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3 Automatic Spectral Classification

The main goal of automatic classification in the HES is to iifigobjects of a certain class in its large
data base. More formally, the problem can be stated as fslldive HES data base of digital spectra
can be represented by feature vec#rsonsisting of a set of continuous valugsi.e.

X=(X1,..-,Xd),

whered is the number of features used. In Sect. 3.2 we describe hatwrées are derived from HES
spectra. We want to construcdacision rulewhich allows to assign a spectrum with feature vegtor
to one of then. classeXd;, j = 1...nc, defined in the specific classification context. That is, watwa
to carry out ssupervisectlassification, as opposed tim supervisedlassification, where the aim is to
group objects into classewt defined before the classification process.

For supervised classificationl@arning samples always needed. For our purposes, we define a
learning sample to be a setmf objects for which the feature vectors are known,

{2} = (Rlﬂ"'vxnls)a

and for which thereal classes are known. The real classes can be defined e.g. lpirgrauset of
objects according to their stellar parameters (&g, logg, [Fe/H]), or by assigning classes to a set of
spectra by comparison with reference objects. With the bkfplearning sample, information on the
class-conditional probability densities

p(x|Q))

can be gainedp(X|Q;)dX is the probability to observe a feature vector in the raxigexX+ X in the
classQ;. Experience has shown that in most HES applications it iscgpjate to modep(X|Q;) by
multivariate normal distributions, i.e.,

p(xIy) {Se-mzie-n, ©

1
=—————exp
(2m9/2, /5]

where] denotes class numbgy, the mean feature vector of cla@g, andZ; the covariance matrix of
classQ;.

In many applications of automatic spectral classificatiothe HES, it is not possible to generate a
large enough learning sample froeal spectra present on HES plates. This is because usuallyrgfed ta
objects are very rare. Therefore, we have developed methagserateartificial learning samples by
simulations, using either model spectra, or slit specthe fAext section is devoted to a description of
the procedures involved.

3.1 Simulation of Objective-Prism Spectra

The conversion of model spectra, or slit spectra, to objeqirism spectra consists of 5 steps:
(1) Rebinning to the non-equidistant pixel size accordmthe global dispersion relation (Eq. 3)
(2) Multiplication with the HES spectral sensitivity cueg

(3) Smoothing with a Gaussian filter, for simulation of theiag profile

(4) Adding of pixel-wise, normally distributed noise
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(5) Random shift of the simulated spectrum according to ther elistribution of the wavelength
calibration zero point£10um).

Step (4) ensures that objects of any brightness can be saduthe average brightness corresponding
to a givenS/N can be derived from Eq. (5).

3.1.1 HES Spectral Sensitivity Curves

Spectral sensitivity curves (SSCs) for HES plates have Hetarmined by comparison of white dwarf
model spectra, rebinned to the wavelength dependent pbeA of the objective-prism spectra, with
objective-prism spectra of DA white dwarfs on HES plates.rétiimplementation of such a procedure
was done by von Laar (1995). The DA model spectra were fitteslitt@pectra of each of the white
dwarfs under comparison. We do not use the slit spectrattjires reference, because slit losses would
produce erroneous results.

By comparing SSCs for plates from different plate batcha#) different sky background, and
generated with objects spanning a wide brightness randéb@ow the saturation threshold), we in-
vestigated the possible systematic influence of these ciesistics on the shape of the SSCs. The
parameters of the 12 objects used in this investigationpéatd parameters, are listed in Tab. 2.

Name B; Plate bgr Batch  Tex [K] log g

HE 0004-5403 16.2 12076 1123 1D4 18206800 826+0.06
HE 0059-5701 16.4 12052 1026 1D4 3048600 808-+0.06
HE 0252-3501 16.0 11420 1039 1D4 1740600 735+0.05
HE 0358-5127 15.4 10844 765 113 2416300 810+0.05
HE 0409-5154 16.1 10844 765 113 2756300 800+ 0.06
HE 0412-4744 16.5 10844 765 1I3 1936B00 808+ 0.06
HE 0418-5326 16.1 10939 649 113  2796@00 800+ 0.05
HE 1049-1552 14.2 9091 752 1C8 202BbQ00 863+0.04
HE 1058-1258 14.8 9091 752 1C8 247bQ00 884+0.04
HE 1058-1334 16.6 9091 752 1C8 1598800 800+ 0.07
HE 1017-1618 15.8 8402 1363 1K6 2866300 830+ 0.06
HE 1017-1352 14.4 8402 1363 1K6 3350@00 825+0.05

Table 2: Sample of DA white dwarfs used for determinationpeciral sensitivity curves.
bgr is the diffuse background (in counts) averaged over fouemaarters.

