- Korrigierte Fassung -

Entwicklung spezifischer DNA-Markersysteme zur Schnellbestimmung von CITES-geschützten Baumarten und deren Substitutionshölzern

Dissertation

Zur Erlangung der Würde des Doktors der Naturwissenschaften des Fachbereichs Biologie, der Fakultät für Mathematik, Informatik und Naturwissenschaften, der Universität Hamburg

> vorgelegt von Niko Wischnewski

Hamburg 2014

Tag der Disputation: 16. Dezember 2014

Erstgutachterin: Frau Prof. Dr. Elisabeth Magel

Universität Hamburg Zentrum Holzwirtschaft Leuschnerstraße 91 21031 Hamburg

Zweitgutachter: Herr Prof. Dr. Michael Köhl

Universität Hamburg Zentrum Holzwirtschaft Leuschnerstraße 91 21031 Hamburg

Danksagung

Die vorliegende Arbeit entstand an der Fakultät für Mathematik, Informatik und Naturwissenschaften, Fachbereich Biologie, Zentrum Holzwirtschaft, der Universität Hamburg. Sie wurde finanziell unterstützt vom Bundesamt für Naturschutz.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mir die Anfertigung dieser Arbeit ermöglicht haben.

Mein besonderer Dank gilt Frau Prof. Dr. Elisabeth A. Magel, für die engagierte Betreuung meiner Arbeit, die konstruktiven Gespräche sowie für die Möglichkeit, meine Dissertation in dieser Arbeitsgruppe anzufertigen.

Herrn Prof. Dr. Michael Köhl danke ich für die Bereitschaft zur Übernahme des Zweitgutachtens.

Besonders bedanken möchte ich mich auch bei Frau Ute Moreth für ihre Hilfsbereitschaft bei allen theoretischen und praktischen Fragen. Andreas Kampe gilt mein Dank für die vielen Stunden informativer Fachgespräche. Weiterhin danke ich allen Bachelor-Kandidaten, BTA-Schülern und Praktikanten, deren Weg ich ein Stück begleiten durfte.

Mein Dank gilt ebenfalls allen Botanischen Gärten und Institutionen, die mir Probenmaterial bereitgestellt haben, ohne das die Anfertigung dieser Arbeit schwer möglich gewesen wäre. Besonders müssen hier die Gärtner des Thünen-Instituts in Hamburg-Bergedorf erwähnt werden.

Allen Mitarbeitern des Zentrums Holzwirtschaft sowie des Instituts für Holzforschung danke ich für die zahlreichen konstruktiven Gespräche im Arbeitsalltag, die große Hilfsbereitschaft und die freundliche und angenehme Arbeitsatmosphäre.

Nicht zuletzt möchte ich mich bei meiner Familie bedanken, ohne die die Fertigstellung dieser Arbeit niemals möglich gewesen wäre. Ich danke euch wirklich sehr!

II

Inhaltsverzeichnis

Danksagun	gI				
Inhaltsverzeichnis III					
Abbildungs	AbbildungsverzeichnisVIII				
Tabellenver	zeichnisXI				
Abkürzung	enXV				
Zusamment	fassung XVII				
Summary	XX				
1	Einleitung1				
1.1	CITES				
1.2	Klassische Methoden zur Holzartenidentifizierung4				
1.3	Verwendung von Substitutionshölzern				
1.4	Vorstellung der bearbeiteten Familien7				
1.4.1	Bignoniaceae7				
1.4.2	Caryocaraceae7				
1.4.3	Combretaceae7				
1.4.4	Euphorbiaceae				
1.4.5	Fabaceae				
1.4.6	Meliaceae				
1.4.7	Rubiaceae9				
1.4.8	Thymelaeaceae9				
1.4.9	Zygophyllaceae9				
1.5	Wissensstand 10				
1.5.1	Chemotaxonomie				
1.5.2	Molekularbiologische Methoden zur Identifizierung 11				
1.5.2	.1 DNA-Extraktion				
1.5.2	.2 DNA-Barcoding				

1.5.2.3		Verwendung von art- und gattungsspezifischen Primern für Identifizierung	die 29			
	1.5.2.4	Identifizierung der Herkunft	30			
	1.6 Zi	el der Arbeit	33			
2	Μ	Iaterial und Methoden				
	2.1 M	aterial	35			
	2.1.1 Ge	eräte	35			
	2.1.2 Cł	nemikalien	36			
	2.1.3 Ve	erwendete Kits	37			
	2.1.4 Pr	obenmaterial	38			
	2.1.4.1	Pflanzenmaterial für den Aufbau der rDNA ITS-Sequenzdatenban	k.39			
	2.1.4.2	Material zur Durchführung verschiedener Validierungen	47			
	2.2 M	ethoden	49			
	2.2.1 Iso	olierung der DNA	49			
	2.2.1.1	DNA-Extraktion aus frischem Material	49			
	2.2.1.2	Isolierung der DNA aus Kernholz oder stark abgebautem Material	50			
	2.2.1.3	Invisorb [®] DNA CleanUp Kit	56			
	2.2.2 Qu	uantifizierung der Nukleinsäurekonzentration	57			
	2.2.3 PC	CR zur Amplifikation der rDNA ITS-Region	57			
	2.2.3.1	Qiagen Taq Core Kit	58			
	2.2.3.2	KAPA2G [™] Robust Hot Start PCR Kit	59			
	2.2.3.3	PCR-Primer	62			
	2.2.3.4	Nested-PCR	63			
	2.2.4 Ag	garose-Gelelektrophorese	64			
	2.2.5 Au	ufreinigung	65			
	2.2.6 Kl	lonierung	66			
	2.2.6.1	Ligation	66			
	2.2.6.2	Transformation	67			

	2.2.6.	5.3 Kultivierung auf LB-Agarplatten	67
	2.2.6.	5.4 Blau-Weiß-Selektion	68
	2.2.6	5.5 M13-PCR	69
	2.2.7	Sequenzierung und Sequenzanalyse	69
	2.2.8	Primerdesign für die rDNA ITS-Region	70
3		Ergebnisse	71
	8.1	Entwicklung eines geeigneten DNA-Extraktionssystems für Ker Splintholz	n- und
	3.1.1	CTAB-, SDS- und PTB-Extraktion	73
	3.1.1.	1.1 CTAB-Extraktion	73
	3.1.1.	.2 SDS-Extraktion	75
	3.1.1.	.3 Kombination des CTAB- und des SDS-Puffers	
	3.1.1.	1.4 PTB-Extraktion	
	3.1.2	Überprüfung kommerzieller DNA-Extraktionskits	79
	3.1.3	Modifikationen kommerzieller DNA-Extraktionskits	81
	3.1.3	3.1 Zugabe von PVP zum Lysis-Puffer des DNeasy [®] Plant Mini Kit	s 81
	3.1.3	3.2 Kombination des CTAB-Extraktionspuffers mit dem DNeasy [®] Mini Kit	[®] Plant
	3.1.3.	8.3 Kombination des PTB-Extraktionspuffers mit dem DNeasy [®] Mini Kit	⁹ Plant 85
	3.1.3.	B.4 Verwendung eines modifizierten DNeasy [®] <i>mericon</i> [™] Foo Protokolls	od Kit
3	3.2	Aufbau einer rDNA ITS-Sequenzdatenbank	89
	3.2.1	Meliaceae	89
	3.2.1.	1.1 Extraktion der DNA	89
	3.2.1.	.2 Amplifikation der extrahierten DNA	90
	3.2.1.	.3 Sequenzaufbereitung und Sequenzanalyse	93

	3.2.1.	.4 Intraspezifische und intraindividuelle Unterschiede der C Swietenia	attung 109
3.	2.2	Zygophyllaceae und Bignoniaceae	112
3.	2.3	Fabaceae	115
	3.2.3.	.1 Die Intsia-Gruppe	115
	3.2.3.	.2 Dalbergia und Machaerium scleroxylon	119
	3.2.3.	.3 Caesalpinia und Myrocarpus frondosus	123
	3.2.3.	.4 Die Gattung <i>Pterocarpus</i>	125
	3.2.3.	.5 Die Gattung <i>Dipteryx</i> und <i>Bowdichia nitida</i>	128
3.	2.4	Caryocaraceae	130
3.	.2.5	Thymelaeaceae, Euphorbiaceae, Combretaceae und Rubiaceae	132
3.3		Entwicklung spezifischer Primer	137
3.	3.1	Spezifische Primer für die Swietenia-Gruppe	137
3.	3.2	Spezifische Primer der CITES-geschützten Baumarten und	deren
		Substitutionshölzern	144
3.4		Validierung	147
3.	4.1	Ergebnisse des Blindtests mit 60 unbestimmten Holzproben	148
3.	4.2	Identifizierung einer Holzbohle	152
3.	4.3	Validierung der modifizierten mericon TM -Extraktion anhand	ł von
		Palisanderholz	155
		Diskussion	159
4.1		Entwicklung eines Protokolls für die DNA-Isolierung aus Splin	it- und
		Kernholz	159
4.2		Aufbau der rDNA ITS-Sequenzdatenbank	167
4.	2.1	ITS-Sequenzen der Meliaceae	171
4.	2.2	Beurteilung der ITS-Sequenzen der Zygophyllaceae und der Bignor	iiaceae 174
4.	2.3	Die ITS-Sequenzen der Fabaceae	176

4

4.2.4	Ramin und dessen Austauschhölzer 179
4.3	Entwicklung und Verwendung spezifischer Primer
4.4	Validierungen des entwickelten Schnelltests 185
5	Fazit und Ausblick191
6	Literaturverzeichnis195
7	Anhang217
7.1	Probenmaterial aufgelistet nach der Herbarnummer
7.2	ITS-Sequenzen und Pairwise-Distance Analyse der Zygophyllaceae sowie der Bignoniaceae
7.3	ITS-Sequenzen und Pairwise-Distance Analyse der Intsia-Gruppe 226
7.4	ITS-Sequenzen und Pairwise-Distance Analyse der Gattung <i>Dalbergia</i> sowie von <i>Machaerium scleroxylon</i>
7.5	ITS-Sequenzen und Pairwise-Distance Analyse der Gattung <i>Caesalpinia</i> sowie von <i>Myrocarpus frondosus</i>
7.6	ITS-Sequenzen und Pairwise-Distance Analyse der Gattung Pterocarpus
7.7	ITS-Sequenzen und Pairwise-Distance Analyse der Gattung <i>Bowdichia</i>
7.8	ITS-Sequenzen und Pairwise-Distance Analyse von Gonystylus spp., Terminalia spp., Endospermum moluccanum und Neolamarckia cadamba
Erklärung	

Abbildungsverzeichnis

Abbildung 1: Querschnitt von dem CITES-Holz Swietenia macrophylla (links) und dem
Substitutionsholz Entandrophragma angolense (rechts)
Abbildung 2: Aufbau der Internal Transcribed Spacer Region20
Abbildung 3: Darstellung der verwendeten Holzproben für die Validierung des
entwickelten Schnelltests zur Holzartenidentifizierung48
Abbildung 4: Darstellung der rDNA ITS-Region inklusive der verwendeten ITS-Primer.
Abbildung 5: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben
Ec (Entandrophragma cylindricum) und Ki (Khaya ivorensis) nach
Durchführung der CTAB-Extraktion74
Abbildung 6: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben
Ec (Entandrophragma cylindricum) und Ki (Khaya ivorensis) nach
Durchführung der SDS-Extraktion76
Abbildung 7: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben
Ec (Entandrophragma cylindricum) und Ki (Khaya ivorensis) nach
Durchführung der CTAB/SDS-Extraktion77
Durchführung der CTAB/SDS-Extraktion
 Durchführung der CTAB/SDS-Extraktion
 Durchführung der CTAB/SDS-Extraktion
 Durchführung der CTAB/SDS-Extraktion
 Durchführung der CTAB/SDS-Extraktion. Abbildung 8: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (<i>Entandrophragma cylindricum</i>) und Ki (<i>Khaya ivorensis</i>) nach Durchführung der PTB-Extraktion. Abbildung 9: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (<i>Entandrophragma cylindricum</i>) und Ki (<i>Khaya ivorensis</i>) nach Durchführung der mit PVP versetzten DNeasy[®] Plant Mini Extraktion. Abbildung 10: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (<i>Entandrophragma cylindricum</i>) und Ki (<i>Khaya ivorensis</i>) nach Durchführung der mit PVP versetzten DNeasy[®] Plant Mini Extraktion.
 Durchführung der CTAB/SDS-Extraktion

Abbildung 12: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben
Ec (Entandrophragma cylindricum) und Ki (Khaya ivorensis) nach
Durchführung der modifizierten mericon TM -Extraktion (Mm)
Abbildung 13: Amplifikationsprodukte der DNA-Eluate der Proben Ec und Ki nach
Durchführung der modifizierten <i>mericon</i> TM -Extraktion
Abbildung 14: Darstellung von Doppelbanden, die unter Verwendung der Primer
ITS1.1/ITS4 amplifiziert wurden91
Abbildung 15: Gelbild mit Pilzbanden unterschiedlichster Länge
Abbildung 16: Beispiel für ein Chromatogramm, das mehrere Peaks an einer Position
aufweist
Abbildung 17: Amplifikation des ITS1- (ITS1.1/ITS2.1) und des ITS2-Bereichs
(ITS3.1/ITS4)
Abbildung 18: Alignment der ITS-Sequenzen der 70 Individuen der Meliaceae 104
Abbildung 19: Evolutionäre Divergenz zwischen den ITS-Sequenzen der Meliaceae. 109
Abbildung 20: Consensus-Alignment der ITS-Sequenzen der Zygophyllaceae und der
Bignoniaceae114
Abbildung 21: Consensus-Alignment der ITS-Sequenzen von Intsia bijuga, I.
palembanica, Afzelia africana und Hymenaea courbaril
palembanica, Afzelia africana und Hymenaea courbaril
 palembanica, Afzelia africana und Hymenaea courbaril. Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122
 palembanica, Afzelia africana und Hymenaea courbaril. Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia
 palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124
 palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus
 palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus.
 palembanica, Afzelia africana und Hymenaea courbaril. Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128
 palembanica, Afzelia africana und Hymenaea courbaril. Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128 Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia. 130
 palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128 Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia. 130 Abbildung 27: Alignment der ITS-Sequenzen von Caryocar brasiliense und C.
palembanica, Afzelia africana und Hymenaea courbaril.119Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon.122Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus.124Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus.127Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus.128Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia.130Abbildung 27: Alignment der ITS-Sequenzen von Caryocar brasiliense und C. glabrum.131
palembanica, Afzelia africana und Hymenaea courbaril.119Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon.122Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus.124Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus.127Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus.128Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia.130Abbildung 27: Alignment der ITS-Sequenzen von Caryocar brasiliense und C. glabrum.131Abbildung 28: Consensus-Alignment der ITS-Sequenzen von Gonystylus spp.,131
 palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128 Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia. 130 Abbildung 27: Alignment der ITS-Sequenzen von Caryocar brasiliense und C. glabrum. 131 Abbildung 28: Consensus-Alignment der ITS-Sequenzen von Gonystylus spp., Endospermum moluccanum, Neolamarckia cadamba und Terminalia spp
palembanica, Afzelia africana und Hymenaea courbaril.119Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon.122Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus.124Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus.127Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus.128Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia.130Abbildung 27: Alignment der ITS-Sequenzen von Caryocar brasiliense und C. glabrum.131Abbildung 28: Consensus-Alignment der ITS-Sequenzen von Gonystylus spp., Endospermum moluccanum, Neolamarckia cadamba und Terminalia spp.136Abbildung 29: Alignment für die Darstellung der Positionen der spezifischen Primer im130
palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128 Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia
palembanica, Afzelia africana und Hymenaea courbaril. 119 Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. 122 Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung Caesalpinia sowie von Myrocarpus frondosus. 124 Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Pterocarpus indicus und P. macrocarpus. 127 Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung Pterocarpus. 128 Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung Bowdichia

Abbildung 32: Gelelektrophorese für den Nachweis von Ramin
Abbildung 33: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die
DNA-Eluate der Holzbohle unbekannter Art153
Abbildung 34: Gelelektrophorese für die Identifizierung einer unbekannten Holzbohle.
Abbildung 35: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die
DNA-Eluate der Hölzer der Gattung Dalbergia
Abbildung 36: Anwendung der spezifischen Primer der Gattung Dalbergia157
Abbildung A 1 [·] Alignment der ITS-Sequenzen der Gattungen <i>Guajacum</i> und
Handroanthus 225
Abbildung A 2: Evolutionäre Divergenz zwischen den ITS-Sequenzen der
Zygophyllaceae und Bignoniaceae
Abbildung A 3: Alignment der ITS-Sequenzen der Gattung <i>Intsia</i> sowie von <i>Afzelia</i>
africana
Abbildung A 4: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Intsia spp.,
<i>Hymenaea courbaril</i> und <i>Afzelia africana</i>
Abbildung A 5: Alignment der ITS-Sequenzen der Gattung Dalbergia
Abbildung A 6: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Dalbergia
spp. und <i>Machaerium scleroxylon</i>
Abbildung A 7: Alignment der ITS-Sequenzen der Gattung Caesalpinia
Abbildung A 8: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Caesalpinia
spp. und <i>Myrocarpus frondosus</i>
Abbildung A 9: Evolutionäre Divergenz zwischen den ITS-Sequenzen der Gattung
Pterocarpus
Abbildung A 10: Alignment der ITS-Sequenzen der Gattung Pterocarpus234
Abbildung A 11: Alignment der ITS-Sequenzen der Gattung <i>Bowdichia</i> 235
Abbildung A 12: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Bowdichia
nitida und B. virgilioides
Abbildung A 13: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Gonystylus
spp., Terminalia spp., Endospermum moluccanum und Neolamarckia cadamba.

Tabellenverzeichnis

Tabelle 1: Auflistung der CITES-geschützten Hölzer (Stand: 12.06.2013)
Tabelle 2: Verwendete Geräte. 35
Tabelle 3: Verwendete Chemikalien
Tabelle 4: Verwendete Kits. 37
Tabelle 5: Aufstellung der zu untersuchenden Holzarten
Tabelle 6: Auflistung des untersuchten Probenmaterials zum Aufbau der internen rDNA
ITS-Sequenzdatenbank
Tabelle 7: Protokoll der DNA-Extraktion mit dem DNeasy [®] Plant Mini Kit, Qiagen 50
Tabelle 8: Aufstellung der verwendeten DNA-Extraktionsprotokolle (Gruppe A), der
DNA-Extraktionskits (Gruppe B) sowie der abgewandelten
DNA-Extraktionskits (Gruppe C)
Tabelle 9: Protokoll für die DNA-Extraktion mithilfe des modifizierten DNeasy®
mericon [™] Food Kits
Tabelle 10: Protokoll für das Invisorb [®] DNA CleanUp Kit
Tabelle 11: Pipettierschema für den Mastermix des Taq PCR Core Kits
Tabelle 12: PCR-Programm f ür das <i>Taq</i> PCR Core Kit
Tabelle 13: Pipettierschema für den Mastermix des KAPA2G TM Robust Hot Start PCR
Kits (ohne Enhancer)61
Tabelle 14: Pipettierschema für den Mastermix des KAPA2G TM Robust Hot Start PCR
Kits (mit Enhancer)61
Tabelle 15: PCR-Programm für das KAPA2G [™] Robust Hot Start PCR Kit62
Tabelle 16: Primer zur Amplifikation der sich überlappenden Teilbereiche der
ITS-Region63
Tabelle 17: Protokoll für die Aufreinigung des PCR-Produkts mit dem QIAquick® PCR
Purification Kit
Tabelle 18: Pipettierschema für den Ligationsmix unter Verwendung des PCR
Cloning ^{plus} Kits
Tabelle 19: Rezept f ür die Herstellung des LB-Mediums. 68
Tabelle 20: PCR-Programm f ür eine M13-PCR
Tabelle 21: Definition der Bezeichnung der einzelnen Internal Transcribed Spacer
Bereiche

Tabelle 22: IUPAC Nukleotidcode und zugehörige Basen
Tabelle 23: Spektralphotometrische Analyse von je 1 μ l der DNA-Eluate der
CTAB-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der
Primerkombination ITS1.1/ITS474
Tabelle 24: Spektralphotometrische Analyse von je 1 μ l der DNA-Eluate der
SDS-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der
Primerkombination ITS1.1/ITS475
Tabelle 25: Spektralphotometrische Analyse von je 1 μ l der DNA-Eluate der
CTAB/SDS-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der
Primerkombination ITS1.1/ITS477
Tabelle 26: Spektralphotometrische Analyse von je 1 μ l der DNA-Eluate der
PTB-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der
Primerkombination ITS1.1/ITS4
Tabelle 27: Auflistung der kommerziellen DNA-Extraktionskits 80
Tabelle 28: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der
kommerziellen DNA-Extraktionskits und Darstellung des PCR-Erfolgs unter
Verwendung der Primerkombination ITS1.1/ITS481
Tabelle 29: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der mit PVP
versetzten DNeasy [®] Plant Mini Extraktion und Darstellung des PCR-Erfolgs
unter Verwendung der Primerkombination ITS1.1/ITS482
Tabelle 30: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der mit dem
CTAB-Extraktionspuffer kombinierten DNeasy [®] Plant Mini Extraktion und
Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination
ITS1.1/ITS4
Tabelle 31: Spektralphotometrische Analyse von je 1 μ l der DNA-Eluate der mit dem
PTB-Extraktionspuffer kombinierten DNeasy [®] Plant Mini Extraktion und
Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination
ITS1.1/ITS4
Tabelle 32: Spektralphotometrische Analyse von je $1 \mu l$ der DNA-Eluate der
modifizierten DNeasy [®] mericon TM Food Kit Extraktion und Darstellung des
PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS487
Tabelle 33: Länge der unterschiedlichen Bereiche des ITS für die Familie der
Meliaceae 95

Tabelle 34: Darstellung der intraspezifischen und der intraindividuellen Unterschiede
der Gattung Swietenia
Tabelle 35: Länge der unterschiedlichen Bereiche des ITS für die Familien der
Zygophyllaceae und der Bignoniaceae
Tabelle 36: Länge der unterschiedlichen Bereiche des ITS für Intsia bijuga, I.
palembanica, Afzelia africana und Hymenaea courbaril116
Tabelle 37: Länge der unterschiedlichen Bereiche des ITS für Dalbergia spp. und
Machaerium scleroxylon120
Tabelle 38: Länge der unterschiedlichen Bereiche des ITS für Caesalpinia spp. und
Myrocarpus frondosus
Tabelle 39: Länge der unterschiedlichen Bereiche des ITS für die Gattung Pterocarpus.
Tabelle 40: Länge der unterschiedlichen Bereiche des ITS für Bowdichia nitida 129
Tabelle 41: Länge der unterschiedlichen Bereiche des ITS für Caryocar brasiliense und
C. glabrum
Tabelle 42: Länge der unterschiedlichen Bereiche des ITS für Gonystylus spp.,
Endospermum moluccanum, Neolamarckia cadamba und Terminalia spp133
Tabelle 43: Spezifische Primer für die Gattung Swietenia und deren Austauschhölzer
der Gattungen Entandrophragma, Khaya und Carapa139
Tabelle 44: Auflistung aller spezifischen Primer für die Holzartenidentifizierung 145
Tabelle 45: Auflistung der Ergebnisse des Blindtests mit 60 unbestimmten Holzproben.
Tabelle 46: Spektralphotometrische Analyse der DNA, die aus einer Holzbohle
extrahiert wurde
Tabelle 47: Spektralphotometrische Analyse der DNA, welche aus den Hölzern der
Gattung Dalbergia isoliert wurde
Tabelle 48: Vergleich der spektralphotometrischen Werte aller untersuchten
DNA-Extraktionsmethoden in Kombination mit dem PCR-Erfolg162
Tabelle 49: Aufstellung der Arten oder Gattungen, für die entsprechende Primer zur
Identifizierung vorliegen
Tabelle 50: Zusammenfassende Darstellung der Ergebnisse. 193

Tabelle A 1: Auflistung des untersuchten Probenmaterials zum Aufbau der internenrDNA ITS-Sequenzdatenbank.217

Tabelle A 2: Aufstellung der Individuen der Gattungen Guaiacum und Handroanthus,										
die zu Consensus-Sequenzen zusammengefasst wurden									223	
Tabelle A 3: Aufstellung der Individuen der Gattung Intsia sowie von Afzelia af								africa	ina,	
welche zu Consensus-Sequenzen zusammengefasst wurden										226
Tabelle	А	4:	Aufstellung	der	Individuen	der	Gattung	Dalbergia,	die	zu
C	Consensus-Sequenzen zusammengefasst wurden.								231	
Tabelle	А	5:	Aufstellung	der	Individuen	der	Gattung	Caesalpinia,	die	zu
C	Cons	ensu	s-Sequenzen z	usam	mengefasst v	vurde	n			232
Tabelle	A	6:	Aufstellung	der	Individuen	der	Gattung	Pterocarpus,	die	zu
C	Cons	ensu	s-Sequenzen z	usam	mengefasst v	vurde	n			233
Tabelle	А	7:	Aufstellung	der	Individuen	der	Gattung	Bowdichia,	die	zu
Consensus-Sequenzen zusammengefasst wurden2								236		
Tabelle A 8: Aufstellung der Individuen der Gattungen Gonystylus und Terminalia,										
W	velcł	ie zu	Consensus-S	equer	zen zusamm	engef	asst wurde	n		237

Abkürzungen

А	Adenin
AFLP	Amplified Fragment Length Polymorphism
BLAST	Basic Local Alignment Search Tool
Bt	Blindtest
bp	Basenpaar(e)
С	Cytosin
CBOL	Consortium for the Barcode of Life
CITES	Convention on International Trade in Endangered Species of Wild and Flora
CO1	Cytochrome C Oxidase 1
CTAB	Cetyltrimethylammoniumbromid
DNA	Desoxyribonucleic acid (Desoxyribonukleinsäure)
dNTP	Desoxyribonukleosidtriphosphat
DTT	Dithiothreitol
EDTA	Ethylendiamintetraacetat
FTIR	Fourier-Transform-Infrarot-Spektroskopie
FTNIR	Fourier-Transform-Nahinfrarot-Spektroskopie
G	Guanin
GC/MS	Gaschromatographie mit Massenspektrometrie-Kopplung
iSP	innuSPEED Plant DNA Kit
iSS	innuSPEED Soil DNA Kit
iSSt	innuSPEED Stool DNA Kit
ITS	Internal Transcribed Spacer
IUCN	International Union for Conservation of Nature and Natural Resources
IUPAC	International Union of Pure and Applied Chemistry
NCBI	National Center for Biotechnology Information
NPP	Nucleon TM PhytoPure TM Genomic DNA Extraction Kit
NSS	NucleoSpin [®] Soil Kit
LB	Lysogeny broth
NIR	Nahinfrarot
PCR	Polymerase Chain Reaction (Polymerasekettenreaktion)
pGP	peqGOLD Plant DNA Mini Kit
PLS-DA	Partial Least Squares Discriminant Analysis
pt	Plastidär
PTB	N-Phenacylthiazoliumbromid

PVP	Polyvinylpyrrolidon	
PWG	Plant Working Group	
r	Ribosomal	
RAPD	Randomly Amplified Polymorphic DNA	
RFLP	Restriction Fragment Length Polymorphism	
RNA	Ribonucleic acid (Ribonukleinsäure)	
SDS	Sodium dodecyl sulfate (Natriumdodecylsulfat)	
SOC	Super Optimal broth with Catabolite repression	
SSU	Small Subunit	
Т	Thymin	
TAE	TRIS-Acetat-EDTA	
Taq	Thermus aquaticus (DNA-Polymerase)	
TRIS	Tris-(hydroxymethyl)-aminomethan	
WA	Washingtoner Artenschutzübereinkommen	
X-Gal	5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid	

Zusammenfassung

Laut Schätzungen der International Union for Conservation of Nature and Natural Resources sind von den ca. 21.000 weltweit vorkommenden Baumarten ein Drittel akut bedroht. Um dieser akuten Bedrohung entgegenzutreten, ist in der Vergangenheit eine Vielzahl an Strategien, welche unter anderem den nationalen und internationalen Handel beschränken, entwickelt worden. Ein weltweit rechtlich bindendes Instrument ist die Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Je nach Schutzbedürftigkeit werden die gefährdeten Hölzer in einem der drei Anhänge des Artenschutzübereinkommens gelistet. Um die hieraus resultierenden erfüllen bzw. strengen Regularien zu zu umgehen, werden sogenannte Substitutionshölzer gehandelt. Diese Hölzer zeichnen sich dadurch aus, dass sie in ihrer Textur und teilweise in ihren Eigenschaften stark den CITES-Hölzern ähneln. Diese Ähnlichkeit bietet aber auch die Möglichkeit, CITES-geschützte Hölzer als deren Substitutionshölzer auszuweisen, wodurch die Vollstreckungsbehörden getäuscht werden und die entsprechende Holzart noch stärker gefährdet wird. Aus diesem Grund ist die eindeutige Identifizierung der vorliegenden Holzart unabdingbar. Um eine Holzart zu identifizieren, kommen in den meisten Fällen Bestimmungsmethoden auf makroskopischer und mikroskopischer Ebene zum Einsatz. Ein Nachteil dieser Methoden besteht darin, dass einige CITES-Hölzer anhand dieser Techniken nur schwer bis gar nicht von deren Substitutionshölzern zu unterscheiden sind. Um dieser Problematik entgegenzutreten, sollte in dieser Arbeit ein genetischer Schnelltest entwickelt werden, der durch die Verwendung von spezifischen Oligonukleotiden bereits nach der Gelelektrophorese darüber Auskunft gibt, ob es sich um die angegebene Holzart handelt. Für die Erarbeitung solcher spezifischen Primer wurde die rDNA Internal Transcribed Spacer Region (ITS-Region) gewählt, da dieser genomische Marker bereits erfolgreich zur Identifizierung von Pflanzen, Pilzen und Tieren eingesetzt wurde. Die für die Entwicklung eines solchen Schnelltests erforderlichen sich in vier Aufgabengebieten Untersuchungen lassen zusammenfassen. (1) Entwicklung eines DNA-Extraktionssystems für schwierige Ausgangsmaterialien, wie altes oder bereits verarbeitetes Splint- und Kernholz. (2) Aufbau einer rDNA ITS-Sequenzdatenbank für CITES- und Substitutionshölzer. (3) Bereitstellung spezifischer Oligonukleotide zur Identifizierung der Holzart. (4) Validierung des entwickelten Schnelltests.

Für die Extraktion von DNA aus Ästen, Blättern und frischem Splintholz, erwies sich die Verwendung des DNeasy[®] Plant Mini Kits (Qiagen, Hilden) als vorteilhaft. Um aber auch aus Kernholz oder altem Splintholz DNA in einer Qualität und Quantität zu extrahieren, die eine Amplifikation der ITS-Region sicherstellt, wurden 14 DNA-Extraktionsmethoden untersucht bzw. weiterentwickelt. Die Resultate zeigen, dass eine Modifikation des DNeasy[®] mericon[™] Food Kits (Qiagen, Hilden) ein DNA-Extraktionsprotokoll darstellt, welches eine DNA-Isolierung auch aus Kern- und Splintholz gewährleistet. Für den Aufbau der internen rDNA ITS-Sequenzdatenbank kam neben frischem Ast- und Blattmaterial, das von Botanischen Gärten zur Verfügung gestellt wurde, auch bereits extrahierte DNA zum Einsatz. Der Zugriff auf diese DNA wurde von verschiedenen Forschungseinrichtungen gewährt. Insgesamt sind durch die Verwendung dieser Ausgangsmaterialien 211 ITS-Bereiche erarbeitet worden. Diese 211 Sequenzen verteilen sich auf 9 Familien, 23 Gattungen sowie 53 Arten und repräsentieren sowohl CITES-Hölzer als auch deren Substitutionsarten. Auf Basis der Informationen der Sequenzdatenbank und der GenBank des National Center for Information wurden interspezifischen Biotechnology die Unterschiede der ITS-Sequenzen genutzt, um art- und gattungsspezifische Primer zu entwickeln. Diese Primer ermöglichen eine Identifizierung der Holzart ohne eine DNA-Sequenzierung. Für folgende Arten stehen artspezifische Primerpaare zur Verfügung: Caesalpinia echinata (CITES II), C. ferrea, Cedrela fissilis (CITES III), C. odorata (CITES III), Dalbergia latifolia, D. nigra (CITES I), D. retusa (CITES II), D. sissoo, D. spruceana, Entandrophragma angolense, E. cylindricum, Guaiacum officinale (CITES II), G. sanctum (CITES II), Hymenaea courbaril, Intsia bijuga, I. palembanica, Machaerium scleroxylon, Swietenia macrophylla (CITES II), S. humilis (CITES II) und S. mahagoni (CITES II). Auf der Seite der gattungsspezifischen Primer erfolgte für folgende Gattungen die Entwicklung von Primerpaaren: Afzelia, Bowdichia, Bulnesia, Carapa, Endospermum, Guaiacum (CITES II), Handroanthus, Khaya, Myrocarpus und Neolamarckia. Die Tatsache, dass für einige der untersuchten Arten kein spezifisches Primerpaar vorhanden ist, liegt darin begründet, dass aufgrund der eigenen Sequenzen und denen der internationalen Datenbanken auf zu wenig Sequenzinformationen zurückgegriffen werden konnte, um spezifische Sequenzabschnitte zu definieren. Für den mit spezifischen Primern arbeitenden Schnelltest erfolgten insgesamt drei Validierungen (zwei Blindtests mit insgesamt 61 Proben und eine Validierung der mericonTM-Extraktion), die alle den Nachweis erbrachten, dass mit dieser Methode die Möglichkeit besteht, Hölzer eindeutig zu identifizieren.

Die Untersuchungen dieser Arbeit haben deutlich gezeigt, dass es sich bei der ITS-Region um einen Marker handelt, der ausreichend interspezifische Unterschiede aufweist, um eine Identifizierung auf Artebene zu gewährleisten. Zudem bietet das modifizierte DNeasy[®] *mericon*[™] Food Kit ein Protokoll, anhand dessen die DNA-Isolierung aus den im Handel vorkommenden Ausgangsmaterialien durchführbar ist. Die Anwendung der spezifischen Primer sichert weiterhin eine schnelle und kostengünstige Identifizierung der für den CITES-Vollzug relevanten Holzarten. So wird nicht nur der CITES-Vollzug entscheidend unterstützt, sondern es steht ein weiteres Werkzeug zur Verfügung, um der akuten Bedrohung durch den illegalen Holzhandel entgegenzutreten.

Summary

The International Union for the Conservation of Nature and Natural Resources has estimated that about one third of the approximate 21,000 tree species in the world are threatened and endangered. To counter this important threat a number of strategies have been developed in the past, among some of these are limiting national and international trade. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) is a global and legal binding instrument. The woody species covered by CITES are listed in three Appendices, according to the degree of protection required. To bypass and legally overcome these resulting strict regulations, substitution woods may be traded. Substitution woods are characterised by being similar to the CITES listed woods in texture, and also partially in characteristics. This similarity offers the possibility to trade CITES protected woods as substitution wood, therefore any misunderstanding with enforcing authorities can endanger corresponding CITES wood species even more. For this reason clear identification of existing wood species is mandatory. To identify a wood species, a set of prior determined methods on a macroscopic and microscopic level are usually used. One disadvantage of these methods is that some CITES woods are hard or impossible to tell from their substitution woods. To resolve these problems, this thesis has developed a quick test based on rDNA Internal Transcribed Spacer Region (ITS region), which enables clear differentiation of CITES woods from their substitution species. The development of this quick test can be summarised into four main areas. (1) Development of a DNA extraction system for difficult raw materials, such as old or already processed sapwood and heartwood. (2) Set-up of an rDNA ITS sequence database for both CITES and substitution woods. (3) Development of specific oligonucleotides for identification of wood species. (4) Validation of the developed quick test method.

Extraction of DNA from plant material such as branches, leaves and fresh sapwood, used the DNeasy[®] Plant Mini Kit (Qiagen, Hilden). To extract DNA in the required quality and quantity that ensured PCR amplification of the ITS region from heartwood or old sapwood, modifications to the DNeasy[®] *mericon*TM Food Kit (Qiagen, Hilden) were required. This modified kit turned out to be the best of 14 isolation methods tested. To develop a robust internal rDNA ITS sequence database, not only fresh branch and leaf material provided by botanic gardens were used, but also already-extracted DNA. This extracted DNA was provided by various research facilities, which permitted

development of 211 ITS regions. The 211 ITS sequences were spread across 9 families, 23 genera and 53 species, representing both CITES woods and their substitution species. Based on the own sequences and the information of the sequence database GenBank (National Center for Biotechnology Information), interspecific differences of the ITS sequences were used to develop species and genus specific primers. These primers permitted identification of wood species without requiring sequencing of the DNA. Species-specific primer pairs are now available for the following species: Caesalpinia echinata (CITES II), C. ferrea, Cedrela fissilis (CITES III), C. odorata (CITES III), Dalbergia latifolia, D. nigra (CITES I), D. retusa (CITES II), D. sissoo, D. spruceana, Entandrophragma angolense, E. cylindricum, Guaiacum officinale (CITES II), G. sanctum (CITES II), Hymenaea courbaril, Intsia bijuga, I. palembanica, Machaerium scleroxylon, Swietenia macrophylla (CITES II), S. humilis (CITES II) und S. mahagoni (CITES II). Genus-specific primer pairs were also developed for the following genera: Afzelia, Bowdichia, Bulnesia, Carapa, Endospermum, Guaiacum (CITES II), Handroanthus, Khaya, Myrocarpus und Neolamarckia. Note that there is no specific primer pair for some of the examined species because using their own DNA sequences and the sequences from the international databases did not provide enough sequence information to define specific sequence sections. There were a total of three validations for the quick test developed here using specific primers (two blind tests with a total of 61 specimens and one validation for the DNA isolation method), all of which prove that the methods developed permitted clear identification of woods.

Results obtained in this thesis clearly showed that the ITS region is a marker that has enough interspecific differences to ensure identification at a species level. The modified DNeasy[®] *mericon*TM Food Kit also provided a DNA extraction protocol that permitted isolation of wood DNA from raw materials found in the trade. The use of specific primers also ensured a quick and cost-efficient identification of wood species relevant for CITES implementation. Thus, not only CITES regulation is decisively supported by this method, but also the test provides another tool that may help to counter the acute threat of the illegal wood trade.

1 Einleitung

Der starke Anstieg der Weltbevölkerung in den letzten 200 Jahren sowie die Industrialisierung führten zwangsläufig zu einer steigenden Nutzung natürlicher Ressourcen. Diese starke Nutzung gefährdet derzeit sehr viele Tier- und Pflanzenarten, im Besonderen immer mehr Baumarten, in ihrem Bestand. Die Bäume dienen hierbei nicht nur als Lieferant von Holz- und Brennmaterial, sondern finden auch Einsatz als Nahrungs- bzw. Futtermittel, für medizinische Zwecke und als Rohstofflieferant für Harze, Öle und Gummis. Laut Erhebungen der International Union for Conservation of Nature and Natural Resources (IUCN) sind von den ca. 21.000 weltweit vorkommenden Baumarten schätzungsweise ein Drittel akut bedroht (WWF 2007). Die Gefährdung der Baumarten geschieht nicht nur durch legale, aber zum Teil unregulierte Abholzung, sondern ebenfalls durch illegalen Holzeinschlag. Von illegalem Holzeinschlag spricht man nicht nur dann, wenn er ohne Erlaubnis erfolgt oder mehr als die Konzessionsmenge gefällt wird, sondern auch, wenn der Einschlag aufgrund der Vermeidung von Steuer- bzw. Abgabezahlungen nicht gemeldet wird. Weiterhin gilt der Einschlag als illegal, wenn durch die Convention on International Trade in Endangered Species of Wild and Flora (CITES) geschützte Baumarten gefällt werden oder gegen internationale Handelsregeln, wie Exportverbote, verstoßen wird. Je nach angewendeter Definition kann ein Holzeinschlag sogar als illegal gelten, wenn bei Ernte, Transport oder Verarbeitung gesetzeswidrig gehandelt wird. Im Jahr 2009 betrug der weltweite illegale Einschlag ca. 103-284 Mio. m³. Dies entspricht 7-17% des Gesamteinschlags (BMEL 2013).

1.1 CITES

In der Vergangenheit wurde eine Vielzahl von Strategien entwickelt, um der Gefährdung von Baumarten entgegenzuwirken. Eine wichtige Strategie ist, den Handel von bedrohten Hölzern zu beschränken bzw. zu verbieten. Ein weltweit rechtlich bindendes Instrument, das hierfür zur Anwendung kommt, ist das Washingtoner Artenschutzübereinkommen (WA = CITES). Die folgenden Informationen wurden der offiziellen CITES-Homepage entnommen (CITES 2014).

Erste Entwürfe des WAs wurden bereits ab 1963, nach einem Beschluss durch die Mitgliedsländer der IUCN, verfasst. Auf einer Gründungskonferenz in Washington

D.C., USA, am 03.03.1973, wurde dem Text des Übereinkommens von 80 Ländern zugestimmt. In Kraft getreten ist das Übereinkommen nach der 10. Ratifizierung eines Unterzeichnerstaats am 01.07.1975. Im Januar 2014 haben mittlerweile 179 Staaten das Übereinkommen ratifiziert.

Ziel des WAs ist, den internationalen Handel von Tieren und Pflanzen zu überwachen bzw. zu reglementieren und somit den natürlichen Bestand zu schützen. Gemäß des Übereinkommens gilt jeder Transport über eine Grenze als Handel, unabhängig davon, aus welchen Grund dieser Transport erfolgt. Die in den CITES-Katalog aufgenommenen Arten sind entsprechend dem Grad ihrer Schutzbedürftigkeit in drei Anhängen aufgelistet, wodurch für den internationalen Handel unterschiedliche Beschränkungen gelten. Die drei Anhänge gestalten sich wie folgt:

- Anhang I: Dieser Anhang listet unmittelbar vom Aussterben bedrohte Arten auf und verbietet den kommerziellen Handel mit ihnen. Eine der wenigen Ausnahmen bildet der genehmigungspflichtige Handel zum Zweck wissenschaftlicher Untersuchungen. Für den Ex- und Import werden Ausfuhrbzw. Einfuhrgenehmigungen der zuständigen Behörden benötigt. Derzeit sind knapp 980 Arten durch diesen Anhang geschützt. Vertreter sind z.B. alle Walarten, die Meeresschildkröten sowie die Holzarten *Dalbergia nigra* und *Fitzroya cupressoides* (Tabelle 1).
- Anhang II: Hier erfolgt die Listung der Arten, die nicht unmittelbar vom Aussterben bedroht sind, deren Bestand aber durch den internationalen Handel gefährdet werden könnte. Weiterhin finden sich in diesem Anhang Arten, die leicht mit gefährdeten Arten verwechselt werden könnten. Für den Export muss eine Ausfuhrgenehmigung vorliegen. Des Weiteren verlangt die EU zusätzlich eine Importgenehmigung. Der Anhang weist ca. 34.500 Vertreter auf. Als Beispiel können der Weiße Hai, der Amerikanische Schwarzbär und die Gattungen Swietenia und Guaiacum genannt werden (Tabelle 1).
- Anhang III: In diesem Anhang werden national reglementierte Arten oder Populationen aufgeführt, für deren Schutz eine internationale Kontrolle notwendig ist. Vertreter dieses Anhangs benötigen beim Export aus dem entsprechenden Land eine Ausfuhrgenehmigung. In diesem Anhang sind ca. 160 Arten aufgeführt, wie z.B. *Cedrela fissilis* aus Bolivien (Tabelle 1).

Der Schutz durch einen der drei Anhänge des WAs beinhaltet nicht automatisch, dass der Vertreter oder alle aus ihm gewonnenen Erzeugnisse vom Handel ausgeschlossen oder durch Auflagen beschränkt sind, sondern ergänzende Fußnoten legen fest, was genau durch den entsprechenden CITES-Anhang geschützt wird. Die Überarbeitung der Anhänge erfolgt alle zwei Jahre auf der CITES-Vertragsstaatenkonferenz.

Anhang I	Anhang II	Anhang III
Abies guatemalensis	Aquilaria spp.	Cedrela fissilis
Araucaria araucana	Aniba rosaeodora	Cedrela lilloi
Balmea stormiae	Bulnesia sarmientoi	Cedrela odorata
Dalbergia nigra	Caesalpinia echinata	Dalbergia darienensis
Fitzroya cupressoides	Caryocar costaricense	Dipteryx panamensis
Pilgerodendron uviferum	Dalbergia spp.*	Magnolia liliifera var. obovata
Podocarpus parlatorei	Dalbergia conchinchinensis	Pinus koraiensis
	Dalbergia granadillo	Podocarpus neriifolius
	Dalbergia retusa	Tetracentron sinense
	Dalbergia stevensonii	
	Diospyros spp.	
	Gonystylus spp.	
	Guaiacum spp.	
	Gyrinops spp.	
	Oreomunnea pterocarpa	
	Osyris lanceolata	
	Pericopsis elata	
	Platymiscium pleiostachyum	
	Podocarpus neriifolius	
	Pterocarpus santalinus	
	Swietenia humilis	
	Swietenia macrophylla	
	Swietenia mahagoni	
	Taxus chinensis	
	Taxus cuspidata	
	Taxus fuana	
	Taxus sumatrana	
	Taxus wallichiana	

Tabelle 1: Auflistung der CITES-geschützten Hölzer (Stand: 12.06.2013). Die Hölzer sind ihrem entsprechenden CITES-Anhang zugeordnet. * = Population Madagaskars

1.2 Klassische Methoden zur Holzartenidentifizierung

Um den Schutz bedrohter Baumarten durch die CITES-Regularien gewährleisten zu können, ist eine zweifelsfreie Bestimmung der vorliegenden Holzart unabdingbar. Die Bestimmung der Holzart erfolgt in den meisten Fällen anhand von makroskopischen oder mikroskopischen Merkmalen. Für die makroskopische Bestimmung werden Quer-, Radial- und Tangentialschnitte einer Probe angefertigt und anhand dieser die Strukturmerkmale mit einer 6- bis 12-fach vergrößernden Lupe betrachtet. Eine genauere Bestimmung ist mithilfe von mikroskopischen Schnitten möglich. Hierdurch können ca. 100 anatomische Strukturmerkmale verglichen werden. Durch die Verwendung von Mikroskop oder Lupe werden in erster Linie die primären Strukturmerkmale, wie Gefäße, Parenchyme, Holzstrahlen und Harzkanäle begutachtet. Als erster Anhaltspunkt für die Unterscheidung von Laub- oder Nadelholz können die Gefäße (Tracheen) herangezogen werden. Hier lässt die Anwesenheit von Tracheen einen Schluss darauf zu, dass es sich bei der vorliegenden Probe um ein Laubholz handelt. Zwar finden sich Tracheen auch bei den höher entwickelten Gymnospermen (siehe Gnetales), aber Vertreter dieser Ordnung sind für die Holzbranche nicht von Relevanz. Auch das Fehlen von Gefäßen lässt keinen sicheren Schluss auf ein Nadelholz zu, da z.B. die Vertreter der Familien der Winteraceae und der Trochodendraceae keinerlei Gefäße aufweisen. Dennoch können die Gefäße sehr gut herangezogen werden, um eine Auskunft über die vorliegende Gattung oder Art zu erhalten. Betrachtet wird hierzu, welche Größe die Gefäße aufweisen. Ab ca. 200 µm Gefäßdurchmesser handelt es sich um grobe und gut sichtbare Poren. Kleine Poren, die nur mit der Lupe zu erkennen sind, weisen eine Größe von < 80 µm auf. Zuzüglich zur Größe wird auch die Verteilung (ring-, halbring- oder zerstreutporig), die Gruppierung (solitär, Gruppen oder Nester), die Anordnung (diagonale Folge etc.) und die Inhalte der Gefäße (Thyllen und organische oder anorganische Substanzen) zur Identifizierung herangezogen. Ein zusätzliches primäres Strukturmerkmal ist die mögliche Anwesenheit von Harzkanälen. Sind diese vorhanden, gibt z.B. eine Anordnung in tangentialen Reihen einen weiteren Hinweis auf die Identität der Probe. Die Holzstrahlen bilden ein weiteres wichtiges primäres Strukturmerkmal. Hierbei dienen deren Anordnung, die Größe sowie deren Breite, bezogen auf die evtl. vorhandenen Gefäße, als Anhaltspunkt. Ein letztes primäres Strukturmerkmal stellt das Parenchym dar. Zur Identifizierung werden hier die verschiedenen Typen bzw. deren Anordnung herangezogen. So kann das Parenchym z.B. gebändert, leiterartig, netzartig oder aliform angeordnet sein.

Für die Identifizierung der gesuchten Holzart sind nicht nur die primären Strukturmerkmale von Relevanz, sondern ebenfalls die sekundären Merkmale. Es handelt sich dabei um variable Merkmale, wie z.B. Farbe, Geruch, Gewicht und Textur des Holzes.

1.3 Verwendung von Substitutionshölzern

Um die Handelsverbote bzw. strengen Regularien CITES-geschützter Hölzer zu umgehen. werden sogenannte Substitutionshölzer gehandelt. Diese Hölzer unterscheiden sich in ihrer Textur kaum bis gar nicht von den zu ersetzenden CITES-Hölzern. Trotz des identischen Aussehens der Hölzer, bestehen in ihren Eigenschaften jedoch teilweise gravierende Unterschiede. Der Umstand, dass die CITES-Hölzer und die Substitutionshölzer in ihrer Textur nahezu identisch sein können, bietet zudem die Möglichkeit zum Betrug. Im Folgenden werden kurz zwei Beispiele angeführt. Beim ersten Beispiel handelt es sich darum, dass illegal geschlagene CITES-Hölzer mit Namen bzw. Papieren von nicht geschützten Arten ausgestattet werden. So ist es möglich, die geschützten Hölzer ohne Probleme zu ex- bzw. zu importieren. Ein zweites Beispiel wäre, das hochpreisig gehandelte CITES-Hölzer durch günstige Substitutionshölzer ersetzt werden und somit ein großer Gewinn, mit allen Nachteilen für den Käufer, erzielt wird. Um diesen Möglichkeiten des Betrugs entgegenzutreten und einen CITES-Vollzug zu gewährleisten, ist die eindeutige Identifizierung der Holzart unerlässlich. Problematisch ist, dass die zuständigen CITES-Vollzugsbehörden in den seltensten Fällen über holzspezifische Kenntnisse verfügen. Abhilfe schaffen einfach handhabbare Erkennungshilfen, wie die Software CITESwoodID. Unter Verwendung dieser Software kann für CITES-geschützte Handelshölzer eine erste Einschätzung anhand makroskopischer Merkmale getroffen werden (Koch et al. 2011).

Für die meisten der im Handel befindlichen Hölzer ist es möglich, diese anhand von makroskopischen bzw. mikroskopischen Merkmalen zu unterscheiden und somit zwischen CITES-geschützen Arten und deren Substitutionshölzern zu differenzieren. Für einen geringen Anteil der Handelshölzer reichen die bisher erwähnten Methoden aber nicht aus, wodurch für diese eine Identifizierung bis auf Artebene nicht möglich ist (Gasson 2011). So wird in einigen Fällen die Gewährleistung des CITES-Vollzugs

5

nahezu unmöglich. Diese Problematik erfordert die Entwicklung bzw. Etablierung neuer Methoden zur Artidentifizierung. Auf diese neuen Methoden wird im Punkt Wissensstand vertiefend eingegangen.

Beispiele für schwer zu unterscheidende Holzarten auf makroskopischer Ebene sind *Swietenia macrophylla* und *Entandrophragma angolense*. Abbildung 1 gibt hierfür die Querschnitte der Hölzer bei 10-facher Vergrößerung wieder.

Abbildung 1: Querschnitt von dem CITES-Holz *Swietenia macrophylla* (links) und dem Substitutionsholz *Entandrophragma angolense* (rechts). Darstellung bei 10-facher Vergrößerung.

1.4 Vorstellung der bearbeiteten Familien

Folgend werden die wichtigsten Familien dieser Arbeit vorgestellt. Aus diesen Familien wurden für Untersuchungen CITES-geschützte Hölzer die sowie deren Substitutionshölzer ausgewählt. Bei der Auswahl wurde darauf geachtet, dass mit den klassischen Methoden eine Unterscheidung bzw. Identifizierung der Hölzer nur schwer bis gar nicht möglich ist. Ein konkretes Beispiel findet sich in der Familie der Meliaceae, in der die CITES-geschützte Gattung Swietenia (Anhang II) den Substitutionshölzern aus den Gattungen Entandrophragma, Khaya und Carapa gegenübersteht (Tabelle 5 aus Punkt 2.1.4). Als Quelle für die nachfolgenden Beschreibungen diente Watson und Dallwitz (2014).

1.4.1 Bignoniaceae

Bei den Bignoniaceae (Trompetenbaumgewächse) handelt es sich um eine Pflanzenfamilie innerhalb der Ordnung der Lamiales (Lippenblütlerartige). Die Verbreitung dieser Familie liegt hauptsächlich in den Tropen und Subtropen, mit der höchsten Konzentration in Mittel- und Südamerika. Nach einer taxonomischen Bearbeitung, die nur monophyletische Gattungen enthält, weist diese Familie nur noch 82 anstatt 104 Gattungen auf (Lohmann und Ulloa Ulloa 2014). Bei der Wuchsform handelt es sich in den meisten Fällen um Bäume oder Lianen. Weniger kommen Sträucher und krautige Pflanzen vor. Für den Holzhandel sind unter anderem die Gattungen *Tabebuia, Handroanthus* und *Paratecoma* von Interesse.

1.4.2 Caryocaraceae

Die Caryocaraceae befinden sich in der Ordnung der Malpighiales. Diese Familie weist nur die Gattungen *Anthodiscus* und *Caryocar* auf. Innerhalb dieser Gattungen sind überwiegend Bäume und wenige Sträucher anzutreffen. Die Caryocaraceae sind in der Neotropis, insbesondere im Amazonasgebiet, verbreitet. Das harte Holz der *Caryocar*-Arten ist für den Bootsbau von besonderer Relevanz.

1.4.3 Combretaceae

Die Flügelsamengewächse (Combretaceae) gehören zu der Ordnung der Myrtales. Die unterschiedlichen Arten der ungefähr 20 Gattungen dieser Familie werden durch verholzende Pflanzen repräsentiert. Ihr Verbreitungsgebiet liegt in den Tropen und Subtropen. In der Holzindustrie findet die Gattung *Terminalia* besondere Beachtung.

1.4.4 Euphorbiaceae

Wie die Caryocaraceae gehören auch die Euphorbiaceae (Wolfsmilchgewächse) in die Ordnung der Malpighiales. Derzeit befinden sich etwa 300 Gattungen innerhalb dieser Familie. Bei den Wolfsmilchgewächsen sind sowohl Bäume als auch Sträucher, Halbsträucher und krautige Pflanzen vertreten. Die Euphorbiaceae sind von den gemäßigten Breiten über die Subtropen und Tropen fast weltweit verbreitet. Einer der bekanntesten Vertreter dieser Familie ist wahrscheinlich der Kautschukbaum (*Hevea brasiliensis*). Die Holzindustrie ist an vielen Gattungen dieser Familie, wie z.B. der Gattung *Endospermum*, interessiert.

1.4.5 Fabaceae

Die Hülsenfrüchtler (Fabaceae), Ordnung Fabales, bilden in dieser Arbeit sowie im Allgemeinen eine der wichtigsten Pflanzenfamilien. Die ungefähr 20.000 Arten dieser Familie sind in etwa 730 Gattungen aufgeteilt. Aufgrund des großen Artenreichtums sind die Vertreter der Hülsenfrüchtler auf der gesamten Welt wiederzufinden. In ihrem Erscheinungsbild sind sowohl krautige als auch verholzende Pflanzen wie Sträucher, Lianen und Bäume zu finden. Eine der wichtigsten Verwendungsmöglichkeiten dieser Familie, besteht in der Erzeugung von Nahrungsmitteln, wie z.B. Bohnen, Erbsen und Linsen. Aber auch für den Holzhandel besteht durch diverse Gattungen, wie z.B. *Dalbergia* und *Machaerium*, eine starke Nachfrage nach dieser Familie.

1.4.6 Meliaceae

Die Meliaceae (Mahagonigewächse), aus der Ordnung der Sapindales, enthalten mit der Gattung *Swietenia* wahrscheinlich die bekanntesten Hölzer der Welt. Die ca. 50 Gattungen dieser Familie sind überwiegend in den Tropen und selten in den Subtropen anzutreffen. Der Habitus dieser Familie zeichnet sich meist durch Bäume und Sträucher aus, krautige Pflanzen sind hingegen selten. Für den Handel ist diese Familie von besonderem Interesse. So treten hier nicht nur die wertvollen und CITES-geschützten Hölzer der Gattung *Swietenia* auf, sondern auch deren Austauschhölzer aus den Gattungen *Khaya*, *Carapa* und *Entandrophragma*.

1.4.7 Rubiaceae

Die Familie der Rötegewächse (Rubiaceae) gehört zur Ordnung der Gentianales. Mit ihren ungefähr 660 Gattungen und ca. 13.000 Arten ist sie, wie die Fabaceae, eine der artenreichsten Familien der Magnoliopsida. Aufgrund des Artenreichtums sind die Rubiaceae weltweit verbreitet, das Hauptverbreitungsgebiet liegt aber in den Tropen und Subtropen. Ihr Erscheinungsbild zeigt sich bei den meisten Arten in verholzenden Pflanzen, wie Sträuchern oder Bäumen. Seltener sind Lianen oder krautige Pflanzen. Der wohl bekannteste Vertreter dieser Familie ist der Kaffee. Die Verwendung als Holzlieferant spielt innerhalb dieser Familie eine eher untergeordnete Rolle. In dieser Arbeit bildet *Neolamarckia cadamba* ein Substitutionsholz zu den CITES-geschützten Arten der Gattung *Gonystylus* aus der Familie der Thymelaeaceae.

1.4.8 Thymelaeaceae

Neben den Malvaceae gehören auch die Seidelbastgewächse (Thymelaeaceae) zur Ordnung der Malvales. Die Thymelaeaceae enthalten ca. 60 Gattungen und sind von den gemäßigten Zonen bis in die Tropen zu finden, wobei der Verbreitungsschwerpunkt in den Subtropen liegt. Die meisten Arten sind verholzende Pflanzen, die als Bäume oder Sträucher, seltener als Lianen wachsen. Vereinzelt sind auch krautige Pflanzen anzutreffen. Für die Holzindustrie wichtige Hölzer stammen z.B. aus den Gattungen *Gonystylus* und *Aquilaria*.

1.4.9 Zygophyllaceae

Die Familie der Zygophyllaceae (Jochblattgewächse) ist der Ordnung der Zygophyllales zugehörig. Diese Familie umfasst ca. 25 Gattungen, die hauptsächlich in den Tropen und Subtropen auftreten. Neben Sträuchern und Bäumen gehören auch krautige Pflanzen zu ihrer Wuchsform. Die Gattung *Guaiacum* nimmt bereits seit Jahrhunderten eine wichtige Rolle im Holzhandel ein. Es ist hier nicht nur das harte und besonders schwere Holz von Interesse, sondern auch dessen Extraktstoffe.

1.5 Wissensstand

Wie bereits angeführt, ist die Artidentifizierung ein elementarer Bestandteil für die Sicherstellung des CITES-Vollzugs. Im Bereich der CITES-geschützten Hölzer werden die ausführenden Behörden in diesem Punkt vor eine besondere Aufgabe gestellt. Die traditionellen Methoden (makroskopisch und mikroskopisch) stoßen aufgrund der Vielzahl der mittlerweile gehandelten Hölzer, immer öfter an ihre Grenzen (Gasson 2011). Aufgrund dieser Tatsache ist die Etablierung neuer Identifizierungsmethoden für CITES-geschützte Hölzer eine wichtige Aufgabe für die nächsten Jahre. Folgend werden alternative Methoden zur Identifizierung von Holzarten vorgestellt. Der Schwerpunkt wird bei den molekularbiologischen Methoden liegen, während auf die Chemotaxonomie nur kurz eingegangen wird.

1.5.1 Chemotaxonomie

Im Jahr 1970 berichteten Anderson et al., dass mithilfe der Chemotaxonomie eine Unterscheidung von Pinus monophylla und P. quadrifolia möglich ist. Hierfür wurden Kern- und Splintholz der beiden Arten auf Monoterpene sowie Fett- und Harzsäuren untersucht. Es ergab sich, dass *P. monophylla* die Terpen-Verbindungen β -Phellandren, Terpinolen und Camphen enthält, während diese Verbindungen bei P. quadrifolia offenbar fehlen. Auch Wang et al. (2006) führten Untersuchungen innerhalb der Koniferen durch. In dieser Studie wurden die Riechstoff-Komponenten von Chamaecyparis formosensis, Chamaecyparis obtusa var. formosana, Calocedrus macrolepis var. formosana, Taiwania cryptomerioides, Cunninghamia lanceolata und Cryptomeria japonica unter Verwendung von Festphasenmikroextraktion und Gaschromatographie mit Massenspektrometrie-Kopplung (GC/MS) untersucht. Die Ergebnisse deuten die Autoren als hilfreiche Basis für weiterführende chemotaxonomische Untersuchungen.

Einen weiteren Ansatz zur Unterscheidung von Holzarten bildet die Spektroskopie. Bereits 1988 veröffentlichten Wienhaus et al. erste Ergebnisse zur Unterscheidung von Laub- und Nadelholz mittels Infrarot-Spektroskopie. Die Unterscheidung zwischen Gymno- und Angiospermen wurde über den unterschiedlichen chemischen Aufbau des Lignins, welcher einfach über die Spektroskopie nachgewiesen werden konnte, realisiert. Hierauf aufbauend, veröffentlichten Niemz et al. (1989) Ergebnisse zu dem Versuch, unterschiedliche Holzarten aus einem Hackschnitzelgemisch zu identifizieren. Leider fehlten den Autoren noch die erforderlichen statistischen Methoden, die es
ermöglicht hätten, dieses Ziel zu erreichen. Schon im Jahr 1996 wurden durch Brunner et al. neue interessante Ergebnisse zur Holzartenidentifizierung mittels Spektroskopie veröffentlicht. In dieser Studie konnten zwölf verschiedene Holzarten mittels Fourier-Transform-Nahinfrarot-Spektroskopie (FT-NIR-Spektroskopie) unterschieden werden. Ein weiteres wichtiges Ergebnis dieser Studie war, dass es mit dieser Methode eventuell möglich ist, die Herkunft der untersuchten Holzart zu ermitteln. Dieses Ergebnis ist daher so interessant, da hierdurch Hölzer, die aus zertifizierten Beständen stammen oder durch den CITES Anhang III geschützt sind, besser kontrolliert werden könnten. Die Möglichkeit der Ermittlung der Herkunft einer bestimmten Holzart mittels Spektroskopie untersuchten auch Rana et al. (2008). In dieser Studie wurden Buchen *sylvatica*) fünf verschieden Standorten mittels (Fagus von Fourier-Transform-Infrarot-Spektroskopie (FTIR-Spektroskopie) Die untersucht. FTIR-Spektren dienten weiterführend als Rohdaten für Hauptkomponenten- und Clusteranalysen. Unter Verwendung dieser Analysen war es möglich, vier der fünf untersuchten Herkünfte zu unterscheiden.

Eine von Pastore et al. (2011) veröffentlichte Studie beschäftigte sich mit dem Einsatz von Nahinfrarot-Spektroskopie (NIR-Spektroskopie) zur Unterstützung des CITES-Vollzugs bei *Swietenia macrophylla*. Dafür wurden neben dem bereits erwähnten *S. macrophylla*, weitere, im Aussehen ähnliche, Vertreter der Meliaceae untersucht. Genauer waren dies *Carapa guianensis*, *Cedrela odorata* und *Micropholis melinoniana*. Die Ergebnisse dieser Untersuchungen haben gezeigt, dass mithilfe von NIR-Spektroskopie und multivarianten Analysemethoden basierend auf "partial least squares discriminant analysis" (PLS-DA), die verwendeten Holzarten eindeutig voneinander unterschieden werden können.

Trotz der erwähnten Erfolge, ist die Chemotaxonomie für eine schnelle und eindeutige Identifizierung von Holzarten eher ungeeignet. Bedingt ist dies dadurch, dass eine zuverlässige und stabile Kalibrierung von chemotaxonomischen Methoden einen komplexen und langwierigen Vorgang darstellt.

1.5.2 Molekularbiologische Methoden zur Identifizierung

Nachfolgend wird ein Überblick über die molekularbiologischen Methoden zur Holzartenidentifizierung gegeben. Genauer eingegangen wird auf die DNA-Extraktion, die verschiedenen Identifizierungsmethoden sowie auf die unterschiedlichen Markergene.

1.5.2.1 DNA-Extraktion

Die Extraktion der DNA ist für alle in den folgenden Punkten erwähnten molekularbiologischen Identifizierungsmethoden ein essentieller Arbeitsschritt. Es ist zwar einer der ersten Arbeitsschritte, dennoch begründet sich hier der Erfolg der Identifizierung. Ein entscheidender Faktor für den Erfolg einer späteren DNA-Extraktion ist nicht nur die gewählte Methode, sondern auch das zur Verfügung stehende Ausgangsmaterial. Die Verwendung von Materialien wie z.B. Knospen, Früchte, Blätter und junge Äste zur Extraktion der gesamten genomischen DNA ist anderem mittlerweile, unter durch Verwendung von kommerziellen DNA-Extraktionskits, zur Routine geworden (Dumolin et al. 1995; Tsumura et al. 1996; Csaikl et al. 1998; Cannon und Manos 2003; Stefenon et al. 2006; Yu et al. 2008; Finkeldey et al. 2010). Im Vergleich zu den erwähnten Materialien stellen Splint- und Kernholz jedoch ein weitaus größeres Problem dar. Zum einen weisen diese Ausgangsmaterialien einen geringeren Anteil an DNA auf (Tang et al. 2011), zum anderen ist diese DNA oftmals von weitaus schlechterer Qualität. Dies ist unter anderem dadurch bedingt, dass die DNA im lebenden Baum durch verschiedene Prozesse (z.B. Kernholzbildung) und post mortem in kleine Fragmente degradiert (Bar et al. 1988; Lindahl 1993; Deguilloux et al. 2002). Zu der geringen Quantität und Qualität der DNA kommt erschwerend hinzu, dass Holz starke PCR-Inhibitoren, wie z.B. phenolische Komponenten, Polysaccharide und Proteine, aufweist (Demeke und Adams 1992; Lee und Cooper 1995; Pandey et al. 1996). Ein weiterer Aspekt ist, dass die untersuchenden Hölzer oftmals schon einem oder mehreren zu Verarbeitungsprozessen unterlegen haben. Bei diesen Prozessen handelt es sich z.B. um Trocknung, Shreddern und Kochen. Bedingt durch diese Verarbeitungsprozesse wird intakte oder bereits fragmentierte DNA einer ersten bzw. weiteren Degradierung unterzogen (Asif und Cannon 2005; Abe et al. 2011; Tnah et al. 2012). Die erwähnten Schwierigkeiten sind unter anderem der Grund dafür, warum bei der DNA-Extraktion aus Holz oft Methoden zur Anwendung kommen, die auch in der Forensik oder Archäologie wiederzufinden sind (Deguilloux et al. 2002; Gugerli et al. 2005).

In den vergangenen Jahren sind eine Vielzahl von Protokollen zur Extraktion von DNA aus Holz veröffentlicht worden. Die Hauptziele dieser publizierten Methoden sind, eine weitere Degradierung durch den Aufreinigungsprozess zu vermeiden, die gelösten Inhibitoren zu entfernen und eine Kontamination mit Fremd-DNA zu verhindern. Idealerweise liegt am Ende der DNA-Isolierung reine genomische DNA vor. Eine Studie von de Filippis und Magel aus dem Jahr 1998 beschäftigte sich mit der Robinienholz **DNA-Extraktion** aus frischem (Robinia pseudoacacia). Als Ausgangsmaterial dienten Querschnitte frisch gefällter Stämme. Die Stammscheiben wurden vom Bast bis zur Kernmitte in Zonen eingeteilt und aus diesen die DNA extrahiert. Die DNA-Extraktion erfolgte aus 100 mg Holzmehl, das mit einem 2% igen Cetyltrimethylammoniumbromid (CTAB) Puffer sowie Proteinase K (10 mg/ml) versetzt war. Anschließende Analysen des DNA-Gehalts bzw. der Qualität ergaben, dass aus jeder Zone zwar DNA extrahiert werden konnte, diese aber in der Quantität und Qualität vom Bast bis zur Kernmitte stark abnahm. Durchgeführte Randomly Amplified Polymorphic DNA-PCRs (RAPD-PCRs) waren für alle Zonen erfolgreich.

Eine der ersten Studien bezüglich der erfolgreichen Amplifikation von DNA-Fragmenten aus jungen und relativ alten trockenen Holzstücken veröffentlichten Dumolin-Lapègue et al. (1999). Ihnen war es möglich DNA-Fragmente mit einer Größe von 290 bp zu amplifizieren. Für die Extraktion der DNA aus den Holzproben wurde das DNeasy[®] Plant Mini Kit der Firma Qiagen, Hilden, Deutschland verwendet. Zum Einsatz kamen je 400 mg Eichenholzmehl. Über das genaue Alter der Holzproben bzw. der Art des verwendeten Holzgewebes wurden keine Angaben gemacht. Der DNA-Gehalt der erhaltenen Eluate war nur sehr gering, wodurch eine Amplifikation der DNA nur über eine Nested-PCR möglich war.

Auch Deguilloux et al. (2002) untersuchten trockene Eichenholzproben mithilfe des DNeasy[®] Plant Mini Kits, jedoch wurden für die DNA-Extraktion hier nur 200 mg Probenmaterial verwendet. Die Autoren ermittelten, ähnlich wie de Filippis und Magel (1998), dass die DNA-Qualität und -Quantität von der Stammaußenseite bis zum Zentrum immer geringer wird. Eine weitere wichtige Aussage dieser Veröffentlichung ist, dass bei der Verwendung von Holz, zur Vermeidung von Kontaminationen mit Fremd-DNA, unter absolut sterilen Bedingungen gearbeitet werden muss.

Mit der Extraktion von DNA aus ehemals unter Wasser liegenden Kiefernstämmen, beschäftigte sich eine Studie von Reynolds und Williams (2004). Sie verwendeten hierfür eine veränderte Version des von Doyle und Doyle (1987) entwickelten CTAB-Protokolls, das für die DNA-Extraktion von frischem Blattmaterial ausgearbeitet wurde. Der dort verwendete 2%ige CTAB-Extraktionspuffer wurde mit 1,5% w/v PVP versetzt. Für die DNA-Extraktion kamen ca. 4 g Holzmehl zum Einsatz, welches mit dem CTAB-Puffer und Proteinase K (20 mg/ml) versetzt wurde. Im Anschluss an die DNA-Extraktion wurde eine stringente elektrophoretische Aufreinigung der DNA nach White et al. (2000) durchgeführt. Die Anwendung dieses Aufarbeitungsprozesses ermöglichte eine Amplifikation eines ~600 bp großen DNA-Fragments.

Eine Gegenüberstellung der bisher erwähnten DNA-Extraktionsmethoden (DNeasy[®] Plant Mini und CTAB) wurde durch Asif und Cannon (2005) durchgeführt. Des verglichen sie die beiden Methoden Weiteren mit einer weiteren. der N-Phenacylthiazoliumbromid (PTB) Extraktion. Die PTB-Extraktion wurde bereits erfolgreich in paläontologischen Studien zur DNA-Isolierung aus Knochen (Kelman und Kelman 1999; Gugerli et al. 2005) sowie zur Aufarbeitung von Dung eines ausgestorbenen Faultiers verwendet (Poinar et al. 1998). Das eingesetzte Probenmaterial der Studie von Asif und Canon bestand aus Holzdübeln (Gonystylus spec.), Möbelholz (Art unbekannt) und Teilen von herbarisierten Stammscheiben (Shorea spec. und Lithocarpus spec.). Die DNA-Extraktion erfolgte mit 500 mg Ausgangsmaterial für die CTAB-Extraktion, 100 mg für die DNeasy[®]-Extraktion und 1000 mg für die PTB-Extraktion (ebenfalls 500 mg bei dem herbarisiertem Material). Asif und Cannon kamen zu dem Ergebnis, dass die DNA-Extrakte, die mit der CTAB- und DNeasy[®]-Methode erhalten wurden, nur geringe DNA-Gehalte ($< 15 \text{ ng/}\mu\text{l}$) aufwiesen. Des Weiteren wies die DNA eine schlechte Qualität auf, wodurch keine Amplifikation möglich war. Im Gegensatz hierzu wurde mit der PTB-Extraktion eine höhere Ausbeute erzielt (20-50 ng/µl) und die DNA war von ausreichender Qualität, um eine Amplifikation von 500-800 bp großen Fragmenten zu erzielen. Die niedrige DNA-Ausbeute sowie die nicht zu realisierende DNA-Amplifikation im Anschluss an die CTAB- und die DNeasy[®]-Extraktion, führen die Autoren, neben Inhibitoren, auf Maillard-Produkte zurück. Ein Nebenprodukt der Maillard-Reaktion von Proteinen und Carbohydraten ist oxidierte DNA (Evershed et al. 1997). Diese oxidierte DNA kann aber für eine spätere Amplifikation nicht genutzt werden. Durch die Verwendung von PTB innerhalb einer DNA-Extraktion können diese Quervernetzungen wieder aufgelöst werden, wodurch die DNA wieder in einer nicht oxidierten Form vorliegt.

Ein abgewandeltes Protokoll zur Isolierung von DNA aus Holz mithilfe des DNeasy[®] Plant Mini Kits wurde von Rachmayanti et al. (2006) veröffentlicht. Innerhalb dieser Arbeit wurden 48 trockene Holzproben (ohne Kambium und Bast) von verschiedenen Vertretern der Familie der Dipterocarpaceae verarbeitet. Die DNA-Extraktion erfolgte aus 50-100 mg Holzmehl und verlief weitestgehend nach der Anleitung des Herstellers. Die Modifikation der DNA-Isolierung lag hauptsächlich darin, dass der Lysis-Puffer (AP1) mit PVP (3,1% w/v; 40.000 g/mol) versetzt wurde. Weiterhin wurde die Inkubationszeit auf 18 h ausgedehnt. Eine weitere Inkubation, nach der Zugabe des Puffers AP2, wurde von 5 auf 15 min verlängert. Am Ende der DNA-Extraktion lag der durchschnittliche DNA-Gehalt bei 2,2 μ g per 50-100 mg Holzmehl. Durch die Verwendung der angepassten DNeasy[®]-Extraktion konnte ein Großteil der untersuchten Proben amplifiziert werden. Die Fragmentgrößen lagen zwischen 100 und 1.100 bp. Die Autoren geben abschließend an, dass diese Modifikation nicht als eine allgemeine Lösung für alle Holzarten anzusehen ist, sie ist lediglich die geeignetste Methode.

2009 veröffentlichten Rachmayanti et al. eine weiterführende Studie bezüglich ihrer DNA-Extraktionsmethode. Sie beschrieben hier den Einfluss verschiedener Faktoren, wie den Prozess-Status des Holzes, der Art des verwendeten Holzgewebes und der Fragmentgröße für die Amplifikation, auf den Extraktions- bzw. PCR-Erfolg. Untersucht wurden 406 Holzproben, von denen 332 aus der Familie der Dipterocarpaceae stammten. Der Rest der Proben verteilte sich hauptsächlich auf die Gattungen Populus, Tectona, Pinus und Picea. Die DNA-Extraktion wurde wie bereits bei Rachmayanti et al. (2006) beschrieben durchgeführt, einzig die PVP-Konzentration wurde auf 2,6% (w/v; 40.000 g/mol) gesenkt. Für die PCR-Erfolgsrate wird aus einer Probenanzahl n mit derselben Methode die DNA extrahiert und im Anschluss mit dem gleichen Primerpaar amplifiziert. Können alle n Proben amplifiziert werden, so ist die PCR-Erfolgsrate 100% bzw. 1. In dieser Studie wurden drei verschiedene Fragmente der plastidären DNA (ptDNA) amplifiziert. Die Länge der Fragmente betrug 150 bp, 600 bp und 1.100 bp. Die Ergebnisse geben wieder, dass der PCR-Erfolg vom äußeren Splint bis zur Kernmitte sinkt. Ein deutlicher Trend zeichnet sich bei den Fragmentgrößen ab. Während die Rate bei den kurzen Stücken kaum abnimmt (von 1 auf 0,88), fällt sie über die mittleren (von 1 auf 0,45) bis zu den großen Fragmenten stark ab (von 0,91 auf 0,1). Bezüglich des Einflusses der verschiedenen Verarbeitungsgrade der Hölzer wird deutlich, dass je stärker ein Holz verarbeitet wurde, desto mehr sinkt die PCR-Erfolgsrate. Besonders ausgeprägt ist dies bei den langen DNA-Fragmenten.

Tang et al. (2011) untersuchten Stammscheiben der Arten *Cunninghamia lanceolata*, *Catalpa bungei* und *Fraxinus chinensis* und nutzten hierfür unter anderem verschiedenste Kombinationen der bisher erwähnten DNA-Extraktionsmethoden. Für die verschiedenen DNA-Extraktionen wurden jeweils 100 mg Holzmehl verwendet. Die Entnahme erfolgte hierbei an vier Stellen (Kambium, Splintholz, äußerer Kern und innerer Kern). Allen DNA-Extraktionen war gemeinsam, dass sie auf der DNeasy[®]-Extraktion aufbauten, lediglich der Lysis-Puffer AP1 wurde ersetzt. Nachfolgend werden die fünf verschiedenen Lysis-Verfahren kurz vorgestellt. (1) Das Holzmehl wurde mit 2 ml 0,5 M EDTA, pH 8 versetzt und für 24 h bei Raumtemperatur geschüttelt. Durch das Einweichen des Holzmehls in EDTA werden zum einen die wasserlöslichen Holzkomponenten ausgewaschen (Asif und Cannon 2005) und zum anderen die DNA-Moleküle geschützt (Tang et al. 2011). (2) Das Holzmehl wurde mit 2 ml 0,5 M EDTA, pH 8 versetzt und für 24 h bei Raumtemperatur geschüttelt. Im Anschluss wurden 1,0 ml Natrium-Acetat (50 mM, pH 4,9), das mit 0,2 mg Cellulase von Trichoderma viride versetzt war, der Lösung hinzugegeben. Daraufhin wurde das Gemisch für 18 h bei 45°C geschüttelt. (3) Das Holzmehl wurde mit 2 ml 0,5 M EDTA, pH 8 versetzt und für 24 h bei Raumtemperatur geschüttelt. Hierauf wurde dem Gemisch 1,0 ml eines 2% igem CTAB-Puffers hinzugefügt und für 15 min bei 65°C inkubiert. (4) Der EDTA-Suspension wurden 1 ml 0,1 M PTB zugefügt und die Inkubation erfolgte für 18 h bei 65°C. (5) Das Holzmehl wurde mit 0,6 ml 0,1 M PTB versetzt und für 18 h bei 65°C inkubiert. Anschließend wurden 0,4 ml eines 2%igen CTAB-Puffers zugefügt und für weitere 15 min inkubiert. Im Anschluss an die Lysis wurde jeweils der klare Überstand mit dem AP2-Puffer des DNeasy[®] Plant Mini Kits gemischt und die weitere DNA-Extraktion folgte den Herstellerangaben. Die erhaltenen DNA-Eluate wurden zwei weitere Male unter Verwendung des Invisorb® Fragment CleanUp Kits (Invitek GmbH, Berlin, Deutschland) aufgereinigt. Die Autoren kamen zu dem Ergebnis, dass die Behandlung der Proben mit PTB, die besten Ergebnisse bzgl. des DNA-Gehalts bzw. der DNA-Qualität erbrachte. Die Kombination von PTB und CTAB steigerte die Ausbeute noch einmal um 25%, ohne dabei die Qualität der DNA zu verschlechtern. Bezogen auf das Ausgangsmaterial konnte die größte DNA-Ausbeute bei der Verwendung von Kambium erzielt werden. Neben einem hohen DNA-Gehalt weist das Kambium aber auch einen hohen Gehalt an PCR-Inhibitoren auf (Fladung et al. 2004; Rachmayanti et al. 2009). Einen vergleichbaren Effekt konnten die Autoren der vorliegenden Studie auch für Cunninghamia lanceolata beobachten. Die Amplifikation von DNA, die aus Kernholz gewonnen wurde, war nur für jene Lysis-Verfahren möglich, welche PTB beinhalteten. Das äußere Kernholz erwies sich hier als geeigneter als das innere. Aufgrund der Ergebnisse empfehlen die Autoren PTB zur Extraktion von Holz. Des Weiteren sollte die Probenentnahme im Splint oder äußerem Kern erfolgen.

Eine Studie bzgl. der Gegenüberstellung der DNeasy®-, der CTAB- und einer

CTAB/PTB-Extraktionsmethode veröffentlichten Tnah et al. (2012). Die DNeasy® Plant Mini Extraktion wurde nach Herstellerangaben durchgeführt. Für die CTAB-Extraktion nutzten die Autoren das Protokoll von Murray und Thompson (1980) und veränderten dies in nicht angegebener Weise. Zusätzlich wurde eine Aufreinigung unter Verwendung des High Pure PCR Template Preparation Kits (Roche Diagnostics Deutschland GmbH, Mannheim, Deutschland) durchgeführt. Als letztes wurde noch eine Kombination von CTAB und PTB untersucht. Hierfür wurde die CTAB-Extraktion von Murray und Thompson insoweit verändert, als das dem Lysis-Puffer noch 0,1 M PTB zugesetzt wurde. Das Ausgangsmaterial stammte von zwei Stämmen der Art Neobalanocarpus heimii, denen Proben aus dem Kambium, dem Splintholz und dem Kernholz entnommen wurden. Die Probennahme erfolgte zwei, vier und sechs Wochen bzw. drei, sechs, neun und zwölf Monate nach dem Fällen. Die Autoren fanden heraus, dass die Effektivität der DNA-Extraktion im Kambium bzw. im Splint am höchsten war. Betrachtet man die verschiedenen Methoden, so ist für das Kambium das DNeasy[®]-Kit am besten geeignet. Bei der DNA-Extraktion von Splint- oder Kernholz, hat die PTB/CTAB-Methode leichte Vorteile gegenüber der CTAB-Methode. Vergleicht man den DNA-Gehalt verteilt über den Stammradius, so kommen die Autoren auch in dieser Studie zu dem Ergebnis, dass der Gehalt von außen nach innen abnimmt. Bezogen auf den bestmöglichen Zeitpunkt der Probennahme, zeigen die Ergebnisse, dass diese innerhalb der ersten sechs Wochen nach dem Fällen erfolgen sollte (bei natürlicher Trocknung). Danach verringert sich die PCR-Erfolgsrate.

Abschließend wird eine Studie von Jiao et al. (2012) angeführt, in der die Autoren zwei DNA-Extraktionsmethoden verglichen. Bei miteinander der ersten DNA-Extraktionsmethode handelte es sich um die modifizierte DNeasy®-Extraktion von Rachmayanti et al. (2006). Die zweite DNA-Extraktionsmethode bildete eine Modifikation der CTAB-Extraktion nach Murray und Thompson (1980). Die Validierung wurde anhand zweier Stämme von Cunninghamia lanceolata durchgeführt. Ergebnis der Studie war, dass mit dem Protokoll von Rachmayanti et al. (2006) eine größere Ausbeute bzw. Reinheit erzielt wird. So zeigte das Qiagen-Kit bei frischem Holz eine 40,9% höhere Ausbeute als die CTAB-Extraktion. Bei getrocknetem Holz war die Ausbeute des Qiagen-Kits sogar um 59% größer. Des Weiteren kamen die Autoren auch hier zu dem Ergebnis, dass die DNA-Quantität bzw. die -Qualität über den Radius des Holzes von außen nach innen abnimmt. Versuche zum Einfluss von Trocknungsprozessen (5 h bei 70°C und danach drei Monate Lagerung bei Raumtemperatur) ergaben, dass sich der DNA-Gehalt um 50% verringerte.

Betrachtet man die Veröffentlichungen der vergangenen Jahre so wird deutlich, dass noch kein allgemein gültiges DNA-Extraktionsprotokoll für Holz existiert. Zwar gibt es mehrere vielversprechende Ansätze, wie die DNeasy[®]-, CTAB- und PTB-Extraktion, nur ist keines dieser Protokolle für die Anwendung bei jeder Holzart oder jeder Art von Holzgewebe geeignet. Weiterer Entwicklungsbedarf für die DNA-Extraktionsprotokolle besteht auch bei der Verwendung von nicht frischem oder bereits verarbeitetem Holz. Aufgrund dieser Tatsachen wird in der vorliegenden Arbeit die Eignung verschiedener Methoden für die DNA-Extraktion aus CITES-geschützten Holzarten und deren Substitutionshölzern untersucht. Hierfür wird teilweise auf die in diesem Punkt angeführten Protokolle zurückgegriffen und darüber hinaus werden auch eigene Protokolle erarbeitet.

1.5.2.2 DNA-Barcoding

Der Begriff DNA-Barcoding wurde durch eine von Herbert et al. (2003a) veröffentlichte Studie geprägt und beschreibt eine Methode, die der Identifizierung von Arten dient. Das Barcoding nutzt hierzu eine kurze Sequenz bestimmter Markergene oder Markerbereiche, bei denen die Abfolge ihrer Basen analog wie ein Strichcode an der Kasse abgelesen wird. Die ermittelte Abfolge der Basen (A,T,C und G) gibt wiederum Auskunft über die untersuchte Art (BOL 2014). Derzeit befinden sich unterschiedliche Marker in der allgemeinen Anwendung. So wird z.B. für die Identifizierung von Prokaryonten die codierende Region des small subunit (SSU) Gens der ribosomalen RNA (rRNA) genutzt (Barns et al. 1996). Im Tierreich und bei den Algen kommt dagegen ein Teilbereich des mitochondrialen Cytochrom C Oxidase 1 (CO1) Gens zur Anwendung. Es handelt sich hierbei um einen 648 bp langen Abschnitt, mit dem eine hoch effektive Unterscheidung von Arten möglich ist (Hebert et al. 2003b). Bis dato konnte eine Reihe von Studien bzgl. der Verwendung des CO1-Markers zur Identifizierung von Tieren und Algen abgeschlossen werden. Im Einzelnen wurden z.B. Spinnen (Greenstone et al. 2005), Vögel (Hebert et al. 2004), Schmetterlinge (Hajibabaei et al. 2006), Fliegen (Smith et al. 2006), Fische (Ward et al. 2005), Kieselalgen (Evans et al. 2007) und Rotalgen (Robba et al. 2006) mithilfe dieses Markers identifiziert. Eine erfolgreiche Anwendung dieses Markers bis auf Artebene scheint aber nicht bei allen Tierarten gegeben zu sein (Whitworth et al. 2007; Shearer und Coffroth 2008). Für die Identifizierung von Pilzen kommt das DNA-Barcoding ebenfalls erfolgreich zur Anwendung. Hier wurde hauptsächlich die Internal Transcribed Spacer (ITS) Region der ribosomalen DNA (rDNA) als Markerbereich gewählt (Amicucci et al. 2002; Schmidt und Moreth 2002; Schmidt et al. 2012). Aber auch der CO1-Marker fand bereits Verwendung (Seifert et al. 2007). Im Reich der Pflanzen konnte man sich bisher noch nicht auf einen allgemein gültigen Marker einigen. Eine Verwendung des im Tierreich eingesetzten CO1-Markers ist nicht möglich. Die Gründe hierfür liegen zum einen darin, dass sich die mitochondrialen Gene bei den Pflanzen zu langsam entwickeln und zum anderen, dass in diesem Bereich intramolekulare Rekombinationen zu beobachten sind (Mower et al. 2007). Durch den Ausschluss der mitochondrialen DNA, stehen somit nur noch die ribosomale und die plastidäre DNA für die Suche nach einem Markerbereich zur Verfügung (Kress et al. 2005). Bei der Ermittlung eines neuen Markerbereichs müssen bestimmte Voraussetzungen erfüllt werden. Die folgenden fünf Aspekte formulierte Hollingsworth et al. (2009) als unabdingbar. (1) Die zu untersuchenden Sequenzen müssen entweder in einem konservierten Bereich liegen oder von solchen flankiert werden. So wird eine routinemäßige Identifikation sichergestellt. (2) Der gewählte Bereich muss eine ausreichende interne Variabilität aufweisen, um eine Unterscheidung von Arten zu ermöglichen. (3) Des Weiteren muss die Sequenz kurz genug sein, um auch eine Amplifizierung von degradiertem Material (siehe Holz) zu ermöglichen. (4) Der Bereich sollte keine Heterozygotie aufweisen, damit eine Identifizierung ohne Klonierung ermöglicht wird. (5) Problematische Sequenzzusammensetzungen, wie Bereiche mit Mikrosatelliten, die die Sequenzqualität reduzieren, sollten ausgeschlossen werden.

Bei der Suche nach einem geeigneten Marker für den Pflanzenbereich behindert in den letzten Jahren ein Dissens den Fortschritt (Pennisi 2007). In der Diskussion stehen die ITS-Region sowie verschiedene codierende und nicht codierende Regionen der ptDNA. Nachfolgend werden daher kurz die ITS-Region der rDNA sowie das Plastom erläutert. Die ITS-Region ist ein Teil der rDNA. Als rDNA werden solche Teile der DNA bezeichnet, die die Gene für die rRNA enthalten. Auf dem Genom befinden sich etwa 30.000 Kopien (Dubouzet und Shinoda 1999) der ITS-Region. Die Größe schwankt für die meisten Organismen zwischen 600 und 3.500 bp. Während der ITS der Angiospermen in der Regel eine Größe von ca. 700 bp aufweist, liegt der ITS der Gymnospermen in einer Spanne von 1.000-3.500 bp (Liston et al. 1996). In eukaryotischen Organismen gibt es zwei Internal Transcribed Spacer, den ITS1 und den

19

ITS2. Die ITS1-Region wird von den Genen 18S rDNA (kleine Untereinheit) und 5.8S rDNA flankiert. Das 5.8S rDNA Gen flankiert, zusätzlich mit dem 26S rDNA Gen (große Untereinheit), auch die ITS2-Region. Letztendlich wird die ITS2-Region durch den ITS1 und den ITS2 sowie dem dazwischenliegenden 5.8S gebildet (Abbildung 2).

Abbildung 2: Aufbau der Internal Transcribed Spacer Region.

Wie bereits angeführt stehen neben dem ITS-Bereich auch verschiedene Bereiche der ptDNA als Marker zur Identifizierung von Landpflanzen zur Diskussion. Die ptDNA ist doppelsträngig und hat eine ringförmige Struktur. Betrachtet man die Größe des Plastoms, so schwankt sie zwischen 35 kb für *Eimeria tenella*, 156 kb für *Nicotiana tabacum* L. und 204 kb für *Chlamydomonas reinhardtii* P.A.Dang.. Bezüglich der Anzahl der Gene auf dem Plastom, wird von 60 bis 264 Stück ausgegangen. Je nach Aufgabe der Plastiden existieren unterschiedliche Typen. Im Genaueren sind dies Proplastiden, Chloroplasten (Gerontoplasten in herbstlichen Blättern), Chromoplasten, Leukoplasten, Amyloplasten, Proteinoplasten, Elaioplasten und Etioplasten (Scharff 2006).

Im weiteren Verlauf dieses Punkts werden verschiedene Studien, die die Verwendung unterschiedlichster DNA-Marker zur Identifizierung von Landpflanzen beinhalten, aufgeführt. Die Darstellung erfolgt in chronologischer Reihenfolge.

Nach der Veröffentlichung von Herbert et al. (2003a), welcher das DNA-Barcoding als eine neue Möglichkeit der Artidentifizierung etablierte, wurde durch Kress et al. (2005) eine der ersten ausführlichen Studien, zur Suche nach geeigneten Barcoding Regionen für das Pflanzenreich, veröffentlicht. Die Autoren schlagen hier zwei Bereiche für die Verwendung als Barcode vor. Beim ersten handelt es sich um den rDNA ITS-Bereich, der nach ihren Aussagen den am häufigsten verwendeten Marker für phylogenetische Untersuchungen an Pflanzen auf Artebene darstellt. Der ITS zeigte hier einen hohen Level an interspezifischen Divergenzen. Der zweite vorgeschlagene Marker ist ein kurzer intergenischer Bereich (~450 bp) zwischen den Genen *trn*H und *psb*A (trnH-psbA) der ptDNA. Für Angiospermen ist dieser Spacer einer der variabelsten Plastidenbereiche. Die Entscheidung für diese beiden Loci fiel aufgrund ausführlicher Untersuchungen. Einer der ersten Schritte war die Überprüfung der vollständigen Plastidengenome von Nicotiana tabacum (Virginischer Tabak) und Atropa belladonna L. (Schwarze Tollkirsche) auf potenzielle Markerbereiche. Im Anschluss wurden die potenziellen Bereiche des Plastidengenoms (trnK-rps16, trnH-psbA, rp136-rps8, atpB-rbcL, ycf6-psbM, trnV-atpE, trnC-ycf6, psbM-trnD und trnL-F) sowie der ITS-Bereich, anhand von 19 Arten (je zwei bis drei Arten innerhalb von acht Gattungen aufgeteilt auf sieben Familien) innerhalb der Angiospermen auf ihre Eignung als Marker untersucht. Des Weiteren wurde anschließend ein zweites Probenset aus dem Bereich der Angiospermen (83 Arten aus 72 Gattungen bzw. 50 Familien; Plummers Island Flora) anhand der gewählten Marker untersucht. Die Autoren kamen abschließend zu dem Ergebnis, dass die zu Anfang erwähnten Marker (ITS und trnH-psbA) das größte Potenzial zur Unterscheidung von Angiospermen bieten. Die Autoren weisen aber auch darauf hin, dass die Verwendung von nur einem Marker für die Identifizierung von Landpflanzen nicht ausreicht. Die Kombination von zwei oder mehr Loci könnte für diese Aufgabe geeigneter sein.

Eine weitere Studie aus dem Jahr 2005 wurde von Chase et al. veröffentlicht. Innerhalb dieser Studie untersuchen die Autoren die These, dass die typischen phylogenetischen Marker für Landpflanzen (wie z.B. *rbcL*, *trnL*-F und *matK*) sich aufgrund ihrer geringen Variationen nicht als Barcoding-Regionen eignen. Hierfür untersuchten sie einerseits den ITS und andererseits das plastidäre Gen *rbcL*. Sie führten ihre Untersuchungen anhand von Sequenzen durch, die in der GenBank des National Center for Biotechnology Information (NCBI) hinterlegt waren und verglichen diese mithilfe des blastn-Algorithmus. Zum Zeitpunkt der Studie waren für den ITS-Bereich 33.508 und für das *rbcL*-Gen 6.741 Sequenzen verfügbar. Die Auswertung dieses Datenpools erbrachte das Ergebnis, dass sich diese beiden Regionen gut für die Unterscheidung von Pflanzen auf Artniveau eignen. Die Autoren sprechen sich weiterhin dafür aus, dass noch weitere plastidäre Regionen untersucht werden müssen.

Ein Kommentar von Newmaster et al. (2006) beschäftigte sich unter anderem mit der Verwendung des *rbc*L-Gens als Barcoding-Marker. Die Autoren überprüften die Eignung von *rbc*L ebenfalls anhand der Sequenzen der GenBank, nutzten aber anstatt des blastn-Algorithmus eine Pairwise-Distance Analyse. Da das *rbc*L-Gen eine Länge von ~1.428 bp aufweist, wurden für die Analyse nur solche Sequenzen verwendet, für

die eine Mindestlänge von 1.000 bp zu verzeichnen war. Zum Zeitpunkt der Analyse standen den Autoren ungefähr 10.300 Sequenzen zur Verfügung. Im Endergebnis kamen die Autoren zu dem Schluss, dass das *rbc*L-Gen als ein "core"-Locus angesehen werden kann. Es könnte aber trotzdem in einigen Fällen notwendig sein, einen zweiten Marker zu verwenden. Ob bzw. welcher Marker dann Anwendung finden sollte, müsste laut den Autoren von Fall zu Fall entschieden werden.

Eine empirische Studie von Kress und Erickson (2007) ergab, dass die nicht codierende *trn*H-*psb*A Region, in Kombination mit einem Teilstück des *rbc*L-Gens (*rbc*L-a, 550-600 bp, lokalisiert am 5'-Ende), einen global anwendbaren Pflanzen-Barcode darstellt. Laut Kress und Erickson besitzt diese Kombination die Eigenschaften universell einsetzbar zu sein sowie eine Identifizierung bis auf Artebene zu ermöglichen. Die Autoren erlangten dieses Ergebnis, nachdem sie neun potenzielle Barcoding-Loci untersucht hatten. Sie legten hierbei den Schwerpunkt auf die Möglichkeit der universellen Verarbeitung der Loci sowie auf deren Gehalt an Unterschieden auf Artebene. Die neun Marker (ITS1, *trn*H-*psb*A, *rbc*L-a, *mat*K, *rpo*C1, *ycf*5, *rpo*B2, *ndh*J und *acc*D) wurden anhand von 96 Arten (zwei pro Gattung) aus 43 Familien untersucht. Einzeln verwendet konnten die Loci nur 79% der Artenpaare unterscheiden. Wurde der Locus *trn*H-*psb*A mit *rbc*L-a, *rpo*C1 oder *rpo*B2 kombiniert, so stieg der Identifizierungserfolg auf 88%. Weitere *in silico* Studien zeigten, unter Hinzuziehung der GenBank des NCBI, dass die Kombination von *trn*H-*psb*A mit dem Teilstück des *rbc*L-Gens die größte Auflösungskraft auf Artebene besitzt.

Eine weitere Studie, die die Verwendung eines Multi-Locus Barcodes propagiert, ist von Chase et al. (2007). Nach Untersuchungen der zu diesem Zeitpunkt vorgeschlagenen und diskutierten Marker auf ihre Vor- und Nachteile, kamen die Wissenschaftler zu der Erkenntnis, dass sich zwei Kombinationen von je drei chloroplasten Markern gut für die Identifizierung von Landpflanzen eignen. Diese lauten wie folgt: *rpo*Cl, *rpo*B und *mat*K oder *rpo*Cl, *mat*K und *psb*A-*trn*H.

Sass et al. (2007) untersuchten unter anderem einige der eben erwähnten Marker auf die Anwendbarkeit bei den Palmfarnen (Ordnung Cycadales). Im Einzelnen waren dies die Marker *mat*K, *rpo*C1, *rpo*B, *acc*D, *ycf*5 und *ndh*J, die zu diesem Zeitpunkt durch die Plant Working Group (PWG) des Consortium for the Barcode of Life (CBOL) als potenzielle Marker für Landpflanzen vorgeschlagen wurden. Zusätzlich kamen noch der *trn*H-*psb*A Bereich und die ITS-Region zum Einsatz. Im Zuge der Studie nutzten die Autoren auch die bereitgestellten Primersequenzen der PWG (siehe Chase et al. 2007). Laut den Autoren ermöglichte keiner der untersuchten Marker eine eindeutige Identifizierung der Palmfarne. In drei Fällen (*ndhJ*, *rpoB* und *matK*) war sogar eine Amplifikation mit den allgemeinen Primern der PWG kaum möglich. Die beste Auflösung auf Artebene zeigte die ITS-Region. Leider waren aber aufgrund der Länge des ITS-Bereichs (1.100-1.400 bp) Sequenzierungsschwierigkeiten zu verzeichnen.

Auch Lahaye et al. (2008) verwendeten die bei Sass et al. (2007) beschriebenen Marker. Sie untersuchten die Marker anhand von 1.667 Proben (86 Arten), die Bäume, Büsche und Orchideen repräsentierten. Sie kamen zu dem Schluss, dass sich ein Teilbereich des *mat*K aufgrund seiner ausreichenden Variationsrate, der guten Amplifikationsrate sowie der guten Alignmentfähigkeit, sehr gut als Barcode eignet. Genauer handelt es sich hierbei um das 5'-Ende des *mat*K, das mit den Primern 390F und 1326R von Cuénoud et al. (2002) amplifiziert wurde. Ein zusätzlicher Test mit dem *mat*K-Marker, der anhand von 1.566 Orchideen (1.084 Arten) durchgeführt wurde, ergab, dass dieser Marker ein zuverlässiges Werkzeug für den Einsatz bei CITES gelisteten Orchideen darstellt.

Die Untersuchungen von Newmaster et al. (2008) stellten ebenfalls den *mat*K als einen geeigneten Kandidaten für das Barcoding heraus. Innerhalb dieser Arbeit untersuchten die Autoren sieben Regionen (UPA, *rpoB*, *rpoC1*, *accD*, *rbcL*, *mat*K und *trnH-psbA*) anhand der Gattung *Compsonuera* (Myristicaceae). Ergebnis war, dass sich nur zwei der untersuchten Regionen, *mat*K und *trnH-psbA*, für die Identifizierung dieser Gattung eignen. Durch die Kombination dieser beiden Loci wurde ein Identifizierungserfolg von ca. 95% erreicht.

Für eine Multi-Locus Lösung sprechen sich auch Fazekas et al. (2008) aus. Die Autoren untersuchten 251 Proben (92 Arten in 32 Gattungen) aus diversen Familien. Unter Verwendung dieser Proben testeten sie diverse Marker der ptDNA (*rpoB*, *rpo*C1, *rbc*L, *mat*K, *trn*H-*psb*A, *atp*F-*atp*H und *psb*K-*psb*I) sowie einen Marker der rDNA (23S) auf ihre Verwendungsmöglichkeit als Barcode. Einzeln verwendet konnten die Loci max. 59% (*mat*K) der Arten identifizieren. Aber auch die verschiedenen Kombinationen brachten keinen absoluten Erfolg. Die Erfolgsraten lagen hier immer (unter Verwendung von zwei bis sieben Markern) bei etwa 70%. Diese Ergebnisse veranlassten die Autoren zu der Aussage, dass es gewisse Limits bei der Artidentifizierung durch DNA-Marker gibt. Die bisher bekannten und zukünftigen Marker müssen daher stärker auf ihre praktische Anwendbarkeit untersucht werden.

Auf eine Veröffentlichung von Ford et al. (2009) wird hier nur kurz eingegangen. Die

Autoren, teilweise Mitglieder in der PWG, untersuchten die bei Sass et al. (2007) erwähnten Marker der PWG und führten an, dass diese kombiniert werden sollten und weitere Untersuchungen dieser Loci empfehlenswert sind. Im gleichen Jahr veröffentlichte die PWG aber eine Untersuchung, in der sie die Kombination von *mat*K und *rbc*L als universellen Barcode ("core" Barcode Loci) für Landpflanzen vorschlug (CBOL Plant Working Group et al. 2009). Innerhalb dieser Studie wurden die Loci *atpF-atpH*, *mat*K, *rbcL*, *rpoB*, *rpoC1*, *psbK-psbI* und *trnH-psbA* anhand von 907 Proben unter anderem auf deren Sequenzqualität und den Identifizierungserfolg untersucht. Die Proben repräsentierten 550 Arten aus den Gymnospermen (38), Angiospermen (445) und Kryptogamen (67). Sowohl kein eigenständiger als auch keine Kombination von *mat*K und *rbcL* (72% positiver Identifizierungen) eine pragmatische Lösung dar. Die Kombination erfüllt am ehesten folgende Punkte: (1) universell einsetzbar, (2) hohe Sequenzqualität, (3) gute Identifizierungsmöglichkeit und (4) geringe Kosten.

Als Teil der PWG untersuchten Hollingsworth et al. (2009) ebenfalls die Marker *rpo*C1, *rpoB*, *rbcL*, *mat*K, *trn*H-*psb*A, *atp*F-*atp*H und *psb*K-*psb*I. Diese Studie wurde anhand der Gattungen *Inga*, *Araucaria* und *Asterella* durchgeführt. Keiner der Marker konnte eigenständig eine zufriedenstellende Unterscheidung der Arten ermöglichen. Zwar zeigte die Verknüpfung mehrerer Marker eine Verbesserung der Ergebnisse, jedoch wurde keine zu bevorzugende Kombination ermittelt. Die besten Ergebnisse zeigten 3-Locus Lösungen, welche aus den Markern *rpo*C1, *rbcL*, *mat*K und *trn*H-*psb*A zusammengestellt wurden. Weiter treffen die Autoren die Aussage, dass die Gattungen *Inga* und *Araucaria* anspruchsvolle Kandidaten für das DNA-Barcoding darstellen.

Eine Studie, die sich mit der praktischen Anwendung von DNA-Barcodes befasste, wurde von Gonzalez et al. (2009) veröffentlicht. Im Rahmen einer umfassenden Bestandsaufnahme aller Bäume auf einer Fläche von zwei Hektar (in Französisch-Guayana), untersuchten die Autoren, ob das DNA-Barcoding dazu beitragen kann, die Geschwindigkeit und die Qualität der Bestandsaufnahme zu erhöhen. Angewendet wurden hier folgende Marker: *rbc*L-a, *rpo*C1, *rpo*B, *mat*K, *ycf*5, *trn*L, *psb*A-*trn*H und der ITS. Als kritisch empfanden die Autoren die Tatsache, dass der ITS (41%) und der *mat*K-Bereich (68%) nur geringe Sequenzierungserfolge aufwiesen. Bei der Identifizierung zeigten die Marker der ptDNA nur eine Erfolgsrate von max. 70%, ganz gleich, ob die Marker einzeln oder kombiniert verwendet wurden.

Der ITS wies zwar eine höhere Identifizierungsrate auf, doch lässt der geringe PCR-Erfolg keine abschließende Aussage zu.

Zu einem positiven Ergebnis in Bezug auf die Verwendung des ITS-Bereichs als universellen Marker kommen vier Veröffentlichungen aus dem Jahr 2010 (Chen et al. 2010; Gao et al. 2010; Pang et al. 2010; Yao et al. 2010). Genauer gesagt propagieren die vier Veröffentlichungen den ITS2 als potenziellen Kandidaten für einen universellen DNA-Barcode. Die erste Veröffentlichung von Chen et al. (2010) untersuchte sieben potenzielle Marker (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2 und ITS) anhand von Pflanzen, die für China von medizinischer und dadurch von wirtschaftlicher Bedeutung sind. Hier stellte sich der ITS2 als geeignetster Marker heraus, wobei er nur geringfügig bessere Qualitäten in Bezug auf die PCR-Erfolgsrate und die Fähigkeit Arten zu differenzieren aufwies, als die trnH-psbA Region. In einer zweiten Phase dieser Untersuchung wurde der ITS2 anhand von ~6.600 Proben (~4.800 Arten in 753 Gattungen) weiter beurteilt. Die Proben repräsentierten Vertreter der Angiospermen, Gymnospermen, Farne, Moose, Lebermoose, Algen und Pilze. Die Verwendung des ITS2 ermöglichte eine Identifizierung auf Artebene von 92,7%. Insgesamt kamen bei dieser Studie 8.557 Proben aufgeteilt auf 5.905 Arten bzw. 1.010 Gattungen aus 219 Familien zur Anwendung.

Pang et al. (2010) untersuchten in ihrer Studie 1.183 Proben (871 Arten bzw. 66 Gattungen in der Familie der Euphorbiaceae) anhand von vier Markern (rbcL, matK, ITS und ITS2). Unter Verwendung des ITS bzw. des ITS2 konnten sie mehr als 90% der Proben auf Artebene und 100% der Proben auf Gattungsebene identifizieren. Die Resultate zeigen, dass sich mithilfe des ITS/ITS2 die Vertreter der Euphorbiaceae erfolgreich identifizieren lassen. Auf der Studie von Chen et al. (2010) aufbauend, veröffentlichten Gao et al. (2010) Ergebnisse bezüglich der Verwendung des ITS2 zur Identifizierung von Fabaceae. Hierzu erarbeiteten sie Sequenzen von 114 Proben und kombinierten diese mit Sequenzen von Fabaceae aus der GenBank des NCBI. So standen insgesamt 1.507 Sequenzen von 1.126 Arten und 196 Gattungen aus allen drei Unterfamilien zur Verfügung. Anhand der Sequenzanalysen war es möglich, 100% der Gattungen und 80% der Arten voneinander zu unterscheiden. Aufgrund dieser Ergebnisse schlagen die Autoren den ITS2 als einen Barcode für die Fabaceae vor. Die Studie von Yao et al. (2010) baut ebenfalls auf den Resultaten von Chen et al. (2010) auf. Die Autoren untersuchten hier das Potenzial des ITS2-Bereichs als universellen Marker und nutzten ebenfalls Sequenzen der GenBank des NCBI. Genauer waren dies

50.790 Sequenzen aus dem Pflanzenreich und 12.221 Sequenzen aus dem Tierreich. Die Untersuchung der ITS2-Sequenzen ergab, dass die interspezifischen Unterschiede sowohl im Pflanzen-, als auch im Tierreich die intraspezifischen Unterschiede übertreffen. Die Auflösungsrate auf Artebene lag für die Dicotyledonen bei 76,1%, die Monocotyledonen bei 74,2%, die Gymnospermen bei 67,1%, die Farne bei 88,1%, die Moose bei 77,4% und die Tiere bei 91,7%. In Bezug auf die Ergebnisse schlagen die Autoren den ITS2 als zusätzlichen Marker für das Tierreich vor. Im Pflanzenreich sollte der ITS2 als universeller Barcode verwendet werden.

