
System Design and Real-Time Guidance

of an Unmanned Aerial Vehicle for

Autonomous Exploration

of Outdoor Environments

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. nat.

an der Fakultät für Mathematik,

Informatik und Naturwissenschaften

der Universität Hamburg

eingereicht beim Fachbereich Informatik von

Benjamin Adler

aus Hamburg

November 2014

Gutachter:

Prof. Dr. Jianwei Zhang

Prof. Dr.-Ing. H. Siegfried Stiehl

Tag der Disputation: 27. Februar 2015

Acknowledgements

Completing this PhD project and writing this document took almost 4 years. During

this time, the character of the project often changed, allowing me to work with different

people, read literature, create software and integrate hardware. As such, it was a

very interesting and rewarding time, bringing about many failures as well as a few

achievements.

First of all, I would like to thank my advisor Prof. Dr. Jianwei Zhang for being a

constant source of guidance, support and criticism throughout these years. Also, Prof.

Dr.-Ing. H. Siegfried Stiehl kindly accepted to review this thesis, taking a lot of time

and giving helpful guidance in the process. Thank you, Prof. Stiehl!

Furthermore, I would like to express gratitude to my colleagues at TAMS, who pro-

vided a very productive environment in which ideas can evolve from “ridiculous!” to

“works!”. When everyone is keen to listen, laugh and help, this makes for a great place

to learn.

Houxiang, thank you for giving me a great start!

Special thanks go out to you, Bernd, for your generous support, incredible patience

and thoughtful advice. Also, thank you for always having time to hold the fishing

rod!

Junhao, I am grateful for both our friendship and collaboration. Because of you, I

got to see another culture, learn a tiny bit of Chinese history and eat a lot of great

food!

Benjamin Adler

v

Acknowledgements

vi

Abstract

The central endeavor of this thesis is the successful development and evaluation of an

aerial mobile robotic system that produces precise, georeferenced, three-dimensional

maps of outdoor environments by means of autonomous exploration.

The system consists of a ground station and a custom-built UAV with six degrees

of freedom, featuring an on-board computer, an inertial navigation system, and two

2D laser range finders. In addition to a description of the hardware architecture and

individual components being used, this dissertation presents challenges and problems

that arose during the construction of its hard- and software as well as optimizations

applied in the course of its development.

A fundamental part of this work is the distributed software architecture for in-flight sen-

sor fusion and data analysis, with a focus on a novel, truly three-dimensional algorithm

generating multiple next-best-views (NBVs). Designed for application on airborne plat-

forms in outdoor environments, the approach works directly on raw, unstructured point

clouds and can be used either indoors or outdoors with any sensor generating spatial

occupancy information.

Based on the generated sensor-poses and the incrementally growing point cloud, tra-

jectories are computed for the UAV to autonomously map its environment. To ensure

safe operation, collision avoidance constantly monitors the planned path and updates

it whenever obstacles are detected.

In order to satisfy real-time constraints, all algorithms are implemented on a highly

parallel SIMD architecture found in modern GPUs, allowing for extremely fast motion

planning and responsive visualization. As the underlying hardware imposes limitations

with regards to memory access and concurrency, necessary data structures and further

performance considerations are explained in detail.

Data has been captured during real, autonomous flights and is used to analyze the

performance of all major components (flight controller, next-best-view generation, dy-

namic path planning and collision avoidance) of the system in realistic outdoor sce-

narios. The performance of the GPU-based next-best-view algorithm is also compared

against a previous, CPU-based proof of concept.

vii

Abstract

viii

Kurzfassung

Die vorliegende Dissertation berichtet über die Entwicklung eines luftgestützten Robo-

tersystems zur autonomen Erkundung von Außenumgebungen mit dem Ziel der Erstel-

lung präziser, georeferenzierter Karten.

Das vorgestellte System besteht aus einer Bodenstation sowie einer eigens konstruierten

Drohne, welche einen Computer, ein Navigationsystem und zwei Laserscanner mitführt.

Neben einer Beschreibung der Hardwarearchitektur und ihrer Komponenten werden

Herausforderungen und Einschränkungen bei Systemintegration und Softwareentwick-

lung, sowie Optimierungen im späteren Verlauf der Entwicklung präsentiert.

Ein zentraler Teil der Arbeit ist eine verteilte Softwarearchitektur zur Fusion und Ana-

lyse von Sensordaten im Flug, wobei hier der Fokus auf einem neuartigen Algorithmus

zur Erstellung von next-best-views aus bereits erstelltem Kartenmaterial liegt. Obwohl

zur Anwendung auf luftgestützten Plattformen zur Kartographie von Außenumgebun-

gen mittels LIDAR erdacht, ist der Algorithmus direkt auf jegliche räumliche Sen-

sordaten (z.B. von sämtlichen Laserscannern, RGBD- und Time-of-Flight-Kameras)

anwendbar. Basierend auf den erzeugten Sensorpositionen und dem aktuellen Stand

der Karte erzeugt das System sichere Flugrouten zur weiteren Kartierung des Gebiets

und überwacht diese auf Hindernisse.

Um einen Einsatz in Echtzeit zu ermöglichen, sind die Algorithmen auf parallel arbei-

tenden GPUs implementiert. Dies ermöglicht nicht nur schnelle Flugplanung, sondern

auch effiziente und interaktive Visualisierung der aufgenommenen Daten und der Ar-

beitsweise der eingesetzten Algorithmen. Da die zugrundeliegende Hardware besondere

Anforderungen an Speicherzugriffsmuster und Nebenläufigkeit stellt, werden Daten-

strukturen und weitere Überlegungen zur Leistungssteigerung im Detail erläutert.

Weiterer Bestandteil der Arbeit ist eine Analyse von Daten aus echten Flügen in

Außenumgebungen zur Beurteilung der Anwendbarkeit und Leistungsfähigkeit aller

verwendeten Komponenten (Flugsteuerung, Erzeugung von next-best-views, Pfadpla-

nung und Kollisionsvermeidung). Ferner wird das Laufzeitverhalten des GPU-basierten

next-best-view Algorithmus mit dem eines CPU-basierten Prototyps verglichen.

ix

Kurzfassung

x

Contents

Acknowledgements v

Abstract vii

Kurzfassung ix

List of Figures xiii

List of Tables xv

Glossary xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Research questions and contributions . 8

1.3 Structure of the Thesis . 9

1.4 Prior Publications and Research Collaboration 10

2 State of the Art in Autonomous Exploration 11

2.1 Unmanned Aerial Vehicles . 12

2.2 Range Sensing . 12

2.3 3D Scanning, Registration and Self-Localization 19

2.3.1 Static scanning . 20

2.3.2 Mobile scanning . 23

2.4 Map representation . 25

2.5 Next Best View Planning . 29

2.6 Autonomous exploration . 31

2.7 Summary . 33

3 Experimental Platform: Concept and Architecture 35

3.1 Hardware . 36

3.1.1 Unmanned Aerial Vehicle . 41

xi

Contents

3.1.2 On-Board computing . 42

3.1.3 Navigation System . 43

3.1.4 LIDAR sensors . 52

3.1.5 Electromagnetic interference . 56

3.2 Software . 57

3.2.1 Simulator . 58

3.2.2 Base Station . 61

3.2.3 Rover . 66

3.2.4 Wireless Communication . 68

4 Experimental Platform: Theory and Methods 73

4.1 Georeferencing Measurements . 73

4.1.1 Spatial Reference Systems . 74

4.1.2 Algorithms for Transformation and Conversion 81

4.2 Computing Next Best Views . 83

4.2.1 Proof-of-Concept implementation on the CPU 88

4.2.2 Handling Point Clouds . 89

4.2.3 Data Reduction on the GPU . 89

4.2.4 Testing for watertightness on the GPU 95

4.3 Computing Trajectories . 99

4.4 Motion Control for Autonomous Flight 101

4.5 Summary . 103

5 Experiments and Results 105

5.1 Flight Safety and Environmental Conditions 105

5.2 Localization Reliability . 108

5.3 Generated waypoints and paths . 114

5.4 Success and Failure Analysis of Waypoint Generation, Path Planning

and Motion Control . 122

5.5 Scalability of Waypoint Generation . 123

6 Conclusions and Outlook 129

6.1 Limitations and open questions . 130

6.2 Future research directions . 131

References 133

xii

List of Figures

1.1 Examples of GNSS applications . 7

1.2 Architecture and interaction of key components 8

2.1 Different range-sensing technologies and state-of-the-art sensors 15

2.2 The range sensor market situation as of 2014 16

2.3 3D reconstruction using structured light 18

2.4 The Kinect’s speckle pattern . 19

2.5 Range of structured light sensors in direct sunlight 20

2.6 Typical static mapping applications . 21

2.7 Typical mobile mapping applications . 23

2.8 A semantic 3D object map . 26

2.9 Different map representations visualized 28

2.10 Subtasks of automatic model learning 32

3.1 Hardware and communication architecture 36

3.2 First hardware configuration of the experimental flying platform 37

3.3 Second hardware configuration of the experimental flying platform . . . 38

3.4 Current hardware configuration of the experimental flying platform . . . 39

3.5 Achievable flight times vs. payload . 40

3.6 Onboard computer “AscTec CoreExpress Carrierboard” 43

3.7 Components of a GNSS reference station 46

3.8 Various GNSS antenna designs . 47

3.9 The GNSS/inertial navigation system used on the platform 47

3.10 Hokuyo UTM-30lx laser range scanner 53

3.11 Hokuyo UTM-30lx measurement timing characteristics 54

3.12 Diagram of custom-built circuit for optimized time synchronization . . . 56

3.13 Current vs. thrust of 10” EPP propellers on a Robbe ROXXY 2827-35

motor . 61

3.14 Screenshot of the simulation environment 62

3.15 Wind data for more realistic simulation and tests of the flight controller 63

xiii

List of Figures

3.16 Communication between the main software modules 63

3.17 Screenshot of the base station program 65

4.1 The geodetic spatial reference system . 75

4.2 Specification of heights . 76

4.3 The geocentric spatial reference system 78

4.4 The Mercator projection . 79

4.5 Universal Transverse Mercator coordinate system 81

4.6 Conversions and transformations required to produce a georeferenced

point cloud . 84

4.7 Transformations required for georeferencing measurements (1) 85

4.8 Transformations required for georeferencing measurements (2) 86

4.9 The process of next-best-view determination 87

4.10 Different collider cloud densities and their implications on correctness . 91

4.11 Example of original and downsampled collider clouds 92

4.12 The process of downsampling point clouds 93

4.13 Data structures in GPU memory, required for fast downsampling of point

clouds . 94

4.14 Memory allocated in GPU memory space for particle simulation 95

4.15 Additional vectors in GPU memory, required for particle simulation . . 98

4.16 Parallelized path planning using a uniform occupancy grid 101

5.1 Close-up of the UAV scanning nearby persons on the campus 107

5.2 Raw gyroscope measurements during different phases of flight 111

5.3 Raw accelerometer measurements during different phases of flight 112

5.4 Visualization of the vehicle trajectory, exhibiting considerable IMU drift

and noise . 113

5.5 CPU-based Next-Best-View generation 115

5.6 A simulated mapping mission . 116

5.7 Point cloud size vs. flight-time . 117

5.8 Point clouds resulting from straight scanline passes 118

5.9 Grid of information gain . 118

5.10 Photo and point cloud of the campus . 119

5.11 Finding next-best-views on campus . 120

5.12 Occupancy grid used for parallelized path planning 121

5.13 Particle simulation performance on different CPU- and GPU-based hard-

ware . 124

5.14 Profiling particle simulation . 126

xiv

List of Tables

3.1 Platform components and weight . 42

3.2 Configurable intervals for INS position and orientation packets 51

3.3 Graph of current vs. thrust . 60

3.4 An overview of data being logged during flight. 69

3.5 The TCP/IP-based protocol for communication between rover and base. 71

4.1 Different states of low- and high-level motion controllers 103

5.1 The number of experiments performed 106

5.2 Memory allocated in GPU memory space 124

xv

Glossary

AABB Axis-Aligned Bounding Box

AoS Array of Structs

CRS Coordinate Reference System

DARPA Defense Advanced Research Projects Agency

DEM Digital Elevation Model

DSM Digital Surface Model

ECEF Earth-Centered, Earth-Fixed coordinate system

EKF Extended Kalman Filter

FOG Fiber-Optic Gyro

FoV Field of View

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

GPU Graphics Processing Unit

ICP Iterative Closest Point

IERS International Earth Rotation Service

IMU Inertial Measurement Unit

INS Inertial Navigation System

IRM International Reference Meridian

ISA Instruction Set Architecture

LIDAR Light Detection and Ranging

LLA Latitude, Longitude, Altitude

xvii

Glossary

LRF Laser Range Finder

MEMS Microelectromechanical System

MIMO Multiple-Input, Multiple-Output

MTA Multiple Time Around

NAVSTAR Navigation System using Timing and Ranging

NBV Next Best View

PID Controller proportional-integral-derivative controller

PPS Pulse Per Second

PRNG Pseudo-Random Number Generator

PTU Pan-Tilt Unit

PVT Position, Velocity, Time

RGBD Red, Green, Blue, Depth (the channels of a 3D color camera)

RTK Real-Time Kinematic

SHT Spatial Hash Table

SLAM Simultaneous Localization And Mapping

SoA Struct of Arrays

SRS Spatial Reference System

TEC Total Electron Content

ToF Time of Flight

TSP Traveling Salesman Problem

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UTM Universal Transverse Mercator

VBO Vertex Buffer Object

ZUPT Zero-Velocity Update

xviii

Chapter 1

Introduction

1.1 Motivation

The central topic of this thesis is the convergence of robotics and geodesy in the context

of unmanned aerial vehicles. While the robotics is a rather young discipline, geodesy

has been practiced for as long as mankind exists. The following paragraphs shall

briefly introduce both disciplines, eventually motivating the work carried out in this

thesis.

The field of robotics was named after a term that first appeared in “Rosumovi Uni-

verzálńı Roboti” (R.U.R.), a science-fiction-play of Czech writer Karel Čapek. Pre-

miered in 1920, R.U.R. tells the story of human-like, but artificial creatures that are

made in a factory and sold in order to take over hard, laborious tasks from their human

owners. Since robotā is the Slavic word for “hard work” and “slavery”, Karel’s brother

Josef christened these creatures roboti. The play itself did not focus on technical details,

but mainly addressed the ethic issues arising from the existence of a large population

of roboti living amidst humans. It quickly became very popular and was translated to

more than thirty languages within three years. The English translation named these

creatures robots - hence, the play was called Rossum’s Universal Robots.

However, the term robot has only given a name to a fantasy that inspired humans much

earlier than that; even ancient history provides some examples of man envisioning

and building simple, yet useful automata like music machines. In the Late Middle

Ages, Leonardo da Vinci designed a mechanized armor that – based on strings and

pulleys – was able to execute basic movements. Of course, as knowledge of the required

prerequisites was so limited, none of the more advanced ideas could actually be realized.

This vast divide between human imagination and capabilities introduced interesting

anecdotes into robotics history: one of the most well-known is the automaton chess

player named the Mechanical Turk. Built in the 18th century, the Mechanical Turk

1

Chapter 1 Introduction

was a fake machine that seemed to be playing chess. In fact, it was a mechanical

illusion designed to hide a human chess player of short stature, operating the device

from the inside. After becoming well-known, the machine was presented in large parts

of Europe and America for more than 50 years, often winning chess matches against

capable chess players and causing both curiosity and fear in members of the audience

(Standage, 2002).

After the second world war, the transistor was invented, heralding the age of minia-

turization. Electronics, mechanics, engineering, and computer science advanced at

unprecedented speed, spawning electronic computers and fusing into what now is of-

ten referred to as mechatronics. Within the next ten years, robots started gaining a

foothold in production processes, founding the industrial robotics sector. In the follow-

ing thirty years, these machines have developed superior performance in comparison to

human labor in many regards: often, they are either faster, more precise, more durable

or even cheaper in the long term. Today, production robots often outdo humans in all

of these at the same time.

On the other hand, while robots have become very common in highly structured, indus-

trial environments, their adoption in other fields of human labor has been excruciatingly

slow. In unstructured environments, today’s robots still are incapable of performing

even the most simple tasks in acceptable time – how else can it be explained that as

yet, there are no robots helping us in the supermarket or at the gas station? As Danish

author Tor Nørretranders puts it,

“It is not that difficult to build computers capable of playing chess or doing

sums. Computers find it easy to do what we learned at school. But com-

puters have a very hard time learning what children learn before they start

school: to recognize a cup that is upside down, for example; navigating a

backyard, recognizing a face; seeing.” (Nørretranders, 1999, p. 179)

For the age of robots to truly begin, humans will have to find a way to teach them

what children learn before they start school: be mobile, sense, feel, remember and

recognize their environment, navigate, manipulate objects, and act in social contexts.

The farther away from industrial manufacturing and other similar environments robots

are to be of help, the more important these skills become.

The history of geodesy is a very different one. The word “geodesy”, in its original

Greek form, is a concatenation of the terms for “earth” and “division” and is defined

as the science of measuring and representing earth. Geodesy was motivated by the

need to partition land and define its bounds, creating borders between real estate

and states. Doing so, geodesy has also affected fields as fundamental as time-keeping

and as important as politics and economics. Since these impacts of geodesy fall into

the domain of history, they are deemed out of this section’s scope. More interesting

to us, however, is how geodetics has been subject to influences from other domains:

the following paragraphs shall focus on how science and technology have changed the

2

1.1 Motivation

capabilities of measuring earth.

About 500 years B.C., Pythagoras postulated that earth was not flat, but had in fact

a sphere-like shape. It took about 150 years until Aristoteles proved this assumption

based on observations with the naked eye. Ever since then, geodesy was limited by the

precision of technical instruments available at the given time. Nevertheless, measure-

ments have been conducted with astonishing precision: in the year 1023, an Islamic

scholar named Abu Reyhan Biruni first measured the distance between a known point

and a mountain, then, at the same known point, the angle between the astronomical

horizon and the mountain’s top. He then used trigonometry to calculate the mountain’s

height, climbed it and measured the angle between true and astronomical horizon. Do-

ing so, he determined earth’s radius to be 6339.6 km (Lumpkin, 1997), which is 99.4%

of earth’s true radius at the equator and 99.7% of its radius at the poles1.

Some of the most important advances in geodesy were introduced at the beginning of

the 19th century by Carl Friedrich Gauß. His exceptional grasp of mathematics and

physics allowed him to author significant contributions in numerous fields, but his in-

vention of the least-squares method and achievements in non-euclidean geometry had

an enormous impact on geodesy. As a man of practical experience, he was ordered

to survey the Kingdom of Hannover in 1818 and applied the least-squares method to

create maps of revolutionary accuracy using triangulation. Also interested in the in-

struments required for surveying, he invented the heliotrope to mirror sunlight from

surveying points towards a theodolite many kilometers away. This worked so well that

the earth’s curvature remained the only constraint to baseline length. Furthermore,

Gauß contributed works relating to projection, an important requirement for repre-

senting earth’s non-flat surface on flat maps.

For the next 150 years, geodesy continued relying largely on triangulation. The re-

quired data (azimuth-only at first, later also elevation) was gathered using theodolites

and allowed for precision in the sub-centimeter range over short baselines. Unfortu-

nately, these procedures necessitated free lines-of-sight between points, meaning that

oftentimes, a mesh of triangles had to be created in order to support the desired fi-

nal measurement. Creating larger maps was possible, but hindered by the fact that

increasing imprecision in the mesh due to accumulating errors in local measurements

was hard to rectify.

Until the end of the last century, robotics and geodesy had rather few things in com-

mon.

In the 1970s, the cold war motivated the United States government to develop a more

precise, global successor to previous navigation systems. What became known as

NAVSTAR-GPS2 is, in principle, nothing more than a network of moving reference

points. Instead of triangulation, trilateration is used to determine positions, and even

1compared to the WGS84 ellipsoid (explained in chapter 4)
2NAVigation System using Timing And Ranging, Global Positioning System

3

Chapter 1 Introduction

though direct line-of-sight between the point to be localized and four reference points

(satellites) is still required, this constraint is rarely an issue in outdoor environments,

given that the number of satellites and choice of their orbits was also optimized for

maximum visibility in the latitudes densely populated by humans (Eissfeller et al.,

2007).

After becoming operational in the beginning of the 1980s, GPS remained a closed,

military technology for many years. Things changed with the end of the cold war:

the United States grew less concerned about sharing NAVSTAR’s benefits with other

nations – aside from a few constraints (Adrados et al., 2002), the first GNSS1 could

now be used in the civilian sector. Ever since, satellite technology generally and GNSS

particularly have helped advance the state of the art in geodesy and mobile robotics

tremendously (Kumar and Moore, 2002).

In the early 1990s, carrier-phase-GNSS enabled determining positions around earth

with centimeter-accuracy. The capability to provide this precision over kilometer-scale,

non-line-of-sight baselines was very attractive to the surveying community, which sub-

sequently became the largest market for this technology. Figure 1.1(b) depicts one of

the first Real-Time-Kinematic (Carrier-phase and RTK-GNSS are explained in section

3.1.3 A) GNSS antenna and receiver carried on a yak on an expedition to Mount Ever-

est in one of the first documented applications of RTK-GNSS in 1992. Recognizing the

value of ubiquitous positioning services, governments around the world are now im-

plementing their own GNSSs: after GPS and GLONASS constellations have provided

worldwide public service for many years, the Chinese BeiDou constellation currently

offers regional service with medium accuracy and the European Galileo satellite system

is currently performing its in-orbit validation. A more detailed look at each constella-

tion’s status shows that there are currently 32 GPS, 24 GLONASS, 15 BeiDou and 4

Galileo satellites servicing earth, adding up to a total of 75.

Figure 1.1(a) shows recent testing of a Galileo satellite, which is part of the European

Union’s efforts to establish an independent GNSS. Although these developments are in

large parts motivated politically, they do help improve reliability and precision of global

satellite-based navigation. At about $10k per receiver, RTK-enabled GNSS equipment

is still expensive, severely hindering its use beyond professional applications. As pre-

sented in figures 1.1(b) to 1.1(d), it is currently seeing widespread use in surveying,

construction and agriculture. While GPS was first developed for precise guidance of

intercontinental ballistic missiles, it is now integrated in most newly developed military

platforms: three examples are given in figures 1.1(e) to 1.1(g), showing vehicles in air,

water, and on land.

Robotics research was initially constrained to structured indoor environments (where

GNSS signal reception is weak at best) and quickly revealed that autonomous en-

vironment sensing and learning of a world model are most fundamental challenges.

1Global Navigation Satellite System

4

1.1 Motivation

Especially in service- and field-robotics, the availability of an environmental map is

essential for many tasks such as localization, path planning, navigation, and manip-

ulation. Consequently, vast amounts of research have been directed at this field. A

very good example of progress is the ability of simultaneous localization and mapping

(SLAM): little over a decade ago, first-generation SLAM approaches (e.g. as presented

in Thrun et al. (1998)) have been limited to robots moving on planar ground in highly

structured indoor environments. During the last fifteen years, the algorithms advanced

as researchers’ understanding of the underlying scientific problems made substantial

progress. At the same time, the state of the art in mechanics, chemistry and elec-

tronics has also advanced: better locomotion has allowed robots to become far more

maneuverable and operate in outdoor environments, better energy sources have allowed

for longer operation and better computers allowed for faster speed.

When mobile research robots started conquering the outdoors, GNSS became a natural

choice for localization: with limited demands for accuracy, a GNSS receiver for less

than $50 can enable a robot to solve its position at any time of day under all weather

conditions. In 2005, DARPA hosted the Grand Challenge, promising a reward of $2M

for the team whose vehicle would first negotiate a 212km long off-road track. The

winning vehicle, shown in figure 1.1(h), finished the course after about 7 hours (Thrun

et al., 2006). Like the platform to be presented in the following chapters, it used

LIDAR1 sensors and a global positioning/inertial navigation system to build a 3D map

of the environment and make decisions on how to move in order to best reach the given

goal. Just three years ago, algorithms were presented capable of localizing robots with

six degrees of freedom, while mapping three-dimensional space in real-time (Newcombe

et al., 2011; Izadi et al., 2011).

Unmanned Aerial Vehicles (UAVs) have existed since the mid 1980s, when DARPA

financed their development for military applications. With flight-times of up to 48

hours, these aircraft could perform reconnaissance missions significantly longer than

their piloted counterparts. About 20 years later, the United States military started

equipping some UAVs with air-to-ground weapons, which, combined with aforemen-

tioned flight-times, established a state of constant surveillance over large areas, with

the capability to conduct strikes against perceived enemies at any time. The inevitable

killing of innocent bystanders, the killing of civilians due to incorrect intelligence in-

formation and the constant threat of unforseeable attacks has induced stress and fear

in the population living in these areas. Approximately one decade of this practice

has given the terms UAV and drone a negative connotation that fosters reservations

towards civil UAV applications to this day.

Starting in about 2010, UAVs in sub-meter scale were developed by hobbyists and small

companies for recreational use. Growing more powerful, dependable and autonomous

over the last years, these vehicles are starting to see more commercial applications:

visual inspection of high-rise architecture, photogrammetry, precision agriculture and

1Light detection and ranging

5

Chapter 1 Introduction

filmmaking are just a few of them.

Although the variety of applications for civil UAVs has grown strongly in the last few

years, mapping an unstructured outdoor environment by simply defining a region of

interest in 3D space would constitute a considerable improvement over current UAVs

capabilities. The aim of this thesis is to create such an experimental platform. To do

this, the system must bring together latest developments in geodesy, robotics, computer

science and other fields, to

1. safely carry the required sensors in the presence of wind and obstacles.

2. perform self-localization for all six degrees of freedom.

3. fuse information about its own position and orientation with laser ranging data

acquired during flight, in order to create a georeferenced point cloud of its envi-

ronment.

4. autonomously generate waypoints from the incrementally growing point cloud,

optimized to efficiently advance the mapping process and to create a watertight

(i.e., gap-free) point cloud of the environment,

5. approach these waypoints while constantly performing collision avoidance.

Being an experimental platform, the system is not expected to operate in all weather

conditions, produce measurements of survey-grade accuracy or support non-essential

features such as automatic take-off and landing. Furthermore, mapping GNSS-denied

areas like indoor environments or outdoor surroundings with highly obstructed skies

will not be required either.

Research and – if successful – further development of such a system puts new capabil-

ities at the operator’s disposal, which always bears a social impact. These capabilities

can be used for civil applications, where they might replace some parts of human la-

bor, e.g. in surveying or 3D modeling. The motivation to automate human labor

has always been a driving force behind robotics research. Yet, when applied in prac-

tice, jobs are oftentimes replaced. Similar systems with longer flight-times as well as

higher scanning-range, speed and accuracy will undoubtedly provide a feature-set that

is attractive to the military, as it can be operated day or night, extending airborne

reconnaissance data into the third dimension. The public needs to be made aware of

these developments, so that they can be accompanied by a public debate, allowing both

concerns and opportunities to be openly discussed.

Videos showing the successful application of the presented approach for exploration in

real-time are available via http://tams.informatik.uni-hamburg.de/videos/.

6

http://tams.informatik.uni-hamburg.de/videos/

1.1 Motivation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.1: (a): A Galileo space vehicle in testing, showing its L-Band antenna array.
(b): An RTK-GNSS receiver on a yak during a 1992 expedition on Mount Everest. (c),(d):
GNSS-based machine control in different industries. (e),(f),(g): military applications for
GNSS. (h): Stanley, with GNSS pinwheel antennas visible in the back.
Images c©: (a) 2013 ESA Anneke Le Floc’h, (b) unknown, (c) 2009 Trimble Ltd., (d) 2014
Marius Frei, Gut Lunzberg, (e) (g) (h) public domain, (f) 2014 ASV Ltd.

7

Chapter 1 Introduction

Figure 1.2: A diagram showing the architecture of and interaction between key compo-
nents that are necessary for autonomous robotic exploration.

1.2 Research questions and contributions

After establishing this thesis’ goals, its research questions span multiple topics, and can

be formulated as follows:

• Engineering & Mechatronics: How to design a lightweight and maneuverable

unmanned aerial vehicle, acting as a sensor platform that is capable of streaming

a point cloud of the scanned environment to a base station in real-time?

• Algorithms & Datastructures: How to design and implement algorithms that

navigate this vehicle autonomously through unstructured outdoor environments

for efficient mapping?

• Real-Time Computing: How to detect and react to potential collisions that appear

during mapping or originate in dynamic obstacles?

• Control Theory and Practice: How to design and implement approaches to motion

control, how to test them without failures incurring expenses and downtime?

The following contributions are presented in the following chapters:

• A custom-built UAV that integrates four main sensors on a fault-tolerant platform

(equipped with redundant drives), operating in a six-dimensional configuration

space. This system serves as the experimental platform and is discussed in section

3.1.

• A software architecture – described in section 3.2 – that allows flight testing in

simulation, real-time shader-based visualization and replay of real and simulated

flights as well as GNSS mission planning.

8

1.3 Structure of the Thesis

• Real-time capable algorithms to find configurations in that space, maximizing

information gain in the process. Chapter 4.2 introduces an initial proof-of-concept

implementation on the CPU, then describes their implementation on a graphics

card using NVIDIA’s Compute Unified Device Architecture (CUDA).

• An approach that allows for safe airborne navigation in dynamic surroundings.

This is discussed in section 4.3.

• A high-level flight controller that steers the UAV towards a designed waypoint

in the presence of wind, and is also optimized for information gain. This is

documented in chapter 4.4.

• A critical analysis of the system’s performance in real-world conditions, given in

chapter 5.

• A sketch of future research in chapter 6.

1.3 Structure of the Thesis

The remaining parts of this thesis are organized as follows:

• Chapter 2 presents a detailed overview of the foundations, problems, and work

in this and related fields. Since this thesis discusses many subfields of robotics,

the chapter is separated into corresponding sections.

• Chapter 3 revolves around the practical aspects of the experimental platform. It

introduces the general architecture of the hardware and software setup. Explana-

tions of each part’s basic operational principles go along with its specifications.

Experiences that were gathered with these components are also noted, as they

often called for redesign of the platform. The second part elucidates on the soft-

ware architecture, first analyzing the arguments for and against a custom design,

then explaining the separation into modules and their purposes.

• Chapter 4 focuses on the theory and algorithms used. It starts by presenting the

foundations required to generate georeferenced maps, then continues to describe

the idea behind the approach for generating waypoints providing high information

gain. The required computational hardware is described first, followed by the data

structures and algorithms that were used in order to reach real-time performance.

The next section describes how these waypoints are sequenced into collision-free

paths through the environment, and the chapter concludes by demonstrating the

motion control systems able to guide the UAV.

• Chapter 5 presents the results achieved in the previous chapters. Basic motion

control results are shown and related to environmental envelopes. Waypoints and

paths generated for point clouds captured during real flights are presented and

the runtime behavior of the supporting algorithms is analyzed.

9

Chapter 1 Introduction

• Chapter 6 concludes the thesis by summarizing the results and discussing future

work.

1.4 Prior Publications and Research Collaboration

During the last four years, the work done for this thesis has led to several publications,

which were accepted at conferences and journals. The following list includes only

those publications directly related to this thesis, which form the basis of the respective

sections of chapters 2, 3, 4, and 5.

• Benjamin Adler, Junhao Xiao, Towards Autonomous Airborne Mapping of Urban

Environments, 2012 IEEE International Conference on Multisensor Fusion and

Information Integration (MFI 2012), Hamburg, Germany, September, 2012, pp.

77–82.

This first paper introduces the first configuration of the UAV and presents the

idea of using particle simulation to test a point cloud for watertightness. The

CPU-based proof-of-concept is described and its effectiveness is validated using

simulation.

• Benjamin Adler, Junhao Xiao, Jianwei Zhang, Finding Next Best Views for

Autonomous UAV Mapping through GPU-Accelerated Particle Simulation, 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,

Japan, November 2013, pp. 1056–1061.

This publication extends the previous paper by presenting an implementation of

the next-best-view algorithm on a GPU. Execution on this hardware architecture

now allowed for real-world, real-time experiments, which are also presented.

• Benjamin Adler, Junhao Xiao, Jianwei Zhang, Autonomous Exploration of Ur-

ban Environments using Unmanned Aerial Vehicles, Journal of Field Robotics,

Volume 31, Issue 6, November/December 2014, pp. 912–939.

This paper discusses the integration of localization, mapping, motion-planning

and -control, and shows the effectiveness of the resulting platform.

In these publications, the first author was responsible for problem definition, solution

finding, programming and visualization. He took part in and steered discussion and

experiments.

This thesis itself represents a contribution by documenting the complete and refined

concept as well as the development of the experimental platform in a clear and concise

way.

Furthermore, the simulator uses 3D models and textures published by the Ogre project

and other authors under open-source or creative commons licenses.

10

Chapter 2

State of the Art in Autonomous

Exploration

Even though the term autonomous exploration is quite descriptive, it is not well-defined.

Progress in the last decades has shown that its definition seems to grow with modern

robots’ capabilities: depending on interpretation, autonomous exploration was imple-

mented a long time ago, when very basic robots were built in educational contexts

to locate and approach light sources. Today, robots must exhibit far more complex

behavior in order for humans to attest them this skill.

Abstracting from the ever-changing state of the art, exploration extends the activity of

measuring the world in passive manner: data produced by measurements is generally

incomplete and contains uncertainty, so for the autonomous explorer to reduce this

uncertainty, it is required to “seek out those parts of the world which maximize the

fidelity of its internal representations, and keep searching until those representations

are acceptable” (Whaite and Ferrie, 1997).

There are only very few robots that really explore arbitrary terrain, and the primary

reason for this is rooted in the fact that autonomous exploration is a very complex

skill to master. Indeed, it is a combination of a surprising number of other capabilities

that robots have only achieved in recent years. Most of these capabilities emerged

from advances in related fields such as algorithms and software, some from progress in

mechanics and miniaturization or – less obviously – in chemistry, which brought about

batteries that enable reasonable endurance of e.g. multirotor flying robots.