By comparing the shapes of the 12 resulting SSCs, we fournidhéee isno systematic influence
of object brightness, plate batch and sky background on ®&@es The plate material of the HES is
astonishingly homogenous as compared to other surveyshe.gther Hamburg based objective prism
survey, the HQS Hagen et al. (1995). Howeveslight variation of SSC shape is present (see Fig. 9),
which hence must be attributed to another parameter. Siigthie blue part of the SSCs that varies, it
is very likely that the time span between hypersensitipagind development of the plate is responsible
for the shape variations.

We grouped the 12 SSCsinto 4 SSC classes of similar shap&ase®), and averaged them within

these classes. When converting model spectra or slit spctibjective prism spectra, we use an SSC
created by averaging the 4 averaged SSCs with randomlynaskigeights.
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Figure 9: Averaged spectral sensitivity curves.
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Name B Plate bgr Batch

HE 0004-5403 16.2 12076 1123 1D4
HE 1017-1618 15.8 8402 1363 1K6
HE 1017-1352 14.4 8402 1363 1K6

HE 1049-1552 14.2 9091 752 1C8
HE 1058-1258 14.8 9091 752 1C8

HE 0252-3501 16.0 11420 1039 1D4
HE 0358-5127 15.4 10844 765 1I3
HE 0409-5154 16.1 10844 765 1I3
HE 0412-4744 16.5 10844 765 1I3

HE 0059-5701 16.4 12052 1026 1D4
HE 1058-1334 16.6 9091 752 1C8

AP BRIWWWWINN|FPPEPPEPH®

Table 3: Averaging of spectral sensitivity curves of simghape.

3.1.2 Adding Noise

We add artificial, normally distributed noise to the congdrspectra, in order to simulate objective-
prism spectra of any brightness. We parameterizeStine of a spectrum by the meg®/N in the B
band,

Di

(%), a2
N/ g, ni;ao+a1Di+a2Di2’

using the noise model described in Sect. 2.2.6. Since tlse w@pends on the densidyit is important

to take care of the density variation throughout the spettitve thus scale the simulated spectra with
a scaling factoc such that the desired me&aN in B; is achieved, when the appropriate amount of
pixel-wise Gaussian noise is added. We use the typical woisfficients

ag = 184 (7)
a = 0.604-1072 (8)
a = 0.719-107°. (9)

The mear5/N of the scaled spectrum is:

(S) _1 n C'Di
N/ new ni;aO—Fal'C'Di-i-az-CZ-Diz’

For the determination af we re-arrange this equation to:

12 c-Dj S
- : 2—(—) =0 (11)
n&Gap+ag-c-Dj+ay-c?- D N/ new

Eqg. (11) can be solved iteratively with the Newton-Raphsathmd. The iteration rule is:

(10)

(M) _ om) _ (12)

where f(c) is the left hand side of Eq. (11). A comparison of simulatedcs@ with real spectra is
shown in Fig. 10.
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Figure 10: HES spectra of objects of different type (leftucoh) in comparison with sim-
ulated objective-prism spectra (right column). The unitdhe ordinates are densities in

arbitrary units.
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Since a lowefS/N results in a larger scatter of feature valuewithin each class, the parameters of
the class-conditional probabilities Eq. (6) are determiiimelependently for artificial learning samples
of differentS/N. We use the followindgs/N grid:

S
<N> =5,10,15,20, 25, 30. (13)
By

Each spectrum is then classified by using the learning sawitiiexaS/N which is closest to th&/N of
the spectrum; e.g. a spectrum W8N = 18 is classified by using the learning sample v@{iN = 20.

3.2 Feature Detection

It is critical for automatic classification to have a setrefiable features at hand. The total set of
available features should contain as much information @bibjects to be classified as possible.

A wide range of spectral features is automatically detefrtmd the digitized objective-prism spec-
tra during the data reduction process (see Tab. 4): stdisorption and emission lines, continuum
shape, Calcium-break, bisecting points of spectral dgdsitribution, G and CN band indices, and a
CaK line index.

