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Abstract 

In my thesis I investigated the influence of dynamical consistency of initial conditions with 

the model used to perform forecasts starting from this initial condition, on the predictive skill 

of climate predictions on decadal time scales. The investigation builds on the coupled global 

model “Coupled GCM for Earth Simulator” (CFES) developed by Japan Agency for Marine-

Earth Science and Technology (JAMSTEC). It is initialized in the ocean using a full state 

initialization strategy with two different initial fields: (1) oceanic initial conditions obtained 

through the same CFES coupled model using a 4-DVAR assimilation scheme (CDA: Coupled 

Data Assimilation) as provided by JAMSTEC; and (2) interpolated oceanic initial conditions 

obtained from the ocean-only GECCO2 Synthesis, while in the atmosphere initialized with 

bulk parameters controlling air-sea fluxes assimilated through CFES. CDA initial conditions 

are more dynamically consistent with the CFES model, because it is assimilated with the same 

CFES model. The relative skill of initialized hindcasts is then evaluated by comparing them 

with the persistence forecast, and with the uninitialized hindcasts (i.e. the twentieth-century 

simulation), respectively. To this end the spatial distribution of respective root mean square 

skill score (RMSS) in terms of SST is analyzed. Estimations on the performances of two 

differently initialized forecasts, i.e. CDA initialized hindcasts (CIH) and GECCO2 initialized 

hindcasts (GIH), are also done through anomaly correlation coefficient (ACC) of SST.  

The spatial distribution of ACC for SST reveals that the forecast skill is better when 

initializing the CFES model with CDA initial conditions rather than with GECCO2, with the 

most significant improvement of skill observed at the first lead year. For this specific model, 

improvements in SST predictive skill are especially obvious over the tropical Pacific, 

suggesting that the dynamical consistency of initial conditions can indeed improve the 

predictive skill of climate predictions at least in the first lead year. For longer lead times of 4-

yr averages, a large decrease of SST predictive skill is observed almost everywhere for both 

CIH and GIH. This holds especially over the North Atlantic (NA) where previous studies 

indicate that predictive skill of SST is associated with the predictability of Atlantic Meridional 

Overturning Circulation (AMOC), with the latter leading the former several years. Our results 

indicate that significant predictive skill in terms of AMOC is obtained at the first lead year for 

both CIH and GIH. However, significant AMOC predictive skill in the subpolar region of 

North Atlantic is observed at lead yr 2-5 in CIH, but not in GIH. The poor predictive skill of 

NA SST is consistent with poor predictability of AMOC in our solutions.  

To investigate to what extent the reduced predictive skill in the North Atlantic in our solution 

may result from relatively short hindcast runs, the performances of CIH and GIH are also 

evaluated against previous results from the Mittelfristige Klimaprognosen (MiKlip hereafter) 

project with Max-Planck-Institute Earth System Model (MPI-ESM), which are initialized with 

assimilated data through nudging MPI-ESM towards GECCO2. The comparison reveals that 

the MiKlip hindcasts of 1980-2006 outperforms GIH, while its performance is compatible 

with that of CIH. Insights into how the number of initial date impacts predictive skill are 

provided through comparing the performances of MiKlip hindcasts of 1980-2006 and that of 

1961-2009. It is shown that a larger number of initialization dates reduces the threshold of 

significance level of predictive skill, due to larger verification period. Therefore, more areas 

with significant skill are likely to occur for the latter.  
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Looking into processes that lead to improved predictive skill in the tropical Pacific, the 

significant, and high SST predictive skill over the tropical Pacific in CIH indicates a good 

reproduction of El Niño events at lead year one. In contrast, GIH produces additional 

erroneous El Niño events, which may contribute to the poor predictive skill of SST over the 

tropical Pacific. During balanced states, a zonal momentum balance between the wind stress 

and pressure gradient force of the upper equatorial Pacific exists. GIH is initialized with 

interpolated GECCO2 ocean estimations and atmospheric conditions that result from the same 

coupled model as the model used in the forecasts. The differences between the initialized 

ocean and atmosphere modes cause incompatibilities to the coupled model, and lead to 

imbalance between the zonal wind stress and pressure gradient force over the equatorial 

Pacific. The reduced predictive skill of GIH in the Pacific equatorial region is therefore found 

to mainly related to dynamical imbalance between zonal wind stress and pressure gradient 

over the central Pacific. These imbalances in the central Pacific subsequently propagate 

eastwards as Kelvin waves. Further imbalance may result from the differences in topography 

between GECCO2 and the model system, and perturbations may give rise to propagating 

waves. Jointly, these imbalances are highly likely to lead to additional pseudo El Niño events 

in GIH, as well as the poor predictive skill over the tropical Pacific. Our results underpin the 

requirement of a momentum balance between zonal wind stress and pressure gradient force 

along the equatorial Pacific when initializing the model from any oceanic state. Initializing a 

coupled model with self-consistent initial conditions therefore improves the skill of decadal 

climate prediction in the tropical Pacific. 
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Zusammenfassung 

In meiner Diplomarbeit habe ich den Einfluss, auf die prädiktive Fähigkeit der 

Klimavorhersagen auf dekadischen Zeitskalen, dynamischer Konsistenz der 

Anfangsbedingungen mit dem verwendet werden, um tatsächlich Prognosen des gekoppelten 

Klimasystems ausgehend von diesem Anfangszustand durchzuführen Modell. Die 

Untersuchung basiert auf der vollständig gekoppelten globalen Modell "Coupled GCM für 

Earth Simulator" (CFES) von Japan Agency for Marine Earth Science and Technology 

(JAMSTEC), die in den Ozean mit einem vollen Zustand Initialisierung Strategie mit zwei 

verschiedenen initialisiert wird entwickelt Anfangsfelder: (1) ozeanischen durch die gleiche 

CFES gekoppelt Modell mit einem 4-DBVARIANZ Assimilationsschema erhalten 

Anfangsbedingungen (CDA: gekoppelt Datenassimilation), wie von JAMSTEC vorgesehen 

ist; und (2) interpoliert ozeanischen vom Meer nur GECCO2 Synthese erhalten 

Anfangsbedingungen sowie Groß Parameter, die Luft und Meer Flüsse durch CFES als 

atmosphärischen Anfangsbedingungen für beide assimiliert. CDA Anfangsbedingungen sind 

dynamisch in Übereinstimmung mit der CFES Modell, weil es mit der gleichen CFES Modell 

assimiliert. Die räumliche Verteilung der ACC für SST zeigt, dass die Vorhersagegüte ist 

besser bei der Initialisierung des CFES Modell mit CDA Anfangsbedingungen nicht mit 

GECCO2, mit den meisten signifikante Verbesserung der Fähigkeiten in der ersten Leitung 

Jahr beobachtet. Aus diesem bestimmten Modell sind Verbesserungen in SST prädiktive 

Fähigkeit insbesondere über den tropischen Pacific offensichtlich, was darauf hindeutet, dass 

die dynamische Kohärenz von Anfangsbedingungen kann in der Tat die prädiktive Fähigkeit 

der Klimavorhersagen zumindest in der ersten Leitung Jahr verbessern. Für längere 

Laufzeiten von 4-Jahresdurchschnitte wird ein großer Rückgang von SST prädiktiven 

Fähigkeiten fast überall sowohl für CIH und GIH beobachtet. Dies gilt vor allem über dem 

Nordatlantik (NA), wo frühere Studien zeigen, dass vorausschauende Fähigkeiten des SST 

mit der Vorhersagbarkeit der Ozeanzirkulation im Atlantik (AMOC) verbunden sind, wobei 

letztere führt die ehemaligen mehreren Jahren. Unsere Ergebnisse zeigen, dass signifikante 

prädiktive Fähigkeiten in Bezug auf AMOC an der ersten Führung Jahr sowohl für CIH und 

GIH erhalten, während bei längeren Liefer Jahren schlechte Vorhersagemann subpolaren 

Region Nordatlantik beobachtet, was darauf hindeutet, dass die Armen prädiktive Fähigkeit 

des NA SST ist teilweise auf schlechte Vorhersagbarkeit AMOC in unsere Lösungen. 

 

Die Leistungen der CIH und GIH auch gegen frühere Ergebnisse aus dem Projekt 

Mittelfristige Klimaprognosen (MiKlip unten) mit Max-Planck-Institut Erdsystemmodells 

(MPI-ESM), der mit assimilierten Daten durch Antippen MPI-ESM gegen GECCO2 

initialisiert werden ausgewertet. Der Vergleich zeigt, dass die MiKlip hindcasts von 1980-

2006 übertrifft GIH, während seine Leistung mit der des CIH-kompatibel. Weitere 

Erkenntnisse bei jedem Startdatum ergeben sich Vorhersagen Geschick durch die 

Verwendung von Ensemble bedeuten, anstatt individuelle Umsetzung. 

 

Die deutliche und hoch SST prädiktiven Fähigkeiten über den tropischen Pazifik in CIH zeigt 

eine gute Wiedergabe von El-Niño-Ereignissen an Blei Jahr ein. Im Gegensatz dazu 

produziert GIH weitere fehlerhafte El-Niño-Ereignisse, die für die Armen prädiktive 

Fähigkeit der SST über den tropischen Pazifik beitragen können. Während ausgewogene 
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Staaten besteht eine zonale Impulsbilanz zwischen Wind Stress und Druckgradientkraft der 

oberen äquatorialen Pazifik. GIH mit interpolierten GECCO2 Ozean Schätzungen und 

atmosphärischen Bedingungen, die von derselben gekoppelt Modell als in den Prognosen 

verwendete Modell führen initialisiert. Die Unterschiede zwischen den initialisiert Ozean und 

Atmosphäre Modi Inkompatibilitäten mit dem gekoppelten Modell, und führen zu 

Ungleichgewicht zwischen der zonalen Wind Stress und Druckgradientkraft über den 

äquatorialen Pazifik. Die reduzierte prädiktive Fähigkeit des GIH im Pazifik Äquatorregion 

wird daher festgestellt, dass vor allem auf dynamische Ungleichgewicht zwischen Zonalwind 

Stress und Druckgefälle über dem zentralen Pazifischen zusammen. Diese Ungleichgewichte 

in der zentralen Pazifik anschließend nach Osten ausbreiten als Kelvin-Wellen. Weitere 

Ungleichgewicht kann sich aus den Unterschieden in der Topographie zwischen GECCO2 

und des Modellsystems zur Folge haben, und Störungen können zu ausbreitende Wellen 

geben. Gemeinsam sind diese Ungleichgewichte sehr wahrscheinlich zusätzliche Pseudo El-

Niño-Ereignisse in GIH sowie die Armen prädiktiven Fähigkeiten über den tropischen Pazifik 

führen. Unsere Ergebnisse untermauern die Forderung nach einer Impulsbilanz zwischen 

Zonalwind Stress und Druckgradientkraft entlang der äquatorialen Pazifik bei der 

Initialisierung des Modells von jedem ozeanischen Staat. Initialisieren einer gekoppelten 

Modell mit selbstkonsistenten Ausgangsbedingungen verbessert daher die Fähigkeit des 

dekadischen Klimavorhersage im tropischen Pazifik. 
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Chapter 1   

Introduction 

1.1 Background 

Large amount of climate variations observed in the past (Seager et al., 2008; Mehta and Lau, 

1997; Barnett et al., 2008; …) and extreme events have made the information about near-term 

changes of climate variables a key factor to policy and decision makers. Under the 

requirement of adapting to time-evolving climate change and global warming, a new field 

referred to as “decadal prediction” was brought up by climate researchers in the early 2000s 

(Vera et al., 2009; Meehl et al., 2009; Taylor et al., 2008). It was meant to predict climate 

fluctuations for the nearest future (out to 10-30-yr, a time scale that decision makers are 

interested in, e.g. Pulwarty 2003, Barsugli et al. 2009; Means et al., 2010). Hence, this new 

field will bridge the gap between seasonal-to-interannual (SI) forecasting and the future 

climate change (long-term) projections. The importance of decadal prediction in 

governmental decision making, business planning (Vera et al., 2009) was recognized by the 

Intergovernmental Panel on Climate Change (IPCC) assessments. Much effort has been 

devoted by climate researchers in several countries and under partnership between 

organizations, aiming at providing reliable information of climate change in the coming 

decade or longer time scale (Meehl et al., 2009b). 

   In daily weather forecasts and shorter-term Seasonal to Interannual (SI) climate prediction, 

the impact from external forcing is negligible.  However, anthropogenically-forced and 

naturally-forced climate changes shall not be ignored (Murphy et al., 2010) for climate 

prediction on decadal time scales, although the signal is often weaker than or comparable to 

the internal variability (Meehl et al., 2009; Murphy et al., 2010). Studies show that both the 

internal variability of climate change and its response to anthropogenic forcing offer potential 

for decadal predictability (Hwakins and Sutton, 2009a), although their importance is region-

dependent. For example, Boer (2011) reported that anthropogenically-forced change is 

typically larger than internal variability over tropical oceans (except the equatorial Pacific), 

while over the mid- and high-latitude oceans the internal variability is more important since 

overall variability is high there. For a skillful decadal prediction, predictable signal in the 

initial state and forced climate change signal shall all be considered. Climate projections 

depending on the response to anthropogenic forcing from green-house gases and aerosols and 

external forcing from major volcanic eruptions are referred to as the “Boundary condition 

problems” (Meehl et al., 2009, Fig 1.1), while building the starting state of climate predictions 

based on the current knowledge of observed ocean/atmosphere variables can be addressed as 

“initial value problems”. Hence decadal climate prediction is a joint initial-boundary problem.  
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Fig 1.1 Schematic illustrating different portion of impact from initial value and boundary conditions 

on climate forecasts at different scale from IPCC (2013, based on Meehl et al. 2009). This figure 

shows us the progression with daily weather forecasts at one end (left), seasonal and decadal 

prediction in between, and multi-decadal to century projections as a forced boundary condition 

problem at the other end. 

   However, the importance of external forcing for decadal prediction was recognized only 

recently. At the early stage of decadal prediction, researchers treated decadal prediction as an 

initial value problem, following the experience from seasonal-to-interannual (SI) prediction 

investigation. These studies reported potential predictability of some aspects of the internal 

variability for a decade or longer, such as in the North Atlantic and North Pacific (e.g. Latif et 

al., 2006). Emerging evidence about possibility of skill achieved in surface temperature is also 

provided by decadal projections that initialize global coupled ocean-atmosphere climate 

models (Smith et al., 2007; Keenlyside et al., 2008). On the other hand, the skill of 

predictability on decadal scale in both regional and global surface temperature is improved 

through radiative forcing changes during the 20th century by study of Lee et al., 2006; 

Laepple et al., 2008. The new Coupled Model Intercomparison Project phase 5 (CMIP5) 

protocol extended the focus of their experiments to predictability /prediction over decadal 

scales which is significantly influenced by anthropogenic external forcing from changing 

concentrations of greenhouse gases and aerosols (Meehl et al., 2009b; Taylor et al., 2008). Up 

to date there are more and more studies follow the joint initial-boundary value approach in 

decadal prediction exploration (Pierce et al., 2004; Troccoli and Palmer, 2007; Smith et al., 

2007…). Since very little skill is known about natural external forcing and no future 

information will be provided, the target of providing the best information on time-evolving 

climate prediction is basically directed to intrinsic climate variability and anthropogenically 

forced climate changes, which still remain a major challenge in climate science.  

   Attempting to provide reliable decadal climate forecasts (e.g. Smith et al., 2007; Keenlyside 

et al., 2008; Pohlmann et al., 2009), the elements affecting near-term predictions are 

highlighted (Hurrell et al., 2009). These particular elements can be summarized as the 

dynamical models to be used, and the initialization problems including the initialization 

strategy and the reanalyses constraining the initial state of the model (Bellucci, et al., 2012). 

By applying each of these elements in the prediction system, large amount of uncertainties are 

potentially introduced. Take the prediction of global-mean surface air temperature for 

example, the relative uncertainty changed with lead time from “initial state dependence” at 
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the first decade to “the forced response” out to around 40 years (Meehl et al., 2009, Fig 1.2). 

Meehl et al. (2009) reviewed some of the first results about decadal climate prediction 

published by that time, and summarized the highlights involved with decadal prediction as: 

1) how to initialize decadal predictions and  

2) how to evaluate the predictability and forecast skill.  

 

 

Fig 1.2 Schematic showing relative importance of uncertainty from different sources in decadal mean 

global surface air temperature by the fractional uncertainty 

(fractional uncertainty =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑐ℎ𝑎𝑛𝑔𝑒
) from Hawkins and Sutton (2009).  Model uncertainty 

acts as the main source for uncertainty up to lead time 50yr. Internal variability is another important 

source of uncertainty for the first decade, while scenario uncertainty being important for multi-decadal 

lead time.  

   Afterwards, coordinated climate modeling exercises (e.g. ENSEMBLES; van der Linden 

and Mitchell, 2009; van Oldenborgh et al., 2012; García-Serrano and Doblas-Reyes, 2012) 

and considerable researches are carried out to advance the science of decadal climate 

prediction, making this field evolve rapidly. Much information about time-evolving regional 

climate predictions based on new results from initializing climate models (e.g. CMPI5; Taylor 

et al., 2012) is provided.     

   With the full-field initialization techniques, the model is started from the observational 

initial conditions. However, the model can never represent neither the oceanic nor the 

atmospheric physical process perfectly. There are always systematic errors within a climate 

model, and the model preferred climate is different from the observed climate. When 

initializing the model from the observations, the model state is brought close to the 

observations at the beginning of the integration. The imbalance between the model dynamics 

and the observed initial conditions may lead to errors, which is referred to as “initial shock” 

(Balmaseda and Anderson, 2009). As the simulation evolves, the model always drifts towards 

its own climatology (Pierce et al., 2004), leading to bias in the forecasts. From the experience 

of SI forecasts, a posteriori bias correction procedure is needed to remove such bias 

(Stockdale, 1997). However this practice can be very expensive because a large set of 
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ensembles is required in order to estimate the mean drift. Besides, a bias correction might be 

inappropriate due to the small magnitude of the predictable signal and the growth of 

nonlinearities (Meehl et al., 2009). 

   An alternative strategy, initializing the model with the observed anomalies added to the 

model climatology, was introduced and explored (Barnett et al., 2004; Pierce et al., 2004; 

Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009, Polkova et al., 2013). The 

so called “anomaly initialization” (Schneider et al., 1999) avoids the model drift. Hence the 

bias correction is less expensive compared with the time-dependent bias correction due to 

model drift. Instead, an estimation of model climatology is needed to build the initial 

conditions as well as an estimation of the bias. However, this strategy could not assure the 

reduction of initial shock at the beginning of the prediction due to the possibility of 

inconsistency between the model mean state and the observed anomaly (Magnusson et al., 

2012a; Goddard et al., 2013), e.g. mismatch between the observational anomalies and the 

model climatology in sharp Gulf Stream gradient locations (Meehl et al., 2014). Besides, large 

errors introduced in the mean climate state affect internal variability (Schneider et al., 1999) 

and potential drifts are expected due to incorrect model response to forcing (Goddard et al., 

2013).  

   To deal with the model drift, another strategy based on empirical corrections of heat, 

freshwater and momentum fluxes is tried by researchers (e.g. Rosati et al., 1997; Manganello 

and Huang, 2009; Polkova et al., 2014). This strategy named “flux correction” is to initialize a 

coupled model with full state observations, and additionally corrected with heat, freshwater or 

momentum flux correction during the model integration, i.e. full state initialization employing 

flux correction (Polkova et al., 2014). By starting the model close to the observed climatology 

and constraining the model with empirical corrections of fluxes, this strategy offers another 

possibility to deal with model drift and solve the model systematic errors. However, 

disadvantages still emerge with this strategy such as the difficult construction of flux 

correction for future climate. The initialization technique of the modeled ocean atmosphere 

models still remains a chief challenge and further enhancement is highly required (Meehl et 

al., 2009b, 2014; Murphy et al., 2007). Magnusson et al. (2012a) compared two methods of 

full-state and anomaly initialization, and showed that higher predictive skill on seasonal time 

scale was provided with the former, while study by Smith et al. (2012a) derived more regional 

skillful predictions in hindcasts with the latter. A study by Hazeleger et al. (2013b) revealed 

that there was no significant difference in decadal predictability between the two different 

methods. Polkova et al. (2014) compared these three approaches in decadal forecasts with a 

coupled ocean-atmosphere model. The highest predictive skill for SST is obtained for flux 

corrected hindcasts in regions of a deep mixed layer because of their smallest bias. But this 

strategy hasn’t been used by any of the atmosphere-ocean general circulation models 

(AOGCMs) in CMPI5 (Meehl et al., 2014). Right now most of modeling groups tend to prefer 

full-state initialization. To find out the best initialization strategy, further evaluations are 

needed with more models (Meehl et al., 2014). 

   Besides the strategy of initialization, the initial conditions are also important in decadal 

prediction, which are used to constrain the initial state of the model with a realistic 

representation of the climatic system (Bellucci et al., 2012). So far the most commonly used 

source of initial conditions is estimations of climate components (e.g. the ocean, atmosphere) 

incorporating observational information, which are derived from atmospheric or oceanic 
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general circulation models. Predictability due to initial conditions mainly arises in the slow 

components of the climate system, most notably the ocean, despite the necessary but not 

sufficient low-frequency component of climate variability (Boer 2004; Pohlmann et al, 2004). 

Hence a lot of studies only initialize the ocean component (Keenlyside et al, 2008; Pohlmann 

et al., 2009; Matei et al., 2012c; Carton and Santorelli, 2008; Stammer et al., 2009). Modeling 

groups participating in CMPI5 initialize the models with estimation of assimilated ocean 

and/or atmospheric observations with partial/coupled models (Meehl et al., 2014). However, 

to offer the most forecast skill, all the elements of the climate system shall be considered, 

including the atmosphere, the ocean, sea ice and so on (Doblas-Reyes et al., 2011a; Matei et 

al., 2012c; Smith et al., 2007; Troccoli and Palmer, 2007).  

   The study by Sugiura et al. (2008) proposed that by assimilating the historical observations 

(ocean, atmosphere, ice and land surface) through a coupled ocean-atmosphere model, better 

initial conditions can be derived, which may contribute to reduced initial shock as mentioned 

above. The coupled data assimilation schemes (four-dimensional variational (4D-VAR) data 

assimilation system) takes advantage of covariance between ocean and atmosphere variables, 

and may offer the most forecast skill in decadal prediction (Meehl et al., 2009). This may 

offer potential possibility in improving the predictability of climate prediction at decadal time 

scale. 

   Another important issue remained unresolved about decadal climate prediction summarized 

by Meehl et al. (2009) is “how to evaluate decadal prediction skill”. The evaluation of 

prediction skill in hindcasts is necessary either for analyzing the spatial-temporal quality of 

decadal predictions or for a lower bound for the predictability of the system (e.g. Hawkins et 

al., 2011; Goddard et al., 2012a; Wang et al., 2012). In the “perfect model experiments”, the 

ability of the coupled model to reproduce itself given the uncertainties in initial conditions is 

usually assessed, rather than assessing the predictability of the model system by comparing 

the model simulations to observations (Boer, 2000; Branstator and Teng, 2010; Teng et al., 

2011). The “diagnostic” potential predictability approach distinguishes regions with potential 

predictability through variance analysis (Boer, 2000, 2004, 2011; Pohlmann et al., 2004; Boer 

and Lambert, 2008). Besides the above-mentioned approaches of predictability assessment, 

one of the widely accepted approaches is to qualify the initialized forecasts through 

deterministic metrics such as the root mean square error (RMSE) and the anomaly correlation 

coefficient (Smith et al., 2007; Matei et al., 2012c; Goddard et al., 2012a). As is mentioned 

above, by introducing each element to improve near-term predictability, uncertainties are 

brought in the prediction. Multiple diagnostics of performance that includes uncertainty 

identification, possible correlation and limitations in the model’s performance works as a 

better verification approach (Tebaldi and Knutti, 2007). Probabilistic metrics that measures 

improvement of probabilistic forecast relative to reference forecast proposed by Goddard et al. 

(2013) and the “Bier skill score” used by Corti et al. (2012) and Hazeleger et al. (2013a) are 

alternative framework for decadal prediction. The multi-model approach, which shows 

advantage for the seasonal to interannual predictions and long-term climate projections 

(Palmer et al., 2004; Tebaldi and Knutti, 2007), offers possibility of narrowing down the 

uncertainties in decadal prediction through sampling structural differences among climate 

prediction systems (Bellucci et al., 2012). Its influence on decadal prediction has been 

explored by climate projections (ENSEMBLES, THOR, CMIP5 coordinated effort) and is 

recommended for reducing the uncertainty of the near-term climate predictions. 



6 

 

   To sum up, much effort has been devoted by climate researchers to improve the skill of 

decadal climate prediction and to estimate the predictability of the prediction system. So far 

the initialization is thought to offer potential decadal predictability for important climate 

variables due to the internal natural variability, including initial conditions and initialization 

strategy. It is highly possible to improve predictive skill through initialization of more climate 

components such as sea-ice, land surface. The application of coupled data assimilation 

scheme is supposed to offer skill in decadal prediction, due to the generation of optimal 

estimation of climate system (Meehl et al., 2009). With the coupled ocean-atmosphere data 

assimilation system, remarkable skill into seasonal to interannual process was found by 

Sugiura et al. (2008). Considering the advantage in SI climate prediction, it’s interesting to 

explore the performance of this system in decadal prediction. In this paper, the coupled model 

will be initialized with full-state initial conditions resulting from the assimilation of 

observations into the same coupled climate model. Since the estimation of initial conditions of 

both the atmosphere and the ocean is derived from the model used for the hindcasts, the 

systematic errors and model drift due to different dynamics and climatology between the 

initial states and the model are reduced. Hence, improved predictive skill is expected. This 

will be an important improvement in decadal prediction considering the possible relatively 

large magnitude of the bias adjustment compared with the signals predicted (Kharin et al., 

2012; Kim et al., 2012).  

   In climate predictions, it is agreed among researchers that self-consistent initial conditions 

will improve predictive skill. However, a self-consistent initial condition has never really 

been used in decadal climate prediction, and the influence of model consistency has never 

been explored. To better investigate this, the coupled climate system will also be initialized 

with different initial conditions that are not consistent with the model as a comparison. 

Possible mechanism responsible for predictive skill will also be investigated. 