The remaining part of this chapter presents an overview of the most interesting prob-

lems and technologies involved in autonomous airborne exploration.

11

Chapter 2 State of the Art in Autonomous Exploration

2.1 Unmanned Aerial Vehicles

As hinted in the previous chapter, the term UAV applies to a wide range of aircraft,

which have followed the typical trend of miniaturization in the last decades. For UAVs,

an obvious dichotomy is the classification into fixed-wing and helicopter drones. Vehi-

cles in the former class traditionally allow for larger payloads and flight-times, but also

put higher demands on the infrastructure (e.g. runways, long-range communications

etc.). Being far less maneuverable, fixed-wing aircraft also require more complicated

path-planning. One of the consequences is that restricting flight-paths to remain within

line-of-sight cannot be guaranteed, especially so in urban environments. Lastly, fixed-

wing aircraft cannot hover – indeed, the minimum velocity required to avoid a stall

can become problematic, as it imposes an upper bound to point cloud density when

scanning with LIDAR sensors of limited sample rate.

For this reason, multirotor UAVs were chosen as the integral part of this thesis’ exper-

imental platform. Although their comparably limited payload and weight are major

limitations, these can be accounted for by selecting lightweight sensing hardware. Fur-

thermore, flying UAVs with a total take-off weight above 5kg requires tedious and

expensive certification procedures for both the vehicle and the operator. On the up-

side, multirotor drones are extremely maneuverable, can fly at very low speeds and

even hover, which allows path planning and motion control to accomodate special re-

quirements of sensors carried on-board the platform. When equipped with more than

four rotors, the resulting redundancy is another advantage. When using an octocopter

(with 8 drives), an in-flight failure of a single motor or propeller can be tolerated. Most

importantly, a multirotor UAV can be flown in very constrained environments: when

implementing and testing a flight controller, the possibility to fly the aircraft at very

low speeds and altitude (or even attached to a long fishing rod) is extremely helpful.

This is expecially true when the budget does not allow for a crash.

A survey of the market in the end of 2010 showed that when allowing maximum flight-

times to decrease down to the ten-minute range, multirotor UAVs with a payload

capacity of 2kg do exist. Some of them even allow for input from an external high-level

flight-controller, making them a perfect fit for this thesis.

2.2 Range Sensing

Range sensing is performed using devices that measure distance between themselves

and an object’s surface. A wide range of sensors are available for range sensing today,

and – depending on their targeted application – differ greatly in how they operate.

Range sensors represent one of the most fundamental components of a mapping robot

and can be classified along numerous criteria:

• Physical principle of operation. This factor bears the largest influence on the

12

2.2 Range Sensing

nature of the sensor, and all following criteria are most strongly influenced by

this initial design choice.

• Range. Sensors usually impose restrictions on both minimum and maximum

distances they are able to sense, also called the near and far planes. These ranges

depend largely on the principle of operation, sensor-size, and power consumption.

Typical ranges extend from few centimeters to the small kilometer-range.

• Field of View (FoV). A sensor’s field of view is one of its most important design

aspects and often the primary criterion for applicability to a given task. FoVs of

range sensors vary from infinitely small (a single ray) almost to the full sphere.

Oftentimes the sensors are conceptually one-dimensional, but are extended to

more dimensions using mechanical setups like mirrors and/or angular actuators

like pan/tilt units. These sensors are also known as actuated (laser) range finders

(“aLRF”).

• Angular resolution and accuracy. For sensors that sample multiple ranges, reso-

lution is the angle between neighboring rays. Angular resolution can be different

along azimuth and elevation. In unison with the FoV, this property also describes

the amount of samples a sensor produces in one scan. The latter property de-

scribes the maximum angular error, which translates to a positional error scaling

linearly with the recorded distance of the reading. Angular errors can originate

in mechanical misalignment as well as the width of the beam used to sample the

surface, so usually both are sought to be minimized.

• Range resolution and accuracy. Whereas high accuracy is required for surveying

and related applications, low accuracy can be perfectly sufficient for other tasks

like collision avoidance.

• Sample rate. This property describes the number of ranges sampled by the sensor

during a given time span.

• Waveform digitization. When targets reflect the sensing beam back to the scan-

ner, the resulting energy on the detector can be represented as an energy-over-time

plot (the waveform). Simple signal processing in lower grade scanners registers

a return as soon as this energy exceeds a threshold. When the full waveform is

saved, it can be analyzed to retrieve additional information, such as amplitude

and pulse width.

• Multiple-target capability. A higher beam divergence causes the beam’s footprint

to increase faster with distance. When the same beam hits multiple targets at

different distances, some scanners are capable of detecting this condition, and

correctly return multiple distances. This requires full-waveform-analysis and a

time-of-flight based scanner (since phase-based scanning does not allow for multi-

target detection).

• Multiple-Time-Around (MTA). For LIDAR scanners, having to wait for the laser

13

Chapter 2 State of the Art in Autonomous Exploration

pulse to return can limit the pulse repetition rate. Some scanners are capable of

firing the second laser pulse before the reflection of the first pulse has arrived.

This introduces an ambiguity when trying to assign incoming reflections back to

outgoing laser pulses. To resolve this ambiguity, further information is required.

• Size, weight and cost, which usually correlate with each other. Observation of

the market reveals that all of them decrease over time.

Up until a decade ago, the market for range sensors has been very sparse. On the

low-end, infrared and ultrasonic distance sensors were available, but delivered one-

dimensional results with inadequate precision: the former emit a single beam of in-

frared light and measure the angle of the incoming reflections using a slightly offset

infrared-sensor-array behind a lens (emitter and sensor shown in figure 2.1(a)). Using

this angle and the distance between IR emitter and lens, the range can be determined

through triangulation. Ultrasonic sensors (see figure 2.1(b)) measure distance by ob-

serving the time-of-flight of sound waves, but suffer from even wider beam widths and

other problems such as crosstalk, necessitating special techniques such as temporal syn-

chronization between sensors or software multipath mitigation (Borenstein and Koren,

1995).

Infrared, ultrasonic and other principles that are clearly unsuitable for outdoor sensing

will not be discussed any further. Instead, the remaining parts of this chapter will focus

on time-of-flight (ToF) and structured-light-based scanners.

In 1999, SICK AG introduced the LMS 200 (see figure 2.1(e)), a laser range finder

that improved upon aforementioned sensors in terms of maximum sensing range and

sampling rate by more than an order of magnitude (also see figure 2.2 for a comparison

of range sensors). Using time-of-flight measurements, it scanned a 180◦ FoV at a rate

of up to 75Hz with 0.5◦ angular resolution and registered reflections from objects up

to 80m away. Conceptually, the LMS 200 is a one-dimensional range measurement

device. By adding a mirror angled by 45◦ relative to the beam, it is deflected by 90◦.

Because this mirror rotates on the axis of the original beam, the ray effectively samples

a plane, producing two-dimensional range data. SICK originally designed the range

sensor for use in industry and safety (where its power consumption of 30W and weight

of 4.5kg caused no concern), but it quickly became the most widely-used range scanner

in robotics, fostering the development of countless localization and mapping approaches

on ground-moving robots (see e.g. Pfister et al. (2003)).

The Hokuyo URG 04lx was introduced to market in 2005. It measured range by

determining the phase difference between the emitted and reflected light. While the

scanner was very small, lightweight and could be powered through USB, the range-

readings were rather inaccurate and limited to less than 4m. Its successor, the UTM-

30lx pictured in figure 3.10, was released in summer of 2009 and can be described as a

miniature version of the LMS 200, also employing ToF range-measurement techniques.

Offering similar precision and comparable range for targets of medium reflectance, the

14

2.2 Range Sensing

(a) (b)

(c) (d)

(e) (f)

Figure 2.1: (a) and (b): Infrared and ultrasonic one-dimensional range sensors with
ranges of less than 2m. (c): The PMDVision CamCube Time of Flight camera. (d):
The Microsoft Kinect 1, sensing based on structured light. (e): The SICK LMS 200, a
2D laser range finder with a 180◦ FoV. (f): Velodyne HDL 32E 3D laser scanner with
360◦ horizontal and 40◦ vertical FoV. Images c©: (a) SHARP Corporation, (b) Parallax,
Inc., (c) PMDTechnologies GmbH, (d) public domain, (e) SICK AG, (f) Velodyne Lidar

15

Chapter 2 State of the Art in Autonomous Exploration

Figure 2.2: The range sensor market situation as of 2014, relating maximum range and
sampling speed.

16

2.2 Range Sensing

UTM-30lx slowly replaced the SICK and allowed smaller, more mobile robots to map

environments. Weighing about 5% of the LMS 200, the UTM-30lx also was the first

LIDAR payload suitable for outdoor mapping on small UAVs.

In the past, when weight was of no concern, many research-projects in robotics em-

ployed multiple 2D scanners in different (often perpendicular) orientations to gather 3D

information (Frueh and Zakhor, 2001; Thrun et al., 2000; Zhao and Shibasaki, 2003).

More recently, research groups have used actuated laser range finders to extend the

FoV of these 2D scanners into the third dimension. To do so, 2D LRFs are mounted

onto a fixture that can be panned or tilted, in effect sweeping the scanplane. Some

publications are based on custom-made actuators (Nüchter et al., 2006; Bosse and Zlot,

2009), others use much more expensive, commercially available scanners that are ori-

ented towards surveying and thus, provide much higher accuracy at a much higher price

(Georgiev and Allen, 2004; Elseberg et al., 2012).

As much as this setup extends the FoV, it also extends the time necessary to scan it,

often into the range of minutes. Furthermore, precise timing and synchronization of

scanning and tilting motions are required in order to produce correct data.

Research conducted in more recent years has advanced miniaturization up to the point

where integrating multiple laser emitter/detector pairs into compact enclosures has be-

come feasible. Instead of simply increasing angular velocity or scan-rate, this achieve-

ment was utilized to create truly three-dimensional LIDAR sensors. The possibly most

well-known instance of this class is the Velodyne HDL 64E, first seen at the 2004

DARPA grand challenge, introduced to market in 2007 and prominently featured on

Google’s driverless cars. In contrast to the aforementioned 2D scanners, this scanner

has a horizontal FoV of 360◦ and hosts 64 emitter/detector pairs that are oriented in

the same azimuth, but have a vertical angular spacing of about 0.4◦ for a 27.8◦ verti-

cal field of view. In 2010, Velodyne released the HDL 64E’s successor, the HDL 32E

(pictured in figure 2.1(f)): offering 32 emitter/detector pairs at a cost of about USD

30k, the scanner cuts both the number of lasers and the price of its predecessor in half.

Spread over a 40◦ vertical field of view, the angular stride is increased to about 1.3◦.

Although the HDL 32E weighs approximately 1.2kg, it has seen its first flight on an

electrically powered multirotor UAV in 2013 (Velodyne Lidar, 2013).

Another technique for range sensing is the so-called structured-light-approach. Sensors

based on this concept consist of calibrated projector/camera combinations that project

a predefined light pattern into an environment. An example of the setup is presented

in figure 2.3: using the camera, the projection of this pattern on the environment’s

geometry can be recorded. The scale of the scene can be reconstructed quickly, since the

projection parameters of both light source and camera are known. When it is projected

on a flat surface with its normal parallel to the projection axis, the pattern will appear

similar to the original pattern. On non-flat or non-parallel surfaces, the pattern’s

projection will become distorted, allowing image-processing algorithms to reconstruct

the surface’s shape (Zhang et al., 2002). This way, 3D range sensors can be built by

17

Chapter 2 State of the Art in Autonomous Exploration

(a) (b) (c)

Figure 2.3: 3D reconstruction using structured light: (a): photo of a simple scene to
be reconstructed (b): pattern emitted into the scene is distorted when projected onto a
non-flat shape. (c) shows the reconstructed shape of the object. Reprinted from Zhang
et al. (2002). Images c© 2002 IEEE.

employing comparably cheap and commonly available components. A good overview

of different structured-light techniques that includes results of some implementations

is given in Salvi et al. (2010).

At the end of 2010, Microsoft introduced the Kinect sensor (see figure 2.1(d)) as an

accessory for its XBox game console. Within this device, an infrared laser projects a

dot-pattern into space. The distance to points in the scene can be determined when

an image of them is recorded by an infrared-sensitive camera. Because laser’s light

lies outside of the spectrum visible to humans, an additional RGB-camera is able to

produce a video stream of the scene. Combining these sensors data results in a colored

3D point cloud, explaining why the Kinect is called an RGB-Depth (or RGBD) camera.

Neither Microsoft nor PrimeSense (the manufacturer of the Kinect’s signal processing

components) have disclosed details of the sensor’s algorithms, and the exact functional

principle has withstood many attempts of reverse-engineering to this date. However,

seeing the impressively precise depth data (VGA resolution produced at a rate of 30Hz,

near plane at 4m, far plane at 7m) and a price point at a fraction of other sensors’ cost,

the robotics community quickly reverse-engineered the protocol used to stream data to

the host-computer, and adopted the Kinect for indoor range sensing. Since its release,

numerous scientific papers focusing on Kinect’s abilities and possible applications have

been published – today, sensors similar to the Kinect weigh only slightly more than

200g. At first sight, these characteristics seem to be a great match for airborne surface

reconstruction.

When structured-light sensors project a pattern to a surface (creating the signal), the

light produced has to be distributed over the surface’s area. The irradiance of light on

a surface is measured in watts per square meter, and it follows that for a projector with

constant power, this value is inversely proportional to the area covered by the pattern.

Depending on the algorithms used, the image produced by the camera will have to

represent the pattern with a sufficient amount of contrast. That is, the signal to noise

ratio in the image must not fall below levels that are acceptable to the image processing

algorithms employed in later stages of the pipeline. For a structured-light camera, solar

irradiation is the primary source of noise in the outdoors, quickly diminishing the signal-

18

2.3 3D Scanning, Registration and Self-Localization

Figure 2.4: The Kinect’s infrared light speckle pattern allows three-dimensional recon-
struction (image in public domain, reprinted from Anonymous (2010))

to-noise ratio and causing the approach to fail in the open. There are some measures

to counter the detrimental effects of the sun on structured light sensors: the Kinect

features an 830nm bandpass filter on the IR camera, blocking light from other devices

such as remote controls as well as large parts of sunlight’s IR energy. However, the

sensor still tends to fail in places lit by sunlight, attesting to the power of sunlight

in this region of the spectrum. Improving the signal-to-noise ratio by increasing the

projector’s power is an obvious strategy, but constrained by concerns regarding eye-

safety. As witnessed by PrimeSense’s patenting and patent licensing activity (and

described in detail by Kramer et al. (2012)), Kinect’s designers invested much effort to

create a strong, yet safe IR pattern using a laser diode: most optical diffusors used to

create speckle patterns would cause a bright dot to remain in the pattern’s center. In

order to keep light emissions from the 70mW laser diode eye-safe, this imperfection was

rectified by distributing this energy over 9 dots of lower brightness (see figure 2.4). In

conclusion, designers of structured light sensors are forced to engage in a compromise

between range, power consumption, eye safety, and accuracy.

So far, while some structured-light sensors known to the author are capable of mapping

in open-sky and daylight conditions, none provide a reasonable range (see Mertz et al.

(2012), figure 2.5). ToF-based LIDAR sensors currently offer properties more suitable

to airborne outdoor mapping. For this reason, two lightweight Hokuyo UTM-30lx range

finders are used on the experimental platform.

2.3 3D Scanning, Registration and Self-Localization

A range sensor’s range and field of view limit the surface of a scene that can be scanned

using a single pose. In both indoor and outdoor environments, even small scenes often

19

Chapter 2 State of the Art in Autonomous Exploration

Figure 2.5: Insufficient range of structured light sensors in the outdoors, from Mertz
et al. (2012). Images c© 2012 IEEE.

cannot be reconstructed from a single scan, because there is no viewpoint from which

all surfaces can be seen. Consequently, a scanner must be placed in different view-

configurations in order to completely map a given geometry, which will result in multiple

scans. Oftentimes, the first scan defines the origin of the global coordinate system being

used. As soon as the next scan (known as source scan, current scan or data set) has

been acquired, it can be registered, meaning that a transformation (translation and

rotation) from its local coordinate system into the global coordinate system must be

found, such that it is correctly aligned with the previous scan(s) (known as target scan,

reference scan or map). It is important to note that with the range scanner rigidly

mounted to a robot, the problem of scan registration becomes equivalent to the classic

robotics problem of self-localization (Olson, 2000). In other words: if two consecutive

scans can be registered, the transformation of the robot between these two scans is also

solved. If, on the other hand, the robot’s transformation between two scans can be

determined by other means (e.g. a navigation system), scan registration is reduced to

applying this transformation to one of the scans. For this reason, 3D scanning, scan

registration and self-localization are closely interdependent, and their state of the art

is introduced in the same chapter.

2.3.1 Static scanning

The idea of static scanning is to fix the ranging device in a stable position while it

scans its complete FoV (see figure 2.6 for an example application). Depending on the

actual device being used, this process might take between anywhere from fractions of a

second up to a few minutes. After completion, the scanner is moved and the procedure

repeated until all surfaces of interest have been scanned.

When registration is computed by trying to align the new scan to any other in the

pool of correctly registered scans, the search space increases as scanning progresses.

Registration search can be constrained by reducing the pool of target scans to only the

20

2.3 3D Scanning, Registration and Self-Localization

(a) (b)

Figure 2.6: (a): Static scanning using a tripod-mounted aLRF and reference spheres for
scan alignment in post-processing. (b): A visualized scan with visible reference spheres
remaining. Images c©: (a) 2013 International Partner Büro S.R.L., (b) 2014 DeWalt Corp.

previous scan, resulting in pairwise registration.

Every registration includes small errors in alignment, so a growing chain of registrations

will accumulate a growing error. Whenever a scan overlaps not only with its direct,

but also with a non-direct predecessor, this presents a chance to determine and then

correct registration errors that have built up during the course of mapping. This

approach is called loop-closure and is very efficient in improving the global consistency

of produced maps. Because of this, a compromise must be made between pairwise-only

registration (requiring lower computational complexity due to a reduced search space)

and unrestricted registration, which allows for loop closure.

For algorithms to correctly register two consecutive scans, a sufficient amount of over-

lapping surfaces must be included in both. Algorithms can be classified as either local

or global, depending on the search method that backs the registration.

Local algorithms require not only the scans themselves, but also an initial estimate of

the transformation between them. In robotics, this information is often derived from

odometry sensors such as wheel encoders or double-integrated readings from an inertial

measurement unit (IMU). Probably the most well-known local registration algorithm

is ICP (Iterative Closest Point, Chen and Medioni (1991); Besl and McKay (1992)),

which works as follows: first, for evey point in one scan, the closest point in the other

scan is selected as the corresponding point. ICP then strives to compute the optimum

alignment between the two scans by transforming the source scan so that the sum of

the square of all distances between corresponding points is minimized. This process

is repeated until the sum of squared distances converges, often leading to correctly

aligned scans. The algorithm is conceptually simple, but as described, requires that

for every point in the source scan, the nearest neighbor in the target scan is found –

a process that is time consuming and must be repeated in every iteration. In order to

alleviate this shortcoming, common approaches to neighbor search acceleration like kd-

21

Chapter 2 State of the Art in Autonomous Exploration

trees have been implemented (Nüchter et al., 2007a). Other publications have further

improved other characteristics of the algorithm; for example, ICP has traditionally been

sensitive to outliers, as they introduce large offsets into the sum of squares, increasing

overall misalignment when ICP tries to accommodate them. Segal et al. (2009) present

an attempt in order to decrease ICPs susceptibility to outliers specifically as well as

measurement noise in general.

However, even after a decade of improvements, ICP’s real-world application is limited

to precise, locally consistent scans with good initial alignment transformations. This

is because the point correspondence criterion (Euclidean distance), while being simple

to implement, does not guarantee correctness. Therefore, especially scans of complex

geometry or insufficient pre-alignment are prone to converge to local minima.

Bosse et al. (2012) improve on this shortcoming by using surface elements (named sur-

fels) for local registration. In the mobile mapping approach presented, surfels match

when they are spatial and temporal neighbors and are found to have similar surface nor-

mals. While this correspondence search requires more preprocessing, less false positives

slip into the computed correspondences, thus enabling more reliable registration.

On the other hand, global registration methods do not require any estimates of relative

poses. Instead, they independently search both scans for features, then try to find

correspondences between these. When a sufficient number of corresponding features

has been found, a transformation is constructed to spatially align them. As a last step,

a local registration algorithm like ICP can be used to refine the registration.

The most challenging part of global registration algorithms remains to be the reliable

extraction of meaningful features. Numerous different approaches to feature-detection

in point clouds have been suggested in the literature. The most common use spin

images (Johnson, 1997), Extended Gaussian Images (Horn, 1984), Fast Point Feature

Histograms (FPFH, Rusu et al. (2009b)), Depth-Interpolated Local Image Features

(DIFT, Andreasson and Lilienthal (2010a)), as well as planar patches (Pathak et al.,

2010). For a better introduction to the problem of shape correspondence and registra-

tion algorithms, the reader is directed to Van Kaick et al. (2011). In many commercial

applications, global registration is achieved by solving a coarse GNSS-derived position

during each scan and using dedicated control points in the form of white spheres (shown

in figure 2.6(a)). These are placed in the environment before scanning commences and,

due to their special shape and reflectivity, can be automatically and reliably detected

in the resulting data. After finishing acquisition, software globally positions the point

clouds using the captured GNSS position, then locally aligns the scans by aligning the

extracted control points. As presented in figure 2.6(b), the control points remain part

of the merged map and potentially obstruct interesting geometry, motivating research

for automatic and marker-less alignment of scans.

22

2.3 3D Scanning, Registration and Self-Localization

(a) (b)

Figure 2.7: (a): A Schiebel S-100 Camcopter UAS with an integrated Riegl VQ-820 LI-
DAR sensor and Trimble/Applanix AP50 GNSS/Inertial navigation system. (b) Ground-
based mobile indoor mapping. Images c©: (a) 2012 Schiebel Corporation, (b) 2010 Darm-
stadt Robot Rescue Team

2.3.2 Mobile scanning

Maps originating from static scans have traditionally exhibited superior accuracy when

compared to those produced by mobile mapping. However, mobile robotics does not

accommodate static scanning: the stop-scan-move cycles forced on the intrinsically mo-

bile mapping robot impose many disadvantages: most importantly, they considerably

increase the time required for mapping and decrease energy efficiency. Some robotic

platforms, like the one presented in this thesis, simply cannot support a static scanning

pose, so that mobile scanning remains the only option.

Many challenges surface once the assumption of a static scanning pose has been aban-

doned: primarily, it is no longer possible to create a self-consistent point cloud with

any scanner hindered by a non-negligible integration time. Strictly speaking, this holds

true for any scanner, but as long as the time required for a single scan is dominated

by light’s ToF (as in e.g. structured-light or Flash-LIDAR sensors), the error resulting

from concurrent motion often remains imperceptible. However, in the case of actuated

laser scanners where a complete scan can take up to several minutes, motion must be

accounted for.

Recovering the trajectory1 of robot and sensor is a very difficult challenge; any im-

precisions manifesting in the scanner’s path directly translate to inconsistencies in the

resulting point cloud. Conceptually, there are three main approaches to solving a mov-

ing robot’s position and orientation over time in the outdoors:

The first approach is to mount a GNSS antenna/receiver setup to the robot, so that

both position and time can be determined with high precision and frequency. Using

RTK-GNSS and a reference station, positions can be solved with centimeter-accuracy.

In the case that correction network infrastructure is available within baseline length

1defined as the path that a moving object travels through space, as a function of time.

23

Chapter 2 State of the Art in Autonomous Exploration

limitations, dedicated GNSS reference stations can be substituted (Rizos and Han,

2003). But there are inherent disadvantages, namely that rotation angles must be

constrained in order to keep the receiving antenna pointing upwards, and that GNSS

alone can only compute position, but not orientation. One way to solve this problem

is known as GNSS-attitude and simply employs three antennas: once the baselines

between all antennas are known, the orientation of the object can be inferred from

the locations solved for each (Cohen, 1996; Li and Murata, 2002). The accuracy of

the orientation sensed in this setup increases with the length of the baselines, and the

ensuing compromise between compactness and accuracy is often troublesome for mobile

robots. Furthermore, this setup is traditionally expensive and fails immediately when

one receiver suffers from insufficient reception of satellite signals.

The second approach is the combination of a precision GNSS antenna/receiver and an

inertial measurement unit (IMU), as shown in 2.7(a). The system measures time and

position using the GNSS module and, using a filter, fuses the results with accelerations

and rotations sensed by the IMU. Inertial and GNSS systems have shown to perform

very favorably in combination, because they show very complementary error character-

istics: GNSS measurements deliver absolute and drift-free positions, but only support

sampling rates of about 25Hz and do not contain information about orientation. Iner-

tial measurement units on the other hand are suitable for sampling motion with high

datarates and astonishing short-term accuracy. When combined through a software fil-

ter, the resulting measurements inherit each system’s advantages, yielding precise and

drift-free position and attitude data at high frequencies (Li et al., 2012). The quality

of the resulting data is traditionally dominated by the quality of the IMU, which often

is the most expensive part of the navigation system. When using tactical-grade IMUs,

inertial data can also be used to speed up the GNSS carrier-phase ambiguity search

(Yang and Farrell, 2001). Further advantages are the relative compactness compared to

the first setup as well as a tolerance against short GNSS outages. For enhanced preci-

sion and reliability in GNSS challenged environments, combinations of GNSS-attitude

and inertial navigation systems (INS) are also being researched and applied (Hwang

et al., 2005; Eling et al., 2013).

Lastly, there is self-localization and mapping (SLAM), which requires no GNSS/INS

at all. Instead, data from odometry sensors, cameras or IMUs is used to integrate the

robot’s motion over a short amount of time. Whenever the range sensors deliver new

data, the estimated pose is used as an initial seed for point cloud alignment. The data is

then associated with and compared to previously recorded scans, allowing the estimate

to be refined. This approach is actually quite similar to those described in section 2.3.1,

with the important addition of real-time execution. A good example is Elseberg et al.

(2012), who use a Riegl VZ 400 survey-grade 3D laser scanner and an XSens MTi IMU

to recover the sensor’s trajectories with encouraging results. Taking the concept of

mobile scanning even further, Bosse et al. (2012) have introduced a handheld scanning

platform named Zebedee. After integrating IMU and two-dimensional LRF data, the

system employs extensive post-processing and loop-closure to produce highly precise

24

2.4 Map representation

point clouds. Although the most popular, application of SLAM is not limited to range

sensors; other combinations like inertial sensors and visual odometry have also been

suggested (Roberts et al., 2002; Angelino et al., 2012).

SLAM has proven very valuable in structured indoor environments and successful prob-

abilistic approaches are well-documented in e.g. Dissanayake et al. (2001) and Monte-

merlo et al. (2002). Figure 2.7(b) shows an application in a robotic rescue context. On

the downside, SLAM also suffers from numerous shortcomings: when localization relies

on constant and valid updates from the range sensor, aerial vehicles must accept the

sensor’s range as their service ceiling. With SLAM, the position is prone to drift over

time because of subtle errors in data association, which can be partly corrected using

loop closure detection. Some environments do cause the robot to revisit previously seen

places during exploration, giving sufficient opportunity for loop closure and a precise

map (Thrun and Montemerlo, 2006; Bosse and Zlot, 2008). Other tasks (e.g. mapping

of powerlines or pipelines) do not. Even when SLAM is capable of creating consistent

outdoor maps, they still lack an important property when compared to those created

using GNSS-based sensors: they are not georeferenced, so spatial association with maps

created at other times or by other robots remains difficult.

In this thesis, a GNSS/Inertial navigation system is used to reconstruct the robot’s

path. This way, the cost and complexity of GNSS-Atittude setups is avoided, and

localization does not depend on SLAM, which is comparably fragile in the outdoors

and would introduce further constraints on the robots motion. With the range sensor

firmly attached to the robot, it’s trajectory can be computed by transforming the

INS’s trajectory using a simple homogeneous transformation matrix. Once the poses

of a scanning sensor’s trajectory are known and temporally referenced to its range

measurements, the sampled ranges can be transformed into a global coordinate system,

once again producing a consistent map.

However, only a small subset of scanners support synchronization with other measure-

ment devices in order to obtain precise timing of individual range readings. The Hokuyo

UTM-30lx scanner provides a coarse timing synchronization by means of a signal that

indicates the laser’s angular position once per revolution, whereas e.g. the Velodyne

HDL32E and most survey-grade scanners provide timing information for each individual

range with precision in the nanosecond range by synchronization through a dedicated

pulse-per-second (PPS) signal. For further details, please see section 3.1.4.

2.4 Map representation

In the context of mobile robotics, a map of the surroundings has traditionally been the

most important part of the world model. Depending on the application, the world is

often represented in metric, topological or semantic maps.

Metric/Geometric maps are data structures that contain direct information about the

25

Chapter 2 State of the Art in Autonomous Exploration

Figure 2.8: A semantic 3D object map, consisting of a metric map that was later anno-
tated with object information. This information requires knowledge of the world and is
highly domain specific. Reprinted from Rusu et al. (2009a). Image c© 2009 IEEE.

world’s geometric shape. Objects are referenced using coordinates relative to a com-

mon frame. This type is usually preferred for applications that require high accuracy,

e.g. when the map is the end product or used for self-localization or object manipula-

tion.

Topological maps represent the environment as a graph: while vertices correspond to

interesting places that the robot needs to be aware of, edges stand for a relationship

between them (Remolina and Kuipers, 2004). Although edges can encode any rela-

tionship in theory, the relationship is most often spatial in practice and – with some

constraints – can also be used for localization (Choset and Nagatani, 2001).

Semantic maps often build on geometric maps, enhancing them by adding information

about objects contained. Once this information is available, it can be used to infer

further information in reasoning and planning systems (e.g. “This room contains a

stove, so it is not a bathroom.”, Galindo et al. (2005)). Producing such maps is a very

complex endeavor, as it requires that objects of interest be detected in and segmented

from the “background” of the map (Nüchter and Hertzberg, 2008). This procedure

requires knowledge of the world, which usually constrains solutions to small domains:

point clouds annotated with household objects are described in Rusu et al. (2009a);

Blodow et al. (2011); Pangercic et al. (2012) (an example is shown in figure 2.8), while

Sengupta et al. (2012) create maps of street inventory using classic stereo vision.

This thesis focuses on metric maps, as they are most suitable to create precise repre-

sentations of physical shapes in outdoor environments. Representing physical shapes in

computer memory is a complex problem, and a wide variety of encoding strategies exist

to solve it. In general, encodings should exhibit as many of the following properties as

possible:

• Compact. The map should store geometric information in as little memory as

26

2.4 Map representation

possible. This is obviously desirable for storage, but also for processing of the map,

as less data commonly translates to smaller memory bandwidth requirements.

• Dynamic. Integrating new information into any region of the map should be

efficient at any time, and not require large amounts of data to be reorganized.

• Unbounded. In autonomous exploration, the extents of the final map are un-

known when it is created. Having to predefine a map’s extent severely limits it’s

applicability to the task and would require several workarounds.

• Expressive. The map should be able to represent any shape that exists in the

real world. Even complex geometry like trees or overhangs should be encodeable.

• Inherent processing. Some map structures require processing steps during in-

tegration of sensor data, which automatically improve the quality of the data.

For example, some encodings effectively remove noise from sensor readings, while

compressing the data at the same time.

• Reusable. When planned carefully, some map data structures can be reused for

other problems, such as collision avoidance or path planning.

• Searchable. A map is often not the end product, but an intermediate step in a

longer processing pipeline. Searching a geometric primitive’s spatial neighbor is

one of the the most fundamental operations in metric maps and thus, should not

be computationally expensive.

A common map data structure are point clouds (depicted in figure 2.9(a)), which

have been used successfully by many robotic mapping systems (Nüchter et al., 2007b;

Borrmann et al., 2008; Andreasson and Lilienthal, 2010b). Point clouds simply encode

the global positions of the points sensed by the scanner. Usually, a point is represented

by its x,y and z coordinates, which are saved with single float precision. In terms of

memory management, point clouds are either implemented as a struct of arrays (SoA)

or an array of structs (AoS), depending on the underlying hardware and expected access

patterns. Either way, this representation allows for straightforward, yet extremely fast

visualization when executed on graphics processing units (GPUs). Point clouds are

unbounded, allow for arbitrary and variable resolution, and make insertion of new data

trivial. However, they do not encode information about surface normals, do not filter

sensor noise and grow linearly with the number of recorded points. Processing point

clouds to ensure even spatial sampling densities is often necessary, but requires many

searches for neighboring points, which is either complex or time consuming.

Grid maps, or evidence grids, have long been a popular data structure for geometric

maps (Elfes, 1989). They span a bounding box in space and evenly subdivide it on

all axes that are to be mapped, in effect creating grid cells (also known as voxels).

Each cell then corresponds to a memory location that contains data about the space it

encloses: the most common specialization is the occupancy grid map, in which every

cell records whether it is occupied, empty, or still unexplored. Spatial indexing is

27

Chapter 2 State of the Art in Autonomous Exploration

(a) (b) (c) (d)

Figure 2.9: A 3D representation of a tree, visualized after saving in different data struc-
tures: (a): A simple set of all captured points sensed by the scanner, named a point cloud.
(b): A heightmap, which stores height-information for every cell in a two-dimensional grid.
(c) Multi-level surface maps extend heightmaps by allowing multiple heights to be stored
for every cell. (d): Voxel-based maps subdivide 3D-space into cubes. More advanced im-
plementations can decrease the cube-size (increase resolution) to represent more complex
geometry. Reprinted from Wurm et al. (2010). Images c© 2010 IEEE.

comparably straightforward, so that any location’s cell can be computed quickly from

few parameters, and determining any cell’s memory address is just as fast. One of

the most important advantages is that its memory footprint remains constant during

integration of sensor information (described in detail in Moravec and Elfes (1985)),

which heralds huge benefits for data-parallel implementations. On the downside, the

extent of a grid map must be fixed at creation time, and the memory requirement grows

polynomially when increasing resolution. While uniform cell sizes simplify data access

enormously, they often make large scale grid maps inefficient: large regions that are

completely free or occupied are sampled and stored with the same resolution as regions

with high geometric complexity.