Name Description Detection method

al 1 5160eqw W, of Mg 1 b triplett/TiOA 5168 Iterative fit procedure

al | 4861leqw W, of HB Iterative fit procedure

al | 4388eqw W, of Fel A 4383+85 Iterative fit procedure

al 1 4340egw W, of Hy Iterative fit procedure

al 1 4300egw W, of G-Band Iterative fit procedure

al 1 4261leqw W, of Cri A4254 + 75 + Fa 4260 + 72 Iterative fit procedure

al | 4227eqw W, of Cal A 4227 Iterative fit procedure

al 1 4102eqgw W, of Ho Iterative fit procedure

al 1 3969eqw W, of CaH+ H Iterative fit procedure

al 1 3934egw W, of CaK Iterative fit procedure

kl comp_-1 1. continuum shape coefficient PCA

kl conmp_2 2. continuum shape coefficient PCA

kl conp_3 3. continuum shape coefficient PCA

kl conp_4 4. continuum shape coefficient PCA

CaBr eak_sn S/N Calcium-break Template matching

CaBr eak_cont Contrast of Calcium-break to continuum Template matching

CaKi ndex Strength of Ca K Ratio of average pixel values
C2i dx1 Strength of G A5165 Ratio of average pixel values
C2i dx2 Strength of GA4737 Ratio of average pixel values
CNi dx2 Strength of CN\4216 Ratio of average pixel values
CNi dx3 Strength of CN\A 3883 Ratio of average pixel values
dx_hppl Half power point distance 1 Summing of pixel values
dx_hpp2 Half power point distance 2 Summing of pixel values

Table 4: Automatically detected spectral features in th&6&HE
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3.2.1 Detection of Stellar Lines

We implemented a flexible, robust algorithm which allows ¢ébedt stellar absorption and/or emission
lines in HES spectra. The algorithm is iterative, consgstifithe following steps:

(1) Determination of continuum by filtering with a wide medliiter and narrow Gaussian filter.

(2) Improvement of determination of the wavelength catibrazero point by fitting of 3 sets stellar
lines. The sets contain the strongest stellar absorptias Iof early type, solar type, and late
type stars, respectively. The individual lines depths, trdzero point offset of wavelength
calibration are fitted simultaneously. Thedative positions of the stellar lines are held fixed, and
the linewidthsis held fixed at the value of the seeing profile widths, whiclm&asured during
spectral extraction. The set of lines giving the strongéegtad, i.e. largest average equivalent
widths, is selected, and the wavelength calibration zenat pletermined with that fit is adopted.

(3) Improvement of continuum determination:

(a) Fitting ofall stellar lines detectable in HES spectra
(b) Removal of fitted lines from the original spectrum

(c) Computation of improved continuum by filtering the lireduced spectrum again with a
wide median filter and narrow Gaussian filter

(c) Start with (3a), ifn,, < 3; otherwise compute rectified spectrum with final continuum

(4) Fitting of all stellar lines in the rectified spectrum by@sians.

For each spectral line it can be chosen whether it is to be®etén absorption or emission. The output
of the fit algorithm are equivalent width, FWHM ar8IN of the lines, and shift of the wavelength
calibration zero point. Any spectral lines not yet consédiecan easily be included by just adding its
wavelength to the list of lines to be fitted.

3.2.2 PCA of Continua

We perform a Principal Component Analysis (PCA; see e.g. tdjir & Heck 1987) of the continua
determined in the iterative line detection procedure, oteoto parameterize the continuum shape of
HES spectra. Wisotzki (1991) used PCA in the HES also for gjusalection.

It was found that for the continua of a learning sample of 6pdcta classified by hand, and
occupying the classes A5-K9, three principal componentewat for almost 98 % of the variance in
the learning sample. It was possible to fit the continua obalnall of the learning sample spectra with
X?/v < 2.0. Four objects needed 5 or more components. Their specteaimgpected again and it was
found that they have an unusual continuum shape, probablyulse they are binaries. These spectra
have thus been excluded from the learning sample.

3.2.3 Broad Band Colours

For many stellar applications it is helpful to hade— B and B —V colours at hand. Therefore, we
established colour calibrations using so-called “half powoints” (hpp; see Wisotzki et al. 2000).
These are bisecting points of a part of the spectrum. Defirgtof the hpps can be found in Tab. 5, and
an illustration in Fig. 12. hpps are equivalent to broad bemidurs, but have the advantage of being
more robust against noise.hppl andx _hpp2 are well correlated withd — B andB —V, respectively.
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Figure 11: First three principal components of the contiolié54 learning sample spectra.

