topologies. Image derived from Fink (2008) 

An important problem of these models is their computational complexity, which 

depends on the number of non-zero transition probabilities. This can be realized if one 

considers a large number of states. For example, 200 states will be associated with a 

200x200=40,000 floating point (or double precision) numbers representing transition 

probabilities. The consequences of such long sequences are not merely on increased 

memory requirements but more importantly on the number of computations that need to 

be performed during HMM training and decoding. Specifically, during HMM decoding 

only non-zero probabilities need to be taken into account in the computation of total 

probabilities, while during HMM training a zero transition probability remains zero 

throughout the entire iterative training process and therefore needs not be taken into 

account with respect to the overall computational complexity of the model (Rabiner 

1989). Ultimately and as explicitly stated by Fink (2008), the choice of a certain 

baseline topology always represents a compromise between flexibility and tractability 

of the problem at hand. 

When tracking performances of monophonic instruments, the chosen topology should 

be flexible enough to accommodate deviations in the articulations of different notes. 

Hence, a linear model is not appropriate as expressive deviations during performance 

may result in different succession of note states. For instance, in some performances a 

note may be played as legato whereas in others as staccato and therefore it is not known 

whether each note will be followed by a low energy rest state or directly by the attack of 

the next note. As a result, it is essential to introduce optional states such as rests or 

silences that may skipped as in the Bakis or the left-right model of Figure 8-1.  
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Figure 8-2: The HMM topology used in the current system. Letter ‘A’ indicates an attack state, ‘S’ a sustain 

state and ‘R’ an optional rest state. 

Moreover, as the alignment to be decoded by the HMM is not only based on transition 

probabilities, but also on observation probabilities, and as the states to be decoded need 

to have a high correlation with observations so as to produce accurate alignments, there 

should be a clear separation between the different parts of the note. The sustain part of a 

note has an roughly constant energy and is highly periodic. In contrast, the attack part of 

a note is associated with increasing energy and can be quite noisy as in the case of 

plucked or struck instruments.  

In the prototype system under investigation, the Bakis model has been adopted in which 

every note is represented by three states: attack, sustain and an optional rest state. The 

resulting topology is depicted in Figure 8-2. The model starts from rest (i.e. silence), 

and proceeds by the three states of each score note.  It can be seen that for each state an 

equal probability is given to all possible transitions. These transition probabilities can be 

improved and re-estimated during the HMM training process (section 8.3.3). In 

previous works, Raphael (1999) uses a negative binomial distribution to estimate the 

time spent in each state and Schwarz, Cont and Orio (2006) use the binomial 

distribution to obtain transition probabilities, without performing subsequent training on 

these probabilities. 

The problem with these models is that as the number of notes in the piece increases, the 

number of states is multiplied by three. For example, a piece containing 200 notes 

would correspond to 301 states (one is due to the first rest accounting for initial silence) 

and therefore the transition matrix would require 301x301 = 90,601 coefficients of 

which thankfully only 1400 would be non-zero. However, as several computations need 

to additionally take place for observation probabilities, the alignment problem may 

become seriously intractable. 

In an attempt to reduce the required number of computations, an alternative topology 

was attempted. This topology uses three states (attack, sustain and optional rest) per 

each pitch appearing on the score, instead of each note event, as depicted in Figure 8-3. 

Designing this topology was based on the assumption that, as a few note events of a 

score correspond to the same pitch (e.g. determined by the tonality of the piece), the 

number of states can be significantly reduced by modelling pitches instead of note 

events. In this case, the model does not move in one direction, as a pitch value may be 

revisited several times within a certain piece of music. 
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Figure 8-3: A forward-backward score representation 

Unfortunately, as this model does not effectively capture the temporal evolution of the 

score, it results in state transitions which, although possible according to the HMM 

topology, are not possible according to the score. However, it is likely that this effect 

can be alleviated by training the model on multiple performances. Moreover, as some 

note transitions appear more often than others, training the HMM results in over fitting 

those transitions, therefore excluding transitions that appear less often. For example, for 

note passages such as the one depicted on Figure 8-4, training the HMM will yield 

improved probability estimation for note transitions C4->E4 and C4->B4, therefore 

hindering the decoding of the C4->G3 note transition, which appears only once. 

 

Figure 8-4: A musical passage for which HMM training will hinder the recognition of the C4->G3 note 

transition 

To summarize, the Bakis model of Figure 8-2 was chosen and implemented in the final 

prototype system, using three states, attack, sustain and an optional rest, for each note 

event of the music score. The main shortcoming of this model is its inability to train and 

decode long score sequences, a problem that is further elaborated in section 8.3.3.4. 

8.3.2 Observations and observation Probabilities 

As previously discussed, system observations correspond to system measurements and 

must be highly correlated with the states the HMM is trying to infer. In the domain of 

audio signals, system measurements are audio features and an observation symbol may 

be formed using a number of different features (i.e. a feature vector) per audio block. 

The computational approach followed, i.e. training and decoding is significantly 

different when using continuous rather than discrete/categorical observations. It can be 

readily seen, that the definition of an HMM in section 8.2.1 assumes that observation 

symbols are categorical, in other words that they are derived from an observation 
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vocabulary of finite length. Clearly, this is not the case for features vectors, as feature 

values are continuous. 

Consequently, the observation matrix B={bij, 1 ≤ i ≤ N and 1 ≤ j ≤ M } cannot be 

computed because the number of possible observation symbols M is infinite. Moreover, 

the observation probabilities cannot be represented using discrete probability 

distributions summing to 1, as was the case of transition probabilities. Instead, the 

model is associated with a number of probability density functions, most commonly 

represented by their mean values and variances (or standard deviations), which may be 

used to estimate the probability of a feature vector being observed from a specific 

system state. 

The most common approach in respect with probability density functions is to use a 

multivariate Gaussian distribution, which is a generalization of the one-dimensional 

(univariate) normal distribution to higher dimensions. In this case the dimension of the 

multivariate distribution equals the dimension of the vector space from which 

observation symbols are derived. In other words, if the observation symbol consists of L 

features, i.e. ot = (f1, f2, ... ,fL}, then an L-multivariate Gaussian is used to derive the 

observation probability of symbol ot emitted while the system is in state i as: 

                    
 

         
  

 

 
       

         
  

                                                      

    

Where ot is the feature vector at time t and           is the probability density of a 

multivariate Gaussian with mean vector μi and covariance matrix Σ. Finally, |Σ| denotes 

the determinant of the covariance matrix. 

In particular, when observations are continuous, the HMM instead of having an NxM 

observation matrix B, consists of an NxL mean matrix μ ={μil} describing the mean 

value of feature l in state i and an LxL covariance matrix Σ ={σld} describing the 

correlations among pairs of features. The formulas used to derive these matrices are 

provided in the following section in equations (8.2) and (8.3). 

Subsequently, the main design choice to be made in respect with observations is which 

features to use in order to more effectively allow detection of specific states according 

to the observed features. In the present prototype system the following audio features 

have been chosen to account for HMM observations: 

 LE (section 6.4.3). The Log energy feature permits distinguishing between 

states corresponding to notes and those corresponding to rests. Rests are 

associated with lower LE values than the attack or sustain parts of a note. 

 ΔLE(n) = LE(n) – LE(n-1). This is the first order difference of the Log 

Energy feature. It allows distinguishing between note attacks that are 

expected to have a positive value of ΔLE and sustain parts of a note, 

expected to have a value of ΔLE which is close to zero. 

http://en.wikipedia.org/wiki/Univariate
http://en.wikipedia.org/wiki/Normal_distribution
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 SA (section 6.5.2): The spectral activity feature is primarily used as an onset 

feature. In Figure 6-10, it can be seen that the distribution of this feature is 

rather constant at all places except the location of onsets where local minima 

are observed. Consequently, this feature can significantly improve the 

probability of inferring a transition from a rest or sustain state to an attack 

state (i.e. the onset) 

 SF3 (section 6.5.3). The same applies to the Spectral Flux feature which is 

also used to increase the probability of an onset related transition. 

 ΔSF3: Experimentation showed that the first order difference of spectral flux 

improves the quality of HMM alignment.  

 PSM (section 6.6.2) for each unique note present in the score. This feature 

helps to distinguish among different pitches, and therefore among the states 

corresponding to different notes. 

 ΔPSM for each unique note present in the score. As shown on Figure 6-17, 

the distribution of this feature is constant throughout the signal apart from 

the location of note onsets, where a sudden fluctuation is observed.  

Therefore, in the current HMM implementation, the number of features L depends on 

the number of unique notes appearing on the score. For example, if the score contains 

50 notes of which 10 correspond to unique pitches then the dimension of the 

observation symbol ot is L = 5+2x10 = 25 features and the number of states are N = 

3x50+1= 151. The corresponding mean matrix will have a dimension of 151x25 and the 

covariance matrix that of 25x25. 

These features are computed for monophonic signals sampled at 44.1kHz and using a 

16-bit sample resolution in audio blocks of 512 samples. For the computation of 

spectral features, an STFT of 2048-sample windows zero-padded to 4096-points and a 

hop size of 512 samples was used (section 6.3). Unfortunately, experimentation showed 

that 256 sample blocks resulted in degradation of the alignment accuracy, as the 

corresponding features do not contain enough information to sufficiently correlate with 

HMM states. For example, if an attack state is expected to last while the logarithmic 

energy is increasing and therefore the ΔLE feature is positive, then 256 samples may 

not be enough to provide a positive value due to intermediate signal oscillations within 

the 256-samples block.  

8.3.3 Training Process 

Training involves the estimation of HMM probabilities prior to HMM decoding. This 

estimation concerns the initial probability matrix π, the transition probability matrix A, 

and the emission probability matrix B. As we use continuous observations, instead of an 

emission probability matrix we seek to estimate the mean vector matrix μ = {μil} and 

the covariance matrix Σ = {σld}, where i is the state index and l, d are audio feature 

indices. During decoding, the matrices μ and Σ are used to compute the probability bi(o-

t) of a feature vector ot being observed in state i using equation (8.1). 
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If for a given observation sequence O = {o1, o2, …, oT}  the hidden state sequence Q = 

{q1, q2, … qT } is known, then the mean vector μ and the covariance matrix Σ can be 

easily computed for each state and for each feature as follows: 

    
 

  
           

 

   
     

               

                                                                         

     
 

  

 

   

                          

 

   
     

            

                                              

where fl(t) is the value of feature l at time t when the system is found in state si, and ni is 

the number of audio blocks (out of the duration T of the entire sequence) spent in state 

si. 

The implementation of audio to score alignment in the current system uses a transition 

probability matrix A which complies with the HMM topology shown on Figure 8-2. 

Additionally, as the model follows a left-right direction and assuming the sequence 

starts from the initial rest state, the initial probability matrix can be defined as π = {1.0, 

0.0, ….,0.0}. This matrix corresponds to a system that starts from the initial (prior to 

performing) rest and has zero probability in all other states at time t=1. 

Consequently, if an accurate alignment is available prior to decoding it is possible to 

estimate the model, including all probability matrices. However, in most cases no such 

alignment exists, neither is easy to obtain. For this reason, several approaches (Raphael 

1999; Cho and Bello 2005) employ unsupervised training methods in order to estimate 

HMM probabilities.  As already mentioned in section 8.2.2 the algorithm to efficiently 

compute the HMM probabilities that best explain a sequence of observations is known 

as Baum-Welch algorithm or Expectation Maximization for HMMs, or forward-

backward algorithm. 

This algorithm is mathematically complex and involves the intermediate computation of 

probabilities that are supplementary to π, A and B, known as forward and backward 

probabilities. However, for reasons of consistency this section attempts to give a 

simplistic and intuitive explanation of the entire process.  

The idea is that the HMM model λ = (π, A, B) can be initialized by taking an initial 

guess on the various probability values. Given this ‘guessed’ model, an alignment may 

be computed using either the Viterbi algorithm used for decoding a sequence when the 

model is known, or by computing the forward and the backward probabilities, which 

provides an efficient procedure for computing the probability of a sequence P(O|λ) for 

all possible state sequences. Then, given the resulting alignment Q, a new model λ’ = 

(π’, A’, B’) can be estimated from λ as: 
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or equivalently, instead of estimating b’jk, using equations (8.2) and (8.3) that apply to 

continuous observations. 

It has been mathematically proven that the new model λ’ has a higher probability for the 

observation sequence O, in other words P(Ο|λ’) > P(O|λ), as the above estimates are 

derived by maximizing (i.e. zeroing the first derivative with respect to λ’)  the quantity: 

                                  

     

 

which is known as the log-likelihood function. Therefore repeating this procedure 

iteratively improves the probability of the observation sequence O = {o1, o2, …, oT} 

until some critical, convergence point is obtained.  

HMMs have been successfully applied in several signal processing applications. Their 

success however depends on a number of implementation issues that are related to the 

training process. These issues have been addressed by relevant publications and they 

have also been encountered during the experimental validation of the present system. It 

is therefore important to highlight these issues, the research works within which they 

are addressed and how they affect the HMM implementation of the present system. 

8.3.3.1 Multiple observation sequences 

In the above we assumed that the parameters of the HMM are re-estimated from a single 

observation sequence O. In practice, in order to get a good estimate of the model many 

example observation sequences need to be taken into account. As stated by Rabiner 

(1989) and found out during experimentation with the present system, training on a 

single observation sequence is inhibiting especially for left-right HMM topologies. 

This is because of the transient nature of states within the model only allowing a small 

number of observations for any state until a transition is made to a successor state. 

Hence, in order to have sufficient data to make reliable estimates of all model 

parameters one has to use multiple observation sequences. 

Although including more training sequences involves repeating the same procedure 

without increasing the computational complexity of the algorithm, it is nevertheless 

particularly difficult to find several observation sequences to reliably train the model. 

This is especially true for the application scenario being investigated here. Because of 

this, and due to the fact that in the reference scenario only a single performance (i.e. the 

solo recording) is available as a training sequence, the current implementation for score 
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follower does not train transition probabilities. The Baum-Welch algorithm is only used 

to train observation probabilities. However, in a more elaborate scenario, recordings 

obtained during offline rehearsals can be incorporated in training the model, therefore 

providing a better estimate for all types of probabilities. 

8.3.3.2 Obtaining an initial alignment 

Previously, at the description of the training process it was mentioned that one should 

start the iterative training process by taking an initial guess on model parameters (i.e. 

initial, transition and observation probabilities). It is generally acknowledged that, 

regardless the application domain, the initialization of model parameters is critical to the 

performance of the model after training (Nathan, Senior and Subrahmonia 1996). In 

fact, correct model initialization is essential when dealing with continuous system 

observations (Rabiner 1989). Techniques such as clustering algorithms (e.g. segmental 

k-mean clustering), Gaussian Mixture Models or the use of random values (Rabiner 

1989; Rosa et al. 2007) have been proposed for different HMM tasks. 

Correct model initialization largely depends on the task at hand. For example Bello and 

Pickens (2005) used musical knowledge to inform the parameters of their HMM for 

chord recognition, while previously Sheh and Ellis (2003) used random initializers for 

the same task. For the task of audio to score alignment Cont (2004) used the Yin 

algorithm (de Cheveigne 2002) for blind pitch detection to discriminate among different 

pitch classes informing score states. Alternative approaches include generating a correct 

alignment by synthesizing an audio waveform from the score, using a software program 

or an API such as Timidity++
15

 (Hu, Dannenberg and Tzanetakis 2003), and optionally 

aligning the synthesized waveform to an alternative recording using audio-to-audio 

alignment techniques such as DTW or directly initialising the model based on the 

synthesized waveform. 

It is important to realize that this initial alignment should be as accurate as possible, so 

that the patterns the HMM learns during training correspond to the states that need to be 

inferred during HMM decoding. In the current HMM implementation, model 

initialization is based on the offline audio segmentation algorithm that was used for 

segmenting the solo recording (section 7.4.1). Based on the detected onsets, an 

approximate alignment is inferred, which is further used for computing the mean vector 

and covariance matrix from equations (8.2) and (8.3). The initial values of transition 

probabilities are those depicted on Figure 8-2 and initial state probabilities are all zero 

except from that of the first state which equals 1.0. Subsequently, the Baum-Welch 

algorithm is applied on that initial model, so as to further refine observation 

probabilities. 

It is quite reasonable to wonder about what is the benefit of HMMs if a correct 

alignment needs to be available prior to their decoding process. There are two benefits 

in this respect: firstly that training on an accurate alignment/recognition will enable 

                                                
15 http://timidity.sourceforge.net/ 

http://timidity.sourceforge.net/
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aligning/recognizing additional sequences bearing the same information content and 

secondly that with HMMs it is possible to do so causally (i.e. online) and in real-time.  

A further issue which is quite important to consider in the initialisation phase, is related 

to the fact only transitions that are absolutely impossible should be assigned a zero 

transition probability. It was previously mentioned (section 8.3.1) that zero-transition 

probabilities remain zero throughout the entire iterative training process. This also holds 

for observation probabilities (Rabiner 1989). Hence, in the present system, if the initial 

alignment contains a skipped rest state, which is valid according to the topology of 

Figure 8-2, then the computed observation probabilities of that state will be zero and 

will remain zero after training. However, in an alternative performance, variations in 

music interpretation may be such that the specific rest state is actually visited. In this 

case the model will be unable to decode the performance further to the state having a 

zero observation probability. To alleviate this problem in the implementation of the 

final prototype, a common observation probability is computed for all rests, in other 

words the mean values of features in rest states are computed based on all rests of the 

initial alignment, regardless the preceding or following note and this also applies to the 

computation of the covariance matrix. Therefore an equal observation probability is 

obtained for all rest states using equations (8.2) and (8.3). Subsequently, Baum-Welch 

training provides more accurate estimation of these probabilities resulting in different 

values for different rest states. These trained values do not become zero so as to exclude 

the possibility of expressive deviations in a different performance interpretation. 

8.3.3.3 Numerical instability 

As HMM training involves computing the product of a large number of probabilities 

(i.e. forward and backward probabilities) that are numbers significantly smaller than 

one, exceeding the machine’s numerical precision is a common problem during HMM 

training.   

The most common technique followed in order to avoid numerical underflow is to scale 

these probabilities, by dividing them after each training iteration by their sum over all 

states (Rabiner 1989).  Alternatively, Mann (2006) proposes working with the 

logarithms of probabilities. Unfortunately, as verified in the system under investigation, 

working with logarithms in long sequences and left-right models increases the 

computational complexity of the algorithm, and may therefore render the training 

process entirely intractable. 

8.3.3.4 Memory Requirements 

One of the problems of Baum-Welch training is the inhibiting memory requirements 

when attempting to model long audio sequences. These requirements stem from the fact 

that for each audio block a number of multidimensional arrays holding forward and 

backward probabilities per audio feature and per HMM state must be allocated. 

Moreover, due to the numerical instability issued mentioned in the previous section, 

these arrays must be of double precision (64 bit), otherwise it will be impossible to 

perform computations on small probability values.  
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In order to realize the magnitude of this problem it is easy to find that one minute of 

monophonic 44.1 kHz audio corresponds to (44100x60)/512 = 5,168 blocks of 512 

samples. If we now consider the number of notes, for example 50 notes, of which ten 

correspond to unique pitch values, we have 25 features and 151 states (see also section 

8.3.2). One of the probability matrices ξt(i, j) used during training, records the 

probability of being in state si at time t and in state sj at time t+1. Only this matrix 

requires recording 5168x151x151 = 117,835,568 doubles that correspond to almost 

943MB of computer memory, and this is only for one of the arrays! 

Although this is a well known problem in biological sequence analysis (Miklós and 

Meyer 2005) and several algorithms for reducing memory requirements have been 

proposed (Khreich and Granger 2010), the problem has not been sufficiently addressed 

for the task of audio–to-score alignment. A solution could be to split the observation 

sequence into smaller and possibly overlapping segments and perform Baum-Welch 

training for each of these segments. This has not been attempted in the implementation 

of the system being investigated. 

8.3.4 Decoding Process 

HMM decoding involves finding the state sequence that best explains a given 

observation sequence, when the model λ = (Ν, Μ, Α, Β, π) is known. This problem is 

efficiently solved using the Viterbi algorithm, which is a dynamic programming 

technique aiming at finding the optimal hidden state sequence by maximizing the 

forward probability based on initial, transition and observation probabilities.  

Mathematically stated, for a given λ and a given observation sequence O = {o1, o2, …, 

oT}, the algorithm determines the single best state path Q = {q1, q2, … qT} by 

maximizing P(Q|O, λ), which is equivalent to maximizing P(Q, O| λ). If the maximum 

probability of the system reaching state si at time t is denoted as  

          
           

                           

then the optimal state sequence can be found by maximizing δt(i) at all times 1≤t≤T. 

This probability can be computed by induction as: 

           
 

                                                                                                                

It is reminded that aij is the transition probability from state i to state j and that bj(ot) is 

the observation probability of symbol ot being emitted when the system is in state j. 

If ψt(j) is an array that holds the state index i at time t-1 that optimizes the probability of 

being at state j at time t, if in other words it holds the previous state for every current 

state, then the complete Viterbi algorithm comprises four steps that can be formulated 

as follows: 

1) Initialization: 
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2) Recursion: 

            
     

                          

 

                                                 
     

                                 

3) Termination: 

      
     

             
         

     
       

 

4) Backtracking: 

   
           

 ),              

The backtracking step serves to adjust the preceding states once the terminating state 

has been found, hence identifying the globally optimal state sequence. Clearly the 

backtracking step is not causal, which renders the entire algorithm inappropriate for 

real-time alignments. In respect with providing a causal equivalent Cho and Bello 

(2009) proposed using an observation buffer of a small fixed length of the order of 5 to 

15 blocks within which they performed backtracking, therefore decoding the state which 

is 5 to 15 blocks past the current audio block. Alternatively, Orio and Dechelle (2001) 

implemented their score scrolling algorithm by maximizing the probability of the state 

sequence up to time t, known as forward probability: 

                             

which is computed recursively as: 

                   

 

   

                        

                                                  

Therefore, as a new block becomes available its state is determined from the previous 

state by maximizing equation (8.5). As the forward probabilities αt(i) can become quite 

large, it is necessary to scale,  in other words normalize the probabilities among all 

states j at each time step t, so as to avoid numerical overflow. 

In the current system, two methods have been attempted for the implementation of real-

time decoding. The first attempts to maximize the value provided by equation (8.4) and 

the second attempts to maximize the value of (8.5). Clearly both methods yield less 

accurate alignments than the offline Viterbi algorithm due to probability maximization 

on incomplete sequences. It should be noted that maximizing (8.4) or (8.5) is similar. 

The major difference is the summation appearing in the formula (8.5) as opposed to 

maximisation in formula (8.4). Experimental results showed maximizing (8.4) yields the 

same alignment as maximizing (8.5). 
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A further optimization that reduces the computational complexity of the real-time 

Viterbi algorithm implemented in the proposed system is permitted by imposing the 

following constraint: For each upcoming audio block, only the observation probabilities 

of neighbouring states sj to the previously identified state si are computed, such that that  

j-3 ≤ i ≤ j+3. In other words all observation probabilities are considered zero apart from 

that of the previous state, three preceding and three following states. This may be 

considered a form of path pruning, also facilitated in DTW Viterbi alignments (Soulez, 

Rodet and Schwarz 2003). As estimating bi(ot) is computationally expensive due to the 

exponent appearing in formula (8.1) this constraint results in significant speed 

improvements of the Viterbi algorithm, regardless if it maximizes the quantity δt(j) 

defined by (8.4) or αt(j) defined by (8.5). For the target application the globally optimal 

path becomes useless if note onsets are identified later than their occurrence. Hence the 

reducing computational complexity of Viterbi decoding by imposing this constraint 

comes at no cost for the application at hand.   

Subsequently to the identification of the current state, a process is executed to identify 

whether that state corresponds to a note onset, identified as an attack state following a 

non-attack state. To avoid spurious detections the corresponding function checks 

whether the current block is at least 50ms apart from the previously identified onset 

block, therefore imposing a minimum inter-onset-interval constraint. The specificities of 

the score scrolling functionality of the final prototype system are summarised in the 

next section.   

8.4 HMM in the proposed system 

This section outlines the main processes that take place for the purposes of tracking the 

performance of each musician in real-time, during live NMP in the proposed prototype 

system.  Performance tracking is based on HMM score following and requires an offline 

HMM training phase prior to the real-time decoding phase. Both phases are described in 

more detail in the sections that follow.  

8.4.1 Offline HMM training 

Prior to real-time performance an offline training process takes place in order to acquire 

an HMM able to decode each musician’s performance. For this purpose the solo 

recording and the score of each music part undergo the process shown in the block 

diagram of Figure 8-5.   

Initially, a training dataset is created and stored in a text file using the Attribute Relation 

File Format (ARFF). Specifically, each solo recording is partitioned in 512-sample 

blocks and each audio block corresponds to a different row in the ARFF file. This row 

contains the values of the audio features as comma separated values constituting a 

feature vector, followed by an annotation concerning the HMM state of that block. 
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HMM states are textually represented as (MIDI pitch, state) pairs following the 

topology depicted on Figure 8-2. In order to generate the feature vectors, feature 

extraction is performed on the solo recording, while generating state annotations for the 

initial alignment is achieved using the same algorithm for onset detection that was used 

for the purposes of segmenting the solo recording and which was described in section 

7.4.1.  

 

Figure 8-5: Block diagram of the HMM training process. Solid lines represent audio data flows while dashed 

lines represent numerical or textual data flow. 

Annotations start with an initial rest state (0, Rest) until the audio block corresponding 

to the first onset. The subsequent blocks up until 50ms (defined by a global constant 

named ATTACK_DURATION) after the onset are marked as an attack state, for 

example (60, Attack) for a MIDI pitch corresponding to middle C. The blocks that 

follow are marked as sustain blocks (60, Sustain) up until the block where the Log 

Energy feature falls below the threshold of -40dB (i.e. SILENCE_THRESHOLD). If 

that or any previous sustain block corresponds to the next onset, the attack state of the 

next onset is annotated, otherwise if after -40dB no onset has arrived, the blocks until 

the next onset are marked as rest states as (60, Rest). Finally the annotated dataset is 

stored in the ARFF file. A description of the use of ARFF files in the prototype system 

as well as an extract of an example file is provided in section 10.3.2.1. 

Following, the ARFF file is read and a model file describing the HMM is generated. 

