Adhäsion von *Plasmodium falciparum* (Welch, 1897) infizierten Erythrozyten an den humanen Endothelrezeptor P-Selektin

Charakterisierung der Bindungseigenschaften auf biochemischer Ebene

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakultät für Mathematik, Informatik und Naturwissenschaften - Fachbereich Biologie der Universität Hamburg

vorgelegt von

Ann-Kathrin Tilly

aus Hamm-Heessen

Hamburg, 2014

Tag der Disputation: 20. März 2015

Diese Arbeit wurde in der Arbeitsgruppe von Prof. Dr. Egbert Tannich und unter der Anleitung von Prof. Dr. Iris Bruchhaus am Bernhard-Nocht-Institut für Tropenmedizin angefertigt.

1. Gutachter: Prof. Dr. Iris Bruchhaus

Bernhard-Nocht-Institut für Tropenmedizin Abteilung Molekulare Parasitologie Bernhard-Nocht-Straße 74, 20359 Hamburg

2. Gutachter: PD Dr. Sabine Lüthje

Biozentrum Klein Flottbek, Universität Hamburg Abteilung Molekulare Pflanzenphysiologie Ohnhorststraße 18, 22609 Hamburg Meinen geliebten Großeltern, Eltern und meinen Männern

I

INHALTSVERZEICHNIS

I ABKÜRZUNGSVERZEICHNIS

1. EINLEITUNG

1.1	Krankheitsbild der Malaria tropica		2
1.2	Lebenszyklus von P. falciparum		2
1.3	Asexue	elle Stadien von P. falciparum	4
1.4	Zytoad	härenz/ Sequestrierung	5
1.5	Huma	ne Endothelrezeptoren	7
	1.5.1	CD36	8
	1.5.2	P-Selektin	9
1.6	Defini	erte und potentielle Adhäsionsliganden: Variable Oberflächenantigene	11
	1.6.1	Die <i>Pf</i> EMP1-Proteinfamilie	12
	1.6.2	Die 2TM-Superfamilie	14
1.7	Zielset	zung	15

2. MATERIAL UND METHODEN

2.1	Materialien		16
	2.1.1	Geräte und Software	16
	2.1.2	Chemikalien und Reagenzien	18
	2.1.3	Gebrauchsmaterialen und Reaktionskits	19
	2.1.4	Antikörper	20
	2.1.5	Kulturmedien und Zusätze	21
	2.1.6	Puffer und Lösungen	23
	2.1.7	P. falciparum-Stämme	25
	2.1.8	CHO-Zelllinien	25
2.2	Zellbio	ologische Methoden	25
	2.2.1	P. falciparum	26
		2.2.1.1 Kultivieren von P. falciparum	26

		2.2.1.2 Anfertigen von Stabilaten einer P. falciparum-Kultur	27
		2.2.1.3 Auftauen von P. falciparum-Stabilaten	27
		2.2.1.4 Synchronisieren von P. falciparum mittels Sorbitol	27
		2.2.1.5 Anreichern pigmentierter Parasitenstadien (MACS)	28
		2.2.1.6 Anreicherung von Knobs	28
		2.2.1.7 Ernte	29
	2.2.2	CHO-Zellen	30
		2.2.2.1 Kultivieren von CHO-Zellen	30
		2.2.2.2 Anfertigung von Stabilaten von CHO-Zellen	30
		2.2.2.3 Auftauen von CHO-Stabilaten	31
		2.2.2.4 Fluorescence-activated cell sorting (FACS) von CHO-Zellen	31
		2.2.2.5 Aussäen von CHO-Zellen	32
	2.2.3	Immunfluoreszenzanalysen (IFA)	32
	2.2.4	Bindungsexperimente	33
		2.2.4.1 Statischer Bindungsversuch	33
		2.2.4.2 Anreicherung von P. falciparum mit spezifischen	35
		Bindungseigenschaften (Panning)	
		2.2.4.3 Separation von Zellen mittels Dichtegradientenzentrifugation	38
		(Biocoll)	
2.3	Molel	kularbiologische Methoden	39
	2.3.1	Isolierung von RNA aus P. falciparum	39
	2.3.2	Konzentrationsbestimmung von RNA	40
	2.3.3	Überprüfung der RNA-Integrität (Bioanalyzer)	40
	2.3.4	Next Generation Sequencing (NGS)	41
2.4	In sili	co Methoden	43
	2.4.1	Gendatenbanken	43
	2.4.2	Sequenzanalyse	43
2.5	Biotec	chnische Methoden	43
	2.5.1	Transmissionselektronenmikroskopie (TEM)	43
	2.5.2	Rasterkraftmikroskopie (atomic force microscopy; AFM)	44
		2.5.2.1 Vorbereitung (Oberflächenmessung)	46
		2.5.2.2 Oberflächenmessung	46

3. ERGEBNISSE

3.1	Vergle	eich verschiedener P. falciparum-Isolate (Laborstamm 3D7 vs. FCR3)	49
	3.1.1	Phänotypen	50
		3.1.1.1 Transmissionselektronenmikrosopie (TEM)	50
		3.1.1.2 Rasterkraftmikroskopie (atomic force microscopy, AFM)	54
	3.1.2	Bindungsexperimente	57
		3.1.2.1 Bindungsexperimente unter verschiedenen Bedingungen	58
		3.1.2.2 Statische Bindungsexperimente mit den P. falciparum	63
		Laborstämmen	
		3D7 und FCR3	
	3.1.3	Lokalisation variabler Oberflächenantigene mittels Immunfluoreszenz- Analyse	68
	3.1.4	Transkriptom-Analyse mittels RNA-Sequenzierung (RNA-Seq) von	745
		P. falciparum FCR3-Isolaten	
		3.1.4.1 Vergleich der Genexpression des P. falciparum-Laborstammes	76
		FCR3	
		hinsichtlich der Kultivierung mit AlbuMAX® versus humanem	
		Serum	
		3.1.4.2 Vergleich der Genexpression des P. falciparum-Laborstammes	79
		FCR3	
		hinsichtlich möglicher Unterschiede zwischen Knob-negativen und	
		Knob-positiven Isolaten bei der Kultivierung mit AlbuMAX®	
		3.1.4.3 Vergleich der Genexpression des <i>P. falciparum</i> -Laborstammes FCR3	82
		hinsichtlich möglicher Unterschiede zwischen Knob-negativen und	
		Knob-positiven Isolaten bei der Kultivierung mit humanem Serum	
		3.1.4.4 Zusammenfassung	84
3.2	Identi	fizierung eines Liganden für P-Selektin mittels Genexpressionsanalyse	85
	versch	hiedener P. falciparum FCR3-Populationen nach Anreicherung	
(Pann	ing)		
	in Bez	zug auf eine Bindung an P-Selektin	
	3.2.1	Kontrolle der Anreicherung hinsichtlich der Bindung an P-Selektin mithilfe	86
		inverser Mikroskopie und statischer Bindungsexperimente	
			91
	3.2.2	Transkriptom-Analyse mittels RNA-Sequenzierung (RNA Seq) von	
		P. falciparum FCR3 nach Anreicherung in Bezug auf die Bindung an	

P-Selektin (Panning)

3.2.2.1 Vergleich der Genexpression der Ausgangskultur und der Kultur	94
nach	
Panning I+II (Experiment 1)	
3.2.2.2 Vergleich der Genexpression der Ausgangskultur und der Kultur nach	97
Panning V (Experiment 2)	
3.2.2.3 Vergleich der Genexpression der Ausgangskultur und der Kultur	103
nach	
Panning VI (Experiment 2)	
3.2.2.4 Zusammenfassung	109

4. DISKUSSION

- 4.1. Morphologie der *Knobs* variiert zwischen den Laborstämmen 3D7 und FCR3 sowie zwischen der Kultivierung mit AlbuMAX® und humanem Serum
- 4.2 Die Laborstämme 3D7 und FCR3 weisen unterschiedliche 112 Bindungseigenschaften

unter verschiedenen Kulturbedingungen auf

4.2.1 Bindungskapazität des Laborstammes FCR3 variiert mit der 112 Bewegungsintensität

während der Bindung

4.2.2 Erhöhte Bindungskapazität des Laborstammes FCR3 im Vergleich zu 3D7 114 sowie

bei Kultivierung mit humanem Serum

- 4.3 Variable Oberflächenantigene zeigen kaum Variationen in ihrer Lokalisation in 116 unterschiedlichen kultivierten *P. falciparum*-Isolaten
- 4.4 Variation in der Genexpression im Laborstamm FCR3 bei der Kultivierung mit 118 AlbuMAX® oder humanem Serum sowie bei *Knob*-negativen und -positiven Isolaten

4.4.1 Kultivierung mit AlbuMAX® zeigt eine höhere Aktivität der Genexpression 119 als

mit humanem Serum

4.4.2 Die Aktivität der Genexpression zeigt kaum Variationen zwischen *Knob*- 120 negativen und positiven FCR3-Isolaten bei gleicher Kultivierung

4.5 Tr	anskriptom-Analyse mittels RNA-Sequenzierung von P. falciparum FCR3, die	123		
hi	nsichtlich der Bindung an P-Selektin angereichert waren (Panning)			
	4.5.1 Zwei signifikant differentiell exprimierte Gene zeigen exklusive	123		
	Genexpression nach Panning I und II (Experiment 1)			
	4.5.2 Ein var-Gen (IT4_var2) zeigt exklusive Genexpression nach Panning I und II	124		
	(Experiment 1)			
	4.5.3 Die angereicherten Kulturen weisen nach Panning V und VI eine geringere	124		
	Genexpression auf als die Ausgangskultur (Experiment 2)			
	4.5.4 Ein var-Gen (IT4_var2) zeigt exklusive Genexpression nach Panning V und	125		
	VI			
	(Experiment 2)			
	4.5.5 Vergleich der gebundenen versus der ungebundenen infizierten Erythrozyten	125		
	nach Panning V und VI zeigt eine höhere signifikant differentielle Expression			
	bei den ungebundenen infizierten Erythrozyten (Experiment 2)			
4.6 Der putative Ligand für die Bindung an P-Selektin, IT4_var2, kodiert ein <i>Pf</i> EMP1				
Pr	otein der Gruppe A			
ZUS	AMMENFASSUNG / ABSTRACT	III		
II	LITERATURVERZEICHNIS	VII		
III	ABBILDUNGSVERZEICHNIS	XVII		
IV	TABELLENVERZEICHNIS	XXI		
V	ANHANG	XXIII		
•				

DANKSAGUNG

I ABKÜRZUNGSVERZEICHNIS

adaddiereAKAntikörperAqua bidestzweifach destilliertes WasserATSAcidic Terminal SegmentBSABovines Serumalbuminbzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEIOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hpiStunde(n)hpiStunde(n)hpiStunde(n)hpiStunde(n)hpiKilodaltonKHZKilodaltonKHZKilodaltonKHZKilodentoMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	α	anti
AKAntikörperAqua bidestzweifach destilliertes WasserATSAcidic Terminal SegmentBSABovines Serumalbuminbzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.da beißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hpiStunden ach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonKHzKilodaltonKHzKilodaltonKHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	ad	addiere
Aqua bidestzweifach destilliertes WasserATSAcidic Terminal SegmentBSABovines Serumalbuminbzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonKHzKilodaltonKHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMDR1multidrug resistance 1	AK	Antikörper
ATSAcidic Terminal SegmentBSABovines Serumalbuminbzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEiOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilodaltonkHzKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	Aqua bidest	zweifach destilliertes Wasser
BSABovines Serumalburninbzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMDR1multidrug resistance 1	ATS	Acidic Terminal Segment
bzw.beziehungsweiseca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hStunde(n)hIntercellular adhesion molecule 1IFAImmunfluoreszenzanalyseinfizierter Erythrozy (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistryKDaKilodaltonKHzKilodaltonKHzKilodentzMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMDR1multidrug resistance 1	BSA	Bovines Serumalbumin
ca.circacKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunde(nalteria adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilodaltonkHzKilodaltonkHzMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDRImultidrug resistance 1	bzw.	beziehungsweise
cKonzentration (molare)CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Likedh.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGräm-fluoreszierendes ProteingGräm-fluoreszierendes ProteinhStunde(n)hpiStunde(n)hpiInternational Union of Pure and Applied ChemistrykDaKilodaltonKHzKilodaltonKHzKilodaltonMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMDR1multidrug resistance 1	ca.	circa
CDCluster of DifferentiationcfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEIOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrüm-fluoreszierendes ProteingGrüm-fluoreszierendes ProteingGrüm-fluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilodaltonMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	с	Konzentration (molare)
cfgzentrifugierenCHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hpiStunde(n)hpiStunde(n)hpiInternational Union of Pure and Applied ChemistryKDaKilodaltonKHzKilodaltonKHzKilodaltonKHzKilodaltonKHzMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	CD	Cluster of Differentiation
CHOChinese Hamster OvaryCIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrammhStunde(n)hpiStunde(n)hpiStunde(n)hpiInteractellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilodaltonkHzKilodaltonkHzMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefis)MDR1multidrug resistance 1	cfg	zentrifugieren
CIDRCysteine Rich Interdomain RegionCO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	СНО	Chinese Hamster Ovary
CO2KohlendioxidCSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMDR1multidrug resistance 1	CIDR	Cysteine Rich Interdomain Region
CSAChondroitin Sulfat ACTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrüm-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1infizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	CO ₂	Kohlendioxid
CTC-TerminusDBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gGrämmhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	CSA	Chondroitin Sulfat A
DBLDuffy Binding Liked.h.das heißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACKilodaltonkHzKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	СТ	C-Terminus
dasheißtDMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilodaltonkHzKilodaltonmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	DBL	Duffy Binding Like
DMSODimethylsulfoxidDNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	d.h.	das heißt
DNADesoxyribonukleinsäureEGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	DMSO	Dimethylsulfoxid
EGFepidermal growth factorEMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	DNA	Desoxyribonukleinsäure
EMErythrozytenmembranEPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	EGF	epidermal growth factor
EPCRendothelial protein C receptorEtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	EM	Erythrozytenmembran
EtOHEthanolFACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	EPCR	endothelial protein C receptor
FACSFluorescent activated cell sortingFCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACKilodaltonkHzKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	EtOH	Ethanol
FCFold Changex gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	FACS	Fluorescent activated cell sorting
x gErdbeschleunigung (gravity)GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	FC	Fold Change
GFPGrün-fluoreszierendes ProteingGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	Xg	Erdbeschleunigung (gravity)
gGrammhStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	GFP	Grün-fluoreszierendes Protein
hStunde(n)hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	g	Gramm
hpiStunden nach der Invasion (hours post invasion)ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	h	Stunde(n)
ICAM-1intercellular adhesion molecule 1IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertz1LiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	hpi	Stunden nach der Invasion (hours post invasion)
IFAImmunfluoreszenzanalyseiRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	ICAM-1	intercellular adhesion molecule 1
iRBCinfizierter Erythrozyt (infected red blood cell)IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	IFA	Immunfluoreszenzanalyse
IUPACInternational Union of Pure and Applied ChemistrykDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	iRBC	infizierter Erythrozyt (infected red blood cell)
kDaKilodaltonkHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	IUPAC	International Union of Pure and Applied Chemistry
kHzKilohertzlLiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	kDa	Kilodalton
ILiterMmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	kHz	Kilohertz
Mmolare MasseMACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	1	Liter
MACSMagnet Activated Cell Sortingmax.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	М	molare Masse
max.maximalMCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	MACS	Magnet Activated Cell Sorting
MCMaurersche Spalten (Maurer's clefts)MDR1multidrug resistance 1	max.	maximal
MDR1 multidrug resistance 1	MC	Maurersche Spalten (<i>Maurer's clefts</i>)
\cdots	MDR1	multidrug resistance 1
MFS Malaria Freezing Solution	MFS	Malaria Freezing Solution
mind. mindestens	mind.	mindestens
min Minute(n)	min	Minute(n)
ml Milliliter	ml	Milliliter

mM	Millimolar
MTS	Malaria Thawing Solution
μg	Mikrogramm
μl	Mikroliter
μm	Mikrometer
NCBI	National Center for Biotechnology Information (USA)
NTS	N-terminales Segment
N ₂	Stickstoff
OD	Optische Dichte
O_2	Sauerstoff
padj	Signifikanz
Р.	Plasmodium
PBS	Phophate Buffered Saline
PEXEL	Plasmodium falciparum Export Element
PfEMP1	Plasmodium falciparum Erythrocyte Membrane Protein 1
PfMC-2TM	Plasmodium falciparum Maurers clefts-2 Transmembrane
pH	pondus hydrogenii (Wasserstoffanteil)
PM	Parasitenmembran
PV	Parasitophore Vakuole
PVM	Parasitophore Vakuolenmembran
RIFIN	Repetitive Interspersed Family
RNA	Ribonukleinsäure
RPMI	Roswell Park Memorial Institut (Zellkulturmedium)
RT	Raumtemperatur
SC	semi-conserved
sec	Sekunde(n)
SP	Signalpeptid
STEVOR	Subtelomeric Variable Open Reading Frame
ΤΝFα	Tumornekrosefaktor-a
TM	Transmembrandomäne
UV	Ultraviolettes Licht
var	variant gene
VCAM-1	vascular cell adhesion molecule-1
VSA	variable surface antigens
VS.	versus
v/v	Volumen/Volumen
WHO	World Health Organisation
w/V	Gewicht/Volumen
z.B.	zum Beispiel
°C	Grad Celsius
%	Prozent

1. Einleitung

In Malaria-endemischen Gebieten leben nach Angaben der Weltgesundheitsorganisation (WHO) etwa 40% der Weltbevölkerung (Abbildung 1). Für das Jahr 2012 wurde die Zahl der Malaria-Fälle auf 207 Millionen geschätzt, mit etwa 627.000 Todesfällen, wobei es sich zumeist um Kleinkinder unter fünf Jahren handelte (World Malaria Report 2013).