1.2 Goals 

In this thesis we aim to investigate the influence of the model consistency on the predictive 

skill of decadal prediction with JAMSTEC’s updated version of the coupled CFES climate 

system. Full states 3-dimensional oceanic variables from two different datasets will be used to 

initialize the coupled model: the CDA (Coupled Assimilation Data) that is estimated from the 

same coupled CFES model, and the GECCO2 Synthesis. An ensemble of twentieth-century 

simulation (un-initialized hindcast) will also be done in order to provide insight into the 

influence of initialization. Based on the two sets of hindcasts, the following work will be done: 

1) Assessment on predictive skill due to initialization will be carried out by comparing 

the performances of the initialized hindcasts with that of the un-initialized forecast (i.e. 

twentieth-century simulation) in terms of sea surface temperature (SST), as well as 

with that of the low-skill persistence forecast. The root mean squared error skill scores 

(RMSS) and the anomaly correlation skill will be used for this purpose. The 

comparison between the performances of the two sets of differently initialized 

hindcasts will provide us insight into whether model consistency gives rise to 

predictive skill and if so, which region resides the highest improvement of predictive 

skill and what is the duration? The investigation of the skill will be carried out with 

respect to CDA/GECCO2 and observations respectively. AMOC predictive skill will 
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also be evaluated, which is associated with SST predictive skill in the North Atlantic, 

with the former leading the latter several years as is indicated by former studies.  

 

2) To evaluate the predictive skill of the system in our solution with previous results, the 

performance of our hindcasts will be compared with the MiKlip hindcasts derived by 

initializing a different model (MPI-ESM) with GECCO2 Synthesis, in terms of 

anomaly correlation skill for SST/AMOC. Restricted by the available CDA Synthesis 

from 1980-2006, the evaluation of skill is limited to 27 realizations, whereas previous 

studies typically use 50-years period. Therefore, the impact of the number of initial 

dates on decadal prediction will be investigated first. For this, ensemble mean of 

MiKlip hindcasts of the period 1980-2006 (which is the same as the period available 

from CDA) will all be compared with that of 1961-2009, given that the MiKlip 

hindcasts have larger number of initial dates, and each initial date with three 

realizations. The comparison between performances of ensemble mean of MiKlip 

hindcasts of 1980-2006 and that of CIH/GIH will provide information of impact from 

more realizations at each initial date on decadal climate predictions.  

 

3) To provide useful information of decadal climate predictions, further exploration of 

the possible improvement/decrease in SST/AMOC predictive skill will also be carried 

out. The possible underlying mechanism giving rise/decrease in predictive skill will be 

investigated based on the two differently initialized hindcasts. If a decrease of 

predictive skill is observed in the initialized hindcasts, possible solutions will be 

discussed. 

 

1.3 Outline of the thesis 

The following part of this thesis is divided into four chapters: 

Chapter 2 provides information about the methodology for exploring the influence of model 

consistency on decadal climate prediction. The coupled model CFES, CDA and GECCO2 

Synthesis used as oceanic initial conditions, application of trend removal, bias-correction, 

predictive skill verification and significant test are all described in this chapter. The model 

description and experimental setup of hindcasts from MiKlip are also included. 

Chapter 3 explores the influence of model consistency on decadal climate prediction by 

comparing the performances among differently initialized hindcasts, the un-initialized 

hindcast (20C simulation) and the low-skill persistence forecast. Predictive skill of SST and 

AMOC in terms of root mean square error score and anomaly correlation skill is evaluated in 

three time scales: lead year 1, average over lead year 2-5 and 6-9. Regional and duration of 

SST/AMOC predictive skill are also investigated. Predictive skill of the coupled system in our 

solution is also evaluated against previous results with relative long hindcast runs. The 

influence of the number of initial dates is studied through comparison of SST/AMOC 

predictive skill among our initialized hindcasts and MiKlip hindcasts in this chapter. 

Comparison between ensemble mean of MiKlip hindcasts with different length of hindcast 

runs gives us insights into how more realizations impact predictive skill. 
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Chapter 4 investigates the underlying mechanism of possible improvement or decrease of 

predictive skill from hindcasts initialized with self-consistent or non-self-consistent initial 

conditions. For this purpose, the climate properties that are most possibly related with SST or 

AMOC predictability on decadal time scale are analyzed. Solutions to the possible decrease of 

predictive skill are also discussed in this chapter. 

Chapter 5 summarizes the main findings and outlines the future work.  

   Chapter 3 and 4 of this thesis will be rewritten into a paper. This will be done after the 

defense. 
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Chapter 2 

Methodology for exploring influence of model consistency 

on decadal prediction  

The idea is to initialize the coupled climate system with 1) the optimized initial conditions 

(both atmosphere and ocean), which were obtained by assimilating data into the same coupled 

assimilation system with the 4 dimensional variational method referred to as the Coupled Data 

Assimilation (CDA) Synthesis, 2) the re-gridded ocean synthesis from the project “German 

contribution to Estimating the Circulation and Climate of the Ocean” (GECCO2, Köhl and 

Stammer, 2008; Köhl, 2014), as well as an un-initialized run (i.e. the twentieth-century 

simulation). The hypothesis is that with the dynamically self-consistent initial conditions and 

control variables, the model will suffer less from initial shocks and artificial model drift and 

produce more skillful predictions than initialized with GECCO2. Hence, assessment of the 

region and duration with skill through variables such as Sea Surface Temperature (SST) and 

Atlantic Meridional Overturning Circulation (AMOC hereafter) of different experiments will 

be offered at first. Comparison against the control run will provide an evaluation of the 

improvement of predictive skill through initialization.  

   A second step is to compare the performance of different initializations in order to find out 

which has advantage over the other and the reasons. As a necessary requirement before the 

influence of different initial conditions can be investigated, the skill of the system needs to be 

evaluated against previous results. Since the CDA Synthesis provides data only for the period 

1980-2006, the evaluation of skill is restricted to little more than 20 realizations, which is only 

half the size of the 50-years period that typically has been used in previous studies for 

evaluating the skill of hindcasts. In order to be able to compare with previous skill, estimating 

the impact of the length of the period of the numerical runs that provide initial conditions and 

that can be used for evaluation of the hindcasts on decadal prediction has to be investigated 

first. For this, full-state initialized hindcasts performed as part of the Mittelfristige 

Klimaprognosen (MiKlip hereafter) project based on the Max-Planck-Institute Earth System 

Model (MPI-ESM) and initialized from the GECCO2 Synthesis are compared to the hindcasts 

presented here. Hindcasts from the MPI-ESM cover the period 1961 to 2009. Hence, a 

comparison over the same period and the investigation of the influence of the length of the 

period is feasible. With the more realizations of hindcasts, better statistics are expected for 

MiKlip hindcasts. Besides, better predictable skill is also seen for the persistence forecasts 

due to long-term variability. These two hypotheses will be assessed through comparison 

between the performances of initialized hindcasts.  

   The following part is about the details of different methods applied in exploring the 

questions addressed above and the models involved. Note the model runs described in 2.1.2 

are developed by MPI-M and the hindcasted data are only used in this thesis under permission. 

The outline of the methodology involved includes: 1) a coupled climate model CFES 

developed by JAMSTEC; 2) a set of full-field initialized hindcasts by MPI-M in comparison; 

3) verification metrics for decadal predictability 



10 

 

2.1 Description of the climate models 

2.1.1 Model used in decadal prediction experiments  

To explore the skill of decadal prediction, the coupled model CFES (Coupled GCM of Earth 

Simulator) developed by Japan Agency for Marine-Earth Science and Technology 

(JAMSTEC) is used in this study. It is composed of the Atmospheric GCM for the Earth 

Simulator (AFES) and the Ocean-Sea Ice GCM for the Earth Simulator (OIFES) (Ohfuchi et 

al., 2004; Masuda et al., 2006; Sugiura et al., 2008). The AFES component is the atmospheric 

GCM developed by the Center for Climate System Research of the University of 

Tokyo/Japanese National Institute for Environmental Studies (CCSR/NIES), with the 

radiation code updated using MstrnX (Nakajima et al., 2000) and a simple diagnostic 

calculation of marine stratocumulus cloud cover (Mochizuki et al., 2007b) implemented 

together with a land surface model called MATSIRO (Takata et al., 2003). With an improved 

turbulent closure ocean mixed layer scheme developed by Noh (2004) embedded in, the 

OIFES component was developed from version 3 of the Modular Ocean Model (MOM3) 

(Pacanowski and Griffies, 1999) and the sea ice model of the International Arctic Research 

Center (Hibler, 1980). The adjoint codes of the AFES and OIFES component models were 

obtained using the Tangent linear and Adjoint Model Compiler (TAMC) (Giering and 

Kaminski, 1998) and the Transformation of Algorithms in Fortran (TAF) (Giering and 

Kaminski, 2003). The resolution of the AFES component is horizontally the same as the 

commonly-used T42 spectral model and vertically 24 layers in 𝜎 coordinates and that of the 

OIFES component is 1 degree in both latitude and longitude, with 45 vertical layers (Sugiura 

et al., 2008).  

   In the system, the bulk adjustment factors of the latent heat, sensible heat, and momentum 

fluxes were chosen as the control variables determining air-sea-land surface fluxes, together 

with the oceanic initial conditions of the model variables, inspired by study of Fedorov and 

Philander (2000) on the significant role of subsurface temperature in the upper ocean that 

regulates the basic state of a coupled ocean-atmosphere field.  This model was used for the 

assimilation in order to get the optimization of bulk adjustment factors and oceanic initial 

conditions (Sugiura et al., 2008). 

OIFES (the Ocean-Sea Ice GCM for the Earth Simulator) 

   Together with the sea ice model of the International Arctic Research Center (Hibler, 1980), 

an updated version of the GFDL Modular Ocean Model (MOM3) is used for the coupled 

system here (Pacanowski and Griffies, 1999; Masuda et al., 2003, 2006). Designed and 

developed by researchers at the Geophysical Fluid Dynamics Laboratory (GFDL/NOAA 

Department of Commerce), the state of the art numerical ocean model MOM 3 is a widely 

used tool in studying spatial and temporal ocean. It is a finite difference model that realizes 

solutions of the ocean primitive equations with numerical methods, which govern much of the 

large-scale ocean circulation. The model physics is implemented with several sophisticated 

schemes, such as the nonlocal K Profile Parameterization for mixed layer physics, the Gent 

and McWilliams scheme for isopycnal mixing and the Held and Larichev and Visbeck, 

Marshall, Haine and Spall closures for the tracer diffusivities, as well as an improved 

turbulent closure ocean mixed layer scheme developed by Noh (2004). Embedded with a 

rectangular grid system, the model has a global domain with horizontal resolution of 1° in 
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both latitude and longitude, and 45 vertical levels spaced from 5m near the sea surface to 

5261m at the bottom (vertical layers with thickness of 10m until a depth of 205m, then 

gradually increased to around 470m of bottom). With the sophisticated model and finer 

resolution than previous version, this model is supposed to form a better platform suitable for 

the 4D-VAR adjoint model due to its capability of reproducing ocean circulation processes. 

For more detail of the MOM3 model, please refer to the manual by Pacanowski and Griffies 

(1999). 

-----AFES (Atmospheric GCM for the Earth Simulator) 

   The AFES is version 5.4.02 of an Atmospheric General Circulation Model (AGCM) 

developed under cooperation between the Center for Climate System Research (CCSR) of the 

University of Tokyo and the Japanese National Institute for Environmental Sciences (NIES) 

to run on the Earth Simulator (ES) manufactured by the Nippon Electronic Company (NEC) 

(Ohfuchi et al., 2004). It is a 𝜎-coordinate, 3-dimensional global model that integrates the 

primitive equation (under the hydrostatic approximation,) with a semi-implicit method 

temporally. The vorticity-divergence form with the spectral Eulerian advection scheme is 

employed in the governing equations (Krishnamurti et al., 1998). The model’s discretization 

is taking advantage of the spectral transform method horizontally (Orszag, 1970) and the 

Lorenz differenced vertical 𝜎  –coordinate (Phillips, 1957). An accurate radiative transfer 

scheme developed by Nakajima and Tanaka (1986) is used for the physics parameterization. 

The model employs a simplified Arakawa-Schubert convective scheme (1974) and Mellor-

Yamada level-2 vertical diffusion scheme (1974). The resolution of the model is a triangular 

truncation at wavenumber 42 horizontally (T42, or about 2.8° by 2.8°) and 24 levels with the 

top level placed at about 𝜎 = 0.003 (about 3 hPa) vertically.  

-----An updated version of JAMSTEC coupled climate model for decadal prediction 

experiments 

   For the decadal hindcasts, an updated model system forced with historical radiative forcing 

conditions including greenhouse gas (GHG), aerosol and volcano, is used, based on the 

radiation code MstrnX (Nakajima et al., 2000). Zonal averaged 2D-xy grid annual-mean 

GHGs (CH4, CO2, N2O) and monthly volcano are taken from historical and RCP4.5 

scenario-based data in CMPI5, both vertically averaged. As is commonly used in global 

warming simulations, radiative effects of volcanic ash (historical major volcanic eruptions) 

are taken into account. Instead of directly using concentration of volcanic ash, additional 

optical thickness for a specific band of radiation spectrum at the lowest level of the model 

stratosphere is used. Aerosols (black and organic carbon, dust, sulfur) used here are column 

integrated monthly-mean historical and RCP4.5 scenario-based simulations in CMIP5.  Since 

the version of MstrnX used does not calculate chlorofluorocarbon (CFC) effect, the CFC 

values are set to zeros and ozone is set to 3-D monthly climatology.  

 

2.1.2 Model used for the MiKlip experiments  

In order to evaluate the performance of the experiments from the CFES climate system, full-

state initialized hindcasts performed as part of the Mittelfristige Klimaprognosen (MiKlip 
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hereafter; Müller et al., 2012; Pohlmann et al., 2013) project based on the Max-Planck-

Institute Earth System Model (MPI-ESM; Giorgetta et al., 2013; Stevens et al., 2013; 

Jungclaus et al., 2013) are also used for further analysis considering different initialization 

and length of the covering period of the numerical runs. The coupled model is composed of 

the Max Planck Institute ocean-sea ice model (MPI-OM) for the ocean (Marsland et al., 2003) 

and European Centre-Hamburg model version 6 (ECHAM6) for the atmosphere. 

Observational estimate of the ocean state derived through nudging the MPI-OM to the oceanic 

3-D temperature and salinity from GECCO2 Synthesis for the period of 1960-2009 is 

assigned as the oceanic initial condition of the coupled model at the start of each simulation. 

The atmospheric component is initialized with full-field 3-D spectral temperature, vorticity, 

divergence, and surface pressure fields (Roeckner et al., 2003), represented by a truncated 

series of spherical harmonics with triangular truncation 63 (T63), with the data from ECMWF 

Re-Analysis (ERA)-40 (Uppala et al., 2005) for the period 1960-1989 and ERA-Interim (Dee 

et al., 2011) for the period 1990-2012 respectively. The coupled model MPI-ESM is first 

nudged towards GECCO2 to generate initial conditions for the hindcasts. With the full-field 

initialization technique, these fields are used to initialize the decadal hindcasts, starting yearly 

around 1 January over the period 1960-2009, each with an ensemble simulation of three 

experiments. The numerical run are realized with lagged 1-day initialization, where again 

restart files from consecutive days are used for the initial conditions. The MPI-ESM in low 

resolution (LR, atmosphere: T63L47, ocean: 1.5 degrees, 40 vertical layers) is employed for 

this set of simulations (Pohlmann et al., 2013).   

 

2.2 Experiments 

The CFES climate system was originally designed to run with the JAMSTEC NEC vector 

machine (Earth Simulator 2). For all the experiments done in this thesis with the DKRZ scalar 

machine, an updated version of CFES embedded with external forcing is used. The 

configuration is modified to fit the DKRZ parallel system. Outlines of this chapter are listed 

as below: 

     ●The twentieth-century integrations (20C) with the updated coupled climate system CFE 

(externally forced) as reference for robust evaluation of initialized hindcasts 

●Two sets of differently initialized hindcasts with the updated coupled climate system 

CFES (externally forced) and comparison ensembles of initialized hindcasts with MPI-ESM 

from Max Planck Institute for Meteorology 
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Table 2.1 Summary of the experiments 

Experiments Initialization 
Forecast 

period 

Initial 

condition 
Forcing realization 

20C
*
 Jan of 1946 1946-2007 1980  CDA

* 
GHG, 

Aerosol, 

volcano  

1 

CIH
a Jan of each 

year 
1980-2007 

CDA, full 

state 

GHG, 

Aerosol, 

volcano  

1 

GIH
b Jan of each 

year 
1980-2007 

GECCO2, 

full state 

GHG, 

Aerosol, 

volcano  

1 

MiKlip
c Jan 1st of 

each year 
1961-2009 

GECCO2, 

full state 

GHG, 

Ozone, 

volcano 

3 

a) CIH: CDA initialized hindcasts 

b) GIH: GECCO2 initialized hindcasts  

c) MiKlip: GECCO2 initialized hindcasts provided by Max Planck Institute for Meteorology 

* Due to technique problems, the 20C run is initialized with initial conditions from CDA of 

year 1980. The first 33 years are treated as spin-up run to get rid of the effects from 

initialization. 

 

2.2.1 Twentieth-Century Simulation 

An integration of the 20C simulation is performed with the updated version of JAMSTEC’s 

CFES system, which includes external forcing (including GHG, aerosol concentrations from 

historical volcanic eruptions; GHG shown in Fig 2.2.1). This uninitialized climate forecast 

intends to capture only the forced response to changing atmospheric components. Hence, the 

20C can be used to verify whether initial conditions are playing a more significant role in 

improvement of predictive skill. For this experiment, all the control variables are set to unity, 

and the 1980’s oceanic restarts are taken as the oceanic initial conditions due to technique 

problems with the model. Therefore, the first 30-years are treated as a spin-up phase to allow 

the model to get used to the parameter changes and get rid of the impact of oceanic initial 

conditions. The modelled fields of the period after 1980 (1980-2006 in this thesis) are used to 

investigate predictive skill resulting from the radiative forcing. Since the initialized forecasts 

are intended to capture both the forced response to radiative forcing and the internally 

generated climate variability, we can investigate whether initialization provides useful 

information on the time evolution of internally generated climate variability, by comparing 

the 20C integration with the initialized hindcasts (Meehl et al., 2014). 
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Fig 2.2.1 The time evolution of global CO2 concentrations (ppm) from HadGEM2 Model 

Development Team (2011) supported by CMIP5 for historical period (1860-2005) and for four RCPs 

(2006-2100). In our hindcasts (CIH, GIH and 20C), the historical (black) and RCP 4.5 (orange) CO2 

concentrations from 1946 to 2045 are used. (Figure available from website: http://cordex-

ea.climate.go.kr/main/modelsPage.do) 

 

2.2.2 Initialized hindcasts 

Two sets of hindcasts are initialized in January of each year for the period of 1980-2006, with 

the full state initialization strategy. By comparison, insights regarding the influence of initial 

conditions (or model-consistency) can be derived. One set is initialized with oceanic initial 

conditions from the coupled data assimilation synthesis (CDA hereafter) obtained by 

JAMSTEC through the 4-dimensional variational method. Another set of hindcasts is 

initialized with the 3-dimentional temperature, salinity, velocity, and sea surface height from 

GECCO2 Synthesis for the ocean of the same period. Since the GECCO2 Synthesis has a 

different grids and topography, the data are interpolated to the CDA grid. The atmosphere is 

controlled by air-sea surface fluxes through the optimal estimation of bulk adjustment factors 

(hence control variables of sensible heat, latent heat, and momentum fluxes), which are also 

assimilated through the same CFES model by JAMSTEC. The control variables are set to 

climatological values of the target periods for both sets of hindcasts, i.e., the two sets of 

hindcasts use the same atmosphere fields. According to the core experiments of CMIP5 

regarding decadal predictability and prediction, a series of 10-year hindcasts with initial 

observed climate state every five years (starting near 1960) is required in order to estimate the 

theoretical limits and evaluate the ability in decadal prediction. However in this study, limited 

by the length of CDA analysis dataset and computational time of the DKRZ machine, all the 

numerical experiments are initialized every year on January from 1980 to 2006. They all have 

one ensemble experiment lasting for 9 years. 

http://cordex-ea.climate.go.kr/main/modelsPage.do
http://cordex-ea.climate.go.kr/main/modelsPage.do
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2.3 Initialization 

As a key point in decadal prediction, initialization is believed to offer potential predictability 

of climate change on decadal time scale. How to initialize a climate model is one of the 

highlights in decadal prediction. Modelling groups have been exploring different 

methodologies and techniques to initialize decadal climate predictions. Up to date, there are 

three popular initialization strategies: the “full-state initialization”, the “anomaly initialization” 

and full-state “fluxes correction” (full-state employing flux correction). These strategies are 

applied to deal with the model’s drifting away from the observed initial state. However, none 

of these strategies have succeeded in minimizing the drift, as is discussed in Section 1.1. 

Strategies aiming at minimizing the bias and overcoming the shortage of observations have 

also been made by perturbing initial conditions to generate small ensembles of hindcasts 

(Smith et al., 2007; Keenlyside et al., 2008). Such strategies are introduced because climate 

predictions are sensitive to small perturbations in the initial state (e.g. Du et al., 2012). These 

efforts include perturbations with breeding vectors (Toth and Kalnay, 1997; Vikhliaev et al., 

2007; Ham et al., 2014) or singular vectors (Molteni et al., 1996), initialized the forecasts with 

different start days of the atmosphere state (e.g. Yeager et al., 2012). Another alternative is 

the ensemble assimilation method developed to evaluate the initial state errors and their 

effects on the growth of forecast uncertainties (e.g. Evensen, 1994; Karspeck et al., 2013). 

The multi-model approach (Hagendorn et al., 2005; Zhang et al., 2007a; Tebaldi and Knutti, 

2007; Meehl et al., 2007; Murphy et al., 2010), perturbed physics approach (e.g. Stainforth et 

al., 2005; Collins et al., 2006; Murphyet al., 2007) and stochastic physics approach (e.g. 

Berner et al., 2008) have also been used to construct ensembles and they showed similar 

levels of skill (Doblas-Reyes et al., 2009). Despite this diversity of approaches aiming at the 

initialization and ensemble problem, the full-state initialization still remains the most popular 

strategy among the majority of modeling groups. Studies show that using the full-state of the 

ocean initial conditions from an assimilation run with the same coupled model is another 

possibility to offer high skill in decadal prediction (Smith et al., 2007; Keenlyside et al., 2008; 

Pohlmann et al., 2009; Mochizuki et al., 2010; Chikamoto et al., 2012). In this thesis, we 

choose the full-state technique of initialization for the predictions. Details about the 

initialization will be described below.  

 

2.3.1 Initial conditions 

● CDA (coupled data assimilation synthesis) from JAMSTEC 

In this thesis, the optimal estimations of climatological control variables and oceanic initial 

conditions, derived from the coupled ocean-atmosphere model (Sugiura et al., 2008) CFES by 

JAMSTEC, which is referred to as CDA, are used as initial conditions for the set of hindcasts 

CIH. CDA was assimilated through 4D-VAR assimilation run of the coupled model. Aiming 

at improve the predictability of ENSO events, the assimilation was done through a 9-month 

assimilation window cored from January to September and July to the following March, with 

1.5-month margins set at both ends of each window. The first-guess fields for all the 9-months 
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assimilation experiments were derived by initializing the model with a 30-year-long spin-up 

run, for which the incremental analysis updates (IAU) method incorporating reanalysis data of 

temperature and salinity by Masuda et al. (2003) was applied. Based on the first-guess fields 

and a series of 10-day mean observational data (temperature and salinity from the Fleet 

Numerical Meteorology and Oceanography Center Data set, OISST values, and 

TOPEX/Poseidon altimetry sea surface dynamic height anomaly, monthly temperature and 

salinity from World Ocean Database 2001), the control variables of the air-sea surface fluxes 

and oceanic initial conditions were adjusted in each time window via an optimal synthesis. 

The conjugate gradient method was used to solve the 4D-VAR optimization problem by 

iteration. For higher latitudes north of 60°N and south of 60°S CDA didn’t assimilate the 

observation. The constraint of assimilation is stronger in the tropics than in the extra tropics. 

Study based on CDA reported improvement on seasonal to interannual climate 

predictability and possibility of corrected initial location of the model climate attractor on the 

basis of observational data (Sugiura et al., 2008). Further analysis showed improvement in 

prediction of the 1997-1998 El Niño event. Another reason of taking CDA as the initial 

condition is that the initial condition is highly self-consistent with the model since the 

assimilation used the same coupled atmosphere and ocean model. By doing this, the initial 

shock which usually arises from the difference between observational and model-preferred 

climatology, is possibly to be reduced. Hence, the optimal estimation of oceanic initial states 

and climatological control variables are used to initialize the same coupled-model. Note, the 

assimilation run that produced CDA by JAMSTEC was done with the vector machine Earth 

Simulator 2 under the original set-ups, without external forcing included. For the hindcasts in 

this thesis, an updated version of the coupled climate model embedded with prescribed 

historical external forcing conditions (e.g., greenhouse gases, aerosols, and major volcanic 

eruptions) is used. Hence, the impact of forcing on decadal climate prediction is considered. 

This strategy is supposed to offer potential possibility in improving climate prediction of past 

case on decadal time scale. The data has a resolution of 1° by 1° horizontally and 45 layers 

vertically for the ocean, and covers the period of 1980-2006.  

 

● GECCO2 

In this thesis the GECCO2 ocean state estimation is also used as the ocean initial conditions 

for another set of hindcasts with the JAMSTEC coupled system CFES. As a new version of 

ocean synthesis available from the German contribution to Estimating the Circulation and 

Climate of the Ocean project (Köhl and Stammer, 2007, 2008; Köhl, 2014), GECCO2 covers 

the period of 1948-2013. The variables used for the ocean initial condition are 3-D 

temperature, salinity, velocity (zonal and meridional), and SSH. GECCO2 uses the MIT GCM 

(Massachusetts Institute of Technology general circulation model, Marshall et al., 1997) 

model, and has a horizontal resolution of 1° by 1° with 50 vertical layers. A higher meridional 

resolution of 1/3° is used at the Equator, as well as approximately isotropic cells between 20° 

and 60° (Köhl, 2012). Different from GECCO synthesis (GECCO doesn’t include a sea ice 

model and therefore ends at 80°N), in GECCO2 the Arctic Ocean with roughly 40 km 

resolution is included and a dynamic/thermodynamic sea ice model is used. It’s forced by the 

NCEP RA1 atmosphere fields and bulk formulae. Through a 4D-VAR (adjoint) assimilation 

scheme, the model is brought into consistency with the observations and available satellite 
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data as well as estimation of prior surface fluxes momentum within 28 iterations for 1948-

2011 and 37 iterations for 2008-2013. GECCO2 combines most of the World Ocean 

Circulation Experiment observations available for the synthesis period and provides better 

consistency with the data than the control run. The Denmark Strait overflow in GECCO is 

replaced by water mass transformation in the subpolar gyre (Köhl, 2014). Analysis on 

GECCO synthesis already showed improvement of decadal predictability in the AMOC at 

25°N considering the long-time changes (Köhl and Stammer, 2007, 2008). The enhanced 

version of GECCO2 will also work as a good source of initial conditions for decadal 

predictability, especially for improvement in AMOC and NA SST prediction skill (Köhl et al., 

2009; Pohlmann et al., 2013; Polkova et al., 2014).  