This file contains the names of the audio features that were used as well as the 
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probability values of all matrices: π, Α, μ, Σ. Initial probabilities are all zero apart from 

the probability of the initial rest state, transition probabilities are those depicted on 

Figure 8-2, while the mean vector and the covariance matrix are computed from 

equations (8.2) and (8.3) using the annotated alignment provided by the ARFF file. A 

description and an extract of an example model file are provided in section 10.3.2.2. 

This initial model is denoted as λinit on the block diagram. The probability matrices of 

that model as well as the feature vectors of the ARFF file are finally delivered to the 

Baum-Welch algorithm. The Baum-Welch algorithm after running a number of 

iterations which depends on the accuracy of λinit, converges to a new set of probability 

matrices μ, Σ for the observation probabilities. This trained model λtrained is finally 

stored in an additional model file.  

With respect to the implementation of the training process, it is important to recapitulate 

on two key points. Firstly, transition probabilities are not trained but instead retain the 

values of Figure 8-2 so as to alleviate from problems caused by the fact that training is 

performed on a single observation sequence (i.e. the solo recording), which is generally 

inhibiting for training left-to-right HMM topologies, an issue that  was elaborated in 

section 8.3.3.1. Secondly, during the estimation of the initial model λinit, an equal 

observation probability is computed out of all possible rest states, so as to avoid zero-

initialisation of the observation probabilities of certain rest states. As previously 

discussed in section 8.3.3.2, these rest states may not be visited in one performance, but 

visited in another performance. Initializing the corresponding probabilities to zero, may 

lead to errors in the decoding process.  

8.4.2 Real-time HMM Decoding 

Figure 8-6 depicts the processes that take place during HMM decoding. These processes 

are implemented on the transmitter of Figure 5-2.  

The trained model file λtrained is loaded to memory prior to decoding, including feature 

names and all HMM related matrices. Real-time audio capturing is based on callback 

functions configured to use a buffer of 512 samples of monophonic 44.1kHz/16-bit 

audio. As soon as a new block of audio becomes available, feature extraction takes 

place to compute the features specified in the model file. Subsequently to the 

computation of the feature vector, an observation probability bi(ot) is computed for each 

score state from equation (8.1) using the values of μ, Σ provided by the model file. In 

fact, as the computation of observation probabilities is based on exponents and the 

number of score states may be quite high, in order to eliminate the number of 

computations, bi(ot) is estimated only for neighbouring states of the one identified for 

the previous audio block. As mentioned in section 8.3.4, this is a form of path pruning, 

which is necessary to allow identifying HMM states before the next block of audio 

becomes available. 
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Figure 8-6: Block diagram of the HMM decoding process. Solid lines represent audio data flows while dashed 

lines represent numerical or textual data flow. 

The computed observation probabilities as well as the transition probabilities are 

fetched to the real-time Viterbi algorithm, which estimates the score state of the current 

block. If that score state corresponds to an attack state following a non-attack state and 

occurring after 50ms (i.e. greater than the MIMINUM_IOI global constant) from a 

previously identified onset, then the current block is identified as an onset block and a 

notification is sent over the network to indicate that the next audio segment must be 

concatenated to the audio stream reproduced at the location of remote NMP 

collaborators. This notification carries information about the RMS amplitude as well as 

the duration of the previous note approximated by the corresponding Inter-Onset-

Interval (i.e. RMS (m-1), IOI(m-1)). As described in the next chapter, these two 

attributes are used by remote receivers in order predict a gain factor and a time-scaling 

factor that needs to be applied to the current segment, prior to signal concatenation. 
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9 Segmental Re-Synthesis 

The title of this chapter has been deliberately chosen to distinguish the methodology 

presented here from Concatenative Sound Synthesis (CSS) approaches. Conventionally, 

and as was presented in chapter 4, CSS approaches imply the presence of an audio 

corpus as well as a unit selection algorithm for selecting the units that best match the 

specified target. As the problem addressed in the present work is a lot simpler in that 

respect, using the term concatenative re-synthesis would be misleading given the 

abundance of informative resources on CSS systems reported in the relevant research 

literature.  

The term segmental was found to more appropriately represent the methodology 

employed in the present work and has been previously used in the speech coding 

domain (see section 4.2). In the present context, the aim of the synthesis step is to 

generate the performance of each musician at remote network locations using the audio 

segments of his/her solo recording, which were accumulated using automatic offline 

audio segmentation techniques. Clearly, the pre-segmented solo performance will be 

very different from the live performance, not only because the latter is collaborative and 

therefore follows the performance of other musicians, but also because music 

interpretation is greatly influenced by the instantaneous mental and emotional state of 

performers, and is therefore unique every time a piece is performed, even by the same 

performer. 

Thus, the present chapter initially discusses theoretical studies on expressive 

performance, in an attempt to discern the type of interpretive deviations that may 

introduced in different performances of the same piece of music. Then, the chapter 

provides an overview of the processes undertaken during unit concatenation in relevant 

concatenative music synthesis and computer accompaniment research initiatives. The 

final section presents the approach adopted by the prototype system under investigation 

and discusses the quality of the synthesized audio signals.. 

9.1 Rendering expressive musical performance 

It is well known that faithful rendition of a musical score sounds machine-like and 

musically uninteresting. In the western tradition, music scores have been a necessary 

means of communicating composers’ intentions to potential performers. However, the 

performer is offered plenty of freedom to interpret the music score using his/her own 

understanding of musical meaning. Consequently, in the cases of non-improvisatory 

music, musical expression may be attributed to deviations from a pre-transcribed 

musical score. The prevalent deviations are related to inter- and intra-note attributes 



 

134 

 

such as timing duration and loudness (Ramírez et al. 2007), therefore accounting for 

tempo deviations, dynamics, articulation (i.e. the type of transition among consecutive 

notes) and less often deviations in pitch or intonation. However, depending on the 

instrument, performers employ additional cues to manifest their intentions with respect 

to expressive interpretation. For example, chord asynchronies (i.e. slight timing 

deviations in the playback of different voices in polyphonic or harmonic context), the 

use of piano pedal, or alternative deviations such as slight portamenti, tremolo or 

vibratos present examples that define the unique character of a music performance. 

Nevertheless, most of these intentions are subliminal and not readily tractable. 

To provide an understanding on the expressive aspects introduced by deviating from a 

score, music performance is often compared to speaking or reading from text (Delgado, 

Fajardo and Solana 2011). If multiple people are asked to read the same text, the 

produced sounds will be considerably different in terms of prosodic nuances rhythmic 

stress or intonation. This analogy has been inspiring for several research initiatives.  For 

example in the work of Thompson, Schellenberg and Husain (2004), it was shown that 

musically trained adults performed better than untrained in identifying emotions 

conveyed by speech prosody.  In another work, Coutinho and Dibben (2012) showed 

that emotions in music and speech prosody can be predicted from seven 

psychoacoustically relevant features: loudness, tempo/speech rate, melody/prosody 

contour, spectral centroid, spectral flux, sharpness, and roughness. 

Interestingly, expression of music emotion is predominantly, although not exclusively, 

driven by performers’ intentions. For example, Widmer and Goebl (2004) defined 

expressive music performance as “the deliberate shaping of the music by the performer 

by means of continuous variations of timing loudness and articulation.” Skilled 

professional performers apply such deliberate warping of expressive parameters so as to 

develop their own signature-sound that distinguishes them from other performers. In 

this line, a number of research efforts are being invested in developing machine learning 

models that are able to recognize individual artists from their recordings (Saunders et al. 

2008; Molina-Solana, Arcos and Gomez 2008). However, performances of the same 

piece of music, even by the same performer may be very different from one another 

depending on other factors, such as performer’s psychological mood (Gabrielson 1995; 

Rigg 1964), fatigue or even the acoustics of the physical location in which music is 

performed. Although sparsely investigated (e.g. Kalkandjiev 2013; Hatlevik 2012), 

room acoustics may play an important role on how performers communicate music to 

their surrounding environment.  

Notably, a large number of studies on expressive performance approach music 

expression from the structure residing within the music piece. Musicological studies 

such as those of Sloboda (1983) observed that pianists tend to play louder and more 

legato the notes at beginning of measures. Moreover, it was noticed that the beginning 

and end of phrases are slower than the rest. With respect to harmonic progressions and 
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musical expression, Palmer (1996) showed that melodic expectation is influenced by the 

energy used in playing the different notes.  

Besides their musicological interest, studies in expressive music performance are often 

conducted for the purposes of computational modelling to be ultimately applied in the 

design of systems capable of rendering expressive performances. Evidently, 

computational models of expressive music performance are already capable of 

emulating human performances. In 2002, the Rencon, performance rendering contest 

was created to offer subjective evaluations of systems generating expressive 

performances. The contest employs a human judge to determine whether a performance 

is artificial or human in accordance with the Turing test (Hiraga et al. 2004), as well as 

to evaluate these systems in terms of their capability to demonstrate different factors 

such as conveying emotional content or highlighting musical structure (Katayose et al. 

2012). 

Delgado, Fajardo and Mollina-Solana (2011) present a comprehensive review of 

approaches in computational music performance and discern three research strategies: 

(a) analysis-by-synthesis, (b) analysis-by-measurement and (c) performance systems 

based on artificial intelligence. Analysis-by-synthesis is concerned with embedding 

performance rules defined by the experience of an expert musician (Friberg Bresin and 

Frydén 1998; Zanon and Poli 2003). Analysis-by-measurement systems derive 

performance rules from acoustic analysis and statistical processing of recorded 

performances (e.g. Todd 1992). In contrast to these approaches, the works of Widmer 

(2003; Grachten and Widmer 2012) propose the use inductive machine learning applied 

on large music corpora.  

Expressive music performance is not the main focal point of this work. However, 

synthesizing an audio stream from a pre-segmented performance requires careful 

consideration of expressive aspects in order to retain the interpretive nuances of the live 

recording in the synthesized audio stream. The sections that follow describe this process 

from the perspective of audio signal processing. 

9.2 Technical approaches to segmental re-synthesis 

Re-synthesis of audio from pre-recorded segments is a task relevant both to CSS, as 

well as computer accompaniment systems. In computer accompaniment, synthesis is 

essentially performed in real-time while in CSS systems it may be performed either 

offline or in real-time context, depending on the application scenario. As was seen in 

section 4.4, most real-time CSS approaches aim at artistic exploration rather than high-

fidelity instrumental synthesis. Consequently in these initiatives, signal inconsistencies 

due to poor concatenation quality are neither critical nor necessarily undesirable.   

This section reviews alternative methodologies that are commonly adopted when 

synthesizing a waveform using audio samples, so as to highlight differences among 
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methodologies and provide an understanding on the choices that were made in the 

present work. When re-synthesizing a signal from audio segments, sample processing 

needs to take place for two reasons: firstly to transform each segment in terms of 

amplitude, duration and sometimes pitch, so as to better match the required target, and 

secondly to eliminate perceivable artefacts that are caused by amplitude, pitch and 

possibly timbre discontinuities at the junction point of two consecutive segments. In the 

approach proposed here, it is important to elucidate that the occurrence of 

discontinuities is caused by timing deviations in the occurrence of note onsets between 

the pre-segmented solo performance and the live performance of each musician. These 

timing deviations require time-scaling applied on note segments.  Apart from time-

scaling amplitude transformations are also applied to account for deviations in 

performance dynamics. Collectively, these two transformations are the reason of 

consecutive segment discontinuities. If there were no transformations, then no 

discontinuities would occur, but that would be equivalent to rendering the original audio 

file without adapting it to the context of the live performance.  

The next two subsections describe solutions to these two problems (i.e. transformation 

and concatenation), while the section that follows describes the adaptation of this 

problem to real-time settings. Representative examples from the relevant literature are 

also provided. 

9.2.1  Segment transformations 

This stage is meant to transform the audio segment, most commonly in terms of 

amplitude and duration and sometimes in terms of pitch as well, so as to better match 

the desired target waveform. Amplitude transformations are pretty straightforward and 

they conventionally involve multiplication of the entire segment by a gain or attenuation 

factor. Regarding duration and pitch, the rudimentary approach involves re-sampling the 

signal at a different rate than the one it was originally sampled. This technique is 

inspired from the old days of analogue recording technology, where the ratio of 

recording and playback rates alters the signal both in terms of duration as well as in 

terms of pitch. 

To perform duration and pitch modifications independently of each other, two 

established techniques are commonly used: the phase vocoder which operates on the 

spectral domain of the signal and the Pitch Synchronous Overlap Add (PSOLA) 

transform, which operates on the time domain. Implementations of these two techniques 

may greatly vary depending on the content of the signals being processed as well as on 

potential requirements for low computational cost and real-time operation. 

As will be seen in the next section, none of these methods has been precisely integrated 

in the prototype system under investigation. The assumptions holding for the signals 

being treated in this work (see section 5.3), largely simplify the problem of segment 

transformations, for which a novel and intuitive approach has been adopted. 
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Consequently, no detailed mathematic or algorithmic description of phase vocoder and 

PSOLA methods is provided in this chapter. However for reasons of consistency, a 

qualitative and hopefully intuitive explanation of these techniques is provided in the 

following subsections.  

9.2.1.1 Phase Vocoder Transformations 

The phase vocoder, originally introduced by Flanagan and Golden (1966), is a 

technique for independently varying the pitch and the duration of an audio waveform 

using the Short Term Fourier Transform (STFT), i.e. the Fourier Transform of 

consecutive windowed and overlapped blocks of audio. 

Phase vocoder time scaling is achieved by performing STFT analysis of the audio signal 

and then applying the inverse transform by using a different amount of overlap than the 

one used in the analysis step. Precisely, given a time scaling factor α, the analysis hop-

size Ra is varied with respect to the synthesis hop-size Rs, such that their ratio yields the 

scaling factor, i.e. α = Rs/Ra. Conventionally, a 75% overlap at the output is considered 

a good practice so as to avoid amplitude modulation due to phase inconsistencies. 

Hence, Ra is varied in respect to Rs which remains constant at 75% of the STFT window 

function. 

Clearly, using a different amount of overlap between analysis and synthesis yields phase 

discontinuities in the synthesized output, which can be corrected by applying the inverse 

STFT using the analyzed spectral magnitudes and a phase which is estimated from the 

phases of the original signal and adjusted by an amount that corresponds to the new hop 

size. This is known as phase propagation and it ensures horizontal phase coherence, 

namely phase consistency between successive audio blocks for each frequency 

component. Unfortunately, this phase correction ruins the phase relationships between 

different frequency components of the same audio block, known as vertical phase 

coherence. In phase propagation, the same amount of phase correction is applied to all 

frequency bins. However, as generally the signals being processed contain non-

stationary sinusoidal components, phases are not linearly related to the different 

frequency bands. Absence of vertical phase coherence results in a degradation of 

timbral quality, so that the resulting signal sounds more ‘smeary’ or ‘phasey’. For this 

reason, an improved phase vocoder implementation (Laroche and Dolson 1999) 

proposes a technique known as phase locking. Phase locking attempts to find the 

sinusoidal components of the signal as the most dominant peaks of the spectrum of each 

frame. Then it updates the phases of the non-sinusoidal components by preserving their 

phase relationship to the closest sinusoidal component, after the last has been phase 

corrected for horizontal phase coherence. 

The most prominent application of the phase vocoder is on speech signals and the 

synthesis of the singing voice (Laroch 2003; Bonada and Loscos 2003). This is 

probably related to the spectral content of speech signals which are dominated by voice 

formants corresponding to the acoustic resonances of the vocal tract. Formants appear 

as dominating sinusoidal components; hence phase locking to these components 
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provides a more realistic phase approximation. In the case of music however, sinusoidal 

components may be less apparent and even more so for percussive sounds as well as 

during the initial transients. The duration of percussive sounds, such as drum sounds 

cannot be controlled by the performer (no sustain state is present in the amplitude 

envelope).  Therefore, when for example stretching or shrinking a percussive sample in 

time, one should simply increase or decrease the spacing among consecutive events 

rather than performing a uniform stretch or shrink on the entire waveform. This is not 

taken into account by phase vocoder time scaling and has to be treated in dedicated 

implementations. When time scaling a percussive sound or a transient, even if perfectly 

reconstructing its spectral content, its timbre will sound unnatural and therefore 

perceptually distorted. 

This problem has been addressed by (Duxbury, Davies and Sandler 2002b), where a 

signal is firstly separated into its transient and steady state parts by means of multi-

resolution analysis, and then phase vocoder time scaling with phase locking is applied 

to the steady (quasi-stationary) parts of the signal. This is clearly an offline, non-causal 

process. However, in (Barry, Dorran and Coyle 2008) a real-time solution is provided 

called transient hoping. In this work a measure of the ‘percussivity’ of the sound is 

defined which looks at the rise of energy in dB between successive hops, summed for 

all frequency bins. The audio frames for which this measure exceeds a predefined 

threshold are characterized as transient and retained in the times-scaled signal without 

any modification. 

Phase vocoder pitch scaling on the other hand, is conventionally performed in two steps 

which are re-sampling the signal to achieve the required pitch and then perform phase 

vocoder time scaling to regain its original duration. For example to raise the pitch by a 

factor of two one would half the sampling rate (i.e. skip every other sample of the 

original waveform) and then time stretch the resulting signal by a factor of two (Laroche 

2002). However, direct manipulation of the frequency partials of the signal has also 

been proposed (Laroche and Dolson 1999). Direct frequency domain manipulations are 

less favoured due to the fact that, firstly, they require a very high frequency resolution 

and secondly that they are computationally more expensive due to the large number of 

multiplications involved (Laroche 2002).  

A real-time version of phase vocoder pitch shifting that does not require time scaling is 

presented in (Barry, Dorran and Coyle 2008). In this paper, re-sampling at the required 

rate is performed within a window that has a length which is multiplied by the pitch 

scaling factor (i.e. βΝ where β is the pitch scaling factor and Ν the length of the FFT 

window), therefore the duration is not affected. However, such re-sampling requires 

phase correction by an amount affected by β and subsequent phase locking to 

additionally maintain vertical phase coherence. 

The phase vocoder is by far the most commonly used technique in CSS and computer 

accompaniment systems. In CSS it has been used by Maestre et al. (2009) in offline 

context for synthesizing expressive saxophone performances from contextually 
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informed note segments (see also section 4.3.2.1). In computer accompaniment systems, 

the Music-Plus-One system developed by Raphael (section 3.2.4) uses the phase 

vocoder to control the playback rate of the orchestral accompaniment of a live solo 

performer. In this case the orchestral recording has been manually indexed and an 

HMM of its alignment to the corresponding score is constructed offline. During live 

performance a different HMM that corresponds to the soloist (trained during rehearsals) 

is used to detect new onsets of the live solo. Subsequently, the duration of the orchestral 

recording is appropriately scaled to synchronize with the solo performance at certain 

points that represent short-term synchronization goals (Raphael 2003). This system does 

not report on any mechanism for eliminating signal discontinuities. This is due to the 

fact that no parts of the orchestral recording are skipped and therefore no discontinuities 

are introduced, its only the playback rate that is continuously adjusted. 

9.2.1.2 SOLA transformations 

The SOLA (Synchronized OverLap Add) method was originally proposed by Roucos 

and Wilgus (1985). It exists in many variations such as Waveform Similarity Overlap 

Add (WSOLA) (Verhelst and Roelands 1993), Time Domain TD-PSOLA (Moulines 

and Charpentier 1990), MultiBand Resynthesis Overlap Add (MBROLA) (Dutoit 

1996), etc. The principle is essentially the same: Firstly, the pitch frequency of the 

signal is detected by an f0 estimation algorithm. Following, the signal is windowed 

commonly by using a Hanning window spanning two periods of the fundamental 

frequency and centered on the maxima of signal energy. To increase or decrease the 

pitch of the signal, consecutive windows are placed closer together or further apart 

respectively. Finally, the overlapping parts of the signal are added to produce the final 

waveform. In the case of time scaling, certain windows are duplicated to achieve 

lengthening or skipped to achieve shortening. In both cases the resulting signal is 

overlapped-added.  

SOLA is commonly used in text-to-speech synthesis and has been impressively used in 

synthesizing a choir in real-time from recordings of solo singers (Schnell et al. 2000). A 

main problem of the algorithm arises when the sounds to be treated are not periodic, as 

is the case of ‘unvoiced’ sounds. In such cases, a default window length of 10ms is used 

while caution must be taken to avoid introducing artificial pitch correlations resulting in 

a flanging-like effect. Common techniques in avoiding such correlations include phase 

randomization (Richard and d’Alessandro 1996) at the non-periodic parts of the signal. 

In the case of acoustic instruments, the same problem arises during note transients as 

well as percussive sounds. In respect with preserving the distinctive timbre of note 

transients and avoiding their repetitions, the same method as in phase vocoder is applied 

by subtracting the transient components before PSOLA and then re-applying them after 

synthesis (von dem  nesebeck, Ziraksaz and Zölzer 2010). 

Generally, most SOLA approaches are highly computationally efficient but their 

performance relies on the periodicity of the signals being processed, as well as the 

amount of required scaling. It is well known that scaling up or down by more than a 
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factor of two may result in considerable signal degradation. Modifications of the main 

algorithms are occasionally proposed to allow high quality of transformations within a 

wider scaling range (Cabral and Oliveira 2005; Bárdi 2006).  

SOLA has been used in offline context in the Audio Analogies project (Simon et al. 

2005). This project uses individual notes or pairs of notes to construct the waveform of 

a music piece given its music score. Audio segments are re-sampled to achieve pitch 

transformations, while their duration is scaled by means of SOLA.  

Additionally as already mentioned, Schnell et al. (2000) used PSOLA in real-time 

context to reproduce a choir sound from a single recording of a solo choir singer. 

Analysis of the solo recording is performed offline and it comprises two phases: 

separation between voiced (harmonic) and unvoiced parts and detection of marker 

positions on the harmonic parts. These PSOLA markers indicate windowing positions 

and they are placed pitch-synchronously (i.e. so that their distance corresponds to the 

period of the fundamental frequency) and centered on the local maxima of signal 

energy. Finally during synthesis, a marker file and the corresponding waveform are read 

and a real-time algorithm applies replication of voices and PSOLA transformations so 

as to obtain a distinctive character for each replicated voice. Unvoiced signal parts are 

re-synthesized using some variation of granular synthesis. 

9.2.2  Eliminating perceptual discontinuities 

When concatenating transformed audio frames, phase and spectral shape discontinuities 

occur. Such discontinuities are easy to handle in offline context but become more 

difficult in real-time applications.  

Solutions range from a simple amplitude cross-fade within a range of 10-100ms 

(Schwarz et al. 2006; Dannenberg 2006) to more complex phase and spectral shape 

interpolation spanning several frames in order to provide a smooth transition (Bonada 

and Loscos 2003). In the work of Maestre et al. (2009) amplitude and pitch 

discontinuities are smoothed using cubic spline curves so as to synthesize legato notes. 

A simpler approach is presented by (Simon et al. 2005) where the optimal point of 

intersecting the two segments is estimated by calculating their cross correlation. The 

two segments are then intersected at the maximum of their cross correlation and 

smoothed by a linear cross fade. 

In real-time settings it is impossible to prepare the elimination of discontinuities 

beforehand because the point of intersection is not known until the next segment needs 

to be rendered. Therefore any time or spectral domain interpolations can only occur 

within a single audio frame. 
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9.2.3 Real-time approaches and the need for anticipation 

Several studies are being conducted with the aim of understanding the cognitive 

processes that enable musicians to synchronise during ensemble performance (Rasch 

1988; Keller 2007; Goebl and Palmer 2009). Studies of computational music 

performance confirm tempo and dynamics as the most prominent resources available for 

musicians to convey emotion and meaning in non-improvisatory music (Widmer and 

Goebl 2004). As ensemble performance involves actions coordinated within small 

fractions of seconds, collaborating musicians employ a great amount of cognitive 

anticipation. Anticipating and therefore scheduling tempo and dynamic deviations both 

at the macroscopic (i.e. for the overall piece) and the microscopic level (i.e. within small 

groups of note events in a way that does not contribute to the macroscopic level) is 

informed by three types of information sources: rehearsals, the score of the music work 

and by continuously monitoring musical events during live performance (Marchini, 

Papiotis and Maestre 2012). 

Rehearsals help members of ensemble performance establish a common goal; a unified 

concept of the ideal sound (Keller 2007). Performance goals are developed through 

individual practice and collaborative rehearsals and aim at establishing a plan that 

guides the motor processes involved in translating goal representations into appropriate 

body movements (Gabrielson 1999). 

Regarding the score, Raphael (2003) highlights that the music score should not be 

viewed as a rigid grid prescribing the precise times at which musical events occur; 

rather the score gives the basic elastic material which will be stretched in various ways 

to produce the actual performance. The score simply does not address most interpretive 

aspects of performance.  

During live ensemble performance, Keller (2007) uses the term ‘adaptive timing’ to 

refer to the process of adjusting musical performance according to the temporal 

evolution of performance up to that time. Specifically, Keller assumes that the human 

brain is capable of instantiating timekeepers that can be used to control the temporal 

aspects of perception and action. These timekeepers are adjusted using error correction 

processes that are initiated upon the occurrence of asynchronies in the timing of actions 

undertaken by the various performers. 

A more elaborate account on psychological and cognitive theories of timing 

synchronisation is provided in Bader (2013b). It appears that traditional theories on 

rhythm perception (Wing and Kristofferson 1973) show that when tapping on a 

rhythmic pattern the timing deviation of each event depends on the deviation of the 

previous event, so that an IOI arriving later (or earlier) than dictated by the rhythmic 

pattern will be followed by an IOI arriving earlier (or later respectively) in a attempt to 

correct the previous tap. This could be very well represented by a Markov chain as each 

note event depends exclusively on the previous event. Yet, subsequent studies 

investigating longer tapping series (e.g. Haken,  elso and Bunz 1985; Delignières, 
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Lemoine and Torre 2004) showed that long–term memory is likely to further influence 

the perception of rhythm. Notably, this is interpreted as the 1/f noise pattern of human 

cognition (Gilden 2001). For example Pressing (1999) suggested using a moving 

average to model this type of behaviour. As will be seen in section 9.3.1, a similar 

approach has been employed in the system under investigation, for which the most 

recent IOI deviations have a greater influence on the estimation of the IOI of future note 

events. 

When involving a computer performer, as in the case of computer accompaniment 

systems as well as in the present system, the same type of anticipation and scheduling 

must be developed by the virtual performer. Equivalently, such anticipation may be 

built based on three knowledge sources, namely (a) past musical events in the live solo 

(i.e. up to the time of scheduling), (b) the music score and (c) a pre-existing recording of 

that same piece of music possibly acquired in the course of a rehearsal session. 

