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Dual trees must share their ends

Reinhard Diestel Julian Pott

Abstract

We extend to infinite graphs the matroidal characterization of finite graph

duality, that two graphs are dual iff they have complementary spanning

trees in some common edge set. The naive infinite analogue of this fails.

The key in an infinite setting is that dual trees must share between

them not only the edges of their host graphs but also their ends: the

statement that a set of edges is acyclic and connects all the vertices in

one of the graphs iff the remaining edges do the same in its dual will

hold only once each of the two graphs’ common ends has been assigned to

one graph but not the other, and ‘cycle’ and ‘connected’ are interpreted

topologically in the space containing the respective edges and precisely

the ends thus assigned.

This property characterizes graph duality: if, conversely, the spanning

trees of two infinite graphs are complementary in this end-sharing way,

the graphs form a dual pair.

1 Introduction

It is well known (and not hard to see) that two finite graphs are dual if and

only if they can be drawn with a common abstract set of edges so that the edge

sets of the spanning trees of one are the complements of the edge sets of the

spanning trees of the other:

Theorem 1. Let G = (V,E) and G∗ = (V ∗, E) be connected finite graphs with

the same abstract edge set. Then the following statements are equivalent:

(i) G and G∗ are duals of each other.

(ii) Given any set F ⊆ E, the graph (V, F ) is a tree if and only if (V ∗, F {) is

a tree.

For infinite dual graphs G and G∗ (see [1]), Theorem 1 (ii) will usually fail:

when (V, F ) is a spanning tree of G, the subgraph (V ∗, F {) of G∗ will be acyclic

but may be disconnected. For example, consider as G the infinite Z × Z grid,

and let F be the edge set of any spanning tree containing a two-way infinite

path, a double ray R. Then the edges of R will form a cut in G∗, so (V ∗, F {)

will be disconnected.

Although the graphs (V ∗, F {) in this example will always be disconnected,

they become arc-connected (but remain acirclic) when we consider them as
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closed subspaces of the topological space obtained from G∗ by adding its end.

Such subspaces are called topological spanning trees; they provide the ‘correct’

analogues in infinite graphs of spanning trees in finite graphs for numerous

problems, and have been studied extensively [6, 7]. For G = Z × Z, then, the

complements of the edge sets of ordinary spanning trees of G form topological

spanning trees in G∗, and vice versa (as Z× Z is self-dual).

It was shown recently in the context of infinite matroids [2] that this curious

phenomenon is not specific to this example but occurs for all dual pairs of

graphs: neither ordinary nor topological spanning trees permit, by themselves,

an extension of Theorem 1 to infinite graphs, but as soon as one notion is used

for G and the other for G∗, the theorem does extend. The purpose of this

paper is to explain this seemingly odd phenomenon by a more general duality

for graphs with ends, in which it appears as merely a pair of extreme cases.

It was shown in [3] that 2-connected dual graphs do not only have the ‘same’

edges but also the ‘same’ ends: there is a bijection between their ends that

commutes with the bijection between their edges so as to preserve convergence

of edges to ends. Now if G and G∗ are dual 2-connected graphs with edge sets E

and end sets Ω, our result is that if we specify any subset Ψ of Ω and consider

topological spanning trees of G in the space obtained from G by adding only

the ends in Ψ, then Theorem 1 (ii) will hold if the subgraphs (V ∗, F {) of G∗ are

furnished with precisely the ends in Ω \ Ψ. (Our earlier example is the special

case of this result with either Ψ = ∅ or Ψ = Ω.) And conversely, if the spanning

trees of two graphs G and G∗ with common edge and end sets complement each

other in this way for some—equivalently, for every—subset Ψ of their ends then

G and G∗ form a dual pair.

Here, then, is the formal statement of our theorem. A graph G is finitely

separable if any two vertices can be separated by finitely many edges; as noted

by Thomassen [9, 10], this slight weakening of local finiteness is necessary for

any kind of graph duality to be possible. The Ψ-trees in G, for subsets Ψ of

its ends, will be defined in Section 2. Informally, they are the subgraphs that

induce no cycle or topological circle in the space which G forms with the ends

in Ψ (but no other ends) and connect any two vertices by an arc in this space.

Theorem 2. Let G = (V,E,Ω) and G∗ = (V ∗, E,Ω) be finitely separable 2-

connected graphs with the same edge set E and the same end set Ω, in the sense

of [3]. Then the following assertions are equivalent:

(i) G and G∗ are duals of each other.

(ii) For all Ψ ⊆ Ω and F ⊆ E the following holds: F is the edge set of a Ψ-tree

in G if and only if F { is the edge set of a Ψ{-tree in G∗.

(iii) There exists a set Ψ ⊆ Ω such that for every F ⊆ E the following holds:

F is the edge set of a Ψ-tree in G if and only if F { is the edge set of a

Ψ{-tree in G∗.
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Setting Ψ = ∅ in (ii) and (iii) as needed, we reobtain the following result

from [2]:

Corollary 3. Two 2-connected and finitely separable graphs G = (V,E,Ω) and

G∗ = (V ∗, E,Ω) are dual if and only if the following assertions are equivalent

for every F ⊆ E:

(i) F is the edge set of a spanning tree of G;

(ii) F { is the edge set of a topological spanning tree of G∗.

We shall prove Theorem 2, extended by another pair of equivalent conditions

in terms of circuits and bonds, in Sections 3–4.

2 Definitions and basic facts

All the graphs we consider in this paper will be finitely separable, that is, any

two vertices can be separated by finitely many edges.

We think of a graph as a triple (V,E,Ω) of disjoint sets, of vertices, edges,

and ends, together with a map E → V ∪ [V ]2 assigning to every edge either one

or two vertices, its endvertices, and another map mapping the ends bijectively

to the equivalence classes of rays in the graph, its 1-way infinite paths, where

two rays are equivalent if they cannot be separated by finitely many vertices. In

particular, our ‘graphs’ may have multiple edges and loops. For the complement

of F in E, and of Ψ in Ω, we write F { and Ψ{, respectively.

Let G = (V,E,Ω) be a graph, and let X be the topological 1-complex

formed by its vertices and edges. In X, every edge is a topological copy of [0, 1]

inheriting also its metric. We denote the topological interior of an edge e by e̊,

and for a set F ⊆ E of edges we write F̊ :=
⋃
e∈F e̊.

Let us define a new topology on X ∪ Ω, to be called VTop. We do this by

specifying a neighbourhood basis for every point. For points x ∈ X we declare

as open the open ε-balls around x in X with 0 < ε < δ, where δ is the distance

from x to a closest vertex v 6= x. For points ω ∈ Ω, note that for every finite

set S ⊆ V there is a unique component C = C(S, ω) of G − S that contains a

ray from ω. Let Ĉ = Ĉ(S, ω) ⊆ X ∪ Ω be the set of all the vertices and inner

points of edges contained in or incident with C, and of all the ends represented

by a ray in C. We declare all these sets Ĉ as open, thus obtaining for ω the

neighbourhood basis

{
Ĉ(S, ω) ⊆ X ∪ Ω : S ⊆ V, |S| <∞

}
.

We write |G| for the topological space on X ∪ Ω endowed with this topology.1

In topological contexts we shall also write G for the subspace |G| r Ω. (This

has the same points as X, but a different topology unless G is locally finite.)

If ω and S are as above, we say that S separates ω in G from all the ends

that have no ray in C(S, ω) and from all vertices in G− C(S, ω)− S.

1This differs a little from the definition of |G| in [5] when G is not locally finite.
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A vertex v dominates an end ω if G contains infinitely many paths from v

to some ray in ω that pairwise meet only in v. When this is the case we call

v and ω equivalent ; let us write ∼ for the equivalence relation on V ∪ Ω which

this generates. Note that since G is finitely separable, no two vertices will be

equivalent under ∼ : every non-singleton equivalence class consists of one vertex

and all the ends it dominates. A vertex and an end it dominates have no disjoint

neighbourhoods in |G|. But two ends always have disjoint neighbourhoods, even

if they are dominated by the same vertex.

For sets Ψ ⊆ Ω of ends, we shall often consider the subspace

|G|Ψ := |G|r Ψ{

and its quotient space

G̃Ψ := |G|Ψ/∼ ,
whose topology we denote by Ψ-Top. For Ψ = Ω we obtain an identification

space

G̃ := G̃Ω

that readers may have met before; its topology is commonly denoted as ITop.

We usually write [x]Ψ for the equivalence class of x in |G|Ψ, and [x] for its class

in G̃.

As different vertices are never equivalent, the vertices of G determine distinct

∼-classes, which we call the vertices of G̃Ψ. All other points of G̃Ψ are singleton

classes {x}, with x either an inner point of an edge or an undominated end in Ψ.

We will not always distinguish {x} from x in these cases, i.e., call these x also

inner point of edges or ends of G̃Ψ.

Note that if Ψ contains a dominated end then |G|Ψ will fail to be Hausdorff,

and if Ψ{ 6= ∅ then G̃Ψ will fail to be compact. But we shall see that G̃Ψ is

always Hausdorff (Corollary 7), and if G is 2-connected then G̃ is compact [4].

Rather than thinking of G̃Ψ as a quotient space as formally defined above,

we may think of it informally as formed from the topological space G in three

steps:

• add the undominated ends from Ψ as new points, and make their rays

converge to them;

• make the rays from any dominated end in Ψ converge to their unique

dominating vertex;

• let the rays of ends in Ψ{ go to infinity without converging to any point.

The diagram in Figure 1 shows the relationship between the spaces just

defined. The subspace inclusion ι : |G|Ψ → |G| and the quotient projections

π : |G| → G̃ and πΨ : |G|Ψ → G̃Ψ are canonical, and σΨ : G̃Ψ → G̃ is defined so

as to make the diagram commute: it sends an equivalence class [x]Ψ ∈ G̃Ψ to

the class [x] ∈ G̃ containing it.
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|G|Ψ ι //

πΨ

��

|G|
π
��

G̃Ψ σΨ

// G̃

Figure 1: Spaces with ends, and their quotient spaces

Since G is finitely separable and hence no end is dominated by more than

one vertex, σΨ is injective: σΨ([x]Ψ) = [x] ∈ G̃ is obtained from [x]Ψ simply

by adding those ends of Ψ{ that are dominated by a vertex in [x]Ψ. As |G|Ψ
carries the subspace topology induced from |G|, it is also easy to check that σΨ

is continuous. Its inverse σ−1
Ψ can fail to be continuous; see Example 2 below.

The subtle differences between |G|Ψ and G̃Ψ will often be crucial in this

paper. But when they are not, we may suppress them for simplicity of notation.

For example, given a subgraph H of G we shall speak of the closure of H in G̃Ψ

and mean the obvious thing: the closure in G̃Ψ of its subspace πΨ(H ′), where

H ′ is H viewed as a subspace of |G|Ψ ⊆ |G|.
By a circle in a topological space X we mean a topological embedding

S1 → X, or its image. Since circles are compact and G̃ is Hausdorff, σΨ maps

circles in G̃Ψ to circles in G̃. Conversely, circles in G̃ that use only ends in Ψ

define circles in G̃Ψ; this will be shown in Lemma 11. The set of all the edges

contained in a given circle in G̃Ψ will be called a Ψ-circuit of G; for Ψ = Ω

we just speak of circuits of G. We shall not consider ‘circuits’ of circles in |G|
or |G|Ψ.

As with circles, we use the term path in topological contexts both for con-

tinuous maps from [0, 1], not necessarily injective, and for their images. For

example, if A and B are the images of paths ϕ,ϕ′ : [0, 1] → G̃ with endpoints

x = ϕ(0) and y = ϕ(1) = ϕ′(0) and z = ϕ′(1), we write xAyBz for the ‘x–y

path’ in G̃ that is the image of the concatenation of the paths ϕ and ϕ′. Note

that, since G̃Ψ is Hausdorff, every path in G̃Ψ between two points x and y

contains an x–y arc [8, p. 208].

A subspace of G̃Ψ that is the closure in G̃Ψ of the union of all the edges it

contains is a standard subspace of G̃Ψ. Circles in G̃Ψ are examples of standard

subspaces; this was shown in [7] for G̃, and follows for arbitrary Ψ from Lemma 6

below. A standard subspace of G̃Ψ that contains no circle is a Ψ-forest of G.

A Ψ-forest is spanning if it contains all the vertices of G̃Ψ. Note that, being

closed, it then also contains all the ends of G̃Ψ. A spanning arc-connected

Ψ-forest of G is a Ψ-tree of G.

Thus, the ∅-trees of G are precisely its (ordinary) spanning trees, while its

Ω-trees are its topological spanning trees, the arc-connected standard subspaces

of G̃ that contain all the vertices of G but no topological circle.

Example 1. Let G be obtained from a double ray D by adding a vertex v

adjacent to all of D. This graph G has two ends, ω and ψ say, both dominated

by v. The closure in G̃ of the edges of D is a circle containing the ‘vertex’

5



[v] = {v, ω, ψ} of G̃, even though v does not lie on D. However for Ψ = {ψ}
the closure in G̃Ψ of the same set of edges is not a circle but homeomorphic to

a half-open interval. It thus is a Ψ-tree, and even a spanning one, since v and ψ

are both elements of its ‘vertex’ {v, ψ} and it also contains all the other vertices

of G. The closure of the edges of D in G̃∅, on the other hand, is a ∅-tree but

not a spanning one, since v lies in none of its points. Figure 2 shows a Ψ-tree

for each choice of Ψ in this example.

D

v

ψ

ω

D

ω

v ψ{ },

D

ωv ψ{ }, ,

Figure 2: Ψ-trees for Ψ = {ψ}, Ψ = ∅ and Ψ = {ω, ψ}

If G and G∗ are graphs with the same edge set, and such that the bonds of

G∗ are precisely the circuits of G, then G∗ is called a dual of G. If the finite

bonds of G∗ are precisely the finite circuits of G, then G∗ is a finitary dual

of G. Clearly, duals are always finitary duals. For finitely separable graphs, as

considered here, the converse is also true [1, Lemmas 4.7–4.9]. If G∗ is a dual

of G, then G is a dual of G∗ [1, Theorem 3.4]. Finally, G has a dual if and only

if it is planar [1].

3 Lemmas

Our main aim in this section is to prove some fundamental lemmas about the

spaces |G|, |G|Ψ, G̃ and G̃Ψ defined in Section 2: about their topological prop-

erties, and about their relationship to each other. Throughout the section, let

G = (V,E,Ω) be a fixed finitely separable graph, and Ψ ⊆ Ω a fixed set of ends.

Before we get to these topological fundamentals, let us show that Ψ-trees

always exist, and prove an easy lemma about how they relate to finite circuits

and bonds. As to the existence of Ψ-trees, we can even show that there are

always rather special ones: Ψ-trees that are connected not only topologically

through their ends, but also as graphs:

Lemma 4. If G is connected, it has a spanning tree T whose closure in G̃Ψ is

a Ψ-tree.

Proof. It was shown in [1, Thm. 6.3] that G has a spanning tree T whose

closure T in G̃ contains no circle. Let TΨ denote the closure of T in G̃Ψ. Then

T = σΨ(TΨ). Since circles in G̃Ψ define circles in G̃ (by composition with σΨ),

TΨ contains no circle either.
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For a proof that TΨ is arc-connected it suffices to show that every undom-

inated end ψ ∈ Ψ contains a ray R ⊆ T : then the arc πΨ(T ) ⊆ TΨ connects

the end {ψ} ∈ TΨ to a vertex, while all the vertices of TΨ are connected by T .

Pick a ray R′ ∈ ψ in G, say R′ = v0v1 . . . . By the star-comb lemma [5, Lemma

8.2.2], the connected graph
⋃
n∈N vnTvn+1 contains a subdivided infinite star

with leaves in R′ or an infinite comb with teeth in R′. As ψ is not dominated,

we must have a comb. The back R ⊆ T of this comb is a ray equivalent to R′

that hence lies in ψ.

Being acirclic, arc-connected and spanning, TΨ is a Ψ-tree.

Lemma 5. Assume that G is connected, and let F ⊆ E be a finite set of edges.

(i) F is a circuit if and only if it is not contained in the edge set of any Ψ-tree

and is minimal with this property.

(ii) F is a bond if and only if it meets the edge set of every Ψ-tree and is

minimal with this property.

Proof. (i) Assume first that F is a circuit. Then F is not contained in any

Ψ-tree; let us show that every proper subset of F is. We do this by showing the

following more general fact:

Every finite set F ′ of edges not containing a circuit extends to a

spanning tree of G whose closure in G̃Ψ is a Ψ-tree.
(1)

To prove (1), consider a spanning tree T of G whose closure in G̃Ψ is a Ψ-tree

(Lemma 4). Choose it with as many edges in F ′ as possible. Suppose it fails to

contain an edge f ∈ F ′. Adding f to T creates a cycle C in T + f , which by

assumption also contains an edge e /∈ F ′. As C is finite, it is easy to check that

T + f − e is another spanning tree whose closure is a Ψ-tree. This contradicts

our choice of T .

Conversely, if F is not contained in any Ψ-tree, then by (1) it contains a

circuit. If, in addition, it is minimal with the first property, it will in fact be

that circuit, since we could delete any other edge without making it extendable

to a Ψ-tree.

(ii) If F is a cut, F = E(V1, V2) say, then the closures of G[V1] and G[V2]

in G̃Ψ are disjoint open subsets of G̃Ψ r F̊ , so this subspace cannot contain a

Ψ-tree. Thus, F meets the edge set of every Ψ-tree.

If F is even a bond, then both V1 and V2 induce connected subgraphs. By

Lemma 4, these have spanning trees Ti (i = 1, 2) whose closures in G̃Ψ are

arc-connected and contain no circle.2 For every edge f ∈ F , the closure TΨ

of T := (T1 ∪ T2) + f in G̃Ψ then is a Ψ-tree of G: it still contains no circle,

because no arc in TΨ r f̊ can cross the finite cut F from which it contains no

edge (as above). So F is minimal with the property of meeting the edge set of

every Ψ-tree.

2We are applying Lemma 4 in the subgraphs G[Vi]. But since F is finite, the spaces G̃[Vi]Ψi

are canonically embedded in G̃Ψ.
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Conversely, let us assume that F meets the edge set of every Ψ-tree, and show

that F contains a bond. Let T be a spanning tree of G whose closure in G̃Ψ is

a Ψ-tree (Lemma 4), chosen with as few edges in F as possible. By assumption,

T has an edge f in F . If the bond B of G between the two components of T −f
contains an edge e /∈ F , then T − f + e is another spanning tree whose closure

is a Ψ-tree (as before) that contradicts our choice of T . So B contains no such

edge e but is contained in F .

If F is minimial with the property of containing an edge from every Ψ-tree,

it must be equal to the bond it contains. For by the forward implication of (ii)

already proved, any other edge could be deleted from F without spoiling its

property of meeting the edge set of every Ψ-tree.

We begin our study of the spaces introduced in Section 2 by showing that

finite separability extends from G to G̃Ψ:

Lemma 6. For every two points p, q ∈ G̃Ψ that are not inner points of edges

there exists a finite set F of edges such that p and q lie in disjoint open sets

of G̃Ψ r F̊ whose union is G̃Ψ r F̊ .

Proof. Let us write p = [x]Ψ and q = [y]Ψ, where x and y are either vertices

or undominated ends of G. We shall find a finite cut F of G, with bipartition

(X,Y ) of V say, such that x ∈ X and y ∈ Y , where X and Y denote closures

of X and Y in |G|Ψ. Since F is finite, X and Y then partition of |G|Ψ r F̊ into

disjoint open sets that are closed under equivalence, so their projections under

πΨ partition G̃Ψ r F̊ into disjoint open sets containing p and q, respectively.

If x and y are vertices, then F exists by our assumption that G is finitely

separable. Suppose now that y is an end. Let us find a finite set S 63 x of

vertices that separates x from y in G. If x is another end, then S exists since

x 6= y. If x is a vertex, pick a ray R ∈ y. If there is no S as desired, we can

inductively find infinitely many independent x–R paths in G, contradicting the

fact that y is undominated.

Having found S, consider the component C := C(S, y) of G − S. For each

s ∈ S we can find a finite set Ss ⊆ C of vertices separating s from y in the

subgraph of G spanned by C and s, since otherwise s would dominate y (as

before). Let S′ :=
⋃
s∈S Ss; this is a finite set of vertices in C that separates

all the vertices of S from y in G. Since G is finitely separable, there is a finite

set F of edges separating S from S′ in G. Choose F minimal. Then, assuming

without loss of generality that G is connected, every component of G−F meets

exactly one of the sets S and S′. Let X be the set of vertices in components

meeting S, and let Y be the set of vertices in components meeting S′. Then

(X,Y ) is a partition of G crossed by exactly the edges in F , and it is easy to

check that F has the desired properties.

It was proved in [7], under a weaker assumption than finite separability (just

strong enough that G̃ can be defined without identifying distinct vertices) that

G̃ is Hausdorff. For finitely separable graphs, as considered here, the proof is

much simpler and extends readily to G̃Ψ:
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Corollary 7. G̃Ψ is Hausdorff.

Proof. Finding disjoint open neigbourhoods for distinct points p, q ∈ G̃Ψ is easy

if one of them is an inner point of an edge. Assume that this is not the case, let

F , X and Y be defined as in Lemma 6 and its proof, and let S be the (finite)

set of vertices incident with an edge in F . Then p ⊆ X and q ⊆ Y . Any end

ψ ∈ p has a basic open neighbourhood Ĉ(S, ψ) r Ψ{ in |G|Ψ that is a subset

of X r S. Write Op for the union of all these neighbourhoods, together with a

small open star neighbourhood of the vertex in p if it exists. Define Oq similarly

for q ⊆ Y . Then πΨ(Op) and πΨ(Oq) are disjoint open neighbourhoods of p

and q in G̃Ψ.

Our next aim is to select from the basic open neighbourhoods Ĉ(S, ω) r Ψ{

in |G|Ψ of ends ω ∈ Ψ some ‘standard’ neighbourhoods that behave well under

the projection πΨ and still form neighbourhood bases of these points ω. Ideally,

we would like to find for every end ω ∈ Ψ a basis of open neighbourhoods that

are closed under ∼ . That will not be possible, since ends ω′ 6= ω equivalent to ω

can be separated topologically from ω. But we shall be able to find a basis of

open neighbourhoods of ω that will be closed under ∼ for all points other than

ω itself. Then the union of all these neighbourhoods, one for every end ω′ ∼ ω,

plus an open star neighbourhood of their common dominating vertex, will be

closed under ∼ , and will thus be the pre-image of an open neighbourhood of

πΨ(ω) = [ω]Ψ in |G|Ψ.

Given a bond F = E(V1, V2) of G and an end ω ∈ Ψ that lies in the |G|-
closure of V1 but not of V2, let

ĈΨ(F, ω) ⊆ |G|Ψ

denote the union of the |G|Ψ-closure of G[V1] with F̊ . For every vertex v ∈ V2

we also call F a v–ω bond . Note that ĈΨ(F, ω) depends only on F and ω: since

F is a bond, G − F has only two components, so V1 and V2 can be recovered

from F and ω. Note also that every ray in ω has a tail in ĈΨ(F, ω), so if it

starts at v it must have an edge in F .

If v ∈ V2 is an endvertex of all but finitely many of the edges in F , we

say that F is v-cofinite. Then the set S of endvertices of F in V2 is finite and

separates ω from V2 r S.

Lemma 8. Let ω ∈ Ψ be an end, and v ∈ V a vertex.

(i) If ω is undominated, then the sets { ĈΨ(F, ω) | F is a finite bond of G }
form a basis of open neighbourhoods of ω in |G|Ψ.

(ii) If ω is dominated by v, then the sets

{ ĈΨ(F, ω) | F is a v-cofinite v–ω bond }

form a basis of open neighbourhoods of ω in |G|Ψ.
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Proof. (i) As F is finite, so is the set S of its endvertices in V2. Since F is a

bond, G[V1] is connected. Hence ĈΨ(F, ω) equals Ĉ(S, ω)rΨ{, which is a basic

open neighbourhood of ω in |G|Ψ. Conversely, we need to find for any finite

set S ⊆ V , without loss of generality connected,3 a finite bond F such that

ĈΨ(F, ω) ⊆ Ĉ(S, ω). As no vertex dominates ω, there is a finite connected set

S′ of vertices of C(S, ω) that separates S from ω in G. (Otherwise we could

inductively construct an infinite set of disjoint paths in C(S, ω) each starting at

a vertex adjacent to S and ending on some fixed ray R ∈ ω; then infinitely many

of the starting vertices of these paths would share a neighbour in S, which would

dominate ω.) As G is finitely separable, there is a finite set of edges separating

S from S′ in G. As both S and S′ are connected, choosing this set minimal

ensures that it is a bond. This bond F satisfies ĈΨ(F, ω) ⊆ Ĉ(S, ω).

(ii) Although F is infinite now, the set S of its endvertices in V2 is finite.

Hence ĈΨ(F, ω) is a basic open neighbourhood of ω in |G|Ψ, as in the proof

of (i). Conversely, let a finite set S ⊆ V be given; we shall find a v-cofinite v–ω

bond F such that ĈΨ(F, ω) ⊆ Ĉ(S, ω). The sets Ĉ(T, ω) such that v ∈ T and

both T − v and T are connected in G still form a neighbourhood basis for ω

in |G|, so we may assume that S has these properties. As in the proof of (i),

there is a finite connected set S′ of vertices in C(S, ω) that separates S − v

from ω in G − v, because ω is not dominated in G − v. As G − v is finitely

separable, there is a finite bond F = E(V1, V2) of G − v that separates S − v
from S′, with S − v ⊆ V2 say. Then F ′ := E(V1, V2 ∪ {v}) is a v-cofinite v–ω

bond in G with ĈΨ(F ′, ω) ⊆ Ĉ(S, ω), as before.

Let us call the open neighbourhoods ĈΨ(F, ω) from Lemma 8 the standard

neighbourhoods in |G|Ψ of the ends ω ∈ Ψ. For points of |G|Ψ other than ends,

let their standard neighbourhoods be their basic open neighbourhoods defined

in Section 2.

Trivially, standard neighbourhoods of vertices and inner points of edges are

closed under ∼ . Our next lemma says that standard neighbourhoods of ends are

nearly closed under ∼ , in that only the end itself may be equivalent to points

outside: to a vertex dominating it, and to other ends dominated by that vertex.

Lemma 9. If Ĉ = ĈΨ(F, ω) is a standard neighbourhood of ω ∈ Ψ in |G|Ψ,

then [x]Ψ ⊆ Ĉ for every x ∈ Ĉ r [ω]Ψ.

Proof. Let S be the finite set of vertices not in Ĉ that are incident with an edge

in F . Suppose, for a contradiction, that there are points x ∼ y in |G|Ψ such

that x ∈ Ĉ r [ω] but y /∈ Ĉ r [ω]. Since the unique vertex in the ∼Ψ-class of

x and y lies either in Ĉ r [ω] or not, we may assume that either x or y is that

vertex.

Suppose x is the vertex; then y is an end. Let R be a ray of y that avoids S.

Then the finite set S ⊆ V r {x} separates x from R, a contradiction.

3The sets Ĉ(S, ω) with S connected in G also form a neighbourhood basis of ω in |G|, since
every finite set S of vertices extends to a finite connected set.
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Suppose y is the vertex. If y /∈ S we argue as before. Suppose that y ∈ S.

Note that y does not dominate ω, since y ∼ x 6∼ ω. But now the vertex v ∈ S
that dominates ω, if it exists, and the finitely many neighbours of S r {v} in Ĉ

together separate y from every ray in x that avoids this finite set, a contradiction.

Let us extend the notion of standard neighbourhoods from |G|Ψ to G̃Ψ. Call

a neighbourhood of a point [x]Ψ of G̃Ψ a standard neighbourhood if its inverse

image under πΨ is a union
⋃
y∈[x]Ψ

Uy of standard neighbourhoods Uy in |G|Ψ
of the points y ∈ [x]Ψ. Neighbourhoods in subspaces of G̃Ψ that are induced

by such standard neighbourhoods of G̃Ψ will likewise be called standard. All

standard neighbourhoods in G̃Ψ and its subspaces are open, by definition of the

identification and the subspace topology.

Lemma 10. For every point [x]Ψ ∈ G̃Ψ its standard neighbourhoods form a

basis of open neighbourhoods in G̃Ψ.

Proof. Given any open neighbourhood N of [x]Ψ in G̃Ψ, its inverse image W

under πΨ is open in |G|Ψ and contains every y ∈ [x]Ψ. By Lemma 8, we can find

for each of these y a standard neighbourhood Uy ⊆W of y in |G|Ψ. By Lemma 9,

their union U =
⋃
y Uy is closed in |G|Ψ under ∼ , so U = π−1

Ψ (πΨ(U)). Since U

is open in |G|Ψ, this means that πΨ(U) ⊆ N is an open neighbourhood of [x]Ψ
in G̃Ψ.

Our next topic is to compare circles in G̃Ψ with circles in G̃. We have

already seen that circles in G̃Ψ define circles in G̃, by composition with σΨ. The

converse will generally fail: the inverse of σΨ (where it is defined) need not be

continuous, so a circle in G̃ need not induce a circle in G̃Ψ even if its points all

lie in the image of σΨ. This is illustrated by the following example.

Example 2. Consider the graph of Figure 2 with Ψ = {ψ}. The closure of the

double ray D in G̃ is a circle there, since in G̃ the ends ω and ψ are identified.

This circle lies in the image of σΨ, but σ−1
Ψ restricted to it fails to be continuous

at the point {v, ω, ψ}, which σ−1
Ψ maps to the point {v, ψ} of G̃Ψ.

v

Wω Uψ = Wψ

ψ ∈ ΨΨ ω/

Figure 3: A circle in G̃ through p = {v, ω, ψ} which defines for

Ψ = {ψ} a circle in G̃Ψ through {v, ψ}.

However, the map σ−1
Ψ in this example is continuous on the circle in G̃ shown

in Figure 3, which ‘does not use’ the end ω ∈ Ψ{ when it passes through the

point {v, ω, ψ}. The fact that circles in G̃ do induce circles in G̃Ψ in such cases

will be crucial to our proof of Theorem 2:
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Lemma 11.

(i) Let ρ : S1 → G̃Ψ be a circle, with image C say, and let D be the set of all in-

ner points of edges on C. Then every end in the |G|-closure4 of D lies in Ψ.

(ii) Let ϕ : S1 → G̃ be a circle, with image C say, and let D be the set of all

inner points of edges on C. If every end in the |G|-closure of D lies in Ψ,

then the composition σ−1
Ψ ◦ϕ : S1 → G̃Ψ is well defined and a circle in G̃Ψ.

Proof. (i) Consider an end ω in the |G|-closure of D. Since |G| (unlike G̃) is

first-countable, there is a sequence (xi)i∈N of points in D that converges to ω

in |G|. Suppose ω ∈ Ψ{. We show that the xi have no accumulation point

on C, indeed in all of G̃Ψ; this will contradict the fact that C, being a circle, is

compact and contains all the xi.

Consider a point p ∈ G̃Ψ, and any representative z ∈ p ⊆ |G|Ψ. As ω ∈
Ψ{ we have limxi = ω 6= z. Therefore z has a neighbourhood Wz in |G|
not containing any of the xi (other than possibly xi = z, which can happen

only if p = {xi} is a singleton class). By Lemma 8, the |G|Ψ-neighbourhood

Wz ∩|G|Ψ of z contains a standard |G|Ψ-neighbourhood Uz of z. By Lemma 10,

πΨ

(⋃
z∈p Uz

)
is a standard neighbourhood of p in G̃Ψ that contains no xi other

than possibly p itself, so p is not an accumulation point of the xi.

(ii) Assume that every end in the |G|-closure of D lies in Ψ. To show that

σ−1
Ψ ◦ϕ is well defined, let us prove that imϕ ⊆ imσΨ. The only points of G̃ not

in the image of σΨ are singleton ∼ - classes of |G| consisting of an undominated

end ω /∈ Ψ. By assumption and Lemma 8, such an end ω has a standard

neighbourhood in |G| = |G|Ω disjoint from D, which π maps to a standard

neighbourhood of {ω} in G̃ disjoint from D. So {ω} is not in the G̃-closure

of D. But that closure is the entire circle C, see [7], giving {ω} /∈ imϕ. This

completes the proof of imϕ ⊆ imσΨ. As σΨ is injective, it follows that σ−1
Ψ ◦ ϕ

is well defined.

To show that σ−1
Ψ is continuous on C, let a point p ∈ C be given. Since

p lies in imϕ ⊆ imσΨ, it is represented by a point x in G ∪ Ψ; then p =

[x] and σ−1
Ψ (p) = [x]Ψ. By Lemma 10, it suffices to find for every standard

neighbourhood u of [x]Ψ in im(σ−1
Ψ �C) a neighbourhood w of [x] in C such that

σ−1
Ψ (w) ⊆ u.

By definition, u is the intersection with im(σ−1
Ψ �C) of a set U ⊆ G̃Ψ whose

inverse image under πΨ is a union

π−1
Ψ (U) =

⋃

y∈[x]Ψ

Uy

of standard neighbourhoods Uy in |G|Ψ of the points y ∈ [x]Ψ. Our aim is to

find a similar set W to define w: a set W ⊆ G̃ such that for w := W ∩ C we

have σ−1
Ψ (w) ⊆ u, and such that

π−1(W ) =
⋃

y∈[x]

Wy (2)

4We shall freely consider D as a subset of either G̃Ψ or |G|, and similarly in (ii).
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where each Wy is a standard neighbourhood of y in |G|.
Let us define these Wy, one for every y ∈ [x]. If y ∈ G, then y ∈ [x]Ψ.

Hence Uy is defined, and it is a standard neighbourhood of y also in |G|; we

let Wy := Uy. If y ∈ Ψ, then again y ∈ [x]Ψ, and Uy (exists and) has the

form ĈΨ(F, y). We let Wy := ĈΩ(F, y) be its closure in |G|; this is a standard

neighbourhood of y in |G|. Finally, if y ∈ Ψ{, then y /∈ [x]Ψ and Uy is undefined.

We then let Wy be a standard neighbourhood of y in |G| that is disjoint from D;

this exists by assumption and Lemma 8. Let us call these last Wy new .

By Lemma 9, all these Wy are closed under equivalence in |G|r [y]. Hence⋃
y∈[x]Wy is closed under equivalence in |G|. Its π-image W therefore satis-

fies (2) and is a standard neighbourhood of [x] in G̃. Hence, w := W ∩ C is a

neighbourhood of [x] in C.

It remains to show that σ−1
Ψ maps every point q ∈ w to u. This is clear

for q = p = [x], so assume that q 6= [x]. By construction of W and Lemma 9,

the set q lies entirely inside one of the Wy. Let us show that no such Wy can

be new. Since q is a point in w ⊆ C, in which D is dense [7], there is no

neighbourhood of q in G̃ that is disjoint from D. But then q has an element z

all whose |G|-neighbourhoods meet D. (If not, we could pick for every element

of q a standard |G|-neighbourhood disjoint from D; then the union of all these

would project under π to a standard neighbourhood of q in G̃ that avoids D.)

As Wy is a |G|-neighbourhood of z ∈ q ⊆Wy, it thus cannot be new.

We thus have q ⊆ Wy where Wy is the |G|-closure of Uy for some y ∈ [x]Ψ
(or equal to Uy). In particular, Wy r Uy ⊆ Ψ{. As q lies in C, in which D is

dense, we cannot have q = {ω} with ω ∈ Ψ{ (as earlier). So either q = {ψ}
with ψ ∈ Ψ, or q contains a vertex. In either case, q ∩ Uy 6= ∅, which implies

that σ−1
Ψ (q) ∈ U . As q ∈ C, this implies σ−1

Ψ (q) ∈ u, as desired.

Lemma 12. Arc-components of standard subspaces of G̃Ψ are closed.5

Proof. Let X be an arc-component of a standard subspace of G̃Ψ. If X is not

closed, there is a point q in G̃Ψ rX such that every (standard) neighbourhood

of q meets X. As in the proof of Lemma 11, this implies that q has a repre-

sentative y ∈ |G|Ψ such that every standard neighbourhood Uy of y in |G|Ψ
meets π−1(X), say in a point x = x(Uy). Clearly, y is an end. Since x 6∼ y,

we even have [x]Ψ ⊆ Uy by Lemma 9. Let U0 ⊇ U1 ⊇ . . . be a neighbourhood

basis for y consisting of such standard neighbourhoods Uy, and let xi := x(Ui)

and zi := [xi]Ψ for all i. Then these xi converge to y in |G|Ψ, while (zi)i∈N is a

sequence of points in X that converges in G̃Ψ to q = [y]Ψ.

For every i ∈ N r {0} let A′i be a zi–z0 arc in X. Define subarcs Ai of the

A′i recursively, choosing as Ai the initial segment of A′i from its starting point

zi to its first point ai in
⋃
j<iAj , where A0 := {z0}. (The point ai exists by

the continuity of A′i, since
⋃
j<iAj is closed, being a compact subspace of the

Hausdorff space G̃Ψ.) Note that no two Ai have an edge in common.

5This refers to either the subspace or to the entire space G̃Ψ; the two are equivalent, since
standard subspaces of G̃Ψ are themselves closed in G̃Ψ.
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Define an auxiliary graph H with vertex set {Ai | i ∈ N} and edges AiAj
whenever j is the smallest index less than i such that Ai ∩ Aj 6= ∅. Suppose

first that H has a vertex Aj of infinite degree. Since the arc Aj is compact,

it has a point p every neighbourhood of which meets infinitely many Ai. By

Lemma 6, there is a finite set F of edges such that in G̃Ψr F̊ the points p and q

have disjoint open neighbourhoods Op and Oq partitioning G̃Ψ r F̊ . Then for

infinitely many i we have both Ai ∩ Op 6= ∅ and zi ∈ Oq. For all these i the

arc Ai, being connected, must have an edge in the finite set F , a contradiction.

So H is locally finite. By König’s infinity lemma, H contains a ray Ai1Ai2 . . .

such that ij < ik whenever j < k. We claim that A := Ai1ai2Ai2ai3 . . . q is an

arc in G̃Ψ; this will contradict our assumption that Ai1 lies in the arc-component

X of G̃Ψ while q does not. We only have to show that A is continuous in q. Since

every neighbourhood of q in G̃Ψ contains the πΨ-image of one of our standard

neighbourhoods Un of y, it suffices to show that for every such Un we have

Ai ⊆ πΨ(Un) for all but finitely many i.

Since Un is a standard neighbourhood of y, there exists a set F of edges

such that Un = ĈΨ(F, y) and F is either finite or v-cofinite with v ∼ y. Let

F ′ be obtained from F by adding to it any other edges incident with such a

vertex v ∼ y. Since none of the Ai contains such a vertex v, and distinct Ai are

edge-disjoint, all but finitely many Ai lie in (G̃Ψ−q)rF̊ ′ and have their starting

vertex zi = [xi]Ψ in πΨ(Un), by the choice of Un. To complete our proof, we

shall show that πΨ(Un r q) r F̊ ′ and its complement in (G̃Ψ − q) r F̊ ′ are two

open subsets of (G̃Ψ−q)r F̊ ′ partitioning it: then none of those cofinitely many

Ai can meet both, so they will all lie entirely in πΨ(Un).

Since Un is a standard neighbourhood of y ∈ q, the set Un r q is open in

|G|Ψ r q and closed under equivalence, so πΨ(Un r q) is open in G̃Ψ − q and

πΨ(Un r q) r F̊ ′ is open in (G̃Ψ − q) r F̊ ′. Its complement in (G̃Ψ − q) r F̊ ′ is

open, because it is the πΨ-image of the (∼-closed) union of the finite set S of

vertices that are incident with edges in F but are not in Un, the edges incident

with them that are not in F̊ ′, and the |G|Ψ-closures of the components of G−S
not contained in Un. The two open sets partition all of (G̃Ψ − q) r F̊ ′, because

Un is itself the |G|Ψ-closure of a component of G − S together with the edges

between S and that component (which all lie in F ).

4 Proof of Theorem 2

We can now apply the lemmas from Section 3 to prove Theorem 2. One of

these lemmas, Lemma 11, also implies a characterization of duality in terms of

circuits and bonds. Let us include this in the statement of the theorem:

Theorem 13. Let G = (V,E,Ω) and G∗ = (V ∗, E,Ω) be finitely separable

2-connected graphs with the same edge set E and the same end set Ω, in the

sense of [3]. Then the following assertions are equivalent:

(i) G and G∗ are duals of each other.
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(ii) For all Ψ ⊆ Ω and F ⊆ E the following holds: F is the edge set of a Ψ-tree

in G if and only if F { is the edge set of a Ψ{-tree in G∗.

(iii) There exists a set Ψ ⊆ Ω such that for every F ⊆ E the following holds:

F is the edge set of a Ψ-tree in G if and only if F { is the edge set of a

Ψ{-tree in G∗.

(iv) For all Ψ ⊆ Ω and D ⊆ E the following holds: D is a Ψ-circuit of G if and

only if D is a bond of G∗ and every end in the closure6 of
⋃
D lies in Ψ.

(v) There exists a set Ψ ⊆ Ω such that for every D ⊆ E the following holds:

D is a Ψ-circuit of G if and only if D is a bond of G∗ and every end in

the closure6 of
⋃
D lies in Ψ.

Remark. The fact that (i)–(iii) are symmetrical in G and G∗, while (iv) and (v)

are not, is immaterial and only serves to avoid clutter: as noted before, it was

proved in [1, Theorem 3.4] that if G∗ is a dual of G then G is a dual of G∗.

We shall prove the implications (i)→(iv)→(v)→(i) first, and then the impli-

cations (i)→(ii)→(iii)→(i). The two proofs can be read independently.

(i)→(iv) Assume (i), and let Ψ ⊆ Ω and D ⊆ E be given for a proof of (iv).

If D is a Ψ-circuit of G, for the circle ρ : S1 → G̃Ψ say, it is also a circuit of G

with circle σΨ ◦ ρ : S1 → G̃. By (i), then, D is a bond of G∗. By Lemma 11 (i),

every end in the closure of
⋃
D lies in Ψ.

If, conversely, D is a bond of G∗, then D is a circuit of G by (i), say with circle

ϕ : S1 → G̃. If every end in the closure of
⋃
D lies in Ψ then, by Lemma 11 (ii),

the composition σ−1
Ψ ◦ϕ is well defined and a circle in G̃Ψ. The edges it contains

are precisely those in D, so D is a Ψ-circuit.

(iv)→(v) Using the empty set for Ψ in (iv) immediately yields (v).

(v)→(i) As G and G∗ are finitely separable and 2-connected, [1, Lemma

4.7 (i)] implies that G∗ is dual to G as soon as the finite circuits of G are

precisely the finite bonds of G∗. This is immediate from (v).

Let us now prove the implications (i)→(ii)→(iii)→(i). When we consider

edges in E topologically, we take them to include their endvertices in G̃Ψ or

in G̃∗
Ψ{ , depending on the context. Thus, in (ii) and (iii),

⋃
F will be a subspace

of G̃Ψ while
⋃
F { will be a subspace of G̃∗

Ψ{ .

(i)→(ii) We first show that (i) implies the analogue of (ii) with ordinary topo-

logical connectedness, rather than the arc-connectedness required of a Ψ-tree:

(?) For all F ⊆ E and Ψ ⊆ Ω: F is the edge set of a connected spanning Ψ-

forest of G if and only if F { is the edge set of a connected spanning Ψ{-forest

of G∗.

For our proof of (?) from (i), let F ⊆ E and Ψ ⊆ Ω be given, and assume

that F is the edge set of a connected spanning Ψ-forest T of G. Let X be

the closure in G̃∗
Ψ{ of V (G̃∗

Ψ{) ∪ ⋃F {. We shall prove that X is a connected

6This refers to the closure in |G| or, equivalently by [3], the closure in |G∗|.
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subspace of G̃∗
Ψ{ that contains no circle. Then X cannot have isolated vertices,

so it will be a standard subspace, and it is spanning by definition. Roughly, the

idea is that X should be connected because T is acirclic, and acirclic because T

is connected.

Let us show first that X contains no circle. Suppose there is a circle

ϕ : S1 → X, with circuit D ⊆ F { say. By Lemma 11 (i) applied to G∗ and Ψ{,

every end in the |G∗|-closure of
⋃
D lies in Ψ{. But the ends in the |G∗|-closure

of
⋃
D are precisely those in its |G|-closure, by (i). Hence we obtain:

The |G|-closure of
⋃
D contains no end from Ψ. (3)

Since D is also the circuit of the circle σΨ{ ◦ ϕ : S1 → G̃∗, assumption (i)

implies that D is a bond in G; let {V1, V2} be the corresponding partition of V .

Let us show the following:

Every point p ∈ G̃Ψ has a standard neighbourhood N such that

ψ−1
Ψ (N) contains vertices from at most one of the sets V1 and V2.

(4)

Suppose p ∈ G̃Ψ has no such neighbourhood. Then p has a representative x

all whose standard neighbourhoods in |G|Ψ meet V1, and a representative y all

whose standard neighbourhoods in |G|Ψ meet V2.

If x = y, the point x = y =: ψ is an end in Ψ. Then every standard neigh-

bourhood of ψ in |G|Ψ contains a graph-theoretical path from V1 to V2, and

hence an edge from D, because the subgraphs of G underlying standard neigh-

bourhoods in |G|Ψ are connected and meet both V1 and V2. This contradicts (3).

So x 6= y. In particular, p is nontrivial, so it contains a vertex v, say in V1.

Then v 6= y, so y =: ψ ∈ Ψ. Pick a ray R ∈ ψ. Replacing R with a tail of R if

necessary, we may assume by (3) that R has no edge in D. If all the vertices of

R lie in V1, then every standard neighbourhood of y = ψ meets both V1 and V2,

which contradicts (3) as in the case of x = y. So R ⊆ G[V2]. Let us show that

every standard neighbourhood ĈΨ(F ′, ψ) of ψ contains the inner points of an

edge from D, once more contrary to (3).

By Lemma 8 (ii), F ′ is v-cofinite. Since v ∼ ψ, there are infinitely many v–R

paths P0, P1, . . . in G that meet pairwise only in v. Since D separates v from R,

each Pi contains an edge ei ∈ D. Only finitely many of the Pi contain one of

the finitely many edges from F ′ that are not incident with v. All the other Pi
have all their points other than v in ĈΨ(F ′, ψ), including the inner points of ei.

This completes the proof of (4).

For every point p ∈ G̃Ψ pick a standard neighbourhood Np as in (4). Let O1

be the union of those Np such that π−1
Ψ (Np) meets V1, and O2 the union of the

others. Then O1, O2 are two open subsets of G̃Ψ covering it, and it is easy to

check that O1∩O2 ⊆ D̊. So no connected subspace of G̃Ψ r D̊ contains vertices

from V1 as well as from V2. But our connected spanning Ψ-forest T is such a

subspace, since its edges lie in F ⊆ E r D. This contradiction completes the

proof that X contains no circle.

For the proof of (?) it remains to show that X is connected. If not, there are

open sets O1, O2 in G̃∗
Ψ{ that each meet X and together cover it, but intersect
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only outside X. It is easy to check that, since X contains all the vertices

of G̃∗
Ψ{ , both O1 and O2 contain such a vertex but they have none in common.

For i = 1, 2, let V ∗i be the set of vertices of G∗ representing a vertex of G̃∗
Ψ{

in Oi. Let C be a bond contained in the cut E(V ∗1 , V
∗
2 ). Note that the edges

e of this bond all lie in F : as e is connected but contained in neither Oi, it

cannot lie in O1 ∪ O2 = X. As F is the edge set of a Ψ-forest, C ⊆ F cannot

be a Ψ-circuit of G. By (i), however, C is a circuit of G, because it is a bond

of G∗. By Lemma 11 (ii), therefore, there is an end ω ∈ Ψ{ in the |G|-closure

of C̊; then ω also lies in the |G∗|-closure of C̊.

Let us show that every standard neighbourhood W of [ω]Ψ{ in G̃∗
Ψ{ contains

an edge from C, including its endvertices in G̃∗
Ψ{ . By definition, W is the image

under πΨ{ of a subset of |G∗|Ψ{ that contains a standard neighbourhood U of ω

in |G∗|Ψ{ . Since ω lies in the |G∗|-closure of C̊, this U either contains an edge

e ∈ C together with its endvertices in G∗, or it contains one endvertex (in G∗)
and the interior of an edge e ∈ C whose other endvertex dominates ω in G∗. In

both cases, e and its endvertices in G̃∗
Ψ{ lie in W .

So every standard neighbourhood of [ω]Ψ{ in G̃∗
Ψ{ contains an edge from C,

including its endvertices in G̃∗
Ψ{ . In particular, it meets X in both O1 and O2,

where this edge has its endvertices. So every neighbourhood of [ω]Ψ{ in X

meets both O1 and O2. This contradicts the fact that the Oi induce disjoint

open subsets of X of which only one contains the point [ω]Ψ{ . This completes

the proof of (?).

It remains to derive the original statement of (ii) from (?). Suppose (ii) fails,

say because there is a Ψ-tree T of G, with edge set F say, such that F { is not the

edge set of a Ψ{-tree ofG∗. By (?) we know that F { is the edge set of a connected

spanning Ψ{-forest X in G∗, which we now want to show is even arc-connected.

Suppose it is not. Since the arc-components of X are closed (Lemma 12), no arc-

component of X contains all its vertices. Vertices in different arc-components

are joined by a finite path in G∗, which contains an edge e whose endvertices

lie in different arc-components of X. Then X ∪ e still contains no circle, so

F { ∪ {e} too is the edge set of a connected spanning Ψ{-forest of G∗. Thus,

by (?), F r {e} is the edge set of a connected spanning Ψ-forest of G. This can

only be T r e̊, so T r e̊ has precisely two path components D1 and D2 but is

still connected. Then D1 and D2 cannot both be open, or equivalently, cannot

both be closed. This contradicts Lemma 12.

(ii)→(iii) Using the empty set for Ψ in (ii) immediately yields (iii).

(iii)→(i) As G and G∗ are finitely separable and 2-connected, it suffices by

[1, Lemma 4.7 (i)] to show that G∗ is a finitary dual of G, i.e., that the finite

circuits of G are precisely the finite bonds of G∗. By Lemma 5 (ii), a finite set

F of edges is a bond of G∗ if and only if it meets the edge set of every Ψ{-tree

of G∗ and is minimal with this property. By (iii), this is the case if and only if

F is not contained in the edge set of any Ψ-tree of G, and is minimal with this

property. By Lemma 5 (i), this is the case if and only if F is a circuit of G.

17



Acknowledgement

The ideas that led to the formulation of Theorem 2 were developed jointly with

Henning Bruhn. We benefited greatly from his insights at this stage.

References

[1] H. Bruhn and R. Diestel, Duality in infinite graphs, Comb., Probab. Com-

put. 15 (2006), 75–90.

[2] , Infinite matroids in graphs, Discrete Math. 311 (2011), 1461–1471,

Special volume on Infinite Graphs: Introductions, Connections, Surveys

(R. Diestel, G. Hahn & B. Mohar, eds).

[3] Henning Bruhn and Maya Stein, Duality of ends, Comb., Probab. Comput.

19 (2010), 47–60.

[4] R. Diestel, End spaces and spanning trees, J. Combin. Theory (Series B)

96 (2006), 846–854.

[5] , Graph Theory, 4th ed., Springer, 2010.

[6] R. Diestel, Locally finite graphs with ends: a topological approach, Dis-

crete Math. 310–312 (2010–11), 2750–2765 (310); 1423–1447 (311); 21–29

(312), arXiv:0912.4213.
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Orthogonality and minimality

in the homology of locally finite graphs∗

Reinhard Diestel Julian Pott

Abstract

Given a finite set E, a subset D ⊆ E (viewed as a function E → Z2)

is orthogonal to a given subspace F of the Z2-vector space of functions

E → Z2 as soon as D is orthogonal to every ⊆-minimal element of F .

This fails in general when E is infinite.

However, we prove the above statement for the four subspaces F of

the edge space of any 3-connected locally finite graph that are relevant

to its homology: the cut space, the finite-cut space, the topological cycle

space, and the finite-cycle space. This solves a problem of [4].

1 Introduction

Let G be a 2-connected locally finite graph, and let E = E(G) be its edge space

over Z2. We think of the elements of E as sets of edges, possibly infinite. Two

sets of edges are orthogonal if their intersection has (finite and) even cardinality.

A set D ∈ E is orthogonal to a subspace F ⊆ E if it is orthogonal to every F ∈ F .

See [4], [3] for any definitions not given below.

The topological cycle space C(G) of G is the subspace of E(G) generated (via

thin sums, possibly infinite) by the circuits of G, the edge sets of the topological

circles in the Freudenthal compactification |G| of G. This space C(G) contains

precisely the elements of E that are orthogonal to Bfin(G), the finite-cut space

of G. Similarly, the finite-cycle space Cfin(G) is the subspace of E(G) generated

(via finite sums) by the finite circuits of G. This space Cfin(G) contains precisely

the elements of E that are orthogonal to B(G), the cut space of G. Moreover, for

any of the four spaces F just mentioned, we have F⊥⊥ = F . Thus the following

equalities hold:

C = B⊥fin, Cfin = B⊥, C⊥ = Bfin, C⊥fin = B.

Our aim in this note is to show that, whenever F is one of these four spaces,

a set D of edges is orthogonal to F as soon as it is orthogonal to the minimal

nonzero elements of F . This is easy when F is Cfin or Bfin:

∗Electronic J. Comb. 21 (2014), #P3.36
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Proposition 1. Let F be a subspace of E(G) all whose elements are finite

sets of edges. Then F is generated (via finite sums) by its ⊆-minimal nonzero

elements.

Proof. For a contradiction suppose that some F ∈ F is not a finite sum of

finitely many minimal nonzero elements of F . Choose F with |F | minimal. As

F is not minimal itself, by assumption, it properly contains a minimal nonzero

element F ′ of F . As F is finite, F + F ′ = F r F ′ ∈ F has fewer elements than

F , so there is a finite family (Mi)i≤n of minimal nonzero elements of F with∑
i≤nMi = F+F ′. This contradicts our assumption, as F ′+

∑
i≤nMi = F .

Corollary 2. If F = Cfin or F = Bfin, a set D of edges is orthogonal to F as

soon as D is orthogonal to all the minimal nonzero elements of F .

When F = C or F = B, the statement of Corollary 2 is generally false for

graphs that are not 3-connected. Indeed, for F = B let G be the graph obtained

from the N × Z grid by doubling every edge between two vertices of degree 3

and subdividing all the new edges. The set D of the edges that lie in a K3 of G

is orthogonal to every bond F of G: their intersection D ∩ F is finite and even.

But D is not orthogonal to every element of F = B, since it meets some cuts

that are not bonds infinitely.

For F = C, let B be an infinite bond of the infinite ladder H, and let G be the

graph obtained from H by subdividing every edge in B. Then the set D of edges

that are incident with subdivision vertices has a finite and even intersection with

every topological circuit C, finite or infinite, but it is not orthogonal to every

element of C, since it meets some of them infinitely.

However, if G is 3-connected, an edge set is orthogonal to every element of

C or B as soon as it is orthogonal to every minimal nonzero element of C or B:

Theorem 3. Let G = (V,E) be a locally finite 3-connected graph, and F,D ⊆ E.

(i) F ∈ C⊥ as soon as F is orthogonal to all the minimal nonzero elements

of C, the topological circuits of G.

(ii) D ∈ B⊥ as soon as D is orthogonal to all the minimal nonzero elements

of B, the bonds of G.

Although Theorem 3 fails if we replace the assumption of 3-connectedness

with 2-connectedness, it turns out that we need a little less than 3-connectedness.

Recall that an end ω of G has (combinatorial) vertex-degree k if k is the maxi-

mum number of vertex-disjoint rays in ω. Halin [6] showed that every end in a

k-connected locally finite graph has vertex-degree at least k. Let us call an end

ω of G k-padded if for every ray R ∈ ω there is a neighbourhood U of ω such that

for every vertex u ∈ U there is a k-fan from u to R in G, a subdivided k-star

with centre u and leaves on R.1 If every end of G is k-padded, we say that G

1For example, if G is the union of complete graphs K1,K2, . . . with |Ki| = i, each meeting
the next in exactly one vertex (and these are all distinct), then the unique end of G is k-padded
for every k ∈ N.
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is k-padded at infinity. Note that k-connected graphs are k-padded at infinity.

Our proof of Theorem 3(i) will use only that every end has vertex-degree at

least 3 and that G is 2-connected. Similarly, and in a sense dually, the proof

of Theorem 3(ii) uses only that every end has vertex-degree at least 2 and G is

3-connected at infinity.

Theorem 4. Let G = (V,E) be a locally finite 2-connected graph.

(i) If every end of G has vertex-degree at least 3, then F ∈ C⊥ as soon as

F is orthogonal to all the minimal nonzero elements of C, the topological

circuits of G.

(ii) If G is 3-padded at infinity, then D ∈ B⊥ as soon as D is orthogonal to

all the minimal nonzero elements of B, the bonds of G.

In general, our notation follows [3]. In particular, given an end ω in a graph

G, and a finite set S ⊆ V (G) of vertices, we write C(S, ω) for the unique

component of G − S that contains a ray R ∈ ω. The vertex-degree of ω is the

maximum number of vertex-disjoint rays in ω. The mathematical background

required for this paper is covered in [4, 5]. For earlier results on the cycle and

cut space see Bruhn and Stein [1, 2].

2 Finding disjoint paths

Menger’s theorem that the smallest cardinality of an A–B separator in a finite

graph is equal to the largest cardinality of a set of disjoint A–B paths trivially

extends to infinite graphs. Thus in a locally finite k-connected graph, there are

k internally disjoint paths between any two vertices. In Lemmas 5 and 6 we

show that, for two such vertices that are close to an end ω, these connecting

paths need not use vertices too far away from ω.

In a graph G with vertex sets X,Y ⊆ V (G) and vertices x, y ∈ V (G), a

k-fan from X (or x) to Y is a subdivided k-star whose center lies in X (or is

x) and whose leaves lie in Y . A k-linkage from x to y is a union of k internally

disjoint x–y paths. We may refer to a sequence (vi)i∈N simply by (vi), and use⋃
(vi) :=

⋃
i∈N{vi} for brevity.

Lemma 5. Let G be a locally finite graph with an end ω, and let (vi)i∈N and

(wi)i∈N be two sequences of vertices converging to ω. Let k be a positive integer.

(i) If for infinitely many n ∈ N there is a k-fan from vn to
⋃

(wi), then there

are infinitely many disjoint such k-fans.

(ii) If for infinitely many n ∈ N there is a k-linkage from vn to wn, then there

are infinitely many disjoint such k-linkages.