Ebenfalls im Jahr 2010 wurde durch Roy et al. (2010) eine Studie veröffentlicht, in der die Marker *rbcL* und *mat*K, die durch die PWG als universelle Marker vorgeschlagen wurden, als kritisch angesehen werden. Auch die *trn*H-*ps*bA Region sowie die ITS-Region werden als Marker mit geringfügigen Schwierigkeiten betrachtet, da sie nicht in der Lage waren, alle untersuchten Arten voneinander zu differenzieren. Die eben beschriebenen Marker wurden anhand der Gattungen *Berberis* (166 Proben aufgeteilt auf 16 Arten), *Ficus* (33 Proben aufgeteilt auf 11 Arten) und *Gossypium* (51 Proben aufgeteilt auf vier Arten) auf ihre Auflösungsrate untersucht. Keiner der Marker, alleine oder kombiniert, war geeignet, die Arten der Gattungen *Ficus* und *Gossypium* zu 100% mittels der ITS-Sequenzen unterschieden werden (*trn*H-*ps*bA: *Ficus* = 82%). Die Loci *mat*K und *rbcL* wiesen die geringste Eignung zur Differenzierung der Arten der drei Gattungen auf. Die Autoren sehen zwar großes Potenzial in den Markern *trn*H-*ps*bA und ITS, aber sie verdeutlichen auch, dass es schwierig wird, einen universellen Barcode für alle Landpflanzen zu finden.

Neben der Identifizierung von neuen Arten, kann das Barcoding auch für den Schutz von gefährdeten Arten eingesetzt werden. Bezüglich dieses konkreten Einsatzes des Barcodings veröffentlichte Müllner et al. (2011) eine Untersuchung zur Identifizierung verschiedener Arten der Meliaceae. Sie konzentrierten sich hierbei auf die teilweise stark gefährdeten Baumarten der Gattungen *Cedrela* und *Toona*. In ihrer Studie ermittelten die Autoren unter anderem, welcher der untersuchten Marker (*rpo*C1, *rpo*B, *accD*, *psb*B, *psb*N, *psb*T, *trnS-trn*G und ITS) das größte Potenzial besitzt, den CITES-Vollzug zu unterstützen. Sie kamen zu dem Schluss, dass sich für die Familie der Meliaceae der ITS-Bereich am besten eignet, da die Marker der cpDNA in diesem Fall nur eine geringe Auflösungsrate zeigten. Die Kombination von verschiedenen Markern erbrachte keine wesentliche Verbesserung der Ergebnisse.

Die durchweg positiven Ergebnisse des ITS-Bereichs wurden auch durch eine Studie der China Plant BOL Group et al. (2011) bestätigt. Durch die Untersuchung von 6.286 Samenpflanzen (1.757 Arten bzw. 141 Gattungen in 75 Familien) unter Einsatz der "core" Barcode Loci *mat*K und *rbc*L (CBOL Plant Working Group et al. 2009) sowie den Markern *trn*H-*psb*A und ITS, kommen die Autoren zu dem Schluss, dass der ITS-Bereich als zusätzlicher "core" Barcode Locus für Samenpflanzen aufgenommen werden sollte.

Der Einsatz des ITS-Bereichs bzw. der ITS2-Region als zusätzlicher oder sogar alleinstehender "core" Barcode Loci wurde ebenfalls durch Ergebnisse von Li et al. (2012), Pang et al. (2012) und Zhang et al. (2012) unterstützt. Li et al. (2012) bearbeiteten die Gattung *Ficus* (228 Proben verteilt auf 63 Arten) mithilfe der Marker *rbcL*, *mat*K, *trn*H-*psb*A, *psb*K-*psb*I, *atp*F-*atp*H und ITS und urteilten, dass der ITS-Bereich sich hier als alleinstehender Marker am besten für die Identifizierung eignet. Die Marker *mat*K, *rbcL* und *atp*F-*atp*H eignen sich dagegen nicht für die Anwendung in der Gattung *Ficus*.

Die Verwendung von DNA-Markern zur Identifizierung von Nacktsamern untersuchte eine Studie von Pang et al. (2012). Im Zuge der Untersuchungen beurteilten die Autoren verschiedene Marker (*psbA-trn*H, *mat*K, *rbc*L, *rpo*B, *rpo*C1, ITS und ITS2) anhand der PCR-Erfolgsrate, der Divergenz zwischen intraspezifischen sowie interspezifischen Unterschieden und ihrer Auflösungsrate auf Artebene. In einer zweiten Phase wurden 1.531 Sequenzen der GenBank (608 Arten bzw. 80 Gattungen) mithilfe der Marker *psbA-trn*H, *mat*K, *rbc*L, ITS und ITS2 untersucht. In beiden Phasen der Untersuchung stellte sich der ITS2-Bereich als geeignetster Marker für Nacktsamer heraus.

Untersuchungen zu nah verwandten Arten wurden von Zhang et al. (2012) durchgeführt. Diese Studie wurde als wichtig erachtet, da bekannt ist, dass *rbcL* und *mat*K nicht stark genug sind, um eng verwandte Arten aufzulösen. Für die Untersuchungen wählten die Autoren die Gattung *Lysimachia* (Myrsinaceae). Neben den Markern *mat*K und *rbcL* kamen noch die *trnH-psbA* Region und der ITS zur Anwendung. Die Beurteilung der Marker fand anhand von 97 Individuen bzw. 37 Arten statt. Die Ergebnisse bestätigten eine nicht ausreichende Auflösung bei Verwendung der "core" Barcode loci (*mat*K und *rbcL*). Auch eine Kombination mit der *trnH-psbA* Region brachte keine verbesserten Resultate. Im Gegensatz dazu zeigte der ITS eine hohe Auflösungsrate auf Artebene. Dies war sowohl bei der eigenständigen Verwendung gegeben, als auch bei der Kombination mit *rbcL* und/oder *mat*K. Auch in

27

dieser Studie empfehlen die Autoren, den ITS als "core" Barcode Locus zu nutzen.

Die Verwendung des ITS-Bereichs als einen eigenständigen oder zusätzlichen Marker schlagen ebenfalls Aubriot et al. (2013) und Tripathi et al. (2013) vor. Aubriot et al. (2013) untersuchten, anhand der Gattung Euphorbia (CITES Anhang I und II), verschiedene Marker auf deren Potenzial zur Unterstützung des CITES-Vollzugs. Bei den Markern handelte es sich um die "core" Barcode Loci matK und rbcL sowie um den trnH-psbA Bereich und die ITS-Region. Die Loci wurden anhand von 148 Proben verteilt auf 41 Arten überprüft. Unter Nutzung der "core" Barcode Loci, einzeln oder in Kombination, konnte nur eine Auflösung von 40-60% erreicht werden. Wurde jedoch der ITS verwendet (eigenständig oder in Kombination mit den "core" Barcode Loci), konnte der Erfolg der Identifizierung auf nahezu 100% gesteigert werden. Der Einsatz von *trn*H-*psb*A, wieder einzeln oder kombiniert mit den "core" Barcode Loci, erzielte zwischen 80 und 85%. Die Anwendung aller Marker zeigte eine Auflösung von 96-98%. In Anbetracht dieser Ergebnisse, beurteilen die Autoren die ITS-Region als einen zuverlässigen Barcode in der Gattung Euphorbia. Weiter stellt die Nutzung der ITS-Region ein hilfreiches Werkzeug bei der Unterstützung des CITES-Vollzugs dar. Den Einsatz der ITS-Region bei den tropischen Baumarten Indiens überprüften Tripathi et al. (2013). Insgesamt bewerteten sie fünf Marker (matK, rbcL, trnH-psbA, ITS und ITS2) anhand von 300 Proben, die 149 Arten bzw. 82 Gattungen aus 38 Familien repräsentieren. In Bezug auf die PCR-Erfolgsrate und den Sequenzierungserfolg zeigte der rbcL Locus, gefolgt vom ITS und der trnH-psbA Region, die höchsten Werte. Betrachtet man dagegen die Fähigkeit Arten zu differenzieren, so sind die Marker ITS und trnH-psbA klar den anderen vorzuziehen. Die Auflösungsrate von 60-70% stellt zwar keinen absoluten Erfolg für die Ermittlung eines potenziellen Barcodes dar, doch vergleicht man dieses Ergebnis mit vorherigen Studien, so stellen die beiden Loci eine gute Möglichkeit für die Identifizierung von tropischen Baumarten dar.

Die Veröffentlichungen der letzten Jahre zeigen deutlich, dass man sich bis zum heutigen Zeitpunkt nicht auf einen universellen Marker einigen konnte. Die vielversprechendsten Marker scheinen *mat*K, *rbc*L, *trn*H-*psb*A und die ITS-Region zu sein. Welcher eigenständige Marker oder welche Kombination verwendet werden soll, konnte bisher noch nicht geklärt werden. Weiterhin ist fraglich, ob überhaupt ein universeller Marker bzw. eine universelle Markerkombination für alle Pflanzen gefunden werden kann.

In der vorliegenden Arbeit kommt die ITS-Region für die Identifizierung von

CITES-geschützten Holzarten und deren Substitutionshölzern zur Anwendung. Wie bereits angeführt, konnte mithilfe dieses Markers eine Vielzahl von Landpflanzen eindeutig identifiziert werden. Bis dato stehen für CITES-geschützte Hölzer jedoch nur wenige Sequenzinformationen des ITS-Bereichs zur Verfügung. Durch die Erarbeitung der benötigten Informationen kann diese Lücke geschlossen werden.

1.5.2.3 Verwendung von art- und gattungsspezifischen Primern für die Identifizierung

Eine Methode, die auf dem DNA-Barcoding aufbaut, ist die Identifizierung unter Einsatz von spezifischen Primern. Primer sind Oligonukleotidsequenzen (18-24 bp), die bei einer PCR den Startpunkt für die DNA-Polymerase bilden. Für die Entwicklung von spezifischen Oligonukleotiden benötigt man die Informationen des DNA-Barcodings. In DNA-Barcodingbereichen die benötigte den liegt Sequenzinformation zur Identifizierung verschiedener Individuen, Arten, Gattungen, Familien etc. vor. Anhand dieser Sequenzinformationen können DNA-Abschnitte ermittelt werden, die für eine Art oder Gattung charakteristisch sind. Innerhalb der gewählten Bereiche werden daraufhin spezifische Primer erstellt, die die Identifizierung der Art oder Gattung ermöglichen. Durch die Verwendung solcher spezifischen Oligonukleotidsequenzen können z.B. Hölzer unbekannter Art bestimmt werden, ohne deren Markersequenz auslesen zu müssen.

Diese Art der Identifizierung findet im Bereich der Pilze bereits eine breite Anwendung. So wurden z.B. von Moreth und Schmidt (2000) spezifische Primer für die Identifizierung von Hausfäulepilzen veröffentlicht (*Serpula lacrymans, Serpula himantioides, Coniophora puteana, Donkioporia expansa, Antrodia vaillantii, Tyromyces placenta* und *Gloeophyllum sepiarium*). Als Marker für die Bereitstellung der Oligonukleotidsequenzen diente in diesem Fall der ITS-Bereich. Takamatsu und Kano (2001) verwendeten für diverse Mehltauarten ebenfalls den ITS-Bereich zur Ermittlung spezifischer Primer. Im Jahr 2005 zeigten Kendall und Rygiewicz, dass es durch den Einsatz von Primern im ITS-Bereich ebenfalls möglich ist, Pflanzen und Pilze zu unterscheiden. Für die Pilze wird abschließend noch eine Studie von Horisawa et al. (2009) erwähnt, die mit spezifischen Primern im ITS-Bereich verschiedene Holzfäulepilze wie *Gloeophyllum trabeum, Trametes versicolor, Coniophora puteana* und *Serpula lacrymans* bestimmten.

Im Tierreich diente der ITS-Bereich ebenfalls als Basis zur Entwicklung von spezifischen Primern. Besonders muss hier eine Studie Erwähnung finden, in der

29

spezifische Primer für die Unterstützung des CITES-Vollzugs veröffentlicht wurden. Es handelt sich hierbei um eine Untersuchung zum Schutz des Riesenhais von Magnussen et al. (2007), in der der ITS2 für die Ermittlung von spezifischen Oligonukleotidsequenzen eingesetzt wurde.

Schließlich ist ein Beispiel aus dem Bereich der Landpflanzen zu nennen. Die von Wallinger et al. (2012) veröffentlichte Studie nutzte im Gegensatz zu den bisher angeführten Studien nicht den ITS-Bereich als Marker, sondern verwendete die *trn*T-F Region der ptDNA. Dieser Marker ermöglichte den Autoren, spezifische Primer zu erarbeiten, mit denen es möglich ist, zwei Familien (Poaceae und Apiaceae), zwei Gattungen (*Trifolium* und *Plantago*) und neun Arten (*Achillea millefolium*, *Fagopyrum esculentum*, *Lolium perenne*, *Lupinus angustifolius*, *Phaseolus coccineus*, *Sinapis alba*, *Taraxacum officinale*, *Triticum aestivum* und *Zea mayszu*) zu identifizieren.

Die angeführten Studien zeigen deutlich, dass die Verwendung von spezifischen Primern eine sichere Methode zur Bestimmung verschiedenster Arten darstellt. Aufbauend auf den eigenen ITS-Sequenzen und den Sequenzen der GenBank des NCBI werden in dieser Arbeit art- und gattungsspezifische Primer entwickelt, die es ermöglichen, den CITES-Vollzug durch schnelle und korrekte Identifizierung zu unterstützen. Bei der Entwicklung der Primer liegt das Hauptaugenmerk auf Hölzern, die für den Handel von gesteigertem Interesse sind. Auszugsweise ist hier die Mahagonigruppe, die sich aus den Gattungen *Swietenia*, *Entandrophragma*, *Khaya* und *Carapa* aufbaut, zu nennen (Tabelle 5).

1.5.2.4 Identifizierung der Herkunft

Für die Unterstützung des CITES-Vollzugs spielt in einigen Fällen neben der Identifizierung der Art eines Individuums auch dessen Herkunft eine wichtige Rolle. So muss für alle Vertreter des CITES Anhangs III nicht nur die Art, sondern auch deren Herkunft ermittelt werden. Vor der Betrachtung der molekularbiologischen Methoden zur Herkunftsbestimmung, wird kurz auf die Stabilisotopen-Methode eingegangen. Bei dieser Methode wird die Tatsache ausgenutzt, dass die stabilen Isotope wie Sauerstoff, Wasserstoff, Kohlenstoff, Stickstoff und Schwefel regional sowie lokal eine unterschiedliche Verteilung aufweisen. Da die stabilen Isotope der angeführten Elemente über die Luft, das Wasser und den Boden in den Nahrungs- bzw. Stoffkreislauf gelangen, ergeben sich in Pflanzen und Lebewesen, je nach geographischer und geologischer Situation, unterschiedliche Stabilisotopenhäufigkeitsverhältnisse regional mit typischen Isotopensignaturen. Diese Isotopensignaturen ("Isotopic Fingerprint") können unter anderem zur Herkunftsidentifizierung herangezogen werden. Neben der häufigen Verwendung der Stabilisotopen-Methode im Lebens- und Futtermittelbereich, kommt der "Isotopic Fingerprint" auch für Hölzer zum Einsatz (Agroisolab 2014).

Erste Resultate zur Anwendung der Stabilisotopen-Methode bei Holz wurden 2008 veröffentlicht (Förstel et al. 2008a; Förstel et al. 2008b). Hierauf aufbauend, kam es zur Durchführung einer weiteren Studie, deren Ergebnisse im Jahr 2011 veröffentlicht wurden (Förstel et al. 2011). Die Resultate der Untersuchungen aus 2008 und 2011 zeigen deutlich, dass die Stabilisotopen-Methode auch bei Holz eine Aussage über dessen Herkunft zulässt.

Die Informationen dieses Absatzes stammen aus Lowe und Cross (2011). Betrachtet die molekularbiologischen Methoden, so verdeutlicht sich, dass das man DNA-Barcoding derzeit in erster Linie für die Identifizierung angewendet wird. Steht aber die Ermittlung der Herkunft einer Probe im Mittelpunkt, sind derzeit andere Methoden vorzuziehen. Eine der wichtigsten Methoden ist in diesem Zusammenhang DNA-Fingerprinting (auch genetischer Fingerabdruck genannt). Mittels das DNA-Fingerprinting können einzelne Individuen einer Population zweifelsfrei voneinander unterschieden werden, wodurch ein Baum über die gesamte Wertschöpfungskette verfolgt werden kann. Neben der Beurteilung einzelner Individuen findet das DNA-Fingerprinting auch in der Populationsgenetik Anwendung und ermöglicht hier die Unterscheidung verschiedener Populationen. Zusätzlich zur Unterscheidung von verschiedenen Individuen und Populationen wird das Fingerprinting auch in der Phylogeographie angewendet. Es gewährleistet in diesem Zusammenhang die Differenzierung von Individuen unterschiedlicher Regionen, die durch eine biogeographische Barriere getrennt sind. Die verwendeten Techniken innerhalb des Fingerprintings sind z.B. RAPD (Randomly Amplified Polymorphic DNA), Mikrosatelliten, AFLP (Amplified Fragment Length Polymorphism) und RFLP (Restriction Fragment Length Polymorphism).

Nachstehend werden noch einige Studien erwähnt, bei denen die Identifizierung der Herkunft einen Kernpunkt der Arbeit darstellte. Mit dem Einsatz des DNA-Fingerprintings zur Rückverfolgung einzelner Stämme bis zu deren Ursprung beschäftigten sich unter anderem zwei Studien. Eine der Studien untersuchte *Intsia palembanica* aus Peninsular Malaysia und verwendete hierfür Mikrosatelliten (Lowe et

31

al. 2010b). Die weitere Studie nutzte "Direct Amplification of Length Polymorphism" (DALP) Analysen um DNA-Fingerprints für *Gonystylus bancanus* aus Indonesien zu erarbeiten (Fatma et al. 2011). Um die übergreifende Anwendung des DNA-Fingerprintings zu verdeutlichen, wird die folgende Studie von Jolivet und Degen (2010) angeführt. Die Autoren veröffentlichten in dieser Studie ihre Ergebnisse zur Erarbeitung von DNA-Fingerprints (über Mikrostalliten) für *Entandrophragma cylindricum*, um hierüber eine Zuordnung auf Forst-Konzessionen-Ebene zu ermöglichen. Als Studien aus der Phylogeographie sind die Unterscheidung von *Cedrela odorata* in der Neotropis (Cavers et al. 2013), von *Swietenia macrophylla* aus Zentral Amerika und Amazonien (Lemes et al. 2010), von *Pterocarpus officinalis* in der Karibik (Rivera-Ocasio et al. 2002) und von *Irvingia gabonensis* aus Kamerun, Nigeria und Gabun (Lowe et al. 2010a) zu nennen.

In dieser Arbeit liegt der Fokus auf der Identifizierung einer zu untersuchenden Probe. Die Ermittlung der Herkunft ist nicht Inhalt der Arbeit. So wird der hier zu entwickelnde Schnelltest, nur Informationen über die Art einer vorliegenden Probe bereitstellen und keine Aussagen über deren Herkunft treffen.

1.6 Ziel der Arbeit

Ziel dieser Arbeit ist die Entwicklung spezifischer DNA-Markersysteme zur Schnellbestimmung von CITES-geschützten Baumarten und deren Substitutionshölzern. Für die Bereitstellung eines solchen Schnelltests, müssen im Vorfeld verschiedene Untersuchungen durchgeführt werden, die sich in vier Aufgabengebieten zusammenfassen lassen:

- Das erste Aufgabengebiet beinhaltet die Entwicklung eines geeigneten Protokolls zur Extraktion von DNA aus Holz.
- Neben der Entwicklung eines DNA-Extraktionssystems muss eine interne rDNA ITS-Sequenzdatenbank aufgebaut werden. Diese Datenbank wird sowohl Sequenzen von CITES-geschützten Baumarten enthalten, als auch Informationen der entsprechenden Substitutionshölzer aufweisen.
- Aufbauend auf der internen Sequenzdatenbank und den Sequenzinformationen der GenBank des NCBI werden sogenannte spezifische Primer entwickelt. Diese Oligonukleotide sollen die Identifizierung unbekannter Hölzer ermöglichen, ohne dass eine Auswertung der Sequenzinformationen von Nöten ist.
- Abschließend werden Validierungen der entwickelten Schnellbestimmungsmethode anhand von Blindtests durchgeführt.

Mithilfe des in dieser Arbeit entwickelten Schnelltests soll eine weitere Möglichkeit geschaffen werden, den CITES-Vollzug und somit den Schutz gefährdeter Baumarten zu unterstützen.

2 Material und Methoden

2.1 Material

2.1.1 Geräte

In Tabelle 2 sind die in dieser Arbeit verwendeten Geräte sowie deren Hersteller angegeben.

Gerät	Hersteller
Analysenwaage	Explorer, Ohaus, USA
Autoklav	Varioklav T25, Thermo Scientific, Waltham USA
Gelelektrophoresekammer	i-MUPID Mini Gel, COSMO BIO Co., Ltd., Tokyo, Japan
Geldokumentation	Gel Dokumentations System mit Universal-Haube II,
	BIO-RAD Laboratories GmbH, München
Rotationsschüttler mit	SM 30 control, Inkubationshaube TH 30, Bühler
Inkubationshaube	Technologies GmbH, Ratingen
Kolbenhubpipetten (2,5; 10; 20;	Eppendorf Research [®] , Eppendorf AG, Hamburg
100; 200; 1000 µl)	
Kühl/Gefrierkombination	Bosch, Gerlingen
Mikrowellengerät	Panasonic, Hamburg
pH-Meter	Five Easy FE20, Mettler Toledo, Greifensee, Schweiz
Prefilter	Prefilter, Analytik Jena, Jena
Reinstwasseranlage	Barnstead [™] Nanopure [™] , Thermo Scientific, Waltham USA
Spektralphotometer	NanoDrop 2000, Thermo Scientific, Waltham USA
Sterilfilter	Rotilabo [®] Spritzenfilter 0,22 µm, Carl Roth GmbH & Co.
	KG, Karlsruhe
Thermocycler	TGradient und TPersonal Thermoblock, Biometra
	Biomedizinische Analytik GmbH, Göttingen
Thermoschüttler	Heating Block Thermostat, HLC Biotech, Bovenden
Tiefkühllagerschrank (-80°C)	HFU 486, Heraeus, Hanau
Rotations-Vakuumkonzentrator	Concentrator Plus, Eppendorf AG, Hamburg
Vortexmischer	MS2 Minishaker, IKA [®] -Werke GmbH & Co. KG, Staufen

Zentrifugen	Biofuge Fresco, Heraeus, Kendro Laboratories,
	Langenselbold;
	Sorvall TM Stratos TM , Thermo Scientific, Waltham, USA

2.1.2 Chemikalien

Tabelle 3 gibt die benötigten Chemikalien sowie deren genauere Spezifikation und Hersteller wieder.

Chemikalie	Hersteller
Agar	Oxoid Agar No.1, Thermo Scientific, Waltham USA
Agarose	Agarose Serva research grade, SERVA Electrophoresis GmbH,
	Heidelberg
Ampicillin	Ampicillin Natriumsalz \geq 99%, Carl Roth GmbH & Co. KG,
	Karlsruhe
Bromphenolblau	Bromphenolblau, Carl Roth GmbH & Co. KG, Karlsruhe
Chloroform	Rotipuran [®] Chloroform \geq 99% p.a., Carl Roth GmbH & Co. KG,
	Karlsruhe
СТАВ	$CTAB \ge 98\%$, Carl Roth GmbH & Co. KG, Karlsruhe
DNA-Fragmentmarker	GelPilot 100 bp Plus Ladder, Qiagen, Hilden
	GeneRuler [™] 100 bp DNA Ladder, Thermo Scientific, Waltham, USA
	Invitrogen 100 bp DNA Ladder, Thermo Scientific, Waltham, USA
DTT	$DTT \ge 99\%$ p.a., Carl Roth GmbH & Co. KG, Karlsruhe
EDTA	EDTA analytical grade, SERVA Electrophoresis GmbH, Heidelberg
Essigsäure	Essigsäure 100%, Carl Roth GmbH & Co. KG, Karlsruhe
Ethanol	Rotipuran [®] Ethanol \geq 99,5% p.a., Carl Roth GmbH & Co. KG,
	Karlsruhe
Ethidiumbromid	Ethidiumbromid \geq 98%, Carl Roth GmbH & Co. KG, Karlsruhe
Glycerin	Glycerin 85%, Merck KGaA, Darmstadt
Hefeextrakt	Oxoid Yeast Extract, Thermo Scientific, Waltham, USA
Isopropanol	Rotipuran [®] Isopropanol \geq 99,8% p.a., Carl Roth GmbH & Co. KG,
	Karlsruhe
Kanamycin	Kanamycinsulfat \geq 750 I.U./mg, Carl Roth GmbH & Co. KG,
	Karlsruhe
Natriumacetat	Natriumacetat wasserfrei reinst., Merck KGaA, Darmstadt

Tabelle 3: Verwendete Chemikalien.

Natriumchlorid	NaCl krist. reinst., Merck KGaA, Darmstadt	
Proteinase K	Proteinase K lyophilisiert, ≥ 30 mAnson U/mg, Carl Roth GmbH &	
	Co. KG, Karlsruhe	
РТВ	PTB, Prime Organics, Woburn, USA	
PVP	PVP K25, Sigma-Aldrich Laborchemikalien GmbH, Seelze	
Salzsäure	Rotipuran [®] Salzsäure \geq 32% p.a., Carl Roth GmbH & Co. KG,	
	Karlsruhe	
SDS	$SDS \ge 98,5\%$, Sigma-Aldrich Laborchemikalien GmbH, Seelze	
TRIS	TRIS Pufferan [®] \geq 99,9% p.a, Carl Roth GmbH & Co. KG, Karlsruhe	
Trypton	Oxois Trypton, Thermo Scientific, Waltham, USA	
X-Gal	X-Gal \geq 99%, Carl Roth GmbH & Co. KG, Karlsruhe	

2.1.3 Verwendete Kits

Die in dieser Arbeit eingesetzten Kits zur Extraktion, Amplifizierung und Aufreinigung der DNA sind in Tabelle 4 wiedergegeben.

Tabelle 4:	Verwendete Kits.
------------	------------------

Name	Hersteller
DNeasy [®] mericon [™] Food Kit	Qiagen, Hilden
DNeasy [®] Plant Mini Kit	Qiagen, Hilden
innuSPEED Plant DNA Kit	Analytik Jena, Jena
innuSPEED Soil DNA Kit	Analytik Jena, Jena
innuSPEED Stool Kit	Analytik Jena, Jena
Invisorb [®] DNA CleanUp Kit	Stratec, Berlin
KAPA2G [™] Robust Hot Start PCR Kit	Kapa Biosystems, Boston, USA
Nucleon [™] PhytoPure [™] Genomic DNA Extraktion Kit	GE Healthcare, Freiburg
NucleoSpin [®] Soil Kit	Machery-Nagel, Düren
PCR Cloning ^{plus} Kit	Qiagen, Hilden
peqGOLD Plant Mini Kit	Peqlab, Erlangen
QIAquick [®] PCR Purification Kit	Qiagen, Hilden
Taq PCR Core Kit	Qiagen, Hilden

2.1.4 Probenmaterial

Für die Entwicklung eines Schnelltests zur sicheren Identifizierung der derzeit marktrelevantesten CITES-Hölzer und deren Austauscharten, lag das Hauptaugenmerk auf Hölzern, die sich in ihrer Textur ähneln. Auf der CITES-Seite lag der Fokus auf insgesamt 18 Holzarten, denen 29 Holzarten auf der Seite der Austauschhölzer gegenüberstanden (Tabelle 5). Es wurde besonderer Wert darauf gelegt, dass die entsprechenden Hölzer nur sehr schwer bis gar nicht mit den traditionellen Methoden zu unterscheiden sind. Diese Ähnlichkeiten treten sowohl zwischen CITES-geschützten Hölzern, als auch zwischen CITES-Holz und Austauschholz auf. So ist es z.B. mit den traditionellen Methoden nicht möglich, eine Aussage darüber zu treffen, welche Art der Gattung Swietenia (CITES Anhang II) zur Untersuchung vorliegt. Als schwer abzugrenzende Austauschhölzer der Gattung Swietenia sind Carapa guianensis, Khava ivorensis und Entandrophragma angolense anzuführen. Eine weitere Gruppe ist die Ramingruppe. Hier stehen den Vertretern der CITES-geschützten Gattung Gonystylus (Anhang II), die schwer abzugrenzenden Arten Pterygota bequaertii, Terminalia superba, Endospermum moluccanum und Neolamarckia cadamba (Tabelle 5) gegenüber.

Im Laufe der Untersuchungen stand nicht für alle der in Tabelle 5 aufgeführten Holzarten entsprechendes Material zur Verfügung. So konnte bis zum Abschluss der Untersuchungen z.B. kein Material für die Gattung *Dipteryx* verarbeitet werden. Weiter wurden in dieser Arbeit Arten untersucht, die nicht in Tabelle 5 aufgeführt sind. Es handelte sich hierbei um Arten, der in Tabelle 5 aufgezeigten Gattungen. Die nicht aufgeführten Arten kamen zur Anwendung, um im späteren Verlauf art- oder gattungsspezifische Primer zu erstellen. Eine Auflistung sowie eine Erläuterung des verwendeten Materials ist in Tabelle 6 des Punkts 2.1.4.1 wiedergegeben. Tabelle 5: Aufstellung der zu untersuchenden Holzarten. Auf der linken Seite sind die CITES-geschützten Hölzer inkl. des Grads ihrer Schutzbedürftigkeit aufgeführt. Rechts sind die entsprechen Austauschhölzer wiedergegeben. * = Die gesamte *Dalbergia*-Population Madagaskars ist derzeit durch CITES-Anhang II geschützt.

CITES-Holz		Austauschhölzer	
Art	Anhang	Art	
		Myrocarpus frondosus	
Caesalpinia echinata	II	Caesalpinia ferrea	
		Hymenolobium elatum	
Commence	П	Caryocar brasiliense	
Caryocar costaricense	11	Caryocar glabrum	
Cedrela odorata	Ш	Toona sureni	
Cedrela fissilis	111	Tectona grandis	
		Dalbergia spruceana*	
Dalbergia nigra*	Ι	Dalbergia latifolia*	
		Machaerium scleroxylon	
		Dalbergia maritima*	
Dalbergia retusa* Dalbergia stevensonii*	п	Dalbergia spruceana*	
	11	Dalbergia sissoo*	
	11 	Dalbergia latifolia*	
Distory navanovsis	Ш	Dipteryx odorata	
Dipteryx panamensis	111	Bowdichia nitida	
		Pterygota bequaertii	
Gonystylus bancanus	п	Terminalia superba	
Gonystylus macrophyllus	11	Endospermum moluccanum	
		Neolamarckia cadamba	
Guaiacum officinale	П	Bulnesia arborea	
Guaiacum sanctum	11	Handroanthus spp.	
Intsia bijuga	A ntrag gastallt	Afzelia bipendensis	
Intsia palembanica	Antrag gestern	Hymenaea courbaril	
Diano agenus santalinus	п	Pterocarpus indicus	
Fierocarpus sanialinus	11	Pterocarpus soyauxii	
Swietenia humilis		Carapa guianensis	
Swietenia macrophylla	II	Khaya ivorensis	
Swietenia mahagoni		Entandrophragma angolense	

2.1.4.1 Pflanzenmaterial für den Aufbau der rDNA ITS-Sequenzdatenbank

Zum Zeitpunkt der Untersuchungen lagen in der GenBank des NCBI nicht ausreichend ITS-Sequenzinformationen der zu bearbeiteten Holzarten vor. Aus diesem Grund war der Aufbau einer internen rDNA ITS-Sequenzdatenbank erforderlich. Bei dem verwendeten Untersuchungsmaterial handelte es sich um frisches Blattmaterial (B), frisches Astmaterial (A) oder DNA (D). In wenigen Fällen wurde auch Splintholz (S) verwendet. Dieses kam aber nur eingeschränkt zur Anwendung, da die Qualität und Quantität der in diesem Material enthaltenen DNA nicht ausreichend ist. Auf die Verwendung von Kernholz wurde verzichtet. Während das Ast- und Blattmaterial von nationalen und internationalen Botanischen Gärten zur Verfügung gestellt wurde, gewährten verschiedene Forschungseinrichtungen den Zugriff auf DNA-Eluate. Des Unterstützung verschiedener Weiteren ermöglichte die Sammlungen sowie holzverarbeitender Unternehmen die Untersuchung von Splintholz. Für alle verwendeten Individuen ist in Tabelle 6 der wissenschaftliche Name, die Herbarnummer (Herbarium des Thünen-Instituts, Hamburg), die Form und die Herkunft angegeben. Für eine übersichtlichere Darstellung erfolgte die Einteilung der Proben nach Familienzugehörigkeit. Die Individuen repräsentierten 9 Familien, 23 Gattungen und 53 Arten, wobei je Art mindestens ein Individuum vorlag. Eine Tabelle, in der die Proben nach aufsteigender Herbarnummer sortiert sind, ist dem Anhang zu entnehmen (Punkt 7.1, Tabelle A 1).

Tabelle 6: Auflistung des untersuchten Probenmaterials zum Aufbau der internen rDNA ITS-Sequenzdatenbank. Die Anordnung der Proben erfolgte nach Familienzugehörigkeit. Aufgeführt sind jeweils die Herbarnummer (Herbarium des Thünen-Instituts, Hamburg), der wissenschaftliche Name, die Herkunft und die Form des untersuchten Materials. A = Ast, B = Blatt, D = DNA und S = Splintholz

Herbarnr.	Art	Herkunft	Form
Bignoniaceae			
449	Handroanthus chrysanthus	Bot. Garten der Uni. Bayreuth	В
446	Handroanthus impetiginosus	Bot. Garten der Uni. Münster	В
459	Handroanthus impetiginosus	Bot. Garten der Uni. Ulm	В
463	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
465	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
466	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
Caryocaraceae			
208	Caryocar brasiliense	Forstgenetik, Thünen-Institut	В
627	Caryocar glabrum	DNA Bank Kew Gardens	D
Combretaceae			
464	Terminalia arenicola	Bot. Garten der Uni. Bayreuth	В
506	Terminalia avicennioides	Bot. Garten der Uni. Rostock	В
458	Terminalia bellirica	Bot. Garten der Uni. Wien	В

Herbarnr.	Art	Herkunft	Form
174	Terminalia bentzoe	Bot. Garten Uni. Heidelberg	А
467	Terminalia bentzoe	Palmengarten Frankfurt	В
172	Terminalia catappa	Bot. Garten Uni. Heidelberg	А
424	Terminalia catappa	Holzforschung, Thünen-Institut	А
437	Terminalia catappa	Bot. Garten der Stadt Köln	В
440	Terminalia catappa	Bot. Garten der Uni. Osnabrück	В
507	Terminalia glaucescens	Bot. Garten der Uni. Rostock	В
Euphorbiaceae			
634	Endospermum moluccanum	DNA Bank Kew Gardens	D
Fabaceae			
50	Afzelia africana	Holzforschung, Thünen-Institut	А
504	Afzelia africana	Bot. Garten der Uni. Rostock	В
624	Bowdichia nitida	DNA Bank Kew Gardens	D
206	Caesalpinia echinata	Forstgenetik, Thünen-Institut	В
207	Caesalpinia echinata	Forstgenetik, Thünen-Institut	В
643	Caesalpinia echinata	Holzforschung, Thünen-Institut	S
471	Caesalpinia ferrea	Bot. Garten der Uni. Bayreuth	В
625	Caesalpinia ferrea	DNA Bank Kew Gardens	D
626	Caesalpinia ferrea	DNA Bank Kew Gardens	D
425	Caesalpinia spinosa	Bot. Garten Frankfurt	В
426	Caesalpinia spinosa	Bot. Garten Frankfurt	В
474	Dalbergia decipularis	Max Cropp e.K.	S
630	Dalbergia latifolia	DNA Bank Kew Gardens	D
378	Dalbergia melanoxylon	Holzforschung, Thünen-Institut	В
142	Dalbergia miscolobium	Holzforschung, Thünen-Institut	А
144	Dalbergia nigra	Holzforschung, Thünen-Institut	А
631	Dalbergia nigra	DNA Bank Kew Gardens	D
461	Dalbergia obovata	Bot. Garten der Uni. Bayreuth	В
143	Dalbergia retusa	Holzforschung, Thünen-Institut	А
344	Dalbergia retusa	Fritz Kohl Furnier	S
632	Dalbergia retusa	DNA Bank Kew Gardens	D
513	Dalbergia sissoo	Bot. Garten Hawaii	В
628	Dalbergia sissoo	DNA Bank Kew Gardens	D
629	Dalbergia spruceana	DNA Bank Kew Gardens	D

Herbarnr.	Art	Herkunft	Form
633	Dalbergia spruceana	DNA Bank Kew Gardens	D
86	Hymenaea courbaril	Bot. Garten der Uni. Bayreuth	А
170	Hymenaea courbaril	Palmengarten Frankfurt	А
201	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В
202	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В
203	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В
438	Hymenaea courbaril	Bot. Garten der Uni. Osnabrück	В
515	Hymenaea courbaril	Bot. Garten Hawaii	В
81	Intsia bijuga	Bot. Garten Graz	А
85	Intsia bijuga	Bot. Garten der Uni. Bayreuth	А
166	Intsia bijuga	Bot. Garten der Uni. Köln	А
204	Intsia bijuga	Forstgenetik, Thünen-Institut	D
401	Intsia bijuga	Forstgenetik, Thünen-Institut	D
402	Intsia bijuga	Forstgenetik, Thünen-Institut	D
403	Intsia bijuga	Forstgenetik, Thünen-Institut	D
404	Intsia bijuga	Forstgenetik, Thünen-Institut	D
405	Intsia bijuga	Forstgenetik, Thünen-Institut	D
406	Intsia bijuga	Forstgenetik, Thünen-Institut	D
407	Intsia bijuga	Forstgenetik, Thünen-Institut	D
408	Intsia bijuga	Forstgenetik, Thünen-Institut	D
409	Intsia bijuga	Forstgenetik, Thünen-Institut	D
410	Intsia bijuga	Forstgenetik, Thünen-Institut	D
411	Intsia bijuga	Forstgenetik, Thünen-Institut	D
453	Intsia bijuga	Bot. Garten der Uni. Bayreuth	В
511	Intsia bijuga	Bot. Garten Hawaii	В
205	Intsia palembanica	Forstgenetik, Thünen-Institut	D
399	Intsia palembanica	Forstgenetik, Thünen-Institut	D
400	Intsia palembanica	Forstgenetik, Thünen-Institut	D
412	Intsia palembanica	Forstgenetik, Thünen-Institut	D
413	Intsia palembanica	Forstgenetik, Thünen-Institut	D
414	Intsia palembanica	Forstgenetik, Thünen-Institut	D
415	Intsia palembanica	Forstgenetik, Thünen-Institut	D
417	Intsia palembanica	Forstgenetik, Thünen-Institut	D
418	Intsia palembanica	Forstgenetik, Thünen-Institut	D
419	Intsia palembanica	Forstgenetik, Thünen-Institut	D
420	Intsia palembanica	Forstgenetik, Thünen-Institut	D

Herbarnr.	Art	Herkunft	Form
 421	Intsia palembanica	Forstgenetik, Thünen-Institut	D
422	Intsia palembanica	Forstgenetik, Thünen-Institut	D
341	Machaerium scleroxylon	Fritz Kohl Furnier	S
444	Myrocarpus frondosus	Bot. Garten der Uni. Osnabrück	В
448	Pterocarpus indicus	Bot. Garten der Uni. Bayreuth	В
640	Pterocarpus indicus	DNA Bank Kew Gardens	D
641	Pterocarpus indicus	DNA Bank Kew Gardens	D
642	Pterocarpus indicus	DNA Bank Kew Gardens	D
462	Pterocarpus macrocarpus	Bot. Garten der Uni. Bayreuth	В
636	Pterocarpus santalinus	DNA Bank Kew Gardens	D
637	Pterocarpus santalinus	DNA Bank Kew Gardens	D
638	Pterocarpus soyauxii	DNA Bank Kew Gardens	D
639	Pterocarpus soyauxii	DNA Bank Kew Gardens	D

Meliaceae

49	Carapa guianensis	Bot. Garten der Uni. Düsseldorf	A
80	Carapa guianensis	Bot. Garten Graz	А
11	Cedrela fissilis	Unbekannt	А
36	Cedrela fissilis	Bot. Garten der Uni Bochum	А
55	Cedrela fissilis	Holzforschung, Thünen-Institut	А
606	Cedrela fissilis	Holzforschung, Thünen-Institut	S
607	Cedrela fissilis	Holzforschung, Thünen-Institut	S
608	Cedrela fissilis	Holzforschung, Thünen-Institut	S
609	Cedrela fissilis	Holzforschung, Thünen-Institut	S
10	Cedrela odorata	Unbekannt	А
23	Cedrela odorata	Bot. Garten der Uni. Jena	А
30	Cedrela odorata	Bot. Garten der Uni. Osnabrück	А
56	Cedrela odorata	Holzforschung, Thünen-Institut	А
71	Cedrela odorata	Bot. Garten der Uni. Osnabrück	А
82	Cedrela odorata	Bot. Garten Graz	А
452	Cedrela odorata	Bot. Garten der Uni. Bayreuth	В
83	Entandrophragma angolense	Bot. Garten der Uni. Würzburg	А
192	Entandrophragma angolense	Holzwerk Nagel	S
74	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
76	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
345	Entandrophragma cylindricum	Fritz Kohl Furnier	S

Herbarnr.	Art	Herkunft	Form
393	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
394	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
395	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
477	Entandrophragma cylindricum	Max Cropp e.K.	S
8	Khaya grandifolia	Holzforschung, Thünen-Institut	А
457	Khaya grandifolia	Bot. Garten der Uni. Wien	В
134	Khaya ivorensis	Holzwerk Nagel	S
38	Khaya nyasica	Bot. Garten der Uni. Oldenburg	А
447	Khaya nyasica	Bot. Garten der Uni. Bayreuth	В
5	Khaya senegalensis	Unbekannt	А
6	Khaya senegalensis	Unbekannt	А
35	Khaya senegalensis	Bot. Garten der Uni. Bochum	А
41	Khaya senegalensis	Bot. Garten der Uni. Halle	А
456	Khaya senegalensis	Bot. Garten der Uni. Wien	В
505	Khaya senegalensis	Bot. Garten der Uni. Rostock	В
209	Swietenia humilis	Forstgenetik, Thünen-Institut	В
210	Swietenia humilis	Forstgenetik, Thünen-Institut	В
211	Swietenia humilis	Forstgenetik, Thünen-Institut	В
212	Swietenia humilis	Forstgenetik, Thünen-Institut	В
213	Swietenia humilis	Forstgenetik, Thünen-Institut	В
235	Swietenia humilis	Mexiko	S
423	Swietenia humilis	Holzforschung, Thünen-Institut	В
2	Swietenia macrophylla	Holzforschung, Thünen-Institut	А
3	Swietenia macrophylla	Bot. Garten der Uni. Göttingen	А
18	Swietenia macrophylla	Bot. Garten der Uni. Tübingen	А
19	Swietenia macrophylla	Bot. Garten der Uni. Tübingen	А
33	Swietenia macrophylla	Bot. Garten der Uni. Bochum	А
224	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
225	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
226	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
227	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
228	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
249	Swietenia macrophylla	USA	S
251	Swietenia macrophylla	USA	S
252	Swietenia macrophylla	USA	S
385	Swietenia macrophylla	Fritz Kohl Furnier	S

Herbarnr.	Art	Herkunft	Form
4	Swietenia mahagoni	Bot. Garten der Uni. Göttingen	А
7	Swietenia mahagoni	Holzforschung, Thünen-Institut	А
21	Swietenia mahagoni	Unbekannt	А
24	Swietenia mahagoni	Bot. Garten der Uni. Jena	А
40	Swietenia mahagoni	Bot. Garten der Uni. Halle	А
165	Swietenia mahagoni	Bot. Garten der Uni. Köln	А
168	Swietenia mahagoni	Palmengarten Frankfurt	А
175	Swietenia mahagoni	Bot. Garten der Uni. Heidelberg	А
229	Swietenia mahagoni	Forstgenetik, Thünen-Institut	А
57	Toona sinensis	Holzforschung, Thünen-Institut	А
450	Toona sinensis	Forstbot. Garten Göttingen	В
451	Toona sinensis	Späth-Arbor. HumbUni. Berlin	В
610	Toona sinensis	Bot. Garten der Uni. Ulm	В
Rubiaceae			
635	Neolamarckia cadamba	DNA Bank Kew Gardens	D
Thymelaeaceae			
244	Gonystylus bancanus	Holzforschung, Thünen-Institut	S
247	Gonystylus bancanus	Holzforschung, Thünen-Institut	S
482	Gonystylus spec.	Indonesien, Greenpeace	S
483	Gonystylus spec.	Indonesien, Greenpeace	S
486	Gonystylus spec.	Indonesien, Greenpeace	S
487	Gonystylus spec.	Indonesien, Greenpeace	S
489	Gonystylus spec.	Indonesien, Greenpeace	S
491	Gonystylus spec.	Indonesien, Greenpeace	S
492	Gonystylus spec.	Indonesien, Greenpeace	S
493	Gonystylus spec.	Indonesien, Greenpeace	S
499	Gonystylus spec.	Indonesien, Greenpeace	S
500	Gonystylus spec.	Indonesien, Greenpeace	S
611	Gonystylus spec.	Indonesien, Greenpeace	S
612	Gonystylus spec.	Indonesien, Greenpeace	S
613	Gonystylus spec.	Indonesien, Greenpeace	S
614	Gonystylus spec.	Indonesien, Greenpeace	S
615	Gonystylus spec.	Indonesien, Greenpeace	S
616	Gonystylus spec.	Indonesien, Greenpeace	S

Herbarnr.	Art	Herkunft	Form
617	Gonystylus spec.	Indonesien, Greenpeace	S
618	Gonystylus spec.	Indonesien, Greenpeace	S
619	Gonystylus spec.	Indonesien, Greenpeace	S
620	Gonystylus spec.	Indonesien, Greenpeace	S
621	Gonystylus spec.	Indonesien, Greenpeace	S
622	Gonystylus spec.	Indonesien, Greenpeace	S
623	Gonystylus spec.	Indonesien, Greenpeace	S

Zygophyllaceae

442	Bulnesia arborea	Bot. Garten der Uni. Osnabrück	В
509	Bulnesia arborea	Reiman Gardens, USA	В
94	Guaiacum officinale	Bot. Garten der Uni. Osnabrück	А
101	Guaiacum officinale	Bot. Garten der Uni. Erlangen	А
117	Guaiacum officinale	Bot. Garten der Uni. Greifswald	А
119	Guaiacum officinale	Bot. Garten der Uni. Zürich	А
156	Guaiacum officinale	Bot. Garten der Uni. Berlin	А
163	Guaiacum officinale	Bot. Garten der Uni. Jena	А
167	Guaiacum officinale	Bot. Garten der Uni. Köln	А
377	Guaiacum officinale	Bot. Garten der Uni. Bonn	А
508	Guaiacum officinale	Bot. Garten Nancy	В
510	Guaiacum officinale	Bot. Garten der Uni. Marburg	В
514	Guaiacum officinale	Bot. Garten Hawaii	В
603	Guaiacum officinale	Bot. Garten der Uni. Tübingen	В
604	Guaiacum officinale	Bot. Garten der Uni. Heidelberg	В
605	Guaiacum officinale	Bot. Garten der Uni. Heidelberg	В
162	Guaiacum sanctum	Bot. Garten der Uni. Jena	А
173	Guaiacum sanctum	Bot. Garten der Uni. Heidelberg	А
231	Guaiacum sanctum	Mexiko	S
232	Guaiacum sanctum	Brasilien	В
233	Guaiacum sanctum	Mexiko	S
455	Guaiacum sanctum	Bot. Garten der Uni. Ulm	В
469	Guaiacum sanctum	Palmengarten Frankfurt	В
2.1.4.2 Material zur Durchführung verschiedener Validierungen

Für die Validierung des in dieser Arbeit entwickelten Schnelltests zur Identifizierung von Holzarten, wurden zwei Blindtests durchgeführt. Der erste Test beinhaltete 60 unbekannte Proben (Bt1-Bt60). Das Ziel des Blindtests war, herauszuarbeiten, bei welchen es sich um *Gonystylus* spp. handelt. Weiter erfolgte eine Bestimmung der Proben, bei denen es sich nicht um Ramin handelte. Das Ausgangsmaterial bestand aus Splintholz in Hackschnitzelgröße (Bt9 = Bast) und wurde von Herrn PD Dr. Gerald Koch zur Verfügung gestellt (Abbildung 3 A). Die Proben wurden den Außenseiten der auf dem Rundholzplatz der Indah Kiat Perawang Pulp Mill, Indonesien, lagernden Stämme zwischen Februar 2011 und Januar 2012 entnommen (Greenpeace 2014). Die Durchführung des Blindtests erfolgte im Sommer 2012.

Für den zweiten Blindtest wurde ein Stück einer Holzbohle (Meliaceae) verwendet (Abbildung 3 B), die durch den deutschen Zoll beschlagnahmt wurde. Über das Alter und die vorangegangenen Arbeitsprozesse waren keine Informationen bekannt. Ziel für die Untersuchung der Holzbohle war, die Art, unter Verwendung der spezifischen Primer, zu identifizieren.

Eine weitere Validierung erfolgte anhand von drei alten Holzstücken (Abbildung 3 C). Da bei den Holzstücken die Art bereits feststand, lag der Fokus dieser Validierung auf der Beurteilung der entwickelten DNA-Extraktion. Die Arten waren *Dalbergia nigra* (Dal 1), *Dalbergia retusa* (Dal 2) und *Dalbergia latifolia* (Dal 3). Die Holzprobe von *Dalbergia nigra* stammte aus der Holzsammlung des Thünen-Instituts. Die beiden anderen Proben wurden freundlicherweise von Max Cropp e.K., Hamburg, Deutschland zur Verfügung gestellt. Für alle drei Holzproben konnten keinerlei Informationen über deren vorherige Verarbeitungsschritte oder deren Lagerdauer in Erfahrung gebracht werden. Es stand lediglich fest, dass ein Einschnitt erfolgte und die Lagerung mehrere Jahre betrug.

Abbildung 3: Darstellung der verwendeten Holzproben für die Validierung des entwickelten Schnelltests zur Holzartenidentifizierung. A = Splintholz unbekannter Art, B = Holzbohle aus der Familie der Meliaceae und C = Holzproben von *Dalbergia nigra* (Dal 1), *Dalbergia retusa* (Dal 2) und *Dalbergia latifolia* (Dal 3).

2.2 Methoden

2.2.1 Isolierung der DNA

2.2.1.1 DNA-Extraktion aus frischem Material

Zur Isolierung der genomischen DNA aus Blatt-, Ast-, oder Splintholzmaterial wurde das DNeasy[®] Plant Mini Kit der Firma Qiagen (Hilden, Deutschland) verwendet. Um Kontaminationen zu verhindern, fand die gesamte Aufarbeitung unter sterilen Bedingungen statt. Zur Vermeidung von Verunreinigungen während der Aufarbeitung von Ästen, wurde deren Rinde mit Hilfe eines Stechbeitels entfernt. Bei dem Einsatz von Splintholz wurden die äußeren Schichten ebenfalls mithilfe des Stechbeitels abgetragen. Anschließend wurde das Ast- oder Splintholzmaterial mit einer feinen Reibe homogenisiert. Für die Verarbeitung der Blattmaterialien wurde ein steriles Skalpell verwendet. Die daraufhin durchgeführte DNA-Extraktion beinhaltete hauptsächlich folgende Schritte (Tabelle 7): Zelllyse durch eine Pufferlösung und anschließende Fällung von Proteinen und Polysacchariden; Entfernung unlöslicher Bestandteile durch Verwendung einer Filtermatrix; Fällung der DNA auf Ethanol-Basis; Binden der DNA auf eine Silikat-Matrix; Reinigung der DNA durch mehrmaliges Pufferlösung; Eluieren der Für Waschen mit einer DNA. sämtliche Zentrifugationsschritte bis 13.000 rpm kam die Zentrifuge Biofuge Fresco, Heraeus zum Einsatz. Bei Geschwindigkeiten über 13.000 rpm, wurde eine Sorvall™ Stratos™ Zentrifuge (Thermo Scientific, Waltham, USA) verwendet.

Tabelle 7: Protokoll der DNA-Extraktion mit dem DNeasy[®] Plant Mini Kit, Qiagen.

	Isolation der genomischen DNA
1.	Einwaage von 50 mg Holzmehl oder Blattpartikeln in ein 2 ml Eppi
2.	Zugabe von 600 µl AP1, vortexen; 10 min bei 65°C im Thermoschüttler
3.	Zugabe von 200 µl AP2, vortexen; 5 min bei -20°C (Gefrierschrank)
4.	Überführung auf QIAshredder Mini Spin-Säulen; Zentrifugation, 2 min bei 13.000 rpm
5.	500 µl Filtrat (ohne Pellet) in 2 ml Eppi überführen
6.	Zugabe von 750 µl AP3, sehr vorsichtig durch Drehen und Rollen mischen
7.	650 μ l der DNA-Lösung auf DNeasy [®] Mini Spin-Säulen überführen und bei 8.000 rpm
	1 min zentrifugieren
8.	Filtrat verwerfen; restliche DNA-Lösung auf die Säule geben und 1 min bei 8.000 rpm
	zentrifugieren
9.	Filtrat verwerfen; Zugabe von 500 µl AW, 30 s bei 8.000 rpm zentrifugieren
10.	Filtrat verwerfen; Zugabe von 500 µl AW, 30 s bei 8.000 rpm zentrifugieren
11.	Filtrat verwerfen und Säule bei 13.000 rpm 1 min trockenzentrifugieren
12.	Säule auf neues 1,5 ml Eppi setzen und 15-50 µl AE auf die Mitte der Säule geben,
	Inkubation 5 min bei Raumtemperatur
13.	Zentrifugation 1 min 10.000 rpm
14.	Säule auf neues 1,5 ml Eppi setzen und 15-50 µl AE auf die Mitte der Säule geben,
	Inkubation 5 min bei Raumtemperatur
15.	Zentrifugation 1 min 10.000 rpm

16. Das 1te und 2te DNA Eluat bei 4°C aufbewahren

2.2.1.2 Isolierung der DNA aus Kernholz oder stark abgebautem Material

Für die Isolierung der DNA aus Kernholz oder Materialien, die vergleichbar stark abgebaute DNA oder Inhibitoren aufweisen, sind in dieser Arbeit diverse DNA-Extraktionskits unterschiedlichster Hersteller getestet worden. Ebenso wurden in diesem Zusammenhang verschiedene in Fachzeitschriften veröffentlichte DNA-Extraktionsprotokolle überprüft. Mithilfe dieser Untersuchungen wurde ermittelt, ob sich eines der Kits oder der DNA-Extraktionsprotokolle für alle untersuchten Materialien eignet. Die getesteten DNA-Extraktionsmethoden, die in Tabelle 8 gelistet sind, können in drei Gruppen eingeteilt werden. Die Gruppe A beinhaltet die SDS-, die CTAB- und die PTB-Extraktion, welche ursprünglich für die Nukleinsäure-Isolierung aus Materialien wie Pflanzen, Erdreich und Knochen entwickelt wurden. Die größten Unterschiede zwischen den verschiedenen Methoden bestehen in der Zusammensetzung der Lysispuffer. Im weiteren Verlauf werden organische Lösungsmittel für einzelne Waschschritte eingesetzt. Im Anschluss erfolgt eine alkoholische Fällung der DNA. Die gefällte DNA wird durch Zentrifugation pelletiert und am Ende resuspendiert. Gruppe B führt kommerzielle Kits auf, die für die Nukleinsäure-Isolierung aus Pflanzen, verarbeiteten Nahrungsmitteln, Bodenproben und Stuhlproben, angeboten werden. Diese Kits bauen größtenteils auf den zuvor erwähnten DNA-Extraktionsmethoden auf. Die Gemeinsamkeit dieser Kits liegt darin, dass sie alle die reversiblen Bindungseigenschaften von Silikafiltern, verbaut in Zentrifugationssäulen, nutzen. Hierdurch wird die DNA selektiv an die Matrix gebunden, gewaschen und danach wieder eluiert. Bei Verwendung der kommerziellen Extraktionskits wurde strikt den Herstellerangaben gefolgt. Gruppe C wird durch Kombinationen der Gruppen A und B bzw. durch die Abwandlung kommerzieller DNA-Extraktionskits gebildet.

Tabelle 8: Aufstellung der verwendeten DNA-Extraktionsprotokolle (Gruppe A), der DNA-Extraktionskits (Gruppe B) sowie der abgewandelten DNA-Extraktionskits (Gruppe C). Die verschiedenen Methoden wurden auf die Eignung für die Extraktion von DNA aus Holz überprüft.

Methode/Kit	Autoren/Hersteller			
Gruppe A				
CTAB-Extraktion	Doyle und Doyle 1987			
PTB-Extraktion	Asif und Cannon 2005			
SDS-Extraktion	Volossiouk et al. 1995			
CTAB/SDS-Extraktion	N. Wischnewski			
Grı	прре В			
DNeasy [®] Plant Mini Kit	Qiagen, Hilden			
innuSPEED Plant DNA Kit				
innuSPEED Soil DNA Kit	Analytik Jena, Jena			
innuSPEED Stool DNA Kit				
peqGOLD Plant DNA Mini Kit	Peqlab Biotechnologie, Erlangen			
Nucleon TM PhytoPure TM Genomic DNA	GE Healthcare, Freiburg			
Extraction Kit	SE Realited e, Preiburg			
NucleoSpin [®] Soil Kit	Machery-Nagel, Düren			
Gruppe C				
PVP + DNeasy [®] Plant Mini Kit	Rachmayanti et al. 2006; Qiagen, Hilden			
CTAB + DNeasy [®] Plant Mini Kit	N. Wischnewski; Qiagen, Hilden			
PTB + DNeasy [®] Plant Mini Kit	Erickson et al. 2005; Qiagen, Hilden			
Modifiziertes DNeasy [®] mericon [™] Food Kit	N. Wischnewski; Qiagen, Hilden			

2.2.1.2.1 Durchführung der CTAB-Extraktion

Für die auf Doyle und Doyle (1990) basierende CTAB-Extraktionsmethode wurden 100 mg Holzmehl mit 1 ml CTAB-Puffer (2% CTAB, 1,4 M NaCl, 1% PVP, 20 mM EDTA, 100 mM Tris/HCl, pH 8, autoklaviert) versetzt. Weiter wurden der Suspension 50 µl DTT (1 M DTT in 10 mM NaAc-Lösung, sterilfiltriert) hinzugegeben. Darauf folgte die Inkubation des Gemischs im Thermoschüttler für 18 h bei 900 rpm und 55°C. Hierauf wurde die Lösung für 5 min bei 13.000 rpm zentrifugiert und der Überstand abgenommen. Dieser wurde im Anschluss mit 400 µl Chloroform versetzt und das gesamte Gemisch für 20 min bei 13.000 rpm und 4°C zentrifugiert. Nach der Zentrifugation wurde die obere Phase (400 µl) entnommen und ein weiteres Mal mit Chloroform gewaschen. Anschließend an diesen weiteren Waschschritt wurden wiederum 400 µl der oberen Phase abpipettiert und diese mit 1 ml Isopropanol (99,8%) versetzt. Für die Fällung der DNA musste die Lösung für 1 h bei -20°C gelagert werden. Zur Pelletierung der DNA folgte ein Zentrifugationsschritt von 15 min bei 13.000 rpm (RT). Nach Entfernung des Isopropanols wurde das zurückbleibende Pellet mit 1 ml Ethanol (76%) gewaschen (15 min bei 13.000 rpm (RT)). Das Ethanol wurde abgegossen und Restbestände mit dem Rotations-Vakuumkonzentrator Concentrator Plus, Eppendorf AG, Hamburg (20 min bei 30°C) entfernt. Das DNA Pellet wurde im Anschluss in 30 µl AE (10 mM Tris/HCl, 0,5 mM EDTA, pH 9) resuspendiert.

2.2.1.2.2 Durchführung der SDS-Extraktion

Aufbauend auf einer von Volossiouk et al. (1995) veröffentlichten Studie wurden zwei SDS-Extraktionspuffer (x% SDS, 0,14 M NaCl, 50 mM NaAc, pH 5,1) mit unterschiedlichen SDS-Konzentrationen (0,3 bzw. 1%) hergestellt. Die Extraktion der DNA erfolgte aus 100 mg Holzmehl. Der Verlauf der DNA-Extraktion ist der CTAB-Extraktion aus Punkt 2.2.1.2.1 zu entnehmen. Lediglich der Lysis-Puffer wurde durch einen der SDS-Extraktionspuffer ersetzt.

2.2.1.2.3 Durchführung der CTAB/SDS-Extraktion

Für die CTAD/SDS-Extraktion wurden zwei CTAB/SDS-Puffer hergestellt, die folgende Komponenten aufwiesen: 2% CTAB, 1% SDS, 1,4 M NaCl, 50 mM NaAc, 20 mM EDTA, 100 mM Tris/HCl. Der erste Puffer wurde, wie von Volossiouk et al. (1995) angegeben, auf einen pH-Wert von 5,1 eingestellt. Der zweite Puffer wurde ohne weitere pH-Wert Einstellung verwendet und wies somit einen pH-Wert von 7,2 auf. Die Nukleinsäure-Isolierung erfolgte aus 100 mg Holzmehl und verlief nach dem Protokoll aus Punkt 2.2.1.2.1.

2.2.1.2.4 Durchführung der PTB-Extraktion

Erickson et al. veröffentlichten im Jahr 2005 eine Studie, in der unter anderem ein DNA-Extraktionspuffer vorgestellt wurde, der sich insbesondere für die Extraktion von alter DNA eignet. Dieser Puffer wurde auf die Anwendbarkeit für die hier verwendeten Hölzer überprüft. Als Ausgangsmaterial für die Nukleinsäure-Isolierung dienten 100 mg Holzmehl. Dieses wurde mit 600 µl des Puffers versetzt (1% SDS, 10 mM Tris/HCl pH 8, 5 mM NaCl, 50 mM DTT, 20 mg/ml Proteinase K, 10 mM EDTA, 2.5 mM PTB) und für 18 h bei 37°C sowie leichtem Schütteln (250 rpm) in einem Brutschrank inkubiert. Die auf die Inkubation folgende Aufreinigung verlief wie in der CTAB-Extraktion (Punkt 2.2.1.2.1) beschrieben.

2.2.1.2.5 DNeasy[®] Plant Mini Kit in Kombination mit PVP

Rachmayanti et al. veröffentlichten im Jahr 2006 eine Studie, in der unter anderem eine modifizierte Version der DNeasy[®] Plant Mini Extraktion vorgestellt wurde. Für die DNA-Extraktion wurden wiederum 100 mg Holzmehl verwendet, das mit 600 µl Lysis-Puffer (AP1), dem 3,1% (w/v) PVP (K25) beigemengt waren, versetzt wurde. Die Suspension wurde über Nacht bei 65°C und 900 rpm im Thermoschüttler inkubiert. Im Anschluss folgte die DNA-Extraktion den Herstellerangaben.

2.2.1.2.6 Kombination des CTAB-Extraktionspuffers mit dem DNeasy[®] Plant Mini Kit In einer weiteren Variation des DNeasy[®] Plant Mini Kits wurde der Lysispuffer AP1 durch den CTAB-Extraktionspuffer aus Punkt 2.2.1.2.1 ersetzt. 100 mg Holzmehl wurden mit 600 μ l des Puffers versetzt und für 18 h bei 55°C im Thermoschüttler (900 rpm) inkubiert. Hierauf wurde mit der DNA-Extraktion nach den Angaben des Herstellers fortgefahren.

2.2.1.2.7 Kombination des PTB-Extraktionspuffers mit dem DNeasy[®] Plant Mini Kit Erickson et al. (2005) verwendeten den in Punkt 2.2.1.2.4 angeführten DNA-Extraktionspuffer in Kombination mit dem DNeasy[®] Plant Mini Kit. Daher wird jene Kombination in dieser Arbeit ebenfalls untersucht. Die Nukleinsäure-Isolierung wurde wie von den Autoren beschrieben durchgeführt. Lediglich die Menge des Ausgangsmaterials wurde von 200 mg auf 100 mg Holzmehl reduziert. Die Inkubation erfolgte wiederum für 18 h im Brutschrank (37°C und 250 rpm).

2.2.1.2.8 Modifizierte DNeasy[®] mericonTM Food Kit Extraktion

Für diese DNA-Isolierung kam ein angepasstes Protokoll der *mericon*TM-Extraktion zum Einsatz. Eine Anpassung lag darin, dass ein Prefilter der Firma Analytik Jena (Jena, Deutschland) verwendet wurde (Schritt 3, Tabelle 9). Dieser Filter diente zur vollständigen Trennung von festen und flüssigen Bestandteilen der Lysis-Mischung. Eine weitere Anpassung war, dass nach der zweimaligen Fällung der Lösung mit Chloroform, der größtmögliche Überstand, anstatt von nur 250 µl, abgenommen wurde. Je 250 µl wurden dann mit 1 ml PB-Puffer des Kits versetzt (Fällung der DNA). Im Anschluss an die DNA-Fällung wurden alle erhaltenen Lösungen einer Probe in 600 µl Schritten auf eine QIAquick Spin Säule gegeben (Schritt 11-14; Tabelle 9). Das vollständige Protokoll der DNA-Extraktion gibt die Tabelle 9 wieder. Als Ausgangsmaterial dienten 100 mg Holzmehl. Die Eluation der DNA erfolgte unter Verwendung von 50 µl des in dem Kit bereitgestellten Eluationspuffers (EB). Tabelle 9: Protokoll für die DNA-Extraktion mithilfe des modifizierten DNeasy[®] *mericon*™ Food Kits.

	Extraktionsprotokoll des modifizierten DNeasy [®] <i>mericon</i> TM Food Kits
1.	100 mg Holzmehl in einem 2 ml Eppi mit 1 ml Food Lysis Buffer und 2,5 µl Proteinase K
	Solution versetzen und gut durchmischen.
2.	30 min bei 60°C und 1.000 rpm in einem Thermoschüttler inkubieren und danach auf
	Raumtemperatur (20°C) herunterkühlen lassen.
3.	Gesamten Inhalt des Eppis auf einen Prefilter der Firma Analytik Jena übertragen.
4.	5 min bei 13.000 rpm zentrifugieren.
5.	700 µl Überstand in ein neues 2 ml Eppi pipettieren (möglichst ohne Feststoffe)
6.	500 µl Chloroform zu dem Überstand hinzufügen und gut vermischen (kräftig schütteln).
7.	15 min bei 13.000 rpm und 4°C zentrifugieren.
8.	Die klare obere Phase abnehmen (Vorsicht! Nichts von der Inter- oder Unterphase
	entnehmen. Ansonsten Lösung zurückführen und neu zentrifugieren!). Obere Phase
	wiederum mit 500 µl Chloroform versetzen und Schritt 7 wiederholen.
9.	Klaren Überstand in 250 µl Anteilen abnehmen und jeweils in ein neues 2 ml Eppi geben.
10.	Je 1 ml PB hinzugeben. Lösungen durch vorsichtiges Drehen und Rollen mischen.
	(Vorsicht DNA wird gefällt!)
11.	600 µl der Lösung auf eine QIAquick Spin Säule geben (Sämtliche Lösungen einer Probe
	werden in den folgenden Schritten auf einen Filter konzentriert.)
12.	1 min bei 17.900 x g zentrifugieren.
13.	Filtrat verwerfen.
14.	Schritte 11-13 mit den restlichen Lösungen, aber derselben Säule wiederholen.
15.	500 µl AW2 auf die QIAquick Spin Säule geben.
16.	1 min bei 17.900 x g zentrifugieren.
17.	Filtrat verwerfen. (Filter farbig = zusätzlicher Waschritt mit 500 µl Ethanol p.a.)
18.	Trockenzentrifugieren für 1 min bei 14.000 x g.
19.	QIAquick Spin Säule auf ein neues 1,5 ml-Tube setzen.
20.	30-100 μl EB auf den Filter geben.
21.	5 min bei Raumtemperatur inkubieren lassen.
22.	1 min bei 17.900 x g zentrifugieren.
23.	Schritt 20-22 wiederholen.

2.2.1.3 Invisorb[®] DNA CleanUp Kit

Unter Verwendung des Invisorb[®] DNA CleanUp Kits der Firma Stratec (Berlin, Deutschland) wird ein DNA-Eluat, das nach dem DNA-Extraktionsprozess noch störende Inhibitoren enthält, weiter aufgereinigt. Durch dieses Kit besteht weiterhin die Möglichkeit, DNA-Eluate, die durch eine zu groß gewählte Eluationsmenge einen geringen DNA-Gehalt aufweisen, aufzukonzentrieren. Das Protokoll für die Aufreinigung von DNA-Eluaten mit einem Volumen von 50-200 µl umfasst das Fällen der DNA, das Binden der DNA auf eine Silikamatrix, das Waschen der DNA mit zwei unterschiedlichen Puffern sowie die Eluation der DNA (Tabelle 10).

Tabelle 10: Protokoll für das Invisorb[®] DNA CleanUp Kit zur Aufreinigung von DNA-Eluaten, die mit Inhibitoren verunreinigt sind. Ausgangsmenge des DNA-Eluats: 50-200 µl.

	Protokoll für das Invisorb [®] DNA CleanUp Kit
1.	Vorsichtiges Mischen von 300 µl des Puffers P und dem vorhandenem DNA-Eluat in
	einem 1,5 ml Eppi.
2.	Gesamte Lösung auf den Spin Filter übertagen. Inkubation für 2 min bei Raumtemperatur.
3.	Zentrifugieren für 30 s bei 10.000 rpm.
4.	Filtrat verwerfen.
5.	500 μl des Wasch-Puffers I auf den Spin Filter geben und für 30 s bei 10.000 rpm
	zentrifugieren.
6.	Filtrat verwerfen.
7.	700 μl des Wasch-Puffers II auf den Spin Filter geben und für 30 s bei 10.000 rpm
	zentrifugieren.
8.	Filtrat verwerfen.
9.	Trockenzentrifugieren für 3 min bei 12.000-14.000 rpm.
10.	Spin Filter auf ein neues 1.5 ml Eppi. Zugabe von 30 µl, des auf 70°C vorgewärmten
	Eluation-Puffers, auf das Zentrum des Spin Filters. Inkubation bei Raumtemperatur für
	10 min.
11.	1 min bei 10.000 rpm zentrifugieren.

12. Schritt 10-11 wiederholen.

2.2.2 Quantifizierung der Nukleinsäurekonzentration

Unter Verwendung des NanoDrop[™] 2000 der Firma Thermo Scientific (Waltham, USA) konnte die Konzentration und die Reinheit der gewonnenen DNA gemessen werden. Die Messungen erfolgten nicht nur nach der DNA-Isolierung, sondern auch nach der Aufreinigung von PCR-Produkten.

Für die Messung wurde 1 µl des Eluats auf das Spektralphotometer aufgetragen und anschließend ein Wellenlängenscan von 350 bis 230 nm durchgeführt. Zur Quantifizierung der Nukleinsäure wurde die Absorption bei einer Wellenlänge von 260 nm bestimmt. Verunreinigungen durch Proteine oder phenolische Komponenten konnten durch die Bestimmung der Absorption bei den Wellenlängen 280 oder 230 nm Die Reinheit des **DNA-Eluats** nachgewiesen werden. wurde durch die Absorptionsverhältnisse 260/280 und 260/230 wiedergegeben. Das Verhältnis für 260/280 sollte je nach Ausgangsmaterial zwischen 1,8-2,0 liegen. Für 260/230 werden Werte zwischen 1,8-2,2 als Hinweis für "reine" DNA angesehen.

2.2.3 PCR zur Amplifikation der rDNA ITS-Region

Die PCR dient dazu, einen kurzen und genau definierten Abschnitt der DNA zu vervielfältigen. Das Prinzip und die einzelnen Schritte der PCR werden nachstehend kurz erläutert.

Ausgangspunkt für die Amplifizierung eines definierten Teilabschnitts eines DNA-Strangs ist die zuvor extrahierte DNA, das Template. Der im Template befindliche DNA-Doppelstrang wird zunächst durch Einsatz von Wärme (94-95°C) einer einmaligen Anfangsdenaturierung unterzogen. Die Dauer beträgt je nach Ausgangsprodukt und verwendetem Kit 1-5 min. Durch diesen Schritt wird sichergestellt, dass zu Beginn der Reaktion nur noch Einzelstränge vorliegen. Als Beginn eines sich wiederholenden Zyklus, folgt auf die Anfangsdenaturierung eine weitere Denaturierung bei gleicher Temperatur aber kürzerer Zeit. In der Regel dauert dieser Schritt 30 s. Anschließend werden innerhalb von 30 s und einer Temperatur von 40-60°C spezifische Oligonukleotide, sogenannte Primer, an die Einzelstränge angelagert (Annealing). Hierbei binden jeweils der sense-Primer (forward-Primer) sowie der antisense-Primer (reverse-Primer) an den komplementären DNA-Strang. Die spezifische Temperatur für die Anlagerung eines Primers bzw. eines Primerpaars ergibt sich aus deren Nukleotidzusammensetzung. Im nächsten Schritt, der Elongation, erfolgt die Synthese eines neuen Doppelstrangs. Die Synthese findet unter Verwendung eines

Enzyms, in der Regel der *Taq*-Polymerase, das dem grampositiven und thermophilen Bakterium *Thermus aquaticus (Taq)* entstammt, statt. Durch dieses Enzym und dem Einsatz freier Desoxynukleosidtriphosphate (dNTPs) wird bei einer Temperatur von 72°C ein neuer Doppelstrang gebildet. Die Dauer der Elongation hängt von der Länge des zu amplifizierenden Teilstücks ab. In der Regel können 30-60 s für 1000 bp angegeben werden. Denaturierung, Annealing und Elongation bilden einen kompletten Zyklus, durch den der gesuchte Teilabschnitt kopiert wird. Innerhalb einer PCR werden 30-40 Zyklen durchgeführt, wodurch ein exponentieller Anstieg des gesuchten Teilabschnitts zu verzeichnen ist. Nach Beendigung der Zyklusphase kann optional noch eine Endelongation (72°C; 1-15 min) durchgeführt werden. In diesem abschließenden Schritt werden nur partiell vervollständigte Teilbereiche endgültig synthetisiert. Zum Beenden sämtlicher Reaktionen wird das amplifizierte Produkt auf 4°C heruntergekühlt.

2.2.3.1 Qiagen Taq Core Kit

Für die Amplifizierung der aus Ästen, Blättern oder Splintholz gewonnenen DNA kam das Taq PCR Core Kit (Qiagen, Hilden, Deutschland) zum Einsatz. Angesetzt wurde je Probe ein Reaktionsmix von 12,5 µl. Der Reaktionsansatz enthielt Reinstwasser, Q-Solution, 10x Reaktionspuffer, dNTPs, Primer, Tag und DNA Template. Den jeweiligen Anteil der Lösungen sowie deren Endkonzentration gibt Tabelle 11 wieder. Die Amplifizierung des DNA-Fragments erfolgte nach einer Anfangsdenaturierung bei 94°C, gefolgt von 35 Zyklen, bestehend aus Denaturierung, Annealing und Elongation. Abschließend wurde eine Endelongation durchgeführt. Die Annealingtemperatur wurde anhand des verwendeten Primerpaars ermittelt. Die Schmelztemperaturen (Tm) der Primer wurden einem Online-Tool der Eurofins MWG GmbH entnommen (https://ecom.mwgdna.com/services/oligo/appl-oligos.tcl?ot=OLIGO PCR). Je nach Fragmentgröße wurde eine unterschiedliche Elongationszeit gewählt. Als Faustregel galt 60 s/kb (Tabelle 12). Zur Kontrolle der PCR-Bedingungen wurde sowohl eine Positiv-, als auch eine Negativ-Kontrolle mitgeführt. Für die Positiv-Kontrolle wurde ein Template genutzt, das unter den gegebenen Bedingungen zuverlässig amplifiziert wird. In der Negativ-Kontrolle wurde auf den Einsatz eines Template verzichtet. Alle Amplifikationen dieser Arbeit erfolgten in den Thermocyclern Tpersonal und TGradient der Firma Biometra[®] (Göttingen, Deutschland).

Reaktionsmix für 1 Probe (12,5 µl)				
Komponente	μl	Endkonzentration		
Reinstwasser	7,775	-		
Q-Solution	2,5	1x		
10x Reaktionspuffer	1,25	1x		
dNTP-Mix	0,25	0,2 mM		
forward-Primer	0,075	0,6 µM		
reverse-Primer	0,075	0,6 µm		
Taq-Polymerase	0,075	0,3 U		
Template	0,5	10-50 ng		

Tabelle 11: Pipettierschema für d	den Mastermix des Ta	aq PCR Core Kits.	Angegeben sind die
Komponenten, d	eren Menge sowie de	eren Endkonzentrat	ion.

Tabelle 12: PCR-Programm für das *Taq* PCR Core Kit. Die Annealingtemperatur ergibt sich aus den verwendeten Primern. Die erwartete Fragmentgröße bestimmt die Elongationszeit.

Schritt	Temperatur (°C)	Zeit (min)	
Anfangsdenaturierung	94	4	
Denaturierung	94	0,5	٦
Annealing	45-68	0,5	≻35 Zyklen
Elongation	72	60 s/kb	
Endelongation	72	7	
Lagerung	4	-	

2.2.3.2 KAPA2GTM Robust Hot Start PCR Kit

Die Amplifizierung von Kernholz-DNA oder Materialien, die starken Verarbeitungsschritten, wie Kochung und Trocknung, ausgesetzt waren, stellt besondere Ansprüche an das zu verwendende PCR-System. Die DNA liegt hier zumeist nicht nur in einem stark degradierten Zustand vor, sondern es ist zusätzlich mit der Anwesenheit von Inhibitoren, wie z.B. phenolischen Komponenten, zu rechnen. Aus diesem Grund wurde die entsprechende DNA mit dem KAPA2G[™] Robust Hot Start PCR Kit der Firma Kapa Biosystems (Boston, USA) amplifiziert. Dieses PCR Kit bietet die Möglichkeit, auf die Besonderheiten problematischer DNA-Templates zu reagieren.

Gewährleistet wird dies über den Einsatz verschiedener Puffer (A, B oder GC) sowie die Verwendung des KAPAEnhancers 1. Puffer A ist der empfohlene Puffer für DNA-Templates mit einem GC-Gehalt < 65%. Puffer B sollte insbesondere bei der Anwesenheit anionischer Inhibitoren verwendet werden. Der GC-Puffer ist speziell für DNA-Fragmente, die einen GC-Gehalt von > 65% aufweisen. Weiter kommt der Puffer bei Templates mit stabilen Sekundärstrukturen zum Einsatz. Der KAPAEnhancer 1 wird in Kombination mit Puffer A oder B verwendet und ist ein firmeneigenes Additiv, das zum einen die Reaktionseffizienz verbessert und zum anderen die Spezifität der Primer/Template Kombination erhöht. Welcher der zur Verfügung stehenden Puffer am besten für ein Template geeignet ist, muss individuell erarbeitet werden. In dieser Arbeit haben sich der Puffer A ohne Enhancer und der Puffer GC bewährt. Die Reaktionsansätze betrugen in allen Fällen 12,5 µl. Die Zusammensetzung (Menge und Endkonzentration) der verschiedenen Reaktionsansätze (Puffer A, B oder GC) ohne KAPAEnhancer 1 sind in Tabelle 13 wiedergegeben. Die Kombination der Puffer A oder B mit dem KAPAEnhancer 1 gibt Tabelle 14 wieder. Der Aufbau des PCR-Programms ist vergleichbar mit dem des Qiagen Taq PCR Core Kits. Lediglich die verschiedenen Denaturierungsschritte erfolgten bei 95°C. Weiterhin wurden 40 anstatt der 35 Zyklen durchgeführt. Für den Puffer GC gelten beim Annealing besondere Parameter, so dass die Annealingzeit von 30 s auf 15 s gesenkt werden musste (Tabelle 15). Für die Kontrolle der PCR-Bedingungen wurden wiederum eine Positiv- und eine Negativ-Kontrolle mitgeführt.

Tabelle 13: Pipettierschema für den Mastermix des KAPA2G [™] Robust Hot Start PCR Kits
(ohne Enhancer). Angegeben sind die Komponenten, deren Menge sowie deren
Endkonzentration.

Reaktionsmix für 1 Probe ohne Enhancer (12,5 µl)			
Komponente	μl	Endkonzentration	
Reinstwasser	9,1	-	
Puffer A, B oder GC	2,5	1x	
dNTP Mix	0,25	je 0,2 mM	
Primer for (100 µM)	0,05	0,4 µM	
Primer rev (100 µM)	0,05	0,4 µM	
KAPA2G [™] Robust Hot Start DNA Polymerase	0,05	0,25 U	
Template DNA	0,5	10-50 ng	

Tabelle 14: Pipettierschema für den Mastermix des KAPA2G[™] Robust Hot Start PCR Kits (mit Enhancer). Angegeben sind die Komponenten, deren Menge sowie deren Endkonzentration.

Reaktionsmix 1 Probe mit Enhancer (12,5 µl)			
Komponente	μl	Endkonzentration	
Reinstwasser	6,6	-	
Puffer <u>A oder B</u>	2,5	1x	
KAPAEnhancer	2,5	1x	
dNTP Mix	0,25	je 0,2 mM	
Primer for (100 µM)	0,05	0,4 µM	
Primer rev (100 µM)	0,05	0,4 µM	
KAPA2G [™] Robust Hot Start DNA Polymerase	0,05	0,25 U	
Template DNA	0,5	10-50 ng	

Schritt	Temperatur	Dauer
1. Vorheizen	95°C	Pause
2. Anfangsdenaturierung	95°C	4 min
3. Denaturierung	95°C	30 s
4. Annealing	45-68°C	15 oder 30 s 40 Zyklen
5. Elongation	72°C	60 s/kb
6. Endelongation	72°C	7 min
7. Kühlen	4°C	Pause

Tabelle 15: PCR-Programm für das KAPA2G[™] Robust Hot Start PCR Kit. Die Annealingtemperatur ergibt sich aus den verwendeten Primern. Durch Verwendung des Puffers GC ergibt sich eine Annealingzeit von15 s. Die erwartete Fragmentgröße bestimmt die Elongationszeit.

2.2.3.3 PCR-Primer

Alle in dieser Arbeit eingesetzten Primer stammten von der Firma biomers.net GmbH (Ulm, Deutschland). Die lyophilisierten Oligonukleotide wurden mithilfe von Reinstwasser auf eine Konzentration von 100 µM eingestellt.

Für den Aufbau der internen Sequenzdatenbank wurde der ITS-Bereich in zwei sich überlappenden Teilbereichen amplifiziert (Abbildung 4). Die Teilung erfolgte hierbei im 5.8S Gen. Für die Amplifikation des ITS1-Bereichs kamen die Primer ITS1.1 und ITS2.1 zum Einsatz (Hanssen et al. 2011). Für den ITS2-Bereich wurde die Primerkombination ITS3.1/ITS4 gewählt (White et al. 1990; Hanssen et al. 2011). Für beide Teilbereiche konnte eine Annealingtemperatur von 55°C ermittelt werden. Die Größe der ITS-Fragmente betrug ~380 bzw. ~445 bp, woraus sich eine Elongationszeit von 25-30 s ergab (Tabelle 16).

Die getrennte Amplifikation der ITS-Region erfolgte aus zwei Gründen. (1) Durch die getrennte Amplifizierung des ITS-Bereichs wird auf degradierte DNA reagiert. (2) Bei den Primern ITS2.1 und ITS3.1 handelt es sich um sogenannte "holzspezifische" Primer. Hierdurch wird die Vervielfältigung von eventuell vorhandener Pilz-DNA verhindert (Zhang et al. 1997).

Abbildung 4: Darstellung der rDNA ITS-Region inklusive der verwendeten ITS-Primer. ITS1.1 und ITS2.1 amplifizieren die ITS1-Region. Die ITS2-Region wird durch ITS3.1 und ITS4 generiert.

Tabelle 16: Primer zur Amplifikation der sich überlappenden Teilbereiche der ITS-Region. Die Tabelle gibt die Primernamen, die Primersequenzen, die Fragmentlängen der verschiedenen Kombinationen sowie deren Annealingtemperatur wieder.

Drimor	Primorecours 5: 2:	Fragment-	Anneal-
rimer	r miersequenz 5 -5	länge (bp)	ing (°C)
ITS1.1	GAA CCT GCG GAA GGA TCA T (Hanssen et al. 2011)	. 380	55
ITS2.1	GAC TCG ATG RTT CAC GGG (Hanssen et al. 2011)	~380	55
ITS3.1	GAC TCT CGG CAA CGG ATA TC (Hanssen et al. 2011)	. 115	55
ITS4	TCC TCC GCT TAT TGA TAT GC (White et al. 1990)	·~+4J	55

2.2.3.4 Nested-PCR

Die Nested-PCR (geschachtelte PCR) ist eine Methode mit der sowohl die Sensitivität als auch die Spezifität einer PCR deutlich erhöht wird. So können auch geringste Spuren von DNA nachgewiesen werden, die nach einer einfachen PCR kein detektierbares Amplifikat erbrachten. Um diesen Nachweis gewährleisten zu können, werden zwei PCR-Reaktionen nacheinander durchgeführt. Hierbei dient ein geringer Anteil des Reaktionsansatzes der ersten PCR als Template für die zweite PCR. Weiter hybridisiert in der zweiten PCR mindestens einer der verwendeten Primer innerhalb des Amplifikats der ersten PCR. Durch die Verschachtelung der verwendeten Primer wird eine starke und spezifische Anreicherung des gewünschten Teilbereichs der DNA erzielt.

Die Nested-PCR wurde wie nachfolgend erläutert durchgeführt. Für die erste PCR kam die Primerkombination ITS1.1/ITS4 zum Einsatz. Durch die Verwendung dieser Primerkombination wurde gezielt der ITS-Bereich amplifiziert (Abbildung 4, Punkt 2.2.3.3). Je nach Anforderung wurden in der zweiten PCR verschiedene Primerkombinationen eingesetzt. Um gezielt eine gesuchte Holzart nachzuweisen,

kamen die in dieser Arbeit entwickelten spezifischen Primer zur Anwendung. Zur Erarbeitung des ITS-Bereichs einer Probe wurde in der zweiten PCR der ITS1-(ITS1.1/ITS2.1) bzw. der ITS2-Bereich (ITS3.1/ITS4) amplifiziert (Abbildung 4, Punkt 2.2.3.3).

2.2.4 Agarose-Gelelektrophorese

Die Überprüfung der PCR-Amplifikate erfolgte über die Agarose-Gelelektrophorese. Die Agarose-Gelelektrophorese ermöglicht eine elektrophoretische Trennung von Substanzen, wie z.B. Nukleinsäuren oder Proteinen. Die Agarose, ein Polysaccharid der Rotalgengattungen *Gelidium* oder *Gracillaria*, bildet hierbei, in Abhängigkeit ihrer Konzentration, durch Aufkochen in einem Puffer unterschiedlich große Poren (1%ige Gele weisen Porengrößen um 150 nm, 0,15%ige Gele Porengrößen um 500 nm auf). Durch Anlegen eines elektrischen Felds an ein im Puffer befindliches Agarose-Gel, wandert die negativ geladene DNA in Richtung der Anode. Die Geschwindigkeit ist hierbei von der Länge und der Konformität der DNA abhängig. Kurze DNA-Fragmente wandern schneller als lange und Supercoiled-DNA schneller als lineare DNA.

Für die in dieser Arbeit erhaltenen DNA-Amplifikate wurden hauptsächlich 2,5%ige Agarose-Gele verwendet. Zur Herstellung eines solchen Gels wurden 2,5 g Agarose (Serva) in 100 ml 0,5%igem TAE-Puffer (TRIS-Acetat-EDTA) gelöst. Als Elektrophoresekammer wurde eine i-MUPID Mini Gelkammer (Cosmo Bio, Tokyo, Japan) eingesetzt. Als Laufpuffer innerhalb der Kammer diente ebenfalls 0,5%iger TAE-Puffer. Für das Beladen eines Gels wurden 2,5 µl PCR-Produkt mit etwa 0,5 µl Loading Buffer (0,25% Bromphenolblau, 30% Glycerin in TAE-Puffer) versetzt. Zur Ermittlung der Größe der DNA-Fragmente kamen DNA-Ladder verschiedener Firmen zum Einsatz. Die Elektrophorese wurde für 30 min bei 135 V durchgeführt.

Im Anschluss an die Agarose-Gelelektrophorese erfolgte die Anfärbung der Amplifikate. Dies wurde mithilfe von Ethidiumbromid realisiert (2 min in einem 0,00015 %igen Ethidiumbromidbad). Unspezifische Anfärbungen konnten durch einen anschließenden Waschschritt (20 min in Reinstwasser) entfernt werden. Die Auswertung des Gels erfolgte unter dem Dokumentationssystem GelDoc der Firma Bio-RAD Laboratories GmbH (München, Deutschland).

2.2.5 Aufreinigung

Zur Aufreinigung der PCR-Produkte wurde das QIAquick[®] PCR Purification Kit der Firma Qiagen (Hilden, Deutschland) verwendet. Durch eine Aufreinigung werden die zuvor eingebrachten Bestandteile der PCR, wie z.B. Primer, Enzyme, Nukleotide und Salze, entfernt. Die Entfernung der Bestandteile erfolgt durch folgende Schritte: Fällen der DNA, Binden der DNA auf eine Silikamatrix, zweimalige Verwendung eines Waschpuffers und Eluation der DNA (Tabelle 17). Der gesamte Prozess der Aufreinigung folgt dem Ziel, eine optimale Sequenzierung der DNA-Fragmente zu gewährleisten.

Tabelle 17: Protokoll für die Aufreinigung des PCR-Produkts mit dem QIAquick[®] PCR Purification Kit.

	Aufreinigung des PCR-Produkts
1.	PCR-Produkt und das 5fache Volumen PBI zusammenmischen (Probe muss gelb sein.
	Ist die Probe orange oder violett = Zugabe von 10μ l 3M Na-Acetat, pH 5)
2.	Probe auf die QIAquick Spin-Säule geben
3.	30 s bei 8.000 rpm zentrifugieren
4.	Filtrat erneut auf die Säule geben
5.	30 s bei 8.000 rpm zentrifugieren
6.	Filtrat verwerfen
7.	600 μl PE dazugeben
8.	30 s bei 8.000 rpm zentrifugieren
9.	Filtrat verwerfen
10.	2ter Waschschritt mit 600 µl PE
11.	30 s bei 8.000 rpm zentrifugieren
12.	Filtrat verwerfen
13.	Die Säule 1 min bei 13.000 rpm trockenzentrifugieren
14.	Die Säule auf ein neues 1,5ml Eppi setzen
15.	Zugabe von 35-50 µl EB (je nach Stärke der Ausgangsbande)
16.	2 min Inkubation bei Raumtemperatur
17.	1 min bei 10.000 rpm zentrifugieren
18.	Lagerung bei 4°C

2.2.6 Klonierung

Intention der Klonierung war, die intraindividuellen Unterschiede der ITS-Region zu untersuchen. Für die Versuche wurde das PCR Cloning^{plus} Kit der Firma Qiagen (Hilden, Deutschland) verwendet.

Der nachstehende Absatz gibt den allgemeinen Ablauf der Klonierung wieder. Im ersten Arbeitsschritt wird das mittels PCR amplifizierte DNA-Fragment, das im Anschluss an die PCR aufgereinigt wurde, in einen Plasmidvektor eingebaut. Diesen Vorgang bezeichnet man auch als Ligation. Die Ligation baut darauf auf, dass die mit der Taq-Polymerase amplifizierten PCR-Produkte grundsätzlich am 3'-Ende einen Adenin-Überhang aufweisen. Der im Klonierungs-Kit bereitgestellte pDrive Klonierungsvektor, der während der Ligation in linearisierter Form vorliegt, weist am 3'-Ende einen Uracil-Überhang auf. Durch diese komplementären Überhänge, den "sticky ends", wird eine Hybridisierung mit hoher Spezifität sichergestellt. Am Ende der Ligation liegt ein zirkularisiertes rekombinantes Plasmid vor. Im Anschluss an die Ligation folgt die Transformation. Das Plasmid wird hier in sogenannte kompetente Escherichia coli-Zellen transformiert. Die Zellen (Qiagen EZ competent Cells) sind im verwendeten Kit enthalten. Nach erfolgreicher Transformation werden die Zellen auf einem LB-Nährmedium ausplattiert und kultiviert. Nach Abschluss der Kultivierung wird, als Vorbereitung für die M13-PCR, eine sogenannte Blau-Weiß-Selektion vorgenommen. Mit der M13-PCR wird die Amplifizierung des eingebauten Fragments erzielt. Das erhaltene PCR-Produkt wird im Anschluss wieder aufgereinigt und sequenziert. Ziel der Klonierung ist, dass am Ende jede auf dem Selektivmedium gewachsene Bakterien-Kolonie nur genau eine Kopie der ITS-Region als Information trägt.

2.2.6.1 Ligation

Zur Durchführung der Ligation kam ausschließlich ein PCR-Produkt desselben Tags zur Anwendung, um hierdurch einen aus zu langer Lagerung resultierenden Abbau der Adenin-Überhänge am 3'-Ende zu verhindern. Vor der Ligation wurde das PCR-Produkt mithilfe des in Punkt 2.2.5 beschriebenen Protokolls aufgereinigt. Die Ligation erfolgte durch Herstellen einer Lösung, die sich aus dem PCR-Produkt, dem Ligations Master Mix und dem pDrive Cloning Vector zusammensetzte (Tabelle 18). Die Lösung wurde für 2 h bei 10°C im Thermocycler inkubiert.

Komponente	μl
PCR-Produkt	4
2x Ligation Master Mix	5
pDrive Cloning Vector	1

Tabelle 18: Pipettierschema für den Ligationsmix unter Verwendung des PCR Cloning^{plus} Kits.

2.2.6.2 Transformation

Im Anschluss an die Ligation folgte die Transformation des rekombinanten Vektors in kompetente *Escherichia coli*-Zellen. Die kompetenten Zellen (EZ Competent Cells) lagerten bei -80°C und wurden 20 min vor Ende der Ligation auf Eis aufgetaut. Für die Transformation wurde den Zellen 2µl des Ligationsprodukts hinzugegeben und die gesamte Lösung für 5 min auf Eis inkubiert. Auf die Inkubation folgte ein Hitzeschock, welcher für 40 s bei 42°C in einem Thermoblock ausgeführt wurde und ein Schließen der Zellen herbeiführte. Auf den Hitzeschock folgend, wurde die Lösung wieder für 2 min auf Eis gelagert. Im nächsten Schritt wurde der Lösung 250 µl SOC Medium (SOC = Super Optimal broth with Catabolite repression), das auf Raumtemperatur aufgewärmt wurde, hinzugegeben. Das durch das Kit bereitgestellte SOC-Medium (Trypton, Hefeextrakt, NaCl, KCl, Glucose, MgCl2, MgSO4, steriles Wasser) bewirkte hierbei eine Erhöhung der Transformations-Effizienz.

2.2.6.3 Kultivierung auf LB-Agarplatten

Im direkten Anschluss an die Transformation wurden die *E. coli*-Zellen auf LB-Agarplatten (LB = lysogeny broth) kultiviert. Für die Herstellung des LB-Mediums wurden 5 g Hefeextrakt, 10 g Trypton und 10 g NaCl in einem Liter Reinstwasser gelöst (Tabelle 19). Dem LB-Medium wurden vor der Weiterverarbeitung 250 ml entnommen. Diese Lösung diente später der Resuspendierung der gewachsenen Kolonien bzw. zur Herstellung von Flüssigkulturen. Die verbleibenden 750 ml des LB-Mediums wurden mit 11,25 g Oxoid Agar No. 1 (Thermo Scientific, Waltham, USA) versetzt und im Anschluss zusammen mit dem reinen LB-Medium für 30 min bei 121°C autoklaviert. Nach dem Autoklavieren wurde das LB-Agar-Medium auf ca. 50°C heruntergekühlt und, unter Verwendung von Sterilfiltern, mit 4 ml Ampicilin-Lösung (0,05 mg/ml) versetzt. War eine gute Verteilung der Ampicilin-Lösung gewährleistet, wurde das Medium auf Petrischalen ausgegossen. Wiesen die Agar-Platten einen ausreichenden

Grad an Aushärtung auf, so wurden für die spätere Blau-Weiß-Selektion (siehe 2.2.6.4) je 40 μ l X-Gal (5-bromo-4-chloro-indolyl- β -D-galactopyranoside; 40 mg/ml) mithilfe eines Drigalskispatels ausgestrichen. Nach dem Ausstreichen des X-Gals folgte das Ausplattieren von 30-50 μ l der transformierten Zellen je Platte. Die Platten wurden über Nacht bei 37°C im Inkubationsschüttler TH 30 der Firma Edmund Bühler (Hechingen, Deutschland) kultiviert.

Für die spätere Verwendung wurde auch dem reinen LB-Flüssigmedium ein Antibiotikum zugesetzt. Zum Einsatz kamen 1,25 ml Kanamycin (0,05 mg/ml), für dessen Zugabe wiederum ein Sterilfilter genutzt wurde.

Komponente	Menge
Hefeextrakt	5 g
Trypton	10 g
NaCl	10 g
Reinstwasser	11

Tabelle 19: Rezept für die Herstellung des LB-Mediums. (LB = lysogeny broth)

2.2.6.4 Blau-Weiß-Selektion

Die Selektion der rekombinanten Klone erfolgte mithilfe der Blau-Weiß-Selektion. Für eine optimale Selektion wurden die LB-Agarplatten, nach der Kultivierung im Inkubationsschüttler, für ca. 4-6 h bei 4°C gelagert.

Die Blau-Weiß-Selektion wird dadurch realisiert, dass das in den Vektor eingebaute DNA-Fragment die Codierung des *lacZ*-Gens unterbricht. So wird dieses Gen nicht exprimiert, was die Bildung des Enzyms β -Galactosidase, das X-Gal unter Freisetzung eines blauen Farbstoffs spaltet, verhindert. Somit erscheinen Kolonien, die rekombinante Vektoren enthalten, weiß. Kolonien ohne rekombinanten Vektor können das X-Gal spalten und zeigen dadurch eine blaue Färbung.

Aufgrund der zuvor erläuterten Vorgänge wurden von den LB-Agarplatten nur weiße Kolonien gepickt. Die einzelnen Kolonien wurden mittels einer sterilen Pipettenspitze aufgenommen und daraufhin in 20 µl LB-Flüssigmedium resuspendiert.

2.2.6.5 M13-PCR

Unter Anwendung der M13-PCR konnte anhand der Länge der amplifizierten Fragmente überprüft werden, ob das gewünschte Teilstück in die Vektoren eingebaut wurde. Als Template kamen Aliquote der resuspendierten Kolonien, die im Verhältnis 1:10 mit LB-Flüssigmedium verdünnt wurden, zum Einsatz. Für den PCR-Mastermix wurde der in Tabelle 11 wiedergegebene Ansatz verwendet. Für die Zelllyse der im Mastermix vorhandenen Bakterien wurde eine Anfangsdenaturierung von 98°C gewählt. Als Primer für die PCR kamen M13for (5'-GTA AAA CGA CGG CCA G-3') (5'-CAG GAA ACA GCT ATG AC-3') und M13rev zum Einsatz (Annealingtemperatur: 50°C). Die zu verwendende Elongationszeit ergibt sich bei der M13-PCR aus dem eingebauten Fragment und zwei, insgesamt ca. 250 bp großen, Reststücken des verwendeten Plasmidvektors (Tabelle 20). Im Anschluss an die zur Überprüfung durchgeführte Agarose-Gelelektrophorese erfolgte die Aufreinigung und Sequenzierung der PCR-Produkte mit der erwartenden Fragmentlänge.

Schritt	Temperatur (°C)	Zeit (min)	
Anfangsdenaturierung	98	4	
Denaturierung	94	0,5	٦
Annealing	50	0,5	> 35 Zyklen
Elongation	72	1/kb	
Endelongation	72	7	2
Kühlung	4	-	

Tabelle 20: PCR-Programm für eine M13-PCR. Für die PCR wurde das *Taq* PCR Core Kit (Qiagen) verwendet. Die erwartete Fragmentgröße bestimmt die Elongationszeit.

2.2.7 Sequenzierung und Sequenzanalyse

Die Sequenzierung der PCR-Produkte fand außer Haus bei der Firma Eurofins MWG Operon (Ebersberg, Deutschland) statt. Jede Einzelstrangsequenzierung erforderte 15 μ l des aufgereinigten PCR-Produkts. Die DNA-Konzentration der Lösung musste auf 5 ng/ μ l eingestellt werden. Die für die Sequenzierung benötigten Primer wurden dem Sequenzierservice zur Verfügung gestellt. Sie wiesen, bei einer Konzentration von 10 pmol/ μ l, ein Volumen von 15 μ l auf.

Die Auswertung der erhaltenen Rohdaten erfolgte mit den Programmen MEGA5

(Tamura et al. 2011) und ClustalW (Thompson et al. 1994). Die Rohdaten sowie die erstellten ITS-Sequenzen wurden weiterhin mit der GenBank des NCBI (http://www.ncbi.nlm.nih.gov/genbank/) abgeglichen. Aufgrund der International Nucleotide Sequence Database Collaboration (INSDC) werden durch einen Abgleich mit der Genbank ebenfalls weitere Datenbanken, wie das European Nucleotide Archive (ENA) vom Europäischen Bioinformatik-Institut und die DNA Data Bank of Japan (DDBJ) vom National Institute of Genetics, abgefragt. So ist sichergestellt, dass die Sequenzen stets mit dem größtmöglichen Datenpool verglichen werden.

2.2.8 Primerdesign für die rDNA ITS-Region

Auf Basis der eigenen ITS-Sequenzen, die für den Aufbau der Sequenzdatenbank erarbeitet wurden, und den ITS-Sequenzen, die in der Sequenzdatenbank GenBank hinterlegt waren, wurden für jede Holzart spezifische Primer entwickelt. Diese spezifischen Primer dienen dem Zweck, Holzarten auf Gattungs- oder Art-Niveau zu identifizieren. Für die Entwicklung dieser spezifischen Primer wurden Sequenzen der gesuchten Art sowie Sequenzen weiterer Arten in ein Sequenzalignment geladen. Bei den weiteren Arten handelte es sich z.B. um zusätzliche Arten der Gattung, Arten nah verwandter Gattungen und die entsprechenden CITES- oder Austauschhölzer. Anhand des Alignments wurden spezifische Unterschiede in den Sequenzen ermittelt und diese auf ihre Anwendbarkeit als Primer überprüft. Für die Eignung eines Sequenzfragments als Primer muss dieses folgende Voraussetzungen erfüllen. (1) Die Länge sollte 18-24 bp betragen. (2) Das Optimum für die Schmelztemperatur (T_m) liegt bei 52-58°C. (3) Der GC-Gehalt befindet sich zwischen 40-65%. (4) Am 3'-Ende sollten innerhalb der letzten fünf Basen nicht mehr als drei G oder C vorhanden sein. (5) Die Ausbildung von Hairpins sollte vermieden werden. (6) Ebenfalls muss eine geringe Neigung zur Ausbildung von Eigen- oder Cross-Dimeren gewährleistet sein. (7) Es müssen di-Nukleotid Wiederholungen vermieden werden (Repeats; max. vier Stück). (8) Abschließend sollten nicht mehr als vier gleiche Basen hintereinander gewählt werden (Runs).

Bei der Entwicklung der spezifischen Primer wurden die angeführten Voraussetzungen durch die Verwendung der Software Primer Premier 5 (Premier Biosoft International, Palo Alto, USA; (Lalitha 2000)) überprüft.

3 Ergebnisse

Dieser Teil der Arbeit stellt die Ergebnisse der Entwicklung eines geeigneten DNA-Extraktionssystems für Kern- und altes Splintholz (3.1), des Aufbaus einer internen rDNA ITS-Sequenzdatenbank (3.2), der Entwicklung von spezifischen Primern für die Holzartenidentifizierung (3.3) und die Validierung des entwickelten Schnelltests (3.4) dar.

Ab diesem Punkt werden für bestimmte Bereiche des ITS streng definierte Begriffe verwendet. So ist der ITS-Bereich definiert als 18S*+ITS1+5.8S+ITS2+26S* (* = Teilbereich). Im Gegensatz dazu setzt sich der ITS nur aus ITS1+5.8S+ITS2 zusammen. Der ITS1- bzw. der ITS2-Bereich ist definiert als 18S*+ITS1+5.8S* bzw. 5.8S*+ITS2+26S*. Wird der Begriff ITS1 bzw. ITS2 verwendet, so handelt es sich ausschließlich um die variablen Bereiche ohne die codierende Regionen (Tabelle 21). Weiter finden in diesem Abschnitt der Arbeit die sogenannten International Union of Pure and Applied Chemistry (IUPAC) Nukleotidcodes Verwendung. Durch diese Codes können Positionen dargestellt werden, an denen der eindeutige Nachweis einer Base nicht möglich ist. Der Buchstabe N steht für die Basen Adenin (A), Thymin (T),

Cytosin (C) oder Guanin (G). Das Y repräsentiert die Basen C oder T (Tabelle 22).

Bezeichnung	Bereiche
ITS-Bereich	18S*-ITS1-5.8S-ITS2-26S*
ITS	ITS1-5.8S-ITS2
ITS1-Bereich	18S*-ITS1-5.8S*
ITS2-Bereich	5.8S*-ITS2-26S*
ITS1	ITS1
ITS2	ITS2

Tabelle 21: Definition der Bezeichnung der einzelnen Internal Transcribed Spacer Bereiche. * = Teilbereich

IUPAC Nukleotid Code	Basen
R	A+G
М	A+C
W	A+T
S	G+C
Y	C+T
K	G+T
V	A+G+C
Н	A+C+T
D	A+G+T
В	G+T+C
N	A+G+C+T

Tabelle 22: IUPAC Nukleotidcode und zugehörige Basen.

3.1 Entwicklung eines geeigneten DNA-Extraktionssystems für Kern- und Splintholz

Der Schwerpunkt wird folgend auf die Ergebnisse für die Entwicklung eines geeigneten DNA-Extraktionssystems gelegt. Hierfür wurden unterschiedliche Protokolle aus wissenschaftlichen Artikeln sowie kommerzielle DNA-Extraktionskits auf ihre Verwendbarkeit geprüft und gegebenenfalls für die eigene Verwendung angepasst. Eine Übersicht der untersuchten Methoden gibt Tabelle 8 aus Punkt 2.2.1 wieder. Die Untersuchung der verschiedenen DNA-Extraktionsmethoden aus wissenschaftlichen Veröffentlichungen (vgl. Punkt 3.1.1) erfolgte teilweise im Rahmen einer (mit)betreuten Bachelorarbeit (Kulac 2012).

Für den Vergleich der verschiedenen Methoden kam bei allen Versuchen das gleiche Ausgangsmaterial zur Anwendung. Es bestand aus zwei Holzproben, die von der Max Cropp e.K., Hamburg, Deutschland, zur Verfügung gestellt wurden. Die erste Probe stellte ein Stück Splintholz von *Entandrophragma cylindricum* Sprague (Sprague), folgend bezeichnet als Ec, dar. Dieses Stück Splintholz zeichnete sich dadurch aus, dass es bereits Weiterverarbeitungsprozessen (Einschnitt und Trocknung) unterlegen hat, aber hieraus dennoch zuverlässig DNA extrahiert werden konnte. Weiterhin war die Amplifikation bzw. Sequenzierung der ITS-Region für diese Probe ohne Probleme möglich (Daten nicht gezeigt). Daher wurde dieses Stück Holz als Positiv-Kontrolle für

die DNA-Extraktionsversuche verwendet. Bei der zweiten Probe handelte es sich um ein Stück Kernholz von *Khaya ivorensis* A. Chev. (Ki). Die DNA der Probe Ki wurde in Vorversuchen mit dem DNeasy[®] Plant Mini Kit extrahiert. Die anschließende Amplifikation der erhaltenen DNA erwies sich aufgrund von Inhibitoren als unmöglich (Daten nicht gezeigt).