 

2.3.2 Full state initialization 

Inspired by experiments from SI climate prediction, the state-of-art technique that starts the 

model with an ocean state, which is close to the observations, is an important initialization 

strategy. The advantage of this strategy is that it starts the model from a state closer to actual 

observed climate state (Troccoli and Palmer, 2007; Magnusson et al., 2012a, b; Smith et al., 

2013). However, at the beginning of the numerical run, initial shock due to the imbalance 

between initial conditions and the model dynamic may lead to errors in the forecast 

(Balmaseda and Anderson, 2009).  As time evolves, systematic errors due to quantification of 

oceanic and atmospheric physics develop and forecast loses predictability (Pierce et al., 2004). 

As a result, the forecasts drift way towards the model’s climate. Besides, computational limits, 

lack of long period observations also lead to unavoidable biases in the forecasts at decadal 

time scale. Hence, with the application of full state initialization, reducing the initial shock 

and systematic errors shall give rise to predictability.  

   In this study, all the decadal hindcasts are initialized with full-field monthly mean ocean 

state from CDA/GECCO2 that has a realistic representation of the ocean states. The 

properties used as the oceanic initial conditions are 3-D monthly mean temperature, salinity, 

velocity (both zonal and meridional), and sea surface height. Since the GECCO2 uses a 

different grid (vertical, zonal and meridional near the equator) and topography from the 

coupled CFES system, the GECCO2 fields are expanded with the nearest grid value towards 

the continent and bottom of ocean first. Afterwards linear (over vast ocean) and nearest (along 

the coast lines) interpolations are used to put the GECCO2 data into the model grid. In order 

to get rid of the dynamical adjustment to differences in topography, the ocean state after a 3-

day forward run is taken as the initial condition for the experiments.  

   Through initializing the model with the optimal estimation of ocean states and atmospheric 

control variables assimilated from the same coupled model, the initial shock and systematic 

error are supposed to be reduced. The consistency between the model used for estimating the 

oceanic initial conditions and that used for model simulations makes the representation of the 

oceanic and atmospheric processes more dynamically self-consistent. Considering these 

advantages of the CDA initialized hindcasts (CIH), higher predictive skill on decadal time 

scale is supposed than forecast experiments initialized with GECCO2 Synthesis that is 

derived from a different coupled model. Evaluation of the predictive skill of the two sets of 
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hindcasts will be carried out against observational data, uninitialized 20C hindcasts and the 

low-skill persistence forecast. 

 

2.4 Assessment skill on decadal predictability 

Primary processing of hindcasts 

Due to the configuration of the JAMSTEC’s CFES coupled climate system, all the oceanic 

outputs of hindcast are 10-day mean data. The output of each month contains three 10-day 

mean values: 1) the first/second one averaged over the first/second ten days, 2) the third one 

averaged over the residual of the month. A regular calendar is used within the system (without 

leap year). For example, the three outputs of February are averages over 1
st
-10

th
, 11

th
-20

th
 and 

21
st
-28

th
. The hindcasted ocean properties are converted to monthly mean data of 

corresponding period according to the implemented calendar in the model.  

 

2.4.1 Verification metrics 

In order to verify whether the initialization provides greater skill in decadal prediction than 

the uninitialized 20C run, certain metrics shall be chosen to offer assessment of the hindcasts. 

The primary verification metric used here is Root Mean Square Error (RMSE). RMSE 

between the paired ensemble mean hindcasts 𝐻𝑗  (both raw and bias-corrected) and 

corresponding observations 𝑂𝑗 is given for a set of commonly chosen lead times: lead year 1, 

average of lead years 2-5 and average of lead years 6-9 (Wilks, 2006), in equation (Goddard 

et al., 2013): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐻𝑗 − 𝑂𝑗)2

𝑛

𝑗=1

2

 

   By comparing the hindcasted variables with the observations, primary assessment on 

prediction skill can be achieved (Tebaldi and Knutti, 2007; Goddard et al., 2013). As is 

indicated in previous section, model drifts can be reduced for the consistent hindcast CIH by 

initializing the coupled model CFES with dynamically consistent initial conditions CDA. In 

order to verify whether this is true, RMSE of raw hindcast 𝐻𝑗  and bias-corrected hindcast 

𝐻𝑗
𝑏−𝑐 are all analyzed.  

   However, RMSE only is not sufficient to assess prediction skill due to its sensitivity to 

outliers that leads to a possibility of large error (Collins, 2002). Studies show that multiple 

diagnostics work as a better estimation on the model performance. Another measurement used 

here is the anomaly correlation coefficient (ACC), which is a scale-invariant measure of the 

linear associations between the two sets of forecasts. The anomaly correlation coefficient 

measures only the phase difference between the observations and forecasts experiment (Matei, 
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et al., 2012). Since ACC is quite sensitive to the trend, all the variables are detrended first in 

order to avoid overestimation in the performance of hindcasts. The ACC is also calculated as 

a function of lead time. The correlation coefficient of hindcasts with their own initialization 

(CDA and GECCO2 respectively) is computed as below: 

𝐶𝑂𝑅𝑡 =
∑ 𝐻𝑎𝑡

𝐷 𝑂𝑎𝑡
𝐷

√∑ 𝐻𝑎𝑡
𝐷 2

𝑂𝑎𝑡
𝐷 2

 

    where 𝐻𝑎𝑡
𝐷  is the predicted anomalies at lead time 𝑡 with its linear trend removed, 𝑂𝑎𝑡

𝐷  is the 

detrended anomalies of observations or the data that serve as initial conditions of the 

hindcasts (i.e. CDA/GECCO2). The observations for verification of sea surface temperature 

are taken from the UK Met Office Hadley Center dataset (HadISST; Rayner et al., 2003), with 

the corresponding cover period. Due to the lack of AMOC observations (e.g. Cunningham et 

al., 2007; Kanzow et al., 2007), we take AMOC from the GECCO2 Synthesis for evaluation 

of predictive skill, also with the corresponding cover period. 

   To compare and assess the relative skill in different forecast experiments, the root mean 

square error skill score (i.e. RMSS; Jolliffe and Stephenson, 2003) based on a set of RMSE 

from paired hindcasts (i.e. the reference prediction and the prediction needed to be evaluated) 

is used in this study. The skill score is defined as: 

𝑅𝑀𝑆𝑆 = 1 −
𝑅𝑀𝑆𝐸ℎ𝑖𝑛𝑑

𝑅𝑀𝑆𝐸20𝑐
, 

   It is supposed to give the accuracy skill of the test prediction (hindcasts initialized with 

CDA and GECCO2) against the reference prediction (20C). Positive values denote that the 

errors in the initialized hindcasts are smaller than the un-initialized hindcasts. The verification 

metric is computed in terms of annual mean SST.  

   The lead time mentioned here is defined as the length of time from the starting date of the 

experiment to the hindcasted year respectively. Temporal smoothing can typically reduce 

higher frequency noise and increase skill. In this thesis, assessment of SST predictive skill 

will be performed at three different time scales: lead year 1, averages over lead years 2-5 and 

6-9 (Wilks, 2006). The three different scales chosen work as a small set of cases to be 

illustrated to qualify the information for different lead time and temporal averaging (e.g. 

Smith et al., 2007; Goddard et al., 2012a). Resulting from the proximity to the observed initial 

conditions, the year 1 of the prediction shall give the best predictability; it overlaps with 

currently available seasonal-to-interannual predictions. As the model evolves, it discards the 

strong imprint of initial conditions and tends to its own climatology. On the contrary, the 

predictive information from past and projected changes in anthropogenic external forcing 

starts to increase (Hawkins and Sutton, 2009a; Branstator and Teng, 2010, 2012; Fig 2.4.1 

from Branstator and Teng, 2012). Although the skill arises from these two factors are not 

always possible to distinguish (Solomon et al., 2011), it is widely accepted that after about the 

first 5 years of a decadal prediction, skill arises due to response to external forcing. Recent 

estimations and measurements of predictability and predictive skill proved that greater 

forecast skill arises from external forcing after about 8 years of the forecasts (Boer 2011; Boer 

et al., 2013; Fig 2.4.1). Overall, the 4-yr average forecasts (year 2-5 and 6-9) within the 
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decade are likely to have lower skill compared to lead year 1, and there are potential 

differences between them. The year 2-5 average still represents the interannual time scale; it is 

likely still to be dominated by year-to-year variability and less by the climate change signal. 

Comparison between 2-5 and 6-9 year average predictions can provide information of the 

dependence of skill on lead time.  

 
Fig 2.4.1 Predictability of upper 300-m temperature of the North Atlantic for 12 CMIP5 models 

resulting from initialization (dashed blue lines) and the response to RCP4.5 forcing (dashed red lines) 

from Branstator and Teng (2012). The solid lines are multi-model averages. Predictability is measured 

by relative entropy. The crossover point near year 8 for the multi-model averages indicates that after 8 

years of the hindcasts, information resulting from external forcing (red line) becomes more important 

than information originating in the initial conditions (blue line). 

 

2.4.2 Trend removal 

Technically speaking, a “trend” in a time series is a slow, gradual change in some property of 

the series over the whole interval under investigation, which can be a long term change in the 

mean, or change in other statistical properties. Being one of the most critical quantities, the 

trend is involved in many applications of climate analysis, such as correlation computation 

and spectral analysis (Wu et al., 2007; Polkova, 2014). The statistical or mathematical 

operation “detrending” is often applied to remove the trend that represents a feature thought to 

distort or obscure the relationships of interest. It is a necessary step in order to avoid the 

analysis being overwhelmed by the nonzero mean and the trend terms.   

For climate prediction at decadal time scale, which is a joint initial-boundary problem, it’s 

always important to include information about external forcing within the observed state of 

the climate system (usually through the prescribed historical and RCP 4.5 radiative forcing). 

Hence, the evaluation of total skill score of SST indicates the predictive skill associated with 

both the external forcing and internally generated natural climate variability. Many studies 

have indicated improvement of skill in global SST predictability along with the warming 
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trend associated with external forcing (Smith et al., 2010; van Oldenborgh et al., 2012), as is 

the case for North Atlantic and Western Pacific shown in Fig 2.4.2.  

 

Fig 2.4.2 Spatial distribution of anomaly correlation coefficient (ACC) between hindcasted SST 

(hindcasts initialized with CDA, short as “CIH”) and CDA (estimations derived by assimilation 

through the coupled climate model CFES) at different lead years: 1) lead year 1 (top panels); 2) 

averages of lead years 2-5 (middle panels); and 3) years 6-9 (bottom panels). The SST data shown in 

left panels are all detrended and these in the right panels are not. Only the significant ACC (at 95% 

level) are shown here. The trend gives rise to predictability on decadal time scale regionally from 

comparison of the two columns of figures. For the first lead year, larger areas with predictive skill are 

observed over the North Atlantic for the non-detrended SST (upper panels). For the 4-yr average, the 

trend gives rise to predictability of SST over part of the North Atlantic and western Pacific (middle 

and bottom panels). 

For the initialized hindcasts CIH, larger areas with predictive skill are observed over the 

North Atlantic for the non-detrended SST at the first lead year (upper panels of Fig 2.4.2). For 

the 4-yr average, the trend gives rise to predictability of SST over part of the North Atlantic, 

the Indian Ocean and western Pacific (middle and bottom panels). In fact, a great fraction of 

predictive skill for the global SST is due to external forcing. The differences between spatial 

distribution of RMSE skill score of detrended and non-detrended SST from the initialized 

hindcasts (CIH here) against un-initialized forecast reveals relative predictability due to 

internal variability and externally forced climate change (Fig 2.4.3), and therefore indicates 

improvement of predictive skill due to external forcing. As is indicated by Fig 2.4.3, the 

smaller errors when SST from CIH is not detrended than that is detrended prove that 
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predictive skill arises due to external at different lead years, in the North Atlantic and Pacific. 

Hence the “detrending” realized by the removal of the influence of greenhouse gas-induced 

global warming from the analysis (i.e. including only the predictable signal related with 

natural climatic fluctuations) is important for the investigation on the skill of decadal 

prediction associated with internal variability through the initialization procedure.  

 

Fig 2.4.3 Spatial distribution of SST RMSS (RMSE skill score) for CIH (CDA initialized hindcast) 

against 20C (un-initialized hindcast) at different lead years: 1) lead year 1 (upper panels); 2) averages 

of yr2-5 (middle panels); and 3) yr6-9 (bottom panels). SST from HadISST is used as the observation. 

The SST data used in right panels are all detrended and these in the left panels are not. Red area in the 

figure indicates improvement due to initialization. Improvement in predictive skill for initialized 

hindcasts is mainly due to the internal variability and externally forced climate changes (left panels). 

With an application of trend removal, improved predictability for initialized hindcasts is only about 

the internal variability, as is shown in right panels. Comparison between the left panels and right 

panels indicates that the trend plays an important role in improving predictive skill on decadal 

prediction. 

   Several methods have been proposed to remove the global trend and ENSO influence over 

global SST (eg. the least-squares-fit straight line for linear trend). In this thesis, the strategy 

for detrending time series that contain fields at particular lead years proposed by Kharin et al. 

(2012) is applied for the anomaly correlation analyses of distribution for global SST at each 

grid point. This methodology removes the period dependent “mean bias” from the predictions 

that is different from the observed. Compared with other approaches such as removing the 

observational trend from both the hindcasts and observations, this strategy could be more 

appropriate to deal with hindcasts’ trend, especially for the case with different observational 

and hindcasted trends (Polkova, 2014). In detail, the long-term linear trend of SST is 

calculated from hindcasted fields over the initialization period of 1980-2006 at different lead 

year for each grid point, employing the least square statistical method. Afterwards, the trend is 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Global_warming
http://en.wikipedia.org/wiki/El_Ni%C3%B1o-Southern_Oscillation
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subtracted from the hindcasts over lead years for each grid point. The equation follows like 

this: 

𝑂𝑗𝑙 = 𝜇𝑙
𝑜 + 𝑠𝑙

𝑜𝑗′ + 𝑒𝑗𝑙
𝑜 , 

𝐻𝑗𝑙 = 𝜇𝑙
𝐻 + 𝑠𝑙

𝐻𝑗′ + 𝑒𝑗𝑙
𝐻 , 

𝑂(𝑡𝑗 , 𝑙) ≡ 𝑂𝑗𝑙 represents the observations corresponding to the simulated variable, 𝐻(𝑡𝑗 , 𝑙) ≡

𝐻𝑗𝑙 denotes the hindcasted variable initialized at year 𝑗. 𝑙 represents the lead year of the model 

prediction between the forecast initialized date and the forecast preceeding period considered. 

Here in this paper, 𝑡𝑗 = 1980,1981,1982, … ,2006 and 𝑙 = 1,2, … ,9; 𝜇𝑙
𝑜 and 𝜇𝑙

𝐻 are the long-

term means of the observations and hindcasts respectively at lead year 𝑙, 𝑠𝑙
𝑜𝑗′ and 𝑠𝑙

𝐻𝑗′ are the 

corresponding long-term linear components. The residual 𝑒𝑗𝑙
𝑜  and 𝑒𝑗𝑙

𝐻  are predicted and 

observed deviation (e.g. Fig 2.4.4) that will be used for further analysis such as anomaly 

correlation coefficient here.  

 

Fig 2.4.4 Time series of global-averaged annual mean SST in the HadISST dataset (green), initialized 

(colours, CIH) and un-initialized (blue) predictions and CDA (black). The upper panel shows the raw 

initialized hindcasts before detrending. The bottom panel shows the evolution of global mean SST 

with the linear long-term trend removed.  

   The above-mentioned trend removal is applied to SST for further evaluation of 

predictability on decadal scale. However, study has shown that for regional climate 

parameters such as the North Atlantic SST, different portions of impact from external forcing 

relative to internally generated variability are reported at the end of the twentieth century 

(Ting et al., 2009). Branstator and Teng (2010) point out that North Atlantic SST is likely to 

be dominated by internal natural variability for the climate system and the impact of the 

radiative forcing will be small at least in the first few years of decadal predictions. As is 

agreed by researchers, the skillful predictions in AMOC is related with improved predictive 
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skill of SST in the North Atlantic (Delworth et al., 2007; Knight et al., 2005; Swingedouw et 

al., 2012), possibly due to a connection between them associated with the Atlantic multi-

decadal oscillation (i.e. AMO; Meehl et al., 2014). Considering the relatively small impact 

from external forcing of SST in the North Atlantic, both the detrended AMOC and non-

detrended AMOC hindcasts will be analyzed in this thesis. 

 

2.4.3 Bias adjustment 

The bias adjustment procedure is commonly used in seasonal forecasting (Stockdale, 1997). 

In decadal climate predictions, the characteristics of bias growth may help understand the 

physical processes that lead to prediction errors (Meehl et al., 2014). Nevertheless, to provide 

useful information that leads to predictability, biases that arise in decadal prediction must be 

removed. A posterior bias correction is specially needed for prediction with full-state 

initialization strategies. This is because with full-state initialization strategy, the model is 

constrained to be close to the observations by initialization with assimilated observations of 

the current climate state. However, as the prediction evolves, the model drifts back towards its 

preferred model climatology since it can no longer be constrained with observations (Smith et 

al., 2013). Such drifts due to difference between the model climatology and observations will 

introduce errors in the forecasts and may affect predictive skill on all time scales. Therefore, a 

bias correction is usually needed for climate predictions.  

 

Fig 2.4.5 Time series of global-averaged annual mean SST in the HadISST dataset (green), initialized 

(colours, GIH) and GECCO2 (black). The upper panel shows the raw initialized hindcasts before bias 

correction. The bottom panel shows the evolution of global mean SST with mean bias removed. 

   Bias adjustment can be achieved by subtracting the climatological averages of a series of 

initialized hindcast over all starting dates (e.g. Smith et al., 2013; ICPO, 2011), or by 
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removing the model climatological average for each time period from the 

hindcasts/observations from the corresponding period (e.g. García-Serrano and Doblas-Reyes, 

2012), or by a correction that varies with the period (i.e. the “average” model drift with a 

trend, van Olderborgh et al., 2012). In this thesis, the lead-time dependent mean bias is 

removed from the predictions by subtracting the difference between the climatological 

average of hindcasts and that of observations on each starting date at different lead years from 

the hindcasts of the same period. Hence hindcasts after mean bias correction are used for 

further assessment. As is shown in top panel of Fig 2.4.5, for the raw hindcasts GIH (colors), 

global SST drifts quickly after the initialization, with an average value up to 0.7
o
C. The 

application of mean bias correction results in a better resemble of hindcasts to observations 

(HadISST, green). 

   The mean bias at different lead times is calculated as below: 

ℎ𝑖𝑡̂ = ℎ𝑖𝑡 − ∑ (𝑁
𝑖=1 ℎ𝑖𝑡 − 𝑂𝑖𝑡)/𝑁 , 

where i represents a particular starting date of the initialized hindcast, t represents a particular 

hindcast year or an average over lead years. Hence,  ℎ𝑖𝑡̂ are the bias-adjusted values for one 

specific initialized hindcast at lead year/averaged over lead year t, 𝑂𝑖𝑡 are the observed values 

corresponding to raw hindcasts ℎ𝑖𝑡. Since the initial conditions from CDA goes from 1980 

only until 2006, the number of integrations accounted in the bias adjustment are 𝑁 = 27. In 

this thesis, the trend removal is applied to the observational SST and bias-adjusted values of 

hindcasted SST as is above-mentioned. 

 

2.4.4 Persistence 

Because of inertial or carryover processes in the physical system, geophysical time series are 

often auto-correlated. In a climate system, the system may remain in the same state from one 

observation to the following one, which can be associated with positive autocorrelation. The 

persistence is used as a reference forecast to verify whether the usage of the coupled climate 

model CFES helps in improving the skill on decadal predictability through comparison with 

hindcasts derived from initializing the model. As a commonly used statistical forecast, the 

persistence forecast assumes that future conditions will be the same as past conditions (Matei 

et al., 2012). In this paper, annual mean data of GECCO2/CDA fields are used to compute the 

persistence forecasts respectively, started 1 year preceding the initialization year. Please note 

that CDA reanalysis covers only the period of 1980-2006. Hence for the first lead year, the 

period available for persistence is 1980-2005, corresponding to the hindcasts from 1981-2006. 

When the skill is computed for the averages over lead year 2-5 and year 6-9, the persistence 

forecasts are calculated from the averages over 4 years at lag-5, which precede the 

initialization date. For instance, for the start date 1983, the hindcasts at lead time yr 2-5 

(1984-1987) and the hindcasts at yr 6-9 (1988-1991) are compared with the persistence 

forecast of 4-yr average over the preceding years, i.e. 1980-1983. Another option using the 

damped persistence computed with first-order auto-regression following the equation given 

by von Storch and Navarra (1999) is also popular for comparing performance of initialized 

hindcasts and persistence at every lead year (e.g. Polkova et al., 2014).  
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2.4.5 Determination of statistical significance level  

The estimation of significant levels for the predictive skill of spatial ACC and RMSS is based 

on a Student’s t-test introduced by William Sealy Gosset (Mankiewicz, R., 2004). This 

commonly applied statistical test is a parametric test of the null hypothesis that two univariate 

random variables have equal means (von Storch and Zwiers, 1999). In the experiments 

mentioned above, each initialized hindcast has one realization. Hence all of the realizations 

occur independently. However, the initial conditions of experiments are derived through 

assimilated observations. Geophysical time series are generally auto-correlated because of 

inertial or carryover systems in the physical system. The observed series of oceanic variable is 

not random in time, and the information within the observation is not independent. If a time 

series is auto-correlated, less information of the population mean will be provided, compared 

with a non-auto-correlated time series with the same sample size. Under this circumstance, the 

denominators of t statistics under independence assumption will underestimate the variability 

of variables and therefore results in a too large absolute value of t. 

   To resolve this problem, adjustment to the sample size of autocorrelation is introduced. A 

factor related to the first-order auto-correlation scales the original sample size to reach the 

“effective sample size” or “equivalent number of independent samples”, and hence an 

estimation of degrees of freedom (von Storch and Zwiers, 1999) follows: 

𝑑𝑓 = 𝑁
1 − 𝑟1

1 + 𝑟1
− 1 

where 𝑁 represents the sample size of the hindcasts and 𝑟1  denotes its lag-1 auto-correlation 

coefficient.  

    

Fig 2.4.6 Scaling factor applied in computation of effective sample size from original sample size of 

auto-correlated time series. 

http://en.wikipedia.org/wiki/William_Sealy_Gosset
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   The adjustment to effective sample size becomes less important as the auto-correlation 

becomes lower (Fig 2.4.6 from Notes_3, GEOS 585A by Meko). Note the definition of the 

equivalent sample size depends upon the parameter that is being tested and the way in which 

information is measured. It’s applicable only when the time series are persistent. It is possible 

to have larger effective sample size than original sample size when adjacent anomalies tend to 

have opposite sign, that is, a negative lag-1 auto-correlation coefficient (von Storch and 

Zwiers, 1999). In this paper, the “effective sample size” is applied to calculate the degrees of 

freedom for the reference run involved in the assessment of predictability. The ensembles’ 

degrees of freedom are the scaled total sum of the differently initialized ensemble numbers 

minus 1 at different lead years. 
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Chapter 3 

Evaluation of model consistency on decadal climate 

prediction  

Working as a control parameter for the heat flux exchanges between the atmosphere and the 

ocean, SST is always a key variable in studies of these two fields. It is easier to observe than 

other oceanic variables and has long observation records dating back to the early stage of 

oceanography. Local variations of SST are important for the study of tropical cyclones, 

Ekman transport, rapid influxes of glacial fresh water, concentrated phytoplankton blooms, 

and so on. The signature of its regional variations over the Tropical Eastern Pacific Ocean 

denotes the occurrence of El Niño/La Niña events. So far, SST has been used as a primary 

assessment of skill from initializations, and improvement in SST skill is observed from 

initialization over parts of the ocean in recent studies of decadal prediction (Pohlmann et al., 

2009; Mochizuki et al., 2010; Matei et al., 2012). Here, the SST is analyzed from multiple 

initialized hindcasts as well as reference data in order to explore whether the initialized 

forecasts are skillful, and furthermore the regions and duration with predictive skill (if they 

are skillful). Insights to the causes leading to predictability will also be studied. By doing this, 

assessment of the consistency of the initialization with/without assimilation to the model will 

be provided. Additionally, regional SST (region 3.4) is used to calculate an index of ENSO 

(El Niño–Southern Oscillation) events to provide an example how different levels of model 

consistency can affect the predictive skill.  

 

Fig 3.1 Evolution of global-averaged annual mean SST in the HadISST dataset (green), raw initialized 

hindcasts (colours) and ocean estimation (CDA/GECCO2) from which the hindcasts are initialized 

(black). The colored lines in top/bottom panel are raw CIH/GIH. 

http://en.wikipedia.org/wiki/La_Ni%C3%B1a
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   We start our analysis with hindcast SST variations through comparison with the observed 

and assimilated (CDA in short) SST. However, before this, it’s necessary to verify whether 

the drifts in CIH are smaller than in GIH due to initialization with dynamically-consistent 

initial conditions, as is expected in the motivation. For this purpose, the global SST is 

analyzed. The evolution of global averaged SST from initialized hindcasts (colors) is 

displayed in Fig 3.1. As is indicated by the colored lines in the top panel, there is a smaller 

drift with an average around 0.4
o
C in CIH one year after it is initialized with CDA. For GIH, 

the forecasts drift immediately after initialization, and an average of drifts up to 0.7
o
C is 

shown in the bottom panel. For the globally averaged SST, the drifts in CIH are indeed 

reduced as is expected. Further information can be gained through the spatial distribution of 

RMSS between initialized hindcasts of SST without bias correction against the un-initialized 

hindcasts. As is indicated by comparison between left and right columns, errors are much 

smaller over vast areas of the ocean (e.g. over the Pacific) in CIH than in GIH until lead years 

2-5. Therefore, our expectation that dynamically consistent initial conditions help to reduce 

model drifts is proved to be true here. Flowingly, assessment of SST predictive skill will be 

provided. 