Proof. For a contradiction, suppose k ∈ N is minimal such that there is a locally

finite graph G = (V,E) with sequences (vi)i∈N and (wi)i∈N in which either (i) or

(ii) fails. Then k > 1, since for every finite set S ⊆ V (G) the unique component
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C(S, ω) of G − S that contains rays from ω is connected and contains all but

finitely many vertices from
⋃

(vi) and
⋃

(wi).

For a proof of (i) it suffices to show that for every finite set S ⊆ V (G)

there is an integer n ∈ N and a k-fan from vn to
⋃

(wi) avoiding S. Suppose

there is a finite set S ⊆ V (G) that meets all k-fans from
⋃

(vi) to
⋃

(wi). By

the minimality of k, there are infinitely many disjoint (k − 1)-fans from
⋃

(vi)

to
⋃

(wi) in C :=C(S, ω). Thus, there is a subsequence (v′i)i∈N of (vi)i∈N in C

and pairwise disjoint (k − 1)-fans Fi ⊆ C from v′i to
⋃

(wi) for all i ∈ N. For

every i ∈ N there is by Menger’s theorem a (k − 1)-separator Si separating v′i
from

⋃
(wi) in C, as by assumption there is no k-fan from v′i to

⋃
(wi) in C. Let

Ci be the component of G− (S ∪ Si) containing v′i.
Since Fi is a subdivided |Si|-star, Si ⊆ V (Fi). Hence for all i 6= j, our

assumption of Fi ∩Fj = ∅ implies that Fi ∩Sj = ∅, and hence that Fi ∩Cj = ∅.
But then also Ci ∩ Cj = ∅, since any vertex in Ci ∩ Cj coud be joined to v′j by

a path P in Cj and to v′i by a path Q in Ci, giving rise to a v′j–
⋃

(wi) path in

P ∪Q ∪ Fi avoiding Sj , a contradiction.

As S ∪Si separates v′i from
⋃

(wi) in G and there is, by assumption, a k-fan

from v′i to
⋃

(wi) in G, there are at least k distinct neighbours of Ci in S ∪ Si.

Since |Si| = k−1, one of these lies in S. This holds for all i ∈ N. As Ci∩Cj = ∅
for distinct i and j, this contradicts our assumption that G is locally finite and

S is finite. This completes the proof of (i).

For (ii) it suffices to show that for every finite set S ⊆ V (G) there is an

integer n ∈ N such that there is a k-linkage form vn to wn avoiding S. Suppose

there is a finite set S ⊆ V (G) that meets all k-linkages from vi to wi for all

i ∈ N. By the minimality of k there is an infinite family (Li)i∈I of disjoint

(k − 1)-linkages Li in C :=C(S, ω) from vi to wi. As earlier, there are pairwise

disjoint (k − 1)-sets Si ⊆ V (Li) separating vi from wi in C, for all i ∈ I. Let

Ci, Di be the components of C − Si containing vi and wi, respectively. For no

i ∈ I can both Ci and Di have ω in their closure, as they are separated by the

finite set S ∪ Si. Thus for every i ∈ I one of Ci or Di contains at most finitely

many vertices from
⋃

i∈I Li. By symmetry, and replacing I with an infinite

subset of itself if necessary, we may assume the following:

The components Ci with i ∈ I each contain only finitely many

vertices from
⋃

i∈I Li.
(1)

If infinitely many of the components Ci are pairwise disjoint, then S has

infinitely many neighbours as earlier, a contradiction. By Ramsey’s theorem,

we may thus assume that

Ci ∩ Cj 6= ∅ for all i, j ∈ I. (2)

Note that if Ci meets Lj for some j 6= i, then Ci ⊇ Lj , since Lj is disjoint

from Li ⊇ Si. By (1), this happens for only finitely many j > i. We can

therefore choose an infinite subset of I such that Ci ∩ Lj = ∅ for all i < j in I.

In particular, (Ci ∪ Si) ∩ Sj = ∅ for i < j. By (2), this implies that

Ci ∪ Si ⊆ Cj for all i < j. (3)
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By assumption, there exists for each i ∈ I some vi–wi linkage of k indepen-

dent paths in G, one of which avoids Si and therefore meets S. Let Pi denote

its final segment from its last vertex in S to wi. As wi ∈ C r (Ci ∪ Si) and Pi

avoids both Si and S (after its starting vertex in S), we also have

Pi ∩ Ci = ∅. (4)

On the other hand, Li contains vi ∈ Ci ⊆ Ci+1 and avoids Si+1, so wi ∈
Li ⊆ Ci+1. Hence Pi meets Sj for every j ≥ i+ 1 such that Pi 6⊆ S ∪Cj . Since

the Lj ⊇ Sj are disjoint for different j, this happens for only finitely many j > i.

Deleting those j from I, and repeating that argument for increasing i in turn,

we may thus assume that Pi ⊆ S ∪Ci+1 for all i ∈ I. By (3) and (4) we deduce

that Pi r S are now disjoint for different values of i ∈ I. Hence S contains a

vertex of infinite degree, a contradiction.

Recall that G is k-padded at an end ω if for every ray R ∈ ω there is a

neighbourhood U such that for all vertices u ∈ U there is a k-fan from u to R

in G. Our next lemma shows that, if we are willing to make U smaller, we can

find the fans locally around ω:

Lemma 6. Let G be a locally finite graph with a k-padded end ω. For every

ray R ∈ ω and every finite set S ⊆ V (G) there is a neighbourhood U ⊆ C(S, ω)

of ω such that from every vertex u ∈ U there is a k-fan in C(S, ω) to R.

Proof. Suppose that, for some R ∈ ω and finite S ⊆ V (G), every neighbourhood

U ⊆ C(S, ω) of ω contains a vertex u such that C(S, ω) contains no k-fan from u

to R. Then there is a sequence u1, u2, . . . of such vertices converging to ω. As ω

is k-padded there are k-fans from infinitely many ui to R in G. By Lemma 5(i)

we may assume that these fans are disjoint. By the choice of u1, u2, . . . , all these

disjoint fans meet the finite set S, a contradiction.

3 The proof of Theorems 3 and 4

As pointed out in the introduction, Theorem 4 implies Theorem 3. It thus

suffices to prove Theorem 4, of which we prove (i) first. Consider a set F 6= ∅
of edges that meets every circuit of G evenly. We have to show that F ∈ C⊥,

i.e., that F is a finite cut. (Recall that C⊥ is known to equal Bfin, the finite-cut

space.) As F meets every finite cycle evenly it is a cut, with bipartition (A,B)

say. Suppose F is infinite. Let R be a set of three disjoint rays that belong to an

end ω in the closure of F . Every R–R′ path P for two distinct R,R′ ∈ R lies on

the unique topological circle C(R,R′, P ) that is contained in R ∪R′ ∪ P ∪ {ω}.
As every circuit meets F finitely, we deduce that no ray in R meets F again

and again. Replacing the rays in R with tails of themselves as necessary, we

may thus assume that F contains no edge from any of the rays in R. Suppose F

separates R, with the vertices of R ∈ R in A and the vertices of R′, R′′ ∈ R in B

say. Then there are infinitely many disjoint R–(R′ ∪R′′) paths each meeting F
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at least once. Infinitely many of these disjoint paths avoid one of the rays in B,

say R′′. The union of these paths together with R and R′ contains a ray W ∈ ω
that meets F infinitely often. For every R′′–W path P , the circle C(W,R′′, P )

meets F in infinitely many edges, a contradiction. Thus we may assume that F

does not separate R, and that G[A] contains
⋃R.

As ω lies in the closure of F , there is a sequence (vi)i∈N of vertices in B

converging to ω. As G is 2-connected there is a 2-fan from each vi to
⋃R in G.

By Lemma 5 there are infinitely many disjoint 2-fans from
⋃

(vi) to
⋃R. We

may assume that every such fan has at most two vertices in
⋃R. Then infinitely

many of these fans avoid some fixed ray in R, say R. The two other rays plus

the infinitely many 2-fans meeting only these together contain a ray W ∈ ω that

meets F infinitely often and is disjoint from R. Then for every R–W path P

we get a contradiction, as C(R,W,P ) is a circle meeting F in infinitely many

edges.

To prove (ii), let D ⊆ E be a set of edges that meets every bond evenly. We

have to show that D ∈ B⊥, i.e., that D has an (only finite and) even number of

edges also in every cut that is not a bond.

As D meets every finite bond evenly, and hence every finite cut, it lies in

B⊥fin = C. We claim that

D is a disjoint union of finite circuits. (?)

To prove (?), let us show first that every edge e ∈ D lies in some finite

circuit C ⊆ D. If not, the endvertices u, v of e lie in different components of

(V,Dr{e}), and we can partition V into two sets A,B so that e is the only A–B

edge in D. The cut of G of all its A–B edges is a disjoint union of bonds [3],

one of which meets D in precisely e. This contradicts our assumption that D

meets every bond of G evenly.

For our proof of (?), we start by enumerating D, say as D =: {e1, e2, . . . } =:

D0. Let C0 ⊆ D0 be a finite circuit containing e0, let D1 := D0rC0, and notice

that D1, like D0, meets every bond of G evenly (because C0 does). As before,

D1 contains a finite circuit C1 containing the edge ei with i = min{j | ej ∈ D1}.
Continuing in this way we find the desired decomposition D = C1 ∪C2 ∪ . . . of

D into finite circuits. This completes the proof of (?).

As every finite circuit lies in B⊥, it suffices by (?) to show that D is finite.

Suppose D is infinite, and let ω be an end of G in its closure. Let us say that

two rays R and R′ hug D if every neighbourhood U of ω contains a finite circuit

C ⊆ D that is neither separated from R by R′ nor from R′ by R in U . We shall

construct two rays R and R′ that hug D, inductively, as follows.

Let S0 = ∅, and let R0, R
′
0 be disjoint rays in ω. (These exist as G is 2-

connected [6].) For step j ≥ 1, assume that let Si, Ri, and R′i have been defined

for all i < j so that Ri and R′i each meet Si in precisely some initial segement

(and otherwise lie in C(Si, ω)) and Si contains the ith vertex in some fixed

enumeration of V . If the jth vertex in this enumeration lies in C(Sj−1, ω), add

to Sj−1 this vertex and, if it lies on Rj−1 or R′j−1, the initial segement of that

ray up to it. Keep calling the enlarged set Sj−1. For the following choice of S
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we apply Lemma 6 to Sj−1 and each of Rj−1 and R′j−1. Let S ⊇ Sj−1 be a finite

set such that from every vertex v in C(S, ω) there are 3-fans in C(Sj−1, ω) both

to Rj−1 and to R′j−1. By (?) and the choice of ω, there is a finite circuit Cj ⊆ D
in C(S, ω). Then Cj can not be separated from Rj−1 or R′j−1 in C(Sj−1, ω)

by fewer than three vertices, and thus there are three disjoint paths from Cj to

Rj−1 ∪R′j−1 in C(Sj−1, ω).

There are now two possible cases. The first is that in C(Sj−1, ω) the circuit

Cj is neither separated from Rj−1 by R′j−1 nor from R′j−1 by Rj−1. This case

is the preferable case. In the second case one ray separates Cj from the other.

In this case we will reroute the two rays to obtain new rays as in the first case.

We shall then ‘freeze’ a finite set containing initial parts of these rays, as well

as paths from each ray to Cj . This finite fixed set will not be changed in any

later step of the construction of R and R′. In detail, this process is as follows.

If C(Sj−1, ω) contains both a Cj–Rj−1 path P avoiding R′j−1 and a Cj–R
′
j−1

path P ′ avoiding Rj−1, let Q and Q′ be the initial segments of Rj−1 and R′j−1

up to P and P ′, respectively. Then let Rj = Rj−1 and R′j = R′j−1 and

Sj = Sj−1 ∪ V (P ) ∪ V (P ′) ∪ V (Q) ∪ V (Q′).

This choice of Sj ensures that the rays R,R′ constructed form the Ri and R′i
in the limit will not separate each other from Cj , because they will satisfy

R ∩ Sj = Rj ∩ Sj and R′ ∩ Sj = R′j ∩ Sj .

If the ray Rj−1 separates Cj from R′j−1, let Pj be a set of three disjoint

Cj–R
′
j−1 paths avoiding Sj−1. All these paths meet Rj−1. Let P1 ∈ Pj be

the path which Rj−1 meets first, and P3 ∈ Pj the one it meets last. Then

Rj−1 ∪ Cj ∪ P1 ∪ P3 contains a ray Rj with initial segment Rj−1 ∩ Sj−1 that

meets Cj but is disjoint from the remaining path P2 ∈ P and from R′j−1. Let

R′j = R′j−1, and let Sj contain Sj−1 and all vertices of
⋃Pj , and the initial

segments of Rj−1 and R′j−1 up to their last vertex in
⋃P. Note that Rj meets

Cj , and that P2 is a Cj–R
′
j path avoiding Rj .

If the ray R′j−1 separates Cj from Rj−1, reverse their roles in the previous

part of the construction.

The edges that lie eventually in Ri or R′i as i→∞ form two rays R and R′

that clearly hug D.

Let us show that there are two disjoint combs, with spines R and R′ re-

spectively, and infinitely many disjoint finite circuits in D such that each of the

combs has a tooth in each of these circuits. We build these combs inductively,

starting with the rays R and R′ and adding teeth one by one.

Let T0 = R and T ′0 = R′ and S0 = ∅. Given j ≥ 1, assume that Ti, T
′
i and

Si have been defined for all i < j. By Lemma 6 there is a finite set S ⊇ Sj−1

such that every vertex of C(S, ω) sends a 3-fan to R ∪ R′ in C(Sj−1, ω). As R

and R′ hug D there is a finite cycle C in C(S, ω) with edges in D, and which

neither of the rays R or R′ separates from the other. By the choice of S, no one

vertex of C(Sj−1, ω) separates C from R∪R′ in C(Sj−1, ω). Hence by Menger’s

theorem there are disjoint (R∪R′)–C paths P and Q in C(Sj−1, ω). If P starts

on R and Q starts on R′ (say), let P ′ := Q. Assume now that P and Q start
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on the same ray R or R′, say on R. Let Q′ be a path from R′ to C ∪ P ∪Q in

C(Sj−1, ω) that avoids R. As Q′ meets at most one of the paths P and Q, we

may assume it does not meet P . Then Q′ ∪ (QrR) contains an R′–C path P ′

disjoint from P and R. In either case, let Tj = Tj−1 ∪ P , let T ′j = T ′j−1 ∪ P ′,
and let Sj consist of Sj−1, the vertices in C ∪P ∪P ′, and the vertices on R and

R′ up to their last vertex in C ∪ P ∪ P ′.
The unions T =

⋃
i∈N Ti and T ′ =

⋃
i∈N T

′
i are disjoint combs that have teeth

in infinitely many common disjoint finite cycles whose edges lie in D. Let A be

the vertex set of the component of G − T containing T ′, and let B := V r A.

Since T is connected, E(A,B) is a bond, and its intersection with D is infinite

as every finite cycle that contains a tooth from both these combs meets E(A,B)

at least twice. This contradiction implies that D is finite, as desired.
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Extending cycles locally to Hamilton cycles

Matthias Hamann Florian Lehner∗ Julian Pott

Abstract

A Hamilton circle in an infinite graph is a homeomorphic copy of
the unit circle S1 that contains all vertices and all ends precisely once.
We prove that every connected, locally connected, locally finite, claw-
free graph has such a Hamilton circle, extending a result of Oberly and
Sumner to infinite graphs. Furthermore, we show that such graphs are
Hamilton-connected if and only if they are 3-connected, extending a result
of Asratian. Hamilton-connected means that between any two vertices
there is a Hamilton arc, a homeomorphic copy of the unit interval [0, 1]
that contains all vertices and all ends precisely once.

1 Introduction

The proofs of many classical sufficient conditions for the existence of a Hamilton
cycle can be outlined as follows. Start with an arbitrary cycle, extend the cycle
by some additional vertices and iterate this extension procedure until the cycle
covers all vertices. It is often the case that the extension happens locally, that
is, most of the original cycle—in fact everything outside a bounded distance
from some newly added vertex—remains unchanged.

While such a strategy will obviously give a Hamilton cycle for finite graphs,
the situation is more complicated with infinite graphs, particularly because it is
not entirely clear what an infinite analogue of a Hamilton cycle should be.

Considering spanning rays or spanning double rays as infinite analogues of
Hamiltonian cycles has yielded some results (e. g., see Thomassen [23]) but it
has the obvious drawback that a graph with more than two ends can never be
Hamiltonian. However, there is a different approach suggested by Diestel and
Kühn [11, 12]. They define a circle in an infinite graph G to be a homeomorphic
image of the unit circle in the end compactification of G. This approach has
not only been successful in generalizing Hamiltonicity results to locally finite
graphs, it has also yielded generalizations of many theorems about the cycle
space (see [9] for an overview).

Unfortunately, the extension strategies mentioned above do not immediately
give a Hamiltonian circle in this sense. There will be a limit object if the
extension procedure only alters the cycle locally, but it is not guaranteed that
this limit object will be a circle. In particular, ensuring injectivity at the ends
of G can be challenging. So far, there are some results on Hamilton circles in
infinite graphs, see [3, 5, 7, 15, 18]

∗The author acknowledges the support of the Austrian Science Fund (FWF), project
W1230-N13.
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In this paper we present a strategy that ensures that the limit will be a
Hamilton circle. We call it a k-local skip-and-glue strategy and it roughly states
that every finite 2-regular subgraph can be extended to a larger 2-regular graph
with an extension of bounded size, or to a 2-regular graph with fewer compo-
nents. In Section 3 we define this k-local skip-and-glue strategy and prove that
a locally finite graph with such a strategy contains a Hamilton circle.

We then proceed to prove that locally finite claw-free graphs always admit
such a strategy. So we shall show that the following two theorems can be
extended to locally finite graphs and affirmatively answers questions of Stein [22,
Question 5.1.3] and Bruhn, see Stein [22, Question 5.1.4].

Theorem 1.1. [21, Theorem 1] Every finite connected locally connected claw
free graph on at least three vertices is Hamiltonian.

Theorem 1.2. [1, Theorem 3.4] Every finite connected locally connected claw-
free graph is Hamilton-connected if and only if it is 3-connected.

We also give some corollaries of the two theorems whose infinite but locally
finite counterparts are corollaries to the infinite versions of those theorems.
Similar questions on Hamilton circles in infinite graphs are currently investigated
by Heuer [17].

2 The topological space |G|
Let G = (V,E) be a locally finite graph. A ray is a one-way infinite path. Two
rays are equivalent if they lie eventually int he same component of G − S for
every finite vertex set S ⊆ V . This is an equivalence relation whose equivalence
classes are the ends of G. For S ⊆ V and an end ω, let C(S, ω) be the component
of G−S that contains some ray, and hence a tail of every ray, in ω and let Ω(S, ω)
be the set of ends with at least one ray in C(S, ω).

The space |G| is a topological space on G with its ends such that it coincides
on G with its 1-complex and such that the sets

C(S, ω) ∪ Ω(S, ω) ∪ E′(S, ω)

for all finite S ⊆ V and ends ω form a basis for the open neighbourhoods around
each end ω, where E′(S, ω) is any union of half edges (z, y], one for every edge
xy with x ∈ S and y ∈ C(S, ω), with z an inner point of xy. It can be proved
(see [10]) that |G| is the Freudenthal compactification [14] of the 1-complex G.

A standard subspace of |G| is a subspace of the form U ∪ F̊ , where (U,F ) is a
subgraph of G. We will need the following two lemmas on standard subspaces:

Lemma 2.1. A standard subspace of |G| is topologically connected if and only
if one of the following statements holds.

(i) It contains an edge from every finite cut of G which meets both sides [8,
Lemma 8.5.5].

(ii) It is arc-connected [13, Theorem 2.6].

A circle in |G| is a homeomorphic image of S1 and an arc in |G| is a homeo-
morphic image of [0, 1]. A circle that contains every vertex and every end of G is

28



a Hamilton circle and an arc whose endpoints are vertices and that contain ev-
ery vertex and every end of G is a Hamilton arc. We call G Hamilton-connected
if there is a Hamilton arc between each two vertices of G.

The degree of an end ω in a standard subspace X ⊆ |G| is the supremum
of the cardinalities of sets of vertex disjoint arcs ending in ω. This notion of
degree for the whole space |G| coincides with the notion of vertex-degree of G.

Combining [11, Theorem 7.1] and [2, Theorem 5], we obtain the following
theorem (see [9, Theorem 2.5]):

Theorem 2.2. Let G be a locally finite graph and F ⊆ E(G). Then the follow-
ing statements are equivalent:

(i) Every vertex and every end has even degree in F .

(ii) Every finite cuts meets F in an even number of edges.

The following charachterization of subspaces that are circles comes in ex-
tremly handy.

Lemma 2.3. [4, Proposition 3] A standard subspace X of |G| is a circle if and
only if it is topologically connected and every vertex and end of G in X has
degree 2.

3 Skip-and-glue extensions

Let H be a subgraph of a graph G. A vertex v ∈ G has depth d(v,G−H) in H,
that is the distance from v to anything outside of H.

Let F be a 2-regular finite sugraph of G. Let P be a path whose end vertices
v and w are adjacent in F but that is otherwise disjoint from F . Then the 2-
regular subgraph (F ∪P )−vw is the glue extension of F by P over the edge vw.
A path R ⊆ F is skippable if its two end vertices x and y are adjacent in G but
not in F . The edge xy is a bypass of R. A 2-regular graph F ′ obtained from F
by successively replacing skippable paths by their bypasses is called a reduction.

A glue extension of a reduction F ′ of F by P that covers F is a skip-and-glue
extension of F by P . Its depth is the maximum depth of any vertex of F ∩ P
in its component of F . It is a proper skip-and-glue extension via u if there is a
vertex u in P r F . A skip-and-glue extension of F via u is k-local if its length,
the length of P , is at most k and u is adjacent to F .

For a finite 2-regular subgraph F ⊆ G with at least two components, a glue
fusion of F is a 2-regular subgraph F ′ such that F ′ coincides with F − e− f on
V (D) e, f are edges from distinct components of F and such that the edges in
F ′ r F form two disjoint paths connecting the two end vertices of e with those
of f . In particular, the glue fusion F ′ has less components than F : precisely two
components of F are fused to one of F ′. We call D a skip-and-glue fusion of F
if it is a glue fusion of a reduction F ′ of F that covers F . This skip-and-glue
fusion is k-local if the length of each of the two non-trivial paths in DrF ′ is at
most k. A k-local skip-and-glue fusion is centred around a vertex u ∈ V (F ) if
each vertex of the two non-trivial paths in F ′ r F has distance at most k to u
and if u lies in one of the two fused components.

A k-local skip-and-glue strategy (with respect to S) is a function which assigns
to every pair (F, u) of a finite 2-regular subgraph F ⊆ G (covering S) all whose
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components contain at least k vertices and a vertex u ∈ N(F ) a k-local skip-
and-glue extension of F via u and which assigns to every pair (F, u) of a finite
2-regular disconnected subgraph F ⊆ G (covering S) all whose components
contain at least k vertices and vertex u ∈ V (F ) that has a neighbour in a
different component of F a k-local skip-and-glue fusion of F centred around u.

Note that the image of a pair (F, u) of a k-local skip-and-glue strategy is not
necessarily a graph all whose components contain at least k vertices.

Lemma 3.1. Let G be a locally finite connected graph containing a cycle. If
there is a k-local skip-and-glue strategy for G, then G is 2-connected.

Proof. Let C be a cycle in G and suppose that some vertex v separates G. Let P
be a path with one end vertex in C and one end vertex in a component of G−v
not containing C. Let C ′ be a cycle containing C and a maximal number of
vertices from P . As there is a k-local skip-and-glue strategy for G, all vertices
of P are contained in C ′. This contradicts that v is a separating vertex as it
does not separate C ′ but P meets two components of G− v.

Lemma 3.2. Let G be a locally finite 2-connected graph. Then every neigh-
bourhood of every end contains a cycle of length at least n for all n ∈ N.

Proof. For an end ω of G and a neighbourhood U of ω and some n ∈ N, let
R1, R2 be two vertex disjoint rays in ω that lie in U , which exist as G is 2-
connected [16]. Let P1, P2, . . . be an infinite sequence of vertex disjoint finite
R1–R2 paths. Such a sequence exists, as in every neighbourhood of ω there is one
such path, and for any collection of finitely many paths there is a neighbourhood
of ω avoiding those. Let Pi and Pj be two of these path whose end vertices on
R1 have distance at least n. The unique cycle in R1 ∪ Pj ∪ R2 ∪ Pi has length
at least n.

We will see later that a locally finite graph which satisfies the conditions of
Theorem 1.1 always admits a 4-local skip-and-glue strategy, hence the following
lemma can be used to extend the theorem to locally finite graphs.

Theorem 3.3. Let k ∈ N and let G = (V,E) be a locally finite connected graph.

(I) If G has a k-local skip-and-glue strategy and contains a cycle of length at
least k, then G is hamiltonian.

(II) If G contains a v–w path P whose end vertices have depth at least k+1 in
P and G+ vw has a k-local skip-and-glue strategy with respect to V (P ),
then G contains a v–w arc that is hamiltonian.

Proof. To prove (I) we will define a sequence of finite cycles (Ci)i∈N such that

(i) V (Ci+1) contains V (Ci),

(ii) Every edge with depth at least 2k in Ci is contained in Ci+1 if and only if
it is contained in Ci.

(iii) every vertex is contained in some Ci,

(iv) for every end ω of G and every finite set V ′ ⊆ V there is a finite cut F
separating ω from V ′ and an index i0 such that |E(Ci0) ∩ F | = 2 and
E(Ci0) ∩ F = E(Ci) ∩ F for every i > i0.
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Let C be the limit of the sequence Ci, that is, C is the set of all those edges
that are contained in the Ci eventually. Let us first show that C is a Hamilton
circle as soon as (i) to (iv) are satisfied.

Together, (i) and (iii) imply
⋃
V (Ci) = V (G). By (iii) and as G is locally

finite there is for every vertex v an index j such that Cj contains all vertices
with distance k + 1 or less from v. By (ii) every vertex has degree 2 in C and
V (C) = V (G). Let F be a finite cut with bipartition (A,B). Then there is some
j ∈ N such that all vertices of F lie in Cj . As Cj+1 is connected and meets
both A and B, it must contain an even number of edges from F . These edges
are contained in C by (ii). As C meets every finite cut in an even number of
edges, every vertex and every end of C has even degree by Theorem 2.2 and C is
topologically connected by Lemma 2.1 (i). Additionally, Lemma 2.1 (ii) implies
that the standard subspace C is arc-connected and hence its degree is at least 2.
We already saw that every vertex has degree 2. Since every vertex lies in C,
so does every end. By (iv) we find for every end ω a sequence of cuts (Fi)i∈N
such that the components of G−Fi that contain ω converge to ω and such that
each of these cuts contains precisely two edges of C. Thus, the degree of ω is
at most 2 and hence precisely 2. This implies that the standard subspace C is
a circle by Lemma 2.3. It is a Hamilton circle, as it contains every vertex and
every end.

We define the Ci recursively. Besides this sequence, we shall define a second
sequence (Λi)i∈N of labellings Λi : V → N. For i, q ∈ N let

Xi
q := {v ∈ V | Λi(v) = q}.

Then the sequences will satisfy the following properties for every 1 ≤ q:

(Λ1) Xi
0 is finite.

(Λ2) Ci[X
i
q] is a subpath of Ci.

(Λ3) Any non-empty cut E(Xi
q, V rXi

q) intersects with Ci precisely twice.

(Λ4) Every vertex in Xi
q not in Ci has distance more than 2k from V rXi

q.

(Λ5) Every vertex of Ci of depth 2k or more in Ci lies in Xi
0.

Let C0 be any finite cycle of length at least k, which exists by assumption. For
j ∈ N assume that all Ci and Λi with i ≤ j have been defined and that they
satisfy (i), (ii), and (Λ2) to (Λ5). Let B(i) ⊆ G for i ∈ N be the restriction of G
to the vertices with distance at most i from Cj . Let D = {D1, . . . , Dn} be the
set of infinite components of GrB(2k). Let Df be the set of finite components
of GrB(2k). Due to Lemma 3.1, we know that G is 2-connected. So according
to Lemma 3.2, we find a cycle within every component D` ∈ D of length at
least k that has distance at least 2k to the boundary of D`, adding successively
all vertices with distance at most k to this initial cycle via k-local skip-and-
glue extensions we have a cycle C` in D` with at least k vertices of depth at
least k in C`. Let C = {C1, . . . , Cn}. Let x1, . . . , xm be an enumeration of some
vertices of

⋃D with

(
B ((n+ 5) k) ∩

⋃
D
)
∪
⋃
C ⊆ G[x1, . . . , xm]
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such that for every i ≤ m each component of G[x1, . . . , xi] has a vertex in
some C`. By our k-local skip-and-glue strategy, there is a sequence

Cj ∪
⋃
C = F0, . . . , Fm = F

of finite 2-regular graphs such that Fi+1 = Fi if xi+1 ∈ V (Fi), and such that Fi+1

is obtained from Fi by a k-local skip-and-glue extension via xi+1 if xi+1 /∈ V (Fi).
Note that all these extensions have length at most k and thus Cj ⊆ F . Clearly,
F has at most n + 1 components as F0 has precisely n + 1. Furthermore, the
choice of the vertices xi gives us that the vertices of F in Di induce a connected
graph in G for each i ≤ n.

We proceed with a finite sequence F = F 0, . . . , F p = F ′ of k-local skip-and-
glue fusions: If some vertex u of F i ∩ ⋃D ⊆ G − B(2k) has a neighbour in
a different component of F i, let F i+1 be a k-local skip-and-glue fusion of F i

centred around u. Since the number of components of F is at most n + 1 and
reduces by at least 1 with each skip-and-glue fusion we have p ≤ n + 1. Then
we have the following properties:

(1) Every Di ∈ D contains vertices from exactly one component of F ′ and all
vertices within B((n+ 5)k) ∩Di lie in this component.

(2) Cj = F ′ ∩B(m)

(3) F ′ has at most n+ 1 components.

Next, we construct a finite sequence of k-local skip-and-glue extensions via
vertices in B((n+ 5)k) ∪ ⋃Df such that its first element is F ′ and its last
element E contains every vertex of B((n+ 5)k)∪⋃Df . As every extension has
length at most k, we have the following properties:

(4) All vertices with depth at least k in Cj lie in a common component of E.

(5) Only one component of E meets Di rB(3k) for every i ≤ n.

(6) V (E) is connected in G.

(7) E has at most n+ 1 components.

Let E = E0, . . . , E` = Cj+1 be a sequence of 2-regular subgraphs of G such
that E` is connected and Ei+1 is a k-local skip-and-glue fusion centred around
a vertex in the unique component Ui of Ei that contains all vertices with depth
at least k in Cj . Note that this is well-defined as V (Ui) is contained in the
fused cycle Ui+1. The properties (i), (ii), and (iii) are direct consequences of
the construction of Cj+1 as V (B((n+ 5)k)) ⊆ V (Cj+1).

To proof (iv) let us define a finite sequence Λ0, . . . ,Λ` = Λj+1 of labellings
Λi : V → N (with the same ` as above). For i, q ∈ N let

Y i
q := {v ∈ V | Λi(v) = q}.

We shall construct these labellings such that they satisfy the following conditions
for i ∈ N, q > 0, and 1 ≤ p ≤ `. Note that ` ≤ n.

(Λ6) Y i
0 is finite.

(Λ7) Ei[Y
i
q ] is either a component of Ei or a subpath of Ui.
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(Λ8) The intersection of any non-empty cut E(Y i
q , V r Y i

q ) with Ei contains
either none or precisely two edges.

(Λ9) Every vertex in Y i
q not in Ei has distance more than (n + 2 − p)k from

V r Y i
q .

(Λ10) Every vertex of Cj of depth 2k or more in Cj lies in Y i
0 .

Let K0, . . . ,Kp be the components of E0 such that K0 contains all vertices
with depth at least k in Cj , cp. (4). Let us define a labelling Λ0 : V → N. For
a vertex x ∈ V (Ki), let Λ0(x) = i. For every component Di ∈ D, there is a
unique label ` ∈ N with Λ0(x) = ` for all x ∈ V (Di r B(3k)), cp. (5). Let Λ0

map every y ∈ V (Di r E) to `. Clearly, Λ0 satisfies (Λ7) to (Λ10).
Assume Λp has been defined for 0 ≤ p < `. The cycle Up+1 is the union of

a reduction Rp of Up, a reduction R of some other component U of Ep and two
disjoint paths P,Q minus two edges ep ∈ E(Rp) and e ∈ E(R). If both end
vertices of ep have the Λp-label 0 let λ be the unique label of the vertices of U .
Otherwise, let λ be the largest Λp-label at an end vertex of ep. Let W be the
set consisting of the vertices on P,Q, and R as well as all the vertices labelled
with the label of U . Let Λp+1 equal Λp outside of W and let Λp+1 map every
vertex of W to λ.

Clearly, properties (Λ6) and (Λ7) are kept throughout the construction.
Moreover, (Λ8) is a direct consequence of (Λ7). Since all fusions are k-local
we have (Λ9). Every vertex of depth at least k in Cj lies in all Ui and thus the
fusions are centred around vertices with depth at most k in Cj as those vertices
have neighbours outside of Ui. Since every vertex with depth 2k in Cj lies on
the reduction of Ui for all k-local fusions of Ei, we have (Λ10). Thus we have
(Λ1) to (Λ5) as E` = Cj+1 is connected, Λ` = Λj+1, and ` ≤ n.

It remains to prove (iv). Let us consider any finite set S ⊆ V and any end ω
of G. By (i) and (iii), we find an index j such that every vertex of S has depth
more than 2k in Cj . So by (Λ5), it lies in Xj+1

0 . The end ω lies in some infinite
component K of G − B((n + 5)k). By (Λ4), all vertices of K have the same
Λj+1-label q. As B = E(Xj+1

q , V rXj+1
q ) is non-empty, it intersects with Cj+1

precisely twice due to (Λ3). By (Λ4), the vertices incident with B have depth
2k or more in Cj+1. So (ii) implies that B meets Ci in precisely these two edges
for every i ≥ j + 1. This shows (iv) and completes the proof of (I).

To prove (II) we pick a sequence P + vw = F0, . . . , Fn of cycles such that
Fi+1 is a k-local skip-and-glue extension of Fi and Fn covers every vertex of
distance at most 2k + 1 from vw. Clearly, vw is an edge of Fn. Following the
proof of (I) there is a sequence Fn = C0, C1, . . . of finite cycles satisfying (i)
to (iv). Thus for their limit C its closure C is a Hamilton circle and C contains
vw by (ii). This completes the proof of (II) as C − vw is a Hamilton arc of G
with end vertices v and w.

4 Locally connected graphs

For a subgraph F of a graph G, let us call a vertex x ∈ V (F ) skippable if x has
degree 2 in F and its two neighbours y, z are adjacent in G but not in F . We
call yz an x-bypass. Note that, if F is 2-regular, x is skippable if and only if
yxz is a skippable path in F .
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Lemma 4.1. Every connected locally connected claw-free graph G has a 5-local
skip-and-glue strategy.

Furthermore, for x, y ∈ V (G) the graph G + xy has a 5-local skip-and-glue
strategy with respect to V (P ) for some x–y path P that contains all vertices of
distance at most 3 from x or y.

Proof. Let G = (V,E) be a locally finite connected locally connected claw-free
graph on at least three vertices. Let F be a finite subgraph of G with maximum
degree 2 all whose components contain at least four vertices. Let C be any
component of F . Note that C is either a cycle or a path. If C is a path we
require its end vertices to have depth at least 3 in C and add the edge between
those end vertices to G. Note that in the later construction, none of these
new edges appears as they are to deep in their respective component. For the
readability of the proof we omit their presence from now on and consider G
to be the graph with these edges added and F to be 2-regular. With a slight
stretch of terminology, we consider G to be claw-free, although it is G without
these additional edges that is claw-free.

On each component C we choose one order ≤C of the two available canonical
cyclic orders. For every vertex v ∈ V (C) denote by v− its predecessor with
respect to ≤C and by v+ its successor.

Let u /∈ V (F ) be a vertex of G that has a neighbour v on F . To show
that there is a k-local skip-and-glue strategy we have to provide a k-local skip-
and-glue extension of F via u. As G is locally connected N(v) is connected; it
contains u, v−, and v+. Thus there is a shortest u–{v−, v+} path P = p0p1 . . . pk
with all its vertices in N(v). We may assume that p0 = u and pk = v+ by
choosing the other canonical order for the component containing u if necessary.
Clearly, P does not contain v−. By minimality P is induced and thus if k ≥ 4,
we have the claw G[v, p0, p2, p4] in G. Hence k ≤ 3 and the length of P is at
most 3.

If all inner vertices of P which lie on F are skippable and no two consecutive
vertices of P are adjacent on F , then we can replace every skippable path p−i pip

+
i

by the edge p−i p
+
i . Furthermore, we replace the edge vv+ by the path vuPv+

to obtain a 4-local skip-and-glue extension of F via u. This covers the case that
u is adjacent to v− or v+.

Thus we may assume that P has an inner vertex and since G is claw-free it
holds that v−v+ ∈ E(G). Since the component of F containing v has at least
four vertices, v is skippable. If some inner vertex pi of P lies on F and is not
skippable, then the path p−i pip

+
i is not skippable. Thus, we have p−i p

+
i /∈ E.

It remains to construct a k-local skip-and-glue extension if either some vertex
of P is not skippable or some edge of P lies on F . Let pi be the first vertex on P
that is either not skippable or incident with an edge of P ∩F . As G[v, pi, p

−
i , p

+
i ]

is not a claw, there is an edge vp−i or vp+i in the first case. As P lies in the
neighbourhood of v, there is an edge vp−i or vp+i in the second case, too. As v
is skippable, we reduce F by replacing v−vv+ by the edge v−v+ and p−j pjp

+
j

by the edge p−j p
+
j for all j < i where pj is skippable. If v and p−i are adjacent,

then we replace the edge pip
−
i by the path p−i vuPpi. Otherwise, v and p+i are

adjacent and we replace the edge pip
+
i by the path piPuvp

+
i . Note that i ≤ 2.

Thus, we obtain a 4-local skip-and-glue extension of F via u in both cases.

Next, let us assume that F has more than one component each containing
at least four vertices. Let v ∈ V (F ) be a vertex in a component K of F with
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a neighbour in some other component of F . Following the above argument for
each vertex u ∈ N(v)∩ V (F rK) we have a 4-local skip-and-glue extension K ′

of K by P via u over some edge e ∈ E(K) such that the inner vertices of P lie
in N(v) ∪ {v} and u is the only vertex in P from F rK.1

Similarly, there is a path Q from {u−, u+} to one of the two neighbours of u
on K ′, which are its neighbours on P .

For the following construction let us choose such P and Q with some mini-
mality conditions:

(i) Let P be shortest possible.

(ii) With respect to (i) let Q be shortest possible.

Clearly, |P | = 2 if and only if there is an edge e in K with both its end
vertices adjacent to u. Note that no inner vertex of Q lies on P , as this is in
contradiction to the minimality of P .

Suppose that there is an inner vertex q of Q in K ′ that is either not skippable
or incident with an edge of Q that lies in K ′. As seen above q ∈ V (K)r V (P ).
Let a, b be the two neighbours of q on K ′. As G[u, q, a, b] is not a claw, there is
an edge ua or ub if q is not skippable. As Q lies in the neighbourhood of u, there
is an edge ua or ub if q is incident with an edge of Q on K ′, too. By symmetry
we may assume that a is adjacent to u. If qa ∈ E(K) we have a contradiction to
the minimality of Q as we could have chosen P = qua and shortened Q to end
in q. Thus we may assume that qa ∈ E(K ′)rE(K). By the construction of K ′

the edge qa is a z-bypass for some z ∈ V (P ). This contradicts the minimality
of P as quPz is shorter since both u and z are inner vertices of P .

Thus every inner vertex of Q in K ′ is skippable and no edge of Q is an edge
of K ′.

If all inner vertices of Q are skippable in F and in K ′ and no edge of Q lies
in F rK or K ′, let F ′ be the reduction of F where the inner vertices of Q and
P in F are replaced by their bypasses and let L be the set consisting of the
edge e and the edges from u to the end vertices of Q. Then (F ′ ∪ P ∪ Q) − L
is a skip-and-glue fusion of F . It is 5-local as Q has length at most 3 and every
component of P − L has length at most 2. Clearly, it is centred around v.

Thus we may assume that there is an inner vertex on Q in F r K that is
not skippable or incident with an edge of Q ∩ (F rK). First note that every
vertex of Q is adjacent to a neighbour of u in F if u is not skippable in F . This
implies, by the minimal choice of Q and as Q contains an inner vertex, that u
is skippable in F .

Let q be the last inner vertex of Q in F rK that is not skippable or incident
with an edge of Q ∩ (F r K). Thus its subpath qQp with p ∈ V (P ) does
not contain any such vertices. Let a, b be the two neighbours of q on F . As
G[u, q, a, b] is not a claw, there is an edge ua or ub if q is not skippable. As Q
lies in the neighbourhood of u, there is an edge ua or ub if q is incident with an
edge of Q on F , too. By symmetry we may assume that a is adjacent to u.

Let F ′ be the reduction of F where the inner vertices of Q and P in F are
replaced by their bypasses and let L = {e, up, aq}. Then (F ′∪P ∪qQp)−L+au
is a skip-and-glue fusion of F . It is 4-local as qQp has length at most 2 and the

1Indeed, we get a path P completely contained in N(v)∪ {v}, and such a path of minimal
length contains only one vertex from F rK. We forget that its end vertices are contained in
N(v) ∪ {v} for later convenience.
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component of P−up containing p has length at most 2 and the other component
of P − up has length at most 3. Clearly, it is centred around v.

The following is a corollary extracted from the previous proof.

Corollary 4.2. Every connected locally connected locally finite claw-free graph
on at least k vertices contains a cycle of length at least k.

Now we can combine our previous results to prove our first main theorem.

Theorem 4.3. Every connected locally connected locally finite claw-free graph
on at least three vertices has a Hamilton circle.

Proof. Let G be a connected locally connected locally finite claw-free graph on
at least three vertices. By Corollary 4.2 the graph G contains a cycle of length
min{|G|, 5}. Due to Lemma 4.1, there is a 5-local skip-and-glue strategy for G.
Thus, the assertion is a direct consequence of Theorem 3.3.

Let us now turn our attention to Hamilton arcs. We deduce from the proof
of Theorem 1.2 in [1] the following proposition that is valid for all locally finite
graph.

Proposition 4.4. Let G be a connected locally connected locally finite claw-free
graph. For each two x, y ∈ V (G) that do not disconnect G there is an x-y path
of length at least 3 that contains N(x) ∪N(y).

In the proof that the result of Proposition 4.4 implies that the graph has a
Hamilton arc, Asratian showed in [1] the following:

Proposition 4.5. Let G be a connected locally connected locally finite claw-free
graph. For each two x, y ∈ V (G) that do not disconnect G there is an x-y path
of length at least 3 that contains all vertices of distance at most 2 to either x
or y.

Using our terminology, Proposition 4.5 implies the existence of some x–y
path P such that the depth in P of its end vertices is at least 3. This enables
us to prove our second main theorem.

Theorem 4.6. In every connected locally connected locally finite claw-free graph
on at least 3 vertices, any two vertices that do not disconnect the graph are
connected by a Hamilton arc.

Proof. Let G be a connected locally connected locally finite claw-free graph and
let x, y ∈ V (G) be distinct vertices that do not disconnect G. As mentioned
before, Proposition 4.5 implies that we find an x–y path P such that x and y
have depth 3 in P . Since G+xy has a 5-local skip-and-glue strategy with respect
to V (P ) by Lemma 4.1 there is a sequence P + xy = C0, . . . , Cn of cycles in
G+ xy such that Ci+1 is a 5-local skip-and-glue extensions of Ci and such that
Cn contains all vertices of distance at most 6 from x or y. Thus the assertion
follows from Theorem 3.3.

As a corollary of the previous theorem, we obtain the following theorem:

Theorem 4.7. A connected locally connected locally finite claw-free graph on
at least four vertices is Hamilton-connected if and only if it is 3-connected.
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5 Further sufficient conditions for the existence
of a Hamilton circle

In this section, we deduce some corollaries from the main theorems of Section 4.
To shorten this section, we say that a graph G satisfies (?) if the following
statements are true:

(i) G has a Hamilton circle.

(ii) For each two vertices u, v ∈ V (G) that do not separate G, there is a
Hamilton u–v arc in |G|.

(iii) G is Hamilton-connected and |V (G)| ≥ 4 if and only if it is 3-connected.

It is well-known that line graphs are claw-free. Thus, we directly obtain the
following corollary (whose finite version for Hamilton cycles is due to Oberly
and Sumner [21, Corollary 1]):

Corollary 5.1. Let G be a locally finite connected locally connected line graph
on at least three vertices. Then G satisfies (?).

The proof that the assumptions of the following corollary imply that L(G) is
locally connected is the same as for finite graphs. Thus, we obtain the following
corollary (whose finite version for Hamilton cycles is due to Oberly and Sumner
[21, Corollaries 2 and 3]):

Corollary 5.2. Let G be a locally finite connected graph on at least three vertices
such that either every edge lies on a triangle or G is locally connected. Then
L(G) satisfies (?).

For the following two corollaries the proofs that their assumptions imply
that L(L(G)), L(G2), respectively, is locally connected is the same as for finite
graphs, see [21, Corollaries 4 and 5]. The finite version for Hamilton cycles of
Corollary 5.3 is due to Chartrand and Wall [6]) and that of Corollary 5.4 is due
to Nebeský [20].

Corollary 5.3. Let G be a locally finite connected graph with minimum degree
at least 3. Then L(L(G)) satisfies (?).

Note that for a graph G, its square G2 has V (G) as its set of vertices and
two distinct vertices are adjacent in G2 if their distance in G is at most 2.

Corollary 5.4. Let G be a locally finite connected graph on at least three ver-
tices. Then L(G2) satisfies (?).

The last corollary of the results of Section 4 carries over the result by
Matthews and Sumner [19, Corollary 1] for Hamilton cycles in finite graphs
to locally finite graphs. Again, their proof carries over almost verbally.

Corollary 5.5. Let G be a locally finite connected graph on at least three ver-
tices. If G2 is claw-free, then it satisfies (?).
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Transitivity conditions in infinite graphs∗

Matthias Hamann Julian Pott

Abstract

We study transitivity properties of connected graphs with more than
one end. We completely classify the distance-transitive such graphs and,
for all k ≥ 3, the k-CS-transitive such graphs.

1 Introduction

A k-distance-transitive graph is a graph G such that for every two pairs (x1, x2)
and (y1, y2) of vertices with distances d(x1, x2) = d(y1, y2) ≤ k there is an
automorphism α of G with xαi = yi for i = 1, 2, where xαi is the image of xi
under α. A graph is called distance-transitive if it is k-distance-transitive for all
k ∈ N. Macpherson [11] and Ivanov [8] independently classified the connected
locally finite distance-transitive graphs. They are exactly the graphs Xk,l, the
infinite graphs of connectivity 1 such that each block is a Kk, a complete graph
on k vertices, and every vertex lies in l distinct blocks. Here, k and l are integers,
but we shall use the notation of Xκ,λ also when κ or λ are infinite cardinals.

Answering a question of Thomassen and Woess [16], Möller [13] showed that
the 2-distance-transitive locally finite connected graphs with more than one end
are still only the graphs Xk,l.

For graphs that are not locally finite, little is known. Our first main result is
the following common generalization of the theorems of Macpherson and Möller
to arbitrary connected graphs with more than one end:

Theorem 1.1. Let G be a connected infinite graph with more than one end.
The following properties are equivalent:

(i) G is distance-transitive;

(ii) G is 2-distance-transitive;

(iii) G ∼= Xκ,λ for some cardinals κ and λ with κ, λ ≥ 2.

A graph is called n-transitive or also n-arc-transitive if it has no cycle of
length at most n and for every two paths x0 . . . xm and y0 . . . ym with 0 ≤ m ≤ n
it admits an automorphism α with xαi = yi for all i.

Thomassen and Woess [16] characterized the locally finite connected graphs
with more than one end that are 2-transitive. These are precisely the r-regular
trees for some r ∈ N. As a consequence of Theorem 1.1 we get the following
characterization of all such graphs, not necessarily locally finite, which we prove
at the end of Section 3.

∗Combinatorica 32 (6) (2012) 649-688
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Corollary 1.2. If G is a connected 2-transitive graph with more than one end,
then G is a λ-regular tree for some cardinal λ ≥ 2.

In the second part of this paper we investigate graphs with the property
that the existence of an isomorphism ϕ between two finite induced subgraphs
implies that there is an automorphism ψ of the entire graph mapping one of
the subgraphs to the other. This area divides into two parts: In one part ϕ has
to induce ψ on these subgraphs, while in the other part they may differ. More
precisely, a graph G is k-CS-transitive if for every two connected isomorphic
induced subgraphs of order k some isomorphism between them extends to an
automorphism of G. On the other hand, G is called k-CS-homogeneous if every
isomorphism between two induced connected subgraphs of order k of G extends
to an automorphism of G. A graph is CS-transitive if it is k-CS-transitive for
all k ∈ N, and CS-homogeneous if it is k-CS-homogeneous for all k ∈ N. Fur-
thermore, a graph is end-transitive if its automorphism group acts transitively
on the set of its ends.

Gray [6] classified the connected locally finite 3-CS-transitive graphs with
more than one end and showed that these graphs are end-transitive. He asked
whether all locally finite k-CS-transitive graphs for k ≥ 3 are end-transitive.
We give a positive answer to his question, and also show that the ends of k-
CS-transitive graphs of arbitrary cardinality have at most two orbits under the
action of the automorphism group of the graph.

Since 1-CS-transitive graphs are the transitive graphs and 2-CS-transitive
graphs are the edge-transitive graphs, there is not much hope to classify them.
Thus we investigate k ≥ 3. We shall give a complete classification of these k-CS-
transitive graphs with more than one end. This is formulated in Theorem 1.3.

In order to state our characterization we have to introduce some classes of
graphs. For a graph H let Xκ,λ(H) be the graph which arises from the graph
Xκ,λ by replacing each vertex with a copy of H and adding all edges between
two copies replacing adjacent vertices of Xκ,λ.

For κ ≥ 3, let Yκ denote a connected graph that has two different kinds
of blocks, single edges and blocks that are complete graphs of order κ, and in
which every vertex lies in exactly one block of each kind.

Let H1, H2 be graphs, and let κ, λ ≥ 2 be cardinals. We construct the graph
Zκ,λ(H1, H2) as follows. Let T be an infinite tree, viewed as a bipartite graph
with bipartition A,B, and assume that the vertices in A have degree κ and the
vertices in B have degree λ. We replace every vertex from A by an isomorphic
copy of H1 and every vertex from B by an isomorphic copy of H2. We add all
edges between vertices that belong to graphs that replaced adjacent vertices.
The resulting graph is a Zκ,λ(H1, H2).

We also need some finite homogeneous1 graphs. These are graphs such that
any isomorphism between two finite induced subgraphs (not necessarily con-
nected) extends to an automorphism of the whole graph. These graphs were
determined by Gardiner [5]. Interestingly, Ronse [15] showed that the class of
finite homogeneous graphs coincides with its ‘transitive’ counterpart, the class
of graphs such that for any two isomorphic induced subgraphs (not necessar-
ily connected) there exists an isomorphism between them that extends to an
automorphism of the whole graph.

1ultrahomogeneous in [5]
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The classes of finite homogeneous graphs featuring in our characterization
will be the classes, denoted as Ek,m,n, that occur in Enomoto’s article [4] on
combinatorially homogeneus graps. Each of these classes consists of all finite
homogeneous graphs with the property that every vertex has at most m neigh-
bours, every subgraph of order at least n is connected, and no two non-adjacent
vertices have k − 2 or more common neighbours. Furthermore, we exclude the
complete graphs and the complements of complete graphs from Ek,m,n for tech-
nical reasons.

Now we are able to state our second main result, the classification of all
connected k-CS-transitive graphs with more than one end if k is at least 3.

Theorem 1.3. Let k ≥ 3. A connected graph with more than one end is k-CS-
transitive if and only if it is isomorphic to one of the following graphs2:

(1) Xκ,λ(K1) with arbitrary κ and λ;

(2) X2,λ(Kn) with arbitrary λ and n < k
2 + 1;

(3) Xκ,2(Km) with arbitrary κ and m < k+2
3 ;

(4) X2,2(E) with E ∈ Ek,m,n, m ≤ k − 2, n < k−|E|
2 + 2, and 2|E| − 2 < k;

(5) Yκ with arbitrary κ (if k is odd);

(6) Z2,2(Km,Kn) with 2m+ n ≤ k + 1 (if k is even);

(7) Zκ,λ(K1,Kn) with n ≤ k − 1, arbitrary κ, λ with κ = 2 or λ = 2 (if k is
even);

(8) Z2,2(K1, E) with E ∈ Ek,m,n, m ≤ k − 2, n ≤ k
2 + 1 (if k is even).

Gray [6] characterized the connected locally finite 3-CS-homogeneous graphs
with more than one end. As a corollary of Theorem 1.3 we obtain in Section 7
the following classification of connected k-CS-homogeneous graphs for k ≥ 3
with more than one end.

Corollary 1.4. Let k ≥ 3. A connected graph with more than one end is k-CS-
homogeneous if and only if it is isomorphic to Xκ,λ(H) for one of the following
values of κ, λ and graphs H:

(1) arbitrary κ and λ and H ∼= K1;

(2) κ = 2, arbitrary λ, n < k
2 and H ∼= Kn;

(3) arbitrary κ, λ = 2, m < k
3 and H ∼= Km;

(4) κ = λ = 2, H ∈ Ek,m,n for m ≤ k − 2, n < k−|E|
2 + 1, and 2|E| < k.

Gray and Macpherson [7] classified the countable CS-homogeneous graphs3.
Such graphs, connected and with more than one end, are those described in our
Theorem 1.1 for countable cardinals κ, λ. As a further corollary of Theorem 1.3
we can extend their classification to arbitrary connected graphs with more than
one end.

2By the definition of these graphs, κ and λ are at least 2 and κ is at least 3 in case (5).
3They call these graphs connected-homogeneous graphs.
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Corollary 1.5. For connected graphs with at least two ends the notions of being
distance-transitive, CS-transitive, or CS-homogeneous coincide. (These graphs
are described in Theorem 1.1.)

Let us say a word about the techniques we use for our proofs. The proofs of
the corresponding theorems for locally finite graphs are all based on Dunwoody’s
structure trees corresponding to finite edge cuts that are invariant under the
action of the automorphism group of the graph. This structure tree theory
is described in the book of Dicks and Dunwoody [1]; see Möller [12, 14] and
Thomassen and Woess [16] for introductions. Since those edge cuts must be
finite, these structure trees can in general only be applied to locally finite graphs.

Recently, Dunwoody and Krön [3] developed a similar structure tree theory
based on vertex cuts, providing a similarly powerful tool for the investigation
of graphs that are not necessarily locally finite. We use this new theory in our
proofs.

2 The structure tree

Throughout this paper we use the terms and notation from [2] if not stated
otherwise. In particular, a ray is a one-way infinite path and a double ray is a
two-way infinite path. Two rays in a graph G are equivalent if there is no finite
vertex set S in G such that the two rays lie eventually in distinct components
of G−S. (For an induced subgraph H and a subset S of the vertex set of G, we
use H − S to denote the induced subgraph G[V (H) \ S] and H + S to denote
G[V (H) ∪ S].) The equivalence of rays is an equivalence relation whose classes
are the ends of G.

Let G be a connected graph and A,B ⊆ V (G) two vertex sets. The pair
(A,B) is called a separation of G if

(i) A ∪B = V (G) and

(ii) E(G[A]) ∪ E(G[B]) = E(G).

The order of a separation (A,B) is the cardinality of its separator A ∩ B and
the wings of (A,B) are the induced subgraphs G[A \ B] and G[B \ A]. With
(A,∼) we refer to the separation (A, (V (G) \ A) ∪ N(V (G) \ A)). A cut is
a separation (A,B) of finite order with non-empty wings such that the wing
G[A \ B] is connected and such that no proper subset of A ∩ B separates the
wings of (A,B)4. A cut system S is a non-empty set of cuts of G satisfying the
following properties.

(1) If (A,B) ∈ S then there is an (X,Y ) ∈ S with X ⊆ B.

(2) Let (A,B) ∈ S and C be a component of G[B \A]. If there is a separation
(X,Y ) ∈ S with X \ Y ⊆ C, then the separation (V (C) ∪N(C),∼) is also
in S.

(3) If (A,B) ∈ S with wings X,Y and (A′, B′) ∈ S with wings X ′, Y ′ then
either there is a component C in X ∩X ′ and a component D in Y ∩ Y ′, or
there is a component C in Y ∩X ′ and a component D in X ∩ Y ′ such that
both (V (C) ∪N(C),∼) and (V (D) ∪N(D),∼) are S-separations.

4Dunwoody and Krön [3] call the corresponding vertex set A \ B a cut and the set B \ A
the ∗-complement of this cut.

43



The cuts in S are also called S-separations and an S-separator is a vertex set
that is the separator of an S-separation.

Two vertices, vertex sets or subgraphs X,Y of G are separated by a sepa-
ration (A,B)—not necessarily in S—if either X ⊆ A and Y ⊆ B, or Y ⊆ A
and X ⊆ B. They are separated properly if both, X and Y , meet components
C and D of their corresponding wings such that every vertex in A ∩ B is ad-
jacent to a vertex in C and a vertex in D. A vertex set S separates X and Y
(properly) if there is a separation (A,B) with separator S that separates X and
Y (properly). A vertex set or subgraph is separated properly by a separation
(or its separator) if it contains two vertices that are separated properly by this
separation.

Two separations (A,B), (A′, B′) are S-nested if there is one wing of each
of them, W,W ′ say, such that both separators A ∩ B and A′ ∩ B′ are dis-
joint from W ∪W ′ and such that there is no component C of W ∩W ′ with
(C ∪N(C),∼) ∈ S.5 If it is clear which cut system we are referring to we may
drop its identifier and speak of nested only. The cut system S is nested if each
two S-separations are (S-)nested. If S is nested, then no S-separation (A,B)
separates any other S-separator S properly, since S meets at most one wing of
(A,B).

A cut in the cut system S is minimal if no other cut in S has smaller order.
A minimal cut system is a cut system all of whose cuts are minimal and thus
have the same order. If S is a minimal cut system, then the order ord(S) of S
is the order of any of its cuts.

Remark 2.1. Let G be a transitive connected graph and let S be a nested cut
system of G. Then any component of G − S for an S-separator S, is the wing
of an S-separation [3, Corollary 3.10]. In particular, for any two (nested) S-
separations (A,B) and (A′, B′) there is a wing of each of them, W,W ′ say, such
that W ⊆W ′ or W ′ ⊆W .