Die Extraktion der DNA erfolgte, je nach Autoren- oder Herstellerangaben, aus 50, 100 oder 200 mg Holzmehl. Die erhaltenen DNA-Eluate lagerten bei -80°C. Die Beurteilung der DNA-Extraktionen fand anhand von spektralphotometrischen Analysen statt. Des Weiteren wurde für jedes DNA-Eluat der jeweilige PCR-Erfolg ermittelt. Hierfür wurde die DNA mit der allgemeinen Primerkombination ITS1.1/ITS4 amplifiziert (2.2.3.3 und 3.2.1.2), da hierdurch sowohl die Holz-DNA als auch die DNA von im Holz befindlichen Pilzen amplifiziert wird. Die zusätzliche Amplifizierung der Pilz-DNA ermöglichte es, Aussagen darüber zu treffen, ob einerseits die Lysis für das Holz nicht ausreichte (nur Pilz wird amplifiziert) oder andererseits, eine Amplifizierung durch Inhibitoren verhindert wurde (keinerlei Amplifizierung möglich). In Anbetracht der verwendeten Primerkombination stellten in diesem Fall eine einzelne Holzbande (~700 bp), eine einzelne Pilzbande (~600 bp) und eine Doppelbande, bestehend aus einer Holz- und einer Pilzbande, einen PCR-Erfolg dar.

In einigen Versuchen wurde zur Amplifizierung der DNA das Qiagen *Taq* PCR Core Kit (siehe Kulac 2012) verwendet. Im Laufe der Versuche wurde dazu übergegangen, die Amplifizierung mit dem KAPA2G[™] Robust Hot Start PCR Kit der Firma Kapa Biosystems durchzuführen. Um die Vergleichbarkeit der Ergebnisse zu gewährleisten, wurden die Proben, deren Amplifizierung mit dem *Taq* PCR Core Kit stattfand, ein weiteres Mal mit dem KAPA2G[™] Robust Hot Start PCR Kit bearbeitet.

3.1.1 CTAB-, SDS- und PTB-Extraktion

3.1.1.1 CTAB-Extraktion

Nach Vollendung der DNA-Extraktion mittels der CTAB-Methode (Punkt 2.2.1.2.1), zeigt die spektralphotometrische Analyse, dass die Probe Ec einen DNA-Gehalt von 129 ng/µl aufweist. Das 260/280- bzw. das 260/230-Verhältnis liegt für diese Probe bei 1,38 bzw. 0,43. Mit 12,4 ng/µl ist der DNA-Gehalt der Probe Ki um das 10-fache niedriger. Auch die 260/280- bzw. 260/230-Verhältnisse zeigen mit 0,84 und 0,17 schlechtere Werte (Tabelle 23). Bei der Beurteilung der DNA-Kurven wird deutlich,

dass diese nicht den typischen Verlauf, der bei "reiner" DNA auftritt, aufweisen. Der typische Peak bei 260 nm ist nicht ausgebildet. Auch das "Tal", das bei 230 nm erwartet wird, fehlt völlig. Anstatt des sinusähnlichen Verlaufs, zeigt die Kurve eher einen linearen Verlauf (Abbildung 5).

Tabelle 23: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der CTAB-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4.
(Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec	129,0	2,58	1,87	1,38	0,43	38,70	✓
Ki	12,4	0,25	0,30	0,84	0,17	3,72	✓ (Pilz)

Abbildung 5: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der CTAB-Extraktion. Auftrag = 1 μl.

Im Anschluss an die Messungen erfolgte, mittels der Primerkombination ITS1.1/ITS4, die Amplifizierung der DNA (Tabelle 16). Zur Anwendung kamen folgende Template-Variationen: 1 μ l (Ec = 129 ng, Ki = 12,4 ng), 0,5 μ l (Ec = 64,5 ng, Ki = 6,2 ng) und je 1 μ l einer 1:10 (Ec = 12,9 ng, Ki = 1,24 ng), 1:100 (Ec = 1,29 ng,

Ki = 0,124 ng) und 1:1000 (Ec = 0,129 ng, Ki = 0,0124 ng) Verdünnung. Diese Primerkombination bzw. diese Template-Variationen (bezogen auf die Volumina) kamen, soweit nicht anders angegeben, für alle DNA-Extraktionsversuche zum Einsatz. Für die Probe Ec konnten alle fünf Templates, mit je einer Bande für Holz (~700 bp) und Pilz (~600 bp), amplifiziert werden. Für die Probe Ki war eine Amplifizierung bei der 1:100 bzw. der 1:1000 Verdünnung nicht möglich. Die anderen drei Template-Variationen zeigten lediglich eine Pilzbande (Tabelle 23, PCR-Erfolg).

3.1.1.2 SDS-Extraktion

Im Vergleich zur CTAB-Extraktion zeigt die SDS-Extraktion (Punkt 2.2.1.2.2) höhere DNA-Gehalte (Tabelle 24). Für die Probe Ec 0,3% SDS liegt der DNA-Gehalt bei $308,4 \text{ ng/}\mu\text{l}$ (260/280 = 1,14; 260/230 = 0,40). Probe Ec 1% SDS weist 515,5 ng/ μl (260/280 = 1.08; 260/230 = 0.33) auf. Betrachtet man die Absorptionswerte für die Messpunkte 260 und 280 nm, so wird deutlich, dass hier höhere Einzelwerte als bei der CTAB-Extraktion gemessen wurden. So ergeben sich für die 0,3%/1% SDS-Puffer Werte von 6,17/10,31 und 5,43/9,56. Auch die Probe Ki wies höhere Messwerte auf. Der DNA-Gehalt liegt bei dieser Probe, für den Puffer mit 0,3% SDS, bei 52,1 ng/µl (260/280 = 0,98; 260/230 = 0,31). Der Einsatz des Puffers mit 1% SDS ergab am Ende **DNA-Extraktion** einen DNA-Gehalt 75,2 ng/µl (260/280 = 0.93;der von 260/230 = 0,27). Betrachtet man die erhaltenen Absorptionskurven, so wird ein vergleichbarer Verlauf wie in der CTAB-Extraktion aus Punkt 3.1.1.1 deutlich. Lediglich Probe Ec 0,3% zeigt im Vergleich zu den anderen Proben eine Abweichung. Diese Abweichung zeichnet sich dadurch aus, dass diese Kurve ihr Maximum im Bereich von 230 nm ausbildet (Abbildung 6).

⁽Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; 0,3 bzw. 1% SDS-Konzentration; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec 0,3%	308,4	6,17	5,43	1,14	0,40	92,52	~
Ki 0,3%	52,1	1,04	1,06	0,98	0,31	15,63	-
Ec 1%	515,5	10,31	9,56	1,08	0,33	154,65	~
Ki 1%	75,2	1,51	1,63	0,93	0,27	22,56	-

Tabelle 24: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der SDS-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4.

Abbildung 6: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der SDS-Extraktion. SDS-Konzentration 0,3 bzw. 1%. Auftrag = 1 μl.

Eine Amplifizierung des ITS-Bereichs mittels der Primerkombination ITS1.1/ITS4 war für Probe Ki nicht möglich. Probe Ec zeigte für beide Pufferversionen (0,3 bzw. 1% SDS) lediglich bei der 1:1000 Verdünnung (Ec 0,3% = 0,308 ng; Ec 1% = 0,516 ng) eine schwache Doppelbande (Tabelle 24, PCR-Erfolg).

3.1.1.3 Kombination des CTAB- und des SDS-Puffers

Wird die DNA aus den Hölzern Ec und Ki nach der CTAB/SDS-Methode (Punkt 2.2.1.2.3) extrahiert, liegt der DNA-Gehalt des erhaltenen Eluats für die Probe Ec bei beiden Pufferversionen (pH 5,1 und pH 7,2) deutlich niedriger als bei den vorangegangenen DNA-Extraktionsversuchen. Die spektralphotometrische Analyse ergibt DNA-Gehalte von 28,6 (pH 5,1) und 36,9 ng/µl (pH 7,2). Probe Ki weist Werte von 31,2 (pH 5,1) und 24,1 ng/µl (pH 7,2) auf. Drei der vier Werte des 260/280 Absorptionsverhältnisses liegen zwischen 0,78 und 0,82. Lediglich Probe Ki pH 5,1 zeigt einen Wert von 1,26. Für das 260/230 Verhältnis ergeben sich Werte von

0,07-0,15 (Tabelle 25). Die Absorptionskurven zeigen zwischen 340 und 260 nm ihr Maximum bei 280 nm. Ab 260 nm steigen die Kurven stark an. Diesen Anstieg zeigt Probe Ki pH 5,1 ebenfalls, jedoch ist bei 230 nm ein kurzzeitiger Abfall der Absorption zu beobachten (Abbildung 7).

Tabelle 25: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der CTAB/SDS-Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der
Primerkombination ITS1.1/ITS4. Eingestellter pH-Wert des Extraktionspuffers: 5,1 und 7,2. (Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec pH 5,1	28,6	0,57	0,74	0,78	0,15	8,58	✓
Ki pH 5,1	31,2	0,63	0,50	1,26	0,07	9,36	-
Ec pH 7,2	36,9	0,74	0,90	0,82	0,15	11,07	✓
Ki pH 7,2	24,1	0,48	0,61	0,78	0,10	7,23	-

Abbildung 7: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der CTAB/SDS-Extraktion. Eingestellter pH-Wert des Extraktionspuffers: 5,1 und 7,2. Auftrag = 1 μl.

Die Amplifikation des ITS-Bereichs ergab für Probe Ki wiederum kein DNA-Fragment. Probe Ec konnte lediglich bei den Templates 0,5 und 1 μ l amplifiziert werden (Tabelle 25, PCR-Erfolg). Hierbei verdeutlichte eine stärkere Bande bei ca. 600 bp, dass mehr Pilz- als Holz-DNA amplifiziert wurde.

3.1.1.4 PTB-Extraktion

Die PTB-Extraktion stellt eine weitere Methode dar, mit der die DNA aus den Hölzern Ec und Ki extrahiert wurde (Punkt 2.2.1.2.4). Sie weist von den bisher dargestellten DNA-Extraktionsmethoden die besten 260/280-Verhältnisse auf. Die Proben Ec und Ki zeigen Werte von 1,64 und 2,20. Für das 260/230-Verhältnis konnte dagegen, mit Werten von 0,47 und 0,18, keine wesentliche Verbesserung erzielt werden. Die DNA-Gehalte der extrahierten Proben liegen mit 101,2 (Ec) und 8,3 ng/µl (Ki) bei vergleichbaren Werten, wie für die CTAB-Extraktion ermittelt (Tabelle 26). Trotz des verbesserten 260/280-Verhältnisses beider Proben, zeigen die Absorptionskurven immer noch keinen typischen Verlauf. Es liegt wiederum nur ein linearer Anstieg der Kurve vor (Abbildung 8).

Trotz der teilweise besseren Werte der spektralphotometrischen Analyse konnte, unter Verwendung der Primerkombination ITS1.1/ITS4, keines der DNA-Templates amplifiziert werden (Tabelle 26, PCR-Erfolg).

Tabelle 26: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der PTB-Extraktion
und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4.
(Ec = <i>Entandrophragma cylindricum</i> und Ki = <i>Khaya ivorensis</i> ; ✓ = Soweit nicht anders
angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec	101,2	2,02	1,23	1,64	0,47	30,36	-
Ki	8,3	0,17	0,08	2,20	0,18	2,49	-

Abbildung 8: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der PTB-Extraktion. Auftrag = 1 μl.

3.1.2 Überprüfung kommerzieller DNA-Extraktionskits

Weiter folgen die Ergebnisse, die mittels Einsatz verschiedener DNA-Extraktionskits diverser Hersteller erzielt wurden (Tabelle 27). Auf die Untersuchung des DNeasy[®] Plant Mini Kits der Firma Qiagen wurde verzichtet. Vorversuche verdeutlichten, dass sich dieses Kit für die Extraktion von DNA aus Kernholz nicht eignet (Daten nicht gezeigt). Die Ergebnisse werden zusammengefasst dargestellt, da keines dieser Systeme eine spätere Amplifizierung der DNA der Probe Ki ermöglichte. Bei den verwendeten Kits handelte es sich DNA-Extraktionssysteme für verschiedene um Ausgangsmaterialien, wie Pflanzen, Erde und Stuhl. Die Extraktion der DNA erfolgte wiederum aus 100 mg Holzmehl und verlief nach den Herstellerangaben. Eine Auflistung der verwendeten Kits, deren Kürzel sowie deren Hersteller gibt Tabelle 27 wieder.

Kit	Kürzel	Hersteller
innuSPEED Plant DNA Kit	iSP	
innuSPEED Soil DNA Kit	iSS	Analytik Jena, Jena, Deutschland
innuSPEED Stool DNA Kit	iSSt	
neaGOLD Plant DNA Mini Kit	nGP	Peqlab Biotechnologie, Erlangen,
pequoted i mult brar with first	por	Deutschland
Nucleon [™] PhytoPure [™] Genomic DNA	NPP	GE Healthcare, Freiburg, Deutschland
Extraction Kit	1,11	SE montane , montane, Douisemand
NucleoSpin [®] Soil Kit	NSS	Machery-Nagel, Düren, Deutschland

Tabelle 27: Auflistung der kommerziellen DNA-Extraktionskits inkl. des Produktnamens, des verwendeten Kürzels und des entsprechenden Herstellers.

Das innuSPEED Soil DNA Kit (iSS) erbrachte mit 2,1 ng/µl, den geringsten DNA-Gehalt für die Probe Ec. Mit nur 9,4 ng/ul liegt das innuSPEED Plant DNA Kit (iSP) in einem vergleichbaren Bereich für diese Probe. Die Verwendung der Kits Nucleon[™] PhytoPure[™] Genomic DNA Extraction (NPP), NucleoSpin[®] Soil (NSS) und peqGOLD Plant DNA Mini (pGP) ergab Werte zwischen 70,7 und 97,3 ng/ul. Der höchste DNA-Gehalt für Probe Ec wurde nach der Verwendung des innuSPEED Stool DNA Kits (iSSt) gemessen (299,1 ng/µl). Für Probe Ki weisen die gemessenen DNA-Gehalte eine wesentlich homogenere Verteilung auf. So liegen fünf der sechs untersuchten Kits zwischen 2,5 und 12,4 ng/µl. Lediglich das Kit NPP ermöglichte mit 61.2 ng/µl eine Steigerung des DNA-Gehalts. Die für die Proben Ec und Ki erhaltenen 260/230-Verhältnisse liegen mit 0,02-0,75 deutlich unter dem geforderten Wert von 1,8-2,2. Eine inhomogenere Verteilung der Werte ist bei dem Absorptionsverhältnis 260/280 zu beobachten. So ergeben sich für die Proben Ec und Ki unter Verwendung des iSS Kits negative Werte von -1,32 und -1,45. Diese negativen Verhältnisse resultieren aus den gemessenen Absorptionen (-0,03 und -0,04) bei der Wellenlänge von 280 nm. Deutlich über dem idealen Wert von 1,8-2,0 liegen die Verhältnisse von Ki pGP, Ec NPP und Ki NPP. Hier wurden Verhältnisse von 4,33, 3,64 und 4,31 errechnet. Mit 1,77, 1,76 und 1,94 zeigen die Proben Ec iSP, Ki iSP und Ec pGP die besten 260/280 Absorptionsverhältnisse (Tabelle 28).

Tabelle 28: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der kommerziellen DNA-Extraktionskits und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4.

 (Ec = Entandrophragma cylindricum und Ki = Khaya ivorensis; iSP = innuSPEED Plant DNA Kit, iSS = innuSPEED Soil DNA Kit, iSSt = innuSPEED Stool DNA Kit, pGP = peqGOLD Plant DNA Mini Kit, NPP = Nucleon[™] PhytoPure[™] Genomic DNA Extraction Kit, NSS = NucleoSpin[®] Soil Kit; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec iSP	9,4	0,19	0,11	1,77	0,55	4,70	\checkmark
Ki iSP	4,2	0,08	0,05	1,76	0,21	2,10	-
Ec iSS	2,1	0,04	-0,03	-1,32	0,02	1,05	\checkmark
Ki iSS	2,5	0,05	-0,04	-1,45	0,03	1,25	-
Ec iSSt	299,1	5,98	3,79	1,58	0,75	149,55	\checkmark
Ki iSSt	12,4	0,25	0,21	1,16	0,19	6,20	-
Ec pGP	97,3	1,95	1,01	1,94	0,44	48,65	\checkmark
Ki pGP	5,2	0,10	0,02	4,33	0,39	2,60	-
Ec NPP	70,7	1,42	0,39	3,64	0,32	35,35	\checkmark
Ki NPP	61,2	1,22	0,28	4,31	0,27	30,60	-
Ec NSS	87,3	1,75	1,27	1,38	0,55	43,65	\checkmark
Ki NSS	4,0	0,08	0,08	1,02	0,42	2,00	-

Für alle aufgezeigten DNA-Extraktionskits wurde wieder eine Amplifikation des ITS-Bereichs durchgeführt. Um die Vergleichbarkeit der Ergebnisse zu gewährleisten, kamen wiederum die in den vorherigen Punkten angeführten Template-Variationen zur Anwendung. Zusammenfassend ergibt sich für Probe Ki, dass in keinem Fall eine Amplifikation der DNA möglich war. Für Probe Ec war für alle Kits unter Verwendung der Templates 1 μ l, 0,5 μ l und der 1:10 Verdünnung, die Amplifikation einer Doppelbande zu verzeichnen. Die Holz- und Pilz-DNA wurden gleichermaßen amplifiziert. Für die 1:100 bzw. die 1:1000 Verdünnung wiesen lediglich Probe Ec iSP und Probe Ec iSS keinerlei Amplifikat auf (Tabelle 28, PCR-Erfolg).

3.1.3 Modifikationen kommerzieller DNA-Extraktionskits

3.1.3.1 Zugabe von PVP zum Lysis-Puffer des DNeasy[®] Plant Mini Kits

Nachfolgend werden die Ergebnisse der modifizierten DNeasy[®] Plant Mini Extraktion (Rachmayanti et al. 2006) präsentiert (Punkt 2.2.1.2.5). Zur Deutung bzw. besseren Vergleichbarkeit der Resultate, erfolgte parallel eine DNA-Extraktion mit dem

herkömmlichen Protokoll des DNeasy[®] Plant Mini Kits (Protokoll nach Herstellerangaben).

Tabelle 29: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der mit PVP versetzten DNeasy[®] Plant Mini Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4. Zum Vergleich werden zwei Eluate, die ohne PVP extrahiert wurden, dargestellt.

(Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec PVP	10,4	0,21	0,12	1,73	1,84	5,20	\checkmark
Ki PVP	5,6	0,11	0,09	1,31	1,32	2,80	-
Ec	15,1	0,30	0,19	1,56	1,85	7,55	\checkmark
Ki	2,7	0,05	0,04	1,45	-1,18	1,35	-

In Anbetracht der Ergebnisse wird deutlich, dass sich die erhaltenen Absorptionswerte beider Proben unter Verwendung von PVP im Lysis-Puffer verbessern oder nahezu gleich bleiben (Tabelle 29). Probe Ec PVP weist für das 260/280 Verhältnis eine Verbesserung von 1,56 auf 1,73 (260/230 \rightarrow 1,85 zu 1,84) auf. Für Probe Ki PVP ergibt sich eine Steigerung des 260/230 Verhältnisses von -1,18 auf 1,32 (260/280 \rightarrow 1,45 zu 1,31). Der DNA-Gehalt bei Probe Ec PVP hat sich von 15,1 auf 10,4 ng/µl verschlechtert. Im Gegensatz dazu steht die Steigerung der DNA-Konzentration bei Probe Ki PVP (2,7 auf 5,6 ng/µl). Die Absorptionskurven von Probe Ec PVP bzw. Ec zeigen den typischen Verlauf, der in Anwesenheit "reiner" DNA zu erwarten ist. Die Kurve von Probe Ki PVP deutet erstmalig Ansätze des typischen Verlaufs an. Zwar ist der erwartete Peak bei 260 nm zu beobachten, jedoch verläuft die Absorptionskurve zwischen 340 und 260 nm eher linear. Des Weiteren ist die Absorption bei 230 nm deutlich zu niedrig ausgeprägt. Insgesamt zeigt die Kurve, wie auch bei Probe Ki, einen unruhigen Verlauf, der typisch für sehr kleine Absorptionswerte ist (Abbildung 9).

Probe Ec PVP bzw. Probe Ec wiesen bei der Amplifikation des ITS-Bereichs für alle Templates eine Doppelbande auf. Für Probe Ki PVP oder Probe Ki war keine Amplifikation möglich (Tabelle 29, PCR-Erfolg).

Abbildung 9: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der mit PVP versetzten DNeasy[®] Plant Mini Extraktion. Zum Vergleich werden zwei Eluate dargestellt, die ohne PVP extrahiert wurden. Auftrag = 1 μ l.

3.1.3.2 Kombination des CTAB-Extraktionspuffers mit dem DNeasy[®] Plant Mini Kit

Der folgende Versuch wurde durchgeführt, um zu überprüfen, ob eine Kombination des CTAB-Extraktionspuffers mit dem DNeasy[®] Plant Mini Kit eine Verbesserung der Ergebnisse bewirkt (2.2.1.2.6). Für einen besseren Vergleich wurden wiederum die Werte für die unmodifizierte DNeasy[®]-Extraktion angegeben.

Durch die Verwendung des CTAB-Puffers konnte der DNA-Gehalt des Eluats von Probe Ec DN CTAB um das 4,6-fache, auf 68,8 ng/µl, gegenüber der Probe Ec gesteigert werden. Die Absorptionsverhältnisse fallen dagegen niedriger aus. Für das 260/280-Verhältnis ergibt sich ein Wert von 1,34 (260/230-Verhältnis = 0,53). Probe Ki DN CTAB zeigt ebenfalls eine Steigerung des DNA-Gehalts. Hier liegt der gemessene Wert bei 6,8 ng/µl. Mit 1,13 (260/280) und 0,83 (260/230) liegen die Werte für die Absorptionsverhältnisse wieder unter den geforderten (Tabelle 30).

Die Absorptionskurve von Ec DN CTAB steigt bei 300 nm an und weist zwischen 270

und 260 nm eine schwach ausgeprägte Schulter auf. Ein hierauf abfallender Verlauf, der bei 230 nm sein Minimum hat, ist nicht gegeben. Im Gegensatz hierzu steht die Kurve von Ki DN CTAB. Diese zeigt zwar aufgrund der niedrigen Absorptionswerte eine unruhige Struktur, jedoch ist der typische Verlauf "reiner DNA" zu erkennen. Lediglich das Minimum bei 230 nm ist schwach ausgeprägt. (Abbildung 10).

Tabelle 30: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der mit dem CTAB-Extraktionspuffer kombinierten DNeasy[®] Plant Mini Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4. Zum Vergleich werden zwei Eluate dargestellt, die mit dem klassischen DNeasy[®] Plant Mini Kit extrahiert wurden. (Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurde sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec DN CTAB	68,8	1,38	1,03	1,34	0,53	34,40	\checkmark
Ki DN CTAB	6,8	0,14	0,12	1,13	0,83	3,40	-
Ec	15,1	0,30	0,19	1,56	1,85	7,55	\checkmark
Ki	2,7	0,05	0,04	1,45	-1,18	1,35	-

Abbildung 10: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der mit dem CTAB-Extraktionspuffer kombinierten DNeasy[®] Plant Mini Extraktion Auftrag = 1 μl.

Die Amplifikation des ITS-Bereichs wies für alle Templates der Probe EC DN CTAB eine Doppelbande auf. Probe Ki DN CTAB zeigte in keiner Variation eine Bande (Tabelle 30, PCR-Erfolg).

3.1.3.3 Kombination des PTB-Extraktionspuffers mit dem DNeasy[®] Plant Mini Kit

Erickson et al. (2005) verwendeten den in Punkt 2.2.1.2.4 angeführten DNA-Extraktionspuffer in Kombination mit dem DNeasy[®] Plant Mini Kit. Jene Kombination wurde in dieser Arbeit ebenfalls untersucht (Punkt 2.2.1.2.7). Als Standard sind wiederum die Werte der klassischen DNeasy[®]-Extraktion wiedergegeben. Unter Verwendung des PTB-Extraktionspuffers konnte, im Vergleich zur klassischen DNeasy[®]-Extraktion, eine deutliche Steigerung der DNA-Konzentrationen erzielt werden. Ec DN PTB und Ki DN PTB weisen Konzentrationen von 158,1 bzw. 98,8 ng/µl auf. Betrachtet man die 260/280 (1,53-1,55) sowie die 260/230 (0,67-0,72) Verhältnisse der Proben Ec DN PTB und Ki DN PTB, so wird deutlich, dass diese in einem sehr ähnlichen Bereich liegen (Tabelle 31). Entgegen den erhöhten DNA-Gehalten bzw. den verbesserten 260/280-Verhältnissen steht der Verlauf der beiden Absorptionskurven. Diese zeigen bis 225 nm einen nahezu linearen Anstieg und fallen dann wieder ab (Abbildung 11).

Tabelle 31: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der mit dem PTB-Extraktionspuffer kombinierten DNeasy[®] Plant Mini Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4. Zum Vergleich werden zwei Eluate dargestellt, die mit dem klassischen DNeasy[®] Plant Mini Kit extrahiert wurden. (Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurde sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec DN PTB	158,1	3,16	2,06	1,53	0,72	79,05	\checkmark
Ki DN PTB	98,8	1,98	1,27	1,55	0,67	49,40	-
Ec	15,1	0,30	0,19	1,56	1,85	7,55	\checkmark
Ki	2,7	0,05	0,04	1,45	-1,18	1,35	-

Abbildung 11: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der mit dem PTB-Extraktionspuffer kombinierten DNeasy[®] Plant Mini Extraktion Auftrag = 1 µl.

Die Amplifikation des ITS-Bereichs mittels des Primerpaars ITS1.1/ITS4 ergab für die fünf Template-Variationen der Probe Ec jeweils die erwartete Doppelbande. Trotz der teilweise hohen DNA-Gehalte war für Probe Ki in keinem Fall eine Amplifikation möglich (Tabelle 31, PCR-Erfolg).

3.1.3.4 Verwendung eines modifizierten DNeasy[®] mericon[™] Food Kit Protokolls

Weiter werden die Ergebnisse der Verwendung eines modifizierten DNeasy[®] *mericon*[™] Food Kits (Mm) zur DNA-Extraktion aus Holz dargestellt. Das DNA-Extraktionsprotokoll wurde in der in Punkt 2.2.1.2.8 beschriebenen Weise verändert.

Für die Probe Ec Mm wurde nach Verwendung der modifizierten *mericon*[™]-Extraktion ein DNA-Gehalt von 108,0 ng/µl gemessen. Mit 1,70 liegt das 260/280 Verhältnis nur knapp unter dem geforderten Wert von 1,80. Für das 260/230 Verhältnis ergibt sich der Wert 1,30. Der DNA-Gehalt von Probe Ki Mm verzeichnet einen Wert von 34,1 ng/µl.

Die Absorptionsverhältnisse 260/280 und 260/230 liegen für Ki Mm bei 1,57 und 1,10 (Tabelle 32).

Die Absorptionskurve von Ec Mm zeigt den gewünschten Verlauf und bestätigt die guten Ergebnisse dieser DNA-Extraktion. Die Kurve von Ki Mm bildet zwar bei 260 nm ihr Maximum aus, der vorhergehende Anstieg ist jedoch nur schwach ausgeprägt. Ebenfalls fehlt das charakteristische Minimum bei 230 nm sowie der darauf folgende Anstieg bis 220 nm (Abbildung 12).

Tabelle 32: Spektralphotometrische Analyse von je 1 µl der DNA-Eluate der modifizierten DNeasy[®] *mericon*[™] Food Kit Extraktion und Darstellung des PCR-Erfolgs unter Verwendung der Primerkombination ITS1.1/ITS4.

⁽Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; ✓ = Soweit nicht anders angegeben, wurde sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
Ec Mm	108,0	2,16	1,27	1,70	1,30	54,00	✓
Ki Mm	34,1	0,68	0,43	1,57	1,10	17,05	√

Abbildung 12: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die Proben Ec (*Entandrophragma cylindricum*) und Ki (*Khaya ivorensis*) nach Durchführung der modifizierten *mericon*TM-Extraktion (Mm). Auftrag = 1 µl.

Die anschließende Amplifikation des ITS-Bereichs mit den fünf Template-Variationen $(1 \mu l = 108 \text{ ng}, 0.5 \mu l = 54 \text{ ng}, \text{Verdünnungen:} 1:10 = 10.8 \text{ ng}, 1:100 = 1.08 \text{ ng},$ 1:1000 = 0,108 ng) ergab für Probe Ec Mm in allen Fällen die erwartete Doppelbande. Mittels der Probe Ki Mm war es zum ersten Mal möglich, die Holz-DNA der Kernholzprobe zu amplifizieren (Tabelle 32, PCR-Erfolg). Bei den amplifizierten Template-Variationen handelte es sich um 1 µl (34,1 ng), 0,5 µl (17,05 ng) und die 1:10 Verdünnung (3,41 ng). Aufgrund dieser Ergebnisse wurde eine zweite PCR durchgeführt. Innerhalb dieser PCR wurden die holzspezifischen Primer ITS1.1/ITS2.1 zur Amplifizierung des ITS1-Bereichs verwendet. Eingesetzt wurden alle Templates, für die in der ITS1.1/ITS4-PCR eine Doppelbande (Holz- und Pilzbande) zu verzeichnen war. Die im Anschluss an die PCR durchgeführte Gelelektrophorese wies für alle eingesetzten Templates eine Bande in der erwarteten Länge von ~380 bp (Abbildung 13) auf. Um sicherzustellen, dass keine Kontamination vorlag, wurde jeweils ein PCR-Produkt der Probe Ec Mm und Ki Mm aufgereinigt und sequenziert. Der Abgleich der Sequenzen ergab, dass die DNA-Fragmente die jeweiligen Sequenzinformationen des ITS1-Bereichs von Entandrophragma cylindricum und Khaya ivorensis in sich trugen.

Eine Validierung der hier dargestellten DNA-Extraktionsmethode wird in Punkt 3.4 angeführt.

Abbildung 13: Amplifikationsprodukte der DNA-Eluate der Proben Ec und Ki nach Durchführung der modifizierten *mericon*[™]-Extraktion. Es wurde der ITS1-Bereich unter Verwendung der holzspezifischen Primer ITS1.1 und ITS2.1 amplifiziert. 1 = Ec Mm 1µl, 2 = Ec Mm 0,5 µl, 3 = Ec Mm 1:10, 4 = Ec Mm 1:100, 5 = Ec Mm 1:1000, 6 = Ki Mm 1 µl, 7 = Ki Mm 0,5 µl, 6 = Ki Mm 1:10. - = Negativ-Kontrolle, M =100 bp Ladder.

3.2 Aufbau einer rDNA ITS-Sequenzdatenbank

Der Aufbau der internen rDNA ITS-Sequenzdatenbank, der die Schritte DNA-Extraktion, Amplifizierung und Sequenzanalyse beinhaltet, wird im Folgenden ausführlich am Beispiel der Meliaceae dargestellt. Die Ergebnisse der weiteren Familien werden anschließend in gekürzter Form angeführt.

3.2.1 Meliaceae

Aus der Familie der Meliaceae wurden für die rDNA ITS-Sequenzdatenbank folgende Proben anhand von Blättern, Ästen und Splintholz untersucht: vierzehn *Swietenia macrophylla* King, sieben *Swietenia humilis* Z., neun *Swietenia mahagoni* (L.) Jacq., sieben *Cedrela odorata* L., sieben *Cedrela fissilis* Vell., zwei *Entandrophragma angolense* (Welw.) C. DC., sieben *Entandrophragma cylindricum* Sprague (Sprague), zwei *Khaya grandifolia* C. DC., zwei *Khaya nyasica* Stapf ex Baker f., sechs *Khaya senegalensis* (Desr.) A. Juss., eine *Khaya ivorensis* A. Chev., zwei *Carapa guianensis* Aubl. und vier *Toona sinensis* (A.Juss.) M.Roem. (Tabelle 6). Insgesamt erfolgte die Bearbeitung von 70 Individuen aus der Familie der Meliaceae. Für die Erarbeitung des ITS wurde in den meisten Fällen auf frisches Ausgangsmaterial, wie Äste und Blätter, zurückgegriffen, da die DNA im Splint- und Kernholz oft in degradierter Form vorliegt. Eventuell vorhandene Inhibitoren, wie phenolische Komponenten oder Polysaccharide, erschweren die Amplifikation zusätzlich.

3.2.1.1 Extraktion der DNA

Unter Verwendung des DNeasy[®] Plant Mini Kits konnte aus allen Proben erfolgreich die DNA isoliert werden. Der mit dem Spektralphotometer gemessene DNA-Gehalt lag zwischen 5 und 220 ng/µl. Bezüglich der Abhängigkeit der DNA-Quantität bzw. der DNA-Qualität zum verwendeten Material wurde deutlich, dass bei Verwendung von jungen Ästen die besten Ergebnisse erzielt wurden. Sowohl die Ausbeute als auch die Reinheit der DNA zeigten hier die besten Werte. Wurde dagegen Blattmaterial verwendet, konnte dies zwar einfacher und schneller verarbeitet werden, jedoch sank der DNA-Gehalt auf 20-40 ng/µl. Im Verlauf der Untersuchungen wurde bei der Verarbeitung von Blattmaterial ein angepasstes Protokoll verwendet. Die Anpassung des Protokolls erfolgte aufgrund der Tatsache, dass bei einigen Blattmaterialien am Ende der DNA-Extraktion ein grünliches Eluat beobachtet wurde. Diese grünliche Verfärbung resultierte daraus, dass das Chlorophyll nur unvollständig von der

Silikamatrix entfernt wurde. Dem Problem des verunreinigten Filters wurde dadurch entgegengetreten, dass beim Auftreten einer grünlichen Verfärbung (nach dem Waschen der Silikamatrix mit dem Waschpuffer AW; siehe Tabelle 7 aus Punkt 2.2.1, Schritt 9 und 10) solange zusätzliche Waschschritte mit 500 µl unverdünntem Ethanol p.a. durchgeführt wurden, bis keine Verfärbung des Filters mehr zu erkennen war. Im Anschluss wurde wieder mit Schritt 11 des Protokolls begonnen.

Die Verwendung von Splintholz ergab in Kombination mit dem DNeasy[®] Plant Mini Kit die geringste DNA-Quantität bzw. -Qualität. Hier konnten lediglich Konzentrationen von 5-20 ng/µl gemessen werden. Diese Konzentrationen wurden aber nur dadurch erzielt, dass die Eluationsmenge von 50 auf 15 µl gesenkt wurde. Da die DNA-Qualität für Splintholz-DNA am geringsten war, wurde für den Aufbau der rDNA ITS-Sequenzdatenbank weitestgehend auf dieses Material verzichtet.

3.2.1.2 Amplifikation der extrahierten DNA

Amplifikationen des ITS-Bereichs unter Verwendung der Primerkombination ITS1.1/ITS4 stellten sich nach wenigen Versuchen als ungeeignet heraus. Zwar konnte die PCR erfolgreich durchgeführt werden, doch die Ergebnisse waren in vielen Fällen nicht zufriedenstellend. Die Probleme mit dem Primerpaar ITS1.1/ITS4 stellten sich entweder nach der Gelelektrophorese oder auch erst nach der Sequenzierung heraus. Die mangelnde Eignung, die vor der Sequenzierung ersichtlich wurde, zeigte sich z.B. dadurch, dass die Primerkombination in vielen Fällen eine Doppelbande hervorrief. Abbildung 14 stellt die erhaltenen Doppelbanden, welche Längen von 700 (Holz) und 600 bp (Pilz) aufwiesen, dar. Eine Sequenzierung eines solchen PCR-Produkts ist ausgeschlossen, da sich die erhaltenen Signale überlagern. Weiterhin kam es bei der Verwendung der Primerkombination ITS1.1/ITS4 dazu, dass die im Template vorhandene Pilz-DNA so dominant war, dass die Amplifizierung des ITS-Bereichs vom Holz unterdrückt wurde. Dies wird durch die Anwesenheit nur einer Bande von ca. 600 bp deutlich (Proben 345, 394, 395, 427 und 471 aus Abbildung 15).

ITS1.1/ITS4

Abbildung 14: Darstellung von Doppelbanden, die unter Verwendung der Primer ITS1.1/ITS4 amplifiziert wurden. Über den Banden ist die jeweilige Herbarnr. wiedergegeben. x = zweites Eluat, + = Positiv-Kontrolle, - = Negativ-Kontrolle, M =100 bp Ladder.

Abbildung 15: Gelbild mit Pilzbanden unterschiedlichster Länge. Die Amplifikation erfolgte mithilfe der Primer ITS1.1/ITS4. Über den Banden ist die jeweilige Herbarnr. wiedergegeben. x = zweites Eluat, + = Positiv-Kontrolle, - = Negativ-Kontrolle, M = 100 bp Ladder.

Die Schwierigkeiten des Primerpaars ITS1.1/ITS4, die erst nach der Sequenzierung kenntlich wurden, werden im Weiteren genauer ausgeführt. In einigen Fällen ergab die BLAST-Analyse, dass es sich bei den vorliegenden Sequenzen um Fragmente der Pilz-DNA handelte. Das der ITS-Bereich eines Pilzes sequenziert wurde, lässt sich dadurch erklären, dass dieser eine Länge aufwies, welche dem ITS-Bereich der Holz-DNA ähnelte (Probe 393 aus Abbildung 15). Weiterhin ist hierfür anzuführen, dass die Pilz-DNA die Amplifikation der Holz-DNA unterdrückte. Ein weiterer Mangel war die Überlagerung der Sequenzierungssignale (Abbildung 16). Dieses trat auf, wenn das zu sequenzierende PCR-Produkt, sowohl Fragmente der Pilz-DNA als auch der Holz-DNA enthielt. Hervorgerufen wurde dies dadurch, dass die ITS-Bereiche der Pilz-und Holz-DNA wiederum identische Längen aufwiesen.

Abbildung 16: Beispiel für ein Chromatogramm, das mehrere Peaks an einer Position aufweist.

Aufgrund der angeführten Probleme wurde für alle Proben dazu übergegangen, den ITS-Bereich mithilfe der "holzspezifischen" Primer (Punkt 2.2.3.3 oder Hanssen et al. 2011) zu amplifizieren. Durch die Verwendung der "Holz-Primer" erfolgte die Amplifikation des ITS-Bereichs in zwei Fragmenten (ITS1-Bereich = \sim 350 bp; ITS2-Bereich = \sim 450 bp; Abbildung 17), die sich im 5.8S überschnitten. Die Verwendung dieser spezifischen Primer verhalf zu einer erfolgreichen Amplifikation aller 70 Proben der Meliaceae. Eine Verunreinigung der Sequenzierungsergebnisse durch Pilz-DNA wurde vollständig ausgeschlossen.

Abbildung 17: Amplifikation des ITS1- (ITS1.1/ITS2.1) und des ITS2-Bereichs (ITS3.1/ITS4). Über den Banden ist die jeweilige Herbarnr. wiedergegeben, x = zweites Eluat, + = Positiv-Kontrolle, - = Negativ-Kontrolle, M =100 bp Ladder.

3.2.1.3 Sequenzaufbereitung und Sequenzanalyse

Die mit dem OIAquick[®] PCR Purification Kit (Punkt 2.2.5) aufgereinigten PCR-Produkte wurden außer Haus bei Eurofins MWG Operon (Ebersberg, Deutschland) sequenziert. Pro Einzelstrangsequenzierung wurden dem Sequenzierservice 15 µl (5 ng/µl) des im Eluationspuffer gelösten PCR-Amplikons zur Verfügung gestellt. Für jedes zu untersuchende Individuum wurde der ITS1- bzw. der ITS2-Bereich, jeweils vom forward- sowie vom reverse-Primer ausgehend, sequenziert. Die Bearbeitung der Sequenzrohdaten erfolgte mit der Software MEGA5 (Tamura et al. 2011). Die erhaltenen Sequenzrohdaten des ITS1- bzw. des ITS2-Bereichs wurden jeweils zu einer Sequenz zusammengefasst (ITS1.1 \rightarrow ITS2.1; ITS3.1 \rightarrow ITS4). Durch die Überlappung der beiden Teilbereiche im 5.8S konnte daraufhin für 68 Proben je eine individuelle Gesamtsequenz des ITS-Bereichs erstellt werden (ITS1.1 \rightarrow ITS4). Lediglich für Probe 8 (Khaya grandifolia) und Probe 38 (Khaya nyasica) fehlen der Teilbereich des 18S sowie ein Teil des ITS1. Die fehlenden Bereiche der Proben 8 und 38 konnten auch nach mehrfacher Sequenzierung nicht erarbeitet werden.

Nachstehend werden die Längen des ITS der diversen Arten der Meliaceae angegeben. Um eine bessere Vergleichbarkeit der Ergebnisse mit anderen in der GenBank des NCBI hinterlegten Sequenzen gewährleisten zu können, erfolgt die Darstellung der Längen ohne die Teilbereiche von 18S und 26S. Für die untersuchten Vertreter der Meliaceae liegen die Längen des ITS zwischen 648 und 671 bp. Im Einzelnen ergeben sich die Längen der Arten wie folgt: 661 bp für Carapa guianensis, 657-660 bp für Cedrela odorata, 658-659 bp für C. fissilis, 663 bp für Entandrophragma angolense, 655 bp für E. cylindricum, 645 bp für Khaya grandifolia, 667 bp für K. ivorensis, 668 bp für K. nvasica, 668-669 bp für K. senegalensis, 670-671 bp für Swietenia humilis, 670-671 bp für S. macrophylla, 666 bp für S. mahagoni und 648 bp für Toona sinensis. Aufgrund der Tatsache, dass alle Individuen einen 5.8S mit der Größe von 162 bp aufweisen, resultieren die verschiedenen Längen des ITS aus interspezifischen bzw. intraspezifischen Unterschieden des ITS1 bzw. des ITS2. Wie in Tabelle 33 wiedergegeben, zeigt der ITS1 für C. guianensis eine Länge von 254-255 bp. Dagegen ist Cedrela odorata mit 249 bp und C. fissilis mit 248 bp anzugeben. In der Gattung Entandrophragma zeigen E. angolense und E. cylindricum Längen von 259 und 253 bp. Für K. grandifolia, K. ivorensis, K. nyasica und K. senegalensis treten Werte von 236, 258, 259 und 259-260 bp auf. Über die Länge des ITS1 von K. grandifolia ist keine abschließende Angabe möglich. Insgesamt wurden für diese Art zwei Proben untersucht (8 und 457). Nach mehrmaligem Sequenzieren stand für Probe 8 nur ein Teilbereich des ITS1 zur Verfügung (der 18S-Teilbereich fehlt vollständig). Probe 457 weist dagegen ein Indel von 23 bp auf (Abbildung 18, Alignmentposition 88-110). S. humilis und S. macrophylla haben eine identische Länge von 259-260 bp. S. mahagoni zeigt eine Größe von 260 bp. Der ITS1 von Toona sinensis ist mit 232 bp der kürzeste. Der ITS2 hat für C. guianensis, C. odorata, C. fissilis, E. angolense, E. cylindricum und die Gattung Khaya Längen von 244-245, 246-249, 248-249, 242, 240 und 247 bp. S. humilis und S. macrophylla haben wiederum identische Längen (248-250 bp). S. mahagoni hat einen kürzeren ITS2 von 244 bp. Im Gegensatz zum ITS1, weist Toona sinensis, mit 254 bp, den längsten ITS2 (Tabelle 33) auf. Die unterschiedlichen Längen des ITS1 bzw. des ITS2 innerhalb einer Art ergeben sich durch intraspezifische Unterschiede.

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Carapa guianensis	254-255		244-245	661	720
Cedrela odorata	249		246-249	657-660	716-719
Cedrela fissilis	248		248-249	658-659	717-718
Entandrophragma angolense	259		242	663	722
Entandrophragma cylindricum	253		240	655	714
Khaya grandifolia	236		247	645	704
Khaya ivorensis	258	162	247	667	726
Khaya nyasica	259		247	668	727
Khaya senegalensis	259-260		247	668-669	727-728
Swietenia humilis	259-260		248-250	670-671	729-730
Swietenia macrophylla	259-260		248-250	670-671	729-730
Swietenia mahagoni	260		244	666	725
Toona sinensis	232		254	648	707

Tabelle 33: Länge der unterschiedlichen Bereiche des ITS für die Familie der Meliaceae.Angaben in bp.

Abbildung 18 zeigt die Sequenzabfolge des jeweiligen ITS-Bereichs der 70 Individuen der Meliaceae. Das dargestellte Alignment wurde mithilfe von ClustalW (Thompson et al. 1994) berechnet. Innerhalb des Alignments sind die codierenden Regionen (18S, 5.8S und 26S) sowie die universellen Primer (ITS1.1, ITS2.1, ITS3.1 und ITS4) wiedergegeben. Einzelne Basen, die auch durch mehrmaliges Sequenzieren nicht eindeutig aufgelöst werden konnten, sind durch "Wobbles" (IUPAC Code, Tabelle 22 Seite 72) dargestellt. Die über dem Alignment befindlichen * weisen auf Positionen hin, die bei allen 70 Sequenzen identisch sind. Unter Verwendung der im Alignment abgebildeten Sequenzen wurde mithilfe des blastn-Algorithmus ein Vergleich mit GenBank-Sequenzen des NCBI durchgeführt (Altschul et al. 1997). Durch den Abgleich mit den Sequenzen der GenBank wurde die Identität einer Probe, wie auch die Spezifität der "Holzprimer" überprüft. Je nachdem, ob die entsprechende Art in der Datenbank hinterlegt war, ergaben sich für die einzelnen Sequenzen Homologien (Identity) von 98-100%. War die Art nicht hinterlegt, so war es in allen Fällen möglich, die Probe der entsprechenden Gattung zuzuordnen (Homologien von 91-95%).

cg49	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCC-GGCAGAACGACCCGCGAACTCGTGATCGAATGCACCCGCGCGG-GCGGATCGTC-GGGCG
cg80	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCC-GGCAGAACGACCCGCGAACTCGTGATCGAATGCACCCGCGCGG-GCGGATGGTC-GGGCG
co10	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCCGAACCGGTGAACGCACACGCGATGGCTAAGCGCGCGGCG
co23	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCGCCGAACCGGTGAACGCACACGCGATGGCTAAGCGCGCGGCG
co30	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCGAACCGGTGAACGCACACGCGATGGCTAAGCGCGCGGGG
co56	CAACCTCCCCAACCATCAT	
co71	CAACCTCCCCCAACCATCAT	
2071	CAACCTCCCCCAACCATCAT	
C082	CAACCT GCGGAAGGAT CAT	
C0452	GAACCTGCGGAAGGATCAT	TETCAAAACCTECC-CEGCACAAACCECECEAACCEGETGAACCECACACECEGATGECTAAGCECECEGEC
CIII	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CCGCAGAACGACCCGCCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf36	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CCGCAGAACGACCCGCCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf55	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CCGCAGAACGACCCGCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf606	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf607	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf608	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
cf609	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCCGCCGAACCGGTGAACGCACGCGCGG-GGAAAGGCGTCCGGCG
enta83	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCGGCGAACGCGTGAACCCACACGCGGGGGCGGGGTGCGTCCGGCG
enta192	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CGGCAGAACGACCGGCGAACGCGTGAACCCACACGCGGGGGCGGGGTGCGTCCGGCG
entc74	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGCAACGCGTGACTGCACACGCGGGGGGGGGG
entc76	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACGCGTGACTGCACACGCGGGGGCGGAGCGTCCGGGG
entc345	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACGCGTGACTGCACACGCGGGGGCGGAGCGTCCGGGG
entc393	CAACCTCCCCAACCATCAT	TETECAAACCTECC-CACCACAACCACCCCCCCAACCCCTCACTCCACACCCCCCCC
ente394	CAACCTCCCCAACCATCAT	
entcoj4	CARCETCCCCCARCATCAT	
ethesis	CARCETECCCCARCATCAT	
ence477	GAACCIGCGGAAGGAICAI	
Kng8		
kng45/	GAACCTGCGGAAGGATCAT	rgrcgaaacccgccc-ggcagaacgacccgcgaacrcgrgacccgatrgcacccgcggg-gcggarcg
khi134	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCG-CAGAACGACCCGCCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGATCGTC-GGGCG
khn38	i	
khn447	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGACCGTC-GGGCG
khs5	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGACCGAC-GGGCG
khs6	GAACCTGCGGAAGGATCAT	rgtcgaaacctgccccggcagaacgacccgcgaactcgtgaccgattgcaccgcgggggggg
khs35	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCGCGGGA-GCGGACCGTCCGGGCG
khs41	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGACCGTC-GGGCG
khs456	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGACCGTC-GGGCG
khs505	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCCCCGGCAGAACGACCCGCGAACTCGTGACCGATTGCACCCGCGGGG-GCGGACCGTC-GGGCG
sh209	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh210	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTCACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh211	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTCACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh212	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh213	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTCACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh235	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
sh423	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGG-GCGGACCGTC-CGGCG
smc2	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGG-GCGGACCGTC-CGGCG
smc3	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGG-GCGGACCGTC-CGGCG
smc18	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
smc19	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
smc33	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
smc224	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGACCGTC-CGGCG
smc225	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGG-GCGGACCGTC-CGGCG
smc226	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACGCCGCGAACTCGTGACCGACC
smc227	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGACC
smc:228	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCAAGCGCAGAAGCGCCGCGAACTCGTCACCGATCGCACCGCGGGG-GCGGACCCTC-CCCCC
smc249	GAACCTGCGCAAGCATCAT	TGTCGAAGCCTGCAAGGCAGAAGGACGCCGAAGTCGTCACCGATCGCACCCGCGGGG-GCGGACCGTC-CGGCG
smc251	GAACCTGCGCAAGCATCAT	
smc252	GAACCTGCGCAACCATCAT	
SINCZOZ	CAACCTCCCCCAACCATCAT	
smc385	CAACCIGCGGAAGGAICAI	
smn4	GAACCTGCGGAAGGATCAT	
smn/	GAACCTGCGGAAGGATCAT	
smnzi	GAACCTGCGGAAGGATCAT	TET CAAGCCTECE-CAGCACAACCCCCCCAACTCGTGACCCACCCCCCCCCCC
smn24	GAACCTGCGGAAGGATCAT	
smh40	GAACUTGUGGAAGGATCAT	
smn165	GAACCTGCGGAAGGATCAT	TETCEAAGCCTGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC
smh168	GAACCTGCGGAAGGATCAT	IGTCGAAGCCTGCG-CAGCAGCACCCGCCGAACTCGTGACCGATCGCACCCGCGGGCGCGCGC
smh175	GAACCTGCGGAAGGATCAT	TGTCGAAGCCTGCG-CAGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGGCGCGGGACCGTC-GGGCG
smh229	GAACCTGCGGAAGGATCAT	FGTCGAAGCCTGCG-CAGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGCGCGCGGACCGTC-GGGCG
ts57	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACCCGTAAACGCGCACGCGGGGG
ts450	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACCCGTAAACGCGCACGCGGGGG
ts451	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACCCGTAAACGCGCACGCGGGGG
ts610	GAACCTGCGGAAGGATCAT	TGTCGAAACCTGCC-CAGCAGAACGACCCGCGAACCCGTAAACGCGCACGCGGGGG
ruler	1	0
	100	17701
	105	1151
	1	

ITS1.1

		*	**	** *	* ** :	* *	* ****	*****	*****
cg49	CGCAGGCGTCCGGCGTCC	JGCCCTCGCGCGT	CCCGGG	-GGGCGGA	GACTCCGATCT	CTCC	CCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
cg80	CGCAGGCGTCCGGCGTCC	JGCCCTCGCGCGT	CCCGGG	-GGG <mark>C</mark> GG A (GACTTCGATCT	стсс	CCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
co10	CGCGAGCGCCCTGCGCCC	3GCCCCCGCTCGC	TGCGGG	GGG <mark>C</mark> G	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co23	CGCGAGCGCCCTGCGCCC	JGCCCCCGCTCGC'	TGCGGG	GGG <mark>C</mark> G	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co30	CGCGAGCGCCCTGCGCCC	JGCCCCCGCTCGC	TGCGGG	GGG <mark>C</mark> G	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co56	CGCGAGCGCCCTGCGCCC	JGCCCCCGCTCGC	TGCGGG	GGGCG	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co71	CGCGAGCGCCCTGCGCCC	3GCCCCCGCTCGC	TGCGGG	GGGCG	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co82	CGCGAGCGCCCTGCGCCC	JGCCCCCCGCTCGC	.TGCGGG	GGGCG	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
co452	CGCGAGCGCCCTGCGCCG	JGCCCCCGCTCGC	TGCGGG	GGG <mark>C</mark> G	-AGTATCGTCT	CGC-	-CCGCCGTGGCGA-	-AACAACG	AACCCCGGCGCG
cf11	CGCGAGCGCCCCGCGCCG	JGCCCCCGCTCGC	CGCGGG	GGG <mark>C</mark> G	-AGCATCGTCT	CTC-	-CCGCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
cf36	CGCGAGCGCCCCGCGCCG	JGCCCCCGCTCGC	CGCGGG	GGG <mark>C</mark> G	-AGCATCGTCT	CTC-	-CCCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
cf55	CGCGAGCGCCCCGCGCCG	GCCCCCGCTCGC	CGCGGG	GGGCG	-AGCATCGTCT	CTC-	-CCCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
C1606	CGCGAGCGCCCCTCGCCG	JGCCCCCGCTCGC	CGCGGG	GGGCG	-AGCATCGTCT	CGC-	-CCGCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
C160/	CGCGAGCGCCCCTCGCCG	JGCCCCCGCTCGC	CGCGGG	GGGCG	-AGCATCGTCT	CGC-	-CCGCCGCGCGCGA-	-AACAACG	AACCCCGGCGCG
C1608	CGCGAGCGCCCCTCGCCG	JGCCCCCGCTCGC	CGCGGG	GGGCG	-AGCATCGTCT	CGC-	-CCGCCGCGCGCGA-	-AACAACG	AACCCCGGCGCG
C1609	CGCGAGCGCCCCTCGCCG	GCCCCCGCTCGC	CGCGGG	GGGCG	-AGCATCGTUT	CGU-	-CCGCCGCGCGCGA-	-AACAACG	AACCCCGGCGCG
entass		JGCCCCCGACCGT	CGCGGGG	-GGGCGGG	SAGCGCCGTCT	CTUG	CCCCGCGAGGCGG	SAACAACG	AACCCCGGCGCG
enta192		GCCCCCGACCGT	CGCGGGG	GGGCGGG	SAGCGCCGFCF	Crce	CCCCGCGAGGCGG	SAACAACG	AACUUUGGUGUG
entc /4		TCCCCCGCCGC	CGCGGGG	GGGGCG	-AGCGCCGTCT	CTU-	CCCCGCGCGCGGCGA		AACCCCGGCGCGCG
entero		FICCOCCECCEC		GGGGGG	-AGCGCCGTCT	CTU-	CCCCGCGCGCGCGCGC		AACCCCCGGCGCGCG
en.c345		TUUUUUUUUUUUU		ccccc	-AGUGUUGIUI	ame_	CCCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC		
entcopo		TUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			AGCTCCGTCT	CIU-	CCCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC		AAUUUUUGGUGUG
entcossa -+na395		TUUUUUUUUUUUUU	CGCGGGG	ccccc-	* CCCCCCCCTCT	CIC-	CCCCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	JANCAACO	AACCCCCGGCGCGCG
ethesses		The concerned and the second sec				CIC-	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TAACAACC	AAUUUUUUUUUUUUU
Ences,		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCGGGG==			CLC-	CCCCGCGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	-AACAACC	AACCCCCGGCGCGCG
kba457	TCC	Percencedeceder	CCCGGGGILC		ACCTCAATCT	read	CCTCCCGCGCGCGA.	-AACAACC	AACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
khi 134		Peddoococcoccocc	CCCCCCCC	20000000000	ACCCGAATCT	adda	CCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	-AACAACC	AACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
khn38		GT	TCGCGGAA	ACCOTCCC	ACCTTAATCT	adad	CCTCCCCCCCCCCA	AACAACC	AACCCCCGGCGCG
khn447	CGCCCGCGTCCGGSGTC(GCCCCCCCCCCT	CCCGGGAC	GGGTGGG	ACCCTAATCT	cccc	CCTCCCGCGGCGA	AACAACG	AACCCCGGCGCG
khs5	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	RCCCCCCCCCCCCC	CCCGGGAC	REGTEGE	ACCTCAATCT	CCCC	CCTCCCGCGGCGA-	AACAACG	AACCCCGGCGCG
khs6	CGCCCGCGTCCGGCGTCC	GCCCCCGCGCGCGT	CCCGGGAC	GGGTGGGG	ACCTCGATCT	cccc	CCTCCCGCGGCGA-	AACAACG	AACCCCGGCGCG
khs35	CGCCCGCGTCCGGCGTCC	GCCCCCGCGCGCGT	CGCGGGAC	GGGTGGG	ACCTTAATCT	accc	CCTCCCGCGGCGA	AACAACG	AACCCCGGCGCG
khs41	CGCCCGCGTCCGGCGTCC	GCCCCCCCCCCCC	CCCGGGAC	GGGTGGG	ACCTCGATCT	cccc	CCTCCCGCGGCGA	AACAAC	AACCCCGGCGCG
khs456	CGCCCGCGTCCGGCGTCC	GCCCCCGCGCGT	CCCGGGAC	GGGTGGG	GACCTCGATCT	cccc	CCTCCCGCGGCGA	-AACAACG	AACCCCGGCGCG
khs505	CGCCCGCGTCCGGCGTCC	GCCCCCGCGCGT	CCCGGGAC	GGGTGGG	GACCTCGATCT	cccc	CCTCCCGCGGCGA	-AACAACG	AACCCCGGCGCG
sh209	CCCCGGCGTCCGGCGCCC	TCCCCCGCGCGT	CCCGGGC-	-CGGTCGG	GACCCCGGTCC	cccc	TCCCGCGGCGA	-AACAACG	AACCCCGGCGCG
sh210	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
sh211	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
sh212	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
sh213	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
sh235	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
sh423	CCCCGGCGTCCGGCGCCG	JTCCCCCGCGCGCGT	CCCGGGC-	CGGTCGG	ACCCCGGTCC	cccc	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smc2	CCCCGGCGYCCGGCGCCG	TCCCCCGCGCGT	CCCGGGC-	-CGGTCGGG	ACCCCGGTCC	CCCC	TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smc ₃		JTCCCCCGCGCGCGT	CCCGGGGC-	-CGGTCGGG	JACCCCGGTUU	2000	TCCCGCGCGCGA-	-AACAAUG	AACCCCGGCGCG
SMC10		TCCCCCGCGCGCG	CCCGGGGC-	CGGTCGGC	SACCCCGGTCC	2000	TOUCGUGGUGGUGA-	-AACAACG	AACCCCGGGGGGGGG
SWGTA		STCCCCCCGCGCGCGT		CGGTCGGC		0000	TCCCGCGCGCGA-	-AACAACG	AACUUUUUUUUUUU
SILCOO		STOCCCCGCGCGCG		-CGGI CGGC	CACCCCCGGICC	COCC	TUUUGUGUGUGA-	-AAUAAUG	
51110224		TUUUUUUUUUUUUU	CCCGGGGC-	-CGGTCGGC	CACCCCGGICC	0000	TUUUGUGGGGGGGG	AACAACG	AACCCCCGGCGCGCG
5mc225		TCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGGGGC-		CACCCCGGICC	CCCC	TCCCGCGGCGA	-AACAACG	AACCCCCGGCGCGCG
smc227		TCCCCCCCCCCCCCC	CCCGGGGC-		ACCCCCCTCC	0000	TCCCCCCCCCCA	-AACAACC	AACCCCCCCCCCCCCC
smc228		TCCCCCCCCCCCCCCC	CCCCCCCC-	-CGGTCGG	ACCCCGGTCC	cada	TCCCGCGCGGCGA	-AACAACC	AACCCCGGGGGGGG
smc249	CCCCGGCGCCCGGCGCGCC(TCCCCCGCGCGCGT	'ncccccc-	-CGGTCGG	ACCCCGGTCC	cccc	TCCCGCGCGCGA	AACAACG	AACCCCGGCGCG
smc251	CCCCGGCGCCCGGCGCCC	TCCCCCGCGCGCGT	CCCGGGC-	-CGGTCGG	ACCCCGGTCC	CCCC	TCCCGCGGCGA	AACAACG	AACCCCGGCGCG
smc252	CCCCGGCGCCCGGCGCCC	TCCCCCGCGCGT	CCCGGGGC-	-CGGTCGG	ACCCCGGTCC	cccc	TCCCGCGGCGA	AACAAC	AACCCCGGCGCG
smc385	CCCCGGCGTCCGGCGCCC	TCCCCCGCGCGT	CCCGGGGC-	CGGTCGG	GACCCCGGTCC	cccc	TCCCGCGGCGA	-AACAACG	AACCCCGGCGCG
smh4	CCCCGGCGTCCGGCGCCC	TCCCCCGCGCGCGC	ccccccc-	CGGAGGG	GACCCCGGTCC	cccc	C-TCCCGCGGCGA	-AACAACG	AACCCCGGCGCG
smh7	CCCCGGCGTCCGGCGCCC	TCCCCCGCGCGCGC	CCCGGGC-	CGGAGGG	ACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh21	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	ccccccc-	-CGGAGGGG	ACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh24	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	ccccccc-	CGGAGGG	ACCCCGGTCC	cccc	C-TCCCGCGGCGA.	-AACAACG	AACCCCGGCGCG
smh40	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	CCCGGGGC-	-CGGACGG	GACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh165	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	CCCGGGGC-	-CGGAGGG	GACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh168	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	CCCGGGGC-	-CGGAGGG	GACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh175	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	CCCGGGGC-	-CGGAGGG	GACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
smh229	CCCCGGCGTCCGGCGCCC	JTCCCCCGCGCGCGC	CCCGGGGC-	-CGGAGGG	ACCCCGGTCC	cccc	C-TCCCGCGGCGA-	-AACAACG	AACCCCGGCGCG
ts57	GAGCGCCCGGCGCCA	AGCCCCCGCCCGC	.CGCGGG	GGGCG	-AGCAACGTCT	CGC-	-CCGCCTCGGCGA-	-AACAACG	AACCCCGGCGCG
ts450	GAGCGCCCGGCGCCA	Feccecceccecec	CGCGGG	GGG <mark>C</mark> G	-AGCAACGTCT	CGC-	-CCGCCTCGGCGA-	-AACAACG	AACCCCGGCGCG
ts451	GAGCGCCCGGCGCCA	Feccecceccece.	CGCGGG	GGGCG	-AGCAACGTCT	CGC-	-CCGCCTCGGCGA-	-AACAACG	AACCCCGGCGCG
ts610	GAGCGCCCGGCGCCA	*ecccccccccccc	CGCGGG	GGGCG	-AGCAACGTCT	CGC-	-CCGCCTCGGCGA-	-AACAACG	AACCCCGGCGCG
ruier			130	140	150		160	4	80
	1			IT	<u>۶</u> 1				
				11	51				

Erge	bnisse	,

	** ******* *	**** *	** *******	******	**** ***	* **	*** *****	**
cg49	GTCCGCGCCAAGGAAAA-	-TCGAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	.G <mark>AC</mark> GGGGTG <mark>C</mark> G	GG-GGGA	TGCGTCGCCTT	CTTTCTGTAAGAAT
cg80	GTATGCGCCAAGGAAAA-	-TCGAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	.G AC GGGGG <mark>T</mark> G C G	GG-GG-A	TGCGTCGCCTT	CTTTCTGTAAGAAT
co10	AGCTGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCGGA	CACGGCGTGCG	AGCGGGA	CGCGTCGCCTT	CTTTCAACGAA-AA
CO23	AGCTGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCGCTCCC	-GCCGCCCCGGA	CACCCCCTCCC	AGCGGGGA Acccca	CGCGTCGCCT	CTTTCAACGAA-AA
co56	AGCTGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGTGCG.	AGCGGGGA	CGCGTCGCCT	CTTTCAACGAA-AA
co71	AGCTGCGCCAAGGAAAA	TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGTGCG	AGCGGGA	CGCGTCGCCTT	CTTTCAACGAA-AA
co82	AGCTGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGTGCG	AG <mark>C</mark> GGGA	CGCGTCGCCT	CTTTCAACGAA-AA
co452	AGCTGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGTGCG	AGCGGGA	CGCGTCGCCTT	CTTTCAACGAA-AA
cf36	AGCTGCCCCAAGGAAAA	-TCGAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGCGGGGA Acccca	CGCGTCGCCT	CTTTCCACCAA-AA
cf55	AGCCGCGCCAAGGAAAA-	TCAAACGAG	GAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	AGCGGGA	CGCGTCGCCTT	CTTTCGACGAA-AA
cf606	AGCCGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	AG <mark>C</mark> GGGA	CGCGTCGCCTT	CTTTCGACGAA-AA
cf607	AGCCGCGCCAAGGAAAA	-TCAAACGAG	AGAGCGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	AGCGGGA	CGCGTCGCCT	CTTTCGACGAA-AA
CI608	AGCCGCGCCAAGGAAAA	-TCAAACGAGA	AGAGCGCGCTCCC	-GCCGCCCCGGA		AGCGGGGA	CGCGTCGCCT	CTTTCGACGAA-AA
enta83	GKCCGCGCCAAGGAAAA	-CACAACGAG	GAGCGCGCTCCC	-GCCGCCCCCGGA	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		TGCGTCGCCT	CTTCCGACGAA-AA
enta192	GGCCGCGCCAAGGAAAA	-CGCAACGAG	GAGCGCGCTCCC	-GCCGCCCCGGA	CACGGTGCGCG	CGCGGGA	TGCGTCGCCTC	CTTCCGACGAAATA
entc74	AGCCGCGCCAAGGAAAA	-CCGAACGAG	GGAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	CGCGGGA	TGCGTCGCCT	CTCCGAACGAA-TG
entc76	AGCCGCGCCAAGGAAAA	-CCGAACGAG	GGAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	CGCGGGA	TGCGTCGCCT	CTCCGAACGAA-TG
entc345	AGCCGCGCCCAAGGAAAA	-CCGAACGAG	GAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	CGCGGGGA	TGCGTCGCCTT	CTCCGAACGAA-TG
entc394	AGCCGCGCCAAGGAAAA	-CCGAACGAG	GAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCGCG	CGCGGGGA	TGCGTCGCCT	CTCCGAACGAA-TG
etnc395	AGCCGCGCCAAGGAAAA	-CCGAACGAG	GAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	CGCGGGA	TGCGTCGCCTT	CTCCGAACGAA-TG
entc477	AGCCGCGCCAAGGAAAA	-TCGAACGAG	GGAGAGCGCTCCC	-GCCGCCCCGGA	CACGGCGCGCG	CGCGGGA	TGCGTCGCCT	CTCCGAACGAA-TG
khg8	GTCCGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCTT	CTT-CGATCGTAAT
kng457 khi134	GTCTGCGCCAAGGAAAA	-TCTAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG		TGCGTCGCCT	CTT-CGATCGTAAT
khn38	GTCCGCGCCAAGGAAAA-	TCAAACGGG	GAGCGCGCTCCC	-GCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCTT	CTT-CGATCGTAAT
khn447	GTYCGCGCCAAGGAAAA	-TCAAACGGG2	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCTT	CTT-CGATCGTAAT
khs5	GTCCGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCT	CTT-CGATCGTAAT
khs6 khc35	GTCCGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCT	CTT-CGATCGTAAT
khs41	GTCTGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCGCG	CG-GG-C	TGCGTCGCCT	CTT-CGATCGTAAT
khs456	GTCCGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCTT	CTT-CGATCGTAAT
khs505	GTCCGCGCCAAGGAAAA	-TCAAACGGG	AGAGCGCGCTCCC	CGCCGCCCCGGA	AACGGCGCGCG	CG-GG-C	TGCGTCGCCTT	CTT-CGATCGTAAT
sh209	GTCCGCGCCAAGGAAAA	TCAAACGAG	CAAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGGT	TGCGCCGCCTT	CTTTCGATCGAAAA
sh210	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG		TGCGCCGCCT	CTTTCGATCGAAAA
sh212	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTT	CTTTCGATCGAAAA
sh213	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTI	CTTTCGATCGAAAA
sh235	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG		TGCGCCGCCTI	CTTTCGATCGAAAA
smc2	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCT	CTTTCGATCGAAAA
smc3	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTT	CTTTCGATCGAAAA
smc18	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	.GACGGGCCGCG	CGCGGGG	TGCGCCGCCTI	CTTTCGATCGAAAA
smc19	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGGC	TGCGCCGCCTT	CTTTCGATCGAAAA
smc224	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG		TGCGCCGCCT	CTTTCGATCGAAAA
smc225	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGT	TGCGCCGCCTT	TCTTTCGATCGAAAA
smc226	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGC	TGCGCCGCCTT	CTTTCGATCGAAAA
smc227	GTCCGCGCCAAGGAAAA		GAAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGGC	TGCGCCGCCTT	CTTTCGATCGAAAA
smc223	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGGC	TGCGCCGCCT	CTTTCGATCGAAAA
smc251	GTCCGCGCCAAGGAAAA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTT	TCTTTCGATCGAAAA
smc252	GTCCGCGCCAAGGAAAA	TCAAACGAG	GAAGCGCGCTCCC	-GCCGCCCCGGA	.GACGGGGCCGCG	CGCGGGC	TGCGCCGCCTT	CTTTCGATCGAAAA
smc385	GTCCGCGCCAAGGAAAA	TCAAACGAG	SAAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGGC	TGCGCCGCCTT	CTTTCGATCGAAAA
smin4	GGCCGCGCCAAGGAAGA		AAGCGCGCTCCC		CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCGGGGG	TGCGCCGCCT	CTTTCGACCGAAAA
smh21	GGCCGCGCCAAGGAAGA	TCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTT	CTTTCGACCGAAAA
smh24	GGCCGCGCCAAGGAAGA	ATCAAACGAG	GAAGCGCGCTCCC	-GCCGCCCCGGA	.GACGGGCCGCG	CGCGGGC	TGCGCCGCCTI	CTTTCGACCGAAAA
smh40	GGCCGCGCCAAGGAAGA	ATCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGG	TGCGCCGCCTT	CTTTCGACCGAAAA
smn165 smh162	GGCCGCCCCAAGGAAGA	ATCAAACGAG	SAAGUGUGUTUUU	-GCCGCCCCGGA	GACGGGGCCGCG	CGCGGGGC	TGCGCCGCCT1	CTTTCGACCGAAAA
smh175	GGCCGCGCCAAGGAAGA	ATCAAACGAG	SAAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGGC	TGCGCCGCCTI	CTTTCGACCGAAAA
smh229	GGCCGCGCCAAGGAAGA	ATCAAACGAG	AAGCGCGCTCCC	-GCCGCCCCGGA	GACGGGCCGCG	CGCGGGG	TGCGCCGCCTT	CTTTCGACCGAAAA
ts57	AGCTGCGCCAAGGAAAA	TCAAACGAG	GAGCGCGCTCCC	-GCCGCCCCGGA	CACGGAGCGCG	AG <mark>C</mark> GGGA	TGCGTCGCCTT	CTTTCAACGAA-AA
ts450	AGCTGCGCCAAGGAAAA	-TCAAACGAG	GAGCGCGCTCCC	-GCCGCCCCGGA	CACGGAGCGCG	AGCGGGA	TGCGTCGCCTT	CTTTCAACGAA-AA
ts610	AGCTGCGCCAAGGAAAA	-TCAAACGAG	GAGCGCGCTCCC	-GCCGCCCCGGA	CACGGAGCGCG	AGCGGGGA	TGCGTCGCCT	CTTTCAACGAA-AA
ruler		210	220			260		
				ITC1				
				1151				

	* ****	*****	***************************************	******
cq49	-CCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cq80	-CCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
co10	TCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
co23	TCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
CO30	TCTAAAAC	GACTCTCGGCAACGGATATC	TCCCCTCTCCCATCCATCAACAACCTACCCAAATCCCATACTTCCTCAAATTCCACAAA	CCCGTGA
2050	TOTAAAAO	CACTOTOGOCAACGOATATO		CCCGTGA
71	TOTAAAAC	Chamanagaahhaagaamhma		CCCGTGA
2071	TCTAAAAC	GACTCTCGGCAACGGATATC		CCCGTGA
C082	TUTAAAAU	GACTUTUGGUAAUGGATATU	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
co452	TCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf11	CCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf36	TCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf55	CCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf606	CCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf607	CCTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
cf608	ССТААААС	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACCTAGCGAAATGCGATACTTGCTGAATTGCAGAAT	CCCGTGA
cf609	CCTAAAAC	GACTOTOGGCAACGGATATO	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGCTGTGAATTGCAGAAT	CCCGTGA
enta83	TCCAAAAC	CACTCTCCCCCAACCCATATC	TCGCCTCTCCCATCATCAACAACCTACCCAAATCCCATACTTCCTCAAATTCCACAAA	CCCGTGA
opto102	TCCAAAA	CACTCTCCCCAACCCATATC		CCCCTCA
encar 92	TOCANANO	Ch CH CH CGGCAACGGATAT C		CCCGTGA
ente74	TCCAAAAC	GACTOTOGGCAACGGATATO		CCCGTGA
entc/6	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATCAACAACGTAGCGAAATGCCATACTTGGTGTGAATTGCAGAAT	CCCGTGA
entc345	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
entc393	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
entc394	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
etnc395	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
entc477	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khq8	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khq457	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGCTGTGAATTGCAGAAT	CCCGTGA
khi134	-CTAAAAC	GACTOTOGGCAACGGATATO	TCGCCTCTCGCATCGATGAGAGACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khn38		CACTCTCCCCCAACCCATATC		CCCGTGA
khp447	-CTANAAC	CACTOTOGGCAACGGATATO		CCCCTCA
kiiii447		GACTCTCGGCAACGGATATC		CCCGTGA
Knss	-CIAAAAC	GACICICGGCAACGGATATC	ICGGCICICGCAICGAIGAAGAACGIAGCGAAAIGCGAIACIIGGIGIGAAIIGCAGAAI	CCCGIGA
khs6	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCCATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khs35	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khs41	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khs456	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
khs505	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
sh209	ACTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
sh210	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACCTAGCGAAATGCGATACTTGCTGAATTGCAGAAT	CCCGTGA
sh211	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
ch212	-CTAAAAC	CACTCTCCCCAACCCATATC	TCGCCTCTCGCATCGATGAAGAACCTAGCGAAATCCGATACTTGCTGTGAATTCCAGAAT	CCCGTGA
ah212	CTARAC	CACTOTOGGCAACGGATATO		CCCGIGA
-1025		GACICICGGCAACGGATATC		CCCGIGA
snz35	ACTAAAAC	GACTETEGGEAACGGATATE	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
sn423	ACTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCCATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc2	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc3	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc18	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc19	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc33	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc224	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc225	ACTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smc226	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAAATTGCAGAAT	CCCGTGA
smc227	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGCTGTGAATTGCAGAAT	CCCGTGA
smc228	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGCCTCTCGCATCGATCAAGAACGTACCGAAATGCGATACTTGGTGTGAATTGCAGAA	CCCGTGA
smc249	-CTAAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCCATACTTCCTCCAAATGCACAAT	CCCCTCA
smc251	-CTAAAA	CACTCTCCCCCAACCCATATC	TCCCCTCTCCCATCCATCAACAACCTACCCAAAACGCCATACTTCCTCCACCACAAT	CCCGTGA
emc252	-0783320	CACTCTCCCCCAACGGATATC	TCCCCTCTCCCATCATCATCATCATCCCATCCCATCCTCC	CCCCTCT
SIIICZ5Z		GACICICGGCAACGGATATC		CCCGIGA
Smc385	-CTAAAAC	GACTOTOGGCAACGGATATO	T CGCT CT CGCAT CGATGAAGAACGTAGCGAAATGCGATACTT GGTGTGAATTGCAGAA	CCCGTGA
smn4	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh7	-CTGAAAC	GACTCTCGGCAACGGATATC	PCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh21	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh24	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh40	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh165	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh168	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smh175	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
smb229	-CTGAAAC	GACTCTCGGCAACGGATATC	TCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAAM	CCCGTGA
+ = 57	TCCAAAAO	GACTOTOGGCAACCCATATO	TCCCCTCTCCCATCCATCAACAACCTACCCAAATCCCATACTTCCTCTCAATCCCACAAT	CCCCTCA
+@1507	TCCSARAC	CACTOTOGOCAACGGAIAIG	TOCCOMPTOC ON CONTONNOON CONTROL CONTR	CCCCTCA
15450	TCCAAAAC	CACICICGGCAACGGATATC	TOGGCTGTGTGGCATGCATCAACAACGTAGCGAAATGCGATACTTGGTGTGGAGAAT	CCCGIGA
LS451	TUCAAAAO	CACICICGCCACGGATATO	I CEGUTUT CECAT CEAT GAAGAACETAGUGAAATGUGATAUTTGGTGTGAATTGCAGAAT	CCCGTGA
ts610	TCCAAAAC	GACTCTCGGCAACGGATATC	TCGGUTUTUGUATUGATGAAGAACGTAGUGAAATGUGATACTTGGTGTGAATTGCAGAAT	CCCGTGA
ruler			ı	
	ITCI		5.90	
	1 11 21		5.60	
	L			
		17702-1		TTOO ,
		1183.1		1182.1

F 1	•
Ergel	onisse

,	****	*******	**** * *
cg49	ACCATCGAGTO		TTGCCCCCCCCC-CAAC
cg80 co10	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACCC TTTGAACGCAAGTTGCGCCCCCAAGCCCGTCAGGCCGAGGGCACGTCTGCCTGGCTGTCACGCATCC	CTGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
co23	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCCCCCCAG
co30	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCG	GCTGCCCCCCCAG
co56	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCCCCCCCAG
co71	ACCATCGAGTO	TTT GAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC(TTTCAACGCAAGTTGCGCCCCCAAGCCGTCAGGCCGCGCGCCCCGCCCCCCCC	GCTGCCCCCCCCAG
co452	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCG	CTGCCCCCCCCCAG
cf11	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCTCCCCCAG
cf36	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCTCCCCCAG
cf55	ACCATCGAGTO	TTT GAACGCAAGTT GC GC CCCAAGCC GT CAGGCC GAGGGCACGT CT GC CT GG GT GT CAC GC AT C TTTT CAACGCAA CTTTC CC CCCCAA CC CCTCA CC CCCA CC CCA CCCCT CCCCT CCCCT CAC CCCCATCA CCCATCA CCCATCA CCCATCA CCCATCA	GCTGCCCCTCCCCCAG
cf607	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCG	GCTGCCCCCCCCCCAG
cf608	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCTCCCCCAG
cf609	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC(GCTGCCCCTCCCCCAG
enta83	ACCATCGAGTC	ITTGAACGCAAGTTGCGCCCCAGGCCGTTAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC(GCTGCCCCCCCCGAAC
entc74	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACCC	TCGCCCCCCCCGAC
entc76	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACCC	TCGCCCCCCCGAC
entc345	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACCC	TCGCCCCCCCGAC
entc393	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC(TCGCCCCCCCGAC
etnc395	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	TCGCCCCCCCGAC
entc477	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAGGCCCTCGGGCCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	TCGCCCCCCCGAC
khg8	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	GTTGCCCCCCGCC-CAAC
khg457 khi134	ACCATCGAGTC	ITT GAACGCAAGIT GCGCCCCAAGCCGT CAGGCCGAGGGCACGT CT GCCT GGGT GT CACGCACCC ITTT CAACGCAAGIT GCGCCCCAAGCCCGT CAGGCCGA GGCCA CGTCT GCCT GGCT GT CACGCACCC	FTTGCCCCCCGCC-CAAC
khn38	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACCC	TTGCCCCCCGCC-CAAC
khn447	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC(GTTGCCCCCCGCC-CAAC
khs5	ACCATCGAGTC	TTT GAACGCAAGTT GCGCCCCAGGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	TTGCCCCCCGCC-CAAC
khs35	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAGGCCGTCAGGCCGAGGCCACGTCTGCCTGGGTGTCACGCACCC TTTGAACGCAACTTGCGCCCCCAGGCCGTCAGGCCGAGGCCACGTCTGCCTGGCTGTCACGCACCC	TTGCCCCCCCGCC-CAAC
khs41	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAGGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	TTGCCCCCCGCC-CAAC
khs456	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAGGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC	TTGCCCCCCGCC-CAAC
khs505	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCACC(TTTCAACGCAACTTGCCCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGCTGCCCCAGGCACCC	GTTGCCCCCCGCC-CAAC
sh210	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
sh211	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCC	GTTGCCCCCCCCGCC-CAAC
sh212 ch213	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC TTTCAACGCAACTTGCGCCCCAAGCCGTCAGGCCCGAGGGCACGTCTGCCTGGCTGCGCCAGGCGCCC	GCTGCCCCCCC-GCC-CAAC
sh235	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
sh423	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCC	GTTGCCCCCCC-GCC-CAAC
smc2	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	GCTGCCCCCCCCGCC-CAAC
smc18	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	CTGCCCCCCC-GCC-CAAC
smc19	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smc33	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCC-GCC-CAAC
smc224	ACCATCGAGTO	ITTGAACGCAAGTTGCGCCCCCAAGCCGTCAGGCCGGGGCACGTCTGCCTGGGTGTCACGCGCCC TTTGA A CGCA A CTTGCGCCCCCA A CCCCTCA CGCCCA GGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smc226	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	CTGCCCCCCC-GCC-CAAC
smc227	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCC	GCTGCCCCCC-GCC-CAAC
smc228	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC TTTCAACGCAACTTGCGCCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGCTGCCTGAGCCCCC	GTTGCCCCCCC-GCC-CAAC
smc2451	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	GCTGCCCCCCC-GCC-CAAC
smc252	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	GCTGCCCCCCC-GCC-CAAC
smc385	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smi14 smh7	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC TTTGAACGCAAGTTGCGCCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smh21	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCC	TTGCCCCCCC-GCC-CAAC
smh24	ACCATCGAGTC	TTTGAACGCAACTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smh40 smh165	ACCATCGAGTO	ITT T GAAC GCAACIT GCGCCCCAAGCCGT CAGGCCGAGGGCACGT CTGCCT GGGT GT CACGCGCCC TTT T C > 2 C C 2 > CTT C C C C C C A G C C C T C > C C C C C C C C C C C C C C	FTTGCCCCCCCC-GCC-CAAC
smh168	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC	TTGCCCCCCC-GCC-CAAC
smh175	ACCATCGAGTO	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCC	GTTGCCCCCCC-GCC-CAAC
smh229	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCGCCC TTTCAACCCAACTTCCCCCCCCAAGCCGTCACGCCGCACGCCCCCCCC	GTTGCCCCCCC-GCC-CAAC
ts450	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCC	GCTGCCCCTCCCACAGCCAC
ts451	ACCATCGAGTO	TTT GAAC GCAAGTTGC GCCCCAAGCC GTCAGGCC GAGGGCACGTCT GCCT GGGTGT CAC GCAT C	GCTGCCCCTCCCACAGCCAC
ts610	ACCATCGAGTC	TTTGAACGCAAGTTGCGCCCCAAGCCGTCAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATC	GCTGCCCCTCCCACAGCCAC
ruier			
		5.88	ITS2
	1		

ITS2.1

	**	**	* *	*	******	*****	*****	*****	*	* **	*****	*****	****	*** *	: ***	****
cg49	CCCCCC-	-GACGGG	CGTTGG	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGCTC	3TCCCCCC	CTCGCGGT	TGGCCC	CAAATT	CGAGTO	TTCGG	CGGCC
cg80	CCCCCCC	-GACGGG	CGTTGG	;CG "TC	GGCGGGG	GGAGA	CTGGU	CTCCCG	TGCTG	STCCCCCC CTCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTCGCGGT CTCGCGGT	TGGCCC	CAAATT	CGAGTU	TTCGG	
co23	TDDDDDD	ICGUGGGGG ICGCGGGGGGGGGGGGGGGGGGGGGGGGGG	POGCCGI	CG	Generan Generan	CCAGA	CT GGC	CTCCCC.	-Deciec -Deciec	OTROCCUSC OTROCCCG(CTCGCGGI	TGGCC.	CAAATT	CGAGIC	TT CGC	
co30	CCCCCCT	CGCGGGG	CGCCGT	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGCC
co56	CCCCCT	CGCGGGG	SCGCCGT	' T G	,GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGCC
co71	CCCCCCT	CGCGGGGG	CGCCGT	'CG	GGCGGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	JTCCCCGC	CTCGCGGT	TGGCCC	CAAATT	CGAGTO	TTCGG	CGGCC
C08∠ C0452	- CCCCCCT	CGCGGGGG	CGCCG1	/16 ^CC	GGCGGGGC	GGAGA	CTGGC	CTCCCG	CGUGU	JTCCCCCC CTCCCCCCCCCCCCCCCCCCCCCCCCCCCC	OTCGUGGI OTCGCGGGT	TGGUUU	CAAATI	CGAGIU	TTUGG	
cf11	CCCCCCT	ICGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CGCTGT	CC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGAGA	CTGGC	CTCCCC	CGCCC	GTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CTCGCGGGT	TGGCC	CAAATT	CGAGTC	TTCG-	-CGGCC
cf36	CCCCCCT	Secesoro)	CGCTGT		GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT	CGAGTO	TTCG-	-CGGCC
cf55	GCCCCCT	CGCGGGG	CGCTGT	'CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT	CGAGTO	TTCG-	-CGGCC
cf606	CCCCCCT	CGCGGGGG	SCGCTGT	'CG	GGCGGGG	GGAGA	CTGGU	CTCCCG	CGCGU	JTCCCCGU	CTCGCGGr	TGGCCG	CAAATT	CGAGTU	TTCGG	CGGCC
cf608	- CCCCCCT	CGCGGGGG CGCGGGGGGGGGGGGGGGGGGGGGGGGGG	PCGCIGI	'CG	GGUGGGC AGCGGGC	GGAGA	CTGGC CTGGC	CTOUCE	-Dener -deader	D'FUUUUUU ATTACCCCC	CTCGCGGI CTCGCGGI	TGGCC. TGGCC	CAAAII	CGAGIC	╵Ĩ╵Ĩ℃ĠĠ 'nͲͲϹĠϾ	206600
cf609	CCCCCCT	CGCGGGGG	CGCTGT	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGCC
enta83	CCCCTTC	CGCGGGZ	A-GTTGT	'CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGAG	CTCCCCG	CTCGCGGC	TGGCC	GAAATC	CGAGCO	CTCGG	CGGCC
enta192	CCCCTTC	CGCGGGA	4-GGCGT	'CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGAGC	UTCCCCGC	CTCGCGGC	JTGGCC	GAAATC	CGAGCO	CTCGG	CGGCC
entc/4	CCCCTCCC CCCCTCCC		A-GTCGT	'UG "CG	GGCGGGGG	GGAGA	CTGGU	CTCCCG	CGCGC	JTGCCCGC CTGCCCGC	OTOGUGGU OTOGUGGU	TGGCCG	GAAATT	CGAGUU	TTCGG	
entc345	CCCCTCC	C-CGGG	A-GTCGT	CG	GGCGGGGC GGCGGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTGCCCG	CTCGCGGGC	TGGCC	GAAATT	CGAGCC	TTCGG	CGGCC
entc393	CCCCTCC	C-CGGG	A-GTCGT	' C G	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTGCCCGC	CTCGCGGC	TGGCC	GAAATT	CGAGCO	TTCGG	CGGCC
entc394	CCCCTCC	C-CGGGA	4-GTCGT	'CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	CTGCCCGC	CTCGCGGC	TGGCC	GAAATT	CGAGCO	TTCGG	CGGCC
etnc395	CCCCTCC	C-CGGGA	L-GTCGT	'CG	GGCGGGG	GGAGA	CTGGU	CTCCCG	CGCGU	JTGCCCGC CTCCCCCGC	CTCGCGGG	TGGCCC	GAAATT	CGAGUU	TTCGG	
khg8	CCCCTCC	I-GG-GGC	CGTTGC	ieeecce	GGCGGGC GGCGGGC	GGAGA	CTGGC	CTCCCG	CGTT(GTCCCCC	-TCGCGGGT	TGGCC(CAAATT	CGAGUC	TTCGG	CGGCC
khg457	CCCCTCC	-GG-GGC	CGTTGC	:GGGCCG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGTTC	CTCCCCC-	-CCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGCC
khi134	CCCCTCC	-GC-GGG	CGTTGC	GGGCCG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGTTC	STCCCAT-	-TCGCGGT	TGGCC	CAAATT	CGAGTO	CTCGG	CGGCC
khn38 Fhn447	CCCCTCC		CGTTGC	GGGGCCG	GGCGGGGG	GGAGA	CTGGU	CTCCCG	CGTTC	JTCCCAT-	-TCGCGGT	TGGCCC	CAAATT	CGAGTO	CTCGG	
khs5	CCCCTCC	-GG-GGC	CGTTGC	IGGGCCCC	GGCGGGGC	GGAGA	CTGGC	CTCCCG	CGTT	CTCCCCC	-TCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGGCC
khs6	CCCCTCC	-GG-GGC	CGTTGC	GGGCCG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGTT	CTCCCCC	-TCGCGGT	TGGCC	CAAATT	CGAGTC	TTCGG	CGGCC
khs35	CCCCTCC	-GG-GGG	CGTTGC	GGGCCG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGTTC	CTCCCCT-	-TCGCGGT	TGGCCC	CAAATT	CGAGTC	CTCGG	CGGCC
khs41 	CCCCTCC		CGTTGC	GGGGCCG	GGCGGGGG CCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGAGA	CTGGC	CTCCCG	CGTTU	JTCCCCC-	-TCGCGGT	TGGCCC	CAAATT	CGAGTO	TTCGG	
khs505	CCCCTCC	-GS-GCC !-GS-GG(CGTTGC	IGGGCCCC	GGCGGGCC GGCGGGCC	GGAGA	CTGGC	ICTCCCCG	CGTT(CTCCCCC	-TCGCGGT	TGGCC:	CAAATT	CGAGTC	TTTCGG	CGGCC
sh209	CCCCTC-	-GACGGG	CGTTGC	;CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	STCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCC	CTCGG	CGGCC
sh210	CCCCTC-	-GACGGG	CGTTGC	JCG	GGCGGGGC	GGAGA	CTGGC	CTCCCG	TGGC	JTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
sh212	- OCCUTU-	-GAUGGG -GACGG(PCGTTGC	'CC	GGUGGGC .ccCGGGGC	GGAGA	CTGGC CTGGC	CTUUUU CTUUUU	ТСССС 	GTOCCCCC GTOCCCCC	GCCGCGGG	TGGCCC TGGCC(GAAAII	CGAGCO	CTUGU CTUGU	2000000
sh213	CCCCTC-	-GACGGC	CGTTGC	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGC	CGGCC
sh235	CCCCTC-	-GACGGG	CGTTGC	:CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	3TCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCC	CTCGG	CGGCC
sh423	CCCCTC-	-GACGGG	CGTTGC	CG	GGCGGGGC	GGAGA	CTGGC	CTCCCG	TGGC	JTCCCCCC	GCCGCGGT CCCCCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	
smc2	CCCCTC-	-GAUGGU -GACGG(CGTTGC	'CC	GGCGGGC GGCGGGC	GGAGA	CTGGC	ICTUUUU ICTCCCC	TGGCC TGGC(GTCCCCCC	GCCGCGGGT	TGGCC. TGGCC	GAAAII	CGAGCC	CTUGU CTUGU	2000001
smc18	CCCCTC-	-GACGGC	CGTTGC	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGC	CGGCC
smc19	CCCCTC-	-GACGGG	CGTTGC	:CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	TCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smc33	CCCCTC-	-GACGGG	CGTTGC	:CG	GGCGGGGC	GGAGA	CTGGC	CTCCCG	TGGCG	JTCCCCCC	GCCGCGG'I	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smc225		-GACGGG	CGTTGC	'CG	Georgeoc	CCAGA	CTGGC CTGGC	TOTICOUCE	TGGCC TGGC(GTOCCCCC GTOCCCCC	GCCGCGGGT	TGGCC.	GAAAL	CGAGUU	CTUGG CTUGG	106600
smc226	CCCCTC-	-GACGGC	GCGTTGC	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	/TGGC(GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smc227	CCCCTC-	-GACGGC	JCGTTGC	JCG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCC	CTCGG	CGGCC
smc228	CCCCTC-	-GACGGG	CGTTGC	!CG	GGCGGGG	GGAGA	CTGGC	CTCCCG	TGGCG	STCCCCCC	GCCGCCGGT CCCCCCGGT	TGGCC	GAAA1"I'	CGAGCU	CTCGG	CGGCC
smc251	CCCCTC-	-GACGGG	CGTTGC	1CC	GGC GGGC GGC GGGC	GGAGA	CTGGC	ICT CCCC	TGGC(TGGC(GTCCCCCC	ACCCCCCCC	TGGCC	GAAATT	CGAGCO	CTCGC	CGGGCC
smc252	CCCCTC-	-GACGGC	CGTTGC	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smc385	CCCCTC-	-GACGGG	CGTTGC	:CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	JTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smh4 smh7	CCCCTCT	CGACGGG	CGTTGC	!CG	GGCGGGG	GGAGA	CTGGU	CTCCCG	TGGCU	JTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	JCGGCC
smi, smh21	COCOTOR	CGAUGGG CGACGGG	CGTIGC	'CG	GGUGGGC AACGGGGC	CCAGA	CTGGC CTGGC	ICTOCOG ICTOCOG	TGGCG TGGC(GTOCCCCC GTOCCCCC	GCCGCGGT	TGGCCC TGGCC(GAAATT	CGAGUU	CTUGG CTUGG	
smh24	CCCCTCT	CGACGGG	CGTTGC	CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGC	CGGCC
smh40	CCCCTCT	CGACGGG	CGTTGC	:CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	JTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smh165	CCCCTCT	CGACGGG	CGTTGC	!CG	GGCGGGGC	GGAGA	CTGGC	CTCCCG	TGGC	JTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCO	CTCGG	CGGCC
smn⊥oo ⊂mh175	CCCCTCT CCCCTCT	CGAUGGG CGAUGGG	CGITIGU	:CG	GGCGGGC	GGAGA	CTGGC	CTOUCE	TGGUG TGGC(CTCCCCCC CTCCCCCC	GCCGCGGGI GCCGCGGGI	TGGUU.	GAAAII	CGAGUU	CTUGG	100000
smh229	CCCCTCT	CGACGGG	CGTTGC	2CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	TGGC	GTCCCCCC	GCCGCGGT	TGGCC	GAAATT	CGAGCC	CTCGC	CGGCC
ts57	CCCGCCT	CGCGGGG	CGCTGT	!CG	GGCGGGC	GGAGA	.CTGGC	CTCCCG	CGCGC	CTCCCCG	CTCGCGGT	TGGCC	CAAATT.	AGAGTC	TTCGG	CGGCC
ts450	CCCGCCT	CGCGGGGG	CGCTGT	!CG	GGCGGGC	GGAGA	CTGGC	CTCCCG	CGCGC	JTCCCCGC	CTCGCGGT	TGGCC	CAAATT/	AGAGTC	TTCGG	CGGCC
ts451 te610	CCCGCCT	CGCGGGGG	CGCTGT CGCTGT	'CG 'CC	GGCGGGGC	GGAGA	CTGGC	CTCCCG	CGCGU	JTCCCCGC CTCCCCCGC	CTCGCGGT	TGGCCC	CAAATT	AGAGTU	TTCGG	
ruler			<i>3</i> 0 <u>.</u>	500.		10		520 <u>.</u>	5	30			50) <u>.</u>	
								TTS'								
								11.52	2							

	*****	****	*** ******	* *** **	* ****	* * *
cg49	CCGCCGCGACGATCGGTGGTGAGAACGC	AACGTCTCGZ	AGCTCTCGTCGCGTGC	CGGTGCCCCC	GCGCGTTAGGCTCGC	GGACCCCTC
cgsu co10	CCGCCGCGACGATCGGTGGTGAGAAUGU GCGCCGCGACGATCGGTGGCGAGAAAGA	ACGTCTCGA	AGCTCTCGTCGCGTGC ATCTCTCGTCGCGCGCGC	CGGTGCCCCC	GCGCGTTAGGCTCGC GTGTCCACGGCTCGC	GGACCCCTC
co23	GCGCCGCGACGATCGGTGGCGAGAAAGA	AAGAACCTCTCG	TCTCTCGTCGCGCGC	TCGCGCCACC	GTGTCCACGGCTCGC	GGACCCTCT
co30	GCGCCGCCACGATCGGTGGCCACAAAGA	AGAACCTCTCG	ATCTCTCGTCGCGCGC	TCGCGCCGCC	GTGTCCACGGCTCGC	GGACCCTCT
co50 co71	GCGCCGCCACCATCGGTGGCCACAAACA	AAAAACCTCTCG	ATCTCTCGTCGCGCGCGC	TCGCGCCACC	GTGTCCACGGCTCGC	GGACCCTCT
co82	GCGCCGCGACGATCGGTGGCGAGAAAGA	AAGAACCTCTCG	ATCTCTCGTCGCGCGC	TCGCGCCACC	GTGTCCACGGCTCGC	GGACCCTCT
co452	GCGCCGCGACGATCGGTGGCGAGAAAGA	AAAAACCTCTCG	ATCTCTCGTCGCGCG	CTCGCGCCACC	-GTGTCCACGGCTCG	CGGACCCTCT
cf36	GCGCCGCGACGATCGGTGGCGAGAAAGA GCGCCGCGACGATCGGTGGCGAGAAAGA	AAAAAAA-CICICG	ATCTCTCGTCGCGCG	CTCGCGCCTCC	-GTGTCCACGGCTCG	CGGACCCTCT
cf55	GCGCCGCCACGATCGGTGGCCACAAAGA	AAAAAAA - CTCTCG	ATCTCTCGTCGCGCG	CTCGCGCCTCC	-GTGTCCACGGCTCG	CGGACCCTTT
cf606	GCGCCGCCACGATCGGTGGCCACAAAGA	AAAAAAA - CTCTCG	ATCTCTCGTCGCGCG	CTCGCGCCTCC	-GTGTCCACGGCTCG	CGGACCCTTT
cf608	GCGCCGCGACGATCGGTGGCCGAGAAAGA	AAAAAAAA-CTCTCG	ATCTCTCGTCGCGCGCG	CTCGCGCCTCC	-GTGTCCACGGCTCG	CGGACCCTTT
cf609	GCGCCGCGACGATCGGTGGCGAGAAAGA	AAAAAAA CTCTCC	ATCTCTCGTCGCGCG	CTCGCGCCTCC	-GTGTCCACGGCTCG	CGGACCCTTT
enta83	GCGCCGCGACGATCGGTGGCGAGAAAGA	AACCCTCG	ATCTCCCGTCGCGC-	-0060600000	-GAGATGCCGGCTCG	AGGAACCCCT
entc74	GCGCCGCGACGATCGGTGGTTGGAAAGG	AACTCTCG	ATCTCCCGTCGCGCG	CCCGGGGCCGCC	-GATCTGCCGGCTCG	CGGAAACCCT
entc76	GCGCCGCGACGATCGGTGGTTGGAAAGG	AACTCTCG	ATCTCCCGTCGCGCG	CCCGGGCCGCC	GATCTGCCGGCTCG	CGGAAACCCT
entc345	- GCGCCGCGACGATCGGTGGTTGGAAAGG - CCCCCGCGACGATCGGTGGGTGGAAAGG	AACTCTCG	ATCTCCCGTCGCGCG ATCTCCCGTCGCGCGCG	000GGGG00G00 000GGGG00G00	-GATCTGCCGGCTCG -CATCTGCCGGCTCG	CGGAAACCUT
entc394	GCGCCGCGACGATCGGTGGTTGGAAAG	AACTCTCC	ATCTCCCGTCGCGCG	CCCGGGCCGCC	-GATCTGCCGGCTCG	CGGAAACCCT
etnc395	GCGCCGCGACGATCGGTGGGTGGAAAGG	AACTCTCG	ATCTCCCGTCGCGCG	CCCGGGCCGCC	-GATCTGCCGGCTCG	CGGAAACCCT
entc4// khq8	CCGCCGCGACGATCGGTGGTTGGAAAGG CCGCCGCGACGATCGGTGGTGAGAACGT	AACTUTUG	ATCTCCCGTCGCGCG AGCTCTCGTCGCGCGCG	CCCGGGGCCGCC CCGGTGCCCCC	-GATCTGCCGGCTCG -GTGCTTTAGGCTCT	CGGAAACCCTT
khg457	CCGCCGCGACGATCGGTGGTGAGAACGT	AACGTCTCG	ATCTCTCGTCGCGCG	CCGGTGCCCCC	-GTGCTTTAGGCTCT	TGCACCCCTC
khi134	CTGCCGCGACGATCGGTGGTGAGAACGC	AACGTCTCG		CGGGTGCCCCC	-GTGCTGTGGGGCTCT	CGGACCCCTT
khn447	CCGCCGCGACGATCGGTGGTGAGAACGT	AACGTCTCG	AGCTCTCGTCGCGCG	CGGGTGCCCCC	-GTGCTTTGGGCTCT	CGGACCCCTT
khs5	CCGCCGCCACGATCGGTGGTGAGAACGT	AACGTCTCG	AKCTCTCGTCGCGCG	CCGGCGCCCCC	GTGCTTTAGGCTCT	CGGACCCCTC
khs6 khs35	CCGCCGCGACGATCGGTGGTGAGAACTT CCCCCCCCACGATCGGTGGTGAGAACGT	AACGTCTCG	ATCTCTCGTCGCGCGCG	CCGGCGCCCCC	-GTGCTTTAGGCTCT -CTCCTTTAGGCTCT	CGGACCCCTT
khs41	CCGCCGCGACGATCGGTGGTGAGAACTT	AACGTCTCG	ATCTCTCGTCGCGCG	CCGGCGCCCCC	-GTGCTTTAGGCTCT	CGGACCCCTT
khs456	CCGCCGCGACGATCGGTGGTGAGAACGT	AACGTCTCG	AGCTCTCGTCGCGCG	CCGGCGCCCCC	-GTGCTTTAGGCTCT	CGCACCCCTC
sh209	CGGCCGCGACGATCGGTGGCGAGAACT	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	-GTGCTTTTAGGCTCT CGTGCGCAAGGCTCG	CGGACCCCCC
sh210	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
sh211 ch212	CGGCCGCGACGATCGGTGGCGAGAACTC CGCCCCCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC CGGACCCCCC
sh213	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
sh235	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
sh425 smc2	CGGCCGCGACGATCGGTGGCGAGAAGTC CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG GGCGTCTCC	ATCTCCCGTCGCGCGGGGGGGGGGGGGGGGGGGGGGGGG	CCGGCGCCCCCCCC- CCGGCGCCCCCCCC-	-GTGCGCAAGGCTCG -GTGCGCAAGGCTCG	CGGACCCCCC
smc3	CGGCCGCCGACGATCGGTGGCCGAGAACTC	GGCGTCTCG	GTCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc18	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc13	CGGCCGCGACGATCGGTGGCCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc224	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCC
smc225	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc227	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc228	CGGCCGCGACGATCGGTGGCCGAGAACTC	GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc249 smc251	 CGGCCGCGACGATCGGTGGCGAGAACTC CGGCCGCGACGATCGGTGGCGAGAACTC 	GGCGTCTCG	ATCTCCCGTCGCGCG ATCTCCCGTCGCGCG	CCGGCGCCCCCCCC-	-GTGCGCAAGGCTCG -GTGCGCAAGGCTCG	CGGACCCCCC
smc252	CGGCCGCGACGATCGGTGGCGAGAACTC	GGCGTCTCC	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smc385		GGCGTCTCG	ATCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GTGCGCAAGGCTCG	CGGACCCCCC
smin-	CGGCCGCGACGATCGGTGGCGAGAACTC CGGCCGCGACGATCGGTGGCGAGAACTC	GTCGTCTCG	GTCTCCCGTCGCGCG	CCGGCGCGCCCCCC-	-GCGCGCAGGGCTCG -GCGCGCAGGGCTCG	CGGACCCCCC
smh21	CGGCCGCCACGATCGGTGGCGAGAACTC	GTCGTCTCC	GTCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GCGCGCAGGGCTCG	CGGACCCCCC
smh24 smh20	CGGCCGCGACGATCGGTGGCGAGAACTC	GTCGTCTCG	GTCTCCCGTCGCGCG		-GCGCGCAGGGCTCG	CGGACCCCCC
smh165	CGGCCGCGACGATCGGTGGCCGAGAACTC	GTCGTCTCG	GTCTCCCGTCGCGCG	CCGGCGCCCCCCCCC-	-GCGCGCAGGGCTCG	CGGACCCCCC
smh168	CGGCCGCGACGATCGGTGGCGAGAACTC	GTCGTCTCG	GTCTCCCGTCGCGCG	CCGGCGCCCCCCC-	-GCGCGCAGGGCTCG	CGGACCCCCC
smh175 smh229	CGGCCGCGACGATCGGTGGCGAGAACTC	GTCGTCTCG	GTCTCCCGTCGCGCG		-GCGCGCAGGGCTCG	CGGACCCCCC
ts57	GCGCCGCGACGATCGGTGGTGAGAAAGA	AAAAAAAACTCTCG	AGCTCCCGTCGCGCG	CTCGCGCCTCC	-GATTTCACGGCTCG	CGGACCCTTT
ts450	GCGCCGCGACGATCGGTGGTGAGAAAGA	AAAAAAACTCTCG	AGCTCCCGTCGCGCG	CTCGCGCCTCC	GATTTCACGGCTCG	CGGACCCTTT
ts451 ts610	- GCGCCGCGACGATCGGTGGTGAGAAAGA - CCCCCGCGACGATCGGTGGTGAGAAAGA	AAAAAAAACTCTCG	AGCTCCCGTCGCGCG ACCTCCCGTCGCGCG	CTCGCGCCTCC CTCGCGCCTCC	-GATTTCACGGCTCG -CATTTCACGGCTCG	CGGACCUTTT
ruler		00610	620	630640		660
			ITS2			

	* *****	*******	*****	* * **********	*****
cq49	GTGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
ca80	GTGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCCCCTCACTTAA	GCATATCAATAAGCGGAGGA
co10	ATCCCCCCCCTACCCCCC	COTOCOTT	CCCACCCACCTCACCC	CCATTACCCCCTCACTTAA	CATATCAATAACCCCACCA
co23	ATCCCCCCCCTACCCCCC	CCTCCCTT		CCATTACCCCTCACTTAA	CATATCAATAACCCCACCA
					CONTAI CANTARGOGGAGGA
2030	GCGCGCCCCGTACGCGGGG	GGTTGGGTTG	GCGACCCCCAGGTCAGGCC	GGATTACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
C056	ATGCGCCCCGTACGCGGGG	CGCTCGCTTC	CGCGACCCCAGGTCAGGC	GGATTACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
co71	GCGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGATTACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
co82	ATGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGATTACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
co452	ATGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGATTACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
cf11	GCGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
cf36	GCGCGCCCCGTACGCGGG	Geregerre	COCCACCACCTCACCC	GGACCACCCCCCTCACTTTAA	CATATCAATAAGCGGAGGA
cf55	GCCCCCCCCCTACCCCCC	CCTCCCTT	CCCACCCACCTCACCC	CCACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CONTATCAATAACCCCACCA
af606				CCACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CONTATIONATION
01000	GCGCGCCCCGTACGCGGGG			GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
CI60/	GCGCGCCCCGTACGCGGGG	GCTCGCTTC	GUGACUCUAGGTUAGGU	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
C1608	GCGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
cf609	GCGCGCCCCGTACGCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
enta83	GCGCGTCCCGCACGCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
enta192	GCGCGTCCCGCACGCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
entc74	GCGCGTCCCGCACGCGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
entc76	GCGCGTCCCCGCACGCGGGG	Geregere	COCOCCACCTCACCC	GGACCACCCCCTCACTTAA	CATATCAATAAGCGGAGGA
entc345	GCCCCTCCCCCACCCCCC	CCTCCCTC	CCCACCCACCTCACCC	CCACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CATATCAATAACCCCACCA
onto292		accreccre		CCACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CONTATCANTAACCCCACCA
ontc393					COMPANY AND A COCCA CCA
ente394	GUGUGTCCCGCACGCGGGG	JGCTCGCTCC	LeceACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTTAA	GCATATCAATAAGCGGAGGA
ethc395	GCGCGTCCCGCACGCGGGG	Geregeree	CGCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
entc477	GCGCGTCCCGCACGCGGGG	GCTCGCTC	GCGACCCCAGGTCAGGC	GGACCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khg8	GCGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khg457	GCGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khi134	GCGCGCCCCTCGTTCGGGG	CGCTCGCTT	GGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khn38	GCGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khn447	GCGCGCCCCTCGTTCGGGG	GCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCCCCCCAGTTTAA	GCATATCAATAAGCGGAGGA
khe5	GCGCGCCCCTCGTTCGGGG	COTOCOTT	CCCACCCACCTCACCC	CCAACACCCCCCTCACTTTAA	CATATCAATAACCCCACCA
khef	CCCCCCCCCTMCTTCCCCC	CCTCCCTT	CCCACCCACCTCACCC	CCAACACCCCCCCCACTTAA	CATATCAATAACCCCACCA
kh a 2 E				CCAACACCCGCTGAGTTTAA	CONTATION AND A COCCACCA
Kns35	GCGCGCCCCTCGTTCGGGG	GGTTGGGTTG	GCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
Kns41	GCGCGCCCCTAGTTCGGGG	GCTCGCTTC	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khs456	GCGCGCCCCTCGTTCGGGG	COCCECTIO	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
khs505	GCGCGCCCCTCGTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGAACACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh209	CTGCGCGCCCCACTC-CGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GAATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh210	CTGCGCGCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh211	CTGCGCGCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh212	CTGCGCGCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh213	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
sh235	CTGCGCGCCCACTC-CGGGC	Geregere	COCCACCCACGTCACCC	CCATCACCCCCCTCACTTTAA	CCATATCAATAACCCCACCA
ch/23	CTECCCCCCCACTC-CEEC	CCTCCCTC	CCCACCCACCTCACCC	GCATCACCCCCTCACTTTAA	CATATCAATAACCCCACCA
511420	CTCCCCCCCCCCCTTTCCCCC			CCATCACCCCCCCCCCCCTTAA	CONTATONATAACCCCACCA
311102				CCAMOR COCCOURS COMMENT	CATHI CHATAAGCGGGAGGA
51103				GGATCACCCGCTGAGTTTAA	GONTAT CANTARGE GOAGGA
Smc18	CIGCGCGCCCCCCITICGGGG	GUIUGUIU	GCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc19	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc33	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc224	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc225	CTGCGCGCCCCACTC-CGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc226	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc227	CTGCGCGCCCCCCTTTCGGGG	CGCTCGCTC	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc228	CTGCGCGCCCCCCTTTCGGGG	GCTCGCTC	GCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc249	CTGCGCGCCCCCCTTTCGCGC	GCTCGCTC	GCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smc251	CTGCGCGCCCCCTTTCCCCC	GOTOGOTO	GCGACCCACCTCACCCC	GGATCACCCCCTCACTTAA	GCATATCAATAACCCCACCA
smc251	CTGCGCGCCCCCTTTCGGGC		CCCACCCACCTCACCCC	CCATCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CATATCA ATA A COCCA CCA
emc202	CTGCGCGCCCCCCTTTCGGGG			CCATCA CCCCCCCC CAGITIAA	CATATOANTA COCCACCA
5110305				COMO COCO CIGAGI I IAA	COMPARIZA AND A COCCA CCA
smn4	AGTTGCCTTCGGGG	Jeereeerre	JGCGACCCCAGGTCAGGC(GUATATUAATAAGUGGAGGA
smh7	AGTTGCCTTCGGGG	a a a m a a a m		GOAT CHOCOGOT GAGT TIAN	
		CGCTCGCTT	CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA
smh21	AGTTGCCTTCGGGG	CGCTCGCTT	CGCGACCCCAGGTCAGGC CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24	AGTTGCCTTCGGGC AGTTGCCTTCGGGC	CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCGACCCCAGGTCAGGC CGCGACCCCAGGTCAGGC CGCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGGATCACCCGCTGAGTTTAA	GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24 smh40	AGTTGCCTTCGGGG AGTTGCCTTCGGGG AGTTGCCTTCGGGG	CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CCCACCCAGGTCAGGC CCCCACCCAGGTCAGGC CCCGACCCCAGGTCAGGC CCCGACCCCAGGTCAGGC CCCGACCCCAGGTCAGGC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA	SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24 smh40 smh165	AGTTGCCTTCGGGG AGTTGCCTTCGGGG AGTTGCCTTCGGGG AGTTGCCTCCGGGG	CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CCCACCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC	GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA	SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24 smh40 smh165 smh168	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTCCGGG AGTTGCCTTCGGG	CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CGCTCGCTT(CCCACCCAGGTCAGGC CCCACCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC CCCACCCCAGGTCAGGC	GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA GGAT CACCCGCT GAGTTTAA	SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24 smh40 smh165 smh168 smh175	AGTTGCCTTCGGGC AGTTGCCTTCGGGC AGTTGCCTTCGGGC AGTTGCCTTCGGGC AGTTGCCTTCGGGC AGTTGCCTTCGGGC	CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCT	CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC CCCACCCAGTCAGC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA	SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA SCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA GCATATCAATAAGCGGAGGA
smh21 smh24 smh40 smh165 smh168 smh175 smh229	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTCCGGG AGTTGCCTTCGGG AGTTGCCTYCGGG AGTTGCCTYCGGG	CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCT	CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC	SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA	CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA CORTATCAATAACCGCACGA
smh21 smh24 smh40 smh165 smh168 smh175 smh229	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGGG	CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCTT CGCTCGCT	CONTRACTOR	GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA	SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA GCATATCAATAACCGCAGGA GCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA GCATATCAATAACCGCAGGA GCATATCAATAACCGCAGGA GCATATCAATAACCGCAGGA
smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTCCGGG AGTTGCCTCCGGG AGTTGCCTTCGGGG AGTTGCCTCCGGGG AGTTGCCTCCGGGG GCGCGCCCCGTACGCGGGG GCGCGCCCCGTACGCGGGGGGGGGGGGGGGGGGGGGGG	CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT	CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA	SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA
<pre>smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57 ts450</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GCGCGCCCCGTACGCGGG GCGCGCCCCGTACGCGGG	CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT	CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC	SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA SGATCACCCGCTGAGTTTAA	SCATATCAATAACCGCACGA SCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA
smh21 smh24 smh165 smh168 smh175 smh229 ts57 ts450 ts451	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTCCGGG AGTTGCCTCCGGG AGTTGCCTCCGGG GGCGGCCCCGTACGCGGG GCCCGCCCCGTACGCGGG GCCCGCCCCGTACGCGGG	CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT	CCCACCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC CCCACCCCAGETCAGEC	SGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA SGGATCACCCCCTGACTTTAA	SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA SCATATCAATAACCGCAGGA
smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57 ts450 ts451 ts610	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GGCGCCCCCGTACCGGGG GCGCGCCCCGTACCGGGG GCCGCCCCCGTACCCGGGG	CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT CCCTCCCTT		SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGATCACCCCCTGACTTTAA SGCATCACCCCCTGACTTTAA SGCACTACCCCCTGACTTTAA SGCACTACCCCCTGACTTTAA SGCACTACCCCCTGACTTTAA	COATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA
<pre>smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57 ts450 ts451 ts610 ruler</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GCGCGCCCCGTACGCGGG GCGCGCCCCGTACGCGGG GCGCGCCCCGTACGCGGGG GCGCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG CGCCGCCCCGTACGCGGGG	CGCTCGCTTY CGCTCGCTTG CGCTCGCTTT CGCTCGCTTT CGCTCGCT		GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA	SCATATCAATAAGCGCAGGA SCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA CATATCAATAAGCGCAGGA
<pre>smh21 smh24 smh165 smh165 smh168 smh175 smh229 ts57 ts450 ts450 ts451 ts610 ruler</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTCCGGG AGTTGCCTCCGGG AGTTGCCTTCGGGG AGTTGCCTCCGGGG AGTTGCCTCCGGGG GCGCGCCCCGTACCCGGGG GCGCGCCCCGTACCCGGGGG GCGCGCCCCGTACCCGGGGGGGG GCGCGCCCCGTACCCGGGGGGGGGGGGGGGGGGGGGGG	CGCTCGCTTT CGCTCGCTTT CGCTCGCTTT CGCTCGCT	CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC	GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA 720730	CONTATCAATAACCGCAGGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CCATATCAATAACCGCACGA CATATCAATAACCGCACGACGA CATATCAATAACCGCACGACGA CATATCAATAACCGCACGACGA
<pre>smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57 ts450 ts451 ts610 ruler</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GGCGCCCCCGTACCGGGG GCGCCCCCCGTACCGGGG GCGCGCCCCGTACCCGGGG GCGCGCCCCGTACCCGGGG CGCGCCCCCGTACCCGGGG .670680	CCTCCCTT CCTCCCTTC CCTCCCTT CCTCCCTTC CCTCCCTTC CCTCCCTTC CCTCCCTT CCTCCCTTC CCTCCT	CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC	GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGATCACCCGCTGAGTTTAA GGACTACCCGCTGAGTTTAA GGACTACCCGCTGAGTTTAA GGACTACCCGCTGAGTTTAA GGACTACCCGCTGAGTTTAA GGACTACCCGCTGAGTTTAA	COATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA GCATATCAATAACCGCACGA CATATCAATAACCGCACGA CATATCAATAACCGCACGA CCATATCAATAACCGCACGA CATATCAATAACCGCACGA CATATCAATAACCGCACGA CATATCAATAACCGCACGA CATATCAATAACCGACGACGA CATATCAATAACCGCACGA CATATCAATAACCGACGACGA CATATCAATAACCGCACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATACCAATAACCGCACGA CATATCAATAACCGCACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGCACGACGA CATATCAATAACCGACGACGACGA CATATCAATAACCGACGACGACGA CATATCAATAACCGACGACGACGACGA CATATCAATACCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATAACCGACGACGA CATATCAATACCGACGACGA CATATCAATACCGACGACGA CATATCAATACCGACGACGACGA CATATCAATAACCGACGACGACGA CATATCAATACCGACGACGA CATATCAATAACCGACGACGACGA CATATCAATACCGACGACGACGA CATATCAATAACCGACGACGACGA CATATCAATACCGACGACGACGACGA CATATCAATACCGACGACGACGACGA CATATCAATACCGACGACGACGACGACGA CATACCAATACAATA
<pre>smh21 smh24 smh40 smh165 smh165 smh168 smh175 smh229 ts57 ts450 ts451 ts610 ruler</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GCGCGCCCCGTACGCGGG GCGCGCCCCGTACGCGGG GCGCGCCCCGTACGCGGGG GCGCGCCCCGTACGCGGGG CGCGCCCCCGTACGCGGGG CGCGCCCCCGTACGCGGGG	CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT CCTCCCTT	CONTRACTOR CONTRACTON CONTRACTOR	GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCTGACTTTAA GGACTACCCCCTGACTTTAA GGACTACCCCCTGACTTTAA	COATATCAATAACCGCACGA CCATATCAATAACCGCACGA
<pre>smh21 smh24 smh40 smh165 smh168 smh175 smh229 ts57 ts450 ts451 ts610 ruler</pre>	AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG AGTTGCCTTCGGG GGCGCCCCCGTACGCGGG GCCGCCCCCGTACGCGGG GCGCGCCCCGTACGCGGG CGCGCCCCCGTACGCGGG CGCGCCCCCGTACGCGGG CGCGCCCCCGTACGCGGG CGCGCCCCCGTACGCGGG	CCTCCCTT CCCTCCCTTC CCCTCCCTTC CCCTCCCTTC CCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCTCCCTTC CCCTCCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCC	CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC CCCACCCCAGTCAGCC	GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGATCACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA GGACTACCCCCCTGACTTTAA	SCATATCAATAAGCGCAGGA SCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA GCATATCAATAAGCGCAGGA MANNA SAACGGAGGA MANNA SAACGAAGAA MANNA SAACGAAGAA MANNA SAACGAAGAA MANNA SAACGGAGGA MANNA SAACGGAGGAGGA MANNA SAACGGAGGAGGA MANNA SAACGAAGGAAGGAA MANNA SAACGAAGAAGAA MANNA SAACGAAGAAGAAGAAGAAGAAGAA MANNA SAACGGAAGGAA MANNA SAACGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG

Abbildung 18: Alignment der ITS-Sequenzen der 70 Individuen der Meliaceae. Die Abbildung gibt die Zusammensetzung der einzelnen ITS-Bereiche wieder. Weiterhin wurden die allgemeinen Primer (gestrichelte Linien) zur Amplifizierung der ITS-Teilbereiche eingezeichnet (ITS1.1/ITS2.1 = ITS1-Bereich und ITS3.1/ITS4 = ITS2-Bereich). Die ID besteht aus dem Namenskürzel und der Herbarnummer. cg = *Carapa guianensis*, co = *Cedrela odorata*, cf = *C. fissilis*, enta = *Entandrophragma angolense*, entc = *E. cylindricum*, khg = *Khaya grandifolia*, khi = *K. ivorensis*, khn = *K. nyasica*, khs = *K. senegalensis*, sh = *Swietenia humilis*,

smc = S. macrophylla, smh = S. mahagoni, ts = Toona sinensis.