 

Fig 3.2 Spatial distribution of RMSS for annual mean SST for raw hindcast SST against the 20C at 

lead year 1(upper panels), averages over yr 2-5 (middle panels), and 6-9 (bottom panels). Left panels 

are CIH against 20C and right panels are GIH against 20C, without bias correction. Red areas indicate 

that the initialized hindcasts are more accurate than the 20C and blue indicates the opposite. 
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3.1 Predictive skill of global and regional SST 

3.1.1 Representation of hindcasted global annual SST  

The term “global warming” has become a focus in climate research and its significant and 

harmful effects on the environment, communities, and human’s health are widely recognized. 

Ever since 1971, the sea surface temperature accounts for 90% of the warming (IPCC AR5, 

2013). About two-thirds of the warming in the last three decades of the 20th century happened 

after 1980 (IPCC AR5, 2013). The warming is proven by a wide range of independent 

scientific analysis of variables, such as sea level rise (e.g. Stammer et al., 2013), snow and ice 

melting (IPCC, AR4, 2007), increased humidity (Kennedy et al., 2010), and so on. As a 

general consensus by scientists, increasing concentrations of greenhouse gases produced by 

human activities play a dominant role in global warming (more than 90% certain, IPCC, AR4, 

2007; National Research Council, 2010; IPCC, AR5, 2013;). Decadal forecasts that take the 

anthropogenic forcing into account to predict the near-term variability of the climate system 

work as a valuable and scientifically significant application in terms of policy making and 

investment decisions.  

 

Figure 3.1.1 The time series of annual-mean global average sea surface temperature anomalies relative 

to 1961-1990 in observations (black line) from Met Office. The calculation is based on the sea surface 

temperature of dataset HadCRUT4 (abbreviated as HadSST3). The grey shade indicates the ranges 

that are 95% significant. As is shown in the figure, the SST warming trend is much larger after the 

1900s. There is a warm pause from 1950-1980. After 1980, a large warm trend is found in SST again. 

(figure from Met Office website, available at: 
http://www.metoffice.gov.uk/research/monitoring/climate/surface-temperature) 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Global_warming#CITEREFIPCC_AR4_SYR2007
http://en.wikipedia.org/wiki/Global_warming#CITEREFIPCC_AR4_SYR2007
http://en.wikipedia.org/wiki/Global_warming#CITEREFIPCC_AR4_SYR2007
http://www.metoffice.gov.uk/research/monitoring/climate/surface-temperature
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   The Fifth Assessment Report (AR5) by IPCC (the Intergovernmental Panel on Climate 

Change, 2013) reported that the global surface temperature will be more than 1°C (but most 

likely less than 1.5°C) warmer for the period 2016–2035 above the 1850–1900 mean, 

although the uninitialized simulations in the IPCC AR5 (Kirtman et al., 2013) indicate more 

near-term (2016-2035) warming than the initialized decadal predictions from CMIP5. 

Projections based on both present-day atmospheric concentrations of GHGs (‘committed 

warming’; e.g., Meehl et al., 2006) and projected future changes in radiative forcing show a 

rise for globally averaged sea surface temperatures over the early 21
st
 century (IPCC AR5, 

2014). A figure based on the observational dataset HadCRUT4 from Met Office shows 

consistency in global warming (Fig 3.1.1). The observed SST anomaly relative to 1961-1990 

shows that a much larger warming rate happened after 1980, compared with the period of 

1960-1980. In this thesis, limited by the available data of CDA, both CIH and GIH cover the 

period from 1980 to 2006, which is a period with a high rate of global warming. We will 

compare the hindcast global SST with the observations to check whether the posterior 

forecasts can capture the global warming trend. This will offer us a general idea of the 

performance of the hindcasts and help in further analysis. 

 

Fig 3.1.2 Time series of annual mean global SST at different lead years in observations (blue, 

HadISST data set), persistence forecast (yellow), 20C (green), initialized hindcasts (black, left panels 

CIH, right panels GIH), CDA (left panels, red) and GECCO2 (right panels, red). The top panels are 

SST at lead year 1. The 4-yr means of lead years 2-5 are shown in middle panels, with the time series 

plotted centered in year 3. Averages over lead years 6-9 are shown in the bottom panels, with time 

series plotted centered in year 7. 

   As is shown in Fig 3.1.2, global SST from CIH follows CDA closely at lead year 1, 

resembling well the interannual variability and the warming trend.  The 4-yr average of CIH 

becomes cooler and a drift around -0.2
o
C /-0.4

o
C appears for lead years 2-5 and 6-9 separately, 

yet a warming trend is also captured for both. On the contrary, such cooling is not observed 

for global SST in the uninitialized forecast for the 4-yr average. Actually until 1992, when a 

major volcanic eruption happened, the 4-yr averaged SST from the 20C run resembles CDA 

http://en.wikipedia.org/wiki/IPCC_Fourth_Assessment_Report
http://en.wikipedia.org/wiki/Intergovernmental_Panel_on_Climate_Change
http://en.wikipedia.org/wiki/Intergovernmental_Panel_on_Climate_Change
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quite well. At lead year 1, the two major coolings around 1982 and 1992 of uninitialized SST 

are also highly likely due to volcanic eruptions. For CIH, the predictions are initialized with 

an estimation of climate fields that result from assimilating data into the same coupled global 

climate model as the simulation, which is noted here as being self-consistent. The assimilation 

scheme used reduces the initial shock at the very beginning of the prediction. While for GIH, 

a warmer bias is shown for lead year 1 over all the starting years (upmost of right panels). For 

the 4-yr average of lead years 2-5 and 6-9, the uninitialized SST is warmer than 

CDA/GECCO2 after 1992. Therefore, the response from external forcing shall make the 

hindcasted SST warmer. However, global SST from 20C is warmer than the initialized 

hindcast, but with the same trend. Since the initialization is not making the hindcasts cooler 

(CDA V.S. CIH at the first lead year, up-left of Fig 3.1.2), and they are both externally forced, 

the warmer mean of the 20C forecast could possibly be due to the bulk coefficients used to 

control the air-sea surface fluxes in the initialized hindcasts. SST from GIH is even warmer 

than SST from 20C for most of the time at lead year 1. This could probably due to the 

different dynamics and climatology between the initial conditions from GECCO2 and the 

model. Such difference introduces initial shock and systematic errors. Hence, the hindcast 

SST follow the CDA better at lead year 1 than that of GIH and GECCO2. This indicates the 

advantage of model consistency in decadal predictions, which is significant at lead year 1 but 

relatively small for the 4-yr average of lead years 2-5.  Note for the 1990s, drops are observed 

for both averages over lead years 2-5 and 6-9, possibly resulting from the volcanic eruption in 

early 1990s, as is the case observed for GIH. Another drop is also evident after the mid-1990s 

for CIH.  

   Generally, CIH does a better job in reproducing annual mean time series of global SST than 

GIH, most possibly due to a more self-consistent full-field initialization. Skill is expected in 

CIH for climate predictability at decadal time scales. For both CIH and GIH, global SST is 

warmer than observations at lead year 1, but colder at the 4-yr average. Different from lead 

year 1, initialized global SST is also colder than the uninitialized forecast at the 4-yr average. 

Different from CIH initialized every year, CDA from JAMSTEC was reinitialized every 9-

months, with an overlap of 1.5 months at both margins. This strategy helps to prevent a slow 

drift in CDA. The difference between models used to derive CDA (CFES without response to 

radiative forcing) and for CIH (CFES with external forcing included) may also contribute to 

the drift at longer lead times.  

 

3.1.2 Assessment on spatial distribution of SST predictive skill  

We explore the spatial distribution of predictive skill of decadal SST for the different 

hindcasts separately at three different timescales as is described in section 2.4.2: lead year 1 

(yr 1), average over lead years 2 to 5 (yr 2-5), and average over lead years 6 to 9 (yr 6-9). By 

comparing the performance with that of the persistence forecast and the 20C run, the 

predictive skill related to persistence and to forced response can be identified.  

   The most common way to evaluate decadal predictive skill is through comparison with 

uninitialized simulations. Another alternative approach that attempts to assess the skill of the 

remaining variability after removing the forced component from the hindcasts and 

observations has also been explored (van Oldenborgh et al., 2012). However, this strategy has 
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difficulty in the identification of the forced component and hence much uncertainty is usually 

introduced. The uninitialized 20C experiment can be used to estimate climate change due to 

boundary conditions (Pohlmann et al., 2009). To explore the relative skill of different 

hindcasts, we start the analysis from the spatial distribution of root mean square error skill 

(RMSS) between two differently initialized hindcasts against the externally-forced, 

uninitialized hindcast (20C). The RMSS shown in Fig 3.1.3 is based on the root mean square 

error (RMSE) between each hindcast and HadISST as the observation. With the benchmark 

skill of the 20C as comparison, identifying the regions and duration with predictability due to 

initialization is possible.  

 

Fig 3.1.3 Spatial distribution of RMSS for hindcast SST against the 20C at lead year 1(upper panels), 

averages over yr 2-5 (middle panels), and 6-9 (bottom panels). Left panels are CIH against 20C and 

right panels are GIH against 20C. Red areas indicate that the initialized hindcasts are more accurate 

than the 20C and blue indicates the opposite. All the hindcast SST involved is bias-corrected 

   The spatial distribution of RMSS is shown in Fig 3.1.3. Red areas indicate that the 

initialized hindcasts are more accurate than the 20C hindcast, and blue areas indicate the 

opposite. On shorter time scales, predictive skill is strongly influenced by initial conditions. 

For longer time scales, the influence from boundary conditions becomes larger. From the 

RMSS of initialized hindcasts against 20C, large areas (almost over the whole global ocean) 

with better skill are observed for CIH. For GIH, compatible red and blue areas are observed 

between 50
o
S-50

o
N, while in the Southern Ocean and the tropical Equatorial Ocean (except 

the eastern Pacific), large areas with skill are detected. Both sets of initialized hindcasts 

exhibit enhancement of SST RMSS skill at lead year 1 compared to the non-initialized 

hindcast. The most significant increase in SST RMSS develops in the tropical Pacific and the 

Southern Ocean (Fig 3.1.3). The pattern for the 4-yr means at lead years 2-5 for CIH is similar 

to the first year. Skill over the ENSO area is robust until when it comes to lead years 6-9. 
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However, the 4-yr averages of GIH show large areas of negative values over the ocean. 

Moreover, the skill over the Southern Ocean disappears. This indicates that CIH shows more 

predictability due to initialization until lead years 2-5 than 20C and, above all, CIH is superior 

to GIH. The strongest increase in RMSS is over the tropical area of Pacific and Atlantic. For 

the 4-yr average, the portion of predictability that rises from boundary conditions becomes 

larger, especially for GIH. 

 

Fig 3.1.4 Spatial distribution of SST anomaly correlation coefficient between CIH and CDA (left), 

CIH and observed SST (HadISST, middle), and CDA and persistence (right), at lead year 1 (top 

panels), averages of lead yr 2-5(middle panels) and lead yr 6-9 (bottom panels). Only the significant 

coefficients (at 95% level) are shown here. A linear trend removal is applied to all the SST involved 

before calculation of ACC. 

   We now evaluate the predictability of SST decadal prediction through the spatial 

distribution of the SST anomaly correlation coefficients (ACC). ACC of SST in Fig 3.1.4 

offers us an overview of the regions and time scales with predictability. Before calculation of 

ACC, all the data used here are linearly detrended in order to remove the influence of linear-

in-time greenhouse gas-induced global warming from the analysis. For the lead year 1, wide 

areas over almost the whole global ocean with significant prediction skill are observed from 

the distribution of ACC between CIH and CDA. Only one exception offshore near the western 

Pacific is observed, corresponding to the only reds of upper panel in the third column (ACC 

of persistence). The small errors as is indicated in red in upper panel of RMSS in Fig 3.1.3 

contribute to the high predictive skill. The highest ACC skill is found near the equator and 

middle of North Atlantic. A significant improvement over the eastern tropical Pacific is 

observed, where a lot of forecasts failed to capture the variability (e.g. Matei et al., 2012; 

Pohlmann et al., 2009; Polkova et al., 2014). Predictive skill at the first lead year is mostly 

achieved due to initialization. The consistent dynamics and compatibility of initial conditions 

(CDA) with the model used for hindcasts improve the predictive skill of SST from CIH.  

   However, as the forecast evolves, the influence from initialization decreases, the response to 

externally forced climate variation starts to influence the forecasts. Meanwhile, the forecast 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Global_warming
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“drifts” towards the model-preferred climatology that is partially different with the CDA 

climatology (mostly resulting in the absence of external forcing in deriving CDA). A 

significant decrease of skill is observed when the lead time of the forecasts increases to lead 

yr 2-5 and 6-9, especially over the North Pacific and tropical Pacific, where significant skill is 

observed at lead year 1. Nevertheless, researchers do report less prediction skill over the 

North Pacific compared with the Indian Ocean (e.g. Goddard et al., 2013; Doblas-Reyes et al., 

2013). The sensitivity to uncertainties from the initial state (Branstator et al., 2012; Branstator 

and Teng, 2012) and internal variability (Meehl et al., 2014) may cause a decrease in 

predictive skill in the Pacific. A large variety of studies show that initialization is playing a 

more significant role in predictive skill than the uninitialized simulations in the Pacific 

(Guemas et al., 2013b; Meehl and Teng, 2012, 2014). A prediction system through 

initialization shows that the model’s ability to reproduce subsurface temperature variability of 

the North Atlantic is important in improving predictive skill (Mochizuki et al., 2010; 

Chikamoto et al., 2012a). The small uncertainty in initial conditions in CIH leads to high 

predictability in the North Atlantic and eastern tropical Pacific at the first lead year, while the 

uncertainty in the variability leads to a reduction in predictive skill for longer lead times. The 

difference in the model used for deriving CDA and for hindcasts (with/without external 

forcing) in CIH possibly leads to a poor performance of the model in capturing the internally 

generated component of climate change, such as the cold bias and temperature drops observed 

for initialized hindcasts at longer lead years in Fig 3.1.2, and therefore leads to poor predictive 

skill shown for the 4-yr averages.  

 

   Some areas with predictive skill in the southern Indian Ocean and sub-polar Southern Ocean 

are still achieved at an average of lead yr 2-5 for CIH/CDA. Predictability is achieved along 

the coast of South America in the Atlantic (around 5
 o

N-16
 o

S) until lead years 2-5. Despite 

this, hardly any skill is observed in North Atlantic. An assessment of predictive skill based on 

CMIP5 muti-model ensemble mean hindcasts reveals that improved skill in the North Atlantic 

region is related to skillful predictions of the AMOC due to initialization (Doblas-Reyes et al., 

2013; Latif and Keenlyside, 2011; Srokosz et al., 2012; Matei et al., 2012c; Yeager et al., 

2012; Robson et al., 2012a,b). The connection between AMOC and surface temperature is 

possibly related with the Atlantic multidecadal oscillation (AMO; Meehl et al., 2014). By 

initializing the model with a more accurate initialization of AMOC, higher predictive skill of 

SST in the North Atlantic can be achieved. CDA from JAMSTEC is primarily directed 

towards improving the ENSO simulation and prediction. Hence the constraint is possibly 

weaker in the North Atlantic, and therefore results in less accuracy and possible different 

variability of the AMOC. Besides, the AMO (Atlantic multi-decadal oscillation) is in a low 

phase transition with a long-term trend during the hindcast period of 1980-2006. The trend 

removal applied may also lead to the low skill of SST in the North Atlantic region.  

 

   To summarize, initialization gives rise to decadal predictability of SST. The strongest 

enhancement of skill is achieved globally in the first year. The consistent dynamics and 

compatibility of initial conditions (CDA) with the model used for hindcasts all lead to a rise in 

predictability of SST from CIH. A significant improvement over the eastern tropical Pacific is 

observed. The model consistency between the one used to provide initial conditions and for 

hindcasts gives rise to predictive skill at lead year 1 in our solution, especially in the tropical 

Pacific. 
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Fig 3.1.5 Spatial distribution of the SST anomaly correlation coefficient between GIH and GECCO2 

(left), GIH and observed SST(middle), and GIH and persistence (right), at lead year 1 (top panels), 

averages of yr2-5(middle panels) and yr6-9(bottom panels). Only the significant correlation 

coefficients (at 95% level) are shown here. 

   For the GECCO2 initialized hindcasts (GIH), the patterns in terms of anomaly correlation 

skill are similar with that of CIH, but with much smaller areas with significant SST predictive 

skill. The highest predictive skill for GECCO2 initialized SST is observed in the southern 

tropical Indian Ocean, sub-polar Southern Ocean and western Pacific, pretty similar to a paper 

by Matei et al. (2012c). Compared to GIH, CIH shows better correlation with the data from 

which it was initialized (i.e. CDA). For the first year, large areas with SST predictive skill are 

shown in Fig 3.1.5 over middle and western tropical Pacific, in the Indian Ocean and in the 

Southern Ocean from GIH. Areas with skill are found in part of the Indian Ocean and around 

Indonesia for the average of lead years 2-5, and it remains also for lead years 6-9. If compared 

with GIH, a significant improvement in lead year 1 for CIH is evident over much of the ocean, 

especially for the eastern tropical Pacific. Poor predictive skill for SST at lead year 1 has also 

been observed in other studies (e.g. Matei et al., 2012c; Pohlmann et al., 2009) from GECCO 

initialized hindcasts, mainly due to a less accurate initialization that results from the GECCO 

configuration. As is found in Section 3.1.1, global SST from GIH is warm-biased at lead year 

1 (upmost of right panels in Fig 3.1.2). Regional decomposition of SST (Fig 3.1.6) shows that 

GECCO2 (red dashed lines) is warmer than CDA (red solid lines) in the tropical Pacific (top 

panel of Fig 3.1.6), where CIH shows a higher predictive skill than GIH at lead year 1. Such 

differences between initial conditions are less in the extra-tropical and sub-polar regions 

(bottom panel of Fig 3.1.6). For GIH, the CFES is initialized with oceanic estimations from 

interpolated GECCO2. Since GECCO2 has a different topography and dynamic from the 

model, by initializing the model with a different ocean mode from GECCO2, there will be 

adjustment through volume transport somewhere in the tropical Pacific (e.g. near Indonesia) 

at the beginning of the prediction. Such changes in velocity may lead to anomalously warm 

SST over the tropical Pacific, as shown in Fig 3.1.6. The relative warmer SST due to 

initialization then possibly leads to the relatively low skill of SST prediction in GIH.  
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Fig 3.1.6 Time series of annual mean SST at the first lead year averaged over 20oS-20oN (upper) and 

60oS-20oS & 20oN-60oN (bottom) in observations (blue, HadISST data set),  hindcasts (solid black: 

CIH; dashed black: GIH), CDA (solid red) and GECCO2 (dashed red). 

   For the 4-yr average, SST predictive skill is also found over part of the Indian Ocean and 

the western tropical Pacific. Both GIH and CIH fail to capture the variation of SST over the 

North Atlantic, either interannunal or long-term variability. However, other studies indicate 

robust skill over the North Atlantic (NA), for forecasts initialized with GECCO Synthesis 

through different modeling systems, (e.g. Matei et al., 2012b; Polkova et al., 2014). Other 

studies also find predictive skill of NA SST (e.g. Pohlmann et al., 2009; Keenlyside et al., 

2008; Matei et al., 2012c; Doblas-Reyes et al., 2013; Yang et al., 2013; Ho et al., 2012; Ham 

et al., 2014; Hazeleger et al., 2013a). In fact, Pohlmann et al. (2009) point out that SST 

predictive skill at decadal time scales is mainly due to the low North Atlantic SST in the early 

1970s. As is indicated above, the evaluation period in our solution is restricted within 27-

years period (i.e. 1980-2006), due to the available CDA synthesis, which is only half size of 

the 50-years period that is commonly used by previous studies. To investigate to what extent 

the reduced predictive skill in the North Atlantic in our solution may result from relatively 

short hindcast runs, predictive skill of CIH/GIH will be assessed against previous results later. 

   In the North Atlantic, SST is reported to be influenced little by radiative forcing at least in 

the first few years of decadal predictions (Branstator and Teng, 2010). Other studies (e.g. 

Enfield et al., 2001; Sutton and Hodson, 2005; Knight et al., 2006) indicate that, by the end of 

the twentieth century, externally forced components and internally generated variability have 

equal impact on North Atlantic SST, although contradictory results of a dominant impact 

from external forcing are found by a different methodology (Ting et al., 2009). Improved 

predictive skill of initialized forecasts over the tropical North Atlantic was found to be largely 

due to external forcing (e.g. Dunstone et al., 2013; Vecchi et al., 2013). Actually, a number of 

models suggest that anthropogenic aerosols may have a prominent influence on North 

Atlantic predictability in recent decades (Booth et al., 2012; Dunstone et al., 2013; Villarini 

and Vecchi, 2013), and the role of previous volcanic eruptions is also non-negligible (Otterå 
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et al., 2010). But the combination of skill from internally generated variability and externally 

forced response is usually region dependent (Meehl et al., 2014). Further analysis on the 

spatial distribution of GECCO2 initialized SST without trend removal indicates significant 

prediction skill (Fig 3.1.7) over the North Atlantic on decadal scale, and the skill is still 

significant until lead years 6-9. Compared with the relatively low predictive skill achieved for 

non-detrended SST from the initialized hindcasts, the trend gives rise to the predictability of 

SST over North Atlantic in GIH.  

 

Fig 3.1.7 Spatial distribution of the non-detrended SST anomaly correlation coefficient between CIH 

and CDA (left), GIH and GECCO2 (right) separately, at lead year 1 (top panels), averages of yr 2-

5(middle panels) and yr 6-9 (bottom panels). Only the significant coefficients (at 95% level) are 

shown here. Compared with corresponding spatial distribution of detrended SST ACC of left panels in 

Fig 3.1.4 and Fig 3.1.5, non-detrended SST from both CIH and GIH shows significant skill in decadal 

prediction over larger areas. The most significant improvement in predictive skill is found for GIH 

over the North Atlantic, western Pacific and the Indian Ocean. 

   On the other hand, some studies based on multi-model initialized forecasts expect that skill 

in NA SST prediction is related with predictability of AMOC due to initialization (e.g. 

Swingedouw et al., 2012). Cross correlation of the NA SST and maximum Atlantic MOC 

indicates that the AMOC predictability leads NA SST predictability by several years (e.g. 

Pohlmann et al., 2009). This lag is also supported by previous study of Latif et al. (2004). The 

poor predictive skill of the 4-yr average for the presented hindcasts could possibly be related 
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to poor predictive skill of AMOC in CIH/GIH through oceanic heat transport. To explore this, 

we focus further exploration on the AMOC predictability in the two sets of hindcasts.  

   Over the Indian Ocean and western tropical Pacific, significant predictive skill is also 

observed up to lead years 6-9 for GIH. In state-of-the-art decadal climate predictions, the 

regions with highest SST predictive skill are agreed by researchers in the Indian Ocean, which 

is possibly more due to externally forced trends but less due to internal climate variability (Ho 

et al., 2013; Guémas et al. 2013a), which is consistent with the larger areas with skill in the 

Indian Ocean for the non-detrended SST for the 4-yr averages of lead years 2-5 and 6-9, 

especially for GIH.   

 

3.2 Evaluation of predictive skill through AMOC 

3.2.1 Atlantic Meridional Overturning Circulation  
   

As a part of the large-scale ocean circulation driven by wind and global density gradients 

resulting from surface heat and freshwater fluxes, the meridional overturning circulation 

(MOC) plays an important role for the ocean in carrying a substantial part of the heat 

transport towards the polar region, which has a significant impact on the Earth’s radiation 

budget (e.g. Rahmstorf, 2003). The variability of Atlantic meridional overturning circulation 

(AMOC) is an important factor of the climate variability in the Atlantic Ocean and over 

northwest Europe on decadal timescales (Hurrell et al., 2006). Its variability provides 

potential prediction skill on interannual to decadal time scales (Collins et al., 2006). To date, 

no agreement has been reached in the AMOC evolution. Modelling results by Gregory et al. 

(2006) indicate that increased external forcing lead to decreased AMOC. However, due to the 

relatively short observation record, this discovery could not be evaluated, and the study of 

model response to historical forcing by Menary et al. (2013) reported a weakening downward 

trend of AMOC, or even strengthened AMOC, with a more realistic estimation of 

anthropogenic aerosols forcing. Lately, several studies showed prospect for AMOC prediction 

on decadal time scale from initialized hindcast experiments (e.g. Collins et al., 2006; Msadek 

et al., 2010). Pohlman et al. (2009) observed improved forecast skill of climate predictions up 

to decadal time scales for North Atlantic SST and AMOC through initialization from the 

GECCO synthesis, and predictability up to 6 years due to initialization was found in the later 

study of Pohlmann et al. (2012). The study by Matei et al. (2012a, b) reported multiyear 

AMOC predictability through initialization, and highlighted the importance of observed 

atmospheric state as a successful strategy for initialization in a skillful climate prediction. 

Polkova et al. (2014) explored the impacts of different initialization approaches on the 

evolution of AMOC, and found that the full state initialization provides higher predictive skill 

for AMOC than the anomaly initialization. So far, nobody has studied how the self-consistent 

initial conditions impact the AMOC evolution and predictability. To explore this, the AMOC 

that is initialized with self-consistent (CIH) and non-self-consistent (GIH) initial conditions 

are analyzed. Due to the lack of AMOC observations (e.g. Cunningham et al., 2007; Kanzow 

et al., 2007), the predictive skill of AMOC will be evaluated with respect of AMOC from 

CDA/GECCO2 separately. The AMOC predictability will also be verified in order to find out 

the underlying reason of poor NA SST predictive skill.  

http://en.wikipedia.org/wiki/Ocean_current
http://en.wikipedia.org/wiki/Density_gradient
http://en.wikipedia.org/wiki/Flux
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   The AMOC is defined by integrating the velocity zonally in the Atlantic Basin, with the 

meridional mass transport streamfunction depending on latitude and depth defined as 

𝜓(𝑦, 𝑧) = ∫ ∫ 𝑣(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑧
𝑤𝑒𝑠𝑡

𝑒𝑎𝑠𝑡

𝑧

−𝐻

 

   where 𝑣 is the monthly/annual mean meridional velocity,𝑣 = 𝑣(𝑥, 𝑦, 𝑧, 𝑡), and 𝐻 represents 

the depth along the zonal section. 

 

3.2.2 Assessment of Atlantic MOC predictability  

As indicated above, both sets of the initialized hindcasts in this paper fail to capture the long-

term variability of SST anomalies over the North Atlantic. The predictability of the NA SST 

is model-dependent (Kim et al., 2012; Ham et al., 2014), and as is found by many studies, 

SST is more predictable in the subpolar gyre of NA than in other areas (e.g. García-Serrano et 

al., 2012; Terray, 2012; Yang et al., 2013). Nevertheless, the key role of AMOC in driving 

SST of the North Atlantic through heat transport is widely accepted (e.g. Latif et al., 2006; 

Marshall et al., 2001; Msadek et al., 2013; Pholmann et al., 2004; Srokosz et al., 2012). A 

potential of predictability up to decadal time scales resides in the variability of AMOC (e.g. 