Another map variant are tree-based data structures, such as octrees or kd-trees. These

allow far more efficient data storage by providing adaptive resolution and conceptually

allow extents to be expanded after initialization. However, these advantages come

at the cost of more complex memory layout and thus, more complex management-

algorithms and uncoalesced access patterns during cell-lookup. For this and other

reasons, implementing dynamic, tree-based maps on data-parallel hardware remained

extremely difficult until very recently, when dynamic parallelism was introduced in the

ISA of NVIDIA’s newest-generation Kepler GPUs.

Abstracting further, grid maps can be reduced to two dimensions, with each cell en-

coding the height of the contained geometry. This is called a height map and inherits

most of the grid map’s properties. Such a map is visualized in figure 2.9(b), revealing

this encoding’s most important shortcoming: information about overhangs cannot be

encoded, effectively distorting many common shapes like trees, tables and bridges. In

practice, this often constrains applicability to large-scale, low-resolution maps, such as

digital elevation models (DEMs).

Triebel et al. (2006) introduce multi-level surface maps, which extend two-dimensional

28

2.5 Next Best View Planning

height maps by allowing multiple heights to be stored in each cell. This is commonly

named a 2.5D map, as it is not quite as expressive as a real 3D representation. Figure

2.9(c) shows an example of such an MLS map, and the inventors subsequently imple-

mented self-localization employing this data structure (Kümmerle et al., 2008). Still,

Wurm et al. (2010) point out that 2.5D maps are unable to store free or unknown areas

in a volumetric way, limiting their use for localization and exploration.

During software development for this thesis, octrees were first used for map representa-

tion. During porting to a GPU-based implementation, octrees were replaced by other

established data structures, namely point clouds and 3D grid maps. These structures

are far less complex to manage, which translates to much faster execution on the target

platform.

2.5 Next Best View Planning

While self-localization and mapping are essential capabilities for mobile robots, further

skills are required to perform autonomous exploration: one of them is planning motion.

With the aim of exploration, motion must be optimized towards maximization of the

system’s information gain.

At its core, the problem is one of visibility, which is well-researched and documented

in the field of computational geometry (Ghosh, 2007). Building on the concept of

visibility, the aim is to find sensor poses (and, in temporal extension, -trajectories)

that cover as much of a scene as possible. For a good introduction to view planning

problems and algorithms, the reader is directed to Chen et al. (2008).

In 1987 O’Rourke published “Art Gallery Theorems and Algorithms”. The Art Gallery

Problem describes the real-world problem of guarding an art gallery with the minimum

number of guards that, together, can see all of the gallery. Although the book still serves

as a good reference and base for many related approaches, the algorithms presented

only address rather small parts of the overall problem, as they mostly apply to polygons

in two-dimensional space. Even though the definition presumes the map to be known a-

priori, the problem is NP-hard (Khopkar, 1997). Thus, this assumption means that the

presented solution can not be applied to NBV planning in unknown environments.

Computing the optimum sensor placement in order to maximize visibility is a general-

ization of the Art Gallery Problem, and was named the next-best-view (NBV) problem

by Connolly (1985). While SLAM has been researched intensively in the past decades,

next-best-view planning has not received nearly as much attention.

Depending on the task at hand, Best can have many different meanings, so NBVs might

be computed with the aim of optimizing any combination of properties (e.g. mapping

speed, map completeness, low energy consumption in the process etc.). Although called

the next-best-view problem, its solutions often lend themselves well to other scenarios:

29

Chapter 2 State of the Art in Autonomous Exploration

for example, robotic vacuum cleaners also need to cover an area as quickly and efficiently

as possible – except that instead of a sensor, an actor’s trajectory must be planned.

In this context, the problem is known as optimizing coverage; Schwager et al. (2009)

clearly demonstrate how closely these concepts are related.

Null and Sinzinger (2006) introduce a dichotomy: the interior NBV problem places

the sensor within the geometry that is to be mapped - indoor-scenarios are an obvious

instance of this class. The exterior NBV problem is defined by the sensor being placed

outside of the object to be reconstructed, like a statue or a typical household object.

Here, problems arise mainly from self-occlusions of non-convex objects.

Similar to how humans approach this challenge, a frontier-based technique is commonly

used in many NBV problems (Yamauchi, 1998; Joho et al., 2007; Shade and Newman,

2011), because it yields sensor-poses located between known and unknown regions. On

the one hand these poses offer safe reachability, because the path planner can compute

a trajectory through known parts of the environment. On the other hand - given the

pose is oriented towards the unmapped environment - it will allow the sensor to deliver

valuable information, advancing the mapping process. In order to compute such a pose,

knowledge about frontiers has to be derived from the underlying data structure. When

using two-dimensional grid maps, “frontier cells are defined as unknown cells adjacent

to free cells and this way a global frontier map can be produced” (Mobarhani et al.,

2011).

Null and Sinzinger (2006) compute surface normals either from voxel structures or re-

constructed mesh surfaces (an expensive operation in itself), letting the sensor align

itself with normals at the border between scanned and unscanned regions. For both

problems, the paper presents algorithms based on voxel data structures and ray casting

that limit the range sensor to a constant height. Because their solution to the exterior

NBV problem limits the possible angles of the sensor-pose to point towards the object,

it is orders of magnitude faster than the algorithm for interior NBV planning, which

cannot limit the search space in such comfortable ways. Still, even the faster algorithm

requires almost 12 seconds of processing time on a CPU for a grid of 125k (503) vox-

els, so increasing the grid’s resolution quickly proves problematic. Furthermore, the

strict separation of interior and exterior planning doesn’t fully accommodate the case

of a robot mapping an outdoor environment, which can contain geometry from both

classes.

View planning algorithms operate on spatial data structures, and searching these struc-

tures leads to memory-bound programs. Because memory throughput hasn’t increased

as fast as required by the integration of the third dimension, a common strategy is to re-

duce the dimensionality of the learned map. In simulation and real-world experiments,

Strand and Dillmann (2010) condense a scanned point cloud to a two-dimensional grid

for navigation and planning. At the same time, the ability of exploring unstructured

environments with slopes and overhangs is lost.

30

2.6 Autonomous exploration

Blaer and Allen (2007) research ground-based outdoor reconstruction based on building

voxel-grids from acquired data and ray traversal for NBV computation, requiring an

a-priori “2-D map with which it plans a minimal set of sufficient covering views”. To

manage large-scale outdoor scenes, the voxel’s sizes are increased to one meter cubed

and they are marked as seen if they contain at least one point from the iteratively

acquired point cloud. Candidate NBV locations are computed by finding occupied

voxels that intersect the ground-plane, but are marked as free on the a-priori two-

dimensional map. New sensor poses are then generated by using ray-tracing to count

the number of “boundary unseen voxels” (unseen voxels adjacent to at least one empty

voxel) visible from all candidate locations.

Three-dimensional environment mapping is often implemented using laser scanners

and time-of-flight cameras, so point clouds are a very common type of sensor data.

Unfortunately, information about exploration boundaries is hard to generate from point

clouds. Applying a plain spatial subdivision to point clouds to form a 3D occupancy

grid map might appear as a logical next step, extending Mobarhani’s definition (see

page 30) into the third dimension. Constantly updating such a grid quickly becomes

a burden on the processing pipeline, as all rays scanned by the laser scanner have to

update all the cells they travel through. This makes resolutions in the centimeter range

quickly become unfeasible. Furthermore, a height limit has to be imposed manually to

keep the robot from mapping unknown (and empty) regions in the sky.

Because the presented experimental airborne platform features a flight-time of only 15

minutes, NBVs need to be determined quickly. In contrast to generating a single NBV

for a given input, computation of multiple NBVs, sorted by achievable information

gain, is preferred. This enables creation of trajectories that include all NBV-derived

waypoints in an order optimized to allow the robot to reach all of them in minimal

time.

As the UAV is required to navigate through unstructured and complex 3D environ-

ments, approaches that reduce the problem to two dimensions (for frontier generation

or reduction of complexity) were avoided. Other approaches failed to meet require-

ments, e.g. by requiring a-priori knowledge of the map, by limiting applicability to

either the interior or exterior NBV problem, or by necessitating computationally in-

tensive pre-computations that are slow to execute on graphics cards. For this reason,

section 4.2 describes how a custom approach to next-best-view generation was first

tested using a CPU-based proof-of-concept, then implemented on the GPU to work in

real-time.

2.6 Autonomous exploration

Autonomous exploration, finally, is the combination of localization, mapping, path

planning, obstacle avoidance and motion control.

31

Chapter 2 State of the Art in Autonomous Exploration

Figure 2.10: Subtasks of automatic model learning, from Fairfield (2009)

More constraints in exploration emerge when taking the limited maneuverability of

most UAVs into account. Due to the limited bandwidth and authority of trajectory-

controlling actuators, path-planning and motion control must be suitable for the re-

spective UAV (Singh and Fuller, 2001; Machmudah et al., 2010).

When localization is performed through SLAM, a compromise must be made between

reobservation of known landmarks (optimizing localization quality) and exploration of

unknown space. Bryson and Sukkarieh (2006) define a mutual information gain result-

ing from traveling to a goal as “the difference between the entropies of the distributions

about the estimated states before and after making the observations”. This definition

requires knowledge about the probability distribution after making the observations at

a given goal in unmapped environment, which cannot be foreseen and thus, must be

simulated under the assumption that “there exists a certain available feature density

[...] in terms of average number of features per map grid area”. Although the authors

later present a solution for fixed-wing UAVs using visual/inertial SLAM that performs

well in simulation (Bryson and Sukkarieh, 2008), the system simulates application on

a macro-scale (grid-map with 100m cell size) and essentially requires a collision-free

environment that can be well abstracted into two dimensions.

As shown in figure 2.10, Fairfield (2009) groups the basic tasks of localization, mapping

and motion planning into the higher-level activities SLAM, exploration, active local-

ization and, unifying all three tasks, active SLAM. Although the basic tasks are rather

well defined, both names and definitions for the higher-level activities vary between

authors (compare e.g. Makarenko et al. (2002)). In the end, localization, mapping,

motion planning and motion control are strongly interdependent and one cannot rea-

sonably expect a diagram of three circles to capture the complexity of autonomous

robotic exploration. Despite these and other shortcomings (e.g. it is doubtful whether

localization and planning (i.e., “active localization”) can exist without a map), the

diagram still serves as a helpful guidance for classification of the different approaches

presented.

32

2.7 Summary

There have been numerous publications surveying active perception planning for recon-

struction and inspection. Makarenko et al. (2002) include all subtasks of autonomous

exploration into the problem domain and - while focusing on localization quality - at-

tempt to find a balance with information gain and motion cost. However, the algorithm

relies on assumptions about unknown parts of the map and was evaluated using only

simulation of a robot in a two-dimensional environment. The text further notes that

“while undoubtedly the optimal plan must take into account the expected integral pay-

offs (e.g. information gain along the path), the complexity of the problem effectively

precludes this approach”.

Reasoning over yet-unexplored spaces using probabilistic methods, like in Potthast and

Sukhatme (2014), yields helpful output as long as the environment to be scanned follows

the assumptions made beforehand, e.g. flat table-tops and non-degenerate shapes.

Unfortunately, real-world outdoor scenarios are not necessarily flat and often more

complex than table-tops with cutlery.

Scott et al. (2003) classify methods as either surface-based, volume-based or global. As

detailed in chapter 4.2, we detect the absence of information (missing geometry) using

a surface-based approach, while rating possible information gain of sensor poses using

volumetric data structures.

When using GNSS, the quality of localization does not depend on the density of sensed

features in the surroundings and the ability to associate them, as it is commonly the

case with SLAM algorithms. However, this does not mean that localization quality is

constant throughout the environment. Indeed, the number of satellites in view as well

as their geometric constellation is an important factor for the accuracy of the computed

position. When mapping very close to buildings or in-between high-rise architecture,

obstructions of satellites become so important that motion planning must consider both

satellite orbits and local geometry. This is a good example of additional constraints that

must be considered when implementing active localization for a mobile robot.

As experiments in chapter 5 show, the platform’s self-localization is sufficiently precise

and reliable in outdoor environments. Thus, we can optimize the exploration strategy

towards map completeness and mapping duration instead of optimizing for localizabil-

ity.

2.7 Summary

As presented in figure 1.2, a wide range of functionality must be integrated in order to

implement autonomous airborne exploration. This chapter critically assessed the state

of the art in related fields.

Regarding the most fundamental part of the platform, many unmanned aerial vehicles

are available on the market today. Fortunately, a few remain when requirements re-

33

Chapter 2 State of the Art in Autonomous Exploration

garding maximum weight, payload, flight-time and extensibility are considered. For this

thesis, a Mikrokopter Okto2 multirotor drone is selected to carry the sensor payload.

This UAV is presented in the next chapter, section 3.1.1.

Besides discussing advantages and disadvantages of different range sensing technologies,

section 2.2 also serves as an explanation for the selection of LIDAR sensors, which are

available as commercial off-the-shelf hardware. Section 3.1.4 will describe the proper-

ties and technical integration of the chosen sensors into the platform. The challenges

of 3D scanning, registration and self-localization, as well as current concepts for appro-

priate solutions were introduced in section 2.3. As explained above, localization of the

platform is achieved using a commercially available GNSS/Inertial navigation system.

Its integration is discussed in section 3.1.3 and chapter 5 evaluates its reliability and

accuracy.

Map representation is an important foundation for any robotic mapping system, as

computer memory capacity and throughput are limited in real-world systems. The

choice of data structures is one of the most fundamental, as it has strong influence

on runtime properties such as speed, energy efficiency, and scale limitations. As such,

section 2.4 also is a helpful introduction to chapter 4, because it motivates the choice

for point clouds as the data structure backing most algorithms presented later.

Numerous techniques for view planning in indoor and outdoor environments, repre-

sented using either two- or three-dimensional datastructures, have been discussed in

section 2.5. Limited by the computational power of today’s hardware, all of them must

compromise between speed, robustness against more complex environment geometry,

correctness, and other desirable aspects. The possibility to improve on this state by

leveraging the availability of newly-available, highly-parallel computing architectures

has motivated a core part of this thesis. Even though some parts of the NBV algorithms

presented in chapter 4 quite obviously took inspiration from their predecessors, others

differ significantly. And while compromises must still be made, this approach allows

for real-time airborne exploration in outdoor environments.

The next chapter presents the system’s architecture on a lower level than given in

chapter 1, and describes the integration of its components into the experimental plat-

form. The software architecture is presented in the second half of chapter 3, with the

employed algorithms being described in the following chapter 4.

34

Chapter 3

Experimental Platform: Concept and

Architecture

The first chapter started with a discussion of this thesis’ motivation and its goals. A

diagram was presented (see figure 1.2), showing the abstract functional components

required, as well as the interaction between them. The second chapter analyzed the

state of the art in related fields and concluded that some functionality can be provided

by off-the-shelf components and pre-existing algorithms. However, other functionality is

not provided by the state of the art and thus, requires research and development.

The first part of this chapter will introduce the hardware that was integrated to be-

come the experimental platform. Building a robot capable of autonomous exploration

requires a combination of many components: a UAV, computers, networks, sensors and

countless smaller parts to integrate them. All of these must interoperate as planned,

and because many of them are part of modules that are critical to safety in flight,

they must work reliably not just most of the time, but always. This is an important

realization for researchers that, like the author of this text, previously worked with

ground-moving robots: there is no emergency-stop switch for UAVs.

Once the hardware was delivered, it was integrated and tested, revealing that most

components did not behave as specified. As an example, the on-board computer emitted

strong electromagnetic interference (see section 3.1.5), preventing the navigation system

from performing carrier-phase measurements and thus, providing accurate positioning.

Once this problem was resolved, positioning was accurate, but then the navigation

system turned out to be unable to perform kinematic alignment. Weeks later, its

manufacturer confirmed that an error in the system’s firmware prevents kinematic

alignment in accurate GNSS modes, and quickly fixed the problem. In the end, the

time invested paid off, as all parts sourced at the beginning of the project are used

in the final system. Indeed, only replacement parts, batteries and mounting materials

were purchased in the years following.

35

Chapter 3 Experimental Platform: Concept and Architecture

Figure 3.1: Diagram of hardware used for both base and rover as well as communication
channels connecting them.

The following sections portray each hardware component, giving a detailed account

of its properties, application, limitations and how it integrates into the experimental

platform.

At the same time, a set of software was developed: first, a proof-of-concept implemen-

tation was created, allowing a virtual UAV to fly and map in simulation. With delivery

of the hardware, integration and software development were worked on in parallel. De-

vice drivers were written and another program was created to control the sensors and

the UAV. The resulting software architecture is discussed in section 3.2.

3.1 Hardware

In chapter 1, the platform’s functional goals were defined and diagram 1.2 presented

an abstraction of necessary components and their interaction. Figure 3.1 presents a

more low-level diagram of the hardware used in this thesis. The left hand side shows

the GNSS reference station and base station notebook, which are necessary parts of

the equipment on the ground. The right hand side presents the UAV and its payload,

which is described in detail in the following sections. Some functionality is implemented

directly through hardware components, e.g. range sensing is realized through laserscan-

ners and self-localization by GNSS reference station and GNSS/Inertial navigation sys-

tem. Other functionality, like motion control, cannot be mapped to hardware as easily,

as it is implemented using software running on multiple hardware components.

36

3.1 Hardware

(a) The first configuration: the laser scanner’s field of view is oriented vertically and the inertial mea-
surement unit is fixed to the scanner for precise alignment. This arrangement supports both mapping
and obstacle avoidance during flight with a single scanner by constantly yawing during flight. Unfortu-
nately, the inertial navigation system’s fusion algorithms cannot solve the vehicle’s heading reliably when
heading and bearing differ during large parts of the flight.

(b) Visualization of the scanner’s field of view in the above configuration, showing occlusions induced by
vehicle geometry. As reflections with a distance below the vehicle’s radius are ignored, reflections from
parts of the UAV (including its propellers) do not harm point cloud quality in the form of outliers.

Figure 3.2: First hardware configuration of the experimental flying platform with
mounted GNSS-antenna and -receiver, laser scanner, inertial measurement unit and
processor-board. The red boom points forward.

37

Chapter 3 Experimental Platform: Concept and Architecture

(a) Second configuration with the scanner’s FoV oriented downwards and perpendicular to principal
direction of travel. The inertial measurement until is mounted using vibration dampeners for improved
GNSS/inertial fusion performance.

(b) Visualization of the scanner’s field of view in the above configuration, showing occlusions induced
by vehicle geometry.

Figure 3.3: Second hardware configuration of the experimental flying platform with
mounted GNSS-antenna and -receiver, laser scanner, IMU and processor-board. The red
boom points forward.

38

3.1 Hardware

(a) The current setup includes a second laser scanner for obstacle avoidance and mapping. Both laser
scanners and the IMU are mounted together with the battery on a stiff and lightweight carbon-fiber
sandwich-board. The resulting module makes up 40% of the UAV’s weight and is fixed to the vehicle’s
frame using vibration dampeners. This yields less drift in the navigation system solution, more precise
sensor alignment and better crash survivability.

(b) Visualization of the scanner’s field of view in the above configuration, showing occlusions
induced by vehicle geometry.

Figure 3.4: Current hardware configuration of the experimental flying platform with
mounted GNSS-antenna and -receiver, laser scanners, IMU and processor-board. The red
boom points forward.

39

Chapter 3 Experimental Platform: Concept and Architecture

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

F
li
gh

tt
im

e
(m

in
)

Payload (kg)

Hovering
Normal
Sportive

(a) Flight time of an Okto2 model (8 motors, total weight 1770g including a 4-cell 5Ah
LiPo battery) versus payload.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

F
li
gh

tt
im

e
(m

in
)

Payload (kg)

Hovering
Normal
Sportive

(b) Flight time of a QuadroXL model (4 motors, total weight 1480g including a 4-cell
5Ah LiPo battery) versus payload.

Figure 3.5: Graph depicting the achievable flight times versus the payload carried by
differently-sized multirotors, courtesy of the Mikrokopter project. While these numbers
are of theoretical nature, they match the experienced real-world flight-times very closely.

40

3.1 Hardware

3.1.1 Unmanned Aerial Vehicle

The UAV is built upon an “Okto 2”-multirotor helicopter from the Mikrokopter project1

(see figure 3.2(a)). It is propelled by eight drives (i.e., motor/propeller combinations)

that are installed on booms of two different lengths. Towards the front, rear, left and

right, they are fixed on long booms about 38cm away from the center. In the half

angles, the other four motors are fixed 28cm away from the center using short booms,

resulting in a diamond-like shape when observed from above.

When rotating, each drive causes two forces to act on its boom and thus, the vehicle:

first, the downward-oriented thrust generated by the rotating propeller pushes the

vehicle upwards. The relation of electric power flowing through the motor, resulting

rotational velocity and thrust is non-linear and will be briefly discussed in section

3.2.1 B. Secondly, the drive also generates a torque that – if not neutralized – causes

the platform to start rotating the direction opposing that of the drive.

For this reason, the drives installed on the longer booms rotate clockwise, with the

other four rotating counter-clockwise. Due to this interleaved arrangement, the total

torque exerted by motors and propellers on the platform is kept neutral during hover,

roll and pitch maneuvers. Yawing the platform can be accomplished by decelerating

all motors rotating in one direction, while accelerating the opposing group to make

up for the loss of thrust. Effectively, this will slowly unbalance the torques of equal

magnitude, but opposing directions affecting the platform. The angular velocity of

the yawing maneuver can then be controlled by adjusting the difference of rotational

velocity between these two motor-groups.

The Mikrokopter is also offered with the drives mounted slightly rotated along the axes

of their booms (+5◦ for one motor group, −5◦ for the other), so that the drive’s thrust

no longer points strictly nadir. While this allows the platform to yaw more quickly, it

does decrease its efficiency and was not adopted for the UAV presented here.

Using a four-cell 5000mAh LiPo-battery, its eight motors enable the platform to lift a

payload of about 600 grams for up to 16 minutes of normal flight. See table 3.1 for a

list of components and their weight, as well as figure 3.5(a) for a graph describing the

relation between payload and flight time. Judging by the weight of the payload alone,

using the QuadroXL four-motor version does seem to be the obvious choice, as cost and

expected flight times compare favorably to the Okto2 model. On the other hand, using

a larger vehicle with more motors than strictly necessary has shown to be advantageous

in many regards: in terms of flight dynamics, the mounted sensors experience a more

stable, smoother flight that is less prone to wind and small turbulences. Furthermore,

eight slow-running motors have shown to induce less vibrations into the vehicle than

four motors of a smaller version that lift almost the same weight. Although the vehicle

has never had a motor or controller fail during flight, it has lost single propellers due

to contact with trees, walls and ground. As the flight behavior was not visibly affected

1http://www.mikrokopter.de/

41

http://www.mikrokopter.de/

Chapter 3 Experimental Platform: Concept and Architecture

Table 3.1: Platform components and weight

Component Weight (g)

2 Hokuyo UTM-30lx 426
IMU XSens MTi 54
SensorBoard 41
AtomBoard incl. case and WiFi antennas 126
GNSS receiver incl. case 97
GNSS antenna 17
GNSS antenna cable & mount 16
Shielding (aluminum foil) 15

Sum payload 792

Payload 792
LiPo 4S 16.8V 5Ah 511
Mikrokopter Okto2 1180

Sum platform 2483

by this loss, a missing propeller was often detected only after landing. Especially

during development of the high-level flight-controller, the added redundancy in the

octocopter’s propulsion has saved the vehicle from countless crashes, quickly paying off

the higher initial investment.

3.1.2 On-Board computing

For low-level flight-control, we use the “FlightCtrl ME 2.1” flight controller, designed by

the Mikrokopter project. It is based on an ATMEGA 1284P microcontroller, features

MEMS gyroscopes and accelerometers for stabilization and communicates with all eight

brushless motor controllers using an I2C bus. The board also features other hardware

like an atmospheric pressure sensor or servo controllers that are left unused in this

project. The source code for the board’s control loop is published and free to use for

non-commercial purposes.

The platform also carries an on-board computer, weighing just 110 grams including its

case. It contains a 32-bit Intel Atom Z530 single-core processor with two logical cores

(“Hyper-Threading”), running at a clock of 1.6GHz and connected to 1GB RAM. The

board hosts an SDHC card-reader for non-volatile flash memory. In contrast to Atom

CPUs of the N2xx series, the card reader is not connected via USB, but directly to the

system controller hub (SCH) AscTec GmbH (2010). On the one hand this is beneficial

for the time synchronization of sensors (presented in section 3.1.4), as it means that

read/write operations on mass storage have no influence on the timing of transactions

on the USB. On the other hand, the SCH limits the maximum capacity of the SD

card to 8GB, even though the SDHC specification allows for capacities of up to 32GB.

Even when Using a class-10 micro-SDHC card, write-throughput it limited to less than

42

3.1 Hardware

(a) (b)

Figure 3.6: (a): AscTec CoreExpress Carrierboard (“AtomBoard”). (b): Mikrokopter
FlightCtrl ME 2.1. Images c©: (a) 2010 Ascending Technologies GmbH, (b) 2011
MikroKopter.de

3MB/s, forming the upper limit of data logging that can be practiced during flight.

The device’s BIOS is capable of booting from the attached SDHC card, after which

the Linux kernel recognizes it as a regular block device. Ubuntu 9.04 was preinstalled

on the board; over the course of this project, Ubuntu 10.10 to 13.10 were used, but

generally, any x86-based Linux distribution is suitable for the device as well as the

software created in this thesis. Eight USB ports are available, but some restrictions

apply:

• port 1 is permanently connected to an FTDI FT2232 serial-to-USB converter

chip, adding two serial ports to the AtomBoard’s interfaces.

• port 3 is not powered and can be configured to be either a client or a host port

in the BIOS.

• port 7 and 8 only support USB 2.0 devices, without backwards compatibility for

USB 1.1.

• port 8 is shared with the mini-PCIexpress socket - as only few extension cards

actually use the USB connections provided through the socket, this port is not

necessarily disabled when cards are installed.

Using these USB and serial ports as well as an Atheros Ath5k-based IEEE 802.11n

WiFi card in the mini-PCIexpress slot, the AtomBoard connects all devices on board

the vehicle and allows for fast wireless communication with the base station, with

reduced data rate even when the line-of-sight between both is obstructed.

3.1.3 Navigation System

For self-localization, the UAV is equipped with a Septentrio AsterX2i OEM commercial

navigation system. Conceptually, this device consists of three different modules, which

43

Chapter 3 Experimental Platform: Concept and Architecture

are presented in the following subsections.

A GNSS receiver

Global navigation satellite systems (GNSS) are used to determine the vehicle’s exact

position. Internally, all parts of the GPS infrastructure (control segment, space segment

and receivers) use the Earth-Centered Earth-Fixed (ECEF) coordinate system. For

reasons that are largely founded in history and usability, values are usually converted

to Longitude, Latitude and Altitude before being output to the user. Section 4.1.1 will

further elucidate on different coordinate reference systems employed in GNSS as well as

this thesis. For now, the term position shall be used without further qualification.

Generally, off-the-shelf GNSS receivers solve positions based on reception of the so-

called code-phase of the coarse acquisition (C/A) code emitted by space vehicles on

the L1 frequency band. In case of GPS, this signal is emitted on a single frequency

(1575.4MHz), while GLONASS satellites use a frequency of 1602MHz+(562.5KHz ∗

c), where c is the satellite’s channel number. GPS satellites generate a stream of

pseudo-random numbers (PRN), where the sequence of numbers depends only on the

satellite’s id (PRN code) and the time. Using the same algorithm, a receiver can

generate the same stream of numbers and compare it to the stream received from

that satellite. To determine the so-called pseudorange between a specific satellite and

itself, the receiver simply delays the generation of its own copy of pseudo-random

numbers until both streams are synchronized. The resulting delay is the time the

signal traveled through space, and, accounting for the speed of light, yields the pseudo-

distance between satellites and receiver. Given sufficient pseudoranges from different

satellites, the receiver’s position and clock can be computed.

Because the C/A code transmits data at a rate of 1.023 million bits/s, each bit amounts

to a spatial span of roughly

299, 792, 458 m/s

1.023 MBits/s
= 293.05 m (3.1)

GNSS receivers commonly achieve an alignment between both streams that is precise

to about 1-2% of a single bit width (corresponding to 3-6 meters). This explains the

upper bound to the precision with which positions are solved.

With the receiver usually being located at the surface of the earth, the signal has to

pass through earth’s athmosphere, where it is subjected to noise, dampening and other

influences: in the upper layers, the signal is slowed down based on the conductivity of

the ionosphere. This metric is named the ionosphere’s total electron content (TEC) and

it’s value is both very dynamic and strongly depends on solar activity. Later, the signal

is refracted in the troposphere, which is composed of a dry and a wet portion, with the

latter being rather difficult to model (van der Hoeven et al., 2002). Close to the ground,

a large part of the signal can also be reflected on local geometry before reaching the

44

3.1 Hardware

receiver’s antenna. The resulting effect is called multipath reception and can cause the

receiver to measure imprecise pseudoranges (decreasing positioning accuracy), or fail

altogether.

As a result, the positioning accuracy of single-frequency GNSS receivers is rarely better

than 5m SEP50 in practice, even when using space-based augmentation services (SBAS)

like WAAS or EGNOS, which are available only regionally. Clearly, these accuracies

are insufficient for the purposes of this project. For precise mapping of outdoor envi-

ronments, positioning errors must be limited to a range of few centimeters, requiring

an error-reduction of two orders of magnitude.

Since the beginning of the 1990s, GNSS positioning with centimeter-accuracy (even

millimeter-accuracy in favorable conditions) has become possible. This is an extremely

remarkable technological accomplishment, especially considering that GPS was never

designed to provide this accuracy in the first place. In summary, the main approaches

to reducing positioning-errors are as follows:

First, antenna properties like gain, multipath rejection and phase center stability are

critical to precise signal processing in the receiver: for precise GNSS surveys, receivers

(especially reference stations) are often connected to choke-ring antennas, which were

originally invented at NASA’s JPL. These are built on a ground plane that is optimized

to reject multipath reception by reducing antenna gain for directions below the hori-

zon, which also improves tracking of low-elevation satellites. Although the geometry of

the groundplane has been optimized since, groove depth and -distance must be sized

relative to the signal’s frequency, resulting in a large metal structure that can weigh up

to 10kg (see figure 3.8(a)). A widely used compromise are so-called pinwheel antennas

(shown in figure 3.8(b)); this type is much cheaper, smaller and features RF charac-

teristics close to its choke-ring counterpart. Pinwheel-antennas typically weigh from

little more than 100 grams (OEM versions without radome and mounting brackets) to

500 grams. Combining size and weight of either design with the additional require-

ment that GNSS antennas must be mounted with an unobstructed view of the sky

complicates the mechanical sensor-arrangement and considerably reduces flight-times

on a lightweight UAV with restricted payload capabilities. Thus, a helix-antenna was

used: in shape, these antennas closely resemble those used on GNSS satellites, but are

available in much smaller sizes. While the Maxtena M1227HCT-A (shown in figure

3.8(c)) does not reach the performance of aforementioned antennas in any discipline,

it proved capable of reliable GNSS reception - and weighs only 17 grams (see table

3.1).

Survey-grade GNSS receivers receive satellite-signals on L1 as well as on L2 frequencies

(1227.6 MHz). The major benefit of such dual-frequency receivers is that they receive

two signals on multiple frequencies from the same satellite. Because the impact of the

abovementioned ionospheric delay on a signal depends on its frequency, the delay can

be measured indirectly, and thus, be removed.

45

Chapter 3 Experimental Platform: Concept and Architecture

(a) (b) (c)

Figure 3.7: GNSS reference station components: (a): NovAtel pinwheel antenna, (b):
Septentrio AsteRx2e-HDC GNSS receiver (c): MOXA COM server. Images c©: (a) 2014
NovAtel Inc., (b) 2011 Septentrio nv, (c) 2012 MOXA Inc.

Survey-grade GNSS requires a reference station. Conceptually, this is another dual-

frequency GNSS receiver that operates at a precisely known position. After receiving

the constellation’s almanac and the satellites’ ephemerides, it computes the pseudor-

anges to all the received satellites. Since the receiver’s position is known, errors appear-

ing in the pseudorange measurements can be detected and transmitted to the nearby

GNSS rover. After subtracting the errors that appeared at the reference station, the

rovers position is solved much more precisely - relative to the reference station. This

transmission of differential corrections can either be done in real-time (named Real-

Time Kinematic GNSS) or in post-processing.

By far the largest reduction of positioning-errors stems from the creative exploitation

of GNSS signal’s properties: instead of just relying on the code-phase alignment to the

signal, survey-grade GNSS also performs carrier-phase measurements. The frequency

of the L1 carrier-phase is 1575.4MHz which equates to a wavelength of 19 cm, so a

phase-alignment with an error of 1% of the wavelength yields a precision of better than

2 millimeters. Unfortunately, while aligning to the carrier-phase is comparably simple,

the receiver has no information about which phase it has aligned to. Synchronizing

to the code-phase was one of the design goals of GPS and is aided by streams of

pseudo-random numbers that, for this reason, do not contain large windows of repeating

numbers. In contrast to this, there are no measurable differences between consecutive

phases of the carrier-signal, leaving the receiver in an ambiguous state. Because the

solution is now off by a full multiple of the wavelength, this problem is named the

integer ambiguity. Solving this problem (i.e., “fixing the ambiguity”) requires very

sophisticated signal analysis, which is the primary reason why it took decades from the

availability of GNSS signals to the availability of carrier-phase-based GNSS. Frei and

Beutler (1990) present one of the first working approaches to RTK-GNSS, while Kim

and Langley (2000) give a good overview of the years that followed. Nowadays, fixing

the ambiguity takes only seconds in favorable conditions and can even be done while

the receiver is moving (“On The Fly” ambiguity fixing).

