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Chapter 1

INTRODUCTION

About 75 percent of our planet’s surface is covered with water. The oceans play
a central role in the global climate system and are an important factor in many
economical fields.

The processes taking place in the oceans are driven by external forces such as the
earth and moon gravity, the surface wind field or the solar radiation, and cover a wide
range of spatial and temporal scales from several hundred years of the thermohaline
circulation to periods in the order of milliseconds of acoustic waves. The understand-
ing, the modelling and the forecast of these processes has taken a fast development,
in particular with the advent of supercomputers, which allow numerical simulations
with increasing resolution in time and space.

Due to the relatively small amount of in situ data available for the global oceans
remote sensing techniques play an important role in oceanography. Although airborne
and spaceborne sensors are restricted to measurement of geophysical variables of the
sea surface, like sea surface temperature, sea surface elevation or surface currents,
they help to understand processes like El Niño.

The present study is concerned with remote sensing of ocean surface gravity waves,
which are the most visible manifestation of ocean dynamics on the fast time scale.
Ocean waves play an obvious role for coastal regions, shipping and off-shore industry
and also have an impact on global circulation processes, e.g. by conditioning the gas
exchange between atmosphere and ocean. Another interesting aspect of ocean waves
addressed in this study is their impact on sea ice, which is one of the key factors in
the climate system.

Due to their stochastic nature, ocean waves (outside the strongly nonlinear near
shore breaking zone) can be completely described by their two-dimensional vari-
ance spectra, which contain information on the distribution of the wavelengths, wave
heights and propagation directions of different wave systems contributing to the vari-
ance of the sea surface elevation. Although it is in some cases sufficient to know
integral parameters like significant wave height or mean period, interest is growing
in detailed spectral information on sea state. This development is, e.g. driven by
the increased understanding of the response of ships or off-shore platforms to waves,
enabling improved designs by making use of the additional knowledge contained in
two-dimensional wave spectra. Furthermore, numerical ocean wave models run at
various weather centres, like the European Centre for Medium-Range Weather Fore-
cast (ECMWF) have reached a level of accuracy where further improvements require
the assimilation of detailed two-dimensional spectral information.

So far, the only remote sensing system capable of providing directional ocean
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wave information on a global and continuous scale is the synthetic aperture radar
(SAR). SAR is an active microwave radar with all-weather and daylight capability,
which has amply demonstrated its large potential for land and ocean application,
since the first spaceborne SAR aboard the SEASAT satellite was launched in 1978.
Using sophisticated data acquisition and processing techniques, the current space-
borne SAR systems flown on the European satellites ERS-1, ERS-2 and ENVISAT
or the Canadian satellite RADARSAT provide maps of the sea surface radar cross
section with a resolution of about 20 m.

Conventional SAR measurements of ocean waves are based on the modulation of
the radar cross section by different geometric and wave motion related mechanisms.
Other techniques making use of additional phase information provided by multi-
antenna SAR systems have been investigated [Bao et al., 1997; Schulz-Stellenfleth and
Lehner, 2001; Schulz-Stellenfleth et al., 2001]. Although there is still debate about
the appropriate modelling of some details of the SAR wave imaging process, like the
so called hydrodynamic modulation, the overall mechanism is now well understood
[Hasselmann et al., 1985; Lyzenga, 1986; Alpers et al., 1981].

Although SAR data contain more detailed information on the spatial structure of
the wave field [Schulz-Stellenfleth and Lehner, 2003], the most common application
is still the estimation of two-dimensional wave spectra. The retrieval of wave spectra
from SAR data is a demanding problem, mainly because of the nonlinear coupling
of different wave components in the mapping process. This effect causes the wave
patterns on SAR images to appear distorted with respect to the underlying ocean
wave field. Furthermore, SAR data lack information on the high frequency part of
the ocean wave spectrum, i.e. some a priori information taken from wave models
or other sensors is required to estimate a complete two-dimensional wave spectrum.
This is in particular the case for shorter waves travelling in the sensor flight direction
(azimuth), which are affected by the so called azimuthal cut-off.

Traditionally, SAR wave measurements were based on single intensity images,
which provide a snapshot of the “frozen” sea surface. Using this approach, it is
obvious that additional information is required to resolve the directional ambiguity of
wave propagation. Several inversion schemes for the retrieval of two-dimensional wave
spectra based on such data have been proposed, most of them using prior information
from wave models [Hasselmann et al., 1996; Mastenbroek and de Valk, 2000; Krogstad
et al., 1994].

A more recent method is based on the so called multi-look technique, where two
images (looks) with a time separation of about one second are processed, making
use of the special SAR imaging mechanism. Comparing the two looks by computing
their cross spectrum yields information on the temporal evolution of the wave field,
in particular on wave propagation directions [Engen and Johnson, 1995; Bao and
Alpers, 1998]. The phase of the cross spectrum provides information about the shift
of the harmonic waves contained in the wave field and the magnitude is related to
wave energy.

The present study makes several contributions to the use of the multi-look tech-
nique for the measurement of ocean waves. The main points investigated are as
follows:

• An analysis is presented of the first global data set of complex SAR data, which
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were reprocessed from ERS-2 wave mode raw data.

• A noise model for look cross spectra is introduced, which enables an accurate
assessment of the accuracy of the estimated cross spectrum phase.

• A modification of the existing integral transform for look cross spectra is pro-
posed to exploit future high resolution systems like TerraSAR [Mittermayer
et al., 2002].

• Complex SAR data are used to study the damping of ocean waves in the
marginal ice zone (MIZ).

• A parametric inversion scheme for the retrieval of two-dimensional ocean wave
spectra from look cross spectra is introduced and applied to the global data set
of ERS-2 cross spectra.

The cross spectra technique has been introduced about 10 years ago [Vachon and
Raney, 1991], however up to now there were no data available to analyse the method
on a statistical and global basis demonstrating its benefit, e.g. for wave model as-
similation. In this study a new global data set of complex ERS-2 wave mode data
is introduced [Lehner et al., 2000], which allows such an investigation for the first
time. The advantage of the new data compared to the ESA standard product is that
multi-look techniques can be applied and furthermore the full image information is
available. The study is meant to be a preparation for the data, which are currently
becoming available from the new ENVISAT satellite launched in March 2002. Fur-
thermore, it demonstrates the large amount of information contained in historical
ERS data, which have not yet been fully exploited. The following points will be
discussed in detail:

• What are the special processing requirements for complex SAR wave mode
data ?

• Are the observed SAR cross spectra phases consistent with propagation direc-
tions found in numerical wave models ?

• Are the SAR cross spectra phases consistent with the theoretical phase speeds
following from linear wave theory ?

• What is the benefit of the high resolution image information ?

The statistical analysis is complemented by a theoretical investigation
[Schulz-Stellenfleth et al., 2002] giving insight into the different factors determin-
ing the distribution of the estimated cross spectrum phase. The variance of the cross
spectrum estimator is calculated depending on SAR system parameters and the un-
derlying ocean wave field. The theory is applied to analyse the optimal choice of look
separation and integration times.

Furthermore, a modification of the existing integral transform [Engen and John-
son, 1995] describing the mapping of a two-dimensional wave spectrum into the cor-
responding look cross spectrum is presented. The new transform is able to avoid
meaningless values of the normalised radar cross section (NRCS), which can occur in
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the old formulation. The problem is due to the commonly used linear model of the
NRCS modulation, which has a probability of up to 10 % to predict negative radar
cross sections at high sea states in the case of the ERS-2 configuration. It is shown
that the performance of the linear model becomes intolerable if airborne sensors or
future spaceborne systems like TerraSAR [Mittermayer et al., 2002] with range reso-
lutions of less than 2 m are used. The problem is solved using a nonlinear model for
the NRCS, which is consistent with the linear formulation in so far as it maintains
both the mean and variance of the NRCS. Simulations of SAR cross spectra showing
the difference between the linear and nonlinear model are presented.

The benefit of lower noise levels in SAR cross spectra is demonstrated in a study
of ocean waves travelling into sea ice [Schulz-Stellenfleth and Lehner, 2002]. Here,
a special technique based on the multi-look technique, originally developed for wind
speed estimation [Kerbaol et al., 1998], is used to measure the damping of ocean waves
by sea ice. The method is based on the strong correlation between the orbital velocity
variance of the sea surface and the respective azimuthal cut-off wavelength, which can
be estimated from the complex SAR image. It is shown that applying the technique to
complex ERS-2 data acquired over the Greenland and the Weddell Sea yields damping
parameters consistent with results obtained in earlier field campaigns. Furthermore,
different typical effects found on SAR imagery acquired over the marginal ice zone
(MIZ) like refraction of wave patterns at the ice boundary are shown to be caused
by imaging artefacts. On the one hand this finding makes the interpretation of these
data less straightforward, on the other hand the mechanism can be used to gain
information about the damping of short waves by the ice. An approach to estimate
the damping characteristic of the sea ice by simultaneous inversion of SAR image
spectra in front and behind the ice boundary is proposed [Schulz-Stellenfleth and
Lehner, 2002].

Finally, an inversion scheme for two-dimensional ocean wave spectra is introduced,
which has ENVISAT-like cross spectra and prior information taken from a wave
model as input. The scheme extends the basic retrieval method developed at the
Max-Planck-Institute (MPI) [Hasselmann et al., 1996; Hasselmann and Hasselmann,
1991], where the overall shape of the spectrum is taken from wave model data and the
SAR information is used to correct different integral parameters like mean direction,
mean wavelength and wave height of different wave systems. Compared to the MPI
scheme the method has the following advanced features:

• The new phase information contained in look cross spectra is used to resolve
ambiguities in the wave propagation direction.

• The directional spreading of different wave systems is introduced as an addi-
tional parameter.

• The scheme is based on explicit models for the measurement error, uncertainties
in the SAR imaging model and errors in the prior wave spectrum, which allow
a clear interpretation of the retrieval results in the framework of a maximum a
posteriori approach.

• The inversion is performed on a polar grid with a dimension which is an order
of magnitude lower than the cartesian grids used in Hasselmann et al. [1996].
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This reduction enables the formulation of the retrieval as a straightforward
minimisation problem with regard to the integral parameters, i.e. the second
iteration loop with the sensitive cross assignment scheme as used in Hasselmann
et al. [1996] is not required.

• The scheme provides an error covariance matrix of the retrieved parameters.

The scheme is applied to both simulated data and reprocessed ERS-2 wave mode
cross spectra. In particular, the benefit of the additional phase information contained
in cross spectra is demonstrated. Global maps comparing the inversion results with
model output as well as scatter plots of integral parameters are presented.

The thesis is structured as follows: Chapter 2 gives an introduction to the physical
background and the statistical treatment of ocean waves, including a brief description
of the numerical wave model WAM used in the study. Chapter 3 summarises the basic
concepts, capabilities and limitations of SAR. Special emphasise is put on the addi-
tional phase information contained in complex SAR data. The multi-look technique is
described and look cross spectra are introduced. A well established model describing
the ocean wave imaging process of a SAR is presented in Chapter 4. An extension
of the model is proposed for application to high resolution SAR systems. Chapter 5
gives a description of the data used in the study. A noise model for look cross spectra
acquired over the ocean is introduced in Chapter 6. The model enables the deriva-
tion of error bars for the estimated cross spectrum phase depending on SAR system
parameters and the underlying ocean wave spectrum. Chapter 7 presents a study on
ocean waves travelling into sea ice, while a statistical analysis of a reprocessed data
set of complex ERS-2 imagettes is given in Chapter 8. A new retrieval scheme for
the estimation of two-dimensional ocean wave spectra from SAR cross spectra using
wave model data as additional prior information is introduced in Chapter 9.



Chapter 2

OCEAN WAVES

In this chapter the basic elements of the theory of ocean surface gravity waves, which
are needed for the subsequent investigation, are introduced.

The study of ocean waves and their dynamics has a long history [Komen et al.,
1994]. Along with the progress made in the field of fluid dynamics during the last
two centuries, theories were developed for the propagation and generation of ocean
waves. A big step in the understanding of surface gravity waves was the introduction
of statistical concepts like, in particular the ocean wave spectrum. Taking the ran-
dom nature of ocean waves into account models were developed for the generation,
dissipation and interaction of waves. Milestones of this development were the studies
on wave generation by Phillips [1957] and Miles [1957] and the theory on nonlinear
wave interaction developed by Hasselmann [1962].

Several aspects of ocean wave dynamics like the generation of waves by wind
or details of dissipation mechanisms like white capping are still subject of ongoing
research [Komen et al., 1994]

2.1 Linear wave theory

For the study of ocean surface gravity waves the ocean water is usually regarded as
both incompressible and inviscid, i.e. viscous effects are neglected. Denoting the
three-dimensional water velocity field with v and pressure with p the water motion
can be described by the Euler equation [Phillips, 1977]

∂v
∂t

+ (v · ∇)v = f − 1
ρW

∇p , (2.1)

with ρW denoting the density of water. For surface gravity waves the Coriolis force
and surface tension can be neglected to first order, so that the forcing term f reduces
to

f = −∇(gz) (2.2)

with gravitational acceleration g and z referring to the vertical axis. Assuming that
wave amplitudes are small compared to wavelengths the quadratic term in the Euler
equation can be neglected and the problem becomes linear. Furthermore, introducing
a velocity potential Φ = −∇v surface gravity waves in an infinite basin of water depth
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h can be described by the following set of equations [Komen et al., 1994]:

∆Φ = 0 (2.3)

g ζ +
(∂Φ

∂t

)
z=ζ

= 0 (2.4)(∂Φ
∂z

)
z=ζ

− ∂ζ

∂t
= 0 (2.5)(∂Φ

∂z

)
z=−h

= 0 (2.6)

Here, ζ is the sea surface elevation with respect to the mean sea level. It can be
shown [Phillips, 1977] that the fundamental solutions of these equations are given by
plane harmonic waves, i.e.

ζk(x, t) = A cos[kx − ω t + Φ0] (2.7)

with wave number vector k, wave amplitude A, phase offset Φ0, and wave frequency
ω, which obeys the dispersion relation given by

ω2(k) = g k tanh(k h) . (2.8)

If the water depth h is much larger than the wavelength, eq. 2.8 simplifies to the
deep water dispersion relation

ω2(k) = g k . (2.9)

The frequencies for which the above model is applicable typically range from about
0.05 Hz for long swell (600 m) to about 10 Hz for the shortest gravity waves in the
centimetre regime (0.02 m).

Another important quantity is the phase speed cp, which is given by

cp(k) =
ω

k
=
√

g

k
tanh(k h) . (2.10)

The phase speed ranges from about 0.2 ms−1 for the shortest waves (0.02 m) to about
30 ms−1 for longer swell (600 m). The fact that longer waves propagate faster than
shorter waves is easy to verify observing waves generated by ships at shore, where
the longest waves arrive first. The group speed cg, which describes the propagation
of energy is half the phase speed.

Furthermore, it can be shown [Apel, 1995], that within the above linear theory
individual water particles move on circles with radius r given by

r = A exp(−k z) , (2.11)

if deep water is assumed. Here, z denotes the vertical position of the circle centre.
This simple behaviour allows a relatively straightforward description of the impact of
wave motion on the SAR imaging process as described in Chapter 4. However, one
should be aware that in the case of nonlinear waves or in shallow water the trajectories
of individual water particles can deviate strongly from circles [Apel, 1995].
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2.2 Statistical description of ocean waves

The solution of the Euler equation (eq. 2.1) requires exact knowledge about the
boundary conditions, like bathymetry, and the initial state including the phases of
the different ocean wave components. As such information is in general not available,
the ocean surface elevation ζ is usually taken as a random process. This means that
the ocean surface field is defined by a probability density function (pdf) with

pdf(ζ1, ..., ζm) dζ1...dζm (2.12)

giving the probability that the surface elevations ζ1, ..., ζm measured at locations
x1, ..., xm lie within the intervals [ζ1, ζ1 + dζ1], ..., [ζm, ζm + dζm]. For a time period
and a region small enough to assume constant boundary conditions the process is
both stationary and homogenous, i.e. the statistical moments are shift invariant in
both time and space.

According to the definition of the sea surface elevation, i.e. using the mean sea
level as reference, the first moment of ζ is given by:

〈ζ(x, t)〉 = 0 . (2.13)

The second order statistics of the wave field is commonly described in the spectral
domain. Let ζ have a Fourier representation given by

ζ(x, t) = 2Re
(∑

k

ζk exp[i (k x− ω t)]
)

, (2.14)

where Re denotes the real part. For the second moments of ζ it is straightforward to
show [Komen et al., 1994] that from stationarity and homogeneity it follows that the
auto-covariance function has the following form

ρζ(x, t) = 〈ζ(x, t) ζ(0, 0)〉 = Re
(∑

k

Fk exp
[
i (k x − ω t)

])
, (2.15)

with the ocean wave spectrum Fk defined as

Fk dk = 2
〈|ζk|2〉 (2.16)

and dk denoting the spectral binsize associated with the finite size of the ocean wave
field considered. This means Fk can be interpreted as the contribution of the different
wave components to the variance of the surface elevation ζ.

It can be shown that within the linear theory the assumption of stationarity and
homogeneity necessarily leads to a Gaussian wave field [Hasselmann, 1968]. The
ocean wave spectrum Fk thus gives a complete statistical description of the ocean
wave field in the linear approximation.

The sea state can be characterised by different integral parameters like, e.g. sig-
nificant wave height Hs defined as follows:

Hs = 4
√

var(ζ) = 4

√∫
Fk dk (2.17)
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Assuming a narrow wave spectrum F it can be shown that wave crest, i.e. local
maxima of the elevation ζ, are approximately Rayleigh distributed [Phillips, 1977].
In this case the significant wave height can be interpreted as the average of the 30%
highest wave crests. Hs roughly corresponds to the “average” wave height obtained
via visual observation.

Most people concerned with practical problems, e.g. in ocean engineering, are used
to directional frequency spectra Ff,Φ, which are related to the wavenumber spectrum
Fk via

Ff,Φ =
32π4 f3

g2
Fk , (2.18)

with k = k (cos Φ, sin Φ), and ω = 2π f connected to k via eq. 2.8. Based on
Fω,Φ different parameters characterising the sea state like, e.g. peak frequency ωp or
peak direction Φp are defined. The one-dimensional frequency spectrum often used
in practice is computed from Ff,Φ as

Ff =
∫ 2 π

0
Ff,Φ dΦ . (2.19)

The importance of this spectrum lies in the fact that it has been measured by different
traditional instruments like, e.g. buoys, for a long time, i.e. a lot of data exist and
extensive analysis has been performed.

2.3 Parametric models

For larger areas and longer time periods the wave spectrum Fk changes due to wind
forcing, dissipation and interactions between different wave components. When the
wind starts to blow over calm water, short waves in the centimetre regime are gener-
ated. As time goes on the peak wavelength increases due to nonlinear interactions.
Assuming that the wind is constant over a long time and a long distance (fetch) the
wave spectrum finally reaches an equilibrium state (fully developed wind sea). This
state is characterised by a peak frequency corresponding to phase speeds in the order
of the wind speed near the sea surface and a typical shape of the high frequency tail
of the spectrum. Fig. 2.1 gives a rough overview of wave height and wave period as
a function of wind speed U10, wind duration tW and and fetch distance xf .

A simple rule of thump for the peak wavenumber kp and the wave height of fully
developed wind seas is given by the following formulas [Alpers, 1983]:

kp = 0.697
g

U2
10

Hs = 0.24
U2

10

g
(2.20)

For instance a wind speed of 10 ms−1 at 10 m height results in about 2.5 m wave
height and about 100 m peak wavelength.

Due to their high phase speeds the longer wave components of the wind generated
wave systems leave the area of generation as so called swell and propagate along great
circles over the ocean. In the case of strong storm events, swell can be observed even
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Fig. 2.1: Diagram showing significant wave height Hs = ξ1/3 as a function of wind duration
tW , fetch distance xf and wind speed U10. Tmax indicates the maximum wave
period observed for fully developed wind seas (FDS) [Adapted from Van Dorn, W.G,
Oceanography and Seamanship, 1974].

several thousand kilometres from the generating area, before it is finally damped out
by dissipation effects.

A classification of different wind sea and swell systems is usually done in terms of
the ratio of the wave phase speed cp and the friction velocity u∗. The friction velocity
is related to U10 via

U10 =
u∗

κ
log
[ 10 g

αch (u∗)2
]

(2.21)

with Charnock constant αch = 0.0185 and κ = 0.41 the Karman constant [Komen
et al., 1994]. An overview of the different wave system types is given in table 2.1.

As suggested by Fig. 2.1 the generation of waves by the wind field is a complex
mechanism, which is in fact still the subject of ongoing research [Mastenbroek, 1996].
The exact shape of the wind sea spectrum depends on the fetch as well as the duration
of the wind impact. An empirical model for the wind sea spectrum was derived from
data acquired during the JONSWAP experiment [Hasselmann, 1973] and is given by
the following expression for the one dimensional frequency wave spectrum:

F (ω) = α g2 ω−5 exp
[
− 5

4
ω−4

ω−4
p

+ logγp exp
[−(ω − ωp)2

2σ2
j ω2

p

]]
(2.22)
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Classification cp/u
∗

young windsea ≤ 10-20
old windsea ≈ 20-30
fully developed ≈ 30-40
swell ≥ 30-40

Tab. 2.1: Classification of ocean wave systems in terms of the ratio of phase speed cp and
friction velocity u∗ (wave age).

Here, α is a dimensionless parameter describing the energy level, ωp is the peak
frequency, γp is the peak enhancement parameter and σj defined as

σj =

{
0.09 if ω ≤ ωp

0.07 if ω ≥ ωp

(2.23)

determines the width of the spectrum. For a fully developed wind sea one has

α = 0.0081 γp = 1 (2.24)

and eq. 2.22 is also referred to as Pierson-Moskowitz spectrum. For a growing wind
sea the parameters were chosen as

α = 0.01 γp = 3.3 (2.25)

in accordance with Brüning et al. [1990]. Fig. 2.2 (B) shows frequency spectra for
fully developed (dashed lines) and growing wind seas (solid lines) for two peak fre-
quencies. One can see that growing wind seas are characterised by a more peaked
appearance than fully developed seas, which is due to nonlinear interactions between
different wave components [Hasselmann, 1973]. The high frequency tail of the JON-
SWAP spectrum shows a w−5 decay, which is associated with wave breaking and
cusp-like crests. However, there is still some debate about the exact power law suit-
able to describe these processes [Phillips, 1985].

Following Brüning et al. [1990] to describe the directional spreading, the following
expression is derived from eq. 2.22 for the two-dimensional JONSWAP wavenumber
spectrum:

Fk =
α

π
k−4 exp

[
− 5

4
k−2

k−2
p

+ logγp exp
[−(

√
k −√kp)2

2σ2
j kp

]]
cos2p(Φ−Φp) N(p) (2.26)

Here, the wavenumber dependent spreading factor p is given by

p =

{
0.46 (k/kp)−1.25 pm if k ≥ kp

0.46 (k/kp)2.5 pm if k < kp

(2.27)

with pm defined as

pm = 8.7
( U10√

g/kp

)−2.5
(2.28)
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A B

Fig. 2.2: (A) Two-dimensional JONSWAP wavenumber spectrum (fully developed) with a
cos2 directional distribution and 145 m peak wavelength. The unit of the isoline
labels is m4. (B) JONSWAP frequency spectra with two peak frequencies ωp =
0.95 s−1 and ωp = 0.65 s−1 assuming fully developed sea state (dashed line) and
developing sea state (solid line) respectively. The dashed curve for the lower peak
frequency corresponds to the wavenumber spectrum shown in (A) in the case of deep
water.

and normalisation factor N(p) given by:

N(p) =
1√
π

Γ(1 + p/2)
Γ(1/2 + p/2)

(2.29)

The model represents a single wave system with peak wavenumber kp = |kp| and
propagation direction Φp = atan(ky, kx). The high wavenumber part of the spectrum
is dominated by a k−4 decay. One should note that there is still a lot of debate
about a suitable model for the directional spreading. In fact this is the reason why
the directional spreading is introduced as an additional parameter in the inversion
scheme presented in Chapter 9. Because of the uncertainty we will also use a simpler
cos2 model, without frequency dependence in some of the simulations presented in this
study. A contour-plot of a two-dimensional spectrum representing a fully developed
wind sea with a cos2 distribution is shown in Fig. 2.2 (A).

2.4 The numerical ocean wave model WAM

Ocean wave models like WAM [WAMDI Group, 1988] describe the temporal and
spatial evolution of the two-dimensional ocean wave spectrum. The driving near-
surface wind field as well as the the bottom topography is needed as input. Such
numerical models are used operationally at different metereological institutes like the
ECMWF and are capable of giving ocean wave forecasts typically on a time scale of
a few days.

In this thesis the ocean wave model WAM is used to compute ocean wave hind-
casts. WAM is a third generation model based on a closed theory for the generation
and propagation of ocean waves. The model is expressed in terms of a partial differ-
ential equation (action balance equation), which in a simplified form (assuming no
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Fig. 2.3: (Left) Map showing significant wave heights Hs computed with the WAM model for
the Atlantic on May 27, 1997, 6:00 UTC (Right) Corresponding friction velocity u∗

used as input for the model.

currents and infinite water depth) is given by the following expression :(
∂

∂t
+ cg · ∂

∂x

)
F (k,x, t) = Sin + Snl + Sds (2.30)

The action balance equation describes the development of an ocean wave spectrum
F with time t at different locations x. The term Sin represents the energy input
of the wind; Snl describes nonlinear interactions between different wave components
[Hasselmann, 1962] and Sds introduces dissipation effects [Komen et al., 1994].

Fig. 2.3 shows an example of a WAM run computed for the Atlantic Ocean set
up on a 1◦ grid using ECMWF wind fields as input. Both the significant wave height
and friction velocity for May 27, 1997 are shown. The model was run with 20 min
time steps and three days spin up time. Wind fields are available every 6 hours and
are interpolated in between. One can see different low pressure systems mainly in
the south east and north west Atlantic with wind speeds (in 10 m height) of up to
20 ms−1. The sea states generated by the respective wind fields have significant wave
heights of up to 10 m.
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Chapter 3

SYNTHETIC APERTURE RADAR

Fig. 3.1: ERS-2 SAR imagette acquired at 54.86◦S 55.48◦W on Oct 6, 1996, 13:03 UTC. The
corresponding complex data were processed with the DLR processor BSAR.

In this chapter the basic SAR imaging mechanism and the main SAR processing
steps are explained. Furthermore, the so called multi-look technique is described,
including an introduction to look cross spectra. Finally, some basic properties of
SAR speckle noise are summarised. The techniques and concepts introduced provide
the basis for the understanding of the different aspects of SAR ocean wave imaging
discussed in the subsequent chapters.

3.1 Imaging principle and data processing

Synthetic aperture radar is an active remote sensing system, which provides two-
dimensional maps of the normalised radar cross section (NRCS), denoted by σ0. As
an example Fig 3.1 shows a SAR intensity image of 10 by 5 km size acquired over the
South Indian Ocean by the SAR onboard the ERS-2 satellite. Ocean wave patterns
are clearly visible. A detailed discussion of the exact relationship between the image
wave patterns and the underlying moving ocean wave field is given in Chapter 4.