Early works on musical accompaniment (Vercoe 1984; Grubb and Dannenberg 1998) 

estimated a running tempo which was matched on the score and they used that tempo to 

predict upcoming events. A more sophisticated perspective is presented by Raphael 

(2001), who uses a Bayesian network to anticipate future events and adjust the playback 

rate accordingly. This network is a linear directed acyclic graph, built on the timeline of 

the music piece, with a number of observed variables, which are the onset times of the 

solo recording and those of the available accompaniment projected on a common 

musical alignment, which is partitioned according to bar positions and beat structures. 

Based on the observed variables, which may be acquired from a past rehearsal, the 

network estimates a collection of Gaussian distributions (i.e. means and variances) for 

the hidden variables, which are the tempo and duration deviations of each note event 

(concurrent events of the solo and the accompaniment are assumed to have same 

measure position). These Gaussians are estimated during an offline training phase. 

Subsequently, during live performance the arrival of a pending note is predicted based 

on the conditional distributions of these Gaussians conditioned on the past (already 

observed) musical events. 

Generally, most research initiatives on computer accompaniment emphasize on timing 

synchronisation, which is critical to performance. However, for a truly collaborative 

experience, additional aspects of musical expression must be incorporated in the 

synthesis phase, such as variations in dynamics and articulation, collectively referred to 

as ‘phrasing’. Articulation is more difficult to address as it requires accurate and 

instrument specific detection of note offsets, besides the challenging task of real-time 

onset detection. 

9.3 Synthesis in the present system 

Remote re-synthesis from audio segments in the final prototype system occurs by 

monitoring the RMS amplitude and the Inter-Onset-Interval (IOI) of each note on the 
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live audio stream and estimating the RMS amplitude and IOI for the next note to be 

rendered based on the previously performed notes. This estimation allows for 

transforming audio segments in terms of amplitude and duration before they are 

concatenated to the playback stream. 

 

Figure 9-1: Block diagram depicting the functionality for segmental re-synthesis on the receiver thread of the 

present prototype system. Solid lines represent audio data flows while dashed lines represent numerical or 

textual data flow. 

As was seen in Figure 5-2, during live performance the software executed at each 

network node comprises two independent threads: a transmitter and a receiver. In the 

simplest case of facilitating a decentralized peer-to-peer communication topology, at the 

location of each peer a separate receiver thread must be running for each of the 

remaining active peers. Re-synthesis takes place at each receiver thread, so as to 

synthesize the performance of each remote peer.  

The detailed block diagram depicting the processes that take place for each receiver 

thread is depicted on Figure 9-1. Notifications of new onsets received from the network 

are accompanied with the RMS amplitude value (section 6.4.2) and the IOI in samples 

of the note preceding the detected onset. The previous note is indicated on the diagram 

as m-1. These values are used by a process which attempts to estimate the RMS and IOI 

of the current note, namely the one for which the onset notification has been received 

and needs to be rendered. This future event estimation is based on the RMS and IOI 

deviations of the previously performed notes, compared to the RMS and IOI properties 

of the note segments maintained in the audio pool. Information for the notes maintained 
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in the pool is derived from the corresponding performance description file (see sections 

7.4.2 and 10.3.2.3).  

Following, the segment that corresponds to that note is loaded from the segment pool 

and transformations apply to account for the estimated RMS amplitude and duration. 

Finally, a short linear cross-fade is applied between the currently rendered audio and the 

first audio block of the newly loaded segment, which is subsequently appended to the 

playback stream that corresponds to the performer from which the notification arrived. 

In the case of multiple performers (i.e. remote peers) mixing of all synthesized streams 

is performed prior to playback.  

The next sub-sections describe these algorithmic processes in more detail. 

9.3.1 Performance Monitoring and future event estimation 

Performance monitoring provides information related to deviations in tempo and 

dynamics between the live performance and the pre-segmented solo performance, 

maintained in a pool of audio segments. Different segment pools correspond to the solo 

recording of different performers. For this reason, a performance description-file 

(section 10.3.2.3) describing the note segments that correspond to a particular performer 

is parsed during the creation of each receiver thread. The information contained in this 

file is maintained in memory during live performance.  

Notifications of note onsets at remote ends carry information about the RMS amplitude 

and the IOI of the note preceding the received onset for the live audio stream generated 

at a remote network location. When receiving such a notification the deviation of that 

previous note from the corresponding note in the pool of audio segments is estimated 

from two ratios: 

       
            
            

                
            
            

 

where m-1 is the index of the previous note, while the subscript live refers to the note of 

the live remote stream and the subscript pool refers to the corresponding note segment 

maintained in pool.  

Hence, the g ratio depicts expressive deviations in music dynamics while h is related to 

tempo deviations in the live performance compared to the pre-segmented solo 

performance. The IOI values do not actually provide information about note durations 

but only on tempo deviations, as a note may actually decay long before the occurrence 

of the next onset. In fact, whether an IOI value relates to note duration is a matter of 

articulation (i.e. legato, staccato, tenuto etc.) as well as a matter of timbre (e.g. 

percussive instruments do not have a controllable duration). 

Due to the fact that performance monitoring takes place online (i.e. causally), these 

ratios are available only for the past notes. Subsequently, RMS and IOI ratios of 
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previous notes are used to predict the same ratios for the current note. In the present 

implementation of the software, this prediction is based on the mean value of the 

previous L notes, as: 

     
        

   

 
              

        
   

 
 

The number of notes L over which the mean values are estimated can change or remain 

constant over the duration of the piece. For instance, the mean value may be estimated 

using all previous notes or it may be based on the preceding four or five notes to 

account for the fact that deviations in tempo and dynamics can be constant within music 

phrases, but varying over the duration of the piece. Another possibility could be to 

compute a weighted mean, such as a recursive average, for which more recent notes 

would have a greater influence to the estimation of future notes. For the moment the 

number L=4 appeared to give satisfactory estimates.  

Clearly, these techniques provide very rough estimates and are not literally predictive, 

as no probabilities are involved in the computation of future estimates. A more 

sophisticated mechanism for making predictions in expressive performance needs to be 

incorporated. This issue is addressed in current and ongoing research efforts.  

9.3.2  Segment Transformations 

Based on the estimated g(m) and h(m) ratios for the next note to be rendered, i.e. the one 

for which the onset was just detected, two types of transformations are applied after 

loading the corresponding note from the pool of audio segments: amplitude and 

duration transformations. Amplitude is transformed by multiplying the entire segment 

by g(m), which is a gain or attenuation factor, depending on its value. 

For duration transformations a time-domain pitch-synchronous approach that requires a 

minimal amount of signal processing has been adopted. Time scaling is performed by 

repeating or skipping parts of the signal having a length that corresponds to one period 

of the pitch frequency (pitch synchronous transformations), while omitting the overlap-

add phase of conventional PSOLA approaches. In the present application scenario, the 

pitch frequency of the segment is known before performing transformations. It is 

extracted from the score file during offline segmentation and maintained in the 

performance-description file (section 10.3.2.3) of the solo recording. As the target 

application scenario deals with monophonic instruments the corresponding signals are 

highly periodic and therefore pitch synchronous time scaling is highly appropriate. 

The employed time-scaling technique is similar to PSOLA but without the overlap-add 

part of the algorithm. There is one disadvantage of the proposed algorithm compared to 

PSOLA, which is however not relevant for the target application scenario. The 

disadvantage concerns the fact that as entire periods are added or skipped from the note, 

time-scaling will not precisely provide the intended duration. It will instead have a 
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granularity that depends on the period of the periodic signal. This fact was also 

addressed by the original publication introducing the PSOLA transform (Roucos and 

Wilgus 1985).  

In the present scenario, as the required time-scaling factor h(m) forms an approximate 

estimation of the actual segment duration, imprecise time-scaling is not critical. 

Moreover, omitting the overlap-add process is preferred both in respect with the 

resulting computational complexity as well as in terms of the quality of the synthesized 

audio stream. Future improvements of the proposed approach, such as incorporating 

more sophisticated prediction algorithms and less constrained signals (i.e. in terms of 

their periodicity) will require more accurate time-scaling techniques.  

The rest of this section describes the algorithm for time-scaling implemented in the 

present prototype system. It is important to highlight that both when time stretching (i.e. 

h(m)>1) as well as when time shrinking (i.e. h(m)<1) the first part of the segment is left 

unprocessed, as it is assumed to carry the initial transient of the note. As discussed in 

the previous sections, initial transients should remain unprocessed to time/pitch scaling 

operations due to two reasons: firstly, because they are not periodic and therefore pitch 

synchronous time-domain transformations are not possible and secondly because, as 

initial transients are related to the sound production mechanism of acoustic instruments, 

they are important in terms of timbre perception. As they always span a small region of 

the signal, time scaling initial transients would result in an unnatural audio effect. 

Given an audio segment S(m) having a length of |S(m)| samples (note that |x| accounts 

for the length of signal x), a time-scaling factor h(m) and a length of an initial transient 

Δ, a new scaling factor h’(n), which applies only to the steady state part of the signal is 

calculated as: 

                                    
             

         
 

Intuitively, although it can also be deduced from the above formula, in the case of time 

stretching, excluding the initial transient will require the remaining part to be even more 

stretched (i.e. h’(n) > h(n)). In the opposite case of time shrinking less scaling will be 

required on the steady state part (i.e. h’(m) < h(m)) in order to shrink by the same 

amount. 

The h’(m) factor will generally be a non-integer value. Achieving a final length which is 

as close as possible to the desired length by repeating or omitting an integer number of 

periods cannot be easily solved with algebraic calculations. Firstly, repeated or omitted 

periods must be evenly distributed within the duration of the note segment in order to 

maintain the overall amplitude envelope of the corresponding signal. Secondly, the 

number of periods to be repeated or omitted will not necessarily be an integer multiple 

of the number of existing periods in the signal. For this reason and in order to yield a 

duration that is as close as possible to the intended duration, periods to be repeated or 

skipped are distributed using two steps. 
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Specifically, in the case of time stretching, we define two integers as follows: 

                           
 

          
      

In other words α(m) is the integer/truncated (the symbol     denotes integer truncation, 

namely the floor() function) part of the new scaling factor h’(m), whereas β(m) is the 

rounded  reciprocal of the decimal part of the h’(m). Note that for any positive number 

x>0, round(x) = floor(x+0.5).  Then, to achieve time scaling one must repeat each 

period following the initial transient of the signal α(m) times and once again at multiples 

of β(m) periods of the original signal. This is shown at the top diagram of Figure 9-2. 

If T(m) is the pitch period of the note segment in samples, then        
        

    
  

denotes the number of complete (i.e. truncated) periods contained in the original 

segment after the initial transient. Subsequently, the new duration of the signal can be 

computed as: 

                                 
     

    
      

In other words the new duration equals the original duration increased by the number of 

extra periods. 

As an example consider a note segment sampled at 44.1kHz having a length of 

|S(m)|=15872 samples (i.e. 0.34 sec) with an initial transient of Δ=3584 (i.e. 81ms), a 

pitch period of T(m)=100 samples (i.e. for a pitch frequency of 441Hz). A time scaling 

factor of h(m)=2.23, yields a factor of h’(m)=2.59 stretching for the steady state and 

therefore α(m)=2 and β(m)=2. This means that time stretching will repeat every period 

(i.e. every 100 samples) following the initial transient twice and for every two of the 

periods of the original signal a third repetition will be performed. As there exist 

γ(m)=122 complete periods in the periodic part of the signal, the resulting segment 

length will be |S’(m)|=34172, therefore yielding a scaling factor |S’(m)|/|S(m)| = 2.153, 

which is 96% close to the original h(m) = 2.23. 

In the case of time-shrinking (i.e. h(m) <1) a different strategy needs to be employed for 

reducing the steady state up to half length, than for reducing it below half length.  In the 

following it is assumed that h’(n) > 0.5.  

Assuming that shrinking can be achieved by removing an integer number of periods 

denoted as x(m) from the periodic steady part of the segment, the following must hold: 
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Figure 9-2: Time stretching (top) and time-shrinking (bottom).  Stretching is achieved by repeating each period of the periodic part of the signal for α(m) times and once more 

at integer multiples of β(m). Shrinking is achieved by removing one complete period every α(m) periods and one more at integer multiples of β(m). 
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In other words, the number of periods to remove is the rounded integer of the quantity 

defined above. If after the initial transient the segment contains γ(m) periods defined as 

previously, the following skipping coefficients are defined: 

      
    

    
                   

 
 
 

 
 
 

    

      
    
    

               
    

    

                                         

  

So that one period is removed at integer multiples of α(m) and again at integer multiples 

of β(m). 

The length of the resulting segment in samples can then be computed as: 

                
    

    
            

    

    
          

For the same segment that was used to provide a time-stretching example, if we 

consider a shrinking factor of h(m)=0.73, then this yields a factor of h’(m) =0.65 

shrinking for the part of the segment following the transient, which can be achieved by 

skipping x(m)=43 periods out of γ(m)=122 existing periods. This can be attained by 

omitting one period every α(m)=3 periods of the signal  and one more every  β(m)=52. 

 

Figure 9-3: Pitch synchronous time domain transformations. The top waveform shows the original segment, 

the middle waveform shows the same segment stretched by a factor of 2.23 while the bottom waveform is 

shrunk by a factor of 0.73. The vertical dotted lines show the end of the transient region. Up to that point the 

three waveforms are identical.  

This results in a new duration of |S’(m)|=11572 and therefore a total scaling of 

h(m)=0.73, which has the same value as the intended shrinking factor. However, it is 
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important to highlight that the above strategy is valid only for time scales above 0.5 and 

less than 1. 

The above example is illustrated on Figure 9-3. The illustrated audio segment as well as 

the transformed versions have been derived from the implementation of the software 

prototype. Notice that the three signals are identical during the region assumed to carry 

the initial transient, in which case it lasts for last for 3584 samples, and also that the 

overall shape of the amplitude envelop of the original segment is faithfully retained in 

the transformed note segments. This is achieved by the fact that period repetitions and 

omissions are evenly distributed within the steady state of the note segment. 

9.3.3  Concatenation 

To summarise there is one pool of audio segments for each performer. The segments 

have been derived from a solo recording of that performer by means of automatic 

segmentation. Whenever a new note onset is detected at the network location of that 

performer a notification is sent to the remaining musicians. This notification activates 

segment loading, amplitude and duration transformations and finally segment 

concatenation on the audio stream corresponding to the particular performer.  

 

Figure 9-4: Linear cross-fade over a single audio block at the junction point of consecutive note segments. 

Concatenation occurs at sample 1025 up until sample 1537, both indicated by the dotted vertical line. 

Whenever a new onset notification arrives at some network location, the audio stream 

corresponding to the performer from which the notification arrived will hold the 

segment of the previous note. Ideally, if duration estimation for that note was correct, 

then at the time of concatenation part of the release state of the previous note will be 

contained in the playback buffer. If duration was estimated to be shorter than it was, 

then the concatenation point would contain silence, while if it was estimated to be much 
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longer than it actually was then the steady part of the note would be active at the 

concatentation point. In all of these cases, concatenation will result in an audible 

distortion perceived as a ‘click’, due to the discontinuity occurring at the junction point 

of two segments.  

As shown on Figure 9-4, the effect of this discontinuity is mitigated by applying a short 

linear cross-fade spanning a single audio block, i.e. 512 samples of 44.1 kHz. It can be 

seen that the block starting at 1025 up until 1537 contains both signals, while before and 

after that block the waveforms are identical to the non-crossfaded audio streams 

depicted at the top of the diagram. 

As seen in section 9.2.2, offline approaches to concatenative music synthesis often 

encompass more sophisticated techniques to smooth discontinuities in the range of 

several audio blocks around the concatenation point. This is not possible for the current 

application as the concatenation point is not known or predicted beforehand. Instead it 

only becomes available when a note onset is remotely detected. Segment blending could 

however expand in audio blocks following the concatenation point. Again this is not 

applicable for the current scenario, because the concatenation point corresponds to the 

note onset and hence the subsequent blocks most likely contain the initial transient of 

the signal, which, as already elaborated in several places within this chapter, needs to 

remain unprocessed in order to preserve the distinctive character of the acoustic 

instrument and the performer. After all, this simple low-complexity waveform blending 

solution appeared to be adequate for the target monophonic signals, as it achieves to 

eliminate perceivable click distortions. 
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PART III: 

 IMPLEMENTATION & VALIDATION 
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10 The BoogieNet software prototype 

This chapter describes the implementation details of a software prototype called 

BoogieNet, which has been developed in the context of the current doctoral research. 

BoogieNet provides algorithmic implementations for the functionalities of ‘Offline 

Audio Segmentation’, ‘HMM Score Following’ and ‘Segmental Re-Synthesis’ as these 

were presented in the previous three chapters of the dissertation. In addition to the 

implementation of the algorithms, BoogieNet provides two operational modes for real-

time audio communication using notifications for detected note onsets. The first, 

‘single-peer’ mode uses live audio capturing to re-synthesize the captured stream on the 

same computer using onset information and segmental re-synthesis. The second, ‘udp-

peer’ operational mode permits networked musical interactions among two network 

locations using HMM score following, UDP sockets and segmental re-synthesis. In this 

mode, the same software application is executed at both network locations. Both peers 

are capable of transmitting and at the same time receiving onset information in the form 

of UDP packets. Network transmissions are initiated whenever a new note onset is 

detected on the captured audio signal (e.g. from a microphone), while network reception 

controls the parameters used for synthesizing the local audio stream, which are 

subsequently delievered to the audio out port of the sound card. The complete prototype 

is offered as an open source Application Programming Interface (API), which includes a 

command line application permitting the execution of the various functional processes.  

The chapter initially provides some general information on the availability of the 

software prototype and a user guide explaining how to use the provided command line 

application to execute the various functionalities. Then it describes important 

implementation details concerning data files, data structures and the object oriented 

design of the API. Finally, project dependencies and the third party libraries are 

appropriately listed and cited.  

10.1 Software availability 

The final prototype system has been implemented in the C++ object oriented 

programming language and the Linux operating system and has been thoroughly tested 

on a CentOS 5 distribution. The BoogieNet prototype
16

 is available for download as free 

and open source software under a GNU/GPL v3 license
17

. The downloadable package 

can be compiled and installed from source on any Linux distribution as long as the 

                                                
16 http://www.teicrete.gr/diamouses/ca/phd/ 
17 http://www.gnu.org/licenses/gpl.html 

http://www.teicrete.gr/diamouses/ca/phd/
http://www.gnu.org/licenses/gpl.html
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necessary third-party library dependencies (see section 10.4) have been previously 

installed. Compilation results in two binary files: 

 libboogienet.so:  A dynamically linked shared object library that 

integrates the entire functionality 

 boogienet: An executable file, linked to this library, which can be used as a 

command line application  

10.2 Using BoogieNet 

The BoogieNet prototype implements six functional processes, which can be executed 

by attaching the appropriate option flags to the boogienet command line application, or 

by invoking the corresponding C++ functions of the libboogie.so software API. The 

options of this application are outlined in Table 10-1, while a short description of each 

functional process and directions on how to invoke it are provided in the subsections 

that follow. 

Table 10-1: Usage of the boogienet command line application. 

root@mosquito ~]# boogienet -h 

usage: BoogieNet [ options ] 

   -h      --help               Display this message. 

   -v      --verbose            Be verbose. 

   -p      --process            The process to execute. 

   -a      --audio              The name of an audio file 

   -m      --model              The name of a model file 

   -s      --score              The name of a MIDI file 

   -i      --ip                 The IP of the remote network peer (required if -p udp) 

   -t      --transformations    Apply segment transformations. (optional) 

   -n      --description        The name of descriptions file (required if -t) 

   -o      --output             The name of an output audio file representing 

                                the synthesized stream (optional) 

   -d      --dir                The audio segment pool directory. 

 

Examples: 

========= 

1) Offline Audio Segmentation (oas): 

        boogienet -p oas -a flute.wav -s flute.mid -d /tmp 

2) Performance Model Acquisition (pma): 

        boogienet -p pma -a flute.wav -s flute.mid -m flute.model 

3) Train Performance Model (tpm): 

        boogienet -p tpm -m flute.model -a flute.wav 

4) Offline Audio to Score Alignment (oasa): 

        boogienet -p oasa -m flute.model -a flute.wav 

5) Real-time analysis/synthesis (rtas): 

        boogienet -p rtas -m flute.model -d /tmp -t -n flute.wav.desc -o test.wav 

6) Real-time UDP communication (udp): bidirectional local analysis and remote re-

synthesis 

        boogienet -p udp –i 193.39.127.4 -m flute.model -d /tmp -t -n flute.wav.desc -

o test.wav 

 

 

The functional processes (5) and (6) shown on Table 10-1 represent the two operational 

modes of the application. The ‘rtas’ process allows single-peer musical interactions, 

while the ‘udp’ process allows networked interactions using UDP network packet. The 

remaining processes (1-4) serve as a prerequisite for (5) and (6) as they mainly aim at 
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generating the required pool of audio segments as well as the trained HMM, which is 

used during live performance to detect local onsets. 

10.2.1 Offline Audio Segmentation (oas) 

This process, abbreviated as oas, aims at generating a pool of audio segments for the 

solo recording of each performer as well as a performance description file. The precise 

description of this algorithm is provided in section 7.4. Each segment corresponds to a 

different note, while the description file is used during real-time analysis/re-synthesis so 

as to estimate the deviations of each note in the live audio stream, compared to the 

corresponding audio file in the pool of audio segments, therefore determining 

appropriate segment transformation during re-synthesis. Segmentation is performed 

using the offline onset detection algorithm described in section 7.4.1, which is 

implemented in a class named OfflineOnsetDetector. 

The following is an example of a command applying this process. 

boogienet –p oas –a flute.aif –s flute.mid –d /tmp 

 

Figure 10-1: The call graph of BoogieNet::segmentNotes function. 

This command segments the audio file flute.aif by finding as many notes as 

contained in the score file flute.mid and stores the resulting segment files as well as 

their description in the /tmp directory. The description file will have the same name as 

the original audio file appended by the extension .desc, hence in the specific example 

the name of that file would be flute.aif.desc. 

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 

BoogieNet::segmentNotes (“flute.aif”, “flute.mid”, “/tmp”); 
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or equivalently invoke the commands contained within this function. Figure 10-1 shows 

the call graph of this function. 

10.2.2 Performance Model Acquisition (pma) 

This process aims at generating an initial HMM (see section 8.3.3.2) given an audio file 

and a score (MIDI) file. The model is stored in the given model filename. The process 

does not apply Baum-Welch training. Instead, it generates annotations for the audio file 

by applying the offline onset detection algorithm of section 7.4.1 implemented in the 

class OfflineOnsetDetector and uses the class HMMAnnotator which aligns 

the score to the audio file using certain heuristics. These heuristics have been described 

in detail in section 8.4.1. 

This initial model may be directly used for HMM decoding (offline or online) or 

formerly trained with a Train Performance Model tpm process (described in the next 

section) in order to refine the HMM probabilities of the initial model. 

 

Figure 10-2: The call graph of the BoogieNet::buildHMModel function 

The following is an example of a command applying the pma process. 

boogienet –p pma –a flute.aif –s flute.mid –m flute.model 

This command uses the flute.aif audio file and the flute.mid MIDI file to 

generate an untrained model file with the name flute.model. 

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 

BoogieNet::buildHMModel (“flute.aif”, “flute.mid”, “flute.model”); 

or equivalently invoke the commands called within this function. Figure 10-2 depicts 

the call graph of this function. 
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10.2.3 Train Performance Model (tpm) 

This process applies the Baum-Welch algorithm to train a previously built model given 

an audio file. This audio file can be either the same file that was annotated and used 

during model acquisition, or it may be a different performance of the same piece of 

music.  This operation may be applied several times using different performances of the 

same piece so as to provide a better estimation of HMM probabilities. 

The following is an example of a command applying the tpm process. 

boogienet –p tpm –m flute.model –a flute2.aif 

This command uses the flute2.aif audio file to train the HMM maintained in the 

flute.model file. 

 

Figure 10-3: The call graph of the BoogieNet::train function. 

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 

BoogieNet::train (“flute.model”, “flute2.aif”); 

or equivalently invoke the commands called within this function. Figure 10-3 depicts 

the call graph of this function. 

10.2.4 Offline Audio to Score Alignment (oasa) 

This process applies the offline Viterbi algorithm to align an audio file to its score, 

based on a given model file. If verbose is enabled, then calling this process will print on 

standard output the time instants in which onsets appear. In this case the MIDI file to 

use for alignment does not need to be provided as a command line argument, because 

the name and the path to that file are maintained in the model file (see section 10.3.2.2). 

However, the MIDI file indicated by the provided model file must be available on the 

file system and readable by the application. 

The following is an example of a command applying the oasa process. 
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boogienet –p oasa –m flute.model –a flute3.aif 

This command uses the flute.model file to align the audio file flute3.aif.  

 

Figure 10-4: The call graph of the BoogieNet::hmmOfflineDecode function. 

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 

BoogieNet::hmmOfflineDecode (“flute3.aif”, “flute.model”); 

or equivalently invoke the commands called within this function. Figure 10-4 depicts 

the call graph of this function. 

10.2.5 Real-time analysis/synthesis (rtas): single-peer 

This is the ‘single-peer’ operational mode of BoogieNet. Given a model file, this 

process receives real-time audio input and aligns each block to a score state (the 

sequence of score states is generated according to the MIDI filename indicated by the 

model file), using the online version of the Viterbi algorithm (as described in 8.3.4). If 

the detected state corresponds to an onset (based on the conditions outlined in section 

8.4.2) the next audio segment is loaded from the given pool of audio segments. If 

segment transformations are enabled, then that segment is transformed in terms of RMS 

amplitude and duration (using the process described in section 9.3) and concatenated to 

the audio output port provided by the application.  

Driving audio from the soundcard to the application and vice versa, uses the Jack audio 

server daemon. Jack
18

 is an open source software framework that allows routing audio 

streams among different software applications and audio devices. For an application to 

communicate with Jack, therefore acquiring or disposing audio to other jack ports (that 

can be hardware or software ports), it should become a Jack client exposing the 

                                                
18 http://jackaudio.org/ 

http://jackaudio.org/
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appropriate number of input and output ports, for audio acquisition and disposal 

respectively.  

 

Figure 10-5: Audio routing with Jack for the real-time analysis/synthesis functionality of the boogienet 

application in ‘single-peer’ mode. 