An (S-)block is a maximal induced subgraph X such that

(i) for every (A,B) ∈ S there is V (X) ⊆ A or V (X) ⊆ B but not both, that
is X is not separated by any S-separation;

(ii) there is some (A,B) ∈ S with V (X) ⊆ A and A ∩B ⊆ V (X).

Let B be the set of S-blocks and let W be the set of S-separators. If S is
nested and minimal let T (S) be the graph with vertex set W ∪ B and edges
WB (W ∈ W and B ∈ B) if and only if W ⊆ B. Then T = T (S) is called the
structure tree of G and S.

It is the same structure tree that is used by Dunwoody and Krön [3] but we
use a different notation for the underlying cut system. They substantiate the
term ‘structure tree’ in one of their theorems.

Theorem 2.2 ([3, Theorem 6.5]). Let G be a connected graph, and let S be
a nested minimal cut system of G. Then the structure tree of G and S is a
tree.

We remark that this implies for every S-separation (X,Y ) that (if S is
minimal and nested) there is an edge WB in T such that W is the S-separator

5This means that there is no ‘S-important’ part of G that lies in W ∩W ′; Dunwoody and
Krön [3] call the vertex set of W ∩W ′ an isolated corner.
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X ∩ Y and V (B) ⊆ X. On the other hand, it follows from (2) of the definition
of a cut system that for any S-block B and any S-separator S ⊆ B, there is an
S-separation (X,Y ) with separator S such that V (B) ⊆ X.

In our proofs we use a certain kind of minimal cut system that was introduced
by Dunwoody and Krön [3, Example 2.5].

Example 2.3. Let G be a connected infinite graph with at least two ends.
Let S be the set of all cuts (A,B) such that both G[A] and G[B] contain a ray.
Then S is a cut system.

We need a fundamental property of cut systems that is shown in [3, Theo-
rem 8.6] by Dunwoody and Krön. Since we do not use the whole theorem, we
only state the part that is applied in this paper.

Theorem 2.4. Let G be a connected graph with at least two ends and let C be
the cut system of G from Example 2.3. There is a nested cut system S ⊆ C
consisting only of minimal C-separations that is invariant under Aut(G) such
that if two ends are separated by a minimal cut in C, then they are separated by
a cut in S.

For a connected graph G, a cut system is called basic if it is maximal with
the following properties: it is nested, minimal and Aut(G)-invariant, all of its
separators lie in the same Aut(G)-orbit, both wings of each cut contain a ray
and the order of any cut is minimal with regard to separating two ends of G.
We may state a useful corollary of Theorem 2.4 which we shall use in the later
proofs without further mentioning.

Corollary 2.5. Every connected graph with at least two ends has a basic cut
system.

Let us investigate some properties of basic cut systems.

Lemma 2.6. For a basic cut system S of a connected graph G with at least two
ends and any S-separator S, every component of G−S that contains a ray is a
wing of an S-separation.

Proof. For this proof we invoke [3, Lemma 3.9] which says that no separator of
a nested cut system separates any other separator of that cut system properly.
Let C be a component of G− S containing a ray. We show that the separation
(V (C) ∪ S,∼) lies in S. If there is an S-separation (X,Y ) whose separator S′

meets C, then S′ ⊆ V (C)∪S as S is nested and no two vertices of an S-separator
are separated properly by any S-separator. Thus either X or Y is contained in
V (C) ∪ S and (V (C) ∪ S,∼) and (X,Y ) are nested.

If there is an S-separation (X,Y ) whose separator S′ does not meet C,
then one wing of (X,Y ) is disjoint from C and from S and thus (X,Y ) and
(V (C) ∪ S,∼) are nested. Thus (V (C) ∪ S,∼) is nested with all S-separations.
Clearly, there is a ray in G−C as S is a separator of a basic cut system. Thus
S ∪ (V (C) ∪ S,∼) is nested, minimal and Aut(G)-invariant, all of its separators
lie in the same Aut(G)-orbit, both wings of each cut contain a ray and the order
of any cut is minimal with regard to separating two ends of G. As S is basic
and thus maximal with these properties, it contains the cut (V (C) ∪ S,∼).

Together with Lemma 3.9 in [3] this implies the following lemma.

45



Lemma 2.7. Let G be a connected graph with at least two ends and let S be a
basic cut system of G. For any S-separator S the components of G− S that do
not contain a ray are disjoint from any S-separator.

For a basic cut system this lemma yields the following remark.

Remark 2.8. Let S, S′ be two distinct S-separators of a basic cut system S of a
connected graph G. Then S′ meets precisely one component of G− S and this
component contains a ray.

Lemma 2.9. Let S be a basic cut system of a connected graph G with more than
one end. Then, every finite vertex set separating two S-separators separates two
ends.

In particular, less than ord(S) vertices do not separate any two S-separators.

Proof. Let S be a finite vertex set separating two distinct S-separators S1

and S2. As S is nested and according to Remark 2.8, there is a component
C1 of G− S1 containing an end ω1 but no vertex of S2 as well as a component
C2 of G − S2 containing an end ω2 and no vertex of S1. Let C = C1 ∩ C2. If
C contains a vertex v, then for every s ∈ S1 \ S2 there is a v-s path with its
inner vertices in C1 as S1 is minimal end separating. By the choice of C1, this
path contains no vertex from S2. This implies that C2 contains s contrary to
the choice of C2. Thus C is empty and ω1 6= ω2.

Suppose that S does not separate ω1 and ω2. Then ω1 and ω2 live in the
same component of G− S and thus there is a double ray R with one tail in ω1

and another one in ω2 avoiding S. Every such double ray meets S1 and S2 as
shown above. Hence R contains an S1-S2 path contradicting that S separates
these two S-separators. The last assertion holds, as S is basic, particularly as
no vertex set of cardinality less than ord(S) separates any two ends.

The following lemma is proved in [3, Lemma 4.1]. We state it here as it
nicely shortens some proofs.

Lemma 2.10. For any k, every pair of vertices in a connected graph is separated
properly by only finitely many distinct separators of order k.

2.1 Basic cut systems of special graphs

In Theorem 1.1 and 1.3 several classes of graphs arise. Let us give descriptions
of basic cut systems and their structure trees for each of them.

The building blocks of Xκ,λ(H) and Zκ,λ(H1, H2) are the isomorphic copies
of H, H1, and H2 that are used for the construction of these graphs. For a Y κ

the copies of Kκ and the bridges are its building blocks.
Let G be isomorphic to Xκ,λ(H) for κ, λ ≥ 2 and a finite graph H. In this

case there is a unique basic cut system of G. Its separators are the building
blocks of the Xκ,λ(H), and its separations are of the form (V (C)∪S,∼), where
S is any of the separators and C any component of G− S. Any block consists
of the union of a maximal set of pairwise completely adjacent building blocks.
The structure tree is a (semi-regular) tree of degrees κ and λ where the blocks
have degree κ and the separators have degree λ.

Let G be isomorphic to Yκ for κ ≥ 3, then G is vertex transitive and every
vertex is a separator of G that separates ends. The unique basic cut system
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has every single vertex as a separator and separations as in the example above.
The blocks are precisely the building blocks. The structure tree is the κ-regular
tree with every edge subdivided three times. The vertices of degree κ are the
blocks corresponding to the Kκ and the vertices with distance two to them are
the blocks corresponding to the K2. The separators are precisely the vertices of
the tree that are adjacent to a vertex of degree κ. The automorphism group has
two orbits on the blocks. One orbit contains the building blocks of cardinality 2
and the other orbit those of cardinality κ. This shows that even though the au-
tomorphism group acts transitively on the separators it may not act transitively
on the blocks.

Let G be isomorphic to Zκ,λ(H1, H2) for κ, λ ≥ 2 and non-empty finite
graphs H1, H2. In this case there may be two distinct basic cut systems, this
happens only if |H1| = |H2| and either H1 6∼= H2 or κ 6= λ. Then one may choose
i, j ∈ {1, 2} with i 6= j arbitrarily and there is a basic cut system S of G with the
building blocks corresponding to Hi as the S-separators and the building blocks
corresponding to Hj plus all its neighbours in G as the S-blocks. If H1

∼= H2

and κ = λ, then G ∼= X2,λ(H1) and the basic cut system is as discussed above.
If |Hi| < |Hj | for i, j ∈ {1, 2}, then the building blocks corresponding to Hi are
precisely the S-separators and any building block corresponding to Hj plus all
its neighbours is an S-block. In both cases all cuts are of the form (V (C)∪S,∼)
where C is a component of the graph minus a separator S. The structure tree is a
semi-regular tree with degrees κ and λ, where ifH1 corresponds to the separators
they have degree κ and the blocks have degree λ and if H2 corresponds to the
separators the degrees swap.

3 Distance-transitive graphs

In this section we classify the connected distance-transitive graphs with more
than one end (Theorem 1.1). Let us give a short outline of the proof, in par-
ticular of the implication that every connected 2-distance-transitive graph with
more than one end is an Xκ,λ for some cardinals κ and λ. Considering a basic
cut system of such graphs, we show that its blocks are complete graphs and that
any two of its separators are disjoint. We finish the proof by showing that all
separators of the given cut system have cardinality 1 and have to lie in the same
number of blocks and that each block consists of the same number of separators.

Proof of Theorem 1.1. Since the graphs Xκ,λ are indeed distance-transitive and
distance-transitive graphs are 2-distance-transitve by definition, it suffices to
prove that every connected 2-distance-transitive graph with at least two ends is
an Xκ,λ for cardinals κ, λ ≥ 2.

Let G be a connected 2-distance-transitive graph with more than one end.
Let S be a basic cut system of G and let T be the structure tree of G and S.
In particular, for every separation (A,B) ∈ S and every automorphism α of G,
the cuts (A,B), (Aα, Bα) are nested and (Aα, Bα) lies also in S. Furthermore,
both wings of any cut in S contain a ray. As every 2-distance-transitive graph
is vertex transitive by definition and thus every vertex lies in an S-separator,
which implies that every vertex lies in an S-block.

Let us show first that all S-blocks are complete graphs. Suppose not and
let X be such an S-block that is not complete. Let x, y be two non-adjacent
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vertices in X and let P be a shortest x-y path in G. To get to a contradiction
let us find a block containing three consecutive vertices of P . If P is contained
in X, let Y = X and a, b ∈ V (X ∩ P ) with d(a, b) = 2. If P is not contained
in X, then there is an S-separator, separating X and a vertex on P properly.
Let S be such an S-separator with maximal distance from X in T . Then there
is a component C of G − S that avoids X and contains a vertex v from P for
which (V (C)∪S,∼) lies in S, according to Lemma 2.6. Let Y be the neighbour
of S in T contained in C + S, that is Y is the S-block in C + S containing S.
The two neighbours of v on P lie in C or S and all vertices of P ∩ C lie in Y
by the choice of S. Thus, three consecutive vertices on P , the vertex v and its
two neighours a and b, lie in Y , and as P is an induced path a and b are not
adjacent and d(a, b) = 2.

As S is a cut system, for every S-separation (A,B) every vertex s in A ∩B
has a neighbour c in A \ B and d in B \ A such that these neighbours are
separated properly by (A,B). As cd /∈ E(G), we have d(c, d) = 2. Since G is
2-distance-transitive, there is an automorphism α of G with cα = a and dα = b.
This contradicts the fact that Y is an S-block as it is separated properly by
(Aα, Bα) as cα and dα which are both contained in Y have to lie in distinct
wings of (Aα, Bα). Thus all S-blocks are complete.

Let us continue by showing that two distinct S-separators S, S′ are disjoint.
Let (A,B) be an S-separation and α ∈ Aut(G) such that S = A ∩ B and
Sα = S′. These choices are valid since S is basic. As (A,B) and (Aα, Bα) are
nested and G is transitive, we know by Remark 2.1 that there are wings, one of
each of these two separations, W,W ′ say, that are disjoint. Suppose S∩S′ is not
empty and let s ∈ S ∩ S′, s′ ∈ S′ \ S and w ∈ W , w′ ∈ W ′ both adjacent to s.
As all blocks are complete, s and s′ are adjacent. Furthermore, w and s′ are
not adjacent, since they are separated by S. Thus, there is an automorphism β
of G mapping (w,w′) to (w, s′), since ww′, ws′ /∈ E(G). This is a contradiction
according to Lemma 2.10 which says that there are only finitely many separators
of cardinality ord(S) separating w and w′ properly: The existence of β implies
that there is the same finite number of S-separators separating w from w′ and
w from s′ properly. This does not hold since all S-separators separating w
and s′ properly lie in the component of G− S′ that contains w and thus these
separators also separate w and w′ properly. On the other hand Sα separates w
and w′ properly while it does not separate w and s′ properly. Thus, any two
distinct S-separators are disjoint.

In the next step let us show that all S-separators have cardinality 1. Suppose
not, then there are at least two vertices in some S-separator S and, as all S-
blocks are complete, there is an edge e in G[S]. On the other hand, there is an
edge e′ that has precisely one of its end vertices in S. Since G is 2-distance-
transitive it is also 1-distance-transitive and thus there is an automorphism α
of G that maps e to e′. This is a contradiction, since S and Sα are neither
disjoint nor the same. Thus all S-separators have cardinality 1.

As G is 1-distance-transitive any two S-blocks have the same order and 0-
distance-transitivity implies that for every vertex the set of S-blocks it lies in
has the same cardinality λ. The order κ of an S-block is at least 2, since there
are edges in G and every S-separator lies in at least two different S-blocks. Thus
G is isomorphic to Xκ,λ for two cardinals κ, λ ≥ 2.
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Next, we briefly deduce Corollary 1.2 from Theorem 1.1.

Proof of Corollary 1.2. A 2-transitive graph is also 2-distance-transitive and, if
it has at least two ends, then it is an Xκ,λ for cardinals κ, λ ≥ 2. If κ ≥ 3,
then there is a path of length 2 in every block whose (adjacent) endvertices can
be mapped onto vertices with distance 2 in distinct blocks. Since no adjacent
vertices can be mapped onto vertices with distance 2 by any isomorphism, we
know that κ = 2. The graphs X2,λ with λ ≥ 2 are precisely the λ-regular
trees.

4 The local structure for some finite subgraphs

In some k-CS-transitive graphs the previously introduced finite homogeneous
graphs play a role as building blocks. Enomoto [4] gave a combinatorially char-
acterization of these homogeneous graphs. We apply a corollary of his result [4,
Theorem 1] in our proofs.

For a subgraph X of a graph G let Γ(X) =
⋂
x∈V (X)N(x), which is the

set of all vertices in G that are adjacent to all the vertices in X. A graph
G is combinatorially homogeneous if |Γ(X)| = |Γ(X ′)| for any two isomorphic
induced subgraphs X and X ′. Furthermore, a graph G is l-S-transitive if for
every two isomorphic induced subgraphs of order l there is an automorphism
of G mapping one onto the other.

Theorem 4.1. [4, Theorem 1] Let G be a finite graph. The following properties
of G are equivalent.

(1) G is homogeneous;

(2) G is combinatorially homogeneous;

(3) G is isomorphic to one of the following graphs:

(a) a disjoint union of isomorphic complete graphs;

(b) a complete t-partite graph Kt
r with r vertices in each partition class and

with 2 ≤ t, r;
(c) C5;

(d) L(K3,3) (the line graph of K3,3).

Whenever we need finite homogeneous graphs as building blocks for k-CS-
transitive graphs we use Corollary 4.2 to handle them.

Corollary 4.2. Let k ≥ 3, m ≤ k − 2, and n ≤ k
2 be positive integers. Let G

be a finite graph with maximum degree at most m that is neither complete nor
the complement of a complete graph. If G is l-S-transitive for all l ≤ k − 1,
if any induced subgraph of G on at least n vertices is connected, and if any
two non-adjacent vertices do not have k − 2 common neighbours, then G is
(combinatorially) homogeneous and isomorphic to one of the following graphs:

(1) t disjoint Kr with 2 ≤ t, 1 ≤ r − 1 ≤ m, and tr ≤ n− 1;

(2) Kt
r with 2 ≤ t, 2 ≤ r ≤ n− 1, and (t− 1)r ≤ min{m, k − 3};
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(3) C5 with 2 ≤ m and 4 ≤ n;

(4) L(K3,3) with 4 ≤ m and 6 ≤ n.

Proof. Let us prove first that G is combinatorially homogeneous. If X and X ′

are isomorphic induced subgraphs of G both of order at most k − 1, then l-
S-transitivity for l = |X| implies that there is an automorphism ϕ of G with
Xϕ = X ′. Thus, we have Γ(X)ϕ = Γ(X ′) and |Γ(X)| = |Γ(X ′)|. If X and X ′

are isomorphic induced subgraphs of order at least k, then both Γ(X) and Γ(X ′)
are empty because the maximum degree of G is at most k−2. This implies that
G is combinatorially homogeneous and that we can apply Theorem 4.1 which
provides that, ignoring the boundaries, there are no other cases as (1) to (4).
The specific boundaries for each case can be checked easily. For example, in
case (2) the ‘k − 3’ in the inequality (t− 1)r ≤ min{m, k − 3} ensures that Kt

r

does not contain two non-adjacent vertices with k − 2 common neighbours if
m = k − 2 = (t− 1)r.

Let Ek,m,n be the class of all those graphs that satisfy the assumptions of
Corollary 4.2 for the values k,m and n.

5 k-CS-transitivity for special graphs

This section is dedicated to showing that any graph on the list in Theorem 1.3
is indeed k-CS-transitive for the specific values of k.

Let G be a graph and k ≥ 3. A graph H is good for G if for any two induced
isomorphic copies H ′ and H ′′ of H in G there is an automorphism of G mapping
H ′ onto H ′′. Clearly, a graph is k-CS-transitive if and only if all of its connected
induced subgraphs of order k are good for it.

Lemma 5.1. Let k ≥ 3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. The complete graph on k vertices is good for G.

Proof. If G contains a complete graph on k vertices, then it is isomorphic to
Xκ,λ(K1), X2,λ(Kn), Xκ,2(Km), Yκ, Zκ,2(K1,Kn), or Z2,λ(K1,Kn) with the
corresponding values for m and n.

• In Xκ,λ(K1) and Yκ any complete graph on k vertices lies completely in
some Kκ.

• In X2,λ(Kn), as 2n < k + 2, any complete graph on k vertices consists of
precisely two building blocks or precisely two building blocks without one
vertex depending on the parity of k.

• In Xκ,2(Km) any complete graph on k vertices has no two vertices in
the same building block, and all its vertices in building blocks that are
pairwise completely adjacent.

• In Zκ,2(K1,Kn) and Z2,λ(K1,Kn), as n ≤ k − 1, any complete graph on
k vertices consists of precisely two adjacent building blocks.

In all these cases Kk is good for G by the construction of G.
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Lemma 5.2. Let k ≥ 3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. Every connected graph on k vertices with diameter 2 is good
for G.

Proof. Let X be a connected induced subgraph of G on k vertices with diame-
ter 2. If G ∼= Yκ then X is isomorphic to some Kk−1 with one edge attached.
For any two such graphs in G, there is an automorphism of G mapping one to
the other. Thus we may assume that G 6∼= Yκ.

If X is contained in a single building block, then—by cardinality and as it is
neither complete nor the complement of a complete graph—G ∼= Z2,2(K1, E).
Again by cardinality X lies in a building block corresponding to E ∼= Kt

r with
2 ≤ t and 2 ≤ r ≤ k

2 and (t− 1)r ≤ k − 3. As (t− 1)r ≤ k − 3 holds, there are
at least 3 vertices of X in any of its necessarily t partition classes. This implies
that for any (complete multipartite) induced subgraph Y of G isomorphic to X
there is one building block containing Y , since—because of its diameter—it is
contained in at most three building blocks and no building block corresponding
to K1 is contained in any complete multipartite induced subgraph of G that
consists of t classes, each of which has cardinality at least 3. By the construction
of G there is an automorphism α of G mapping the building block containing
X to the building block containing Y and, as E is homogeneous, with Xα = Y .

Therefore we may assume that X meets at least two building blocks. If X
meets precisely two building blocks, then by cardinality G ∼= X2,2(E) for some

graph E ∈ Ek,m,n with m ≤ k− 2, n < k−|E|
2 + 2 and 2|E| − 2 < k, or k is even

and G ∼= Z2,2(K1, E) for some graph E ∈ Ek,m,n with m ≤ k−2 and n ≤ k
2 + 1.

In the first case, since 2|E| − 2 < k, either X covers both building blocks
it meets (if k is even) or it misses precisely one vertex in one of these building
blocks (if k is odd). As E is homogeneous X is good for G.

In the second case there is one vertex v with k − 1 neighbours that is the
building block corresponding to K1. As n ≤ k

2 + 1 we know that X − v is
connected. On the other hand Y contains a vertex with degree k − 1 and thus
is not contained in a single building block. Let v′ ∈ V (Y ) be a vertex in a
building block of G corresponding to K1. As X and Y are isomorphic and any
two vertices of degree k − 1 in Y lie in the same Aut(Y )-orbit it holds that
Y − v′ is connected, and thus Y − v′ lies in a single building block of G. As
above there is an automorphism α of G mapping the building blocks containing
X to the building blocks containing Y with (X − v)α = (Y − v′).

Thus we may assume that X meets at least three building blocks. Let B ⊆ G
be a building block that is adjacent to all vertices of X \ B, which exists by
the small diameter of X. If a separator in X does not contain every vertex
of X ∩B, then it must contain at least all the vertices in X \B as every vertex
of X in B is adjacent to every vertex of X not in B. Furthermore, the existence
of a separator that separates X ∩B properly implies that B is not complete. If
the number |X ∩B| is smaller than |X \B|, then X ∩B is the unique smallest
separator and for every isomorphic induced copy Y of X in G precisely the
vertices of X ∩B are mapped to the smallest separator S in Y . We may assume
that Y meets three building blocks, as it, and thus X is good for G otherwise.
Since S is a smallest separator, we have S = Y ∩ D for the unique building
block D of G that is adjacent to all vertices of Y \ D. Each of the smallest
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separators of these graphs either contains an edge, contains two non adjacent
vertices, or is a single vertex. In all these cases B and D correspond to the
same kind of building block by the construction of G. Since the building blocks
are homogeneous and B is mapped to D by some automorphism of G, every
isomorphism from X to Y extends to an automorphism of G. Thus we may
assume that X ∩B is not the unique smallest separator of X and also it is not
complete.

Let us finish the remainder of the proof on a case by case analysis. The
previous arguments cover (1), (2), (5), and (7) of Theorem 1.3. In (3) as m <
k+2
3 and k ≥ 3 it holds that m < k

2 and thus if there is a building block B, that
separates X, then it is unique and X∩B is the smallest separator in X. If there
is no such separating building block, then all building blocks that meet X are
pairwise adjacent and X is a complete multipartite graph with at least three
partition classes. As vertices of X lie in the same building block if and only if
they are not adjacent, X is good for G.

In (4) there is a unique building block B ∼= E adjacent to all vertices in X\B
and B separates X. If X∩B is not the smallest separator in X, then k

2 ≤ |X∩B|
and as 2|E|−2 < k it holds that |B| < k

2 +1 and thus X∩B = B. The building

block B ∼= E is connected, since n < k−|E|
2 + 2. All connected graphs in Ek,m,n

are 2-connected and thus any separator of X not containing X ∩ B contains
X \ B and at least two vertices from B and hence has at least k

2 + 1 vertices.
Again X ∩B is the unique smallest separator in X, which completes this case.

For the case (6) that G ∼= Z2,2(Km,Kn), if n 6= 1, then m < k
2 and thus

X∩B is the smallest separator in X, as it is either complete or lies in a building
block corresponding to Km of order less than k

2 . If n = 1, then B is either
complete and the smallest separator or B is not complete and the two building
blocks adjacent to B together with B cover X. Thus |B|+ 2 ≥ k ≥ 2m and this
implies that m = 2 and k = 4. Since B is not complete it holds that B ∼= K2

and X ∼= C4. Then it is easy to see that X can be mapped to every other copy
of C4 in G ∼= Z2,2(K2,K1) by some automorphism of G.

In (8) G ∼= Z2,2(K1, E) and we may assume that X meets two building
blocks corresponding to K1 and one other building block B ∼= E, as otherwise
the separating building block is complete, consists of only one vertex and is the
unique smallest separator of X. Thus every induced subgraph Y of G isomorphic
to X is good for G or meets precisely three building blocks, and—by the same
arguments as above—two of these building blocks that Y meets correspond to
the K1. Any pair of non-adjacent vertices in X with k− 2 common neighbours
in X, can be mapped to any other such pair by an automorphism of X. By the
construction of G there is an automorphism α of G mapping the two building
blocks corresponding to K1 in X onto those in Y . As E is homogeneous and
X ∩B and Y ∩Bα are isomorphic, there is an automorphism of G mapping X
onto Y .

Thus X is good for G in all cases.

Lemma 5.3. Let k ≥ 3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. Every connected graph on k vertices with diameter at least 3 is
good for G.

Proof. Let X and Y be isomorphic connected induced subgraphs of G on k
vertices with diameter at least 3 and let α be an isomorphism from X to Y . If
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X is a path, then there is an automorphism of G mapping X to Y according to
the construction of G. Thus we may assume that X is not a path.

If G ∼= Y κ, then there is a maximal clique K ⊆ X with at least 3 vertices.
By the construction of Y κ there is an automorphism α′ of G that maps the
building block containing K to the building block of G containing Kα and that
is an extension of α.

If G is not isomorphic to a Yκ, let P be a longest induced path in X whose
diameter in X is at least 3. We show that every vertex v on P that lies in
a building block corresponding to a finite graph B is mapped onto a vertex
vα ∈ V (Y ) that also lies in a building block corresponding to B. This is easy in
all the cases that have only one kind of building block. In particular, we have
to proof this property in the cases (6), (7), and (8) of Theorem 1.3.

The path P meets at least four building blocks of G, since there is no building
block B in any of the possible graphs with an induced path of length 3, except
for the C5, in which case k > 5 and X meets a building block adjacent to B and
the diameter of X ∩B in X is 2. As X is connected and not a path, there is a
vertex v in X −P that is adjacent to P . The cardinality of N(v)∩V (P ) is 1, 2,
or 3, as P is induced and thus meets every building block in at most one vertex.
In particular, these neighbours of v have distance at most 2 on P . Let us show
that these cases determine in which kinds of building blocks the neighbours of v
on P lie.

If v has only one neighbour p on P , then p is not a leaf of P by the max-
imiality of P . Furthermore, the vertices v and p do not lie in the same build-
ing block, as v would be adjacent to the same vertices on P as p otherwise.
If G ∼= Zκ,λ(K1,Kn), then p lies in a building block corresponding to K1 if
and only if κ > 2, and in one corresponding to Kn if and only if λ > 2. If
G 6∼= Zκ,λ(K1,Kn), then G belongs to one of the cases (6) or (8) and the vertex
v lies in a building block that contains a leaf of P and thus two non-adjacent
vertices. Hence p lies in a complete building block.

If v has two neighbours p1, p2 on P , and dP (p1, p2) = 2 then the vertex on P
adjacent to p1 and p2 lies in the same building block as v. This building block
corresponds to the complement of a complete graph or a graph from Ek,m,n as
it contains two non-adjacent vertices. If dP (p1, p2) = 1 then one of p1 or p2 is
a leaf of P and v lies together with this leaf in a common building block that
corresponds to Kn or a graph from Ek,m,n.

If v has three neighbours p1, p2, p3 on P , then they induce a path of length
2 in P and v lies in the same building block as the middle vertex of that path of
length 2 which is a building block corresponding to Kn or a graph from Ek,m,n.

In all these cases, it is determined in which kind of building blocks of G the
neighbours of v lie. Thus there is (at least) one vertex w on P such that w
and wα lie in building blocks that are in the same Aut(G)-orbit of G. As in
(6), (7), and (8) every second vertex on P lies in building blocks of the same
Aut(G)-orbit, it holds that for every w′ on P the vertices w′ and w′α lie in the
same kind of building block of G.

Using this path P , let us recursively construct an automorphism of G that
mapsX to Y . The arguments above show as all building blocks are homogeneous
that there exists an automorphism α0 of G with α0|P = α|P and that every such
automorphism satisfies that p and pα0 lie in building blocks that correspond to
the same graph for every vertex p ∈ V (P ).
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To define the automorphism αl of G for l ≥ 1 let αi be defined for i < l.
First, let W be the set of vertices in G with distance at most l − 1 to the
building blocks that contain P . The graphs X and Y induce graphs X1, . . . , Xn

and Y1, . . . , Yn with Xα
j = Yj for all 1 ≤ j ≤ n in the components of G−W and

G−Wαl−1 , respectively. Let αl be an automorphism of G with wαl := wαl−1 for
w ∈ W , that maps the component of G −W containing Xj to the component
of G −Wαl−1 containing Yj for all j ≤ n so that the vertices of X adjacent
to W are mapped precisely to those vertices of Y adjacent to Wαl−1 . Since the
diameter of X is less than k, the automorphism αk of G maps X onto Y .

Combining these lemmas we obtain the following corollary.

Corollary 5.4. Let k ≥ 3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. Every connected graph on k vertices is good for G.

In particular, G is k-CS-transitive.

6 The global structure of k-CS-transitive graphs

This section contains the substantial part of the proof of Theorem 1.3. We
show that for k ≥ 3 every connected k-CS-transitive graph with at least two
ends is isomorphic to one of the graphs described in Theorem 1.3. At first, we
provide some general properties for basic cut systems of such graphs. Later on
we distinguish two fundamentally different cases: in Subsection 6.1 we look at
those graphs that are covered by the separators of a basic cut system and in
Subsection 6.2 at those that are not.

Lemma 6.1. Let k ≥ 3. If G is a connected k-CS-transitive graph with at least
two ends, then for G and any of its basic cut systems their structure tree has no
leaves.

Proof. Let S be a basic cut system of G and let T be the structure tree of G
and S. Suppose that T has a leaf X. By the construction of a structure tree,
X is an S-block. Let (A,B) ∈ S be a cut with V (X) ⊆ A and A ∩B ⊆ V (X).
By the construction of T , we know that X is adjacent to all S-separators that
are contained in X. This implies that A ∩ B is the only S-separator in X and
V (X) = A. In particular, no vertex of A \B = V (X −B) lies in an S-separator
as S is nested. Since there is a ray in G[A], the block X is infinite. There is no
vertex in X that has distance k+ 1 to B, as otherwise an induced path in G[A]
starting at v ∈ A ∩B could be mapped into X −B by an automorphism of G.
The image of A∩B under this automorphism is not an S-separator as it contains
a vertex from X − B. This contradicts the Aut(G)-invariance of the basic cut
system S. Thus there are vertices of infinite degree in X. Let x ∈ V (X) be a
vertex with infinite degree and minimal distance to B with this property. Let
N be an infinite set of neighbours of x with d(v,B) > d(x,B) for all v ∈ N . By
the infinite version of Ramsey’s Theorem (see for example [2, Theorem 9.1.2])
there is either a Kℵ0 or an infinite independent set in G[N ]. Suppose there
is an independent set of cardinality k − 1 in N . As d(v,B) > d(x,B) for all
v ∈ N , there is a neighbour u of x with d(u,B) < d(x,B) if d(x,B) ≥ 1 or with
u ∈ B \ A if x ∈ A ∩ B such that u is not adjacent to any vertex in N . Any
k − 2 independent vertices in N together with x and u induce a subgraph that
could be mapped onto a subgraph induced by x and k− 1 independent vertices
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in N . The former subgraph is either properly separated by an S-separator while
the latter is not, or it is closer to any S-separator than the latter one. Thus
there is no independent set of cardinality k − 1 in N and there is a Kℵ0 in
G[N ]. Again, this yields to a contradiction. Indeed, let H be a complete graph
on k vertices in G[N ], and let v ∈ V (H). Then there is no automorphism of G
that maps H − v + x to H as H − v + x contains only vertices of distance at
least d(x,B)+1 to the unique S-separator in X, which is a contradiction to the
k-CS-transitivity of G.

Lemma 6.2. Let k ≥ 3, let G be a connected k-CS-transitive graph with at least
two ends, and let S be a basic cut system of G. Then any ray in the structure
tree of G and S contains infinitely many pairwise disjoint S-separators.

In particular, G does not have finite diameter.

Proof. Let T be the structure tree of G and S and let R be a ray in T . The only
neighbours of S-blocks in T are S-separators. Thus, infinitely many different
(finite) S-separators lie on R.

Suppose that there is a vertex x in G that lies in infinitely many of the
separators on R. Let S0 be the first separator on R that contains x, and let
X be an S-block adjacent to S0 in T that does not lie on the tail S0R of R
with initial vertex S0 which exists as T has no leaf and thus S0 has at least
two neighbours in T . Let (A,B) = (V (C) ∪ S0,∼) be the S-separation with
separator S0 for the component C of G−S0 that meets X. Then all separators
on R that contain x lie in B. As (A,B) is a cut, there exists a neighbour
y ∈ A \B of x.

Any S-separator separates two S-separators in G properly if and only if it
separates them properly in the structure tree. Hence, if a vertex of G lies in
two separators, then it also lies in any separator that appears in the structure
tree on the unique path between those two. Every S-separator S ⊆ B on R
contains x, as it lies between S0 and one of the infinitely many other separators
containing x on R. There is a neighbour yS of x such that S separates y and yS
properly. By Lemma 2.10 we know that the number of S-separators separating
v and w properly is finite for all vertices v, w ∈ V (G). This implies that there is
an infinite set F of S-separators on R such that for any two distinct separators
S, S′ ∈ F the vertices yS , yS′ are distinct. Thus, U := {yS ∈ V (G) | S ∈ F} is
infinite. By the infinite version of Ramsey’s Theorem there is either a Kℵ0 or
an infinite independent set in G[U ]. In the first case, let K ⊆ G[U ] be such an
infinite complete graph. The (finite) S-separators do not separate K properly
and hence there are infinitely many S-separators separating y from K properly.
As K is infinite and all separators in F have the same cardinality, there exists
a vertex v ∈ V (G) that lies outside of infinitely many separators in F . Each of
the infinitely many separators S in F for which yS lies in V (K) and that does
not contain v separate y and v properly, as every such separator separates y and
yS properly and vyS ∈ E(G). This is a contradiction as y and v are separated
properly by infinitely many separators of cardinality ord(S).

Thus there is an infinite independent set U ′ ⊆ U completely adjacent to x.
Remember that y is not adjacent to any vertex in U ′. We choose a subset
V1 of U ′ of cardinality k − 1. There is a maximal number n of separators of
cardinality ord(S) that separate any two vertices of V1 properly as for each of the
finitely many pairs of vertices in V1 there is only a finite number of separators
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of cardinality ord(S) that separates it properly. Let V2 be another subset of U ′

of cardinality k − 2 that contains a vertex that is separated by more than n
separators of cardinality ord(S) from y properly: pick a separator S in F such
that on the S0-S path on R there are more than n other S-separators and
let yS ∈ V2. By k-CS-transitivity there is an automorphism of G that maps
G[V2 ∪ {x, y}] onto G[V1 ∪ {x}] as both these induced subgraphs are stars with
k−1 leaves. This automorphism has to fix x and map V2∪{y} onto V1. As y and
yS are separated properly by more than n separators of cardinality ord(S), their
respective images in V1 are separated properly by just as many such separators.
This contradicts the choice of n.

Thus no vertex ofG lies in infinitely many S-separators onR and we conclude
that there are infinitely many pairwise disjoint S-separators on R. Two S-
separators S1, S2 that have n disjoint S-separators on their S1-S2 path in T
have distance at least n in G. As by Lemma 6.1 every structure tree of a basic
cut system of G contains a ray, this implies the second assertion.

The next lemma provides a fundamental tool in the proof of Theorem 1.3.

Lemma 6.3. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, let S be a basic cut system of G, and let S be an S-separator.
For every ray R in the structure tree T of G and S that starts at S, there are
ord(S) disjoint induced rays R1, . . . , Rord(S) in G starting at S such that for
every i ≤ ord(S) the ray Ri intersects with all S-separators on R.

Proof. On R there are infinitely many disjoint S-separators S1, S2, . . . all disjoint
from S0 := S as shown in Lemma 6.2. As by Lemma 2.9 no two of them are
separated by less than ord(S) many vertices, Menger’s Theorem implies that
there are ord(S) many pairwise disjoint induced S0-Si paths for all 0 < i. Let
Pi be the subgraph of G consisting of these paths. Since Pi−1 covers Si−1 on R,
we may choose Pi such that Pi−1 ⊆ Pi. The union

⋃
i∈N Pi is a subgraph of

ord(S) many pairwise disjoint induced rays each starting at S0. Clearly, each
of those rays intersects with every S-separator on R.

For a connected k-CS-transitive graph G with k ≥ 3 and at least two ends
and a basic cut system S of G, there are two profoundly different cases. In the
first case the graph is covered with S-separators while in the second case there
are vertices in G that do not belong to any S-separator.

For an S-block X we define the open (S-)block

X̊ := X −
⋃
{A ∩B | (A,B) ∈ S} .

Further down the line it turns out that the two cases above correspond to
whether there exist non-empty open blocks or not. In Lemma 6.9 we get rid
of any vertices that lie neither in an S-separator nor in an open S-block. In
the proof of Theorem 1.1 we got this property for free as the graphs considered
there are vertex transitive; here it turns out to require some effort.

Lemma 6.4. Let k ≥ 3, let G be a connected k-CS-transitive graph with at least
two ends, and let S be a basic cut system of G. If the S-separators do not cover
G, then k is even.
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Proof. Let k be odd. We show that every vertex lies in some S-separator. By
Lemma 6.3 there is an induced ray R meeting infinitely many vertices that lie
in S-separators. As k is odd, there is an induced path P ⊆ R of length k − 1
whose middle vertex v belongs to some S-separator. We may map the path
anywhere into the ray and thus know that there are k succeeding vertices on
the ray that belong to S-separators. Thus every induced path of length k − 1
in G has all its vertices in S-separators. As the diameter of G is not finite
according to Lemma 6.2, every vertex lies on an induced path of length k − 1.
Therefore every vertex lies in some S-separator.

Lemma 6.5. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. If G has a vertex not in
any S-separator, then every edge on every induced path of length k− 1 in G has
precisely one of its incident vertices in an S-separator.

In particular, if there is a vertex not in any S-separator, then every induced
path P ⊆ G of length at least k − 1 alternates between vertices in S-separators
and vertices outside every S-separator.

Proof. As there is a vertex outside every S-separator, k is even by Lemma 6.4.
Since the structure tree T of G and S has no leaves by Lemma 6.1, every S-
separator S lies on a double ray in T . By Lemma 6.3 there are two induced rays
R1, R2 starting at s ∈ S with all their other vertices in two distinct components
of G− S. Let R = R1 ∪R2, that means R is an induced double ray in G. As G
is k-CS-transitive, there are automorphisms of G mapping a path P ⊆ R of
length k − 1 with its middle edge incident with s to any other path of length
k − 1 on R. Thus every edge on R is incident with a vertex in an S-separator.

If some edge on R has both its incident vertices in S-separators, this implies
by the same argument that every edge on R has both its incident vertices in
S-separators. As there is a vertex v ∈ V (G) not contained in any S-separator
and as the diameter of G is not bounded, there is an induced path P of length
k − 1 starting at v. Thus, as by k-CS-transitivity there is an automorphism
of G mapping P to R, there is no edge on R with both its incident vertices in
S-separators. Hence every edge on R has precisely one of its incident vertices in
an S-separator. By k-CS-transitivity, every edge on an induced path of length
k− 1 in G has precisely one of its incident vertices in an S-separator. Thus any
induced path of length at least k − 1 is such an alternating path.

As a corollary of the proof of the previous lemma, we obtain the following
result.

Corollary 6.6. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. Then, any two vertices
on an induced path P of length k − 1 that have a vertex from an S-separator
between them on P are separated by some S-separator in G.

In particular, if two vertices on P have distance at least 3 on P , then they
are separated by an S-separator in G.

Proof. We recall the definitions from the proof of Lemma 6.5: We have a double
ray R in G such that for every vertex s ∈ V (R) that lies in an S-separator, there
is one S-separator S with s ∈ S such that the two components of R − s lie in
distinct components of G − S. Remark that we obtain such a double ray also
in the situation that G is covered by S-separators.
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The two components of R − s do not meet any common S-block for any
vertex s on R that lies in an S-separator. Thus for any path P of length k − 1
and any vertex s′ in the interior of P , that belongs to some S-separator, the two
components of P − s′ are separated properly by an S-separator. This implies
the first assertion, the second one follows immediately since any two vertices on
an induced path of length k−1 with distance at least 3 have—by Lemma 6.5 or
as every vertex lies in an S-separator—a vertex from some S-separator between
them on P .

Corollary 6.7. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that some vertex of G
is not contained in any S-separator. If two vertices belong to different sets of
S-separators then they are not adjacent.

Proof. Suppose that there is an S-separator S, and vertices s ∈ S and s′ /∈ S
but in a different S-separator such that s and s′ are adjacent. Then there is
an induced path of length k − 1 that contains this edge and lies otherwise in a
component of G−S that does not contain s′. But no such path exists according
to Lemma 6.5.

Lemma 6.8. Let k ≥ 3, let G be a connected k-CS-transitive graph with at least
two ends, let S be a basic cut system of G, and let S be an S-separator. Every
component C of G − S contains an end and the separation (V (C) ∪ S,∼) lies
in S.

In particular, S separates any two vertices in distinct components of G− S
properly.

Proof. The claim is true if the S-separators cover G, because then, for every
component C of G−S, there is an S-separator S′ that meets C. Let (A′, B′) ∈ S
with separator S′. According to Remark 2.8 the separator S′ lies in C ∪ S and
hence one wing of (A′, B′) lies in C. Thus, C contains an end and according to
Lemma 2.6 is the wing of an S-separation. Since S is a cut system and C is a
component of G− S, we know that (V (C) ∪ S,∼) is an S-separation.

Hence, we may assume that there is a vertex outside every S-separator. By
Lemma 6.4 this implies that k is even. Let (A,B) be an S-separation with
A ∩ B = S. As S is a cut system, there is an S-separation (A′, B′) such that
A′ ⊆ B and S ⊆ A′ ∩B′. Since S is minimal, it holds that S = A′ ∩B′.

First, let us assume that G− S consists of precisely two components. Both
components contain an end as every S-separator separates two ends. Thus, we
have (A,B) = (B′, A′) and the assertion holds.

Therefore, we may assume that G − S contains at least three components.
Then there exists a component C of G− S that lies neither in A nor in A′. Let
c ∈ V (C) be a vertex that is adjacent to s ∈ S, and let d ∈ A′ \B′ be adjacent
to s. By Lemma 6.3 there is an induced path P in G of length k− 1 that starts
at a vertex x ∈ A \ B and ends in c while meeting S only in s. This implies
that P has only one vertex in C which is c. By the choice of P and d, the graph
Psd is also an induced path of length k−1. As G is k-CS-transitive, there is an
automorphism α ∈ Aut(G) mapping P to Psd. By Lemma 6.5 both these paths
alternate between vertices in S-separators and other vertices. Thus, precisely
one endvertex of P and one of Psd is contained in an S-separator as k is even and
we have cα = d. The component Cα of G−Sα contains d = cα. Both S and Sα
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separate x from d. Suppose S 6= Sα, then either S separates Sα from x properly
or Sα separates S from x properly according to Remark 2.8. If S separates Sα

from x let S1 = S, S2 = Sα, and β = α. Otherwise, if Sα separates S from x
let S1 = Sα, S2 = S, and β = α−1. Let S0 be the S-separator that contains x
and—among all those—is closest to S1 in the structure tree T of G and S.

The separator Sβ0 contains x as xα = x, and thus lies in A. By the choice
of S0 and as S1 separates S0 and S2, it holds that

dT (S0, S1) = dT (Sβ0 , S2) > dT (Sβ0 , S1),

since the path between S2 and Sβ0 in T has to contain S1. Thus, Sβ0 is closer
to S1 in T than S0 contradicting the choice of S0. This implies that S = Sα and
(V (C) ∪ S,∼) = (A′, B′)α

−1

. As every component of G− S is a wing of an end
separating cut the component contains an end and thus any two components of
G− S are separated properly by S.

Lemma 6.9. Let k ≥ 3, let G be a k-CS-transitive graph with at least two ends,
and let S be a basic cut system of G. Then every vertex of G lies in an S-block.

Proof. Let v be a vertex of G. If v belongs to some S-separator, it lies in an
S-block. So we may assume that v lies outside every S-separator. Let S and S′

be two distinct S-separators such that S′ separates S and v. By Lemma 6.8 and
as S is nested, S′ separates S and v properly. There are only finitely many S-
separators separating an S-separator and v properly according to Lemma 2.10
and thus there are only finitely many S-separators separating S and v, as v
lies outside every S-separator. As S is basic and by Remark 2.8 there is one
S-separator S0 that separates S and v such that no other S-separator separates
S0 and v. We show that v and S0 lie in a common S-block. Let C0 be the
component of G−S0 that contains v. Then (V (C0)∪S0,∼) lies in S according
to Lemma 6.8. There is an S-block X adjacent to S0 in the structure tree of G
and S whose vertices lie in V (C0) ∪ S0. This block contains S0 and, as there is
no S-separator separating v from S0 ⊆ X, there is no S-separator separating v
from X. Thus v lies in X.

Corollary 6.10. Let k ≥ 3, let G be a k-CS-transitive graph with at least two
ends, and let S be a basic cut system of G. There is a non-empty open S-block
if and only if there is a vertex outside every S-separator.

This corollary shows that the distinction between ‘S-separators cover G’
and ‘there is a vertex outside every S-separator’ is in fact a distinction between
whether all open S-blocks are empty or not. For this reason we characterize the
cases by stating if there is a non-empty open S-block or not from now on. In
addition we use the fact that for all cut systems we investigate every vertex lies
in a block without refering to Lemma 6.9.

In the construction of Xκ,λ(H) and Zκ,λ(H1, H2) the appropriate copies of H
and H1, H2, respectively, are completely adjacent. The next lemma provides the
corresponding property for k-CS-transitive graphs.

Lemma 6.11. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. Let X be an S-block, let S
be an S-separator with S ⊆ X, and let s ∈ S. If X̊ = ∅, let x ∈ V (X − S) and
if X̊ 6= ∅, let x ∈ V (X̊). Then s and x are adjacent.
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Proof. Let T be the structure tree of G and S. Suppose s and x are not adjacent
in G. Let P be a shortest s-x path whose inner vertices lie in the component
of G − S that contains x. As P is a shortest path it is induced. Let C be a
component of G − S not containing x. As there is an induced ray R starting
at s with all its other vertices in C, there is an induced path P ′ of length at
least k − 1 starting at x and containing P .

Suppose that the distance of s and x on P is 2. The common neighbour y
of s and x on P does not lie in any S-separator, because of Corollary 6.6 and as
s and x do lie in a common S-block. As every vertex lies in an S-block according
to Lemma 6.9, this implies that y lies in an open S-block Y̊ . By Lemma 6.4 k
is even and hence at least 4. As y ∈ V (Y̊ ) its neighbours s and x have to lie
in Y . Suppose Y 6= X, then let S′ ⊆ V (Y ) be an S-separator separating X
and Y and thus containing s and x. As every component of G− S′ contains a
ray and does not have finite diameter (according to Lemma 6.1, 6.3, and 6.8)
there is an induced ray starting at y and avoiding S′. Furthermore we require
R to have precisely one other vertex in Y not adjacent to s, which is possible as
Lemma 6.5 implies that the neighbour x′ of y on R lies in an S-separator and
Corollary 6.7 implies that there is no edge between s and x′ while all the other
vertices on R are separated properly from S′ by an S-separator that contains x′.
Let P1 be the subpath of P ′ that contains x and has length k− 1. Let v be the
other endvertex of P1 and let P2 = x′yP1v. Then there is an automorphism α
of G that maps P1 onto P2. By Lemma 6.5 the automorphism α has to map x
to x′ and fix the remainder of P1. By the same lemma, y does not lie in the same
S-block as v. So there is an S-separator separating y and v properly. Every such
separator lies together with X in the same component of T −Y . As S is minimal
and nested, every S-separator that separates x and v properly also separates
any other vertex in S′ and v. Thus, according to Remark 2.8, every S-separator
that separates x and v properly separates v and S′ properly. Since S′ separates
v and x′ properly, Remark 2.8 also implies that every S-separator that separates
v and S′ properly also separates v and x′ properly. By k-CS-transitivity and
according to Lemma 2.10, the same finite number of S-separators separates v
from x as from x′ properly. This yields a contradiction as S′ separates x′ and v
properly but not x and v. This contradiction shows that X = Y and that X̊
is not empty. Thus, we have x ∈ X̊ and with Lemma 6.5 this implies that s
and x have odd distance as they lie on the alternating path P ′, in particular
dP (s, x) 6= 2.

Therefore, the distance between x and s on P is at least 3. If the length of P
is at most k − 1, then we may choose P ′ as above of length precisely k − 1. By
Corollary 6.6 the vertices x and s are properly separated by some S-separator.

Thus, we may assume that P has length at least k. As P contains a subpath
of length k− 1 containing x, there has to be an S-separator separating a vertex
on P from x properly. Let S′ be an S-separator furthest away in T from X
such that there is a vertex on P separated properly by S′ from X. Let C be
a component of G − S′ that meets P and avoids X. Then (V (C) ∪ S′,∼) ∈ S
and there is an S-block Y ⊆ G[C + S′] adjacent to S′ in T . By the choice
of S′ all vertices of P ∩ C lie in Y and S′ separates X and Y . In particular
P has a vertex y in Y − S′ such that dP (y, s) is smallest possible. Let y1 be
the neighbour of y on yPx. As no induced subpath of length 3 on P lies in one
S-block by Corollary 6.6, the neighbour of y1 on y1Px must not lie in Y and
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thus not in V (C) ∪ S′. Hence we have y1 ∈ S′.
As above there is an induced ray starting at y and having no other vertex

adjacent to S′ than y. Let y2 be the neighbour of y on that ray. Again, we
may elongate—if necessary—y1Ps in C to obtain an induced path P1 of length
k − 1 that ends in y1 and either contains y1Ps or lies on it. Let v be the
other endvertex of P1 and let P2 = y2yP1 be the same path as P1 with y1
substituted by y2. As both subgraphs are induced paths of length k − 1, there
is an automorphism α of G mapping P1 onto P2. This automorphism has to
map the endvertices of P1 to the endvertices of P2. By a similar argument
as above, we obtain that the number of S-separators that separate v and y2
properly and the number of S-separators that separate v and y1 properly differ
which is a contradiction as Pα1 = P2. This contradiction shows that x and s are
adjacent.

Corollary 6.12. Let k ≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. Then any two distinct
S-separators are disjoint.

Proof. Suppose that there are two distinct S-separators S, S′ that are not dis-
joint. Every S-separator on the S-S′ path in T contains S ∩ S′. Thus we may
assume that dT (S, S′) = 2 and hence S and S′ lie in a common S-block X. Let
s ∈ S ∩ S′ and let x1 be a neighbour of s in a component of G− S avoiding S′.
Let x2 ∈ X̊ if X̊ is not empty, and if X̊ = ∅, then let x2 be a vertex in S \ S′.
By Lemma 6.11 the vertices x2 and s are adjacent in both cases. Let P be an
induced path of length k− 2 in G that starts at s and has its other vertices in a
component of G− S′ avoiding S which exists according to Lemma 6.1 and 6.3.
Since G is k-CS-transitive there is an automorphism of G mapping x1P to x2P ,
as both are induced paths in G of length k − 1. Similar to the proof of the
previous lemma and as the S-blocks cover G according to Lemma 6.9, the end-
vertices of x1P and those of x2P are separated by a different finite number of
S-separators. By contradiction, this shows that S-separators are either equal
or disjoint.

Let k ≥ 3, let G be a connected k-CS-transitive graph with at least two
ends, and let S be a basic cut system of G. A k-spoon is an induced subgraph
of G that consists of a triangle and a path of length k − 2, its handle, starting
at one of its triangle vertices with all in all precisely k vertices. A k-spoon H
pokes in an S-block X, an S-separator S, or two S-separators S, S′ if two of its
degree 2 vertices6 of the triangle are contained in X̊, S, or one in S and one
in S′, respectively. A k-fork is another induced subgraph of G on k vertices
that consists of its prongs, a pair of two non-adjacent vertices, and of its handle,
a path such that both prongs are adjacent only to the same endvertex of the
handle. A k-fork H pokes in an S-block X, an S-separator S, two S-blocks
X,Y , or two S-separators S, S′ if its prongs are contained in X̊, in S, meet X̊
and Y̊ , or meet S and S′, respectively.

6Remark that for k > 3 there are precisely two such vertices, but for k = 3 a k-spoon is
just the triangle.
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6.1 Empty open blocks

In this subsection we investigate k-CS-transitive graphs that have a basic cut
system all of whose open blocks are empty. Remember that by Lemma 6.4, this
is the only case if k is odd.

Lemma 6.13. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. If every open S-block is
empty, then all S-blocks lie in the same Aut(G)-orbit, or k is odd and there is
a cardinal κ ≥ 3 such that G ∼= Yκ.

Proof. Suppose that there are two S-blocks X and Y that lie in distinct Aut(G)-
orbits. As every S-block contains an S-separator and S is basic, there is an
automorphism ϕ of G with X ∩ Y ϕ = S for an S-separator S. Hence we may
assume that X ∩Y = S. If S contains two distinct vertices, then by Lemma 6.3
there is either a k-spoon with its triangle—the subgraph isomorphic to a K3—
in X and one k-spoon with its triangle in Y or there is a k-fork with both edges
incident with its prongs in X and one such k-fork for Y , such that in each case
the handle does not contain any vertex from S. As G is k-CS-transitive, there
is, in both cases, an automorphism α of G mapping one edge in X that does
not lie in any S-separator to one such edge in Y . Thus Xα ∩Y is not contained
in an S-separator and Xα = Y .

Hence two distinct S-blocks intersect in at most one vertex and ord(S) = 1.
By Lemma 6.11 and as every open S-block is empty, any two S-separators in a
common block are completely adjacent and thus every S-block is complete. For
any two S-blocks each of which has more than two vertices, there is a k-spoon
with its triangle in each of these S-blocks, respectively. Thus these blocks are
Aut(G)-isomorphic as G is k-CS-transitive.

Let P be an induced double ray in G whose edges alternate between two
orbits of S-blocks. Such a double ray exists, as one may start at any vertex
of G and add appropriate edges greedily, since every vertex lies in blocks of all
orbits of blocks. Clearly, every induced path of length k−1 shares this property
with the ray and thus every vertex lies in at most one block of each orbit. As
otherwise, if there is a vertex that lies in more than one block of the same orbit,
then one may construct an induced path of length k − 1 without this property.
With the same argument for any two kinds of orbits, there is an induced path
of length k − 1 with edges only in these orbits. Since G is k-CS-transitive, this
implies that there are precisely two distinct orbits of S-blocks: in one orbit each
S-block is isomorphic to a K2 and in the other one each S-block is isomorphic
to a Kκ for some cardinal κ ≥ 2. If κ = 2 then G is a double ray and this
contradicts that there are two distinct Aut(G)-orbits of S-blocks. Thus κ ≥ 3
and G ∼= Yκ.

Let us suppose that k is even. Then there is a path of length k − 1 with
both outermost edges in S-blocks isomorphic to a K2 and there is a path of
length k − 1 with both outermost edges in S-blocks isomorphic to a Kκ with
κ ≥ 3. As no automorphism of G maps one of these paths to the other, this is
a contradiction and hence k is odd.

Lemma 6.14. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that every open S-
block is empty. If any two S-blocks lie in the same Aut(G)-orbit, then G ∼=
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X2,2(H) for some finite graph H that is neither complete nor the complement of
a complete graph, or there are cardinals κ, λ ≥ 2 and integers 2 ≤ m < k+2

3 and

2 ≤ n < k
2 + 1 such that G ∼= X2,λ(Kn) or G ∼= Xκ,2(Km) or G ∼= Xκ,λ(K1).

Proof. Let H = G[S] for some S-separator S. According to Lemma 6.11 and
Corollary 6.12 it holds that G ∼= Xκ,λ(H) for some cardinals κ ≥ 2 and λ ≥
2. We may assume that G 6∼= X2,2(H) where H is neither complete nor the
complement of a complete graph. If there are edges in H and λ ≥ 3 then there
are two kinds of k-spoons: one with its triangle meeting three S-separators and
one meeting precisely two S-separators. If there are two non-adjacent vertices
in H and κ ≥ 3 then there are two kinds of k-forks: one pokes in a single
separator and one pokes in two different separators. As G is k-CS-transitive,
all k-spoons as well as all k-forks lie in one Aut(G)-orbit, respectively. Thus it
holds that either G ∼= Xκ,2(Km) with m ≥ 2, or G ∼= X2,λ(Kn) with n ≥ 2, or
G ∼= Xκ,λ(K1). It remains to show that m < k+2

3 and n < k
2 + 1.

Let G ∼= Xκ,2(Km) and suppose that m ≥ k+2
3 . Let S1, S2 be S-separators

in different S-blocks both (completely) adjacent to an S-separator S0. As 3m ≥
k+ 2 there are sets Ai ⊆ Si for i = 0, 1, 2 such that A1∪A0∪A2 has cardinality
k + 2, is connected in G—that is A0 6= ∅—and such that each of A1 and A2

contains at least two vertices. Let a, b ∈ A1 and c ∈ A2. By the construction
of G it holds that

G[(A1 \ {a, b}) ∪A0 ∪A2] ∼= G[(A1 \ {a}) ∪A0 ∪ (A2 \ {c})].

As there is no automorphism of G mapping the first to the second graph, this
is a contradiction and thus m < k+2

3 .

Let G ∼= X2,λ(Kn) and suppose n ≥ k
2 + 1. Let S0, S1 be two (completely)

adjacent S-separators. Let Ai ⊆ Si with |A0| = dk2 e+1 and |A1| = bk2 c−1, and

let Bi ⊆ Si with |B0| = dk2 e and |B1| = bk2 c which exist as n ≥ k
2 + 1 implies

that n ≥ dk2 e + 1 for any integer n. It holds that |A0 ∪ A1| = |B0 ∪ B1| = k,
but there is no automorphism of G that maps the complete graph on k vertices
G[A0 ∪ A1] to the complete graph on k vertices G[B0 ∪ B1]. By contradiction
we obtain that n < k

2 + 1.

Lemma 6.15. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that every open S-block
is empty and all S-blocks lie in one orbit of Aut(G). If G ∼= X2,2(E) for some
finite graph E that is neither complete nor the complement of a complete graph,

then 2|E| − 2 < k and E ∈ Ek,m,n for m ≤ k − 2 and n < k−|E|
2 + 2.