Name A range correlated with
x_hppl 3240A <\ < 4840A U-B
x_hpp2 3890A < A < 53604 B—V

Table 5: Definitions of spectral half power points (hpp) usethe HES.
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A more precise colour calibration can be achieved whenmlistsdx to a cutoff line in a colour-
magnitude diagram (see Fig. 13) is used insteaxl whlues for the bisecting point, because plate-to-
plate variations of the spectral sensitivity curves arepensated in this way. The cutoff line separates
the bulk of “normal” stars from UV-excess objects (or obgeatith unusually lonB —V in case of
dx_hpp2). The cutoff is determined by a break finding algorithm.

2500

2000

1500

half-power point hppl [um]

1000 ||

14 15 16 17
Internal magnitude

Figure 13: Cutoff-line for bisecting point_hppl on one HES plate.

Because the blue end of the HES spectra is sensitive to corgom by overlaps, special care must
be taken to exclude such spectra from the calibratiodxahppl. This has been done by applying
stricter overlap selection criteria. In addition, an it ko-clipping with kK = 3 has been employed
to exclude overlaps unrecognized by the automatic deteddid of the 623 spectra in the original data
set have been clipped out, so that the calibration usesrapefcd73 objects. The resulting fit is shown
in Fig. 14.
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Figure 14: Calibration ofix_hpp1 using a combined sample of 573 objects from the EC
and HK surveys present on HES plates.

A potential problem for thd8 —V calibration is that th& band is not fully covered by the HES
wavelength range. Therefore, the calibration for very rejgas is inaccurate, or even impossible. As
calibrators for red objects, 36 carbon stars have been feredhich BV photometry was obtained by
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the author at the ESO 2.2 m telescope in April 1999. Carbas sighB—V > 2.5 have been excluded
from the fit. ForB—V < 1.0, 778 stars from the HK survey of Beers et al. (1992), 354 FRd@ather
A-type stars of Wilhelm et al. (1999), and 272 objects from tiorthern galactic cap fields of the EC
survey (Kilkenny et al. 1997) present on HES plates have beed. Linear fits in three colour regions
have been done separately, in order to evaluate the scatapandently, and check consistency. Then,
a combined fit to all 1256 unigue objects was done (see Fig. 15)
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Figure 15: Calibration ofix _hpp2 by separate fits in different colour regions (upper panel),
and by combined fit to 1256 objects (lower panel).

The results of the fits are summarized in Tab. 6. Note that@esiit contains objects from a large
fraction of the 329 stellar HES plates, and — with the exoeptf the redB —V fit — a wide range of
object types, e.g. metal-poor stars, solar metallicityriet @-type stars, field horizontal branch A-type
stars, “normal” A-type stars, DA white dwarfs, DB white dfigrsdB stars, AGN. The achieved accu-
racies aresy_g = 0.092", andog_y = 0.095" for the B—V fit using all calibration objects together.
The accuracy iB—V for red 8—V = 1) and blue B—V < 0.3) objects is a factor of- 2 worse
(o0 =0.15"and 012™, respectively) than for intermediaB—V objects ¢ = 0.074"M).
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Colour &g a a valid range Ntars 0 [mag]
B-V 079 253.10° 334.10°% —600< dx_hpp2 < —300 37 015
B-V 031 —-200-10°% 1.74-10% —300< dx_hpp2<0 817 0074
B-V 031 —-306-10° 4.35.10° 0 < dx_hpp2 < 400 405 012
B—V 030 —-224.10°2% 962-107 —600<dx_hpp2 <400 1259 (095
U-B -019 —-167-10° +276-107 —800< dx_hppl <+800 573 0092

Table 6: Broad band colour calibration fits.

3.2.4 Narrow Band Colours

We obtain Stromgren coefficients = (u—b) — (v— b) directly from HES spectra by averaging the
density in the Stromgreavbbands, and computing internal coefficieofges from that.cy s has been
calibrated using a total of 79 stars, which are not saturatéte HES, from three different sources. 22
metal-poor stars have been taken from Schuster et al. (1836})ars from Beers (2000, priv. comm.),
of which 2 have been rejected as outliers (see Fig. 16), afbtléubdwarfs from an updated version
of the catalog of Kilkenny et al. (1988) (Heber 2000, priviron.). The Jo error of the calibration is
0.15™. ¢; can be used as a gravity indicator, since it measures thegsitref the Balmer discontinuity.
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Figure 16: Calibration of Stromgresy measured in HES spectra. The 2 filled circles mark
objects excluded from the fit.