46

3.1 Hardware

(a) (b) (c)

Figure 3.8: Different GNSS antenna designs: (a): Leica AR20 choke-ring antenna (�32cm
* 16cm height) with the choke rings in silver/gold and the antenna element in the center.
(b): OEM version of NovAtel pinwheel antenna (�13cm * 3cm height, without radome).
(c): Maxtena helix antenna (�3cm * 5cm height). Images c©: (a) 2014 Leica Geosystems
AG, (b) 2014 NovAtel Inc., (c) 2011 Maxtena Inc.

(a) (b)

Figure 3.9: (a): OEM version of Septentrio’s AsterX2i inertial navigation system. (b):
XSens MTI MEMS-grade inertial measurement unit. Images c©: (a) 2011 Septentrio nv,
(b) 2011 Xsens Technologies B.V.

The GNSS receiver used in the AsterX2i supports RTK-GNSS by receiving signals

from satellites of GPS and GLONASS constellations on L1 and L2 frequencies, solving

position, velocity and time at a rate of 10Hz.

A Septentrio AsteRx2e HDC dual-frequency GPS/GLONASS receiver (shown in figure

3.7(b)) is used as a reference station. Its antenna is mounted to a mast that is located

the roof of the highest building on campus, guaranteeing a permanently free view of

the sky.

47

Chapter 3 Experimental Platform: Concept and Architecture

B Inertial Measurement Unit

Inertial measurement units (IMUs) contain two kinds of sensors: accelerometers and

gyroscopes. Strictly speaking, most IMUs also contain thermometers; since these are

used only to correct the data sensed by the former, temperature-sensitive devices, they

will not be described in further detail.

Accelerometers measure accelerations, usually on a single axis. Internally, they use a

proof mass attached to a lever arm (that behaves like a spring), which is displaced

according to the accelerations experienced by the sensor. This architecture forces the

designer to compromise between sensitivity and input range by selecting suitable com-

binations of proof mass weight and spring constant. This displacement can be detected

indirectly by measuring the capacitance between structures attached to the lever arm

and other, fixed structures in close proximity. Accelerometers integrating this archi-

tecture in a microelectromechanical system (MEMS) are very small and comparably

cheap, but produce comparably noisy values. Similarly, servo-accelerometers also con-

tain hardware to sense the displacement of a ferromagnetic proof mass. However, this

output is not used to measure accelerations, but to power a coil until the mass is moved

back into its neutral position. The required current is proportional to the acceleration

experienced by the mass, leading to a less noisy signal that will exhibit less drift in

the integrated position. Combining three sensors that are oriented perpendicularly to

each other into a 3-axis accelerometer, accelerations can be sensed as a vector quantity.

The first integration of this vector over time yields a 3D-velocity, the second integra-

tion (velocity over time) returns 3D-displacement. Assuming that the accelerometer’s

bandwidth and sample rate satisfy those imposed by the Nyquist sampling criterion

for the body’s motion, the current position of the body can be reconstructed - as long

as the body is not rotated, only translated. As with every sensor, the measurements

of acceleration contain noise; double-integrating this noise into the object’s position

causes drift that - within few seconds - renders the derived position too imprecise for

mapping.

Because the UAV’s configuration space is six-dimensional, the IMU will be subjected to

rotations, which can be measured using gyroscopes. Single gyroscopes can be combined

into a 3D-gyroscope analogous to the accelerometers described above. There are two

different ways of measuring rotations that are in common use today: the first approach

detects rotation by measuring the coriolis force applied to a micromechanical mass,

similar in notion to MEMS accelerometers. Accordingly, the setup exhibits similar

characteristics in terms of price and accuracy. Far more precise (and expensive) than

MEMS rotation sensors are solid-state Sagnac interferometers: these are based on

coherent light being split and traveling in opposite directions through a ring-like path,

made of either fiber optic cables (the resulting sensor consequently being called a fiber-

optic gyro) or a mirror-setup (named ring-laser gyroscope). In both setups, both beams

exit the ring at the same position they were injected and are allowed to interfere with one

another. When the ring’s platform is rotated along the normal of the plane representing

48

3.1 Hardware

the light’s path, the relative phases of the beams will change, creating constructive or

destructive interference proportional to the angular velocity. Using a photo-diode, the

intensity of the resulting beam can be measured, delivering exceptionally precise, low-

noise measurements of angular velocity.

By combining accelerometers and gyroscopes into an inertial measurement unit and

fusing data of both sensor-triads, the unit’s position can be tracked even when it is

subjected to rotations. The characteristics of the resulting data make IMUs ideal for

short-term, high-frequency motion tracking.

An XSens MTI MEMS IMU (figure 3.9(b)) is used to collect inertial data on the

UAV. This specific IMU also contains an internal Kalman filter (“XSens Kalman Fil-

ter”, XKF-3) that can be used to compute a 3D orientation of the IMU in space. To

compensate for orientational drift, this filter also uses a built-in 3D magnetometer.

However, nearby electrical currents of up to 40A to each of the UAVs motors do not

provide a basis for precise analysis of the earth’s magnetic field. Since XKF-3 further

requires that accelerations due to translation of the IMU are zero on average, the filter

turns out to be unsuitable for application in a navigation system. For this reason, XKF-

3 is disabled and the IMU is setup to output temperature-corrected (but otherwise raw)

inertial data from accelerometers and gyroscopes.

The IMUs data sheet (Xsens Technologies B.V. (2009)) specifies a temperature range

of −20 to +55◦C. Its gyroscopes are limited to an input range of ±300◦/s and a

bandwidth of 40Hz, whereas the accelerometers have an input range of ±50m/s2 and

a bandwidth of 30Hz. The Nyquist theorem dictates that signals (representing the

platform’s motion) containing frequencies more than half these specified bandwidths

cannot be captured and reconstructed without aliasing effects causing loss of informa-

tion. Thus, undersampling this signal can result in inaccurate solutions in later stages

of the processing pipeline. On the other hand, although measurement rates of up to

512Hz are supported by sensor’s on-board circuitry, sampling with higher frequencies

than the specified bandwidth will not yield additional information. For this reason, the

INS reads angular velocities and accelerations at a rate of 50Hz.

C GNSS/Inertial Navigation System

The are three different approaches to fusing GNSS and IMU sensor data:

1. loose coupling: in this approach, GNSS data processing uses a separate Kalman

filter. Once GNSS-position, -velocity and -attitude solutions are determined,

these values are fed into a second Kalman filter, designed to fuse GNSS and IMU

data. This approach is the most simple to implement, as it conceptually keeps

both sensors separate as much as possible. It also is the most robust, because a

strongly drifting IMU can always be corrected and does not have a detrimental

impact on the GNSS solution.

49

Chapter 3 Experimental Platform: Concept and Architecture

2. tight coupling means that raw GNSS measurements are fed into the GNSS/IMU

integration filter. This increases the filter’s complexity considerably, but allows

for continued GNSS tracking when fewer than four satellites are available. On

the other hand, this requires the inertial data to be of higher quality than in

loose coupling applications, as low-quality IMU data can impact precision and

reliability of GNSS tracking.

3. deep coupling describes the tightest integration of both sensors: the IMU-based

velocity is used in the GNSS tracking loop, enabling the system to reacquire

signals much faster after a signal has been lost. While this approach strongly de-

pends on inertial data quality, it has proven very useful especially in environments

where GNSS signals are often lost due to obstructions.

The Septentrio AsterX2i fuses data from GNSS and IMU sensors using a loosely cou-

pling filter. Although the source of the code used in the INS itself is not public, it’s

control loop will likely run every 20ms, reading the PVT solution originating from the

GNSS receiver at it’s maximum rate of 10 Hz and the inertial measurements at 50

Hz. It is important to mention that data received from both sensors at the same time

does not guarantee that the underlying measurements were executed synchronously.

While GNSS measurements are inherently well timestamped, this is not true for data

digitized by the IMU, since it does not necessarily contain a precise clock. Unfortu-

nately, documentation of sensor time-synchronization procedures are proprietary to the

manufacturer.

Next, the data must be converted into a common coordinate reference system (which

usually matches that of the IMU). This process is straightforward, because the virtual

lever arm between IMU reference frame and antenna reference point is specified as part

of the configuration procedure after INS startup.

In a following step, the INS filters will derive synchronous position and attitude from

both datasets. Because of the low update rate of the GNSS receiver (instead of 10Hz,

20Hz is a common update rate nowadays), the filter is forced to rely on inertial data

for 4 consecutive iterations after having fused GNSS and IMU data. This means that

for the next 80 ms, accelerations are integrated twice to compute the distance traveled

since the last fused pose, whereas angular velocities are integrated once to derive the

vehicle’s updated orientation.

In an attempt to reduce the drift introduced in these intervals, the system also features

a so-called zero-velocity update (ZUPT). Using GNSS-derived velocity, it is able to

detect that the antenna is static: in this case, the knowledge about the system’s state

allows the filter to limit the error growth of the fused solution. Furthermore, one of the

80 pins in the INS connector can also be configured to serve as an input for external

zero-velocity update indications. While this is very useful in many applications (e.g.

ground-based robots are usually static when their drives are not powered), it obviously

is of no help in airborne applications.

50

3.1 Hardware

Table 3.2: Configurable intervals for position and orientation packets (SBF: INTPVAA-
GEOD) and the resulting sequence of (F)used and (I)ntegrated poses.

Interval Frequency t0 t1 t2 t3 t4 t5 t6 . . .

20 ms 50 Hz F I I I I F I . . .
40 ms 25 Hz F I I I I F I . . .
50 ms 20 Hz F I F I F I F . . .

100 ms 10 Hz F F F F F F F . . .

Using data of inaccurate poses for sensor fusion with the scanned range data is some-

what detrimental to mapping accuracy, as the spatial drift in the solved poses directly

translates to offsets in the point cloud. Much worse, when such poses are used for

flight-control, the spikes in acceleration (that result when a drifted position is being

corrected using GNSS measurements) can have disastrous effects when used in a flight

controller that contains a derivative component to correct for errors in position, or

similarly, computes its output values based on accelerations. For a more detailed de-

scription of the high-level flight controller used for motion control, please see section

4.4.

The INS can be configured to output a wide variety of measurements between intervals

of varying length. Legal intervals are 10, 20, 40, 50, 100, 200 and 500 milliseconds,

as well as longer intervals up to one hour. Given that sensor data is only retrieved

every 20ms, the shortest interval of 10ms is only useful for timing or debugging infor-

mation. Longer intervals are helpful when requesting configuration and system state

information (e.g. GNSS positioning mode or the age of the supplied differential cor-

rections), while shorter intervals are used to retrieve position and orientation packets.

When requesting these packets at less than the maximum rate of 50Hz, the phase of

the fused/integrated poses is adjusted within the constraints of the filter loop interval

of 50Hz: table 3.2 shows how the output is always configured to include as many fused

poses as possible.

After acquiring a GNSS PVT solution on startup, the INS performs a calibration. This

procedure lasts about 30 seconds, during which it is of paramount importance that

the UAV does not move. Most likely, the filter estimates the IMU’s biases at this

time.

Following this stage, the INS is capable of determining its own position and - assuming

it is static - roll and pitch angles. However, the heading of the platform remains

unsolved. Sagnac interferometer-based gyroscopes usually drift less than 15 degrees

per hour (earth’s angular velocity), so they are able to measure earth’s rotation and,

consequently, determine their own heading. This process is named static alignment and

is often the default alignment method when fiber-optic gyros are used. Even though

static alignment can simplify a navigation system’s initialization, it requires its vehicle

to remain completely still for a period of up to 30 minutes, sometimes necessitating

that the whole platform be rotated by e.g. 90 degrees multiple times in the process. In

51

Chapter 3 Experimental Platform: Concept and Architecture

some scenarios, platforms simply cannot be held static for the required periods of time,

making static alignment impossible. These include initialization on maritime vessels as

well as re-initialization during flight.

To solve the system’s heading after startup using MEMS-based IMUs, trajectories of

IMU and GNSS have to be aligned while the vehicle moves. This approach is known

as kinematic alignment and is conceptually supported by all IMUs. Using the Septen-

trio Asterx2i INS, kinematic alignment happens during the first seconds of flight, and

works best by moving forward in a straight line. After the heading has been determined

roughly (this state-change is indicated in a packet that is logged frequently), covariances

of the fused solution are minimized by flying curves and figure-eights, accelerating and

stopping. The covariances of the solved poses are also logged frequently, so that poses

of inferior accuracy are not used to fuse range data and consequently “pollute” the

point cloud. The duration of this phase depends on the desired covariance thresholds

and motions experienced by the INS, but usually takes less than 30 seconds. Given

sufficient satellite reception, the system’s position is solved to a precision of 5 centime-

ters in RTK fixed mode, while roll and pitch angles exhibit maximum errors of about

0.5◦. The precision of the heading angle depends on the amount of motion the vehicle

experienced in the preceding seconds, but usually converges to a maximum error of less

than 1.0◦.

The INS also offers two event-marker pins: these are electrical connections that can

be set low or high (LVTTL levels, 5V tolerant) using external circuitry. Depending

on their configuration, the pins will cause an event-packet to be generated when either

a rising or a falling edge is detected. The event-packet contains a field that indicates

on which pin the state-change was detected. Most importantly though, the packet

also contains a timestamp from the same GNSS-synchronized clock that is used to

timestamp the position and orientation packets. Here, the manufacturer guarantees a

maximum timing error of 20ns.

Altogether, the GNSS-receiver, inertial measurement unit, navigation system, -antenna,

breakout board, cables and case weigh just 184 grams.

3.1.4 LIDAR sensors

Initially, a single Hokuyo UTM-30lx laser range finder was mounted to the front arm

with its field of view aligned vertically (as depicted in figure 3.2(b)), and connected

to the aforementioned on-board computer. Its laser scanned a front-facing planar field

of view of 270◦, resulting in a 90◦blind spot in its back that aligned well with the

available field of view at that mounting position. To fully take advantage of this setup,

a flight controller was created to reach waypoints by pitching and rolling towards them,

while constantly yawing at the same time. This way, the scanner would have been

capable of scanning the ground below as well as obstacles around the UAV. While

this approach worked satisfactorily in simulation, the actual INS was not capable of

52

3.1 Hardware

Figure 3.10: Hokuyo UTM-30lx laser range scanner. Image c© 2008 Hokuyo Automatic
CO., Ltd.

delivering precise heading information by fusing the sensor trajectories of GNSS receiver

and IMU, because its proprietary filters were created under the assumption that the

vehicle would move mostly forward. Also, with LIDAR scanner and IMU mounted

directly to the boom, both were subjected to strong vibrations originating in the UAV’s

motors, possibly reducing the scanner’s life expectancy and adding noise to the data

recorded by the IMU.

For the second attempt, the laser scanner remained mounted to the vehicle’s forward

arm, but with its front side facing downwards and the blind spot directed upwards

(as shown in figure 3.3(b)). The flight controller was adapted to fly forward, while

yawing and rolling towards given waypoints. This resulted in precise attitude solutions

from the INS, but made detection of obstacles ahead of the vehicle difficult. The IMU

was moved to the vehicle’s center and installed using vibration dampeners. While

this reduced the noise in its readings considerably, it decoupled the laser scanner from

the IMU, resulting in a detrimental effect of unknown magnitude on the registration

accuracy. Because the scanner was mounted about 12cm towards the front of the UAV’s

geometric center, it also shifted the vehicle’s center of gravity towards the front motor.

Although the resulting bias would have been compensated by system’s low-level flight

controller automatically, it would have caused more stress for the respective motors and

propellers as well as an unbalanced heat production on the motor-controllers. Instead,

the other components (especially the battery) were shifted slightly in the opposite

direction, restoring the vehicle’s balance.

After the system was capable of creating point clouds in real-time, the focus shifted

53

Chapter 3 Experimental Platform: Concept and Architecture

�

Angular�Range�

Scan�Direction�

��� �

���� ������ �

us�Output�

Figure�2�

Tr�is�

(a)

�

1ms� 24ms�

Tr

Tr

us�Output�

Figure�2�

F�during�Malfun
(b)

Figure 3.11: (a): The field of view of the Hokuyo UTM-30lx laser scanner, seen from the
top. The 270◦horizontal FoV is sampled at 40Hz, with the ray rotating counterclockwise.
One rotation takes 25ms, of which 6,25ms are used for data processing and output. (b)
shows the temporal behavior of the SYNC signal. A falling edge indicates that the ray is at
the 0◦position in the rear, which can be exploited for time synchronization. Both images
reprinted from product’s specification sheet, c© 2008 Hokuyo Automatic CO., Ltd.

towards autonomous exploration: the high-level flight controller was programmed to

roughly orient the UAV towards the general direction of the next waypoint, then adjust

yaw and roll during the following approach. This behavior resulted in frequent changes

in direction, meaning that most of the geometry around the UAV was scanned by the

time the vehicle could have collided with it. However, this arrangement only worked

out most of the time and was thus deemed too unreliable to be entrusted with a task

as essential as collision avoidance. So the final setup (figure 3.4) was created in order

to accommodate a second, forward-looking laser scanner for better obstacle detection.

Both scanners are constantly operating during flight, with all recorded points being

transformed into the same point cloud. This not only allows for more reliable colli-

sion avoidance, but at the same time accelerates the scanning procedure substantially.

The physical arrangement was modified so that the comparably lightweight on-board

computer and INS were now installed above the UAV’s frame. At the same time, the

heavy combination of both laser scanners, IMU and battery (which together amount

to more than 40% of the platform’s total weight) were coupled into a sensor-module:

the base of this module is a carbon-fiber sandwich board (produced by placing a foam-

core in between two thin layers of carbon fiber pre-preg material), offering an extremely

lightweight and extremely stiff surface to mount the sensors. Due to the warp resistance

of the board and the close proximity between IMU and laser scanners, the orientational

sensor-alignment is far more precise compared to the previous setup. Even though the

high weight of the sensor module makes it inherently more tolerant against vibrations

induced from the outside, it was installed below the UAV’s center using four vibration

dampening rubber fasteners.

Each scanner delivers distance values of 1080 rays with 0.25◦angular resolution at a

rate of 40Hz and a range of up to 30 meters. According to Demski et al. (2013),

54

3.1 Hardware

the precision of measured distances depends on reflectivity and color of the sampled

material but generally shows relative errors of less than 1%. Interestingly, the scanner

additionally suffers from drift within the first 50 minutes of operation: after startup,

returned distances are up to 10mm shorter than ground truth.

Although every scan of 1080 rays contains a timestamp, it’s value is generated using

a local clock that is initialized to zero when the laser scanner is powered up. The

manufacturer describes methods of synchronizing clocks, relying on the assumption that

data is transferred on the USB with relatively low jitter. But because communication

is implemented using USB bulk transfer modes, no timing guarantees are given by the

USB specification. In effect, synchronization is precise only to a few milliseconds and

depends on bus utilization. A synchronization error of e.g. 5ms, a scanned distance of

25m and an angular vehicle-velocity of 100◦/s leads to an angular error of 0.5◦, and, by

solving the length of the third leg of the resulting isosceles triangle, leads to a positional

error of about 0.22m for that point. These numbers also serve as both an example for

the imprecisions induced by the INS error specifications of 1.0 and 0.5 degrees for yaw,

pitch and roll as well as the reason why using LIDAR sensors with extended range is

not always helpful.

To provide a more precise time synchronization, the scanner also features a SYNC-

signal on a dedicated pin. It is pulled low for 1 millisecond whenever the laser traverses

the scanner’s rear position (shown in figure 3.11). This signal is connected from each

of the scanners to one of the event-in pins of the GNSS receiver. After configuring

both pins to emit a timestamp on falling edges, the beginning and end of each scan

is timestamped with nanosecond-precision. Because the timestamp in event-, position-

and orientation-packets is specified using the same timescale, almost perfect temporal

data-association can be achieved. In effect, every single ray can be temporally asso-

ciated to the received poses, allowing precise interpolation of position and orientation

to the moment a range was scanned. In our experience, the advantage of extremely

precise timing measurements for highly dynamic mobile platforms (even in temporary

absence of satellite coverage) is often overlooked.

In total, both installed scanners cause 80 falling edges and thus, 80 event-packets to

be generated every second. According to the manual, the INS is capable of processing

up to four events on all pins within each 50ms interval, as long as the minimum time

between any two events exceeds 5ms. Even though the described setup adheres to

these limitations, the generation of this many packets does affect the CPU load of the

INS, which is a critical parameter and must be kept below a vendor-specified threshold.

When further INS output is enabled (e.g. for diagnostic purposes), higher CPU load can

be a reason for the INS being unable to reach precise positioning modes or successfully

complete kinematic alignment. To alleviate this problem, a 74HC4040 binary counter

was installed between each laser scanner and the respective event-in pin. By attaching

the SYNC signal to CLOCK and the event-in pin to one of the counter’s parallel output

pins, the SYNC signal’s frequency can be divided by 2 (pin Q1) to 4096 (pin Q12).

55

Chapter 3 Experimental Platform: Concept and Architecture

CP

MR

FF
1

Q

T

RD

Q0

Q

FF
2

Q

T

RD

Q1

Q

FF
7

Q

T

RD

Q6

Q

FF
8

Q

T

RD

Q7

Q

FF
9

Q

T

RD

Q8

Q

FF
10

Q

T

RD

Q9

Q

FF
11

Q

T

RD

Q10

Q

FF
12

Q

T

RD

Q11

Q

FF
3

Q

T

RD

Q2

Q

FF
4

Q

T

RD

Q3

Q

FF
5

Q

T

RD

Q4

Q

FF
6

Q

T

RD

Q5

Q

(a)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
CP input

MR input

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

(b)

Figure 3.12: (a): Logic diagram of the custom circuit included to lower the inertial nav-
igation system’s CPU load through frequency-division of the laser scanner’s SYNC-signal
(connected to CP). Subfigure (b) shows selectable frequency divisors and corresponding
timing. Reprinted from Philips 74HC4040 datasheet, c© 2005 Philips Electronics N.V.

This circuitry enables registration of the scanner’s rotational phase while conserving

the limited computational resources of the INS’ embedded processor. Please see figure

3.12 for a detailed schematic of the setup.

3.1.5 Electromagnetic interference

Flight controller, laser scanner and especially the on-board computer emit electromag-

netic interference on the L1 (1575.42 MHz) and especially L2 (1227.6 MHz) bands,

which is picked up by the GNSS antenna, often causing the GNSS signal-to-noise ratios

to drop below acceptable thresholds. This forces the INS to rely on double-integrated

IMU sensor readings for the duration of GNSS dropouts, introducing considerable drift

into the solutions of position and attitude.

Determining electromagnetic interference as the reason for unreliable GNSS reception

and the AtomBoard as the major source of this interference took up a considerable

amount of time, as many components are required for a GNSS rover to reliably solve

a position in RTK-fixed mode, and failure in a single component can be the cause for

floating ambiguities to remain unsolved:

• the GNSS reference station is required to be correctly configured to emit dif-

ferential corrections. The station’s own position, the data format of corrections

(RTCM2, RTCM3, CMR, CMR+ etc.), the emitted messages (different for every

data format) and their intervals depend on the feature-set of the rover as well as

the datarate and latency of the communication channel between reference station

and rover.

• as explained in section 3.1.3, compromises had to be made regarding the GNSS

antenna. Using a helix-antenna that cannot support accuracies as high as its

56

3.2 Software

survey-grade counterpart increased the chances that solving the carrier-phase

ambiguities on the rover fails.

• a sufficiently large intersecting set of satellites received by both reference station

and rover. Limitations in the rover’s firmware reduce this set even further, as

fixing carrier-phase ambiguities is only supported for GPS signals, while signals

from the GLONASS constellation are only drawn into a pre-established fixed

mode solution for increased robustness. Of course, geometry obstructing a clear

view of the sky (“local horizon” in surveyor parlance) must also be considered

and can make GNSS mission planning mandatory.

Because the department of computer science currently has no access to the equipment

required for better diagnosis of the interferences, the problem was rectified by wrapping

all sources of interference in aluminum foil. Wires to and from the on-board computer

were also found to act as antennas emitting further interferences, which was fixed by

running the affected cables through ferrite rings. As a result, only small parts of

the interferences remain, as large parts of the laser scanner’s surface had to remained

unshielded for obvious reasons. Moving the GNSS antenna upwards and away from the

scanner has further reduced the effect of this problem so much that GNSS reception

has become reliable. On the downside, the thermal insulation caused by the added

shielding has imposed the need to monitor temperatures of on-board computer and

motor controllers during flight.

3.2 Software

During development, a custom software stack was created, consisting of three main

packages: a simulator, a base station and a rover program to run on the UAV. Because

all algorithms must run in real-time and some parts (like the high-level flight controller)

are run on rather constrained embedded hardware, all software is implemented using

compiled languages, specifically C++ for software implemented on CPUs and CUDA

for algorithms implemented on NVIDIA GPUs.

The software architecture was conceived and first implemented towards the end of 2009.

Today, the Robot Operating System (“ROS”) is commonly used to implement complex

software architectures in robotics, as it offers a robust framework for message passing,

software development, maintenance and, most importantly, reusability of other author’s

code. However, ROS saw its first release on January the 22nd of 2010 and became more

widely known by the end of that year. It is built on the idea of loosely-coupled nodes

running in separate processes, exchanging information in well-defined formats using

so-called topics, which use TCP/IP connections for data transport. The resulting

advantage is that nodes can be deployed in distributed fashion, as long as the hosting

machines are connected in a network. On the downside, when data is sent from one

node to another, it has to be serialized, sent over the network (or the loopback device

57

Chapter 3 Experimental Platform: Concept and Architecture

when both nodes reside on the same host) and unserialized. When small records (e.g.

position and orientation) are exchanged at low rates, this overhead remains negligible

even on most embedded hardware. But for data of larger size, e.g. laser scans that

are emitted at higher frequencies, this marshaling incurs considerable cost compared to

a simple in-process exchange of pointers. Other techniques like buffer-sharing, which

is intensely used in the base station for GPU computing and visualization, cannot be

facilitated by ROS with reasonable effort. The aforementioned overhead and other

design problems have lead to the inception of other robotics-focused programming

frameworks like MIRA (introduced in Einhorn et al. (2012)) as well as some attempts

of solving some of these problems in ROS, e.g. by the use of nodelets.

However, because hardware requirements of this project were largely unknown during

the earlier stages of development – and the hardware had already been applied for – it

was decided to employ a custom solution that could be better adapted to work around

bottlenecks in the given architecture. This solution is composed of three programs,

which are introduced in the following sections.

3.2.1 Simulator

The simulator (see figure 3.14) was implemented first in order to test how different

scanner setups and flight controller implementations affect the speed and quality of

mapping. Technically, it employs Qt for the user interface and network modules, the

Bullet library for physics simulation, OpenGL for visualization and Ogre3D for a 3D

scene graph, material management and model loading.

A configuration dialog allows the user to quickly define environmental conditions such

as wind, as well as various vehicle setups, including different batteries and unlimited

numbers of arbitrarily oriented laser scanners and cameras.

A LIDAR sensors

The range readings of the simulated laser scanners are implemented using Ogre3D’s

RaySceneQuery class. Queries derived from this class quickly return the first entity

whose axis-aligned bounding box (AABB) collides with a given ray. In a next step, the

triangles of a colliding entity’s mesh are iterated to find the colliding triangle closest

to the ray’s origin. In case no collision is detected (because the ray only traverses the

entity’s bound box, but not its mesh), the next colliding entity is determined. When

using the lightweight listener interface provided by RaySceneQueryListener, further

collisions with entities are only determined when no collisions with the mesh were

detected. Using this technique and the entity’s materials, even simulation of LIDAR

sensors featuring multiple returns and waveform digitization can be realized.

The importance of efficient ray scene queries becomes obvious when simulating a vehicle

58

3.2 Software

setup with two Hokuyo UTM-30lx laser scanners as shown in figure 3.4(b): in real-time,

two scanners each sample their field of view with a frequency of 40Hz, with each sweep

requiring a minimum of 1080 queries. In total, this results in at least

2 scanners ∗ 40
scans

s
∗ 270

degrees

scan
∗ 4

ranges

degree
= 86400

ranges

s

If a ray only traverses the first colliding entity’s AABB, but not it’s mesh, further ray

scene queries are required. As a first optimization, ray scene queries can be accelerated

by reducing the spatial search space through octree-based scene managers. After a

second laser scanner was added to the real platform, the LIDAR-simulation was updated

to perform scene queries and collision detection between triangles and rays in threads

specifically allocated for every instanced laser scanner. Aside from the vehicle itself,

the scene’s geometry is rarely updated, so sharing of scene geometry between threads is

uncomplicated and does not require mutex locks. In practice, when simulating multiple

scanners, the operating system’s scheduler assigns each scanner’s thread a separate CPU

core even without manually specifying thread affinity, allowing the simulation speed to

scale favorably with both clock speed and the number of available cores.

In order to simulate realistic range readings, every ray’s orientation is offset on yaw,

pitch and roll using a normal distribution using a Mersenne twister pseudo-random

number generator (PRNG). The computed distance to the ray’s first collision with

a triangle is also overlaid using a normal distribution with the standard deviation

depending on the computed range, similar to the specifications of the Hokuyo UTM-

30lx laser scanner.

B Motion Control

For meaningful tests of motion control, both low-level and high-level controllers had to

be implemented in the simulator. One of the preconditions to simulating realistic flight

behavior and battery discharge is a mapping of current vs. thrust of the used motors.

Such a mapping was determined for the UAV’s motors (Robbe ROXXY 2827-35) by

measuring and is publicly available at Mikrokopter (2013) and reprinted in table 3.3.

This data was used to generate fitting function 3.2. Converted into a method in C++

code, motor-speeds are first mapped to thrust, then fed into the physics simulation

engine.

f = (current 0.3 +
current

135
)/14.0 (3.2)

The low-level controller present in the FlightCtrl board is a simple PID controller

accepting setpoints for attitude angles (roll and pitch), angular velocity (yaw) and

thrust. The individual gains were not directly copied from the UAV, but tuned until

the simulated UAV behaved similarly to the real one in flight. Exactly like the real UAV,

59

Chapter 3 Experimental Platform: Concept and Architecture

Table 3.3: Current vs. thrust for the Robbe ROXXY 2827-35

Current
(mA)

Thrust
(g)

Thrust
(N)

0 0 0
500 100 1.02

1000 172 1.75
1500 242 2.47
2000 309 3.15
2500 364 3.71
3000 412 4.20
3500 440 4.49
4000 495 5.05
4500 530 5.40
5000 566 5.77
5500 620 6.32
6000 640 6.52
7000 700 7.14
8000 770 7.85
9000 800 8.15

10000 860 8.77

the setpoints can be defined either using a manual control method (the remote control

is replaced with a joystick in simulation) or by the high-level flight controller.

The high-level flight controller’s inputs are the current time, vehicle position, orien-

tation and the position of the next two waypoints. Using this data, it can compute

the vehicle’s velocity and is responsible for generating setpoints for the low-level flight

controller appropriate to reach the first given waypoint.

When operating in outdoor environments, the UAV is constantly exposed to wind. To

better understand the effects of wind on airborne platforms, a dataset recorded by

Lange and Brümmer (2010) at a local weather research institute was analyzed. The

weather mast is about 300m high and collects wind velocity and direction at heights of

10, 50, 110, 175, 250 and 280 meters above gound level. By design, simple mechanical

cup anemometers suffer from a low measurement bandwidth, induced by their rotary

inertia. To avoid these limitations, ultrasonic anemometers were employed, recording

three-dimensional vectors of air-velocity at a rate of 10Hz. Although the given data

only spans a single day, several conclusions were drawn from it’s visualization (see figure

3.15):

• average wind velocity increases with height above ground.

• average wind velocity strongly depends on the time of day.

• wind direction is most constant at higher altitudes and much more variable at

lower heights.

60

3.2 Software

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

T
h
ru
st

(N
)

Current (A)

Measured
Approximated

Figure 3.13: A graph showing the current vs. thrust on a Robbe ROXXY 2827-35 motor
with 10 inch EPP propellers.

• wind direction is almost constant during most of the day, but can change greatly

within an hour.

Given that the laser scanner’s range limits the UAV’s service ceiling to an altitude

of about 30m, only wind data from the sensors at 10m height was integrated into

simulation. As a result, enabling wind in the simulator’s configuration exposes the

high-level flight controller to realistic drift, gusts and turbulences, which brought about

further optimizations to the controller’s gains.

During this part of development, the availability of a simulator was extremely valuable,

as it saved both time and physical damage to the UAV. Only simulation allows test-

ing in predefined and repeatable conditions, which are very important for fine-tuning

controller output. For debugging, the simulator’s ability to run the simulation much

slower than real-time has also proven to be very helpful.

3.2.2 Base Station

Implementation of the base station started shortly after that of the simulator. The

program is meant to run on a computer in the field, which is monitored by an operator

during all phases of flight. Because it runs on hardware offering far more computational

resources than those available on-board the UAV, it hosts almost all of the algorithms

presented in the following chapters. As a result, the base station is the most complex

program, making use of the Qt library for its user interface, networking modules and

serial port management, OpenGL 4 core for visualization, NVIDIA CUDA for GPU

computing, DevIL for texture and assimp for 3D model loading as well as SimpleDi-

61

Chapter 3 Experimental Platform: Concept and Architecture

Figure 3.14: Screenshot of the simulation environment. Simulation speed can vary from
a minimum of 0.01x to about 10x real-time, the UAV can be controlled manually via
joystick as well as autonomously using a custom high-level flight-controller that approaches
generated waypoints.

62

3.2 Software

Figure 3.15: Wind data from Lange and Brümmer (2010) for more realistic simulation
and tests of the flight controller.

rectMedia for audio output. The base station implements the same communication

protocol as both the simulator and the rover programs, so it can connect to both,

operating on simulated or real data (see figure 3.16).

Figure 3.17 shows a screenshot of the base station replaying a previously recorded flight.