Proof. By Corollary 4.2 if it holds that (a) the maximum degree of E is at most
k− 2, (b) E is l-S-transitive for all l ≤ k− 1, (c) any induced subgraph of order

at least k−|E|
2 + 1 in E is connected, and (d) no two non-adjacent vertices of E

have k−2 common neighbours, then E ∈ Ek,m,n for m ≤ k−2 and n < k−|E|
2 +2.

Considering the distinct boundaries in (b) and for n, we note that a graph on

at least k−|E|
2 + 1 vertices has at least n vertices.

(a) Let S (G[S] ∼= E) be an S-separator. Suppose there is a vertex v of degree
at least k − 1 in G[S]. Let A ⊆ S consist of v and k − 1 of its neighbours.
Let w be some vertex from an S-separator that is adjacent to S. Then
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G[A] − v + w is isomorphic to G[A], but there is no automorphism of G
mapping one onto the other. Thus no vertex in S has degree at least k− 1.

(b) Let A,B ⊆ S induce isomorphic graphs with at most k − 1 vertices for
some S-separator S (G[S] ∼= E). Then there is a common neighbour v of
these vertices in an adjacent S-separator S0. Let P be an induced path of
length k− 1− |A| that starts at v and each of its other vertices is separated
properly from A ⊆ S by S0. By construction of X2,2(E), the path P meets
each S-separator in at most one vertex. As G is k-CS-transitive, there is an
automorphism α of G that maps G[P + A] to G[P + B]. If |A| 6= 1, then
α must map S onto S as it is the only S-separator meeting more than one
vertex of G[P + A] and of G[P + B]; clearly this implies Aα = B and A
and B lie in the same Aut(G[S])-orbit. If |A| = 1, let S′ be an S-separator
such that some induced path of length k − 1 starting at A ends in S′. Let
ϕ,ϕ′ be the isomorphisms from E to S, S′, respectively. Let A′ ⊆ S′ be
(Aϕ

−1

)ϕ
′
. Then we may assume that the path P ends in A′. Thus α maps

A to B or A′ to B and as A and A′ are Aut(G)-isomorphic so are A and B.
Again A and B lie in the same Aut(G[S])-orbit.

(c) Suppose there is an induced subgraph X ⊆ E of order at least k−|E|
2 + 1

that is not connected. Let S0, S1, S2 be three distinct S-separators such
that S0 is adjacent to the other two. Let Ai ⊆ Si for i ≥ 1 be of cardinality

at least k−|E|
2 + 1 such that G[A1] ∼= G[A2] are not connected. Let H be

a connected induced subgraph on k + 2 vertices in G[S0 ∪ A1 ∪ A2] such
that there is an isomorphism ϕ from H[A1] onto H[A2] and H[A1] is not

connected. Such a graph exists as |S0∪A1∪A2| ≥ |E|+2(k−|E|2 +1) = k+2.
Let a, b ∈ A1 be vertices that lie in distinct components of H[A1]. Then
there is no automorphism of G that maps one of its two isomorphic induced
and connected subgraphs H − {a, b} and H − {aϕ, b} onto the other. Thus

every induced subgraph of E of order at least k−|E|
2 + 1 is connected.

(d) Suppose that there are two non-adjacent vertices x, y in an S-separator
S′ (G[S′] ∼= E) with at least k−2 common neighbours in S′ and let N ⊆ S′
be k − 2 of these neighbours. Let S, S′′ be distinct S-separators adjacent
to S′ and let s ∈ S and s′′ ∈ S′′. Then G[N ∪ {x, y}] and G[N ∪ {s, s′′}]
are isomorphic induced connected subgraphs of G of order k but there is no
automorphism of G mapping one onto the other.

It remains to show that 2|E| − 2 < k. As the values of k,m, n imply this
inequality whenever E is not a Kt

r, we need to show that if G ∼= X2,2(Kt
r),

then 2|Kt
r| − 2 = 2tr − 2 < k. Let X be an S-block with x, x′, y ∈ V (X)

and xx′ ∈ E(G), such that x and x′ belong to the same S-separator and y
belongs to the other S-separator in X. In this setting G[x, x′, y] is a K3, and
thus the subgraphs X − {x, x′} and X − {x, y} are isomorphic. Suppose that
2tr = |X| ≥ k + 2, then there is an induced subgraph X ′ of X of size precisely
k+2 containing x, x′ and y such that X ′−{x, x′} and X ′−{x, y} are isomorphic
but there is no automorphism of G mapping one onto the other. This shows
that the inequality 2|E| − 2 < k holds in all cases.

By Lemma 6.13, 6.14, and 6.15 we may finish the first case.
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Theorem 6.16. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that every open block
is empty. Then there are cardinals κ, λ ≥ 2 and integers m,n such that G is
isomorphic to one of the following graphs:

(1) Xκ,λ(K1);

(2) X2,λ(Kn) with n < k
2 + 1;

(3) Xκ,2(Km) with m < k+2
3 ;

(4) X2,2(E) with E ∈ Ek,m,n, m ≤ k − 2, n < k−|E|
2 + 2 and 2|E| − 2 < k;

(5) Yκ (if k is odd).

6.2 Non-empty open blocks

Let us discuss the connected k-CS-transitive graphs with at least two ends
for k ≥ 3 such that every basic cut system has non-empty open blocks. As
mentioned before this case restricts k to be even by Lemma 6.4. According to
Lemma 6.9 every vertex not in any separator of a basic cut system lies in an
open block.

Let us show that the k-CS-transitive graphs with non-empty open blocks
resemble some Zκ,λ(H1, H2) by proving that the automorphism group acts tran-
sitively on its open blocks.

Lemma 6.17. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that some open S-block
is not empty. Then every open S-block is non-empty and the automorphism
group of G acts transitively on the S-blocks.

Proof. Let X be an S-block. By Lemma 6.1, X contains two distinct S-
separators and any two such separators are disjoint according to Corollary 6.12.
By Lemma 6.11 it holds that X contains an edge sx where s lies in an S-
separator S ⊆ X and x lies in X − S. As there is an induced path P of length
k − 2 starting at s with all its other vertices in a component of G − S that
avoids X, the neighbour of x on the induced path xP of length k − 1 lies in
an S-separator, and thus x is not contained in any S-separator according to
Lemma 6.5.

Let Y be a further S-block. By the previous argument a vertex y ∈ Y̊
exists. Let P ′ be an induced path of length k − 1 starting at y—such a path
exists as showed above. Since G is k-CS-transitive, there is an automorphism α
mapping P ′ to xP . As k is even by Lemma 6.4 it holds that yα = x according
to Lemma 6.5. Thus Y̊ α ∩ X̊ 6= ∅ and even Y α = X, as the intersection of any
two distinct S-blocks lies in an S-separator.

Lemma 6.18. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. If some open S-block
is not empty, then there are graphs H1, H2 and cardinals κ, λ such that G is
isomorphic to Zκ,λ(H1, H2).
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Proof. The structure tree T of G and S is an infinite tree where vertices of
even distance have the same degree, as S is basic and as the automorphisms
of G act transitively on the S-blocks by Lemma 6.17. Let κ be the degree of
any S-separator in T and let λ be the degree of any S-block in T . Let H1 be
isomorphic to G[S] for some S-separator S, and let H2 be isomorphic to some
open S-block. Then again as S is basic and by Lemma 6.17 all separators induce
an isomorphic copy of H1 in G and all open blocks are isomorphic to H2. Since,
according to Lemma 6.11, every vertex of an open block X̊ is adjacent to all
vertices in S-separators that lie in X, it holds that G ∼= Zκ,λ(H1, H2).

As every connected k-CS-transitive graph for k ≥ 3 with more than one end
and some non-empty open block is isomorphic to Zκ,λ(H1, H2) for some graphs
H1 and H2, it remains to specify the building blocks and possible values for κ
and λ of these graphs. In Section 2.1 we describe what a basic cut system for
these graphs looks like if H1 and H2 are finite.

Lemma 6.19. Let k ≥ 3, let G ∼= Zκ,λ(H1, H2) be a k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some open
S-block is not empty. Then the following holds:

(i) At least one of κ or λ is 2;

(ii) if Hi contains two non-adjacent vertices, then Hj (j 6= i) is complete and
κ = λ = 2;

(iii) if Hi contains an edge, then Hj (i 6= j) contains no edge.

Proof. Either H1 6∼= H2 or κ 6= λ since the copies of H1 and H2 are not Aut(G)-
isomorphic. Suppose both κ and λ are at least 3, then there are two distinct
orbits of k-forks. One whose members poke in two distinct open S-blocks, and
one whose members poke in two distinct S-separators. As a k-CS-transitive
graph has only one orbit of k-forks this proves (i) by contradiction.

Part (ii) follows using an analogous argument: Suppose κ or λ is greater
than 2. Then there is a k-fork that pokes in just one copy of an Hi and one that
pokes in two distinct copies of H1 (if κ > 2) or in two distinct copies of H2 (if
λ > 2). Suppose on the other hand that there are two non-adjacent vertices in
Hj , then there are two incompatible k-forks, too. One pokes in an open S-block
and the other one in an S-separator.

For (iii), suppose that Hi as well as Hj contain edges. Then there are k-
spoons that poke in open S-blocks and others that poke in S-separators.

From the previous lemma we immediately get the following corollary.

Corollary 6.20. Let k ≥ 3, let G ∼= Zκ,λ(H1, H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some open
S-block is not empty. If both H1 and H2 have at least two vertices, then one
is a complete graph, the other one is the complement of a complete graph, and
κ = λ = 2.

To finish the proof in the situation that both, H1 and H2, have at least two
vertices, we will restrict the order of these graphs.
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Lemma 6.21. Let k ≥ 3, let G ∼= Z2,2(H1, H2) be a k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some open
S-block is not empty. If H1

∼= Km and H2
∼= Kn, then 2m+ n ≤ k + 1.

Proof. Suppose that 2m+ n > k + 1. Let X be a building block corresponding
to the complete graph H2 and let Y, Y ′ be the two building blocks corresponding
to H1 adjacent to X. If m ≥ 2, then as k is even there are subsets Y1, Y2 in Y
and Y ′1 , Y

′
2 in Y ′ with

|Y1| = min{m− 1, k2 − 1},
|Y ′1 | = min{m− 1, k2 − 1},
|Y2| = min{m− 2, k2 − 2}, and

|Y ′2 | = min{m, k2}.

If n ≥ 2 let X ′ be a subset of V (X) of cardinality k − (|Y1| + |Y ′1 |) ≥ 2 which
exists as

k − (|Y1|+ |Y ′1 |) ≤ k − 2(m− 1) ≤ n.
The graphs G[Y1 ∪ X ′ ∪ Y ′1 ] and G[Y2 ∪ X ′ ∪ Y ′2 ] are isomorphic, so by k-CS-
transitivity, there is an automorphism of G mapping the first onto the second
subgraph. This is a contradiction, as Y ′2 is larger than Y1 as well as Y ′1 and every
automorphism of G has to map a building block onto a building block corre-
sponding to the same Hi by the construction of Z2,2(H1, H2) and our choices
for H1 and H2.

If n = 1, then 2m > k and hence 2m ≥ k+ 2 as k is even. By enlarging each
of Y ′1 and Y ′2 by one vertex we obtain a similar contradiction in this case as for
n ≥ 2.

If m = 1, then we have n ≥ k. Let X be a subset of the vertex set of a
building block corresponding to the complete graph H2 of cardinality k, Let
x ∈ X, and let y be a vertex adjacent to x but not in the same building block.
By the construction of G we know that y is adjacent to every vertex of X. Thus,
the subgraphs G[X] and G[X]− x+ y are both complete graphs on k vertices,
so there is an automorphism of G that maps the first onto the second by k-CS-
transitivity. But again as every automorphism of G maps a building block onto
a building block corresponding to the same Hi, we obtain a contradiction.

Lemma 6.22. Let k ≥ 3, let G ∼= Zκ,λ(H1, H2) be a k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some open
S-block is not empty. If one of κ and λ is not 2, then both H1 and H2 are
complete, one of order 1 and the other of order at most k − 1.

Proof. It follows directly from Lemma 6.19 (ii) that both H1 and H2 are com-
plete. By Lemma 6.19 (iii) we may assume that |H1| = 1. Suppose that H2

has more than k − 1 vertices. Every open S-block X̊ is a building block that
corresponds to H2 and thus contains an isomorphic copy of a Kk. There is a
second isomorphic copy of a Kk in G with k − 1 vertices in X̊ and one vertex
in some S-separator S ⊆ X. Since there is no automorphism of G mapping one
onto the other, H2 has at most k − 1 vertices.

The last part in this case of the proof (that there is some non-empty open
block) is to determine the graphs H2 if the graph H1 has only one vertex and
the open blocks are neither complete nor complements of complete graphs.
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Lemma 6.23. Let k ≥ 3, let G ∼= Z2,2(H1, H2) be a k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some open S-
block is not empty. If H2 is neither complete nor the complement of a complete
graph, then H1

∼= K1 and H2 ∈ Ek,m,n for m ≤ k − 2 and n ≤ k
2 + 1.

Proof. AsH2 is not complete, it contains two non-adjacent vertices. This implies
by Lemma 6.19 (ii) that H1 is complete. Since H2 also contains an edge, H1

does not and thus is isomorphic to K1. By Corollary 4.2 it suffices to show that
(a) the maximum degree of H2 is at most k − 2, (b) H2 is l-S-transitive for all
l ≤ k − 1, (c) any induced subgraph of order at least k

2 + 1 in H2 is connected,
and (d) no two non-adjacent vertices of H2 have k − 2 common neighbours.

The proofs of (a), (b) and (d) are analogous to those of Lemma 6.15 (a), (b)
and (d).

(c) Following the argument of Lemma 6.15 (c), an induced subgraph of order
at least k−1

2 + 1 in H2 is connected. The ‘−1’ in that term corresponds to
the ‘−|E|’ in Lemma 6.15. Since k is even, every induced subgraph of order
at least k

2 + 1 is connected if and only if every induced subgraph of order at

least k−1
2 + 1 is connected.

These lemmas let us finish the case of non-empty open blocks.

Theorem 6.24. Let k ≥ 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G such that some open S-block
is not empty. Then k is even and G is isomorphic to one of the following graphs:

(6) Z2,2(Km,Kn) with 2m+ n ≤ k + 1;

(7) Zκ,λ(K1,Kn) with n ≤ k − 1 and cardinals κ, λ with κ = 2 or λ = 2;

(8) Z2,2(K1, E) with E ∈ Ek,m,n, m ≤ k − 2 and n ≤ k
2 + 1.

With Corollary 5.4 and Corollary 6.10 the Theorems 6.16 and 6.24 imply
our second main result, Theorem 1.3.

7 k-CS-homogeneous graphs

In this section we shall prove Corollary 1.4. The first part of the proof will be to
exclude those k-CS-transitive graphs that do not occur in the list of Corollary 1.4
and then to prove that the remaining graphs are k-CS-homogeneous.

Proof of Corollary 1.4. As every k-CS-homogeneous graph is k-CS-transitive,
the connected k-CS-homogeneous graphs with k ≥ 3 and at least two ends
belong to classes (1) to (8) of Theorem 1.3. Let us first show that for the
appropriate k all graphs that occur in the list Theorem 1.3 but not in that of
Corollary 1.4 are not k-CS-homogenous.

For odd k ≥ 3, the graphs Yκ for κ ≥ 3 are not k-CS-homogeneous, since we
cannot map an induced path in Yκ of length k−1 onto itself by an automorphism
of Yκ without being the identity on that path, as its outermost edges lie in
buildings blocks of distinct kinds. As the automorphism group of any non-
trivial path consists of two elements, these graphs are not k-CS-homogenous.
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For even k ≥ 3, any graph G ∼= Zκ,λ(H1, H2) for any distinct graphs H1,
H2 or distinct cardinals κ, λ is not k-CS-homogeneous as we cannot map an
induced path of odd length k − 1 in G onto itself by an automorphism of the
whole graph without being the identity on that path as its endvertices lie in
distinct kinds of building blocks of G. If on the other hand H1

∼= H2 and κ = λ,
then as it has to be k-CS-transitive Theorem 1.3 implies that H1

∼= K1 and
Zκ,λ(H1, H2) ∼= X2,κ(K1) and hence G belongs to the graphs in class (1) of
Theorem 1.3.

Let us consider a graph G ∼= X2,λ(Kn) with arbitrary k ≥ 3. If k
2 ≤ n <

k
2 + 1, then there is an induced subgraph isomorphic to Kk in two (completely)
adjacent building blocks of G. We cannot extend any automorphism of such a
subgraph that does not respect the building blocks to an automorphism of the
whole graph. This implies n < k

2 in this case.

Let G ∼= Xκ,2(Km). If k
3 ≤ m < k+2

3 , then take an arbitrary subgraph
X on k vertices of three building blocks one of which is completely adjacent
to the other two that are not adjacent to each other. Then there is at most
one vertex of the three building blocks missing in X. Thus we might build an
automorphism of X that maps two vertices of the two non-adjacent building
blocks onto each other and fixes all the other vertices of X. As m ≥ 2, this
automorphism of X cannot be extended to an automorphism of G.

Let us now assume that G ∼= X2,2(E) for an E ∈ Ek,m,n with m ≤ k − 2,

2|E| − 2 < k and n < k−|E|
2 + 2. Suppose that E contains an induced subgraph

on at least k−|E|
2 vertices that is not connected. Let E1, E2, E3 be three building

blocks of G such that E2 is (completely) adjacent to the other two but E1 and E3

are not adjacent. Then there are two induced subgraphs X ⊆ E1 and Y ⊆ E3

each of order at least k−|E|
2 , both not connected such that G[X] ∼= G[Y ]. By

the cardinality of these vertex sets, there is a non-empty vertex set Z in E2 such
that |X|+ |Y |+ |Z| = k. There is an automorphism of H := G[X ∪Y ∪Z] that
exchanges a component of G[X] with one of G[Y ] and fixes every other vertex
in H. As every automorphism of G maps vertices in the same building block
again to a common building block, the just described automorphism of H does
not extend to an automorphism of G. By contradiction we get that E ∈ Ek,m,n′
for k and m as above and n′ < k−|E|

2 + 1.
It remains to show that 2|E| < k in this situation. If E is isomorphic to t

disjoint Kr, then the inequalities imply tr < k−|E|
2 and hence 3|E| = 3tr < k. If

E ∼= C5, then 4 < k−5
2 + 1 implies 11 < k and if E ∼= L(K3,3), then 6 < k−9

2 + 1
implies 19 < k. Suppose 2|E| ≥ k, then none of these three previous cases may
occur and we conclude E ∼= Kt

r with 2 ≤ t. Let H be a subgraph of G induced
by two adjacent building blocks B1, B2. Then H has less than k + 2 vertices.
Let X be an induced subgraph of H on k vertices. Then either X = H or there
is one vertex x in H with X = H−x. There is a set Y1 of r independent vertices
in X ∩B1 and a set Y2 of r independent vertices in X ∩B2. As each of these 2r
vertices is adjacent to all other vertices of X, there is an automorphism of X
that maps Y1 onto Y2 and vice versa and that fixes every other vertex in X.
Such an automorphism of X cannot extend to an automorphism of G as vertices
in the same building block have to be mapped into a common building block
by every automorphism of G and this is not satisfied by the above described
automorphism of X.

69



It remains to show that the graphs described in Corollary 1.4 are k-CS-
homogeneous. In principle, the proof is similar to those in Section 5. Therefore,
we just point out the important bits that have to be changed and give a sketch
of the remaining part of the proof. Let G be a graph that occurs in the list
of Corollary 1.4. For the corresponding assertion of Lemma 5.1, it suffices to
see that the only graphs in the list of Corollary 1.4 that have a complete graph
on k vertices as subgraph, are the graphs Xκ,λ(K1) and Xκ,2(Km) and in each
of these cases the construction of the graphs admits the extension of every
isomorphism between two complete subgraphs on k vertices.

For the proof of Lemma 5.2, remark that any induced subgraph of an induced
connected subgraph X on k vertices with diameter 2 has to meet at least three
building blocks by cardinality reasons. It easily follows in each case that either
there exists a unique smallest separator in X which is precisely X ∩ B where
B is a building block adjacent to all other building blocks of G that meet X,
or G ∼= Xκ,2(Km) and X is a subgraph of a complete multipartite graph with
partition classes each of the same cardinality. Where the required extension of
any isomorphism between two induced connected subgraphs follows from the
homogeneity of complete multipartite graphs in the last case, the extension
exists for the first case because the building blocks are homogeneous and by the
construction of the graphs Xκ,λ(H).

For the situation that the induced isomorphic subgraphs on k vertices are
connected and have diameter at least 3, it suffices to see that any isomorphism
between any paths of length at least 3 whose diameter in G is at least 3 in these
graphs can be extended to an automorphism of the whole graph. The further
construction of the automorphisms αk in the proof of Lemma 5.3 can also be
chosen so that they extend the given isomorphism between the two induced
connected subgraphs of order k. This completes the sketch of this direction of
the proof and hence the whole proof.

8 Ends of k-CS-transitive graphs

Gray [6] asked whether every locally finite k-CS-transitive graph is end-transitive
for k ≥ 3. With Theorem 1.3 we may answer his question.

Theorem 8.1. Let k ≥ 3 and let G be a connected locally finite graph. If G is
k-CS-transitive, then it is end-transitive.

This theorem does not extend to graphs with vertices of infinite degree. For
example the graphs Xκ,λ with κ ≥ ℵ0, λ ≥ 2 contain fundamentally different
ends. Let us make this precise: a ray is local if it meets a set of finite diameter
infinitely often. An end is local if all its rays are local, and an end is global if
none of its rays is local. Theorem 1.3 shows that in k-CS-transitive graphs with
k ≥ 3 and more than one end every end is either local or global and that the
automorphism group acts transitively on those of each kind.

Theorem 8.2. Let k ≥ 3 and G be a connected k-CS-transitive graph with more
than one end. Then every end of G is either local or global. The automorphism
group of G acts transitively on the local ends, as well as on the global ends.

Furthermore, G is end-transitive if and only if it has no local end.
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Krön and Möller [9, 10] introduced metric ends. They call rays metric if
they are not local, that is, if any infinite subset of its vertices does not have
finite diameter in G. Two metric rays R1 and R2 are metrically equivalent if
there is no vertex set S of finite diameter such that R1 and R2 lie eventually
in different components of G − S. This is an equivalence relation on metric
rays, whose classes are the metric ends of the graph. In locally finite graphs the
notions of being an end and being a metric end coincide. Thus for connected
locally finite k-CS-transitive graphs with k ≥ 3 and with more than one end its
automorphism group acts transitively on its metric ends. In spite of the local
ends this extends by inspection of the examples in Theorem 1.3 to graphs that
are not necessarily locally finite.

Theorem 8.3. If k ≥ 3, then the automorphism group of any connected k-CS-
transitive graph with more than one end acts transitively on the metric ends of
the graph.
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Edge-disjoint double rays in infinite graphs:

a Halin type result∗

Nathan Bowler Johannes Carmesin Julian Pott

Abstract

We show that any graph that contains k edge-disjoint double rays for

any k ∈ N contains also infinitely many edge-disjoint double rays. This

was conjectured by Andreae in 1981.

1 Introduction

We say a graph G has arbitrarily many vertex-disjoint H if for every k ∈ N there

is a family of k vertex-disjoint subgraphs of G each of which is isomorphic to H.

Halin’s Theorem says that every graph that has arbitrarily many vertex-disjoint

rays, also has infinitely many vertex-disjoint rays [5]. In 1970 he extended this

result to vertex-disjoint double rays [6]. Jung proved a strengthening of Halin’s

Theorem where the initial vertices of the rays are constrained to a certain vertex

set [7].

We look at the same questions with ‘edge-disjoint’ replacing ‘vertex-disjoint’.

Consider first the statement corresponding to Halin’s Theorem. It suffices to

prove this statement in locally finite graphs, as each graph with arbitrarily many

edge-disjoint rays contains a locally finite union of tails of these rays. But the

statement for locally finite graphs follows from Halin’s original Theorem applied

to the line-graph.

This reduction to locally finite graphs does not work for Jung’s Theorem or

for Halin’s statement about double rays. Andreae proved an analog of Jung’s

Theorem for edge-disjoint rays in 1981, and conjectured that a Halin-type The-

orem would be true for edge-disjoint double rays [1]. Our aim in the current

paper is to prove this conjecture.

More precisely, we say a graph G has arbitrarily many edge-disjoint H if for

every k ∈ N there is a family of k edge-disjoint subgraphs of G each of which is

isomorphic to H, and our main result is the following.

Theorem 1. Any graph that has arbitrarily many edge-disjoint double rays has

infinitely many edge-disjoint double rays.

∗J. Combin. Theory (Series B) Available online 31 October 2014
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Even for locally finite graphs this theorem does not follow from Halin’s anal-

ogous result for vertex-disjoint double rays applied to the line graph. For ex-

ample a double ray in the line graph may correspond, in the original graph, to

a configuration as in Figure 1.

Figure 1: A graph that does not include a double ray but whose line graph does.

A related notion is that of ubiquity. A graph H is ubiquitous with respect to

a graph relation ≤ if nH ≤ G for all n ∈ N implies ℵ0H ≤ G, where nH denotes

the disjoint union of n copies of H. For example, Halin’s Theorem says that rays

are ubiquitous with respect to the subgraph relation. It is known that not every

graph is ubiquitous with respect to the minor relation [2], nor is every locally

finite graph ubiquitous with respect to the subgraph relation [8, 9], or even the

topological minor relation [2, 3]. However, Andreae has conjectured that every

locally finite graph is ubiquitous with respect to the minor relation [2]. For more

details see [3]. In Section 6 (the outlook) we introduce a notion closely related

to ubiquity.

The proof is organised as follows. In Section 3 we explain how to deal

with the cases that the graph has infinitely many ends, or an end with infinite

vertex-degree. In Section 4 we consider the ‘two ended’ case: That in which

there are two ends ω and ω′ both of finite vertex-degree, and arbitrarily many

edge-disjoint double rays from ω to ω′.
The only remaining case is the ‘one ended’ case: That in which there is a

single end ω of finite vertex-degree and arbitrarily many edge-disjoint double

rays from ω to ω. One central idea in the proof of this case is to consider 2-

rays instead of double rays. Here a 2-ray is a pair of vertex-disjoint rays. For

example, from each double ray one obtains a 2-ray by removing a finite path.

The remainder of the proof is subdivided into two parts: In Subsection 5.3 we

show that if there are arbitrarily many edge-disjoint 2-rays into ω, then there are

infinitely many such 2-rays. In Subsection 5.2 we show that if there are infinitely

many edge-disjoint 2-rays into ω, then there are infinitely many edge-disjoint

double rays from ω to ω.

We finish by discussing the outlook and mentioning some open problems.
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2 Preliminaries

All our basic notation for graphs is taken from [4]. In particular, two rays in a

graph are equivalent if no finite set separates them. The equivalence classes of

this relation are called the ends of G. We say that a ray in an end ω converges

to ω. A double ray converges to all the ends of which it includes a ray.

2.1 The structure of a thin end

It follows from Halin’s Theorem that if there are arbitrarily many vertex-disjoint

rays in an end of G, then there are infinitely many such rays. This fact motivated

the central definition of the vertex-degree of an end ω: the maximal cardinality

of a set of vertex-disjoint rays in ω.

An end is thin if its vertex-degree is finite, and otherwise it is thick. A pair

(A,B) of edge-disjoint subgraphs of G is a separation of G if A ∪ B = G. The

number of vertices of A ∩B is called the order of the separation.

Definition 2. Let G be a locally finite graph and ω a thin end of G. A countable

infinite sequence ((Ai, Bi))i∈N of separations of G captures ω if for all i ∈ N

• Ai ∩Bi+1 = ∅,

• Ai+1 ∩Bi is connected,

• ⋃i∈NAi = G,

• the order of (Ai, Bi) is the vertex-degree of ω, and

• each Bi contains a ray from ω.

Lemma 3. Let G be a locally finite graph with a thin end ω. Then there is a

sequence that captures ω.

Proof. Without loss of generality G is connected, and so is countable. Let

v1, v2, . . . be an enumeration of the vertices of G. Let k be the vertex-degree

of ω. Let R = {R1, . . . , Rk} be a set of vertex-disjoint rays in ω and let S be the

set of their start vertices. We pick a sequence ((Ai, Bi))i∈N of separations and

a sequence (Ti) of connected subgraphs recursively as follows. We pick (Ai, Bi)

such that S is included in Ai, such that there is a ray from ω included in Bi, and

such that Bi does not meet
⋃

j<i Tj or {vj | j ≤ i}: subject to this we minimise

the size of the set Xi of vertices in Ai ∩Bi. Because of this minimization Bi is

connected and Xi is finite. We take Ti to be a finite connected subgraph of Bi

including Xi. Note that any ray that meets all of the Bi must be in ω.

By Menger’s Theorem [4] we get for each i ∈ N a set Pi of vertex-disjoint

paths from Xi to Xi+1 of size |Xi|. From these, for each i we get a set of |Xi|
vertex-disjoint rays in ω. Thus the size of Xi is at most k. On the other hand

it is at least k as each ray Rj meets each set Xi.
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Assume for contradiction that there is a vertex v ∈ Ai ∩ Bi+1. Let R be a

ray from v to ω inside Bi+1. Then R must meet Xi, contradicting the definition

of Bi+1. Thus Ai ∩Bi+1 is empty.

Observe that
⋃Pi ∪ Ti is a connected subgraph of Ai+1 ∩Bi containing all

vertices of Xi and Xi+1. For any vertex v ∈ Ai+1 ∩ Bi there is a v–Xi+1 path

P in Bi. P meets Bi+1 only in Xi+1. So P is included in Ai+1 ∩ Bi. Thus

Ai+1 ∩Bi is connected. The remaining conditions are clear.

Remark 4. Every infinite subsequence of a sequence capturing ω also captures

ω.

The following is obvious:

Remark 5. Let G be a graph and v, w ∈ V (G) If G contains arbitrarily many

edge-disjoint v–w paths, then it contains infinitely many edge-disjoint v–w paths.

We will need the following special case of the theorem of Andreae mentioned

in the Introduction.

Theorem 6 (Andreae [1]). Let G be a graph and v ∈ V (G). If there are

arbitrarily many edge-disjoint rays all starting at v, then there are infinitely

many edge-disjoint rays all starting at v.

3 Known cases

Many special cases of Theorem 1 are already known or easy to prove. For

example Halin showed the following.

Theorem 7 (Halin). Let G be a graph and ω an end of G. If ω contains

arbitrarily many vertex-disjoint rays, then G has a half-grid as a minor.

Corollary 8. Any graph with an end of infinite vertex-degree has infinitely

many edge-disjoint double rays.

Another simple case is the case where the graph has infinitely many ends.

Lemma 9. A tree with infinitely many ends contains infinitely many edge-

disjoint double rays.

Proof. It suffices to show that every tree T with infinitely many ends contains a

double ray such that removing its edges leaves a component containing infinitely

many ends, since then one can pick those double rays recursively.

There is a vertex v ∈ V (T ) such that T − v has at least 3 components

C1, C2, C3 that each have at least one end, as T contains more than 2 ends. Let

ei be the edge vwi with wi ∈ Ci for i ∈ {1, 2, 3}. The graph T r {e1, e2, e3} has

precisely 4 components (C1, C2, C3 and the one containing v), one of which, D

say, has infinitely many ends. By symmetry we may assume that D is neither

C1 nor C2. There is a double ray R all whose edges are contained in C1 ∪C2 ∪
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{e1, e2}. Removing the edges of R leaves the component D, which has infinitely

many ends.

Corollary 10. Any connected graph with infinitely many ends has infinitely

many edge-disjoint double rays.

4 The ‘two ended’ case

Using the results of Section 3 it is enough to show that any graph with only

finitely many ends, each of which is thin, has infinitely many edge-disjoint double

rays as soon as it has arbitrarily many edge-disjoint double rays. Any double

ray in such a graph has to join a pair of ends (not necessarily distinct), and there

are only finitely many such pairs. So if there are arbitrarily many edge-disjoint

double rays, then there is a pair of ends such that there are arbitrarily many

edge-disjoint double rays joining those two ends. In this section we deal with

the case where these two ends are different, and in Section 5 we deal with the

case that they are the same. We start with two preparatory lemmas.

Lemma 11. Let G be a graph with a thin end ω, and let R ⊆ ω be an infinite

set. Then there is an infinite subset of R such that any two of its members

intersect in infinitely many vertices.

Proof. We define an auxilliary graph H with V (H) = R and an edge between

two rays if and only if they intersect in infinitely many vertices. By Ramsey’s

Theorem either H contains an infinite clique or an infinite independent set of

vertices. Let us show that there cannot be an infinite independent set in H. Let

k be the vertex-degree of ω: we shall show that H does not have an independent

set of size k + 1. Suppose for a contradiction that X ⊆ R is a set of k + 1 rays

that is independent in H. Since any two rays in X meet in only finitely many

vertices, each ray in X contains a tail that is disjoint to all the other rays in X.

The set of these k+ 1 vertex-disjoint tails witnesses that ω has vertex-degree at

least k + 1, a contradiction. Thus there is an infinite clique K ⊆ H, which is

the desired infinite subset.

Lemma 12. Let G be a graph consisting of the union of a set R of infinitely

many edge-disjoint rays of which any pair intersect in infinitely many vertices.

Let X ⊆ V (G) be an infinite set of vertices, then there are infinitely many

edge-disjoint rays in G all starting in different vertices of X.

Proof. If there are infinitely many rays in R each of which contains a different

vertex from X, then suitable tails of these rays give the desired rays. Otherwise

there is a ray R ∈ R meeting X infinitely often. In this case, we choose the

desired rays recursively such that each contains a tail from some ray in R−R.

Having chosen finitely many such rays, we can always pick another: we start at

some point in X on R which is beyond all the (finitely many) edges on R used

so far. We follow R until we reach a vertex of some ray R′ in R−R whose tail

has not been used yet, then we follow R′.
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Lemma 13. Let G be a graph with only finitely many ends, all of which are

thin. Let ω1, ω2 be distinct ends of G. If G contains arbitrarily many edge-

disjoint double rays each of which converges to both ω1 and ω2, then G contains

infinitely many edge-disjoint double rays each of which converges to both ω1 and

ω2.

Proof. For each pair of ends, there is a finite set separating them. The finite

union of these finite sets is a finite set S ⊆ V (G) separating any two ends of G.

For i = 1, 2 let Ci be the component of G− S containing ωi.

There are arbitrarily many edge-disjoint double rays from ω1 to ω2 that

have a common last vertex v1 in S before staying in C1 and also a common last

vertex v2 in S before staying in C2. Note that v1 may be equal to v2. There are

arbitrarily many edge-disjoint rays in C1 + v1 all starting in v1. By Theorem 6

there is a countable infinite set R1 = {Ri
1 | i ∈ N} of edge-disjoint rays each

included in C1 + v1 and starting in v1. By replacing R1 with an infinite subset

of itself, if necessary, we may assume by Lemma 11 that any two members of R1

intersect in infinitely many vertices. Similarly, there is a countable infinite set

R2 = {Ri
2 | i ∈ N} of edge-disjoint rays each included in C2 + v2 and starting

in v2 such that any two members of R2 intersect in infinitely many vertices.

Let us subdivide all edges in
⋃R1 and call the set of subdivision vertices

X1. Similarly, we subdivide all edges in
⋃R2 and call the set of subdivision

vertices X2. Below we shall find double rays in the subdivided graph, which

immediately give rise to the desired double rays in G.

Suppose for a contradiction that there is a finite set F of edges separating X1

from X2. Then vi has to be on the same side of that separation as Xi as there

are infinitely many vi–Xi edges. So F separates v1 from v2, which contradicts

the fact that there are arbitrarily many edge-disjoint double rays containing

both v1 and v2. By Remark 5 there is a set P of infinitely many edge-disjoint

X1–X2 paths. As all vertices in X1 and X2 have degree 2, and by taking an

infinite subset if necessary, we may assume that each end-vertex of a path in P
lies on no other path in P.

By Lemma 12 there is an infinite set Y1 of start-vertices of paths in P
together with an infinite set R′1 of edge-disjoint rays with distinct start-vertices

whose set of start-vertices is precisely Y1. Moreover, we can ensure that each

ray in R′1 is included in
⋃R1. Let Y2 be the set of end-vertices in X2 of those

paths in P that start in Y1. Applying Lemma 12 again, we obtain an infinite

set Z2 ⊆ Y2 together with an infinite set R′2 of edge-disjoint rays included in⋃R2 with distinct start-vertices whose set of start-vertices is precisely Z2.

For each path P in P ending in Z2, there is a double ray in the union of

P and the two rays from R′1 and R′2 that P meets in its end-vertices. By

construction, all these infinitely many double rays are edge-disjoint. Each of

those double rays converges to both ω1 and ω2, since each ωi is the only end

in Ci.

Remark 14. Instead of subdividing edges we also could have worked in the line

graph of G. Indeed, there are infinitely many vertex-disjoint paths in the line

78



graph from
⋃R1 to

⋃R2.

5 The ‘one ended’ case

We are now going to look at graphs G that contain a thin end ω such that there

are arbitrarily many edge-disjoint double rays converging only to the end ω. The

aim of this section is to prove the following lemma, and to deduce Theorem 1.

Lemma 15. Let G be a countable graph and let ω be a thin end of G. Assume

there are arbitrarily many edge-disjoint double rays all of whose rays converge

to ω. Then G has infinitely many edge-disjoint double rays.

We promise that the assumption of countability will not cause problems

later.

5.1 Reduction to the locally finite case

A key notion for this section is that of a 2-ray. A 2-ray is a pair of vertex-disjoint

rays. For example, from each double ray one obtains a 2-ray by removing a finite

path.

In order to deduce that G has infinitely many edge-disjoint double rays,

we will only need that G has arbitrarily many edge-disjoint 2-rays. In this

subsection, we illustrate one advantage of 2-rays, namely that we may reduce

to the case where G is locally finite.

Lemma 16. Let G be a countable graph with a thin end ω. Assume there is a

countable infinite set R of rays all of which converge to ω.

Then there is a locally finite subgraph H of G with a single end which is thin

such that the graph H includes a tail of any R ∈ R.

Proof. Let (Ri | i ∈ N) be an enumeration of R. Let (vi | i ∈ N) be an enumer-

ation of the vertices of G. Let Ui be the unique component of Gr {v1, . . . , vi}
including a tail of each ray in ω.

For i ∈ N, we pick a tail R′i of Ri in Ui. Let H1 =
⋃

i∈NR
′
i. Making use

of H1, we shall construct the desired subgraph H. Before that, we shall collect

some properties of H1.

As every vertex of G lies in only finitely many of the Ui, the graph H1 is

locally finite. Each ray in H1 converges to ω in G since H1 r Ui is finite for

every i ∈ N. Let Ψ be the set of ends of H1. Since ω is thin, Ψ has to be finite:

Ψ = {ω1, . . . , ωn}. For each i ≤ n, we pick a ray Si ⊆ H1 converging to ωi.

Now we are in a position to construct H. For any i > 1, the rays S1 and Si

are joined by an infinite set Pi of vertex-disjoint paths in G. We obtain H from

H1 by adding all paths in the sets Pi. Since H1 is locally finite, H is locally

finite.

It remains to show that every ray R in H is equivalent to S1. If R contains

infinitely many edges from the Pi, then there is a single Pi which R meets

79



infinitely, and thus R is equivalent to S1. Thus we may assume that a tail of R

is a ray in H1. So it converges to some ωi ∈ Ψ. Since Si and S1 are equivalent,

R and S1 are equivalent, which completes the proof.

Corollary 17. Let G be a countable graph with a thin end ω and arbitrarily

many edge-disjoint 2-rays of which all the constituent rays converge to ω. Then

there is a locally finite subgraph H of G with a single end, which is thin, such

that H has arbitrarily many edge-disjoint 2-rays.

Proof. By Lemma 16 there is a locally finite graph H ⊆ G with a single end

such that a tail of each of the constituent rays of the arbitrarily many 2-rays is

included in H.

5.2 Double rays versus 2-rays

A connected subgraph of a graph G including a vertex set S ⊆ V (G) is a

connector of S in G.

Lemma 18. Let G be a connected graph and S a finite set of vertices of G. Let

H be a set of edge-disjoint subgraphs H of G such that each connected component

of H meets S. Then there is a finite connector T of S, such that at most 2|S|−2

graphs from H contain edges of T .

Proof. By replacing H with the set of connected components of graphs in H, if

necessary, we may assume that each member of H is connected. We construct

graphs Ti recursively for 0 ≤ i < |S| such that each Ti is finite and has at most

|S| − i components, at most 2i graphs from H contain edges of Ti, and each

component of Ti meets S. Let T0 = (S, ∅) be the graph with vertex set S and

no edges. Assume that Ti has been defined.

If Ti is connected let Ti+1 = Ti. For a component C of Ti, let C ′ be the

graph obtained from C by adding all graphs from H that meet C.

As G is connected, there is a path P (possibly trivial) in G joining two of

these subgraphs C ′1 and C ′2 say. And by taking the length of P minimal, we

may assume that P does not contain any edge from any H ∈ H. Then we can

extend P to a C1–C2 path Q by adding edges from at most two subgraphs from

H— one included in C ′1 and the other in C ′2. We obtain Ti+1 from Ti by adding

Q.

T = T|S|−1 has at most one component and thus is connected. And at most

2|S| − 2 many graphs from H contain edges of T . Thus T is as desired.

Let d, d′ be 2-rays. d is a tail of d′ if each ray of d is a tail of a ray of d′.
A set D′ is a tailor of a set D of 2-rays if each element of D′ is a tail of some

element of D but no 2-ray in D includes more than one 2-ray in D′.

Lemma 19. Let G be a locally finite graph with a single end ω, which is thin.

Assume that G contains an infinite set D = {d1, d2, . . . } of edge-disjoint 2-rays.
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Then G contains an infinite tailor D′ of D and a sequence ((Ai, Bi))i∈N
capturing ω (see Definition 2) such that there is a family of vertex-disjoint con-

nectors Ti of Ai∩Bi contained in Ai+1∩Bi, each of which is edge-disjoint from

each member of D′.

Proof. Let k be the vertex-degree of ω. By Lemma 3 there is a sequence

((A′i, B
′
i))i∈N capturing ω. By replacing each 2-ray in D with a tail of itself

if necessary, we may assume that for all (r, s) ∈ D and i ∈ N either both r and

s meet A′i or none meets A′i. By Lemma 18 there is a finite connector T ′i of

A′i ∩B′i in the connected graph B′i which meets in an edge at most 2k− 2 of the

2-rays of D that have a vertex in A′i.
Thus, there are at most 2k − 2 2-rays in D that meet all but finitely many

of the T ′i in an edge. By throwing away these finitely many 2-rays in D we

may assume that each 2-ray in D is edge-disjoint from infinitely many of the

T ′i . So we can recursively build a sequence N1, N2, . . . of infinite sets of natural

numbers such that Ni ⊇ Ni+1, the first i elements of Ni are all contained in

Ni+1, and di only meets finitely many of the T ′j with j ∈ Ni in an edge. Then

N =
⋂

i∈NNi is infinite and has the property that each di only meets finitely

many of the T ′j with j ∈ N in an edge. Thus there is an infinite tailor D′ of D

such that no 2-ray from D′ meets any T ′j for j ∈ N in an edge.

We recursively define a sequence n1, n2, . . . of natural numbers by taking

ni ∈ N sufficiently large that B′ni
does not meet T ′nj

for any j < i . Taking

(Ai, Bi) = (A′ni
, B′ni

) and Ti = T ′ni
gives the desired sequences.

Lemma 20. If a locally finite graph G with a single end ω which is thin con-

tains infinitely many edge-disjoint 2-rays, then G contains infinitely many edge-

disjoint double rays.

Proof. Applying Lemma 19 we get an infinite set D of edge-disjoint 2-rays, a

sequence ((Ai, Bi))i∈N capturing ω, and connectors Ti of Ai ∩Bi for each i ∈ N
such that the Ti are vertex-disjoint from each other and edge-disjoint from all

members of D.

We shall construct the desired set of infinitely many edge-disjoint double

rays as a nested union of sets Di. We construct the Di recursively. Assume

that a set Di of i edge-disjoint double rays has been defined such that each of

its members is included in the union of a single 2-ray from D and one connector

Tj . Let di+1 ∈ D be a 2-ray distinct from the finitely many 2-rays used so far.

Let Ci+1 be one of the infinitely many connectors that is different from all the

finitely many connectors used so far and that meets both rays of di+1. Clearly,

di+1 ∪ Ci+1 includes a double ray Ri+1. Let Di+1 = Di ∪ {Ri+1}. The union⋃
i∈NDi is an infinite set of edge-disjoint double rays as desired.

5.3 Shapes and allowed shapes

Let G be a graph and (A,B) a separation of G. A shape for (A,B) is a word

v1x1v2x2 . . . xn−1vn with vi ∈ A∩B and xi ∈ {l, r} such that no vertex appears

twice. We call the vi the vertices of the shape. Every ray R induces a shape
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σ = σR(A,B) on every separation (A,B) of finite order in the following way:

Let <R be the natural order on V (R) induced by the ray, where v <R w if

w lies in the unique infinite component of R − v. The vertices of σ are those

vertices of R that lie in A ∩B and they appear in σ in the order given by <R.

For vi, vi+1 the path viRvi+1 has edges only in A or only in B but not in both.

In the first case we put l between vi and vi+1 and in the second case we put r

between vi and vi+1.

Let (A1, B1), (A2, B2) be separations with A1 ∩ B2 = ∅ and thus also A1 ⊆
A2 and B2 ⊆ B1. Let σi be a nonempty shape for (Ai, Bi). The word τ =

v1x1v2 . . . xn−1vn is an allowed shape linking σ1 to σ2 with vertices v1 . . . vn if

the following holds.

• v is a vertex of τ if and only if it is a vertex of σ1 or σ2,

• if v appears before w in σi, then v appears before w in τ ,

• v1 is the initial vertex of σ1 and vn is the terminal vertex of σ2,

• xi ∈ {l,m, r},

• the subword vlw appears in τ if and only if it appears in σ1,

• the subword vrw appears in τ if and only if it appears in σ2,

• vi 6= vj for i 6= j.

Each ray R defines a word τ = τR[(A1, B1), (A2, B2)] = v1x1v2 . . . xn−1vn
with vertices vi and xi ∈ {l,m, r} as follows. The vertices of τ are those vertices

of R that lie in A1 ∩B1 or A2 ∩B2 and they appear in τ in the order given by

<R. For vi, vi+1 the path viRvi+1 has edges either only in A1, only in A2 ∩B1,

or only in B2. In the first case we set xi = l and τ contains the subword vilvi+1.

In the second case we set xi = m and τ contains the subword vimvi+1. In the

third case we set xi = r and τ contains the subword virvi+1.

For a ray R to induce an allowed shape τR[(A1, B1), (A2, B2)] we need at

least that R starts in A2. However, each ray in ω has a tail such that whenever

it meets an Ai it also starts in that Ai. Let us call such rays lefty. A 2-ray is

lefty if both its rays are.

Remark 21. Let (A1, B1), and (A2, B2) be two separations of finite order

with A1 ⊆ A2, and B2 ⊆ B1. For every lefty ray R meeting A1, the word

τR[(A1, B1), (A2, B2)] is an allowed shape linking σR(A1, B1) and σR(A2, B2).

From now on let us fix a locally finite graph G with a thin end ω of vertex-

degree k. And let ((Ai, Bi))i∈N be a sequence capturing ω such that each mem-

ber has order k.

A 2-shape for a separation (A,B) is a pair of shapes for (A,B). Every 2-

ray induces a 2-shape coordinatewise in the obvious way. Similarly, an allowed

2-shape is a pair of allowed shapes.
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Clearly, there is a global constant c1 ∈ N depending only on k such that

there are at most c1 distinct 2-shapes for each separation (Ai, Bi). Similarly,

there is a global constant c2 ∈ N depending only on k such that for all i, j ∈ N
there are at most c2 distinct allowed 2-shapes linking a 2-shape for (Ai, Bi) with

a 2-shape for (Aj , Bj).

For most of the remainder of this subsection we assume that for every i ∈ N
there is a set Di consisting of at least c1 · c2 · i edge-disjoint 2-rays in G. Our

aim will be to show that in these circumstances there must be infinitely many

edge-disjoint 2-rays.

By taking a tailor if necessary, we may assume that every 2-ray in each Di

is lefty.

Lemma 22. There is an infinite set J ⊆ N and, for each i ∈ N, a tailor D′i of

Di of cardinality c2 · i such that for all i ∈ N and j ∈ J all 2-rays in D′i induce

the same 2-shape σ[i, j] on (Aj , Bj).

Proof. We recursively build infinite sets Ji ⊆ N and tailors D′i of Di such that

for all k ≤ i and j ∈ Ji all 2-rays in D′k induce the same 2-shape on (Aj , Bj).

For all i ≥ 1, we shall ensure that Ji is an infinite subset of Ji−1 and that the

i− 1 smallest members of Ji and Ji−1 are the same. We shall take J to be the

intersection of all the Ji.

Let J0 = N and let D′0 be the empty set. Now, for some i ≥ 1, assume that

sets Jk and D′k have been defined for all k < i. By replacing 2-rays in Di by

their tails, if necessary, we may assume that each 2-ray in Di avoids A`, where

` is the (i − 1)st smallest value of Ji−1. As Di contains c1 · c2 · i many 2-rays,

for each j ∈ Ji−1 there is a set Sj ⊆ Di of size at least c2 · i such that each

2-ray in Sj induces the same 2-shape on (Aj , Bj). As there are only finitely

many possible choices for Sj , there is an infinite subset Ji of Ji−1 on which Sj

is constant. For D′i we pick this value of Sj . Since each d ∈ D′i induces the

empty 2-shape on each (Ak, Bk) with k ≤ ` we may assume that the first i− 1

elements of Ji−1 are also included in Ji.

It is immediate that the set J =
⋂

i∈N Ji and the D′i have the desired prop-

erty.

Lemma 23. There are two strictly increasing sequences (ni)i∈N and (ji)i∈N
with ni ∈ N and ji ∈ J for all i ∈ N such that σ[ni, ji] = σ[ni+1, ji] and σ[ni, ji]

is not empty.

Proof. Let H be the graph on N with an edge vw ∈ E(H) if and only if there

are infinitely many elements j ∈ J such that σ[v, j] = σ[w, j].

As there are at most c1 distinct 2-shapes for any separator (Ai, Bi), there

is no independent set of size c1 + 1 in H and thus no infinite one. Thus, by

Ramsey’s theorem, there is an infinite clique in H. We may assume without

loss of generality that H itself is a clique by moving to a subsequence of the D′i
if necessary. With this assumption we simply pick ni = i.

Now we pick the ji recursively. Assume that ji has been chosen. As i and

i + 1 are adjacent in H, there are infinitely many indicies ` ∈ N such that
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σ[i, `] = σ[i+ 1, `]. In particular, there is such an ` > ji such that σ[i+ 1, `] is

not empty. We pick ji+1 to be one of those `.

Clearly, (ji)i∈N is an increasing sequence and σ[i, ji] = σ[i+ 1, ji] as well as

σ[i, ji] is non-empty for all i ∈ N, which completes the proof.

By moving to a subsequence of (D′i) and ((Aj , Bj)), if necessary, we may

assume by Lemma 22 and Lemma 23 that for all i, j ∈ N all d ∈ D′i induce the

same 2-shape σ[i, j] on (Aj , Bj), and that σ[i, i] = σ[i+ 1, i], and that σ[i, i] is

non-empty.

Lemma 24. For all i ∈ N there is D′′i ⊆ D′i such that |D′′i | = i, and all d ∈ D′′i
induce the same allowed 2-shape τ [i] that links σ[i, i] and σ[i, i+ 1].

Proof. Note that it is in this proof that we need all the 2-rays in D′′i to be lefty

as they need to induce an allowed 2-shape that links σ[i, i] and σ[i, i+1] as soon

as they contain a vertex from Ai. As |D′i| ≥ i · c2 and as there are at most c2
many distinct allowed 2-shapes that link σ[i, i] and σ[i, i+ 1] there is D′′i ⊆ D′i
with |D′′i | = i such that all d ∈ D′′i induce the same allowed 2-shape.

We enumerate the elements of D′′j as follows: dj1, d
j
2, . . . , d

j
j . Let (sji , t

j
i ) be a

representation of dji . Let Sj
i = sji ∩Aj+1 ∩Bj , and let Si =

⋃
j≥i S

j
i . Similarly,

let T j
i = tji ∩Aj+1 ∩Bj , and let Ti =

⋃
j≥i T

j
i .

Clearly, Si and Ti are vertex-disjoint and any two graphs in
⋃

i∈N{Si, Ti} are

edge-disjoint. We shall find a ray Ri in each of the Si and a ray R′i in each of

the Ti. The infinitely many pairs (Ri, R
′
i) will then be edge-disjoint 2-rays, as

desired.

Lemma 25. Each vertex v of Si has degree at most 2. If v has degree 1 it is

contained in Ai ∩Bi.

Proof. Clearly, each vertex v of Si that does not lie in any separator Aj ∩ Bj

has degree 2, as it is contained in precisely one Sj
i , and all the leaves of Sj

i lie

in Aj ∩Bj and Aj+1 ∩Bj+1 as dji is lefty. Indeed, in Sj
i it is an inner vertex of

a path and thus has degree 2 in there. If v lies in Ai ∩Bi it has degree at most

2, as it is only a vertex of Sj
i for one value of j, namely j = i.

Hence, we may assume that v ∈ Aj∩Bj for some j > i. Thus, σ[j, j] contains

v and l : σ[j, j] : r contains precisely one of the four following subwords:

lvl, lvr, rvl, rvr

(Here we use the notation p : q to denote the concatenation of the word p with

the word q.) In the first case τ [j − 1] contains mvm as a subword and τ [j] has

no m adjacent to v. Then Sj−1
i contains precisely 2 edges adjacent to v and Sj

i

has no such edge. The fourth case is the first one with l and r and j and j − 1

interchanged.

In the second and third cases, each of τ [j − 1] and τ [j] has precisely one m

adjacent to v. So both Sj−1
i and Sj

i contain precisely 1 edge adjacent to v.

As v appears only as a vertex of S`
i for ` = j or ` = j − 1, the degree of v in

Si is 2.
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Lemma 26. There are an odd number of vertices in Si of degree 1.

Proof. By Lemma 25 we have that each vertex of degree 1 lies in Ai ∩Bi. Let v

be a vertex in Ai∩Bi. Then, σ[i, i] contains v and l : σ[i, i] : r contains precisely

one of the four following subwords:

lvl, lvr, rvl, rvr

In the first and fourth case v has even degree. It has degree 1 otherwise. As

l : σ[i, i] : r starts with l and ends with r, the word lvr appear precisely once

more than the word rvl. Indeed, between two occurrences of lvr there must

be one of rvl and vice versa. Thus, there are an odd number of vertices with

degree 1 in Si.

Lemma 27. Si includes a ray.

Proof. By Lemma 25 every vertex of Si has degree at most 2 and thus every

component of Si has at most two vertices of degree 1. By Lemma 26 Si has a

component C that contains an odd number of vertices with degree 1. Thus C

has precisely one vertex of degree 1 and all its other vertices have degree 2, thus

C is a ray.

Corollary 28. G contains infinitely many edge-disjoint 2-rays.

Proof. By symmetry, Lemma 27 is also true with Ti in place of Si. Thus Si ∪Ti
includes a 2-ray Xi. The Xi are edge-disjoint by construction.

Recall that Lemma 15 states that a countable graph with a thin end ω and

arbitrarily many edge-disjoint double rays all whose subrays converge to ω, also

has infinitely many edge-disjoint double rays. We are now in a position to prove

this lemma.

Proof of Lemma 15. By Lemma 20 it suffices to show that G contains a sub-

graph H with a single end which is thin such that H has infinitely many edge-

disjoint 2-rays. By Corollary 17, G has a subgraph H with a single end which

is thin such that H has arbitrarily many edge-disjoint 2-rays. But then by the

argument above H contains infinitely many edge-disjoint 2-rays, as required.

With these tools at hand, the remaining proof of Theorem 1 is easy. Let us

collect the results proved so far to show that each graph with arbitrarily many

edge-disjoint double rays also has infinitely many edge-disjoint double rays.

Proof of Theorem 1. Let G be a graph that has a set Di of i edge-disjoint double

rays for each i ∈ N. Clearly, G has infinitely many edge-disjoint double rays if

its subgraph
⋃

i∈NDi does, and thus we may assume without loss of generality

that G =
⋃

i∈NDi. In particular, G is countable.

By Corollary 10 we may assume that each connected component of G in-

cludes only finitely many ends. As each component includes a double ray we

may assume that G has only finitely many components. Thus, there is one
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component containing arbitrarily many edge-disjoint double rays, and thus we

may assume that G is connected.

By Corollary 8 we may assume that all ends of G are thin. Thus, as men-

tioned at the start of Section 4, there is a pair of ends (ω, ω′) of G (not neces-

sarily distinct) such that G contains arbitrarily many edge-disjoint double rays

each of which converges precisely to ω and ω′. This completes the proof as,

by Lemma 13 G has infinitely many edge-disjoint double rays if ω and ω′ are

distinct and by Lemma 15 G has infinitely many edge-disjoint double rays if

ω = ω′.

6 Outlook and open problems

We will say that a graph H is edge-ubiquitous if every graph having arbitrarily

many edge-disjoint H also has infinitely many edge-disjoint H.

Thus Theorem 1 can be stated as follows: the double ray is edge-ubiquitous.

Andreae’s Theorem implies that the ray is edge-ubiquitous. And clearly, every

finite graph is edge-ubiquitous.

We could ask which other graphs are edge-ubiquitous. It follows from our

result that the 2-ray is edge-ubiquitous. Let G be a graph in which there are

arbitrarily many edge-disjoint 2-rays. Let v ∗G be the graph obtained from G

by adding a vertex v adjacent to all vertices of G. Then v ∗ G has arbitrarily

many edge-disjoint double rays, and thus infinitely many edge-disjoint double

rays. Each of these double rays uses v at most once and thus includes a 2-ray

of G.

The vertex-disjoint union of k rays is called a k-ray. The k-ray is edge-

ubiquitous. This can be proved with an argument similar to that for Theorem 1:

LetG be a graph with arbitrarily many edge-disjoint k-rays. The same argument

as in Corollaries 10 and 8 shows that we may assume that G has only finitely

many ends, each of which is thin. By removing a finite set of vertices if necessary

we may assume that each component of G has at most one end, which is thin.

Now we can find numbers kC indexed by the components C of G and summing

to k such that each component C has arbitrarily many edge-disjoint kC-rays.

Hence, we may assume that G has only a single end, which is thin. By Lemma 16

we may assume that G is locally finite.