3.3 Decision Rules

A central issue in automatic classification is the consitbanadf a decision rule which is optimal for the
given classification problem. In the HES, we use two decisides: The Bayes rule, and a minimum
cost rule.
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3.3.1 Bayes' Rule

Classification with Bayes’ rule minimizes the total numbemisclassifications, if thérue distribution
of class-conditional probabilitieg(X|Q;) is used (Hand 1981; Anderson 1984). Using Bayes’ theorem,

Lo P(Qi)p(X|Q)
PR = Sh@)pwa)”
Vi

posterior probabilitieg(Q;|X) can be calculated. A spectrum of unknown class, with givextufe
vectorX, can then be classified using Bayes’ rule:

Bayes' rule: Assign a spectrum with feature veckoio the class with the highest posterior probability
P(Qi[X).

3.3.2 Minimum Cost Rule

In most of the classification problems arising in the HES ilésired to compile a sample of objects
of a specific class, or a specifetof classes. In these cases, Bayes’ rule is not appropriatause
we do not want to minimize the total number of misclassifaradi but the misclassifications between
the desired class(es) of objects, and the remaining claSsppose we have three classes, A-, F-, and
G-type stars, and we want to compile a complete sample ofpa-sgars. Then only misclassifications
between A-type stars and F- and G-type stars (and vice varsa)f interest. More specifically, mis-
classifications of A-type stars to F- and G-type stars (legdd incompleteness) are least desirable
when a complete sample shall be compiled, and erroneousifidaton of F- and G-type stars as A-
type stars (resulting in sample contamination) can be aedegt a moderate rate. Misclassifications
between F- and G-type stars can be totally ignored, bechegarnget object type is not involved.

Classification aims like this can be realized by using a mimmtost rule. Cost factorrsgy, with
0<rmk<1; h=1,...,n;; k=1,...,n. (14)

allow to assignrelative weightsto individual types of misclassifications. The cost faatgy is the
relative weight of a misclassification from cla@g to classQy.

Suppose we have an object of unknown class, with featurenv@ciVe ask how large the cost is if
it belongs to clas€;,, and would be assigned to clalg, h # k. The cosC_k(X) is:

Chﬁk(X) = rhkP(QhR)
P(Qn) P(R|Qn)

3 P(2) p(XY)
anpn(X)
zap®

= Thk

In the last step we have used the abbreviatiB(@n) = a, and p(X|Qn) = pn(X). We do not know

to which of the possible class€k,, h=1,...,n., the object actually belongs. Therefore, we estimate
the expected co€k(X) for assigning an object with feature vectto the clas€)x by computing the
following sum of costs:

C(X®) = ich—m(i’)

hak
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m

ahIOh
15
hz pai 1a.p. (13)

ha£k
Now we can formulate the minimum cost rule, which minimizes total cost (Hand 1981).

Minimum Cost Rule: Assign an object with feature vectdtto the clas€Qy with the lowest expected
cost G(X).

If the cost factors have been chosen such that

Mk = Onk,

the minimum cost rule classification is identical to classifion according to Bayes’ rule. In this case
the cost for assigning the clag€gk to a spectrum with feature vect®iis the probability that the object
belongs to one of the other classeg k. This follows immediately from Eq. (15). Hk # Ok, the total
number of misclassifications ot minimized, so that the quality of a minimum cost rule classatiion
has to be evaluated by other criteria.

3.3.3 Rejection Rule

Non-mathematically speaking, Bayes’ rule assigns thesalath the highestelative resemblance to
each spectrum to be classified. However, it is ignorant obthepluteresemblance: A spectrum with
feature vectoX may be assigned to a class witlry lowposterior probabilityp(Q;|X), if p(Q;|X) is
even lower for all other classes. This means that a classsigresl toall spectra, even to “garbage
spectra” which have been disturbed, for instance, by phifaets. Therefore, it is useful to make use
of a rejection criterion.

Reject rule: Reject an object from classification to cla@s if a.i.(Q;;X) > B.

The parametdB is a threshold to be chosen, and the paraneeteis theatypicality indexsuggested
by Aitchison et al. (1977),

a.i.(Qi,X) = r{g;%(y_ni)zi—l(x_ni)/}’

wherel (& x) is the incomplete gamma function addhe number of features used for classification.
Use of the above rejection criterion is identical to perfimgna x? test of the null hypothesilg that

an object with feature vectot belongs to clas€); at significance level + 3, against the alternative
hypothesisH; that it doesbelong to clas®2;. We reject the null hypothesis, if its significance level is
low, i.e., if it is very unlikely that a feature vectoX is observed for clas®;, given the multivariate
normal distributions (6) are theue distributions of the class-conditional probabilitip&|Q;).