Die Sequenzen des Alignments aus Abbildung 18 weisen deutliche interspezifische Unterschiede im ITS1 bzw. ITS2 auf. Lediglich für S. humilis und S. macrophylla sind keine interspezifischen Unterschiede erkennbar. Um die inter- bzw. intraspezifischen Sequenzunterschiede der Arten noch einmal zu verdeutlichen, wurden die Unterschiede über eine sogenannte Pairwise-Distance Analyse berechnet (Abbildung 19). Die folgend angegebenen prozentualen Werte ergeben sich durch die Multiplizierung der in Abbildung 19 angeführten Einzelwerte mit 100. Durch die Verwendung der Pairwise-Distance Analyse wird deutlich, dass sich die intraspezifischen Unterschiede für die meisten Arten in einem Bereich von 0-1% bewegen. Lediglich für C. fissilis, K. nyasica und K. senegalensis liegen die Unterschiede bei bis zu 1,9%. Deutlich größere Unterschiede lassen sich auf der interspezifischen Ebene innerhalb der einzelnen Gattungen beobachten. Betrachtet man z.B. die Gattung Cedrela, so zeigen die beiden untersuchten Arten Unterschiede von 3,2-4,2%. Noch stärkere Unterschiede lassen sich innerhalb der Gattung Entandrophragma feststellen, denn hier ergeben sich Werte von 6,3-6,7%. Die Gattung Swietenia erbrachte zwei sehr gegensätzliche Ergebnisse. Während sich S. mahagoni zu 2,8-3,3% von S. macrophylla bzw. S. humilis unterscheidet, so bewegen sich die Unterschiede von S. macrophylla und S. humilis nur auf intraspezifischen Niveau (max. 1%). Für die Gattung Khaya ergeben sich die heterogensten Werte. Diese liegen zwischen 0,6 und 3%. Wie zu erwarten, sind die größten Unterschiede zwischen den einzelnen Gattungen zu verzeichnen. Auszugsweise wird hier der Unterschied zwischen den Gattungen Carapa und Cedrela angeführt. Die errechneten Werte liegen bei 12,1-12,9%. Ähnlich verhält sich Swietenia gegenüber Cedrela. Hier ergeben sich Werte von 13,2-14,9%. Vergleicht man die Gattung Cedrela mit der Gattung Toona, so sind die Unterschiede mit 4,0-5,6% wesentlich geringer.

^{* =} Position mit identischer Base für alle Sequenzen

Nr.	ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	cg49																			
2	cg80	0,007																		
3	co10	0.128	0.129																	
4	co23	0.127	0.128	0.003																
5	co30	0.127	0.128	0.007	0.004															
6	co56	0.128	0.129	0,000	0.003	0.007	ĺ													
7	co71	0.127	0.129	0,006	0.003	0.001	0.006													
8	co82	0,127	0,120	0,000	0,005	0,001	0,000	0.004	1											
0	co452	0,120	0,129	0,001	0,001	0,000	0,001	0,004	0.003	[
10	of11	0,127	0,120	0,001	0,001	0,000	0,001	0,004	0,003	0.025										
11	cf36	0,123	0,124	0,035	0.035	0.032	0.035	0.032	0,036	0.034	0.007									
12	cf55	0,121	0,125	0.041	0.041	0.038	0.041	0.032	0.042	0.039	0.004	0.008	1							
12	cf606	0,123	0,127	0,041	0.036	0.034	0,041	0.034	0.038	0.035	0,004	0,000	0.007							
14	cf607	0,122	0,127	0,036	0,036	0.034	0,036	0.034	0,038	0,035	0,000	0.013	0,007	0.000						
14	cf608	0,122	0,127	0,036	0.036	0.034	0,036	0.034	0.038	0.035	0,000	0.013	0,007	0,000	0.000	1				
16	cf609	0,122	0,127	0.036	0.036	0.034	0.036	0.034	0.038	0.035	0,000	0.013	0,007	0,000	0,000	0.000	I			
17	enta83	0.144	0,127	0.113	0,000	0,001	0,050	0,001	0.113	0,000	0.097	0.095	0,007	0,000	0,000	0,000	0.099			
18	enta192	0,147	0,147	0.110	0,107	0,107	0,110	0,107	0.110	0,110	0,099	0,095	0,097	0,099	0,099	0,099	0,099	0.006	1	
19	entc74	0.143	0.146	0.113	0.111	0,107	0.113	0,104	0.113	0,107	0,077	0,000	0.103	0,077	0,077	0,000	0,000	0.063	0.065	I
20	ente76	0.143	0.146	0.113	0.111	0.107	0.113	0,109	0.113	0.111	0,105	0,100	0,103	0,100	0.106	0.106	0.106	0.063	0.065	0.000
21	entc345	0 143	0.146	0.113	0.111	0 107	0,113	0,109	0.113	0 1 1 1	0.105	0,100	0.103	0.106	0.106	0.106	0.106	0.063	0.065	0,000
22	entc393	0.143	0.144	0.113	0.111	0.107	0.113	0.109	0.113	0.111	0,105	0,100	0.103	0,106	0.106	0.106	0.106	0.065	0.066	0.001
23	entc394	0.143	0.146	0.113	0.111	0,107	0.113	0.109	0.113	0.111	0,105	0,100	0.103	0,106	0.106	0.106	0,106	0.063	0.065	0.000
24	etnc395	0.143	0.146	0.113	0.111	0.107	0.113	0.109	0.113	0.111	0.105	0.100	0.103	0.106	0.106	0.106	0.106	0.063	0.065	0,000
25	entc477	0.141	0.143	0.111	0,110	0.106	0,111	0,107	0.111	0,110	0,103	0.099	0.102	0,105	0,105	0,105	0,105	0.066	0.067	0.004
26	khg8	0.060	0.064	0.139	0,138	0.135	0.139	0,135	0.139	0,138	0.123	0,126	0.121	0.121	0,121	0,121	0.121	0,140	0.143	0,141
27	khg457	0.058	0.062	0.132	0,131	0.128	0,132	0.128	0.132	0.131	0.115	0.118	0.113	0.112	0.112	0.112	0.112	0.129	0.132	0.131
28	khi134	0.066	0.070	0.135	0.134	0.131	0.135	0.131	0.135	0.134	0.120	0.121	0.121	0.121	0.121	0.121	0.121	0.135	0.137	0.140
29	khn38	0.076	0.079	0.125	0.124	0.121	0.125	0.121	0.125	0.124	0.112	0.115	0 1 1 0	0 1 1 0	0 1 1 0	0 1 1 0	0 1 1 0	0.127	0.132	0.135
30	khn447	0.063	0.069	0.132	0.131	0.128	0.132	0.128	0.132	0.131	0.117	0.120	0.116	0.116	0.116	0.116	0.116	0.135	0.138	0.139
31	khs5	0.059	0.063	0.131	0.130	0.127	0.131	0.127	0.131	0.130	0.116	0.118	0.114	0.114	0.114	0.114	0.114	0.129	0.132	0.131
32	khs6	0.060	0.064	0.129	0.128	0.125	0.129	0.125	0.129	0.128	0.114	0.117	0.113	0.113	0.113	0.113	0.113	0.129	0.132	0.131
33	khs35	0.066	0.070	0.133	0.132	0.129	0.133	0.129	0.133	0.132	0.117	0.119	0.115	0.115	0.115	0.115	0.115	0.134	0.137	0.138
34	khs41	0.063	0.064	0.129	0.128	0.125	0.129	0.125	0.129	0.128	0.114	0.117	0.115	0.115	0.115	0.115	0.115	0.132	0.134	0.134
35	khs456	0.056	0.060	0.132	0.131	0.128	0.132	0.128	0.132	0.131	0.117	0.120	0.116	0.115	0.115	0.115	0.115	0.130	0.133	0.133
36	khs505	0.056	0.060	0.131	0.130	0.127	0.131	0.127	0.131	0.130	0.116	0.119	0.114	0.114	0.114	0.114	0.114	0.131	0.134	0.135
37	sh209	0,093	0,101	0,142	0,141	0,142	0,142	0,142	0,143	0,141	0,136	0,136	0,135	0,134	0,134	0,134	0,134	0,138	0,141	0,145
38	sh210	0,092	0,099	0,144	0,143	0,143	0,144	0,143	0,144	0,143	0,137	0,137	0,136	0,136	0,136	0,136	0,136	0,140	0,142	0,147
39	sh211	0,092	0,099	0,144	0,143	0,143	0,144	0,143	0,144	0,143	0,137	0,137	0,136	0,136	0,136	0,136	0,136	0,139	0,142	0,147
40	sh212	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,147
41	sh213	0,092	0,099	0,144	0,143	0,143	0,144	0,143	0,144	0,143	0,137	0,137	0,136	0,136	0,136	0,136	0,136	0,140	0,142	0,147
42	sh235	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,144
43	sh423	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,144
44	smc2	0,093	0,101	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,135	0,138	0,145
45	smc3	0,095	0,102	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,147
46	smc18	0,093	0,100	0,140	0,139	0,139	0,140	0,139	0,140	0,139	0,133	0,133	0,132	0,132	0,132	0,132	0,132	0,135	0,138	0,145
47	smc19	0,091	0,098	0,142	0,141	0,142	0,142	0,142	0,143	0,141	0,136	0,136	0,135	0,134	0,134	0,134	0,134	0,138	0,141	0,145
48	smc33	0,091	0,098	0,142	0,141	0,142	0,142	0,142	0,143	0,141	0,136	0,136	0,135	0,134	0,134	0,134	0,134	0,138	0,141	0,145
49	smc224	0,091	0,098	0,142	0,141	0,142	0,142	0,142	0,143	0,141	0,136	0,136	0,135	0,134	0,134	0,134	0,134	0,138	0,141	0,145
50	smc225	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,144
51	smc226	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,147
52	smc227	0,092	0,099	0,141	0,140	0,140	0,141	0,140	0,141	0,140	0,135	0,135	0,133	0,133	0,133	0,133	0,133	0,137	0,139	0,147
53	smc228	0,092	0,099	0,144	0,143	0,143	0,144	0,143	0,144	0,143	0,137	0,137	0,136	0,136	0,136	0,136	0,136	0,140	0,142	0,147
54	smc249	0,093	0,100	0,140	0,139	0,139	0,140	0,139	0,140	0,139	0,133	0,133	0,132	0,132	0,132	0,132	0,132	0,135	0,138	0,145
55	smc251	0,093	0,100	0,140	0,139	0,139	0,140	0,139	0,140	0,139	0,133	0,133	0,132	0,132	0,132	0,132	0,132	0,135	0,138	0,145
56	smc252	0,093	0,100	0,140	0,139	0,139	0,140	0,139	0,140	0,139	0,133	0,133	0,132	0,132	0,132	0,132	0,132	0,135	0,138	0,145
57	smc385	0,091	0,098	0,142	0,141	0,142	0,142	0,142	0,143	0,141	0,136	0,136	0,135	0,134	0,134	0,134	0,134	0,138	0,141	0,145
58	smh4	0,098	0,107	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
59	smh7	0,098	0,107	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
60	smh21	0,098	0,107	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
61	smh24	0,098	0,107	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
62	smh40	0,100	0,108	0,147	0,146	0,146	0,147	0,146	0,147	0,146	0,139	0,139	0,138	0,139	0,139	0,139	0,139	0,148	0,152	0,154
63	smh165	0,100	0,108	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
64	smh168	0,098	0,107	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
65	smh175	0,098	0,107	0,147	0,146	0,147	0,147	0,147	0,148	0,146	0,139	0,139	0,138	0,139	0,139	0,139	0,139	0,149	0,153	0,154
66	smh229	0,100	0,108	0,149	0,148	0,148	0,149	0,148	0,149	0,148	0,141	0,141	0,139	0,140	0,140	0,140	0,140	0,150	0,154	0,155
67	ts57	0,122	0,122	0,056	0,054	0,050	0,056	0,050	0,056	0,053	0,040	0,044	0,044	0,041	0,041	0,041	0,041	0,097	0,099	0,094
68	ts450	0,122	0,122	0,056	0,054	0,050	0,056	0,050	0,056	0,053	0,040	0,044	0,044	0,041	0,041	0,041	0,041	0,097	0,099	0,094
69	ts451	0,122	0,122	0,056	0,054	0,050	0,056	0,050	0,056	0,053	0,040	0,044	0,044	0,041	0,041	0,041	0,041	0,097	0,099	0,094
70	ts610	0,122	0,122	0,056	0,054	0,050	0,056	0,050	0,056	0,053	0,040	0,044	0,044	0,041	0,041	0,041	0,041	0,097	0,099	0,094

Nr. ID 20 21 22 23 24 25 26 27 28 29 30 31	32 33 34 35 36 37	38
--	-------------------	----

21	entc345	0,000																		
22	entc393	0,001	0,001																	
23	entc394	0,000	0,000	0,001																
24	etnc395	0,000	0,000	0,001	0,000															
25	entc477	0,004	0,004	0,003	0,004	0,004														
26	khg8	0,141	0,141	0,139	0,141	0,141	0,138													
27	khg457	0,131	0,131	0,130	0,131	0,131	0,128	0,009												
28	khi134	0,140	0,140	0,140	0,140	0,140	0,139	0,023	0,030											
29	khn38	0,135	0,135	0,133	0,135	0,135	0,131	0,023	0,031	0,020										
30	khn447	0,139	0,139	0,139	0,139	0,139	0,137	0,012	0,021	0,014	0,015									
31	khs5	0,131	0,131	0,130	0,131	0,131	0,129	0,007	0,011	0,026	0,026	0,015		-						
32	khs6	0,131	0,131	0,130	0,131	0,131	0,129	0,009	0,016	0,028	0,030	0,017	0,006							
33	khs35	0,138	0,138	0,137	0,138	0,138	0,135	0,012	0,021	0,021	0,018	0,008	0,015	0,017						
34	khs41	0,134	0,134	0,133	0,134	0,134	0,131	0,012	0,018	0,028	0,033	0,019	0,008	0,001	0,019		_			
35	khs456	0,133	0,133	0,131	0,133	0,133	0,130	0,006	0,013	0,026	0,030	0,017	0,004	0,006	0,017	0,008				
36	khs505	0,135	0,135	0,133	0,135	0,135	0,132	0,007	0,010	0,026	0,030	0,017	0,007	0,004	0,017	0,007	0,004		_	
37	sh209	0,145	0,145	0,145	0,145	0,145	0,144	0,085	0,085	0,092	0,096	0,088	0,082	0,080	0,091	0,082	0,081	0,077		
38	sh210	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,090	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	
39	sh211	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,090	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,000
40	sh212	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,092	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,003
41	sh213	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,090	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,000
42	sh235	0,144	0,144	0,144	0,144	0,144	0,142	0,084	0,084	0,091	0,094	0,087	0,081	0,078	0,089	0,081	0,080	0,076	0,001	0,005
43	sh423	0,144	0,144	0,144	0,144	0,144	0,142	0,084	0,084	0,091	0,094	0,087	0,081	0,078	0,089	0,081	0,080	0,076	0,001	0,005
44	smc2	0,145	0,145	0,145	0,145	0,145	0,144	0,084	0,083	0,091	0,094	0,087	0,081	0,078	0,089	0,081	0,080	0,076	0,008	0,004
45	smc3	0,147	0,147	0,147	0,147	0,147	0,145	0,085	0,083	0,092	0,094	0,088	0,082	0,079	0,091	0,082	0,081	0,077	0,010	0,005
46	smc18	0,145	0,145	0,145	0,145	0,145	0,144	0,083	0,082	0,091	0,092	0,087	0,081	0,078	0,089	0,081	0,079	0,076	0,008	0,004
47	smc19	0,145	0,145	0,145	0,145	0,145	0,144	0,081	0,081	0,088	0,090	0,084	0,078	0,075	0,086	0,078	0,077	0,073	0,005	0,001
48	smc33	0,145	0,145	0,145	0,145	0,145	0,144	0,081	0,081	0,088	0,090	0,084	0,078	0,075	0,086	0,078	0,077	0,073	0,005	0,001
49	smc224	0,145	0,145	0,145	0,145	0,145	0,144	0,081	0,081	0,088	0,090	0,084	0,078	0,075	0,086	0,078	0,077	0,073	0,005	0,001
50	smc225	0,144	0,144	0,144	0,144	0,144	0,142	0,084	0,084	0,091	0,094	0,087	0,081	0,078	0,089	0,081	0,080	0,076	0,001	0,005
51	smc226	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,092	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,003
52	smc227	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,092	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,003
53	smc228	0,147	0,147	0,147	0,147	0,147	0,145	0,082	0,082	0,089	0,090	0,085	0,079	0,077	0,088	0,079	0,078	0,074	0,007	0,000
54	smc249	0,145	0,145	0,145	0,145	0,145	0,144	0,083	0,082	0,091	0,092	0,087	0,081	0,078	0,089	0,081	0,079	0,076	0,008	0,004
55	smc251	0,145	0,145	0,145	0,145	0,145	0,144	0,083	0,082	0,091	0,092	0,087	0,081	0,078	0,089	0,081	0,079	0,076	0,008	0,004
56	smc252	0,145	0,145	0,145	0,145	0,145	0,144	0,083	0,082	0,091	0,092	0,087	0,081	0,078	0,089	0,081	0,079	0,076	0,008	0,004
57	smc385	0,145	0,145	0,145	0,145	0,145	0,144	0,081	0,081	0,088	0,090	0,084	0,078	0,075	0,086	0,078	0,077	0,073	0,005	0,001
58	smh4	0,155	0,155	0,155	0,155	0,155	0,154	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,084	0,033	0,031
59	smh7	0,155	0,155	0,155	0,155	0,155	0,154	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,084	0,033	0,031
60	smh21	0,155	0,155	0,155	0,155	0,155	0,154	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,084	0,033	0,031
61	smh24	0,155	0,155	0,155	0,155	0,155	0,154	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,084	0,033	0,031
62	smh40	0,154	0,154	0,154	0,154	0,154	0,152	0,096	0,094	0,098	0,104	0,094	0,091	0,088	0,099	0,090	0,090	0,086	0,032	0,029
63	smh165	0,155	0,155	0,155	0,155	0,155	0,154	0,096	0,094	0,098	0,108	0,094	0,091	0,088	0,099	0,090	0,090	0,086	0,033	0,032
64	smh168	0,155	0,155	0,155	0,155	0,155	0,154	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,084	0,033	0,031
65	smh175	0,154	0,154	0,154	0,154	0,154	0,153	0,094	0,093	0,097	0,106	0,093	0,090	0,087	0,098	0,088	0,088	0,085	0,033	0,031
66	smh229	0,155	0,155	0,155	0,155	0,155	0,154	0,096	0,094	0,098	0,108	0,094	0,091	0,088	0,099	0,090	0,090	0,086	0,033	0,032
67	ts57	0,094	0,094	0,094	0,094	0,094	0,092	0,126	0,125	0,123	0,126	0,122	0,120	0,120	0,122	0,120	0,120	0,121	0,140	0,140
68	ts450	0,094	0,094	0,094	0,094	0,094	0,092	0,126	0,125	0,123	0,126	0,122	0,120	0,120	0,122	0,120	0,120	0,121	0,140	0,140
69	ts451	0,094	0,094	0,094	0,094	0,094	0,092	0,126	0,125	0,123	0,126	0,122	0,120	0,120	0,122	0,120	0,120	0,121	0,140	0,140
70	ts610	0,094	0,094	0,094	0,094	0,094	0,092	0,126	0,125	0,123	0,126	0,122	0,120	0,120	0,122	0,120	0,120	0,121	0,140	0,140

Nr.	ID	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57

40	sh212	0,003																		
41	sh213	0,000	0,003																	
42	sh235	0,005	0,005	0,005																
43	sh423	0,005	0,005	0,005	0,000															
44	smc2	0,004	0,001	0,004	0,007	0,007														
45	smc3	0,005	0,003	0,005	0,008	0,008	0,003													
46	smc18	0,004	0,001	0,004	0,007	0,007	0,001	0,001												
47	smc19	0,001	0,001	0,001	0,004	0,004	0,003	0,004	0,003											
48	smc33	0,001	0,001	0,001	0,004	0,004	0,003	0,004	0,003	0,000										
49	smc224	0,001	0,001	0,001	0,004	0,004	0,003	0,004	0,003	0,000	0,000									
50	smc225	0,005	0,005	0,005	0,000	0,000	0,007	0,008	0,007	0,004	0,004	0,004								
51	smc226	0,003	0,000	0,003	0,005	0,005	0,001	0,003	0,001	0,001	0,001	0,001	0,005		_					
52	smc227	0,003	0,000	0,003	0,005	0,005	0,001	0,003	0,001	0,001	0,001	0,001	0,005	0,000						
53	smc228	0,000	0,003	0,000	0,005	0,005	0,004	0,005	0,004	0,001	0,001	0,001	0,005	0,003	0,003		_			
54	smc249	0,004	0,001	0,004	0,007	0,007	0,001	0,001	0,000	0,003	0,003	0,003	0,007	0,001	0,001	0,004				
55	smc251	0,004	0,001	0,004	0,007	0,007	0,001	0,001	0,000	0,003	0,003	0,003	0,007	0,001	0,001	0,004	0,000			
56	smc252	0,004	0,001	0,004	0,007	0,007	0,001	0,001	0,000	0,003	0,003	0,003	0,007	0,001	0,001	0,004	0,000	0,000		
57	smc385	0,001	0,001	0,001	0,004	0,004	0,003	0,004	0,003	0,000	0,000	0,000	0,004	0,001	0,001	0,001	0,003	0,003	0,003	
58	smh4	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
59	smh7	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
60	smh21	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
61	smh24	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
62	smh40	0,029	0,029	0,029	0,031	0,031	0,031	0,029	0,031	0,028	0,028	0,028	0,031	0,029	0,029	0,029	0,031	0,031	0,031	0,028
63	smh165	0,032	0,032	0,032	0,032	0,032	0,033	0,032	0,033	0,031	0,031	0,031	0,032	0,032	0,032	0,032	0,033	0,033	0,033	0,031
64	smh168	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
65	smh175	0,031	0,031	0,031	0,032	0,032	0,032	0,031	0,032	0,029	0,029	0,029	0,032	0,031	0,031	0,031	0,032	0,032	0,032	0,029
66	smh229	0,032	0,032	0,032	0,032	0,032	0,033	0,032	0,033	0,031	0,031	0,031	0,032	0,032	0,032	0,032	0,033	0,033	0,033	0,031
67	ts57	0,139	0,138	0,140	0,138	0,138	0,138	0,138	0,137	0,140	0,140	0,140	0,138	0,138	0,138	0,140	0,137	0,137	0,137	0,140
68	ts450	0,139	0,138	0,140	0,138	0,138	0,138	0,138	0,137	0,140	0,140	0,140	0,138	0,138	0,138	0,140	0,137	0,137	0,137	0,140
69	ts451	0,139	0,138	0,140	0,138	0,138	0,138	0,138	0,137	0,140	0,140	0,140	0,138	0,138	0,138	0,140	0,137	0,137	0,137	0,140
70	ts610	0139	0138	0 1 4 0	0.138	0138	0138	0 1 38	0 1 37	0 1 4 0	0 140	0 1 4 0	0138	0.138	0.138	0 1 4 0	0137	0.137	0 1 37	0.140

Nr. ID 58 59 60 61 62 63 64 65 66 67 68 69 70

59	smh7	0,000		_										
60	smh21	0,000	0,000		_									
61	smh24	0,000	0,000	0,000										
62	smh40	0,001	0,001	0,001	0,001		_							
63	smh165	0,001	0,001	0,001	0,001	0,003								
64	smh168	0,000	0,000	0,000	0,000	0,001	0,001							
65	smh175	0,000	0,000	0,000	0,000	0,001	0,000	0,000						
66	smh229	0,001	0,001	0,001	0,001	0,003	0,000	0,001	0,000					
67	ts57	0,140	0,140	0,140	0,140	0,139	0,140	0,140	0,139	0,140				
68	ts450	0,140	0,140	0,140	0,140	0,139	0,140	0,140	0,139	0,140	0,000			
69	ts451	0,140	0,140	0,140	0,140	0,139	0,140	0,140	0,139	0,140	0,000	0,000		
70	ts610	0,140	0,140	0,140	0,140	0,139	0,140	0,140	0,139	0,140	0,000	0,000	0,000	

Abbildung 19: Evolutionäre Divergenz zwischen den ITS-Sequenzen der Meliaceae.
cg = Carapa guianensis, co = Cedrela odorata, cf = C. fissilis, enta = Entandrophragma angolense, entc = E. cylindricum, khg = Khaya grandifolia, khi = K. ivorensis, khn = K. nyasica, khs = K. senegalensis, sh = Swietenia humilis, smc = S. macrophylla, smh = S. mahagoni, ts = Toona sinensis. Arabische Zahl = Herbarnummer.

3.2.1.4 Intraspezifische und intraindividuelle Unterschiede der Gattung Swietenia

Für die Beurteilung der intraindividuellen Unterschiede im Vergleich zu den intraspezifischen Unterschieden sowie für die weitere Untersuchung der identischen Sequenzen von *S. humilis* und *S. macrophylla*, wurde für vier Individuen dieser Gattung der ITS-Bereich (ITS1.1 \rightarrow ITS4) kloniert. Die Klonierung bietet die Möglichkeit die Sequenzinformation nur einer einzigen Kopie des ITS bereitzustellen. Für *S. macrophylla* kamen die Proben 225 sowie 226 zur Anwendung und *S. humilis* war durch Probe 235 vertreten. *S. mahagoni* wurde durch Probe 175 repräsentiert. Es wurde der Gesamtbereich des ITS kloniert, um jeweils eine vollständige Kopie einer auf dem Genom zusammenhängenden ITS-Region zu erhalten. Die Klonierung wurde anhand des in Punkt 2.2.6 aufgeführten Protokolls durchgeführt.

Um zu überprüfen, ob die intraindividuellen Unterschiede des ITS auch per PCR zu ermitteln sind, wurden für die vier angeführten Proben je fünf unabhängige PCRs durchgeführt. Die erhaltenen Amplifikate wurden im Anschluss sequenziert, so dass letztendlich für jede Probe fünf Sequenzen zur Verfügung standen. Der gewählte Ansatz erwies sich als erfolglos, da alle fünf Sequenzierungen einer Probe identische Sequenzen aufweisen. Deutlich wird, dass die Erarbeitung des ITS mittels Standard-PCR die auf dem Genom am häufigsten vertretene ITS-Kopie wiedergibt.

Der Ansatz, verschiedene Variationen des ITS mittels Klonierung zu erarbeiten, war erfolgreich. Für Probe 225 (*S. macrophylla*) wurden durch die Sequenzierung von acht Klonen vier weitere Variationen des ITS ermittelt. Probe 226 (*S. macrophylla*) wies durch die Auswertung von sechs Klonen fünf neue Variationen des ITS auf. Die Bearbeitung von Probe 235 (*S. humilis*) erbrachte fünf Klone, die vier weitere Variationen des ITS aufdeckten. Die für *S. mahagoni* bearbeitete Probe (175) ergab bei sieben Klonen sechs zusätzliche ITS-Variationen.

Für die Darstellung der intraspezifischen und intraindividuellen Unterschiede wurden alle Klone sowie alle bereits vorhandenen *Swietenia*-Sequenzen in ein Alignment geladen. Das Alignment wurde im Anschluss auf jene Positionen reduziert, die intraspezifische oder intraindividuelle Unterschiede aufweisen (Tabelle 34). Probe 385 wurde hierbei als Standard definiert. In der Regel weisen die untersuchten Klone einer Probe ein bis fünf intraindividuelle Punktmutationen auf. Einige Punktmutationen treten innerhalb einer Sequenz auch gemeinsam auf. Für Probe 225 Klon3 zeigt sich, dass wenn Position 260 ein T aufweist, an Position 286 ein A folgt. Ist jenes Muster im ITS1 zu beobachten, so folgt im ITS2 ein weiteres Muster. Die Positionen 677, 680 und 681 weisen dann, im Gegensatz zu Probe 385, ein A, C sowie Gap (-) auf (Tabelle 34). Diese Variationen finden sich außer bei Probe 225 Klon3 auch in weiteren Sequenzen (Probe 225: Klon6, Klon11, Klon12, Klon13 und Klon14; Probe 209; Probe 235: alle Klone; Probe 423). Tritt das eben beschriebene Muster in einem Individuum auf, so ist dies zwar dominant bzw. oft vertreten, jedoch finden sich ebenfalls Klone, die in keiner Position von der als Standard definierten Sequenz (385) abweichen (siehe Probe 225 Klon7).

Vergleicht man die Klone mittels einer Pairwise-Distance Analyse mit der entsprechenden "Standard-PCR" Sequenz, so liegen die intraindividuellen Unterschiede für Probe 225 zwischen 0 und 0,69%. Für die Individuen 226 sowie 235 bewegen sich diese Unterschiede in einem Bereich von 0,14-0,27% und 0-0,27%. Probe 175 ist mit Werten von 0-0,28% anzugeben.

Da die interspezifischen Unterschiede (vgl. Punkt 3.2.1.3 und Abbildung 19) deutlich größer sind als die intraindividuellen Unterschiede, wurde für die verbleibenden Arten auf eine Klonierung des ITS verzichtet.

Bezüglich der Unterscheidung von *S. macrophylla* und *S. humilis* brachte die Klonierung des ITS-Bereichs keine weiteren Ergebnisse. Es ist somit festzuhalten, dass diese beiden Arten anhand des ITS-Bereichs nicht zu unterscheiden sind.

Tabelle 34: Darstellung der intraspezifischen und der intraindividuellen Unterschiede der Gattung *Swietenia*. Sequenz smc385 dient in dieser Darstellung als Consensus-Sequenz.
Unterschiede werden durch die entsprechende Base oder ein Gap (-) dargestellt. Die angegebene Position des Unterschieds entspricht der Position im Alignment aus Abbildung 18. Die ID besteht aus dem Namenskürzel und der Herbarnummer: sh = *Swietenia humilis*, smc = *S. macrophylla* und smh = *S. mahagoni*. Klonsequenzen wurden grau hinterlegt.
* = Sequenz besteht aus fünf Einzelsequenzierungen.

3.2.2 Zygophyllaceae und Bignoniaceae

Die Gattung Guaiacum aus der Familie der Zygophyllaceae ist aktuell im CITES Anhang II gelistet. In dieser Arbeit wurden die Arten Guaiacum sanctum und G. officinale bearbeitet. Als Substitutionshölzer werden derzeit Vertreter aus den Gattungen Bulnesia (Zygophyllaceae) und Handroanthus (Bignoniaceae) eingesetzt. Aufgrund dieser Tatsache werden die Ergebnisse für diese beiden Familien gemeinsam dargestellt. Für den Aufbau der Sequenzdatenbank wurden Blätter, Äste oder frisches Splintholz von vierzehn Guaiacum officinale L., sieben Guaiacum sanctum L., zwei Bulnesia arborea (Jacq.) Engl., eine Handroanthus chrysanthus (Jacq.) S. O. Grose und fünf Handroanthus impetiginosus (Mart. ex DC.) Mattos verarbeitet (Tabelle 6). Das Alignment aus Abbildung 20 gibt die erhaltenen ITS-Sequenzen aller Proben wieder. Für dieses Alignment wurden die Sequenzen einer Art zu einer oder mehreren Consensussequenzen zusammengefasst. Eine Darstellung aller 29 Sequenzen ist dem Anhang zu entnehmen. Die Längen des ITS liegen bei: 613 und 616 bp für G. sanctum, 607-608 bp für G. officinale, 645 bp für H. chrysanthus, 646 bp für H. impetiginosus und 607 bp für B. arborea. Der ITS1 hat für G. sanctum, G. officinale, H. chrysanthus, H. impetiginosus und B. arborea Längen von 216, 212, 228, 228 und 203 bp. Der ITS2 weist Längen von 235 und 238 bp für G. sanctum, 233-234 bp für G. officinale, 255 bp für H. chrysanthus, 256 bp für H. impetiginosus und 242 bp für B. arborea auf. Der 5.8S zeigt wiederum eine Länge von 162 bp (Tabelle 35).

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Guaiacum sanctum	216		235 u. 238	613 u. 616	672 u. 675
Guaiacum officinale	212		233-234	607-608	666-667
Bulnesia arborea	203	162	242	607	666
Handroanthus chrysanthus	228		255	645	704
Handroanthus impetiginosus	228		256	646	705

Tabelle 35: Länge der unterschiedlichen Bereiche des ITS für die Familien der Zygophyllaceae und der Bignoniaceae. Angaben in bp.

Sechs der sieben untersuchten *G. sanctum* Individuen zeigen keinerlei intraspezifische Unterschiede. Einzige Ausnahme ist der ITS von Probe 162 (Cons.2, Abbildung 20), der gegenüber den anderen Proben (Cons.1 = 173, 231, 232, 233, 455 und 469, Abbildung 20) eine Abweichung von 1,5% aufweist. Da die für *G. officinale* erarbeiteten Sequenzen zwei Gruppen bilden, die sich zu 2,3% unterscheiden, wurden für diese zwei Consensus-Sequenzen erstellt (Cons.3 = 94, 101, 117, 119, 163, 167, 508, 510, 514 und 603 \leftrightarrow Cons.4 = 156, 377, 604 und 605, Abbildung 20). Trotz der intraspezifischen Unterschiede, ist eine Differenzierung der beiden Arten der Gattung *Guaiacum* möglich. Die interspezifischen Unterschiede von *G. officinale* gegenüber *G. sanctum* liegen für Cons.3 bzw. Cons.4 bei 6,2-6,3% bzw. 5,3-5,6%. Betrachtet man die CITES-geschützten Hölzer im Vergleich zu den Austauschhölzern, so weisen die beiden Gattungen der Zygophyllaceae (*Guaiacum* und *Bulnesia*) Unterschiede von ~12,9 % auf. Die Unterschiede der Gattung *Handroanthus* (Bignoniaceae) gegenüber der Gattung *Guaiacum* liegen bei ca. 29%. Mit 28,3% bewegen sich die Abweichungen der Gattungen *Bulnesia* und *Handroanthus* in einem vergleichbaren Bereich.

Ergebnisse

		***	* *	*** *	**	*** *	*	* * *		*** ** *	** **	** * *
Cons.1	AAACCTCTGCAC	AGG <mark>C</mark> AG	AACGA	ACCCGCG	GACCC	GTTGT	AAAAA	CCCGGGAC		- GGGG <mark>C</mark> G <mark>A</mark> G <mark>C</mark>	-GAGAGCGAGCCCC	TTCCCCCAGCG
Cons.2	AAACCTCTGCAC	AGG <mark>C</mark> AG	AACGA	ACCCGCG	GACCC	GTTGT	ААААА	CCCGGGAC		-GGGGCGAGC	-GAGAGCGAGCCCC	TTCCCCCAGCG
Cons.3	AAACCTGCCG	AGGCAG	AACGA	ACCCGCG	GACCC	GTTGT	AGAAC	CCGGGGGAC		-GGGGCGAGC	-GAGAGCGAGCCCC	TTCCCACCGCG
Cong 5	ARACCIGCCG	CCCAG	AACGA		GACCO	GIIGIC	AGAAC	-CCGGGGGAC		- GGGGCGAGC	-GAGAGCGAGCCCC	
Cons.6	AAAC	TGCAA	AGCAG	ACCGTG	AACAC	GTTCTC	GAACA	CTAGGGGA	ATCGACGTG	GGGGGCGACCTC	CCGTCGTGACCCCT	CCCCGCCGGCG
Cons.7	AAACO	TGCAA	AGCA	ACCGCG	AACAC	GTTCTC	GAACA	CTCGGGGGA	ATCGACGCG	GGGGGCGACCTC	CCGTCGTGACCCCT	CCCCGCCGGCG
ruler	110		20	3	0	40)	50	60	70		0
	* ** *	*		*	**	*	*	* * *	*** **	* ** ***	* * * * * *	* *
Cons.1	TCGGGACGACCC	GGGGGT	GTCA	AACCCG	CGG	GGC	GTCCC	CGTCGCCC	AACAAACCC	A-CGGCGCGGAA	CGCGCCAAGGAATC	CGAACGGAAGG
Cons.2	TCGGGACGACCC	GGGGG	GTCA	AACCCG	CGG	GG Z	GTCCC	CGTCGCCC	GAACAAACCC	A-CGGCGCGGAA	CGCGCCAAGGAATC	CGAACGGAAGG
Cons.3	TCGGGACGACCC	GGGGGC	GTCG	AACCCA	CGG	GTC	GTCCC	CGTCGCCC	JAACGAACCC	A-CGGCGCGGAC	CGCGCCAAGGAATC	CAAACGAAAGA
Cons.4	TCGGGACGACCCC	GGGGGC	GTCG	AACCCG	CGG	GCC	GTCCC		JAACGAACCC/		CGCGCCAAGGAATC	CAAACGAAAGA
Cons.6	CAAGCGCGAGCT	CGCGTC	GTGC	GGCTAA	CGAAT	CCCGGG	GCGGC	ATGCGCCA	AGGAAAACTC	ACGAAGCGCTG	CCCCCCCGTTGCCCC	GTTCGCGGTGT
Cons.7	CGAGCGCGAGCT	CCCGTC	GTGC	GGCTAA	CGAAT	CCCGGG	GCGGC	ATGCGCCA	AGGAAAACTC	AACGAAGCGCTG	CCCCCCGTTGCCCC	GTTCGCGGTGT
ruler		1	.20	13	0	140)	150	160	170	180 19	0
	* **	* *	*	*	*	****	*****	*******	*****	* * * * * * * * * * * *	******	********
Cons.1	GCCGCGCCCGCG	IGGCCI	CTTC	CCGAAC.	ATAAA	ACGAC	CTCGG	CAACGGAT	ATCTCGGCTC	FCGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
Cons.2	GCCGCGCCCGCG	IGGCCI	CTTC	CCGAAC.	ATAAA	ACGACI	CTCGG	CAACGGAT	ATCTCGGCTC	ICGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
Cons.3	GCCGCGCCCCGCGC	CGGCC1	CTTC	AGGAACG.	AAAA -	- CGACI	CTCGG	CAACGGAT	ATCTCGGCTC:	ICGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
Cons.5	GCCGCCACCGCG	CGGCCC	CTTTC	AGAATC	ACAA-	- CGACI	CTCGG	CAACGGAT	ATCTCGGCTC	ICGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
Cons.6	GTGCGGGTGGAG	TGTGCG	TCTCT	TGAATG	TCATA	ACGAC	CTCGG	CAACGGAT	ATCTCGGCTC	ICGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
Cons.7	GCGCGGGTGGAG	reeece	TCTCI	TGAATG	TCATA	ACGAC	CTCGG	CAACGGAT	ATCTCGGCTC	FCGCATCGATGA	AGAACGTAGCGAAA	TGCGATACTTG
ruler		2	20	23	0	240		250		270		0
	*****	* * * * * *	****	** ****	* * * * *	* * * * * *	****	*******	* * * * * *	* * * * * * * * * * *	*********	** **** **
Cons.1	GTGTGAATTGCA	AATCC	CGTG	ATCATC	GAGTC	TTTGA	CGCAA	GTTGCGCC	CGAAGCCTCC	GGG <mark>CC</mark> GAGGG <mark>C</mark> A	CGTCTGCCTGGGCG	TCACGCAACGT
Cons.2	GTGTGAATTGCA	AATCC	CGTG	ATCATC	GAGTC	TTTGA	CGCAA	GTTGCGCC	GAAGCCTCC	GGGCCGAGGGCA	CGTCTGCCTGGGCG	TCACGCAACGT
Cons.4	GTGTGAATTGCAG GTGTGAATTGCAG	JAATCO	CGTG	ACCATC	GAGTC	TTTGA	CGCAA	GTTGCGCCC	CAAGCCTCC	GGCCGAGGGCA	CGTCTGCCTGGGCG	TCACGCAACGT
Cons.5	GTGTGAATTGCA	AATCO	CGTG	ATCATC	GAGTC	TTTGA	CGCAA	GTTGCGCC	GAAGCCTCC	GGCCGAGGGCA	CGTCTGCCTGGGTG	TCACGCAACGT
Cons.6	GTGTGAATTGCA	AATCC	CGTG	ACCATC	GAGTC	TTTGA	CGCAA	GTTGCGCC	CGAAGCCGTT	AGG <mark>CC</mark> GAGGGCA	CGTCTGCCTGGGCG	TCWCGCATCGC
Cons.7	GTGTGAATTGCA	BAATCO	CGTG	ACCATC	GAGTC	TTTGA	CGCAA	GTTGCGCC	GAAGCCGTT	AGGCCGAGGGCA	CGTCTGCCTGGGCG	TCTCGCATCGC
ruler		3	20	33	0							0
	* ****	***	r 4	* *			*	****	******	** * ** ** *	* ***** *****	*** ***
Cons.1	CGCACCCCC	GCCC	ccccc	TCGGGG	GG	GMGAAC	GGGGGG	GAGCGGAG	ASTGGCCTCC	CGCGTGCTCCCC	CCCGCGGTTGGCCC	AAACACGAGTC
Cons.3	CGCAACCCCCC		CCCTC		GT	CGAGAAC	CCCCC	CAGCGGAG	ATTGGCCTCC	CGTGTGTGCTCCA	CCCGCGCGGTTGGCCC	AAACACGAGIG
Cons.4	CGCACCCCCG	ccc	CCCTC	GGGG	GC	CGAAC	GGGGT	CAGCGGAG	ATTGGCCTCC	GTGAGCTCCCG	CCCGCGGTTGGCCC	AAACACGAGTC
Cons.5	CGCATCCCCCCC	CAACCO	CCCTC	GCGGGG	GTTAA	GAGAGA	GGG <mark>C</mark> G	GAGCGGAC	ATGGCCTCC	CGTGCGCCCCC	CCCGCGGGCTGGCCC	AAACACGAGTC
Cons.6	GTCGCCCCCT - ·	CCC	CGCTC	CTCGTG.	A	GCGGGG	GCCGG	GGG <mark>C</mark> GGAA	ATGGCCTCC	CGTGCGCTCCCC	TGCGCGGCCGGCCC	AAATGCGATCC
cons./	410	4000	20	2010G1G. 43	A 0	44(450	ATGGCCTCCC 460	470	490 49	AAATGCGATCC
LATEL		1										
Cong 1	CCCCCCTCCCC	* * *			** ** CCTCC	TCCAN	* ****	TTTCCCCC		* * * * * * * * * * * * * * * *		
Cons.2	CCCGGTGCGGAG	ACGCG	CCAC	GCCTGC	GGTGG	TCGAA	CGACC	CTTGCCGG	ACAGCCGTGC	GG-CGTCCCCC	CCCCTTGAGGGGGCG	CTCCCGACCCT
Cons.3	CCCGGCGCGGAG	CGCG	CCACO	GCCTGC	GGTGG	TCGAG	CGACC	CTTGCGGG	AGAGCCGTGC	GCG-CGTCCCCC	GCCTTCGATGGGAG	CTCCCGACCCT
Cons.4	CCCGGCGCGGAG	<mark>CGC</mark> G	CCACO	GCCTGC	GG <mark>C</mark> GG	TCGAG	CGACC	CTTGCGGG	AGAGCCGTGC	GCG-CGTCCCCG	CCCTTCGGGGGGGA	CTCCCGACCCT
Cons.5	CCCGGCGCGGAG	CGCG	CCAC	GCCTGC	GGTGG	TTGGA	CGACC	CTTGCTGG				CTCGCGACCCA
Cons.7	CGCGGCGATG	CACG	TCACG	ACCAGT	GGTGG	TTGAAA	TCTCA	ACTOGOGI	CTGTCGTGC	CAGACGGCATCG	TCCGACGGGCATCA	TCAATGACCCA
ruler		5	20	53	0	540)	550	560	570		0
	*	**	* **	** *	*		***	*******	******	*		
Cons.1	CGG	-CGCGA	ACGC	CCAACG.	A		CGC	GACCCCAG	GTCAGGCGGG	ACC		
Cons.2	CGG	-CGCGA	ACGC	CCAACG	A		CGC	GACCCCAG	GTCAGGCGGG	ACC		
Cons.3	CGG	CGCGA	ACGC	CCAACG.	A		CGC	GACCCCAG	GTCAGGCGGG	ACC		
Cons.4	AGG			CCAACG	A			GACCCCAG	TCAGGCGGG			
Cons.6	TAGGCGCTTTGC	TGCGA	GCAC	CACGCA	AGGTG	CTTCCC	ACCGC	GACCCCAG	GTCAGGCGGGG	ATT		
Cons.7	TGGGCGCTTTGC	TGCGA	GCAC	CACGCA	AGGTG	CTTCCC	ACCGC	GACCCCAG	GTCAGGCGGG	ATT		
ruler		6	20	63	0	640)	650	660			

Abbildung 20: Consensus-Alignment der ITS-Sequenzen der Zygophyllaceae und der Bignoniaceae. Cons.1 = *Guaiacum sanctum*: 173, 231, 232, 233, 455 und 469;
Cons.2 = *G. sanctum*: 162; Cons.3 = *G. officinale*: 94, 101, 117, 119, 163, 167, 508, 510, 514 und 603; Cons.4 = *G. officinale*: 156, 377, 604 und 605; Cons.5 = *Bulnesia arborea*: 442 und 509; Cons.6 = *Handroanthus impetiginosus*: 446, 459, 463, 465 und 466; Cons.7 = *H. chrysanthus*: 449. * = Position mit identischer Base für alle Sequenzen.

3.2.3 Fabaceae

Aufgrund der Vielfalt innerhalb der Familie der Hülsenfrüchtler, werden die Ergebnisse anhand der in Tabelle 5 aufgeführten Gruppen, die aus CITES-Arten und Austauschhölzern bestehen, präsentiert. Insgesamt wurden 73 Individuen innerhalb der Fabaceae bearbeitet. Als Ausgangsmaterial dienten Blätter, Äste, DNA und Splintholz.

3.2.3.1 Die Intsia-Gruppe

Die Gattung *Intsia* (Caesalpinioideae) ist zwar derzeit noch nicht Teil des CITES-Katalogs, doch bestehen Verhandlungen, die Gattung in näherer Zukunft aufzunehmen. Aus diesem Grund wurden die beiden wichtigsten Vertreter dieser Gattung, *Intsia bijuga* (Colebr.) Kuntze und *Intsia palembanica* Miq., untersucht. Die Gattung *Afzelia* (Caesalpinioideae) sowie die Holzart *Hymenaea courbaril* L. (Caesalpinioideae) bilden die Austauschhölzer. Zum Aufbau der Datenbank wurden letztendlich siebzehn *I. bijuga*, dreizehn *I. palembanica*, zwei *Afzelia africana* Sm. ex Pers. und sieben *Hymenaea courbaril* verarbeitet (Äste, Blätter und DNA; Tabelle 6). Für die ITS-Sequenzen wurde das in Abbildung 21 wiedergegebene Alignment, in dem identische oder sich stark ähnelnde Sequenzen in einer Consensus-Sequenz zusammengefasst wurden, angefertigt.

Anhand des Alignments stellte sich heraus, dass der ITS der Gattung *Intsia* deutlich länger als der der weiteren Vertreter dieser Gruppe ist. Z.B. weist der ITS von *I. bijuga* Längen von 715 und 718 bp auf. *I. palembanica* zeigt dagegen zwar nur Längen von 704-705 bp, dies ist aber dennoch deutlich länger als bei den anderen Mitgliedern dieser Gruppe. Die Längendifferenz resultiert hauptsächlich aus einem deutlich längeren ITS2. Der ITS2 liegt für *I. bijuga* und *I. palembanica* bei 322 bzw. 307-310 bp. Für den ITS1 von *I. bijuga* wurde eine Länge von 231-234 bp ermittelt, während *I. palembanica* einen ITS1 von 233-235 bp aufweist. Vergleicht man die nah verwandte Gattung *Afzelia*, hier vertreten durch *A. africana*, mit der Gattung *Intsia*, so verdeutlicht dies, dass diese einen wesentlich kürzeren ITS (637 bp) zu verzeichnen hat. Die Längen des ITS1 bzw. des ITS2 liegen bei 217 bzw. 258 bp. Die Längen der erstellten *Hymenaea*-Sequenzen fallen sehr unterschiedlich aus. Während der ITS1 zwischen 228 und 244 bp liegt, weist der ITS2 Längen von 232 bis 251 bp auf. Für den ITS von *H. courbaril* ergeben sich somit Längen von 633-656 bp. Für alle beschriebenen Arten hat der 5.8S eine Ausdehnung von 162 bp (Tabelle 36).

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Intsia bijuga	231-234		322	715-718	774-777
Intsia palembanica	233-235	162	307-310	704-705	763-764
Afzelia africana	217	102	258	637	696
Hymenaea courbaril	228-244		232-251	633-656	689-712

Tabelle 36: Länge der unterschiedlichen Bereiche des ITS für Intsia bijuga, I. palembanica,Afzelia africana und Hymenaea courbaril. Angaben in bp.

Für den ITS von *I. bijuga* wurden zwei verschiedene Variationen erarbeitet. Cons.8, bestehend aus den Proben 85, 166, 204, 402, 403, 404, 407 und 453, unterscheidet sich in erster Linie durch ein zusätzliches Basentripple (GCG, Position 93-95) gegenüber Cons.9 (Proben 81, 401, 405, 406, 408, 409, 410, 411 und 511). Auch für I. palembanica sind zwei ITS-Variationen zu beobachten (siehe Cons10 und Cons.11, Abbildung 21). Für die Sequenzen von H. courbaril musste auf die Anfertigung einer Consensus-Sequenz verzichtet werden. Die sieben Individuen unterschieden sich so stark, dass eine übersichtliche Darstellung mithilfe einer oder mehrerer Der Consensus-Sequenzen nicht möglich wäre. Abgleich gewesen der Hymenaea-Sequenzen mit den ITS-Sequenzen der GenBank des NCBI lässt darauf schließen, dass es sich bei den Individuen 86 und 170 nicht um H. courbaril handelt. In der Sequenzdatenbank GenBank waren zum Zeitpunkt des Abgleichs zwei ITS-Sequenzen von H. courbaril hinterlegt (AY955800.1 und FJ009817.1). AY955800.1 weist eine Sequenzabdeckung von 100% zu den eigenen Sequenzen auf. Bei der Sequenz FJ009817.1 handelt es sich um eine Teilsequenz des ITS, die eine Sequenzabdeckung von 77% hat. Der Abgleich der Sequenzen 201-203, 438 und 515 mit den beiden GenBank-Sequenzen zeigt eine Homologie von 96-99%. Erfolgt der Abgleich mit der Probe 86, so liegt die Homologie lediglich bei 86 und 92%. Für Probe 170 konnte eine Homologie von je 89% ermittelt werden. Anhand der Ergebnisse des Sequenzabgleichs mit der GenBank des NCBI lässt sich keine Aussage darüber treffen, um welche Arten es sich bei den Proben 86 und 170 handelt. Die größte Übereinstimmung der ITS-Sequenzen (86-92%) ergab sich für die zwei ITS-Sequenzen von H. courbaril (AY955800.1 und FJ009817.1). Weiter zeigen die Proben 86 und 170 Übereinstimmungen zu den Arten Guibourtia hymenaeifolia (AY955802.1), Guibourtia ehie (AY955801.1) und Eurypetalum tessmannii (AY955804.1). Dies lässt darauf schließen, dass es sich bei den Proben um Vertreter der Caesalpinioideae handelt.

Trotz Unterschiede vorhandener intraspezifischer sind die interspezifischen Unterschiede immer noch ausreichend, um die untersuchten Arten voneinander zu differenzieren. Die interspezifischen Unterschiede der Gattung Intsia bewegen sich in einem Bereich von 2,7-3,3%, hingegen betragen die intraspezifischen Unterschiede dieser Gattung max. 0,7%. Die Austauschhölzer können trotz der teilweise nahen Verwandtschaft zur Gattung Intsia klar von dieser differenziert werden. Betrachtet man A. africana, ergeben sich hier Unterschiede von ca. 11%. H. courbaril zeigt Unterschiede von ungefähr 17,5%. Einen vergleichbaren Wert weist H. courbaril auch gegenüber A. africana auf (18-18,8%). Vergleicht man die Proben 86 und 170 mit den restlichen Individuen von H. courbaril, so zeigen die errechneten Unterschiede deutlich, dass diese Individuen nicht der Art H. courbaril angehören. Die Unterschiede liegen hier bei 8,5-9,1% bzw. 7,5-8,3%.

	* * **** **** * * * * * * * * * * * * *
Cons.8	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC
Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC
Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC
Cons.11	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTGTCCATCGTCCGATGGATCGCACACGTCGGGACGCACCGCGGCGCG
Cons.12	ACGGAGG-CACGCGAGCGGCACCCCG-GTGCGCGCACCGGGCCTCCGACGTCGGGACGCGACGGCGGCG
86	CTGCCACCTCGCTCACGACCACGACCCGTCAACGCGTTCTGACTGAGCCCCGCACGCCGACACTGGCTCACGG
170	CCCCCCCC-CTCACCACCCCCCCACCCCCCCCCCCC
202	
201	
438	
515	TCGCCGC-CTCACGAGCAGCACGACCGCGCAACGCGTTCCGGGCTGAAAAAGCCCCTCGCGTCGGGACGGGCTCGCAG
ruler	110203040506070
G 0	
Cong. 9	
Cons 10	
Cons.11	GCCCCGGCC - CCCCGGCCCGCGCGGGAAAACAACCAACCCCC - GCCGCCCGAACGCCAAGCAACACGATCGGATGAC
Cons.12	GGCTCGCCCGTCGGCCGTCCCCGGCGGCAAACAACCAACCCCC-GGCGCCCAACGCCCAAGGAACACATGACGATCCGATGAGC
86	GCCCCGTCCTGCCCGCCCGGCCGGCGAGAGAACGAACGAACGAACGCCCC-GGCGTCGAACGCACCAAGGAATATCATATG-CGATCGGACGRGC
170	GACCCGCCCTGCCCGCCCGCTCGGCGATA-AACGAACGAACAACCCCC-GGCGCCCGAACGCAACAGATG-CGATCGGACCCGC
202	GCCCCGCCCTGCCCCCCCCCCGCCGAAA-AACGAACGAACGAACCCCCCCGGCGCCCGAACGCAACAGATG-CGATCGGACCGGC
201	GCCCTGCCCTGCCTGCCCGCCCGACGAAA-AACGAACGAACAACCCCC-GGCGCCGAACGCGCCAAGGAACAGATG-CGATCGGACCGGC
203	GCCCCGCCCTGCCTGCCCCGACGAAA-AACGAACGAACAACCCCC-GGCCCGAACGGCCAAGGAACAGATG-CGATCGGACCGGC
438	GCCCTGCCC - TGCCTGCCCGCCCCACGAAA - AATGAACGAACAACCCCC - GGCGCCGAACGCGCCAACGAA CAGAT
515	100 110 120 120 140 150 160 170 180 140 150 160 170 180 180
ruter	
	* * ** ** ** ******** ** *** * * * * *
Cons.8	GATCCGGCCGCGCGCGCGGAGACGGTGCACGTGCGGCGGGCG
Cons.9	GATCCGGCCGCCGCCCGCCCGGCGAGCGCGCGCGCGCGCG
Cons.10	GATCCCCCCCC-CCTCCCGGAGACGGTCCACGTCCGCGGCGGCGGCGCCGCCATTTATTCGTATTATCCACACCACCTCTCGCGAAGG
Cons.11	
86	
170	GTCCTCCCCCT - CGCCCCGGGGGCGGGCGGGGGGGGGG
202	GTCCTCCCCCT-CGCCCCGGAGACGGCGGGGGGGGGGGGG
201	GTCCTCCCCCT-CGCCCCGGAGACGGCGGGGGGGGGGGGG
203	GTCCTCCCCCT-CGCCCCGGAGACGGCGCGGGGGGGGGGG
438	GTCCTCCCCCT-CGCCCCGGAGACGGCGTGCGGGGGGGGGG
515	GTCCTCCCCCT-CGCCCCGGAGACGGCGGGGGGGGGGGGG
ruler	
	****** ********* **********************
Cons.8	ATATCTCGGCTCTCGCATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
Cons.9	ATATCTCGGCTCTCGCATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
Cons.10	ATATCTCGGCTCTCGCATCGATGAGAGAGCGTAGCGAAATGCGATATCTTGGTGGAATTCCGGGAACCCATCGATCG
Cons.11	A LA CICIC COCCATICATICA A CARAGA COLA CARA A COCA TA CITACITICA CARA TICCA CATICA A CATICA TICATO A CONTRA A CATICATO A CATICATO A CONTRA A CATICATO A CATI
86	ATATCTCS ACCTCCCCATCATCATCATCATCATACCATAC
170	ATATCTCGGCTCTCGCATGAAGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
202	ATATCTCGGCTCTCGCATGAAGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
201	ATATCTCGGCTCTCGCATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
203	ATATCTCGGCTCTCGCATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
438	ATATCTCGCCTCTCCATCATCATGAAGAACCTACCGAAATGCCATACTTGGTGGAATGCAGAATCCCCGTGAACCATCGAGTCTTTGAACGAAA
515	ATACTCTCGCCTCCCATCGATCGAGCAACGTAGCCAACATCCCGTCATCTTGCACCATCCCCGTCAACCATCGCAACCATCGCAACCATCGCAACCATCGCACCATCGACATCGACATCGACCATCGACCATCGACCATCGACCATCGACATCGACCA
rurer	
	**** ***** *** ***** ****** ******* ****
Cons.8	TTCCCCCCCAACCCAATAGCCCCAGGCCACGCCCCCCAACCCCCAACCCCCAACCCCCACCCCGGTCCCCACCCCA
Cons.9	TTGCGCCCGAAGCCARTAGGCCGAGGCCACGTCTGGCTGGGTGTCACACAAGTCGCCCCAACCCCCGACGCCGGTCGCAC
Cong 11	
Cong.12	TTGCGCCCAAGCCAATAGCCCAAGGCACGCACGCTGGCTG
86	TTGCGCCCAGGCCCAGGCCGAGGCAGGCAGGCTGGCTGGC
170	TTGCACCCGAGGCCATCAGGCCAAGGGCACATCTGGCTGG
202	TTGCGCCCGAGGCCATCAGGCCGAGGGCACGTCTGGCTGG
201	TTGCGCCCGAGGCCATCAGGCCGAGGGCACGTCTGGCTGG
203	TTCCGCCCCAGGCCATCAGGCCGAGGCACGCTCTGGCTGG
438	TTGCGCCCCCAGGCCATCAGGCCCAGGCACGTCTGCTGGGTGTCAACGACGCCGCCCCCCAACCCCCCCC
515 ~~	390 400 420 420 420 420 420 420 420 420 42
T G T G T	· · · · · · · · · · · · · · · · · · ·
	* * * * * * * * * * * * * * * * * * * *
--	--
Cons.8	CGCCGCGGGGGGGCGGACGCTGGCCTCCCGTGAGCCCCGCCTCGCGGATGGCCGAAATAAGAGCTCCCGGTGCGGCGAGCACCACG
Cons. 9	CCCCCC
Cong 10	
Comb.10	
Cons.11	CGC-GGGGGGGGCGGACGCTGCCCTGAGCCCCGCCTCGCGGATGGCCGAAATAAGAGCTCCCGGGTGCGACGACCACCACG
Cons.12	CGCGGGGGGGGTCGGTCGGGCGGATGCTGGCCTCCCGTGAGCCCCGACGGCCGAAATGAGAGCCCGCGGGGGGGG
86	CGCGGAGGCGGGGCGGACGCTGGCCTCCCGTGAGCCCCGACTCGCGGATGGCCGAAACGAGAGCTCGCGGCGGCGGCGAGCGCCACG
170	CACGGTGGCGGGGCGGATGCTGGCCTCCCACAAGCCCCGCCATGTGGATGGCTAAAACAAGAGCTCACGGTGTGGCCGAACACCATG
202	
201	
201	
203	
438	CCCCGCCCCCGCGCCGATGCTCCCCCCCCCCCCC
515	CGCGGGGGCGAGGCGGATGCTGGCCTCCCGCGAGCCCCGCGATGGCCGAAACAAGAGCTCGCGGCGGCGAGCACCACG
ruler	
	**** ** * *** * ** * ** *
Cong 0	
Cons.e	
Cons.9	GCGCACGGTGGTTGAGTCGAGTCGACGATCGTCATCGCTCCGGCCCGTTCGTGCGTG
Cons.10	GCGCACGGTGGTTGAGTCGAGTCGAGTCGATTGTCATCGCTCCGGCCCGGTCGTGCGTG
Cons.11	GCGCACGGTGGTTGAGTCGAGTCGAGACGATTGTCATCGCTCCGGCCCGGTCGTGCGTCCCCCCCC
Cons.12	ACGCACGGTGGTTGAGTCGAGCGCCCCGCCGCGAGAACGATCGCTCCGGCCCGGTCGT-GCGCGCCCCCGCC
86	GCGCACGGTGGCTGAGCGGGATGCTCGGGCCCGGCCC
170	GTGCACAGTAGCTGAGTGGGATGACGCTCGGGCCTAGTCATGTGTGCTCTGCCCCCCAACGACCTTCGGGA
202	
202	
201	
203	GCGCACGGTAGCTGAGCGGGACGACCCTCGGGCCCAGTCGTGCGTGCTCCGCCCCCCGACGACCTCCCGAGA
438	GCGCACGGTAGCCGAGCGGGAGGACCCTCGGGCCCAGTCGTGCGTCCGCCCCCCGACGACCTCCGGGA
515	GCGCACGGTAGCTGAGCGGGACGACCCTCGGGCCCAGTCGTGCGTGCTCCGCCCCCCGACGACCTCCGGGA
ruler	
	** * * * * * * * * * ***
Cong	
Cons.8	TCCTCCCACGCCCGCCCGTCCATCCCCCCTCACCCTACCTA
Cons.8 Cons.9	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10	** * ** *** TCCTCCGAGACCCTACCGCGCCGTCCATCCCCCCTCACCTAACCTAACCTAACGCGGGGGGGG
Cons.8 Cons.9 Cons.10 Cons.11	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86	TCCTCCCAGACCCTACCGCCGCCCTCCACCCCCCCCCCC
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170	TCCTCCGAGACCCTACCGCGGCCGTCCATCCCCCTCACCCCACCTAACCTAACCTGAGGCGGGAGGGA
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202	TCCTCCGAGACCCTACCGCGCCGTCCATCCCCCCCCCCC
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202	TCCTCCCA GACCCTACCGCGGCCGTCCATCCCCCCCCCC
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203	TCCTCCCAGACCCTACCGCGCCCTCCATCCCCCCCCCCC
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438	TCCTCCCAGACCCTACCGCGGCCGTCCATCCCCCTCACCCCACCTAACCTAACCTCAGGGGGGAGGAGGAGGACGACGACGGACG
Cons.8 Cons.9 Cons.11 Cons.11 Cons.12 86 170 202 201 203 438 515	************************************
Cons.8 Cons.10 Cons.11 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler	************************************
Cons.8 Cons.10 Cons.11 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler	** * </th
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler	** * </th
Cons.8 Cons.10 Cons.11 Cons.12 201 201 203 438 515 ruler	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.10 Cons.11 Cons.11 Cons.12 201 201 203 438 515 ruler Cons.8	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler Cons.8 Cons.8	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 201 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202	** * * * * * * * * * * * * * * * * * *
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 201 203 438 515 ruler Cons.8 Cons.9 Cons.11 Cons.11 Cons.12 86 170 202 201	************************************
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201	** <
Cons.8 Cons.9 Cons.11 Cons.11 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.11 Cons.12 8 Cons.10 Cons.11 Cons.12 201 201 203	TCCTCCGAGACCCTACCGGGCCGTCCATCCCCCCTCACCCCAACCTAACCTAACCTAGCGGGGGGGG
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438	** * </th
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 202 201 203 438 515 ruler Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 86 170 202 201 203 438 515	** * </th
Cons.8 Cons.9 Cons.10 Cons.11 Cons.12 203 438 515 ruler Cons.8 Cons.9 Cons.11 Cons.11 Cons.12 86 170 202 201 203 438 515 ruler	TCCTCCGAGACCCTACCGCGCGCTCATCCCCCCTCACCCCACCTAACCTAACCTCAGCGGGAGGAGGAGGACGACGACGACGACGCCTTCGACG TCCTCCGAGACCCTACCGCGGCGTCCACCCCCCCTCACCCCACCTAACCTAACCTAGGCGGGAGGAGGAGGACGGAC

Abbildung 21: Consensus-Alignment der ITS-Sequenzen von *Intsia bijuga, I. palembanica, Afzelia africana* und *Hymenaea courbaril*. Cons.8 = *Intsia bijuga*: 85, 166, 204, 402-404, 407 und 453; Cons.9 = *I. bijuga*: 81, 401, 405, 406, 408-411 und 511; Cons.10 = *I. palembanica*: 399, 400, 413-415 und 417-422; Cons.11 = *I. palembanica*: 205 und 412; Cons.12 = *Afzelia africana*: 50 und 504; *Hymenaea courbaril*: 86, 170, 201-203, 438 und 515. * = Position mit identischer Base für alle Sequenzen.

3.2.3.2 Dalbergia und Machaerium scleroxylon

Für die Gattung *Dalbergia* (Faboideae) lag der Fokus auf den CITES-geschützten Hölzern *Dalbergia nigra* Allem. ex Benth. (CITES I), *Dalbergia retusa* Hemsl. und *Dalbergia stevensonii* Standley (CITES II). Als Austauschhölzer wurden weitere Arten der Gattung *Dalbergia* und *Machaerium scleroxylon* Tul. (Faboideae) herangezogen. Für folgendes Probenmaterial war eine Untersuchung möglich: zwei *Dalbergia nigra*, drei *D. retusa*, eine *D. latifolia* Roxb., zwei *D. spruceana* Benth., zwei *D. sissoo* Roxb., eine *D. melanoxylon* Guill. & Perr., eine *D. miscolobium* Benth., eine *D. decipularis* Rizz. & Matt., eine *D. obovata* E. Meyer und eine *Machaerium scleroxylon*. Das eingesetzte Material bestand aus Ästen, Blättern, Splintholz und DNA (Tabelle 6). Die Basenabfolgen der erstellten ITS-Sequenzen sind im Alignment aus Abbildung 22 wiedergegeben. Sequenzen einer Art wurden wiederum zu einer Consensus-Sequenz zusammengefasst. Eventuell vorhandene intraspezifische Unterschiede werden durch den entsprechenden IUPAC-Code dargestellt. Einige der hier präsentierten Ergebnisse entstanden im Rahmen einer (mit)betreuten Bachelorarbeit (Zatt Schardosin 2013). Die ITS-Sequenzen der untersuchten Individuen weisen eine Länge von 633-640 bp auf

(Tabelle 37). Lediglich *D. retusa* und *M. scleroxylon* zeigen kürzere Sequenzen. Die Längen liegen hier bei 621 bzw. 618 bp. Betrachtet man die einzelnen Abschnitte des ITS, so ergeben sich hierfür folgende Längen: ITS1 = 234-242 bp (*D. retusa* lediglich 226 bp), 5.8S = 162 bp und ITS2 = 232-237 bp (*D. retusa* = 224 bp; *M. scleroxylon* = 222 bp).

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Dalbergia nigra	238		235	635	694
Dalbergia retusa	226		224	612	671
Dalbergia latifolia	242		232	636	695
Dalbergia spruceana	236		235	633	692
Dalbergia sissoo	240	162	232	634	693
Dalbergia melanoxylon	240	102	232	634	693
Dalbergia miscolobium	240		232	634	693
Dalbergia decipularis	241		237	640	699
Dalbergia obovata	242		234	638	697
Machaerium scleroxylon	234		222	618	677

Tabelle 37: Länge der unterschiedlichen Bereiche des ITS für Dalbergia spp. und Machaeriumscleroxylon. Angaben in bp.

Eine Analyse der Unterschiede der einzelnen ITS-Sequenzen zeigt, dass die Sequenzen von *D. melanoxylon* (378) und *D. miscolobium* (142) absolut homolog sind (Abbildung 22). Durchgeführte Vergleiche mit der GenBank des NCBI ergaben, dass Probe 378 zu 99% (Sequenzabdeckung: 92%) identisch mit einer in der GenBank hinterlegten

ITS-Sequenz von *D. melanoxylon* ist (Accession AB828650). Wurde dagegen die ITS-Sequenz von *D. miscolobium* mit den 30 in der GenBank hinterlegten ITS-Sequenzen von *D. miscolobium* verglichen (Accession: JQ582850.1-JQ582876.1, DQ787405.1, EF451069.1 und EF451070.1), so liegt die Homologie bei maximal 90% (Query coverage: 98%). Daher ist bei der Probe 142 von einer Fehlbestimmung auszugehen.

Für die verbleibenden Vertreter der *Dalbergia*-Gruppe ermöglicht der ITS eine klare Unterscheidung der Arten. Innerhalb der Gattung *Dalbergia* liegen die intraspezifischen Unterschiede bei maximal 1,2% (629 \leftrightarrow 633). Demgegenüber stehen die interspezifischen Unterschiede von minimal 6,1% (461 \leftrightarrow 474) und maximal 11% (461 \leftrightarrow Cons.14). Vergleicht man *M. scleroxylon* mit den verschiedenen Arten der Gattung *Dalbergia* so zeichnen sich Unterschiede von 10,5-12,6% ab.

Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	ATGCCTCAACCAAGAGAGACCCGCGGACGCGT ATGCCTCAATCCAGAGAAACCCGCGAACGCGTT ATGCCTCAATCCAGAGAGACCCGCGAACGCGTT ATGCCTCAATCCAGAGAGACCCGCGAACGCGTC ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT ATGCCTCAATCCAGAGAGACCCCGCGACGCGTT ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT ATGCCTCAATCCAGAGAGACCCGCGGACGCGTT 1102030	TTACCACCCGGGACGGCCGACGCCCAGG- -TTACTACCGGGGATGGYCG TTACGACCMGGGCCGTCGAGACTGCCCGG -TCACACCCGGGGCAGGGGAGCTGCCCGAG -CTGCCACCGGGACGGCGGAGGCTGCTGCTCAG -TAACCACCCGGACGGCCGGTGCTGCTCAG -CGATGCCCGGGACGGCCGGTGCTGCCCAG -CCACCCGGGACGGCCGACGTGCCCAG -CCACCCGGGACGGCCGACGTGCCCAG -CCACCACCCGGGGCGGCCGACGTGCCCAG -CCACCACCCGGGGCGGCCGACGTGCCCAG -CCACCACCCGGGGCGGCCGACGTGCCCAG -CCACCACCCGGGGCGGCCGACGTGCCCAG 40	-CAGCT CGCCTCCCCAGCTCGGGACGAGCC -CAGCA CGCCTCCCCAAATGCCGTGGCCGAGC -CAGCC CGCCTCCCCAAATGCCGTGGCCGAGC -CAGCC CGCCTCCCCAACGTCGGGACGAGCC -CAGCCCCCCCCTCCCCAACGTCGGGACGAGCC -CAGCCCCCCCCTCCCCAACGTCGGGACGGAGCC -CAGCCCCCCCCTCCCCAACGTCGGGACGGAGCC -CAGCCT - CGCTTCCCAGAACGTCGGGACGGGGAC -CAGCCT CGCTTCCCAGAACGTCGGGACGGGCC -CAGCT CGCTTCCCAGAACGTCGGGACGGGCC -CAGCT CGCTTCCCAGAACGTCGGGACGGGCC -CAGCT CGCTTCCCAGAACGCCGGGCCGAACGC 08090100
Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	ACC-CCTCCGGCCCCCCCCCCCCCCCCCAACAAC ACGCTCTGTGGTCTCCT-CCCCGCCCAATAAC- ACGC-CCTCCGCCCCCTCCT-CCCGCCCCAACAAC CCC-CCCCCGCGCCCATCAC- CCCC-CCCCCGCCCCCCCCCCCCCCAACAACA CCCC-CCCCCGCCCCCCCCCC	AACAAACCCCGGCGCGGAATGCGCCAAGGAAGAA AACAAACCCCGGCGGGATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AACAAACCCCGGCGCGGAATGCGCCAAGGAAGCA AAACCCCGGCGCGGAATGCGCCAAGGAAGCA AAACCCCGGCGCGGAATGCGCCAAGGAAGCC 150160170	A-CAACCGTACAGCGCCCCCGTCGACCCGGCAACG A-CAATTGTACAGCGCCCCCGTCGACCCGGCAACG A-CAATTGTACTGCGCCCCGTCGCCCGGCCAGCG A-CAATGCCGACACGCCGCCCGTCGCCCGGCACG A-CAATGCCGACGCGCCCCGTCGCCCGGCACG A-CAATAGCAGACGCCGCCCCGTCGCCCGGCAACG A-CAATAGCAGACGCCCCCCGTCGGCCCGGCAACG A-CAATGTACAGCGCCCCCGTCGGCCCGGCAACG A-CAATGTACAGCGCCCCCGTCGGCCCGGCAACG G-CAATTGTACAGCGCCCCCGTCGGCCCGGCAACG 180
Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	GTGCTCGCACGGG - GGCGTCGCAACACTCGAGTC GTGCTCGTGCGGG - TGATGTCGCAACACTCGAGTC GTGCTCGTACGGG-CGGTCGCGCAACACTCGAGTC GTGCTCGTGCGGGGCGACGCGCAACACTCGAGTC GTGCCCGCACGGG-CGACGCCCAACACTCGAGTC GTGCCCGCACGGG-CGACGCCCAACACTCGAGTC GTGCCCGCACGGG-CGACGCCACACTCGAGTC GTGCCCGCACGGG-CGACGCCACACTCGAGTC GTGCCCGACGGG-GGACGCCCACACTCGAGTC GTGCCCGACGGG-GGACGTCGCAACACTCGAGTC GTGCCCCATCGGG-TGGCCTCGCAACACTCGAGTC CTGCCCCACGGG-TGGCCTCGCAACACTCGAGTC 220230240	CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT TAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGGCAACGGATATCTCGGCTCT CAAAACGACTCTCGCCACGGACGACTATCTCGGCTCT CAAAACGACTCTCGCCACGGACGACTATCTCGGCTCT CAAAACGACTCTCGCCACGGATATCTCGGCTCT	TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG TGCATCGATGAAGAACGTAGCGAAATGCGATACTTG 0290300310
Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT GTGTGAATTGCAGAATCCCGTGAACCATCGAGTCT 320330340350	TT GAACGCAA GTTGCGCCCGAAGCCATCAGGCTA TT GAACGCAAGTGCGCCCGAAGCCATTCGGCTA TT GAACGCAAGTGCGCCCCGAAGCCATTCGGCTA TT GAACGCAAGTGCGCCCCGAGGCCGTCAGGCCA TT GAACGCAAGTGCGCCCCGAGGCCGTCCGGCTA TT GAACGCAAGTGCGCCCGAGGCCATCCGGCTA TT GAACGCAAGTGCGCCCGAGGCCATCCGGCTA TT GAACGCAAGTGCGCCCGAGGCCATCGGCCG TT GAACGCAAGTGCGCCCGAGGCCATTAGGCCG TT GAACGCAAGTGCGCCCGAGGCCATTAGGCCG	AGGGCACGCCTGCCTGGGTGTCACCAATCGCCCCC AGGGCACGCCTGCCTGGGTGTCACTAATCGTTACC AGGGCACGCCTGCCTGGGGTGTCACCAATCGTTGCCC AGGGCACGCCTGCCTGGGCGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCGCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGCCCCCC AGGGCACGCCTGCCTGGGTGTCACCAATCGTCCCC
Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	CAAC CCCT GCGCCT CT TC GCCACGAGCGG C	GGCGAATGCTGGCTTCCCGTGAGCACCGCCTCGC GGTGAATGTTGGCTTCCCGTGAGCACCGCCTCGC GGCGAATGCTGGCTCCCGTGAGCACCGCCTCGC GGCGAATGCTGGCTTCCCGTGAGCACCGCCTCGC GGCGAATGATGGCTTCCCGTGAGCACCGCCTCGC GGCGAATGATGGCTTCCCGTGAGCACCGCCTCGC GGCGAATGATGGCTCCCGTGAGCACCGCCTCGC GGCGAATGCTGCCTCCCGTGAGCACCGCCTCGC GGCGAATGCTGGCCTCCCGTGAGCACCGCCTCGC GGCGAATGCTGGCTTCCCGTGAGCACCGCCTCGC .46047048049	Gettect Ganarcegettectectectectectectectectectectectecte
Cons.13 Cons.14 Cons.15 Cons.16 378 142 474 461 341 ruler	CCATGACAGACGGTGGTTGAGCACGTTCTCGA CCAYGACAGAGGGTGGTTGAGTAGTTCTCGA GCACCATGACAGACGGTGGTTGAGTAGTTCTCGA CCATGACAGACGGTGGTTGAGCGTGCTCTCGA CCATGACAGACGGTGGTTGAGCGTGTCTCCGA CCATGACAGACGGTGGTTGAGCGTGTTCTCCGA CCATGACAGACGGTGGTTGAGCGTGTTCTCCGA CCATGACAGACGGTGGTTGAGCGTGTTCTCCGA CCATGACAGACGGTGGTTGAGCGTGTTCTCCGA CCATGACAGACGGTGGTGAGCGTGTCTCCGA CCATGACAGACGGTGGTGAGTGAGTACGCTCTCCGA CCATGACAGACGTGGTTGAGTACGCTCTCCGA CCATGACAGACGTGGTTGAGTACGCTCTCCGA CCATGACAGACGTGGTTGAGTACGCTCTCCGA CCATGACAGACGTGGTTGAGTACGCTCTCCGA CCATGACAGACGTGGTGAGTACGCTCCCGA	Geccaetcat coccessor concentration of the second se	ACCCAGCGACCCGCGGCGACGTCGATCGCCCACGA ACCCAGCGACCCGTGACGCGATGGATCGCCCATGA ACCCAGCGACCCGTGACGCGATGTCGATCGCCCATGA ACCCAGCGACCCGTGACCGACGGCCGATGGCCCATGA ACCCAGGACCCGTGACCGACGGCCCATGGACCGCCATGA ACCCAGTGACCCGCGGCGACGGCGATCGCCCATGA ACCCAGTGACCCGCGGCGACGTCGACGCCCATGA ACCCAGTGACCCGCGGCGACGTCGACGCCCATGA ACCCAGTGACCCCGAGCGACGTCGACCGCCATGA ACCCAGTGACCCCCAGGCGACGGCGTCGCCCATGA ACCCAGTGACCCCAGGCGACGTCGACCCCATGA ACCCAGTGACCCCAGGCGACGTCGATCGCCCATGA ACCCAGTGACCCCAGGCGACGTCGATCGCCCATGA
Cons.13 Cons.14 Cons.15 Cons.16 630 378 142 474 461 341 ruler	CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT CGCGACCTCAGGTCAGGCGGGGCT 		

Abbildung 22: Consensus-Alignment der ITS-Sequenzen der Gattung Dalbergia sowie von Machaerium scleroxylon. Cons.13 = Dalbergia nigra: 144 und 631; Cons.14 = D. retusa: 143, 344 und 632; Cons.15 = D. spruceana: 629 und 633; Cons.16 = D. sissoo: 513 und 628; D. latifolia: 630; D. melanoxylon: 378; D. miscolobium: 142; D. decipularis: 474; D. obovata: 461; Machaerium scleroxylon: 341. * = Position mit identischer Base für alle Sequenzen.

3.2.3.3 Caesalpinia und Myrocarpus frondosus

Die Caesalpinia-Gruppe wird durch die Gattungen Caesalpinia (Caesalpinioideae) und Myrocarpus (Faboideae) gegründet. Innerhalb dieser Gruppe wurde die durch CITES Anhang II geschützte Holzart Caesalpinia echinata Lam. untersucht. Auf der Seite der Austauschhölzer fanden sich weitere Arten der Gattung Caesalpinia (in erster Linie Bäume) und Myrocarpus frondosus Fr. Allem. wieder. Für die Untersuchungen standen drei Caesalpinia echinata, drei C. ferrea Mart. ex Tul., zwei C. spinosa (Mol.) Kuntze und eine Myrocarpus frondosus zur Verfügung. Für die Bereitstellung der Sequenzen wurden Blätter, DNA und Splintholz verarbeitet (Tabelle 6). Die Unterschiede in der Basenabfolge der einzelnen ITS-Sequenzen sind in Abbildung 23 wiedergegeben. einzelnen Sequenzen einer Art wiederum Hierfür wurden die zu einer Consensus-Sequenz zusammengefasst. Intraspezifische Unterschiede sind durch den entsprechenden IUPAC-Code dargestellt.

Die Sequenzen von *C. echinata* weisen für den ITS eine Länge von 639 bp auf. Mit 643 und 645 bp ist der ITS von *C. ferrea* und *C. spinosa* nur minimal länger. Für den ITS von *M. frondosus* ist eine Länge 620 bp zu verzeichnen. Während der ITS1 von *C. echinata* über eine Länge von 240 bp verfügt, haben *C. ferrea* und *C. spinosa* für diesen eine Größe von 237 bp. Der insgesamt längere ITS von *C. ferrea* und *C. spinosa* gegenüber *C. echinata* ergibt sich aus dem ITS2. Hier zeigen *C. ferrea* und *C. spinosa* Längen von 244 und 246 bp, während der ITS2 von *C. echinata* nur eine Größe von 237 bp hat. Für den ITS1 und den ITS2 von *M. frondosus* wurden die Längen von 235 sowie 223 bp festgesetzt. Für den 5.8S wurde wie bisher eine Länge von 162 bp erarbeitet (Tabelle 38).

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Caesalpinia echinata	240		237	639	698
Caesalpinia ferrea	237	162	244	643	702
Caesalpinia spinosa	237	102	246	645	704
Myrocarpus frondosus	235		223	620	679

Tabelle 38: Länge der unterschiedlichen Bereiche des ITS für Caesalpinia spp. und Myrocarpusfrondosus. Angaben in bp.

Die intraspezifischen Unterschiede für *C. echinata*, *C. ferrea* und *C. spinosa* liegen bei 0%, 0-0,4% und 0%. Dagegen stehen die interspezifischen Unterschiede dieser drei Arten von 13,2% (*C. echinata* \leftrightarrow *C. ferrea*), 10,4% (*C. echinata* \leftrightarrow *C. spinosa*) und 14,5% (*C. ferrea* \leftrightarrow *C. spinosa*). Beim Vergleich von *M. frondosus* mit der Gattung *Caesalpinia* liegen die Unterschiede zwischen 19,9 und 21,5%.

	* ***	** *	*****	******	** *		* *	***	**		****	** *	***	* *	** 1	* *
Cons.17	ACGCCCCTC-C	GAACAGA	ACGACC	CGCGAAC	CGGTGTG	cc	CGATAC	CTCGGG	GGCGGGGG	TGCCGGT	GCCCT	CGCC	rcccgc	GTCGGC	GGGA	GCGC
Cons.18	ATGCCTGCA-	AAACGGA	ACGACC	CGCGAAC	CGGTTCT	rgccc	CGATAC	CCGGGGG	GGCGGGGG	GYGCCCGT	GCCCT	CGGC	rccccc	GTCGGC	GGGA	GCGT
Cons.19	ATGCCTCAC-A	AAACAGA	ACGACC	CGCGAAC	CG-TGTG	CC	CCAT-T	TGCGGG	GGCGGGGG	GCGCCAGC	CGCCCT	CGGC	rcccgg	GTTGGC	GGG – (GTGC
444	ATGCCCCCCC	GAAAAGG	ACGACC	CGCGAAC	CGGTTTA		CCAGCC	CCCCGGGG	GG		- GCCCC	CGCC	GCCCGC	-CCGCC	GGTGC	GCGT
ruler	110		.20			.40	• • • • • •	50	60	70		80	• • • • • •	90	• • • •	.100
	** *	* ** *	* *	** *	**	**	*****	*****	*****	*****	*		*** *	***	*	**
Cons.17	тевевесте	GCGCCGT	CCGTGC	CCGTCG	ACGCAAC	AACTA	ACCCCG	acacac-	-TGCGCC	AAGGAATT	TGAAA	ACAA	AGCGTG	CCCTC	TCA	CCC
Cons.18	CGGTCGCCTC	GTGCTGC	CGGCGC	-CCGTCG	ACAC	AAACG	ACCCCG	GCGCCC-	-TGCGCC	AGGAAAT	TGAGA	AACG	AGCGTG	-CCCTC	GACG	ACC
Cons.19	CCACGGCCTT	GCGCTGT	CGGTGC	ACCGCCG	ACGAAAA	AACTA	ACCCCG	GCGCCC-	- TGCGCC	AAGGAATT	CAGAA	ACAA	AGCGTG	TCCCCG	GGCA	GCCC
444	CGCCTGCGCCC	G <mark>CGCA</mark> GG	CC-CGT	CCCCCGG	ACGAGCA	AACCA	ACCCCG	GCGCCG	ACGCGCC	AAGGAAAC	CAACA	GTGC	GCGCG	CCCCCG	GCGG	CACC
ruler			120	130		140	1	50	160	170		.180		.190		.200
	*** *****				. ب											
Cong 17	GGAAACGGTG	nacarco	acaac	°			 ТСС-ТА	TACACAZ	CGACTCT	CCCAACC	1 8 TR T C	rcaa		TATCOL		2880
Cons.18	GGAAACGGTG	CG-GTCG	GGGAG-	C	ATCGC (GACGA	TCG-CG	TACGCAR	CGACTCT	CGGCAACG	ATATC	TCGG	TCTCG	CATCGA	GAA	BAAC
Cons.19	GGAAACGGTG	CCGGTCG	GGGAG-	C2	ATCGC (GACAT	TCT-AA	TACAGA	CGACTCT	GGCAACG	ATATC	TCGG	TCTCG	CATCGA	GAA	AAC
444	GGATGCGGTG	ccc <mark>c</mark> ccc	GGCCGG	CGCCCGC	GTCACCG	GTCGT	TCGACC	TCCGAAF	CGACTCT	CGGCAACG	JATATC	rcgg	CTCTCG	CATCGA	GAA	GAAC
ruler			220	230		240	2	50	260			.280		.290		.300
Cong 17					********		******									
Cons 19	GTAGCGAAAT	CGATAC	TTCCTC	TCANTIC	CAGAAICO	CGIG	AACCAI	CGAGICI	TTCAACG	TAAGTIGC			ATTAGG		CACC	TCT
Cons.19	GTAGCGAAAT	GCGATAC	TTGGTG	TGAATTG	CAGAATC	CCGTG	AACCAT	CGAGTCI	TTGAACG	CAAGTTGC	CCCGA	AGCC	ATTAGG	CCGAGG	CAC	TCT
444	GTAGCGAAAT	GCGATAC	TTGGTG	TGAATTG	CAGAATC	CCGTG	AACCAT	CGAGTC	TTGAACG	CAAGTTGC	CCCGA	AGCC	ACTAGG	CCGAGG	GCAC	TCT
ruler			320	330		340	3	50	360			.380		.390		.400
Cong 17					aaaaa	Tadam	amamaa									
Cons 18	CCTGGGTGTG	CACACAT	CGYTCC	CCCCCCA.				ACCACCO	CGCGAGG		ICATCA	raaco		adddoo	TCGTC	
Cons.19	GCCTGGGCGT	CACACAT	CGTTGC	CCCCCCA	ACCACCG	TGCCT	CGC	AAGAGG	CGTGACG	GATGGGC	GATCA	TGGC	TCCCG	CGGGCC	TCGT	CTCG
444	GCYTGGGCGT	CACGCAG	CGTCGC	CAGCGCC	CCG(GCCC -		GGG	CGCG	GC(GATGA	TGGC	TCCCG	CGAGCC	rcgco	CTCC
ruler			420	430		440	4	50	460	470		.480		.490		.500
	*** ** **.										****			****	. .	
Cong 17	CCCTTCCCCC				aacaa TC		GCACCT	Caaraa	Talara		CCTCC		Carree	Tacaca	rano(27700
Cons.18	CGGTTGGTCG	AAAAGGG	AGT	CCTCGGC	GGCGATC	GCCAC	GATCCT	CGGTGG	KGAGCAC		- GCTCG	ATAC	GGACG	TGCGCG	CTTC	CCC
Cons.19	CGGCTGGCCG	AAATAAG	AGT	CCTCGGT	GGCGGTC	GCCAC	GCTCCT	CGGTGG	CGAGTTT	Ă	ACTCG	ATGC	GGTCG	TGCGCG	GCCC	TCA
444	CGGCCGGCCG	AAACTGG	GCTTCC	CCCCCGC	GACGAGC	GCCGC	GATCCA	.CGGTGG	TGAGTGA	GCACGACG	GCTCG	AGAC	CGGACG	CGCGCG	CC(GTCG
ruler			520	530	!	540	5	50	560	570		.580		.590		.600
	* ** *	* *	*	* •	*		* **	** *	* *****	*******	** ***	***				
Cong. 17	acceaceced			ATCGTGTG			CACCCA	AACCTAC	a-calco		acaca	 2 СТ				
Cons.18	-CCCGGTCGG	ACTCGGA	RACCCC	ATCGCGT	CGCCCCG	TGCGA	CCGCGC	ATCCGAC	G-CGACC	CAGGTCA	GSGGGG	GCT				
Cons.19	CCTGGGCCGG	GCTCGGA	GACCCT	GTCGTGTG	CGCCCCG	AGCGA	CAACGA	AACCAAC	G-CGACC	CAGGTCA	GGGGGG	GCT				
444	CCGGGGGCCGGG	GCCAGCG	GGACG-	AGGGTCC	c		CCTCGC	CCCCGAF	GGCGACC	CAGGTCA	GGCGGGG	GCT				
ruler			620	630		640	6	50	660	670						

Abbildung 23: Consensus-Alignment der ITS-Sequenzen der Gattung *Caesalpinia* sowie von *Myrocarpus frondosus*. Cons.17 = *Caesalpinia echinata*: 206, 207 und 643;
Cons.18 = *C. ferrea*: 471, 625 und 626; Cons.19 = *C. spinosa*: 425 und 426; *Myrocarpus frondosus*: 444. * = Position mit identischer Base für alle Sequenzen.

3.2.3.4 Die Gattung Pterocarpus

Ein weiterer Vertreter der Faboideae ist die Gattung *Pterocarpus*. Diese beinhaltet mit *Pterocarpus santalinus* L.f. ein weiteres Holz, das durch den CITES Anhang II geschützt ist. Auf der Seite der Austauschhölzer standen *P. soyauxii* Taub. und *P. indicus* Willd..

Im Zuge der Arbeit wurde Material von zwei *P. santalinus*, zwei *P. soyauxii*, vier *P. indicus* und einer *P. macrocarpus* Kurz. verarbeitet. Ausgangsmaterial waren DNA-Extrakte und Blätter (Tabelle 6). Die Unterschiede in der Basenabfolge der einzelnen ITS-Sequenzen sind in Abbildung 25 wiedergegeben. Die Sequenzen einer Art wurden auch in diesem Punkt zu einer Consensus-Sequenz zusammengefasst. Intraspezifische Unterschiede sind durch den zugehörigen IUPAC-Code dargestellt. Die Analyse der erhaltenen Sequenzen erbrachte die nachfolgenden Ergebnisse.

Der ITS für *P. santalinus* weist eine Länge von 650 bp auf, die ebenfalls für *P. macrocarpus* und Probe 642 (*P. indicus*) zu verzeichnen ist. Im Gegensatz zu Probe 642 haben die restlichen drei Individuen von *P. indicus* nur eine Länge von 642 bp. Für *P. soyauxii* ist eine Angabe der Länge des ITS nicht möglich, da die Erarbeitung des ITS1 nicht erfolgreich war. Zwar konnte unter Verwendung der allgemeinen "Holzprimer" der ITS1 amplifiziert werden, jedoch brachten die anschließenden Sequenzierungen keine Ergebnisse. Für die weiteren Arten ergibt sich die Länge des ITS1 wie folgt: 250 bp für *P. santalinus*, 242 sowie 250 bp für *P. indicus* und 250 bp für *P. macrocarpus*. Der 5.8S zeigt für alle Arten eine Länge von 162 bp. Für den ITS2 sind Längen von 238 bp (*P. santalinus*, *P. indicus* und *P. macrocarpus*) und 243 bp (*P. soyauxii*) berechnet worden (Tabelle 39).

Tabelle 39: Länge der unterschiedlichen Bereiche des ITS für die Gattung Pterocarpus.Angaben in bp.

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Pterocarpus santalinus	250		238	650	709
Pterocarpus soyauxii	-	162	243	-	-
Pterocarpus indicus	242 u. 250	10-	238	642 u. 650	701 u. 709
Pterocarpus macrocarpus	250		238	650	709

Die unterschiedlichen Längen des ITS1 von P. indicus resultieren aus einem Indel, das Probe 642 aufweist. Dieses 8 bp (CCG GCA GC) große Indel ist in Abbildung 25 an Alignmentposition 61-68 wiedergegeben. Weiterhin zeigt das Alignment, dass die untersuchten Vertreter der Gattung Pterocarpus sehr homologe Sequenzen aufweisen. Mithilfe der Pairwise-Distance Analyse ergeben sich intraspezifische Unterschiede von max. 0,5%. Dagegen stehen interspezifische Unterschiede von max. 5,9-6,4% (*P. indicus* \leftrightarrow *P. soyauxii*). *P. soyauxii* unterscheidet sich von *P. macrocarpus* zu 5,9%. Mit 4,9-5,4% liegen die interspezifischen Unterschiede von P. santalinus und P. soyauxii in einem ähnlichen Bereich. Vergleicht man dagegen P. santalinus mit P. indicus und P. macrocarpus, so liegen die Unterschiede zwischen 3,1 und 3,7%. Anhand der vorliegenden Sequenzen ist eine zuverlässige Differenzierung von P. indicus und P. macrocarpus nicht möglich. Die Unterschiede betragen hier konstant 0,8%. Zur Absicherung dieser geringen Unterschiede wurde eine weitere Pairwise-Distance Analyse durchgeführt. Hierfür wurden die Sequenzen von P. indicus und P. macrocarpus mit entsprechenden ITS-Sequenzen der Sequenzdatenbank GenBank aligned. Zum Zeitpunkt der Analyse lagen für P. indicus vier ITS2-Sequenzen vor (AF269177.1, JN083482.1, JN083481.1 und JN083480.1). P. macrocarpus war mit zwei Sequenzen in der GenBank vertreten, wobei eine den ITS (AF269176.1) und die andere den ITS2-Bereich (JN083487.1) wiedergab. Für P. indicus ergibt die Pairwise-Distance Analyse, dass alle Sequenzen (eigene und GenBank-Sequenzen) geringe oder keine intraspezifischen Unterschiede aufweisen (max. 0,6%; Abbildung 24). Betrachtet man die intraspezifischen Unterschiede von P. macrocarpus, so sind diese Sequenzen weniger homolog. Während JN083487.1 (ITS2-Bereich) keinerlei Abweichung zur Sequenz von Probe 462 zeigt, weicht AF269176.1 (ITS) zu 8,8% ab. Die Abweichung der beiden Netzsequenzen zueinander liegt bei 0,7%. Bezüglich der interspezifischen Unterschiede von P. macrocarpus zu P. indicus zeigt JN083487.1 (ITS2-Bereich) mit 0,7-1,3% vergleichbare Werte, wie in der ersten Analyse ermittelt (0,8%). Betrachtet man die interspezifischen Unterschiede von AF269176.1 ergeben sich Unterschiede von 7,4-8,3% zu den Sequenzen der Proben 448 und 640-642 (ITS-Bereich von P. indicus). Steht nur der ITS2-Bereich zur Verfügung (siehe GenBank-Sequenzen), so bestehen außer für AF269177.1 (0,6%) keinerlei Unterschiede. Die interspezifischen Unterschiede der eigenen Sequenz von P. macrocarpus (462) zu den GenBank-Sequenzen liegen konstant bei 0,6%. Lediglich AF269177.1 zeigt eine stärkere Abweichung von 1.2%.

