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INTRODUCTION I

Introduction
The present work concerns simulation and closed-loop control of two-phase

flows.

The simulation of two-phase fluids and multi-phase fluids has attained a grow-
ing interest in the last decades. The treatment of multi-phase flows is involved
for several reasons. The phases are separated by fluid-fluid interfaces, whose
evolution has to be tracked. Furthermore, processes on the interface, which
depend on the fluids involved, influence the evolution of the free boundaries,
i.e. the fluid-fluid interfaces. Here by a phase we mean a distinct fluid that is
not mixed with other distinct fluids inside the fluid domain, and in the present
work we deal with the case of two phase flow.

There exist several approaches for modelling two-phase flow. In the so
called ‘sharp-interface’ approach the interface between two phases is modelled
as a lower dimensional manifold. Thus the thickness of the interface is assumed
to vanish. A commonly used model is presented in [GR11, 1.1.2]. It consists
of two Navier–Stokes equations in the two domains of pure fluid and containes
coupling conditions at the interface between the two fluid domains.

Approaches for the numerical solution of these equations differ in the way
how the unknown interface is represented. In interface tracking approaches
the unknown interface is explicitly discretized and its evolution is tracked
through the simulation. In volume tracking approaches the interface is im-
plicitly described by the zero-level-set of an appropriate level-set-function and
an additional equation for the evolution of this level-set-function is derived.
There exist many well developed codes implementing these approaches, see
e.g. [HTK+09] and [GR11].

On the other hand, topology changes like breakup or coalescence of inter-
faces have to be carefully captured by the model. For these phenomena phase
field models allow for a natural description of the topology changes in the
model. Such models assume that the fluid-fluid interface has a small positive
thickness and that the two phases are mixed inside this region. This is also
called ‘diffuse-interface’ approach.

One of the first models using this approach is the so-called Cahn–Hilliard
model ([CH58]) that describes phase separation of a binary fluid. It con-
tains a free energy that yields the separating effect. For a specific choice of
free energy, the ‘double-obstacle’ free energy, the model contains a variational
inequality. This free energy is first analytically investigated by Blowey and El-
liot in [BE91] and the existence of solutions is shown. We also note the review
[Ell89] for a deviation of the model and an overview on analytical results and
generalisations with a more general free energy. Concerning approaches for the
numerical solution of the Cahn–Hilliard system with double-obstacle free en-
ergy we note the publications [BE92, BBG99, GK07, BN09, BBG11, HHT11].
In [BE92] a discretization scheme for the solution of the Cahn–Hilliard system
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is provided, that preserves the variational inequality in the fully discrete set-
ting. The authors provide stability, convergence and error bounds for the fully
discrete scheme. The fully discrete variational inquality is treated iteratively
by an active-set strategy. In [BBG99] the case of degenerate mobility is inves-
tigated. Here degenerate mobility means, that some diffusion is restricted to
the interface. The authors ensure properties of the solution arising from the
degenerate mobility by a variational inequality, and they present a discrete
scheme for which they provide well-posedness and stability results. They show
numerical simulations based on a splitting scheme for the variational inequality
and a discrete cosine transformation on homogeneous meshes. In [GK07] an
Uzawa iteration for a fully discretized Cahn–Hilliard system together with a
multigrid preconditioner on the interface is proposed. The variational inequal-
ity is treated by monotone multigrid. In [BN09] an Uzawa multigrid iteration
is used for the numerical solution of the Cahn–Hilliard system and reliable
a posteriori error estimation is performed. In [BBG11] the authors reformu-
late the Cahn–Hilliard equation as an optimization problem and use a primal
dual active set method for the solution of the resulting optimality system in
the discrete setting. In [HHT11] the variational inequality is relaxed using
Moreau–Yosida regularization and a semi-smooth Newton method in function
space is applied for the numerical treatment of the relaxed Cahn–Hilliard sys-
tem. That paper also contains a convergence analysis of the relaxed solutions
to the solution of the variational inequality, as well as a reliable and efficient
error estimator for the error in the discrete solution.

The Cahn–Hilliard model only encorporates diffusion for the transport of
the particles. If additional advection occures, extensions of the model have
to be used. We refer to the review [AMW98] for an overview of available
diffuse interface models for hydrodynamics. In the case of fluids with the
same density a commonly used model is the so called model ‘H’ ([HH77]). It
couples the Cahn–Hilliard system for the description of the two-phase structure
to a Navier–Stokes system for the description of the velocity field. It fulfills
energy inequalities and thus is thermodynamically consistent, see e.g. [Abe07].
Concerning results on the existence of solutions we refer to [Boy99, Abe07].
For a convergent finite element scheme for this model we refer to [KSW08].
The authors solve linear systems arising through the simulation by combining
the multigrid solver for the Cahn–Hilliard system developed in [KW06] and the
preconditioning technique for Navier–Stokes equations presented in [KLW02].

The model ‘H’ copes only with fluids of the same density. To overcome
this restriction several new models are developed in the last decades. We note
the models presented in [LT98, Boy02, DSS07, AGG12]. The model presented
in [LT98] is termodynamically consistent but leads to a velocity field, that is
not solenoidal and the model contains a strong coupling of the Cahn–Hilliard
and the Navier–Stokes part. In [KKL04] a multigrid solver for this model is
proposed. The model presented in [Boy02] contains a solenoidal velocity field,
but is not consistent with thermodynamics, while the same holds for the model
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presented in [DSS07]. For the latter model this can be overcome by redefining
the kinetic energy, see [SY10]. Recently, in [AGG12], a thermodynamically
consistent model is proposed that contains a solenoidal velocity field. Most
couplings between the Cahn–Hilliard and the Navier–Stokes part of the model
are well known from the model ‘H’. Concerning existence of solutions for the
model presented in [AGG12] with different assumptions on the free energy and
data we refer to [ADG13a, ADG13b, Grü13]. A stable discretization concept
is proposed for the numerical simulation of this model in [GK14]. In [AV12]
the models [Boy02, DSS07, AGG12] are numerically compared by running the
rising bubble benchmark [HTK+09]. The results of the simulations are also
compared to sharp-interface numeric.

In Part A of this thesis we extend the results from [HHT11] to model
‘H’. We present a time discretization that is similiar to the scheme proposed
in [KSW08] and that yields a sequential coupling of the Cahn–Hilliard and
the Navier–Stokes system. We use Moreau–Yosida relaxation to treat the
variational inequality introduced through the double-obstacle free energy and
propose a semi-smooth Newton solver in function space. Reliable and efficient
error estimation is presented both for the Cahn–Hilliard and the Navier–Stokes
part, where the spatial discretization of the Cahn–Hilliard equation and the
Navier–Stokes equation are nearly independent.

We further apply this approach to the model [AGG12] to pass the rising
bubble benchmark [HTK+09] and we present a stable discretization scheme
for model [AGG12] that preserves the consistence with thermodynamics in the
fully discrete setting.

In the last decades there was notable progress on the mathematical theory
of control of one-phase flows, see [Bar11, NMT11]. Here we consider the case
of feedback control or closed-loop control, and in particular we are concerned
with the concept of ‘model predictive control’, see [GP11], which is also known
as receding horizon control. Here the control feedback is obtained from open-
loop control over short time horizons. This open-loop control is based on an
appropriate model of the underlying process. In [BMT01] and [Pro02] this
concept is used to control 2D channel flow, and in [HM07] it is applied to the
control of the Boussinesq approximation of the Navier–Stokes equation. In
the latter publication also the ‘instantaneous control’ concept is investigated.
The instantantaneous control approach is a variant of the model predictive
control approach. Here the open-loop optimal control problems are only solved
approximately, resulting in a faster evaluation of the feedback control law. For
the control of flows this concept is applied in [Cho95, CHK99]. In [Hin05a] it
is shown that instantaneous control is able to steer a velocity field towards a
desired configuration exponentially fast.

In Part B of this thesis we apply model predictive feedback control to two-
phase flow. We apply the instantaneous control concept to the system with
different densities investigated in Part A and give a short outlook to the general
model predictive control concept applied to the same model.
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Notation
For convenience, we start with some notation we use throughout this work.

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open bounded domain. Its boundary is
denoted by ∂Ω and is assumed to be sufficiently smooth. The outer normal
vector of unit length is denoted by νΩ. I = (0, T ] denotes a time interval.

By Lp(Ω)d we denote the space of all measurable functions on Ω, whose
modulus is Lebesgue-integrable up to the power of p ≥ 1 with values in Rd.

We use the conventional notation for Sobolev spaces. Especially we denote
by W k,p(Ω)d the Sobolev space of all functions possessing weak derivatives
up to order k in Lp(Ω). For p = 2 and k ≥ 1 we write Hk(Ω)d instead of
W k,2(Ω)d. For a subset D ⊂ Ω and f, g ∈ L2(Ω) we define (f, g)D =

∫
D
fg dx

with corresponding norm ‖f‖2
D = (f, f)D. For f ∈ L∞(Ω) we further define

‖f‖∞,D = ‖f|D‖L∞(Ω).
We frequently need the following subspaces

L2
(0)(Ω) := {v ∈ L2(Ω) |

∫
Ω

v dx = 0},

H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0 in the sense of traces},

H(div,Ω) := {v ∈ H1
0 (Ω)d | (div(v), q) = 0∀q ∈ L2

(0)(Ω)}.

The abbreviation ‘a.e.’ stands for ‘almost everywhere’.
As norm in H1

0 (Ω) we use ‖v‖2
H1

0 (Ω)
= ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)d

and we recall the
equivalence of this norm and the norm ‖v‖∗ = ‖∇v‖L2(Ω)d on H1

0 (Ω).
For a normed vector space V by V ∗ we denote its dual space, which is the

set of all linear and continous functionals A : V → R.
For more details on Lebesgue and Sobolev Spaces and also their dual spaces

we refer to [AF03].
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Part A

Simulation of the Cahn–Hilliard
Navier–Stokes system
In this main part of our work, we start with a description of the process we
consider in Section 1. We briefly introduce the Cahn–Hilliard equation in
Section 2. Thereafter we state the Cahn–Hilliard Navier–Stokes system with
equal densities and double-obstacle free energy in Section 3. This part is de-
voted to the numerical treatment of this system. For this in Section 4 we
state a time discretization scheme, that results in a sequential coupling of the
Cahn–Hilliard system and an Oseen system, and show existence of time dis-
crete solutions. Thereafter, in Section 5, we apply a relaxation method for the
numerical treatment of the variational inequality involved, and show conver-
gence of the solutions to the relaxed problem to the solutions of the original
problem for vanishing relaxation. In Section 6 we show that the relaxed sys-
tems can be solved using semi-smooth Newton’s method in function space, and
in Section 7 we provide a fully discrete concept for the numerical treatment
using the finite element method. The construction of spatial meshes is inves-
tigated in Section 8, where we develop reliable and efficient error estimators
for the adaptation of the spatial meshes. In Section 9 the all-over concept
is numerically investigated. In [HHT11] the presented concept is applied to
the Cahn–Hilliard system without transport and especially a residual-based
adaptive concept is developed. Here we extend these results to the case of the
Cahn–Hilliard Navier–Stokes system, where we adapt results obtained for the
Oseen system in [Jus11].

In Section 10 we extend our approach to the case of two-phase flow with
different densities. In particular we develop a time discretization scheme pre-
serving the sequential coupling exploited in the equal densitiy case. In Sec-
tion 11 we present a new time discretization scheme giving rise to a discrete in
time energy inequality that can also be conserved in the fully discrete setting,
provided the adaptive concept is modified accordingly.

1 Problem description and solution concept
We consider a domain Ω ⊂ Rd, d ∈ {2, 3}, filled with a fluid consisting of
two immiscible components A and B. Examples for such configurations can
be given by butan or toluene in water ([GR11]) or air in glycerol ([ABH+13]).
Thus when investigating the flow inside this domain one in particular has to
take care of the two-phase structure of the fluid. If the fluids are separated
by a sharp interface, the numerical treatment of this situation has to cope
equations for the fluid flow in both fluid domaines. Additionaly one also has
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to track the evolution of the interface which is transported by the flow and on
the other hand also influences the flowfield.

A standard model for this situation for example is given in [GR11, 1.1.2].
It consist of two Navier–Stokes equations in the respective phases together
with conditions on the stress tensor and the velocity across the interface. This
results in a Navier–Stokes system with discontinuous coefficients. Numerical
techniques for the treatment of two-phase flow based on a sharp-interface for-
mulation, such as front tracking approaches and level set methods are described
in e.g. [GR11, 6.2].

In the present work we use the diffuse interface approach, where the inter-
face is assumed to be smeared out over a small region of width 0 < γ � 1.
This technique is already proposed in the 19th century by Rayleigh and van
der Waals, see [Ray92, vanon]. The diffuse interface is described by an order
parameter c which satisfies c ≡ 1 in the pure phase of fluid A and c ≡ −1
in the pure phase of fluid B. A transition layer between these so-called bulk
phases is called diffuse interface. Instead of order-parameter we also use the
termini phase field or concentration.

In Sections 3–9 of Part A we consider the solution of the diffuse interface
model governed by a coupled Cahn–Hilliard Navier–Stokes system assuming
equal densities (model ‘H’ [HH77]). In Sections 10 and 11 we then investigate
a new Cahn–Hilliard Navier–Stokes model proposed in [AGG12] treating the
case of different densities. This model we control in Part B of this work.

2 Brief description of the Cahn–Hilliard system
In [CH58] J. W. Cahn and J. E. Hilliard develope a model for describing
spinodal decomposition of a binary alloy (see e.g. [FM08, Sig79]) using a diffuse
interface approach. Spinodal decomposition is observed if e.g. the temperature
of a homogeneous alloy of two metals with specific properties (e.g. Ag and Au
in [EAK+01]) is rapidly decreased. The mixture gets unstable and demixes
into its two components.

We denote the two fluids involved by A and B and denote the corresponding
concentrations by cA and cB. For describing the spatial distribution of the two
phases with only one variable we introduce an order parameter c as

c =
cA − cB
cA + cB

.

This order parameter c fulfills |c| ≤ 1, c ≡ 1 in the pure A-phase and c ≡ −1
in the pure B-phase. The transition region between these two phases is called
diffuse interface and separates the two phases.

The Cahn–Hilliard equation is a fourth order partial differential equation
describing the evolution of c in space and time, starting from some initial
distribution c0. It is convenient to split this equation into two equations of
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second order in space introducing a chemical potential w. The Cahn–Hilliard
system for c and w then can be written as

ct − div(m(c)∇w) = 0,

−γ2∆c− w + Ψ′(c) = 0,

with c(0) = c0 and ∇c · νΩ = ∇w · νΩ = 0. The diffusion coefficient function
m(c) ≥ 0 is the so called mobility. It is typically set to a constant positive
value, while the case of degenerate mobility, i.e. m(±1) ≡ 0, for example was
investigated in [EG96]. We also note a numerical comparison of simulations of
phase separation with degenerate and non-degenerate mobility in [BNN13].

The free energy Ψ is a of double-well type, i.e. it has exactly two minima
at c = −1 and c = +1. There are three common choices for Ψ. In the original
work [CH58]

Ψlog(c) =
θ

2
((1 + c) log(1 + c) + (1− c) log(1− c))− θ0

2
c2

is chosen, where log denotes the natural logarithm. This energy has two min-
ima if and only if θ < θ0 holds and one minimum if θ ≥ θ0 holds. Due to the
obstacle structure of the logarithmic functions involved this potential prevents
the concentration from reaching the pure states c = ±1. Frequently, the free
energy Ψlog is approximated by a polynomial of fourth order in the form

Ψpoly(c) =
1

4
(1− c2)2.

The use of this free energy simplifies the Cahn–Hilliard system, but does not
force the concentration to stay within its bounds, i.e. |c| ≤ 1 can in general
not be achieved.

A third choice of the free energy can be obtained by taking the limit θ → 0
in Ψlog (see e.g. [Abe07, BE91]). This yields the so called double-obstacle free
energy

Ψobst(c) =

{
1
2
(1− c2) if c ∈ [−1, 1],

∞ else.

This free energy is proposed in [OP88] and is first investigated analytically in
[BE91]. Due to its non-differentiability the Cahn–Hilliard system becomes

ct − div(m(c)∇w) = 0,

−(γ2∇c,∇(v − c))− (w, v − c)− (c, v − c) ≥ 0 ∀v ∈ H1(Ω), |v| ≤ 1.

In the following we use the double-obstacle free energy. Concerning the exis-
tence of solutions of the related Cahn–Hilliard system we refer to [BE91].

We note, that the Cahn–Hilliard system can be derived as a mass conserving
gradient flow for minimizing the Ginzburg–Landau energy given by

E =

∫
Ω

γ2

2
|∇c|2 + Ψ(c) dx, (2.1)

see [Ell89] and [BBG11].
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3 The Cahn–Hilliard Navier–Stokes system
The model we use in the first part of this work for the simulation of two-phase
flow is the so called model ’H’ in the nomenclatura of Hohenberg and Holperin
([HH77]). It is able to cope with the complex interaction between the interface
and the flow field. The interface influences the flow field through capillary
forces while the flow field transports the interface. It might be regarded as a
drawback of this model, that it assumes equal densities for both fluid compo-
nents. In Sections 10 and 11 we consider a new model which is able to handle
the case of different densities. However, since we intend to derive a numeri-
cal approach for the simulation of the two-phase fluid structure, we stick to
the model ‘H’ to develop the numerical scheme and the solver components.
The analysis presented in the following sections carries over to the model with
different densities in a natural way.

The form of the model we consider here is taken from [KSW08]. In strong
form it reads:

yt − η∆y + (y∇)y +∇p = −Kc∇w in Ω× I, (3.1)
div y = 0 in Ω× I, (3.2)

ct −
1

Pe
∆w + y∇c = 0 in Ω× I, (3.3)

−γ2∆c+ Ψ′(c) = w in Ω× I, (3.4)
∇c · νΩ = 0 on ∂Ω× I, (3.5)
∇w · νΩ = 0 on ∂Ω× I, (3.6)

y = g on ∂Ω× I, (3.7)
y(0, x) = y0(x) in Ω, (3.8)
c(0, x) = c0(x) in Ω. (3.9)

The flowfield is denoted by y, and p is the corresponding pressure. The phase
field is denoted by c, and the chemical potential is denoted by w. The viscosity
of the fluid is denoted by η = 1/Re, where Re denotes the Reynold number,
and the capillarity is given by K := 1. By Pe we denote the Péclet number
of the fluid. It can be regarded as a mobility of the two-phase structure. The
diffuse interface covers a region of width 0 < γ � 1. For simplicity we use
g ≡ 0. The initial concentration c0 is chosen to satisfy (c0, 1) = 0.

The function Ψ denotes the free energy of the system. Here we use the
double-obstacle free energy as described in Section 2, and thus (3.4) abbrevi-
ates a variational inequality.

In [Abe07, Ch. 6.5] Abels shows the existence of unique weak solutions to
(3.1)–(3.9) (at least for short time intervals) in two and three space dimen-
sions. Both the case of the logarithmic and the double-obstacle free energy are
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investigated. Weak solutions in the sense of [Abe07] especially fulfill

y ∈ BCω
(
I, L2

σ(Ω)d
)
∩ L2

(
I,H1

0 (Ω)d ∩ L2
σ(Ω)d

)
,

c ∈ L2
loc(I,H

2(Ω)),

∇µ ∈ L2(I × Ω).

Here BCω(I, L2
σ(Ω)d) denotes the topological vector space of bounded and

weakly continuous functions from I with values in L2
σ(Ω)d. It further holds

L2
σ(Ω)d := {f ∈ L2(Ω)d | div f = 0, νΩ · f |∂Ω = 0},

L2
loc(I,H

2(Ω)) := {f | f ∈ L2(I ∩B,H2(Ω)) for all balls B with I ∩B ⊂ I}.

4 Time-discrete Cahn–Hilliard Navier–Stokes
system

Our simulation technique is based on a semi-implicite time discretization that
we describe in this section. The discretization of the Cahn–Hilliard part is
performed following [Eyr98]. A comparison of different time discretizations for
a smooth free energy is carried out in [GT13]. The discretization of the cou-
pling between the Cahn–Hilliard and the Navier–Stokes system is performed
similiar to [KSW08] and yields a sequential coupling of the systems.

We define

K := {v ∈ H1(Ω) | |v| ≤ 1 a.e.}.

Let τ > 0 be the time step size. Then the values of c and y at told ∈ [0, T − τ ]
are denoted by cold ∈ K, and yold ∈ H1

0 (Ω)d. The values at time t = told + τ
are written as cτ , wτ , yτ and pτ .
Given (yold, cold), the tupel (cτ , wτ , yτ , pτ ) solves the problem:
Find cτ ∈ K, wτ ∈ H1(Ω), yτ ∈ H1

0 (Ω)d, and pτ ∈ L2
(0)(Ω) such that

ξ(yτ − yold, v) + η(∇yτ : ∇v) + at(yold, y
τ , v)

−(pτ , div v) + (cτ∇wτ , v) = 0 ∀v ∈ H1
0 (Ω)d, (4.1)

(−div yτ , q) = 0 ∀q ∈ L2
(0)(Ω), (4.2)

(cτ − cold, v) +
τ

Pe
(∇wτ ,∇v)− τ(cτyold,∇v) = 0 ∀v ∈ H1(Ω), (4.3)

γ2(∇cτ ,∇(v − cτ ))− (wτ , v − cτ )− (cold, v − cτ ) ≥ 0 ∀v ∈ K, (4.4)

with ξ = 1/τ . In order to simplify the notation, from now on we write c, w, y, p
instead of cτ , wτ , yτ , pτ .

For u ∈ Lq(Ω)d, q > d and v, w ∈ H1
0 (Ω)d we introduce

at(u, v, w) :=
1

2

(∫
Ω

((u∇)v)w dx−
∫

Ω

((u∇)w)v dx

)
. (4.5)
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We note that for all u ∈ H1
0 (Ω)d with div u = 0 there holds

at(u, v, w) =

∫
Ω

((u∇)v)w dx. (4.5’)

Whenever div u = 0 holds we use at(u, v, w) as in (4.5’), while (4.5) is used if
preservation of anti-symmetry with respect to the last two arguments is needed
in the discrete setting, i.e. at(u, v, w) = −at(u,w, v). The anti-symmetry
directly implies at(u, v, v) = 0. Due to [Tem77, Lem. II.1.1] there holds

at(u, v, w) ≤ C(d)‖∇u‖‖∇v‖‖∇w‖. (4.6)

For matrices A,B ∈ L2(Ω)d×d we use the notation

(A : B) :=

∫
Ω

A : B dx =

∫
Ω

d∑
i,j=1

(A)i,j(B)i,j dx.

Note that by using v ≡ 1 as test function in (4.3), we obtain (c, 1) = (cold, 1)
and thus mass conservation. To achieve this, it is essential to have the gradient
on the test function in the term arising from transport and that the boundary
integrals arising from integration by parts vanishes. The latter is encorporated
by prescribing y = 0 on the boundary.

Our time discretization sequentially couples the Cahn–Hilliard and the
Navier–Stokes system. Thus, for given yold we first solve (4.3)–(4.4) to ob-
tain c and w, and then solve (4.1)–(4.2) with c and w at hand.

Due to this sequential coupling we investigate (4.3)–(4.4) and (4.1)–(4.2)
independently and start with (4.3)–(4.4).

Analysis of (4.3)–(4.4)
In this section we show the existence of a unique solution to (4.3)–(4.4) ex-
ploiting results from [HHT11].

To prove existence and uniqueness of a solution to (4.3)–(4.4) it is conve-
nient, to introduce the following optimization problem

min
(c,w)∈K×V0

J(c, w) :=
γ2

2
‖∇c‖2 +

τ

2Pe
‖∇w‖2 − (cold, c)

subject to (4.3)
(P)

and to interpret the system (4.3)–(4.4) as the first order optimality system for
(P), see e.g. [Gar07, GK07]. Here V0 = {v ∈ H1(Ω) | (v, 1) = 0}. Note that,
if we interpret c ∈ K as control and w ∈ V0 as an according state, then (P)
has the flavour of a linear-quadratic elliptic optimal control problem with box
constraints on the control.

We start our investigation by some results concerning J .
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Lemma 4.1 ([HHT11, Lem. 3.1]). Let F denote the feasible set of (P). Then
the following properties hold true:

(i) F 6= ∅ and F ⊂ V0 × V0.

(ii) F is a closed and convex subset of H1(Ω)×H1(Ω).

(iii) J is strictly convex on F .

(iv) For every sequence (cn, wn)n∈N ⊂ F such that

‖cn‖H1(Ω)
n→∞−→ +∞ or ‖wn‖H1(Ω)

n→∞−→ +∞

we have limn→∞ J(cn, wn) = +∞.

Proof.

(i) We have F 6= ∅ since, due to Lax–Milgram’s theorem (A1), for choosing
c̃ ∈ K arbitrary with (c̃, 1) = (cold, 1) there exists a unique w̃ ∈ V0 such
that (c̃, w̃) is a solution to (4.3) since (cold − c̃, ·) + τ(c̃yold,∇·) ∈ V ∗0 (Ω).
Taking v ≡ 1 as test function in (4.3) we obtain (c, 1) = (cold, 1) = 0 and
thus c ∈ V0. Since w ∈ V0 by construction we have F ⊂ V0 × V0.

(ii)–(iv) See [HHT11, Lem. 3.1].

Theorem 4.2 ([HHT11, Th. 3.2]). The problem (P) has a unique solution
(c?, w?). Moreover, there exists a Lagrange multiplier p? ∈ H1(Ω) such that
w? = p?−(p?, 1) and (c?, p?) is a solution of (4.3)–(4.4). Conversely, if (c?, p?)
is a solution to (4.3)–(4.4), then (c?, w?) with w? = p? − (p?, 1) is the unique
solution of (P).

Proof. For convenience we here repeat the proof from [HHT11] with slight
modification.

The existence and uniqueness of the solution of (P) are immediate con-
sequences of the previous lemma. The existence of a Lagrange multiplier p?
follows from mathematical programming in Banach space, see [ZK79]. The
main result of [ZK79] concerning the existence of a Lagrange multiplier is
given in the Appendix (Theorem A2). Here we check that the constraint qual-
ification (a1) is satisfied. For a given f ∈ (H1(Ω))∗ in our context it consists
in finding (c, w) ∈ K × V0 and ξ ≥ 0 such that

τ

Pe
(∇w,∇v) = 〈f, v〉 − ξ(c− c?, v) =: 〈g, v〉 ∀v ∈ H1(Ω). (4.7)

Let c ∈ K chosen such that (c, 1) 6= 0 and ξ = 〈f, 1〉/(c− c?, 1) ≥ 0. Its exis-
tence is guaranteed since K is symmetric with respect to the origin. Note that
the right hand side g ∈ (H1(Ω))∗ in (4.7) satisfies the compatibility condition
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〈g, 1〉 = 0. Hence, by the Lax–Milgram theorem there exists a unique w such
that (4.7) is fullfilled.

Now Theorem (A2) yields the existence of an adjoint state (or Lagrange
multiplier associated with (4.3)) p? ∈ H1(Ω) such that

(c?, v) +
τ

Pe
(∇w?,∇v) = τ(c?yold,∇v) + (cold, v) ∀v ∈ H1(Ω), (4.8)

γ2 (∇c?,∇(v − c?))− (p?, v − c?) ≥ (cold, v − c?) ∀v ∈ K, (4.9)
(∇p?,∇v) = (∇w?,∇v) ∀v ∈ H1(Ω). (4.10)

Consequently, (c?, p?) is a solution of (4.3)–(4.4).
We next show the uniqueness of p?. For this let us assume there exist two

multipliers p?1 and p?2 with p?1 6= p?2. From the uniqueness of w? it follows

w? = p?1 − (p?1, 1) = p?2 − (p?2, 1),

and thus

p?1 − p?2 = (p?1, 1)− (p?2, 1) = κ ∈ R.

Since |(c?, 1)| = |(c0, 1)| < |Ω| holds, the set Ω? = {x ∈ Ω | |c?| < 1} is of
positive measure. Thus, it holds 1 − c? ≥ 0 and −1 − c? ≤ 0 as well as
1− c? 6≡ 0 and −1− c? 6≡ 0

Inserting p?1 and p?2 into (4.9) and substracting the resulting equations we
obtain

(p?1 − p?2, v − c?) ≥ 0 ∀v ∈ K.

By choosing v = 1 and v = −1 we obtain

(p?1 − p?2, 1− c?) = κ(1, 1− c?) ≥ 0,

(p?1 − p?2,−1− c?) = κ(1,−1− c?) ≥ 0.

Since 1 − c? ≥ 0 we have (1, 1 − c?) ≥ 0 and thus κ ≥ 0 from the first
inequality. Since −1 − c? ≤ 0 we have (1,−1 − c?) ≤ 0 and thus κ ≤ 0 from
the second inequality. Thus κ = 0 holds and p?1 ≡ p?2. Thus p? is unique.

For the reverse implication it is clear that if (c?, p?) is a solution of (4.3)–
(4.4), then (c?, w?, p?) with w? = p? − (p?, 1) is a solution of the optimality
system (4.8)–(4.10). Since (P) is a convex problem, any stationary point of
(P), i.e. a solution of (4.8)–(4.10), is also a global solution of (P). Thus,
(c?, w?) is the unique solution of (P).

Analysis of (4.1)–(4.2)
In this section we show the existence of a unique solution to (4.1)–(4.2) us-
ing a general existence result for saddle point problems. We further give a
reformulation of (4.1)–(4.2) following [Jus11].
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Theorem 4.3 ([Jus11, Satz 3.2]). There exists a unique solution (y, p) ∈
H1

0 (Ω)d × L2
(0)(Ω) to (4.1)–(4.2).

Proof. We use the result [GR79, Th. I.4.1] for a general class of saddle point
problems that we for convenience recall in the Appendix (Theorem A6).

In our case we have X = H1
0 (Ω)d and M = L2

(0)(Ω). For y, v ∈ H1
0 (Ω)d

and p, q ∈ L2
(0)(Ω) we have a(y, v) = ξ(y, v) + η(∇y,∇v) + at(yold, y, v) and

b(y, q) = −(div y, q). We further have l = ξyold − c∇w ∈ X? and χ = 0 ∈M?.
For applying Theorem A6 we have to show that a is continuous and coer-

cive on H1
0 (Ω)d and that b is continuous on H1

0 (Ω)d × L2
(0)(Ω) and fulfills the

inf − sup condition. Moreover we have to show l ∈ X?.
We start with the continuity of a. Using Poincaré’s inequality we have

together with the continuity of at (4.6)

|a(y, v)| ≤ ξ‖y‖‖v‖+ η‖∇y‖‖∇v‖+ c(d)‖∇yold‖‖∇y‖∇v‖
≤ C(Ω)(ξ + η + C(d)‖∇yold‖)‖y‖H1

0 (Ω)d‖v‖H1
0 (Ω)d .

Furthermore

b(y, q) ≤ ‖div y‖‖q‖ ≤
√
d‖q‖‖∇y‖.

Concerning the coercivity we have for arbitrary y ∈ H1
0 (Ω)d

a(y, y) = ξ‖y‖2 + η‖∇y‖2 + at(yold, y, y)︸ ︷︷ ︸
=0

≥ C(Ω) min{ξ, η}‖y‖2
H1

0 (Ω)d .

The inf − sup condition for b can be found in e.g. [GR79, Th. I.3.7].
The requirement ξyold− c∇w ∈

(
H1

0 (Ω)d
)∗ follows from Hölder’s inequality

together with embedding theory (see [AF03]) for Sobolev spaces.

For constructing an a posteriori error estimator in Section 8.2 we now
introduce a bilinear form B to rewrite (4.1)–(4.2) in a compact form. In
addition we introduce a norm on H1

0 (Ω)d × L2
(0)(Ω) which we later use to

measure the local error contributions. This idea and the following proof are
taken from [Jus11, Satz 3.4].

Equations (4.1)–(4.2) are equivalent to:
Find y, p ∈ H1

0 (Ω)d × L2
(0)(Ω) such that

B((y, p), (v, q)) = L((v, q)) ∀v ∈ H1
0 (Ω)d, q ∈ L2

(0)(Ω) (4.11)

holds. Here

B((y, p), (v, q)) = ξ(y, v) + η(∇y : ∇v) + at(yold, y, v)− (p, div v) + (q, div y),

L((v, q)) = (ξyold − c∇w, v).

On H1
0 (Ω)d × L2

(0)(Ω) we define the following norm

9(y, p)9 :=

{
η‖∇y‖2 + ξ‖y‖2 +

1

η
‖p‖2

}1/2

.

Then there holds:
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Theorem 4.4 ([Jus11, Satz 3.4]).

1. The bilinear form B is continuous, i.e. there exists a constant cS =
cS(η, yold, d) such that

B((y, p), (v, q)) ≤ cS 9 (u, p) 9 9(v, q)9

holds for all (y, p), (v, q) ∈ H1
0 (Ω)d × L2

(0)(Ω).

2. The bilinear form B fulfills a modified inf − sup condition, i.e. there
exists a constant β∗ = β∗(Ω, η, yold, ξ, β) > 0 such that

inf
(y,p)∈

(
H1

0 (Ω)d×L2
(0)

(Ω)
)
\{0}

sup
(v,q)∈

(
H1

0 (Ω)d×L2
(0)

(Ω)
)
\{0}

B((y, p), (v, q))

9(y, p) 9 9(v, q)9
≥ β∗,

where β > 0 is the inf − sup constant for the bilinear form b.

Proof. Using Hölder’s inequality and the continuity of at (4.6) together with
‖divy‖ ≤

√
d‖∇y‖ we have

B((y, p), (v, q)) ≤ξ‖y‖‖v‖+ η‖∇y‖‖∇v‖+ C(d)‖∇yold‖‖∇y‖‖∇v‖
+ ‖p‖‖divv‖+ ‖q‖‖divy‖
≤ξ‖y‖‖v‖+ (η + C(d)‖∇yold‖) ‖∇y‖‖∇v‖

+
√
d‖p‖‖∇v‖+

√
d‖q‖‖∇y‖.

Using Cauchy–Schwarz’s inequality we proceed

B((y, p), (v, q))

≤
{
ξ‖y‖2 + (η + C(d)‖∇yold‖) ‖∇y‖2 + η

√
d‖∇y‖2 +

1

η
‖p‖2

}1/2

·
{
ξ‖v‖2 + (η + C(d)‖∇yold‖) ‖∇v‖2 + η

√
d‖∇v‖2 +

1

η
‖q‖2

}1/2

=

{
ξ‖y‖2 + η‖∇y‖2 +

(
C(d)‖∇yold‖+ η

√
d
)
‖∇y‖2 +

1

η
‖p‖2

}1/2

·
{
ξ‖v‖2 + η‖∇v‖2 +

(
C(d)‖∇yold‖+ η

√
d
)
‖∇v‖2 +

1

η
‖q‖2

}1/2

≤

1 +

(
C(d)‖∇yold‖+ η

√
d

η

)1/2
2

9 (y, p) 9 9(v, q) 9 .

Thus B is continous on H1
0 (Ω)d × L2

(0)(Ω) with continuity constant

cS =

1 +

(
C(d)‖∇yold‖+ η

√
d

η

)1/2
2

.
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Next we show the inf − sup condition for B. Using (y, p) as test function
in B and using the antisymmetry of at, there holds

B((y, p), (y, p)) = ξ‖y‖2 + η‖∇y‖2.

From [GR79, Th. I.3.7] we have, that for each p ∈ L2
(0)(Ω) there exists a unique

yp ∈ H1
0 (Ω)d such that p = −divyp and ‖∇yp‖ ≤ 1

β
‖p‖ holds, where β denotes

the inf −sup constant for b. With Poincaré’s inequality it further follows that
‖yp‖ ≤ Cp‖∇yp‖. Furthermore

B((y, p),(yp, 0))

=ξ(y, yp) + η(y, yp) + at(yold, y, yp)− (p, div yp)
≥− ξ‖y‖‖yp‖ − η‖∇y‖‖∇yp‖ − C(d)‖∇yold‖‖∇y‖‖∇yp‖+ ‖p‖2

≥− ξCp
β
‖y‖‖p‖ − η

β
‖∇y‖‖p‖ − C(d)

β
‖∇yold‖‖∇y‖‖p‖+ ‖p‖2

≥ 1

4η
‖p‖2 − ξ2C2

pη

β2
‖y‖2 − η

(
η2 + C(d)2‖∇yold‖2

β2

)
‖∇y‖2

holds. Now, for κ ∈ (0, 1) we have

B((y, p), (1− κ)(y, p) + κ(yp, 0)) = (1− κ)B((y, p), (y, p)) + κB((y, p), (yp, 0))

≥(1− κ)
(
ξ‖y‖2 + η‖∇y‖2

)
+ κ

(
1

4η
‖p‖2 − ξ2C2

pη

β2
‖y‖2 − η

(
η2 + C(d)2‖∇yold‖2

β2

)
‖∇y‖2

)
≥η‖∇y‖2

(
1− κ− κ

(
η2 + C(d)2‖∇yold‖2

β2

))
+ ξ‖y‖2

(
1− κ− κηξC

2
p

β2

)
+ κ

1

4η
‖p‖2

≥
{
η‖∇y‖2 + ξ‖y‖2

}[
1− κ− κ

(
η2 + C(d)2‖∇yold‖2 + ηξC2

p

β2

)]
+ κ

1

4η
‖p‖2.

