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“Per aspera ad astra.“
-Seneca1

1Lucius Annaeus Seneca (c. 4BC-AD65): Roman statesman, philosopher and dramatist [1].





a

Zusammenfassung

Ultralangreichweitige diatomare Moleküle in externen Feldern−Gegenstand dieser Arbeit
ist die theoretische Untersuchung der Quanteneigenschaften von ultralangreichweitigen diatomaren
Molekülen in Anwesenheit externer elektrischer und magnetischer Felder. Im Rahmen dieser Dis-
sertation werden sowohl die elektronischen Born-Oppenheimer Potentialflächen als auch die durch
diese induzierte Dynamik der Rotations- und Vibrationsfreiheitsgrade analysiert. Neben analytis-
chen Näherungen wird hierzu auf etablierte numerischen Diagonalisierungsverfahren zurückgegrif-
fen. Im ersten Teil dieser Arbeit untersuchen wir ultralangreichweitige Rydbergmoleküle. In
Abhängigkeit vom adressierten elektronischen Zustand erhält man Moleküle mit einer spezifischen
Ausrichtung und Orientierung bezüglich der angelegten Felder. Reine elektrische Felder stabil-
isieren die untersuchten Moleküle, welche dann antiparallel zum Feld orientiert sind. Aufgrund der
starken elektrischen Polarisierbarkeit genügen bereits kleine Feldstärken, um verschiedene moleku-
lare Parameter wie den internuklearen Abstand als auch das elektrische Dipolmoment zu variieren.
Für reine Magnetfelder erhält man Moleküle unterschiedlicher Ausrichtungen. Die berechneten
Bindungsenergien verschiedener molekularer Zustände werden mit experimentellen Werten ver-
glichen. Hierbei wird eine gute Übereinstimmung festgestellt. Im Falle parallel oder auch senkrecht
zueinander angeordneter Feldkonfigurationen ergeben sich eine Fülle von Möglichkeiten, molekulare
Eigenschaften wie das elektrische Dipolmoment sowie die spezifische Ausrichtung und Orientierung
als zweiparametrige Größen der angelegten Feldstärken zu steuern. Abschließend präsentieren wir
den neuartigen Bindungszustand eines Grundzustandatoms mit einem sogenannten

”
giant dipole

atom“. Diese Spezies ist von ultralangreichweitigem Charakater und gehört mit zu den größten
bisher bekannten diatomaren Molekülen.

Abstract

Ultralong-range diatomic molecules in external fields − In this thesis, the quantum me-
chanical properties of ultralong-range diatomic molecules in external electric and magnetic fields
are studied theoretically. Both the electronic Born-Oppenheimer potential surfaces and the rovi-
brational dynamics are analyzed. Besides analytic approximations, we apply standard numerical
diagonalization routines. In the first part of the thesis, we study the properties of ultralong-range
Rydberg molecules. Depending on the considered electronic state, one obtains molecular states pos-
sessing a specific degree of alignment and orientation with respect to the applied field. In the case
of pure electric fields, the considered molecules are stabilized and oriented antiparallel to the field.
Because of the high electronic polarizability, already very weak electric field strengths are sufficient
to control molecular properties such as the internuclear separation and the electric dipole moment.
For a pure magnetic field configuration, the molecular states are either aligned or antialigned. The
molecular binding energies are calculated and confirmed to agree well with experimental data. In
the case of parallel and perpendicular electric and magnetic field configurations different molecular
properties such as the electric dipole moment and the molecular alignment and orientation can be
tuned by varying both the electric and magnetic field strengths. Finally, we discuss the properties
of a novel diatomic species where a ground state atom is bound to a giant dipole atom. These
molecular species are of ultralong-range character and belong to the largest diatomic molecules
known so far.
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Introduction

Ultracold physics

In todays physics the variety and diversity of experiments involving ultracold atomic and molecular
gases is huge. Novel cooling techniques such as laser and evaporative cooling allows to routinely
produce ultracold atomic samples in the temperature regime of several nano-Kelvin [6] nowadays.

In the field of ultracold atoms certainly one of the most impressive milestones of this development
was achieved in the year 1995: with the creation of a Bose-Einstein condensate (BEC) in an
ultracold gas of rubidium atoms [7]. In this exotic state, a degenerate quantum gas of bosons
occupies a single macroscopic state if it is cooled under a critical temperature. This effect had been
predicted theoretically already 90 years before in the early years of the twentieth century by Bose
and Einstein [8–10]. Independently, a BEC of sodium gas was obtained within the same year [11].
Finally, the first degenerate quantum gas of ultracold fermions was created only four years later [12].
These breakthroughs have initiated a lot of theoretical as well as experimental studies while more
than a hundred labs with cold atom apparata exist nowadays around the world. Famous examples
for the rich variety of possible applications are the BEC-BCS crossover in a gas of fermionic 6Li [13],
or the Kosterlitz-Thouless phase transition studied within a two-dimensional BEC [14]. Other
experiments have focused on the wave-particle duality by interference experiments [15] and the
creation of an atom laser [16]. In the meanwhile, quantum gases with different species are common
[17] and even BECs of molecules have been achieved [18]. From the theoretical point of view,
the so-called Gross-Pitaevski equation has proven to provide an excellent description of degenerate
quantum gases of ultracold bosonic alkali atoms [19]. A second milestone in the experimental
study of ultracold systems has been the realization of optical lattices [20]. In these setups a huge
variety of many-body models, mostly inspired from solid state physics, can be realized and studied
with a large degree of controllability over the physical parameters and measurement accuracy with
access to several observables. For instance, the exploration of quantum phase transitions and
other important physical phenomena is nowadays performed in an artificial system much larger,
cleaner and more transparent than the solid state equivalent. One of the most famous examples
is the demonstration of the Mott-Insulator to super-fluid phase-transitions of ultracold atoms in
an optical lattice [21] and the study of Pinning transitions of strongly interacting bosons in quasi
one-dimensional gases [22]. One intriguing property of ultracold atomic gases is the possibility to
tailor interactomic interactions, e.g. by using Feshbach resonances [23]. In one dimension and in
the limit of infinitively strong interparticle interaction a so-called Tonks-Gireadeau gas emerges;
in this case the bosons behave like spin-less non-interacting fermions pile up in the single particle
eigenstates of the one-dimensional potential. Such a gas has been realized in a 87Rb ultracold Bose
gas of very low density [24]. Optical, electric and magnetic fields can be used to generate virtually
any external potential. For instance, magnetic fields are used to manipulate atoms possessing a
large magnetic dipole moment, e.g. chromium [25]. Besides the studies and applications in the field
of fundamental physical phenomena, potential technical applications range from highly sensitive
magnetic field detectors [26] to quantum computation and quantum information technologies [27].

Similar to ultracold atoms the field of ultracold molecules is quite young [28–31]. In molecular
physics, molecules with translational temperatures between 10−3-1K are designated as cold, species
with temperatures below 1mK are called ultracold molecules. In the past years, several technical
approaches have been developed in order to create samples of ultracold molecules. However, cooling
molecules is more difficult than cooling atoms. A first attempt is the direct cooling of molecules.
As molecules have a more complex level structure than atoms, a simple extension of laser cooling
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techniques is for most molecular species precluded [32–34]. An alternative approach is to produce
cold molecules from a supersonic beam source or to use a buffer gas cooled molecular sample, where
molecules are cooled by collisions with a cryogenic buffer gas [35–38]. Temperatures reached with
these techniques are in the range of a few mK up to several Kelvin. A more elegant way of producing
samples of ultracold molecules is to form them directly by associating trapped atoms, which can
be cooled down using well established laser and evaporative cooling techniques. Subsequently,
molecules are either formed via photoassociation [39–42] or magnetic Feshbach resonances [43,
44]. In case of the photoassociation technique, two colliding atoms absorb a photon and form
a electronically excited molecule. This approach has been successfully applied to create several
both homo and hetero alkali dimers [45–48]. The second indirect procedure to create ultracold
molecules is to use a Feshbach resonance, which occurs in the low energy scattering processes
between the atomic constituents [49–51]. By tuning through the resonance, i.e. via changing an
external magnetic field in case of paramagnetic scattering particles, the atom pair can be driven
into a bound molecular state [52–55]. These Feshbach molecules are in a highly excited state and
thus they are only weakly bound. However, they can be transferred into their ground state using
a STIRAP technique [56].

Similar to ultracold atoms, the relevance of ultracold molecules could probably be condensed
into two aspects: precision and control. At low temperatures the precision of molecular spec-
troscopy is increased in a twofold manner: The spectroscopic resolution is enhanced by the vanish-
ing Doppler broadening and the interaction times are lengthened in ultracold molecular samples.
High-resolution spectroscopy [57, 58] of molecules is of major importance as it provides access to
several unsolved problems of today’s fundamental physics. For instance, it provides an excellent
tool for the search for the permanent dipole moment of the electron [35], to study the possible time
dependence of fundamental constants [59], or for the search of parity symmetry violation [60]. In
the case of ultracold molecules the possibility of control applies to both the internal and external
degrees of freedom. For instance, by preparing the molecules in a single internal quantum state,
scattering processes providing transitions into a many different target states could be analyzed with
a high accuracy in collision experiments [61,62]. Furthermore, by preparing molecular translational
degrees of freedom in the ultracold regime, one expects to access fundamental insights into how
chemical reaction processes may be precisely ruled by the law of quantum mechanics. In addition,
special molecular species like ultracold polar molecules provide the possibility to research novel
physical regimes which are hardly accessible in degenerate atomic gases. Polar molecules exhibit
an anisotropic, long range dipole-dipole interaction in contrast to atomic samples where isotropic,
short-range interactions are mostly dominant. In addition, the dipole-dipole interaction among po-
lar molecules can be modified by external fields [63–65]. For all these reasons, polar molecules are
of special interest as they open the door to a plethora of various experiments, including quantum
computation, precision measurements, controlled ultracold chemistry and quantum simulations of
condensed matter systems.

Rydberg atoms

In modern atomic and molecular physics Rydberg atoms belong to the most intriguing systems.
The defining property of Rydberg atoms is a highly excited single electron state of high principal
quantum number n. Their size can easily exceed that of ground state atoms by several orders
of magnitude. More precisely, a state with principal quantum number n can be associated with
an electron orbit of n2 Bohr radii around the single positively charged ionic core. Due to this,
atomic states with n ∼ 40 possess electronic orbits that measure ∼ 200 nm in diameter and thus
are more than thousand times larger than the corresponding ground state atoms. Recently, prepa-
ration schemes for Rydberg excitations up to principal quantum numbers of n ∼ 200 have been
achieved [66] and in astrophysical measurements spectra of Rydberg atoms with n ≈ 1000 Rydberg
states have been confirmed [67]. Prepared in such exotic atomic states, the size of the Rydberg
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electron’s orbit easily exceeds into the micrometer and millimeter regime which is the dimension
of macroscopic objects such a viruses, Bose Einstein condensates and fabricated optics and atom
chips [68, 69]. Apart from hydrogen Rydberg states, the energy spectrum of Rydberg atoms de-
pend on the electronic angular momentum. As for high-l states the spectrum is hydrogenic, for low
angular momenta the situation changes due to the finite size of the ionic core. In this case core-
penetration and scattering effects of the Rydberg electron split the low-l states energetic apart from
the hydrogenic manifold by means of the so-called quantum defect [70]. The huge displacement of
the atomic charges leads to large atomic dipole moments scaling as n2. These dipole moments are
the origin of strong mutual dipole-dipole interaction. The most prominent effect of this interaction
is the so-called Rydberg blockade mechanism of excitation [71, 72]. This effect arises from the
competition between laser excitation and strong dipole-dipole interaction among two excited Ry-
dberg atoms. Within a specific length scale, the so-called blockade radius, all additional Rydberg
excitations are strongly suppressed.

Owed to their large size, Rydberg atoms do not only interact much stronger than their ground
state counterparts but behave quite differently when placed in electric and magnetic field configu-
rations. In fact, the Rydberg atom polarizability scales with the principal quantum number as n7,
so the effect of an electric field strongly depends on the considered Rydberg state. As stray electric
fields are hard to eliminate, electric fields are present in most experiments and perturbations due
to these stray fields are often significant and cannot be ignored. However, electric fields are not
always a burden for cold and ultracold Rydberg atom experiments. Electric fields can be useful,
since, for example, they can be used to manipulate the interactions between Rydberg atoms [73].
One approach is to use states with large electric dipole moments which are found, for instance,
in linear Stark states. Furthermore, in the presence of an external electric field, a low-l state of
an alkali Rydberg atom with large quantum defects may mix with nearby manifolds of Rydberg
states, inducing avoided crossings [74]. For instance, recently the state transfer from cesium nS to
Stark states induced by weak electric fields pulse has been investigated [75]. Rydberg atoms are
of particular interest in case of homogeneous magnetic fields: in such systems the external field
cannot be treated perturbatively since both the electrostatic and the magnetic interaction become
comparable in strength. In other words, Rydberg atoms provide the possibility to address regimes
where the competition of the Coulomb and diamagnetic interaction leads to unusual and complex
properties and phenomena. Thus, they serve as a paradigm of a non-separable and non-integrable
system and have major impact on the development of several fields such as nonlinear dynamics
and semi-classics of non-integrable systems [76–78]. Furthermore, highly excited Rydberg states
exposed to crossed electric and magnetic fields constitute a rather exotic atomic species known as
giant dipole states [79]. These states emerge from the finite mass of the ionic Rydberg core and
and the non-separability of the center of mass and electronic motion in the presence of the external
fields. Opposite to the usual Rydberg states, giant dipole states show a large electron-core sepa-
ration and thus possess huge electric dipole moments in the order of 105Debye. Inhomogeneous
fields find their application in ultracold atomic physics for the purpose of trapping and confine-
ment. For instance, Lesanovsky and Schmelcher analyzed the quantum properties of a Rydberg
atom placed in a three-dimensional magnetic quadrupole field, exploiting a one-body approach and
assuming an infinite nuclear mass [80, 81]. Furthermore, Mayle et al. have demonstrated that Ry-
dberg atoms trapped in an Ioffe-Pritchard trap superimposed by a homogeneous electric field can
be created in long-lived circular states exhibiting a permanent electric dipole moment of several
hundred Debye [82, 83].

Rydberg molecules

Besides the enormous and fascinating physics provided by single Rydberg atoms the study of ul-
tracold Rydberg gases has resulted in the discovery of two novel species of molecules. The first one
consists of two bound Rydberg molecules, referred to as a macrodimer. These macrodimers are
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bound by multipolar Coulombic interactions and can have bond lengths in the micrometer regime
due to the long-range nature of Rydberg atom interaction. This is the size of a human blood
cell (∼ 5µm), an object easily resolved using an optical microscope. It has been proposed that
macrodimers could serve as an excellent tool to study vacuum fluctuations, correlations in quantum
gases, quenches in ultracold collisions and Rydberg atom interactions including their contrallability
with applied electric fields. In particular, Rydberg macrodimer possess controllable nonadiabatic
interactions between adiabatic potential energy surfaces. The latter makes them promising candi-
dates for wave packet dynamics. This subject is relevant to recent works on generating systems
that can be described by artificial gauge field potentials, because Rydberg macrodimers could serve
as a test bed for such experiments. However, most of the applications have not been realized yet,
except to some extent of their contrallability with applied electric fields.
The second type of molecular species that has been observed is composed of a Rydberg atom

bound to a ground state atom, found within the Rydberg atom itself. These novel kind of molecular
species have been predicted in 2000 by C.H. Greene et al. where a ground state atom is bound
within the electron cloud of a Rydberg electron. In case the ground state atom perturbs the high-l
hydrogenic manifold, the Rydberg electron’s wave function is a superposition of hydrogenic states
and the corresponding electronic probability density possesses a strongly oscillating structure. As
this oscillation pattern evokes similarities to a trilobite fossil [84], these molecular species have
become known as ”trilobite molecules” in the community of ultracold molecules. In Fig. 1(a)2

the strongly oscillating electronic density distribution of a trilobite is depicted. One of the most
interesting features of the second molecular species is the fact that their binding mechanism can be
described by the properties of the Rydberg electron-ground state atom scattering process. Within
this so-called Fermi-pseudopotential approach the electron-perturber interaction is expanded in a
partial wave series according to the different angular momentum states. In this expansion the
terms are labeled according to their quantum number l, i.e. s-wave term (l = 0), p-wave term
(l = 1), etc. So far this concept has been unknown in the theoretical framework of conventional
molecular bonding. For this reason the trilobite molecules can provide an important window into
a regime where continuum properties of the constituent particle meet those of discrete bound
states. The limit where the continuum electron-atom scattering and diatomic bound states are
simultaneously relevant provides a testing ground for the conceptual framework of quantum defect
theory and low-energy scattering of highly excited states. The trilobite states have been predicted
for pure s-wave electron-perturber interaction. Later, these studies were extended including the p-
wave scattering potential leading to similar ”butterfly” like electronic structures [86] and molecules
bound by internal quantum reflection [87]. Fig. 1(b) shows the electron density of a butterfly state.
Both molecular species are typically formed at internuclear separations from several hundreds to
thousands Bohr radii. Experimentally, the existence of these molecules was verified nine years later
in an gas of ultracold rubidium gas. Until today most experimental works have been performed in
heavy alkali systems, that is, rubidium and cesium [87, 89–93]. The reason to use these particular
atomic species is that heavy alkali atoms yield deeper potentials with more bound states. This is
important because the low-l states with localized vibrational states are most easily observed. The
primary method to observe trilobite molecules is spectroscopy. However, there are several difficulties
in trying to create and measure these molecular species. Firstly, Rydberg states in the region of n ∼
30−45 the binding energies for the rovibrational states in the range of MHz-GHz, which corresponds
to ultracold temperatures. Secondly, the rovibrational states are localized at internuclear distances
that lie outside the bond lengths of typical ground state molecules, and therefore it would be
challenging to use bound-bound transitions to excite high-n molecules trilobite molecules. Thirdly,
the potentially large permanent dipole moment can complicate the measurement because of the
broadening of the rovibrational spectra, which is due to electric stray fields. The observations of
trilobites around n ∼ 30 for rubidium and cesium have been carried out in cold atom traps where
the density has exceeded 1012 cm−3 for Rb(nS) + Rb(5S) or Cs(nS) + Cs(6S) molecular states,

2Reprinted with permission from [85], Copyright (2000) by the American Physical Society.
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Figure 1: Probability densities of high-l perturbed electronic Rydberg states for (a) n = 30, 3Σ trilobite
state [85] and (b) n = 30, 3Σ butterfly state [88].

respectively. Rydberg states of lower n ∼ 7 − 12 rubidium Rydberg states have been observed in
magneto-optical traps [93]. Finally, rubidium trilobite molecules have been measured for states
related to Rb(nD) + Rb(5S) for n = 34 − 40 [94] and n = 41 − 49 [4]. In the experiments using
both cesium and rubidium the molecular association was performed via photoassociation. The
excitation scheme starts with two free atoms and creates a molecule via absorption of two laser
photons. The two-photon processes used for rubidium and cesium transitions are typically detuned
from intermediated P -states, so that the intermediated state is adiabatically eliminated from the
excitation process. The same process can be carried out with a single photon, but the wavelengths
needed are generally difficult to generate using narrow-bandwidth continuous wave lasers. Due to
their ultralong-range character homonuclear trilobite molecules possess amazing properties such as
permanent electric dipole moment (∼ 1Debye) of nS molecular states. This dipole moment results
from the large vibrational constant and a small amount of hybridization of the electronic wave
function [95]. In cesium, line broadening that corresponds to dipole moments of around 30Debye
have been observed for states to the blue side of nS states [92]. Furthermore, polyatomic trilobite
molecules have been created and observed as well [87, 96, 97]. In a recent experiment rubidium
Rydberg states have been excited atomic 100S − 202S states extending the Rydberg electron’s
orbit to the same size as the trapped BEC ensemble. Here, the number of atoms interacting with
the electron vary from 700 up to 30, 000, where the Rydberg blockade radius is much larger than
the extension of the BEC and the electron is strongly coupled to phononic BEC-modes [98].

Objective of this thesis

The objective of this thesis is to analyze the quantum properties of ultralong-range Rydberg
molecules in both external electric and magnetic fields as well as in combined field configurations.
As it has been outlined in the previous section, the study of ultralong-range Rydberg molecules has
provided a plethora of fascinating and pioneering works in the field of ultracold molecular physics.
Similar to Rydberg atoms, trilobite molecules are expected to be highly sensitive to applied external
fields due to their high degree of electronic excitation. The exact understanding of the field-dressed
trilobite molecules is of central importance for several reasons. For instance, trilobite molecules are
considered to be highly polarizable, and therefore large electric and magnetic dipole moments are
expected when they are exposed to even tiny external fields. This would provide the possibility to
created and tune strong dipole-dipole interactions between the field-dressed molecules. In addition
to this, as todays’ trapping technologies rely on optical, magnetic and electric fields, the precise
knowledge of the properties of field-dressed trilobite molecules is essential for trapping applications.
As the existence of electric stray fields in most of experimental setups the understanding of electric
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field effects is considered to be highly relevant. The magnetic field calculations are important for
determining the behavior of the trilobite molecules in magnetic traps.

However, until the beginning of this particular thesis the analysis of trilobite molecules in ex-
ternal fields had remained, more or less, unexplored. One exception is the study of Lesanovsky
et al., where trilobite molecules exposed to a homogeneous magnetic field were analyzed [99]. In
particular, this work focused on the properties on trilobite molecules stemming from the Zee-
man split high-l hydrogenic manifold. As results this study delivered the existence of antialigned
molecules with respect to the magnetic field as well as a tunability of the electric dipole moment
by varying the magnetic field strength. In this particular work the authors assumed a number
of approximations. First, no quantum defect states had been considered. However, in the case
of both electric and magnetic fields the Stark-/Zeeman splitting grow with increasing electric-/
magnetic field strengths. For this reason the spacing to neighbored states in the energetic vicinity
of the considered high-l manifold decreases. This might lead to important effects due to increasing
couplings and hybridization of different Rydberg states. Since we are interested in both high- and
low-l molecular species, we consider, apart from the hydrogenic Rydberg states, the quantum defect
states as well. As indicated above, finite size effects of the ionic Rydberg core lead to deviation
from the pure hydrogenic character of the quantum defect wave functions. In addition, the spin-
orbit coupling of the Rydberg electron is much stronger for low angular momenta and must not be
neglected. Secondly, in the case of the electron-perturber interaction only s-wave scattering was
considered. In a previous study Hamilton et al. [86] already included the p-wave scattering term
in an analysis of field-free trilobite states. As this interaction term possesses a shape resonance
in the considered energy range, it turned out to be essential in order to obtain the appropriate
molecular dynamics. However, it has remained unclear how the inclusion of the p-wave interaction
terms affects the dynamics of field-dressed trilobite molecules. For this reason, in this thesis both
s- and p-wave interactions are considered for the electron-perturber interaction.

In addition to the studies on ultralong-range Rydberg molecules we predict the existence and
discuss the properties of a novel kind of diatomic molecules. In particular, we consider a diatomic
molecule that consists of a neutral ground state atom and a giant dipole state [79]. Effectively,
a giant dipole state can be described as a highly excited Rydberg electron of low kinetic energy
exposed to crossed electric and magnetic fields. For this reason we predict that a ground state
atom is bound to a giant dipole atom by the same electron-perturber interaction that leads to the
existence of ultralong-range diatomic Rydberg molecules.

Structure of the thesis

This thesis is divided into three parts containing ten chapters in total. Each chapter of the thesis
starts with an introductory passage which motivates its content and provides its main highlights.
In brief, the structure and content of the chapters are as follows:

We start in part I by providing the theoretical foundations to this thesis. In particular, in
Chapter 1 we present the basic concepts of Rydberg atoms and their properties. We introduce
the fundamental concept of quantum defect states and discuss how external electric and magnetic
fields affect the energetic structure of electronic Rydberg states.

Chapter 2 is devoted to the central ingredient which is required for the bonding of an highly
excited Rydberg state and a ground state atom. In this chapter we discuss the physics of low-
energy electron-atom interaction which leads to an effective description known today as the Fermi-
pseudopotential. In this approach the exact potential is replaced by a contact interaction potential
which is determined by a single constant parameter, the so-called scattering length. Subsequent
refinements extent the Fermi-pseudopotential approach providing additional partial wave interac-
tion terms as well as energy dependent scattering lengths. In this chapter, both the work of Fermi
and its subsequent refinements are reviewed in detail.

In Chapter 3 we recapitulate some of the basic concepts of standard molecular physics. In
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particular, we discuss the ab-initio Hamiltonian of non-relativistic field free atoms and molecules and
show how a set of formally exact solutions for the molecular problem can be derived. Afterwards,
we present the so-called adiabatic approximation, one of the most extensively used approaches in
modern molecular physics. Beside this we briefly discuss an alternative approximative approach,
the diabatic approximation. Finally, we turn our attention towards the basic properties and the
standard labeling scheme of diatomic electronic states.

Part II starts with the introduction of the working Hamiltonian of this thesis in Chapter 4.
In particular, we consider a ultralong-range diatomic Rydberg molecule in combined electric and
magnetic fields. As the ab-initio Hamiltonian of the field-dressed molecular system possesses an
non-separability of the center of mass and electronic motion the so-called pseudomomentum is
a conserved quantity instead of the total linear and angular momentum. We derive an effective
two-particle problem where the field-dressed Rydberg electron is coupled to the relative nuclear
dynamics via the Fermi-pseudopotential. For the field-free molecular system we provide analytic
solutions for the adiabatic potential curves in first order perturbation theory. In addition, an
universal behavior of the avoided crossings of adiabatic potential energy curves is proven. Finally,
we apply numerical diagonalization routines to study beyond perturbative regimes.

In Chapter 5 we investigate ultralong-range diatomic Rydberg molecules in a homogeneous
electric field. The electric field converts the angular degree of freedom between the electric field
and the internuclear axis from a rotational to a vibrational degree of freedom, thereby rendering
the field-free potential energy curve into a two-dimensional potential energy surface. By varying
the electric field strength both a stabilization process of rovibrational molecular states and control
of the molecular dipole moment in the range of several thousand Debye is provided. In addition,
hybridization of the high-l trilobite state with energetically close quantum defect states provides
the possibility of a two-photon excitation process of electric field-dressed high angular momentum
states.

A study of ultralong-range Rydberg molecules in combined electric and magnetic fields is pre-
sented in Chapter 6. In this chapter we study both the parallel and perpendicular field configu-
ration. However, we first analyze the pure magnetic field configuration taking into account both s-
and p-wave interaction. This analysis is an extension of the work of Lesanovsky et al. [99] where
only s-wave scattering was considered. The additional p-wave interaction causes strong level repul-
sion between adiabatic potential curves leading to a disappearance rovibrational free-field bound
states beyond a critical field strength. In case of combined electric and magnetic field we obtain
two- and three-dimensional potential energy surfaces for parallel and crossed field configurations,
respectively. Both field configurations provide the possibility to control molecular orientation,
alignment and, in addition, the electric molecular dipole moment.

InChapter 7 we outline the study of a novel type of highly excitedD5/2-state Rydberg molecules
which are created from an ultracold atomic rubidium gas that is exposed to a weak homogeneous
magnetic field of strength B ∼ 10G. These studies were performed in collaboration with the
experimental group of Prof. T. Pfau from the University of Stuttgart [4]. We present the calcula-
tion of the rovibrational binding energies which are compared to the experimental data. Over a
large range of principal quantum numbers n the theoretical and measured data agree satisfactory.
From calculating the rovibrational probability densities we identify two different kind of molec-
ular species. Depending of the specific state the molecules possess a high degree of alignment
or antialignment with respect to the applied magnetic field direction. A brief introduction into
the theory of polarizability and susceptibility of field-dressed ultralong-range Rydberg molecules is
provided in Chapter 8.

Chapter 9 is devoted to ultralong-range giant dipole molecules formed by a neutral alkali ground
state atom that is bound to the decentered electronic wave function of a giant dipole atom. Giant
dipole states are highly excited electronic states which emerge due to the non-separability of the
center of mass and electronic motion in the presence of crossed electric and magnetic fields. The
exotic atomic state underlying these molecules gives rise to novel properties such as a plethora of
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different quantum states with complex three-dimensional energy landscapes and rich rovibrational
dynamics. The resulting molecules possess very large rovibrational bound states at internuclear
distances in the range of several micrometers.
Finally, in Chapter 10 we conclude this thesis by briefly summarizing our results and by pro-

viding further perspectives in this intriguing field of research. This thesis is accompanied by two
comprehensive appendices in part III. In particular, Appendix A provides additional informa-
tion on the numeric concepts used in this thesis. Furthermore, the second Appendix B contains
mathematical proofs and additional auxiliary calculations.
Unless stated differently, atomic units are used throughout this thesis, cf. Appendix B.1.



Part I

Theoretical foundations





Chapter 1

Rydberg atoms

The main subject of this thesis are ultralong-range diatomic Rydberg molecules and their properties
in homogeneous external fields. To derive and understand their multiplex effects and remarkable
properties it is essential to be at least familiar with their constituents, which are Rydberg atoms
and their interactions with neutral ground state atoms. For this reason, we provide in this chapter
an introduction to Rydberg atoms and their remarkable properties. We start in Section 1.1 with
some short remarks on the history of atomic spectroscopy which has lead to the interesting research
field of Rydberg physics. In Section 1.2 we show how the concept of Rydberg atoms is embedded
in the Bohr and Bohr-Sommerfeld atomic model, respectively. In the next Section 1.3 we outline
the particular properties of rubidium Rydberg states and, finally, we present the basic concepts of
Rydberg atoms in external fields in Section 1.4.

1.1 Historical remarks

The first step in the development of today’s atomic physics was the understanding of the solar and
atomic spectra. From the first systematic study of discrete absorption lines in the solar spectrum by
Joseph von Frauenhofer in 1814 [100], it took almost a century until at least a partial explanation
for the occurrence of atomic spectra was provided by Niels Bohr [101]. In 1868 Anders Jonas
Ångström published systematic and precise measurements of the solar spectrum , which paved the
subsequent efforts to identify patterns and the underlying fundamental principles. The spectrum
of hydrogen provided the testing ground for a variety of hypotheses, since its spectrum contains
relatively few lines, grouped into different series [102]. Early works are seldom cited in literature,
since they turned out to be completely wrong. For instance, in 1871 George J. Stoney pointed
out that the frequencies of observed lines in the hydrogen spectrum coincide exactly with higher
harmonics of a single fundamental vibration frequency [103]. Although this approach turned out to
be quite successful in the description of other atomic and even molecular species [102], it was proven
to be bare coincidence by Arthur Schuster in 1880 [104]. Shortly after this major setback, it was
the school teacher Johann Jakob Balmer who succeeded in providing a reliable description [105].
In 1885, he published a formula for the wavelengths of the visible series of the atomic hydrogen,
depending only on one integer number n:

λ =
bn2

n2 − 4
, n ∈ N. (1.1)

At that time the quantity b = 3645.6Å was introduced as a purely empirical constant. It can be
shown that Eq. (1.1) can be rewritten in terms of the wavenumber ν = 1/λ of the observed lines.
In this case we obtain

ν =
4

b
(
1

4
− 1

n2
). (1.2)

The final breakthrough was achieved in 1890 by Johannes Rydberg [106], mainly based on spec-
troscopic data on alkali metals from George D. Liveing and Sir James Dewar [107]. He began to
classify the spectral series of arbitrary atoms into series of lines and realized that the wavenumbers
of series members are related to the corresponding wavenumbers of observed lines. This relation is
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m name wavenumbers/R∞ spectral range (nm) type of radiation

1 Lyman series [112] 3/4− 1 91− 122 ultraviolet (NUV)
2 Balmer series [105] 5/36− 1/4 365− 656 visible light
3 Paschen series [111] 7/144− 1/9 820− 1875 infrared (NIR)
4 Brackett series [113] 9/400− 1/16 1458− 4050 infrared (NIR/MIR)
5 Pfund series [114] 11/900− 1/25 2280− 7460 infrared (NIR/MIR)
6 Humphreys series [115] 13/1764− 1/36 3280− 12400 infrared (MIR/FIR)

Table 1.1: Spectral series and wavelengths of the atomic hydrogen spectrum.

provided by the simple but famous formula

νl = ν∞l −
R∞

(n− δqdl )2
, n ∈ N. (1.3)

In the original notation the quantity l stands for the sharp (S), principal (P) and diffuse (D)
series [106]. A forth additional series called fundamental (F ) was discovered in 1907 by Arno
Bergmann [102]. The constants ν∞l are denoted as the series limits.

In todays understanding l is the angular momentum quantum number with l = 0, ..., n − 1 and
ν∞l is the ionization limit. However, the notation S, P,D, F is still used in todays notation to label
atomic and molecular states [108]. In Section 1.3 we will identify δqdl as the so called quantum
defect [109]. For hydrogen the quantum defects vanish. The constant R∞ ≡ 4/b is the so-called
Rydberg constant which is universal and can be used to describe the transition wavenumbers, not
only for different series but also for different atoms. In SI-units the Rydberg constant is given by
R∞ = 10973731.568539(55)m−1 [110]. By rewriting the series limit ν∞ = R∞/4 we obtain Eq.
(1.2) which is directly related to Balmer’s formula Eq. (1.1). Shortly after Balmer additional series
were found in the hydrogen spectrum in the infrared (Paschen [111]) and ultraviolet ( Lyman [112])
regime. It turns out that Eq. (1.2) can be generalized to

ν = R∞(
1

m2
− 1

n2
), n > m, m = 1, 2, ... . (1.4)

Obviously every integer number m defines its one spectral series with a series limit R∞/m2. Until
today the series up to m = 6 are named in the literature after the physicist who performed the first
spectroscopic measurements (see Tab. 1.1). Series with m > 6 are unnamed but obey Eq. (1.4) as
well.

1.2 Rydberg states in basic atomic models

A proving ground for the young field of atomic physics was provided by the spectroscopy of hydrogen
and, in particular, alkali atoms. The latter feature on a single valence electron [116] are much
easier to study because single atoms are easily obtained by heating alkali samples up into the
gas phase. In contrast, hydrogen atoms first have to be created from molecular H2. One of the
major breakthroughs in the field of theoretical atomic physics was then achieved by Niels Bohr
in 1913 when he proposed his theory of the hydrogen atom [101]. Bohr employed the picture
of a point-like electron classically orbiting the ionic core as a charged point particle but only on
orbits fulfilling the specific condition L = l~, l ∈ N. The quantity L denotes the absolute value
of the electron’s angular momentum. Furthermore, the Bohr model gives a connection between
the associated orbital radius rn of the electron around the ionic core and the principal quantum
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Property n dependence

Binding energy n−2

Energy between adjacent n states n−3

Orbital radius n2

Geometric cross section n4

Dipole moment 〈nd|r|nf〉 n2

Polarizability n7

Radiative lifetime n3

Fine-structure interval n−3

Table 1.2: Properties of Rydberg atoms and their dependence on the principal quantum number n.
Adapted from [70].

number n whose physical meaning had remained unclear until then:

rn =
4πε0~

2

e2me
n2 ≡ a0n2. (1.5)

The quantity a0 is the size of the ground state atom and it is called the Bohr radius. It defines
the typical length scale in atomic and molecular physics (see B.1). However, the electron’s binding
energy decreases as 1/n2, in particular

En = −Ry
n2
. (1.6)

The quantity Ry = hcR∞ ≡ 13.60569253(20) eV, the so-called Rydberg energy, defines the energy
scale for electronic bound states in the hydrogen atom. In atomic units it is Ry = 1/2 (see Appendix
B.1). We easily see that Eq. (1.4) simply reflects electronic transitions between different bound
states.
While it is known today that the Bohr model is not valid entirely, it nevertheless introduced

the properties of Rydberg states. In the notation of the Bohr model, we define Rydberg states as
atomic states of high principal quantum number n. Because of the quadratic n-dependence of rn in
Rydberg states (n≫ 1) the valence electron is in a large, loosely bound orbit that is characterized
by the principal quantum number n.
A further stage in the history of basic atomic models is the Bohr-Sommerfeld model [117].

Among the several enhancements to the Bohr model the most important is the suggestion that the
valence electron orbits the ionic core in elliptical orbits instead of Bohr model’s circular orbits. To
characterize the electron’s orbit (without spin), three quantum numbers n, l and m are introduced.
Their meaning is as follows:

- principal quantum number n

As in the Bohr model this quantity characterizes the electron’s total energy. It is n ∈ N and
the binding energy En is given by Eq. (1.6).

- angular quantum number l

This quantity characterized the total angular momentum via

L = l~, l = 1, ..., n.1 (1.7)

Furthermore it determines the radial shape of the electron’s orbit. In this model the electron

1These values are the historical ones. The correct ones which are obtained from full quantum mechanics and given
by l = 0, 1, ..., n− 1.
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orbits the core on elliptical orbits with eccentricity

e =

√

1− l2

n2
. (1.8)

The orbits with low-l possess a high eccentricity while for l = n we obtain the spherically

Figure 1.1: Bohr-Sommerfeld electronic orbits for principal quantum numbers n = 2, 3 and angular
momentum states l. The orbits possess different eccentricities e which are determined by Eq. (1.8).

shaped orbit known from the Bohr model.

- magnetic quantum number m

This number determines the angle of inclination α between of the angular momentum L and
the quantization axis (see Fig. 1.2). It is

cos(α) =
m

l
, m = −l,−(l + 1), ..., l + 1, l , (1.9)

which means we obtain 2l + 1 possible value for m.

Figure 1.2: Illustration of the inclination α between the angular momentum L and the quantization
axis.

Within the Bohr-Sommerfeld model we can deduce the first qualitative deviations between hy-
drogenic and non-hydrogenic Rydberg states. For instance, alkali atoms can be transfered into
Rydberg states quite easily by exciting the outermost valence electron into a high-n state. In this
case the electron orbiting at small values of l approaches the nucleus, which is only partly screened
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state δqd0 δqd2 δqd4 δqd6 δqd8
nS1/2 3.131180 0.1784 -1.8 - -

nP1/2 2.6548849 0.29 -7.904 116.4373 -405.907

nP3/2 2.6416737 0.295 -0.97495 14.6011 -44.7265

nD3/2 1.34809171 -0.60286 -1.50517 -2.4206 19.736

nD5/2 1.34646572 -0.59600 -1.50517 -2.4206 19.736

nFj 0.016312 -0.064077 -0.36005 3.239 -

Table 1.3: Modified Rydberg-Ritz parameters of the rubidium atom for the calculation of the quantum
defect according to Eq. (1.12). The values for l ≤ 2 (δqd0 , δqd2 only) are taken from [119] and from [120].

by the other electrons on lower energy levels. In case the Rydberg electron penetrates the ionic
core it experiences an energy shift which is accounted for by the quantum defect δqdl (see Section
1.3.1). Within this model, the series S, P and D thus can be understood as transitions between
states with different n and angular momentum l. This issue will be discussed in detail in Section
1.3.

Nowadays it is known that the Bohr-Sommerfeld model just gives an intuitive picture of a hy-
drogen or Rydberg atom, respectively. To get a correct description quantum mechanics has to
be applied [118]. In this approach the properties of an atom are determined by its wave function
ψ. The wave function itself is determined by the corresponding Schrödinger equation. For the
hydrogen atom in its simplest form, i.e. neglecting all relativistic effect such as spin-orbit coupling
of hyperfine structure, the Schrödinger equation reads

(

−∆

2
− 1

r

)

ψ = εψ. (1.10)

In this ansatz the proton is assumed to be infinitely heavy. The quantity r denotes the radial sep-
aration between the electron and the proton; ε is the electron’s energy. The solutions of Eq. (1.10)
can be found analytically and are well-known. From the wave functions we can infer the n scaling
of many properties of Rydberg atoms. In Tab. 1.2 we present a list of the most representatives
properties. Most notable is the lifetime of Rydberg atoms which scales with n3. A further example
of the extraordinary properties is their huge polarizability. It is proportional to the sum of squares
of electric dipole matrix elements divided by the energy, resulting in a n7 scaling. As a consequence
Rydberg atoms are expected to be extremely sensitive to external electric and magnetic fields.

1.3 Rydberg states of alkali atoms

1.3.1 The quantum defect

In this work we are interested in Rydberg states of alkali atoms rather than the hydrogen atom.
Conceptually, electronically excited alkali atoms are very similar to the simple hydrogen Rydberg
atom; both possess one valence electron orbiting around an ionic core of charge +1. However, for
the alkali atoms the center charge is not of point particle nature as the proton in the hydrogen
atom 2 but is rather due to the shielding of a nucleus of charge Z > 1 by the remaining non-excited
Z − 1 electrons. The latter form a closed shell ionic core such that the electronic excitations of
the positively charged ion are strongly suppressed [121–123] and the single valence electron picture
can be maintained. If the structure of the ionic core is not resolved - as it is the case for high
angular momentum electronic states with l ≥ 3 - alkali Rydberg atoms are well described by
considering point-like charges as for the hydrogen atom. If the Rydberg atom resides in a low

2Througout this thesis we do not consider the substrucure of nucleons.
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Figure 1.3: Energy levels of rubidium and hydrogen. The principal quantum number n of the lowest
presented states are printed as well. The energy levels have been calculated according to Eq. (1.11)
using the data from Tab. 1.3. The depression of the low angular momentum states (l ≤ 3) is obvious.

angular momentum electronic state, on the other hand, the precise charge distribution of the alkali
ionic core matters. In particular, the valence electron penetrates and polarizes the finite-size ionic
core of the alkali atom, changing the wave functions and energies of the alkali Rydberg states
from their hydrogenic counterparts. In Fig. 1.1, the conceptual differences between the high and
low angular momentum Rydberg states of an alkali atom are illustrated. These differences can be
quantified by introducing the so-called quantum defect δqdnjl that depends on the quantum numbers
n, j and l of the Rydberg atom (see Section 1.3.2):

Enjl = −
1

2(n− δqdnjl)2
≡ − 1

2n∗2
. (1.11)

The quantity n∗ is an effective principal quantum number. The quantum defect itself can be
determined via the modified Rydberg-Ritz expression [120]

δqd = δqd0 +
δqd2

(n− δqd0 )2
+

δqd4

(n− δqd0 )4
+

δqd6

(n− δqd0 )6
+

δqd8

(n− δqd0 )8
+ ... . (1.12)

The parameters δqd0 , δqd2 , ... are specific for each element; in Tab. 1.3 we give the corresponding
values for rubidium, on which we focus throughout this thesis. We remark that for high-n states
the first two terms of Eq. (1.12) are often sufficient. The figure Fig 1.3 illustrates the energy
levels of rubidium for various angular momentum states l and principal quantum numbers n; for
comparison, the hydrogen level scheme is included additionally. As expected from Eq. (1.11), the
low angular momentum states are lowered in energy due to the quantum defect. States with higher
angular momenta are degenerate and coincide with the hydrogen manifold. For these states, the
core penetration and polarization effects obviously are of minor importance, leading to a vanishing
quantum defect.

1.3.2 Electronic Rydberg wave functions

From the obvious difference between the rubidium and hydrogen energy levels for low angular
momentum states, it is clear that the corresponding wave functions must differ as well. Because
of the penetration and polarization effects, the pure Coulomb potential −1/r employed in the
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l = 0 l = 1 l = 2 l ≥ 3

a1 3.69628474 4.44088978 3.78717363 2.39848933
a2 1.64915255 1.92828831 1.57027864 1.76810544
a3 -9.86069196 -16.79597770 -11.65588970 -12.07106780

a4/a0 0.19579987 -0.81633314 0.52942835 0.77256589
rc/a0 1.66242117 1.50195124 4.86851938 4.79831327

αc (a.u.) 9.01760

Table 1.4: Parameters ai, rc and αc for the l-dependent model potential Vl (1.13) as given in [124].

Schrödinger equation Eq. 1.10 is not valid for alkali atoms. Nevertheless, the one-particle picture
can be sustained by replacing the Coulomb potential by a model potential of the form

Vl(r) = −
Zl(r)

r
− αc

2r4

(

1− e−(r/rc)6
)

, Z(r) = 1 + (z − 1)e−a1r − r(a3 + ra4)e
−a2r, (1.13)

where Zl(r) is an effective charge and αc the static dipole polarizability of the positive ionic core
[125]. The quantity z is the nuclear charge of the neutral atom and rc is the cutoff radius introduced
to truncate the unphysical short-range behavior of the polarization potential near the origin. The
potential (1.13) depends on the orbital angular momentum via its parameters ai and rc, e.g. ai =
ai(l). The actual values of a, rc and αc are listed in Tab. 1.4. Using this potential the Schrödinger
equation for the valence electron of the Rydberg atom reads

(
p2

2
+ Vl(r)

)

ψ(r) = Eψ(r) ⇒
(

− d2

dr2
+
l(l + 1)

2r2
+ Vl(r)

)

u(r) = Eu(r) (1.14)

where we have made the ansatz ψ(r) = u(r)
r Ylm(θ, φ). For r > rc the potential Vl(r) is Coulombic,

but the pure hydrogenic wave function has to be replaced. We construct the solution of the radial
solution u(r) of the Schrödinger equation (1.14) as a linear linear combination of the functions
fl(r, E) and gl(r, E) which possess the properties fl(E, r)→ rl+1, gl(E, r)→ r−l for r → 0.

ul(r, E) = fl(r, E) cos(δl)− gl(r, E) sin(δl). (1.15)

where δl is the radial phase shift of the Rydberg radial function ul(r) from the hydrogenic solution.
The hydrogenic requirement that the wave function be finite at r = 0 has been replaced by the
requirement that at r ≥ r0 the wave be shifted in phase from the hydrogenic solution by δl. In
particular, the phase shift δl is given by [108]

δl =
√
2

rc∫

0

dr

(
√

E − Vl(r)−
√

E +
1

r

)

. (1.16)

The f and g functions are commonly termed as the regular and irregular Coulomb functions [108].
In the classical allowed region these functions are real oscillatory functions with a phase shift of
π/2 [70]. For r →∞ the Coulomb functions are of form

fl(r, E)→ wl(r, n
∗) sin(πn∗)− vl(r, n∗)eiπn

∗
, (1.17)

gl(r, E)→ −wl(r, n
∗) cos(πn∗) + ivl(r, n

∗)eiπn
∗
, (1.18)

with wl(r, n
∗) → er and wl(r, n

∗) → e−r. In order to keep the function ψ square integrable we
derive a condition to get rid of the w function in (1.15). For this we insert (1.17) and (1.18) into
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(1.15). We get

cos(δl) sin(πn
∗) + sin(δl) cos(πn

∗) = sin(δl + πn∗) = 0,

⇒ δl + πn∗ = nπ ⇔ n∗ = n− δl
π

(1.19)

So far the quantum defect has been introduced on an empirical basis. However, Eq. (1.19) now
provides the important relation between the quantum defect and the radial phase shift:

δqdl =
δl
π
. (1.20)

Although Eq. (1.15) provides a solution for the outer radial wave function once the quantum

defects δqdl are known. In this thesis we determine ul(r) by solving (1.14) numerically by means of
a Numerov integration technique (see Appendix A.2).