Nr.	ID	1	2	3	4	5	6	7	8	9	10
1	641 P. indicus, ITS-Bereich										
2	640 P. indicus, ITS-Bereich	0,000		_							
3	448 P. indicus, ITS-Bereich	0,000	0,000		_						
4	642 P. indicus, ITS-Bereich	0,002	0,002	0,002							
5	AF269177.1 P. indicus, ITS2-Bereich	0,006	0,006	0,006	0,006		-				
6	JN083482.1 P. indicus, ITS2-Bereich	0,000	0,000	0,000	0,000	0,006		_			
7	JN083481.1 P. indicus, ITS2-Bereich	0,000	0,000	0,000	0,000	0,006	0,000		-		
8	JN083480.1 P. indicus, ITS2-Bereich	0,000	0,000	0,000	0,000	0,006	0,000	0,000		_	
9	JN083487.1 P. macrocarpus, ITS2-Bereich	0,007	0,007	0,007	0,007	0,013	0,007	0,007	0,007		
10	AF269176.1 P. macrocarpus, ITS-Bereich	0,074	0,074	0,074	0,083	0,006	0,000	0,000	0,000	0,007	
11	462 P. macrocarpus, ITS-Bereich	0,008	0,008	0,008	0,008	0,012	0,006	0,006	0,006	0,000	0,088

Abbildung 24: Evolutionäre Divergenz zwischen den ITS-Sequenzen von *Pterocarpus indicus* und *P. macrocarpus*. Verglichen wurden selbst erstellte Sequenzen (448, 462 und 640-642) sowie ITS-Sequenzen der GenBank (AF269176.1, JN083487.1, AF269177.1, JN083480.1, JN083481.1 und JN083482.1).

Cons.20 Cons.21	ATCCTCACAATCCAGTCCACCCCCGAACGTGTTTTGCCACACGGGCAGCCGCAGGTCGCTCGC
Cons.22 642 462 ruler	ATGCCTCACAATCCACGCGCACCGCGAACGTGTTTT-CCACACGGGCAGGCGATGCTGCTCGGCTGCCCCGGTGCCGGAACGGGC ATGCCTCACAATCCACGCGCACCGCGAACGTGTTTT-CCACACGGGCAGGCGATGCTGCCCGGCAGCTCGGCTGGCCGGCACGGGAACGGGC ATGCCTCACAATCCACGCGCCGCGACGTGTTTT-CCACACGGCAGGCGATGCTGCCCGGCAGCTCGGCAGCTGGCCGGAACGGGC 110203040506070809090
14101	
Cons.20 Cons.21 Cons.22 642 462 ruler	ATCACGCCCCTGTGCGGGCCTCGTCCCGGCACACAACAACAACAAACCCCGGCGCGGAATGCGCCAAGGAAGTCGTAACTGTTTGGTGCCCCGA ATCACGCCCCCGAGCGTGCGGGCCTCGTCCCGGCACACAACAACAACAACAACACAAACCCCGGCGCGGAATGCGCCAAGGAAGTCGTAACTGTTTGGCGCCCAG ATCACGCCCCCGAGCGTGCGGGCCTCGTCCCGGCACACAACAACAACAAAACCCCGGCGCGGAATGCGCCAAGGAAGTCGTAACTGTTTGGCGCTCAG ATCACGCCCCCGAGCGTGCGGGCCTCGTCCCGGCACACAACAACAACAAAACCCCGGCGCGGAATGCGCCAAGGAAGTCGTAACTGTTTGGCGCTCAG ATCACGCCCCGAGCGTGCGGGCCTCGTCCCGGCACACAACAACAAAACCCGGCGCGGAATGCGCCAAGGAAGTCGTAACTGTTTGGCGCTCAG ATCACGCCCCGAGCGTGCGGGCCTCGTCCCGGCACACAACAACAAAACCAAAACCCGGCGGGAATGCGCCAAGGAAGTCGTAACTGTTTGGCGCTCAG ATCACGCCCCGAGCGTGCGGGCCTCGTCCCGGCACACACA
Cons.20 Cons.21 Cons.22 642 462 ruler	CCCTTTCGGCCCGGAAACGGTGCTCGTACGGGCGGCGCCGCAACACACTCGAGTCTAAACGACTCTCGGCAACGGATATCTCGGCTCTTGCATC - GACTCTCGGCAACGGATATCTCGGCTCTTGCATC CCCTTTCGGCCCGGAAACGGTGCTCGTACGGCGGCGCGCGC
Cons.20 Cons.21 Cons.22 642 462 ruler	GATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG GATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG GATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGGGTCTTTGAACGCAAGTTGCGCCCCAAAGCCATTAG GATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAACCCGTGAACCATCGGGTCTTTGAACGCAAGTTGCGCCCCAAAGCCATTAG GATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCCAAAGCCATTAG CATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCCAAAGCCATTAG CATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAAGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAACGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAAGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAACGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAACGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGGATCTTGGAGCGAAGTGCGCCGAAGCCATTAG CATGAACGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAACGAACGTAGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCACCGAGGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTAG CATGAACGCGAAATGCGATACTTGGTGTGAACCACGAGACCATCGGAGCCATTGGACCACGAGGCGAAGCCACGAGGCCAAGTGCGCCGAAGCCACGAGGCGATGTGCGCCGAAGCGACGACGACGACGACGACGACGACGACGAC
Cons.20 Cons.21 Cons.22 642 462 ruler	GCTAAGGGCACGCCTGCCTGGGTGTCACGAATCGTTGCCCCAATCCCCGCGCCTCTAGGCGCCGGGCGGGCGGAGGGCGAATGCTGGCTTCCCG GCTAAGGGCACGCCTGCCTGGGTGTCACAAATCGTTGCCCCAATCATCCGGCGCCTGTAGGCGCGGGCGG
	******** ********* ********************
Cons.20 Cons.21 Cons.22 642 462 ruler	TGAGCGAGTGCCTCGCGGTTGGCCGAAAATCGGGTTCGTGGTGGAGGGTAGCGCCATGACAGACGGTGGTTGAGTCCAATCTCGAGGCCAGTCGT TGAGCGAGTGCCTCGCGGTTGGCCGAAAATCGGGTCGTGGGGGGGG
Cons.20 Cons.21 Cons.22 642 462 ruler	GCGCGGTCCCCTCGCTAGTTACGGACTCCGTGACCCG-TGAGGCGCACCGATGCCCATGATGCGACCTCAGGTCAGG

Abbildung 25: Consensus-Alignment der ITS-Sequenzen der Gattung *Pterocarpus*. Cons.20 = *P. santalinus*: 636 und 637; Cons.21 = *P. soyauxii*: 638 und 639; Cons.22 = *P. indicus*: 448, 640 und 641; *P. indicus*: 642; *P. macrocarpus*: 462. * = Position mit identischer Base für alle Sequenzen.

3.2.3.5 Die Gattung Dipteryx und Bowdichia nitida

Eine weitere Gruppe innerhalb der Fabaceae bilden *Dipteryx panamensis* (Pittier) Record & Mell. (CITES Anhang III), *Dipteryx odorata* (Aubl.) Willd. und *Bowdichia nitida* Benth.. Beide Gattungen sind Vertreter der Unterfamilie Faboideae. Für die Gruppe stand lediglich DNA eines Individuums von *B. nitida* zur Verfügung (Tabelle 6). Die ITS-Sequenz dieses Individuums gibt Abbildung 26 wieder. Die Länge der Sequenz beträgt 645 bp und setzt sich aus folgenden Einzellängen zusammen: 237 bp für den ITS1, 162 bp für den 5.8S und 246 bp für den ITS2 (Tabelle 40).

Tabelle 40: Länge der unterschiedlichen Bereiche des ITS für Bowdichia nitida.
Angaben in bp.

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Bowdichia nitida	237	162	246	645	704

Der Abgleich der Sequenz von Probe 624 mit den ITS-Sequenzen der GenBank des NCBI ergab eine 100%ige Homologie (100% Sequenzabdeckung) zu einer Sequenz von *B. nitida* (JX124479.1, (Cardoso et al. 2012)). Zwei weitere für *B. nitida* hinterlegte Sequenzen (JX124477.1 und JX124478.1, (Cardoso et al. 2012)) hatten eine Homologie von 99% (100% Sequenzabdeckung). Des Weiteren lagen für die Gattung *Bowdichia* drei Sequenzen von *B. virgilioides* vor (JX124475.1, JX124476.1 (Cardoso et al. 2012) und EF457709.1 (Edwards und Hawkins 2007)). Alle drei Sequenzen zeigten eine Homologie von 99% zu der Sequenz von Probe 624. Eine Pairwise-Distance Analyse mit den insgesamt sieben Sequenzen ergab interspezifische Unterschiede von 0,2-0,6%. Für *B. nitida* stehen diesen geringen interspezifischen Unterschieden, intraspezifische Unterschiede von 0-0,3% gegenüber. Für *B. virgilioides* wurden Werte von 0,3-0,6% errechnet.

Die jeweils drei ITS-Sequenzen der beiden Arten der GenBank wurden zu je einer Consensus-Sequenz zusammengefasst und mit der Sequenz von Probe 624 in Abbildung 26 dargestellt. Insgesamt zeigt das Alignment nur an sieben Positionen Abweichungen zu der Sequenz von Probe 624. Sechs der sieben Positionen weisen IUPAC-Codes auf (Positionen 1, 369, 408, 511, 522 und 557). Bei den Positionen mit einem IUPAC-Code wird deutlich, dass mindestens eine der Sequenzen, die die entsprechende Consensus-Sequenz bilden, eine Base aufweist, die der von Probe 624 entspricht. An der siebten Position (Position 567) zeigt die Consensus-Sequenz von *B. nitida* (Cons.23) entweder ein T oder ein Gap (dargestellt durch: t).

*****	*****
624 AAGCCTCACGAGCGGGGCGCGGCGGATCCGTTCGACGGCGGGGGTGTGCCCGGCCCTCGGCGGGGGGGG	CGCCTCGCGCGGT CGCCTCGCGCGGT CGCCTCGCGCGCG
 ************************************	TCGGCCCGGGGAC TCGGCCCGGGGAC TCGGCCCGGGGAC 180190
624 GCTCCCCTCCGGCTGCGCTCCCGAACGCCGAATGAAAATCCAAAATGACTCTCGCCAACGATATCTCGCCTCTGCATCG Cons.23 GCTCCCCCTGCGGCTGCGCTCCGCAACGCCGAATGAAAATCCAAAATGACTCTCGCCAACGATATCTCGGCTCTTGCATCG Cons.24 GCTCCCCGTGCGGGCGCGCGCGAACGCAATGAAAATCCAAAATGACTCTCGCCAACGATATCTCGGCTCTTGCATCG ruler200210220230240250260270	ATCAACAACCTAC ATCAACAACCTAC ATCAACAACCTAC ATCAACAACCTAC ATCAACAACCTAC
************************	** ********
624 CGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCACCAGG Cons.23 CGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCACCAGG Cons.24 CGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCACCAGG ruler .290300310320330340350360	CTCACCCACCCC CTCACCCCACCCC CYCACCCCACCCC
624 TGCCTGGGCGTCGCACATCGTTGCCCCACATGCCCGTGCCCCGCGGGGGCACCGGGGGCGAGCGGGGCGAGCGGGGCGAGCGGGGCGAGCGGGGGCGACGGGGGG	CCCCGTGAGGAACG CCCCGTGAGGAACG CCCCGTGAGGAACG
********	*****
624 CCTCGCGGCTGGCTGAAAATCGAGTCCGTGGCGGGGCGCACCGCGAAGGATGGTGGTTGACTGAGAGGCTCGAGACCACTCGC Cons.23 CCTCGCGGCTGGCTGAAAATCGAGTCCGTGGCGGGGGCGCACCGCGAGGATGGTGGTTGAGTGAG	GCGTGTCGGTCCC GCGTGTCGGtCCC GCGTGTCGG-CCC 560570
624 TCCGCCCTCGGGACTCCCTGACCCACGTGCGGCCCTTTTGGCCGCCCCACAACGGGACCTCAGGTCAGGCGGGCCT Cons.23 TCCGGCCTCGGGACTCCGTGACCCACGTGCGGCCGTGTTGGCCGCCCCACAACGGGACCTCAGGTCAGGCGGGGCT Cons.24 TCCGGCCTCGGGACTCCGTGACCCACGTGCGGCCGTGTTGGCCGCCCCACAACGGGACCTCAGGTCAGGCGGGGCCT	

Abbildung 26: Consensus-Alignment der ITS-Sequenzen der Gattung *Bowdichia. Bowdichia nitida*: 624; Cons.23 = *Bowdichia nitida* mit GenBank-Nr.: JX124477.1, JX124478.1 und JX124479.1; Cons.24 = *Bowdichia virgilioides* mit GenBank-Nr.: JX124475.1, JX124476.1 und EF457709.1. t = Position mit T oder Gap. * = Position mit identischer Base für alle Sequenzen.

3.2.4 Caryocaraceae

Für die Familie der Caryocaraceae wurde die Gattung *Caryocar* untersucht. Innerhalb der Gattung lag der Fokus auf *Caryocar costaricense* Donn. Sm. (CITES Anhang II) und dessen Austauschhölzern *Caryocar brasiliense* Camb. und *Caryocar glabrum* Pers.. Für die Untersuchungen lagen für ein Individuum Blätter (*C. brasiliense*) und für ein weiteres DNA (*C. glabrum*) vor (Tabelle 6).

Tabelle 41: Länge der unterschiedlichen Bereiche des ITS für Caryocar brasiliense und
C. glabrum. Angaben in bp.

Art	ITS1	5.88	ITS2	ITS	ITS-Bereich
Caryocar brasiliense	221	162	245	628	687
Caryocar glabrum	221		245	628	687

Für den ITS von *C. brasiliense* und *C. glabrum* wurde eine Länge von 687 bp ermittelt. Der ITS1 ist mit 221 bp kürzer als der ITS2 (245 bp). Für den 5.8S wurde wiederum eine Länge von 162 bp festgelegt (Tabelle 41).

Die ITS-Sequenzen der beiden untersuchten Arten unterscheiden sich in 14 Positionen (Positionen ohne * im Alignment, Abbildung 27). Der Abgleich mit der Sequenzdatenbank GenBank ergab für die Sequenzen eine 93%ige Homologie (Sequenzabdeckung 100%) zur einzigen hinterlegten ITS-Sequenz der Gattung *Caryocar* (*C. glabrum*, FJ037803.1). Eine durchgeführte Pairwise-Distance Analyse wies für *C. brasiliense* (208) und *C. glabrum* (627) interspezifische Unterschiede von 2% aus. Dagegen stehen die intraspezifischen Unterschiede von 6,7% der beiden ITS-Sequenzen von *C. glabrum* (627 \leftrightarrow FJ037803.1). Die interspezifischen Unterschiede der ITS-Sequenzen von *C. brasiliense* (208) und *C. glabrum* (FJ037803.1) betragen 6,4%.

208	AAACCTGCTGACGCACGACGACCGCGCAACGAGTTCCCACTCAATCTTCCGGCGCCACCGGGGGCACGTTCCCCGGGGCTCGGACAGCCGGGGGCA
627	AAACCTGCTGACGCACGACGACCGCCAACGAGTTCCCACTCAAGCGTCCGGCGCCACTGGGGGCACGTTCCCCGGGGCTCGGACAGCCGGGGGCA
ruler	110203040
208 627 ruler	CCGGCCCCGGCGCCCAACGAAACACCGGGGGGTGCGCCAAGGAACACAAACCAGGATGGCGCCGCGCGCG
208	GGCGTGCGATTTCCAACCATTAAGTCTAAATGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTG
627	GGCGTGCGATTTCCAACCATTAAGTCTAAATGACTCTGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTG
ruler	200210220230240250260270280
208	GTGTGAATTGCAGAATCCCGGGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCAAAGCCTTATGGCCGAGGGCACGTCTGCCTGGGTGTCACGC
627	GTGTGAATTGCAGAATCCCGCGCAACCATCGAGTTTTTGAACGCAAGTTGCGCCCCAAAGCCTTATGGCCGAGGCCACGTCTGCCTGGGTGTCACGC
ruler	.290300310320320330340350360370380
208 627 ruler	AACGTCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
208 627 ruler	AAATGGATCCCCCGATGGCGGCGCCACGGCAAGCGGTGGTGTTCACAGACCCTCGAATCGGGCCGTGCGCACGCTGCCACCCTGGTGGGACCCG AAACGGATCCCCCGATGGCGGCGGCCACGCCAC
208	GAAGGACCCCTCGGCGCCTCTGGCCCCATCGCTACGCGACCCCAGGTCAGGCGGGACC
627	GAAGGACCCCTCGGCGCCCCATCGCTACGCGACCCCAGGTCAGGCGGGACC
ruler	

Abbildung 27: Alignment der ITS-Sequenzen von *Caryocar brasiliense* und *C. glabrum*. *C. brasiliense*: 208; *C. glabrum*: 627. * = Position mit identischer Base für alle Sequenzen.

3.2.5 Thymelaeaceae, Euphorbiaceae, Combretaceae und Rubiaceae

Die folgende Gruppe von CITES-geschützten Holzarten sowie deren Austauschhölzern wird auch als Ramin-Gruppe bezeichnet und umfasst Vertreter aus vier Familien. Derzeit sind sämtliche Arten der Gattung *Gonystylus* (Thymelaeaceae) in Anhang II des Washingtoner Artenschutzabkommens vertreten. Der geschützten Gattung *Gonystylus* stehen die Austauschhölzer *Terminalia superba* Engl. & Diels (Combretaceae), *Endospermum moluccanum* (Teijsm. & Binn.) Kurz (Euphorbiaceae) und *Neolamarckia cadamba* (Roxb.) Bosser (Rubiaceae) gegenüber.

Für den Aufbau der rDNA ITS-Sequenzdatenbank standen Äste, Blätter, Splintholz und DNA von verschiedenen Arten mit teilweise mehreren Individuen zur Verfügung (dreiundzwanzig *Gonystylus* spec., zwei *G. bancanus* (Miq.) Kurz, eine *Endospermum moluccanum*, eine *Neolamarckia cadamba*, zwei *Terminalia bentzoe* (L.) L. f., vier *T. catappa* L., eine *T. bellirica* (Gaertn.) Roxb., eine *T. avicennioides* Guill. & Perr., eine *T. arenicola* Byrnes und eine *T. glaucescens* Planch. ex Benth.; Tabelle 6). Die Proben von *Gonystylus* spec. waren Teil eines Probensets, das für einen Blindtest zur Verfügung stand (Punkt 3.4). Das Material bestand aus Splintholz in Hackschnitzelgröße. Für alle der in diesem Punkt untersuchten Proben konnte erfolgreich der ITS analysiert werden. Die ITS-Sequenzen sind in dem Alignment aus Abbildung 28 wiedergegeben. Für dieses Alignment wurden wiederum identische oder sich stark ähnelnde Sequenzen in einer Consensus-Sequenz zusammengefasst.

Die Gattung *Gonystylus* weist im ITS eine Länge von 635 und 636 bp auf. *E. moluccanum* hat mit 648 bp eine etwas längere Ausdehnung. *N. cadamba* und die Gattung *Terminalia* zeigen mit 632 bp bzw. 629-632 bp eine nahezu identische Länge. Die Längen des ITS1 ergeben sich wie folgt: 216-218 bp für die Gattung *Gonystylus*, 259 bp für *E. moluccanum*, 232 bp für *N. cadamba* und 238-241 bp für die Gattung *Terminalia*. Der 5.8S wurde für alle untersuchten Proben mit einer Länge von 162 bp definiert. Mit 256-258 bp hat die Gattung *Gonystylus* einen deutlich längeren ITS2 als die restlichen Vertreter. Auf die Gattung *Gonystylus* folgt *N. cadamba* mit einer Länge von 238 bp. *E. moluccanum* und die Gattung *Terminalia* kommen für den ITS2 auf Längen von 227 bp bzw. 229 bp (Tabelle 42).

Art	ITS1	5.8 S	ITS2	ITS	ITS-Bereich
Gonystylus spec.	216-218		256-258	635-636	694-695
Gonystylus bancanus	217		256	635	694
Endospermum moluccanum	259		227	648	707
Neolamarckia cadamba	232		238	632	691
Terminalia bentzoe	240	162	229	631	690
Terminalia catappa	241	102	229	632	691
Terminalia bellirica	238		229	629	688
Terminalia avicennioides	239		229	630	689
Terminalia arenicola	240		229	631	690
Terminalia glaucescens	239		229	630	689

 Tabelle 42: Länge der unterschiedlichen Bereiche des ITS für Gonystylus spp., Endospermum moluccanum, Neolamarckia cadamba und Terminalia spp.. Angaben in bp.

Die Aufarbeitung der Sequenzdaten verdeutlicht, dass sich hinter den 23 Individuen von *Gonystylus* spec. zwei Arten verbergen. Sie werden nachfolgend als Art1 (z.B. Cons.26 = 482, 489, 491-493, 499, 614-617, 619, 621 und 623) und Art2 (Cons.28 = 611-613, 618, 620 und 622) bezeichnet. Zu Art1 werden auch die Sequenzen von Probe 486 und Cons.27 (483, 487 und 500) aus Abbildung 28 gezählt. Cons.27 weicht nur an Position 130 von Cons.26 ab (T gegen Gap). Probe 486 zeigt gegenüber Cons.26 eine Abweichung von 0,4%. Da Art1 keinerlei oder nur geringe Abweichung zu den Sequenzen von *G. bancanus* (Cons.25 = 244 und 247) aufweist, wird davon ausgegangen, dass es sich bei Art1 um *G. bancanus* handelt. Die Zuordnung von Art2 zu einer Sequenz der internen Sequenzdatenbank war nicht möglich. Der Unterschied von Art1 zu Art2 liegt bei 2,5-2,6% (vgl. z.B. Cons.26 und Cons.28, Abbildung 28). Ein Abgleich der Sequenzen von Art1 und Art2 mit den ITS-Sequenzen der GenBank brachte keine weiteren Ergebnisse, da zum Zeitpunkt des Abgleichs keine entsprechenden ITS-Sequenzen hinterlegt waren (Abbildung 28).

Wie zu erwarten, treten für die unterschiedlichen Gattungen/Arten der verschiedenen Familien klare interspezifische Unterschiede auf. Für *E. moluccanum* (Euphorbiaceae) liegen die Unterschiede gegenüber der Gattung *Gonystylus* bei ~32% (Thymelaeaceae). Mit Abweichungen von ~35% bzw. ~25,5% ist *E. moluccanum* auch klar von *N. cadamba* (Rubiaceae) und der Gattung *Terminalia* (Combretaceae) abzugrenzen. *N. cadamba* weist im Vergleich mit den Gattungen *Gonystylus* und *Terminalia* interspezifische Unterschiede von ~27% bzw. ~33,5% auf. Eine klare Differenzierung der beiden Gattungen *Terminalia* und *Gonystylus* ist mit Unterschieden von ~33% sichergestellt. Die interspezifischen Unterschiede innerhalb der Gattung *Terminalia* liegen zwischen 1,4%, für *T. catappa* (Cons.30) gegenüber *T. arenicola* (464) und 9,2% für *T. catappa* (Cons.30) gegenüber *T. bellirica* (458). Für *T. avicennioides* (506) und *T. glaucescens* (507) reichen die Unterschiede für eine Differenzierung nicht aus. Weiter zeigt Abbildung 28, dass *T. bentzoe* und *T. catappa* keinerlei interspezifische Unterschiede aufweisen (vgl. Cons.29 und Cons.30).

	* **** * * ****	* * * * * *		* ** *	*
Cons.25	AATCCTGCACAGCAGCACGAC	CCGTGAACTTGAATTA	TACAAACG	ATCGAGTGGTTGGGTTGGCCCCG	GCCTCCC
Cons.26	AATCCTGCACAGCAGCACGAC	CCGTGAACTTGAATTA		ATCGAGTGGTTGGGTTGGCCCCG	GCCTCCC
Cons.27	AATCCTGCACAGCAGCACGAC	CCGTGAACTTGAATTA	TACAAACG	ATCGAGTGGTTGGGTTGGCCCCG	GCCTCCC
486	AATCCTGCACAGCAGCACGAC	CCGTGAACTTGAATTA	TACAAACG	ATCGAGTGGTTGGGTTGGCCTCG	GCCTCCC
Cons.28	AATCCTGCACAGCAGCACGAC	CCCGTGAACTTGAATT		- ATCGAGTGGTTGGGTTGGCCCTG	GCCTCCC
634	AAGCCTGCTATGCAGAACGAC	CCGCGAACGCGTTACGATGCCATC		TCCCCTACCGCCCCGGTAGGCCGAC	GAGAGCG
Cong 29	ARICCIGCARARC-GCACGAC			CCCCCTI CCCCCTCCCTI CCCCCII	ACCTCCC
Cons. 30	ACACCTGCAAAGCAGAGCGAG	CCCCCCAAC-CGTTTTTTTAAATGCC	CGGGATACCGGGGG	GCGCCTATCTGCCCGGTAGCCCGAA	AGCTCCG
458	ATACCTGCAGAGCAGAACGAG	CCCCCCAAC-CCTTTTCCAA-CAC	CGGGACACCGGGGG	GCGTCCAGCCGCTCGGTAGCCC-AA	GGCTCCG
464	ACACCTGCAAAGCAGAGCGAG	CCCCCCAAC-CGTTTTCCAA-TGCC	CGGGATACCAGGGG	GTGCCTATCCGCCCGGTAGCCCGAA	AGCTCCG
506	ACACCTGCAAAGCAGAGCGAG	CCCGCGAAC-CGTCTTTCAA-TTCC	CGGGACACCGGGGG	GCGCCCAGCCGCCCGGTAGCCCGAA	AGCTCCG
507	ACACCTGCAAAGCAGAGCGAG	CCCGCGAAC-CGTCTTTCAA-TTCC	CGGGACACCGGGGG	GCGCCCAGCCGCCCGGTAGCCCGAA	AGCTCCG
ruler	1				90
<i>~</i> 05	*	* *	** * ****	*** *******	
Cons.25	TTCCCTCCT	CGATCGGCCCTTGTGGCC-	- TAACACCA AACCCCCG	GCGCGGACTGCGCCAAGGAAA-TAA	AATTTGA
Cons.26	TTOCCTCCT	CGATCGGCCCTTGTGGCC-		GCGCGGACTGCGCCAAGGAAA-TAA	AATTTGA
486	TTCCC	CGATCGGCCCTTGIGGCC-		CCCCCCACTCCCCCAACCAAA-TAA	AATTTGA
Cons. 28	TTCCCTCCT	- CGATCGGCCCTT GTGGCC-	-TAACACCAAACCCCG	GCGCGGACTGCGCCAAGGAAT-TAG	AATTTGA
634	G-CGCGGGAGGCGGACCACG	GCCATCTCCCAACCCGTCTCGCCG	GCCGAACAACAAACCCCG	GCGCCGGACGCGCCAAGGAAACACG	TGACGAG
635	CTTCCCGTCCGTCGTTTCC	- CGTGCGCTCGTCGCGCGGAGAT-	- TGTAACTC AAACCCG	GCGCGGAACGCGCCAAGGAAAACTA	AATAGGA
Cons.29	GACGCTAGGGGTGCAAC	CCACCCTC-AGCGGACGGAGCT-	- CCAAACAA ACCCCG	GCGCGCGAAGCGCCAAGGTACT	CCAACGA
Cons.30	GACGCTAGGGGTGCAAC	CCACCCCCCAGCGGACGAAGCT-	- CCAAACAA ACCCCG	GCGCGCGAAGCGCCAAGGTACT	CCAACGG
458	GACGCCGAGGGTGCAAC	CCACCTCC-GGCGGATGGAGCT-	- TCAAACAA ACCCCG	GCGCGCAAAGCGCCAAGGTACT	CCAACAA
464	GACGCTAGGGGTGCAAC	CCACCCCCAGCGGACGAAGCT-	- CCAAACAA ACCCCG	GCGTGCAAAGCGCCAAGGTACT	CCAACTG
506	GACGCTGGGGGGTGCAAC	CCACCCCC-AGCGAACGGATCT-	- CCGAACAA ACCCCG	GCGCGCGAAGCGCCAAGGTACT	CTAACGA
507	GACGCTGGGGGGTGCAAC	CCACCCCC-AGCGAACGGATCT-	- CCGAACAA ACCCCG	GCGCGCGAAGCGCCAAGGTACT	CTAACGA
ruler		120130140	01501	60170180	190
	* * * * * *	* * * * *		*****	******
Cons. 25	CAGAACGTTCTCCCCACACCC	TCCCANACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACCCTTCT-TCCACAAC	CCAAAACCACTCTCCCCCAACCCATA	TCTCGGC
Cons.26	CAGAACGTTCTCCCCACACCC	TCGGAAACGTGGTGCGTGGGGGGG	AGGCGTTGT-TGCACAAC	CCAAAACGACTCTCGGCAACGGATA	TCTCGGC
Cons.27	CAGAACGTTCTCCCCACACCC	TCGGAAACGTGGTGCGTGGGGGGG	AGGCGTTGT-TGCACAAC	CCAAAACGACTCTCGGCAACGGATA	TCTCGGC
486	CAGAACGTTCTCCCCACACCC	CTCGGAAACGTGGTGCGTGGGGGGG	AGGCGTTGT-TGCACAAC	CCAAAACGACTCTCGGCAACGGATA	TCTCGGC
Cons.28	CAGAACGTTCTCCCCACACCC	CTCGGAAACGTGGTGCGTGGGGGGG	AGGCGTTGT-TGCACAAC	CCAAAACGACTCTCGGCAACGGATA	TCTCGGC
634	AAGAGCGCGCTCCCCGGGCTC	CCGAAAACGGCCAGCCTCGGGGAAG	CGTCCACTCTTTCGAGAA	CCATAACGACTCTCGGCAACGGATA	TCTCGGC
635	CTGCCAGACCCCTCGATGCCC	C-CGTTCGCGGTGCGCTCGGGGGTG	TTGTGGTGCCTGTCGTAA	TCCAAACGACTCTCGGCAACGGATA	TCTCGGC
Cons.29	TAGGGCATGCGCCCGTAGCCC	CTGGGTTCCAGTGTGCTCGGGCTGC	TGTTCAACATCATAAAGT	CTA-AACGACTCTCGGCAACGGATA	TCTCGGC
Cons.30	TAGGGCATGCGCCCGTAGCCC	CTGGGTTCCAGTGTGCTCGGGGCTGC	TGTTCAACATCATAAAGT	CTA-AACGACTCTCGGCAACGGATA	TCTCGGC
458	AAGGGCATGCGCCCGTAGCCC	CTGGGTTCCAGTGCGCTCGGGCTGC	TGTTCGATGCGATAAAGT	CTA-AACGACTCTCGGCAACGGATA	TCTCGGC
464	TAGGGCATGCGCCCGTAGCCC	TGGGTTCCAGTGTGCTCGGGCTGC	TGTTCAACATCATAAAGT	CTA-AACGACTCTCGGCAACGGATA	TCTCGGC
506			TGTTCGACATCATAAAGT	CTA-AACGACTCTCGGCAACGGATA	TCTCGGC
507	200 210	220 230	240 250	260 270 2	R0
Turer					
	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	********	* * * * * * * * * * * * * * * * * * * *	**** *
Cons.25	TCTCGCATCGATGAAGAACG	FAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCTA
Cons.26	TCTCGCATCGATGAAGAACG	FAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCTA
Cons.27	TCTCGCATCGATGAAGAACG	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCTA
486	TCTCGCATCGATGAAGAACG	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCTA
cons.28	TOTOGCATOGATGAAGAACG		ATTGCAGAATCCCGTGAA	COATCGAGTCTTTGAACGCAAGTTG	CGCCCCA
634	TOTOGOATCOATGAAGAACGO	PACCEADATCCEATACITEGTETEA	ATTGCAGAAICCCGIGAA	CCATCCACTCITICAACCCAACTTC	CGCCCGA
Cong.29	TCTCGCATCGATCAACAACG	PAGCGAAATGCGATACTTCCTCTC	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTCAACCCAAGIIG	CGCCCGA
Cons.30	TCTCGCATCGATGAAGAACG	TAGCGAAATGCGATACTTGGTGTG	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCGA
458	TCTCGCATCGATGAAGAACG	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCGA
464	TCTCGCATCGATGAAGAACGI	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCGA
506	TCTCGCATCGATGAAGAACGI	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCGA
507	TCTCGCATCGATGAAGAACGI	TAGCGAAATGCGATACTTGGTGTGA	ATTGCAGAATCCCGTGAA	CCATCGAGTCTTTGAACGCAAGTTG	CGCCCGA
ruler				50	380
	*** *** ********	* *****	• •		ب ب
Conc. 25					
Cong 26	CGCCTTCGGGGCCGAGGGCAC	TCTCCCTCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCCATCTCCTACACICAT	TCCCAGA TGGGCGCGCGGGTGTTAGTG	Taca-ac
Cons.27	CGCCTTCGGGCCGAGGGCAC	TCTGCCTGGGTGTCACGCATCGT	GCCATCTCCTACACTCAT	TCCCAGATGGGGCGCGGGGTGTTAGTG	TGCG-GC
486	CGCCTTCGGGCCGAGGGCAC	TCTGCCTGGGTGTCACGCATCGTA	GCCATCTCCTACACTCAT	TCCCAGATGGGCGCGGGGTGTTAGTG	TGCG-GC
Cons.28	CGCCTTCGGGCCGAGGGCAC	TCTGCCTGGGTGTCACGCATCGTA	GCCATTTCCTACACTCTT	TCCTAGATAGGCGGGGGGTGTTAGTG	TGCG-GC
634	AGCCTTTCGGCCGAGGGCAC	CCTGCCTGGGTGTCACGCAGC-CG	TTGCCCCCTCA	CCCCTCGCATACGGAGGGGCG	CGGGGGC
635	AGCCGTTAGGCCAAGGGCAC	GTCTGCCTGGGCGTCACGCATCG	CGTCGCCGACCCCAAC	TATCGTGTGGGG	- GCG - GC
Cons.29	AGCCTTGGCTGAGGGCAC	JTCTGCCTGGGTGTCACGCATCGCG	TTGCCTCCAAACCCTTCA	CCCTTCGAACGTTGCGGTGATGGTC	TGGGTGC
Cons.30	AGCCTTGGCTGAGGGCAC	TCTGCCTGGGTGTCACGCATCGC	TTGCCTCCAAACCCTTCA	CCCTTCGTTCGTTGCGGTGATGGTC	TGGATGC
458	AGCCTCGGCTGAGGGCACC	TCTGCCTGGGTGTCACGCATCGCG	TTGCCTCCATACCCTCCA	CCCTCGAGCGATGGGGAGACGGTC	CGGAAGC
464	AGCCTTGGCTGAGGGCAC	JTCTGCCTGGGTGTCACGCATCGCG	TTGCCTCCAAACCCTTCA	CCCTTCGTTCGTTGCGGTGATGGTC	TGGATGC
506			TTGCATCCAAACCC1TCA		TGGATGC
ruler	AGCCIIGGCTGAGGGCACC		430		70

	* *	* * * * * * *	* * *	*	*	* ***	* * * *	*		*	** *	* * *	* * * * * *	
Cons.25	TGAGA	ATGGCCTC	CCGTT-	- CCCTTGT	CGGTGCG	GTTGGC	CCAA	AAA - GAGGA	GCCCA	AAGGCGGC	GTACGCC	ACGATAA	- GCGGTGGT - GT	GTAT
Cons.26	TGAGA	ATGGCCTC	CCGTT-	- CCCTTGT	CGGTGCG	GTTGGC	CCAA	AAA - GAGGA	GCCCA	AAGGCGGC	GTACGCC.	ACGATAA	- GCGGTGGT - GT	GTAT
Cons.27	TGAGA	ATGGCCTC	CCGTT-	- CCCTTGT	CGGTGCG	GTTGGC	CCAA	AAA - GAGGA	GCCCA	AAGGCGGC	GTACGCC	ACGATAA	- GCGGTGGT - GT	GTAT
486	TGAGA	ATGGCCTC	CCGTT-	- CCCTTGT	CGGTGCG	GTTGGC	CCAA	AAA - GAGGA	GCCGA	AAGGCGGC	GTACGCC	ACGATAA	- GCGGTGGT - GT	GTAT
Cons.28	TGAGA	ATGGCCTC	CCGTC-	- CCCTTGT	SGG <mark>T</mark> G <mark>C</mark> G	GTTGGC	CCAA	AAAAGAGGT	GCCCG	AAGGCGGC	GTACGCC.	ACGATAA	AGCGGTGGT - GT	GTAT
634	GGAAA	ATTGGCCTC	CCGTGC	CGCCGCGA	GCTCGCG	GTTGGC	CCAA	AAGCACT	CGTCC	CCCGCGGGC	GCGCGTC	ACGGCAA	- TCGGTGGT	TGA -
635	GGATC	TTGGCCTC	CCGTG-	- CCGTTA -	-GGCGTG	GCCGGC	CTAA	ATGAGA	GTCCT	CAG-CGAG	GGACGTC.	ACGATGA	- GTGGTGGTAGA	ATGC
Cons.29	GGAAG	CTGGCCTC	CCGCG-	GCCACTA	GC-CACG	GATGGC	CCAA	ACACG	TGCTA	ggg aag<mark>c</mark>g	AAGCGCC	ACGGCAT	- TCGGTGGT	TGAT
Cons.30	GGAAG	TTGGCCTC	CCGCG-	- GCCACGA	GC-CACG	GATGGC	CCAA	ACACG	TGCTA	ggg aag<mark>c</mark>g	AAGCGCC	ACGGCAT	- TCGGTGGT	TGAT
458	GGAAG	CTGGCCTC	CCGTG-	ACCACGA	GC-CACG	GATGGC	CCAA	\TAC G	CGCTG	gggaag <mark>c</mark> a	AAGCGCC.	ACGGCAT	- TCGGTGGT	CGAT
464	GGAAG	CTGGCCTC	CCGCG-	GCCACGA	GC-CACG	GATGGC	CCAAF	ACACG	TGCTA	ggg aag<mark>c</mark>g	AAGCGCC	ACGGCAT	- TCGGTGGT	TGAT
506	GGAAG	CTGGCCTC	CCGCG-	- GCCGCGA	GC-CACG	GATGGC	CCAA	A CACG	TGCTA	gggg a g <mark>c</mark> g	AAGCGCC	ACGGCAT	- TCGGTGGT	TGAT
507	GGAAG	CTGGCCTC	CCGCG-	- GCCGCGA	GC-CACG	GATGGC	CCAA	A CACG	TGCTA	gggg a g c g	AAGCGCC	ACGGCAT	- TCGGTGGT	TGAT
ruler	480)4	90	500.	5	10	52	20	530	540		550	560	.570
a	maama				* *			*		***				* *
Cons.25	TCGTG	CATTCGTT	GCAACG	TCGTGGG	CGTCGTC			GGCTCTTC	GTA-G	ACCCCTG-	ATGCC			CA
Cons.26	TCGTG	CATICGII	GCAACG	TCGTGGG	CGICGIC				GTA-G	ACCCCTG-	ATGCC			CA
406	TCGIG	CATICGII	CCARCO		CGICGIC				GIA-G	ACCCCTG-	ATCCC	ATCACI-	TGTGGTAGCACG	CA
Cong 29	TCGIG	CATICGII	CCARCO		CGICGIC	TCCTAP			ATA C	ACCCCCIG-	ATCCC	ATCACI-	TGIGGIAGCACG	CA
624	CNC	ACCOTCCC	ACCARCO			CCCCCC	TAAAC		ALA-G	CCCCCCG-	ATCCC	ALCAUL-	IGIGGIGGCACG	CA
625	CCCCA	ACCCTCGG			TCCCC		TOTT	CACCCGA-	CCARC	ACCCCTA-	CCCCCCC			CCCA
Cona 29	CCAAG	CCCCCAGAA	CIAICO COACTO		TAACCAC		TCCC	PAGCCC	- ACC	ACCCTAA-	ACGTT		IGGAGI IGCGCC	C A
Cons.30	CCANG	CCCCAGAA	CACL		Taaccac		TCCT	AGCCT	ACG	ACCCTAA -	ACGTT	ΔΔ		CA
458	CCGAG	CCCCAGAA	ACAGTO	CCCGTGG	raarrar		TCCCC	ACCCG	100	CCCTAA-	ACGTT	ΔΔ		C A
464	CCAAG	CCCCAGAA	GCAGTO		TGGCCGC	GT-CTO	TCCT	AGCCC	ACG	ACCCTAA -	ACGTT	ΔΔ	C	CA
506	CCAAG	CCCCAGAA	GCAGTO		TGGCCGC	AC-CC	TCCC	TAGCCG	ACG	ACCCTAA -	ACGTT	A A	C	CA
507	CCAAG	CCCCAGAA	GCAGTO	CCGGCGG	TGGCCGC	AC-CC	TCCC	AGCCG	ACG	ACCCTAA -	ACGTT	AA	œ	CA
ruler				90	.600	61	.0	620		630	640	65	0	
	***	**** ****	* * * * * *	* * * *										
Cons.25	TTGCG	ACCCCAGG	TCAGGO	CGGGAAC										
Cons.26	TTGCG	ACCCCAGG	TCAGG	GGGAAC										
Cons.27	TTGCG	ACCCCAGG	TCAGGC	CGGGAAC										
486	TTGCG	ACCCCAGG	TCAGGC	CGGGAAC										
Cons.28	TTGCG	ACCCCAGG	TCAGGO	CGGGAAC										
634	ACGCG	ACCCCAGG	TCAGGO	CGGGACT										
635	CCGCG	ACCCCAGG	TCAGGO	CGGGATT										
Cons.29	ACGCO	ACCTCAGG	TCAGGO	CGGGGGCT										
cons.30	ACGCO	ACCTCAGG	TCAGGO	GGGGGCT										
458	ACGCG	FACCTCAGG	TCAGGO	Jeegeer										
464	ACGCG	FACCTCAGG	TCAGGO	GGGGGCT										
506	ACGCG	ACCICAGG	TCAGGC											
507	ACGCG	ACCICAGG	I CAGGC	600										
ruler			ov											

Abbildung 28: Consensus-Alignment der ITS-Sequenzen von *Gonystylus* spp., *Endospermum moluccanum*, *Neolamarckia cadamba* und *Terminalia* spp.. Cons.25 = *G. bancanus*: 244 und 247; Cons.26 = *G.* spec.: 482, 489, 491-493, 499, 614-617, 619, 621 und 623; Cons.27 = *G.* spec.: 483, 487 und 500; Cons.28 = *G.* spec.: 611-613, 618, 620 und 622; Cons.29 = *T. bentzoe*: 174 und 467; Cons.30 = *T. catappa*: 172, 424, 437 und 440; *G.* spec.:

486; *E. moluccanum*: 634; *N. cadamba*: 635; *T. bellirica*: 458; *T. arenicola*: 464;

T. avicennioides: 506; *T. glaucescens*: 507.* = Position mit identischer Base für alle Sequenzen.

3.3 Entwicklung spezifischer Primer

Für die Schnellbestimmung von CITES-geschützten Baumarten und deren Substitutionshölzern wurden spezifische Primer gewählt. Aufgrund der Verwendung dieser Primer ist es bereits im Anschluss an die Gelelektrophorese möglich, eine Aussage darüber zu treffen, ob es sich um das vermutete Holz handelt. Diese "ja/nein"-Entscheidung wird durch die Entwicklung sogenannter art- oder gattungsspezifischer Primer ermöglicht (Tabelle 5). Durch diese spezifischen Oligonukleotide ist eine an die Amplifizierung anschließende Aufreinigung und Sequenzierung der erhaltenen DNA-Fragmente überflüssig.

Für die Entwicklung der spezifischen Primer wurden die bereitgestellten ITS-Sequenzen (Punkt 3.2) mit den entsprechenden Sequenzen der GenBank des NCBI ergänzt. Im ersten Schritt wurde ein Alignment erstellt, das sowohl ein oder mehrere CITES-geschützte Hölzer, als auch deren Austauschhölzer enthielt (Tabelle 5). Des Weiteren wurden zusätzliche Vertreter der verwendeten Gattungen/Familien in das Alignment geladen. Anhand dieses Alignments wurden im ITS1 und im ITS2 gattungsoder artspezifische Sequenzabschnitte herausgearbeitet, die eine Identifizierung ermöglichen. Neben der Einmaligkeit des zur Identifizierung gewählten Sequenzbereichs, musste die Basenabfolge weitere Kriterien erfüllen, um im späteren Verlauf als Primer verwendet werden zu können. Diese Kriterien umfassten Punkte wie Sequenzlänge, Schmelztemperatur, GC-Gehalt etc. (Punkt 2.2.8). Für jede Gattung oder Art wurde versucht, ein spezifisches Primerpaar, das jeweils aus einem spezifischen forward- und reverse-Primer bestand, zu erstellen. War es nicht möglich zwei spezifische Primer zu erarbeiten, so wurde ein spezifischer Primer (forward oder reverse) mit einem allgemeinen Primer (ITS1.1, ITS2.1, ITS3.1 oder ITS4) kombiniert. Die Entwicklung von spezifischen Primern wird exemplarisch an der Swietenia-Gruppe verdeutlicht. Die Ergebnisse der restlichen Gruppen werden gekürzt präsentiert.

3.3.1 Spezifische Primer für die Swietenia-Gruppe

Für die CITES-geschützte Gattung *Swietenia* wurden für die drei zugehörigen Arten spezifische Primer entwickelt. Aufgrund mangelnder Sequenzunterschiede von *S. macrophylla* und *S. humilis* wurde für diese Arten ein gemeinsames Primerpaar erstellt. Auf der Seite der Austauschhölzer standen zu Beginn *Entandrophragma angolense, Khaya ivorensis* und *Carapa guianensis*. Aufgrund der Tatsache, dass auch *E. cylindricum* als Austauschholz verwendet wird und für diese Art genügend

Informationen vorhanden waren, wurden sowohl für *E. angolense* als auch für *E. cylindricum* artspezifische Primer entwickelt. Da für *K. ivorensis* und *C. guianensis* nur wenige ITS-Sequenzinformationen zur Verfügung standen, wurden für diese beiden Arten jeweils gattungsspezifische Primer gewählt.

Nachdem für die Entwicklung von spezifischen Primern aus dem Alignment aus Abbildung 18 geeignete Bereiche des ITS1 bzw. des ITS2 gewählt wurden, erfolgte eine Überprüfung dieser Basenabfolgen mithilfe der Software Primer Premier 5. die gewählten Sequenzabschnitte aufgrund Erwiesen sich der geforderten Primerkriterien als tauglich, folgte die Synthetisierung der Primer (biomerns.net GmbH, Ulm). Zur ausführlichen Beurteilung der Primerkombinationen wurde für diese, mithilfe eines Gradientencyclers (T-Gradient, Biometra, Göttingen, Deutschland), ihr entsprechendes Annealingoptimum ermittelt. Daraufhin wurde das Primerpaar anhand mehrerer Individuen auf dessen Eignung zur Amplifikation der entsprechenden Holzart getestet. Der PCR-Erfolg musste zwingend 100% aufweisen. Zusätzlich wurden einige der Amplicons sequenziert. Die Sequenzierung der DNA-Fragmente stellte sicher, dass es sich bei dem Fragment um das gesuchte Teilstück handelte. Erfüllte eine Primerkombination ein Kriterium nicht, so wurde diese Kombination von der weiteren Überprüfung ausgeschlossen.

Tabelle 43 gibt die gattungs- oder artspezifischen Primerkombinationen für die *Swietenia*-Gruppe wieder. Genauer sind die Namen der Primer, die Sequenzabfolge, die Größe des amplifizierten Fragments sowie die Annealingtemperatur angeführt. Ob es sich bei einer Probe z.B. um *S. mahagoni* handelt, ist durch die Verwendung der Primer S mah for/S mah rev2 nachweisbar. Erhält man nach der Amplifizierung (Annealing: 57°C) ein Fragment mit der Größe von 298 bp, so ist die vorliegende Probe als *S. mahagoni* identifiziert (Tabelle 43).

Art oder Gattung	Primer	Primersequenz 5'-3'	bp	°C
Swietenia macrophylla/	S m/h for1	CGG TCC GCG CCA AGG AAA ATT	470-	60
Swietenia humilis	S m/h rev1	GGC GCG CAG GGG GGG TC	472	00
Swiatania mahagoni	S mah for	CCG CGC CAA GGA AGA ATC	208	57
Swielenia managoni	S mah rev2	CAA CGC CCG TCG AGA GG	290	57
Entandrophragma	E cyl for2	TTC TCC GAA CGA ATG TCC AAA A	370	56
cylindricum	E cyl rev3	TTT CCG CGA GCC GGC AGA T	370	50
Entandrophragma	E ang for2	CCT TCC GAC GAA ATA TCC AA	271	55
angolense	E ang rev2	TTC CTC GAG CCG GCA TCT	571	55
Khava spp	Khay for1	GAA CTC GTG ACC GAT TGC ACC	207-	50
<i>Knaya</i> spp.	Khay rev2	TAG ATT ACG ATC GAA GAA GGC G	230	39
Canana ann	Cara for1	GCG AAC TCG TGA TCG AAT GC	226-	56
Curupu spp.	Cara rev2	GGA TTC TTA CAG AAA GAA GGC G	227	50

Tabelle 43: Spezifische Primer für die Gattung *Swietenia* und deren Austauschhölzer der Gattungen *Entandrophragma*, *Khaya* und *Carapa*. Dargestellt werden der Primername, die Primersequenz, die Fragmentgröße sowie wie die zugehörige Annealingtemperatur.

Die Lage der spezifischen Primer aus Tabelle 43 sowie deren amplifiziertes Fragment, gibt Abbildung 29 wieder. Für die Gattungen *Khaya* und *Carapa* liegen der forward-(gestrichelte Linie) und der reverse-Primer (durchgezogene Linie) im ITS1. Für alle anderen Primer gilt, dass sich der for-Primer im ITS1 und der rev-Primer im ITS2 befindet.

Ergebnisse

	** **** * ********** ***** *** *** ** *
smc385	AAGCCTGCAACGGCAGAACGACCCGCGAACTCGTGACCGATCGCACCGCGGGG-GCGGGA-CCGTCCGGCGCCCCGGCGTCCGGCGCC-CTCC
sh210	AAGCCTGCAACGGCAGAACGACCCGCGCAACTCGTCACCGATCGCACCGCGGGG-GCGGACCGTCCGGCGCCCCGGCGTCCGGCGCCGTCCGCGCGCCCCGGCGCCCCGGCGCCCCGGCGCCCCGGCGC
smh4	AAGCCTGCG-CAGCAGAACGACCCGCGAACTCGTGACCGATCGCACCCGCGGGGCGCGGGACCGTCGGGGGCGCCCCGGCGTCCGGCGCCCGTCC
entc74	AAACCTGCC-CAGCAGAACGACCGCGGAACGCGTGACTGCACACGCGGGGG-GCGGAGCGTCCGGCGCGCGCGCGGGGGCGCCCCGTCC
enta192	AAACCTGCC-CGGCACAACGACCGGCCAACGCGTGAACCCACACGCGGGGG-GCGGGCGCGCGCGCGCGC
khi134	
cg49 ruler	
Turer	1
	* ** ** *** ** * * * * ** * * * **** ****
smc385	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
sh210	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
smh4	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
entc74	CCCGCCCGCCGCGGGGCGCCG-ACCGCCGCCGCGCGCG
enta192 kbi124	
cq49	
ruler	$100 \dots 110 \dots 120 \dots 130 \dots 140 \dots 150 \dots 160 \dots 170 \dots 180 \dots 190$
	** * ** ******* ********* **** **** *** *
smc385	CGAGGAAGCGCGCTCCC-GCCGCCCCGGAGACGGGCCGCGCGCGCGCGCGCGCCTCTTTCGATCGA
sh210	
ento74	
enta192	
khi134	CGCGAGAGCCCCCTCCCCCCCCCCCCCCGGAAACGCCCCCCG-GC-TCCTCCCCCTCTT-CCATCCT-AATCTAAAACGACTCTCGCCAACGG
cq49	CGAGAGAGCGCGCCCCC-GCCGCCCCCGGAGACGGGGTGCGGG-GGGATGCGTCGCCTTCTTTCTGTAAG-AATCCAAAACGACTCTCGGCAACGG
ruler	
smc385	A LA LO LOGOLO LOGOLO LOGAL GANGAGOLA CON ACTA CON SUBJECTA EL CANTO CANTA CANTA CANTO CAN
smh4	ATATCTCGGCTCTCGCATGATGATGATGAGAGATGCGATAGCGATAGCGATAGCGATGAATGCCGTGAACCATCGAGTCTTTGATGAGGAGACCATCGAGTGAACCATCGAGTCGAGTGAACCATCGAGTCGAGTGAACCATCGAGTGAGT
entc74	ATATCTCCCCTCTCCCATCATCAACAACTACCCAAATCCCATACTTCGTCTCAATCCCCCTCAACCATCCACTCTTCAACCCAAG
enta192	ATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
khi134	ATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
cg49	ATATCTCGGCTCTCGCATCGAAGAACGTAGCGAAATGCCATACTTGGTGTGAATCCCGTGAACCATCGAGTCTTTGAACGCAAG
ruler	
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	********* *** * **********************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	********* *** * **********************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	********** *** * *********************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385	**************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74	************************************
smc385 sh210 smh4 entc74 entc192 khi134 cg49 ruler smc385 sh210 smh4 entc74 entc192	************************************
smc385 sh210 smh4 entc74 entc74 cg49 ruler smc385 sh210 smh4 entc74 entc74 entc74	************************************
smc385 sh210 smh4 entc74 entc74 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 entc74 entc74 entc74 entc74 cg49 ruler smc385 sh210 smh4 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 entc74 cg49 ruler	************************************
smc385 sh210 smh4 entc74 entc74 cg49 ruler smc385 sh210 smh4 entc74 entc74 entc74 entc192 kh1134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 entc74 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210	********* ********* ********* ************************************
smc385 sh210 smh4 entc74 entc192 khi134 cg49 ruler smc385 sh210 smh4 entc74 entc74 entc74 entc74 entc74 entc74 smc385 sh210 smh4	********* ******** ******** ********* ********* ************************************
smc385 sh210 smh4 entc74 entc74 entc79 ruler smc385 sh210 smh4 entc74 entc74 smc385 sh210 smh4 cg49 ruler	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192	************************************
smc385 sh210 smh4 entc74 entc74 entc192 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh134 cg49 ruler smc385 sh210 smh4 entc74	<pre>************************************</pre>
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 entc74 entc74 entc74 entc74 entc74	************************************
smc385 sh210 smh4 entc74 entc74 enta192 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	<pre>************************************</pre>
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	<pre>************************************</pre>
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 entc74 enta192 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49 ruler smc385 sh210 smh4 entc74 enta192 kh1134 cg49 ruler	<pre>************************************</pre>
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	<pre>************************************</pre>
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	************************************
smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler smc385 sh210 smh4 entc74 enta192 khi134 cg49 ruler	************************************

Abbildung 29: Alignment für die Darstellung der Positionen der spezifischen Primer im ITS der Meliaceae. Die Basen des forward-Primers werden durch eine gestrichelte Linie eingerahmt. Die reverse-Primer weisen eine durchgezogene Linie auf. Die ID besteht aus dem Namenskürzel und der Herbarnummer: cg = Carapa guianensis, enta = Entandrophragma angolense, entc = E. cylindricum, khi = K. ivorensis, sh = Swietenia humilis, smc = S. macrophylla, smh = S. mahagoni. * = Position mit identischer Base für alle Sequenzen

Die Wahl fiel auf die in Tabelle 43 angegebenen Primerkombinationen, nachdem für diese eine Spezifitätsverifizierung (Kreuztest) durchgeführt wurde. Die Überprüfung der Spezifität erfolgte für jedes Primerpaar anhand von 18 Arten. Die benötigte DNA wurde dem Material zum Aufbau der rDNA ITS-Sequenzdatenbank entnommen (S. macrophylla (2), S. humilis (213), S. mahagoni (7), E. cylindricum (477), E. angolense (83), K. grandifolia (8), K. nyasica (447), K. senegalensis (456), K. ivorensis (134), Carapa guianensis (80), Cedrela odorata (452), C. fissilis (36), Toona sinensis (451), Tectona grandis (84), Guaiacum officinale (101), G. sanctum (162), Dalbergia retusa (143) und Hymenaea courbaril (438), Tabelle 6). Für den Kreuztest wurde mittels der Primerkombination ITS1.1/ITS2.1 zuerst die Qualität und Quantität der extrahierten DNA überprüft. So konnte sichergestellt werden, dass in den folgenden PCRs nur Templatemengen (10-50 ng) zum Einsatz kamen, die einen PCR-Erfolg garantierten (Abbildung 30 a). Im Anschluss an diese PCR erfolgten die Kreuztests für die jeweiligen spezifischen Primerpaare. Die Primerkombination S m/h for1/S m/h rev1 ermöglicht nur eine Amplifizierung, wenn Templates der Arten S. macrophylla und S. humilis eingesetzt werden (Abbildung 30 b, Tasche 1 und 2). Das Amplicon zeigt die erwartete Länge von 470 bp. Abbildung 30 c verdeutlicht, dass die Spezifität von S mah for/S mah rev2 ebenfalls gegeben ist. Nur in Anwesenheit von DNA, die aus S. mahagoni extrahiert wurde, ergibt sich eine Bande von 298 bp (Tasche 3). Die Spezifität der Primer E cyl for2/E cyl rev3 wird durch Abbildung 30 d nachgewiesen. Diese Primer ermöglichen nur bei DNA von E. cylindricum (Tasche 4) eine Amplifikation (370 bp). Die Spezifität der Primerkombination E ang for2/E ang rev2 wird dadurch nachgewiesen, dass nur bei E. angolense (Tasche 5) ein Amplicon vorhanden ist (371 bp, Abbildung 30 e). Die Identifizierung der Gattung Khaya (Taschen 6, 7, 8 und 9) erfolgt über die Primer Khay for1/Khay rev2. Wie Abbildung 30 f zeigt, wird nur in der Anwesenheit von Khaya-DNA ein 229 bp Fragment amplifiziert. Abbildung 30 g gibt die Spezifität des Primerpaars Cara for1/Cara rev2 wieder. Die Anwesenheit einer Bande von 226 bp ist hier nur gegeben, wenn DNA von C. guianensis zum Einsatz kommt (Tasche 10).

Abbildung 30: Kreuztest für die spezifischen Primer der Meliaceae. a: Unter Verwendung der holzspezifischen Primer ITS1.1 und ITS2.1 wurde der passende DNA-Gehalt für die Amplifizierung der einzelnen Proben ermittelt (Bandengröße: ~380 bp).
b: Das Primerpaar S m/h for1/S m/h rev1 zeigt nur in der Anwesenheit von *Swietenia macrophylla* und *S. humilis* eine Bande von 470 bp. c: S mah for/S mah rev2 amplifizieren nur *S. mahagoni* (298 bp). d: *E. cylindricum* wird durch E cyl for2/E cyl rev3 und eine 370 bp Bande identifiziert. e: Ein 371 bp Fragment zeigt nur *E. angolense* (E ang for2/E ang rev2).
f: Unter Verwendung von Khay for1 und Khay rev2 wird die Gattung *Khaya* identifiziert (229 bp). g: Cara for1 und Cara rev2 zeigen nur in Anwesenheit von *Carapa guianensis* ein Amplicon (226 bp). 1 *Swietenia macrophylla*, 2 *S. humilis*, 3 *S. mahagoni*, 4 *Entandrophragma cylindricum*, 5 *E. angolense*, 6 *Khaya grandifolia*, 7 *K. nyasica*, 8 *K. senegalensis*, 9 *K. ivorensis*, 10 *Carapa guianensis*, 11 *Cedrela odorata*, 12 *C. fissilis*, 13 *Toona sinensis*, 14 *Tectona grandis*, 15 *Guaiacum officinale*, 16 *G. sanctum*, 17 *Dalbergia retusa*, 18 *Hymenaea courbaril* und 19 Negativ-Kontrolle. M = 100 bp Ladder.

3.3.2 Spezifische Primer der CITES-geschützten Baumarten und deren Substitutionshölzern

Nachstehend werden alle spezifischen Primer, die für die wichtigsten Handelshölzer erstellt wurden, dargestellt. Es erfolgt eine kurze Vorstellung der Primersequenzen sowie einiger Besonderheiten. Für alle gezeigten Primer wurde die Spezifität getestet und nachgewiesen. Bei der Überprüfung der Primerspezifität wurde darauf geachtet, dass Proben eingesetzt wurden, die nah verwandte Arten oder Arten nah verwandter Gattungen repräsentieren. In Tabelle 44 sind für die spezifischen Primer der Name, die Sequenz, die Annealingtemperatur (°C) sowie die Länge des amplifizierten Fragments (bp) aufgelistet. Die Fragmentlängen schwanken von 207 bis 549 bp. Für die Annealingtemperatur ergeben sich Werte von 55-60°C.

Für einige der untersuchten Arten konnte, trotz Vorhandenseins selbst erarbeiteter Sequenzen, kein spezifischer Primer erstellt werden. Genauer betraf dies die entsprechenden Arten der Gattungen *Pterocarpus* und *Caryocar*. Für *P. soyauxii* fehlen die Informationen des ITS1 und für die Gattung *Caryocar* sind insgesamt zu wenige Informationen (eigene Sequenzen + GenBank-Sequenzen) zur Primerentwicklung vorhanden. Des Weiteren wurde bei der Erstellung der spezifischen Primer von *Hymenaea courbaril* auf die Verwendung der Sequenzen der Proben 86 und 170 verzichtet. Es handelt sich hierbei offensichtlich nicht um Individuen dieser Art.

Da sich die Sequenzen von *Cedrela odorata* und *C. fissilis* stark ähneln und sich nur am Anfang des ITS1 eine geeignete Stelle für das Erstellen artspezifischer Primer befindet, wurde für diese beiden Arten jeweils nur ein forward-Primer erstellt. Diese forward-Primer wurden jeweils mit dem allgemeinen Holzprimer ITS2.1 kombiniert. Der durchgeführte Kreuztest zeigt trotz der Verwendung nur eines spezifischen Primers dessen uneingeschränkte Spezifität.

Für die durch den CITES Anhang II geschützte Gattung *Guaiacum*, wurden sowohl ein gattungsspezifisches Primerpaar als auch artspezifische Primerpaare erstellt. Genauer wurde für *G. sanctum* nur ein spezifischer Primer (forward-Primer) erarbeitet und dieser mit dem ITS4-Primer kombiniert.

Standen nicht ausreichend Sequenz-Informationen (eigene Sequenzen + GenBank-Sequenzen) zur Verfügung, um erfolgreich artspezifische Primer zu erstellen (z.B. bei *Bowdichia nitida, Endospermum moluccanum* und *Neolamarckia cadamba*), so wurden die erstellten und getesteten Primer als Gattungsprimer definiert.

Das spezifische Primerpaar der Gattung Khaya ergibt ein DNA-Fragment mit der Länge

von 229-230 bp. Lediglich für Probe 457 wird ein Fragment von 207 bp erhalten. Bedingt ist dieses kürzere Fragment durch die Anwesenheit eines 23 bp großen Indels (Tabelle 44).

Tabelle 44: Auflistung aller spezifischen Primer für die Holzartenidentifizierung. Dargestellt werden der Primername, die Primersequenz, die Fragmentgröße sowie die zugehörige Annealingtemperatur.

Art oder Gattung	Primer	Primersequenz 5'-3'	bp	°C
Swietenia macrophylla/	S m/h for1	CGGTCCGCGCCAAGGAAAATT	470 472	60
Swietenia humilis	S m/h rev1	GGCGCGCAGGGGGGGGTC	4/0-4/2	00
Swistonia mahagoni	S mah for	CCGCGCCAAGGAAGAATC	208	57
Swielenia managoni	S mah rev2	CAACGCCCGTCGAGAGG	298	57
Entandrophragma	E cyl for2	TTCTCCGAACGAATGTCCAAAA	270	56
cylindricum	E cyl rev3	TTTCCGCGAGCCGGCAGAT	370	20
Entandrophragma	E ang for2	CCTTCCGACGAAATATCCAA	271	55
angolense	E ang rev2	TTCCTCGAGCCGGCATCT	371	22
Vh ang app	Khay for1 GAACTCGTGACCGATTGCACC		207 220	50
K <i>naya</i> spp.	<i>aya</i> spp. Khay rev2 TAGATTACGATCGAAGAAGGCG		207-230	39
C	Cara for1	GCGAACTCGTGATCGAATGC	226 227	5(
Carapa spp.	Cara rev2	GGATTCTTACAGAAAGAAGGCG	226-227	56
Calada a la seta	C odo for1	GCACACGCGATGGCTAAGC	210	57
Cearela oaorata	ITS2.1	GACTCGATGRTTCACGGG	310	57
Caduala fingilia	C fis for1	CACGCGCGGGGGAAAGGC	208	50
Ceureia Jissilis	ITS2.1	GACTCGATGRTTCACGGG	508	50
Cugigoum opp	Guai for2	AGCGAGAGCGAGCCCCTT	408 412	57
<i>Guulucum</i> spp.	Guai rev1	ACTCGTGTTTGGGCCAACC	408-413	57
Guaiacum officinale	G off for 1	AATCCAAACGAAAGAGCCGC	358-359	58
Guulucum officinale	G off rev2	CTCTCCCGCAAGGGTCGTCT	550-557	50
Guaiacum sanctum	G san for2	AGGAATCCGAACGGAAGGGC	186 180	57
Guulucum sunclum	ITS4	TCCTCCGCTTATTGATATGC	400-409	57
Buluagia app	Buln for1	CCAAGGAATCCCAATCGGA	260	56
<i>Duinesia</i> spp.	Buln rev1	CGCTCCGCCCTCTCTCTTA	209	50
Handroanthus spp	Hand for1	ATGCGCCAAGGAAAACTCAA	371 372	56
<i>Tianaroaninus</i> spp.	Hand rev1	ACTGGTCGTGACGTGCATCG	571-572	50
Interna himag	I bij for1	ACGCCATTCTATCCAATATCCA	109	57
inisia vijuga	I bij rev1	v1 TAGGGTCTCGGAGGAGGAGCT		57

Interior malourhanica	I pal for1	GTATTATCCACAACGACTCTCG	120 110	55
Inisia patembanica	I pal rev2	TCCCGCCTTAGGTTAGGTGA	438-440	55
Afralia ann	Afze for2	TCCCCGCCGTCCCGGAGA	228	50
Ajzena spp.	Afze rev1	GCTCTCATTTCGGCCGTC	338	38
Il un and a court guil	H cou for1	GCCAAGGAACAGATGCGAT	264 271	56
Hymenaea courbarii	H cou rev1	CGAGCTCTTGTTTCGGCCAT	504-571	30
Dalbargia nigra	D nig for	GCCAAGGAAGAAACAACCGTA	268	58
Daibergia nigra	D nig rev	GTCTGTCATGGCGCTGCATC	508	50
Dalbargia ratusa	D ret for2	CAGCACGCCTTCCCCAAAT	188	50
Duidergia reiusa	D ret rev2	GAGGTCGCACGCACGACTG	488	30
Dalbancia latifolia	D lat for	AGACGTCGGGACCGAGCCA	505	60
Daibergia ialijolia	D lat rev	GGTCCCTGGGTACGTCGCTG	505	00
Dalbargia spruggana	D spr for	GCGGTGCCGCAACACTCGA	306	50
Daibergia spraceana	D spr rev	GTCATGGTGCCGCTGCATC	500	39
Dalhanaia aigaaa	D sis for	GAAGAGTCGGGACGGAGCC	162	50
Daibergia sissoo	D sis rev	TCGAGAGCACGCTCAACCAC	405	57
Machaerium	achaerium M scl for ACTCGTTCCACCACCGGG		176	50
scleroxylon	M scl rev	TATGTCACGGTGCTTCATCCAC	470	30
Caasalninia achinata	C ech for 1	AGCACGACGACATTCGTATACAG	220	57
Caesaipinia echinaia	C ech rev2	TTCGCGTCCTCCTCGAGAG	230	57
Caasalninia farmaa	C fer for	CCAAGGAAATCTGAGAAACGAG	247	56
Cuesuipiniu jerreu	C fer rev	AGGACTCCCTTTTCGACCAAC	547	50
Munoagumus spp	Myro for2	GCCAAGGAAACGCAACAGTG	202	50
<i>Myrocurpus</i> spp.	Myro rev1	TGCTCACTCATCCACCGTGG	382	30
Rowdichia spp	Bowd for	GGAATCCGAAATCGTTCTGTG	204	56
<i>bowaicnia</i> spp.	Bowd rev	CTCTCACTCAACCACCATCC	374	50
Fudasparmum spp	Endo for	CCATCTCCCAACCCGTCTC	127	58
Endospermum spp.	Endo rev	CTCTCAACCACCGATTGCCG	437	30
Noolamarakia	Neol for	CCTGTGTCAATAGCCAAGCG	540	56
weolumarckia spp.	Neol rev	AAGGGTCATCCGTCAAGTCG	547	50

3.4 Validierung

Der entwickelte Schnelltest zur Identifizierung von CITES-geschützten Holzarten und deren Substitutionshölzern wurde mehreren Validierungen unterzogen. Nachfolgend wird der Ablauf der entwickelten Methode noch einmal gekürzt wiedergegeben (Abbildung 31). (1) Die DNA wird aus dem homogenisierten Ausgangsmaterial mithilfe des modifizierten Protokolls des DNeasy[®] *mericon*TM Food Kits (Punkt 2.2.1.2.8) extrahiert. (2) Unter Verwendung der "holzspezifischen" Primer aus Punkt 2.2.3.3 wird die DNA-Konzentration ermittelt, welche es ermöglicht, einen Teilbereich des ITS zu amplifizieren. So wird sichergestellt, dass im nächsten Schritt eine optimale DNA-Menge eingesetzt wird. Die PCR innerhalb dieses Schritts sowie im darauffolgenden, wird unter Zuhilfenahme des im Punkt 2.2.3.2 angeführten KAPA2GTM Robust Hot Start PCR Kits durchgeführt. (3) In der folgenden PCR wird, unter Verwendung der verschiedenen spezifischen Gattungs- oder Artprimer, die vorliegende Holzart identifiziert (Punkt 3.3.2). Die Identifizierung erfolgt hierbei über die Anwesenheit eines DNA-Fragments in spezifischer Länge.

Abbildung 31: Schematische Darstellung des entwickelten Schnelltests.

3.4.1 Ergebnisse des Blindtests mit 60 unbestimmten Holzproben

Für den ersten Blindtest standen 60 Holzproben in Hackschnitzelgröße zur Verfügung (vgl. Punkt 2.1.4.2). Diese Holzproben wurden mithilfe des Schnelltests daraufhin untersucht, ob sich innerhalb dieser die Gattung *Gonystylus* (CITES Anhang II) nachweisen lässt.

Ein Teil der folgenden Ergebnisse entstand im Rahmen einer (mit)betreuten Bachelorarbeit (Schwartz 2012). Die Isolierung der DNA erfolgte unter Verwendung der modifizierten *mericon*TM-Extraktionsmethode (Punkt 3.1.3.4). Als Ausgangsmaterial dienten 100 mg Holzmehl. Lediglich für Probe Bt34 und Bt39 standen nur 83 bzw. 47 mg zur Verfügung. Durch die Anwendung der modifizierten DNA-Extraktionsmethode wurde für alle Proben erfolgreich DNA isoliert. Die DNA-Gehalte des ersten Eluats lagen zwischen 3,7 und 227,6 ng/µl (Mittelwert 65 ng/µl) sowie für das zweite Eluat zwischen 5,4 und 291,3 ng/µl (Mittelwert 50 ng/µl). Da das 260/280-Verhältnis der vorliegenden DNA bei 1,7-2,0 lag, wurde auf eine Aufreinigung des DNA-Eluats mithilfe des Invisorb[®] DNA CleanUp Kits verzichtet (Punkt 2.2.1.3). Die Amplifikationen der DNA erfolgten mit dem KAPA2G[™] Robust Hot Start PCR Kit (Punkt 2.2.3.2). Nach Beurteilung der Wirkung der drei zur Verfügung stehenden PCR-Puffer, fand bei diesem Material der Puffer A Anwendung. Als erste PCR wurde für jede Probe eine Amplifikation mit den "Holzprimern" ITS1.1/ITS2.1 durchgeführt. Hierdurch konnte ermittelt werden, bei welcher DNA-Menge, die stärkste Holzbande amplifiziert wird. Die erhaltenen Werte lagen zwischen 8 und 125 ng (Mittelwert: 43 ng). Trotz Ermittlung der idealen Ausgangskonzentration ergaben die Proben Bt1-3, Bt7, Bt29 und Bt37-39 nur sehr schwache DNA-Fragmente. Auf die Weiterverarbeitung dieser Proben wird im späteren Verlauf genauer eingegangen. Für alle weiteren Proben wurde eine Amplifikation mit den spezifischen Primern der Gattung Gonystylus (Ramin-for: 5'-GAC AGA ACG TTC TCC CCA CAC-3' und Ramin-rev: 5'-GAC GTT GCA ACG AAT GCA C-3') durchgeführt (Vay 2008). Aufgrund des Einsatzes der spezifischen Primer wurden folgende Proben, durch ein Fragment mit der Größe von 358 bp, als Vertreter der Gattung Gonvstvlus identifiziert: Bt4-6, Bt11, Bt13-16, Bt25-28, Bt30-31, Bt36, Bt41-43, Bt45-60 (Abbildung 32). Für die Proben Bt8-10, Bt12, Bt17-24, Bt32-35, Bt40 und Bt44, die keine Raminbande aufwiesen, bedeutet dies, dass es sich bei diesen nicht um Ramin handelt.

Mit den Proben Bt1-3, Bt7, Bt29 und Bt37-39, die unter Verwendung der

Primerkombination ITS1.1/ITS2.1 nur eine sehr schwache Bande aufwiesen, wurde eine Nested-PCR durchgeführt (Punkt 2.2.3.4). Hierfür wurde zuerst der ITS-Bereich (ITS1.1/ITS4) amplifiziert. Das erhaltene PCR-Produkt wurde anschließend in einer weiteren PCR, in der die spezifischen Primer der Gattung *Gonystylus* zum Einsatz kamen, als Template eingesetzt. Durch die Nested-PCR konnten die Proben Bt1-3, Bt7, Bt29 und Bt37-39 als Ramin identifiziert werden.

Abbildung 32: Gelelektrophorese für den Nachweis von Ramin. Unter Verwendung der spezifischen Primer Ramin-for und Ramin-rev werden die Proben Bt11 und Bt13-16 durch ein DNA-Fragment von 358 bp als Vertreter der Gattung *Gonystylus* identifiziert. - = Negativ-Kontrolle; M = 100 bp Ladder.

Zur weiteren Absicherung der Ergebnisse wurden 23 Amplifikate (Bt4-6, Bt13-16, Bt25-27, Bt30-31, Bt36, Bt42-43, Bt46-47, Bt49, Bt51-53 und Bt58-59) der "Ramin-PCR" sequenziert. Die Sequenzierung und der darauf folgende Abgleich der Sequenzen mit der internen ITS-Sequenzdatenbank bestätigte, dass es sich bei diesen Proben um Ramin handelt.

Zur Erweiterung der rDNA ITS-Sequenzdatenbank, erfolgte für die Proben Bt4-6, Bt13-16, Bt25-27, Bt30-31, Bt36, Bt42-43, Bt46-47, Bt49, Bt51-53 und Bt58-59 die Amplifikation und Sequenzierung der ITS1-Region sowie der ITS2-Region (Punkt 3.2.5). Die Basenabfolge der 23 Sequenzen deutet auf zwei *Gonystylus*-Arten unter den Blindtestproben hin. Die erste Art (Art1), vertreten durch Bt13-16, Bt26, Bt30, Bt36, Bt42-43, Bt46-47, Bt49, Bt51-53 und Bt58-59, ist nahezu 100%ig homolog zu den

Proben 244 und 247 aus der internen Sequenzdatenbank (vgl. Cons.25 aus Punkt 3.2.5). Es handelt sich bei diesen Proben um Holzstücke von *Gonystylus bancanus* aus der Sammlung des Thünen-Instituts. Die zweite Art (Art 2), vertreten durch Bt4-6, Bt25, Bt27 und Bt31, kann durch einen Vergleich mit der internen Sequenzdatenbank keiner bestimmten *Gonystylus*-Art zugeordnet werden. Auch ein Abgleich mit der GenBank des NCBI brachte keine weiteren Ergebnisse, da zu diesem Zeitpunkt für *Gonystylus* keine ITS-Sequenzen hinterlegt waren. Insgesamt zeigte der Vergleich der beiden Sequenztypen (Art1 und Art2) mit der GenBank des NCBI die größten Homologien (~83%) zu den nah verwandten Gattungen *Paddiea, Lachnaea* und *Dirca* (Thymelaeaceae).

Für die Identifikation der verbleibenden 18 Holzproben (Bt8-10, Bt12, Bt17-24, Bt32-35, Bt40 und Bt44) wurden die Amplifikate des ITS1-Bereichs sequenziert. Des Weiteren wurde zusätzlich der ITS2-Bereich erarbeitet und ebenfalls sequenziert. Für die Proben stand somit der gesamte ITS-Bereich zur Verfügung. Die Analyse der ITS-Bereiche ergab, dass die 18 Proben sechs Arten (Art3-8) mit jeweils identischen ITS-Sequenzen repräsentieren. Ein Abgleich der ITS-Sequenzen mit der internen Sequenzdatenbank führte zu keinerlei Homologien. Die folgende Einteilung in die jeweiligen Familien erfolgte somit nach dem Abgleich mit der GenBank des NCBI. Art3, die die Proben Bt12, Bt17-18 und Bt20-21 beinhaltet, zeigt die höchsten Homologien zu Vertretern der Dipterocarpaceae. Art4 (Bt9, Bt33-34 und Bt40), Art5 (Bt8, Bt19 und Bt32) sowie Art6 (Bt35 und Bt44) haben die größten Sequenzübereinstimmungen zu Individuen der Familie der Sapotaceae. Bt10, welche Art7 darstellt, konnte durch die BLAST-Analyse den Apocynaceae zugeordnet werden. Die Sequenzen von Bt22-24 (Art8) waren nicht bestimmbar, da es sich hier um eine Kontamination handelte. Für eine erneute Untersuchung dieser Proben war kein weiteres Material verfügbar. Für Art3-7 wurde eine Einteilung in Familien gewählt, da keine der Sequenzen eine absolute Übereinstimmung mit den ITS-Sequenzen der GenBank des NCBI aufwies. Nach Abschluss der Untersuchungen fand ein Vergleich der erhaltenen Ergebnisse mit denen holzanatomischer Untersuchungen, die im Vorfeld durch Herrn PD Dr. Gerald Koch durchgeführt wurden, statt (Tabelle 45). Bezüglich der Zuordnung der Proben zur Gattung Gonystylus, kamen beide Untersuchungen zu demselben Ergebnis. Durch die genetischen Untersuchungen wurde aber nicht nur die zutreffende Gattung ermittelt, sondern es wurde noch zusätzlich auf zwei verschiedene Arten (Art1 und Art2) hingewiesen. Für die Proben, bei denen es sich nicht um Ramin handelte, ergab der Vergleich, dass die Zuordnung der ITS-Sequenzen zu den

Tabelle 45: Auflistung der Ergebnisse des Blindtests mit 60 unbestimmten Holzproben. In der Tabelle sind die Ergebnisse des DNA-Barcoding gegenüber den Ergebnissen der Mikroskopie dargestellt. Die ID besteht aus dem Namenskürzel Bt für Blindtest und der Blindtestnummer. Einige Proben wurden in die interne ITS-Datenbank aufgenommen und weisen zusätzlich eine Herbarnummer auf.¹⁻⁸ = Proben mit jeweils identischer Sequenz.

ID	Mikroskopie	Barcoding	ID	Mikroskopie	Barcoding
Bt1	Gonystylus spp.	Gonystylus spec.	Bt31/622	Gonystylus spp.	Gonystylus spec. ²
Bt2	Gonystylus spp.	Gonystylus spec.	Bt32	Palaquium spp.	Sapotaceae ⁵
Bt3	Gonystylus spp.	Gonystylus spec.	Bt33	Madhuca spp.	Sapotaceae ⁴
Bt4/611	Gonystylus spp.	<i>Gonystylus</i> spec. ²	Bt34	Madhuca spp.	Sapotaceae ⁴
Bt5/612	Gonystylus spp.	<i>Gonystylus</i> spec. ²	Bt35	Payena spp.	Sapotaceae ⁶
Bt6/613	Gonystylus spp.	Gonystylus spec. ²	Bt36/623	Gonystylus spp.	Gonystylus spec. ¹
Bt7	Gonystylus spp.	Gonystylus spec.	Bt37	Gonystylus spp.	Gonystylus spec.
Bt8	Palaquium spp.	Sapotaceae ⁵	Bt38	Gonystylus spp.	Gonystylus spec.
Bt9	nicht bestimmbar	Sapotaceae ⁴	Bt39	Gonystylus spp.	Gonystylus spec.
Bt10	Alstonia spp.	Apocynaceae ⁷	Bt40	Madhuca spp.	Sapotaceae ⁴
Bt11	Gonystylus spp.	Gonystylus spec.	Bt41	Gonystylus spp.	Gonystylus spec.
Bt12	Shorea spp.	Dipterocarpaceae ³	Bt42/482	Gonystylus spp.	Gonystylus spec. ¹
Bt13/614	Gonystylus spp.	Gonystylus spec. ¹	Bt43/483	Gonystylus spp.	Gonystylus spec. ¹
Bt14/615	Gonystylus spp.	Gonystylus spec. ¹	Bt44	Payena spp.	Sapotaceae ⁶
Bt15/616	Gonystylus spp.	Gonystylus spec. ¹	Bt45	Gonystylus spp.	Gonystylus spec.
Bt16/617	Gonystylus spp.	Gonystylus spec. ¹	Bt46/486	Gonystylus spp.	Gonystylus spec. ¹
Bt17	Shorea spp.	Dipterocarpaceae ³	Bt47/487	Gonystylus spp.	Gonystylus spec. ¹
Bt18	Shorea spp.	Dipterocarpaceae ³	Bt48	Gonystylus spp.	Gonystylus spec.
Bt19	Palaquium spp.	Sapotaceae ⁵	Bt49/489	Gonystylus spp.	Gonystylus spec. ¹
Bt20	Shorea spp.	Dipterocarpaceae ³	Bt50	Gonystylus spp.	Gonystylus spec.
Bt21	Shorea spp.	Dipterocarpaceae ³	Bt51/491	Gonystylus spp.	Gonystylus spec. ¹
Bt22	Tetramerista glabra	kein Ramin ⁸	Bt52/492	Gonystylus spp.	Gonystylus spec. ¹
Bt23	Koompassia malaccensis	kein Ramin ⁸	Bt53/493	Gonystylus spp.	Gonystylus spec. ¹
Bt24	Tetramerista glabra	kein Ramin ⁸	Bt54	Gonystylus spp.	Gonystylus spec.
Bt25/618	Gonystylus spp.	<i>Gonystylus</i> spec. ²	Bt55	Gonystylus spp.	Gonystylus spec.
Bt26/619	Gonystylus spp.	Gonystylus spec. ¹	Bt56	Gonystylus spp.	Gonystylus spec.
Bt27/620	Gonystylus spp.	Gonystylus spec. ²	Bt57	Gonystylus spp.	Gonystylus spec.
Bt28	Gonystylus spp.	Gonystylus spec.	Bt58/499	Gonystylus spp.	<i>Gonystylus</i> spec. ¹
Bt29	Gonystylus spp.	Gonystylus spec.	Bt59/500	Gonystylus spp.	Gonystylus spec. ¹
Bt30/621	Gonystylus spp.	Gonystylus spec. ¹	Bt60	Gonystylus spec.	Gonystylus spec.

verschiedenen Familien richtig erfolgte. So wurden durch die holzanatomischen Untersuchungen, wie auch durch die genetischen Analysen (Art4-6), drei Vertreter

(*Palaquium*, *Madhuca* und *Payena*) für die Familie der Sapotaceae identifiziert (Tabelle 45). Durch die Analyse des ITS wurde ebenfalls Probe Bt9 (Art4), die nur Bastmaterial aufwies, den Sapotaceae zugewiesen. Dies war durch die anatomische Bestimmung nicht möglich.

3.4.2 Identifizierung einer Holzbohle

Ein weiterer Blindtest wurde anhand einer Holzbohle (Kernholz) ausgeführt. Über das Holz stand lediglich die Information zur Verfügung, dass es ein Vertreter der Meliaceae war (vgl. Punkt 2.1.4.2). Der Holzbohle wurden 200 mg Holzmehl entnommen und die DNA wurde mit der *mericon*TM-Extraktionsmethode extrahiert (Punkt 3.1.3.4). Da im Anschluss an die DNA-Extraktion noch eine Aufreinigung der erhaltenen Eluate durchgeführt werden sollte (Invisorb[®] DNA CleanUp Kit, Punkt 2.2.1.3), erfolgte die Eluation der DNA mit je 100 µl.

Messung 1 und 2 aus Tabelle 46 geben die erhaltenen DNA-Werte für das 1. und 2. Eluat wieder. Für das 1. Eluat ergibt sich eine DNA-Konzentration von 23,5 ng/µl. Das 260/280-Verhältnis liegt aber lediglich bei 0,97 (260/230-Verhältnis: 0,34). Das 2. Eluat zeigt bei einem 260/280-Verhältnis von 1,09 (260/230-Verhältnis: 0,39) einen DNA-Gehalt von 6,1 ng/µl. Die erhaltenen Messwerte sowie der Verlauf der Absorptionskurven (Messung 1 und 2, Abbildung 33) lassen auf eine hohe Inhibitorenkonzentration schließen. Die Absorptionskurven der Messungen 1 und 2 zeigen zwischen 340 und 280 nm einen schwachen (Messung 2) bzw. starken (Messung 1) Anstieg und bilden anschließend eine Schulter zwischen 280 und 250 nm aus. Ab 250 nm ist für beide Kurven ein starker Anstieg zu verzeichnen. Aufgrund der Inhibitorenbelastung der DNA-Eluate wurde eine weitere Aufreinigung der Lösungen durchgeführt. Für die Aufreinigung der extrahierten DNA wurden beide Eluate zusammengefügt und mit dem Invisorb[®] DNA CleanUp Kit weiterverarbeitet. Um die Verluste, die bei der Aufreinigung auftreten können, auszugleichen, wurde für die Eluation ein Volumen von 30 µl gewählt. Die spektralphotometrische Messung der erhaltenen DNA-Eluate weist auf eine Verbesserung der 260/280-Verhältnisse hin. Für das 1. Eluat ergibt sich ein Wert von 1,88 (260/230-Verhältnis: 2,48) und für das 2. Eluat ist ein Wert von 2,17 zu verzeichnen (260/230-Verhältnis: -1,37, Abbildung 33). Ein Vergleich der DNA-Konzentrationen vor (Messung 1: 23,5 ng/µl; Messung 2: 6,1 ng/µl) und nach (Messung 3: 28,3 ng/µl; Messung 4: 5,1 ng/µl) der Aufreinigung, ergibt einen DNA-Verlust von rechnerisch 40%. Für den Verlauf der Absorptionskurve von Messung 3 wird deutlich, dass diese den typischen Verlauf "reiner" DNA aufweist (Tabelle 46).

Tabelle 46: Spektralphotometrische Analyse der DNA, die aus einer Holzbohle extrahiert wurde. Gemessen wurden je 1 µl der DNA-Eluate der modifizierten DNeasy[®] *mericon*™ Food Kit Extraktion. Zusätzlich wurde eine Aufreinigung mit dem Invisorb[®] DNA CleanUp Kit durchgeführt und ebenfalls analysiert (Aufr.).

Messung	Probenname	DNA Konz. (ng/µl)	A260	A280	260/280	260/230
1	Mel. 1. Eluat	23,5	0,471	0,486	0,97	0,34
2	Mel. 2. Eluat	6,1	0,122	0,112	1,09	0,39
3	Mel. Aufr. 1. Eluat	28,3	0,566	0,301	1,88	2,48
4	Mel. Aufr. 2. Eluat	5,1	0,103	0,047	2,17	-1,37

Abbildung 33: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die DNA-Eluate der Holzbohle unbekannter Art. Dargestellt sind die Kurven nach der modifizierten *mericon*TM Food Kit Extraktion (1 = Mel. 1. Eluat und 2 = Mel. 2. Eluat) und nach der Aufreinigung mit dem Invisorb[®] DNA CleanUp Kit (3 = Mel. Aufr. 1. Eluat und 4 = Mel. Aufr. 2. Eluat). Auftrag = 1 µl.

Die Amplifizierung der erhaltenen DNA geschah mithilfe des KAPA2G[™] Robust Hot Start PCR Kits (Punkt 2.2.3.2). Als Template kam das 1. Eluat der aufgereinigten DNA Unter Verwendung der "holzspezifischen" Primerkombination zum Einsatz. ITS1.1/ITS2.1 wurde zuerst die optimale DNA-Konzentration bzw. der optimale PCR-Puffer ermittelt. Es stellte sich heraus, dass die Verwendung des GC-Puffers in Kombination mit einer DNA-Menge von 28,3 ng für diesen Versuch am geeignetsten war. Im zweiten Schritt kamen die spezifischen Primer von Swietenia macrophylla, S. humilis, S. mahagoni, Entandrophragma cylindricum, Khaya spp. und Carapa spp. zur Anwendung (vgl. Punkt 3.3.1). Für E. angolense existierte zu diesem Zeitpunkt noch kein Primerpaar. Durch die Verwendung der spezifischen Primer S m/h for1 und S m/h rev1, wurde das Stück Holz durch ein 470-472 bp großes DNA-Fragment als S. macrophylla bzw. S. humilis identifiziert (Abbildung 34). Eine zusätzlich durchgeführte Sequenzierung des DNA-Fragments ergab, dass die erhaltene Sequenz absolut homolog zu den Datenbanksequenzen von S. macrophylla und S. humilis ist.

Abbildung 34: Gelelektrophorese für die Identifizierung einer unbekannten Holzbohle. Die Anwesenheit einer Bande von 470-472 bp, unter Verwendung der Primer S m/h for1 und S m/h rev1, identifiziert die Holzbohle eindeutig als Vertreter der Art *Swietenia macrophylla* bzw. *S. humilis*. 1 = E cyl for2/E cyl rev3, 2 = Khay for1/Khay rev2, 3 = Cara for1/Cara rev2, 4 = S mah for/S mah rev2 und 5 = S m/h for1 mit S m/h rev1. - = Negativ-Kontrolle, M = 100 bp Ladder.
Die holzanatomische Bestimmung der Probe wurde von Herrn PD Dr. Gerald Koch durchgeführt. Dieser kam zu dem Ergebnis, dass es sich bei der Holzbohle um *Swietenia* spec. handelt. Für die Gattung *Swietenia* ist eine Identifizierung auf Artebene, anhand der holzanatomischen Merkmale, nicht möglich. Somit stimmen die Ergebnisse beider Untersuchungen auf Gattungsebene überein. Durch die Verwendung der DNA-Analyse wurde zusätzlich noch die Art *S. mahagoni* ausgeschlossen.

3.4.3 Validierung der modifizierten *mericon*[™]-Extraktion anhand von Palisanderholz

Die Untersuchung der Holzproben fand im Rahmen einer (mit)betreuten Bachelorarbeit (Zatt Schardosin 2013) statt. Der in diesem Punkt wiedergegebene Versuch diente der Frage, ob sich die modifizierte *mericon*TM-Extraktion aus Punkt 3.1.3.4 für die DNA-Extraktion aus Kern- und Splintholz, das bereits mehreren negativen Einflüssen (Einschnitt und lange Lagerdauer) unterlag, eignet. Zur Validierung der entwickelten DNA-Extraktionsmethode wurden folgende drei Proben der Gattung *Dalbergia* verwendet: *D. nigra* (Dal 1), *D. retusa* (Dal 2) und *D. latifolia* (Dal 3). Die Probe von *D. nigra* stammte aus der Holzsammlung des Thünen-Instituts und die anderen Proben wurden freundlicherweise von Max Cropp e.K., Hamburg, Deutschland, zur Verfügung gestellt (vgl. Punkt 2.1.4.2). Als Ausgangsmaterial für die Extraktion der DNA wurden 200 mg Holzmehl eingesetzt. Für Probe Dal 1 und Dal 3 wurde dieses aus bereits verkerntem Gewebe entnommen. Im Gegensatz hierzu erfolgte für Probe Dal 2 die Entnahme aus dem Splintholzbereich. Die Eluationsmenge der DNA-Extraktion betrug 50 μ l.

Das DNA-Eluat, das aus dem Splintholz gewonnen wurde (Dal 2), zeigt den höchsten DNA-Gehalt der drei Proben. Es wurde hier eine DNA-Konzentration von 166,5 ng/µl gemessen (Tabelle 47). Das berechnete 260/280-Verhältnis liegt für diese Probe bei 1,90 (260/230-Verhältnis: 0,91). Die Absorptionskurve von Dal 2 weist weiterhin den typischen Verlauf "reiner" DNA auf (Abbildung 35). Wesentlich geringere DNA-Konzentrationen wurden für die Proben Dal 1 und Dal 3 gemessen. Diese lagen lediglich bei 7,9 bzw. 7,5 ng/µl. Zwar haben die Proben mit 2,09 und 1,40 noch annehmbare 260/280-Verhältnisse (Tabelle 47), jedoch zeigen die Absorptionskurven nicht den erwarteten Verlauf. Dal 1 und Dal 3 verlaufen zwischen 340 und 240 nm nahezu parallel zur x-Achse. Ab 240 nm ergibt sich für beide Kurven ein Anstieg, der für Dal 1 stärker ausfällt (Abbildung 35). Aufgrund der geringen DNA-Konzentrationen

der Proben Dal 1 und Dal 3 wurde auf eine weitere Aufreinigung der Proben mit dem Invisorb[®] DNA CleanUp Kit der Firma Stratec verzichtet.

Tabelle 47: Spektralphotometrische Analyse der DNA, welche aus den Hölzern der Gattung *Dalbergia* isoliert wurde. Dal 1 = *Dalbergia nigra*; Dal 2 = *D. retusa*; Dal 3 = *D. latifolia*. Analysiert wurde je 1 µl des DNA-Eluats der modifizierten DNeasy[®] *mericon*[™] Food Kit Extraktion.

Probenname	DNA Konz. (ng/µl)	A260	A280	260/280	260/230
Dal 1	7,9	0,16	0,08	2,09	0,11
Dal 2	166,5	3,33	1,75	1,90	0,91
Dal 3	7,5	0,15	0,11	1,40	0,28

Abbildung 35: Verlauf der Absorption in Abhängigkeit der Wellenlänge für die DNA-Eluate der Hölzer der Gattung *Dalbergia*. Zur Anwendung kam die modifizierte DNeasy[®] *mericon*[™] Food Kit Extraktion Auftrag = 1 µl.

Für die Amplifizierung der DNA wurde das KAPA2GTM Robust Hot Start PCR Kit eingesetzt. Die Ermittlung des geeignetsten PCR-Puffers bzw. der optimalen Templatemenge erfolgte ein weiteres Mal anhand der Primerkombination ITS1.1/ITS2.1. Bei den vorliegenden DNA-Eluaten wies der GC-Puffer die beste Eignung auf. Die optimalen Template-Mengen waren: Dal 1 = 7,9 ng, Dal 2 = 83,3 ng und Dal 3 = 7,5 ng. Mithilfe des GC-Puffers, den ermittelten DNA-Templates sowie den entsprechenden spezifischen Primern (vgl. Tabelle 44) erfolgte im Anschluss die Amplifizierung der DNA. Dal 1 zeigt bei Verwendung der Primerkombination D nig for/D nig rev ein DNA-Fragment mit der erwarteten Länge von 368 bp und wird somit als *D. nigra* bestätigt. Die Probe Dal 2 wird durch die Primerkombination D ret for2/D ret rev2 und einer Bande von 488 bp als *D. retusa* identifiziert. Die Anwendung der Primer D lat for und D lat rev (505 bp) ergibt, dass es sich bei Dal 3 um *D. latifolia* handelt (Abbildung 36). Anhand der anschließenden Sequenzierung der erhaltenen DNA-Fragmente und dem Vergleich der Sequenzen mit der rDNA ITS-Sequenzdatenbank, wurden die Ergebnisse des Schnelltests bestätigt. Die in diesem Punkt erhaltenen Resultate bestätigen eindeutig, dass sich die modifizierte *mericon*TM-Extraktionsmethode auch für die DNA-Extraktion von bereits länger gelagertem Kern- und Splintholz eignet.

PCR mit spezifischen Primern

Abbildung 36: Anwendung der spezifischen Primer der Gattung *Dalbergia*. D nig for/D nig rev identifiziert Dal 1, durch die Anwesenheit eines 368 bp großen Fragments, eindeutig als *Dalbergia nigra* (1). Dal 2 wird durch die Primerkombination D ret for2/D ret rev2 und einer Bande von 488 bp als *Dalbergia retusa* identifiziert (2). Abschließend zeigt die Anwendung der Primer D lat for und D lat rev (505 bp), dass es sich bei Dal 3 um *Dalbergia latifolia* handelt (3). +¹⁻³ = entsprechende Positiv-Kontrolle des verwendeten Primerpaars. - = Negativ-Kontrolle

4 Diskussion

Ziel der Arbeit war, einen Schnelltest zu entwickeln, der es ermöglicht, CITES-geschützte Baumarten sowie deren Substitutionshölzer auf Basis von spezifischen DNA-Markersystemen zu identifizieren. Die Bereitstellung eines solchen Schnelltests erforderte verschiedene Untersuchungen, die sich in mehreren Aufgabengebieten zusammenfassen lassen. Um die benötigte DNA aus den verschiedensten Ausgangsmaterialien, wie z.B. Splint- und Kernholz, zu isolieren, wurde ein geeignetes DNA-Extraktionsprotokoll erarbeitet. Neben der Entwicklung dieses DNA-Extraktionssystems, war für die Identifizierung der CITES-Hölzer sowie deren Substitutionsarten, die Wahl eines geeigneten Markers, in diesem Fall der ITS-Bereich der rDNA, nötig. Da für diesen Marker aber nur wenige bis gar keine Sequenzinformationen zu Verfügung standen. musste eine interne ITS-Sequenzdatenbank aufgebaut werden. Mithilfe dieser internen Sequenzdatenbank, wurden im Anschluss spezifische Primer entwickelt. Diese Oligonukleotide ermöglichen die Identifizierung unbekannter Holzproben, ohne dass eine Auswertung der Sequenzinformationen erforderlich ist. Abschließend wurde eine Validierung der entwickelten Schnellbestimmungsmethode anhand mehrerer Blindtests durchgeführt. Die wichtigsten Ergebnisse dieser Untersuchungen werden nachfolgend zusammengefasst und in Bezug zur aktuellen Literatur diskutiert.

4.1 Entwicklung eines Protokolls für die DNA-Isolierung aus Splint- und Kernholz

Für die erfolgreiche molekularbiologische Identifizierung von Holzarten ist, neben einem geeigneten DNA-Extraktionsprotokoll, auch das zur Verfügung stehende Ausgangsmaterial ausschlaggebend. Während unter Einsatz von kommerziellen DNA-Extraktionskits die Verwendung von Knospen, Früchten, Blättern, jungen Ästen und Kambium zur Routine geworden ist (Dumolin et al. 1995; Tsumura et al. 1996; Csaikl et al. 1998; Cannon und Manos 2003; Stefenon et al. 2006; Yu et al. 2008; Finkeldey et al. 2010), stellen Splint- und Kernholz eine besondere Herausforderung dar. Bei der Verwendung dieses Ausgangsmaterials wird deutlich, dass die Effizienz der DNA-Extraktion vom äußeren Splint bis zur Kernmitte stark abnimmt (De Filippis und Magel 1998; Deguilloux et al. 2002; Rachmayanti et al. 2009; Tang et al. 2011). Verursacht wird dies unter anderem dadurch, dass während das Zentrum des Kernholzes nur totes Gewebe aufweist, im äußeren Splint eine Mixtur von lebendem und totem Gewebe anzutreffen ist (Fengel 1970; Bamber 1976; Abe et al. 2011). Das tote Gewebe stellt in diesem Zusammenhang einen sehr wichtigen Aspekt dar, da das Absterben der Zellen eine Degradation der DNA bewirkt (Bar et al. 1988; Lindahl 1993; Deguilloux et al. 2002). Diese Degradation wird nicht nur durch endogene Faktoren, wie den Zelltod, ausgelöst, sondern auch exogene Faktoren, z.B. Lagerung, Trocknung (technisch oder natürlich) und Mikroorganismen, führen zu einer Fragmentierung der DNA (Yoshida et al. 2006; Jiao et al. 2012; Tnah et al. 2012). Neben der fragmentierten DNA, weisen Splint- und Kernholz weiterhin noch PCR-Inhibitoren auf, welche die Effizienz der DNA-Extraktion negativ beeinflussen. Diese Inhibitoren (Polysaccharide, Proteine und phenolische Komponenten) treten, je nach Gewebetyp, in unterschiedlich starker Konzentration auf (Demeke und Adams 1992; Lee und Cooper 1995; Pandey et al. 1996).

Bis zum heutigen Zeitpunkt wurde zwar eine Reihe von DNA-Extraktionsprotokollen für Splint- und Kernholz veröffentlicht, doch keines dieser Protokolle hatte die Eigenschaft, generell für alle Hölzer verwendet werden zu können (Rachmayanti et al. 2006). Betrachtet man die bisher veröffentlichten Protokolle, so wird deutlich, dass diese größtenteils auf CTAB, PTB und dem DNeasy® Plant Mini Kit basieren (De Filippis und Magel 1998; Dumolin-Lapègue et al. 1999; Deguilloux et al. 2002; Reynolds und Williams 2004; Asif und Cannon 2005; Rachmayanti et al. 2006; Tang et al. 2011; Jiao et al. 2012; Tnah et al. 2012). Da noch kein allgemeingültiges DNA-Extraktionsprotokoll für Holz existiert, wurden in dieser Arbeit verschiedene Ansätze auf ihre Eignung überprüft (vgl. Punkt 3.1). Um den Vergleich der verschiedenen DNA-Isolierungsversuche (Tabelle 8) gewährleisten zu können, wurden für alle Versuche dieselben Holzproben als Ausgangsmaterial verwendet. Zur Anwendung kamen eine Splintholzprobe von Entandrophragma cylindricum (Ec), die als Positiv-Kontrolle diente, und eine Kernholzprobe von Khaya ivorensis (Ki), aus der in Vorversuchen keine DNA isoliert werden konnte (Daten nicht gezeigt). Bei nahezu allen DNA-Extraktionsversuchen wies die Positivkontrolle Ec wesentlich höhere DNA-Gehalte als die Kernholzprobe Ki (Tabelle 48) auf. Lediglich in zwei Fällen konnte für Ki ein höherer Wert gemessen werden. Zum einen war dies der Fall bei der CTAB/SDS-Extraktion (pH 5,1) und zum anderen beim Einsatz des innuSPEED Soil DNA Kits der Firma Analytik Jena.

Für die Beurteilung einer DNA-Extraktion spielt neben dem DNA-Gehalt der PCR-Erfolg eine sehr wichtige Rolle (Rachmayanti et al. 2009). In der vorliegenden Arbeit wurde dieser unter Verwendung der Primerkombination ITS1.1/ITS4 ermittelt. Durch diese Primerkombination konnte sowohl die Holz-DNA, als auch die DNA des im Holz befindlichen Pilzes amplifiziert werden. Die simultane Amplifizierung der DNA beider Organismen ermöglichte die Kontrolle, ob PCR-Inhibitoren vorhanden waren (keine Bande vorhanden) und ob die Lysis ausreichte, um die Holz-DNA in Lösung zu bringen (Holz- und Pilz-DNA wird amplifiziert). Während die Holz-DNA der Probe Ec nach der Verwendung nahezu aller DNA-Extraktionsmethoden amplifiziert werden konnte (lediglich nach der PTB-Extraktion war kein Amplifikat vorhanden, Tabelle 48), war dies für die Holz-DNA der Probe Ki nur durch die modifizierte *mericon*TM-Extraktion möglich (vgl. Punkt 3.1.3.4). Durch die Amplifikation der Holz-DNA der Probe Ki wird ausgeschlossen, dass die Größe des gewählten DNA-Fragments (Ki = 726 bp) einen negativen Einfluss auf den PCR-Erfolg hatte. Dass für Splint- und Kernholz ein starker Einfluss bezüglich der Größe des gewählten DNA-Fragments auf den PCR-Erfolg zu verzeichnen ist, wurde bereits in verschiedenen Studien berichtet (Pääbo 1990; Deguilloux et al. 2003; Rachmayanti et al. 2009). So zeigten z.B. DNA-Fragmente mit einer Größe von 300-500 bp nur geringe PCR-Erfolge (Cotton et al. 2000; Krenke et al. 2002). Beim Einsatz von degradierter DNA hat nicht nur die Größe des DNA-Fragments Einfluss auf den PCR-Erfolg, sondern auch der gewählte Marker. Betrachtet man die derzeit diskutierten Regionen der cpDNA bzw. den ITS der rDNA, so wird darauf hingewiesen, dass sich Marker der cpDNA besser für die Amplifizierung von fragmentierter DNA eignen (Jiao et al. 2012). Dies ist durch die zirkuläre Struktur der cpDNA, welche zu einer höheren Stabilität führt, bedingt. Die Frage, ob cp-Marker bei den in diesen Versuchen erhaltenen DNA-Eluaten einen höheren PCR-Erfolg aufgezeigt hätten, bleibt unbeantwortet.

Tabelle 48: Vergleich der spektralphotometrischen Werte aller untersuchten DNA-Extraktionsmethoden in Kombination mit dem PCR-Erfolg. Die PCR wurde mit der Primerkombination ITS1.1/ITS4 durchgeführt. Diese Kombination ermöglichte sowohl die Amplifikation der Holz-DNA, als auch der im Holz befindlichen Pilz-DNA. (Ec = *Entandrophragma cylindricum* und Ki = *Khaya ivorensis*; iSP = innuSPEED Plant DNA Kit, iSS = innuSPEED Soil DNA Kit, iSSt = innuSPEED Stool DNA Kit, pGP = peqGOLD Plant DNA Mini Kit, NPP = NucleonTM PhytoPureTM Genomic DNA Extraction Kit, NSS = NucleoSpin[®] Soil Kit; DNeasy = DNeasy[®] Plant Mini Kit; ✓ = Soweit nicht anders angegeben, wurden sowohl die Holz- als auch die Pilz-DNA amplifiziert.)