We choose κ in a way such that[
(1− κ− κ

(
η2 + C(d)2‖∇yold‖2 + ηξC2

p

β2

)]
=

1

4
κ

holds, i.e.

κ =
β2

β2 + η2 + C(d)2‖∇yold‖2 + ηξC2
p + β2

4

∈ (0, 1).

Combination of the previous estimates yields

B((y, p), (1− κ)(y, p) + κ(yp, 0)) ≥ 1

4
κ 9 (y, p) 92 .
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Since

9(yp, 0)9 =
(
η‖∇yp‖2 + ξ‖yp‖2

)1/2

≤
(
η

β2
‖p‖2 +

ξC2
p

β2
‖p‖2

)1/2

=
1

β

(
η2 + ηξC2

p

)1/2 1√
η
‖p‖,

the triangular inequality gives

9(1− κ)(y, p) + κ(yp, 0)9 ≤
(

1− κ+
κ

β

(
η2 + ηξC2

p

)1/2
)

9 (y, p) 9 .

Thus, we end up with

sup
(v,q)∈(H1

0 (Ω)d×L2
(0)

(Ω))\{0}

B((y, p), (v, q))

9(v, q)9
≥ B((y, p), (1− κ)(y, p) + κ(yp, 0))

9(1− κ)(y, p) + κ(yp, 0)9

≥
1
4
κ 9 (y, p)92(

1− κ+ κ
β

(
η2 + ηξC2

p

)1/2
)

9 (y, p)9
.

Since (y, p) is chosen arbitraryly, the second statement follows with

β∗ =
κ

4
(

1− κ+ κ
β

(
η2 + ηξC2

p

)1/2
) > 0.

In Section 8.2 we use Theorem 4.4 to show the equivalence of the norm of
the actual discretization error and the norm of the residual during the con-
struction of an a-posteriori residual based error estimator for the numerical
solution of (4.1)–(4.2).

We finish this section with stating higher regularity for the velocity field
assuming higher regularity for the phase field c that we show in Lemma 5.8.

Theorem 4.5. Assume ∂Ω of class C3, yold ∈ H2(Ω)d ∩ H1
0 (Ω)d, and let

(y, p) ∈ H1
0 (Ω)d × L2

(0)(Ω) be the solution of (4.1)–(4.2). Assume c ∈ H2(Ω).
Then there holds y ∈ H2(Ω)d and p ∈ H1(Ω).

Proof. Using regularity results for the Stokes equation ([CF88, Th. 3.7]) we
obtain

‖y‖H2(Ω)d + ‖p‖H1(Ω) ≤ C
(
‖f‖L2(Ω)d + ‖y‖H1(Ω)d + ‖p‖L2(Ω)

)
where f := ξ(yold − y) − yold∇y − c∇w. We have to show f ∈ L2(Ω). This
directly follows from yold ∈ H2(Ω)d ↪→ L∞(Ω)d and c ∈ H2(Ω).
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5 Moreau–Yosida relaxation
The optimization problem (P) related to the variational inequality (4.4) could
be treated by introducing a Lagrange multiplier λ? for the constraint c ∈
K. But since c ∈ H1(Ω) we would have λ? ∈ (H1(Ω))∗ thus not allowing a
pointwise interpretation.1 For better regularity results we replace the problem
(P) by its Moreau–Yosida relaxed version according to [HHT11]. We then show
existence and uniqueness of a solution to the resulting optimization problem
along the lines of [HHT11].

The Moreau–Yosida relaxed problem is defined by:

min
(c,w)∈H1(Ω)×V0

Js(c, w)

subject to (4.3),
(Ps)

where Js is given by

Js(c, w) = J(c, w) +
s

2
‖max(0, c− 1)‖2 +

s

2
‖min(0, c+ 1)‖2.

Here s > 0 denotes the associated relaxation or penalization parameter, and
the max and min operators form a regularization of the indicator function of
K, and are understood pointwise.

In the following we show that for (Ps) there exists a unique solution
(cs, ws) ∈ H1(Ω) × V0. The sequence of solutions converges strongly to the
unique solution (c?, w?) ∈ K × V0 of (P) as s→∞.

Lemma 5.1. Let Fs denote the feasible set for (Ps). Then the following holds

(i) Fs 6= ∅ and Fs ⊂ V0 × V0.

(ii) Fs is a closed and convex subset of H1(Ω)×H1(Ω).

(iii) Js is strictly convex on Fs.

(iv) For each sequence (cn, wn)n∈N ⊂ Fs such that

‖cn‖H1(Ω)
n→∞−→ +∞ or ‖wn‖H1(Ω)

n→∞−→ +∞

we have limn→∞ J
s(cn, wn) = +∞.

This lemma can be proven as Lemma 4.1. Note that the functionals

c→ ‖max(0, c− 1)‖2, c→ ‖min(0, c+ 1)‖2

are convex and Fréchet differentiable on H1(Ω).
1In [BBG11] it is shown that under certain regularity assumptions indeed λ? ∈ L2(Ω)

holds. The authors of [BBG11] exploit this fact to formulate their numerical scheme.
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Theorem 5.2 ([HHT11, Th. 4.1]). The problem (Ps) has a unique solution
(cs, ws). Moreover, there exists a unique ps ∈ H1(Ω) such that

(∇ps,∇v) =(∇ws,∇v) ∀v ∈ H1(Ω), (5.1)
τ

Pe
(∇ps,∇v) + (cs, v)− τ(cyold,∇v) =(cold, v) ∀v ∈ H1(Ω), (5.2)

γ2(∇cs, ∇v) + (λs(cs), v)− (ps, v) =(cold, v) ∀v ∈ H1(Ω), (5.3)

where λs(cs) = λ+
s (cs) + λ−s (cs) with

λ+
s (cs) := smax(0, cs − 1) and λ−s (cs) := smin(0, cs + 1).

Conversely, if (cs, ps) is a solution of (5.2)–(5.3), then (cs, ws) with ws =
ps − (ps, 1) is the unique solution of (Ps).

Proof. Due to Lemma 5.1 problem (Ps) is a convex problem whose cost func-
tion is radially unbounded and strictly convex. This yields existence and
uniqueness of (cs, ws). Similarly, as in the proof of Theorem 4.2, mathematical
programming theory in Banach space guarantees the existence of an adjoint
state ps ∈ H1(Ω) satisfying the following first-order optimality system of (Ps):

(cs, v) +
τ

Pe
(∇ws,∇v)− τ(cyold,∇v) = (cold, v) ∀v ∈ H1(Ω), (5.4)

γ2(∇cs, ∇v) + (λs(cs), v)− (ps, v) = (cold, v) ∀v ∈ H1(Ω), (5.5)
(∇ps,∇v) = (∇ws,∇v) ∀v ∈ H1(Ω). (5.6)

The uniqueness of ps follows from the uniqueness of (cs, ws) of (Ps) and (5.5).

Lemma 5.3 ([HHT11, Prop. 4.2]). Let cs, ws denote the solution to Ps. Then
there exists C > 0, independend of s, such that

‖cs‖H1(Ω) ≤ C,
√
s‖max(0, cs − 1)‖ ≤ C

‖ws‖H1(Ω) ≤ C,
√
s‖min(0, cs + 1)‖ ≤ C.

Proof. Let c?, w? denote the solution to problem P . By the properties of the
respective solutions we have

J(cs, ws) ≤ Js(cs, ws) ≤ Js(c
?, w?) = J(c?, w?). (5.7)

Thus, there exists a constant β > 0, independend of s such that

γ2

2
‖∇cs‖2+

τ

2Pe
‖∇ws‖2−(cold, c)+

s

2
‖max(0, cs−1)‖2+

s

2
‖min(0, cs+1)‖2 ≤ β.

Since (cs, 1) = (ws, 1) = 0 by Young’s inequality together with the Poincaré–
Friedrichs inequality we get the stated results.
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Theorem 5.4 ([HHT11, Prop. 4.2]). Let {(cs, ws)}s>0 be a sequence of solu-
tions of (Ps). Then there exists a subsequence, still denoted by {(cs, ws)}s>0,
such that

(cs, ws)→ (c?, w?) in H1(Ω)×H1(Ω) (5.8)

as s→ +∞, where (c?, w?) denotes the unique solution of (P). In particular,
c? is the order parameter corresponding to the solution of (4.3)–(4.4).

Proof. From Lemma 5.3 we have the existence of (c∗, w∗) ∈ H1(Ω) × H1(Ω)
and a subsequence still denoted by {(cs, ws)}s>0 such that

(cs, ws)→ (c∗, w∗) in L2(Ω) and (cs, ws) ⇀ (c∗, w∗) in H1(Ω) (5.9)

as s → +∞ since L2(Ω) ↪→ H1(Ω) compactly. Moreover, passing to the limit
in the state equation of (Ps), we obtain

(c∗, v) +
τ

Pe
(∇w∗,∇v) = τ(c∗, yold∇v) + (cold, v) ∀v ∈ H1(Ω). (5.10)

Thus c∗, w∗ is a solution to the state equation.
On the other hand, from (5.9) we infer

max(0, cs − 1)→max(0, c∗ − 1) in L2(Ω),

min(0, cs + 1)→min(0, c∗ + 1) in L2(Ω).

This together with Lemma 5.3 yields

−1 ≤ c∗ ≤ 1 a.e. in Ω. (5.11)

From (5.10) and (5.11) we deduce that (c, w) ∈ F . Moreover, from (5.7) and
the lower semi-continuity of semi-norms in H1(Ω) we infer

J(c∗, w∗) = Js(c∗, w∗) ≤ lim inf
s→∞

Js(cs, ws) ≤ Js(cs, ws) ≤ J(c?, w?). (5.12)

The uniqueness of the solution of (P) implies (c∗, w∗) = (c?, w?).
Finally, we establish the strong convergence result in H1(Ω). From above

we have

J(c?, w?) ≤ lim inf
s→∞

Js(cs, ws) ≤ lim sup
s→∞

Js(cs, ws) ≤ J(c?, w?)

and thus

lim
s→∞
‖∇cs‖ = ‖∇c?‖ as well as lim

s→∞
‖∇ws‖ = ‖∇w?‖.

Now, the weak and norm convergence yield the strong convergence result (5.8).
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For studying the limit of the optimality system (5.1)–(5.3) we first establish
some useful results.

Lemma 5.5 ([HHT11, Lem. 4.3]). There exist constants βp > 0 and βλ > 0
independent of s, such that

|(ps, 1)| ≤ βp, (5.13)
‖λs(cs)‖ ≤ ‖λ+

s (cs)‖+ ‖λ−s (cs)‖ ≤ βλ, (5.14)

for all s > 0.

Proof. See [HHT11, Lem. 4.3].

This allows us to study the limit of (5.1)–(5.3) for s→∞.

Theorem 5.6 ([HHT11, Thm. 4.4]). Let (ps)s>0 denote the sequence of func-
tions from Theorem 5.2. Then ps ⇀ p? for s → ∞ in H1(Ω). Moreover,
together with (c?, w?) of Theorem 5.4 the function p? satisfies the first order
optimality system (4.8)–(4.10).

Proof. The weak convergence of a subsequence of {ps}s>0 in H1(Ω) with the
limit p? follows from the uniform boundedness of {ws}s>0 in H1(Ω), ps = ws +
(ps, 1), and the uniform boundedness of {|(ps, 1)|}s>0 according to Lemma 5.5.

Concerning the first order optimality system (4.8)–(4.10) we note that
(4.10) follows immediately from (5.6) and the boundedness of {ws}s>0 and
{ps}s>0 in H1(Ω). Equation (4.8) has already been established in the proof of
Theorem 5.4. It remains to study (4.9). For this purpose we observe that for
arbitrary but fixed v ∈ K

(λs(cs), v − cs) = s(max(cs − 1, 0), v − cs) + s(min(cs + 1, 0), v − cs)
= s(max(cs − 1, 0), v − 1) + s(max(cs − 1, 0), 1− cs)

+ s(min(cs + 1, 0), v + 1),+s(min(cs + 1, 0),−1− cs)
≤ 0,

holds, where we use that −1 ≤ v ≤ 1 holds a.e. in Ω. Hence, we have

lim
s→∞

(λs(cs), v − cs) ≤ 0. (5.15)

Let v ∈ K arbitrarily, then v− cs ∈ H1(Ω) is a valid test function in (5.3) and
we replace (5.3) by

γ2(∇cs,∇(v − cs)) + (λs(cs), v − cs)
− (ps, v − cs)− (cold, v − cs) = 0 ∀v ∈ K. (5.3’)

Next, we recall that due to Theorem 5.4 we have the strong convergence of
{cs}s>0 in H1(Ω). Since by Lemma 5.5 the sequence {λs(cs)} is uniformly
bounded in L2(Ω) there exists a weakly convergent subsequence. Thus, passing
to the limit in (5.3’), together with (5.15) we obtain

γ2(∇c?,∇(v − c?))− (p?, v − c?) ≥ (cold, v − c?) ∀v ∈ K,
which establishes (4.9).
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Remark 5.7. Solving (5.1)–(5.3) for a sequence (sk)k∈N with sk → +∞ as
k →∞ establishes an iterative way for solving (4.3)–(4.4), where yold is fixed.
With cs, ws obtained in this way we then solve the discrete Navier–Stokes
equation with forcing term cs∇ws.

We now prove higher regularity of cs, ws, and ps.

Lemma 5.8. Assume that the boundary is sufficiently smooth (e.g. of class
C2, [EG04, Th. 3.10, Def. 1.46]), then there holds cs, ws, ps ∈ H2(Ω) and
there exists a constant C > 0 independend of s such that

‖cs‖H2(Ω) + ‖ws‖H2(Ω) + ‖ps‖H2(Ω) ≤ C

holds.

Proof. Using regularity results for the Laplace problem (see e.g. [EG04, Th.
3.10]) we obtain cs ∈ H2(Ω). Now [Tay96, Prop. 5.7.4] yields

‖cs‖2
H2(Ω) ≤C

(
‖ − λs(cs) + cold + ps‖2

L2(Ω) + ‖cs‖2
H1(Ω)

)
,

which due to Lemma 5.3 and Lemma 5.5 is bounded independently of s.
Analogously we now obtain similar estimates for ws and ps.

For convenience of the reader we here state the complete weak form of the
time-discrete and Moreau–Yosida relaxed Cahn–Hilliard Navier–Stokes sys-
tem.
Find (y, p, cs, ws) ∈ H1

0 (Ω)d × L2
(0)(Ω)×H1(Ω)×H1(Ω) such that there holds

ξ(y − yold, v) + η(∇y : ∇v) + at(yold, y, v)

−(p, div v) + (cs∇ws, v) = 0 ∀v ∈ H1
0 (Ω)d, (5.16)

(−div y, v) = 0 ∀v ∈ L2
(0)(Ω), (5.17)

(cs, v) +
τ

Pe
(∇ws,∇v)− (cold, v)− τ(csyold,∇v) = 0 ∀v ∈ H1(Ω), (5.18)

γ2(∇cs,∇v)− (ws, v) + (λs(cs), v)− (cold, v) = 0 ∀v ∈ H1(Ω). (5.19)

6 Semi-smooth Newton method in function
space

Remark 5.7 motivates our function space algorithm to solve (4.1)–(4.4). We
specify a sequence s→∞ and solve the system (5.18)–(5.19) for cs and ws. We
next show that for fixed but arbitrarily s this can be done by using Newton’s
method in function space obtaining superlinear convergence at least for small
time steps and in a neigbourhood of the unique solution (cs, ws) of (5.18)–
(5.19). We again proceed along the lines of [HHT11].



6 SEMI-SMOOTH NEWTON METHOD IN FUNCTION SPACE 18

We write (5.18)–(5.19) in the form

Fs(cs, ws) =
(
F (1)
s (cs, ws), F

(2)
s (cs, ws)

)
= 0 (6.1)

with〈
F (1)
s (cs, ws), v

〉
=

τ

Pe
(∇ws,∇v) + (cs, v)− (cold, v)− τ(csyold,∇v), (6.2)〈

F (2)
s (cs, ws), v

〉
= γ2(∇cs,∇v) + (λs(cs), v)− (ws, v)− (cold, v), (6.3)

where cs, ws and v are elements of H1(Ω).
Note that since λs(·) is only Lipschitz continuous Fs is not Fréchet dif-

ferentiable. But it fulfills a weaker form of differentiability called Newton
differentiability or slant-differentiability, see Definition A3 and Theorem A4 in
the appendix for a convergence result.

We apply Theorem A4 to the mapping Fs : H1(Ω) × H1(Ω) → H1(Ω)∗ ×
H1(Ω)∗. We first show the Newton differentiability of Fs.

Theorem 6.1 ([HHT11, Lem. 5.3]). The mapping Fs : H1(Ω) × H1(Ω) →
H1(Ω)∗ × H1(Ω)∗ is Newton differentiable. A Newton derivative is given by
the operator Gs(cs, ws) defined by

〈Gs(cs, ws)(δc, δw), (v1, v2)〉 :=

(
τ

Pe(∇δw,∇v1) + (δc, v1)− τ(δcyold,∇v1)

γ2(∇δc,∇v2) + (λ′s(c)δc, v2)− (δw, v2)

)
,

where λ′s(cs) is defined as

λ′s(cs) =

{
0 if |cs| ≤ 1,

s if |cs| > 1.

Proof. Follows from [HIK03] and Sobolev embedding, see [HHT11, Lem. 5.3].

For applying Theorem A4 we further need that Gs is invertible. This we
establish next.

Lemma 6.2. For given cs ∈ H1(Ω), yold ∈ H1
0 (Ω)d and (y1, y2) ∈ H1(Ω)∗ ×

H1(Ω)∗ the optimization problem

min
(δc,δp)∈H1(Ω)×V0

γ2

2
‖∇δc‖2 +

τ

2Pe
‖∇δp‖2 + (λ′s(cs)δc, δc)− 〈y2, δc〉

s.t. (δc,∇v) +
τ

Pe
(∇δp,∇v)− τ(δcyold,∇v) = 〈y1, v〉 ∀v ∈ H1(Ω)

(PGs)

admits a unique solution. Moreover, there exists a unique δw ∈ H1(Ω) such
that

τ

Pe
(∇δw,∇v) + (δc, v)− τ(δcyold,∇v) = 〈y1, v〉 , (6.4)

γ2(∇δc,∇v) + (λ′s(cs)δc, v)− (δw, v) = 〈y2, v〉 (6.5)
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for all v ∈ H1(Ω).
If (δc, δw) is a solution of (6.4)–(6.5), then (δc, δp) with δp = δw− (δw, 1)

is the unique solution of (PGs).

Proof. One proceeds as in the proofs of Theorem 4.2 and Theorem 5.2.

Theorem 6.3 ([HHT11, Prop. 5.5]). The Newton iteration

(ck+1, wk+1) = (ck, wk)−Gs(c
k, wk)−1Fs(c

k, wk)

converges superlinearly to the solution (cs, ws) of (5.2)–(5.3), provided that
the initial value (c0, w0) is sufficiently close to (cs, ws), the time step size τ is
sufficiently small, and yold ∈ H2(Ω)d ⊂ L∞(Ω).

Proof. From Lemma 6.2 we deduce that Gs is invertible. This means that
for given (y1, y2) ∈ H1(Ω)∗ × H1(Ω)∗, there exists a unique pair (δc, δw) ∈
H1(Ω)×H1(Ω) such that (6.4)–(6.5) holds.

We now show the boundedness of ‖Gs(cs, ws)
−1‖L((H1(Ω)2)∗,H1(Ω)2) indepen-

dently of cs and ws to apply Theorem A4.
We take δw as test function in (6.4), δc as test function in (6.5) and add

the resulting equations to obtain
τ

Pe
‖∇δw‖2 + γ2‖∇δc‖2 + (λ′s(c)δc, δc)

=τ(δcyold,∇δw) + 〈y1, δw〉+ 〈y2, δc〉
≤ τ‖δc‖‖yold‖L∞(Ω)‖∇δw‖
+ ‖y1‖H1(Ω)∗‖δw‖H1(Ω) + ‖y2‖H1(Ω)∗‖δc‖H1(Ω).

By Poincaré–Friedrichs inequality we have

‖δc‖H1(Ω) ≤ (1 + Cp)‖∇δc‖+ Cp(δc, 1),

‖δw‖H1(Ω) ≤ (1 + Cp)‖∇δw‖+ Cp(δw, 1),

and by using v ≡ 1 in (6.4) and (6.5) we obtain

(δc, 1) = 〈y1, 1〉 ,
(δw, 1) =(λ′s(c)δc, 1)− 〈y2, 1〉 ≤ s| 〈y1, 1〉 |+ | 〈y2, 1〉 |.

Young’s inequality now implies

τ

4Pe
‖∇δw‖2+

1

2

(
γ2 − τPeC2

p‖yold‖2
L∞(Ω)

)
‖∇δc‖2

≤Pe
τ

(1 + Cp)
2‖y1‖2

(H1(Ω))∗

+ Cp‖y1‖2
(H1(Ω))∗(s| 〈y1, 1〉 |+ | 〈y2, 1〉 |)

+
1

2γ2
(1 + Cp)

2‖y2‖2
(H1(Ω))∗

+ Cp‖y2‖2
(H1(Ω))∗ 〈y1, 1〉 .
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By using Hölder’s inequality we end up with

‖(δc, δw)‖H1(Ω)×H1(Ω) ≤ C
(
‖y1‖H1(Ω)∗ + ‖y2‖H1(Ω)∗

)
.

Thus we obtain boundness of ‖Gs(cs, ws)
−1‖L((H1(Ω)2)?,H1(Ω)2) uniform in cs

and ws. Now Fs together with its Newton derivative Gs fulfills Theorem A4
yielding superlinear convergence of the Newton sequence {ck, wk}. Note that
we here require γ2 − τPeC2

p‖yold‖2
L∞(Ω) > 0, implying a restriction on the size

of the time step τ .

Remark 6.4. The restriction on τ can be interpreted in the sense that it restricts
the distance that a particle can move during one time step to a value smaller
then the thickness of the interface, which is of order O(γ). This restriction
will later be reflected in our adaptive scheme. Note that this restriction does
not appear if one replaces ∇cyold by ∇coldyold in our scheme (5.18)–(5.19).

7 Finite element discretization
For the purpose of a numerical simulation of the Cahn–Hilliard Navier–Stokes
system we next discretize (5.16)–(5.19) using the finite element method. There-
fore we introduce shape regular simplicial meshes T cw and T yp such that
Ω =

⋃
T∈T cw T and Ω =

⋃
T∈T yp T . Here T are closed triangles or simplices.

By Ecw and Eyp we denote the sets of faces associated with T cw and T yp, re-
spectively. For a triangle T ∈ T cw we denote by hT the diameter of T and
by |T | its area. For a face E ∈ Ecw we denote by hE its length. We define
h = maxT∈T cw hT .

The phase-field c and the potential w are discretized with piecewise linear,
continuous finite elements, i.e. their Ansatz space is given by

Vcw = {v ∈ C0(Ω) : v|T ∈ P1(T ), ∀T ∈ T cw} =: span{φcw1 , . . . , φcwNcw
}.

The velocity y of the fluid and the pressure p are approximated by the LBB-
stable Taylor–Hood finite element defined on T yp, i.e. we set

Vy = {v ∈ C0(Ω) : v|T ∈ P2(T ), ∀T ∈ T yp, v|∂Ω = 0} =: span{φy1, . . . , φyNy
},

and

Vp = {v ∈ C0(Ω) : v|T ∈ P1(T ), ∀T ∈ T yp} =: span{φp1, . . . , φpNp
},

see [Ver84]. Here Pk(T ) stands for the space of polynomials up to degree k
defined on T .

The spatially discretized version of (5.16)–(5.19) then consists of finding
(chs , w

h
s ) ∈ Vcw × Vcw and (yh, ph) ∈ Vy × Vp such that the following system is

satisfied:

B((yh, ph), (v, q)) = Lh((v, q)) ∀(v, q) ∈ Vy × Vp, (7.1)〈
F (1)(chs , w

h
s ), v

〉
= 0 ∀v ∈ Vcw, (7.2)〈

F (2)(chs , w
h
s ), v

〉
= 0 ∀v ∈ Vcw. (7.3)
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Here B for (v, q) ∈ H1
0 (Ω)d × L2

(0)(Ω) is defined by

B((yh, ph), (v, q)) :=ξ(yh, v) + η(∇yh,∇v) + at(yold, y
h, v)

− (div v, ph) + (div yh, q),

while Lh is given by

Lh((v, q)) := ξ(yold, v)−K(ch∇wh, v).

For v ∈ H1(Ω) we have〈
F (1)(chs , w

h
s ), v

〉
:=

τ

Pe
(∇whs ,∇v) + (chs − cold, v)− τ(chsyold,∇v), (7.4)〈

F (2)(chs , w
h
s ), v

〉
:= γ2(∇chs , ∇v) + (λs(c

h
s ), v)− (whs , v)− (cold, v). (7.5)

Every step of the semi-smooth Newton method for solving(
F (1)(chs , w

h
s ), F (2)(chs , w

h
s )
)t

= 0

then requires to solve the following system for given chs , whs :

τ

Pe
(∇δwh,∇v) + (δch, v)− τ(δchyold,∇v) = −

〈
F (1)(chs , w

h
s ), v

〉
,

γ2(∇δch,∇v) + (λ′s(c
h
s )δc

h, v)− (δwh, v) = −
〈
F (2)(chs , w

h
s ), v

〉
.

Using matrix notation this reads(
A −M

M − τT D

)(
δw
δc

)
=

(
B2

B1

)
. (7.6)

Here δw, δw ∈ RN are the node vectors of δwh, δch ∈ Vcw and the matrices are
given by

A = γ2K + Λ(chs ), D =
τ

Pe
K,

K = (∇φcwi ,∇φcwj )Ncw
i,j=1, Λ(chs ) = (λ′s(c

h
s )φ

cw
j , φ

cw
i )Ncw

i,j=1,

M = (φcwi , φ
cw
j )Ncw

i,j=1, T = (φcwi yold,∇φcwj )Ncw
i,j=1,

while the right hand side is given by

B2 = −
〈
F (2)(chs , w

h
s ), φcwj

〉Ncw

j=1
, B1 = −

〈
F (1)(chs , w

h
s ), φcwj

〉Ncw

j=1
.

Note that Λ(chs ) is evaluated exactly, and is symmetric and positive semi defi-
nite.

We next show the feasibility of the semi smooth Newton method for solving
the time and space discrete system (7.2)–(7.3).

Theorem 7.1 ([HHT11, Prop. 6.1]). Let τ > 0 be sufficiently small. Then the
system (7.6) admits a unique solution, i.e. the system matrix (7.6) is regular.
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Proof. Since the mass matrixM is regular, and symmetric and positiv definite,
one readily finds that (7.6) is equivalent to(

−M A
0 M − τT +DM−1A

)(
δc
δw

)
=

(
B2

B1 −DM−1B2

)
.

It now is sufficient to show that S = M − τT + DM−1A is regular. We
use the fact that the product UV of two symmetric matrices U and V with
all Eigenvalues in [u1, u2] and [v1, v2] with 0 ≤ u1 ≤ u2 and 0 ≤ v1 ≤ v2,
respectively, has all its Eigenvalues in [u1v1, u2v2]. From this we obtain that
M−1DM−1A is positive semi definite and thus

R = M +DM−1A = M(I +M−1DM−1A)

is positive definite, where I denotes the identity matrix of size Ncw × Ncw.
Since the set of regular matrices is open and T is singular, since (1, . . . , 1)t ∈
RNcw ∈ ker(T ), also R− τT is regular, for τ small enough

As the solution of the continuous problem also the solution of the discrete
problem is bounded in H1(Ω)×H1(Ω) independently of s .

Theorem 7.2 ([HHT11, Prop. 6.2]). Let (chs , w
h
s )s>0 be a sequence of solutions

to (7.2)–(7.3) for s→∞. Then there exists a constant C > 0 independent of
s and h such that

‖chs‖H1(Ω) ≤ C, (7.7)
‖whs‖H1(Ω) ≤ C, (7.8)

‖λs(chs )‖L2(Ω) ≤ C (7.9)

holds.

Proof. The proof is analogeous to the one of Lemma 5.3 and Lemma 5.5. Since
in [HHT11] a different finite element formulation of the term involving λs is
used, for the proof we do not follow [HHT11, Prop. 6.2].

We introduce the minimization problem

min
(chs ,p

h
s )∈Vcw×Vcw∩V0

Js(chs , p
h
s ) s.t. (7.2). (7.10)

This is the finite dimensional analogue to problem (Ps).
By the same arguments as in Theorem 5.2 we obtain that the unique solu-

tion to (7.10) is (chs , w
h
s − (whs , 1)) = (chs , p

h
s ).

Let (c∗, p∗) denote the solution to (P). By Phc∗ we denote the H1 orthog-
onal projection of c∗ onto the non-empty, closed and convex subset K∩Vcw ⊂
H1(Ω). Thus there holds

(c∗ − Phc∗, v − Phc∗)H1 ≤ 0 ∀v ∈ Vcw ∩ K.
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By Qhp
∗ we denote the H1 orthogonal projection of p∗ onto Vcw. Note that

there holds 0 = (p∗, 1) = (Qhp
∗, 1). Since both are orthogonal projections

we have the stability properties ‖Phc∗‖H1(Ω) ≤ ‖c∗‖H1(Ω) and ‖Qhw
∗‖H1(Ω) ≤

‖Qhw
∗‖H1(Ω), see e.g. [EG04, Lem. 1.131]. Inserting Phc∗ and Php∗ in Js we

get

Js(c
h
s , p

h
s ) ≤Js(Phc?, Qhp

?) = J(Phc
?, Qhp

?)

=
γ2

2
‖∇Phc∗‖2 +

τ

2Pe
‖∇Qhp

∗‖2 − (Phc
∗, cold)

≤γ
2

2
‖∇Phc∗‖2 +

τ

2Pe
‖∇Qhp

∗‖2 +
γ2

2
‖Phc∗‖2 +

1

2γ2
‖cold‖2

≤γ
2

2
‖c∗‖2

H1(Ω) +
τ

2Pe
‖p∗‖2

H1(Ω) +
1

2γ2
‖cold‖2

≤C.
Since (chs , 1) = (phs , 1) = 0, we obtain (7.7) and also ‖phs‖H1(Ω) ≤ C. As in
Lemma 5.5 we get (whs , 1) ≤ C and thus there follows (7.8).

Now we show the boundedness with respect to s of λs(chs ) in L2(Ω). For
this we test (7.3) with v = λ+

s (chs ) = smax(0, chs − 1) and v = λ−s (chs ) =
smin(0, chs + 1) and obtain

‖λ+
s (chs )‖2 + γ2s−1‖∇λ+

s (chs )‖2 = (whs , λ
+
s (chs )) + (cold, λ

+
s (chs )),

‖λ−s (chs )‖2 + γ2s−1‖∇λ−s (chs )‖2 = (whs , λ
−
s (chs )) + (cold, λ

−
s (chs )).

This yields

‖λ+
s (chs )‖ ≤ ‖whs‖+ ‖cold‖,

‖λ−s (chs )‖ ≤ ‖whs‖+ ‖cold‖.
From this the estimate

‖λs(chs )‖ ≤ ‖λ+
s (chs )‖+ ‖λ−s (chs )‖ ≤ 2(‖whs‖+ ‖cold‖) ≤ C

follows.

The discretization of the Navier–Stokes part (7.1) gives rise to a sad-
dle point problem often considered in literature, see e.g. [Ver84, BGL05,
DGSW10], namely (

A Bt

B 0

)(
y
p

)
=

(
f
0

)
. (7.11)

The matrices are given as

A =

(
A11 0
0 A22

)
, A11 = A22 = (aij)i,j=1...Ny ,

B =
(
B1 B2

)
, B1 = ((b1)ij)

j=1,...,Ny

i=1,...,Np
, B2 = ((b2)ij)

j=1,...,Ny

i=1,...,Np
,
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with

aij =ξ(φyi , φ
y
j ) + η(∇φyj ,∇φyi ) + at(yold, φ

y
i , φ

y
j ),

(b1)ij =− (∂xφ
y
j , φ

p
i ),

(b2)ij =− (∂yφ
y
j , φ

p
i ).

Here y denotes the node vector for the velocity field yh and p denotes the node
vector for the pressure field ph. The right hand side is given by

(f1)i = ξ((y1)old, φ
y
i )−K(chs∂xw

h
s , φ

y
i ),

(f2)i = ξ((y2)old, φ
y
i )−K(chs∂yw

h
s , φ

y
i ).

Here (y1)old, resp. (y2)old, refers to the first, resp. second, component of the
vector field yold.

We show the existence of a unique solution to (7.1) following the proof of
[Jus11, Satz 3.8].

Theorem 7.3 ([Jus11, Satz 3.8]). There exists a unique solution (yh, ph) ∈
V y × V p to (7.1) with

∫
Ω
ph dx = 0 .

Proof. Since we have a finite dimensional linear equation, it is sufficient to
show that the homogenous equation only has the trivial solution. Thus we
show that

B((yh, ph), (vh, qh)) = 0 ∀(vh, qh) ∈ Vy × Vp (7.12)

only has the unique solution (yh, ph) = 0.
Testing with (vh, qh) ≡ (yh, ph) we obtain

0 = B((yh, ph), (yh, ph)) = ξ‖yh‖2 + η‖∇yh‖2,

and thus yh = 0 in H1
0 (Ω)d. Now it immediately follows that

0 = (div vh, ph)∀vh ∈ Vyh . (7.13)

Since we use LBB-stable spaces there exists βh > 0 such that

sup
vh∈Vy

(div vh, ph)
‖∇vh‖ ≥ βh‖ph‖

holds, see [Ver10]. The constant βh is independent of h. Equation (7.13) also
holds if we divide by ‖∇vh‖ and it also holds for the supremum over all vh:

0 = sup
vh∈Vy

(div vh, ph)
‖∇vh‖ ≥ βh‖ph‖.

Thus ‖ph‖ = 0 and we obtain ph = 0 in L2(Ω).
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8 The adaptive concept
After having a fully discretized scheme for the solution of (4.1)–(4.4) at hand
we can solve (7.1)–(7.3) at each time step in a time marching scheme.

Since the phase field is known to be nearly constant in the pure phases and
that it describes the interface of width O(γ) between the two fluid phases one
expects large gradients of the phase field in the neighborhood of the interface.

Therefore one should carefully select an appropriate mesh for the simulation
of the phase field. In Section 8.1 we desribe a reliable and efficient a posteriori
error estimator for the simulation of the phase field, based on the system
(7.2)–(7.3). It is constructed along the lines of [HHT11, Sec. 7].

On the other hand a mesh taylored to the numerical simulation of the phase
field need not be a good choice for the simulation of the flow field. In Section
8.2 we briefly describe how the results from [Ver10] concerning an a posteriori
error estimator for the time-dependend Navier–Stokes system carry over to our
case, where we again follow [Jus11].

In Section 8.3 we describe the adaptive cycles which we use together with
the error estimators obtained in Section 8.1 and Section 8.2. We finish this
section with describing aspects of the implementation arising from discretizing
the flow field and the concentration field on different meshes in Section 8.4.

For ease of notation and since all references should be clear, in the follow-
ing we suppress the index s for denoting the solution of the relaxed system.
So, in what follows, we write (y, p, c, w) as solution of the time-discrete and
Moreau–Yosida relaxed system (5.16)–(5.19) and by (yh, ph, ch, wh) we denote
the solution of the discrete in space system (7.1)–(7.3).

8.1 Adaptive concept for the Cahn–Hilliard part

In the present section we derive a reliable and efficient error estimator for the
Cahn–Hilliard system (7.2)–(7.3). Here we extend results of [HHT11, Sec. 7]
to the case of the Cahn–Hilliard system with transport.

Let us briefly comment on further available concepts for the spatial dis-
cretization of the Cahn–Hilliard system in the literature.

In [BN09] a reliable estimator for the Cahn–Hilliard equation with double-
obstacle free energy is derived. Besides residual based estimators, taylored
heuristical approaches are commonly used to resolve the interface numerically.
These approaches exploit the fact, that the location of the interface is known
and adapt the mesh accordingly. The approaches distinguish in the way they
localize the interface. In [KSW08, BBG11, AV12] a triangle T is refined if it is
located in the diffuse interface, i.e. if maxx∈T |c(x)| ≤ 1− δ with a small δ > 0
holds.