The NRCS is a measure for the ability of a surface to reflect radar signals. It is
defined as the normalised energy flux scattered by a unit area of the surface into a



Chapter 3. SYNTHETIC APERTURE RADAR 16

z

x

y

v
t > 0

t = t

0

R(t - t  ,y  )0 0

(x  ,y  )

0

0

y

x

βAntenna patter 

Point Scatterer

SA
R

 antenna

A) B)

antenna range 

range 

azim
uth

slant range 

azimuth

an
te

nn
a 

be
am

 

scatterer

Fig. 3.2: SAR imaging geometry in two dimensions (left) and three dimensions (right). In
the standard reference system the SAR sensor is moving in the positive x-direction
with velocity V , looking in the positive (left looking) or negative (right looking)
y-direction. The left plot shows a squinted imaging geometry, i.e. the scatterer are
not in the centre of the antenna beam at the time of closest approach (Doppler zero).

given direction observed at large distances. The normalisation is done by dividing by
the incident power. The NRCS is a dimensionless variable denoted by σ0, which is
usually given in dB values [Fung, 1994]. In the case of surface waves the radar return
for the system configurations considered here is dominated by Bragg scattering. A
model for the normalised radar cross section of the sea surface, which depends on the
wave spectrum, will be introduced in Section 4.1.

The basic object imaged by a SAR is the complex reflectivity r, which has a
magnitude related to the NRCS by

σ0 =
〈|r|2〉 (3.1)

and a phase which accounts for possible phase shifts taking place in the scattering
process. As the phase of r is very sensitive to the detailed geometry of the local
scattering process, r it is usually taken as a random circular Gaussian process with
second moments related to the NRCS via eq. 3.1, where the angle brackets can be
interpreted as an average over a resolution cell.

Making use of the platform motion, airborne or spaceborne SAR systems achieve
a high resolution both in flight (azimuth) and across flight (range) direction (compare
Fig. 3.2). As the imaging processes in the two dimensions are governed by different
time scales, they can in a first approximation be treated as independent [Bamler and
Schättler, 1993].

3.1.1 Range processing

As known from conventional real aperture radar (RAR), the SAR imaging mechanism
in the range dimension is based on the measurement of the time return echo of the
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transmitted signal [Curlander, 1991]. Most SAR systems transmit chirp signals of
the form

pt(t) = exp
[
i (ω0 t − βf t2)

] |t| ≤ τp/2 (3.2)

with carrier frequency ω0, frequency modulation rate βf , and signal duration time τp.
The bandwidth Br of such signals is given by

Br =
βf τp

π
. (3.3)

In the case of the ERS SAR the chirp duration is 4·10−5 s and the range bandwidth
is Br=15.5 MHz.

The standard reference system for SAR imaging models is a right handed coor-
dinate system with the SAR flying in positive x direction with velocity V (compare
Fig. 3.2). The location of a point scatterer on the surface is given by its distance to
the radar R0 at the time t0 of the closest approach (Doppler zero) and either t0 or
the corresponding spatial azimuth coordinate x0 = t0 V . The received signal returned
from a point scatterer with slant range distance R(t) from the radar at time t is given
by

pr(t) = C
(
R
)
r
(
x0, t − R(t)

cL

)
pt
(
t − 2R(t)

cL

)
exp

[−2 i kE R(t)
]

, (3.4)

where cL is the speed of light and kE is the radar wavenumber. The real factor C(R)
accounts for signal power lost on the round trip path [Bamler and Schättler, 1993].
Here, the so called start stop approximation is used, which neglects the very small
change of the range distance R between transmission and reception. The returned
signal is processed by first removing the carrier frequency ω0 and subsequent cross
correlation with a replica chirp. As it can be assumed that r is constant for the
duration of a range chirp this yields an impulse response hr given by [Oliver and
Quegan, 1998; Bamler and Schättler, 1993]:

hr

(
t − 2R(t)

cL

)
= r(x0, t)

∫ τp/2

τp/2
exp(i βf t′2) exp(−iβ(t′ + t)2) rect

( t′ + t

τp

)
dt′

≈ r(x0, t) τp exp
[−2 i kE R(t)

]
sinc(Br t) (3.5)

The last approximation holds near the peak |t| � τp of hr for large time-bandwidth
products Br τp 	 1, which are used for common SAR systems like the ERS SAR with
Br τp = 575.05 . The range resolution can be defined as the 3dB width of the impulse
response function hr and is given by

ρsr = 0.885 · cL

2Br
(3.6)

using the approximation in eq. 3.5. For the ERS SAR the slant range resolution
is about 8 m. The corresponding ground range resolution ρgr is dependent on the
incidence angle θ and is given by [Curlander, 1991]

ρgr =
ρsr

sin θ
, (3.7)

assuming an idealised flat surface. The ground range resolution of the ERS SAR in
mid swath is about 20 m.
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3.1.2 Azimuth processing

The azimuth resolution for a conventional real aperture radar is given by the width
of the antenna beam βA, which in turn depends on the radar wavelength λE and the
antenna length L. The 3dB width β3dB

A of the antenna beam is given by [Bamler and
Schättler, 1993]:

β3dB
A = 0.64

λ

L
(3.8)

For the ERS SAR this yields an antenna footprint on the earth surface of about 4
km length in azimuth. Scatterers with slant range distance R0 are thus illuminated
by the radar for an integration time T 3dB

0 given by (compare eq. 3.8):

T 3dB
0 = 0.64

λR0

V L
(3.9)

For the ERS-2 SAR the integration time defined in this way is about 0.46 s. Note
that the processed ERS-2 integration time available for the techniques applied in this
thesis is about 0.66 s and thus slightly longer than T 3dB

0 .
The high resolution in flight direction achieved by a SAR is based on the phase

history of the signals returned from each scatterer as the radar passes by (compare
eq. 3.5). Assuming that the range processing has already been performed the raw
data signal returned from the point scatterer received by the SAR at time t is given
by

s(t) = C(R0) r(x0, t)G(t0, x0) exp
[− 2 i kE R(x0, t)

]
, (3.10)

with antenna pattern G. A simple model for G is given by [Alpers et al., 1981]:

G(t, t0) = exp
[−2

(t0 − t)2

T 2
0

]
(3.11)

Similar to the range compression step the azimuth processing is done by correlation
with a replica chirp. Assuming that the complex reflectivity r remains unchanged
during integration time and further using a quadratic approximation for the range
distance, i.e.

R(x0, y0, t) ≈ R0 +
V 2 (t − t0)2

2 R0
, (3.12)

the complex SAR image c is given by

c(t =
x

V
) =

∫
s(t′) exp

[
i kE

V 2 (t′ − t)2

R0

]
dt′

= C(R0) r(x0) exp
[−i kE (2R0 − (x − x0)2

R0
)
]

· exp
[−k2

E V 2 T 2
0 (x − x0)2

2R2
0

]
. (3.13)

The impulse response is centred at t0 = x0 V −1 with phase at the peak given by
Arg(r(x0))−2 kE R0. The phase of the complex SAR image thus contains information
on the slant range R0 on a centimetre scale. This fact is the basis for so called SAR
interferometry, where pairs of complex SAR images are used to obtain information
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Fig. 3.3: (A) Azimuth spectrum with Doppler centroid frequency fdc of the ERS-2 imagette
shown in Fig. 3.1. (B) Azimuth spectrum with antenna weighting removed and
filter functions used to extract looks, which are separated in time by 0.33 s.

on digital elevation models of terrain [Bamler and Hartl, 1998], ocean waves [Schulz-
Stellenfleth et al., 1998; Schulz-Stellenfleth and Lehner, 2001; Bao et al., 1997], and
currents [Romeiser and Thompson, 2000].

The intensity image Iσ of the point scatterer is given by:

Iσ =
〈|c(t)|2〉 = C2(R0)σ0(x0) exp

[−k2
E V 4 T 2

0 (t − t0)2

R2
0

]
(3.14)

Here, the angle brackets indicate an assemble average over different realisations of
the r process. The spatial azimuth resolution ρaz of the intensity image is given by
the 3dB width of the impulse response function and is calculated as

ρaz = 0.41L ≈ L

2
≈ λER0

2V T0
(3.15)

using eq. 3.9. The small deviation from the resolution of L/2 often found in the
literature is due to the model of the antenna pattern (eq. 3.11) which we have
used in this study to remain consistent with other literature [Alpers et al., 1981].
More realistically the antenna pattern should be modelled by a squared sinc function
[Bamler and Schättler, 1993]. The azimuth resolution of the ERS-2 SAR is about 5
m.

3.2 Multilooking

Complex SAR data contain information on the time evolution of the NRCS during
integration time. This information can, e.g. be extracted by applying the so called
multi look technique. In this method the integration time is split into two or more
subintervals and each interval is processed to a SAR image separately. In practice
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Fig. 3.4: (A,B) Two looks processed from the complex ERS-2 wave mode data The looks are
separated in time by 0.33 s, with the left look (A) followed by the right one. The
corresponding single look intensity image is shown in Fig. 3.1. (C,D) Symmetric
real part (C) and anti-symmetric imaginary part (D) of the corresponding look cross
spectrum as defined in eq. 3.22, indicating a wave system of about 300 m wavelength
propagating to the lower left. Dashed isolines indicate negative values.

the looks are calculated from a given complex SAR image c by selecting sub-bands
from the corresponding azimuth Fourier spectrum. A theoretical expression for this
spectrum in case of a single point scatterer can be calculated by applying both the
convolution theorem and the stationary phase method [Bamler and Schättler, 1993]
to eq. 3.13

F(c) ≈
√

i

FM
C(R0) r(x0,

f

FM
) , G(

f

FM
) (3.16)

with F denoting the Fourier transform and frequency modulation rate FM given by

FM = − 2V 2

λE R0
. (3.17)

For the ERS-2 SAR the FM rate is about -2100 Hz s−1. It can be seen that via

t =
f

FM
(3.18)

a correspondence between time t and frequency f is given. This means that selecting
sub-bands from the azimuth spectrum of complex data is equivalent to selecting
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subintervals of the integration time T0. Denoting the band pass filter used for look
generation by H i a look Ii

σ is calculated as follows:

Ii
σ = |F−1(F(c)H i)|2 i = 1, 2 (3.19)

Fig. 3.3 (A) shows the azimuth spectrum of the complex ERS-2 imagette in Fig
3.1. The Doppler centroid frequency fdc denotes the centre of the antenna beam.
The fact that fdc is not zero is due to the squinted antenna geometry (compare with
Fig. 3.2). The usable frequency bandwidth is about 2100 Hz corresponding to 0.66 s
integration time. Fig. 3.3 (B) shows the azimuth spectrum with antenna weighting
removed together with two filter functions H1, H2 used to extract two looks I1

σ, I2
σ.

Both the separation time between the looks and the integration time of each look is
about 0.33 s. For the general case assuming that the filter functions are centred at
frequencies f1 < f2, the looks are separated in time by

∆t =
f1 − f2

FM
> 0 . (3.20)

Two looks processed from the complex data of the ERS-2 image in Fig. 3.1 are shown
in Fig. 3.4 (A,B). Due to the reduced bandwidth both looks have a lower azimuthal
resolution, i.e. in case half the integration time is used for both looks the respective
azimuthal resolution is about 20 m.

3.3 SAR cross spectra

In this section the cross spectrum of two looks processed by applying the technique
described in the previous section is introduced. The standard estimation technique is
recovered and cross spectra coherence is introduced. In summary it will be demon-
strated that cross spectra have the following two advantages compared to conventional
SAR image variance spectra:

• SAR cross spectra provide information on ocean wave propagation directions
without ambiguity.

• SAR cross spectra have lower noise levels.

The use of SAR cross spectra for ocean wave measurements is well established by now
[Engen and Johnson, 1995]. The idea is to use the time gap between two looks to gain
information about wave motion and in particular wave propagation directions. As the
shift of wave patterns during integration time is small compared to the resolution of
common spaceborne SAR systems, a sensitive estimation technique has to be used to
detect the differences between the two looks. Fig. 3.5 shows the shift of wave patterns
taking place during a time ∆t = 0.33 s, which corresponds to a look extraction as
indicated in Fig. 3.3, and ∆t = 0.66 s, which is the upper limit for the ERS-2 case.
The dashed line in Fig. 3.5 (A) represents the azimuthal and approximate range
resolutions for looks with half bandwidth. As one can see, the expected phase shifts
are in fact on the sub-resolution scale even for the longest waves, which have the
highest phase speeds (compare eq. 2.10). It should be noted that the phases given
in Fig. 3.5 (A) are based on a linear imaging model, which has some shortcomings
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A B

Fig. 3.5: (A) Shift of waves patterns taking place between look acquisition as a function of
ocean wavelength assuming look separation times of ∆t = 0.33 s and ∆t = 0.66 s.
The dashed line indicates the ERS-2 azimuth resolution for looks with half azimuth
bandwidth. (B) The same as (A) for the cross spectrum phase.

in particular for shorter waves. In the general case the cross spectrum phases can
deviate from the theoretical values due to nonlinear effects. A model to discribe these
distortions will be presented in Chapter 4. The data analysis presented in Chapter 8
will show that at least on average there is good agreement of the measurements with
the linear model.

A standard approach to detect small phase shifts is to compute the cross spectrum
[Honerkamp, 1993] of the looks, which is defined as the Fourier spectrum of the cross
covariance function ρI1

σI2
σ

ΦI1
σI2

σ
k = F(ρI1

σI2
σ
) . (3.21)

The cross spectrum can alternatively be written as [Honerkamp, 1993]

ΦI1
σI2

σ
k = 〈F(I1

σ − 〈I1
σ〉) F(I2

σ − 〈I2
σ〉)∗〉 , (3.22)

where the asterisk denotes complex conjugation. The cross spectrum is a complex
valued function with symmetric real and antisymmetric imaginary part, i.e.

Re(ΦI1
σI2

σ
k ) = Re(ΦI1

σI2
σ

−k ) (3.23)

Im(ΦI1
σI2

σ
k ) = −Im(ΦI1

σI2
σ

−k ) , (3.24)

with the positive peaks of the imaginary part indicating the propagation direction
of the different harmonic wave components. Fig. 3.4 shows the real part (C) and
imaginary part (D) of the cross spectrum computed from the looks shown in (A) and
(B). A wave system of about 300 m wavelength can be seen propagating to the left.
The collocated two-dimensional wave spectrum in Fig. 3.6 (A) computed with the
WAM model confirms this finding.

3.3.1 Cross spectra estimation

A common way to estimate the cross spectrum is to average so called cross peri-
odograms [Honerkamp, 1993]. A cross periodogram of two looks I1

σ, I2
σ is defined
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Fig. 3.6: (A) Two-dimensional wave spectrum computed with the WAM model collocated
with the cross spectrum shown in Fig. 3.4. (B) Coherence estimate of the respective
cross spectrum.

as
ΦI1

σI2
σ

k = Î1
k (Î2

k)∗ , (3.25)

where Îi, i = 1, 2 are the discrete complex Fourier transforms of the looks given by

Îi
jxjy

=
Nx−1∑
ix=0

Ny−1∑
iy=0

Ii
ixiy exp

[
−2π i

( ix jx

Nx
+

iy jy

Ny

)]
i = 1, 2 . (3.26)

Here, we have assumed that the looks I1
σ, I2

σ have Nx × Ny pixel. Denoting the pixel
size of the looks with dx, dy the indices jx, jy of the spectrum refer to a wavenumber
grid (with unit rad m−1) of the following form:

kix,iy =
(2 π ix

Nx dx
,
2 π iy
Ny dy

)
, ix = −Nx/2, . . . , Nx/2 , iy = −Ny/2, . . . , Ny/2 (3.27)

A standard technique to obtain an asymptotically consistent and unbiased estimator
Φ̂ for the cross spectrum is to average cross periodograms ΦI1

σI2
σ

k obtained from N
subimages at the cost of lower spectral resolution, i.e.

Φ̂I1
σI2

σ
k =

1
N

N∑
i=1

ΦI1
σI2

σ
k

(i)

. (3.28)

There are alternative ways to estimate the cross spectrum, e.g. by first estimating the
cross covariance function and then applying definition eq. 3.29. However, as there is
no obvious optimal choice of method in the present framework, the cross periodogram
averaging technique is used in this study, mainly because it is easy to compute and
to handle theoretically as will be shown in Chapter 4.
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3.3.2 SAR cross spectra coherence

Another interesting quantity provided by the multilook technique is the coherence γ.
A first analysis of the look cross spectra coherence in the framework of SAR ocean
wave measurements has been performed in Schulz-Stellenfleth et al. [2002]. The
coherence enables a quantification of the decorrelation of the two looks and can, e.g.
be used to derive error bars for the cross spectrum phase as will be shown in Section
6.

The cross spectrum coherence is defined as the complex valued cross-correlation
function of the two look spectra I1

k , I2
k , i.e.

γk =
ΦI1

σI2
σ

k√
ΦI1

σI1
σ

k ΦI2
σI2

σ
k

(3.29)

with
0 ≤ |γk| ≤ 1 . (3.30)

For |γk| = 1 the looks are perfectly correlated whereas complete decorrelation is
indicated by |γk| = 0.

In the framework of ocean waves it can be assumed that

ΦI1
σI1

σ
k = ΦI2

σI2
σ

k , (3.31)

because the look variance spectra are directly related to the corresponding ocean wave
spectra [Hasselmann and Hasselmann, 1991]. As the ocean wave spectrum can be
assumed as constant on the look separation time scale the assumption is justified.

A natural estimator for the coherence is given by separate estimation of the nom-
inator and denominator in eq. 3.29 using a periodogram and cross periodogram
averaging technique as described above.

Fig. 3.6 (B) shows the coherence γ estimated for the cross spectrum in Fig. 3.4.
The isolines have a linear spacing of 0.1. The maximum coherence is about 0.75
and is observed at the peak wave vector already found in the cross spectrum. An
explanation for this finding will be given in Chapter 6.

3.4 Speckle noise

In this section the impact of SAR image speckle noise on the image variance spectrum
and the look cross spectrum are explained.

Radar signals returned from different scatterer within a SAR resolution cell add
up coherently as in a random walk. As there are many scatterer with uncorrelated
complex reflectivities contributing, real and imaginary parts of a complex SAR image
are independent Gaussian distributed. Hence, the intensity Iσ of a single look complex
pixel follows a negative exponential distribution [Goodman, 1985; Oliver and Quegan,
1998] with probability density function (pdf) given by

pdf(Iσ) =
1

〈Iσ〉 exp[− Iσ

〈Iσ〉 ] . (3.32)
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A basic property of this distribution is that the variance var(Iσ) equals the squared
mean 〈Iσ〉2. Therefore, SAR image statistics is commonly analysed using a mul-
tiplicative noise model, where SAR image intensity Iσ is expressed as the product
of a negative exponential distributed speckle process S with unit mean and a pro-
cess X carrying the cross section information [Oliver and Quegan, 1998; Alpers and
Hasselmann, 1982], i.e.

Iσ = X S , (3.33)

with both processes assumed as independent. For a SAR image acquired over the
ocean, X is modulated by the underlying NRCS of the sea surface, which is basis for
the retrieval of ocean wave spectra as discussed in in Chapter 9. According to our
assumptions, the mean of X which is, e.g. relevant for wind speed measurements, is
simply given by

〈X〉 = 〈Iσ〉 , (3.34)

where brackets indicate spatial averages. Wave measurements are commonly based
on a normalised, i.e. calibration independent version of X defined as

m =
X − 〈X〉

〈X〉 . (3.35)

It is straightforward to show that the covariance functions of m and the respective
normalised intensity image I defined as

I =
Iσ − 〈Iσ〉

〈Iσ〉 (3.36)

are connected by the following equation [Kerbaol et al., 1998]:

ρII = ρmm (ρSS + 1) + ρSS . (3.37)

The corresponding variance spectrum ΦI follows by taking the Fourier transform of
eq. 3.37

ΦI = Φm + ΦS + Φm ⊗ ΦS . (3.38)

Here, ⊗ denotes the convolution operator. To first order it can be assumed that the
correlation length of the speckle S, which is in the order of the system resolution is
shorter than the correlation length of the modulation m [Kerbaol et al., 1998]. Eq.
3.38 then simplifies to

ΦI = Φm + ΦS
(
1 + var(m)

)
. (3.39)

It can be seen, that the first order impact of SAR image speckle on the normalised
SAR image variance spectrum is an additive noise floor. Furthermore, the variance of
the modulation m caused by ocean waves is in general smaller than 1 [Lehner et al.,
2000].

Assuming white speckle noise and a SAR system with range and azimuth resolu-
tion ρaz and ρra the noise floor is therefore approximately given by [Mastenbroek and
de Valk, 2000]

ΦS
k ≈ ρaz ρra

4π2
. (3.40)

A first-order correction for image speckle is thus to subtract this noise level from
the normalised SAR image variance spectrum, yielding an estimate for the variance
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BA

Fig. 3.7: (A) Azimuth auto-correlation function of the intensity image shown in Fig. 3.1. (B)
Respective cross-correlation function of two looks with non-overlapping frequency
bands.The dashed lines are fitted Gaussian functions.

spectrum of m. One should be aware that this correction is approximative with the
complete speckle impact described by eq. 3.38.

The impact of image speckle on the look cross spectrum is straightforward if we
assume that the frequency bands used to process the looks do not overlap (compare
figure 3.4). In that case the looks are affected by uncorrelated speckle processes S1

and S2 and the looks can be written as

Ii
σ = Xi Si , i = 1, 2 . (3.41)

It can then be readily shown that

ρI1
σI2

σ
= ρX1X2 (3.42)

and thus the speckle noise cancels out in the expectation value. Due to definition the
same applies for the look cross spectrum

ΦI1
σI2

σ
k = F(ρX1X2

)
. (3.43)

For a stationary scene with X1 = X2 the cross spectrum thus equals the variance
spectrum of X.

It should be pointed out that the image speckle cancels out only in the exact cross
spectrum (i.e. in the sense of expectation values), which is of course not available in
practice. An analysis of the speckle impact on the estimated cross spectrum is given
in Chapter 6.

A comparison of the impact of speckle on the auto- and cross-covariance functions
of two looks is shown in Fig. 3.7. It can be seen that the auto-covariance function
(A) in the azimuth direction is affected by a strong peak in the centre associated with
the speckle correlation length, while the cross-covariance function (B) is a damped
cosine representing the correlation properties of the underlying NRCS. The azimuth
cross-correlation function is one important tool for the investigation of ocean wave
damping by sea ice presented in Chapter 7.



Chapter 4

SAR OCEAN WAVE IMAGING THEORY

In this section the basic elements of the standard SAR ocean wave imaging theory are
reviewed. Furthermore, a modification of the existing model for look cross spectra is
presented, which is of relevance in particular for future high resolution systems like
TerraSAR [Mittermayer et al., 2002] and airborne systems.

SAR imaging of the sea surface has been investigated in many studies [Hasselmann
and Hasselmann, 1991; Hasselmann et al., 1985; Lyzenga, 1988; Alpers et al., 1981]. A
major step in understanding the SAR ocean wave imaging process was the derivation
of a nonlinear integral transform describing the mapping of a two-dimensional ocean
wave spectrum into the corresponding SAR image variance spectrum [Hasselmann and
Hasselmann, 1991] or look cross spectrum respectively [Engen and Johnson, 1995].

The SAR imaging mechanism is sensitive to both the NRCS modulation and
the sea surface motion associated with ocean waves. The standard model used in
literature consists of three main parts:

• The first important element is the local radar backscattering mechanism, which
is governed by the sea surface roughness on a centimetre scale.

• Secondly, the modulation of the local backscatter processes by long waves
(longer than twice the SAR resolution cell) is discussed assuming a station-
ary sea surface. This mechanism is known as the real aperture radar (RAR)
modulation mechanism, as it describes the radar cross section as seen by a
conventional radar without synthesised antenna.

• In the final step the impact of Doppler shifts associated with wave motion on
the SAR image formation is explained. The respective mechanism is known as
the velocity bunching effect.

As a modification of the standard theory a nonlinear formulation of the RAR modula-
tion mechanism is proposed. The approach is able to avoid negative SAR intensities,
which can occur in the existing model at higher sea states. It is shown that this
effect is significant in particular for systems with high resolution in range direction.
Based on the nonlinear RAR model a new integral transform for look cross spectra
is derived and compared to the existing transform.
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θ2

θ1

0 σ

Radar cross section 

Fig. 4.1: Illustration of the real aperture radar (RAR) tilt modulation mechanism. Due to
the modulation of the local incidence angle by the long waves (longer than twice the
resolution cell) the cross section pattern is shifted by 90◦ towards the radar with
respect to the sea surface elevation.

4.1 Backscattering model for the sea surface

4.1.1 Bragg scattering

Assuming incidence angles between 20◦ and 60◦ the microwave radar return from
the ocean surface is dominated by Bragg scattering [Hasselmann et al., 1985]. The
backscatter is thus governed by the sea surface roughness on the scale of the radar
wavelength, which is 5.6 cm for the ERS SAR. With incidence angles between 20◦ and
26◦ the ERS SAR falls into the Bragg regime. The NRCS is related to the spectral
wave energy F contained in the short ripple waves with Bragg wavenumber kB via

σ0 = γG [F (kB) + F (−kB)] , (4.1)

where γG is a factor depending on incidence angle, polarisation and the dielectric
constant of sea water [Valenzuela, 1978; Apel, 1995]. The wave vector kB lies in the
incidence plane and has to satisfy the Bragg condition [Apel, 1995]

kB = 2 kE sin θ . (4.2)

Here, kE is the electromagnetic wavenumber and θ is the incidence angle. For the ERS
SAR the range of Bragg wavelength is between 0.065 m and 0.085 m corresponding
to incidence angles of 26◦ and 20◦. As the high frequency tail of the wave spectrum
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wind speed 5 ms−1 10 ms−1 15 ms−1

coherence time τc 0.1 s 0.052 s 0.034 s

Tab. 4.1: Coherence time τc for different wind speeds assuming C-band and 30◦ incidence
angle (adapted from Milman et al. [1993])

is characterised by a ω−5 decay of energy (compare eq. 2.22), the radar return is
increasing with decreasing incidence angles. This is an effect which can, e.g. be seen
on ERS full swath data, where the NRCS decreases in the order of 5 dB going from
near range to far range.

Apart from knowledge about the NRCS, the spatial and temporal correlation
properties of the complex reflectivity r, which is the basic quantity measured by
a SAR (compare Chapter 3), are required to model the SAR imaging process. As
in most studies, we will assume that r is a white process in the spatial domain
[Hasselmann et al., 1985].

For the temporal correlation of r in the open water we assume coherence times as
given by Milman et al. [1993] for C-band and 30◦ incidence angle, which is close the
ERS configuration. The respective values for different wind speed are summarised in
table 4.1. The auto-correlation function of r can then be written as

〈r(x1, t1) r∗(x2, t2)〉 = σ0

(
x1,

t1 + t2
2

)
δ
(
x1 − x2

)
exp

[−(t1 − t2)2

τ2
s

]
(4.3)

with angle brackets indicating averages over different realisations of the r process.

4.1.2 Two-scale model

Based on the Bragg scattering theory explained above, SAR ocean wave imaging can
be explained based on a two-scale model of the ocean wave spectrum [Hasselmann
et al., 1985; Alpers and Rufenach, 1979]. In this approach the wave spectrum is split
into short ripple waves responsible for the Bragg scattering mechanism and longer
waves modulating these local processes. The model explains the radar cross section
as seen by a conventional real aperture radar and is therefore called RAR modulation.
The dominant RAR modulation mechanism are the following [Schmidt, 1995]:

• Tilt modulation: Long waves modulate the local incidence angle and thus the
radar return according to the Bragg condition eq. 4.2 (compare Fig. 4.1).

• Hydrodynamic modulation: Hydrodynamic interactions lead to the modulation
of energy contained in the Bragg waves by longer waves.