Collins et al., 2006; Keenlyside et al., 2008; Kröger et al., 2012; Msadek et al., 2010). 

Predictability of AMOC is model-dependent and it varies with initial model states to some 

extent (IPCC AR5, 2013). An accurate initialization of AMOC is highly likely to improve 

predictive skill achieved in NA SST predictions (e.g. Latif and Keenlyside, 2011; Srokosz et 

al., 2012). The influence of a significant and realistic AMOC “oscillatory” variability 

translates into longer predictability (Meehl et al., 2014). Considering the different initial 

conditions used for the two sets of hindcasts, different variability and accuracy of AMOC 

from CDA/GECCO2 could possibly contribute to the skill patterns for NA SST prediction of 

CIH (Fig 3.1.4) and GIH (Fig 3.1.5) through initialization. To evaluate the AMOC 

predictability in CIH and GIH, the anomaly correlation coefficient of AMOC will be 

illustrated between hindcasts and the synthesis used as initial conditions (i.e. CDA and 

GECCO2 respectively), due to the lack of observational AMOC (Cunningham et al., 2007). 

Impact of consistent or non-consistent initial conditions to AMOC predictive skill will be 

provided. The AMOC predictive skill of initialized hindcasts will also be assessed against that 

of the uninitialized forecast.  
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Fig 3.2.1 Time series of annual mean AMOC (Sv) anomaly (at 1000m) at 26.5oN from hindcast 

experiments (black), CDA (red in left panels ) and GECCO2 (red in right panels), and persistence 

(green). The left panels are CIH and CDA used for initialization, while the right panels are GIH and 

GECCO2 used for initialization respectively. The top panels are AMOC at lead year 1. The 4-yr mean 

of lead years 2-5 is plotted with the time series plotted centered in year 3(middle). Averages over lead 

years 6-9 are shown in the bottom panels, with time series plotted centered in year 7. 

   As is mentioned above, AMOC from GECCO2/CDA will be used to evaluate the AMOC 

predictability of GIH/CIH. The AMOC anomalies of the upper 1000m at 26.5
o
N from 

initialized hindcasts CIH and GIH reproduce its variability in the lead year 1 (upmost panels 

of Fig 3.2.1), despite the different AMOC evolutions in CDA and GECCO2, from which the 

model is initialized. However, for the average over lead years 2-5, an abrupt negative anomaly 

is observed around 1992, followed by a positive phase afterward for CIH, whereas there are 

two abrupt negative anomalies in the early 1990’s at the first lead year. In GIH, AMOC of 

lead years 2-5 resembles that of GECCO2 quite well. As is revealed by studies of Ishii and 

Kimoto (2009) and Levitus et al. (2009), a large abrupt warming of the high-latitude upper 

ocean in the North Atlantic happened in the mid-1990s, preceded by anomalously cool 

conditions in the subpolar gyre region of 50
o
-10

o
W, 50

o
-60

o
N and warm condition in 70

o
-

30
o
W, 32

o
-42

o
N about three pentads before (Yeager et al, 2012). The AMOC fluctuation is 

highly related with the subpolar gyre (Eden and Willebrand, 2001; Pohlmann et al., 2009). 

The abrupt shifts in the North Atlantic circulation observed in Fig 3.2.1 lead to lagged 

changes in the heat content of the mid-1990s. For lead years 6-9, AMOC in CIH captures the 

increasing trend before the mid-1990s and decreasing trend afterwards of that in CDA, despite 

the poor simulation of low-frequency variability. Overall, AMOC evolution in CDA is quite 

different from that in GECCO2, which can lead to incompatibility of the initial conditions to 

the model in GIH. A striking difference between time series of AMOC is that GECCO2 

contains more multi-year variability than CDA, as is shown in the right panels of 4-yr average 

of Fig 3.1.7. Köhl and Stammer (2008) explored the sources of the decadal and long-term 

AMOC variability from GECCO, and showed that the intensifying AMOC is related to 

different dynamical processes. The more “oscillatory” AMOC variability from GECCO2 
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gives rise to predictability on decadal prediction of AMOC in GIH through persistence. 

Acting together with the external forcing embedded within the model, hindcasts initialized 

with GECCO2 reproduce the long-term variability of AMOC well. Therefore higher AMOC 

predictability from GIH is expected at lead yr2-5 than that of CIH. 

 

Fig 3.2.2 Anomaly correlation coefficient of the non-detrended Atlantic MOC (Sv, 𝑆𝑣 = 106𝑚3𝑠−1) 

at 1000m depth between CIH and CDA (black), CDA and persistence (red), CIH and 20C (yellow), 

GIH and CECCO2 (cyan), GECCO2 and persistence (blue) and GECCO2 and 20C (green) along 

different latitudes of 30oS-60oN. ACCs are calculated for the first lead year (upper panel), 4-yr average 

of lead years 2-5 (middle) and lead years 6-9 (bottom panel) respectively. The dashed lines denote the 

hindcasts that don’t obtain significant skill at  95% significant level. All the AMOC data in this figure 

are not detrended.  

   We evaluate both the “total” predictive skill (before detrending, Fig 3.2.2) and the “residual” 

skill (with the long-term linear trend removed, Fig 3.2.3) (van Oldenborgh et al., 2012) of the 

AMOC along different latitudes at different lead years through ACC skill. The degrees of 

freedom (dof) of AMOC is latitude-dependent and therefore are calculated through 

application of the effective sample size factor along different latitudes. The correlations that 

are below the 95% threshold of statistical significance (t-test) are shown as dashed lines.  

   Before removing the linear trends, anomaly correlation coefficients of AMOC along 

latitudes (Fig 3.2.2) reveal better AMOC predictive skill for both initialized hindcast and 

persistence at the first lead year, despite the possible incompatibility of AMOC through 

initialization in GIH. On the contrary, the externally-forced uninitialized simulation hardly 

shows any skill in AMOC predictability, which also holds for the detrended AMOC. 

Therefore, external forcing provides almost no skill in AMOC predictability in our expriments, 

as in other studies (e.g. Pohlmann et al., 2013). For the non-detrended AMOC at lead year 1, 

initialized hindcasts outperform the persistence forecast over the tropical South Atlantic for 

both CIH and GIH, as well as for a large area between 28
o
N-60

o
N for CIH. However, 

predictability at this time scale is related to persistence, indicated by the significant 



44 

 

correlations of persistence. For lead years 2-5, the patterns are different: GIH outperforms 

CIH over the southern hemisphere and partially in the extra tropical NA of 17
o
-26

o
N. 

Initialized hindcasts still show larger regions with high correlation than persistence forecast 

for GIH, with the regions pretty much similar as the first lead year. However, an evident 

decrease of initialized hindcasts for CIH is observed, while persistence forecast has significant 

predictive skill in the tropical North Atlantic. The time series of AMOC at 26.5
o
N shows that 

CIH resembles the AMOC variability only at lead year 1, while GIH captures the AMOC 

variability of lead years 2-5 (Fig 3.2.1). Hence, GIH shows significant skill in AMOC 

predictability of lead years 2-5. The high skill for persistence and more multi-decadal AMOC 

variability shown in GECCO2 indicate that the variability of AMOC is important for AMOC 

predictability, through the initialization procedure, despite the possible incompatibility for the 

model introduced through initial conditions. 

 

Fig 3.2.3 Anomaly correlation coefficient of the detrended Atlantic MOC(Sv, 𝑆𝑣 = 106𝑚3𝑠−1) at 

upper 1000m between CIH and CDA (black), CDA and persistence (red), CIH and 20C (yellow), GIH 

and CECCO2 (cyan), GECCO2 and persistence (blue) and GECCO2 and 20C (green) along different 

latitudes of 30oS-60oN. ACCs are calculated for the first lead year (upper panel), 4-yr average of lead 

years 2-5 (middle) and lead years 6-9 (bottom panel) respectively. The dashed lines denotes the 

hindcasts fail to obtain significant skill at  95% significant level.      

   When the long-term trend is removed from AMOC, different patterns of skill are revealed. 

A reduction of predictive skill is detected for CIH, while a much more significant decrease is 

found for the persistence at lead years 2-5. The reduction of predictive skill is also observed 

for GIH, and the most pronounced decrease of skill in GIH is at lead years 2-5, as well as the 

persistence forecast at lead year 1 (only a small area between 20
o
N and 26

o
N with prediction 

skill), when the long-term trend is removed. Overall, the most significant AMOC predictive 

skill observed is between CIH and CDA at the first lead year, e.g. 30
o
-0

o
S, 25

o
N-60

o
N and 

around 10
o
N, with correlations up to 0.5 for detrended AMOC (upper panel of Fig 3.2.3). The 

persistence also shows significant although relatively small correlations compared with 

initialized hindcasts at the first lead year. The 4-yr average of lead years 2-5 shows similar 
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pattern as lead year 1 but with smaller correlations. Consistent with previous results 

(Pohlmann et al., 2009), significant AMOC predictive skill is gained in CIH at high latitudes 

until lead yr 2-5. The most evident decrease is observed for GIH when the data is detrended. 

This indicates that the trend in GECCO2 AMOC (Fig 3.2.1) has a strong influence on the 

climate prediction of North Atlantic, while that in CDA is probably small and has a lower 

impact on AMOC predictability. The trend of the AMOC imposed in the hindcasts is crucial 

to increase the predictive skill, which is most likely associated with the initialization 

precudure. However, due to the lack of observations for AMOC, it’s difficult to evaluate 

whether the trend of AMOC is true. For the average of lead years 6-9, no predictive skill of 

AMOC is achieved. The low skill of the 20C forecast indicates that the contribution to 

predictive skill from the forced response is low.   

   Illustration of the time series of AMOC indicates more significant correlations of AMOC 

between GIH/GECCO2 than CIH/CDA at least near 26.5
o
N, since more oscillatory decadal 

variations observed in GECCO2 possibly lead to predictability even in persistence forecasts. 

Consistent with that, significant predictive skill is observed at 26.5
o
N until lead years 2-5, for 

both the non-detrended and detrended GIH. However, the ACC of detrended AMOC between 

GIH and GECCO2 reveals much smaller area with significant correlations until lead years 2-5 

than before the removal of the linear long-term trend. High prediction skill between GIH and 

GECCO2 is shown only along the latitudes of 20
o
-27.5

o
N, when the trend is removed. 

Moreover, the persistence forecast (blue lines) shows significant predictability of AMOC only 

over part of the North Atlantic (around 15
o
-27

o
N) at the first lead year, while the non-

detrended persistence shows larger area with skill in the South Atlantic (30
o
N-0

o
). The 

initialization of GIH does improve predictive skill of AMOC, compared to low predictive 

skill of 20C, as is proved by other researchers (e.g. Doblas-Reyes et al., 2013). But the long-

term trend of AMOC from GECCO2 has stronger influence on decadal predictability, while 

the influence of AMOC trend from CDA is negligible. 

   Analysis on the previous version GECCO indicates that the strengthening trend of AMOC is 

likely related to the North Atlantic Oscillation (NAO; Köhl and Stammer, 2008). The 

mechanism has also been explored by Eden and Willebrand (2001), and they pointed out that 

an increased AMOC was largely due to the lagged response (about 2-3 years) to enhanced 

atmospheric activity associated with high NAO. A similar conclusion by Gastineau and 

Frankignoul (2012) reported an increase of AMOC to be followed by the negative phase of 

NAO. Hence, the trend of AMOC as a lagging response of NAO leads to predictability of NA 

climate change, possibly by inducing basinwide SST anomalies (Branstator and Teng, 2014). 

The strong trend of AMOC in GECCO2 imprints on GIH through initializing the model and 

leads to high predictive skill as is shown in Fig 3.2.2. In addtion, more multi-year variability 

residing in GECCO2 AMOC leads to AMOC predictability of GIH through persistence. 

Therefore, high predictability of non-detrended AMOC in GIH is still observed in the average 

of lead years 2-5. While for CIH, the consistent initial conditions lead to the high predictive 

skill at the first year for both the detrended and non-detrended AMOC. The relative small 

trend of AMOC in CDA and less multi-year variability result in poor predictive skill at longer 

lead times. Considering the high predictive skill in GIH of non-detrended AMOC and non-

detrended NA SST, the trend contributes to North Atlantic climate predictability. Further 

study about impact of different periods on decadal climate predictions reveals that the trend 

has a strong influence to North Atlantic predictive skill in a short period (1960 to present), 

which is actually multi-decadal variability if longer period is considered (Müller et al., 2014). 
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   Previous studies indicate a connection between maximum MOC and NA SST predictability 

through heat transport, as the former leads the latter several years, in initialized hindcasts (e.g. 

Pohlmann et al., 2009) and simulations forced with constant external forcing (e.g. Latif et al., 

2004). The variability of AMOC, if the variability is more oscillatory and realistic, may 

translate into predictability of NA SST through its impact on the overlying atmosphere (e.g. 

Gastineau et al., 2012). The structure of Atlantic MOC in CDA, GECCO2, and the 

initialized/uninitialized hindcasts are different. The maximum MOC is located at 35.5
o
N in 

GECCO2 Synthesis and CDA, whereas it occurs in the South Atlantic in the uninitialized 

hindcast (22.5
o
S, not shown). For the initialized hindcasts, the maximum MOC is located at 

37
o
N/28

o
N for GIH/CIH. As is revealed by the spatial distribution of SST predictive skill, 

significant predictive skill for NA SST is only observed in CIH at the first lead year. For 

AMOC predictability, significant predictive skill at 35.5
o
N is observed only at the first lead 

year in CIH, while no significant skill is observed for AMOC at 35.5
o
N in GIH. Over longer 

lead periods of yr 2-5, large correlation coefficient is gained for CIH there, but not statistically 

significant. The reduction of AMOC predictive skill in the subtropical NA over longer lead 

periods is possibly due to the dominating role of Rossby waves which are not predictable 

(Köhl, 2005; Hirschi et al., 2007; Köhl and Stammer, 2008). The poor predictive skill of SST 

in the North Atlantic is consistent with low AMOC predictability in our solutions. There is no 

evident lagged response of AMOC predictability with NA SST predictive skill as is found in 

some other studies (e.g. Latif et al., 2004; Pohlmann et al., 2009), suggesting again that the 

relation between NA SST and AMOC predictability is model-dependent (e.g. Pohlmann et al., 

2009). Studies (e.g. Branstator and Teng, 2014; Tiedje et al., 2012, 2014) on predictability 

between AMOC and meridional heat transport indicate that meridional heat transport is less 

predictable than AMOC, despite their close relationship. The poor NA SST predictive skill is 

possibly due to low performance of the system in capturing the variability of meridional heat 

transport. 

   To summarize, significant predictive skill of AMOC is gained at the first lead year for both 

CIH and GIH, with the former outperforming the latter, indicating again that initializing a 

model with self-consistent initial conditions can improve predictive skill, although that is 

restricted to the first lead year. At longer lead times, GIH lose AMOC predictive skill in the 

subpolar NA, where higher predictability is assumed. Different from that, significant AMOC 

predictive skill is obtained in the subpolar area of North Atlantic until lead yr 2-5 in CIH. 

Atlantic MOC structure is different in CDA and GECCO2. High predictive skill for basinwide 

maximum AMOC is only obtained in CIH until lead year 2-5 (significant skill at the first lead 

year, while lead yr 2-5 not significant). Therefore, no evident relation is denoted between NA 

SST and AMOC predictive skill. The low performance of  the system in capturing AMOC 

multi-year variability is consistent with low predictive skill of NA SST. AMOC in GECCO2 

has a strong increasing trend and constains more multiyear variability, which is possibly a 

lagged response to the negative NAO phase (Köhl and Stammer, 2008). Multi-year variability 

of AMOC in GECCO2 gives rise to predictability of GIH though persistence, as is observed 

for detrended MOC at 26.5
o
N in Fig 3.2.3 at lead years 2-5. The strong increasing trend for 

the AMOC in GECCO2 improves predicitve skill of GIH through initialization, and the 

influence remains significant until lead years 2-5. However, due to the lack of observation for 

MOC, the trend in GECCO2 is difficult to prove to be true. On the other hand, the trend 

impacts AMOC predictive skill less in CIH than in GIH, possibly due to a relative small trend 

from CDA. External forcing does not contribute to AMOC predictability in either CIH or GIH.  
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3.3 Assessment on the influence of verification period and 

ensemble members 

So far we have investigated the influence of different initial conditions on SST/AMOC 

predictive skill. It’s also a necessary requirement to evaluate the skill of the system against 

previous results. Given the CDA Synthesis is available only for the period 1980-2006, the 

evaluation of skill is restricted to only half the size of the 50-yr period that typically has been 

used in previous studies for evaluating the skill of hindcasts. To compare with previous skill, 

we investigate the impact of the time period of the model runs that provide initial conditions, 

and that can be used for evaluation of the hindcasts on decadal prediction (i.e. verification 

period). Besides, there is only one ensemble numbers for hindcasts at each initialized dates 

instead of 3 (e.g. Keenlyside et al., 2008; Pohlmann et al., 2009; Müller et al., 2014) or more 

as is used in previous results (e.g. Smith et al., 2008). Generation of ensemble forecasts is also 

required in decadal prediction, which samples the spread due to uncertainty (Meehl et al., 

2009). To explore this, full-state initialized hindcasts dffGcE performed as part of the 

Mittelfristige Klimaprognosen (MiKlip hereafter) project based on the Max-Planck-Institute 

Earth System Model (MPI-ESM) and initialized from the GECCO2 Synthesis are compared 

to the hindcasts presented here. In addition, during the period 1975-2006, AMO, which is 

associated with the connection between the AMOC and surface temperature, is mainly in a 

negative phase with a slowly increasing trend. The hindcast period of 1980-2006 in CIH/GIH 

may lose some internal variability in the North Atlantic, due to the trend removal.  

   In decadal climate predictions, larger numbers of initial dates and a larger number of 

realizations in an ensemble are important in improving decadal prediction (Meehl et al., 2014): 

the former helps detect predictability due to lower significance levels, and the latter increases 

predictability by using ensemble means instead of individual realization. MiKlip hindcasts 

dffGcE cover the period 1961 to 2009, with 3 realizations at each start date. Hence, a 

comparison over the same period as CIH/GIH and the investigation of the influence of the 

number of initialization dates are feasible. Better predictable skill is expected for dffGcE. 

Comparison between performances of ensemble means of dffGcE over 1980-2006 with that 

of individual ensemble member offers us insights on how ensemble members impact 

predictability. An extra comparison between performances of dffGcE of 1961-2009 and that 

of 1980-2006 will be carried out to provide information on the sensitivity of predictive skill to 

verification periods.   
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Fig 3.3.1 Time series of annual mean global SST (averaged over 60
o
S-60

o
N) from GECCO2 (red), 

assimilated GECCO2 (balck) that is used as initial conditions for dffGcE, and ensemble mean of 

hindcast dffGcE at the first lead year (blue). The trends are denoted in dashed lines of left panels. The 

lines in the right panels denote the time series after the long-term linear trend removed. As is indicated 

by the black lines, the warm biased GECCO2 is assimilated towards the observations (HadISST, not 

shown).   

   As is illustrated in Fig 3.3.1, after nugding the model MPI-ESM towards GECCO2, the 

initial conditions are less warmer than GECCO2 and much closer to observations (not shown). 

Initialized from the close-to-observation oceanic state, the ensemble mean of dffGcE (blue in 

Fig 3.3.1) at lead year 1 resembles the assimilated GECCO2 (black in Fig 3.3.1) quite well 

overall. A much warmer phase during 1980-1985 is observed for dffGcE. Hence, a less 

stronger trend is derived in dffGcE of 1980-2006 compared with that of GECCO2. When the 

trend removal is applied in the skill of correlation coefficient between dffGcE and hindcasts, 

large values are derived for dffGcE of the shorter period (0.774) and of the longer period 

(0.736). Therefore, high predictive skill is expected at the first lead year for dffGcE.    

   We start the analysis from the impact of verification period to predictive skill in terms of 

SST. As is indicated by comparison between the left and right panels in Fig 3.3.2, spatial 

distributions of ACC for SST in the dffGcE hindcasts with longer verification period (1961-

2009) show similar patterns with that of the shorter verification period at lead year 1 and 6-9. 

Large areas of skill are observed all over the ocean at lead year 1, and larger areas of 

significant skill overall are shown for the period 1961-2009 despite the relatively smaller 

value of the correlation coefficients at some regions compared with that of the period 1980-

2006. More initial dates lead to lower thresholds for the statistical significance of skill due to 

more samples. Therefore, despite the smilar pattern of SST predictive skill in dffGcE of 1961-

2009/1980-2006, the relative small coefficients in some areas observed for the former (left 

panels of Fig 3.3.2) are still significant. For longer lead time, larger areas with predictive skill 

for SST in dffGcE of 1961-2009 are achieved than that of 1980-2006, and the significant skill 

remains until lead years 6-9 in the North Atlantic. But in the other regions, smaller 
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coefficients are revealed for SST from dffGcE of 1961-2008, compared with that of shorter 

period (1980-2006). This indicates that a larger number of initialization dates in decadal 

climate prediction help to reduce the threshold of significance. Hence, larger areas with skill 

are achieved until lead years 6-9, but with low correlation coefficients. The predictive skill 

with smaller coefficients in terms of SST from dffGcE of 1961-2009 against GECCO2 is 

possibly due to the application of trend removal, given that the trend after the mid 1970s is 

much stronger than before.  

 

Fig 3.3.2 Spatial distribution of the hindcasted SST anomaly correlation coefficients between dffGcE 

(MiKlip hindcasts) and assimilated GECCO2 at lead year 1 (top panels), averages of lead years 2-5 

(middle panels) and 6-9 (bottom panels).  The right column corresponds to the period in our hindcasts 

from 1980 to 2006, and the left column is from 1961-2009. All the SST used is detrended. Only the 

significant coefficients (at 95% level) are shown here.     

    For NA SST, a larger number of initial dates doesn’t only improve credibility of predictive 

skill, but also gives rise in prediction skill. In the North Atlantic, which is identified as a key 

region for decadal climate predictions by previous results (e.g. van Oldenborgh et al., 2012; 

Matai et al., 2012), SST predictive skill is found to be high with verification period of 1960 to 

present day (e.g. Doblas-Reyes et al., 2013). Consistent with that, robust skill over the North 

Atlantic is also found at lead year 1 and the skill remains until the 4-yr average in the subpolar 

area of North Atlantic. Maps of ACC for SST predictive skill at lead years 2-5 reveal 

significant, large correlation coefficients for dffGcE of 1961-2009, whereas predictive skill is 

lost over the middle of North Atlantic for dffGcE of 1980-2006. This is possibly due to more 
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intrinsic multi-year variability of the North Atlantic SST in dffGcE of 1961-2009 than that of 

1980-2006 (not shown), which leads to predictive skill through persistence. A study by Müller 

et al. (2014) shows improvement of NA SST predictive skill while extending the verification 

period from 1901 to 2010. Therefore, for the North Atlantic predictability, longer verification 

period is necessary.  

 

 

Fig 3.3.3 Spatial distribution of the hindcasted SST anomaly correlation coefficients between dffGcE 

(MiKlip hindcasts) and assimilated GECCO2 at lead year 1 (top panels), averages of lead years 2-5 

(middle panels) and 6-9 (bottom panels).  The left column is from ensemble mean of dffGcE, and the 

middle and right columns are from ensemble member 1 and 3 of dffGcE respectively, all with the 

same verification period of 1980-2006. All the SST used is detrended. Only the significant coefficients 

(at 95% level) are shown here.     

   For evaluation of SST predictive skill, more realizations at each initial date (i.e. more 

ensemble members) give rise to preditive skill, due to usage of ensemble means instead of 

individual realizations. As is displayed in Fig 3.3.3, higher predictive skill is obtained in 

ensemble means of dffGcE (left columns) at all time scales than that of individual ensemble 

member (middle and right columns). At the first lead year, high predictive skill is gained over 

vast areas of the ocean in ensemble mean of dffGcE. Over longer lead periods, significant 

predictive skill is gained in the Indian Ocean by using emsemble means of hindcasts. 

Therefore, given the impact from verification period and ensemble members, it’s necessary to 

make sure that the hindcasts are with the same verification period and same ensemble size 

while comparing the performance between different hindcasts.  

   Further information on how the consistent initial conditions impact the decadal predictive 

skill can be derived by comparing the middle or right columns in Fig 3.3.3 with those in Fig 

3.1.4/Fig 3.1.5. The ACC maps for hindcast SST from dffGcE for the same period (i.e. 1980-

2006) as CIH/GIH reveal compatible spatial distribution of significant correlations with that 

of CIH/CDA, but larger correlations than that of GIH/GECCO2, at lead year 1. An 

improvement in SST predictive skill over the eastern part of tropical Pacific as is observed in 

CIH is obvious for dffGcE. Considering that only GIH shows low performance in the eastern 

         Ensemble mean                  ensemble member 1               ensemble member 3 

ACC of SST: dffGcE(MiKlip)/assimilation 
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Pacific, further analysis is needed to evalute decadal predictability of regional SST in the 

Atlantic and the tropical Pacific.  

   For the 4-yr averages up to lead year 9, a similar significant drop in predictive skill is found 

for the three hindcasts, of which dffGcE is comparable to GIH. Hence, given the same 

verifiaction period and same ensemble numbers of hindcasts, the performance of our system 

is as good as that of dffGcE through MPI-ESM system. The reduced predictive skill in SST 

over longer lead periods is related to small ensemble memebers and short verification period. 

In the North Atlantic, SST predictive skill is strongly influenced by verification period. 

Former study (Bjerknes, 1964) also indicates that the long-term changes of NA SST may be 

forced by variations in ocean dynamics. AMOC predictability may lead to an improvement of 

NA SST predictability through heat transport (e.g. Pohlmann et al., 2009), with a lag of 

several years. To explore this, a regional assessment on decadal predictability of the Atlantic 

MOC is needed. Time series of AMOC evaluation will be illustrated. The performance of 

hindcast AMOC will be evaluated through anomaly correlation coefficients against GECCO2, 

as is the case for GIH. 