The central user-interface component shows the vehicle position and orientation, as well

as the growing point cloud in a live 3D visualization. On the left, the currently orbiting

satellites of GPS, Glonass and Galileo constellations are displayed in a list and a so-

called sky plot. The right hand side informs the operator of the system’s state, which

consists of flight-time and battery voltage, state of the high-level motion controller,

WiFi reception strength, GNSS reception quality, GNSS/inertial fusion status, age of

Figure 3.16: Communication between the main software modules. The base station con-
nects to either the rover (UAV) or a simulator, permitting tests of the employed algorithms
in simulation before they are tested on the UAV.

63

Chapter 3 Experimental Platform: Concept and Architecture

differential corrections and others. Just below the status fields, a list shows the currently

queued waypoints and allows their manual addition and removal. The bottom row

contains a window with log messages on the left, as well as controls for log-file replay

on the right.

64

3
.2

S
o
f
t
w
a
r
e

Figure 3.17: Screenshot of the base station program, running on a notebook computer in the field. The point cloud, streamed in real-time
from the vehicle, is displayed in the center. Satellite positions are shown on the left, log messages in the bottom view. Status of vehicle, flight
planner, and navigation system are shown on the right. Waypoint generation options are located in a separate window on the right.

65

Chapter 3 Experimental Platform: Concept and Architecture

In terms of functionality, the following modules are hosted in the base station:

As explained in detail in section 3.1.3, differential correction data has to be transmitted

from the GNSS reference station to the rover for it to solve it’s position with centimeter-

level accuracy. One module is responsible for connecting to the GNSS reference station

using a separate serial connection or via TCP over a 2G or 3G cellular data network.

This connection will forward incoming data (from about 0.5 to 3 kb/s, depending on

the number of GNSS constellations supported and thus, satellites observed) to the rover

program using the protocol specified in table 3.5.

For reasons explained in more detail in the following chapter, two point clouds are

managed on the ground: a dense cloud is used for visualization and later surface re-

construction, while a sparse version of the cloud is managed for path planning and

obstacle avoidance. Triggered by a timer, incoming points are inserted into the dense

cloud, which is then slightly downsampled to remove redundant points. Once this pro-

cess completes, the remaining new points are copied into the sparse cloud, which is

then downsampled further, building the data structure that backs all following flight

planning algorithms.

Whenever the operator allows the vehicle to fly autonomously, but no waypoints are

present, they must be computed: the next-best-view algorithm is started to find gaps

in the point cloud. Honoring a safety margin around all obstacles in the point cloud,

these gaps are then converted into reachable waypoints and ordered into the shortest

possible path. The sequence of steps completes with the base station sending the

ordered list of waypoints back to the rover. During flight, incoming points are constantly

appended to both point clouds and used to check that the remaining path is still safely

traversable. If not, the rover is commanded to clear the list of waypoints, forcing its

motion controller to switch to hover-mode. While the UAV hovers, a new collision-free

path is planned.

Lastly, the base station can open log-files created by the rover for later replay, greatly

improving post-flight visualization, validation and debugging.

3.2.3 Rover

The rover program was created last. When the embedded x86 computer (described in

section 3.1.2) starts up, the Linux system init daemon starts the program automatically.

Hostapd is also launched and sets the WiFi card into master mode, creating an access

point that the base station notebook can connect to. Rover then listens for incoming

TCP connections from the base station and opens the virtual serial ports provided by

the USB connections to both laser scanners, the navigation system and the low-level

flight-controller.

On startup, rover initializes the GNSS/inertial navigation system, configuring options

required for time synchronization with the laser scanners or setting the lever arm be-

66

3.2 Software

tween IMU and antenna reference point. Logdata is requested at different intervals and

kinematic alignment is started.

Once precise time has been determined by the GNSS receiver, it is synchronized to the

host clock. After this, the scanner’s sync signal and the resulting event-logs can be

used to correctly reference LIDAR and GNSS time.

As soon as kinematic alignment is complete and the navigation system solves time,

position and attitude precisely, a submodule fuses data from all sensors in real-time,

creating the point cloud that is streamed to the base station.

The same high-level flight-controller used in the simulator is also compiled into the

rover. Using the connection to the FlightCtrl-board on the Mikrokopter, it is constantly

aware of the flight-state selected by the pilot (explained in detail in section 4.4). When

in autonomous mode, the controller computes setpoints for yaw, pitch, roll and thrust

to reach the next waypoint, and emits these values to FlightCtrl’s low-level controller

at 10Hz. For later analysis and debugging, all sensor data and generated outputs from

the high-level motion-controller are logged to disk.

A Data Logging

When airborne, the vehicle spends the largest part of the consumed energy to counter

the acceleration exerted by gravity and most of its operational time in configurations

where halting the drives would cause extensive damage to the platform. This means

that in case of problems during flight, the system cannot be halted using common

mechanisms like emergency-stop switches.

Even though the operator can instantly regain manual control over the UAVs motion by

toggling a switch on the remote control, experience in the field has shown that pilots are

typically unable to respond to unexpected, critical flight situations in a timely manner.

In the rare cases that motion control is overridden before the UAV collides with either

the ground or an obstacle, the operator must then estimate the UAV’s three-dimensional

orientation and velocity and mentally align to these vectors as a prerequisite to issuing

sensible control commands. As a general rule, the resulting control commands often

let the vehicle overshoot into configurations that are even more dangerous than the

ones that caused the operator to override autonomous motion control in the first place.

Not only does this cause the same or even worse degrees of damage, it also means that

the reaction and effects of the now-deactivated flight-controller to this otherwise rare

flight-state will remain unknown. In other words, after realizing that the UAV has

entered a configuration with dim prospects of survival, the pilot may elect to let the

UAV complete its crash. By doing so, it becomes possible to diagnose the reason why

such a state was reached as well as the reason why the flight controller remained unable

to recover the UAV.

Minimizing the incidence of critical flight states and crashes requires regular mainte-

67

Chapter 3 Experimental Platform: Concept and Architecture

nance of the hardware platform. On the software side, two strategies proved particularly

important: first, new flight control algorithms were thoroughly tested in simulation, de-

tecting misbehaviour that wasn’t obvious during design and programming. After those

tests were successful, the second strategy was the implementation of extensive logging.

Being able to reconstruct the system’s detailed state is of utmost importance to ensure

that after problems manifest during flight, they can be diagnosed and fixed correctly.

Less critical to safety, but also important for offline optimization and data analysis is

logging of all LIDAR sensor data.

Table 3.4 shows the data being logged during flight, along with the required throughput

of the underlying data storage. The latter is located on an SD-card, whose interface

is connected to the on-board computer’s system controller hub. This configuration

allows higher throughput and lower latency compared to a connection via USB, but

does not prevent problematic behavior when the interface’s throughput is reached.

When data is written to plain log files using standard POSIX write() semantics, the

kernel of the embedded Linux system first buffers the data, then flushes those buffers

non-deterministically within a subsequent write()-call. This specific call blocks the

calling thread until all data is flushed, which lasted up to 300ms during experimen-

tal trials. This obviously conflicts with the real-time requirements of the high-level

flight-controller running on the same system. In the end, the problem was solved by

implementing threaded logging using mutex locks and buffer swapping.

3.2.4 Wireless Communication

The UAV’s computational resources are too constrained to host all of the required algo-

rithms, so high-level planning and safety features were implemented in the base station.

This necessitates a fast and reliable connection between rover and base. As of 2013,

German law demands that a line-of-sight between vehicle and both operator and ground

station must be maintained at all times. Although this constraint does not guarantee

the first Fresnel-zone between the two stations to be unoccupied, it does allow us-

ing common off-the-shelf IEEE 802.11 (WiFi) equipment for communication instead of

more specialized wireless communication devices operating in lower frequency spectra.

Using a 3x3 MIMO spatial multiplexing setup to increase spectral efficiency, the net

TCP/IP data throughput in areas with low WiFi-saturation reaches 3.5 Mb/s.

Ascending the OSI model, layer 2 was first devised to employ an adhoc-connection

between rover and base in order to facilitate small overhead from infrastructure and

encryption as well as fast reconnections. In practice, it turned out that even though

this mode of operation is officially standardized in IEEE 802.11, it is seldomly used,

untested and thus, unreliable in most driver/chipset combinations. Instead, the rover

was configured to act as a common wireless access point (AP) in the 2.4GHz band,

with the base connecting as a regular wireless station (STA). Although it might at first

seem intuitive to swap the roles of base and rover, the ability to manually reconnect

68

3.2 Software

Table 3.4: An overview of data being logged during flight.

Data Description Frequency
(Hz)

Datarate
(kb/s)

INS
commands

ASCII commands sent to the INS for
initialization before and configuration
during flight.

- -

INS pose Current position, velocity and attitude.
See Septentrio (2012), IntPVAAGeod
block

20 1.2 kb/s

INS status Mean differential correction age,
receiver’s time and CPU load, orienta-
tion covariances, external events and
other data, depending on configura-
tion.

1 5 kb/s

IMU
raw
values

Raw IMU data for vibration and
damping analysis. See Septentrio
(2012), ExtSensorMeas block

50 3.6 kb/s

GNSS
reception
status

SiS1 reception status and complex
baseband samples for electromagnetic
interference analysis. See Septentrio
(2012), BBSamples block

2 120 kb/s

Differential
corrections

Differential corrections required for
real-time kinematic GNSS.

1 3 kb/s

Laser
scanner
data

Distance to reflector of 1080 rays,
specified as 16bit unsigned integer. Up
to 86.4kb/s per scanner.

40 172.8 kb/s

Flight
controller
data

400 bytes containing information about
a single controller iteration. Consists of
timestamp, PID-controller gains, input
and output values, the resulting motion
command (thrust/yaw/pitch/roll), the
flightstate (-restriction), trajectory-
start and -goal, hover-position, last
known pose and height over ground as
determined by LIDAR.

10 4.0 kb/s

69

Chapter 3 Experimental Platform: Concept and Architecture

the base to the rover during flight has proven much better than waiting for the rover

to reconnect after realizing that the connection is lost.

A simple TCP/IP-based application-layer protocol was designed, with the rover pro-

gram and simulator acting as a server and accepting connections from the base station.

The protocol implements streaming of scanned points to the base station and allows

exchange of other information. See table 3.5 for a complete listing.

70

3.2 Software

Table 3.5: The TCP/IP-based protocol for communication between rover and base.

Message Direction Description

UAV status Base ← Rover battery voltage, motion-controller state,
air pressure etc.

INS status Base ← Rover number of visible/usable satellites, po-
sitioning mode, integration mode, CPU
load, age of differential corrections, solu-
tion covariances etc.

differential
corrections

Base → Rover differential correction data for RTK-
GNSS in RTCMv3 format.

lidar points Base ← Rover points from one scanner’s sweep in
float4 format (x/y/z/w), where the w-
component indicates the squared distance
between scanner and point.

pose Base ← Rover the UAV’s current position and attitude

controller gains Base → Rover sets PID gains of the high-level motion
controller

controller gains Base ← Rover notification that the high-level motion
controller has changed the gains (due to
a request from the base station)

waypoint reached Base ← Rover notification that the UAV has reached
the next waypoint

waypointlist Base → Rover a list of generated waypoints, to be
navigated by the UAV

flightstate Base ← Rover a new flight state from motion controller
due to changed waypoint availability or
flight-state restriction

flightstate
restriction

Base ← Rover flight-state restriction has changed (be-
cause the pilot actuated the switch on the
remote control)

flightcontroller
values

Base ← Rover new debug-values from the high-level
motion controller, visualized in base
station

scanner state Base → Rover enables/disables the on-board laser scan-
ners

logmessage Base ← Rover a message from the UAV, to be displayed
in base station user interface

ping Base ↔ Rover used to test connectivity

71

Chapter 4

Experimental Platform: Theory and

Methods

The previous chapter described the engineering and development necessary to construct

an experimental airborne platform capable of autonomous exploration. After testing

communication, maneuverability, endurance and point-cloud capture in the field using

manual remote control had validated the UAV’s operational readiness, work related

to hardware design and engineering phased out slowly, with optimization, repair and

maintenance remaining the only regular tasks in this arena.

The next phase of work was focused on the estimation, planning and control approaches

and algorithms necessary to actually implement autonomous exploration in software.

As discussed in chapter 2, existing approaches existed for some functionality, but had

to be ported to execute on a graphics card. In other areas, like generation of next-

best-views, there was no algorithm that promised satisfactory performance even on

GPUs, so a new approach was invented, tested in a proof-of-concept implementation,

and ported to the GPU. The following sections describe the algorithms needed to reach

goals 3, 4 and 5 as defined on page 6.

4.1 Georeferencing Measurements

Because mapping is such an important skill in autonomous robotics, research in this

area has been intense, and as chapter 2 has shown, impressive results have ensued

from these efforts. It is interesting to note, however, that almost all of the contribu-

tions discussed have produced maps that are valid only in the robot’s local coordinate

reference system (CRS). Since a coherent map is sufficient for localization and navi-

gation within its bounds, research in this field rarely looks beyond local correctness.

Even multi-robot mapping approaches - which require a “global” coordinate system for

73

Chapter 4 Experimental Platform: Theory and Methods

registration of sub-maps - mostly employ cartesian coordinate systems originating in

arbitrary positions on earth’s surface.

Inherent to the operating principles of global navigation satellite systems, a precise and

globally unique position relative to the earth’s surface is solved. The remaining parts

of this section discuss how this information can be used to produce georeferenced data.

Georeferenced maps, which are a part of this thesis’ results, fall into the domains of

both geodesy and robotics.

4.1.1 Spatial Reference Systems

Due to the long history of and different requirements in geodesy, many different Spatial

Reference Systems (SRS) (or Coordinate Reference Systems, CRS) have been invented

and employed. In this thesis’ context, SRS are used to unambiguously describe positions

relative to the surface of the earth.

The most fundamental classification of SRS is based on the property of projection:

map projection is the process of transforming coordinates given in 3D cartesian or

polar format into locations on a plane. After projection, a 2D or 3D cartesian CRS can

be placed on the resulting plane, creating a projected coordinate system that better

lends itself to interpretation by humans. However, all representations of the complex-

shaped earth on a plane (i.e., “map”) introduce distortions of different kinds, making

map-projection a science in itself. Maps can be optimized to preserve true direction,

local shapes, area, distance and many other properties, giving rise to countless projected

SRS. Depending on the shape of the developable surface used in projection (most often

cylinders, cones or planes), only small regions of earth are represented with relatively

small errors, while other parts can become heavily distorted.

For this reason, precise measurements and computations are most-often executed in

unprojected SRS. Interpretation of the produced data by humans, on the other hand,

almost always necessitates map projection. As a consequence, using projected SRS,

unprojected SRS or a combination of both can be required.

The following paragraphs shall introduce the different coordinate system that are

needed to create georeferenced maps.

A Geodetic Spatial Reference Systems

The geodetic SRS is probably the most well-known reference system for locating objects

close to the surface of earth. It is a polar coordinate system where locations are specified

using latitude φ, longitude λ and height h (detailed in figure 4.1(a)). It is often neglected

that a triple of these values alone still allows room for interpretation.

In geodesic parlance, the information required to interpret unique and globally consis-

tent positions from aforementioned data is called a “geodetic datum”, which defines

74

4.1 Georeferencing Measurements

(a)

A ϕ´ geocentric latitude

Φ astronomic latitude

 (along local gravity)

ϕ geodetic/geographic latitude

 (along ellipsoid normal)

ϕΦϕ´

(b)

Figure 4.1: (a): Terms and conventions of the geodetic spatial reference system, reprinted
from Schuh and Kutterer (2013). (b) illustrates the difference between geocentric, astro-
nomic and geodetic/geographic latitudes using a highly exaggerated geoid and flattening
of the reference ellipsoid.

the coordinate system and additional conventions for data format and processing. It

consists of:

• the origin of the SRS

• the orientation of the SRS

• a gravitational model

• a model of the shape of the earth

The emergence of ever more precise surveys of planet earth have spawned over one

hundred such geodetic datums. Today, the datum used in GPS is the “World Geodetic

System 1984” (WGS84), which was defined in 1987 based on data collected through

Doppler satellite surveying. Over the course of the last few decades, it has displaced

most other datums that were older or used only regionally. The positional offset that

arises when coordinates given in reference to one datum are interpreted using another

datum is called “datum shift”, and can amount to several hundred meters.

The origin of the WGS84 datum is meant to coincide with earth’s center of gravity, first

established indirectly by observing satellite orbits using satellite laser ranging. Accord-

ing to Lemoine et al. (1998a), the positional error in alignment to the center of gravity

of earth (including the mass of the atmosphere) is considered to be in the sub-decimeter

range. On several occasions, WGS84 was updated to reflect more precise knowledge of

earth’s geometry due to more advanced measurement instrumentation: in 1994, GPS

measurements were used to enhance the datum’s precision, whereas in 1996, it was

better aligned with the International Earth Rotation and Reference Systems Service

(IERS) reference frame ITRF 94. Because these changes coincided with the GPS-weeks

730 and 843, these datum’s fully qualified names are “WGS84 (G730)” and “WGS84

(G843)”, respectively. Nowadays, origin, orientation and scale of WGS84 is determined

relative to a world-wide network of NAVSTAR/GPS tracking stations, justifying the

need for precise information about plate tectonics and continental drift.

75

Chapter 4 Experimental Platform: Theory and Methods

Topographic Surface

Geoid SurfaceEllipsoid Surface

Ocean

Geoid

Undulation

Figure 4.2: Heights can be specified relative to different surfaces, also referred to as
the vertical datum. Shown here are the datum’s ellipsoid, the geoid and the topographic
surface as possible references.

The aforementioned measurements of both strength and direction of gravity on earth’s

surface were formally standardized as the “Earth Gravitational Model 1996 (EGM96)”

Lemoine et al. (1998b). This model defines a geoid, an irregularly shaped surface

that matches the shape of the oceans with influence from gravity and earth-rotation,

without influence from tides, winds and currents. In other words, EGM96 defines an

equipotential surface, meaning that any two points on this surface share the same

gravitational potential.

A datum also defines a model of the shape of the earth. For almost all datums, this is

an oblate spheroid, formed by rotating an ellipse around its minor axis and optimized

to best approximate all of earth’s surface. Since earth’s radius at the equator is greater

than its radius at the poles, the datum is oriented such that the minor axis of its

ellipsoid matches earth’s polar axis and the major axis lies on earth’s equatorial plane.

By further introducing a flattening of about 1

298.257
, the geoid undulation (i.e. the

distance from the reference ellipsoid’s surface along the surface’s normal to the geoid,

see figure 4.2) on the surface of the earth was globally minimized.

Given a datum, there are several ways of determining the latitude of any point A

close to earth’s surface: geocentric latitude is defined as the angle φ′ between the

datum’s equatorial plane and a line connecting the datum’s origin with A. Although

this is a very intuitive definition of latitude, it is used seldomly and interpretation of

latitudes produced using modern GNSS equipment in this manner leads to large errors

in positioning.

Instead, coordinates are commonly given in geodetic latitude: here, locating A requires

computing the normal N to the datum’s ellipsoid running through A (N will coincide

with the datum’s origin only when A lies on the poles or the equator). Then, the

angle φ between the datum’s equatorial plane and N is solved. Figure 4.1(b) illustrates

the difference between geocentric and geodetic latitude using an ellipsoid with highly

exaggerated flattening.

A similar quirk is to be considered for interpretation of longitude: In WGS84, the

meridian at zero degrees of longitude does not pass through the Royal Observatory in

76

4.1 Georeferencing Measurements

Greenwich. Instead, the datum aligns to the International Reference Meridian (IRM)

as defined by the IERS, located about 102 meters west of the Royal Observatory.

This offset is a legacy of TRANSIT (a predecessor to NAVSTAR/GPS) and just one

example that studying the history of geodesy helps understanding modern positioning

procedures and the resulting data.

Without further qualification, measures of height are usually specified in meters relative

to the datum’s reference surface.

Most GNSS-based inertial navigation systems deliver coordinates in geodetic format

using the WGS84 datum, using geodetic latitude, longitude relative to the IRM and

height in meters above the reference ellipsoid.

B Geocentric Spatial Reference Systems

As the name implies, geocentric spatial reference systems originate at the center of grav-

ity of earth and its atmosphere. They are cartesian systems and by convention,

• the X axis lies on the equatorial plane and intersects the International Reference

Meridian (IRM),

• the Z axis is parallel to the mean earth rotation axis and points towards the

International Reference Pole (IRP, North Pole).

• the Y axis is aligned to complete a right-handed orthogonal coordinate system.

The geocentric SRS, shown in figure 4.3, is also named ECEF (“Earth-centered, earth-

fixed”), ECR (“Earth Centered Rotational”) and “conventional terrestrial” coordinate

system. It is similar to the geodetic SRS in that it is fixed to earth in both position

and orientation. Because of this property, it is convenient for specifying positions on

earth’s surface. Other SRS, like ECI (“Earth Centered Inertial”) are also of cartesian

nature and originate in earth’s center of gravity, but do not rotate with earth, so they

are more suitable for locating objects that move independently.

Because of its cartesian nature, the geocentric SRS is much better suited for most mea-

surements involving spatial units than the geodetic SRS (e.g. distances, areas, volumes

and velocities can be computed directly) and allows for much simpler computations

involving vectors. Since LIDAR sensors deliver measured ranges using vectors in their

own cartesian CRSs, the geocentric CRS is a commonly used intermediate reference

system, as it simplifies the addition of these offsets to the scanner’s own position.

ECEF as such is well suited for interpretation of collected point cloud data, with the

notable exception of orientation: by nature, point clouds presented in geocentric coor-

dinates will preserve their orientation with respect to earth, so that only point clouds of

the north pole would seem “correctly” aligned when visualized together with a ground

plane. Moreover, geocentric coordinates are hard to interpret by humans: while esti-

mating an LLA-triple of 50◦ latitude, 10◦ longitude and 120m altitude to represent a

77

Chapter 4 Experimental Platform: Theory and Methods

Figure 4.3: The geocentric spatial reference system originates at the center of gravity of
earth and its atmosphere. The Z axis (blue) points towards the International Reference
Pole (IRP, North Pole), X (red) intersects both the International Reference Meridian (IRM)
and the equatorial plane and Y (green) is aligned to complete a right-handed orthogonal
cartesian coordinate system.

location in western Europe is relatively straightforward, the corresponding geocentric

coordinates of X = 4, 045, 532.36m, Y = 713, 336.50m and Z = 4, 862, 880.96m do not

lend themselves well for this task.

C Mercator Projections

The Mercator projection was named after Geradus Mercator, and has been the most

common projection used for world maps from its invention in 1569 well into the 1960s; it

is an orthomorphic (i.e. angle-preserving) mapping, produced by placing an imaginary

cylinder around earth, with both shapes touching at earth’s equator (see figure 4.4(a)).

In opposition to popular belief, the projection is not achieved by placing a light source

at the center of the earth and projecting it’s surface onto the developable surface

(cylinder), because this would cause extreme distortion at the poles. In fact – like most

other projections in use today – the Mercator projection cannot be produced with a

real-world, physical light source.

At the projection’s central parallel (the equator), map distortion is zero, but it grows

towards the poles so much that Greenland appears to be about the same size as Africa

(see figure 4.4(b) although it has only about 10% of it’s area). By rotating earth on the

geocentric Y-axis, any region with an east/west orientation can be aligned to become

78

4.1 Georeferencing Measurements

(a) (b)

(c) (d)

Figure 4.4: (a): The Mercator projection allows distortion-free mapping at its central
parallel (the equator, also called the Standard Parallel). (b): Distortion of Mercator
projections grows towards the poles. (c): The Transverse Mercator Projection is re-oriented
for low distortions in regions extending further north/south than east/west. (d): By
downscaling the cylinder to 99.96% of its original size, the cylinder cuts through earth and
two rings of zero distortion appear about 180km east and west of the projection’s central
meridian, creating a Secant Transverse Mercator Projection. Mercator projection map of
the world courtesy of Geordie Bosanko.

79

Chapter 4 Experimental Platform: Theory and Methods

the projection’s central parallel, allowing accurate projection. About 200 years after

Mercator, Johann Heinrich Lambert invented the Transverse Mercator projection: for

many applications, it is desirable to re-orient the distortion-free ring, so that it is not

aligned with earth’s parallels, but with it’s meridians instead (figure 4.4(c)). Depending

on the area to be mapped, the cylinder can be rotated around earth, making any line

of longitude become the projection’s central meridian.

The only remaining disadvantage was the increasing distortion in areas further away

from the central meridian. In order to minimize this distortion, a Secant Transverse

Mercator projection is produced by shrinking the imaginary cylinder: it starts to cut

through earth (”to cut”, latin: secare), increasing the distance between it’s surface and

the central meridian. Consequently, distortion at the central meridian increases, but

two distortion-free rings east and west of the central meridian start to emerge, extending

outwards as the cylinder is shrunk. As a result, the amount of overall distortion is

reduced.

D UTM Spatial Reference System

The Universal Transverse Mercator projection system was developed in 1947 by the

North Atlantic Treaty Organization (NATO). After realizing that Mercator projections

are highly accurate within 5◦ of their central parallel/meridian, NATO extended a single

Transverse Mercator projection into a projection system of 60 Transverse Mercator

projections. UTM divides earth into 60 longitudinal zones, each 6◦ of longitude wide.

A central meridian is placed into the center of each zone, creating a system of 60

Transverse Mercator projections (pictured in figure 4.5(a)). Using this system, no

place on earth is further than 3◦ from its central meridian. UTM also uses a secant

cylinder, scaled down to 99.96%, which results in two rings of zero distortion appearing

180km east and west of the central meridian. Together with the large number of zones,

this enables virtually distortion-free mapping in earth’s non-polar regions.

After projection into a plane, each UTM zone hosts a cartesian coordinate system.

The X axis denotes the easting and originates at the central meridian, while the Y

axis specifies the northing and starts at the equator. All values are specified in meters.

By convention, the X-value of the central meridian is set to 500.000m. This is known

as false easting and eliminates negative coordinates. In similar fashion, the equator

remains at 0m on the northern hemisphere, but on the southern hemisphere, negative

Y-values are prevented by assigning a false northing of 10.000.000m.

UTM is often confused with UTMREF/MGRS (the Military Grid Reference System),

which extends UTM by subdividing its zones every 8◦ of latitude. These grid cells are

then further subdivided into squares with 100km sidelength and assigned combinations

of letters, allowing for very compact coordinates. In this thesis, UTM and MGRS are

treated as different SRS.

80

4.1 Georeferencing Measurements

(a) (b)

Figure 4.5: (a): The Universal Transverse Mercator projection system subdivides earth’s
surface into 60 vertical zones, each of which spans 6◦ of longitude and hosts its own cartesian
sub-coordinate system. (b): the resulting zones in projection (image courtesy of Wikimedia
Commons).

Projecting point coordinates into UTM yields the following advantages:

• point clouds can be visualized directly in OpenGL without further scaling or

translation. Thus, all data remains georeferenced even in GPU memory.

• coordinates are specified in meters, which eases computations of distance, area

and volume.

• as opposed to geocentric data sets, no rotation is required in order to align the

point cloud’s ground plane with a cartesian CRS used for processing and visual-

ization.

4.1.2 Algorithms for Transformation and Conversion

In the context of LIDAR-generated point clouds, we define the property georeferenced

to mean that every single point in the point cloud is specified in globally unique co-

ordinates. These can be either geodetic (i.e. longitude, latitude, altitude relative to a

given datum), geocentric coordinates or a projected coordinate system like UTM/UPS

(i.e. hemisphere, zone, false easting, easting, false northing and northing). Other SRS

can also be used (although this is becoming rare in practice), provided that conversions

to other, more common, SRS are defined.

Figure 4.6 illustrates the conversions and transformations required to produce a geo-

referenced point cloud:

In step 1, the geodetic position with respect to the WGS84 datum as solved by the

INS is converted to the geocentric coordinate system (using the same datum), which

is achieved using the closed-form approach given in equations 4.1 to 4.4 (a and e de-

fine the shape of the datum’s ellipsoid: a is the length of its semi-major axis, e is its

81

Chapter 4 Experimental Platform: Theory and Methods

eccentricity). At the same time, geodetic latitude and longitude imply an orientational

offset of the vehicle’s local zero-orientation (0◦ pitch and roll, heading north) with re-

spect to the geocentric frame. This rotational offset is best understood geometrically

(and presented in figure 4.7) – it remains to convert this interpretation into arith-

metic. For accuracy and computational efficiency, the implementation concatenates

the corresponding sequence of quaternion multiplications instead of employing matrix

arithmetics.

X = (N(φ) + h)cos(φ)cos(λ) (4.1)

Y = (N(φ) + h)cos(φ)sin(λ) (4.2)

Z = (N(φ)(1− e2) + h)sin(φ) (4.3)

where

N(φ) =
a

√

1− e2sin2(φ)
(4.4)

Step 2 converts the cardan-angles output by the INS into a quaternion. The vehicle’s

zero-orientation is defined as pointing north, with the vehicle-down direction aligning

with the local gravity vector. Applying the given cardan-angles for heading, pitch

and roll at an arbitrary location on earth is presented graphically in figures 4.8 (a) to

(d).

Because LIDAR data is commonly given in cartesian coordinates relative to the scanner

itself, a transformation into the INS frame is performed in step 3. Simple multiplication

with a classic 4*4 transformation matrix comprised of 32bit floats yields sufficient

accuracy, as the LIDAR sensor’s maximum range is comparably small.

Next, the vehicle’s local orientation generated in step 2 is merged with the orientation

of the local coordinate system (computed in step 1). The result of this quaternion

multiplication provides another quaternion representing the UAV’s current orientation

relative to the geocentric frame (shown in figure 4.8 (d)).

The scanned point, which is now given in the INS frame, is transformed using this

quaternion. Geometrically speaking, this yields a 3D vector representing the offset

from the UAV to the point in the geocentric frame.

Thus, step 6 simply adds the point’s geocentric offset to the UAV’s geocentric position

as computed in step 1, arriving at the point’s geocentric position. At this time, the

point is correctly georeferenced and could be exported into GIS (geographic information

system) applications. For reasons stated in section 4.1.1 D, point’s coordinates shall

be solved in UTM coordinates, which requires further processing.

Step 7 transforms the point’s position into the geodetic frame. As opposed to the op-

posite transformation performed in step 1, converting geocentric into geodetic positions

is not a straightforward procedure. Traditionally, geodetic coordinates were solved ap-

82

4.2 Computing Next Best Views

proximately and then refined using e.g. Newton’s method until convergence within

less than ten iterations. An early solution using a closed-form equation is presented

in Heikkinen (1982), which was later simplified by Vermeille (2002). Still, Vermeille’s

approach had a few shortcomings, such as numerical instabilities around earth’s cen-

ter. Some of these problems were resolved in Karney (2011), who also maintains a

C++ library implementing solutions for modern computer architectures. Focusing on

robustness and speed, Karney (2012) supports multiple geodesic conversions required

in the code accompanying this thesis.

Finally, the computed longitude is used to determine the UTM/UPS zone surrounding

the point. Once the zone is computed, it shall remain static for all following points,

which becomes important in the rare case that a point cloud spans multiple zones.

Given this information, a forward projection from the geodetic SRS into UTM/UPS is

performed as defined in Hager et al. (1989). Depending on the application, the resulting

coordinates can now be uploaded into GPU memory or saved into a file. Starting in

2003, the American Society for Photogrammetry and Remote Sensing established the

free and open LAS file format ASPRS Board (2003). Similar to the RINEX format in

the GNSS industry, LAS is currently supported by most GIS applications.

4.2 Computing Next Best Views

The algorithm for generation of next-best-views is inspired by other researcher’s contri-

butions concerned with creating watertight 3D models of real-world environments (like

e.g. Holenstein et al. (2011)): watertightness is not only a desirable property for com-

pletely reconstructed models, but also a helpful test to find gaps that have remained

throughout the mapping process. The following sections focus on executing this test

as quickly as possible in order to find gaps of a desired minimum size and then derive

useful waypoints from the results in the following stages.

As an initial setup, the algorithm requires a predefined bounding-box b that contains

both the UAV and the environment to be mapped. A 3D uniform grid GIG of informa-

tion gain subdivides b, with each cell carrying a scalar value indicating the information

gain achievable by scanning it. Few seconds after take-off, the point cloud that has been

streamed to the base station is downsampled (see section 4.2.3) into a sparse version,

called the collider cloud C. Gaps in this cloud are then detected by using a particle

system which simulates pouring water in the form of NP particles P over C (see figure

4.9). We can postulate that whenever a particle p ∈ P first collides with a collider

c ∈ C and later arrives at b’s bottom plane, it has successfully passed through a gap

in C. The algorithm stores the position Pcol of every particle p’s last collision with C.

Whenever a particle p reaches the bounding box’s bottom plane, Pcol is looked up, and,

if present, the information gain value of GIG’s cell containing pcol is increased. Leaving

reachability concerns aside, cells of GIG in which many particles slide through gaps in

the point cloud intuitively represent possible waypoints.

83

Chapter 4 Experimental Platform: Theory and Methods

UAV Position

CRS: Geodetic

Origin: WGS84

GNSS IMUINS

UAV Orientation

Cardan Angles

Yaw/Pitch/Roll

UAV Position

CRS: Geocentric

Origin: WGS84

Orientational Shift due

to Geodetic Position

Quaternion

UAV Orientation

Quaternion

UAV Orientation

in

Geocentric Frame

LIDAR

Point Position

CRS: Local Cartesian

Origin: LIDAR

Point Position

CRS: Local Cartesian

Origin: INS

Point Offset

CRS: Geocentric

Origin: WGS84

Point Position

CRS: Geocentric

Origin: WGS84

Point Offset

CRS: Geodetic

Origin: WGS84

Point Offset

CRS: UTM/UPS

Origin: WGS84

Conversion

Multiplication

Quat * Quat

Addition

Multiplication

Quat * Vec

Conversion Conversion Transformation

Projection

1

5

2 3

4

6

7

8

Figure 4.6: A diagram depicting the conversions and transformations required to produce
a georeferenced point cloud. The whole process must be repeated for every point.