• Range Bunching: A pure geometric effect, which leads to a modulation of SAR
image intensities associated with surface slopes caused by longer waves.

RAR modulation dominates imaging of range travelling waves and is in general as-
sumed to be a linear process [Alpers et al., 1981]. It can therefore be written using a
transfer function TR as [Hasselmann and Hasselmann, 1991]

IRL =
σ0(x, t) − 〈σ0〉

〈σ0〉 = 2Re
(∑

k

TR
k ζk exp[−i (k x− ω t)]

)
, (4.4)
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Fig. 4.2: Modulus (left) and absolute phase values (right) of theoretical RAR transfer function
(compare eq. 4.5). A right looking SAR (looking in negative ky direction) with VV
polarisation and 23.5◦ incidence angle is assumed.

where ζk is the complex spectrum of the sea surface elevation (compare eq. 2.14). As
all three modulation mechanisms are assumed to be independent TR can be expressed
as the sum of the respective transfer functions:

TR
k = T tilt

k + T hydr
k + T rb

k (4.5)

For vertical polarisation in transmit and receive (VV) and a right looking SAR
imaging geometry analytical expressions for the transfer functions are given by the
following expressions:

T tilt
k = −4 i ky cot θ

1 + sin2 θ
(4.6)

T rb
k = −i ky

cos θ

sin θ
(4.7)

T hyd
k = 4.5ω

k2
y

|k|
ω − iµ

ω2 + µ2
(4.8)

Here, µ is the hydrodynamic relaxation rate, which is chosen as 0.5 s−1 following
Hasselmann and Hasselmann [1991].

In Fig. 4.2 the modulus and absolute values of the phases of the theoretical
RAR MTF are plotted. A right looking SAR (looking in negative ky direction) with
VV polarisation and 23.5◦ incidence angle is assumed. Negative phases are found
for positive range wavenumbers and vice versa. According to the definition of the
transfer function a positive phase indicates a shift of the respective harmonic wave
in opposite wave propagation direction. It can be seen that the RAR modulation
becomes stronger with increasing range wave numbers and is negligible for waves
travelling in flight direction. The NRCS pattern is always shifted towards the radar
with respect to the sea surface elevation. Due to the hydrodynamic modulation, this
effect is stronger if the wave is propagating in opposite look direction.
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Finally, it should be noted that the choice of the separation wavenumber required
in the two-scale model is not straightforward. It can be chosen either independent of
the SAR sensor from pure electromagnetic and hydrodynamic considerations (EMH
model) [Hasselmann et al., 1985] or dependent on the SAR resolution (SAR two-scale
model) [Hasselmann et al., 1985; Kasilingam and Shemdin, 1990]. In this thesis the
view of the EMH model is taken, which is based on the backscatter from single facets
consisting of a small number (about 10) of Bragg wavelength. As shown, e.g. in
Milman et al. [1993] the white process assumption about the complex reflectivity
r (compare eq. 4.3) is well satisfied on this spatial scale. The choice of model
has some implications for the interpretation of the coherence time τs defined in eq.
4.3. Within the SAR two-scale model τs refers to the temporal decorrelation of the
backscatter returned from a SAR resolution cell, which is an order of magnitude
larger than a facet, at least for the ERS SAR system with about 20 m resolution.
As this decorrelation depends not only on the time evolution of the small scale facets
(intrinsic decorrelation) but also on the motion of the intermediate waves shorter than
twice the SAR resolution and longer than the facet size, τc has a different meaning
in this model [Vachon et al., 1993].

4.1.3 A nonlinear RAR model

A shortcoming of the linear RAR model given by eq. 4.4 not discussed in the literature
so far is the fact that negative values for the radar cross section can occur, which have
no physical meaning. Using the JONSWAP spectrum eq. 2.22 as input, Fig. 4.3 (D)
shows the percentage of image points which have a negative radar cross section as a
function of wavelength, assuming a range resolution of ρr=25 m (dashed line), which
corresponds to the ERS SAR configuration and ρr=2 m, which will be the level of
resolution achieved by future SAR systems like TerraSAR. The curve was computed
by first calculating the RAR image variance according to

〈(IRL)2〉 =
∑

k

|TR
k |2 Fk ∆k , (4.9)

and then using the fact that IRL is Gaussian distributed. One can see that the
frequency of physically meaningless predictions for the radar cross section is relative
moderate for the ERS SAR case with less than 10% even for higher waves. However,
due to the functional dependence of TR on the range wavenumber (compare eq.
4.6) the observed effect becomes stronger with increasing range resolution. For the
TerraSAR configuration the percentage is around 20% even for moderate sea states.
While the effect is regarded as acceptable for the ERS case, at least for moderate sea
states, it is certainly not tolerable for high resolution systems.

To overcome the problem described above we propose to replace the linear model
for the RAR modulation given by eq. 4.4 by an exponential formulation as follows:

σ0 〈σ0〉−1 = IRL + 1 −→ σ0 〈σ0〉−1 = α1 exp[α2 IRL] (4.10)

In the new formulation the cross section has a log-normal distribution, which is a
standard distribution used in SAR image analysis [Oliver and Quegan, 1998]. The
transformation eq. 4.10 is mainly chosen because it is simple to handle from the
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B

Fig. 4.3: (A) Probability density functions of the normalised RAR image using the linear
model eq. 4.4 (Gaussian curves) and the exponential model as given in eq. 4.10
for range resolutions of ρr=25 m (dashed curves) and ρr=2 m (solid curves). (B)
Respective functional dependence of the RAR image on the zero mean process IRL

for the exponential model (solid and dashed curve) and the linear model (dashed
dotted curve). (C) JONSWAP spectrum representing a fully developed wind sea
with 200 m wavelength and 4.5 m significant wave height. (D) Percentage of negative
RAR image points predicted by the linear model as a function of wavelength for fully
developed wind seas assuming different range resolutions.

analytical point of view, which will be important in the derivation of the nonlinear
transform in Section 4.3.2. To keep the linear and exponentiell models consistent, the
parameters α1 and α2 are chosen such that both the mean and the variance of the
linear formulation are maintained, i.e.

〈α1 exp[α2 IRL]〉 = 1 (4.11)
〈α2

1 exp[2 α2 IRL]〉 = ρII(0) + 1 , (4.12)
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where ρII(0) is the variance of the RAR image IRL. By straightforward integration
this condition leads to

α1 =
(
1 + ρII(0)

)−1/2
(4.13)

α2 =

√
log
(
1 + ρII(0)

)
ρII(0)

. (4.14)

Fig. 4.3 (A) shows a comparison of the probability density functions for σ0 〈σ0〉−1

with the linear model (Gaussian curves) and the exponential model using a fully
developed JONSWAP spectrum (C) with 200 m wavelength as input. As can be
seen the linear model predicts negative cross sections in a significant number of cases,
while the nonlinear formulation avoids this unwanted effect altogether.

4.2 Motion related SAR imaging mechanisms

In this section the impact of wave motion on the SAR imaging process is explained.
The presentation starts with a brief description of the scanning distortion effect,
which plays a minor role for spaceborne SAR systems and then moves on to the more
important velocity bunching mechanism.

4.2.1 Scanning distortion

An ocean wave imaging mechanism, which in general has to be taken into account
for scanning systems like SAR is the so called scanning distortion. This effect causes
a shearing of the imaged ocean waves due to the finite radar platform velocity. As
the ocean wave phase speed cp for a given water depth is known theoretically (com-
pare eq. 2.10), the mechanism can be readily modelled by applying the following
transformation in the spectral domain [Schmidt, 1995]:

k′
x = kx − cp

V
|k| (4.15)

k′
y = ky (4.16)

Here, (kx, ky) are the original wavenumbers referring to the underlying ocean wave
field and (k′

x, k′
y) are the corresponding wavenumbers in the the respective scanned

image.
As the ratio of phase speed to platform velocity for spaceborne SAR systems like

the ERS SAR is very small (<0.01), we will neglect it in this study. One should
be aware however that for airborne systems the effect can be significant [Schulz-
Stellenfleth and Lehner, 2001].

4.2.2 Velocity bunching

As explained in Chapter 3, SAR determines the azimuth position of backscattering
objects by recording the Doppler history of the returned signals. As sea surface motion
leads to a velocity component ur of a backscattering ocean surface facet towards the
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Fig. 4.4: Illustration of the velocity bunching mechanism. Water particles performing a circu-
lar motion (compare Chapter 2) have a velocity component in slant range direction
of the radar. The resulting Doppler shift leads to shifts of the corresponding image
points in the azimuth direction.

radar (slant range) the resulting effect is a shift of the corresponding SAR image point
in flight direction [Lyzenga et al., 1985] by a distance

ξx =
R

V
ur . (4.17)

For SAR imagery acquired over land this effect is for obvious reasons known as the
“train off the track” effect. In case of the ocean the periodic movement of the surface
leads to an alternate stretching and bunching of image intensities in azimuth (velocity
bunching). The velocity bunching effect is a governing factor for SAR imaging of
azimuth travelling waves and is in general strongly nonlinear [Alpers and Brüning,
1986].

Based on a standard SAR image processing procedure as described in Chapter 3,
a model was derived for a SAR intensity image of a moving sea surface [Brüning et al.,
1990]. Assuming that the NRCS of the sea surface is given by σ0 and furthermore
that the orbital velocity associated with the ocean waves has a slant range component
ur, an integral expression for the SAR intensity image is given by [Brüning et al.,
1990]:

Iσ(x) =
πT 2

0 ρa

2

∫
σ0(x′)
ρ̂a(x′)

exp
[
−π2

ρ̂2
a

(
x − x′ − β ur(x′)

)2]
δ(y′ − y) dx′dy′ . (4.18)

Here, x and y are the azimuth and range coordinates, β is defined as

β =
R

V
, (4.19)
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T0 is the SAR integration time and ρ̂a is the degraded azimuthal resolution given by

ρ̂a = ρa

√
1 +

T 2
0

τ2
s

, (4.20)

with scene coherence time τs and azimuth resolution ρa. Eq. 4.18 is based on the SAR
processing procedure as described in Section 3.1, in particular with antenna pattern as
defined in eq. 3.11. Furthermore, the correlation properties of the complex reflectivity
r given in eq. 4.3 are used in the derivation.

A simple model for the orbital velocity required in eq. 4.18 is based on the linear
wave theory presented in Chapter 2. As explained before, individual water particles
follow a circular trajectory (compare Fig. 4.4), if deep water is assumed and nonlinear
effects are neglected. In this case the slant range component of the orbital velocity
component ur can be related to the complex spectrum of the sea surface ζk via

ur(x, t) = 2 Re
(∑

k

T u
k ζk exp

[−i (k x − ω t)
])

, (4.21)

where T u is the orbital velocity transfer function, which is for a right looking SAR
system given by [Hasselmann and Hasselmann, 1991]

T u
k = −ω

(ky

k
sin θ + i cos θ

)
. (4.22)

For small incidence angles the slant range velocity ur is 90◦ phase shifted in wave
propagation direction with respect to the surface elevation η and T u simplifies to

T u
k ≈ −i ω . (4.23)

The sign convention for ur is such that positive velocities indicate a movement of the
imaged facette towards the radar.

4.3 Cross spectra integral transform

Eq. 4.18 provides a mapping relation between one realisation of the ocean surface and
the corresponding SAR image. In principle the transform can be used to estimate
SAR image variance spectra or look cross spectra using a Monte Carlo technique
as, e.g. performed in Brüning et al. [1990] or Schulz-Stellenfleth and Lehner [2001].
However, due to the computational effort this method is not practical for ocean wave
retrieval schemes. The problem was solved however by the derivation of an analytical
expression for the statistical moments of the SAR intensity image. For the first
moment it can be shown [Krogstad, 1992] that

〈Iσ〉 = 〈σ0〉 , (4.24)

i.e. the velocity bunching mechanism maintains the mean RAR image intensity. The
second moments were derived in Hasselmann and Hasselmann [1991] relating the
ocean wave spectrum F to the SAR image variance spectrum ΦII . This expression
was later extended to include finite SAR resolution and coherence time [Bao et al.,
1993] as well as SAR cross spectra [Engen and Johnson, 1995].
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4.3.1 Integral transform derived by Engen & Johnson

Based on the linear model for the RAR image modulation eq. 4.4 the following
integral transform relates F to the SAR cross spectrum of the normalised looks
Ii = 〈Iσ〉−1 (Ii

σ − 〈Iσ〉), i = 1, 2 separated by the time ∆t [Engen and Johnson,
1995]:

ΦI1I2

k =
1

4 π2
exp[−k2

xβ2 ρu(0, 0)]
∫

d 2x exp[−i k x] exp[k2
x β2 ρuu(x,∆t)]

·
[
1 + ρII(x,∆t) + i kx β

(
ρIu(x,∆t) − ρIu(−x,−∆t)

)
+(kx β)2

(
ρIu(x,∆t) − ρIu(0, 0)

)(
ρIu(−x,−∆t) − ρIu(0, 0)

)]
(4.25)

Here, the cross-covariance functions ρII , ρuu and ρIu are defined as follows:

ρII(x,∆t) = 0.5
∫

d2x
(
Fk |TR

k |2 exp[iω∆t]

+F−k |TR
−k|2 exp[−iω∆t]

)
exp[i k x] (4.26)

ρIu(x,∆t) = 0.5
∫

d2x
(
Fk TR

k (T u
k )∗ exp[iω∆t]

+F−k (TR
k )∗ T u

−k exp[−iω∆t]
)

exp[i k x] (4.27)

ρuu(x,∆t) = 0.5
∫

d2x
(
Fk |T u

k |2 exp[iω∆t]

+F−k |T u
−k|2 exp[−iω∆t]

)
exp[i k x] (4.28)

Expanding the transform eq. 4.25 to first order with respect to the wave spectrum F
yields the linear approximation [Hasselmann and Hasselmann, 1991]

ΦI1I2

k (∆t) ≈ 0.5
(
|T S

k |2 exp(i ω ∆t)Fk + |T S
−k|2 exp(−i ω ∆t)F−k

)
(4.29)

with SAR transfer function T S given by

T S
k = TR

k − i
R

V
kx T u

k . (4.30)

Expanding only the integral part of eq. 4.25 to linear order, keeping the leading
exponential factor yields the quasi-linear transform given by

ΦI1I2

k (∆t) ≈ 0.5 exp
[
−k2

x β2 ρu(0)
]

(
|T S

k |2 exp[i ω ∆t]Fk + |T S
−k|2 exp[−i ω ∆t]F−k

)
. (4.31)

To simplify the notation the auto-covariance function of ur is written as

ρu(x) = ρuu(x, 0) (4.32)

and hence ρu(0) is the respective orbital velocity variance. The quasi-linear forward
model is helpful as it allows a simple first order retrieval of two-dimensional wave
spectra from SAR cross spectra.
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A B
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Fig. 4.5: Simulation of the SAR ocean wave imaging mechanism based on the nonlinear trans-
form given by eq. 4.25 with wave spectrum (A) representing a fully developed wind
sea of 200 m wavelength and 4.5 m wave height used as input, and resulting real part
(C) and imaginary part (D) of the look cross spectrum. The imaging parameters of
the ERS-2 SAR (compare table 5.1) were used for the simulation. The respective
real part obtained with the quasi-linear model eq. 4.31 is shown in (B). Dashed
isolines indicate negative values.

Fig. 4.5 shows a simulation of a look cross spectrum using a JONSWAP ocean
wave spectrum with a fully developed wind sea system of 200 m wavelength (A) and
4.5 m significant wave height as input. The simulated real part and imaginary part
of the cross spectrum are shown in Fig. 4.5 (C) and (D). One can see that, despite
the distortions caused by the azimuthal cut-off and the nonlinear coupling of different
wave components, the spectral peak of the ocean wave spectrum is still clearly visible
in the cross spectrum with the correct propagation direction indicated by the positive
peak of the imaginary part. Fig. 4.5 (B) shows the respective real part of the cross
spectrum obtained with the quasi-linear model eq. 4.31. It can be seen that the
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overall agreement with the nonlinear model is good in particular for longer wave
components. The strongest deviations are observed in the cut-off region, where non-
linear coupling causes a shift of energy from shorter azimuth waves towards longer
wave components.

4.3.2 New integral transform for high resolution SAR systems

In this section the derivation of a new transform analogue to eq. 4.25 with the linear
RAR model replaced by the nonlinear formulation introduced in Section 4.1.3 (com-
pare eq. 4.10) is presented. The transform is supposed to be a basis for inversion
schemes, which have high resolution SAR data as, e.g. provided by TerraSAR as in-
put. As shown in Section 4.1.3 the linear model fails to provide a realistic distribution
of image intensities for such systems.

Using the stationarity and homogeneity of the sea surface, the look cross spectrum
ΦI1I2

can be written as (compare eq. 3.22)

ΦI1I2

k =
α2

1

4π2

∫
G(x, kx) exp[−i k x] dk (4.33)

with α1 given by eq. 4.13 and G function defined as follows:

G(x, kx) = 〈exp[α2 IRL(x,∆t)+α2 IRL(0, 0)− i kx
R

V
(ur(x,∆t)−ur(0, 0))]〉 (4.34)

G can be written in terms of the characteristic function [Honerkamp, 1993] as

K(t) = 〈exp(i tT X)〉 , (4.35)

with vectors t and X defined as follows:

X =
(
IRL(x, t), IRL(0, 0), ur(x, t), ur(0, 0)

)T
(4.36)

t =
(
−i α2,−i α2,−kx

R

V
, kx

R

V

)T
(4.37)

Using the assumption that the wave field is Gaussian distributed the characteristic
function K can be written as [Krogstad, 1992]

K(t) = exp(i t 〈X〉 − 1
2
tT H t) (4.38)

with covariance matrix H given by

H =

⎛
⎜⎜⎝

ρII(0, 0) ρII(x,∆t) ρIu(0, 0) ρIu(x,∆t)
ρII(x,∆t) ρII(0, 0) ρIu(−x,−∆t) ρIu(0, 0)
ρIu(0, 0) ρIu(−x,−∆t) ρuu(0, 0) ρuu(x,∆t)

ρIu(x,∆t) ρIu(0, 0) ρuu(x,∆t) ρuu(0, 0)

⎞
⎟⎟⎠ . (4.39)

Inserting eqs. 4.37, 4.39 into eq. 4.38, the G function can be expressed in terms of
the auto and covariance functions eq. 4.26-4.28 as follows:

G(x, kx) = α2
1 exp

[
α2

2 ρII(0, 0) − β2 k2
x ρuu(0, 0)

]
exp

[
α2

2 ρII(x,∆t)
]

exp
[
i β α2 kx

(
ρIu(x, t) − ρIu(−x,−∆t)

)
+ β2 k2

x ρu(x,∆t)
]

(4.40)
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A B 

Fig. 4.6: (A) Modulus of cross spectrum simulated with the transform eq. 4.25, which is based
on the linear model for the RAR image, using the JONSWAP spectrum shown in Fig.
4.3 (C) as input. (B) The same as (A), but using the modified integral transform
eq. 4.33, which avoids the occurrence of negative NRCS values.

Here, we have used that
〈X〉 = 0 . (4.41)

Inserting eq. 4.40 into eq. 4.33 yields the nonlinear transform for the look cross
spectrum based on the nonlinear RAR model.

Expanding the x dependent part of G to first order with respect to the wave
spectrum F yields a quasi-linear transform analogue to eq. 4.31

ΦI1I2

k = 0.5 exp[α2
2 ρII(0, 0) − β2 k2

x ρu(0)]
(
|T S

k |2 Fk + |T S
−k|2 F−k

)
(4.42)

with modified SAR transfer function

T S
k = α1(α2 TR

k − i kx β T u
k ) . (4.43)

Here, α1, α2 are functions of the RAR variance ρII(0) (compare eqs. 4.13, 4.12).
The transform eq. 4.33 can be computed numerically using the following expan-

sion

ΦI1I2

k =
α2

1

4 π2
exp

[
α2

2 ρII(0, 0) − β2 k2
x ρu(0)

]
∞∑

n=0

n∑
j=0

(i α2)j (β kx)n+j

j! (n − j)!
Zj,n , (4.44)

with functions Z defined as

Zj,n =
∫

exp[α2
2 ρII(x,∆t)]

(
ρIu(x,∆t) − ρIu(−x,−∆t)

)j

·
(
ρuu(x,∆t)

)n−j
exp[−i k x] d2x , (4.45)
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which can be computed efficiently using FFT methods.
Fig. 4.6 shows a comparison of the look cross spectrum real part computed with

the transform eq. 4.25 (A) and eq. 4.33 (B) respectively using the JONSWAP
spectrum in Fig. 4.3 (C) as input. The TerraSAR configuration is assumed in the
simulation. It can be seen that the overall shape and energy levels of the spectrum
are maintained. However, there are some obvious differences in the exact shape of
the spectral peaks.

In conclusion one can say that for the ERS SAR and the ENVISAT ASAR the
described shortcoming of the linear RAR model eq. 4.4 is tolerable at least for
moderate sea states. The change of the SAR cross spectrum using the nonlinear RAR
model eq. 4.10 is negligible if the overall uncertainties in the RAR model are taken
into account. However, for high resolution systems like TerraSAR the linear model
should be replaced in order to avoid artefacts caused by unrealistic distributions of
image intensities.

4.3.3 Azimuthal cut-off

Finally, we return to the standard imaging theory as described in Section 4.3 and
explain a SAR ocean wave imaging characteristic, which will be used in Chapter 7.

As could be seen in Fig. 4.5, an important feature of the SAR ocean wave imaging
process is a low pass filtering of the image spectrum in the azimuth direction. On
one hand the azimuthal cut-off leads to obvious information loss on shorter waves
travelling in the flight direction, on the other hand the width of the cut-off contains
valuable information about the orbital velocity variance ρuu(0) caused by all ocean
wave components together. This will fact will be used in Chapter 7 to measure
damping of waves by sea ice.

The theoretical cut-off wavelength is given by [Mastenbroek and de Valk, 2000;
Kerbaol et al., 1998]

λcut = 2π

√
(
R

V
)2 ρu(0) +

ρ̂2
a

4π2
(4.46)

with ρ̂a as defined in eq. 4.20. The dependence of λcut on coherence time and orbital
velocity variance for the ERS SAR and ENVISAT ASAR configuration is shown in
Fig. 4.7 assuming an azimuthal resolution ρa of 20 m and respective integration time
of 0.33 s, which represents the ERS SAR case if a look with half bandwidth is used.
The plot is shown for half bandwidth looks, because a technique to estimate the
cut-off, which is based on the multi-look technique is introduced in Chapter 7.

As can be seen, the dependence of λcut on coherence time τs is weak given the
indicated coherence times for C-band radar and wind speeds of 5, 10 and 15 ms−1

(compare table 4.1). The dependence of λcut on coherence time is stronger for airborne
SAR as the R over V ratio is usually smaller in that case [Vachon et al., 1993].

4.4 Linear inversion

The chapter is closed with a simple linear inversion scheme, which will be applied
to the data introduced Chapter 5 for a first consistency check. As the scheme has
the SAR look cross spectrum as the only input, it is necessarily restricted to the low
frequency part of the spectrum as explained in the previous sections. The objective
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Fig. 4.7: Theoretical cut-off wavelength λcut (compare eq. 4.46) depending on coherence time
τs and orbital velocity variance ρu(0). The dashed lines represent coherence times
for different wind speeds as given in Milman et al. [1993] for C-band radar.

is to have a simple analytical tool to analyse the ocean wave information contained in
SAR look cross spectra. The method was particularly helpful in sorting out problems
with regard to the processing of the first global data set of cross spectra. A more
sophisticated scheme, which takes into account nonlinear effects and also deals with
the azimuth cut-off problem will be presented in Chapter 9.

A simple inversion approach is to search for a wave spectrum, which minimises
the cost function

J(F ) =
∫

|Φsim
k − Φobs

k |2 dk (4.47)

under the side condition
Fk ≥ 0 . (4.48)

Here, Φsim is the simulated and Φobs is the observed look cross spectrum. Using the
linear forward model eq. 4.29 to describe the imaging process, it is straightforward
to show that the free solution F , i.e. neglecting the side condition eq. 4.48 is given
by [Schulz-Stellenfleth and Lehner, 2000]

F k =
sin(ω∆t) Re ΦI1I2

k + cos(ω ∆t) ImΦI1I2

k

|T S
k |2 cos(ω ∆t) sin(ω∆t)

. (4.49)

In fact, for this solution one has

J(F ) = 0 . (4.50)

In case the free solution has negative energy components for either F k or F−k,
the least squares solution is obtained by orthogonal projection of the observed cross
spectrum onto the set of feasible solutions as indicated in Fig. 4.8. As the wave
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Fig. 4.8: Illustration of the sign condition Fk ≥ 0 to be taken into account in the linear
cross spectra inversion. In case the measured cross spectrum lies outside the feasible
regime the free solution for the wave spectrum F (compare eq. 4.49) has negative
energy values. A least square solution is then found by the projection of the obser-
vation onto the set of feasible cross spectra components. The transfer function T is
defined in eq. 4.51.

components are decoupled in the linear forward model this approach minimises the
cost function eq. 4.47. The transfer function T indicated in Fig. 4.8 is defined as:

T k = 0.5 exp(i ω ∆t) |T S
k |2 (4.51)

As can be seen, one has to distinguish between the following three cases corresponding
to the different regimes indicated in Fig. 4.8:

Fk =

⎧⎪⎪⎨
⎪⎪⎩

F k : F k ≥ 0 ∧ F−k ≥ 0

2 |T S
k |−2 Re

(
exp(−i ω ∆t)ΦI1I2

k

)
: Re

(
Φk(T k)∗

)
≥ 0 ∧ F−k < 0

0 : Re
(
Φk(T k)∗

)
< 0 ∧ Re

(
Φk(T−k)

)
< 0

Results obtained by applying the above scheme to ERS-2 wave mode data are pre-
sented in Chapter 8.



Chapter 5

DESCRIPTION OF DATA

In this chapter different types of SAR and numerical model data used in the thesis are
introduced. In the first part ERS-2 data acquired in wave mode and full swath mode
are described. The wave mode data set used in this study is not an official ESA data
product and therefore requires a more detailed introduction. Finally, information is
given about ocean wave model data used for comparison with ERS-2 SAR data in
Chapter 8 and used as prior information for the retrieval scheme presented in Chapter
9.

5.1 ERS SAR data

Fig. 5.1: Imaging geometry of the ERS-2 SAR in wave mode and full swath mode.

The SAR data used in this study were acquired by the European remote sensing
satellite ERS-2, which was launched in 1995. The ERS-2 has a sun-synchronous
orbit with an inclination of 21◦, which permitts data acquisitions up to 82◦ N/S
latitude. The SAR onboard ERS-2 can be operated in two different modes, which
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Parameter Value
Radar frequency 5.300 GHz
Radar wavelength 5.7 cm
Polarisation VV
Flight altitude 800 km
Velocity 7 km s−1

Orbit period 100 min
Azimuth resolution ≈ 5 m
Slant range resolution ≈ 10 m
PRF 1656 Hz
Antenna size 10 by 1 m
Range bandwidth 15.5 MHz
Azimuth bandwidth 1378 Hz
Look direction right looking
Integration time (processed) 0.66 s

Tab. 5.1: General parameters of the ERS-2 SAR.

can be selected on demand (compare Fig. 5.1). The general technical parameters of
the ERS-2 SAR are summarised in table 5.1. The special characteristics of the two
acquisition modes will be explained in the following.