In this case, we use an argument as in Subsection 5.3. It is necessary to use

k-shapes instead of 2-shapes but other than that we can use the same combina-

torial principle. If C1 and C2 are finite sets, a (C1, C2)-shaping is a pair (c1, c2)

where c1 is a partial colouring of N with colours from C1 which is defined at all

but finitely many numbers and c2 is a colouring of N(2) with colours from C2

(in our argument above, C1 would be the set of all k-shapes and C2 would be

the set of all allowed k-shapes for all pairs of k-shapes).

Lemma 29. Let D1, D2, . . . be a sequence of sets of (C1, C2)-shapings where Di

has size i. Then there are strictly increasing sequences i1, i2, . . . and j1, j2, . . .

and subsets Sn ⊆ Din with |Sn| ≥ n such that
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• for any n ∈ N all the values of c1(jn) for the shapings (c1, c2) ∈ Sn−1∪Sn

are equal (in particular, they are all defined).

• for any n ∈ N , all the values of c2(jn, jn+1) for the shapings (c1, c2) ∈ Sn

are equal.

Lemma 29 can be proved by the same method with which we constructed

the sets D′′i from the sets Di. The advantage of Lemma 29 is that it can not

only be applied to 2-rays but also to more complicated graphs like k-rays.

A talon is a tree with a single vertex of degree 3 where all the other vertices

have degree 2. An argument as in Subsection 5.2 can be used to deduce that

talons are edge-ubiquitous from the fact that 3-rays are. However, we do not

know whether the graph in Figure 2 is edge-ubiquitous.

Figure 2: A graph obtained from 2 disjoint double rays, joined by a single edge.

Is this graph edge-ubiquitous?

We finish with the following open problem.

Problem 30. Is the directed analogue of Theorem 1 true? More precisely: Is

it true that if a directed graph has arbitrarily many edge-disjoint directed double

rays, then it has infinitely many edge-disjoint directed double rays?

It should be noted that if true the directed analogue would be a common

generalization of Theorem 1 and the fact that double rays are ubiquitous with

respect to the subgraph relation.
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Linkages in Large Graphs of Bounded Tree-Width

Jan-Oliver Fröhlich∗ Ken-ichi Kawarabayashi†‡

Theodor Müller§ Julian Pott¶ Paul Wollan‖

Abstract

We show that all sufficiently large (2k + 3)-connected graphs of
bounded tree-width are k-linked. Thomassen has conjectured that all
sufficiently large (2k + 2)-connected graphs are k-linked.

1 Introduction

Given an integer k ≥ 1, a graph G is k-linked if for any choice of 2k distinct
vertices s1, . . . , sk and t1, . . . , tk of G there are disjoint paths P1, . . . , Pk in
G such that the end vertices of Pi are si and ti for i = 1, . . . , k. Menger’s
theorem implies that every k-linked graph is k-connected.

One can conversely ask how much connectivity (as a function of k) is
required to conclude that a graph is k-linked. Larman and Mani [12] and
Jung [8] gave the first proofs that a sufficiently highly connected graph is also
k-linked. The bound was steadily improved until Bollobás and Thomason
[3] gave the first linear bound on the necessary connectivity, showing that
every 22k-connected graph is k-linked. The current best bound shows that
10k-connected graphs are also k-linked [18].

What is the best possible function f(k) one could hope for which implies
an f(k)-connected graph must also be k-linked? Thomassen [20] conjectured
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that (2k+2)-connected graphs are k-linked. However, this was quickly proven
to not be the case by Jørgensen with the following example [21]. Consider
the graph obtained from K3k−1 obtained by deleting the edges of a matching
of size k. This graph is (3k− 3)-connected but is not k-linked. Thus, the best
possible function f(k) one could hope for to imply k-linked would be 3k − 2.
However, all known examples of graphs which are roughly 3k-connected but
not k-linked are similarly of bounded size, and it is possible that Thomassen’s
conjectured bound is correct if one assumes that the graph has sufficiently
many vertices.

In this paper, we show Thomassen’s conjectured bound is almost correct
with the additional assumption that the graph is large and has bounded
tree-width. This is the main result of this article.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

where κ is the connectivity of the graph and tw is the tree-width.

The tree-width of the graph is a parameter commonly arising in the theory
of graph minors; we will delay giving the definition until Section 2 where we
give a more in depth discussion of how tree-width arises naturally in tackling
the problem. The value 2k + 2 would be best possible; see Section 8 for
examples of arbitrarily large graphs which are (2k + 1)-connected but not
k-linked.

Our work builds on the theory of graph minors in large, highly connected
graphs begun by Böhme, Kawarabayashi, Maharry and Mohar [1]. Recall that
a graph G contains Kt as a minor if Kt can be obtained from a subgraph
of G by repeatedly contracting edges. Böhme et al. showed that there exists
an absolute constant c such that every sufficiently large ct-connected graph
contains Kt as a minor. This statement is not true without the assumption
that the graph be sufficiently large, as there are examples of small graphs
which are (t

√
log t)-connected but still have no Kt minor [11, 19]. In the case

where we restrict our attention to small values of t, one is able to get an
explicit characterisation of the large t-connected graphs which do not contain
Kt as a minor.

Theorem 1.2 (Kawarabayashi et al. [10]). There exists a constant N such
that every 6-connected graph G on N vertices either contains K6 as a minor
or there exists a vertex v ∈ V (G) such that G− v is planar.
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Jorgensen [7] conjectures that Theorem 1.2 holds for all graphs without
the additional restriction to graphs on a large number of vertices. In 2010,
Norine and Thomas [17] announced that Theorem 1.2 could be generalised
to arbitrary values of t to either find a Kt minor in a sufficiently large t-
connected graph or alternatively, find a small set of vertices whose deletion
leaves the graph planar. They have indicated that their methodology could
be used to show a similar bound of 2k+ 3 on the connectivity which ensures
a large graph is k-linked.

2 Outline

In this section, we motivate our choice to restrict our attention to graphs of
bounded tree-width and give an outline of the proof of Theorem 1.1.

We first introduce the basic definitions of tree-width. A tree-decompos-
ition of a graph G is a pair (T,X ) where T is a tree and X = {Xt ⊆ V (G) :
t ∈ V (T )} is a collection of subsets of V (G) indexed by the vertices of T .
Moreover, X satisfies the following properties.

1.
⋃
t∈V (T )Xt = V (G),

2. for all e ∈ E(G), there exists t ∈ V (T ) such that both ends of e are
contained in Xt, and

3. for all v ∈ V (G), the subset {t ∈ V (T ) : v ∈ Xt} induces a connected
subtree of T .

The sets in X are sometimes called the bags of the decomposition. The
width of the decomposition is maxt∈V (T ) |Xt| − 1, and the tree-width of G is
the minimum width of a tree-decomposition.

Robertson and Seymour showed that if a 2k-connected graph contains
K3k as a minor, then it is k-linked [15]. Thus, when one considers (2k + 3)-
connected graphs which are not k-linked, one can further restrict attention
to graphs which exclude a fixed clique minor. This allows one to apply
the excluded minor structure theorem of Robertson and Seymour [16]. The
structure theorem can be further strengthened if one assumes the graph has
large tree-width [5]. This motivates one to analyse separately the case when
the tree-width is large or bounded. The proofs of the main results in [1] and
[10] similarly split the analysis into cases based on either large or bounded
tree-width.

We continue with an outline of how the proof of Theorem 1.1 proceeds.
Assume Theorem 1.1 is false, and let G be a (2k+ 3)-connected graph which
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is not k-linked. Fix a set {s1, . . . , sk, t1, . . . , tk} such that there do not exist
disjoint paths P1, . . . , Pk where the ends of Pi are si and ti for all i. Fix a
tree-decomposition (T,X ) of G of minimal width w.

We first exclude the possibility that T has a high degree vertex. Assume
t is a vertex of T of large degree. By Property 3 in the definition of a
tree-decomposition, if we delete the set Xt of vertices from G, the resulting
graph must have at least degT (t) distinct connected components. By the
connectivity of G, each component contains 2k + 3 internally disjoint paths
from a vertex v to 2k+3 distinct vertices in Xt. If the degree of t is sufficiently
large, we conclude that the graph G contains a subdivision of Ka,2k+3 for
some large value a. We now prove that that if a graph contains such a large
complete bipartite subdivision and is 2k-connected, then it must be k-linked
(Lemma 7.1).

We conclude that the tree T does not have a high degree vertex, and
consequently contains a long path. It follows that the graph G has a long
path decomposition, that is, a tree-decomposition where the tree is a path.
As the bags of the decomposition are linearly ordered by their position on
the path, we simply give the path decomposition as a linearly ordered set
of bags (B1, . . . , Bt) for some large value t. At this point in the argument,
the path-decomposition (B1, . . . , Bt) may not have bounded width, but it
will have the property that |Bi ∩ Bj | is bounded, and this will suffice for
the argument to proceed. Section 3 examines this path decomposition in
detail and presents a series of refinements allowing us to assume the path
decomposition satisfies a set of desirable properties. For example, we are able
to assume that |Bi ∩ Bi+1| is the same for all i, 1 ≤ i < t. Moreover, there
exist a set P of |B1 ∩B2| disjoint paths starting in B1 and ending in Bt. We
call these paths the foundational linkage and they play an important role in
the proof. A further property of the path decomposition which we prove in
Section 3 is that for each i, 1 < i < t, if there is a bridge connecting two
foundational paths in P in Bi, then for all j, 1 < j < t, there exists a bridge
connecting the same foundational paths in Bj . This allows us to define an
auxiliary graph H with vertex set P and two vertices of P adjacent in H if
there exists a bridge connecting them in some Bi 1 < i < t.

Return to the linkage problem at hand; we have 2k terminals s1, . . . , sk
and t1, . . . , tk which we would like to link appropriately, and B1, . . . , Bt is
our path decomposition with the foundational linkage running through it.
Let the set Bi ∩Bi+1 be labeled Si. As our path decomposition developed in
the previous paragraph is very long, we can assume there exists some long
subsection Bi, Bi+1, . . . , Bi+a such that no vertex of s1, . . . , sk, t1, . . . , tk is
contained in

⋃i+a
i Bi − (Si−1 ∪ Si+a) for some large value a. By Menger’s
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theorem, there exist 2k paths linking s1, . . . , sk, t1, . . . , tk to the set Si−1∪Si+a.
We attempt to link the terminals by continuing these paths into the subgraph
induced by the vertex set Bi ∪ · · · ∪ Bi+a. More specifically, we extend the
paths along the foundational paths and attempt to link up the terminals
with the bridges joining the various foundational paths in each of the Bj . By
construction, the connections between foundational paths are the same in Bj
for all j, 1 < j < t; thus we translate the problem into a token game played
on the auxiliary graph H. There each terminal has a corresponding token,
and the desired linkage in G will exist if it is possible to slide the tokens
around H in such a way to match up the tokens of the corresponding pairs of
terminals. The token game is rigorously defined in Section 4, and we present
a characterisation of what properties on H will allow us to find the desired
linkage in G.

The final step in the proof of Theorem 1.1 is to derive a contradiction
when H doesn’t have sufficient complexity to allow us to win the token game.
In order to do so, we use the high degree in G and a theorem of Robertson and
Seymour on crossing paths. We give a series of technical results in preparation
in Section 5 and Section 6 and present the proof of Theorem 1.1 in Section 7.

3 Stable Decompositions

In this section we present a result which, roughly speaking, ensures that
a highly connected, sufficiently large graph of bounded tree-width either
contains a subdivision of a large complete bipartite graph or has a long path
decomposition whose bags all have similar structure.

Such a theorem was first established by Böhme, Maharry, and Mohar
in [2] and extended by Kawarabayashi, Norine, Thomas, and Wollan in [9],
both using techniques from [13]. We shall prove a further extension based on
the result by Kawarabayashi et al. from [9] so our terminology and methods
will be close to theirs.

For all basic definitions and notation we refer to Diestel’s textbook [4].
We begin this section with a general Lemma about nested separations. Let G
be a graph. A separation of G is an ordered pair (A,B) of sets A,B ⊆ V (G)
such that G[A]∪G[B] = G. If (A,B) is a separation of G, then A∩B is called
its separator and |A∩B| its order. Two separations (A,B) and (A′, B′) of G
are called nested if either A ⊆ A′ and B ⊇ B′ or A ⊇ A′ and B ⊆ B′. In the
former case we write (A,B) ≤ (A′, B′) and in the latter (A,B) ≥ (A′, B′).
This defines a partial order ≤ on all separations of G. A set S of separations
is called nested if the separations of S are pairwise nested, that is, ≤ is a
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linear order on S. To avoid confusion about the order of the separations in
S we do not use the usual terms like smaller, larger, maximal, and minimal
when talking about this linear order but instead use left, right, rightmost,
and leftmost, respectively (we still use successor and predecessor though). To
distinguish ≤ from < we say ‘left’ for the former and ‘strictly left’ for the
latter (same for ≥ and right).

If (A,B) and (A′, B′) are both separations ofG, then so are (A∩A′, B∪B′)
and (A ∪ A′, B ∩ B′) and a simple calculation shows that the orders of
(A∩A′, B∪B′) and (A∪A′, B∩B′) sum up to the same number as the orders
of (A,B) and (A′, B′). Clearly each of (A ∩A′, B ∪B′) and (A ∪A′, B ∩B′)
is nested with both, (A,B) and (A′, B′).

For two sets X,Y ⊆ V (G) we say that a separation (A,B) of G is an X–Y
separation if X ⊆ A and Y ⊆ B. If (A,B) and (A′, B′) are X–Y separations
in G, then so are (A∩A′, B∪B′) and (A∪A′, B∩B′). Furthermore, if (A,B)
and (A′, B′) are X–Y separations of G of minimum order, say m, then so
are (A ∩A′, B ∪B′) and (A ∪A′, B ∩B′) as none of the latter two can have
order less than m but their orders sum up to 2m.

Lemma 3.1. Let G be a graph and X,Y, Z ⊆ V (G). If for every z ∈ Z there
is an X–Y separation of G of minimal order with z in its separator, then
there is a nested set S of X–Y separations of minimal order such that their
separators cover Z.

Proof. Let S be a maximal nested set of X–Y separations of minimal order
in G (as S is finite the existence of a leftmost and a rightmost element in
any subset of S is trivial). Suppose for a contradiction that some z ∈ Z is
not contained in any separator of the separations of S.

Set SL :={(A,B) ∈ S | z ∈ B} and SR :={(A,B) ∈ S | z ∈ A}. Clearly
SL ∪ SR = S and SL ∩ SR = ∅. Moreover, if SL and SR are both non-
empty, then the rightmost element (AL, BL) of SL is the predecessor of the
leftmost element (AR, BR) of SR in S. Loosely speaking, SL and SR contain
the separations of S “on the left” and “on the right” of z, respectively, and
(AL, BL) and (AR, BR) are the separations of SL and SR whose separators
are “closest” to z.

By assumption there is an X–Y separation (A,B) of minimal order in G
with z ∈ A ∩B. Set

(A′, B′) :=(A ∪AL, B ∩BL) and (A′′, B′′) :=(A′ ∩AR, B′ ∪BR)

(but (A′, B′) :=(A,B) if SL = ∅ and (A′′, B′′) :=(A′, B′) if SR = ∅). As
(AL, BL), (A,B), and (AR, BR) are all X–Y separations of minimal order in
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G so must be (A′, B′) and (A′′, B′′). Moreover, we have z ∈ A′′ ∩ B′′ and
thus (A′′, B′′) /∈ S.

By construction we have (AL, BL) ≤ (A′, B′) and (A′′, B′′) ≤ (AR, BR).
To verify that (AL, BL) ≤ (A′′, B′′) we need to show AL ⊆ A′ ∩ AR and
BL ⊇ B′ ∪ BR. All required inclusions follow from (AL, BL) ≤ (A′, B′) and
(AL, BL) ≤ (AR, BR). So by transitivity (A′′, B′′) is right of all elements of
SL and left of all elements of SR, in particular, it is nested with all elements
of S, contradicting the maximality of the latter.

We assume that every path comes with a fixed linear order of its vertices.
If a path arises as an X–Y path, then we assume it is ordered from X to Y
and if a path Q arises as a subpath of some path P , then we assume that Q
is ordered in the same direction as P unless explicitly stated otherwise.

Given a vertex v on a path P we write Pv for the initial subpath of P
with last vertex v and vP for the final subpath of P with first vertex v. If v
and w are both vertices of P , then by vPw or wPv we mean the subpath of P
that ends in v and w and is ordered from v to w or from w to v, respectively.
By P−1 we denote the path P with inverse order.

Let P be a set of disjoint paths in some graph G. We do not distinguish
between P and the graph

⋃P formed by uniting these paths; both will be
denoted by P. By a path of P we always mean an element of P, not an
arbitrary path in

⋃P.
Let G be a graph. For a subgraph S ⊆ G an S-bridge in G is a connected

subgraph B ⊆ G such that B is edge-disjoint from S and either B is a single
edge with both ends in S or there is a component C of G− S such that B
consists of all edges that have at least one end in C. We call a bridge trivial
in the former case and non-trivial in the latter. The vertices in V (B)∩ V (S)
and V (B) \ V (S) are called the attachments and the inner vertices of B,
respectively. Clearly an S-bridge has an inner vertex if and only if it is non-
trivial. We say that an S-bridge B attaches to a subgraph S′ ⊆ S if B has
an attachment in S′. Note that S-bridges are pairwise edge-disjoint and each
common vertex of two S-bridges must be an attachment of both.

A branch vertex of S is a vertex of degree 6= 2 in S and a segment of S is a
maximal path in S such that its ends are branch vertices of S but none of its
inner vertices are. An S-bridge B in G is called unstable if some segment of S
contains all attachments of B, and stable otherwise. If an unstable S-bridge
B has at least two attachments on a segment P of S, then we call P a host
of B and say that B is hosted by P . For a subgraph H ⊆ G we say that
two segments of S are S-bridge adjacent or just bridge adjacent in H if H
contains an S-bridge that attaches to both.
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If a graph is the union of its segments and no two of its segments have the
same end vertices, then it is called unambiguous and ambiguous otherwise.
It is easy to see that a graph S is unambiguous if and only if all its cycles
contain a least three branch vertices. In our application S will always be a
union of disjoint paths so its segments are precisely these paths and S is
trivially unambiguous.

Let S ⊆ G be unambiguous. We say that S′ ⊆ G is a rerouting of S
if there is a bijection ϕ from the segments of S to the segments of S′ such
that every segment P of S has the same end vertices as ϕ(P ) (and thus ϕ is
unique by the unambiguity). If S′ contains no edge of a stable S-bridge, then
we call S′ a proper rerouting of S. Clearly any rerouting of the unambiguous
graph S has the same branch vertices as S and hence is again unambiguous.

The following Lemma states two observations about proper reroutings.
The proofs are both easy and hence we omit them.

Lemma 3.2. Let S′ be a proper rerouting of an unambiguous graph S ⊆ G
and let ϕ be as in the definition. Both of the following statements hold.

(i) Every hosted S-bridge has a unique host. For each segment P of S the
segment ϕ(P ) of S′ is contained in the union of P and all S-bridges
hosted by P .

(ii) For every stable S-bridge B there is a stable S′-bridge B′ with B ⊆ B′.
Moreover, if B attaches to a segment P of S, then B′ attaches to ϕ(P ).

Note that Lemma 3.2 (ii) implies that no unstable S′-bridge contains an
edge of a stable S-bridge. Together with (i) this means that being a proper
rerouting of an unambiguous graph is a transitive relation.

The next Lemma is attributed to Tutte; we refer to [9, Lemma 2.2] for a
proof1.

Lemma 3.3. Let G be a graph and S ⊆ G unambiguous. There exists a
proper rerouting S′ of S in G such that if B′ is an S′-bridge hosted by some
segment P ′ of S′, then B′ is non-trivial and there are vertices v, w ∈ V (P ′)
such that the component of G− {v, w} that contains B′ − {v, w} is disjoint
from S′ − vP ′w.

1 To check that Lemma 2.2 in [9] implies our Lemma 3.3 note that if S′ is obtained
from S by “a sequence of proper reroutings” as defined in [9], then by transitivity S′ is a
proper rerouting of S according to our definition. And although not explicitly included in
the statement, the given proof shows that no trivial S′-bridge can be unstable.
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This implies that the segments of S′ are induced paths in G as trivial
S′-bridges cannot be unstable and no two segments of S′ have the same end
vertices.

Let G be a graph. A set of disjoint paths in G is called a linkage. If
X,Y ⊆ V (G) with k := |X| = |Y |, then a set of k disjoint X–Y paths in G
is called an X–Y linkage or a linkage from X to Y . Let W = (W0, . . . ,Wl)
be an ordered tuple of subsets of V (G). Then l is the length of W, the sets
Wi with 0 ≤ i ≤ l are its bags, and the sets Wi−1 ∩Wi with 1 ≤ i ≤ l are its
adhesion sets. We refer to the bagsWi with 1 ≤ i ≤ l−1 as inner bags. When
we say that a bag W of W contains some graph H, we mean H ⊆ G[W ].
Given an inner bag Wi of W, the sets Wi−1 ∩Wi and Wi ∩Wi+1 are called
the left and right adhesion set of Wi, respectively. Whenever we introduce
a tuple W as above without explicitly naming its elements, we shall denote
them by W0, . . . ,Wl where l is the length of W. For indices 0 ≤ j ≤ k ≤ l
we use the shortcut W[j,k] :=

⋃k
i=jWi.

The tuple W with the following five properties is called a slim decompo-
sition of G.

(L1)
⋃W = V (G) and every edge of G is contained in some bag of W.

(L2) If 0 ≤ i ≤ j ≤ k ≤ l, then Wi ∩Wk ⊆Wj .

(L3) All adhesion sets of W have the same size.

(L4) No bag of W contains another.

(L5) G contains a (W0 ∩W1)–(Wl−1 ∩Wl) linkage.

The unique size of the adhesion sets of a slim decomposition is called its
adhesion. A linkage P as in (L5) together with an enumeration P1, . . . , Pq of
its paths is called a foundational linkage for W and its members are called
foundational paths. Each path Pα contains a unique vertex of every adhesion
set of W and we call this vertex the α-vertex of that adhesion set. For an
inner bag W of W the α-vertex in the left and right adhesion set of W are
called the left and right α-vertex of W , respectively. Note that P is allowed
to contain trivial paths so

⋂W may be non-empty.
The enumeration of a foundational linkage P for W is a formal tool to

compare arbitrary linkages between adhesion sets ofW to P by their ‘induced
permutation’ as detailed below. When considering another foundational link-
age Q = {Q1, . . . , Qq} forW we shall thus always assume that it induces the
same enumeration as P on W0 ∩W1, in other words, Qα and Pα start on the
same vertex.
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Suppose that W is a slim decomposition of some graph G with founda-
tional linkage P . Then any P-bridge B in G is contained in a bag of W , and
this bag is unique unless B is trivial and contained in one or more adhesion
sets.

We say that a linkage Q in a graph H is p-attached if each path of Q is
induced in H and if some non-trivial Q-bridge B attaches to a non-trivial
path P of Q, then either B attaches to another non-trivial path of Q or there
are at least p−2 trivial paths Q of Q such that H contains a Q-bridge (which
may be different from B) attaching to P and Q.

We call a pair (W,P) of a slim decompositionW of G and a foundational
linkage P for W a regular decomposition of attachedness p of G if there is an
integer p such that the axioms (L6), (L7), and (L8) hold.

(L6) P[W ] is p-attached in G[W ] for all inner bags W of W.

(L7) A path P ∈ P is trivial if P [W ] is trivial for some inner bag W of W.

(L8) For every P,Q ∈ P, if some inner bag of W contains a P-bridge attach-
ing to P and Q, then every inner bag of W contains such a P-bridge.

The integer p is not unique: A regular decomposition of attachedness p has
attachedness p′ for all integers p′ ≤ p. Note that P satisfies (L7) if and only
if every vertex of G either lies in at most two bags of W or in all bags. This
means that either all foundational linkages for W satisfy (L7) or none.

The next Theorem follows2 from the Lemmas 3.1, 3.2, and 3.5 in [9].

Theorem 3.4 (Kawarabayashi et al. [9]). For all integers a, l, p, w ≥ 0 there
exists an integer N with the following property. If G is a p-connected graph
of tree-width less than w with at least N vertices, then either G contains a
subdivision of Ka,p, or G has a regular decomposition of length at least l,
adhesion at most w, and attachedness p.

Note that [9] features a stronger version of Theorem 3.4, namely Theo-
rem 3.8, which includes an additional axiom (L9). We omit that axiom since
our arguments do not rely on it.

Let (W,P) be a slim decomposition of adhesion q and length l for a
graph G. Suppose that Q is a linkage from the left adhesion set of Wi to
the right adhesion set of Wj for two indices i and j with 1 ≤ i ≤ j < l.
The enumeration P1, . . . , Pq of P induces an enumeration Q1, . . . , Qq of Q

2 The statement of Lemma 3.1 in [9] only asserts the existence of a minor isomorphic
to Ka,p rather than a subdivision of Ka,p like we do. But its proof refers to an argument
in the proof of [13, Theorem 3.1] which actually gives a subdivision.
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where Qα is the path of Q starting in the left α-vertex of Wi. The map
π : {1, . . . , q} → {1, . . . , q} such that Qα ends in the right π(α)-vertex of
Wj for α = 1, . . . , q is a permutation because Q is a linkage. We call it
the induced permutation of Q. Clearly the induced permutation of Q is the
composition of the induced permutations of Q[Wi], Q[Wi+1], . . . , Q[Wj ]. For
any permutation π of {1, . . . , q} and any graph Γ on {1, . . . , q} we write πΓ
to denote the graph ({π(α) | α ∈ V (Γ)}, {π(α)π(β) | αβ ∈ E(Γ)}). For a
subset X ⊆ {1, . . . , q} we set QX :={Qα | α ∈ X}.

Keep in mind that the enumerations P induces on linkages Q as above
always depend on the adhesion set where the considered linkage starts. For
example let Q be as above and for some index i′ with i < i′ ≤ j set
Q′ :=Q[W[i′,j]]. Then Qα[W[i′,j]] need not be the same as Q′α. More pre-
cisely, we have Qα[W[i′,j]] = Q′τ(α) where τ denotes the induced permutation
of Q[W[i,i′−1]].

For some subgraph H of G the bridge graph of Q in H, denoted B(H,Q),
is the graph with vertex set {1, . . . , q} in which αβ is an edge if and only if
Qα and Qβ are Q-bridge adjacent in H. Any Q-bridge B in H that attaches
to Qα and Qβ is said to realise the edge αβ. We shall sometimes think of
induced permutations as maps between bridge graphs.

For a slim decomposition W of length l of G with foundational link-
age P we define the auxiliary graph Γ(W,P) :=B(G[W[1, l−1]],P). Clearly
B(G[W ],P[W ]) ⊆ Γ(W,P) for each inner bag W of W and if (W,P) is
regular, then by (L8) we have equality.

Set λ :={α | Pα is non-tivial} and θ :={α | Pα is trivial}. Given a sub-
graph Γ ⊆ Γ(W,P) and some foundational linkage Q for W, we write GQΓ
for the graph obtained by deleting Q \QV (Γ) from the union of Q and those
Q-bridges in inner bags of W that realise an edge of Γ or attach to QV (Γ)∩λ
but to no path of Qλ\V (Γ). For a subset V ⊆ {1, . . . , q} we write GQV instead
of GQΓ(W,P)[V ]. Note that Qθ = Pθ. Hence GPλ and GQλ are the same graph
and we denote it by Gλ.

A regular decomposition (W,P) of a graph G is called stable if it satisfies
the following two axioms where λ :={α | Pα is non-trivial}.

(L10) If Q is a linkage from the left to the right adhesion set of some inner bag
of W, then its induced permutation is an automorphism of Γ(W,P).

(L11) If Q is a linkage from the left to the right adhesion set of some inner
bag W of W , then every edge of B(G[W ],Q) with one end in λ is also
an edge of Γ(W,P).
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Given these definitions we can further expound our strategy to prove
the main theorem: We will reduce the given linkage problem to a linkage
problem with start and end vertices in W0 ∪ Wl for some stable regular
decomposition (W,P) of length l. The stability ensures that we maximised
the number of edges of Γ(W,P), i.e. no rerouting of P will give rise to new
bridge adjacencies. We will focus on a subset λ0 ⊆ λ and show that the
minimum degree of G forces a high edge density in GPλ0

, leading to a high
number of edges in Γ(W,P)[λ0]. Using combinatoric arguments, which we
elaborate in Section 4, we show that we can find linkages using segments of
P and P-bridges in GPλ0

to realise any matching of start and end vertices in
W0 ∪Wl, showing that G is in fact k-linked.

We strengthen Theorem 3.4 by the assertion that the regular decompo-
sition can be chosen to be stable. We like to point out that, even with the
left out axiom (L9) included in the definition of a regular decomposition,
Theorem 3.5 would hold. By almost the same proof as in [9] one could also
obtain a stronger version of (L8) stating that for every subset R of P if some
inner bag of W contains a P-bridge attaching to every path of R but to no
path of P \ R, then every inner bag does.

Theorem 3.5. For all integers a, l, p, w ≥ 0 there exists an integer N with
the following property. If G is a p-connected graph of tree-width less than w
with at least N vertices, then either G contains a subdivision of Ka,p, or G
has a stable regular decomposition of length at least l, adhesion at most w,
and attachedness p.

Before we start with the formal proof let us introduce its central concepts:
disturbances and contractions. Let (W,P) be a regular decomposition of a
graph G. A linkage Q is called a twisting (W,P)-disturbance if it violates
(L10) and it is called a bridging (W,P)-disturbance if it violates (L11). By a
(W,P)-disturbance we mean either of these two and a disturbance may be
twisting and bridging at the same time. If the referred regular decomposition
is clear from the context, then we shall not include it in the notation and
just speak of a disturbance. Note that a disturbance is always a linkage from
the left to the right adhesion set of an inner bag of W.

Given a disturbance Q in some inner bagW ofW which is neither the first
nor the last inner bag ofW , it is not hard to see that replacing P[W ] with Q
yields a foundational linkage P ′ for W such that Γ(W,P ′) properly contains
Γ(W,P) and we shall make this precise in the proof. As the auxiliary graph
can have at most

(
w
2

)
edges, we can repeat this step until no disturbances

(with respect to the current decomposition) are left and we should end up
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with a stable regular decomposition, given that we can somehow preserve the
regularity.

This is done by “contracting” the decomposition in a certain way. The
technique is the same as in [2] or [9]. Given a regular decomposition (W,P)
of length l of some graph G and a subsequence i1, . . . , in of 1, . . . , l, the
contraction of (W,P) along i1, . . . , in is the pair (W ′,P ′) defined as follows.
We let W ′ :=(W ′0,W

′
1, . . . ,W

′
n) with W ′0 :=W[0, i1−1],

W ′j :=W[ij , ij+1−1] for j = 1, . . . , n− 1,

Wn :=W[in,l], and P ′ = P[W ′[1, n−1]] (with the induced enumeration).

Lemma 3.6. Let (W ′,P ′) be the contraction of a regular decomposition
(W,P) of some graph G of adhesion q and attachedness p along the sequence
i1, . . . , in. Then the following two statements hold.

(i) (W ′,P ′) is a regular decomposition of length n of G of adhesion q and
attachedness p, and Γ(W ′,P ′) = Γ(W,P).

(ii) The decomposition (W ′,P ′) is stable if and only if none of the inner
bags Wi1 ,Wi1+1, . . . ,Win−1 of W contains a (W,P)-disturbance.

Proof. The first statement is Lemma 3.3 of [9]. The second statement follows
from the fact that an inner bag W ′j of W ′ contains a (W ′,P ′)-disturbance if
and only if one of the bags Wi of W with ij ≤ i < ij+1 contains a (W,P)-
disturbance (unless W ′ has no inner bag, that is, n = 1). The “if” direction
is obvious and for the “only if” direction recall that the induced permutation
of P ′[W ′j ] is the composition of the induced permutations of the P[Wi] with
ij ≤ i < ij+1 and every P ′-bridge in W ′j is also a P-bridge and hence must
be contained in some bag Wi with ij ≤ i < ij+1.

Let Q be a linkage in a graph H and denote the trivial paths of Q by Θ.
Let Q′ be the union of Θ with a proper rerouting of Q \ Θ obtained from
applying Lemma 3.3 to Q\Θ in H−Θ. We call Q′ a bridge stabilisation of Q
in H. The next Lemma tailors Lemma 3.2 and Lemma 3.3 to our application.

Lemma 3.7. Let Q be a linkage in a graph H. Denote by Θ the trivial paths
of Q and let Q′ be a bridge stabilisation of Q in H. Let P and Q be paths of
Q and let P ′ and Q′ be the unique paths of Q′ with the same end vertices as
P and Q, respectively. Then the following statements hold.

(i) P ′ is contained in the union of P with all Q-bridges in H that attach
to P but to no other path of Q \Θ.
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(ii) If P and Q are Q-bridge adjacent in H and one of them is non-trivial,
then P ′ and Q′ are Q′-bridge adjacent in H.

(iii) Let Z be the set of end vertices of the paths of Q. If p is an integer such
that for every vertex x of H − Z there is an x–Z fan of size p, then Q′
is p-attached.

Proof.

(i) This is trivial if P ∈ Θ and follows easily from Lemma 3.2 (i) otherwise.

(ii) The statement follows directly from Lemma 3.2 (ii) if P and Q are both
non-trivial so we may assume that P = P ′ ∈ Θ and Q is non-trivial. By
assumption there is a P–Q path R in H. Clearly R ∪ Q contains the
end vertices of Q′. On the other hand, by (i) it is clear that Q∩Q′ ⊆ Q′.
We claim that R∩Q′ ⊆ Q′. Since R is internally disjoint from Q all its
inner vertices are inner vertices of some (Q\Θ)-bridge B. If B is stable
or unstable but not hosted by any path of Q (that is, it has at most
one attachment), then Lemma 3.2 implies that no path of Q′ contains
an inner vertex of B and that our claim follows. If B is hosted by a
path of Q, then this path must clearly be Q and thus by Lemma 3.2
(i) R ∩Q′ ⊆ Q′ as claimed. Hence R ∪Q contains a P–Q′ path that is
internally disjoint from Q′ as desired.

(iii) Clearly all paths of Q′ are induced in H, either because they are trivial
or by Lemma 3.3. Let B be a non-trivial hosted Q′-bridge and let Q′

be the non-trivial path of Q′ to which it attaches. Then by Lemma 3.3
there are vertices v and w on Q′ and a separation (X,Y ) of H such that
V (B) ⊆ X, X ∩ Y ⊆ {v, w} ∪ V (Θ), and apart from the inner vertices
of vQ′w all vertices of Q′ are in Y , in particular, Z ⊆ Y . But B has an
inner vertex x which must be in X \ Y . So by assumption there is an
x–{v, w} ∪ V (Θ) fan of size p in G[X] and thus also an x–Θ fan of size
p− 2. It is easy to see that this can gives rise to the desired Q′-bridge
adjacencies in H.

Proof of Theorem 3.5. We will trade off some length of a regular decompo-
sition to gain edges in its auxiliary graph. To quantify this we define the
function f : N0 → N0 by f(m) :=(zlw!)ml where z := 2(w2) and call a regular
decomposition (W,P) of a graph G valid if it has adhesion at most w, at-
tachedness p, and length at least f(m) where m is the number of edges in
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the complement of Γ(W,P) that are incident with at least one non-trivial
path of P.

Set λ := f
((
w
2

))
and let N be the integer returned by Theorem 3.4 when

invoked with parameters a, λ, p, and w. We claim that the assertion of
Theorem 3.5 is true for this choice of N . Let G be a p-connected graph of
tree-width less than w with at least N vertices and suppose that G does not
contain a subdivision of Ka,p. Then by the choices of N and λ the graph G
has a valid decomposition (the foundational linkage has at most w paths so
there can be at most

(
w
2

)
non-edges in the auxiliary graph). Among all valid

decompositions of G pick (W,P) such that the number of edges of Γ(W,P)
is maximal and denote the length of (W,P) by n.

We may assume that for any integer k with 0 ≤ k ≤ n − l one of the
l − 1 consecutive inner bags Wk+1, . . . ,Wk+l−1 of W contains a disturbance.
If not, then by Lemma 3.6, the contraction of (W,P) along the sequence
k + 1, k + 2, . . . , k + l is a stable regular decomposition of G of length l,
adhesion at most w, and attachedness p as desired.

Claim 3.5.1. Let 1 ≤ k ≤ k′ ≤ n − 1 with k′ − k ≥ lw! − 1. Then the
graph H :=G[W[k,k′]] contains a linkage Q from the left adhesion set of Wk

to the right adhesion set of Wk′ such that B(H,Q) is a proper supergraph of
Γ(W,P), the induced permutation π of Q is the identity, and Q is p-attached
in H.

Proof. There are indices k0 := k, k1, . . . , kw! := k′+ 1, such that we have kj −
kj−1 ≥ l for j ∈ {1, . . . , w!}. For each j ∈ {0, . . . , w!−1} one of the at least l−1
consecutive inner bagsWkj+1,Wkj+2, . . . ,Wkj+1−1 contains a disturbance Qj
by our assumption. Let Wij be the bag of W that contains Qj and let Q′j be
the bridge stabilisation of Qj in G[Wij ].

If Qj is a twisting (W,P)-disturbance, then so is Q′j as they have the
same induced permutation. If Qj is a bridging (W,P)-disturbance, then so
is Q′j by Lemma 3.7 (ii). The set Z of end vertices of Qj is the union of both
adhesion sets of Wij and clearly for every vertex x ∈Wij \Z there is an x–Z
fan of size p in G[Wij ] as G is p-connected. So by Lemma 3.7 (iii) the linkage
Q′j is p-attached in G[Wij ].

For every j ∈ {0, . . . , w!−1} denote the induced permutation of Q′j by πj .
Since the symmetric group Sq has order at most q! ≤ w! we can pick3 indices
j0 and j1 with 0 ≤ j0 ≤ j1 ≤ w!− 1 such that πj1 ◦ πj1−1 . . . ◦ πj0 = id.

3 Let (G, ·) be a group of order n and g1, . . . , gn ∈ G. Then of the n + 1 products
hk :=

∏k
i=1 gi for 0 ≤ k ≤ n, two must be equal by the pigeon hole principle, say hk = hl

with k < l. This means
∏l
i=k+1 gi = e, where e is the neutral element of G.
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LetQ be the linkage from the left adhesion set ofWk to the right adhesion
set of Wk′ in H obtained from P[W[k,k′]] by replacing P[Wij ] with Q′j for all
j ∈ {j0, . . . , j1}. Of all the restrictions of Q to the bags Wk, . . . ,Wk′ only
Q[Wij ] = Qj with j0 ≤ j ≤ j1 need not induce the identity permutation.
However, the composition of their induced permutations is the identity by
construction and therefore the induced permutation of Q is the identity.

To see that B(H,Q) is a supergraph of Γ(W,P) note that k < ij0 so Q
and P coincide on Wk and hence by (L8) we have

Γ(W,P) = B(G[Wk],P[Wk]) ⊆ B(H,Q).

It remains to show that B(H,Q) contains an edge that is not in Γ(W,P).
Set W :=Wij0

, W ′ :=Wij0+1, and π :=πj0 . If Q′j0 is a bridging disturbance,
then B0 :=B(G[W ],Q[W ]) contains an edge that is not in Γ(W,P). Since
Q and P coincide on all bags prior to W (down to Wk) we must have
B0 ⊆ B(H,Q).

If Q′j0 is a twisting disturbance, then j1 > j0, in particular, W ′ comes
before Wij0+1 (there is at least one bag between Wij0

and Wij0+1 , namely
Wkj0+1

). This means Q[W ′] = P[W ′] and hence we have

B1 :=B(G[W ′],Q[W ′]) = B(G[W ′],P[W ′]) = Γ(W,P).

On the other hand, the induced permutation of the restriction of Q to all bags
prior to W ′ is π and thus π−1B1 ⊆ B(H,Q). But π is not an automorphism
of Γ(W,P) and therefore π−1B1 = π−1Γ(W,P) contains an edge that is not
in Γ(W,P) as desired. This concludes the proof of Claim 3.5.1

To exploit Claim 3.5.1 we now contract subsegments of lw! consecutive
inner bags of W into single bags. We assumed earlier that (W,P) is not
stable so the number m of non-edges of Γ(W,P) is at least 1 (if Γ(W,P) is
complete there can be no disturbances). Set n′ := zf(m − 1). As (W,P) is
valid, its length n is at least f(m) = zlw!f(m− 1) = n′lw!. Let (W ′,P ′) be
the contraction of (W,P) along the sequence i1, . . . , in′ defined by ij :=(j −
1)lw! + 1 for j = 1, . . . , n′. Then by Lemma 3.6 the pair (W ′,P ′) is a regular
decomposition of G of length n′, adhesion at most w, it is p-attached, and
Γ(W ′,P ′) = Γ(W,P).

By construction every inner bag W ′i of W ′ consists of lw! consecutive
inner bags of W and hence by Claim 3.5.1 it contains a bridging disturbance
Q′i such Q′i is p-attached in G[W ′i ], its induced permutation is the identity,
and B(G[W ′i ],Q′i) is a proper supergraph of Γ(W ′,P ′).

Clearly Γ(W ′,P ′) has at most z − 1 proper supergraphs on the same
vertex set. On the other hand, W ′ has at least n′ − 1 = zf(m − 1) − 1
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inner bags. By the pigeonhole principle there must be f(m − 1) indices
0 < i1 < . . . < if(m−1) < n′ such that B(G[W ′ij ],Q′ij ) is the same graph Γ

for j = 1, . . . , f(m− 1).
Let (W ′′,P ′′) be the contraction of (W ′,P ′) along i1, . . . , if(m−1). Obtain

the foundational linkage Q′′ for W ′′ from P ′′ by replacing P ′[Wij ] with Qij
for 1 ≤ j ≤ f(m− 1). By construction W ′′ is a slim decomposition of G of
length f(m− 1) and of adhesion at most w. Q′′ is a foundational linkage for
W ′′ that satisfies (L7) because P ′′ does. By construction Q′′ is p-attached
and B(G[W ′′],Q′′[W ′′]) = Γ for all inner bags W ′′ of W ′′. Hence (W ′′,P ′′)
is regular decomposition of G. But it is valid and its auxiliary graph Γ has
more edges than Γ(W,P), contradicting our initial choice of (W,P).

4 Token Movements

Consider the following token game. We place distinguishable tokens on the
vertices of a graph H, at most one per vertex. A move consists of sliding a
token along the edges of H to a new vertex without passing through vertices
which are occupied by other tokens. Which placements of tokens can be
obtained from each other by a sequence of moves?

A rather well-known instance of this problem is the 15-puzzle where tokens
1, . . . , 15 are placed on the 4-by-4 grid. It has been observed as early as 1879
by Johnson [6] that in this case there are two placements of the tokens which
cannot be obtained from each other by any number of moves.

Clearly the problem gets easier the more “unoccupied” vertices there are.
The hardest case with |H|−1 tokens was tackled comprehensively by Wilson
[22] in 1974 but before we turn to his solution we present a formal account
of the token game and show how it helps with the linkage problem.

Throughout this section let H be a graph and let X always denote a
sequence X = X0, . . . , Xn of vertex sets of H andM a non-empty sequence
M = M1, . . . ,Mn of non-trivial paths in H. In our model the sets Xi are
“occupied vertices”, the pathsMi are paths along which the tokens are moved,
and i is the “move count”.

Formally, a pair (X ,M) is called a movement on H if for i = 1, . . . , n

(M1) the set Xi−1 4Xi contains precisely the two end vertices of Mi, and

(M2) Mi is disjoint from Xi−1 ∩Xi.

Then n is the length of (X ,M), the sets in X are its intermediate configura-
tions, in particular,X0 and Xn are its first and last configuration, respectively.
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The paths in M are the moves of (X ,M). A movement with first configu-
ration X and last configuration Y is called an X–Y movement. Note that
our formal notion of token movements allows a move Mi to have both ends
in Xi−1 or both in Xi. In our intuitive account of the token game this corre-
sponds to “destroying” or “creating” a pair of tokens on the end vertices of
Mi.

Let us state some obvious facts about movements. IfM is a non-empty
sequence of non-trivial paths in H and one intermediate configuration Xi is
given, then there is a unique sequence X such that (X ,M) satisfies (M1). A
pair (X ,M) is a movement if and only if ((Xi−1, Xi), (Mi)) is a movement
for i = 1, . . . , n. This easily implies the following Lemma so we spare the
proof.

Lemma 4.1. Let (X ,M) = ((X0, . . . , Xn), (M1, . . . ,Mn)) and (Y,N ) =
((Y0, . . . , Ym), (N1, . . . , Nm)) be movements on H and let Z ⊆ V (H).

(i) If Xn = Y0, then the pair
(
(X0, . . . , Xn = Y0, . . . , Ym), (M1, . . .Mn, N1, . . . , Nm)

)

is a movement. We denote it by (X ,M) ⊕ (Y,N ) and call it the con-
catenation of (X ,M) and (Y,N ).

(ii) If every move ofM is disjoint from Z, then the pair
(
(X0 ∪ Z, . . . ,Xn ∪ Z), (M1, . . .Mn)

)

is a movement and we denote it by (X ∪ Z,M).

Let (X ,M) be a movement. For i = 1, . . . , n let Ri be the graph with
vertex set (Xi−1 × {i− 1}) ∪ (Xi × {i}) and the following edges:

1. (x, i− 1)(x, i) for each x ∈ Xi−1 ∩Xi, and

2. (x, j)(y, k) where x, y are the end vertices of Mi and j, k the unique
indices such that (x, j), (y, k) ∈ V (Ri).

Define a multigraph R with vertex set
⋃n
i=0(Xi×{i}) where the multiplicity

of an edge is the number of graphs Ri containing it. Observe that two graphs
Ri and Rj with i < j are edge-disjoint unless j = i+ 1 and Mi and Mj both
end in the same two vertices x, y of Xj , in which case they share one edge,
namely (x, j)(y, j). Our reason to prefer the above definition of R over just
taking the simple graph

⋃n
i=1Ri is to avoid a special case in the following

argument.
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Every graph Ri is 1-regular. Hence in R every vertex (x, i) with 0 < i < n
has degree 2 as (x, i) is a vertex of Rj if an only if j = i or j = i+ 1. Every
vertex (x, i) with i = 0 or i = n has degree 1 as it only lies in R1 or in Rn.
This implies that a component of R is either a cycle (possibly of length 2)
avoiding (X0×{0})∪ (Xn×{n}) or a non-trivial path with both end vertices
in (X0×{0})∪ (Xn×{n}). We denote the subgraph of R consisting of these
paths by R(X ,M). Intuitively, each path of R(X ,M) traces the position of
one token over the course of the token movement or of one pair of tokens
which is destroyed or created during the movement.

For vertex sets X and Y we call any 1-regular graph on (X×{0})∪ (Y ×
{∞}) an (X,Y )-pairing. An (X,Y )-pairing is said to be balanced if its edges
form a perfect matching from X × {0} to Y × {∞}, that is, each edge has
one end vertex in X × {0} and the other in Y × {∞}.

The components of R(X ,M) induce a 1-regular graph on (X0 × {0}) ∪
(Xn × {n}) where two vertices form an edge if and only if they are in the
same component of R(X ,M). To make this formally independent of the
index n, we replace each vertex (x, n) by (x,∞). The obtained graph L is an
(X0, Xn)-pairing and we call it the induced pairing of the movement (X ,M).
A movement (X ,M) with induced pairing L is called an L-movement. If a
movement induces a balanced pairing, then we call the movement balanced
as well.

Given two sets X and Y and a bijection ϕ : X → Y we denote by L(ϕ)
the balanced X–Y pairing where (x, 0)(y,∞) is an edge of L(ϕ) if and only
if y = ϕ(x). Clearly an X–Y pairing L is balanced if and only if there is a
bijection ϕ : X → Y with L = L(ϕ).

Given sets X, Y , and Z let LX be an X–Y pairing and LZ a Y –Z pairing.
Denote by LX ⊕LZ the graph on (X ×{0})∪ (Z ×{∞}) where two vertices
are connected by an edge if and only if they lie in the same component of
LX ∪L(idY )∪LZ . The components of LX ∪L(idY )∪LZ are either paths with
both ends in (X ×{0})∪ (Z ×{∞}) or cycles avoiding that set. So LX ⊕LZ
is an X–Z pairing end we call it the concatenation of LX and LZ . The next
Lemma is an obvious consequence of this construction (and Lemma 4.1 (i)).

Lemma 4.2. The induced pairing of the concatenation of two movements is
the concatenation of their induced pairings.

Let (X ,M) be a movement on H. A vertex x of H is called (X ,M)-
singular if no move ofM contains x as an inner vertex and Ix :={i | x ∈ Xi}
is an integer interval, that is, a possibly empty sequence of consecutive integers.
Furthermore, x is called strongly (X ,M)-singular if it is (X ,M)-singular and
Ix is empty or contains one of 0 and n where n denotes the length of (X ,M).
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We say that a setW ⊆ V (H) is (X ,M)-singular or strongly (X ,M)-singular
if all its vertices are. If the referred movement is clear from the context, then
we shall drop it from the notation and just write singular or strongly singular.

Note that any vertex v of H that is contained in at most one move of
M is strongly (X ,M)-singular. Furthermore, v is singular but not strongly
singular if it is contained in precisely two moves but neither in the first nor
in the last configuration.

The following Lemma shows how to obtain linkages in a graph G from
movements on the auxiliary graph of a regular decomposition of G. It enables
us to apply the results about token movements from this section to our
linkage problem.

Lemma 4.3. Let (W,P) be a stable regular decomposition of some graph G
and set λ :={α | Pα is non-trivial} and θ :={α | Pα is trivial}. Let (X ,M) be
a movement of length n on a subgraph Γ ⊆ Γ(W,P) and denote its induced
pairing by L. If θ is (X ,M)-singular and Wa and Wb are inner bags of W
with b − a = 2n − 1, then there is a linkage Q ⊆ GPΓ [W[a,b]] and a bijection
ϕ : E(L) → Q such that for each e ∈ E(L) the path ϕ(e) ends in the left
α-vertex of Wa if and only if (α, 0) ∈ e and ϕ(e) ends in the right α-vertex
of Wb if and only if (α,∞) ∈ e.
Proof. Let us start with the general observation that for every connected
subgraph Γ0 ⊆ Γ(W,P) and every inner bag W of W the graph GPΓ0

[W ]
is connected: If αβ is an edge of Γ0, then some inner bag of W contains a
P-bridge realising αβ and so doesW by (L8). In particular,GPΓ0

[W ], contains
a Pα–Pβ path. So PV (Γ0)[W ] must be contained in one component of GPΓ0

[W ]

as Γ0 is connected. But any vertex of GPΓ0
[W ] is in PV (Γ0) or in a P-bridge

attaching to it. Therefore GPΓ0
[W ] is connected.

The proof is by induction on n. Denote the end vertices of M1 by α
and β, that is, X0 4 X1 = {α, β}. By definition the induced pairing L1

of ((X0, X1), (M1)) contains the edges (γ, 0)(γ,∞) with γ ∈ X0 ∩ X1 and
w.l.o.g. precisely one of (α, 0)(β, 0), (α, 0)(β,∞), and (α,∞)(β,∞). The
above observation implies that GPM1

[Wa] is connected. Hence Pα[W[a,a+1]] ∪
GPM1

[Wa] ∪ Pβ[W[a,a+1]] is connected and thus contains a path Q such that
Q1 :={Q} ∪ PX0∩X1 [W[a,a+1]] satisfies the following. There is a bijection
ϕ1 : E(L1) → Q1 such that for each e ∈ E(L1) the path ϕ1(e) ends in
the left γ-vertex of Wa if and only if (γ, 0) ∈ e and ϕ1(e) ends in the right
γ-vertex of Wa+1 if and only if (γ,∞) ∈ e. Moreover, the paths of Q1 are
internally disjoint from Wa+1 ∩Wa+2.

In the base case n = 1 the linkage Q :=Q1 is as desired. Suppose that
n ≥ 2. Then ((X1, . . . , Xn), (M2, . . . ,Mn)) is a movement and we denote its
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induced permutation by L2. Lemma 4.2 implies L = L1 ⊕ L2. By induction
there is a linkage Q2 ⊆ GPΓ [W[a+2,b]] and a bijection ϕ2 : E(L2)→ Q2 such
that for any e ∈ E(L2) the path ϕ2(e) ends in the left α-vertex of Wa+2

(which is the right α-vertex of Wa+1) if and only if (α, 0) ∈ e and in the right
α-vertex of Wb if and only if (α,∞) ∈ e.

Clearly for every γ ∈ X1 the γ-vertex ofWa+1∩Wa+2 has degree at most 1
in Q1 and in Q2. If a path of Q1 contains the γ-vertex of Wa+1 ∩Wa+2 and
γ /∈ X1, then γ ∈ θ so by assumption Iγ = {i | γ ∈ Xi} is an integer interval
which contains 0 but not 1. This means that no path of Q2 contains the
unique vertex of Pγ . If the union Q1 ∪ Q2 of the two graphs Q1 and Q2

contains no cycle, then it is a linkage Q as desired. Otherwise it only contains
such a linkage.

In the rest of this section we shall construct suitable movements as input
for Lemma 4.3. Our first tool to this end is the following powerful theorem4

of Wilson.

Theorem 4.4 (Wilson 1974). Let k be a postive integer and let H be a graph
on n ≥ k + 1 vertices. If H is 2-connected and contains a triangle, then for
every bijection ϕ : X → Y of sets X,Y ⊆ V (H) with |X| = k = |Y | there is
a L(ϕ)-movement of length m ≤ n!/(n− k)! on H.

The given bound on m is not included in the original statement but not
too hard to check: Suppose that (X ,M) is a shortest L(ϕ)-movement and m
is its length. Since L is balanced we may assume that no tokes are “created”
or “destroyed” during the movement, that is, all intermediate configurations
have the same size and for every i with 1 ≤ i ≤ m there is an injection
ϕi : X → V (H) such that the induced pairing of ((X0, . . . , Xi), (M1, . . . ,Mi))
is L(ϕi). If there were i < j with ϕi = ϕj , then

(
(X0, . . . , Xi = Xj , Xj+1, . . . , Xm), (M1, . . . ,Mi,Mj+1, . . . ,Mm)

)

was an L(ϕ)-movement of length m− j + i < m contradicting our choice of
(X ,M). But there are at most n!/(n− k)! injections from X to V (H) so we
must have m ≤ n!/(n− k)!.

For our application we need to generate L-movements where L is not
necessarily balanced. Furthermore, Lemma 4.3 requires the vertices of θ to be
singular with respect to the generated movement. Lemma 4.8 and Lemma 4.9

4Wilson stated his theorem for graphs which are neither bipartite, nor a cycle, nor a
certain graph θ0. If H properly contains a triangle, then it satisfies all these conditions
and if H itself is a triangle, then our theorem is obviously true.
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give a direct construction of movements if some subgraph of H is a large
star. Lemma 4.10 provides an interface to Theorem 4.4 that incorporates
the above requirements. The proofs of these three Lemmas require a few
tools: Lemma 4.5 simply states that for sets X and Y of equal size there is a
short balanced X–Y movement. Lemma 4.6 exploits this to show that instead
of generating movements for every choice of X,Y ⊆ V (H) and any (X,Y )-
pairing L it suffices to consider just one choice of X and Y . Lemma 4.7 allows
us to move strongly singular vertices from X to Y and vice versa without
spoiling the existence of the desired X–Y movement.

We call a set A of vertices in a graph H marginal if H −A is connected
and every vertex of A has a neighbour in H −A.
Lemma 4.5. For any two distinct vertex sets X and Y of some size k in a
connected graph H and any marginal set A ⊆ V (H) there is a balanced X–Y
movement of length at most k on H such that A is strongly singular.

Proof. We may assume that H is a tree and that all vertices of A are leaves
of this tree. This already implies that vertices of A cannot be inner vertices
of moves. Moreover, we may assume that X ∩ Y ∩A = ∅.

We apply induction on |H|. The base case |H| = 1 is trivial. For |H| > 1
let e be an edge of H. If the two components H1 and H2 of H − e each
contain the same number of vertices from X as from Y , then for i = 1, 2 we
setXi :=X∩V (Hi) and Yi :=Y ∩V (Hi). By induction there is a balancedXi–
Yi movement (Xi,Mi) of length at most |Xi| on Hi such that each vertex of A
is strongly (Xi,Mi)-singular where i = 1, 2. By Lemma 4.1 (X ,M) :=(X1 ∪
X2,M1)⊕(X2∪Y1,M2) is an X–Y movement of length at most |X1|+|X2| =
|X| = k as desired. Clearly (X ,M) is balanced and A is strongly (X ,M)-
singular as H1 and H2 are disjoint.

So we may assume that for every edge e of H one component of H − e
contains more vertices from Y than from X and direct e towards its end
vertex lying in this component. As every directed tree has a sink, there is
a vertex y of H such that every incident edge e is incoming, that is, the
component of H − e not containing y contains more vertices of X than of Y .
As |X| = |Y |, this can only be if y is a leaf in H and y ∈ Y \X.

Let M be any X–y path and denote its first vertex by x. At most one
of x ∈ Y and x ∈ A can be true by assumption. Clearly (({x}, {y}), (M)) is
an {x}–{y} movement and since H − y is connected, by induction there is
a balanced (X \ {x})–(Y \ {y}) movement (X ′,M′) of length at most k − 1
on H − y such that A is strongly singular w.r.t. both movements. As before,
Lemma 4.1 implies that

(X ,M) :=
(
(X, (X \ {x}) ∪ {y}), (M)

)
⊕ (X ′ ∪ {y},M′)
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is an X–Y movement of length at most k. Clearly (X ,M) is balanced and
by construction A is strongly (X ,M)-singular.

Lemma 4.6. Let k be a positive integer and H a connected graph with a
marginal set A. Suppose that X,X ′, Y ′, Y ⊆ V (H) are sets with |X|+ |Y | =
2k, |X ′| = |X|, and |Y ′| = |Y | such that (X∪X ′)∩(Y ′∪Y ) does not intersect
A. If for each (X ′, Y ′)-pairing L′ there is an L′-movement (X ′,M′) of length
at most n′ on H such that A is strongly (X ′,M′)-singular, then for each
(X,Y )-pairing L there is an L-movement (X ,M) of length at most n′ + 2k
such that A is (X ,M)-singular and all vertices of A that are not strongly
(X ,M)-singular are in (X ′ ∪ Y ′) \ (X ∪ Y ).