Fig. 1.4(a-d) show the probability density distribution r2R(r)2 of different electronic Rydberg
states of rubidium. For comparison, the corresponding hydrogenic eigenfunctions are provided
as well. In Fig. 1.4(a) we present the density distributions for the 35S1/2 and 35D3/2 states,
respectively. Compared to the hydrogenic distributions we clearly see a phase shift of the rubidium
densities towards smaller radial distance r. This difference is caused by the quantum defect. For
small r the potential seen by the rubidium valence electron is lowered compared to pure Coulomb
potential potential of the hydrogen atom. Consequently, the kinetic energy of the rubidium valence
electron is increased, leading to a decrease of the wavelength of the radial oscillations relative to the
hydrogen atom. As a result, in rubidium all the nodes of the radial wave function are pulled closer
to the origin than in hydrogen. This is clearly reflected in the density distributions in Fig. 1.4(a,b).
In Fig. 1.4(c,d) the scaling of the probability densities with the principal quantum numbers n =
30, 40, 50 is depicted. Fig. 1.4(c) illustrates the low angular momentum states nS which significantly
penetrate the ionic rubidium core. In contrast to this, the circular states (l = m = n−1) presented
in Fig. 1.4(d) have a vanishing probability density for small r.

Spin-orbit coupling

Similar to the question which model potential to use for the electron-core interaction the spin-orbit
interaction depends on the considered angular momentum states as well. For the model potential
Vl(r) (1.13) the spin orbit term [108,118] is given by

Vso(r) =
α2

2r

[

1− α2

2
Vl(r)

]−2
dVl(r)

dr
L · S =

α2

2r

[

1− α2

2
Vl(r)

]−2
dVl(r)

dr

(
J2 −L2 − S2

)
, (1.21)

where α = 1/137 denotes the fine structure constant. Due to the spin-orbit coupling the quantum
numbers and ml and ms are not any longer good quantum numbers. However, by introducing the
total angular momentum J = L+S a new complete set of commutating observables can be found
which is given by {H,J2, Jz,L

2,S2}. The relation between the old and new basis states is given
by

|njmjl
1

2
〉 =

∑

mlms

〈nlml
1

2
ms|njmjl

1

2
〉|nlml

1

2
ms〉 (1.22)

The coefficients 〈nlml
1
2ms|njmjl

1
2〉 are the so-called Clebsch-Gordon coefficients [118]. Including

the spin-orbit coupling, we obtain for the final Hamiltonian of the Rydberg electron

H =
p2

2
+ Vl(r) + Vso(r). (1.23)
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Figure 1.4: Radial probability densities r2R(r) of different electronic Rydberg states of rubidium and
hydrogen. Figure (a,b) show the density distributions for the 35S1/2 and 35D3/2 states, respectively.
As expected, the influence of the finite size ionic rubidium core is less pronounced for the higher angular
momentum state. Figure (c) and (d) illustrate the scaling of the radial probability densities with
the angular momentum for n = 30, 40, 50. In case of zero angular nS states (Fig. (c)) a strong core
penetration is visible. In contrast, the circular states (l = m = n − 1) possess vanishing probability
densities for r → 0, cf. panel (d).

For the hydrogen atom the energetic splitting caused by the fine structure interaction can be
estimated as

∆Enjl ∼
α2

n3(l + 1
2)(l + 1)l

×







0, l = 0

l, j = l + 1
2 , l 6= 0

−(l + 1), j = l − 1
2 , l 6= 0

. (1.24)

We see that for high angular momentum states the resulting fine structure splitting scales as
∼ 1/n5 [126], while for low angular states one encounters a scaling as ∼ 1/n3 (see Eq. (1.24)). In
Fig. 1.5 the fine structure splitting of ∆Efs between rubidium nD3/2 and nD5/2 states is shown as
shown as a function of the principal quantum number n in the range of 25 ≤ n ≤ 65 [127].
aaIn this thesis we investigate electronic molecular states arising both from high-l (see Section 4.2)
and low angular momentum states (see Chapter 7). In the case of the high-l states we neglect
spin-orbit effects. In contrast, for low-l states it is essential to include those. In Section 4.2 we
provide a more detailed discussion on this subject.
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Figure 1.5: Fine structure splitting ∆Efs for the Rb nD3/2,5/2 states as function of the principal
quantum number n (values taken from [127]).

1.3.3 Radiative lifetimes of Rydberg atoms

As Rydberg atoms are excited quantum objects they only possess finite lifetimes. In case of an
isolated Rydberg atom we have two possible decay channels. First, the Rydberg atom interacts
with the vacuum which leads to possible transitions to energetically lower levels. This process is
known as spontaneous emission and the transition rate for the radiative decay Γ from an initial
state |i〉 to a final state |f〉 is given by [108]

Γsp
fi =

4

3
α3ω3

fi|〈f |r|i〉|2, ωfi = εi − εf . (1.25)

The energies εi,f are the energies of the initial and final state, respectively.

τsp =




∑

f,εf<εi

Γsp
fi





−1

(1.26)

Obviously, any variation in the radial matrix element produced in a non-zero quantum defect alters
the lifetimes known from the hydrogen atom. The lifetimes of Rydberg atoms have been measured
with high accuracy [128–134] and can be calculated accurately [135–137]. The following relation
for the n-dependence can be found

τsp(nl) = τ0(n− δqdnl )γ . (1.27)

The actual values of τ0 and γ for the Rydberg nS, nP, nD, nF states for rubidium are presented
in Tab. 1.5 together with their theoretical predictions. For all considered states, the exponent γ
is close to γ = 3. The second decay channel that has to be considered is the stimulated emission
and absorption due to black body radiation of temperature T [138, 139]. Similar to Eq. (1.26) the
blackbody limited lifetime τbb can be written as [70]

τbb =




∑

f,Ef<Ei

Γsp
fi

exp(
ωfi

T )− 1





−1

≈ 3n2

4α3T
. (1.28)
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states τ th0 (ns) γth τ exp0 (ns) γexp
nS 1.43 2.94 1.43 2.94
nP 2.76 3.02 2.80 3.01
nD 2.09 2.85 1.90 2.83
nF 0.76 2.95 − −

Table 1.5: Theoretical [135] and experimental [132] lifetime parameters for the Rydberg quantum
defect states of rubidium according to Eq. (1.27). The actual measurements had been performed with
85Rb.

We see that for increasing principal quantum number n the black body decay rate exceeds the
spontaneous emission rate: the latter scales as n−3 compared to n−2 scaling of τ−1

bb . Finally, the
total lifetime τtot is given by the sum of the depopulation rates due to spontaneous and stimulated
decay

1

τtot
=

1

τsp
+

1

τbb
. (1.29)

1.4 Rydberg atoms in external fields

In this section we present the basic effects of external static and homogeneous electric and magnetic
fields, respectively. Because we are interested in the basic effects, we first neglect all finite mass
effects of the ionic core, e.g. mion → ∞. The effects of a finite ion mass lead to states which are
known as giant dipole states [79]. This will be the topic of Chapter 9.

1.4.1 Rydberg atoms in electric fields

First we consider an external electric field. If the applied electric field is in z-direction we get the
following Hamiltonian

H =
p2

2
+ Vl(r) + Ez. (1.30)

As discussed in Section 1.3 the l-dependent potential Vl(r) incorporates scattering and polarization
effects of the Rydberg electron with the ionic core. At this stage we ignore the spin of the electron.
Obviously, the azimuthal quantum number m is a good quantum number.

Hydrogen atom

We begin this paragraph by considering the behavior of the hydrogen atom in a static and ho-
mogeneous electric field. In this case Vl(r) = −1/r which is the pure Coulomb potential. The
most obvious effect of the electric field is that it lifts the degeneracy of the |nlm〉 eigenstates of a
particular energy 1/2n2. This effect is known as the Stark effect. The most straightforward way to
treat the Stark effect is to introduce parabolic coordinates. These are defined in terms of

x =
√

ξη cos(φ), y =
√

ξη sin(φ), z =
(ξ − η)

2
. (1.31)

In parabolic coordinates the Schrödinger equation (1.30) becomes

H = −∆ξη

2
+
m2

2ξη
− 2

ξ + η
+ E

ξ − η
2

with ∆ξη =
4

ξ + η

(
∂

∂ξ
(ξ
∂

∂ξ
) +

∂

∂η
(η
∂

∂η
)

)

. (1.32)
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In parabolic coordinates the problem remains separable and in first order degenerated perturbation
theory the wave function can be written as ψnn1n2m(ξ, η, φ) = unn1m(ξ)unn2m(η)eimφ were the
parabolic quantum number n1, n2 fulfill n = n1 + n2 + |m|+ 1. Calculating the corrections of the
degenerated eigenvalue −1/2n2 up to O(E2) perturbatively gives

εnn1n2m = − 1

2n2
+

3

2
En(n1 − n2)−

E2

16
n4
[
17n2 − 3(n1 − n2)− 9m2 + 19

]
. (1.33)

We see that states with n1 6= n2 possess a linear energy shift in E which means that they possess
a finite permanent electric dipole moment. Furthermore, the second order shift breaks the m
degeneracy.

Rydberg atoms

As discussed in Section 1.3, the corrections to the Coulomb due to scattering and polarization
effects of the electron with the ionic rubidium core lead to the lifting of the l-degenerated states
for small angular momenta. Selection rules for the dipole operator prohibit a coupling between
states with the same angular momentum l because of equal parities. In this case the second-order
perturbation theory has to be employed, which results in a quadratic Stark shift. This second order

energy shift can be described by a polarizability α
(i)
Ry

ε
(i)
Stark =

∑

i 6=j

|〈i|z|j〉|2
εi − εj

E2 =: −1

2
α
(i)
RyE

2. (1.34)

In the case of high angular momenta no quantum defects are considered and the manifolds for the
degenerated eigenenergies possess states of different parities. In first order perturbation theory we
obtain a linear Stark effect. In Fig. 1.6(a-c) we present the Stark map in the energetic vicinity of
the 42D state of rubidium for an electric field strength up to E = 2V/cm. In the calculation of
the map spin-orbit corrections were considered as well [140], the actual angular momentum state
Lj is color-coded (see Fig. 1.6(a)). In Fig. 1.6(b) the energetic splitting of the hydrogenic n = 41
manifold is presented. We clearly see a linear dependence on the electric field strength E. In
contrast to this, Fig. 1.6(c) shows the behavior of the less degenerated 42Dj , j = 3/2, 5/2 states
on E. For these states a quadratic Stark effect effect is clearly visible.

For electric fields where ε
(i)
Stark is on the order of the energy difference to the neighbored dipole

coupled state, the Stark effect cannot be treated perturbatively and an exact diagonalization scheme
has to be employed.

1.4.2 Rydberg atoms in magnetic fields

Next we consider an external magnetic field. If the applied magnetic field is in z-direction, we get
the following Hamiltonian

H =
(p+A(r))2

2
+B · S + Vl(r) + Vso(r)

=
p2

2
+ Vl(r) + Vso(r) +

B

2
(Jz + Sz)

︸ ︷︷ ︸

Bpara

+
B2

8
r2 sin2(ϑ)

︸ ︷︷ ︸

Bdia

. (1.35)

Here we haven chosen the symmetric gauge with A(r) = B/2(−y, x, 0)T . In addition, we have
introduced spherical coordinates. We denote the paramagnetic and diamagnetic term as Bpara and
Bdia, respectively. Again the azimuthal quantum number m is a good quantum number and the
z-parity is a conserved quantity as well.
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Figure 1.6: Stark maps showing the states in the energetic vicinity to the 42D state for electric field
strengths up to 2V/cm. In this particular setup spin-orbit coupling is considered. Figure (a) gives an
overview of the Rydberg states in the vicinity of the 42D state, color-coded depending on their angular
momentum quantum number Lj . Figure (b) shows the linear Stark effect of the degenerated hydrogenic
n = 41 manifold. In contrast, figure (c) shows the behavior of the less degenerated 42Dj , j = 3/2, 5/2
states. A quadratic Stark shift is clearly visible. (figure taken from [140]).

First we analyze the case when we still include the spin-orbit interaction. For the considered
field strength we neglect the diamagntic term. In this case we distinguish two regimes

- Bpara ≪ Vso

Here the magnetic field is only a small perturbation to the |njmjl
1
2〉 states. The energetic

splitting ∆E induced by the magnetic field term is determined by

∆E =
B

2
mj

(

1± 1

(2l + 1)

)

for j = l ± 1

2
. (1.36)

The degenerate nLj manifold splits into 2j+1 equidistant energy levels. This effect is known
as the anomalous Zeeman effect.

- Vso ≪ Bpara

Now the spin orbit-term is just a minor perturbation. We use the eigenstates |nlm1
2ms〉 to

calculate the energetic splitting induced by the magnetic field and the spin-orbit term. We
obtain

∆E =
B

2
(m+ 2ms) +mms. (1.37)

This regime is known as the Paschen-Back regime.

If the spin-orbit coupling is completely neglected (as for high-l Rydberg states) the electron spin
and spatial degrees of freedom are totally decoupled. For this reason we do not consider the spin
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in this case. Now the Hamiltonian of the Rydberg atom in a magnetic field is given by

H =
(p+A(r))2

2
+ Vl(r) =

p2

2
+ Vl(r) +

B

2
Lz +

B2

8
r2 sin2(ϑ). (1.38)

Because Lz commutes with the field free Hamiltonian the only term causing couplings between the
field free eigenstates |nlm〉 is the quadratic field term in Eq. (1.35). Expressing the Hamiltonian
(1.38) in the field free states |nlm〉 we obtain

〈n′l′m|H|nlm〉 =
(

− 1

2(n− δqdl )2
+m

B

2

)

δn′nδl′l + 〈n′l′m|
B2

8
r2 sin2(ϑ)|nlm〉. (1.39)

The only non vanishing matrix elements are given for those states for which ∆l = 0,±2 and
∆m = 0. The explicit forms of the angular matrix elements are

〈l′m| sin2(ϑ)|lm〉 = 2
l2 + l − 1 +m2

(2l + 3)(2l − 1)
δl′l −

√

((l< + 2)2 −m2)((l< + 1)2 −m2)

(2l< + 5)(2l< + 3)2(2l< + 1)
δl′,l±2 (1.40)

with l< := min(l′, l) (see Appendix B.8.1). In general, we can distinguish three different regimes

- low-field regime: B2

8 n
4 ≪ B

2 n≪ 1/n3

In this regime the magnetic field strength B is so low that the effect of the diamagnetic term
can be safely neglected. In this case the degeneracies of the −1/2n2 energies are partly lifted
as we get a linear spreading in the magnetic field due to the paramagnetic term. This effect is
known as the (normal) Zeeman effect. Here the principal quantum number n and the angular
quantum number l are still good quantum numbers and the eigenstates of (1.38) are identical
to the field free eigenstates |nlm〉.

- intermediated regime B
2 n≪ B2

8 n
4 ≪ 1/n3

In this regime the diamagnetic term significantly couples the different angular momentum
states within a single n-manifold but couplings to adjacent n-manifolds can still be neglected.
Due to this this regime is often referred as the l-mixing regime . Obviously, the only good
quantum number remaining beside m is n.

- strong-field regime 1/n3 ≪ B2

8 n
4

In this regime the magnetic field is such strong that it significantly couples states from adjacent
n-manifolds, for this reason this regime is also refereed as the n-mixing regime . For n4 ≫ 2/B
we find the situation that the paramagnetic term already causes the eigenenergies splitting
linearly from different n-manifolds to overlap. In this case the l-mixing regime is missing and
we directly go from the low into the strong field regime.



Chapter 2

Interaction of Rydberg atoms and ground state atoms

In this chapter we present the basic theoretical concepts which are required to model the interaction
of a Rydberg atom with a ground state neutral perturber. In Section 2.1 we discuss the physics
of low-energy electron-atom interaction which will lead to the so-called Fermi-pseudopotential ap-
proach. Within this theory the exact electron-atom interaction potential is replaced by a contact
interaction which is determined by a single quantity, the so-called scattering length. In Section 2.2
the specific properties of this quantity will be discussed in detail. An alternative derivation and
discussion can be found in Ref. [141].

2.1 Electron-atom interaction

The interaction of Rydberg atoms with neutral background gases is largely dominated by the
scattering of the highly excited Rydberg electron from the neutral ground state atoms. In this
context the first experimental studies in this direction where performed in 1934 by Amaldi and
Segrè [142, 143] and independently by Füchtbauer and coworkers [144]. In their studies the effect
of admixtures of various gases such as hydrogen, nitrogen and different noble gases on absorption
spectra of sodium and potassium was investigated systematically. For highly excited atomic species,
e.g. atomic Rydberg states, a shift and broadening of absorption lines was found. Surprisingly, both
blue and red shifted lines were observed [142–144]. In general, the observed effects only depend on
the type of the perturbing background gas and its density.
The explanation of the line shift was given by Enrico Fermi in 1934 [145]. In his concept the

Rydberg electron in its orbital is assumed as a quasi-free particle which undergoes a scattering event
with the ground state atoms at its low kinetic energy Ekin. In this approach the complex Rydberg
electron-ground state atom interaction is reduced to a single effective parameter, the scattering
length a. This model is nowadays well known as the Fermi-pseudopotential [145]. Later this
concept was further refined by extending it to alkali metals perturbing gas [146] and higher electron
momenta [147]. However, in order to ensure the validity of Fermi’s approach some approximations
have to be fulfilled. Considering a single particle incident upon a system of two or more scattering
partners, these approximations in general consists of three main points [148,149]:

1. The range of the electron-atom interaction is small compared to the atomic interparticle
distance

2. The electron-atom scattering is elastic, so that there is no sizable attenuation of the incident
particle by the target system. This means that, dealing with one single scattering event, the
impact of the previous events can be largely neglected.

3. The single scattering event lasts short enough that binding forces during the collision are
neglected.

In the field of ultracold molecular physics the Fermi-pseudopotential approach has turned out
extraordinary well in providing a novel binding mechanism leading to the formation of ultralong-
range Rydberg molecules [85]. For this reason, Fermi’s original deviation is recapitulated in the
following section. Later on in Section 2.1.2, the effect of higher order scattering terms is discussed
in detail.
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2.1.1 Fermi-pseudopotential

The starting point in the derivation of the Fermi-pseudopotential is the Schrödinger equation of the
Rydberg valence electron wave function ψ(r) in interaction with the ionic core and N surrounding
neutral atoms

(− 1

2me
∆+ U(r) +

N∑

i=1

Vi(r))ψ(r) = Eψ(r). (2.1)

The interaction potential Vi is assumed to be short-ranged and isotropic. For large distances the
neutral atom electron interaction can be considered as the induced dipole interaction of the neutral
atom in the electric field of the electron

Vi(r) = −
αn

2|r −Ri|4
. (2.2)

Here αn denotes the ground state polarizability of a single neutral atom. The vector Ri represents
the position of the i-th ground state atom. The effective range reff of this approximation can be
estimated by comparing it with the energy scale provided by the centrifugal potential 1/2µenr

2.
This leads to

reff =
√
µenαn, (2.3)

where µen denotes the reduced mass of the electron-/ neutral atom system. For rubidium 87Rb(5S),
this characteristic radius is reff = 0.96 nm, which is much smaller than the mean interparticle
distance of d̄ = 3

√

ρ−1 = 1µm at particle densities of around 1012 cm−1 typical for ultracold atomic
samples. Next, the Rydberg atom is assumed to possess a low kinetic energy; in particular the de
Broglie wavelength λdB = h/

√
2meEkin is assumed to be much larger than the effective range reff

and the inter particle distance d̄; e.g. reff ≪ d̄ ≪ λdB. This assumption is invalid in the region
near the ionic Rydberg core because of the increasing kinetic energy. However, this region has only
little significance for the calculations in this thesis.
aaThe essential idea in the derivation of the effective potential description is to derive a Schrödinger
equation for an averaged wave function ψ̄(r). In particular, the Schrödinger equation (2.1) is
averaged over a small volume which is chosen to be smaller than the de Broglie wavelength λdB
but still larger than the range reff of the polarization potential (2.2) and the main inter particle
distance d̄. This way the local impact of the perturbing neutral atom is removed and outside the
interaction region the averaged wave function ψ̄(r) resembles the wave function ψ(r). Under this
condition, the mean of the derivative of the wavefunction can be replaced by the derivative of the
averaged wavefunction (∆ψ(r) = ∆ψ̄(r)) and one obtains

− 1

2me
∆ψ̄(r) + U(r)ψ̄(r) +

N∑

i=1

Vi(r)ψ(r) = Eψ̄(r). (2.4)

Next we have to find an expression for Vi(r)ψ(r). For this purpose we examine the electron-
perturber interaction in a region closely around a single perturbing atom, e.g. 0 < |r −Ri| < λdB.
This domain is extending over regions with vanishing and non-vanishing electron-atom interaction
V (r). In addition, we consider the mean inter particle distance to be so large that the effect of the
interaction between the electron and the ionic core U(r) of the Rydberg atom can be neglected.
Since we are considering low-energy electron dynamics (E → 0) we make the following ansatz for
the wavefunction ψ(r)

ψ(r) =
u(r)

r
Y00 for E → 0. (2.5)
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In spherical coordinates, the Schrödinger equation for u(r) is given by

u′′(r) = 2µen(V (r)u(r)− Eu(r)) −−−→
E→0

u′′(r) = 2µenV (r)u(r). (2.6)

For r > reff we have V (r) → 0, which means we can easily solve the last equation in (2.6) in this
region:

u′′(r) = 0 ⇒ u(r) = C(r − a) for r > reff , C, a ∈ R. (2.7)

The quantity a is known as the s-wave scattering length1. For a > 0, the scattering length is
the intercept of the asymptotic wave function with the abscissa. In this case a can be seen as
the minimal distance the two scattering constituents approach in a low-energy scattering process.
Then the scattering process can be considered as the scattering of hard sphere particles with a total
scattering cross-section of 4πa2. For r ≫ |a|, ψ is identical to the averaged wave function ψ̄ which
is, in a first approximation, a constant given by ψ̄ = CY00. Finally, the averaged interaction energy
stemming from a single perturber atom i can be calculated. Under the assumption that there is
only a single perturbing atom inside the volume V0 over which the wave function is averaged, one
obtains

Vi(r)ψ(r) =
4πY00
V0

∫

drrV (r)u(r) =
2πY00
µenV0

reff∫

0

drru′′(r) =
2πa

µenV0
Y00C =

2πa

µenV0
ψ̄. (2.8)

The second can be solved via partial integration assuming the wave function ψ being differentiable
at the position of the perturbing atom. If there is no perturbing atom within the average volume
the interaction vanishes. Thus, the general result of (2.8) is given by

Vi(r)ψ(r) =
2πa

µen

δreff (r)

V0
ψ̄, with

δreff (r)

V0
=

{

1, if r < reff

0, otherwise
. (2.9)

For reff → 0 we get

lim
reff→0

δreff (r)

V0
= δ(r) (2.10)

and the averaged interaction energy from a single atom i can be written as

Vi(r)ψ(r) = Vpseudo(r −Ri)ψ̄(r) with Vpseudo(r) =
2πa

µen
δ(r). (2.11)

The potential Vpseudo has become known as the zero-range Fermi-pseudopotential in the literature
[145]. The last formulation was introduced by Fermi in 1936 when he was studying the scattering
of slow neutrons from hydrogen atoms [153]. However, the main parts of the derivation was already
published in 1934 [145]. Here, Fermi was interested in the total effect of a large number of perturbing
atoms inside the wavefunction ψ(r) of the Rydberg electron. The Fermi-pseudopotential is often
used instead of the exact potential in order to introduce analytical or numerical simplifications.
However, one should consider the fact that this potential is too singular to be used to solve the
exact three dimensional Schrödinger equation. Nevertheless, it can be very useful in perturbative
or mean-field theories [154].

Finally, we summarize the level of approximations which had been introduced to derive Eq.
(2.11). First, we have only considered the l = 0 scattering channel. In Section 2.2 we will see that
it can be important to include higher order scattering terms. Second, in Eq. (2.11) the s-wave

1The sign of a is chosen different from Fermi’s original notation [145] to match todays textbook convention [150–152].
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Figure 2.1: Energy dependent scattering phase shifts δ0 (blue points) and δ1 (black points) for e−-
Rb(5S) scattering [155]. The phase shifts are shown as functions of the electronic kinetic energy Ekin.

scattering length is of constant value. However, in general this quantity is energy dependent [150].
Obtaining the value of the s-wave scattering length and its energy dependence requires a involved
calculation. Depending on the atomic species and of the perturbing neutral atom and the relative
orientation of the electron and atomic spin the value can be positive or negative. This facts
explains the observation red and blue shifted atomic lines as the obtained line shift ∆E of the
Rydberg absorption line is given by

∆E =
2πa

µen
ρ, (2.12)

where ρ is the density of ground state atoms. This result can be obtained by integrating the
pseudopotential Eq. (2.11) over the Rydberg electron’s density distributions |ψ(r)|2 and over the
particle density ρ which is assumed to be constant. For 87Rb the triplet scattering length aT =
−16.05a0 is negative while the singlet scattering length as = 0.627a0 is one order of magnitude
smaller and positive [85]. As we will see in Chapter 4 the only scattering process leading to bound
molecules. Finally, we remark that any retroaction of the ground state atom on electronic Rydberg
state is neglected. In general this effect is small, but in the case of rubidium dimers it has been
experimentally verified that this leads to novel molecular properties such as a permanent dipole
moment of homonuclear diatomic molecules [95].

The higher order terms and the energy dependencies of the electron-atom scattering length will
be the topic of the next paragraph.

2.1.2 Higher order contributions

So far, the scattering of the Rydberg electron from a neutral ground state atom has only been
treated in zeroth order of the electron momentum k. Higher order contributions have been calcu-
lated by A. Omont [156] by expanding the electron wavefunction in terms of Fourier transformed
plain waves eikr. The general expression for the low-energy scattering potential of an electron with
a neutral ground state perturber atom is given by

Ven(r,R) =

∞∑

l=0

V (l)
en (r,R) = 2π

∞∑

l=0

(2l + 1)Rl(Pl(
1

k2
←−∇rδ(r −R)

−→∇r)), Rl = −
tan(δl)

k
. (2.13)
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Figure 2.2: (a) Numeric data (blue points) for As in comparison with interpolated data (green solid
curve). A cubic spline interpolation scheme was use to interpolate the numeric data. (b) Numeric and
interpolated data (blue crosses and solid green line, respectively) for the s-wave scattering length. In
addition the low-energy limit (Eq. (2.16)) is presented with αRb = 316 a.u. (red solid line) and 445 a.u.
(black solid line).

where Pl are the Legendre polynomials and δl(k) are the energy dependent phase shifts. The mo-
mentum k is related to the kinetic energy Ekin which is given within a semiclassical approximation

Ekin =
k2

2
=

1

R
− 1

2(n− δqdl )2
. (2.14)

The first term with l = 0 of the expansion (2.13) leads to

V s
en(r,R) = 2πAs(k)δ(r −R), with As(k) = −

tan(δ0(k))

k
. (2.15)

The quantity As(k) is denoted as the energy dependent s-wave triplet scattering length (see Fig.
2.1). Its low-energy dependence can be expanded according to

As(k) = aT +
π

6
αnk +O(k2). (2.16)

Here αn is again the ground state polarizability of the neutral perturber atom. The second term
with l = 1 of the expansion (2.13) leads to

V p
en(r,R) = 6πA3

p(k)
←−∇rδ(r −R)

−→∇r, with A3
p(k) = −

tan(δ1(k))

k3
. (2.17)

Here the quantity A3
p(k) is denoted as the (cubed) energy dependent p-wave scattering length. Its

low-energy dependence can be expanded according to

A3
p(k) = −

παn

15k
. (2.18)

As we see in the relation for Rl in (2.13) the energetic dependence is determined by depends on
tan(δl). This means if δl = π/2 the corresponding scattering terms become divergent and the
description of electron-atom scattering provided with expression (2.13) breaks down. As known
from scattering theory, [150] tan(δl) changes rapidly from 0 to π if the incident energy E of the
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Figure 2.3: (a) Low energy data points for A3
p. Beside the numeric data (blue points) the low-energy

limit (Eq. 2.20) is presented with a value of αRb = 316 a.u. (red solid curve). In addition the interpolated
data obtained by using a cubic spline interpolation scheme is shown as well (green solid curve). (b) The
cubed p-wave scattering length A3

p as function of Ekin. The numeric data (blue points) clearly shows
the existence of a resonance between 20 − 30meV. Using the fitting function Eq. 2.20 we obtain the
parameters Eres,fit = 23.9± 0.9meV and Γfit = 2.2× 10−4± 2× 10−5 a.u.. The green solid line indicates
the fitted data.

incident particle matches the energy ER of a quasi-bound state with lifetime Γ.

tan(δl) = −
Γ

E − Eres
⇒ tan(δl)→∞ for E → Eres. (2.19)

This effect is known as shape resonance. As we will see in the following Section 2.2 such resonante
process is important for molecule formation.

2.2 Energy dependence of the scattering phase shifts

Next we have a closer look on the specific energy dependence of the s- and p-wave scattering phase
shifts δ0(k) and δ1(k) respectively.
In Fig. 2.1 we show the energy dependence of the triplet s- and p-wave scattering phase shifts (blue

and black points, respectively) of e−-Rb(5S) scattering as functions of the electronic kinetic energy
Ekin [155]. We see that δ1 = π/2 for Ekin ≈ 23− 25meV which means that at this energy we hit a
resonance and the associated p-wave scattering length Ap(k) diverges. In Fig. 2.2(a,b) we present
the energy dependent s-wave scattering lengths As as a function of the electronic kinetic energy Ekin.
In both figures Fig. 2.2(a,b) the blue points indicate the scattering length derived from the numeric
data of the scattering phase shifts shown in Fig. 2.1. For Ekin = 0 we have added the zero energy
s-wave scattering length As(k = 0) = aT = −16.05a0 which is taken from the literature [85, 155].
Using this data set we have performed a cubic spline interpolation scheme [157,158]. The resulting
data is indicated by the green solid line. In Fig. 2.2(b) we present a comparison of the numeric
and interpolated data in the low-energy limit given by Eq. (2.16). The ground state polarizability
αRb of 87Rb is taken from the literature with αRb = 316 a.u. [159]. This approximation is indicated
by a red solid line. We see that this approximation does not predict the numeric data very well.
Inserting a higher polarizability αRb = 445 a.u. gives the data represented by the black solid line.
This approximation fits the numeric and interpolated data better in the sense that it is more or
less identical to those data sets up to a kinetic energy of Ekin = 4meV. Beyond this value this
approximation becomes less accurate for increasing kinetic energy. Although studying the common
literature extensively we could not find a reasonable explanation for this deviation. We decided to
use the interpolated data for our calculations.
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Figure 2.4: Radial position rres of the triplet p-wave shape resonance. The position rres was calculated
according to Eq. (2.21) where a resonance energy of Eres = 23.9meV was used. The black solid line
indicates the maximal resonance position rres,max = 1139a0.

For the p-wave scattering data we have used the fitting function

A3
p(Ekin) =







− παn

15
√
2Ekin

, for Ekin → 0
Γfit√

2E
5/2
kin (1−ER,fit/Ekin)

, for Ekin ≈ Eres
(2.20)

to fit the numeric data. In Fig. 2.3(a) we present the numeric data (blue crosses) in comparison
with the low-energy limit (2.18). This approximation is indicated by the red solid curve where we
have used a polarizability αRb = 316 a.u.. We see that that this approximation does not reproduce
the numeric data very well. In the provided numeric data only six points with Ekin < 5meV show
a decrease in their values, which can be understood as the beginning of the 1/

√
Ekin low-energy

behavior as it is predicted by Eq. (2.18) and Eq. (2.20), respectively. However, even these points
are still not in the region which is purely dominated by the low-energy limit. To have any access
to this specific energy range we have calculated a number of points using the expression of the
low-energy approximation from Eq. (2.20) for Ekin ≪ 5meV. Including these points we have then
performed a cubic spline interpolation scheme. This data is depicted by a solid green curve in
Fig. 2.3(a). In Fig. 2.3(b) we present the (cubed) p-wave scattering length for electronic kinetic
energies 0 ≤ Ekin ≤ 50meV. We clearly see a resonance for Ekin ≈ 23 − 25meV. In the region
near the resonance we have used the fitting function Eq. (2.20). We obtain the fitting parameters
Eres,fit = 23.9± 0.9 meV and Γfit = 2.2× 10−4 ± 2× 10−5 a.u.. In Fig. (2.3)(b) the corresponding
data is represented by a solid green curve.
For a fixed principal quantum number n the resonance energy Eres can be associated with a

radial distance rres of the Rydberg electron from the ionic core. Using the semiclassical relation
Eq. (2.14) we easily derive the following expression

rres =
1

Eres +
1

2n2

. (2.21)

In Fig. 2.4 the relation between rres and the principal quantum number n is shown. Obviously, for
n→∞ it approaches a maximal value which is given by rres,max = E−1

res ≈ 1139a0.





Chapter 3

Basic concepts of molecular physics

Before we start to analyze the specific molecular system we repeat the essential concepts of standard
molecular physics. In Section 3.1 we discuss the general Hamiltonian of atomic and molecular
physics and derive a set of formally exact solutions for the molecular Schrödinger equation. After
this, in Section 3.2, we present the adiabatic approximation, which is one of the most extensively
used approaches in modern molecular physics. In addition, an alternative approach, the so-called
diabatic approximation, is presented in Section 3.3. Finally, in Section 3.4.2 we present the standard
labeling scheme for diatomic electronic molecular states.

3.1 The generic Hamiltonian of molecular physics

In case of a non-relativistic, field free molecular system we are faced with an ensemble of the atoms
electrons and nuclei which interact via Coulomb interaction. Considering the atomic nuclei as
positively charged point particles with charges Zi, we obtain the following ab-initio Hamiltonian of
atomic and molecular systems

Hmol =
1

2me

Ne∑

i=1

p2i

︸ ︷︷ ︸

elec. kinetic energy Te

+

Nn∑

j=1

1

2Mj
P 2

j

︸ ︷︷ ︸

nuclear kinectic energy Tn

−1

2

Ne,Nn∑

i,j/i 6=j

Zi

|Ri − rj |
︸ ︷︷ ︸

nuclear−electron attraction Ven

+
1

2

Ne∑

i,j/i 6=j

1

|ri − rj |
︸ ︷︷ ︸

electron−electron repulsion Vee

+
1

2

Nn∑

i,j/i 6=j

ZiZj

|Ri −Rj |
︸ ︷︷ ︸

nuclear−nuclear repulsion Vnn

. (3.1)

Solving the molecular eigenvalue problem

HmolΨmol(r,R) = EΨmol(r,R), r ≡ (r1, ..., rNe)
T , R ≡ (R1, ...,RNn)

T (3.2)

provides the full dynamics on a large variety of problems, starting from non-relativistic few particle
dynamics [108, 150] going to many body phenomena (BEC and solid state physics [8, 160–162],
chemical reactions [163–165]), macroscopic systems and biophysics [166,167]1. However, except for
few physical systems (i.e. for hydrogenic atoms [150]) this point of view is very naive because a
full solution of Eq. (3.2) is technically impossible with today’s computational equipment. For this
reason a large variety of approximative schemes such as ab-initio Molecular Dynamics (AIMD) [169,
170], Hartree-Fock based methods (HF,MCTDH) [171–176], Monte-Carlo studies (MC) [177, 178],
Density Functional Theory (DFT,TDDFT) [179–182] and Coupled Cluster Approaches [183–185]
have been developed.

In this chapter we present a general ansatz to solve the Schrödinger equation for problems
possessing several degrees of freedom. The ansatz is particularly efficient if the considered problem
provides slow and fast degrees of freedom. In our specific problems we consider molecules where the

1It is worth recalling Dirac’s comment at this point, to the effect that all of chemistry is implicit in the diagonalization
of this Hamiltonian, if we could but do the arithmetic [168].
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nuclei and electronic degrees of freedom are considered to be the slow and fast degrees of freedom,
respectively. Starting from Eq. (3.1) we define the electronic Hamiltonian Hel:

Hmol = Tn + Vnn(R) +Hel(r;R) with Hel(r;R) ≡ Te + Vee(r) + Ven(r,R). (3.3)

Obviously, Hel(r;R) is an operator in the electronic configuration space that parametrically de-
pends on the nuclar coordinates R. Its eigenvalues ǫi(R) and eigenfunctions ψi(r;R) thus also
parametrically depend on the nuclei degrees of freedom and fulfill

Helψi(r;R) = ǫi(R)ψi(r;R). (3.4)

We note that although the electronic Hamiltonian Hel(r;R) was introduced using the ab-initio
Hamiltonian given by Eq. (3.1). Equation (3.3) is more general as the electron-nuclei interaction
Ven(r,R) can be also given by an effective potential, e.g. in case of electron-atom interaction. The
set of electronic eigenfunctions form a complete and orthogonal basis in the electronic space at
every value of R

∑

i

ψ∗
i (r

,;R)ψi(r;R) = δ(r − r,), 〈ψi(r;R)|ψj(r;R)〉r = δij . (3.5)

Here we have introduced an abbreviation for the integration over the electronic coordinates

〈ψi(r;R)|A|ψj(r;R)〉r ≡
∫

drψ∗
i (r;R)Aψj(r;R). (3.6)

where A denotes an arbitrary operator. To solve the Schrödinger equation Eq. (3.2) for the total
molecular Hamiltonian we expand the total wave function Ψmol(r;R) using the electronic eigen-
function:

Ψmol(r,R) =
∑

i

φi(R)ψi(r;R). (3.7)

This expansion is known as the Born-Oppenheimer expansion [186]. Formally, this expansion is
exact, since the set {ψi(r;R)} is a complete basis. Inserting this ansatz into Eq. (3.2) and using
the definition of the electronic Hamiltonian in Eq. (3.3) we obtain

Hmol

∑

i

φi(R)ψi(r;R) = E
∑

i

φi(R)ψi(r;R) (3.8)

⇒ (Hel + Tn + Vnn(R))
∑

i

φi(R)ψi(r;R) = E
∑

i

φi(R)ψi(r;R). (3.9)

Multiplying from the left side with ψj(r;R) and integrating over the electronic degrees of freedom
we get the following equation:

(Tn + Vnn(R) + ǫj(R))φj(R) +
∑

i

Λjiφi(R) = Eφj(R). (3.10)

The operators Λji are operators in R space and given by

Λji(∗) = 〈ψj(r;R)|Tn(∗|ψi(r;R)〉r)− δjiTn(∗). (3.11)

They are the so-called nonadiabatic couplings and they describe the dynamical interaction between
the electronic and nuclear motion. As it is shown in Appendix B.7 Eq. (3.10) can be rewritten as
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a matrix equation

[(∇+ F )2 + Vadia(R)]φ(R) = Eφ(R), (∇+ F )ij = −
∑

k

1

2Mk
(
−→∇Rk

δij + (Fk)ij) (3.12)

with (Fk)ij = 〈ψi(r;R)|−→∇Rk
|ψj(r;R)〉r;. We see that in this approach we are left with two

problems. First, we have to solve the electronic problem Eq. (3.4) to obtain the full set of electronic
eigenvalues and eigenvectors. After this, these are used to set up the set of coupled differential
equations 3.12 to obtain the expansion coefficients φi(R). Up to this point, the equation Eq. (3.4)
together with Eq. (3.10) defines a exact solution scheme to obtain the molecular eigenfunctions
(3.7). In Section 3.2 we present two approximate schemes to reduce the level of complexity.

3.2 Adiabatic and Born-Oppenheimer approximations

As a first approximation, the so-called adiabatic approximation, we neglect all coupling operators
Λji in (3.11) or the derivative coupling matrix F in (3.12), respectively. In this case the Schrödinger
equations for the single nuclei wave function φi(R) are decoupled and we get

(Tn + Vnn(R) + ǫi(R))φi(R) = Eiφi(R). (3.13)

This equation is a time-independent Schrödinger equation for the nuclei dynamics where the elec-
tronic eigenenergies ǫi(R) serves as an additional spatial potential to the direct nuclei-nuclei in-
teraction Vnn(R). These potential surfaces Eq. (3.13) are called the adiabatic potential energy
surfaces. The adiabatic approximation can be understood in such a way that due to the large
differences between the electron and nuclei masses (me/Mi ≈ 10−3-10−5) the electron configuration
instantaneously adapts if the nuclei positions change. This means if the nuclei are not moving too
fast (i.e. having too much kinetic energy in comparison to the energy gaps between the adiabatic
states), the adiabatic approximation provides a good approximation. In other words, the electrons
adiabatically follows the nuclar dynamics. In this approximation, the total molecular wave function
Eq. (3.7) is simply a product Ψmol(r,R) = φ(R)ψ(r,R). In this case the electronic character does
not change, this means it adiabatically follows the electronic eigenstate ψ(r,R) and the molecule
remains on a specific potential energy surface ǫ(R). For this reason this specific ansatz for the wave
function is called the adiabatic ansatz.

In a second approximation we include the diagonal coupling operator Λii in Eq. (3.10) which
leads to

(Tn + Vnn(R) + ǫi(R) + Λii)φi(R) = Eiφi(R). (3.14)

This can be written as

(Tn + Vnn(R) + ǫ̃i(R))φi(R) = Eiφi(R). (3.15)

with

ǫ̃i(R) = ǫi(R) +

Nn∑

k=1

1

2Mk

∫

dr(
−→∇Rk

ψi(r;R))2. (3.16)

The additional term in Eq. (3.16) is a finite mass correction of the nuclei on the electron dynamics.
As this term is of the order of the kinetic energy of the nuclei it just provides an minor contribution
to adiabatic potential surfaces in case the nuclear dynamics is sufficiently slow. In case this term
is included this scheme is called the Born-Oppenheimer approximation [187–191]. The potential
surface Eq. (3.16) are called the Born-Oppenheimer potential surfaces. As it is in the adiabatic
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approximation the electronic character of the eigenstate is not changed and the molecule remains
adiabatically on a specific potential energy surface.

Finally, we note that the notation of the different approximation schemes as they have been
presented in this paragraph is not unique in the literature. In this paragraph, we have adopted the
notation scheme as it is presented in [187].

3.3 Diabatic potential surfaces

As we have discussed in Section 3.2 the electronic problem Eq. (3.4) together with Eq. (3.12)
provide an exact solution scheme for the molecular dynamics. However, to obtain the full nuclear
dynamics one has to consider the derivative coupling matrix F which couples the different nuclear
wave functions and their derivatives. Neglecting F gives the adiabatic approximation (3.13), just
considering diagonal derivative couplings provides the so called Born-Oppenheimer approximation
(3.16). However, both approximation schemes become invalid in case the off-diagonal derivative
couplings become sufficiently strong. As we show in Appendix B.7 this is the case when two
adjacent adiabatic potential surfaces ǫi(R) approach each other, in particular if we have

|
∫

dR
〈φj(R)|〈ψj(r;R)|(−→∇Rk

Hel)|ψi(r;R)〉r|φi(R)〉
〈φj(R)|−→∇Rk

|φi(R)〉(ǫi(R)− ǫj(R))
|> 1. (3.17)

The basic idea of diabatization is to perform a unitary transformation to eliminate the derivative
coupling terms in Eq. (3.12). To find this unitary transformation U(R) we define

φ(R) = U(R)φ̃(R). (3.18)

Inserting this into Eq. (3.12) we get (see Appendix B.7)

[(∇+ F̃ )2 +W (R)]φ̃(R) = Eφ̃(R) with F̃ = U †(FU +∇U), W (R) = U †Vadia(R)U. (3.19)

Obviously the transformed derivative coupling matrix F̃ vanishes if the unitary transformation U
fulfills the differential matrix equation

∇U = −FU. (3.20)

We get the diabatic Schrödinger equation

[∇2 + Vdia(R)]φ̃(R) = Eφ̃(R) (3.21)

where we have defined W (R) ≡ Vdia(R). This matrix is the so called diabatic potential matrix.
After the unitary transformation with U the differential equations of the diabatic wave functions
φ̃i(R) are still coupled because the diabatic potential matrix Vdia(R) is, in general, non-diagonal.
In case the off-diagonal couplings are neglected the single diabatic nuclei functions are determined
by

(Tn + ǫ
(i)
dia(R))φ̃i(R) = Eiφ̃i(R) with ǫ

(i)
dia(R) = [Vdia(R)]ii. (3.22)

The functions ǫ
(i)
dia(R) are often referred to as the diabatic potential surfaces. We note that a solution

U of Eq. 3.20 does not exist in general. For this reason strictly diabatic states do not exist in the
general case. However, a number of approximate shemes have been developed providing so-called
”pseudo-” or ”quasi-diabatic potential surfaces” [192].
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3.4 Diatomic molecules

3.4.1 Diatomic potential curves

As the ab-initio molecular Hamiltonian (3.1) is translational invariant the total momentum is a
conversed quantity. This means that the center of mass dynamics can be separated from Hel. In
case of a diatomic molecule we transform the electronic and nuclei degrees of freedom (r,R) by
introducing the center of mass vector Rcm and the relative vectors with respect to an arbitrary
chosen nucleus:

Rcm =
1

M



me

Ne∑

i=1

ri +
∑

k=A,B

MkRk



 , R = RA −RB, xi = ri −RB, M = Neme +MA +MB.