   The time series of annual mean AMOC at 1000m depth at 45
o
N is shown in Fig 3.3.4. There 

is a drop up to 6 Sv after nudging MPI-ESM-LR towards GECCO2 for the AMOC (not 

shown), although the assimilation run reproduces the decadal variations well (Fig 3.3.4). A 

slow positive trend is observed, with higher values after around 1987. However, recent multi-

model retrospective predictions by Pohlmann et al. (2013) revealed that there was an 

intensifying trend of AMOC strength at 45
o
N from the 1960s to mid-1990s, and a decreasing 

trend afterwards. The regime shift of AMOC observed for dffGcE and GECCO2 is around 

1987 as is shown in Fig 3.3.4. The AMOC strength starts to decrease around 2000, with a lag 

of around 5 years compared with the multi-model ocean synthesis results. For GECCO2, there 

is another AMOC strength decrease in 1993 or so, while by nudging the MPI-ESM towards 

GECCO2, the decrease of AMOC strength in 1992 becomes smaller and is followed by a 

larger decrease after the mid-1990s.  
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Fig 3.3.4 Time series of annual mean NA MOC (Sv) anomaly of upper 1000m at 45oN from dffGcE 

hindcast (black), the assimilation run used for initialization (red, i.e. after nudging the MPI-ESM to 

GECCO2), and GECCO2 Synthesis (blue) at different lead years. The top panel is AMOC at lead year 

1. The 4-yr mean of lead year 2-5 is plotted with the time series centered in year 3 (middle). Averages 

over lead year 6-9 are shown in the bottom panel, with time series plotted centered in year 7. 

   Both GECCO2 and assGec (data derived by nudging MPI-ESM-LR towards GECCO2 and 

used for initialization of dffGcE) show substantial multi-year variability for the 4-yr averages, 

which may lead to the possibility of decadal prediction skill of the AMOC through persistence. 

The initialized dffGcE shows much smaller trend but more low-frequency variations 

compared to either the GECCO2 Synthesis or the assGec, especially for the 4-yr average of 

lead years 6-9. For the average of lead years 2-5, hindcast AMOC resembles the variability of 

assGec well, but fails to capture the variability for average of lead years 6-9. Consistent with 

this, hindcast AMOC with more initial dates (1961-2009) shows better significant correlation 

coefficients with GECCO2 up to lead years 6-9 than that of period 1980-2006 (Fig 3.3.5). The 

correlation in the South Atlantic (30
o
S-0

o
) and over the tropical North Atlantic (0

o
-35

o
N) 

remains significant until lead years 2-5, with values larger than 0.5, for the 1961-2008 dffGcE 

hindcasts (black lines, Fig 3.3.5). This may contribute to the high SST predictive skill 

observed in the North Atlantic at lead years 2-5 observed for dffGcE of 1961-2009. For the 

AMOC predictability of dffGcE during 1980-2006, significant predictive skill (red lines, Fig 

3.3.5) is achieved over the tropical Atlantic at lead year 1 and the average of lead years 2-5, 

similar to GIH.  
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Fig 3.3.5 ACC of non-detrended Atlantic MOC(Sv) at 1000m depth between dffGcE hindcasts and 

GECCO2 (black: 1961-2009, red: 1980-2006), GECCO2 and persistence (cyan: 1961-2009, blue: 

1980-2006) at different lead times along latitudes. The top panels are at lead year 1, the middle and 

bottom panel are 4-yr average of lead year 2-5 and 6-9 seprately. The dashed part of the lines denotes 

the correlation fails to pass the 95% significance level. 

   However, at lead years 6-9, no prediction skill of AMOC is observed (consistent with GIH) 

before the long-term trend is removed. Note, for the 1961-2008 AMOC predictability, 

persistence already shows large significant correlations with GECCO2 until lead years 6-9. 

For lead years 6-9, the persistence outperforms the initialized hindcasts, indicating that for 

AMOC predictability, much of the predictability probably comes from the persistence, at least 

for 1961-2008. When the prediction evolves to lead years 6-9, the persistence tends to provide 

more prediction skill. However, a large decrease of skill from persistence of 1980-2006 is 

observed, with correlation around 0.5 in the southern tropical Atlantic. For the 4-yr average, 

no significant skill is observed for persistence of 1980-2006.     

   Predictive skill in terms of detrended AMOC is also evaluated through anomaly correlation 

coefficient skill, as is shown in Fig 3.3.6. The most significant and robust skill on decadal 

prediction of AMOC is still achieved at lead year 1 over a large area, indicated by the large 

coefficient up to 95% significant level. Despite the larger area (about 22
o
S-30

o
N) with 

significant predictive skill achieved for dffGcE during 1961-2009, significant correlations 

with larger values are achieved for dffGcE during 1980-2008 in the tropical Atlantic (25
o
S-

20
o
N) at lead year 1. Therefore, the ratio of AMOC predictive skill due to the trend is larger 

in dffGcE of 1961-2009 than that of 1980-2006. Indicated by the red and black lines of 

middle panel in Fig 3.3.6, a larger number of initial conditions don’t improve predictive skill 

of AMOC if the linear long-term trend is removed, but increases credibility of predictive skill 

due to more samples. Compared with prediction skill of the non-detrended AMOC, a 

reduction in the skill is observed in both initialized hindcasts and persistence. The most 

significant decrease is the persistence forecast of 1961-2009. This is consistent with the 
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AMOC predictive skill in GIH and that of persistence forecast. The strong increasing trend of 

AMOC in GECCO2 contributes to predictive skill.  

 

Fig 3.3.6 ACC of detrended Atlantic MOC(Sv) at 1000m between dffGcE hindcasts and GECCO2 

(black:1961-2009, red: 1980-2006), GECCO2 and persistence (cyan: 1961-2009, blue: 1980-2006) at 

different lead times along latitudes. The top panels are at lead year 1, the middle and bottom panel are 

4-yr average of lead year 2-5 and 6-9 seperately. The dashed part of the lines denotes the correlation 

fails to pass the 95% significance level.    

   Larger areas and higher correlations are derived for detrended AMOC from dffGcE during 

1980 to 2006 than for GIH, at lead year 1 and lead years 2-5. In addition to the difference in 

the model used for hindcasts, the main difference between dffGcE and GIH is the atmosphere 

and initial conditions. For the initialization of dffGcE, the model is first nudged towards the 

GECCO2 Synthesis. The “assimilated” data is thereafter used to initialize the model. Such 

strategy improves the consistency of initial conditions to the model, particularly because the 

velocities are not nudged and are free to adjust. Hence a better balanced state is achieved at 

the initialization time. More realizations at each initialization date for dffGcE help to reduce 

the threshold of the significance of prediction skill. However, for the GIH, by directly 

initializing the model with the interpolated GECCO2 Synthesis, there are likely initial shocks 

at the beginning of the prediction. Meanwhile, by initializing with the atmosphere from CDA, 

a less balanced state between the atmosphere and the ocean is highly likely at the initialization 

time. The air-sea interaction through the coupled mechanism of the model may result in poor 

reproduction of AMOC variability as the prediction evolves. Therefore, better predictability in 

terms of AMOC is achieved for dffGcE than GIH. Different from any of them, the initial 

shock and difference in “observed”/model-biased climatology are all reduced through the 

initial conditions that are more-dynamically consistent for CIH. Therefore, better AMOC 

predictability is observed significantly at lead year 1 for CIH. But for lead years 2-5, dffGcE 

(1980-2006) outperforms CIH. Comparison among the AMOC predictive skill at the first lead 
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year from CIH, GIH and dffGcE (1980-2006) highlights the importance of the consistency of 

the initial conditions to the model in the initialized hindcasts.  

   For the 4-yr average of predictions, the 1961-2009 dffGcE outperforms dffGcE of the 

period 1980-2006. Skillful AMOC predictions for the 1961-2009 dffGcE appear between 

30
o
S and around 27

o
N up to lead years 2-5, with significant correlations up to 0.5, due to the 

lower significance threshold. Hence, in order to gain larger area with predictive skill, 

hindcasts with more initial dates are necessary, which lead to longer verification periods due 

to more samples. Long term variability is crucial for AMOC predictions on decadal time 

scales if successfully captured, which improve predictive skill through persistence. However, 

due to the lack of observations, it’s difficult to prove the low-frequency oscillatory variability 

of AMOC in GECCO2 to be true. When comparing performances between different 

predictions, one should always make sure that the hindcasts are used over the same period or 

at least are of the same length. The trend of AMOC from GECCO2 increases the predictive 

skill in AMOC variability for all initialized hindcasts. 

   To summarize, evaluation of predictive skill in CIH/GIH against dffGcE of 1980-2006 

indicates that the performance of CIH is compatible with that of individual member of dffGcE, 

with the most significant predictive skill over most of the ocean observed at the first lead year, 

in terms of SST. Meanwhile, dffGcE outperforms GIH, especially at the first lead year. More 

realizations at each initial date improve predictive skill in dffGcE, due to the usage of 

ensemble mean instead of individual realization. Comparison between dffGcE of 1980-2006 

and that of 1961-2009 in terms of SST predictive skill reveals similar patterns, but smaller 

correlation coefficients in some areas for the latter. A larger number of initial dates help 

reduce the significance level, but in some areas leads to smaller correlation coefficients, 

which is possibly related with the application of trend removal. An exception in the North 

Atlantic like Labrador Sea with higher predictive skill is observed in dffGcE of 1961-2009 

compared to that of 1980-2006 at lead years 2-5, possibly due to more multi-year variability 

in SST variations and partially due to higher predictive skill of AMOC. Illustration on 

predictive skill of Atlantic MOC indicates that the trend of AMOC give rise to predictive skill 

of dffGcE, with that of 1961-2009 outperforms that of 1980-2006. Robust predictive skill is 

observed until lead years 2-5 over large area. However, when the linear long-term trend is 

removed, a reduction is observed in predictive skill. Despite the slightly smaller values of 

correlation coefficient for AMOC, dffGcE of 1961-2009 still shows larger areas with 

significant predictive skill than of 1980-2006, due to longer period of verification. The trend 

and low-frequency variability contained in the AMOC lead to predictive skill in dffGcE and 

GIH through initialization with GECCO2, although it is difficult to evaluate. 
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Chapter 4 

Mechanism leading to low prediction skill  

So far, we have evaluated the regional SST predictability on decadal time scales. The most 

striking impression is that CIH shows significantly high correlations over the tropical Pacific 

and North Pacific at the first lead year, while predictive skill over the same region is much 

lower for GIH. Less predictive skill over the North Pacific is also observed by  Goddard et al 

(2012a) and Doblas-Reyes et al. (2013). On the other hand, initializtion of the Model for 

Interdisciplinary Research On Climate (MIROC) provids predictive skill over the extropical 

North Pacific (Mochizuki et al., 2010, 2012). Studies also show that prediction skill of the 

climate in the North Pacific is model-dependent (Mochizuki et al., 2010; Chikamoto et al., 

2012a): the model’s ability to reproduce subsurface temperature changes gives rise to 

predictive skill. Predictability of the Pacific is more sensitive to the initial state (Branstator et 

al., 2012; Branstator and Teng, 2012) and intrinsic decadal climate variability (Meehl et al., 

2014). In the Pacific, interannual climate variability is highly characterized by ENSO (El 

Niño-Southern Oscillation). The relationship between ENSO and the Pacific dacadal climate 

variability has been explored by many studies (eg. Power et al., 1999a; Meehl and Hu, 2006; 

Matei et al., 2008; Meehl et al., 2010), but no agreement has been reached. In this thesis, CIH 

is initialized with initial conditions that are dynamical self-consistent with the CFES model. 

This “self-consistent” initial conditions may lead to predictabilities of ENSO. Hence, we 

focus the following analysis on ENSO predictability and the possible reasons that give rise to 

predictive skill. 

 

4.1 Predictive skill on El Niño events 

4.1.1 El Niño Southern Oscillation (ENSO) 

Abbreviated from the phrase “El Niño Southern Oscillation”, ENSO is usually referred to a 

quasi-periodic fluctuation (i.e., every 2–7 years) in the sea surface temperature of the tropical 

eastern Pacific Ocean and in air surface pressure in the tropical western Pacific. The term “El 

Niño” was originally applied to a warm oceanic phase that naturally occurred in the equatorial 

region off the Pacific coast of South America. It is usually accompanied with high air surface 

pressure in the western Pacific. The oscillation in surface air pressure between the tropical 

eastern and the western Pacific Ocean was hence termed “Southern Oscillation” as the 

atmospheric component of ENSO (Trenberth, 1997). Since the quasi-periodical events were 

observed around Christmas, the Spanish term “El Niño” was used to name it (El Niño means 

Christ child, Jesus). The term “El Niño” now is used to refer to the related Pacific Ocean sea-

surface temperature changes and regional weather events, rather than just the ocean part of 

these events (Glantz, 1996). Ever since the 1950’s, scientists have been studying the 

mechanisms that cause the surface air pressure see-saw shift. In the early 1990s, researchers 

started to make initialized ENSO predictions based on models and the physical mechanisms 

of ENSO (Stockdale et al., 1998). Recent efforts made by ENSO community and decadal 

http://en.wikipedia.org/wiki/El_Ni%C3%B1o_Southern_Oscillation
http://en.wikipedia.org/wiki/El_Ni%C3%B1o_Southern_Oscillation
http://en.wikipedia.org/wiki/El_Ni%C3%B1o_Southern_Oscillation
http://en.wikipedia.org/wiki/Surface_pressure
http://en.wikipedia.org/wiki/Pacific_Ocean
http://en.wikipedia.org/wiki/Child_Jesus
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climate prediction community attempt to provide reliable ENSO predictions based on coupled 

global climate models (e.g. McPhaden et al., 2010; Smith et al., 2012b). Researchers now 

have better understanding of the global weather effects caused by the formation of an El Niño, 

and they have made a lot of efforts on ENSO forecasting in the future and recent ENSO 

changes, either based on observations (e.g. An and Wang, 2000; Cobb et al., 2003; Yeh and 

Kirtman, 2005; Power and Smith, 2007; Braganza et al., 2009; Li et al., 2011c; Yan et al., 

2011) or model results (Lau et al., 2008; Wittenberg, 2009). IPCC AR5 (2013) reported that 

multi-modeled statistics of El Niño-Southern Oscillation (ENSO) have improved since AR4, 

and the further development of ENSO event is predictable up to 1 year in advance (e.g. 

Ludescher et al., 2014). For example, Newman (2007) and Alexander et al. (2008) indicated 

predictability of ENSO at a year through a multivariate empirical Linear Inverse Models 

(LIMs) from observational SSTs. Ludescher (2014) developed an alternative approach upon 

network analysis and reported 1 year ahead for El Niño projection. The ENSO is the most 

important factors to the interannual variability of the tropical Pacific, and it will remain the 

most significant mode of the natural climate variability in the 21
st
 century (Collins et al., 2010; 

Guilyardi et al., 2012; Kim and Yu, 2012; Stevenson, 2012). However, the understanding of 

the processes responsible for the development of El Niño still remains incomplete, and the 

relationship between ENSO and decadal predictability in the Pacific is not fully understood 

(e.g. Meehl and Hu, 2006; Matei et al., 2008; Meehl et al., 2010).  

 

Fig 4.1.1 The Pacific Pattern under non-El Niño conditions (left) and El Niño conditions (right) from 

NOAA. In normal situation, equatorial winds gather warm water pool toward the west, and cold water 

upwells along the South American coast. During an event of El Niño, warm water pool approaches the 

South American coast. The absence of cold upwelling increases warming in the eastern Pacific. The 

absence of cold upwelling increases warming in the eastern Pacific. 

   Widely accepted, the formation of an El Niño is linked with the Walker Circulation. Under 

normal conditions (non-El Niño conditions), the strong easterly trade winds pile up warm 

surface water in the western Pacific and carry warm air heated up by the sun toward the west 

along the equator. As a result, the sea surface in the western Pacific is higher than in the 

eastern Pacific. The western equatorial Pacific shows a warm, wet, low-pressure weather 

pattern, while in the east side of Pacific Ocean, upwelling develops off the coast near Peru 

and Ecuador, and cold ocean current flows northward along the coast of Chile and Peru (i.e. 

the Humboldt Current). The first signs of an El Niño are a weakened Walker circulation and 

strengthened Hadley circulation (IPCC AR4, 2007). In an El Niño, the strong easterly trade 

winds are reduced along the equator (Fig 4.1.1, right) or head east in the Southern Pacific, due 

to the change in pressure pattern between eastern and western Pacific. Warm ocean water 

http://en.wikipedia.org/wiki/Walker_circulation
http://en.wikipedia.org/wiki/Hadley_circulation
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approaches the eastern Pacific along the coast of Chile and Peru, resulting in a deeper 

thermocline and higher surface there. Hence a warmer pattern is observed along the equatorial 

coast of South America instead of the cold pattern under normal conditions.  

   Considering the significant influence of ENSO on interannual climate variability, the 

high/low predictive skill of tropical Pacific SST from CIH/GIH at the first lead year is 

possibly related to ENSO events. Therefore, we now explore the possible mechanism 

regarding the predictive skill of hindcasted SST through analyzing key characteristics of the 

El Niño. For this purpose, the El Niño index based on the sea surface temperature in region 

3.4 (Fig 4.1.2; 170°W-120°W, 5°S-5°N) will be used.  

 

Fig 4.1.2 Location of Niño sea surface temperature regions (Niño 1, 2, 3, 3.4 and 4 regions) from 

NOAA. In this thesis, Niño 3.4 Index based on sea surface temperature of Niño 3.4 region is used to 

analyze the characteristic of ENSO. Figure is available from official website of NOAA 

(www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php). 

 

4.1.2 Assessment on predictive skill of El Niño events 

To identify and characterize the nature of El Niño-Southern Oscillation (ENSO), different 

indices have been introduced based on sea surface temperature (SST) anomalies in different 

regions of the Pacific (Trenberth and Stepaniak, 2000; Fig 4.1.2). The Niño 3.4 Index derived 

from SST anomalies in the Niño 3.4 region (referred to as N3.4) can be thought of as the 

mean SST throughout the equatorial Pacific east of the dateline. In this paper, Niño 3.4 Index 

is chosen to characterize the evolution of the ENSO event. To get the index, the area averaged 

total SST from Niño 3.4 region (𝑁𝑆𝑆𝑇𝑖𝑚) is computed first. Later the monthly climatology 

http://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php
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(1980-2006) of total SST averaged over the same area (𝑁𝑆𝑆𝑇𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅) is subtracted to get time 

series of SST anomalies (𝑁𝑆𝑆𝑇𝑖𝑚
𝑎 ). The equation is listed below: 

𝑁𝑆𝑆𝑇𝑖𝑚
𝑎 = 𝑁𝑆𝑆𝑇𝑖𝑚 − 𝑁𝑆𝑆𝑇𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Here in this formula, 𝑚 denotes the month, 𝑖  denotes the year, 𝑎  represents anomaly, and 

𝑁𝑆𝑆𝑇 denotes the value of SST averaged over Niño 3.4 region. Therefore, 𝑁𝑆𝑆𝑇𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅  is the 

climatology of month 𝑚 over the period of 1980-2006, 𝑁𝑆𝑆𝑇𝑖𝑚
𝑎  is the SST anomaly (over 

Niño 3.4 region) of month 𝑚  in year 𝑖 . The 5-months running method is applied to the 

anomalies in order to smooth out the possible intraseasonal variations from 𝑁𝑆𝑆𝑇𝑖𝑚
𝑎  

(Trenberth, 1997). Finally the smoothed SST anomalies are normalized by its standard 

deviation over the climatological period. The Niño 3.4 Index from NCAR CGD’s Climate 

Analysis Section is used as a reference (www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/). 

For the NCAR index, a base period climatology of 1950-1979 is chosen to get the time series. 

Restricted by the available period of 1980-2006 from CDA, we choose the base period of 

1980-2006.  

Table 4.1.1 Standard deviations (𝑠) for SST in the Niño 3.4 region over the base period 1980-

2006 (CDA, CIH, GECCO2, and GIH)/1950-1979 (NCAR) in 
o
C. 

 𝒔(𝐍𝐢ñ𝐨 𝟑. 𝟒) 

CDA 0.95 

CIH 0.90 

GECCO2 0.98 

GIH 0.95 

NCAR 0.70 

   The different choices of background climatology (base period) may lead to difference in the 

index, since offset of the response in the atmosphere to tropical SST anomaly is possible 

(Trenberth, 1997; Tab 4.1.1). As is shown in Tab 4.1.1, the standard deviations of the 

background chosen in this thesis are larger than that of NCAR. This is because the mean SST 

in the tropical Pacific is biased warmer after 1979 (e.g. Trenberth and Hoar 1996a). Despite 

the difference shown, a commonly accepted threshold of indication to ENSO events is ±0.4
o
C 

for Niño 3.4 (Trenberth, 1997; Trenberth and Stepaniak, 2000). The index calculated from 

different hindcasted SST (black) and the corresponding initialization data (red) are shown in 

Fig 4.1.3, in comparison with the NCAR index (green). 

http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/
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Fig 4.1.3 Niño 3.4 Index of lead year 1 from the hindcasts (black), NCAR (green) and the initialization 

data (red, CDA and GECCO2 respectively). The upper panel is for CIH and CDA. The bottom panel is 

GIH and GECCO2. 

 

Fig 4.1.4 Climatological monthly Niño 3.4 Index over the first 24 months of historical El Niño years 

(i.e. 1982, 1986, 1991, 1994, 1997, 2002 and 2006; upper) and GIH produced El Niño-like years (i.e. 

1980, 1981, 1985, 1989, 1996, 2001, 2003, 2005; bottom) from CIH (black), GIH (red) and NCAR 

(green). For the hindcasts CIH and GIH, all the monthly indices shown are calculated from the 

climatology of the first 24 months of forecasts started from the initialization date. The index from 

NCAR is used as a reference. The blue dashed lines represent the threshold for ENSO event for CIH 

and GIH. The value exceeding ±0.4oC indicates an El Niño event.  
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   By comparing the time series of the hindcasted monthly Niño 3.4 Index during the first lead 

year to the NCAR data, it becomes obvious that CIH reproduces ENSO events for most of the 

hindcasts in the first lead year (Fig 4.1.3). However, besides the reproduced historical ENSO 

events, some additional erroneous El Niño events are also detected, especially for GIH. CDA 

initialized hindcasts produce only one El Niño-like event in 1984 while surprisingly, GIH 

produces 8 more—1980, 1981, 1984, 1985, 1989, 1996, 2001, 2003 and 2005. The 

climatology of the Nino 3.4 Index from GIH  over the first 18 months after initialization 

shows that El Niño-like events (Fig 4.1.4, middle panel) develop around May, reach peak 

intensity during September-October and tend to weaken during the following February, 

lasting around 10 months. The developing phase is almost the same as that of the reproduced 

historical El Niño years from CIH/GIH (Fig 4.1.4, top panel), with the peak during September 

to October, which is slightly different from the NCAR’s index peaking during November-

December.  

 

 

Fig 4.1.5 Hovmöller diagrams of climatological SSH anomaly (bottom panels) and zonal wind stress 

taux anomaly (upper panels) along the equator from GECCO2 (1980-2006) over historical El Niño 

years (right panels) and the non-El Niño years (left panels). The units for SSH anomaly and taux 

anomaly are centimeters (cm) and 100𝑁/𝑚2 respectively. 

 

   Observations of historical ENSO events indicate that the average interval of El Niño 

occurrence is 5 years, with one event lasting typically 9-24 months.  The first sign of an El 

Niño usually develops around March-June, indicated by a weakening of the Walker 

circulation and strengthening of the Hadley circulation. Hovmöller diagrams (Hovmöller, 

1949) of zonal wind stress taux (Fig 4.1.5) from GECCO2 show an occurrence of outbursts of 

westerly wind in March on average during El Niño years. The strongest westerly wind is 
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observed in October. Around November, warm water reaches its peak warmth in the eastern 

Pacific, and the highest sea surface height is observed there.  

 

 

Fig 4.1.6 Hovmöller diagrams of climatological SSH anomaly along the equator from the first 12-

months of CIH (right panels) and GIH (left panels) over historical El Niño years (bottom panels) and 

the GIH produced El Niño-like years (upper panels). The units are centimeters (cm). 

 

   For the CDA initialized hindcasts, the historical El Niño events are well reproduced, the 

warm core shifts from western Pacific under normal conditions to east coasts starting around 

March (bottom right of Fig 4.1.6), and the outbursts of westerly winds happen also around 

March (bottom right of Fig 4.1.7). The intensity peak of warm core reaches the eastern Pacific 

around November, in agreement with the peak of Niño 3.4 index. The surface component of 

Hadley circulation is observed as the strong and months-lasting westerly trade winds that peak 

around October (bottom right of Fig 4.1.7). The developing phase of El Niño is almost the 

same as that from GECCO2, but with relatively large/small values of both zonal wind stress 

and SSH than the latter in January/at the peak of intensity. Therefore, these ENSO events 

reproduced by CIH are realistic. The GECCO2 initialized hindcasts also perform well in 

capturing historical ENSO events, with different phases matching the observations (bottom 

left of Fig 4.1.6 and 4.1.7). Compared with Hovmöller diagrams of CIH, both SSH and taux 

from GIH have smaller values in January of historical El Niño years, which holds until when 

it peaks. Since smaller values are already observed in GECCO2 than that of CDA, the relative 

smaller values of SSH in GIH is probably due to oceanic initialization with GECCO2, 

compared with that of CIH. The response in the atmosphere results in weaker zonal wind 

stress from GIH as is found in Fig 4.1.7. Overall, the initialization strategy of coupled climate 
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system with self-consistent initial conditions in this paper does a remarkable job in 

reproducing the ENSO events.    
 

 

Fig 4.1.7 Hovmöller diagrams of climatological zonal wind stress (taux) anomaly along the equator 

from the first 12-months of CIH (right panels) and GIH (left panels) over historical El Niño years 

(bottom panels) and the GIH produced El Niño-like years (top panels). The units are 100𝑁/𝑚2. 

   Besides the successful reproduction of the historical ENSO events for the GECCO2 

initialized hindcasts, analysis on the Niño 3.4 Index (middle panel of Fig 4.1.4) and 

Hovmöller diagrams of related variables (zonal wind stress in upper left of Fig 4.1.6; sea 

surface height in upper left of Fig 4.1.7) of the El Niño-like events (Fig 4.1.4, Fig 4.1.6 and 

4.1.7) indicate that their characteristics match the features and development procedure of El 

Niño quite well. However, observations of tropical Pacific SST do not indicate occurrence of 

El Niño during these years. This leads to a conclusion that GECCO2 initialized hindcasts 

produce pseudo El Niños, and the pseudo ones account for one third of the overall ensemble 

numbers of the forecasts. As is discussed above, spatial distribution of SST anomaly 

correlation coefficients of the differently initialized hindcasts reveals that GIH does a less 

good job than both CIH and dffGec at lead year 1 in the tropical Pacific. The skill of the first 

year for decadal prediction is strongly associated with ENSO predictability. These pseudo-

ENSO events are highly likely to reduce predictability of the forecasts at the first lead year in 

the eastern equatorial Pacific. From comparison between the four panels of Fig 4.1.6 and Fig 

4.1.7, the significant similarities between the historical El Niño events (bottom panels) and 

GIH produced pseudo El Niños (upper left panels) are the high SSH anomaly core off-coast 

and westerly zonal wind stress anomaly in the western Pacific, which already exist in January 

and further develop as time evolves. A larger SSH zonal gradient along the equator is obvious 
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for GIH in January of pseudo El Niño years than that of CIH in historical El Niño years. On 

the contrary, the CDA initialized hindcasts show totally different developing phase during the 

years of GIH-pseudo El Niño events.  