Proof. Let (XX ,MX) be a balanced X–X ′ movement of length at most |X|
and let (XY ,MY ) be a balanced Y ′–Y movement of length at most |Y | such
that A is strongly singular w.r.t. both movements. These exist by Lemma 4.5.
For any X ′–Y ′ movement (X ′,M′) such that A is strongly (X ′,M′)-singular,

(X ,M) :=(XX ,MX)⊕ (X ′,M′)⊕ (XY ,MY )

is a movement of length at most |X|+ n′ + |Y | = n′ + 2k by Lemma 4.1.
In a slight abuse of the notation we shall write a ∈ MX , a ∈ M′, and

a ∈ MY for a vertex a ∈ A if there is a move of MX , M′, and MY ,
respectively, that contains a. Consequently, we write a /∈ MX , etc. if there
is no such move. The set A is strongly singular w.r.t. each of (XX ,MX),
(X ′,M′), and (XY ,MY ). Therefore all moves of M are internally disjoint
from A and each a ∈ A is contained in at most one move from each ofMX ,
M′, andMY . Moreover, for each a ∈ A

1. a ∈MX if and only if precisely one of a ∈ X and a ∈ X ′ is true,

2. a ∈M′ if and only if precisely one of a ∈ X ′ and a ∈ Y ′ is true, and

3. a ∈MY if and only if precisely one of a ∈ Y ′ and a ∈ Y is true.

Clearly A \ (X ∪ X ′ ∪ Y ′ ∪ Y ) is strongly (X ,M)-singular as none of its
vertices is contained in a path ofM.

Let a ∈ X ∩ A. Then by assumption a /∈ Y ∪ Y ′ and thus a /∈ MY . If
a ∈ X ′, then a ∈M′ and a /∈MX . Otherwise a /∈ X ′ and therefore a ∈MX

and a /∈M′. In either case a is in at most one move ofM and hence X ∩A
is strongly (X ,M)-singular. A symmetric argument shows that Y ∩ A is
strongly (X ,M)-singular.

Let a ∈ (X ′ ∪ Y ′)∩A with a /∈ X ∪ Y . Then a ∈ X ′4 Y ′ so a ∈M′ and
precisely one of a ∈MX and a ∈MY is true.

111



We conclude that every vertex of a ∈ A is (X ,M)-singular and it is even
strongly (X ,M)-singular if and only if a /∈ (X ′ ∪ Y ′) \ (X ∪ Y ).

The induced pairings LX of (XX ,MX) and LY of (XY ,MY ) are both
balanced and it is not hard to see that for a suitable choice of L′ the induced
pairing LX ⊕ L′ ⊕ LY of (X ,M) equals L.

Lemma 4.7. Let H be a connected graph and let X,Y ⊆ V (H). Suppose that
L is an (X,Y )-pairing and (X ,M) an L-movement of length n. If x ∈ X∪Y
is strongly (X ,M)-singular, then the following statements hold.

(i) (X 4 x,M) is an (L4 x)-movement of length n where X 4 x :=(X04
{x}, . . . , Xn 4 {x}) and L4 x denotes the graph obtained from L by
replacing (x, 0) with (x,∞) or vice versa (at most one of these can be
a vertex of L).

(ii) A vertex y ∈ V (H) is (strongly) (X ,M)-singular if and only if it is
(strongly) (X 4 x,M)-singular.

Proof. Clearly (X 4 x,M) is an (L4 x)-movement of length n. As its in-
termediate configurations differ from those of X only in x, the last assertion
is trivial for y 6= x. For y = x note that {i | x /∈ Xi} is an integer interval
containing precisely one of 0 and n because {i | x ∈ Xi} is.

In the final three Lemmas of this section we put our tools to use and
construct movements under certain assumptions about the graph. Note that
it is not hard to improve on the upper bounds given for the lengths of the
generated movements with more complex proofs. However, in our main proof
we have an arbitrarily long stable regular decomposition at our disposal, so
the input movements for Lemma 4.3 can be arbitrarily long as well.

Lemma 4.8. Let k be a positive integer and H a connected graph with a
marginal set A. If one of

a) |A| ≥ 2k − 1 and

b) |NH(v) ∩NH(w) ∩A| ≥ 2k − 3 for some edge vw of H −A
holds, then for any X–Y pairing L such thatX,Y ⊆ V (H) with |X|+|Y | = 2k
and X ∩ Y ∩A = ∅ there is an L-movement (X ,M) of length at most 3k on
H such that A is (X ,M)-singular.

The basic argument of the proof is that that if we place tokens on the
leaves of a star but not on its centre, then we can clearly “destroy” any given
pair of tokens by moving one on top of the other through the centre of the
star.
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Proof. Suppose that a) holds. Let NA ⊆ A with |NA| = 2k − 1. There are
sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′,

3. Y ∩NA ⊆ Y ′, and

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩A = ∅.

By Lemma 4.6 it suffices to show that for each X ′–Y ′ pairing L′ there is
an L′-movement (X ′,M′) of length at most k on H such that A is strongly
(X ′,M′)-singular. Assume w.l.o.g. that the unique vertex of (X ′ ∪ Y ′) \NA

is in X ′. Repeated application of Lemma 4.7 implies that the desired L′-
movement (X ′,M′) exists if and only if for every (X ′ ∪ Y ′)–∅ pairing L′′

there is an L′′-movement (X ′′,M′′) of length at most k on H such that A is
strongly (X ′′,M′′)-singular.

Let L′′ be any (X ′ ∪ Y ′)–∅ pairing. Then E(L′′) = {(xi, 0)(yi, 0) | i =
1, . . . , k} where (X ′ ∪ Y ′) ∩ NA = {x1, . . . , xk, y2, . . . , yk} and (X ′ ∪ Y ′) \
NA = {y1}. For i = 0, . . . , k set Xi :={xj , yj | j > i}. For i = 1, . . . , k
let Mi be an xi–yi path in H that is internally disjoint from A. Then
(X ′′,M′′) :=((X0, . . . , Xk), (M1, . . . ,Mk)) is an L′′-movement of length k and
obviously A is strongly (X ′′,M′′)-singular.

Suppose that b) holds and letNA ⊆ NH(v)∩NH(w)∩A with |NA| = 2k−3
and set NB :={v, w}. There are sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB, and

6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB.

By Lemma 4.6 (see case a) for the details) it suffices to find an L′-
movement (X ′,M′) of length at most k onH such thatA is strongly (X ′,M′)-
singular where L′ is any X ′–Y ′ pairing. Since |(X ′ ∪ Y ′) \NA| = 3 we may
asssume w.l.o.g. that NB ⊆ X ′ and Y ′ ⊆ NA ∪ {v}. So either there is
z ∈ X ′ \ (NA∪NB) or v ∈ Y ′. By repeated application of Lemma 4.7 we may
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assume that NA ⊆ X ′. This means that L′ has the vertices N̄A :=NA × {0},
v̄ :=(v, 0), w̄ :=(w, 0), and z̄ :=(z, 0) in the first case or z̄ :=(v,∞) in the
second case. So L′ must satisfy one of the following.

1. No edge of L′ has both ends in {v̄, w̄, z̄}.

2. v̄w̄ ∈ E(L′).

3. v̄z̄ ∈ E(L′).

4. w̄z̄ ∈ E(L′).

This leaves us with eight cases in total. Since construction is almost the same
for all cases we provide the details for only one of them: We assume that v ∈ Y ′
and w̄z̄ ∈ E(L′). Then L′ has edges (w, 0)(v,∞) and {(xi, 0)(yi, 0) | i =
1, . . . , k − 1} where x1 := v and X ′ ∩NA = {x2, . . . , xk−1, y1, . . . , yk−1}. For
i = 0, . . . , k− 1 set Xi :={w}∪⋃j>i{xj , yj} and let Xk :={v}. Set M1 := vy1

and Mi :=xivyi for i = 2, . . . , k − 1 and let Mk be a w–z path in H that is
internally disjoint from A. Then (X ′,M′) :=((X0, . . . , Xk), (M1, . . . ,Mk)) is
an L′-movement and A is strongly (X ′,M′)-singular.

Lemma 4.9. Let k be a positive integer and H a connected graph with a
marginal set A. Let X,Y ⊆ V (H) with |X|+ |Y | = 2k and X ∩ Y ∩ A = ∅.
Suppose that there is a vertex v of H − (X ∪ Y ∪A) such that

2|NH(v) \A|+ |NH(v) ∩A| ≥ 2k + 1.

Then for any (X,Y )-pairing L there is an L-movement of length at most
k(k + 2) on H such that A is singular.

Although the basic idea is still the same as in Lemma 4.8 it gets a little
more complicated here as our star might not have enough leaves to hold all
tokens at the same time. Hence we prefer an inductive argument over an
explicit construction.

Proof. Set NA :=NH(v) ∩ A and NB :=NH(v) \ A. If |NA| ≥ 2k − 1, then
we are done by Lemma 4.8 as 3k ≤ k(k + 2). So we may assume that
|NA| ≤ 2k− 2. Under this additional assumption we prove a slightly stronger
statement than that of Lemma 4.9 by induction on k: We not only require
that A is singular but also that all vertices of A that are not strongly singular
are in NA \ (X ∪ Y ).

The base case k = 1 is trivial. Suppose that k ≥ 2. There are sets
X ′, Y ′ ⊆ V (H) such that
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1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB,

6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB, and

7. v /∈ X ′ and v /∈ Y ′.
By Lemma 4.6 it suffices to find an L′-movement (X ′,M′) of length at

most k2 such that A is strongly (X ′,M′)-singular where L′ is any X ′–Y ′

pairing.
If there are x, y ∈ X ′ ∩ NH(v) such that (x, 0)(y, 0) ∈ E(L′), then

set X ′′ :=X ′ \ {x, y}, Y ′′ :=Y ′, H ′′ :=H − (A \ (X ′′ ∪ Y ′′)), and L′′ :=L′ −
{(x, 0), (y, 0)}. We have NH′′(v) \A = NB and NH′′(v)∩A = NA \ {x, y} as
NA ⊆ X ′ ∪ Y ′. This means

2|NH′′(v) \A|+ |NH′′(v) ∩A| ≥ 2|NB|+ |NA| − 2 ≥ 2k − 1.

Hence by induction there is an L′′-movement (X ′′,M′′) of length at most
(k + 1)(k − 1) on H ′′ such that A is singular and all vertices of A that
are not strongly singular are in NA \ (X ′′ ∪ Y ′′). Since NA ∩ V (H ′′) ⊆
X ′′ ∪ Y ′′ the set A is strongly (X ′′,M′′)-singular. Then by construction
(X ′,M′) :=((X ′, X ′′), (xvy))⊕(X ′′,M′′) is an L′-movement of length at most
k2 and A is strongly (X ′,M′)-singular.

The case x, y ∈ Y ′ ∩NH(v) with (x,∞)(y,∞) ∈ E(L′) is symmetric. If
there are x ∈ X ′ ∩NH(v) and y ∈ Y ′ ∩NH(v) such that (x, 0)(y,∞) ∈ E(L′)
and at least one of x and y is in NA, then the desired movement exists by
Lemma 4.7 and one of the previous cases.

By assumption

2|NH(v)| ≥ 2|NB|+ |NA| ≥ 2k + 1

and thus |NH(v)| ≥ k+1. If NB ⊆ X ′, then NH(v) ⊆ X ′∪(Y ′∩A) and there
is a pair as above by the pigeon hole principle. Hence we may assume that
X ′ ⊂ NB and by symmetry also that Y ′ ⊂ NB. This implies that NA = ∅
and that L′ is balanced.

So we have |X ′| = k = |Y ′|, X ′, Y ′ ⊆ NB and |NB| ≥ k + 1. It is easy
to see that there is an L′-movement (X ′,M′) of length at most 2k ≤ k2 on
H[{v} ∪NB] such that A is strongly (X ′,M′)-singular.
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Lemma 4.10. Let n ∈ N and let f : N0 → N0 be the map that is recursively
defined by setting f(0) := 0 and f(k) := 2k + 2n! + 4 + f(k − 1) for k > 0.
Let k be a positive integer and let H be a connected graph on at most n
vertices with a marginal set A. Let X,Y ⊆ V (H) with |X| + |Y | = 2k and
X ∩ Y ∩ A = ∅ such that neither X nor Y contains all vertices of H − A.
Suppose that there is a block D of H − A such that D contains a triangle
and 2|D| + |N(D)| ≥ 2k + 3. Then for any (X,Y )-pairing L there is an
L-movement of length at most f(k) on H such that A is singular.

Proof. Set NA :=N(D) ∩A and NB :=N(D) \A. If |NA| ≥ 2k − 1, then we
are done by Lemma 4.8 as 3k ≤ f(k). So we may assume that |NA| ≤ 2k− 2.
Under this additional assumption we prove a slightly stronger statement
than that of Lemma 4.10 by induction on k: We not only require that A is
singular but also that all vertices of A that are not strongly singular are in
NA \ (X ∪ Y ). As always the base case k = 1 is trivial. Suppose that k ≥ 2.

Claim 4.10.1. Suppose that |V (D) \ X| ≥ 1 and that there is an edge
(x, 0)(y, 0) ∈ E(L) with x ∈ V (D) and y ∈ V (D)∪N(D). Let A′ ⊆ A\(X∪Y )
with |A′| ≤ 1. Then there is an L-movement of length at most |D|!+1+f(k−1)
on H −A′ such that A is singular and every vertex of A that is not strongly
singular is in NA \ (X ∪ Y ).

Proof. Let y′ be a neighbour of y in D. Here is a sketch of the idea: Move
the token from x to y′ by a movement on D which we can generate with
Wilsons’s Theorem 4.4 and then add the move yy′. This “destroys” one pair
of tokens and allows us to invoke induction.

We assume x 6= y′ (in the case x = y′ we can skip the construction
of (Xϕ,Mϕ) in this paragraph). Set X ′ :=(X \ {x}) ∪ {y′} if y′ /∈ X and
X ′ :=X otherwise. The vertices x and y′ are both in the 2-connected graph
D which contains a triangle. By definition |X ∩V (D)| = |X ′ ∩V (D)| and by
assumption both sets are smaller than |D|. Let ϕ : X → X ′ any bijection with
ϕ|X\V (D) = id |X\V (D) and ϕ(x) = y′. By Theorem 4.4 there is a balanced
L(ϕ|V (D))-movement of length at most |D|! on D so by Lemma 4.1 (ii) there
is a balanced L(ϕ)-movement (Xϕ,Mϕ) of length at most |D|! on H such
that all its moves are contained in D.

Set X ′′ :=X ′ \ {y, y′} and let L′ be the X ′–X ′′ pairing with edge set
{(z, 0)(z,∞) | z ∈ X ′′} ∪ {(y, 0)(y′, 0)}. Clearly ((X ′, X ′′), (yy′)) is an L′-
movement. Let L′′ be the X ′′–Y pairing obtained from L by deleting the edge
(x, 0)(y, 0) and substituting every vertex (z, 0) with (ϕ(z), 0). By definition
we have L = L(ϕ)⊕ L′ ⊕ L′′.
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The set A′′ :=A′ ∪ (A ∩ {y}) has at most 2 elements and thus 2|D| +
|N(D) \ A′′| ≥ 2k + 1. So by induction there is an L′′-movement (X ′′,M′′)
of length at most f(k − 1) on H −A′′ such that A is (X ′′,M′′)-singular and
every vertex of A that is not strongly (X ′′,M′′)-singular is in NA \ (X ∪ Y ).
Hence the movement

(X ,M) :=(Xϕ,Mϕ)⊕
(
(X ′, X ′′), (yy′)

)
⊕ (X ′′,M′′)

on H−A′ has induced pairing L by Lemma 4.2 and length at most |D|! + 1 +
f(k−1). Every move ofM that contains a vertex of A\{y} is inM′′. Hence
A \ {y} is (X ,M)-singular and every vertex of A \ {y} that is not strongly
(X ,M)-singular is in NA \ (X ∪Y ). If y /∈ A, then we are done. But if y ∈ A,
then our construction of (X ′′,M′′) ensures that no move ofM′′ contains y.
Therefore y is strongly (X ,M)-singular.

Claim 4.10.2. Suppose that |V (D)\X| ≥ 2 and that L has an edge (x, 0)(y, 0)
with x, y ∈ N(D). Then there is an L-movement of length at most 2|D|! +
2 + f(k − 1) on H such that A is singular and every vertex of A that is not
strongly singular is in NA \ (X ∪ Y ).

Proof. The proof is very similar to that of Claim 4.10.1. Let y′ be a neighbour
of y in D. We assume y′ ∈ X (in the case y′ /∈ X we can skip the construction
of (Xϕ,Mϕ) in this paragraph). Let z ∈ V (D)\X and letX ′ :=(X\{y′})∪{z}.
Let ϕ : X → X ′ be any bijection with ϕ|X\V (D) = idX\V (D) and ϕ(y′) = z.
Applying Theorem 4.4 and Lemma 4.1 as in the proof of Claim 4.10.1 we
obtain a balanced L(ϕ)-movement (Xϕ,Mϕ) of length at most |D|! such that
its moves are contained in D (in fact, we could “free” the vertex y′ with only
|D| moves by shifting each token on a y′–z path in D by one position towards
z, but we stick with the proof of Claim 4.10.1 here for simplicity).

SetX ′′ :=(X ′\{y})∪{y′} and let ϕ′ : X ′ → X ′′ be the bijection that maps
y to y′ and every other element to itself. Clearly ((X ′, X ′′), (yy′)) is an L(ϕ′)-
movement. Let L′′ be theX ′′–Y pairing obtained from L by substituting every
vertex (z, 0) with (ϕ′ ◦ ϕ(z), 0). It is not hard to see that this construction
implies L = L(ϕ) ⊕ L(ϕ′) ⊕ L′′. Since (0, x)(0, y′) is an edge of L′′ with
x ∈ V (D) ∪ N(D) and y′ ∈ V (D) we can apply Claim 4.10.1 to obtain an
L′′-movement (X ′′,M′′) of length at most |D|!+1+f(k−1) on H−({y}∩A)
(note that y ∈ A ∩ X implies y /∈ Y by assumption) such that A \ {y} is
(X ′′,M′′)-singular and every vertex of A \ {y} that is not strongly (X ′′,M′′)-
singular is in NA \ (X ∪ Y ). Hence the movement

(X ,M) :=(Xϕ,Mϕ)⊕
(
(X ′, X ′′), (yy′)

)
⊕ (X ′′,M′′)
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on H has induced pairing L by Lemma 4.2 and length at most 2|D|! + 2 +
f(k − 1). The argument that A is (X ,M)-singular and the only vertices of
A that are not strongly (X ,M)-singular are in NA \ (X ∪ Y ) is the same as
in the proof of Claim 4.10.1.

Pick any vertex v ∈ V (D). There are sets X ′, Y ′ ⊆ V (H) such that

1. |X ′| = |X| and |Y ′| = |Y |,

2. X ∩NA ⊆ X ′ and X ′ ∩A ⊆ X ∪NA,

3. Y ∩NA ⊆ Y ′ and Y ′ ∩A ⊆ Y ∪NA,

4. NA ⊆ X ′ ∪ Y ′ and X ′ ∩ Y ′ ∩A = ∅,

5. NB ⊆ X ′ or X ′ ⊂ NA ∪NB,

6. NB ⊆ Y ′ or Y ′ ⊂ NA ∪NB,

7. v /∈ X ′ and v /∈ Y ′,

8. V (D) ∪NB ⊆ X ′ ∪ {v} or X ′ ⊂ V (D) ∪N(D), and

9. V (D) ∪NB ⊆ Y ′ ∪ {v} or Y ′ ⊂ V (D) ∪N(D).

By Lemma 4.6 it suffices to find an L′-movement (X ′,M′) of length at most
f(k) − 2k on H such that A is strongly (X ′,M′)-singular where L′ is any
X ′–Y ′ pairing.

Since n ≥ |D| we have f(k)−2k ≥ 2|D|!+2+f(k−1) and by assumption
v ∈ V (D) \ X ′. If L′ has an edge (0, x)(0, y) with x ∈ V (D) and y ∈
V (D) ∪ N(D), then by Claim 4.10.1 there is an L′-movement (X ′,M′) of
length at most f(k) − 2k on H such that A is strongly (X ′,M′)-singular
(recall that NA \ (X ′ ∪ Y ′) is empty by choice of X ′ and Y ′). So we may
assume that L′ contains no such edge and by Lemma 4.7 we may also assume
that it has no edge (x, 0)(y,∞) with x ∈ V (D) and y ∈ NA.

Counting the edges of L′ that are incident with a vertex of (V (D) ∪
N(D))× {0} we obtain the lower bound

‖L′‖ ≥ |X ′ ∩ V (D)|+ |X ′ ∩NB|/2 + |(X ∪ Y ) ∩NA|/2.

If V (D)∪NB ⊆ X ′ ∪{v}, then |X ′ ∩V (D)| = |D| − 1 and |X ′ ∩NB| = |NB|.
Since |(X ′ ∪ Y ′) ∩NA| = |NA| this means

2k = 2‖L′‖ ≥ 2(|D| − 1) + |NB|+ |NA| ≥ 2|D|+ |N(D)| − 2 ≥ 2k + 1,
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a contradiction. So we must have X ′ ⊂ V (D) ∪N(D) and |V (D) \X ′| ≥ 2.
Applying Claim 4.10.2 in the same way as Claim 4.10.1 above we deduce that
no edge of L′ has both ends in X ×{0} or one end in X ×{0} and the other
in NA × {∞}. By symmetry we can obtain statements like Claim 4.10.1 and
Claim 4.10.2 for Y instead of X thus by the same argument as above we may
also assume that Y ′ ⊂ V (D) ∪N(D) and that no edge of L′ has both ends
in Y × {∞} or one end in NA × {0} and the other in Y × {∞}. Hence L′ is
balanced and NA = ∅. Let ϕ′ : X ′ → Y ′ be the bijection with L′ = L(ϕ′).

In the rest of the proof we apply the same techniques that we have already
used in the proof of Claim 4.10.1 and again in that of Claim 4.10.2 so from
now on we only sketch how to construct the desired movements. Furthermore,
all constructed movements use only vertices of V (D) ∪NB for their moves
so A is trivially strongly singular w.r.t. them.

If NB \X ′ 6= ∅, then we have X ′ ⊂ NB by assumption, so |NB| ≥ k + 1
and thus also Y ′ ⊂ NB. This is basically the same situation as at the end
of the proof for Lemma 4.9 so we find an L′-movement of length at most
2k ≤ f(k). We may therefore assume that NB ⊆ X ′ ∩ Y ′.
Claim 4.10.3. Suppose that L′ has an edge (x, 0)(y,∞) with x ∈ V (D)
and y ∈ NB. Then there is an L′-movement (X ′,M′) of length at most
|D|! + 2 + f(k − 1) such that the moves ofM′ are disjoint from A.

Proof. Let y′ be a neighbour of y in V (D). Since D is 2-connected, y′ has
two distinct neighbours yl and yr in D. Using Theorem 4.4 we generate a
balanced movement of length at most |D|! on H such that all its moves are in
D and its induced pairing has the edge (x, 0)(yl,∞) and its final configuration
does not contain y′ or yr. Adding the two moves yy′yr and yly′y then results
in a movement (Xx,Mx) of length at most |D|! + 2 whose induced pairing
Lx contains the edge (x, 0)(y, 0).

It is not hard to see that there is a pairing L′′ such that Lx ⊕ L′′ = L
and this pairing must have the edge (y, 0)(y,∞). By induction there is an
L′′-movement (X ′′,M′′) of length at most f(k−1) such that none if its moves
contains y. So (X ′,M′) :=(Xx,Mx)⊕ (X ′′,M′′) is an L′ movement of length
at most |D|! + 2 + f(k − 1) as desired.

Claim 4.10.4. Suppose that L′ has an edge (x, 0)(y,∞) with x, y ∈ NB.
Then there is an L′-movement (X ′,M′) of length at most 2|D|! + 4 + f(k− 1)
such that the moves ofM′ are disjoint from A.

Proof. Let x′ be a neighbour of x in V (D). Since D is 2-connected, x′ has
two distinct neighbours xl and xr in D. With the same construction as
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in Claim 4.10.3 we can generate a movement (Xx,Mx) of length at most
|D|! + 2 such that its induced pairing Lx contains the edge (x, 0)(xr,∞) and
(x′′, 0)(x,∞) for some vertex x′′ ∈ V (D) ∩ X ′. There is a pairing L′′ such
that L = Lx ⊕ L′′ and L′′ contains the edge (xr, 0)(y,∞).

By Claim 4.10.3 there is an L′′-movement (X ′′,M′′) of length at most
|D|! + 2 + f(k − 1). So (X ′,M′) :=(Xx,Mx)⊕ (X ′′,M′′) is an L′ movement
of length at most 2|D|! + 4 + f(k − 1) as desired.

Since f(k)−2k ≥ 2|D|!+4+f(k−1) we may assume thatNB∩Y ′ = ∅ and
thus NB = ∅ by Claim 4.10.3 and Claim 4.10.4. This means X ′, Y ′ ⊆ V (D)
and therefore by Theorem 4.4 there is an L′-movement (X ′,M′) of length at
most |D|! ≤ n! ≤ f(k)− 2k. This concludes the induction and thus also the
proof of Lemma 4.10.

5 Relinkages

This section collects several Lemma that compare different foundational link-
ages for the same stable regular decomposition of a graph. To avoid tedious
repetitions we use the following convention throughout the section.

Convention. Let (W,P) be a stable regular decomposition of length l ≥ 3
and attachedness p of a p-connected graph G. Set λ :={α | Pα is non-trivial}
and θ :={α | Pα is trivial}. Let D be a block of Γ(W,P)[λ] and let κ be the
set of all cut-vertices of Γ(W,P)[λ] that are in D.

Lemma 5.1. Let Q be a foundational linkage. If αβ is an edge of Γ(W,Q)
with α ∈ λ or β ∈ λ, then αβ is an edge of Γ(W,P).

Proof. Some inner bag Wk of W contains a Q-bridge B realising αβ, that is,
B attaches to Qα and Qβ . For i = 1, . . . , k− 1 the induced permutation πi of
Q[Wi] is an automorphism of Γ(W,P) by (L10) and hence so is the induced
permutation π =

∏k−1
i=1 πi of Q[W[1,k−1]].

Clearly the restriction of any induced permutation to θ is always the
identity, so π(α) ∈ λ or π(β) ∈ λ. Therefore π(α)π(β) must be an edge of
Γ(W,P) by (L11) as B attaches to Q[W ]π(α) and Q[W ]π(β). Since π is an
automorphism this means that αβ is an edge of Γ(W,P).

The previous Lemma allows us to make statements about any founda-
tional linkage Q just by looking at Γ(W,P), in particular, for every α ∈ λ
the neighbourhood N(α) of α in Γ(W,P) contains all neighbours of α in
Γ(W,Q). The following Lemma applies this argument.
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Lemma 5.2. Let Q be a foundational linkage such that Q[W ] is p-attached in
G[W ] for each inner bag W ofW. If λ0 is a subset of λ such that |N(α)∩θ| ≤
p− 3 for each α ∈ λ0, then every non-trivial Q-bridge in an inner bag of W
that attaches to a path of Qλ0 must attach to at least one other path of Qλ.
Proof. Suppose for a contradiction that some inner bag W of W contains a
Q-bridge B that attaches to some path Qα[W ] with α ∈ λ0 but to no other
path of Qλ[W ]. Recall that either all foundational linkages forW satisfy (L7)
or none does and P witnesses the former. Hence by (L7) a path of Q[W ]
is non-trivial if and only if it is in Qλ[W ]. So by p-attachedness Qα[W ] is
bridge adjacent to at least p− 2 paths of Qθ in G[W ]. Therefore in Γ(W,Q)
the vertex α is adjacent to at least p− 2 vertices of θ and by Lemma 5.1 so
it must be in Γ(W,P), giving the desired contradiction.

Lemma 5.3. LetQ be a foundational linkage. Every Q-bridge B that attaches
to a path of Qλ\V (D) has no edge or inner vertex in GQD, in particular, it can
attach to at most one path of QV (D).

Proof. By assumption B attaches to some path Qα with α ∈ λ \ V (D). This
rules out the possibility that B attaches to only one path of Qλ that happens
to be in QV (D). So if B has an edge or inner vertex in GQD, then it must realise
an edge of D. Hence B attaches to paths Qβ and Qγ with β, γ ∈ V (D). This
means that αβ and αγ are both edges of Γ(W,Q) and thus of Γ(W,P) by
Lemma 5.1. But D is a block of Γ(W,P)[λ] so no vertex of λ \ V (D) can
have two neighbours in D.

Given two foundational linkages Q and Q′ and a set λ0 ⊆ λ, we say that
Q′ is a (Q, λ0)-relinkage or a relinkage of Q on λ0 if Q′α = Qα for α /∈ λ0

and Q′λ0
⊆ GQλ0

.

Lemma 5.4. If Q is a (P, V (D))-relinkage and Q′ a (Q, V (D))-relinkage,
then GQ

′
D ⊆ GQD, in particular, GQD ⊆ GPD.

Proof. Clearly GQD and GQ
′

D are induced subgraphs of G so it suffices to
show V (GQ

′
D ) ⊆ V (GQD). Suppose for a contradiction that there is a vertex

w ∈ V (GQ
′

D ) \ V (GQD). We have GQ
′

D ∩ Q′ = Q′V (D) ⊆ GQD so w must be an
inner vertex of a Q′-bridge B′. But w is in Gλ −GQD and thus in a Q-bridge
attaching to a path of Qλ\V (D), in particular, there is a w–Qλ\V (D) path R
that avoids GQD ⊇ Q′V (D). This means R ⊆ B′ and thus B′ attaches to a path
of Q′λ\V (D) = Qλ\V (D), a contradiction to Lemma 5.3. Clearly P itself is a
(P, V (D))-relinkage so GQD ⊆ GPD follows from a special case of the statement
we just proved.

121



Lemma 5.5. Let Q be a (P, V (D))-relinkage. If in Γ(W,P) we have |N(α)∩
θ| ≤ p− 3 for all α ∈ λ \ V (D), then there is a (Q, V (D))-relinkage Q′ such
that for every inner bag W ofW the linkage Q′[W ] is p-attached in G[W ] and
has the same induced permutation as Q[W ]. Moreover, Γ(W,Q′) contains all
edges of Γ(W,Q) that have at least one end in λ.

Proof. Suppose that some non-trivial Q-bridge B in an inner bag W of W
attaches to a path Qα = Pα with α ∈ λ \ V (D) but to no other path of Qλ.
Then B is also a P-bridge and P[W ] is p-attached in G[W ] by (L6) so Pα[W ]
must be bridge adjacent to at least p − 2 paths of Pθ in G[W ] and thus α
has at least p− 2 neighbours in θ, a contradiction. Hence every non-trivial
Q-bridge that attaches to a path of Qλ\V (D) must attach to at least one other
path of Qλ.

For every inner bag Wi of W let Q′i be the bridge stabilisation of Q[Wi]
in G[Wi]. Then Q′i has the same induced permutation as Q[Wi]. Note that
the set Z of all end vertices of the paths of Q[Wi] is the union of the left and
right adhesion set of Wi. So by the p-connectivity of G for every vertex x
of G[Wi]− Z there is an x–Z fan of size p in G[Wi]. This means that Q′i is
p-attached in G[Wi] by Lemma 3.7 (iii).

Hence Q′ :=⋃l−1
i=1Q′i is a foundational linkage with Q′[Wi] = Q′i for i =

1, . . . , l− 1. Therefore Q′[W ] is p-attached in G[W ] and Q′[W ] has the same
induced permutations as Q[W ] for every inner bag W of W. There is no
Q-bridge that attaches to precisely one path of Qλ\V (D) but to no other path
of Qλ so we have Q′λ\V (D) = Qλ\V (D) by Lemma 3.7 (i). The same result
implies Q′V (D) ⊆ GQD so Q′ is indeed a relinkage of Q on V (D).

Finally, Lemma 3.7 (ii) states that Γ(W,Q′) contains all those edges of
Γ(W,Q) that have at least one end in λ.

The “compressed” linkages presented next will allow us to fulfil the size re-
quirement that Lemma 4.10 imposes on our blockD as detailed in Lemma 5.7.
Given a subset λ0 ⊆ λ and a foundational linkage Q, we say that Q is com-
pressed to λ0 or λ0-compressed if there is no vertex v of GQλ0

such that GQλ0
−v

contains |λ0| disjoint paths from the first to the last adhesion set of W and
v has a neighbour in Gλ −GQλ0

.

Lemma 5.6. Suppose that in Γ(W,P) we have |N(α) ∩ θ| ≤ p − 3 for all
α ∈ λ \ V (D) and let Q be a (P, V (D))-relinkage. Then there is a V (D)-
compressed (Q, V (D))-relinkage Q′ such that for every inner bag W of W the
linkage Q′[W ] is p-attached in G[W ].

Proof. Clearly Q itself is a (Q, V (D))-relinkage. Pick Q′ from all (Q, V (D))-
relinkages such that GQ

′
D is minimal. By Lemma 5.4 and Lemma 5.5 we may
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assume that we picked Q′ such that for every inner bag ofW ofW the linkage
Q′[W ] is p-attached in G[W ].

It remains to show that Q′ is V (D)-compressed. Suppose not, that is,
there is a vertex v of GQ

′
D such that v has a neighbour in Gλ − GQ

′
D and

GQ
′

D − v contains an X–Y linkage Q′′ where X and Y denote the intersection
of V (GQ

′
D ) with the first and last adhesion set of W, respectively.

By Lemma 5.4 we have GQ
′′

D ⊆ GQ
′

D ⊆ GQD and thus Q′′ is a (Q, V (D))-
relinkage as well. This implies GQ

′′
D = GQ

′
D by the minimality of GQ

′
D . The

vertex v does not lie on a path of Q′′ by construction so it must be in a Q′′-
bridge B′′. But v has a neighbour w in Gλ −GQ

′
D and there is a w–Q′λ\V (D)

path R that avoids GQ
′

D . This means R ⊆ B′′ and thus B′′ attaches to a path
of Q′′λ\V (D), contradicting Lemma 5.3.

Lemma 5.7. Let Q be a V (D)-compressed foundational linkage. Let V be
the set of all inner vertices of paths of Qκ that have degree at least 3 in GQD.
Then the following statements are true.

(i) Either 2|D|+ |N(D) ∩ θ| ≥ p or V (GQD) = V (QV (D)) and κ 6= ∅.

(ii) Either 2|D| + |N(D)| ≥ p or there is α ∈ κ such that |Qβ| ≤ |V ∩
V (Qα)|+ 1 for all β ∈ V (D) \ κ.

Note that V (GQD) = V (QV (D)) implies that every Q-bridge in an inner
bag of W that realises an edge of D must be trivial.

Proof.

(i) Denote by X and Y the intersection of GQD with the first and last
adhesion set of W, respectively. Let Z be the union of X, Y , and the
set of all vertices of GQD that have a neighbour in Gλ − GQD. Clearly
Z ⊆ V (Qκ)∪X∪Y . Moreover,GQD−z does not contain an X–Y linkage
for any z ∈ Z: For z ∈ X∪Y this is trivial and for the remaining vertices
of Z it holds by the assumption that Q is V (D)-compressed. Therefore
for every z ∈ Z there is an X–Y separation (Az, Bz) of GQD of order at
most |D| with z ∈ Az ∩ Bz. On the other hand, QV (D) is a set of |D|
disjoint X–Y paths in GQD so every X–Y separation has order at least
|D|. Hence by Lemma 3.1 there is a nested set S of X–Y separations
of GQD, each of order |D|, such that Z ⊆ Z0 where Z0 denotes the set
of all vertices that lie in a separator of a separation of S.
We may assume that (X,V (GQD)) ∈ S and (V (GQD), Y ) ∈ S so for any
vertex v of GQD − (X ∪ Y ) there are (AL, BL) ∈ S and (AR, BR) ∈ S
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such that (AL, BL) is rightmost with v ∈ BL \ AL and (AR, BR) is
leftmost with v ∈ AR \BR. Set SL :=AL ∩BL and SR :=AR ∩BR.
Let z be any vertex of Z0 “between” SL and SR, more precisely, z ∈
(BL\AL)∩(AR\BR). There is a separation (AM , BM ) ∈ S such that its
separator SM :=AM ∩BM contains z. Then z witnesses that AM * AL
and BM * BR and thus (AM , BM ) is neither left of (AL, BL) nor right
of (AR, BR). But S is nested and therefore (AM , BM ) is strictly right
of (AL, BL) and strictly left of (AR, BR). This means v ∈ SM otherwise
(AM , BM ) would be a better choice for (AL, BL) or for (AR, BR). So
any separator of a separation of S that contains a vertex of (BL \AL)∩
(AR \BR) must also contain v.

If v /∈ Z0, then (BL\AL)∩(AR\BR)∩Z0 = ∅. This means that SL∪SR
separates v from Z in GQD. So SL ∪ SR ∪ V (QN(D)∩θ) separates v from
G−GQD in G. By the connectivity of G we therefore have

2|D|+ |N(D) ∩ θ| ≥
∣∣SL ∪ SR ∪ V (QN(D)∩θ)

∣∣ ≥ p.

So we may assume that V (GQD) = Z0 Since every separator of a sepa-
ration of S consists of one vertex from each path of QV (D) this means
V (QV (D)) ⊆ V (GQD) = Z0 ⊆ V (QV (D)). If κ = ∅, then X ∪ Y ∪
V (QN(D)∩θ) separates GQD − (X ∪ Y ) from G−GQD in G so this is just
a special case of the above argument.

(ii) We may assume κ 6= ∅ by (i) and κ 6= V (D) since the statement is
trivially true in the case κ = V (D). Pick α ∈ κ such that |V ∩ V (Qα)|
is maximal and let β ∈ V (D) \ κ. For any inner vertex v of Qβ define
(AL, BL) and (AR, BR) as in the proof of (i) and set Vv :=V ∩ (BL \
AL) ∩ (AR \BR).

By (i) we have Vv ⊆ Z0 and every separator of a separation of S
that contains a vertex of Vv must also contain v. This means that
Vv ∩Vv′ = ∅ for distinct inner vertices v and v′ of Qβ since no separator
of a separation of S contains two vertices on the same path of QV (D).

Furthermore, SL∪SR ∪Vv separates v from V (Qκ)∪X ∪Y ⊇ Z in GQD
so by the same argument as in (i) we have 2|D|+ |N(D)∩ θ|+ |Vv| ≥ p.
Then |N(D) ∩ λ| ≥ |Vv| would imply 2|D| + |N(D)| ≥ p so we may
assume that |N(D) ∩ λ| < |Vv| for all inner vertices v of Qβ. Clearly
N(D) ∩ λ is a disjoint union of the sets (N(γ) ∩ λ) \ V (D) with γ ∈ κ
and these sets are all non-empty. Hence |κ| ≤ |N(D) ∩ λ| and thus
|κ|+ 1 ≤ |Vv| for all inner vertices v of Qβ .
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Write V for the inner vertices of Qβ . Statement (ii) easily follows from

|V |(|κ|+ 1) ≤
∑

v∈V
|Vv| ≤ |V | ≤ |κ| · |V ∩ V (Qα)|.

6 Rural Societies

In this section we present the answer of Robertson and Seymour to the
question whether or not a graph can be drawn in the plane with specified
vertices on the boundary of the outer face in a prescribed order. We will
apply their result to subgraphs of a graph with a stable decomposition.

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic permutation
of a subset of V (G) which we denote by Ω̄. A society (G,Ω) is called rural if
there is a drawing of G in a closed disc D such that V (G) ∩ ∂D = Ω̄ and Ω
coincides with a cyclic permutation of Ω̄ arising from traversing ∂D in one
of its orientations. We say that a society (G,Ω) is k-connected for an integer
k if there is no separation (A,B) of G with |A ∩B| < k and Ω̄ ⊆ B 6= V (G).
For any subset X ⊆ Ω̄ denote by Ω|X the map on X defined by x 7→ Ωk(x)
where k is the smallest positive integer such that Ωk(x) ∈ X (chosen for each
x individually). Since Ω is a cyclic permutation so is Ω|X.

Given two internally disjoint paths P and Q in G we write PQ for the
cyclic permutation of V (P ∪Q) that maps each vertex of P to its successor
on P if there is one and to the first vertex of Q−P otherwise and that maps
each vertex of Q−P to its successor on Q−P if there is one and to the first
vertex of P otherwise.

Let R and S be disjoint Ω̄-paths in a society (G,Ω), with end vertices
r1, r2 and s1, s2, respectively. We say that {R,S} is a cross in (G,Ω), if
Ω|{r1, r2, s1, s2} = (r1s1r2s2) or Ω|{r1, r2, s1, s2} = (s2r2s1r1).

The following is an easy consequence of Theorems 2.3 and 2.4 in [14].

Theorem 6.1 (Robertson & Seymour 1990). Any 4-connected society is
rural or contains a cross.

In our application we always want to find a cross. To prevent the society
from being rural we force it to violate the implication given in following
Lemma which is a simple consequence of Euler’s formula.

Lemma 6.2. Let (G,Ω) be a rural society. If the vertices in V (G) \ Ω̄ have
degree at least 6 on average, then

∑
v∈Ω̄ dG(v) ≤ 4|Ω̄| − 6.

Proof. Since (G,Ω) is rural there is a drawing of G in a closed disc D with
V (G)∩ ∂D = Ω̄. Let H be the graph obtained by adding one extra vertex w
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outside D and joining it by an edge to every vertex on ∂D. Writing b := |Ω̄|
and i := |V (G) \ Ω̄|, Euler’s formula implies

‖G‖+ b = ‖H‖ ≤ 3|H| − 6 = 3(i+ b)− 3

and thus ‖G‖ ≤ 3i+ 2b− 3. Our assertion then follows from
∑

v∈Ω̄

dG(v) + 6i ≤
∑

v∈V (G)

dG(v) = 2‖G‖ ≤ 6i+ 4b− 6

In our main proof we will deal with societies where the permutation Ω is
induced by paths (see Lemma 6.4 and Lemma 6.5). But every inner vertex
on such a path that has degree 2 in G adds slack to the bound provided by
Lemma 6.2 as it counts 2 on the left side but 4 on the right. This is remedied
in the following Lemma which allows us to apply Lemma 6.2 to a “reduced”
society where these vertices are suppressed.

Lemma 6.3. Let (G,Ω) be a society and let P be a path in G such that all
inner vertices of P have degree 2 in G. Denote by G′ the graph obtained from
G by suppressing all inner vertices of P and set Ω′ := Ω|V (G′). Then (G′,Ω′)
is rural if and only if (G,Ω) is.

Proof. The graph G is a subdivision of G′ so every drawing of G gives a
drawing of G′ and vice versa. Hence a drawing witnessing that (G,Ω) is rural
can easily be modified to witness that (G′,Ω′) is rural and vice versa.

Two vertices a and b of some graph H are called twins if NH(a) \ {b} =
NH(b) \ {a}. Clearly a and b are twins if and only if the transposition (ab)
is an automorphism of H.

Lemma 6.4. Let G be a p-connected graph and let (W,P) be a stable regular
decomposition of G of length at least 3 and attachedness p. Set θ :={α |
Pα is trivial} and λ :={α | Pα is non-trivial}. Suppose that αβ is an edge
of Γ(W,P)[λ] such that |N(α) ∩ θ| ≤ p − 3, |N(β) ∩ θ| ≤ p − 3, and for
Nαβ :=N(α)∩N(β) we have Nαβ ⊆ θ and |Nαβ| ≤ p− 5. If α and β are not
twins, then the society (GPαβ, PαP

−1
β ) is rural.

Proof.

Claim 6.4.1. Every P-bridge with an edge in GPαβ must attach to Pα and
Pβ, in particular, GPαβ − Pα and GPαβ − Pβ are both connected.
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Proof. By Lemma 5.2 every non-trivial P-bridge that attaches to Pα or Pβ
must attach to another path of Pλ. Since Pα and Pβ are induced this means
that all P-bridges with an edge in GPαβ must realise the edge αβ and hence
attach to Pα and Pβ .

Claim 6.4.2. The set Z of all vertices of GPαβ that are end vertices of Pα or
Pβ or have a neighbour in G− (GPαβ ∪ PNαβ ) is contained in V (Pα ∪ Pβ).

Proof. Any vertex v of GPαβ− (Pα∪Pβ) is an inner vertex of some non-trivial
P-bridge B that attaches to Pα and Pβ . Since GPαβ contains all inner vertices
of B the neighbours of v in G − GPαβ must be attachments of B. But if
B attaches to a path Pγ with γ 6= α, β, then γ ∈ Nαβ and therefore all
neighbours of v are in GPαβ ∪ PNαβ .

Claim 6.4.3. The society (GPαβ, PαP
−1
β ) is rural if and only if the society

(GPαβ, PαP
−1
β |Z) is.

Proof. Clearly (GPαβ, PαP
−1
β |Z) is rural if (GPαβ, PαP

−1
β ) is. For the converse

suppose that (GPαβ, PαP
−1
β |Z) is rural, that is, there is a drawing of GPαβ in

a closed disc D such that GPαβ ∩ ∂D = Z and one orientation of ∂D induces
the cyclic permutation PαP−1

β |Z on Z.
For the rurality of (GPαβ, PαP

−1
β ) and (GPαβ, PαP

−1
β |Z) it does not matter

whether the first vertices of Pα and Pβ are adjacent in GPαβ or not and the
same is true for the last vertices of Pα and Pβ . So we may assume that both
edges exist and we denote the cycle that they form together with the paths
Pα and Pβ by C.

The closed disc D′ bounded by C is contained in D. It is not hard to
see that the interior of D′ is the only region of D − C that has vertices of
both Pα and Pβ on its boundary. But every edge of GPαβ lies on C or in a
P-bridge B with B− (P \ {Pα, Pβ}) ⊆ GPαβ . By Claim 6.4.1 such a bridge B
must attach to Pα and Pβ and in the considered drawing it must therefore
be contained in D′. This means GPαβ ⊆ D′ which implies that (GPαβ, PαP

−1
β )

is rural as desired.

Claim 6.4.4. The society (GPαβ, PαP
−1
β |Z) is 4-connected.

Proof. Set H :=GPαβ and Ω :=PαP
−1
β |Z. Note that Ω̄ = Z since Z ⊆ V (Pα∪

Pβ) by Claim 6.4.2. Set T :=V (PNαβ ). Clearly Z∪T separates H from G−H
so for every vertex v of H − Z there is a v–T ∪ Z fan of size at least p in G
as G is p-connected. Since |T | ≤ p− 5 this fan contains a v–Z fan of size at
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least 4 such that all its paths are contained in H. This means that (H,Ω) is
4-connected as desired.

By the off-road edges of a cross {R,S} in (H,Ω) we mean the edges in
E(R ∪ S) \E(Pα ∪ Pβ). We call a component of R ∩ (Pα ∪ Pβ) that contains
an end vertex of R a tail of R. We define the tails of S similarly.

Claim 6.4.5. If {R,S} is a cross in (H,Ω) whose set E of off-road edges is
minimal, then for every z ∈ Z \ V (R ∪ S) each z–(R ∪ S) path in Pα ∪ Pβ
ends in a tail of R or S.

Proof. Suppose not, that is, there is a Z–(R ∪ S) path T in Pα ∪ Pβ such
that its last vertex t does not lie in a tail of R or S. W.l.o.g. we may assume
that t is on R. Since t is not in a tail of R the paths Rt and tR must both
contain an edge that is not in Pα ∪ Pβ so E(T ∪ Rt ∪ S) \ E(Pα ∪ Pβ) and
E(T∪tR∪S)\E(Pα∪Pβ) are both proper subsets of E. But one of {T∪Rt, S}
and {T ∪ tR, S} is a cross in (H,Ω), a contradiction.

Suppose now that α and β are not twins.

Claim 6.4.6. (H,Ω) does not contain a cross.

Proof. If (H,Ω) contains a cross, then we may pick a cross {R,S} in (H,Ω)
such that its set E of off-road edges is minimal. Since Z ⊆ V (Pα ∪ Pβ) we
may assume w.l.o.g. that {R,S} satisfies one of the following.

1. R and S both have their ends on Pα.

2. R has both ends on Pα. S has one end on Pα and one on Pβ .

3. R and S both have one end on Pα and one on Pβ .

We reduce the first case to the second. As Pβ contains a vertex of Z but
no end of R or S it must be disjoint from R ∪ S by Claim 6.4.5. But R and
S both contain a vertex outside Pα (recall that Pα is induced by (L6)) so
R ∪ S meets H − Pα which is connected by Claim 6.4.1.

Therefore there is a Pβ–(R ∪ S) in H − Pα, in particular, there is a Z–
(R ∪ S) path T with its first vertex z in Z ∩ V (Pβ) and we may assume that
its last vertex t is on S. Denote by v the end of S that separates the ends of
R in Pα.

Then {R, vSt ∪ T} is a cross in (H,Ω) and we may pick a cross {R′, S′}
in (H,Ω) such that its set E′ of off-road edges is minimal and contained in
the set F of off-road edges of {R, vSt ∪ T}. If R′ ∪ S′ contains no edge of
T , then E′ is a proper subset of E as it does not contain E(S) \ E(vSt), a
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contradiction to the minimality of E. Hence R′ ∪ S′ contains an edge of T
and hence must meet Pβ . So by Claim 6.4.5 one of its paths, say S′ ends in
Pβ as desired.

On the other hand, all off-road edges of {R′, S′} that are incident with
Pβ are in T and therefore the remaining three ends of R′ and S′ must all be
on Pα. Hence {R′, S′} is a cross as in the second case.

In the second case we reroute Pα along R, more precisely, we obtain a
foundational linkage Q from P by replacing the subpath of Pα between the
two end vertices of R with R.

The first vertex of R ∪ S encountered when following Pβ from either of
its ends belongs to a tail of R or S by Claim 6.4.5. Obviously a tail contains
precisely one end of R or S. Since R has no end on Pβ and S only one,
(R ∪ S)∩ Pβ is a tail of S, in particular, R is disjoint from Pβ and hence the
paths of Q are indeed disjoint.

Clearly S must end in an inner vertex z of Pα. By the definition of Z
there is a P-bridge B in some inner bag W of W that attaches to z and to
some path Pγ with γ ∈ N(α) \N(β). But B ∪ S is contained in a Q-bridge
in G[W ] and therefore βγ is an edge of B(G[W ],Q[W ]) and thus of Γ(W,Q)
but not of Γ(W,P). This contradicts Lemma 5.1.

In the third case Claim 6.4.5 ensures that the first and last vertex of
Pα and of Pβ in R ∪ S is always in a tail and clearly these tails must all be
distinct. Hence by replacing the tails of R and S with suitable initial and final
segments of Pα and Pβ we obtain paths P ′α and P ′β such that the foundational
linkage Q :=(P \ {Pα, Pβ}) ∪ {P ′α, P ′β} has the induced permutation (αβ).
Since Pγ = Qγ for all γ /∈ {α, β} it is easy to see the there must be an inner
bagW ofW such that Q[W ] has induced permutation (αβ). But clearly (αβ)
is an automorphism of Γ(W,P) if and only if α and β are twins in Γ(W,P).
Hence Q[W ] is a twisting disturbance by the assumption that α and β are
not twins. This contradicts the stability of (W,P) and concludes the proof
of Claim 6.4.6.

By Claim 6.4.4 and Theorem 6.1 the society (H,Ω) is rural or contains a
cross. But Claim 6.4.6 rules out the latter so (H,Ω) is rural and by Claim 6.4.3
so is (GPαβ, PαP

−1
β ).

In the previous Lemma we have shown how certain crosses in the graph
H = GPαβ “between” two bridge-adjacent paths Pα and Pβ of P give rise
to disturbances. The next Lemma has a similar flavour; here the graph H
will be the subgraph of G “between” Pα and Qα where α is a cut-vertex of
Γ(W,P)[λ] and Q a relinkage of P.
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Lemma 6.5. Let G be a p-connected graph with a stable regular decomposition
(W,P) of attachedness p and set λ :={α | Pα is non-trivial} and θ :={α |
Pα is trivial}. Let D be a block of Γ(W,P)[λ] and let κ be the set of cut-
vertices of Γ(W,P)[λ] that are in D. If |N(α) ∩ θ| ≤ p − 4 for all α ∈ λ,
then there is a V (D)-compressed (P, V (D))-relinkage Q such that Q[W ] is
p-attached in G[W ] for all inner bags W of W and for any α ∈ κ and any
separation (λ1, λ2) of Γ(W,P)[λ] such that λ1 ∩ λ2 = {α} and N(α) ∩ λ2 =
N(α) ∩ V (D) the following statements hold where H :=GPλ2

∩ GQλ1
, q1 and

q2 are the first and last vertex of Qα, and Z1 and Z2 denote the vertices of
H − {q1, q2} that have a neighbour in Gλ −GPλ2

and Gλ −GQλ1
, respectively.

(i) We have Z1 ⊆ V (Pα) and Z2 ⊆ V (Qα). Furthermore, Z :={q1, q2} ∪
Z1 ∪ Z2 separates H from Gλ −H in G− PN(α)∩θ.

(ii) The graph H is connected and contains Qα. The path Pα ends in q2.

(iii) Every cut-vertex of H is an inner vertex of Qα and is contained in
precisely two blocks of H.

(iv) Every block H ′ of H that is not a single edge contains a vertex of
Z1 \ V (Qα) and a vertex of Z2 \ V (Pα) that is not a cut-vertex of H.
Furthermore, Qα[W ] contains a vertex of Z2 for every inner bag W
of W.

(v) There is (P, V (D))-relinkage P ′ with P ′ = (Q \ {Qα}) ∪ {P ′α} and
P ′α ⊆ H such that Z1 ⊆ V (P ′α), V (P ′α ∩Qα) consists of q1, q2, and all
cut-vertices of H, and P ′[W ] is p-attached in G[W ] for all inner bags
W of W.

(vi) Let H ′ be a block of H that is not a single edge. Then P ′ :=H ′∩P ′α and
Q′ :=H ′ ∩Qα are internally disjoint paths with common first vertex q′1
and common last vertex q′2 and the society (H ′, P ′Q′−1) is rural.

Figure 1 gives an impression of H. The upper (straight) black q1–q2 path
is Qα and everything above it belongs to GQλ2

. The lower (curvy) black path
is P ′α and everything below it belongs to GPλ1

. The grey paths are subpaths
of Pα and, as shown, Pα need not be contained in H and need not contain
the vertices of Pα ∩ P ′α in the same order as P ′α. The white vertices are the
cut-vertices of H. The vertices with an arrow up or down symbolise vertices
of Z2 and Z1, respectively. The blocks of H that are not single edges are
bounded by cycles in P ′α ∪Qα and Lemma 6.5 (vi) states that the part of H
“inside” such a cycle forms a rural society.
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∩GQλ1
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Proof. For a (P, V (D))-relinkage Q and β ∈ κ any GQD-path P ⊆ Pβ such
that some inner vertex of P has a neighbour in Gλ−GPD is called an β-outlet
of Q. By the outlet graph of Q we mean the union of all components of
Pκ−GQD that have a neighbour in Gλ−GPD. In other words, the outlet graph
of Q is obtained from the union of all β-outlets for all β ∈ κ by deleting the
vertices of GQD.

Clearly P itself is a (P, V (D))-relinkage. Among all (P, V (D))-relinkages
pick Q′ such that its outlet graph is maximal. By Lemma 5.6 there is a
V (D)-compressed (Q′, V (D))-relinkage Q such that Q[W ] is p-attached in
G[W ] for all inner bags W of W . Note that GQD ⊆ GQ

′
D by Lemma 5.4, so the

outlet graph of Q is a supergraph of that of Q′. Hence by choice of Q′, they
must be identical, in particular, the outlet graph of Q is maximal among the
outlet graphs of all (P, V (D))-relinkages.

Claim 6.5.1. For any foundational linkage R ofW we have GRλ1
∪GRλ2

= Gλ
and GRλ1

∩GRλ2
= Rα.

Proof. By Lemma 5.1 we have Γ(W,R)[λ] ⊆ Γ(W,P)[λ], so (λ1, λ2) is also
a separation of Γ(W,R)[λ]. Hence each R-bridge in an inner bag of W has
all its attachments in Rλ1∪θ or all in Rλ2∪θ and thus GRλ1

∪GRλ2
= Gλ. The

induced path Rα is contained in GRλ1
∩GRλ2

by definition. If GRλ1
∩GRλ2

contains
a vertex that is not on Rα, then it must be in a non-trivial R-bridge that
attaches to Rα but to no other path of Rλ. Such a bridge does not exist by
Lemma 5.2 (applied to λ0 :=λ).

Claim 6.5.2. For every vertex v of H − Pα there is a v–Z2 path in H − Pα
and for every vertex v of H −Qα there is a v–Z1 path in H −Qα.
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Proof. Let v be a vertex of H−Pα ⊆ GPλ2
−Pα. Then there is β ∈ λ2\λ1 such

that v is on Pβ or v is an inner vertex of some non-trivial P-bridge attaching
to Pβ by Lemma 5.2 and the assumption that |N(α) ∩ θ| ≤ p− 4. In either
case GPλ2

− Pα contains a path R from v to the first vertex p of Pβ . But p is
also the first vertex of Qβ and therefore it is contained in Gλ −GQλ1

. Pick w
on R such that Rw is a maximal initial subpath of R that is still contained
in H. Then w 6= p and the successor of w on R must be in Gλ −GQλ1

. This
means w ∈ Z2 as desired. If v is in H −Qα, then the argument is similar but
slightly simpler as Qβ = Pβ for all β ∈ λ1 \ λ2.

(i) Any vertex of GPλ2
that has a neighbour in GPλ1

−GPλ2
must be on Pα

by Claim 6.5.1. This shows Z1 ⊆ V (Pα) and by a similar argument
Z2 ⊆ V (Qα).

A neighbour v of H in G either is in no inner bag of W, it is in Gλ, or
it is in Pθ. In the first case v can only be adjacent to q1 or q2 as these
are the only vertices of H in the first and last adhesion set of W.

In the second case, note that Q is a (P, λ2)-relinkage since V (D) ⊆ λ2

and thus Lemma 5.4 yields GQλ2
⊆ GPλ2

which together with Claim 6.5.1
implies

Gλ = GPλ1
∪GPλ2

= GPλ1
∪ (GPλ2

∩GQλ1
) ∪ (GPλ2

∩GQλ2
)

= GPλ1
∪H ∪GQλ2

.

Hence v is in Gλ −GQλ1
or in Gλ −GPλ2

and thus all neighbours of v in
H are in Z2 or Z1, respectively.

In the third case v is the unique vertex of some path Pβ with β ∈ θ. Let
w be a neighbour of v in H. Either w is on Pα or there is a w–Z2 path
in H by Claim 6.5.2 which ends on Qα as shown above. So αβ is an
edge of Γ(W,P) or of Γ(W,Q). The former implies β ∈ N(α) directly
and the latter does with the help of Lemma 5.1. Hence we have shown
that Z ∪ V (PN(α)∩θ) separates H from the rest of G concluding the
proof of (i).