3.4 Evaluation of Classification Rules

Classification rules can be evaluated by the number of eggauisclassifications (in case of Bayes'’
rule), or by the total expected cost (in case of the minimurst cale). The three most important
methods to estimate these numbers are (Deichsel & Tramp&&b):

(1) Re-substitution
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(2) “Hould out” method

(3) “Leaving one out” method.

Re-substitution means that one uses the learning samplasltest sample. The drawback of this
method is that onenderestimatethe number of expected misclassifications, because afwdatisin
rule derived with the help of a finite learning sample is alsvagapted to the individual composition
of the learning sample. Therefore, the estimation of theeetga number of misclassification is biased
(Deichsel & Trampisch 1985).

An improvement in this respect is gained when the “hold outmod is used. Here one randomly
divides the learning sample disjunctly into a new, sma#ariing sample, and a test sample. Since the
learning sample and test sample are completely indepeiéms case, an unbiased estimate of the
expected error rates is possible (Deichsel & Trampisch 1388vever, the drawback is that one needs
a large enough learning sample. When modeling the clasditcmral probabilities with multivariate
normal distributions, the learning sample size has to lgelanough to ensure a robust estimation of
the parameters of the distributions. When using non-parammaethods, the situation is even worse,
because thehapeof the distribution has to be determined, too, so that aultti degrees of freedom
are present.

The problem of learning sample size can be circumvented ing tise “leaving one out” method.
Suppose we have a learning sample of sige We exclude object from the learning sample, and
construct the classification rule using thg — 1 remaining objects. Objedtis then classified with
this classification rule. This procedure is repeaigdimes, so that each object of the learning sample
is excluded once, and used as test sample. By adding up thieensirof misclassifications obtained
in each step, one gets an unbiased estimate of the expecbedate (Deichsel & Trampisch 1985).
The only drawback of this method is that it consumes a lot ngoreputing time than the previously
mentioned methods, singg; classification rules have to constructed. However, the cdimg time
increases onlinearily with learning sample sizes, so that the usage of the “leaving one out” method
was feasible for all HES learning samples used so far (trgesarlearning sample used had =
165000).

3.5 Choosing a Feature Combination

It is necessary to select a subset of the available feataresth classification problem, and e&7iN
step, because of several reasons.

(1) Blended lines, e.g. #+Ca H, can confuse the classification.

(2) Itis advantageous to exclude redundant features frenseh of features used for classification,
since the usage of less features results in more stableagstirof the parameters of the multi-
variate normal distributions Eq. (6).

(3) The optimal feature set can vary wiBIN. For instance, at lovg/N it can be useful to only
use continuum shape parameters and colours for classificdtecause no stellar lines can be
detected reliably anymore.

The best method for finding the optimal feature combinati®mnoi evaluateall 29 — 1 possible
combinations of thal available features, since this is the only waypimve that the combination
found is really the best one. However, since the computimg tiaises exponentially with the number
of features, the complete search is only feasible for a dichinumber of features. On a Linux PC
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with 333 MHz Pentium Il processor the complete search in tufeaspace ofl = 11, evaluated with
“leaving one out” on a learning sample of 22 500 objects,saktmout one day. Since the search has to
be done for all 65/N steps individuallyd = 11 is about the feasibility limit.

In practice it is usually possible to select a subset ef 11 features from the 23 available features
listed in Tab. 4 by astrophysical considerations alone., Blgen it is desired to select metal-poor stars,
one can restrict the initial feature set to those featurat dhepossiblyuseful as indicators fofe,
logg, and [Fe/H], and one can safely ignore e.g. Carbon banddadit is also possible to reduce
the dimensionality of the feature space dyriori combining redundant features, e.g. the equivalent
widths of the Balmer lines to sumof equivalent widths.

3.6 Choosing Cost Factors

The cost factors were adjusted by using a special tool, wdiglays the confusion matrix, estimated
with the “leaving one out” method on the learning sample,eteling on the choice of three sets of
cost factors:

t 20: Cost factor for misclassification of an object of ttagget class (') to (‘2’) one of theother
classes ).

02t . Cost factor for contamination of the target class.

020: Cost factor for misclassification between other classes.

Since sample completeness and contamination are interdepk in practice only theelative value
t 20/02t has to be adjusted. A screen-dump of the cost factor toolkiaistin Fig. 17.
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