 

   As is mentioned above, the CIH and GIH are sharing the same atmospheric initial 

conditions. The main difference between CIH and GIH resides in the oceanic initialization. 

CIH is initialized with the CDA ocean states, which is the optimal estimations of the ocean 

state through assimilating the same climate model as is used for the hindcasts. However, GIH 

is initialized with interpolated ocean estimations from GECCO2 Synthesis. When initializing 

the model with an oceanic state that has different topography and dynamics from interpolated 

GECCO2, the model needs to adjust to the initial conditions at the beginning of the forecasts. 

If the imbalance is large, this could lead to conditions resembling the early phase of an El 

Niño event. To explore the hypothesis, more inputs are needed.  

 

 

4.2 Zonal momentum balance in the upper equatorial Pacific 
 

The difference in the skill over the tropical Pacific near the equator and the first signs of El 

Niño observed in January for the GIH-pseudo El Niño years is significant. In climate 

prediction, assimilating data into ocean model is commonly used for a more consistent 

initialization to the model. However, the study by Bell et al. (2004) pointed out that special 

care should be taken for the balance between pressure gradient and wind stress near the 

equator, when assimilating thermal data into ocean model in seasonal prediction. A dynamical 

imbalance with unrealistic deep overturning circulation is highly likely to happen near the 

equator due to the assimilation. This is because for such experiments, the ocean models will 

drift away from the observation data assimilated into them towards the model preferred 

climatological unless special care is taken. For GIH, by initializing the CFES coupled model 

with interpolated GECCO2 ocean estimations and atmospheric conditions that result from the 

same CFES coupled model, different dynamics between initial conditions and the model may 

lead to imbalance between the zonal wind stress and pressure gradient force in the key regions 

with variability near the equator. In order to explore the low performance of GIH in predicting 

the equatorial Pacific SST, we will focus the following study on the balance along the equator 

between the pressure gradient force (PGF hereafter) and the zonal wind stress (taux hereafter) 

for CIH/GIH of the upper Pacific. 

 

 

4.2.1 Equations of Zonal momentum Balance along the equator  

The equatorial Pacific zonal momentum balance was brought up by Sverdrup in 1947. Later 

studies refined the balance between the vertically integrated zonal pressure gradient and zonal 

wind stress on seasonal to annual scale (Bryden and Brady, 1985; Mcphaden and Taft, 1988). 

Hebert et al. (1991) expected a distinct vertical structure of the momentum balance based on 

upper ocean data sets measured in spring 1987. Their examinations on different terms of the 

momentum balance equation at the equatorial Pacific showed that the balance only held on 

longer (seasonal) time scale. In this thesis, the zonal momentum balance will be studied based 

on the two different sets of initialized hindcasts to explore the effects from assimilation and 
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initialization. Following Bryden et al. (1985), the governing equation of momentum balance 

in the upper equatorial Pacific (Reynolds-averaged Navier-Stokes equations under the 

hydrostatic and Boussinesq assumption) in the 𝑥-direction under balanced situation can be 

written as: 

𝐴𝑣

𝜕𝑢

𝜕𝑧
=

1

𝜌0
(𝜏𝑥 − ∫

𝜕𝑃

𝜕𝑥

𝑧

0

𝑑𝑧) 

𝑃 = 𝜌𝑔ŋ + ∫ 𝜌′𝑑𝑧
ŋ

𝑧

 

   where 𝐴𝑣  is the eddy viscosity, 𝑢  is the zonal velocity. The left-hind term represents 

parameterization of the vertical mixing due to uncompensated surface wind stress. Here 𝜏𝑥 is 

the surface zonal wind stress, ŋ is the sea surface height, 𝑃 is the pressure and 𝜌 is the density 

of the sea water. 𝜌′ in the equation is the difference between 𝜌 and 𝜌0 (𝜌0 = 1026𝑘𝑔/𝑚3). At 

the depth where the vertical shear of zonal velocity becomes zero, the wind stress is 

compensated by integrated pressure gradient force (Bryden et al., 1985). Note, due to the 

atmospheric pressure forcing embedded in the coupled climate model CFES, the effects of sea 

surface air pressure on sea surface height shall be removed before calculation of pressure 

gradient force.  

 

4.2.2 Zonal momentum Balance along the equator for GECCO2 Synthesis 

    

We start to explore the balance of monthly-mean GECCO2 Synthesis as a reference, 

following the governing equation of momentum balance in the upper equatorial Pacific by 

Bryden et al. (1985) in the 𝑥-direction. The residual between pressure gradient force and 

zonal wind stress along the equatorial Pacific will be illustrated in two categories: historical 

El Niño years and non- El Niño years in Fig 4.2.1. 

 

   As is indicated in Fig 4.2.1, in historical El Niño years a negative imbalance is already 

observed in December in the western Pacific (Fig 4.2.1 (a)). However, a positive imbalance 

follows in January (Fig 4.2.1 (b)) and only from February onward a consistently developing 

negative anomaly can be seen. From March on (Fig 4.2.1 (d)), a strong negative imbalance 

has developed in the western equatorial Pacific. The uncompensated negative imbalance 

could possibly result from 1) relatively strong easterly trade winds; 2) small pressure gradient 

force (due to the tilted SSH along the equatorial Pacific) or the combination of 1) and 2). 

More analysis will be devoted in following part on these possibilities. The imbalance 

propagates eastwards as Kelvin wave until it reaches the eastern pacific, which is in 

agreement with the developing phase of El Niño. As a result, warm pattern is observed in the 

eastern Pacific. Around November (Fig 4.2.1, (j)), the El Niño reaches the peak intensity, 

corresponding to the disappearance of imbalance or a positive imbalance. If combined with 

the development of El Niño events, it seems that the imbalance between zonal wind stress and 

pressure gradient force along the equatorial Pacific provides information on the occurrence of 

an El Niño several months prior to the El Niño, and the imbalance is observed only from 

March onward. However, all the simulations of CIH and GIH are initialized in January. The 

imbalance between zonal wind stress and pressure gradient force is probably not a good 
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criteria to identify an ENSO event. Despite this, we still want to check whether the imbalance 

is introduced in January already for GIH, due to adjustment of the model to different oceanic 

dynamics between the model itself and initial conditions. This could possibly explain the 

occurrence of those pseudo El Niños observed for GIH. 

 

 

Fig 4.2.1 Zonal momentum balance of upper equatorial Pacific between pressure gradient force and 

zonal wind stress from GECCO2 Synthesis (1980-2006) in historical El Niño years (black) and the 

non-El Niño years (red) at: (a) the former December, (b) January, (c) February, (d) March, (e) May, (f) 

July, (g) August, (h) September, (i) October, (j) November , (k) December and (l) the following 

January. 

 
    

4.2.3 Zonal momentum Balance along the equator for initialized hindcasts 

CIH/GIH 

    

Motivated by the hypothesis above, we now explore the balance between zonal wind stress 

and pressure gradient force for CIH/ GIH. Considering the pseudo El Niño events produced in 

GIH, we study the zonal momentum balance of GIH in three categories 1) historical El Niño 

years 2) pseudo El Niño years and 3) the non-El Niño years. The momentum balance of CIH 

will be assessed in two categories as the GECCO2 Synthesis. Since CIH produces one pseudo 

El Niño in 1984, this year is not counted in for any of the two categories of CIH. As indicated 
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by the green line of Fig 4.2.2, in historical El Niño years, a negative imbalance between PGF 

and taux is observed in the central and eastern equatorial Pacific in January for CIH. The 

negative imbalance lingers there until May. In June ((f) of Fig 4.2.2) the negative imbalance 

appears in the western equatorial Pacific and it moves eastwards as is observed for GECCO2 

Synthesis. However, the evolution is not as consistent as observed in the GECCO2 Synthesis. 

The behavior of the climatological imbalance in the non-El Niño years for CIH is almost the 

same as in GECCO2, with a balanced state year round (cyan line). 

 

 

Fig 4.2.2 Zonal momentum balance of upper equatorial Pacific between pressure gradient force and 

zonal wind stress: 1) from CIH in historical El Niño years (green) and the rest years (cyan); 2)from 

GIH in historical El Niño years (black); GIH-produced pseudo El Niño years (red) and the non-El 

Niño years (blue). The climatological first 12 months of the corresponding years during 1980-2006 are 

shown from (a) to (l) respectively (i.e. January in (a), February in (b), … , December in (l)). 

 

   The time evolution of climatological zonal momentum imbalance of GIH produced pseudo 

El Niño years indicates that a negative imbalance is there over large area of western equatorial 

Pacific in January, when the forecast is initialized. However, the imbalance is quite sensitive 

to perturbations and develops quite inconsistent, with the negative area mainly in the middle 

of equatorial Pacific in March and April. Different from the GECCO2, there is hardly any 

eastwards transportation of the imbalance visible along the equator. Such situation also holds 

true for the climatological imbalance of historical El Niño years. In this thesis, the hindcasted 

period is 1980-2006, restricted by the available CDA initial conditions. Within such a short 

period, there are only 7 historical El Niño events and 8 pseudo El Niño events. The small 
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sample size makes it difficult to test the hypothesis that the zonal imbalance between wind 

stress and pressure gradient force of upper equatorial Pacific triggers the pseudo El Niño 

events. Nevertheless, the imbalance observed in January is most likely related to pseudo El 

Niño events observed in GIH, since it doesn’t disappear as the prediction evolves. The 

relatively large zonal SSH gradient and different state of wind stress along the equator from 

Hovmöller diagram for GIH pseudo El Niño years observed in January may all contribute to 

the poor predictive skill in the tropical Pacific of GIH at the first lead year. 

  

   The characteristics of ENSO is highly related with the tropical mean climate conditions, 

including the warm-pool of the tropical ocean (Sun 1997), the thermocline depth and wind 

stress (e.g. An and Jin, 2001; Wang and An, 2001). Studies on modulation of ENSO show 

that equatorial zonal SST gradient is an important factor (e.g. Sun, 2003; Kim and An, 2011) 

and the atmospheric process has stabilizing effect on ENSO process (e.g. Zhang et al., 2008). 

Therefore, to better understand the mechanism leading to erroneous El Niño, it’s still useful to 

explore the elements that contribute to the imbalance at the initialization state, despite the 

restriction due to sample size. For this purpose, the properties of climate variables will be 

illustrated in three categories: 1) pseudo El Niño years, 2) historical El Niño years, and 3) 

non-El Niño years. 

 

 

Fig 4.2.3 Climatological SSH along the equatorial Pacific in January of (a) GIH produced pseudo El 

Niño years, (b) historical El Niño years, and (d) non-El Niño years for GIH (black), GECCO2(red), 

CDA (green) and CIH (blue). Climatological SSH in January of CDA are displayed in (d) in three 

categories of historical El Niño years (black), pseudo El Niño years (red) and non-El Niño years 

(green), as well as GECCO2 of the same categories (blue, cyan, magenta respectively). The units are 

cm. 
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   The climatological SSH (cm) along the equatorial Pacific in January is shown in (a), (b) and 

(c) of Fig 4.2.3 from four different data: GECCO2 (red), CDA (green), GIH (black), and CIH 

(blue), in three categories as is mentioned above. The blue lines are identical to the green lines 

in the three panels, suggesting that CIH well resembles CDA. The SSHs shown can be 

characterized by the position of highest value and zonal gradient along the equator. As is 

indicated in (d) of Fig 4.2.3, the highest value of SSH in GECCO2 is observed much closer to 

the central Pacific (i.e. further away from the coast) in the January of pseudo El Niño years 

than in CDA (Tab 4.2.1). Moreover, larger slop (i.e. larger zonal SSH gradient) in GECCO2 

is shown for SSH along the equator in pseudo El Niño years than that of CDA. Meanwhile, 

both the position of highest SSH and zonal SSH gradient is pretty much similar in GECCO2 

as in CDA in historical El Niño years.  

Table 4.2.1 Characteristics of climatological SSH in January along the equator  

 

   data 
position of 

highest SSH 

largest 

SSH 

difference 

Highest SSH Lowest SSH 

pseudo-El Niño 

GIH 152
o
E 52cm 70cm 18cm 

CIH 150
o
E 34cm 55cm 21cm 

GECCO2 161
o
E 32cm 57cm 25cm 

CDA 150
o
E 32cm 55cm 21cm 

his-El Niño 

GIH 155
o
E 46cm 68cm 22cm 

CIH 160
o
E 45cm 67cm 22cm 

GECCO2 161
o
E 37cm 65cm 28cm 

CDA 160
o
E 45cm 67cm 22cm 

non-El Niño 

GIH 150
o
E 47cm 67cm 20cm 

CIH 155
o
E 43cm 65cm 22cm 

GECCO2 160
o
E 40cm 65cm 25cm 

CDA 155
o
E 43cm 65cm 22cm 

 

   When initializing the model with two different oceanic initial conditions from CDA and 

GECCO2, different patterns of SSH along the equator are gained, with CIH resembling CDA 

quite well whereas GIH not following GECCO2 well. As is indicated in (a), (b) and (c) of Fig 

4.2.3, CIH basically overlies upon CDA for the three categories. During historical El Niño 

years, the largest SSH appears in 160
o
E and an average SSH difference up to 45cm (67cm in 

the west and 22cm in the east) is observed in CIH and CDA, with a slightly smaller zonal 

SSH gradient than that of GIH (Tab 4.2.1). While for non-El Niño years, the average 

difference of SSH along the equator drops to 43cm (65cm in the west and 22cm in the east) 

for CIH, still with a relatively smaller zonal SSH gradient than that of GIH. The largest 

difference of zonal SSH gradient between CIH and GIH is observed in January of pseudo El 

Niño years.  

 

   For the GECCO2 Synthesis that is used as initial conditions for GIH, the largest SSH 

appears much closer to the central Pacific (150
o
E for CDA and 160

o
E for GECCO2), and the 

zonal SSH gradient along the equator of is larger than that of CDA, in pseudo El Niño years; 

whereas these difference in historical El Niño years are quite small. The difference of the 

ocean state (e.g. SSH) between GECCO2 and the model makes the interpolated GECCO2 a 

non-consistent and incompatible initial condition with the model for GIH. The relatively 
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larger zonal SSH gradient along the equator from GECCO2 will need stronger wind in the 

central Pacific to reach balance in the forecast initialized with GECCO2, in pseudo El Niño 

years. Therefore, adjustment between the ocean and atmosphere through coupled air-sea 

interaction for GIH is needed, as is revealed by the different patterns of SSH along the equator 

between GIH and GECCO2. The adjustment is most likely responsible for the inconsistent 

imbalance shown in Fig 4.2.2 for GIH as the prediction evolves. The larger zonal SSH 

gradient may lead to pseudo El Niño events, if not balanced by the wind. 

 

 

Fig 4.2.4 Climatological SST along the equatorial Pacific in January for (a) GIH produced pseudo El 

Niño years, (b) historical El Niño years and (c) non- El Niño years, from GIH (black), GECCO2 (red), 

CDA (green), and CIH (blue). The units are
 oC.  

 

   Differences of ocean states are also characterized by SST. As is shown in Fig 4.2.4, 

comparison between GECCO2 (red lines) and CDA (green lines) indicates that the average of 

SST in January along equator is warmer in GECCO2 than that of CDA, for either pseudo or 

historical Niño years. The position and range of warm/cold pool is also different between the 

two data sets. Overall, warmer SST in the western Pacific and a cold core closer to the central 

Pacific are observed in GECCO2 compared with that of CDA, indicating a larger zonal SST 

gradient along the equator in GECCO2 (Fig 4.2.5). SST in CDA is much closer to the 

observations (i.e. HadISST) than that of GECCO2.  

   The different ocean states between CDA and GECCO2 implies a different atmospheric 

response. As is shown in Fig 4.2.6 (a), stronger zonal wind stress is observed in GECCO2 in 

the area of 180
o
-140

o
W compared with CDA/20C. Lager mean zonal pressure gradient than 

CDA/20C in the central (175
o
-130

o
W) Pacific (Fig 4.2.6 (b)) is also observed in GECCO2. In 

the eastern Pacific, SST from GECCO2 is also warmer than that of CDA, with a smaller zonal 

SST gradient in the former than the latter. Consistent with that, wind stress from CDA is 
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stronger than GECCO2 there. After initializing the model with warm-biased SST from 

GECCO2, which also has a larger zonal gradient in the central but  a smaller zonal gradient in 

eastern Pacific, colder pattern is observed over eastern Pacific in GIH (Fig 4.2.4), compared 

with GECCO2 during historical and pseudo El Niño years. Such difference is most likely due 

to the coupled air-sea feedbacks of the model (Fig 4.2.6 (a)) to the initialized smaller zonal 

SST gradient (through GECCO2 initialization) and the strengthened upwelling due to the 

stronger wind in the eastern Pacific (through atmospheric initialization). Overall, zonal SST 

gradient is increased due to initialization for GIH in the western and central Pacific (i.e. the 

west of 120
o
W). Warmer SST with smaller zonal gradient and stronger wind stress are set in 

the area of 120
o
-110

o
W through initialization. Interaction between the ocean and atmosphere 

may lead to shallower thermocline and strengthened upwelling in that area (i.e. colder SST) 

for GIH. In the central Pacific around 175
o
-140

o
W (Fig 4.2.5), the model is initialized with a 

relatively weaker zonal wind stress but larger zonal pressure gradient, leading to a negative 

imbalance at the initialization state for GIH. The imbalance propagates eastwards as Kelvin 

waves along the equator. This could further lead to transportation of warm water to the 

eastern Pacific, and therefore occurrence of El Niño, jointly with perturbations due to 

different topography between the initial conditions and the model system. 

 

 

Fig 4.2.5 Climatological SST along the equatorial Pacific in January for 1) historical El Niño years 

from GECCO2 (black), CDA (red), and HadISST (green), 2) non-El Niño years from GECCO2 (blue), 

CDA (cyan), and HadISST (magenta) and CDA (dark green). The units are
 oC.  
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Fig 4.2.6 Climatological zonal wind stress (a) and zonal pressure gradient (b) along the equatorial 

Pacific in January for 1) historical El Niño years from GECCO2 (black) , CDA (red) and 20C (green); 

2) non-El Niño years from GECCO2 (blue) CDA (cyan) and 20C (magenta). The units for wind stress 

are 𝑁/𝑚2, and for pressure gradients are 𝑃𝑎/𝑚 . 

   To summarize, CIH well reproduces historical El Niño events. Compared with CIH, the 

simulation of ENSO events is much poorer for GIH, with 8 pseudo El Niño detected at the 

first lead year. These pseudo El Niño events are most likely related with the poor predictive 

skill of SST for GIH over the tropical Pacific at the first lead year. GIH is initialized with 

interpolated GECCO2 ocean estimations and atmospheric conditions that result from the same 

coupled model as used in the hindcasts. Through initialization with GECCO2, zonal SST/SSH 

gradient is increased in the central Pacific and SST is warmed along the equator for GIH. 

However, the wind stress in the eastern/central Pacific remains relatively stronger/weaker. 

The different states of the ocean part (SSH/SST) leads to imbalance between the zonal wind 

stress and pressure gradient force through coupled air-sea interaction, and adjustment takes 

place as the prediction evolves. Negative imbalance is detected for GIH in the central Pacific, 

due to the warmer SST with larger SST/SSH zonal gradient in the central Pacific of ocean 

through initialization with GECCO2, which propagates eastwards as Kelvin waves. The 

reduced predictive skill of SST in GIH in the equatorial Pacific is therefore found to be 

mainly related to dynamical imbalance between zonal wind stress and pressure gradient over 

the central Pacific. Further imbalance may result from the differences in topography between 

the model system and GECCO2, and perturbations may give rise to propagating Kelvin waves. 

All these elements contribute to the poor predictive skill for GIH over the tropical Pacific as is 

observed. Hence, people shall be careful with the momentum balance between zonal wind 

stress and pressure gradient force along the equatorial Pacific, when initializing a coupled 



74 

 

model from any oceanic state. Initializing a coupled model with self-consistent initial 

conditions improves the predictive skill of decadal climate prediction in the tropical Pacific.  
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Chapter 5 

Conclusions and future work 
 

The primary goal of this thesis is to investigate the influence of model consistency between 

the model used to prepare initial conditions and that used for the hindcasts with the coupled 

model CFES developed by JAMSTEC. We estimated the relative predictive skill of SST and 

AMOC, in the two differently initialized hindcasts, on decadal time scales and predictability 

of ENSO at the first lead year. Using multiple diagnostics, we provided information on spatial 

distribution of predictive skill and further on the regional predictive skill, as well as the 

duration of predictability. These will help to gain insight into how to improve decadal 

prediction. 

   The following part of the thesis will be separated into two parts. The first part in Section 5.1 

will be the main results and conclusions. In the second part, we will outline the possible future 

work. 

 

5.1 Overview of main conclusion 

5.1.1 Influence of model consistency on decadal climate prediction 

 

In this thesis, the influence of model consistency in decadal climate prediction is explored by 

initializing an updated version (including external forcing) of the coupled model CFES 

developed by JAMSTEC with ocean state estimations from CDA (estimated with the CFES 

model without external forcing embedded) and the ocean-only forced GECCO2 Synthesis, as 

well as atmospheric initial conditions from CDA through control variables of air-sea fluxes.  

   In terms of predictability of SST, we first evaluate the SST predictability of initialized 

hindcasts against the uninitialized hindcasts to gain insight into whether initialization gives 

more predictive skill than the externally forced prediction. We find that both sets of initialized 

hindcasts outperform the uninitialized hindcast, indicating that full-state initialization does 

give rise to predictive skill on decadal time scale. Verification on relative prediction skill of 

SST from CIH (CDA initialized hindcasts) and GIH (GECCO2 initialized hindcasts) shows 

that CIH provides the most significant predictive skill at lead year 1 over vast areas, 

suggesting that the dynamical consistency of initial conditions can indeed improve the 

predictive skill of climate predictions at least in the first lead year. The most significant 

improvement is observed over the eastern tropical Pacific for CIH. On the contrary, by 

initializing the model with interpolated GECCO2, a warm bias over the tropical Pacific at the 

first lead year is introduced through initialization. The incompatibility of the initial conditions 

to the model results in poor predictability there. The initial shock, different topography and 

dynamics also contribute to the bias of the forecasts and reduce predictive skill. For lead year 

2-5, predictive skill is gained in part of Indian Ocean for both, while for lead year 6-9 almost 
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no skill is observed. For prediction skill at longer lead times, the response of externally forced 

change starts to increase. The only difference in external forcing between the model CFES 

used to derive CDA and that used in model simulations (the former doesn’t include external 

forcing and the later does) may lead to slow drift in CIH and therefore poor predictive skill at 

longer lead times. Comparison between spatial distributions of SST before and after the 

removal of linear long-term trend reveals that the trend due to increasing GHGs (green house 

gases) gives rise to SST predictability.  

   The decrease in SST predictive skill at longer lead times also holds true over the North 

Atlantic (NA), where previous studies indicate that the predictive skill of SST is associated 

with the predictability of Atlantic meridional circulation (AMOC), with the latter leading the 

former several years. The poor predictive skill of NA SST is possibly related to low AMOC 

predictive skill in CIH/GIH. Illustrations of detrended AMOC reveal significant and robust 

skill at lead year 1 for both CIH and GIH, with the former outperforms the latter.  At longer 

lead times, both CIH and GIH lose predictive skill in the subpolar region of NA, suggesting 

that the poor predictive skill of NA SST is partially due to poor predictability of AMOC. 

However, due to the strong increasing trend and more multi-year variability of AMOC from 

initialization with GECCO2, high predictive skill of AMOC is achieved until lead years 2-5 in 

GIH, when the linear trend is not removed. Nevertheless, the linear long-term trend of AMOC 

for CIH impacts predictive skill less than that of GIH, possibly due to the small trend and less 

multi-year variability of AMOC from CDA. Despite the possible incompatibility of the initial 

conditions to the model, the increasing trend of AMOC from GECCO2 as a lagged response 

to negative NAO improves the predictive skill of AMOC for GIH through initialization.  

   To compare predictive skill between different sets of hindcasts, one shall always make sure 

that the predictions used are at the same period. Comparison with MiKlip dffGcE (decadal 

hindcasts initialized with full-fields GECCO2 for ocean and full-fields ERA Reanalysis for 

atmosphere) hindcasts of the same length (i.e. 1980-2006) indicates that dffGcE outperforms 

GIH, while its performance is compatible with CIH, in terms of SST. Predictive skill of 

AMOC is increased through initialization with GECCO2 until lead years 2-5, which resides 

more multi-year variability (i.e. low-frequency oscillatory variability). The trend of AMOC 

from GECCO2 has a strong influence on North Atlantic climate predictability, which can be 

understood as a lagged response to NAO variability. However, due to the lack of observations, 

it’s difficult to verify whether the AMOC evolution is realistic. More realizations at each 

initialization dates improve the predictive skill, due to the usage of ensemble mean instead of 

individual realization. Comparison between the performances of dffGcE of 1980-2006 and 

that of 1961-2009 indicates larger areas with significant skill and longer duration in terms of 

SST predictability in the latter than that of the former. However, relative small correlation 

coefficients are observed in dffGcE of 1961-2008 in the area where significant skill is also 

observed in dffGcE of 1980-2008, except in the Labrador Sea at lead years 2-5. Larger 

number of initial dates increases the areas with predictive skill by reducing the level of 

significance, but doesn’t increase predictive skill for most of the area.  