(ii) We have Qα ⊆ GQλ1
by definition and Qα ⊆ GPλ2

since Q is a (P, λ2)-
relinkage. Hence Qα ⊆ H and some component C of H contains Qα.
Suppose that v is a vertex of H ∩ Pα. Let w be the vertex of Pα such
that wPαv is a maximal subpath of Pα that is still contained in H. Since
Pα ⊆ GPλ2

we must have w ∈ {q1} ∪ Z2 ⊆ V (Qα) and hence v is in C.
For any vertex v of H − Pα there is a v–Z2 path in H by Claim 6.5.2
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which ends on Qα by (i). This means that v is in C and hence H is
connected.

For every inner bag W of W the induced permutation π of Q[W ] maps
each element of λ1 \ λ2 to itself as Q is (P, λ2)-relinkage. Moreover, π
is an automorphism of Γ(W,P) by (L10) and α is the unique vertex of
λ2 that has a neighbour in λ1 \ λ2. This shows π(α) = α. Hence Qα
and Pα must have the same end vertex, namely q2.

(iii) Let v be a cut-vertex ofH. By (ii) it suffices to show that all components
of H − v contain a vertex of Qα. First note that every component of
H − v contains a vertex of Z: If a vertex w of H − v is not in Z, then
by (i) and the connectivity of G there is a w–Z fan of size at least
p− |N(α) ∩ θ| ≥ 2 in H and at most one of its paths contains v. But
any vertex z ∈ Z\V (Qα) is on Pα by (i) and the paths q1Pαz and zPαq2

do both meet Qα but at most one can contain v (given that z 6= v). So
every component of H − v must contain a vertex of Qα as claimed.

Claim 6.5.3. A Qα-path P ⊆ Pα ∩ H is an α-outlet if and only if some
inner vertex of P is in Z1, in particular, every vertex of Z1 \ V (Qα) lies in a
unique α-outlet. Denoting the union of all α-outlets by U , no two components
of Qα − U lie in the same component of H − U .

Proof. Clearly Qα ⊆ GQD ∩H ⊆ GQλ2
∩ GQλ1

= Qα by Claim 6.5.1. Suppose
that P ⊆ Pα ∩H has some inner vertex z1 ∈ Z1. Then P is a GQD-path and
z1 has a neighbour in Gλ −GPλ2

⊆ Gλ −GPD so P is an α-outlet.
Before we prove the converse implication let us show that H ⊆ GPD. If

some vertex v of H ⊆ GPλ2
is not in GPD, then there is β ∈ λ2 \ V (D) such

that v is on Pβ or v is an inner vertex of a non-trivial P-bridge attaching to
Pβ . But v is in H − Pα so by Claim 6.5.2 and (i) there is a v–Qα path in H
and hence αβ is an edge of Γ(W,Q)[λ] and thus of Γ(W,P)[λ] by Lemma 5.1.
But (λ1, λ2) is chosen such that N(α) ∩ λ ⊆ λ1 ∪ V (D), a contradiction.

Suppose that P is an α-outlet. Then some inner vertex z of P has a
neighbour in Gλ − GPD ⊆ Gλ −H. So z ∈ Z1 ∪ Z2 and therefore z ∈ Z1 as
z /∈ V (Qα) ⊇ Z2 by (i).

To conclude the proof of the claim we may assume for a contradiction that
Qα contains vertices r1, r, and r2 in this order such thatH−U contains an r1–
r2 path R and r is the end vertex of an α-outlet. Let Q′ be the foundational
linkage obtained from Q by replacing the subpath r1Qαr2 of Qα with R.
Clearly Q′ is a (P, V (D))-relinkage. It suffices to show that the outlet graph
of Q′ properly contains that of Q to derive a contradiction to our choice of Q.
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By choice of R and the construction of Q′ each β-outlet of Q for any β ∈ κ
is internally disjoint from Q′ and hence is contained in a β-outlet of Q′. But
r is not on Q′α so it is an inner vertex of some α-outlet of Q′ so the outlet
graph of Q′ contains that of Q properly as desired.

Claim 6.5.4. Let r1 and r2 be the end vertices of an α-outlet P of Q. Then
r1Qαr2 contains a vertex of Z2 \ V (Pα).

Proof. We assume that r1 and r2 occur on Qα in this order. Set Q := r1Qαr2.
Clearly P ∪Q is a cycle. Since Pα is induced in G, some inner vertex v of Q
is not on Pα. By Claim 6.5.2 there is a v–Z2 path R in H − Pα and its last
vertex z2 must be on Qα (see (i)) but not on Pα. Finally, Claim 6.5.3 implies
that v and z2 must be in the same component of Qα − P so both are on Q
as desired.

(iv) Clearly H ′ contains a cycle. Since Qα is induced in G there must be
a vertex v in H ′ − Qα and the v–Z1 path in H − Qα that exists by
Claim 6.5.2 avoids all cut-vertices of H by (iii) and thus lies in H ′−Qα.
So H ′ contains a vertex of Z1−V (Qα) which lies on Pα by (i) and thus
also an α-outlet by Claim 6.5.3. So by Claim 6.5.4 we must also have a
vertex of Z2 \ V (Pα) in H ′ that is neither the first nor the last vertex
of Qα in H ′.

For any inner bag W of W the end vertices of Qα[W ] are cut-vertices
of H. By (L8) G[W ] contains a P-bridge realising some edge of D that
is incident with α. So some vertex of Pα has a neighbour in Gλ −GPλ1

.
If Qα[W ] = Pα[W ], then GQλ1

[W ] = GPλ1
[W ] so this neighbour is also in

Gλ−GQλ1
and hence Qα[W ] contains a vertex of Z2. If Qα[W ] 6= Pα[W ],

then some block of H in G[W ] is not a single edge so by the previous
paragraph Qα[W ] contains a vertex of Z2.

Claim 6.5.5. Every Z1–Z2 path in H is a q1–q2 separator in H.

Proof. Suppose not, that is, H contains a q1–q2 path Q′α and a Z1–Z2 path
R such that R and Q′α are disjoint. Clearly H∩Q = Qα so Q′ :=(Q\{Qα})∪
{Q′α} is a foundational linkage. The last vertex r2 of R is in Z2 and hence
has a neighbour in Gλ −GQλ1

. So there is an r2–Q′λ2\λ1
path R2 that meets

H only in r2. Similarly, for the first vertex r1 of R there is an r1–Q′λ1\λ2

path R1 that meets H only in r1. Then R1 ∪R ∪R2 witness that Γ(W,Q′)
has an edge with one end in λ1 \ λ2 and the other in λ2 \ λ1, contradicting
Lemma 5.1.
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Claim 6.5.6. Let H ′ be a block of H. Then Q :=H ′ ∩Qα is a path and its
first vertex q′1 equals q1 or is a cut-vertex of H and its last vertex q′2 equals
q2 or is a cut-vertex of H. Furthermore, there is a q′1–q

′
2 path P ⊆ H ′ that is

internally disjoint from Q such that Z1 ∩ V (H ′) ⊆ V (P ) and if a P -bridge
B in H ′ has no inner vertex on Qα, then for every z1 ∈ Z1 ∩ V (H ′) the
attachments of B are either all on Pz1 or all on z1P .

Proof. It follows easily from (iii) that Q is a path and q′1 and q′2 are as claimed.
If H ′ is the single edge q′1q′2, then the statement is trivial with P = Q so
suppose not. Our first step is to show the existence of a q′1–q′2 path R ⊆ H ′
that is internally disjoint from Q.

By (iv) some inner vertex z2 of Q is in Z2\V (Pα). Since H ′ is 2-connected
there is a Q-path R ⊆ H ′ − z2 with first vertex r1 on Qz2 and last vertex
r2 on z2Q. Pick R such that r1Qr2 is maximal. We claim that r1 = q′1 and
r2 = q′2.

Suppose for a contradiction that r2 6= q′2. By the same argument as before
there is Q-path S ⊆ H ′− r2 with first vertex s1 on Qr2 and last vertex s2 on
r2Q. Note that s1 must be an inner vertex of r1Qr2 by choice of R. Similarly,
Q separates R from S in H ′ otherwise there was a Q-path from r1 to s2 again
contradicting our choice of R.

But S has an inner vertex v as Q is induced and Claim 6.5.2 asserts the
existence of a v–Z1 path S′ in H −Qα which must be disjoint from R as Q
separates S from R. So there is a Z1–Z2 path in z2Qs1 ∪ s1Sv ∪ S′ which
is disjoint from Qαr1Rr2Qα by construction, a contradiction to Claim 6.5.5.
This shows r2 = q′2 and by symmetry also r1 = q′1.

Among all q′1–q′2 paths in H ′ that are internally disjoint from Q pick P
such that P contains as few edges outside Pα as possible. To show that P
contains all vertices of Z1 ∩ V (H ′) let z1 ∈ Z1 ∩ V (H ′). We may assume
z1 6= q′1, q

′
2. If z1 is an inner vertex of Q, then Q contains a Z1–Z2 path that

is disjoint from P , a contradiction to Claim 6.5.5. So there is an α-outlet R
which has z1 as an inner vertex. Then Rz1 ∪ Q and z1R ∪ Q both contain
a Z1–Z2 path and by Claim 6.5.5 P must intersect both paths. But P is
internally disjoint from Q so it contains a vertex t1 of Rz1 and a vertex t2
of z1R. If some edge of t1Pt2 is not on Pα, then P ′ := q′1Pt1Pαt2Pq

′
2 is q′1–q′2

path in H ′ that is internally disjoint from Q and has fewer edges outside Pα
than P , contradicting our choice of P . This means t1Rt2 ⊆ P and therefore
z1 is on P .

Finally, suppose that for some z1 ∈ Z1 there is a P -bridge B in H ′ with
no inner vertex in Qα and attachments t1, t2 6= z1 such that t1 is on Pz1 and
t2 is on z1P (this implies z1 6= q′1, q

′
2). Let R be the α-outlet containing z1
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and denote its end vertices by r1 and r2. By Claim 6.5.4 some inner vertex
z2 of r1Qr2 is in Z2.

If B has an attachment in z1P −R, then z1Rr2∪ z2Qr2 contains a Z1–Z2

path that does not separate q′1 from q′2 in H ′ and therefore does not separate
q1 from q2 inH, contradicting Claim 6.5.5. So B has no attachment in z1P−R
and a similar argument implies that B has no attachment in Pz1 −R. So all
attachments of B must be in P ∩R ⊆ Pα. As R∪B contains a cycle and Pα
is induced some vertex v of B is not on Pα. But then Claim 6.5.2 implies the
existence of a v–Z2 path that avoids Pα and hence uses only inner vertices
of B, in particular, some inner vertex of B is in Z2 ⊆ V (Qα), contradicting
our assumption and concluding the proof of this claim.

(v) Applying Claim 6.5.6 to every block H ′ of H and uniting the obtained
paths P gives a q1–q2 path R ⊆ H such that Z1 ⊆ V (R) and V (R∩Qα)
consists of q1, q2, and all cut-vertices ofH. Moreover, for every z1 ∈ Z1 a
P -bridge B in H that has no inner vertex in Qα has all its attachments
in Rz1 or all in z1R.

Set Q′ :=(Q\{Qα})∪{R}). Let P ′ be the foundational linkage obtained
by uniting the bridge stabilisation of Q′[W ] in G[W ] for all inner bags
W of W . Then P ′[W ] is p-attached in G[W ] for all inner bags W of W
by Lemma 3.7.

To show P ′β = Qβ for all β ∈ λ \ {α} it suffices by Lemma 3.7 to
check that every non-trivial Q′-bridge B′ that attaches to Q′β attaches
to at least one other path of Q′λ. If B′ is disjoint from H it is also a
Q-bridge and thus attaches to some path Qγ = Q′γ with γ ∈ λ \ {α, β}
by Claim 6.5.1. If B′ contains a vertex of H, then it attaches to Q′α = R
as H is connected (see (ii)) and Q′ ∩H = R.

To verify P ′α ⊆ H we need to show B′ ⊆ H for every Q′-bridge B′
that attaches to R but to no other path of Q′λ. Clearly for every vertex
v of GPλ1

− Pα there is a v–Pλ1\{α} path in GPλ1
− Pα. Similarly, for

every vertex v of GQλ2
−Qα there is a v–Qλ2\{α} path in GQλ2

−Qα. But
Q′β = Pβ for all β ∈ λ1 \ {α} and Q′β = Qβ for all β ∈ λ2 \ {α} and
Gλ−H = (GPλ1

−Pα)∪ (GQλ2
−Qα). This means that B′ cannot contain

a vertex of Gλ −H and thus B′ ⊆ H as desired.

We have just shown that every bridge B′ as above is an R-bridge in
H. By construction and the properties (i) and (iv) every component of
Qα −R contains a vertex of Z2 and hence lies in a Q′-bridge attaching
to some path Q′β with β ∈ λ2 \ {α}. So B′ is an R-bridge in H with no
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inner vertex in Qα and therefore there must be z1, z
′
1 ∈ Z1 ∪ {q1, q2}

such that z1Rz
′
1 contains all attachments of B′ and no inner vertex of

z1Rz
′
1 is in Z1. By Lemma 3.7 this implies that P ′α contains no vertex

of Qα−R and Z1 ⊆ V (P ′α). On the other hand, P ′α must clearly contain
the end vertices of R and all cut-vertices of H. This concludes the proof
of (v).

(vi) We first show that (H ′,Ω) is rural where Ω :=P ′Q′−1|Z where Z ′ :=Z∩
V (H ′). SinceH is connected andH∩P ′ = Pα we must have β ∈ N(α)∩θ
for each path Pβ with β ∈ θ whose unique vertex has a neighbour in H.
So the set T of all vertices of Pθ that are adjacent to some vertex of H ′

has size at most p− 4 by assumption. Clearly Z ′ ∪T separates H ′ from
the rest of G so for every vertex v of H ′ − Z ′ there is a v–(Z ′ ∪ T ) fan
of size at least p and hence a v–Z fan of size at least 4. Hence (H ′,Ω)
is 4-connected and hence it is rural or contains a cross by Theorem 6.1.

Suppose for a contradiction that (H ′,Ω) contains a cross. By the off-road
edges of a cross {R,S} in (H ′,Ω) we mean edge set E(R∪S)\E(P ′∪Q′).
We call a component of R ∩ (P ′ ∪Q′) that contains an end of R a tail
of R and define the tails of S similarly.

Claim 6.5.7. If {R,S} is a cross in (H ′,Ω) such that its set of off-road
edges is minimal, then for every z ∈ Z that is not in R ∪ S the two
z–(R ∪ S) paths in P ′ ∪Q′ both end in a tail of R or S.

The proof is the same as for Claim 6.4.5 so we spare it.

Claim 6.5.8. Every non-trivial (P ′ ∪ Q′)-bridge B in H ′ has an at-
tachment in P ′ −Q′ and in Q′ − P ′.

Proof. Let v be an inner vertex of B. Then H − Qα contains a v–Z1

path by Claim 6.5.2 so B must attach to P ′. Note that v is in a non-
trivial P ′-bridge B′ and B′ ⊆ GPλ2

since Z1 ⊆ V (P ′α). Furthermore, B′

must attach to a path P ′β = Qβ with β ∈ λ2 \ λ1: This is clear if B′

does not attach to P ′α and follows from Claim 6.5.1 if it does. So B′

contains a path R from v to GQλ2
− Qα that avoids P ′. But any such

path contains a vertex of Z2 (see (i)) and R does not contain q′1 and q′2
so some initial segment of R is a v–Z2 path in H ′ − P ′ as desired.

Claim 6.5.9. There is a cross {R′, S′} in (H ′,Ω) such that its set of
off-road edges is minimal and neither P ′ nor Q′ contains all ends of R′

and S′.
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Proof. Pick a cross {R,S} in (H ′,Ω) such that its set E of off-road
edges is minimal. We may assume that P ′ contains all ends of R and
S. By (iv) some inner vertex z2 of Q′ is in Z2. So if R ∪ S contains an
inner vertex of Q′, then Q′ − P ′ contains a Z2–(R ∪ S) path T whose
last vertex t is an inner vertex of R say. Clearly one of {Rt∪ T, S} and
{tR∪T, S} is a cross in (H ′,Ω) whose set of off-road edges is contained
in that of {R,S} and hence is minimal as well. So either we find a cross
{R′, S′} as desired or Q′ − P ′ is disjoint from R ∪ S.
But (R ∪ S) − P ′ must be non-empty as P ′ is induced in G. So by
Claim 6.5.8 there is a Q′–(R∪S) path in H ′−P ′, in particular, there is
a Z2–(R∪S) path T in H ′−P ′ and we may assume that its last vertex
t is on R. Again one of {Rt∪T, S} and {tR∪T, S} is a cross in (H ′,Ω)
and we denote its set of off-road edges by F . Pick a cross (R′, S′) in
(H,Ω) such that its set E′ of off-road edges minimal and E′ ⊆ F .
Since t is not on P ′ each of Rt and tR contains an edge that is not in
P ′ ∪Q′ so F \ E(T ) is a proper subset of E. This means that E′ must
contain an edge of T by minimality of E and hence it must contain
F ∩ E(T ) so R′ ∪ S′ contains a vertex of Q′ − P ′ and we have already
seen that we are done in this case, concluding the proof of the claim.

Claim 6.5.10. For i = 1, 2 there is a q′i–(R′ ∪ S′) path Ti in H ′ such
that T1 and T2 end on one path of {R′, S′} and the other path has its
ends in Z1 and Z2.

Proof. It is easy to see that by construction one path of {R′, S′}, say
S′, has one end in Z1 \ {q′1, q′2} and the other in Z2 \ {q′1, q′2}. If for
some i the vertex q′i is in R

′ ∪ S′, then it must be on R′ and there is a
trivial q′i–R

′ path Ti. We may thus assume that neither of q′1 and q′2 is
in R′ ∪ S′.
So P ′ ∪Q′ contains two q′1–(R′ ∪S′) paths T1 and T ′1 that meet only in
q′1. By Claim 6.5.7 T1 and T ′1 must both end in a tail of R′ or S′. But
(R′, S′) is a cross and no inner vertex of T1 ∪T ′1 is an end of R′ or S′ so
we may assume that T1 meets a tail of R′. By the same argument we
find a q′2–(R′ ∪ S′) path T2 that end in a tail of R′.

To conclude the proof that (H ′,Ω) is rural note that Claim 6.5.10 implies
the existence of a Z1–Z2 path in H that does not separate q1 from q2

in H and hence contradicts Claim 6.5.5. So (H ′,Ω) is rural and (vi)
follows from this final claim:
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Claim 6.5.11. The society (H ′,Ω) is rural if and only if the society
(H ′, P ′Q′−1) is.

This holds by a simpler version of the proof of Claim 6.4.3 where
Claim 6.5.8 takes the role of Claim 6.4.1.

7 Constructing a Linkage

In our main theorem we want to construct the desired linkage in a long stable
regular decomposition of the given graph. That decomposition is obtained
by applying Theorem 3.5 which may instead give a subdivision of Ka,p. This
outcome is even better for our purpose as stated by the following Lemma.

Lemma 7.1. Every 2k-connected graph containing a TK2k,2k is k-linked.

Proof. Let G be a 2k-connected graph and let S, T ⊆ V (G) be disjoint and
of size k each, say S = {s1, . . . , sk} and T = {t1, . . . , tk}. We need to find a
system of k disjoint S–T paths linking si to ti for i = 1, . . . , k.

By assumption G contains a subdivision of K2k,2k, so there are disjoint
sets A,B ⊆ V (G) of size 2k each and a system Q of internally disjoint paths
in G such that for every pair (a, b) with a ∈ A and b ∈ B there exists a
unique a–b path in Q which we denote by Qab.

By the connectivity ofG, there is a system P of 2k disjoint (S∪T )–(A∪B)
paths (with trivial members if (S ∪ T ) ∩ (A ∪ B) 6= ∅). Pick P such that it
has as few edges outside of Q as possible. Our aim is to find suitable paths of
Q to link up the paths of P as desired. We denote by A1 and B1 the vertices
of A and B, respectively, in which a path of P ends, and let A0 :=A\A1 and
B0 :=B \B1.

The paths of P use the system Q sparingly: Suppose that for some pair
(a, b) with a ∈ A0 and b ∈ B, the path Qab intersects a path of P . Follow Qab
from a to the first vertex v it shares with any path of P, say P . Replacing
P by Pv ∪Qabv in P does not give a system with fewer edges outside Q by
our choice of P . In particular, the final segment vP of P must have no edges
outside Q. This means vP = vQab, that is, P is the only path of P meeting
Qab and after doing so for the first time it just follows Qab to b. Clearly the
symmetric argument works if a ∈ A and b ∈ B0. Hence

1. Qab with a ∈ A0 and b ∈ B0 is disjoint from all paths of P,
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2. Qab with a ∈ A1 and b ∈ B0 or with a ∈ A0 and b ∈ B1 is met by
precisely one path of P, and

3. Qab with a ∈ A1 and b ∈ B1 is met by at least two paths of P.

In order to describe precisely how we link the paths of P, we fix some
notation. Since |A0|+|A1| = |A| = 2k = |P| = |A1|+|B1|, we have |A0| = |B1|
and similarly |A1| = |B0|. Without loss of generality we may assume that
|B0| ≥ |A0| = |B1| and therefore |B0| ≥ k. So we can pick k distinct vertices
b1, . . . , bk ∈ B0 and an arbitrary bijection ϕ : B1 → A0. For x ∈ S∪T denote
by Px the unique path of P starting in x and by x′ its end vertex in A ∪B.

For each i and x = si or x = ti set

Rx :=

{
Qx′bi x′ ∈ A1

Qϕ(x′)x′ ∪Qϕ(x′)bi x′ ∈ B1

.

By construction Rx and Ry intersect if and only if x, y ∈ {si, ti} for some i,
i.e. they are equal or meet exactly in bi. The paths Px and Ry intersect if and
only if Px ends in y′, that is, if x = y. Thus for each i = 1, . . . , k the subgraph
Ci :=Psi ∪ Rs′i ∪ Rt′i ∪ Pti of G is a tree containing si and ti. Furthermore,
these trees are pairwise disjoint, finishing the proof.

We now give the proof of the main theorem, Theorem 1.1. We restate the
theorem before proceeding with the proof.

Theorem 1.1. For all integers k and w there exists an integer N such that
a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) < w, and |G| ≥ N.

Proof. Let k and w be given and let f be the function from the statement
of Lemma 4.10 with n :=w. Set

n0 :=(2k + 1)(n1 − 1) + 1

n1 := max{(2k − 1)

(
w

2k

)
, 2k(k + 3) + 1, 12k + 4, 2f(k) + 1}

We claim that the theorem is true for the integer N returned by Theorem 3.5
for parameters a = 2k, l = n0, p = 2k + 3, and w. Suppose that G is a
(2k+ 3)-connected graph of tree-width less than w on at least N vertices. We
want to show that G is k-linked. If G contains a subdivision of K2k,2k, then
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this follows from Lemma 7.1. We may thus assume that G does not contain
such a subdivision, in particular it does not contain a subdivision of Ka,p.

Let S = (s1, . . . , sk) and T = (t1, . . . , tk) be disjoint k-tuples of distinct
vertices of G. Assume for a contradiction that G does not contain disjoint
paths P1, . . . , Pk such that the end vertices of Pi are si and ti for i = 1, . . . , k
(such paths will be called the desired paths in the rest of the proof).

By Theorem 3.5 there is a stable regular decomposition of G of length
at least n0, of adhesion q ≤ w, and of attachedness at least 2k + 3. Since
this decomposition has at least (2k + 1)(n1 − 1) inner bags, there are n1 − 1
consecutive inner bags which contain no vertex of (S ∪ T ) apart from those
coinciding with trivial paths. In other words, this decomposition has a con-
traction (W,P) of length n1 such that S ∪ T ⊆ W0 ∪Wn1 . By Lemma 3.6
this contraction has the same attachedness and adhesion as the initial de-
composition and the stability is preserved. Set θ :={α | Pα is trivial} and
λ :={α | Pα is non-trivial}.
Claim 7.1.1. λ 6= ∅.

Proof. If λ = ∅, or equivalently, P = Pθ, then all adhesion sets of W equal
V (Pθ). So by (L2) no vertex of G − Pθ is contained in more than one bag
of W . On the other hand, (L4) implies that every bag W of W must contain
a vertex w ∈W \V (Pθ). Since V (Pθ) separates W from the rest of G and G
is 2k-connected, there is a w–Pθ fan of size 2k in G[W ]. For different bags,
these fans meet only in Pθ.

SinceW has more than (2k−1)
(
q

2k

)
bags, the pigeon hole principle implies

that there are 2k such fans with the same 2k end vertices among the q vertices
of Pθ. The union of these fans forms a TK2k,2k in G which may not exist by
our earlier assumption.

Claim 7.1.2. Let Γ0 be a component of Γ(W,P)[λ]. The following all hold.

(i) |N(α) ∩ θ| ≤ 2k − 2 for every vertex α of Γ0.

(ii) |N(α) ∩N(β) ∩ θ| ≤ 2k − 4 for every edge αβ of Γ0.

(iii) 2|N(α) ∩ λ|+ |N(α) ∩ θ| ≤ 2k for every vertex α of Γ0.

(iv) 2|D|+ |N(D)| ≤ 2k+ 2 for every block D of Γ0 that contains a triangle.

Note that (iii) implies (i) unless Γ0 is a single vertex and (iii) implies (ii)
unless Γ0 is a single edge. We need precisely these two cases in the proof of
Claim 7.1.6.
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Proof. The proof is almost identical for all cases so we do it only once and
point out the differences as we go. Denote by Γ1 the union of Γ0 with all
its incident edges of Γ(W,P). Set L :=W0 ∩W1 ∩V (GΓ1) and R :=Wn1−1 ∩
Wn1 ∩ V (GΓ1). In case (iv) let α be any vertex of D. Let p and q be the first
and last vertex of Pα. Then (L∪R)\{p, q} separates GPΓ1

−{p, q} from S∪T
in G− {p, q}. Hence by the connectivity of G there is a set Q of 2k disjoint
(S ∪ T )–(L∪R) paths in G−{p, q}, each meeting GPΓ1

only in its last vertex.
For i = 1, . . . , k denote by s′i the end vertex of the path of Q that starts in
si and by t′i the end vertex of the path of Q that starts in ti.

Our task is to find disjoint s′i–t
′
i paths for i = 1, . . . , k in GPΓ1

and we
shall now construct sets X,Y ⊆ V (Γ1) and an X–Y pairing L “encoding”
this by repeating the following step for each i ∈ {1, . . . , k}. Let β, γ ∈ V (Γ1)
such that s′i lies on Pβ and t′i lies on Pγ . If s′i ∈ L, then add β to X and
set s̄i :=(β, 0). Otherwise s′i ∈ R \ L and we add β to Y and set s̄i :=(β,∞).
Note that s′i ∈ L ∩ R if and only if β ∈ θ. In this case our decision to add
β to X is arbitrary and we could also add it to Y instead (and setting s̄i
accordingly) without any bearing on the proof. Handle γ and t′i similarly.
Then {s̄it̄i | i = 1, . . . , k} is the edge set of an (X,Y )-pairing which we denote
by L.

We claim that there is an L-movement of length at most (n1−1)/2 ≥ f(k)
on H := Γ1 such that the vertices of A :=V (Γ1) ∩ θ are singular. Clearly
H − A = Γ0 is connected and every vertex of A has a neighbour in Γ0 so
A is marginal in H. The existence of the desired L-movement follows from
Lemma 4.8 if (i) or (ii) are violated, from Lemma 4.9 if (iii) is violated, and
from Lemma 4.10 if (iv) is violated (note that |H| ≤ w). But then Lemma 4.3
applied to L implies the existence of disjoint s′i–t

′
i paths in G

P
Γ1

for i = 1, . . . , k
contradicting our assumption that G does not contain the desired paths. This
shows that all conditions must hold.

Claim 7.1.3. We have 2|Γ0|+ |N(Γ0)| ≥ 2k+3 (and necessarily N(Γ0) ⊆ θ)
for every component Γ0 of Γ(W,P)[λ].

Proof. Let Γ1 be the union of Γ0 with all incident edges of Γ(W,P). Set
L :=W0 ∩W1 ∩ V (GPΓ1

), M :=W1 ∩W2 ∩ V (GPΓ1
), and R :=Wn1−1 ∩Wn1 ∩

V (GPΓ1
). If G − GPΓ1

is non-empty, then L ∪ R separates it from M in G.
Otherwise M separates L from R in G = GPΓ1

. By the connectivity of G
we have 2|Γ0| + |N(Γ0)| = |L ∪ R| ≥ 2k + 3 in the former case and |M | =
|Γ0|+ |N(Γ0)| ≥ 2k + 3 in the latter.

We now want to apply Lemma 6.4 and Lemma 6.5. At the heart of both
is the assertion that a certain society is rural and we already limited the
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number of their “ingoing” edges by Lemma 6.2. To obtain a contradiction we
shall find societies exceeding this limit. Tracking these down is the purpose
of the notion of “richness” which we introduce next.

Let Γ ⊆ Γ(W,P)[λ]. We say that α ∈ V (Γ) is rich in Γ if the inner
vertices of Pα that have a neighbour in both Gλ − GPΓ and GPΓ − Pα have
average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ where εα := 1/|N(α) ∩ λ|.
A subgraph Γ ⊆ Γ(W,P)[λ] is called rich if every vertex α ∈ V (Γ) is rich in
Γ.

Claim 7.1.4. For Γ ⊆ Γ(W,P)[λ] and α ∈ V (Γ) the following is true.

(i) If Γ contains all edges of Γ(W,P)[λ] that are incident with α, then α
is rich in Γ.

(ii) If α is rich in Γ, then the inner vertices of Pα that have a neighbour in
GPΓ − Pα have average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ .

(iii) Suppose that Γ is induced in Γ(W,P)[λ] and that there are subgraphs
Γ1, . . . ,Γm ⊆ Γ such that α separates any two of them in Γ(W,P)[λ]
and

⋃m
i=1 Γi contains all edges of Γ that are incident with α. If α is rich

in Γ, then there is j ∈ {1, . . . ,m} such that α is rich in Γj.

Proof.

(i) The assumption implies that GPΓ contains every edge of Gλ that is
incident with Pα so no vertex of Pα has a neighbour in Gλ −GPD and
therefore the statement is trivially true.

(ii) The inner vertices of Pα that have a neighbour in Gλ − GPΓ and in
GPΓ − Pα have the desired average degree by assumption. We show
that each inner vertex of Pα that has no neighbour in Gλ −GPΓ has at
least the desired degree. Clearly we have dGPΓ (v) = dGλ(v) for such a
vertex v. Furthermore, dG(v) ≥ 2k + 3 since G is (2k + 3)-connected.
Every neighbour of v in Pθ gives rise to a neighbour of α in θ and by
Claim 7.1.2 (iii) there can be at most |N(α) ∩ θ| ≤ 2k − 2|N(α) ∩ λ|
such neighbours. This means

dGPΓ
(v) = dGλ(v) ≥ 2k + 3− |N(α) ∩ θ| ≥ 2|N(α) ∩ λ|+ 3

so (ii) clearly holds.

(iii) We may assume that α is not isolated in Γ and that each of the graphs
Γ1, . . . ,Γm contains an edge of Γ that is incident with α by simply
forgetting those graphs that do not.
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For i = 0, . . . ,m denote by Zi the inner vertices of Pα that have a neigh-
bour in Gλ −GPΓi and in GPΓi − Pα where Γ0 := Γ and set Z :=

⋃m
i=1 Zi.

Clearly Pα ⊆ GPΓi for all i. Each edge e of GPΓ that is incident with an
inner vertex of Pα but does not lie in Pα is in a P-bridge that realises
an edge of Γ by (L6) and Lemma 5.2 since Claim 7.1.2 (iii) implies
that |N(α) ∩ θ| ≤ 2k − 2. So at least one of the graphs GPΓi contains e.
On the other hand, we have GPΓi ⊆ GPΓ for i = 1, . . . ,m. This implies
Z0 ⊆ Z.
By the same argument as in the proof of (ii) the vertices of Z have
average degree at least 2 + |NΓ(α)|(2 + εα) in GPΓ . In other words, GPΓ
contains at least |Z||NΓ(α)|(2 + εα) edges with one end on Pα and the
other in GPΓ − Pα.
By assumption we have |NΓ(α)| = ∑m

i=1 |NΓi(α)| and so the pigeon hole
principle implies that there is j ∈ {1, . . . ,m} such that GPΓj contains a
set E of at least |Z||NΓj (α)|(2 + εα) edges with one end on Pα and the
other in GPΓj − Pα.
By assumption and Claim 6.5.1 the path Pα separates GPΓi from GPΓj in
Gλ for i 6= j. For any vertex z ∈ Z \ Zj there is i 6= j with z ∈ Zi, so z
has a neighbour in GPΓi − Pα ⊆ Gλ −GPΓj . Then the only reason that z
is not also in Zj is that it has no neighbour in GPΓj − Pα, in particular,
it is not incident with an edge of E. So the vertices of Zj have average
degree at least 2 + |Z|

|Zj | |NΓj (α)|(2 + εα) in GPΓj which obviously implies
the claimed bound.

Claim 7.1.5. Every component of Γ(W,P)[λ] contains a rich block.

Proof. Let Γ0 be a component of Γ(W,P)[λ]. Suppose that α is a cut-vertex of
Γ0 and let D1, . . . , Dm be the blocks of Γ0 that contain α. Clearly N(α)∩λ ⊆
V (
⋃m
i=1Di) so Claim 7.1.4 implies that α is rich in

⋃m
i=1Di by (i) and hence

there is j ∈ {1, . . . ,m} such that α is rich in Dj by (iii).
We define an oriented tree R on the set of blocks and cut-vertices of Γ0

as follows. Suppose that D is a block of Γ0 and α a cut-vertex of Γ0 with
α ∈ V (D). If α is rich in D, then we let (α,D) be an edge of R. Otherwise
we let (D,α) be an edge of R. Note that the underlying graph of R is the
block-cut-vertex tree of Γ0 and by the previous paragraph every cut-vertex
is incident with an outgoing edge of R. But every directed tree has a sink,
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so there must be a block D of Γ0 such that every α ∈ κ is rich in D where κ
denotes the set of all cut-vertices of Γ0 that lie in D.

But the only vertices of GPD that may have a neighbour in Gλ −GPD are
on paths of PV (D) by Lemma 5.3 and of these clearly only the paths of Pκ
may have neighbours in Gλ − GPD. So all vertices of V (D) \ κ are trivially
rich in D and hence D is a rich block.

Claim 7.1.6. Every rich block D of Γ(W,P)[λ] contains a triangle.

Proof. Suppose that D does not contain a triangle. By Claim 7.1.3 and
Claim 7.1.2 (i) we may assume D is not an isolated vertex of Γ(W,P)[λ],
that is, D contains an edge. We shall obtain contradicting upper and lower
bounds for the number

x :=
∑

v∈V (PV (D))

(dGPD
(v)− dPV (D)

(v)).

For every α ∈ V (D) denote by Vα the subset of V (Pα) that consists of the
ends of Pα and all inner vertices of Pα that have a neighbour in GPD − Pα.
Set V :=

⋃
α∈V (D) Vα.

For the upper bound let αβ be an edge of D. Then Nαβ :=N(α)∩N(β) ⊆
θ as a common neighbour of α and β in λ would give rise to a triangle
in D. Furthermore, |Nαβ| ≤ 2k − 4 by Claim 7.1.2 (ii). By Lemma 6.4 the
society (GPαβ, PαP

−1
β ) is rural if α and β are not twins. But if they are,

then N(α) ∪ N(β) = Nαβ ∪ {α, β}. This means that D is a component of
Γ(W,P)[λ] that consists only of the single edge αβ. So by Claim 7.1.3 we
have |Nαβ| = |N(D)| ≥ 2k− 1, a contradiction. Hence (GPαβ, PαP

−1
β ) is rural.

The graph G − PNαβ contains GPαβ and has minimum degree at least
2k + 3 − |PNαβ | ≥ 6 by the connectivity of G. By Claim 7.1.2 (i) we have
|N(γ) ∩ θ| ≤ 2k − 2 for every γ ∈ λ so Lemma 5.2 implies that every non-
trivial P-bridge in an inner bag of W attaches to at least two paths of Pλ
or to none. A vertex v of GPαβ − (Pα ∪ Pβ) is therefore an inner vertex of
some non-trivial P-bridge B that attaches to Pα and Pβ and has all its inner
vertices in GPαβ. This means that a neighbour of v outside GPαβ must be an
attachment of B on some path Pγ and hence γ ∈ Nαβ ⊆ θ. So all vertices
of GPαβ − (Pα ∪ Pβ) have the same degree in GPαβ as in G−PNαβ , namely at
least 6.

The vertices of GPαβ − (Pα ∪ Pβ) retain their degree if we suppress all
inner vertices of Pα and Pβ that have degree 2 in GPD. Since the paths of P
are induced by (L6) an inner vertex of Pα has degree 2 in GPD if and only
if it has no neighbour in GPD − Pα. So we suppressed precisely those inner
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vertices of Pα and Pβ that are not in Vα or Vβ. By Lemma 6.3 the society
obtained from (GPαβ, PαP

−1
β ) in this way is still rural so Lemma 6.2 implies

∑

v∈Vα∪Vβ
dGPαβ

(v) ≤ 4|Vα|+ 4|Vβ| − 6.

Clearly GPD =
⋃
αβ∈E(D)G

P
αβ and Pα ⊆ GPαβ for all β ∈ ND(α) and thus

x =
∑

v∈V

(
dGPD

(v)− dPV (D)
(v)
)

≤
∑

α∈V (D)

∑

β∈ND(α)

∑

v∈Vα
(dGPαβ

(v)− dPα(v))

=
∑

αβ∈E(D)

∑

v∈Vα∪Vβ
dGPαβ

(v)−
∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

≤
∑

αβ∈E(D)

(4|Vα|+ 4|Vβ| − 6)−
∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

=
∑

α∈V (D)

|ND(α)| (4|Vα| − 3)−
∑

α∈V (D)

|ND(α)| · (2|Vα| − 2)

<
∑

α∈V (D)

2|ND(α)| · |Vα|.

To obtain the lower bound for x note that Claim 7.1.4 (ii) says that for any
α ∈ V (D) the vertices of Vα without the two end vertices of Pα have average
degree 2+ |ND(α)|(2+εα) in GPD where εα ≥ 1/k by Claim 7.1.2 (iii). Clearly
every inner bag of W must contain a vertex of Vα as it contains a P-bridge
realising some edge αβ ∈ E(D). This means |Vα| ≥ n1/2 ≥ 4k + 2 and thus

x =
∑

α∈V (D)

∑

v∈Vα

(
dGPD

(v)− dPα(v)
)

≥
∑

α∈V (D)

(|Vα| − 2) · |ND(α)| · (2 + εα)

≥
∑

α∈V (D)

|ND(α)| · (2|Vα| − 4 + 4kεα)

≥
∑

α∈V (D)

2|ND(α)| · |Vα|.

Claim 7.1.7. Every rich block D of Γ(W,P)[λ] satisfies 2|D| + |N(D)| ≥
2k + 3.
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Proof. Suppose for a contradiction that 2|D|+|N(D)| ≤ 2k+2. By Lemma 6.5
there is a V (D)-compressed (P, V (D))-relinkage Q with properties as listed
in the statement of Lemma 6.5. Let us first show that we are done if D is
rich w.r.t. to Q, that is, for every α ∈ V (D) the inner vertices of Qα that
have a neighbour in Gλ −GQD and in GQD −Qα have average degree at least
2 + |ND(α)|(2 + εα) in GQD.

Denote the cut-vertices of Γ(W,P)[λ] that lie in D by κ. For α ∈ κ let
Vα be the set consisting of the ends of Qα and of all inner vertices of Qα that
have a neighbour in GQD − Qα and set V :=

⋃
α∈κ Vα. Pick α ∈ κ such that

|Vα| is maximal. By Lemma 5.7 (with p = 2k+ 3) every vertex of GQD lies on
a path of QV (D) and we have |Qβ| < |Vα| for all β ∈ V (D) \ κ.

The paths of Q are induced in G as Q[W ] is (2k + 3)-attached in G[W ]
for every inner bag W of W. Hence Vα contains precisely the vertices of Qα
that are not inner vertices of degree 2 in GQD. By the same argument as in
the proof of Claim 7.1.4 (ii) the vertices of Vα that are not ends of Qα have
average degree at least 2 + |ND(α)|(2 + εα) in GQD.

We want to show that the average degree in GQD taken over all vertices of
Vα is larger than 2 + 2|ND(α)|. Clearly the end vertices of Qα have degree
at least 1 in GQD so both lack at most 1 + 2|ND(α)| ≤ 3|ND(α)| incident
edges to the desired degree. On the other hand, the degree of every vertex
of Vα that is not an end of Qα is on average at least |ND(α)| · εα larger
than desired. But εα ≥ 1/k by Claim 7.1.2 (iii) and by Lemma 6.5 (iv) the
path Qα[W ] contains a vertex of Vα for every inner bag of W, in particular,
|Vα| ≥ n1/2 > 6k + 2 and hence (|Vα| − 2)εα > 6.

This shows that there are more than 2|Vα| · |ND(α)| edges in GQD that
have one end on Qα and the other on another path of QV (D). By Lemma 5.1
these edges can only end on paths of QND(α) so by the pigeon hole principle
there is β ∈ ND(α) such that GQD contains more than 2|Vα| edges with one
end on Qα and the other on Qβ .

Hence the society (H,Ω) obtained from (GQαβ, QαQ
−1
β ) by suppressing

all inner vertices of Qα and Qβ that have degree 2 in GQαβ has more than
2|Vα|+2|Vβ|−2 edges and all its |Vα|+|Vβ| vertices are in Ω̄. So by Lemma 6.2
(H,Ω) cannot be rural. But it is trivially 4-connected as all its vertices are
in Ω̄ and must therefore contain a cross by Theorem 6.1. The paths of Q are
induced so this cross consists of two edges which both have one end on Qα
and the other on Qβ. Such a cross gives rise to a linkage Q′ from the left
to the right adhesion set of some inner bag W of W such that the induced
permutation of Q′ maps some element of V (D) \ {α} (not necessarily β) to
α and maps every γ /∈ V (D) to itself. Since α has a neighbour outside D
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this is not an automorphism of Γ(W,P)[λ] and therefore Q′ is a twisting
disturbance contradicting the stability of (W,P).

It remains to show that D is rich w.r.t. Q. Suppose that it is not. By
the same argument as for Claim 7.1.4 (i) there must be α ∈ κ such that the
inner vertices of Qα that have a neighbour in Gλ − GQD and in GQD − Qα
have average degree less than 2 + |ND(α)|(2 + εα) in GQD. Let (λ1, λ2) be a
separation of Γ(W,P)[λ] with λ1 ∩λ2 = {α} and N(α)∩λ2 = N(α)∩V (D).
Let H, Z1, Z2, P ′, q1, and q2 be as in the statement of Lemma 6.5. We shall
obtain contradicting upper and lower bounds for the number

x :=
∑

v∈V (P ′α∪Qα)

(
dH(v)− dP ′α∪Qα(v)

)
.

Denote by H1, . . . ,Hm the blocks of H that are not a single edge and for
i = 1, . . . ,m let Vi be the set of vertices of Ci :=Hi∩(P ′α∪Qα) that are a cut-
vertex of H or are incident with some edge of Hi that is not in P ′α ∪Qα and
set V :=

⋃m
i=1 Vi. By definition we have dH(v) = dP ′α∪Qα(v) for all vertices v

of (P ′α ∪Qα)− V .
Note that H is adjacent to at most |N(α)∩θ| vertices of Pθ by Lemma 6.5

(ii) and Lemma 5.1. So Claim 7.1.2 (iii) and the connectivity of G imply that
every vertex of H has degree at least 2k + 3− |N(α) ∩ θ| ≥ 2|N(α) ∩ λ|+ 3
in Gλ.

To obtain an upper bound for x let i ∈ {1, . . . ,m}. By Lemma 6.5 (vi)
Ci is a cycle and the society (Hi,Ω(Ci)) is rural where Ω(Ci) denotes one of
two cyclic permutations that Ci induces on its vertices. Since |N(α)∩ λ| ≥ 2
every vertex of Hi−Ci has degree at least 6 in Hi by the previous paragraph.
This remains true if we suppress all vertices of Ci that have degree 2 in
Hi. The society obtained in this way is still rural by Lemma 6.3. Since we
suppressed precisely those vertices of Ci that are not in Vi Lemma 6.2 implies∑

v∈Vi dHi(v) ≤ 4|Vi| − 6. By definition of V we have dH(v) = dP ′α∪Qα(v) for
all vertices v of P ′α ∪Qα that are not in V . Hence we have

x =
∑

v∈V

(
dH(v)− dP ′α∪Qα(v)

)
=

m∑

i=1

∑

v∈Vi
(dHi(v)− dCi(v)) ≤

m∑

i=1

(2|Vi| − 6) .

Let us now obtain a lower bound for x. Clearly GPD ⊆ GPλ2
and GQD ⊆ GQλ2

.
To show that dGQD(v) = dGQλ2

(v) for all v ∈ V (H) (we follow the general

convention that a vertex has degree 0 in any graph not containing it) it
remains to check that an edge of Gλ that has precisely one end in H but
is not in GQD cannot be in GQλ2

. Such an edge e must be in a Q-bridge that
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attaches to Qα and some Qβ with β ∈ λ \V (D). But N(α)∩λ2 = V (D) and
hence β ∈ λ1. So e is an edge of GQλ1

but not on Qα and therefore not in GQλ2
.

This already implies dGPD(v) = dGPλ2

(v) for all v ∈ V (H) since GQD ⊆ GPD and

GPλ2
= H ∪GQλ2

(see the proof of Lemma 6.5 (i) for the latter identity). The
next equality follows directly from the definition of H.

dH(v) + dGQλ2

(v) = dGPλ2

(v) + dQα(v) ∀v ∈ V (H).

Denote by U1 the set of inner vertices of Pα that have a neighbour in
both Gλ −GPD and GPD − Pα and by U2 the set of inner vertices of Qα that
have a neighbour in both Gλ−GQD and GQD −Qα. In other words, U1 and U2

are the sets of those vertices of Pα and Qα, respectively, that are relevant for
the richness of α in D. Set V ′ :=(V \ {q1, q2})∪ (Z1∩Z2)), VP :=V ′∩V (P ′α),
and VQ :=V ′ ∩ V (Qα). Then U1 = (V ∩Z1)∪ (Z1 ∩Z2) = V ′ ∩Z1 ⊆ VP and
U2 = (V ∩ Z2) ∪ (Z1 ∩ Z2) ⊆ VQ.

By our earlier observation every vertex of H has degree at least 2|N(α)∩
λ| + 3 in Gλ and therefore every vertex of VP \ Z1 must have at least this
degree in GPλ2

. Since U1 ⊆ VP and α is rich in D this means that

∑

v∈VP
dGPD

(v) ≥ |VP | (2 + |ND(α)| · (2 + εα)) .

Similarly, we have U2 ⊆ VQ ⊆ V (Qα) and every vertex v ∈ VQ \ Z2 satisfies
dGQD

(v) = 2 = dQα(v). So by the assumption that α is not rich in D w.r.t. Q
we have

∑

v∈VQ

(
dGQD

(v)− dQα(v)
)
< |VQ| · |ND(α)| · (2 + εα).

Observe that

2|N(α) ∩ λ|+ 3 = 2 + |N(α) ∩ λ1| · (2 + εα) + |N(α) ∩ λ2| · (2 + εα)

and recall that ND(α) = N(α) ∩ λ2. Combining all of the above we get
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x ≥
∑

v∈V ′

(
dH(v)− dP ′α∪Qα(v)

)

=
∑

v∈V ′

(
dGPD

(v)− dGQD(v) + dQα(v)− dP ′α∪Qα(v)
)

=
∑

v∈VP
dGPD

(v) +
∑

v∈V ′\VP
dGPD

(v)−
∑

v∈VQ

(
dGQD

(v)− dQα(v)
)
− 2|V ′| − 2m

> |VP | · |ND(α)| · (2 + εα) + 2|VP |+ |V ′ \ VP | · (2|N(α) ∩ λ|+ 3)

− |VQ| · |ND(α)| · (2 + εα)− 2|V ′| − 2m

= |V ′ \ VQ| · |ND(α)| · (2 + εα) + |V ′ \ VP | · |N(α) ∩ λ1| · (2 + εα)− 2m

> 2|V ′ \ VQ|+ 2|V ′ \ VP | − 2m =
m∑

i=1

(2|Vi| − 6)

This shows that D is rich w.r.t. Q as defined above. So Claim 7.1.7 holds.

By Claim 7.1.1 the graph Γ(W,P)[λ] has a component. This component
has a rich block D by Claim 7.1.5. By Claim 7.1.6 and Claim 7.1.7 we have
a triangle in D and |D|+ |N(D)| ≥ 2k+ 3. This contradicts Claim 7.1.2 (iv)
and thus concludes the proof of Theorem 1.1.

8 Discussion

In this section we first show that Theorem 1.1 is almost best possible (see
Proposition 8.1 below) and then summarise where our proof uses the require-
ment that the graph G is (2k + 3)-connected.

Proposition 8.1. For all integers k and N with k ≥ 2 there is a graph G
which is not k-linked such that

κ(G) ≥ 2k + 1, tw(G) ≤ 2k + 10, and |G| ≥ N.

Proof. We reduce the assertion to the case k = 2, that is, to the claim that
there is a graph H which is not 2-linked but satisfies

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.

For any k ≥ 3 let K be the graph with 2k − 4 vertices and no edges. We
claim that G :=H ∗K (the disjoint union of H and K where every vertex of
H is joined to every vertex of K by an edge) satisfies the assertion for k.
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f0

Figure 2: The 5-connected graph H0 and its inner face f0.

Clearly |G| = |H| + 2k − 4 ≥ N . Taking a tree-decomposition of H of
minimal width and adding V (K) to every bag gives a tree-decomposition
of G, so tw(G) ≤ tw(H) + 2k − 4 ≤ 2k + 10. To see that G is (2k + 1)-
connected, note that it contains the complete bipartite graph with partition
classes V (H) and V (K), so any separator X of G must contain V (H) or
V (K). In the former case we have |X| ≥ N and we may assume that this is
larger than 2k. In the latter case we know that G − X ⊆ H, in particular
X ∩ V (H) is a separator of H and hence must have size at least 5, implying
|X| ≥ |K|+ 5 = 2k + 1 as required.

Finally, G is not k-linked: By assumption there are vertices s1, s2, t1,
t2 of H such that H does not contain disjoint paths P1 and P2 where Pi
ends in si and ti for i = 1, 2. If G was k-linked, then for any enumeration
s3, . . . , sk, t3, . . . , tk of the 2k − 4 vertices of V (K) there were disjoint paths
P1, . . . , Pk in G such that Pi has end vertices si and ti for i = 1, . . . , k. In
particular, P1 and P2 do not contain a vertex of K and are hence contained
in H, a contradiction.

It remains to give a counterexample for k = 2. The planar graph H0 in
Figure 2 is 5-connected. Denote the 5-cycle bounding the outer face of H0 by
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C1 and the 5-cycle bounding f0 by C0. Then (V (H0−C0), V (H0−C1)) forms
a separation of H0 of order 10, in particular, H0 has a tree-decomposition of
width 14 where the tree is K2. Draw a copy H1 of H0 into f0 such that the
cycle C0 of H0 gets identified with the copy of C1 in H1. Since H0∩H1 has 5
vertices, the resulting graph is still 5-connected and has a tree-decomposition
of width 14. We iteratively paste copies ofH0 into the face f0 of the previously
pasted copy as above until we end up with a planar graph H such that

κ(H) = 5, tw(H) ≤ 14, and |H| ≥ N.

Still the outer face of H is bounded by a 5-cycle C1, so we can pick vertices
s1, s2, t1, t2 in this order on C1 to witness that H is not 2-linked (any s1–t1
path must meet any s2–t2 path by planarity).

Where would our proof of Theorem 1.1 fail for a (2k + 2)-connected
graph G? There are several instances where we invoke (2k + 3)-connectivity
as a substitute for a minimum degree of at least 2k + 3. The only place
where minimum degree 2k + 2 does not suffice is the proof of Claim 7.1.4.
We need minimum degree 2k + 3 there to get the small “bonus” εα in our
notion of richness. Richness only allows us to make a statement about the
inner vertices of a path and the purpose of this bonus is to compensate for
the end vertices. Therefore the arguments involving richness in the proofs
of Claim 7.1.6 and Claim 7.1.7 would break down if we only had minimum
degree 2k + 2.

But even if the suppose that G has minimum degree at least 2k+ 3 there
are still two places where our proof of Theorem 1.1 fails: The first is the proof
of Claim 7.1.3 and the second is the application of Lemma 5.7 in the proof
of Claim 7.1.7.

We use Claim 7.1.3 in the proof of Claim 7.1.6, to show that no component
of Γ(W,P)[λ] can be a single vertex or a single edge. In both cases we do
not use the full strength of Claim 7.1.3. So although we formally rely on
(2k + 3)-connectivity for Claim 7.1.3 we do not really need it here.

However, the application of Lemma 5.7 in the proof of Claim 7.1.7 does
need (2k + 3)-connectivity. Our aim there is to obtain a contradiction to
Claim 7.1.2 (iv) which inherits the bound 2k + 3 from the token game in
Lemma 4.10. This bound is sharp: Let H be the union of a triangle D =
d1d2d3 and two edges d1a1 and d2a2 and set A :={a1, a2}. Clearly H−A = D
is connected and A is marginal in H. For k = 3 we have 2|D| + |N(D)| =
8 = 2k + 2. Let L be the pairing with edges (a1, 0)(a2, 0) and (di, 0)(di,∞)
for i = 1, 2. It is not hard to see that there is no L-movement on H as the
two tokens from A can never meet.
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So the best hope of tweaking our proof of Theorem 1.1 to work for (2k+2)-
connected graphs is to provide a different proof for Claim 7.1.7. This would
also be a chance to avoid relinkages, that is, most of Section 5, and the very
technical Lemma 6.5 altogether as they only serve to establish Claim 7.1.7.
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Linkages in Large Graphs

Jan-Oliver Fröhlich∗ Ken-ichi Kawarabayashi†‡

Theodor Müller§ Julian Pott¶ Paul Wollan‖

Abstract

We prove that every large enough (2k + 3)-connected graph G is
k-linked. In an earlier paper [1] we proved this for graphs of bounded
tree-width. We complete the unbounded tree-width case by finding a
large linear decomposition of some subgraph neatly contained in G to
which we can apply our earlier result.

1 Introduction

This article is the second part of our two part series that shows that all large
enough (2k+ 3)-connected graphs are k-linked. We refer to the first part [1]
as Part I and as we often mention particular passages of Part I we use I–X
to refer to X in Part I. For a thorough introduction see Section I–1. We
restate the main result of Part I.

Theorem 1.1 (Theorem I–1.1). For all integers k and w, there exists an
integer N such that a graph G is k-linked if

κ(G) ≥ 2k + 3, tw(G) ≤ w, and |G| ≥ N.

In this article we prove the following theorem.
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Theorem 1.2. For all integers k there is an integer w such that all (2k+3)-
connected graphs with tree-width at least w are k-linked.

Together, Theorem I–1.1 and Theorem 1.2 yield our main result.

Theorem 1.3. For all integers k there is an integer N such that all (2k+3)-
connected graphs on at least N vertices are k-linked.

Proof. Let k be given and let w be the tree-width returned by Theorem 1.2.
Let N be the integer returned by Theorem 1.1 for k and w. Let G be a
(2k+ 3)-connected graph on at least N vertices. If G has tree-width w it is
k-linked by Theorem 1.2. If the tree-width of G is less than w it is k-linked
by Theorem 1.1.

2 Excluded substructures

In this section we collect structures such that a sufficiently connected graph
containing any of these structures is k-linked. In particular, it suffices to
contain a subdivided copy of K2k,2k, a subgraph isomorphic to K2k−2,2k, or
a K3k as a minor for a (2k+3)-conected graph to be k-linked. We also show
this for a slightly more complicated structure that is introduced later.

First we have Lemma I–7.1:

Lemma 2.1. Every 2k-connected graph containing a TK2k,2k is k-linked.

Lemma 2.2. Every (2k+2)-connected graph containing a subgraph isomor-
phic to K2k−2,2k is k-linked.

Proof. In the considered graph G let A and B be disjoint vertex sets with
|A| = 2k − 2 and |B| = 2k such that every vertex in A is adjacent to every
vertex in B. Let X = {x1, . . . , xk} and Y = {y1, . . . , yk} be two disjoint
sets, each containing k distinct vertices of G. We need to find a system of k
disjoint X–Y paths linking xi to yi for i = 1, . . . , k.

Let Z be a maximal subset of A \ (X ∪ Y ) of size at most 2 (note that
Z may be empty). By the connectedness of G, we find a system P of 2k
disjoint (X ∪ Y )–(A ∪ B) paths in G − Z. For each x ∈ X ∪ Y denote by
Px the unique path of P starting in x. Let IA and IB be the sets of indices
i ∈ {1, . . . , k} such that both of Pxi and Pyi end in A and both end in B,
respectively, and denote the remaining indices by J . Let A1 and B1 the
sets of vertices of A and B, respectively, in which a path of P ends. Set
A0 :=A \A1 and B0 :=B \B1.
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For every i ∈ J there is an edge ei between the last vertices of Pxi and
Pyi so Li :=(Pxi ∪ Pyi) + ei is an xi–yi path. Clearly

|B0| = 2k − |B1| = |A1| = 2|IA|+ |J | ≥ |IA|

So we can pick distinct vertices (vi)i∈IA in B0. For every i ∈ IA, the last
vertices of Pxi and Pyi are adjacent to vi, by edges ei and fi say, so Li :=Pxi∪
ei ∪ fi ∪ Pyi) is an xi–yi path.

If |A0| ≥ |IB| holds as well, then doing the symmetric construction for
i ∈ IB yields an xi–yi path for every such i. So for each i = 1, . . . , k, the
path Li is comprised of two paths of P and at most one additional vertex
unique to i hence the constructed paths are disjoint.

So we may assume that |A0| < |IB|. This implies

|A0| = 2k − 2− |A1| = |B1| − 2 = 2|IB|+ |J | − 2 ≥ 2|A0|+ |J |

and therefore |A0| = |J | = 0. In particular, |IA| = k − 1, |IB| = 1, and
Z = ∅. The latter implies that A ⊆ X ∪ Y , so we may assume that x1 and
y1 are not in A but all other elements of X∪Y are. As G−A is 2-connected1,
it contains two internally disjoint x1–y1 paths. One of these paths misses
at least k − 1 vertices, z2, . . . , zk say, of B and we denote it by L1. For
2 ≤ i ≤ k let Li be the xi–yi path xiziyi of length 2. Then {Li | 1 ≤ i ≤ k}
is an X–Y linkage as desired.