Probenname	DNA-Konz. (ng/µl)	A260	A280	260/280	260/230	Ausbeute (ng/mg)	PCR-Erfolg
		•	Gr	uppe A			
			0	СТАВ			
Ec	129	2,58	1,87	1,38	0,43	38,70	✓
Ki	12,4	0,25	0,30	0,84	0,17	3,72	✓ (Pilz)
SDS (x% SDS)							
Ec 0,3%	308,4	6,17	5,43	1,14	0,40	92,52	\checkmark
Ki 0,3%	52,1	1,04	1,06	0,98	0,31	15,63	-
Ec 1%	515,5	10,31	9,56	1,08	0,33	154,65	\checkmark
Ki 1%	75,2	1,51	1,63	0,93	0,27	22,56	-
CTAB/SDS							
Ec pH 5,1	28,6	0,57	0,74	0,78	0,15	8,58	\checkmark
Ki pH 5,1	31,2	0,63	0,50	1,26	0,07	9,36	-
Ec pH 7,2	36,9	0,74	0,90	0,82	0,15	11,07	✓
Ki pH 7,2	24,1	0,48	0,61	0,78	0,10	7,23	-
PTB							
Ec	101,2	2,02	1,23	1,64	0,47	30,36	-
Ki	8,3	0,17	0,08	2,20	0,18	2,49	-
			Gr	uppe B			
	d	liv. kon	nmerzie	lle Extrak	tions-Kits		
Ec iSP	9,4	0,19	0,11	1,77	0,55	4,70	\checkmark
Ki iSP	4,2	0,08	0,05	1,76	0,21	2,10	-
Ec iSS	2,1	0,04	-0,03	-1,32	0,02	1,05	✓
Ki iSS	2,5	0,05	-0,04	-1,45	0,03	1,25	-
Ec iSSt	299,1	5,98	3,79	1,58	0,75	149,55	✓
Ki iSSt	12,4	0,25	0,21	1,16	0,19	6,20	-
Ec pGP	97,3	1,95	1,01	1,94	0,44	48,65	✓
Ki pGP	5,2	0,10	0,02	4,33	0,39	2,60	-
Ec NPP	70,7	1,42	0,39	3,64	0,32	35,35	\checkmark
Ki NPP	61,2	1,22	0,28	4,31	0,27	30,60	-
Ec NSS	87,3	1,75	1,27	1,38	0,55	43,65	✓
Ki NSS	4,0	0,08	0,08	1,02	0,42	2,00	-
Ec DNeasy	15,1	0,30	0,19	1,56	1,85	7,55	✓
Ki DNeasy	2,7	0,05	0,04	1,45	-1,18	1,35	-

Gruppe C							
DNeasy [®] Plant Mini Kit mit PVP							
Ec PVP	10,4	0,21	0,12	1,73	1,84	5,20	✓
Ki PVP	5,6	0,11	0,09	1,31	1,32	2,80	-
DNeasy [®] Plant Mini Kit mit CTAB							
Ec DN CTAB	68,8	1,38	1,03	1,34	0,53	34,40	✓
Ki DN CTAB	6,8	0,14	0,12	1,13	0,83	3,40	-
DNeasy [®] Plant Mini Kit mit PTB							
Ec DN PTB	158,1	3,16	2,06	1,53	0,72	79,05	\checkmark
Ki DN PTB	98,8	1,98	1,27	1,55	0,67	49,40	-
Modifiziertes <i>mericon</i> [™] Food Kit							
Ec Mm	108,0	2,16	1,27	1,70	1,30	54,00	\checkmark
Ki Mm	34,1	0,68	0,43	1,57	1,10	17,05	\checkmark

Für den PCR-Erfolg ist, neben dem Einsatz eines geeigneten Barcoding-Bereichs, weiterhin die Isolierung von inhibitorenfreier DNA maßgeblich (DNA-Qualität). Die häufigsten im Holz vorkommenden Inhibitoren sind phenolische Komponenten, Terpene, Polysaccharide und Proteine (Demeke und Adams 1992; Lee und Cooper 1995; Pandey et al. 1996). Bereits bei der Wahl des Ausgangsmaterials kann auf niedrige Inhibitorenbelastung geachtet werden. So liegen zwar im Kambium die höchsten DNA-Gehalte vor, doch verschiedene Untersuchungen berichteten auch, dass einige Arten (z.B. Populus tremula x P. tremuloides und Cunninghamia lanceolata) in diesem Bereich höhere Inhibitorenkonzentrationen als im Splint- oder Kernholz aufweisen (Fladung et al. 2004; Tang et al. 2011). Die PCR-Erfolge der in dieser Arbeit durchgeführten DNA-Extraktionsversuche zeigen eindeutig, dass in Anbetracht des Stammquerschnitts, das Splintholz den aussichtsreichsten Bereich für die DNA-Extraktion darstellt. Aus der Splintholzprobe Ec konnte unter Verwendung fast aller DNA-Extraktionsmethoden (außer der PTB-Methode, Tabelle 48) DNA in ausreichender Quantität und Qualität isoliert werden, um anschließend eine erfolgreiche durchzuführen. Zwar lassen die verschiedenen spektralphotometrischen PCR Messungen auf die Anwesenheit von Inhibitoren schließen (Tabelle 48), doch scheint deren Konzentration nicht ausreichend zu sein, um die PCR zu inhibieren. Zu einem vergleichbaren Ergebnis kamen auch Tang et al. (2011). Sie trafen die Aussage, dass das Splintholz als ein Bereich zu beurteilen ist, der es ermöglicht, DNA in ausreichender Quantität und Qualität zu extrahieren.

Proben Ec Ki die Anhand der und konnten unterschiedlichen DNA-Extraktionsmethoden, die in drei Gruppen eingeteilt wurden (Gruppe A, B und C), auf ihre Eignung für Holz verglichen werden. Die Ergebnisse der Gruppe A (CTAB-, SDS-, CTAB/SDS- und PTB-Extraktion; vgl. Punkt 3.1.1) aus Tabelle 48 zeigen deutlich, dass sich diese Gruppe am wenigstens für die verwendeten Hölzer eignet. Bis auf die PTB-Extraktion wurde zwar für Probe Ec ein 100% iger PCR-Erfolg erzielt (Tabelle 48), doch weisen die 260/280-Verhältnisse (CTAB = 1,38, SDS = 1,14 bzw. 1,08, CTAB/SDS = 0,78 bzw. 0,82; Tabelle 48), die für Holz bei 1,8-2,0 liegen sollten, ebenso wie der Verlauf der Absorptionskurven (Abbildung 5, Abbildung 6 und Abbildung 7), auf die Anwesenheit von Inhibitoren hin. Für Probe Ki war nur für die CTAB-Extraktion, und hier auch nur partiell, ein PCR-Erfolg zu verzeichnen. Dieser partielle Erfolg resultierte aus der Amplifikation von Pilz-DNA (Template: 1 µl, 0,5 µl und 1:10). Durch das Fehlen der Holzbande wird darauf geschlossen, dass die Lysis nicht ausreichte, um die Holz-DNA der Probe Ki in Lösung zu bringen. Die hier festgestellte eingeschränkte Eignung von CTAB zur DNA-Isolierung aus Holz, ist mit den Ergebnissen unterschiedlichster Studien vergleichbar (De Filippis und Magel 1998; Reynolds und Williams 2004; Asif und Cannon 2005; Tang et al. 2011; Tnah et al. 2012).

Die SDS-Extraktionen (0,3 bzw. 1%) wiesen zwar wesentlich höhere DNA-Ausbeuten als die CTAB-Extraktion (92,52 bzw. 154,65 ng/mg gegen 38,70 ng/mg für Ec, Tabelle 48) auf, doch war der PCR-Erfolg wesentlich geringer. Insgesamt konnte nur die 1:1000 Verdünnung der Probe Ec amplifiziert werden (Holz- und Pilz-DNA). Dies lässt wiederum auf eine hohe Inhibitorenkonzentration schließen. Ob es sich bei der inhibierenden Substanz um das verwendete SDS handelt, konnte nicht abschließend geklärt werden.

Für die bisher besprochenen Methoden führte die Verwendung des von Erickson et al. (2005) veröffentlichten PTB-Extraktionspuffers zu den besten 260/280-Verhältnissen (Ec: 1,64 und Ki: 2,20). Trotz der positiven Ergebnisse der spektralphotometrischen Analyse, ergab die Amplifikation der DNA-Eluate keinen PCR-Erfolg. Der nahezu lineare Verlauf der gemessenen Absorptionskurven (Abbildung 8) lässt den Schluss zu, dass die DNA-Eluate wiederum Inhibitoren aufwiesen.

In der Gruppe B wurden kommerzielle Extraktionskits zusammengefasst, die die Aufreinigung der DNA über Silikafilter realisieren (Tabelle 48). Diese DNA-Extraktionskits wurden untersucht, da verschiedene Studien, z.B. Jiao et al.

(2012) berichtet haben, dass durch die Verwendung von Silikafiltern eine Verminderung der Inhibitorenkonzentration erreicht werden kann. Die Ergebnisse der Versuche zeigen (vgl. Punkt 3.1.2), dass sich alle kommerziellen Kits für die DNA-Isolierung aus der Positivkontrolle Ec eignen. Die besten Ergebnisse für die DNA-Quantität erzielten das innuSPEED Stool DNA Kit (iSSt: 149,55 ng/mg) und das peqGOLD Plant DNA Mini Kit (pGP: 48,65 ng/mg). Im Hinblick auf die DNA-Qualität sind das innuSPEED Plant DNA Kit (iSP: 260/280 = 1,77) und wiederum das pGP Kit (260/280 = 1,94) als besonders geeignet hervorzuheben. Bezüglich des PCR-Erfolgs ist anzuführen, dass eine Amplifikation der Holz- und Pilz-DNA möglich war. Diese positiven Ergebnisse lassen sich leider nicht auf die Probe Ki übertragen. Für diese war in keinem Fall eine Amplifikation möglich. Dies lässt sich sowohl auf das Vorkommen von starken Inhibitoren, als auch auf eine geringe DNA-Ausbeute (1,25-6,20 ng/mg, ausgenommen das Nucleon[™] PhytoPure[™] Genomic DNA Extraction mit 30,60 ng/mg, Tabelle 48) zurückführen.

Beruhend auf der Tatsache, dass die Qualität der DNA-Eluate der Proben Ec und Ki durch die Verwendung von Silikafiltern gesteigert werden konnte (z.B. beim innuSPEED Plant DNA Kit im Vergleich mit der Gruppe A), wurden unter anderem verschiedene Lysis-Puffer der Gruppe A mit dem DNeasy[®] Plant Mini Kit kombiniert (vgl. Punkt 3.1.3 und Tabelle 48). Ziel der Versuche war, zu untersuchen, ob die Verwendung alternativer Lysis-Puffer die DNA-Ausbeute steigert. Als "Basis-Kit" wurde das DNeasy[®] Plant Mini Kit der Firma Qiagen gewählt, da bereits unterschiedliche Studien zur erfolgreichen Anwendung bei Holz vorliegen (Dumolin-Lapègue et al. 1999; Deguilloux et al. 2002; Rachmayanti et al. 2006; Yoshida et al. 2007; Hanssen et al. 2011). Bei der ersten Variation handelte es sich um die durch Rachmavanti et al. (2006) veröffentlichte Modifikation des DNeasy[®] Plant Mini Kits (Zusatz von PVP zum Lysis-Puffer; Punkt 3.1.3.1). Im Gegensatz zu dieser und weiteren Veröffentlichungen (Rachmayanti et al. 2009; Jiao et al. 2012), konnte durch die Verwendung des modifizierten Kits keine Amplifizierung der aus dem Kernholzgewebe gewonnenen DNA (Probe Ki) ermöglicht werden. Vergleicht man die entsprechenden Werte (260/280-Verhältnis für Ki = 1,45) der spektralphotometrischen Analyse mit den Werten einer klassischen DNeasy[®]-Extraktion (260/280-Verhältnis für Ki = 1,31), so wird deutlich, dass die erhaltenen Unterschiede vernachlässigbar sind (Tabelle 48). Sie sind in diesem Fall so gering, dass sie sich auch durch die unterschiedliche Qualität des Ausgangsmaterials erklären lassen. Eine weitere Variation

bestand in der Kombination des CTAB-Puffers mit dem DNeasy[®] Plant Mini Kit (vgl. Punkt 3.1.3.2). Für diese Variante konnte für den PCR-Erfolg keinerlei Veränderung gegenüber der CTAB-Extraktion bzw. der klassischen DNeasv[®]-Extraktion festgestellt DNeasv[®]-Kit der **PTB-Puffer** mit dem werden. Wurde jedoch (PTB/DNeasy[®]-Extraktion) verwendet (vgl. Punkt 3.1.3.3), so konnten hier deutliche Verbesserungen gegenüber der **PTB-Extraktion** bzw. der klassischen DNeasy[®]-Extraktion beobachtet werden. Die eindeutigste Verbesserung lag in der Steigerung des DNA-Gehalts. Genauer gesagt, stieg der DNA-Gehalt für Probe Ec von 101,2 (PTB-Extraktion) auf 158,1 ng/µl (PTB/DNeasy[®]-Extraktion) an. Für Probe Ki war sogar eine Steigerung von 8,3 auf 98,8 ng/µl zu verzeichnen. Wesentlich stärkere Steigerungen sind für die PTB/DNeasy[®]-Extraktion gegenüber der klassischen DNeasy[®] Plant Mini Extraktion anzuführen. Hier erhöht sich der DNA-Gehalt für die Proben Ec und Ki um das 10- bzw. 40-fache. Diese Verbesserung der DNA-Ausbeute lässt sich zum einen durch die bessere Zelllyse (bedingt durch die Verwendung von SDS) und zum anderen durch den Einsatz von PTB erklären. Die Verwendung von PTB ermöglicht in diesem Zusammenhang die Aufspaltung von Maillard-Produkten, wodurch die DNA wieder in reduzierter Form vorliegt (Poinar et al. 1998). Eine weitere PTB/DNeasy[®]-Extraktion Vergleich der mit Verbesserung, die beim der PTB-Extraktion deutlich wird, ist, dass nach dem Einsatz der PTB/DNeasy[®]-Extraktion alle Template-Varianten für Probe Ec amplifiziert werden konnten. Die Amplifikation der Probe Ki blieb wiederum erfolglos.

Zum Abschluss dieses Punkts, wird auf das DNeasy[®] mericon[™] Food Kit der Firma Qiagen eingegangen (vgl. Punkt 3.1.3.4). Es handelt sich hierbei um ein Kit, welches für die DNA-Isolierung aus bereits verarbeiteten Nahrungsmitteln entwickelt wurde. Um diese Aufgabe zu erfüllen, wurde eine klassische CTAB-Methode in nicht angegebener Weise verändert. Dieses Kit ist für den Einsatz bei Holz von besonderem Interesse, da es für die Extraktion von besonders stark fragmentierter DNA optimiert wurde (Qiagen 2014). Für die hier verwendeten Ausgangsmaterialen wurde das DNA-Extraktionsprotokoll, wie in Punkt 3.1.3.4 beschrieben, angepasst. Die Verwendung eines Filters nach der Lysis, welcher die Aufteilung von flüssigen und festen Bestandteilen ermöglichen sollte, erwies sich als äußerst vorteilhaft. Durch diesen Schritt konnte ein Großteil des Lysis-Puffers, der durch das Quellen des trockenen Ausgangsmaterials für die weitere DNA-Extraktion nicht mehr zur Verfügung gestanden hätte, zurückgewonnen werden. Diese Rückgewinnung ist deshalb

von besonderer Bedeutung, da der Lysis-Puffer die gelöste DNA bereithält. Somit führt die Rückgewinnung zu einer Erhöhung der DNA-Ausbeute. Die Anwendung des modifizierten mericonTM-Extraktionsprotokolls resultierte in DNA-Ausbeuten von 54,00 (Ec) und 17,05 ng/mg (Ki). Beurteilt man die erhaltenen 260/280-Verhältnisse, so zeigen diese mit 1,70 (Ec) und 1,57 (Ki) vergleichbar gute Werte für altes und getrocknetes Ausgangsmaterial. Für das 260/280-Verhältnis von frischem und getrocknetem Splint- und Kernholz von Cunninghamia lanceolata berichteten Jiao et al. (2012) Werte von 1,1-1,6. Ähnliche Werte wurden auch von de Filippis und Magel (1998) für die DNA-Extraktion aus frischem Splint- und Kernholz von Robinia pseudoacacia gemessen. Sie erhielten mit einer CTAB-Extraktion Reinheiten von 1,48-1,88. Wichtiger als die für die mericon[™]-Extraktion erhaltenen Reinheiten ist, neben der erfolgreichen Amplifikation der Probe Ec, der PCR-Erfolg für die Probe Ki. Im Anschluss an die modifizierte mericonTM-Isolierung konnte zum ersten Mal die Holz-DNA der Probe Ki amplifiziert werden. Aufgrund der erfolgreichen Amplifikation des gesamten ITS- bzw. ITS1-Bereichs steht mit der mericon[™]-Extraktion eine Methode zur Verfügung, die es ermöglicht, DNA aus lange gelagertem Kernholz in einer Qualität und Quantität zu isolieren, die zu einer erfolgreichen Amplifizierung beiträgt. Die Validierung der entwickelten DNA-Extraktionsmethode findet im Verlauf der Diskussion genauere Ausführung.

Die Ergebnisse der DNA-Extraktionsversuche sowie der durchgeführten Validierungen haben deutlich gezeigt, dass mit der modifizierten *mericon*TM-Extraktionsmethode ein DNA-Extraktionsprotokoll zur Verfügung steht, das es ermöglicht, DNA in ausreichender Qualität und Quantität aus Splint- und Kernholz zu isolieren.

4.2 Aufbau der rDNA ITS-Sequenzdatenbank

Für die Entwicklung des Schnelltests zur Identifizierung von CITES-Holzarten sowie deren Austauschhölzern war der Aufbau einer rDNA ITS-Sequenzdatenbank notwendig (vgl. Punkt 3.2). Dies war erforderlich, da für die Hölzer aus Tabelle 5 bisher nur wenige bis gar keine ITS-Sequenzinformationen in den internationalen Datenbanken, wie der GenBank des NCBI, hinterlegt waren. Die Wahl fiel auf die in Tabelle 5 wiedergegebenen Hölzer, da bei der Zusammenstellung der CITES-Hölzer sowie deren Substitutionsarten der Fokus darauf lag, dass diese nur schwer bis gar nicht mit den herkömmlichen Methoden (z.B. auf makroskopischer oder mikroskopischer Ebene) voneinander zu unterscheiden sind. Die Tatsache, dass in einigen Fällen die Differenzierung von CITES-geschützten Hölzern und deren Substitutionshölzern nicht realisierbar ist, macht den CITES-Vollzug nahezu unmöglich. Aber nicht nur die Unterscheidung von CITES- und Ersatz-Hölzern stellt Experten vor eine Herausforderung, sondern auch die Trennung von CITES-Hölzern untereinander. Die korrekte Bestimmung der Art und somit die Einteilung in den zugehörigen CITES-Anhang, hat großen Einfluss auf die rechtlichen Folgen. Eine Gattung die alle diese Punkte der CITES-Problematik erfüllt, ist *Dalbergia*. Sie beinhaltet sowohl CITES-geschützte Hölzer als auch Substitutionshölzer, die nur schwer mit herkömmlichen Methoden zu unterscheiden sind (Gasson 2011).

Eine Methode, die es ermöglicht, Hölzer bis auf Artebene zu bestimmen, ist das sogenannte DNA-Barcoding. Das Barcoding nutzt kurze Sequenzabschnitte bestimmter Gene oder intergenischer Bereiche, bei denen die Abfolge ihrer Basen wie ein Strichcode an der Kasse abgelesen wird. In dieser Arbeit wurde der ITS-Bereich als Marker gewählt, da dieser unter anderem die von Hollingsworth et al. (2009) angeführten Eigenschaften, die ein potenzieller Barcoding Locus aufweisen sollte, erfüllt. (1) Der ITS-Bereich weist konservierte Regionen auf, die eine routinemäßige Amplifizierung ermöglichen. (2) Der ITS1 und der ITS2 besitzen ausreichend Punktmutationen oder Indels, um die Identifizierung von Holzarten zu ermöglichen. (3) Die ITS1- bzw. ITS2-Region können getrennt voneinander amplifiziert werden, was den ITS-Bereich insoweit verkürzt, als dass auch eine Amplifizierung von stark degradiertem Material möglich ist. (4) Der ITS ist einfach zu alignen, wodurch die Verwendung von auf Zeichen basierenden Datenanalyseverfahren ermöglicht wird. Weitere Vorteile des ITS bestehen darin, dass die rDNA in jedem Gewebe des Baums zu finden ist und dass der ITS bis zu 30.000 Kopien auf dem Genom aufweist (Dubouzet und Shinoda 1999). Die hohe Kopienzahl des ITS ist besonders vorteilhaft, da in Fällen, in denen nur sehr wenig Ausgangsmaterial zur Verfügung steht oder die DNA bereits stark abgebaut ist, eine Amplifikation noch mit hoher Wahrscheinlichkeit möglich ist. Die Summe der angeführten Vorteile bzw. Eigenschaften veranlasste verschiedene Autoren den ITS-Bereich, als einen zusätzlichen oder eigenständigen Marker, für die Identifizierung von Landpflanzen vorzuschlagen (Chen et al. 2010; Gao et al. 2010; Pang et al. 2010; Yao et al. 2010; China Plant BOL Group et al. 2011; Li et al. 2012; Pang et al. 2012; Zhang et al. 2012). Trotz der bewiesenen Eignung des ITS als Pflanzenmarker wurde durch die PWG des CBOL im Jahr 2009 eine Kombination der Loci *mat*K und *rbcL* als "core" Barcode zur Identifizierung von Landpflanzen vorgeschlagen (CBOL Plant Working Group et al. 2009). Dies verdeutlicht die Uneinigkeit bei der Wahl eines Markers oder einer Markerkombination zur Landpflanzenidentifizierung. Es besteht aber nicht nur Uneinigkeit darüber, ob der ITS als zusätzlicher oder eigenständiger "core" Barcode Locus geeignet ist, sondern auch, ob der gesamte ITS oder nur ein Teilbereich (ITS1 oder ITS2) zum Einsatz kommen sollte. So wird zum Beispiel durch Chen et al. (2010), Gao et al. (2010), Pang et al. (2010), Yao et al. (2010) und Pang et al. (2012) der ITS2 als "core" Barcode Locus für Landpflanzen vorgeschlagen. Dem stehen die Ergebnisse von Müllner et al. (2011) gegenüber, die für die Unterscheidung der Meliaceae den ITS1 als geeigneter ansehen. Trotz der Vorteile des ITS1 kommen Müllner et al. (2011), wie auch andere Studien (China Plant BOL Group et al. 2011; Li et al. 2012; Zhang et al. 2012), zu dem Ergebnis, dass der gesamte ITS als zusätzlicher "core" Barcode Locus verwendet werden sollte.

Der ITS hat nicht nur bei der Unterscheidung von bekannten Arten großes Potenzial, sondern dieser Marker wurde auch unterstützend zur Entdeckung neuer Arten eingesetzt. So berichtete eine Studie von Yesson et al. (2004), dass die verschiedenen Individuen, die bisher zur Art *Trema micrantha* gezählt wurden, eigentlich zwei eigenständige Arten repräsentieren. Müllner et al. (2010) zeigten in ihrer Studie auf, dass sich mithilfe des ITS für *Cedrela odorata* drei biologische Arten wiedergeben lassen. Für die abschließende Klärung müssen hier aber noch weitere Untersuchungen durchgeführt werden. Ebenfalls in der Gattung *Cedrela* konnten durch den ITS die neuen Arten *C. nebulosa, C. molinensis, C. kuelapensis* und *C. monroensis* bestätigt werden (Pennington und Müllner 2010).

Für den Aufbau einer rDNA ITS-Sequenzdatenbank, welche zur Identifizierung von Hölzern beitragen soll, ist nicht nur die Wahl eines geeigneten Markers wichtig, sondern auch die Beschaffung von zuverlässig bestimmtem Ausgangsmaterial (vgl. Punkt 2.1.4.1). In dieser Arbeit wurden nationale sowie internationale Botanische Gärten mit der Bitte angeschrieben, Äste bzw. Blätter zur Verfügung zu stellen. Weiterhin wurden DNA-Eluate von verschiedenen Forschungseinrichtungen, wie der DNA Bank des Kew Royal Botanic Gardens, eingesetzt. Beim Ausgangsmaterial lag der Fokus auf Blättern und dünnen Ästen, da in diesen Materialien eine hohe Anzahl von lebenden Zellen zu finden ist. Der Vorteil von Probenmaterialien mit einer hohen Anzahl von lebenden Zellen erklärt sich dadurch, dass hiermit große DNA-Ausbeuten bei der DNA-Extraktion erzielt werden. Weiter lässt sich durch die Verwendung solchen Untersuchungsmaterials sicherstellen, dass aus diesem DNA von guter Qualität extrahiert wird. Neben der hohen Quantität und Qualität der DNA ist ein weiterer Vorteil, dass durch die Verwendung von DNA-Extraktionskits die DNA einfach und kostengünstig zu isolieren ist.

Betrachtet man die erhaltenen Proben, so wird deutlich, dass in den verschiedenen Botanischen Gärten häufig Material derselben Arten anzutreffen ist (Tabelle 6). Hieraus ergibt sich, dass z.B. für einzelne Arten der Meliaceae und Zygophyllaceae erheblich mehr Material zur Verfügung stand, als für andere Familien. Neben der Problematik, dass in den verschiedenen Botanischen Gärten dieselben Arten vertreten sind, kommt für den Aufbau einer Sequenzdatenbank erschwerend hinzu, dass vereinzelt Fehlbestimmungen vorliegen (siehe *Hymenaea courbaril* aus Punkt 3.2.3.1). Ein weiteres Problem bei der Wahl von Botanischen Gärten als Probenlieferant entsteht dadurch, dass teilweise nicht mehr nachzuvollziehen ist, ob die verschiedenen Individuen einer Art Klonmaterial von ein um demselben Baum darstellen. Trotz dieser Schwierigkeiten wurde hauptsächlich auf frische Blätter oder Äste zurückgegriffen, da bei der Verwendung von Splint- und Kernholz die bereits angesprochenen Schwierigkeiten auftreten.

Für die Verarbeitung der Proben aus Tabelle 6 kam das DNeasy[®] Plant Mini Kit zur Anwendung (vgl. Punkt 2.2.1.1). Bei diesem DNA-Extraktionskit handelt es sich um ein System, dass speziell für die DNA-Isolierung aus Pflanzenmaterialien angepasst wurde. Vorversuche (Daten nicht gezeigt) bestätigten die positive Eignung des Kits für die verwendeten Materialien. Mithilfe dieses Kits konnte aus allen Proben erfolgreich DNA extrahiert werden. Die gemessenen DNA-Gehalte lagen zwischen 5 und 220 ng/µl und waren von dem verwendeten Ausgangsmaterial abhängig (Äste = 20-220 ng/µl, Blätter = 20-40 ng/µl, Splintholz = 5-20 ng/µl).

Die angeführten DNA-Konzentrationen dürfen aber nicht nur auf die baumeigene DNA zurückgeführt werden, sondern auch die eventuell im Ausgangsmaterial befindlichen Pilze müssen Berücksichtigung finden (Butin 1995; Sinclair und Lyon 2005). Dies sind in den meisten Fällen parasitäre Pilze, die hauptsächlich den Basidiomyceten und Ascomyceten zugeordnet werden können. Einige bekannte Arten parasitärer Ascomyceten (z. B. *Microsphaera alphitoides*, Erysiphaceae) werden unter der Bezeichnung "Echter Mehltau" geführt (Pap et al. 2013). Die Basidiomyceten enthalten mit der Gattung *Armillaria* eine Gruppe holzzerstörender Pilze mit großer

wirtschaftlicher Bedeutung. Bei einem Großteil der Arten dieser Gattung handelt es sich zwar um Saprobionten, jedoch treten einige Arten, wie z.B. *A. mellea* und *A. osotyae*, auch als Primärparasiten auf (Schmidt 2006). Durch die Verwendung von pilzspezifischen Primern wurden nahezu in allen verwendeten Proben Pilze nachgewiesen (Daten nicht gezeigt).

Wie bereits angeführt, weist der ITS-Bereich codierende Regionen auf, welche es ermöglichen, Pflanzen-DNA durch allgemeine Primer zu amplifizieren (vgl. Punkt 2.2.3.3). Unglücklicherweise kann es bei der Verwendung solch allgemeiner Primer zu einer ungewollten Vervielfältigung von Pilz-DNA kommen (Zhang et al. 1997; Hollingsworth 2011). Diese Tatsache war ebenfalls in der vorliegenden Arbeit zu beobachten. Im Genaueren trat das Phänomen bei der Verwendung der Primerkombination ITS1.1/ITS4 auf (White et al. 1990; Hanssen et al. 2011). Eine Lösung dieses Problems ist, Primer zu verwenden, die eine hohe Spezifität aufweisen (Gardes und Bruns 1993; Zhang et al. 1997; Takamatsu und Kano 2001; Kendall und Rygiewicz 2005). Zwei Primerkombinationen, die diese hohe Spezifität aufweisen, sind ITS1.1/ITS2.1 und ITS3.1/ITS4 (vgl. Punkt 2.2.3.3; (White et al. 1990; Hanssen et al. 2011)). Der Einsatz dieser Primerpaare ergab für alle Proben eine spezifische Amplifikation der Holz-DNA. Diese Spezifität wird dadurch ermöglicht, dass für die Primer ITS2.1 und ITS3.1 Sequenzabschnitte im 5.8S gewählt wurden, die eine Differenzierung von Pflanzen und Pilzen gewähren (Hanssen et al. 2011).

Die "holzspezifischen" Primer wurden für jede untersuchte Probe ohne weitere Anpassung eingesetzt und ermöglichten beim Aufbau der rDNA ITS-Sequenzdatenbank einen 100%igen PCR-Erfolg. Somit ist der in anderen Studien berichtete geringe PCR-Erfolg bei der Verwendung des ITS hier nicht nachzuvollziehen (Kress et al. 2005; Kress und Erickson 2007; Gonzalez et al. 2009; Chen et al. 2010).

4.2.1 ITS-Sequenzen der Meliaceae

Innerhalb der Meliaceae wurde der ITS für die handelsrelevantesten Arten der Gattungen *Swietenia*, *Entandrophragma*, *Khaya*, *Carapa*, *Cedrela* und *Toona* erarbeitet (vgl. Punkt 3.2.1.3). Besonderes Augenmerk wurde somit auf die CITES-geschützten Holzarten und deren Substitutionshölzer gelegt (Tabelle 5). Die Untersuchungen fanden anhand von 70 Individuen statt. Eine Studie die die Eignung des ITS zur Unterscheidung der Meliaceae propagiert, wurde von Müllner et al. (2011) veröffentlicht. Die Autoren untersuchten diverse Barcoding Loci (*trn*S-G, *rpo*C1,

*psb*B-T-N, *rpo*B, *acc*D und ITS) auf ihre Eignung zur Unterscheidung verschiedener Arten der Meliaceae. Ihr Hauptaugenmerk lag dabei auf den Gattungen *Cedrela* und *Toona*. Sie kamen zu dem Ergebnis, dass der ITS die beste Eignung für diese Aufgabe aufweist.

Die für die Meliaceae erarbeiteten Sequenzen des ITS ergeben beim Abgleich mit der GenBank des NCBI große Übereinstimmungen mit dort hinterlegten ITS-Sequenzinformationen entsprechender Arten. Dies bezieht sich sowohl auf deren Länge, als auch auf deren Basenabfolge (Müllner et al. 2010; Garcia et al. 2011; Müllner et al. 2011; Duminil et al. 2012; Cavers et al. 2013; Tripathi et al. 2013). Bezüglich der ermittelten Länge des 5.8S von 162 bp (Tabelle 33) ergibt sich für die Meliaceae sowie für alle anderen Familien, dass dieser eine Größe aufweist, die auch in anderen Studien berichtet wurde (Hershkovitz und Lewis 1996; Gernandt und Liston 1999; Liu et al. 2009; Hanssen et al. 2011; Hribova et al. 2011; Hynniewta et al. 2014). Beim Vergleich der ITS-Sequenzen mit der Sequenzdatenbank GenBank wurde zusätzlich deutlich, dass dies nicht für alle Gattungen bzw. Arten möglich war. Betrachtet man die Gattung Swietenia, so lagen für S. humilis keine ITS-Sequenzen vor. Für S. macrophylla und S. mahagoni waren lediglich fünf bzw. zwei Sequenzen des ITS in der Sequenzdatenbank hinterlegt. Vergleichbar gering war der ITS auch für die Gattungen Entandrophragma und Khaya vertreten. Insgesamt lag nur für zwei bzw. drei Individuen eine ITS-Sequenz vor. Im Gegensatz dazu standen für die Gattungen Carapa, Cedrela und Toona, 37, 137 bzw. 26 Sequenzen des ITS zur Verfügung. Die ungleiche Verteilung der in der GenBank hinterlegten ITS-Sequenzen verdeutlicht die Notwendigkeit des Aufbaus einer internen rDNA ITS-Sequenzdatenbank. Zusätzlich zum Aufbau der internen Datenbank muss ebenfalls der Aufbau der zentralen Sequenzdatenbanken (z. B. die GenBank) stetig vorangetrieben werden. Nur durch die Bereitstellung umfangreicher Datenbanken ist die Barcoding-Identifizierung von geschützten und ungeschützten Tier- und Pflanzenarten möglich.

Die aufgezeigten Sequenzunterschiede des ITS zeigen deutlich, dass sich dieser zur Unterscheidung der verschiedenen Gattungen oder Arten der Meliaceae eignet. Die errechneten interspezifischen Unterschiede liegen in den meisten Fällen über den intraspezifischen (Abbildung 19). Während die intraspezifischen Unterschiede für *C. odorata* und *C. fissilis* bei max. 0,7 bzw. 1,3% liegen, weisen diese Arten interspezifische Unterschiede von 3,2-4,1% auf. Noch deutlicher werden die interspezifischen Unterschiede im Vergleich mit anderen Gattungen. Zur Gattung

Swietenia zeigt *Cedrela* Unterschiede in Höhe von 13,2-14,9%. Zusammenfassend ist anzuführen, dass sich für die untersuchten Vertreter der Meliaceae die intraspezifischen Unterschiede auf einem Niveau von 0-1,9% bewegen. Demgegenüber stehen interspezifische Unterschiede innerhalb einer Gattung von 0,6-6,7%. Erweitert man die Betrachtung der interspezifischen Unterschiede auf die Gattungsebene, so ergeben sich Werte von 4,0-15,5%.

Sowohl die interspezifischen Unterschiede zwischen den Arten oder Gattungen, als auch die intraspezifischen Unterschiede, gehen größtenteils auf Sequenzunterschiede innerhalb der variablen Bereiche ITS1 bzw. ITS2 zurück. Im Alignment aus Abbildung 18, in dem alle 70 Individuen der Meliaceae abgebildet sind, wird deutlich, dass im codierenden 5.8S lediglich sechs Positionen (von 162) vorhanden sind, an denen wenigstens eine der Sequenzen eine Abweichung in der Basenabfolge zeigt.

Für die Unterscheidung von S. humilis und S. macrophylla ist der ITS nicht geeignet. Für diese beiden Arten liegen die intra- und interspezifischen Unterschiede auf demselben Niveau von max. 1%. Zu vergleichbaren Ergebnissen kamen auch Höltken et al. (2012). Die Autoren untersuchten in ihrer Studie 17 non-coding Regionen der cpDNA, anhand derer verschiedene Vertreter der Meliaceae unterschieden werden sollten. Eines ihrer Ergebnisse war, dass sich keiner der Loci dazu eignete, S. macrophylla und S. humilis zu unterscheiden. Aufgrund der Gesamtheit der Ergebnisse (vorliegende Arbeit und Höltken et al. 2012) ist für diese Arten von einem Status auszugehen. ungeklärten taxonomischen Ebenfalls einen ungeklärten taxonomischen Status weist die Art C. odorata auf. Müllner et al. veröffentlichten im Jahr 2010 Ergebnisse zur Biogeographie von Cedrela in Mittel- und Südamerika. Teil der Resultate war, dass sich hinter C. odorata drei biologische Arten verbergen. Die in der vorliegenden Arbeit erhaltenen ITS-Sequenzen entsprechen alle dem Typ, der von Müllner et al. (2010) der zentralamerikanischen Art zugeordnet und in der Studie als C. odorata s.s. bezeichnet wurde.

Bezüglich der Verwendung des ITS als Marker zur Art-Identifizierung, stellen sich die intraspezifischen Unterschiede als problematisch dar (Ko und Jung 2002; Schmidt und Moreth 2002). Neben diesen intraspezifischen Unterschieden wurde in verschiedenen Untersuchungen auch von intraindividuellen Unterschieden berichtet (Álvarez und Wendel 2003; Campbell et al. 2005; Hanssen et al. 2011), die ebenfalls als Problem angesehen werden können. Diesen Aussagen entgegen stehen die Ergebnisse dieser Arbeit sowie eine Aussage von Hollingsworth (2011), der anführt, dass trotz der

Diskussion

verschiedenen Kopien des ITS stets ein Hauptklon zur Verfügung steht, welcher eine Identifizierung ermöglicht. Zur Untersuchung der Bedeutung der verschiedenen ITS-Kopien wurden die ITS-Regionen der Proben 175 (*Swietenia mahagoni*), 225 (*S. macrophylla*), 226 (*S. macrophylla*) und 235 (*S. humilis*) kloniert (vgl. Punkt 3.2.1.4). Die Klonierung ergab für Probe 175 sechs weitere ITS-Varianten, für Probe 226 fünf weitere ITS-Varianten und für Probe 235 vier weitere ITS-Varianten. Die verschiedenen Varianten weisen intraindividuelle Unterschiede von max. 0,96% auf. Keine der weiteren ITS-Kopien zeigte eine Sequenz, anhand der eine Identifizierung der untersuchten Art nicht möglich gewesen wäre. Neben der Erarbeitung der intraindividuellen Unterschiede erbrachte die Klonierung noch Erkenntnisse zur Differenzierung von *S. macrophylla* und *S. humilis*. Die Arten teilen sich nicht nur denselben Hauptklon, sondern die Klonierung zeigte zusätzlich, dass Varianten des ITS einer Art auch jeweils bei der anderen Art zu finden sind (Tabelle 34).

Aufgrund der erhaltenen Resultate für *S. humilis* und *S. macrophylla* ist für die Gattung *Swietenia* darüber nachzudenken, ob bezüglich dessen taxonomischen Status weitere Untersuchungen durchgeführt werden müssen oder ob der ITS bzw. die von Höltken et al. (2012) gewählten Marker nicht zur Unterscheidung der beiden Arten ausreichen.

4.2.2 Beurteilung der ITS-Sequenzen der Zygophyllaceae und der Bignoniaceae

Innerhalb der Zygophyllaceae bzw. der Bignoniaceae wurden verschiedene Arten der Gattungen *Guaiacum* (CITES II), *Bulnesia* und *Handroanthus* bearbeitet (vgl. Punkt 3.2.2). Die erarbeiteten ITS-Sequenzen wiesen beim Vergleich mit der GenBank große Übereinstimmungen in Länge und Aufbau zu dort hinterlegten ITS-Sequenzen derselben Gattung oder Art auf (Lia et al. 2001; Simpson et al. 2004; Collevatti et al. 2012; Laport et al. 2012; Tripathi et al. 2013). Zum Zeitpunkt der Probenbearbeitung standen für die entsprechenden Gattungen nur wenige bis gar keine Sequenzen in der Genbank des NCBI zur Verfügung. Für die Gattung *Bulnesia* war nur eine und für *H. chrysanthus* keine Sequenz hinterlegt. Lediglich für *H. impetiginosus* (280 ITS-Sequenzen) und für die Gattung *Guaiacum* (28 ITS-Sequenzen) war kurz nach Abschluss der eigenen Untersuchungen ein großer Pool an Vergleichssequenzen zugänglich. Die insgesamt vier Consensus-Sequenzen von *G. sanctum* und *G. officinale* wurden anhand der seit September bzw. November 2013 in der GenBank abgelegten ITS-Sequenzen überprüft (vgl. Punkt 3.2.2). Eine Consensus-Sequenz fasst

vergleichbare ITS-Sequenzen verschiedener Individuen einer Art zusammen. Die erste ITS-Version von G. sanctum, Cons.1 (Proben 173, 231, 232, 233, 455 und 469), zeigt Übereinstimmungen mit den GenBank-Sequenzen folgender Accession-Nummern: JX486718.1 und JX486719.1. Cons.2 (Probe 162) gibt die zweite ITS-Version von G. sanctum wieder und stimmt mit den GenBank-Sequenzen JX486713.1 und JX486714.1 überein. Vergleicht man Cons.3 (G. officinale, Proben 94, 101, 117, 119, 163, 167, 508, 510, 514 und 603) mit der GenBank, so zeigt diese Homologien zu den Sequenzen der Nummern JX901015.1-JX901021 und JX901023.1. Abschließend ist noch Cons.4 (Proben 156, 377, 604 und 605), die die zweite Version von G. officinale wiedergibt, zu erwähnen. Diese weist Übereinstimmungen mit den Sequenzen JX901022.1, JX901024.1 und JX901025.1 auf. Diese Homologien der verschiedenen ITS-Versionen mit den GenBank-Sequenzen bestätigen die Existenz von jeweils zwei ITS-Versionen für G. sanctum und G. officinale. Ob es sich bei den jeweiligen ITS-Versionen einer Art um herkunftsbedingte Sequenzunterschiede handelt, konnte nicht nachvollzogen werden. Für das Probenmaterial aus den Botanischen Gärten war eine Ermittlung der Ursprungsherkunft nicht möglich und für die ITS-Sequenzen der GenBank gab es keine Auskunft über deren mögliche Herkunft.

Trotz der Erarbeitung von je zwei ITS-Versionen für *G. sanctum* und *G. officinale*, welche sich zu 1,5 bzw. 2,3% unterscheiden, ist die Differenzierung der beiden Arten durch die größeren interspezifischen Unterschiede (5,3-6,3%) möglich. Hinsichtlich der Unterscheidung der Gattungen *Guaiacum* und *Bulnesia*, zeigen die errechneten interspezifischen Unterschiede von 12,5-13,3% deutlich, dass der ITS eine Differenzierung dieser beiden Gattungen sicherstellt. Noch deutlicher werden die Sequenzunterschiede beim Vergleich der Individuen der Zygophyllaceae und der Bignoniaceae. So weisen die Gattungen *Guaiacum* und *Handroanthus* Unterschiede von 28,4-29,3% (*Handroanthus* und *Bulnesia* = 28,2-28,4%) auf. Insgesamt verdeutlichen die berechneten Werte, dass mit einem sinkenden Verwandtschaftsgrad, die Sequenzunterschiede der untersuchten Proben größer werden. So steigen für diese Proben die Unterschiede auf Artebene von 5,3-6,3%, auf 28,2-29,3% auf Familienebene an. Diese Tatsache ermöglicht eine klare Differenzierung der CITES-geschützten Hölzer der Gattung *Guaiacum* gegenüber den Substitutionshölzern der Gattungen *Bulnesia* und *Handroanthus*.

4.2.3 Die ITS-Sequenzen der Fabaceae

Die Fabaceae bilden eine der artenreichsten Pflanzenfamilien. Neben der großen Bedeutung für die Nahrungsmittelindustrie, hat auch der Holzhandel ein starkes Interesse an verschiedenen Vertretern dieser Familie (z.B. *Acacia, Robinia, Dalbergia, Hymenaea* und *Intsia*). Insgesamt wurden 73 Individuen, die sich auf neun Gattungen der Unterfamilien Faboideae und Caesalpinioideae verteilen, untersucht (vgl. 3.2.3). Die Diskussion der Ergebnisse erfolgt anhand der einzelnen CITES-Hölzer in Kombination mit deren Substitutionsarten (Tabelle 5).

Für die untersuchten Individuen der Gattung Intsia (CITES-Schutz beantragt) und deren Austauschhölzer war ein Abgleich der Ergebnisse nur schwer möglich (vgl. Punkt 3.2.3.1). So standen für die Gattungen Intsia und Afzelia keinerlei ITS-Sequenzen innerhalb der GenBank des NCBI zur Verfügung. Lediglich für Hymenaea courbaril waren zwei ITS-Sequenzen in der Sequenzdatenbank GenBank hinterlegt (GenBank-Nr. FJ009817.1 (Conceicao et al. 2009) und AY955800.1 (Fougere-Danezan et al. 2007)). Der Vergleich der erstellten ITS-Sequenzen von H. courbaril (Proben 86, 170, 201-203, 438 und 515) mit den ITS-Sequenzen FJ009817.1 und AY955800.1, zeigte überwiegend klare Übereinstimmungen in Länge und Basenabfolge (98-99% Homologie). Lediglich die geringe Homologie (86-92%) der Proben 86 und 170 lässt die Überlegung zu, dass dies nicht Individuen der Art H. courbaril sind. Wahrscheinlicher ist, dass es sich bei diesen Individuen um eine andere Art der Gattung Hymenaea handelt. Die Homologien zu weiteren Vertretern des Tribus Detarieae erreichten Werte von 79-85% (Guibourtia, Microberlinia, Eurypetalum und Peltogyne). Trotz der aufgetretenen Unsicherheiten hinsichtlich der wahrscheinlich falsch bestimmten Individuen von H. courbaril wird deutlich, dass die ermittelten interspezifischen Unterschiede eindeutig ausreichen, um die verschiedenen Arten dieser Gruppe voneinander zu unterscheiden. So zeigen I. palembanica und I. bijuga interspezifische Unterschiede von 2,7-3,3%, während die Unterschiede zu den Gattungen Hymenaea und Afzelia sogar ~17,5 bzw. ~11% betragen.

Eine weitere Gruppe innerhalb der Fabaceae wurde durch die Gattung *Dalbergia* und *Machaerium scleroxylon* gebildet (vgl. Punkt 3.2.3.2). Zum Zeitpunkt der durchgeführten Untersuchungen waren in der GenBank des NCBI 66 bzw. 18 ITS-Sequenzen hinterlegt (Lavin et al. 2000; Ribeiro et al. 2007; Lage Novaes et al. 2013; Tripathi et al. 2013). Vergleicht man die ITS-Sequenzen dieser Arbeit mit denen der GenBank, so wird für Probe 142 (*D. miscolobium*) deutlich, dass diese zu den 30

GenBank-Sequenzen von *D. miscolobium* eine maximale Homologie von 90% aufweist. Die höchste Übereinstimmung (99%) zeigt Probe 142 zu *D. melanoxylon*. Diese hohe Homologie zwischen den Sequenzen von *D. miscolobium* und *D. melanoxylon* ist auch in der internen Datenbank zu beobachten (vgl. Probe 142 mit Probe 378). Es ist daher davon auszugehen, dass es sich bei Probe 142 um *D. melanoxylon* handelt. Beurteilt man die Eignung des ITS, die einzelnen Arten der hier untersuchten Gattungen (*Dalbergia* und *Machaerium*) zu unterscheiden, so ergibt sich, dass der ITS dafür klar geeignet ist. So liegen z.B. für *Dalbergia* die intraspezifischen Werte von max. 1,2% deutlich unter den interspezifischen Unterschieden dieser Gattung (6,1-11,5%).

Auch die Ergebnisse für die Gattung *Caesalpinia* und *Myrocarpus frondosus* indizieren, dass die Sequenzunterschiede der ITS-Bereiche ausreichen, um zwischen den verschiedenen Arten zu differenzieren (vgl. Punkt 3.2.3.3). Für die untersuchten Individuen bzw. Arten wurden minimale intraspezifische Unterschiede (0,4%) ermittelt, denen interspezifische Unterschiede von 11,4-23,9% gegenüberstehen. Ein Vergleich der Sequenzen mit den ITS-Sequenzen der GenBank des NCBI, war nur auf Gattungsebene und das auch nur für *Caesalpinia* möglich. Resultat war, dass die hinterlegten Sequenzen in ihrer Länge und deren Basenabfolge (Homologie 83-86%) vergleichbar mit denen der eigenen Datenbank sind (Simpson et al. 2006; Chen et al. 2010; Tripathi et al. 2013).

Innerhalb der *Pterocarpus*-Gruppe wurden *P. santalinus* (CITES Anhang II) und die Austauschhölzer *P. indicus*, *P. soyauxii* sowie *P. macrocarpus* untersucht (vgl. Punkt 3.2.3.4). Diese Gruppe ist die einzige, in der nicht alle Individuen erfolgreich sequenziert werden konnten. Es trat zwar ein 100%iger PCR-Erfolg auf, jedoch schlug die Sequenzierung des ITS1 für beide Individuen von *P. soyauxii* (378 und 379) fehl. Für die verbleibenden Proben der Gattung *Pterocarpus* wurde der komplette ITS-Bereich erarbeitet. Von Schwierigkeiten bei der Verwendung des ITS1 wurde ebenfalls in anderen Studien berichtet (Kress und Erickson 2007; Chen et al. 2010). Diese Studien beschreiben jedoch einen geringen PCR-Erfolg, welcher aber in diesem Fall nicht vorlag. Bei dem verwendeten Ausgangsmaterial für die Proben 378 und 379 handelte es sich um DNA-Eluate, die von Kew Gardens zur Verfügung gestellt wurden. Laut Begleitinformation wurde darauf hingewiesen, dass die DNA dieser Proben bereits stark degradiert war. Es ist zu verneinen, dass dies einen Einfluss auf die Sequenzierung hatte. Zum einen konnte der ITS2, der ca. 30 bp länger ist als der ITS1, sauber sequenziert werden und zum anderen waren weitere Proben von Kew Gardens

(*P. santalinus* = 636 und 637; *P. indicus* = 640-642) ebenfalls stark degradiert, ließen sich aber trotzdem zuverlässig bearbeiten.

Ein Vergleich der ITS-Sequenzen von Pterocarpus mit den ITS-Sequenzen der GenBank des NCBI war überwiegend nur für den ITS2-Bereich möglich. Zwar lagen für Pterocarpus 79 ITS-Sequenzen in der GenBank vor, jedoch betrafen 75 dieser Sequenzen nur den ITS2-Bereich. Hinterlegt wurden diese Sequenzen im Rahmen einer phylogenetischen Studie, für die der ITS2 eine gute Eignung aufweist (Lavin et al. 2001; Ribeiro et al. 2007; Saslis-Lagoudakis et al. 2008; Pirie et al. 2009; Saslis-Lagoudakis et al. 2011). Der Vergleich der ITS-Sequenzen ergab für nahezu alle Individuen eine Homologie von 99-100% (Lavin et al. 2001; Ribeiro et al. 2007; Saslis-Lagoudakis et al. 2011; Klitgard et al. 2013). Wie schon bei den anderen Vertretern der Fabaceae nachgewiesen wurde, ist auch bei den Pterocarpus-Arten eine Differenzierung auf Basis des ITS durchführbar. So stehen 3,1-6,4% interspezifische Unterschiede gegen max. 0,5% intraspezifische Unterschiede. Lediglich die eng verwandten Arten P. indicus und P. macrocarpus, die nur sehr schwer anhand von morphologischen Merkmalen voneinander zu unterscheiden sind (Francis 2002), können mittels des ITS nicht differenziert werden. Hier liegen die Unterschiede bei 0,8%. Ein vergleichbares Ergebnis ist auch unter Berücksichtigung der GenBank-Sequenzen von P. indicus (AF269177.1, JN083482.1, JN083481.1 und JN083480.1) und P. macrocarpus (AF269176.1 und JN083487.1) zu beobachten. Bis auf AF269176.1 (ITS-Bereich von P. macrocarpus) repräsentieren diese angeführten GenBank-Sequenzen den ITS2-Bereich, welcher keine Differenzierung der beiden Arten ermöglicht. Beim Vergleich der ITS-Sequenzen von Probe 462 (P. macrocarpus) und AF269176.1 (ITS-Bereich von P. macrocarpus) wird deutlich, dass diese zu 8,8% voneinander abweichen. Diese Unterschiede (in der Hauptsache ein Indel von 25 bp) liegen nahezu ausschließlich im ITS1 und würden eine Differenzierung von P. macrocarpus und P. indicus zulassen. Eine Klärung der Frage, welcher ITS von P. macrocarpus, der selbst erarbeitete oder der in der GenBank hinterlegte, die Art repräsentiert, war nicht möglich. Eine wiederholte DNA-Extraktion sowie Sequenzierung von P. macrocarpus (Probe 462, Frischmaterial aus Botanischem Garten), bestätigte die erarbeitete ITS-Sequenz. Ob sich der ITS zur Differenzierung von P. indicus und P. macrocarpus eignet, muss in weiteren Untersuchungen herausgearbeitet werden.

Für das CITES geschützte Holz Dipteryx panamensis und dessen Substitutionsholz

Dipteryx odorata stand kein Untersuchungsmaterial zur Verfügung (vgl. Punkt 3.2.3.5). Lediglich das Austauschholz *Bowdichia nitida* konnte anhand einer Probe untersucht werden. Die erarbeitete ITS-Sequenz wies laut GenBank des NCBI eine 99-100%ige Homologie zu dort hinterlegten ITS-Sequenzen von *B. nitida* auf. Allerdings bestand ebenfalls eine 99%ige Homologie zu ITS-Sequenzen von *B. virgilioides* (Edwards und Hawkins 2007; Cardoso et al. 2012). Aufgrund der vorliegenden Daten ist nicht nachzuvollziehen, ob der ITS für eine Unterscheidung dieser beiden Arten ungeeignet ist oder ob es sich um ein und dieselbe Art handelt.

4.2.4 Ramin und dessen Austauschhölzer

der voranschreitenden In Anbetracht des starken illegalen Handels und Lebensraumzerstörung ist die Gattung Gonystylus (Ramin, Thymelaeaceae) seit dem Jahr 2005 durch den CITES Anhang II geschützt. Diese Gattung und die Substitutionshölzer der Gattungen Endospermum (Euphorbiaceae), Neolamarckia (Rubiaceae) und Terminalia (Combretaceae) bilden eine weitere Gruppe beim Aufbau einer internen rDNA ITS-Sequenzdatenbank (vgl. Punkt 3.2.5). Die Ramin-Gruppe war nicht nur in Bezug auf die verschiedenen Familien sehr abwechslungsreich, sondern auch für das Ausgangsmaterial war eine große Vielfalt zu verzeichnen. Neben Blättern, Ästen und DNA, stand in dieser Gruppe auch länger gelagertes Splintholz zur Verfügung (Tabelle 6). Durch die Verwendung der entwickelten DNA-Extraktionsmethode (vgl. Punkt 3.1.3.4) konnte aus diesem älteren Splintholzmaterial erfolgreich DNA extrahiert werden. Die Amplifizierung der ITS-Teilbereiche erfolgte für die Splintholzproben mit dem KAPA2G[™] Robust Hot Start PCR Kit (vgl. Punkt 2.2.3.2). Die Kombination der entwickelten DNA-Isolierung mit dem KAPA2GTM Robust Hot Start PCR Kit ermöglichte einen 100%igen PCR-Erfolg. Ein vergleichbares Ergebnis hinsichtlich eines 100%igen PCR-Erfolgs bei der Verwendung von altem Splintholz als Ausgangsmaterial erzielten auch Tnah et al. (2012). In ihren Untersuchungen zum PCR-Erfolg von nukleärer und plastidärer DNA unterschiedlichen Alters, wies nach einer einjährigen Lagerung des Holzes nur noch die nukleäre DNA des Splintholzes einen 100%igen PCR-Erfolg auf.

Wie zu erwarten, wurden für den ITS starke interspezifische Unterschiede (~25,5-35%) zwischen den verschiedenen Familien errechnet. Aber auch innerhalb einer Familie bzw. der Gattungen *Gonystylus* und *Terminalia* weisen die ITS-Sequenzen ausreichend interspezifische Unterschiede auf (1,4-9,2%), um eine Identifizierung zu ermöglichen.

Der Vergleich der erhaltenen Sequenzen mit den ITS-Sequenzen der GenBank des NCBI konnte nur für N. cadamba (vier Sequenzen in der GenBank) sowie für die Gattung Terminalia (56 Sequenzen in der GenBank) vorgenommen werden. Für die ITS-Sequenz von N. cadamba (Probe 635) wurde eine 97%ige Homologie zu Sequenzen derselben Art errechnet (Razafimandimbison und Bremer 2002; Tripathi et al. 2013; Lofstrand et al. 2014). Für die Gattung Terminalia lagen die Homologien bei \leq 99% (Chen et al. 2010; Maurin et al. 2010; Tripathi et al. 2013). In Hinblick auf die identischen Sequenzen von T. avicennioides und T. glaucescens erbrachte auch der Vergleich mit der GenBank des NCBI keine neuen Erkenntnisse. Es müssen daher noch weitere Untersuchungen folgen, um festzustellen, ob es sich bei einer Probe um eine Fehlbestimmung handelt oder ob der ITS nicht ausreicht, um diese Arten zu unterscheiden. Weitere Untersuchungen sind auch in der Gattung Gonystylus notwendig. Für diese Gattung wurden bei dem eingesetzten Splintholzmaterial zwei verschiedene Arten (Art1 und Art2, vgl. Punkt 3.2.5) herausgearbeitet. Es war aber lediglich für Art1 möglich, diese genauer als Gonystylus bancanus zu bestimmen. Art2 konnte zwar eindeutig als Vertreter der Gattung Gonystylus identifiziert werden, doch aufgrund fehlender Vergleichssequenzen war eine weiterführende Bestimmung nicht möglich. Die mikroskopischen Untersuchungen der Splintholzproben erbrachten ebenfalls keine genaueren Ergebnisse, da für Ramin mit dieser Methode nur eine Bestimmung bis auf Gattungsebene möglich ist (Gasson 2011). Zwar wurde für Art2 durch die mikroskopischen Untersuchungen bestätigt, dass es sich hierbei um die Gattung Gonystylus handelt, doch für den weiteren Aufbau der internen ITS-Sequenzdatenbank ist die genaue Identifizierung der Art unabdingbar.

In der vorliegenden Arbeit wurde eine interne rDNA ITS-Sequenzdatenbank aufgebaut, die 211 Individuen, aufgeteilt auf 53 Arten, 23 Gattungen und 9 Familien, beinhaltet. Der Einsatz der "holzspezifischen" Primer erwies sich in diesem Zusammenhang als besonders vorteilhaft, da hierdurch die Amplifikation von Pilz-DNA vermieden werden konnte. Es besteht somit eine Methode, die es ermöglicht, den Aufbau einer rDNA ITS-Sequenzdatenbank schnell und kostengünstig zu realisieren. Die für den ITS erhaltenen Ergebnisse, in Bezug dessen Einsatz zur Unterscheidung von CITES-geschützten Holzarten und deren Substitutionshölzern, zeigen deutlich, dass sich dieser hierfür besonders eignet. Unter Verwendung der variablen Bereiche ITS1 und ITS2 wird eine Identifizierung bis auf Artebene ermöglicht.

4.3 Entwicklung und Verwendung spezifischer Primer

Für eine schnelle sowie kostengünstige Identifizierung von CITES-geschützten Holzarten und deren Substitutionshölzern wurden in dieser Arbeit spezifische Primer gewählt (vgl. Punkt 3.3). Spezifische Primer, auch Taxonprimer genannt, sind Oligonukleotide, die nur in Anwesenheit der DNA ihrer Zielart eine Amplifikation ermöglichen. So ist es bereits nach der Gelelektrophorese möglich, eine Aussage darüber zu treffen, ob es sich um die vermutete Art handelt. Die Identifizierung einer Probe erfolgt über die Anwesenheit eines Amplicons, das weiterhin eine definierte Länge aufweisen muss (Wallinger et al. 2012). Die Tatsache, dass für ein spezifisches Amplicon eine definierte Länge existiert, stellt eine weitere Absicherung der zu erhaltenen Information dar. Sollte ein Primerpaar doch einmal eine Fehlbindung aufweisen, so wird dies voraussichtlich über die falsche Länge des DNA-Fragments nachgewiesen. In der Regel wird für die Identifizierung ein spezifisches Primerpaar, bestehend aus forward- und reverse-Primer, verwendet. Es ist aber auch möglich, einen spezifischen Primer mit einem allgemeinen Primer zu kombinieren. Durch den Einsatz spezifischer Oligonukleotide zur Bestimmung einer Holzart, ist eine zeitaufwendige und kostenintensive Sequenzierung der DNA nicht mehr von Nöten.

Die Verwendung von spezifischen Oligonukleotiden zur Identifizierung verschiedenster Organsimen wird seit Jahren erfolgreich angewendet. So wurden z.B. bereits diverse Primer im ITS entwickelt, die die Bestimmung von Pilzen ermöglichen. Spezifische Primer dienen aber nicht nur der Identifizierung von Gattungen oder Arten, sondern sie ermöglichen ebenfalls eine Differenzierung von Pilzen und Pflanzen (Gardes und Bruns 1993; Moreth und Schmidt 2000; Takamatsu und Kano 2001; Amicucci et al. 2002; Kendall und Rygiewicz 2005; Horisawa et al. 2009; Hanssen et al. 2011). Neben dem Reich der Pilze werden ITS-Taxonprimer auch bei Tieren und Pflanzen verwendet. Während für das Tierreich eine Studie von Magnussen et al. (2007) zu erwähnen ist, muss für das Pflanzenreich besonders eine Veröffentlichung von Hanssen et al. (2011) angeführt werden. Für diese Studie wurden spezifische Primer zur Identifizierung von Fitzroya, Sequoia und Thuja entwickelt. Wie schon in der Einleitung angeführt (vgl. Punkt 1.5.2.2), haben neben dem ITS auch verschiedene Marker der cpDNA eine wichtige Bedeutung für die Identifizierung von Landpflanzen. So entwickelten Wallinger et al. (2012) ein Primerset in der trnT-F Region, mit dem es möglich ist, zwei Familien, zwei Gattungen und neun Arten zu bestimmen. Aufgrund der teilweise geringen Sequenzunterschiede der cp-Marker finden bei der Schnellbestimmung von Pflanzenarten, hier neben den spezifischen Oligonukleotiden, auch Restriktionsenzyme Einsatz (Höltken et al. 2012).

Unter Zuhilfenahme der aufgebauten rDNA ITS-Sequenzdatenbank (vgl. Punkt 3.2) sowie der GenBank des NCBI wurden 29 spezifische Primerpaare erarbeitet (vgl. Punkt 3.3.2). Für die CITES-Arten liegen für folgende Hölzer gattungs- und/oder artspezifische Primer vor: *Swietenia macrophylla, S. humilis, S. mahagoni, Cedrela odorata, C. fissilis, Guaiacum sanctum, G. officinale, Dalbergia nigra, D. retusa* und *Caesalpinia echinata.* Da für *Intsia bijuga* und *I. palembanica* bereits ein Antrag zur Aufnahme in den CITES-Katalog gestellt wurde, wurde für diese Hölzer ebenfalls ein Primerpaar entwickelt. Darüber hinaus stehen nach Abschluss der Untersuchungen für folgende Substitutionshölzer art- oder gattungsspezifische Primer zur Verfügung: *Entandrophragma cylindricum, E. angolense, Khaya, Carapa, Bulnesia, Handroanthus, Afzelia, Hymenaea courbaril, Dalbergia latifolia, D. spruceana, D. sissoo, Machaerium scleroxylon, Caesalpinia ferrea, Myrocarpus, Bowdichia, Endospermum und Neolamarckia* (Tabelle 49). Durch das Fehlen von entsprechendem Probenmaterial bzw. nicht ausreichenden Sequenzinformationen, konnten für die Gattungen *Pterocarpus, Caryocar* und *Dipteryx* keine spezifischen Primer bereitgestellt werden.

Tabelle 49: Aufstellung der Arten oder Gattungen, für die entsprechende Primer zur Identifizierung vorliegen. Den CITES-Hölzern (linke Seite) sind die entsprechenden Substitutionshölzer gegenübergestellt (rechte Seite). * = Die gesamte *Dalbergia*-Population Madagaskars ist derzeit durch CITES-Anhang II geschützt.¹ = Es steht ebenfalls ein Gattungsprimerpaar zur Verfügung.

CITES-H	olz	Substitutionsholz		
Art	Anhang	Gattung oder Art		
Caesalpinia echinata	Π	Caesalpinia ferrea Myrocarpus spp.		
Cedrela odorata Cedrela fissilis	III	-		
Dalbargia nigra*	I	Dalbergia spruceana*		
Duibergiu nigru	1	Dalbergia latifolia*		
Dalhangia natura*	п	Dalbergia sissoo*		
Duibergia reiusa	11	Machaerium scleroxylon		
(Ramin-Gruppe)	П	Endospermum spp.		
(Ramm-Oruppe)	11	Neolamarckia spp.		
Guaiacum officinale ¹	П	<i>Bulnesia</i> spp.		
Guaiacum sanctum ¹	11	Handroanthus spp.		
Intsia bijuga	Antrag gastallt	<i>Afzelia</i> spp.		
Intsia palembanica	Annag gestent	Hymenaea courbaril		
Swietonia humilia		Entandrophragma angolense		
Swielenia numilis	п	Entandrophragma cylindricum		
Swielenia macrophylla	11	<i>Carapa</i> spp.		
Swielenia managoni		Khaya spp.		
(Dipteryx-Gruppe)	III	Bowdichia spp.		

Wie bereits angeführt, stellen die entwickelten Oligonukleotide sogenannte Art- oder Gattungsprimer dar. Während Artprimer eine Bestimmung bis auf Artebene ermöglichen, wird eine Probe durch die Verwendung der Gattungsprimer nur als ein Vertreter einer bestimmten Gattung identifiziert. Gattungsspezifische Primer wurden in den Fällen gewählt, in denen nicht ausreichend ITS-Informationen zur Erstellung von artspezifischen Primern zur Verfügung standen oder wenn die Bestimmung der Gattung ausreicht. Letzteres ist der Fall, wenn die gesamte Gattung durch einen CITES Anhang geschützt ist oder die entsprechende Gattung nur Austauschhölzer aufweist. Die Möglichkeit, neben artspezifischen Primern auch gattungsspezifische zu verwenden, wird durch Studien von Hanssen et al. (2011) und Wallinger et al. (2012) bestätigt.

Für die Entwicklung aller art- oder gattungsspezifischen Primer wurden die variablen Bereiche ITS1 und ITS2 gewählt. In der Regel liegt der forward-Primer im ITS1 und der reverse-Primer im ITS2. In wenigen Fällen liegen beide Primer in nur einem der variablen Bereiche (z.B. für *Khaya* und *Carapa*). Neben der Verwendung einer Kombination aus spezifischen forward- und reverse-Primern, wurden ebenfalls Kombinationen aus einem art- oder gattungspezifischen Primer (forward-Primer) und den "holzspezifischen" Primern ITS2.1 bzw. ITS4 (reverse-Primer) verwendet (*Guaiacum sanctum, Cedrela odorata* und *C. fissilis*). Diese letzteren Kombinationen zeigten dieselbe Spezifität, wie die Verwendung von zwei Art- oder Gattungsprimern. Studien von Moreth und Schmidt (2000) bzw. Horisawa et al. (2009), die sich beide mit der molekularbiologischen Identifizierung von Holzfäulepilzen beschäftigten, kamen ebenfalls zu dem Ergebnis, dass die Kombination von spezifischen und allgemeinen Primern ausreicht, um Amplifikationen mit hoher Spezifität durchzuführen. In dieser Arbeit, wie auch in diversen anderen Studien (Magnussen et al. 2007; Ogden et al. 2008; Horisawa et al. 2009; Hanssen et al. 2011; Wallinger et al. 2012), wurde die Spezifität durch mehrere Kreuztests nachgewiesen (vgl. Punkt 3.3.1). Keines der vorgestellten Primerpaare wies hierbei eine Fehlbindung auf. Es wurde somit gezeigt, dass die verwendeten Oligonukleotidpaare nur die ihnen zugeordnete Art oder Gattung amplifizieren und hierdurch eine zuverlässige Identifizierung ermöglichen.

Zusätzlich zur DNA-Extraktion stellt der Einsatz der "holzspezifischen" Primerpaare (vgl. Punkt 2.2.3.3) einen wichtigen Arbeitsschritt vor der endgültigen Identifizierung der Holzart dar. Durch die Verwendung der allgemeinen Primer wird sichergestellt, dass das DNA-Template, welches in der PCR zur Identifizierung der Probe eingesetzt wird, die ideale Quantität und Qualität aufweist. Der Einsatz von anderen allgemeinen ITS-Primerpaaren (wie z.B. ITS1/ITS4 von White et al. (1990)) bietet sich in diesem Fall nicht an, da eventuell nur die DNA des im Holz befindlichen Pilzes amplifiziert werden würde (Zhang et al. 1997). Neben der Tatsache, dass durch die "Holz-Primer" keine Pilz-DNA amplifiziert wird, weisen diese Primerpaare eine weitere wichtige Eigenschaft auf. Es handelt sich hierbei um deren hervorragende allgemeine Eigenschaft bei der Amplifizierung des ITS-Bereichs der untersuchten Holzarten. Ausgedrückt wird dies durch einen 100%igen PCR-Erfolg. Die in verschiedenen Studien berichteten geringen PCR-Erfolge für den ITS konnten somit nicht beobachtet werden (Kress et al. 2005; Kress und Erickson 2007; Gonzalez et al. 2009; Chen et al. 2010).

Ein weiterer Vorteil der "holzspezifischen" Primer besteht darin, dass im Falle geringer DNA-Ausgangskonzentrationen, die Durchführung einer Nested-PCR möglich ist (vgl. Punkt 2.2.3.4). Eine Nested-PCR bietet die Chance des Einsatzes geringster DNA-Mengen zur Identifizierung einer Probe (Dumolin-Lapègue et al. 1999; Höltken et al. 2012). Die Kombination der allgemeinen "holzspezifischen" Primerpaare mit den art- oder gattungsspezifischen Primern ist aber nur dann möglich, wenn die forwardund reverse-Primer der Art- oder Gattungskombination im selben variablen Bereich des ITS liegen, welcher durch die allgemeinen Primer amplifiziert wird. Ein konkretes Beispiel ist die Kombination der allgemeinen ITS1-Primer mit den spezifischen Primerpaaren der Gattungen *Khaya* und *Carapa*. Befinden sich die forward- und reverse-Primer der art- oder gattungsspezifischen Primerpaare jedoch im ITS1 und im ITS2, so muss in der vorhergehenden PCR die allgemeine Primerkombination ITS1.1/ITS4 zur Anwendung kommen.

Bisher wurde nur die Option angesprochen, die verschiedenen PCRs zur Identifizierung ("Holz-PCR" und "Identifizierungs-PCRs") nacheinander auszuführen. Es besteht aber auch die Alternative, sogenannte Multiplex-PCRs durchzuführen (Amicucci et al. 2002; Magnussen et al. 2007). Bei sogenannten Multiplex-PCRs werden statt eines Primerpaars, gleich mehrere Primerpaare gleichzeitig eingesetzt. Dies bietet im Fall der Identifizierung die Möglichkeit, die "Holz-Primer" mit mehreren art- oder gattungsspezifischen Primerpaaren zu kombinieren. Diese Zusammenfassung mehrerer PCRs bewirkt eine nicht unerhebliche Zeitersparnis. Im Anschluss an die PCR gibt ein spezifisches Bandenmuster darüber Auskunft, welche Holzart vorliegt. Die Anwendung der Multiplex-PCR wurde im Laufe der Untersuchungen ebenfalls berücksichtigt (Daten nicht gezeigt) und erwies sich als aussichtsreich.

Die Ergebnisse zeigen deutlich, dass die Verwendung von spezifischen Primern nicht nur eine zuverlässige Bestimmungsmöglichkeit von unbekannten Proben darstellt, sondern zusätzlich, dass diese schnell und kostengünstig durchführbar ist.

4.4 Validierungen des entwickelten Schnelltests

Mithilfe der Entwicklung einer DNA-Extraktionsmethode, dem Aufbau einer rDNA ITS-Sequenzdatenbank sowie der Erstellung von spezifischen Primern wurde in dieser Arbeit ein Schnelltest zur Identifizierung von CITES-geschützten Holzarten und deren Substitutionshölzern entwickelt. Der Schnelltest (vgl. Abbildung 31) beinhaltet die folgenden Arbeitsschritte. (1) DNA-Extraktion unter Verwendung des modifizierten DNeasy[®] *mericon*TM Food Kits (Punkt 2.2.1.2.8). (2) Amplifizierung eines Teilbereichs des ITS mithilfe der "holzspezifischen" Primer (Punkt 2.2.3.3). Verwendung des KAPA2GTM Robust Hot Start PCR Kits (Punkt 2.2.3.2). (3) Identifizierung der Art oder Gattung unter Zuhilfenahme der spezifischen Primer (Punkt 3.3.2). Verwendung des

KAPA2G[™] Robust Hot Start PCR Kits (Punkt 2.2.3.2).

Zur Validierung der entwickelten Methode wurden zwei Blindtests (vgl. Punkt 3.4.1 bzw. 3.4.2) mit insgesamt 61 Proben und eine Überprüfung der DNA-Extraktionsmethode (vgl. Punkt 3.4.3) durchgeführt. Der erste Blindtest (3.4.1) erfolgte anhand von 60 Proben, die auf einem Rundholzplatz in Indonesien gesammelt wurden. Für diese Proben wurde überprüft, bei welchen es sich um Vertreter der Gattung Gonystylus (CITES Anhang II) handelt. Zum Abgleich der Ergebnisse wurden die Proben ebenfalls anhand anatomischer Merkmale von Herrn PD Dr. Gerald Koch bestimmt. Durch die Verwendung des DNA-Extraktionsprotokolls der modifizierten *mericon*TM-Extraktion (vgl. Punkt 2.2.1.2.8) wurde, trotz problematischen Ausgangsmaterials, aus allen Proben Holz-DNA in ausreichender Qualität und Quantität isoliert. Die Probleme beim Ausgangsmaterial lagen darin, dass dieses schon eine Lagerdauer von über einem Jahr zu verzeichnen hatte und dass hierdurch die Degradation der DNA bereits stark vorangeschritten war (Yoshida et al. 2006; Jiao et al. 2012; Tnah et al. 2012). Des Weiteren unterlagen die Proben Einflüssen wie UV-Licht und Mikroorganismen, die sich ebenfalls negativ auf die Qualität und Quantität der DNA auswirken (Murmanis et al. 1987; Lindahl 1993; Cano 1996). UV-Licht war in diesem Fall ein besonderes Problem, da die Proben nur von den Stammaußenseiten entnommen wurden. Hinsichtlich der Mikroorganismen ist anzuführen, dass das tropische Klima des anfänglichen Lagerplatzes (Rundholzplatz des Papierwerks) den Befall und das Wachstum von Pilzen und Bakterien stark unterstützte. Hier ist insbesondere der schnelle Befall von Ramin mit Bläuepilzen zu erwähnen. Da die Probennahme unter der Prämisse durchgeführt wurde, illegal geschlagenes Ramin nachzuweisen, sind vornehmlich Stämme mit Bläuebefall beprobt worden. Nach der Probennahme wurden die Holzstückchen weiterhin unter idealen Bedingungen für das Pilzwachstum gelagert (Plastiktüte). Hierdurch ergab sich, dass die Proben zum Zeitpunkt der Verarbeitung bereits stark verpilzt waren.

Der Nachweis, bei welchen der 60 Proben es sich um Ramin handelte, wurde anhand von spezifischen Primern erbracht (vgl. Punkt 4.3). Spezifische Primer wurden bereits in verschiedenen Studien, teilweise für CITES-Arten, erfolgreich zur Bestimmung eingesetzt (Moreth und Schmidt 2000; Magnussen et al. 2007; Hanssen et al. 2011). Der Einsatz der Ramin-Gattungsprimer identifizierte 42 der 60 Proben als Vertreter der Gattung *Gonystylus* (Schwartz 2012). Zum selben Ergebnis kamen auch die anatomischen Untersuchungen, für die zu erwähnen ist, dass sie ebenfalls nur eine

Identifizierung bis auf Gattungsebene ermöglichen (Gasson 2011). Dass für Ramin derzeit nur eine Identifizierung bis auf Gattungsebene möglich ist, stellt für den CITES-Vollzug keine Schwierigkeiten dar, da derzeit alle *Gonystylus*-Arten den gleichen Schutzstatus aufweisen. Ein Vorteil der genetischen Untersuchungen ist in diesem Fall, dass durch die zusätzlich durchgeführte Sequenzierung zwei verschiedene *Gonystylus*-Arten, welche sich zu 2,5-2,6% in der Basenabfolge unterscheiden, nachgewiesen werden konnten (vgl. Art1 (*Gonystylus bancanus*) und Art2 aus Punkt 3.2.5 bzw. 3.4.1). Sollten in naher Zukunft ausführlichere ITS-Sequenzinformationen für die Gattung *Gonystylus* zur Verfügung stehen, so können auch für Art2 genauere Aussagen darüber getroffen werden, um welche Art es sich hierbei handelt. Darüber hinaus wäre die Erstellung von artspezifischen Primern möglich.

Für die Identifizierung der 18 Proben, bei denen es sich nicht um Ramin handelte, wurde der ITS-Bereich erarbeitet und anschließend ein Abgleich der Sequenzen mit der eigenen und der Sequenzdatenbank GenBank des NCBI durchgeführt. Lediglich die Proben Bt22-24 konnten angesichts einer Kontamination nicht abschließend bestimmt werden. Durch diese Kontamination wird deutlich, dass bei der DNA-Isolierung aus Holz strengstens auf Sauberkeit zu achten ist (Deguilloux et al. 2002). Für alle weiteren Proben ermöglichte der Vergleich der Sequenzen mit der GenBank des NCBI eine Einteilung auf Familienebene. Dass für die unbekannten Arten nur die Familie bestimmt werden konnte, liegt nicht an der mangelnden Eignung des ITS, sondern an der geringen Anzahl der in der GenBank hinterlegten ITS-Sequenzen. Um eine Bestimmung solcher Proben zu gewährleisten, muss sich in den folgenden Jahren auf Marker zur Identifizierung von Pflanzen geeinigt und für diese der Ausbau der Datenbanken konsequent vorangetrieben werden (Chen und Filippis 1996; Deguilloux et al. 2002). Der Vergleich der Ergebnisse der genetischen und der anatomischen Untersuchungen zeigte, dass die Einteilung der Proben in die jeweiligen Familien richtig erfolgte. Durch die lange Anwendung der klassischen Methoden zur Bestimmung von Holzarten und den damit einhergehenden Aufbau entsprechender Vergleichssammlungen, konnten die verbleibenden 18 Proben mindestens bis auf Gattungsebene bestimmt werden. Durch diese Bestimmung stehen der internen rDNA ITS-Sequenzdatenbank weitere Sequenzen zum Ausbau der Datenbank zur Verfügung (z.B. Madhuca spec., Palaquium spec., Shorea spec. und Tetramerista glabra). Bezüglich der parallelen Anwendung der klassischen Identifizierungsmethode und der Verwendung der neueren molekularbiologischen Methode ergibt sich, dass sich diese beiden Methoden hervorragend ergänzen. So profitiert z.B. die genetische Methode von den bereits existierenden und sehr umfangreichen Vergleichssammlungen der klassischen Methode. Auch die klassische Methode profitiert stark von der genetischen Methode. Dies liegt nicht nur in der Tatsache begründet, dass die Genetik eine Bestimmung bis auf Artebene ermöglicht, sondern auch, dass alternative Materialien, wie Bast (Probe Bt9 aus Punkt 3.4.1), zur Bestimmung eingesetzt werden können.

Ein zweiter Blindtest (3.4.2) erfolgte anhand einer Probe, für die bestimmt werden sollte, um welchen Vertreter der Meliaceae es sich hierbei handelt. Die Probe wurde dem Kernholz einer vom Zoll beschlagnahmten Holzbohle entnommen. Über die Lagerdauer des Holzes oder ob dieses bereits technischen Prozessen, die die Qualität und Quantität der DNA ebenfalls negativ beeinflussen (Deguilloux et al. 2002; Yoshida et al. 2007; Tnah et al. 2012), unterlag, wurden keine Informationen bereitgestellt. Trotz dieser eventuellen negativen Einflüsse und weiteren störenden Faktoren wie z.B. Inhibitoren, konnte mit der modifizierten mericonTM-Extraktion und dem Invisorb[®] DNA CleanUp Kit (vgl. Punkt 2.2.1.3) DNA in ausreichender Qualität und Quantität isoliert werden. Die DNA der Probe wurde unter Einsatz der verschiedenen spezifischen Primerpaare der Meliaceae amplifiziert und das Holz hierdurch als Swietenia macrophylla bzw. S. humilis identifiziert. Eine Unterscheidung dieser beiden Arten ist anhand des ITS nicht möglich. Untersuchungen von Höltken et al. (2012) ergaben, dass ebenfalls die Verwendung verschiedenster Loci der cpDNA nicht ausreicht, um diese beiden Arten voneinander zu unterschieden. Für S. macrophylla und S. humilis muss daher der taxonomische Status noch abschließend geklärt werden. Das durch die genetischen Untersuchungen erhaltene Ergebnis, wurde wiederum durch anatomische Untersuchungen abgesichert. Durch diese wurde die Bohle als Vertreter der Gattung Swietenia identifiziert. Da die gesamte Gattung Swietenia durch den CITES Anhang II geschützt ist, reichen sowohl die Ergebnisse der genetischen, als auch die der anatomischen Untersuchungen aus, um einen Verstoß gegen die CITES-Regularien nachzuweisen. In diesem Fall sind die Ergebnisse der spezifischen Primer als Hilfe für die anatomische Bestimmung anzusehen, da eine klassische Bestimmung der drei Arten der Gattung Swietenia nicht möglich ist (Gasson 2011).

Die Validierung der modifizierten *mericon*TM-Extraktion (3.4.3) erfolgte mit Proben der Holzarten *Dalbergia nigra* (Kernholz), *D. retusa* (Splintholz) und *D. latifolia* (Kernholz). Für diese Hölzer war wiederum nicht bekannt, welchen Prozessen sie bereits unterlagen oder wie lange sie bereits gelagert wurden. Durch die Verwendung des modifizierten *mericon*[™]-Extraktionsprotokolls war es für alle drei Proben möglich, DNA in ausreichender Quantität und Qualität zu isolieren. Die im Anschluss mit den jeweiligen artspezifischen Primern durchgeführten PCRs, erzielten einen 100%igen PCR-Erfolg.

In Anbetracht der CITES-Problematik ist die Gattung *Dalbergia* von besonderem Interesse. Während *D. nigra* durch den CITES Anhang I geschützt ist, sind *D. retusa*, *D. stevensonii*, *D. conchinchinensis* sowie *D. granadillo* im CITES Anhang II und *D. darienensis* im CITES Anhang III gelistet. Seit Juni 2013 ist zusätzlich die gesamte *Dalbergia*-Population Madagaskars durch den CITES Anhang II geschützt. Diese Unterschiede im Schutzgrad sowie der fehlende Schutz für viele *Dalbergia*-Arten, macht eine Bestimmung auf Artebene unumgänglich. Aber gerade diese Bestimmung auf Artebene ist in der Gattung *Dalbergia* durch anatomische Untersuchungen nur schwer bis gar nicht möglich (Gasson 2011). In Anbetracht des rechtlichen Hintergrunds müssen hier Methoden zur Anwendung kommen, die eine sichere Bestimmung auf Artebene gewährleisten. Durch die Verwendung von artspezifischen Primern ist eine derartige Methode gegeben.

Die Ergebnisse haben gezeigt, dass der ITS eine Unterscheidung bis auf Artebene ermöglicht. Weiterhin steht mit der modifizierten mericonTM-Extraktion eine DNA-Extraktionsmethode zur Verfügung, mit der die Verarbeitung von gelagertem und getrocknetem Kernund Splintholz möglich ist. Somit erfüllt die DNA-Extraktionsmethode die Anforderungen, die durch den Holzhandel gegeben sind. Bevor der hier entwickelte Schnelltest aber zur Schaffung rechtlich relevanter Fakten eingesetzt werden kann, müssen weitere Untersuchungen auf Grundlage der Methodenvalidierung durchgeführt werden.
5 Fazit und Ausblick

Ziel dieser Arbeit war die Entwicklung spezifischer DNA-Markersysteme zur Schnellbestimmung von CITES-geschützten Baumarten und deren Substitutionshölzern. Für die Bereitstellung eines solchen Schnelltests auf Basis der rDNA ITS-Region, mussten im Vorfeld verschiedene Untersuchungen durchgeführt werden. Diese ließen sich zu folgenden Aufgabengebieten zusammenfassen: Entwicklung einer DNA-Extraktion, Aufbau einer ITS-Sequenzdatenbank, Ermittlung von spezifischen Primern und Validierung des Schnelltests.

Mit der modifizierten *mericon*TM-Extraktion steht eine Methode zur Verfügung, welche es ermöglicht, DNA aus schwierigen Ausgangsmaterialien (z.B. getrocknetes Splintund Kernholz) in hoher Quantität und Qualität zu isolieren. Es konnte somit eine Methode entwickelt werden, die sicherstellt, dass ein Großteil der im Handel befindlichen Holzwaren verarbeitet werden kann. In den folgenden Jahren muss die *mericon*TM-Extraktion aber dennoch an einer Vielzahl von weiteren Hölzern getestet werden, um zu gewährleisten, dass die große Bandbreite von Inhibitoren kein Hindernis darstellt.

Durch die Untersuchung von 211 Individuen (vgl. Tabelle 50), die 53 Arten aus 23 Gattungen und 9 Familien repräsentieren, wurde eine umfangreiche rDNA ITS-Sequenzdatenbank aufgebaut. Die Verwendung der "holzspezifischen" Primerpaare ITS1.1/ITS2.1 und ITS3.1/ITS4 sowie der Einsatz von frischen Ausgangsmaterialien ermöglichten einen schnellen und kostengünstigen Aufbau der Sequenzdatenbank. Um aber den Schutz weiterer bzw. neuer CITES- Hölzer gewährleisten zu können, muss die Erweiterung der Datenbank stetig vorangetrieben werden. Nur durch den Ausbau der eigenen und der internationalen Datenbanken kann auf die ständig steigende Anzahl an weltweit gehandelten Hölzern reagiert werden. Diese Notwendigkeit profitiert davon, dass immer bessere und kostengünstigere PCR-Systeme bzw. Direkt-PCR-Systeme entwickelt werden und diese die Verarbeitung immer größerer Probensets ermöglichen.

Der Ansatz, art- oder gattungsspezifische Sequenzabschnitte der ITS-Regionen für die Ermittlung von spezifischen Primern zu verwenden, erwies sich als erfolgreich. Insgesamt wurden 29 spezifische Primerpaare entwickelt (vgl. Tabelle 50), mit denen eine Identifizierung von CITES- und Substitutionshölzern auf Art- oder Gattungsebene sichergestellt ist. Die Tatsache, dass nicht für jede untersuchte Art ein spezifisches Primerpaar vorliegt, begründet sich durch mehrere Punkte. Als wichtigster Aspekt erwies sich, dass aufgrund der eigenen Sequenzen und denen der internationalen Datenbanken auf zu wenige Informationen zurückgegriffen werden konnte, um art- oder gattungsspezifische Sequenzabschnitte zu definieren. Weiterhin ist anzuführen, dass auf spezifische Primer verzichtet wurde, wenn die entsprechende Holzart klar anhand von klassischen Bestimmungsmethoden identifiziert werden kann. Durch den Einsatz der spezifischen Oligonukleotide ist es bereits nach der Gelelektrophorese möglich, eine Aussage darüber zu treffen, ob es sich um die deklarierte Holzart handelt. Folglich ist eine kosten- und zeitaufwendige Sequenzierung der DNA überflüssig. Die Möglichkeit, Hölzer bis auf Artebene zu identifizieren, verleiht der rDNA ITS-Region eine große Bedeutung gegenüber klassischen Bestimmungsmethoden, da hiermit viele Hölzer nicht bis auf Artebene bestimmt werden können. Ein weiterer Vorteil der molekularbiologischen Bestimmung anhand von spezifischen Primern ist, dass nahezu jedes Standardlabor und somit jede entsprechend ausgestattete Behörde, die Identifizierung durchführen kann. Es sind folglich keine holzspezifischen Expertenkenntnisse für die eindeutige Bestimmung notwendig. Für die Zukunft ist zu überlegen, ob die bisher entwickelten und noch folgenden Primer für Microarrays verwendet werden können. So könnte mittels eines einzigen Tests eine Vielzahl von in Frage kommenden Holzarten überprüft werden.

Die Validierungen des Schnelltests haben im Endergebnis deutlich gezeigt, dass der Einsatz von spezifischen Primern ein probates Mittel darstellt, um den CITES-Vollzug zu unterstützen. Zusätzlich wurde nachgewiesen, dass die modifizierte *mericon*TM-Extraktion für die im Holzhandel vorkommenden Ausgangsmaterialien sehr gut geeignet ist. Zur weiteren Absicherung der entwickelten Methode sollte aber dennoch eine ausführlichere Methodenvalidierung durchgeführt werden. Diese würde sicherstellen, dass der Schnelltest in zukünftigen Gerichtsverfahren Anwendung finden könnte.

Der entwickelte Schnelltest bietet eine weitere Möglichkeit, um den internationalen Holzhandel zu kontrollieren und somit zu gewährleisten, dass bedrohte Baumarten nicht weiter in ihrem Bestand gefährdet werden.

192

Tabelle 50: Zusammenfassende Darstellung der Ergebnisse. Die Tabelle gibt die bearbeiteten Arten sowie die Anzahl (n) der untersuchten Individuen je Art wieder. Weiterhin wird aufgeführt, welcher Sequenzabschnitt für die jeweiligen Individuen erarbeitet wurde und ob ein spezifisches Primerpaar für die Art oder Gattung zur Verfügung steht. - = Es wurde kein Primerpaar erstellt. I-III = Die Holzart ist durch den angegebenen CITES Anhang geschützt.
(A) = artspezifisches Primerpaar; (G) = gattungsspezifisches Primerpaar; * = Für *Guaiacum* steht zusätzlich noch ein Gattungsprimerpaar zur Verfügung.

Art	CITES	n	Sequenz	spez. Primer
Bignoniaceae				
Handroanthus chrysanthus		1	ITS-Bereich	Hand for 1+ Hand ray 1 (C)
Handroanthus impetiginosus		5	ITS-Bereich	Hand 1011 + Hand 1011 (G)
Caryocaraceae				
Caryocar brasiliense		1	ITS-Bereich	-
Caryocar glabrum		1	ITS-Bereich	-
Combretaceae				
Terminalia arenicola		1	ITS-Bereich	
Terminalia avicennioides		1	ITS-Bereich	
Terminalia bellirica		1	ITS-Bereich	Primerpaar bereits vorhanden
Terminalia bentzoe		2	ITS-Bereich	(G) (Vay 2008)
Terminalia catappa		4	ITS-Bereich	
Terminalia glaucescens		1	ITS-Bereich	
Euphorbiaceae				
Endospermum moluccanum		1	ITS-Bereich	Endo for + Endo rev (G)
Fabaceae				
Afzelia africana		2	ITS-Bereich	Afze for2 + Afze rev1 (G)
Bowdichia nitida		1	ITS-Bereich	Bowd for + Bowd rev (G)
Caesalpinia echinata	II	3	ITS-Bereich	C ech for $1 + C$ ech rev2 (A)
Caesalpinia ferrea		3	ITS-Bereich	C fer for $+$ C fer rev (A)
Caesalpinia spinosa		2	ITS-Bereich	-
Dalbergia decipularis		1	ITS-Bereich	-
Dalbergia latifolia		1	ITS-Bereich	D lat for + D lat rev (A)
Dalbergia melanoxylon		1	ITS-Bereich	-
Dalbergia miscolobium		1	ITS-Bereich	-
Dalbergia nigra	Ι	2	ITS-Bereich	D nig for + D nig rev (A)
Dalbergia obovata		1	ITS-Bereich	-
Dalbergia retusa	II	3	ITS-Bereich	D ret for2 + D ret rev2 (A)
Dalbergia sissoo		2	ITS-Bereich	D sis for $+$ D sis rev (A)
Dalbergia spruceana		2	ITS-Bereich	D spr for + D spr rev (A)
Hymenaea courbaril		7	ITS-Bereich	H cou for1 + H cou rev1 (A)
Intsia bijuga		17	ITS-Bereich	I bij for1 + I bij rev1 (A)
Intsia palembanica		13	ITS-Bereich	I pal for1 + I pal rev2 (A)
Machaerium scleroxylon		1	ITS-Bereich	M scl for $+$ M scl rev (A)
Myrocarpus frondosus		1	ITS-Bereich	Myro for2 + Myro rev1 (A)

Art	CITES	n	Sequenz	spez. Primer
Pterocarpus indicus		4	ITS-Bereich	-
Pterocarpus macrocarpus		1	ITS-Bereich	-
Pterocarpus santalinus	II	2	ITS-Bereich	-
Pterocarpus soyauxii		2	ITS2-Bereich	-
Meliaceae				
Carapa guianensis		2	ITS-Bereich	Cara for1 + Cara rev2 (G)
Cedrela fissilis	III	7	ITS-Bereich	C fis for1 + ITS2.1 (A)
Cedrela odorata	III	7	ITS-Bereich	C odo for1 + ITS2.1 (A)
Entandrophragma angolense		2	ITS-Bereich	E ang for $2 + E$ ang rev $2(A)$
Entandrophragma cylindricum		7	ITS-Bereich	E cyl for 2 + E cyl rev 3 (A)
Khaya grandifolia		2	ITS-Bereich	
Khaya ivorensis		1	ITS-Bereich	V_{hav} for $1 \pm V_{hav}$ row $2(C)$
Khaya nyasica		2	ITS-Bereich	$\frac{1}{100} \frac{1}{100} \frac{1}$
Khaya senegalensis		6	ITS-Bereich	
Swietenia humilis	II	7	ITS-Bereich	$S m/h$ for $1 \pm S m/h$ row 1 (A)
Swietenia macrophylla	II	14	ITS-Bereich	
Swietenia mahagoni	II	9	ITS-Bereich	S mah for $+$ S mah rev2 (A)
Toona sinensis		4	ITS-Bereich	-
Rubiaceae				
Neolamarckia cadamba		1	ITS-Bereich	Neol for + Neol rev (A)
Thymelaeaceae				
Gonystylus bancanus	II	2	ITS-Bereich	Primerpaar bereits vorhanden
Gonystylus spec.	II	23	ITS-Bereich	(G) (Vay 2008)
Zygophyllaceae				
Bulnesia arborea		2	ITS-Bereich	Buln for1 + Buln rev1 (G)
Guaiacum officinale*	II	14	ITS-Bereich	G off for1 + G off rev2 (A)
Guaiacum sanctum*	II	7	ITS-Bereich	G san for $2 + ITS4 (A)$

6 Literaturverzeichnis

- Abe H, Watanabe U, Yoshida K, Kuroda K, Zhang CH (2011) Changes in organelle and DNA quality, quantity, and distribution in the wood of *Cryptomeria japonica* over long-term storage. Iawa J 32 (2):263-272
- Agroisolab (2014) Geografische Herkunftsüberprüfung Isotopen Analytik. http://www.agroisolab.de/index.htm. Abgerufen am 19.05.2014
- Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 (17):3389-3402. doi:10.1093/nar/25.17.3389
- Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogen Evol 29 (3):417-434. doi:10.1016/s1055-7903(03)00208-2
- Amicucci A, Guidi C, Zambonelli A, Potenza L, Stocchi V (2002) Molecular approaches for the detection of truffle species in processed food products. J Sci Food Agric 82 (12):1391-1397. doi:10.1002/jsfa.1196
- Anderson AB, Riffer R, Wong A (1970) Chemistry of genus Pinus VII. Monoterpenes, fatty and resin acids of Pinus monophylla and Pinus quadrifolia. Holzforschung 24 (6):182-184. doi:10.1515/hfsg.1970.24.6.182
- Asif M, Cannon C (2005) DNA extraction from processed wood: A case study for the identification of an endangered timber species (*Gonystylus bancanus*). Plant Mol Biol Rep 23 (2):185-192. doi:10.1007/bf02772709
- Aubriot X, Lowry PP, II, Cruaud C, Couloux A, Haevermans T (2013) DNA barcoding in a biodiversity hot spot: potential value for the identification of Malagasy *Euphorbia* L. listed in CITES Appendices I and II. Mol Ecol Resour 13 (1):57-65. doi:10.1111/1755-0998.12028

- Bamber RK (1976) Heartwood, its function and formation. Wood Sci Technol 10 (1):1-8. doi:10.1007/bf00376379
- Bar W, Kratzer A, Machler M, Schmid W (1988) Postmortem stability of DNA. Forensic Sci Int 39 (1):59-70. doi:10.1016/0379-0738(88)90118-1
- Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93 (17):9188-9193
- BMEL (2013) Presseinformation Illegaler Holzeinschlag. http://www.bmel.de/DE/Wald-Fischerei/02_Internationale-Waldpolitik/_texte/ PressemappeHolzherkuenfte.html. Abgerufen am 01.03.2013
- BOL (2014) What is DNA barcoding? http://www.barcodeoflife.org/content/about/ what-dna-barcoding. Abgerufen am 24.01.2014
- Brunner M, Eugster R, Trenka E, Berganmin-Strotz L (1996) FT-NIR spectroscopy and wood identification. Holzforschung 50 (2):130-134. doi:10.1515/hfsg.1996.50.2.130
- Butin H (1995) Tree diseases and disorders: causes, biology, and control in forest and amenity trees. Oxford University Press, Oxford
- Campbell CS, A.Wright W, Cox M, Vining TF, Major CS, Arsenault MP (2005) Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in *Picea* (Pinaceae): sequence divergence and structure. Mol Phylogen Evol 35 (1):165-185. doi:10.1016/j.ympev.2004.11.010
- Cannon CH, Manos PS (2003) Phylogeography of the Southeast Asian stone oaks (*Lithocarpus*). J Biogeogr 30 (2):211-226. doi:10.1046/j.1365-2699.2003.00829.x
- Cano RJ (1996) Analysing ancient DNA. Endeavour 20 (4):162-167. doi:10.1016/S0160-9327(96)10031-4

- Cardoso D, de Lima HC, Rodrigues RS, de Queiroz LP, Pennington RT, Lavin M (2012) The *Bowdichia* clade of Genistoid legumes: Phylogenetic analysis of combined molecular and morphological data and a recircumscription of *Diplotropis*. Taxon 61 (5):1074-1087
- Cavers S, Telford A, Arenal Cruz F, Pérez Castañeda AJ, Valencia R, Navarro C, Buonamici A, Lowe AJ, Vendramin GG (2013) Cryptic species and phylogeographical structure in the tree *Cedrela odorata* L. throughout the Neotropics. J Biogeogr 40 (4):732-746. doi:10.1111/jbi.12086
- CBOL Plant Working Group, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106 (31):12794-12797. doi:10.1073/pnas.0905845106
- Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56 (2):295-299
- Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B-Biol Sci 360 (1462):1889-1895. doi:10.1098/rstb.2005.1720

- Chen DM, Filippis LFd (1996) Application of genomic DNA and RAPD-PCR in genetic analysis and fingerprinting of various species of woody trees. Australian Forestry 59 (1):46-55
- Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5 (1):e8613. doi:10.1371/journal.pone.0008613
- China Plant BOL Group, Li D-Z, Gao L-M, Li H-T, Wang H, Ge X-J, Liu J-Q, Chen Z-D, Zhou S-L, Chen S-L, Yang J-B, Fu C-X, Zeng C-X, Yan H-F, Zhu Y-J, Sun Y-S, Chen S-Y, Zhao L, Wang K, Yang T, Duan G-W (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci, USA 108 (49):19641-19646. doi:10.1073/pnas.1104551108
- CITES (2014) Convention on International Trade in Endangered Species of Wild Fauna and Flora. www.cites.org. Abgerufen am 31.01.2014
- Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, Oliveira G, Rangel TF, Rabelo SG, Diniz JAF (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21 (23):5845-5863. doi:10.1111/mec.12071
- Conceicao AD, de Queiroz LP, Lewis GP, de Andrade MJG, de Almeida PRM, Schnadelbach AS, van den Berg C (2009) Phylogeny of *Chamaecrista* Moench (Leguminosae-Caesalpinioideae) based on nuclear and chloroplast DNA regions. Taxon 58 (4):1168-1180
- Cotton EA, Allsop RF, Guest JL, Frazier RRE, Koumi P, Callow IP, Seager A, Sparkes RL (2000) Validation of the AMP*FI*STR[®] SGM PlusTM system for use in forensic casework. Forensic Sci Int 112 (2-3):151-161. doi:10.1016/s0379-0738(00)00182-1

- Csaikl UM, Bastian H, Brettschneider R, Gauch S, Meir A, Schauerte M, Scholz F, Sperisen C, Vornam B, Ziegenhagen B (1998) Comparative analysis of different DNA extraction protocols: A fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Rep 16 (1):69-86. doi:10.1023/a:1007428009556
- Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid *rbc*L, *atp*B, and *mat*K DNA sequences. Am J Bot 89 (1):132-144. doi:10.3732/ajb.89.1.132
- De Filippis L, Magel EA (1998) Differences in genomic DNA extracted from bark and from wood of different zones in *Robinia* trees using RAPD-PCR. Trees Struct Funct 12 (6):377-384. doi:10.1007/pl00009723
- Deguilloux M, Pemonge M, Petit R (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond [Biol] 269 (1495):1039-1046. doi:10.1098/rspb.2002.1982
- Deguilloux MF, Pemonge MH, Bertel L, Kremer A, Petit RJ (2003) Checking the geographical origin of oak wood: molecular and statistical tools. Mol Ecol 12 (6):1629-1636. doi:10.1046/j.1365-294X.2003.01836.x
- Demeke T, Adams RP (1992) The effects of plant polysaccharides and buffer additives on PCR. BioTechniques 12 (3):332-334
- Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11-15

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15

Dubouzet JG, Shinoda K (1999) Relationships among Old and New World Alliums according to ITS DNA sequence analysis. Theor Appl Genet 98 (3):422-433. doi:10.1007/s001220051088

- Duminil J, Kenfack D, Viscosi V, Grumiau L, Hardy OJ (2012) Testing species delimitation in sympatric species complexes: The case of an African tropical tree, *Carapa* spp. (Meliaceae). Mol Phylogen Evol 62 (1):275-285. doi:10.1016/j.ympev.2011.09.020
- Dumolin-Lapègue S, Pemonge MH, Gielly L, Taberlet P, Petit RJ (1999) Amplification of oak DNA from ancient and modern wood. Mol Ecol 8 (12):2137-2140. doi:10.1046/j.1365-294x.1999.00788.x
- Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91 (8):1253-1256. doi:10.1007/bf00220937
- Edwards D, Hawkins JA (2007) Are Cape floral clades the same age? Contemporaneous origins of two lineages in the genistoids s.l. (Fabaceae). Mol Phylogen Evol 45 (3):952-970. doi:10.1016/j.ympev.2007.09.014
- Erickson DL, Smith BD, Clarke AC, Sandweiss DH, Tuross N (2005) An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci USA 102 (51):18315-18320. doi:10.1073/pnas.0509279102
- Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom "barcode" genes (*cox1*, *rbcL*, 18S and ITS rDNA) and their effectiveness in determining relationships in *Sellaphora* (Bacillariophyta). Protist 158 (3):349-364. doi:10.1016/j.protis.2007.04.001
- Evershed RP, Bland HA, vanBergen PF, Carter JF, Horton MC, RowleyConwy PA (1997) Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science 278 (5337):432-433. doi:10.1126/science.278.5337.432
- Fatma NAH, Wickneswari R, Cannon CH (2011) Detection of genetic structure among Ramin (*Gonystylus bancanus* (Miq.) Kurz) populations in Peninsular Malaysia using a RAPID DNA fingerprinting technique. Malays Appl Biol 40 (2):43-50

- Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3 (7):e2802. doi:10.1371/journal.pone.0002802
- Fengel D (1970) Ultrastructural changes during aging of wood cells. Wood Sci Technol 4 (3):176-188
- Finkeldey R, Leinemann L, Gailing O (2010) Molecular genetic tools to infer the origin of forest plants and wood. Appl Microbiol Biotechnol 85 (5):1251-1258. doi:10.1007/s00253-009-2328-6
- Fladung M, Nowitzki O, Ziegenhagen B, Markussen T (2004) Identification of transgenes from wood of genetically transformed poplar trees. Wood Sci Technol 38 (3):207-215. doi:10.1007/s00226-004-0233-9
- Ford CS, Ayres KL, Toomey N, Haider N, Van Alphen Stahl J, Kelly LJ, WikstrÖM N, Hollingsworth PM, Duff RJ, Hoot SB, Cowan RS, Chase MW, Wilkinson MJ (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159 (1):1-11. doi:10.1111/j.1095-8339.2008.00938.x
- Förstel H, Boner M, Höltken A, Fladung M, Degen B, Zahnen J (2011) Bekämpfung des illegalen Holzeinschlags durch Einführung einer Kombination der Isotopenmethode zur Herkunftsidentifizierung von Holz und der DNA-Analyse zur Artdifferenzierung von Holz. WWF Deutschland, Berlin
- Förstel H, Boner M, Sommer T, Erven C, Zahnen J, Griesshammer N, Sonnenberg A (2008a) The natural variation of stable isotopes of wood as a fingerprint to trace back its origin. Forst und Holz 63 (3):31-34
- Förstel H, Boner M, Zahnen J (2008b) Überprüfung der Herkunftsdeklaration von Holz mittels Isotopenverteilung. WWF Deutschland, Frankfurt am Main

- Fougere-Danezan M, Maumont S, Bruneau A (2007) Relationships among resinproducing Detarieae s.l. (Leguminosae) as inferred by molecular data. Syst Bot 32 (4):748-761
- Francis JK (2002) *Pterocarpus macrocarpus* Kurz. In: Vozzo JA (ed) Tropical tree seed manual. USDA, Forest Service, Washington DC,
- Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pang X, Xu H, Chen S (2010)
 Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130 (1):116-121. doi:10.1016/j.jep.2010.04.026
- Garcia MG, Silva RS, Carniello MA, Veldman JW, Rossi AAB, de Oliveira LO (2011)
 Molecular evidence of cryptic speciation, historical range expansion, and recent intraspecific hybridization in the Neotropical seasonal forest tree *Cedrela fissilis* (Meliaceae). Mol Phylogen Evol 61 (3):639-649. doi:10.1016/j.ympev.2011.08.026
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2 (2):113-118. doi:10.1111/j.1365-294X.1993.tb00005.x
- Gasson P (2011) How precise can wood identification be? Wood anatomy's role in support of the legal timber trade, especially CITES. Iawa J 32 (2):137-154
- Gernandt DS, Liston A (1999) Internal transcribed spacer region evolution in *Larix* and *Pseudotsuga* (Pinaceae). Am J Bot 86 (5):711-723. doi:10.2307/2656581
- Gonzalez MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J (2009) Identification of amazonian trees with DNA barcodes. PLoS ONE 4 (10):e7483. doi:10.1371/journal.pone.0007483
- Greenpeace (2014) Ramin at APP's flagship pulp mill. http://www.greenpeace.org/international/en/campaigns/forests/asiapacific/app/ramin/mill/. Abgerufen am 07.03.2014

- Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14 (10):3247-3266. doi:10.1111/j.1365-294X.2005.02628.x
- Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166 (2):409-418. doi:10.1111/j.1469-8137.2005.01360.x
- Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical *Lepidoptera*. Proc Natl Acad Sci USA 103 (4):968-971. doi:10.1073/pnas.0510466103
- Hanssen F, Wischnewski N, Moreth U, Magel EA (2011) Molecular identification of *Fitzroya cupressoides*, *Sequoia sempervirens*, and *Thuja plicata* wood using taxon-specific rDNA-ITS primers. Iawa J 32 (2) (2):273-284
- Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond [Biol] 270 (1512):313-321. doi:10.1098/rspb.2002.2218
- Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond [Biol] 270:S96-S99. doi:10.1098/rsbl.2003.0025
- Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2 (10):1657-1663. doi:e31210.1371/journal.pbio.0020312
- Hershkovitz MA, Lewis LA (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol 13 (9):1276-1295
- Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level

sampling in three divergent groups of land plants. Mol Ecol Resour 9 (2):439-457. doi:10.1111/j.1755-0998.2008.02439.x

- Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci USA 108 (49):19451-19452. doi:10.1073/pnas.1116812108
- Höltken AM, Schroder H, Wischnewski N, Degen B, Magel E, Fladung M (2012)
 Development of DNA-based methods to identify CITES-protected timber species: a case study in the Meliaceae family. Holzforschung 66 (1):97-104. doi:10.1515/hf.2011.142
- Horisawa S, Sakuma Y, Doi S (2009) Qualitative and quantitative PCR methods using species-specific primer for detection and identification of wood rot fungi. J Wood Sci 55 (2):133-138. doi:10.1007/s10086-008-1011-3
- Hribova E, Cizkova J, Christelova P, Taudien S, de Langhe E, Dolezel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6 (3). doi:10.1371/journal.pone.0017863
- Hynniewta M, Malik SK, Rao SR (2014) Genetic diversity and phylogenetic analysis of *Citrus* (L) from north-east India as revealed by meiosis, and molecular analysis of internal transcribed spacer region of rDNA. Meta Gene 2 (0):237-251. doi:10.1016/j.mgene.2014.01.008
- Jiao L, Yin Y, Xiao F, Sun Q, Song K, Jiang X (2012) Comparative analysis of two DNA extraction protocols from fresh and dried wood of *Cunninghamia lanceolata* (Taxodiaceae). Iawa J 33 (4):441-456. doi:10.1163/22941932-90000106
- Jolivet C, Höltken A, Liesebach H, Steiner W, Degen B (2010) Spatial genetic structure in wild cherry (*Prunus avium* L.): I. variation among natural populations of different density. Tree Genet Genom:1-13. doi:10.1007/s11295-010-0330-x
- Kelman LM, Kelman Z (1999) The use of ancient DNA in paleontological studies. J Vert Paleontol 19 (1):8-20. doi:10.1080/02724634.1999.10011118