5.1.1 ERS-2 SAR wave mode

Operating in wave mode the ERS-2 provides 10 × 5 km2 SAR images (imagettes)
every 200 km along the track (compare Fig. 5.1). The data can be stored on an
onboard tape recorder, so that acquisitions are possible independent of receiving
stations. According to the standard procedure, the imagettes are processed to SAR
image variance spectra at the European Space Agency (ESA) and delivered to users
like the ECMWF in near real time. Several studies showing the potential of the
standard ESA products for ocean wave measurements have been performed [Heimbach
et al., 1998; Mastenbroek and de Valk, 2000; Breivik et al., 1998]. The main wave
mode parameters are summarised in table 5.3.

The wave mode data presented in this study are not an ESA standard product,
but were reprocessed from raw data using the DLR BSAR processor [Breit et al.,

Period number data volume
Aug 21, 1996 - Sep 9, 1996 26164 96 GB
Oct 4, 1996 - Oct 9, 1996 6594 26 GB

June 1, 1997 - June 2, 1997 1630 6 GB
27 days 34388 128 GB

Tab. 5.2: Periods of the reprocessed complex ERS-2 wave mode imagettes available for the
study.
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Fig. 5.2: Base band estimates of the Doppler centroid frequency fdc for a global ERS-2 im-
agette data set acquired on June 1, 1997, reprocessed with the DLR BSAR processor.

1997]. They represent the first global data set of complex wave mode imagettes and
thus allow a global statistical analysis of the cross spectra technique for the first time.
About 35000 complex ERS-2 imagettes with the exact periods summarised in table
5.2 are available up to now.

Details of the wave mode processing are given in [Lehner et al., 2000]. The main
adjustments required to apply the BSAR processor to wave mode data are as follows:

• An important extension to BSAR for complex wave mode data processing was
the incorporation of a range-expansion step. Since BSAR uses the chirp-scaling
algorithm [Raney et al., 1994; Breit et al., 1997], the on-board range-compressed
wave mode data have to be expanded into chirp raw data required as input for
the chirp-scaling algorithm. Moreover, the ERS on-board range compression,
achieved by a dispersive surface acoustic wave delay line, causes an additional
range time delay with respect to the ERS image mode, which has to be taken
into account [Lehner et al., 2000].

• Although several Doppler ambiguity resolving algorithms exist, which deal with
low contrast scenes [Bamler, 1991; Bamler, 1993; Wong and Cumming, 1996],
they usually require a significant amount of SAR signal samples to be analysed,
exceeding by far the ERS wave mode cell size of about 2400 range lines with
528 range-compressed samples each. An analysis of about 25000 ERS-1 and
6000 ERS-2 SAR image mode products produced at the German PAF showed
that the ERS image mode Doppler values obtained during the nominal ERS
operation in yaw-steering mode (i.e. manoeuvre situations excluded), follow a
nominal behaviour around an orbit [Lehner et al., 2000]. Therefore, a Doppler
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A B

C

D

Fig. 5.3: Test of wave mode processing using an imagette acquired over land. The variance
spectra in range and azimuth are shown in (A) and (B). The corresponding cross
spectra phases are given in (C) and (D). The dashed lines indicate the expected
phases for ocean waves (in deep water).

prediction table containing the expected Doppler value in dependence of the
geographical latitude for ascending and descending orbits was incorporated into
BSAR and used for the Doppler ambiguity resolving.

As an illustration of the last point, Fig. 5.2 shows the base bands estimates of the
Doppler centroid for imagettes acquired on Sep 5, 1996. As one can see, fdc is shifted
into adjacent PRF bands at several locations. If this effect is not taken into account,
i.e. the base band values as given in Fig. 5.2 are used for the processing, the resulting
imagettes are strongly defocused. The effect was first detected by a simple test based
on the computed look cross spectrum of imagettes acquired over land. In the case of
accurate processing, the land should be stationary and thus the imaginary part of the
cross spectrum is expected to be zero. For a better visualisation, the test is performed
both in range and azimuth direction separately. For this purpose a one-dimensional
range cross spectrum

Φy =
∫

ΦI1I2

k dx (5.1)

and azimuth cross spectrum

Φx =
∫

ΦI1I2

k dy (5.2)

is defined by integrating over the azimuth and range dimension x and y respec-
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Parameter Full swath Wave mode
Pixel size slant range 7.9 m 7.9 m
Pixel size azimuth 4 m 4 m
Incidence angles 20.1◦ -25.9◦ 23.5◦ (since June 1995)
Image size azimuth 100 km 5 km
Image size range 100 km 10 km
I/Q quantisation 5 bit/5 bit 4 bit/4 bit

Tab. 5.3: Technical parameters of the ERS-2 SAR full swath mode and wave mode.

tively. Fig. 5.3 shows the phases of these spectra together with the respective one-
dimensional image variance spectra for the imagette shown in Fig. 5.4 (B), which
was acquired over Australia. The fdc prediction table as described above was used to
resolve the PRF ambiguity in this case. The dashed lines indicate the phase expected
for ocean waves in deep water. As one can see, the phase is in fact negligible at least
in the spectral regime with significant spectral energy in the image. For wavenumbers
with low spectral energy the respective cross spectrum phase is strongly affected by
noise. A detailed explanation of this effect will be given in Chapter 6.

The system transfer function for the reprocessed data was estimated using ho-
mogeneous imagettes acquired over continental ice. Fig. 5.4 (A) shows an imagette
acquired over Antarctica on Sep 7, 1996. The respective cuts through the variance
spectrum in the range and azimuth direction are shown in Fig. 5.4 (C) and (D). The
horizontal line indicates the theoretical speckle noise level ΦS

k as given by eq. 3.40.
One can see, that the transfer function is reasonably constant for wavelengths longer
than 100 m (≈ 0.06 rad s−1), which is the important regime for typical SAR wave
measurements.

A comparison of the UWA spectrum, which is the ESA wave mode standard
product, and the reprocessed data is shown in Fig 5.5. The intensity of an imagette
(A) acquired on Sep 1, 1996 at N 34.71◦, W 22.92◦ is given together with the respective
UWA spectrum (B) and the corresponding real part (C) and imaginary part (D) of
the cross spectrum as derived from the reprocessed complex data. The cross spectrum
is given on the polar grid, which is used for the standard ENVISAT ASAR wave mode
product.

5.1.2 ERS SAR full swath mode

Operating in full swath mode, the ERS-2 SAR scans a swath of 100 km width (com-
pare Fig. 5.1). The resulting standard ESA products are SAR images of 100 by 100
km size. In contrast to wave mode data, full swath scenes can only be acquired when
receiving stations are in line of sight. The full swath acquisition time is limited to 12
minutes per orbit. Full swath mode specific imaging parameters are summarised in
table 5.3.

The ERS scenes used in this study were acquired over the marginal ice zone of
the Greenland Sea and the Weddell Sea. The data were downlinked to the respective
receiving stations in Kiruna (Sweden) and O’Higgins (Antarctica).
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Fig. 5.4: Cut in range (C) and azimuth (D) direction through the speckle variance spectrum
of the homogeneous ERS-2 wave mode imagette (SLC) shown in (A) acquired over
continental ice in Antarctica. The horizontal line represents the speckle noise level
calculated according to eq. 3.40. The image shown in (B) was acquired over Aus-
tralia.

5.2 Wave model data

In this thesis two types of wave model data are used. For the analysis of the repro-
cessed imagette data set, collocated two-dimensional wave spectra were provided by
the ECMWF. The data are standard output from the operational WAM model runs
performed at ECMWF at the four synoptical hours 00:00, 06:00, 12:00, and 18:00
UTC. The temporal gap between WAM and SAR measurement is thus less than 3
hours. The model is driven by U10 wind fields computed with the atmospheric general
circulation model (AGCM). The operational WAM model was run with a 1.5◦ × 1.5◦

latitude-longitude grid. The collocation distance to the ERS-2 imagettes is thus less
than 0.75◦. The internal time step of the model is 20 minutes.

The wave model data are given on a polar grid with 30◦ directional resolution and
25 frequencies with logarithmic spacing according to

fi = f0 1.1i i = 0, ..., 24 (5.3)

with lowest frequency bin f0 given by

f0 = 0.04177 Hz (5.4)
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A B

C D

Fig. 5.5: (A) ERS-2 wave mode imagette (intensity) acquired on Sep 1, 1996 at 34.71◦N,
22.92◦W showing ocean waves. (B) Standard ERS-2 UWA spectrum computed
from the imagette shown in (A). (C,D) Real part (C) and imaginary part (D) of
the look cross spectrum computed from the respective complex imagette, which was
processed with the DLR BSAR processor. The cross spectrum is shown on the polar
grid, which is used for the standard ENVISAT wave mode product.

For deep water, these frequencies correspond to wavelengths between 9 m and 895 m.
For the analysis of ocean waves travelling into sea ice presented in Chapter 7,

dedicated WAM model runs [WAMDI Group, 1988] were performed for the Atlantic.
The WAM model was set up on a 1◦ grid using analysed ECMWF wind fields (e.g.
with scatterometer data assimilated) as input.
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Chapter 6

DISTRIBUTION OF THE ESTIMATED LOOK CROSS SPECTRUM

In this chapter a noise model for estimated SAR look cross spectra acquired over the
ocean is presented, which was first introduced in Schulz-Stellenfleth et al. [2002]. The
investigation is meant to contribute to a better understanding and quantification of
the information contained in look cross spectra used for ocean wave measurements,
which are now becoming available from the new satellite ENVISAT on an operational
basis. The analysis has the following main objectives:

• Derive error bars for the estimated cross spectrum phase as well as the real and
imaginary part.

• Identify the dominant factors in the estimation uncertainty, taking into account
parameters of both the SAR system and the underlying ocean wave field.

• Use the derived model to optimise parameters like look separation time.

The analysis is based on a simple second order statistical model for the joint distri-
bution of the discrete complex look spectra (compare eq. 3.26). The investigation
uses results presented in Tough et al. [1995], where the same model was applied in

t∆

L2L1

Φγ

Fη(  )t NOISE

pdfΦ

η(       )t+

SNR waveγ γ

Fig. 6.1: Diagram illustrating the relationship between the sea surface elevation field η, the
SAR looks L1, L2, the estimated cross spectrum Φ̂, the ocean wave spectrum F , the
expected cross spectrum Φ, the coherence γ, and the SAR speckle noise.
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Fig. 6.2: (A) Standard deviation of the cross spectrum phase estimated by averaging
N=1,4,9,16 complex samples. (B) The same as (A) for the normalised cross spec-
trum magnitude. (C,D) Theoretical signal to noise ratio of the cross spectrum phase
as a function of wavelength for a coherence of γ = 0.95 (C) and γ = 0.5 (D). Deep
water and a look separation time of ∆t = 0.33 s is assumed.

a different context to describe phase statistics in SAR interferometry. A diagram
illustrating the different components in the model is given in Fig. 6.1.

The chapter is structured as follows: First of all, the basic model is introduced,
which has the cross spectrum coherence as a key parameter. Based on this model
error estimates for the cross spectrum phase are given depending on coherence and the
number of averaged samples used to estimate the cross spectrum. In the second step a
product model is introduced, which relates the coherence to SAR system parameters
like resolution as well as to the underlying ocean wave spectrum. The model enables
the simulation of the phase statistics using a nonlinear integral transform to describe
the ocean wave related decorrelation effect. Finally, the model is applied to optimise
the look separation time.

6.1 A statistical model for the estimated cross spectrum

In this section a noise model for estimated look cross spectra is introduced. The model
describes the statistics of an assemble of look cross spectra, which are generated by:

• Different realisations of the ocean surface for a fixed ocean wave spectrum.
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• Different realisations of SAR image speckle.

The noise model is based on assumptions about the discrete complex spectrum of the
two looks. It is assumed that both discrete look spectra Î1

k , Î2
k (eq. 3.26) are circular

Gaussian processes with identically distributed and independent real and imaginary
part. These properties can be justified by looking at the equivalent properties of the
corresponding phase and intensity:

• According to standard theory, the phase of the spectral components of the
ocean wave field is uniformly distributed [Komen et al., 1994]. It is therefore
reasonable to assume that the phase of the complex Fourier spectra of the two
looks are uniformly distributed, too.

• The squared magnitude of a circular Gaussian process has a negative exponen-
tial distribution. This is exactly what we expect for the periodogram, i.e. the
squared magnitude of Îk according to standard estimation theory [Honerkamp,
1993].

A simple second order model, which reproduces both properties, at the same time
introducing a correlation between the two complex spectra Î1

k , Î2
k is given by the

following probability density function (pdf) [Tough et al., 1995; Bamler and Hartl,
1998]

pdf
[(Î1

k

Î2
k

)]
=

1
π2|Ck| exp

[
−
(

Î1
k

Î2
k

)∗T
C−1

k

(
Î1
k

Î2
k

)]
, (6.1)

with covariance matrix Ck given by

Ck =

⎛
⎝ 〈|Î1

k |2〉 γk

√
〈|Î1

k |2〉 〈|Î2
k |2〉

γ∗
k

√
〈|Î1

k |2〉 〈|Î2
k |2〉 〈|Î2

k |2〉

⎞
⎠ (6.2)

and coherence γk defined as

γk =
〈Î1

k (Î2
k)∗〉√

〈|Î1
k |2〉 〈|Î2

k |2〉
. (6.3)

In the framework of look cross spectra acquired over the ocean we can assume 〈|Î2
k |2〉 =

〈|Î1
k |2〉 as explained in Chapter 3.
Depending on the coherence γk and the number of averaged periodograms, proba-

bility density functions can be derived [Tough et al., 1995] for the real and imaginary
part as well as the phase and magnitude of the cross spectrum estimator given in
eq. 3.28. Analytical expressions for the pdfs can be found in Appendix A. Fig. 6.2
shows the standard deviations of phase (A) and normalised magnitude (B) of the
estimator (eq. 3.28) as a function of coherence for different numbers of averaged
cross periodograms. For example, one can see that a coherence of more than 0.9 is
required if the standard deviation is supposed to be less than 40◦ in case no averaging
is performed at all. The respective signal to noise ratio of the phase assuming a linear
imaging model and a look separation time of ∆t = 0.33 s is shown in Fig. 6.2 (C) and
(D) for a coherence of 0.95 and 0.5 respectively. One can see that even in the case



Chapter 6. DISTRIBUTION OF THE ESTIMATED LOOK CROSS SPECTRUM 54

A B

Fig. 6.3: (A) Dependence of the coherence γSNR on the signal to noise ratio (SNR) of the
look variance spectrum SNRII

k . (B) Coherence γwaves in the case of standing waves
as a function of wave period for two different look separation times.

of higher coherence smoothing is absolutely necessary to extract useful information
from the cross spectrum phase, i.e. to make sure that the signal to noise ratio is
above 0 dB.

6.2 A product model for the cross spectrum coherence

In this section a product model is proposed for the look cross spectrum coherence,
which was first presented in Schulz-Stellenfleth et al. [2002]. The first part of the
model describes decorrelation of the look wave patterns due to speckle noise. The
second part explains decorrelation caused by wave motion.

As explained in Section 3.4, the first order effect of speckle in the look variance
spectrum is an additive noise floor, i.e. for both looks one has

〈|Ĩk|2〉 = ΦII
k + ΦS

k , (6.4)

where Ĩk is the estimated Fourier spectrum of the speckled looks and ΦII is the
variance spectrum of the noise-free looks. The coherence for the speckled images can
then be written as

γk =
〈Ĩ1

k (Ĩ2
k)∗〉

ΦII
k + ΦS

k

=
ΦI1I2

k

ΦII
k + ΦS

k

, (6.5)

where we have used that the speckle noise cancels out in the cross spectrum as ex-
plained in Section 3.4. The last expression can be factored as

γk = γSNR
k γwaves

k (6.6)

with the factor γSNR describing the (non-coherent) impact of speckle noise defined
as

γSNR
k =

ΦII
k

ΦII
k + ΦS

k

=:
1

1 + (SNRII
k )−1

. (6.7)
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A B

Fig. 6.4: (A) JONSWAP ocean wave spectrum representing a fully developed wind sea of
100 m length. (B) Simulated cross spectrum coherence γwaves associated with the
nonlinear SAR wave imaging mechanism.

Here, SNRII is the signal to noise ratio in the look variance spectrum given by

SNRII
k =

ΦII
k

ΦS
k

. (6.8)

Fig. 6.3 (A) shows the dependence of γSNR on SNRII
k . One can see that a signal to

noise ratio of at least 10 dB is required to achieve a coherence of 0.9. The second
factor γwaves

γwaves
k =

ΦI1I2

k

ΦII
k

(6.9)

describes the decorrelation effects associated with the motion of the sea surface. It
has a complicated dependence on the ocean wave spectrum as explained in the next
section.

6.3 Dependence of coherence on the ocean wave spectrum

In this section the dependence of γwaves on the ocean wave spectrum is analysed.
Using the forward model, which relates the ocean wave spectrum F to the SAR cross
spectrum ΦI1I2

derived in Engen and Johnson [1995] for the nominator in eq. 6.9 and
the respective model for the SAR image variance spectrum developed in Hasselmann
and Hasselmann [1991] for the denominator, one obtains a nonlinear forward model
for the cross spectrum coherence

F −→ γwaves . (6.10)

The SAR image variance spectrum ΦII is a special case of the cross spectrum with
identical looks, i.e. zero look separation time ∆t, and can therefore be readily calcu-
lated using the more general cross spectrum model transform given by eq. 4.25.
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Fig. 6.5: Estimated coherence γ as a function of the signal to noise ratio of the look variance
spectrum (compare eq. 6.17) derived from 1000 reprocessed ERS-2 wave mode im-
agettes. The dashed line represents the expected look decorrelation γSNR associated
with speckle noise (compare eq. 6.7).

A first order analysis of the cross spectrum coherence is performed by using a
quasi-linear approximation for both the image variance and the cross spectrum (com-
pare eq. 4.31). This approach yields the following expression

γwaves
k (F,∆t) =

exp(iω∆t) |T S
k |2 Fk + exp(−iω∆t) |T S

−k|2 F−k

|T S
k |2 Fk + |T S

−k|2 F−k
, (6.11)

where T S is the SAR transfer function as defined in eq. 4.30.
First assume that there are no wave components propagating in opposite direction,

e.g. Fk F−k = 0. In that case one has

|γwaves
k | = 1 , (6.12)

and hence there is no decorrelation between the looks at all. The other extreme case
is Fk = F−k, i.e. standing waves. In this situation eq. 6.11 becomes

γwaves
k (F,∆t) ≈ cos(ω∆t) , (6.13)

which is an approximation because the SAR transfer function is not exactly sym-
metric. However, the last relationship shows that waves propagating in opposite
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Fig. 6.6: (A) Azimuth cut through the peak of the coherence of the cross spectrum shown in
Fig. 3.4 for look separation times of ∆t = 0.33 s and ∆t = 0.45 s. (B) The same as
(A) for the imaginary part of the cross spectrum.

directions are one cause of reduced coherence and thus increased uncertainty in the
cross spectra estimation. To illustrate the problem, one can for example think of a
standing wave, which is imaged exactly at the time when both opposing waves cancel
out at the first look, and which become visible a short moment later at the second
look. The estimated cross spectrum is zero in this case and thus different to the
expected “true” cross spectrum. Fig. 6.3 (B) shows the dependence of γwaves on look
separation time ∆t in the case of standing waves.

More generally, look decorrelations are caused by the fact that ocean wave com-
ponents with different phase speeds are coupling in the SAR image formation process.
The above standing wave case is an extreme example, where the phase speeds have
opposite signs. The more general case is a nonlinear coupling of waves with different
wavelengths propagating in the same direction. This effect is illustrated in Fig. 6.4
where a simulation of the coherence γwaves (B) is shown based on a fully developed
wind sea spectrum (A) using the nonlinear forward model given by eq. 6.9. As can
be seen, the nonlinear SAR imaging mechanism causes loss of coherence in particular
for shorter waves propagating the azimuth direction.

As a first check of the noise model, the cross spectrum coherence was estimated
for the global data set of reprocessed ERS-2 introduced in Chapter 5. Fig. 6.5 shows
a scatter plot of coherence as a function of look variance spectrum SNR derived
from cross spectra processed with a look separation time of 0.33 s. The dashed line
represents the expected look decorrelation due to speckle noise represented by γSNR.
One can see that the estimated coherence is reasonably close to γSNR for high signal
to noise ratios. The additional decorrelation observed in particular for low signal to
noise ratios is attributed to the nonlinear wave imaging process represented by the
coherence factor γwaves.

Furthermore, one should take into account that the deterministic relationship
between the sea surface elevation and the corresponding radar cross section as given
by the RAR model (eq. 4.4) is rather simplistic. More realistically, one would rather
assume that the RAR modulation contains stochastic components, e.g. associated
with turbulent flow of wind over the waves, which could be an additional factor in
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Fig. 6.7: (A) Illustration of the parameter ∆t in the look extraction process. (B) Theoretical
signal to noise ratios of the cross spectrum phase as a function of look separation
time for different signal to noise ratios in the look variance spectrum.

the decorrelation observed in Fig. 6.5.

6.4 Optimal look separation time

In this section a strategy to find an optimal look separation time ∆t is discussed using
the theory presented above. The study extends the analysis presented in Bao and
Alpers [1998] in the way that decorrelation effects are taken into account.

As discussed in Bao and Alpers [1998], the cross spectrum phase increases with
increasing look separation time. This effect is demonstrated in Fig. 6.6, where cuts
through the spectral peak of the cross spectrum in Fig. 3.4 are shown for look
separation times of 0.33 s and 0.47 s. The imaginary part given in (B) clearly shows
the increased signal for the longer separation time. However, due to the limited
bandwidth the longer separation time is necessarily associated with a reduced look
resolution (compare Fig. 6.7 (A)), which according to eq. 3.40 leads to higher speckle
noise levels. The resulting decrease of coherence, which follows from eq. 6.7 is shown
in Fig. 6.6 (A), where the coherence is reduced from about 0.75 to 0.55. The optimal
choice of a look separation time thus has to be a compromise between the opposing
requirements of low noise levels and strong signals.

A natural approach to optimise the look separation time is to maximise the signal
to noise ratio of the cross spectrum phase ϕ, which is given by

SNRϕ =
ϕ

σϕ
, (6.14)

where σϕ is the phase standard deviation. Neglecting nonlinear effects and discarding
the case of wave components travelling in opposite directions one has (compare eq.
4.29)

ϕ ≈ ω ∆t . (6.15)

Furthermore, assuming white speckle noise the dependence of the speckle noise level
in the look variance spectrum on the separation time is given by (compare Fig. 6.7
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(A))

ΦS
k =

T0

T0 − ∆t

ρa ρr

4π2
. (6.16)

The signal to noise ratio in the look variance spectrum can then be written as

SNRII =
T0 − ∆t

T0
SNRII

0 (6.17)

with SNRII
0 representing the look variance spectrum SNR for ∆t = 0, i.e. using

the full available bandwidth. For ERS SLC images we have ρa ≈ 10 m and ρr ≈
20 m. Using the half bandwidth for each look thus yields ΦS

k ≈ 10 m2. Under
the above assumptions, the dependence of coherence on the look separation time is
approximately given by

γk ≈
(
1 +

T0

SNRII
0 (T0 − ∆t)

)−1
. (6.18)

For a given number of smoothed periodograms, the respective standard deviation of
the cross spectrum phase needed in eq. 6.14 follows from the theory presented in the
previous sections. For instance, assuming N = 9 and a wave period of 12 s the curves
shown in Fig. 6.7 (B) represent the cross spectrum phase SNR as a function of look
separation time for different values of SNRII

0 . One can see that all curves have a well
defined maximum around T0/2, which slightly shifts towards shorter separation times
with increasing variance spectrum SNR. This finding somehow confirms the intuitive
approach to make use of the entire available bandwidth. The cross spectra estimated
for the ocean wave measurements presented in Chapter 8 and Chapter 9 are based
on looks with half bandwidth as suggested by the above analysis.

The presented analysis should be regarded as a first approach to optimise the
look separation time taking into account the effect of look decorrelation. It should be
noted that the method can be extended in different ways, e.g. by taking into account
that the speckle noise is not exactly white, or by allowing more sophisticated look
extraction strategies than defined in Fig. 6.7 (A).

6.5 Distribution of the cross spectrum real and imaginary part

In this section the distribution of the real and imaginary part of the estimated cross
spectrum following from the statistical model given by eq. 6.1 are summarised. The
results are relevant for the formulation of the cost function, which is basis for the
inversion scheme presented in Chapter 9.

It can be shown [Tough et al., 1995] that the mean of the real and imaginary part
of the estimated cross spectrum (compare eq. 3.28) is given by:

〈Re Φ̂I1I2
k 〉 = ΦI1I1

k |γk| cos ϕ0
k (6.19)

〈Im Φ̂I1I2
k 〉 = ΦI1I1

k |γk| sin ϕ0
k (6.20)

where ϕ0
k is the mean phase calculated as

ϕ0
k = Arg(ΦI1I2

k ) . (6.21)
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Fig. 6.8: (A) Correlation of real and imaginary part of the cross spectrum as a function
of coherence for expected cross spectrum phases of ϕ0 = 10◦ and ϕ0 = 15◦ (B)
Expected deviation from the exact cross spectrum for N = 1 (no smoothing), γ =
0.7, and expected phase ϕ0 = 15◦.

Eq. 6.20 and eq. 6.19 show that the cross spectrum estimator (eq. 3.28) is unbiased.
The covariance matrix of real and imaginary part is given by [Tough et al., 1995]

cov(ReΦ̂I1I2
k , ImΦ̂I1I2

k ) =

(ΦI1I1
k )2

N

(
0.5(1 + |γk|2 ak) |γk|2 bk

|γk|2 bk 0.5
(
1 − |γk|2 ak

)) (6.22)

with N denoting the number of averaged cross periodgrams (compare eq. 3.28) and
ak and bk defined as follows:

ak = cos2 ϕ0
k − sin2 ϕ0

k (6.23)
bk = sin ϕ0

k cos ϕ0
k (6.24)

Fig. 6.8 (A) shows the resulting correlation of the real and imaginary part of the cross
spectrum as a function of coherence for expected cross spectrum phases of ϕ0

k = 10◦

and ϕ0
k = 15◦, which are typical values (compare Fig. 3.5 (B)). As one can see

the correlation is relatively small (< 0.5), for the majority of cases, which have a
coherence of less than 0.8 (compare Fig. 6.5).



Chapter 7

SAR OBSERVATIONS OF OCEAN WAVES TRAVELLING INTO SEA ICE

In this chapter damping of ocean waves by sea ice is studied using complex ERS SAR
data acquired in full swath mode. The main results of the analysis were presented in
Schulz-Stellenfleth and Lehner [2002].

Sea ice covers an area which encompasses about two-thirds of the permanent
global ice cover. It is an important factor in the climate system [Hartmann, 1994;
Wadhams, 2000], as it has a strong impact on the albedo, the atmosphere-ocean
heat and momentum exchange, and the oceanic salt flux. It plays an important role
in shipping and offshore operations in the polar regions as well [Johannessen et al.,
1995].

Sea ice responds sensitively to small changes of the oceanic or atmospheric con-
ditions and is therefore a valuable indicator for climate change [Wadhams, 2000].
Therefore, continuous measurements of sea ice parameters like ice thickness and ice
concentration is an urgent need for scientists as well as for mariners.