On the other hand, since the interface can be characterized by its large
concentration gradients, in [GK14] heuristic error estimation based on the
norm of the gradient of c is used. We will give a short comparison to heuristic
error estimation in the numerical part in Section 9.1.
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We define the following errors

ec := ch − c, ew := wh − w, eλs := λs(c
h)− λs(c),

residuals

r(1) := c− cold + τ∇cyold, r(2) := λs(c)− w − cold,
r

(1)
h := ch − cold + τ∇chyold, r

(2)
h := λs(c

h)− wh − cold,

element indicators

η
(1)
T = hT‖r(1)

h ‖T for all T ∈ T cw, (8.1)

η
(2)
T = hT‖r(2)

h ‖T for all T ∈ T cw, (8.2)

and edge indicators

η
(1)
E = h

1/2
E ‖[∇wh]E · νE‖E for all E ∈ Ecw,

η
(2)
E = h

1/2
E ‖[∇ch]E · νE‖E for all E ∈ Ecw,

where νE, for all E ∈ Ecw, denotes the outer unit normal on the edge E,
pointing from the triangle with lower global number to the triangle with higher
global number. If E is a boundary edge, then νE coincides with the outer
normal νΩ. With [·]E we denote the jump of the respective function across the
edge E.

Further, to each function f ∈ L1(Ω) we assign a piecewise constant function
f defined by

f |T =
1

|T |

∫
T

f dx for T ∈ T cw. (8.3)

The local as well as the ‘regional’ data oscillations associated with a function
f are defined as

osch(f, T ) = ‖hT (f − f)‖L2(T ) for T ∈ T cw,

osch(f,D) =

(∑
T∈D

osch(f, T )2

)1/2

for D ⊂ T cw.

By Πh : H1(Ω) → Vcw, we denote Clément’s interpolation operator ([Clé75,
EG04]), which satisfies for each T ∈ T cw and E ∈ Ecw

‖v − Πhv‖T ≤ ChT‖∇v‖ωT
∀v ∈ H1(Ω), (8.4)

‖v − Πhv‖T ≤ Ch
1/2
E ‖∇v‖ωE

∀v ∈ H1(Ω). (8.5)

Here, the domains ωT and ωE are given by

ωT := {T ′ ∈ T cw : T ∩ T ′ 6= ∅} and ωE := {T ∈ T cw : E ⊂ T} .
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8.1.1 Reliability of the estimator – a posteriori upper bound

For all v in H1(Ω), we have〈
F (1)
s (c, w), v

〉
=
〈
F (2)
s (c, w), v

〉
= 0.

This yields 〈
F (1)
s (ch, wh), ew

〉
=
〈
F (1)
s (ch, wh)− F (1)

s (c, w), ew
〉
, (8.6)〈

F (2)
s (ch, wh), ec

〉
=
〈
F (2)
s (ch, wh)− F (2)

s (c, w), ec
〉
, (8.7)

which implies〈
F (1)
s (ch, wh), ew

〉
=

τ

Pe
(∇ew,∇ew) + (ec, ew)− τ(ecyold,∇ew), (8.8)〈

F (2)
s (ch, wh), ec

〉
=γ2(∇ec,∇ec)− (ew, ec) + (λs(c

h)− λs(c), ec). (8.9)

From

(max(0, a)−max(0, b))(a− b) ≥ (max(0, a)−max(0, b))2,

(min(0, a)−min(0, b))(a− b) ≥ (min(0, a)−min(0, b))2,

for all a, b ∈ R we have

(λs(c
h)− λs(c), ec) ≥ s−1‖eλs‖2. (8.10)

Hence, adding (8.8) and (8.9), and using (8.10), we obtain

E ≤ E1 + E2 + E3, (8.11)

with

E := s−1‖eλs‖2 +
τ

Pe
‖∇ew‖2 + γ2‖∇ec‖2,

E1 :=
〈
F (1)
s (ch, wh), ew

〉
,

E2 :=
〈
F (2)
s (ch, wh), ec

〉
,

E3 := τ(ecyold,∇ew).

We further estimate Ei, i = 1, 2. For this purpose, we recall that for all vh in
Vcw 〈

F (1)
s (ch, wh), vh

〉
=
〈
F (2)
s (ch, wh), vh

〉
= 0,

holds, which implies

E1 =
〈
F (1)
s (ch, wh), ew

〉
=
〈
F (1)
s (ch, wh), ew − Πhew

〉
,

E2 =
〈
F (2)
s (ch, wh), ec

〉
=
〈
F (2)
s (ch, wh), ec − Πhec

〉
.
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Let
E1 = Ea1 + Eb1, E2 = Ea2 + Eb2,

where

Ea1 :=
τ

Pe
(∇wh,∇(ew − Πhew)) , Ea2 := γ2 (∇ch,∇(ec − Πhec)) ,

Eb1 := (r
(1)
h , ew − Πhew), Eb2 := (r

(2)
h , ec − Πhec).

Using integration by parts, (8.4)–(8.5), and the discrete Cauchy–Schwarz in-
equality, it thus follows that

Ea1 =
∑
E∈Ecw

τ

Pe
([∇wh]E · νE, ew − Πhew)E

≤ C

(( τ
Pe

)2 ∑
E∈Ecw

(η
(1)
E )2

)1/2

‖∇ew‖,

Eb1 =
∑
T∈T cw

(r
(1)
h , ew − Πhew)T ≤ C

( ∑
T∈T cw

(η
(1)
T )2

)1/2

‖∇ew‖.

Consequently, we infer

E1 := Ea1 + Eb1 ≤ C

( ∑
T∈T cw

(η
(1)
T )2 +

( τ

Pe

)2 ∑
E∈Ecw

(η
(1)
E )2

)1/2

‖∇ew‖. (8.12)

In the same way, we find

E2 := Ea2 + Eb2 ≤ C

( ∑
T∈T cw

(η
(2)
T )2 + γ4

∑
E∈Ecw

(η
(2)
E )2

)1/2

‖∇ec‖. (8.13)

Next we establish reliability of our a posteriori error estimator ηΩ which
is defined below. We note that this result is similar to the one for a Cahn–
Hilliard system obtained in [HHT11, Prop. 7.1]. Let us first note that testing
(8.6) with 1 ∈ Vcw yields (ec, 1) = 0. Thus by Poincaré–Friedrichs inequality
there holds ‖ec‖ ≤ Cp‖∇ec‖.

Theorem 8.1. Let c, w ∈ H1(Ω) denote the solution of system (5.18)–(5.19),
and ch, wh ∈ Vcw denote the solution of system (7.2)–(7.3). Assume that yold ∈
L∞(Ω) holds. Then the following holds:

There exists a positive constant C, depending only on the domain Ω and
the smallest angle of the mesh T cw, such that

s−1‖eλs‖2 +
τ

4Pe
‖∇ew‖2 +

1

2

(
γ2 − τPeC2

p‖yold‖2
L∞(Ω)

)
‖∇ec‖2 ≤ Cη2

Ω, (8.14)
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holds, where

η2
Ω =

( τ

Pe

)−1 ∑
T∈T cw

(
η

(1)
T

)2

+ γ−2
∑
T∈T cw

(
η

(2)
T

)2

+
τ

Pe

∑
E∈Ecw

(
η

(1)
E

)2

+ γ2
∑
E∈Ecw

(
η

(2)
E

)2

.
(8.15)

Moreover
ηΩ ≤ β

with a constant β independent of s and h.
Thus, provided that

γ2 > τPeC2
p‖yold‖2

L∞(Ω)

holds, the estimator is reliable.

Proof. For proving (8.14) it remains to treat E3.
Straight forward estimation yields

E3 = τ(ecyold,∇ew)

≤ τ‖ec‖‖yold‖L∞(Ω)‖∇ew‖

≤ 1

2
τPe‖yold‖2

L∞(Ω)‖ec‖2 +
τ

2Pe
‖∇ew‖2

≤ 1

2
τPeC2

p‖yold‖2
L∞(Ω)‖∇ec‖2 +

τ

2Pe
‖∇ew‖2.

This together with the estimates (8.12) and (8.13) gives

E ≤C1

( ∑
T∈T cw

(
η

(2)
T

)2

+ γ4
∑
E∈Ecw

(
η

(2)
E

)2
)1/2

‖∇ec‖

+ C2

( ∑
T∈T cw

(
η

(1)
T

)2

+
( τ

Pe

)2 ∑
E∈Ecw

(
η

(1)
E

)2
)1/2

‖∇ew‖

+
1

2
τPeC2

p‖yold‖2
L∞(Ω)‖∇ec‖2 +

τ

2Pe
‖∇ew‖2

≤C1γ
−2

( ∑
T∈T cw

(
η

(2)
T

)2

+ γ4
∑
E∈Ecw

(
η

(2)
E

)2
)

+
γ2

2
‖∇ec‖2

+ C2

( τ
Pe

)−1
( ∑
T∈T cw

(
η

(1)
T

)2

+
( τ

Pe

)2 ∑
E∈Ecw

(
η

(1)
E

)2
)

+
τ

4Pe
‖∇ew‖2

+
1

2
τPeC2

p‖yold‖2
L∞(Ω)‖∇ec‖2 +

τ

2Pe
‖∇ew‖2,

where C1 > 0, C2 > 0 denote appropriate constants. This implies

s−1‖eλs‖2 +
τ

4Pe
‖∇ew‖2 +

1

2

(
γ2 − τPeC2

p‖yold‖2
L∞(Ω)

)
‖∇ec‖2 ≤ Cη2

Ω
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which is the claimed result.
Furthermore

ηΩ ≤ β
(
‖ch‖H1(Ω) + ‖wh‖H1(Ω) + ‖λs(ch)‖L2(Ω) + 1

)
,

follows from the definition of ηΩ, where β > 0 is an appropriate constant.

Remark 8.2.

• In [HHT11, HHK13] mass lumping is used for the numerical realization
of (7.2)–(7.3). The inner product (f, g) =

∫
Ω
fg dx then is not evaluated

exactly, but by the numerical quadrature rule

(f, g)h :=

∫
Ω

πh(f(x)g(x)) dx =
Ncw∑
i=1

(1, φcwi )f(xi)g(xi) ∀f, g ∈ C(Ω),

where πh : C(Ω) → Vcw denotes the Lagrange interpolation operator.
This gives rise to a further error contribution η3 = ‖πh(λs(ch))−λs(ch)‖,
to ηΩ, while the term η

(2)
T modifies to η̃(2)

T = hT‖πh(λs(ch))− wh − cold‖.
This reduces the numerical effort for solving the corresponding equation
systems, but introduces a new error contribution.

• For integrating λs(c
h) exactly further effort only has to be spent on

triangles with a discrete active-inactive interface, i.e. on

I(ch) := {T ∈ T cw |max
xi∈T
|ch(xi)| > 1 ∧min

xi∈T
|ch(xi)| < 1}.

In our numerics this extra effort results in meshes with less degrees of
freedom, compared to meshes obtained with lumping of λs(ch). The
numerical speed up from this smaller meshes even compensates the in-
creased numerical effort of exact evaluation. The influence of lumping is
investigated in Section 9.1.

• The condition γ2 > τPeC2
p‖yold‖2

L∞(Ω) can be interpreted as a restriction
on the time step size τ . It has to be choosen so small that a particle can
not cross the interface of width O(γ) in just one time step.

• If Ω is a convex domain Cp ≤ diam(Ω)π−1 holds ([PW60]).

• A similiar error estimator can be derived for other free energies, assum-
ing that the free energy is discretized according to [Eyr98], where an
implicit discretization in time for the convex part and an explicit in time
discretization of the concave part is proposed, see Section 11.3.
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8.1.2 Efficiency of the estimator – a posteriori lower bound

For showing the efficiency of the estimator we use the bubble function tech-
nique as proposed in e.g. [AO00], to establish a lower bound on the error
representation given in Theorem 8.1. By λT we denote the canonical bubble
function of T ∈ T cw, which is the product of the barycentric coordinates of T .
By λE we denote the bubble function corresponing to E ∈ Ecw. We introduce
the mapping

˜: L2(E) −→ L2(ωE), Φ̃(x) := Φ(xE) x ∈ T,

which extends any function defined on an edge E to the pair of neighboring
elements (T+, T−) with common edge E. Here ωE := T+ ∪ T−. We have
T ∈ {T+, T−}, and xE ∈ E is such that x−xE is parallel to a fixed E ′ ∈ T\{E}.

Referring to [AO00], for all polynomial functions ΦT ∈ Pk(T ) and ΦE ∈
Pk(E), k ∈ N, the following estimates are valid:

‖ΦT‖2
T ≤ C(ΦT ,ΦTλT )T ∀T ∈ T cw, (8.16)

‖ΦTλT‖T ≤ ‖ΦT‖T ∀T ∈ T cw, (8.17)
‖∇(ΦTλT )‖T ≤ Ch−1

T ‖ΦT‖T ∀T ∈ T cw, (8.18)
‖ΦE‖2

E ≤ C(ΦE,ΦEλE)E ∀E ∈ Ecw, (8.19)
‖ΦEλE‖E ≤ C‖ΦE‖E ∀E ∈ Ecw. (8.20)

Furthermore, we have

‖Φ̃EλE‖ωE
≤ Ch

1/2
E ‖ΦE‖E ∀E ∈ Ecw, (8.21)

‖∇(Φ̃EλE)‖ωE
≤ Ch

−1/2
E ‖ΦE‖E ∀E ∈ Ecw. (8.22)

We start with two auxiliary results.

Lemma 8.3. For every T ∈ T cw the following estimates hold( τ
Pe

)−1

(η
(1)
T )2 ≤ C

(
τPeh2

T‖yold‖2
∞,T‖∇ec‖2

T +
( τ

Pe

)−1

osc2
h(r

(1)
h , T )

+
τ

Pe
‖∇ew‖2

T +
( τ

Pe

)−1

‖hT ec‖2
T

)
(8.23)

and

γ−2(η
(2)
T )2 ≤C

(
γ2‖∇ec‖2

T + γ−2‖hT ew‖2
T (8.24)

+γ−2‖hT eλs‖2
T + γ−2osc2

h(r
(2)
h , T )

)
.

Proof. We have

(η
(1)
T )2 = ‖hT r(1)

h ‖2
T ≤ 2h2

T‖r(1)
h ‖2

T + 2osc2
h(r

(1)
h , T ), (8.25)
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with r(1)
h := c − c

old
+ τyold∇c. Note that while r(1)

h due to the appearance of
yold in general is not a piecewise polynomial on Vcw, r(1)

h is piecewise constant.
We set ψT := r

(1)
h |TλT and obtain with the help of (8.16)

‖r(1)
h ‖2

T ≤ C(r
(1)
h , ψT )T

≤ C(r
(1)
h , ψT )T + Ch−1

T osch(r
(1)
h , T )‖ψT‖T . (8.26)

Using ∆wh|T = 0 and c− cold − τ
Pe

∆w + τ∇cyold = 0 we proceed

(r
(1)
h , ψT )T = (ch − cold + τ∇chyold, ψT )T

= (ch − c, ψT )T −
τ

Pe
(∆wh −∆w,ψT )T

+ τ(∇chyold −∇cyold, ψT )T

= (ec, ψT )T +
τ

Pe
(∇ew,∇ψT )T + τ(∇ecyold, ψT )T . (8.27)

Using (8.26) and (8.27) we have

‖r(1)
h ‖2

T ≤C
(
‖ec‖T‖ψT‖T +

τ

Pe
‖∇ew‖T‖∇ψT‖T + τ(∇ecyold, ψT )T

+h−1
T osch(r

(1)
h , T )‖ψT‖T

)
≤C

(
‖ec‖T‖r(1)

h ‖T +
τ

Pe
‖∇ew‖Th−1

T ‖r
(1)
h ‖T

+ τ‖∇ecyold‖‖r(1)
h ‖T + h−1

T osch(r
(1)
h , T )‖r(1)

h ‖T
)

from which we conclude

‖r(1)
h ‖T ≤C

(
‖ec‖T +

τ

Pe
h−1
T ‖∇ew‖T

+τ‖∇ec‖T‖yold‖∞,T + h−1
T osch(r

(1)
h , T )

)
. (8.28)

Estimate (8.23) now follows from (8.25) and (8.28) using Young’s inequality.

To achieve (8.24) we proceed similarly with

(η
(2)
T )2 = ‖hT r(2)

h ‖2
T ≤ 2h2

T‖r(2)
h ‖2

T + 2osc2
h(r

(2)
h , T ), (8.29)

where r(2)
h := λs(ch)− wh − cold. With ψT := r

(2)
h |TλT and (8.16) we get

‖r(2)
h ‖2

T ≤ C(r
(2)
h , ψT )T .

Furthermore

‖r(2)
h ‖2

T ≤ C(r
(2)
h , ψT )T + Ch−1

T osch(r
(2)
h , T )‖ψT‖T . (8.30)
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Since ∆ch|T = 0 and −γ2∆c+ λs(c)− w − cold = 0, we have

(r
(2)
h , ψT )T =γ2(∇ec,∇ψT )T + (eλs , ψT )T − (ew, ψT )T . (8.31)

From (8.30)–(8.31) it follows that

‖r(2)
h ‖2

T ≤ C
(
γ2‖∇ec‖T‖∇ψT‖T

+
(
‖ew‖T + ‖eλs‖T + h−1

T osch(r
(2)
h , T )

)
‖ψT‖T

)
,

and using (8.17) and (8.18) we obtain

‖r(2)
h ‖T ≤ C

(
γ2h−1

T ‖∇ec‖T + ‖ew‖T + ‖eλs‖T

+h−1
T osch(r

(2)
h , T )

)
. (8.32)

Estimate (8.24) now follows from (8.29) and (8.32).

Lemma 8.4. For every E ∈ Ecw the following estimates hold

τ

Pe
(η

(1)
E )2 ≤C

(
τ

Pe
‖∇ew‖2

ωE
+
( τ
Pe

)−1

‖hT ec‖2
ωE

+
( τ
Pe

)−1

osc2
h(r

(1)
h , ωE)

+ τPe‖hTyold‖2
∞,ωE
‖∇ec‖2

ωE

)
(8.33)

and

γ2(η
(2)
E )2 ≤ C

(
γ2‖∇ec‖2

ωE
+ γ−2‖hEew‖2

ωE
+ γ−2‖hEeλs‖2

ωE

+γ−2osc2
h(r

(2)
h , ωE)

)
. (8.34)

Proof. Let E be an arbitrary edge in Ecw and define ψE := Φ̃EλE. For the
proof of (8.33) we use ΦE := [∇wh]E · νE.
Due to (8.19) we have(

η
(1)
E

)2

= hE‖[∇wh]E · νE‖2
E ≤ ChE([∇wh]E · νE, ψE)E. (8.35)

Using Green’s formula and ∆wh|T = 0 we get

([∇wh]E · ν, ψE)E =
∑
T⊂ωE

(∇wh,∇ψE)T = (∇wh,∇ψE)ωE
.



8 THE ADAPTIVE CONCEPT 34

Since
(

τ

Pe

)−1

(c− cold + τ∇cyold)−∆w = 0 there holds

(∇wh,∇ψE)ωE

=(∇wh,∇ψE)ωE
+ (∆w,ψE)ωE

−
( τ
Pe

)−1

(c− cold + τ∇cyold, ψE)ωE

=(∇ew,∇ψE)ωE
−
( τ
Pe

)−1

(r
(1)
h , ψE)ωE

+ τ(∇ecyold, ψE)ωE
+
( τ
Pe

)−1

(ec, ψE)ωE

≤‖∇ew‖ωE
‖∇ψE‖ωE

+
( τ
Pe

)−1

‖r(1)
h ‖ωE

‖ψE‖ωE

+ τ‖∇ec‖ωE
‖yold‖∞,ωE

‖ψE‖+
( τ
Pe

)−1

‖ec‖ωE
‖ψE‖ωE

≤C‖[∇wh]E · νE‖ωE

(
h
−1/2
E ‖∇ew‖ωE

+
( τ
Pe

)−1

h
1/2
E

(
‖r(1)

h ‖ωE
+ ‖ec‖ωE

+ τ‖∇ec‖ωE
‖yold‖∞,ωE

))
.

Thus we conclude

‖[∇wh]E · νE‖E
≤ C

(
h
−1/2
E ‖∇ew‖ωE

+
( τ
Pe

)−1

h
1/2
E

(
‖r(1)

h ‖ωE
+ ‖ec‖ωE

+ τ‖∇ec‖ωE
‖yold‖∞,ωE

))
.

Using this estimate in (8.35) we see that

τ

Pe

(
η

(1)
E

)2

=
τ

Pe
hE‖[∇wh]E · νE‖2

E

≤C
(
τ

Pe
‖∇ew‖2

ωE
+
( τ
Pe

)−1

‖hEr(1)
h ‖2

ωE
+
( τ
Pe

)−1

‖hEec‖2
ωE

+h2
EτPe‖∇ec‖ωE

‖yold‖2
∞,ωE

)
.

Using the regularity of the mesh, i.e. O(hE/hT ) = 1, we have( τ
Pe

)−1

‖hEr(1)
h ‖2

ωE
≤ C

∑
T⊂ωE

( τ
Pe

)−1

(η
(1)
T )2.
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Now we use the estimate for
(

τ

Pe

)−1

(η
(1)
T )2 from (8.23) and proceed

τ

Pe

(
η

(1)
E

)2

≤C
(
τ

Pe
‖∇ew‖2

ωE
+
( τ
Pe

)−1

‖hEec‖2
ωE

+ h2
EτPe‖∇ec‖2

ωE
‖yold‖2

∞,ωE

+C2

∑
T⊂ωE

[
τ

Pe
‖∇ew‖2

T +
( τ
Pe

)−1

‖hT ec‖2
T + τPeh2

T‖yold‖2
∞,T‖∇ec‖2

T

+
( τ
Pe

)−1

osc2
h(r

(1)
h , T )

])
≤C

(
τ

Pe
‖∇ew‖2

ωE
+
( τ
Pe

)−1

‖hT ec‖2
ωE

+
( τ
Pe

)−1

osc2
h(r

(1)
h , ωE)

+τPe‖hTyold‖2
∞,ωE
‖∇ec‖2

ωE

)
which completes this estimate.

For the proof of (8.34) we use another ΦE namely ΦE := [∇ch]E · νE. Due to
(8.19) we have

(η
(2)
E )2 := hE‖[∇ch]E · νE‖2

E ≤ ChE([∇ch]E · νE, ψE)E.

Green’s formula and ∆ch|T = 0 yield

([∇ch]E · νE, ψE)E =
∑
T⊂ωE

(∇ch,∇ψE)T = (∇ch,∇ψE)ωE
.

Using −γ2∆c+ λs(c)− w − cold = 0 we get

([∇ch]E · νE, ψE)E

=(∇ec,∇ψE)ωE
− γ−2(ew, ψE)ωE

+ γ−2(eλs , ψE)ωE
− γ−2(r

(2)
h ψE)ωE

.

Consequently, we obtain

([∇ch]E · νE, ψE)E ≤ ‖∇ec‖ωE
‖∇ψE‖ωE

+ γ−2‖ew‖ωE
‖ψE‖ωE

+ γ−2‖eλs‖ωE
‖ψE‖ωE

+ γ−2‖r(2)
h ‖ωE

‖ψE‖ωE
.

Using (8.19), (8.21) and (8.22), it follows that

‖[∇ch]E · νE‖2
E ≤ C([∇ch]E · νE, ψE)E,

and

‖[∇ch]E · νE‖E ≤ C
(
h
−1/2
E ‖∇ec‖ωE

+ γ−2h
1/2
E ‖ew‖ωE

+γ−2h
1/2
E ‖eλs‖ωE

+ γ−2h
1/2
E ‖r

(2)
h ‖ωE

)
.
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Therefore, we have

γ2(η
(2)
E )2 := γ2hE‖[∇ch]E · νE‖2

E

≤ C
(
γ2‖∇ec‖2

ωE
+ γ−2‖hEew‖2

ωE
(8.36)

+γ−2‖hEeλs‖2
ωE

+ γ−2‖hEr(2)
h ‖ωE

)
.

Observe that due to (8.2)

γ−2‖hEr(2)
h ‖2

ωE
≤ C

∑
T∈ωE

γ−2(η
(2)
T )2 (8.37)

holds, where again the regularity of the mesh, is used. Consequently, by com-
bining (8.24), (8.36) and (8.37) we obtain (8.34).

Combining Lemma 8.3 and Lemma 8.4 we can prove the efficiency of the
error estimator ηΩ.

Theorem 8.5. There exists a constant β depending on s−1, γ, τ,Pe, Ω, ‖yold‖∞
and the smallest angle of the mesh T cw such that

s−1‖eλs‖2 +
τ

Pe
‖∇ew‖2 + γ2‖∇ec‖2 ≥ βη2

Ω − osch(r
(1)
h ,Ω)2 − osch(r

(2)
h ,Ω)2.

(8.38)

Proof. Using the estimates of Lemma 8.3 and Lemma 8.4 we obtain for ηΩ

ηΩ
2 ≤ C

∑
T∈T cw

(( τ
Pe

)−1

‖hT ec‖2
T +

τ

Pe
‖∇ew‖2

T +
( τ
Pe

)−1

osc2
h(r

(1)
h , T )

+τPe‖hTyold‖2
∞,T‖∇ec‖2

T + γ2‖∇ec‖2
T + γ−2‖hT ew‖2

T

+γ−2‖hT eλs‖2
T + γ−2osc2

h(r
(2)
h , T )

)
≤ C

(( τ
Pe

)−1

‖hec‖2 +
τ

Pe
‖∇ew‖2 + γ2‖∇ec‖2 + γ−2‖hew‖2 + γ−2‖heλs‖2

+τPe‖yold‖2
L∞(Ω)‖∇ec‖2 +

( τ
Pe

)−1

osc2
h(r

(1)
h ,Ω) + γ−2osc2

h(r
(2)
h ,Ω)

)
,

where C > 0 denotes a generic constant. Using v = 1 as test function in (5.18)
and in (7.2) we obtain (cold, 1) = (ch, 1) = (c, 1), and thus (ec, 1) = 0. By
Poincaré’s inequality it follows that ‖ec‖ ≤ Cp‖∇ec‖.

Using v = 1 as test function in (5.19) and in (7.3) we obtain

(ew, 1) = (λs(c
h)− λs(c), 1) ≤ |Ω|‖eλs‖.

Now the stated result follows from Poincaré–Friedrichs inequality for h small
enough.

Remark 8.6. If lumping is used for (λs(c
h), v), the resulting estimator is only

efficient up to terms arising from this lumping, see [HHK13, HHT11].
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8.2 Adaptive concept for the Navier–Stokes part

In this section we derive a residual based a-posteriori error estimator for the
Navier–Stokes part of system (5.16)–(5.19). The estimator is derived following
the construction in [Jus11]. For the estimator we show reliability and efficiency
up to higher order terms.

For a-posteriori error estimation including the solution of local linear prob-
lems for the error indicators we refer to [AO00]. Residual based estimators
for the Stokes problem are described in [Ver89] for the stationary case and in
[Ver10] for the instationary case.

We define the following errors

ey = y − yh, ep = p− ph, (8.39)

and define the residual as a linear functional on H1
0 (Ω)d × L2

(0)(Ω) given by

R(v, q) := L((v, q))−B((yh, ph), (v, q)). (8.40)

Thus there holds

R((v, q)) :=(ξyold −Kc∇w, v)− ξ(yh, v)− η(∇yh,∇v)

− 1

2
(yold∇yh, v) +

1

2
(yold∇v, yh)

+ (divv, ph)− (divyh, q).

Since

L((v, q))−B((y, p), (v, q)) = 0 ∀(v, q) ∈ H1
0 (Ω)d × L2

(0)(Ω),

we have

R((v, q)) = L((v, q))− L((v, q))−B((yh − y, ph − p), (v, q))
= B((y − yh, p− ph), (v, q)).

Using Theorem 4.4 we get

β∗ 9 (ey, ep)9 ≤ ‖R‖∗ ≤ cS 9 (ey, ep)9

where ‖R‖∗ denotes the operator norm of R defined by

‖R‖∗ := sup
(v,q)∈H1

0 (Ω)d×L2
(0)

(Ω)

|R((v, q))|
9(v, q)9

.

Thus any upper bound of the operator norm of the residuum R is a reliable
estimator for the error 9(ey, ep)9.
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8.2.1 Reliability of the estimator – a posteriori upper bound

We proceed with estimating ‖R‖∗. Integration by parts yields

R((v, q)) =
∑
T∈T yp

(ξyold −Kc∇w + η∆yh − yold∇yh −∇ph, v)T

−
∑
T∈T yp

(div yh, q)T −
∑
E∈Eyp

([
νE ·

(
η∇yh − phI

)]
E
, v
)
E
.

Let us introduce

rT := ξyold −Kch∇wh − ξyh + η∆yh − yold∇yh −∇ph,
fT := K(ch∇wh − c∇w),

dT := −div yh,

jE :=

{
−
[
νE ·

(
η∇yh − phI

)]
E

if E 6∈ ∂Ω,

0 if E ∈ ∂Ω.

Then

R(v, q) =
∑
T∈T yp

{(rT , v) + (dT , q) + (fT , v)}+
∑
E∈Eyp

(jE, v). (8.41)

From Lh(vh, qh) − B((yh, ph), (vh, qh)) = 0 for all vh ∈ Vy, qh ∈ Vp we further
infer

R((v, q)) =
∑
T∈T yp

{
(rT , v − vh) + (dT , q − qh) + (fT , v)

}
+
∑
E∈Eyp

(jE, v − vh).

(8.42)
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Let Πhv ∈ Vy denote the Clément interpolation of v with Πhv|∂Ω = 0 (see
[EG04, Rem. 1.129]). We test (8.42) with vh = Πhv and qh = 0 and obtain

R((v, q))

≤
∑
T∈T yp

{‖rT‖T‖v − Πhv‖T + ‖dT‖T‖q‖T + ‖fT‖T‖v‖T}

+
∑
E∈Eyp

‖jE‖E‖v − Πhv‖E,

≤
∑
T∈T yp

{c1hT‖rT‖T‖∇v‖ωT
+ ‖dT‖T‖q‖T + ‖fT‖T‖v‖T}

+
∑
E∈Eyp

c2h
1/2
E ‖jE‖E‖∇v‖ωE

≤C


√ ∑

T∈T yp

h2
Tη
−1‖rT‖2

T

∑
T∈T yp

η‖∇v‖2
ωT

+

√ ∑
T∈T yp

η‖dT‖2
T

∑
T∈T yp

η−1‖q‖2
T

+

√ ∑
T∈T yp

ξ−1‖fT‖2
T

∑
T∈T yp

ξ‖v‖2
T +

√∑
E∈Eyp

hEη−1‖jE‖2
E

∑
E∈Eyp

η‖∇v‖2
ωE


≤C

{ ∑
T∈T yp

{
h2
Tη
−1‖rT‖2

T + η‖dT‖2
T + ξ−1‖fT‖2

T

}
+
∑
E∈Eyp

hEη
−1‖jE‖2

E

}1/2

×
{ ∑
T∈T yp

η‖∇v‖2
T +

∑
T∈T yp

ξ‖v‖2
T +

∑
T∈T yp

η−1‖q‖2
T

}1/2

︸ ︷︷ ︸
=9(v,q)9

,

where we use the Cauchy–Schwarz inequality for both integrals and sums to-
gether with the error estimations for Clément interpolation provided in (8.4)–
(8.5). The constant C only depends on the domain Ω and the smallest angle
in T yp ([Clé75, H4]) and especially is independent of ν, ξ and yold. Thus we
have
R((v, q))

9(v, q)9

≤ C

{ ∑
T∈T yp

{
h2
Tη
−1‖rT‖2

T + η‖dT‖2
T + ξ−1‖fT‖2

T

}
+
∑
E∈Eyp

hEη
−1‖jE‖2

E

}1/2

,

which implies

‖R‖∗ = sup
(v,q)∈H1

0 (Ω)d×L2
(0)

(Ω)

R((v, q))

9(v, q)9

≤ C

{ ∑
T∈T yp

{
h2
Tη
−1‖rT‖2

T + η‖dT‖2
T + ξ−1‖fT‖2

T

}
+
∑
E∈Eyp

hEη
−1‖jE‖2

E

}1/2

.



8 THE ADAPTIVE CONCEPT 40

We summarize our finding in

Theorem 8.7. Let (y, p) denote the solution to (4.11) and (yh, ph) denote the
solution to (7.1). Let β∗, denote the constant defined in Theorem 4.4.

Then there exists a constant C > 0 depending on Ω and the smallest angle
of T yp such that

β∗ 9 (y − yh, p− ph)9 ≤ CηΩ

holds, where ηΩ is given by

η2
Ω =

∑
T∈T yp

{
h2
Tη
−1‖rT‖2

T + η‖dT‖2
T + ξ−1‖fT‖2

T

}
+
∑
E∈Eyp

hEη
−1‖jE‖2

E (8.43)

with

rT := ξyold −Kch∇wh − ξyh + η∆yh − yold∇yh −∇ph,
dT := −div yh,
fT := K(ch∇wh − c∇w),

jE :=

{
−
[
νE ·

(
η∇yh − phI

)]
E

if E 6∈ ∂Ω,

0 if E ∈ ∂Ω.

Remark 8.8. Through appearance of the term c∇w in fT the estimator is not
fully practical. The norm of fT can be further estimated as

K−2
∑
T∈T yp

‖fT‖2
T =‖(c− ch)∇w + ch(∇w −∇wh)‖2

L2(Ω)

≤3

2

(
‖ec∇w‖2

L2(Ω) + ‖ch∇ew‖2
L2(Ω)

)
.

From Lemma 5.8 we have ‖w‖H2(Ω) ≤ C independent of s, and by using Sobolev
embedding we have

‖ec∇w‖2
L2(Ω) ≤ ‖∇w‖2

L4(Ω)‖ec‖2
L4(Ω) ≤ C‖w‖2

H2(Ω)‖ec‖2
H1(Ω) ≤ C‖∇ec‖2

L2(Ω),

where for the last inequality we use Poincaré–Friedrichs’ inequality together
with (ec, 1) = 0. For the second addend we have

‖ch∇ew‖2
L2(Ω) ≤ ‖ch‖2

L∞(Ω)‖∇ew‖2
L2(Ω).

Since c ∈ H2(Ω) ↪→ L∞(Ω) and ‖c‖H2(Ω) ≤ C from Lemma 5.8, it further
holds

‖ch‖L∞(Ω) ≤ ‖ch − c‖L∞(Ω) + ‖c‖L∞(Ω) ≤ ‖ch − c‖L∞(Ω) + C.

Let Ihc denote the Lagrange interpolation of c. We set m =
∫

Ω
ch − Ihc dx,

fulfilling |m| ≤ C, and proceed

‖ch − c‖L∞(Ω) ≤ ‖ch − Ihc−m‖L∞(Ω) + |m|+ ‖Ihc− c‖L∞(Ω)

≤ σ(d, h)‖∇(ch − Ihc)‖L2(Ω) + C + Ch2−d/2|c|H2(Ω),
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with

σ(d, h) = C

{
| log h|1/2 if d = 2,

h−1/2 if d = 3.

Here for the first term we use discrete Sobolev inequalities from [HPUU09,
Prop. 3.1], while for the third term we use approximation results for the
Lagrange interpolation (see e.g. [BS08, Th. 4.4.20]). We proceed with

‖∇(ch − Ihc)‖L2(Ω) ≤ ‖∇(ch − c)‖L2(Ω) + ‖∇(c− Ihc)‖L2(Ω)

≤ ‖∇ec‖L2(Ω) + Ch|c|H2(Ω),

where we again use approximation results for the Lagrange interpolation from
[BS08, Th. 4.4.20]. Putting everything together we have

‖ch‖L∞(Ω) ≤ C(1 + h2−d/2) + σ(d, h)
(
‖∇ec‖L2(Ω) + Ch

)
= ξ(d, h)

and

K−2
∑
T∈T yp

‖fT‖2
T ≤ C

(
‖∇ec‖2

L2(Ω) + ξ(d, h)2‖∇ew‖2
L2(Ω)

)
.

Thus we can use the results from Theorem 8.1 to estimate the error terms
‖fT‖2

T . We note, that ξ(d, h) is bounded independently of h.
We further note that the error indicators from Theorem 8.1 are defined on

the mesh T cw while ‖fT‖T is defined on T yp. The treatment of this situation
is discussed in Section 8.3.

8.2.2 Efficiency of the estimator – a posteriori lower bound

We next show that our residual based error estimator is efficient up to higher
order terms arising due to the presence of ‖fT‖.

For this we again use the bubble-technique which was also used to establish
efficiency of the estimator for the Cahn–Hilliard part and we proceed similar
as in showing the efficiency of the estimator for the Cahn–Hilliard part.