Abbildung 1: Malaria-Risikogebiete (http://www.nature.com; 2013). Bei den dunkelblau markierten Ländern handelt es sich um Regionen mit einem hohen Erkrankungsrisiko für Malaria. In den grau-blau markierten geographischen Bereichen besteht ein geringes Risiko einer Malariaerkerkrankung. In den gelben Bereichen wurde Malaria bereits oder weitestgehend eliminiert, wohingegen die hellgrauen Regionen Malaria-freie Gebiete anzeigen.

1.1 Krankheitsbild der Malaria tropica

Bei der Malaria handelt es sich um eine meldepflichtige Tropenkrankheit, die durch eine Infektion mit Protozoen der Gattung *Plasmodium* hervorgerufen wird, und die hauptsächlich in den Tropen und Subtropen auftritt (Abbildung 1).

Die fünf humanpathogenen *Plasmodium*-Arten *P. malariae, P. ovale, P. vivax, P. knowlesii* und *P. falciparum* zeigen einen divergierenden Krankheitsverlauf und eine unterschiedliche geographische Verbreitung. Die *Malaria tropica*, die schwerste Form der Malaria, wird durch *P. falciparum* (Welch, 1897) verursacht und ist für etwa 90% der Todesfälle verantwortlich. Die meisten Infektionen weisen einen milden Krankheitsverlauf mit Influenza-ähnlichen Symptomen wie Fieber, Kopf- und Gliederschmerzen auf. Im Gegensatz dazu kommt es bei der schweren klinischen Form der Malaria zu schwerer Anämie, Atemnot, Hämoglobinurie, Hypoglykämie, pulmonalen Ödemen sowie zu unterschiedlichen Symptomen.

1.2 Lebenszyklus von P. falciparum

Der Lebenszyklus von *P. falciparum* ist durch einen obligaten Wirtswechsel charakterisiert, bei dem die sexuelle Gamogonie sowie die asexuelle Sporogonie im Endwirt, der weiblichen Stechmücke der Gattung *Anopheles* (Familie *Culicidae*), stattfinden. Im menschlichen Zwischenwirt erfolgt hingegen die Vermehrung des Parasiten mittels asexueller Schizogonie (Abbildung 2).

Abbildung 2: Lebenszyklus des Malariaerregers *P. falciparum* (http://www.dpd.cdc.gov, 20.07.2009; modifiziert von Bachmann, 2010). Eine weibliche Malaria-infizierte *Anopheles*-Mücke inokuliert während einer Blutmahlzeit Sporozoiten in den humanen Wirt. Die Sporozoiten infizieren Leberzellen, womit die exoerythrozytäre Phase (in der Leber) beginnt, die dem Parasiten einmalig zur Vermehrung dient. Die in der Leber gebildeten Merozoiten gelangen durch Abschnürung von Merosomen in den Blutkreislauf, wo sie Erythrozyten invadieren. In dieser anschließenden erythrozytären Phase entwickelt sich der Parasit innerhalb von 48 h vom jungen Ringstadium, über den Trophozoiten bis zum Schizontenstadium. Mit der Ruptur der Schizonten kommt es zur Freisetzung von 16 bis 32 Merozoiten, die neue Erythrozyten invadieren, und der Zyklus beginnt erneut. Lediglich eine geringe Anzahl von Parasiten entwickelt sich zu Gametozyten, den sexuellen Stadien, die innerhalb von zehn Tagen reifen. Bei einem Stich durch eine weibliche Stechmücke werden diese aufgenommen und differenzieren sich im Darm der Mücke zu weiblichen und männlichen Gameten. Nach der Verschmelzung zur Zygote, transmigriert der motile Ookinet die Darmwand und bildet schließlich eine Oozyste, in welcher die Sporozoiten reifen. Nach der Ruptur der Oozyste gelangen diese in die Speicheldrüsen des Insekts und werden bei der nächsten Blutmahlzeit mit der Saliva in den Menschen inokuliert. (blau: asexueller Zyklus, rot: sexueller Zyklus).

Durch den Stich einer mit *P. falciparum*-infizierten *Anopheles*-Mücke werden die in der Saliva befindlichen Sporozoiten in die Blutbahn des Menschen injiziert. Mit dem Blutstrom gelangen sie in die Leber, wo sie durch Kupffer-Zellen und Hepatozyten transmigrieren bevor sie unter Ausbildung einer parasitophoren Vakuole (PV) einen Hepatozyten infizieren. Der in dieser Zelle reifende Leberschizont produziert Tausende von sogenannten Lebermerozoiten, die dann in Form von sich abschnürenden Vesikeln, sogenannten Merosomen, in die Sinusoide der Leber freigesetzt werden (Sturm *et al.*, 2006). Die Merozoiten gelangen in den Blutkreislauf und invadieren unmittelbar Erythrozyten, wodurch die erythrozytäre Phase beginnt. Im

Allgemeinen findet in dieser Phase eine zyklische Vermehrung durch asexuelle Schizogonie stattfindet, wobei letztlich ein Schizont gebildet wird, der die folgende Parasitengeneration (etwa 16 bis 32 neue Merozoiten) hervorbringt. Ein kleiner Teil der invadierten Merozoiten entwickelt sich zu den sexuellen Stadien, den Gametozyten. Bei einer erneuten Blutmahlzeit werden diese von einer Mücke aufgenommen und differenzieren sich in ihrem Darm zu den weiblichen Makrogameten und den männlichen Mikrogameten. Durch Verschmelzung des Mikrogameten mit dem Makrogameten entsteht eine diploide Zygote, die aufgrund ihrer Motilität als Ookinet bezeichnet wird. Nach der Transmigration des Darmepithels lagert diese sich an der Basalmembran der Mitteldarmwand der Mücke an und differenziert zur Oozyste. Die ins Coelom ragende Oozyste platzt nach ihrer Reifung und setzt die in ihr befindlichen Sporozoiten frei, welche in die Speicheldrüsen der Stechmücke gelangen und bei der nächsten Blutmahlzeit des Insekts in einen menschlichen Wirt injiziert werden.

1.3 Asexuelle Stadien von P. falciparum

Die Plasmodien werden in dem Stamm Alveolata, dem Unterstamm der Apicomplexa zugeordnet, da sie in den invasiven Stadien die für diese Gattung charakteristischen Apicalkomplex am apikalen Pol aufweisen. Der Apicalkomplex besteht aus Conoid, ein durch Mikrotubuli organisiertes Zentrum, zwei Membran-umhüllten Rhoptrien, einigen an den Rhoptrienductus angehängte kleinere Mikronemen und *Dense Granules* im Zytoplasma (Preiser *et al.*, 2000) (Abbildung 3). Der Inhalt dieser Organellen wird während der Invasion freigesetzt und die durchschnittlich 48 stündige Entwicklung des Parasiten beginnt.

Abbildung 3: Asexuelle Entwicklungsstadien von *P. falciparum* in Erythrozyten. Der infizierte Erythrozyt durchläuft während der Reifung des Parasiten (junges Ringstadium bis platzender Schizont) verschiedene Modifikationen, wobei die auffälligsten Veränderungen die Bildung der Maurerschen Spalten und die Formation von *Knobs* auf der Oberfläche infizierter Erythrozyten sind. Oben: Asexuelle Blutstadien im Giemsa-gefärbten Blutausstrich unter dem Lichtmikroskop. Unten: Schematische Darstellung der asexuellen Entwicklungsstadien (Maier *et al.*, 2009; modifiziert).

Obwohl während des Ringstadiums im Mikroskop keine sichtbaren Veränderungen in Größe und Morphologie erkennbar sind (Bannister et al., 2000; Bannister et al., 2004), beginnt der Parasit unmittelbar nach der Invasion damit, die Wirtszelle zu modifizieren. In diesem Kontext wird all das etabliert, was für die Zytoadhärenz und Immunevasion infizierter Erythrozyten essentiell ist (Spielmann et al., 2006). Dazu wird zunächst ein Proteintransportsystem, die Maurerschen Spalten (Maurer's clefts; MC) (Hanssen et al., 2008), aufgebaut, das den Transport parasitärer Proteine vom Parasiten zur Oberfläche der Wirtszelle erlaubt. Dadurch kann der Parasit die Erythrozytenoberfläche modifizieren und eigene Proteine wie das PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) darin verankern. Letzteres geschieht vornehmlich in lokalen Ausstülpungen der Erythrozytenmembran, den sogenannten Knobs, die im Trophozoitenstadium an der Oberfläche infizierter Erythrozyten erscheinen (Gruenberg et al., 1983; Langreth et al., 1978; Luse und Miller 1971). Diese elektronendichten Strukturen setzen sich aus verschiedenen Proteinen parasitären Ursprungs wie KAHRP (Knob-Associated *Histidin-Rich Protein*) und *Pf*EMP3 (*Plasmodium falciparum erythrocyte membrane protein* 3) zusammen, die mit Proteinen des Zytoskeletts (wie Spektrin) der Wirtszelle interagieren (Kilejian et al., 1991; Oh et al., 2000; Pei et al., 2005). Den Knobs wird eine große Bedeutung hinsichtlich der Pathogenität von P. falciparum zugeschrieben, da diese bzw. die in den Knobs verankerten Proteine parasitärer Herkunft den infizierten Erythrozyten die Bindung an Endothelzellen ermöglichen sollen, um somit der Eliminierung über die Milz zu entgehen (Kilejian *et al.*, 1991; Oh *et al.*, 2000). Das Trophozoitenstadium zeichnet sich durch einen aktiven Metabolismus aus, in dem das Wachstum des Parasiten stattfindet und das als Nahrungsquelle dienende Hämoglobin in der Nahrungsvakuole als unlösliches Hämozoin ablagert wird. Des Weiteren werden hier Vorbereitungen für die im Schizontenstadium stattfindende Zellteilung getroffen (Abbildung 3).

1.4 Zytoadhärenz/ Sequestrierung

Die schwere Form der Malaria tropica betrifft hauptsächlich Kleinkinder unter fünf Jahren und schwangere Frauen, wohingegen ältere Kinder und Erwachsene in Malaria-endemischen Gebieten nach wiederholten Infektionen mit P. falciparum eine Semi-Immunität erlangen, die sie vor den schweren klinischen Krankheitssymptomen schützt (Bull et al., 1998; Marsh et al., 1989). Grund für die sich nur langsam entwickelnde Immunität sind verschiedene Immunevasionsstrategien des Malariaerregers. So kann der Parasit mithilfe variabler Proteine, die auf der Oberfläche infizierter Erythrozyten exponiert werden, an verschiedene Endothelrezeptoren in der Mikrovaskulatur diverser Organe adhärieren. Durch diese sogenannte Sequestrierung ist der Parasit dazu in der Lage, der Milzpassage und der dortigen Erkennung und Eliminierung zu entgehen. Im peripheren Blutkreislauf von Malariapatienten können aufgrund dieser Zytoadhärenz lediglich junge Ringe und reife Gametozyten (Stadium V) nachgewiesen werden (Baruch et al., 1999; David et al., 1983; Ho et al., 1990; Kyes et al., 2007; Looareesuwan et al., 1987; MacPherson et al., 1985). Wie wichtig die Eliminierung infizierter Erythrozyten durch die Milz für den Verlauf der Malariaerkrankung ist, konnte anhand von Versuchen mit Aotus Affen gezeigt werden. Splenektomierte Tiere entwickelten hierbei schwere Infektionen, was auf die erhöhte Akkumulation infizierter Erythrozyten im Gefäßsystem zurückgeführt wurde (Langreth und Peterson, 1985; Pye et al., 1994). Bei einem Malaria-Patienten war drei Wochen nach der Splenektomie eine hohe Parasitämie zu beobachten. Außerdem konnten neben den Ringstadien auch alle anderen erythrozytären Entwicklungsstadien wie Trophozoiten und Schizonten im peripheren Blutkreislauf detektiert werden. Dies zeigte, dass die infizierten Erythrozyten nicht in der Lage waren an Endothelzellen zu adhärieren und somit erst nach der Entfernung der Milz überleben konnten (Bachmann et al., 2009). Zusätzlich Sequestrierung, zur der Zytoadhärenz an Endothelzellen, können infizierte Erythrozyten mit nicht infizierten Erythrozyten sogenannte

Rosetten bilden (David *et al.*, 1988; Udomsangpetch *et al.*, 1989a). Außerdem kann es mithilfe von Thrombozyten zur Bindung anderer infizierter Erythrozyten und somit zu einer Verklumpung (Autoagglutinierung) kommen (Pain *et al.*, 2001) (Abbildung 4). Des Weiteren wird durch die Adhäsion an dendritische Zellen die Reifung dieser Antigen-präsentierenden Zellen inhibiert und folglich die Immunantwort des Wirtes moduliert (Miller *et al.*, 2002; Urban *et al.*, 1999).

Abbildung 4: Adhäsion von *P. falciparum*-infizierten Erythrozyten an verschiedene Wirtszellen (Rowe *et al.*, 2009). *P. falciparum* infizierte Erythrozyten (mit Parasiten im Trophozoitenstadium) können an verschiedene Wirtszellen adhärieren sowie an nicht infizierte Erythrozyten (Bildung von Rosetten) und an Thrombozyten (Thrombozyten-vermittelte Verklumpung).

1.5 Humane Endothelrezeptoren

Bislang wurden insgesamt 22 Endothelrezeptoren und Liganden beschrieben, die mit *P. falciparum* infizierten Erythrozyten interagieren. Dabei ist für die endothelialen Oberflächenstrukturen wie CD36 (Barnwell *et al.*, 1985; Barnwell *et al.*, 1989; Ockenhouse *et al.*, 1988; Oquendo *et al.*, 1989), die Zelldadhäsionsmoleküle ICAM-1 (*intercellular adhesion molecule-1*) (Berendt *et al.*, 1989), PECAM-1 (*platelet/endothelial cell adhesion molecule-1*) (Treutiger *et al.*, 1997), VCAM-1 (*vascular cell adhesion molecule-1*) (Ockenhouse *et al.*, 1992) und NCAM (*neuronal cell adhesion molecule*) (Pouvelle *et al.*, 2007), für die Selektine P-Selektin und E-Selektin (Ho *et al.*, 1998; Ockenhouse *et al.*, 1992), Thrombospondin (TSP) (Roberts *et al.*, 1985) sowie für CSA (Chondroitinsulfat A) (Fried und Duffy, 1996; Rogerson

et al., 1995), CR1 (*complement-receptor* 1) (Rowe *et al.*, 1997) und Hyaluronsäure (Beeson *et al.*, 2000) eine Bindungsbereitschaft bezüglich infizierter Erythrozyten bereits länger bekannt. Erst kürzlich hingegen konnten EPCR (*endothelial protein C receptor*) (Turner *et al.*, 2013) und sieben auf Endothelzellen lokalisierte Oberflächenproteine, wie die Tetraspanine CD9 und CD151, MDR1 (*multidrug-resistance protein* 1), MRP2 (*multidrug resistance-associated protein* 2), EPOR (*erythropoietin receptor*), TNFR1 (*tumor necrosis factor* 1) sowie TNFR2 (*tumor necrosis factor* 2), als Endothelrezeptoren für infizierte Erythrozyten identifiziert werden (Esser und Bachmann *et al.*, 2014).

1.5.1 CD36

Bei dem Endothelrezeptor CD36 handelt es sich um ein integrales Membranprotein, das an der Oberfläche unterschiedlicher Zelltypen wie Endothelzellen, dendritischen Zellen, Thrombozyten, diversen Epithelzellen (Febbraio *et al.*, 2001), aber wenig im Gehirn (Turner *et al.*, 1994) lokalisiert ist. Das humane CD36 Molekül hat ein Molekulargewicht von 88 kDa und bildet eine Haarnadel-ähnliche in die extrazelluläre Matrix ragende Struktur aus, wobei an jedem Proteinende eine hydrophobe Region existiert (Abbildung 5).

Abbildung 5: Topologie des Endothelrezeptors CD36 (vorhergesagt) (wikipedia.org). Das integrale Membranprotein CD36 weist im extrazellulären Bereich eine Haarnadel-ähnliche Struktur auf. Die hydrophoben Bereiche an N- sowie C-terminalem Ende befinden sich hingegen im Zytoplasma.