The rtas process of the BoogieNet framework is implemented in a class called 

HMMSynthesizer, which uses Jack to receive input from any jack-compliant audio 

output port and sends the resulting synthesized audio stream to any jack audio input 

port. In the example setup depicted on Figure 10-5, the output ports are those providing 

audio to the jack daemon, while the input ports are those which jack uses to deliver 

output audio. The input and output ports that belong to the group called alsa_pcm, 

correspond to the line in and line out hardware ports of the soundcard. In this particular 

setup, the group rezound corresponds to the Rezound
19

 application, which is an open 

source audio editor that provides two output ports to the jack daemon corresponding to 

the left and the right channel of any stereo file loaded on Rezound. The boogienet-

single operational mode provides one output port and one input port, as in the current 

implementation processing is limited to mono signals.  

On Figure 10-5, the groups alsa_pcm for input and output ports represent the 

physical line in (or mic) and line out ports of the soundcard. It can be seen that the left 

channel of Rezound (i.e. resound:output_1), is connected both to the left output 

channel of the soundcard (alsa_pcm:playback_1) as well as to the input port of 

the BoogieNet application (boogienet-single:in). Therefore every time the 

button ‘play’ is activated on Rezound, the reproduced signal is sent to both of these 

destinations. The BoogieNet application processes the signal provided from the output 

                                                
19 http://rezound.sourceforge.net/ 

http://rezound.sourceforge.net/
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of Rezound and produces a concatenated output which is sent to the right output 

channel of the soundcard. This setup will result in a stereo signal which contains the 

original waveform on the left channel and the analyzed/re-synthesized waveform on the 

right channel. Clearly, connections may be altered from qjackctl (which is the Graphical 

User Interface controlling the Jack daemon), so for example one could disable 

outputting the original waveform from Rezound and connect the signal provided by 

BoogieNet to both output channels of the soundcard. Alternatively, to Rezound the 

alsa_pcm:capture_1 output port may be connected to boogienet-

single:in to allow real-time analysis/re-synthesis on the signal arriving to the 

microphone.  

 

Figure 10-6: A running instance of the Rezound audio editor. 

For such signal connections to work, it is important that the Jack daemon is configured 

in real-time mode and to process signals sampled at 44.1 kHz in blocks of 512 samples, 

as shown on Figure 10-7. 

The following is an example of a command applying the rtas process. 

boogienet –p rtas –m flute.model –d /tmp –t –n 

flute.aif.desc –o test.wav 
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Figure 10-7: The required configuration of the Jack daemon for the current version of BoogieNet.. 

This command uses the flute.model file to re-synthesize the audio signal received 

online using segments retrieved from the directory /tmp. The –t flag indicates 

activation of segment transformations taking place prior to segment concatenation. If 

this flag is not provided, pure concatenation of segments will be applied without any 

transformations and without cross-fading at the junction point of consecutive segments. 

If the –t flag is provided, then it is necessary to provide an argument for the –n flag. 

This argument specifies the location of the description file of the note segments 

maintained in the audio pool (i.e. in the directory /tmp). As was discussed in section 

9.3 these descriptions are necessary in order to estimate the required transformations in 

terms of duration and amplitude.  The flag –o indicates that the synthesized stream 

should be written in an audio file, which in the above case is called test.wav. If no –

o flag is provided the synthesized audio stream will only be delivered as playback and 

will not be written in an audio file. 

 

Figure 10-8: The call graph of the BoogieNet::rtConcatenate function. 

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 
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BoogieNet::rtConcatenate (“flute.model”, “/tmp”, “flute.aif.desc”, 

true, “test.wav”); 

or equivalently invoke the commands called within this function. Figure 10-8 depicts 

the call graph of this function. 

10.2.6 Real-time UDP communication (udp): udp-peer 

This is the same as the previous functionality with the exception that notifications of 

note onsets are send to remote network locations using the UDP communication 

protocol. The fundamentals of this protocol have been discussed in section 2.5.2.2. 

The actual data exchanged in BoogieNet communications comprise two floating point 

numbers RMS(m-1) and IOI(m-1), which as was discussed in section 9.3, concern the 

Root Mean Square amplitude and the Inter Onset Interval of the note preceding the 

onset for which the UDP packet represents a notification. As floating point numbers in 

C++, each of these parameters has a size of 32 bits and hence 8 bytes are required for 

transmitting the actual data. This results in a UDP packet having a size of 50 bytes (i.e. 

14 bytes for the Ethernet header, 20 bytes for the IP header  , 8 bytes for the UDP 

header and 8 bytes for RMS(m-1), IOI(m-1)). The structure of Ethernet frames carrying 

UDP packets has been described in section 2.5.2.2.  

In BoogieNet, UDP connections are established by invoking a command such as the 

following: 

boogienet –p udp –i 193.39.127.4 –m flute.model –d /tmp –t 

–n violin.aif.desc –o test.wav 

This functionality is implemented in a class named HMMUDPPeer. The destination port 

is set to 1000 by default, while for the source port a random number is usually chosen 

due to firewall settings. To activate UDP onset notifications between two machines, 

both clients must be running the Jack daemon and the previous command with the 

appropriate options. 

Assuming the local performer plays the flute part and the remote performer, located by 

the IP 193.39.127.4, plays the violin part, this command uses the flute.model file 

analyse the local audio signal and send the values RMS(m-1) and IOI(m-1) using UDP 

packets at the remote performer at every onset detection. At the same time this process 

listens for notifications of remote onset detections by that same remote performer. As 

the flag –t is provided, the received RMS(m-1) and IOI(m-1) for the remote 

performance of the violin are used in combination with the performance description file 

violin.aif.desc to predict the RMS and IOI values for the note to be next 

concatenated to the locally reproduced audio stream. Audio segments are loaded from 

the directory /tmp.  The flag –o indicates that the synthesized stream should be written 

in an audio file with the name test.wav. If no –o flag is provided the synthesized 

audio stream will only be delivered as playback and will not be written in an audio file. 
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Figure 10-9: Typical connection for UDP communications in BoogieNet. 

Figure 10-9 shows a typical setup of jack connections in the case of BoogieNet 

interactions using the ‘udp-peer’ operational mode. In this case, the audio arriving at the 

microphone alsa_pcm:capture_1 is provided as an input to the boogienet-

udp jack client. The same client provides an output port which delivers the segmentally 

re-synthesized performance of the remote network peer.  

Alternatively, the process may be invoked by an external application by calling the 

static C++ function of the BoogieNet class as: 

BoogieNet::udpPerform (“193.39.127.4”, “flute.model”, “/tmp”, 

“violin.aif.desc”, true, “test.wav”); 

or equivalently invoke the commands called within this function.  The functionality is 

implemented in a class named HMMUDPPeer.  

 

Figure 10-10: The call graph of the BoogieNet::udpPerform function. 

Figure 10-10 depicts the call graph of the udpPerform function. 
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10.3 System Overview 

This section presents the various modules of the BoogieNet software architecture so as 

to give an understanding on important implementation details and how it can be used or 

integrated in NMP software programs. The framework comprises a number of C++ 

classes containing algorithm implementations, as well as a number of ASCII text files 

that are used to make the necessary information persistent across different executions. 

The next subsections provide brief descriptions for the C++ classes and the ASCII files. 

10.3.1  C++ Classes  

Table 10-2 lists the key classes of the BoogieNet framework and provides a brief 

description of their functionality. For the complete list of classes and the way they are 

implemented, interested users or developers may consult the API documentation, 

automatically generated from the source code using Doxygen
20

, and provided on the 

website of this project. 

Table 10-2: The key classes of the BoogieNet framework 

idx Name  Description 

1 AudioFile A representation of an uncompressed audio file. Allows reading 
and writing audio samples in successive blocks of user defined 
length. 

2 MIDIFileReader A class providing access to the information contained in a standard 
MIDI file. 

3 Score A representation of a music score. Objects of this class will 
maintain the entire HMM topology (i.e. states and transition 
probabilities) for a certain musical piece. 

4 HMMScoreModel A representation of a Hidden Markov Model. Specifically, this 
class provides information about which HMM states and which 
audio features are used as observations in the HMM as well as all 
of the associated probabilities (initial, transition, observation). 

Essentially this class holds an instance of the Score class. Instances 
of this class may be stored in an ASCII file (with the extension 
‘.model’) and re-used during training and decoding. 

5 HMMAnnotatator Produces an annotated ARFF file, given an audio file and the 
corresponding MIDI file. Audio block annotations may be 

produced either using the OffilineOnsetDetector class or 

from the start/end times of note events given in the MIDI file. The 

latter annotations may be used for annotating an audio file which is 
synthesized from MIDI and therefore preserves the timing of note 
events. 

6  HMMTrainer Applies the Baum-Welch algorithm in order to train the 

probabilities of an HMMScoreModel instance. 

7 HMMDecoder Applies the Viterbi algorithm in order to decode the HMM states 

of a given audio stream according to a given HMMScoreModel. 

Decoding may be applied offline, therefore providing a score 
alignment of an audio file or online as new audio blocks are 
progressively accumulated. 

8 Segmentor Segments an audio file into several files, each containing a 
different note. Note boundaries are identified using an instance of 

the OfflineOnsetDetector class. Apart from the 

constituent segment files, the Segmentor object produces a 

performance description file that contains information about the 

                                                
20 http://www.stack.nl/~dimitri/doxygen/ 

http://www.stack.nl/~dimitri/doxygen/
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length, the RMS amplitude and the pitch of the note contained in 
each segment. These descriptions are used during synthesis to 
apply segment transformations prior to concatenation. 

9 OfflineOnsetDetector Detects the location of note onsets in an audio waveform by 
applying the blind onset detection algorithm provided in section 
7.4.1. 

10 PitchDetector Provides a C++ implementation of the Maddox and Larson (2005) 
algorithm for pitch detection using wavelets. 

11 Concatenator Instances of this class perform segmental synthesis by loading the 
audio files that correspond to note segments. This class is invoked 

by the HMMSynthesizer everytime new audio data must be 

sent to the output. The Concatenator will load a new audio 

segment every time it is notified for the occurrence of a new onset. 
If amplitude and duration transformations are enabled it perform 

then when loading a new audio segment. If no onset occurs, it will 
provide the next audio block of the current segment to the 

HMMSynthesizer object. 

12 HMMSynthesizer It performs segmental analysis and re-synthesis based on audio 
blocks received in real-time. It holds an instance of an 

HMMDecoder as well as an instance of the Concatenator 

class. The HMMSynthesizer class is a subclass of a Jack Client, 

exposing an audio input as well as an audio output port. It receives 
input from any Jack output port such as the microphone or line in 
of the sound card or any jack compliant audio player (e.g. 

JackTrip, Audacity, rezound) and it calls the HMMDecoder class 

to decode the received audio block and find its score position as 
the corresponding HMM state. If that state corresponds to a note 

onset it instructs its Concatenator object to load the next 

segment from the pool of audio segments, otherwise it asks for the 
next audio block from the current possibly transformed audio 
segment in order to forward it to the line out of the audio device. 

HMMSynthesizer may additionally save the concatenated audio 

to a sound file, if created by calling the appropriate constructor. 

13 HMMUDPPeer This is similar to the HMMSynthesizer class and it additionally 

implements UDP communications. It holds an instance of an 

HMMDecoder and an instance of the Concatenator class and 

it is a subclass of JackClient exposing one input and one 

output audio port to Jack. At the same time this class opens the 
1000 UDP ports for listening, hence waiting to receive remote 
onset notifications. Every time an onset is detected on the local 
performance a notification is sent to port 1000 of the remote peer 
identified by the provided IP address. 

14 FeatureExtractor Extracts the requested audio features either offline (i.e. from an 
audio file) or online (i.e.  from successive audio blocks). 

15 SpectrumAnalyser Performs the Fourier transform of a given audio segment. This is 
an abstract class subclassed by different classes implementing 
different parameterisations of the STFT, which are described in 
section 6.3.  

16 PerformanceMonitor This class loads a performance description file and gets notified by 

the HMMDecoder every time a new onset occurs. For every new 

note it maintains its divergence from the corresponding audio 

segment in the pool of audio segments in terms of duration (in 
samples) and RMS amplitude. These divergences are made 

available to the Concatenator object which then attempts to 

predict the divergence of an upcoming note when its onset occurs. 

17 BoogieNet This is a main class provided for testing purposes. It allows 
executing the functionalities of offline audio segmentation, 
performance model acquisition, training a performance model, 

performing offline audio-to-score alignment using an HMM and 
finally, real-time analysis re-synthesis. This main class when 
executed with the appropriate flags allows testing the 
corresponding functionalities in a stand-alone application.  In real-
time operation it requires communication with the jack audio 
daemon. 
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10.3.2 Data Files 

The BoogieNet framework handles a number of data files. Apart from media files, i.e. 

raw PCM audio files such as wav or aiff as well as MIDI files, it uses some ASCII files 

which contain information in the form of comma separated values.  In the following, a 

small excerpt of each ASCII file used by the framework is shown and its content and 

syntax are briefly explained. 

10.3.2.1 ARFF File 

An ARFF (Attribute-Relation File Format) file is an ASCII file that describes a list of 

instances sharing a set of attributes. ARFF files were devised by the Machine Learning 

Project at the Department of Computer Science of The University of Waikato for use 

with the Weka machine learning software application
21

. 

Table 10-3: An extract of an ARFF file used for audio file annotations in the BoogieNet framework. 

@relation /home/users/ca/datasets/flute.aif  

 

@attribute LogEnergy real 

@attribute DeltaLogEnergy real 

@attribute SpectralActivity real 

@attribute SpectralFlux real 

@attribute DeltaSpectralFlux real 

@attribute PSM69 real 

@attribute DeltaPSM69 real 

@attribute PSM70 real 

@attribute DeltaPSM70 real 

@attribute PSM73 real 

@attribute DeltaPSM73 real 

@attribute PSM74 real 

@attribute DeltaPSM74 real 

@attribute PSM75 real 

@attribute DeltaPSM75 real 

@attribute PSM76 real 

@attribute DeltaPSM76 real 

@attribute PSM77 real 

@attribute DeltaPSM77 real 

@attribute PSM79 real 

@attribute DeltaPSM79 real 

 

@attribute Note real 

@attribute Class {Attack, Sustain, Rest} 

 

@data  

 

-69.9569,1.98457,0.995256, ...,0.000123933,-0.000426952,0,Rest 

-72.558,-2.6011,0.991661, ...,0.000314932,0.000190999,0,Rest 

-73.3054,-0.747421,0.992765, ...,0.000629949,0.000315017,0,Rest 

-64.876,8.42943,0.750538, ...,0.000645801,1.59E-05,0,Rest 

-42.3356,22.5404,0.969086, ...,0.000300704,-0.000345097,69,Attack 

-39.8124,2.52316,0.998545, ...,0.000404436,0.000103732,69,Attack 

-38.3534,1.45903,0.999411, ...,0.000133598,-0.000270839,69,Attack 

-37.7309,0.62249,0.99758, ...,0.000329701,0.000196103,69,Attack 

-32.1735,5.55746,0.995569, ...,0.000302766,-2.69E-05,69,Attack 

-26.8541,5.31936,0.995144, ...,0.000447779,0.000145013,69,Sustain 

-23.5472,3.30685,0.994849, ...,0.000523989,7.62E-05,69,Sustain 

-21.8958,1.65143,0.995397, ...,0.000456628,-6.74E-05,69,Sustain 

-21.1547,0.741125,0.996622, ...,0.000330994,-0.000125634,69,Sustain 

                                                
21 http://www.cs.waikato.ac.nz/~ml/ 

http://www.cs.waikato.ac.nz/~ml/
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-20.8199,0.334755,0.998147, ...,0.000247711,-8.33E-05,69,Sustain 

-20.7477,0.0722046,0.999388, ...,0.000152443,-9.53E-05,69,Sustain 

-20.3141,0.433622,0.999819, ...,7.41E-05,-7.83E-05,69,Sustain 

... 

 

BoggieNet has used this file format in associating each 512-sample audio block with an 

HMM state related to the score of specific music pieces. Specifically each block is 

described in terms of its audio features, which represent HMM observations (see section 

8.3.2), and labelled by as a single HMM score state (see section 8.3.1).The functional 

processes previously described use the data provided by an ARFF file, but do not 

necessarily make this file persistent as they actually use the model file that contains 

probabilities instead of raw feature values. The pma functionality presented in section 

10.2.2, may optionally generate an ARFF file for manual inspection of the computed 

feature values and the corresponding state annotation. 

Table 10-3 presents an extract of such an arff file generated from an audio file with the 

name flute.aif. Note that the full path for that file is used as a relation name, so as 

to allow for unambiguously identifying the corresponding audio file. Following, the 

name of the audio features that form the HMM observations are listed. Pitch specific 

features (i.e. PSM and DeltaPSM) are included only for the MIDI notes that appear in 

the score (i.e. the MIDI file). The pair of the last two attributes (i.e. Note, Class) defines 

the HMM state associated with the specific audio block. Annotations, associating audio 

blocks with HMM states may be derived in two ways: 

 From the class HMMAnnotator, which uses the class 

OfflineOnsetDetector to locate note onsets and subsequently annotate 

each block according to onset locations and certain heuristic rules. (see section 

8.4.1), or 

 By training an HMMScoreModel using the class HMMTrainer that applies 

the Baum-Welch algorithm and subsequently deriving an offline audio to score 

alignment by applying the Viterbi algorithm of the HMMDecoder class. 

After the @data directive, a separate row is inserted for each audio block. The numbers 

shown on each row are the values of the audio features of that block in the order that 

they appear at the header part of the ARFF file. In this table, three dots have been used 

to save space within the listing. In the original ARFF file there are as many data rows as 

there are audio blocks in the corresponding audio file and as many columns as the 

number of audio features plus two. The last two columns of each row describe the 

HMM state assigned to that audio block as a MIDI note-number, part of note (i.e. 

attack, sustain rest) pair.  

10.3.2.2 Model file 

The model file is an ASCII file which maintains all the information related to the HMM 

of a specific piece of music. The file is a text representation of instances of the 

HMMScoreModel class.  
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An extract of an example model file is depicted on Table 10-4. The file contains the 

absolute path for the MIDI file that represents the score of that piece, then it displays the 

number and names of HMM states per note and also the number and names of audio 

features that are used as part of the observation vectors of the HMM. Following these 

descriptions, four matrices are provided: the initial probability matrix (denoted as p0), 

the transition probability matrix (denoted as a), the mean vector (denoted as mu) and the 

covariance matrix (denoted as cov) of the multivariate Gaussian distribution that 

models observation probabilities (see section 8.3.2). 

Table 10-4: An extract of a model file, used for maintaining HMM probabilities.  

MIDIFile=/home/users/ca/datasets/flute.mid 

nStates=3 

Attack,Sustain,Rest 

nFeats=21 

LogEnergy,0 

DeltaLogEnergy,0 

SpectralActivity,0 

SpectralFlux,0 

DeltaSpectralFlux,0 

PSM69,69 

DeltaPSM69,69 

PSM70,70 

DeltaPSM70,70 

PSM73,73 

DeltaPSM73,73 

PSM74,74 

DeltaPSM74,74 

PSM75,75 

DeltaPSM75,75 

PSM76,76 

DeltaPSM76,76 

PSM77,77 

DeltaPSM77,77 

PSM79,79 

DeltaPSM79,79 

 

p0: 

1.000000 0.000000 0.000000 0.000000 0.000000 ... 

a: 

0.50000 0.50000 0.00000 0.00000 0.00000 ... 

0.00000 0.50000 0.50000 0.00000 0.00000 ... 

0.00000 0.00000 0.33333 0.33333 0.33333 ... 

0.00000 0.00000 0.00000 0.50000 0.50000 ... 

0.00000 0.00000 0.00000 0.00000 0.50000 ... 

0.00000 0.00000 0.00000 0.00000 0.00000 ... 

0.00000 0.00000 0.00000 0.00000 0.00000 ... 

0.00000 0.00000 0.00000 0.00000 0.00000 ... 

0.00000 0.00000 0.00000 0.00000 0.00000 ... 

0.00000 0.00000 0.00000 0.00000 0.00000 ... 

 ...  ...  ...  ...  ... ... 

mu: 

-63.208406 0.381151 0.962896 0.311629 -0.004058 ... 

-33.954838 4.517003 0.999157 0.392310 -0.104939 ... 

-20.634231 -0.024127 0.997005 0.123757 -0.008532 ... 

-41.446407 -1.889078 0.991709 0.308036 0.062606 ... 

-29.103718 7.709429 0.995239 0.559812 0.076057 ... 

-17.574793 -0.530137 0.997698 0.112649 -0.026490 ... 

-44.089676 -11.392345 0.897277 0.195670 0.185049 ... 

...   ...  ...     ...  ...   ... 

cov: 

28.545770 4.875830 0.010100 -0.012941 -0.049372 ... 
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4.875830 6.137186 -0.005596 0.165062 0.057392  ... 

0.010100 -0.005596 0.001290 -0.000863 -0.001225 ... 

-0.012941 0.165062 -0.000863 0.009030 0.004351 ... 

-0.049372 0.057392 -0.001225 0.004351 0.010372 ... 

...    ...   ...    ...   ... ... 

It can be seen that normally the initial probability matrix p0 would have a value of 1 at 

the first HMM state, assuming that the piece will start from a rest state preceding the 

attack of the first note. Transition probabilities are those depicted in Figure 8-2. For the 

reasons explained in section 8.3.3.1, transition probabilities are not affected by the 

training process. The mean and the covariance matrices allow the estimation of 

observation probabilities for each audio block. These probabilities are evaluated using 

the initial model, for instance from the annotated ARFF file and can be further refined 

using the HMMTrainer class that applies the Baum-Welch algorithm. 

10.3.2.3 Performance Description file 

Performance description files are named using the name of audio file that was 

segmented appended by the extension .desc. They are maintained in the same 

directory as the segment files, i.e. inside the audio segment pool. These files describe 

the segments that were produced by the Segmentor class. As shown in Table 10-5, 

such a file contains three fields per note segment. The first field is the length of the 

segment is audio samples, which corresponds to the inter-onset interval IOI estimated 

during automatic segmentation. The second field is the RMS amplitude for that segment 

and the third is the pitch value of the note contained in that segment. Pitch values are 

provided as number of samples per period of the pitch frequency. For example the first 

note is an A note of the frequency of 440Hz, resulting in a period of 100.23 rounded to 

100 samples for the sampling rate of 44.1kHz. 

Table 10-5: A desc file describing the audio segments of a solo performance. 

notesTotal=24 

51712, 0.000854069, 100 

25088, 0.119251, 75 

42496, 0.205841, 79 

17920, 0.172292, 75 

19456, 0.214057, 63 

16896, 0.173594, 100 

16896, 0.106406, 94 

80896, 0.139083, 56 

18432, 0.157215, 63 

17920, 0.23894, 66 

17920, 0.271435, 75 

18944, 0.215549, 100 

36352, 0.103, 66 

18432, 0.113069, 75 

15360, 0.215656, 63 

16896, 0.184322, 100 

15360, 0.133848, 94 

36864, 0.15892, 66 

15872, 0.118017, 56 

16384, 0.167385, 63 

15360, 0.123328, 75 

14848, 0.142593, 70 

36864, 0.148469, 100 

15872, 0.101323, 75 

80896, 0.171443, 0 
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The description file is used during the live performance to apply segment 

transformations before segment concatenation as described in section 9.3.2. 

10.4 Third Party Libraries 

The downloadable code provided within the BoogieNet framework has been entirely 

implemented by me, however using some third-party libraries, which are listed in Table 

10-6. 

Table 10-6: Third party C++ libraries used in the implementation of BoogieNet 

Library 

Name 

URL Purpose Used by Class 

Jack http://jackaudio.org/ Real-time audio patching  JackClient 
JackSignalProcessor 
JackSignalProvider 
JackSignalFromInput 
HMMDecoder 

Concatenator 
HMMSynthesizer 

FFTW http://www.fftw.org/ Perform Fourier 
Transforms 

SpectrumAnalyser 

libsndfile http://www.mega-
nerd.com/libsndfile/ 

Reading PCM audio files AudioFile 

midifile 

 

http://www.sreal.com/~div/midi-
utilities/  

Reading MIDI files MIDIFIleReader 

qm-dsp http://code.soundsoftware.ac.uk/proje
cts/qm-dsp/repository/show/hmm 

HMM structures, Baum-
Welch training and Viterbi 
decoding 

HMMScoreModel 
HMMDecoder 
HMMTrainer 

 

For compiling and installing BoogieNet from the downloadable source package, the 

first three libraries may be installed using the package manager of the installation 

machine (e.g. yum, apt-get or synaptic).  The fourth, namely the midifile 

library is in fact part of a larger library called midi-utils, which is originally 

compiled for windows. So users wishing to install BoggieNet may download an 

additional package called midifile from the BoogieNet website. I have packaged 

midifile using the necessary source files from the midi-utilities library (i.e. 

midifile.c, midifile.h), and the necessary scripts for building a 

corresponding dynamic library from these sources. Finally, from the library qm-dsp, 

two source files are used (i.e. hmm.c and hmm.h), which I had to modify in order to 

provide a real-time implementation for the Viterbi algorithm. The files that contain my 

modifications are embedded in the BoogieNet source package. Therefore there is no 

need for compiling or installing the qm-dsp library. However, it is expected that the 

libraries and cblas
22

  and clapack 
23

 performing linear algebra calculations and required 

                                                
22 http://www.gnu.org/software/gsl/manual/html_node/BLAS-Support.html#BLAS-Support 
23 http://www.netlib.org/clapack/ 

http://jackaudio.org/
http://www.fftw.org/
http://www.mega-nerd.com/libsndfile/
http://www.mega-nerd.com/libsndfile/
http://www.sreal.com/~div/midi-utilities/
http://www.sreal.com/~div/midi-utilities/
http://code.soundsoftware.ac.uk/projects/qm-dsp/repository/show/hmm
http://code.soundsoftware.ac.uk/projects/qm-dsp/repository/show/hmm
http://www.gnu.org/software/gsl/manual/html_node/BLAS-Support.html#BLAS-Support
http://www.netlib.org/clapack/
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by the HMM part of the qm-dsp library have been previously installed on the target 

machine, which can be done using the available package manager. 