Lemma 8.9. There exist a constant C > 0 independent of ξ, ν, yold and hT
such that there

η−1h2
T‖rT‖2 ≤C max

[(
1 + η−1h2

T‖yold‖L∞(Ω)

)2
, h2

Tη
−1ξ, h2

T

]
9 (ey, ep)92

+ Cη−1osc2
h(rT , T ) + Cη−1h2

T‖fT‖2

holds. Furthermore,

η‖dT‖2 ≤ d 9 (ey, ep) 92 .
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Proof. Since divy = 0 and thus, divyh = div(yh − y), the second statement
follows from ‖divv‖2 ≤ d‖∇v‖2 for any v ∈ H1

0 (Ω)d.

To proof the first statement we start with

η−1h2
T‖rT‖2 ≤ 2η−1h2

T‖rT‖2 + 2η−1osc2
h(rT , T ) (8.44)

where rT is the mean value of rT as defined in (8.3). Let ψT := rTλT , where λT
is the canonical bubble function defined in Section 8.1.2. Then (8.16)–(8.22)
imply

‖rT‖2 ≤ C(rT , ψT ) ≤ C(rT , ψT ) + Ch−1
T osch(rT , T )‖ψT‖. (8.45)

Using ξy − η∆y + yold∇y +∇p+Kc∇w − ξyold = 0 we proceed with

(rT , ψT ) =
(
ξyold −Kch∇wh + η∆yh − ξyh −∇ph − yold∇yh, ψT

)
= (−fT − η∆ey + ξey +∇ep + yold∇ey, ψT )

=η(∇ey,∇ψT ) + (ξey +∇ep + yold∇ey − fT , ψT )

≤η‖∇ey‖‖∇ψT‖+ ‖yold‖L∞(Ω)‖∇ey‖‖ψT‖
+ (ξ‖ey‖+ ‖∇ep‖+ ‖fT‖) ‖ψT‖.

Using this together with (8.16)–(8.22) in (8.45) we obtain

‖rT‖2 ≤C
(
η‖∇ey‖‖∇ψT‖+ ‖yold‖L∞(Ω)‖∇ey‖‖ψT‖

+
(
ξ‖ey‖+ ‖∇ep‖+ ‖fT‖+ h−1

T osch(rT , T )
)
‖ψT‖

)
≤C

{(
h−1
T η + ‖yold‖L∞(Ω)

)
‖∇ey‖+ ξ‖ey‖

+ ‖∇ep‖+ ‖fT‖+ h−1
T osch(rT , T )

}
‖rT‖.

Thus there holds

‖rT‖ ≤ C
{(
h−1
T η + ‖yold‖L∞(Ω)

)
‖∇ey‖+ ξ‖ey‖+ ‖∇ep‖

+‖fT‖+ h−1
T osch(rT , T )

}
,

with some positive C which is independend of ξ, ν, yold and hT . Inserting this
into (8.44) we arrive at

η−1h2
T‖rT‖2 ≤2η−1h2

T‖rT‖2 + 2η−1osc2
h(rT , T )

≤C
{
η−1osc2

h(rT , T ) + η−1
(
η + hT‖yold‖L∞(Ω)

)2 ‖∇ey‖2

+ h2
Tη
−1ξ2‖ey‖2 + h2

Tη
−1‖∇ep‖2 + h2

Tη
−1‖fT‖2

}
≤C max

((
1 + η−1hT‖yold‖L∞(Ω)

)2
, h2

Tη
−1ξ, h2

T

)
9 (ey, ep)92

+ Cη−1osc2
h(rT , T ) + Cη−1h2

T‖fT‖2,

where Young’s inequality is used several times.
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Lemma 8.10. There exists a constant C > 0 independend of ξ, ν, yold and h
such that there holds

hEη
−1‖jE‖2 ≤C

{(
1 + ξη−1h2

E

)
9 (ey, ep)92

ωE

+ max
((

1 + η−1hT‖yold‖L∞(Ω)

)2
, h2

Tη
−1ξ, h2

T

)
9 (ey, ep)92

ωE

+
∑
T∈ωE

η−1h2
T‖fT‖2 + η−1osc2

h(rT , ωE)

}
.

Proof. Let E be an arbitrary edge of Eyp and define

ψE := j̃EλE, jE =
[(
η∇yh − phI

)
νE
]
E
.

We use the properties of R defined in (8.40). Using (8.41) we have

R(ψE, 0) =
∑
T∈ωE

{(rT , ψE)T + (fT , ψE)T}+ (jE, ψE)E.

From Theorem 4.4 we also obtain

R(ψE, 0) ≤C 9 (ey, ep) 9ωE
9(ψE, 0) 9ωE

.

Combining this with

9(ψE, 0)92 ≤η
∑
T∈ωE

‖∇ψE‖2
T + ξ

∑
T∈ωE

‖ψE‖2

≤C
(
ηh−1

E + ξhE
)
‖jE‖2,

we obtain

η−1hE‖jE‖2 ≤Cη−1hE(jE, ψE)E

≤η−1hEC

{
9 (ey, ep) 9ωE

9(ψE, 0)9ωE
)

+
∑
T∈ωE

‖rT‖‖ψE‖+
∑
T∈ωE

‖fT‖‖ψE‖
}

≤η−1hEC

{√
ηh−1

E + ξhE 9 (ey, ep) 9ωE
‖jE‖

+
∑
T∈ωE

h
1/2
E ‖rT‖‖jE‖+

∑
T∈ωE

h
1/2
E ‖fT‖‖jE‖

}

=C

{√
1 + ξη−1h2

E 9 (ey, ep)9ωE

+ η−1/2
∑
T∈ωE

hE‖rT‖+ η−1/2
∑
T∈ωE

hE‖fT‖
}
η−1/2h

1/2
E ‖jE‖E.
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Due the regularity conditions supposed for T yp we have hE ≤ ChT with some
positive constant C independent of the mesh size. Thus,

η−1/2h
1/2
E ‖jE‖ ≤C

{√
1 + ξη−1h2

E 9 (ey, ep)9ωE

+ η−1/2
∑
T∈ωE

hT‖rT‖+ η−1/2
∑
T∈ωE

hT‖fT‖
}
,

which implies

η−1hE‖jE‖2 ≤C
{(

1 + ξη−1h2
E

)
9 (ey, ep)92

ωE

+ η−1
∑
T∈ωE

h2
T‖rT‖2 + η−1

∑
T∈ωE

h2
T‖fT‖2

}
.

Now we use the estimate from Lemma 8.9 and obtain

η−1hE‖jE‖2

≤C
{
α 9 (ey, ep) 92

ωE
+
∑
T∈ωE

η−1h2
T‖fT‖2 + η−1osc2

h(rT , ωE)

}
,

where

α =
(
1 + ξη−1h2

E

)
+ max

((
1 + η−1hT‖yold‖L∞(Ω)

)2
, h2

Tη
−1ξ, h2

T

)

Combining the previous two lemmas we for 0 < hT < 1 have proven

Theorem 8.11. There exists a constant C > 0 independend of h but depending
on ξ, η, yold, d such that there holds

η2
Ω ≤C

(
9(ey, ep) 92 +osc2

h(rT ,Ω) +
∑
T∈T yp

‖fT‖2

)
.

Remark 8.12. From Remark 8.8 we deduce, that ‖fT‖ is bounded by the re-
liable and efficient estimator introduced in Theorem 8.1. Let hy denote the
gridsize of T yp and hc denote the gridsize of T cw. Then for fix hc and for
hy → 0 this upper bound on ‖fT‖ is independend of hy and thus we cannot
deduce ‖fT‖ → 0, i.e. the efficiency of the estimator.

However, in real situations one would always tend hy → 0 and hc → 0
simultaneously. Thus we expect that the overestimation introduced by using
a not efficient estimator is moderate in real applications.
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8.3 The adaptive mesh refinement cycle

Having the error estimators (8.15) and (8.43) at hand, we next describe the
refinement cycles that we use during the numerical simulation. We use the
classic refinement cycle

SOLVE → ESTIMATE → MARK → REFINE/COARSE

once in every time step of our simulation. Thus, our overall algorithm for
solving the discrete Cahn–Hilliard Navier–Stokes system (7.1)–(7.3) is given
by:

1. INIT: Obtain initial meshes T cw(0) for the concentration and the potential,
and T yp(0) for the flowfield and the pressure. Set k = 0.

2. SOLVE: Perform one step of simulation, i.e. at time tk+1 solve the system
(7.1)–(7.3) on the meshes T cw(k) and T yp(k) .

3. ESTIMATE: Calculate local error contributions on each triangle for T cw(k)

and T yp(k) as described in Section 8.1 and Section 8.2.

4. MARK: Determine triangles in T cw(k) and T yp(k) for refinement and coarsen-
ing using the marking strategies defined below.

5. REFINE/COARSE: Obtain meshes T cw(k+1) and T yp(k+1) by refining and
coarsening the meshes T cw(k) and T yp(k) according to the marking obtained
in step 4.

6. Set k := k + 1, go to 2.

Note that the solution on the current time instance is calculated in step 2. The
subsequent steps calculate a new mesh that is used for the next time step.

Now we have a look at the local error contributions for the Cahn–Hilliard
and the Navier–Stokes system.

For each T ∈ T cw we define

ηT =
( τ
Pe

)−1 (
η

(1)
T

)2

+ γ−2
(
η

(2)
T

)2

and

ηTE =
∑

E∈E(T )

(
τ

Pe

(
η

(1)
E

)2

+ γ2
(
η

(2)
E

)2
)
.

Here E ∈ E(T ) means, that E is an edge of the triangle T .
For each S ∈ T yp we define

ηS =h2
Sη
−1‖rT‖2, (8.46)

ηSE =hSη
−1

∑
E⊂E(S)

‖jE‖2, (8.47)

ηSD =η‖dT‖2, (8.48)

ηSF =ξ−1
∑
T∈C

(ηT + ηTE) . (8.49)



8 THE ADAPTIVE CONCEPT 46

Here C ⊂ T cw denotes the smallest set of triangles T ∈ T cw such that S ⊂⋃
T∈C T
Using these error indicaters we next describe our marking strategy.

Marking strategy for T cw

Since we expect large errors mainly in the interfacial region, we use bulk mark-
ing, see e.g. [Dör96]. We define the set

A = {T ∈ T cw | amin ≤ |T | ≤ amax}

of all admissible triangles for adaptation. The positive constants amin and amax

denote the minimal and the maximal size of elements we allow in our meshes.
The marking strategy performs the following steps:

(i) Fix constants θr and θc in (0, 1).

(ii) Find a setMT ⊂ T cw such that∑
T∈MT

ηT ≥ θr
∑
T∈T cw

ηT .

(iii) Find a setME ⊂ T cw such that∑
T∈ME

ηTE ≥ θr
∑
T∈T cw

ηTE.

(iv) Mark each T ∈ (ME ∪MT ) ∩ A for refinement.

(v) Find the set CT ⊂ T cw such that

ηT ≤
θc

NT

∑
T∈T cw

ηT

holds for all T ∈ CT . Here and below NT denotes the number of elements
of T cw.

(vi) Find the set CE ⊂ T cw such that

ηTE ≤
θc

NT

∑
T∈T cw

ηTE

holds for all T ∈ CE.

(vii) Mark all T ∈
(
CT ∪ CE

)
∩ A for coarsening.

Remark 8.13.
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• Note that the marking for refinement of elements is splitted up into the
two separate steps ((ii))–((iii)), and the marking for coarsening is splitted
up into the separate steps ((v))–((vi)). This offers the possibility to
properly consider the different scalings in ηT and ηTE introduced by τ

Pe
and γ.

• This strategy does not prevent a triangle from being both marked for
refinement and for coarsening. In this case it is refined only.

• In our numerics, this strategy performs well whenever we choose τ small
in comparison to the movement of the interface. This corresponds to the
restriction on τ introduced in Theorem 6.3 to guarantee the convergence
of Newton’s method, and in Theorem 8.1 to guarantee the reliability of
the estimator ηΩ. In our tests τ = O(γ2) turns out to be a suitable
choice. Especially in spinodal decomposition the time step τ has to be
chosen quite small to capture the system dynamics at the beginning of
the evolution. For this an adaptive choice of τ would be desirable, see
[BN09] for a heuristic approach to adapt the time step size τ .

Marking strategy for T yp

As is indicated by our numerical simulations errors for the velocity and pressure
field are not clustered as it is observed on T cw. Although in our numerical tests
there was not one best strategy, we again propose a bulk marking with separate
treatment of all four error indicators.

Again we define the set of admissable triangles by

A = {T ∈ T yp | amin ≤ |T | ≤ amax}.

with minimum and maximum allowed triangle sizes amin > 0 and amax > 0.
The algorithm for marking triangles is given as follows:

(i) Fix constants θr and θc in (0, 1).

(ii) Find a setMS ⊂ T yp such that∑
S∈MS

ηS ≥ θr
∑
S∈T yp

ηS.

(iii) Find a setMSE ⊂ T yp such that∑
S∈MSE

ηSE ≥ θr
∑
S∈T yp

ηS.

(iv) Find a setMSD ⊂ T yp such that∑
S∈MSD

ηSD ≥ θr
∑
S∈T yp

ηS.
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(v) Find a setMSF ⊂ T yp such that∑
S∈MSF

ηSF ≥ θr
∑
S∈T yp

ηS.

(vi) Mark each S ∈ (MS ∪MSE ∪MSD ∪MSF ) ∩ A for refinement.

(vii) Find the set CS ⊂ T yp such that

ηS ≤
θc

NT

∑
S∈T yp

ηS

holds for all S ∈ CS. Here and below NT denotes the number of elements
of T yp.

(viii) Find the set CSE ⊂ T yp such that

ηSE ≤
θc

NT

∑
S∈T yp

ηSE

holds for all S ∈ CSE.

(ix) Find the set CSD ⊂ T yp such that

ηSD ≤
θc

NT

∑
S∈T yp

ηSD

holds for all S ∈ CSD.

(x) Find the set CSF ⊂ T yp such that

ηSF ≤
θc

NT

∑
S∈T yp

ηSF

holds for all S ∈ CSF .

(xi) Mark all S ∈ (CS ∪ CSE ∪ CSD ∪ CSF ) ∩ Ah for coarsening.

The indicator ηSF is defined using the indicators ηT and ηTE for the Cahn–
Hilliard part. In our numerical test we observe that these indicators are clus-
tered at the interface and thus also the indicator ηSF is clustered at the in-
terface. However, numerical tests indicate that the overall L2 velocity error is
only slightly reduced when refining at the interface, at least in the case of a
dominant boundary velocity field. Thus to obtain small overall velocity errors
with less triangles one should modify the proposed marking procedure. Since
we are interested in the dynamics at the interface it is reasonable to use this
indicator anyway to obtain a better resolved velocity field at the interface.

Again, if a triangle is both marked for refinement and coarsening it is
refined only.
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T 0

T yp T cw

Figure 8.1: The refinement of the macro triangulation.

8.4 The two-mesh strategy

In the previous sections we described the adaptive concept for obtaining the
Cahn–Hilliard and the Navier–Stokes meshes. We now describe the numerical
treatment of the forcing term c∇w in the Navier–Stokes equation, and of the
transport term yold∇c in the Cahn–Hilliard equation.

Since cold 6∈ Vcw, the question of integrating products of functions defined
on different meshes already arises when solving solely the Cahn–Hilliard equa-
tion. In this context we note that prolonging cold and yold from the mesh of
the old time step to the mesh for the new time step needs extra care due to
mass conservation. In our approach we do not prolonge solutions from the old
time step and thus have to handle integrals defined on more than one mesh.

In the following we describe the evaluation of (ch∇wh, v). The terms
(chyold, v), (cold, v) and (yold, v) can be treated analogously. We note that for
evaluating the error estimator up to three meshes are involved. Since λs(ch)
is not contained in the Ansatz space Vcw further implementation work is nec-
essary for its proper numerical treatment. Let us also refer to the discussion
on the use of adaptive meshes in time dependent simulation in [Grä11, Sec.
6.2.1].

In order to initialize the overall adaptive procedure (1)–(6) we construct
the meshes T cw(0) and T yp(0) starting from a common macro-triangulation T 0 of
Ω for both meshes. The macro mesh is refined to obtain T cw(0) and T yp(0) , respec-
tively, see Figure 8.1. The mesh T cw(0) especially may also be adapted to the
initial concentration. The numerical solvers are then employed on the meshes
resulting from this refinement procedure.

We evaluate (ch∇wh, v) triangle-wise over all triangles of T yp. On a triangle
Y ∈ T yp determine the set of all triangles {Ck}nc

k=1 ⊂ T cw, nc ∈ N, such that
◦
Y ∩

◦
Ck 6= ∅ for k = 1, . . . nc, and perform the integration on each

◦
Y ∩

◦
Ck

exactly. Here
◦· denotes the interior of the corresponding domain. The set

{Ck}nc
k=1 can be determined easily by exploiting the fact that T cw and T yp

stem from the same macro triangulation T 0.
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T yp T cw

Figure 8.2: Left: Situations resulting from Assumption 8.14. Right: Typical
relation of T cw (left) and T yp (right) after refinement.

Given an integration point (x, y) in triangle Y ∈ T yp, we know the corre-
sponding mother triangle T 0 ∈ T 0, i.e. the triangle from which Y is obtained
by refinement. Thus (x, y) is also located in a triangle C ∈ T cw which has
T 0 as mother triangle. The search of the triangle C in T cw which contains
(x, y) can therefore be restricted to all children of T 0. This registration can be
performed a priori before integration and is required only once per time step.

To perform this integration with reasonable computational effort we pose
the following assumption

Assumption 8.14. For each pair of triangles Y ∈ T yp and C ∈ T cw there
either holds Y ⊆ C or C ⊆ Y or Y ∩ C is a lower dimensional facette.

Using this assumption exactly two situations may occure:

nc = 1: We either have Y ⊂ C1 or Y ≡ C1. In both cases integration can be
performed by evaluating ch and wh at the integration points in Y .

nc > 1: We have Y =
⋃nc

k=1Ck. Exact integration now can be performed by
integrating over each Ck and summing up for k = 1, . . . , nc.

This is shown in Figure 8.2, left plot. The case nc > 1 is illustrated with
the top triangle, while the case nc = 1 is illustrated with the bottom triangle.
For the bold triangle Y ∈ T yp the corresponding set {Ck}nc

k=1 on the right is
marked bold. In Figure 8.2, right plot, we show the resolution of T cw (left)
and T yp (right) resulting from a typical simulation.

We note that Assumption 8.14 is satisfied if bisection by newest vertex
([Che08]) is used as refinement strategy and the initial meshes T cw(0) and T yp(0)

are constructed from the same macro mesh T 0.

9 Numerical examples
In this section we present the behaviour of our adaptive finite element solver
for the simulation of the Cahn–Hilliard Navier–Stokes system. The imple-
mentation is done in C++. The refinement and coarsenening algorithms are
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based on iFEM [Che08]. As direct solvers we use SuperLU [DEG+99] for non
symmetric matrices and cholmod [CDHR08] for symmetric linear systems.

Due to our adaptive finite element method a direct solving using a LU de-
composition turned out to be feasible for the systems arising in our Newton
solver for the Cahn–Hilliard system. In [HHT11] a Schur complement based
algorithm with incomplete LU factorization from SuperLU is used together
with a BiCGSTAB iteration [van92, Mei08]. For more details on precondition-
ing techniques for the Cahn–Hilliard equation we refer to [BDQN12, BSB14].
Multigrid algorithms for the numerical solution of related problems are pre-
sented in [GK07, KW06].

We stop our semi-smooth Newton iteration as soon as a residuum of

tolSSN = 10−6 + 10−12‖F (1)(c0, w0), F (2)(c0, w0)‖

is reached, where c0, w0 denote the initial iterates of Newton’s method. Stop
typically is achieved after less than five steps.

For the solution of the saddle point problems (7.11) arising in the solution
of the Navier-Stokes system we use a right sided preconditioned restarted gm-
res iteration presented in [SS86] with restart after 10 iterations. We use an
upper triangular preconditioner ([BGL05, 10.1.2] [BP88]). This requires to find
preconditioners for A and the Schur complement S = −BA−1Bt, where A and
B are denoted in (7.11). The A-block is preconditioned using a LU decompo-
sition, while the Schur complement is preconditioned by the Fp preconditioner
from [KLW02]. In our tests this solution strategy typically converges in less
than 20 iterations if an absolute residual less than 10−8 is requiered.

We mention some work related to the solution of saddle point problems and
especially of saddle point problems arising in the solution of Navier–Stokes
equations. In [PRR05] a comparison of three different common numerical
approaches is presented. Concerning the constructing of appropriate precon-
ditioners we mention [DGSW10] and the book ([GR11]) on the simulation of
two-phase flows. For an extensive overview of approaches for solving general
saddle-point problems we refer the reader to [BGL05] and the many references
therein.

In the following we demonstrate how our solution concept for the Cahn–
Hilliard Navier–Stokes system performs in numerical practice. We start by
showing the behaviour of our Newton solver with respect to the parameter s
and the mesh size h in Section 9.1 and propose a coupling between the size
of the smallest triangle and the parameter s. The resolution of the interfa-
cial region obtained by our adaptive approach then is compared with results
obtained by classical heuristic refinement strategies. We end the section with
a comparison of solutions obtained with lumped inner product (λs(c

h), v) as
performed in [HHK13] and exactly evaluated inner product as proposed here.

In Section 9.2 a comparison of results obtained using adaptive meshes with
results obtained by using homogeneous meshes is presented. We finish with
some results concerning spinodal decomposition in Section 9.3.
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Figure 9.1: Phase field at t = 0 (left) and t = 1000τ (middle) together with
the flowfield at t = 1000τ (right).

9.1 Test problem: Ellipse to circle

We now report on the behaviour of the Newton solver for solving (7.2)–(7.3)
with respect to the parameters h, γ and s. We also compare meshes and
concentrations obtained with and without lumping of the penalization. We
further show how our adaptive concept aligns the meshes to the interface. As
test example we here consider the following initial phase field

c0(x, y) := −tanh
{

1000 ·
[(

x− 0.5

0.35

)2

+

(
y − 0.5

0.1

)2

− 1

]}
.

This gives an ellipse centered at (0.5, 0.5) with half axes of size 0.35 and 0.1
inside the unit square Ω = (0, 1)2. It holds c0(x, y) ≈ 1 in the interior of the
ellipse and c0(x, y) ≈ −1 in its complement. For the flow we set y0(x, y) = 0
and prescribe y = 0 on the boundary. Thus the flowfield is only driven by the
interface. The parameters are set to τ = 0.01, Pe = 1, K = 1, Re = 100 and
γ = (50π)−1. The parameters for the adaptive process are given by θr := 0.5,
θc := 0.1, amin := 2.5×10−6 and amax := 0.01 for T cw, and θr := 0.1, θc := 0.05,
amin := 2.5× 10−6 and amax := 6.25× 10−4 for T yp.

In Figure 9.1 we show snapshots of the concentration together with the
flowprofile at time t = 1000τ . Here and in the following darker gray indicates
higher values and lighter gray indicates smaller values. Especially when the
phase field is displayed, black indicates values close to 1 and white indicates
values close to -1.

Performance of the semi-smooth Newton solver with respect to the
parameters h and s.

We show the performance of the Newton solver with respect the resolution of
the mesh and the penalisation parameter. Since Newton’s method for fixed s
is formulated in function space we expect mesh independent behaviour of the
iterative process, see e.g. [ABPR86, HU04]. To check the mesh independent
behaviour of our solver, we simulate ten time steps on homogeneous meshes
of gridsize h for various values of s and count the number of Newton steps
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s h Newton steps ‖c− c∗‖L2(Ω)

2.00× 102

0.008839 2 2.193511e-2
0.006250 2 2.173868e-2
0.004419 2 2.175180e-2
0.003125 2 2.178268e-2
0.002210 2 2.180643e-2

1.60× 103

0.008839 3 5.340040e-3
0.006250 2 3.381581e-3
0.004419 2 2.757271e-3
0.003125 2 2.638523e-3
0.002210 2 2.619292e-3

1.28× 104

0.008839 4 4.787429e-3
0.006250 4 2.287193e-3
0.004419 4 1.055169e-3
0.003125 3 5.633583e-4
0.002210 3 3.657870e-4

1.02× 105

0.008839 4 4.790669e-3
0.006250 6 2.280048e-3
0.004419 5 1.021374e-3
0.003125 5 4.766472e-4
0.002210 5 1.830728e-4

8.19× 105

0.008839 4 4.792279e-3
0.006250 7 2.281653e-3
0.004419 6 1.022756e-3
0.003125 10 4.767968e-4
0.002210 8 1.801123e-4

Table 9.1: Number of Newton steps needed for various h and s.

needed to solve the system in the tenth time step. We perform these steps
to exclude the influence of the initial value. We also compare the solutions
against a reference solution c∗ obtained on a very fine adaptive mesh with
smallest triangle of size a∗min = 5×10−7 and relaxation parameter s∗ = 3×106.

In Table 9.1 our results are depicted. In the first two columns the values of
s and h are given. In the third column we show the number of Newton steps
needed to obtain an absolute residual of size 10−6, and in the fourth column
we show the L2-difference between the solution and the reference solution.

We see that the number of Newton steps indeed seems to be independent
of the actual meshsize h and only does mildly increase with increasing s.
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Figure 9.2: Error decay in c with respect to s and amin.

The coupling between s and amin

Column 4 of Table 9.1 indicates that increasing the penalisation parameter s
reduces the error in the solution only up to a threshold s, while for larger values
of s the error is dominated by the error introduced by the spatial discretization.
Thus further increasing the parameter s only increases numerical effort while
not reducing the overall error. We thus next investigate the dependence of the
error in c with respect to variation of s and amin, where amin denotes the area of
the smallest triangle allowed during the adaptive cycle. As will be shown later
errors are clustered at the interface where the mesh is refined to the finest level.
Thus we can expect that the total error using a homogeneously refined mesh
of the same meshsize would only slightly increase the quality of the solution
and we can use the area of the smallest triangle as a reference size.

We compare solutions obtained on adaptively refined meshes with amin ∈
[2×10−4, 8×10−7] and penalty parameters s ∈ [1×102, 8×105] with the solution
obtained on a fine adaptive grid with a∗min = 2 × 10−7 and s∗ = 8 × 107. In
Figure 9.2 we show the L2 error in c in dependence of s (left) and amin (right).

From the left plot in Figure 9.2 we deduce the relation ‖cs−c∗‖L2(Ω) ∼ s−1,
where c∗ denotes the fine reference solution and cs denotes the solution for the
specific value of s. The right plot indicates ‖camin− c∗‖L2(Ω) ∼ amin where camin

denotes the solution for the specific value of amin. Thus, for equilibrating the
error we propose to couple the penalisation parameter s and the size of the
smallest triangle by s = O(a−1

min).

A comparison with heuristic mesh adaptation

Frequently meshes for solving Cahn–Hilliard equations are constructed using
heuristic strategies. We now compare the meshes obtained by the adaptation
strategy presented in the present work with two heuristic strategies exploiting
the knowledge of the location of the interface. The following comparison is
taken from [HHK13].
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The first approach uses the fact that |∇c| is large in the transition region
from c = 1 to c = −1 and constructs fine meshes with a local grid size which is
related to the value of |∇c| (small T where |∇c| is large). The second heuristic
approach constructs a fine mesh in regions where 1−|c| is larger than a certain
threshold, as proposed in [BBG11, KSW08]. For our comparison we use the
parameters θr = 0.5, θc = 0.1, amin = 10−6 and amax = 0.01. The parameter
thres > 0 needed below is set equal to γ.

An adaptive concept based on ‖∇c‖L2(T ): In this approach, on T ∈ Tcw
we define the (local) indicator ηTG = ‖∇cT‖2

L2(T ). We test two different mark-
ing strategies. The first approach is a marking according to the same rules
and with the same parameters θr, θc, amin and αmax as used in our residual
based approach. We also employ a marking which is based on balancing of
indicators. For this we define an overall tolerance tol > 0 and mark a tri-
angle T for refinement if ηTG > tol2/NT holds, and mark it for coarsening, if
ηTG < θctol2/NT is satisfied. Here we use tol = thres and the same θc as for
the bulk-type strategy. NT denotes the number of triangles in T cw.

An adaptive concept based on |c| on T : In this approach, a triangle
T ∈ T cw is marked for refinement whenever the indicator ηTV = minT (1 − |c|)
satisfies ηTV > thres. It is marked for coarsening if ηTV < 0 holds. If 0 ≤ ηTV ≤
thres is satisfied the triangle is left untouched.

In Figure 9.3 we compare the refinement obtained by the four adaptation
strategies under consideration at the left arc of the ellipse at t = 100τ and
show the distribution of the error indicators ηT and ηTE across the interface.
The top left mesh is obtained with our strategy while the top middle plot
shows the indicator ηT and the top right plot shows the indicator ηTE. The
mesh on the bottom left results from the refinement based on the size of 1−|c|,
and the last two meshes on the bottom are obtained by the approach based
on the size of ‖∇c‖L2(T ) using either the bulk type marking (middle) or the
tolerance marking (right). The left bold line indicates the isoline c = −1, the
right bold line the discrete isoline c = 1.

Our approach performs as expected: refinement takes place in the neighour-
hood of the discrete isolines c = 1 and c = −1 since the function c develops
a kink at these locations. This is reflected in the localization of the error
indicators ηT and ηTE which are mainly located around the discrete isolines.
Between these isolines the function c is smooth and the constructed grid is
coarser as in the neighborhood of the isolines. The error indicators are small
between the isolines corresponding to the smooth solution.

The adaptive approach based on the value of 1 − |c| refines the interface
to the smallest triangle possible, regardless of how large the actual error con-
tribution on the corresponding triangle is. This results in a uniformly refined
mesh between the isolines c = 1 and c = −1.
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Figure 9.3: The triangulation of the interface at t = 100τ using residual based
adaptation (top, left), value based adaptation (bottom, left), gradient based
adaptation using the bulk marking (bottom, middle) and gradient based adap-
tation using the tolerance marking (bottom, right). The bold lines indicate
the discrete isolines c = −1 and c = 1. The error indicators ηT and ηTE are
shown at the top middle, resp. top right.

The triangulation obtained by adaptation based on ∇c with bulk marking
delivers a fine mesh around c = 0 and tends to construct coarse meshes around
the isolines c = 1 and c = −1, i.e. where the largest numerical error is
expected. Finally, tolerance marking delivers a uniformly refined mesh in the
whole interface and also in the region around the interface.

In summary, the triangulation obtained by our residual approach for suffi-
ciently small amin delivers meshes with the smallest mesh size at the boundary
of the interface and of medium mesh size in the interface region. The meshes
obtained by the approach based on the size of 1 − |c| look similar but are
uniform in the interfacial region and therefore contain more triangles than our
approach. The bulk-type marking strategy using ∇c seems not to be useful,
while the tolerance strategy delivers meshes similar to our strategy but again
with more triangles and a uniform resolution in the interfacial region. We fur-
ther mention that the tolerance to choose for the ∇c based strategy is not an
intrinsic size, thus we see no guideline for choosing it, while in the case of the
value based adaptation the threshold gives a distance to the discrete isolines
and in the residual based case it is an amount of error contribution. Finally,
we emphasize that our approach delivers reliable error bounds.
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Figure 9.4: Relative number of nodes with lumping (left) and relative L2-
difference between the solutions (right).

Comparison of meshes and solutions obtained with and without
lumping.

We also report on the influence of the error introduced through lumping of
the inner product (λs(c

h), v) on the adaptive concept proposed in [HHT11,
HHK13], see Remark 8.2.

To begin with we by T L we denote the meshes obtained by using the
adaptive strategy in [HHK13] based on a simulation using lumping and by
T nL we denote the meshes obtained from the adaptive concept presented in
Section 8.3 based on a simulation without lumping. The respective phase fields
are denoted by cL and cnL. Due to the additional terms in the a-posteriori
error estimator in [HHT11, HHK13] we expect T L to contain more triangles
than T nL. We also expect that these extra triangles are located around the
interface as the extra indicator is concentrated there. In Figure 9.4 we show
the relative difference between the degrees of freedom in T L and T nL as a
function of the time step number (left plot). In the right plot we show the
relative L2-difference between cL and cnL plotted over time.

We see that T L in this example contains about one percent more nodes than
T nL. During the first pahse of the simulation we observe a large variation in the
number of nodes obtained by the two approaches. If the length of the interface
is large, as it is the case in spinodal decomposition (see Section 9.3), this
relative difference reaches approximately five percent. The constant difference
at the end of the simulation arises from reaching the final state which in this
example is given by a circle. Since lumping induces a further error contribution
we expect that the solutions without lumping are more accurate. The higher
numerical effort caused by exact evaluation of (λs(c

h), v) in total pays off,
since the extra numerical work only has to be performed on a few number of
triangles and thus is small. The reduction of the number of triangles reduces
the effort in the numerical expensive part of solving the systems arising in the
Newton iteration. We note that both, the estimator for the simulation with
lumping and without lumping, are reliable.
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9.2 Test problem: Circle in lid

We now compare numerical results obtained on homogeneous meshes with
numerical results obtained on adapted meshes. Since the estimator for the
Navier–Stokes system depends on the flow field yold we use a setting with
inhomogeneous Dirichlet boundary data for the flowfield, so that we can expect
a relevant transport contribution in the system.

Here in Ω = (0, 1)2 the initial concentration corresponds to a circle centered
at mc = (0.5, 0.5) with radius r = 0.25, i.e. we set

c0(x, y) := −tanh
{

1000 ·
[(

x− 0.5

0.25

)2

+

(
y − 0.5

0.25

)2

− 1

]}
.

Furthermore, in (3.7) we set

g(x, y) :=

{
(16x2(1− x)2, 0)t if y ≡ 1,

0 else.

The initial flowfield then is calculated as the solution of a stationary Stokes
equation with this boundary data. The parameters are given as τ = 0.01,
Pe = 200, K = 1, Re = 400 and γ = (50π)−1. The adaptation is controlled
by θc = 0.1 and θr = 0.5 for both T cw and T yp. The lower bounds for the
triangles in T cw and T yp are given by acwmin = 5.7× 10−6 and aypmin = 2× 10−5.
The respective upper bounds are set to acwmax = 0.01 and aypmax = 6.25 × 10−4,
respectively.

In Figure 9.5 we show snapshots of the evolution of the bubble. We note
that the interface does not touch the boundary of Ω during its evolution. We
see that the bubble in general follows the velocity field driven by the boundary
data, while the velocity field gets taylored to the bubble and near the interface
is parallel to the interface.

Error decay on uniform and adaptively refined meshes

We next compare the errorlevel obtained on structured uniform meshes with
the error level obtained on our adaptive meshes. Since no analytical solution is
available, we compare solutions obtained on coarser grids to a solution on a fine
homogeneous mesh. The outline of the test reads as follows. From the Cahn–
Hilliard part we calculate a stationary bubble using our adaptive method, and
compute a flowfield from the stationary Stokes system with boundary data
as specified above, where we use a fine mesh. Then we perform five time
steps with stepsize τ = 0.01 to align the flowfield to the interface. With this
data, we perform the next time step, where we compare the numerical results
obtained on successively refined homogeneous meshes with those obtained in
the adaptive meshes. We use the same initial grid for the Cahn–Hilliard and
the Navier–Stokes system.
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Figure 9.5: Phase field c at t = 0 , t = 2500τ , t = 5000τ and t = 7500τ (top,
left to right), and the flowfield at t = 0 and t = 5000τ (bottom, left to right).
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Figure 9.6: Error decay in c (left) and y (right) both for a homogeneously and
an adaptively refined mesh.

In Figure 9.6 we show the decay of the error in the phase field (left) and in
the flow field (right).

We observe that the adaptive method achieves the same accuracy as the
method with uniform refinement with about 10% of the number of elements
used for the uniform refinement. This clearly shows the benefit of the adaptive
concept in the simulation of the Cahn–Hilliard part.

On right we show the decay in error plotted over number of triangles for
the velocity mesh T yp. We stress that we omit the error indicator ηSF defined
in (8.49), since it is concentrated at the interface, which in this example is of
minor interest for the flowfield. The error in the velocity field using adapted
meshes is only slightly smaller than the error obtained on homogeneous meshes,
since the flow is quite laminar, so that the error is distributed homogeneously
over the domain.

In Figure 9.7 we show snapshots of the evolution of the resulting meshes
T cw (top) and T yp (bottom). We see that T cw is refined to the coarsest level
outside the interface and is refined to the finest level at the borders of the
interface as already observed in the test comparing different adapt strategies
for the construction of T cw in Section 9.1. For T yp due to the tangential
boundary data we expect the adaptive concept to refine at the top part of the
domain as can be seen in Figure 9.7 (bottom).