The work presented in this chapter is concerned with remote sensing of sea ice
in the marginal ice zone (MIZ), which is the transition zone between open water
and pack ice. Because of the tough environmental conditions in the MIZ, remote
sensing is so far the only way to obtain sea ice information on a continuous basis.
Due to their all weather capability, microwave sensors like SAR or the radiometer
play an important role in this context. Radiometric systems like the Special Sensor
Microwave Imager (SSM/I) [Bjorgo et al., 1997] with a resolution between 10 and 50
km (depending on frequency) are mainly used to measure sea ice coverage and sea
ice type. SAR imagery as acquired by the ERS has a resolution of about 20 m and
thus permits studies of processes in the MIZ on a much smaller scale.

In general, the analysis of ocean waves entering sea ice has two facets: the physical
effects of waves on an ice cover or vice versa; and the use of waves as a diagnostic
tool in ice mechanics. The present study analyses the impact of sea ice on the two-
dimensional ocean wave spectrum and is therefore related to the second aspect. The
main objectives of the analysis are as follows:

• Interpret observed SAR image spectra acquired in the MIZ based on standard
SAR imaging theory, e.g.

– The spiky appearance of waves within the sea ice.

– Refraction phenomena at the ice boundary.

• Use SAR observations to measure parameters characterising the sea ice impact
on ocean waves.
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SAR observations of ocean waves in sea ice have been analysed in several studies [Va-
chon et al., 1993; Lyzenga et al., 1985; Wadhams and Holt, 1991; Liu et al., 1991a, Liu
et al., 1991b] some of them discussing methods to estimate ice parameters [Shuchman
and Rufenach, 1994]. Different models were proposed to explain phenomena like wave
refraction at the ice edge. Whereas some studies consider hydrodynamic ocean wave
sea ice interaction alone [Shuchman and Rufenach, 1994], others also discuss SAR
imaging effects [Vachon et al., 1993].

In the first part of the present analysis SAR imaging of waves propagating into
sea ice is analysed theoretically. Typical imaging artefacts like spiky wave crests
and wave refraction seen on SAR scenes of the MIZ are reproduced by simulation,
assuming that sea ice acts like a low pass filter on the wave spectrum. The impact
of sea ice on the azimuthal cut-off is studied by simulation of the azimuthal SAR
image auto-correlation function as well as the two-dimensional SAR image spectrum.
Sensitivity studies are performed using parametric models for wind sea and swell
systems. The impact of a possible increase of the coherence time within sea ice as
discussed in Vachon et al. [1993] for airborne data is analysed. It is shown that for
the ERS SAR configuration the degraded azimuthal resolution is dominated by the
orbital velocity variance, while coherence time has a minor impact. The azimuthal
cut-off wavelength can therefore be used to gain information about the orbital sea
surface motion in the open water as well as in sea ice.

A first order analysis of wave damping observed on SAR scenes acquired over the
MIZ is carried out using a technique which was originally developed for wind estima-
tion by Kerbaol et al. [1998]. The method does not require a priori information and is
insensitive to the RAR modulation. The azimuthal SAR image cut-off wavelength is
estimated and related to the orbital velocity variance of the sea surface by regression.
The model is fitted based on a global set of model ocean wave spectra.

The technique is applied within the sea ice and in the open water in front of the
ice boundary. Based on simple models for wind sea and swell, ocean wave attenuation
rates are obtained from the observed orbital velocity decrease of waves entering the
ice. The required wind information is derived from calibrated SAR data using a
method originally developed for scatterometers [Lehner et al., 1998].

Two case studies showing examples from the Greenland Sea and the Weddell
Sea are presented. It is shown that the estimated wave damping is consistent with
damping parameters found in earlier field campaigns carried out in the Weddell Sea
and the Bering Sea.

An inversion technique providing estimates of the two-dimensional wave spectra
behind and in front of the ice boundary as well as a two-dimensional filter function
characterising the sea ice impact is introduced. The technique is based on simulta-
neous inversion of the two-dimensional image spectra in the open water and within
the ice, using a priori information from an ocean wave model. It is shown that the
technique gives results consistent with the first order analysis based on the cut-off
estimation.

7.1 Ocean wave attenuation by sea ice

The attenuation of ocean waves by sea ice is a well known effect [Squire et al., 1995].
Wadhams et al. [1988] reports about in situ wave measurements carried out in the
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Fig. 7.1: Attenuation rates ρD of ocean waves damped by sea ice as reported in Wadhams
et al. [1988] (compare eq. 7.1). The estimates were obtained under various ice
conditions in the Greenland Sea and the Bering Sea.

Greenland and Bering Sea between 1978 and 1983. The experiments suggest that the
wave energy decay is approximately negative exponential with increasing distance x⊥
from the ice boundary. For a given wave number k with wave energy Fk(0) at the ice
boundary, the wave energy within the sea ice is thus given by

Fk(x⊥) = Fk(0) exp(−ρD x⊥) (7.1)

with damping rate ρD. Attenuation rates for different wavelength reported in Wad-
hams et al. [1988] are shown in Fig. 7.1. Frequency was converted into wavelength
using the dispersion relation for deep water (compare eq. 2.9). The highest frequency
measured is about 0.2 Hz, which corresponds to about 40 m wavelength. Damping
rate estimates were obtained under various ice conditions. As can be seen, ρD has a
high variability especially for shorter waves. The experiments showed that the damp-
ing rates increase with decreasing wavelength except for some roll-over effects, which
were observed at the shortest wavelength in some cases. The e-folding distance for a
100 m wave goes down to 1-2 km in some cases, while it is well over 20 km for most
wave systems longer than 250 m.

Due to the complex mechanical properties of sea ice, wave damping is still not fully
understood theoretically [Squire et al., 1995]. A simple model, which is appropriate for
frazil, brash and pancake ice, describes sea ice as a viscous layer of constant thickness
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h and ice concentration cI , is the mass-load-model [Wadhams et al., 1988]. The model
predicts an increase of the wavenumber component k⊥

I defined as perpendicular to the
ice boundary within the ice. Denoting the respective component in the open water
with k⊥

W one has:

k⊥
I =

k⊥
W

1 − cI h k⊥
W ρI/ρW

. (7.2)

Here, ρI ≈ 900 kg m−3 and ρW ≈ 1025 kg m−3 are the densities of ice and water
respectively. As the wave frequency is the same for both the water and the ice covered
region (due to the boundary conditions at the ice edge), the waves have a reduced
phase speed within the sea ice. There exists a critical wave frequency ωc at which
both the wavelength and phase speed is zero in the ice, and the waves are totally
reflected at the ice boundary

ωc =
√

ρW g

ρI cI h
. (7.3)

Cut-off wavelengths for a given product of cI and h are shown in Fig. 7.2. The
indicated intervals for the product cI h are typical for frazil and brash ice. It can be
seen that under realistic sea ice conditions only waves shorter than about 25 m are
totally reflected at the ice boundary.

Another consequence of the increase of the perpendicular wavenumber component
in the mass-load-model is a refraction of waves towards the normal of the ice boundary.
Denoting the incidence angle of the ocean waves with α and the angle of refraction
with β, Snell’s law reads [Wadhams et al., 1988]

sin β

sinα
=

kW

kI
, (7.4)

where kW and kI are the wave numbers in the open water and the sea ice respectively.
The simple mass-load-model is not able to reproduce the observed continuous

energy decay of waves entering an ice region with individual ice floes. This problem
is complicated, because it strongly depends on the size, distribution and mechanical
properties of the ice floes. Several numerical models of much higher complexity exist,
which try to describe this process. A model reproducing in situ measurements quite
well except for the observed roll-over effect is the multiple scattering model [Squire
et al., 1995].

7.2 SAR imaging of ocean waves in ice

In this section the SAR imaging mechanism for ocean waves travelling into sea ice is
discussed. As explained in Chapter 4, SAR wave imaging in open water is dominated
by Bragg scattering leading to a relatively simple model for the RAR modulation.
In the case of sea ice the situation is more complicated as different backscattering
mechanisms are involved. Here, the scattering process is in general a combination
of Bragg and volume scattering. In addition, scattering at the edges of ice floes can
have a significant impact. The exact backscattering processes depend strongly on
the detailed history of the sea ice. For example, for first year ice surface scattering
dominates, whereas for multi-year ice volume scattering from air bubbles has to be
taken into account as well.
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Fig. 7.2: The minimum wavelength λice of wave components, which are able to propagate
from the open water into the sea ice according to the mass-load-model (compare
eq. 7.3). The ice cut-off wavelength is shown as a function of the product of ice
thickness h and ice concentration cI .

For the main part of this chapter, details about the backscattering process are
not essential, because the presented technique is based on the Doppler shifts of the
returned signals with the respective signal intensity having a minor impact. Only
for the last section, where a retrieval method for two-dimensional wave spectra in
the MIZ is presented, knowledge about the RAR transfer function within sea ice is
required. As explained in the next section, an empirical transfer function reported in
literature is used for this purpose.

Another aspect to be taken into account is the scene coherence time τc introduced
in Chapter 3. There is some indication that the coherence time for sea ice is longer
than for open water [Vachon et al., 1993]. However, for the presented technique,
which is based on the dependence of the azimuthal cut-off on the orbital velocity
variance, this effect has a minor impact, at least for the ERS SAR configuration, as
shown in Fig. 4.7.

7.2.1 Real aperture radar modulation in ice

Fig. 7.3 shows the modulus of the normalised MTF k−1
y TR for an incidence angle

of 23◦ and VV polarisation. The solid line represents the theoretical RAR MTF
(compare eq. 4.5), while the dashed and dashed dotted lines refer to tilt MTF and
range bunching MTF respectively. The lower dashed dot dotted line in Fig. 7.3 was
calculated by extrapolating airborne tilt MTF measurements over ice performed by
Vachon et al. [1993]. For incidence angles between 40◦ and 75◦ and VV polarisation
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Fig. 7.3: Modulus of (normalised) tilt, range bunching and hydrodynamic modulation transfer
functions. VV polarisation and 23◦ incidence angle are assumed. The tilt transfer
function for ice was derived by extrapolating measurements reported in Vachon and
Krogstad [1994].

the following tilt MTF was derived

T tilt
k = i ky

180 log(10)
10π

(2Aθ + B) (7.5)

with A = 0.0022, B= -0.56, and θ given in degree. As the estimation of the tilt MTF
for 20◦ incidence angle by extrapolation is unlikely to give accurate results and the
obtained value is only 20 % different from the theoretical value for the open sea we
will use the theoretical tilt MTF for both open water and sea ice. Hydrodynamic
modulation is believed to be negligible within sea ice and is therefore omitted for
simulations in ice.

Like other authors [Vachon et al., 1993], we assume that tilt and range bunching
are the dominating RAR modulation mechanisms within sea ice. It is obvious that
accurate estimates for the tilt MTF are difficult to obtain, as it is strongly dependent
on the sea ice type. Therefore, the analysis of wave damping will start with a method,
which is relatively insensitive to the RAR modulation. Only in the last section,
where two-dimensional wave spectra within the sea ice are retrieved, TR is required
explicitly.

7.2.2 Higher harmonics

In this section the impact of wave damping on the ocean wave imaging process is
analysed based on the model presented in Chapter 4.
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As explained before, SAR imaging of range travelling waves within sea ice strongly
depends on sea ice type as it is dominated by the RAR modulation mechanism. For
this reason the analysis concentrates on SAR imaging of azimuth travelling waves,
which is dominated by the orbital velocity of the waves. Lets imagine a single har-
monic wave system propagating in the exact azimuth direction. The wave spectrum
is thus given by

Fk =
H2

s

16
δk−k′ (7.6)

with Dirac delta function δ, significant wave height Hs and wave number k′ = (k′
x, 0).

The auto-correlation function of the orbital velocity ur for this wave system is given
by (compare eq. 4.28):

ρu(x) = cos(k′ x) |T u
k′ |2 H2

s

16
(7.7)

Inserting the wave spectrum into the forward transform given by eq. 4.25 (with ∆t=0)
yields:

ΦII
k = exp

[−k2
x ω2 H2

s (
R

V
)2
] ∞∑

n=0

(−1)n (kx ω Hs
R
V )2 n

16n n!

∫
exp(i k x) cos(k′ x)n dx

= exp
[−k2

x ω2 H2
s (

R

V
)2
] ∞∑

n=0

(−1)n (kx ω Hs
R
V )2 n

32n n!

n⊗
j=1

(δk′−k + δk′+k) (7.8)

Here, the RAR modulation, which is very small for an azimuth travelling wave, was
neglected and the exponential factor under the integral was expanded. Furthermore,
it was used that |T u

k | ≈ ωk for small incidence angles (compare eq. 4.22). The
convolution operator is denoted by

⊗
. The image spectrum has energy at wave

numbers k = j k′
x, j = ±1,±2,±3, ... and extends out to k = ±n k′

x for nonlinearity
order n. Furthermore, it can be seen that the higher harmonics increase with growing
wave height, frequency, and R over V ratio until the cut-off factor in front of the
integral starts to dominate.

A simulation based on eq. 7.8 is shown in Fig. 7.4. A swell system of 400 m
wavelength is assumed to propagate in the azimuth direction. The solid and the
dashed line represent the resulting azimuthal SAR image auto-correlation functions
(calculated by taking the Fourier transform of eq. 7.8) for 1.5 m and 3 m wave height
respectively. The orbital velocity variance caused by the swell is 0.02 m2s−2 and
0.1 m2s−2 respectively. The dashed dotted line indicates the correlation function if
an additional wind sea system, which increases the orbital velocity variance by 0.15
m2s−2, is assumed. The latter case shows the typical situation in the open ocean,
where the higher harmonics of the image of the swell system are suppressed by an
additional wind sea system. The solid and dashed lines illustrate the situation within
the sea ice, where wind seas are damped leading to a spiky appearance of the image
of strong swell systems in sea ice.

7.2.3 Impact of sea ice on the orbital velocity variance

As explained in the last section, imaging of waves travelling in azimuth direction is
strongly influenced by the orbital velocity variance of the sea surface. In this section
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Fig. 7.4: Simulated azimuthal SAR image auto-correlation function assuming a harmonic
swell system of 400 m wavelength with 1.5 (solid line) and 3 m significant wave
height (dashed line) propagating in the exact azimuth direction. The dashed dotted
line results if an additional wind sea system (7 ms−1 wind speed) is assumed.

the contribution to the orbital velocity of wind sea and swell systems is estimated
using parametric models. The sea ice impact is taken into account by introducing an
ice cut-off wavelength λice.

For small incidence angles θ the orbital velocity variance ρu(0) can be approxi-
mated as (compare eq. 4.23)

ρu(0) ≈
∫

ω2 Fk d2k . (7.9)

Based on this relation a first order analysis of the impact of short wave damping on
ρu(0) can be carried out. A simple model for a wind sea spectrum with peak wave
number kp, which is chopped off by sea ice at some wave number kice, is given by∫

Fk dΦ =
{

0 : k ≤ kp or k ≥ kice

α k−4 : else
(7.10)

The k−4 decay assumed in this model corresponds to a ω−5 decay in the correspond-
ing one-dimensional frequency spectrum (compare eq. 2.22 and Hasselmann [1973]).
Inserting the model eq. 7.10 in eq. 7.9 gives

ρu(0) =
{

αg ( 1
kp

− 1
kice

) : kp ≤ kice

0 : else
(7.11)

It is further assumed that in the open water the wind sea is fully developed with



Chapter 7. SAR OBSERVATIONS OF OCEAN WAVES TRAVELLING INTO SEA ICE 69

1 10 100
lambda_ice [m]

4
6

8

10

12

14

16

18
U

10
 [m

/
s]

0.10

0.1
0

0.30

0.3
0

0.50

0.5
0

0.70

0.90

1.10
1.30

1.50

ice 

U
10

 [
m

 s
  ]

λ [m]

-1

Fig. 7.5: Orbital velocity variance ρu(0) for a fully developed wind sea as a function of wind
speed U10 and ice cut-off wavelength λice. The dashed line indicates the peak wave-
length for a given wind speed. The unit of the isoline labels is m2s−2.

phase speed cp =
√

g/k (deep water) and wave age U10/cp = 0.95. Using the known
relationship given by eq. 2.20 between wind speed U10 and significant wave height
Hs the constant α = 4.5 · 10−3 is obtained.

The dependence of ρu(0) on U10 and the ice cut-off wavelength λice = 2π/kice

is illustrated in Fig. 7.5. The dashed line indicates the peak wavelength for a fully
developed wind sea in the open ocean. The orbital velocity variance of a 100 m system
is about 0.6 m2s−2 in the open water. It decreases to 0.3 m2s−2 if waves shorter than
40 m are damped out by the ice.

As swell is concentrated in a relatively small region of the 2d wave spectrum eq.
7.9 can be approximated as

ρu(0) ≈ π g

8λswell
(Hswell

s )2 (7.12)

with swell wavelength λswell and swell wave height Hswell
s . The wavelength and wave

height dependence of ρu(0) for swell is illustrated in Fig. 7.6. A 400 m meter swell
system with 3 m wave height contributes about 0.1 m2s−2 to the orbital velocity
variance of the sea surface. Thus, in the open ocean the swell contribution to ρu(0)
is in general smaller than the contribution coming from the wind sea. The azimuthal
cut-off is therefore highly dependent on the local wind field.

7.3 Azimuthal cut-off estimation

Neglecting the small influence of the coherence time τs, the orbital velocity variance
is directly connected to the theoretical cut-off wavelength λcut. This means, the SAR
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measurement of ρu(0) is basically a cut-off estimation problem.
Different definitions and estimation techniques have been proposed for empirical

cut-off wavelengths [Kerbaol et al., 1998; Vachon et al., 1997; Hasselmann et al.,
1996]. In this study we follow the approach introduced by Kerbaol et al. [1998],
where a cut-off wavelength is estimated in the spatial domain. For this purpose an
exponential model function of the form

C(x) = exp
[
−16 ln 2

λ2
3dB

x2
]

(7.13)

is fitted to the azimuthal cross-correlation function of two looks processed from the
azimuth spectrum of complex SAR data [Kerbaol et al., 1998]. The multi-look tech-
nique is used to remove the speckle contribution as explained in Chapter 3. The
cut-off wavelength λ3dB introduced here is exactly two times the 3dB width of the
cross-correlation function and thus a reasonable measure for the minimum wavelength
resolved in the SAR flight direction. In order to relate the empirical λ3dB to the the-
oretical cut-off wavelength λcut (compare eq. 4.46), a global data set of 3000 WAM
ocean wave model spectra provided by the the ECMWF was used to calculate a lin-
ear regression between both parameters. For each wave spectrum the model eq. 7.13
was fitted to the simulated cross-correlation function calculated by taking the Fourier
transform of eq. 4.25. As the highest frequency in the WAM model is fmax = 0.4 Hz
corresponding to about 10 m wavelength, the net contribution to ρu(0) from waves
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Fig. 7.7: (A) Empirical cut-off wavelength λ3dB measured according to eq. 7.13 versus theo-
retical cut-off wavelength defined by eq. 4.46. The plot is based on simulations using
a global data set of 3000 ECMWF wave model spectra. (B) Resulting relationship
between λ3dB and the orbital velocity variance assuming coherence times τs of 0.03
s, 0.05 s and infinity. The error bars refer to the curve for τs = 0.05 s.

shorter than 10 m was calculated by extrapolating the one-dimensional frequency
spectrum with a f−5 tail. Using the approximation given in eq. 7.9, the following
term then has to be added to ρu(0):

〈u2
r〉Hf = 2π2 F (fmax) f3

max (7.14)

Here, F (fmax) is the spectral density of the one-dimensional frequency spectrum at
the shortest period. The corresponding scatter plot is shown in Fig. 7.7 (A). The
linear regression with a correlation of 0.97 is given by:

λcut = 1.95 · λ3dB + 74 m (7.15)

The resulting empirical relation between λ3dB and the orbital velocity variance ρu(0)
is shown in Fig. 7.7 (B).

7.4 Case studies

7.4.1 Case study in the Weddell Sea

Fig. 7.8 (left) shows a 5×10 km ERS-2 SAR scene acquired over the Weddell Sea on
July 18, 1992, 12:41 UTC (Orbit 5264, Frame 4815). The image is centred at 58.98◦S
52.9◦W with flight direction (205◦) upwards. Following the bright open water area
two different types of sea ice with significantly different NRCS values can be seen.
The typical situation at the ice boundary is that the open water is followed by grease
or brash ice, which completely damps out the short Bragg waves, leading to the low
radar backscatter observed on the SAR image. The grease ice area is then usually
followed by a region with small ice floes (pancake ice) with slightly higher radar cross
section than grease ice.
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Fig. 7.8: (left) 5×10 km subimage of an ERS-2 SAR full swath scene acquired over the Weddell
Sea on July, 18, 1992 at 12:41 UTC. The image is centred at 58.98◦ S 52.9◦ W with
flight direction (205◦) upwards. The bright region at the bottom is open water
followed by two darker regions, which are covered by two different types of sea ice.
(Right) Image spectra calculated for regions A,B and C (from bottom to top).

The SAR wind measurement technique described in Lehner et al. [1998], Horstmann
et al. [2000] or Horstmann et al. [2003] was applied yielding about 11 ms−1 wind
speed. The method is based on the CMOD4 model originally developed for the scat-
terometer and requires calibration of the SAR images. The wind direction of about
340◦ (coming from) can be derived from wind streaks observed in the open water.
The wind direction is confirmed by the observation of a very sharp ice boundary,
which is typical if strong wind is blowing from the open ocean towards the sea ice.

The SAR image spectra on the right hand side of Fig. 7.8 show two wave systems
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Fig. 7.9: Simulation showing that refraction phenomena at the ice boundary observed on SAR
images can be explained by imaging artefacts associated with the damping of short
ocean waves. (A) Parameterised ocean wave spectrum (JONSWAP) representing
a 150 m ocean wave system. (B) Schematic illustration of refraction mechanism
(compare eq. 7.4). (C) Simulated SAR image spectrum in open water. (D) SAR
image spectrum in sea ice, simulated by removing ocean wave components shorter
than 80 m.

of about 180 m and 300 m wavelength propagating into the ice. A linear inversion of
the spectrum in the open water gave about 2 m wave height for the 180 m wave and
1 m wave height for the 300 m wave system. In the grease and brash ice region one
can see the 180 m wave being refracted towards the normal of the ice boundary by
about 15◦. The image modulation is increased by about 3 dB at the same time. In
the upper ice area the 180 m wave is almost invisible in the image.

In some studies refraction phenomena like the observed one are interpreted as a
real refraction of the ocean waves at the ice boundary [Shuchman and Rufenach, 1994].
However, applying the mass-load-model described in Section 7.1 to the observed re-
fraction yields an unrealistic ice coverage with a product of ice concentration cI and
ice thickness h of about 5 m. This indicates that the observed refraction is in fact
mainly a SAR imaging artefact, which is due to damping of short waves by the ice.
Fig. 7.9 shows a simulation, which illustrates this refraction effect. SAR image spec-
tra were simulated in open water (C) as well as in sea ice (D) using a parameterised
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Fig. 7.10: Azimuthal look cross-correlation functions calculated in regions A, B and C as
indicated in Fig. 7.8.

JONSWAP (compare Chapter 2) ocean wave spectrum (A) representing a 150 m wave
system. The simulations are based on the forward model (eq. 4.25), where the sea ice
impact was simulated by removing all waves shorter than 80 m. Comparing the SAR
spectra in water and ice, one can see that short wave damping is in fact able to cause
refraction phenomena like the observed one. The inversion scheme presented in Sec-
tion 7.5 will use the change of the two-dimensional SAR spectrum to gain quantitative
information on the ice damping characteristics.

To study the wave damping a cut-off analysis as described in Section 7.3 was
performed. The azimuthal auto-correlation functions calculated for regions (A), (B),
and (C) are shown in Fig. 7.10. In the open water a cut-off wavelength of λ3dB =
269 m was found. From the relationship between λ3dB and ρu(0) derived in Section
7.3 (compare Fig. 7.7 (B)) the orbital velocity in the open water is estimated as
0.7 m2 s−2. This is consistent with the general theoretical findings about the orbital
velocity variance of wind seas and swell systems presented in Section 7.2.3; the con-
tribution of the two long wave systems to the orbital velocity variance is about 0.1
m2s−2 with the main contribution coming from the 180 m wave system (compare
Fig. 7.6). Assuming a fully developed wind sea, the measured wind speed leads to a
wind sea system of about 2 m wave height and 80 m wavelength, which contributes
another 0.6 m2s−2 to the orbital velocity variance (compare Fig. 7.7). This results
in a total velocity variance of about 0.7 m2s−2 confirming the value obtained by the
cut-off estimation technique. Note, that the wind sea is not visible on the SAR image
as it is propagating in the approximate azimuth direction and therefore suppressed
by the azimuthal cut-off.

In region (B) of Fig. 7.8 the cut-off wavelength decreases to 80 m, which corre-
sponds to an orbital velocity variance of about 0.05 m2s−2. This decrease can only
be explained if it is assumed that the wind sea is almost completely damped out by
the ice. As explained in Section 7.1 this is realistic, as e-folding distances of down
to 1-2 km have been observed in earlier field campaigns reported by Wadhams et al.
[1988] (compare Fig. 7.1). As a complete damping of the wind sea still leaves about
0.1 m2s−2 velocity variance it can be concluded that also the wave height of the 180
m wave must have been reduced by about 3 dB to obtain the observed value for ρu(0)
within region (B) (compare Fig. 7.6). In fact, looking at the image in Fig. 7.8 one can
actually see how the wave slowly disappears as it propagates through the ice region
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Fig. 7.11: 100×130 km ERS-2 SAR scene acquired over the Greenland Sea on Feb 1, 1992,
23:32 UTC, showing the marginal ice zone. The image is centred at 66◦45′0′′N,
28◦47′49′′W. The bright region is open water, while the darker areas are covered
with sea ice.

(B).
In region (C) the observed cut-off wavelength is 96 m, which corresponds to about

0.05 m2s−2 as in region (B). Although, the difference to the cut-off wavelength of 80
m observed in region (B) is at the limit of the measurement accuracy (compare Fig.
7.6), a slight increase of the orbital velocity is not unrealistic. In fact an increase of
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Fig. 7.12: (Top) 5 km by 5 km subimages extracted from locations A,B,C indicated in Fig.
7.11. Grey values correspond to the SAR image modulation (compare eq. 3.36).
(Bottom) Modulus of corresponding SAR cross spectra with identical scaling of
grey values. The isolines are logarithmically spaced with 5 isolines per decade and
labels given in m2.

spectral energy at higher frequencies has been observed in field campaigns in some
cases. The mechanism, which is not yet fully understood up to now [Squire et al.,
1995], is known as roll-over effect, and could be an explanation for the small increase
of the cut-off wave length.

7.4.2 Case study in the Greenland Sea

Fig. 7.11 shows a 100×130 km ERS-2 SAR scene (Orbit 2856, Frame 1341 and part
of Frame 1359) acquired over the Greenland Sea on Feb 1, 1992, 23:32 UTC. The
image is centred at 66◦45′0′′N, 28◦47′49′′W with flight direction (342◦) upwards and
shows the marginal ice zone with dark areas corresponding to sea ice and bright areas
indicating open water.

The SAR wind measurement technique described in [Lehner et al., 1998] was
applied, giving about 12 ms−1 wind speed. The wind direction of about 70◦ (coming
from) can be derived from wind streaks observed in the open water area and is
indicated by an arrow in Fig. 7.11. The directional ambiguity of wind direction was
resolved comparing to ECMWF wind fields. The indicated wind direction is also
suggested by the observation of a very sharp ice edge on the east side of the ice
covered area and a more fuzzy appearance of the westerly ice boundary.

Three 5×5 km subimages taken from locations (A), (B), and (C) indicated in
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Fig. 7.13: One-dimensional SAR image variance wave number spectra for locations (A) (solid)
and (C) (dashed) indicated in Fig. 7.11.