CD36 stellt im Zusammenhang mit *P. falciparum* den quantitativ wichtigsten Rezeptor dar, da eine Bindung mit nahezu allen nicht-plazentalen *P. falciparum*-Isolaten stattfindet (Chaiyaroj *et al.*, 1996; Newbold *et al.*, 1997; Ockenhouse *et al.*, 1991; Reeder *et al.*, 1994; Rogerson *et al.*, 1999). Es wird angenommen, dass bei der Ansammlung und Rekrutierung von CD36 an der Oberfläche aktivierter Endothelzellen zusätzliche Rezeptoren involviert sind, um eine feste

Bindung an Endothelzellen zu erhalten (Davis *et al.*, 2011) (Abbildung 7). Auf parasitärer Seite konnten für die Bindung infizierter Erythrozyten an CD36 die *Pf*EMP1 Proteine auf der Erythrozytenoberfläche als Interaktionspartner nachgewiesen werden (Baruch *et al.*, 1995, Baruch *et al.*, 1996; Magowan *et al.*, 1988; Smith *et al.*, 1995). Die Rolle von CD36 als Pathogenitätsfaktor im Kontext mit zerebraler Malaria ist umstritten (Das *et al.*, 2009; mv Grau *et al.*, 2003; Newbold *et al.*, 1997; Ockenhouse *et al.*, 1991; Turner *et al.*, 1994). Zum einen korreliert der Grad der Bindung von infizierten Erythrozyten an CD36 nicht mit der Schwere der Krankheit (Newbold *et al.*, 1997), zum anderen war lediglich eine geringe Expression an CD36-Molekülen auf den endothelialen Gehirnzellen bei Patienten mit schwerer Malaria nachzuweisen (Turner *et al.*, 1994).

1.5.2 P-Selektin

P-Selektin (CD62P) gehört zur sogenannten Selektin-Familie, einer Familie von Zelladhäsionsmolekülen, die das initiale Anheften von Leukozyten sowie das Rollen der Leukozyten über die Endothelzellen (Leukozyten Rolling) während der Rekrutierung von Leukozyten vermitteln (Doré et al., 1993; Ley et al., 1995; Luscinskas et al., 1995). In inaktivierten Endothelzellen wird P-Selektin konstitutiv in Weibel-Palade-Körperchen gelagert, wohingegen P-Selektin in inaktivierten Thrombozyten in α-Granulat lokalisiert ist (Hsu-Lin et al., 1984; McEver et al., 1989). Nach der Aktivierung der Zelle durch inflammatorische Stimuli wie Tumornekrosefaktor-a (TNFa) und Cytokine wie IL-13 wird P-Selektin innerhalb von Minuten mobilisiert und zur Zelloberfläche transportiert (Grau et al., 1987; Woltmann et al., 2000). Abhängig von den umgebenden Bedingungen hat P-Selektin eine Größe von etwa 120 bis 140 kDa und besitzt am N-terminalen Ende ein Signalpeptid, gefolgt von einer Lektin-Domäne, welche wichtig für die Erkennung des primären Liganden für P-Selektin, P-selectin glycoprotein ligand-1 (PSGL-1) (Chou et al., 1995) sowie für die Interaktion mit P. falciparum inifizierten Erythrozyten ist (Ho et al., 1998). Neben der anschließenden EGF (epidermal growth factor)-ähnlichen Domäne befinden sich neun kurze Konsensus-Wiederholungseinheiten (short concensus repeat), die an verschiedenen Stellen glykosyliert sind. Mit der Transmembrandomäne ist das Zelladhäsionsmolekül in der Membran verankert, wohingegen der C-terminal gelegene zytoplasmatische Schwanz in das Zytoplasma ragt (Chou et al., 1995; Chou et al., 1996; Johnston et al., 1989) (Abbildung 6).

Abbildung 6: Topologie des Zelladhäsionsmoleküls P-Selektin (Chen *et al.*, 2006 (modifiziert)). Die große extrazelluläre Region umfasst ein am N-Terminus lokalisiertes Signalpeptid (SP), eine Lektin-Domäne, eine EGF (*epidermal growth factor*)-ähnliche Domäne (EGF) sowie neun kurze Wiederholungssequenzen, die an verschiedenen Stellen glykosyliert sind. Die Transmembrandomäne (TM) ist in der Zellmembran verankert, wohingegen der kurze C-terminal gelegene Schwanz in das Zytoplasma gerichtet ist.

Im Zusammenhang mit *P. falciparum* wird für P-Selektin eine ähnliche Rolle wie bei dem Leukozyten *Rolling* angenommen (Abbildung 7) (Davis *et al.*, 2011).

Abbildung 7: Adhäsion von infizierten Erythrozyten an CD36 (Modell) (Davis *et al.*, 2011 (modifiziert)). Infizierte Erythrozyten (iRBC) gelangen durch die physiologischen Fließbedingungen zu den Endothelzellen und den dortigen Rezeptoren wie P-Selektin, VCAM-1 und ICAM-1. Durch eine schwache Bindung mit den Endothelrezeptoren wird die Geschwindigkeit der infizierten Erythrozyten herabgesetzt (*Tethering*). Im nächsten Schritt rollen die infizierten Erythrozyten über die Endothelzellen (*Rolling*), wodurch sie sich weiter verlangsamen und eine Bindung an CD36 möglich ist. Die Bindung an CD36 führt zu einer Aktivierung von Kinasen (Src Familie) und dem Adapter-Protein p130CAS, was im Umbau des Aktin-Zytoskeletts sowie in der Ansammlung von CD36 auf der Zelloberfläche resultiert. VSA: variable Oberflächenantigene (*variable surface antigens*).

In einem ersten Schritt werden (induziert durch P. falciparum) große Mengen des Tumornekrosefaktor-a (TNFa) freigesetzt (Grau et al., 1987), wodurch die Endothelzellen aktiviert werden. P-Selektin wird daraufhin an die Oberfläche der Endothelzellen transloziert (Janeway et al., 2008), und zusätzlich die Expression von ICAM-1 auf der Zelloberfläche erhöht (Grau et al., 1991). Bei dem Modell der Adhäsion von infizierten Erythrozyten an CD36 die infizierten Erythrozyten mit wird angenommen, dass den physiologischen Fließbedingungen zu den Endothelzellen und den dort lokalisierten Rezeptoren wie P-Selektin, VCAM-1 und ICAM-1 gelangen. Es kommt zu einer schwachen Bindung zwischen Endothelrezeptor und infiziertem Erythrozyt, wodurch die Geschwindigkeit des infizierten Erythrozyten herabgesetzt wird (Tethering). Anschließend rollen die infizierten Erythrozyten über die Endothelzellen (Rolling), wodurch sie zunehmend an Geschwindigkeit verlieren und eine Bindung an CD36 ermöglicht wird. Durch die Bindung an CD36 werden Kinasen (Src Familie) und das Adapter-Protein p130CAS aktiviert, was zu einem Umbau des Aktin-Zytoskeletts sowie zur Ansammlung von CD36 auf der Zelloberfläche führt (Abbildung 7) (Davis et al., 2011). Diesbezüglich konnte bereits mithilfe von aktivierten Thrombozyten, die sowohl CD36 als auch P-Selektin exprimierten, unter Fließbedingungen gezeigt werden, dass die Inhibition von P-Selektin mit der Adhäsion an CD36 bei einigen Patientenisolaten korrelierte, wohingegen andere Isolate direkt mit CD36 zu interagieren schienen (Ho et al., 1998).

1.6 Definierte und potentielle Adhäsionsliganden: Variable Oberflächenantigene

Ein wichtiger Pathogenitätsfaktor von *P. falciparum* ist die Expression von Antigenen parasitären Ursprungs auf der Oberfläche von infizierten Erythrozyten, die generell als variable Oberflächenantigene bezeichnet werden. Neben *Pf*EMP1 Proteinen (Leech *et al.*, 1984) gehören die Mitglieder der 2TM-Superfamilie RIFIN (Cheng *et al.*, 1998; Kyes *et al.*, 1999; Fernandez *et al.*, 1999), STEVOR (Kaviratne *et al.*, 2002; Blythe *et al.*, 2008; Niang *et al.*, 2009) und *Pf*MC-2TM (Lavazec *et al.*, 2006; Sam-Yellowe *et al.*, 2004) zu den variablen Oberflächenproteinen. Während für *Pf*EMP1 Proteine eine Beteiligung an der Bindung infizierter Erythrozyten an Endothelzellen als erwiesen gilt, wird dies für die Proteine der 2TM-Superfamilie lediglich nicht ausgeschlossen.

1.6.1 Die PfEMP1-Proteinfamilie

Die Mitglieder der PfEMP1 Proteinfamilie sind in verschiedene Immunevasionsstrategien von Р. falciparum involviert. Durch die Expression unterschiedlicher variabler Oberflächenantigene auf der Wirtszellmembran ist der Parasit dazu in der Lage, im Verlauf der Infektion seinen Phänotyp zu variieren. Diese Fähigkeit zur antigenen Variation besitzt der Parasit aufgrund des evolutionären Erwerbs von Multigenfamilien, die die verschiedenen Oberflächenproteine kodieren. Jedes Gen bringt dabei eine andere Proteinvariante hervor (Duffy et al., 2003; Ferreira et al., 2004). Die Regulation der Genexpression wird hierbei durch einen Mechanismus kontrolliert, der die Transkription eines var-Gens erlaubt, wohingegen die verbleibenden var-Gene in dieser Zeit inaktiviert sind (mutually exclusive) (Scherf et al., 2008; Voss et al., 2006). Zusätzlich sind die PfEMP1 Proteine an der Sequestrierung (siehe 1.4), beteiligt, wobei sie das dominante Ziel der erworbenen Immunantwort repräsentieren (Kyes et al., 2007). Etwa 16 Stunden nach der Invasion können PfEMP1 Proteine auf der Oberfläche infizierter Erythrozyten detektiert werden (Gardner et al., 1996). Kodiert werden die 200 bis 350 kDa großen *Pf*EMP1 Proteine (*Plasmodium falciparum Erythrocyte Membrane Protein* 1) auf zwei Exons (Leech et al., 1984; Su et al., 1995) von der var-Genfamilie (variant gene family), die 60 var-Gene im haploiden Genom umfasst (Baruch et al., 1995; Gardner et al., 2002; Smith et al., 1995; Su et al., 1995). Dabei unterscheiden sich die var-Gene verschiedener Plasmodium-Isolate voneinander, woraus sich eine extrem hohe Diversität ergibt (Kraemer et al., 2007). Die große variable extrazelluläre Region wird von Exon I kodiert und durch Kombination einer variierenden Anzahl an DBL- (Duffy Binding Like) und CIDR- (Cystein Rich Interdomain Region) Domänen gebildet, inklusive eines kurzen N-terminalen Segments (NTS). Außerdem befinden sich auf diesem Exon das sogenannte PEXEL-Motiv (Plasmodium Export Element), das die Proteine für den Export in die Wirtszelle kennzeichnet, und eine Transmembrandomäne (TM), die das Protein in der Membran verankert. Das zweite Exon kodiert im Gegensatz dazu den konservierten, zytoplasmatischen Proteinanteil (ATS, Acidic Terminal Segment) (Smith et al., 2000a). Die Variabilität der PfEMP1 Proteine hinsichtlich ihrer Größe und der divergierenden Domänen-Abfolge in der variablen extrazellulären Region lassen auf unterschiedliche Bindungseigenschaften schließen (Rowe et al., 2009). Um trotz der Diversität der PfEMP1 Proteine potentielle gemeinsame Bindungsverhalten vorhersagen zu können, wurde mithilfe von Sequenzanalysen die Klassifizierung dieser Proteine vorgenommen (Smith *et al.*, 2000a). Hierbei sind die DBL-Domänen der *Pf*EMP1 Proteine in vier (α , β , γ , und δ), die CIDR-Domänen in drei (α , β und γ) Haupttypen unterteilt, wobei eine weitere SubKlassifizierung der Domänen sowie die Identifizierung von sogenannten Domänen-Kassetten existiert (Rask *et al.*, 2010). Bestimmte Domänen und Domänen-Kassetten (*domain cassettes*; DC) konnten bereits als Bindungsstelle für Endothelrezeptoren wie CD36 und ICAM-1 identifiziert werden. So wurde bereits gezeigt, dass die CIDR-Domäne das Binden an CD36 erlaubt (Baruch *et al.*, 1997). Die Bindung an ICAM-1 findet an der DBLβ-Domäne statt (Smith *et al.*, 2000a), wobei auch gezeigt wurde, dass eine Bindung an diese Domäne durch ICAM-1 nicht immer erfolgt (Oleinikov *et al.*, 2009; Smith *et al.*, 2000b). Des Weiteren interagiert EPCR mit CIDR α 1-Domänen (mit den Subtypen 1.1, 1.4, 1.5 und 1.6) (Turner *et al.*, 2013). Für PECAM konnte die Domänen-Kassette DC5 als entsprechender Antagonist nachgewiesen werden (Berger *et al.*, 2013). Zudem wurde für kleine *Pf*EMP1 Proteine eine Zusammensetzung aus vier extrazellulären Domänen festgestellt (eine Abfolge bestehend aus DBL α -CIDR α gefolgt von DBL-Domänen (β oder γ) auf, die vor oder nach der Domänen-Abfolge (Tandem-Domäne) am C-Terminus eingefügt sind (Abbildung 8).

Abbildung 8: Aufbau und Klassifizierung von *Pf*EMP1 Proteinen (Smith 2014; modifiziert). Die blauen *Pf*EMP1-Domänen zeigen den Aufbau eines *Pf*EMP1 Proteins mit einer typischen Anordnung der Domänen. Der erste Pfeil weist auf die weitere Klassifizierung bezüglich der Organisation der Domänen hin. Dabei bilden bestimmte Typen von DBL- und CIDR-Domänen eine bevorzugte Domänen-Abfolge (Tandem Domäne) (DBL α -CIDR α und DBL δ -CIDR $\beta/\gamma/\delta$). Die gleichen Anordnungen der Tandem Domänen sind in kleinen (4 Domänen) und großen (5-9 Domänen) *Pf*EMP1 zu finden. Zusätzlich besitzen große Proteine einzigartige DBL-Subtypen (β oder γ), die nicht in kleinen Proteinen vorkommen. Der zweite Pfeil zeigt, dass eine weitere Sub-Typisierung zu drei verschiedenen semi-konservierten Kopfstrukturen mit unterschiedlichen funktionellen Eigenschaften führt (Gruppe A (EPCR Ligand), Gruppe A (Rosetting) und Gruppe B & C (CD36 Ligand)). TM: Transmembrandomäne, cyt: zytoplasmatischer Schwanz.

Am N-terminalen Ende der *Pf*EMP1 Proteine befindet sich die semi-konservierte Kopfstruktur des Proteins mit einer bestimmen DBL-CIDR-Domänen-Abfolge (Su *et al.*, 1995), die eine Unterscheidung zwischen Gruppe A (EPCR Ligand oder *Rosetting*) (Rowe *et al.*, 1997; Turner *et al.*, 2013) und Gruppe B und C (CD36 Ligand) (Baruch *et al.*, 1997; Smith *et al.*, 1998) erlaubt. Obwohl das Repertoire der *var*-Gene hoch divergent ist, sind die meisten *Pf*EMP1 Proteine, abhängig von der *upstream* Sequenz (ups) und Lokalisation auf dem Chromosom, in drei Hauptgruppen (Gruppe A (upsA), B (upsB) und C (entweder upsC oder upsB)) unterteilt (Lavstsen *et al.*, 2003).

1.6.2 Die 2TM-Superfamilie

Die bekanntesten Mitglieder der 2TM-Superfamilie, RIFIN, STEVOR und möglicherweise PfMC-2TM Proteine, zeichnen sich durch einen gemeinsamen Aufbau aus, der vor allem durch die zwei namensgebenden Transmembrandomänen gekennzeichnet ist (Sam-Yellowe et al., 2004). Kodiert werden diese Proteine von der rif- (repetitive interspersed family), stevor-(subtelomeric variable open reading frame) bzw. pfmc-2tm-(P. falciparum maurer's cleft-2 transmembrane) Multigenfamilie, die einen gemeinsamen Aktivierungsfaktor für die Regulation der Genexpression aufweisen. In diesem Zusammenhang wird angenommen, dass die Herunterregulierung einer Multigenfamilie die Expression von Mitgliedern einer anderen Multigenfamilie begünstigt (Howitt et al., 2009). Während das erste kurze Exon (von insgesamt zwei Exons) lediglich ein Signalpeptid kodiert, sind die kodierenden Sequenzen für die semi-konservierte Region, die variable Schleife, beide Transmembrandomänen und das Exportmotiv (PEXEL) auf dem zweiten Exon zu finden. Aufgrund der hohen Anzahl an Genen (200) sowie der variablen Schleife, wird nicht ausgeschlossen, dass die Mitglieder der 2TM-Superfamilie für die Zytoadhärenz infizierter Erythrozyten (Fernandez et al., 1999; Garcia et al., 2005; Helmby et al., 1993) relevant sind. Hinweise auf eine mögliche Beteiligung der RIFIN (Gruppe A) und STEVOR Proteine konnte (neben PfEMP1 Proteinen) bei einem splenektomierten Malaria-Patienten gefunden werden. Hier waren die infizierten Erythrozyten ex vivo nicht in der Lage an verschiedene Endothelrezeptoren zu adhärieren. Zudem konnten die Multigenfamilien rif (Gruppe B) sowie pfmc-2tm in dieser Parasitenpopulation nachgewiesen werden, wohingegen das für die var-, rif- (Gruppe A) und stevor-Gene nicht der Fall war. Während der in vitro-Kultivierung erlangten die Parasiten die Fähigkeit zu adhärieren und eine Expression aller hier genannten Multigenfamilien konnte detektiert werden (Bachmann et al., 2009).