Table 10-7: Library dependencies of the BoogieNet framework 

[root@mosquito ~]# ldd /usr/local/lib/libboogienet.so 

        linux-gate.so.1 =>  (0x0070e000) 

        libjack.so.0 => /usr/local/lib/libjack.so.0 (0x0018c000) 

        libsndfile.so.1 => /usr/local/lib/libsndfile.so.1 (0x00afa000) 

        libmidifile.so.0 => /usr/local/lib/libmidifile.so.0 (0x005c5000) 

        libgslcblas.so.0 => /usr/lib/libgslcblas.so.0 (0x00a95000) 

        liblapack.so.3 => /usr/lib/liblapack.so.3 (0x00b53000) 

        libudp.so.0 => /usr/local/lib/libudp.so.0 (0x00478000) 

        libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x001a4000) 

        libm.so.6 => /lib/libm.so.6 (0x00424000) 

        libc.so.6 => /lib/libc.so.6 (0x00850000) 

        libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00110000) 

        librt.so.1 => /lib/librt.so.1 (0x00703000) 

        libpthread.so.0 => /lib/libpthread.so.0 (0x00527000) 

        libdl.so.2 => /lib/libdl.so.2 (0x0011c000) 

        libblas.so.3 => /usr/lib/libblas.so.3 (0x00121000) 

        libgfortran.so.1 => /usr/lib/libgfortran.so.1 (0x0028f000) 

        /lib/ld-linux.so.2 (0x003b3000) 

[root@mosquito ~]# ldd `which boogienet` 

        linux-gate.so.1 =>  (0x00ed5000) 

        libboogienet.so.0 => /usr/local/lib/libboogienet.so.0 (0x00730000) 

        libjack.so.0 => /usr/local/lib/libjack.so.0 (0x0098b000) 

        librt.so.1 => /lib/librt.so.1 (0x00901000) 

        libpthread.so.0 => /lib/libpthread.so.0 (0x00563000) 

        libdl.so.2 => /lib/libdl.so.2 (0x0055c000) 

        libsamplerate.so.0 => /usr/lib/libsamplerate.so.0 (0x03254000) 

        libcelt.so.0 => /usr/lib/libcelt.so.0 (0x0057f000) 

        libsndfile.so.1 => /usr/local/lib/libsndfile.so.1 (0x00110000) 

        libmidifile.so.0 => /usr/local/lib/libmidifile.so.0 (0x00431000) 

        libgslcblas.so.0 => /usr/lib/libgslcblas.so.0 (0x00169000) 

        liblapack.so.3 => /usr/lib/liblapack.so.3 (0x009a3000) 

        libudp.so.0 => /usr/local/lib/libudp.so.0 (0x0019b000) 

        libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x0019d000) 

        libm.so.6 => /lib/libm.so.6 (0x00531000) 

        libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00288000) 

        libc.so.6 => /lib/libc.so.6 (0x0058e000) 

        /lib/ld-linux.so.2 (0x003b3000) 

        libblas.so.3 => /usr/lib/libblas.so.3 (0x00294000) 

        libgfortran.so.1 => /usr/lib/libgfortran.so.1 (0x002e7000) 

[root@mosquito ~]#                                                                              

  

Listing the library dependencies of the boogienet library and the command line 

application provides the output shown on Table 10-7. 
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11 Experimental Evaluation 

This chapter presents the evaluation of the BoogieNet framework. Specifically, it 

provides the results of a number of evaluation experiments assessing the performance of 

the algorithms presented in the previous chapters, as well as an experiment of a 

collaborative performance over the network. The evaluation of the algorithmic 

performance serves to reveal shortcomings of the current implementation that need to be 

addressed in future developments. The network experiment reveals the benefits offered 

by the proposed communication scheme compared to direct audio stream exchange, 

which is the prevalent means of audio communication in Network Music Performances.  

The chapter initially discusses some concerns related to the evaluation methodology 

which is unavoidably constrained in many respects. Then, the results of the evaluation 

of algorithmic performance are presented. The section that follows presents the network 

experiment. Finally, the last section consolidates the results and discusses the efficacy 

of the proposed communication scheme for NMP. 

11.1 Considerations on the evaluation methodology 

The comprehensiveness of the evaluation methodology presented in this chapter may be 

considered debatable due to a number of reasons. Firstly, it was not possible to perform 

a formal user evaluation involving human musicians collaborating over computer 

networks, due to the robustness of the implemented algorithms being currently 

inadequate for the intended scenario. Secondly, it was not possible to draw conclusions 

with respect to practical significance of results due to the limited availability of 

appropriate musical material to use in experimental validations. Thirdly, due to the 

same reason it was not possible to assess the improvement of the HMM algorithm by 

using sufficient training datasets. Finally, minor modifications of algorithm parameters 

were required in order to effectively cope with the variability of the temporal 

characteristics of different music performances. These issues are further elaborated in 

the subsections that follow.  

11.1.1 The lack of a formal user evaluation 

As the system under investigation integrates achievements from different research 

domains, different methodologies may be employed to evaluate its performance. A 

formal user evaluation requires for conducting NMP experiments involving human 

musicians. Such experiments commonly amount to some music ensemble engaged in 

collaborative music performance using an NMP software framework (Alexandraki and 

Akoumianakis 2010) or some software/hardware setup that artificially simulates 
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network conditions in terms of one or more parameters such as latency, jitter (Chew et 

al. 2005; Driessen, Darcie and Pillay 2011; Chafe et al. 2004) or packet loss. 

Subsequently to collaborative performance, the evaluation findings are obtained either 

from user ratings provided by performers as responses to a number of questions relating 

to their ability to synchronize (Buillot 2007), or by analyzing performance data captured 

by appropriate MIDI (Chew et al. 2005) or audio (Driessen, Darcie and Pillay 2011) 

apparatus facilitated to capture the live performance. Unfortunately, conducting NMP 

experiments is highly expensive in terms of costly human resources. In particular, NMP 

experiments requires the participation of professional music ensembles (so as to 

eliminate biased conclusions owing to musician’s effort to adapt to each other’s 

performance), network engineers (in order to resolve firewall issues and activate the 

necessary network ports for audio and possibly video communication), as well as sound 

engineers (to appropriately setup audio equipment therefore avoiding feedback loops or 

unwanted noise consuming network resources).  

The approach under investigation does not literary provide a networking solution, as 

there are no contributions in terms of networking technologies (e.g. network protocols 

or data routing optimisations). Additionally, the current implementation is far from 

being a fully functional software application. Unfortunately, the facilitated algorithms 

are not yet sufficiently robust to support the intended scenario. Conversely, the 

implemented prototype is the result of early investigations on a new musical interaction 

paradigm, which may be used to experiment with new musical ideas, for instance by 

alternating between transmitting audio streams and onset notifications. Consequently, 

conducting a formal user evaluation (i.e. NMP experiments) is neither feasible for the 

current status of this work, nor can it provide any useful information for the task at 

hand.  

For this reason, the main part of this chapter focuses on evaluating the algorithmic 

performance of the methodology presented in the previous chapters. For reasons of 

consistency, a network experiment has also been conducted. This experiment involves 

the collaboration of two musicians, namely a flutist and a violinist, collaborating across 

a Local Area Network (LAN). The evaluation of the algorithmic performance reveals 

shortcomings of the current implementation, therefore motivating future research and 

development efforts, while the network experiment shows the benefits of employing the 

proposed communication scheme over conventional audio stream exchange, which is 

the prevalent means of communication in NMP. 

11.1.2 Standard evaluation metrics and significance of results 

For the evaluation of the algorithmic performance, standard MIR evaluation procedures 

have been employed. MIREX (Music Information Retrieval Evaluation eXchange) is a 

community-based framework which organises annual contests that provide a de facto 

standard for evaluating algorithmic performance in a number of MIR tasks. These MIR 
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tasks
24

 range from ‘genre recognition’ and ‘music similarity and retrieval’ applied on 

large music collections, to tasks focusing on specific music pieces and machine 

musicianship such as ‘melody extraction’, ‘beat tracking’ or ‘chord detection’. With 

respect to the performance of algorithms operating in real-time, the only relevant task in 

MIREX is that of ‘score following’.  

MIREX annual contests allow making meaningful comparisons for the performance of 

different algorithms targeting a specific task. As the algorithms are evaluated on the 

same dataset, an estimator for the best algorithmic performance for each task is 

provided on an annual basis. For instance, the maximum total precision for the task of 

‘Real-time audio to score alignment (aka score following)’ was 67.11% in 2011, 

83.01% in 2012 and 86.70% in 2013. Although these rankings are not necessarily 

increasing every year for all of the tasks under evaluation, evaluation metrics are 

derived by applying the algorithms on the same audio dataset. Unfortunately, the 

majority of MIREX datasets are not freely available to researchers due to musical 

intellectual property copyright enforcement. As a result, to compare to the annual 

rankings in MIR tasks one should submit their algorithm to the MIREX community 

(Downie 2008). 

An important issue relating to MIREX evaluation procedures is related to whether such 

algorithmic rankings correspond to truly significant differences in performance. To 

account for this concern, since 2006 MIREX employed significance tests that measure 

the global and pair-wise significance of differences in algorithmic rankings (Downie 

2008). As the significance tests used by MIREX are inspired by TREC (Text REtrieval 

Conference), a community on text retrieval, significance tests have only been applied to 

the tasks that have a closer resemblance to text retrieval. For the tasks of ‘Audio Onset 

Detection’ and ‘Real-time Audio to Score Alignment’ that are mostly relevant to the 

present work, no significance tests have been applied up to 2013.  

Furthermore, with respect to the relationship of user satisfaction in an application 

targeted by a MIR task and the algorithmic performance of a system in that task, 

Urbano et al. (2012) showed that, for the example task of ‘music similarity and 

retrieval’, differences in user satisfaction may be so subtle that statistical significance is 

not sufficient to prove the superiority of one algorithm over another. In such cases, one 

needs to evaluate for practical significance (i.e. on large-scale datasets) in order to truly 

prove real-world user satisfaction. Clearly, practical significance is a lot more difficult 

in MIR research, as the systems under evaluation need to have access to large 

collections of copyrighted material.  

11.1.3 Lack of multiple training sequences 

Yet a further concern related to the evaluation of algorithmic performance relates to the 

fact that, due to the lack of different recordings for the same piece of music, HMM 

                                                
24 http://www.music-ir.org/mirex/wiki/2013:Main_Page 

http://www.music-ir.org/mirex/wiki/2013:Main_Page
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training and HMM decoding was performed on the same audio file. This causes two 

problems. Firstly, as elaborated in section 8.3.3.1, for HMMs having a left-right 

topology it is essential that multiple sequences are used so as to accurately train the 

model. Hence, the performance measures of audio to score alignment are suboptimal 

than those obtained when training on multiple performances of the same piece of music, 

as for example in the course of a music rehearsal.  

Secondly, in classification problems, testing the performance of a trained classifier on 

the data used for training is a method known as resubstitution and it is well known that 

performance measures estimated in this way are usually overoptimistic (Flexer 2006 

and the references therein). Preferably, a method known as K-fold cross-validation is 

employed for evaluating trained classifiers. K-fold cross-validation amounts to dividing 

the data into K equally-sized parts and using each part as a test set for the classifier 

trained with the remaining data. The performance measures are then the average of 

performance measures over the K different runs.  

Unfortunately, it was not possible to obtain multiple performances of the same piece of 

music so as to use multiple training sequences for each model or to perform a K-fold 

cross validation test. In the following experiments the HMM is initialised using the 

output of the offline segmentation process as described in section 8.4.1. Subsequently, 

the performance of real-time audio to score alignment is evaluated prior to training and 

after Baum-Welch training. Finally, a pair-wise t-test is performed to evaluate the 

significance of performance improvement through the training process.  

11.1.4 Algorithm fine tuning 

A further aspect relating to the performed evaluation relates to the number of changes 

that may be required when algorithms need to analyse different audio streams. It is 

widely known that such algorithms require human supervision in order effectively to 

cope with variability in the timbral and temporal variations of each music performance.  

In the present evaluation of algorithmic performance, a single parameter was adjusted, 

namely the value of the minimum Inter-Onset-Interval. This parameter is used by the 

offline audio segmentation algorithm as well as by the HMM score following algorithm 

to reduce the number of falsely detected onsets.  In future implementations, the value of 

this parameter may be automatically estimated by employing techniques for tempo 

induction. 

11.2 Evaluation of algorithmic performance 

This section presents the evaluation of the performance of the algorithms presented in 

the previous chapters. These algorithms have been applied on a small dataset that I had 

to assemble from various publicly available music sources and manually annotate to 

provide ground truth data for the location of note onsets.  As elaborated in section 
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11.1.2, the results of this evaluation are not comparable to officially evaluated 

algorithms. However, they serve to provide some insight with regards to feasibility of 

the proposed communication scheme for NMP. More importantly, the results presented 

in the following sections reveal weaknesses of the current implementation to be 

addressed in future developments. Evaluation metrics are those used by MIREX 

evaluations for the tasks of ‘Audio Onset Detection’ and ‘Real-time Audio to Score 

Alignment’, supplemented by some measures that are relevant to the intended 

application scenario on Networked Music Performance. 

11.2.1 Dataset 

At present, a substantial number of music datasets are available on the Internet, some of 

them free, without any payment fee. Unfortunately, most of these datasets have been 

assembled for more generic music information retrieval tasks, such as genre 

classification or music similarity. Assembling an appropriate evaluation dataset for the 

present system imposes a number of restrictions that are not commonly met in existing 

datasets. These restrictions concern the following aspects: 

 All sound files should correspond to the performance of a single instrument 

 The instruments should be monophonic, as no chords or polyphony is being 

considered at the present implementation 

 All sound files should be accompanied by  a corresponding MIDI file (i.e. a 

music score) 

 The dataset should contain recordings from different types of instruments so as 

to provide insight on potential differences in algorithmic performance for 

different musical timbres 

In order to satisfy the above restrictions, an evaluation dataset was assembled using 

some files from publicly available datasets and some of my own recordings. This 

dataset comprises 23 music pieces summing to a total of 969 notes and a total duration 

of 9.63 minutes, as listed on Table 11-1.  All audio files are uncompressed files in WAV 

encoding format, having a sample rate of 44.1 kHz, a bit resolution of 16 bits per 

sample, and a single audio channel.  

The column entitled ‘FILE-ID provides the filename for the audio file and 

corresponding MIDI file and additionally depicts the musical instrument that was used 

for the solo recording. Ground truth onset annotations were performed manually and 

assisted by Sonic Visualizer
25

, an open source software program designed to aid audio 

file annotation. 

The column entitled ‘SRC’ indicates the dataset from which audio and MIDI files were 

derived. Specifically, the files having SRC=1 were derived from the TRIOS
26

 publicly 

                                                
25 http://www.sonicvisualiser.org/ 
26 http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27 

http://www.sonicvisualiser.org/
http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27
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available dataset. From this dataset certain extracts of monophonic instrument 

recordings were selected. The TRIOS dataset was originally used for score-informed 

source separation (Fritsch 2012).  

Table 11-1: The music pieces of the dataset used for the evaluation of algorithmic performance.  

  ind FILE-ID PIECE SRC #Notes DUR(s) 
WOODWIND 1 FLUTE1 Gabriel Negrin/Ex1_take002 4 24 17.83 

2 FLUTE2 Gabriel Negrin/Ex2_take010 4 26 22.50 

3 TENORSAX1 unknown 2 9 9.30 

4 
BARITONESAX
1 unknown 2 35 13.49 

5 BASOON1 
Mathieu Lussier (op.8) - trio for 
trumpet, bassoon and piano 1 65 18.00 

6 BASOON2 Bach Chorale "Ach Gottund Herr" 3 36 25.23 

7 CLARINET2 unknown 2 94 36.27 

8 CLARINET3 Bach Chorale "Ach Gottund Herr" 3 34 25.23 

9 SAX2 Bach Chorale "Ach Gottund Herr" 3 38 25.23 
BRASS 

10 TRUMPET1 
Mathieu Lussier (op.8) - trio for 
trumpet, bassoon and piano 1 24 18 

11 TRUMPET2 unknown 2 24 8.73 

12 HORN1 
Johannes Brahms (op.40) -  trio for 
violin, French horn and piano 1 42 34.02 

13 TROMBONE1 unknown 2 23 40.01 
BOWED 14 VIOLIN4 Bach Chorale "Ach Gottund Herr" 3 36 25.23 

15 VIOLA1  
Wolfgang A. Mozart (K.498) -  trio 
for clarinet, viola and piano 1 32 25.23 

16 VIOLIN7 Bach Chorale "Die Nacht" 3 40 35.88 
PLUCKED 17 GUITAR1 unknown 2 25 11.56 

18 GUITAR2 
Bach BWV1013 Partita in A minor 
(Allemande) 4 63 20.29 

PERCUSSION 

19 KICK1 
Take Five by Paul Desmond, for alto 
sax, piano and drums 1 25 43.50 

20 SNARE1 
Take Five by Paul Desmond, for alto 
sax, piano and drums 1 103 43.50 

21 RIDE2 

Take Five by Paul Desmond, for alto 
sax, piano and drums (first 84 
notes) 1 84 22.54 

VOICE 22 VOICE1 Female singing “Happy birthday” 4 25 20.19 

23 VOICE2 
Female signing the notes of a MIDI 
file 4 62 35.69 

TOTAL 969 577.45 

  

The files having a property of SRC=2 are demo files
27

 of a proprietary software 

program called Inst2MIDI, which converts audio recordings of monophonic instruments 

to MIDI data in real-time and can therefore be classified as an audio transcription 

software. The downloaded audio files were converted from mp3 to wav encoding 

format. Additionally, some minor corrections were required on the distributed MIDI 

                                                
27 http://nerds.de/en/examples.html 

http://nerds.de/en/examples.html
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files, which were generated by the Inst2MIDI software and had some minor 

imperfections. 

The files having a property of SRC=3 have been derived from the Bach10 dataset
28

, 

which contains audio recordings for ten Bach Chorales for which the four voices 

(Soprano, Alto, Tenor and Bass) of each piece are performed by the instruments violin, 

clarinet, saxophone and bassoon, respectively. The Bach10 dataset has been assembled 

for the purposes of multi-pitch estimation and tracking (Duan, Pardo and Zhang 2010) 

as well as for the purposes of score informed audio source separation (Duan and Pardo 

2011). The MIDI files of this dataset comprise four channels that correspond to the four 

voices of the chorale. Hence, to use them in the present evaluation, different channels 

had to be saved in separate MIDI files.  

Finally, the files having a property of SRC=4 were recorded for the purposes of the 

present evaluation.  

With respect to timbral specificities, the following instrument classes were used in the 

evaluation dataset: 

 Woodwind: 8 woodwind solo performances comprising 361 notes in total 

 Brass: 4 solo performances comprising 113 notes in total 

 Bowed String: 3 solo performances comprising 108 notes in total 

 Plucked String: 2 guitar solo comprising  88 notes in total 

 Percussive: 3 instrument performances comprising 212 notes in total 

 Vocal: 2 pieces comprising 87 notes in total 

11.2.2 Measures 

The measures that were used to evaluate the present system are based on the evaluation 

measures used by the yearly annual MIREX contests for the tasks of ‘Audio Onset 

Detection’
29

 and ‘Real-time Audio to Score Alignment (a.k.a. Score Following)’
30

 with 

minor changes that are relevant to the intended scenario for networked musical 

interactions. Specifically, MIREX uses the following measures to compare the detected 

onsets with ground-truth ones: 

 Ocd: Number of correctly detected onsets (CD). For a given ground-truth onset 

time, if there is a detection in a tolerance time-window around it, it is considered 

as a correct detection. This tolerance time-window conventionally spans a range 

of ±50ms around the ground-truth onset. It is generally not possible to evaluate 

on more accurate timing tolerance due to weak precision in ground truth 

annotations. 

                                                
28 http://music.cs.northwestern.edu/data/Bach10.html 
29 http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection 
30 http://www.music-ir.org/mirex/wiki/2013:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following) 

http://music.cs.northwestern.edu/data/Bach10.html
http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection
http://www.music-ir.org/mirex/wiki/2013:Real-time_Audio_to_Score_Alignment_(a.k.a_Score_Following)
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 Ofn: Number of False Negatives (FN). This is the number of ground-truth 

onsets that were not detected. In other words, it is the number of ground-truth 

onsets for which no onset was detected within a time window ±50ms around 

them. 

 Ofp: Number of False Positives (FP). The number of detections that fall outside 

all tolerance windows, namely the number of spurious detections. 

MIREX additionally uses the measures of ‘doubled onsets’ (two detections for one 

ground-truth onset) and merged onsets (a single detection for two ground-truth onsets). 

Doubled onsets are a subset of the FP onsets, and merged onsets a subset of FN onsets. 

These measures were not used in the present evaluation because all algorithms impose a 

minimum Inter-Onset-Interval criterion of permitting detections only if they are 

separated by a predefined threshold value (which was 50ms or higher), therefore 

execution of the algorithms did not yield any doubled or merged detections.  

The above numbers are used to calculate the F-measure (F), which is a common metric 

of algorithm performance in information retrieval and pattern recognition tasks. The F-

measure is computed here as the harmonic mean of Precision (P) and Recall (R) 

measures: 

   
   

   
  , where    

   

       
 and    

   

       
    (11.1) 

In the case of score following, two additional metrics have been computed to allow 

comparing with the annual reporting of MIREX results in the task of score following. 

These are the piecewise precision rate, which is the percentage of ground truth onsets 

minus the number of missed onsets of each piece, averaged for all pieces in the dataset, 

as well as the overall precision rate, which is the percentage of the total number of 

ground truth notes in the dataset minus the total number of missed notes during the 

evaluation. 

The following values were also computed to provide metrics related to the time 

precision of correct onset detections: 

 Avg. Abs. Offset: The average of the absolute value of the time difference 

between a correctly detected onset and the corresponding ground truth onset. 

This is always a value below 50ms. The average is calculated for all correct 

detections within a specific audio file. 

 Mean Offset: The mean value of the time difference between a correct detection 

and the corresponding ground truth onset. This quantity can have negative 

values hence indicating detected onsets may precede the corresponding ground-

truth onsets. The mean is calculated for the total of correct detections within a 

certain audio file. 

 Std Offset: The standard deviation of the timing offset. It gives an idea for the 

variability of offset values. Like the mean value the standard deviation is 

computed for the total of correct detections within a piece of music. 
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Finally, for the purposes of measuring algorithm speed and related complexity three 

measures have been recorded. The first one provides a metric for the speed of the offline 

audio segmentation process, the second provides a metric for the speed of real-time 

audio to score alignment (also used by MIREX score following evaluations), while the 

third one provides a metric for the speed of real-time audio analysis and segmental re-

synthesis in the current system: 

 Time Elapsed: This provides a speed measurement of the task of offline audio 

segmentation, which comprises both onset detection and saving the segments in 

different audio files on disk space. Hence, more notes in a music piece are 

generally expected to yield higher values of this quantity. 

 Avg. Latency 1: The latency of the score follower, i.e. difference between 

detection time and the time when the system captures an audio block. This 

measurement is recorded at onset detections and averaged for all detected onsets 

within the audio file. 

 Avg. Latency 2: This is the time elapsed between the arrival of a new audio 

block and the rendering of a transformed audio segment recorded at every onset 

detection and averaged for all detected onsets. In other words this refers to the 

total latency that may be decomposed to latency for the detection of the new 

onset (i.e. Avg. Latency 1) and the latency introduced by segmental re-synthesis 

during the live performance. This measure is intended for comparison with the 

Ensemble Performance Threshold (see section 2.4), as it incorporates all 

processing latencies apart from network transmission. The latency of re-

synthesis alone is thus equal to the difference Avg_Latency_2 – Avg_Latency_1 

11.2.3 Experimental setup 

All of the experiments were performed on the same computer, a Lenovo Thinkpad with 

an Intel Core Duo 2GHz processor, 2GB RAM and a CentOS5 Linux distribution. 

Three processes were executed to assess the performance of the algorithms under 

evaluation: 

 OAS: Offline Audio Segmentation, i.e. by issuing the following command line 

process: 

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp 

 

 RTAS-INIT: Real-time Audio to Score Alignment based on an HMM, which is 

initialised according to annotations based on the note onsets detected during 

offline audio segmentation and a number of heuristics (see section 8.4.1). The 

evaluation of this process involved issuing the following commands: 

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp 

o boogienet –p pma –a FLUTE1.wav –s  FLUTE1.mid –m 

FLUTE1.model 
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o boogienet –p rtas –m FLUTE1.model –d /tmp –t –n 

FLUTE1.wav.desc  

 

 RTAS-TRAINED: Real-time Audio to Score Alignment based on a 

performance model initialised as previously and subsequently trained to obtain 

more accurate estimations of HMM probabilities. The evaluation of this process 

involved issuing the following commands: 

o boogienet –p oas –a FLUTE1.wav –s FLUTE1.mid –d /tmp 

o boogienet –p pma –a FLUTE1.wav –s  FLUTE1.mid –m 

FLUTE1.model 

o boogienet –p tpm –m FLUTE1.model –a FLUTE1.wav 

o boogienet –p rtas –m FLUTE1.model –d /tmp –t –n 

FLUTE1.wav.desc 

In the above, the command line process invocation is shown for an example audio/MIDI 

file pair ‘FLUTE1.wav’ and ‘FLUTE1.mid’. Real-time audio capturing and playback 

was appropriately routed to the BoogieNet application using the Jack Audio Connection 

Kit, as explained in section 10.2.5. This process does not involve any network 

transmissions. The –n flag for the processes RTAS-INIT and RTAS-TRAINED 

indicates that segment transformations were activated during segmental re-synthesis. 

Each of these processes was setup to print on standard output the location of the 

detected onsets as well as the speed of the algorithms (i.e. ‘Time Elapsed’ for the OAS 

process and ‘Latency 1’, ‘Latency 2’ for every onset detected by the processes RTAS-

INIT and RTAS-TRAINED). Subsequently, to the execution of these programs a utility 

program (implemented for this purpose) was executed to automatically compute the 

remaining evaluation metrics (e.g. correct detections, false positives, F-Measure, 

averages of timing offsets etc.). 

11.2.4 Offline Audio Segmentation (OAS) 

The detailed (i.e. piecewise) results of the offline audio segmentation process are shown 

on Table 13-1 of the Appendix. A summary of these results is provided on Table 11-2, 

which shows the most important measures estimated for all pieces within an instrument 

class. The column %TP refers to the percentage of true positives, while %FP refers to 

the percentage of false positives summed for the total of number of onsets appearing in 

all pieces of music within the instrument class. The column ‘Avg. F’ refers to the value 

of the F-measure per piece, which is averaged for all the pieces of an instrument class. 