9.3 Test problem: Spinodal decomposition

Our last test problem is the simulation of spinodal decomposition. Spinodal
decomposition describes the demixing of a two-phase fluid from a stable homo-
geneous mixture into its two phases by phase separation. A typical example
how to make a stable mixture separating into its two phases is a change of
temperature, see e.g. [FM08, Sig79]. John W. Cahn and John E. Hilliard
investigate this process for metals in [CH58]. The process of phase separation



9 NUMERICAL EXAMPLES 61

Figure 9.7: The evolution of T cw (top) and T yp (bottom) through the adaptive
cycle. For T cw we show the initial mesh, the mesh obtained after three cycles
and the one obtained after six cycles (left to right). For T yp we show the mesh
obtained after four, eight and twelve cycles (left to right).

consists of two stages. In a first very rapid stage the mixture separates into its
two phases yielding small scaled structures. After this initial decomposition the
two phases further evolve driven by diffusion to minimize the Ginzburg–Landau
free energy (2.1), which results in the reduction of the length of the interface.
In material science this process is very important, see e.g. [EAK+01, BPC+07].
Alloys are often used to obtain materials with better properties than pure ma-
terials. Thus dealloying by phase separation may lead to reasonable threats.

In the original work [CH58] the separation is only driven by diffusion. In
many cases the movement is also driven by advection of the particles. In this
setting the motion of the interface is influenced by the resulting velocity field,
see e.g. [Sig79, BOS11], so that extensions of the Cahn–Hilliard model with
the Navier–Stokes equations are used to describe the physics in this situation.

In Figure 9.8 we show snapshots of such a spinodal decomposition, where
we used τ = 1e − 5, Pe = Re = 1, and γ = 1/(50π). For the adaptation of
T cw we use amin = 5e− 6, amax = 0.05 and θr = 0.7 and θc = 0.1. For T yp we
use a homogeneous mesh with hy = 0.005.

Since our adaptive strategy is mainly resolving the interface where the
Ginzburg–Landau energy is concentrated we observe that the reduction in the
number of triangles is proportional to the loss of energy. With the parameters
used here we have a diffusion driven regime and thus we expect the energy E
to scale like E ∼ t−1/3 (see [BOS11, Sig79]).

In Figure 9.9 we show the evolution of the Ginzburg–Landau energy and of
the number of elements. We observe that both the Ginzburg–Landau energy
and the number of elements decay like t−1/3.
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Figure 9.8: Spinodal decomposition at time t = 0, 100τ , 200τ , 1000τ , 4000τ ,
8000τ (top, left) to (bottom, right).
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10 An application of the residual based adaptive
concept to a fluid with different densities

The Navier–Stokes model considered in the previous sections has the draw-
back of assuming equal densities for the two fluids. In this section we apply
our residual based adaptive finite element method to a model that works for
different densities, namely we use the model presented in [AGG12]. There
are several other models for the case of different densities available, see e.g.
[Boy02, DSS07, LT98] and [AMW98] and the many references therein.

The model from [AGG12] has the advantage that our adaptive method for
creating meshes for the simulation of the two-phase structure can be easily ex-
tended to it with only minor changes, and that it gives rise to energy estimates
that we will exploit in Section 11.

10.1 The mathematical model for two-phase flow with
different densities

The mathematical model we consider is derived in [AGG12, Ch. 3]. It reads:

ρ∂ty + ((ρy + j) · ∇) y − div (2ηDy) +∇p = −σγdiv(∇c⊗∇c) +G, (10.1)
div y = 0, (10.2)

∂tc− div (m∇w) + y · ∇c = 0, (10.3)
−σγ∆c+ σγ−1Ψ′(c) = w. (10.4)

Here Dy = (∇y + (∇y)t)/2 denotes the symmetrized gradient and y denotes
the volume avaraged velocity. The pressure is denoted by p and the phase-
field and chemical potential are denoted by c and w, respectively. An addi-
tional transport j arises from diffusion inside the interface and is given by
j = −∂ρ

∂c
(c)m(c)∇w, where

ρ = ρ(c) =
ρ2 − ρ1

2
c+

ρ2 + ρ1

2

denotes the density of the fluid, where ρ1, resp. ρ2, denote the density of fluid
A and B, respectively. By η = η(c) we denote the viscosity of the fluid and by
m = m(c) its mobility. We assume that the mobility is bounded away from zero
and from above, i.e. there exists 0 < m ≤ m < ∞ such that m ≤ m(c) ≤ m
holds for all c ∈ R. We note that Ostwald ripening effects might occure due
to the non degenerate mobility (see [AGG12]). σ is a constant related to the
surface energy density, see [AGG12, Sec. 4.3.4], and γ again is related to the
thickness of the interface. Note that if we choose σ = γ and m(c) ≡ 1

Pe
equations (10.3)–(10.4) are equal to (3.3)–(3.4), i.e. the Cahn–Hilliard system,
that we investigated in the previous sections. The volume force G is given by
G = ρg, where g is the gravitational force. We further note that, for equal
densities (ρ1 ≡ ρ2) and equal viscosities (η1 ≡ η2), the model (10.1)–(10.2) in
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absence of the gravitational force differs from (3.1)–(3.9) only in the definition
of the pressure. Let pphys denote the pressure in the physical system and p̃
denote the pressure in (3.1)–(3.9). Then we have the relations

pphys =p−
(
σγ

2
|∇c|2 +

σ

2γ
(1− c2) +

s

2
λ(c)2

)
,

pphys =p̃− cw,
where the latter holds if we choose K = 1 in (3.1).

We use the boundary conditions

∇w · νΩ = ∇c · νΩ = 0 on ∂Ω.

For the flow we either use no-slip conditions y = 0 on ∂Ω, or free-slip con-
ditions, i.e. y · νΩ = 0,

(
ν⊥Ω
)
k
η(c)DyνΩ = 0 for k = 1, . . . , d − 1, where νΩ

denotes the outer normal to Ω and
(
ν⊥Ω
)
k
denotes a basis for the tangential

plane. Also a combination of these conditions might be used.
The free-slip condition means that no flow through the boundary is allowed

and tangential to the boundary the natural boundary condition (η(c)Dy −
pI)νΩ = 0 holds. Different types of boundary data with slip are described in
[SS12]. For sake of simplicity we in the following use no-slip data.

Concerning the existence of solutions to (10.1)–(10.4) we refer to [ADG13a]
for the case of non degenerated mobility, and to [ADG13b] for the case of
degenerated mobility.

In [GK14] a thermodynamical consistent discretization of (10.1)–(10.4) is
presented. In [AV12] simulations of this model for the [HTK+09] benchmark
were compared with simulations of the models from [Boy02] and [DSS07].

10.2 Time discretization and Moreau–Yosida relaxation

We next state a time discretization for (10.1)–(10.4) similiar to that derived
in Section 4, where from here onwards we replace Ψ by the Moreau–Yosida
regularization of the double-obstacle potential, see Section 5.

Let τ > 0 again denote the time discretization parameter. We set ξ = 1/τ
and use the semi-implicit Euler scheme for time discretization. Variables with
the subscript old refer to the previous time instance. The weak formulation of
the system to solve in the actual time step then reads:
Find (y, p, c, w) ∈ H1

0 (Ω)d × L2
(0)(Ω)×H1(Ω)×H1(Ω) fulfilling

ξ (ρ(y−yold), v) + (((ρy + j) · ∇) y, v)

+(2ηDy : ∇v)− (p, div v)

−σγ(∇c⊗∇c,∇v)− (G, v) = 0 ∀v ∈ H1
0 (Ω)d, (10.5)

−(div y, q) = 0 ∀q ∈ L2
(0)(Ω), (10.6)

(c− cold, v) + τ(mold∇w,∇v)− τ(yoldc,∇v) = 0 ∀v ∈ H1(Ω), (10.7)
σγ(∇c,∇v)− (w, v) + (λs(c), v)− σγ−1(cold, v) = 0 ∀v ∈ H1(Ω). (10.8)
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Here mold := m(cold), and j := −∂ρ
∂c

(c)m(c)∇w. We note that this discretiza-
tion again decouples the Navier–Stokes system (10.5)–(10.6) from the Cahn–
Hilliard system (10.7)–(10.8) in a way that we can first solve (10.7)–(10.8) using
yold to obtain c and w on the current time step, and then solve (10.5)–(10.6)
to obtain y and p.

The choice of τ is adapted to a CFL condition. After each time step we
calculate the local CFL values CFLT = maxx∈T |y(x)|τ/hT on each triangle T
and choose the next timestep τ such that maxT CFLT ≤ θ holds, where θ > 0
is a given threshold that we typically set to θ = 0.1. In our numerical results
we with θ = 0.1 observe a stable behaviour of our time discretization scheme.

10.3 Spatial discretization

As in Section 7 we introduce spaces Vcw, Vy and Vp using P1 elements for ch
and wh (Vcw), as well as for ph (Vp), and using P2 elements for the flowfield
yh (Vy).

In each timestep we solve the following discrete problem to approximate
solutions to (10.5)–(10.8):
Find (yh, ph, ch, wh) ∈ Vy × Vp × Vcw × Vcw such that the following holds:

ξ

∫
Ω

ρh(yh − yold)vh dx

+
1

2

∫
Ω

ρhyh∇(yh · vh) dx+
1

2

∫
Ω

ρh ((yh · ∇)yh) vh dx

−1

2

∫
Ω

ρh ((yh · ∇)vh) yh dx

+
1

2

∫
Ω

jh∇(yh · vh) dx+
1

2

∫
Ω

((jh · ∇)yh) vh dx

−1

2

∫
Ω

((jh · ∇)vh) yh dx

+

∫
Ω

2ηhDyh : Dvh dx−
∫

Ω

phdiv vh dx

−σγ
∫

Ω

(∇ch ⊗∇ch) : ∇vh dx−
∫

Ω

Gvh dx = 0 ∀vh ∈ V y, (10.9)

−
∫

Ω

qhdiv yh dx = 0 ∀qh ∈ V p, (10.10)∫
Ω

(ch − cold, vh) + τ

∫
Ω

m(cold)∇wh∇vh dx

−τ
∫

Ω

chyold∇vh dx = 0 ∀vh,∈ Vcw,
(10.11)

σγ

∫
Ω

∇ch∇vh dx+

∫
Ω

(λs(ch)− σγ−1cold − w)vh dx = 0 ∀vh ∈ Vcw. (10.12)
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Here, jh := −∂ρ
∂c

(ch)m(ch)∇wh, ηh := η(ch), and ρh := ρh. The form of (10.9)
is motivated by the identity

2

∫
Ω

((u · ∇)v)w dx =

∫
Ω

u∇(v · w) dx+

∫
Ω

((u · ∇)v)w dx−
∫

Ω

((u · ∇)w)v dx

which holds for all u, v, w ∈ H1(Ω)d.

10.4 The adaptive concept

In Section 8.1 we derive an a-posteriori error estimator for the discretized
Cahn–Hilliard system (7.2)–(7.3) of Section 7. Concerning equations (10.11)–
(10.12) there are only minor changes and thus a residual based error estimator
for (10.11)–(10.12) can be derived along the lines of Section 8.1. Since the
derivation is straight forward we here only state the results. We again assume
yold ∈ L∞(Ω).

We define the following element residuals:

r
(1)
h := ch − cold + τyold∇ch − τ∇wh · ∇m(cold),

r
(2)
h := λs(c

h)− wh − σγ−1cold,

and the error indicators:

η
(1)
T := hT‖r(1)

h ‖T , η
(1)
E := h

1/2
E ‖m(cold)

[
∇wh

]
E
· νE‖E,

η
(2)
T := hT‖r(2)

h ‖T , η
(2)
E := h

1/2
E ‖

[
∇ch

]
· νE‖E.

Theorem 10.1. There exists a constant C > 0 depending only on the domain
Ω and the smallest angle of the mesh T cwh such that there holds

τm‖∇ew‖2 +

(
1

2
σγ − τC2

p

m
‖yold‖2

∞

)
‖∇ec‖2 + s−1‖eλs‖2 ≤ Cη2

Ω

where ηΩ is given by

η2
Ω =(τm)−1

∑
T∈T cw

(
η

(1)
T

)2

+ τm−1
∑
E∈Ecw

(
η

(1)
E

)2

+ (σγ)−1
∑
T∈T cw

(
η

(2)
T

)2

+ σγ
∑
E∈Ecw

(
η

(2)
E

)2

.

Thus the estimator is able to bound the error from above and thus is
reliable.

Remark 10.2.
For σ ≡ γ and m(cold) ≡ m ≡ Pe−1 this estimator coincides with that given in
Theorem 8.1.
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Figure 10.1: Relation between T cw (left) and T yp(right).

Theorem 10.3. There exists a constant C > 0 depending on s−1, σ, γ, τ ,
m(cold), Ω, ‖yold‖∞,Ω and the smallest angle of the mesh T cw such that

Cη2
Ω ≤s−1‖eλs‖2 + σγ‖∇ec‖2 + τm2m−1‖∇ew‖2

+ (τm)−1osc2
h(r

(1)
h ,Ω) + (σγ)−1osc2

h(r
(2)
h ,Ω)

holds.

Thus the estimator bounds the error from below, and thus also is efficient.

10.5 Meshes

For the construction of T cw we use the strategy described in Section 8.3.
For the construction of T yp we use an heuristic approach which we motivate

in the following. Modell (10.1)–(10.4) contains the homogeneously distributed
gravitational force as volume force. We do not consider further external forces.
Thus it seems to be sufficient to match T yp to T cw on the interface to resolve
the locallized force div(∇c ⊗ ∇c) well and to use a refined mesh outside the
interface, see Figure 10.1. Since in this way T yp is a locally refined version
of T cw we can represent ch and wh exactly on T yp, which simplifies numerical
integration.

10.6 Numerics

We now present results we obtain by our simulations. Concerning the solution
of the nonlinear system (10.9)–(10.12) we again use Newton’s method to solve
the Cahn–Hilliard equation as described in Section 7. For the Navier–Stokes
part we use an Oseen fixpoint iteration. In the k− th iteration of the fixpoint
method we have to solve the saddle-point problem(

A(ykh) Bt

B 0

)(
yk+1
h

pk+1
h

)
=

(
f
0

)
.
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This is the matrix representation of (10.9)–(10.10), where the transport terms
are substituted by

1

2

∫
Ω

ρhy
k
h∇(yk+1

h · vh) dx

+
1

2

∫
Ω

ρh
(
(ykh · ∇)yk+1

h

)
vh dx−

1

2

∫
Ω

ρh
(
(ykh · ∇)vh

)
yk+1
h dx.

The matrix B denotes the discrete div operator, see (7.11).
We solve this system as in the equal densities case by a preconditioned

gmres method ([SS86]) with restart, where we use the triangular preconditioner
given in [BGL05, Sec. 10.1.2]. This requires to find preconditioner for A(ykh)
and the Schur complement S = −BA(ykh)−1Bt. As preconditioner for A(ykh) we
use a LU factorization of the diagonal blocks obtained by UMFPACK ([Dav04])
and for S we use a modification of the Fp preconditioner presented in [KLW02],
where the block triangular preconditioner was used together with a multigrid
preconditioner for A(ykh).

As numerical example we compare our numerical results with the results
given in [AV12] for the rising bubble benchmarks from [HTK+09].

The shape of the interface and the scaling of the surface tension

In order to incorporate the surface tension coefficient correctly into our nu-
merics we next calculate the shape of the interface up to first order as given
in the sharp-interface analysis in [AGG12, Sec. 4.3].

Let φ0(z) denote the distribution of c across the interface, ranging from
−∞ to +∞ as described in [AGG12, Sec. 4.3]. Here z := x/γ holds with
x denoting the signed distance to the zero level line of c and γ corresponds
to the interfacial thickness. We interpret the Moreau–Yosida regularization of
the variational inequality as a regularization of the double-obstacle free-energy
in the following form:

Ψs(c) =
1

2

(
(1− c2) + s(max(0, c− 1)2 + min(0, c+ 1)2)

)
. (10.13)

This free energy takes its minima at c = ± s
s−1

. Thus this free energy takes its
minima close to ±1 for s large enough. Following [AGG12, Sec. 4.3] φ0 then
is the unique solution of the following ordinary differential equation:

∂zzφ0 −Ψ′s(φ) =0,

φ0(0) =0,

φ0(z)→ ± s

s− 1
, for z → ±∞.
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The solution of this equation is given by

z0 = arctan
√
s− 1,

φ0(z) =


√

s
s−1

sin(z) |z| ≤ z0,
1
s−1

(
s− exp

(
−
√
s− 1(z − z0)

))
z > z0,

− 1
s−1

(
s− exp

(√
s− 1(z + z0)

))
z < −z0.

(10.14)

The relation between the physical surface tension σphys and the parameter σ
encorporated in the model is due to [AGG12, Sec. 4.3.4] given by

σphys =

(∫ ∞
−∞

(∂zφ0)2 dz

)
σ. (10.15)

Here we have∫ ∞
−∞

(∂zφ0)2 dz =(s− 1)−3/2 +
s

s− 1

(
arctan

√
s− 1 +

√
s− 1

s

)
.

We note that σphys → π
2
σ for s → ∞, which means that for the unrelaxed

double-obstacle energy, we obtain σphys = π
2
σ.

The first benchmark from [AV12, HTK+09]

In [HTK+09] a rigorous numerical setup is given for comparing rising bubble
simulations. Numerical results are given for two configurations by three inde-
pendent working groups. The model used in [HTK+09] is the sharp interface
model for two-phase flows. Our model (10.1)–(10.4) at least formaly converges
to this sharp interface model as γ → 0, see [AGG12, Sec. 4]. As benchmark
quantities the circularity, the rising velocity and the evolution of the center of
mass are investigated.

The circularity is defined by

Θ =
perimeter of area-equivalent circle

perimeter of bubble
≤ 1.

The rising velocity is defined by

Vc =

∫
c>0

y dx∫
c>0

1 dx
.

The center of mass is given by

yc =

∫
c>0

x2 dx∫
c>0

1 dx
.

Here x2 denotes the second component of x = (x1, x2). Note that the process
is symmetric with respect to the first component and thus we only investigate
the second component.
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Figure 10.2: Initial bubble (left) and final bubble (center) as well as final
velocity field (right) for first benchmark and γ = 0.01.

The parameters for the first benchmark are given as follows: The densities
are ρ1 = 1000 and ρ2 = 100. The viscosities are η1 = 10 and η2 = 1 and
the gravity is g = −0.98. The surface tension for the sharp interface modell
is σphys = 24.5. We use s = 10001 and from (10.15) we obtain σ ≈ 15.6.
We complement the parameters by the diffuse-interface specific parameters γ
which we vary, and by the mobility which we fix with m(c) ≡ 0.001γ. We
note that in [AV12] a degenerate mobility is used. The domain of simulation
is given by Ω = (0, 1)× (0, 2). At the top and the bottom we use homogenous
Dirichlet boundary data, thus y = 0 for the flowfield while on the left and right
we apply free-slip conditions, i.e. y · νΩ = 0, ν⊥Ωη(c)DyνΩ = 0. Corresponding
to φ0 the initial value for the simulation then is

c0(x, y) = −φ0

((√
(x− 0.5)2 + (y − 0.5)2 − 0.25

)
/γ
)

so that c0 ≈ s
s−1

corresponds to fluid 2 which forms the bubble, and c0 ≈ − s
s−1

corresponds to fluid 1 which is the surrounding fluid. c0 describes a bubble
centered at M = (0.5, 0.5) with radius r = 0.25. In Figure 10.2 we show the
initial bubble (left) and the bubble after three time instances (middle). On
the right we show the velocityfield after three time instances.

In [AV12] three different diffuse interface models including [AGG12] are
compared with the sharp interface model reported in [HTK+09]. In Table
10.1 we compare our results to those obtained with the code MooNMD (ref)
of the group of Lutz Tobiska at the University of Magdeburg (group 3 in
[HTK+09]) and those reported in [AV12] for γ = 0.005 (AV). We further show
the temporal behaviour of the three benchmark parameters for our simulations
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γ Θmin t|Θ=Θmin
Vc,max t|Vc=Vc,max yc(t = 3)

0.0400 0.9110 1.9472 0.2322 0.9198 1.0694
0.0200 0.9035 1.9486 0.2370 1.0000 1.0759
0.0100 0.9019 1.9076 0.2402 0.9375 1.0782
0.0050 0.9015 1.9012 0.2412 0.9286 1.0788
ref 0.9013 1.9000 0.2417 0.9239 1.0817
AV 0.9045 1.9460 0.2401 0.9460 1.0785

Table 10.1: Benchmark values for the first benchmark.
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Figure 10.3: Evolution of circularity, rising velocity and center of mass over
time for varying interfacial thicknesses for first benchmark.

in Figure 10.3.
One clearly observes the benefit of using the double-obstacle potential. For

the same value of γ our numerical results are closer to the sharp interface
reference solution than those reported in [AV12]. We note that using the
polynomial free energy we are able to reproduce the results from [AV12].

The second benchmark from [HTK+09, AV12].

In this benchmark we set ρ1 := 1000, ρ2 := 1, η1 := 10 and η2 := 0.1. Further
we set σphys := 1.96, yielding σ ≈ 1.24.

For this example the different sharp interface simulations presented in
[HTK+09] only agree up to approximately time t = 2.0. Especially it is not
clear whether or not topological changes develop in the sharp interface sim-
ulations. For this reason we follow [AV12] and compare our results only up
to this time instance. In Figure 10.4 we show the bubble after two (left) and
after three (middle) time instances. We also show the velocity field after two
time instances.

In Figure 10.5 we depict the temporal evolution of the benchmark values
and in Table 10.2 we show our numerical results.

Again our results are in better agreement with the results obtained by the
sharp interface simulation than the results obtained in [AV12] with the smooth
free energy.
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Figure 10.4: Bubble after two time instances (left) and final bubble (center)
together with the final velocity field (right) for second benchmark (γ = 0.01).

γ Θmin t|Θ=Θmin
Vc,max t|Vc=Vc,max yc(t = 2)

0.0400 0.6693 2.0000 0.2415 0.7901 0.9000
0.0200 0.6647 1.9998 0.2447 0.7013 0.9082
0.0100 0.6793 2.0000 0.2474 0.7221 0.9126
0.0050 0.6878 2.0000 0.2489 0.7394 0.9143
ref 0.6901 2.0000 0.2502 0.7300 0.9154
AV 0.6722 2.0000 0.2490 0.7540 0.9098

Table 10.2: Benchmark values for the second benchmark.
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Figure 10.5: Evolution of circularity, rising velocity and center of mass over
time for second benchmark.
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11 A stable time discretization
A second benefit of the model [AGG12], beside being valid for different den-
sities, is its thermodynamical consistency, thus the availability of energy esti-
mates.

In the previous section we applied the concepts described in Sections 3–9
to this new model. Especially the sequential coupling proposed in Section 4
was used. However, the sequential coupling yields a discretization, that not
preserves the thermodynamical consistency. In this section we present a new
time discretization that gives rise to an energy estimate in the time discrete
and fully discrete setting. This discretization is proposed by Professor Harald
Garcke from the University of Regensburg and this section is published in
[GHK14].

In the following we present the time discretization, that gives rise to a
discrete in time energy estimate and present a discretization concept in space
that is able to preserve the energy estimate in the fully discrete setting. Using
the energy estimate we derive an a-posteriori adaptive concept estimating the
error for the Navier–Stokes system and the Cahn–Hilliard system with one
estimator.

A drawback of this new discretization is the appearance of a fully cou-
pled Cahn–Hilliard Navier–Stokes system that has to be solved on each time
instance. Additionally, a post processing of the set of marked triangles is re-
quired, that reduces the amount of triangles that are coarsened in the adaptive
concept. This effectively increases the amount of triangles in the computational
grids.

In the following we work with a general free energy of double well type,
thus with exactly two minima, denoted by F . For F we subsequently use the
splitting F = F+ +F−, where F+ denotes the convex part of F and F− denotes
its concave part.

For convenience we here restate the model [AGG12, Sec. 3] in strong form

ρ∂ty + ((ρy + J) · ∇) y (11.1)
−div (2ηDy) +∇p = w∇c+ ρg ∀x ∈ Ω, ∀t ∈ I, (11.2)

div(y) = 0 ∀x ∈ Ω, ∀t ∈ I, (11.3)
∂tc+ y · ∇c− div(m∇w) = 0 ∀x ∈ Ω, ∀t ∈ I, (11.4)

−σγ∆c+ F ′(c)− w = 0 ∀x ∈ Ω, ∀t ∈ I, (11.5)
y(0, x) = y0(x) ∀x ∈ Ω, (11.6)
c(0, x) = c0(x) ∀x ∈ Ω, (11.7)
y(t, x) = 0 ∀x ∈ ∂Ω, ∀t ∈ I, (11.8)

∇w(t, x) · νΩ = ∇c(t, x) · νΩ = 0 ∀x ∈ ∂Ω, ∀t ∈ I, (11.9)

where J = −dρ
dc
m∇w. The detailed description is given in Section 10.1.

Note that comparing to (10.1)–(10.4) the right hand side in the Navier–
Stokes equation (11.2) changed and in the following we use w∇c as interfacial
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force instead of σγdiv(∇c ⊗ c) that we used in Section 10. Using w∇c as
interfacial force we obtain the physical pressure p, see the discussion in Section
10.1.

For our analysis we state a set of assumptions:

A1 There exists constants ρ ≥ ρ > 0, η ≥ η > 0, and m ≥ m > 0 such that
the following relations are satisfied:

• ρ ≥ ρ(c) ≥ ρ > 0,

• η ≥ η(c) ≥ η > 0,

• m ≥ m(c) ≥ m > 0.

Especially we assume that the mobility is non degenerated. In addition
we assume, that ρ, µ, and m are continuous.

A2 F : R→ R is continuously differentiable.

A3 F and the derivatives F ′+ and F ′− are polynomially bounded, i.e. there
exists C > 0 such that |F (x)| ≤ C(1 + |x|q), |F ′+(x)| ≤ C(1 + |x|q−1) and
|F ′−(x)| ≤ C(1 + |x|q−1) holds for some q ∈ [1, 4] if n = 3 and q ∈ [1,∞)
if n = 2,

A4 F ′+ is Newton (sometimes called slantly) differentiable (see e.g. [HIK03])
regarded as nonlinear operator F ′+ : H1(Ω) → (H1(Ω))

∗ with Newton
derivative G satisfying

(G(c)δc, δc) ≥ 0

for each c ∈ H1(Ω) and δc ∈ H1(Ω).

To ensure Assumption A1 we introduce a cut-off mechanism to ensure the
bounds on ρ defined in Assumption A1 independently of c. Note that η(c) and
m(c) can be chosen arbitrarily fulfilling the stated bounds. We define the mass
density as a smooth, monotone and strictly positive function ρ(c) fulfilling

ρ(c) =


ρ̃2−ρ̃1

2
c+ ρ̃1+ρ̃2

2
if − 1− ρ̃1

ρ̃2−ρ̃1
< c < 1 + ρ̃1

ρ̃2−ρ̃1
,

const if c > 1 + 2ρ̃1

ρ̃2−ρ̃1
,

const if c < −1− 2ρ̃1

ρ̃2−ρ̃1
.

For a discussion we refer to [Grü13, Remark 2.1].

Remark 11.1. Assumptions A2–A4 are for example fulfilled by the polynomial
free energy

F poly(c) =
σ

4γ

(
1− c2

)2
,
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and for the relaxed double-obstacle free energy used in the previous sections
given by

F rel(c) =
σ

2γ

(
1− c2 + sλ2(c)

)
, (11.10)

with

λ(c) := max(0, c− 1) + min(0, c+ 1),

where s � 0 denotes the relaxation parameter. For convenience we here also
restate the double-obstacle free energy

F obst(c) =

{
σ
2γ

(1− c2) if |c| ≤ 1,

∞ else.

As in the previous sections, in the numerical examples we use the free
energy F ≡ F rel. For this choice the splitting into convex and concave part
reads

F+(c) = s
σ

2γ
λ2(c), F−(c) =

σ

2γ
(1− c2).

11.1 The time discrete setting

In the present section we formulate our time discretization scheme that is based
on a weak formulation of (11.2)–(11.9) which we derive next. To begin with,
note that for a sufficiently smooth solution (y, c, w) of (11.2)–(11.9) we can
rewrite (11.2), using the linearity of ρ, as

∂t(ρy) + div (ρy ⊗ y) + div (y ⊗ J)− div (2ηDy) +∇p = w∇c+ ρg, (11.11)

see [AGG12, p. 14].
We also note that the term ρy+ J in (11.2) is not solenoidal (which might

lead to difficulties both in the analytical and the numerical treatment) and
that the trilinear form (((ρy + J) · ∇)u, v) is not anti-symmetric. To obtain a
weak formulation yielding an anti-symmetric convection term we use a convex
combination of (11.2) and (11.11) to define a weak formulation. We multiply
equations (11.2) and (11.11) by the solenoidal test function 1

2
w ∈ H(div,Ω),

integrate over Ω, add the resulting equations and perform integration by parts.
This gives

1

2

∫
Ω

(∂t(ρy) + ρ∂ty) v dx+ at(ρy + J, y, v)

+

∫
Ω

2ηDy : Dv dx =

∫
Ω

w∇cv + ρgv dx,

with at(·, ·, ·) denoted in (4.5). Equations (11.4)–(11.5) are treated classically.
This leads to
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Definition 11.2. We call y, c, w a weak solution to (11.2)–(11.9) if y(0) = y0,
c(0) = c0, y(t) ∈ H(div,Ω) for a.e. t ∈ I and

1

2

∫
Ω

(∂t(ρy) + ρ∂ty) v dx+

∫
Ω

2ηDy : Dv dx

+at(ρy + J, y, v) =

∫
Ω

w∇cv + ρgv dx ∀v ∈ H(div,Ω), (11.12)∫
Ω

(∂tc+ y · ∇c) Φ dx+

∫
Ω

m(c)∇w · ∇Φ dx = 0 ∀Φ ∈ H1(Ω), (11.13)

σγ

∫
Ω

∇c · ∇Ψ dx+

∫
Ω

F ′(c)Ψ dx−
∫

Ω

wΨ dx = 0 ∀Ψ ∈ H1(Ω), (11.14)

is satisfied for almost all t ∈ I. Here at is introduced in (4.5).

Theorem 11.3. Let y, c, w be a sufficiently smooth solution to (11.12)–(11.14).
Then there holds

d

dt

(∫
Ω

ρ|y|2
2

+
σγ

2
|∇c|2 + F (c) dx

)
= −

∫
Ω

2η|Dy|2 +m|∇w|2 dx+

∫
Ω

ρgy dx.

Proof. By testing (11.12) with v ≡ y, (11.13) with Φ ≡ w and (11.14) with
Ψ ≡ ∂tc and adding the resulting equations the claim follows.

In [ADG13a, ADG13b] an alternative weak formulation of (11.2)–(11.9) is
proposed, for which the authors show existence of weak solutions.

We now introduce a time discretization which mimics the energy inequality
in Theorem 11.3 on the discrete level. Let

0 = t0 < t1 < . . . < tk−1 < tk < tk+1 < . . . < tM = T

denote an equidistant subdivision of the interval I = [0, T ] with τk+1− τk = τ .
From here onwards the superscript k denotes the corresponding variables at
time instance tk.

Time integration scheme
Let c0 ∈ H1(Ω) and y0 ∈ H(div,Ω).

Initialization for k = 0:
Set c0 = c0 and y0 = y0.
Find c1 ∈ H1(Ω), w1 ∈ W 1,q(Ω), q > d, y1 ∈ H(div,Ω), such that (10.5)–(10.8)
holds, with y ≡ y1, yold ≡ y0, c ≡ c1, cold ≡ c0, and w ≡ w1.

Two-step scheme for k ≥ 1:
Given ck−1 ∈ H1(Ω), ck ∈ H1(Ω), wk ∈ W 1,q(Ω), q > d, yk ∈ H(div,Ω),
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find yk+1 ∈ H(div,Ω), ck+1 ∈ H1(Ω), wk+1 ∈ H1(Ω) satisfying

1

2τ

∫
Ω

(
ρkyk+1 − ρk−1yk

)
v + ρk−1(yk+1 − yk)v dx

+a(ρkyk + Jk, yk+1, v) +

∫
Ω

2ηkDyk+1 : Dv dx

−
∫

Ω

wk+1∇ckv − ρkgv dx =0 ∀v ∈ H(div,Ω), (11.15)

1

τ

∫
Ω

(ck+1 − ck)Φ dx+

∫
Ω

(yk+1 · ∇ck)Φ dx

+

∫
Ω

m(ck)∇wk+1 · ∇Φ dx =0 ∀Φ ∈ H1(Ω), (11.16)

σγ

∫
Ω

∇ck+1 · ∇Ψ dx−
∫

Ω

wk+1Ψ dx

+

∫
Ω

((F+)′(ck+1) + (F−)′(ck))Ψ dx =0 ∀Ψ ∈ H1(Ω), (11.17)

where Jk := −dρ
dc

(ck)mk∇wk.
We note that in (11.15)–(11.17) the only nonlinearity arises from F ′+ and

thus only the equation (11.17) is nonlinear. Let us summarize properties of
this scheme in the following remark.

Remark 11.4.

• The initialization is performed using the time disretization proposed in
Section 10. Especially from regularity theory for the Laplace operator
we have µ1 ∈ H2(Ω) ↪→ W 1,q, q > d.

• In Theorem 11.12 we show existence and uniqueness of a solution to the
time discrete model (11.15)–(11.17). Using the Assumption A4 posed on
F , it can be shown that Newton’s method in function space can be used
to compute a solution to (11.15)–(11.17) using the steps from Theorem
11.12.

• Through the use of ρk−1, (11.15)–(11.17) is a 2-step scheme. However,
by replacing (11.15) with

1

2τ

∫
Ω

(
ρk+1yk+1 − ρkyk

)
v + ρk(yk+1 − yk)v dx

+a(ρkyk + Jk, yk+1, v) +

∫
Ω

2ηDyk+1 : Dv dx

−
∫

Ω

wk+1∇ckv + ρkgv dx = 0 ∀v ∈ H(div,Ω),

one obtains an one-step scheme, which then also is nonlinear in the time
discretization of (11.12). The resulting system is analyzed in future work.
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In [GK14] Grün and Klingbeil propose a time-discrete solver for (11.2)–
(11.9) which leads to strongly coupled systems for y, c and w at every time
step and requires a fully nonlinear solver. For this scheme Grün in [Grü13]
proves an energy inequality and the existence of so called generalized solutions.

11.2 The fully discrete setting and energy inequalities

For a numerical treatment we next discretize the weak formulation (11.15)–
(11.17) in space. We aim at an adaptive discretization of the domain Ω, and
thus to have a different spatial discretization in every time step.

Let T k =
⋃NT
i=1 Ti denote a conforming triangulation of Ω with closed sim-

plices Ti, i = 1, . . . , NT and edges Ei, i = 1, . . . , NE, Ek =
⋃NE
i=1 Ei. Here k

refers to the time instance tk. On T k we define the following finite element
spaces:

V1(T k) ={v ∈ C(T k) | v|T ∈ P 1(T )∀T ∈ T k} =: span{Φi}NPi=1,

V2(T k) ={v ∈ C(T k) | v|T ∈ P 2(T )∀T ∈ T k, v|∂Ω = 0},

where P l(S) denotes the space of polynomials up to order l defined on S.
We introduce the discrete analogon to the space H(div,Ω):

H(div, T k) = {v ∈ V2(T k)d | (divv, q) = 0 ∀q ∈ V1(T k) ∩ L2
(0)(Ω), v|∂Ω = 0}

:= span{bi}NFi=1,

We introduce a weighted Leray projection ([CF88, Rem. 1.10]) Lk+1
ρ :

H(div, T k)→ H(div, T k+1) by

(ρk−1Lk+1
ρ yk, v) = (ρk−1yk, v)∀v ∈ H(div, T k+1).

to prolonge velocity fields from former time steps. It is a weighted orthogonal
projection onto H(div, T k+1) and thus fulfills

(ρk−1Lk+1
ρ yk, Lk+1

ρ yk) ≤ (ρk−1yk, yk).

We further introduce a H1-stable projection operator Pk : H1(Ω) →
V1(T k) satisfying

‖Pkv‖Lp(Ω) ≤ ‖v‖Lp(Ω) and ‖∇Pkv‖Lr(Ω) ≤ ‖∇v‖Lr(Ω)

for v ∈ H1(Ω) with r ∈ [1, 2] and p ∈ [1, 6) if n = 3, and p ∈ [1,∞) if
n = 2. Possible choices are the Clément operator ([Clé75]) or, by restricting
the preimage to C(Ω) ∩H1(Ω), the Lagrangian interpolation operator.