- Kendall M, Rygiewicz P (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5 (1):28
- Klitgard BB, Forest F, Booth TJ, Saslis-Lagoudakis CH (2013) A detailed investigation of the *Pterocarpus* clade (Leguminosae: Dalbergieae): Etaballia with radially symmetrical flowers is nested within the papilionoid-flowered *Pterocarpus*. S Afr J Bot 89:128-142. doi:10.1016/j.sajb.2013.07.006
- Ko KS, Jung HS (2002) Three nonorthologous ITS1 types are present in a polypore fungus *Trichaptum abietinum*. Mol Phylogen Evol 23 (2):112-122. doi:10.1016/s1055-7903(02)00009-x
- Koch G, Richter HG, Schmitt U (2011) Design and application of CiteswoodID computer-aided identification and description of CITES-protected timbers. Iawa J 32 (2):213-220
- Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47 (4):773-785
- Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: The coding *rbc*L gene complements the non-coding *trn*H-*psb*A spacer region. PLoS ONE 2 (6):e508
- Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102 (23):8369-8374. doi:10.1073/pnas.0503123102
- Kulac D (2012) Entwicklung einer Methode zur DNA Extraktion aus Kernholz. Bachelorarbeit, Hochschule für angewandte Wissenschaften Hamburg, Hamburg
- Lage Novaes RM, Ribeiro RA, Lemos-Filho JP, Lovato MB (2013) Concordance between phylogeographical and biogeographical patterns in the Brazilian Cerrado: Diversification of the endemic tree *Dalbergia miscolobium* (Fabaceae). PLOS ONE 8 (12). doi:10.1371/journal.pone.0082198

- Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105 (8):2923-2928. doi:10.1073/pnas.0709936105
- Lalitha S (2000) Primer Premier 5. Biotechnol Sotw I J 1 (6):270-272. doi:10.1089/152791600459894
- Laport RG, Minckley RL, Ramsey J (2012) Phylogeny and cytogeography of the North American creosote bush (*Larrea tridentata*, Zygophyllaceae). Syst Bot 37 (1):153-164. doi:10.1600/036364412x616738
- Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The dalbergioid legumes (Fabaceae): Delimitation of a pantropical monophyletic clade. Am J Bot 88 (3):503-533. doi:10.2307/2657116
- Lavin M, Thulin M, Labat JN, Pennington RT (2000) Africa, the odd man out: Molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Syst Bot 25 (3):449-467. doi:10.2307/2666689
- Lee AB, Cooper TA (1995) Improved direct PCR screen for bacterial colonies wooden toothpicks inhibit PCR amplification. BioTechniques 18 (2):225-226
- Lemes M, Dick C, Navarro C, Lowe A, Cavers S, Gribel R (2010) Chloroplast DNA microsatellites reveal contrasting phylogeographic structure in mahogany (*Swietenia macrophylla* King, Meliaceae) from Amazonia and Central America. Trop Plant Biol 3 (1):40-49. doi:10.1007/s12042-010-9042-5
- Li HQ, Chen JY, Wang S, Xiong SZ (2012) Evaluation of six candidate DNA barcoding loci in *Ficus* (Moraceae) of China. Mol Ecol Resour 12 (5):783-790. doi:10.1111/j.1755-0998.2012.03147.x
- Lia VV, Confalonieri VA, Comas CI, Hunzikert JH (2001) Molecular phylogeny of *Larrea* and its allies (Zygophyllaceae): Reticulate evolution and the probable

time of creosote bush arrival to North America. Mol Phylogen Evol 21 (2):309-320. doi:10.1006/mpev.2001.1025

- Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362 (6422):709-715. doi:10.1038/362709a0
- Liston A, Robinson WA, Oliphant JM, AlvarezBuylla ER (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst Bot 21 (2):109-120. doi:10.2307/2419742
- Liu Z, Liu Y, Liu S, Ding X, Yang Y, Huang H (2009) Analysis of the sequence of ITS1-5.8S-ITS2 regions of the three species of *Fructus evodiae* in Guizhou province of China and identification of main ingredients of their medicinal chemistry Comput Sci Syst Biol 2:200-207. doi:10.4172/jcsb.1000032
- Lofstrand SD, Kruger A, Razafimandimbison SG, Bremer B (2014) Phylogeny and generic delimitations in the sister tribes Hymenodictyeae and Naucleeae (Rubiaceae). Syst Bot 39 (1):304-315. doi:10.1600/036364414x675116
- Lohmann LG, Ulloa Ulloa C (2014) Bignoniaceae in iPlants prototype checklist. www.iplants.org. Abgerufen am 04.02.2014
- Lowe AJ, Cross HB (2011) The application of DNA methods to timber tracking and origin verification. Iawa J 32 (2):251-262
- Lowe AJ, Harris D, Dormontt E, Dawson IK (2010a) Testing putative African tropical forest refugia using chloroplast and nuclear DNA phylogeography. Trop Plant Biol 3 (1):50-58. doi:10.1007/s12042-010-9045-2
- Lowe AJ, Wong KN, Tiong YS, Iyerh S, Chew FT (2010b) A DNA method to verify the integrity of timber supply chains; Confirming the legal sourcing of Merbau Timber from logging concession to sawmill. Silvae Genet 59 (6):263-268

- Magnussen JE, Pikitch EK, Clarke SC, Nicholson C, Hoelzel AR, Shivji MS (2007) Genetic tracking of basking shark products in international trade. Anim Conserv 10 (2):199-207. doi:10.1111/j.1469-1795.2006.00088.x
- Maurin O, Chase MW, Jordaan M, Van Der Bank M (2010) Phylogenetic relationships of Combretaceae inferred from nuclear and plastid DNA sequence data: implications for generic classification. Bot J Linn Soc 162 (3):453-476. doi:10.1111/j.1095-8339.2010.01027.x
- Monteiro Pastore TC, Batista Braga JW, Rauber Coradin VT, Esteves Magalhaes WL, Arakaki Okino EY, Alves Camargos JA, Bonzon de Muniz GI, Bressan OA, Davrieux F (2011) Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: Discrimination of true mahogany, cedar, andiroba, and curupixa. Holzforschung 65 (1):73-80. doi:10.1515/hf.2011.010
- Moreth U, Schmidt O (2000) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. Holzforschung 54 (1):1-8. doi:10.1515/hf.2000.001
- Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7. doi:710.1186/1471-2148-7-135
- Müllner AN, Pennington TD, Koecke AV, Renner SS (2010) Biogeography of *Cedrela* (Meliaceae, Sapindales) in Central and South America. Am J Bot 97 (3):511-518. doi:10.3732/ajb.0900229
- Müllner AN, Schaefer H, Lahaye R (2011) Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae).
 Mol Ecol Resour 11 (3):450-460. doi:10.1111/j.1755-0998.2011.02984.x
- Murmanis L, Highley TL, Palmer JG (1987) Cytochemical-localization of cellulases in decayed and nondecayed wood. Wood Sci Technol 21 (2):101-109

- Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8 (19):4321-4325. doi:10.1093/nar/8.19.4321
- Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants: evaluation of *rbc*L in a multigene tiered approach. Can J Bot 84 (3):335-341. doi:10.1139/b06-047
- Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008) Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour 8 (3):480-490. doi:10.1111/j.1471-8286.2007.02002.x
- Niemz P, Wienhaus O, Schaarschmidt K, Ramin R (1989) Untersuchungen zur Holzartendifferenzierung mit Hilfe der Infrarot-Spektroskopie, Teil 2. Holzforsch Holzverw 41 (2):22-26
- Ogden R, McGough H, Cowan R, Chua L, Groves M, McEwing R (2008) SNP-based method for the genetic identification of Ramin *Gonystylus* spp. timber and products: applied research meeting CITES enforcement needs. Endang Species Res 9 (3):255-261. doi:10.3354/esr00141
- Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press, London, UK, pp 159-166
- Pandey RN, Adams RP, Flournoy LE (1996) Inhibition of random amplified polymorphic DNAs (RAPDs) by plant polysaccharides. Plant Mol Biol Rep 14 (1):17-22. doi:10.1007/bf02671898
- Pang X, Luo H, Sun C (2012) Assessing the potential of candidate DNA barcodes for identifying non-flowering seed plants. Plant Biol 14 (5):839-844. doi:10.1111/j.1438-8677.2011.00554.x
- Pang XH, Song JY, Zhu YJ, Xie CX, Chen SL (2010) Using DNA barcoding to identify species within Euphorbiaceae. Planta Med 76 (15):1784-1786. doi:10.1055/s-0030-1249806

- Pap P, Rankovic B, Masirevic S (2013) Effect of temperature, relative humidity and light on conidial germination of oak powdery mildew (*Microsphaera alphitoides* Griff. et Maubl.) under controlled conditions. Arch Biol Sci 65 (3):1069-1077. doi:10.2298/abs1303069p
- Pennington TD, Müllner AN (2010) A monograph of *Cedrela*. DH Books, Sherborne, UK
- Pennisi E (2007) Wanted: A barcode for plants. Science 318 (5848):190-191. doi:10.1126/science.318.5848.190
- Pirie MD, Klitgaard BB, Pennington RT (2009) Revision and biogeography of *Centrolobium* (Leguminosae - Papilionoideae). Syst Bot 34 (2):345-359
- Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S (1998) Molecular coproscopy: Dung and diet of the extinct ground sloth *Nothrotheriops shastensis*. Science 281 (5375):402-406. doi:10.1126/science.281.5375.402
- Qiagen (2014) DNeasy[®] mericonTM Food Kit Handbook. http://www.qiagen.com/products/lab-focus/food-safety-testing/ingredientauthentication/animal-derived-ingredients/sample-preparation/dneasy-mericonfood-kit?applicationflowStep={116C0422-B88E-46D2-93F1-A47E1B91B48B}#resources. Abgerufen am 02.04.2014
- Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24 (1):45-55. doi:10.1007/bf02914045
- Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2009) DNA from processed and unprocessed wood: Factors influencing the isolation success. Forensic Sci Int-Genet 3 (3):185-192. doi:DOI: 10.1016/j.fsigen.2009.01.002
- Rana R, Mueller G, Naumann A, Polle A (2008) FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish

beech (*Fagus sylvatica* L.) trees grown at different sites. Holzforschung 62 (5):530-538. doi:10.1515/hf.2008.104

- Razafimandimbison SG, Bremer B (2002) Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, *rbcL*, and *trn*T-F) and morphological data. Am J Bot 89 (7):1027-1041. doi:10.3732/ajb.89.7.1027
- Reynolds MM, Williams CG (2004) Extracting DNA from submerged pine wood. Genome 47 (5):994-997. doi:10.1139/g04-045
- Ribeiro RA, Lavin M, Lemos-Filho JP, Mendonca Filho CV, Dos Santos FR, Lovato MB (2007) The genus *Machaerium* (Leguminosae) is more closely related to *Aeschynomene* sect. *Ochopodium* than to *Dalbergia*: Inferences from combined sequence data. Syst Bot 32 (4):762-771
- Rivera-Ocasio E, Aide TM, McMillan WO (2002) Patterns of genetic diversity and biogeographical history of the tropical wetland tree, *Pterocarpus officinalis* (Jacq.), in the Caribbean basin. Mol Ecol 11 (4):675-683. doi:10.1046/j.1365-294X.2002.01476.x
- Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93 (8):1101-1108. doi:10.3732/ajb.93.8.1101
- Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, Datt B, Bag SK, Singh PK, Nair NK, Husain T, Tuli R (2010) Universal plant DNA barcode loci may not work in complex groups: A case study with Indian *Berberis* species. PLoS ONE 5 (10):e13674
- Saslis-Lagoudakis C, Chase MW, Robinson DN, Russell SJ, Klitgaard BB (2008)
 Phylogenetics of neotropical *Platymiscium* (leguminosae: dalbergieae): systematics, divergence times and biogeography inferred from nuclear ribosomal and plastid DNA sequence data. Am J Bot 95 (10):1270-1286. doi:10.3732/ajb.0800101

- Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA (2011) The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: An example from *Pterocarpus* (Leguminosae). PLoS ONE 6 (7). doi:10.1371/journal.pone.0022275
- Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA barcoding in the Cycadales: Testing the potential of proposed barcoding markers for species identification of Cycads. PLoS ONE 2 (11):e1154. doi:10.1371/journal.pone.0001154
- Scharff L (2006) Plastidäre DNA-Replikation. Dissertation, Ludwig-Maximilians-Universität München, München
- Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, Berlin
- Schmidt O, Gaiser O, Dujesiefken D (2012) Molecular identification of decay fungi in the wood of urban trees. Eur J Forest R 131 (3):885-891. doi:10.1007/s10342-011-0562-9
- Schmidt O, Moreth U (2002) Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Sci Technol 36 (5):429-433. doi:10.1007/s00226-002-0152-6
- Schwartz M (2012) Validierung eines Schnelltests zur Identifizierung der
 CITES-geschützten Holzart Ramin (*Gonystylus* spp.). Bachelorarbeit,
 Universität Hamburg, Hamburg
- Seifert KA, Samson RA, deWaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using *CO1* DNA barcodes, with *Penicillium* as a test case. Proc Natl Acad Sci, USA 104 (10):3901-3906. doi:10.1073/pnas.0611691104

- Shearer TL, Coffroth MA (2008) Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 8 (2):247-255. doi:10.1111/j.1471-8286.2007.01996.x
- Simpson B, Larkin L, Weeks A, McDill J (2006) Phylogeny and biogeography of *Pomaria* (Caesalpinioideae : Leguminosae). Syst Bot 31 (4):792-804. doi:10.1600/036364406779695915
- Simpson BB, Weeks A, Helfgott DM, Larkin LL (2004) Species relationships in *Krameria* (Krameriaceae) based on ITS sequences and morphology: Implications for character utility and biogeography. Syst Bot 29 (1):97-108. doi:10.1600/036364404772974013
- Sinclair WA, Lyon HH (2005) Diseases of trees and shrubs. Cornell University Press, Ithaca
- Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103 (10):3657-3662. doi:10.1073/pnas.0511318103
- Stefenon VM, Gailing O, Finkeldey R (2006) Phylogenetic relationship within genus Araucaria (Araucariaceae) assessed by means of AFLP fingerprints. Silvae Genet 55 (2):45-52
- Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42 (1):135-139. doi:10.1007/bf02463987
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

- Tang X, Zhao G, Ping L (2011) Wood identification with PCR targeting noncoding chloroplast DNA. Plant Mol Biol 77 (6):609-617. doi:10.1007/s11103-011-9837-2
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 (22):4673-4680. doi:10.1093/nar/22.22.4673
- Tnah L, Lee S, Ng K, Bhassu S, Othman R (2012) DNA extraction from dry wood of *Neobalanocarpus heimii* (Dipterocarpaceae) for forensic DNA profiling and timber tracking. Wood Sci Technol 46 (5):813-825. doi:10.1007/s00226-011-0447-6
- Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhary LB, Roy S (2013) The internal transcribed spacer (ITS) region and *trnh*H-*psb*A are suitable candidate loci for DNA barcoding of tropical tree species of India. PLOS ONE 8 (2):e57934. doi:10.1371/journal.pone.0057934
- Tsumura Y, Kawahara T, Wickneswari R, Yoshimura K (1996) Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. Theor Appl Genet 93 (1-2):22-29. doi:10.1007/bf00225722
- Vay O (2008) Molekulargenetische Identifikation von CITES Holzarten und deren Substitutionshölzer. Diplomarbeit, Universität Hamburg, Hamburg
- Volossiouk T, Robb E, Nazar R (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61 (11):3972-3976
- Wallinger C, Juen A, Staudacher K, Schallhart N, Mitterrutzner E, Steiner E-M, Thalinger B, Traugott M (2012) Rapid plant identification using species- and group-specific primers targeting chloroplast DNA. PLoS ONE 7 (1):e29473. doi:10.1371/journal.pone.0029473

- Wang S-Y, Wang Y-S, Tseng Y-H, Lin C-T, Liu C-P (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung 60 (5):528-532. doi:10.1515/hf.2006.087
- Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia's fish species. Philos Trans R Soc B-Biol Sci 360 (1462):1847-1857. doi:10.1098/rstb.2005.1716
- Watson L, Dallwitz MJ (2014) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 19th October 2013. http://delta-intkey.com/. Abgerufen am 04.02.2014
- White E, Hunter J, Dubetz C, Brost R, Bratton A, Edes S, Sahota R (2000) Microsatellite markers for individual tree genotyping: application in forest crime prosecutions. J Chem Technol Biotechnol 75 (10):923-926. doi:10.1002/1097-4660(200010)75:10<923::aid-jctb309>3.0.co;2-s
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols A guide to Methods and Applications. Academic Press, London, UK, pp 315-322
- Whitworth TL, Dawson RD, Magalon H, Baudry E (2007) DNA barcoding cannot reliably identify species of the blowfly genus *Protocalliphora* (Diptera: Calliphoridae). Proc R Soc Lond [Biol] 274 (1619):1731-1739. doi:10.1098/rspb.2007.0062
- Wienhaus O, Niemz P, Fabian J (1988) Untersuchungen zur Holzartendifferenzierung mit Hilfe der Infrarotspektroskopie, Teil 1. Holzforsch Holzverw 40 (6):120-125
- WWF (2007) Hintergrundinformation CITES und bedrohte Baumarten. http://www.wwf.de/themen-projekte/weitere-artenschutzthemen/politischeinstrumente/cites/. Abgerufen am 27.11.2013

- Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 5 (10):e13102. doi:10.1371/journal.pone.0013102
- Yesson C, Russell SJ, Parrish T, Dalling JW, Garwood NC (2004) Phylogenetic framework for *Trema* (Celtidaceae). Plant Syst Evol 248 (1-4):85-109. doi:10.1007/s00606-004-0186-3
- Yoshida K, Kagawa A, Igasaki T, Nishiguchi M, Mukai Y (2006) Influence of the position in xylem, storage period and heat treatment on the efficiency of DNA extraction and on the quality of DNA from wood. Bull For For Prod Res Inst 5 (4):289-298
- Yoshida K, Kagawa A, Nishiguchi M (2007) Extraction and detection of DNA from wood for species identification. International symposium on development of improved methods to identify *Shorea* species wood and its origin, Yayoi Auditorium Ichijo Hall, The University of Tokyo, Tokyo, Japan, 25-26 September, 2007:27-34
- Yu H, Fan X, Zhang C, Ding C, Wang X, Zhou Y (2008) Phylogenetic relationships of species in *Pseudoroegneria* (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia 63 (4):498-505. doi:10.2478/s11756-008-0091-2
- Zatt Schardosin (2013) Desenvolvimento e teste de iniciadores para a identificação biomolecular de três espécies do gênero *Dalbergia* (Fabaceae-Faboideae). Universidade Federal do Paraná, Curitiba
- Zhang C-Y, Wang F-Y, Yan H-F, Hao G, Hu C-M, Ge X-J (2012) Testing DNA barcoding in closely related groups of *Lysimachia* L. (Myrsinaceae). Mol Ecol Resour 12 (1):98-108. doi:10.1111/j.1755-0998.2011.03076.x
- Zhang W, Wendel JF, Clark LG (1997) Bamboozled again! Inadvertent isolation of fungal rDNA sequences from Bamboos (Poaceae: Bambusoideae). Mol Phylogen Evol 8 (2):205-217. doi:10.1006/mpev.1997.0422

7 Anhang

7.1 Probenmaterial aufgelistet nach der Herbarnummer

Das in Punkt 2.1.4.1 vorgestellte Pflanzenmaterial für den Aufbau einer rDNA ITS-Sequenzdatenbank wird an dieser Stelle noch einmal anhand der Herbarnummer dargestellt. Für jedes Individuum wird sowohl dessen Herbarnummer, der wissenschaftliche Name, die Herkunft und die Form des Ausgangsmaterials angegeben (Tabelle A 1).

Tabelle A 1: Auflistung des untersuchten Probenmaterials zum Aufbau der internen rDNA ITS-Sequenzdatenbank. Die Anordnung der Proben erfolgte in Bezug auf deren Herbarnummer. Aufgeführt sind jeweils die Herbarnummer, der wissenschaftliche Name, die Herkunft und die Form des untersuchten Materials. A = Ast, B = Blatt, D = DNA und S = Splintholz.

Herbarnr.	Art	Herkunft	Form
2	Swietenia macrophylla	Holzforschung, Thünen-Institut	А
3	Swietenia macrophylla	Bot. Garten der Uni. Göttingen	А
4	Swietenia mahagoni	Bot. Garten der Uni. Göttingen	А
5	Khaya senegalensis	Unbekannt	А
6	Khaya senegalensis	Unbekannt	А
7	Swietenia mahagoni	Holzforschung, Thünen-Institut	А
8	Khaya grandifolia	Holzforschung, Thünen-Institut	А
10	Cedrela odorata	Unbekannt	А
11	Cedrela fissilis	Unbekannt	А
18	Swietenia macrophylla	Bot. Garten der Uni. Tübingen	А
19	Swietenia macrophylla	Bot. Garten der Uni. Tübingen	А
21	Swietenia mahagoni	Unbekannt	А
23	Cedrela odorata	Bot. Garten der Uni. Jena	А
24	Swietenia mahagoni	Bot. Garten der Uni. Jena	А
30	Cedrela odorata	Bot. Garten der Uni. Osnabrück	А
33	Swietenia macrophylla	Bot. Garten der Uni. Bochum	А
35	Khaya senegalensis	Bot. Garten der Uni. Bochum	А
36	Cedrela fissilis	Bot. Garten der Uni Bochum	А
38	Khaya nyasica	Bot. Garten der Uni. Oldenburg	А
40	Swietenia mahagoni	Bot. Garten der Uni. Halle	А
41	Khaya senegalensis	Bot. Garten der Uni. Halle	А
49	Carapa guianensis	Bot. Garten der Uni. Düsseldorf	А

Herbarnr.	Art	Herkunft	Form
50	Afzelia africana	Holzforschung, Thünen-Institut	А
55	Cedrela fissilis	Holzforschung, Thünen-Institut	А
56	Cedrela odorata	Holzforschung, Thünen-Institut	А
57	Toona sinensis	Holzforschung, Thünen-Institut	А
71	Cedrela odorata	Bot. Garten der Uni. Osnabrück	А
74	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
76	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
80	Carapa guianensis	Bot. Garten Graz	А
81	Intsia bijuga	Bot. Garten Graz	А
82	Cedrela odorata	Bot. Garten Graz	А
83	Entandrophragma angolense	Bot. Garten der Uni. Würzburg	А
85	Intsia bijuga	Bot. Garten der Uni. Bayreuth	А
86	Hymenaea courbaril	Bot. Garten der Uni. Bayreuth	А
94	Guaiacum officinale	Bot. Garten der Uni. Osnabrück	А
101	Guaiacum officinale	Bot. Garten der Uni. Erlangen	А
117	Guaiacum officinale	Bot. Garten der Uni. Greifswald	А
119	Guaiacum officinale	Bot. Garten der Uni. Zürich	А
134	Khaya ivorensis	Holzwerk Nagel	S
142	Dalbergia miscolobium	Holzforschung, Thünen-Institut	А
143	Dalbergia retusa	Holzforschung, Thünen-Institut	А
144	Dalbergia nigra	Holzforschung, Thünen-Institut	А
156	Guaiacum officinale	Bot. Garten der Uni. Berlin	А
162	Guaiacum sanctum	Bot. Garten der Uni. Jena	А
163	Guaiacum officinale	Bot. Garten der Uni. Jena	А
165	Swietenia mahagoni	Bot. Garten der Uni. Köln	А
166	Intsia bijuga	Bot. Garten der Uni. Köln	А
167	Guaiacum officinale	Bot. Garten der Uni. Köln	А
168	Swietenia mahagoni	Palmengarten Frankfurt	А
170	Hymenaea courbaril	Palmengarten Frankfurt	А
172	Terminalia catappa	Bot. Garten Uni. Heidelberg	А
173	Guaiacum sanctum	Bot. Garten der Uni. Heidelberg	А
174	Terminalia bentzoe	Bot. Garten Uni. Heidelberg	А
175	Swietenia mahagoni	Bot. Garten der Uni. Heidelberg	А
192	Entandrophragma angolense	Holzwerk Nagel	S
201	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В
202	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В

Herbarnr.	Art	Herkunft	Form
203	Hymenaea courbaril	Forstgenetik, Thünen-Institut	В
204	Intsia bijuga	Forstgenetik, Thünen-Institut	D
205	Intsia palembanica	Forstgenetik, Thünen-Institut	D
206	Caesalpinia echinata	Forstgenetik, Thünen-Institut	В
207	Caesalpinia echinata	Forstgenetik, Thünen-Institut	В
208	Caryocar brasiliense	Forstgenetik, Thünen-Institut	В
209	Swietenia humilis	Forstgenetik, Thünen-Institut	В
210	Swietenia humilis	Forstgenetik, Thünen-Institut	В
211	Swietenia humilis	Forstgenetik, Thünen-Institut	В
212	Swietenia humilis	Forstgenetik, Thünen-Institut	В
213	Swietenia humilis	Forstgenetik, Thünen-Institut	В
224	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
225	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
226	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
227	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
228	Swietenia macrophylla	Forstgenetik, Thünen-Institut	В
229	Swietenia mahagoni	Forstgenetik, Thünen-Institut	А
231	Guaiacum sanctum	Mexiko	S
232	Guaiacum sanctum	Brasilien	В
233	Guaiacum sanctum	Mexiko	S
235	Swietenia humilis	Mexiko	S
244	Gonystylus bancanus	Holzforschung, Thünen-Institut	S
247	Gonystylus bancanus	Holzforschung, Thünen-Institut	S
249	Swietenia macrophylla	USA	S
251	Swietenia macrophylla	USA	S
252	Swietenia macrophylla	USA	S
341	Machaerium scleroxylon	Fritz Kohl Furnier	S
344	Dalbergia retusa	Fritz Kohl Furnier	S
345	Entandrophragma cylindricum	Fritz Kohl Furnier	S
377	Guaiacum officinale	Bot. Garten der Uni. Bonn	А
378	Dalbergia melanoxylon	Holzforschung, Thünen-Institut	В
385	Swietenia macrophylla	Fritz Kohl Furnier	S
393	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
394	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
395	Entandrophragma cylindricum	Forstgenetik, Thünen-Institut	В
399	Intsia palembanica	Forstgenetik, Thünen-Institut	D

Herbarnr.	Art	Herkunft	Form
400	Intsia palembanica	Forstgenetik, Thünen-Institut	D
401	Intsia bijuga	Forstgenetik, Thünen-Institut	D
402	Intsia bijuga	Forstgenetik, Thünen-Institut	D
403	Intsia bijuga	Forstgenetik, Thünen-Institut	D
404	Intsia bijuga	Forstgenetik, Thünen-Institut	D
405	Intsia bijuga	Forstgenetik, Thünen-Institut	D
406	Intsia bijuga	Forstgenetik, Thünen-Institut	D
407	Intsia bijuga	Forstgenetik, Thünen-Institut	D
408	Intsia bijuga	Forstgenetik, Thünen-Institut	D
409	Intsia bijuga	Forstgenetik, Thünen-Institut	D
410	Intsia bijuga	Forstgenetik, Thünen-Institut	D
411	Intsia bijuga	Forstgenetik, Thünen-Institut	D
412	Intsia palembanica	Forstgenetik, Thünen-Institut	D
413	Intsia palembanica	Forstgenetik, Thünen-Institut	D
414	Intsia palembanica	Forstgenetik, Thünen-Institut	D
415	Intsia palembanica	Forstgenetik, Thünen-Institut	D
417	Intsia palembanica	Forstgenetik, Thünen-Institut	D
418	Intsia palembanica	Forstgenetik, Thünen-Institut	D
419	Intsia palembanica	Forstgenetik, Thünen-Institut	D
420	Intsia palembanica	Forstgenetik, Thünen-Institut	D
421	Intsia palembanica	Forstgenetik, Thünen-Institut	D
422	Intsia palembanica	Forstgenetik, Thünen-Institut	D
423	Swietenia humilis	Holzforschung, Thünen-Institut	В
424	Terminalia catappa	Holzforschung, Thünen-Institut	А
425	Caesalpinia spinosa	Bot. Garten Frankfurt	В
426	Caesalpinia spinosa	Bot. Garten Frankfurt	В
437	Terminalia catappa	Bot. Garten der Stadt Köln	В
438	Hymenaea courbaril	Bot. Garten der Uni. Osnabrück	В
440	Terminalia catappa	Bot. Garten der Uni. Osnabrück	В
442	Bulnesia arborea	Bot. Garten der Uni. Osnabrück	В
444	Myrocarpus frondosus	Bot. Garten der Uni. Osnabrück	В
446	Handroanthus impetiginosus	Bot. Garten der Uni. Münster	В
447	Khaya nyasica	Bot. Garten der Uni. Bayreuth	В
448	Pterocarpus indicus	Bot. Garten der Uni. Bayreuth	В
449	Handroanthus chrysanthus	Bot. Garten der Uni. Bayreuth	В
450	Toona sinensis	Forstbot. Garten Göttingen	В

Herbarnr.	Art	Herkunft	Form
451	Toona sinensis	Späth-Arbor. HumbUni. Berlin	В
452	Cedrela odorata	Bot. Garten der Uni. Bayreuth	В
453	Intsia bijuga	Bot. Garten der Uni. Bayreuth	В
455	Guaiacum sanctum	Bot. Garten der Uni. Ulm	В
456	Khaya senegalensis	Bot. Garten der Uni. Wien	В
457	Khaya grandifolia	Bot. Garten der Uni. Wien	В
458	Terminalia bellirica	Bot. Garten der Uni. Wien	В
459	Handroanthus impetiginosus	Bot. Garten der Uni. Ulm	В
461	Dalbergia obovata	Bot. Garten der Uni. Bayreuth	В
462	Pterocarpus macrocarpus	Bot. Garten der Uni. Bayreuth	В
463	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
464	Terminalia arenicola	Bot. Garten der Uni. Bayreuth	В
465	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
466	Handroanthus impetiginosus	Bot. Garten der Uni. Bayreuth	В
467	Terminalia bentzoe	Palmengarten Frankfurt	В
469	Guaiacum sanctum	Palmengarten Frankfurt	В
471	Caesalpinia ferrea	Bot. Garten der Uni. Bayreuth	В
474	Dalbergia decipularis	Max Cropp e.K.	S
477	Entandrophragma cylindricum	Max Cropp e.K.	S
482	Gonystylus spec.	Indonesien, Greenpeace	S
483	Gonystylus spec.	Indonesien, Greenpeace	S
486	Gonystylus spec.	Indonesien, Greenpeace	S
487	Gonystylus spec.	Indonesien, Greenpeace	S
489	Gonystylus spec.	Indonesien, Greenpeace	S
491	Gonystylus spec.	Indonesien, Greenpeace	S
492	Gonystylus spec.	Indonesien, Greenpeace	S
493	Gonystylus spec.	Indonesien, Greenpeace	S
499	Gonystylus spec.	Indonesien, Greenpeace	S
500	Gonystylus spec.	Indonesien, Greenpeace	S
504	Afzelia africana	Bot. Garten der Uni. Rostock	В
505	Khaya senegalensis	Bot. Garten der Uni. Rostock	В
506	Terminalia avicennioides	Bot. Garten der Uni. Rostock	В
507	Terminalia glaucescens	Bot. Garten der Uni. Rostock	В
508	Guaiacum officinale	Bot. Garten Nancy	В
509	Bulnesia arborea	Reiman Gardens, USA	В
510	Guaiacum officinale	Bot. Garten der Uni. Marburg	В

Herbarnr.	Art	Herkunft	Form
511	Intsia bijuga	Bot. Garten Hawaii	В
513	Dalbergia sissoo	Bot. Garten Hawaii	В
514	Guaiacum officinale	Bot. Garten Hawaii	В
515	Hymenaea courbaril	Bot. Garten Hawaii	В
603	Guaiacum officinale	Bot. Garten der Uni. Tübingen	В
604	Guaiacum officinale	Bot. Garten der Uni. Heidelberg	В
605	Guaiacum officinale	Bot. Garten der Uni. Heidelberg	В
606	Cedrela fissilis	Holzforschung, Thünen-Institut	S
607	Cedrela fissilis	Holzforschung, Thünen-Institut	S
608	Cedrela fissilis	Holzforschung, Thünen-Institut	S
609	Cedrela fissilis	Holzforschung, Thünen-Institut	S
610	Toona sinensis	Bot. Garten der Uni. Ulm	В
611	Gonystylus spec.	Indonesien, Greenpeace	S
612	Gonystylus spec.	Indonesien, Greenpeace	S
613	Gonystylus spec.	Indonesien, Greenpeace	S
614	Gonystylus spec.	Indonesien, Greenpeace	S
615	Gonystylus spec.	Indonesien, Greenpeace	S
616	Gonystylus spec.	Indonesien, Greenpeace	S
617	Gonystylus spec.	Indonesien, Greenpeace	S
618	Gonystylus spec.	Indonesien, Greenpeace	S
619	Gonystylus spec.	Indonesien, Greenpeace	S
620	Gonystylus spec.	Indonesien, Greenpeace	S
621	Gonystylus spec.	Indonesien, Greenpeace	S
622	Gonystylus spec.	Indonesien, Greenpeace	S
623	Gonystylus spec.	Indonesien, Greenpeace	S
624	Bowdichia nitida	DNA Bank Kew Gardens	D
625	Caesalpinia ferrea	DNA Bank Kew Gardens	D
626	Caesalpinia ferrea	DNA Bank Kew Gardens	D
627	Caryocar glabrum	DNA Bank Kew Gardens	D
628	Dalbergia sissoo	DNA Bank Kew Gardens	D
629	Dalbergia spruceana	DNA Bank Kew Gardens	D
630	Dalbergia latifolia	DNA Bank Kew Gardens	D
631	Dalbergia nigra	DNA Bank Kew Gardens	D
632	Dalbergia retusa	DNA Bank Kew Gardens	D
633	Dalbergia spruceana	DNA Bank Kew Gardens	D
634	Endospermum moluccanum	DNA Bank Kew Gardens	D

Herbarnr.	Art	Herkunft	Form
635	Neolamarckia cadamba	DNA Bank Kew Gardens	D
636	Pterocarpus santalinus	DNA Bank Kew Gardens	D
637	Pterocarpus santalinus	DNA Bank Kew Gardens	D
638	Pterocarpus soyauxii	DNA Bank Kew Gardens	D
639	Pterocarpus soyauxii	DNA Bank Kew Gardens	D
640	Pterocarpus indicus	DNA Bank Kew Gardens	D
641	Pterocarpus indicus	DNA Bank Kew Gardens	D
642	Pterocarpus indicus	DNA Bank Kew Gardens	D
643	Caesalpinia echinata	Holzforschung, Thünen-Institut	S

7.2 ITS-Sequenzen und Pairwise-Distance Analyse der Zygophyllaceae sowie der Bignoniaceae

In Abbildung A 1 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, die in Punkt 3.2.2 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Jeder Sequenz ist die Herbarnummer und die entsprechende Consensus-Nr. vorangestellt. Tabelle A 2 gibt alle Individuen und deren Art wieder, die jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 2 die errechneten Einzelwerte auf.

Tabelle A 2: Aufstellung der Individuen der Gattungen *Guaiacum* und *Handroanthus*, die zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die entsprechenden Herbarnummern sowie die Art.

ID	Art	Herbarnummer
Cons.1	Guaiacum sanctum	173, 231-233, 455, 469
Cons.2	Guaiacum sanctum	162
Cons.3	Guaiacum officinale	94, 101, 117, 119, 163, 167, 508, 510, 514, 603
Cons.4	Guaiacum officinale	156, 377, 604, 605
Cons.5	Bulnesia arborea	442, 509
Cons.6	Handroanthus impetiginosus	446, 459, 463, 465, 466
Cons.7	Handroanthus chrysanthus	449

	*** * *	*** * ** ***	* * ***	*** ** *	** ** **	* * * ***
173 Cons.1	AAACCTCTGCACAGGCAGAAC	GACCCGCGGACCCGTTG	TTAAAAACCCGGGAC	GGGGCCAGCG	AGAGCGAGCCCCTTCC	CCCAGCGTCGGGACGACCCGGG
231_Cons.1	AAACCTCTGCACAGGCAGAAC	CGACCCGCGGACCCGTTG	TTAAAAACCCGGGAC	GGGGCGAGCG	AGAGCGAGCCCTTCC	CCCAGCGTCGGGACGACCCGGG
232_Cons.1	AAACCTCTGCACAGGCAGAAC	GACCCGCGGACCCGTTG	TTAAAAACCCGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CCCAGCGTCGGGACGACCCGGG
233_Cons.1	AAACCTCTGCACAGGCAGAAC	CGACCCGCGGGACCCGTTG	TTAAAAACCCGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CCCAGCGTCGGGACGACCCGGG
455_Cons.1	AAACCTCTGCACAGGCAGAAC	CACCEGEGGACCEGTTG	TTAAAAACCCGGGGAC	agaged a g		
469_CONS.1	AAACCICIGCACAGGCAGAAC	CACCCGCGGACCCGIIG	TTAAAAACCCGGGGAC		AGAGUGAGUUUUTTUU	CCCAGCGICGGGACGACCCCGGG
94 Cons.3	AAACCTGCCGAGGCAGAAC	CACCCGCGCGACCCCGTTG	TCAGAACCCGGGGGAC		AGAGCGAGCCCCTTCC	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
101 Cons.3	AAACCTGCCGAGGCAGAAC	GACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CACCGCGTCGGGACGACCCGGG
117 Cons.3	AAACCTGCCGAGGCAGAAC	GACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCCACCG	AGAGCGAGCCCCTTCC	CACCGCGTCGGGACGACCCGGG
119_Cons.3	AAACCTGCCGAGGCAGAAC	GACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCTTCC	CACCGCGTCGGGACGACCCGGG
163_Cons.3	AAACCTGCCGAGGCAGAAC	CGACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CACCGCGTCGGGACGACCCGGG
167_Cons.3	AAACCTGCCGAGGCAGAAC	CGACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CACCGCGTCGGGACGACCCGGG
508_Cons.3	AAACCTGCCGAGGCAGAAC	CGACCCGCGCGCACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CACCGCGTCGGGACGACCCGGG
510_Cons.3			TCAGAACCCGGGGGAC	GGGGCCAGCG		CACCGCGTCGGGACGACCCGGG
603 Cons 3	AAACCIGCCGAGGCAGAAC	CACCCCCCCCCACCCCIIG	TCAGAACCCGGGGGAC		AGAGCGAGCCCCTTCC	CACCOCGICGGGACGACCCGGGG
156 Cons. 4	AAACCTGCCGAGGCAGAAC	CACCCCCCCCA CCCCTTC	TCACA ACCCCCCCCCCCAC		AGAGCGAGCCCTTCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
377 Cons.4	AAACCTGCCGAGGCAGAAC	GACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCTTCC	CCCCGCGTCGGGACGACCCGGG
604 Cons.4	AAACCTGCCGAGGCAGAAC	GACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCTTCC	CCCCGCGTCGGGACGACCCGGG
605_Cons.4	AAACCTGCCGAGGCAGAAC	CGACCCGCGGACCCGTTG	TCAGAACCCGGGGGAC	GGGGCGAGCG	AGAGCGAGCCCCTTCC	CCCCGCGTCGGGACGACCCGGG
442_Cons.5	ACACCTGCACCGGCAGAAC	CGACCCGCGCGCGCGACGAGTTG	TTTAAACCGGG	GGGACGGGCC	CGACCCGACCCC	CCCGCGGCCGGACGGACCGGGG
509_Cons.5	ACACCTGCACCGGCAGAAC	CGACCCGCGGACGAGTTG	TTTAAACCGGG	GGGACGGGCC	CGACCCGACCCC	CCCGCGGCCGGACGGACCGGGG
446_Cons.6	AAACCTGCAAAGC	AGACCGTGAACACGTTC	TCGAACACTAGGGGGAAA		GTCGTGACCCCTCCCC	
459_CONS.6	AAACCTGCAAAGC	AGACCGTGAACACGTTC	TCGAACACTAGGGGGAAA	CCACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GIGGIGACCCCTCCCC	CCCGGCGCAAGCGCGAGCTCGC
465 Cons. 6	AAACCTGCAAAGC	A GACCOTGA ACACGTTC	TCGAACACTAGGGGAAA	CGA CGTGGGGGGGGGGGGCGA CCTCCC	GTCGTCACCCCTCCCC	CCCGCCCARCCCCCACCTCCC
466 Cons.6	AAACCTGCAAAGC	AGACCGTGAACACGTTC	TCGAACACTAGGGGGAAA	CGACGTGGGGGGGCGACCTCCC	GTCGTGACCCCTCCCC	GCCGGCGCAAGCGCGAGCTCGC
449_Cons.7	AAACCTGCAAAGC	AGACCGCGAACACGTTC	TCGAACACTCGGGGGAAA	rcgacgcgggggggcgacctccc	GTCGTGACCCCTCCCC	GCCGGCGCGAGCGCGAGCTCCC
ruler	1		40	6070	.80	100110
	* * **	* * **	* ** * * ** *	** ** * **	* ** *	* * * *
173 Cons.1	GGTGTCAGAACCCGCGGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG	AACGCGCCAAGGAATCCGAAC	GGAAGGGCCGCG	CCCGCGTGGCCTCTTCACCGAA
231 Cons.1	GGTGTCAGAACCCGCGGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG	AACGCGCCAAGGAATCCGAAC	GGAAGGGCCGCG	CCCGCGTGGCCTCTTCACCGAA
232 Cons.1	GGTGTCAGAACCCGCGGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG-	AACGCGCCAAGGAATCCGAAC	GGAAGGGCCGCG	CCCGCGTGGCCTCTTCACCGAA
233_Cons.1	GGTGTCAGAACCCGCGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG-	-AACGCGCCAAGGAATCCGAAC	GG AA GGGCCGCG	CCCGCGTGGCCTCTTCACCGAA
455_Cons.1	GGTGTCAGAACCCGCGGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG-	-AACGCGCCAAGGAATCCGAAC	GGAAGGGCCGCG	CCCGCGTGGCCTCTTCACCGAA
469_Cons.1	GGTGTCAGAACCCGCGGGGGC-	GTCCCCGTCGCCCGA	ACAAACCCACGGCGCGG-	-AACGCGCCAAGGAATCCGAAC		
94 Cong 3	GGIGICAGAACCCGCGGGGA-	GICCCCGICGCCCGA	ACAAACCCACGGCGCGG-	-AACGCGCCAAGGAATCCGAAC		CCCGCGTGGCCTCTTCACCGAA
101 Cons.3	GCGTCGAAACCCACGGGTC-	GTCCCCCGTCGCCCGA	A GGAA CCCA CGGCGCGCGG-	-ACCGCGCCAAGGAATCCAAAC	IGA AAGAGCCGCG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
117 Cons.3	GOCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCAGGAAC
119 Cons.3	GGCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCAGGAAC
163_Cons.3	GGCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCAGGAAC
167_Cons.3	GGCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG	-ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCAGGAAC
508_Cons.3	GGCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	-ACCCCCCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCAGGAAC
510_Cons.3	GGCGTCGAAACCCACGGGTC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-			
603 Cone 3	CCCCTCCARACCCCACCCCTC-	GTCCCCGTCGCCCGA	ACCARCOCKCOCCCCO-	-ACCCCCCCAAGGAATCCAAAC	CA AACACCCCCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
156 Cons.4	GCCTCCAAACCCCCCCCCCCCC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	-ACCGCGCCAAGGAATCCAAAC	GA AAGAGCCGCG	CCCGCGCGCGCCTCTTCGCGAAC
377 Cons.4	GGCGTCGAAACCCGCGGGGCC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCGCGAAC
604_Cons.4	GGCGTCGAAACCCGCGGGGCC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCGCGAAC
605_Cons.4	GGCGTCGAAACCCGCGGGGCC-	GTCCCCGTCGCCCGA	ACGAACCCACGGCGCGG-	-ACCGCGCCAAGGAATCCAAAC	GAAAGAGCCGCG	CCCGCGCGCGCCTCTTCGCGAAC
442_Cons.5	GACCCCGTTGCCCCCGGGGC-	GTCCGCGCCGCA-AG	ACGAACCCACGGCGCGG-	-ACCGCGCCAAGGAATCCCAAT	CGGAGGGCCGCC	ACCGCGCGGCCCCTTTGAGAAT
509_Cons.5	GACCCCGTTGCCCCCGGGGGC-			ACCGCGCCAAGGAATCCCCAAT	CGGAGGGCCGCC	ACCGCGCGCGCCCCTTTGAGAAT
459 Cons. 6	GTCGTGCGGGGCTAACGAATCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGGAAAAACTCAACGAAGC	CONCECCECCITICCCCCCTT	Cacaarararacaaa	COAGIGIGCOICICIIGAAIGI
463 Cons.6	GTCGTGCGGGGCTAACGAATCC	CGGCGCGGCGCATGCGCCA	AGGAAAACTCAACGAAG	CGCTGCCCCCCGTTGCCCCCGTT	CGCGGTGTGTGCGGG	GGAGTGTGCGTCTCTTGAATGT
465 Cons.6	GTCGTGCGGGCTAACGAATCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGGAAAACTCAACGAAGO	CGCTGCCCCCGTTGCCCCGTT	CGCGGTGTGTGCGGGT	GGAGTGTGCGTCTCTTGAATGT
466_Cons.6	GTCGTGCGGGCTAACGAATCC	CCGCCCCGCCATGCGCCA	AGGAAAACTCAACGAAGO	CGCTGCCCCCGTTGCCCCGTT	CGCGGTGTGTGCGGGT	GGAGTGTGCGTCTCTTGAATGT
449_Cons.7	GTCGTGCGGGGCTAACGAATCC	CGGCGCGGCATGCGCCA	AGGAAAACTCAACGAAGO	CGCTGCCCCCCGTTGCCCCGTT	CCCCGCTCTCCCCCCGC	GGAGTGGGCGTCTCTTGAATGT
ruler		.140150	160170.			10
	* ** *********	*******	* * * * * * * * * * * * * * * * * * * *	*****************	*************	*** ************
173_Cons.1	CATAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGI	GAATCATCGAGTCTTTGAACGC
231_Cons.1	CATAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA		AATTGCAGAATCCCG	
232_CONS.1	CATAAAACGACTCTCGGCAAC	GGAIAICICGGUTUTCG	CATCOAT GAAGAACGTAG	CGAAAIGUGATAUTTGGTGTG 3CCAAATGCCATACTTCCTCCT	AATIGCAGAATUUCGI	CARICAICGAGICITTGAACGC
455_Cons.1	CATAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAATCATCGAGTCTTTGAACGC
469 Cons.1	CATAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGT	GAATCATCGAGTCTTTGAACGC
162 Cons.2	CATAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTAG	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAATCATCGAGTCTTTGAACGC
94_Cons.3	GAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	JCGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
101_Cons.3	GAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	JCGAAATGCGATACTTGGTGT G	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
117_Cons.3	GAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTAG	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGI	GAACCATCGAGTCTTTGAACGC
162 Cons.3	GAAAA CGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTAG	CGAAA IGCGATACTIGGIGIG		GRACCATCGAGICITIGAACGC
167 Cons 3	GAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCOATCAACAACGTAC	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
508 Cons.3	GAAAA CGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGI	GAACCATCGAGTCTTTGAACGC
510 Cons.3	GAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
514 Cons.3	GAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGT	GAACCATCGAGTCTTTGAACGC
603_Cons.3	GAAAACGACTCTCGGCAAC	CGGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
156_Cons.4	GAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
377_Cons.4	GAAAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA		AATTGCAGAATCCCG	
605 Cons.4	GAAAACGACTCTCGGCAAC	LGGATATUTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGUGATACTTGGTGTG	AA ITGUAGAA TCCCGI	
442 Cons 5	CACAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCOATCAACAACGTAC	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAATCATCGAGTCTTTGAACGC
509 Cons.5	CACAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGT	GAATCATCGAGTCTTTGAACGC
446 Cons.6	CATAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGT	GAACCATCGAGTCTTTGAACGC
459 Cons.6	CATAA CGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
463_Cons.6	CATAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
465_Cons.6	CATAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCGATGAAGAACGTA	CGAAATGCGATACTTGGTGTG	AATTGCAGAATCCCGT	
449 Cons 7	CATAACGACTCTCGGCAAC	GGATATCTCGGCTCTCG	CATCOATCAACAACGTAC	CGAAATGCGATACTTGGTGTG	AATTOCAGAATCCCG	GAACCATCGAGTCTTTGAACGC
ruler			70		310	

173 Conc 1	*****	********	* * * * * * * * *	* *	* ***** ***
TIS_COURT	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCACCCCCCC	CCCCCCCTCGGGGGGGG	-CGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
231_Cons.1	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCACCCCCGC	CCCCCCCTCGGGGGGGG	-CGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
232_Cons.1	AAGTTGCGCCCGAAGCCTCCGGGCCG		AACGTCGCACCCCCCCC		
455 Cons.1	AAGTTGCGCCCGAAGCCTCCGGGCCCG	AGGGCACGTCTCCCTGGGCGTCACGC	AACGICGCACCCCCCCC	CCCCCCCTCGGGGGGG	-CGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
469 Cons.1	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	ACGTCGCACCCCCGC	CCCCCCCTCGGGGGGGG	-AGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
162 Cons.2	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCACCCCCGC	CCCCCTCAGGGGGG	-AGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
94_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGTCAGCGGAGATTGG
101_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGTCAGCGGAGATTGG
117_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCCG		AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	
163 Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	ACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGTCAGCGGAGATTGG
167 Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG.	AGGGCACGTCTGCCTGGGCGTCACGC	ACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGTCAGCGGAGATTGG
508 Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGGTCAGCGGAGATTGG
510_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGTCAGCGGAGATTGG
514_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	AACGGGGGGTCAGCGGAGATTGG
603_Cons.3	AAGTTGCGCCCGAAGCCTCCGGGCCCG		AACGTCGCAACCCCCCG	CCCCCTCCGGGGTCG	
377 Cons.4	AAGTTGCGCCCGAAGCCTCCGGGCCCG	AGGGCACGTCTGCCTGGGCGTCACGC	A COTCOCA CCCCCCCCC	CCCCTCGGGGGCC	- GAACGGGGGTCAGCGGAGATIGG
604 Cons.4	AAGTTGCGCCCGAAGCCTCCGGGCCG.	AGGGCACGTCTGCCTGGGCGTCACGC	ACGTCGCACCCCCGCC	CCCCTCGGGGGCC	-GAACGGGGGGTCAGCGGAGATTGG
605 Cons.4	AAGTTGCGCCCGAAGCCTCCGGGCCG	AGGGCACGTCTGCCTGGGCGTCACGC	ACGTCGCACCCCCGCC	CCCCTCGGGGGCC	-GAACGGGGGTCAGCGGAGATTGG
442_Cons.5	AAGTTGCGCCCGAAGCCTCCGGGCCG.	AGGGCACGTCTGCCTGGGTGTCACGC	AACGTCGCATCCCCCC	CAACCCCCCTCGCGGGGGGTTAA	.GAGAGAGGGCGGAGCGGACGATGG
509_Cons.5	AAGTTGCGCCCGAAGCCTCCGGGCCG.	AGGGCACGTCTGCCTGGGTGTCACGC	AACGTCGCATCCCCCC	CAACCCCCCTCGCGGGGGGTTAA	.GAGAGAGGGCGGAGCGGACGATGG
446_Cons.6	AAGTTGCGCCCGAAGCCGTTAGGCCG	AGGGCACGTCTGCCTGGGCGTCTCGC	ATCGCGTCGCCCCCCTC	CC-CGCTCCTCGTGAGCG	GGCGCCGGGGGGGGAAAATGG
459_Cons.6	AAGTTGCGCCCGAAGCCGTTAGGCCG		ATCGCGTCGCCCCCCTC	CC-CGCTCCTCGTGAGCG	GGCGCCGGGGGGGGGAAAATGG
465_Cons_6	AAGIIGCGCCCGAAGCCGIIAGGCCG	AGGGCACGICIGCCIGGGCGICICGC	TCCCCTCCCCCCCCCC	CC-CGCICCICGIGAGCG	
466 Cons.6	AAGTTGCGCCCGAAGCCGTTAGGCCG.	AGGCACGTCTGCCTGGGCGTCACGC	ATCGCGTCGCCCCCCTC	CC-CGCTCCTCGTGAGCG	GGCGCCGGGGGGGGGAAAATGG
449 Cons.7	AAGTTGCGCCCGAAGCCGTTAGGCCG	AGGGCACGTCTGCCTGGGCGTCTCGC	ATCGCGTCGCCCCCCCC	CCGCTCCTCGTGAGCG	GGCGCCGGGGGGCGGAAAATGG
_ ruler			100		.440450460
	****** * ** ** * ****	******* *** * *** *	* ** **** **	* ** *** * * *	* * ***** * ** *
173 Cons.1	CCTCCCGCGTGCTCCCGCCCCGCGGTT	GCCCAAACACGAGTCCCCGGTGCGG	AGACCGCGCCACGGCCT	CCCCTCCAACCCACCCTTC	CCGGAAAGCCGTGCGCG-CGTCCC
231 Cons.1	CCTCCCGCGTGCTCCCGCCGCGGTT	JGCCCAAACACGAGTCCCCGGTGCGG	AGACCGCGCCACGGCCI	GCGGTGGTCGAAGCGACCCTTG	CCGGAAAGCCGTGCGCG-CGTCCC
232_Cons.1	CCTCCCGCGTGCTCCCGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGTGCGG	AGACCGCGCCACGGCCI	GCGGTGGTCGAAGCGACCCTTG	CCGGAAAGCCGTGCGCG-CGTCCC
233_Cons.1	CCTCCCGCGTGCTCCCGCCGCGGTT	JGCCCAAACACGAGTCCCCGGTGCGG	AGACCGCGCCACGGCCI	GCGGTGGTCGAAGCGACCCTTG	CCGGAAAGCCGTGCGCG-CGTCCC
455_Cons.1	cerecegeergerecegeeeger	JGCCCAAACACGAGTCCCCGGTGCGG		GCGGTGGTCGAAGCGACCCTTG	
162 Cons 2	CCTCCCGCGIGCICCCGCCGCGGGII	COUCHARCACICA CI COUCOU I GOUGA	A GACCGCGCCACGGCCI	CCCCTCCTCCAA & CCATCCCTTC	CCGGAAAAGCCGIGCGCG-CGICCC
94 Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	GCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
101 Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	GCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCT	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
117_Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
119_Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCCGTGCGCG-CGTCCC
163_Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	GCCCAAACACGAGTCCCCGGCGCGGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCCGTGCGCG-CGTCCC
167_Cons.3	CCTCCCGTGTGCTCCA GCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCCGTGCGCG-CGTCCC
510 Cons.3	CCTCCCCTCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCAAACACCA GTCCCCCCCCCCCCCCCCCCCCCCCCC	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
514 Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
603 Cons.3	CCTCCCGTGTGCTCCAGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCT	GCGGTGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
156_Cons.4	CCTCCCGTGAGCTCCCGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGCGGTCGAGACGACCCTTG	CGGGAGAGCCCGTGCGCG-CGTCCC
377_Cons.4	CCTCCCGTGAGCTCCCGCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGCGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
604_Cons.4	CCTCCCGTGAGCTCCCGCCCGCGGTT	JGCCCAAACACGAGTCCCCGGCGCGG	AGCGCGCCACGGCCI	GCGGCGGTCGAGACGACCCTTG	CGGGAGAGCCGTGCGCG-CGTCCC
	admadaa amaa admadaa adaa adaa adaa			GCGGCGGTCGAGACGACCCTTG	
605_Cons.4	CCTCCCGTCACCCCCCCCCCCGCCGCTT CCTCCCGTCCCCCCCCCC	JGCCCAAACACGAGTCCCCGGCGCGGG	Ad cacaces caaces	CCCCTTCCTTCCA & CCCCTTCC	CGGGAGAGCCCGTGCGCG-CGTCCC
442_Cons.5 509_Cons.5	CCTCCCGTGAGCTCCCGCCCGCGGTT CCTCCCGTGCGCCCCGCCGCCGGGCT CCTCCCGTGCGCCCCGCCGCCGCGGCT	JGCCCAAACACGAGTCCCCGGCGCGG JGCCCAAACACGAGTCCCCGGCGCGG JGCCCAAACACGAGTCCCCGGCGCGGG	AGCGCGCCACGGCCI	GCGGTGGTTGGAACGACCCTTG GCGGTGGTTGGAACGACCCTTG	CGGGAGAGCCCTGCGCG-CGTCCC CTGGAGAGCCCTGCGCG-CG-CGC CTGGAGAGCCCTGCGCG-CG-CG-CG
605_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6	CCTCCCGTG&CCTCCCGCCCGCGCGTT CCTCCCGTGCGCCCCGCCC	Seccaracacgaeteccegg Seccaracacgaeteccegges Seccaracacgaeteccegges Seccaratecgaeteccegges	AGCGCGCCACGGCCI AGCGCGCCACGGCCI CACGTCACGACCA	GCGGTGGTTGGAACGACCCTTG GCGGTGGTTGGAACGACCCTTG GTGGTGGTTGAAACTTCAACTC	CCGCGAGAGCCCTGCCCC-CG-CCC CTGCAGAGCCCTGCGCC-CG-CGC CTGCAGAGCCCTGCGCG-CG-CGC GCCTGCTGCCGTGCGAGACGCAT
605_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6	CCTCCCCTCAGCTCCCCCCCCCGCGTT CCTCCCGTGCGCCCCCGCCCCCCCGCGCT CCTCCCGTGCGCCCCCGCCCCCCGCGCCT CCTCCCGTGCGCCCCCGTGCGCGCGC	JCCCCAAACACGAGTCCCCGGCGCGG JGCCCAAACACGAGTCCCCGGCGCGG GGCCCAAACGCGAGTCCCCGGCGCGG JGCCCAAATGCGATCCCGCGGCGATG JGCCCAAATGCGATCCCGCGGCGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACCA CACGTCACGACCA	GCGGTGGTTGGAACGACCCTTG GCGGTGGTTGGAACGACCCTTG GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC	icggagagccstgcgcg-cftcc ictggagagcstgcgcg-cg-cg- ictggagagcstgcgcg-cg-cg- ictggagagcstgcgcg-cg-cg- igcstgctstcstgcgagacgcgat igcstgctgtcstgcgagacgcgat
605_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 463_Cons.6		JOCCCAAACACGAOTCCCCGGCCGG JOCCCAAACACGAOTCCCCGGCGCG JOCCCAAACACGAOTCCCCGGCGCGG JOCCCAAATCGATCCCCGCGGCGATG JOCCCAAATGCGATCCCGCGGCGATG JGCCCAAATGCGATCCCGCGGCGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA	CCGTGTTGGAACGACCCTTG GCGTGGTTGGAACGACCCTTG GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC	CCGGAGAGCCTGCCC-CG-CG- CCTGGAGAGCCTGCGC-CG-CG- CTGGAGAGCCTGCGCG-CG-CG- CGCTGCTGTCTGCGCGCG-CG-CG- CGCTGCTGTCTGCGAGACGCGA :GCGTGCTGTCGTGCGAGACGGCAT
605 Cons.4 442 Cons.5 509 Cons.5 446 Cons.6 459 Cons.6 463 Cons.6 465 Cons.6		JGCCCAAACACGA OTCCCCGGCGCG JGCCCAAACACGA OTCCCCGCGCGCG JGCCCAAACACGA OTCCCCGCGCGCG JGCCCAAATGCGA TCCCCGCGCGATG JGCCCAAATGCGA TCCCGCGGCGATG JGCCCAAATGCGA TCCCGCGGCGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA	CCGCTGCTTGCAACCACCCTTG CCGCTGGTTGCAACCACCCTTG GTGGTGGTTGAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACCTCAACTC	CGGGAGACCCTGCCG-CG-CC CTGGAGACCCTGCCG-CG-CC CTGGAGACCCTGCCG-CG-CC CGCTGCTGCTGCGCGAGACGCAT GCCTGCTGCTGCGCGAGACGCAT GCCTGCTGCGCGCGAGACGCCAT
605 Cons.4 442 Cons.5 509 Cons.5 446 Cons.6 459 Cons.6 463 Cons.6 465 Cons.6 466 Cons.6		JGCCCAAACGAOTCCCGGCGCG JGCCCAAACGAOTCCCGGCGCGG JGCCCAAACGAOTCCCGGCGGCGG JGCCCAAATGGATCCCGGCGGCGATG JGCCCAAATGGATCCCGCGGCGATG JGCCCAAATGGATCCCGCGGCGATG JGCCCAAATGGATCCCGCGGCGATG JGCCCAAATGGATCCCGGGGGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA	CCGTGGTTGGAACGACCTTG GCGGTGGTTGAACGACCACCTTG GTGGTGGTTGAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACCTCAACTC GTGGTGGTTGAAACCTCAACTC GTGGTGGTTGAAACCTCAACTC	
605 Cons.4 442_Cons.5 509_Cons.5 446 Cons.6 459_Cons.6 463_Cons.6 465_Cons.6 466_Cons.6 466_Cons.7 ruler		JGCCCAAACGAOTCCCGGCGGG JGCCCAAACGAOTCCCGGCGGGG JGCCCAAACGAOTCCCGGCGGGGG JGCCCAAATGGATCCCGGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG JGCCCAAATGGATCCCGGGGGATG	AG - CGCGCCA CGGCCT AG - CGCGCCA CGGCCT - CACGTCA CGACCA - 52053	GCGGTGGTTGAACGACCCTTG GCGGTGGTTGAACGTCAACTT GTGGTGGTTGAAACTTCAACTG GTGGTGGTTGAAACTTCAACTG GTGGTGGTTGAAACCTCAACTG GTGGTGGTTGAAACCTCAACTG GTGGTGGTTGAAACTCAACTG GTGGTGGTTGAAACTCAACTG GTGGTGGTTGAAACTCAACTG J550550.	CONSTRAINCEFFECCE - COLOR CTORADACCOTOCCC- CO- CO CCTORADACCOTOCCA OR COCA CCTOCTOTOTOCCA OR COCA CCTOCTOTOTOCCA OR COCA CCTOCTOTOTOCCA OR COCA CCTOCTOTOTOCCA OR COCA CCTOCTOTOTOCCA OR COCA CCTOCTOTOCTOCCA OR COCA CCTOCTOCTOCCA OR COCA CCTOCTOCCA OR COCA CCTOCTOCTOCCA OR COCA CCTOCTOCCA OR COCA CCTOCCA OR COCA CCTOCTOCCA OR COCA CCTOCTOCCA OR COCA CCTOCTOCCA OR COCA CCTOCCA OR COCA CCTOCCA OR COCA CCTOCTOCCA CCTOCCA OR COCA CCTOCCA CCTOCCA CCTOCCA CCTOCCA CCTOCCA CCTOCCA CCTOCCTOCCA C
005 Cons.4 442_Cons.5 509 Cons.5 446 Cons.6 463 Cons.6 465 Cons.6 465 Cons.6 466 Cons.6 449 Cons.7 ruler		SGCCGAAACACGAFTCCCCGGCGCGG SGCCCAAACACGAFTCCCCGGCGCGG SGCCCAAACGCATCCCCGCCGCGCG SGCCCAAATGCGATCCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACGA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA 52053	GCGTGGTGGAACGACCGTTG GCGTGGTGGAACGACCGACCG GTGGTGGTGGAACGACCGTT GTGGTGGTGGAACTTCAACTC GTGGTGGTGGAACCTCAACTC GTGGTGGTGGAACCTCAACTC GTGGTGGTGAAACCTCAACTC GTGGTGGTGGAACCTCAACTC 0	COGRAGACECTOCCCC- CO-CC CTORADACCCTOCCCC- CO-CC CTORADACCTOTOCCC- CO-CC CCTOCTOCTOTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOTOCTOCCACCGCCA CCCTOCTOCTOTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCA CCCTOCTOCTOCCACCGCCACCCCC
005_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 463_Cons.6 463_Cons.6 466_Cons.6 466_Cons.7 ruler		JGCCCAAACACGA/TCCCCGGCGCGG JGCCCAAACACGA/TCCCCGGCGCGG JGCCCAAACGCA/TCCCCGGCGCGG JGCCCAAATGCGA/TCCCGGCGGCGATG JGCCCAAATGCGA/TCCCGCGGCGATG JGCCCAAATGCGA/TCCGCGGCGATG JGCCCAAATGCGA/TCCCGCGGCGATG JGCCCAAATGCGA/TCCCGCGGCGATG JGCCCAAATGCGA/TCCCGCGGCGATG JGCCCAAATGCGA/TCCGCGGCGATG JGCCCAAATGCGA/TCCCGCGGCGATG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT 	CCGTGGTGGAACGACCGTTG GCGTGGTGGAACGACCGACCGT GTGGTGGTGAAACTTCAACTC GTGGTGGTGAAACTTCAACTC GTGGTGGTGAAACTCCAACTC GTGGTGGTGAAACCTCAACTC GTGGTGGTTGAAACTCCAACTC 0540550.	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
005_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 463_Cons.6 465_Cons.6 466_Cons.6 449_Cons.7 ruler		30000AAACGA0T000060003 30000AAACGA0T000000000 30000AAACGA0T000000000 30000AAAT000AT000000000 30000AAAT000AT0000000000 30000AAAT000AT0000000000 30000AAAT000AT0000000000 300000AAAT00000000000000000000000000000	40 - CCCCCACCACCACC 40 - CCCCCACCACC - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - CACGTCACCACCA - 52053	οςοστοστοσλαζολςςολς ος σςοστοστοσλαζολςςολςςολ στοστοστοσλαζοττςολοτα στοστοστοσλαζοττςολοτα στοστοστοσλαλοττςολοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοστοστοσλαλοταζόλοτα στοσλαλοταζόλοτα στοσλαδοτα στοσλαλοταζόλοτα στοσλαλοταζόλοτα στοσλαδοτα στοσλαλοταζόλοτα στοσλαλοταζόλοτα στοσλαδοτα στοσλαλοταζόλοτα στοσλαλοταζόλοτα στοσλαδοτα στοσλαλοταζόλοτα στοσλαδοτα στοσλα στοσλαδοτα στοσλα στοσλα στοσλα στο δ στοσλα στο δ στοσλα στο δ στο δ	CC
005_Cons.4 442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 465_Cons.6 465_Cons.6 465_Cons.6 449_Cons.7 ruler 173_Cons.1 231_Cons.1		SGCCGAAACACGA/TCCCCGGCGCGG SGCCCAAACACGA/TCCCCGGCGCGG SGCCCAAACGCA/TCCCCGGCGCGG SGCCCAAATGCA/TCCCCGGCGCATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAATGCA/TCCCGCGGCGATG SGCCCAATGCA/TCCCGCGGCGATG SGCCCAATGCA/TCCCGCGGCGATG .490500510 * * * ***	AGCGCGCCACGGCCT AGCGCGCCACGGCCT CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA 	CCGTGGTGGACGACCGACCGAC CCGTGGTGGAACGACCGACCGTG GTGGTGGTGGAACGACTACACTG GTGGTGGTGGAACTTCAACTC GTGGTGGTGGAACCTCAACTC GTGGTGGTGGAACCTCAACTC GTGGTGGTGGAACCTCAACTC 0540550. 	CCC
005_Cons.4 442_Cons.5 509_Cons.5 466_Cons.6 465_Cons.6 466_Cons.6 466_Cons.7 ruler 173_Cons.1 231_Cons.1 232_Cons.1		SGCCGAAACAGAFTCCCGGGGGGG SGCCGAAACGAFTCCCGGGGGGGG SGCCGAAACGAFTCCCGGGGGGGA SGCCGAATGGATTCCCGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAAGGGATCCGGGGGGATG SGCCGAAGGGATCCGGGGGGATG SGCCGAAGGGGCGCGCGGGGATG SGCCGAAGGGGCGCGGGGATG SGCCGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AGGCGCCACGGCCA AGCGCGCACGGCCT CACGTCACGACGA CACGTCACGACGA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA S20S3 * * AACGA	GCGTGGTTGGAACGACCGCCTTG GCGTGGTTGGAACGACCGCCTTG GTGGTGGTGAACGACCACCTTCAACTC GTGGTGGTGAAACTCCAACTC GTGGTGGTGAAACCCCAACTC GTGGTGGTGAAACCCCAACTC GTGGTGGTGAAACCCCAACTC GTGGTGGTGAAACCCCAACTC GCGGACCCCAGTCAACCCCCACCCCACCCCACCCCAGGCCGCAGGCCCAGGCCCAGGCCCAGGCCGCAGCCCCAGGCCGCACCCCAGGCCGCACCCCAGGCCGCACACCCCAGGCCGCACACCCCAGGCCGCACACCCCAGGCCGCACACCCCAGGCCGCACACCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCAGGCCGCACACCCCCACGCCGC	CCC
005 Cons. 4 442 Cons. 5 509 Cons. 5 446 Cons. 6 459 Cons. 6 459 Cons. 6 465 Cons. 6 465 Cons. 6 449 Cons. 7 ruler 173 Cons. 1 231 Cons. 1 232 Cons. 1 232 Cons. 1		SGCCGAAACACGATCCCCGGCGGCG SGCCCAAACGATCCCCGGCGGCGG SGCCCAAACGATCCCCGGCGGCGG SGCCCAAATGGATCCCGCGGCGATG SGCCCAAATGGATCCCGCGGCGATG SGCCCAAATGGATCCCGCGGCGATG SGCCCAAATGGATCCCGCGGCGATG SGCCCAAATGGATCCCGCGGCGATG SGCCCAAATGGATCCCGCGGCGATG SGCCCAATGGATCCCGCGGCGATG SGCCGAATGGATCCCGCGGCGATG SGCCGAACGGCCC CGGCGCGAACGGCCC CGGCGCGAACGGCCC CGGCGCGAACGGCCC	AdcococcAcogocc AdcococcAcogocc 	GCGTGGTGGAACGACCGTTG GCGTGGTGGAACGACCGTC GTGGTGGTGAAACTTCAACTC GTGGTGGTGAAACTTCAACTC GTGGTGGTGGAAACTCCAACTC GTGGTGGTGGAAACCTCAACTC GTGGTGGTGGAAACCTCAACTC GTGGTGGTGGAACCCCAACTC GTGGGGGCGCAACTCAGCGGGA CGCGACCCCAGTCAGGCGGGA CGCGACCCCAGTCAGGCGGGA CGCGACCCCAGTCAGGCGGGA	Constant of the constant of th
005 - Cons. 4 442 - Cons. 5 509 - Cons. 5 446 - Cons. 6 459 - Cons. 6 463 - Cons. 6 465 - Cons. 6 465 - Cons. 6 466 - Cons. 6 449 - Cons. 7 173 - Cons. 1 231 - Cons. 1 232 - Cons. 1 232 - Cons. 1 455 - Cons. 1 455 - Cons. 1 455 - Cons. 1 455 - Cons. 1		SGCCGAAACACGATCCCCGGCGCGG SGCCCAAACGGATCCCCGGCGGCG SGCCCAAACGGATCCCCGGCGGCG SGCCCAAATGCGATCCCCGGCGGCG SGCCCAAATGCGATCCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAACGCCCC CGGG	AGCGCGCCACGGCCT AGCGCGCCACGGCCT AGCACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA 	GCGTGGTTGGAACGACCGTCG GCGTGGTTGAACGACGACCGACCTT GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTTGAAACTTCAACTC GTGGTGGTGAAACTCCAACTC GTGGTGGTGAAACTCCAACTC GTGGTGGTGAACTCCAACTC GTGGTGGTGAACTCCAACTC GCGGACCCCAGTCAGCGGGA GCGGACCCCAGTCAGCCGGGA GCGGACCCCAGTCAGCCGGAGCAGGA GCGGACCCCAGTCAGCCGGGA GCGGACCCCAGTCAGCCGGGA GCGGACCCCAGTCAGCCGGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	CCC CCC CCC CCC CCC CCC CCC CCC
005 CORS.4 442 CORS.5 509 CORS.5 446 CORS.6 463 CORS.6 465 CORS.6 465 CORS.6 466 CORS.6 449 CORS.1 231 CORS.1 231 CORS.1 232 CORS.1		SGCCGAAACAGAFTCCCGGGGGGG SGCCGAAACGAFTCCCGGGGGGGG SGCCGAAACGAFTCCCGGGGGGGG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAATGGATTCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATCCGGGGGGATG SGCCGAAATGGATCCGGGGGGATG SGCCGAAGGGATCCGGGGGGATG SGCCGAAGGGGCGGGGGGGGGG CGGG	AGCCCCCACCGCCC AGCCCCCACCGCC CACGTCACCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCA CACGTCACCACCACCACCA CACGTCACCACCACCACCACCACCA CACGTCACCACCACCACCACCACCACCACCACCACCACCACCAC	GCG70GTGGAACGACCGACCTTG GCG70GTGGAACGACCGACCTTG GTGGTGTGAACTCCACTG GTGGTGTGAACTCCACTG GTGGTGTGAACTCCACTG GTGGTGGTGAACTCCACTG GTGGTGGTGAACCTCCACTG GTGGTGGTGAACCTCCACTG GTGGTGGTGAACCTCCACTG GTGGTGGTGAACCTCCACTG GTGGTGGTGAACTCCACTGCACTG GCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGTCGGCGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGCGGGA CGCGGACCCCAGTCAGTCGGCGGA	Construction Construction<
005 - Cons. 4 442 - Cons. 5 509 - Cons. 5 446 - Cons. 6 459 - Cons. 6 459 - Cons. 6 465 - Cons. 6 466 - Cons. 7 ruler 173 - Cons. 1 231 - Cons. 1 232 - Cons. 1 232 - Cons. 1 232 - Cons. 1 1232 - Cons. 1 1232 - Cons. 1 1232 - Cons. 1 1232 - Cons. 1 232 - Cons. 1 233 - Cons. 1 233 - Cons. 1 233 - Cons. 1 233 - Cons. 1 234 - Cons. 1 234 - Cons. 1 235 - Cons. 1 235 - Cons. 1 237 - Cons. 1 247 - Cons. 2 247 -		GCCCAAACACGA/TCCCCGCGGCGG GCCCAAACGA/TCCCCGCGGCGGG GGCCCAAACGA/TCCCCGCGGCGGG GGCCCAAACGA/TCCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCCGCGGCGATG GGCCCAAATGCA/TCCGCGCGGCGATG GGCCCAAATGCA/TCCGCGGCGATG GCCCCAAATGCA/TCCGCGGCGATG GGCCCAAATGCA/TCCGCGCGCGATG GGCCCAAATGCA/TCCGCGCGCGCGCGCGCCC CGG - CGCGAACGCCGCC CGGG - CGCGAACGCCGCC CGGG - CGCGAACGCCCC CGGACGCCCAACGCCCC - CGCGAACGCCCC CGGG - CGCGAACGCCCC CGGAACGCCCC - CGCGAACGCCCC	AGCCCCCACCGCCC CCCCCACCGCCACCGCC CACCTCACCACCACCA CACCTCACCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA CACCTCACCACCA 		CC CC
005 CORS.4 442 CORS.5 509 CORS.5 446 CORS.6 459 CORS.6 455 CORS.6 455 CORS.6 455 CORS.6 455 CORS.1 449 CORS.1 231 CORS.1 233 CORS.1 455 CORS.1 455 CORS.1 455 CORS.1 455 CORS.1 455 CORS.1 301 CORS.3		SGCCGAAACACGAFTCCCCGGCGCGG SGCCCAAACACGAFTCCCCGGCGCGGG SGCCCAAACGCATCCCCGCCGCGCG SGCCCAAATGCGATTCCCCGCGCGATG SGCCCAAATGCGATCCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAACGCCCC CGGG	AGCGCGCCACGGCC AGCGCGCACGGCC CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGTCACGACCA CACGA		CCC CCC
005 CORS.4 442 CORS.5 509 CORS.5 446 CORS.6 463 CORS.6 465 CORS.6 465 CORS.6 464 CORS.6 449 CORS.1 231 CORS.1 231 CORS.1 232 CORS.1 232 CORS.1 233 CORS.1 123 CORS.1 125 CORS.1		SGCCGAAACAGAFTCCCGGGGGGG SGCCGAAACAGAFTCCCGGGGGGGG SGCCGAAACGGATCCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATTCCGGGGGGGATG SGCCGAAATGGATCCGGGGGGGATG SGCCGAAATGGATCCGGGGGGGATG SGCCGAAGGGACGGGGGGATG SGCCGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AdCCCCCCACCGCCT 		Construction Construction Construction Constrelin Construction Con
005 - Cons. 4 442 - Cons. 5 509 - Cons. 5 446 - Cons. 6 459 - Cons. 6 459 - Cons. 6 456 - Cons. 6 456 - Cons. 6 456 - Cons. 7 231 - Cons. 1 232 - Cons. 1 232 - Cons. 1 232 - Cons. 1 132 - Cons. 1 1459 - Cons. 1 1659 - Cons. 1 170 - Cons. 3 117 - Cons. 3 117 - Cons. 3 119 - Cons. 3		SGCCGAAACACGA/TCCCCGGGGGGG SGCCCAAACGA/TCCCCGGGGGGG SGCCCAAACGA/TCCCCGGGGGGG SGCCCAAATGCA/TCCCGGGGGATG SGCCCAAATGCA/TCCCGGGGGATG SGCCCAAATGCA/TCCCGGGGGATG SGCCCAAATGCA/TCCCGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGATG SGCCCAAATGCA/TCCGGGGGGGGATG SGCCCAAAGGCA/TCCGGGGGGGATG SGCCCAAAGGCA/TCCGGGACGCGCGC SGGC	AG - COCGCCA COGCCT AG - COCGCCA COGCCT - CACGTCA COACCA - CACGTCA - C		CCC CCC
005 Cons. 4 442 Cons. 5 509 Cons. 5 446 Cons. 6 459 Cons. 6 465 Cons. 6 465 Cons. 6 465 Cons. 6 466 Cons. 6 420 Cons. 7 231 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 165 Cons. 6 455 Cons. 3 101 Cons. 3 119 Cons. 3		SGCCGAAACACGAFTCCCCGGGGGGG SGCCGAAACACGAFTCCCCGGGGGGG SGCCGAAACGCATCCCCGGGGGGG SGCCGAAATGCGATCCCGCGGCGATG SGCCGAAATGCGATCCCGCGGGGATG SGCCGAAATGCGATCCCGCGGGGATG SGCCGAAATGCGATCCCGCGGGGATG SGCCGAAATGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGATG SGCCGAAGTGCGATCCGCGGCGCGCGCGCG SGGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	Ad - CCCCCCACCGCCT Ad - CCCCCACCGCCT CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA 		
005 CORS.4 442 CORS.5 509 CORS.5 446 CORS.6 459 CORS.6 459 CORS.6 455 CORS.6 465 CORS.6 465 CORS.7 ruler 173 CORS.1 231 CORS.1 232 CORS.1 232 CORS.1 232 CORS.1 232 CORS.1 232 CORS.1 1232 CORS.1 1232 CORS.1 1232 CORS.1 1232 CORS.1 1232 CORS.1 1232 CORS.1 1232 CORS.1 153 CORS.1 165 CORS.1 165 CORS.1 17 CORS.3 107 CORS.3 167 CORS.3 167 CORS.3		GCCCAAACACGATCCCCGCCGCGCG GCCCAAACGATCCCCGCGCGCGGG GGCCCAAACGATCCCCGCCGCGCGGG GGCCCAATGCATCCCGCCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCGATCCCGCGCGCGTG GGCCCAATGCGATCCCCGCGCGCGTG GGGG - CGCGAACGCGCCC GGGG - CGCGAACGCCCC GGG - CGCGAACGCCCC CGGG - CGCGAACGCCCC CGGGAC	Ad - COCGCCA COGCCT - COCGCA COGCCA - CACGTCA COACCA - CACGTCA		CC CC CC <
405-Cons.4 442_Cons.5 509-Cons.5 446-Cons.6 459-Cons.6 455-Cons.6 456-Cons.6 456-Cons.6 456-Cons.7 231-Cons.1 231-Cons.1 232-Cons.1 232-Cons.1 232-Cons.1 232-Cons.1 123-Cons.1 123-Cons.1 133-Cons.1 133-Cons.1 133-Cons.1 153-Cons.1 153-Cons.1 153-Cons.1 153-Cons.1 153-Cons.3 117-Cons.3 153-Cons.3 157-Cons.3 508-Cons.3 508-Cons.3		SGCCGAAACACGA/TCCCCGGGCGGG SGCCCAAACGA/TCCCCGGCGGCGG SGCCCAAACGA/TCCCCGGCGGCG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCGA/TCCCGCGGCGATG CGCGA/TCCCGCGA/TCCCGCGCGCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCC CGGGCGCGAACGCCCCC CGGGCGCGAACGCCCCC CGGGCGCGAACGCCCCC CGGGCGCGAACGCCCCC CGGGCGCGAACGCCCCCC CGGGCGCGAACGCCCCCC CGGGCGCGAACGCCCCCCCCCCCCCCCCCCCCCCCC	AG - COCGCCA COGCCT AG - COCGCCA COGCCT - CACGTCA COACCA - CACG		CCC CCC
005 - Cons. 4 442 - Cons. 5 509 - Cons. 5 446 - Cons. 6 455 - Cons. 6 455 - Cons. 6 445 - Cons. 6 445 - Cons. 6 449 - Cons. 7 231 - Cons. 1 232 - Cons. 1 232 - Cons. 1 232 - Cons. 1 233 - Cons. 1 455 - Cons. 1 455 - Cons. 3 117 - Cons. 3 119 - Cons. 3 119 - Cons. 3 119 - Cons. 3 119 - Cons. 3 150 - Cons. 3 508 - Cons. 3 508 - Cons. 3 514 - Cons. 3 514 - Cons. 3		SGCCGAAACACGAFTCCCCGGGCGGG SGCCCAAACACGAFTCCCCGGCGGCGG SGCCCAAACGCATCCCCGCCGCGCG SGCCCAAATGCGATTCCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCGCGCGCGATG SGCCCAAATGCGATCCGCGCGCGATG SGCCCAAATGCGATCCGCGCGCGCGCGCGCGCGCGCGCGCG	AGCCCCCACCGCCC AGCCCCCACCGCC CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA CACGTCACCACCA 		CCC
005 - Cons. 4 442_Cons. 5 509 - Cons. 5 446_Cons. 6 459_Cons. 6 465_Cons. 6 465_Cons. 6 466_Cons. 7 ruler 173_Cons. 1 231_Cons. 1 231_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 123_Cons. 1 232_Cons. 1 123_Cons. 1 232_Cons. 1 123_Cons. 1 232_Cons. 1 123_Cons. 1 233_Cons. 1 331_Cons. 3 101_Cons. 3 119_Cons. 3 119_Cons. 3 119_Cons. 3 157_Cons. 3 508_Cons. 3 510_Cons. 3 514_Cons. 5 515_Cons. 5 515_Cons. 5 515_Cons. 5 515_Cons		GCCCAAACACGATCCCCGCCGCGCG GCCCAAACGATCCCCGCGCGCGCG GGCCCAAACGATCCCCGCCGCGCGCG GGCCCAAACGATCCCCGCCGCGCGTG GGCCCAATGCATCCCGCCGCGCTG GGCCCAATGCATCCCGCCGCGCTG GGCCCAATGCATCCCGCCGCGCTG GGCCCAATGCATCCCGCCGCGCTG GGCCCAATGCATCCCGCCGCGCTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCGCGCGCGCTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCGATCCCGCGCGCGCGC GGCCCAACGCCCC GGCCCAAATGCGATCCCGCGCGCGCGCCC GGCCCAACGCCCC GGG - CGCGAACGCCCC GGG - CGCGAACGCCCC <td< th=""><th>Ad - COCGCCA COGCCT </th><th></th><th>CC CC CC<</th></td<>	Ad - COCGCCA COGCCT 		CC CC<
442_Cons.5 509_Cons.5 446_Cons.6 446_Cons.6 459_Cons.6 465_Cons.6 465_Cons.6 449_Cons.7 231_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 455_Cons.1 455_Cons.1 455_Cons.1 455_Cons.1 455_Cons.1 162_Cons.3 101_Cons.3 117_Cons.3 131_Cons.3 151_Cons.3 506_Cons.3 514_Cons.3 514_Cons.3 514_Cons.3 514_Cons.3		SGCCGAAACACGA/TCCCCGGCGCGG SGCCCAAACACGA/TCCCCGGCGCGGG SGCCCAAACGA/TCCCCGGCGCGCG SGCCCAAATGCA/TCCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCCGCGGCGATG SGCCCAAATGCA/TCCGCGGCGCATG SGCCCAAATGCA/TCCGCGGCGCATG SGCCCAAATGCA/TCCGCGGCGCATG SGCCCAAATGCA/TCCGCGGCGCGATG SGCCCAAATGCA/TCCGCGGCGCGATG SGCCCAAATGCA/TCCGCGGCGCGATG SGCCCAAATGCA/TCCGCGGCGCGCGCC CGGG	AG - COCGCCA COGCCT AG - COCGCCA COGCCT - CACGTCA COACCA - CACG		CCC CCC CCC
005 Cons. 4 442 Cons. 5 509 Cons. 5 446 Cons. 6 459 Cons. 6 459 Cons. 6 450 Cons. 6 450 Cons. 6 450 Cons. 7 7 uler 173 Cons. 1 231 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 232 Cons. 1 123 Cons. 1 123 Cons. 1 133 Cons. 1 133 Cons. 1 133 Cons. 1 133 Cons. 1 145 Cons. 1 152 Cons. 1 152 Cons. 1 152 Cons. 3 101 Cons. 3 150 Cons. 3 506 Cons. 3 514 Cons. 3 514 Cons. 3 514 Cons. 3 156 Cons. 4 517 Cons. 3 514 Cons. 3 514 Cons. 3 514 Cons. 3 514 Cons. 3 517 Cons. 4 517 Cons. 5 518 Cons. 5 518 Cons. 4 518 Cons. 5 518 Cons. 4 518 Cons. 5 518 Cons. 4 518 Cons. 5 518 Cons. 4 518 Cons. 5 518 Cons. 5		SGCCGAAACACGA/TCCCGGGGGGG SGCCCAAACGA/TCCCGGGGGGGG SGCCGAAACGA/TCCCGGGGGGAT SGCCGAATGGA/TCCCGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAATGGA/TCCGGGGGGATG SGCCGAACGGACGGGGA CGGA-CGCGAACGGCGC CGG-CGCGAACGGCGC CGG-CGCGAACGCCCC CGG-CGCGAACGGCGC CGG-CGCGAACGGCGC CGG-CCGGAACGCCCC CGG-CCGGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCC CGG-CCGCGAACGCCCCCCCCCCCCCCCCCCCCCCCCCC	Ad - CCCCCCA COGCCT - CCACCTCA CCACCA - CCACCTCA CCACCA - CACCTCA CCACCA - CACCTCACCACA - CACCTCACCACA - CACCTCACCACACA - CACCTCACCACACACACACACACACACACACACACACAC		CC CC CC <
405-Cons. 4 442-Cons. 5 509-Cons. 6 445-Cons. 6 459-Cons. 6 459-Cons. 6 455-Cons. 6 456-Cons. 6 456-Cons. 6 421-Cons. 1 231-Cons. 1 232-Cons. 1 232-Cons. 1 232-Cons. 1 232-Cons. 1 232-Cons. 1 123-Cons. 1 123-Cons. 1 123-Cons. 1 123-Cons. 1 123-Cons. 1 123-Cons. 1 123-Cons. 1 133-Cons. 1 133-Cons. 1 133-Cons. 1 153-Cons. 1 153-Cons. 1 165-Cons. 4 506-Cons. 4 506-Cons. 4 507-Cons. 4 507-Co		GCCCAAACACGATCCCCGCCGCGCGG GCCCAAACACGATCCCCGCCGCGCGGG GGCCCAAACGATCCCCCGCCGCGCGGG GGCCCAAACGATCCCCCGCCGCGTG GGCCCAAACGATCCCCCGCCGCATG GGCCCAATGCATCCCCGCCGCGATG GGCCCAATGCATCCCCGCCGCGATG GGCCCAATGCATCCCGCCGCGATG GGCCCAATGCATCCCGCGCGATG GGCCCAATGCATCCCGCGCGCGATG GGCCCAATGCATCCCGCGCGCGATG GGCCCAATGCATCCCGCGCGCGATG GGCCCAATGCATCCCGCGCGCGATG GGCCCAATGCGATCCCGCGCGCGATG GGCCCAATGCGATCCCCGCGCGCGATG GGCCCAATGCGATCCCCGCGCGCGATG GGCCCAAAGCGCCCCCCGCGAACGCCCCCCCGGG CGGGAACGCCCCCCCGCGAACGCCCCCCCCGGG CGGG -CGCGAACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AG - COCGCCA COGCCT CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA CACGTCA COACCA 		CC CC CC <
442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 455_Cons.6 455_Cons.6 455_Cons.6 465_Cons.6 465_Cons.7 231_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 455_Cons.6 455_Cons.6 455_Cons.6 455_Cons.1 459_Cons.1 162_Cons.3 117_Cons.3 162_Cons.3 163_Cons.3 163_Cons.3 163_Cons.3 514_Cons.3 514_Cons.3 514_Cons.3 514_Cons.4 377_Cons.437_Cons.4 377_Cons.437_Cons.4 37		SGCCGAAACACGAFTCCCCGGGGGGG SGCCCAAACACGAFTCCCCGGGGGGG SGCCCAAACGGAFTCCCCGGGGGGG SGCCCAAATGCGATTCCCCGGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGATG SGCCCAAATGCGATCCCGCGGCGCATG SGCCCAAATGCGATCCCGCGGCGCGCGCC CGGG	AG - CCCCCCA COGCCT 		CCC
005 - Cons. 4 442_Cons. 5 509 - Cons. 5 446_Cons. 6 459_Cons. 6 465_Cons. 6 465_Cons. 6 466_Cons. 7 7 1231_Cons. 1 231_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 123_Cons. 1 232_Cons. 1 123_Cons. 1 123_Cons. 1 232_Cons. 1 123_Cons. 1 123_Cons. 1 233_Cons. 1 233_Cons. 1 310_Cons. 3 107_Cons. 3 117_Cons. 3 117_Cons. 3 117_Cons. 3 1167_Cons. 4 403_Cons. 4 003_Cons. 5 509_Cons. 4		GCCCAAACACGATCCCCGCCGCGGG GCCCAAACGATCCCCGCGCGCGGG GGCCCAAACGATCCCCGCGCGCGGG GGCCCAAACGATCCCCGCGGCGATG GGCCCAATGCATCCCGCGCGCATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGGCGATG GGCCCAATGCATCCCGCGCGCATG GGCCCAATGCATCCCGCGCGCATG GGCCCAATGCGATCCCGCGCGCGCATG GGCCCAATGCGATCCCCGCGCGCGCC GGGCCCAATGCGATCCCCGCGCGCGCCC GGG	Ad - CCCCCCA COGCCT - CCACCTCA CCACCA - CCACCTCA CCACCA - CACCTCA CCACCA - CACCTCACCACA - CACCTCACCACA - CACCTCACCACA - CACCTCACCACACA - CACCTCACCACACA - CACCTCACCACACACACACACACACACACACACACACAC		CC CC CC <
442_Cons.5 509_Cons.5 446_Cons.6 459_Cons.6 459_Cons.6 455_Cons.6 455_Cons.6 455_Cons.7 231_Cons.1 231_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 232_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 123_Cons.1 133_Cons.3 133_Cons.3 145_Cons.1 152_Cons.1 152_Cons.3 151_Cons.3 151_Cons.3 151_Cons.4 377_Cons.4 377_Cons.4 377_Cons.4 377_Cons.4 350_Cons.5 550_Cons.5		GCCCAAACACGATCCCCGCCGCGCG GCCCAAACACGATCCCCCGCCGCGCGG GGCCCAAACGATCCCCCGCCGCGCGG GGCCCAAACGATCCCCCGCCGCGTG GGCCCAAACGATCCCCCGCCGCGTG GGCCCAATGCCATCCCCCGCCGCATG GGCCCAATGCCATCCCCGCCGCGTG GGCCCAATGCCATCCCGCCGCGATG GGCCCAATGCCATCCCGCCGCGATG GGCCCAATGCCATCCCGCGCGCATG GGCCCAATGCCATCCCGCGCGCGATG GGCCCAATGCCATCCCGCGCGCGATG GGCCCAATGCCATCCCGCGCGCGATG GGCCCAATGCCATCCCGCGCGCGCATG GGCCCAATGCCATCCCGCGCGCGCCGC GGCCCAAATGCGATCCCGCGCGCGCCGCC GGCCCAAATGCGATCCCGCGCGCGCCCC GGCCCAAAGCGCCCCCCGCGAACGCCCCCCCCGGG CGGGACCGCCCCCCGGGCGAACGCCCCCCCCGGG CGGG CGCGAACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AG - COCGCCA COGCCT AG - COCGCCA COGCCT - CACGTCA COACCA - CACGA - CACG		CCC CCC CCC
442 Cons 5 509 Cons .5 446 Cons .6 459 Cons .6 459 Cons .6 459 Cons .6 450 Cons .6 450 Cons .6 450 Cons .6 450 Cons .1 231 Cons .1 232 Cons .1 232 Cons .1 233 Cons .1 455 Cons .6 455 Cons .6 455 Cons .3 117 Cons .3 117 Cons .3 150 Cons .3 150 Cons .4 350 Cons .3 150 Cons .4 351 Cons .3 150 Cons .4 351 Cons .3 150 Cons .4 351 Cons .5 460 Cons .6 459 Cons .5		SGCCGAAACACGAFTCCCCGGGGGGG SGCCCAAACGGAFTCCCCGGGGGGG SGCCCAAACGGAFTCCCCGGGGGGG SGCCCAAATGCGATTCCCCGGGGGATG SGCCCAAATGCGATCCCGCGGGGATG SGCCCAAATGCGATCCCGCGGGGATG SGCCCAAATGCGATCCCGCGGGGATG SGCCCAAATGCGATCCCGCGGGGATG SGCCCAAATGCGATCCCGCGGGGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGGCGATG SGCCCAAATGCGATCCCGCGGCGCGCC CGGG	AG - CCCCCCA COGCCT 		CCC
005 - Cons. 4 442_Cons. 5 509 - Cons. 6 445_Cons. 6 459 - Cons. 6 450 - Cons. 6 456 - Cons. 6 456 - Cons. 6 456 - Cons. 6 421_Cons. 1 231_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 122_Cons. 2 133_Cons. 1 455_Cons. 1 162_Cons. 2 163_Cons. 3 117_Cons. 4 107_Cons. 3 117_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 5 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 4 107_Cons. 5 107_Cons. 4 107_Cons. 5 107_Cons. 4 107_Cons. 5 107_Cons. 4 107_Cons. 5 107_Cons. 5 107_Cons. 5 107_Cons. 5 107_Cons. 5 107_Cons. 5 107_Cons. 5 107_Cons. 6 107_Cons. 5 107_Cons. 6 107_Cons. 6 107_		GCCCAAACACGATCCCCGCCGCGCG GCCCAAACGATCCCCGCCGCGCGGG GGCCCAAACGATCCCCGCCGCGCGGG GGCCCAAACGATCCCCCGCCGCGTG GGCCCAAACGATCCCGCCGCGCTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCGCGCGCGTG GGCCCAATGCATCCGCGCGCGTG GGCCCAATGCATCCGCGCGCGTG GGCCCAATGCATCCGCGCGCGTG GGCCCAATGCATCCGCGCGCGCGTG GGCCCAATGCATCCGCGCGCGCGCGCGCGCGCGCGCGCGC	Ad - CCCCCCA COGCCT 		CC CC CC <
005 - Cons. 4 442_Cons. 5 509 - Cons. 5 442_Cons. 5 445_Cons. 6 455_Cons. 6 455_Cons. 6 449_Cons. 7 173_Cons. 1 221_Cons. 1 232_Cons. 1 455_Cons. 6 455_Cons. 1 450_Cons. 3 161_Cons. 3 177_Cons. 3 506_Cons. 3 516_Cons. 4 377_Cons. 4 404_Cons. 3 505_Cons. 6 455_Cons. 6 404_Cons. 4 605_Cons. 4 405_Cons. 6 455_Cons. 6 455_Cons. 6 455_Cons. 6 455_Cons. 6 455_Cons. 6 455_Cons. 6		GCCCAAACACGATCCCCGCCGCGGG GCCCAAACACGATCCCCGCCGCGGGGG GGCCCAAACGATCCCCGCCGCGGGGG GGCCCAAACGATCCCCGCCGCGGTG GGCCCAAACGATCCCCGCCGCGATG GGCCCAATGCGATCCCGCCGCGATG GGCCCAATGCGATCCCGCCGCGATG GGCCCAATGCGATCCCGCGCGATG GGCCCAATGCGATCCCGCGCGATG GGCCCAATGCGATCCCGCGCGCGATG GGCCCAATGCGATCCCGCGCGCGATG GGCCCAATGCGATCCCGCGCGCGATG GGCCCAATGCGATCCCGCGCGCGATG GGCCCAATGCGATCCCCGCGCGCGATG GGCCCAATGCGATCCCCGCGCGCGCGCC GGCCCAACGCCCC GGCCCAAATGCGATCCCCGCGCGCGCCCC GGCCCAAATGCGATCCCCGCGCGCCCC GGGCCCCCCCCCGCGAACGCCCCC GGGGCGCGAACGCCCCC GGGCGCGAACGCCCCC GGGCGCGAACGCCCCC GGGCGCGAACGCCCCC GGG	Ad - CCCCCCA CCCCC Ad - CCCCCA CCCCC CACGTCA CCACCA CACGTCA CCACCA 		CCC
005_CORS.4 442_CORS.5 509_CORS.5 546_CORS.6 442_CORS.5 442_CORS.7 ruler 173_CORS.1 231_CORS.1 232_CORS.1 232_CORS.1 232_CORS.1 232_CORS.1 232_CORS.1 232_CORS.1 232_CORS.1 233_CORS.1 455_CORS.3 101_CORS.3 102_CORS.3 103_CORS.3 104_CORS.4 508_CORS.3 514_CORS.4 603_CORS.5 354_CORS.4 604_CORS.4 605_CORS.4 605_CORS.4 605_CORS.5 464_CORS.4 645_CORS.6 645_CORS.6 645_CORS.6 645_CORS.6		iccccaaacaccaacaccaacacaacacaacacaacac	AG - CCCCCCA COGCCT 		CC
005 - Cons. 4 442_Cons. 5 509 - Cons. 5 446_Cons. 6 459 - Cons. 6 450 - Cons. 6 450 - Cons. 6 450 - Cons. 6 450 - Cons. 7 1231_Cons. 1 231_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 232_Cons. 1 1232_Cons. 1 153_Cons. 3 117_Cons. 3 114_Cons. 3 114_Cons. 3 150_Cons. 4 405_Cons. 4 405_Cons. 4 405_Cons. 5 509_Cons. 5 509_Cons. 5 509_Cons. 6 459_Cons. 6 450_Cons. 6 450_C		GCCCAAACACGATCCCCGCCGCGCG GCCCAAACGATCCCCGCCGCGCGGG GGCCCAAACGATCCCCGCCGCGCGGG GGCCCAAACGATCCCCCGCCGCGTG GGCCCAAACGATCCCCGCCGCGTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCCGCCGCGTG GGCCCAATGCATCCCGCGCGATG GGCCCAATGCATCCCGCGCGATG GGCCCAATGCATCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGTG GGCCCAATGCATCCCGCGCGCGCGTG GGCCCAATGCGATCCCGCGCGCGCGCGCGCGCGCGCGCGC	400000000000000000000000000000000000		CC CC CC <

Abbildung A 1: Alignment der ITS-Sequenzen der Gattungen Guaiacum und Handroanthus. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden. Cons.1 = G. sanctum: 173, 231, 232, 233, 455 und 469; Cons.2 = G. sanctum: 162; Cons.3 = G. officinale: 94, 101, 117, 119, 163, 167, 508, 510, 514 und 603;
Cons.4 = G. officinale: 156, 377, 604 und 605; Cons.5 = Bulnesia arborea: 442 und 509; Cons.6 = H. impetiginosus: 446, 459, 463, 465 und 466; Cons.7 = H. chrysanthus: 449.
* = Position mit identischer Base für alle Sequenzen.

Nr.	ID	1	2	3	4	5	6
1	Cons.1		_				
2	Cons.2	0,015		_			
3	Cons.3	0,062	0,063		_		
4	Cons.4	0,053	0,056	0,023		_	
5	Cons.5	0,128	0,128	0,133	0,125		_
6	Cons.6	0,296	0,293	0,291	0,287	0,284	
7	Cons.7	0,293	0,290	0,288	0,284	0,282	0,013

Abbildung A 2: Evolutionäre Divergenz zwischen den ITS-Sequenzen der Zygophyllaceae und Bignoniaceae. Cons.1 = *Guaiacum sanctum*: 173, 231, 232, 233, 455 und 469; Cons.2 = *G. sanctum*: 162; Cons.3 = *G. officinale*: 94, 101, 117, 119, 163, 167, 508, 510, 514 und 603; Cons.4 = *G. officinale*: 156, 377, 604 und 605; Cons.5 = *Bulnesia arborea*: 442 und 509; Cons.6 = *Handroanthus impetiginosus*: 446, 459, 463, 465 und 466; Cons.7 = *H. chrysanthus*: 449.

7.3 ITS-Sequenzen und Pairwise-Distance Analyse der Intsia-Gruppe

In Abbildung A 3 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, welche in Punkt 3.2.3.1 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Jeder Sequenz ist die Herbarnummer und die entsprechende Consensus-Nr. vorangestellt. Des Weiteren gibt Tabelle A 3 alle Individuen und deren Art wieder, welche jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 4 die errechneten Einzelwerte auf.