1.7 Zielsetzung

Bisher wird immer noch kontrovers diskutiert, welchen Einfluss die *Knobs*, aber auch die Anwesenheit oder Abwesenheit von humanem Serum, bei der *in vitro*-Kultivierung von *P. falciparum* auf die Zytoadhäsion infizierter Erythrozyten an humane Endothelrezeptoren haben. Daher sollte im ersten Teil dieser Arbeit untersucht werden, ob eine mögliche Korrelation zwischen der Bindungskapazität und Kultivierungsart sowie der Anwesenheit von *Knobs* besteht. Hierfür sollten die *P. falciparum* Laborstämme 3D7 und FCR3 unterschiedlich kultiviert (± humanem Serum) und zusätzlich hinsichtlich der Anwesenheit von *Knobs* auf der Wirtszelloberfläche angereichert werden. Mit diesen unterschiedlichen Parasitenpopulationen sollten Bindungsexperimente durchgeführt, die *Knobs* charakterisiert, sowie die Lokalisation der variablen Oberflächenantigene *Pf*EMP1, RIFIN, STEVOR und *Pf*MC-2TM hinsichtlich einer divergierenden Proteinzusammensetzung untersucht werden. Weiterhin sollten durch die Analyse der Transkriptome mittels des *next generation sequencings* Unterschiede in der Genexpression der verschiedenen Parasitenpopulationen analysiert werden.

Im zweiten Teil dieser Arbeit sollte der für die Bindung an den humanen Rezeptor P-Selektin verantwortliche *Plasmodium*-Ligand identifiziert werden. Hierfür sollten *Plasmodium*-infizierte Erythrozyten hinsichtlich der Bindung an P-Selektin angereichert werden. Durch eine sich anschließende vergleichende Transkriptomanalyse mithilfe der RNA-Sequenzierung sollten Unterschiede in der Expression zwischen der Ausgangskultur und der angereicherten Kultur identifiziert werden, um so einen möglichen Liganden für die Bindung an P-Selektin auszumachen.

2. Material und Methoden

2.1 Materialien

2.1.1 Geräte und Software

(a) Geräte

Geräte	Hersteller/ Firma
Axio Imager.M1	Zeiss
Axiostar plus (Mikroskop)	Zeiss
Agilent 2100 Bioanalyzer System	Agilent Technologies
BD FACSAria TM sorter	BD Biosciences
CX31 (Mikroskop)	Olympus
Eclipse TS100 (inverses Mikroskop)	Nikon
Eppendorf Centrifuge 5415 D	Eppendorf
Eppendorf Centrifuge 5427 R	Eppendorf
Eppendorf Centrifuge 5810 R	Eppendorf
EVOS xl - transmitted light microscope	AMG (Advanced Microscopy Group)
FluoView FV1000 FL	Olympus
IX81	Olympus
Function Line (Brutschrank) (mit CO ₂)	Heraeus Instruments
IKA® MS 3 Vortexer	IKA
Illumina HiSeq TM Sequencing System	Illumina
Intensilight C-HGFL	Nikon
Kühlinkubator KB400	BINDER
Mini Inertgas Exsikkator, Poplycarbonat	Sicco
Molecular Force Probe (MFP)-3D AFM	Asylum Research (Oxford Isntruments)
M20 LAUDA (Wasserbad)	Julabo
Nalgene TM Cryo 1°C Freezing Container	Nalgene

NanoDrop 2000 Spectrophotometer	Thermo Scientific
Neubauer-Zählkammer	Marienfeld
Orbitalschüttler Rocky	Wilke GmbH
pH-Meter CG 840	Schott
ROTINA 48	Hettich Zentrifugen
SW 20 (Wasserbad)	Julabo
The Belly Dancer	Stovall Life Sciences Inc.
Transmissionselektronenmikroskop Leo 910	Zeiss
Vario MACS TM	Miltenyi Biotec

(b) Software

Software	Hersteller/ Firma
Agilent 2100 Expert Software	Agilent Technologies
Igor Pro 6.0	Asylum Research
Axio Vision Rel. 4.7	Zeiss
FACSDiva TM (Version 6.1.3)	BD Biosciences
FLUOVIEW Ver 4.1a	Olympus
Mac Vector with Assembler Version 12.5.1	Accelrys
Prism [®] (Version5.02)	GraphPad

2.1.2 Chemikalien und Reagenzien

Chemikalien & Reagenzien	Hersteller/ Firma
Biocoll-Trennlösung	Biochrom
Immersol 518 N	Zeiss
Dako Fluorescence Mounting Medium	Dako
Leica CV Mount	Leica Biosystems
Gelafundin® 4%	B. Braun
RPMI-1640 + L-Glutamin; + 25 mM HEPES; - NaHCO ₃	AppliChem
TRIzol®	Ambion/ Life technologies
Ham's F12	PAA bzw. PAN Biotech

Chemikalien, deren Bezugsquelle nicht aufgeführt ist, wurden von der Firma Sigma-Aldrich Chemie GmbH (München, Deutschland), Carl Roth (Karlsruhe, Deutschland) oder Merck (Darmstadt, Deutschland) bezogen.

2.1.3 Gebrauchsmaterialien und Reaktionskits

(a) Gebrauchsmaterialien

Gebrauchsmaterialien	Hersteller/ Firma
Agilent RNA6000 Pico Chip	Agilent
	Technologies
Cantilever CSG 11 (Golden silicon probes)	NT-MDT
CellTrics® 30 µm (steril und pyrogen-frei) (Zellfilter)	Partec
CRYSTAL-Gemisch (1% O ₂ , 5% CO ₂ , 94% N ₂)	Air Liquide
Dako Pen	Dako
Deckgläser für Mikroskopie (24 x 55 mm); Stärke 1	Engelbrecht
Discofix Drei-Wege-Hahn	B. Braun Aesculab
Einmalspritzen Injekt®; steril (10 ml; 20 ml)	B. Braun Aesculab
GP Millipore Express TM PLUS Membrane (0,22 μ m)	Millipore
Konisches Röhrchen, 15 ml, besonders klar, PP (17 x 120 mm)	BD Falcon
Konisches Röhrchen, 50 ml, PP (30 x 115 mm)	BD Falcon
MACS® columns CS	Miltenyi Biotec
Mikro-Schraubröhre (2 ml), PP	Sarstedt
Objektträger, geschnitten (Mattrand); 76 x 26 mm	Engelbrecht
Petrischalen 92 x 16 mm (mit Nocken)	Sarstedt
PEHANON® Teststäbchen (pH 6,0-8,1)	Macherey-Nagel
Röhrchen (Flow Cytometry), 5 ml (75x12 mm)	Sarstedt
Röhre, 15 ml, 120 x 17 mm, PP	Sarstedt
Röhre, 50 ml, 114 x 28 mm, PP	Sarstedt
Safe-Lock-Tubes (1,5 ml; 2,0 ml)	Eppendorf
Sterican Einmal-Injektions-Kanüle; Größe 1 (Ø 0,9 x 40 mm)	B. Braun Aesculab
TC-Platte 24Well F	Sarstedt
Tissue Culture Coverslips 13 mm (Plastic)	Sarstedt
Zellkulturflaschen (50 ml, 25 cm ² , PS, mit Filter-Schraubverschluss)	Greiner Bio-One
Zellkulturflaschen (250 ml, 75 cm ² , PS, mit Filter-Schraubverschluss)	Greiner Bio-One

(b) Reaktionskits

Hersteller/ Firma
Beckman Coulter
Agilent Technologies
Ambion
Life technologies
Epicentre
Epicentre
Ambion, Life technologies

2.1.4 Antikörper

(a) Primäre Antikörper

Tabelle 1: Verwendete primäre Antikörper mit der jeweils eingesetzten Verdünnung in Immunfluoreszenz-Analysen (IFA) bzw. *Fluorescence-activated cell sorting* (FACS).

Zielprotein	Antikörper	Domäne	Protein ID	IFA (FACS)	Organismus	Quelle
P-Selektin	αP-Selektin		P-Selektin	$(5x10^7)$	Maus	Santa Cruz
	(AK4): sc-19996		(Human)	Zellen pro ml)		Biotechnology
PfEMP1	aATS mono (6HI)	ATS (6HI)		1:50	Maus	Michaela Petter/
						Mike Duffy
PfMC-2TM	aPfMC-2TM	CT	PFF1525c	1:200	Kaninchen	Anna Bachmann
		(AS 212-231)				
STEVOR	αSTEVOR	SC & V	PFC0025c	1:200	Maus	Judith Scholz
		(AS 33-251)				
RIFIN-A	aRIF40	SC & V	AF483820	1:300	Ratte	Anna Bachmann
		(AS 35-215)				

(b) Sekundäre Antikörper und Kernfarbstoff

Tabelle2:VerwendetesekundäreAntikörpermitderjeweilseingesetztenVerdünnunginImmunfluoreszenz-Analysen (IFA)bzw. Fluorescence-activated cell sorting (FACS).

Antikörper	Konzentration	IFA (FACS)	Organismus	Quelle
Alexa Fluor 488 αMaus IgG (H+L)	2 mg/ml	1:400	Ziege	Invitrogen
Alexa Fluor 488 αRatte IgG (H+L)	2 mg/ml	1:400	Ziege	Invitrogen
Alexa Fluor 488 αKaninchen IgG (H+L)	2 mg/ml	1:400	Ziege	Invitrogen
Alexa Fluor 594 αMaus IgG (H+L)	2 mg/ml	(1:400)	Ziege	Invitrogen

Die Kernfärbung erfolgte mittels Hoechst-33342 (1:500; Life Technologies).

2.1.5 Kulturmedien und Zusätze

(a) P. falciparum-Kulturmedien

P. falciparum- Kulturmediun mit AlbuMAX®	
RPMI 1640	31,8 g
Natriumhydrogencarbonat	2,0 g
D-(+)-Glukose-Monohydrat	4,0 g
in ca. 1,6 l Aqua bidest. lösen	
AlbuMAX®II	10 g
in ca. 150 ml Aqua bidest. lösen	
Hypoxanthin	54,4 mg
in 4 ml NaOH (1 M) lösen	
Ansätze mischen und pH auf 7,4 einstellen	
mit Aqua b idest. auf 2 l auffüllen	
+ 1ml Gentamicin zum steril filtrierten Medium geben	
Lagerung maximal 4 Wochen bei 4°C	

P. falciparum- Kulturmedium mit humanem Serum	
RPMI 1640	13,8 g
in etwa 700 ml Aqua bidest. lösen	
Hypoxanthin 0,	,043 g
zu ca. 50 ml Aqua bidest. geben und durch Aufkochen lösen,	
abkühlen lassen und die Ansätze mischen	
humanes Serum (A ⁺); inaktiviert (die Inaktivierung des humanen 1	00 ml
Serums erfolgt durch zweimalige Inkubation bei 56°C für 30 min)	
NaHCO ₃ (7,5%)	30 ml
Gentamicin (40 mg/ml)	250 µl
mit Aqua bidest. auf 1 l auffüllen	
pH 7,16 bis 7,19 mithilfe eines pH-Sticks überprüfen und ggf. mit HCl (1M) einstellen	
steril filtrieren	
Lagerung maximal 2 Wochen bei 4°C	

(b) CHO-Kulturmedium

Ham's F12 mit L-Glutamin und 25 mM HEPES	500 ml
inaktiviertes FCS (die Inaktivierung erfolgt durch Inkubation bei 56°C für 45 min)	50 ml
Penicillin/ Streptomycin Mix (100x)	5 ml
Lagerung bei 4°C (maximal 3 Wochen)	

(c) Enzyme und Zusätze

Enzyme / Zusätze	Hersteller
Accutase	PAA bzw. PAN
AlbuMAX® II	Gibco/ Invitrogen
Fötales Kälberserum (fetal calf serum; FCS)	PAA
Gentamicin 40	Hexal
G418 (Neomycin) (50 mg/ml)	Biochrom
humanes Blut (0 ⁺)	Universitätsklinikum Hamburg-Eppendorf
humanes Serum (A ⁺)	Interstate Blood Bank, Inc. (Memphis, TN, USA)
Penicillin/Streptomycin (100 x)	PAA bzw. PAN Biotech
RNase OUT TM Recombinant Ribonluclease	Invitrogen
Inhibitor	

2.1.6 Puffer und Lösungen

Die Puffer und Lösungen wurden mit Aqua bidest. angesetzt und die jeweiligen Standard-Lösungen zur Sterilisation autoklaviert (20 Minuten bei 121° C und 1,2 bar) oder steril filtriert (Porendurchmesser 0,2 µm).

(a) Puffer

CHO-PBS (10x)		FACS-Puffer	
NaCl	1,37 M	inaktiviertes FCS	2 %
KCl	27 mM	CHO-PBS (1x)	100 ml
Na ₂ HPO ₄ wasserfrei	101 m M	steril filtrieren	
KH ₂ PO ₄	18 mM	Lagerung bei 4°C	
pH von 7,4 einstellen			
ad 1 l mit Aqua bidest.; au	toklavieren		

HT-PBS (10x)	
NaCl	12,7 M
Na ₂ HPO ₄	200 mM
NaH ₂ PO ₄ x 2 H ₂ O	52 mM
pH von 7,2 einstellen; auto	klavieren

Weiser-Puffer

Na ₂ HPO ₄	2,18 g
KH ₂ PO ₄	0,98 g
ca. 1,5 l Aqua bidest. zugeben un	d durch
Erhitzen lösen; abkühlen lassen	
pH von 7,0 einstellen	
ad 2 l mit Aqua bidest.; autoklavi	eren

Plasmodien-PBS (10x)

NaCl	1,37 M
KCl	26,8 mM
Na ₂ HPO ₄	80,6 mM
KH ₂ PO ₄	14,7 mM
pH von 7,4 einstellen; autokla	vieren

(b) Lösungen

Bindungsmedium		CHO-Einfriermedium	
RPMI 1640	16,4 g	CHO-Kulturmedium	45 ml
Glukose	2 %	(+ 10 % iFCS	
pH auf 7,2 einstellen mit NaOH		+ 1x Penicillin/Streptomycin)	
ad 1 l Aqua bidest.		DMSO	5 ml
steril filtrieren		steril filtrieren	
Lagerung bei 4°C		Lagerung bei 4°C	

Malaria Freezing Solution (MFS)		
D-Sorbitol	3 g	
NaCl	0,65 g	
in 72 ml Aqua bidest. lösen;		
steril filtrieren		
Glycerol (autoklaviert)	28 ml	
Lagerung bei 4°C		
Sorbitollösung (5%)		
D-Sorbitol	5,0 g	
ad 100 ml mit Aqua dest.		
steril filtrieren		
Lagerung bei 4°C		

Malaria Thawing Solution (MFS)	
NaCl	35 g
ad 1 l Aqua bidest.;	
steril filtrieren	
Lagerung bei 4°C	

2.1.7 P. falciparum-Stämme

Isolat	Herkunft				
3D7	Bei <i>Plasmodium falciparum</i> 3D7 Parasiten handelt es sich um einen Klon des NF54-Isolates. Das Isolat NF54 wurde direkt aus einem Patienten isoliert und ar				
	die in vitro-Kultur adaptiert. Der Patient hatte sich zu keinem Zeitpunkt in				
	Malaria-Endemiegebieten aufgehalten, lebte jedoch in der Nähe des Schiphol				
	Flughafens in Amsterdam (Niederlanden), was eine sogenannte "Flughafen-				
	Malaria" nahelegte (Ponnudurai et al., 1981). Das Isolat wurde freundlicherweise				
	von Mo Klinkert, Bernhard-Nocht-Institut für Tropenmedizin (BNITM,				
	Hamburg) zur Verfügung gestellt.				
FCR3	Das Plasmodium falciparum-Isolat FCR3 wurde im August 1976 direkt aus				
	einem Patienten in Gambia (West Afrika) isoliert und nach New York City				
	gebracht, wo es an die in vitro-Kultur adaptiert wurde (Jensen und Trager, 1978).				
	Während seiner in vitro-Kultivierung wurde es mit einem Isolat aus Brasilien				
	vermischt, besteht heute aber nur noch aus einem Genotyp. Unklar ist jedoch, von				
	welchem der beiden Isolate dieser stammt. Das Isolat wurde freundlicherweise				
	von Mo Klinkert, BNITM, Hamburg zur Verfügung gestellt.				

2.1.8 CHO-Zelllinien

Bei den adhärent wachsenden CHO (*Chinese Hamster Ovary*)-Zellen handelt es sich um eine immortalisierte Zelllinie, die ursprünglich aus einer Primärkultur von Ovarienzellen eines chinesischen Hamsters (*Cricetulus griseus*) isoliert wurde (Tjio und Puck, 1958; Puck *et al.*, 1958). In dieser Arbeit wurden insgesamt acht transfizierte CHO-745-Zelllinien (vom Wildtyp ATCC (*American Type Culture Collection*) No. CRL-2242) mit gestörter Glykosaminoglykansynthese verwendet, welche auf ihrer Oberfläche ein Fusionsprodukt aus GFP und einem der sieben Endothelrezeptoren (siehe Tabelle 3) exprimieren. Der Rezeptor bildet hierbei den extrazellulären Teil des Proteins, wohingegen das GFP im Zytoplasma der Zelle lokalisiert ist, ohne die extrazelluläre Domäne zu beeinflussen. Als Kontrollzelllinie fungierte CHO-745-AcGFP-Klon3 (mock), welche nur mit dem GFP-tragenden Expressionsvektor ohne Endothelrezeptor transfiziert wurde und folglich nur zytosolisches GFP synthetisiert. Alle CHO-Zelllinien wurden freundlicherweise von der Arbeitsgruppe von Prof. Rolf Horstmann (Abteilung "Molekulare Medizin", BNITM, Hamburg) zur Verfügung gestellt.