Using these spaces we state the discrete counterpart of (11.15)–(11.17): Let
k ≥ 1, given ck−1 ∈ V1(T k−1), ck ∈ V1(T k), wk ∈ V1(T k), yk ∈ H(div, T k),
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find yk+1
h ∈ H(div, T k+1), ck+1

h ∈ V1(T k+1), wk+1
h ∈ V1(T k+1) such that for all

v ∈ H(div, T k+1), Φ ∈ V1(T k+1), Ψ ∈ V1(T k+1) there holds:

1

2τ
(ρkyk+1

h − ρk−1Lk+1
ρ yk + ρk−1(yk+1

h − Lk+1
ρ yk), v)

+at(ρkyk + Jk, yk+1
h , v) + (2ηkDyk+1

h , Dv)− (wk+1
h ∇ck + ρkg, v) = 0, (11.18)

1

τ
(ck+1
h − Pk+1ck,Φ) + (m(ck)∇wk+1

h ,∇Φ) + (yk+1
h ∇ck,Φ) = 0, (11.19)

σγ(∇ck+1
h ,∇Ψ) + (F ′+(ck+1

h ) + F ′−(Pk+1ck),Ψ)− (wk+1
h ,Ψ) = 0, (11.20)

where c0 = Pc0 denotes the L2 projection of c0 in V1(T 0), and c1
h, w

1
h, y

1
h are

obtained from (10.9)–(10.12) using y0 = Sy0, where S denotes the Stokes
projection, see e.g. [GR86].

Existence of solution to the fully discrete system

We next show the existence of a unique solution to the fully discrete system
(11.18)–(11.20).

Theorem 11.5. There exist yk+1
h ∈ H(div, T k+1), ck+1

h ∈ V1(T k+1), wk+1
h ∈

V1(T k+1) solving (11.18)–(11.20).

Proof. By testing (11.19) with Φ ≡ 1, integration by parts in (yk+1
h ∇ck, 1) and

using yk+1
h ∈ H(div, T k+1) we obtain

(ck+1
h , 1) = (Pk+1ck, 1).

We define α = 1
|Ω|

∫
Ω
Pk+1ck dx and set

V(0) := {vh ∈ V1(T k+1) | (vh, 1) = 0}.

Then zk+1 := ck+1
h − α fulfills zk+1 ∈ V(0). In the following we use zk+1 as

unknown for the phase field, since the mean value of c is fixed. In addition we
introduce xk+1 := wk+1

h − 1
|Ω|

∫
wk+1
h dx and require (11.19)–(11.20) preliminar-

ily only for test functions with zero mean value.
We define

X = H(div, T k+1)× V(0) × V(0),

with the inner product

((y1, x1, z1), (y2, x2, z2))X := (Dy1, Dy2) + (∇x1,∇x2) + (∇z1,∇z2),

and norm ‖ ·‖2
X = (·, ·)X . It follows from the inequalities of Korn and Poincaré
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that (·, ·)X indeed forms an inner product on X. For (y, x, z) ∈ X we define

(G(y, x, z), (y, x, z))X :=

(
1

2
(ρk + ρk−1)y − ρk−1Lk+1

ρ yk, y

)
+ τat(ρkyk + Jk, y, y) + τ(2ηkDy,Dy)

− τ(x∇ck, y)− τ(ρkg, y)

+ (z − Pk+1ck, x) + τ(m(ck)∇x,∇x) + τ(y∇ck, x)

+ σγ(∇z,∇z)− (x, z)

+ (F ′+(z + α) + F ′−(Pk+1ck), z).

Now we show (G(y, x, z), (y, x, z))X > 0 for ‖(y, x, z)‖X large enough and that
G satisfies the supposition of [Tem77, Lem. II.1.4]. It then follows from
[Tem77, Lem. II.1.4], that G admits a root (y∗, x∗, z∗) ∈ X. For convenience,
we repeat [Tem77, Lem. II.1.4] in the appendix, see Lemma A8.

The function G is obviously continuous. We now estimate

(G(y, x, z), (y, x, z))X ≥ ρ(y, y) + 2τη(Dy,Dy) + τm(∇x,∇x)

+ σγ(∇z,∇z) + (F ′+(z + α), z)

− (ρk−1Lk+1
ρ yk, y)− τ(ρkg, y)

− (Pk+1ck, x) + (F ′−(Pk+1ck), z).

(11.21)

Using the convexity of F+, which implies that F ′+ is monotone, we obtain

(F ′+(z + α), z) = (F ′+(z + α)− F ′+(α), z) + (F ′+(α), z) ≥ (F ′+(α), z).

By using Hölder’s and Poincaré’s inequality and the stability of the projections
Lk+1
ρ and Pk+1 in (11.21) we obtain

(G(y, x, z), (y, x, z))X > 0

for ‖(y, x, z)‖X ≥ R if R is large enough. Now [Tem77, Lem. II.1.4] implies
the existence of (y∗, x∗, z∗) ∈ X such that G(y∗, x∗, z∗) = 0. Defining

(yk+1
h , wk+1

h , ck+1
h ) = (y∗, x∗ + β, z∗ + α)

with β such that (β, 1) = (F ′+(ck+1
h ) + F ′−(Pk+1ck), 1) holds we obtain that

(yk+1
h , wk+1

h , ck+1
h ) solves (11.18)–(11.20).

Remark 11.6. Note that we do not need that the variables from old time
instances are defined on the mesh used on the current time instance. We
further do not need any smallness requirement on the mesh size h or on the
time step length τ .
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Theorem 11.7. Let (ck+1
h , wk+1

h , yk+1
h ) be a solution to (11.18)–(11.20). Then

for k ≥ 1:

1

2

∫
Ω

ρk
∣∣yk+1
h

∣∣2 dx+
σγ

2

∫
Ω

|∇ck+1
h |2 dx+

∫
Ω

F (ck+1
h ) dx

+
1

2

∫
Ω

ρk−1|yk+1
h − Lk+1

ρ yk|2 dx+
σγ

2

∫
Ω

|∇ck+1
h −∇Pk+1ck|2 dx

+τ

∫
Ω

2ηk|Dyk+1
h |2 dx+ τ

∫
Ω

mk|∇wk+1
h |2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣yk∣∣2 dx+ τ

∫
Ω

ρkgyk+1
h

+
σγ

2

∫
Ω

|∇Pk+1ck|2 dx+

∫
Ω

F (Pk+1ck) dx.

(11.22)

Proof. We have

1

2

(
ρkyk+1

h − ρk−1Lk+1
ρ yk

)
· yk+1

h +
1

2
ρk−1

(
yk+1
h − Lk+1

ρ yk
)
· yk+1

h

=
1

2
ρk
∣∣yk+1
h

∣∣2 +
1

2
ρk−1

∣∣yk+1
h − Lk+1

ρ yk
∣∣2 − 1

2
ρk−1

∣∣Lk+1
ρ yk

∣∣2 , (11.23)

∇ck+1
h ·

(
∇ck+1

h −∇ck
)

=
1

2
|∇ck+1

h |2 −
1

2
|∇ck|2 +

1

2
|∇ck+1

h −∇ck|2, (11.24)

and since F+ is convex and F− is concave,

F+(ck+1
h )− F+(ck) ≤ F ′+(ck+1

h )(ck+1
h − ck), (11.25)

F−(ck+1
h )− F−(ck) ≤ F ′−(ck)(ck+1

h − ck). (11.26)

The inequality is now obtained from testing (11.15) with yk+1
h , (11.16) with

wk+1
h , (11.17) with (ck+1

h −Pk+1ck)/τ , and adding the resulting equations. This
leads to

1

2τ
(ρkyk+1

h − ρk−1Lk+1
ρ yk, yk+1

h ) +
1

2τ
(ρk−1(yk+1

h − Lk+1
ρ yk), yk+1

h )

+at(ρkyk + Jk, yk+1
h , yk+1

h ) + (2ηkDyk+1
h : Dyk+1

h )− (wk+1
h ∇ck, yk+1

h )

+
1

τ
(ck+1
h − Pk+1ck, wk+1

h ) + (yk+1
h ∇ck, wk+1

h ) + (mk∇wk+1
h ,∇wk+1

h )

+σγ
1

τ
(∇ck+1

h ,∇(ck+1
h − Pk+1ck))− 1

τ
(wk+1

h , ck+1
h − Pk+1ck)

+
1

τ
(F ′+(ck+1

h ), ck+1
h − Pk+1ck) +

1

τ
(F ′−(ck), ck+1

h − Pk+1ck)

−(ρkg, yk+1
h ) = 0.
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The equalities (11.23) and (11.24) and the inequalities (11.25) and (11.26) now
imply

1

2τ

∫
Ω

(
ρk|yk+1

h |2 + ρk−1|yk+1
h − Lk+1

ρ yk|2 − ρk−1|Lk+1
ρ yk|2

)
dx

+

∫
Ω

2ηk|Dyk+1
h |2 dx+

∫
Ω

mk|∇wk+1
h |2 dx

+
σγ

2τ

∫
Ω

|∇ck+1
h |2 + |∇ck+1

h −∇Pk+1ck|2 − |∇Pk+1ck|2 dx

+
1

τ

∫
Ω

(
F (ck+1

h )− F (Pk+1ck)
)
dx−

∫
Ω

ρkgyk+1
h dx ≤ 0,

which is the claim, using (ρk−1Lk+1
ρ yk, Lk+1

ρ yk) ≤ (ρk−1yk, yk), i.e. using the
stability of Lk+1

ρ .

Theorem 11.8. System (11.18)–(11.20) admits a unique solution.

Proof. Assume there exist two different solutions to (11.18)–(11.20) denoted
by (y1, c1, w1) and (y2, c2, w2). We show that the difference y = y1 − y2, c =
c1 − c2, w = w1 − w2 is zero.

After inserting the two solutions into (11.18)–(11.20) and substracting the
two sets of equations we perform the same steps as for the derivation of the
discrete energy estimate, Theorem 11.7, and obtain

0 =
1

2

∫
Ω

(ρk + ρk−1)y2 dx+ 2τ

∫
Ω

ηk|Dy|2 dx

+ τ‖
√
mk∇w‖2 + σγ‖∇c‖2 +

(
F ′+(c1)− F ′+(c2), c1 − c2

)
.

Since all these terms are non negative we obtain

1

2

∫
Ω

(ρk + ρk−1)y2 dx =0,

∫
Ω

ηk|Dy|2 dx =0,

‖∇w‖2 =0, ‖∇c‖2 =0.

Since both η(·) and ρ(·) are strictly positive by Assumption A1 we conclude
‖y‖H1(Ω)d = 0 and thus the uniqueness of the velocity field.

By testing (11.19) by Φ ≡ 1 we obtain (c1, 1) = (c2, 1) = (Pk+1ck, 1) and
thus (c1 − c2, 1) = 0. Poincaré-Friedrichs inequality then yields ‖c‖H1(Ω) = 0,
and thus the uniqueness of the phase field.

Last we directly obtain that the chemical potential is unique up to a con-
stant. By testing (11.20) with Ψ ≡ 1 and inserting the two solutions we obtain
(w1−w2, 1) = (F ′+(c1)−F ′+(c2), 1) = 0 and thus ‖w‖H1(Ω) = 0, again by using
Poincaré-Friedrichs inequality.

Theorem 11.7 estimates the Ginzburg Landau energy of the current phase
field ck+1 against the Ginzburg Landau energy of the projection of the old
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phase field Pk+1ck. Our aim is to obtain global in time inequalities estimating
the energy of the new phase field against the energy of the old phase field at
each time step. For this purpose let us state an assumption that later will be
justified.

Assumption 11.9. Let ck ∈ V1(T k) denote the phase field at time instance tk.
Let Pk+1ck ∈ V1(T k+1) denote the projection of ck in V1(T k+1). We assume
that there holds

F (Pk+1ck) +
1

2
σγ|∇Pk+1ck|2 ≤ F (ck) +

1

2
σγ|∇ck|2. (11.27)

This assumption means, that the Ginzburg Landau energy is not increasing
through projection. Thus no energy is numerically produced.

Assumption 11.9 is in general not fulfilled for arbitrary sequences (T k)k of
triangulations. To ensure (11.27) we add a post processing step to the adaptive
space meshing, see Section 11.3.

Theorem 11.10. Assume that for every k = 0, 1, . . . Assumption 11.9 holds.
Then for every 1 ≤ k < l we have

1

2
(ρk−1
h ykh, y

k
h)+

∫
Ω

F (ckh) dx+
1

2
σγ(∇ckh,∇ckh) + τ

l−1∑
m=k

(ρmg, ym+1
h )

≥ 1

2
(ρl−1ylh, y

l
h) +

∫
Ω

F (clh) dx+
1

2
σγ(∇clh,∇clh)

+
l−1∑
m=k

(ρm−1(ym+1
h − Lm+1

ρ ymh ), (ym+1
h − Lm+1

ρ ymh ))

+ τ
l−1∑
m=k

(2ηmDym+1
h , Dym+1

h )

+ τ
l−1∑
m=k

(m(cmh )∇wm+1
h ,∇wm+1

h )

+
1

2
σγ

l−1∑
m=k

(∇cm+1
h −∇Pm+1cmh ,∇cm+1

h −∇Pm+1cmh ).

Proof. The stated result is obtained immediately from the energy estimate
over one time step (11.7) together with the Assumption 11.9.

Remark 11.11. We note that using Φ = 1 in (11.19) and using integration by
parts only delivers (ck+1

h , 1) = (Pk+1ck, 1) instead of (ck+1
h , 1) = (ck, 1). If we

use the quasi interpolation operator Qk+1 introduced by Carstensen in [Car99]
for our generic projection Pk+1, we would obtain (ck+1

h , 1) = (ck, 1) since Qk+1

preserves the mean value, i.e. (ϕ, 1) = (Qk+1ϕ, 1) ∀ϕ ∈ L1(Ω).
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On the other hand if we use Lagrange interpolation Ik+1 we have

|(Ik+1ck, 1)T − (ck, 1)T | ≤ Ch3
T‖ck‖T ,

and the deviation of (Ik+1ck, 1) from (ck, 1) remaines small if we use bisection
as refinement strategy, since then Ik+1ck ∈ V1(T k+1) and ck ∈ V1(T k) only
differ on coarsened patches.

Existence of a solution to the time discrete system

Now we have shown that there exists a unique solution to (11.18)–(11.20). The
energy inequality can be used to obtain uniform bounds on the solution and
will be used to obtain a solution to the time discrete system (11.15)–(11.17)
by a Galerkin method.

Theorem 11.12. Let yk ∈ H(div,Ω), ck−1 ∈ H1(Ω), ck ∈ H1(Ω), and wk ∈
W 1,q(Ω), q > d be given data. Then there exists a weak solution to (11.15)
–(11.17). Moreover, ck+1 ∈ H2(Ω) and wk+1 ∈ H2(Ω) holds.

Proof. We proceed as follows. We construct a sequence of meshes (T k+1
l )l→∞

with gridsize hl
l→∞−→ 0. We show that the sequence (yk+1

l , ck+1
l , wk+1

l ) of unique
and discrete solutions to (11.18)–(11.20) is bounded independently of l, and
thus a weakly convergent subsequence exists which we show to converge to a
weak solution of (11.15)–(11.17).

Let us start with defining the sequence of meshes. Let T k+1
0 = T k+1 and

T k+1
l+1 , l = 0, 1, . . ., be obtained from T k+1

l by bisection of all triangles. The
projection onto T k+1

l we denote by Pk+1
l .

From the discrete energy inequality (11.22) we obtain

1

2

∫
Ω

ρk
∣∣yk+1
l

∣∣2 dx+
σγ

2

∫
Ω

|∇ck+1
l |2 dx+

∫
Ω

F (ck+1
l ) dx

+
1

2

∫
Ω

ρk−1|yk+1
l − Lk+1

ρ yk|2 dx+
σγ

2

∫
Ω

|∇ck+1
l −∇Pk+1

l ck|2 dx

+τ

∫
Ω

2ηk|Dyk+1
l |2 dx+ τ

∫
Ω

mk|∇wk+1
l |2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣Lk+1

ρ yk
∣∣2 dx+ τ

∫
Ω

ρkgyk+1
l

+
σγ

2

∫
Ω

|∇Pk+1
l ck|2 dx+

∫
Ω

F (Pk+1
l ck) dx.

We have the stability of the projection operators and thus∫
Ω

|∇Pk+1
l ck|2 dx ≤ ‖∇ck‖2

L2(Ω),∫
Ω

ρk−1|Lk+1
ρ yk|2 dx ≤

∫
Ω

ρk−1|yk|2 dx.
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Due to Assumption A3 on F there exists a constant C > 0 such that∫
Ω

F (Pk+1
l ck) dx ≤C

∫
Ω

|Pk+1
l ck|q + 1 dx

≤C
(
‖Pk+1

l ck‖qLq(Ω) + 1
)

≤C
(
‖ck‖qLq(Ω) + 1

)
,

where we again use the Lq-stability of the projection operator together with
the Sobolev embedding H1(Ω) ↪→ Lq(Ω) with q as in Assumption A3. By
using Hölder’s inequality and Young’s inequality we further have

τ

∫
Ω

ρkgyk+1
l dx ≤τ

(∫
Ω

ρk|g|2 dx
)1/2(∫

Ω

ρk|yk+1
l |2 dx

)1/2

≤τ 2

∫
Ω

ρk|g|2 dx+
1

4

∫
Ω

ρk|yk+1
l |2 dx

Since ρk−1 > 0, ρk > 0, ηk > 0, and mk > 0 by Assumption A1 we obtain
that ‖yk+1

l ‖H1(Ω)d , ‖∇ck+1
l ‖ and ‖∇wk+1

l ‖ are uniformly bounded independend
of l.

By inserting Φ ≡ 1 in (11.19) we obtain (Pk+1
l ck, 1) = (ck+1

l , 1) and by
Poincaré-Friedrichs inequality thus

‖ck+1
l ‖H1(Ω) ≤ C

(
‖∇ck+1

l ‖+ (Pk+1
l ck, 1)

)
≤ C

(
‖∇ck+1

l ‖+ ‖Pk+1
l ck‖

)
≤ C

(
‖∇ck+1

l ‖+ ‖ck‖
)
.

Thus ‖ck+1
l ‖H1(Ω) is uniformly bounded.

We obtain (wk+1
l , 1) = (F ′+(ck+1

l ) + F ′−(Pk+1
l ck), 1) by inserting Ψ ≡ 1 in

(11.20). Due to Assumption A3 on F ′+ the first part can be bounded by
C(‖ck+1

l ‖qLq(Ω) + 1) which is bounded by Sobolev embedding. Also due to
Assumption A3 on F− and due to the Lq stability of Pk+1

l the second part can
be bounded by C(‖ck‖qLq(Ω) + 1). Thus, by the same arguments as ‖ck+1

l ‖H1(Ω),
also ‖wk+1

l ‖H1(Ω) is uniformly bounded.
Consequently there exist y ∈ H1

0 (Ω)d, c ∈ H1(Ω), w ∈ H1(Ω) and a sub-
sequence li such that yk+1

li
⇀ y in H1

0 (Ω)d, ck+1
li

⇀ c in H1(Ω), wk+1
li

⇀ w in
H1(Ω) for li →∞.

We show that this triple of functions indeed is a weak solution to (11.15)–
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(11.17). Inserting the sequence into (11.15)–(11.17) yields

1

τ

∫
Ω

(
ρk + ρk−1

2
yk+1
li
− ρk−1Lk+1

ρ yk
)
v dx

+at(ρkyk + Jk, yk+1
li

, v) +

∫
Ω

2ηkDyk+1
li

: Dv dx

−
∫

Ω

wk+1
li
∇ckv + ρkgv dx = 0∀v ∈ H(div,Ω),

τ−1

∫
Ω

(ck+1
li
− Pk+1ck)Φ dx+

∫
Ω

(yk+1
li
· ∇ck)Φ dx

+

∫
Ω

m(ck)∇wk+1
li
· ∇Φ dx = 0∀Φ ∈ H1(Ω),

σγ

∫
Ω

∇ck+1
li
· ∇Ψ dx−

∫
Ω

wk+1
li

Ψ dx

+

∫
Ω

((F+)′(ck+1
li

) + (F−)′(Pk+1ck))Ψ dx = 0∀Ψ ∈ H1(Ω).

Now there holds
1

2τ

∫
Ω

(
ρk + ρk−1

)
yk+1
li

v dx ≤ 1

τ
ρ‖yk+1

li
‖‖v‖

and thus 1
2τ

∫
Ω

(
ρk + ρk−1

)
v · dx ∈ (H1

0 (Ω)d)∗ yielding

1

2τ

∫
Ω

(
ρk + ρk−1

)
yk+1
li

v dx→ 1

2τ

∫
Ω

(
ρk + ρk−1

)
yv dx.

Since wk ∈ W 1,q(Ω), q > d there holds Jk ∈ Lq(Ω)d and thus by Sobolev
embedding we obtain∣∣∣∣∫

Ω

(((
ρkyk + Jk

)
· ∇
)
yk+1
li

)
v dx

∣∣∣∣ ≤C‖ (ρkyk + Jk
)
v‖‖∇yk+1

li
‖,∣∣∣∣∫

Ω

(((
ρkyk + Jk

)
· ∇
)
v
)
yk+1
li

dx

∣∣∣∣
≤ C‖

((
ρkyk + Jk

)
∇
)
v‖

L
2q
q+2 (Ω)d

‖yk+1
li
‖
L

2q
q−2 (Ω)d

,

and thus at(ρkyk + Jk, ·, v) ∈ (H1
0 (Ω)d)∗. This gives

at(ρkyk + Jk, yk+1
li

, v)→ at(ρkyk + Jk, y, v)

The convergence of the remaining terms can be concluded in a similar manner.
Since ck+1

li
⇀ c in H1(Ω) there exists a subsequence, again denoted by li

such that ck+1
li
→ c in Lq(Ω), q as in Assumption A3. From Assumption A3

and the dominated convergence theorem we thus obtain∫
Ω

F ′+(ck+1
li

)Ψ dx→
∫

Ω

F ′+(c)Ψ dx.
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Next we show the weak solenoidality of y. To begin with we note that every
q ∈ L2

(0)(Ω) can be approximated by a sequence (ql)l∈N ⊂ V1(T k+1
l ) ∩ L2

(0)(Ω),
so that for every ξ > 0 an index Nξ exists, such that ‖q − ql‖ ≤ ξ for l ≥ Nξ.
Now we have for arbitrary q ∈ L2

(0)(Ω)

|(div y, q)| ≤ |(div y, q − ql)|+ |(div y − div yli , ql)|+ |(div yli , ql)|.

Let ξ > 0 be given. For the first addend we have |(div y, q−ql)| ≤ ‖div y‖‖q−
ql‖ ≤ Cξ for l ≥ Nξ.

Since the sequence ql is defined on the same hierarchy of meshes as yl
we may restrict ql to the subsequence li and obtain that both qli and yli are
defined on the same meshes. We set n := min{li | li ≥ Nξ}. Now we have
(div yli , qn) = 0 for li ≥ n, since then qn ∈ V1(T k+1

li
), i.e. the third addend

vanishes. By choosing li so large that |(div y−div yli , qn)| ≤ Cξ holds by weak
convergence of yli , the weak solenoidality of y is shown, since ξ > 0 is chosen
arbitrarily.

Thus the triple y, c, w indeed is a weak solution.

It remains to obtain the stated higher regularity for wk+1 and ck+1. This
directly follows by regularity results for the Laplacian, see [EG04, Thm. 3.10].
Since wk+1 − F ′+(ck+1) − F ′−(Pk+1ck) ∈ L2(Ω) it follows that ck+1 ∈ H2(Ω)
and thus, since we have τ−1(ck+1 − Pk+1ck) + yk+1∇ck ∈ L2(Ω), we obtain
wk+1 ∈ H2(Ω).

The uniqueness of the solution follows by the same steps as the uniqueness
of the discrete solutions, see Theorem 11.8. Like the fully discrete scheme, also
the time-discrete scheme fulfills an energy inequality.

Theorem 11.13. Let ck+1, wk+1, yk+1 be a solution to (11.15)–(11.17). Then
the following energy inequality holds.

1

2

∫
Ω

ρk
∣∣yk+1

∣∣2 dx+
σγ

2

∫
Ω

|∇ck+1|2 dx+

∫
Ω

F (ck+1) dx

+
1

2

∫
Ω

ρk−1|yk+1 − yk|2 dx+
σγ

2

∫
Ω

|∇ck+1 −∇ck|2 dx

+τ

∫
Ω

2ηk|Dyk+1|2 dx+ τ

∫
Ω

mk|∇wk+1|2 dx

≤ 1

2

∫
Ω

ρk−1
∣∣yk∣∣2 dx+

σγ

2

∫
Ω

|∇ck|2 dx+

∫
Ω

F (ck) dx+

∫
Ω

ρkgyk+1.

Proof. The inequality is obtained from testing (11.15) with yk+1, (11.16) with
wk+1, (11.17) with (ck+1− ck)/τ and using the same arguments as in the proof
for Theorem 11.7.

Remark 11.14. Let F denote the relaxed double-obstacle free energy intro-
duced in Remark 11.1, with relaxation parameter s. Let (ys, cs, ws)s∈R denote
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the sequence of solutions of (11.15)– (11.17) for a sequence (sl)l∈N. From the
linearity of (11.15) and Theorem 5.4 it follows, that there exists a subsequence,
still denoted by (ys, cs, ws)s∈R, such that

(ys, cs, ws)s∈R → (y∗, c∗, w∗) in H1(Ω),

where (y∗, c∗, w∗) denotes the solution of (11.15)–(11.17), where F obst, denoted
in Remark 11.1, is chosen as free energy. Especially |c∗| ≤ 1 holds. In the
following argumentation we concentrate on the phase field only. From the
regularity cs ∈ H2(Ω) together with a-priori estimates on the solution of the
Poisson problem and the energy inequality of Theorem 11.13, we obtain the
existence of a strongly convergent subsequence cs′ → c∗ in C0,α(Ω), where we
use the compact embedding H2(Ω) ↪→ C0,α(Ω) for 2α < 4− d.

Thus for s large enough we have |cs| ≤ 1 + θ with θ arbitrarily small. Cur-
rently we are not able to quantify how large s has to be chosen in dependence
of θ to guarantee this bound. Therefore we use the cut-off procedure described
before Remark 11.1.

11.3 The A-Posteriori Error Estimation

For an efficient solution of (11.18)–(11.20) we next describe an a-posteriori
error estimator based mesh refinement scheme that is reliable and efficient up
to terms of higher order and errors introduced by the projection. We also
describe how Assumption 11.9 on the evolution of the free energy, given in
(11.22), under projection is fulfilled in the discrete setting.

In the present section we propose an all-in-one adaptation concept for the
fully coupled Cahn–Hilliard Navier–Stokes system, where we exploit the energy
inequality of Theorem 11.7.

The fully discrete system used in the numerical realization

Since in our numerical realization we do not include the solenoidality of the
velocity field y into the discrete Ansatz space we now introduce a weak formu-
lation for the time discrete version of (11.12)–(11.14) in primitive variables,
which by [GR86] is equivalent to (11.15)–(11.17):
For k ≥ 1, given ck−1 ∈ H1(Ω), ck ∈ H1(Ω), wk ∈ W 1,q(Ω), q > d, yk ∈ H1

0 (Ω)d

find yk+1 ∈ H1
0 (Ω)d, pk+1 ∈ L2

(0)(Ω), ck+1 ∈ H1(Ω), and wk+1 ∈ H1(Ω) satisfy-
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ing
1

2τ
(ρkyk+1 − ρk−1yk + ρk−1(yk+1 − yk), v)

+at(ρkyk + Jk, yk+1, v) + (2ηDyk+1 : Dv)

−(pk+1, div(v))− (wk+1∇ck + ρkg, v) = 0 ∀v ∈ H1
0 (Ω)d, (11.28)

−(div(yk+1), q) = 0 ∀q ∈ L2
(0)(Ω), (11.29)

1

τ
(ck+1 − ck,Φ) + (yk+1 · ∇ck,Φ)

+(m(ck)∇wk+1,∇Φ) = 0 ∀Φ ∈ H1(Ω), (11.30)
σγ(∇ck+1,∇Ψ)− (wk+1,Ψ)

+((F+)′(ck+1) + (F−)′(ck),Ψ) = 0 ∀Ψ ∈ H1(Ω). (11.31)

The corresponding fully discrete system now reads:
For k ≥ 1, given ck−1 ∈ H1(Ω), ck ∈ H1(Ω), wk ∈ W 1,q(Ω), q > d, yk ∈ H1

0 (Ω)d

find yk+1
h ∈ V2(T k+1), pk+1

h ∈ V1(T k+1),
∫

Ω
pk+1
h dx = 0, ck+1

h ∈ V1(T k+1),
wk+1
h ∈ V1(T k+1) such that for all v ∈ V2(T k+1), q ∈ V1(T k+1), Φ ∈ V1(T k+1),

Ψ ∈ V1(T k+1) there holds:
1

2τ
(ρkyk+1

h − ρk−1Lk+1
ρ yk + ρk−1(yk+1

h − Lk+1
ρ yk), v)

+at(ρkyk + Jk, yk+1
h , v) + (2ηkDyk+1

h ,∇v)

−(wk+1
h ∇ck + ρkg, v)− (pk+1

h , divv) = 0, (11.32)
−(divyk+1

h , q) = 0, (11.33)
1

τ
(ck+1
h − Pk+1ck,Φ) + (m(ck)∇wk+1

h ,∇Φ)− (yk+1
h ck,∇Φ) = 0, (11.34)

σε(∇ck+1
h ,∇Ψ) + (F ′+(ck+1

h ) + F ′−(Pk+1ck),Ψ)− (wk+1
h ,Ψ) = 0. (11.35)

Thus we use the famous Taylor–Hood LBB-stable P2 − P1 finite element
for the discretization of the velocity - pressure field and piecewise linear and
continuous finite elements for the discretization of the phase field and the
chemical potential. For other kinds of possible discretizations of the velocity-
pressure field we refer to e.g. [Ver10].

Note that we perform integration by parts in (11.34) in the transport term.
As soon as Pk+1 is a mass conservened projection we by testing equation
(11.34) with Φ = 1 obtain the conservation of mass in the fully discrete scheme.

The link between equations (11.32)–(11.35) and (11.18)–(11.20) is provided
by the next theorem.

Theorem 11.15. Let yk+1
h , ck+1

h , wk+1
h denote the unique solution to (11.18)–

(11.20). Then there exists a unique pressure pk+1
h ∈ V1(T k+1),

∫
Ω
pk+1
h dx = 0

such that (yk+1
h , pk+1

h , ck+1
h , wk+1

h ) is a solution to (11.32)–(11.35). The opposite
direction is obvious.

Proof. Since we use LBB-stable finite elements, from [GR86, Thm. II 1.1] we
obtain the stated result.
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Derivation of the error estimator

We begin with noting that the special structure of our time discretization gives
rise to an error estimator which both estimates the error in the approximation
of the velocity, and in the approximation of the phase field and the chemical
potential. We are not able to estimate the error in the approximation of the
pressure field and the estimator will only be reliable and efficient up to higher
order terms.

In the derivation of the estimator we follow Section 8.1 and thus present
only the reliability result.

We define the following error terms:

ey :=yk+1
h − yk+1, ep :=pk+1

h − pk+1,

ec :=ck+1
h − ck+1, ew :=wk+1

h − wk+1,

as well as the discrete element residuals

r
(1)
h :=

ρk + ρk−1

2
yk+1
h − ρk−1Lk+1

ρ yk + τ(bk∇)yk+1
h +

1

2
τdiv(bk)yk+1

h

− 2τdiv
(
ηkDyk+1

h

)
+ τ∇pk+1

h − τwk+1
h ∇ck − ρkg,

r
(2)
h :=ck+1

h − Pk+1ck + τyk+1
h ∇ck − τdiv(mk∇wk+1

h ),

r
(3)
h :=F ′+(ck+1

h ) + F ′−(Pk+1ck)− wk+1
h ,

where bk := ρkyk + Jk. Furthermore we define the error indicators

η
(1)
T :=hT‖r(1)

h ‖T , η
(1)
E :=h

1/2
E ‖2ηk

[
Dyk+1

h

]
E
· νE‖E,

η
(2)
T :=hT‖r(2)

h ‖T , η
(2)
E :=h

1/2
E ‖mk

[
∇wk+1

h

]
E
· νE‖E,

η
(3)
T :=hT‖r(3)

h ‖T , η
(3)
E :=h

1/2
E ‖

[
∇ck+1

h

]
E
· νE‖E.

By using the same steps as in Section 8.1 we derive the following theorem.
Theorem 11.16. There exists a constant C > 0 only depending on the domain
Ω and the regularity of the mesh T k+1 such that

ρ‖ey‖2 + τη‖∇ey‖2 + τm‖∇ew‖2 + σγ‖∇ec‖2 + (F ′+(ck+1
h )− F ′+(ck+1), ec)

≤ C
(
η2

Ω + ηh.o.t + ηC
)
,

holds with

η2
Ω =

1

τη

∑
T∈T k+1

(
η

(1)
T

)2

+
τ

η

∑
E∈Ek+1

(
η

(1)
E

)2

1

τm

∑
T∈T k+1

(
η

(2)
T

)2

+
τ

m

∑
E∈Ek+1

(
η

(2)
E

)2

1

σγ

∑
T∈T k+1

(
η

(3)
T

)2

+ σγ
∑

E∈Ek+1

(
η

(3)
E

)2

,

ηh.o.t. =τ(div(ey), ep),
and ηC =(Pk+1ck − ck, ew)− (F ′−(Pk+1ck)− F ′−(ck), ec).
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Remark 11.17.

• The term ηh.o.t. is of higher order. By approximation results it can be
estimated in terms of hT to a higher order then the orders included in
η

(i)
T , η(i)

E , i = 1, 2, 3. Thus it is neglected in the numerics.

• The term ηC arises due to the transfer of ck from the old grid T k to the
new grid T k+1 through the projection Pk+1. In our numerics presented in
Section 11.4 we use Lagrangian interpolation Ik+1 as projection operator.
We note that Ik+1ck and ck do only differ in regions of the domain
where coarsening in the last time step took place, if bisection is used as
refinement strategy. Since it seems unlikly that elements being coarsened
in the last time step are refined again in the present time step, this
term is neglected in the numerics. We note that this term might be
further estimated to obtain powers of hT by approximation results for
the Lagrange interpolation, see e.g. [EG04] and Remark 11.11.

• Due to these two terms involved the estimator is not fully reliable.

• Neglecting these two terms the estimator can be shown to be efficient by
the standard bubble technique as in Section 8.1.

• An adaptation of the time step size is not considered, since it would
conflict with the time discretization over three time instances. In our
numerics we have to choose time steps small enough to sufficently well
resolve the interfacial force wk+1

h ∇ck.

• The marking of triangles is performed following the marking strategy
proposed in Section 8.3.

Ensuring the validity of the energy estimate

To ensure the validity of the energy estimate during the numerical computa-
tions we ensure that Assumption 11.9 holds trianglewise. For the following
considerations we restrict to bisection as refinement strategy combined with
the iFEM coarsening strategy proposed in [Che08]. This strategy only coarsens
patches consisting of four triangles by replacing them by two triangles if the
central node of the patch is an inner node of T k, and patches consisting of two
triangles by replacing them by one triangle if the central node of the patch lies
on the boundary of Ω. A patch fulfilling one of these two conditions we call
a nodeStar. By using this strategy, we do not harm the Assumption 11.9 on
triangles that are refined. We note that this assumption can only be violated
on patches of triangles where coarsening appears.

After marking triangles for refinement and coarsening and before applying
refinement and coarsening to T k we make a postprocessing of all triangles that
are marked for coarsening.



11 A STABLE TIME DISCRETIZATION 92

Let MC denote the set of triangles marked for coarsening obtained by the
marking strategy described in Section 8.3. To ensure the validity of the energy
estimate (11.22) we perform the following post processing steps:

PP-1 For each triangle T ∈MC :
if T is not part of a nodeStar
then set MC := MC \ T .

PP-2 For each nodeStar S ∈MC :
if Assumption 11.9 is not fulfilled on S
then set MC := MC \ S.

The resulting set MC does only contain triangles yielding nodeStars on
which the Assumption 11.9 is fulfilled.

11.4 Numerics

Now we use the adaptive concept developed in Section 11.3 to investigate the
evolution of the energy inequality on the numerical level.

The nonlinear system (11.32)–(11.35) appearing in every time step of our
approach is solved using the semi-smooth Newton method. Let us first describe
how the linear systems arising in Newton’s method are solved. At each time
step in the Newton iteration we have to solve systems with linear operators G
of the form

G =

(
F I
T C

)
=


A B I 0
Bt 0 0 0
T 0 C11 C12

0 0 C21 C22

 .

Here F and C are the discrete realizations of linearized Navier–Stokes and
Cahn–Hilliard systems, respectively, while I represents their coupling through
the interfacial force, and T the coupling through the transport at the interface.
The order of the unknowns is (y, p, w, c).

Unique solvability of the systems arising from Newton’s method can be
shown by using the energy method of Section 11.2 taking Assumption A4 into
account.