Fig. 7.11 are shown in Fig. 7.12 together with the modulus of the corresponding
cross spectra. At location (C) a wind sea system of about 80 m and a swell system of
about 350 m wavelength can be seen travelling in easterly and north-westerly direction
respectively. The directional propagation ambiguity was resolved by inspection of the
imaginary part of the cross spectrum. The wind sea system is not visible in the sea
ice (location (B)) nor in the open water at location (A). For the swell a significant
reduction of image modulation of about -4 dB is observed comparing locations (A) and
(C). This effect becomes more obvious looking at the one-dimensional wave number
spectra shown in Fig. 7.13.

A wind speed of 12 ms−1 results in a fully developed wind sea of about 100 m
wavelength and 3 m significant wave height. The observed wavelength of 80 m is
in reasonable agreement with the theoretical value indicating that the wind sea is
almost fully developed. As the wind sea is not visible in area (A) it can be assumed
that it is damped out completely by the ice. This finding is again consistent with in
situ measurements, which yield e-folding distances down to 1-2 km for 100 m waves
(compare Fig. 7.1).

Applying the cut-off estimation technique described in Section 7.3 gives λ3dB =
223 m for area (A), λ3dB = 98 m for the ice covered region (B) and λ3dB = 314
m for region (C). For area (C), where both wave systems are visible, this yields an
orbital velocity variance of 0.9 m2s−2 (compare Fig. 7.7 (B)). Assuming that the
wind sea contributes between 0.7 and 0.8 m2s−2 to ρu(0) (compare Fig. 7.5), it can
be concluded that the swell contributes between 0.1 m2s−2 and 0.2 m2s−2 and thus
has a wave height between 3 and 4 m (compare Fig. 7.6).

In the ice ρu(0) decrease to about 0.1 m2 s−2, which is consistent with the as-
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Fig. 7.14: Azimuthal look cross-correlation functions with fitted Gaussians calculated from
subimages shown in Fig. 7.12. Cut-Off wavelengths were estimated using the model
given by eq. 7.13.

sumption that the wind sea is damped out completely and that the long swell is only
slightly affected.

In region (A), where only the swell system is visible on the SAR image, the
estimated orbital velocity variance is about 0.5 m2s−2. This is due to the generation
of new short waves by the wind, which contribute about 0.4 m2s−2 to ρu(0). Note
that the new waves are too short to be visible on the SAR image; the range resolution
of the ERS SAR is about 30 m (near range), i.e. waves must have wavelength well
over 60 m to be imaged by the system. However, at 11 ms−1 wind speed a fetch
between 50 and 100 km is required to generate waves of such length [Apel, 1995]. As
there is only about 30 km open water visible on the SAR image left of the ice region,
the new waves cannot be detected.

7.5 A SAR ocean wave inversion scheme for the MIZ

In this section a new SAR inversion scheme for ocean waves in ice is presented.
The method is based on studies of short ocean wave attenuation described in the
previous chapters. The algorithm uses models and techniques which have already
been successfully used for ocean waves in open water.

The method derives damping parameters of the sea ice by combined use of SAR
information from the ice region, the open water in front of the ice, and information
from an ocean wave model. The output of the algorithm is a two-dimensional ocean
wave spectrum in front and behind the ice boundary as well as a two-dimensional
filter function characterising the sea ice impact on the wave spectrum.

Similar to the approach presented in [Hasselmann and Hasselmann, 1991], the
inversion scheme is based on a minimisation of the following cost function:

J(F, ρ̃) =
∫

Gk

(
Φ̃W

k − ΦW
k (F )

)2 + Gk

(
Φ̃I

k − ΦI
k(B

ρ̃ F )
)2 + Hk

(
F̂k − Fk

)2 +

Vk

(
F̂k F−k − F̂−k Fk

)2
dk (7.16)

Here Gk, Gk, Hk and Vk are weighting functions and Bρ̃ is a parameterised filter
function describing the sea ice impact on the ocean wave spectrum. An ocean wave
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Fig. 7.15: (A) Inverted ocean wave spectrum in open water. (B) Simulated SAR image spec-
trum in open water. (C) SAR image spectrum observed in open water. (D) Inverted
ocean wave spectrum in sea ice. (E) Simulated SAR image spectrum in sea ice re-
gion. (F) SAR image spectrum observed in sea ice. (G) First guess ocean wave
spectrum computed with the WAM model. (H) Comparison of simulated and ob-
served cut-off in open water and sea ice. (I) Calculated Butterworth filter with
γ = 10 and k̃ = 0.036 rad m−1.

spectrum F and damping parameters ρ̃ = (ρ1, ..., ρl) are determined such that the de-
viation between the simulated SAR spectra ΦW

k (F ) and ΦI
k(B

ρ̃ F ) in open water and
sea ice and the corresponding observations Φ̃W

k and Φ̃I
k is small. In a first approach,

ΦW
k and ΦI

k were calculated by using the quasi-linear approximation (eq. 4.31). The
only difference between ΦI

k and Φ̃W
k is the neglection of the hydrodynamic modulation

for waves in ice (compare Section 7.2.1).
In addition, eq. 7.16 contains two regularisation terms. By appropriate choice

of the weighting functions, the first term ensures that missing information on short



Chapter 7. SAR OBSERVATIONS OF OCEAN WAVES TRAVELLING INTO SEA ICE 80

azimuthal waves is taken from the first guess ocean wave spectrum F̂ . The second
term forces the algorithm to take the propagation direction of the long ocean waves,
or more precisely the ratio of Fk and F−k from the first guess.

The filter function Bρ̃
k was in a first approach taken as a Butterworth filter, as-

suming that sea ice acts like a filter with relatively steep flanks as suggested by the
mass-load-model (compare Section 7.1).

B
(γ,k̃)
k =

(
1 + (

|k|
k̃

)γ
)−1

(7.17)

The filter is isotropic with 3dB width given by k̃. The flank steepness can be controlled
by appropriate choice of γ.

To solve the minimisation problem given by eq. 7.16 a new technique was devel-
oped using the quasi-linear approximation (eq. 4.31) of the SAR imaging model. The
approach is based on the following Lagrange function [Spellucci, 1993]:

L(F, ρ̃, α, α, λα, λα) = J(F, ρ̃) − λα

(
α −

∫
|T u

k |2Fk d2k

)

−λα

(
α −

∫
|T u

k |2Bρ̃
kFk d2k

)
(7.18)

The new state variables α,α represent the orbital velocity variance in open water
and in the sea ice region respectively (compare eq. 4.28). Introducing the Lagrange
parameters λα and λα, the derivative of eq. 7.16 with respect to F becomes linear.
Using the necessary conditions for a solution of the optimisation problem, F can
therefore be expressed as a function of α,α, ρ̃, λα, λα. Denoting the number of filter
parameters with l, the remaining equations lead to a 4 + l-dimensional zero crossing
problem, which can be solved very efficiently using a Newton method.

The method was applied to the ERS SAR scene discussed in Section 7.4.2. Fig.
7.15 shows results of the inversion. The SAR spectra observed in the ice and the open
water are shown in (C) and (F) respectively. The first guess ocean wave spectrum
calculated with the WAM model can be seen in (G). In this first example only the filter
width k̃ was optimised, while the second parameter was fixed to γ = 10, assuming a
nearly rectangular filter shape.

The inverted ocean wave spectra in sea ice and open water are shown in (A)
and (D). The wave spectrum behind the ice boundary is calculated by applying the
Butterworth filter shown in (I) to the open water wave spectrum. The algorithm
calculated a filter width of k̃ = 0.036 rad m−1, leading to a reduction of the orbital
velocity variance from α = 1 m2s−2 in the open water, down to α = 0.13 m2s−2 in
sea ice. Note that the estimated orbital velocity variance is in good agreement with
the estimates of ρu(0) = 0.9 m2s−2 and ρu(0) = 0.1 m2s−2 found by the simple cut-off
estimation technique (compare Section 7.4.2). As can be seen, there is good agreement
between the simulated and the observed SAR image spectra in open water as well as in
sea ice. Although the cut-off comparison shown in (H) indicates an underestimation of
energy contained in short azimuth waves, the azimuthal broadening of the spectrum
as well as the long wave energy increase are reproduced by the simulation.

The presented algorithm can be extended for use with SAR cross spectra [Engen
and Johnson, 1995] using standard methods. In this case, the second regularisation
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term can be omitted, as the propagation direction of the long waves is contained
in the complex SAR data. In addition the approach described in Hasselmann and
Hasselmann [1991] can be used to introduce the full nonlinear SAR imaging model
into the algorithm. It is expected that this extension will lead to an even better
reproduction of the observed cut-off change (compare Fig. 4.5).

It is planned to apply the above techniques on a statistical basis using complex
wave mode data acquired by the ENVISAT satellite. The ENVISAT ASAR provides
images of 10×5 km size every 100 km along the track and thus allows to study wave
damping by sea ice on a continuous basis.

A statistical analysis will provide more detailed information on the wave damping
mechanism and its dependence on sea ice type. In particular, this will allow to develop
techniques for the estimation of classical sea ice parameters, like ice thickness or ice
concentration, which are needed for the validation and assimilation of sea ice models.
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Chapter 8

STATISTICAL ANALYSIS OF COMPLEX ERS-2 WAVE MODE DATA

In this chapter an analysis of the global data set of reprocessed complex ERS-2
imagettes introduced in Chapter 5 is given. As explained before, the data permit
the application of the cross spectra technique described in Chapter 3 and Chapter
4 on a global and statistical basis for the first time. The analysis can be regarded
as a demonstration of the information content of complex imagettes, which will be
available from the ENVISAT ASAR as a standard product. The main results of the
analysis were published in Lehner et al. [2000]. The points investigated in this thesis
are the following:

• It is shown that the reprocessed high resolution images contain additional infor-
mation compared to SAR image variance spectra, or SAR cross spectra which
can, e.g. be used to:

– detect imagettes, which are contaminated by atmospheric effects or sea ice
and are thus not suitable for wave measurements;

– detect inhomogeneous wave fields, which are not properly described by a
wave spectrum.

• It is shown that the propagation direction indicated by the cross spectrum phase
is consistent with wave model calculations.

• It is shown that the cross spectrum phase are at least on average in good
agreement with the values predicted by linear wave theory.

It should be pointed out that the analysis presented here is not supposed to give a
complete overview of the information contained in complex imagettes. In particular,
an investigation of the following two aspects can be found elsewhere:

• An analysis of a global data set of intensity imagettes was first presented in
Kerbaol et al. [1998], showing a good correlation between mean image intensity
and collocated scatterometer measurements of wind speed.

• An approach to estimate two-dimensional sea surface elevation fields from com-
plex imagettes was proposed in Schulz-Stellenfleth and Lehner [2003]. The tech-
nique enables the study of parameters which are not provided by the wave spec-
trum like the ratio of maximum and significant wave height on a global scale
for the first time.

The proposed analysis tools like the inhomogeneity parameter introduced in Section
8.1 were also applied to simulated ENVISAT wave mode data provided by ESA in the
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Fig. 8.1: (A) Boxes used to estimate the inhomogeneity parameter from wave mode imagettes.
(B) Histogram of the inhomogeneity parameter estimated from a global data set of
30000 imagettes including land and sea ice.

framework of the calibration and validation activities. They turned out to be useful
to sort out problems in the ENVISAT wave mode processing chain.

8.1 Detection of inhomogeneous images

On a spatial scale of a few kilometres ocean wave fields should be approximately
homogeneous at least in cases where the boundary conditions are constant (constant
water depth, constant currents). This means that the statistical moments describing
the wave field, e.g. the wave spectrum are shift invariant. The same should then
also be true for the SAR image and the respective SAR image variance spectrum. In
this section a method is presented which identifies cases where this basic property
is violated using ERS-2 imagette data. One motivation for this investigation is to
detect imagettes, which are contaminated by

• atmospheric phenomena like boundary layer rolls [Alpers and Brümmer, 1994],
atmospheric fronts, or rain cells [Melsheimer et al., 1998];

• surface slicks of antropogenic or biological origin [Gade et al., 1998];

• sea ice.

Furthermore, the method is able to detect ocean wave fields with strong spatial dy-
namics, which are not properly discribed by a spectrum. These inhomogeneities can
be due to different phenomena like e.g.:

• changing water depth;

• inhomogeneous current fields;

• extreme wave grouping, i.e. large distances between wave groups.

All these features spoil SAR wave measurements and must be detected with high
reliability.
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Fig. 8.2: (Top) Global map with inhomogeneity parameter ξH derived from ERS-2 wave mode
imagettes acquired on Sep 5, 1996. (Bottom) Examples of ERS-2 imagettes, which
failed the homogeneity test (i.e. ξH > 1.05) due to atmospheric and sea ice features
as well as land structures.

According to standard spectral estimation theory spectral densities estimated from
a single periodogram Φ̂ [Honerkamp, 1993] are negative exponentially distributed,
i.e. var(Φ̂k) is equal to mean(Φ̂k)2 for all wavenumber components k. A standard
approach to reduce the variance of the spectral estimator is to average periodograms
estimated from subimages. To check the homogeneity of wave mode imagettes N = 32
subimages of about 1 by 1 km size were used to estimate the mean and variance of
the periodogram and to test the above relation between mean and variance of the
periodogram. The boxes used for the estimation are shown in Fig. 8.1. The box size
is still large enough to resolve even swell systems. The basic idea of the test is to
check, whether

var(Φ̂k)(
mean(Φ̂k)

)2 ≈ 1 for all wave number bins k (8.1)
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Fig. 8.3: (A) Scatterplot of the inhomogeneity parameter ξH versus ECMWF wind speeds.
The horizontal line was used as a classification threshold. (B) Percentage of inho-
mogeneous imagettes as a function of ECMWF wind speed (solid line). The dashed
line is the respective percentage of flagged ERS scatterometer measurements.

holds. Here, mean denotes the standard estimator for the mean and var is an estimator
for the variance of the periodogram defined as

var(Φ̂k) =
1
N

N∑
j=1

(Φ̂j
k)

2 − mean(Φ̂k)2 , (8.2)

where Φ̂j
k denotes the periodogram of the jth subimage. It should be noted that eq.

8.1 is approximative even if the mean value is taken on the left side. In fact, it can be
shown that the expression is slightly biased towards values smaller than one [Oliver
and Quegan, 1998].

To avoid the test to be dominated by speckle noise (which is homogeneous) a
weighting with spectral energies is introduced leading to the following definition of
an inhomogeneity parameter ξH :

ξH =
(∑

k

mean(Φ̂k)
)−1∑

k

var(Φ̂k)
mean(Φ̂k)

(8.3)

The parameter is a weighted average of the expressions given in eq. 8.1 over all wave
components k.

Fig. 8.1 (B) shows the histogram of the inhomogeneity parameter estimated from
30000 imagettes including land and sea ice. It can be seen that the peak of the
distribution is slightly smaller than one, which is consistent with the known bias of
the expression in eq. 8.1. To classify the imagettes into classes of homogeneous and
non-homogeneous cases a threshold of 1.05 was chosen by visual inspection. It turned
out that this choice results in a reliable detection of atmospheric fronts, slicks and
sea ice.

Fig. 8.2 (top) shows a global map with the inhomogeneity parameter derived from
ERS-2 imagettes acquired on Sep 5, 1996 given in color coding. It can be seen that the
strongest imhomogeneities occur over land and over sea ice. However, inhomogeneous
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features are also found in the open ocean. The imagettes shown at the bottom of Fig.
8.2 are examples, which failed the homogeneity test. The imagettes on the bottom
centre and left and the top centre and right show sea ice with ocean wave patterns
visible in the two latter case. The imagette at the top left shows typical patterns
associated with atmospheric phenomema. The remaining imagette on the lower right
was acquired over Australia and shows mountains.

A closer investigation showed that a lot of irregular sea surface features are due
to atmospheric phenomena in particular at very low wind speeds. This effect was
investigated using collocated ECMWF wind speeds for comparison. Fig. 8.3 (A)
shows a scatterplot of the inhomogeneity parameter as a function of wind speed with
the threshold introduced above indicated by a horizontal line. The plot in Fig. 8.3
(B) gives the respective percentage of non-homogeneous imagettes (solid line). One
can clearly see, that the ratio increases strongly as the wind speed drops below 5
ms−1. The phenomenon is attributed to the fact that due to surface tension the
response of Bragg waves, which dominate the radar return (compare Chapter 4), to
the wind is not continuous at very low wind speed. In other words a minimum wind
speed is required to produce centimetre waves and these waves disappear abruptly as
the wind speed drops below a certain limit. The inhomogeneous image features are
thus in many cases believed to be due to small spatial variations of the wind speed
around these thresholds. The dashed line in Fig. 8.3 (B) indicates the percentage
of collocated ERS-2 scatterometer measurement, which are flagged as unusable. As
the dashed line is below the solid line, it seems that a significant number of scat-
terometer measurements is taken as usable, although the NRCS of the sea surface is
strongly inhomogeneous. SAR data thus have the potential to improve the quality of
scatterometer measurements as well.

8.2 Comparison of linear SAR measurements with wave model output

For a first check of the global data set of complex imagettes, the linear inversion
scheme described in Chapter 3 is used to obtain a rough estimate of the low wavenum-
ber part of the wave spectrum.

As the linear model is known to be adequate only for longer waves, the comparison
of the SAR derived spectra with the WAM model is restricted to waves with periods
longer than 10 s, which corresponds to about 160 m in deep water. The corresponding
waveheight H10 is then calculated from the wave spectrum Fk as

H10 = 4

√∫
T>10s

Fk d2k . (8.4)

Likewise, a vector k, which contains information about the mean propagation, and
wavelength is defined as follows:

k =
16
H2

10

∫
T>10s

k Fk d2k (8.5)

In order to compare the mean wave directions of the wave model and the linear SAR
measurement, for each pair of collocated spectra a complex number W defined as

W = exp
[
i
(
atan(kWAM

y , k
WAM
x ) − atan(kSAR

y , k
SAR
x )

)]
HSAR

10 (8.6)
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Fig. 8.4: (A) Scatterplot of wave height HSAR
10 derived from SAR cross spectra using a linear

inversion technique without prior information and respective wave height HWAM
10

calculated with the WAM model. (B) Scatterplot of the function W defined in eq.
8.6. The distance to the origin indicates the wave height HSAR

10 derived from SAR,
whereas the direction gives the difference of the mean wave propagation directions
as derived from SAR and WAM. The difference is zero for points on the positive
part of the horizontal axis.

is calculated.
Wave spectra were retrieved from 15000 imagettes, which passed the homogeneity

test and for which collocated ECMWF spectra were available. The time gap between
SAR observations and model spectra is less than 3 hours and the spatial distance is
less than 100 km.

Fig. 8.4 (A) shows a scatterplot of SAR derived wave height HSAR
10 versus the

respective WAM wave height HWAM
10 . One can see that, although the measurement

is restricted to longer waves, the linear SAR measurement still underestimates with
respect to the WAM model, apparently due to the azimuthal cut-off. The observed
problem will be addressed in Section 9, where an inversion scheme is introduced,
which takes into account nonlinear imaging effects and adds missing information
beyond the azimuthal cut-off wavenumber. Fig. 8.4 (B) shows the distribution of the
numbers W defined in eq. 8.6 in the complex plain. The modulus of W corresponds
to the waveheight H10 as derived from SAR, whereas the phase of W indicates the
difference of mean directions derived from the SAR spectrum and the corresponding
ECMWF spectrum. The points on the positive part of the real axis indicate perfect
agreement. It can be seen that for waveheights less than 1 m the phase of W has a
more or less isotropic distribution, i.e. there is hardly any correlation between the
propagation directions in the model and the respective SAR measurement. However,
for higher waves W is clearly clustering around the positive real axis, showing that
the propagation directions derived from SAR are in good agreement with the model
in this case. The above observation is consistent with the theoretical investigation
presented in Chapter 6. The lack of agreement between model and SAR measurement
at low wave heights can be explained by the low signal to noise ratio expected for the
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Fig. 8.5: Global map showing mean propagation directions (red arrows) derived from complex
ERS-2 wave mode imagettes acquired on Sep 5, 1996. The black arrows indicated the
respective direction derived from collocated WAM model data. For the computation
of the mean direction only waves with periods longer than 10 s were taken into
account. The arrow length corresponds to the waveheight H10 defined in eq. 8.4.

SAR spectrum in these cases. The low coherence predicted under these circumstances
(compare eq. 6.7) necessarily leads to high phase noise in the cross spectrum (compare
Fig. 6.2).

A global map with the mean directions and waveheights derived from SAR and
model data is given in Fig. 8.5 for imagettes acquired on Sep 5, 1996. One can see
that there is in fact good agreement of wave propagation directions in case of higher
waves, in particular for the storm generated wind seas in the “rolling fourties”. The
few cases where stronger deviations are seen are mostly due to complex sea states
with more than one wave system. In these cases the mean direction strongly depends
on the relative weighting of the different wave components. The map also exhibits a
clear limitation of the linear inversion technique, which is obviously not able to fully
reverse the velocity bunching effect. This shortcoming leads to the obvious tendency
of the mean SAR direction to be rotated in the range direction with respect to the
respective model direction.

One should point out however that the dominance of range travelling waves in the
observed SAR spectra is not solely due to the SAR imaging process. To demonstrate
this, Fig. 8.6 (A) shows the average cross spectrum energy computed as

ηk =
1
N

∑
Im
(
Φi(k)

)
>0

|Φi
k| (8.7)

in the range azimuth reference system of the sensor. The azimuthal low pass filter-
ing of the cross spectra is clearly visible. In addition, the average spectrum is nearly



Chapter 8. STATISTICAL ANALYSIS OF COMPLEX ERS-2 WAVE MODE DATA 90

-0.10 -0.05 0.00 0.05 0.10
Range Wavenumber [rad/m]

-0.10

-0.05

0.00

0.05

0.10

A
zi

m
ut

h 
W

av
en

um
be

r [
ra

d/
m

]

2.5

2.
5

2.5

2.
5

6.3

6.
3

6.3

15.8

15.8

39
.8

39
.8

-0.10 -0.05 0.00 0.05 0.10
Range Wavenumber [rad/m]

-0.10

-0.05

0.00

0.05

0.10

A
z
im

u
th

 W
a
v
e
n
u
m

b
e
r 

[r
a
d
/m

]

1
.0

0

1.58

1
.5

8

1
.5

8

1
.5

8

2.51

2.51

2.51

2.51
3.98

3.98

6.31

6.31

A) B)

Fig. 8.6: (A) Distribution of cross spectrum energy as defined in eq. 8.7 derived from 1000
ERS-2 imagettes. (B) Respective average of the collocated ECMWF ocean wave
spectra.

symmetric indicating wavesystems of about 300 m wavelength propagating in approx-
imate range direction. The corresponding average ECMWF ocean wave spectrum is
given in Fig. 8.6 (B), showing remarkable agreement with the observed cross spectra.
In particular one can see that range travelling waves, which are mainly associated
with the strong westerly winds at the southern hemisphere, are dominating in the
ocean wave model, too.

8.3 Comparison of cross spectra phase with linear wave theory

To study the statistics of the measured cross spectrum phase, the respective energy
distribution was analysed. The range and azimuth dimensions are investigated sepa-
rately by computing the following functions:

Qx(kx, ϕ) =
∑

i

δε

(
arg
(
Φi(kx, 0)

) − ϕ
)
|Φi(kx, 0)| (8.8)

Qy(ky, ϕ) =
∑

i

δε

(
arg
(
Φi(0, ky)

)− ϕ
)
|Φi(0, ky)| (8.9)

Here, δε is a box function given by

δε(x) =
{

1 : |x| ≤ ε
0 : else

, (8.10)

and N is a counter for the global data set of cross spectra. For the computation
presented here, ε was chosen as 1◦ resulting in a reasonable resolution of the phase.
Qx and Qy provide the energy distribution over the phase interval [0,2π] for different
range and azimuth travelling wave components respectively. Fig. 8.7 shows contour
plots of the two functions estimated from N=10000 complex imagettes. Only im-
agettes passing the inhomogeneity test were used to avoid artefacts associated with
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A B

Fig. 8.7: Distribution of cross spectrum energy in the wavenumber/phase plane for range
travelling waves (A) and azimuth travelling waves (B) respectively (compare eq. 8.8
and eq. 8.9). The distribution was estimated from a global data set of 10000 cross
spectra with a look separation time of ∆t = 0.33 s. The dashed curves represent the
theoretical phase for ocean waves propagating in deep water (compare eq. 2.10).

sea ice or atmospheric phenomena. The dashed curves in both plots represent the
theoretical phase expected within the linear theory for deep water. One can see that
for both range and azimuth travelling waves there is reasonable agreement between
the theoretical and measured phase. For the range case we see that the maxima of Qy

are located at wavelengths between 200 m to 250 m. The maxima are only slightly
below the theoretical values. There are two possible explanation for the remaining
deviations:

• The data set contains shallow water cases, which have a reduced phase speed
(compare eq. 2.10).

• The simple definition of the look separation time ∆t, which refers to the cen-
tre (compare Fig. 6.7) of the extracted frequency bands, does not take into
account the weighting associated with the azimuth antenna pattern. As the
neighbouring parts of the look bands have a higher signal to noise ratio than
the remaining part, the effective look separation is likely to be slighly shorter
than the distance of the look centres.

For the azimuth case shown in Fig. 8.7 (B), one can see that the energy is stretched
over a longer interval of phases exceeding the theoretical value. This finding can be
attributed to non-linear imaging effects, which dominate in the azimuth direction;
shorter waves travelling in flight direction are “bunched” towards the range axis, i.e.
they appear with longer wavelength on the SAR image.
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Chapter 9

AN OCEAN WAVE RETRIEVAL SCHEME FOR SAR CROSS SPECTRA

As demonstrated in the previous chapters, the information SAR provides on the
two-dimensional ocean wave spectrum has limitations in particular for shorter waves
propagating in the azimuth direction. SAR look cross spectra have shown their capa-
bility to resolve the ambiguity of wave propagation direction present in conventional
SAR image variance spectra, but the information loss caused by nonlinear SAR imag-
ing effects, like the azimuthal cut-off still exists. One can of course try to restrict the
SAR measurement to the long wave regime, which is less affected by nonlinear mech-
anism as shown in the previous chapter, however for practical applications like, e.g.
wave model assimilation this approach is not really satisfactory. The main reason is
the fact that due to the strong coupling of different wave components in the imaging
process there is no obvious separation of the spectral regime in regions of linear and
nonlinear wave mapping.

The type of ill conditioned problem described above is very common in remote
sensing and is usually solved by using some a priori information from other sources,
like numerical models or different sensors. Attempts to find solutions without prior
information have been made [Lyzenga, 2002], but the applicability seems to be very
limited and a statistical analysis was not carried out. For conventional SAR image
variance spectra different approaches have been proposed to blend SAR measurement
and prior knowledge. Hasselmann et al. [1996] and Krogstad et al. [1994] used model
spectra as prior information, whereas Mastenbroek and de Valk [2000] took collocated
ERS-2 scatterometer measurements as additional input. Several studies showing the
performance of the schemes have been carried out [Heimbach et al., 1998; Mastenbroek
and de Valk, 2000; Breivik et al., 1998].