   The significant, high SST predictive skill over the tropical Pacific in CIH indicates a good 

reproduction of El Niño events while GECCO2 initialized hindcasts (GIH) produce additional 

erroneous El Niño events, thus leading to the poor predictive skill of SST over the tropical 

Pacific at lead year 1. During balanced states, a zonal momentum balance between the wind 

stress and pressure gradient force of the upper equatorial Pacific exists. The GIH is initialized 
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with interpolated GECCO2 ocean estimations and atmospheric conditions that result from the 

same coupled model as used in the hindcasts. However, the ocean state of GECCO2 is 

characterized by a warmer SST with lager zonal gradient than that of CDA. When initializing 

the model with different ocean states, the adjustment though coupled air-sea interaction 

results in imbalance between the zonal wind stress and pressure gradient force, as is observed 

in the central Pacific for GIH. Further imbalance may also result from the differences in 

topography between GECCO2 and the model system. The imbalance propagates eastwards as 

Kelvin waves. The reduced predictive skill of GIH in the Pacific equatorial region is found 

mainly related to the dynamical imbalance due to inappropriate oceanic initialization of the 

predictions. Hence, in climate predictions, it is necessary to initialize a model with self-

consistent initial conditions in order to improve prediction skill in the tropical Pacific. People 

shall be careful with the momentum balance between zonal wind stress and pressure gradient 

force along the equatorial Pacific when initializing the model from any oceanic state.  

 

5.1.2 Verification of the results  

In this thesis, we estimate the predictive skill of initialized hindcasts following the multi-

diagnostic approach suggested for decadal climate predictions (Goddard et al., 2013). The 

results shown as based on detrended hindcasts (with the trend removal that varies with lead 

times). We use the scheme of initializing the model every year and letting each hindcast 

running for 9 years. To better evaluate the performance and define reliability of decadal 

prediction, larger number of initial dates and/or more realization of each initial date are 

usually worthwhile (e.g. Meehl et al., 2014), although Ho et al. (2013) found out that limited 

start dates may result in relatively robust verification metric. However, limited by the initial 

conditions from CDA, we can only initialize the model from 1980 to 2006. Due to limitations 

in computer time, it’s more practical to have only one realization for each initial date. We also 

initialize the model with interpolated GECCO2 Synthesis. For the sake of less initial shock at 

the beginning of predictions, an assimilation of GECCO2 may work as more appropriate 

initial conditions. However, due to the same computer time, we first let the model run for 

three days to adjust to different topography for these experiments. The outputs are then used 

as oceanic initial conditions.  

   The SST predictive skill in this thesis is verified by application of anomaly correlation skill 

(ACC) and the root-mean-squared-error skill score (RMSS) at time scales of lead year 1, 

average over lead years 2-5 and 6-9. When these skills are used, it is always necessary to 

carry out a significant test. For all the significant tests of the results involved, we choose the 

Student’s t-test. Physical process is always auto-correlated. Hence the effective sample size 

(von Storch and Navarra, 1999) is used to estimate the degrees of freedom. However, since 

there is only 27 hindcasts for CIH and GIH, the t-test might not be an appropriate method, 

especially for the 4-yr average. The non-parametric bootstrap significant test proposed by 

Goddard et al. (2013) is more suitable for predictions with small ensemble size. This method 

does not need distribution assumptions or temporal/spatial independent assumption of 

hindcasts, simply by re-sampling the simulations by random selection and estimating the 

statistics between subsamples. Hence the bootstrap is probably a better method as is used in 

other studies (e.g. Polkova et al., 2014). However, more computational time is needed for 

generating subsamples of simulations with this method. 
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5.2 Outlook 

This study provides information regarding the influence of model consistency on decadal 

prediction in terms of SST and AMOC, as well as the influence from initial dates and sample 

size. Along with insight into this, new questions also emerge. Further efforts can be devoted 

to aspects below: 

1) As is mentioned in section 3.1.1, the biased warmer global SST at lead year 1 for CIH 

is possibly due to a slow drift in the hindcasts, which are initialized every year. 

However, CDA from JAMSTEC was reinitialized every 9-months, with an overlap of 

1.5 months at both margins. This strategy helps to prevent slow drift in CDA. But such 

difference may lead to possible drift as predictions evolve. Hence, expanding the re-

initialization window to longer time (e.g. 5 years) for CDA needs to be explored. This 

will offer more dynamical-consistent initial conditions for the prediction, and possibly 

higher predictive skill. 

 

2) Predictability of the Pacific climate is sensitive to uncertainty from initial state and 

internal climate variability (Branstator et al., 2012; Branstator and Teng, 2012). As is 

discussed in section 4.2, the different ocean states (larger SST/SSH zonal gradient) of 

GIH through initialization with GECCO2 ocean estimation leads to imbalance 

between the atmosphere and therefore adjustment through the coupled mechanism. 

The non-self-consistent initial conditions (the biased mean state) lead to poor 

predictive skill of SST in the tropical Pacific. A study by Boer and Lambert (2008) 

pointed out that potential predictability over the extratropical and high latitude oceans 

is mainly controlled by contribution from internal variability. Over the mid-to-high 

latitude ocean regions, the surface climate is connected to the deep ocean (Boer, 2008). 

Since the oceanic initialization in the tropical ocean is more biased than that of the 

mid-and-high latitude ocean (Fig 3.1.6), removing the mean state bias along the 

tropical Pacific is necessary. Motivated by previous studies by Polkova et al. (2014) 

and Volpi et al. (2013), improved SST predictive skill in the tropical Pacific is gained 

with the anomaly initialization strategy. Therefore, one possible solution is to use the 

anomaly initialization over the tropical Pacific. By initializing the model with 

observed anomalies added to the model climate, the warm bias along the tropical 

Pacific could be reduced and could therefore lead to possible improvement of 

predictive skill in GIH.  

 

3) So far the relationship between ENSO and Pacific decadal climate variability still 

needs more exploration (Meehl et al., 2014). Some people argue that other climate 

variability of Pacific, which is related with Pacific Decadal Oscillation (PDO) or 

Interdecadal Pacific Oscillation (IPO), is just a residual patterns of spatially 

asymmetric ENSO, while others suggest that many mechanisms contribute to the 

tropical Pacific decadal change, and the mean state change will affect ENSO (e.g. 

Power et al., 1999a; Meehl and Hu, 2006; Matei et al., 2008).  In this thesis we only 

explore the influence of model consistency on decadal prediction and ENSO 

respectively. The possible mechanism between ENSO and the Pacific decadal 

variability is also interesting to explore. The sensitivity of other climate variability 
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such as PDO and IPO to model consistency can also be explored. Besides, due to 

small sample size of ENSO events within the hindcasted period, statistical significance 

of the results is weak. Hence the effect of ENSO on decadal predictability is not 

sufficiently explored. Therefore, larger number of initial dates is needed.  

 

4) The AMOC predictability is related with NA SST predictability probably through 

AMO and other atmospheric variability such as NAO (e.g. Eden and Willebrand, 2001; 

Gastineau et al., 2012). This variability has strong influence on the climate in the 

North Atlantic. In this thesis, the positive trend of AMOC from GECCO2 leads to 

high predictive skill of AMOC. The trend is possibly a lagged response to positive 

phase of NAO (Köhl and Stammer, 2008). Therefore, different NAO phase at the 

initial state may lead to decrease/increase of AMOC in 2-3 years. Model consistency 

can influence AMOC predictability on decadal time scale through initialization via 

NAO. Other variability such as PDO is also interesting to look into. 
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Figure Captions 

Fig 1.1 Schematic illustrating different portion of impact from initial value and boundary 

conditions on climate forecasts at different scale from IPCC (2013, based on Meehl et al. 

2009). This figure shows us the progression with daily weather forecasts at one end (left), 

seasonal and decadal prediction in between, and multi-decadal to century projections as a 

forced boundary condition problem at the other end. 

Fig 1.2 Schematic showing relative importance of uncertainty from different sources in 

decadal mean global surface air temperature by the fractional uncertainty 

(fractional uncertainty =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑐ℎ𝑎𝑛𝑔𝑒
) from Hawkins and Sutton (2009).  Model 

uncertainty acts as the main source for uncertainty up to lead time 50yr. Internal variability is 

another important source of uncertainty for the first decade, while scenario uncertainty being 

important for multi-decadal lead time.  

Fig 2.2.1 The time evolution of global CO2 concentrations (ppm) from HadGEM2 Model 

Development Team (2011) supported by CMIP5 for historical period (1860-2005) and for 

four RCPs (2006-2100). In our hindcasts (CIH, GIH and 20C), the historical (black) and RCP 

4.5 (orange) CO2 concentrations from 1946 to 2045 are used. (Figure available from website: 

http://cordex-ea.climate.go.kr/main/modelsPage.do) 

Fig 2.4.1 Predictability of upper 300-m temperature of the North Atlantic for 12 CMIP5 

models resulting from initialization (dashed blue lines) and the response to RCP4.5 forcing 

(dashed red lines) from Branstator and Teng (2012). The solid lines are multi-model averages. 

Predictability is measured by relative entropy. The crossover point near year 8 for the multi-

model averages indicates that after 8 years of the hindcasts, information resulting from 

external forcing (red line) becomes more important than information originating in the initial 

conditions (blue line). 

Fig 2.4.2 Spatial distribution of anomaly correlation coefficient (ACC) between hindcasted 

SST (hindcasts initialized with CDA, short as “CIH”) and CDA (estimations derived by 

assimilation through the coupled climate model CFES) at different lead years: 1) lead year 1 

(top panels); 2) averages of lead years 2-5 (middle panels); and 3) years 6-9 (bottom panels). 

The SST data shown in left panels are all detrended and these in the right panels are not. Only 

the significant ACC (at 95% level) are shown here. The trend gives rise to predictability on 

decadal time scale regionally from comparison of the two columns of figures. For the first 

lead year, larger areas with predictive skill are observed over the North Atlantic for the non-

detrended SST (upper panels). For the 4-yr average, the trend gives rise to predictability of 

SST over part of the North Atlantic and western Pacific (middle and bottom panels). 

Fig 2.4.3 Spatial distribution of SST RMSS (RMSE skill score) for CIH (CDA initialized 

hindcast) against 20C (un-initialized hindcast) at different lead years: 1) lead year 1 (upper 

panels); 2) averages of yr2-5 (middle panels); and 3) yr6-9 (bottom panels). SST from 

HadISST is used as the observation. The SST data used in right panels are all detrended and 

these in the left panels are not. Red area in the figure indicates improvement due to 

initialization. Improvement in predictive skill for initialized hindcasts is mainly due to the 

internal variability and externally forced climate changes (left panels). With an application of 

http://cordex-ea.climate.go.kr/main/modelsPage.do
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trend removal, improved predictability for initialized hindcasts is only about the internal 

variability, as is shown in right panels. Comparison between the left panels and right panels 

indicates that the trend plays an important role in improving predictive skill on decadal 

prediction. 

Fig 2.4.4 Time series of global-averaged annual mean SST in the HadISST dataset (green), 

initialized (colours, CIH) and un-initialized (blue) predictions and CDA (black). The upper 

panel shows the raw initialized hindcasts before detrending. The bottom panel shows the 

evolution of global mean SST with the linear long-term trend removed.  

Fig 2.4.5 Time series of global-averaged annual mean SST in the HadISST dataset (green), 

initialized (colours, GIH) and GECCO2 (black). The upper panel shows the raw initialized 

hindcasts before bias correction. The bottom panel shows the evolution of global mean SST 

with mean bias removed. 

Fig 2.4.6 Scaling factor applied in computation of effective sample size from original sample 

size of auto-correlated time series. 

Fig 3.1 Evolution of global-averaged annual mean SST in the HadISST dataset (green), raw 

initialized hindcasts (colours) and ocean estimation (CDA/GECCO2) from which the 

hindcasts are initialized (black). The colored lines in top/bottom panel are raw CIH/GIH. 

Fig 3.2 Spatial distribution of RMSS for annual mean SST for raw hindcast SST against the 

20C at lead year 1(upper panels), averages over yr 2-5 (middle panels), and 6-9 (bottom 

panels). Left panels are CIH against 20C and right panels are GIH against 20C, without bias 

correction. Red areas indicate that the initialized hindcasts are more accurate than the 20C and 

blue indicates the opposite. 

Figure 3.1.1 The time series of annual-mean global average sea surface temperature 

anomalies relative to 1961-1990 in observations (black line) from Met Office. The calculation 

is based on the sea surface temperature of dataset HadCRUT4 (abbreviated as HadSST3). The 

grey shade indicates the ranges that are 95% significant. As is shown in the figure, the SST 

warming trend is much larger after the 1900s. There is a warm pause from 1950-1980. After 

1980, a large warm trend is found in SST again. (figure from Met Office website, available at: 

http://www.metoffice.gov.uk/research/monitoring/climate/surface-temperature) 

Fig 3.1.2 Time series of annual mean global SST at different lead years in observations (blue, 

HadISST data set), persistence forecast (yellow), 20C (green), initialized hindcasts (black, left 

panels CIH, right panels GIH), CDA (left panels, red) and GECCO2 (right panels, red). The 

top panels are SST at lead year 1. The 4-yr means of lead years 2-5 are shown in middle 

panels, with the time series plotted centered in year 3. Averages over lead years 6-9 are shown 

in the bottom panels, with time series plotted centered in year 7. 

Fig 3.1.3 Spatial distribution of RMSS for hindcast SST against the 20C at lead year 1(upper 

panels), averages over yr 2-5 (middle panels), and 6-9 (bottom panels). Left panels are CIH 

against 20C and right panels are GIH against 20C. Red areas indicate that the initialized 

hindcasts are more accurate than the 20C and blue indicates the opposite. 

http://www.metoffice.gov.uk/research/monitoring/climate/surface-temperature
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Fig 3.1.4 Spatial distribution of SST anomaly correlation coefficient between CIH and CDA 

(left), CIH and observed SST (HadISST, middle), and CDA and persistence (right), at lead 

year 1 (top panels), averages of lead yr 2-5(middle panels) and lead yr 6-9 (bottom panels). 

Only the significant coefficients (at 95% level) are shown here. A linear trend removal is 

applied to all the SST involved before calculation of ACC. 

Fig 3.1.5 Spatial distribution of the SST anomaly correlation coefficient between GIH and 

GECCO2 (left), GIH and observed SST(middle), and GIH and persistence (right), at lead year 

1 (top panels), averages of yr2-5 (middle panels) and yr6-9 (bottom panels). Only the 

significant correlation coefficients (at 95% level) are shown here. 

Fig 3.1.6 Time series of annual mean SST at the first lead year averaged over 20
o
S-20

o
N 

(upper) and 60
o
S-20

o
S & 20

o
N-60

o
N (bottom) in observations (blue, HadISST data set),  

hindcasts (solid black: CIH; dashed black: GIH), CDA (solid red) and GECCO2 (dashed red). 

Fig 3.1.7 Spatial distribution of the non-detrended SST anomaly correlation coefficient 

between CIH and CDA (left), GIH and GECCO2 (right) separately, at lead year 1 (top panels), 

averages of yr 2-5 (middle panels) and yr 6-9 (bottom panels). Only the significant 

coefficients (at 95% level) are shown here. Compared with corresponding spatial distribution 

of detrended SST ACC of left panels in Fig 3.1.4 and Fig 3.1.5, non-detrended SST from both 

CIH and GIH shows significant skill in decadal prediction over larger areas. The most 

significant improvement in predictive skill is found for GIH over the North Atlantic, western 

Pacific and the Indian Ocean. 

Fig 3.2.1 Time series of annual mean AMOC (Sv) anomaly (at 1000m) at 26.5
o
N from 

hindcast experiments (black), CDA (red in left panels ) and GECCO2 (red in right panels), 

and persistence (green). The left panels are CIH and CDA used for initialization, while the 

right panels are GIH and GECCO2 used for initialization respectively. The top panels are 

AMOC at lead year 1. The 4-yr mean of lead years 2-5 is plotted with the time series plotted 

centered in year 3(middle). Averages over lead years 6-9 are shown in the bottom panels, with 

time series plotted centered in year 7. 

Fig 3.2.2 Anomaly correlation coefficient of the non-detrended Atlantic MOC (Sv,  𝑆𝑣 =
106𝑚3𝑠−1) at 1000m depth between CIH and CDA (black), CDA and persistence (red), CIH 

and 20C (yellow), GIH and CECCO2 (cyan), GECCO2 and persistence (blue) and GECCO2 

and 20C (green) along different latitudes of 30
o
S-60

o
N. ACCs are calculated for the first lead 

year (upper panel), 4-yr average of lead years 2-5 (middle) and lead years 6-9 (bottom panel) 

respectively. The dashed lines denote the hindcasts that don’t obtain significant skill at  95% 

significant level. All the AMOC data in this figure are not detrended.  

Fig 3.2.3 Anomaly correlation coefficient of the detrended Atlantic MOC(Sv,  𝑆𝑣 =
106𝑚3𝑠−1) at upper 1000m between CIH and CDA (black), CDA and persistence (red), CIH 

and 20C (yellow), GIH and CECCO2 (cyan), GECCO2 and persistence (blue) and GECCO2 

and 20C (green) along different latitudes of 30
o
S-60

o
N. ACCs are calculated for the first lead 

year (upper panel), 4-yr average of lead years 2-5 (middle) and lead years 6-9 (bottom panel) 

respectively. The dashed lines denotes the hindcasts fail to obtain significant skill at  95% 

significant level.      
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Fig 3.3.1 Time series of annual mean global SST (averaged over 60
o
S-60

o
N) from GECCO2 

(red), assimilated GECCO2 (balck) that is used as initial conditions for dffGcE, and ensemble 

mean of hindcast dffGcE at the first lead year (blue). The trends are denoted in dashed lines of 

left panels. The lines in the right panels denote the time series after the long-term linear trend 

removed. As is indicated by the black lines, the warm biased GECCO2 is assimilated towards 

the observations (HadISST, not shown).   

Fig 3.3.2 Spatial distribution of the hindcasted SST anomaly correlation coefficients between 

dffGcE (MiKlip hindcasts) and assimilated GECCO2 at lead year 1 (top panels), averages of 

lead years 2-5 (middle panels) and 6-9 (bottom panels).  The right column corresponds to the 

period in our hindcasts from 1980 to 2006, and the left column is from 1961-2009. All the 

SST used is detrended. Only the significant coefficients (at 95% level) are shown here.     

Fig 3.3.3 Spatial distribution of the hindcasted SST anomaly correlation coefficients between 

dffGcE (MiKlip hindcasts) and assimilated GECCO2 at lead year 1 (top panels), averages of 

lead years 2-5 (middle panels) and 6-9 (bottom panels).  The left column is from ensemble 

mean of dffGcE, and the middle and right columns are from ensemble member 1 and 3 of 

dffGcE respectively, all with the same verification period of 1980-2006. All the SST used is 

detrended. Only the significant coefficients (at 95% level) are shown here.     

Fig 3.3.4 Time series of annual mean NA MOC (Sv) anomaly of upper 1000m at 45
o
N from 

dffGcE hindcast (black), the assimilation run used for initialization (red, i.e. after nudging the 

MPI-ESM to GECCO2), and GECCO2 Synthesis (blue) at different lead years. The top panel 

is AMOC at lead year 1. The 4-yr mean of lead year 2-5 is plotted with the time series 

centered in year 3 (middle). Averages over lead year 6-9 are shown in the bottom panel, with 

time series plotted centered in year 7. 

Fig 3.3.5 ACC of non-detrended Atlantic MOC(Sv) at 1000m depth between dffGcE 

hindcasts and GECCO2 (black: 1961-2009, red: 1980-2006), GECCO2 and persistence (cyan: 

1961-2009, blue: 1980-2006) at different lead times along latitudes. The top panels are at lead 

year 1, the middle and bottom panel are 4-yr average of lead year 2-5 and 6-9 seprately. The 

dashed part of the lines denotes the correlation fails to pass the 95% significance level. 

Fig 3.3.6 ACC of detrended Atlantic MOC(Sv) at 1000m between dffGcE hindcasts and 

GECCO2 (black:1961-2009, red: 1980-2006), GECCO2 and persistence (cyan: 1961-2009, 

blue: 1980-2006) at different lead times along latitudes. The top panels are at lead year 1, the 

middle and bottom panel are 4-yr average of lead year 2-5 and 6-9 seperately. The dashed part 

of the lines denotes the correlation fails to pass the 95% significance level.    

Fig 4.1.1 The Pacific Pattern under non-El Niño conditions (left) and El Niño conditions 

(right) from NOAA. In normal situation, equatorial winds gather warm water pool toward the 

west, and cold water upwells along the South American coast. During an event of El Niño, 

warm water pool approaches the South American coast. The absence of cold upwelling 

increases warming in the eastern Pacific. The absence of cold upwelling increases warming in 

the eastern Pacific. 

Fig 4.1.2 Location of Niño sea surface temperature regions (Niño 1, 2, 3, 3.4 and 4 regions) 

from NOAA. In this thesis, Niño 3.4 Index based on sea surface temperature of Niño 3.4 
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region is used to analyze the characteristic of ENSO. Figure is available from official website 

of NOAA (www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php). 

Fig 4.1.3 Niño 3.4 Index of lead year 1 from the hindcasts (black), NCAR (green) and the 

initialization data (red, CDA and GECCO2 respectively). The upper panel is for CIH and 

CDA. The bottom panel is GIH and GECCO2. 

Fig 4.1.4 Climatological monthly Niño 3.4 Index over the first 24 months of historical El 

Niño years (i.e. 1982, 1986, 1991, 1994, 1997, 2002 and 2006; upper) and GIH produced El 

Niño-like years (i.e. 1980, 1981, 1985, 1989, 1996, 2001, 2003, 2005; bottom) from CIH 

(black), GIH (red) and NCAR (green). For the hindcasts CIH and GIH, all the monthly 

indices shown are calculated from the climatology of the first 24 months of forecasts started 

from the initialization date. The index from NCAR is used as a reference. The blue dashed 

lines represent the threshold for ENSO event for CIH and GIH. The value exceeding ±0.4
o
C 

indicates an El Niño event.  

Fig 4.1.5 Hovmöller diagrams of climatological SSH anomaly (bottom panels) and zonal 

wind stress taux anomaly (upper panels) along the equator from GECCO2 (1980-2006) over 

historical El Niño years (right panels) and the non-El Niño years (left panels). The units for 

SSH anomaly and taux anomaly are centimeters (cm) and 100𝑁/𝑚2 respectively. 

 

Fig 4.1.6 Hovmöller diagrams of climatological SSH anomaly along the equator from the first 

12-months of CIH (right panels) and GIH (left panels) over historical El Niño years (bottom 

panels) and the GIH produced El Niño-like years (upper panels). The units are centimeters 

(cm). 

Fig 4.1.7 Hovmöller diagrams of climatological zonal wind stress (taux) anomaly along the 

equator from the first 12-months of CIH (right panels) and GIH (left panels) over historical El 

Niño years (bottom panels) and the GIH produced El Niño-like years (top panels). The units 

are 100𝑁/𝑚2. 

Fig 4.2.1 Zonal momentum balance of upper equatorial Pacific between pressure gradient 

force and zonal wind stress from GECCO2 Synthesis (1980-2006) in historical El Niño years 

(black) and the non-El Niño years (red) at: (a) the former December, (b) January, (c) February, 

(d) March, (e) May, (f) July, (g) August, (h) September, (i) October, (j) November , (k) 

December and (l) the following January. 

Fig 4.2.2 Zonal momentum balance of upper equatorial Pacific between pressure gradient 

force and zonal wind stress: 1) from CIH in historical El Niño years (green) and the rest years 

(cyan); 2)from GIH in historical El Niño years (black); GIH-produced pseudo El Niño years 

(red) and the non-El Niño years (blue). The climatological first 12 months of the 

corresponding years during 1980-2006 are shown from (a) to (l) respectively (i.e. January in 

(a), February in (b), … , December in (l)). 

Fig 4.2.3 Climatological SSH along the equatorial Pacific in January of (a) GIH produced 

pseudo El Niño years, (b) historical El Niño years, and (d) non-El Niño years for GIH (black), 

GECCO2(red), CDA (green) and CIH (blue). Climatological SSH in January of CDA are 

displayed in (d) in three categories of historical El Niño years (black), pseudo El Niño years 

http://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst.php
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(red) and non-El Niño years (green), as well as GECCO2 of the same categories (blue, cyan, 

magenta respectively). The units are cm. 

Fig 4.2.4 Climatological SST along the equatorial Pacific in January for (a) GIH produced 

pseudo El Niño years, (b) historical El Niño years and (c) non- El Niño years, from GIH 

(black), GECCO2 (red), CDA (green), and CIH (blue). The units are
 o
C.  

Fig 4.2.5 Climatological SST along the equatorial Pacific in January for 1) historical El Niño 

years from GECCO2 (black), CDA (red), and HadISST (green), 2) non-El Niño years from 

GECCO2 (blue), CDA (cyan), and HadISST (magenta) and CDA (dark green). The units are
 

o
C.  

Fig 4.2.6 Climatological zonal wind stress (a) and zonal pressure gradient (b) along the 

equatorial Pacific in January for 1) historical El Niño years from GECCO2 (black) , CDA (red) 

and 20C (green); 2) non-El Niño years from GECCO2 (blue) CDA (cyan) and 20C (magenta). 

The units for wind stress are 𝑁/𝑚2, and for pressure gradients are 𝑃𝑎/𝑚 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

Table Captions 

Table 2.1 Summary of the experiments 

Table 4.1.1 Standard deviations (s) for SST in the Niño 3.4 region over the base period 1980-

2006 (CDA, CIH, GECCO2, and GIH)/1950-1979 (NCAR) in 
o
C. 

Table 4.2.1 Characteristics of climatological SSH in January along the equator  
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Acronyms 

ACC anomaly correlation coefficient  

AFES Atmospheric GCM for the Earth Simulator (AFES)  

AMOC Atlantic Meridional Overturning Circulation 

AMO Atlantic multidecadal oscillation 

CDA coupled data assimilation synthesis through CFES 

CFES Coupled GCM of Earth Simulator 

CIH CDA initialized hindcasts 

CMIP5 Coupled Model Intercomparison Projection phase 5 

dffGcE full-state initializated hindcasts from MiKlip through MPI-ESM 

ECHAM6 European Centre-Hamburg model version 6 

ENSO El Niño-Southern Oscillation 

GCM general circulation model 

GECCO2 German contribution to Estimating the Circulation and Climate Ocean project 

GIH GECCO2 initialized hindcasts 

GHGs green house gases 

HadISST Met Office Hadley Centre’s sea surface temperature 

MiKlip Mittelfristige Klimaprognosen project  

MOM3 GFDL Modular Ocean Model 

MPI-M Max Planck Institute for Meteorology 

MPI-ESM Max-Planck-Institute Earth System Model  

MPI-OM Max Planck Institute ocean-sea ice model  

NA North Atlantic 

NAO North Atlantic Oscillation 
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JAMSTEC Japan Agency for Marine-Earth Science and Technology  

OIFES Ocean-Sea Ice GCM for the Earth Simulator 

PGF pressure gradient force 

RMSE root mean square error 

RMSS root mean square error skill score 

taux zonal wind stress 

SI seasonal to interannual 

SSH sea surface height 

SST sea surface temperature 
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