In the ne set of coordinates the molecular Hamiltonian is given by

Hmol =
P 2

cm

2M +
P 2

2M
+
p2

2µ
+ Vnn(R) + Vee(x) + Ven(x,R) (3.23)

with M =MAMB/(MA +MB) and µ = me(MA +MB)/M. We note that this Hamiltonian is only
an approximation as it neglects so-called mass polarization terms ∼ pipj . These terms describe
small fluctuations in the position of the center of mass and nuclei as the electrons move around
within the molecule. Obviously, the center of mass dynamics is completely decoupled from the
internal degree of freedom. The Hamiltonian governing the internal molecular dynamics is given
by

H =
P 2

2M
+
p2

2µ
+ Vnn(R) + Vee(x) + Ven(x,R) ≡ P 2

2M
+ Vnn(R) +Hel(x,R). (3.24)

We easily verify that H commutes with the total orbital angular momentum of the internal degrees
of freedom Ltot = LR + Lx. As a consequence the adiabatic potential surfaces provided by the
diagonalization of Hel(x,R) only depend on the internuclear distance R, i.e. ǫ(R) = ǫ(R). In this
case the quantization axis for the electronic problem can be chosen along the internuclear axis.

3.4.2 Labeling of diatomic electronic states

The electronic states of atoms are classified by the total orbital angular momentum L of all elec-
trons. However, in case of a diatomic molecule the electron-nuclei interaction just possesses a
rotational symmetry with respect to the internuclear axis. Therefore, only the projection of the to-
tal electronic orbital angular momentum is a conserved quantity and electronic states of a diatomic
molecule are labeled with respect to its absolute value which is denoted with Λ. For Λ = 0, 1, 2, ...
the states are labeled by capital Greek letters Σ,Π,∆, .... The state is further characterized by the
total spin S of all electrons which is given as multiplicity 2S + 1. The orbital angular momentum
and spin can are combined to the total angular momentum J = L + S. Similar to the atomic
notation [108] the z-component of J denoted by Ω = |Λ+Ms|, Ms = −S, ..., S is used to label the
electronic state. The preliminary labeling scheme reads as 2S+1ΛΩ.

As the general diatomic Hamiltonian commutes with several symmetry operations, the symmetry
of the wave function with respect to these operators is used to classify an electronic molecular state
in addition. First we verify that a diatomic molecules has one ∞-fold rotation axis (C∞) along
the molecular axis. This means there exist an infinite number of mirror planes ν containing this
axis. The operation appropriate to these planes is reflection σν . As σ2ν = 1 the electronic wave
functions possess an even/odd parity with respect to a reflection at an arbitrary plane containing
the internuclear axis.

All diatomic molecules possess the reflection symmetries just discussed. When, in addition, the
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molecule is homonuclear, an additional symmetry operation is present, that of inversion of all
electrons at the nuclei center of mass. The corresponding operator is denoted as I. By virtue of the
same sort of arguments as given for the reflection symmetries, this operation has eigenvalues ±1
and the electronic states possess an even/odd parity with respect to the inversion operation. The
parity of the wavefunction is given as subscript to the electronic state: ”g” for symmetric (German
”gerade”) or ”u” for antisymmetric (German ”ungerade”) states.
Finally, electronic states are also often identified by an empirical single-letter label. The ground

state is labeled X, excited states of the same multiplicity are labeled in ascending order of energy
with capital letters A, B, C.... Excited states having multiplicity different from the ground state
are labeled with lower-case letters a, b, c.... In total the labeling scheme of a diatomic molecular
state thus reads as

[X,A,B, a, b, ...]2S+1Λ
(±)
Ω,(g,u). (3.25)



Part II

Ultralong-range molecules in external fields





Chapter 4

The molecular system

In this chapter we start the analysis of the considered molecular diatomic system. In Section
4.1 we start with the derivation of the general working Hamiltonian which will be the foundation
throughout this work. Section 4.2 provides a detailed discussion of the field-free system. We derive
some results which already been presented in the works of C. H. Greene et al. [85]. Beyond this,
we present novel approaches to derive perturbative results and we discuss the results of beyond
perturbation theory analysis.

4.1 The working Hamiltonian

Before we derive the Hamiltonian of ultralong-range diatomic Rydberg molecules in external fields
we discuss the field-free system. If we consider a homonuclear molecules consisting of two 87Rb
atoms, the abinitio molecular Hamiltonian is given by Eq. (3.1) with ZRb = 37e, m87Rb =
159, 732me and Ne = 74. This problem is a many particle problem and the electronic states
which provide the ultralong-range Rydberg molecules are of very high excitation. However, the
problem can be reduced to an effective few particle problem. As discussed in Section 3.4.2 the
electronic states of the Rb2 molecule possess a defined parity denoted by “gerade” and “ungerade”.
For a trilobite molecule, the gerade and ungerade states Σg,u are nearly degenerate as the rotational
constant of this molecules is small due to the huge spatial separation. Any perturbation can mix
the nearly degenerate states of opposite parity. This leads to the formation of charged separated
states that possess a molecular frame dipole moment. The parity splitting can be estimated by
calculating the time required for the electron centered on the perturber to tunnel to the Rydberg
ion core. The time required for the electron to tunnel is orders of magnitudes longer than the life-
time of the universe, indicating a ridiculously small splitting between the states of different parities
(∼kHz) [85]. For this reason the effective physical model is given by a highly excited Rydberg atom
and ground state atom. Considering the single positively charged ionic Rydberg core as a point
particle, the effective model is a three-particle system.
This means the setup considered throughout this thesis consists of a Rydberg atom and a ground

state rubidium 87Rb(5S) atom in time-independent electric and magnetic fields. In particular, the
lab-frame Hamiltonian is given by

Hmol =
p2n
2mn

+
∑

i=e,c

{ 1

2mi
(pi − qiA(ri))

2 + qiΦ(ri) + Vin(ri, rn)}+ Vec(re, rc). (4.1)

Throughout this work we consider homogeneous fields. In this case the electrostatic potential Φ
and the magnetic vector potential A in an arbitrary gauge are given by

A(ri) =
1

2
B × ri +

−→∇riΛ(ri), Φ(ri) = −E · ri. (4.2)

where Λ is an arbitrary gauge function. We use qc = −qe = 1 and get

Hmol =
p2n
2mn

+
1

2mc
(pc −

1

2
B × rc −

−→∇cΛ(rc))
2 +

1

2me
(pe +

1

2
B × re +

−→∇eΛ(re))
2

+E · (re − rc) + Ven(re − rn) + Vcn(rc − rn) + Vec(re − rc). (4.3)
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In the case of vanishing magnetic field the Hamiltonian (4.1) is translational invariant which leads
the total momentum to be a conserved quantity. For finite magnetic field strength the translational
symmetry is broken due to the spatial dependent vector potential A given by Eq. (4.2). However, a
novel quantity K̂ can be constructed which contains, apart the single particle momenta, magnetic
field dependent terms:

K̂ = pn + pe −
1

2
B × re +

−→∇eΛ(re) + pc +
1

2
B × rc −

−→∇cΛ(rc). (4.4)

This quantity is the so-called pseudomomentum which commutes, by construction, with the total
Hamiltonian (4.3) and defines a constant of motion. Generally, the pseudomomentum can be
constructed for an arbitrary system of N charged particles with charges qi and masses mi. In this
case it defines always a constant of motion. However, the components of K̂ do not commute, in
general we have

[K̂µ, K̂ν ] = iǫµνλBλ

N∑

i=1

qi. (4.5)

It is only for a neutral system (
∑

i qi = 0) that the components of the pseudomomentum can be
made sharp simultaneously. Obviously, this requirement is fulfilled in the considered system.

Next we transform the coordinates {re, rc, rn} of the three particles system into center of mass
and relative coordinates. This means we transform the spatial coordinates and conjugated momenta
into new quantities via

{re, rc, rn} → {r,R,Rcm}, {pe,pc,pn} → {p,P ,P cm}. (4.6)

The relation between the positions and the momenta in the two systems is determined by

(r,R,Rcm)
T = X(re, rc, rn)

T , (p,P ,P cm)
T = (X−1)T (pe,pc,pn)

T (4.7)

with the transformation matrix X ∈ R
3×3 (see Fig. 4.1). We obtain

X =





1 −1 0
0 −1 1
me
M

mc
M

mn
M



 , X−1 =





mc+mn
M −mn

M 1
−me

M −mn
M 1

−me
M

me+mc
M 1



 (4.8)

where we have introduced the total massM = me+mc+mn. Obviously, the (r,R) are the relative
position vectors of the electron and neutral perturber with respect to the ionic core. Throughout
this thesis we denote r, ϑ, ϕ and R, θ, φ as the spherical coordinates for the electron and neutral
perturber, respectively. This means

r =





r sin(ϑ) cos(ϕ)
r sin(ϑ) sin(ϕ)

r cos(ϑ)



 , R =





R sin(θ) cos(φ)
R sin(θ) sin(φ)

R cos(θ)



 . (4.9)

The vector Rcm indicates the position vector of the center of mass. If we express the total molec-
ular Hamiltonian (4.3) and the pseudomomentum K̂ in the new coordinates and use the fact
that {H, K̂x, K̂y, K̂z} forms a complete set of commutating observables we can express the total
molecular wave function Ψmol as follows [79]

Ψmol(r,R,Rcm) = exp{i
(

K +
1

2
(B × r)

)

·Rcm}Ψ(r,R). (4.10)

Here we consider, as we do throughout this thesis, the symmetric gauge A = 1
2B × r. The vector
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K is the vector of eigenvalues of the components K̂i, i = (x, y, z) of the pseudomomentum K̂.
After some algebra (see Appendix B.2) we obtain the effective working Hamiltonian represented in
the new coordinates

Heff =
K2

2M +
P 2

mn
+

1

2me
(p+

1

2
B × r)2 + Vec(r) +E · r + Ven(r,R) + Vcn(R). (4.11)

In this expression the first term K2/2M is just a constant contribution as the pseudomomentum
K̂ is a constant of motion. In the following this term will be ignored. The electron-core interaction
Vec is simply given by the angular moment dependent potential Vl(r) which has been discussed in
Section 1.3. In the case of the ionic rubidium core perturber interaction Vcn we consider an induced
dipole interaction due to the polarization of the ground state rubidium atom in the field of the
singly positive charged ionic core:

Vcn(R) = −
αRb

2R4
. (4.12)

The quantity αRb denotes the ground state polarizability of the ground state rubidium atom. As
this potential decreases as 1/R4 it only provides a sufficiently large contribution for small radial
distances R (R < 100 a.u.). As we are interested in the properties of ultralong-range diatomic
molecules, e.g. large internuclear separations R, we can safely ignore this term. The electron-atom
interaction Ven is considered to be a low-energy scattering interaction as it is discussed in Chapter
2. Finally, we obtain the working Hamiltonian

H =
P 2

mn
+

1

2me
(p+

1

2
B × r)2 + Vl(r) + Ven(r,R) +E · r. (4.13)

4.2 The field-free system

In this Section we present the analysis of the field-free ultralong-range diatomic Rydberg molecules.
First, we derive and discuss results considering only a pure s-wave electron-perturber interaction.
These studies had been first published by C. H. Greene et al. in 2000 [85]. Hereafter, we consider
the p-wave interaction potential as well [86]. In addition to the exact results obtained within pertur-
bation theory we present an approximative analysis which just considers the energy dependence of
the s- and p-wave phase shifts δl(k), l = 0, 1. Finally, we discuss the results of beyond perturbation
theory studies.

4.2.1 Trilobite states

Before considering ultralong-range Rydberg molecules in combined external fields we first analyze
the properties of the field-free species. In this case the Hamiltonian of a single molecule (see Eq.
(4.13)) is given by

H =
P 2

mn
+
p2

2
+ Vl(r) + 2πA[k(R)]δ(r −R) + 6πA3

p[k(R)]
←−∇rδ(r −R)

−→∇r

≡ P 2

mn
+Hel(r;R). (4.14)

In Fig. 4.1 we show the setup for the field-free diatomic molecule. Because mn/me ≈ 1.6× 105 we
can apply the Born-Oppenheimer approximation and calculate the adiabatic potential curves ǫ(R)
with Hel(r;R)ψ(r;R) = ǫ(R)ψ(r;R) (see Section 3.2). Because of the rotational invariance of
the electronic Hamiltonian Hel the adiabatic potential surface only depend on the radial distance
R = |R| between the perturber and the ionic rubidium core (see Appendix B.5.1). Due to this
we chose the internuclear axis to coincide with the z-axis of the coordinate system, e.g. R = (θ =
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Figure 4.1: A sketch of the field-free system in the laboratory frame. The molecular constituents are
a singly positive charged ionic rubidium core (Rb+), the Rydberg electron (e−) and a ground state
rubidium atom (87Rb(5S)).

0, φ = 0, R)T . Initially, we treat the interaction because of the neutral rubidium atom perturbatively
with the high-l degenerate manifolds of the unperturbed Rydberg Hamiltonian H0. We calculate
the adiabatic potential curve performing an exact diagonalization scheme using the hydrogenic
eigenstates ψnlm(r) = Rnl(r)Ylm(ϑ, ϕ) of H0 as an basis set to perform degenerate perturbation
theory for the −1/2n2 eigenenergy. Throughout the study of ultralong-range Rydberg molecules
we consider the potential curves which emerge from the n = 35 hydrogenic manifold. The energy
offset of all potential energy curves and higher dimensional surfaces is the dissociation limit of the
atomic states 87Rb(5S) + Rb (n = 35, l ≥ 3).

Pure s-wave interaction

First we analyze the general properties of the s-wave scattering term (2.15). we calculate the matrix
elements

〈i|V s
en(r,R)|j〉 = 2πAs[k(R)]

∫

drφ∗i (r)δ(r −R)φj(r) = 2πAs[k(R)]φ
∗
i (R)φj(R). (4.15)

If we calculate the matrix representation of Vs(r,R) with respect to an arbitrary basis set {φi(r)}i=1,...,N

we can write this in the following way

V s
en(r,R) = 2πAs[k(R)]ψ(R)⊗ψ(R)† with ψ(R) = (φ1(R), ..., φN (R))T . (4.16)

A matrix of such a form is known as a separable matrix. In Appendix B.6 we discuss and prove some
basic properties of such matrices. One important result is that a separable matrix only possesses a
single non zero eigenvalue where the vector ψ(R) is the corresponding eigenvector. In the case of
the s-wave scattering potential (4.15) the non zero eigenvalue ǫs is given by

ǫs = 2πAs[k(R)]
N∑

n=1

|φn(R)|2, ψs(r;R) =
1

√∑

n |φn(R)|2
∑

n

φ∗n(R)φn(r). (4.17)
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Figure 4.2: (a) Adiabatic potential curve ǫs35 for a purely s-wave dominated electron-perturber inter-
action. The shown curve stems from the n = 35, l ≥ 3 degenerate hydrogenic manifold. The potential
curve possesses a nodal structure providing potential wells with depth in the MHz regime. In (b) the
electronic probability density is presented as a cylindrical surface plot 2πρ|ψs

30(ρ, z, 0;Req)|2, Req =
(θ = 0, φ = 0, R = 1232a0) [85]. The position of the perturbing atom is directly underneath the density’s
double peak. The blueish sphere represented the Rb+ ion.

In case we choose as an basis set to perform degenerate perturbation theory for the −1/2n2 eigenen-
ergy we have to diagonalize a matrix with following matrix elements

〈ψnl′m′(r)|V s
en(r,R)|ψnlm(r)〉r = 2πAs[k(R)]ψ

∗
nl′m′(R)ψnlm(R) (4.18)

Because θ = 0 we only obtain non zero matrix elements for m′ = m = 0 which means the corre-
sponding electronic state possess a 3Σ symmetry. We get a separable matrix of dimension n−3×n−3
with eigenvalue and eigenvector

ǫsn(R) =
1

2
A[k(R)]

n−1∑

l=3

(2l + 1)R2
nl(R), ψ

s
n(r;R) =

1
√∑

lm |ψnlm(R)|2
∑

lm

ψ∗
nlm(R)ψnlm(r). (4.19)

In Fig. 4.2(a) the potential curve ǫs35 is depicted. This curves possesses a nodal structure with
a global minimum at Req ≈ 1590a0. The depths of the single potential wells are of the order of
several hundreds of MHz. The considered potential curve provided bound states with level spacings
in the MHz regime [85]. The electronic density probability |ψs

n(r;R)|2 is characterized by a strongly
oscillatory structure possessing a large density peak at the perturber position. In Fig. 4.2(b) the
electronic densitiy distribution 2πρ|ψs

30(ρ, z, 0;Req)|2, Req = (θ = 0, φ = 0, R = 1232a0) for n = 30
is presented as a cylindrical surface plot [85]. In order to obtain a symmetric densitiy profile the
density distribution is horizontally reflected at the z-axis. The position of the perturbing rubidium
atom is directly underneath the double peak structure towards the right side of the figure. The Rb+

ion is represented (with exaggerated size) as a small blueish sphere on the left. The region with
appreciable density includes 700a0 ≤ z ≤ 1700a0 and ρ ≤ 1200a0. As the probability distribution
possesses the shape a trilobite1 these states have become known as trilobite states.

Inclusion of p-wave interaction

In this paragraph we discuss the properties of the p-wave interaction term

Vp(r,R) = 6πA3
p[k(R)]

←−∇rδ(r −R)
−→∇r. (4.20)

1Trilobites are a fossil group of extinct marine arthropods which roamed the oceans for over 270 million years. They
were among the most successful of all early animals and first appeared 571 million years ago [84].
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Because the energy dependent p-wave scattering length just gives as spatial modulation we con-

centrate on the actual operator
←−∇rδ(r −R)

−→∇r. We calculate its matrix elements with respect to
the Rydberg wave function ψnlm(r) = Rnl(r)Ylm(θ, φ)

∫

drψ∗
n′l′m′(r)

←−∇δ(r −R)
−→∇ψnlm(r) =

−→∇ψ∗
n′l′m′(R) · −→∇ψnlm(R). (4.21)

Using the spherical coordinate representation of the Nabla operator

−→∇ =
∂

∂R
eR +

1

R

∂

∂θ
eθ +

1

R sin(θ)

∂

∂φ
eφ (4.22)

we get

−→∇ψnlm(R) = R
′

nl(R)Ylm(θ, φ)eR +
Rnl(R)

R

∂

∂θ
Ylm(θ, φ)eθ +

imRnl(R)Ylm(θ, φ)

R sin(θ)
eφ. (4.23)

In this expression we can rewrite the angular functions as follows

∂

∂θ
Ylm(θ, φ) =

1

2

√

2l + 1

4π

(l −m)!

(l +m)!
(Pl,m+1(cos(θ))− (l +m)(l −m+ 1)Pl−m+1(cos(θ)))e

imφ

≡ Flm(θ)eimφ, (4.24)

imYlm(θ, φ)

sin(θ)
= −i1

2

√

2l + 1

4π

(l −m)!

(l +m)!
(Pl+1,m+1(cos(θ))

+(l −m+ 1)(l −m+ 2)Pl+1,m−1(cos(θ)))e
imφ

≡ iHlm(θ)eimφ. (4.25)

In Appendix B.5.2 we prove the following properties of the functions Flm and Hlm

Fl,−m(θ) = (−1)mFlm(θ), Hl,−m(θ) = (−1)m+1Hlm(θ). (4.26)

We get for the matrix element Eq. (4.21)

−→∇ψ∗
n′l′m′(R) · −→∇ψnlm(R) = R

′

n′l′(R)Y
∗
l′m′(θ, φ)R

′

nl(R)Ylm(θ, φ)

+
1

R2
Rn′l′(R)Fl′m′(θ)Rnl(R)Flm(θ)ei(m−m′)φ

+
1

R2
Rn′l′(R)Hl′m′(θ)Rnl(R)Hlm(θ)ei(m−m′)φ. (4.27)

All together we can write the interaction matrix V p
en(r,R) as the sum off three single matrices

V p
en(R) = 6πA3

p[k(R)] (V
p1
en (R) + V p2

en (R) + V p3
en (R)) . (4.28)

We see that if we include the p-wave interaction term we have to sum up three additional matrices
with matrix elements

6πA3
p[k(R)]〈ψnl′m′(r)|V p1

en |ψnlm(r)〉r = 6πA3
p[k(R)]R

′

nl′(R)Y
∗
l′m′(θ, φ)R

′

nl(R)Ylm(θ, φ),

6πA3
p[k(R)]〈ψnl′m′(r)|V p2

en |ψnlm(r)〉r = 6πA3
p[k(R)]

Rnl′(R)Rnl(R)

R2
Fl′m′(θ)Flm(θ)ei(m−m′)φ,

6πA3
p[k(R)]〈ψnl′m′(r)|V p3

en |ψnlm(r)〉r = 6πA3
p[k(R)]

Rnl′(R)Rnl(R)

R2
Hl′m′(θ)Hlm(θ)ei(m−m′)φ.
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Because R = (θ = 0, φ = 0, R)T we only get non-vanishing matrix elements for m = 0,±1. Hereby
the m = 0 and |m| = 1 blocks are decoupled defining the 3Σ and 3Π molecular symmetry sector,
respectively.

- 3Σ symmetry sector

In this subspace we have to diagonalize the s-wave interaction matrix as well as the first
matrix of the p-wave interaction term V p1

en .

[VΣ(R)]l′l =

√

(2l′ + 1)(2l + 1)

2
[As[k(R)]Rnl′(R)Rnl(R) + 3A3

p[k(R)]R
′

nl′(R)R
′

nl(R)] (4.29)

Obviously VΣ(R) is a sum of two separable matrices which means it is not separable itself.
As a first approach we diagonalize VΣ(R) has numerically. However, as rank(V s

en + V p1
en )≤ 2

we expect two different adiabatic potential curves. In case the energetic separation of both
interaction terms is sufficiently large we can diagonalize both matrices separately. Beside the
s-wave potential curve (4.19) we obtain a second potential curve ǫp1n with

ǫp1n (R) =
3

2
A3

p[k(R)]

n−1∑

l=3

(2l + 1)(l + 1)l(R
′

nl(R))
2 (4.30)

and the corresponding eigenstate

ψp1
n (r;R) =

1
∑

lm(R
′

nl(R))
2|Ylm(θ, φ)|2

∑

lm

R
′

nl(R)Y
∗
lm(θ, φ)ψnlm(r). (4.31)

In Fig. 4.3(a) we present the 3Σ potential curves for the n = 35, l ≥ 3 hydrogenic manifold. As
expected due to the inclusion of the p-wave interaction term V p1

en a novel potential splits away
from the n−4 degenerate manifold. The novel potential curve which is denoted as A3Σ in Fig.
4.3(a) energetically moves downwards as the spatial separation R decreases for R ≥ 1400a0
(green solid curve). The other potential curve which is denoted by X3Σ is the former ǫs35
curve (blue solid line). For R ≥ 1450a0 the curves are energetically separated and purely
dominated by s- and p-wave character, respectively. In the region around R = 1525a0 we
clearly see an avoided crossing of the two potential curves. This means for spatial separations
R ≤ 1525a0 the character of the two potential curves have switched. Here X3Σ is p-wave
dominated whereas A3Σ possesses a strong s-wave character.

- 3Π symmetry sector

In this subspace we have to diagonalize the sum VΠ(R) of the second and third p-wave

interaction matrix V
(p2)
en and V

(p3)
en in Eq. 4.28, respectively. However, in Appendix B.5.2 we

prove that

[V p2
en , V

p3
en ] = 0, (4.32)

which means that these two matrices can be diagonalized simultaneously. Again, V p2
en and V p3

en

are separable matrices and can be diagonalized analytically. We obtain a doubly degenerate
potential curve with

ǫp2n (R) = ǫp3n (R) =
3

16π
A3

p[k(R)]

n−1∑

l=3

(2l + 1)(l + 1)lR2
nl(R) (4.33)
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Figure 4.3: (a) X3Σ and A3Σ potential curves ǫs35 and ǫp1

35 (blue and green lines, respectively) for the
n = 35, l ≥ 3 hydrogenic manifold. In the region 1400a0 ≤ R ≤ 1600 an avoided crossing is clearly
visible. Figure (b) shows the X3Π and A3Π potential curves ǫ

p2/3

35 which are degenerate. This curve is
monotonically increasing possessing hardly any nodal structure.

and the corresponding eigenvectors

ψp2
n (r;R) =

1
√
∑

lmR
2
nl(R)F

2
lm(θ)

∑

lm

Rnl(R)Flm(θ)e−imφψnlm(r), (4.34)

ψp2
n (r;R) =

1
√
∑

lmR
2
nl(R)H

2
lm(θ)

∑

lm

Rnl(R)Hlm(θ)e−imφψnlm(r). (4.35)

In Fig. 4.3(b) we present the 3Π potential curve for the n = 35, l ≥ 3 hydrogenic manifold.
As a function of the spatial separation R this curve is monotonically increasing and possesses
hardly any nodal structure.

4.2.2 Two-state analysis

In this paragraph we show that although the 3Σ symmetry sector consists of two non commuting
matrices V s

en and V p1
en the calculation of the corresponding potential curves in first order degenerate

perturbation theory can be performed analytically. In Appendix B.6.2 we prove that the two po-
tential curves X3Σ and A3Σ can be obtained analytically by the diagonalization of an effective elec-
tronic Hamiltonian Hel

eff which acts on the reduced Hilbert space H = span{|ψs
n(r;R)〉, |ψp1

n (r;R)〉}.
Although |ψs

n(r;R)〉, |ψp1
n (r;R)〉 are linearly independent they are non orthogonal. For this rea-

son we construct a orthonormal basis set {|ψs
n(r;R)〉, |ψ̃p1

n (r;R)〉} by applying the Gram-Schmidt
process [193]. We get

|ψ̃p1
n (r;R)〉 = |ψ

p1
n (r;R)〉 − C|ψs

n(r;R)〉√
1− C2

, C = 〈ψs
n(r;R)|ψp1

n (r;R)〉r. (4.36)

If 1H = |ψs
n(r;R)〉〈ψs

n(r;R)| + |ψ̃p1
n (r;R)〉〈ψ̃p1

n (r;R)| denotes the unity operator in the reduced
Hilbert space H the effective electronic Hamiltonian Hel

eff is given by

Hel
eff(r;R) = 1HHel(r;R)1H.
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Figure 4.4: (a) shows the X3Σ and A3Σ potential curves obtained via exact diagonalization (blue and
green crosses) in comparison with the potential curves obtained from the two state analysis (4.38) (blue
and green solid lines). In (b) the spatial region around the avoided crossing R ≈ 1525a0 is enlarged.
Obviously, the two state model provides a the same result as the exact diagonalization using hydrogenic
eigenstates.

In the considered basis we obtain the matrix representation of Hel
eff

Hel
eff =

[
α1 g
g α2

]

(4.37)

with

α1(R) ≡ α1 = ǫsn + 〈ψs
n(r;R)|V p1

en (r;R)|ψs
n(r;R)〉r,

α2(R) ≡ α2 = 〈ψ̃p1
n (r;R)|V s

en(r;R) + V p1
en (r;R)|ψ̃p1

n (r;R)〉r,
g(R) ≡ g = 〈ψs

n(r;R)|V p1
en (r;R)|ψ̃p1

n (r;R)〉r.

This gives the following eigenvalues

λ1,2(R) ≡ λ1,2 =
α1 + α2

2
± 1

2

√

(α2 − α1)2 + 4g2 (4.38)

and eigenvectors

|Λ1,2(R)〉 ≡ |Λ1,2〉 =
1

√

(λ1,2 − α1)2 + g2

[
g

λ1,2 − α1

]

. (4.39)

In Fig. 4.4(a,b) a comparison between the potential curves obtained via exact diagonalization
(green and blue solid lines) and the curves obtained within the two state analysis (green and blue
crosses) are shown. We clearly see that both approaches provide identical potential energy curves.

4.2.3 The Borodin-Kazansky model

An alternative approach to study the high angular momentum Born-Oppenheimer potential curves
is to assume that due to the interaction with the neutral perturber two potential curves split away
from the degenerate high-l manifold. Their expressions are obtained via the relation (1.19) between
the quantum defect and the scattering phase

E
(n)
l (R) = − 1

2(n− δl[k(R)]
π )2

≈ − 1

2n2
− δl[k(R)]

πn3
, l = 0, 1. (4.40)
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Figure 4.5: Adiabatic potential curves obtained within the Borodin-Kazansky model. The s-/p-wave
potential curve is represented by a solid blue / green line, respectively. Although the nodal structure
is missing the global behavior is of the potential curves is reproduced quite accurately. In Fig. 4.5 a
comparison with the perturbative potential curves is shown.

This approach is known as the Borodin-Kazansky model [194]. Using Eq. (2.16) and (2.18) we
obtain the following relations in the k → 0 limit

E
(n)
0 (R) = − 1

2n2
+

k

πn3
(a+

π

3
αnk), E

(n)
1 (R) = − 1

2n2
− αnk

2

15n3
. (4.41)

Using k =
√

2/R− 1/n2 we get an analytic expression for the radial crossing position Rcr

kcr = −
3a

2παn
⇒ R(n)

cr =
2n2

1 + ( 3a
2παn

)2
. (4.42)

We can calculate the radial position of the minimum of the s-wave potential curve as well. By
differentiating Eq. (4.41) with respect to the internuclear distance R we obtain

d

dR
E

(n)
0 (R)|R=Rmin =

d

dR

k

πn3
(a+

π

3
αnk)|R=R

(n)
min

= 0 ⇒ R
(n)
min =

2n2

1 + ( 3a
2παn

)2
. (4.43)

We get the interesting result that

R
(n)
min = R(n)

cr . (4.44)

This means that the two potential curves in the 3Σ symmetry sector always possess an avoided
crossing near the global minimum of the trilobite potential curve. This property is independent
from the considered atomic species. In Fig. 4.5 the s- and p-wave potential curves obtained from
the Borodin-Kazansky model (Eq. (4.40)) are presented for a principal quantum number n = 35.
Within this model the nodal structure, as it is clearly visible in Fig. 4.3(a), is absent. However, the
potential curves topologies are represented quite accurately. Similar to the pure s-wave scattering
potential the s-wave curve (blue solid curve) possesses a global minimum at R ≈ 1500a0. The
p-wave potential curve (green solid curve) monotonically decreases. As derived in Eq. (4.43) the
two curve crosses each other exactly at the minimum of the s-wave potential curve. In the case
of the Borodin-Kazansky model the s- and p-wave potential curves do not possess any avoided
crossings.

In Fig. (4.6)(a,b) we present a comparison between the Borodin-Kazansky model and the po-
tential curves obtained from perturbation theory. In Fig. 4.6(a) we clearly see that the Borodin-
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Figure 4.6: Figure (a) shows the s- and p-wave potential curves obtained within the Borodin-Kazansky
model. In (b) we depict the Borodin-Kazansky curves in comparison with the potential curves in the
3Σ symmetry sector.

Kazansky approach accurately reproduces the global behavior of the 3Σ-curves obtained from per-
turbation theory. However, the strongly oscillating structure and the avoided crossing near the
s-wave potential curve’s minimum are not reproduced by the Borodin-Kazansky ansatz. In Fig.
4.6(b) we present the p-wave potential curve from the Borodin-Kazansky model (red solid line)
with the 3Π p-wave potential from perturbation theory (blue solid line). We clearly see that in the
range of 1200a0 ≤ R ≤ 2400a0 both potential curves match quite accurately, for R ≤ 1200a0 we
find slight deviations between the two curves.

4.2.4 Inclusion of additional basis states

Every analysis we have performed so far was restricted to the degenerate hydrogenic manifold
n = 35, l ≥ 3. In this paragraph expand the considered basis set by systematically including basis
states in the energetic vicinity of the considered hydrogenic manifold. For every single basis set we
perform exact diagonalization in order to achieve convergence. As we are interested in studying
the potential curve in the Σ symmetry sector we diagonalize VΣ = V s

en + V p1
en using the Rydberg

wave functions ψnl0(r). We obtain for the matrix elements

[VΣ(r,R)]n′l′,nl = 〈ψn′l′0(r)|VΣ(r,R)|ψnl0(r)〉r, ψnl0(r) = Rnl(r)Yl0(ϑ, ϕ). (4.45)

In the convergence study performed in this chapter we concentrate on the results for the X3Σ
potential curve as the results of the A3Σ curve just differ quantitatively but not qualitatively.

We start our analysis by defining the basis sets (1)-(1c) in the energetic vicinity of the n =
35, l ≥ 3 hydrogenic manifold as they are presented in Table 4.1. Hereby basis set (1) denotes
the pure hydrogenic manifold while the other basis sets (1b) and (1c) contain the quantum defect
states which lie below, respectively above the considered manifold. As discussed in Section 1.3.2 the
atomic Rydberg states with l = 0, 1, 2 possesses a finite hyperfine splitting. However, this splitting
is of the order of 200 MHz which is much less than the energetic separation of the Σ potential
curves to these energy levels. For this reason, we neglect the spin-orbit coupling for these states
and use the single electronic Rydberg nl states instead. In Fig. (4.7)(a) we present the potential
energy curves which have been calculated using the different basis sets (1)-(1c). We see that the
inclusion of the quantum defect states below and above the n = 35, l ≥ 3 hydrogenic manifold
hardly changes the X3Σ potential curve. In particular, with the inclusion of additional states, we
obtain a relative deviation of 10−3.

Next we start to include the neighbored degenerate hydrogenic manifolds as well as all the
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basis set hydrogenic manifold quantum defect states

(1) n = 35, l ≥ 3 -
(1b) n = 35, l ≥ 3 37p, 36d, 38s
(1c) n = 35, l ≥ 3 37p, 36d, 38s, 38p, 37d, 39s

Table 4.1: Basis set (1)-(1b) in the energetic vicinity of the n = 35, l ≥ 3 hydrogenic manifold. Basis
set (1a) denote the pure hydrogenic manifold. Basis set (1b)((1c)) contain the quantum defect states
which lie energetically below (above) the considered manifold.
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Figure 4.7: (a) Potential energy curves for the n = 35, l ≥ 3 hydrogenic manifold calculated with the
basis sets (1)-(1c) (see Table 4.1). We see that including the neighboring quantum defect states hardly
changes the potential curve. Figure (b) shows the energetic level scheme for the basis set (2).

nearby quantum defect states. For this we define the basis sets (2)-(6) as they are presented in
Table 4.2. These basis states are characterized by an integer number ∆n which denotes the number
of hydrogenic manifolds in the vicinity of the n = 35 manifold which are included into the basis
set. For instance, ∆n = 1 includes the n = 34, l ≥ 3 till n = 36, l ≥ 3 hydrogenic manifolds
including all quantum defect states (see Section 1.3). In Fig. (4.7)(b) the energetic level scheme
for the basis set (2) is shown. In Fig. 4.8 we present the potential energy curves which have been
calculated using the basis sets (1)-(6). In contrast to the previous analysis now the curves show a
strong energy shift with an increasing number of basis states. With increasing radial distance R the
effect of including additional basis states becomes more dominant. Although we have included the
states of five degenerate manifolds below and above the considered n = 35, l ≥ 3 manifold we have
not yet achieved convergence. To get a possible explanation for the observed level shift we remark

basis set hydrogenic manifold quantum defect states

(1) ∆n = 0 -
(2) ∆n = 1 37p− 39s
(3) ∆n = 2 36p− 40s
(4) ∆n = 3 35p− 41s
(5) ∆n = 4 34p− 42s
(6) ∆n = 5 33p− 43s

Table 4.2: Basis set (2)-(6) in the energetic vicinity of the n = 35, l ≥ 3 hydrogenic manifold. The
number ∆n denote the range of hydrogenic manifolds which are taken into the basis set. All quantum
defect states which lie between the hydrogenic manifolds are included (see 1.3 and Fig. 4.7(b)).
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Figure 4.8: Potential energy curves calculated with the basis sets (1)-(6). With an increasing number
of basis states the potential curve continues moving energetically downwards.

(a) basis set quantum defect states

(1) -
(2)qds 37p− 39s
(3)qds 36p− 40s
(4)qds 35p− 41s
(5)qds 34p− 42s
(6)qds 33p− 43s

(b) basis set hydrogenic manifolds

(1) ∆n = 0
(2)nqd ∆n = 1
(3)nqd ∆n = 2
(4)nqd ∆n = 3
(5)nqd ∆n = 4
(6)nqd ∆n = 5

Table 4.3: In table (a) we present the basis sets which only include quantum defect states nminp-
nmaxs. In contrast table (b) only includes basis sets which contain degenerate hydrogenic manifolds
with nmin/max = 35±∆n.

that we can distinguish two different subsets of basis states. First, we have quantum defect states
which are non degenerate. In contrast, the hydrogenic manifolds are highly degenerate possessing
levels of degeneracy of n− 3. For this reason we conclude that the constant level shift observed in
Fig. 4.8 is related to the inclusion of highly degenerate hydrogenic manifolds. To analyze this issue
more systematically we perform additional studies where we define two novel basis sets which are
presented in Table 4.3(a,b). The first basis set just contains the quantum defect states between the
degenerate hydrogenic manifolds. The basis states are denoted as (n)qds (see Table 4.3(a)). The
second analysis is performed with basis sets which only contain degenerate hydrogenic manifolds.
These basis states are denoted as (n)nqd and labels the number of neighboring degenerate manifolds
with minimal and maximal principal quantum number nmin/max = 35±∆n (see Table 4.3(b)). In
Fig. 4.9(a) we present the potential curves which are obtained by exact diagonalization using the
basis sets (1)-(6)qds. Similar to the previous study using basis set (1)-(1c) (see Fig. 4.7(a)) the
potential curves are hardly affected by increasing the number of basis states. Again we obtain
relative deviations of 10−3. In contrast in Fig. 4.9(b) we present the potential curves obtained from
the diagonalization in the basis sets (1)-(6)nqd. Here we obtain similar results to the study using the
basis states (1)-(6). With increasing the number of degenerate hydrogenic manifolds, the potential
curve continue to shift with a constant relative deviation up to 0.9. This strengths the idea that the
constant energy shift is caused by the mixing of the degenerate hydrogenic states by the contact
interaction Ven. However, a satisfactory explanation of this behavior could not be found. For this
reason we remark that this issue requires additional research. Throughout this thesis we have used
a basis set consisting of the n = 35, l ≥ 3 hydrogenic manifold and the 38s, 36d and 37p states. As
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Figure 4.9: Figure (a) shows the potential curves obtained via exact diagonalization using the basis
sets (1)-(6)qds. Including additional basis states hardly affects the potential curves. Figure (b) shows the
convergence studies using the basis states (1)-(6)nqd only containing degenerate hydrogenic manifolds.
Increasing the number of included hydrogenic manifolds causes the potential curves to shift energetically
downwards.

we expect the Σ potential curves to lower in energy we have included the quantum defect states
energetically below the hydrogenic n = 35, l ≥ 3 manifold. In this case we denote the field free
eigenstates as Ξi(r;R)〉, this means

Hel(r;R)|Ξi(r;R)〉 = ǫ
(i)
0 (R)|Ξi(r;R)〉. (4.46)

For sufficiently large electric and magnetic field strengths we expect the energy level to approach
cross each other. As we expect this regime to provided a plethora of interesting physics the inclusion
of these states is essential.



Chapter 5

Electrically dressed ultralong-range Rydberg molecules

5.1 Introduction

In this chapter we perform a study of the impact of an electric field on the structure and dynamics
of high-l ultralong-range diatomic Rubidium molecules. We hereby proceed as follows. Section
5.2 provides a formulation of the problem presenting the working Hamiltonian and a discussion
of the underlying interactions. Our analysis goes beyond the s-wave approximation and takes
into account the next order p-wave term of the Fermi-pseudopotential. Section 5.3 contains our
methodology and a qualitative discussion of the effects of an external electric field strength. In
Section 5.4 we analyze the evolution of the topology of the potential energy surfaces (PES) with
varying electric field strength. Besides a numerical exact diagonalization scheme, we also study
the PES in two approximative approaches. The resulting PES show a strongly oscillatory behavior
with bound states in the MHz and GHz regime. With increasing field strength the diatomic
molecular equilibrium distance shifts substantially in a range of the order of thousand Bohr radii.
In Section 5.5 we analyze the behavior of the corresponding electric dipole moment. Thereby we
realize molecular states with a dipole moment up to several kDebye. Based on these properties and
the s-wave admixture via the external electric field a preparation scheme for high-l polar molecular
electronic states via a two photon excitation process is presented. Finally, in Section 5.6 we provide
an analysis of the vibrational spectra which exhibit spacings of the order of several MHz.

5.2 The setup

We consider a highly excited Rydberg atom interacting with a ground state neutral perturber atom
(again we focus on the 87Rb atom here) in a static and homogeneous electric field. The Hamiltonian
treating the Rb ionic core and the neutral perturber as point particles is given by

H =
P 2

mn
+Hel + Ven(r,R), Hel = H0 +E · r, H0 =

p2

2me

+ Vl(r), (5.1)

where (mn,P ,R) denote the atomic rubidium mass and the relative momentum and position of the
neutral perturber with respect to the ionic core. (me,p, r) indicate the corresponding quantities
for the Rydberg electron. The electronic Hamiltonian Hel consists of the field-free Hamiltonian
H0 and the usual Stark term of an electron in a static external E-field. Vl(r) is the angular
momentum-dependent one-body pseudopotential felt by the valence electron when interacting with
the ionic core. For low-lying angular momentum states the electron penetrates the finite ionic
Rb+-core which leads to a l-dependence of the interaction potential Vl(r) due to polarization and
scattering effects [70]. Throughout this work we choose the direction of the field to coincide with
the z-axis of the coordinate system, i.e. E = Eez, E ≥ 0. In Fig. 5.1 the setup of the molecular
system is depicted. Finally, the interatomic potential Ven for the low-energy scattering between
the Rydberg electron and the neutral perturber is described as a so-called Fermi-pseudopotential
which is discussed in detail in Section 2.1.

Ven(r,R) = 2πAs[k(R)]δ(r −R) + 6πA3
p[k(R)]

←−∇rδ(r −R)
−→∇r. (5.2)
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Figure 5.1: A sketch of the considered setup. An ultralong-range Rydberg molecule is exposed to
an external electric E-field. The molecule consists of a rubidium Rydberg atom (Rb+ ionic core plus
valence electron (e−) and a neutral ground state atom (Rb), which interact via a low energy electron-
atom scattering potential Ven(r,R)). The E-field points along the z-axis.

Here we consider the triplet (S = 1) scattering of the electron from the spin-12 ground state alkali
atom. Suppression of singlet scattering events can be achieved by an appropriate preparation of
the initial atomic gas. In Eq. (7.4) As[k(R)] = − tan(δ0(k))/k and A3

p[k] = − tan(δ1(k))/k
3 denote

the energy-dependent triplet s- and p-wave scattering lengths, respectively, which are evaluated
from the corresponding phase shifts δl(k), l = 0, 1. The kinetic energy Ekin = k2/2 of the Rydberg
electron at the collision point with the neutral perturber can be approximated according to k2/2 =
1/R − 1/2n∗2. The behavior of the energy-dependent phase shifts δl as functions of the kinetic
energy Ekin is shown in Fig. 2.1. If not stated otherwise, atomic units will be used throughout.

5.3 Methodology and symmetries

In order to solve the eigenvalue problem associated with the Hamiltonian (5.1) we adopt an adia-
batic ansatz for the electronic and heavy particle dynamics. We write the total wave function as
Ψ(r,R) = ψ(r;R)φ(R) and obtain within the adiabatic approximation

[H0 +E · r + Ven(r,R)]ψi(r;R) = ǫi(R)ψi(r;R), (5.3)

(
P 2

mn
+ ǫi(R))φik(R) = Eikφik(R), (5.4)

where ψi describes the electronic molecular wave function in the presence of the neutral perturber
for a given relative position R and φik determines the rovibrational state of the perturber. From
Eqs. (5.3) and (5.4) we already deduce some symmetry properties of the states ψ, φ and the energies
ǫ. If Pr,R,E denotes the generalized parity operator that transforms (r,R,E) → (−r,−R,−E)
we have [H,Pr,R,E ] = [Ven(r,R), Pr,R,E ] = 0. This means that the states Ψ, ψ and φ are parity
(anti)symmetric and the PES fulfill ǫ(R;E) = ǫ(−R;−E).

To calculate the specific potential energy surfaces and analyze their properties we have applied
different approaches. However, before we start with any specific analysis we try to determine the
effects of the applied electric field by basic considerations. The neutral atom is point-like to a good
approximation and its interaction with the Rydberg atom probes the highly excited electronic
wave function locally in space, meaning that the highly oscillatory character of the Rydberg wave
function is mapped onto the potential energy surface. This holds both for the absence and presence
of an electric field. As discussed in Section 4.2.1 the topology of the adiabatic potential curve
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is determined by the electronic density probability. In case the Rydberg electron is exposed to
the electric field it feels an electrostatic force of magnitude −E. Due to this the electron orbits
are shifted into the negative z-direction and the electron density increases in this region. As a
consequence of this the former radial symmetric potential curves are rendered into two-dimensional
potential energy surfaces (PES) with a global potential minimum along the negative z-direction.
In addition, the PES possess an azimuthal symmetry, e.g. the vector defining the internuclear axis
can, without loss of generality, be chosen to lie in the x − z-plane. Throughout this chapter we
are mostly interested in the properties of electrically dressed X3Σ potential surface. As this curve
provides the known trilobite states in the field-free case (see Section 4.2.1) we denote the associated
curves and two dimensional PES also as ”trilobite curves” or ”trilobite surfaces”.