84

4.2 Computing Next Best Views

(a) (b)

(c) (d)

Figure 4.7: A part of step 1 in figure 4.6 is computing the orientation of a vehicle-fixed
CRS in zero-orientation (0◦ pitch/roll, heading north) in Bangkok (φ = 13.79◦latitude,
λ = 100.5◦longitude) with respect to the geocentric frame: (a): the initial orientation
matches the geocentric frame. (b): a rotation of 90◦ around the geocentric Z axis prepares
the local CRS to align with the geodetic convention (X points east, Y point north and Z
is up). (c): a rotation of (90− φ◦) around geocentric Y, followed by (d): a rotation of λ◦

around the geocentric Z axis results in the desired orientation.

85

Chapter 4 Experimental Platform: Theory and Methods

(a) (b)

(c) (d)

Figure 4.8: Step 2 in figure 4.6: after deriving the orientation of the UAV’s CRS with
respect to the geocentric frame ((a) equals 4.7(d)), the vehicle’s local orientation is con-
verted from cardan angles specified by the INS into a quaternion. This requires matching
conventions with regard to rotation order and axis directions: in case of the Septentrio INS
used in this thesis, rotations are applied in the order roll (b), pitch (c), yaw (d)

86

4.2 Computing Next Best Views

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Overview of the process: a) shows predefined bounding box b and the initial
point cloud from the onboard laser scanner. b) shows 16k particles p ∈ P in gray being
poured over downsampled cloud of colliders c ∈ C in blue. c) depicts one timestep of
simulation, with falling particles p ∈ P that have collided with at least one c ∈ C in red,
others remaining gray. d-f) overlay a visualization of GIG over sparse and dense point
clouds, showing cells promising higher information gain in more saturated red.

87

Chapter 4 Experimental Platform: Theory and Methods

4.2.1 Proof-of-Concept implementation on the CPU

In a first step, this approach has been tested using a proof-of-concept implementa-

tion. Focusing on fast development instead of fast runtimes, the bullet physics library

(Coumans, 2013) was employed to execute collision detection and handling on the CPU.

Using the bullet API, the point cloud was managed using a fast dynamic bounding vol-

ume tree based on axis aligned bounding boxes for the broadphase collision detection.

When collision between particles and colliders were detected, they were processed us-

ing a callback mechanism that saved the particle’s current position into a vector. The

process was visualized using legacy/immediate-mode OpenGL, meaning that for every

frame rendered, all colliders and particles had to be re-uploaded into GPU memory

space using separate OpenGL function calls. Colliders were drawn rather efficiently as

single points, but particles were displayed as spheres, which necessitated triangulation

on the host.

While the implementation proved the potential of the concept, both physics simulation

and visualization turned out to be far too slow to handle the enormous number of

collision-tests necessary for rapid detection of small gaps. At the time, bullet did

offer support for parallel broadphase execution on some CPU architectures, using e.g.

“Sweep and Prune” approaches to find potentially overlapping pairs (Coumans, 2008).

However, an investigation of how the bullet-based approach scales with the number

of objects simulated (see figure 5.13) resulted in the realization that even a linear

speedup on an eight-core CPU with disabled visualization would not provide sufficient

performance for real-time operation. As of December 2010, the rigid body engine in

bullet did not provide robust GPU-backed algorithms. Even though physics processing

on graphics cards has been on the project’s development roadmap for more than four

years by now, implementation of this goal has been very slow and in fact, is not complete

so far.

Because the approach is intrinsically geometry-based, an interactive visualization is

vitally important to understand limitations, problems and tuning of parameters. As

opposed to bullet, the complexity of a custom physics simulation between particles and

colliders can be far lower – after all, a full-featured physics engine has to simulate

more complex objects like concave meshes, whereas this thesis’ simulation merely re-

quires simulating interactions between static points, moving spheres and axis-aligned

planes.

Algorithms involving massive throughput of operations of comparably simple complex-

ity are well suited to GPU implementation, especially when the data’s interdependencies

are low. Thus, the proof of concept was ported to CUDA, running an NVIDIA graph-

ics card, and optimized for real-time applicability. Porting to an architecture-agnostic

language such as OpenCL would principally have enabled the code to run on any sup-

ported hardware. In practice, though, support of OpenCL on Linux has traditionally

been sparse and did not compare favorably to the performance, robustness and support

88

4.2 Computing Next Best Views

offered by CUDA. OpenCL’s advantage of exploiting all available processors at the same

time (i.e., CPU and GPU) is unlikely to improve performance either: today, powerful

GPUs are always discrete units, connected to the CPU via PCI-Express bus. Bal-

ancing the computational load between all devices introduces algorithmic complexity

and further limitations stemming from memory-latency and limited -througput. The

theoretical peak throughput of a 16-lane PCI Express 3.0 bus is 128 GBits/s, whereas

the memory-throughput of the GDDR5 built into the mid-range NVIDIA GTX 670

(Kepler-based GK104 with a 256bit memory-bus) graphics card lies just above 192

GBits/s, or about 150% of the host/device connection.

4.2.2 Handling Point Clouds

When the INS is delivering precise poses, all points from the laser scanner are fused into

a global coordinate system on the rover and streamed to the base station in batches.

Given a maximum of 1080 points per scan at a scan-rate of 40Hz, the theoretical

point rate is 43.200 points per second per scanner. Some of the rays are reflected by

the vehicle’s own booms, propellers and landing gear, returning distances below 0.5m.

Other rays directed upwards rarely receive reflections, as they often point into the sky.

After filtering values that have very close or no reflections, an average of 600 points

per scan remain to be fused, yielding a point rate of about 48.000 points per second

from both scanners. As a single point is currently represented using four IEEE754

single-precision floats, this translates to a memory requirement of 0.77 Mb per second.

Given the maximum flight time of 15 minutes, allocating 700 megabytes of memory

on the graphics card for the dense point cloud is sufficient, even when downsampling

is disabled. Thus, on the base station, points are saved to disk and uploaded into

the GPU’s memory space by appending them to a vertex buffer object V BOdense.

OpenGL’s VBOs can be mapped into CUDA address space, avoiding copies between

interleaving visualization and processing stages.

4.2.3 Data Reduction on the GPU

As shown in section 5, the particle simulation’s bottlenecks are collision-detection and

-processing. In every iteration of the simulation, this process is first executed between

the simulated particles themselves, then executed between the particles and the collider

cloud. Thus, optimizing it becomes key to detecting gaps and generating waypoints as

quickly as possible.

In the first stage, particles are collided against each other in order to simulate a fluid.

While optimizing for speed by reducing the number of particle/particle collisions is pos-

sible, it would mean changing the particle system’s behavior: if collision checks were

skipped between some neighboring particles, they would be allowed to penetrate each

other, making the simulated fluid lose the desired property of being non-compressible.

89

Chapter 4 Experimental Platform: Theory and Methods

Trying to save collision tests by executing them in comparably coarse time steps would

first allow the particles to interpenetrate more deeply, which would cause large repelling

forces to throw them apart in the next collision detection phase. For this reason, all

neighboring particles must have pair-wise collision checks applied to them and decreas-

ing the total number of particles remains the only way of reducing the computational

effort of particle/particle collision checking.

In the second stage, particles are collided against points of the collider cloud, testing

its permeability. Depending on the distance between the UAV’s range scanner and

an object being scanned as well as the number of scan-passes, that object’s surface

can be sampled using very high point densities. Colliding particles against all of those

points (as depicted in figure 4.10(a)) causes many pairwise collision-checks to be exe-

cuted. Because only the permeability of the collider cloud is tested, it is possible to

increase the distance dmax between neighboring colliders (reducing the cloud’s density)

as long as particles of radius r are kept from passing through the cloud (see figure

4.10(b)). Mathematically, this is guaranteed as long as the margin m between particle-

center and the baseline (2D) or plane (3D) between colliders remains larger than zero.

This geometric constraint for non-permeability can be trivially formulated using the

Pythagorean theorem:

m2 = r2 − (
dmax

2
)2 > 0

Theoretically, the constraint m >= 0 could be chosen, effectively setting dmax = 2r.

In practice, a particle of radius r requires the distance dmax between two colliders to

remain less than 2r for two reasons: firstly, particles tend to fall between very sparse

colliders and get stuck, meaning that they no longer move and fulfill their purpose of

sampling the represented surface. Secondly, the simulation is performed in discrete

time steps, meaning that the distance traveled by particle p in-between collision checks

is a function of its velocity p~v and the simulation’s time step ∆t. As soon as their

product exceeds m, a particle can pass through the collider cloud by the offset applied

due to its velocity in the integration phase (see figure 4.10(c)). Thus,

p~v ∗∆t <

√

r2 − (
d

2
)2

must hold to prevent false waypoints from being generated.

The sparse collider cloud is stored in another, smaller vertex buffer object V BOC on

the graphics card. As previously mentioned, points are stored using four floats instead

of three for reasons of better alignment in GPU memory. For points of the dense and

collider clouds, the fourth component (w) stores the distance between the scanned point

and the range scanner. Because the positional accuracy of the platform’s localization

is far superior to its orientational accuracy, the distance offers a good metric for the

90

4.2 Computing Next Best Views

(a) A particle being collided
against an unprocessed, noisy
and dense point cloud for tests
of permeability. Collision-tests
will be performed between the
particle and every collider in its
cell, resulting in many unneces-
sary memory transactions, calcu-
lations and comparisons.

(b) The same point cloud,
sparsed to reduce the required
number of collision tests. Be-
cause the sparsing algorithm
accounts for the particle’s
size, permeability remains
unchanged.

(c) The same point cloud,
sparsed too much. Even though
the cloud remains mathe-
matically impermeable to the
particle, the discrete nature of
the simulation can allow the
particle to pass through the
colliders.

Figure 4.10: Different levels of downsampling applied to the collider cloud C (stored in
V BOC) and its effects on performance and correctness.

point’s precision, which will be used in the following processing stages.

When new waypoints have to be generated, the point cloud in V BOdense is downsam-

pled into a sparse version C located in V BOC , as shown in figure 4.11. An overview of

this process is given in figure 4.12: after being cleared, V BOC is filled with all points

in V BOdense that are located within b, until either all points in V BOdense are copied

or V BOC is full.

Next, the colliders in the target buffer are reduced. The classic approach for im-

plementations on the CPU is to sequentially iterate through all the points, delet-

ing close neighbors using algorithms and data structures optimized for radius-based

neighbor-queries. Our implementation is similar in that it uses a uniform grid as a

spatial decomposition technique (see figure 4.13(a)), but different in that it is done

in parallel on all available streaming multiprocessors. A spatial hash table based

on the uniform grid GSHT (the subscript SHT denotes “spatial hash table”) with

NGSHT
= NGSHT

(x) ∗NGSHT
(y) ∗NGSHT

(z) cells is created to enable efficient access to

neighboring colliders.

The SHT requires two vectors, Cindex and Ccellhash, associating the collider’s index in

Cpos with the hash of GSHT ’s cell containing it. This is shown in figure 4.13(b) and

allows finding all particles within a given grid cell during the following downsampling

stage. The hash table for Cpos is constructed in step 3 by launching one thread for

every c ∈ C. Afterwards, it is sorted according to the CellHash column. This step is

performed by a radix sort algorithm implemented on the GPU, which is described in

detail by Merrill and Grimshaw (2011).

91

Chapter 4 Experimental Platform: Theory and Methods

(a) (b)

Figure 4.11: (a): A dense point cloud, as streamed from the rover during flight. (b): The
same point cloud, cropped to the region to be mapped (pre-defined bounding box b) and
sparsed to reduce the required number of collision tests.

Step 4 sorts colliders according to their grid cell’s hash value, thereby moving geometric

neighbors into adjacent memory locations.

Afterwards, step 5 uses one thread per collider to populate a pre-allocated vector

CellF irst of NGSHT
integers, where CellF irst[i] stores the first row of the sorted spa-

tial hash table referencing a collider in grid cell with hash i. If the cell does not contain

any colliders, its value is set to UINTmax. In analogous fashion, CellLast is populated

so that CellLast[i] stores the last row of the sorted spatial hash table referencing a

collider that is contained in the grid cell with hash i. An example is shown in figure

4.13(c). On completion, finding all colliders in grid cell i now boils down to accessing

Cpos using all indices found in Cindex[CellF irst[i]] to Cindex[CellLast[i]]

For optimization, a locality preserving hashing function is used to assign hash values

to GSHT ’s cells. Sorting positions according to the hash values of the cells containing

them increases the probability of fetching positions of other particles in the same and

neighboring grid cells from neighboring memory locations, maximizing the memory

bandwidth utilization by using coalesced access patterns. Pre-sorting colliders also best

leverages the L2 caches for global memory access that emerged with CUDA compute

capability 2.0, as collider positions will already be cached when neighboring threads

need to fetch their positions in order to execute collision tests against them.

Now, one thread is launched for every collider: it iterates all other colliders in the same

and neighboring cells (operating in adjacent memory locations to exploit the GPU’s

cache) and checks whether they are located closer than the threshold distance (usually

defined to be slightly less than the particle’s diameter, as explained above). If so, the

collider with the larger w-component (which is likely to be less precise) gets overwritten

with values of (0/0/0/0).

92

4.2 Computing Next Best Views

Append points from VBO_dense

that lie within bounding-box b

to VBO_C, until it is filled.

One thread per collider:

Create and sort spatial

hash table from VBO_C

One thread per collider:

Create CellFirst / CellLast look-

up tables using spatial hash table

Parallel radix sort:

Sort VBO_C to

collider’s cell-hash

One thread per collider:

Use CellFirst and CellLast to iterate through neighbors in this and

neighboring cells. If neighbor is closer than threshold, overwrite

collider that was scanned from further distance with (0/0/0/0).

Compact VBO_C, removing

all vectors of value (0/0/0/0)

If not all points from VBO_dense were processed, goto 2

Else, finish.

Clear

VBO_C

1 2 3

45

6

7

8

Figure 4.12: A flow-chart describing the process of downsampling the point cloud in
V BOdense to a sparse version C stored in V BOC .

In step 7, the values in V BOC can finally be compacted, in effect removing all zero-

points. This free space allows more points from the dense point cloud to be appended

and reduced again, as decided in step 8.

In contrast to the following particle simulation, which needs to be executed many hun-

dred times, this code is executed only once in preparation for waypoint generation,

totaling less than 20 calls during typical flights. Although the procedure contains

many steps that process large amounts of data, the massively parallel execution al-

lows downsampling of the point cloud typically within less than 100 milliseconds. For

benchmarks, please see section 5.

Independent of the threshold distance for neighbor removal, there is no guarantee that

the holes developing during downsampling are still small enough to keep particles from

passing through. Ensuring this would require a computationally involved analysis of

each point’s neighborhood, slowing down execution. Given that particle size defines

the minimum size of gaps to be detected, we have found that using their radius as

93

Chapter 4 Experimental Platform: Theory and Methods

(a) Diagram of colliders c ∈ C from the dense point
cloud, located in cells of uniform grid GSHT (dia-
gram is inaccurate in that it is showing only a two-
dimensional grid for clarity and visualizing points as
spheres). Cells are labeled using their hash values
Ccellhash (in this case, the hash value is simply the
cell’s row-major index). Colliders are labeled using
their index Cindex in Cpos.

Collider Collider
CellHash Index

Index (Ccellhash) (Cindex)
0 4 5

N
C

1 4 3
2 5 7
3 6 2
4 6 9
5 7 4
6 8 1

(b) Spatial hash table, associating every col-
lider to its cell’s hash value in the uniform
grid. After construction, this table is sorted
according to the CellHash column.

Cell CindexFirst CindexLast
Hash (CellF irst) (CellLast)
0 UINTmax *

N
G

S
H

T

1 UINTmax *
2 UINTmax *
3 UINTmax *
4 0 1
5 2 2
6 3 4
7 5 5
8 6 6

(c) The collider cell lookup table, populated using
the spatial hash table: for each cell’s hash value,
CellF irst and CellLast store the first and last
row of the spatial hash table referencing colliders
in that cell. This allows a fast, memory-coalesced
access to all colliders in a grid cell. The value
UINTmax in CellF irst denotes empty cells, while
* in CellLast consequently denotes an undefined
value.

Figure 4.13: Data structures in GPU memory, required for downsampling the dense point
cloud into the collider cloud C in V BOC .

94

4.2 Computing Next Best Views

Idx Cpos Ppos Pvel Pcol GIG

0 xyzw xyzw xyzw xyzw 0
1 xyzw xyzw xyzw xyzw 0
2 xyzw xyzw xyzw xyzw 0
3 xyzw xyzw xyzw xyzw 0
.

Figure 4.14: Four vectors of float4 are allocated, storing NC collider positions Cpos

as well as NP particle positions Ppos, the same amount of particle velocities Pvel and
particle/collider collision-positions Pcol in GPU memory. Also, memory for NGIG

scalar
cell-values of a grid GIG of information gain is allocated.

threshold distance for neighbor removal prevents those degenerate cases, as long as the

source point cloud is sufficiently dense and evenly sampled in this region. Since the

latter condition is exactly what the algorithm is designed to test, there is no reason to

implement aforementioned neighborhood analysis.

4.2.4 Testing for watertightness on the GPU

The downsampling of the collider cloud described in the previous section might seem

to be a performance optimization conceptually unrelated to the particle simulation. In

fact, it is not: downsampling point clouds and simulating large amounts of particles

share a large and important part of computational logic: neighbor searching. Thus,

the highly-parallel data structures supporting fast access to neighbors for downsampling

can also be used to enable high-speed particle simulation, as seen in figure 4.15. Instead

of removing colliders that are closer than a threshold distance, we add repelling forces

to particles that have approached up to a distance closer than their diameter.

Section 4.2.3 already introduced the sparse collider-cloud stored in V BOC , holding a

vector of collider-positions Cpos. Testing this point cloud for watertightness involves

simulating NP particles being poured over it to detect the remaining gaps.

This requires further data structures to be allocated in the graphics card’s memory,

as shown in figure 4.14. Before simulation, Pcol and GIG are initialized with zeros,

indicating that no particles have collided yet and no information gain has built up.

Using these structures, a single iteration of the particle simulation is processed as

described in Algorithms 1 and 2:

To build the spatial hash table, NP threads write their thread-id into Pindex[threadId]

and the hash of the cell containing Ppos[threadId] into Pcellhash[threadId] in lines 2-

5. Afterwards, both vectors are sorted according to Pcellhash using a parallel radix

sort.

The cell lookup table is populated as listed in lines 10-20: one thread per particle reads

Pcellhash[threadId] into the temporary cellHash[threadId], located in the given thread-

block’s shared memory space. In this way, each cell hash is fetched from global memory

95

Chapter 4 Experimental Platform: Theory and Methods

Algorithm 1 Build support datastructures

1: // Particles move, so rebuild their spatial hash table (SHT) in every iteration.
2: for each core i < NP do in parallel
3: Pindex[i]← i
4: Pcellhash[i]← getCellHash(GSHT , Ppos[i])
5: end for
6: radixSortKeyValue(Pcellhash, Pindex)
7:

8: // Using the spatial hash table, build the cell lookup table for particles.
9: // Allocate sharedHash in shared memory to coalesce global memory access.

10: allocate sharedHash[NP]
11: for each core i < NP do in parallel
12: sharedHash[i+ 1]← Pindex[i]
13: synchronizeThreads()
14: if sharedHash[i] 6= sharedHash[i− 1] then
15: PcellF irst[Pcellhash[i]]← i
16: if i > 0 then
17: PcellLast[sharedHash[i+ 0]]← i
18: end if
19: end if
20: end for
21:

22: // If points were inserted into the collider cloud, also
23: // rebuild their spatial hash and cell lookup tables
24: if ColliderCloudChanged then
25: for each core i < NC do in parallel
26: Cindex[i]← i
27: Ccellhash[i]← getCellHash(GSHT , Cpos[i])
28: end for
29: radixSortKeyValue(Ccellhash, Cindex)
30:

31: // Build cell lookup table for colliders
32: allocate sharedHash[NC]
33: for each core i < NC do in parallel
34: sharedHash[i+ 1]← Cindex[i]
35: synchronizeThreads()
36: if sharedHash[i] 6= sharedHash[i− 1] then
37: CcellF irst[Ccellhash[i]]← i
38: if i > 0 then
39: CcellLast[sharedHash[i+ 0]]← i
40: end if
41: end if
42: end for
43: end if

96

4.2 Computing Next Best Views

Algorithm 2 Execute massively parallel test for watertightness of C

1: // Collide all particles
2: for each core i < NP do in parallel
3: force← (0, 0, 0)
4: // Retrieve hashes of all 26 neighboring cells
5: cellHashes← getNeighborHashes(Ppos[i])
6:

7: for each h ∈ cellHashes do
8: // Collide particle p against colliders in all neighboring cells
9: for j ← CcellF irst[h], CcellLast[h] do

10: force += collideDEM(Ppos[i], Cpos[j])
11: end for
12: // Save p’s current position in case of collision with collider
13: if force 6= (0, 0, 0) then
14: Pcol[i]← Ppos[i]
15: end if
16:

17: // Collide particle p against other particles, updating it’s velocity
18: for j ← PcellF irst[h], PcellLast[h] do
19: force += collideDEM(Ppos[i], Ppos[j])
20: end for
21: Pvel[i]← (force+ Pvel[i])
22: end for
23: end for
24:

25: // Collide every particle with the bounding box b’s walls, then integrate
26: // the resulting motion over time, moving the particles.
27: for each core i < NP do in parallel
28: Pvel[i]← damping ∗ (Pvel[i] + (g ∗∆t));
29: Pvel[i]← collideWithBoundingBox(b, Ppos[i])
30: Ppos[i]← Ppos[i] + (Pvel[i] ∗∆t)
31: if Ppos[i].y < b.min.y then
32: Ppos[i].y ← b.max.y
33: // If the particle reached the floor, increment
34: // the corresponding cell’s value in GIG

35: if Pcol[i] 6= (0, 0, 0) then
36: GIG[getCellHash(Pcol[i])]+=1
37: Pcol[i]← (0, 0, 0)
38: end if
39: end if
40: end for

97

Chapter 4 Experimental Platform: Theory and Methods

(a) Particles p ∈ P (with radius, shown in gray) and
colliders c ∈ C (i.e. points from downsampled point
cloud, blue) located in cells of uniform grid GSHT

(showing a two-dimensional grid for clarity). Cells
are labeled using their hash values, while particles
and colliders are labeled with their index in Ppos and
Cpos, respectively.

Particle Particle
CellHash Index

Index (Pcellhash) (Pindex)
0 0 6

N
C

1 4 9
2 4 2
3 5 1
4 7 3

(b) Spatial hash table, associating every par-
ticle to its cell’s hash value in the uniform
grid. After construction, this table is sorted
according to the CellHash column.

Cell PindexFirst PindexLast
Hash (CellF irst) (CellLast)
0 0 0

N
G

S
H

T

1 UINTmax *
2 UINTmax *
3 UINTmax *
4 1 2
5 3 3
6 UINTmax *
7 4 4
8 UINTmax *

(c) The particle cell lookup table, populated using
the spatial hash table: for each cell’s hash value,
CellF irst and CellLast store the first and last
row of the spatial hash table referencing particles
in that cell. This allows a fast, memory-coalesced
access to all particles in a grid cell. The value
UINTmax in CellF irst denotes empty cells, while
* in CellLast consequently denotes an undefined
value.

Figure 4.15: Additional vectors in GPU memory, required for particle simulation. Their
structure is completely analogous to that described in figure 4.13.

98

4.3 Computing Trajectories

only once. After synchronization of all threads in the warp (ensuring that all hashes

have been loaded), they are compared against the cell-hash of the previous particle in

cellHash[threadId − 1]. Because Pcellhash is sorted, a failed comparison means that

the previous particle is located in a different cell, allowing CellF irst and CellLast to

be populated.

To detect and process collisions, NP threads fetch Ppos[threadId] and compute the hash

value of GSHT ’s respective cell. They then iterate through its own and all 33 − 1 =

26 neighboring cells in the grids of the SHTs for both other particles and colliders

(lines 2-23), re-using the vectors built in section 4.2.3. To ensure that particles in

non-neighboring cells cannot collide, their diameter must be less than the grid cell’s

smallest side. For every cell visited, CellF irst and CellLast are used to quickly access

the indices of contained particles and colliders. When collisions occur, Pvel[threadId]

is updated using forces computed by the discrete elements method (Harada, 2007)

and Ppos[threadId] is copied to Pcol[threadId] (line 14), allowing this particle’s last

collision to be retrieved in case it reaches the bounding box’s bottom plane in the next

step.

The particle-motion is integrated by launching NP threads: each kernel first updates

Pvel[threadId] according to a given time step t, gravity g ∈ R
3 and a global damping

value. It also collides Ppos[threadId] against the inner sides of b, confining the particle

to the bounding box. Then, Ppos[threadId] is updated according to Pvel[threadId] and

t and used to check whether Ppos[threadId] has reached b’s bottom plane. If so, that

particle’s last collision is looked up from Pcol[threadId] and is, if not zero, used to

increment the information gain of GIG’s cell containing it in line 36.

After multiple iterations, particle simulation is terminated (see section 5 for a discussion

of termination criteria). GIG’s cells are sorted in order of decreasing information gain

values, and their respective positions in R
3 are computed. After close waypoints are

merged, the results are passed to the path planner.

4.3 Computing Trajectories

As input, the path planner requires the UAV’s current position, the sparse collider

cloud and a list of waypoints.

In the first step, another uniform 3D grid is created, whereby one byte per cell is

allocated in GPU memory. Each cell’s value is initialized to zero. The sparse collider

cloud’s points are then processed in parallel manner, so that every cell containing a

point is set to a value of 255 (depicted in dark gray in figure 4.16, left), in effect

creating a three-dimensional occupancy grid (figure 4.16, left). When using a 26 (8 in

2D) neighborhood for path finding, generated paths can traverse diagonally between

occupied cells, causing the vehicle to pass unsafe parts of the environment. As seen

99

Chapter 4 Experimental Platform: Theory and Methods

in the middle of figure 4.16, dilation circumvents this problem by wrapping those cell-

patterns with occupied cells, also adding a safety margin between vehicle and geometry.

Thus, for increased safety, the occupancy grid is dilated in the next step: each thread

processes one cell, looks at the 26 (8) neighboring cells and assigns a value of 254 if it

finds an occupied neighbor. Because the spatial grid usually contains more cells than

the GPU has streaming multiprocessors, the grid will be processed in (spatial) batches.

If dilated cells were also assigned a value of 255, threads executed in consecutive warps

would be unable to discriminate between occupied and dilated neighbor-cells, in effect

dilating the occupied cells even further.

Next, the list of waypoints is processed: because waypoints are generated near edges

of the point cloud, they are usually placed in occupied cells of the occupancy grid and

must be moved to neighboring, free cells: because the main LIDAR’s field-of-view is

oriented downwards, the UAV is expected to map the gaps by flying above them. All

waypoints are processed in parallel fashion: while its containing grid-cell is occupied,

the cell above its current position is checked. If it is also occupied, its 8 horizontal

neighbors are probed. This process is repeated until either a free cell is encountered

(and the waypoint is placed in its center), or the distance between the original waypoint

and the current position exceeds the LIDAR’s range of 30m, in which case the waypoint

is deleted. The result is an occupancy grid with a list of waypoints in its free cells.

Ignoring the occupancy grid, a CPU-based TSP-solver is used to reorder the waypoints

into the shortest path. Because we produce less than 20 waypoints at a time, this

computes in few milliseconds.

The occupancy-grid-cell containing the UAV’s current position is marked as the start

cell and its value is set to 1, while the grid-cell of the first waypoint becomes the goal

cell. The path from start to goal is found by launching one thread per grid-cell to

look up its own cell’s value, and, if zero, the neighboring 26 (8) cell’s values. If their

minimum is non-zero, that minimum is incremented by one and saved in the cell. This

process is repeated until the goal-cell has received a non-zero value (shown in figure 4.16,

right) or a maximum number of iterations has been reached, indicating that no path

was found. In case a path was found, a single thread starts at the goal cell and collects

the 3D world-positions of the cells it passes while hopping towards neighboring cells

with smaller values, eventually reaching the start cell. If a path was found, the world-

positions of all visited cells will be converted to waypoints and path planning continues

with start and goal assigned the previous goal and the next waypoint, respectively. If

no path was found, the first waypoint is deleted and path planning continues with the

next waypoint. When path planning completes, the collected waypoints are sent to the

rover’s high-level motion-controller.

During autonomous flight, the occupancy grid is constantly updated using the collider

cloud’s new points. At a configurable interval (currently 2 seconds), all waypoints’

grid-cells are checked. If one cell is found to be occupied, the path is replanned. An

example of this scenario is shown at the end of the accompanying video.

100

4.4 Motion Control for Autonomous Flight

0 0 0 0 0 0 0 0
0 0 0 0 0 0 G 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 G 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
S 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

7 7 7 7 8 9 0 0
6 6 6 7 8 9 G 0
5 5 9 0 0
4 4 9 9
3 3 8 8
2 2 3 7 0
1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0

Figure 4.16: Parallelized path planning using a uniform occupancy grid. Left: Initial-
ized occupancy grid with start and goal cells marked and cells containing colliders being
marked as occupied. Center: After dilation, searching for traversable cells in the diagonal
neighborhood is safe. Right: Populated occupancy grid for a path between start and goal
after 8 iterations. In the next iteration, the goal cell will receive a value of 10, terminating
the search.

4.4 Motion Control for Autonomous Flight

Multirotor UAVs require complex motion control, because they react to control-input

in non-linear fashion and can be affected by potentially large disturbances (wind).

They also are under-actuated and non-holonomic, as the number of controllable de-

grees of freedom (DoF) is less than their total DoFs. Since roll and pitch determine

lateral velocity and thus position in cartesian space, their attitude cannot be controlled

independently, posing additional constraints.

As mentioned in section 3.1.2, the Mikrokopter UAV comes with a FlightCtrl-board

that integrates a MEMS-grade IMU and implements a low-level PID motion controller.

In the absence of control input, it keeps the platform’s heading constant and pitch/roll

at zero degrees.

The FlightCtrl can read up to 12 channels from the remote control. Each has a resolu-

tion of 8 bit, producing signed values from -127 to 128. Values for thrust, yaw, pitch and

roll can be sent using the remote control or using an open protocol (Buss and Busker,

2012) on its serial port at a rate of roughly 20Hz, with acknowledgement-packets be-

ing generated for every such motion-control-packet. This is called “ExternControl” in

MikroKopter-parlance. Using the values read from the gyroscopes, accelerometers and

an internal mixing-table, control values are converted to motor-speeds and sent to the

brushless controllers. Documentation on the implementation of the low-level controller

does not exist. Although its source-code is open, it is written mostly in German and

contains few comments. A deeper analysis can be found in Sa and Corke (2011).

The four channels used for thrust, yaw, pitch and roll are mapped to the respective

sticks, while one channel is mapped to a tri-state switch used for flight-state restriction.

The FlightCtrl is configured to activate ExternControl when this channel’s value is

101

Chapter 4 Experimental Platform: Theory and Methods

above 128. Even when activated, for safety reasons the FlightCtrl will use the remote

control’s thrust value as an upper bound to the thrust specified on the serial port.

This configuration makes simple and safe testing of autonomous flying possible, as it

allows the pilot to quickly overrule the high-level motion controller in case of problems.

The high-level, PID-based motion controller is implemented in the rover program on

the UAV. It reads the flight state restriction channel using the same serial port and

changes states accordingly - the resulting flight states for both controllers are listed

in table 4.1. States transition automatically from ApproachWaypoint to Hover when

there are no more waypoints and back, when new waypoints arrive.

When entering Hover -state, the UAV’s current position is set as the target and values

for pitch, roll and thrust are computed to steer towards that target. For thrust, the

controller simply determines the error between current and desired height, while for

pitch and roll, a desired velocity over pitch and roll axes is derived from the vector

towards the target. This velocity is proportional to the distance, but limited according

to another channel’s value (between 0 and 2 m/s, set by a potentiometer on the remote

control). Then, current and desired velocity are used to compute the error. Velocity-

based control was implemented after flying in windy conditions had demonstrated that

position-based control for pitch and roll was insufficient to reach the target position,

and adding an integral component to counter this introduced complications when the

UAV changed orientation. For yaw, a non-linear P-component is used to ensure that

the front is always pointed away from the position of lift-off. Thus, when the pilot

(assumed to be positioned near the position of lift-off) switches from Hover to User-

Control state, manually controlling pitch and roll does not require knowledge of the

UAV’s orientation.

ApproachWaypoint-state is similar to Hover -state, with the next waypoint being the

target. It is different from Hover -state in that the controller first yaws towards the next

waypoint and then pitches forward, as the INS produces a more precise attitude solution

when flying forward. To avoid slow and clumsy cycles of “orient towards target”, “fly

forward” and “slow down”, the controller starts yawing and rolling towards the second

queued waypoint shortly before it has reached the first. The approach is only slowed

when closing in on the last queued waypoint or when the second queued waypoint will

be situated behind the UAV.

The update frequency of the high-level controller is limited by the availability of reliable

information about position and attitude. As mentioned in section 3.1.3 C, the inertial

navigation system is capable of producing sequences of one fused pose followed by 4

IMU-integrated poses at a rate of 50 total poses per second. In this configuration,

the UAV showed unpredictable and dangerous behavior during tests, which was later

determined to be caused by the controller’s derivative component reacting to the UAVs

position seemingly jumping between the last IMU-integrated pose to the next, fused

pose by up to 20cm (see figure 5.4). As a result, the INS was configured to deliver only

fused poses, albeit at a lower rate of 10Hz. As evidenced in the accompanying video,

102

4.5 Summary

Table 4.1: Different states of low- and high-level motion controllers, based on flightstate
restriction and presence of waypoints.

Flightstate
Restriction
Switch

Channel
value

Low-Level
controller state

(“Extern
Control”)

High-Level
controller

state
(waypoints
absent)

High-Level
controller state

(waypoints
present)

UserControl -107 Disabled UserControl UserControl
Hover 20 Enabled Hover Hover
ApprWpnt 128 Enabled Hover ApprWpnt

this rate is still sufficient for flight control.