F-measure averages are also depicted in Figure 11-1. While %TP refers to the global 

percentage of correct detections, ‘Avg. F’ refers to the average of correct detections as 

estimated by equations (11.1). Also, the averages appearing at the bottom row of Table 

11-2 are class averages, while the bottom row of Table 13-1 refers to piecewise 

averages.  
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Evidently, as the offline audio segmentation algorithm is forced to identify as many 

onsets as there are notes in the score, the numbers %TP and %FP are complementary.  

Table 11-2: Class Averages of the evaluation metrics for the offline audio segmentation algorithm. 

INSTR. CLASS %TP %FP Avg. F Mean 
Offset 
(ms) 

Std Offset 
(ms) 

Time 
Elapsed 

(ms) 

WOODWIND 92.80 7.20 0.96 7.50 12.47 852.83 

BRASS 93.81 6.19 0.95 6.85 10.31 806.25 

BOWED 83.33 16.67 0.83 7.06 13.07 942.51 

PLUCKED 82.95 17.05 0.84 5.80 10.71 845.26 

PERCUSSION 100.00 0.00 1.00 0.70 5.65 997.60 

VOICE 90.80 9.20 0.88 12.75 11.29 959.27 

AVERAGE 90.62 9.38 0.91 6.78 10.58 900.62 

 

As expected and discussed in section 7.3.2 the best performance is reached for 

percussive sounds, for which all onsets have been correctly identified. This is a common 

observation when dealing with onset detection algorithms, which is confirmed by Bello 

et al. (2005) as well as by the MIREX 2013 results on the ‘Audio Onset Detection 

task’
31

. Nine out of the eleven algorithms evaluated in MIREX 2013 reach the peak of 

their performance for the instrument classes named ‘Solo Drum’ and ‘Bars and Bells’. 

Besides percussive sounds, the present evaluation provides satisfactory performance for 

wind instruments and vocals, while strings (i.e. bowed and plucked) yield the worst 

performance in the offline audio segmentation algorithm. 

 

Figure 11-1: Average F-measure per instrument class for the offline audio segmentation algorithm. 

In terms of overall performance, the global percentage of true positives of 90.62% is 

comparable to the onset detection results shown in the evaluation of Bello et al. (2005). 

Compared to MIREX 2013 global results of ‘Audio Onset Detection’, the average F-

                                                
31 http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/resultsperclass.html 

http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/resultsperclass.html
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measure is higher than all the eleven algorithms evaluated
32

. Clearly, this does not mean 

that the algorithm evaluated here is superior to the algorithms evaluated by MIREX, 

since a significant amount of performance degradation should be expected when 

evaluating on larger datasets. 

With respect to the timing precision of the detected onsets, Figure 11-2 shows the mean 

and standard deviation values of the offset between the time of correct onset detections 

and that of the corresponding ground truth annotation, computed for all pieces 

belonging to an instrument class. It can be seen that the offset does not increase beyond 

25ms compared to the ground truth onset, while again percussive instruments have the 

smallest timing offset and the smallest variance. Evaluations of onset detection 

algorithms reported elsewhere do not provide results for this measure, as due to weak 

precision of the ground truth annotation process, timing offsets considered rather 

unimportant. However, it is worth noticing here that bowed instruments exhibit the 

largest variation while percussive instruments exhibit the shortest variation. 

 

Figure 11-2: Mean and standard deviation values for the timing offset of the detected onsets for the of offline 

audio segmentation algorithm. 

Finally in terms of speed, the algorithm runs in less than two seconds in all the cases 

evaluated, i.e. with the number of notes per piece ranging between 9 and 103. As 

confirmed by Table 13-1, the number of notes to be found increases the execution time, 

which can go up to 1.5sec for the 103 notes of the snare drum (SNARE1).  This time 

interval includes onset detections as well as reading the audio and MIDI file and writing 

audio segments on disk space.  

                                                
32 http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/summary.html 

http://nema.lis.illinois.edu/nema_out/mirex2013/results/aod/summary.html
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11.2.5 Real-time Audio to Score Alignment 

Again, piecewise results for the task of real-time audio to score alignment are shown in 

the Appendix. Specifically, Table 13-2 shows the results of this process when no 

training is applied to the HMM (RTAS-INIT), while Table 13-3 shows the same results 

obtained after applying the Baum-Welch algorithm for unsupervised training (RTAS-

TRAINED). 

11.2.5.1 Results prior to HMM training (RTAS-INIT) 

As previously, Table 11-3 shows the averages per instrument class with %TP and %FP 

showing global piecewise percentage of true and false positives respectively and ‘Avg. 

F’ depicting the average of the F-measure obtained by averaging the F-measures of the 

pieces within the instrument class. The value of ‘Avg. F’ for the different instrument 

classes is also shown on Figure 11-3. Unlike the offline audio segmentation process, 

here the numbers %TP and %FP are not complementary, as the number of note onsets 

that need to be detected is not taken into account by the HMM alignment algorithm. 

Table 11-3: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm 

without HMM training. 

INSTR. CLASS %TP %FP Avg. F Mean 
Offset 
(ms) 

Std 
Offset 
(ms) 

Avg. 
Latency1 

(ms) 

Avg. 
Latency2 

(ms) 

WOODWIND 75.90 20.78 0.83 7.82 15.60 0.98 2.14 

BRASS 83.19 17.70 0.84 -6.95 10.98 1.02 1.86 

BOWED 49.07 31.48 0.54 5.21 14.65 0.98 1.99 

PLUCKED 31.82 4.55 0.52 8.04 15.65 1.13 1.76 

PERCUSSION 91.04 6.13 0.85 0.55 3.49 0.65 1.85 

VOICE 60.92 40.23 0.58 9.35 17.58 0.97 3.23 

AVERAGE 65.32 20.14 0.69 4.00 12.99 0.95 2.14 

 

Both the ‘%TP’ and the ‘Avg. F’ measures show a performance degradation of more 

than 20% compared to the offline onset detection algorithm. In this case, the 

observation probabilities of the HMM used for the real-time alignment are estimated 

assuming that a correct annotation may be obtained using the onsets detected during the 

offline segmentation process and no iterative process is applied for re-estimating a more 

precise alignment. Consequently, all errors introduced during onset detections are 

further propagated to this process. Moreover, as the alignment algorithm attempts to 

correlate features such as LogEnergy and its first order difference (see section 6.4.3) as 

well as pitch features such as the PSM (see section 6.6.2) to the detected note 

boundaries, the probability of correctly identifying an HMM state is further reduced. 
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Figure 11-3: Average F-measure per instrument class for real-time audio to score alignment algorithm without 

HMM training. 

Figure 11-4 shows the estimated mean and standard deviation values in the timing 

precision (i.e. the timing offset between correct detections and the corresponding 

ground truth annotations). In this case, the average of the mean value (4ms) is slightly 

lower than in the previous process (6.78ms) and the standard deviation is higher. 

However, differences are rather insignificant, especially if one considers the weak 

precision of manual ground truth annotations. Again, percussive instruments are more 

accurately detected both in terms of the number of correct detections as well as in terms 

of their timing precision. Also the Brass instrument class has a negative mean offset, 

which means that for this class the HMM detects onsets earlier than the ground truth 

ones.  

 

Figure 11-4: Mean and standard deviation values for the timing offset of the detected onsets during real-time 

audio to score alignment without HMM training. 

With respect to the measured latencies, ‘Avg. Latency1’ refers to the latency of the 

score follower, also shown on Figure 11-5. It is the time elapsed between identifying an 
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HMM state from the time when the corresponding audio block becomes available, 

measured whenever an onset is detected. This is the latency of the real-time 

implementation of the Viterbi algorithm for HMM decoding measured only at the 

location of note onsets and averaged for the total number of onsets within the piece 

(Table 13-2) and again averaged for all pieces within an instrument class (Table 11-3). 

As elaborated in section 8.3.4, the main optimizations to the Viterbi algorithm concern 

eliminating the backtracking step of the algorithm, so as to provide a causal 

implementation, as well as applying path pruning to constrain the alignment paths 

within close neighbours of the previously identified state. Path pruning reduces the 

algorithmic complexity of Viterbi alignments especially when the HMM uses a large 

number of states. As shown on Table 11-3, this decoding latency is less than 1ms, 

therefore having a rather insignificant contribution to the entire communication latency. 

Hence, no further constraints are required for reducing the complexity of the real-time 

Viterbi algorithm. 

 

Figure 11-5: The sequence of processes that take place during real-time audio to score alignment. Latency1 

refers to the latency of the score follower, while Latency2 refers to the entire communication latency excluding 

network transmission. 

The measurement ‘Avg. Latency2’ of Table 11-3 refers to the so called mouth-to-ear 

latency, a common term in audio telecommunications. As shown on Figure 11-5, in the 

present experiment ‘Avg. Latency2’ represents the time elapsed between capturing an 

audio block and rendering another audio block which has been retrieved from the pool 

of audio segments and transformed to accommodate the expected loudness and tempo 

deviations, as estimated by the process of future event estimation (described in section 

9.3.1). This measure is intended for comparison with the Ensemble Performance 

Threshold (section 2.4), which imposes an upper limit of approximately 30ms in the 

overall audio communication latency. This value includes latencies introduced during 

network transmission. As shown on Table 11-3 or Table 13-2, ‘Avg. Latency2’ is 

approximately 2-3 ms, hence leaving plenty of room for accommodating transmission 
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delays along the network path. A rough estimation of network delays is provided in 

section 11.3.2 describing the network experiment. 

Finally concerning precision rates, the algorithm results in a piecewise precision rate of 

69.63% and an overall precision rate of 71.72%. This is reported in Table 13-2.  

11.2.5.2 Results after HMM training (RTAS-TRAINED) 

This section reflects on the same results as the previous section, for which however 

Baum-Welch training has been applied to more precisely estimate HMM probabilities 

prior to using them for real-time alignment. Table 11-4  shows the evaluation results per 

instrument class, Figure 11-6 shows the average F-measure and Figure 11-7 shows 

mean and standard deviation values for the temporal precision of correct detections. 

When observing class averages, a 12.64% improvement is demonstrated in the value of 

%TP compared to the same value without HMM training and 12.66% performance 

degradation compared to the offline audio segmentation algorithm. This confirms the 

fact that, correct model initialization is crucial for the performance of the HMM after 

training when dealing with continuous system observations. This issue was elaborated 

in section 8.3.3.2.  

Table 11-4: Class Averages of the evaluation metrics for the real-time audio to score alignment algorithm after 

HMM training. 

INSTR. CLASS %TP %FP Avg. F Mean 
Offset 
(ms) 

Std 
Offset 
(ms) 

Avg. 
Latency1 

(ms) 

Avg. 
Latency2 

(ms) 

WOODWIND 84.76 11.91 0.90 8.28 14.12 0.98 2.82 

BRASS 88.50 8.85 0.92 -5.69 11.74 1.01 1.85 

BOWED 71.30 40.74 0.67 8.81 14.30 0.99 2.02 

PLUCKED 64.77 22.73 0.69 6.65 15.86 1.30 2.01 

PERCUSSION 82.55 10.38 0.85 0.14 3.90 0.64 4.36 

VOICE 75.86 32.18 0.64 11.51 17.61 0.93 2.26 

AVERAGE 77.96 21.13 0.78 4.95 12.92 0.98 2.55 

 

When observing individual results, it can be seen that all instrument classes have an 

improved performance to the same process without prior HMM training, apart from the 

percussive instruments for which the value of %TP is reduced by 8.49% and the 

Average F-measure remains constant at the value of 0.85. The difference of modelling 

percussive instruments compared to modelling the remaining instrument classes is that 

the percussive instruments that were used in this evaluation (i.e. kick drum, ride cymbal 

and snare drum) are not associated with any pitch value and the sounds produced are not 

periodic.  
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Figure 11-6: Average F-measure per instrument class for real-time audio to score alignment algorithm after 

HMM training. 

According to the General MIDI standard, non-chromatic percussion use MIDI Channel 

10 and a different pitch value to define the instrument timbre to use when synthesizing 

the output sound. The MIDI files used in this case had the note number of 36 for the 

kick drum, 59 for the ride cymbal and 38 for the snare drum. Therefore, each piece 

evaluated in the percussion class holds a single pitch value, which corresponds to the 

instrument rather than the dominating pitch. As a result, the PSM feature and its first 

order difference (section 6.6.2) used in the computation of emission probabilities, have 

little or no correlation to the actual notes performed in the audio file, which explains the 

poor performance of the model in percussive instruments both before as well as after 

Baum-Welch training. Conversely, it may be assumed that, as the PSM features are 

important for the performance of HMM alignments, the more the pitches used in a 

certain piece of music the better the performance of the HMM. 

 

Figure 11-7: Mean and standard deviation values for the timing offset of the detected onsets during real-time 

audio to score alignment after HMM training. 
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Other than the improvement in the number of correct onset detections, there are no 

significant differences in the temporal precision or in algorithmic latencies.  

Finally concerning precision rates, the algorithm yields a piecewise precision rate of 

79.14% and an overall precision rate of 80.60%. These values are reported in Table 13-

3. Compared to real-time audio to score alignment without training there is an 

approximate improvement of 10% in both rates. 

11.2.6  Comparison of Results 

The previous sections provided evidence that the performance of the Offline Audio 

Segmentation (OAS) process determines the quality of the Real-time Audio to Score 

Alignments (RTAS). When the probabilities of the HMM were initialized based on the 

onsets detected by the OAS process (RTAS-INIT), the performance of the real-time 

HMM alignment was degraded compared to that of the OAS process by approximately 

25% in terms of the %TP measure and by 22% in terms of the F-measure (which takes 

into account both false positives and false negatives). By applying Baum-Welch 

training, subsequently to model initialization and before the alignment (RTAS-

TRAINED), this performance was improved by 12.64% in terms of %TP and 11% in 

the F-measure, compared to the alignment performance without training (RTAS-INIT). 

 

Figure 11-8: Box plot depicting the F-measure performance of the three algorithms (OAS, RTAS-INIT and 

RTAS-TRAIN) for the task of onset detection. Distributions concern the F-measure values for each music 

piece of the evaluation dataset. 

This is further verified by the box plot of Figure 11-8 showing the distribution of the 

value of F-measure for all music pieces that have been evaluated. It can be seen that 

more than 50% of the pieces had an F-measure of more than 0.95 in OAS, 0.74 in 
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RTAS-INIT and 0.86 in RTAS-TRAINED. There is a negative skew for all three 

processes, which is evident by the fact that the lower whisker is longer than the higher, 

hence indicating that out of the 23 pieces of the dataset, the majority had a performance 

towards the maximum than towards the minimum of F-measure values.  

To examine the statistical significance of the hypothesis that Baum-Welch training 

improves the performance of the real-time audio to score alignment algorithm, a one-

tailed paired t-test has been performed. The N=23 pieces of music correspond to df=N-

1=22 degrees of freedom. By considering the differences di = FRTAS-TRAINED – FRTAS-INIT 

in performance as depicted by the values of the F-measure for the total of the pieces 

evaluated, the t-value may be computed as: 

  
  

   
             

 

 
   

 

   

              
   

  
          

 
   

 
  

      
 

This yields a result of t(22)=2.4314. With a help of a t-table, it can seen that the critical 

values for significance levels α=5% is 1.7172 and for α=1% is 2.5083. Consequently, it 

can be concluded that the probability of Baum-Welch training improving the 

performance of the real-time alignment algorithm in terms of the estimated F-measures 

is above 95%. 

 

Figure 11-9: Average of F-measure per instrument class for the task of onset detection for the three algorithms 

(OAS, RTAS-INIT and RTAS-TRAIN) used in the evaluation. 

This fact is also verified by the F-measures averages per instrument class. Figure 11-9 

shows that for all instrument classes, apart the percussive instruments, the Average F-

measure increases with Baum-Welch training. However, the performance of the OAS 

process is always superior to that of HMM alignment, which again confirms the fact 

that correct model initialisation is crucial to the performance of the model both with and 

without HMM training.  
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Regarding the instruments of the percussion class, the absence of performance 

differences before and after training, which can also be seen in Table 13-2 and Table 

13-3, is caused by the fact that there is only one pitch value per piece, which does not 

even correspond to the dominating pitch of the notes. As discussed in the previous 

section, sounds of percussive instruments do not correspond to periodic waveforms, and 

therefore the use of PSM features in the computation of the emission probabilities is 

misleading for the performance of the model both before and after Baum-Welch 

training. An alternative model, relying solely on timbral features needs to be employed 

for more accurate score following of non-chromatic percussion instruments. 

11.2.7 On the performance of segmental re-synthesis 

The research methodology employed for the development of the BoogieNet framework 

comprises three computational processes: offline audio segmentation (described in 

chapter 7 and evaluated in section 11.2.4), HMM score following (described in chapter 

8 and evaluated in section 11.2.5) and segmental re-synthesis (described in chapter 9). 

An evaluation of the algorithmic performance of segmental re-synthesis has not been 

performed.  

The segmental re-synthesis technique that was devised for the system under 

investigation has been optimized for speed and algorithmic complexity, but the quality 

of the synthesized audio is heavily dependent on the algorithmic performance of the 

offline audio segmentation and the score following algorithms.  

Duration transformations are applied pitch synchronously assuming that each audio 

segment is highly periodic having the period specified in the performance description 

file (section 10.3.2.3). As a result, if the offline segmentation process misses an onset 

(i.e. false negative detection) then the segment being transformed will contain two 

notes, which most likely will have different pitch. Applying duration transformations on 

that segment will assume the pitch of the first note to be valid over two notes, hence 

resulting in audible distortion during the second note owing to signal discontinuities. 

Conversely, if the offline audio segmentation process yields a false positive (i.e. a 

spurious detection), then the corresponding audio segment will contain part of that note 

and the subsequent segment will contain the remaining part of that note and possibly the 

next note. Time scaling the second segment will be performed using the pitch of the 

second note for the entire duration of the segment, again resulting in audible signal 

distortions. 

If the offline segmentation process does not provide any wrong detections (i.e. missed 

or spurious onsets), then errors in the score following process do not necessarily result 

in audible distortion. For example, missing an onset of the live performance will result 

in the previous note being rendered longer than needed, while detecting a false positive 

on the live performance will result in the next note being rendered remotely while the 
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previous note still holds. Of course, this assumes that note durations are precisely 

estimated. 

As was described in section 9.3.1, the estimated note duration at the time of real-time 

onset detections is not very precise and it is based on averaging tempo deviations for the 

previous notes. This clearly does not reflect true tempo deviations and in the event of a 

note of the live performance holding longer than estimated, silence will be appended to 

the concatenated note segment. This introduces an additional disturbance in the case of 

live performance.   

Clearly, the segmental re-synthesis algorithm needs several improvements. Techniques 

for instant tempo estimation need to be employed in order to more precisely estimate 

the expected tempo deviations of the live performance compared to the pre-existing 

recording. Moreover, the evaluation showed that the offline segmentation process needs 

to be further improved for robustness, or a synthesis technique based on the phase 

vocoder needs to be incorporated in order to eliminate the distortion caused by errors 

during the offline audio segmentation algorithm. 

11.3 Network experiment 

The evaluation of algorithmic performance demonstrated that although the algorithms 

implemented in this work do not yield sub-optimal performance to alternative 

algorithms for the MIR tasks of onset detection and score following, they are inefficient 

for unconditionally supporting the intended communication scheme during NMP. The 

algorithms need further improvements in terms of correctly identifying note onsets both 

in offline and in real-time contexts and in certain cases, for example the synthesis 

algorithm, need to be re-designed in order to more effectively cope with variations in 

musical performance. However, as the proposed communication scheme offers 

significant benefits compared to conventional raw or encoded audio stream exchange, 

this section presents a basic networked experiment that provides insight to the expected 

network traffic in an ideal (with respect to algorithmic performance) scenario of 

segmental machine listening and re-synthesis over the network.  

The experiment involves two music performers, a flutist and a violinist, performing the 

same piece of music over the Ethernet. The score of the music piece is depicted on 

Figure 11-10. It can be seen that the performance of the flute is associated with 24 

onsets, while the performance of the violin has 22 onsets (i.e. 23 notes including ties). 

This piece was composed for the purposes of this experiment.  

The “Real-time UDP Communication” functionality of the BoogieNet framework  

(section 10.2.6) was used for the communication between performers. Network traffic 

was captured using Wireshark
33

, which is a free, open source and cross platform 

                                                
33 http://www.wireshark.org 

http://www.wireshark.org/
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application for analyzing network packets. Both performers were using an identical 

computer device (i.e. a Lenovo ThinkPad with an Intel Core Duo 2GHz processor, 2GB 

RAM and a CentOS5 Linux distribution). Audio capturing/rendering used the ALSA 

Linux driver and the onboard soundcard. The flutist was using the computer with the IP 

address 192.168.1.101 and the violinist was using the computer with an IP address 

192.168.1.103.  

 

Figure 11-10: The score of the music duet performed over the Ethernet. 

At the location of the flutist, the following command was executed: 

boogienet –p udp –i 192.168.1.103 –m flute.model –d /tmp –t –n 

/tmp/violin.wav.desc 

while at the location of the violinist the executed command was: 

boogienet –p udp –i 192.168.1.101 –m violin.model –d /tmp –t –n 

/tmp/flute.wav.desc 

At each location, the model file of the local performer was provided to inform the 

HMM used for decoding the local live performance, while the description file of the 

remote performance was provided to allow estimating segment transformations when 

re-synthesizing the performance of the remote peer. At both locations, the Jack Audio 

Server daemon was running to provide audio routing from the microphone to the 

BoogieNet application (i.e. the transmitter thread, transmitting onset notifications 

concerning the local performance) and from the BoogieNet application (i.e. the receiver 

thread, which was receiving onset notifications for the remote performance) to the 

sound card and further to the speakers. 
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Figure 11-11: Wireshark screenshot showing UDP network traffic during the experiment. The top panel shows 

list of the UDP packets that were exchanged between the two performers. The bottom panel shows the 

structure of the 4
th

 Ethernet frame and the enclosed UDP packet. 

Figure 11-11, shows UDP network traffic during the experiment as captured by 

Wireshark. In total, 46 Ethernet frames were exchanged. 24 were in the direction of the 

flutist to the violinist and 22 in the opposite direction. The full list of network packets is 

shown on Table 13-4 of the Appendix. 

The list of the exchanged Ethernet frames shown in the top-panel of Figure 11-11 

displays the following information in the order from left to right: the frame index, the 

number of seconds elapsed since the transmission of the first packet, the IP address and 

network port from which the packet was transmitted and the IP address and the network 

port where the packet was delivered. The remaining columns are the transport protocol, 

the frame length in bytes and some general information about the frame.   

The following subsections discuss the findings of this experiment with respect to the 

observed network traffic and the QoS properties of bandwidth consumption, latency and 

packet loss. An elaborate description of these properties has been provided in section 

2.5.2.1. 

11.3.1 Bandwidth consumption 

As shown on Table 13-4, all Ethernet frames exchanged during the experiment had a 

total length of 50 bytes. The content of these frames have been discussed in section 
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10.2.6. In every frame, 42 bytes were used as header information and 8 bytes were used 

for payload (i.e. the actual data that needs to be transferred). Ethernet frames were 

transmitted every-time an onset was detected.  

Evidently, bandwidth consumption using the proposed communication scheme is highly 

dependent on performance tempo. For example, at the performance tempo of 60bpm 

and assuming there is one note at every beat, a different 50bytes Ethernet frame needs to 

be transmitted per second from the network location of the music performer. This tempo 

results in 400bps (bits per second) transmitted and received at each network end. Hence, 

the expected bandwidth consumption would be 400bps in both directions, i.e. outbound 

(in the transmission direction) and inbound (i.e. in the direction of receiving, towards 

the computer). Obviously, this represents an approximate estimation, as the piece does 

not always have a single note at every beat (e.g. assuming four semiquavers per beat 

yields a bit rate of 1.6 kbps, which is four times higher) and tempo deviations due to 

expressive performance will have an effect the actual bit rate. Moreover, errors in the 

HMM score scrolling algorithm such as missed or erroneous onsets can significantly 

influence the observed bandwidth consumption.  

Table 11-5: Comparison table for bandwidth consumption. 

 Outbound 

(kbps)  

Inbound 

(kbps)  

Expected at a performance tempo of 60bpm 0.4 0.4 

Expected at a performance tempo of 200bpm 1.3 1.3 

Actual measurement at flute location  0.607 0.581 
Raw monophonic audio sampled at 44.1kHz and a sample 

resolution of 16bit packaged in 512 samples  

735 735 

 

Equivalently, when playing at a fast tempo such as 200bpm, the expected bandwidth 

can be approximated by 1.3kbps. With respect to the actual traffic measurements 

recorded in the experiment, it can be seen from Table 13-4 that, at the location of the 

flutist 24 messages having a length of 50bytes were transmitted to the violist in 

15.821831sec and 22 messages were received in 15.146773sec. This results in an 

outbound bandwidth of 607bps (roughly corresponding to a tempo of 90bpm) and an 

inbound bandwidth 581bps for the flutist and vice versa for the violinist.  

Table 11-5 depicts bandwidth consumption for outbound and inbound traffic in the 

experiment. The benefit offered by the proposed communication scheme in terms of 

bandwidth consumption becomes clear if these values are compared with the required 

bit rate in the communication of raw audio streams. If the experiment was carried out 

using the audio streams captured at each site (i.e. single channel audio, sampled at 

44.1kHz and with a resolution of 16 bits per sample), then bandwidth consumption 

would be 716kbps in both directions. This is calculated as follows: if each UDP packet 

comprises 512 audio samples (which is the temporal resolution of the analysis/re-

synthesis algorithms in the proposed approach), then the size of each Ethernet frame 

would be:  
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[512 x 2 (bytes per sample) + 42 (bytes header)] x 8 (bits per sample) = 8528 bits 

Which would need to be sent every 512/44100 = 0.0116s for real-time communication. 

This corresponds to a bit rate of approximately 735kbps, which is roughly 565 times 

larger than the expected bandwidth consumption at the performance tempo of 200bpm! 