In this section a retrieval scheme for the derivation of two-dimensional ocean wave
spectra from look cross spectra as, e.g. provided by the ENVISAT ASAR operating
in wave mode is presented using prior information. A first very general study on this
issue without statistical analysis was presented in Dowd and Vachon [2001], where
discontinuities of the retrieved spectra at the cut-off wavenumber were identified as
the main problem. As we will show, the scheme presented in this chapter is able
to solve this problem. The method proposed here extends the basic concepts of the
inversion scheme introduced in Hasselmann et al. [1996], which are:

• The scheme uses two-dimensional wave spectra provided by numerical models
as a priori information.

• The method is based on a parameterisation of the prior wave spectrum using a
partitioning approach.
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Fig. 9.1: Flowchart of the PARSA retrieval scheme

The method described in this chapter is referred to as PARSA (partition rescale and
shift algorithm) in the following. It has several additional features compared to the
scheme described in Hasselmann et al. [1996]:

• The scheme has the directional spreading of the different wave systems as an
additional parameter.

• The algorithm is based on explicit models for the measurement error, errors in
the forward model, and uncertainties in the prior wave spectrum.

• The scheme is based on a maximum a posteriori approach. The second iteration
loop used in Hasselmann et al. [1996], where the prior wave spectrum is adjusted
and fed back into the optimal estimation problem is avoided. This approach
has two advantages:

– The sensitive cross assignment procedure used in Hasselmann et al. [1996]
is not required.

– Based on the rigorous formulation as an optimal estimation problem it is
possible to estimate the error covariance of the retrieved parameters.

• The scheme makes use of the phase information contained in cross spectra to
resolve ambiguities in wave propagation direction.
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• The side condition Fk ≥ 0 is treated in a rigorous way.

The design of the PARSA scheme was guided by the requirements of wave model
assimilation, which is regarded as the most important application of global SAR data
as provided by the ENVISAT ASAR.

The chapter is structured as follows. In the first section the basic formulation of
SAR ocean wave retrieval as an optimal estimation problem is introduced. A model
for the measurement error based on results obtained in Chapter 6 as well as for errors
in the forward model and uncertainties in the prior wave spectrum are presented in
Section 9.2. Section 9.3 is about the numerical retrieval procedure, which is based on
a Levenberg-Marquard method. The discussion includes criteria for the termination
of the iteration and the computation of error covariance matrices for the retrieved
wave parameters. In Section 9.4 the performance of the scheme is illustrated using
simulated data. In particular, the benefit of the phase information contained in cross
spectra is demonstrated. In the final section the PARSA scheme is applied to the
global data set of reprocessed ERS-2 cross spectra introduced in Chapter 5. Global
maps as well as scatterplots comparing retrieved and prior wave spectra are presented.

9.1 Retrieval strategy

As explained above, one essential task in SAR ocean wave retrieval is to blend SAR
information and prior knowledge in some consistent way. The strategy followed in
this study is based on the so called maximum a posteriori approach. The objective of
this concept is to maximise the conditional probability of the retrieved wave spectrum
given the SAR measurement and the prior information. Using the Bayes theorem the
respective probability density function (pdf) can be written as

pdf(Fk,α|Φk) =
pdf(Φk|Fk,α) pdf(α) pdf(Fk)

pdf(Φk)
, (9.1)

where the factors in this equation have the following meanings:

• pdf(Φk|Fk,α) : conditional distribution of the measured cross spectrum Φk

given an ocean wave spectrum Fk and a forward model, which contains a
stochastic parameter vector α.

• pdf(α) : prior distribution of parameters in the forward model

• pdf(Fk) : prior distribution of the ocean wave spectrum Fk.

• pdf(Φk) : prior distribution of the cross spectrum, which is irrelevant for the
inversion procedure.

The overall structure of the retrieval scheme based on eq. 9.1 is depicted in a flowchart
in Fig. 9.1. The different components will be explained going from top to bottom,
starting with probability models for both cross spectra estimation errors and uncer-
tainties in the prior wave spectrum.
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BA

Fig. 9.2: (A) Polar grid used in the PARSA retrieval scheme with 10◦ directional resolu-
tion and wavenumber spacing equivalent to the frequency grid used in the WAM
model (for deep water). (B) Relevant spectral regimes in the frequency domain.
The maximum frequencies in the WAM model and the PARSA scheme are denoted
by fPARSA

max and fWAM
max respectively. For the computation of the orbital velocity

variance ρu(0) spectral energy above fPARSA
max is taken into account.

9.2 Error models

9.2.1 Measurement errors

For an optimal wave spectra retrieval it is necessary to quantify the potential errors
contained in the cross spectra measurement. The analysis in Section 6 showed that
the correlation of the errors of the real and imaginary part of the cross spectrum is
low (<0.5) for typical coherence values and wave phase speeds. Using a second order
model for the measurement error we therefore neglect the off-diagonal elements in the
covariance matrix and only take into account the variances of the real and imaginary
part as given by the diagonal elements of the matrix given in eq. 6.22. Denoting the
exact cross spectrum with Φobs

k , the estimated spectrum is written as

Φobs
k = Φobs

k + εS
k (9.2)

where εS
k is a zero mean complex Gaussian process with standard deviation given by

stdv(εS
k ) ≈ |ΦI1I1

k |
N

(0.75, 0.25) =: (σRS
k , σIS

k ) , (9.3)

which has to satisfy εS
k = (εS

−k)
∗. Here, N is the number of averaged samples used

in the cross spectrum estimation. For simplicity, we have furthermore assumed an
average coherence of 0.7, which is regarded as typical. Alternatively, the coherence
can be estimated for each measurement separately as discussed in Chapter 6.

To keep the computational effort low, the PARSA scheme uses a polar grid as
shown in Fig. 9.2 (A) with nk = 18 wavenumbers, which for deep water corresponds
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A B

Fig. 9.3: (A) Average number N of cartesian grid points contained in the wavenumber bins
used in the PARSA scheme (compare eq. 9.4). An image size of 10 by 5 km was
assumed corresponding to the ERS wave mode. (B) Respective range of wavelength
for each bin.

to the frequencies in the polar grid of the WAM model, i.e.

kj =
4π2 f2

0

g
1.1j−1 j = 1, ..., nk (9.4)

with f0 defined in eq. 5.4. The range of wavelength is between 35 m and 895 m. The
grid has nΦ = 36 equally spaced directions, which is in agreement with the grid of the
official ENVISAT cross spectra product (compare Fig. 5.5). Fig. 9.3 (A) shows the
average number N of cartesian grid points contained in the logarithmic wavenumber
bins. The respective range of wavelengths is given in Fig. 9.3 (B). One can see that
for shorter waves the number of averaged spectral bins is so high that the impact of
estimation errors on the retrieval (compare eq. 9.3) becomes negligible. However, for
longer swell it has to be taken into account.

9.2.2 Uncertainties in the forward model

It is well known that the SAR ocean wave imaging model contains significant uncer-
tainties. In particular, the phase and magnitude of the RAR modulation mechanism
is known only with low accuracy [Brüning et al., 1994; Schmidt, 1995]. This cir-
cumstance is only to some degree due to the lack of respective measurements, but
there is some indication that the RAR modulation mechanism itself has stochastic
components [Schmidt, 1995].

To take into account uncertainties in the forward model, we assume that the sim-
ulated cross spectrum Φsim calculated according to the nonlinear integral transform
given by eq. 4.25 can deviate from the “true” cross spectrum denoted by Φ. The
proposed error model has three components, which refer to different characteristic
features of the cross spectrum and can be written as:

Φk = α1 exp[−k2
x α2] Φsim

k + εF
k (9.5)
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σα1 σα2 σνRF
σνIF

0.2 250 m2 0.1 0.1

Tab. 9.1: Standard deviations of the parameters α1, α2, νRF and νIF used to describe errors
in the SAR ocean wave imaging model (compare eq. 9.5).

Here, α1, α2 and εF
k have the following meanings:

• α1 is a Gaussian distributed variable with unit mean and standard deviation
σα1 , which describes errors in the overall energy level of the spectrum, as e.g.
caused by uncertainties in the magnitude of the RAR MTF.

• α2 is a Gaussian distributed variable with zero mean and standard deviation σα2 ,
which describes uncertainties in the cut-off wavelength of the forward model.

• εF
k is additive white Gaussian noise with independent real and imaginary part

and zero mean, which has to satisfy εF
k = (εF

−k)
∗. It is supposed to take into

account errors in the fine scale structure of the spectrum, e.g. caused by errors
in the phase of the RAR MTF

For the standard deviation of εF we assume relative errors for both real and imaginary
part of the cross spectrum, i.e.

stdv εF
k = (σRF

k , σIF
k ) =

(
νRF max

k
|ReΦobs

k |, νIF max
k

|ImΦobs
k |) . (9.6)

Here, νRF and νIF denote the expected error in the fine scale structure of the real
and imaginary part expressed as a fraction of the respective maximum values.

Combining the models for estimation errors and uncertainties in the forward
model, the conditional probability of the measured cross spectrum given an ocean
wave spectrum Fk and a parameter vector α is given by

pdf(Φk|Fk,α) ∼
∏
k

exp
[
−
(
Re(α1 e−k2

x α2 Φsim
k − Φk)

)2
2 (σRF

k )2 + 2 (σRS
k )2

]
∏
k

exp
[
−
(
Im(α1 e−k2

x α2 Φsim
k − Φk)

)2
2 (σIF

k )2 + 2 (σIS
k )2

]
, (9.7)

where it was assumed that both error contributions are independent. Table 9.1 sum-
marises the standard deviations assumed for the model describing uncertainties in
the cross spectrum forward model. As the standard deviation defines the 65% confi-
dence interval for a Gaussian distributed variable, it is thus expected, that the given
deviations of the parameters from their mean values will be exceeded in about 35%
of the cases.

The values given in table 9.1 represent estimates of the uncertainties, which are
regarded as reasonable. They should be seen as a first guess of more accurate es-
timates, which are expected from a statistical analysis of the retrieval results. The
problem of a straightforward estimation of the parameters by, e.g. comparing cross
spectra simulated from wave model data with the collocated SAR measurements lies
in the fact that the observed deviations are due to both the errors in the imaging
model and the wave model.
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9.2.3 Statistical model for the ocean wave model spectrum

The prior information needed for the SAR wave spectra retrieval can be either taken
from collocated measurements of other sensors [Mastenbroek and de Valk, 2000] or
from models [Hasselmann et al., 1996; Krogstad et al., 1994]. In Mastenbroek and
de Valk [2000] ERS scatterometer measurements, which are exactly collocated in time
and space with the corresponding wave mode acquisition were used to add the missing
information beyond the cut-off wavelength. Although, it is certainly reasonable to
use additional and independent measurements, the approach is not followed in this
study mainly for two reasons:

• The most important application of the presented retrieval scheme is the inver-
sion of ASAR wave mode data provided by ENVISAT, which does not carry a
scatterometer.

• The method proposed in Mastenbroek and de Valk [2000] is based on a simple
parametric JONSWAP type model describing the relation between wind speed
U10 and the corresponding wind sea. In this study wind sea spectra calculated
with a third generation numerical ocean wave model are used as prior infor-
mation. These spectra are believed to be more realistic, because they contain
the best available information about the history of the wind field and the wave
dynamics.

The approach of this study is to take the overall shape of the spectrum from a nu-
merical ocean wave model and to use the SAR information to adjust parameters like
wavelength, wave height, directional spreading and propagation direction. The statis-
tical model used for the prior spectrum is based on a partitioning scheme, where the
wave spectrum F is split into different wave systems Bi using the inverted catchment
algorithm proposed in Gerling [1992]. The wave spectrum can then be written as

Fk =
np∑
i=1

Bi
k , (9.8)

where np is the number of partitions. The method is defined by a simple induction
rule, which connects every grid point with the neighbouring point of highest energy.

For each subsystem a stochastic model is used, which prescribes the probability
that the energy, the propagation direction, the wavelength, or the directional spread-
ing deviates from the prior spectrum. Using a polar grid (Φ, k) for the partitions Bi,
the corresponding processes B̃i can be written as

B̃i(Φ, k) = Xi
E X∆Φ Xi

k Bi
(
Φi

0 + (Φ−Xi
Φ −Φi

0) X∆Φ,Xi
k k
)

i = 1, . . . , np (9.9)

where Φi
0 is the peak direction of the ith partition. The definition of the partition

process ensures that∫
B̃i(Φ, k) dΦ dk = Xi

E

∫
Bi

k dΦ dk i = 1, . . . , np (9.10)

i.e. rotations, shifts, and changes in directional spread keep the total energy constant.
The variance contribution from the ith partition is thus solely controlled by the
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A B 

C D 

Fig. 9.4: Transformations of wave systems used in the PARSA retrieval scheme (compare
eq. 9.9). (A) Prior wave system with 250 m peak wavelength. (B-D) Transformed
wave spectra with wavenumbers rescaled (B), directional spreading changed (C) and
simultaneous rotation and energy rescaling (D).

parameter Xi
E . Furthermore, the approach of changing the wavelength by rescaling

of the wavenumber ensures that power laws in k, e.g. the k−4 high frequency tail of
wind seas, is maintained by the transformation (compare eq. 2.26).

For a given set of transformation parameters the corresponding spectrum is com-
puted with a bilinear interpolation method, which turned out to give sufficiently
smooth results. Fig. 9.4 illustrates the different transformations used in the PARSA
scheme. The prior spectrum with a single wave system of 250 m wavelength is shown
in Fig. 9.4 (A). The four possible transformations applied to this system are demon-
strated in Fig. 9.4 (B)-(D). One can see that the wavenumber rescaling factor of
Xk = 1.2 shifts the peak wavelength from 250 m to 300 m. The directional spreading
is increased if the parameter X∆Φ is less than one and vice versa.
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σE σk σΦ σ∆Φ

0.1 0.1 20◦ 0.1

Tab. 9.2: Standard deviations of the parameters used for the model describing errors in the
prior wave spectrum (compare eq. 9.9).

The 4 transformation parameters for each partition are collected in a vector X̂i

X̂i = (Xi
E ,Xi

k,Xi
Φ,Xi

∆Φ) i = 1, ..., np . (9.11)

The vector X̂i is assumed to be Gaussian distributed with independent components,
and with mean given by:

νi = 〈(Xi
E ,Xi

k,X
i
Φ,Xi

∆Φ)〉 = (1, 1, 0, 1) i = 1, ..., np (9.12)

The standard deviation is defined as:

stdv
(
(Xi

E ,Xi
k,X

i
Φ,X∆Φ)

)
= (σi

E , σi
k, σ

i
Φ, σi

∆Φ) i = 1, ..., np (9.13)

The different partition processes are in a first approximation assumed to be indepen-
dent. This is justified, because in the typical situation one has a wind sea driven by
the local wind field and swell systems, which were generated by storm events far away
in time and space. The prior wave spectrum can then be expressed as:

F̃ (X̂1, . . . , X̂np) =
np∑
i=1

B̃i(X̂i) (9.14)

In summary, the prior pdf of the wave spectrum can be written as

pdf(X) ∼
4 np∏
i=1

exp
[
−(Xi − νi)2

2σi
2

]
, (9.15)

where the partition parameters X̂i were collected into a vector X of dimension 4np.

X =
(
X̂1, ..., X̂np

)
(9.16)

The respective mean and standard deviation are defined accordingly:

ν = 〈X〉
σ = stdv(X) (9.17)

The statistical parameters used for the model describing errors in the prior model
are summarised in table 9.2. Again the given parameters are regarded as reasonable,
however it is clear that the values strongly depend on the performance of the numerical
model used to compute the prior wave spectrum, as well as the quality of the driving
wind fields. It is obvious that any user of wave model data would benefit from
knowledge about parameters like the ones used in this study and we think that it is
simply a question of time until such information will be provided by weather centres
on a routinely basis.
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9.3 Numerical inversion procedure

Inserting eq. 9.7 and eq. 9.15 in eq. 9.1 and taking the logarithm we see that max-
imising the conditional probability density pdf(Fk,α|Φk) is equivalent to minimising
the following cost function

J(X) =
∑

k

(
Re(α1 e−k2

x α2 Φsim
k − Φobs

k )
)2

(σReΦ
k )2

+

(
Im(α1 e−k2

x α2 Φsim
k − Φobs

k )
)2

(σImΦ
k )2

+
4 np+2∑

i=1

(Xi − Xa
i )

2

σ2
i

, (9.18)

where σReΦ and σImΦ are defined by (compare eq. 9.6 and eq. 9.3)

(σReΦ)2 = (σRS
k )2 + (σRF

k )2

(σImΦ)2 = (σIS
k )2 + (σIF

k )2 .

The state vector X is given by (compare eq. 9.16 and eq. 9.5)

X =
(
X, α1, α2

)
, (9.19)

and mean and standard deviation are defined accordingly as

Xa =
(
ν, 1, 0

)
σ =

(
σ, σα1 , σα2

)
.

Eq. 9.18 represents a nonlinear minimisation problem with 4∗np +2 variables, which
is solved on the grid introduced in Section 9.2.1, i.e. the index k in the summation
refers to the bins of the polar grid.

Fig. 9.2 (B) shows the range of frequencies covered by the PARSA grid and the
WAM grid. It is important to note that the ocean wave imaging process is influenced
by waves with frequencies higher than fPARSA and fWAM . This is simply due to the
fact that these waves contribute significantly to the orbital velocity variance as already
discussed in Chapter 7. To take these waves into account the variance contribution of
waves between fPARSA and fWAM is taken from the model spectrum. The effect of
waves shorter than fWAM is estimated assuming a f−5 power law as explained before
(compare eq. 7.14).

9.3.1 Levenberg Marquardt Method

The inversion procedure is based on an iterative correction of the unknown vector X

X(n+1) = X(n) + ∆X , (9.20)

in each step replacing the non-linear minimisation problem eq. 9.18 by a quadratic
approximation, which is equivalent to a system of linear equations.

The inversion is performed on a polar grid with nφ × nk = 18 × 36 = 648 bins,
which is an order of magnitude lower than the typical number of spectral bins of
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cartesian grids (e.g. 128 × 128=16384) used in Hasselmann et al. [1996] or Krogstad
et al. [1994]. The reduced dimension is a key point in the proposed retrieval scheme
as the numerical solution of the resulting linear equations becomes feasible even if
there is a coupling between different wave components, i.e. the respective matrices
are non-diagonal.

The moderate dimension of the polar grid is, e.g. beneficial for the linearisation of
the forward model. The most straightforward approach would be to replace the full
nonlinear model with the quasi-linear approximation eq. 4.31 as done in Hasselmann
and Hasselmann [1991]. A disadvantage of this approach is the fact that the change of
the cut-off factor resulting from a correction of the wave spectrum is not represented in
the resulting quadratic problem. A way to deal with this problem was later presented
in Hasselmann et al. [1996] adding an explicite cut-off term in the cost function.
In this study we try to avoid the problem right away by extending the quasi-linear
approximation, such that the change of the azimuthal cut-off is explicitely contained.
The following non-diagonal approximation of the Jacobian matrix is used to achieve
this:

∂Φk

∂Fk′
≈ 0.5 exp[−k2

x〈ξ2〉] |T S
k′ |2

(
δk−k′ exp[i ωk∆t] + δk+k′ exp[−i ωk∆t]

)
−β2 k2

x |T u
k′ |2 Φk dk (9.21)

Here, T S and T u are the SAR and orbital velocity transfer functions as defined in eq.
4.30 and eq. 4.22 respectively. The approximation follows by applying the product
rule to eq. 4.25 and approximating the derivative of the integral expression by the
respective derivative at F = 0.

Denoting the correction of the vector X at the nth iteration step with ∆X the
resulting change ∆Fn of the wave spectrum F is given by

∆Fn
k =

4 np∑
i=1

∆Xi
∂Fk

∂Xi
. (9.22)

The partial derivatives of the wave spectrum with respect to the parameter vector X
are estimated based on eq. 9.9 using a bilinear interpolation method. For each wave
spectrum Fn

k a simulated cross spectrum Φn
k is calculated according to eq. 4.25. As the

transform is defined on a cartesian grid the spectrum Fk is transformed accordingly
using a bilinear interpolation method. The simulated cross spectrum Φn+1

k of the
next iteration step can then be written as

Φn+1
k ≈ αn

1 e−k2
x αn

2 Φn
k + αn

1 e−k2
x αn

2

∑
k′

∂Φk

∂Fk′
∆Fn

k′ + e−k2
x αn

2 Φn
k ∆α1

−αn
1 k2

x e−k2
x αn

2 Φn
k ∆α2 . (9.23)

Based on the above approximations, the following cost function has to be minimised
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in each iteration step:

J(∆X) =
∑

k

Re
[
e−k2

x α2 (αn
1 + ∆α1 − α1 k2

x ∆α2)Φn
k +

∑4 np

i Zi
k ∆Xi − Φobs

k

]2
(σReΦ

k )2

∑
k

Im
[
e−k2

x α2 (αn
1 + ∆α1 − α1 k2

x ∆α2)Φn
k +

∑4 np

i Zi
k ∆Xi − Φobs

k

]2
(σImΦ

k )2

+
4 np+2∑

i

(Xn
i + ∆Xi −Xa

i )
2

σ2
i

(9.24)

with complex valued functions Z defined as

Zi
k = e−k2

x αn
2 αn

1

∑
k′

∂Φk

∂Fk′

∂Fk′

∂Xi
i = 1, ..., 4np (9.25)

Eq. 9.24 represents a quadratic minimisation problem with respect to the unknown
vector ∆X. To simplify the further discussion, the equation is rewritten in matrix
notation as

J(∆X) = (Φobs − Φn − Dn ∆X)T S−1
ε (Φobs − Φn − Dn ∆X)

+(∆X + Xn −Xa)T S−1
a (∆X + Xn − Xa) (9.26)

with Jacobian matrix Dn of dimension 2N × NX given by

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re Z1
k1

· · · ReZ
4 np

k1
ReAk1 ReBk1

...
...

...
...

...
ReZ1

kN
· · · ReZ

4 np

kN
ReAkN

ReBkN

Im Z1
k1

· · · Im Z
4np

k1
ImAk1 ImBk1

...
...

...
...

...
Im Z1

kN
· · · Im Z

4np

kN
ImAkN

ImBkN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.27)

where N = nΦ nk is the dimension of the polar grid and NX := 4np + 2 is the
dimension of the unknown parameter vector. The wavenumbers k1, . . . , kN define an
arbitrary ordering of the bins of the polar grid. The functions Ak, Bk are defined as

Ak = e−k2
x α2 Φn

k

Bk = −αn
1 k2

x e−k2
x α2 Φn

k (9.28)

and the error covariance matrix Sε of dimension 2N × 2N is given by

Sε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σReΦ
k1

0 0 0 0 0

0
. . . 0 0 0 0

0 0 σReΦ
kN

0 0 0
0 0 0 σImΦ

k1
0 0

0 0 0 0
. . . 0

0 0 0 0 0 σImΦ
kN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.29)
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Finally, the prior covariance matrix Sa of dimension NX × NX is defined as

Sa =

⎛
⎜⎝

(σ1)2 0 0

0
. . . 0

0 0 (σ4np+2)2

⎞
⎟⎠ . (9.30)

Using the matrix notation eq. 9.26 of the quadratic minimisation problem, it can be
shown [Rodgers, 2001] (compare Appendix B) that the next iterate Xn+1 following
from eq. 9.24 can be written as

Xn+1 = Xn + CX

(
(Dn)T S−1

ε (Φobs − Φsim) − S−1
a (Xn − Xa)

)
= Xa + CX (Dn)T S−1

ε

(
Φobs − Φsim + Dn(Xn − Xa)

)
, (9.31)

where CX is the estimated covariance matrix of X at the nth iteration step given by
the following expression:

CX =
(
(Dn)T S−1

ε Dn + S−1
a

)−1 (9.32)

To improve the convergence of the iteration scheme given by eq. 9.31 in case of
strong nonlinearities, a Levenberg Marquard approach is used. The idea is to blend
the search direction given by the solution of the quadratic minimisation problem,
which might not reduce the cost function of the nonlinear problem in some cases,
with the steepest descent direction [Rodgers, 2001]. The resulting scheme is given by

Xn+1 = Xn +
(
C−1

X + λnINX

)−1(
(Dn)T S−1

ε (Φobs − Φsim) − S−1
a (Xn − Xa)

)
(9.33)

where INX
is the identity matrix of dimension NX and the parameter λn is adjusted

during the iteration depending on the cost function values. In the PARSA scheme
the strategy

λn+1 =
{

0.25 λn : J(Xn) < J(Xn−1)
4 λn : J(Xn) ≥ J(Xn−1)

(9.34)

turned out to be efficient.

9.3.2 Termination Criteria

One important aspect of the numerical inversion scheme is the criterium used to
terminate the iteration. For the PARSA scheme an approach proposed in [Rodgers,
2001] is used. Let the exact solution be denoted by Xs. Because of the quadratic
convergence of the inverse Hessian method one has

|Xn − Xn−1| ≥ |Xn − Xs| |1 − |Xn − Xs|| , (9.35)

and thus the difference of the solutions in the steps n and n + 1 is a reasonable
approximation of the error |Xn − XS| at stage n. A straightforward termination
criterion then follows from the requirement that the estimated error should be an
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order of magnitude smaller than the expected error as given by the prior distribution.
This condition can be written as [Rodgers, 2001]

(Xn − Xn−1)T C−1
X (Xn − Xn−1) � 4np + 1 . (9.36)

The exact value for the termination threshold is necessarily a compromise between
accuracy and computational effort. For the retrievals shown in this study the value
(4np + 1)/15 turned out to be reasonable choice.

9.4 Test of retrieval using synthetic data

In a first step the PARSA scheme was tested using synthetic data, i.e. the observation
was simulated from a known ocean wave spectrum. The same ocean wave spectrum
was then transformed in different ways and used as a prior information for the re-
trieval. The ERS-2 SAR imaging parameters for wave mode as summarised in table
5.3 are used for the tests. A necessary requirement for the retrieval performance is the
ability of the scheme to reproduce the original wave spectrum. At the same time the
scheme should avoid very strong corrections of the prior wave spectrum, which would
lead to dynamical inconsistencies in a later assimilation of the retrieved spectra.

Fig. 9.5 shows a retrieval example with a single wind sea system. A parametric
JONSWAP spectrum (fully developed) was taken as a prior spectrum (lower right).
The respective simulation of the real and imaginary part of the cross spectrum is
shown on the bottom left. The observation to be used for the retrieval was simulated
by transforming the prior spectrum with the parameters

(XE ,Xk,XΦ,X∆Φ) = (1.3, 1.1, 25◦ , 1.2) (9.37)

yielding the test spectrum F test shown on the centre right, and subsequent applica-
tion of the full non-linear cross spectra transform (eq. 4.25). The resulting real and
imaginary parts of the observation are shown on the centre left of Fig. 9.5. Applying
the PARSA scheme to the synthetic input data gave a retrieved wave spectrum F retr

(upper right) and imaging parameters α1, α2 after Niterate = 9 iteration steps using
the termination criterium described above. The respective simulated cross spectrum
Φretr (upper left) was calculated using the retrieved wave spectrum as input to the
transform eq. 4.25 and subsequent correction of the energy level and cut-off wave-
length according to

Φretr = α1 exp[−k2
x α2] Φsim

k . (9.38)

As one can see, the simulated cross spectrum Φretr shows almost perfect agreement
with the observation Φobs. This is the case, although the parameters used to simulate
the observation are not exactly reproduced as can be seen from the table given at
the bottom of Fig. 9.5. The small deviations become also visible comparing the
retrieved wave spectrum F retr with the test spectrum F test. This behaviour makes
sense, because the PARSA scheme is designed such that it tries to explain deviations
between the observed and simulated cross spectra by both errors in the wave model
and in the SAR imaging model. In the present case the scheme attributes the higher
energy level of the observation to an underestimation of the integral transform (eq.
4.25), represented by the parameter α1 = 1.04 and at the same time to an energy
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underestimation of the wave model represented by the parameter XE = 1.19. Both the
rotation parameter XΦ and the wavenumber rescaling parameter Xk are reproduced
with good accuracy. Furthermore, the correction of the cut-off wavelength in the
forward model is about 9 m and thus very small. The directional spreading parameter
X∆Φ is slightly lower than the prescribed value. Again this behaviour makes sense,
because the retrieval avoids any departure from the prior wave spectrum, which does
not lead to an improved agreement between observed and simulated cross spectrum.
As the agreement is already perfect with the lower value for X∆Φ, there is no reason
for stronger corrections of the prior spectrum.