Proportional and derivative gains for thrust, yaw, pitch and roll have been determined

by performing test flights in different wind conditions, with the UAV attached to a long

sea-fishing rod for safety.

4.5 Summary

This chapter discussed the algorithms that achieve the platform’s key functionality.

Computation of next-best-views was presented in detail along with the optimizations

needed to reach real-time performance on the available hardware. The resulting codes

for georeferencing, generation of next-best-views and trajectory computation were inte-

grated into the base station (see section 3.2.2), while motion control code was integrated

into the rover program (see section 3.2.3).

With all functionality now in place, the following chapter 5 documents the experimental

phase.

103

Chapter 4 Experimental Platform: Theory and Methods

104

Chapter 5

Experiments and Results

After presenting the UAV in chapter 3 and the most important algorithms in chapter 4,

the following sections discuss the tests performed with the system as well as the achieved

results. The experimental strategy is laid out to validate the goals set in the first

chapter, and thus, roughly follows their order. This means that first experiments were

conducted to verify more fundamental system properties (i.e., flight safety, localization,

and mapping in open terrain, later in more obstructed environments), then to validate

the more complex components (i.e., motion control, computation of next-best-views

and trajectory generation) that build on the system’s basic functionality.

Further documentation of experiments and results can be found in the form of a video

attachment to Adler et al. (2014)1. Also, algorithms can be tested in real-time using

the simulator provided at https://www.github.com/benadler/octocopter/.

5.1 Flight Safety and Environmental Conditions

As opposed to industrial robotics, mobile robots are designed to work in less structured

and more dynamic environments. Of those, the outdoors remains the most difficult

environment to master: this means that the system should be tolerant to wide ranges

of parameters such as temperature, humidity, wind, solar irradiation and air pressure,

none of which can be influenced. While robustness against e.g. solar irradiation is

necessary for the LIDAR sensor to gather meaningful data, tolerance against wind is a

more critical property, as it affects flight safety.

The UAV has been tested at outside temperatures from as low as -10◦C up to +30◦C.

Unsurprisingly, achievable flight times decrease significantly when approaching freezing

temperatures. At temperatures below 5◦C, the battery can become unable to supply

the current required to spin up all motors at the same time, which causes the low-level

1Also available at https://www.youtube.com/watch?v=0Z1UyJnaNhU

105

https://www.github.com/benadler/octocopter/
https://www.youtube.com/watch?v=0Z1UyJnaNhU

Chapter 5 Experiments and Results

Table 5.1: Listing of the number of experiments performed. These numbers represent
only those log files that were archived - many more experiments took place. Also omitted
are experiments in simulation, which preceded every outdoor testing. Number of tests is
an inclusive figure, e.g. 96 of the >100 flights included mapping.

No. of tests Functionality tested Results

>100 Flying Section 5.1

96 Flying, mapping Section 5.2

72 Flying, mapping, high-level motion Section 5.1 and 5.4
control (hovering)

44 Flying, mapping, high-level motion Section 5.1 and 5.4
control (appoaching waypoints)

8 Flying, mapping, high-level motion control, Section 5.3 and 5.4
waypoint generation, collision avoidance

flight-controller to abort the start-up sequence. Once start-up succeeds, the ongoing

discharge keeps the battery warm enough to allow flying at temperatures as low as

-10◦C.

In principle, the system could fly in rain or fog after sealing its electronic components.

In practice, sealing adds weight and can be irreversible, complicating diagnostics of

electronic failures and the ensuing maintenance. Furthermore, with LIDAR being fun-

damental to the mapping procedure, and given these sensor’s tendencies to register

reflections from rain drops and suffer shortened range in fog, the benefit of this capa-

bility is questionable. Because the goals set in the first chapter do not comprise flying

in rain, the UAV was not designed to withstand any form of moisture and thus, it has

not been tested in either rain or fog. Nevertheless, one series of flights was performed

during snow (for the video attachment to Adler et al. (2013))1 and yielded satisfac-

tory results after laser-ranging returns reflected from snow flakes were removed using

a simple filter.

Classic airborne LIDAR measurements are commonly executed at heights above 1000m,

resulting in a nadir-oriented FoV. With the UAV flying at altitudes no higher than 25m,

scanning angles more oblique and even sideways is important for mapping. Due to this,

the LIDAR sensors are often oriented such that they scan directly into the sun. The

Hokuyo UTM-30lx laser scanner has proven to be extremely robust in these situations,

producing no false range measurements even when directly exposed to sunlight. This

robustness is rather important to the platform’s operation, because a false-positive

range measurement translates to a false point in the point cloud. Such a point can

cause a free cell in the occupancy grid to be marked as occupied, preventing trajectory-

1Video available at https://www.youtube.com/watch?v=tGbgkrS2zdw

106

https://www.youtube.com/watch?v=tGbgkrS2zdw

5.1 Flight Safety and Environmental Conditions

Figure 5.1: Close-up of the UAV scanning nearby persons on the campus. A single scan
is shown, visualizing every ray that caused a reflection in red.

planning from traversing the cell. Other scanners (e.g. the Velodyne HDL32e) are more

sensitive against false positives, which would then have to be removed in software.

First experiments with regard to flight stability and safety started during construction

of the platform, before more expensive components (LIDAR sensors and navigation

system) were mounted. About 20 remote-controlled flights with a duration of up to 15

minutes confirmed that the UAV is able to handle payloads of up to 1kg.

Testing the high-level motion controller required a working self-localization, and thus

was done after the navigation system was operational. Over 50 flights were necessary

to tune the navigation system for suitable output of position and orientation, tune the

gains of the PID controllers and implement the possibility to switch from autonomous

to user-controlled operation during flight (as required by German law). For some

of these flights, the UAV was attached to a long fishing rod held by an assistant,

effectively preventing crashes in case of controller failure. Finally, the UAV is able to

navigate reliably along specified waypoints, while at the same time accommodating the

inertial navigation system’s special requirements with regard to flight dynamics. The

motion controller is known to handle wind gusts of up to 10.8 m/s (one of the videos

shows a flight on October 1st, 2013, when the weather station of the nearby Hamburg

airport recorded temperatures of 12◦C and an average wind of 4.2m/s with gusts up to

10.8m/s).

107

Chapter 5 Experiments and Results

5.2 Localization Reliability

Evaluating reliability of the platform’s localization requires the definition of an applica-

tion-oriented metric. The previously postulated goals do not require point clouds with

sub-decimeter accuracy, but the system’s flight-safety strongly depends on a working

collision avoidance, which relies on a constantly updated occupancy grid. This grid

is updated from the incrementally growing point cloud, which in turn is generated by

fusing the system’s position and orientation with range readings acquired by the LIDAR

sensors. Thus, flight-safety depends on the availability of localization.

Currently, the system relies on the GNSS/Inertial navigation system to provide position

and attitude solutions, which requires reception of signals on different frequencies from a

sufficient number of satellites. During startup, achieving centimeter-precise positioning

requires at least four GPS satellites to be visible, with each supplying signals on L1

and L2 frequencies for both coarse acquisition and carrier phase measurements. This

works reliably under open-sky conditions. Once the carrier phase ambiguities have

been solved (see section 3.1.3 C for an explanation of the process), RTK fixed mode

is entered and GLONASS satellites are added to the solution, making it more robust

against loss-of-lock of single satellites. Because of limitations in the firmware, the GNSS

receiver is unable to start centimeter-precision positioning using signals from mixed

constellations, e.g. 3 GPS and 3 GLONASS satellites. Once the solution of position,

velocity and time is supported by both GPS and GLONASS satellites, we experienced

very robust positioning even close to buildings (about 1m distance), indicating very

reliable multipath mitigation.

Of course, loss of GNSS-based PVT is not unseen: combinations of few visible satellites

(because of unfortunate orbit parameters and the comparatively high latitude in Ham-

burg), electromagnetic interference experienced with previous hardware designs and

temporary obstructions, e.g. caused by flying below large trees can prove troublesome.

The first problem is mitigated by supporting multiple constellations and the second by

shielding - only the third problem was only partly solved by using a dilated occupancy

grid to keep a minimum distance from potentially shadowing structures. Because the

IMU is unable to support precise positioning in case of GNSS outages for more than

5 seconds, the base station notifies the pilot in this case, requesting him to override

autonomous motion control.

As discussed in section 3.1.3 B, measurement characteristics of MEMS-based accelerom-

eters and gyroscopes are inferior compared to more expensive, higher-grade IMUs. With

the IMU being very lightweight and mounted on a vibrating platform, it follows that the

produced values are accordingly noisy: diagram 5.2(a) shows angular velocities during

a manual 4-minute flight of the UAV as an example. This flight was conducted with the

UAV configured as depicted in figure 3.4. While this overview doesn’t lend itself well

to detailed analysis of the flight, it demonstrates the expected increase in amplitude

after startup and also shows spikes at the end, induced by landing and touchdown. It

108

5.2 Localization Reliability

can also be seen that rotations around roll and pitch axes are usually small in ampli-

tude (less than 25◦/s), but quite frequent. As it is common for manually controlled

multirotor flights, rotations around the yaw axis are comparably rare, because they are

mostly commanded to re-align the orientation of the UAV with that of the pilot on the

ground. The graph demonstrates in surprising clarity how this maneuver is executed

roughly every 20 to 30 seconds, when the orientation offset has grown to a point where

the pilot is unable to transform roll and pitch commands issued on the remote control’s

coordinate system to the motions that will result untransformed on the UAV.

Graph 5.2(b) shows the angular velocities during different phases of the flight: clearly

visible are the noisy readings while the motors are not moving and the UAV is parked

(green section). As expected, the vibrations of motors and propellers spinning up are

picked up by the gyroscopes, the result of which can be seen in the yellow section.

During the time-window marked in white, the UAV’s motors are idling at comparably

low speed. Yet, the values of the roll-gyro already show a considerable drift towards a

negative rotation. When the vehicle finally takes off in the red section, the amplitude

of the vibrations appear to grow with the rotational velocity of the propellers.

Graph 5.2(c) presents all of the gyroscope’s readings during one second (100 seconds

into the flight). Since there are no comparative measurements made with an IMU

supporting a higher measurement-bandwidth, it is not possible to determine whether

the values represent the UAV’s true motion, or to what extent they include image

frequencies appearing due to undersampling of the original signal.

Finally, the data indicates that rotations during flight (and even touchdown, depicted

in figure 5.2(d)) are well within the gyros’ input ranges Xsens Technologies B.V.

(2009).

Diagram 5.3(a) presents the accelerations sensed during the same flight. Since the

IMU’s Z axis is aligned with gravity, the values from the respective accelerometer are

offset by 9.81m/s2. Analogous to the visualization of the gyroscope data above, this

overview exhibits the expected increase in noise after startup as well as a sudden spike

at touchdown.

Interestingly, the graph over the complete flight shows much more variation (presum-

ably vibrations) in accelerations on the Z axis. Generally, vibrations were expected to

be more prevalent in the plane parallel to that of the propellers (i.e., X and Y axes),

since their lack of balancing was assumed to be the main cause of unwanted oscilla-

tions. The observations are best explained after taking a closer look at the vibration

dampening mechanism pictured in figure 3.4(a): the rubber shock mounts are installed

vertically as standoff fasteners, connecting the sensor-module (composed of IMU, bat-

tery and both laser scanners) with the UAV’s frame above it. This type of shock mount

absorbs vibrations much better in lateral directions than it absorbs energy along its

primary axis.

5.3(b) also yields interesting results: during motor-spinup, vibrations appear predomi-

109

Chapter 5 Experiments and Results

nantly in the X/Y-plane of the vehicle, while vibrations on the Z axis remain negligible.

Once the propellers rotate at their idling velocity, the amplitudes decrease. This indi-

cates that the distribution of vibration energy to different directions highly depends on

the rotational velocities of the motor/propeller setups.

The traditional approach to vibration damping is to analyze the unwanted oscillations

in the frequency domain, then design decoupling mechanisms optimized for the dom-

inant frequencies, the respective amplitudes and the weight of the object that is to

be decoupled. This has worked rather well for e.g. single-rotor helicopters, which are

commonly pitch-controlled and have their engine running at almost constant speeds.

On multi-rotor helicopters however, attitude and thrust is controlled by varying the

motor/propeller-velocities - as a result, the assumption of an almost-constant vibration

pattern over time no longer holds, and the frequency-spectrum of vibrations experienced

by the IMU widens. This is aggravated by resonances causing phenomena as described

above, making mechanical decoupling both more important and more difficult at the

same time.

In conclusion, the data implies that the dampening setup successfully decouples the

sensor module from much of the vibrations passing through the vehicle’s frame. On the

other hand, it’s analysis strongly recommends that further optimizations be applied to

vibration dampening.

110

5
.2

L
o
c
a
l
iz
a
t
io
n
R
e
l
ia
b
il
it
y

(a)

(b) (c) (d)

Figure 5.2: (a): Rotations experienced during a manual flight: (b) shows rotations experienced without motion (green), during motor-spinup
(yellow), idling (white) and take-off (red). Subfigure (c) shows rotations in mid-flight in higher temporal resolution, (d) shows rotations while
landing.

111

C
h
a
p
t
e
r
5

E
x
p
e
r
im

e
n
t
s
a
n
d

R
e
s
u
lt

s

(a)

(b) (c) (d)

Figure 5.3: (a): Accelerations experienced during a manual flight: (b) shows accelerations experienced without motion (green), during
motor-spinup (yellow), idling (white) and take-off (red). Subfigure (c) shows accelerations in mid-flight in higher temporal resolution, (d)
shows accelerations while landing.

112

5.2 Localization Reliability

Figure 5.4: Visualization of the vehicle trajectory during lift-off, exhibiting considerable
IMU drift and noise. Poses are computed at 50Hz. Poses in red are the result of fusion
between GNSS data (10Hz) and IMU data (50Hz). They are interleaved by 4 consecutive
poses generated by double-integrating the IMU readings (drawn in blue).

Because of the low-quality MEMS-accelerometers, vibrations and insufficient bias esti-

mations, double-integration of accelerations between valid GNSS solutions (described

in section 3.1.3 C) often leads to unusable integrated poses. This is shown in figure

5.4. As soon as a new GNSS-based position becomes available (100ms later), the drift

introduced in the previous iterations can be corrected. However, the weighing of sensor

information cannot be adjusted directly, which is unfortunate, as experience suggests

that the filter regularly applies too much weight to IMU measurements. This behav-

ior prevents an incoming GNSS-based position (which is precise to few centimeters)

from completely correcting the drift that occurred in the preceding IMU-only itera-

tions.

The accuracy of the point cloud produced has not been investigated thoroughly, but

comparing distances measured in the point cloud with those measured manually have

revealed errors of no more than 25 centimeters. While this may not be sufficiently

accurate for many problems traditionally solved with ground-based surveying equip-

ment, the data produced is precise enough to be used for motion planning, collision

avoidance and some applications of surface reconstruction. Figure 5.1 gives an impres-

sion of the resulting cloud by showing the UAV scanning nearby persons in-flight. The

aforementioned video shows the UAV scanning a street light twice within roughly a

minute, where the lamp’s mast shows up roughly 20cm away from the first scan in the

point cloud. Depending on the strength of vibrations picked up by the IMU, kinematic

alignment and even firmware revisions of the GNSS/Inertial navigation system, errors

greater than 25cm have also been observed, caused especially by incorrect heading val-

113

Chapter 5 Experiments and Results

ues. Since the GNSS/Inertial data fusion algorithms are proprietary and closed-source,

no further investigations as to the cause of these problems could be made.

5.3 Generated waypoints and paths

To validate the idea of waypoint generation, the algorithm has been applied to various

different sample point clouds. Before the system was capable of creating point clouds

of outdoor environments, virtual environments were modeled in the simulator, and sub-

sequent simulation yielded datasets that could be used for testing. Figure 5.5 shows

waypoints being generated for an example point cloud: the data was captured by simply

yawing the first hardware revision of the UAV by 180◦ in the simulator and is processed

using the CPU-based approach described in Adler et al. (2012). Results pictured in

figure 5.5, column c) show that Next Best Views are generated at safe locations and

close to the frontier between known and unknown environment. The insufficient com-

putational power of the CPU restricts real-time generation to few particles with large

sizes, so the process is unlikely to detect gaps high in the house’s wall. This reliance on

particle count and size is why we denote the approach to be resolution-complete.

The complexity of the virtual environment was subsequently increased by adding more

architecture (five houses) and vegetation (seven different kinds of trees) to form a small

village. To introduce more variation into the simulated environment, the position

and orientation of individual models was largely randomized on simulator startup,

effectively creating many different test environments. Furthermore, each simulation did

not generate waypoints from a single point cloud. Instead, waypoint generation was

restarted with the current point cloud whenever all previously generated waypoints had

been passed.

Figure 5.6 shows an example of a mapping mission executed in the simulator, still

using the CPU-based process. The sequence clearly shows how the UAV follows each

iteration’s set of waypoints, growing the map inside the bounding box. Once no further

gaps can be found, the particle size is decreased and the process restarted in figure 5.6

e). Reordering waypoints into the shortest path often yields ring-like trajectories (seen

in Subfigures a) to c)), which can be followed by both multi-rotor or even fixed-wing

aircraft in an energy-efficient manner.

To assess the path’s mapping-efficiency, the number of points stored in the point cloud

for a given flight-time was established as the primary metric. In the CPU-based version,

an octree-implementation allows setting a maximum point-density. For the point cloud

storing the surface-reconstruction data, the minimum distance between neighboring

points was set to 0.1m, so that measuring the number of points stored over time is

equivalent to measuring the scanned surface area over time. Tests were executed in a

simulator, with the platform’s linear velocity limited to 2.8m/s during all trials. While

the scanned points were streamed to the base station, waypoints were generated and

114

5.3 Generated waypoints and paths

(a) (b) (c)

Figure 5.5: CPU-based Next Best View generation, processing data from simulation. The
three columns show a static point cloud from three different viewpoints, being subjected
to simulated particles in order to find gaps. a) depicts the initial setup: the bounding
volume and sample geometry are drawn in blue, while the point cloud is drawn in grey. b)
shows sampling geometry interacting with the point cloud. c) shows how the last collision
positions of detection spheres are converted to waypoint candidates after having reached
the bounding volume’s bottom plane.

statistics about flight-time and point cloud sizes were logged.

Graph 5.7 shows results of using a simple, manually planned and collision-free scanline-

based exploration with trajectories similar to those proposed in Xu et al. (2011) for

optimal complete terrain coverage. The maps resulting from scanning along these

trajectories can be seen in Fig. 5.8(a) and 5.8(b) for four and six equidistant passes,

respectively. As expected, flying more scanlines in the same area results in more points

scanned, albeit with a slightly slower rate.

In comparison, the graph’s red line shows the efficiency of mapping when using way-

points generated using particle simulation: because the point cloud needs an initial

population for our algorithm to start, the scanning rate stagnates shortly after launch

during the first phase of waypoint generation, then reaches comparable speeds as the

vehicle starts passing waypoints. In this phase of flight, the automatically generated

trajectory is as efficient as a manually planned, collision-free optimal path, with the

115

Chapter 5 Experiments and Results

obvious advantage of having been generated automatically. Compared to exploring in

swath-based fashion, the true strength in this method lies in the fact that on-line re-

planning occurs such that when no more waypoints can be generated, gradually smaller

sampling geometry is used to improve on ever smaller deficiencies in the reconstructed

surface.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: A simulated mapping mission seen from the top, showing how multiple
iterations of waypoint generation lead to continuous scanning at the border between known
and unknown environment. Red waypoints are enqueued for scanning, green waypoints
have been passed. In figures a) to d), sample spheres with r = 3m have been used to
quickly explore the landscape. In figure e), sampling geometry of reduced size (r = 1.5m)
has allowed finding smaller holes in previously scanned surfaces. Figure f) shows all visited
waypoints and the resulting coverage.

Due to constraints imposed by German regulations and insurance conditions, real-

world flights were confined to the campus of the Department of Computer Science at the

University of Hamburg. Nevertheless, the campus features a wide variety of architecture

(building sizes range from sheds to six-story buildings) and vegetation (plain fields,

low vegetation and high trees). The robustness of motion control and localization

was tested during more than 50 flights. The suitability of generated waypoints was

tested extensively in simulation, then confirmed during more than 10 flights. The

successful navigation of generated waypoints is also presented in both aforementioned

videos.

Further results are presented using an example data set that was generated during a

real flight over the campus. Both the campus and the resulting point cloud (colored

according to height) are displayed in figure 5.10. After about 100 seconds of flight

within a bounding box of 64*64*32 meters, motion planning is executed: Figure 5.11(a)

116

5.3 Generated waypoints and paths

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 100 200 300 400 500 600

P
o
i
n
t
c
l
o
u
d

S
i
z
e

(
p
o
i
n
t
s
)

Elapsed Time (s)

4 straight passes
5 straight passes
6 straight passes
7 straight passes
8 straight passes

Our algorithm

Figure 5.7: Point cloud size vs. flight-time using several waypoint generators. Vertical
lines are drawn on every round of waypoint generation using our algorithm, executed after
all previously generated waypoints have been passed.

shows 32k particles of 0.5m radius being poured over 36k colliders of the downsampled

point cloud. After five seconds, the particle simulation is stopped and the resulting

values in the grid of information gain are presented in figure 5.11(b). One hundred

cells containing the highest information gain are converted into waypoint candidates

with 3D world-positions. Candidates closer than 5.0m are merged and passed to the

path planner.

Next, the path planner builds a 3D occupancy grid and dilates it as described in section

4.3 and depicted in figure 5.12(a). A collision-free path from start to goal cell is found

and passed to the rover program in the form of waypoints, (shown in figure 5.12(b)).

Using an NVIDIA GeForce GTX 670, processing the grid of information gain to a

set of ordered waypoints takes between 500ms and 600ms (using an occupancy grid of

323 cells). While using a finer grid is possible, the UAV’s diameter of more than 1m

(including propellers) make a cell-size of 23m seem sensible.

The path planner is based on a simple grid-based search-algorithm, as the underly-

ing parallel architecture makes approaches like best-first search (like e.g. A*) have less

impact on performance, especially when the number of grid cells to search in each itera-

tion does not exceed the number of available multiprocessors. As most geometry-based

algorithms, the planner is resolution-complete, meaning that if a path exists, it will be

117

Chapter 5 Experiments and Results

(a) 4 passes (b) 6 passes

Figure 5.8: Point clouds resulting from straight scanline passes. Note the unscanned
surface in the bottom center shadowed by a roof.

(a) (b) (c)

Figure 5.9: Grid of information gain with 256∗32∗256 cells, projected as in figure 4.9(f).
Maximum information gain is shown normalized using a heat map visualization a) after
400, b) after 700 and c) after 1000 simulation steps.

found given the grid’s resolution is sufficiently fine. Because path-planning exploits the

grid-cell’s size to introduce a safety margin, false negatives are theoretically possible,

but practically result from the compromise between reachability and safety.

Because the particle simulation causes the information gain in GIG’s cells to steadily

increase during simulation, termination criteria are non-apparent: a trade-off must be

found between short runtimes for rapid generation of results and longer runtimes that

allow a better sampling of the point cloud’s gaps. Figure 5.9 presents the normalized

information gain values of the point cloud depicted in figure 4.9(f) at different times into

the particle simulation. While a visible difference exists between the information gain

values at 400 and 700 steps into the simulation (a) and b)), the normalized information

gain remains almost constant during the following simulation steps (between b) and c)).

Thus, for the targeted application on UAVs, using a bounding box b with a size of 643m,

16k particles (p ∈ P) with a radius of 0.25m and 64k colliders (c ∈ C) allows generation

of multiple NBVs in less than 3s using a NVIDIA GTX 670 graphics card.

118

5.3 Generated waypoints and paths

(a)

(b)

Figure 5.10: (a): Part of the campus of the Department of Computer Science at the
University of Hamburg. (b) Point cloud resulting from about 100 seconds of flight on
campus, aligned with the viewpoint of above photograph.

119

Chapter 5 Experiments and Results

(a)

(b)

Figure 5.11: (a): GPU-based particle simulation in progress, colliding particles with
sparse collider cloud to test the latter for watertightness. (b): Visualization of the grid of
information gain. More saturated red indicates cells with higher information gain, which
are more likely to be processed into waypoints.

120

5.3 Generated waypoints and paths

(a)

(b)

Figure 5.12: (a): Shows the occupancy grid from the opposite side, with 323 cells su-
perimposed over the dense point cloud. Occupied cells are dark gray, dilated cells in light
gray. (b): Grid cells containing high information gain values were converted to waypoint
candidates. Afterwards, close candidates were merged and a collision-free trajectory was
generated from the vehicle’s position (in the center) to the best candidate.

121

Chapter 5 Experiments and Results

5.4 Success and Failure Analysis of Waypoint Generation,

Path Planning and Motion Control

Testing point clouds for watertightness requires correctly tuned parameters. The ratio

between point cloud density and particle size must be considered, which is discussed

in section 4.2.3 and presented in figure 4.10. Since these parameters’ interdependency

can be expressed by a simple, closed-loop equation, they can be set appropriately in

software after determining bounding-box b of the environment to be mapped, as well as

the graphics card’s memory capacity, memory bandwidth and GPU clock speed. The

process also relies on sensible initial particle placement, meaning that the bounding

box b must completely contain the point cloud to be tested when particles are placed

at the top. Interior NBV problems have not been tested, but would require particles

to be spawned within the point cloud, not above.

Difficult scenarios like gaps in high walls or below carports can remain undetected

when a low number of particles prevents the simulation from filling the point cloud

to a sufficient height or when the particle-size makes reaching gaps impossible. This

can be rectified by initializing the simulation with large particles and restarting it with

decreasing size when no waypoints can be generated. This is a common workflow for

resolution-complete, probabilistic techniques.

Path-planning is performed using a classic occupancy grid. The UAV cannot be com-

manded to collide with geometry in occupied cells because the cell’s sides are longer than

the UAVs diameter, and occupied cells are dilated before path-planning is executed.

However, collisions can occur in highly dynamic environments: since the occupancy grid

is created from the pointcloud and checked for collisions every two seconds, fast-moving

objects could block the UAVs path and cause an impact before collision avoidance has

detected the condition. The combined field-of-view of the platform’s laser range finders

is depicted in figure 3.4(b). As can be seen, only parts of the environment can be

sensed. Even though this disadvantage is largely compensated by the platform’s own

motion, small geometry can remain undetected. This problem was detected early in

the design of the platform, and an attempt was made to improve the field-of-view using

a single laserscanner (see figure 3.2(b)). Leveraging the UAVs unique maneuverabil-

ity, a constant yawing motion during flight would have resulted in a FoV covering the

full sphere. Unfortunately, the navigation system’s Kalman filter turned out unable to

produce accurate localization when exposed to this flight pattern. In conclusion, the

UAV’s collision avoidance must work with incomplete data, and thus, cannot guarantee

a collision free flight.

The combination of the high-level motion controller’s low update frequency (10Hz) and

a communication latency of up to 40ms to the low-level flight-controller, navigating in

tight spaces can become risky when flying at high velocities or strong wind gusts. For

this reason, the maximum translational velocity was capped to 2m/s during experi-

ments, which proved to be a good fit for the resulting point density at higher altitudes.

122

5.5 Scalability of Waypoint Generation

Optimizing towards a faster scanning procedure would thus require more aggressive

maneuvering (see figure 3.5 for the consequences in energy consumption) and faster

laser scanners.

5.5 Scalability of Waypoint Generation

This section analyses the runtime behavior of the presented waypoint generation ap-

proach in relation to the problem size. As explained in section 4.2.4, the computations

used to create waypoints are performed entirely on the GPU. Thus, memory require-

ments on the graphics card are one upper bound on the problem size. Today, discrete

graphics cards with less than 1GB of memory are hard to find, and while 2GB is the

most common capacity, up to 12GB are available on high-end cards.

The amount of memory required on the graphics card is determined by

• the number of points in the collider cloud (NC)

• the number of particles (NP)

• the number of cells (NGSHT
) in both spatial hash tables

• the number of cells for the global grid of information gain (NGIG
)

Table 5.2 lists the respective data structures, data types and their size in more detail.

Memory requirements for particles and colliders grow linearly with their number. How-

ever, increasing the resolution of the grid structures for particle/collider hash tables and

information gain requires O(r3) space.

As an example, when exploring a bounding box with a volume of 64m3 and generating

waypoints for a point cloud with 64k points using 128k particles, two spatial hash tables

are used for particles and colliders. Each table hosts NGSHT
= 128∗64∗128 cells, while

the computed information gain is stored in a grid with NGIG
= 256∗32∗256 cells. This

setup results in a total memory requirement of about 26.5 Mb.

The previous section shows that memory requirements are almost negligible for modern

hardware.

In practice, the problem size is limited by the algorithms runtimes, and this condition

is aggravated by real-time requirements. Figure 5.13 shows the time required for one it-

eration of particle simulation in relation to problem size and underlying hardware.

Generation of waypoints from the grid of information gain, updating the occupancy

grid for collision avoidance and using it to plan paths is only done once every couple

seconds and takes less than one second. Particle simulation, however, is executed many

thousand times per flight, so the following analysis of runtime behavior shall focus on

this phase exclusively.

123

Chapter 5 Experiments and Results

Table 5.2: Memory allocated in GPU memory space

Data Type Size Count

Pvel float4 16 bytes NP

Pcol float4 16 bytes NP

Ppos float4 16 bytes NP

Pindex uint 4 bytes NP

Pcellhash uint 4 bytes NP

CellF irstP uint 4 bytes NGSHT

CellLastP uint 4 bytes NGSHT

Cpos float4 16 bytes NC

Cindex uint 4 bytes NC

Ccellhash uint 4 bytes NC

CellF irstC uint 4 bytes NGSHT

CellLastC uint 4 bytes NGSHT

GIG char 1 byte NGIG

1

10

100

1000

10000

100000

1k 2k 4k 8k 16k 32k 64k 128k 256k

S
im

u
la
ti
o
n
st
ep

d
u
ra
ti
on

(m
s)

Number of Particles

Intel Xeon E3-1245 (single core)
NVIDIA Quadro 2000
NVIDIA GTX 670

Figure 5.13: This graph shows the maximum time required for a single time step of the
simulation containing 16k colliders against different numbers of particles. Visualization
was disabled in all tests, note the logarithmic scale of the ordinate axis. The collision
stage took 89.1% of the shader-processor’s time, particle-system integration only 0.6%.
The runtime of the proof-of-concept implementation for the CPU is up to three orders of
magnitude longer than those of the GPU-based implementations.

124

5.5 Scalability of Waypoint Generation

Adler et al. (2012) describes the CPU-based implementation for particle simulation

and also provides quantitative results by comparing the scanned surface over time

using the algorithm against results obtained using scan-line passes. The CPU-based

implementation was tested on an Intel Xeon E3-1245 CPU clocked at 3.30 GHz. It is an

unoptimized, single-threaded version which delegates collision detection and handling

to the Bullet Physics library. Afterwards, it queries for collisions that occurred during

processing in order to manage a structure similar to Pcol. Activating visualization causes

further slowdowns, as usage of OpenGL immediate mode requires that all geometry is

re-uploaded to the device for every frame. As shown in figure 5.13, testing a point cloud

with 10k points for watertightness using 1k to 64k particles (without visualization)

required between 0.7 and 44 seconds for each simulation step.

The GPU implementation was tested on a NVIDIA Quadro 2000 graphics card with 192

CUDA fermi-cores clocked at 625 MHz as well as a NVIDIA GTX 670 card, providing

1344 CUDA Kepler-cores running at a clock speed of 980 MHz. It is up to three orders

of magnitude faster, taking between 2 and 12 ms. This is because integration of motion,

collision detection and handling as well as point cloud visualization using OpenGL core

profile are very suitable for processing on Single Instruction Multiple Data (SIMD)

architectures.

Figure 5.14 presents the runtime of the particle simulation algorithm described in sec-

tion 4.2.4, as captured by NVIDIA’s Visual Profiler.

125

C
h
a
p
t
e
r
5

E
x
p
e
r
im

e
n
t
s
a
n
d

R
e
s
u
lt

s

Figure 5.14: A timeline showing a single iteration of the particle simulation on a NVIDIA GeForce 670 GPU, generated by NVIDIA Visual
Profiler. The kernels are ordered from top to bottom in order of execution and can be mapped intuitively to the steps of the algorithm presented
in section 4.2.4. Data was captured using an unoptimized debug build, so absolute runtimes are not comparable to those stated in figure 5.13.
Instead, the timeline shall give an overview of the relative kernel runtimes. The graph strongly suggests that future optimization focus on
collision-detection and -handling as well as sorting.

126

5.5 Scalability of Waypoint Generation

Below the “Compute”-entry, every row of the timeline represents a specific kernel run-

ning on the GPU. Gaps between kernel launches are caused by host-initiated GPU

management operations: mostly, these are memory (un)allocations on the device or

querying the device’s capabilities for optimum algorithm- and gridsize-selection.

The first kernel, integrateSystem, is described in section 4.2.4, Algorithm 2, lines 27-40.

Processing of every particle yields a simple O(n) time complexity. Memory load and

store operations always refer to the particle’s indices and are executed synchronously

by all running kernels. Thus, memory access is coalesced, allowing the kernel launch to

finish in far less than one percent of the whole iteration’s runtime. Scattered load/stores

are only caused when particles hit the bounding box’s floor, which is comparably

rare.

Kernel computeMappingFromGridcellToParticle (defined in Algorithm 1, lines 2-5)

translates to a coalesced reading of particles and two coalesced writes, explaining the

time-efficiency of O(n) in similar manner.

Radix sort (invoked in line 6) is delegated to the thrust library’s implementation, which

splits up the workload into multiple kernel launches, accounting for all rows labeled

thrust::system::cuda::detail::.... Adding up the single radix kernel’s runtimes does not

indicate long execution times. However, the preceding setup-time (shown as a long

gap before the first launch of a thrust-kernel) is spent querying the GPUs capabilities

and allocating memory. After sorting, almost the same amount of time is spent freeing

the previously allocated memory. Performing these steps in every iteration of the

simulation is not conceptually required and incurs a rather large runtime cost. As is

visible in the “Compute”-row, memory allocations are also interleaved between sorting-

kernel launches, so that sorting effectively does require a bulk amount of time and is

the second best candidate for optimization.