The system is solved by a preconditioned gmres iteration with restart after
10 iterations. As preconditioner we use the block diagonal preconditioner

P =

(
F̃ 0
0 C

)
where C is inverted by LU decomposition, while F̃ is an upper triangular block
preconditioner ([BP88]) for Oseen type problems. It uses the Fp preconditioner
[KLW02] for the Schur complement, i.e.

F̃ =

(
Ã B

0 S̃

)
,
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where S̃ is the Fp preconditioner for the Schur complement of F and Ã is
composed of the diagonal blocks of A and is inverted by LU decomposition.

The implementation is done in C++, where the adaptive concept is build
upon iFEM ([Che08]). As linear solvers we again use umfpack ([Dav04]) and
cholmod ([CDHR08]). The Newton iteration is implemented in its inexact
variant, ensuring local superlinear convergence.

Examples

We investigate the evolution of the free energy and the validity of the energy
inequality. Since we use Lagrange interpolation as projection operator, we
violate the conservation of mass whenever coarsening is performed. This is
numerically investigated.

Thereafter we give results for a qualitative benchmark for rising bubble
dynamics. For this example we also show the influence of the required post
processing step concerning the evolution of the meshes.

Concerning the free energy F we use the relaxed double-obstacle free energy
(11.10) and set the relaxation parameter to s = 10000.

Investigation of the free energy We start by investigating the evolution
of the free energy and the validity of the energy inequality in Theorem 11.7.
Here we use the classic example of spinodal decomposition [CH58, FM08] as
test case. The parameters are chosen as: ρ1 = ρ2 = η1 = η2 = 1, g ≡ 0, and
m(c) ≡ 10−3γ, γ = 0.01, σ = 0.01 and τ = 10−5.

In absence of outer forces the spinodal decomposition admits a character-
istic speed of demixing, see e.g. [Sig79, OSS13]. Especially in the case of a
diffusion driven setting the Ginzburg–Landau energy E decreases with the rate
E ∼ t−1/3.

In Figure 11.1 we show the time evolution of the monotonically decreasing
Ginzburg–Landau energy (left plot). We obtain the expected rate of E ∼ t−1/3

and also observe a time span where E ∼ t−1 holds, as predicted in [OSS13].
Next we investigate the validity of the energy inequality, see Figure 11.1

(right plot). We there show the time evolution of the term

ζ =
1

2

∫
Ω

ρk
∣∣yk+1
h

∣∣2 dx+
σγ

2

∫
Ω

|∇ck+1
h |2 dx+

∫
Ω

F (ck+1
h ) dx

+
1

2

∫
Ω

ρk−1|yk−1
h − Lk+1

ρ yk|2 dx+
σγ

2

∫
Ω

|∇ck+1
h −∇Ik+1ck|2 dx

+ τ

∫
Ω

2ηk|Dyk+1
h |2 dx+ τ

∫
Ω

mk|∇wk+1
h |2 dx

−
(

1

2

∫
Ω

ρk
∣∣yk∣∣2 dx+

σγ

2

∫
Ω

|∇Ik+1ck|2 dx+

∫
Ω

F (Ik+1ck) dx

)
−
∫

Ω

ρkgyk+1
h .
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Figure 11.1: Time evolution of the Ginzburg–Landau energy (left), and validity
of the energy inequality (right).
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Figure 11.2: Time evolution of the deviation of the mean value of c.

The post processing (PP-1)–(PP-2) guarantees, that this term is always neg-
ative. The influence of (PP-1)–(PP-2) on the mesh quality is investigated
later.

The violation in the conservation of mass Since we use Lagrange in-
terpolation as projection operator between successive grids, we do not have
full mass conservation, but have a violation in the mean value of c as dis-
cussed in Remark 11.11. In Figure 11.2 we depict the time evolution of the
term

∣∣∫
Ω
ck+1 − c0 dx

∣∣, i.e. the difference between the mean value of c and the
mean value of the initial phase field c0. The numerical setup is the spinodal
decomposition.

As can be observed, the violation increases with time, and the violation in
mass conservation finally is of size 10−6. We note that the order of the mean
value is |Ω| and here we have |Ω| = 1. Thus though we have deviation of mass,
its size is small in comparison to the actual mean value.



11 A STABLE TIME DISCRETIZATION 95

(Θc)min tΘ (Vc)max tV Mc(t = 3)

stab γ = 0.02 0.9080 1.9672 0.2388 0.9765 1.0786
div γ = 0.02 0.9035 1.9486 0.2370 1.0000 1.0759

ref 0.9013 1.9000 0.2417 0.9239 1.0817

Table 11.1: Results for the first benchmark from [HTK+09].

Figure 11.3: The evolution of the bubble at times t ∈ {0, 1, 2, 3}. The phase
field is shown in the right part and streamlines of the velocity field in the left
part of each plot.

Comparison with an existing benchmark We now again investigate the
benchmark proposed in [HTK+09], that we already simulated in Section 10.6.

For convenience we repeat the three benchmark values, for their definition
see Section 10.6. The values we obtain from the simulation are the circularity,
the rising velocity and the center of mass. As benchmark values the minimal
circularity (Θc)min together with the time tΘ := t(Θc ≡ (Θc)min), the maximal
rising velocity (Vc)max together with the time tV := t(Vc ≡ (Vc)max) and the
center of mass Mc(t = 3) at the final time t = 3 are chosen.

Our results with the new discretization are shown in Table 11.1, first row
(stab γ = 0.02). For comparison we also restate the result obtained in Section
10.6 (div γ = 0.02) . The result corresponding to ’ref’ again is a reference set
of values taken from the sharp interface numerics in [HTK+09].

We see that our results are in quite good aggrement with those obtained
with sharp interface numerics. We also obtain that using the interfacial force
div (∇c⊗∇c) as used in Section 10.6 yields better values for the circularity
while the maximal rising velocity and the total rise in the sence of the final
location of the center of mass at final time are closer to sharp interface numerics
in the new simulation.

In Figure 11.3 we show the evolution of the bubble for the benchmark
setting.
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Figure 11.4: The distribution of the
error indicators at time t = 3. ηT
on the left, ηTE on the right. Black
indicates higher errors.

Figure 11.5: The mesh with (left)
and without (right) postprocessing
at final time t = 3.

Distribution of the error indicators Next we investigate the distribution
of the error indicators. In Figure 11.4 we show the distribution of the error
indicators ηT and ηTE. These are obtained from Theorem 11.16 and are given
trianglewise as

ηT =
1

η

(
η

(1)
T

)2

+
1

τm

(
η

(2)
T

)2

+
1

σγ

(
η

(3)
T

)2

,

ηTE =
∑
E∈T

(
τ

η

(
η

(1)
E

)2

+
τ

m

(
η

(2)
E

)2

+ σγ
(
η

(3)
E

)2
)
.

We observe that a similar distribution is obtained as in Section 9.1 The
errors are concentrated at the boundary of the interface. We further have
additional error contributions from the Navier–Stokes part in a neighborhood
of the bubble.

Influence of the post processing of the marked triangles Finally we
investigate the spatial discretization obtained by our adaptive concept. Espe-
cially we show the influence of the post processing step (PP-1)–(PP-2) on
reducing the number of triangles that are coarsened.

We simulate the rising bubble benchmark in the setting described above
with and without the postprocessing steps. We note that without the post-
processing artificial energy is generated numerically through the coarsening
process and the validity of the energy inequality can not be guaranteed, and
in fact is not given.

In Figure 11.5 we show the final meshes at t = 3 with postprocessing
(left) and without postprocessing (right). We see that there are regions in the
bulk phase below the bubble where the postprocessing prevents the adaptive
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Figure 11.6: The evolution of the number of nodes for the described benchmark
with (upper line) and without (lower line) postprocessing.

strategy from coarsening the triangles to the coarsest level. Thus we obtain
a larger number of nodes if we use the post processing as is demonstrated in
Figure 11.6 where we display the evolution of the number of mesh nodes with
and without postprocessing.

We see that the number of nodes increases (by maximal 10% in this exam-
ple) since not all triangles that are marked for coarsening are coarsened. On
the other hand we note, that the energy inequality in the case without post
processing is violated in 1692 of 60000 simulation steps and this violation takes
place within the first 7000 time steps.

Let us note, that from the fluid mechanical point of view and if one consid-
ers the bubble as an obstacle in the channel flow, the region detected by the
post processing is the wake, where the fluid is accelerated. Thus we expect a
refined flow mesh there.
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12 Summary and outlook
We proposed a diffuse interface approach for the simulation of two-phase flow
based on a Moreau–Yosida relaxation of the double-obstacle free energy. In
Sections 4–9 we proposed a discretization, which yields a sequential coupling
of the Cahn–Hilliard and the Navier–Stokes system together with an adaptive
concept which treats the resulting two systems separately.

In Section 10 we adapted this discretization concept to the model proposed
in [AGG12] for two-phase flow, which is able to cope with fluids of different
densities. We tested our approach by successfully passing a rising bubble
benchmark.

In Section 11 we investigated a fully coupled time discretization over three
time instances which delivers almost linear systems in every time step. The
time discretization further gave rise to a discrete-in-time energy inequality.

We consider it as a drawback, that due to the discretization over three time
instances we have to use fixed time step length in the simulation. In future
work, this has to be overcome by using the more nonlinear time distretization
presented in Remark 11.4.

Furthermore, the fully discrete setting in the current implementation is not
mass conserving, since we use Lagrange interpolation to prolonge between suc-
cessive spatial grids. This has to be changed to a mass conserving prolongation
as discussed in Remark 11.11.

Since we use Moreau–Yosida relaxation to encorporate the bounds |c| ≤ 1
the phase field violates this bound in the numerical simulation. Here, an
estimate is required for the violation. In [?] promising results are presented
that might be used to obtain results on this.
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Part B

Closed-loop control of a
Cahn–Hilliard Navier–Stokes
system
In the second part of this thesis we develop model predictive control con-
cepts for two-phase flows governed by the Cahn–Hilliard Navier–Stokes sys-
tem. Model predictive control is a closed-loop control concept tailored to steer
perturbed systems to a desired trajectory, or to stabilize the state of a per-
turbed system at a given reference trajectory, which for example describes an
ideal evolution of the system obtained from an open-loop control run. For a
discussion of model predictive control we refer to [GP11, NP97].

In [CHK99, HV02, Hin05a] instantaneous control is proposed as a variant
of model predictive control and the approach taken in the present work extends
the concept of instantaneous control to two-phase flows.

13 The general control concept
In this section we describe the general feedback control concept we apply to the
Cahn–Hilliard Navier–Stokes system of Section 10. We describe the general
concept of model predictiv control (MPC) following [GP11, NP97] and consider
a variant of model predictive control called instantaneous control (IC), which in
the context of control of incompressible flows is proposed in [Cho95, CHK99,
HK00] and for the case of distributed control for Navier–Stokes equation is
analyzed in [Hin05a]. In [HK13a] instantaneous control is applied to the control
of two-phase flow of fluids with equal densities, and in [HK13b, Kah13] to the
case of different densities. The following sections present the work contained
in the latter publications.

We now state the concept of model predictive control in an abstract setting
as for example given in [GP11]. We model the behavior of the real-time process
using the following variables. By x(t) we denote the state of the system at time
t. A is a linear and time independent operator. The nonlinear system behavior
is modelled by b(x, t). With u(t) we denote the (feedback) control at time t
and B denotes the control operator. C is an observation operator mapping
states x(t) to observations y(t). The general model we use is given as

ẋ(t) + Ax(t) = b(x, t) +Bu(t),

y(t) = Cx(t).
(13.1)

As control goal we formulate

‖y(t)− yd(t)‖ ≤ C ∀t, (13.2)
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−
y(t)

yd(t)y(t)− yd(t)

y(t)y(t)u(t)

u(t)
u(t) = K (y(t)− yd(t), t)

ẋ(t) +Ax(t) = b(x, t) +Bu(t)

y(t) = Cx(t)

Figure 13.1: The general feedback control concept.

where yd(t) denotes a given desired trajectory and C > 0 is independent of t
and moderately small.

The feedback control for the system is obtained by measuring the output y
and setting u = K(y − yd), where K is the feedback control law. This control
loop is depicted in Figure 13.1.

In the following we for simplicity assume B = id and C = id, thus we
assume fully distributed control and fully observable systems, i.e. y(t) ≡ x(t).
In Section 15 we address the more realistic case of Dirichlet boundary control,
still with a fully observable system.

To describe our control approach in this abstract setting we introduce, for
simplicity, an equidistant time grid

t0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ tk+1 ≤ . . . (13.3)

with tk+1 − tk = τ for k = 0, 1, . . ., and state the general control loop:

For k = 0, 1, . . . do:

GCL1 Obtain the state xk := x(tk).
GCL2 Calculate a feedback control uk+1

? = K(xk).
GCL3 Apply uk+1

? to steer the system from time instance tk to tk+1.

In step GCL1 the state of the system at time instance tk is obtained by
measurements. This data is used in step GCL2 to obtain a control, that
serves the control goal (13.2), and this control is applied to the real world
process in step GCL3 until time instance tk+1 is reached. Note that the
control calculated in step GCL2 gives a feedback to the current and actual
state of the system measured in step GCL1.

In the following we are concerned with step GCL2 of the general loop. In
Section 13.1 we describe the model predictive control concept for step GCL2
and in Section 13.2 we present a variant of model predictive control called
instantaneous control.

In our examples the steps GCL1, which in a real world example corre-
sponds to measurements of the state, and GCL3, which corresponds to the
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application of the control obtained in GCL2, are substituted by numerical
simulation.

13.1 Model Predictive Control

In the present section we describe the model predictive control concept as e.g.
proposed in [GP11]. The terminus ”model predictiv” arises from obtaining
the control by predicting future behavior of the real-time process based on
simulating a suitable model of the process and calculating a control suitable
for controlling the modelled system in the future. In the following we describe
how the control uk+1

? in step GCL2 is obtained for the general model (13.1).
Let the time grid (13.3) be given. Here xk denotes the state at time instance

tk and bk = b(xk, tk) denotes the corresponding nonlinearity. By uk+1 we denote
the control which steers the system from time instance tk to tk+1. Using a semi-
implicit discretization in time we obtain the time discrete model

(I + τA)xk+1 = xk + τbk + uk+1, k = 0, 1, . . . , (13.4)

which enables us to predict the future behaviour of the system for given
uk+1, uk+2, . . .. Of course other discretizations in time are possible and for
the case of control of the Navier–Stokes system are discussed e.g. in [Hin05a,
Sec. 3].

To define the feedback control uk+1
? , used in step GCL3 we state the fol-

lowing open-loop control problem over L time steps

min J(xk+1, . . . , xk+L, uk+1, . . . , uk+L)

s.t. (I + τA)xj+1 = xj + τbj + uj+1 for j = k, . . . , k + L− 1,
(Pk)

where

J(xk+1, . . . ,xk+L, uk+1, . . . , uk+L) :=
L∑
i=1

(
1

2
‖xk+i − xk+i

d ‖2 +
α

2
‖uk+i‖2

)
.

Here xkd := xd(tk). We note that for L = 1 problem (Pk) for τ small enough
admits a unique solution uk+1. Anyway if L > 1 holds, this in general is not
the case since then (13.4) admits a nonlinear constraint in problem (Pk). Here
we assume that (Pk) admits at least one solution.

Let (uk+1, . . . , uk+L) denote a solution to (Pk). The feedback control then
is defined by uk+1

? := uk+1 and we abbreviate the full process of obtaining uk+1
?

by

uk+1
? := K(uk+1

0 , xk, tk, L),

where K is the nonlinear feedback operator, uk+1
0 is the initial control for the

optimization, xk is the state at time tk. The optimization is performed over L
timesteps.
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For real time application the full optimization of (Pk) might be too time
consuming and thus an approximate solution might be used. This leads to the
so called concept of instantaneous control [CHK99, Hin05a], which we describe
next.

13.2 Instantaneous Control

Model predictive control is called instantaneous control, if (Pk) is solved inex-
actly by e.g. applying only one step of a steepest descent method to its solution
using a suitable stepsize θ > 0, and starting from an appropriate initial control
uk+1

0 . In the case L = 1 the operator K performs the following steps:

IC1 Solve (I + τA)z = xk + τb(xk, tk) + uk+1
0 .

IC2 Solve (I + τA∗)λ = z − xk+1
d .,

IC3 Set d = −(αuk+1
0 + λ).

IC4 Determine θ > 0.

IC5 Set uk+1
? = uk+1

0 + θd = K(uk+1
0 , xk, tk, 1).

Here, we use the adjoint calculus to express the derivatives of the functional
J(xk+1, uk+1) with respect to the control through the adjoint variable λ, see
e.g. [HPUU09]. Instantaneous control with L = 1 is analytically investigated
in [HV02] for control of Burger’s equation, and in [CHK99] is used for the
control of back facing step flows. In [Hin05a] it is proven that instantaneous
control for incompressible flow in two spatial dimensions is able to reach a
desired trajectory exponentially fast.

We further note that, due to the potential presence of local minima, the
feedback controller for the model predictive control in general is not uniquely
defined. However in the case of instantaneous control the controller is always
unique, if the steps IC1–IC5 can be performed, i.e. if the operator I + τA is
invertible. This does also apply for instantaneous control with L > 1.

14 The control problem
After having the instantaneous control policy at hand we apply it to the model
for the simulation of two-phase flows with mass density contrast (10.1)–(10.4)
[AGG12, Ch.3] already investigated in Section 10 and Section 11. For this it
is convenient to restate the system here. For a given time interval I it reads:
Find a flowfield y with a pressure field p as well as an order-parameter c
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together with a chemical potential w such that the following equations hold:

ρ∂ty + ((ρy + j) · ∇) y − div (2ηDy) +∇p =

−σγdiv(∇c⊗∇c) + ρG+ Eu in I × Ω, (14.1)
div y = 0 in I × Ω, (14.2)

y = 0 on I × ∂Ω, (14.3)
y(0, x) = y0(x) in Ω, (14.4)

∂tc− div (m∇w) + y · ∇c = 0 in I × Ω, (14.5)
−σγ∆c+ λs(c)− σγ−1c = w, in I × Ω, (14.6)

∂νΩ
c = ∂νΩ

w = 0 on I × ∂Ω, (14.7)
c(0, x) =c0(x) in Ω. (14.8)

The control is denoted by the volume force Eu acting on the Navier–Stokes
equation. Here E : U → L2(I, (H1

0 (Ω)d)∗) is a control operator mapping from
the space of admissible controls U to the space of right hand sides. We note that
by the operator E we can both realize distributed control (U = L2(I, L2(Ω)d),
E = idL2(I,L2(Ω)d)↪→L2(I,(H1

0 (Ω)d)∗)) and finite dimensional (or parameterized) con-
trol (U = L2(I,RM), Eu =

∑M
i=1 fi(x)ui(t) for given fi ∈ (H1

0 (Ω)d)∗). We
assume that U is a Hilbert space with inner product denoted by (·, ·)U , and
norm induced by the inner product.

As in Section 10 ρ = ρ(c) denotes the density of the fluid, η = η(c) denotes
the viscosity and m = m(c) denotes the mobility. The gravitational force
is denoted by G. By j we abbreviate the transport term arising from the
two-phase structure, namely j = −ρ′(c)m(c)∇w.

The control goal consists in steering the order parameter c to a given desired
phasefield cd, i.e.

‖c(t)− cd(t)‖L2(Ω)
t→∞−→ 0.

14.1 The time discrete problem

Following the model predictive control approach, we next discretize (14.1)–
(14.7) in time. We stress that the time discretization stated in the following
is used only for calculating the control using the model predictive control
approach. The simulation for steps GCL1 and GCL3 in the control loop is
performed using the discretization proposed in Section 10, extended by the
corresponding control.

Let t denote the current time instance and τ the fixed time step length.
We set ξ = τ−1. By the superscript k we denote terms defined on the old time
instance tk = t− τ . By abuse of notation in the following we set U := U |t and
E := E|t.

We use the following time discretization:
Given yk ∈ H1

0 (Ω)d, ck ∈ H1(Ω), wk ∈ H1(Ω), and u ∈ U . At time instance
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tk+1, find y ∈ H1
0 (Ω)d, p ∈ L2

(0)(Ω), c ∈ H1(Ω), w ∈ H1(Ω) solving

ξρky − div(ηk∇y) +∇p
+
((
ρkyk + jk

)
· ∇
)
yk − ξρkyk

+σγdiv(∇ck ⊗∇ck)− ρkG− Eu = 0 in Ω, (14.9)
div y = 0 in Ω, (14.10)

y = 0 on ∂Ω, (14.11)
(c− ck)− τdiv

(
mk∇w

)
+ τy · ∇ck = 0 in Ω, (14.12)

−σγ∆c+ λs(c
k)− σγ−1ck − w = 0 in Ω, (14.13)

∂νΩ
c = ∂νΩ

w = 0 on ∂Ω. (14.14)

Here we substituted Dy by ∇y to decouple the spatial dimensions in the
Navier–Stokes system (14.9)–(14.11). We note that this discretization again
decouples the Navier–Stokes system (14.9)–(14.11) from the Cahn–Hilliard sys-
tem (14.12)–(14.14). But here we first solve the Navier–Stokes system (14.9)–
(14.11) to obtain the velocity field y and afterward we solve the Cahn–Hilliard
system (14.12)–(14.14) to obtain the phase field c.

Lemma 14.1. Given u ∈ U together with ck, wk ∈ H1(Ω) and yk ∈ H1
0 (Ω)d

there exists a unique pair (y, p) ∈ H1
0 (Ω)d × L2

(0)(Ω) solving (14.9) – (14.11).
There further exists a unique pair (c, w) ∈ H1(Ω) × H1(Ω) solving (14.12) –
(14.14).

Proof. The existence of a unique solution to (14.9) – (14.11) is achieved using
Lax–Milgram’s theorem (Theorem A1).

The existence of a unique solution to (14.12) – (14.14) can be achieved as
in Section 4 using a helper problem.

14.1.1 Adjoint representation of the gradient direction

To obtain the instantaneous control we next consider the optimal control prob-
lem

min
u
J(c, u) =

1

2
‖c− cd‖2

L2(Ω) +
α

2
‖u‖2

U

s.t. (14.9)− (14.14).
(Pdist)

Using adjoint calculus [HPUU09] one verifies that

∇J(u) = αu+ E∗p3.
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Here we assume that U is selfadjoint and that the Riesz-isomorphism can be
neglected. The variable p3 is related to u through the adjoint system

p2 − τdiv
(
mk∇p1

)
=0, (14.15)

−σγ∆p2 − p1 =c(u)− cd, (14.16)
ξρkp3 − div

(
ηk∇p3

)
+∇p4 =τp1∇ck, (14.17)
divp3 =0, (14.18)

p3 = νΩ · ∇p1 = νΩ · ∇p2 =0 on ∂Ω, (14.19)

with (p1, p2, p3, p4) ∈ H1(Ω)×H1(Ω)×H1
0 (Ω)n×L2

(0)(Ω) denoting the adjoint
variables, and c(u) denoting the solution to (14.9)–(14.14) for a given u.

We note that existence and uniqueness of the adjoint variables p1, p2, p3,
p4 follows from Lemma 14.1.

14.1.2 Obtaining the steepest descent stepsize

To achieve sufficient decrease in the value of J(u) through

u := u− θ∇J(u)

the choice of the stepsize θ is crucial. In the present situation the functional
J is quadratic, since (14.9) –(14.14) forms a linear system with a well defined,
linear and continuous solution operator. Now, for given u ∈ U , let g := ∇J(u)
and denote by c(g) the phase field defined through the system

ξρky − div(ηk∇y) +∇p =Eg (14.20)
div y =0, (14.21)

c− τdiv
(
mk∇w

)
= −τy∇ck, (14.22)

−σε∆c− w = 0. (14.23)

If g 6= 0, the optimal stepsize θ is well defined and satisfies

θ = argmint∈RJ(u− tg).

A short calculation shows

θ =
(c(u)− cd, c(g))L2(Ω) + α(u, g)L2(Ω)

‖c(g)‖2
L2(Ω) + α‖g‖2

L2(Ω)

=
‖g‖2

L2(Ω)

‖c(g)‖2
L2(Ω) + α‖g‖2

L2(Ω)

, (14.24)

so that in the present situation the computation of the optimal steepest descent
stepsize requires one additional linear system solve.

14.1.3 The initial condition for the gradient step

We initialize the gradient step with u0 = 0. We note that in [Hin05a] for the
case of distributed control an initial control u0 is defined that, if used in the
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instantaneous control approach, is able to steer the state of the two-dimensional
Navier–Stokes system to a desired state exponentially fast.

We further note that due to starting with u0 = 0 the stepsize strategy
described in Section 14.1.2 is essential for steering the phase field towards the
desired state.

14.2 Spatial Discretization

The spatial discretization is performed by linear finite elements for both the
concentration and the chemical potential yielding approximations ch, wh. For
the flowfield and the pressure we use the LBB-stable Taylor-Hood P 2 − P 1

finite element pair, see e.g. [HT74, Ver10], yielding approximations yh, ph.
For the spatial treatment of the Cahn-Hilliard part (14.12)–(14.14) we use the
adaptive approach presented in Section 10. In the case of distributed control,
the control u = −θg is implicitly discretized by p3, see [Hin05b].

14.3 Obtaining the instantaneous control

We finish this section with denoting the allover procedure used to calculate
the instantaneous control.

For a given initial control guess u0 ∈ U the controller now performs the
steps:

1. Given yk, ck, wk, compute c(u0),

2. compute p3(c(u0)),

3. set g = ∇J(u0) = αu0 − E∗p3(u0),

4. compute c(g),

5. compute θ with u = u0, c(g) and g,

6. set u := u0 − θg.

In total the numerical amount of work consists of three linear system solves.

15 Dirichlet boundary control
In this section we consider tangential Dirichlet boundary control for two-
phase flows. Tangential Dirichlet Control is technological feasible (see [BLK01,
MK02]) and mass conserving. Tangential Dirichlet boundary control for in-
compressible flows is for example investigated in [Bar11, BLK01].
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Tangential boundary control yields a minor number of changes in the pro-
cedure presented before that we will present in the following. We start with
stating the time discrete optimization problem we consider here:

min J(c, u) =
1

2
‖c− cd‖2

L2(Ω)+
α

2
‖u‖2

RM

s.t.

ξρk(y − yk) +
((
ρkyk + jk

)
· ∇
)
yk

−div
(
ηk∇y

)
+∇p =

−σγdiv(∇ck ⊗∇ck) + ρkG in Ω,

div y = 0 in Ω,

y = Eu on ∂Ω,

(c− ck)− τdiv
(
mk∇w

)
+ τy∇ck = 0 in Ω,

−σγ∆c+ λs(c
k)− σγ−1ck = w in Ω,

∂νΩ
c = ∂νΩ

w = 0 on ∂Ω.

(Pbnd)

The operator E : RM → H1/2(∂Ω)d is a control operator of the form E(u)(x) =∑M
m=1 fm(x)um with given fm ∈ H1/2(∂Ω)d. To obtain mass conservation we

assume fm · νΩ = 0 for m = 1, . . . ,M , where νΩ denotes the outer normal on
Ω.

The corresponding adjoint system again is (14.15)–(14.19), while the gra-
dient changes to

∇J(u) = αu+ E∗
(
ηk∇p3 · νΩ

)
.

Here the adjoint operator E∗ : (H1/2(∂Ω))∗ → RM of E is given by

E∗(g) =

(∫
∂Ω

f1g dS, . . . ,

∫
∂Ω

fMg dS

)t
.

Concerning the optimal step size θ, the term (14.24) stays valid, where now
c(g) is the solution of

ξρky − div(ηk∇y) +∇p =0 in ∂Ω, (15.1)
div y =0 in ∂Ω, (15.2)

c− τdiv
(
mk∇w

)
= −τy∇ck in ∂Ω, (15.3)

−σε∆c− w = 0 in ∂Ω, (15.4)
u = Eg on ∂Ω. (15.5)

16 The resulting feedback controller
In this section we construct the state feedback controller which realizes the
control concept described the previous sections.
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We set Y := H(div,Ω)×H1(Ω)×H1(Ω) and introduce a linear and bounded
operator

Bk : Y → Y ∗

by

Bk(y, c, w)t :=

ξρky − div
(
ηk∇y

)
0 0

y∇ck ξc −div(mk∇w)
0 −σε∆c −w

 ,

where ρk := ρ(ck), ηk := η(ck), and mk := m(ck). We stress that the operator
does depend on the phase field from the old time instance. Now the time
discretization (14.9)–(14.14) can be written in the form

Bk(y
k+1, ck+1, wk+1)t =

ξρkyk − tk∇yk − σεdiv(∇ck ⊗∇ck) + ρkg + Eu
ξck

−f(ck)

 .

Here f(ck) = λs(c
k) − σ

γ
ck denotes the free energy evaluated at the old time

instance, ξ := 1/τ . Furthermore tk := ρkyk + ρ′kmk∇wk.
The dual operator B∗k : Y ∗ → Y ∗∗ = Y of Bk is given by

B∗k(p3, p1, p2)t :=

ξρkp3 − div
(
ηk∇p3

)
p1∇ck 0

0 ξp1 −σε∆p2

0 −div(mk∇p1) −p2

 .

The adjoint equation thus can be written as

B∗k(p3, p1, p2)t =

 0
ck+1 − ck+1

d

0

 .

Here ck+1
d denotes the desired state at time instance tk+1.

Let us define the restriction and extension operators Pk and Ek, k = 1, 2, 3
by P1((y, c, w)) := y, P2((y, c, w)) := c, P3((y, c, w)) := w, E1(y) := (y, 0, 0),
E2(c) := (0, c, 0), and E3(w) := (0, 0, w).

Now we have everything at hand to construct the resulting controller. The
control u after one gradient step with stepsize θ > 0 is given by

u =u0 − θ∇J(u0),

=u0 − θαu0 + θE∗p3,

=(1− θα)u0 + θE∗P1B
∗
k(E2c

k+1 − E2c
k+1
d ),

=(1− θα)u0 + θE∗P1B
∗
k

(
E2P2Bk

(
fk + P1Eu

0)− E2c
k+1
d

))
,

=(1− θα)u0 + θE∗P1B
∗
kE2P2Bk(f

k −B−1
k E2c

k+1
d︸ ︷︷ ︸

Fk

+P1Eu
0),
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where

fk :=

ξρkyk − tk∇yk − σεdiv(∇ck ⊗∇ck) + ρkg
ξck

−f(ck)

 ,

and

F k := fk +

 0
−ξck+1

d

σε∆cd

 .

Especially in the case u0 = 0 we obtain the controller

u =θE∗P1B
∗
kE2P2BkF

k

We see that the controller directly scales with the stepsize θ of the gradient
step. In the case of Dirichlet boundary control the controller changes accord-
ingly and is given by

u =θE∗ηk∇(P1B
∗
kE2P2BkF

k) · νΩ.

Remark 16.1. We note that the controller obtained in this way does depend on
the whole state at the current time instance tk obtained from measurements.
In practice measurements of the full system state are not available. Thus
surrogates have to be provided. This goes beyond the scope of this work.

17 Numerical investigation of the feedback con-
troller

In this section we report on the behaviour of the instantaneous control concept
described in the previous sections. We present two examples covering the main
aspects of instantaneous control. In the first example we move a circle of fluid
and morph it to a square. In the second example we revisit the benchmark
investigated in Section 10 where the control gain consists in pushing down the
bubble and preventing it from rising. We start with describing the numerical
implementation of the controller in the discrete setting.

17.1 Numerical implementation

We here only describe the case of distributed controls and add comments for
the case of boundary control where appropriate.

We note that the controller depends on two parameters, namely the time
step size τ = τu, and the weight α for the cost of applying the control. We note
that there is no need to align the parameter τu, which is the model predictive
control step size used for the controller, and the time step size τs used for
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the simulation to substitute the measurements. We especially note that a
change of τu over time would change the controller and will not be considered
here, while τs can be adapted to numerical requirements, say for fulfilling a
CFL-condition.

For the spatial discretization of the primal equation (14.9)–(14.14) we use
the same Ansatz as for the simulation of the controlled system as described in
Section 10. Especially we use the same meshes. We also use these meshes for
the simulation of the adjoint equations (14.15) – (14.19).

In the case of distributed control we for the discretization follow the varia-
tional discretization proposed in [Hin05b] yielding that the distributed control
u is discretized by the discretization of the adjoint velocity p3.

The linear systems arising in solving the primal and dual equations are
solved as described in Section 10.

17.2 Test problem: Circle to square

In this example we test the ability of the resulting controller to control the dis-
sipative system without outer forces. This means, that we use equal densities
and equal viscosities for the two fluids involved and thus neglect the gravita-
tional force. We further use constant mobility and note that in this setting the
model used here results in the model investigated in [HK13a].

The domain of computation is the unit square Ω = (0, 1)2. In this domain
a circle is located in the center, thus the initial value for the phase-field is given
by

c0(x1, x2) =φ0(z),

z =
1

γ

(√
(x1 − 0.5)2 + (x2 − 0.5)2 − 0.25

)
,

where φ0 is defined in (10.14) and is the first order approximation of the phase-
field across the interface. Thus c0 describes the first order approximation of a
bubble with center located at m = (0.5, 0.5) and radius r = 0.25. The goal in
this example is to move this circle to a new center at M = (0.35, 0.35) and to
morph it into a square centered at M of corresponding width, such that mass
is conserved. The desired phasefield cd thus is given by a square with center
at M , such that

∫
Ω
cd(x) dx =

∫
Ω
c0(x) dx holds. Without control the square

would evolve to a circle, thus is instable and the controller has to stabilize the
square. In Figure 17.1 we depict the initial and the desired phase field.

The further parameters are given as follows: The densities are set to ρ1 =
ρ2 = 1. The viscosities are η1 = η2 = 0.02 and g := (0, 0)t. We use σ = γ =
0.005. Furthermore m := γ/1000, τ := 0.01 and α = 0.001.

Distributed Control

We first show the behavior of our controller in the case of distributed control.
In Figure 17.2 snapshots of the evolution of the phase field are shown.
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Figure 17.1: Initial (left) and desired (right) distribution for example circle to
square.

Figure 17.2: Evolution of the phase field for example circle to square (t ∈
{1, 2, 4}).

Behaviour of the controller with respect to τu We start with investi-
gating the dependence of the controller on τu. Since the aim of the controller
is to minimize the difference to the desired state our measure for the quality
of the controller will be the difference ‖c− cd‖L2(Ω).

Since τu is the amount of time the controller looks into the future we expect
that larger values of τu give better properties of the controller. This can be
seen in the numerics where the steering properties for large τu are significantly
better then for small τu, see Figure 17.3.

Behaviour of the controller with respect to α Next we investigate the
influence of the parameter α on the controller. Since this is a weight in a
penalty term we expect that the smaller this value is chosen the larger the
control will be and thus the faster the controller will steer the system into the
desired state. This is what we can observe from Figure 17.4. We see that for
smaller α the controller steers the system faster into the desired state but we
also observe, that reducing α beyond a specific value does nearly not affect
further the controller properties. This is due to the fact, that for very small α
the influence of τu on the controller is dominating the quality of the controller.

We note that the oscillations of ‖c − cd‖ reported in Figure 17.4 can be
explained by the inertia of the fluid and the coupling of the fluid to the phase
field c. We note that this effect is the more significant the smaller the viscosity
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Figure 17.3: The evolution of ‖c−cd‖L2(Ω) and J for various control parameters
τu and distributed control.
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Figure 17.4: The evolution of ‖c−cd‖L2(Ω) and J for various control parameters
α and distributed control.

of the fluid is and might be overcome with a larger prediction horizon for the
control with more then one time step.

The stepsize θ for the gradient step According to (14.24) the stepsize
for the gradient step is given by

θ =
‖g‖2

L2(Ω)

‖c(g)‖2
L2(Ω) + α‖g‖2

L2(Ω)

≤ 1

α
.

For calculating this stepsize we have to perform an additional simulation. This
effort might be reduced by substituting θ with θ̃ = α−1 which is an upper
bound on the optimal stepsize. In Figure 17.5 we depict the relative difference
between θ and θ̃ = α−1 for two values of τu, namely τu = 0.01 (left) and
τu = 0.001 (right). As can be seen the relative difference is the smaller the
larger we choose α. We further obtain that the relative differences are larger
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Figure 17.5: The evolution of the relative difference between θ and θ̃ for τu =
0.01 (left) and τu = 0.001 (right) and distributed control.

for larger horizons τu. This can be explained as in the case of testing the
behavior with respect to changes in τu. For larger τu the allover influence of
the control increases and thus the ratio ‖c(g)‖L2(Ω)/(α‖g‖L2(Ω)). This implies
that the deterioration between θ and α−1 increases. On the other hand, the
smaller τu is the smaller is the impact of the control and thus the smaller
‖c(g)‖ with the result, that θ tends to α−1.