In particular, to calculate the field dressed potential energy surfaces we have first applied to
approximative approaches. In the first place we analyze the one-dimensional potential curves
parallel and antiparallel to the applied field direction using the analytic results from Section 4.2.2.
Hereafter, we perform first oder perturbation theory using the field-free states from Section 4.2.4
to analyze the complete two dimensional potential surfaces. Finally we calculate the PES by
applying an exact diagonalization scheme. To calculate the specific the potential energy surface

ǫi(R) we expand ψ(r;R) in the eigenbasis of H0, i.e. ψi(r;R) =
∑

nlmC
(i)
nlm(R)χnlm(r) with

H0χnlm(r) = εnlχnlm(r), χnlm(r) = Rnl(r)Ylm(ϑ, ϕ). Finally, we have to solve the following
eigenvalue problem

(εnl − ǫ(R))Cnlm +
∑

n′l′m′

Cn′l′m′(E〈nlm|z|n′l′m〉δmm′ + 〈nlm|Ven(r,R)|n′l′m′〉) = 0, (5.5)

for which we use standard numerical techniques for the diagonalization of hermitian matrices.

5.4 Potential energy surfaces

5.4.1 Two-state analysis

At first we perform a two-state analysis as it is performed for the field-free molecular system in
Section 4.2.2. As the spherical symmetry is broken we now have to consider the configurations
θ = 0 and θ = π separately. We use the two eigenstates |Λ1(r;R, θ)〉 and |Λ2(r;R, θ)〉 of the
field-free system (see 4.2.2) to diagonalize the electronic Hamiltonian (5.3). Using these states we
obtain two one-dimensional potential energy curves along the θ = 0, π direction, respectively. In
particular we get

Hel
eff(E) =

[
λ1 + E〈Λ1(r;R, θ)|z|Λ1(r;R, θ)〉r E〈Λ1(r;R, θ)|z|Λ2(r;R, θ)〉r
E〈Λ1(r;R, θ)|z|Λ2(r;R, θ)〉r λ2 + E〈Λ2(r;R, θ)|z|Λ2(r;R, θ)〉r.

]

(5.6)

We introduce the abbreviations 〈Λi(r;R, θ)|z|Λj(r;R, θ)〉r ≡ 〈Λi|z|Λj〉 and obtain the following
expressions for the field dependent eigenvalues

λ1,2(R; θ, E) ≡ λ1,2(E) =
λ1 + λ2 + E(〈Λ1|z|Λ1〉+ 〈Λ2|z|Λ2〉)

2

±1

2

√

(λ2 − λ1 + E(〈Λ1|z|Λ1〉 − 〈Λ2|z|Λ2〉))2 + 4E2〈Λ1|z|Λ2〉2 (5.7)

and eigenvectors

|Λ1,2(R; θ, E)〉 ≡ (5.8)

|Λ1,2(E)〉 = 1
√

(λ1,2(E)− λ1 − E〈Λ1|z|Λ1〉)2 + E2〈Λ1|z|Λ2〉2

[
E〈Λ1|z|Λ2〉

λ1,2(E)− λ1 − E〈Λ1|z|Λ1〉

]

.
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Figure 5.2: One dimensional potential curves along the θ = 0 (a) and π direction (b) for applied
field strength E = 0, 20, 40, ..., 100V/m obtained with the two-state model. For θ = 0 the topology
of the potential curves remain unchanged with increasing field strength E. The potential curves are
energetically shifted by a constant factor of around 500MHz. In contrast to this for θ = π the topology
of the potential curve are field affected. For E > 60V/m the radial equilibrium position Req is shifted.

The potential curve λ1 corresponds to the field dressed trilobite curve in θ = 0 and θ = π
direction, respectively. In Fig. 5.2(a,b) we present λ1(E) calculated for electric field strengths of
E = 0, 20, 40, ..., 100V/m in the θ = 0, π direction, respectively. In Fig. 5.2(a) we clearly see that
for θ = 0 the topology of the potential curves remain unchanged for the considered spatial distances
R ∈ [1500a0, 2200a0]. As for the field-free case the region of avoided crossings is still localized near
R ≈ 1525a0 for all applied field strength. The nodal structure of the field-free potential wells is still
clearly visible, the radial positions of the local potential wells and their depths are hardly affected
by the applied electric field. The potential curves are just shifted upwards by an approximately
constant energy shift of around 500MHz as the electric field strength is increased in steps of 20V/m.
This energy shift is more or less constant for all considered spatial distances R ∈ [1500a0, 2200a0].
In addition we indicate the equilibrium positions Req of the E = 0V/m potential well (solid blue
curve) and for the E = 100V/m well (solid yellow curve). For all electric field strengths the global
equilibrium positions of the potential wells remain constant. In Fig. 5.2(b) we see that for θ = π
the potential curves move downwards as the electric field is increased. Up to an applied electric
field strength of E = 60V/m (solid cyan curve) the behavior of the shifted potential curves are
qualitatively the same as for the θ = 0 direction. The only difference is that in this case the
potential curves are shifted by a constant magnitude of around 500MHz downwards instead of
upwards as it is can be seen in Figs. 5.2(a) and (b), respectively. However, for E > 60V/m the
behavior of the energetically shifted curves significantly change compared to θ = 0 configuration.
Beyond this particular electric field strength the global topology of the potential curves changes
with increasing electric field. For instance, in case E = 20V/m the topology of the field dressed
potential curve (solid green curve) is still identical to the field-free curves topology (solid blue curve).
For E = 60V/m we recognize the first change in the curves topology in the sense that the energetic
spacing between the two local potential wells at R = 1600a0 and R = 1750a0 has decreased (solid
cyan curve). Increasing the electric field strength to E = 80V/m to local potential minimum of the
second curve (R = 1750a0) is now deeper than the first well’s potential minimum (R = 1600a0).
This means the energetic minimum of the PES is now provided by the second potential well and
the radial equilibrium position has changed from Req = 1600a0 to Req = 1750a0. In Fig. 5.2(b) we
again indicate the equilibrium position Req for applied field strengths of E = 0V/m and 100V/m,
respectively. For E = 100V/m the energetic spacing of the first two neighboring potential minima
has further increases as it can be clearly seen in Fig. 5.2(b) (light yellow curve).

To understand this effect we analyze the expression of the field dependent eigenenergies 5.7 by



5.4 Potential energy surfaces 51

1600 1800 2000 2200 2400
900

1000

1100

1200

1300

1400

1500

1600

1700

R (a0)

µ
ts el
(R

;π
)
(a
.u
.)

Figure 5.3: Two-state electronic dipole function µts
el(R;π) as a function of the radial separation R.
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just keeping the linear term in E

λ1(R,E) ≈ λ1 + E〈Λ1(R)|z|Λ1(R)〉 ≡ λ1 − Eµtsel(R; θ). (5.9)

In this approximation the energy shift is determined by the two-state electronic dipole function
µtsel(R; θ) which is defined as

µtsel(R; θ) ≡ −〈Λ1(R; θ)|z|Λ1(R; θ)〉.

It is easy to verify that µtsel(R; 0) = −µtsel(R;π). Obviously this approximation is identical to
first order perturbation theory where the exact eigenvector is replaced by the eigenvector |Λ1〉
from the two-state approximation discussed in Section 4.2.2. In Fig. 5.3 we present to electronic
dipole function µel(R, π) as a function of the spatial separation R. We clearly see a monotonically
increasing function in R. Using the electronic dipole function we can explain the behavior of the two
adiabatic potential curves presented in Fig. 5.2(a,b). For θ = 0 the energy shift ∆ε = −Eµel(R, 0)
due to the external electric field is positive and monotonically increasing in R. The field-free
potential surface is, apart its local nodal oscillations, an increasing function in R itself. This means if
θ = 0 the field dependent correction terms −Eµel(R, 0) provides a positive correction with the same
monotonic behavior as the field-free curve. Due to this the potential curve λ(R;E) is energetically
shifted upwards and the topological properties of the field-free curve remain unchanged. However,
for θ = π the situation is slightly different. In this case the monotonic behavior of the field
dependent correction is opposite to the monotony of the field-free potential curve. Due to this
these terms are in competition with each other. For very low electric fields the field-free term is
dominant and the field-free surface is hardly affected. With increasing field strength the impact of
the correction term increases. Due to this the monotonic behavior of the potential surface changes
starting with small radial positions R. By increasing the electric field strength further the imprint
of the correction term becomes visible for larger R and the radial equilibrium positions change as it
is observed in Fig. 5.2(b). The effect has two important consequences. First, the radial equilibrium
position Req can by controlled by changing the strength of the external electric strength E. Due to
this low lying rovibrational states which are localized near the minimum of the deepest potential
well are stabilized because their radial distance from the region of avoided crossings (R ≈ 1525a0)
can be increased be increasing the electric field strength E. In this case their wave functions overlap
into this region is significantly reduced which reduces decay processes of wave packets probing the
seam of the avoided crossings. Second, as the electron density of the valence electron is centered
near the neutral perturber the charge separation between electron and the positive ionic core is
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expected to increase as well. Due to this the electronic dipole moment of the field dressed molecule
should be very sensitive to the applied electric field. This issue will be studied in more detail in
Section 5.5.

5.4.2 Perturbation theory and exact diagonalization

Figure 5.4: Spatial dependence of the electric dipole function µel(R, θ). Obviously µel is antisymmetric
with respect to θ = π/2, e.g. it fulfills µel(R, θ + π/2) = −µel(R, π/2− θ).

Before we study the molecular dynamics within a numerically exact approach we analyze the
two-dimensional PES in the case that the electric field just provides a minor perturbation to the
field-free molecular states. In this case we apply standard first order perturbation theory for the
X3Σ trilobite potential energy curve. In contrast to the previous two-state analysis this approach
gives the complete two-dimensional PES as a function of R and θ. In addition this approach
requires the field-free electronic states |Ξs(r;R, θ)〉 which are calculated numerically via exact
diagonalization of the field-free Hamiltonian (see Section 4.2.4). We obtain for the field dressed
s-wave potential surface

εs(R, θ;E) = εs(R) + E〈Ξs(r;R, θ)|r cos(ϑ)|Ξs(r;R, θ)〉r ≡ εs(R)− Eµel(R, θ). (5.10)

The spatial dependent energy shift is determined by the two dimensional electric dipole function

µel(R, θ) ≡ −〈Ξs(r;R, θ)|r cos(ϑ)|Ξs(r;R, θ)〉r. (5.11)

It can be shown that µel is antisymmetric with respect to θ = π/2, e.g. it fulfills µel(R, θ + π/2) =
−µel(R, π/2 − θ). In Fig. 5.4 we present µel as a two dimensional function of the radial distance
R and the θ angle. For any fixed θ > π/2 the function µel is a monotonically increasing function
of the radial distance R while for θ < π/2 µel it is monotonically decreasing with respect to R.
However, the function monotonically decreases in the θ coordinate for any fixed value of R. In the
angular direction µel possesses its minimum at θ = 0 while its maximum can be found at θ = π.
Because of these properties the potential energy surfaces given by Eq. (5.10) are expected to possess
their angular equilibrium position θeq at θeq = π. In Fig. 5.5(a,b) we present two PES for electric
field strengths of E = 0 and E = 50V/m respectively. Fig. 5.5(a) shows the field-free adiabatic
potential surface as function of the radial distance R and the θ-angle. As expected this PES just
possesses a radial dependence. We clearly see a nodal structure providing local potential minima
with depths of the order of several hundreds of MHz. In Fig. 5.5(b) we present the PES for a
finite electric field strength of E = 50V/m. We clearly see that the spherical symmetry is broken
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Figure 5.5: (a) Adiabatic PES for the field-free system. We clearly see a spherical symmetric potential
surface with a nodal structure. The local potential wells possess depths in the order of hundreds MHz.
(b) PES for a finite electric field strength of E = 50V/m. We obtain a two-dimensional PES with local
minima along the θ = π direction.

and rotational degree of freedom is turned into a vibrational one. We obtain a two-dimensional
PES which possesses a global minimum at Req = 1550a0, θeq = π. Compared to the field-free
system at θ = π the field dressed potential curve is shifted downwards with an energy of around
500MHz while for θ = 0 the PES is shifted upwards by the same amount of energy. These effects
can be easily understood from the properties of the dipole function µel. As it is antisymmetric with
respect to θ = π/2 the field-free potential surface is altered according to Eq. (5.10) fulfilling the
symmetry properties of the electric dipole function µel. Physically, the same effect can be easily
understood by the fact that in the presence of electric field the electron experiences an external
force −Eez. This means that the electron density increases into the negative z-direction. Because
the topology of the adiabatic potential surfaces is strongly determined by the electron density the
depth of the PES increases at θ = π while it decreases for θ = 0. This feature is clearly reflected in
Fig. 5.5(a,b). In Fig. 5.6 we present a surface plot of the two-dimensional PES for the E = 50V/m
field dressed potential surface. The potential surface clearly possesses a nodal structure providing
local potential wells with depths in the range of several hundreds of MHz. The PES decreases from
θ = 0 to π adopting its minimum at θeq = π. For increasing radial separation the PES increases as
well.

In the following we leave the perturbative regime and focus especially electric field strengths in
the regime 0 ≤ E ≤ 650V/m. To analyze the PES in this regime we have performed exact diagonal-
ization. Again, the dissociation limits correspond to the atomic states Rb(5s)+Rb(n = 35, l ≥ 3).
In Fig. 5.7 we present the PES for the electrically dressed polar trilobite state for E = 150V/m
and 300V/m as a function θ and R. As already discussed in first order perturbation theory for
a finite field strength the spherical symmetry of the field-free potential curves is broken which is
clearly seen in Fig. 5.7. The potential minimum is taken for the antiparallel field configuration
θ = π. This is reasonable because the external electric fields forces the electron density to align
antiparallel to its direction which leads to a higher density in the negative z-direction. The electric
field therefore turns a rotational degree of freedom θ to a vibrational one. As the field strength
increases a stronger confinement of the angular motion is achieved and the corresponding equilib-
rium distance Req increases substantially. In Fig. 5.8(a) we show intersections through the PES for
the 9th to 15th excitation for a field strength of 300V/m and θ = π. We see that both the trilo-
bite potential (solid blue curve) and the p-wave dominated potential cure (solid red line) possess
a strongly oscillatory structure in the many hundred MHz to GHz regime. For these curves many
bound vibrational states are expected to exist. The same figure also shows the adiabatic potential
curve stemming from the 38s quantum defect state (green solid line). In contrast to the curves
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Figure 5.6: Surface plot of the two-dimensional E = 50V/m field dressed PES. From θ = 0 to π
the potential depth clearly increases while for increasing R the depth decreases. In addition, a nodal
structure providing potential wells with depth in range of hundreds of MHz are clearly visible.

Figure 5.7: Two-dimensional potential energy surfaces for the electrically dressed polar trilobite states
for E = 150V/m (a) and 300V/m (b). We observe a potential minimum at θ = π. An increase of
the electric field goes along with a stronger confinement of the angular motion and an increase of the
diatomic equilibrium distance Req. Thus, the electric field stabilizes the s-wave dominated molecular
states.

arising from the highly degenerate n = 35, l ≥ 3 manifold the oscillations of this potential curve
are of the order of several MHz. This is clearly visible in the inset (i) of Fig. 5.8(a). In this figure
the 38s potential curve is enlarged on a MHz scale. In general, this state is much less affected by
the electric field compared to the PES arising from the zero-field high-l degenerate manifold. This
is reasonable since the atomic 38s state does not possess a substantial electric dipole moment in
the presence of the field. Therefore its potential curve hardly shifts with increasing electric field
strength from its field-free value of −20.284GHz.
In Fig. 5.8(b) we show intersections for θ = π through the PES of the electrically dressed polar
states for different field strength E = 150V/m, 300V/m and 450V/m. We observe how the poten-
tial curve is globally shifted with increasing electric field strength. For E ≥ 700V/m (not shown)
this trilobite PES experiences avoided crossings with the potential curve belonging to the 38s state.
We see that the overall topology the PES does not change with varying electric field. In partic-
ular, the number of minima and their positions remain approximately constant with increasing
field strength. However, the diatomic equilibrium distance Req changes strongly as E varies. This
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effect has already been observed and discussed within the two-state analysis for low electric field
strength in Section 5.4.1 and is still present beyond the perturbative field regime. This particular
observation can be explained by the electric field giving a ”spatial weight” to the PES. In contrast,
the region of avoided crossings of the s- and p-wave dominated potential curves is hardly affected
by the applied electric field and the PES determined mainly by the s-wave interaction. To be more
specific we show the dependence of Req as a function of E in Fig. 5.9(b). We see a plateau-like
structure with steps at the field strengths 100V/m, 200V/m and 385V/m, where the value of Req

sharply changes. This structure simply reflects the depicted effect of the electric field on the PES;
i.e. by varying the electric field one changes the energetically position of the different potential
wells in the oscillating PES, which leads to abrupt changes of the global equilibrium position Req.
Figures 5.8(a,b) also demonstrate the with increasing field strength the avoided crossing between
the p-wave and s-wave dominated states remains (approximately) localized in coordinated space
whereas the energetically low-lying potential wells with bound vibrational states and in particular
the one belonging to the global equilibrium position are lower in energy and are consequently well
separated from this avoided crossing. In conclusion, the electric field represents an excellent tool to
control the energetic positions and depths of the individual wells and to avoid destabilizing avoided
crossings.
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Figure 5.8: (a) Intersections through the two-dimensional PES for θ = π for the 9th-15th excitation for
E = 300V/m. For the two lowest PES arising from the high-l degenerate manifold a strongly oscillatory
behavior is visible. The region of avoided crossing is clearly visible at R ∼ 1400− 1500a0. (b) Same as
in (a) but with varying E = 150, 300 and 450V/m. The diatomic equilibrium distance Req is moving
away from the region of the avoided crossing at R = 1500a0 − 1700a0.

5.5 Electric dipole moment

In Ref. [85] the authors reported on large electric dipole moments of ultralong-range polar Rydberg
molecules of the order of kDebye. The zero-field permanent dipole moment for these species scales
according to the semi-empirical expression Del = Req − n2/2. As a first approach we compare
this simple expression with the result obtained from the two-state electric dipole function µtsel(R; θ)
given by Eq. (5.10). We use the approximation Del(E) ≈ µtsel for the electric dipole moment along
the internuclear axis. As it was discussed in Section 5.4.1 the electric dipole moment is expected
to change due to the change in the radial equilibrium position Req. Changing the electric field
strength from E = 0 to 100V/m we observe a single change in the value for Req. In particular,
for E ≈ 92V/m the radial equilibrium position changes from Req ≈ 1548a0 to Req ≈ 1747a0.
These values give electric dipole moments of µtsel(1548a0;π) = 2.3786 kDebye and µtsel(1747a0;π) =
2.9776 kDebye. The semi-empirical result gives 2.3779 kDebye and 2.8851 kDebye, respectively. The
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Figure 5.9: (a) The electric dipole moment as a function of the electric field E (blue points). For
comparison we show a semi-classical prediction (green points). Figure (b) shows the behavior of the
equilibrium distance Req with varying electric field strength.

relative deviations are 3h and 3%, respectively. This indicates the good agreement of the two-
state approach and the semi-empirical ansatz. For the complete range of electric field strengths
(0V/m ≤ E ≤ 700V/m) we have used the numerically exact electronic eigenstates ψ(r;Req,E)
to calculate the absolute of the electric dipole moment along the z-axis as a function of the field
strength.

Del(E) = |
∫

d3rψ∗(r;Req,E)zψ(r;Req,E)| =
√

4π

3
|
∑

nn′ll′m

C∗
n′l′mC

∗
nlm

∫

drr3Rn′l′(r)Rnl(r)

×
∫

dΩY10(ϑ, ϕ)Y
∗
l′m(ϑ, ϕ)Ylm(ϑ, ϕ)|, Req = (0, 0, Req)

T . (5.12)

The integration over the angular degrees of freedom provides ∆l = ±1 as a selection rule. In Fig.
5.9(a) we show the absolute value of the electric dipole moment along the z-axis as a function of
the field strength. We observe that with increasing electric field also Del increases up to values of
around 4 kDebye. As for Req we see a sharp step structure, i.e. for field strengths at approximately
100, 200, 385V/m its values suddenly increase in steps of roughly 500Debye. In Fig. 5.9 we also
show a comparison between the exact result calculated according to Eq. (5.12) (blue data points)
and the semi-empirical approximation (green data points). For low electric fields the agreement is
quite well, but differs with increasing field strength up to a deviation of around 10%. In the consid-
ered electric field regime semi-empirical result therefore still allows for a qualitative description of
the behavior of Del. A major deviation between the two approaches is that the numerically exact
electric dipole moment also grows linearly while the semi-empirical ansatz remains constant. This
effect can be explained by the fact that the exact result contains higher order contributions in E. In
case Req remains constant the increasing dipole moment can be explained by contributions linear in
E which are associated with electric polarizability of the ultralong-range Rydberg molecule. This
issue will be discussed in Chapter 8. For E > 570V/m we find an unexpected decrease of Del.
This feature can be understood if one analyzes the field-dependent spectrum of coefficients for the
electronic eigenvector ψ(r;Req,E) =

∑

iCi(E)χi(r). In Fig. 5.10 we show the distribution |Ci|2
for E = 300V/m and 600V/m. For E = 300V/m the spectrum is dominated by basis states from
the n = 35, l ≥ 3 manifold. Contributions stemming from the quantum defect split states (which
are placed at the outermost right edge of the spectrum at i = 1217, ..., 1225) are negligible. For
E = 600V/m the situation has changed in the sense that now the main contribution is provided
by the 38s state. This can be understood by the fact that the considered PES is approaching
the 38s PES with increasing field strength. The latter is however barely affected by the electric
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Figure 5.10: Spectrum of coefficients of the electronic eigenvector ψ(r;Req,E) at E = 300V/m (a)
and 600V/m (b). For increasing field strength the eigenstates gain a finite admixture of the quantum
defect split states. For 600V/m we clearly see a major contribution provided by the 38s state.

field. For E = 600V/m the PES involve avoided crossings which causes the high-l dressed trilobite
PES to acquire a major contribution from the 38s state. This finite admixture has two important
consequences:

• Due to the ∆l = ±1 selection rule the 38s state only acquires a contribution to the integral
(5.12) via the 37p state. However, the coefficient of the latter state is negligibly small. This
causes the decrease of Del for large field strengths as seen in Fig. 5.9.

• The finite 38s admixture provides us with the possibility to prepare high-l Rydberg molecules
via a two-photon process. This goes beyond the three-photon preparation scheme suggested
in [85] (lmin = 3 for the field-free case). For E ≥ 570V/m the trilobite state acquires a major
l = 0 contribution which makes it accessible for a two-photon transition scheme. In Fig.
5.11(a,b) two possible transitions schemes are depicted. In Fig. 5.11(a) the high-l Rydberg
molecules are created via a two photon process into to reach a high nd intermediated state.
In particular, we have chosen the 35d state. Hereafter an additional microwave pulse is used
to finally reach the n = 35, l ≥ 3 perturbed hydrogenic state. In Fig. 5.11(b) the excitation
scheme for the field dressed high-l species is depicted. Here, an intermediated np level (n = 30
in this case) can be used to reach the field dressed trilobite state within a two photon process.
The same mechanism has been reported recently in the analysis of ultralong-range polyatomic
Rydberg molecules formed by a polar perturber [88]. Field-free high-l molecular states can
then in principle be accessed via an additional adiabatic switching of the electric field back
to the zero value.

5.6 Rovibrational states

Because of the azimuthal symmetry of the PES we introduce cylindric coordinates (ρ, Z, φ) for
their parametrization ǫ(R) = ǫ(ρ, Z). For the rovibrational wave functions we choose the following
ansatz

φνm(R) =
Fνm(ρ, Z)√

2πρ
exp(imϕ), m ∈ Z, ν ∈ N0. (5.13)
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Figure 5.11: Schematic draft of possible transition schemes in order to create high-l Rydberg molecules.
Figure (a) shows a two photon process to reach a nd Rydberg state followed by an additional microwave
pulse. In (b) the field dressed Rydberg molecules can be reached within a two photon process via an
intermediated np state.

With this we can write the rovibrational Hamiltonian in Eq. (5.4) as

Hrv = − 1

mn
(∂2ρ + ∂2Z) +

m2 − 1/4

mnρ2
+ ǫ(ρ, Z). (5.14)

We solved the corresponding Schrödinger equation for different azimuthal quantum numbers m
using a fourth order finite difference method (see Appendix A.3).
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Figure 5.12: (a) shown are the eleven lowest vibrational energies as a function of the field strength E.
The dips around E = 100, 200 and 385V/m are caused by the change of potential wells determining
the diatomic equilibrium distance Req. In figure (b) we show the offset corrected potential curves for
E = 300V/m and E = 380V/m (θ = π). For E = 300V/m bound states in the middle well with
energies larger than 200MHz can tunnel into the neighbored potential wells. This causes a reduction of
their level spacings. For E = 380V/m we nearly get a double potential well and states with energies less
than 200MHz possess a higher tunneling probability. Correspondingly, this leads to a denser spectrum.

In Fig. 5.12(a) we provide the energies of the eleven lowest vibrational (m = 0) states living in
the trilobite PES for varying field strength. In order to obtain a normalized view of the spectrum
the corresponding energy of the minimum of the PES has been subtracted. In general we observe a
slight increase of the level spacing with increasing field strength. The increase is due to an enhanced
angular confinement of the rovibrational motion for strong fields. For E = 100, 200 and 385V/m
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however we encounter a dip in the rovibrational level spacing. The latter corresponds to the case
of crossover of the equilibrium positions between neighboring wells and therefore an accompanying
relocation of the corresponding rovibrational wave functions. This leads to enhanced tunneling
probabilities between neighboring wells and therefore an increased level density. In Fig. 5.12(b)
we show the offset corrected potential curves for E = 300V/m (blue curve) and E = 380 V/m
(green curve) (θ = π). For E = 300V/m the potential curve possesses a global minimum at
R = 1938a0 and two local minima at R = 1750a0 and 2182a0 with an offset of 200MHz. Bound
states in the middle well with energies higher than 200MHz can tunnel into these wells, whereby
their level spacing is reduced. For increasing field strengths the right potential well is shifted
downwards. This enhances the tunneling probabilities of states with energies less than 200MHz,
which correspondingly leads to a denser spectrum.

Figure 5.13: Scaled probability densities |Fν0(ρ, z)|2 for rovibrational wave functions. All four contra-
ventions belong to the trilobite PES for E = 300V/m with an azimuthal quantum numberm = 0. In (a)
we observe a deformed Gaussian like density profile for the ground state (ν = 0) centered at Z = −1938a0
and ρ = 72a0. In Z/ρ-direction the density distribution has an extension of approximately 50a0/100a0.
In (b) we show the density profile for the second excited state (ν = 2). This density profile provided
three peaks at (Z, ρ) = (−1939a0, 32a0), (−1934a0, 122a0) and (−1924a0, 234a0). Figure (c) shows the
density profile for the sixth excited state. We notice an asymmetric double peak structure along the
Z-drection. This feature reflects the excitation of the Z-degree of freedom. Finally, in (d) we have both
an excitation the angular and Z-direction which results in a density profile possessing four peaks.

In Figs. 5.13((a)-(d)) we present (scaled) probability densities |Fν0(ρ, z)|2 form = 0 for the vibra-
tional ground state (ν = 0) and higher excitation (ν = 2, 6, 8) for E = 300V/m. The equilibrium
distance for the PES is located at Z = −1939a0, ρ = 0. The m = 0 ground state distribution
is characterized by a deformed Gaussian profile that is localized at Z = −1938a0 and ρ = 72a0.
In Z, ρ-direction the density distribution possesses an extension of approximately 50a0 and 100a0,
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respectively. The density profile for the second excitation (ν = 2) shows three separate Gaussian
like density peaks with increasing intensity located at (Z, ρ) = (−1939a0, 32a0), (−1934a0, 122a0)
and (−1924a0, 234a0) with an extension of around (25a0, 30a0), (25a0, 40a0) and (75a0, 75a0) in
the Z, ρ-directions, respectively. The specific profile of the |F20(ρ, z)|2 density profile can be un-
derstood by considering the excitation dynamics into the θ-direction to be similar to the harmonic
oscillator. In this case the density profile in Fig. 5.13(b) can be easily related to the second ex-
cited state of a harmonic oscillator. Increasing the degree of excitation we obtain a novel kind of
density profile for (ν = 6) as it is depicted in Fig. 5.13(c). Now the Gaussian probability den-
sity from Fig. 5.13(a) possesses a double peak structure with a node at the former peak position
(ρ = 72a0, Z = −1939a0). In Fig. 5.14 this issue is presented in more detail. In this figure we
present, beside the-fiel dressed potential energy curve ǫ(Z, ρ0), intersection through the probability
densities |Fν0(Z, ρ0)|2ν=0,6 (green and blue curve, respectively) for fixed ρ0 = 72a0 as functions of Z.
In the case of the ground state rovibrational state (ν = 0) the Gaussian profile is clearly visible. In
the case of the excited state (ν = 6) the density profile possesses a double peak structure providing
a node a the peak position of the ground state density distribution (Zpeak = −1939a0). The density
profile of the excited can be understood if this excitation is considered to be a harmonic oscillator in
the Z-direction instead of the angular direction. The asymmetric peak structure in Fig. 5.14 can be
explained by the asymmetric potential shape. Finally, in Fig. 5.13(d) we present the rovibrational
probability density |F60(Z, ρ0)|2. In this case an angular mode is excited in addition to the just
discussed excitation in the Z-direction. We obtain a density profile consisting of four density peaks
whereby the peak high is larger for the outer peaks than the inner peaks.
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Figure 5.14: Electrically dressed trilobite potential curve ǫ(Z, ρ0) (solid blue curve) for E = 300V/m
and as a function of Z and fixed ρ0 = 76a0. In addition, intersections through the (scaled) rovibrational
probability densities |Fν0(Z, ρ0)|2ν=0,6 are depicted (green and red solid curves, respectively).

5.7 Conclusion

In the present work we have therefore explored the changes the polar high angular momentum
trilobite states experience if they are exposed to an electric field of varying strength. Taking into
account s- and p-wave interactions it turns out that the electric field provides us with a unique
know to control the topology of the adiabatic potential energy surfaces. First of all, the angular
degree of freedom between the electric field and internuclear axis is converted from a rotational to
a vibrational degree of freedom thereby rendering the field-free potential energy curve into a two-
dimensional potential energy surface. It turns out that the global equilibrium position is always the
antiparallel configuration of these two axes. The sequence of potential wells with increasing radial
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coordinate, i.e. the oscillatory behavior of the potential is changed dramatically in the presence of
the field. In particular we encounter an overall lowering of the energy accompanied by a subsequent
crossover of the energetic order of the individual wells. Consequently, the equilibrium distance and
the lowest vibrational states are systematically shifted to larger internuclear distances. The p-
wave split state which, due to its resonant behavior, lowers dramatically in energy with decreasing
internuclear distance and therefore crosses the polar trilobite state close to its equilibrium distance
in the zero-field case, can now with increasing field strength be systematically shifted away from
the energetic lowering equilibrium distance and corresponding well. In such a way the respective
stability of the ground and many excited vibrational states of the polar trilobite state is guaranteed.
For strong fields the interaction of the latter state with non-polar (quantum defect split) states,
which are very weakly polarized in the presence of the field, leads to a strong admixture of, in our
specific case, s-wave character to the polar high angular momentum states. As a consequence, a
two-photon excitation process starting from the ground state of the two-atom system should be
sufficient to efficiently excite these states and probe their character. The electric dipole moment,
which is steadily increasing with increasing electric field strength starting from zero-field, does, due
to the above admixture, decrease in the strong field regime.
To obtain an even richer topology of the potential energy surfaces of the potential surfaces which

steem from the highly degenerate hydrogenic n manifold the combination of static electric and
magnetic fields would be the next step. This subject will be the content of Chapter 6. The results
from the studies on electrically dressed ultralong-range Rydberg molecules have been published
in [3].





Chapter 6

Ultralong-range Rydberg molecules in combined electric

and magnetic fields

6.1 Introduction

The impact of either magnetic or electric fields on ultralong-range molecules has been studied in
previous works [3,99]. It has been shown that in the presence of an external field the angular degree
of freedom between the field and the internuclear axis acquires a vibrational character resulting in
two-dimensional adiabatic potential energy surfaces (PES). A pure magnetic field yields molecular
states oriented perpendicular to the molecular axis and leads, with increasing field strength, to a
monotonic lowering of the magnitude of the electric dipole moment [99]. In contrast, a pure electric
field forces the molecule into a parallel oriented configuration with an electric dipole of growing
magnitude for increasing electric field strength [3].

In the present chapter we explore the impact of combined electric and magnetic fields, and specifi-
cally the cases of parallel and crossed (perpendicular) fields, on the structure and dynamics of high-l
ultralong-range diatomic rubidium molecules. Our analysis goes beyond the s-wave approximation,
taking into account the next order p-wave term in the Fermi-pseudopotential [86,195,196]. Already
for the case of a pure magnetic field only we demonstrate the strong impact of the p-wave contri-
bution. Due to p-wave interactions the potential wells providing the weakly bound trilobite states
vanish beyond a critical magnetic field strength and consequently no bound states exist anymore.
For combined electric and magnetic fields the topology of the PES strongly depends on the specific
field configuration and the applied field strengths. The resulting PES show a strong oscillatory
behavior with depths up to hundreds of MHz and we find rovibrational bound states with level
spacings in the MHz regime. By tuning the field parameters separately we can control the molecu-
lar orientation for the parallel field configuration from a perpendicular to an antiparallel molecular
configuration with respect to the magnetic field. For the crossed field configuration the alignment
can be tuned from an aligned to an antialigned molecular state. For both field configurations we
present an analysis of the electric dipole moment.

In detail we proceed as follows. In Section 6.2 we present the molecular Hamiltonian and a
discussion of the underlying interactions. Sections 6.3 and 6.4.1 contain the methodology and
our results for the pure magnetic field configuration, respectively. In Section 6.5 we analyze the
impact of the combined fields on the topology of the PES for the parallel as well as the crossed
field configuration. Their rovibrational spectra are addressed in Section 6.6. A detailed study of
the alignment and orientation as well as the corresponding electric dipole moment are provided in
Sections 6.7 and 6.8, respectively. Finally, Section 6.9 contains our conclusions. The results from
this chapter have been published in Ref. [5].

6.2 The setup

In this chapter we consider a highly excited Rydberg atom interacting with a ground state neutral
atom (the ’perturber’ atom) in combined static and homogeneous electric and magnetic fields.
Again, we focus on the 87Rb atom. The Hamiltonian treating the rubidium ionic core and the
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neutral perturber as point particles is given by

H =
P 2

mn
+H0

el + Ven(r,R), (6.1)

H0
el = H0 +E · r +

1

2
B ·L+

1

8me
(B × r)2, H0 =

p2

2me
+ Vl(r), (6.2)

where (mn,P ,R) denote the atomic rubidium mass and the relative momentum and position of
the ground state 87Rb atom with respect to the ionic core.

Figure 6.1: A sketch of the considered setup. An ultralong-range Rydberg molecule is exposed to
external electric E and magnetic B-fields. The molecule consists of a rubidium Rydberg atom (Rb+

ionic core plus valence electron (e−)) and a neutral ground state atom (Rb) which interact via a low
energy electron-atom scattering potential Ven(r,R)). The B-field points along the z-axis while the
direction of the E-field is specified by the angles (θE, φE).

The triple (me,p, r) indicates the corresponding quantities for the Rydberg electron. The elec-
tronic Hamiltonian H0

el consists of the field-free Hamiltonian H0 and the usual Stark, Zeeman and
diamagnetic terms of an electron in static external E-/B-fields. Vl(r) is the angular momentum
dependent one-body pseudopotential felt by the Rydberg electron when interacting with the ionic
core [125]. For low-lying angular momentum states the electron penetrates the finite ionic Rb+-
core. This leads to an angular momentum-dependent interaction potential Vl(r) due to polarization
and scattering effects [70]. In this work we choose the direction of the magnetic field to coincide
with the z-axis of the coordinate system, i.e. B = Bez. Finally, we model the interatomic potential
Ven for the low-energy scattering between the Rydberg electron and the neutral perturber as a
so-called Fermi-pseudopotential which is discussed in detail in Section 2.1.

Ven(r,R) = 2πAs[k(R)]δ(r −R) + 6πA3
p[k(R)]

←−∇rδ(r −R)
−→∇r. (6.3)

In our setup we consider the triplet scattering (S = 1) of the electron from the spin-1/2 ground
state alkali atom. Suppression of singlet scattering events can be achieved by an appropriate
preparation of the initial atomic gas. In Eq. (7.4) the quantities As[k(R)] = − tan(δ0(k))/k and
A3

p[k] = − tan(δ1(k))/k
3 denote the energy-dependent triplet s- and p-wave scattering lengths,

respectively. They are evaluated from the corresponding phase shifts δl(k), l = 0, 1. The kinetic
energy Ekin = k2/2 of the valence electron at the collision point with the neutral perturber can be
taken according to k2/2 = 1/R − 1/2n∗2, which represents a semiclassical approximation. If not
stated otherwise, atomic units will be used throughout.
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6.3 Methodology

In order to solve the eigenvalue problem associated with the Hamiltonian (6.1) we adopt an adiabatic
ansatz for the electronic and heavy particle dynamics, cf. Section 3.2. We write the total molecular
wave function as Ψ(r,R) = ψ(r;R)Φ(R) and obtain within the adiabatic approximation

[H0 +E · r +
1

2
B ·L+

1

8
(B × r)2 + Ven(r,R)]ψi(r;R) ≡ Helψi(r;R) = ǫi(R)ψi(r;R), (6.4)

(
P 2

M
+ ǫi(R))Φik(R) = EikΦik(R), (6.5)

where ψi describes the electronic molecular wave function for a given relative position R and
Φik determines the rovibrational state of the molecule. To calculate the potential energy surface

ǫi(R) we expand ψ(r;R) in the eigenbasis of H0, i.e. ψi(r;R) =
∑

nlmC
(i)
nlm(R)χnlm(r) with

H0χnlm(r) = εnlχnlm(r), χnlm(r) ≡ 〈r|nlm〉 = Rnl(r)Ylm(ϑ, ϕ). For l ≥ lmin = 3 we neglect
all quantum defects, i.e. H0 is identical to the hydrogen problem. Finally, we have to solve the
following eigenvalue problem

(εnl − ǫ(R) +m
B

2
)Cnlm +

∑

n′l′m′

Cn′l′m′(〈nlm|Er cos(Ω) + B2

8
r2 sin2(ϑ)|n′l′m〉 (6.6)

+〈nlm|Vn,e(r,R)|n′l′m′〉) = 0,

with cos(Ω) = sin(θE) sin(ϑ) cos(φE−ϕ)+cos(θE) cos(ϑ). The angles (θE , φE) specify the direction
of the electric field (see Fig. 6.1). Without loss of generality, one can choose φE = 0. In this
work we analyze the parallel (θE = 0) and perpendicular (θE = π/2) field configurations. To
study the different configurations we use standard numerical techniques for the diagonalization of
the resulting hermitian matrices. Throughout this work we focus on the high-l n = 35 manifold;
for other n-quantum numbers the underlying physical processes remain similar. In the case of
zero electric field this high-l manifold provides the trilobite states [85]. For the n = 35 trilobite
manifold we used, in addition to the degenerate n = 35, l ≥ 3 manifold, a basis set that includes
the 38s, 37d, 36p quantum defect split states due to their energetically closeness. This basis set
contains 1225 states in total.

From Eqs. (6.4) and (6.5) we already deduce some symmetry properties of the states ψ, Φ and
the energies ǫ for the different field configurations. If Pr,R,E denotes the generalized parity operator
that transforms (r,R,E) → (−r,−R,−E) we have [H,Pr,R,E ] = [Vn,e(r,R), Pr,R,E ] = 0. This
means that the states Ψ, ψ and Φ are parity (anti)symmetric and the PES fulfill ǫ||,⊥(R;E) =
ǫ||,⊥(−R;−E) where (||,⊥) denote the PES in case of parallel and perpendicular fields, respectively.
In addition, if θE = 0 (parallel configuration), the PES possess an azimuthal symmetry, e.g. ǫ||(R) =
ǫ||(R, θ) and the vector defining the internuclear axis can, without loss of generality, be chosen to
lie in the x-z-plane. In contrast, if θE = π/2 (perpendicular configuration), the PES depend on the
azimuthal coordinate φ as well and possess only reflection symmetries with respect to the x-y-plane
and the x-z-plane, i.e. ǫ⊥(R, π− θ, φ) = ǫ⊥(R, θ, φ) and ǫ⊥(R, θ, 2π−φ) = ǫ⊥(R, θ, φ). In this work
the energy offset of all PES is the dissociation limit of the atomic states Rb(5S)+Rb(n = 35, l ≥ 3).

6.4 The pure magnetic field configuration

Before we study the combined field configurations let us analyze the system for zero electric field
(E = 0). Such an analysis has been already performed in [99] considering only the s-wave scattering
for the electron-perturber interaction. In contrast to this we here include also the p-wave interaction.
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6.4.1 P -wave interaction effects

In Fig. 6.2 we show an one-dimensional cut through the s- and p-wave dominated PES (black
lines) in comparison with the purely s-wave dominated potential curves (blue lines) for magnetic
field strengths B = 20G (dashed lines) and 100G (solid lines). The specific cut is taken along
the θ = π/2 direction. As discussed in [99] in the case of a pure s-wave scattering potential the
field-dependent terms represent a perturbation with respect to the field-free molecular Hamiltonian
and the considered potential curve is just the known trilobite potential curve [85] shifted by the
Zeeman splitting. The resulting PES provide, besides a global minimum between R = 1400a0 and
1500a0, a number of local minima which are taken on for the θ = π/2 configuration for which
the internuclear axis is perpendicular to the applied field. This behavior is clearly visible in Fig.
(6.2) for the blue curves which represent the purely s- wave dominated potential curves. However,
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Figure 6.2: Comparison between the pure s-wave scattering dominated potential curves (blue lines)
and the combined s- and p-wave potential curves (black lines). Provided are cuts for θ = π/2 for
different magnetic field strengths B = 20G (dashed lines) and B = 100G (solid lines).

including the p-wave scattering term changes the situation substantially. As discussed in detail
in [3] in the field-free case additional potential curves arise causing avoided crossings in the vicinity
of the global minimum of the s-wave trilobite curve.

As shown in Fig. 6.2 for θ = π/2 we are faced with two additional potential curves. For B = 20G
(dashed, black curves) the avoided crossings in the region R = 1400a0 − 1600a0 known from the
field-free case are still visible. With decreasing energetical order we first have an oscillating potential
curve with a potential minimum at approximately−7.44 GHz forR = 1312a0 that strongly increases
for R ≥ 1400a0. Because it arises from the additional p-wave interaction we denote this PES as
p-wave PES. Second, we find a monotonically increasing potential curve ranging from R = 1400a0
to 1500a0. In this work this PES is not of interest because it does not exhibit any potential minima
and therefore contains no bound states. The third and energetically lowest potential curve is the
one providing the ultralong-range molecules (”trilobite states”) from [85] in the field-free case, cf.
Section 4.2.1. This potential curve does not possess a global minimum any more. It monotonically
increases till R ≈ 1450a0 and thereafter possesses an oscillatory behavior with local potential wells
of depths in the hundred MHz regime. We observe that for increasing radial distance R the s-
wave character becomes more and more dominant. This curve provides metastable bound states.
Although this potential curve is at least in a certain region already strongly p-wave interaction
affected in the field-free case [3] we denote it as the s-wave PES. In the field-free case this surface
is, at least in a certain region, strongly p-wave interaction affected [3].

Finally, the effect of an increasing field strength on the p-wave dominated potential curves can be
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seen in Fig. 6.2 as well. We present the p-wave dominated potential energy curves for a magnetic
field B = 100G (solid black curves). An obvious consequence is that the s- and p-wave PES have
moved up and down in energy, respectively, while the energetically intermediated curve is still
monotonically increasing, but now in the enlarged spatial region 1400a0 ≤ R ≤ 1600a0.

6.4.2 Three-state analysis

To explain the p-wave interaction effects we first use an analytic approach similar to the pure electric
field analysis provided in Chapter 5. Again, we restrict the analytic analysis on the degenerated
hydrogenic manifold n = 35, l ≥ 3. To derive the conditions of this ansatz we first consider the
case of low magnetic field strengths. Neglecting the diamagnetic term in Eq. (6.2) the electronic
HamiltonianH0

el possesses the same eigenstates |nlm〉 as the field free problemH0, the paramagnetic
term ∼ Lz just lifts the m-degeneracy in the electronic eigenenergies. Among the states which
split away from the degenerated hydrogenic n manifold the eigenstate with the lowest energy
is |n, n − 1,−n + 1〉 with an eigenenergy of −(B/2)(n − 1). This state is one of the circular
eigenstates of the hydrogen problem (|m| = n− 1). These states are characterized by an electronic
density distribution of toroidal structure with a single density maximum in the x-y-plane with a
radial extension of R = n(n − 1) (see Fig. 6.1). In case the neutral perturber interacts with the
Rydberg valence electron it will mix the eigenstates of the electric Hamiltonian H0

el. However, with
increasing field strength the lowest potential energy surface will be determined by the circular state
|n, n − 1,−n + 1〉. Due to this we expect the potential energy surface to be minimal along the
θ = π

2 direction. For this reason, we perform an analytic study to determine the potential curves
for θ = π

2 and φ = 0.