The task handled by the kernel carrying the unwieldy name sortParticlePosAndVelAc-

cordingToGridCellAndFillCellStartAndEndArrays implements Algorithm 1, lines 32-

42. It uses shared memory infrastructure to reduce originally scattered into coalesced

memory accesses. Doing so, the kernel finishes in negligible O(n) time.

The last kernel in the iteration is responsible for detecting and handling collisions.

Although collision-detection between particles/particles and particles/colliders can be-

come O(n2) in the worst case, this phase scales far better than that in practice. At

first, all threads perform a quick, coalesced read of the respective particle’s position.

Next, threads must query 26 cells in neighboring 3D-space, which leads to as many

reads of the previously generated lookup tables. Here, optimized memory locality is

of absolute importance, because scattered accesses often cause cache misses, incurring

high latencies from DRAM read operations. Worse, if particles are found in those cells,

their position must be read, translating to further potential cache misses. Because

of limitations in the multi-processors’ thread-schedulers, the smallest logical group of

threads (called a warp) always finishes when its last thread has finished. While this

127

Chapter 5 Experiments and Results

did not present a bottleneck in other kernels that feature a fixed control flow, col-

lision detection forces threads to iterate over a variable number of neighbors; some

thread’s particles will have many neighboring particles and colliders, while others will

have none at all. Thus, a warp of threads must always wait for the thread that must

handle the most particle-neighbors and thus, takes the longest amount of time to com-

plete. This symptom is called warp divergence and could only be solved by pre-sorting

the particles according to the number of collisions. However, this would counteract

the pre-sorting of particles implemented in order to optimize memory locality. Global

memory load latency is documented to lie between 400 and 600 cycles (tested in Wong

et al. (2010)), so memory locality is a far more important optimization target than

warp divergence.

In conclusion, the profiling results in figure 5.14 impressively demonstrates that the

particle/particle and particle/collider collisions are by far the most computationally

demanding stages, requiring 90% of the time spent on the streaming multiprocessors;

Waypoint generation is limited by the speed of collision detection.

To improve scalability, collision-detection, waypoint generation, path planning and ob-

stacle avoidance have been designed to work within the constraints of a bounding box

b. When environments become too large to be processed on the GPU, b can be reduced,

effectively causing the UAV to map only a part of that environment. When done, b

is shifted to yet unexplored terrain once no more gaps can be found. Currently, the

user can either shift b manually in the base station’s user-interface, or instruct the path

planner to automatically center b at UAV’s current position when it approaches its

boundaries.

128

Chapter 6

Conclusions and Outlook

This dissertation has researched autonomous airborne mapping and presents a solution

that actually works in real, unstructured outdoor environments.

Extensive testing in chapter 5 has shown that the system features a wide environmental

envelope and is capable of producing georeferenced maps in real-time.

In conclusion, the research questions listed in section 1.2 (page 8) can be answered as

follows:

• A light-weight and maneuverable UAV was designed and constructed. A wide

range of sensors was mounted, electrically connected and successfully integrated

into the software architecture (presented in chapter 3).

• A novel algorithm was devised, finding multiple next-best-views for unorganized

point clouds. A proof-of-concept showed the algorithm’s applicability, and exper-

iments with a GPU-based implementation (see section 4.2) proved it to be useful

(experimental results are shown in chapter 5).

• Collision avoidance allows the platform to safely travel through the air, updating

the planned path in case of upcoming collisions (see section 4.3).

• The problem of high-level motion control was solved, enabling safe flights even

in the presence of moderate winds, and adhering to local safety regulations (see

section 4.4).

Finding these answers has allowed the experimental platform to fulfill all five goals set

on page 6.

This thesis has contributed to the state of the art by presenting

• the first unmanned aerial vehicle that streams an accurate point cloud of an

outdoor environment to a ground station in real time for further processing

129

Chapter 6 Conclusions and Outlook

• an approach for waypoint generation through particle simulation, which has en-

abled efficient airborne exploration

• a system that tightly integrates a vehicle with a wide range of sensors and a cus-

tom software stack, successfully performing autonomous, truly three-dimensional

mapping of outdoor environments

In the last five years, the amount of UAV-related robotics research has increased up to

the point that the most important robotics conferences (e.g. IROS, ICRA) have added

additional tracks for presentations of aerial robotics research. Most of this research

focuses on motion control and self-localization and mapping (SLAM) in indoor envi-

ronments, and has brought to bear great advances in these scenarios. By combining

a small-scale UAV with LIDAR and navigation sensors to autonomously map outdoor

environments, this thesis researched an application that was far less popular.

However, this popularity has starting catching up in the more recent past; indeed, many

major manufacturers of geodetic equipment (e.g. Leica, Trimble, Javad) are currently

working on their own LIDAR-based UAVs for mapping of outdoor environments.

6.1 Limitations and open questions

Even though the results presented in the previous chapters are very encouraging, a

few issues remain for the system to become more robust, and thus, a viable option for

airborne mapping in commercial contexts:

• Localization depends entirely on GNSS/Inertial navigation, constraining applica-

bility to open-sky environments. As hinted in chapter 2, SLAM-based techniques

are evolving rapidly, so that this limitation can be expected to fall within the next

years. Although precise georeferencing would have to be sacrificed in SLAM-only

systems, losing the cost and complexity of the GNSS infrastructure (including

reference station) would greatly simplify the system.

• The accuracy of the generated point cloud can not be guaranteed. Depending

on initialization of the system and vibrations from the UAV platform, heading

inaccuracies of up to 20◦ have been observed. Fortunately, new GNSS/Inertial

navigation systems with significantly higher accuracy (more than an order of

magnitude) have become available in the meantime – and cost even less than the

presented device.

• Laws and regulations in most countries still prevent commercial large-scale, air-

borne robotics from becoming wide-spread, even more so for autonomous sys-

tems. In the end, this is an issue of reliability: several reports from both civil and

military sources document that the incidence of catastrophic crashes (“Class-A

mishap rate” in military parlance) of UAVs is still between 5 and 50 times that of

classic piloted aircraft. As long as this status remains, the future of commercial

130

6.2 Future research directions

and personal UAV use looks dim.

• Oftentimes, a point cloud is only an intermediate product. Surface reconstruc-

tion, which converts a point cloud back into (textured) surfaces, is a complex

endeavor in itself, especially when it has to be performed in real-time. Although

this problem might also be a good candidate for a GPU implementation, it was

excluded from this thesis.

6.2 Future research directions

The algorithm for generation of waypoints can be further improved in terms of efficiency.

Because most parts of the execution are memory-bound, the impact of using half-

floats (i.e. binary16 in IEEE 754 parlance) for at least the collider positions can be

researched, as it allows doubling both capacity and perceived memory bandwidth. This

data format has been supported by OpenGL since version 3.0. CUDA supports half

floats merely as a storage format, but conversion to single-precision floats requires only

a single instruction. Especially when applied to outdoor scenarios, a precision in the

centimeter range for the colliders is more than sufficient for gap detection. Particles’

collision positions can also be converted to half-floats, but this is expected to have less

effect, since updates to these values are comparatively rare. Whether particle positions

and velocities can also be stored with lower precision needs to be investigated, as slight

changes in the particle system’s parameters often translate to large changes in the

particles’ behavior.

Another option for even faster execution is the possibility of using multiple graphics

cards. While embarking on this path strongly constrains the choice of mobile hardware

accommodating this setup, a separation of the subtasks performed seems possible. A

promising separation would be to execute particle/particle collisions on one graphics

card and particle/collider positions on the other. After the collision-induced changes

of the particle’s velocities are computed on each card, they would simply have to be

added to the other card’s particle-velocities after each iteration. Because the time spent

visualizing the dense point cloud, particles, colliders and the grid of information gain

is non-negligible (but not included in the results above), another option is to separate

data visualization from data processing: during flight, the dense point cloud could be

rendered (and newly appended points could be reduced) on one graphics card, with

the result being sent directly to the second card, using direct memory transfers to

completely bypass the CPU.

To further optimize memory access patterns, other cell-hashing functions that are ex-

pected to provide better locality than the currently used simple serial hashing function

can be considered. Tests with Hilbert- and Z-Order curves (Morton code) could be

performed, as suggested by Green (2012).

We have successfully developed a planar surface based outdoor mapping system in our

131

Chapter 6 Conclusions and Outlook

previous work Xiao et al. (2013), which is fast, accurate and robust compared to state-

of-the-art algorithms, but not fully autonomous, because a human operator is required

for viewpoint planning. It is therefore interesting to embed the NBV planning algorithm

presented in this thesis into the system for autonomous exploration tasks.

132

References

Adler, B., Xiao, J., and Zhang, J. (2012). Towards Autonomous Airborne Mapping of

Urban Environments. In 2012 IEEE Conference on Multisensor Fusion and Integra-

tion for Intelligent Systems (MFI), pages 77–82.

Adler, B., Xiao, J., and Zhang, J. (2013). Finding Next Best Views for Autonomous

UAV Mapping through GPU-Accelerated Particle Simulation. In 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1056–

1061.

Adler, B., Xiao, J., and Zhang, J. (2014). Autonomous Exploration of Urban Environ-

ments using Unmanned Aerial Vehicles. Journal of Field Robotics, 31(6):912–939.

Adrados, C., Girard, I., Gendner, J.-P., and Janeau, G. (2002). Global Positioning Sys-

tem (GPS) Location Accuracy Improvement due to Selective Availability Removal.

Comptes Rendus Biologies, 325(2):165–170.

Andreasson, H. and Lilienthal, A. J. (2010a). 6d scan registration using depth-

interpolated local image features. Robotics and Autonomous Systems, 58(2):157–165.

Andreasson, H. and Lilienthal, A. J. (2010b). 6D Scan Registration using Depth-

Interpolated Local Image Features. Robotics and Autonomous Systems, 58(2):157–

165.

Angelino, C. V., Baraniello, V. R., and Cicala, L. (2012). UAV Position and Attitude

Estimation using IMU, GNSS and Camera. In 2012 International Conference on

Information Fusion (FUSION), pages 735–742.

Anonymous (2010). Kinect Hacking 105: Full Resolution, Public Domain Images of

the Speckle Pattern. http://www.futurepicture.org/?p=129. [Online; accessed

14-April-2014].

AscTec GmbH (2010). CoreExpress Carrierboard Manual v1.0. Ascending Technologies

GmbH.

133

http://www.futurepicture.org/?p=129

References

ASPRS Board (2003). ASPRS LIDAR Data Exchange Format Standard. The American

Society for Photogrammetry and Remote Sensing.

Besl, P. and McKay, N. D. (1992). A Method for Registration of 3D Shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

Blaer, P. and Allen, P. K. (2007). Data Acquisition and View Planning for 3D Mod-

eling Tasks. In 2007 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 417–422.

Blodow, N., Goron, L. C., Marton, Z.-C., Pangercic, D., Ruhr, T., Tenorth, M., and

Beetz, M. (2011). Autonomous Semantic Mapping for Robots Performing Everyday

Manipulation Tasks in Kitchen Environments. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 4263–4270.

Borenstein, J. and Koren, Y. (1995). Error Eliminating Rapid Ultrasonic Firing for

Mobile Robot Obstacle Avoidance. IEEE Transactions on Robotics and Automation,

11(1):132–138.

Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., and Hertzberg, J. (2008).

Globally Consistent 3D Mapping with Scan Matching. Robotics and Autonomous

Systems, 56(2):130–142.

Bosse, M. and Zlot, R. (2008). Map Matching and Data Association for Large-Scale

Two-Dimensional Laser Scan-based SLAM. The International Journal of Robotics

Research, 27(6):667–691.

Bosse, M. and Zlot, R. (2009). Continuous 3D Scan-Matching with a spinning 2D Laser.

In 2009 IEEE International Conference on Robotics and Automation (ICRA), pages

4312–4319.

Bosse, M., Zlot, R., and Flick, P. (2012). Zebedee: Design of a Spring-Mounted 3-D

Range Sensor with Application to Mobile Mapping. IEEE Transactions on Robotics,

28(5):1104–1119.

Bryson, M. and Sukkarieh, S. (2006). Active Airborne Localisation and Exploration in

Unknown Environments using Inertial SLAM. In IEEE Aerospace Conference, page

13 pp.

Bryson, M. and Sukkarieh, S. (2008). Observability Analysis and Active Control for Air-

borne SLAM. IEEE Transactions on Aerospace and Electronic Systems, 44(1):261–

280.

Buss, H. and Busker, I. (2012). Mikrokopter Serial Protocol. http://www.

mikrokopter.de/ucwiki/en/SerialProtocol/. [Online; accessed 12-October-

2012].

134

http://www.mikrokopter.de/ucwiki/en/SerialProtocol/
http://www.mikrokopter.de/ucwiki/en/SerialProtocol/

References

Chen, S., Li, Y., Zhang, J., and Wang, W. (2008). Active Sensor Planning for Multiview

Vision Tasks. Springer.

Chen, Y. and Medioni, G. (1991). Object Modeling by Registration of Multiple

Range Images. In 1991 IEEE International Conference on Robotics and Automa-

tion (ICRA), volume 3, pages 2724–2729.

Choset, H. and Nagatani, K. (2001). Topological Simultaneous Localization and Map-

ping (SLAM): Toward Exact Localization Without Explicit Localization. IEEE

Transactions on Robotics and Automation, 17(2):125–137.

Cohen, C. (1996). Attitude Determination. Global Positioning System, Theory and

Applications. In Parkinson, B. W. and Spilker, J. J., editors, Progress in Astronautics

and Aeronautics, volume 164, pages 519–538. AIAA, Washington DC.

Connolly, C. (1985). The Determination of Next Best Views. In 1985 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), volume 2, pages 432–435.

Coumans, E. (2008). Physics Parallelization. In Game Developers Conference 2008,

San Francisco.

Coumans, E. (2013). Bullet Physics Library. http://bulletphysics.org/. [Online;

accessed 19-February-2013].

Demski, P., Mikulski, M., and Koteras, R. (2013). Characterization of Hokuyo UTM-

30LX Laser Range Finder for an Autonomous Mobile Robot. In Nawrat, A., Simek,

K., and Świerniak, A., editors, Advanced Technologies for Intelligent Systems of

National Border Security, volume 440 of Studies in Computational Intelligence, pages

143–153. Springer Berlin Heidelberg.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H., and Csorba,

M. (2001). A Solution to the Simultaneous Localization and Map Building (SLAM)

Problem. IEEE Transactions on Robotics and Automation, 17(3):229–241.

Einhorn, E., Langner, T., Stricker, R., Martin, C., and Gross, H.-M. (2012). MIRA –

Middleware for Robotic Applications. In 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), volume 1, pages 2591–2598, Vilamoura,

Portugal.

Eissfeller, B., Ameres, G., Kropp, V., and Sanroma, D. (2007). Performance of GPS,

GLONASS and Galileo. In 2007 Photogrammetric Week, pages 185–199, Stuttgart.

Elfes, A. (1989). Using Occupancy Grids for Mobile Robot Perception and Navigation.

Computer, 22(6):46–57.

Eling, C., Zeimetz, P., and Kuhlmann, H. (2013). Development of an Instantaneous

GNSS/MEMS Attitude Determination System. GPS Solutions, 17(1):129–138.

135

http://bulletphysics.org/

References

Elseberg, J., Borrmann, D., and Nuchter, A. (2012). 6DOF semi-rigid SLAM for

Mobile Scanning. In 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 1865–1870.

Fairfield, N. (2009). Localization, Mapping, and Planning in 3D Environments. PhD

thesis, The Robotics Institute, Carnegie Mellon University.

Frei, E. and Beutler, G. (1990). Rapid Static OPositioning based on the Fast Ambiguity

Resolution Approach ’FARA’: Theory and First Results. Manuscripta Geodaetica,

15(4):325–356.

Frueh, C. and Zakhor, A. (2001). 3D Model Generation for Cities using Aerial Pho-

tographs and Ground Level Laser Scans. In 2001 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), volume 2, pages II 31–II 38.

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J., and

Gonzalez, J. (2005). Multi-hierarchical Semantic Maps for Mobile Robotics. In

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2278–2283.

Georgiev, A. and Allen, P. K. (2004). Localization Methods for a Mobile Robot in

Urban Environments. 2004 IEEE Transactions on Robotics, 20(5):851–864.

Ghosh, S. K. (2007). Visibility Algorithms in the Plane. Cambridge University Press.

Green, S. (2012). Particle Simulation using CUDA. NVIDIA, Santa Clara, CA, USA.

Hager, J. W., Behensky, J. F., and Drew, B. W. (1989). The Universal Grids: Univer-

sal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS). Fairfax,

Virginia.

Harada, T. (2007). Real-Time Rigid Body Simulation on GPUs. In Nguyen, H., editor,

GPU Gems 3. Addison Wesley, Boston.

Heikkinen, M. (1982). Geschlossene Formeln zur Berechnung Räumlicher Geodätischer

Koordinaten aus Rechtwinkligen Koordinaten. Zeitschrift für Vermessungswesen,

107:207–211.

Holenstein, C., Zlot, R., and Bosse, M. (2011). Watertight Surface Reconstruction

of Caves from 3D Laser Data. In 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3830–3837, San Francisco, CA, USA.

Horn, B. K. P. (1984). Extended gaussian images. Proceedings of the IEEE,

72(12):1671–1686.

Hwang, D.-H., Oh, S. H., Lee, S. J., Park, C., and Rizos, C. (2005). Design of a

Low-Cost Attitude Determination GPS/INS Integrated Navigation System. GPS

Solutions, 9(4):294–311.

136

References

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J.,

Hodges, S., Freeman, D., Davison, A., et al. (2011). KinectFusion: Real-Time 3D

Reconstruction and Interaction using a Moving Depth Camera. In Proceedings of

the 24th annual ACM symposium on User interface software and technology, pages

559–568. ACM.

Johnson, A. (1997). Spin-Images: A Representation for 3-D Surface Matching. PhD

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Joho, D., Stachniss, C., Pfaff, P., and Burgard, W. (2007). Autonomous Exploration

for 3D Map Learning. In Autonome Mobile Systeme 2007, pages 22–28. Springer.

Karney, C. F. (2011). Geodesics on an Ellipsoid of Revolution. arXiv preprint

arXiv:1102.1215.

Karney, C. F. F. (2012). GeographicLib Software Library.

Khopkar, C. D. (1997). Solving the Art Gallery Problem via Genetic Programming. In

Koza, J. R., editor, 1997 Genetic Algorithms and Genetic Programming at Stanford,

pages 110–119. Stanford Bookstore, Stanford, California, 94305-3079 USA.

Kim, D. and Langley, R. B. (2000). GPS Ambiguity Resolution and Validation:

Methodologies, Trends and Issues. In 7th GNSS Workshop, International Sympo-

sium on GPS/GNSS.

Kramer, J., Burrus, N., Herrera, D., Echtler, F., and Parker, M. (2012). Hacking the

Kinect. Apress, New York, NY.

Kumar, S. and Moore, K. B. (2002). The Evolution of Global Positioning System (GPS)

Technology. Journal of Science Education and Technology, 11(1):59–80.

Kümmerle, R., Triebel, R., Pfaff, P., and Burgard, W. (2008). Monte Carlo Localization

in Outdoor Terrains using Multilevel Surface Maps. Journal of Field Robotics, 25(6-

7):346–359.

Lange, I. and Brümmer, B. (2010). Hochfrequente 3D-Windmessdaten vomWettermast

Hamburg. personal message/email. KlimaCampus Hamburg.

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn,

D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M.,

Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998a). The EGM96

Geoid Undulation with Respect to the WGS84 Ellipsoid. In Lemoine et al. (1998b).

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn,

D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M.,

Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R. (1998b). The De-

velopment of the Joint NASA GSFC and the National Imagery and Mapping Agency

(NIMA) Geopotential Model EGM96. Number 206861 in TP-1998. National Aero-

nautics and Space Administration / Goddard Space Flight Center.

137

References

Li, Y., Efatmaneshnik, M., and Dempster, A. (2012). Attitude Determination by

Integration of MEMS Inertial Sensors and GPS for Autonomous Agriculture Appli-

cations. GPS Solutions, 16(1):41–52.

Li, Y. and Murata, M. (2002). New Approach to Attitude Determination using Global

Positioning System Carrier Phase Measurements. Journal of guidance, control, and

dynamics, 25(1):130–136.

Lumpkin, B. (1997). Geometry Activities from many Cultures. J. Weston Walch.

Machmudah, A., Parman, S., and Zainuddin, A. (2010). UAV Bezier Curve Maneuver

Planning using Genetic Algorithm. In Proceedings of the 12th annual conference

companion on Genetic and evolutionary computation, GECCO ’10, pages 2019–2022.

ACM.

Makarenko, A., Williams, S., Bourgault, F., and Durrant-Whyte, H. (2002). An Ex-

periment in Integrated Exploration. In 2002 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), volume 1, pages 534–539.

Merrill, D. and Grimshaw, A. (2011). High Performance and Scalable Radix Sorting:

A Case Study of Implementing Dynamic Parallelism for GPU Computing. Parallel

Processing Letters, 21(02):245–272.

Mertz, C., Koppal, S. J., Sia, S., and Narasimhan, S. G. (2012). A low-power Structured

Light Sensor for Outdoor Scene Reconstruction and Dominant Material Identifica-

tion. In Proceedings of the IEEE Workshop on Projector-Camera Systems (PRO-

CAMS).

Mikrokopter, P. (2013). ROXXY2827-35 Current/Thrust Dataset. http://www.

mikrokopter.de/ucwiki/ROXXY2827-35/. [Online; accessed 2013-10-23].

Mobarhani, A., Nazari, S., Tamjidi, A. H., and Taghirad, H. (2011). Histogram Based

Frontier Exploration. In 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 1128–1133, San Francisco, CA, USA.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). FastSLAM: A

Factored Solution to the Simultaneous Localization and Mapping Problem. In 2002

AAAI National Conference on Artificial Intelligence, Edmonton, Canada.

Moravec, H. P. and Elfes, A. (1985). High Resolution Maps from Wide Angle Sonar. In

1985 IEEE International Conference on Robotics and Automation (ICRA), volume 2,

pages 116–121.

Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J.,

Molyneaux, D., Hodges, S., Kim, D., and Fitzgibbon, A. (2011). KinectFusion: Real-

time dense Surface Mapping and Tracking. In 2011 IEEE International Symposium

on Mixed and Augmented Reality (ISMAR), pages 127–136, Basel, Switzerland.

138

http://www.mikrokopter.de/ucwiki/ROXXY2827-35/
http://www.mikrokopter.de/ucwiki/ROXXY2827-35/

References

Nørretranders, T. (1999). The User Illusion: Cutting Consciousness Down to Size.

Penguin Press Science.

Nüchter, A. and Hertzberg, J. (2008). Towards Semantic Maps for Mobile Robots.

Robotics and Autonomous Systems, 56(11):915–926.

Nüchter, A., Lingemann, K., and Hertzberg, J. (2006). Extracting Drivable Surfaces

in Outdoor 6D SLAM. In The 37nd International Symposium on Robotics (ISR’06).

Nüchter, A., Lingemann, K., and Hertzberg, J. (2007a). Cached k-d Tree Search for ICP

Algorithms. In 2007 International Conference on 3-D Digital Imaging and Modeling

(3DIM), pages 419–426.

Nüchter, A., Lingemann, K., Hertzberg, J., and Surmann, H. (2007b). 6D SLAM – 3D

Mapping Outdoor Environments. Journal of Field Robotics, 24(8-9):699–722.

Null, B. D. and Sinzinger, E. D. (2006). Next Best View Algorithms for Interior and

Exterior Model Acquisition. In 2006 International Conference on Advances in Visual

Computing, ISVC’06, pages 668–677, Berlin, Heidelberg. Springer-Verlag.

Olson, C. (2000). Probabilistic self-localization for mobile robots. IEEE Transactions

on Robotics and Automation, 16(1):55–66.

O’Rourke, J. (1987). Art Gallery Theorems and Algorithms. Oxford University Press,

New York, NY.

Pangercic, D., Pitzer, B., Tenorth, M., and Beetz, M. (2012). Semantic Object Maps

for Robotic Housework-Representation, Acquisition and Use. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 4644–

4651.

Pathak, K., Borrmann, D., Elseberg, J., Vaskevicius, N., Birk, A., and Nuchter, A.

(2010). Evaluation of the robustness of planar-patches based 3d-registration using

marker-based ground-truth in an outdoor urban scenario. In Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 5725–5730.

IEEE.

Pfister, S. T., Roumeliotis, S. I., and Burdick, J. W. (2003). Weighted Line Fitting

Algorithms for Mobile Robot Map Building and Efficient Data Representation. In

2003 IEEE International Conference on Robotics and Automation (ICRA), volume 1,

pages 1304–1311.

Potthast, C. and Sukhatme, G. S. (2014). A Probabilistic Framework for Next Best

View Estimation in a Cluttered Environment. Journal of Visual Communication and

Image Representation, 25(1):148–164.

Remolina, E. and Kuipers, B. (2004). Towards a General Theory of Topological Maps.

Artificial Intelligence, 152(1):47–104.

139

References

Rizos, C. and Han, S. (2003). Reference Station Network Based RTK Systems – Con-

cepts and Progress. Wuhan University Journal of Natural Sciences, 8(2):566–574.

Roberts, J. M., Corke, P. I., and Buskey, G. (2002). Low-Cost Flight Control System for

a Small Autonomous Helicopter. In 2002 Australasian Conference on Robotics and

Automation, volume 1, pages 71–76. Australian Robotics Automation Association.

Rusu, R., Marton, Z., Blodow, N., Holzbach, A., and Beetz, M. (2009a). Model-

Based and Learned Semantic Object Labeling in 3D Point Cloud Maps of Kitchen

Environments. In 2009 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3601–3608.

Rusu, R. B., Blodow, N., and Beetz, M. (2009b). Fast point feature histograms (fpfh)

for 3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE International

Conference on, pages 3212–3217. IEEE.

Sa, I. and Corke, P. (2011). Estimation and Control for an Open-Source Quadcopter.

In 2011 Australasian Conference on Robotics and Automation.

Salvi, J., Fernandez, S., Pribanic, T., and Llado, X. (2010). A State of the Art in

Structured Light Patterns for Surface Profilometry. Pattern Recognition, 43(8):2666–

2680.

Schuh, H. and Kutterer, H. (2013). The Global Geodetic Observing System (GGOS)

of the International Association of Geodesy (IAG). In GGOS - RAS/ROSKOSMOS

Meeting, Vienna.

Schwager, M., Julian, B. J., and Rus, D. (2009). Optimal Coverage for Multiple Hover-

ing Robots with Downward Facing Cameras. In 2009 IEEE International Conference

on Robotics and Automation (ICRA), pages 3515–3522.

Scott, W. R., Roth, G., and Rivest, J.-F. (2003). View Planning for Automated Three-

dimensional Object Reconstruction and Inspection. ACM Comput. Surv., 35(1):64–

96.

Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-ICP. In Proceedings of

Robotics: Science and Systems, Seattle, USA.

Sengupta, S., Sturgess, P., Ladicky, L., and Torr, P. H. (2012). Automatic Dense Visual

Semantic Mapping from Street-Level Imagery. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 857–862.

Septentrio, S. N. (2012). SBF Reference Guide. Septentrio Satellite Navigation NV/SA,

Greenhill Campus, Interleuvenlaan 15G, 3001 Leuven, Belgium, 1.14.0 edition.

Shade, R. and Newman, P. (2011). Choosing Where To Go: Complete 3D Exploration

with Stereo. In 2011 IEEE International Conference on Robotics and Automation

(ICRA), pages 2806–2811, Shanghai, China.

140

References

Singh, L. and Fuller, J. (2001). Trajectory Generation for a UAV in Urban Terrain,

using Nonlinear MPC. In 2001 American Control Conference, volume 3, pages 2301–

2308.

Standage, T. (2002). The Turk: The Life and Times of the Famous Eighteenth-Century

Chess-Playing Machine. Berkley Trade.

Strand, M. and Dillmann, R. (2010). Grid Based Next Best View Planning for

an Autonomous Robot in Indoor Environments. In 2010 International Workshop

on Robotics for Risky Interventions and Environmental Surveillance-Maintenance,

RISE’2010, Sheffield, UK.

Thrun, S., Burgard, W., and Fox, D. (2000). A real-time Algorithm for Mobile Robot

Mapping with Applications to Multi-Robot and 3D Mapping. In 2000 IEEE Inter-

national Conference on Robotics and Automation (ICRA), volume 1, pages 321–328.

Thrun, S., Burgard, W., Fox, D., Hexmoor, H., and Mataric, M. (1998). A Probabilistic

Approach to Concurrent Mapping and Localization for Mobile Robots. In Machine

Learning, pages 29–53.

Thrun, S. and Montemerlo, M. (2006). The Graph SLAM Algorithm with Applications

to Large-Scale Mapping of Urban Structures. The International Journal of Robotics

Research, 25(5-6):403–429.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P.,

Gale, J., Halpenny, M., Hoffmann, G., et al. (2006). Stanley: The Robot that won

the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692.

Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-Level Surface Maps for Outdoor

Terrain Mapping and Loop Closing. In 2006 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 2276–2282.

van der Hoeven, A., Hanssen, R. F., and Ambrosius, B. (2002). Tropospheric Delay

Estimation and Analysis using GPS and SAR Interferometry. Physics and Chemistry

of the Earth, Parts A/B/C, 27(4):385–390.

Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. (2011). A survey on shape

correspondence. In Computer Graphics Forum, volume 30, pages 1681–1707. Wiley

Online Library.

Velodyne Lidar (2013). Velodyne Presents Successful Implementation of HDL-32E

LiDAR on UAV at sUSB Expo in San Francisco. http://www.prweb.com/releases/

2013/7/prweb10963826.htm. [Online; accessed 28-July-2013].

Vermeille, H. (2002). Direct Transformation from Geocentric Coordinates to Geodetic

Coordinates. Journal of Geodesy, 76(8):451–454.

141

http://www.prweb.com/releases/2013/7/prweb10963826.htm
http://www.prweb.com/releases/2013/7/prweb10963826.htm

References

Whaite, P. and Ferrie, F. (1997). Autonomous Exploration: Driven by Uncertainty.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3):193–205.

Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., and Moshovos, A. (2010).

Demystifying GPU Microarchitecture through Microbenchmarking. In 2010 IEEE

International Symposium on Performance Analysis of Systems Software (ISPASS),

pages 235–246.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010). Oc-

toMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic

Systems. In 2010 International Conference on Robotics and Automation (ICRA),

Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation,

Anchorage, Alaska.

Xiao, J., Adler, B., Zhang, H., and Zhang, J. (2013). Planar Segments Based 3D Point

Cloud Registration in Outdoor Environments. Journal of Field Robotics, 30(4):552–

582.

Xsens Technologies B.V. (2009). MTi and MTx User Manual and Technical Documen-

tation. Xsens Technologies B.V.

Xu, A., Viriyasuthee, C., and Rekleitis, I. (2011). Optimal Complete Terrain Cover-

age using an Unmanned Aerial Vehicle. In 2011 IEEE International Conference on

Robotics and Automation (ICRA), pages 2513–2519.

Yamauchi, B. (1998). Frontier-Based Exploration using Multiple Robots. In Agents,

pages 47–53.

Yang, Y. and Farrell, J. A. (2001). Fast Ambiguity Resolution for GPS/IMU Attitude

Determination. In Proceedings of the 14th International Technical Meeting of the

Satellite Division of The Institute of Navigation (ION GPS 2001), pages 2990–2997.

Zhang, L., Curless, B., and Seitz, S. M. (2002). Rapid Shape Acquisition using Color

Structured Light and Multi-Pass Dynamic Programming. In 2002 International Sym-

posium on 3D Data Processing Visualization and Transmission, pages 24–36.

Zhao, H. and Shibasaki, R. (2003). Reconstructing a Textured CAD Model of an Urban

Environment using Vehicle-borne Laser Range Scanners and Line Cameras. Machine

Vision and Applications, 14(1):35–41.

142

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertations-

schrift selbst verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

Hamburg, den 19. November 2014

Unterschrift

	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Research questions and contributions
	1.3 Structure of the Thesis
	1.4 Prior Publications and Research Collaboration

	2 State of the Art in Autonomous Exploration
	2.1 Unmanned Aerial Vehicles
	2.2 Range Sensing
	2.3 3D Scanning, Registration and Self-Localization
	2.3.1 Static scanning
	2.3.2 Mobile scanning

	2.4 Map representation
	2.5 Next Best View Planning
	2.6 Autonomous exploration
	2.7 Summary

	3 Experimental Platform: Concept and Architecture
	3.1 Hardware
	3.1.1 Unmanned Aerial Vehicle
	3.1.2 On-Board computing
	3.1.3 Navigation System
	3.1.4 LIDAR sensors
	3.1.5 Electromagnetic interference

	3.2 Software
	3.2.1 Simulator
	3.2.2 Base Station
	3.2.3 Rover
	3.2.4 Wireless Communication

	4 Experimental Platform: Theory and Methods
	4.1 Georeferencing Measurements
	4.1.1 Spatial Reference Systems
	4.1.2 Algorithms for Transformation and Conversion

	4.2 Computing Next Best Views
	4.2.1 Proof-of-Concept implementation on the CPU
	4.2.2 Handling Point Clouds
	4.2.3 Data Reduction on the GPU
	4.2.4 Testing for watertightness on the GPU

	4.3 Computing Trajectories
	4.4 Motion Control for Autonomous Flight
	4.5 Summary

	5 Experiments and Results
	5.1 Flight Safety and Environmental Conditions
	5.2 Localization Reliability
	5.3 Generated waypoints and paths
	5.4 Success and Failure Analysis of Waypoint Generation, Path Planning and Motion Control
	5.5 Scalability of Waypoint Generation

	6 Conclusions and Outlook
	6.1 Limitations and open questions
	6.2 Future research directions

	References