Bezeichnung	Vektor	Rezeptor (human)
CHO-745-AcGFP-Klon3 (mock)	pAcGFP-N1	-
CHO-745-CD36-AcGFP-Klon3	pAcGFP-N1	CD36 (Cluster of Differentiation 36)
CHO-745-CD151-EGFP-Klon14-10	pEGFP-N1	CD151 (Cluster of Differentiation 151)
CHO-745-CD9-EGFP-Klon8-3	pEGFP-N1	CD9 (Cluster of Differentiation 9)
CHO-745-ICAM1-Klon3-AcGFP	pAcGFP-N1	ICAM-1 (Intercellular Adhesion Molecule 1)
CHO-745-P-Selektin-AcGFP-Klon4	pAcGFP-N1	P-Selektin
CHO-745-E-Selektin-AcGFP-Klon8	pAcGFP-N1	E-Selektin
CHO-745-MDR1-AcGFP	pAcGFP-N1	MDR1 (Multidrug-Resistance-Protein 1)

Tabelle 3: Übersicht über die verwendeten CHO-Zelllinien.

2.2 Zellbiologische Methoden

2.2.1 P. falciparum

2.2.1.1 Kultivieren von P. falciparum

Die *in vitro*-Kultivierung von *P. falciparum* erfolgte in einem Volumen von 10 ml bei einem Hämatokrit von 5% in Petrischalen (mit Nocken), wobei mit humanem Serum (A⁺) respektive mit AlbuMAX® II angereichertes RPMI-1640 als Kulturmedium diente (Trager und Jensen, 1976). Das Medium wurde spätestens an jedem dritten Tag gewechselt, bei einer Parasitämie von 3% und mehr täglich, oder die Kultur wurde mit Erythrozyten der Blutgruppe 0⁺ verdünnt. Die Inkubation erfolgte in einem Vakuumbehälter bei einer Gaszusammensetzung von 1% O₂, 5% CO₂ und 94% N₂ und einer Temperatur von 37°C im Brutschrank. Um die jeweilige Parasitämie sowie das Parasitenstadium bestimmen zu können, wurden Blutausstriche angefertigt, an der Luft getrocknet und in absolutem Methanol fixiert (ca. 2 min). Die Färbung erfolgte mittels Giemsa-Lösung (1:10) für mindestens 10 min.
2.2.1.2 Anfertigen von Stabilaten einer P. falciparum-Kultur

Für die Anfertigung von Stabilaten wurde die *P. falciparum*-Kultur mit einer möglichst hohen Parasitämie an Ringstadien (jedoch mindestens 1%) für 5 min bei 800 x *g* zentrifugiert. Der Überstand wurde abgenommen, das Sediment mit dem 4fachen Volumen *Malaria Freezing Solution* (MFS) resuspendiert und in ein Cryogefäß überführt. Mithilfe eines Einfrierbehälters (Cryo 1°C Freezing Container) erfolgte das Einfrieren kontrolliert langsam (-1°C pro min) über Nacht bei -80°C. Für die langfristige Lagerung wurden die *P. falciparum*-Stabilate in flüssigen Stickstoff überführt.

2.2.1.3 Auftauen von P. falciparum-Stabilaten

Um *P. falciparum*-Stabilate nach dem Einfrieren wieder in Kultur zu nehmen, wurde das jeweilige Stabilat unter leichtem Schütteln bei 37°C aufgetaut und mit einem äquivalenten Volumen *Malaria Thawing Solution* (MTS) (37°C) vermischt. Nach einer fünfminütigen Zentrifugation bei 800 x *g* wurde der Überstand abgenommen und die sedimentierten Zellen solange mit MTS gewaschen bis der Überstand klar war. Die Erythrozyten wurden abschließend in Petrischalen mit vorgelegtem Medium zur weiteren Kultivierung (siehe 2.2.1.1) überführt und der Hämatokrit mit Erythrozyten der Blutgruppe 0⁺ auf 5% eingestellt.

2.2.1.4 Synchronisieren von P. falciparum mittels Sorbitol

Mithilfe einer 5% igen Sorbitol-Lösung wurde eine *P. falciparum*-Kultur synchronisiert, in der hauptsächlich Parasiten im Ringstadium zu finden waren (Lambros und Vanderberg, 1979). Infizierte Erythrozyten mit adulten Stadien wie Trophozoiten und Schizonten werden durch den Zuckeralkohol Sorbitol lysiert, da dieser in das dafür durchlässige Membransystem der infizierten Erythrozyten eindringen kann und diese somit osmotisch zum Platzen gebracht werden. In infizierten Erythrozyten mit frühen Parasitenstadien ist dieses parasitäre Kanal- und Porensystem noch nicht etabliert, weswegen Erythrozyten mit Parasiten im Ringstadium intakt bleiben. Zum Synchronisieren wurden die infizierten Erythrozyten für 5 min bei 800 x gsedimentiert und der Überstand entfernt. Die Erythrozyten wurden in dem 6fachen Volumen 5% Sorbitol (37°C) resuspendiert und 5 min bei 37°C inkubiert, wobei in regelmäßigen Abständen geschüttelt wurde. Um die Sorbitollösung zu entfernen, wurde erneut zentrifugiert (5 min, 800 x g) und der Überstand abgenommen. Nach einmaligem Waschen mit *P. falciparum*-Kulturmedium wurde der Hämatokrit gegebenenfalls eingestellt und die Erythrozyten abschließend in Petrischalen mit vorgelegtem Medium zur weiteren Kultivierung (siehe 2.2.1.1) überführt.

2.2.1.5 Anreicherung pigmentierter Parasitenstadien (MACS)

Im Verlauf eines Zyklus von P. falciparum wird Hämoglobin zu Hämozoin, einem Fe(III)enthaltenden, paramagnetischen Komplex degradiert und in die Nahrungsvakuole eingelagert. Diese Eigenschaft ermöglicht es, mit späten Parasitenstadien infizierte und somit Hämozoin enthaltende Erythrozyten mithilfe eines Magneten anzureichern. Das sogenannte Magnet Activated Cell Sorting (MACS) erfolgte unter Verwendung eines Vario MACSTM Magneten (Miltenyi), an dem eine MACS CS-Säule befestigt wurde (Ribaut et al., 2008). Diese war über einen Dreiwegehahn zum einen mit einer 0,8 mm-Nadel und zum anderen mit einer mit PBS/1%BSA enthaltenen 20 ml-Spritze verbunden. Die magnetische Säule wurde mit PBS/1%BSA (37°C) durch vorsichtiges Auf- und Abziehen der Spritze äquilibriert, wodurch Luftblasen aus der Säule gedrückt wurden. Nach Einstellen der Durchflussgeschwindigkeit (ca. 1 Tropfen/ sec) wurde die Parasitenkultur auf die Säule geladen. Danach wurde die Säule mit PBS/1% BSA solange gewaschen, bis der Durchfluss klar war. Zum Eluieren der Parasiten wurde die Säule vom Magneten entfernt, um 180° gedreht und das in der Spritze befindliche PBS/1% BSA mit Druck injiziert. Die Ausbeute wurde qualitativ mittels eines Giemsagefärbten Ausstriches ermittelt. Bei einer streng synchronisierten Parasitenpopulation wurden die adulten, pigmentierten Parasitenstadien zunächst mithilfe des MACS angereichert und nach einer Kultivierung von 4 bis 6 Stunden mit 5% Sorbitol synchronisiert (siehe 2.2.1.4).

2.2.1.6 Anreicherung von Knobs

Während der Entwicklung von *P. falciparum* erscheinen ab dem Trophozoitenstadium kleine Ausstülpungen, sogenannte *Knobs*, auf der Oberfläche infizierter Erythrozyten (Kilejian, 1979). Die Veränderung der Oberfläche führt zu einer Veränderung der Sedimentationseigenschaften der infizierten Erythrozyten, sodass die Sedimentationsgeschwindigkeit von Erythrozyten mit *Knobs* auf ihrer Oberfläche im Vergleich zu nicht infizierten Erythrozyten und infizierten Erythrozyten ohne *Knobs* in Gelatine oder Gelafundin® geringer ist. So können letztlich mit dieser Methode die späten Entwicklungsstadien einer *P. falciparum*-Kultur angereichert werden, welche *Knobs* auf der Oberfläche von infizierten Erythrozyten ausbilden (Goodyer *et al.*, 1994).

Um eine *P. falciparum* Kultur mit *Knobs* zu erhalten, wurde diese mit mindestens 2% Parasiten im Trophozoitenstadium zunächst 5 min bei 800 x g zentrifugiert. Das Sediment wurde mit dem 1,4fachen Volumen Kulturmedium (37° C) resuspendiert und anschließend mit dem 2,4fachen Volumen Gelafundin® 4% (final: 3%) versetzt. Nach dem Mischen wurde das Zentrifugenröhrchen 25 min senkrecht im Wasserbad inkubiert, so dass die Zellen sedimentieren konnten und es zu einer deutlichen Phasentrennung kam. Ein Teil des Überstandes (etwa 5 ml) wurde vorsichtig abgenommen und in ein neues Zentrifugenröhrchen überführt. Nach einem 5minütigen Zentrifugationsschritt bei 800 x g wurde der Überstand verworfen und das Erythozyten-Sediment einmal mit Kulturmedium gewaschen. Der Hämatokrit wurde gegebenenfalls eingestellt und die auf das Ausbilden von *Knobs* angereicherte Kultur wurde nach Standardbedingungen kultiviert (siehe 2.2.1.1). Bei den Kulturisolaten, die auf *Knobs* selektioniert wurden, erfolgte die Anreicherung einmal wöchentlich, und es wurden für die Versuche nur solche Isolate als *Knob*-angereicherte Isolate verwendet, die mindestens dreimal diese Prozedur durchlaufen hatten.

2.2.1.7 Ernte

Um Zellen für die RNA Isolierung (siehe 2.3.1) zu ernten, wurde die Parasitenkultur zunächst in Zentrifugenröhrchen überführt und bei 800 x *g* für 5 min zentrifugiert. Der Überstand wurde abgenommen und das Sediment in dem 20fachen Volumen an vorgewärmtem TRIzol®-Reagenz (37°C) resuspendiert. Durch das in TRIzol® enthaltene Guanidiniumthiocyanat werden die Zellen lysiert und zeitgleich RNasen und andere Enzyme inaktiviert, wohingegen die RNA sich in dem ebenfalls in TRIzol® enthaltenen Phenol löst. Da vor allem die Inaktivierung der Enzyme für den Erfolg der weiteren Versuche unabdingbar war, wurde darauf geachtet, das denaturierende TRIzol® schnell und gleichmäßig zu verteilen. Anschließend wurde für 5 min bei 37°C im Wasserbad inkubiert und die denaturierten Proben bis zur weiteren Verarbeitung bei -80°C gelagert.

Für Immunfluoreszenzanalysen (siehe 2.2.3) wurden Blutausstriche angefertigt, getrocknet und in absolutem Methanol (-20°C) für 10 min fixiert. Danach wurden die Ausstriche bis zur weiteren Verarbeitung vorsichtig in Papiertücher und zusätzlich in Alufolie eingewickelt bei -20°C gelagert.

2.2.2 CHO-Zellen

2.2.2.1 Kultivieren von CHO-Zellen

Die Kultivierung von CHO-Zellen erfolgte in einem Volumen von 5 ml respektive 15 ml komplettem CHO-Kulturmedium in Zellkulturflaschen (25 cm² oder 75 cm²) für adhärent wachsende Zellen, wobei Neomycin (G418; 50 mg/ml; final 0,7 mg/ ml) zur Selektion diente. Inkubiert wurden die CHO-Zellen bei 37°C und 5% CO₂. Die Vitalität der CHO-Zellen und die jeweilige Konfluenz wurden mittels eines inversen Fluoreszenzmikroskops kontrolliert und bestimmt. Spätestens an jedem dritten Tag erfolgte ein Mediumwechsel, oder die Kultur wurde verdünnt. Um die Zellen zu splitten, wurde zunächst das Kulturmedium entfernt und die Zellen mit vorgewärmtem (37°C) 1x CHO-PBS gewaschen. Nach Zugabe von 400 µl Accutase (37°C) erfolgte eine fünfminütige Inkubation bei 37°C und 5% CO₂. Die vollständige Ablösung der Zellen erfolgte durch Klopfen und wurde mithilfe eines inversen Mikroskopes kontrolliert. Die Aktivität der Accutase wurde durch Zugabe von komplettem CHO-Kulturmedium gestoppt, ein Teil des Zellvolumens (1/2 bis 1/30) in eine neue Zellkulturflasche überführt und mit 5 ml bzw. 15 ml komplettem Kulturmedium und Neomycin (G418; final 0,7 mg/ml) bei 37°C und 5% CO₂ kultiviert.

2.2.2.2 Anfertigung von Stabilaten von CHO-Zellen

Da die CHO-Zelllinien den jeweiligen Endothelrezeptor für die Dauer von etwa drei Wochen stabil an der Oberfläche exprimierten, mussten regelmäßig neue Stabilate aufgetaut und folglich auch angefertigt werden. Nach dem Ablösen der Zellen mittels Accutase (siehe 2.2.2.1) wurde die Aktivität der Accutase durch Zugabe von 2 bis 5 ml komplettem CHO-Kulturmedium gestoppt und die Zellzahl unter Verwendung einer Neubauer-Zählkammer bestimmt. Die Zellsuspension wurde 5 min bei 250 x *g* zentrifugiert und die sedimentierten Zellen mit CHO-Einfriermedium auf 1 x 10⁶ Zellen/ml eingestellt. Die Zellsuspension wurde in Cryoröhrchen überführt und anschließend mithilfe eines Einfrierbehälters (Cryo 1°C *Freezing Container*) kontrolliert langsam (-1°C pro min) bei -80°C eingefroren und gelagert.

2.2.2.3 Auftauen von CHO-Stabilaten

Die CHO-Zellen wurden im Wasserbad bei 37°C unter leichtem Schütteln fast vollständig aufgetaut. Die aufgetauten Zellen wurden in ein 15 ml Zentrifugenröhrchen überführt und mit CHO-PBS gewaschen, wobei die Zentrifugation bei 250 x *g* erfolgte. Die sedimentierten Zellen wurden in komplettem CHO-Kulturmedium ohne den Selektionsmarker G418 aufgenommen, in eine Zellkulturflasche (25 cm²) für adhärente Zellen gegeben und für 24 Stunden bei 37°C und 5% CO₂ kultiviert. Am nächsten Tag wurde das Medium gewechselt und der Selektionsmarker G418 zugegeben.

2.2.2.4 Fluorescence-activated cell sorting (FACS) von CHO-Zellen

Um den Anteil von P-Selektin-positiven CHO-Zellen zu erhöhen, wurden die P-Selektinexprimierenden CHO-Zellen vor den Experimenten mithilfe der Durchflusszytometrie, kurz FACS (*fluorescence-activated cell sorting*), von den P-Selektin-negativen Zellen getrennt. Mittels Durchflusszytometrie können Zellen analysiert werden, die mit hoher Geschwindigkeit an einer elektrischen Spannung oder einem Lichtstrahl vorbeigeführt werden. Abhängig von Form, Struktur und/ oder Fluoreszenz der Zellen resultieren unterschiedliche Effekte, mit deren Hilfe die charakteristischen Merkmale der Zelle ermittelt werden können. Mit der hier verwendeten Art der Durchflusszytometrie, dem sogenannten FACS, ist es möglich, Zellen mit fluoreszenzgekoppelten Antikörpern quantitativ und qualitativ zu analysieren, wobei durch die Verwendung von verschiedenfarbigen Lasern und Filtern mehrere Farbstoffe detektiert werden können und somit die Informationsdichte gesteigert werden kann.

Für die Färbung der Oberflächenantigene für das FACS wurden die CHO-Zellen einer 75 cm²-Zellkulturflaschen mittels Accutase (37°C) abgelöst (siehe 2.2.2.1) und 10 ml FACS-Puffer zugegeben. Die Zellsuspension wurde in ein 50 ml Zentrifugenröhrchen überführt und die Zellzahl mithilfe einer Neubauer-Zählkammer bestimmt. Nach einer Zentrifugation von 5 min bei 250 x *g* wurden die Zellen mit 5 ml FACS-Puffer gewaschen und anschließend in der ersten Antikörper-Lösung (siehe Tabelle 1) resuspendiert und in ein 1,5 ml Reaktionsgefäß überführt. Nach 30 minütiger Inkubation auf Eis wurde 3 min bei 1.800 x *g* und 4°C zentrifugiert. Der Überstand wurde abgenommen und das Sediment zweimal mit 1,4 ml FACS-Puffer (4°C) gewaschen. Das Zellsediment wurde anschließend in der zweiten Antikörper-Lösung (siehe Tabelle 2) resuspendiert und 30 min auf Eis unter Lichtausschluss inkubiert. Danach wurde erneut für 3 min bei 1.800 x *g* zentrifugiert und die Zellen zweimal mit FACS-Puffer (4°C) gewaschen. Abschließend wurden die Zellen in FACS-Puffer mit einer finalen Konzentration von 1 x 10^7 Zellen/ml aufgenommen. Die Zellen wurden durch einen FACS-Filter für adhärente Zellen filtriert und somit separiert und in FACS-Röhrchen aufgefangen, die dann letztlich in das Gerät eingesetzt werden konnten.