The distribution of the control From the fact that we start the opti-
mization process with zero control, we obtain that the actual control applied
is equal to u = θp3 in the case of distributed control. The equations (14.17)–
(14.18) for p3 can be regarded as a time step of a time discrete Stokes problem
starting from the initial condition (p3)old = 0. The volume force is equal to
p1∇cold and thus is expected to be located on the interface of cold, since ∇cold
is expected to be very small outside of the interface of cold. In fact the volume
force is located at the intersection of the interface of cold and the interface
of cd is as shown in Figure 17.6 on the left side. We show an overlay of the
meshes for cold and cd. The locally refined areas correspond to the correspond-
ing interfaces. On the right hand side we show the magnitude of the volume
force p1∇cold and the resulting adjoint velocity field p3 depicted by arrows.
Note that the adjoint velocity and thus the control is strongly located on the
intersection of the interfaces corresponding to cold and cd.

Finite Dimensional Boundary Control

We next investigate the finite dimensional boundary control. Let om, m =
1, . . . ,M denote M = 160 equidistantly distributed points on ∂Ω with ‖om −
om−1‖ = β. For x ∈ ∂Ω we define functions fm, m = 1, . . . ,M on ∂Ω satisfying
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Figure 17.6: Overlay of the meshes for cd and cold (left) and the magnitude
of the volume force p1∇cold (right) together with the adjoint velocityfield p3

(arrows).

Figure 17.7: Evolution of the phase field for example circle to square with
boundary control (t = 20,40,100).

fm · νΩ = 0, m = 1, . . . ,M , where νΩ denotes the outer normal at ∂Ω, and

fm(x) · ν⊥Ω :=

{
cos2(zπ/2), z = ‖x− om‖/β z ≤ 1,

0 z > 1,
(17.1)

in tangential direction ν⊥Ω .
The corresponding evolution of the phase field is depicted in Figure 17.7.

We note that allowing the control only to act on the boundary we do not
obtain the sharp corners of the square. Furthermore, we note that the corner
on the left bottom is a littel bit more pronounced than the others since the
boundary and thus the boundary control is closer to the interface there.

Behaviour of the controller with respect to τu In the case of boundary
control we expect to obtain the same properties of the controller with respect
to the parameter τu. Thus we expect the controller to steer c→ cd the faster,
the larger τu is chosen. This can be seen in Figure 17.8.
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Figure 17.8: The evolution of ‖c−cd‖L2(Ω) and J for various control parameters
τu and boundary control.
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Figure 17.9: The evolution of ‖c−cd‖L2(Ω) and J for various control parameter
α and boundary control.

Behaviour of the controller with respect to α As expected also in the
case of boundary control the controller steers ‖c−cd‖L2(Ω) the faster to zero the
smaller α is chosen, thus the less we penalise large controls. This is depicted
in Figure 17.9.

Stepsize θ for the gradient step As in the case of distributed control we
investigate the relative difference between the optimal stepsize θ and the ap-
proximation θ̃ = α−1. In Figure 17.10 we show the relative difference between
θ and θ̃ for τu = 0.01 (left) and τu = 0.001 (right). Again we see that for larger
prediction horizon τu for given α the relative error increases. We further obtain
that the relative difference is quite small if α is quite large and decreases for
smaller τu. Thus for small τu and relatively large α substituting θ by the cheap
approximation θ̃ = α−1 seems resonable.
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Figure 17.10: Relative difference between the optimal stepsize θ and its ap-
proximation θ̃ for τu = 0.01 (left) and τu = 0.001.

Figure 17.11: The adjoint velocity p3 (left) and the boundary control Eu
(right).

The distribution of the control In the case of discrete boundary control,
due to starting the optimization with zero control, the actual control applied
is u = θE∗ (η(cold)∇p3νΩ) and thus is a weighted integral over the tangential
component of the normal derivative of p3 on the boundary. Since the boundary
does not coincide with the intersection of the interfaces of cold and cd we do not
see the strong locality of p3 in the discrete boundary control. In Figure 17.11
on the left we show the adjoint velocityfield p3 together with an overlay of the
meshes for c and cd. Again, as expected, p3 is strongest on the intersection
of the interfaces of cd and c. On the right we again show the adjoint velocity
field p3 together with the resulting control u = θE∗ (η(cold)∇p3ν) depicted as
Eu on the boundary.
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Figure 17.12: Initial (left) and desired (right) distribution for example rising
bubble.

17.3 Test problem: The rising bubble

In this example we revisit the benchmark from Section 10. We investigate
the cases of stabilising the bubble and thus preventing it from rising while
conserving the shape of the bubble (case I), and also the case of even steering
the bubble down against the rising forces (case II). The computational domain
is given by Ω = (0, 1) × (0, 1.5). The initial distribution of the phase field is
given as

c0(x1, x2) =φ0(z),

z =
1

γ

(√
(x1 − 0.5)2 + (x2 − ξ)2 − 0.25

)
,

which defines a bubble centered at m = (0.5, ξ) with radius r = 0.25 and φ0

again is the first order approximation to the interface as defined in (10.14).
Here ξ := 0.5 (case I) or ξ := 0.7 (case II). The desired distribution in both
cases is a bubble centered at M = (0.5, 0.5). In Figure 17.12 we depict the
initial phase field for case II and the desired phase field which also is the initial
distribution for case I.

The further parameters are given as in the benchmark case, i.e. ρ1 = 1000,
ρ2 = 100, η1 = 10 and η2 = 1. The gravitational force is g = (0,−0.98)t.
The surface tension is σphys = 24.5 resulting in σ ≈ 15.6, and γ := 0.01. The
mobility is set to m := γ/1000. If not mentioned differently we use τu = 0.001
and α = 1e− 7.

Here we only investigate the case of finite dimensional boundary control,
thus U = L2(I,RM) and Eu(t, x) =

∑M
i=1 fi(x)ui(t) for given fi, i = 1, . . . ,M .

Distributed control in the presense of gravity is addressed in Section 17.4.

Stabilization (case I)

Here we want to stabilize the rising bubble simulated in Section 10 with wall
tangential Dirichlet boundary control, see e.g. [BLK01]. In a practical applica-
tion this setup can be realized by moving boundary parts established through
arrays of rotating disks, see [Kee98].
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Figure 17.13: Initial phase field with location of the boundary controls (left),
phase field at time t = 8 (middle) and the velocity field at time t = 8 (right).
The velocity field is displayed by streamlines on left half plane and by a vector
field on right half plane.

The functions fi defining the control operator E are then piecewise constant
functions, which are amplified by the control u, so that E does not map into
H1/2(∂Ω). On the analytical level one has to use a very weak formulation of
the Navier–Stokes system then, see e.g. [Ber04].

We use two disks on each wall, resulting in the control u = (u1, u2, u3, u4)
containing four time dependent control functions. The control operator E is
given by

Eu =χ{0}×[0.3,0.45](x)u1(t) + χ{0}×[0.55,0.7](x)u2(t)

+ χ{1}×[0.3,0.45](x)u3(t) + χ{1}×[0.55,0.7](x)u4(t),

where χ{a}×[b,c](x) is the characteristic function of the set {a} × [b, c].
Since the influence of α and τu are already investigated in the previous

example we not again investigate this.
In Figure 17.13 on the left we show the initial bubble together with the

location of the boundary controls. In the middle plot we show the final shape
of the bubble at time t = 8. We see that this control is able to prevent
the bubble from rising, which is shown in Figure 17.14 where we display the
temporal evolution of ‖c − cd‖L2(Ω). In Figure 17.13 on the right we further
show the velocity field y at time t = 8. In the left half plane we display the
velocity field by streamlines and in the right half plane we dipict it by a vector
field. Note that the velocity corresponds to the actual control on the boundary.

We observe that the chosen control is able to prevent the bubble from rising
and stabilizes the bubble at the position shown in Figure 17.13 (middle plot).
Unfortunatly the shape of the controlled bubble is not retained and we thus
should think of possibilities to improve the control mechanism to retain also
the shape of the bubble.

We expect that the deformation of the controlled bubble arises from insuf-
ficient control action below the bubble. We therefore add two further controls
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Figure 17.14: Evolution of ‖c− cd‖L2(Ω) for four control areas.

Figure 17.15: The initial phase field together with the six boundary controls
(left plot). The stabilized phase field at t = 8 (middle) and the stabilizing
velocity field (right), depicted as magnitude (left half plane) and as a vector
field (right half plane).

on the bottom, yielding a six dimensional control u2 = (u2
1, . . . , u

2
6) and the

control operator

E2u2 =χ{0}×[0.3,0.45](x)u1(t) + χ{0}×[0.55,0.7](x)u2(t)

+ χ{1}×[0.3,0.45](x)u3(t) + χ{1}×[0.55,0.7](x)u4(t)

+ χ[0.2,0.35]×{0}(x)u5(t) + χ[0.65,0.8]×{0}(x)u6(t).

This gives significant better results, as can be seen in Figure 17.15. In the
left plot we depict the six control areas together with the initial phase field.
In the middle plot we again show the final stablized bubble and in the right
plot we see the stabilizing velocity, again depicted as streamlines and as vector
field.

The two additional controls significantly improve the shape of the controlled
In Figure 17.16 we see that in the beginning the difference between the

actual bubble and the desired one increases and then approaches the constant
value 0.11 which is smaller than the respective value 0.31 in the case with four
controls shown in Figure 17.14.
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Figure 17.16: Evolution of ‖c− cd‖L2(Ω) for six control areas.

Steering down the bubble against gravitation (case II)

The control goal now consists in steering down the bubble down against the
rising forces. Thus the initial phase field is a bubble centered atM = (0.5, 0.7),
see Figure 17.12.

Since the initial bubble is located above the target bubble we provide addi-
tional controls to increase the control impact on the bubble also in the upper
regions of the configuration. We use seven controls at each wall and two con-
trols on the bottom of the configuration, resulting in 16 control functions.

To illustrate what can be achieved with wall tangential boundary control
for the present configuration, we for comparative studies also investigate a
configuration with 20 overlapping control at each wall of the configuration,
which results to a control problem with 80 time dependent control functions.

The 16 dimensional control u = (u1, . . . u16) is given by

Eu =χ{0}×[0.25,0.39](x)u1(t) + χ{0}×[0.41,0.49](x)u2(t)

+ χ{0}×[0.51,0.59](x)u3(t) + χ{0}×[0.61,0.69](x)u4(t)

+ χ{0}×[0.71,0.79](x)u5(t) + χ{0}×[0.81,0.89](x)u6(t)

+ χ{0}×[0.91,1.05](x)u7(t)

+ χ{1}×[0.25,0.39](x)u8(t) + χ{1}×[0.41,0.49](x)u9(t)

+ χ{1}×[0.51,0.59](x)u10(t) + χ{1}×[0.61,0.69](x)u11(t)

+ χ{1}×[0.71,0.79](x)u12(t) + χ{1}×[0.81,0.89](x)u13(t)

+ χ{1}×[0.91,1.05](x)u14(t)

+ χ[0.20,0.35]×{1}(x)u15(t) + χ[0.65,0.80]×{1}(x)u16(t).

In Figure 17.17 we show the evolution of the 16 dimensional control steering
down the bubble against the gravitational forces. We depict the evolution at
t ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 4.0} (from top left to bottom right) and show the
controlled bubble on the right half plane together with the stream lines of the
velocity field y on the left half plane.

We see that the bubble is steered down by a downwards pointing velocity
field in the middle of the domain. The bubble is getting flat and thus the
interface gets closer to the boundary where the velocity field points upwards
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Figure 17.17: The controlled bubble at times t = 0.2, 0.4, 0.6, 0.8, 1.0, 4.0 (top
left to bottom right) together with streamlines of y for 16 control areas.
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Figure 17.18: Evolution of ‖c− cd‖L2(Ω) for 16 control areas.

thus we obtain the kinks in the bubble displayed on the top. Smoothing these
kinks yields very local vortices especially seen at time t = 0.8 and t = 1.0.
The vortices are pronounced by inertia of the velocity field since the bubble
at its way down has to be stopped at its final position resulting in a control
pointing downwards close to the bubble. The shape at time t = 1.0 is close
to the desired bubble and at t = 1.2 (not shown) the bubble is reached and
thereafter stabilized by the constant velocity field shown for t = 4.0.

In Figure 17.18 we again show the evolution of the difference ‖c− cd‖L2(Ω).
We see that the bubble is rapidly steered down in a first phase, then reshaping
of the bubble increases ‖c− cd‖L2(Ω) again, and finally a decay to a stationary
value is achieved.

As last test we compare the 16 dimensional control to a smooth 80 di-
mensional control modeling full Dirichlet boundary control. In Figure 17.19
we show the temporal evolution of the bubble and the velocity field for t ∈
{0.4, 0.8, 1.2, 1.6, 2.0, 4.0} (left top to bottom right). In Figure 17.20 we depict
the evolution of ‖c− cd‖L2(Ω). We see that the 80 dimensional control is steer-
ing the bubble down faster but then has more problems pushing the bubble
to the final shape. This is reflected in Figure 17.20, where the evolution of
‖c− cd‖L2(Ω) in this case is shown.

We obtain ‖c − cd‖L2(Ω) = 0.84 in the case of 16 control functions, and
‖c− cd‖L2(Ω) = 0.87 in the case of 80 control functions.

17.4 Limitation and special aspects

We finish this section with the description of limitations of the presented ap-
proach that we found during the numerical investigation.

The interfaces of c0 and cd have to intersect

The control is determined by the adjoint velocity field which is driven by the
volume force p1∇cold. In Figure 17.11 we show that this force is concentrated
at the intersection of the interfaces of cold and p1. Thus, if cold and p1 do
not intersect, the adjoint velocity field p3 is approximately zero and thus the
control is very small.
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Figure 17.19: The controlled bubble at times t = 0.4, 0.8, 1.2, 1.6, 2.0, 4.0 (top
left to bottom right) together with streamlines of y for 80 control areas.
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Figure 17.20: Evolution of ‖c− cd‖L2(Ω) for 80 control areas.
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Figure 17.21: The adjoint variable p1 for case II at the very beginning. The
controlled bubble and the desired bubble are marked by their corresponding
zero level line in white. The top bubble is the controlled bubble, the bottom
bubble is the desired bubble.

In Figure 17.21 we show p1 at the beginning of the rising bubble example
(case II). We see that p1 is a phase field taking approximately the three distinct
values −2, 0, 2, following the structure of the volume force c− cd in the adjoint
equation, which takes these values. In particular gray indicates p1 ≈ 0.

To overcome this problem one might use additional terms in the mini-
mization functional. For example one could penalise the distance between the
centers of mass of c and cd. Anyway since it is reasonable to assume that c
and cd are close together this limitation is not a severe restriction.

The bubble can rip

Especially in the case of different densities it often appears that the bubble
is riping during the optimization progress. This appears whenever parts of
the bubble are moved to fast, while other parts are moving with a quite slow
velocity. In the case of the bubble being steered down there also appears the
problem that at the boundary the fluid moves upwards while in the middle
it moves downwards. If parts of the bubble move into the outer region, for
example since the bubble is moved to fast, the bubble rips.

Too fast movement of the bubble results from choosing inappropriate pa-
rameters for the controllers, thus τu and α have to be adapted. This effect
can not be detected at runtime by the mean-square-difference functional used
here so far. Other kinds of functionals might help, for example penalising the
deviation in the circumference of the desired shape and the current shape.
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18 First results for the general model predictive
control

In Section 13 we described the general model predictive control concept by a
sequence of optimal control problem over short time horizons. We later reduced
this to an instantaneous variant with solving the optimal control problem ap-
proximately by one gradient step and using a prediction horizon whose lenght
is chosen as one time step.

We now briefly describe how the general model predictive control concept is
implemented and give first numerical results. For fully specifying the concept
we have to give the time discrete system that is used for predicting the future
behaviour of the fluid and its adjoint system. We further have to specify
parameters and meshes. Here we only use distributed control and compare
distributed control for the circle to square example with the results for the
instantaneous control in Section 17.2. We also investigate the influence of the
length of the prediction horizon on the quality of the feedback control.

For convenience of the reader we recall the model for two-phase flow with
different densities which we use in the present section

ρ∂ty + ((ρy + j) · ∇) y − div (2ηDy) +∇p =

−σγdiv(∇c⊗∇c) + ρg + u in I × Ω, (18.1)
div y = 0 in I × Ω, (18.2)

y = 0 on I × ∂Ω, (18.3)
y(0, x) = y0(x) in Ω, (18.4)

∂tc− div (m∇w) + y · ∇c = 0 in I × Ω, (18.5)
−σγ∆c+ F ′(c) = w in I × Ω, (18.6)

∂νc = ∂νw = 0 on I × ∂Ω, (18.7)
c(0, x) =c0(x) in Ω, (18.8)

where j = −ρ′(c)m(c)∇w. Here F ′(c) denotes the free energy. In the case of
instantaneous control we used the relaxed double-obstacle free energy and in
the time discrete setting evaluated it at the old time instance, see Section 14.1.
We note that this linearisation is only used for the construction of the controller
and is not recommended for simulations over more than one time instance since
evaluating the free energy at the old time gives rise to concentration blow up
at ±∞, so that after few time instances the concentration will attend values
with absolute value much larger then 1. On the other hand, using the splitting
proposed in previous sections would result in a nonlinear equation for the two-
phase system which we would like to circumvent due to the higher numerical
costs.

We again note, that the numerical concept used for predicting the future
behaviour can be chosen quite independend of the concept used for simulation.
In this section the simulation is based on the concept described in Section 11
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but with a more nonlinear discretization in the Navier–Stokes system, see
Remark 11.4. In the following we describe the time discretization used for
predicting the future behavior of the concentration.

18.1 The time discrete system for predicting the future
behaviour

We for predicting the future behavior of the system here use the polynomial
free energy F ′(c) = σγ−1(c3 − c), since it is smoother and simplier to handle.
In this case time discretizations are available, which yield linear systems in
every time step. In [AV12] a Taylor expansion is used for linearization without
further proof. In [GT13] linear schemes for the Cahn–Hilliard equation are
presented and derived. Here we use the linear scheme from Eyre [Eyr98] based
on F ′(ck+1, ck) = σγ−1((ck)3 − 3ck + 2ck+1). For denoting the time discrete
formulation we introduce the superscript k indicating the k-th time instance.

The discretization of the free energy yields the following time discrete sys-
tem for the Cahn–Hilliard equation in strong form:

1

τ
(ck+1 − ck)− div

(
mk∇wk+1

)
+ yk+1 · ∇ck = 0, (18.9)

−σγ∆ck+1 + σγ−1((ck)3 − 3ck + 2ck+1)− wk+1 = 0. (18.10)

The velocity structure is discretized as before, thus

1

τ
(ρold(y

k+1 − yk)) + div
(
ηk∇yk+1

)
+∇pk+1

= −σγdiv
(
∇ck ⊗∇ck

)
−
((
ρkyk + Jk

)
· ∇
)
yk + ρkg + uk+1, (18.11)
−div yk+1 = 0. (18.12)

The optimal control problem is given by

min J(cj+1, . . . ,cj+L, uj+1, . . . , uj+L)

s.t. (18.9)− (18.12) for k = j, . . . , j + L− 1,
(Pk)

where

J(cj+1, . . . , cj+L, uk+1, . . . , uk+L) :=
L∑
i=1

(
1

2
‖cj+i − cj+id ‖2 +

α

2
‖uj+i‖2

)
.

We note that we assume a fixed step length τ for the time discretization and
rescaled the functional with this value.

Using formal Lagrange calculus we obtain the following adjoint system
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(ξ = τ−1):

αuk+1 − pk+1
3 = 0

ξρkpk+1
3 − (Jk∇)pk+1

3 − div
(
ηkDpk+1

3

)
+∇pk+1

4 + pk+1
1 ∇ck

−ξρk+1pk+2
3 + ρk+1

(
∇yk+2

)t
pk+2

3 = 0

divpk+1
3 = 0

−div(mk∇pk+1
1 )− pk+1

2 + div
(
ρ′k+1mk+1

(
∇yk+2

)t
pk+2

3

)
= 0

ξpk+1
1 − σγ∆pk+1

2 + F ′a(c
k+1, ck)pk+1

2 − ξpk+2
1 − yk+2∇pk+2

1

+F ′b(c
k+2, ck+1)pk+2

2

+ξ(yk+2 − yk+1)ρ′k+1pk+2
3

+
(
(ρ′k+1yk+1 + ρ′′k+1mk+1∇wk+1 + ρ′k+1m′k+1∇wk+1)∇

)
yk+2pk+2

3

−η′k+1Dyk+2∇pk+2
3

+σγdiv(∇pk+2
3 ∇ck+1) + σγdiv(

(
∇pk+2

3

)t∇ck+1)− ρ′k+1gpk+2
3

+
(
ck+1 − ck+1

d

)
= 0.

Here F ′a(ck+1, ck) denotes the derivative of F ′(ck+1, ck) with respect to the first
argument and F ′b(ck+1, ck) denotes the derivative of F ′(ck+1, ck) respect to the
second argument.

18.2 The fully discrete system

The spatial discretization is again performed by finite elements with piecewise
quadratic and globally continous functions for the velocity field and piece-
wise linear functions for pressure, phase field and chemical potential. We note
that the control through variational discretization ([Hin05b]) is implicitly dis-
cretized through the discrete adjoint velocity field p3.

Since the numerical realization is along the lines of the previous sections
we here only comment on some special aspects of the numerical concept and
implementation.

• We solve the optimal control problem by a steepest descent method with
exact minimization in the descent direction. Since we thanks to the linear
discretization of the Cahn–Hilliard free energy have a linear-quadratic
problem finding the optimal stepsize parameter again is possible with
one simulation of the predicting system.

• Concerning the temporal discretization we use a fixed time step length
during the prediction. This length is chosen such that a CFL-condition
in the first time step is fulfilled. Thus the time discretization step size
might differ for each prediction step but is fixed during each prediction.
Due to the varying step size lengths we do not use a fixed number of
time steps, resulting in a variable length of the prediction horizon, but
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use a fixed length of the prediction horizon. A comparable concept with
fixed time horizon and variable chosen time discretization for example is
used in [WKG97] for optimal feeding of a bio-reactor.

• We do not use adaptation for the spatial meshes during prediction and
perform the prediction step on the mesh obtained by adapting ck, thus
the mesh that the concentration ck+1 is defined on. This is necessary
since if adaptation is used, after each prediction we obtain a new set of
meshes and thus the gradient αu+ p3(u) might not be evaluable since u
and p3 are defined on different sets of meshes then.

• The gradient method for solving the optimal control problem is stopped
as soon as ‖∇J(uk)‖ ≤ 10−4‖∇J(u0)‖ + 10−8 holds, but at most 10
minimization steps with exact minimization are applied. Typically the
minimization stops after 10 steps with ‖∇J(uk)‖ ≤ 10−2‖∇J(u0)‖. We
note that in fact this still is an instantaneous control concept, but due
to the slow convergence of the gradient method and the high numerical
effort to obtain the gradient this simplification is needed. For future work
we plan to go for some conjugate gradient or quasi-Newton methods to
be able to solve the full optimal control problem more efficiently

18.3 First numerical results

Let us present first numerical results for comparing the instantaneous control
strategy presented in Section 14 and the model predictive control sketched
above.

We use the circle to square example from Section 17.2. Here a bubble
located at the center of the domain is moved to the left bottom and deformed
to a square. In Section 17.2 we use instantaneous control over a time horizon
with length H = τu = 0.01 which is resolved by exactly one time step. Here
we compare this strategy with model predictive control on larger horizons of
length H ∈ {0.015, 0.025, 0.05} that are resolved with more then one time step.

Due to the fact that the strength of the control not only depends on the
length of the horizon but also on the length of the first time step during pre-
diction, we do not expect that the MPC in the current used implementation
yields a faster steering towards the desired distribution since the first time step
is adapted to fulfill a CFL condition, which might be violated in the instanta-
neous control case. We further note that solving the optimal control problem
to a higher accuracy might increase the quality of the MPC. As aforementioned
the optimal control problem currently is not solved to a high accurancy.

In Figure 18.1 we depict the evolution of the term ‖c − cd‖L2(Ω) for the
aforementioned time horizons and α = 0.001 on the left hand side. On the
right hand side we depict the evolution of this term for the instanteneous
controller using H = τu = 0.01 and the same value of α.
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Figure 18.1: The evolution of ‖c − cd‖ for MPC with 10 gradient steps and
various time horizons H (left) and the corresponding value for IC using H =
τu = 0.01 (right).

In the case of the model predictive control we see that the difference be-
tween c and cd is reduced the faster the larger the prediction horizon is chosen
and that for all horizons we end at the same value for ‖c− cd‖.

We further obtain that the oszillation between time 2 and 4 in the simula-
tion with instantaneous control does not appear in the simulation with model
predictive control. This can be explained by the optimization over a larger
time horizon.

We see that the final value for ‖c− cd‖ in the case of instantaneous control
is larger than in the case of the MPC. This might arises due to the fact, that
the desired function cd is used as finite element function in the instantaneous
control case, but is used as analytic function in the model predictive control
case. Thus we can not decide which of the two concepts under investigation
delievers the smaller deviation.

The question of incorporation of adaptivity, both in time and space, has to
be answered in future work. Also the possible influence of the time adaptation
on the actually obtained control has to be considered.

19 Summary and outlook
We applied the instantaneous control concept to the control of two-phase flow.
The focus was on fast simulation for the prediction step and we numerically
showed that the concepts seems to work at least for some examples, while also
shortcomings of the concept were discussed. Concerning future work one has
to go for an analytical investigation to justify the practicability of the concept.
I expect that this might force to change the focus from fast evaluation to other
aspects like stable time discretizations or different functionals to minimize.
Combining the stable time discretization from Section 11 with the results from
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[HW14] might yield a first promising way of tackling the analytical questions.
We further showed first numerical results for the general model predictive

control concept. At the current state the incorporation of data in instanta-
neous control and model predictive control have to be aligned to be able to
compare these to concepts. For the model predictive control approach we have
to go for a better optimization algorithm than the currently applied steepest
descent method. Also the question of adaptation of space and time during the
prediction process has to be addressed and especially the possible influence of
the adaptation of time on the actual control has to be considered.
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Appendix
Theorem A1 (Lax-Milgram,[EG04, Lem. 2.2]). Let V be a Hilbert space, let
a : V × V → R be a continuous bilinear form and f : V → R a continuous
linear form. Assume that a is coercive, i.e.

∃α > 0 : a(u, u) ≥ α‖u‖2
V ∀u ∈ V.

Then the problem {
Seeku ∈ V s.t.

a(u, v) = f(v), ∀v ∈ V
admitts a unique solution an there holds

‖u‖V ≤
1

α
‖f‖V ′ ∀f ∈ V ′.

Theorem A2 ([ZK79]). Let X and Y be real Banach spaces. Let C be a
convex and closed subset of X and K a closed cone in Y with vertex at 0. Let

F : X → R Fréchet-differentiable,
g : X → Y continuously Fréchet-differentiable

and consider the problem

(P) minimize F (x) subject to x ∈ C and g(x) ∈ K.

We assume that there exists a unique optimal solution for (P) denoted by x̂ ∈ C
with corresponding ŷ = g(x̂). We define the canonical hulls of C \ {x̂} and
K \ {ŷ} as

C(x̂) ={x ∈ X | ∃β ≥ 0, ∃c ∈ C, x = β(c− x̂)},
K(ŷ) ={y ∈ Y | ∃λ ≥ 0, ∃k ∈ K, y = k − λŷ}.

The polar cone of a subset A ⊂ X is denoted by

A+ = {x∗ ∈ X∗ | 〈x∗, a〉X∗,X ≥ 0 ∀a ∈ A}.

Assume that the following constraint qualification holds:

g′(x̂)C(x̂)−K(ŷ) = Y. (a1)

Then there exists a Lagrange multiplier µ∗ ∈ Y ∗ such that there holds

µ∗ ∈K+,

〈µ∗, ŷ〉Y ∗,Y =0,

F ′(x̂)− µ∗ ◦ g′(x̂) ∈C(x̂)+.
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Definition A3 ([HIK03, CNQ00]). Let X and Z be Banach spaces, D ⊂ X
an open subset. A mapping F : D ⊂ X → Z is called Newton differentiable or
slantly differentiable in U ⊂ D if there exists a family of mappings G : U →
L(X,Z) such that

lim
d→0

1

‖d‖X
‖F (x+ d)− F (x)−G(x+ d)d‖Z = 0 ∀x ∈ U.

The operator G is called a Newton derivative of F on U .

Theorem A4 ([HIK03]). Let X and Z be Banach spaces, D ⊂ X an open
subset. Let F : D → Z and x? ∈ D fulfill F (x?) = 0. Let F be Newton
differentiable with Newton derivative G in a neighbourhood U(x?) of x?. Let
G be non singular on U(x?) and ‖G(x)−1‖L(Z,X) ≤ C ∀x ∈ U(x?). Let the
sequence {xk}k∈N be generated by Newton’s method, thus x0 ∈ D is given and
xk+1 = xk −G(xk)−1F (xk).

Then the sequence {xk}k∈N converges superlinearly to x∗ provided that ‖x0−
x∗‖X is sufficiently small.

Theorem A5 (Discrete Sobolev inequalities [HPUU09, Prop. 3.1]). Let T
denote a quasi-uniform, regular triangulation of Ω ⊂ Rn (n = 1, 2, 3). Then
for every piecewise linear, continuous finite element function vh ∈ H1

0 (Ω) there
holds

‖vh‖L∞(Ω) ≤ Cσ(d, h)‖∇v‖L2(Ω),

where

σ(d, h) =


1 if d = 1,

| log h|1/2 if d = 2,

h−1/2 if d = 3.

A general saddle point problem
Let X,M denote two Hilbert spaces with corresponding dual spaces X∗,M∗

with dualities 〈·, ·〉X∗,X and 〈·, ·〉M∗,M and norms ‖·‖X and ‖·‖M . We introduce
two continuous bilinear forms

a : X ×X → R, b : X ×M → R

and consider the following variational problem:
For l ∈ X∗ and χ ∈M∗ find a pair (u, λ) ∈ X ×M such that there holds{

a(u, v) + b(v, λ) = 〈l, v〉X∗,X ∀v ∈ X,
b(u, µ) = 〈χ, µ〉M∗,M ∀µ ∈M.

(SP)

Theorem A6 ([GR79, Th. I.4.1]). Assume that there holds:
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1. The bilinear form a is coerzive, i.e. there exists a constant α > 0 such
that

a(u, u) ≥ α‖u‖2
X ∀u ∈ X,

2. The bilinear form b satisifies the inf-sup condition, i.e. there exists a
constant β > 0 such that

inf
µ∈M

sup
v∈X

b(v, µ)

‖v‖X‖µ‖M
≥ β

holds.

Then there exists a unique u ∈ V = {v ∈ X, s.t. b(v, µ) = 〈χ, µ〉M∗,M ∀µ ∈M}
and a unique λ ∈M such that the pair (u, λ) is the unique solution of problem
SP.

Theorem A7 (Pressure reconstruction, [GR86, Lem. I 2.1]).
Let f ∈ H−1(Ω)d satisfy

〈f, v〉
(H−1(Ω))d,(H1

0 (Ω))
d =0 ∀v ∈ V.

Here V = {v ∈ H1
0 (Ω)d | (div(v), q) = 0 ∀q ∈ L2

(0)(Ω)}.
Then there exists p ∈ L2(Ω) such that

f = ∇p

holds. If Ω is connected, p is unique up to an additive constant.

Lemma A8 ([Tem77, Lem. II.1.4]). Let X be a finite dimensional Hilbert
space with scalar product (·, ·) and norm ‖·‖ and let P be a continuous mapping
from X into itself such that

(P (x), x) > 0∀‖x‖ = k > 0.

Then there exists ξ ∈ X, ‖ξ‖ ≤ k, such that

P (ξ) = 0.



Summary
This work consists of two parts. The first part deals with the simulation of
two-phase flow using diffuse interface models. In the second part the presented
concept is used to control two-phase flow.

The numerical concept is presented for a well investigated model for two-
phase flow with equal densities and viscosities (model ’H’ ([HH77])) is used.
It consists of a coupled system for describing the two-phase structure (Cahn–
Hilliard equation [CH58]) and the Navier–Stokes equation for the fluid struc-
ture. A time discretization decouples these two systems on each time instance
and allows to treat them separately.

The two-phase structure leads to a variational inequality that is treated by
Moreau–Yosida relaxation. It is shown that the unique solution of the system
can be found by Newton’s method in function space and that for vanishing
relaxation the solution of the variational inequality is obtained. A reliable and
efficient error estimator is proposed that is used to control the discretization
error during the simulation of the two-phase structure.

The time discretization of the fluid structure yields a linear equation. Ex-
istence of a solution is proven and a reliable and efficient error estimator is
provided. This yields a discretization of the fluid structure using different
meshes for the spatial discretization and for the two-phase structure.

The numerical concepts are extensively tested numerically. Especially the
behaviour if the solver with respect to parameters is investigated as well as the
spatial discretization resulting from the adaptive concept.

The presented concepts are therafter used to simulate a model which allows
for fluids with different densities and viscosities.

This part ends with presenting a new time discretization which allows for
time discrete energy estimates that are also conserved in the fully discret set-
ting.

The control of two-phase fluids is investigated in the second part of this
work. The concept of model predictive control is presented. We use a variant
of this, called instantaneous control. The concept is based on solving optimal
control problems over short time horizons. We solve these problems approxi-
mately by only one gradient step. The concept is extensively investigated nu-
merically. Here both distributed control and Dirchlet boundary control with
finitely many controls is investigated.

Furthermore, we present first numerical results for the general model pre-
dictive control.



Zusammenfassung
Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil befasst sich mit
der Simulation von Zwei-Phasen Strömungen mittels diffuse-interface Mod-
ellen. Im zweiten Teil wird das bereit gestellte Konzept verwendet um Zwei-
Phasen Strömungen zu steuern.

Das numerische Konzept wird zunächst an Hand eines gut untersuchten
Modells für Zwei-Phasen Strömungen (Modell ’H’ ([HH77]) mit gleichen Dich-
ten und gleichen Viskositäten dargestellt. Es besteht aus einem gekoppelten
System für die Beschreibung der Zwei-Phasen Struktur (Cahn–Hilliard Glei-
chungen [CH58]) und den Navier–Stokes Gleichungen für die Fluidstruktur.
Eine Zeitdiskretisierung ermöglicht es, die Fluidstruktur in jedem Zeitschritt
von der Zwei-Phasen Struktur zu trennen.

Die Zwei-Phasen Struktur führt auf eine Variationsungleichung, die mit
Moreau–Yosida Relaxierung behandelt wird. Es wird gezeigt, dass die ein-
deutige Lösung des Systems mittels Newton Verfahrens im Funktionenraum
gefunden werden kann, und dass für verschwindene Relaxierung die Lösung
der Variationsungleichung gefunden wird. Es wird ein zulässiger und effizienter
Fehlerschätzer hergeleitet, mit dem der Diskretisierungsfehler bei der Simula-
tion der Zwei-Phasen Struktur kontrolliert werden kann.

Die Zeitdiskretisierung der Fluidstruktur führt auf eine lineare Gleichung.
Existenz von Lösungen wird gezeigt und ein zulässiger und effizienter Fehler-
schätzer wird dargestellt. Dies führt zu einer Diskretisierung auf anderen räum-
lichen Gittern als die Diskretisierung der Zwei-Phasen Struktur.

Die numerischen Verfahren werden ausgiebig numerisch untersucht. Ins-
besondere wird auf das Verhalten der Löser bezüglich der Parameter eingegan-
gen und auf die durch das adaptive Konzept entstehenden Gitter.

Anschließend werden die dargestellten Konzepte verwendet um ein Modell
zu simulieren welches auch zulässt, dass die Flüssigkeiten verschiedene Dichten
und Viskositäten aufweisen.

Dieser Teil endet mit der Vorstellung einer neuen Zeitdiskretisierung die
es erlaubt zeitdiskrete Energieabschätzungen zu erhalten, die auch im voll-
diskreten Modell erhalten bleiben.

Die Steuerung zweiphasiger Fluide wird im zweiten Teil der Arbeit un-
tersucht. Hier wird das Konzept der modellprädiktiven Kontrolle vorgestellt.
Wir verwenden eine Variante hiervon, die instantane Kontrolle. Das Konzept
basiert auf dem Lösen von Kontrollproblemen über kurze Zeithorizonte. Wir
lösen diese Probleme nur approximativ mittels eines Gradientschrittes. Das
Konzept wird ausgiebig numerisch untersucht. Hierbei wird sowohl räumlich
verteilte Kontrolle als auch diskrete am Rand des Gebiets angebrachte Kon-
trolle untersucht.

Des weiteren werden erste numerische Ergebnisse für die allgemeine mo-
dellprädiktiven Kontrolle vorgestellt.