In contrast to the electrically dressed molecules in Chapter 5 where we derived an analytical model
for the θ = 0, π configurations, for θ = π/2 the interaction matrix Ven(R,

π
2 , 0) is non-diagonal with

respect to the azimuthal m quantum number. Since

Plm

(

cos
(π

2

))

= Plm(0) ∼ δl+m,2n, n ∈ N0 (6.7)

the interaction matrix Ven is now diagonal with respect to l +m being even or odd. In particular
using Eq. (1.40) we see that the matrices V s

en(R, π/2, 0), V
p1
en (R, π/2, 0), V

p3
en (R, π/2, 0) only possess

non zero entries if l +m is even while for V p2
en (R, π/2, 0) the only non zero elements are found for

l+m to be odd. As we are mostly interested in studying the properties of the field dressed trilobite
curves and the paramagnetic and diamagnetic term in Eq. 6.2 do not mix the l +m = even/odd
subspaces (see Section 1.40) we restrict our analysis to the l +m = even subspace.

For the field-free molecular system the eigenfunctions corresponding to the non-zero eigenvalues
of V s

en(R, π/2, 0), V
p1
en (R, π/2, 0) and V

p3
en (R, π/2, 0), given by

ψs
n

(

r;R,
π

2
, 0
)

≡ ψs
n(r;R) =

1
√
∑
R2

nl(r)|Ylm
(
π
2 , 0
)
|2
∑

lm

Rnl(R)Ylm

(π

2
, 0
)

ψnlm(r),

ψp1
n

(

r;R,
π

2
, 0
)

≡ ψp1
n (r;R) =

1
√
∑
R

′2
nl(r)|Ylm

(
π
2 , 0
)
|2
∑

lm

R
′

nl(R)Ylm

(π

2
, 0
)

ψnlm(r),

ψp3
n

(

r;R,
π

2
, 0
)

≡ ψp3
n (r;R) =

1
√
∑
R2

nl(r)H
2
lm

(
π
2

)

∑

lm

Rnl(R)Hlm

(π

2

)

ψnlm(r),

form a basis for the non-zero eigenvalue subspace of the electronic Hamiltonian Hel. Analogous
to Section 4.2.2 we construct an orthonormal basis set {ψs

n(r;R), ψ̃
p1
n (r;R) ψ̃p3

n (r;R)} by applying
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the Gram-Schmidt process [193]. We obtain

ψ̃p1
n (r;R) =

ψp1
n (r;R)− C1ψ

s
n(r;R)

√

1− C2
1

, (6.8)

ψ̃p3
n (r;R) =

ψp3
n (r;R)− C2ψ

s
n(r;R)− C3ψ̃

p1
n (r;R)

√

1− C2
2 − C2

3

(6.9)

with

C1 = 〈ψs
n(r;R)|ψp1

n (r;R)〉r, C2 = 〈ψs
n(r;R)|ψp3

n (r;R)〉r, C3 = 〈ψp3
n (r;R)|ψ̃p1

n (r;R)〉r.

With these orthonormal basis functions we analyze the adiabatic potential curves of the magneti-
cally dressed Rydberg molecules along the θ-direction with an effective three-state model. We get
for the effective electronic Hamiltonian Hel

eff

Hel
eff =





α1 g1 g2
g1 α2 g3
g2 g3 α3



 (6.10)

with

α1 = 〈ψs
n(r;R)|Hel|ψs

n(r;R)〉r, α2 = 〈ψ̃p1
n (r;R)|Hel|ψ̃p1

n (r;R)〉r, α3 = 〈ψ̃p3
n (r;R)|Hel|ψ̃p3

n (r;R)〉r,

g1 = 〈ψs
n(r;R)|Hel|ψ̃p1

n (r;R)〉r, g2 = 〈ψs
n(r;R)|Hel|ψ̃p3

n (r;R)〉r, g3 = 〈ψ̃p1
n (r;R)|Hel|ψ̃p3

n (r;R)〉r.

From this matrix representation we can analytically derive the eigenfunctions and eigenenergies
which correspond to the adiabatic potential curves for the magnetically dressed molecules.
Since the exact expressions of the matrix elements, eigenenergies and eigenvectors are quite

complex and lengthy we abstain from presenting the exact expressions of these quantities at this
point. The exact formulas for the three non-zero eigenvalues are presented, in Appendix B.9.3. In
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Figure 6.3: Adiabatic potential curves along the θ = π/2 direction for applied magnetic field strengths
B = 0G and 80G. In figure (a) we show the field free 3Σ curves and a single 3Π curve. In (b) we present
both the potential curves obtained via exact diagonalization (solid curves) and the analytic three states
(dashed curves). For the s and p-wave curves the analytic approach reproduces the numeric results
quite well.

Fig. 6.3(a,b) we present a comparison between the numerically exact potential curves (solid curves)
and the curves obtained from the three state analysis (dashed curves). In Fig. 6.3(a) we present
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the field free curves. Obviously, in this case the three state ansatz delivers nearly identical curves
to the exact diagonalization. In Fig. 6.3(b) the same curves are shown but for a finite magnetic
field strength of B = 80G. We see that for all three potential curves the exact diagonalization
curves (solid lines) and the three-state analytic approach (dashed lines) match quite well. The
largest deviations are found in the region of the field-free avoided crossings (R ≈ 1450 − 1550a0).
For the s- and p-wave curves the energy shift and topological structure of the curves are clearly
reproduced. Both Fig. 6.2 and Fig. 6.3 show that the besides the energetic separation a further
consequence of the p-wave interaction is the disappearance of the local potential wells in case of the
s-wave curve with increasing magnetic field strength. This behavior can be understood by referring
to the three-state analysis. In this approach the energy spacing between two adjacent curves is
determined by the off diagonal elements gi, i = 1, 2, 3. Since these terms are proportional to B the
energy separation between the potential curves increases with increasing B. This feature can be
understood as well by applying standard perturbation theory this feature is easily understood as
well. In particular, the PES are well reproduced by the expressions

ǫ(s,p)per (R;B) = ǫ
(s,p)
0 (R) +

B

2
〈Ξ(s,p);R|Lz|Ξ(s,p);R〉+

B2

4

∑

n 6=(s,p)

|〈Ξn;R|Lz|Ξ(s,p);R〉|2

ǫ
(s,p)
0 (R)− ǫ(n)0 (R)

, (6.11)

where |Ξn;R〉 and ǫ(n)0 (R) denote the field-free adiabatic electronic eigenstates and eigenenergies
from Section 4.2.4. The diamagnetic term in Eq. (6.1) can be neglected here. Obviously, the
term of O(B2) potentially becomes relevant in the region of avoided crossings of the field-free
curves which are localized around R ≈ 1450a0 [3]. For increasing magnetic field strength this term
in (6.11) becomes dominant in spatial regions beyond the point of the field-free avoided crossings
(R ≈ 1450a0). This causes the PES to separate energetically in the way as it can be seen in Fig. 6.2
and Fig. 6.3(b), respectively. In Fig. 6.2 for B = 100G no local potential wells are present. Instead
the s-wave PES monotonically increases and possesses two plateaus at radial positions where the
former two outermost potential wells had been localized. The same effect is clearly visible in Fig.
6.3(a,b). In the field-free case (see Fig. 6.3(a)) four local potential wells are clearly visible for the
s-wave potential curve. However, for an applied magnetic field of B = 80G the two innermost
wells have vanished and the two remaining wells have decreased in depth (see Fig. 6.3(b)). Finally,
both the exact diagonalization as well as the three-state approach provide the result that in case
of a pure magnetic field and beyond a critical field strength of Bcr = 100G the s-wave curve does
not provide any bound states for the θ = π/2 configuration.

6.4.3 Two-dimensional potential energy surfaces

In Fig. 6.4(a) the complete two-dimensional s-wave PES is shown as a function of (R, θ) forB = 40G
and for radial distances 1600a0 ≤ R ≤ 2250a0. We observe a θ → π − θ reflection symmetric
potential surface with local potential minima at Req = 1728a0, 1918a0, 2159a0 and θeq = π/2.

In Fig. 6.4(b) the complete two-dimensional p-wave PES is shown as a function of (R, θ) for
B = 40G and for radial distances 1000a0 ≤ R ≤ 1500a0. We observe a potential surface with global
equilibrium positions at Req = 1432a0, θeq = 0, π. This p-wave PES provides bound rovibrational
states. The region around R = 1500a0, θ = π/2 is strongly affected by the level repulsion of the s-
and p-wave PES as it has been described above. In Figs. 6.4(a) and 6.4(b) we also see that in this
region the s- and p-wave PES strongly decreases and increases, respectively.

However, for R = 1500a0 and θ approaching π or 0 respectively, the effect of the s- and p−wave
level repulsion decreases for the s- and p-wave PES. For θ = 0, π this effect vanishes completely,
due to the fact that the Hamiltonian (6.4) then separates into a m = 0 and |m| = 1 block. The
considered s- and p-wave curves arise due to the diagonalization of the m = 0 subspace of the
electronic problem (6.4). If we neglect the diamagnetic term in (6.4) the Zeeman interaction term
does not couple the s- and p-wave curves because Lz|n, l, 0〉 = 0, ∀n, l. Due to this the topology of
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Figure 6.4: (a) The s-wave PES for B = 40G for zero electric field showing a reflection symmetry
with respect to θ = π/2. (b) The p-wave PES for B = 40G for zero electric field. It possesses a global
minimum at R = 1432a0 and θ = 0, π. We clearly see how the region around θ = π/2 is affected by the
level repulsion with respect to the s-wave PES.

the PES is unaffected by the applied magnetic field for θ = 0, π.

6.5 Potential energy surfaces for combined field configurations

6.5.1 Parallel field configuration

Let us begin with the analysis of the s-wave PES. We focus on the regime of field strengths
B = 0 − 100G and E = 0 − 100V/m. As presented in [85] the s-wave PES is in absence of
any external field independent of θ. For a finite electric or magnetic field strength, this spherical
symmetry is broken, as it has been discussed in Refs. [3, 99]. In the case of a vanishing electric
field (B = Bez, 0 < B < Bcr, E = 0) the s-wave PES provides a number of local minima
which are realized for the perpendicular configuration θ = π/2. In the case of a pure electric field
(E = Eez, E > 0, B = 0) the electron density is forced to align in its negative direction, a fact
that leads to a higher density in the −z-direction. For this reason we find the global minimum of
the s-wave PES for the antiparallel field configuration at θ = π.

For finite parallel electric and magnetic fields we can tune the topology of the s-wave PES between
the pure electric and magnetic field limits. To be specific we choose B = 60G and vary the electric
field strength E = 0−100V/m. Figure 6.5(a) presents the s-wave PES for B = 60G, E = 20V/m.
We observe three local potential minima which we label with (I||), (II||) and (III||). In the case
of E = 0 we find these potential wells along the perpendicular configuration (θ = π/2) with the
radial minima positions at RI|| = 1728a0, RII|| = 1918a0 and RIII|| = 2159a0 respectively (see Fig.
6.4(a)). For R ≈ 1600a0 the s-wave potential well decreases monotonically for decreasing R which
is caused by the level repulsion described in Section 6.4.1. For finite electric field strengths the
topology of the s-wave PES changes in the sense that the angular positions of the minima of the
the potential wells (I||-III||) are shifted to higher θ ∈ [π/2, π] values. This effect is clearly visible in
Fig. 6.5(a). It can be simply explained by the fact that the electric field forces the electron density
to align in its negative z-direction, which is reflected by a deeper Born-Oppenheimer potential
in this region. The radial positions RI|| − RIII|| of the minima are less strongly affected. With
increasing electric field they are transferred to the final values 1750a0 (RI||), 1940a0 (RII||) and
2175a0 (RIII||) for E > 80V/m. Furthermore, we see that the larger the radial position R of the
considered potential well from the ionic core the larger is the angular distance from θ = π/2. This
feature can be understood in a semiclassical picture where we compare the Lorenz force FL with
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the electrostatic force Fel on the electron. Since FL ∼ velB ∼
√

1/R− 1
2n2B the Lorentz forces

decreases with R while Fel ∼ E remains constant. Therefore the electron density further away from
the ionic rubidium core is more strongly affected by the electric field. In general the depth of the
potential wells (I||-III||) strongly varies with the corresponding parameter values. In the case of a
dominant magnetic field (B ≥ 80 G, E ≤ 60V/m) the wells possess depths up to 100MHz. For a
dominant electric field (B ≤ 40G, E ≥ 40V/m) their depths are 200− 300MHz.

In Fig. 6.5(b) we present the p-wave PES curve for B = 60G, E = 20V/m. It possesses a global
equilibrium position at R = 1432a0, θ = π denoted by IV||. As described in Section 6.4.1 in the case
of a pure magnetic field the p-wave PES possesses a θ → π − θ symmetry (see Fig. 6.4). A finite
electric field along the z-axis breaks this symmetry and tends, as above-mentioned, to enhance the
electron density in the negative z−direction. As a consequence we find in case of the p-wave PES
the potential minimum at θ = π (Fig. 6.5(b)). The depth of this potential well is approximately
300MHz and remains roughly constant for all considered field strengths.

Figure 6.5: (a) s-wave PES as a function of (θ,R) (θE = 0, B = 60 G, E = 20V/m). We observe
three local potential wells which are labeled as (I||), (II||) and (III||). The wells II|| and III|| provide
rovibrational bound states with a level spacing of 2 − 20MHz. (b) p-wave PES as a function of (R, θ)
(θE = 0, B = 60G, E = 20V/m). We observe the global potential minimum at R = 1432a0, θ = π
providing bound states with a level spacing 10 − 30MHz. Note that for a finite electric field strength
the reflection symmetry with respect to θ = π/2 is broken.

6.5.2 Perpendicular field configuration

Figure 6.6(a) shows the three-dimensional s-wave PES for the crossed field configuration B = 100G,
E = 60V/m as a function of (R, θ, φ). Because of the θ → π − θ and φ → 2π − φ symmetries
(see Section 6.3) we present the potential surface in the range of 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π.
We clearly see an oscillating structure with local potential minima aligned into the negative x-
direction (θ = π/2, φ = π). This can be understood by the fact that the electric field simply
deforms the azimuthally symmetric PES for a finite magnetic field strength in the sense that it
forces the electron density to align along the negative x-direction. Due to this we obtain molecular
states with a well-defined orientation antiparallel to the electric field. In contrast to the parallel
field configuration the orientation of these molecular states cannot be tuned by varying the electric
and magnetic field strengths. In the considered parameter range tuning the field parameters just
changes the depth of the local potential minima at θ = π/2, φ = π.

This feature is shown in detail in Fig. 6.6(b) which presents one-dimensional potential cuts for
the crossed field configuration. We have fixed the magnetic field strength to B = Bcr = 100G and
vary the electric field from E = 0 − 100V/m in steps of 20V/m. As already discussed in Section
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6.4.1 for E = 0 we obtain no potential local wells, i.e. no bound states are provided for this magnetic
field strength. With increasing electric field strength we again obtain local potential wells at the
minima positions RI⊥ = 1728a0 RII⊥ = 1918a0 and RIII⊥ = 2159a0 respectively. Obviously, these
values are very close to those obtained for the parallel field configuration (see previous subsection).
Similarly to the parallel field configuration we label the wells/plateaus with (I⊥), (II⊥) and (III⊥).
The radial equilibrium positions increase with increasing electric field strength up to 1750a0 (RI⊥),
1940a0 (RII⊥) and 2175a0 (RIII⊥). As we observe in Fig. 6.6(b) the wells (III⊥) is affected most by
the increasing electric field in the sense that its depth increases from 0 up to 140MHz. Similarly
the depths of the well (II⊥) and (I⊥) increase up to 100MHz (II⊥) and 40MHz (I⊥) respectively.
We therefore conclude that the electric field counterbalances the effect of the p-wave interaction
and leads to bound states in regimes where otherwise none would have existed. This result is
reminiscent of an effect already observed for the pure electric field configuration where the electric
field stabilizes as well bound molecular states of the s-wave PES [3]. For dominant electric fields in
the considered field regime the depths of the potential wells increase up to a value of approximately
300MHz.

In Fig. 6.7 we present a two-dimensional cut defined by φ = π through the p-wave PES for the
crossed field configuration for B = 100G, E = 60V/m. As for the p-wave PES in the parallel
field configuration, we concentrate on the potential well providing the global equilibrium position.
This well is labeled with IV⊥. The radial equilibrium position is again given by R = 1432a0 for
θ = 0, π. In the case of a pure electric field the single existing potential minimum is localized at
R = 1432a0, θ = π/2, φ = π as shown in the inset of Fig. 6.7. By increasing the magnetic field
strength the angular equilibrium position is shifted from θeq = π/2 to θeq = π/2± δ, δ ∈ (0, π/2].
This means that the topology of the p-wave PES changes from a single well to a double well PES.
For all applied field strengths the depth of the well IV⊥ remains around unit300MHz.

In the table 6.1 we summarize the topological properties for both field configurations in the limit
of dominant electric and magnetic field strengths.
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Figure 6.6: (a) Three-dimensional s-wave PES as a function of (R, θ, φ) (θE = π/2, B = 100G,
E = 60V/m). We find two local potential wells at R = 2159a0 and R = 1922a0, θ = π/2 and φ = π.
For more details an intersection for θ = π/2, φ = π is presented in Fig. 6.6(b). (b) Intersections
through the s-wave PES for the perpendicular field field configuration for θ = π/2, φ = π. The
shown cuts are taken for fixed B = 100G while the electric field strength E is varied from E = 0 to
100V/m in steps of 20V/m. Depending on the electric field strength we find local plateaus/potential
wells at R = 1728a0, 1918a0 and 2159a0 labeled by I⊥, II⊥ and III⊥. With increasing E the plateaus
(B = 100G) are transformed into local potential wells with depths of 40MHz (I||), 100MHz (II||) and
140MHz (III||).



6.6 Rovibrational states 73

Figure 6.7: Two-dimensional p-wave PES for φ = π and 0 ≤ θ ≤ π/2 (θE = π/2, B = 100G,
E = 80V/m). The complete PES is a function of (R, θ, φ) and possesses a θ → π − θ symmetry. We
observe several local potential wells with the energetically lowest labeled by IV⊥. The inset shows
the same PES but for B = 0, E = 80V/m. In this case the p-wave PES possesses a single potential
minimum IV⊥ at Req = 1432a0, θ = π/2, φ = π.

Table 6.1: Topological properties of the s- and p-wave PES for both field configurations for dominant
magnetic (B ≫ E) and electric (B ≪ E) field. The triple (Req, θeq, φeq) presents the radial and angular
equilibrium positions. In the case of azimuthally symmetric PES (parallel fields) only (Req, θeq) is
provided. In case the considered PES possesses double well character both angular equilibrium positions
are presented (e.g. (1432a0,(0, π),π) for IV⊥, B ≪ E).

I|| II|| III|| IV||
B ≫ E 1728a0,

π
2 1918a0,

π
2 2159a0,

π
2 1432a0,(0, π)

B ≪ E 1750a0,π 1940a0,π 2175a0,π 1432a0,π

I⊥ II⊥ III⊥ IV⊥
B ≫ E 1728a0,

π
2 1918a0,

π
2 2159a0,

π
2 1432a0,(0, π)

B ≪ E 1750a0,π 1940a0,π 2175a0,π 1432a0,π

6.6 Rovibrational states

6.6.1 Parallel field configuration

To analyze the rovibrational states for the parallel field configurations we introduce cylindrical
coordinates (ρ, Z, φ) for the parametrization ǫ||(ρ, Z). We have [Hrv, Lz] = 0, which means the
azimuthal quantum number m is a good quantum number. With this we write the rovibrational
wave function Φ(ρ, Z, φ) = Fνm(ρ,Z)√

2πρ
exp(imφ), m ∈ Z, ν ∈ N0 which transforms the Hamiltonian

(6.5) into

Hrv = − 1

mn
(∂2ρ + ∂2Z) +

m2 − 1/4

mnρ2
+ ǫ||(ρ, Z). (6.12)

We solve the corresponding Schrödinger equation focusing on m = 0 using a fourth order finite
difference method for electric field strengths in the range 0, 20, ..., 80V/m and B = 60G.

In Fig. 6.8 we present the ground state probability densities of the local potential wells (I||-III||)
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in cylindrical coordinates (ρ, Z). We label the densities according to the applied field strengths
E with a, b, c, d, e. For instance, (III||,c) indicates the probability density of the ground state in
the well (III||) with an applied electric field strength of E = 40V/m. As described in Section
6.5 with increasing electric field strength the wells move from the θ = π/2 configuration to the
θ = π direction. This feature is clearly reflected in the position of the ground state probability
densities. We observe that the larger the radial separation R is the stronger the impact of the
electric field on the position of the ground state density position. For instance, the ground state
density (II||, e) is nearly at the same position as the density distributions (II||, d) and (III||, c),
respectively. As the results for all three potential wells only differ quantitively we restrict our
analysis on the III|| potential well. For field strengths beyond E = 40V/m the position of the
minimum of this particular well remains close to θ = π. As a result there are no qualitative
changes of the corresponding ground state rovibrational probability densities (III||, c)-(III||, e). The
rovibrationl density distributions (III||, a)-(III||, c) can be characterized by their radial ∆R and
angular extension ∆θ. Typical values observed, are of the order of ∆R = 80a0 and ∆θ = 250a0
(III||,c) up to 650a0 (III||,b). We see that with increasing electric field strength from E = 0 to
20V/m the angular extensions of the rovibrational probability densities in (III||,a) and (III||,b)
increase as well. For higher field strengths the potential well (III||) approaches θ = π and the
angular extension of the probability density decreases again. This is clearly visible already for
(III||,c) in Fig. 6.8 and is caused by the potential term −1/(4mnρ

2).

In Fig. 6.9(a) we present the the first five eigenenergies of the rovibrational states for the potential
well (III||) of the s-wave PES, relative to the minimum of the potential well. The level spacing
decreases to 2MHz for E = 20V/m which can be explained by the minor decrease of the angular
confinement. With increasing E beyond a field strength of 470V/m the potential gets affected by
the centrifugal term in Eq. (6.12) and the angular confinement increases. This leads to a larger
level spacing up to 10MHz as can be seen in Fig. 6.9(a). For the p-wave PES the level spacing
is of the order of 10-30MHz as shown in Fig. 6.9(b). In the case of the low-lying states it hardly
varies with increasing field strength; only the higher excited states are affected in the sense that
their level spacing increases from 5 to 10MHz. This can be explained by the fact that enhancing
the electric field strength increases the angular confinement which affects the higher excited states
more strongly than the energetically low-lying ones.

In Fig. 6.10(a,b) we present the (scaled) probability densities |Fν0|2ν=0,4 for the vibrational ground
state (ν = 0) and the fourth excitation (ν = 4) for B = 60G. The equilibrium distance for the
PES is located at Z = −1435a0. The ground state distribution |F00(ρ, Z)|2 is is characterized by a
deformed Gaussian that is localized at Z = −1435a0 and ρ = 35a0. In Z/ρ-direction the density
distribution possesses an extension of approximately 50a0 and 100a0, respectively. The density
profile for the fourth (ν = 4) shows five separate two-dimensional Gaussian like density peaks
with increasing intensity located at (Z, ρ) = (−1435a0, 25a0), (−1432a0, 75a0), (−1430a0, 140a0),
(−1420a0, 200a0) and (−1405a0, 290a0), respectively.

6.6.2 Perpendicular field configuration

In the case of the crossed field configuration we have [Hrv, PY ] = [Hrv, PZ ] = 0 where PY : Y → −Y
and PZ : Z → −Z. Due to these symmetry properties the wave functions F (ρ, Z, φ) obey now
F (ρ,−Z, φ) = ±F (ρ, Z, φ) and F (ρ, Z, 2π − φ) = ±F (ρ, Z, φ). To estimate the rovibrational level
spacings we use the fact that the exact potential energy surfaces can be expanded around their
equilibrium positions (Req, θeq, π) as

ǫ⊥(R, θ, φ) ≈ ǫ⊥(Req, θeq, π) +
mn

4
ω2
R(R−Req)

2 +
mn

4
ω2
θR

2
eq(θ − θeq)2 +

mn

4
ω2
φR

2
eq(φ− π)2.(6.13)

For small extensions in the angular directions (θ, φ) the quantities Req(φ− π), Req(θ− θeq) define
together with R − Req a local Cartesian coordinate system. In these coordinates, Eq. (6.5) is
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Figure 6.8: Scaled probability densities |F00(ρ, Z)|2 for rovibrational wave functions. Shown are the
ground state probability densities in the potential wells (I||)-(III||) for electric field strengths E =
0, 20, ..., 80V/m for the parallel field configuration with B = 60G. The densities for the corresponding
field strengths are labeled by a, b, c, d, e.
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Figure 6.9: In figure (a) the rovibrational eigenenergies for the five energetically lowest states in the
(III||) well are shown with varying electric field strength E. The level spacing first decreases and
afterwords increases up to 10MHz. Figure (b) shows the eigenenergies for the five energetically lowest
states in the (IV||) well of the p-wave PES. Here the level spacings for the energetically lowest states
remain constant and only for the higher excited states the increasing angular confinement causes an
increase. We find a level spacing between 10-30MHz.

reduced to three single harmonic oscillators providing level spacings ωR, ωθ and ωφ. In Fig. 6.11
we present such an approximation scheme for the B = 20G, E = 60V/m crossed field configuration
for the coordinates (R, φ). We clearly see that the harmonic approximation (crosses) fits the exact
potential quite well. From this fit the frequencies of the harmonic oscillator can be extracted

ωi =

√

4∆V

Ma2iR
2
eq

, i = θ, φ , ωR =

√

4∆V

Ma2R
. (6.14)
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Figure 6.10: Scaled probability densities |Fν0(ρ, Z)|2ν=0,4 for the rovibrational wave functions of the
p-wave potential well IV||. In (a) we observe a for deformed Gaussian like density profile for the ground
state (ν = 0) centered at Z = −1435a0 and ρ = 65a0. In Z/ρ-direction the density distribution has
an extension of approximately 50a0/100a0. In (b) we show the density profile for the fourth excited
state (ν = 4). This density profile provides five peaks at (Z, ρ) = (−1435, 25a0), (−1432a0, 75a0),
(−1430a0, 140a0), (−1420a0, 200a0) and (−1405a0, 290a0).
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Figure 6.11: Contour plot of the s-wave PES for θ = π/2 with applied field strengths B = 20G ,
E = 60V/m. (θE = π/2). We clearly see the φ = π reflection symmetry. The ellipses indicated by the
black crosses represent approximations to the exact potential surface according to Eq. (6.13). From the
ellipse parameters we get a level spacing of approximately 130MHz for the radial and 5MHz for the
angular degrees of freedom via Eq. (6.14).

where ∆V , ai and aR are the energy difference to the potential minimum and the fitted values for the
semi-axis of the underlying ellipsoid. For the specific setup we find level spacings of ωR = 130MHz
(I⊥), 140MHz (III⊥) and 150MHz (II⊥). This means that each potential well only provides up to
one radial excitation. For the angular degrees of freedom we get ωφ ≈ ωθ = 5MHz for all three
potential wells. In the case of the (IV⊥) potential well for the p-wave PES we obtain level spacings
of the order of ωR ≈ 200MHz in the radial and ωθ = 5 − 20MHz, ωφ = 5MHz in the angular
degrees of freedom.

We remark that for both field configurations and for both s- and p-wave PES the radial as well
as the angular level spacings strongly depend on the applied fields. The general level structure
implies a single radial excitation (130− 250MHz) with several angular excitations (5− 30MHz) on
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top. For both field configurations the states in the wells (I||-III||) and (I⊥-III⊥) of the s-wave PES
possess a finite lifetime due to a tunneling out of the local potential wells. These lifetimes strongly
depend on the considered field strengths and we get maximal lifetimes of order of microseconds.

6.7 Molecular alignment and orientation

In Section 6.5 we presented the possibility to vary the topology of the molecular PES via tuning
of the electric and magnetic fields. Obviously, this provides the possibility to control the molecular
orientation and alignment.

To quantify the orientation and alignment in case of the parallel field configuration we have to

analyze the expectation value 〈cos(θ)〉Φ and the variance ∆ cos(θ) =
√

〈cos(θ)2〉Φ − 〈cos(θ)〉2Φ. The
expectation values 〈...〉Φ are taken with respect to the rovibrational state Φ(R) for the ground
states in the potential wells (I||), (II||) and (III||). The closer the absolute value of 〈cos(θ)〉Φ is
to one, the stronger is the orientation of the state into the Z-direction and the closer ∆ cos(ϑ)
is to zero, the stronger is the alignment of the state. We consider the ground state probability
densities in the single wells to be strongly localized such that we can approximate the expectation
values according to 〈cos(θ)〉Φ ≈ cos(θeq) and 〈cos(θ)2〉Φ ≈ cos(θeq)

2 where θeq denotes the angular
equilibrium position of the underlying potential well (see Fig. 6.8). In this approximation we get
for the variance ∆ cos(θ) ≈ 0, which means that the degree of alignment is perfect.

In Fig. 6.12(a) we present the dependence of cos(θeq) of the ground state state of the potential
well (II||) on the applied field. The inset in this figure shows the same analysis but for the (I||)
well. We see that for pure magnetic and pure electric fields the state is oriented in a perpendicular
(red region) and antiparallel (blue region) configuration, respectively. For both potential wells
we find a crossover regime (yellow region) between these two configurations. We see that for
fixed magnetic field strength the antiparallel configuration for the well (II||) is achieved for lower
electric field strengths than for (I||). This can be explained by the fact that the electric field
stronger affects the states in the well (II||) as compared to (I||) (see Section 6.5). In the case
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Figure 6.12: (a) Orientation 〈cos(θ)〉Φ ≈ cos(θeq) of the ground state in the potential well (II||) (main
figure) and (I||) (inset) belonging to the s-wave PES. For pure electric/magnetic fields the internuclear
axis is oriented in an antiparallel/perpendicular configuration. By varying the field strengths the orien-
tation can be tuned. For fixed magnetic field strength the antiparallel configuration for the well (II||)
is achieved for lower electric field strengths than for (I||). (b) Alignment 〈cos(θ)2〉Φ ≈ cos(θeq)

2 of the
ground state in the potential well IV⊥ belonging to the p-wave PES. For pure electric/magnetic fields
the molecule is anti-/aligned with respect to the magnetic field.

of the crossed field configuration the rovibrational Hamiltonian (6.12) possesses a PZ reflection
symmetry i.e. we get 〈cos(θ)〉Φ = 0. In this case the molecular alignment is quantified by
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〈cos2(θ)〉 ≈ cos2(θeq), θeq ∈ [0, π/2] for ground rovibrational states. For the s-wave PES we
have molecular states with a well-defined perpendicular configuration of the internuclear axis with
respect to the z-axis. Here we have cos2(θeq) = 0, which means they are antialigned with respect to
the z-axis. For the p-wave PES and finite magnetic field strength we have potential surfaces with
double well character. In this case the rovibrational states are delocalized over the double wells.

In Fig. 6.12(b) we present the field-dependent alignment of the ground states in the corresponding
IV⊥ potential well. We see that for pure electric and magnetic field configuration we have perfectly
(anti)aligned molecular states. Similar to the molecular orientation for the parallel field configura-
tion we find a crossover regime (yellow region) where the alignment changes from antialigned (blue
region) to aligned states (red region).

6.8 Electric dipole moment

Due to the impact on the molecular configuration the electric dipole moment can be readily tuned
by changing the field strengths and specific field configuration. Let us analyze the dipole moments
along the internuclear axis in the following

Del = 〈ψ(r;Req;B,E)|n · r|ψ(r;Req;B,E)〉, (6.15)

where n denotes the unit vector along the internuclear axis.

In Fig. 6.13 we show the electric dipole moment for the s-wave PES for the parallel field config-
uration as a function of E and B. We observe that with increasing B the dipole moment decreases
while it increases for increasing E. This can be understood by the fact that in the absence of any
contact interaction and B 6= 0, E = 0 the reflection operations Px

⊗
Py and Pz are exact sym-

metries of the Hamiltonian (6.4). In the presence of the neutral perturber and B = 0, E = 0 the
mixing of degenerate Rydberg states leads to an electric dipole given by the semiclassical approxi-
mation Del ≈ Req − n2

2 for a purely s-wave interaction dominated PES. However, with increasing
magnetic field the magnetic field terms become dominant and the corresponding symmetry prop-
erties get imprinted in the quantum states [99]. For a pure strong magnetic field case the s-wave
PES is approximately dominated by the |35, 34,−34〉 hydrogen state which explains the decrease
of the electric dipole moment. In the case of an increasing electric field the electron cloud is more
aligned into the negative field direction which causes the increase of Del.

Next we perform some (semi)analytical analysis to estimate the electric dipole moment. First we
check the validity of the semiclassical approximation for finite electric and magnetic field strengths.
As discussed in Section 6.5 for the considered field regimes the radial positions of the potential
wells is only to a minor extent affected by the external fields (see table 6.1). Therefore, we estimate

the electric dipole moment as R̄eq − n2

2 where R̄eq denotes the mean value of the minimal and
maximal radial positions for a considered potential well for varying field strength. For instance,
Req,I|| = 1728a0 for B = 80 G, E = 0 and Req,I|| = 1750a0 for B = 0G , E = 80V/m which gives

R̄eq,I|| = (1728a0 + 1750a0)/2 = 1739a0 and an approximate dipole moment of Del ≈ 2.85 kDebye.
This corresponds to a relative deviation of 5% compared to the exact result, which means that in
the considered parameter regime this simple estimate is quite accurate.

As discussed in Section 6.5 in case of the p-wave PES its equilibrium position remains constant
(Req = 1432a0, θeq = π) with respect to a variation of the field strengths. In particular, in Section
6.4.1 we have shown that the corresponding electronic eigenvector |ψ(r;Req;B,E)〉 is independent
of the applied magnetic field. Due to this we can reduce the analysis of the dipole moment of the
p-wave state to an arbitrary value of B which we choose to be B = 0G. In Fig. 6.13(b) we show
the electric dipole moment for the p-wave PES for B = 0G as a function of E. With increasing
electric field strength Del grows quadratically. To verify this we present a corresponding semi-
analytical result for the electric dipole moment where we expanded the state |ψ(r;Req;B = 0, E)〉
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Table 6.2: Minimal (Del,min) and maximal (Del,max) electric dipole moment for the potential wells
(I⊥-III⊥). The minimal (maximal) values are taken for B = 80G, E = 0V/m (B = 0 G, E = 80V/m).

For comparison we present the semiclassical approximation R̄eq − n2

2 .

Del,min Del,max R̄eq − n2

2

I⊥ 2.69 2.94 2.86

II⊥ 3.25 3.39 3.34

III⊥ 3.92 3.98 3.95

in a perturbative series up to the O(E2):

|ψ(r;Req; 0, E)〉 = |ψ0(r;Req)〉+ E
∑

n 6=0

C(1)
n |ψn(r;Req)〉+ E2

∑

n 6=0

C(2)
n |ψn(r;Req)〉. (6.16)

In this expansion |ψn(r;Req)〉 indicate the field-free electronic states and C
(1,2)
n are the expansion

coefficients given by standard perturbation theory [118]. Inserting this ansatz into (6.15) and
keeping terms up to O(E) and O(E2) we obtain the linear term (red) and quadratic term (green)
approximations according to Fig. 6.13(b). We see that the exact data (blue line and crosses) are well
approximated by the quadratic approximation. The semiclassical approximation gives a result of
Del = 2.08 kDebye which deviates from the obtained data by 10%. The larger deviation compared
to the s-wave state can be explained by the fact that the semiclassical approximation is originally
derived for s-wave interactions in the absence of any fields. Although we expect the p-wave state
to possess a strong s-wave character far away from the region of avoided crossings (R < 1450a0)
for the region of the localized potential well (Req = 1432a0) the p-wave character still provides
a substantial contribution which explains the less accurate result for the resulting electric dipole
moment.
For the crossed field configuration the electric dipole moments of the s-wave PES potential wells
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Figure 6.13: (a) shows the electric dipole moment Del in the direction of the internuclear axis for the
s-wave PES for the parallel field configuration. Using the mean value R̄eq = 1739a0 the semiclassical

approximation Del ≈ R̄eq − n2

2 gives Del ≈ 2.85 kDebye. (b) shows the electric dipole moment for
the p-wave PES. In addition we show a comparison with the semi-analytic expansion (6.16). The red
respectively green curve indicate a linear (O(E)) and quadratic approximation (O(E2)).

(I⊥-III⊥) show a qualitatively similar behavior as their counterparts (I||-III||) in case of the parallel
configuration. For all potential wells we find a decreasing dipole moment for increasing magnetic
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field strength and an increase of Del for an increasing electric field strength. In table 6.2 we present
the minimal (Del,min) and maximal (Del,max) value of the electric dipole moment (6.15) for the wells
(I⊥-III⊥). As for the parallel field configuration we compare these results with the semiclassical

approximation R̄eq − n2

2 . With a maximal deviation of 1-5% the exact results are reproduced
satisfactorily.

6.9 conclusion

In this work we have explored the effect of combined electric and magnetic fields on the polar high
angular momentum molecular states for a parallel as well as a crossed field configuration. Taking
into account both s- and p-wave interactions it turns out that for a pure magnetic field configuration
strong level repulsion causes the potential wells which provide the trilobite states in the field-free
case [85] to vanish. For this PES beyond a critical field strength of around 100G no bound states
are provided anymore. For finite field strengths the angular degrees of freedom are converted
from rotational to vibrational degrees of freedom, thereby rendering the field-free potential energy
curve into a two- and three-dimensional energy surface for parallel and crossed field configurations,
respectively. We obtain oscillatory potential curves with localization in the radial and angular
degrees of freedom with depths up to hundreds of MHz providing a rich topology depending on
the specific degree of electronic excitation and field configuration. The resulting rovibrational level
spacings are in the order of several MHz.
The parallel as well as the crossed field configuration provide unique ways to control the topology

of the adiabatic potential energy surfaces. This directly leads to the possibility to control molecular
orientation and alignment for the parallel and crossed field configuration, respectively. For instance,
for parallel fields the molecular orientation can be tuned from a perpendicular to an antiparallel
configuration by varying applied field strengths. In the case of crossed fields the molecular alignment
can be changed between an aligned and anti-aligned configuration with respect to the magnetic field.
In addition, the topological control of the PES provides the possibility of directly controlling the
electric dipole moment as well. Apart from numerical results we have provided also a semiclassical
estimate and perturbative analysis of the electric dipole moment.
The plethora of interesting effects of high-l ultralong-range Rydberg molecules in external fields

keeps this particular species a promising candidate for future investigations. Because of its high
sensitivity to small field strengths it is worth studying the dependence of molecular properties
like electric and magnetic polarizabilities and susceptibilities. In the case of Rydberg atoms these
quantities strongly depend on the Rydberg excitation. The results from this chapter have been
published in Ref. [5].



Chapter 7

Alignment of ultracold D5/2-state Rydberg molecules

7.1 Introduction

In this chapter we show that a weak magnetic field of a dozen Gauss allows us to strongly impact
and control the properties of ultralong-range D5/2-state Rydberg molecules. Rydberg molecules
have been theoretically predicted [85, 86, 95, 99] and so far experimentally observed for Rydberg
S-states [87, 90, 92], P -states [93] and recently D-states as well [94]. In this work we investigate
ultralong-range D-state Rydberg rubidium molecules for two different mJ substates of the Rydberg
electron with high resolution photoassociation spectroscopy. We specifically study molecular states
emerging from the D5/2, mJ = 1/2 and mJ = 5/2 electronic states for principal quantum numbers
n ranging from n = 41 to 49. Depending on the degree of electronic excitation we obtain two
different classes of D-state Rydberg molecules. These two species are characterized by aligned
and antialigned molecular states. We selectively excite distinct rovibrational molecular states with
specific alignments and identify them by a comparison of the binding energies with theoretical
predictions. The results provided by both approaches agree well. In this chapter we mainly outline
the concepts and results of the theoretical studies. We hereby proceed as follows: In Section 7.2
we present the basic aspects of the experimental setup which has been used for this work. Hereby
we discuss both the applied Rydberg excitation scheme and the ion detection method. Section
7.3 provides a formulation of the problem, presenting the working Hamiltonian and a discussion of
the underlying interactions. Section 7.4 contains our methodology and a review of the calculated
adiabatic potential energy surfaces (PES). Hereafter, a discussion of the rovibrational energies and
states is provided in Section 7.5. In Section 7.6 and 7.7 the theoretically obtained rovibrational
energies are compared to experimental spectra and the alignment of the different molecular states
is discussed in detail.
This work was done in collaboration with the experimental group of Prof. Dr. Tilman Pfau from

the 5. Physikalischen Institut from the University of Stuttgart, Germany. Most experimental studies
were performed by Alexander Krupp, Anita Gaj (PhD students) and Dr. Jonathan Balewski. The
theoretical results which are mainly presented in this chapter were provided by Markus Kurz (PhD
student) and Prof. Dr. Peter Schmelcher from the Center for Optical Quantum Technologies at the
University of Hamburg, Germany. The results of this collaboration have been published in [4].

7.2 Experimental setup

In this section we present the basic aspects of the experimental setup which was used to create the
D-state Rydberg molecules and to measure their properties such as binding energies and degree
of alignment. In particular, we describe the preparation scheme of the rubidium samples and the
cooling processes required to reach ultracold temperatures.
We note that this section only provides the basic concepts of the experimental setup. For more

detailed information please refer to [140,141,197–199] and references therein.

7.2.1 Preparation of samples of ultracold rubidium atoms

In this paragraph we discuss the main processes which lead to a magnetically trapped sample of
rubidium atoms at thermal or BEC temperatures.
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Starting point in the preparation process is an oven in which a sample of elementary rubidium
is constantly heated up to 150 ◦C. From the heating oven the rubidium atoms fly into a Zeeman
slower [200,201] which possesses a length of around 85 cm. Here the fast atoms are decelerated and
guided in the main BEC chamber of the experimental setup. Here a magneto-optical trap (MOT)
catches and traps the atoms possessing the right velocity. A differential pumping system is installed
to provide a constant pressure gradient from 10−7mbar to 10−11mbar in the main chamber. The
loading time of the BEC chamber is given with 2 s, during this period time a mechanical shutter
separates the oven part from the vacuum chamber and blocks the hot atoms from accessing the
Zeeman slower. The MOT itself consists of three pairs of orthogonal and counter propagating
laser beams and a magnetic quadrupole field which is generated by two pinch coils. The laser
light which is used to cool and trap the rubidiums atoms is provided by a Titanium-Sapphire
laser system with the main cooling transition 5S1/2(F = 2) → 5P3/2(F = 3). An additionally
repumping laser for the MOT and the Zeeman slower is required since the cooling transition is not
closed and atoms also decay to the 5S1/2(F = 1) state. The repumping laser drives the transition
5S1/2(F = 1) → 5P3/2(F = 2). Atoms in this specific hyperfine state decay with a relative
probability of 50 to the 5S1/2(F = 2) state and are thus part of the cooling cycle again. More
details about the laser system can be found in [199] and [197]. After a molasses cooling phase, the
atoms are transferred from the MOT into a pure magnetic trap. The final step to reach the BEC

Figure 7.1: (a) Rydberg excitation laser setup as it is configured around the main vacuum chamber.
The different magnetic coils (pinch (green), bias (blue) and cloverleafs (black)) are wound around the
outside of the chamber. The optical paths of the MOT beams can be guided by small, pivoting mirrors.
During loading the MOT the MOT beams are guided into the chamber. Afterwards they are flipped
down to open the optical path for the Rydberg excitation lasers (red laser system, λ = 780 nm, blue
laser system, λ = 480 nm) into the vacuum chamber. In (b) the different magnetic field coils are shown
in more detail. In addition, the winding directions of the single coils are presented (picture taken
from [140]).

regime is the evaporative cooling procedure to obtain temperatures in the µK−nK regime [7]. The
basic idea of this procedure is to drive the transitions between magnetically split mF and mF ± 1
sublevels of the 5S1/2(F = 2) hyperfine state off-resonantly using a radio frequency (RF). In a
scanning ramp of 40 s the radio frequency ramps down from 45MHz to 1MHz. Due to this atoms
are transferred into the untrapped mF ≤ 0 states. The detuned frequency ramp is chosen in a such
a way that only hot atoms at the outer parts of the magnetic trap are affected. Here the atoms
experience a larger Zeeman shift and therefore are transferred into untrapped states. By loosing the
fastest atoms the complete ensemble of rubidium atoms rethermalizes and the overall temperature
of the atomic cloud is reduced. For the evaporative cooling process it is crucial that the atomic
ensemble possesses a high atomic density since this increases the efficiency of the rethermalization
process due to collisions. This is essential for the cooling cycle as it generates new hot atoms
again. Depending on the final frequency of the RF scanning ramp, either a cold thermal rubidium
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ensemble (ρpeak ∼ 1012 cm−3, T ∼ 1µK) or a BEC (ρpeak ∼ 1014 cm−3, T ∼ 100 nK) can be
realized. For this specific setup a typical condensate atom number is about 7× 104 − 105.

After the evaporative cooling procedure the magnetic offset field at the center of the magnetic
trap can be tuned from its initial value of about 0.8G to the highest possible value of B0 = 13.55G.
This is achieved by ramping down the current of the bias coils which are used for compensation.
As the Zeeman splitting increases with the magnetic field strength the radio frequency needs to
be adjusted to guarantee the removal of only the hottest atoms. However, this procedure has to
be performed in a very controlled way. Otherwise one might excite collective condensate modes,
shape oscillations for instance, or even destroy the complete BEC.