Das FACS erfolgte in dieser Arbeit mit dem BD FACSAriaTM *cell sorter*. Die CHO-Zellen wurden zum einen aufgrund ihrer Fluoreszenz durch das GFP eingegrenzt, zum anderen wurden GFP-positive Zellen nochmals auf rote Fluoreszenz hin selektiert. Nur Zellen, die sowohl eine grüne, als auch rote Färbung zeigten, wurden in Zentrifugenröhrchen (15 ml) mit 2 ml CHO-Zellkulturmedium mit Neomycin (4°C) aufgefangen. Die Auswertung der Daten erfolgte mithilfe der Software FACSDivaTM (Version 6.1.3).

Nach dem FACS wurden die sortierten Zellen 5 min bei 250 x g zentrifugiert. Bei einer Ausbeute von etwa 1 x 10^6 Zellen wurden die Zellen in großen Zellkulturflaschen (75 cm²) weiter kultiviert (siehe 2.2.2.1). Bei einer geringeren Anzahl von Zellen wurde entweder in kleinen Zellkulturflaschen (25 cm²) oder 6-well-Platten kultiviert.

2.2.2.5 Aussäen von CHO-Zellen

Die CHO-Zellen wurden 48 Stunden vor dem jeweiligen Bindungsexperiment (statischer Bindungsversuch respektive *Panning*, siehe 2.2.4) ausgesät. Dazu wurde zunächst jeweils ein Deckplättchen (Durchmesser 13 mm) in eine Vertiefung einer 24-well-Platte gelegt und mit 0,5 ml 1% Gelatine in PBS (37° C) pro Vertiefung für 30 min bei 37° C beschichtet. Die Gelatine wurde abgenommen und 3 x 10^{4} Zellen pro ml ausgesät, wobei für jede CHO-Zelllinie bzw. jeden Endothelrezeptor drei Deckplättchen angesetzt wurden (in Triplikaten). Die CHO-Zellen wurden bis zum Versuchsbeginn für 48 Stunden bei 37° C und 5% CO₂ inkubiert (siehe 2.2.2.1), so dass am Versuchstag eine 50 bis 70% ige Konfluenz zu erwarten war.

2.2.3 Immunfluoreszenzanalysen (IFA)

Die fixierten Blutausstriche (siehe 2.2.1.7) wurden kurz getrocknet und mit einem Silikonstift sechs bis acht Felder abgegrenzt. Anschließend wurde der Objektträger/Blutausstrich für 10 min in 1x PBS rehydriert und dann 60 µl des Primärantikörpers in der jeweiligen Verdünnung (siehe Tabelle 1) mit PBS/1% BSA (steril filtriert) auf die entsprechenden Felder aufgetragen. Die Inkubation der ersten Antikörper erfolgte für mindestens zwei Stunden bei

Raumtemperatur. Im Anschluss daran wurden die Antikörperlösungen möglichst vollständig abgenommen und der Ausstrich dreimal 5 min auf dem Orbitalschüttler mit PBS gewaschen. Der zweite Antikörper (siehe Tabelle 2) wurde zwischenzeitlich in einer Verdünnung von 1:400 in PBS/1% BSA gelöst und der Kernfarbstoff Hoechst-33342 in einer Verdünnung von 1:500 zugegeben. Davon wurden 60 µl auf die Felder des Objekträgers gegeben und 2 Stunden bei Raumtemperatur unter Lichtausschluss inkubiert. Die zweite Antikörperlösung wurde ebenfalls möglichst vollständig abgenommen und danach dreimal mit 1x PBS auf dem Orbitalschüttler gewaschen. Pro Objektträger wurden drei bis vier Tropfen Dako Fluorescent Mounting Medium aufgetragen und mit einem großen Deckglas luftblasenfrei eingedeckelt. Die Antikörper-gefärbten Ausstriche wurden bei Raumtemperatur getrocknet und mithilfe eines Epifluoreszenz- oder eines konfokalen Mikroskopes analysiert (0,2 µm z-stacks). Um die Lokalisation der unterschiedlichen Proteine quantifizieren zu können, wurden pro Immunfärbung durchschnittlich 100 infizierte Erythrozyten ausgezählt.

Als Positivkontrolle wurde ein Prä-Immunserum eines Kaninchens verwendet, welches eine starke Färbung von infizierten Erythrozyten aufwies (Jannika Brandt, BNITM, Hamburg). Die den verwendeten Erstantikörpern entsprechenden Prä-Immunseren dienten, sofern vorhanden, als Negativkontrollen und wurden in der gleichen Verdünnung wie der jeweilige Antikörper eingesetzt. Zusätzlich wurden Zweitantikörper-Kontrollen ohne vorherige Inkubation mit dem Erstantikörper durchgeführt. Die Kontrollfärbungen wurden parallel zu den entsprechenden Färbungen analysiert.

2.2.4 Bindungsexperimente

2.2.4.1 Statischer Bindungsversuch

Die Untersuchung der Bindung von *P. falciparum* infizierten Erythrozyten an humane Endothelrezeptoren erfolgte mithilfe statischer Bindungsexperimente. Dazu wurden zunächst 48 Stunden vor Versuchsbeginn die CHO-Zellen mit dem entsprechenden Endothelrezeptor auf Plastik-Deckplättchen ausgesät (siehe Abschnitt 2.2.2.5). Die infizierte Erythrozytenpopulation wurde 48 Stunden vor Versuchsbeginn mittels Sorbitol auf Ringstadien synchronisiert (siehe Abschnitt 2.2.1.4). Am Tag des Bindungsexperimentes wurde die *P. falciparum*-Kultur mit 28 bis 32 Stunden Trophozoiten auf eine Parasitämie von 5% eingestellt und mit auf 37°C temperiertem Bindungsmedium auf 1% Hämatokrit verdünnt. Die Adaption der Erythozytenpopulation an das Bindungsmedium erfolgte für 30 min bei 37°C. Die CHO-Zellen wurden vor Zugabe der Erythrozytensuspension mit Bindungsmedium gewaschen und für 2-3 min mit selbigem inkubiert. Die Erythrozytensuspension wurde auf die CHO-Zellen auf den Deckplättchen gegeben (0,5 ml/well) und für eine Stunde bei 37°C (ohne CO₂) inkubiert, wobei die 24-well-Platte alle 15 min geschwenkt wurde. Anschließend wurden die Deckplättchen einzeln aus den Vertiefungen genommen, vorsichtig in Bindungsmedium getaucht und mit der zellbewachsenen Seite schräg nach unten in eine neue 24-well-Platte überführt, die im 45° Winkel aufgestellt wurde. Jede Vertiefung enthielt 0,5 ml frisches Bindungsmedium. So wurden die Zellen auf dem Deckplättchen 45 min bei Raumtemperatur inkubiert, so dass alle nicht gebundenen Erythrozyten mittels Schwerkraft nach unten auf den Boden der Vertiefung sinken konnten. Die Fixierung der CHO-Zellen mit den gebundenen Erythrozyten erfolgte in 1% Glutaraldehyd in PBS bei Raumtemperatur für mindestens 30 min. Anschließend wurden die Zellen mit einer Giemsa-Färbelösung (10% in Weiser-Puffer) für 15 min bei Raumtemperatur gefärbt. Die Deckplättchen wurden nach dreimaligem Waschen mit Wasser an der Luft getrocknet und in einem letzten Schritt mit der Zellseite nach unten auf einem Objektträger eingedeckelt (Leica CV Mount Medium) und über Nacht bei Raumtemperatur trocknen gelassen. Der Ablauf eines statischen Bindungsexperimentes ist in Abbildung 9 schematisch dargestellt.

Abbildung 9: Versuchsablauf eines statischen Bindungsexperimentes. Drei Tage vor dem Bindungsexperiment wird die *P. falciparum*-Kultur mit Sorbitol synchronisiert (*nicht dargestellt), und 24 Stunden später werden die jeweiligen CHO-Zellen ausgesät. Vor der Bindung erfolgt die Prä-Absorption mit der CHO-Kontrollzelllinie (CHO-745-AcGFP), bei der die Parasiten aus dem Experiment entfernt werden, die eine unspezifische Bindung aufweisen (nicht dargestellt). Nach der einstündigen Bindung an die CHO-Zelllinie mit dem jeweiligen Endothelrezeptor, bei der die 24-well-Platte alle 15 Minuten geschwenkt wird, werden die CHO-Zellen in Bindungsmedium gewaschen und die nicht gebundenen Erythrozyten mittels Schwerkraft von den CHO-Zellen getrennt. Anschließend werden die Zellen auf dem Deckplättchen mit Giemsa-Lösung gefärbt, fixiert und in einem letzten Schritt eingedeckelt.

Für die Auswertung wurden 500 CHO-Zellen sowie die daran gebundenen infizierten Erythrozyten pro Deckplättchen ausgezählt. Für jedes *P. falciparum*-Isolat wurde die Prozedur des statischen Bindungsexperimentes in mindestens drei voneinander unabhängigen Ansätzen wiederholt (jeweils Triplikate).

2.2.4.2 Anreicherung von P. falciparum mit spezifischen Bindungseigenschaften (Panning)

Um das Transkriptom von Parasitenpopulationen, insbesondere die Expression der *var*-Gene, die für die *Pf*EMP1 Proteine kodieren, zu analysieren, welche spezifisch an den Rezeptor P-Selektin binden, wurden Parasiten bezüglich dieser Bindungseigenschaft angereichert.

Die Anreicherung von mit *P. falciparum* infizierten Erythrozytenpopulationen mit spezifischen Bindungseigenschaften (hier: Bindung an P-Selektin) erfolgte mithilfe eines sogenannten *Pannings*. Bei dieser Art des Bindungsexperimentes verbleibt die Parasitenkultur *in vitro* und wird nach Abschluss des *Pannings* weiter kultiviert (Abbildung 10). So ist es möglich, Parasiten hinsichtlich bestimmter Bindungseigenschaften anzureichern und letztlich das Transkriptom bindender Parasiten selektiv über zwei oder mehr Generationen zu untersuchen.

Das Bindungsexperiment wurde in zwei verschiedenen Varianten durchgeführt. Zum einen wurde ein Bindungsexperiment (Experiment 1) über zwei direkt aufeinander folgende Parasitengenerationen durchgeführt (Dissertation Predehl, 2010). Zum anderen erfolgte ein Bindungsexperiment (Experiment 2) mit anschließender Kultivierung in Abständen von zwei bis drei Generationen (Claessens und Rowe, 2012).

Abbildung 10: Versuchsablauf eines *Pannings.* **I**: Eine nach Standardbedingungen kultivierte Parasitenpopulation mit 28 bis 30 Stunden alten Trophozoiten wird auf CHO-Zellen gegeben, welche den zu untersuchenden Rezeptor exprimieren. Nach dem Waschen (**II**) sind nur noch die Parasiten vorhanden, die an den Rezeptor gebunden haben (**III**). **IV**: die Parasiten entwickeln sich weiter zu Schizonten; die nach dem Platzen der Erythrozyten freigesetzten Merozoiten invadieren neue rote Blutkörperchen und entwickeln sich weiter zu Ringen; ein Teil der Ringstadien wird für die Transkriptom-Analyse geerntet; die restliche Parasitenpopulation entwickelt sich weiter zu Trophozoiten, die dann für das folgende Bindungsexperiment eingesetzt werden (**V**). Nach dem Waschen (**VI**) sind wieder nur die Parasiten vorhanden, die an den Rezeptor binden (**VII**); sie entwickeln sich weiter (**VIII**) über das Ringstadium, wo ein Teil für die Transkriptom-Analyse geerntet wird, bis zum Trophozoitenstadium, in dem ein erneutes *Panning* erfolgen kann.

Für das Bindungsexperiment über zwei direkt aufeinander folgende Parasitengenerationen (Experiment 1), wurden 20 Zellkulturflaschen (75 cm²) mit ca. 80-90% Konfluenz der P-Selektin-exprimierenden CHO-745-Zelllinie sowie der GFP-exprimierenden CHO-745-Kontrollzelllinie kultiviert. Der Anteil von P-Selektin-positiven CHO-Zellen wurde dabei zuvor mittels FACS (siehe 2.2.2.4) erhöht. Das Experiment 2 wurde mit maximal 6 Zellkulturflaschen (75 cm²) mit ca. 80-90% Konfluenz der beiden oben genannten CHO-745-Zelllinien durchgeführt.

Die FCR3-Parasitenkultur wurde über vier vorhergehende Generationen mit Sorbitol synchronisiert (siehe 2.2.1.4), sodass das Bindungsexperiment mit Parasiten im Trophozoitenstadium (28 bis 30 h) mit einer Parasitämie von mindestens 10 % gestartet werden konnte. Um bei Experiment 1 für das direkt folgende zweite *Panning* ausreichend Parasitenkultur zu erhalten, wurde mit 180 Kulturschalen begonnen, wohingegen für das Experiment 2 eine Kulturschale ausreichte.

Die Kultur wurde für 5 min bei 800 x g zentrifugiert und das Erythrozytensediment mit vorgewärmtem Bindungsmedium (37°C) auf einen Hämatokrit von 2 % eingestellt und für 30 min bei 37°C inkubiert, um die Zellen an das Bindungsmedium zu adaptieren. Bei dem Experiment 1 wurden vor Versuchsbeginn 100 µl der Kultur separiert und während des gesamten Versuches in P. falciparum-Kulturmedium als Kontrolle der Ausgangskultur (AK) im Wasserbad (37°C) inkubiert. Die GFP-Kontrollzelllinie wurde mit 5 ml Bindungsmedium pro Gewebekulturflasche versehen und für zwei bis drei Minuten inkubiert. Anschließend wurden die mit dem Laborstamm FCR3 infizierten Erythrozyten zugegeben und eine Stunde im Brutschrank (37°C; ohne CO₂) belassen, wobei alle 15 min geschwenkt wurde, um die Anzahl unspezifisch bindender Erythrozyten zu minimieren (Prä-Absorption). Nach der Prä-Absorption wurden die nicht gebundenen Zellen zu der P-Selektin-exprimierenden CHO-Zelllinie gegeben, wobei die Parameter für das Waschen der Zellen mit Bindungsmedium sowie die Inkubation der CHO-Zellen mit den Erythrozyten nicht verändert wurden. Nach dem Bindungsschritt wurden die ungebundenen Zellen durch fünfmaliges Waschen mit jeweils 5 ml Bindungsmedium (37°C) vollständig entfernt. Bei dem Panning über zwei Zyklen wurden die ungebundenen Erythrozyten einer Kulturflasche als Kontrolle (UE) weiter kultiviert, wohingegen der Rest verworfen wurde. Anschließend wurde die Adhäsion mithilfe eines inversen Mikroskops kontrolliert und jeweils 15 bis 20 ml P. falciparum-Kulturmedium in die Zellkulturflasche gegeben. Folgte unmittelbar auf das erste Panning das nächste Panning, so wurden zusätzlich 250 µl in eine Flasche gegeben, ansonsten wurden 400 bis 800 µl Erythrozyten zugegeben und unter Standardbedingungen bis auf Weiteres kultiviert (siehe 37

2.2.1.1). Die Ausgangskultur (AK) sowie die ungebundenen Erythrozyten (UE) bei dem großen *Panning* wurden ebenfalls weiter kultiviert (siehe 2.2.1.1). Nach 26 Stunden, und somit 6 bis 8 Stunden nach Invasion neuer Erythrozyten, wurde ein Teil der angereicherten Erythrozyten sowie die Kontrollzellen (AK und UE bzw. nur UE) für die RNA-Isolierung geerntet (siehe 2.2.1.7). Die restlichen Parasiten wurden in Kulturschalen umgesetzt und 48 Stunden nach dem ersten *Panning* respektive bei einer Parasitämie von 10% wiederholt wie oben beschrieben angereichert.

Die Ernten für die RNA-Isolierung (siehe 2.2.1.7) erfolgten bei Experiment 1 nach der ersten und zweiten Runde (jeweils zwei biologische Proben). Bei Experiment 2 wurde ein Versuchsansatz nach dem fünften *Panning*, ein nächster nach dem sechsten *Panning* geerntet (jeweils zwei biologische Proben), wobei es sich hier um unabhängig voneinander angereicherte Parasitenpopulationen handelte. Als Kontrolle für das Experiment 2 wurde der Laborstamm FCR3, kultiviert mit humanem Serum, geerntet.

2.2.4.3 Separation von Zellen mittels Dichtegradientenzentrifugation (Biocoll)

Verschiedene Zelltypen können aufgrund unterschiedlicher Dichten voneinander getrennt werden. So erfolgte die Separation von Erythrozyten und CHO-Zellen nach dem Panning aufgrund ihrer unterschiedlichen Dichten mithilfe der Biocoll-Trennlösung, die zur Isolierung von Zellen mittels Dichtegradientenzentrifugation benötigt wird. Durch die in dieser Trennlösung enthaltene Polysucrose (Biocoll), einem Polymer mit einem Molekulargewicht von 400 kDa, ist es laut Hersteller möglich, wässrige Lösungen bis zu einer Dichte von etwa 1,1 g/ml herzustellen (www.biochrom.de). Erythrozyten besitzen eine durchschnittliche Dichte von 1,1 g/ml (siehe Abbildung 11) und wandern somit während des Zentrifugierens durch die Biocoll-Trennlösung. Die Dichte von CHO-Zellen beträgt im Durchschnitt etwa 1,05 g/ml (Anderson et al., 1970), so dass sie von den im Sediment befindlichen Erythrozyten separiert werden können. Um die Erythrozyten nach dem Panning von CHO-Zellen zu trennen, wurden die Erythrozyten zuerst in HT-PBS aufgenommen und vorsichtig in ein 15 ml Zentrifugenröhrchen über 7 ml vorgelegte Biocoll-Trennlösung geschichtet. Es folgte eine 20 minütige Zentrifugation bei 1.300 x g ohne Bremse. Der Überstand wurde abgenommen und verworfen, die sedimentierten roten Blutzellen wurden mit 10 ml HT-PBS gewaschen und bei 1.850 x g für 5 min zentrifugiert. Anschließend wurden die Erythrozyten entsprechend den im Abschnitt 2.2.1.1 genannten Kulturbedingungen weiter kultiviert, wohingegen keine 0⁺-Erythrozyten zugegeben wurden.