11.3.2  Network latency and jitter 

Network latency and jitter were discussed in section 2.5.2.1.2. As the network 

experiment reported here was performed within a Local Area Network, the latencies 

observed in Wireshark captures were generally comparable to those owing to 

synchronisation inaccuracies between the clocks of the two computers. Hence, it is not 

possible to report on latency values. Moreover, in LAN settings latencies are generally 

negligible. However, to provide an indication for the expected network latency in the 

communication of onset notifications within commonly available ADSL domestic or 

small office network infrastructures, a number of ping requests were transmitted to 

different geographical locations.  Table 11-6 provides the RTT values derived from 

pinging network locations accessible through the network used for the experiment. The 

ping utility was executed with the following command line options: 

ping <ip_address> -s  42 –c 100 

The –s flag defines the size of the ICMP packets to use when pinging, excluding the 

ICMP packet header that has a length of 8 bytes. The –c flag defines the number of 

packets to send. Therefore the values reported in Table 11-6 have been estimated by 

transmitting 100 packets, each having a total size of 50 bytes, which is the same as the 

size of the UDP packets carrying onset notifications. 

Table 11-6: RTT reported by pinging different network locations from the city Heraklion Greece. 

Destination/RTT(ms) Min. Avg. Max. MDev. 

192.168.1.101 

Within LAN (WiFi) 

(Heraklion, GR) 

2.236 3.990 56.578 6.249 

147.102.222.211  

ftp.ntua.gr 

(Athens, GR) 

22.950 25.723 76.635 7.253 

139.7.147.41 

www.vodafone.de 

(Frankfurt, DE) 

104.242 109.760 196.368 13.633 

 

The command was executed from the city of Heraklion in Crete, Greece. The actual 

latency in the one way communication is the RTT divided by two. It can be seen that in 

all three cases, there is a wide variation in the RTT times depicted by the mean 

deviation as well as by the difference of the minimum from the maximum value. This 

variation provides an indication for the expected network jitter. 

ftp://ftp.ntua.gr/
http://www.vodafone.de/
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The theoretical maxima in the communication of onset notifications as observed by 

RTT mean times of Table 11-6 is 2 ms within LAN, 13 ms from Crete to Athens and 

55ms from Crete to Frankfurt over a domestic ADSL connection. To these values the 

algorithmic latency of approximately 3ms (see for example ‘Avg. Latency 2’ values of 

Table 11-4) should be added to account for the complete communication latency among 

performers. Clearly, these values are general observations that do not relate to the 

proposed communication scheme. There is a single common property between 

BoogieNet UDP communications and ping requests, namely the packet size. 

Nevertheless, it can be concluded that although in terms of network and processing 

latencies it is feasible to facilitate NMP using segmental analysis/re-synthesis over 

commonly available xDSL lines and short geographical distances, cross-country 

communications such as for example for the Crete-Frankfurt route require more reliable 

network infrastructures offering QoS guarantees and stable network routes.  

11.3.3 The effect of packet loss 

No packet loss was observed in the network experiment and in general little or no 

packet loss is observed in LAN communications. However in Wide Area Networks 

packet loss is a frequent phenomenon. As was discussed in section 2.5.2.1.3, UDP does 

not inherently provide any mechanism for recovering lost packets and that it is up to the 

applications to handle errors caused by packet loss. 

In this case, alternative error recovery methods need to be employed. Widely adopted 

methods of this kind include error concealment (Tatlas et al. 2007) and Forward Error 

Correction (FEC) (Xiao et al. 2011). Error concealment attempts to recover missing 

signal portions by using signal processing techniques such as interpolation, pattern 

repetition or silence substitution. Conversely, Forward Error Correction methods 

transmit redundant information in addition to actual data packets and attempt to recover 

losses by reading this redundant information. Information redundancy may be 

systematic, if it is a verbatim copy of the original data, or non-systematic, if it represents 

some code that can be facilitated to recover the original data. 

In the proposed communication scheme the data exchanged through the network does 

not directly translate to audio signals. Moreover, as the required bandwidth for 

transmitting network notifications is very low (of the order of 1-2 kbps), each packet 

may be transmitted twice, so as to entirely compensate for possible packet loss without 

imposing additional processing latencies. 

11.4 Consolidation of results 

The evaluation of the BoogieNet prototype system comprises an evaluation of the 

algorithmic performance and a rudimentary experiment over a computer network. 
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The evaluation of the algorithmic performance focused on monitoring onset detections 

using the algorithms of offline audio segmentation and HMM score following as these 

were described in the corresponding chapters and implemented in the final prototype 

system. Standard MIREX evaluation measures were used to inform the performance of 

these algorithms. As MIREX evaluation datasets are not publicly available due to 

copyright restrictions, a small music dataset was assembled and manually annotated for 

the purposes of this evaluation. This dataset is significantly smaller than MIREX 

datasets and therefore it is not possible to perform meaningful comparisons between the 

algorithms implemented in the BoogieNet prototype and those evaluated by MIREX.  

Table 11-7: Summary of the dataset and the evaluation results for the task of onset detection for MIREX 2013 

and for the present evaluation.  

 MIREX 2013 BoogieNet 

Task Audio Onset Detection OAS 
 
Dataset 

  

 Number of pieces 85 23 

 Total Duration 14 min 9.62 min 

 Number of notes NOT REPORTED 969 

 
Results 

 
Average for the 11 algorithms  

 
- 

 Average F-measure 0.74 0.93 

 Average precision 0.79 0.93 

 Average recall 0.76 0.93 

 

Nevertheless, the results of the present evaluation provide some preliminary findings 

concerning the algorithms under evaluation. Table 11-7 summarizes properties of the 

music dataset and results of the offline segmentation process of the BoogieNet 

prototype aligned with those of the MIREX 2013 contest for the task of Audio Onset 

Detection.  Table 11-8 shows a summary of data and results for the evaluation of the 

Real-time Audio to Score Alignment task, performed by MIREX 2013 and the 

BoogieNet HMM score following algorithm, after HMM training. Compared to MIREX 

2013 evaluation results, the offline audio segmentation process of BoogieNet resulted in 

higher values for the metrics Precision, Recall and F-measure, while for score following 

roughly equivalent values of piecewise and overall precision rates have been observed. 

It is emphasized that a fair amount of degradation should be expected when evaluating 

on larger datasets, therefore the performance of the BoogieNet algorithms could be 

lower than that of the algorithms evaluated in MIREX 2013 contests.   

Concerning, the facilitation of these algorithms for the intended scenario on NMP, the 

network experiment revealed the following aspects. Firstly, in terms of bandwidth a 50 

bytes network frame is transmitted every time an onset is detected. This comprises 42 

bytes header overhead and 8 bytes of actual data. Hence, at an extreme estimate of 

having four semiquavers (sixteenth notes) per beat at the tempo of 200bpm the 

bandwidth consumption would be 5.3kbps (four times the rate reported on Table 11-5). 
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This is 138 times less than the required bandwidth when transmitting raw audio streams 

(as calculated for 512 sample buffers of 44.1kHz, 16 bit, monophonic audio).  

Table 11-8:  Summary of the evaluation dataset and the results for the task of real-time audio to score 

alignment, performed by the MIREX 2013 contest and for the present evaluation. 

 MIREX 2013 BoogieNet 

Task 
 

Real-time audio to score alignment RTAS-TRAINED 

Dataset   

 Number of pieces 46 23 

 Total Duration NOT REPORTED 9.62 min 

 Number of notes 11061 969 

 
Results 

 
average of the 2 algorithms  

 
- 

 Piecewise precision rate 76.90% 79.14% 

 Overall precision rate 80.20% 80.60% 

 

This type of communication is associated with a total algorithmic latency of 2-3ms as 

shown on Table 11-4. Network latencies should be added to this value to account for the 

total communication latency. In section 11.3.2, it was shown that a theoretical average 

of 13ms one-way latency should be expected for intra-country communications using 

commonly available xDSL infrastructures. Hence, the total communication latency of 

15-20ms is generally below the Ensemble Performance Threshold of 30ms discussed in 

section 2.4. 

Finally, one of the main benefits offered by the proposed communication scheme for 

NMP is the fact that due to the very low bit rates, it is possible to transmit each network 

packet twice, thereby eliminating signal distortions owing to packet loss. 

In comparison with contemporary compression codecs, the Opus royalty free codec 

(Valin et al. 2013) provides a de facto standard for interactive audio applications over 

the Internet. It is standardised by the Internet Engineering Task Force (IETF) as RFC 

6716 (IETF 2012). It uses Skype’s SIL  codec that is based on Linear Prediction (LP) 

for speech audio and Xiph.org’s CELT codec which is based on a Modified Discrete 

Cosine Transform (MDCT) to encode music. This codec is highly versatile and intended 

for applications including VoIP as well as distributed music performances. It can 

seamlessly scale from bit rates that are as low as 6kbps for narrowband mono speech to 

510kbps for full-band stereo music, with algorithmic delays ranging from 5ms to 

65.2ms (Gibson 2014). Clearly, the Opus codec will enable new applications and 

services involving audio telecommunications.  

The BoogieNet prototype offers lower bit rates and algorithmic latencies than that of the 

Opus codec. In the absence of algorithmic errors in the audio analysis phase, BoogieNet 

could offer a guaranteed audio quality (determined by the segments used for re-

synthesis) at a bit rate which is lower than that of Opus-encoded narrowband speech. 

Unfortunately, the limited robustness of the implemented algorithms proved that the 
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intended scenario was over-optimistic. However, it is envisaged that this research work 

suggests a new and previously undermined research direction that will be realized in 

upcoming developments.  
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12 Conclusions 

This chapter summarizes the work presented in this dissertation, outlines contributions 

and discusses various innovative perspectives in networked music research emerging 

from recent achievements in the domain of machine musicianship. 

12.1 Summary and concluding remarks 

This dissertation proposes a novel scheme for audio communication in synchronous 

musical performances carried out over computer networks. The research approach uses 

techniques inspired from computer accompaniment systems, in which a software agent 

follows the performance of a human musician in real-time, by synchronizing a pre-

recorded musical accompaniment to the live performance. In networked settings, each 

performer participating in the distributed session is represented by a software agent, 

which adapts a pre-recorded solo performance of each musician to the live music 

performed at the corresponding remote location. Hence, this research focuses on the 

development of software agents supporting networked music performances by their 

ability to autonomously listen to the performance of each musician, notify remaining 

collaborators and perform the live music based on the received notifications. 

This writing builds up from contemporary musicological perspectives enabled by the 

proliferation of digital media and the wide availability of network communications in 

Chapter 1, the ‘Introduction’. It is shown that technological achievements have severely 

altered the way music is created, distributed and analysed with respect to overcoming 

conventional limitations, as well as permitting new and previously unforeseen 

possibilities for interacting with musical content. Concerning music analysis, 

innovations have permitted analysing music on the sound level rather than conventional 

score based analysis. Sound essentially captures all expressive aspects of music 

performance including expressive deviations from a predefined musical score. 

Computational sound analysis allows for unambiguously observing these deviations 

both at the note level (e.g. note articulations, rhythmic deviations) as well as at higher-

levels including the development of strategies for shaping a musical phrase or an entire 

movement during performance. Collectively, these observations allow investigating 

traditional theories on perception and cognition of musical meaning. Based solely on 

signal observations, machine learning processes allow modelling expressive 

performance using mathematical models. Although such models do not directly 

translate to the cognitive processes undertaken by humans, they manage to successfully 

deliver musical semantics in response to sound stimuli. An interesting perspective in 

this direction is to develop computer musicians capable of predicting or anticipating the 

future evolution of a music performance, hence simulating anticipatory processes such 
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as those taking place in the collaboration among the members of a performance 

ensemble. Computational models for musical anticipation can considerably alleviate 

communication problems especially when music performers are physically separated.  

Following, Chapter 2 entitled ‘Networked Music Performance’ provides an overview of 

research and development efforts in this domain. The chapter initially provides a brief 

historical overview of research initiatives and discusses that, although expert musicians 

become sceptical about remote performance collaboration, experimentalists have always 

been intrigued with the idea of musical interplay across distance. The chapter outlines 

the main research challenges manifested in this research domain by distinguishing 

between technical impediments and collaboration deficiencies. With respect to technical 

impediments, the most important obstacle impeding wide availability of NMP is the 

latency observed in the communication among musicians. It is discussed that the total 

communication latency comprises local latencies at the location of the transmitter and 

the receiver of digital media, as well as network latencies owing to volatile network 

paths and the actual geographical distance separating musicians. A separate section is 

devoted to studies attempting to measure latency tolerance in ensemble performance, 

known as Ensemble Performance Threshold (EPT), hence implicitly delineating the 

temporal limits of performers’ musical anticipation. These studies acknowledge that the 

precise value of the EPT depends on characteristic properties of the music being 

performed (e.g. tempo, instrumentation), however in most cases they agree that for 

uninterrupted ensemble performance communication latencies should not exceed an 

approximate value of 30ms. Following, the chapter outlines the fundamental 

constituents of an NMP system in terms of software architectures and network 

infrastructures. This description permits tracing potential causes of technical 

impediments throughout the entire route of real-time audio communication. Finally in 

terms of collaboration deficiencies, it is shown that developing intelligent user 

interfaces for NMP, subsuming machine listening capabilities, can significantly improve 

the experience of musicians and foster a plethora of novel perspectives in computer-

assisted musical collaboration. 

Machine musicianship is discussed in Chapter 3. The chapter begins by defining the 

terms machine listening and machine musicianship and further distinguishing between 

computational approaches with the objective of understanding musical cognition in 

humans and those aiming at extrapolating meaningful information from audio signals to 

be further used in a wide range of practical software applications. Then, the overall 

methodology followed by machine listening and auditory scene analysis systems is 

described using examples on how they are realized in different disciplines concerning 

speech, environmental sounds and music. The section that follows focuses on four 

functionalities of machine musicianship, namely on automatic music transcription, 

audio to score alignment, audio synchronisation and computer accompaniment. For 

each of these functionalities, existing research initiatives and computational techniques 

are discussed so as to provide a baseline for the possibilities available for 

experimentation with the research approach under investigation. Finally, the chapter is 
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concluded by discussing that - at the time of this writing - there are very few research 

initiatives attempting to exploit machine musicianship in the context of NMP. 

An additional research domain considered relevant to the present work, is that of 

Concatenative Sound Synthesis (CSS) and it is presented in Chapter 4. The objective of 

CSS systems is to generate a waveform by concatenating segments of pre-recorded 

sound material, given a target specification (most commonly provided as an audio 

stream or a symbolic representation, e.g. a score), so that the resulting waveform will 

optimally resemble the target, in some sense which depends on the target application.  

Initially, the chapter presents the overall methodology employed by CSS systems and 

the alternative computational techniques that have been facilitated in different 

applications and reported in the relevant literature. As this type of sound synthesis 

originates from speech synthesis systems, a brief overview of relevant speech synthesis 

and coding techniques is additionally provided.  Following, the chapter concentrates on 

music synthesis and some of the most popular approaches are presented and contrasted 

with the synthesis method to be implemented for the intended communication in NMP. 

The chapter concludes by showing that none of the currently popular CSS approaches 

attempts to satisfy all three challenges confronted by the system under investigation, 

which are the requirement for high quality instrumental synthesis, the fact that the target 

to be synthesis is provided as an audio signal (hence requiring prior analysis) and the 

fact that analysis of target and re-synthesis needs to take place within strict time 

constraints imposed by the EPT.  

The remaining part of the dissertation provides details on the research and development 

efforts carried out for the purposes of implementing the intended communication 

scheme for distributed music collaborations. 

Chapter 5 describes this research objective and presents the challenges to be confronted 

including strict real-time requirements, constrained not only in terms of using causal 

algorithmic processes, but also by restricting the total end-to-end communication delay 

that needs to be kept below the EPT. Concerning benefits, it is deduced that if the 

algorithms implementing the functionalities of ‘listening’ and ‘performing’ can become 

sufficiently robust, this type of communication can provide superior sound quality 

compared to alternative low bit-rate communication of music, such as MIDI. 

Equivalently, assuming that the algorithmic complexity of the proposed scheme can be 

effectively reduced to accommodate the requirement of the EPT, communication based 

on note notifications can prove more efficient, in terms of network resource 

consumption, than facilitating audio compression schemes.  Following, a number of 

assumptions/prerequisites are set on the usage scenario, so as to allow early 

investigations carried out in the present dissertation to produce some useful research 

results. These assumptions are mainly concerned with the fact that the signals to be 

analysed are constrained to mono-timbral and monophonic music and that the 

performance needs to be a precise interpretation of a pre-defined music score. The last 

section presents the block diagram of the entire prototype system to be developed.  
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The next chapter is devoted to audio features. It is intended as a reference for the 

chapters that follow and it provides definitions for a number of audio features that are 

commonly used in audio segmentation and machine listening research. Besides 

mathematical definitions, the chapter attempts to provide insight to the expected 

temporal behaviour of the various features. This is achieved using diagrams depicting 

the evolution of audio features for an example musical phrase. Possibly the most 

significant contribution of this chapter is a discussion on the importance of the 

parameterisation of the Fourier transform when computing spectral features intended for 

real-time music analysis. Specifically, it is shown that as audio should be captured in 

sufficiently small chunks to mitigate the effect of long buffering delays, zero-padding 

may be preferred to highly overlapping analysis windows, as it increases the 

contribution of each chunk to the overall spectral energy. Moreover, it is shown that a 

rectangular windowing functions may be more appropriate to a bell-shaped window 

when the emphasis is on early onset detection. Specifically, an onset occurring at the 

location of a ‘window-hop’ may be dumped due to windowing functions that are 

smoothly attenuating the amplitude near the boundaries of the analysis window, where 

the hop actually occurs. It is therefore more likely that indications of sudden energy 

bursts are detected earlier in the signal, when using a rectangular window. 

Subsequently, chapter 7 is devoted to the offline audio segmentation process. This 

process aims at automatically generating a pool of audio segments, each corresponding 

to a different note of the solo recording of each musician participating in an NMP 

session. During NMP, these segments are transformed in terms of duration and 

amplitude and appropriately concatenated to re-synthesize the performance of each 

musician at the location of remote collaborators. The chapter initially discusses the 

acoustic characteristics of note onsets and how these diverge depending on the 

instrument timbre as well as on expressive articulation. It is discussed that the relevant 

literature distinguishes between two types of onsets, namely salient onsets associated 

with strong transients corresponding to energy bursts in the high frequency spectrum 

and subtle onsets that do not exhibit such abrupt behaviour and correspond to smooth 

sound generation mechanisms or subtle pitch changes. Following the general 

methodology of blind onset detection algorithms is presented in three steps (i.e. pre-

processing, reduction and peak-picking) along with representative examples of how 

these steps have been implemented in previous research initiatives. Finally, the chapter 

presents the offline audio segmentation algorithm that was devised and implemented in 

the final software prototype. It is shown that this algorithm is informed by the number 

of notes that need to be found (as provided by the corresponding score of the music 

piece) and that subtle onsets are detected using instantaneous pitch detection by means 

of a wavelet transform. In comparison with conventional onset detection algorithms, 

these two aspects are intended to increase the robustness of onset detections for a wide 

variety of instrument timbres and expressive articulations.  

Chapter 8 is devoted to the methodology followed for the purposes of tracking the 

performance of each musician in real-time. This represents the ‘listening’ component of 
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the system. As listening is achieved by means of HMM score following, the chapter 

provides an elaborate discussion on the mathematical representation of these models. Of 

particular importance is a section devoted to design considerations manifested when 

developing HMMs for machine listening tasks. This includes a number of challenges I 

was confronted with, during extensive experimentation with various model 

representations. Among other things, the section discusses HMM topologies, and 

problems related to numerical instability, increased memory requirements and the lack 

of sufficient data to effectively train such models. This discussion is informed by 

examples of how these problems have been approached in the relevant literature and the 

workarounds I employed in my implementation, so as to increase the computational 

performance of the real-time performance tracking component. Finally, implementation 

specific details are recapitulated in the last section, which additionally presents the 

block diagrams for the processes of HMM training and the real-time decoding. 

Chapter 9 presents the methodology followed for re-synthesizing the live performance 

of each musician by using the segments of a prior solo recording. This constitutes the 

‘performing’ component of the system. The employed methodology is called segmental 

re-synthesis, so as to avoid confusion with well-known concatenative sound synthesis 

approaches. The chapter initially elaborates on relevant studies in expressive music 

performance. It is argued that there are numerous possibilities in deviating from mere 

score rendition, including the timing of different events, chord asynchronies, slight pitch 

deviations, variations in dynamics, note articulations and so on. It is discussed that, in 

line with Meyer’s (1956) notion of structural meaning, most of these studies emphasize 

on the importance of musical structure driving performers’ intentions with respect to 

musical expression. The most conscious and readily tractable expressive nuances are 

concerned with loudness and tempo variations within a melodic or harmonic 

progression. Consequently, these are the main properties addressed in expression-aware 

audio systems. The chapter also discusses that applying audio transformations in 

expressive musical collaboration, as for example in computer accompaniment systems, 

necessitates the implementation of anticipatory processes predicting the transformations 

that need to be applied prior to rendering, similarly to the musical anticipation occurring 

between the members of a performance ensemble. Then, the chapter provides an 

overview of the most widely used waveform time-scaling techniques, which are the 

phase vocoder and the PSOLA transforms, and presents the approach implemented in 

the context of this work, regarding the anticipation of expressive deviations, amplitude 

and time-scaling transformations as well as techniques for eliminating signal 

discontinuities at the junction point of consecutive audio segments.  

The remaining two chapters are devoted to the implementation details and the 

experimental evaluation of the software prototype that was implemented as a result of 

this doctoral research.  

Chapter 10 describes the implementation of this software framework. It is given the 

name BoogieNet and it has been implemented in C++. BoogieNet is downloadable from 
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a personal webpage as open source software, packaged using a GNU/GPL license. The 

chapter provides a user manual, for researchers wishing to experiment with this 

framework and further describes its object-oriented design in terms of the implemented 

classes and some associated text files that are generated by the software. Finally, the 

chapter lists all third party libraries that have been used in the implementation of 

BoogieNet.  

Chapter 11 presents the evaluation of the BoogieNet software prototype. Specifically, 

BoogieNet has been evaluated for its algorithmic performance in the machine listening 

task, comprising the functionalities of offline audio segmentation and HMM score 

following as well as for its efficiency in terms of network resource consumption, in 

permitting music performers to communicate across distance. Algorithmic performance 

has been evaluated on a small dataset of solo monophonic instrument performances 

comprising 23 music pieces. In terms of actual performance measures it was shown that 

BoogieNet yields a similar performance, to onset detection and score following 

algorithms reported in the relevant literature. Specifically, it was shown that as the 

results of the offline audio segmentation process are further used for initialising the 

HMM model for each music piece, the performance of the score following algorithm is 

determined by that of the offline segmentation. Errors of the offline segmentation 

process are propagated to the score following process, yielding an approximate 25% 

degradation in the number of correct detections. Although the score following algorithm 

has a performance that is suboptimal to that of audio segmentation, it was found that 

training the model prior to real-time decoding improves the performance of real-time 

decoding by an approximate factor of 12%. To statistically confirm this fact, a 

significance test revealed a 95% significance of the hypothesis that the implementation 

of the Baum-Welch algorithm for training the HMM, improves the performance of 

score following compared to the performance achieved prior to Baum-Welch training.  

With respect to evaluating different instrument timbres, it was shown that the offline 

audio segmentation algorithm yields superior performance for percussive instruments 

and reaches the minimum of its performance for bowed string instruments. This does 

not hold for the score following process which is heavily dependent on pitch 

information. Non-chromatic percussive instruments produce highly in-harmonic sounds 

and therefore the observation probabilities of the HMM should not rely on pitch 

information. Finally, the algorithm for segmental re-synthesis was not evaluated for 

algorithmic performance, however it was discussed that the main shortcoming of its 

current implementation is the fact that time-scaling transformations assume that the 

offline segmentation process is fully accurate. Errors introduced during offline audio 

segmentation will result in distortions on the synthesised signal. Thus, a more robust 

approach needs to be incorporated both for the anticipation of expressive deviations in 

music performance as well as for time scaling the pre-existing solo recording.  

In addition to experiments evaluating the algorithmic performance of BoogieNet, a 

network experiment was conducted to provide some insight the expected network 
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traffic, while disregarding errors in algorithmic performance. It was elucidated that the 

proposed communication scheme has a variable bit rate, which depends on the rate of 

detected onsets. The implemented UDP communication mechanism results in a separate 

network packet of 50 bytes transmitted at every onset detection. It is discussed that the 

actual bit-rate may be computed based on the instant tempo and the score structure, as a 

function of the number of the score events per second. It is for example estimated that 

having four semiquavers per beat at a tempo of 200bpm will result in an expected bit 

rate of 5.3kbps. In comparison, transmitting monophonic audio of CD quality requires 

730kbps. As for audio compression, the Opus codec, which is the present state of the art 

in low-latency and low-bit rate communication, requires a minimum bit rate of 6kbps 

for speech quality audio. Hence, in terms of bandwidth consumption the proposed 

scheme is superior to alternative state of the art schemes in audio communication. 

However, the benefits offered by the BoogieNet approach are not really on bandwidth 

consumption, but rather on extremely low algorithmic complexity, resulting in 

processing latencies of up to 3ms and the fact that, as the communication bit rate is very 

low, it is possible to transmit multiple replicas of each notification, so as to entirely 

alleviate from the effects of network packet loss. Latencies owing to network 

transmission are not directly addressed by the present work, as the proposed 

optimisations are not related to network routes or communication protocols. However, 

low algorithmic delays in the lifecycle of an audio chuck, allow for accommodating 

higher delays during transmission. Respecting the value of the EPT, this results in a 

range of allowable transmission delays up to approximately 27ms. Using ping requests 

that provide a theoretical maximum on transmission delays, it was found that this is in 

the range of expected delays when using xDSL connections and geographical distances 

that are roughly within the same country. However, in cross-country communications, 

as for example between Greece and Germany, it is necessary to also apply optimisations 

on the network paths. Nevertheless, allowing intra-country communications using 

commonly available xDSL lines and complete elimination of the effects of network 

packet loss, offers a significant advantage in the communication of music collaborators.  

12.2 Contributions  

The main contribution of this work is the investigation of a novel paradigm for musical 

collaboration across computer networks and it is encapsulated in the implementation of 

the BoogieNet software prototype. This prototype has been made available as open 

source software, hoping that researchers and practitioners will be keen to experiment 

with the proposed idea and further contribute to the realisation of this type of artificially 

intelligent musical communications. To increase visibility, this work has been presented 

and published in the proceedings of two international conferences (Alexandraki and 

Bader 2014; Alexandraki and Bader 2013).  

The following list recapitulates some contributions and findings of this work: 
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 An elaborate discussion on the importance of the parameterisation of the Fourier 

transform when it is used for extrapolating musical information in real-time 

context, as described in section 6.3. 