In this work all experiments were conducted at the highest possible offset field of B0 = 13.55G.
For the considered D-state molecule this is crucial as a sufficiently large magnetic field is required
to split and address different mJ states separately. For this offset field the axial trapping frequency
is ωz = 2π × 22Hz whereas the radial trapping frequency is given by ωr = 2π × 82Hz.

7.2.2 Rydberg excitation

The excitation of the rubidium Rydberg states is performed by a two-photon excitation process
depicted in the scheme of Fig. 7.2. A σ+-polarized 780 nm laser drives the transition from the
5S1/2(F = 2m,mF = 2) ground state to the intermediated 5P3/2(F = 3,mF = 3) state. The
upper transition is conducted by a σ+- or σ−-polarized 480 nm laser to address the Rydberg D-
and S-states. The red laser is ∆p = 500MHz blue detuned from the intermediated state to prevent
its population. This allows us to treat the three-level system as a simple two-level system, realizing
a coherent coupling between ground and Rydberg state. In order to reduce Doppler broadening the
blue and red laser beams for the Rydberg excitation are shone from the opposite direction onto the
atomic ensemble in the main chamber. In contrast to a collinear setup this counter propagation
beam setup reduces the Doppler broadening by more than a factor of three to around 19 kHz for
T ∼ 1µK. To switch between the axial MOT beams, shone in during the MOT loading phase, and
the two Rydberg excitation beams, two installed motorized flipping mirrors are used (see Fig. 7.1)

7.2.3 Ion detection method

The method used in this work to detect Rydberg atoms and molecules is a field ionization process.
In this approach a sufficiently large voltage is applied to opposing field plates in the vacuum chamber
in order to ionize the Rydberg molecules after they have been created via laser excitation. The
energy needed for the ionization can be estimated by a classical calculation taking into account
the Coulomb potential of the Rydberg ionic core and the Stark potential. In the resulting three
dimensional potential possesses a saddle point and electrons above this local maximum become
unbounded. One obtains for the classical ionization field

Eion =
1

16n∗4
(7.1)

where n∗ is the effective principal quantum number. For n = 35 we obtain a field strength of
Eion = 312V/cm which requires voltages of a few kV for the field plates. The voltage applied
to ionize the Rydberg atoms and molecules is also used to accelerate the ions towards a micro
channel plate (MCP) detector. A standard sequence for recording a spectrum with the ion detector
is depicted in Fig. 7.3. After the cloud is prepared in the magnetic trap and cooled down to a
few µK, the two excitation lasers create Rydberg atoms and molecules in the whole thermal cloud
for typical time scales of 1-50µs. Next an ionization field pulse is applied for a duration of 60µs
during which the ion signal is detected at the MCP. A complete cycle of excitation, ionization
and detection is repeated 400 times using a single atomic cloud. Such a sequence is denoted as
one experimental run. During a single run the red lasers frequency is changed after each cycle in
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Figure 7.2: Level scheme for the Rydberg excitation of 87Rb. Starting from the 5S1/2 ground state
the excitation into the 44D3/2, 44D5/2 and 200S1/2 Rydberg states via the 5P3/2 intermediated state
is shown exemplarily. For both the ground- and intermediate state the hyperfine splitting is presented.
For the high n Rydberg states the hyperfine splitting is neglected. In addition, the splitting of the
states in the presence of a finite magnetic field is indicated by the mF quantum number (ground- and
intermediate states) and mJ (Rydberg states), respectively. The Rydberg states are excited via a two-
photon process using a red (λred = 780 nm) and blue (λblue = 480 nm) excitation laser. The laser are
blue detuned by ∆p = 500MHz from the intermediated 5P3/2(F = 3,mF = 3) state. By changing
the polarization of the upper transition (σ−-polarization) S- and D-state Rydberg atoms (σ+- and
σ−-polarization) can be addressed. In the scheme only the most dominant transition path are shown
(picture taken from [140]).

time steps of 6ms. This sequence allows us to obtain a complete spectrum in a total experimental
runtime of about 50 s.

7.3 The molecular Hamiltonian in a magnetic field

We start our analysis of ultralong-range D-state Rydberg molecules by considering a highly excited
Rydberg atom interacting with a ground state neutral perturber atom (we will focus on the 87Rb
atom here) in a static and homogeneous magnetic field. The Hamiltonian treating the rubidium



7.3 The molecular Hamiltonian in a magnetic field 85

Figure 7.3: Temporal sequence for a spectroscopy measurement. A single experimental cycle consists
of a 1-50µs long laser excitation pulse and a 60µs long ionization pulse. During this time a signal on the
MCP can be detected. This cycle is repeated 400 times where every cycle possesses a slightly different
laser detuning. In combination with the small laser bandwidth we obtain a high resolution spectrum
(picture taken from [140]).

ionic core and the ground state atom as point particles is given by

H =
P2

mn
+Hel + Vn,e(r,R), (7.2)

Hel = H0 +
1

2
B(L+ 2S) +

1

8
(B× r)2, H0 =

p2

2
+ Vl(r) +Hfs (7.3)

where (mn,P,R) denote the atomic rubidium mass and the relative momentum and position of
the ground state atom with respect to the ionic core. The vector r indicates the relative position
of the Rydberg electron to the ionic core. The electronic Hamiltonian Hel consists of the field-free
Hamiltonian H0 of the Rydberg atom and the paramagnetic and diamagnetic terms of an electron
in a static external magnetic field. The Hamiltonian H0 includes the Rydberg quantum defects
due to the angular momentum dependent electron-core potential Vl(r) and the fine structure term
Hfs. In addition, Hel contains the Zeeman-interaction terms of the angular momenta (spin and
orbital) with the external field. We choose B = Bez. The interatomic potential Vn,e for the
low-energy scattering between the Rydberg electron and the ground state atom is described as a
Fermi-pseudopotential

Vn,e(r,R) = 2πAs[k(R)]δ(r−R) + 6πA3
p[k(R)]

←−∇rδ(r−R)
−→∇r.

In our analysis we consider the triplet scattering of the electron from the ground state alkali atom.
As(k) = − tan[δ0(k)]/k and A3

p(k) = − tan[δ1(k)]/k
3 denote the energy-dependent triplet s- and p-

wave scattering lengths whereas δl=0,1(k) are the energy dependent phase shifts (see Fig. 2.1). The
wave number k(R) is determined by the semiclassical relation k(R)2/2 = Ekin = −1/2n∗2 + 1/R
where n∗ is the effective principal quantum number.

We introduce the total electronic angular momentum J = L+S and write the total wave function
as

Ψ(nmJ )
νm (r,R) = ψnmJ (r;R)φ(nmJ )

νm (R). (7.4)

where ψnmJ (r;R) describes the electronic molecular wave function in the presence of the ground

state atom for a given relative position R and φ
(nmJ )
νm determines the rovibrational state of the

relative motion. Because L = 2, s = 1/2 we have J = 3/2, 5/2. Within the adiabatic approximation
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we obtain

[H0 +
B

2
(Jz + Sz) +

B2

8
(x2 + y2) + Vn,e(r,R)]ψnmJ (r;R) = ǫnmJ (R)ψnmJ (r;R), (7.5)

(
P2

mn
+ ǫnmJ (R))φ(nmJ )

νm (R) = E(nmJ )
νm φ(nmJ )

νm (R). (7.6)

The experimental field strength of B0 = 13.55G was used for the calculations. For such a field
strength the diamagnetic term in (7.5) can be neglected. Furthermore, the adiabatic potential
energy surfaces (PES) ǫνmJ (R) possess rotational symmetry around the z-axis, which means they
depend on the angle of inclination Θ between the field vector and the internuclear axis and the
radial distance R, i.e. ǫnmJ (R) = ǫnmJ (R,Θ). In cylindrical coordinates the PES are then functions
of (Z, ρ).

7.4 Potential energy surfaces

In this work we have calculated the PES and analyzed the rovibrational dynamics of D5/2-Rydberg
molecules with principal quantum numbers n ranging from 41 to 49 and the magnetic substates
mJ = 1/2 and mJ = 5/2. To calculate the adiabatic potential surfaces we have expanded the
electronic wave function ψnmJ (r;R) in terms of the eigenfunctions 〈r|nJmJ , L = 2, s = 1/2〉 ≡
χnJmJ

(r) of the field free Hamiltonian H0. Because of their energetic closeness the used basis set
includes all states from the J = 3/2 and J = 5/2 manifold. In total the used basis set consists of
ten states. We have

χnJmJ
(r) = RnJ2(r)



±

√

5
2 ±mJ

5
Y2,mJ− 1

2
(ϑ, φ)| ↑〉+

√

5
2 ∓mJ

5
Y2,mJ+

1
2
(ϑ, φ)| ↓〉





≡ RnJ2(r)
(

±α±(mJ)Y2,mJ− 1
2
(ϑ, φ)| ↑〉+ α∓(mJ)Y2,mJ+

1
2
(ϑ, φ)| ↓〉

)

(7.7)

The quantities α±(mJ) are the Clebsch-Gordon coefficients and | ↑〉, | ↓〉 indicate the two different
spin states. If we insert the expansion

〈r;R, θ|ψnmJ 〉 =
∑

JmJ

CJmJ
(R, θ)〈r|nJmJLs〉 (7.8)

into Eq. (7.5) we obtain the following eigenvalue problem for the PES

[
ǫ0nmJ

− εnmJ (R, θ)
]
δJJ ′δ

mJm
′
J
+
∑

J ′m
′
J

〈nJ ′m
′

JLs|
B

2
(Jz + Sz) + Vn,e(r, R, θ)|nJmJLs〉r = 0. (7.9)

In Fig. 7.4(a) we present the PES for the 42D5/2, mJ = 1/2 states as a two-dimensional function
of the spherical coordinates (R, θ) for 2000a0 ≤ R ≤ 3500a0. This potential surface possesses two
global potential minima at θ = 0, π, R ≈ 3180a0 with a depth of around 18MHz. In addition,
a more shallow well with a depth of around 6MHz can be identified at θ = π/2, R ≈ 3180a0.
Beside these three potential minima we find additional wells along the θ = 0, π/2 and π direction.
These wells are spatially separated by a radial distance of around 500a0. With decreasing R the
depths of those potential wells decrease as well. In Fig. 7.4(b) the PES for the 42D1/2, mJ = 5/2
state is depicted. In contrast to the mJ = 1/2 potential surface this potential only possesses a
single global maximum at R ≈ 3180a0, θ = π/2 with a depth of around 10.3MHz. As before we
find a number of additional local potential minima which are aligned along the θ = π/2 direction
and which are separated by a radial spacing of around 500a0. As for the mJ = 1/2 PES the
depths of these potential wells decrease with decreasing radial distance R. In general all calculated
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Figure 7.4: (a) 42D1/2, mJ = 1/2 adiabatic potential surface as a two-dimensional function of the
spherical coordinates (R, θ) for 2000a0 ≤ R ≤ 3500a0. We clearly detecht two global potential minima
at θ = 0, π, R ≈ 3180a0 with a depth of around 18MHz. In addition, a more shallow well with a
depth of around 6MHz can be identified at θ = π/2, R ≈ 3180a0. Figure (b) shows the PES for the
42D5/2, mJ = 1/2 state. Here the global potential minimum (R ≈ 3180a0, θ = π/2) with a depth of
around 10.3MHz is provided by a single potential well.

Figure 7.5: 42D1/2, mJ = 1/2 adiabatic potential surface as a two-dimensional function of the spherical
coordinates (R, θ) for 1700a0 ≤ R ≤ 3500a0. For R < 2200a0 the PES strongly oscillates due to the
increasing impact of the p-wave scattering potential.

nD5/2, mJ = 1/2, 5/2 PES possess the same topology as it was just described for the 42D5/2 states.
This can be understood qualitatively by considering the angular dependence of the bare electronic
orbitals which dominate the topology of the potential surfaces. For mJ = 1/2, 5/2 the angular
topology PES are mainly determined by |Y20(θ, φ)|2 and |Y22(θ, φ)|2, shown in Fig. 7.6(b) and (c),
respectively. In addition, Fig. 7.6(a) shows the angular dependence of the electronic l = m = 0
orbital which determines the PES of the ultralong-range S-state Rydberg molecules. These species
have been studied in detail theoretically [85,86] as well as experimentally [91,202]. Obviously, their
potential surfaces are spherically symmetric. In contrast to this, the angular dependence of the
electron density distribution of the two different D-states deviate tremendously from each other
and from the S-state. In case of the l = 2, m = 0 state (see Fig. 7.6(b)) the electronic density
features the shape of a dumbbell with a small torus in the equatorial plane. However, the electronic
density of the l = 2, m = 2 state (Fig. 7.6(c)) only possesses a single toroidal shaped structure.
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This means that the PES of the nD5/2 molecular state do not possesses a spherical symmetry as the
S-states as the corresponding electronic density probabilities are θ-dependent. As the calculated

Figure 7.6: Absolute values of different spherical harmonic functions. The angular dependence of
the S-state PES [202] is determined by |Y00|2 which is presented in (a). Obviously, this function is
spherically symmetric. The D-state PES are determined by |Y20|2 (mJ = 1/2) and |Y22|2 (mJ = 5/2)
which are depicted in Fig. (b) and (c), respectively. These electronic density distributions possess both
a dumbbell structure in Z-direction with a small torus in the equatorial plane (see Fig. (b)) and a purely
toroidal structure as it can be seen in (c).

PES of the nD5/2, mJ = 1/2, 5/2 states provide several potential minima with depths in the MHz
regime (see, for instance, Fig. 7.4(a,b)) we expect to find several bound rovibrational states, which
are localized within these potential wells. The calculation of their specific properties and dynamics
will be the content of Section 7.5.
AIn Fig. 7.5 we present the two-dimensional PES for the 42D5/2, mJ = 5/2 state with radial
distances for 1700a0 ≤ R ≤ 3500a0. In contrast to Fig. 7.4(b), where the same PES is shown
but for 1700a0 ≤ R ≤ 3500a0, we find that below radial separations of approximative 1700a0 the
PES starts to oscillate widely with an increasing amplitude for decreasing R. This feature can be
explained by the fact that with decreasing radial distance R the electrons kinetic energy increases
and approaches the resonance energy of the p-wave scattering length Ap (see Section 2.2) which
is given with Eres ≈ 23.9meV. As the p-wave potential is directly proportional to A3

p the PES
becomes more and more p-wave dominated as R decreases and the divergent behavior of the p-
wave scattering length is reflected in the PES topology of all nD5/2 states. In Fig. 7.7 we present
the PES for the 42D5/2, mJ = 5/2 state for 1700a0 ≤ R ≤ 3500a0 as a three-dimensional contour
plot. We see a sequence of local potential well along the θ = π direction with a spatial separation of
500a0. At R ≈ 3180a0, θ = π/2 a local potential minimum with a depth of around unit10.3MHz is
clearly visible. For R < 1700a0 the PES starts to oscillate widely as the divergent p-wave potential
character determines the PES topology.
AHowever, for all considered potential surfaces the radial separation of the outer potential wells is in
the range of several thousand Bohr radii. As we are mostly interested in the molecular properties of
the lowest rovibrational excitations and these are well localized within the outer potential minima,
we expect the rovibrational wave functions to be hardly affected by the strong oscillating region
of the PES. Depending on the specific potential well we distinguish between two kind of molecular
states. In case the rovibrational wave function is localized in the axial lobes of the mJ = 1/2
potential surfaces we denote these as axial (molecular) states. In case the states are localized in
a toroidal potential well these states are denoted toroidal (molecular) states. Obviously, toroidal
states can be found for both nD5/2,mJ = 1/2 and mJ = 5/2 PES.



7.5 Rovibrational states and binding energies 89

Figure 7.7: 42D5/2, mJ = 5/2 contour plot for 1700a0 ≤ R ≤ 3500a0. For R < 1700a0 the potential
surface starts to oscillate widely as the divergent p-wave character becomes dominant.

7.5 Rovibrational states and binding energies

In order to solve the rovibrational Schrödinger equation (7.6) we express the wave function φnmJ
νm (R, θ)

as follows

φ(nmJ )
νm (R, θ) =

F
(n,mJ )
νm (ρ, Z)eimφ

√
2πρ

, m ∈ Z, ν ∈ N0. (7.10)

Inserting this into Eq. (7.6) gives the following differential equation for F
(n,mJ )
νm :

(

−
∂2ρ + ∂2Z
mn

+
m2 − 1/4

mnρ2
+ ǫnmJ (ρ, Z)

)

F (nmJ )
νm (ρ, Z) = E(nmJ )

νm F (nmJ )
νm (ρ, Z). (7.11)

We see that the number m indicates the degree of rovibrational rotation as the PES are azimuthal
symmetric. The number ν labels the different rovibrational excitation for a given set of (n,m,mJ).

As the PES fulfill the relation ǫnmJ (ρ, Z) = ǫnmJ (ρ,−Z) the function F
(n,mJ )
νm are eigenstates

of PZ parity operator, e.g. F
(n,mJ )
νm (ρ,−Z) = ±F (n,mJ )

νm (ρ, Z). For this reason the correspond-
ing probability densities possess a reflection symmetry with respect to the x-y-plane, this means

|F (n,mJ )
νm (ρ,−Z)|2 = |F (n,mJ )

νm (ρ, Z)|2. In our calculations we set m = 0 and solved the correspond-
ing Schrödinger equation using a finite difference method (see Appendix A.3). The molecular

binding energies E
(nmJ )
B are given as the energy difference between the eigenenergies and the dis-

soziation limit of the consider potential surface. As the PES are always defined with respect to the

dissoziation limit the binding energies we have E
(nmJ )
B = E

(nmJ )
νm .

42D5/2, mJ = 5/2 toroidal states

In Fig. 7.8(a) the the 42D5/2, mJ = 5/2 PES is presented in cylindrical coordinates for 2000a0 ≤
ρ ≤ 3300a0 and −1500a0 ≤ Z ≤ 1500a0. At ρ ≈ 3150a0, Z = 0 this potential surface possesses a
toroidal shaped minimum with a depth of around 10.3MHz. In addition we find further potential
wells with are equally separated by a radial distance of approximately 400a0. In Fig. 7.8(b)-(d) we
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Figure 7.8: (a) 42D5/2, mJ = 5/2 PES as a function of cylindrical coordinates (ρ, Z). A toroidal
potential minimum is localized at ρ ≈ 3000a0, Z = 0 with a depth of around 12MHz. In addition we

find several wells. The figures (b)-(c) show the (scaled) probability densities |F (42,5/2)
ν0 |2 with excitation

number ν = 0, 1, 7. In panel (a) we observed a deformed Gaussian-like density profile for the ground
state (ν = 0) centered at ρ ≈ 3000a0, Z = 0. (c) shows the density profile for the second excitation
(ν = 2). This density profile possesses two nodes with three separate Gaussian-like density peaks located
at ρ ≈ 3000a0, Z = 0 and ρ ≈ 2900a0, Z ≈ ±600a0, respectively. Figure (c) shows the density profile
for the seventh excitation (ν = 7).

present the (scaled) probability densities |F (42,5/2)
ν0 |2 of the toroidal rovibrational states which are

provided by the potential wells in Fig. 7.8(a). These states are labeled with excitation numbers
ν = 0, 2 and ν = 7. Fig. (7.8)(b) shows a slightly deformed Gaussian-like density profile for the
ground state (ν = 0) centered at ρ ≈ 3150a0, Z = 0 with a spatial extension of around 200a0.
The density profile for the second excitation (ν = 2) which is depicted in Fig. 7.8(c) shows three
separate Gaussian-like density peaks located at ρ ≈ 3150a0, Z = 0 and ρ ≈ 3050a0, Z ≈ ±600a0,
respectively. As the density peaks located Z = ±600a0 are of equal intensity the probability
density of the third peak localized Z = 0 is of reduced intensity. Finally, Fig. 7.8(d) shows the
density profile for the seventh excitation (ν = 7). Obviously, this rovibrational probability density
possesses a novel intensity profile. This density profile possesses a major peak at ρ ≈ 2750a0, Z = 0
with a single side peak at ρ ≈ 2400a0, Z = 0. We find extensions of 450a0 in ρ and 1000a0 in
Z-direction, respectively. All three density profile presented in Fig. 7.8(b)-(d) can be understood
by considering the topology of the potential providing these bound states (see Fig. 7.8(a)). In
a first approximation the potential around the minimum located at ρ ≈ 3150a0, Z = 0 can be
understood a two separated harmonic oscillators, one in the θ-direction and the second one in the
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ρ-direction. Since the rovibrational dynamics is spatially less confined in the θ-direction as it is in
the ρ-direction the excitation modes in the angular direction are first excited. This is clearly visible
in the density profiles presented in Fig. 7.8(b) and (c) as they possess the spatial characteristics
of harmonic oscillators eigenstates such as a Gaussian-shaped ground state distribution and the
appearance of density nodes for higher excitations where the number of the nodes is identical to
the degree of excitation. In case of the seventh excitation (ν = 7) we find an excitation in the first
neighbored potential well beside the potential minimum. This causes the change in the profiles’
topology.

42D5/2, mJ = 1/2 axial and toroidal states

Next we analyze the rovibrational states which are provided by the PES of the 42D5/2, mJ = 1/2
state. As as already discussed in Section 7.4 this potential surface possesses two different potential
well which have to be analyzed separately. In Fig. 7.9 we show the considered PES for 1700a0 ≤
ρ, Z ≤ 3500a0 as a function of cylindrical coordinates (ρ, Z). As the potential surface is reflection
symmetric with respect to the x-y plane we only present the PES for positive Z. As discussed in
Section 7.4 we are interested in the rovibrational states located in the outermost axial and toroidal
potential wells (see Fig. 7.4). For this reason the potential surface for R =

√

ρ2 + Z2 ≤ 1700a0
is of minor interest as in this region the PES is strongly oscillating since it is dominated by the
divergent p-wave scattering potential. For this reason we do not present this part of the PES in Fig.
7.9 and the potential surface is put to zero artificially. In order to calculate the rovibrational levels

Figure 7.9: Two-dimensional PES for the 42D5/2, mJ = 1/2 state in cylindrical coordinates. Because
of symmetry reasons the PES is only presented for Z ≥ 0. As we are interested in the rovibrational
states in the two outermost potential wells (axial and toroidal well) the PES is only calculated for

1700a0 ≤ R =
√

ρ2 + Z2 ≤ 3500a0. For R ≤ 1700a0 the potential is set to zero.

for the mJ = 1/2 potential surfaces we performed two separate calculations for the associated PES.
For instance, for n = 42 we have calculated the PES around the axial potential well for 1700a0 ≤
Z ≤ 3500a0 and 0 ≤ ρ ≤ 2000a0. In case of the toroidal potential well we used the potential
for |Z| ≤ 1500a0 and 1700a0 ≤ ρ ≤ 3500a0. For both potential surfaces we again use a finite
difference method to solve the corresponding differential equation (7.11). In Fig. 7.10 we present
a qualitatively picture of the scaled probability densities of the axial and toroidal rovibrational
states for different degrees of excitation. We remark that Fig. 7.10 is just an illustration and that
the spatial positions and extensions are not true to scale. In Fig. 7.10(a) the 42D1/2, mJ = 1/2
toroidal ground state (ν = 0) as well as the second axial excited state (ν = 1) are depicted. We
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Figure 7.10: Qualitatively 3d-dimensional plots of the scaled rovibrational probability densities of axial
and toroidal states (figures are not true to scale). Figure (a) shows the scaled probability densities of
the ν = 1 axial and ν = 0 toroidal states, in (b) the scaled probability densities of the ν = 0 axial and
ν = 4 toroidal molecule is depicted.

clearly see how the rovibrational wave functions are localized in the axial and toroidal potential
lobes of the PES shown in Fig. 7.9. In Fig. 7.10(b) the fourth toroidal excitation (ν = 4) as well as
the axial ground state (ν = 0) are shown. We see how the toroidal probability density spreads in
the Z-direction with increasing degree of excitation. On the other hand the axial states are created
far out in the Z-direction advancing into radial direction for higher excitation numbers ν. In Tab.
7.1 we present the binding energies of the 42D5/2, mJ = 1/2 axial and toroidal states, respectively.
As the axial potential lobes are much deeper than the toroidal lobe the binding energies are higher
and more axial states can be excited. For this reason we have calculated the rovibrational states
for the axial potential lobe up to ν = 20 while in case of the toroidal potential lobe we restricted
the calculation up to ν = 5. However, one has to be careful by calculating the rovibrational states
in the axial lobes for several reasons. Increasing the degree of excitation we encounter two different
kinds of molecular states. The first species are states which rovibrational probability density is
localized within the outermost axial well and is unaffected from the boundary conditions which
have been introduced to solve the rovibrational Schrödinger equation. These states are of main
interest and they can be considered to be well converged. The second species, however, are states
which are ground excitations of neighboring potential wells besides the axial lobe with minima
positions 1700a0 ≤ Z ≤ 3000a0. As those states are closer to the artificial boundary condition
set at R = 1700a0 these states are stronger effected by this which has a direct influence on the
calculated wave functions and binding energies. In addition, the oscillations of the considered
potential start to increase as R approaches to artificial boundary at R = 1700a0. To obtain reliable
results the fineness of the calculated potential grid should be increased. However, as we are mostly
interested in the outermost rovibrational excitations we did not perform these steps as this would
increase the amount of required computational time and memory. For this reason the binding
energies in Tab. 7.1 of the states which have to be treated with caution and are indicated by bold
numbers in the binding energy list for the axial rovibrational levels.
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42D5/2 mJ = 1/2 mJ = 1/2 mJ = 5/2

axial states toroidal states toroidal states

ν EB (MHz) EB (MHz) EB (MHz)

0 −14.42 −3.27 −7.05
1 −13.24 −2.78 −6.42
2 −12.04 −2.31 −5.74
3 −10.84 −1.85 −5.18
4 −9.64 −1.39 −4.60
5 −8.47 −0.93 −4.01
6 −7.32 −3.69
7 −6.90 −3.58
8 -6.48 −3.04
9 −6.20 −2.79
10 -5.93

11 −5.83
12 -5.37

13 −5.12
14 -4.87

15 −4.77
16 -4.31

17 -4.21

18 −4.10
19 −3.83
20 −3.47

Table 7.1: Rovibrational binding energies of the 42D5/2, mJ = 1/2, 5/2 states. As the axial lobe is
much deeper than the toroidal lobes more bound states can be calculated. The energies printed in bold
numbers are related to rovibrational states which are not localized within the axial potential well (see
Fig. 7.9). These values have to be treated with caution (more details in the text).

7.6 Experimental spectra

As already discussed in Section 7.2 in this experiment we investigate the formation of ultralong-
range Rydberg D-state molecules via photoassociation and high resolution spectroscopy in an
ultracold cloud of rubidium atoms. In contrast to previous investigated S-state molecules the
considered D-state molecules in an external magnetic field of B = 13.55G provide novel and
interesting features. The main difference between these two molecular species is the different
angular dependence of the behavior of the corresponding PES (see Section 7.4). For S-states
the potential surfaces are completely isotropic, whereas in case of the D-state molecules the PES
possess a θ-dependence (see Section 7.4). Due to the additional angular confinement in the θ-
direction the rovibrational level spacing increases. For this reason we expect to resolve a larger
number of molecular lines compared the to the previous S-state measurements.

In the concrete measurements we have studied the diatomic D-molecules for principal quantum
numbers n ranging from n = 41 to 49 addressing the mJ = 1/2, 5/2 substates by changing the
polarization of the 480 nm laser: the mJ = 1/2 states by using σ− and the mJ = 5/2 states
by using σ+-polarized light. The experiment was performed in a magnetically trapped thermal
cloud (Tcloud ∼ 2µK) of 87Rb with a typical peak density of 1012 cm−3. Since the main properties
of the nD5/2, mJ = 1/2, 5/2 molecular states arising from different n quantum numbers are
qualitatively comparable we only present two states exemplary here: the 44D5/2, m = 1/2 and
the 42D5/2, mJ = 5/2 molecular state. In Fig. 7.11(a,b) we present the photoassociation spectra
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Figure 7.11: Molecular spectra of the 44D5/2, mJ = 1/2 (a) and 42D5/2, mJ = 5/2 state (b). The ion
detector signal is plotted versus the frequency of the excitation laser. The laser frequency is given relative
to the atomic transition. Apart from the photoassociation spectra the angular distributions |Y2,(0,2)|2
(a,b) of the atomic electron orbitals relevant for the topological structure of the PES are depicted as
insets in both figures. In (a) we present two individual spectra taken with different laser intensities
which are separated by a solid line at a frequency of −3.2MHz. The experimental data are represented
by blue and black points, respectively. In addition, a moving average (red line) is included to provide a
better visibility. The dashed gray line mark the experimental peak positions whereas colored diamonds
indicate the calculated binding energies of the axial (green) and toroidal (red) molecular states. In
spectrum (b) only toroidal molecular states were detected.

of the 44D5/2, m = 1/2 and 42D5/2, mJ = 5/2, respectively. For both states the molecular lines
appear energetically below the dissoziation limit of the molecules which defines the energy offset.
In Fig. 7.11(a) the two spectra for the mJ = 1/2 are shown. The two spectra, which are separated
by a solid black line at a relative frequency of −3.2MHz, indicate the binding energies of bound
molecular states which are localized in the axial (left spectrum) and toroidal well (right spectrum),
respectively. The measured ion signals are indicated by blue points (left spectrum) and black dots
(right spectrum). For a better visibility a moving average (red solid line) was included in both
spectra. In addition, gray dashed lines mark the experimental peak positions whereas colored
diamonds indicate the calculated binding energies of the axial (green) and toroidal (red) molecular
states. As the Franck-Condon factors are much smaller for the axial states than for the toroidal
states the measured ion signal in the axial spectrum (left) is smaller than in the toroidal (right) if it
had been recorded with the same laser power. For this reason a higher laser power had been applied
to resolve the axial molecular states. As we can see the binding energies of the axial states are much
larger as the binding energies of the corresponding toroidal states. By considering the angular part
of the PES to be given by the simple relation 3/5|Y2,0(θ)|2 we can estimate the axial potential well
to be approximately four times deeper than the toroidal well. From this simple estimation one
can expect the binding energies of the axial rovibrational levels to be four times larges than the
toroidal states and five times larger than the binding energies of the S-state molecular molecules.
Both estimates are in quite good agreement with the experimental results.

In Fig. 7.11(b) the spectrum of the 42D5/2, mJ = 5/2 state is depicted. As before for the
axial molecular states, the measured ion signal is indicated by blue points and the experimental
peak positions are indicated by gray dashed lines. The calculated binding energies are indicated
by red diamonds. The molecular ground state has a binding energy of −7.4MHz. As the radial
electronic wave functions are about the same for the S- and D-state molecules we can correlate
their binding energies by comparing the angular parts of their wave functions. We get |Y22(θ =
π/2)|2/|Y00|2 = 1.88 which explains well the deeper bound D-state molecules. As we see in Fig.
7.11(b) the calculated binding energies reproduce the measured data quite satisfactory.
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In Fig. 7.14 and Fig. 7.15 we present a comparison between the experimentally measured data
points (dots) and the theoretically calculated binding energies (diamonds) over a wide range of
principal quantum numbers n. In Fig. 7.14 the comparison is shown for the mJ = 5/2 states. We
see that the numerics reproduces the measured data sufficiently well. However, with increasing
principal quantum number n the binding energies decrease as the corresponding PES become more
and more shallow. For this reason the molecular spectral lines move closer to the atomic line until
at hight n we end up with a non-resolvable flank on the red side of the atomic lines. Because of this
hardly any spectral lines could be identified for the higher rovibrational excitations in the spectra
for high n, which means those points are missing in Fig. 7.14. In addition, the figure provides the
scaled probability densities of certain rovibrational states for ρ and Z as well ranging from 2000a0
to 3300a0 and from −1500a0 to 1500a0, respectively.
In Fig. 7.15(a,b) we present the same analysis for the mJ = 1/2 axial and toroidal molecular

states, respectively. In Fig. 7.15(a) it is clearly visible that the largest difference between theoretical
calculated and experimental measured values for the binding energies can be found for the axial
molecules. One possible explanation for this might be the uncertainty in the determination of
atomic and molecular line positions. Due to the high laser power, needed to resolve the outermost
axial states, the atomic lines are highly broadened which complicates the exact determination of
the binding energies for the axial molecules. Furthermore, in the experiments only molecular lines
down to binding energies of around −12MHz can be measured, since −13MHz the atomic lines
of the mJ = −1/2 state is localized. Thus the outermost axial molecular lines of the mJ = 1/2
state for low n cannot be resolved since they overlap with the mJ = −1/2 atomic line. As for the
previously discussed mJ = 5/2 molecular states (see Fig. 7.14), we depict the scaled probability
densities of specific rovibrational states in the ρ- and z-direction.
Finally, we remark that so far no analysis has been performed on the profiles of the measured

signals. For such an analysis the specific Frank-Condon factors have to be calculated. This proce-
dure is very demanding as one has to consider the correct ground state distribution of the atoms
and how this affects the overlap integrals between the excited Rydberg and ground state atom wave
function.

7.7 Alignment of D5/2-state Rydberg molecules

The control of molecular alignment and orientation is of major importance in a number of molecular
processes and properties such as photoelectron angular distribution [203–206], molecular dissozia-
tion [207–210], pathways of chemical reactions including stereo-chemistry [211–214] and diffractive
imaging of molecules [215, 216]. Recently, the quantum stereodynamics of ultracold bimolecular
reactions has been probed [217].
An experimental way to align molecules is to use external electric, magnetic and light fields

[218,219]. These procedures have been used in a variety of technical applications such as hexapole
focusing [220–222], strong ac pulsed fields [223–225], combined ac and dc electric fields [226–234]
and brute force orientation [235]. For instance, strong magnetic fields crucially influence the adia-
batic electronic potential surfaces which determine the rovibrational dynamics [236]. This results
in the emergence of novel equilibrium positions [237], novel binding and chemical reaction mecha-
nisms [238,239] as well as field induced rovibrational interacting pathways, for instance via conical
intersections of adiabatic PES [240].
The D5/2-state Rydberg molecules considered in this work, created in an external magnetic field

of B = 13.55G, are aligned due to the specific properties of their electronic structure which is
reflected in their PES (see Section 7.5). By changing the detuning and polarization of the used
excitation lasers one can selectively excite a specific molecular state with an certain alignment.

Quantitatively the alignment A
(nmJ )
ν of a molecular state φ

(nmJ )
ν0 is defined as

A(nmJ )
ν = 〈φ(nmJ )

ν0 | cos2(θ)|φ(nmJ )
ν0 〉. (7.12)
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If A = 1 a molecular state is called aligned with respect to the z-axis, in case A = 0 the molecular
state is called antialigned. In Fig. 7.12(a,b) we present the alignment of the 42D5/2, mJ = 1/2, 5/2
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Figure 7.12: Molecular alignment A42,mJ
ν plotted versus the rovibrational excitation number ν. In

(a) and (b) the alignment is presented for the mJ = 1/2 and mJ = 5/2 states, respectively. In figure
(b) we also distinguish between the alignment of the axial (green crosses) and the toroidal states (blue
crosses). The abrupt changes in the molecular alignments are related to topological changes in the wave
functions’ density distributions.

states as function of the excitation number ν. In Fig. 7.12(a) we clearly see that the alignment
of the toroidal mJ = 5/2 rovibrational states linearly increases up to an excitation number of
ν = 6. For this specific degree of excitation we see a sudden drop in the molecular alignment.
For ν = 7 the the alignment increases, but drops again for ν = 8. This behavior can be easily
understood by considering the rovibrational probability densities which have been discussed in
detail in Section 7.5. In Fig. 7.8(b-d) we see how the topology of the rovibrational probability
density change with the considered excitation number ν. Till ν = 5 only angular modes are excited
and the rovibrational densities spread around the θ = π/2 angle. As the different density profiles
possess their maximal value at the outermost peaks the molecular alignment determined by Eq.
(7.12) increases. However, for ν = 7 the rovibrational density profile changes as a radial mode is
excited. In this case the density’s peaks is localized at θ = π/2 again. For this reason the molecular
alignment undergoes a sudden drop as it is observed in Fig. 7.12(a). In Fig. 7.12(b) we present the
alignment for both the mJ = 1/2 axial (green crosses) and toroidal states (blue crosses). For the
toroidal states we observe the same behavior as for the mJ = 5/2 toroidal states. As we have only
considered toroidal excitations up to ν = 5 we do not observe any sudden change in the molecular
alignments. However, in case of the axial states we find a different behavior. For low excited states
the rovibrational states are deeply localized in the axial lobes as presented in Fig. 7.9. Obviously,

these states are well aligned along the z-axis and A
(42,1/2)
ν ≈ 1. With increasing excitation number

ν the probability densities of the rovibrational states spread away from the θ = 0 configuration
and the molecular alignment decreases. This is clearly seen in Fig. 7.13(a) where the densities

profile |F (42,1/2)
6,0 |2 of the sixth excitation is depicted. However, for ν = 7 an excitation in one of the

neighboring potential wells beside the axial lobe is excited. The density profiles |F (42,1/2)
7,0 |2 of this

state is depicted in Fig. 7.13(b). Obviously, the peak of this probability density is again located
near the Z-axis, which means the corresponding alignment is close to one again. This behavior is
clearly reflected in Fig. 7.12(b) where we see a sudden increase in the molecular alignment for the
axial states as the excitation number changes from ν = 6 to ν = 7. For larger ν we have a change
between axial states possessing density profiles which are localized far away from or close to the
Z-axis. For this reason we find a rapid change in the corresponding molecular alignments which is
clearly reflected in Fig. 7.12.
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Figure 7.13: (Scaled) probability densities |F (42,1/2)
6,0 |2 (a) and |F (42,1/2)

7,0 |2 (b) for the axial potential
well of the n = 42, mJ = 1/2 PES (see Fig. 7.9). In (a) the rovibrational wave function is localized
inside the outermost potent well of the potential surface (see Fig. 7.9). The rovibrational state can be
understood as a higher excitation in the θ-direction. In contrast, the rovibrational state in (b) is an
excitation in a neighboring well.
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Figure 7.14: Experimental and theoretical molecular binding energies of the mJ = 5/2 toroidal states
plotted versus the rovibrational excitation number ν. The principal quantum number n ranges from
n = 41 to 49. The experimental (theory) data points are represented by solid dots (solid diamonds).
With increasing n their color change from black (n = 41) to white (n = 49). To improve the readability
the theory points possess a slight horizontal offset with respect to the experimental data. The several
insets show the (scaled) probability densities of certain excitation numbers for 2000a0 ≤ ρ ≤ 3300a0
and |Z| ≤ 1500a0.
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Figure 7.15: Experimental and theoretical molecular binding energies of the mJ = 1/2 states plotted
versus the rovibrational excitation number ν for principal quantum numbers n ranging from n = 42 to
46. In figure (a) and (b) we present the binding energies for the axial and toroidal states, respectively.
In both figures the experimental (theory) data points are represented by solid dots (solid diamonds).
With increasing n their color change from black (n = 41) to white (n = 46). To improve the readability
the theory points possess a slight horizontal offset with respect to the experimental data. In both
figures the insets depict the (scaled) probability densities of selected rovibrational states in cylindrical
coordinates (ρ, Z). In case of the axial states (a) the insets show image sections with 0 ≤ ρ ≤ 3500a0 and
0 ≤ Z ≤ 3500a0. For the toroidal states (b) the insets show image sections with 2700a0 ≤ ρ ≤ 3500a0
and |Z| ≤ 2250a0.

7.8 Conclusion

In conclusion, this chapter reports on the observation of ultralong-range D-state molecules exposed
to small magnetic fields in high resolution spectroscopy. The mJ = 1/2 and mJ = 5/2 electronic
Rydberg states lead, due to their different electronic configuration, to adiabatic PES with different
topologies. For the mJ = 1/2 the two dimensional potential surfaces ǫ(R, θ) exhibit a number of
radial wells at θ = 0, π and a series of shallower potential wells for θ = π/2. These are caused by the
corresponding electronic orbitals and lead to aligned and antialigned rovibrational states. On the
contrary, the mJ = 5/2 PES only possesses a single local well at θ = π/2 which lead to antialigned
molecular states. Spectroscopically the molecular states are observed as a sequence of peaks for
off and close by to the atomic Rydberg transition. Changing the principal quantum number n
only introduces qualitatively changes in the measured spectra. For all studies the theoretical and
experimental results show a satisfactory agreement.
In general, this work opens the doorway to the control of molecular Rydberg structures and

even chemical reaction dynamics by external fields. In case of several polyatomic states, i.e. sev-
eral neutral perturber, it can be conjectured external fields can be used to strongly change the
molecular geometry applying weak field strengths, which is otherwise impossible both for ground
state molecules. In addition, the design of conical intersections [240, 241] yielding ultrafast decay
or predissociation processes comes into the reach of experimental progress in the field of ultracold
molecular physics.



Chapter 8

Polarizability and susceptibility of ultralong-range Rydberg

molecules

In this chapter we provide a brief introduction into the theory of electronic response properties
of field-dressed ultralong range Rydberg molecules. In particular, we are interested in the electric
polarizability/magnetic susceptibility for magnetically/electrically dressed molecular states.

8.1 Molecular response properties in the adiabatic approximation

We our analysis be studying a molecule which is exposed to an external field F (which can be
either an electric or magnetic field, respectively). In general the molecular eigenenergies E are field
dependent, e.g. E = E(F ). If Ψmol(rel, rn;F ) denotes the corresponding eigenfunction we have

E(F ) = 〈Ψmol(rel, rn;F )|Hmol(rel, rn;F )
︸ ︷︷ ︸

≡Hmol(F )

|Ψmol(rel, rn;F )〉rel,rn (8.1)

In the presence of an external field the dipole moment µ (permanent+induced) is defined as

µmol(F ) ≡ −−→∇F E(F ). According to the Feynman-Hellman theorem [242, 243] this can be ex-
pressed as

µmol(F ) = −〈Ψmol(rel, rn;F )|−→∇F (Hmol(F ))|Ψmol(rel, rn;F )〉rel,rn . (8.2)

If we apply the adiabatic approximation for the molecular wave function

Ψmol(rel, rn;F ) = ψ(rel; rn;F )φ(rn;F ) (8.3)

we obtain

µmol(F ) = −〈φ(rn;F )|〈ψ(rel; rn;F )|−→∇F (Hmol(F ))|ψ(rel; rn;F )〉rel
|φ(rn;F )〉rn

≡ −〈φ(rn;F )|µel(rn;F )|φ(rn;F )〉rn . (8.4)

We denote the quantity µel(rn;F ) defined in the Eq. (8.4) as the electronic dipole kernel.

Next we are interested in the case of F → 0, which means that the external field just provides a
minor perturbation to the molecular system. In this case we expand the molecular dipole moment
µ up to O(F 2)

µmol(F ) ≡ µmol +α
(F )
molF with (α

(F )
mol)ij =

∂

∂Fi
(µmol(F ))j |F=0. (8.5)

The first term is known as the permanent molecular dipole moment. The quantity α
(F )
mol is, in

general, known as the second order tensor hyperpolarizability. In case the external field F = E

α
(E)
mol ≡ αmol is denoted as the (molecular) electric polarizability, if F = B the tensor α

(B)
mol ≡ χmol

is called the (molecular) magnetic susceptibility. To derive the expressions for the molecular dipole
moment and the hyperpolarizabilities we use Eq. (8.4). We expand the rovibrational state φ(rn;F )
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and the electronic kernel µel(rn;F ) according to

φ(rn;F ) = φ(rn) + F ·
∑

k 6=i

Ckφk(rn), µel(rn;F ) = µel(rn) +αel(rn)F . (8.6)

The coefficient vector Ck is obtained within Rayleigh Schrödinger perturbation theory. Inserting
the latter expressions into Eq. (8.4) and just keeping terms up to O(F ) we obtain

µmol = 〈φ(rn)|µel(rn)|φ(rn)〉rn , α
(F )
mol = α

(F )
mol,el +α

(F )
mol,rv (8.7)

with

α
(F )
mol,el = 〈φ(rn)|αel(rn)|φ(rn)〉, α

(F )
mol,rv = 2Re(

∑

k 6=i

〈φi(rn)|µel(rn)|φk(rn)〉 ∗CT
k ). (8.8)

We see that the molecular tensor polarizabilities consist of two terms. We denote the first term

α
(F )
mol,el as the electronic (hyper)polarizability because it merely contains the effect of the external

field on the electrons. The second terms takes into account the effect on the nuclei degrees of
freedom. For this reason we denote this term the rovibrational (hyper)polarizability.

8.2 Magnetically dressed Rydberg molecules

In this paragraph we consider the molecular dipole moments and electronic hyperpolarizability of
field-dressed ultralong-range diatomic Rydberg molecules.

Molecular dipole moment and polarizability

We start our analysis with the permanent molecular dipole moment and electric polarizability of
magnetically dressed ultralong-range diatomic Rydberg molecules. We write the molecular Hamil-
tonian (4.13) as

Hmol(r,R;B;E) =
P 2

mn
+Hel(r,R;B) +E · r. (8.9)

whereby Hel(r,R;B) is given by Eq. (6.4). For this specific Hamiltonian we have
−→∇E(Hmol(E)) =

Figure 8.1: (a) Electronic polarizability α
||
el as a function of θ and R. The applied magnetic field

strength is B = 25G. In (b) α⊥
el is shown for identical magnetic field strength.

r. In case of ultralong-range Rydberg diatomic molecules Hamiltonian one can express the elec-
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tronic degree of freedom as a linear combination n = r||+r⊥ with r||,⊥ = (r·n||,⊥)n||,⊥. The vectors
n||,⊥ are the unit vectors either parallel or perpendicular to the internuclear axis, respectively. We
obtain for the electronic dipole kernel of the magnetically dressed system

µ
||,⊥
el (R;B) = 〈ψ(r;R;B)|n||,⊥ · r|ψ(r;R;B)〉rn||,⊥. (8.10)

Next we consider the electronic polarizability kernel. Due to symmetry arguments the polarizability
tensor just possesses two independent components which are the the polarizabilities either parallel
or perpendicular to the internuclear axis

α
||,⊥
el (R;B) = 2

∑

k 6=i

|〈ψk(r;R;B)|n||,⊥ · r|ψi(r;R;B)〉r|2
εi(R;B)− εk(R;B)

. (8.11)

In Fig. 8.1 we present the electronic polarizability functions α
||
el and α

||
el as two-dimensional functions

of the polar angle θ and the spatial separation R.