For positive integers r ≥ 3, define a graph Hr as follows (see Figure 1).
Let P1, . . . , Pr be r disjoint (‘horizontal’) paths of length r − 1, say Pi =
vi1 . . . v

i
r. Let V (Hr) =

⋃r
i=1 V (Pi), and let

E(Hr) =

r⋃

i=1

E(Pi) ∪
{
vijv

i+1
j | i, j odd; 1 ≤ i < r; 1 ≤ j ≤ r

}

∪
{
vijv

i+1
j | i, j even; 1 ≤ i < r; 1 ≤ j ≤ r

}
.

We call the paths Pi the rows of Hr; the paths induced by the vertices
{vij , vij+1 : 1 ≤ i ≤ r} for an odd index j are its columns.

The 6-cycles in Hr are its bricks. In the natural plane embedding of Hr,
these bound faces of H. The outer cycle of the unique maximal 2-connected
subgraph of Hr is the boundary cycle of Hr. The diagonal of Hr is the set
of vertices {vii | 1 ≤ i ≤ r}. A set X ⊆ V (H) is a pseudo diagonal if there is

1In fact, G−A is 4-connected.
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P2

P6

v11 v12 v13 v14 v15 v16

v21

v61

v22

Figure 1: The graph H6

at most one vertex in each row and each column while for any two vertices

vji , v
j′
i′ ∈ X it holds that i < i′ implies j < j′.

Any subdivision H of the unique maximal 2-connected subgraph of Hr

will be called an r-wall, or a wall of size r and with the branch vertices
of H we refer to its vertices of degree 3, these are the branch vertices of the
defining subdivision, except the ones of degree 2 on the boundary cycle. The
bricks and the boundary cycle of H are its subgraphs that form subdivisions
of the bricks and the boundary cycle of Hr, respectively. The diagonal of H
are the vertices in the diagonal of the defining Hr and a set X is a pseudo
diagonal of H if it corresponds to a pseudo diagonal in the appropriate Hr.
An embedding of H in a surface Σ is a flat embedding, and H is flat in Σ,
if the boundary cycle C of H bounds an open disc D(H) in Σ such that all
its bricks Bi bound disjoint, open discs D(Bi) in Σ with D(Bi) ⊆ D(H) for
all i.

A plane graph G is called face restricted 2-linked if for every two pairs
S = (s1, s2) and T = (t1, t2) of vertices such that no face of G contains all
four vertices in its boundary there is an S–T linkage. A planar graph is face
restricted 2-linked if all its possible embeddings into the plane are.

Lemma 2.3. Any 3-connected, planar, 3-regular graph is face restricted
2-linked.

Proof. First note that all embeddings of a 3-connected planar graph G are
equivalent. That is for every embedding the same sets of vertices appear on
the boundary of a face in the same order. Let S = (s1, s2), and T = (t1, t2)
be two pairs of vertices such that no face of some embedding of G contains
all four vertices in its boundary. It suffices to show that there is an S–T
linkage. As all embeddings of a 3-connected planar graph G are equivalent,
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there is no embedding of G with these four vertices on the boundary of the
outer face (in any order). In terms of [9] we have that (G, (s1, t1, s2, t2)) is
not rural. As G is 3-connected, we can apply [9, 2.4] to (G, (s1, t1, s2, t2))
and either get a tripod with paths P1, P2, P3 say or a cross. The cross is
the desired S–T linkage and thus me may assume that we indeed have the
tripod.

Any embedding σ of G into the plane embedds the tripod and the em-
bedded tripod has precisely three faces Fij with 1 ≤ i < j ≤ 3, each with
the union of the paths σ(Pi) and σ(Pj) as its boundary. As each of the three
paths lies on the boundary of a face of the embedded tripod that contains
a vertex from σ({s1, t1, s2, t2}), it is clear that none of these three faces
contains all four vertices. We only describe how to obtain a cross from the
tripod for the case that there is one face, say F12, containing three of the
four vertices, say σ(s1), σ(t1), σ(s2). The other cases can be solved similarly.

Let L be 3 disjoint {s1, t1, s2}–(P1 ∪ P2) paths in G. As G is 3-regular
L is disjoint from P1 ∩ P2 as the two vertices in P1 ∩ P2 both already have
three neighbours in P1 ∪ P2 ∪ P3—one in each path. We may assume that
two of the paths in L end on P1 and one ends on P2.2 By the definition of a
tripod, there is a t2–P3 path P avoiding P1 ∪P2. It is immediate that there
is an S–T linkage independently from how L and P particularly attach to
the tripod.

Lemma 2.4. Let H be an r-wall with branch vertices B. Let a, b, c ∈ B
be distinct branch vertices, and let D ⊆ B be a pseudo diagonal of H of
cardinality at least 31. Let F ⊆ E(H) be an edge set satisfying one of the
following statements.

(i) F = ∅.

(ii) F is the edge set of a maximal B-path and both end-vertices of this
path are in {a, b, c}.

Then there is a vertex d ∈ D such that there is an (a, c)–(b, d) linkage in
H − F .

Proof. It is sufficent to prove this lemma after surpressing all vertices of
degree 2 in H and thus we assume that H is 3-regular. As the proof for the
case that F = ∅ is easier we give here only the proof for if F satisfies (ii). For
the following conclusion note that there is no edge in H whose endvertices

2For i = 1, 2 there is a path from Pi to {s1, t1, s2} as required by the definition of a
tripod and we can follows this path to its first vertex on L.
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have two common neighbours. H − F has precisely two vertices of degree
2 and after surpressing these we obtain a graph H ′ that is 3-connected,
planar, and 3-regular and thus by Lemma 2.3 face restricted 2-linked. Let
x, y be the endvertices of the edge in F and let x′, y′ be a choice of the two
neighbours of x and y in H − F respectively such that there are 5 distinct
vertices in X :={a, b, c, x′, y′}. Such a choice is possible as no two vertices
have two common neighbours in H. There is a vertex d ∈ D that does not
share a face boundary in any embedding of H with any of the vertices in X
as every vertex of H lies in the boundary of at most 3 faces, no face contains
more than 2 vertices from D in its boundary and |D| ≥ 31 > 6|X|. By
the face restricted 2-linkedness of H ′ there is for every choice of 3 vertices
v1, v2, v3 ∈ X−{x, y} a (v1, v3)–(v2, d) linkage in H−F . For the right choice
of v1, v2, v3 this can be extended to an (a, c)–(b, d) linkage in H.

In [10, Section 7] Robertson and Seymour show that one can remove
the vertical edges of four consecutive columns and every other edge of two
horizontal rows to obtain from a wall H of size r one of size r− 2. As their
and our definition of size differ slightly, we only need to remove the vertical
edges of two consecutive columns. We denote the graph that is obtained in
this way by H− [a] if a is one of the vertices that is not contained any longer
in the subwall Note that we can remove any vertex, branch vertex or not, in
this way from the wall and that whenever D is a pseudo diagonal of H, then
we need to remove at most 6 vertices from D to obtain a pseudo diagonal
of H − [a].3 We write H − [a, b, c] to denote the subwall where a, b, c are
removed in this way one after another.

Lemma 2.5. Let k ≥ 1 and let G be a 3-connected graph containing a wall
H with branch vertices B some pseudo diagonal D ⊆ B of cardinality at
least 6k + 31. For any set of three vertices {a, b, c} ⊆ V (G −H) there is a
vertex d ∈ D and an (a, c)–(b, d) linkage that avoids at least k vertices from
D.

Proof. For a graph G as in the statement of the lemma let L be an {a, b, c}–
B linkage that has as few edges outside of H as possbile. Let L link a and
a′, b and b′, and c and c′. By the choice of L if two paths from L intersect
with a subdivided edge of H, then both end vertices of that subdivided
edge, will be end vertices of paths form L. Let F be the set of maximal
B-paths in H such that for each path in F the set of its inner vertices

3With our definition of size and only removing edges in two consecutive columns it
would be sufficient to remove 4 vertices from D. We keep the 6 here to remove a potential
stumbling block if you take out edges of 4 consecutive rows in your mental calculations.
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has non-empty intersection with each path from L. We have |F | ≤ 1. As
|D| ≥ 6k + 18 and the three vertices in B ∩ L disallow at most 18 vertices
from any pseudo diagonal there is a choice of k vertices d1, . . . , dk ∈ D such
that H ′ = H − [d1, . . . , dk] still contains B ∩ L as branch vertices. As we
need to remove at most 6 vertices from a pseudo diagonal when removing one
vertex di from H we have a pseudo digaonel D′ ⊆ D of H ′ with cardinality
at least 31. Let B′ be the branch vertices of H ′ and let F ′ be the maximal
B′-paths in H ′ that contain any edge from F . We have |F ′| ≤ 1, as each
B-path in F is either not contained in H ′ or a subpath of some B′-path
in H ′. A Straight forward application of Lemma 2.4 for the wall H ′, the
branch vertices a′, b′, c′, and the edge set of the maximal B′-path F ′ yields
the desired linkage of G since all the maximal B′-paths that are not in F ′

can be used to extend L if necessary.

Lemma 2.6. Let G be a (2k + 3)-connected graph that contains a wall H.
If G contains a complete bipartite subgraph with bipartition (A,D) such that
|A| = 2k − 3 and A is disjoint from H, while |D| ≥ 6k + 31 and D is a
pseudo diagonal of H, then G is k-linked.

Proof. For a graph G with H, A, and D as in the statement, let X =
{x1, . . . , xk} and Y = {y1, . . . , yk} be two disjoint sets, each containing k
distinct vertices of G. We need to find a system of k disjoint X–Y paths
linking xi to yi for i = 1, . . . , k.

We will complete this proof separately for the following three cases.

Case 1: |A \ (X ∪ Y )| = 0

Case 2: |A \ (X ∪ Y )| = 1

Case 3: |A \ (X ∪ Y )| ≥ 2

Case 1: As |A \ (X ∪ Y )| = 0 we have X ∪ Y \ A = {a, b, c} for some
vertices a, b, c. If a = x1 and b = y1 we apply Lemma 2.5 to the 6-connected
graph G − A, the wall H and the subset D of the diagonal of H of size at
least 6k+31. The resulting linkage L avoids k vertices from D and thus can
be extended to an X–Y linkage as for each pair (xi, yi) that remains to be
paired there is a unique vertex in D that L avoids. If a, b, c are not linked
with each other, then any set of 3 disjoint {a, b, c}–D paths in G−A can in
the same way be extended to an X–Y linkage.

Case 2: As |A \ (X ∪ Y )| = 1 we have X ∪ Y \ A = {a, b, c, d} for some
vertices a, b, c, d. Let v be the unique vertex in A\(X∪Y )|. If a = x1, b = y1

and c = x2, d = y2 we pick two disjoint paths P,Q in G − A where P is a
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a–b path and Q is a c–d path. These paths exist as G − A is 6-connected
and thus 2-linked [5]. If one of P or Q meets D in at least k + 2 vertices,
say P , let d1 be the first vertex on P in D and let d2 be the last vertex
on P in B. Then the linkage {aPd1vd2Pb,Q} can easily, as in Case 1, be
extended to our desired X–Y linkage. If neither P nor Q meets B in at
least k + 2 vertices, then there are |D| − 2k − 4 ≥ 2k + 46 ≥ k − 2 vertices
disjoint from P ∪ Q in D and we extend {P,Q} to an X–Y linkage using
the |D| − 2k − 4 ≥ k − 2 vertices to link the remaining pairs (xi, yi) in A.
If only one or none of the possible pairs of a, b, c, d needs to be linked, let
P,Q,R, S be 4 disjoint paths from {a, b, c, d} to D in G − A. Again it is
easy to extend these to an appropriate X–Y linkage.

Case 3: If |A \ (X ∪Y )| contains at least 2 vertices, then there is enough
space to link up everything without the need of special structures. Let
Z ⊆ A \ (X ∪ Y ) have cardinality two. Let P be a linkage of size 2k from
X ∪ Y to (A \ Z) ∪D in G − Z. It is easy to join up the paths from P to
obtain the desired X–Y linkage.

The next theorem follows4 from (5.4) in [10].

Theorem 2.7 (Robertson & Seymour). Every 2k-connected graph that has
K3k as a minor is k-linked.

3 Near Embeddings and Path-Decompositions

As we could identify ‘containing a K3k-minor’ as a sufficient condition for a
(2k+3)-connected graph to be k-linked, we can apply the structure theorem
for graphs with forbidden minors [4]. In the following we give a brief overview
of this theorem.

3.1 The excluded minor structure theorem

We use the same introduction to near embeddings as in [4] but leave out
some minor parts that are irrelevant in our context.

A vortex is a pair V = (G,Ω), where G is a graph and Ω =: Ω(V ) is
a linearly ordered set (w1, . . . , wn) of vertices in G. These vertices are the
society vertices of the vortex; their number n is its length. We do not always
distinguish notationally between a vortex and its underlying graph or the
vertex set of that graph; for example, a subgraph of V is just a subgraph

4To see this, set ζ = 2n, k = 3n, Z = {s1, . . . , sn, t1, . . . , tn}, and Zi = {si, ti} for
i = 1, . . . , n (note that our k is their n).
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of G, a subset of V is a subset of V (G), and so on. Also, we will often use
Ω to refer to the linear order of the vertices w1, . . . , wn as well as the set of
vertices {w1, . . . , wn}.

A path-decomposition D = (X1, . . . , Xm) of G is a decomposition of our
vortex V if m = n and wi ∈ Xi for all i. For any subset Ω′ = {wn1 , . . . , wnl}
of Ω with wn1 = w1 and with wni ≤Ω wni+1 for all i < l, the path-
decomposition 


n2−1⋃

i=n1

Xi,

n3−1⋃

i=n2

Xi, . . . ,

n⋃

i=nl

Xi




is the decomposition of (G,Ω′) induced by D. When n > 1, the adhesion
of our decomposition D of V is the maximum value of |Xi ∩Xi+1|, taken
over all 1 ≤ i < n. We define the adhesion of a vortex V as the minimum
adhesion of any decomposition of that vortex.

We write Zi :=(Xi ∩Xi+1) \ Ω for all 1 ≤ i < n, when D is a decompo-
sition of a vortex V as above. These Zi are the adhesion sets of D. We call
D linked if

• all these Zi have the same size;

• there are |Zi| disjoint Zi−1–Zi paths in G[Xi]− Ω, for all 1 < i < n;

• Xi ∩ Ω = {wi−1, wi} for all 1 ≤ i ≤ n, where w0 :=w1.

Note that Xi ∩Xi+1 = Zi ∪ {wi}, for all 1 ≤ i < n
Given a subset D of a surface Σ, we write D̊, ∂D, and D for the topo-

logical interior, boundary, and closure, of D in Σ, respectively. For positive
integers α0, α1, α2 and α :=(α0, α1, α2), a graph G is α-nearly embeddable in
Σ if there is a subset A ⊆ V (G) with |A| ≤ α0 such that there are integers
α′ ≤ α1 and n ≥ α′ for which G − A can be written as the union of n + 1
edge-disjoint graphs G0, . . . , Gn with the following properties:

(i) For all 1 ≤ i ≤ j ≤ n and Ωi :=V (Gi ∩ G0), the pairs (Gi,Ωi) =: Vi
are vortices, and Gi ∩Gj ⊆ G0 when i 6= j.

(ii) The vortices V1, . . . , Vα′ are disjoint and have adhesion at most α2; we
denote the set of these vortices by V. We will sometimes refer to these
vortices as large vortices.

(iii) The vortices Vα′+1, . . . , Vn have length at most 3; we denote the set
of these vortices by ν. These are the small vortices of the near-
embedding.
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(iv) There are closed discs in Σ, with disjoint interiors D1, . . . , Dn, and
an embedding σ : G0 ↪→ Σ−⋃n

i=1 D̊i such that σ(G0) ∩ ∂Di = σ(Ωi)
for all i and the linear ordering of Ωi is compatible with the natural
cyclic ordering of its image (i.e., coincides with the linear ordering of
σ(Ωi) induced by [0, 1) when ∂Di is viewed as a suitable homeomorphic
copy of [0, 1]/{0, 1}). For i = 1, . . . , n we think of the disc Di as
accommodating the (unembedded) vortex Vi, and denote Di by D(Vi).

We call (σ,G0, A,V, ν) an α-near embedding of G in Σ, or just a near-
embedding, with apex set A. For any integer α′ we shorten (α′, α′, α′)-near
embedding to α′-near embedding. Note that an (α0, α1, α2)-near embedding
also is an α′-near embedding for any α′ ≥ max{α0, α1, α2}.

Given a near-embedding (σ,G0, A,V, ν) of G, let G′0 be the graph result-
ing from G0 by joining any two nonadjacent vertices u, v ∈ V (G0) that lie
in a common small vortex V ∈ ν; the new edge uv of G′0 will be called a
virtual edge. By embedding these virtual edges disjointly in the disc D(V )
accommodating their vortex V , we extend the embedding σ : G0 ↪→ Σ to
an embedding σ′ : G′0 ↪→ Σ. We shall not normally distinguish G′0 from its
image in Σ under σ′. For a subset D ⊆ Σ the graph G′0[D] is the subgraph
of G′0 that is induced by the vertices of G′0 in D.

A cycle C in Σ is flat if it bounds an open disc D(C) in Σ. Disjoint
cycles C1, . . . , Cn in Σ are concentric if they bound open discs D(C1) ⊇
. . . ⊇ D(Cn). A set P of path intersects C1, . . . , Cn orthogonally, and is
orthogonal to C1, . . . , Cn, if every path P in P intersects each of the cycles
in a (possibly trivial but non-empty) subpath of P . Let G be a graph
embedded in a surface Σ, and Ω a subset of its vertices. Let C1, . . . , Cn be
concentric cycles of G. The cycles C1, . . . , Cn enclose Ω if Ω ⊆ D(Cn). They
tightly enclose Ω if, in addition, the following holds:

For all 1 ≤ k ≤ n every family C ′n−k+1, . . . , C
′
n of concentric

cycles that lie in the subgraph of G embedded in D(Cn−k+1)
and enclose Ω satisfies Cn−k+1 = C ′n−k+1.

For a near-embedding (σ,G0, A,V, ν) of a graph G in a surface Σ and
concentric cycles C1, . . . , Cn in G′0, a vortex V ∈ V is (tightly) enclosed by
these cycles if they (tightly) enclose Ω(V ). When we speak of the genus
of a surface Σ we always mean its Euler genus, the number 2 − χ(Σ). An
(α0, α1, α2)-near embedding (σ,G0, A,V, ν) of a graph G in some surface Σ
is called (β, r)-rich for integers 3 ≤ β ≤ r if the following statements hold:

(i) G′0 contains r-wall H and H is flat w.r.t the embedding σ.
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(ii) If Σ � S2, the representativity of G′0 in Σ is at least β, that is, every
genus-reducing curve in Σ has an intersection with G′0 of cardinality
at least β.

(iii) For every vortex V ∈ V there are β concentric cycles C1(V ), . . . , Cβ(V )
in G′0 tightly enclosing V . For Di(V ) :=D(Ci(V )) with i = 1, . . . , β we
have Ω(V ) ⊆ Dβ(V ) and D(H) ∩ D1(V ) = ∅. Moreover, for distinct

large vortices V,W ∈ V, the discs D1(V ) and D1(W ) are disjoint.

(iv) Let V ∈ V, say Ω(V ) = (w1, . . . , wn). Then there is a linked decom-
position of V with linkage L of adhesion at most α2 and a path P in
V ∪ (

⋃
ν) with V (P ∩G0) = Ω(V ) that avoids all the paths of L, and

traverses w1, . . . , wn in this order.

(v) For every vortex V ∈ V, its set of society vertices Ω(V ) is linked in G′0
to branch vertices of H by a set P(V ) of β disjoint paths having no
inner vertices in H.

(vi) For every vortex V ∈ V, the paths in P(V ) intersect the cycles C1(V ),
. . ., Cβ(V ) orthogonally.

Now we have the terminology to state the structure theorem from [4].

Theorem 3.1. For every non-planar graph R and integers 3 ≤ β ≤ r
there exist integers α0 = α0(R, β), α1 = α1(R) and w = w(α0, R, β, r) such
that the following holds with α = (α0, α1, α1). Every graph G of tree-width
tw(G) ≥ w that does not contain R as a minor has an α-near, (β, r)-rich
embedding in some surface Σ in which R cannot be embedded.

Whenever we talk about α0(R, β), α1(R), or w(α0, R, β, r) we refer to
the values provided in this theorem. Let us finish this section with some
terminology useful when talking about near embeddings. For a vertex set
X ⊆ V (G) the sum

EG(X) :=
∑

x∈X
(dG(x)− 6)

is the excess of X in G. The excess of a subgraph of G is the excess of its
vertex set. We may omit the index of EG if it is clear from the context or
all options in the current context have the same excess.

Let G = (V,E) be a graph that is embedded in some surface Σ. Any
graph on n vertices that is maximal with the property of being embeddable
in Σ has precisely 3n − 3χ(Σ) edges. Hence it holds that E(V ) ≤ −6χ(Σ).
Clearly, the sum of the excesses of two disjoint sets is the excess of their
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union. Thus, if for some X ⊆ V and c ∈ N we have E(X) ≥ c − 6χ(Σ)
we also have E(V \X) ≤ −c. The excess of a face F with boundary cycle
C is defined to be the number E(V (C)) + 2|C| − 6. Note that one can
think of this as the maximal potential excess as this is just the excess of
V (C) in the graph obtained from G by embedding disjointly as many edges
as possible in the face F . The excess E(V ) of a vortex V ∈ V in a near
embedding (σ,G′0, A,V, ν) is the excess of the face of G′0 that contains the
accommodating disc of that vortex.

3.2 Forcing edges into a surface

The terminology regarding linear decompositions used in this section is thor-
oughly defined in Section I–3. We now use the results from Section 2 to
show that for an α-near (β, r)-rich embedding (σ,G0, A,V, ν) of a (2k + 3)-
connected graph G that is not k-linked one of the large vortices has arbi-
trarily large negative excess if r is large enough.

This vortex together with its β tightly enclosing cycles will have a rich
enough structure to find a long regular stable decomposition whose auxiliary
graph is ‘large’5 enough to solve our linkage problem.

A subgraph H ⊆ G together with a linear decomposition (W,P) of H
is a decomposed subgraph of G. We also call H a decomposed subgraph
and (W,P) its decomposition. A decomposed subgraph H ⊆ G is a stable
regular subgraph if its decomposition (W,P) is stable and regular. Its length,
attachedness, and adhesion are the length, attachedness and adhesion of
(W,P), respectively. The stable regular subgraph H with decomposition
(W,P) has a collar HPΠ for some path Π ⊆ Γ(W,P) with leaf j1 and
collarsize n ∈ N if

1. The path Π = j1j2 . . . jn in Γ(W,P) has length n−1, and j1 has degree
1 in Γ(W,P), and ji has degree 2 in Γ(W,P) for 1 < i ≤ n. The ji are
the indices of paths of P ⊆ G. To reduce the clutter in our notation
we shall always assume that ji = i for 1 ≤ i ≤ n.

2. Every path from G−H to HPΓ(W,P)−Π meets all paths Pi with 1 ≤ i ≤ n
or the first or last adhesion set of (W,P).

3. By our assumption in Property 1 the path Πi := 1Π(i−1) is the initial
subpath of length i − 2 of Π. For every foundational linkage of W if
the path Qi starting in the endvertex of Pi is contained in HPΓ(W,P)−Πi

,
then Qi = Pi.

5or ‘rich’
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4. HPΠ restricted to the inner bags of (W,P) can be embedded into a disc
with the first and last adhesion set on the boundary and such that the
image of Pi separates the disc into two disc, one of which contains the
images of the paths with smaller indices and one of which contains the
paths with larger indices.

5. Every vertex in the collar HPΠ is adjacent to at most 2k − 3 trivial
paths of P.

6. For every inner bag W of (W,P), the path P1[W ] is incident with
2|P1[W ]|+ 6n edges in G[W ]− E(P1).

Let us give some intuition for these properties. The collar of size n
corresponds to the graph enclosed by n concentric cycles around a vortex.
Property 2 captures the separating property of a cycle that encloses a vortex.
Namely, the vortex is separated from the wall by the union of the cycle and
the apex set (and the small vortices but we will get rid of those by some other
argument). Note that every vertex in an inner bag of W that also has some
neighbour that does not lie in any inner bag ofW lies either in the first or last
adhesion set of (W,P) or in P1. This defines a demarcation line and on the
‘inside’ we will have enough strutcure to apply the results from Part I while
the ‘outside’ is packed away neatly enough to not cause any complications
for us. Property 3 captures the ‘tightly’ from the β tightly enclosing cycles
around a vortex. Property 4 is an obvious consequence of the fact that
the tightly enclosing cycles are embedded in a disc. Property 5 is used in
combination with the high connectedness and thus high minimum degree
of G to ensure that all vertices in the collar not in the first or last adhesion
set of W nor on P1 have degree at least 6 in the collar itself. Property 6
ensures that there are enough edges in H as to ensure a structure in Γ(W,P)
that lets us solve any linkage problem.

With these definitions we are able to state and prove the main link
between the bounded tree-width case and the unbounded tree-width case:

Lemma 3.2. For all integers N and k there exists an integer w such that the
following holds. Every (2k + 3)-connected graph G of tree-width tw(G) ≥ w
is either k-linked or contains a stable regular subgraph of length N , at-
tachedness 2k+ 3, with collarsize 6k, and adhesion at most α0(K3k+6, 6k) +
2α1(K3k+6) + 12k.

Proof. Let us first introduce the values of some integers N1, . . . , N6 that are
dependent only on the integers N and k. In the following we need numbers
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α0 :=α0(K3k+6, 6k) and α1 :=α1(K3k+6) as given by Theorem 3.1. We set
α+ :=α0 + 2α1 + 12k as this term is used several times later on, it is the
upper bound for the adhesion we are aiming for.

Let

χ(k) := min{χ(Σ) | K3k+6 can not be embedded into Σ}

and let ρ := 6k
(
α0

2k

)
+ 2k

(
α0

2k−2

)
. Note that these values only depend on the

choice of k. Let

N6 be the integer returned by I–3.5 for

a := 2k,

l :=N,

p := 2k + 3,

w :=α+,

N5 − 1 be the integer returned by [6, Lemma 3.5] for

l :=N6,

p :=α+,

q := 2k + 3,

N4 :=N5

(
2ρ+

(
α+

2k − 2

))
,

N3 :=Nα++1
4 (α+)!

N2 :=N3(72k + 6ρ+ 6) + 6,

N1 :=N2α1 + 2 + (6k + 31)

(
α0

2k − 3

)
+ 25ρ− 6χ(k)

We will show that the conclusion of the lemma follows if we set the value of w
to w(α0,K3k+6, 6k,N1) as provided by Theorem 3.1. Let G be a (2k + 3)-
connected graph with tree-width at least w. By Theorem 2.7 we may assume
that K3k+6 is not a minor of G. Set α :=(α0, α1, α1). By the structure
theorem (3.1) there is an α-near (6k,N1)-rich embedding (σ,G0, A,V, ν) of
G into some surface Σ in which K3k+6 can not be embedded.

Claim 3.2.1. If |ν| ≥ 2k
(
α0

2k

)
then G is k-linked.

Proof. Each small vortex X ∈ ν contains a vertex vX not in its society.
Since G is (2k+3)-connected Menger’s Theorem yields a fan with centre vX
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of size 2k+3 whose leaves are contained in the flat wall. As |Ω(X)| ≤ 3 there
are at least 2k internally disjoint vX–A paths in that fan, and their union is
a fan SX that has all its non leaves in X and all its at least 2k leaves in A.
For distinct small vortices X,Y we have that V (SX ∩ SY ) ⊆ A. If there are
2k
(
α0

2k

)
small vortices, then we have at least that many such fans and, by the

pigeon hole principle, there is one 2k-subset of A that is the set of leaves for
2k such fans. These two vertex sets of size 2k are the branch vertices of a
TK2k,2k and with Lemma 2.1 this implies that G is k-linked.

Claim 3.2.2. If the number of vertices in G′0 with 2k − 2 neighbours in A
is more than 2k

(
α0

2k−2

)
then G is k-linked.

Proof. Similar to the proof of Claim 3.2.1 that many vertices with 2k − 2
neighbours in A would force one of the 2k− 2 subsets of A to be completely
adjacent to a set of 2k vertices. In this case we obtain a K2k,2k−2 as a
subgraph of G and this is sufficient for the k-linkedness of G by Lemma 2.2.

Claim 3.2.3. If the number of vertices in some pseudo diagonal of a flat
r-wall in G0 that have 2k − 3 neighbours in A is at least (6k + 31)

(
α0

2k−3

)
,

then G is k-linked.

Proof. If there are more such vertices, then there is a pseudo diagonal with
cardinality 6k + 31 that is completely adjacent to a (2k − 3)-subset of A.
With Lemma 2.6 the claim follows.

Claim 3.2.4. There is a large vortex V ∈ V tightly enclosed by C1(V ), . . . ,

C6k(V ) such that the face with boundary C1(V ) in G′0[Σ \ ˚D1(V )] has excess
at most −N2.

Proof. Let H be a flat N1-wall in G′0 as given by the (6k,N1)-richness of the
near embedding. By replacing H with a subwall of size at least N1 − 18ρ
if necessary, we may ensure that H does not contain a vertex that lies in
the society of a small vortex and thus H ⊆ G0. For every vortex V ∈ V
there are 6k concentric cycles C1(V ), . . . , C6k(V ) in G′0 tightly enclosing V
and bounding open discs D1(V ) ⊇ . . . ⊇ D6k(V ), such that D6k(V ) contains
Ω(V ) and D(H) does not meet D1(V ). For distinct large vortices V,W ∈ V,
the discs D1(V ) and D1(W ) are disjoint.
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Let Gi(V ) :=G′0[Di(V )] be the restriction of G′0 to the vertices that are
mapped into Di(V ) by σ and let

X :=V

(
G′0 \

⋃

V ∈V
G1(V )

)

be the set of vertices of G′0 not in G1(V ) for any V ∈ V. Note that
V (H) ⊆ X, that is the vertice of our flat wall are contained in X. Let

G′′ :=G′0[Σ \ ⋃V ∈V
˚D1(V )] be the subgraph of G′0 that misses the vertices

in the interior of the discs D1(V ) for V ∈ V. We now have G′′ ∩G1(V )
= C1(V ) for any V ∈ V. Let FV be the face of G′′ that contains the
accommodating disc of V ∈ V. We have that FV = D1(V ).

Let G′′′ be the graph obtained from G′′ by additionally embedding dis-
jointly as many edges as possible, that is |C1(V )|−3, in the face FV for each
V ∈ V. As G′′′ is still embeddable into Σ we have

−6χ(k) ≥ −6χ(Σ) ≥ EG′′′(V (G′′′))

= EG′′(V (G′′)) +
∑

V ∈V
(2|C1(V )| − 6)

≥ EG′′(X) +
∑

V ∈V
EG′′(C1(V )) +

∑

V ∈V
(2|C1(V )| − 6)

≥ EG′′(X) +
∑

V ∈V
EG′′(FV ).

By Claim 3.2.1, Claim 3.2.2 all but at most ρ vertices in X have degree at
least 6 in G′0 while by Claim 3.2.3 from the at least N1− 18ρ− 2 vertices on
the diagonal of H, which is also a pseudo diagonal of H at least N1 − 3ρ−
2− (6k+ 31)

(
α0

2k−3

)
−ρ are neither incident with at least 2k−3 vertices in A

nor with a virtual edge and thus have degree 7 in G′0 and also in G0. With
M := minV ∈V (E(FV )) we have

−6χ(k) ≥ EG′′(X) +α1M ≥ N1− 18ρ− 2− (6k+ 31)

(
α0

2k − 3

)
− 7ρ+α1M

which implies

N1 ≤ 2 + (6k + 31)

(
α0

2k − 3

)
+ 25ρ− α1M − 6χ(k).

By the choice of N1 we have one vortex V ∈ V such that FV has excess at
most −N2 in G′′.
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Claim 3.2.5. There is a linked vortex (V ′,Ω′) with V ′ = V ∪ G1(V ) ∪ A6

and decomposition W with foundational linkage P of adhesion at most α+ =
α0 + 2α1 + 12k.

Furthermore, the vertices of Ω′ are precisely V (C1(V ) − v) for some
vertex v ∈ C1(V ) and the excess of (V ′,Ω′) is at most −N2 + 6. P neces-
sarily contains precisely 6k non-trivial paths that are disjoint from V . Let
P1, . . . , P6k be those paths and let them be ordered naturally. P1 = C1(V )−v
in this case.

Proof. Using the ideas from [4, Lemma 15] we can find for any vertex v of
C1(V ) a set Sv of 6k vertices that contains one vertex from each cycle Ci
such that there is a curve γv in Σ from v to Ω(V ) meeting G′0 only in Sv
and in a vertex ωv ∈ Ω(V ). We may assume that for any two vertices v, w
their curves γv and γw either are disjoint or γv ∩ γw = γv[x, 1] = γw[y, 1]
for some values x, y ∈ [0, 1].7 There is an edge v0v∞ in C1(V ) such that
ωv0 is Ω-minimal and ωv∞ is Ω-maximal in {ωv | v ∈ C1(V )}. For any
v ∈ C1(V ) let Av be the adhesion set of V that contains ωv ∈ Ω(V ). Then
Sv ∪ Av ∪ Sv0 ∪ Av0 ∪ A for v ∈ C1(V ) − v0 are the adhesion sets of a slim
decompositionW of V ′ and as C1(V ), . . . , C6k(V ) are tightly enclosing every
foundational linkage of W contains P1 :=C1(V )− v0. The natural order of
the 6k paths disjoint from V is provided by the order they intersect with
the curves γv for any v ∈ C1(V )−v0. The adhesion ofW is at most α+.

Claim 3.2.6. There is a contraction W ′ of W of length N3 with trivial
paths θ such that every vertex v in an inner bag of W ′ that is incident with
a virtual edge or with more than 2k − 3 vertices in the set θ is necessarily
contained in θ and A ⊆ θ.

Proof. We give an algorithm to construct edge disjoint paths Q1, . . . , QN3

with the following properties (i) to (iii).

(i)
⋃

1≤i≤N3
Qi covers precisely the edges of C1(V )− v0.

(ii) For all qi ∈ Qi and qj ∈ Qj with i < j we have qi ≤Ω′ qj .

Let v ≤Ω′ w be the end vertices of Qi for some 1 ≤ i ≤ N3. Let Wjv

be the bag of W whose left adhesion set contains Sv and let Wjw be the

6Note that this is neither a subgraph of G nor of G′0. We will transform it into a
subgraph of G later on by restricting it to a section that contains no virtual edges.

7To see this just pick one curve after another and follow any previous curve from the
first point they intersect.
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bag of W whose right adhesion set contains Sw and let W ′i :=W[jv ,jw] and
Xi :=G1(V )[W ′i ].

(iii)
∑

v∈Qi dXi(v) ≥ 4|Qi|+ 72k + 6ρ.

As N2− 6 = N3(72k+ 12ρ+ 6) the following algorithm provides such paths.
Start at the Ω′-smallest vertex in C1(V )− v0 and add it to Q1. Extend Q1

along C1(V ) with Ω′-increasing vertices until the excess of Q1 in G′′ is at
most −72k − 12ρ− 12. Start the process with the last vertex added to the
previous path for the next path. It is clear that we end up with enough paths
with this construction as every vertex contributes at most −6 to the excess
and thus we ‘lose’ at most 6N3 excess to work with at the vertices that lie
in two paths. And (iii) holds as Qi has at most ρ vertices with negative
excess in G′0 and the constant −12 allows for enough slack to ignore the end
vertices of Qi in the computation.

Thus EXi∩G(W ′i ) ≥ −2|Qi| − 6|W ′i ∩ Ω(V )| as we ‘lose’ at most 6 from
the sum for any vertex in Qi, Sv, Sw,W

′
i ∩Ω(V ), and also at most 6ρ for the

virtual edges or vertices incident with at least 2k − 2 vertices in the apex
set.

The restriction of σ to Xi∩G embeds Xi∩G into a closed disc in such a
way that the boundary of the disc has precisely the vertices Qi ∪ Sv ∪ Sw ∪
(Ω(V ) ∩W ′i ) mapped to it.

Suppose for a contradiction that Sv∩Sw 6= ∅, then the boundary contains
precisely the images of the vertices in Qi∪Sv ∪Sw and EXi∩G(W ′i ) ≥ −2|Qi|
as we don’t have extra vertices from W ′i ∩ Ω(V ) that contribute to a lower
excess. As the excess of a graph embedded into the plane is at most −12
and we could add |Qi ∪Sv ∪Sw| − 3 edges to the drawing of Xi provided by
σ it holds that

−12 ≥ EXi∩G(W ′i ) + 2|Qi ∪ Sv ∪ Sw| − 6

≥ −2|Qi|+ 2|Qi ∪ Sv ∪ Sw| − 6

≥ −6.

With this contradiction we showed that Sv and Sw are disjoint. The slim
decomposition (V (W ′1), . . . , V (W ′N3

)) has length N3 = Nα++1
4 α+!. By [6,

Lemma 3.4, Lemma 3.5] we have a contraction Wtemp of it of length N4

that additionally satisfies I–(L7), that is any path of a foundational linkage
is either trivial or contains an edge in every inner bag of Wtemp.

As N4 = N5

(
2ρ+

(
α+

2k−2

))
there are indices i, j with j − i = N5 such

that W[i,j] contains no virtual edges or vertices incident with more than
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2k − 3 trivial paths (Note that the apex set is contained in the trivial path
by construction). LetW ′ be the contraction ofWtemp along 1, i, i+ 1, . . . , j.
W ′ is a slim decomposition of length N5 with adhesion at most α+, satisfying
I–(L7). Every foundational linkage of W ′ contains precisely 6k non-trivial
paths that are disjoint from V .

As in Part I, for a linkage Q with trivial paths θ in a graph H, the union
of θ with a proper rerouting of Q \ θ obtained from applying Lemma I–3.3
to Q \ θ in H − θ is a bridge stabilisation of Q in H.

Claim 3.2.7. Every bridge stabilisation Q′ of a foundational linkage of W ′
is (2k + 3)-attached.

Proof. We follow the proof of Lemma I–3.7 (iii). For any inner bag W of
W ′ and the set Z consisting of the left and right adhesion set of W and the
vertices of P1[W ] it holds that there is an x–Z fan of size 2k + 3 in G[W ]
for any x ∈ W \ Z as G is (2k + 3)-connected and Z separates x from the
flat wall.

We stay in the notation from I–3.7 (iii). Suppose B is a non-trivial
hosted Q′-bridge and let Q′ be the non-trivial path to which it attaches. If
Q′ is the leaf P1 of the collar, then B has at most one attachment on Q′,
as P1 is a subgraph of the tightly enclosing cycle C1(V ). Consequently, B
is attached to at least 2k+ 2 paths of θ as G is (2k+ 3)-connected. We can
follow the remainder of the proof verbatim as P1 ⊆ Y \X.

Let us recap this situation in the light of [3, Section 3]. We have a
decomposed subgraph H ⊆ V ∪ G1(V ) for some large vortex V of G with
slim decomposition (W ′,Q′) say that has length N5, attachedness 2k + 3,
adhesion at most α+, and 6k non-trivial paths of Q′ are disjoint from V .

The slim decomposition W ′ with attachedness p = 2k + 3 and adhesion
q ≤ α+ has length λ+1 = N5. According to [6, Lemma 3.5] we have a regular
decomposition (W ′′,P ′) of length N6 which originates from a contraction of
W ′. The proof of Theorem I–3.5 invokes p-connectedness two times. The
first time to obtain a regular decomposition with the properties of (W ′′,P)
and the second time to prove that every bridge stabilisation of P is (2k+3)-
attached. As we already have the regular decomposition (W ′′,P) we can
disregard the first instance. And with Claim 3.2.7 we can disregard the
second instance, too.

Thus we have a contraction (X ,Q) of (W ′′,P) that is a stable regular
decomposition of adhesion at most α+, attachedness 2k + 3, and length N .
It remains to show that it has collarsize 6k. Every foundational linkage of X
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contains precisely 6k non-trivial paths that are disjoint from V . We may
assume that Q contains the path Pi ⊆ Ci(V ) for 1 ≤ i ≤ 6k. Then Prop-
erty 1 and Property 2 hold as C1(V ), . . . , C6k(V ) enclose V and Property 3
holds as they do so tightly. As HQΠ [W1,N−1] is embedded into the disc D1(V )
by σ it is planar and Property 4 holds. Property 5 holds by Claim 3.2.6.
Finally, Property 6 holds as the decomposition constructed in the proof of
Claim 3.2.6 with bags V (W ′i ) already had enough edges and moving to a
contraction only increases the count.

Foregoing some details, we say that S is ‘properly attached’ to a decom-
posed subgraph H if there is a linkage from S to H such that each path
of the linkage intersects with H only in the first and last bag of its decom-
position. In the following we construct such a properly attaching linkage
without destroying to much of the length of H nor of the size of its collar.

In detail the definition looks as follows. Let H be a stable regular sub-
graph of some graph G with decomposition (W,P) and let λ ⊆ P be the
non-trivial paths in P. Let C be a component of Γ(W,P)[λ], then N(C)
are the (trivial) neighbours of C in Γ(W,P). A set S that intersects with
V (H) only in the first and last bag of W can be attached properly to C if
there is a linkage L from S to ΓPC∪N(C) such that all paths of L end in the
first or last adhesion set of W. In this case L attaches S properly to C.

The main idea to construct such a linkage that properly attaches a set S
of size 2k to our decomposed subgraph H with collarsize 6k is the following.
We take 2k disjoint S–H paths and reroute them along the 2k outer most
paths of the collar to the first and last adhesion set of the decomposition
of H. In the construction we will lose some length and collarsize 2k. First
we provide a single purpose lemma to reroute linkages along other linkages.

Lemma 3.3. Let G be a graph, let S, T ⊆ V (G) be of cardinality k ∈ N,
and let H be a set of pairwise disjoint connected subgraphs of G such that
each H ∈ H contains a vertex from T . Let P be a set of k disjoint paths
such that each path of P has one end in S and either has its other end in T
or meets at least k distinct graphs from H. Then there are k disjoint S–T
paths in

⋃
(P ∪H).

Proof. The proof will be one straight forward application of Menger’s Theo-
rem. Suppose there are not k disjoint S–T paths in

⋃
(P ∪H). By Menger’s

Theorem there is a set X of at most k − 1 vertices that separates S and T
in
⋃

(P ∪H). By cardinality one path P ∈ P contains no vertex from X. If
P ends in T , then this contradicts the fact that X separates S and T . If P
meets k graphs from H, then there is one, H ∈ H say, that is disjoint from
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X. Thus P ∪H contain an S–T path avoiding X, again contradicting that
X is a separator.

Lemma 3.4. For integers k, n > 2k, N , and α let G be a (2k+3)-connected
graph and let S ⊆ V (G) be a vertex set of cardinality 2k. Let H be a stable
regular subgraph of G with decomposition (W,P) with collarsize n of length
(2k + 1)N + 8k, attachedness 2k + 3, and adhesion at most α + n. Let S
intersect with V (H) only in the first and last bag of W. Then there is a
stable regular subgraph H ′ of G with decomposition (W ′,P ′) of length N ,
with attachedness 2k+ 3, collarsize n− 2k, and adhesion at most α+n− 2k
such that S can be properly attached to the component of Γ(W ′,P ′)[λ′] that
contains the leaf of the collar where λ′ denotes the non-trivial paths in P ′.
In particular, each path of P ′ is a subpath of a path of P.

Proof. Set Γ := Γ(W,P) and let Π = 1, . . . , n be the path in Γ such that HPΠ
is the collar. It is clear that every contraction of length m of (W,P) is a
decomposition witnessing that H is a stable regular subgraph with collarsize
n of length m and attachedness 2k + 3.

Claim 3.4.1. For all 0 ≤ i < n the graph Hi :=HPΓ−{1,...,i}
8 with decompo-

sition (W ′,P \ {P1, . . . , Pi}) where the jth bag of W ′ is W ∩ V (Hi) and W
is the jth bag of W is a stable regular subgraph of G with the same length
as H and at least its attachedness and collarsize n− i.

Let P ′i :=Pi[W
′] and P ′i+1 :=Pi+1[W ′] and let X be the set consisting of

the four end vertices of P ′i and P ′i+1. For i = 0 we have H0 = H and thus the
statement holds by assumption. As Property 1 to Property 5 are trivially
true for any Hi with decomposition (W ′,P\{P1, . . . , Pi}) it remains to show
that Property 6 holds.

Suppose the claim does not hold and let 1 ≤ i < n be the smallest
i such that Property 6 is violated as witnessed by a bag W ′, say. That
is, for some inner bag W ′ of the decomposition (W ′,P \ {P1, . . . , Pi}), the
path P ′i+1 is incident with less than 2|P ′i+1| + 6(n − i) edges in G[W ′] −
E(Pi+1). By Property 4 the graph L :=HP{i,i+1}[W

′] is planar and the society

(L,P ′i (P
′
i+1)−1) is rural.

All vertices of L− (P ′i ∪ P ′i+1) have degree at least 6 in L by Property 5
and the (2k + 3)-connectedness of G. By Lemma I–6.2 we thus have

∑

v∈P ′i∪P ′i+1

dL(v) ≤ 4|P ′i |+ 4|P ′i+1| − 6.

8Assuming that {1, . . . , 0} is the empty set we have H0 = H.
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By Property 6 for Hi−1 we also get

4|P ′i | − 2 + 6(n− (i− 1)) ≤
∑

v∈P ′i

dL(v).

As the paths P ′i and P ′i+1 are disjoint the union commutes with the
summation of the vertex degrees and thus we can reduce to

∑

v∈P ′i+1

dL(v) ≤ 4|P ′i+1| − 6n+ 6i− 10.

As every vertex in L − (X ∪ P1) has degree at least 6 in the restriction
HPΠ [W ′] of the collar to the bag W ′ and the vertices in X have at least
degree one in L, we have for d′(v) := dHPΠ [W ′](v)

6|P ′i+1| ≤
∑

v∈P ′i+1

d′(v) + 10

=
∑

v∈P ′i+1

dL(v) + 10 +
∑

v∈P ′i+1

(
d′(v)− dL(v)

)

<
∑

v∈P ′i+1

dL(v) + 10 +2
∣∣P ′i+1

∣∣+ 6(n− i)

which reduces to

4
∣∣P ′i+1

∣∣− 6n+ 6i− 10 <
∑

v∈P ′i+1

dL(v),

contradicting the upper bound. This means that Property 6 holds for
Hi with collar HPΠ−{1,...,i} of size n − i and thus concludes the proof of
Claim 3.4.1.

By the pigeonhole principle there is an interval Wi, . . . ,Wi+N of bags
of (W,P) with 4k ≤ i ≤ 2kN + 4k such that the contraction (W ′,P ′) of
(W,P) along i+ 1, . . . , i+N contains a vertex from S in an inner bag only
if it is a trivial path. Let C be the component of Γ(W ′,P ′) that contains
the leaf of the collar. Let X be the intersection of the first adhesion set of
(W ′,P ′) with ΓP

′
C∪N(C) and let Y be the intersection of the last adhesion set

of (W ′,P ′) with ΓP
′

C∪N(C). Let L ⊆ H be the union of the paths P1, . . . , P2k

and the first and last bag of (W ′,P ′).
Claim 3.4.2. There is a set H of 2k disjoint X–Y paths in L, and each
path in H contains a path P ′i with 1 ≤ i ≤ 2k as a subpaths.
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Proof. We prove this claim with a straight forward application of Menger’s
Theorem. Any set U ⊆ V (L) of at most 2k−1 vertices misses one path P of
the 2k paths P1, . . . , P2k of (W,P) contained in L. Also such a set U misses
a path P ′ of the 2k paths P2k+1, . . . , P4k of (W,P) which are not contained
in L (but whose end vertices are). Furthermore, U misses bags Wf and Wl

of W that are contained in the first and last bag of W ′, respectively, as only
consecutive bags of W have non-empty intersection with L and both W ′0
and W ′N each contain at least 4k bags of W.

In the union P ∪ P ′[V (L)] ∪ G[Wf ] ∪ G[Wl] ⊆ L there is an X–Y path
that avoids U . By Menger’s Theorem we have a set H of 2k disjoint X–Y
paths in L. Clearly, each path in H contains a path P ′i with 1 ≤ i ≤ 2k as
a subgraph.

For every path P ∈ H the set V (P ) ∪ X ∪ Y separates ΓP
′

C∪N(C) from

G−H by Property 2. Thus every path from G−H to ΓP
′

C∪N(C) meets either

all paths in H or ends in X ∪ Y . Let L be a (S ∪ T )–ΓP
′

C∪N(C) linkage of

size 2k which exists as G is (2k + 3)-connected. Every path in L meets
either all 2k paths in H or ends in X ∪ Y . By Lemma 3.3 there is an S–
(X∪Y ) linkage L′ all whose paths lie in

⋃
(L∪H). This completes the proof

as H[
⋃W ′] with decomposition (W ′,P ′) is a stable regular subgraph of G

with collarsize n − 2k, of length N , attachedness 2k + 3 and L′ attaches S
properly to C.

For the following proof of Theorem 1.2 we closely follow the proof of
Theorem I–1.1. Before the arguments from that proof work in our setting we
need to adapt some lemmas. The complete Section I–4 ‘Token Movements’
will be required here.

In the following let G be a p-connected graph that contains a stable regu-
lar subgraph H with decomposition (W,P) of length N with attachedness p
and collarsize n. Set θ :={α | Pα is trivial} and λ :={α | Pα is non-trivial}.

Lemma 3.5 (from I–6.4). I–6.4 holds also if G is a stable regular sub-
graph of a p-connected graph with decomposition (W,P), with attachedness
p, collarsize at least 4, and length at least 3.

Proof. If both α and β are in the collar of G, the result follows by Property 4.
If one of α or β is not in the collar, then we follow the proof from I–6.4.

Lemma 3.6 (I–6.5). I–6.5 holds also if G is a stable regular subgraph of a
p-connected graph with decomposition (W,P) with attachedness p and col-
larsize at least 4.
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Proof. As the leaf 1 of the collar is not a cut-vertex in Γ(W,P) and every
relinkage contains P1 as one of its paths we may follow the proof from I–6.5
verbatim.

We extend the definition of rich from Section I–7 by one special case:
the leaf of a collar is always rich. One reason to have Property 6 in the
definition of the collar as is, was to make the following arguments about
‘richness’ work.

We now restate our main theorem before proceeding with its proof.

Theorem 1.2. For every k ∈ N there is w ∈ N such that every (2k + 3)-
connected graph with tree-width at least w is k-linked.

Proof. Let k be given, let α0 :=α0(K3k+6, 6k), let α1 :=α1(K3k+6), and let f
be the function from the statement of Lemma I–4.10 with n :=α0+2α1+10k.
Let

N := max{2k(k + 3) + 1, 12k + 4, 2f(k) + 1}
Let w be the integer returned from Lemma 3.2 when asked for G to

be k-linked or containing a stable regular subgraph of length 2kN + 8k,
attachedness 2k + 3, collarsize 6k, and adhesion at most n+ 2k.

Let G be a (2k + 3)-connected graph with tree-width at least w. We
want to show that G is k-linked. Let S = (s1, . . . , sk) and T = (t1, . . . , tk)
be disjoint k-tuples of distinct vertices of G. Suppose there is no S–T
linkage in G. By Lemma 3.2 we may assume that G contains a stable
regular subgraph of length 2kN + 8k, attachedness 2k+ 3, adhesion at most
n+ 2k, and with collarsize 6k. By Lemma 3.4 the graph G contains a stable
regular subgraph H with decomposition (W,P) of length N , attachedness
2k + 3, with collarsize 4k and adhesion at most n such that there are paths
Q1, . . . , Q2k attaching S ∪ T properly to Γ0 where Γ0 is the component of
Γ(W,P)[λ] that contains the leaf 1 of the collar.

It remains to show that with this given decomposition we can solve any
linkage problem. This was researched extensively in Part I and we will
follow the arguments given there and outline the difference where necessary.
In particular we follow the proof of Theorem I–1.1 in Section I–7. We show
the following claims only for the component Γ0 of Γ(W,P)[λ] containing the
leaf 1 of the collar which is sufficient as we linked S and T properly to Γ0.

Claim 7.1.1. holds as the leaf of the collar is not trivial and thus Γ0 is not
empty.
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Claim 7.1.2. holds: We can ignore the first paragraph of its proof that
uses the connectedness of G since we properly attached S ∪ T with
Lemma 3.4. The remainder of the proof given there can be applied
verbatim to our situation.

Claim 7.1.3. is true as all the 4k paths from the collar are in Γ0.

Claim 7.1.4. holds for Γ ⊆ Γ0 if 1 /∈ V (Γ) with the same proofs.

Claim 7.1.5. reads Γ0 contains a rich block in our case. We need to tend to
the leaf of the collar individually here but that is easy. Its neighbour
2 ∈ Γ0 is rich in Γ(W,P)[{1, 2, 3}] by Claim 7.1.4. It is not rich in
Γ[{1, 2}] and thus it is rich in Γ[{2, 3}]. From here we follow the proof
of Claim I–7.1.4 verbatim picking a sink of the directed tree R that is
pointed to by (2,Γ(W,P)[{2, 3}]).

Claim 7.1.6. holds as Γ(W,P)[{1, 2}] is not rich and we can thus follow the
proof from Part I verbatim.

Claim 7.1.7. holds as Γ(W,P)[{1, 2}] is not rich.

Γ0 is a component of Γ(W,P)[λ]. It contains a rich block D by Claim
7.1.5. By Claim 7.1.6 and Claim 7.1.7 we have a triangle in D and |D| +
|N(D)| ≥ 2k + 3. This contradicts Claim 7.1.2 (iv) and thus concludes the
proof of Theorem 1.2.
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Summary

We look at two common phenomena in infinite graphs: limit structures and
ubiquitous patterns. The ubiquitous patterns are either assumed or developed
by Ramsey-type arguments. Surprisingly, both phenomena have analogues in
finite but arbitrarily large graphs.

Let G be a locally finite graph. In its Freudenthal compactification |G| arcs
and circles arise naturally as limit structures. They describe structures which
in finite graphs are similarly described by paths and cycles. For example, a
Hamilton circle in |G| is a topological circle that contains all the (infinitely
many) vertices of G. For a thorough introduction see [2]. These topological
limit structures are studied in the three articles ‘Dual trees must share their
ends’ (p. 1), ‘Orthogonality and minimality in the homology of locally finite
graphs’ (p. 19), and ‘Extending cycles locally to Hamilton cycles’ (p. 27).

In the article ‘Transitivity conditions in infinite graphs’ (p. 40) we assume
a high degree of symmetry, and show that this leads to ubiquity: the graphs
characterized are shown to be made up of few types of finite subgraphs that
arise everywhere. As these are organized into a tree-structure we are able to give
a concise structural characterization of the graph properties that were originally
defined merely in terms of symmetry.

The article ‘Edge-disjoint double rays in infinite graphs: a Halin type re-
sult’ (p. 73) confirms a conjecture of Andreae [1] that a graph that contains k
edge-disjoint double rays for every k ∈ N also contains infinitely many edge-
disjoint double rays. We obtain this infinite set of edge-disjoint double rays as
a limit structure, while Lemma 29 (p. 86) explicitly describes a Ramsey-type
phenomenon required in the steps of its construction.

The articles ‘Linkages in large graphs of bounded tree-width’ and ‘Linkages
in large graphs’ (p. 89 and p. 155) are concerned with finite but arbitrarily
large graphs. Interestingly, limits and ubiquity have a finite analogue here. In
both articles we examine areas of graphs that converge to trees as the graphs
get larger. Ramsey-type arguments allow us to obtain a tree-structure all whose
parts express the same ubiquitous patterns.

All articles come with their own detailed and more specific introduction.
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Zusammenfassung

Wir betrachten zwei Eigenschaften, die man in unendlichen Graphen beobachten
kann: Limiten und Muster die allgegenwärtig sind. Die allgegenwärtigen Muster
werden in unseren Betrachtungen entweder vorrausgesetzt oder durch Ramsey-
artige Argumente entwickelt. Überraschenderweise finden wir beide Phänomene
in endlichen aber beliebig großen Graphen wieder.

In der Freudenthal-Kompaktifizierung |G|, eines lokal-endlichen Graphen G,
treten Bögen und (topologische) Kreise auf natürlicher Weise als Limiten auf. Sie
beschreiben dort Strukturen, die in endlichen Graphen von Wegen und Kreisen
beschrieben werden. Zum Beispiel ist ein Hamiltonkreis in |G| ein topologischer
Kreis, der alle Ecken von G enthält. Eine umfangreiche Einleitung dazu gibt es
in [2].

Diese topologischen Limiten werden in den drei Artikeln
”
Dual trees must

share their ends“ (S. 1),
”
Orthogonality and minimality in the homology of

locally finite graphs“ (S. 19) und
”
Extending cycles locally to Hamilton cycles“

(S. 27) untersucht.
In dem Artikel

”
Transitivity conditions in infinite graphs“ (S. 40) setzen

wir ein hohes Maß an Symmetrie vorraus und zeigen, dass diese Vorrausetzung
ausreicht um allgegenwärtige Muster zu erzwingen. In der Tat sind die charakte-
risierten Graphen nur aus wenigen Arten sehr einfacher Teilgraphen aufgebaut
die überall auftreten. Da wir zeigen können, dass diese Teilgraphen in einer
Baumstruktur zusammengefügt sind, können wir eine präzise strukturelle Cha-
rakterisierung der Grapheigenschaften geben, die vorher ausschließlich durch die
Forderung nach hoher Symmetrie definiert wurden.

Der Artikel
”
Edge-disjoint double rays in infinite graphs: a Halin type re-

sult“ (S. 73) bestätigt die Vermutung von Andreae [1], dass ein Graph der k
kantendisjunkte Doppelstrahlen für jedes k ∈ N enthält, auch unendlich vie-
le kantendisjunkte Doppelstrahlen enthält. Wir erhalten die unendliche Menge
kantendisjunkter Doppeltstrahlen als einen Limes, wobei Lemma 29 (S. 86) ein
Ramsey-artiges Phänomen beschreibt, dass in den Schritten der Limeskonstruk-
tion nötig ist.

Die Artikel
”
Linkages in large graphs of bounded tree-width“ und

”
Linkages

in large graphs“ (S. 89 und S. 155) beschäftigen sich mit endlichen aber beliebig
großen Graphen. Interessanterweise können wir Limiten und Allgegenwärtigkeit
hier wiederfinden. In beiden Artikeln untersuchen wir Gebiete von Graphen, die
gegen Bäume konvergieren, wenn die Graphen größer werden. Ramsey-artige
Argumente lassen uns in diesen beinahe Bäumen eine Struktur finden, deren
einzelne Teile alle das selbe allgegenwärtige Muster aufweisen.

Jeder Artikel beginnt mit einer eigenen ausführlicheren Einleitung.
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