ID	Art	Herbarnummer
Cons.8	Intsia bijuga	85, 166, 204, 402-404, 407, 453
Cons.9	Intsia bijuga	81, 401, 405, 406, 408-411, 511
Cons.10	Intsia palembanica	399, 400, 413-415, 417-422
Cons.11	Intsia palembanica	205, 412
Cons.12	Afzelia africana	50, 504

Tabelle A 3: Aufstellung der Individuen der Gattung *Intsia* sowie von *Afzelia africana*, welche zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die entsprechenden Herbarnummern sowie die Art.
	* * * **** * * *	* * ** * * *********	*****
85_Cons.8	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACGCGTCGGGACGCA	CCGGCGGCGGCGCCCCGGCCCCGGTCCTCTCGGCGG
166_Cons.8 204_Cons.8	ATACCTCACGAGCAGCACGACCCCGCGAACACGTTATCTATC	- CATCTTCCGATGGATCCCA CACGTCGGGACGCA - CATCTTCCGATGGATCACACACGTCGGGACGCA	CCGGCGGCGGCGGCCCCGGCCCCGGTCCTCTCGGCGG CCGGCGGCGGCGGCCCCGGCCCCGGTCCTCTCGGCGG
402_Cons.8	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCGCCCCGGCCCCCGGTCCTCTCGGCGG
403_Cons.8	ATACCTCACGAGCAGCACGACCCGCGGAACACGTTATCTATC	- CATCTTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
404_Cons.8	ATACCTCACGAGCAGCACGACCCGCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACGTCGGGACGCA	CCGGCGGCGGCGCCCCGGCCCCCGGTCCTCTCGGCGG
453_Cons.8	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCGCCCCGGCCCCCGGTCCTCTCGGCGG
81_Cons.9 401_Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	- CATCTTCCGATGGATCACACACGTCGGGACGCA - CATCTTCCGATGGATCACACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
405_Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
406_Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
408_Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACGCGCGGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
410_Cons.9	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	-CATCTTCCGATGGATCACACGCGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
411_Cons.9	ATACCTCACGAGCAGCACGACCCGCGGAACACGTTATCTATC	- CATCTTCCGATGGATCA CACACGTCGGGACGCA - CATCTTCCGATGGATCACACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG CCGGCGGCGGCCCCGGCCCCCGGTCCTCTCGGCGG
399 Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
400_Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
413_Cons.10 414_Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGICCICCCGGCGG
415_Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
417_Cons.10 418_Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCCACACGTCGGGACGCA CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
419_Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
420_Cons.10	ATACCTCACGAGCAGCACGACCCGCGGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	
422 Cons.10	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTATC	CCATCGTCCGATGGATCCCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
205_Cons.11	ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTGTC-	-CATCGTCCGATGGATCGCACACGTCGGGACGCA	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG
412_Cons.11 50_Cons.12	. ATACCTCACGAGCAGCACGACCCGCGAACACGTTATCTGTC-	- CATCGTCCGATGGATCGCACACGTCGGGACGCA CCCCCCACCCCCCCCCCCCCCCCCCCCCCCC	CCGGCGGCGGCCCCGGCCCCCGGTCCTCCCGGCGG ACCCCCCCCCCCCCC
504_Cons.12	ACGGAGGCACGCGAGCGGCACCCCGGTG-	CGCGCACCGGGCCTCCGACGTCGGGACGCG	ACGGCGGCGGGCTCGCCCGTCGGCCG-TGCTCCCGGCGG
ruler	110		
85 Cone º		**** ******* * ***** 	
166 Cons.8	AAAACAACCAACCCCCGGCGCGCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
204_Cons.8	AAAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC-	GATCCGATGAGCGATCCGGCCGCGCGCGCCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
402_Cons.8 403_Cons.8	AAAACAACCAACCCCCCGGCGCCGAACGCGCCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
404_Cons.8	AAAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
407_Cons.8	AAAACAACCAACCCCCGGCGCCGCAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCGACGCCATTCTATCCA
81 Cons.9	AAAACAACCAACCCCCGGCGCCGAACGCGCCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
401_Cons.9	AAAACAACCAACCCCCCGGCGCGCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGCGCCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
405_Cons.9 406 Cons.9	AAAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
408_Cons.9	AAAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC-	GATCCGATGAGCGATCCGGCCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
409_Cons.9	AAAACAACCAACCCCCGGCGCCGCAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCGACGCCATTCTATCCA
411_Cons.9	AAAACAACCAACCCCCGGCGCCGCAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGTCCCG	GAGACGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA
E11 Came 0			
511_Cons.9	AAAACAACCAACCCCCCGGCGCCGAACGCGCCAAGGAACACC	GATCCGATGAGCGATCCCGCCCCCCCCCC	GAGACGGTGCACGTGCGGCGGCGACGCCATCTATCCA
399_Cons.10 400_Cons.10	AAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC AAACAACCAACCCCCGGCGCCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGCGTCCCG GATCCGATGAGCGATCCCGCCGC-CGTCCCG GATCCGATGAGCGATCCCGCCGC-CGTCCCG	GA GA CGGTGCACGTGCGGCGGGCAACGCCATTCTATCCA GA GA CGGTGCACGTGCGGGGGCGAGCGCCATTTATTCA GA GA CGGTGCACGTGCGGGGGCGAGCGCCATTTATTCA
399_Cons.10 400_Cons.10 413_Cons.10	AAAACAACCAACCCCGGGCGCGAACGCGCCAAGGAACAC AAAACAACCAACCCCGGGGCGCGAACGCGCCAAGGAACAC AAAACAACCAACCCCCGGGCGCGAACGCGCCAAGGAACAC	GATCCGATGAGCGATCCGGCCGCGCGTCCCG GATCCGATGAGCGATCCCGCCGC-CGTCCCG GATCCGATGAGCGATCCCGCCGC-CGTCCCG GATCCGATGAGCGATCCCGCCGC-CGTCCCG	GAGACGET GCACGT GCGCGGGCAACGCCATTTATCCA GAGACGGT GCACGT GCGGCGGCGCGCGCCATTTATTCA GAGACGET GCACGT GCGCGGGCGCGCGCCATTTATTCA GAGACGGT GCACGT GCGCGGGCAGCGCCATTTATTCA
399_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10	AAAACAACCAACCECCCOCCOAACCGCCCAACGAACACAC AAAACAACCAACCECCCGCCGAACGGCCGAACGACACAC AAAACAACCAACCECCGGCGCGAACGGCCGAAGAACAC AAAACAACCAACCECCGGCGCGAACGGCCGAAGAACAC AAAACAACCAACCECCGGCGCGAACGGCCGAAGAACAC	GATCCOATGACGATCCGGCCGCGCTCCCG GATCCGATGACGATCCCGCCGC-CGTCCCG GATCCGATGACGATCCCGCCGC-CGTCCCG GATCCGATGACGATCCCGCCGC-CGTCCCG GATCCGATGACGATCCCGCCGC-CGTCCCG	Ο Α Ο Ο ΟΤΟ ΤΟ ΛΕΟΤΟ Ο Ο Ο Ο Ο Ο Ο ΑΟ Ο Ο Ο ΑΟ Ο Ο Ο Ο Ο
399_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10 415_Cons.10 417_Cons.10	AAAACAACCAACCCCCCCCCCCCCCAACCCCCAACCAA		GACACCOGTOCACCTOCOGCOGCAACCCCATTCTATCCA GACACCTOCACCTOCOGCOGOCACCCCATTTATTCA GACACCTOCACCTOCOGCOGOCACCCCATTTATTCA GACACCTOCACCTOCOGCOGOCACCCCATTTATTCA GACACCTOCACCTOCOGCOGCACCCCATTTATTCA GACACCTOCACCTOCOGCOGCACCCCCATTTATTCA GACACCTOCACCTOCOGCOGCACCCCCATTTATTCA
399_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10 415_Cons.10 417_Cons.10 418_Cons.10	AAAACAACCAACCCCCCCCCCCCCCAACCCCCAACCAA		GACACCIGTICACCTIGCCGCCGACCACCCCATTCTATCA GACACCIGTICACCTIGCCGCGCGCCACCCCATTTATTA GACACCIGTICACCTIGCGCCGGCCACCCCATTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCCATTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCCATTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCCATTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCCATTTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCATTTTATTCA GACACCIGTICACCTIGCGCCGGCCACCCCCATTTTATTCA GACACCIGTICACCTIGCGCCGCCACCCCCATTTTATTCA GACACCIGTICACCTIGCGCCGCCACCCCCATTTTATTCA
399 Cons.10 400_Cons.10 413 Cons.10 414_Cons.10 415_Cons.10 415_Cons.10 417_Cons.10 418_Cons.10 419_Cons.10 420 Cons.10	AAAACAACCAACCCCCGGCGCGAACGCCCAAGAACAC- AAAACAACCAACCCCCGGCGCGAACGCGCCAAGAACAC- AAAACAACCAACCCCCGGCGCGAACGCGCCAAGGAACAC- AAAACAACCAACCCCCGGCGCCGAACGCCCAAGGAACAC- AAAACAACCAACCCCCGGCGCGAACGCCCAAGGAACAC- AAAACAACCAACCCCCGGCGCGAACGCCCAAGGAACAC- AAAACAACCAACCCCCGGCGCCGAACGCCCAAGGAACAC- AAAACAACCAACCCCCGGGCCGAACGCCCAAGGAACAC- AAAACAACCAACCCCCGGGCCGAACGCCCAAGAACAC- AAAACAACCAACCCCCGGGCCGAACGCCCAAGAACAC-	GATCGATGACGATCCCCCCCCCCCCCCCCCCCC GATCGATGACGATCCCCCCCC - CGTCCC GATCGATGACGATCCCCCCCC - CGTCCC GATCGATGACGATCCCCCCCC - CGTCCC CATCCGATGACGATCCCCCCC - CGTCCC GATCCGATGACGATCCCCCCC - CGTCCC GATCCGATGACGATCCCCCCC - CGTCCC CATCCGATGACGATCCCCCCC - CGTCCC CATCCGATGACGATCCCCCCC - CGTCCC CATCCGATGACGATCCCCCCCC - CGTCCC	GADACOGTOCACOTOCOGCOGCAACCCCATTCATCCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCATTTATTCA GADACOGTOCACOTOCOGCOGOCACCCCCATTTATTCA
399 Cons.10 400_Cons.10 413 Cons.10 414_Cons.10 415_Cons.10 417_Cons.10 418_Cons.10 419_Cons.10 420_Cons.10 420_Cons.10	ААЛАСАЯССЯАССССССССССССССССААССССААСССААССААСАЯ ААЛАСААССААСССССССССС		ΘΑ ΘΑ COOTICACOTICOCOCCOGO Α COCCATTUTATUCA ΘΑ Ο ΔΟ COTICACOTICOCOCCOGO CA OCOCCATTUTATUCA ΘΑ Ο ΔΟ COTICACOTICOCOCCOGO CA OCOCCATTUTATUCA ΘΑ Ο ΔΟ COTICACOTICOCOCCOGO CA OCOCCATTUTATUCA ΘΑ Ο ΔΟ COTICACOTICOCOCCOGO CA OCOCCATUTATUCA ΘΑ Ο ΔΟ COTICACOTICOCOCCOGO CA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCOCCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCCA OCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCOCOCOCOCOCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCOCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCOCOCCATUTATUCA Ο Α Ο ΔΟ COTICACOTICOCOCCOCOCOCOCOCCATUCACUTATUCA Ο Α Ο ΔΟ COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
399 Cons.10 400 Cons.10 413 Cons.10 414 Cons.10 415 Cons.10 417 Cons.10 419 Cons.10 419 Cons.10 420 Cons.10 421 Cons.10 422 Cons.10	ААЛАСААССААСССССССССССССССААССССААСССААССААСААСАС		GACA COUTOCACOTOCOGOGOGACCOCCATTCATCCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA GACACOTOCACOTOCOGOGOGACCOCCATTTTATTCA
399 Cons.10 400 Cons.10 413 Cons.10 414 Cons.10 415 Cons.10 417 Cons.10 419 Cons.10 419 Cons.10 420 Cons.10 421 Cons.10 422 Cons.11 412 Cons.11	АЛАЛСАЯССАЯ СССССССССССССАЯ ССССАЯ ССССАЯ ВАСАСС АЛАЛСАЯ ССАЯ СССССССССССАЯ СССССАЯ ВАСАСС АЛАЛСАЯ ССАЯ СССССССССАЯ ССССАЯ ВАСАСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССОССАЯ ВАСАСС АЛАЛСАЯ ССАЯ СССССССССАЯ СССОССАЯ ВАСАСС АЛАЛСАЯ ССАЯ СССССССССАЯ СССАЯ ССАЯ ВАСАСС АЛАЛСАЯ ССАЯ СССССССССАЯ СССАЯ ССАЯ САЯ СА АЛАЛСАЯ ССАЯ СССССССССАЯ ССССАЯ СОВАСАСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССАЯ ССАЯ САЯ САСС АЛАЛСАЯ ССАЯ ССССССССАЯ ССССАЯ ССАЯ САЯ САСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССАЯ ССАВ САЯ САСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССАЯ ССАВ САЯ САСС АЛАЛСАЯ ССАЯ СССССССАЯ СССАЯ ССССАЯ САЯ САСС АЛАЛСАЯ ССАЯ СССССССАЯ СССАЯ ССССАЯ САЯ САСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССАЯ ССССАЯ САВ САВСАСС АЛАЛСАЯ ССАЯ ССССССССАЯ СССАЯ СССССАЯ САВСАЯ САСС АЛАЛСАЯ ССАЯ ССССССССССАЯ ССССАЯ ССССАЯ САВ САВСАС АЛАЛСАЯ ССАЯ ССССССССССАЯ ССССАЯ ССССАЯ САВСАСС АЛАЛСАЯ ССАЯ ССССССССССАЯ СССССАЯ ССАВСАЯ САСС АЛАЛСАЯ ССАЯ СССССССССССАЯ СССССАЯ САВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССАЯ СССССАЯ САВСАВСАСС АЛАЛСАЯ ССАЯ ССССССССССССАЯ СССССАЯ САВСАВСАСС АЛАЛСАЯ ССАЯ ССССССССССССАЯ СССССАЯ САВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССССССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ ССАЯ ССССССССССССССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССССАЯ СССССАЯ ССССАЯ САВСАВСАСС АЛАЛСАЯ ССАЯ ССССССССССССАЯ ССССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССАЯ СССССАЯ СССССАЯ САВСАСС АЛАЛСАЯ ССАЯ СССССССССССССАЯ СССССАЯ ССССАЯ САССАВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССАЯ ССССАЯ СССССАЯ СССАЯ САСС АЛАЛСАЯ ССАЯ СССССССССАЯ ССССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССАЯ ССССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ ССАЯ СССССССССССССАССАЯ СССССАЯ ССАВСАВСАСС АЛАЛСАЯ СССАЯ СССССССССССССАЯ СССССАЯ ССАССАЯ САСС АЛАЛСАЯ ССАЯ СССССССССССССССАЯ СССАЯ СССССАЯ ССАССАЯ САССС АЛАЛСАЯ ССАЯ СССССССССССССССАЯ СССАССАЯ САССССАЯ ССАСССАЯ САССССАССАЯ СССССАССАЯ ССАССАССАЯ СССССАССАЯ ССАСССССАССАЯ ССАССАСАССАССАСАССАССАССАСАССАСССССАССА		GA GA COOT OCACOT OCOGOGOGA ACCOCATTITATICA GA CACOT OCACOT OCOGOGOGA OCOCATTITATICA GA CACOT OCACOT OCOGOGOGA OCOCATTITATICA GA CACOT OCACOT OCOGOGOGA OCOCATTITATICA GA CACOT OCACOT OCOGOGOGA OCOCCATTITATICA GA CACOT OCACOT OCOGOGOGA OCOCCATTITATICA
319 Cons.10 400 Cons.10 413 Cons.10 414 Cons.10 415 Cons.10 417 Cons.10 418 Cons.10 419 Cons.10 420 Cons.10 422 Cons.10 205 Cons.11 50 Cons.12	AAAACAACCAACCCCCCCCCCCCCAACCCAACCAACCA		GACA COST OCACOT OCCICCIGOCA ACCOCATCTATCA GACACOT OCACOT OCCICCIGOCA OCCCATTTATTA GACACOT OCACOT OCCICCIGACA OCCCATTTATTA GACACOT OCACOT OCCICCICCICATTTATTA GACACOT OCACOT OCCICCICCICATTTATTA GACACOT OCACOT OCCICCICCICCICCITTATTA GACOT OCACOT OCCICCICCICCICCICCITTATTATCA GACOT OCACOT OCCICCICCICCICCICTITATTA
511_Cons : 10 400_Cons : 10 413_Cons : 10 413_Cons : 10 414_Cons : 10 415_Cons : 10 415_Cons : 10 415_Cons : 10 417_Cons : 10 419_Cons : 10 420_Cons : 10 421_Cons : 10 205_Cons : 11 50_Cons : 12 504_Cons : 12 504_Cons : 12 504_Cons : 12 	AAAACAACCAACCECCCGGCCGGAACGGCCGAACGACAACAACAC AAAACAACCAACCECCGGGCCGGAACGGCCGAACGACACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAACAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACACAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACAACAC AAAACAACCAACCECCGGCGCGAACGGCCGAACGACAACAC AAAACAACCAACCECCGGCGCGAACGGCCGAACGACAACAC AAAACAACAACCAACCECCGGCGCGAACGGCCGAACGACAACAC AAAACAACAACCAACCECCGGCGCGAACGGCCGAACGACAACAC AAAACAACAACCAACCECCGGCGGCGAACGGCCGAACGACACC AAAACAACAACCAACCECCGGGCGGAACGCGCCGAACGACAACAC AAAACAACAACCAACCECCGGGCGGAACGCGGCCAACGACAACAC AAAACAACAACCAACCECCGGGCGGAACGCGCCAACGACGAACACC AAAACAACAACCAACCECCGGGCGGAACGCGCCAAAGACGCCAAGAACAC AAAACAACCAACCECCGGGCGGAACGCGCCAAACGCCCAAGGAACAC AAAACAACAACCAACCECCGGGCGGAACGCGGCCAAACGCCCAAGAACACC AAAACAACAACCAACCECCGGGCGGAACGCGGCCAAACGCCCAAGAACAC AAAACAACAACCAACCECCGGGCGGAACGCGGCCAAACGCGCCAAGAACACC AAAAAACAACAACCAACCECCGGGCGGAACGCGGAACGCGCCAAAGACCCAACCAA		
511 Cons : 10 400 Cons : 10 413 Cons : 10 414 Cons : 10 415 Cons : 10 412 Cons : 10 420 Cons : 10 421 Cons : 10 422 Cons : 10 50 Cons : 12 504 Cons : 12 504 Cons : 12	AAAACAACCAACCECCCGGGCGGGAACGGCCGAACGACACCA- AAAACAACCAACCECCGGGCGGGAACGGCGCAACGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGAAC		
511 Cons : 10 400 Cons : 10 413 Cons : 10 414 Cons : 10 415 Cons : 10 415 Cons : 10 415 Cons : 10 415 Cons : 10 417 Cons : 10 420 Cons : 10 421 Cons : 10 421 Cons : 11 50 Cons : 12 504 Cons : 12 504 Cons : 12	AAAACAACCAACCECCCGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGCGAACGGCGCAAGGAACAC- AAAACAACAACCAACCECCGGGCGGGAACGGCGCAAGGAACAC- AAAACAACAACCAACCECCGGGCGGCGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGCGGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGCGCGGACGGCCGAACGGCCAAGGACAC- AAAACAACAACCAACCECCGGCGGCGACGGCCGAACGGCCAAGGACAC- AAAACAACCAACCECCGGGCGGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGGACGGCCGAACGGCCAAGGACAC- AAAACAACAACCAACCECCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGCGACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCEACCECGGCGCGACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAAGACGCCAAGAACAC- AAAACAACCAACCEACCECGGCGCGAACGGCCGAAGACGCCAAGAACAC- AAAACAACAACAACCAACCECCGGCGCGACGGCCGAACGGCCCAAGAACAC- AAAACAACAACAACCAACCECCGGCGCGACGGCGAACGCGCCGAACGCAAGAACAC- AAACAACAACAACCAACCECCGGCGCGAACGCCCGAACGCCCAAGAACAC- AAACAACAACAACAACCAACCECCGGCGCGAACGCCCGAACGCCCAAGAACAC- AAAACAACAACAACCAACCECCGGCGCGAACGCCCAACGCAAGAACACAACAACAACAAC		
311_Cons.10 399_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10 417_Cons.10 419_Cons.10 419_Cons.10 420_Cons.10 421_Cons.10 421_Cons.11 205_Cons.11 504_Cons.12 504_Cons.13 504_Cons.14 504_Cons.14 504_Cons.14 504_Cons.14 504_Cons.14 504_Cons.14 504_Cons.54 504_Con	AAAACAACCAACCECCGGCCGGAACGGCCGAACGACAC AAAACAACCAACCECCGGGCCGGAACGGCCGAACGACAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACAAC AAAACAACCAACCECCGGGCGCGAACGGCCGAACGACAAC AAAACAACCAACCECCGGGCCGGAACGGCCGAACGACAAC AAAACAACAACCAACCECCGGGCCGGAACGGCCGAACGACAAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC AAAACAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC AAAACAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC AAAACAACAACCAACCECCGGGCGCGAACGGCCGAAGGGCCAAGAACAC AAAACAACAACAACCAACCECGGGCGGAACGGCCGAAGGGCCAAGAACAC AAAACAACAACAACCAACCECGGGCGCGAACGGCCGAAGGGCCAAGAACACA AAAACAACAACAACCAACCECGGGCGCGAACGGCCAAGGACCACAA AAACAACAACAACAACCAACCECGGGCCGAACGGCCAAGGACACACA AAACAACCAACCAACCECGGGCCGAACGGCCAAGGACACACA AAACAACCAACCAACCEGGCCGGAACGGCCAAGGACACACA AAACAACCAACCAACCEGGCCGGAACGGCCAAGGACACACA AAACAACCAACCAACCEGGCCGGAACGGCCAAGGACACACA AAACAACCAACCAACCECCGGGCCGGAACGGCCAAGGACACACA <td< th=""><th></th><th></th></td<>		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 419 Cons. 10 419 Cons. 10 410 Cons. 10 420 Cons. 10 420 Cons. 10 205 Cons. 11 504 Cons. 12 504 Cons. 12 504 Cons. 13 505 Cons. 14 506 Cons. 12 504 Cons. 13 20 Cons. 14 20 Cons. 14 20 Cons. 14 20 Cons. 14 10 Cons. 14 112 Cons. 14 12 Cons. 14 14 Cons. 14 15 Cons. 16 16 Cons. 18 204 Cons. 18 <tr< th=""><th>AAAACAACLAACCECCCCGGGCGCGAACGGCCAAGGACACC- AAAACAACLAACCECCGGGCGCGGAACGGCCAAGGACACC- AAACAACCAACCECCGGGCGCGGAACGGCCGAAGACACC- AAACAACCAACCECCGGGCGCGGACGGCGCAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGCGGCGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGGCGACGGCCGAAGAACAC- AAAACAACAACCAACCECCGGCGCGACGGCCGAAGGACAC- AAAACAACAACCAACCECCGGCGCGACGGCCGAACGGCCAAGGACAC- AAAACAACAACCAACCECCGGGCGCGACGGCCGAACGGCCAAGGACAC- AAAACAACCAACCEACCEGGCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGACGGCGGAACGCGCCAAGGACAC- AAAACAACAACCAACCECCGGGCGGACGGCGGAACGCGCCCAAGGACAC- AAACAACAACAACCAACCECCGGGCGGACGGCCGAACGGCCCAAGGACAC- AAACAACAACAACCAACCECCGGCGGAACGCGCCGAAGGACAC- AAACAACAACAACCAACCECCGGGCGAACGCGCGAACGCGCCAAGAACAC- AAACAACAACAACCAACCECCGGGCGAACGCGGCAACGCGCCAAGAACAC- AAACAACAACAACCAACCECCGGCGCGAACGCGGCAACGCGCCAAGAACAC- AAACAACCAACCAACCACCCGGACGGCGAACGCGCCAAGGACAC- AAACAACCAACCAACCACCCGGCGAACGCGCCAACGGCCAAGAACACCA- TATTCCACAACGACTCTCGGCAACGGGATATCTCGGGCTCT ATATCCACAACGACTCTCGGCAACGGGATATCTCGGGTCT </th><th></th><th></th></tr<>	AAAACAACLAACCECCCCGGGCGCGAACGGCCAAGGACACC- AAAACAACLAACCECCGGGCGCGGAACGGCCAAGGACACC- AAACAACCAACCECCGGGCGCGGAACGGCCGAAGACACC- AAACAACCAACCECCGGGCGCGGACGGCGCAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAAGAACAC- AAACAACCAACCECCGGCGGCGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGGCGACGGCCGAAGAACAC- AAAACAACAACCAACCECCGGCGCGACGGCCGAAGGACAC- AAAACAACAACCAACCECCGGCGCGACGGCCGAACGGCCAAGGACAC- AAAACAACAACCAACCECCGGGCGCGACGGCCGAACGGCCAAGGACAC- AAAACAACCAACCEACCEGGCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGACGGCGGAACGCGCCAAGGACAC- AAAACAACAACCAACCECCGGGCGGACGGCGGAACGCGCCCAAGGACAC- AAACAACAACAACCAACCECCGGGCGGACGGCCGAACGGCCCAAGGACAC- AAACAACAACAACCAACCECCGGCGGAACGCGCCGAAGGACAC- AAACAACAACAACCAACCECCGGGCGAACGCGCGAACGCGCCAAGAACAC- AAACAACAACAACCAACCECCGGGCGAACGCGGCAACGCGCCAAGAACAC- AAACAACAACAACCAACCECCGGCGCGAACGCGGCAACGCGCCAAGAACAC- AAACAACCAACCAACCACCCGGACGGCGAACGCGCCAAGGACAC- AAACAACCAACCAACCACCCGGCGAACGCGCCAACGGCCAAGAACACCA- TATTCCACAACGACTCTCGGCAACGGGATATCTCGGGCTCT ATATCCACAACGACTCTCGGCAACGGGATATCTCGGGTCT		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 410 Cons. 10 420 Cons. 11 50 Cons. 12 7 rular 85 Cons. 8 166 Cons. 8 202 Cons. 8 204 Cons. 8 402 Cons. 8 402 Cons. 8	AAAACAACCAACCECCCCCCCCCCCAACCCAACCAACCA		
311 Cons. 10 399 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 421 Cons. 10 422 Cons. 11 50 Cons. 12 504 Cons. 12 704 Cons. 31 85 Cons. 8 166 Cons. 8 204 Cons. 8 205 Cons. 40 205 Cons. 40 204 Cons. 8 204 Cons. 8 205 Cons. 40 206 Cons. 8 207 Cons. 8 208 Cons. 8 209 Cons. 8 2010 Cons. 8 202 Cons. 8	AAAACAACCAACCCCCCGGGCCGGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCCGGAACGGCCGAAGGAACAC- AAAACAACCAACCCCCGGGCGCGGAACGGCGCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCGCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGAACAC- AAAACAACAACCAACCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACAACCAACCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCCGGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGCGCGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCCCCGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCCCCGGCGCGAACGGCCAAGGAACAC- ACAACAACCAACCCCCGGCGCGAACGGCCAAGGAACAC- ACAACAACCAACCCCCGGCGCGAACGGCCAAGGACACAC- AAACAACCAACCCCCGGCGCGAACGGCCAAGGACACC- AAACAACCAACCACCCCCGGCGCGAACGGCCAAGGACACC- AAACAACCAACCACCCCCGGCGCGAACGGCCAAGGACACC- AAACAACCAACCACCCCCGGCGCGAACGGCCAAGGACACC- AAACAACCAACCACCCCCGGCGCGAACGGCCAAGGACCCCAAGGACCCAC- AAACAACCAACCACCCCCGGCGCGAACGGCCGAACGGCCAAGGACACC- AAACAACCAACCCACCCCGGCGCGAACGGCCGAACGGCCAAGGACCCAC- AAACAACCAACCACCCCCGGCGCGAACGGCCGAACGCGCAAGGACCCAC- AAACAACCAACCACCCCCGGCGCGAACGGCCGAACGCGAACCCCACGGACCCAC- AAACAACCAACCCACCCCGGCGACGGCGAACGGCCAACCGGCCAACGGCCAACCCAC- AAACAACCAACCAACCCCCGGCGCGAACGGCCAACCGGCCAACGGCCAACCAC- AAACAACCACCAACCCCCGGCGCGACGGCGAACCCGGCAACCAC- AAACAACCAACCAACCCCCGGCGACGGCGAACCCGGCAACCAC- AAACAACCAACCAACCCCCGGCGACGGACGGCGAACCAC- AAACAACCAACCAACCCCCGCGCAACGGCGAACCCGGCAACCCACGGATACCCGGGCACCAC- AAACCAACCAACGACCTCTCGGCAACGGATACTCGGCTCC ATATCCACAACGACCTCTCGGCAACGGATATCCGGCGGACGACCGGATACCGGCGGCACGGATACCCGGCGCGACGGATACCGGCGCGGCGCGGCGGCGGCGGCGGCGGCGGCGGCGGC		
311 Cons : 10 399 Cons : 10 400 Cons : 10 413 Cons : 10 414 Cons : 10 415 Cons : 10 415 Cons : 10 417 Cons : 10 418 Cons : 10 419 Cons : 10 410 Cons : 10 410 Cons : 10 412 Cons : 10 412 Cons : 10 412 Cons : 11 50 Cons : 12 ruler 85 Cons : 12 ruler 85 Cons : 12 04 Cons : 12 504 Cons : 12 04 Cons : 12 50 Cons : 12 04 Cons : 12 166 Cons : 12 100 Cons : 12 101 Cons : 12 102 Cons : 12 103 Cons : 12 104 Cons : 12 105 Cons : 12 105 Cons : 12 106 Cons : 12 107 Cons : 18 108 Cons : 18 109 Cons : 18 100 Cons : 18 100 Cons : 18 100 Cons : 18 100 Cons : 18 <th>AAAACAACCAACCECCCCCCCCCCCCCCCCCCCCCCCC</th> <th></th> <th></th>	AAAACAACCAACCECCCCCCCCCCCCCCCCCCCCCCCC		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 419 Cons. 10 420 Cons. 10 420 Cons. 10 420 Cons. 10 205 Cons. 11 50 Cons. 12 504 Cons. 12 504 Cons. 12 504 Cons. 8 204 Cons. 8 402 Cons. 8 403 Cons. 8 404 Cons. 8 407 Cons. 8 407 Cons. 8 81 Cons. 9	AAAACAACCAACCECCCCGGCCCGAACCGCCCAACGAACAC AAAACAACCAACCECCGGCCCGGACCGCCGAACGCCAACGAACAC AAAACAACCAACCECCGGGCCCGGACCGCCCAACGAACAC AAAACAACCAACCECCGGGCCCGGACCGCCCAACGAACAC AAAACAACCAACCECCGGGCCCGAACGCCGCAACGAACAC AAAACAACCAACCECCGGGCCCGAACGCCCGAACGAACAC AAAACAACCAACCECCGGGCCCGAACGCCCGAACGCAACGAACAC AAAACAACCAACCECCGGCGCCGAACGCCCGAACGCAACGAACAC AAAACAACCAACCECCGCGCCGACGCCCGAACGCCCAAGGAACAC AAAACAACCAACCECCGCGCGCCGACGCCCCAACGCAACGAACAC AAAACAACCAACCEACCGCCGGACGCCGCAACGCCCAAGGAACAC AAAACAACCAACCEACCGCCGGACGCCGCAACGCCCAAGGAACAC AAAACAACAACCAACCECCGGCGCGACGCCGCAACGCCCAAGGAACAC AAAACAACCAACCACCCCGCGCGCGACGCCGCAACGCCCAAGGACACC AAAACAACCAACCACCCCGCGCGCGCGACGCGCCAACGCCCAAGGACACC AAAACAACCAACCACCCCCGCGCGCGCACGCGCCAAGGACACC AAAACAACCAACCACCCCCGCGCGCGCGCACGCGCCAAGGACACC AAAACAACCAACCACCCCCGCGCGCGCACGCGCCAACGCGCCAAGGACACC AAAACAACCAACCACCCCCGCGCGCAACGCGCCAAGGACACC AAAACAACCAACCACCCCCCGCGCGCAACGCGCCAAGGACACC AAACAACCAACCAACCACCCCCGCGCAACGCGCCAACGGCCGCAAGGACACC AAACAACCAACCACCCCCCGCGCGAACGCGCCAACGGCCGCAAGGACACC AAACAACCAACCACCCCCCGCGCAACGCGCGCAACGGCCGCGCAACGGCCGAACGGCCCCAACGGACCGCCCAACGGATTCTCGGCTC ATAT CCACAACGACTCTCGGCCACGGATTCTCGGGTCT		
311 Cons. 10 399 Cons. 10 410 Cons. 10 411 Cons. 10 412 Cons. 10 415 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 410 Cons. 10 410 Cons. 10 411 Cons. 10 411 Cons. 10 411 Cons. 10 411 Cons. 11 412 Cons. 11 412 Cons. 12 504 Cons. 12 7 rular 85 Cons. 8 402 Cons. 8 402 Cons. 8 403 Cons. 8 404 Cons. 8 415 Cons. 9 412 Cons. 8 412 Cons. 8 413 Cons. 8 412 Cons. 8 412 Cons. 9 <tr tbody=""><</tr>	AAAACAACCAACCCCCCGGGCGCGGAACGGCCAAGGAACAC- AAAACAACCAACCCCCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACCAACCCACCGGGCGCGGAACGGCGCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCGCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGAACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGACAC- AAAACAACCAACCCCCGGCGCGGACGGCCGAAGGACAC- AAAACAACAACCAACCCCCGGCGCGGACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGGCGGGACGGCCGAAGGACAC- AAAACAACCAACCCCCGGCGGGACGGCCGAAGGACAC- AAAACAACAACCAACCCCCGGCGGGACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGACGCCAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAAGACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGCGGGGCGAACGGCCGAAGACACC- AAAACAACCAACCCCCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAACAACCAACCCCCGGGCGGGAACGGCCGAACGGCCAAGACACCA ACCAACCA		
311 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 415 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 420 Cons. 10 421 Cons. 10 422 Cons. 10 422 Cons. 10 422 Cons. 11 50 Cons. 12 504 Cons. 12 704 Cons. 12 704 Cons. 12 60 Cons. 8 166 Cons. 8 104 Cons. 12 704 Cons. 12 704 Cons. 12 705 Cons. 12 704 Cons. 12 705 Cons. 12 704 Cons. 8 104 Cons. 8 104 Cons. 8 104 Cons. 9 105 Cons. 9 <tr< th=""><th>AAAACAACCAACCECCCGGGCGGGAACGGCCGAACGAACAC AAAACAACCAACCECCGGGCGGGAACGGCCGAACGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGAAC</th><th></th><th></th></tr<>	AAAACAACCAACCECCCGGGCGGGAACGGCCGAACGAACAC AAAACAACCAACCECCGGGCGGGAACGGCCGAACGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGAAC		
311_Cons.10 399_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10 415_Cons.10 412_Cons.10 412_Cons.10 412_Cons.10 412_Cons.10 412_Cons.10 412_Cons.10 412_Cons.11 50_Cons.12 50_Cons.12 50_Cons.12 50_Cons.40 404_Cons.8 404_Cons.8 404_Cons.9 405_Cons.9	AAAACAACCAACCECCCGGGCGGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECGGGGCGGAACGGCGCAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCACCCCGGGCCGGAACGGCCAAGGAACAC- AAACAACCAACCACCCCGGGCCGGAACGGCCAAGGAACAC- AAACAACCAACCACCCCCGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCACCCCCGGGACGGCGAACGGCAACGGACAC- AAACAACCAACCACCCCCGGCGCGACGGCGAACGGCCAACGGACCAC- AAACAACCAACCACCCCCGGCGACGGCGACGGCAACGGATATCTCGGCTC ATATCCACAACGACTCTCGGCAACGGATATCTCGGCTC ATATCCACAACGACTCTCGGCAACGGATATCTCGGCTC ATATCCACAACGACTCTCGGCAACGGATATCTCGGCTC ATATCCACAACGACTCTCG		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 419 Cons. 10 420 Cons. 10 420 Cons. 10 420 Cons. 10 205 Cons. 11 50 Cons. 12 50 Cons. 12 50 Cons. 12 7 ruler 85 Cons. 20 204 Cons. 4 402 Cons. 4 403 Cons. 4 404 Cons. 4 407 Cons. 4 401 Cons. 9 405 Cons. 9 406 Cons. 9 406 Cons. 9 406 Cons. 9 406 Cons. 9 <	AAAACAACCAACCECCCCGGGCGCGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAACGACACC- AAACAACCAACCECCGGGCGCGGAACGGCCGCAACGAACAC- AAACAACCAACCECCGGGCGCGGAACGGCCGAACGAACAC- AAACAACCAACCECCGGGCGCGGAACGGCCGAACGAACAC- AAACAACCAACCECCGGGCGCGGAACGGCCGAACGAACAC- AAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC- AAACAACCAACCECCGGCGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGCGCGCGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGCGCGCGCGACGGCCGAAGGAACAC- AAAACAACCAACCECCGGCGCGCGACGGCCGAACGGCCAAGGACAC- AAAACAACCAACCEACCGCGCGGACGGCCGAACGGCCAAGGACAC- AAAACAACAACCAACCECGGCGGCGACGGCCGAACGGCCAAGGACAC- AAAACAACCAACCACCCGGCGGGACGGCGGAACGCGCCAAGGACAC- AAAACAACAACCAACCECGGCGGGACGGCGGAACGCGCCAAGGACAC- AAACAACCAACCACCCCGGCGCGACGGCGGAACGCGCCAAGGACAC- AAACAACCAACCACCCCGGCGGCGACGGCGGAACGCGCCAAGGACAC- AAACAACCAACCACCCCGGCGCGACGGCGAACGCGCCAAGGACAC- AAACAACCAACCACCCCCGGCGCGACGGCGAACGCGCCAAGGACAC- AAACAACCAACCAACCACCCCGGCGCAACGGCGCAACGGCCCAAGGACAC- AAACAACCAACCACCCCCCGGCGAACGGCGCAACGGCCGCGAACGGCCCAAGGACCC- AAACAACCAACCACCCCCCGGCGAACGGCGCAACGGGCCGCGAACGGCCCGAACGGCCCCAAGGACCCCAAGGACCCCCAAGGACCCCCAAGGACCCCCAAGGAACCCCCC		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 410 Cons. 10 411 Cons. 10 412 Cons. 11 412 Cons. 11 50 Cons. 12 7 ruler 85 Cons. 8 166 Cons. 8 204 Cons. 8 402 Cons. 8 402 Cons. 8 404 Cons. 8 407 Cons. 8 407 Cons. 8 407 Cons. 8 407 Cons. 9 408 Cons. 9 405 Cons. 9 406 Cons. 9 408 Cons. 9 <t< th=""><th>AAAACAACCAACCCCCCGGGCCGGAACGGCCGAACGACACC- AAAACAACCAACCCCCGGGCCGGAACGGCCGAACGACACC- AAAACAACCAACCCCCGGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGACCAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGACCAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCGGCGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCCCCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCACCCCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCACCCCCGGCGGCGAACGGGCCAAGGAACAC- ACCAACAACCAACCCCCGGCGGAACGGGCGAACGGGCCAAGGACCCG ACAACAACCAAC</th><th></th><th></th></t<>	AAAACAACCAACCCCCCGGGCCGGAACGGCCGAACGACACC- AAAACAACCAACCCCCGGGCCGGAACGGCCGAACGACACC- AAAACAACCAACCCCCGGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCGCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCCCCGGCGCGGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGACCAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGAACAC- AAAACAACCAACCCCCGGGCGCGAACGGCCGAAGACCAC- AAAACAACCAACCCCCGGGCGGGACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCCCCGGGCGGCGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCCCCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCACCCCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAACAACCAACCACCCCCGGCGGCGAACGGGCCAAGGAACAC- ACCAACAACCAACCCCCGGCGGAACGGGCGAACGGGCCAAGGACCCG ACAACAACCAAC		
311_Cons. 10 399_Cons. 10 400_Cons. 10 413_Cons. 10 414_Cons. 10 415_Cons. 10 415_Cons. 10 415_Cons. 10 415_Cons. 10 415_Cons. 10 416_Cons. 10 420_Cons. 10 420_Cons. 10 420_Cons. 10 420_Cons. 10 420_Cons. 11 50_Cons. 12 405_Cons. 12 406_Cons. 406_Cons. 406_Cons. 406_Cons. 406_Cons. 406_Cons. 406_Cons. 406_Cons. 50_Cons. <t< th=""><th>AAAACAACCAACCECCCGGGCGGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACGACAC- AAAACAACCAACCECCGGCGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCCGGACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGGACGGCGAACGGGCGGACGGGCGAACGGGCGAACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGCGG</th><th></th><th></th></t<>	AAAACAACCAACCECCCGGGCGGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACACC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACGACAC- AAAACAACCAACCECCGGCGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCCGGACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGGACGGCGAACGGGCGGACGGGCGAACGGGCGAACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGGCGGACGGCGG		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 420 Cons. 10 421 Cons. 10 421 Cons. 10 422 Cons. 10 421 Cons. 11 50 Cons. 12 504 Cons. 10 405 Cons. 9 405 Cons. 9 </th <th>AAAACAACCAACCECCCGGGGCGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCCGAACGGCCGAACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCACCCCGGCGCGACGGACGCCAACGCCAAGGAACAC- AAACAACCAACCACCCCGGCGCGAACGGCCAACGGCAAGGAACAC- AAACAACCAACCACCCCCGGCGCACGGACGGCGAACGGCCAACGGACCAC- AAAACAACCAACCACCCCCGGCGCGACGGACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT</th> <th></th> <th></th>	AAAACAACCAACCECCCGGGGCGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCCGAACGGCCGAACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGAACGGCCAAGGAACAC- AAACAACCAACCACCCCGGCGCGACGGACGCCAACGCCAAGGAACAC- AAACAACCAACCACCCCGGCGCGAACGGCCAACGGCAAGGAACAC- AAACAACCAACCACCCCCGGCGCACGGACGGCGAACGGCCAACGGACCAC- AAAACAACCAACCACCCCCGGCGCGACGGACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT ATATCCACAACGACTCTCGGCCAACGGATATCTCGGCTCT		
311 Cons. 10 399 Cons. 10 400 Cons. 10 412 Cons. 10 415 Cons. 10 417 Cons. 11 50 Cons. 12 50 Cons. 12 7 ruler 85 Cons. 8 404 Cons. 8 402 Cons. 8 403 Cons. 8 404 Cons. 8 405 Cons. 9 405 Cons. 9 406 Cons. 9 400 Cons. 9 410 Cons. 9 411 Cons. 9 411 Cons. 9 411 Cons. 10 400 Cons. 10 <	AAAACAACCAACCECCCCGGGCGCGGAACGGCCCAAGGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCAAGGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCAAGGAACAC AAAACAACCAACCECCGGGCGCGGAACGGCGCAAGGAACAC AAAACAACCAACCECCGGCGGCGACGGCGCAAGGAACAC AAAACAACCAACCECCGGCGCGAACGGCCGAAGGAACAC AAAACAACCAACCECCGGCGCGCGACGGCCGAAGGAACAC AAAACAACCAACCECCGGCGCGCGACGGCCGAAGGAACAC AAAACAACCAACCECCGGCGCGCGACGGCCGAACGGCCAAGGACAC AAAACAACCAACCECCGGCGCGGACGGCCGAACGGCCAAGGACAC AAAACAACCAACCEACCGGCGGAACGGCCGAACGGCCAAGGACAC AAAACAACCAACCEACCGCGGGGCGACGGCGCAACGGCCAAGGACAC AAAACAACCAACCACCCGGCGGGACGGCGAACGCGCCAAGGACAC AAAACAACCAACCACCCGGCGGGACGGCGAACGCGCCAAGGACAC AAAACAACCAACCACCCGGCGGGACGGCGAACGGGCCAAGGACAC AAAACAACCAACCACCCGCGGGCGGACGGGCAACGGGCCAAGGACAC AAAACAACCAACCACCCCGGGCGGCGAACGGGCCAAGGACAC AAAACAACCAACCACCCCGGCGGCGAACGGGCCAAGGACAC AAAACAACCAACCACCCCGGGCGGCGAACGGCGCAAGGGCCAAGGACAC AAAACAACCAACCACCCCCGGGCGGCAACGGGCCAAGGGCCGAAGGGCCGAAGGGCCAAGGACAC AAACAACCAACCACCCCCGGGCGCGAACGGGCCAAGGGCCGAACGGGCCAAGGACAC AAACAACCAACCACCACCCCGGGCGCAACGGGCCGAAGGGCCGAAGGGCCGAAGGGCCGAACGGGCCGAAGGGCCGGAAGGGGCGAAGGGCGGAAGGGCGGAAGGGCGGAAGGGCGGAAGGGCGGAAGGGCGGAAGGGGCGGAAGGG		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 418 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 410 Cons. 10 410 Cons. 11 412 Cons. 11 412 Cons. 11 50 Cons. 12 50 Cons. 8 166 Cons. 8 402 Cons. 8 402 Cons. 8 402 Cons. 8 403 Cons. 8 404 Cons. 8 405 Cons. 9 406 Cons. 9 408 Cons. 9 511 Cons. 10 511 Cons. 9 511 Cons. 9 <th>AAAACAACCAACCECCCGGGGCGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGGCGGGAACGGCCGAACGACACC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGACACC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGAACAC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGAACAC- AAACAACCAACCECCGGGGCGGAACGGCGGAACGCGCAAGAACAC- AAACAACCAACCECCGGGGCGGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGCGCGAACGGCGCAAGGAACAC- AAAACAACAACCAACCECGGGGCGCGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGGCGGAACGGCGCAAGAACGACAC- AAAACAACAACCAACCECGGGGGCGGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGGGGGGACGGGCGAACGGCGAAGAACAC- AAAACAACAACCAACCECGGGGGGGGACGGGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCECGGGGCGGAACGGCGGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGGCGAACGGGCCAAGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGCGGAACGGGCGAACGGGCCAAGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGCGAACGGGCCGAACGGCCGAACGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGGCGAACGGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGAACCCA- AAACAACCAACCACCCCCGGGCGGAACGGGAACCGGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGGAACGGCCGGAACGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGAACCCGGCCGGAACGGGCCGGAACGGCCGGAACGGGCCGGAACGGGCCGGAACGG</th> <th></th> <th></th>	AAAACAACCAACCECCCGGGGCGGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGGCGGGAACGGCCGAACGACACC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGACACC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGAACAC- AAACAACCAACCECCGGGGCGGGAACGGGCGAAGAACAC- AAACAACCAACCECCGGGGCGGAACGGCGGAACGCGCAAGAACAC- AAACAACCAACCECCGGGGCGGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGCGCGAACGGCGCAAGGAACAC- AAAACAACAACCAACCECGGGGCGCGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGGCGGAACGGCGCAAGAACGACAC- AAAACAACAACCAACCECGGGGGCGGAACGGCGCAAGAACAC- AAAACAACAACCAACCECGGGGGGGGGACGGGCGAACGGCGAAGAACAC- AAAACAACAACCAACCECGGGGGGGGACGGGCGAACGGCCGAAGAACAC- AAAACAACAACCAACCECGGGGCGGAACGGCGGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGGCGAACGGGCCAAGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGCGGAACGGGCGAACGGGCCAAGAACAC- AAAACAACCAACCACCCGGGGCGGAACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGCGAACGGGCCGAACGGCCGAACGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGGCGAACGGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGCCGAACGGAACCCA- AAACAACCAACCACCCCCGGGCGGAACGGGAACCGGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGAACGGAACCCGGCCGGAACGGCCGGAACGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGCCGGAACGGGAACCCGGCCGGAACGGGCCGGAACGGCCGGAACGGGCCGGAACGGGCCGGAACGG		
311_Cons. 10 399_Cons. 10 400_Cons. 113_Cons. 413_Cons. 10 414_Cons. 10 415_Cons. 10 415_Cons. 10 415_Cons. 10 415_Cons. 10 412_Cons. 10 412_Cons. 10 420_Cons. 11 420_Cons. 10 420_Cons. 11 420_Cons. 11 50_Cons. 12 64 Cons. 402_Cons. 8 403_Cons. 400_Cons. 400_Cons. 11 400_Cons. 9 511_Cons. 9 511_Cons. 10 400_Cons. 11 400_Cons. 11 <th>AAAACAACCAACCECCCGGGCGCGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAACGACACC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGCGCGAACGGCCGAACGACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC- AAAACAACAACCAACCECCGGCGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGCGGACGCGCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGGACGGCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCCAAGACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGGAACGGCGAACGGCCAAGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGCGAACGACAC- AAAACAACCAACCACCCCGGGCGGACGGAACGGGCGAACGACAC- AAAACAACCAACCACCCCGGCGACGGACGGAACGGCGAACGACCA- AAAACAACCAACCACCCCCGGCGACGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGACCA- AAACAACCAACCACCCCCGGCGACCGGACGGAACCGGCGACGGACCGACGA</th> <th></th> <th></th>	AAAACAACCAACCECCCGGGCGCGAACGGCCGAACGACACC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAACGACACC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAACGACAC- AAACAACCAACCECCGGCGCGAACGGCCGAACGACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGACAC- AAAACAACAACCAACCECCGGCGCGAACGGCCGAACGGCCAAGGAACAC- AAAACAACAACCAACCECCGGCGCGGACGCGCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGCGAACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGGACGGCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCCAAGACGCCAAGGAACAC- AAAACAACCAACCECCGGGCGGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGGAACGGCCGAACGGCCAAGAACAC- AAAACAACCAACCECCGGGCGGAACGGCGAACGGCCAAGAACAC- AAAACAACCAACCACCCCGGGCGGACGGGAACGGCGAACGACAC- AAAACAACCAACCACCCCGGGCGGACGGAACGGGCGAACGACAC- AAAACAACCAACCACCCCGGCGACGGACGGAACGGCGAACGACCA- AAAACAACCAACCACCCCCGGCGACGGCGAACGGGCGAACGGGCGAACGGGCGAACGGGCGAACGACCA- AAACAACCAACCACCCCCGGCGACCGGACGGAACCGGCGACGGACCGACGA		
311 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 412 Cons. 10 412 Cons. 10 412 Cons. 11 50 Cons. 12 50 Cons. 10 400 Cons. 10 400 Cons. 10 511 Cons. 10 512 Cons. 10 513 Cons. 10 514 Cons. 10 515 Cons. 10 511 Cons. 10 511 Cons. 10 50 Cons. 10 <	AAAACAACCAACCECCCGGGGCGGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGCAAGGAACAC- AAAACAACCAACCECCGGGGCGGGAACGGCGGAAGGAACAC- AAAACAACAACCAACCECCGGGGCGGGAACGGCGGAAGGAA		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 11 50 Cons. 12 50 Cons. 11 50 Cons. 12 51 Cons. 10 402 Cons. 8 403 Cons. 9 404 Cons. 8 407 Cons. 9 408 Cons. 9 409 Cons. 9 400 Cons. 9 400 Cons. 9 400 Cons. 9 411 Cons. 10 400 Cons. 10 400 Cons. 10 400 Cons. 10 <			
311 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 420 Cons. 10 420 Cons. 11 412 Cons. 11 412 Cons. 12 50 Cons. 8 204 Cons. 8 402 Cons. 8 403 Cons. 9 404 Cons. 9 405 Cons. 9 406 Cons. 9 401 Cons. 9 401 Cons. 10	AAAACAACCAACCECCCGGGCGCGGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAACAACCAACCECCGGGCGCGGAACGGCCGAAGAACAC- AAACAACCAACCECCGGGCGCGGAACGGCGCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCGCGAAGAACAC- AAACAACCAACCECCGGGCGCGAACGGCGCAAGAACAC- AAACAACCAACCECCGGCGCGAACGGCGCAAGAACAC- AAAACAACAACCAACCECCGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECCGGCGCGCGACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGCGCGCGACGGCCGAACGGCCAAGAACAC- AAAACAACAACCAACCECCGGGCGCGGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGACAC- AAAACAACAACCAACCECGGGCGCGAACGGCCGAAGGAACAC- AAAACAACAACCAACCECGGGCGGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCECCGGGCGCGGAACGGCCGAAGGACAC- AAAACAACCAACCACCCGGGCGGGAACGGCCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGCGGGAACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCGGGCGGAACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGCGAACGGCCAAGGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGCGAACGGCCGAAGGAACAC- AAAACAACCAACCACCCCGGGCGGAACGGCGAACGGCCGAAGGAACAC- AAACAACCAACCACCCCGGGCGGAACGGCGAACGGCCGAAGGAACAC- AAACAACCAACCACCCCCGGGCGGAACGGCCGAACGGAACCCGCGAACGGACCCGCGAACGGACCGCGAACGGACCGCGAACGGAACCCGGCTACGGGAACGCGCTACGGGAACGCGCGGAACGGGCTACCGGCCGAACGGATATCTCGGCTCT ATTCCACAAACGACTCTCGGCCAACGGATAT		
311 Cons. 10 399 Cons. 10 400 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 10 417 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 419 Cons. 10 420 Cons. 10 420 Cons. 10 420 Cons. 11 420 Cons. 12 504 Cons. 12 504 Cons. 12 504 Cons. 8 402 Cons. 8 403 Cons. 8 404 Cons. 8 405 Cons. 9 405 Cons. 9 406 Cons. 9 407 Cons. 10 408 Cons. 9 411 Cons. 10 413 Cons. 10 414 Cons. 10 414 Cons. 10 415 Cons. 10 416 Cons. 10 417 Cons. 10 418 Cons. 10 419 Cons. 10 410 Cons. 10 410 Cons. 10 <th></th> <th></th> <th></th>			
311_Cons.10 400_Cons.10 413_Cons.10 414_Cons.10 413_Cons.10 414_Cons.10 415_Cons.10 417_Cons.10 418_Cons.10 419_Cons.10 420_Cons.10 420_Cons.10 420_Cons.10 420_Cons.11 50_Cons.12 50_Cons.10 50_Cons.10 50_Cons.10 5			
311 Cons. 10 400 Cons. 10 412 Cons. 10 414 Cons. 10 415 Cons. 10 417 Cons. 11 504 Cons. 11 504 Cons. 12 7 rular 85 Cons. 8 404 Cons. 8 402 Cons. 8 404 Cons. 8 405 Cons. 9 405 Cons. 9 406 Cons. 9 511 Cons. 9 511 Cons. 9 511 Cons. 10 413 Cons. 10 413 Cons. 10 414 Cons. 10 415 Cons. 10 416 Cons. 10			

		******	*****	***** ***** * ****
	85_Cons.8	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	
	204_Cons.8	GAACGCAAGTT GCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGGTCGCACGGCGCGCGGGGG
	402_Cons.8	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	
	403_Cons.8	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGGTCGCACGGCGCCGCGGGGG
	407_Cons.8	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCC	ACCCCGACGCCGGTCGCACGGCGCCGCGGGGG
	453_Cons.8	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCCC	
	401 Cons.9	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGGTCGCACGGCGCGCGGGGG
	405_Cons.9	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCC	ACCCCGACGCCGGTCGCACGGCGCGCGGGGG
	406_Cons.9	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC > catctggctgggtgtcacacaaagtcgccccc	
	408_Cons.9	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGGTCGCACGGCGCGCGGGGG
	410_Cons.9	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGGTCGCACGGCGCCGCGGGGG
	411_Cons.9 511_Cons.9	GAACGCAAGTTGCGCCCGAGGCCAATAGGCCGAGGG GAACGCAAGTTGCGCCCCGAGGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAGTCGCCCCC ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGGTCGCACGGCGCGCGCGGGGG
	399 Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCC	ACCCCGACGCCGATCACACGGCGCGCGGGGGGG
	400_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGATCACACGGCGCGCGGGGGG
	413_Cons.10 414_Cons.10	GAACGCAAGTTGCGCCCGAGGCCAATAGGCCGAGGG GAACGCAAGTTGCGCCCGAGGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAGTCGCCCCC ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGATCACACGGCGCGCGGGGGGGGGG
	415_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGATCACACGGCGCGCGGGGGG
	417_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGATCACACGGCGCGCGGGGGG
	418_Cons.10 419_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAGTCGCCCCA ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGATCACACGGCGCGCGGGGGGG
	420_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGATCACACGGCGCGCGGGGGG
	421_Cons.10	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCC	ACCCCGACGCCGATCACACGGCGCGCGGGGGG
	422_Cons.10 205_Cons.11	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGGTCACACGGCGCGCGGGGGG
50 Cons. 13 MACINEDATION CONCOLLAND CONCLAND CONCL	412_Cons.11	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG	ACGTCTGGCTGGGTGTCACACAAAGTCGCCCCA	ACCCCGACGCCGGTCACACGGCGCGCGG-GGGGG
Bit Link	50_Cons.12	GAACGCAAGTTGCGCCCGAAGCCAATAGGCCGAGGG		ACCCCAACGCCCGCCCGCCGCCGTCCAGCACGGCGCGGGGGGGG
	ruler			
9 Cons. 6				
		* **** * ********************	*****	****** ***** *****
166 Come. 8 Come. 9 Come. 10 Come. 10 Come. 10	85 Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
	166_Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
	204_Cons.8 402_Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
464 Cons. 8	403_Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
11	404_Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCCAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
61	407_Cons.8 453 Cons.8	GCGGACGCTGGCCTCCCGTGAGCCCCC GCGGACGCTGGCCTCCCGTGAGCCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
401 Cons. 9	81_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
146 Come J 0 CONSCIPTION/C	401_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
400 Come. 9 0	405_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGA TGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
400 _ COME 9	408_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
111 Come: 9	409_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
511 Come . 10 0	411 Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
399 Cone. 10 0	511_Cons.9	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
	399_Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
414 Cons. 10 c	413 Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
110 Cons. 10 Cons. 20 Cons	414_Cons.10	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCCAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
418 - Coms 1.0	415_Cons.10 417_Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC(GCCCACGATGGCCTCCCCGTGAGCCCC(CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
419 Cons. 10 0	418 Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
420 _ CORE 10	419 Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC	CCTCCCGGATGCCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
422 Cons. 10 0	420_Cons.10 421_Cons.10	G CGGACGATGGCCTCCCGTGAGCCCC(G CGGACGATGGCCTCCCGTGAGCCCC(CCTCGCGGA TGGCCGAAATAA GA GCTCCCGGTG CCTCGCGGA TGGCCGAA ATAA GA GCTCCCGGTG	CGGCCA GCACCA CGGCGCACGGTGGTTGAGTCGAGTCG
205 CONB.11 0CGACCTCGCCCCTACCCCCCCCCCCCACTCGCCCAAATAACGCTCCCCGCCGCCGCCCCCCCC	422_Cons.10	GCGGACGATGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
112 CORD 11 CORD 12 CORD 14	205_Cons.11	GCGGACGCTGGCCTCCCGTGAGCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG	CGGCGAGCACCACGGCGCACGGTGGTTGAGTCGAGTCGA
504 Cons. 12 OTCODECCEDENTCODECCEDENT CONCECCEDENT CONCERNENT CALCED CONCERNENT C	412_Cons.11 50_Cons.12	GTCGGTCGGGGCGGATGCTGGCCTCCCGTGAGCCCCC GTCGGTCGGGGCGGATGCTGGCCTCCCGTGAGCCCCC	CCTCGCGGATGGCCGAAATAAGAGCTCCCGGTG ACTCGCGGACGGCCGAAATGAGAGCCCGCGGTG	CGGCCACGCCACGGCGCACGGTGGTTGAGTCGAGTCGAG
ruler	504_Cons.12	GTCGGTCGGGGCGGATGCTGGCCTCCCGTGAGCCCC	ACTCGCGGACGGCCGAAATGAGAGCCCGCGGTG	CGGCGAGCGCCACGACGCACGGTGGTTGAGTCGAGTCGA
************************************	ruler		500510	

85 Cons.8 COTATOGCTCGGCCCTTCGTCGTGCCC-GCCCCTAACCTAAGCA-GAGACTTCCTCCGAGACCTACCGCGCGTCCTCCCCCACCTAACCTAACCA 166 Cons.8 CGTCATGGTCGGCCCGTTGGTGCGTGCCCC-GCCCCTAACCTAAGCA-GGAGCTTCCTCCGAGACCTACCGCGCGTCCTCCCCCCCCC		*************	* * *** ***	** **** * * * * *
204_cons.8 COTCATCOCTCOGOCCONTCUTOCOCCOCCOCCC	85_Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	C CCTAACCTAAGAGA - GGAGCTCCTCCTC C CCTAACCTAAGAGA - GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
402_cons.8 CSTCATCGCTCGGCCGGTTCTGCGGCCGCCCCCCCCAACCTAAGC 403_cons.8 CGTCATCGCTCGGCCGGTTCTGCGGTGCGCC_GCCCC	204 Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	CCCTAACCTAAGAGA-GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
403_Cons.8 Contract Control Contre Contre Control Control Control Contre Control Control	402_Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	C CCTAACCTAAGAGA - GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
407_coms.8 COTCATCOTCOGOCCOTTCUTOCOTOCCC-COCCC	403_Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	C CCTAAMCTAA GAGA - GGA GCTCCTCCTC C CCT3 3 3 CT3 3 G3 G3 - GG3 GCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
453 Cons.8 CSTCATCGCTCGGCCCGTTCTGCGCCCCCCCCCCCCCCCC	407 Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	CCCTAACCTAAGAGA-GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
81 LOBE: 9 CONCRECTED/CONCRECT-CONCRECT-CONCRECT-CONTACCTARCA A CONSTRUCTED/CONCRECT/CONC	453_Cons.8	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	CCCTAAACTAAGAGA-GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
405_cons.9 COTCATCGCTCGGCCCGTTCGTGCGTGCCC-GCCC	401 Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	C CCTAACCTAAGAGA - GGAGCTCCTCCTC C CCTAACCTAAGAGA - GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
406_cons.9_COTCATCGCTCCGGCCCGTTCTTGCGCGCCCCCCCCCCCC	405_Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	C CCTAAMCTAAGAGA - GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
109_Cons.9 COTATACCTACGGCCCGTTCGTGCGTGCCC-CGCC CTAACCTAACGA-GGACCTACCTCCGACCCGCCGTCCATCCCCCCCCCC	406_Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	CCCTAAMCTAAGAGA-GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
410_cons.9 CGTCATCOCTCCGGCCCGTCGTGCGTGCGCCC.GCCC CCTAACCTAAGAA-GGAGCTCCCCCCCCCCCCCCCCCCCC	409_Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCCTGCCCCC-CGC CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCCC-CGC	C CUTARCUTARGAGA - GGAGUTUCTCCTC C CCTAACCTAAGAGA - GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC CGAGACCCTACCGCGGCCGTCCATCCCCCCCTCACCCCACCTAACC
411_cons.9_COTCATCCCTCCGCCCCGTTCTTCGCGCCCCCCCCCCCCC	410_Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC	CCCTAACCTAAGAGA-GGAGCTCCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
399 Cons.10 TOTCATCOCTCCGGCCGGTCTGTGCCC-CGCCGCCCCTAACTAACGA-GGACGTCCTCCCGAGACCTACCGGCGCGCGCCCCCCCCCC	411_Cons.9	CGTCATCGCTCCGGCCCGTTCGTGCGTGCCCC-CGC		CGAGACCCTACCGCGGCCGTCCATCCCCCCCTCACCCCACCTAACC
$\begin{array}{c} 400^{\circ} \text{Cons} & 10^{\circ} TortCattCattCattCattCattCattCattCattCattCa$	399 Cons.10	TGTCATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	U UUTAAUUTAAGAGA - GGAGCTUCTCCTC CGCCCCCTAACCTAAGAG GAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCATCCCCCCTCACCCCACCTAACC
$ \begin{array}{c} 413 \\ cons. 10 \\ to TCATCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	400_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCTCACC
115 cons.10 THEATCONCEGNECCIFICACCENTECT ACCENTRACE -GAGAACCENTRACCEGNECCIFICACCENTECTCCCCCCCCCCCCCCCENTRACENTRACAC -GAGAACCENTRACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	413_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCCTCACC
$\begin{array}{c} 411^{-} \mbox{Cons.10} & TorCATCGGTCGGCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	415 Cons.10	TGTCATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	UGUUUUTAAUUTAAGAGGAGGAGCTCCTC CGCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCCCCAC
418 Cons.10 TOTCATCGETCCGGCCCGGTCGTGCGTGCCCC-CGCCGCCCCTAACCTAA	417_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCTCACC
120 Cons.10 TATCATCHECTCHECCHECHECHECHECHECHECHECHECHECHECHECHE	418_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCCTCACC
421 Cons.10 TGTCATCGCTCGGCCCGGTCGTGCGCCCCCCCCCCCCCC	420 Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCCC-CGC	CCCCCCTAACCTAAGAGGAGGAGCTCCTC CCCCCCTAACCTAAGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCTCACC
$\begin{array}{c} 422 \\ \text{Cons.10} \\ Tortarcerccegeccedercercedeccedercercecececececececataceralegada advancercerceatacercedececececececececececececececececec$	421_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAG GAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCTCACC
11 TOTALTCOTCCGGCCCGGTCGTGCGCCCGCCCCCAACCTAACGTAACGCGAGAGAGA	422_Cons.10	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGCC	CCCCCCTAACCTAACACCACCACCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCCTCACC
50 Cons.12 -ACGATCGCCCGGCCCGGCCCGCCCCCCGACGCGCGCCCCCGACGCCCCACGCCCGACGCCGC	412 Cons.11	TGTCATCGCTCCGGCCCGGTCGTGCGTGCCCC-CGC	CGCCCCCTAACCTAAGAGGAGGAGGAGCTCCTC	CGAGACCCTACCGCGGCCGTCCACCCCCCCTCACC
504 COR5.12 - ACCATCGCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	50_Cons.12	-ACGATCGCTCCGGCCCGGTCGTGCGCGCCCCGCCC	CGACGGCGGGCTCCCGAGACCCTATCTATCCGA	CGCGACCTCAGCTCAGGCGGGGCT
	504_Cons.12 ruler	-ACGATCGCTCCGGCCCGGTCGTGCGCGCCCCGCCC	CGACGGCGGGCTCCCGAGACCCTATCTATCCGA	CGCGACCTCAGCTCAGGCCGGGGCT680

85_Cons.8	TAACCTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
166 Cons.8	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCACGC
204 Cons.8	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGCT
402 Cons.8	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGCT
403 Cons.8	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGCT
404 Cons.8	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGCT
407_Cons.8	TAACCTGAGGCGGGAGGGAGGAGGACGGACGGACGGCCTTCGACGCGACCTCAGCTCAGCCGGGGCT
453_Cons.8	TAACCTGAGGCGGGAGGGAGGAGGACGGACGGACGGCCTTCGACGCGACCTCAGCTCAGCCGGGGCT
81_Cons.9	TAACCTGAGGCGGGAGGGAGGAGGACGGACGGACGGCCTTCGACGCGACCTCAGCTCAGCCGGGGCT
401_Cons.9	TAACCTGAGGCGGGAGGGAGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGGCT
405_Cons.9	TAACCTGAGGCGGGAGGGAGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGGCT
406_Cons.9	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGCGGGGGCT
408_Cons.9	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGCGGGGGCT
409_Cons.9	TAACCTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
410_Cons.9	TAACCTGAGGCGGGAGGGAGGAGGACGGACGCGCTTCGACGCGACCTCAGCTCAGGCGGGGCT
411_Cons.9	TAACCTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
511_Cons.9	TAACCTGAGGCGGGAGGGAGGGAGGACGGACGGACGCCTTCGACGCGACCTCAGCTCAGGCGGGGCT
399_Cons.10	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
400_Cons.10	TAACCTAAGGCGGGAGGGGGGGGGGGCGGACCGCCTCCGACGCGGCGCCTCAGCTCAG
413_Cons.10	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
414_Cons.10	TAACCTAAGGCGGGAGGGGGGGGGGGGGGCGGACCGCCTCCGACGCGCGCCTCAGGCGGGGCT
415_Cons.10	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
417_Cons.10	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
418_Cons.10	TAACCTAAGGCGGGAGGGGGGGGGGGGCGGACCGCCTCCGACGCGGCGCCTCAGCTCAG
419_Cons.10	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
420_Cons.10	TAACCTAAGGCGGGAGGGGGGGGGGGGGCGGACCGCCTCCGACGCGGGCTCAGGCGGGGCT
421_Cons.10	TAACCTAAGCCGGGAGGGAGGGCGGACCGCCTCCGACGCGACCTCAGCTCAG
422_Cons.10	TAACCTAAGGCGGGAGGGGGGGGGGGGGCGGACCGCCTCCGACGCGGGCTCAGGCGGGGCT
205_Cons.11	TAACCTAAGCCGGGAGGGAGGGGGGGGCCGACCGCCCTCCGACGCGGCCTCAGCCGGGGCT
412_Cons.11	TAACCTAAGGCGGGAGGGAGGGCGGACCGCCCTCCGACGCGCGCCTCAGCTCAG
50_Cons.12	
504_Cons.12	
ruler	

Abbildung A 3: Alignment der ITS-Sequenzen der Gattung *Intsia* sowie von *Afzelia africana*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden.

Cons.8 = *I. bijuga*: 85, 166, 204, 402-404, 407 und 453; Cons.9 = *I. bijuga*: 81, 401, 405, 406, 408-411 und 511; Cons.10 = *I. palembanica*: 399, 400, 413-415 und 417-422;

Cons.11 = *I. palembanica*: 205 und 412; Cons.12 = *A. africana*: 50 und 504. * = Position mit identischer Base für alle Sequenzen.

Nr.	ID	1	2	3	4	5	6	7	8	9	10	11
1	Cons.8			-					-			
2	Cons.9	0,000		_								
3	Cons.10	0,027	0,028		_							
4	Cons.11	0,032	0,033	0,007		_						
5	Cons.12	0,111	0,110	0,107	0,107		_					
6	86	0,179	0,176	0,181	0,178	0,181		_				
7	170	0,208	0,208	0,209	0,205	0,214	0,129		_			
8	202	0,174	0,174	0,174	0,171	0,180	0,091	0,075		_		
9	201	0,177	0,177	0,178	0,176	0,185	0,086	0,080	0,021		_	
10	203	0,177	0,177	0,178	0,176	0,184	0,085	0,078	0,016	0,006		_
11	438	0,177	0,176	0,180	0,177	0,185	0,090	0,080	0,031	0,016	0,021	
12	515	0,182	0,181	0,184	0,180	0,188	0,091	0,083	0,027	0,013	0,018	0,010

Abbildung A 4: Evolutionäre Divergenz zwischen den ITS-Sequenzen von *Intsia* spp., *Hymenaea courbaril* und *Afzelia africana*. Cons.8 = *I. bijuga*: 85, 166, 204, 402-404, 407 und 453; Cons.9 = *I. bijuga*: 81, 401, 405, 406, 408-411 und 511; Cons.10 = *I. palembanica*: 399, 400, 413-415 und 417-422; Cons.11 = *I. palembanica*: 205 und 412; Cons.12 = *A. africana*: 50 und 504; 86, 170, 201-203, 438 und 515 = *H. courbaril*.

7.4 ITS-Sequenzen und Pairwise-Distance Analyse der Gattung *Dalbergia* sowie von *Machaerium scleroxylon*

In Abbildung A 5 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, die in Punkt 3.2.3.2 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Die Herbarnummer und die entsprechende Consensus-Nr. sind jeder Sequenz vorangestellt. Tabelle A 4 gibt alle Individuen und deren Art wieder, welche jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 6 die errechneten Einzelwerte auf.

144 Cons.13 631_Cons.13 143_Cons.14 344_Cons.14 632_Cons.14 629_Cons.15 533_Cons.15 513_Cons.16 628_Cons.16 ruler	AT SOUTCAACCAAGAAGACCCCCGAACCCCCTTTAACCACCGGGACGTCGAAGCACCCAGGCACCCCCCCC
144 Cons.13 631 Cons.13 143 Cons.14 344 Cons.14 629 Cons.14 629 Cons.15 513 Cons.15 513 Cons.16 628 Cons.16 ruler	TOCCOGCCCARCAAC-AACAAACCCCCOGCCCGAATGCGCCCAAGAACAACCACCGTACAGCGCCCCCTCGACCCGGCACGGTGTCCTGCGGCCAACAACTGCCCGCCACAACAACAACGTGTGCCGCCGCACGGCGCCCGGCACGGGCGCCGGCACACCTGCCGCGCGGCGGCGGCGGCGACGGCGGCGACGGCGGCGGC
144_Cons.13 631_Cons.13 143_Cons.14 344_Cons.14 632_Cons.14 632_Cons.15 533_Cons.15 513_Cons.16 628_Cons.16 ruler	CGAGTCCAAAACGACTCTCGGCAACGATATCTCGGCTCTTGCATCGATGAAGAACGTAGGAAATGCGATACTTGGTGGAATGCCGTGAACCCGTGAACCATCGAGTCTTTGA CGAGTCCAAAACGACTCTCGGCACGATATCTCGGCTCTTGCATCGATGAAGAACGTAGGAAATGCGATACTTGGTGGAATGCCAGAATCCCGTGAACCATCGAGTCTTTGA CGAGTCCAAAACGACTCTCGGCACGGATATCTCGGCTCTTGCATCGATGAAGAACGTAGGAAATGCCATACTTGGTGGAATGCCAGAATCCCGTGAACCACCGATGCTTTGA CGAGTCCAAAACGACTCTCGGCACGGATATCTCGGCTCTTGCATCGATGATGACGATACTGAATGCCATACTTGGTGGAATGCCAGAACGACCCCGAACGACGATCTTGG CGAGTCCAAAACGACTGCGGCACGGATATCTGGGCTCTTGCATCGATGATGACGATGCTGGATGCGATACTGGATGGCATGCGGAACGCCGTGAACCACGAGTCTTTGA CGAGTCCAAAACGACTGCGGCACGGATATCTGGGCTCTTGCATCGATGGTAGGAATGCCATACTGGTGGAATGCCAGAACGACCCGGAACGACGCATGCTGGG CGAGTCCAAAACGACTGCGGCACGGATATCTGGGCTCTTGCATCGATGGTAGGAATGCGATACTGGGTGGG
144 Cons.13 631 Cons.13 143 Cons.14 344 Cons.14 632 Cons.14 632 Cons.15 633 Cons.15 533 Cons.16 628 Cons.16 ruler	ACGCAAGTTGCGCCCGAAGCCATCAGGCAAGGGCACGCCTGCCGGGCCCAACGCCCCAACGCCCCGACGCCGCCCCCCCC
144_Cons.13 631_Cons.13 143_Cons.14 344_Cons.14 632_Cons.14 632_Cons.15 633_Cons.15 513_Cons.16 628_Cons.16 ruler	CGTGAOCACCGCCTCGCCGCTGGCTGAAAACCGGGTTCGTGGTGGATGCACGCCCATGACGACGGTGGTTGAOCACGTTCTCGAGCCAGTCATGCGCCGCGCC
144 Cons.13 631 Cons.13 143 Cons.14 344 Cons.14 632 Cons.14 632 Cons.15 533 Cons.15 513 Cons.16 628 Cons.16 ruler	ectrccs/accaaccaaccaaccaaccaaccaaccaaccaacca

Abbildung A 5: Alignment der ITS-Sequenzen der Gattung *Dalbergia*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden. Cons.13 = *D. nigra*: 144 und 631; Cons.14 = *D. retusa*: 143, 344 und 632; Cons.15 = *D. spruceana*: 629 und 633; Cons.16 = *D. sissoo*: 513 und 628. * = Position mit identischer Base für alle Sequenzen.

Tabelle A 4: Aufstellung der Individuen der Gattung Dalbergia, die zu Consensus-Sequenzen
zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die
entsprechenden Herbarnummern sowie die Art.

ID	Art	Herbarnummer
Cons.13	Dalbergia nigra	144, 631
Cons.14	Dalbergia retusa	143, 344, 632
Cons.15	Dalbergia spruceana	629, 633
Cons.16	Dalbergia sissoo	513, 628

Nr.	ID	1	2	3	4	5	6	7	8	9
1	Cons.13				-					
2	Cons.14	0,086		_						
3	Cons.15	0,066	0,071							
4	Cons.16	0,070	0,099	0,091		_				
5	630	0,083	0,081	0,078	0,097		_			
6	378	0,065	0,092	0,082	0,070	0,088		_		
7	142	0,065	0,092	0,082	0,070	0,088	0,000		_	
8	474	0,077	0,108	0,079	0,084	0,101	0,071	0,071		
9	461	0,078	0,110	0,087	0,081	0,094	0,078	0,078	0,061	
10	341	0,108	0,112	0,105	0,110	0,112	0,114	0,114	0,121	0,126

Abbildung A 6: Evolutionäre Divergenz zwischen den ITS-Sequenzen von Dalbergia spp. und Machaerium scleroxylon. Cons.13 = D. nigra: 144 und 631; Cons.14 = D. retusa: 143, 344 und 632; Cons.15 = D. spruceana: 629 und 633; Cons.16 = D. sissoo: 513 und 628;
630 = D. latifolia; 378 = D. melanoxylon; 142 = D. miscolobium; 474 = D. decipularis; 461 = D. obovata; 341 = M. scleroxylon.

7.5 ITS-Sequenzen und Pairwise-Distance Analyse der Gattung *Caesalpinia* sowie von *Myrocarpus frondosus*

In Abbildung A 7 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, die in Punkt 3.2.3.3 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Jeder Sequenz ist die Herbarnummer und die entsprechende Consensus-Nr. vorangestellt. Des Weiteren gibt Tabelle A 5 alle Individuen und deren Art wieder, die jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 8 die errechneten Einzelwerte auf.

Tabelle A 5: Aufstellung der Individuen der Gattung *Caesalpinia*, die zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die entsprechenden Herbarnummern sowie die Art.

ID	Art	Herbarnummer
Cons.17	Caesalpinia echinata	206, 207, 643
Cons.18	Caesalpinia ferrea	471, 625, 626
Cons.19	Caesalpinia spinosa	425, 426

	* *** *** ************** * *** ** ******
206_Cons.17	
643 Cons.17	ACGCCCCTCGAACAACGACCGCCGAACCGGTGT0CCCCGATACCTCGGGAGGCGGGGGTGCCCGCTCGCCTCGCCGCTCGCCGCTCGCCGC
471_Cons.18	ATGCCTGCAAAACGGAACGACCGCGAACCGGTCTTTGCCCCGATACCGGGGGGGG
625_Cons.18 626_Cons.18	ATGCTGCAAAACGAACGACCGCCGAACGGTTCTTGCCCCCATACCCGGGGGGGG
425_Cons.19	ATGCCTCACAAAACAGAACGACCGCGCGAACCG-TGTGCCCCAT-TTGCGGGAGGGGGGGGGG
426_Cons.19	ATOCCTCACAAACAGAACGACCGCCGAACCG-TOTGCCCCAT-TTOCGGGAGGGGGGGGGGGCGCCAGCCGCCCCCGGGTCGGCGGG-GTGCCCACGCCCTTGCGCTG
206 Cons.17	TCCGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
207_Cons.17	TCCGTCCCCCGTCGACGCCTCGCCGCCGCCGCCCCCCGCGAAGGAATTTCAAAACAAAGGATGCCCCCGGAAGGCCGCGGAACGGTCGGCGCTCGGGGAGGCGACGACGACGACGACGACGACGACGACGACG
471 Cons.18	CCG0GCC-CCGTCGACACAAACGACCCCGGCCCCTCGCCAAGAAATCTCACGAACCGCCCTCGACGGACAACCGGCCCCGCGACGACGGCCCCCGCGCACGACG
625_Cons.18	CCGGCCC-CCGTCGACACAAACGACCCCGGCGCCCCTCGCGCAAGGAAATCTGAGAAACGAGCGTG-CCCTCGACGGACCGGAAACGGTGCG-GTCGGGGAGCATCGCGACGA
626_Cons.18 425_Cons.19	CCGCCC-CCCTCGACCARACGACCCCGGCCCCCTCGCCAAGGAAACTIGAGAAGGGGCG-CCCTCGACGGACGGAACGGTCG-OTCGGGGACGACGACGACGACGACGACGACGACGACGACGAC
426_Cons.19	TCGGTGCACCGCCGACGAAAAAACTAACCCCGGCGCCCCCCCC
ruler	120130140150160170180190200210220230
206 Cong 17	
207_Cons.17	TCGTATACAGAACGACTCTCGGCAACGAATATCTCGGCTCTCCCATCGATCAACGACCTTCGCGATATCTCGTGTGAATTCCAGATCCCGTCGAATCGCGTGCAATCCCGTGGATCGACGATCCCGCAGGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGCGATCGCGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGACGATCCCGCGATCGACGATCCCGTGGATCGACGATCCCGTGGATCGCGATCGCGATCGACGATCGCGATCGCGATCGACGATCGCGATCGCGATCGACGATCCCGCTGGATCGACGATCCCGCTGGATCGGATCGCGGATCGCGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGATCGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATGGGATGGAGGATCGGATGGGATGGGATCGGATGGAGGA
643 Cons.17	TCGTATACACAACGACTCTCGCGAACGACTCGCGTGACGATCGACGATCGACGACGACGACGACGACGACGACGACGACGACGACGAC
4/1_Cons.18 625_Cons.18	TCGCCTACCCAACCACTCTCGCCAACCATTCTCGCCTTCGCATCGATCAACCATCGCAAATGCCATACTTGGTGTGAATGCCAGAATCCCGTGAACCATCGGTCTTGC TCGCCTACCCAACCACTCTCGGCAACCACTCTCGCGTTCGCATCGATCAACCATCGCGAAATGCCATACTTGGTGTGAATGCCAACCATCCGTGAACCATCGCGTGGAACCATCGCGTGGTGTGGAACCATCGCGTGAACCATCGCGTGAACCATCGCGTGTGAGCAACCATCGCGTGGAACCATCGCGTGTGGTGTGGAACCATCGCGTGGAGCGTGTGGTGTGGAGCGATCGCGTGGTGTGGTGTGGGTGTGGTGTGGGAACCGCGTGGTGTGGGAACCATCGGTGGGAACCATCGGTGGGAACCATCGGGAACCATCGGTGGGAACCATCGGGAACCATCGG
626_Cons.18	TCGCGTACGCAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTAATTGCAGAATCCCGTGAACCATCGAGTCTTTG
425_Cons.19	TCTAATACA GAACGACTCTCGGGAACGGATATCTCGGCTCTGCATCGATGAGAAGACGTACGGAAATGGGATACTGGTGAATTGGAGAATCCGGTGAACGATCGAGATGG
ruler	
	************** ************************
206_Cons.17	AACGCAAGTTGCCCCTAAGCCATTAGCCCGAGGCCGACGTCTGCCCTGGGTGTCGACGACGACGCCCCCGA-CCCCCCCTCTCTCCGAGGGGACGCGGACGGCGGA
643 Cons.17	AACGCAAGTTGGCCCCTAAGCCATTAGCCCGAGGCACGTCTGCCTGGCTGTCACACACTCGTTGCCCCCCCA-CCGCCATCCCTCTCGAGGAGGACGACGGCCGGAGGGCCGGCC
471_Cons.18	
626 Cons.18	ARCICAROTICOCCCCGAROCCATTAGCCCGAGGCACOTCTCCCTGGCCTCACACATCGTTGCCCCTCCC-GCGTCTCCCCCGCC-ACGAGGCGCGACGGGACGG
425_Cons.19	AACGCAA GTTGCGCCCGAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACACATCGTTGCCCCCCCAACCACCGTGCCTCGCAAGAGGACGTGACGGGATGGGCCGA
426_Cons.19 ruler	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	*********** * *** *** **** **** ***** ****
206_Cons.17	TCAT66CCTCCC6T6A6CCCC6T6TC6CC66TT66CC6AAAAAACGTCCTC6GT66CCAC6CCAC
207_Cons.17 643_Cons.17	TCATGGCCTCCGCTGAGCCCCGTTCGCCGTTGGCCGAAAAAGAGTCCTCGGTGGCATCGCCACGCACCCCGGTGGATCAGTAACCTCGATGCGCGTCGTCGCCGTGTCGTC TCATGGCCTCCCCTGAGCCCCGTTCGCCGATGGCCGAAAAAGAGTCCTCGGTGGCGATCGCCACCCCGCACCTCGTGGATCAGTAACCTCGATGCGGTGGCGGACGGCGGTGTGGTCGCGGCGAGGGCGACGGCGACGGCGACGGCGACGGCGATGGGCGATGGGCGAGGGCGAGGGCGGCGGGCG
471_Cons.18	TCAT66CCTCCC66G6G6CCTCGTCCGCC6CG6TT6GTCGAAAAG66AGTCCTCG6CG6ACGACCACGATCCTCGGT66AK6A6CACG6CTC6ATACC6GACGT6CGC6CCTC6CC
625_Cons.18	TCATGGCCCCCGGGGGCCCCCCCGGGTTGGTCGAAAGGGGTCCCCGGGGCGTCGCCACGATCCCCGGGGGCGCGCGC
425 Cons.19	TCAT69CCTCCCCCG9GCCTCGTCTCCCGGCTG9CCGAATAAGACTCCTCGGTG9CGACCACGTCCTCGGTG9ACGACGATTAACTCGATGGCGTCGTCGCCGCCGCCGTC
426_Cons.19	TCATGGCCTCCCGCGGCGCCGCCGGCCGGCCGGCCGGCCG
Tuler	
206_Cons.17	CGCCCGGCCGGGCCCG-AGACCCTATCGTGTCACAGCGAAACCTACGGACCCCAGGTCAGGCGGGGCT
207_Cons.17	
471 Cons.18	C-CCCGGTCGGACCGGARACCCACCGTCGCCCCCGCGCGCCCTCGACCGCACCCCAGGCCAGGCGAGGCT
625_Cons.18	C-CCGGTCGGACTCGGARACCCCATCGCCGTCGCCCGTCGACCCGACGCGACCCCAGGTCAGGGGGGCCT
626_Cons.18 425_Cons.19	C-CCCGGTCGGACTCGGARACCCCATGCGCTCCCACGCGCCTCCGACGCGCCCCCGCGCTCGGGGGGGCT ACTIGGCGGGCTCGGACTCCTTCTGTGTCCCCCCCGCGCCACGCAACGCAACCCAAGCCAGCC
426_Cons.19	ACCTGGGCCGGGCCCGGAGACCCTGTCGTCGCCCCGAGCGACGACGAACGA
- ruler	580590600610620630640650

Abbildung A 7: Alignment der ITS-Sequenzen der Gattung *Caesalpinia*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden. Cons.17 = *C. echinata*: 206, 207 und 643; Cons.18 = *C. ferrea*: 471, 625 und 626; Cons.19 = *C. spinosa*: 425 und 426.
* = Position mit identischer Base für alle Sequenzen.

Nr.	ID	1	2	3
1	Cons.17			
2	Cons.18	0,132		
3	Cons.19	0,104	0,145	
4	444	0,215	0,199	0,209

Abbildung A 8: Evolutionäre Divergenz zwischen den ITS-Sequenzen von *Caesalpinia* spp. und *Myrocarpus frondosus*. Cons.17 = *C. echinata*: 206, 207 und 643; Cons.18 = *C. ferrea*: 471, 625 und 626; Cons.19 = *C. spinosa*: 425 und 426; 444 = *M. frondosus*.

7.6 ITS-Sequenzen und Pairwise-Distance Analyse der Gattung Pterocarpus

In Abbildung A 10 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, welche in Punkt 3.2.3.4 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Die Herbarnummer und die entsprechende Consensus-Nr. sind jeder Sequenz vorangestellt. Tabelle A 6 gibt alle Individuen und deren Art wieder, welche jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 9 die errechneten Einzelwerte auf.

Tabelle A 6: Aufstellung der Individuen der Gattung *Pterocarpus*, die zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die entsprechenden Herbarnummern sowie die Art.

ID	Art	Herbarnummer
Cons.20	Pterocarpus santalinus	636, 637
Cons.21	Pterocarpus soyauxii	638, 639
Cons.22	Pterocarpus indicus	448, 640, 641

Nr.	ID	1	2	3	4	5	6	7	8
1	637								
2	636	0,002		_					
3	638	0,054	0,054		_				
4	639	0,049	0,049	0,005		_			
5	641	0,031	0,033	0,064	0,059		_		
6	640	0,031	0,033	0,064	0,059	0,000		_	
7	642	0,034	0,035	0,064	0,059	0,002	0,002		_
8	448	0,031	0,033	0,064	0,059	0,000	0,000	0,002	
9	462	0,035	0,037	0,059	0,059	0,008	0,008	0,008	0,008

Abbildung A 9: Evolutionäre Divergenz zwischen den ITS-Sequenzen der Gattung *Pterocarpus*. 462 = P. macrocarpus; 636 und 637 = *P. santalinus*; 638 und 639 = *P. soyauxii*; 448 und 640-642 = P. indicus;.

Abbildung A 10: Alignment der ITS-Sequenzen der Gattung *Pterocarpus*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden. Cons.20 = *P. santalinus*: 636 und 637; Cons.21 = *P. soyauxii*: 638 und 639; Cons.22 = *P. indicus*: 448, 640 und 641. * = Position mit identischer Base für alle Sequenzen.

7.7 ITS-Sequenzen und Pairwise-Distance Analyse der Gattung Bowdichia

In Abbildung A 11 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, die in Punkt 3.2.3.5 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Jeder Sequenz ist die GenBank-Nr. und die entsprechende Consensus-Nr. vorangestellt. Tabelle A 7 gibt alle Individuen und deren Art wieder, die jeweils zu einer Consensus-Sequenz zusammengefasst wurden. Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 12 die errechneten Einzelwerte auf.

Abbildung A 11: Alignment der ITS-Sequenzen der Gattung *Bowdichia*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden. Cons.23 = *Bowdichia nitida* mit GenBank-Nr.: JX124477.1, JX124478.1 und JX124479.1; Cons.24 = *Bowdichia virgilioides* mit GenBank-Nr.: JX124475.1, JX124476.1 und EF457709.1. * = Position mit identischer Base für alle Sequenzen.

Tabelle A 7: Aufstellung der Individuen der Gattung *Bowdichia*, die zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. der Consensus-Sequenz (ID), die entsprechenden GenBank-Nr. sowie die Art.

ID	Art	GenBank-Nr.
Cons.23	Bowdichia nitida	JX124477.1, JX124478.1, JX124479.1
Cons.24	Bowdichia virgilioides	JX124475.1, JX124476.1, EF457709.1

Nr	ID	1	2	3	4	5	6
1	624						
2	JX124479.1	0,000		_			
3	JX124477.1	0,003	0,003		_		
4	JX124478.1	0,000	0,000	0,002		_	
5	EF457709.1	0,005	0,005	0,002	0,003		_
6	JX124475.1	0,006	0,006	0,003	0,005	0,003	
7	JX124476.1	0,003	0,003	0,003	0,003	0,005	0,006

Abbildung A 12: Evolutionäre Divergenz zwischen den ITS-Sequenzen von *Bowdichia nitida* und *B. virgilioides*. 624 = *B. nitida*; GenBank-Nr. JX124477.1, JX124478.1 und JX124479.1 = *B. nitida*; GenBank-Nr. JX124475.1, JX124476.1 und EF457709.1 = *B. virgilioides*.

7.8 ITS-Sequenzen und Pairwise-Distance Analyse von *Gonystylus* spp., *Terminalia* spp., *Endospermum moluccanum* und *Neolamarckia cadamba*

In Abbildung A 14 sind die jeweiligen ITS-Sequenzen der Individuen wiedergegeben, die in Punkt 3.2.5 zu Consensus-Sequenzen (Cons.) zusammengefasst wurden. Für jedes Individuum wird der ITS, bestehend aus ITS1+5.8S+ITS2, dargestellt. Die Herbarnummer und die entsprechende Consensus-Nr. sind jeder Sequenz vorangestellt. Weiterhin gibt Tabelle A 8 alle Individuen und deren Art wieder, die jeweils zu einer Consensus-Sequenz zusammengefasst wurden.

Für die durchgeführte Pairwise-Distance Analyse führt Abbildung A 13 die errechneten Einzelwerte auf.

ID	Art	Herbarnummer
Cons.25	Gonystylus bancanus	244, 247
Cons.26	Gonystylus spec.	482, 489, 491-493, 499, 614-617, 619, 621, 623
Cons.27	Gonystylus spec.	483, 487, 500
Cons.28	Gonystylus spec.	611-613, 618, 620, 622
Cons.29	Terminalia bentzoe	174, 467
Cons.30	Terminalia catappa	172, 424, 437, 440

Tabelle A 8: Aufstellung der Individuen der Gattungen Gonystylus und Terminalia,	
welche zu Consensus-Sequenzen zusammengefasst wurden. Dargestellt sind die Nr. de	r
Consensus-Sequenz (ID), die entsprechenden Herbarnummern sowie die Art.	

Nr.	ID	1	2	3	4	5	6	7	8	9	10	11	12
1	Cons.25		_										
2	Cons.26	0,000		_									
3	Cons.27	0,000	0,000		_								
4	486	0,004	0,004	0,004		_							
5	Cons.28	0,025	0,025	0,025	0,026		_						
6	634	0,319	0,319	0,320	0,319	0,316		_					
7	635	0,265	0,265	0,266	0,269	0,276	0,348		_				
8	Cons.29	0,326	0,326	0,327	0,326	0,318	0,258	0,342		_			
9	Cons.30	0,329	0,329	0,330	0,329	0,322	0,253	0,338	0,022				
10	458	0,324	0,324	0,325	0,324	0,319	0,253	0,327	0,081	0,092			
11	506	0,332	0,332	0,333	0,332	0,324	0,256	0,340	0,036	0,041	0,084		_
12	464	0,330	0,330	0,331	0,330	0,324	0,258	0,344	0,028	0,014	0,089	0,045	
13	507	0,332	0,332	0,333	0,332	0,324	0,256	0,340	0,036	0,041	0,084	0,000	0,045

Abbildung A 13: Evolutionäre Divergenz zwischen den ITS-Sequenzen von *Gonystylus* spp., *Terminalia* spp., *Endospermum moluccanum* und *Neolamarckia cadamba*. Cons.25 = *G. bancanus*: 244 und 247; Cons.26 = *G.* spec.: 482, 489, 491-493, 499, 614-617, 619, 621 und 623; Cons.27 = *G.* spec.: 483, 487 und 500; Cons.28 = *G.* spec.: 611-613, 618, 620 und 622; Cons.29 = *T. bentzoe*: 174 und 467; Cons.30 = *T. catappa*: 172, 424, 437 und 440; 458 = *T. bellirica*; 464 = *T. arenicola*; 486 = *G.* spec.; 506 = *T. avicennioides*; 507 = *T. glaucescens*; 634 = *E. moluccanum*; 635 = *N. cadamba*.

	* ****** ***** ****** ****	** ** * *	* ** * **	*** * **	****	* **	* * * ***
244_Cons.25	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
247_Cons.25	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCGG	CCTCCCTI	CCCTC	CTCGATCGGCCCTT
482_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCGG	CCTCCCT	CCCTC	
491 Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
492_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
493_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTI	CCCTC	CTCGATCGGCCCTT
499_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCGG	COTCCCT	CCCTC	CTCGATCGGCCCTT
615 Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
616_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
617_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCGG	CCTCCCTI	CCCTC	CTCGATCGGCCCTT
619_Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCGG	CCTCCCTI	CCCTC	CTCGATCGGCCCTT
623 Cons.26	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
483_Cons.27	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
487_Cons.27	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA	CGATCGAGTGGT	TGGGTTGGCCCCG	CCTCCCTI	CCCTC	CTCGATCGGCCCTT
611 Cons.28	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATTATACAAA TTGAATT-TACAAA	CCATCCACTCCT	TGGGTTGGCCCCGC	CCTCCCT	recerc	CTCGATCGGCCCTT
612 Cons.28	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATT-TACAAA	CGATCGAGTGGT	TGGGTTGGCCCTG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
613_Cons.28	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATT-TACAAA	CGATCGAGTGGT	TGGGTTGGCCCTG	CCTCCCTT	CCCTC	CTCGATCGGCCCTT
618_Cons.28	AATCCTGCACAGCAGCACGACCCGTGAAC	TTGAATT-TACAAA	CGATCGAGTGGT		CCTCCCTI	CCCTC	CTCGATCGGCCCTT
620_CONS.28	AATCCTGCACAGCAGCACGACCCGTGAAC	TTCAATI-TACAAA	Carcarater	TGGGTTGGCCCTG	CCICCCII		CTCGATCGGCCCTT
174 Cons.29	ACACCTGCAAAGCAGAGCGACCCGCGAACCGT	TTTTTAAATGCCCGGG	ATACCGGGGGGGGCGCCTA	GCCGCTCGGTAGCCCGAA	GCTCCGG	CGCTAGG	GTGCAACCCACCCTC
467_Cons.29	ACACCTGCAAAGCAGAGCGACCCGCGAACCGT	TTTTTAAA TGCCCGGG	ATACCGGGGGGGGCGCCTA	GCCGCTCGGTAGCCCGAA	AGCTCCGGZ	CGCTAGG	JGTGCAACCCACCCTC
172_Cons.30	ACACCTGCAAAGCAGAGCGACCCGCGAACCGT	TTTTTAAATGCCCGGG	ATACCGGGGGGGGCGCCTA	TCTGCCCGGTAGCCCGAA	GCTCCGGZ		JGTGCAACCCACCCCC
424_Cons.30	ACACCTGCAAAGCAGAGCGACCCGCGCGAACCGT ACACCTGCAAAGCAGAGCGACCCGCGCGAACCGT	TTTTTAAA TGCCCGGG	ATACCGGGGGGGGGGGCGCCTA	TCTCCCCCCTA GCCCCA A	ACTCCCCC		JGTGCAACCCACCCCC
440 Cons.30	ACACCTGCAAAGCAGAGCGACCCGCGAACCGT	TTTTTAAATGCCCGGG	ATACCGGGGGGGGGCGCCTA	TCTGCCCGGTAGCCCGAA	GCTCCGG	CGCTAGG	GTGCAACCCACCCCC
Cons.30	ACACCTGCAAAGCAGAGCGACCCGCGAACCGT	TTTTTAAATGCCCGGG	ATACCGGGGGGGGCGCCTA	TCTGCCCGGTAGCCCGAA	GCTCCGGZ	CGCTAGG	JGTGCAACCCACCCCC
ruler	1		50	70	90		0
244 00 05		* **********	* ** * ** *		* * *	**** ***	
244_Cons.25	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCCTCG	JAAACGTGG JAAACGTGG	TCCGTCC	COCCAACG-CGTTGTT
482 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
489 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGO	;TGCGTGG	GGGGAAGG-CGTTGTT
491_Cons.26	GTGGCCTAACACCAAACCCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	JCCCAACC-CCTTCTT
492_CONS.26	GIGGCCIAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCCTCG	JAAACGTGG	Tacaraa	JGGGAAGG-CGIIGII
499 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	GGGGAAGG-CGTTGTT
614 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGO	TGCGTGG	JGGGAAGG-CGTTGTT
615_Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCGC	BAAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
617 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
619 Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	GGGGAAGG-CGTTGTT
621_Cons.26	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
623_Cons.26	GTGGCCTAACACCAAACCCCGGCGC T-GTGGCCTAACACCAAACCCCGGCGCGC	GGACTGCGCCAAGGAA GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	BAAACGTGG	TGCGTGG	GGGGAAGG-CGTTGTT
487 Cons.27	T-GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
500 Cons.27	T-GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	ATAAAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	GGGGAAGG-CGTTGTT
611_Cons.28	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	TTAGAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGO	TGCGTGG	JGGGAAGG-CGTTGTT
612_Cons.28		GGACTGCGCCAAGGAA	TTAGAATTTGACAGAAC	GTTCTCCCCACACCCTCG	JAAACGTGO	TGCGTGG	JGGGAAGG-CGTTGTT
618 Cons.28	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	TTAGAATTTGACAGAAC	GTTCTCCCCACACCCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
620_Cons.28	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	TTAGAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGTGG	TGCGTGG	JGGGAAGG-CGTTGTT
622_Cons.28	GTGGCCTAACACCAAACCCCGGCGC	GGACTGCGCCAAGGAA	TTAGAATTTGACAGAAC	GTTCTCCCCACACCCTCG	AAACGT GG	TGCGTGG	JGGGAAGG-CGTTGTT
174_Cons.29		GCGAAGCGCCAAGGTA GCGAAGCGCCAAGGTA	CTCCAA CGATAGGGC	ATGCGCCCGTAGCCCTGGG	TTCCAGTO	TGCTCGG	CTGCTGTTCAACATC
172 Cons.30	CAGCGGACGAAGCTCCAAACAAACCCCCGGCGC	GCGAAGCGCCAAGGTA	CTCCAA CGGTAGGGC	ATGCGCCCGTAGCCCTGG	TTCCAGTO	TGCTCGG	CTGCTGTTCAACATC
424_Cons.30	CAGCGGACGAAGCTCCAAACAAACCCCGGCGC	GCGAAGCGCCAAGGTA	CTCCAA CGGTAGGGC	ATGCGCCCGTAGCCCTGG	TTCCAGTO	TGCTCGG	CTOCTOTTCAACATC
437_Cons.30	CAGCGGACGAAGCTCCAAACAAACCCCGGCGC	GCGAAGCGCCAAGGTA	CTCCAA CGGTAGGGC	ATGCGCCCGTAGCCCTGG	TTCCAGTO	TGCTCGG	CTGCTGTTCAACATC
440_Cons.30		GCGAAGCGCCAAGGTA GCGAAGCGCCAAGGTA	CTCCAA CGGTAGGGC	ATGCGCCCGTAGCCCTGGC	TTCCAGTG	TGCTCGG	CTOCTOTTCAACATC
ruler		150	170		0	.210	220
	* ** * ***************	******	******	*****	*******	******	*********
244_Cons.25	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
247_Cons.25	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
489 Cons.26	GUNUMACUUAAAAUGACTUTUGGUAAUGGATA GUACAAUCUAAAAUGACTUTUGGUAAUGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG AATGCGATACTTGGTGTG	ATTOCAGE	ATCCCGT(AACCATCGAGTCTTT
491 Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
492_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAGE	ATCCCGT	JAACCATCGAGTCTTT
493_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAGE	ATCCCGT	JAACCATCGAGTCTTT
614 Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTCCAGE	ATCCCGT	AACCATCGAGTCTTT
615_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	BAACCATCGAGTCTTT
616_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
617_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTGA AATGCGATACTTGGTGTGA	ATTGCAGE ATTGCAGE	ATCCCGT	JAACCATCGAGTCTTT
621 Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	AACCATCGAGTCTTT
623_Cons.26	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
483_Cons.27	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
500 Cons.27	GCACAACCCAAAACGACTCTCGGCAACGGATA GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG AATGCGATACTTGGTGTG	ATTOCAGE	ATCCCGT(JAACCATCGAGTCTTT
611 Cons.28	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	AACCATCGAGTCTTT
612_Cons.28	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
613_Cons.28	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
620 Cons.28	GUAUAAUUUAAAAUGACTCTCGGCAACGGATA GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	.GA TGAAGAACGTAGCGA CATGAAGAACGTAGCGA	AAIGUGATACTTGGTGTG AATGCGATACTTGGTGTG	ATTGCAGA	ATCCCGT(AACCATCGAGTCTTT
622_Cons.28	GCACAACCCAAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
174_Cons.29	ATA-AAGTCTAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
467_Cons.29	ATA-AAGTCTAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
424 Cons.30	A 1A -AAGTUTAAAUGACTUTUGGUAAUGGATA ATA -AAGTUTAAAUGACTUTUGGUAAUGUATA	TCTCGGCTCTCGCATC	.GA TGAAGAACGTAGCGA CATGAAGAACGTAGCCA	AAIGUGATACTTGGTGTGA AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT(JAACCATCGAGTCTTT
437 Cons.30	ATA-AAGTCTAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
440_Cons.30	ATA-AAGTCTAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
Cons.30	ATA-AAGTCTAAACGACTCTCGGCAACGGATA	TCTCGGCTCTCGCATC	GATGAAGAACGTAGCGA	AATGCGATACTTGGTGTG	ATTGCAG	ATCCCGT	JAACCATCGAGTCTTT
ruier					3 2 0		

	****** ********* * *****	*****	* ** ** **	* **** * ** **
244_Cons.25	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
482 Cons.25	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA JGGCACGTCTGCCTGGCTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC TGGGCGCCGCTGTTAGTGTGCG-GC
489 Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
491_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
492_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
493_CONS.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA 3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC TGGGCGCGGGCTGTTAGTGTGCG-GC
614 Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
615_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC'
616_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
617_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTAG JGGCACGTCTGCCTGGGTGTCACGCATCGTAG	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC: TGGGCGCGGGGTGTTAGTGTGCG-GC:
621 Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
623_Cons.26	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
483_Cons.27	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGGTGTTAGTGTGCG-GC
500 Cons.27	GAACGCAAGTTGCGCCCTACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATCTCCTACACTCATTCCCAGA	TGGGCGCGGGTGTTAGTGTGCG-GC
611_Cons.28	GAACGCAAGTTGCGCCCCACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATTTCCTACACTCTTTCCTAGA	TAGGCGGGGGGTGTTAGTGTGCG-GC'
612_Cons.28	GAACGCAAGTTGCGCCCCACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATTTCCTACACTCTTTCCTAGA	TAGGCGGGGGGGGTGTTAGTGTGCG-GC
613_Cons.28	GAACGCAAGTTGCGCCCCACGCCTTCGGGCCGA	JGGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATTTCCTACACTCTTTCCTAGA	TAGGCGGGGGGGGGGTGTTAGTGTGCG-GC TAGGCGGGGGGGTGTTAGTGTGCG-GC
620 Cons.28	GAACGCAAGTTGCGCCCCACGCCTTCGGGCCCA	3GGCACGTCTGCCTGGGTGTCACGCATCGTA	CCATTTCCTACACTCTTTCCTAGA	TAGGCGGGGGTGTTAGTGTGCG-GC
622_Cons.28	GAACGCAAGTTGCGCCCCACGCCTTCGGGCCGA	3GGCACGTCTGCCTGGGTGTCACGCATCGTAG	CCATTTCCTACACTCTTTCCTAGA	TAGGCGGGGGGTGTTAGTGTGCG-GC
174_Cons.29	GAACGCAAGTTGCGCCCGAAGCCTT GGCTGA	JGGCACGTCTGCCTGGGTGTCACGCATCGCG1	TGCCTCCAAACCCTTCACCCTTCG	AACGTTGCGGTGATGGTCTGGGTGC
172 Cons.30	GAACGCAAGTTGCGCCCGAAGCCTTGGCTGA	JGGCACGTCTGCCTGGGTGTCACGCATCGCGT	TGCCTCCAAACCCTTCACCCTTCG	TTCGTTGCGGTGATGGTCTGGGTGC
424 Cons.30	GAACGCAAGTTGCGCCCGAAGCCTTGGCTGA	3GGCACGTCTGCCTGGGTGTCACGCATCGCG1	TGCCTCCAAACCCTTCACCCTTCG	TTCGTTGCGGTGATGGTCTGGATGC
437_Cons.30	GAACGCAAGTTGCGCCCGAAGCCTT GGCTGA	3GGCACGTCTGCCTGGGTGTCACGCATCGCG1	TGCCTCCAAACCCTTCACCCTTCG	TTCGTTGCGGTGATGGTCTGGATGC
440_Cons.30		3GGCACGTCTGCCTGGGTGTCACGCATCGCG1	TGCCTCCAAACCCTTCACCCTTCG	TTCGTTGCGGTGATGGTCTGGATGC(
ruler		30	0	
	** ******** ** * ***		* ******* * *******	* ** * ** * *** * **
244 Cons.25	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	TGGCCCAAAAA - GAGGAGCCCAAAGGCGGCGT	A - CGCCACGATAA - GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
247_Cons.25	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGI	A-CCCCCCCACGATAA-CCCGCTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
482_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT			GTATTCGTGCATTCGTTGCAACGTC
409_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA - GAGGAGCCCAAAGGCGGCGI	A-COCCACGATAA-OCGOTOGIGI	GTATTCGTGCATTCGTTGCAACGTC
492_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	TGGCCCAAAAA - GAGGAGCCCAAAGGCGGCG1	A-CGCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
493_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGI	A-CGCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
499_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	TGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGT TGGCCCAAAAA-GAGGAGCGCCAAAGGCGGCGT	-A-CGCCACGATAA-GCGGTGGTGT 13-CGCC2CG2T23-GCGGTGTGTGT	GTATTCGTGCATTCGTTGCAACGTC
615 Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	FGGCCCAAAAA - GAGGAGCCCAAAGGCGGCGT	A-COCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
616_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA - GAGGAGCCCAAAGGCGGCGI	A - CGCCACGATAA - GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
617_Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	rggcccaaaaa - gaggagcccaaaggcggcgi	A-CGCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
619_Cons.26	GAGAA TGGCCTCCCGTTCCCTTGTCGGTGCGGT	TGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGT TGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGT	A-COCCACGATAA-GCGGTGGTGT A-COCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
623 Cons.26	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA - GAGGAGCCCAAAGGCGGCGI	A-CGCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
483_Cons.27	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	IGGCCCAAAAA-GAGGAGCCCAAAGGCGGCGI	A-CGCCACGATAA-GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
487_Cons.27 500_Cons.27	GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT GAGAATGGCCTCCCGTTCCCTTGTCGGTGCGGT	rgccccaaaaa - gaggagcccaaaggcggcg1 rgccccaaaa - caggagcccaaaggcggcg1	:A - CGCCACGATAA - GCGGTGGTGT 'A - CGCCACGATAA - GCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
611 Cons.28	GAGAATGGCCTCCCGTCCCCTTGTGGGTGCGGT	TGGCCCAAAAAGAGGTGCCCGAAGGCGGCG	A-COCCACGATAAAGCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
612_Cons.28	GAGAATGGCCTCCCGTCCCCTTGTCGGTGCGGT	IGGCCCAAAAAAGAGGTGCCCGAAGGCGGCG7	A-CGCCACGATAAAGCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
613_Cons.28	GAGAATGGCCTCCCGTCCCCTTGTGGGTGCGGT			GTATTCGTGCATTCGTTGCAACGTC
620 Cons.28	GAGAATGGCCTCCCGTCCCCTTGTCGGTGCGGT	IGGCCCAAAAAAGAGGTGCCCGAAGGCGGCGI	A-COCCACGATAAAGCGGTGGTGTGT	GTATTCGTGCATTCGTTGCAACGTC
622_Cons.28	GAGAATGGCCTCCCGTCCCCTTGTCGGTGCGGT	IGGCCCAAAAAAGAGGTGCCCGAAGGCGGCG1	A-CGCCACGATAAAGCGGTGGTGT	GTATTCGTGCATTCGTTGCAACGTC
174_Cons.29	GAAGCTGGCCTCCCGCGGCCACT-AGCCACGGA	IGGCCCAAACACGTGCTAGGGAAGCGA	AGCGCCACGGCAT-TCGGTGGT-T	G-ATCCAAGCCCCAGAAGCAGTGCC
467_Cons.29	GAAGCTGGCCTCCCGCGGCCACT-AGCCACGGA: GAAGCTGGCCTCCCCGCGGCCACT-AGCCACGGA;	IGGCCCAAACA CGIGCIAGGGAAGCGA IGGCCCAAACA CGIGCIAGGGAAGCGA	LA GEGECAEGGEAT - TEGGTGGT - T LA GEGECA EGGECAT - TEGGTGGT - T	G-ATCCAAGCCCCAGAAGCAGTGCC
424 Cons.30	GAAGTTGGCCTCCCGCGGCCACG-AGCCACGGA	FGGCCCAAACA CGTGCTAGGGAAGCGA	AGCGCCACGGCAT - TCGGTGGT - T	G-ATCCAAGCCCCAGAAGCAGTGCC
437_Cons.30	GAAGTTGGCCTCCCGCGGCCACG-AGCCACGGA	IGGCCCAAACACGTGCTAGGGAAGCGA	AGCGCCACGGCAT - TCGGTGGT - T	G-ATCCAAGCCCCAGAAGCAGTGCC
440_Cons.30	GAAGTTGGCCTCCCGCGGCCACG-AGCCACGGA		AGCGCCACGGCAT - TCGGTGGT - T	G-ATCCAAGCCCCAGAAGCAGTGCC
ruler				0
	** * * * * * * * *	**** * * * * *	** ***** **********	
244_Cons.25	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
247_Cons.25	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
482_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	la ttocol cocca getca gecgega la ttocol cocca getca gecgega	AC AC
491 Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACG	ATTGCGACCCCAGGTCAGGCGGGA	AC
492_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
493_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGGA	AC
614 Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGGA	AC
615_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	CATTGCGACCCCAGGTCAGGCGGGA	AC
616_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
617_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGA TGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGGA	AC
621 Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
623_Cons.26	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
483_Cons.27	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA TGGGCGTCGTCCTTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	:ATTGCGACCCCAGGTCAGGCGGGGA	AC AC
500 Cons.27	TGGGCGTCGTCTCCTAACAAAGGGCTCTTCGTA	JACCCCTGATGCCATCACTTGTGGTAGCACGC	ATTGCGACCCCAGGTCAGGCGGGGA	AC
611_Cons.28	TGGGCGTCGCCTCCTAATAAAGGGCTCTTCATA	JACCCCCGATGCCATCACTTGTGGTGGCACGC	CATTGCGACCCCAGGTCAGGCGGGA	AC
612_Cons.28	TGGGCGTCGCCTCCTAATAAAGGGCTCTTCATA	JACCCCCGATGCCATCACTTGTGGTGGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
618 Cons 28	TGGGGGTCGCCTCCTAATAAAGGGCTCTTCATA TGGGCGTCGCCTCCTAATAAAGGGCTCTTCATA	JACUCCUGA TGCCATCA CTTGTGGTGGCA CGC 18 CCCCCG8 TGCC8 TC8 CTTGTGGTGGC8 CGC	la tiguga cucuca ggt ca ggCGGGA 1a tiguga cocca ggt ca ggCgggaa	AC AC
620_Cons.28	TGGGCGTCGCCTCCTAATAAAGGGCTCTTCATA	JACCCCCGATGCCATCACTTGTGGTGGCACGC	ATTGCGACCCCAGGTCAGGCGGGA	AC
622_Cons.28	TGGGCGTCGCCTCCTAATAAAGGGCTCTTCATA	JACCCCCGATGCCATCACTTGTGGTGGCACGC	CATTOCGACCCCAGGTCAGGCGGGA	AC
174_Cons.29	GTGGTGGCCGCATCTGTCCCTAGCCCAC(GTGGTGGCCGCATCTGTCCCTAGCCCAC)			CT CT
172 Cons.30	GCGGTGGCCGCGTCTGTCCTTAGCCTAC	JACCCTAAACGTTAACC	CAACGCGACCTCAGGTCAGGCGGGGG	CT
424_Cons.30	GCGGTGGCCGCGTCTGTCCTTAGCCTAC	JACCCTAAACGTTAAC	AACGCGACCTCAGGTCAGGCGGGG	CT
437_Cons.30	GCGGTGGCCGCGTCTGTCCTTAGCCTAC	JACCCTAAACGTTAAC		CT CT
Cons.30	GCGGTGGCCGCGTCTGTCCTTAGCCTAC	JACCCTAAACGTTAAC	AACGCGACCTCAGGTCAGGCGGGGG	ČT
rulor	590 590 600 6	10 620 630 640	650 660	

Abbildung A 14: Alignment der ITS-Sequenzen der Gattungen *Gonystylus* und *Terminalia*. Dargestellt sind jene Individuen, die zu Consensus-Sequenzen zusammengefasst wurden.
Cons.25 = *Gonystylus bancanus*: 244 und 247; Cons.26 = *Gonystylus* spec.: 482, 489, 491-493, 499, 614-617, 619, 621 und 623; Cons.27 = *Gonystylus* spec.: 483, 487 und 500;
Cons.28 = *Gonystylus* spec.: 611-613, 618, 620 und 622; Cons.29 = *Terminalia bentzoe*: 174 und 467; Cons.30 = *T. catappa*: 172, 424, 437 und 440. * = Position mit identischer Base für alle Sequenzen.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen sowie Hilfsmittel nicht benutzt und die den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Außerdem erkläre ich, dass ich mich weder an einer anderen Universität um eine Promotion beworben, noch die Dissertation an einer anderen Universität eingereicht habe.

Hamburg, September 2014

(Niko Wischnewski)