Abbildung 11: Trennung von Blutzellen und CHO-Zellen in einem kontinuierlichen Dichte-Gradienten (www.biochrom.de; modifiziert). Aufgrund unterschiedlicher Dichten können verschiedene Zelltypen voneinander getrennt werden. Die durchschnittliche Dichte von Erythrozyten beträgt 1,1 g/ml. Die Dichte von CHO-Zellen liegt im Durchschnitt bei etwa 1,05 g/ml, wodurch sie von den roten Blutzellen getrennt werden können.

2.3 Molekularbiologische Methoden

2.3.1 Isolierung von RNA aus P. falciparum

Die Gesamt-RNA aus *P. falciparum* wurde nach einem modifizierten Protokoll von Kyes *et al.* isoliert (Kyes *et al.*, 2000). Dazu wurde die entsprechende *P. falciparum*-Kultur zunächst wie bereits beschrieben geerntet (siehe 2.2.1.7).

Für die RNA-Isolierung wurde das Erythrozyten-TRIzol®-Gemisch zügig bei 37°C unter leichtem Schütteln aufgetaut und anschließend in 1 ml-Aliquots aufgeteilt. Dem Lysat wurden 200 μ l Chloroform pro ml TRIzol®-Reagenz zugegeben, durch Schütteln gut vermischt und für 3 min bei Raumtemperatur (RT) inkubiert. Im nächsten Schritt erfolgte die Trennung der Phenol- von der wässrigen Phase durch 30 minütiges Zentrifugieren bei 12.000 x g und einer Temperatur von 4°C. Der Überstand (ca. 400 μ l/Reaktionsgefäß) wurde vorsichtig abgenommen und in ein neues Reaktionsgefäß überführt, wobei die Interphase und die darin enthaltenen DNA-Fragmente großzügig gemieden wurden. Bei der RNA-Isolierung wurde des Weiteren nach dem Protokoll des PureLinkTM RNA Mini Kit (Ambion) verfahren, nach welchem diese letztlich in zwei Elutionsschritten in insgesamt 50 µl RNase freiem Wasser gelöst wurde. Die Konzentration sowie die Reinheit der Gesamt-RNA wurden zunächst photometrisch mittels NanoDrop bestimmt (siehe 2.3.2). In einem zweiten Schritt wurde die RNA-Qualität mithilfe des Bioanalyzers ermittelt (siehe 2.3.3). Die isolierte RNA wurde bis zur Weiterverarbeitung bei -80°C gelagert.

2.3.2 Konzentrationsbestimmung von RNA

Die photometrische Quantifizierung der RNA erfolgte durch Messung des Absorptionsspektrums zwischen 230 nm und 280 nm mithilfe des NanoDrop. Das Absorptionsmaximum von Nukleinsäuren befindet sich bei 260 nm, wodurch unter Berücksichtigung folgender Faktoren die Konzentration von RNA bestimmt werden kann. OD bezeichnet hierbei die optische Dichte:

Konzentration $[\mu g/ml] = OD_{260} \times 40 \mu l/ml \times Verdünnungsfaktor$

Den Reinheitsgrad der Nukleinsäuren bestimmen bei der photometrischen Messung die Quotienten aus A260/280 sowie A260/230. Proteine besitzen ihr Absorptionsmaximum bei einer Wellenlänge von 280 nm, wohingegen das Absorptionsmaximum von Phenolen und aromatischer Verbindungen bei 230 nm liegt.

Für reine RNA gilt, $A260/280 \ge 2,0$.

Wenn der gemessene Wert signifikant kleiner ist, deutet dies auf die Anwesenheit von Protein, Phenol oder anderen Kontaminanten hin, deren Absorptionsmaximum bei oder nah bei 280 nm liegt.

2.3.3 Überprüfung der RNA-Integrität (Bioanalyzer)

Bei RNA handelt es sich um ein instabiles Molekül, das durch die ubiquitär verbreiteten Ribonukleasen (RNasen) ständig der Gefahr ausgesetzt ist, degradiert zu werden. Aus diesem Grund ist die Kontrolle der Qualität der Gesamt-RNA unerlässlich, um später verlässliche Ergebnisse bei aller Art von Expressionsmessungen zu erhalten. Um Aufschluss über den physiologischen Zustand einer Zelle oder eines Gewebes zu einem bestimmten Zeitpunkt zu bekommen, werden die Expressionsprofile des Trankriptoms analysiert. In dieser Arbeit erfolgte die Überprüfung der RNA-Integrität durch automatisierte Kapillar-Elektrophorese mithilfe des Bioanalyzers. Bei der Kapillar-Elektrophorese wird die RNA der Größe nach in mRNA, einzelne Fraktionen der rRNA (5S, 18S, 28 S), sowie fragmentierte RNAs aufgetrennt, was in einem Elektrogramm und als virtuelles Gelbild dargestellt wird. Zudem wird ein Zahlenwert von 1 bis 10 generiert, die sogenannte *RNA Integrity Number* (RIN), der den Vergleich und die Einstufung der RNA-Qualität erlaubt. Eine intakte, nicht degradierte und nicht fragmentierte RNA von sehr hoher Integrität entspricht einem RIN-Wert von 10, wohingegen ein RIN-Wert von 1 vollständig degradierte und fragmentierte RNA mit geringster Qualität repräsentiert (Schroeder *et al.*, 2006).

Für die Überprüfung der RNA-Qualität wurde hier das Agilent 2100 Bioanalyzer System mit einem Agilent RNA6000 Pico Chip verwendet und nach Angaben des Herstellers verfahren.

2.3.4 Next Generation Sequencing (NGS)

Für das *Next Generation Sequencing* (NGS) wurden die RNA-Proben erneut hinsichtlich ihrer Quantität und Integrität überprüft (Qubit® RNA Kit, Life technologies) und anschließend mit dem TURBO DNA-*free*TM Kit (Ambion, Life technologies) behandelt, um möglicherweise vorhandene kontaminierende DNA aus der Probe zu entfernen. Das Entfernen des Enzyms und die Reinigung erfolgte dann mit AGENCOURT® RNAClean® XP Beads (Beckman Coulter). Es folgte eine erneute Überprüfung der Quantität und Qualität. Dann wurde die rRNA mit dem Ribo-ZeroTM Magnetic Gold Kit (Human/ Mouse/ Rat) nach Angaben des Herstellers depletiert, und es folgte eine erneute Überprüfung der Quantität und Qualität.

Die RNA-Bibliothek wurde mithilfe des ScriptSeqTM v2 RNA-Seq Library Preparation Kit (Epicentre) laut Herstellerangaben erstellt (Abbildung 12). Für das Erstellen einer RNA-Bibliothek wird die zuvor prozessierte RNA in einem ersten Schritt fragmentiert. Durch das Anlagern von Random Hexameren mit einer Markierungs (engl. *Tagging*)-Sequenz wird die cDNA mit einer Markierung am 5'-Ende synthetisiert (I). Nach dem Entfernen von RNA (II) wird die cDNA in einem zweiten Schritt mit Oligonukleotiden mit *Tagging*-Sequenz inkubiert, deren 3'-Ende geblockt ist. Die nun zweifach markierte cDNA wird gereinigt (III) und mit Oligonukleotiden mit Adaptor-Sequenzen mittels PCR amplifiziert, wobei ein Index (Barcode) nach Bedarf zugefügt wird. Nach der PCR wird die RNA-Seq (RNA Sequenzierung)- Bibliothek sofort gereinigt und die Quantität sowie die Qualität der DNA-Fragmente kontrolliert.

Abbildung 12: Erstellen einer RNA-Seq Bibliothek mithilfe des ScriptSeqTM v2 RNA-Seq Library Preparation Kit (www.nature.com). Die rRNA-depletierte RNA wird zunächst fragmentiert. Durch das Anlagern von cDNA-Synthese-Oligonukleotiden mit einer Markierungssequenz wird cDNA mit einer Markierung am 5'-Ende synthetisiert (I). Die RNA wird entfernt (II), und die cDNA mit Oligonukleotiden mit einer Markierungssequenz inkubiert, deren 3'-Ende blockiert ist. Nach dem Reinigen der zweifach markierten cDNA (III) wird die RNA-Bibliothek mittels Amplifikation durch PCR erstellt, wobei ein Index (Barcode) optional zugefügt wird. Mit dieser Methode werden Adapter-markierte RNA-Seq Bibliotheken für direktionales Sequenzieren erstellt.

Die Sequenzierung des Transkriptoms aller Proben wurde im *Centre for Genomic Research* (Liverpool, UK) unter Verwendung eines Illumina HiSeqTM Sequencing Systems durchgeführt.

2.4 In silico Methoden

2.4.1 Gendatenbanken

Die für die Transkriptom-Analyse benötigten Sequenzen des FCR3-Laborstammes wurden von der Internetseite http://www.plasmodb.org bezogen.

2.4.2 Sequenzanalyse

Die bioinformatische Auswertung der Sequenzen der RNA-Sequenzierung wurde freundlicherweise von Dr. Stephan Lorenzen (BNITM, Hamburg) durchgeführt.

Zur Identifizierung und zum Abgleich von *var*-Genen wurde *MacVector with Assembler 12.5.1* (Accelrys) verwendet und ein Nukleotid-BLAST (blastn) auf der NCBI-Internetseite (http://blast.ncbi.nlm.nih.gov) vorgenommen.

2.5 Biotechnische Methoden

2.5.1 Transmissionselektronenmikroskopie (TEM)

Um die möglichen Auswirkungen (insbesondere das Auftreten von *Knobs*) unterschiedlicher Bedingungen auf den Phänotyp der verschiedenen Isolate zu ermitteln, wurden Parasiten im Trophozoitenstadium mithilfe des Transmissionselektronenmikroskops (TEM) untersucht. Hierfür wurden die späten Stadien zunächst über eine MACS-Säule angereichert (siehe 2.2.1.5), das Sediment in 2% Glutaraldehyd in Natrium-Cacodylatpuffer aufgenommen und so bis auf Weiteres bei 4°C fixiert.

Die vorfixierten Proben wurden für 2 min bei 8.000 rpm zentrifugiert und das Sediment in etwa 5 Tropfen flüssigem Agar (2%) resuspendiert. Danach wurden die Proben bis zum Erstarren des Agars bei 4°C inkubiert. Der Agar wurde vorsichtig aus dem Reaktionsgefäß gelöst und auf einen sauberen Objektträger gelegt. Hier wurde er in kleine Blöcke geschnitten und in 2% OsO4 (Osmiumtetroxid) in Aqua bidest. für mindestens 1,5 Stunden bei Raumtemperatur (RT) nachfixiert. Nach dreimaligem Waschen mit Aqua bidest. erfolgte die Kontrastierung mit 2%

Uranylacetat für 1 Stunde bei RT. Danach wurde erneut dreimal mit Aqua bidest. gewaschen und die Proben anschließend mithilfe einer Alkoholreihe mit aufsteigender Konzentration (30%, 50%, 70%, 90%, abs. Ethanol; Propylenoxid) für jeweils 15 min entwässert, wobei der Schritt mit Propylenoxid einmal wiederholt wurde. In einer Propylenoxid/Epon-Mischung (Verhältnis 1:1) wurden die Proben über Nacht bei 4°C imprägniert. Am folgenden Tag wurden die Proben über Nacht in Epon eingebettet, das bei 60°C polymerisiert. Von dem eingebetteten Präparat wurden am Ultramikrotom mithilfe des Diamantmessers Dünnschnitte angefertigt (80-100 nm), die anschließend mit Bleicitrat für 3 min nachkontrastiert wurden.

Die Durchführung nach der ersten Fixierung, das Einbetten und Schneiden der Proben sowie die Aufnahmen am Elektronenmikroskop, erfolgten freundlicherweise durch Kerstin Stephan (Forschungszentrum Borstel, Deutschland).

Die Auswertung erfolgte mit Hilfe des Transmissionselektronenmikroskops von mindestens 20 infizierten Erythrozyten jedes *P. falciparum*-Isolates, wobei bei einer 10.000fachen Vergrößerung alle sichtbaren *Knobs* ausgezählt wurden.

2.5.2 Rasterkraftmikroskopie (atomic force microscopy; AFM)

Die Rasterkraftmikroskopie (engl. atomic force microscopy, AFM) erlaubt die mechanische Abtastung von Oberflächen und Messung atomarer Kräfte auf der Nanometerskala. Dafür wird eine am sogenannten Cantilever (Blattfeder) befindliche nanoskopische Messspitze in einem bestimmten Abstand über die Oberfläche einer Probe geführt (Scannen). Durch die entstehenden Kräfte zwischen Oberflächenstruktur der Probe und Spitze wird der Cantilever abhängig von seiner Position unterschiedlich weit gebogen. Mithilfe eines Laserstrahls, der auf die Messspitze gerichtet ist, wird die Verbiegung bzw. die Auslenkung des Cantilevers erfasst, indem der reflektierte Strahl mit einem Photodetektor aufgefangen und das entstandene Signal ausgewertet wird (Abbildung 13). Die Auslenkung des Cantilevers wird punktweise aufgezeichnet, wobei jeder einzelne Bildpunkt eine bestimmte physikalische oder chemische Messgröße repräsentiert, welche in der Gesamtheit eine Abbildung der untersuchten Probenoberfläche ergeben. Der Krümmungsradius der Spitze hat einen entscheidenden Einfluss auf die mögliche Auflösung des Bildes. Im Allgemeinen beträgt dieser 10 bis 20 nm, was (abhängig von der Unebenheit der zu untersuchenden Oberfläche) laterale Auflösungen von 0,1 bis 10 nm ermöglicht, wodurch das AFM eine der höchsten Auflösungen in der Mikroskopie besitzt.

http://de.wikipedia.org/wiki/Rasterkraftmikroskop (modifiziert)

Abbildung 13: Funktionsprinzip des Rasterkraftmikroskops. Als Messsonde dient eine Messspitze auf einem *Cantilever*, einem elastisch biegsamen Hebelarm. Diese Spitze wird in geringem Abstand über die zu untersuchende Oberfläche geführt. Die Verbiegungen des *Cantilevers*, welche aus Kräften zwischen Probenoberfläche und Spitze resultieren, werden hochaufgelöst gemessen. Das geschieht durch einen Laserstrahl, der auf die Spitze gerichtet ist. Der Laserstrahl wird reflektiert und mithilfe eines Photodetektors aufgefangen. Die Signale werden ausgewertet, wodurch anhand der Verbiegungen des *Cantilevers* die Beschaffenheit der Probe ermittelt/analysiert werden kann.

2.5.2.1 Vorbereitung (Oberflächenmessung)

Um die Phänotypen der unterschiedlichen Isolate mit molekularer Auflösung zu untersuchen, wurden die Oberflächen jedes *P. falciparum*-Isolates mittels Rasterkraftmikroskopie untersucht. Dafür wurde die Kultur zunächst streng synchronisiert und das Sediment mit 28 bis 32 Stunden alten Trophozoiten nach dem MACS in 0,1% Glutaraldehyd/3% Formaldehyd in PBS resuspendiert. Nach 4 Stunden Inkubation bei Raumtemperatur wurde einmal mit 1x PBS gewaschen. Anschließend wurden 4 μ l auf einen mit 70%igem Ethanol gesäuberten Objektträger gegeben und 1 min bei Raumtemperatur inkubiert. Die restliche Flüssigkeit wurde mit Filterpapier entfernt und der Objektträger mit Aqua bidest. gewaschen (Asghari-Khiavi *et al.*, 2010), wobei darauf zu achten war, dass die aufgetragene Kultur nicht vollständig abgewaschen wurde. Die Objektträger wurden getrocknet und bei Raumtemperatur gelagert.

2.5.2.2 Oberflächenmessung

Die Messung erfolgte mithilfe eines Rasterkraftmikroskops, das freundlicherweise von Prof. Dr. Thomas Gutsmann vom Forschungszentrum Borstel (Programmbereich Infektionen, Laborgruppe Biophysik) bereitgestellt wurde (Abbildung 14).

Abbildung 14: Rasterkraftmikrosop mit (inversem) Mikroskop. A. Alle Elemente des Rasterkraftmikroskops in der Übersicht. B. Inverses Mikroskop mit dem Kopfelement, an dem der *Cantilever* befestigt und kalibriert wird. C. Kopfelement (Aufsicht).

Für die Messung wurden die Cantilever der Serie CSG11 der Firma NT-MDT verwendet (Abbildung 15), die an jedem Ende eine Messspitze besitzen, welche die in Tabelle 4 zusammengefassten Eigenschaften aufweisen. Diese Cantilever sind mit Gold beschichtet, und es wird die Messung im Kontakt-Modus (Contact Mode) empfohlen. Bei diesem Betriebsmodus wird die Messspitze in Kontakt mit der zu untersuchenden Probenoberfläche gebracht, wobei der Cantilever sich während der Messung abhängig von der zu messenden Oberflächenstruktur verbiegt.