8.3 Electrically dressed Rydberg molecules

Magnetic dipole moment

Next we analyze the magnetic susceptibility of electrically dressed ultralong-range molecules. Anal-
ogous to the electrically dressed species we start with expressing the electric Hamiltonian as

Hmol(r,R) =
P 2

mn
+Hel(r;R;E) +

1

2
B ·L+

1

8
(B × r)2. (8.12)

In contrast to the electric field Hamiltonian Eq. (8.9) we have two field dependent terms which
are known as the diamagnetic and paramagnetic terms. For this specific Hamiltonian we have−→∇B(Hmol(B)) = L/2 + (Br2 − (B · r)r)/4 which can be expanded as follows

−→∇B(Hmol(B)) =
L

2
+HB with (H)ij =

1

4
(δijr

2 − rirj). (8.13)

Analogous to Eq. (8.10) we define here the magnetic dipole kernel parallel and perpendicular to
the internuclear axis

η
(||,⊥)
el (R;E) = 〈ψ(r;R;E)|n||,⊥ ·L|ψ(r;R;E)〉rn||,⊥. (8.14)

Th second order hyperpolarizability is known as the magnetic suszeptibility tensor χ. In contrast to
the magnetically dressed molecules (see section 8.2) we now have two contributions to the magnetic
suszeptibility. The first one corresponds to the contribution from the paramagnetic term in Eq.
(8.12) which is the reason to denote this terms as the paramagnetic suszeptibility χpara. As in the
case of the electric polarizability this quantity possesses two independent components with are the
components parallel respectively perpendicular to the internuclear axis. We get

χel,(||,⊥)
para (R;E) =

1

2

∑

k 6=i

|〈ψk(r;R;E)|n||,⊥ ·L|ψi(r;R;E)〉r|2
εi(R;E)− εk(R;E)

. (8.15)

The second contribution emerges from the diamagnetic term in Eq. (8.12). We denote this term as
the diamagnetic suszeptibility χdia and its components parallel and perpendicular to the internu-
clear axis are given by

χ
el,(||,⊥)
dia (R;E) =

1

4
〈ψi(r;R;E)|r2 − (n||,⊥ · r)(n||,⊥ · r)|ψi(r;R;E)〉r. (8.16)





Chapter 9

Giant dipole states

9.1 Introduction

An exotic species of Rydberg atoms in crossed electric and magnetic fields are the so-called giant
dipole states (GDS), which have been explored theoretically [79,244–246] and experimentally [247,
248] firstly in the 1990s. Opposite to the usual Rydberg states, the GDS are of decentered character
and possess a huge electric dipole moment. More precisely, in Ref. [79] it was shown that the
total potential of the electronic motion possesses a gauge invariant term which leads to an outer
potential well that supports weakly bound decentered states. The mathematical origin of these
effects is the non-separability of the center of mass and electronic motion in the presence of the
external fields [249, 250]: translation symmetry and conservation of the total momentum in field-
free space is replaced by a phase space translation symmetry and the conservation of the total
pseudo momentum. Applications to the Positronium atom have demonstrated that metastable
matter-antimatter states with a lifetime of many years can be formed [251]. More recently, giant
dipole resonances of multiply excited atoms in crossed fields have been shown to exist and the
corresponding electronic configurations as well as their stability have been analyzed [252,253].

In the present chapter we combine the concepts of atomic giant dipole states and field-free ultra-
long-range diatomic molecules: We show the existence of ultra-long-range giant dipole molecules
emanating from giant dipole states. They exist in a variety of different configurations with simple
to complex three-dimensional potential energy surfaces such as Gaussian, elliptical or toroidal wells.
For higher excited states the potential energy surfaces of energetically neighboring states come close
in configuration space and form higher-dimensional seams of avoided crossings that could lead to
rapid decay processes of vibrational wave packets. In contrast to previous chapters, energies are
presented in Energy/~ = 2π×Energy/h.

9.2 The model Hamiltonian

We consider a highly excited hydrogen atom interacting with a ground state neutral perturber atom
(we will focus on the 87Rb atom here) in crossed static homogeneous electric E and magnetic B
fields. The hydrogen atom is considered to be in a giant dipole state. For this reason corresponding
Hamiltonian reads

H =
p2n
2mn

+HGD + VnGD, (9.1)

where ‘n’ labels the neutral perturber and where the first term is the kinetic energy of the perturber
atom followed by the giant dipole Hamiltonian of the hydrogen atom and the interaction term
between the GDS and the neutral perturber. The hydrogen atom in crossed external fields has
been discussed in detail in Ref. [79] and Appendix B.3. In this section it was shown that the giant
dipole Hamiltonian can be transformed into an effective single particle problem in a magnetic field
in the presence of a generalized potential V (r; {E,B}) = 1

2M (K̂+B×r)2− 1
r which parametrically

depends on the external fields and the pseudomomentum K̂(E,B) and contains both the motional
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Figure 9.1: Sketch of the considered setup. A hydrogen atom is excited into a giant dipole state. The
exact single particle potential (red curve) possesses an outer potential well at x0 ≈ −105a0, y0 = z0 = 0,
around this minimum the potential can be expanded up to quadratic order (blue curve). The bound
states within this potential well are called giant dipole states (green curve). The giant dipole wave
functions are perturbed by a ground state Rb(52S1/2) perturber.

and external electric field Stark terms,

HGD =
1

2µ
(p+

q

2
B × r)2 + V (r; {E,B}), (9.2)

with µ =
memp

me+mp
, q =

(
me−mp

me+mp

)

where me,mp,M are the electron, proton and atomic mass,

respectively. r,p represent the coordinate and canonical momentum of the Rydberg electron. For
sufficiently strong electric fields the potential V exhibits an outer well containing many bound GDS
which are decentered from the proton at distances of about 105a0, a0 being the Bohr radius. The
latter leads to a huge electric dipole moment typically of the order of many ten thousand Debye
for strong electric and magnetic laboratory field strengths. In Fig. 9.1 we show the generalized
potential for field strengths of E = 50V/m and B = 2T for x = z = 0 (red curve). We clearly
see an outer potential at x ≈ −105a0. Expanding V (r; {E,B}) up to second order around the
minimum of the outer well and performing a corresponding gauge centering [79,254] we arrive at the
second order giant dipole Hamiltonian which represents a charged (effective) particle in a magnetic
field and an anisotropic three-dimensional harmonic potential,

HGD =
1

2µ
(p− q

2
B × r)2 + µ

2
ω2
xx

2 +
µ

2
ω2
yy

2 +
µ

2
ω2
zz

2, (9.3)

where the frequencies ωx =
√

2
µ(

B2

2M + 1
x3
0
), ωy =

√
1
µ(

B2

M − 1
x3
0
) and ωz = 1/

√

|µx30| characterize
the anisotropy of the outer well. In this representation, r,p denote the electronic variables with
respect to the outer minimum (x0, 0, 0) with x0 ≈ −|K|/B. Our working Hamiltonian therefore
reads

H =
p2n
2mn

+
1

2µ
(p+

q

2
B × r)2 + µ

2
ω2
xx

2 +
µ

2
ω2
yy

2 +
µ

2
ω2
zz

2 + VnGD(r, rn), (9.4)

where VnGD again represents the interaction of the neutral perturber atom with the giant dipole
electronic Rydberg state. For deeply bound states in the outer well the electron possesses a low
kinetic energy and it is legitimate to describe the interaction with the neutral perturber by a



9.3 Methodology 105

Fermi-type pseudopotential [85, 156], namely, a s-wave contact potential

VnGD(r, rn) = 2πAT[k(r)]δ
(3)(r − rn). (9.5)

Here AT(k) is the energy-dependent triplet s-wave scattering length for electron collisions with
the ground state Rb atom. rn denotes the position of the neutral perturber with respect to the
minimum of the outer well. The electron wave number k is provided by the kinetic energy of the
Rydberg electron Ekin = k2/2 when it collides with the neutral perturber [85]. In a semiclassical
approximation the kinetic energy is given by

Ekin = ǫn−,n+,nz −
µ

2
ω2
xx

2 − µ

2
ω2
yy

2 − µ

2
ω2
zz

2. (9.6)

9.3 Methodology

In order to solve the eigenvalue problem associated with Hamiltonian (9.4) we adopt an adiabatic
ansatz for the neutral ground state and the giant dipole atom. We write the total wave function
as Ψ(r, rn) = φ(rn)ψ(r; rn) and yield

[HGD + VnGD(r, rn)]ψi(r; rn) = ǫi(rn)ψi(r; rn), (9.7)
[
p2n
2mn

+ ǫi(rn)

]

φik(rn) = Ei
kφ

i
k(rn), (9.8)

where ψ describes the electronic wave function of the decentered GDS in the presence of the
neutral perturber for a given position rn and φ determines the vibrational state of the neu-
tral perturber. To calculate the potential energy surfaces (PES) ǫi(rn) we expand ψi(r; rn) in
the eigenbasis of HGD, i.e., ψi(r; rn) =

∑

j C
i
j(rn)χj(r) with HGDχj(r) = εjχj(r), and solve

the corresponding eigenvalue problem associated with Eq. (9.7) using standard numerical tech-
niques for the diagonalization of Hermitian matrices. In [79] it was shown that the eigenener-
gies and eigenfunctions of HGD are determined by the three quantum numbers n−, n+, nz =
0, 1, 2, ...[χj(r) ≡ χn−n+nz(r)], where ǫn−,n+,nz = ω−(n− + 1

2) + ω+(n+ + 1
2) + ωz(nz + 1

2) with

ω± = 1√
2
[ω2

x + ω2
y + ω2

c ± sgn(ω2
x − ω2

y)
√

(ω2
x + ω2

y + ω2
c )

2 − 4ω2
xω

2
y ]

1/2 and ωc = −qB/µ. To en-

sure convergence for our numerical approach we vary the number of orbitals associated with the
quantum numbers n−, n+, nz independently finally achieving a relative accuracy of 10−5 for the
energy. To do so for the energetically lowest fifteen excitations a basis set of approximately 1500
states is needed, cf. Section 9.4. In addition to the numerically exact treatment we determine the
PES in first order perturbation theory, leading to

ǫptj (rn) = εj + 2πAT[k(rn)]|χj(rn)|2. (9.9)

From eqs. (9.4)-(9.8) we can already deduce some symmetry properties of the states Ψ, φ and
the energies ǫ(r). If Pr,rn denotes the parity operator that transforms (r, rn) → (−r,−rn) we
have [H,Pr,rn ] = [VnGD(r, rn), Pr,rn ] = 0. This means that the states Ψ, ψ and φ are parity
(anti)symmetric and the PES are symmetric, i.e., ǫ(±rn) = ǫ(rn).

Throughout this work we use the exemplary field configuration E = 50 V/cm and B = 2.35 T.
This gives giant dipole level spacings of ω− = 223MHz, ω+ = 413GHz and ωz = 1.35GHz. For
such fields, it is justified to neglect all interaction terms due to the induced dipole of the Rb atom.

9.4 Convergence studies

To ensure convergence of the adiabtic potential energy surfaces we perform convergence studies
in the quantum numbers n+, n−, nz characterizing the giant dipole state. The free parameters



106 Giant dipole states

of these studies are the upper bound Ni, i = {+,−, z} of a certain quantum number ni. In
particular, for every convergence study we have fixed two quantum numbers and expanded the
number of included states for the third one until the relative deviation between two following
diagonalization steps undergoes an upper limit of 10−5. This procedure is performed on a spatial
grid of −1500a0 : 200a0 : 1500a0 for the xn and yn coordinate, respectively. In the case of the
z-coordinate we choose a grid of −10000a0 : 1000a0 : 10000a0. We expand the basis set such large
until we chaive convergence of the first fifteen excited states. In this Section examplarily present
the convergence studies for rn = (0, 0, 0)T .
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We see that a convergence of the relative deviation between two following diagonalization steps
can be achieved by choosing a basis set of Nz = 50, N− = 30 and N+ = 1.

9.5 Molecular ground state potential surfaces

In first order perturbation theory the molecular giant dipole ground state PES is given by

ǫpt000(rn) = ε000 + 2πAT[k(rn)]C0e
−ax2

n−by2n−cz2n , (9.10)
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where the constants C0, a, b, c > 0 are given in [79]. This potential represents a single well 3d-
potential and since AT[k(rn)] < 0 ∀rn the minimum is located at rn,min = 0 with a depth of
∆ǫ000/~ ≡ [ε000 − ǫpt000(rn,min)]/~ = 591 MHz. In the present case we have AT[k(rn)] ≈ AT(x

2
n +

y2n, z
2
n) and a ≈ b, which means that the giant dipole ground state PES possesses an approximate

ϕn-rotational symmetry and (Lz)n is an approximately conserved quantity. A harmonic fit Vh(rn) =
1
2mnω

2
xx

2
n +

1
2mnω

2
yy

2
n +

1
2mnω

2
zz

2
n around this minimum provides harmonic oscillator states with a

level spacing of ωx = ωy = 39.2 MHz and ωz = 12.4 MHz. The numerical exact PES is presented in
Fig. 9.2. The employed basis set consists of N− = 30, N+ = 1, Nz = 50 states. As in perturbation
theory the potential possess a minimum located at rn,min = 0 and is ϕn-rotationally symmetric. A
harmonic fit provides here a depth of ∆ǫ000/~ = 788 MHz and level spacing of ωx = ωy = 20 MHz,
ωz = 6.5 MHz.
In Fig. 9.3 we show a comparison between the perturbative and the exact ground state potential

for yn = zn = 0. In addition, the harmonic fitting curves and the parameters ωpt
x and ωex

x are
presented as well. Comparing the analytic solution Eq. (9.10) with the numerically exact result,
one finds that for the exact PES the depth possesses a 165 MHz larger value while the width
of the well increases by a factor of two. Furthermore, for the perturbative PES the harmonic
approximation is valid in a region between xn ≈ ±200a0, while for the exact potential it is valid
up to xn ≈ ±800a0. Hence, while providing a good qualitative prediction, the perturbative

Figure 9.2: Ground state potential energy surfaces calculated via exact diagonalization. The employed
basis set consists of N− = 30, N+ = 1, Nz = 50 states. The energy scale is given in GHz.

approach cannot be used to discuss quantitative details. The deviation between the exact and the
perturbative result can be understood by analyzing the coupling of the giant dipole ground state
to excited states of the unperturbed system. For first order perturbation theory to hold, these
couplings need to be much smaller than the energetic separation of the involved levels. In our case,
this amounts to the requirement

γn−n+nz := 4

∣
∣
∣
∣
∣

〈000|VnGD(r, rn)|n−n+nz〉r
ǫpt000(rn)− ǫ

pt
n−n+nz(rn)

∣
∣
∣
∣
∣

2

≪ 1 (9.11)

where n−, n+ and nz label the quantum number of the excited state. In our case, we find, e.g.,
γ100 ≈ 4.5 and γ002 ≈ 0.1. Hence, it is not surprising that first order perturbation theory yields
qualitatively but not quantitatively reliable results. This is in contrast to the trilobite systems
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Figure 9.3: Comparison between perturbative (dashed-dotted line) and exact (solid line) ground state
potential for yn = zn = 0. In addition, the harmonic fitting curves (thin lines) together with the
corresponding trap frequencies ωpt

x and ωex
x are shown.

[85] where degenerate first order perturbation theory within a given Rydberg n-manifold provides
satisfactory results (depending on n, the splitting of adjacent manifolds is in the GHz-THz regime
compared to ω− = 223 MHz in our case). We remark that the vibrational states obtained by
the potential given in Fig. 9.2 are localized at internuclear distances in the range of 105a0. To our
knowledge, these molecules belong, together with recently investigated Rydberg macrodimers [255],
to the largest diatomic molecules ever predicted.

9.6 Potential surfaces of excited states

In perturbation theory the PES for the lowest excitations are determined by the states |n−00〉, n− =
1, 2, 3. Introducing cylindrical coordinates ρn, ϕn, zn and extracting the dominant terms in per-
turbation theory, the PES are approximately given by

ǫptn−00(rn) ≈ εn−00 + 2πAT[k(rn)]Cn−e
−aρ2n−cz2nρ2n−

n . (9.12)

Due to the weak dependence of AT[k(rn)] on k in our case, this well represents a ϕn-rotationally

symmetric torus with minima at r
(n−)
n,min = ρ

(n−)
min eρ. The positions ρ

(n−)
min and depths ∆ǫn−00 of these

minima are approximately given by

ρ
(n−)
min ≈

√

n−/a,

∆ǫn−00 ≈ 2π|AT[k(r
(n−)
n,min)]|

Cn−

en−

(n−
a

)n−

.
(9.13)

In Fig. 9.4 the exact PES for the first excited state is shown. The toroidal structure as predicted
by perturbation theory is clearly visible. Fig. 9.5(a) shows a two-dimensional intersection for
zn = 0 of the same PES: A “Mexican hat“ like potential well is obtained with the one-dimensional
manifold of the minimum lying on a circle. For sufficiently small displacements from the minima
the PES can be described by a harmonic approximation, i.e., a decentered oscillator potential
Vh(rn) =

1
2mnω

2
ρ(ρn − ρmin)

2 + 1
2mnω

2
zz

2
n. One therefore arrives at a free rotational motion of the
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Figure 9.4: Three-dimensional representation of the first excited potential surface. To achieve conver-
gence we use a set of N− = 10, N+ = 1, Nz = 30 basis functions.

Figure 9.5: Two-dimensional intersection of the first excited potential surface for zn = 0. The energy
scale is given in GHz.

Rb-atom in the ϕn-direction. In perturbation theory the frequencies ωρ and ωz are given by

ω(n−)
ρ ≈ 2

√

2πa|A[k(r(n−)
n,min)]|Cn−

mRben−

(n−
a

)n−

, (9.14)

ω(n−)
z ≈ 2

√

πc|A[k(r(n−)
n,min)]|Cn−

mRben−

(n−
a

)n−

. (9.15)

The corresponding eigenfunctions are given by the product A(ρn)e
imϕnφl(zn), m ∈ Z and l ∈ N0,

where φl denotes the l-th eigenfunction of the harmonic oscillator and A(ρn) are, apart from a
Gaussian, the biconfluent Heun functions [256–267]. In table 9.1 the parameters ρmin, ωρ and ωz
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1 exc. 1 exc. 2 exc. 3

1 pt ex pt ex pt ex

ρmin / a0 450 825 637 971 785 1050

∆ǫn−00 / MHz 221 170 162 155 134 127

ωρ / MHz 33 27 29 25 26 24

ωz / MHz 1.9 0.86 1.7 0.89 1.5 1.2

Table 9.1: Parameters ρmin, ∆ǫn
−
00, ωρ and ωz for the first three excited potential surfaces. For the

numerically exact potentials (ex) the parameters are taken from a harmonic fitting. For the perturbative
potentials (pt), the parameters are extracted from Eqs. (9.13)-(9.15).

for the first three excited PES, both exact and perturbative, are listed. We see that the largest
difference between perturbation theory and the numerically exact result is obtained for the ρmin

and ωz parameters with a deviation of around 50% for the first excitation and 20% for the third ex-
citation. However, for ωρ and ∆ǫn−00 both results are more comparable with a maximum deviation
of 20%. For all quantities the exact and perturbative results are more comparable with increasing
excitation.

9.7 Avoided crossings of potential surfaces

While for the first few excitations first order perturbation theory provides a reasonable prediction
of the qualitative behavior of the PES, for higher excitations first order perturbation theory is not
capable of describing even the qualitative behavior of the PES. For example, in Fig. 9.6 we show the
PES for the fifth excitation. In addition to the toroidal well described above we get two new three-
dimensional elliptical potential wells centered at xn = yn = 0, zn ≈ ±6500a0. As a consequence
the former rotationally symmetric global minimum represent now a local minimum and the two
new global minima are the centers of these elliptical wells. The bound states in the toroidal well
become metastable and can in principle decay into bound vibrational states in the elliptical wells.
For the fifth and sixth excited PES a harmonic approximation around the global minima yields

Figure 9.6: Potential surface for the fifth excitation. The additional elliptical wells arise due to avoided
crossings with adjacent potential surfaces. The energy scale is given in GHz.

a vibrational level spacing of approximately 20 MHz. The additional elliptical wells arise due to
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avoided crossing with neighboring PES. To confirm this, Fig. 9.7 shows intersections for the fifth,
sixth and seventh PES for xn = 0, yn = 200a0. Avoided crossings of the PES are encountered, e.g.,
at z ≈ ±8.5× 103a0 and z ≈ ±5.5× 103a0 for the fifth and sixth excited PES. A more global view
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Figure 9.7: Intersections of the fifth, sixth and seventh excited potential surfaces for xn = 0, yn = 200a0
are shown. Avoided crossings of the potentials are encountered. The spacing between the fifth and sixth
surface at the avoided crossings is approximately 9MHz.

of the geometry of the higher excited PES and their avoided crossings is provided with Fig. 9.8.
It shows the PES obtained via perturbation theory, i.e., ǫpt500(rn), ǫ

pt
600(rn) and ǫpt001(rn) for fixed

xn = 0. The potential ǫ001(rn) is obtained by raising the quantum number nz and is given by

ǫpt001(rn) = ε001 + 2πAT[k(rn)]C̃z
2e−aρ2n−cz2n . (9.16)

In contrast to ǫpt500(rn) and ǫpt600(rn) this potential curve possess two minima at z = ±5542a0.
Because the depth of these minima (≈ 450 MHz) is larger than the level spacing of the unperturbed
giant dipole levels [(ε001−ε600)/~ ≈ 9 MHz, (ε001−ε500)/~ ≈ 250 MHz] the PES ǫpt001(rn) intersects
neighboring PES. Due to the coupling between the different PES this leads to avoided crossings for
the exact PES and consequently novel geometries of the potentials. In the vicinity of the avoided
crossing the adiabatic approximation fails and we expect a strong rovibronic interaction mixing
different electronic giant dipole states. As a consequence fast decay processes of wave packets
probing the seam of the avoided crossings will take place. Finally we note that the radiative
lifetimes of the excited states are for our chosen parameter values of the order of several days and
therefore much longer than the typical vibrational frequencies in the excited PES: it should therefore
be possible to probe the vibrational dynamics belonging to the complex geometry of the molecular
PES of the excited giant dipole states. We remark that the occurence of avoided crossing will be
even more prominent in heavier giant dipole systems. Considering rubidium instead of hydrogen,
for example, reduces the smallest level spacing by mp/MRb ≈ 10−2, which yields ω− = 2.5 MHz.
The depths of the potential surfaces, on the other hand, do not change significantly. As a result,
already the ground state shows avoided crossings with neighboring potential surfaces.

9.8 Conclusion

Bringing together the concepts underlying atomic giant dipole states in external fields and ultra-
long-range molecules, we demonstrated the existence of ultra-long-range giant dipole diatomic
molecules. In particular, the exotic atomic state underlying these molecules give rise to novel
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Figure 9.8: Two dimensional intersections of the perturbatively calculated PES for xn = 0. We clearly
see intersections of the perturbative potential surfaces.

properties such as a plethora of different quantum states with complex three-dimensional energy
landscapes and rich rovibrational dynamics. The resulting molecules possess very large rovibra-
tional bound states at internuclear distances in the range of 105a0.
For their experimental preparation the ’best of two worlds’ has to be combined. The preparation

of giant dipole states is known to be possible starting from ’traditional’ Rydberg states in magnetic
fields and applying a sequence of electric field switches which brings the electron into low-lying
outer well states [268]. Driven radio-frequency transitions in the outer well as an additional tool
might help to prepare definite outer well states. Starting from these, one could overlap the GDS
with a dense cloud of ultracold rubidium atoms and use radio- / microwave induced transitions to
form the envisaged giant dipole molecular states. One of the main differences to standard cold atom
experiments is certainly the regime of field strengths necessary to address the giant dipole states,
which corresponds to strong static magnetic and electric fields. The results from this chapter have
been published in Ref. [2].





Chapter 10

Summary and conclusions

We finally conclude by summarizing the results and providing a brief outlook on future research
directions in the field of ultralong-range Rydberg molecules in external fields.

Field-free ultralong-range Rydberg molecules

The foundation of this thesis is based on a thorough derivation of the theory of ultracold Rydberg
molecules in combined electric and magnetic fields. At first the properties of the molecular con-
stituents, namely Rydberg atoms and ground state atoms, were discussed in detail. In particular
the specific properties of Rydberg atoms and the electron-perturber interaction were discussed in
detail. A detailed examination of all the ingredients necessary to adequately describe high and low
angular momentum Rydberg states of an alkali atom has been provided. The coupling between
the electronic and ground state atom was modeled as the Fermi-pseudopotential approach provid-
ing an effective contact interaction potential. In this particular field-dressed molecular system the
translation symmetry and conservation of the total momentum in field-free space is replaced by
a phase-space translation symmetry and the conservation of the pseudomomentum. Introducing
center of mass and relative coordinates as well as a suitable phase-space unitary transformation
considerably simplifies the ab-initio molecular Hamiltonian. In particular, the derived working
Hamiltonian is an effective two-particle problem describing a Rydberg-electron and relative heavy
particle motion in electric and magnetic fields. The remaining couplings between the relative and
nuclei particle dynamics are treated as an adiabatic approach reminiscent of the Born-Oppenheimer
separation in molecular physics. The initial problem of coupled nuclei and electron degrees of free-
dom is thereby reduced to the determination of adiabatic electronic energy surfaces that serve as
an external potential for the nuclei dynamics. Reexamining the field-free molecular properties an
analytical approach was introduced to obtain the adiabatic potential energy curves. While this ap-
proach relies on several approximations, it provides accurate results and a profound understanding
of the underlying physics.

Ultralong-range Rydberg molecules in external fields

As the main subject of the present work we have explored the changes the polar high-angular mo-
mentum trilobite states experience when exposed to a purely electric, magnetic as well as combined
external field configurations. Taking into account both s- and p-wave interactions it turns out that
both electric and magnetic fields provide a unique way to control the topology of the adiabatic
potential energy surfaces. In case ultralong-range diatomic Rydberg molecules are exposed to sin-
gle external fields, the angular degree of freedom between the external electric or magnetic field
and the internuclear axis is converted from a rotational to a vibrational degree of freedom, thereby
rendering the field-free potential energy curve into a two-dimensional potential energy surface.

In the case of pure electric and magnetic fields the oscillatory behavior of the potential surfaces is
changed dramatically in the presence of the fields. In the case of the electric field it turns out that the
global equilibrium position is always in the antiparallel configuration with respect to the applied
external field. Along the internuclear axis we find a sequence of potential wells with increasing
radial coordinate. Increasing the electric field strength we encounter an overall lowering of the
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energy accompanied by a subsequent crossover of the energetically order of individual potential
wells. Consequently, the equilibrium distance and the lowest rovibrational states are systematically
shifted to larger internuclear distances. This means that with increasing electric field strength the
low lying molecular states can be progressively shifted away from the region of the avoided crossing
of the p-wave split state which crosses the trilobite state near its equilibrium distance in the field-
free case. In this manner the respective stability of the ground state and of many excited vibrational
states is guaranteed. For strong fields the interaction of the electrically field dressed trilobite state
with quantum defect states leads to a strong admixture of atomic s-state character to the high-l
states. For this reason a two-photon excitation process starting from a two-atom system should be
sufficient to create field-dressed ultralong-range Rydberg molecules.

Beside combined electric and magnetic fields we also studied a pure magnetic field configuration.
This study extents a previous work by Lesanovsky et al. [99] where only pure s-wave interaction
was considered. Taking into account both s- and p-wave interactions it turns out that strong
level repulsion causes the potential wells which provide the trilobite states in the field-free case to
vanish. Beyond a critical field strength of 100G the trilobite potential energy surface (PES) does not
provide any bound states anymore. In the case of combined electric and magnetic fields the field-free
potential curve can even be rendered into a three-dimensional surface choosing appropriate angles
of inclination between the two external field vectors. Depending on the specific degree of electronic
excitation and field configuration we obtain oscillatory potential curves possessing rich topologies
with localization in the radial and angular degrees of freedom and depths up to hundreds of MHz.
Both the parallel and crossed field configurations provide unique ways to control the topology of the
adiabatic potential surfaces. This leads to the possibility to directly control molecular orientation
and alignment for both field configurations. In addition, the topological control of the PES provides
the control of the electric dipole moment as well. The results from these studies have been published
in Ref. [3, 5].

Alignment of ultracold D5/2-state Rydberg molecules

In this part we analyzed the properties of ultracold D5/2-state Rydberg molecules exposed to an
external magnetic field of B = 13.55G. In this project, which was conducted in collaboration with
Prof. Tilman Pfau, Dr. Alexander Krupp and coworkers at the University of Stuttgart, ultracold
Rydberg molecules where created from a thermal cloud of ultracold rubidium atoms with densities
of 1012 cm−3 via a two-photon excitation process. This study is in line with a number of remarkable
experimental studies of the nature of ultralong-range Rydberg molecules. For instance, in 2009 V.
Bendowsky and coworkers for the first time created this novel molecular species which had been
predicted by Prof. C. H. Greene in 2000 [85] using nearly the same experimental setup as it was
used in Ref. [4]. However, these studies where conducted for S-state molecules whose molecular
structure is determined by a spherically symmetric electronic s-orbital. In our work these studies
were extended to nD5/2-state molecules. Exposing D-state molecules into a homogeneous magnetic
field energetically splits the degenerate mJ sublevels. In contrast to the S-state molecular species
these electronic states depend, besides the radial distance R, on the angle θ with respect to the
applied magnetic field axis. For this reason the resulting adiabatic potential energy surfaces provide
a richer topology beyond spherical symmetry. In this work two distinct species of D-state molecules
have been studied, the nD5/2, mJ = 1/2, 5/2 molecules for principal quantum numbers ranging
from n = 41 to 50. Both the adiabatic potential energy surfaces and molecular binding energies were
calculated and compared to the experimental data. In addition to the ground state molecules higher
excited molecular states were detected as well. These states can be selectively excited by choosing
the appropriate laser detuning. We discovered two different types of molecules. The first species
is characterized by a high degree of molecular alignment parallel to the magnetic field axis. They
stems from axial lobes in the electronic density distribution. These molecular states are denoted
as axial states. In contrast, the second molecular species are determined by toroidal electron
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density around the magnetic field axis, these states are denoted as toroidal states. The measured
binding energies of both molecular species and the theoretically calculated data match satisfactorily.
Deviations in the data sets were explained by an oversimplified model used to mimic the molecular
dynamics and limitations in the excitation and detection techniques. As the two distinct D-state
molecular species are determined by different electronic density profiles the molecular states differ
in their alignment with respect to the applied magnetic field axis. The alignment of molecules is
of central importance as it strongly influences their interaction and chemical reaction dynamics.
Normally strong external electric, magnetic and light fields are required to create aligned molecules.
In contrast, magnetically dressed D-state Rydberg molecules are intrinsically aligned due to their
creation process in a weak magnetic fields. Rotational degrees of freedom are hardly excited as the
created molecules possess large internuclear separations which results in a large moment of inertia.
For this reason the molecules can be considered as stationary because they hardly rotate during
their lifetime of around 10µs. The results from this collaboration have been published in Ref. [4].

Ultralong-range giant dipole molecules in crossed electric and magnetic

fields

The last part of this thesis contains the first results that had been published from our studies in
Ref. [2]. In this work we show the existence of ultralong-range giant dipole molecules formed by
a neutral alkali ground state atom that is bound to the decentered electronic wave function of a
giant dipole atom. Besides the normal ground state atom these molecular species contain an exotic
constituent, so-called atomic giant-dipole states. Opposite to the usual Rydberg states, the giant
dipole states are of decentered character and possess a huge electric dipole moment. Their existence
is related to the non-separability of the center of mass and electronic motion in the presence of
the external fields. In contrast to Chapter 5 and Chapter 6, in this work the constituents of the
ultralong-range diatomic molecular species only exist for finite field strengths. This means that
these molecules cannot be understood as a field dressed version of a field- free diatomic molecule
as the existence of these exotic molecular species is strongly related to the applied field strength of
the electric and magnetic fields. Since the interaction of a giant dipole atom with a neutral ground
state perturber can be described by a low-energy electron-atom scattering potential we apply the
Fermi pseudopotential approach. The adiabatic potential surfaces emerging from the interaction
of the ground state atom with the giant dipole electron possess a rich topology depending on the
degree of electronic excitation. Depending on the applied field strength the resulting the resulting
molecules are truly giant with internuclear distances up to several micrometers.

Outlook

Although ultralong-range diatomic Rydberg molecules have been studied intensively for almost
fifteen years both theoretical and experimentally, this research field still provides a number of
possibilities to extend the knowledge in the field of ultracold molecules.

A rather natural extension of the present work would be the investigation of polyatomic Rydberg
molecules [87, 96] in both electric and magnetic fields. In case the Rydberg electron binds several
ground state atoms the specific PES depend on the relative orientation of the ground state atoms.
The higher dimensional energy surfaces are expected to provide a complex structure of oscillatory
potential wells and avoided crossings. In addition, one can also consider the case where several
ground state atoms from different species are bound by the Rydberg electron. Such molecules have
become known as Borromean molecules as they only exist as polyatomic species due to mutual
stabilization of their molecular bonds [97]. It would be interesting to explore the impact of electric
and magnetic fields on the stability of these particular molecular species. Obviously, for both kind
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of polyatomic species, combined external fields constitute a logical extension thereof. In addition,
the properties of polyatomic giant dipole Rydberg molecules is still an open question.
Another very promising direction of research is the study of higher order electric and magnetic

polarizabilities and susceptibilities. Because of their high sensitivity to small field strengths in
Rydberg atoms these quantities strongly depend on the Rydberg excitation. For instance, the
electric polarizability of single Rydberg atoms scales as n7. As the molecular properties both depend
on the electron and nuclei degrees of freedom it is worth to extent the studies from Chapter 8 and to
analyze these properties in more detail. Furthermore, the study of higher order polarizabilities can
be easily extended to other molecular Rydberg species as polyatomic molecules and ultralong-range
triatomic polar Rydberg molecules [241].
Finally, one can consider novel approaches to solve the electronic Schrödinger equation. A number

of previous works [97,269] have already discussed the possibility to determine the adiabatic potential
curves via the Green function approach. This approach is considered to be more robust compared
to exact diagonalization. For this reason we expect it to provide reliable results in regimes where
both exact diagonalization and the adiabatic approximation fail, for instance in the vicinity of
avoided crossings.
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Appendix A

Numerical concepts

A.1 Construction of the interaction matrix

Next we present an efficient method to create the matrix representation of the interaction potential
Ven(r;R). As discussed in Section 3.2 in order to determine the adiabatic potential surfaces we
have to calculate the electronic eigenenergies ε(R) as a function of the perturber position R. In
case of the present problem this means that we have to diagonalize a non sparse matrix of the
dimension ∼ N2 at every position R of the considered grid. Although the number of grid points
might decrease significantly due to symmetry properties it is crucial to use an efficient way to
construct the matrix representation of Ven due to limitations in CPU-time and memory.

At first we can use the fact that Ven(R) is a sum of four separable matrices, cf. Section 4.2.1
and 4.2.1). As discussed in B.6 a separable N ×N C-matrix is a matrix that can be written as the
matrix product of two N × 1 C-vectors. In our case we have

V s,pi
en (R) = ψ(R)⊗ψ†(R), i = 1, 2, 3 (A.1)

with

ψ(R) = (ψn,,m(R), ψn,0,−1(R), ψn,1,0(R), ψn,−1,1(R), ..., ψn′,n′−1,n′−1)(R))T (A.2)

Due to this the number of matrix elements that has to be calculated significantly reduces from
N(N + 1)/2 to N . However, we are still left with the fact that every function ψnlm(R) depends
on three spatial coordinates. For a large number of grid points this is might still lead to a large
amount of data that has to stored and read into the used programs again.

To reduce the complexity of this problem we use the fact that in spherical coordinates R, θ, φ
the functions ψnlm(R, θ, φ) are given as a product of three separate functions, i.e.

ψnlm(R, θ, φ) = Rnl(R)Flm(θ)eimφ with Flm(θ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Plm(cos(θ)) (A.3)

We can use this form to construct the interaction matrix Ven in a very elegant way. First we
introduce a grid for the spherical coordinates, this means

[Rmin, Rmax]→ Rmin : ∆R : Rmax, (0, π]→ 0 : ∆θ : π, (0, 2π]→ 0 : ∆φ : 2π.

In our problem Rmax has to be a least as large as the classical outer turning point of the electron
of energy −1/2n2 in the Coulomb potential, which leads to Rmax = 2n2. For n = 35 this gives
Rmax = 2450a0. Finally, we have chosen Rmin = 0, Rmax = 3000a0, ∆R = a0. In case of the
angular grid we choose ∆θ = ∆φ = 0.01π. This means we get a grid of 3001 points in radial
direction and 101 / 201 points in both the θ and φ component, respectively.

A.1.1 S-wave matrix construction

First we calculate five different files, each for every coordinate R, θ and and two for the φ angle.
We denote these files ”Radialfile” and ”Thetafile” for the R and θ component and ”RealPhifile”
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/ ”ImagPhifile” for the φ component. Each file contains a matrix where the columns contain the
functions Rnl, Flm and Re(eimφ) = cos(mφ), Im(eimφ) = sin(mφ) evaluated at a specific grid point.
More precisely, in the vertical direction the quantum number n, l,m vary according to the used
basis set at a fixed position while in the horizontal direction the positions Rj , θj and φj are varied
while the quantum numbers are fixed. In particular the three files are structured as follows

Radialfile =






Rnl(0) · · · Rnl(Rj) · · · Rnl(Rmax)
... · · · ... · · · ...

Rn′l′(0) · · · Rn′l′(Rj) · · · Rnl(Rmax)




 ,

................
︸ ︷︷ ︸

(j+1)th column

Thetafile =






Flm(0) · · · Flm( jπ
100) · · · Flm(π)

... · · · ... · · · ...

Fl′m′(0) · · · Fl′m′( jπ
100) · · · Fl′m′(π)




 ,

..................
︸ ︷︷ ︸

(j+1)th column

RealPhifile =






1 · · · cos( jmπ
100 ) · · · 1

... · · · ... · · · ...

1 · · · cos( jm
′π

100 ) · · · 1




 , ImagPhifile =






1 · · · sin( jmπ
100 ) · · · 1

... · · · ... · · · ...

1 · · · sin( jm
′π

100 ) · · · 1




 .

................
︸ ︷︷ ︸

(j+1)th column
55555555555555555555555555555

.................
︸ ︷︷ ︸

(j+1)th column

Before we continue in constructing the interaction matrix we define a mapping ”⊙” that maps two
vectors v,w ∈ C

n×1 in the following way

⊙ : Cn×1 × C
n×1 → C

n×1 : (v,w)→ v ⊙w ≡ (v1w1, · · · , vnwn)
T .

Obviously, this mapping is just the element wise multiplication of the matrix elements of v,w to a
new vector v ⊙w .

Next we introduce the following notation for the i-th column of an arbitrary Matrix A

A(:, i) ≡ i-th column of matrix A

and we define the index function of a quantity ηi

index(ηi) =
ηi
∆η

+ 1.

Using this mapping function we can set up the following algorithm to construct the interaction
matrix V s

en(R):

1.) Choose a grid point R = (Ri, θj , φk)

2.) Determine the indices of Ri, θj and φk

index(Ri) = i+ 1, index(θj) = j + 1, index(φk) = k + 1.

3.) Load the files Radialfile, Thetafile, RealPhifile and ImagPhifile and read out the columns
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from the matrices according to the indices. We define

columnR ≡ Radialfile(:, i+ 1), columnTheta ≡ Thetafile(:, j + 1),

columnRePhi ≡ RealPhifile(:, k + 1), columnImPhi ≡ ImagPhifile(:, k + 1).

The just defines quantities are N × 1 C-vectors.

4.) Using the just defined vectors we construct the vector ”wavefunction” via

wavefunction ≡ columnR⊙ columnTheta⊙ columnRePhi⊙ columnImPhi

5.) Finally we construct V s
en(R):

V s
en(R) = wavefunction⊗ wavefunction†.

A.1.2 P-wave matrix construction

As discussed in section 4.2.1 the matrix representation of the p-wave interaction term consists of
three separable matrices. Analogous to the s-wave matrix construction one can construct every
single matrix. For this we define three additional data files denoted as ”DiffRadialfile”, ”DiffLe-
gendrefile” and ”Legendre2file”. Again, the three files contain matrices where the columns now
contain the functions R

′

nl(R), Flm(θ) and Hlm(θ)

DiffRadialfile =






R
′

nl(0) · · · R
′

nl(Rj) · · · R
′

nl(Rmax)
... · · · ... · · · ...

R
′

n′l′(0) · · · R
′

n′l′(Rj) · · · R
′

nl(Rmax)




 ,

....................
︸ ︷︷ ︸

(j+1)th column

DiffLegendrefile =






Flm(0) · · · Flm( jπ
100) · · · Flm(π)

... · · · ... · · · ...

Fl′m′(0) · · · Fl′m′( jπ
100) · · · Fl′m′(π)




 ,

.................
︸ ︷︷ ︸

(j+1)th column

Legendre2file =






Hlm(0) · · · Hlm( jπ
100) · · · Hlm(π)

... · · · ... · · · ...

Hl′m′(0) · · · Hl′m′( jπ
100) · · · Hl′m′(π)




 .

..................
︸ ︷︷ ︸

(j+1)th column

To construct the p-wave interaction matrices we follow the steps (1)− (2) as we did in the previous
paragraph. In the next step (3) we define, beside the vectors columnRePhi and columnImPhi, the
vectors DiffcolumnR, DiffcolLegendreTheta, Legendre2theta via

DiffcolumnR ≡ DiffRadialfile(:, i),

DiffcolLegendreTheta ≡ DiffLegendrefile(:, j),

Legendre2colTheta ≡ Legendre2file(:, j).
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We define the vectors p1wavefunc, p2wavefunc, p3wavefunc as

p1wavefunc ≡ DiffcolumnR⊙ columnTheta⊙ columnRePhi,

p2wavefunc ≡ columnR⊙DiffcolLegendreTheta⊙ columnRePhi,

p3wavefunc ≡ columnR⊙ Legendre2colTheta⊙ columnRePhi.

and construct the corresponding interaction matrices V pi
en (R), i = 1, 2, 3:

V p1
en (R) = p1function⊗ p1function†,

V p2
en (R) = p2function⊗ p2function†,

V p3
en (R) = p3function⊗ p3function†.

The final p-wave interaction matrix is finally given by

V p
en(R) = 6πA3

p(k(R))(V
p1
en (R) + V p2

en (R) + V p3
en (R)).

A.2 Numerov integration method

A.2.1 General integration scheme

In order to calculate the low angular momentum Rydberg wave functions Rnjl(r) we have used
a Numerov integration method [270]. In general, the Numerov method can be used to solve one
dimensional problems of kind

(
∂2

∂x2
+ V (x))y(x) = 0. (A.4)

The potential V (x) is sampled in the interval [a, b] at equidistant points xn. Starting from function
values at two consecutive samples xn−1 and xn the remaining function values can be calculated
iteratively as

y(xn+2) =
(2− 5

6h
2V (xn+1))y(xn+1)− (1 + 1

12h
2V (xn))y(xn)

1 + h2

12V (xn+2)
. (A.5)

Here h = xn+1 − xn is the distance between two consecutive points.

A.2.2 Application to Rydberg wave functions

We can use the Numerov integration method to solve the radial Schrödinger equation (1.23)

(
∂2

∂r2
+ Veff(r))unjl(r) = 0 with Veff(r) = 2(Enjl − Vl(r)− Vso(r))−

l(l + 1)

r2
. (A.6)

With the potential Veff(r) the radial equation can be numerically integrated in order to obtain the
radial wave function Rnjl(r). Since the model potential does not reproduce the short range behavior
near the origin correctly, care must be taken when choosing the boundary conditions. We introduce
an inner radius ri at which the calculated wave function should be truncated. The integration to
r → ∞ might also be truncated at an outer radius ro where R(ro) has decayed sufficiently. To
minimize the errors in the calculation of the radial wave function due to the core potential just
being modeled approximative, the integration should be carried out inwards, beginning at the outer
starting point ro. For →∞ we expect unjl(r) to decay exponentially like the hydrogen radial wave
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function. For this reason we choose

u0 ≡ unjl(ro) = (−1)n−l−1e−ro , u1 ≡ unjl(ro − dr) = (−1)n−l−1e−(ro−dr). (A.7)

to be the initial points for the Numerov integration (see A.2.1). The radial spacing dr was varied
from a0 to a0/20 and finally fixed to dr = a0/10. The truncated wave function has to be normalized
after calculation such that

ro∫

ri

u2njl(r) = 1. (A.8)

It turns out that good values are ro = 2n(n + 15) and ri = 3
√
αc. Alternatively, the cutoff values

rc(l) of the polarization potential can be used as well, cf. Table 1.4. Finally, it is important to
note that the Numerov integration scheme does not provide any eigenenergies Enjl. These have to
be calculated using different methods or provided by experimental measurements. In this work we
have used experimental data provided by [127].