The error statistics of the retrieval can be derived from the covariance matrix
defined in eq. 9.32. The following values were obtained for the standard deviations
and correlations of the retrieved parameters for the present example:⎛
⎜⎜⎝

stdvXE cor(XE ,Xk) cor(XE ,XΦ) cor(XE ,X∆Φ)
· stdvXk cor(Xk,XΦ) cor(Xk,X∆Φ

)
· · stdvXΦ cor(XΦ,X∆Φ

)
· · · stdvX∆Φ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0.05 0.3 0.7 0.3
· 0.004 0.3 −0.1
· · 1.8◦ −0.1
· · · 0.04

⎞
⎟⎟⎠

In particular, one can see that the standard deviations of the retrieved parameters are
smaller than the respective values of the prior distribution (compare table 9.2). This
means that despite the significant errors assumed in the cross spectra estimation and
the imaging model, the SAR measurement does add information to the knowledge
already provided by the ocean wave model.

Another retrieval example based on synthetic data, which is supposed to demon-
strate the benefit of the additional complex information represented by the imaginary
part of the cross spectrum is shown in Fig. 9.6. As one can see, the prior spectrum
contains two wave systems with almost opposite propagation directions in this case.
As in the first example an observation was generated by simulation. In this case the
following parameters were used to transform the spectrum

(X1
E ,X1

k ,X1
Φ,X1

∆Φ,X2
E ,X2

k ,X2
Φ,X2

∆Φ) = (1.1, 1.03,−40◦ , 1, 0.9, 0.97, 40◦ , 1) (9.39)

Here, the first index refers to the wave system at the top and the second index to
the wave system at the bottom. The cross spectrum Φprior simulated from the prior
wave spectrum shows good agreement with the observation in the real part, however
strong deviations in the imaginary part. It is clear, that if there was no complex
information available as in the case of conventional variance spectra, there would be
no reason to modify the prior wave spectrum other than small changes in energy and
wavelength. However, the retrieved spectrum calculated with the PARSA scheme
within Niter=14 iteration steps shows that the information in the imaginary part
helps to apply more significant corrections, rotating both wave systems correctly by
almost 40◦. The inversion example demonstrates that, although the overall shape
of the wave spectrum is taken from the wave model and thus most ambiguities in
wave propagation direction are resolved by prior knowledge, the imaginary part adds
valuable information in multi-system cases.
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Fig. 9.5: Retrieval example using simulated data with prior spectrum F prior (bottom right),
observed cross spectrum Φobs (centre left), and retrieved wave spectrum F retr. The
cross spectra Φprior and Φretr simulated from the prior wave spectrum and the
retrieved spectrum are shown one the lower left and upper left respectively. The
spectrum F test on the centre right was used to simulate the observed cross spectrum
(for details see text).
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12 m2

Fig. 9.6: Retrieval example using simulated data with prior spectrum F prior (bottom right),
observed cross spectrum Φobs (centre left), and retrieved wave spectrum F retr. The
cross spectra Φprior and Φretr simulated from the prior wave spectrum and the
retrieved spectrum are shown one the lower left and upper left respectively. The
spectrum F test on the centre right was used to simulate the observed cross spectrum
(for details see text).
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Fig. 9.7: PARSA retrieval for an ERS-2 cross spectrum acquired in the Indian Ocean at
23.46◦S 64.36◦E on Sep 5, 1996, 5:46 UTC. The satellite heading is 192.94◦. The
dashed vertical lines indicate the azimuthal cut-off wavelength as defined in Section
7.3.

9.5 Application to reprocessed ERS-2 data

In a second step, the retrieval scheme was applied to the global data set of reprocessed
ERS-2 wave mode imagettes introduces in Chapter 5. To make sure that the results
are consistent with the retrievals to be carried out with ENVISAT data, the ERS-2
cross spectra were transformed to the standard ENVISAT polar grid as shown in Fig.
5.5.

Figs. 9.7 - 9.8 show two inversion examples calculated with the PARSA scheme.
The first case presented in Fig. 9.7 is a swell dominated situation in the Indian Ocean
with a wave system of about 300 m wavelength propagating in the azimuth direction
and an old wind sea system of about 150 m wavelength in the range direction. The
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Fig. 9.8: PARSA retrieval for an ERS-2 cross spectrum acquired in the Pacific at 12.46◦S
139.45◦W on Sep 5, 1996, 8:06 UTC. The heading of the satellite is 347◦.

wind speed according to the ECMWF model was 3.2 ms−1 explaining the relatively
short cut-off wavelength of about 135 m in the observed cross spectrum. The PARSA
scheme retrieved the wave spectrum shown on the upper right within 12 iteration
steps reducing the cost function value by about 40%. It can be clearly seen that
the retrieval scheme improves the agreement between the simulated and the observed
cross spectrum including the azimuthal cut-off wavelength. This is mainly achieved
by rotating the swell system by about 21◦ in the anti-clockwise direction. At the same
time, the directional spreading is reduced and the wavelength increased to about 330
m. The energy of the swell system is increased by 38%. One can see that the second
system is turned in the azimuth direction, scaled down in energy and reduced in
wavelength. The rescaling of the two wave system results in a slight increase of the
significant wave height from 2.3 m to 2.6 m.

The second retrieval shown in Fig. 9.8 is an example for a more complicated
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Fig. 9.9: Comparison of significant wave height and mean direction of two-dimensional wave
spectra computed with the WAM model (black) and respective PARSA retrievals
(red) using ERS-2 cross spectra acquired on Sep 5, 1996.

situation in the Pacific with two swell systems of about 300 m wavelength coming from
the south (left system) and the north east (lower right system) and an additional wind
sea system with about 150 m wavelength. The PARSA retrieves a wave spectrum after
28 iterations reducing the cost function by about 20%. Again the agreement between
simulated and observed cross spectrum is significantly improved by the retrieval. It
is interesting to note in this case that the swell system propagating to the left is not
visible in the observed real part of the cross spectrum, but shows up in the respective
imaginary part. As can be seen this information is taken from the PARSA scheme
and used to rotate the prior system in anti-clockwise direction. The example is thus
another demonstration, that the complex information provided by the cross spectrum
is actually used in the retrieval.

A statistical comparison of prior wave spectra and retrieved spectra was carried
out in terms of the significant wave height Hs, the low frequency wave height H12

s

(defined analogue to eq. 8.4), as well as the mean wave vector k

k =
1

16 H2
s

∫
k Fk d2k . (9.40)

Fig. 9.9 shows a global map with mean directions and wave heights derived from
ECMWF spectra (black arrows) and corresponding PARSA retrievals (red arrows)
for ERS-2 wave mode data acquired on Sep 5, 1996. One can see that although the
general agreement is good, differences in wave height and direction occur in particular
in the areas of high sea states on the Southern hemisphere. For instance, there is a
tendency of the retrieval to slightly increase the wave height at high sea states. This
observation is consistent with earlier studies [Bentamy et al., 1996], which suggest
that the model wind speeds on the southern hemisphere are too weak in many cases.



Chapter 9. AN OCEAN WAVE RETRIEVAL SCHEME FOR SAR CROSS SPECTRA 113

A B

C D

Fig. 9.10: Comparison of integral parameters of ocean wave spectra computed with the WAM
model (horizontal axis) and respective PARSA retrievals (vertical axis). (A) Sig-
nificant wave height. (B) Wave height for periods longer than 12 s. (C) Mean
frequency. (D) Mean directions are given in the reference system of the sensor with
range and azimuth directions corresponding to 90◦ and 0◦ respectively.

It is also interesting to note that the observed corrections of the mean direction
look reasonable in the way that the rotations are changing smoothly going from one
imagette to the next one along the track. This observation gives some confidence that
the corrections are in fact due to large scale errors in the driving wind field. A good
example is the North Atlantic where waves of up to 5 m height are seen propagating
in easterly direction. These waves were generated by a cyclone, which propagated
along the North American east coast (Edward). It can be seen that the retrieval
scheme rotates the mean direction in the clockwise direction over a distance of about
1500 km. It can also be seen that the rotation is not always towards the range axis
of the sensor as one might suspect due to the velocity bunching effect.

The general findings visible on the global map can be confirmed looking at the
respective scatter plots shown in Fig. 9.10. The plots are based on 15000 retrievals,
with SAR data acquired in Aug/Sep 1996, i.e. in late Australian winter, with strong
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storms in the Southern Atlantic, Pacific and Indian Ocean and a couple of Hurricanes
in the North Atlantic.

First of all, one can see that the agreement of model wave height and retrieved
wave height shown in Fig. 9.10 (A) is very good with a correlation of 0.96 and a rms
of 0.37 m. This high correlation has two main reasons:

• Due to the fact that strong errors in the energy level of the simulated cross
spectra are assumed (compare eq. 9.5) the retrieval takes a lot of wave height
information from the model.

• Only cases, which failed the inhomogeneity test (compare Section 8.1) were
disregarded as input for the retrieval, i.e. the data set contains a significant
number of spectra with low signal to noise ratios, in which case the inversion
scheme tends to stay close to the prior spectrum.

However, one can see that despite the lack of trust in the simulated energy levels the
PARSA scheme still indicates an underprediction of wave heights at high sea states
in the order of 0.5 - 1 m for wave heights above 8 m. As pointed out above, this
observation is consistent with the general opinion that the driving model wind fields
in the “rolling fourties” and “fighting fifties” are too low.

The comparison of the mean frequencies in the model and the retrieval shown
in Fig. 9.10 (C) indicates an underprediction of wavelength in the wave model in
particular for longer waves. This observation again makes sense taking into account
the following points:

• The wave height underprediction for the high wind seas discussed above is
consistent with a wavelength underprediction, using the general theory on wind
sea dynamics introduced in Chapter 2.

• An underprediction of swell wavelength in the model has also been mentioned
in Heimbach [1998], who attributed the effect to the swell dissipation in the
WAM model, which is probably too strong.

The comparison of mean directions shown in Fig. 9.10 (D) exhibits a homogeneous
behaviour, i.e. there are no pronounced imaging artefacts or asymmetries visible.

In conclusion one can say, that the PARSA scheme has shown its ability to exploit
the information contained in SAR cross spectra, at the same time keeping consistent
with the prior wave model spectra. The statistical analysis has shown results, which
are consistent with other studies, e.g. on wind fields on the Southern hemisphere.

The scheme is currently tested in more detail using a collocated data set of buoys
and ENVISAT ASAR cross spectra, which were collected in the framework of the
ENVISAT calibration and validation activities. The data will be used to fine tune
the SAR imaging model, which is straightforward, because the parameters α1, α2

describing errors in the forward model are part of the PARSA retrieval results. The
PARSA scheme will be used at the UK Met Office for the assimilation of ENVISAT
ASAR cross spectra into an numerical ocean wave model.
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SUMMARY AND CONCLUSIONS

The thesis has shown both the potential as well as the limitations of different tech-
niques for the retrieval of ocean wave parameters from complex SAR data. The study
contains theoretical investigations as well as statistical analysis of data. The different
parts will be summarized separately in the following sections.

10.1 Theoretical investigations

The first theoretical aspect discussed was a modification of the existing SAR cross
spectra integral transform proposed by Engen and Johnson [1995], introducing a
nonlinear formulation of the RAR modulation in order to avoid negative radar cross
sections occurring in the existing linear model. The presented analysis is the first
systematic investigation of this phenomenon. It was shown that for the ERS and
ENVISAT configuration the effect is tolerable with less than 10% of meaningless
cross sections. However, for future spaceborne systems with higher range resolution
of up to 2 m, like TerraSAR, or for airborne SAR the effect becomes significant.
For the TerraSAR configuration more than 20% of the predicted cross sections are
outside the feasible range, if the linear model is used. To solve the problem, an
exponential model for the SAR image intensity was proposed, which predicts positive
cross sections under all configurations. The model is consistent with the former linear
model in so far as both mean and variance of the RAR image are maintained. Based
on the new RAR model, an integral transform was derived, which maps an ocean
wave spectrum into the corresponding SAR look cross spectrum. Comparisons with
the transform introduced in Engen and Johnson [1995] showed that the exponential
RAR model leads to changes in the fine structure of the simulated cross spectrum,
while overall shape and energy levels are maintained.

The second theoretical part was concerned with a first systematic analysis of the
distribution of the phase, as well as the real and the imaginary part, of estimated
SAR look cross spectra acquired over the ocean. The study was mainly motivated by
the need of noise information in the SAR retrieval of ocean wave spectra. The main
results of the investigation are:

• A model was proposed for the distribution of the estimated look cross spectrum,
which has the coherence as a key parameter. The model provides pdfs for the
phase, magnitude as well as the real and imaginary part of the cross spectrum
depending on the amount of smoothing applied in the estimation.

• The coherence was factored into two components with the first one describing
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decorrelation due to SAR data noise, which is dominated by speckle, and the
second one representing loss of coherence due to the motion of the sea surface.

• The noise model was applied to optimise the look separation time. It was shown
that splitting the total bandwidth into two equal parts is a good choice, if the
objective is to maximise the signal to noise ratio of the cross spectrum phase.

Combining the existing integral transforms for the SAR image variance spectrum
[Hasselmann and Hasselmann, 1991] and the look cross spectrum [Engen and John-
son, 1995], a nonlinear model for the cross spectrum coherence was derived, which
predicts the coherence of each spectral bin, given a two-dimensional wave spectrum.
It was shown that in the linear approximation, decorrelation is due to waves propa-
gating in opposite directions. In the general nonlinear case loss of coherence is caused
by the coupling of wave components with different phase speeds in the SAR image
formation process.

10.2 Ocean wave damping by sea ice

Damping of ocean waves travelling into sea ice was studied using spaceborne SAR
data acquired over the MIZ. Typical imaging artefacts like spiky wave crests and wave
refraction were analysed theoretically. It was shown that the observed effects can be
explained by damping of the high frequency part of the ocean wave spectrum. A
possible increase of the coherence time of the complex reflectivity within sea ice, was
shown to have a minor impact for ERS SAR data.

A simple and robust method based on complex SAR data originally developed for
wind speed measurements [Kerbaol et al., 1998] was applied to estimate the orbital
velocity variance of the sea surface in the open water as well as in the sea ice. The
method has the advantage to be relatively insensitive to the RAR modulation, which
is in general not accurately known for sea ice. An azimuthal cut-off wavelength
estimated from the SAR look cross-correlation function was related to the orbital
velocity variance by regression. A linear model was fitted based on simulation of the
azimuthal image auto-correlation function using a global data set of two-dimensional
ocean wave model spectra.

The orbital velocity variance was used as a parameter to estimate ocean wave
damping. A sensitivity analysis for this parameter was carried out using parametric
models for wind sea and swell systems. Simple analytical expressions were derived
for the contribution of swell and wind sea to the orbital velocity variance depending
on wind speed, swell wave height and wavelength.

The method was applied to ERS SAR scenes acquired over the Weddell and the
Greenland Sea. It was shown that the estimated attenuation rates are consistent with
measurements obtained in earlier field campaigns in the Greenland and Bering Sea.

In a second step a more sophisticated SAR inversion scheme for the MIZ was
presented, which yields estimates for the two-dimensional ocean wave spectrum in
front of, and behind the sea ice boundary, as well as a two-dimensional filter function
characterising the sea ice impact on the ocean waves. The scheme makes use of first
guess information taken from an ocean wave model. It was shown that the method
provides results consistent with the cut-off estimation technique.
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10.3 Statistical analysis of complex imagettes

A global data set of reprocessed ERS-2 wave mode raw data enabled the application
of the cross spectrum technique on a statistical basis for the first time. A compar-
ison with two-dimensional wave spectra computed with the WAM model run at the
ECMWF showed good agreement of wave propagation directions, except for cases
with very low signal to noise ratios. The analysis confirmed the theoretical finding,
that the cross spectrum phase noise is increasing with decreasing spectral energy in
the respective image variance spectrum.

The distribution of the cross spectrum phase showed a good agreement with the
ocean wave phase speeds expected within the linear wave theory. Explanations for
the small deviations observed were given.

Apart from the new phase information contained in the cross spectra, the re-
processed data allowed to make use of the full image information, which was not
possible with the former standard wave mode product available from ESA. To de-
tect image patterns associated with phenomena like wind rolls, rain cells, biological
or anthropogenic surface films or sea ice, which spoil SAR wave measurements, an
inhomogeneity test was proposed. The test checks the shift invariance of the image
spectrum and is thus able to detect phenomena not associated with ocean waves, as
well as strongly inhomogeneous ocean wave fields, which should not be used for wave
spectra estimation. It was shown that the majority of inhomogeneous cases occurring
in the open ocean is associated with very low wind speeds.

10.4 PARSA wave retrieval scheme

A new scheme for the retrieval of two-dimensional wave spectra from complex SAR
data was presented. The partition rescale and shift algorithm (PARSA), which ex-
tends the MPI retrieval scheme [Hasselmann et al., 1996], has the SAR cross spectrum
and some prior ocean wave spectrum, e.g. taken from a numerical wave model, as
input.

The scheme is based on explicit models for measurement errors, uncertainties in
the forward model and errors in the prior spectrum. The model for measurement
errors is based on the noise analysis performed in the theoretical part. It was shown
that in the case of ERS or ENVISAT wave mode data, errors occurring in the es-
timation of the cross spectrum are relevant mainly for longer swell. To take into
account errors in the SAR imaging model, two parameters describing uncertainties
in the overall energy level and the cut-off wavelength of the simulated cross spectra
were introduced as additional optimisation variables.

The PARSA scheme was tested using synthetic data. The test proved the ability of
the method to measure wave spectra under the presence of different error sources, and
to provide the respective error statistics of the retrieved parameters. Furthermore,
the explicit use of the phase information provided by cross spectra was demonstrated.

The PARSA scheme was applied to a data set of 15000 reprocessed complex ERS-
2 cross spectra acquired in August and September 1996. The main conclusions to be
drawn from the retrievals are as follows:

• The WAM model tends to have lower wave heights for strong wind seas than
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the PARSA retrieval. There is some indication that this observation has to do
with a possible underestimation of wind speeds on the southern hemisphere by
the numerical model.

• For longer waves the WAM model tends to predict slightly shorter mean wave-
length than measured by the PARSA retrieval.

• In particular for spectra with several swell systems like, e.g. frequently observed
in the central Pacific, the imaginary part of the cross spectrum helps to resolve
ambiguities in the wave propagation direction.

The PARSA scheme has thus shown its ability to make use of the additional infor-
mation contained in SAR cross spectra, at the same time keeping consistent with the
prior wave model spectra. It is therefore regarded as an ideal tool for wave model
assimilation using the new ENVISAT ASAR wave mode data.
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OUTLOOK

The investigations and algorithms presented in this thesis have a lot of future appli-
cations. This is mainly because complex SAR data are just now becoming available
from the ENVISAT satellite on a global and operational basis. The PARSA retrieval
scheme will be fine tuned using the ENVISAT calibration and validation data set and
will then be used for wave model assimilation at the UK Met office. The theoreti-
cal analysis of cross spectra coherence will be used for further optimisations of look
separation times and look extraction procedures. The analysis of the cross spectrum
coherence will be continued with the objective to extract new information on geo-
physical processes, like e.g. wind turbulence. The availability of ENVISAT ASAR
imagettes every 100 km along the track will allow to apply the presented analysis on
ocean wave damping by sea ice on a statistical basis.

There are plans to reprocess all 10 years of ERS-2 wave mode raw data to complex
imagettes, which are fully compatible with the new ENVISAT data. The combined
ERS and ENVISAT data set would then allow long term statistics of ocean waves and
sea ice contributing to a better understanding of processes related to climate change.

Compared to the ERS satellites the ENVISAT ASAR has several advanced fea-
tures, which will play an important role in future wind and ocean wave measurements.
For example, ASAR is able to operate in dual polarisation mode, i.e. two images with,
e.g. VV and HH polarisation, are acquired simultaneously. It has been shown [Engen
et al., 2000], that such data can for example be used to obtain information on the
modulation transfer functions. An extension of the PARSA scheme for these kind of
data is planned.

Another interesting point is the fact that ENVISAT has both radar and opti-
cal instruments onboard. It will therefore be possible to use these data in synergy.
This is for example helpful for studying phenomena in SAR imagery associated with
atmospheric effects or surface films.

It should be noted as well, that other approaches for the use of the new phase
information contained in the reprocessed ERS data or the standard ENVISAT data
exist, which were not discussed in this study. One approach first introduced in Milman
et al. [1993] is based on the ambiguity function of the complex image, which tries to
provide more detailed information about the space time structure of the wave field
than cross spectra. At least for airborne data with integration times of several seconds,
the applicability of the method was demonstrated. The availability of complex SAR
data on a global scale will certainly be an important driver for the development of
more sophisticated techniques for the extraction of sea state parameters from complex
data.
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Another approach to make more use of the full image information provided by
wave mode imagettes was presented in Schulz-Stellenfleth and Lehner [2003]. The
idea is to retrieve the two-dimensional ocean wave field, as imaged by the SAR,
in the spatial domain. With certain restrictions regarding the nonlinearity of the
imaging process, the method enables the analysis of wave parameters like maximum
wave height, which are not provided by the standard spectral retrieval methods used
so far. The technique has the potential to give new insight in both the SAR ocean
wave imaging process as well as ocean wave dynamics, e.g. wave breaking.

Furthermore, it is quite obvious, that the potential of SAR to provide simultaneous
information on the wind field and ocean waves has not yet been fully exploited. The
analysis of the impact of wind and waves on the gas exchange between atmosphere
and ocean is only one example of a possible future application of SAR data.
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APPENDIX

A.1 Distribution of cross spectrum phase and magnitude

The probability density function of the estimated cross spectrum phase

ϕ = Arg(ΦI1I2
) (12.1)

calculated by averaging N cross periodograms is given by [Tough et al., 1995]:

pdf(ϕ) =
(1 − |γ|2)N
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]
(12.2)

Here, it is assumed that each cross periodogram distributed according to eq. 6.1 and
β is defined as

β = |γ| cos(ϕ − ϕ0) , (12.3)

with ϕ0 denoting the expectation value of the phase.
The pdf of the cross spectrum magnitude calculated by averaging N periodograms

is given by [Tough et al., 1995]:

pdf(|ΦI1I2|) =
4N(N |ΦI1I2 |)N

〈ΦI1I2 |2〉N+1(1 − |γ|2)Γ(N)
I0

( 2|γ|N |ΦI1I2 |
〈|ΦI1I2 |2〉(1 − |γ|2)

)

KN−1

( 2N |ΦI1I2|
〈|ΦI1I2 |2〉(1 − |γ|2)

)
, (12.4)

where I0 and KN−1 are modified Bessel functions of the first kind and third kind
respectively.
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A.2 Posterior distribution in the linear case

Let X be a Gaussian distributed state vector with mean Xa and covariance matrix
Sa. Furthermore, a measurement vector Y is given, which is affected by additive zero
mean Gaussian noise with covariance matrix Sε. Assuming that the forward model,
describing the mapping of a state vector into the respective measurement space, is
linear with Jacobian matrix D, the conditional probability density of the state vector
X given the measurement Y can be written as [Rodgers, 2001]

pdf(X|Y) ∼ exp
[
−1

2
(X − X̂)T C−1

X (X− X̂)
]

, (12.5)

with covariance matrix CX given

CX =
(
DT S−1

ε D + S−1
a

)−1
, (12.6)

and mean state vector calculated as

X̂ = CX (DT S−1
ε Y + S−1

a Xa) . (12.7)

The expression in eq. 12.5 is referred to as posterior pdf.
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B.1 List of Symbols

Symbol Description Unit
α Phillips constant 1
β Ratio of slant range R and platform velocity V s
βf Frequency modulation rate Hz s−1

c Complex SAR image (1,1)
cI Ice concentration 1
cL Speed of light ms−1

cg Group velocity ms−1

cph Ocean wave phase speed ms−1

fdc Doppler centroid frequency Hz
Fk Ocean wave spectrum in 2d wavenumber space m4

g Gravitational acceleration 9.81 ms−2

γ Coherence 1
∆t Look separation time s
Hs Signifcant wave height m
Iσ Calibrated SAR intensity image 1
I Normalised SAR image intensity 1

I1, I2 Normalised looks 1
I1
k , I2

k Complex spectrum of looks I1, I2 m
k Wavenumber rad m−1

kE Electromagnetic wavenumber rad m−1

kx Azimuth wavenumber rad m−1

ky Ground range wavenumber rad m−1

kW Ocean wavenumber in open water rad m−1

kI Ocean wavenumber in sea ice rad m−1

k⊥
W Wavenumber component perpendicular rad m−1

to ice boundary in open water
k⊥

I Wavenumber component perpendicular rad m−1

to ice boundary in sea ice
L Length of antenna m
ϕ Phase of cross spectrum rad

ΦII
k SAR image variance spectrum m2

ΦI1I2

k Look cross spectrum m2

Φ Angle used for polar grid rad
ρI1I2

Look cross-correlation function 1
r Complex radar reflectivity 1
R Slant range m
T0 SAR integration time s
TR Real aperture radar transfer function m−1

T S SAR transfer function m−1

T u Orbital velocity transfer function s−1

TW Wave period s

Tab. 12.1: List of symbols
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Symbol Description unit
τs Coherence time s
η Ssea surface elevation m
ρa Azimuth resolution m
ρD Damping rate m−1

ρsr Slant range resolution m
ρr Range resolution m
ρW Density of water kg m−3

ρI Density of ice kg m−3

σ0 Normalised radar cross section (NRCS) 1
σ Radar cross section (NRCS) 1
θ Incidence angle rad
ur Slant range component of orbital velocity ms−1

U10 Wind speed in 10 m height ms−1

V Platform velocity ms−1

ξH Inhomogeneity parameter 1
x Coordinate in azimuth direction m
xf Wind fetch distance m
x⊥ Perpendicular distance from ice boundary m
y Coordinate in ground range direction m

Tab. 12.2: List of symbols (continued)
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B.2 List of acronyms

Acronym Description
ASAR Advanced Synthetic Aperture Radar onboard ENVISAT
BSAR SAR processor developed at the IMF
ENVISAT Environmental satellite launched by ESA
ECMWF European Centre for Medium-Range Weather Forecast
ERS European Remote Sensing Satellite
ESA European Space Agency
FFT Fast Fourier Transform
FM Frequency modulation
IMF Remote Sensing Technology Institute
InSAR Interferometric SAR
JONSWAP Joint North Sea Wave Project
MIZ Marginal Ice Zone
MTF Modulation Transfer Function
NRCS Normalized Radar Cross Section
pdf Probability density function
RCS Radar Cross Section
rms Root mean square error
RAR Real Aperture Radar
SAR Synthetic Aperture Radar
SCAT Scatterometer
SLC Single Look Complex SAR image
SRTM Shuttle Radar Topography Mission
UTC Universal Time coordinated
WAM Third generation Wave Model

Tab. 12.3: List of acronyms
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