 An offline onset detection algorithm, presented in section 7.4.1, which takes into 

account both salient onsets, associated with strong initial transients, as well as 

subtle pitch changes. 

 An elaborate discussion on design issues to consider when implementing HMMs 

for music performance following, in section 8.3. 

 An implementation of an HMM score following algorithm for monophonic 

instruments, presented in section 8.4  

 A new method for lightweight low-distortion time scaling of monophonic music, 

informed by the timing of note onsets and their pitch frequencies, presented in 

section 9.3.2 

Although, offering robust and unconstraint communication in music performance using 

the proposed scheme is still a long way off, this dissertation is a first step towards this 

important long-term goal. Throughout various investigations it was found out that 

realizing the intended scenario was highly optimistic in terms of the expected 

algorithmic performance of the audio analysis algorithms. It was shown, that like the 

main bulk of Music Information Retrieval research initiatives, the algorithms 

implemented in BoogieNet cannot fully cope with the abundance of timbral and 

temporal complexities introduced in the music performance of acoustic instruments and 

human musicians. Although the implemented algorithms achieve to successfully 

recognize the majority of musical events, they are not meant to be 100% robust.  

This is probably the most outstanding challenge encountered when aiming to derive 

perceptually meaningful information using mathematical models and computational 

prototyping. No such algorithm can fully model the complexities of the human brain. 

Therefore, when aiming to develop applications that require high accuracy, emphasis 

should be given to copying with inaccuracies. This can be done either by integrating 

human knowledge in the implementation of these models, for example heuristics rules, 

or by implementing algorithms that are able detect their failures and re-adjust their 

parameters during functional operation, i.e. without failing to carry on . 

12.3 Implications, shortcomings and future perspectives 

The motivation of the work presented in this dissertation lies in the development of a 

system which will be able to progressively learn and model the individualities of each 

performer, with respect to music expression. The original idea was to implement an 

artificial ‘clone’ of each musician, capable of developing musical skills and increasingly 

improving its resemblance to the human performer though continuous use. In such an 

ideal scenario, musicians would be able to travel with their clones and use them to 

collaborate with their peers from different locations across the globe. 
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This vision raised a number of questions, clearly not possible to address within the time 

limits of a doctoral dissertation. For example, is it possible to formulate general rules of 

how performers develop strategies to shape their personal interpretation of any given 

music work? What are the distinguishing characteristics of each individual performance 

of the same music work when it is performed by the same artist? In other words, what 

are the parameters that are susceptible to change from one performance to another? 

How does collaboration between the members of a performance ensemble reshape one’s 

own intentions with respect to musical expression? As already elaborated in various 

places within this dissertation, there is an abundance of possibilities in deviating from 

faithful score rendition. Is it possible to define subsets of such deviations that are more 

commonly adopted by certain artists? If so, how could these personal deviations relate 

to the actual structure residing in a music piece? 

It is well known that expressive performance is an extremely complex cognitive and 

artistic phenomenon, not possible to explain using general rules. In this regard, two 

research tendencies are being pursuit: the one aiming at understanding the specificities 

of this complex phenomenon and that aiming at developing expression-aware audio 

systems. It may be argued that artificial intelligence and inductive machine learning 

applied on large music corpora can provide successful developments of expression-

aware audio systems, without requiring full comprehension of the underlying 

mechanisms of music perception. Nevertheless, and almost by definition, the maximum 

performance that can be achieved by machine learning models will always be 

suboptimal to our perception of music. A plausible question in this direction relates to 

whether inaccuracies of such models lead to systems failing to deliver their intended 

functionality.  

The perspective investigated in this dissertation falls in this category of highly 

challenging applications, with respect to the required accuracy of the algorithms of 

machine listening and expression-aware audio rendering. This is probably the reason 

why the proposed perspective has not been previously investigated and the reason why 

the most popular applications of inductive machine learning in music are concerned 

with either music similarity and recommendation or with general purpose beat tracking, 

chord recognition, music transcription etc., thereby presenting solutions that are less 

vulnerable to algorithmic failures. It is likely that certain applications, such as the one 

investigated here, require a better understanding of human psychology and cognition in 

order to cope with the inaccuracies of mathematical models and recover from 

algorithmic failures. Yet, the performance model generated for each musician by the 

system implemented here may be regarded as a ‘fingerprint’, which is unique to each 

particular performer and therefore encapsulates all distinctive aspects of his/her own 

understanding to music expression. 

Ultimately, there are a number of shortcomings in the present work, to be addressed in 

ongoing and future research efforts. These shortcomings have been discussed in 
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different places within the document and they are summarised here, along with some 

ideas on how they can be addressed in future developments. 

The most important limitations of the current approach are outlined in the pre-requisites 

that were set forth during the initial phases of research investigations (section 5.3). For 

instance, one straightforward extension of the investigated algorithms is to 

accommodate polyphonic, in addition to monophonic, musical instruments. At present, 

there are numerous research works addressing polyphonic music alignment (e.g. Hu, 

Dannenber and Tzanetakis 2003; Soulez, Rodet and Schwarz 2003; Niedermayer 2009), 

with a few of them presenting online and real-time approaches (e.g. Otsuka et al. 2011, 

Duan and Pardo 2011a; Montecchio and Cont 2011a; Cont 2010). However, these 

works do not clearly address real-time constraints in terms of the time taken by the 

system to respond to an alignment decision.  

Notably, recent approaches to score scrolling and real-time audio synchronisation 

increasingly suggest Particle Filter based models instead of conventional DTW or 

HMM approaches. Particle Filters approaches were briefly discussed in section 3.2.2 

and offer several advantages over conventional models, including the fact that they are 

capable of modelling both audio-to-audio as well as audio-to-score alignments, they are 

highly efficient in real-time operation, they are robust to performance discrepancies 

both at the note level as well as the structural level (e.g. omitted repetitions) (Xiong and 

Izmirli 2012), and also the fact that they do not require prior training.  

In fact, an alternative approach to the one investigated in this dissertation would be to 

implement a Particle Filter solution to directly align the live recording of each 

performer to the pre-existing solo recording, thus alleviating from the requirement of 

obtaining a score representation of the piece to be performed. As there is evidence that 

Particle Filters can cope with performance deviations, including performance errors, 

such an approach would alleviate from an additional deficiency of the current 

implementation, which is concerned with the fact that performers are assumed to 

precisely interpret the score without any errors. Clearly, this is a rather ideal situation 

that rarely ever occurs. The employed algorithms need to take into account performance 

errors as well as the fact that, in cases where collaboration occurs for the purposes of a 

music rehearsal, a music lesson or an improvisation session, musicians will occasionally 

stop before the end or repeatedly perform certain phrases or sections within a music 

piece.  

Finally with respect to real-time re-synthesis, it could have been more appropriate to 

time stretch or otherwise transform the original solo recording without prior 

segmentation and segment concatenation, in a similar approach to the one employed for 

example by Raphael (2003). In this case, phase vocoder time-scaling techniques offer a 

widely adopted solution. However, the reason for choosing prior segmentation and 

segment concatenation in the present investigations originates from the initial idea of 

ultimately allowing a performer to perform arbitrary music pieces and facilitating a data 

corpus to re-synthesize one’s expressive performance from previously recorded phrases 
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or note articulations of that same performer and do so in real-time. Time-stretching a 

pre-existing recording would preclude the possibility of employing the proposed 

communication scheme for improvisational music. In contrast, when concatenating 

small segments of audio, any audio stream can be potentially rendered by means of 

concatenative sound synthesis. Hence, in terms of segmental re-synthesis, future 

research efforts are oriented towards generating a larger and appropriately annotated 

audio corpus for each musician and implementing algorithms for real-time unit 

selection. This also gives greater flexibility to the types of interpreted nuances that may 

be accommodated by the proposed approach.  

Clearly, there are endless possibilities in experimenting with the idea of communicating 

performance intentions, to be rendered at remote locations. These perspectives demand 

further research on how to encode or represent such intentions and how to process 

existing signals to more appropriately reflect these intentions. This could go up to 

modelling the cognitive skills employed when developing music improvisation 

strategies (William and Wallace 2004; Pressing 1987), human-computer music 

improvisation (Young 2010; Walker 1997) or even computer musicians autonomously 

collaborating from distance with or without human supervision controlling the evolving 

musical structures.  
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13 Appendix: Numerical data obtained in the 

evaluation experiments 

This appendix provides details on the numerical data obtained throughout the evaluation 

experiments of the BoogieNet prototype. This data is maintained in the dissertation so 

as to provide a more elaborate account on the acquisition of the aggregated results 

presented and discussed in Chapter 11, as well as for possible use in future 

investigations. 

Specifically, Table 13-1 presents the evaluation measures obtained by applying the 

offline audio segmentation algorithm to the music dataset that was used in the 

evaluation. The detailed explanation of the facilitated measures is provided in section 

11.2.2. The table lists the number of correct onset detections, false positive and false 

negative detections, as well as timing precision and algorithmic complexity, in terms of 

the time required to segment the audio recording. These results are summed or averaged 

(depending on the measure depicted on each column) for the audio files belonging to 

each instrument class and also summed/averaged for all the pieces in the dataset. 

Table 13-2 and Table 13-3 present the results of the HMM score following algorithm 

before and after Baum Welch training, respectively. In this case, the last two rows of the 

‘Precision Rate’ column depict piecewise precision rate and overall precision rate for 

the two algorithms.  

Finally, Table 13-4 tabulates the UDP traffic observed during the network experiment 

described in section 11.3. This data has been captured using Wireshark, an open source 

network protocol analyser. 

The experiments were performed using two identical Lenovo Thinkpad laptop 

computers having an Intel Core Duo 2GHz processor, 2GB RAM and a CentOS5 Linux 

distribution. 
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Table 13-1: Piecewise, instrument-class and global evaluation results for the offline audio segmentation algorithm.  

  

FILE Ogt Ocd Ofn Ofp Avg. Abs. 
Offset (ms) 

Mean 
Offset 
(ms) 

Std 
Offset 
(ms) 

P R F Time 
Elapsed 

(ms) 

WOODWIND FLUTE1 24 24 0 0 14.51 0.97 18.02 1.00 1.00 1.00 657.00 

FLUTE2 26 26 0 0 11.12 4.46 16.38 1.00 1.00 1.00 486.12 

TENORSAX1 9 9 0 0 13.93 5.80 15.87 1.00 1.00 1.00 400.23 
BARITONESAX1 35 34 1 1 5.02 0.68 8.25 0.97 0.97 0.97 662.72 

BASOON1 65 62 3 3 13.68 13.68 6.95 0.95 0.95 0.95 599.09 

BASOON2 36 34 2 2 6.43 5.06 10.97 0.94 0.94 0.94 954.25 

CLARINET2 94 77 17 17 10.99 8.28 13.58 0.82 0.82 0.82 1382.18 

CLARINET3 34 33 1 1 15.90 13.92 14.62 0.97 0.97 0.97 1231.20 

SAX2 38 36 2 2 14.67 14.67 7.57 0.95 0.95 0.95 1002.70 

TOTAL /AVG 361 335 26 26 11.80 7.50 12.47 0.96 0.96 0.96 852.83 

BRASS TRUMPET1 24 24 0 0 7.07 0.75 10.49 1.00 1.00 1.00 856.45 
TRUMPET2 24 24 0 0 12.78 11.93 8.30 1.00 1.00 1.00 756.45 

HORN1 42 36 6 6 10.57 6.44 14.13 0.86 0.86 0.86 958.63 

TROMBONE1 23 22 1 1 8.59 8.28 8.32 0.96 0.96 0.96 653.48 

TOTAL /AVG 113 106 7 7 9.75 6.85 10.31 0.95 0.95 0.95 806.25 

BOWED VIOLIN4 36 34 2 2 7.08 6.32 10.78 0.94 0.94 0.94 765.69 

VIOLA1  32 24 8 8 9.53 6.22 14.00 0.75 0.75 0.75 856.47 

VIOLIN7 40 32 8 8 11.78 8.63 14.43 0.80 0.80 0.80 1205.38 
TOTAL /AVG 108 90 18 18 9.46 7.06 13.07 0.83 0.83 0.83 942.51 

PLUCKED GUITAR1 25 22 3 3 11.37 10.35 9.69 0.88 0.88 0.88 845.26 

GUITAR2 63 51 12 12 4.40 1.24 11.73 0.81 0.81 0.81 845.26 

TOTAL /AVG 88 73 15 15 7.88 5.80 10.71 0.84 0.84 0.84 845.26 

PERCUSSION KICK1 25 25 0 0 4.75 -4.63 3.14 1.00 1.00 1.00 756.40 

SNARE1 103 103 0 0 7.93 7.93 8.03 1.00 1.00 1.00 1466.50 

RIDE2 84 84 0 0 4.81 -1.19 5.79 1.00 1.00 1.00 769.89 
TOTAL /AVG 212 212 0 0 5.83 0.70 5.65 1.00 1.00 1.00 997.60 

VOICE VOICE1 25 20 5 5 13.94 13.94 10.66 0.80 0.80 0.80 764.45 

VOICE2 62 59 3 3 11.55 11.55 11.91 0.95 0.95 0.95 1154.10 

TOTAL /AVG 87 79 8 8 12.75 12.75 11.29 0.88 0.88 0.88 959.27 

GLOBAL PIECEWISE TOTAL /AVG 969 895 74 74 10.10 6.75 11.03 0.93 0.93 0.93 883.91 

 

 



 

214 

 

Table 13-2: Piecewise, instrument-class and global evaluation results for the real-time audio to score alignment algorithm without HMM training (RTAS-INIT). 

  

FILE Ogt Ocd Ofn Ofp Avg. Abs. 
Offset (ms) 

Mean 
Offset (ms) 

Std 
Offset 
(ms) 

P R F Precision 
Rate 

Avg. 
Latency1 

(ms) 

Avg. 
Latency2 

(ms) 

WOODWIND FLUTE1 24 24 0 0 17.90 -7.26 22.44 1.00 1.00 1.00 100.00% 0.62 1.38 

FLUTE2 26 22 4 2 12.71 0.22 19.85 0.92 0.85 0.88 84.62% 1.18 2.86 

TENORSAX1 9 8 1 1 11.07 8.71 10.45 0.89 0.89 0.89 88.89% 0.79 2.54 
BARITONESAX1 35 29 6 1 10.87 6.83 13.49 0.97 0.83 0.89 82.86% 0.94 1.97 

BASOON1 65 55 10 8 19.15 16.07 13.74 0.87 0.85 0.86 84.62% 1.12 1.80 

BASOON2 36 25 11 19 9.73 6.24 14.40 0.57 0.69 0.63 69.44% 0.90 1.41 

CLARINET2 94 46 48 35 16.79 10.57 17.29 0.57 0.49 0.53 48.94% 1.40 2.49 

CLARINET3 34 30 4 1 16.16 13.26 14.25 0.97 0.88 0.92 88.24% 0.89 2.56 

SAX2 38 35 3 8 19.73 15.75 14.47 0.81 0.92 0.86 92.11% 0.99 2.22 

TOTAL /AVG 361 274 87 75 14.90 7.82 15.60 0.84 0.82 0.83 82.19% 0.98 2.14 

BRASS TRUMPET1 24 24 0 0 23.24 -22.47 10.71 1.00 1.00 1.00 100.00% 1.32 3.00 
TRUMPET2 24 22 2 2 11.66 11.29 7.30 0.92 0.92 0.92 91.67% 0.86 1.61 

HORN1 42 31 11 10 20.27 -19.04 12.87 0.76 0.74 0.75 73.81% 1.07 1.52 

TROMBONE1 23 17 6 8 8.55 2.40 13.05 0.68 0.74 0.71 73.91% 0.85 1.29 

TOTAL /AVG 113 94 19 20 15.93 -6.95 10.98 0.84 0.85 0.84 84.85% 1.02 1.86 

BOWED VIOLIN4 36 22 14 8 7.37 5.33 10.92 0.73 0.61 0.67 61.11% 1.01 2.14 

VIOLA1  32 11 21 6 16.05 -0.61 20.95 0.65 0.34 0.45 34.38% 0.95 1.35 

VIOLIN7 40 20 20 20 12.66 10.92 12.09 0.50 0.50 0.50 50.00% 0.97 2.48 
TOTAL /AVG 108 53 55 34 12.03 5.21 14.65 0.63 0.48 0.54 48.50% 0.98 1.99 

PLUCKED GUITAR1 25 16 9 4 20.19 15.12 18.36 0.80 0.64 0.71 64.00% 1.04 1.46 

GUITAR2 63 12 51 0 10.64 0.97 12.94 1.00 0.19 0.32 19.05% 1.22 2.06 

TOTAL /AVG 88 28 60 4 15.42 8.04 15.65 0.90 0.42 0.52 41.52% 1.13 1.76 

PERCUSSION KICK1 25 13 12 2 4.59 -4.35 3.32 0.87 0.52 0.65 52.00% 0.57 2.06 

SNARE1 103 99 4 8 6.19 6.13 4.92 0.93 0.96 0.94 96.12% 0.69 2.03 

RIDE2 84 81 3 3 0.43 -0.14 2.23 0.96 0.96 0.96 96.43% 0.68 1.46 
TOTAL /AVG 212 193 19 13 3.74 0.55 3.49 0.92 0.82 0.85 81.52% 0.65 1.85 

VOICE VOICE1 25 14 11 16 22.53 14.65 21.57 0.47 0.56 0.51 56.00% 1.01 4.27 

VOICE2 62 39 23 19 9.99 4.06 13.59 0.67 0.63 0.65 62.90% 0.92 2.19 

TOTAL /AVG 87 53 34 35 16.26 9.35 17.58 0.57 0.59 0.58 59.45% 0.97 3.23 

GLOBAL PIECEWISE TOTAL /AVG 969 695 274 181 12.85 3.94 12.72 0.77 0.70 0.72 69.63% 0.92 2.01 

         
OVERALL PRECISION RATE 71.72% 
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Table 13-3: Piecewise, instrument-class and global evaluation results for the real-time audio to score alignment algorithm after HMM training (RTAS-TRAINED). 

  

FILE Ogt Ocd Ofn Ofp Avg. Abs. 
Offset (ms) 

Mean 
Offset (ms) 

Std 
Offset 
(ms) 

P R F Precisio
n Rate 

Avg. 
Latency
1 (ms) 

Avg. 
Latency2 

(ms) 

WOODWIND FLUTE1 24 23 1 1 12.62 -0.50 17.28 0.96 0.96 0.96 95.83% 0.62 1.38 

FLUTE2 26 22 4 2 11.83 1.81 18.18 0.92 0.85 0.88 84.62% 1.21 2.92 

TENORSAX1 9 8 1 1 10.16 10.16 13.10 0.89 0.89 0.89 88.89% 0.84 2.66 
BARITONESAX1 35 32 3 3 8.12 0.81 12.85 0.91 0.91 0.91 91.43% 0.91 1.95 

BASOON1 65 53 12 7 18.36 15.30 13.29 0.88 0.82 0.85 81.54% 1.09 1.82 

BASOON2 36 36 0 3 5.60 4.31 8.72 0.92 1.00 0.96 100.00% 0.91 1.42 

CLARINET2 94 64 30 23 17.45 13.77 16.95 0.74 0.68 0.71 68.09% 1.36 8.25 

CLARINET3 34 32 2 1 14.26 12.27 11.81 0.97 0.94 0.96 94.12% 0.92 2.54 

SAX2 38 36 2 2 20.47 16.60 14.88 0.95 0.95 0.95 94.74% 0.99 2.39 

TOTAL /AVG 361 306 55 43 13.21 8.28 14.12 0.90 0.89 0.90 88.80% 0.98 2.82 

BRASS TRUMPET1 24 24 0 0 20.82 -20.05 11.71 1.00 1.00 1.00 100.00% 1.31 3.01 
TRUMPET2 24 24 0 0 12.11 10.97 8.29 1.00 1.00 1.00 100.00% 0.81 1.55 

HORN1 42 31 11 8 17.93 -14.35 14.33 0.79 0.74 0.77 73.81% 1.07 1.52 

TROMBONE1 23 21 2 2 7.91 0.69 12.65 0.91 0.91 0.91 91.30% 0.86 1.31 

TOTAL /AVG 113 100 13 10 14.69 -5.69 11.74 0.93 0.91 0.92 91.28% 1.01 1.85 

BOWED VIOLIN4 36 25 11 14 7.99 3.92 10.61 0.64 0.69 0.67 69.44% 1.02 1.47 

VIOLA1  32 20 12 9 12.39 8.68 14.41 0.69 0.63 0.66 62.50% 0.98 1.48 

VIOLIN7 40 32 8 21 18.07 13.81 17.89 0.60 0.80 0.69 80.00% 0.97 3.13 
TOTAL /AVG 108 77 31 44 12.82 8.81 14.30 0.64 0.71 0.67 70.65% 0.99 2.02 

PLUCKED GUITAR1 25 19 6 10 16.02 6.39 19.21 0.66 0.76 0.70 76.00% 1.08 1.51 

GUITAR2 63 38 25 10 9.97 6.91 12.52 0.79 0.60 0.68 60.32% 1.53 2.50 

TOTAL /AVG 88 57 31 20 12.99 6.65 15.86 0.72 0.68 0.69 68.16% 1.30 2.01 

PERCUSSION KICK1 25 22 3 6 4.67 -4.53 3.14 0.79 0.88 0.83 88.00% 0.59 1.10 

SNARE1 103 73 30 13 6.60 5.39 6.35 0.85 0.71 0.77 70.87% 0.67 10.59 

RIDE2 84 80 4 3 0.44 -0.44 2.21 0.96 0.95 0.96 95.24% 0.67 1.41 
TOTAL /AVG 212 175 37 22 3.90 0.14 3.90 0.87 0.85 0.85 84.70% 0.64 4.36 

VOICE VOICE1 25 11 14 18 20.47 13.71 21.16 0.38 0.44 0.41 44.00% 0.95 2.31 

VOICE2 62 55 7 10 13.47 9.30 14.07 0.85 0.89 0.87 88.71% 0.92 2.20 

TOTAL /AVG 87 66 21 28 16.97 11.51 17.61 0.61 0.66 0.64 66.35% 0.93 2.26 

GLOBAL PIECEWISE TOTAL /AVG 969 781 188 167 11.99 4.79 12.32 0.79 0.79 0.79 79.14% 0.93 2.52 

         
OVERALL PRECISSION RATE 80.60% 
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Table 13-4: UDP traffic during the network experiment as captured by Wireshark 

No. Time (sec) Source Src. Port Destination Dst. Port Protocol Frame Length (bytes) 

1 0 192.168.1.101 46214 192.168.1.103 1000 UDP 50 

2 0.099819 192.168.1.103 54751 192.168.1.101 1000 UDP 50 

3 0.823857 192.168.1.101 39496 192.168.1.103 1000 UDP 50 

4 1.83393 192.168.1.101 39366 192.168.1.103 1000 UDP 50 

5 1.934338 192.168.1.103 44488 192.168.1.101 1000 UDP 50 

6 2.321186 192.168.1.101 42963 192.168.1.103 1000 UDP 50 

7 2.432878 192.168.1.103 42233 192.168.1.101 1000 UDP 50 

8 2.583623 192.168.1.103 60150 192.168.1.101 1000 UDP 50 

9 2.831974 192.168.1.101 43647 192.168.1.103 1000 UDP 50 

10 3.001732 192.168.1.103 55515 192.168.1.101 1000 UDP 50 

11 3.199005 192.168.1.103 47863 192.168.1.101 1000 UDP 50 

12 3.319713 192.168.1.101 50155 192.168.1.103 1000 UDP 50 

13 3.431206 192.168.1.103 58718 192.168.1.101 1000 UDP 50 

14 3.865326 192.168.1.101 49326 192.168.1.103 1000 UDP 50 

15 4.976182 192.168.1.103 36217 192.168.1.101 1000 UDP 50 

16 6.125333 192.168.1.103 34362 192.168.1.101 1000 UDP 50 

17 6.199962 192.168.1.101 37245 192.168.1.103 1000 UDP 50 

18 6.275751 192.168.1.103 40336 192.168.1.101 1000 UDP 50 

19 6.582174 192.168.1.101 52430 192.168.1.103 1000 UDP 50 

20 7.081526 192.168.1.101 48704 192.168.1.103 1000 UDP 50 

21 7.460547 192.168.1.103 38030 192.168.1.101 1000 UDP 50 

22 7.545815 192.168.1.101 60286 192.168.1.103 1000 UDP 50 

23 8.056818 192.168.1.101 58852 192.168.1.103 1000 UDP 50 

24 8.168506 192.168.1.103 43647 192.168.1.101 1000 UDP 50 

25 9.2064 192.168.1.101 56888 192.168.1.103 1000 UDP 50 

26 9.658851 192.168.1.101 48437 192.168.1.103 1000 UDP 50 

27 9.724748 192.168.1.103 36313 192.168.1.101 1000 UDP 50 

28 10.170239 192.168.1.101 57288 192.168.1.103 1000 UDP 50 

29 10.257437 192.168.1.103 43147 192.168.1.101 1000 UDP 50 

30 10.634132 192.168.1.101 51485 192.168.1.103 1000 UDP 50 

31 10.734271 192.168.1.103 59466 192.168.1.101 1000 UDP 50 

32 11.047644 192.168.1.103 48207 192.168.1.101 1000 UDP 50 

33 11.133359 192.168.1.101 50795 192.168.1.103 1000 UDP 50 

34 11.628323 192.168.1.103 51335 192.168.1.101 1000 UDP 50 

35 12.1508 192.168.1.103 35529 192.168.1.101 1000 UDP 50 

36 12.457709 192.168.1.101 37895 192.168.1.103 1000 UDP 50 

37 12.557053 192.168.1.103 32989 192.168.1.101 1000 UDP 50 

38 12.932 192.168.1.101 60641 192.168.1.103 1000 UDP 50 

39 13.160908 192.168.1.103 51235 192.168.1.101 1000 UDP 50 

40 13.3393 192.168.1.101 60829 192.168.1.103 1000 UDP 50 

41 13.636846 192.168.1.103 52262 192.168.1.101 1000 UDP 50 

42 13.781274 192.168.1.101 36422 192.168.1.103 1000 UDP 50 

43 14.256666 192.168.1.101 59088 192.168.1.103 1000 UDP 50 

44 15.146773 192.168.1.103 37179 192.168.1.101 1000 UDP 50 

45 15.220425 192.168.1.101 45198 192.168.1.103 1000 UDP 50 

46 15.821831 192.168.1.101 37243 192.168.1.103 1000 UDP 50 
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