A.3 Finite difference method

In order to calculate the rovibrational wave function we will use the so called finite difference
method. In general, the finite-difference method is a numerical method for approximating the
solutions to differential equations using finite difference equations to approximate derivatives.

A.3.1 One-dimensional problems

First we consider one dimensional eigenvalue problems of kind

(
∂2

∂x2
+ V (x))f(x) = Ef(x). (A.9)

In case of the finite-difference method the basic idea is to express the second derivatives and the
potential V (x) on a grid and transfer the second order differential equation (A.9) into an algebraic
eigenvalue problem. In a first step the first derivative is expressed as

d

dx
f(x) ≈ f(x+ h)− f(x− h)

2h
. (A.10)

Obviously, there are different possibilities to approximate the first derivative:

- forward finite difference

d

dx
f(x) ≈ f(x+ h)− f(x)

h
,

- backward finite difference

d

dx
f(x) ≈ f(x)− f(x− h)

h
,

- central finite difference

d

dx
f(x) ≈ f(x+ h)− f(x− h)

2h
.
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Within this thesis we use the central finite difference scheme only. In case of the second derivative
representation one gets

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 + h)

h2
.

The accuracy of a grid representation can be increased by expressing the derivatives using a larger
number of grid points. For instance, the first derivative f ′(x0) can be expressed using the next to
next grid points x0 ± 2h as well

f ′(x0) =
1

h
(− 1

12
f(x0 + 2h) +

2

3
f(x0 + h)− 2

3
f(x0 − h) +

1

12
f(x0 − 2h))

f ′′(x0) =
1

h2
(− 1

12
f(x0 + 2h) +

4

3
f(x0 + h)− 5

2
f(x0) +

4

3
y(x0 − h) +

1

12
f(x0 − 2h))

In this case the actuary of the derivatives is of the order of h4. It is conventional to present the the
coefficients in front of the f(x0 ± nh) for the derivatives in a table as follows By representing the

Derivative Accuracy x0 − 2h x0 − h x0 x0 + h x0 + 2h

1 h2 0 −1/2 0 1/2 0

1 h4 1/12 −2/3 0 2/3 −1/12
2 h2 0 1 −2 1 0

2 h4 −1/12 4/3 −5/2 4/3 1/12

Table A.1: Central finite difference coefficients of for the first and second derivative up to an accuracy
of h2 and h4.

derivatives as finite differences we can now transfer the second order differential equation Eq. (A.9)
into an algebraic problem. Using the grid representation up to O(h2). Obviously, the expansion to
higher orders in h is straight forward. We obtain












2
h2 + V (x0) − 1

h2 0 · · · 0

− 1
h2

2
h2 + V (x1)

. . .
...

...

0
. . .

...
... · · · · · · . . . − 1

h2

0 · · · · · · − 1
h2

2
h2 + V (xn)












︸ ︷︷ ︸

≡M1











f(x0)
f(x1)

...

...
f(xn)











= E











f(x0)
f(x1)

...

...
f(xn)











. (A.11)

This is an eigenvalue problem where the Hamiltonian is represented by an (n + 1)2 dimensional
real and symmetric band structured matrix. Depending on the degree of accuracy k the number of
non zero bands is given with 2k+1. However, the structure of the Hamilton matrix remains simple
and the corresponding eigenvalue problem can easily be solved with standard numerical tools.

Finally we introduce a compact notation to represent band structured matrices in general. For
this purpose we label the n-th row of a matrix with negative integers −(n − 1) and the columns
with positive integers n− 1. In this case we write a general band structured matrix A that consists
of vectors a1, ...,an and b1, ...,bm with AN11 = [ak]1, A1M1 = [bk]1 respectively as

A ≡ band

[
an an−1 ... bm−1 bm

−Nn + 1 −Nn−1 + 1 ... Mm−1 − 1 Mm − 1

]

. (A.12)
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In this case the matrix M1 in Eq. (A.11) can be written as

M1 = band

[
h V1 h

−1 0 1

]

. (A.13)

with V1 = (2/h2 + V (x0), ..., 2/h
2 + V (xn))

T and h = (−1/h2, ...,−1/h2)T .

A.3.2 Multi-dimensional problems

In this paragraph we expand the concept of finite differences on multi-dimensional problems of kind




∑

ij

∂2

∂xi∂xj
+ V (x)



 f(x) = Ef(x). (A.14)

Because the following concepts can easily expanded to arbitrary dimensions we restrict our analysis
to the two dimensional case, e.g. f(x) = f(x, y). Analogous to the one-dimensional problem the
grid representation of the partial derivatives is given by

fx(x0, y0) =
f(x0 + hx, y0)− f(x0 − hx, y0)

2hx
, fy(x0, y0) =

f(x0, y0 + hy)− f(x0, y0 − hy)
2hy

,

fxx(x0, y0) =
f(x0 + hx, y0)− 2f(x0, y0) + f(x0 − hx, y0)

h2x
,

fyy(x0, y0) =
f(x0, y0 + hy)− 2f(x0, y0) + f(x0, y0 − hy)

h2y
,

fxy(x0, y0) =
1

4hxhy
(f(x0 + hx, y0 + hy)− f(x0 + hx, y0 − hy)

−f(x0 − hx, y0 + hy) + f(x0 − hx, y0 − hy)).

Again, these derivatives can be expanded to higher orders in hx and hy respectively. Analogous
to Section A.3.1 the differential equation (A.14) can be transferred into an eigenvalue problem. If
we restrict the degree of accuracy on O(h2) and assume all mixed partial derivatives to vanish we
get a matrix of order ((Nx + 1)(Ny + 1))2 where Nx, Ny are the number of grid points in the x
and y variable, respectively. The obtained real, symmetric and sparse matrix now contains of 2 off
diagonal bands with non zero elements.
Next we analyze the case when all mixed partial derivatives are zero.

M2













f(x0, y0)
f(x0, y1)

...

...
f(xnx , yny−1)
f(xnx , yny)













= E













f(x0, y0)
f(x0, y1)

...

...
f(xnx , yny−1)
f(xnx , yny)













,

where the matrix M2 is expressed as

M2 = band

[
hy hx V2 hx hy

−Ny + 1 −1 0 1 Ny − 1

]

(A.15)

with hx/y = (−1/h2x/y, ...,−1/h2x/y)T and V2 = ( 2
h2
x
+ 2

h2
y
+ V (x0, y0), ...,

2
h2
x
+ 2

h2
y
+ V (xNx , yNy))

T .





Appendix B

Auxiliary calculations

B.1 Atomic units

In atomic and molecular physics it is convenient to express the physical quantities in so-called
atomic units. There are two different kinds of atomic units, Hartree atomic units and Rydberg
atomic units, which differ in the choice of the unit of mass and charge. This thesis deals with
Hartree atomic units. The following four fundamental constants form the basis of the atomic units:

• electron mass me

• elementary charge e

• Bohr radius a0

• angular momentum ~.

Quantity Atomic unit SI unit CGS unit

mass me 9.10938215× 10−31 kg 9.10938215× 10−28 g
charge e 1.602176487× 10−19C 4.80267655× 10−10 Fr
length a0 5.2917720859× 10−11m 5.2917720859× 10−9 cm

angular momentum ~ 1.054571628× 10−34 Js 1.0545716× 10−27 ergs
energy Eh = ~

2/mea
2
0 4.35974394× 10−18 J 4.35974394× 10−11 erg

velocity vh = a0Eh/~ 2.1876912541× 106m/s 2.1876912541× 108 cm/s
momentum ~/a0 1.992851565× 10−24 kgm/s 1.992851565× 10−29 gcm/s

magnetic field strength ~/ea20 2.350517382× 105T 2.350517382× 109G
magnet field gradient ~/ea30 4.441834× 1015T/m 4.441834× 1017G/cm

magnetic dipole moment ~e/me 1.854801830× 10−23 J/T 1.854801830× 10−20 erg/G
electric dipole moment ea0 8.47835281× 10−30Cm 2.543630749× 10−18 Frcm

electric field Eh/ea0 5.14220632× 1011V/m 1.5416117× 1012 statV/cm
time ~/Eh 2.418884326505× 10−17 s 2.418884326505× 10−17 s

speed of light vh/α 2.99792458× 108m/s 2.99792458× 1010 cm/s

Table B.1: Various physical quantities expressed in atomic units, SI units and CGS units.

In Table B.1 we present some physical quantities expressed in atomic units. In addition, the
corresponding values in both SI units and CGS units are provided. We note that in case of the
electric dipole moment it is common to use the “Debye”1 as standard unit. Its relation to the other
units one Debye is given by

1Debye = 2.543630749ea0 = 10−18 Frcm = 3.33564× 10−30Cm. (B.1)

In the literature atomic units are often abbreviated “a.u.” or “au”, not to be confused with the
same abbreviation used also for astronomical units, arbitrary units, and absorbance units in different
contexts.
1In honor of the physicist and physical chemist Peter J. W. Debye (1884-1966).
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B.2 Derivation of the working Hamiltonian

In this section we derive the working Hamiltonian of diatomic Rydberg molecules in external fields.

B.2.1 Coordinate and momentum transformation

The transformation of the generalized coordinates and the Jacobi coordinates can be written as

(r,R,Rcm)
T = X(re, rc, rn)

T , X =





1 −1 0
0 −1 1
me
M

mc
M

mn
M



 (B.2)

The transformation matrix X is invertible which leads to

(re, rc, rn)
T = X−1(r,R,Rcm)

T , X−1 =





mc+mn
M −mn

M 1
−me

M −mn
M 1

−me
M

me+mc
M 1



 (B.3)

We define r = (re, rc, rn)
T and R = (r,R,Rcm)

T and write the last expression as

ri =
∑

k

(X−1)ikRk, ⇒ ∂ri
∂Rk

= (X−1)ik. (B.4)

This expression we can use to find the transformation relation between the conjugated momenta.
We define p = (pe,pc,pn)

T and P = (p,P ,P cm)
T and obtain

P i = −i
−→∇Ri

=
∑

k

∂rk
∂Ri

p
k
=
∑

k

(X−1)kipk =
∑

i

((X−1)T )ikpk. (B.5)

In matrix notation this reads

(p,P ,P cm)
T = (X−1)T (pe,pc,pn)

T , (B.6)

with

(X−1)T =





mc+mn
M −me

M −me
M

−mn
M −mn

M
me+mc

M
1 1 1



 . (B.7)

B.2.2 Hamiltonian algebra

Next we derive the working Hamiltonian. As the results will not depend on the specific gauge [79]
we chose the symmetric gauge with A = (B × r)/2. In relative coordinates the pseudomomentum
K̂ is given by

K̂ = P cm −
1

2
(B × r). (B.8)

Hmol =
1

2me
(
me

MP cm + p+
1

2
B × (Rcm +

mn +mc

M r +
mn

MR))2

+
1

2mc
(
mc

MP cm − p− P −
1

2
B × (Rcm −

me

Mr − mn

MR))2 +
1

2mn
(
mn

MP cm + P )2

+Vec(r) + Vcn(r,R) + Vcn(R)

≡ Tmol +E · r + Vec(r) + Vcn(r,R) + Vcn(R). (B.9)
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Here we have introduced to kinetic energy operator Tmol. Next we transform the molecular wave
function Ψmol via a unitary transformation U :

Ψmol(x) = U(r,Rcm)ψmol(r,R) with U(r,Rcm) = exp{i(K +
1

2
B × r) ·Rcm}

Obviously the unitary transformation U commutes with the potentials in the molecular Hamiltonian
in Eq. B.9. For this reason only the transformation of the kinetic energy operator has to be
considered. We define

T = U−1TtotU (B.10)

and use

U−1pU = p− 1

2
B ×Rcm, U−1PU = P , U−1P cmU = P cm +K +

1

2
B × r.

By construction Rcm is eliminated from the the Hamiltonian, which means it is unnecessary to
keep the momentum operator P cm. We get

T =
1

2me
(
me

MK + p+
1

2
B × (r − mn

MR))2 +
1

2mn
(
mn

MK + P +
mn

2MB × r)2

+
1

2mc
(
mc

MK − p− P +
1

2
B × (

me +mc

M r +
mn

MR))2

=
me

2M2
K2 +

K

M(p+
1

2
B × (r − mn

MR)) +
1

2me
(p+

1

2
B × (r − mn

MR))2

+
mc

2M2
K2 − KM(p+ P − 1

2
B × (

me +mc

M r +
mn

MR))

+
1

2mc
(p+ P − 1

2
B × (

me +mc

M r +
mn

MR))2 +
mn

2M2
K2

+
K

M(P +
mn

2MB × r) + 1

2mn
(P +

mn

2MB × r)2

=
K2

2M +
K

2M(B × (r − mn

MR+
mc +me

M r +
mn

M r +
mn

MR))

+
1

2me
(p+

1

2
B × (r − mn

MR))2 +
1

2mn
(P +

mn

2MB × r)2

+
1

2mc
(p+ P − 1

2
B × (

mn +mc

M r +
mn

MR))2

=
K2

2M +
K

M(B × r) + 1

2M(B × r)2 − 1

2M(B × r)2

+
1

2me
(p+

1

2
B × (r − mn

MR))2 +
1

2mn
(P +

mn

2MB × r)2

+
1

2mc
(p+ P − 1

2
B × (

me +mc

M r +
mn

M
R))2

=
1

2M(K +B × r)2 − 1

M(B × r)2 + 1

2M(B × r)2

+
1

2me
(p+

1

2
B × (r − mn

MR))2 +
1

2mn
(P +

mn

2MB × r)2

+
1

2mc
(p+ P − 1

2
B × ((1− mn

M )r +
mn

MR))2
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=
1

2M(K +B × r)2 + 1

2mc
(p+ P − 1

2
B × ((1− mn

M )r +
mn

MR))2

+
1

2me
(p+

1

2
B × (r − mn

MR))2 +
1

2mn
(P +

mn

2MB × r)2

+(p+ P +
1

2
(B × mn

M r)− 1

2
(B × mn

MR)− 1

2
B × r)( 1

MB × r)

−(p+
1

2
B × (r − mn

MR) + P +
1

2
(B × mn

M r))(
1

MB × r)

+
me +mn +mc

2M2
(B × r)2

=
1

2me
((p+

1

2
B × (r − mn

MR))2 − 2
me

M (p+
1

2
B × (r − mn

MR))(B × r)

+
m2

e

M2
(B × r)2) + 1

2M(K +B × r)2

+
1

2mc
((p+ P − 1

2
B × ((1− mn

M )r +
mn

MR))2

+2
mc

M (p+ P − 1

2
B × ((1− mn

M )r +
mn

MR)(B × r) + m2
c

M2
(B × r)2)

+
1

2mn
((P +

mn

2MB × r)2 − 2
mn

M (P +
mn

2MB × r)(B × r)

+
m2

n

M2
(B × r)2)

=
1

2M(K +B × r)2 + 1

2me
(p+

1

2
B × r − 1

2
B × (

me

Mr +
mn

MR))2

+
1

2mc
((p+ P − 1

2
B × ((1− mn

M − mc

M )r +
mn

MR))2

+
1

2mn
(P − 1

2MB × r)2

We neglect all terms ∼ B/M and momentum polarization terms

T ≈ K2

2M +
1

2me
(p+

1

2
B × r)2 + 1

2
(
1

mc
+

1

mn
)P 2 +

1

2mc
(p− 1

2
B × r))2

=
1

2
(
1

mc
+

1

me
)p21 + (

1

me
− 1

mc
)p(B × r) + 1

2
(
1

mc
+

1

mn
)(B × r)2

+
1

2
(
1

mc
+

1

mn
)P 2.

We introduce the masses µ and M as well as the charge q

µ =
memc

me +mc
, M =

mnmc

mc +mn
, q =

me −mc

mc +me
.

In this case we obtain the transformed the kinetic energy operator

T =
K2

2M +
P 2

2M
+

1

2µ
(p− q

2
B × r)2. (B.11)

Finally, use µ ≈ me, M ≈ mn/2 and q ≈ −1. In this case the transformed molecular Hamiltonian
H reads

H =
K2

2M +
P 2

mn
+

1

2me
(p+

1

2
B × r)2 +E · r + Vec(r) + Vcn(r,R) + Vcn(R). (B.12)
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B.3 Hydrogenic giant dipole states

The Hamiltonian of a neutral two body system in homogeneous and static electric and magnetic
field reads

H =
1

2me
(p1 +

1

2
B × re)2 +E · re +

1

2mp
(p2 −

1

2
B × rp)2 −E · rp + V (re − rp)

Similar to the three-particles problem in Section B.2.2 we introduce the center of mass coordinate
R and the relative vector r

R =
1

M
(mere +mprp), M = me +mp, r = re − rp. (B.13)

Analogous to the previous section this system possesses a pseudomomentum K̂ with

K̂ = P − 1

2
B × r (B.14)

which is a conserved quantity. The quantities P and p are the conjugated momenta to the coordi-
natesR and r respectively. Again we eliminate the total momenta P via the unitary transformation

Ψ(R, r) = U(R, r)ψ(r), U(R, r) = exp

(

iK ·R+ i
1

2
(B × r) ·R

)

. (B.15)

and we get the following transformed Hamiltonian

H =
1

2µ

(

p− q

2
A(r)

)2
+

1

2M
(K +B × r)2 +E · r + V (r) (B.16)

We have defined the effective mass µ = memp/(me +mp) and q = (me −mp)/(me +mp). This is
an effective one-particle Hamiltonian for the internal motion of the two-particle system. It depends
only on the operators p, r of the relative coordinates and momenta but is linked to the center of
mass motion via the eigenvalue K of the pseudomomentum. The external electric field can by
absorbed be shifting the vector of the eigenvalues K → K −M E×B

B2 . Neglecting an unimportant
constant we obtain

H =
1

2µ

(

p− q

2
A(r)

)2
+

1

2M
(K +B × r)2 − 1

r
≡ 1

2µ

(

p− q

2
A(r)

)2
+ VGD(r) (B.17)

The potential VGD(r) is called giant dipole potential. Since all components of K parallel to B
result in an energy shift only [79] we chose B = Bez K = Key. This gives

VGD(r) =
1

2M
(K +B × r)2 − 1

r
=
K2

2M
+
B2

2M
(x2 + y2) +

BK

M
x− 1

r
. (B.18)

The giant dipole potential possesses a outer well at x0 < 0, y0 = 0, z0 = 0 which is determined by
the cubic equation

x30 +
K

M
x20 −

M

B2
= 0. (B.19)

The outer well only exist if K3 > 27BM/4 [79]. In the case the potential minimum exists the giant
dipole potential can be approximated by a three-dimensional harmonic potential VGD(r) ≈ Vh(r)
with

Vh(r) =
µ

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (B.20)
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and

ωx =

√
√
√
√ 2

µ

√

B2

2M
+

1

x30
, ωy =

√
√
√
√ 1

µ

√

B2

2M
− 1

x30
, ωz =

√

− 1

µx30
. (B.21)

The resulting Hamiltonian HGD is given by

HGD =
1

2µ

(

p− q

2
A(r)

)2
+
µ

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(B.22)

and just reflects a particle of charge q and mass µ is an three-dimensional harmonic potential.
The harmonic potential provided bound states which are characterized by a large electron-proton
separation. As these states possess a large permanent dipole moment these states are called giant
dipole states.

B.4 Finite difference representation

To derive the finite difference representation for an arbitrary derivative and accuracy we start with
the Taylor expansion of a function f(x) around an arbitrary point xi

f(x) =

∞∑

i=0

f (n)(xi)

n!
(x− xi)n. (B.23)

f(xi ±mh) =
∞∑

n=0

(±)n f
(n)(xi)

n!
(mh)n.

First we derive the first the finite difference representation for the first derivative in lowest order.
We make the ansatz

f ′(xi) =
α1f(xi + h) + α0f(xi) + α−1f(xi − h)

h

and insert equation (B.24)

α1(f(xi) + hf ′(xi)) + α0f(xi) + α−1(f(xi)− hf ′(xi))
h

(B.24)

⇒ α1 + α0 + α−1 = 0 ∧ α1 − α−1 = 1. (B.25)

We get α0 = 0, α1 = −α−1 = 1/2. The truncation error is given with

1

2h
(f(xi + h)− f(xi − h))− f ′(xi) =

∞∑

n=1

f (2n)

(2n)!
h2n (B.26)

We see that the truncation error is of order O(h2).
Next we derive the equations to represent an arbitrary derivative f (n)(xi), n ∈ N up to an arbitrary
order accuracy. We start by expressing f (n)(xi) via N neighbored points around xi.

f (n)(xi) =
N∑

m=−N

αmf(xi +mh)

hn
=

∞∑

l=0

f (l)(xi)

l!
hl−n

N∑

m=−N

αmm
l. (B.27)
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Obviously, the coefficients αm have to satisfy the relation

N∑

m=−N

αmm
l = n!δnl, l = 0, ..., 2N. (B.28)

In this case the first non zero term on the right hand side of Eq. (B.27) is the desired derivative
f (n)(xi). From equation (B.28) we can derive the following relations of the coefficients αm

N∑

m=−N

αmm
n−1 =

N∑

m=1

(α−m(−1)n−1 + αm)mn−1 = 0⇒ α−m = (−1)nαm, (B.29)

and from l = 0 we get

N∑

m=−N

αm = 0. (B.30)

Next we assume l = 2N + k to be the first non vanishing term in (B.27) it is

N∑

m=−N

αmm
2N+k =

N∑

m=1

((−1)k+n + 1)αmm
2N+k = 0⇔ n+ k odd. (B.31)

Then we get

N∑

m=−N

αmf(xi +mh)

hn
= f (n)(xi) +O(h2N+k−n) (B.32)

Because k − n is even the order of the truncation error is always O(h2L), L ∈ N. Obviously
K = 1 + δn,even which gives the connection between the number of chosen points N and the order
of accuracy 2L that we get for the finite difference calculation of a specific derivative f (n)(xi)

N =
2L− 1 + n+ δn,even

2
. (B.33)

B.5 Field-free Hamiltonian

B.5.1 Rotational symmetry properties

In this paragraph we prove some symmetry properties of the adiabatic potential curves for the
field free Hamiltonian. For this we define the total angular momentum L = Lr + LR and use the
quantum mechanical rotation of an arbitrary angle

exp(iLϕ)Ψ(r,R) = Ψ(r′,R′)

We get for a general electronic Born-Oppenheimer Schrödinger equation

Hel(r;R)Ψ(r;R) = ε(R)Ψ(r;R)

⇒ exp(iLϕ)Hel(r;R)Ψ(r;R) = exp(iLϕ)ε(R)Ψ(r;R)

⇒ Hel(r
′;R′)Ψ(r′;R′) = ε(R′)Ψ(r′;R′)
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If [Hel(r;R),L] = [Hel(r;R), exp(iLϕ)] = 0 we have Hel(r
′;R′) = Hel(r;R) and Ψ(r′;R′) =

aMΨ(r;R), a ∈ C, |a| = 1. In this case we ge the following result:

aHel(r;R)Ψ(r;R) = aε(R′)Ψ(r;R)

⇒ ε(R′) = ε(R).

We see that for every electronic Hamiltonian Hel which fulfills [Hel(r;R),L] = 0 the adiabatic
potential surfaces ε(R) only depend on the radial distance R = |R|.

[Hel(r;R),L] = 0 ⇒ ε(R) = ε(R). (B.34)

B.5.2 P-wave function symmetry properties

Fl,−m(θ) =
1

2

√

2l + 1

4π

(l +m)!

(l −m)!
(Pl,−m+1(cos(θ))− (l −m)(l +m+ 1)Pl,−(m+1)(cos(θ)))

=
1

2

√

2l + 1

4π

(l +m)!

(l −m)!
(Pl,−(m−1) − (l −m)(l +m+ 1)(−1)m+1

(l −m)!

(l +m)!
Pl,m+1(cos(θ))

=
1

2

√

2l + 1

4π

(l +m)!

(l −m)!
((−1)m+1 (l − (m− 1))!

(l +m− 1)!
Pl,m−1(cos(θ))

−(−1)m+1 (l −m)!

(l +m)!
Pl,m+1(cos(θ)))

=
(−1)m

2

√

2l + 1

4π

(l +m)!

(l −m)!
(
(l −m)!

(l +m)!
Pl,m+1(cos(θ))−

(l −m+ 1)!

(l +m− 1)!
Pl,m−1(cos(θ)))

=
(−1)m

2

√

2l + 1

4π

(l −m)!

(l +m)!
(Pl,m+1(cos(θ))− (l −m+ 1)(l +m)Pl,m−1(cos(θ)))

= (−1)mFlm(θ),

Hl,−m(θ) = −1

2

√

2l + 1

4π

(l +m)!

(l −m)!
(Pl+1,−m+1(cos(θ))

+(l +m+ 1)(l +m+ 2)Pl+1,−(m+1)(cos(θ)))

= −1

2

√

2l + 1

4π

(l +m)!

(l −m)!
((−1)m+1 (l −m+ 2)!

(l +m)!
Pl+1,m−1(cos(θ))

+(l +m+ 1)(l +m+ 2)
(l −m)!

(l +m+ 2)!
Pl+1,m+1(cos(θ)))

= (−1)m+1(−1

2
)

√

2l + 1

4π

(l −m)!

(l +m)!
(Pl+1,m+1(cos(θ))

+(l −m+ 1)(l −m+ 2)Pl+1,m−1(cos(θ)))

= (−1)m+1Hlm(θ).
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Proof of commutator p-wave matrices commutator relations:

〈l′1|V p2
en V

p3
en |l′′ ± 1〉 =

∑

l,m=±1

〈l′1|V p2
en |lm〉〈lm|V p3

en |l′′ ± 1〉

=
∑

l

〈l′1|V p2
en |l,−1〉〈l,−1|V p3

en |l′′ ± 1〉+ 〈l′1|V p2
en |l1〉〈l1|V p3

en |l′′ ± 1〉

=
∑

l

−〈l′1|V p2
en |l1〉〈l, 1|V p3

en |l′′1〉+ 〈l′1|V p2
en |l1〉〈l1|V p3

en |l′′1〉 = 0.

⇒ V p2
en V

p3
en = 0 ⇒ [V p2

en , V
p3
en ] = 0.

B.6 Separable matrices

Because the interaction terms V pi
en , i = {1, 2, 3} (see Eq. 4.28) can be represented by separable

matrices we provide and prove some of their properties. We start with the definition:

B.6.1 General properties

Definition B.1 Separable Matrix
A m× n C-matrix M is called a separable matrix if it can be expressed as

M = v ∗w†, v = (v1, ..., vm)T ∈ C
m×1, w = (w1, ..., wn)

T ∈ C
n×1.

In this equation ∗ indicates the standard matrix multiplication and w† ≡ (w∗)T . Next we consider
the case v = w ∈ C

n×1 and v,w 6= 0.

Lemma B.1 Let M be a separable m× n C-matrix with M 6= 0. Then it is

rank(M) = 1.

Proof: Because of M 6= 0 and M = v ∗w† we have rank(M) > 0 and v,w 6= 0. Then we get

rank(M) = rank(v ∗w†) ≤ min{rank(v)
︸ ︷︷ ︸

=1

, rank(w†)
︸ ︷︷ ︸

=1

} = 1.

From 0 < rank(M) ≤ 1 it follows rank(M) = 1. q.e.d.

Lemma B.2 Let M be a separable n× n C-matrix. Then it is

det(M) = 0.

Proof: We use Def. B.1 and rewrite it in the following way:

M = v ∗w† = v ∗ (1† ∗ 1) ∗w† = (v ∗ 1†) ∗ (1 ∗w†) = (v ∗ 1†) ∗ (w ∗ 1†)† ≡ V ∗W †.

The matrix V is given with

V = v ∗ 1† =







...
...

...
v 0 0 0

...
...

...






, W = w ∗ 1† =







...
...

...
w 0 0 0

...
...

...






, ⇒ det(V ) = det(W ) = 0.
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This immediately leads to

det(M) = (VW †) = det(V )
︸ ︷︷ ︸

=0

· det(W †)
︸ ︷︷ ︸

=0

= 0.

q.e.d.

Lemma B.3 LetM = v∗w† be a separable n×n C-matrix. In this caseM has a single eigenvalue
ε with

ε =
∑

i

w∗
i vi

and v being the corresponding eigenvector.

Proof: From Lemma B.1 and B.2 that there can only be one nonzero eigenvalue ε. In order to
find this we multiply M with the vector v

M ∗ v = (v ∗w†) ∗ v = v ∗ (w† ∗ v) = (
∑

i

w∗
i vi)v ≡ εv.

q.e.d.

Obviously, in case v = w the separable matrix M possesses a single nonzero eigenvalue with
ε =

∑

i |vi|2.

B.6.2 Rank of separable matrices

Lemma B.4 Let A1, ..., AN separable n × n C-matrices. Then the rank of the matrix
∑

mAm is
given by

rank

(
N∑

m=1

Am

)

≤ N. (B.35)

Proof:

rank

(
N∑

m=1

Am

)

≤
N∑

m=1

rank (Am)
︸ ︷︷ ︸

=1

= N. (B.36)

Because a unitary transformation does not change the rank of a matrix, the rank of a matrix is
equal to the number of nonzero eigenvalues. For this reason and Lemma B.4 the maximal number
of nonzero eigenvalues of

∑

mAm is given by min(n,N).

B.7 Nonadiabatic coupling terms

We analyze the nonadiabatic coupling terms in Eq. (3.11). Using

Tn =

Nn∑

j=1

1

2Mj
P 2

j = −
Nn∑

j=1

1

2Mj
∆Rj (B.37)
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we get

Λjiφi(R) = 〈ψj(R)|Tn(φi(R)|ψi(R)〉r)− δjiTnφi(R)

= −
Nn∑

k=1

1

2Mk
(

∫

drψ∗
j (r,R)∆Rj (φi(R)ψi(r,R))− δjiTnφi(R). (B.38)

Because

∆Rk
(φi(R)ψi(r,R)) = ∆Rk

φi(R) + 2
−→∇Rk

φi(R)
−→∇Rk

ψi(r,R) + φi(R)∆Rk
ψi(r,R)

we get

Λji = −
Nn∑

k=1

1

2Mk
(2〈ψj(R)|−→∇Rk

|ψi(R)〉r
−→∇Rk

+ 〈ψj(R)|∆Rk
|ψi(R)〉r). (B.39)

Using the expression Eq. (B.37) we can rewrite the kinetic energy operator of the nuclei as follows

−
Nn∑

k=1

1

2Mk
(∆Rj + 2〈ψj(R)|−→∇Rk

|ψi(R)〉r
−→∇Rk

+ 〈ψj(R)|−→∇Rk
|ψi(R)〉2r) (B.40)

= −
Nn∑

k=1

1

2Mk
(
−→∇Rk

+ 〈ψj(R)|−→∇Rk
|ψi(R)〉r)2. (B.41)

The novel term appearing in the gradient of the nuclei degrees of freedom is called derivatives
coupling terms. It couples the nuclei wave functions via the interaction with the electrons. Next we
formulate a matrix expression of the nuclei Schrödinger equation. For this we introduce a matrix
operator ∇+ F with

(∇+ F )ij = −
∑

k

1

2Mk
(
−→∇Rk

δij + (Fk)ij) and (Fk)ij = 〈ψi(R)|−→∇Rk
|ψj(R)〉r. (B.42)

We emphasize that the elements of a single matrix Fk are vectors, namely the previously defined
derivative coupling terms. We also define a diagonal matrix (Vadia(R))ij ≡ (ǫi(R)+Vnn(R))δij and
a vector that contains the nuclei wave functions (φ(R))i = φi(R). Now the Schrödinger equation
for the nuclei dynamics can be written in a compact form

[(∇+ F )2 + Vadia(R)]φ(R) = Eφ(R). (B.43)

Finally we analyze the coupling terms in more detail:

j = i :

Λii = −
Nn∑

k=1

1

2Mk
(2〈ψi(R)|−→∇Rk

|ψi(R)〉r
−→∇Rk

+ 〈ψi(R)|∆Rk
|ψi(R)〉r). (B.44)

If we assume the electronic wave functions to be real the first terms vanishes and we get

Λii =

Nn∑

k=1

1

2Mk

∫

dr(
−→∇Rk

ψi(r,R))2. (B.45)

j 6= i :
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We use Hel|ψi(R)〉 = εi(R)|ψi(R)〉 to rewrite the first term in Eq. (B.39):

〈ψj(R)|−→∇Rk
(Hel|ψi(R)〉r) = 〈ψj(R)|−→∇Rk

(εi(R)|ψi(R)〉r)

⇒ 〈ψj(R)|−→∇Rk
|ψi(R)〉r =

〈ψj(R)|(−→∇Rk
Hel)|ψi(R)〉r

ǫi(R)− ǫj(R)
for ǫi(R) 6= ǫj(R) (B.46)

We receive the important result that in case the Born-Oppenheimer potential surfaces approach
each other the nonadiabatic coupling terms provide a major contribution. In case ǫi(R) = ǫj(R)
these terms diverge and the Born-Oppenheimer approximation is illdefined.

B.8 Matrix elements of hydrogen states

〈nlm|r|n′l′m′〉 = 〈nlm|rr̂|n′l′m′〉 = 〈nlm|xex + yey + zez|n′l′m′〉

x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ)

ψnlm(r) = Rnl(r)Ylm(θ, φ), 〈nlm|rr̂|n′l′m′〉 = 〈nl|r|n′l′〉r〈ml|r̂|l′m′〉Ω

〈nl|r|n′l′〉r =
∞∫

0

drr2Rnl(r)Rn′l′(r), 〈lm|r̂|l′m′〉Ω =

2π∫

0

1∫

−1

dφd cos(θ)Y ∗
lm(θ, φ)r̂Yl′m′(θ, φ)

B.8.1 Angular matrix elements

To calculate angular matrix elements we use the following integral theorem of spherical harmonic
functions

∫

dΩYl1me(Ω)Yl2mp(Ω)Yl3m3(Ω) =

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
me mp m3

)

.

where the bracket terms are Wigner 3j-symbols [118]. The general form of an angular matrix
element is

〈l′m′|f(θ, φ)|lm〉 =
∫

dΩY ∗
l′m′(Ω)f(θ, φ)Ylm(Ω),

Dependent of the electric or magnetic field terms we have the following angular dependent functions
f(θ, φ).
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Stark term

In case of the Stark term we have the following matrix elements

cos(θ) =

√

4π

3
Y10(Ω)

⇒ 〈l′m′| cos(θ)|lm〉 =

√

(l< +m+ 1)(l< −m+ 1)

(2l< + 1)(2l< + 3)
δl′,l±1δm′m,

sin(θ) cos(φ) =

√

2π

3
(Y−10(Ω)− Y10(Ω))

⇒ 〈l′m′| sin(θ) cos(φ)|lm〉 =
1

2
[

√

(l −m)(l −m− 1)

4l2 − 1
δl′,l−1δm′,m+1

−
√

(l +m)(l +m− 1)

4l2 − 1
δl′,l−1δm′,m−1

+

√

(2l + 1)(l +m+ 2)

(2l + 3)(l +m+ 1)
(
l −m
2l + 1

− 1)δl′,l+1δm′,m+1

−
√

(2l + 1)(l −m+ 2)

(2l + 3)(l −m+ 1)
(
l +m

2l + 1
− 1)δl′,l+1δm′,m−1],

sin(θ) sin(φ) = i

√

2π

3
(Y10(Ω) + Y−10(Ω))

⇒ 〈l′m′| sin(θ) sin(φ)|lm〉 =
1

2i
[

√

(l −m)(l −m− 1)

4l2 − 1
δl′,l−1δm′,m+1

+

√

(l +m)(l +m− 1)

4l2 − 1
δl′,l−1δm′,m−1

+

√

(2l + 1)(l +m+ 2)

(2l + 3)(l +m+ 1)
(
l −m
2l + 1

− 1)δl′,l+1δm′,m+1

+

√

(2l + 1)(l −m+ 2)

(2l + 3)(l −m+ 1)
(
l +m

2l + 1
− 1)δl′,l+1δm′,m−1].

Diamagnetic term

sin(θ)2 =
2

3

√
4πY00(Ω)−

2

3

√

4π

5
Y20(Ω)

⇒ 〈l′m′| sin(θ)2|lm〉 = 2
l2 + l − 1 +m2

(2l + 3)(2l − 1)
δl′l −

√

((l< + 2)2 −m2)((l< + 1)2 −m2)

(2l< + 5)(2l< + 3)2(2l< + 1)
δl′,l±2.

B.8.2 Radial matrix elements

Rnl(r) =
2

n2

√

(n− l − 1)!

(n+ l)!
e−

r
n (

2r

n
)lL2l+1

n−l−1(
2r

n
),

L2l+1
n−l−1(

2r

n
) =

n−l−1∑

m=0

(
n+ l

n− l − 1−m

)
(−2)m
m!nm

rm
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〈nl|rj |n′l′〉 = 4
2l+l′

nl+2n′l′+2

√

(n− l − 1)!(n− l − 1)!

(n+ l)!(n′ + l′)!

×
∞∫

0

dr(rj+2+l+l′e−r n+n′

nn′ L2l′+1
n′−l′−1(

2r

n′
)L2l+1

n−l−1(
2r

n
)

L2l+1
n−l−1(

2r

n
)L2l′+1

n′−l′−1(
2r

n′
) =

n−l−1∑

m=0

n′−l′−1∑

m′=0

(−2)m+m′

m!m′!nmn′m′

(
n+ l

n− l − 1−m

)

×
(

n′ + l′

n′ − l′ − 1−m′

)

rm+m′

∞∫

0

drrj+m+m′+l+l′+2e−r n+n′

nn′ =
(j +m+m′ + l + l′ + 2)!

(n+n′

nn′ )j+3+l+l′+m+m′

〈nl|rj |n′l′〉 = 4
2l+l′

nl+2n′l′+2

√

(n− l − 1)!(n− l − 1)!

(n+ l)!(n′ + l′)!

×
n−l−1∑

m=0

n′−l′−1∑

m′=0

(−2)m+m′

m!m′!nmn′m′

(
n+ l

n− l − 1−m

)

×
(

n′ + l′

n′ − l′ − 1−m′

)
(j +m+m′ + l + l′ + 2)!

(n+n′

nn′ )j+3+l+l′+m+m′

B.9 Additional notes

B.9.1 Elimination of single derivative terms

In this paragraph we consider the N -dimensional (N ∈ N) linear differential equation in second
order

(∆− V (r) + ε)ψ(r) = 0, (B.47)

with r = ||r||, r ∈ R
N . Due to the rotational symmetry we express the Laplace operator ∆ in

N -dimensional spherical coordinates

∆ = ∂2r +
N − 1

r
∂r +

1

r2
∆SN−1 . (B.48)

Here ∆SN−1 denotes the Laplace-Beltrami operator defined on the N − 2 dimensional unit sphere.
We choose the ansatz

ψ(r) =
R(r)

rk
Ylk(Θ) (B.49)

where Ylk denote the eigenfunctions of the Laplace-Beltrami operator with

∆SN−1Ylk(Θ) = −l(l +N − 2)Ylk(Θ), l ∈ N0. (B.50)
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We calculate the first and second derivatives of of the wave function ψ(r) with respect to the radial
coordinate r

∂r
R(r)

rk
=
R

′
(r)

rk
− kR(r)

rk+1
, ∂2r

R(r)

rk
=
R

′′
(r)

rk
− 2k

R
′
(r)

rk+1
+ k(k + 1)

R(r)

rk+2
. (B.51)

We insert this expression into Eq. (B.48) and get

R
′′
(r)

rk
+ (N − 1− 2k)

R
′
(r)

rk+1
+ (k2 − l(l +N − 2))

R(r)

rk+2
.

We see that by choosing k = (N − 1)/2 we get rid of the term containing the first derivative. In
this case the Schrödinger equation (B.47) becomes a one-dimemsional problem

(∂2r − (
(l − 1 +N/2)2 − 1/4

r2
+ V (r))

︸ ︷︷ ︸

Veff(r)

+ε)R(r) = 0.

with an effective potential Veff(r). We get for the normalization of the wave function ψ(r)

∫

dr|ψ(r)|2 =
∞∫

0

drR2(r)

∫

dΩY (Θ) = 1. (B.52)

By introducing

δN,even/odd =

{

1, if N is even/odd

0, otherwise

and using N = 2n+ δN,odd, n ∈ N we can rewrite the first term of Veff(r) in the following way

(j +
δN,odd

2 )2 − 1
4

r2
≡ lN (lN + 1)

r2

with lN = j − δN,even

2 , j ∈ N0. We see that the analysis of an arbitrary N -dimensional problem
is equivalent to the N = 2/3-dimensional problem, depending on if N is even/odd. The problems
just differ in the specific value of k. Finally, we assume that limr→0 r

2V (r) < ∞. In this case we
get for the radial wave function R(r) for r → 0

- lN = −1
2

R(r) = r
1
2 (A+B ln(x)) (B.53)

To fulfill the normalization condition (B.52) we only keep the first term, this means

R(r) = Ar
1
2 .

- lN ≥ 0

R(r) = ArlN+1 +Br−lN . (B.54)

We obtain

R(r) = ArlN+1 (B.55)
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due to the normalization condition (B.52).

In summary we get

R(r) ∼ rlN+1 ∀ lN . (B.56)

B.9.2 The radial shifted harmonic oscillator in two and three dimensions

We consider a single particle in a cylindrical symmetric potential of s radial shifted harmonic
oscillator in two and three dimensions, respectively. The Hamiltonian for this system is given by

H =
p2

2m
+
m

2
ω2(r − r0)2, r0 ≥ 0. (B.57)

We introduce x =
√
mωr, a =

√
mωr0, ε = E/ω and choose ψ(r) = (R(x)/x(N−1)/2)Ylm(Θ) as an

ansatz for the wave function. This gives the following differential equation for R(x):

(

∂2x −
lN (lN + 1)

x2
− (x− a)2 + 2ε

)

R(x) = 0. (B.58)

We analyze the asymptotic behavior of R(x).

x → 0 :

(

∂x −
lN (lN + 1)

x2

)

R(x) = 0, → R(x) ∼ xlN+1 (B.59)

x → ∞ :
(
∂x − (x− a)2

)
R(x) = 0, → R(x) ∼ exp

(

−1

2
(x− a)2

)

(B.60)

This leads to the ansatz

R(x) = xlN+1 exp

(

−1

2
(x− a)2

)

f(x) (B.61)

This leads to the following differential equation for f(x):

∂2xf(x) + 2

(
1 + lN − (−ax)− x2

x

)

∂xf(x) +

(

2ε− 2− 2lN + 1− (−2a)1 + lN
x

)

f(x) = 0.(B.62)

This equation is the canonical form of the biconfluent Heun differential equation [1, 1, 14] (BCH),
the suitable solution is defined as

HeunB(α, β, γ, δ;x) =
2∑

k=0

Ak(α, β, γ, δ)

(1 + α)kk!
xk (B.63)

with (1 + α)k ≡ Γ(1 + α+ k)/Γ(1 + α). In this case we have

α = 2lN + 1, , β = −2a, , γ = 2ε, δ = 0. (B.64)

The coefficients Ak are given by the following recurrence relation (k ≥ 0):

Ak+2 + 2aAk+1(k + 2 + lN ) + 2Ak(ε−
3

2
− lN − k)(k + 1)(k + 2(1 + lN )) = 0 (B.65)

with A0 ∈ R, A1 = −2aA0(1 + lN ). The factor A0 are determined by the normalization condition.
The BCH-equation possesses admits polynominal solutions of order n (i.e. An 6= 0) if the coefficients
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following two coefficients vanish (i.e. An+2 = An+1 = 0). This means

−An+2 = 2aAn+1(n+ 2 + lN ) + 2An(ε−
3

2
− lN − n)(n+ 1)(n+ 2(lN + 1)) = 0

∧ −An+1 = 2aAn(n+ 1 + lN ) + 2nAn−1(ε−
1

2
− lN − n)(n+ 1)(n+ 2lN + 1) = 0,

which leads to

An(ε− 2(lN + 1)− n)(n+ 1)(n+ 2(lN + 1)) = 0

∧aAn(n+
3

2
+ lN ) + nAn−1(ε− lN −

1

2
− n)(n+ 2lN + 1) = 0.

Because An 6= 0 we obtain the following two conditions

εnlN = n+ lN +
3

2
∧ aAn(n+

3

2
+ lN ) + nAn−1(2 + 2lN + 1) = 0. (B.66)

Constructing the coefficients An and An−1 by Eq. (B.66) this relation gives a polynom of order
n+ 1 in the quantity a. This means that polynominal solutions are only provided in the case that
the radial separation a fullfils Eq. (B.66). This facts simply reflects the fact that this problem
belongs to a certain class of mathematical problem, so called quasi-exactly solvable problems. The
corresponding differential equations are characterized by the fact that they cannot be transformed
into a differential equation that has a polynominal solution [259–267].

B.9.3 Three-state model eigenvalues

det









α1 − ǫ g1 g2
g1 α2 − ǫ g3
g2 g3 α3 − ǫ









= ǫ3 − ǫ2(α1 + α2 + α3) + ǫ(α1α2 + α1α3 + α2α3 − g21 − g22 − g23)
+α1g

2
3 + α2g

2
1 + α2g

2
2 + 2g1g2g3 − α1α2α3

≡ ǫ3 − bǫ2 + cε+ d.

We define ∆ = 18bcd− 4b3d+ b2c− 4c3 − 27d2, ∆1 = 2b3 − 9bc+ 27d and

C =
3

√

∆1 +
√
27∆, u1 = 1, u2 =

−1 + i
√
3

2
, u3 =

−1− i
√
3

2
. (B.67)

The eigenvlaues ǫk are given by

ǫk = −1

3
(b+ 2Re (ukC)) , k = 1, 2, 3. (B.68)
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Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture, Phys. Rev.
A (Atomic, Mol. Opt. Physics) 79, 42718 (2009).



150 Bibliography
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