Abbildung 15: Messspitze und Cantilever. http://www.ntmdt-tips.com/products/view/csg11

Spitze	Cantilever	Länge	Cantilever	Breite	<i>Cantilever</i> Dicke, µm	Resonanzfrequenz, kHz		
	(±5 µm)		(±3 µm)			mind.	mittel	max.
Α	250		35		0,7 – 1,3	14-28	20	28
В	350		35		0,7 – 1,3	7-14	10	14

Tabelle 4: Eigenschaften der Cantilever der Serie CSG11 der Firma NT-MDT.

Für diese Messungen wurde ausschließlich die Messspitze **B** des *Cantilevers* verwendet, welche zu Beginn jeder Messung hinsichtlich ihrer Integrität geprüft wurde. Es wurden pro *P. falciparum*-Isolat mindestens 10 Erythrozyten im *Contact Mode* mit einer *Scan* Rate von 0,5 bis 1,0 kHz gemessen, wobei jeweils Bereiche von den Größen 10 μ m, 3,5 μ m, 1,5 μ m und 0,5 μ m gewählt wurden.

Die Messungen wurden mithilfe des Programms Igor Pro 6.0 ausgewertet, wodurch nicht nur die Bilder der Oberflächen dargestellt werden konnten, sondern auch die Größe der *Knobs* bestimmt werden konnte.

3. Ergebnisse

3.1 Vergleich verschiedener P. falciparum-Isolate (Laborstamm 3D7 vs. FCR3)

Die Bindung *P. falciparum* infizierter Erythrozyten an Endothelrezeptoren des menschlichen Wirtes ist abhängig von verschiedenen Faktoren. So wird die Zytoadhärenz durch die Bindung von parasitären Proteinen auf der Oberfläche infizierter Erythrozyten an bestimmte Rezeptoren oder Strukturen auf Endothelzellen vermittelt. Eines der am besten untersuchten Proteine ist in diesem Zusammenhang das *Plasmodium falciparum erythrocyte membrane protein 1* (*Pf*EMP1) (Leech *et al.*, 1984). Zudem wird diskutiert, ob das Auftreten kleiner, elektronendichter Ausstülpungen auf der Oberfläche infizierter Erythrozyten, sogenannte *Knobs*, die Bindung an Endothelzellen maßgeblich begünstigen (Luse und Miller, 1971; Biggs *et al.*, 1989b; Udomsangpetch *et al.*, 1989b; Crabb *et al.*, 1997; Crandall *et al.*, 1994; Horrocks *et al.*, 2005; Rug *et al.*, 2006;).

Der Fokus dieser Arbeit lag auf der Charakterisierung der Interaktion von *P. falciparum* infizierten Erythrozyten mit dem humanen Endothelrezeptor P-Selektin. Um die optimalen Bedingungen für die Bindungsexperimente zu finden, wurden zwei verschiedene Laborstämme, 3D7 respektive FCR3, zunächst unterschiedlich kultiviert (mit humanem Serum oder AlbuMAX®). Des Weiteren wurden mittels des als Gradient fungierenden Gelafundins® infizierte Erythrozyten angereichert, die sich durch das Vorhandensein von *Knobs* auf ihrer Oberfläche auszeichneten, sodass *Knob*-negative und –positive Isolate miteinander verglichen werden konnten. Eine Übersicht über die hinsichtlich der Kultivierung (humanes Serum oder AlbuMAX®) und Oberfläche (*Knob*-negativ oder *Knob*-positiv) verschiedenen Isolate ist in Abbildung 16 zu finden.

Abbildung 16: Übersicht über die unterschiedlich kultivierten und behandelten *P. falciparum*-Isolate der Laborstämme 3D7 und FCR3. Die beiden Stämme, 3D7 und FCR3, wurden mit AlbuMAX® oder humanem Serum kultiviert. Zudem wurde ein Teil jeder Kultur mit Gelafundin® hinsichtlich der Formation von Knobs auf der Oberfläche infizierter Erythrozyten angereichert. Der nicht mit Gelafundin® behandelte Stamm hingegen sollte keine oder lediglich vereinzelt Knobs aufweisen.

3.1.1 Phänotypen

Die Phänotypen der unterschiedlichen Isolate wurden in Bezug auf die Morphologie der Erythrozytenmembran mithilfe der Transmissionselektronenmikroskopie (TEM) und Rasterkraftmikroskopie (*atomic force microscopy*, AFM) untersucht. Hierbei lag der Fokus vor allem auf der Formation von *Knobs* auf der Oberfläche infizierter Erythrozyten, da sicher gestellt werden sollte, dass die Gelafundin®-Anreicherung tatsächlich zur Anreicherung *Knob*-positiver Parasitenpopulationen führt. Außerdem sollte untersucht werden, ob die Art der Kultivierung einen Einfluss auf die Ausbildung von *Knobs* hat.

3.1.1.1 Transmissionselektronenmikroskopie (TEM)

Die unterschiedlich kultivierten *P. falciparum*-Isolate (siehe Abbildung 16) wurden mithilfe des *Magnet Activated Cell Sorting* (MACS) hinsichtlich später, Hämozoin-enthaltenden, Parasitenstadien angereichert und für die Transmissionselektronenmikroskopie präpariert. Bei einer 10.000fachen Vergrößerung wurden von jedem Isolat mindestens 20 infizierte Erythrozyten fotografiert.

1 µm

Abbildung 17: Transmissionselektronenmikroskopie von *P. falciparum* 3D7 infizierten Erythrozyten im Trophozoitenstadium, kultiviert mit AlbuMAX® (A) oder humanem Serum (B). Die Kontrastierung erfolgte mit 2% Uranylacetat, wohingegen mit Bleicitrat nachkontrastiert wurde. Stamm: Kultivierung nach Standardbedingungen. + Gelafundin®: Zusätzlich zur Kultivierung nach Standardbedingungen wurde die Kultur wöchentlich mit Gelafundin® behandelt, um auf das Ausbilden von *Knobs* anzureichern. (Vergrößerung: 10.000fach).

1 µm

Abbildung 18: Transmissionselektronenmikroskopie von *P. falciparum* FCR3 infizierten Erythrozyten im Trophozoitenstadium, kultiviert mit AlbuMAX® (A) oder humanem Serum (B). Die Kontrastierung erfolgte mit 2% Uranylacetat, wohingegen mit Bleicitrat nachkontrastiert wurde. Stamm: Kultivierung nach Standardbedingungen. + Gelafundin®: Zusätzlich zur Kultivierung nach Standardbedingungen wurde die Kultur wöchentlich mit Gelafundin® behandelt, um auf das Ausbilden von *Knobs* anzureichern. (Vergrößerung: 10.000fach).

Die unter Standardbedingungen kultivierten *P. falciparum* Isolate der Laborstämme 3D7 sowie FCR3 wiesen sowohl bei der Kultivierung mit AlbuMAX® als auch bei der Kultivierung mit humanem Serum keine bzw. nur vereinzelt *Knobs* auf der Oberfläche infizierter Erythrozyten auf. Im Gegensatz dazu zeigten die wöchentlich mit Gelafundin®-angereicherten Isolate, bis auf wenige Ausnahmen, *Knobs* auf der Oberfläche infizierter Erythrozyten.

Von allen *P. falciparum*-Isolaten wurde die Anzahl der infizierten *Knob*-positiven Erythrozyten bestimmt und prozentual mit den Erythrozyten verglichen, die keine *Knobs* auf ihrer Oberfläche präsentierten (Abbildung 19). Eine statistische Auswertung erfolgte nicht, da es sich um nur zwei biologische Proben handelte.

Abbildung 19: Quantifizierung *Knob*-ausbildender Erythrozyten, infiziert mit *P. falciparum* 3D7 (A) oder FCR3 (B), und den zugehörigen elektronenmikroskopischen Aufnahmen. Die Balken zeigen die prozentuale Verteilung von *Knob*-positiven und *Knob*-negativen infizierten Erythrozyten (iRBC) innerhalb eines Isolates unter verschiedenen Kulturbedingungen (Kultivierung mit AlbuMAX® oder humanem Serum) an. Pro Isolat wurden mindestens 20 infizierte Erythrozyten ausgezählt. Stamm: Kultivierung nach Standardbedingungen. + Gelafundin®: Zusätzlich zur Kultivierung nach Standardbedingungen wurde die Kultur wöchentlich mit Gelafundin® behandelt. blau: iRBC ohne *Knobs*; rot: iRBC mit *Knobs*.

Bei dem untersuchten *P. falciparum* Laborstamm 3D7 zeigten bei der Kultivierung mit AlbuMAX® nach Standardbedingungen (Stamm) 91% der ausgezählten infizierten Erythrozyten eine glatte Oberfläche ohne *Knobs*, wohingegen 9% der parasitierten Erythrozyten *Knobs* auf der Oberfläche präsentierten. Bei den mit 3D7 infizierten Erythrozyten, die hinsichtlich der Ausbildung von *Knobs* angereichert worden waren (+ Gelafundin®), konnten bei 82% der ausgezählten Zellen *Knobs* auf der Oberfläche ausgemacht werden, wohingegen die restlichen 18% eine glatte Oberfläche zeigten. Die mit dem Laborstamm 3D7 infizierten Erythrozyten, kultiviert mit humanem Serum sowie die mit FCR3 infizierten Erythrozyten beider Kultivierungstypen (AlbuMAX® respektive humanes Serum), zeigten unter Standardbedingungen keine *Knobs* (100%), wohingegen die mit Gelafundin® auf *Knobs* angereicherten Isolate zu 100% *Knob*-positiv waren (Abbildung 19).

3.1.1.2 Rasterkraftmikroskopie (atomic force microscopy, AFM)

Um die Ergebnisse der Transmissionselektronenmikroskopie bezüglich der morphologischen Unterschiede der verschiedenen Isolate mit molekularer Resolution zu verifizieren sowie die Größe der *Knobs* zu definieren, wurden zusätzlich Oberflächenmessungen mithilfe eines Rasterkraftmikroskopes durchgeführt (Abbildung 20). Hierfür wurden ebenfalls die Parasiten in den späteren Entwicklungsstadien (28 bis 32 Stunden alte Trophozoiten) mithilfe des MACS angereichert und für die Rasterkraftmikroskopie fixiert.

Von jedem *P. falciparum*-Isolat wurden zehn zufällig ausgewählte infizierte Erythrozyten bei einer *Scan* Rate von 0,5 bis 1,0 kHz in verschiedenen Größenbereichen (10 μ m, 3,5 μ m, 1,5 μ m und 0,5 μ m) gemessen. Als Kontrolle wurden nicht infizierte Erythrozyten der Blutgruppe 0⁺ verwendet und unter gleichen Bedingungen gemessen.

Abbildung 20: Rasterkraftmikroskopie von *P. falciparum* infizierten Erythrozyten. Untersucht wurden die Oberflächen von *P. falciparum* 3D7 (A) respektive FCR3 (B) infizierten Erythrozyten, kultiviert mit humanem Serum oder AlbuMAX®. Zusätzlich zu der Kultivierung nach Standardbedingungen (Stamm) erfolgte partiell eine Behandlung mit Gelafundin® (+ Gelafundin®). Als Kontrolle wurden Oberflächen von nicht infizierten Erythrozyten gemessen (C).

Die rasterkraftmikroskopischen Messungen bestätigten die Resultate der elektronenmikroskopischen Untersuchungen. Die unter Standardbedingungen kultivierten Laborstämme 3D7 sowie FCR3 zeigten sowohl bei der Kultivierung mit AlbuMAX® als auch bei der Kultivierung mit humanem Serum keine oder lediglich vereinzelt Knobs auf der Oberfläche parasitierter Zellen. Im Gegensatz dazu waren auf der Oberfläche der mit Gelafundin®-behandelten Erythrozyten bei beiden Laborstämmen sowohl bei der Kultivierung mit AlbuMAX® als auch mit humanem Serum Knobs zu messen (Abbildung 20). Des Weiteren wurden mithilfe der gleichzeitig erstellten Messkurven die Größe der Knobs der unterschiedlichen Knob-positiven P. falciparum-Isolate bestimmt. Dafür wurden von mindestens 43 Knobs die Höhe und der Durchmesser gemessen und mit diesen Werten die Oberfläche der Knobs gemäß der Formel zur Bestimmung des Flächeninhaltes einer Kugelkalotte (KK) ($A_{KK} = \pi * (a^2+h^2)$ berechnet, wobei **a** als die Hälfte der gemessenen Breite eines Knobs definiert war und h die gemessene Höhe bezeichnete (Abbildung 21).

Abbildung 21: Oberflächenmessung der verschiedenen *Knob*-positiven Isolate von 3D7 und FCR3 mittels Rasterkraftmikroskopie. Es wurden von jedem Isolat die Höhe und Breite von mindestens 43 *Knobs* ausgemessen und die daraus resultierende Oberfläche mithilfe der Formel zur Bestimmung des Flächeninhaltes einer Kugelkalotte (in nm²) berechnet. Mithilfe des *Mann Whitney Tests* wurden die jeweiligen Signifikanzen ermittelt. ***: $p \le 0,001$; **: $p \le 0,01$; *: $p \le 0,05$.

Mithilfe der Ermittlung der Oberfläche der *Knobs* konnten Unterschiede zwischen den Laborstämmen 3D7 und FCR3 gesehen werden. Bei der Kultivierung mit AlbuMAX® waren die *Knobs* von 3D7 infizierten Erythrozyten mit einer mittleren Oberfläche von 6986 nm² (± 4970) hoch signifikant (p = 0,0009) kleiner verglichen mit den *Knobs* des Laborstammes FCR3 (10.961 nm² ± 6681). Bei der Kultivierung mit humanem Serum hingegen, wies die Oberfläche der *Knobs* von 3D7 eine signifikant (p = 0,0183) größere Oberfläche (5940 nm² ± 4211) im Vergleich zu den *Knobs* des FCR3 Laborstammes (4433 nm² ± 3356) auf. Die unterschiedlichen Kultivierungsmethoden, mit AlbuMAX® oder humanem Serum, innerhalb der *P. falciparum* 3D7 Isolate ergab keine signifikanten (p = 0,3427) Größenunterschiede der *Knobs*. Im Gegensatz dazu zeigten die *Knobs* bei *P. falciparum* FCR3, kultiviert mit AlbuMAX®, eine hoch signifikant (p < 0,0001) größere Oberfläche als die *Knobs*, die aus der Kultivierung mit humanem Serum resultierten (Abbildung 21).

3. Ergebnisse

3.1.2 Bindungsexperimente

Bislang konnten 22 Endothelrezeptoren oder Liganden identifiziert werden, die mit P. falciparum infizierten Erythrozyten interagieren (Roberts et al., 1985; Ockenhouse et al., 1988; Barnwell et al., 1989; Berendt et al., 1989; Oquendo et al., 1989; Ockenhouse et al., 1992; Rogerson et al., 1995; Fried und Duffy, 1996; Rowe et al., 1997; Treutiger et al., 1997; Ho et al., 1998; Beeson et al., 2000; Pouvelle et al., 2007; Turner et al., 2013; Esser und Bachmann et al., 2014). Aber lediglich die Interaktion infizierter Erythrozyten mit den Rezeptoren CD36, ICAM-1 (intercellular adhesion molecule-1), PECAM-1 (platelet endothelial cell adhesion molecule-1), EPCR (endothelial protein C receptor) sowie CSA (chondroitin sulfate A) wurden näher untersucht (Serghides et al., 2003; Chakravorty und Craig, 2005; Rowe et al., 2009; Berger et al., 2013; Moxon et al., 2013; Turner et al., 2013). Im Zusammenhang mit P-Selektin ist bisher nur beschrieben, dass infizierte Erythrozyten an diesen Rezeptor binden können (Ho et al., 1998). P-Selektin ist am sogenannten Rolling der Leukozyten beteiligt, wobei durch eine Bindung der Leukozyten mit geringer Affinität deren Geschwindigkeit herabgesetzt und das charakteristische Rollen über die Zellen verursacht wird (McEver, 2002). Für mit P. falciparum infizierten Erythrozyten wird analog dazu angenommen, dass die auf den Endothelzellen lokalisierten Rezeptoren wie P-Selektin die infizierten Erythrozyten mit geringer Affinität binden. Die Geschwindigkeit der Erythrozyten wird dadurch reduziert, wodurch das Rollen über die Endothelzellen bzw. die Rezeptoren induziert wird, was letztlich in einer starken Bindung an CD36 resultiert (Davis et al., 2011).

3.1.2.1 Bindungsexperimente unter verschiedenen Bedingungen

In dieser Arbeit sollten unter anderem die Bindungseigenschaften von *P. falciparum* infizierten Erythrozyten und P-Selektin analysiert werden. Mithilfe von Bindungsexperimenten sollte zunächst im Hinblick auf die Existenz von sogenannten *slip bonds* und *catch bonds* untersucht werden, ob die Bindungskapazität zwischen infizierten Erythrozyten und Endothelrezeptoren durch Bewegung in irgendeiner Weise beeinflusst wird. Bei sogenannten *slip bonds* handelt es sich um Bindungen, die mit steigender Kraft an Bindungsintensität verlieren, wohingegen die Bindungsintensität bei sogenannten *catch bonds* mit zunehmender Kraft stärker wird (Bell, 1978; Wendy *et al.*, 2002).

Um die optimalen Voraussetzungen hinsichtlich der Bindung zwischen infizierten Erythrozyten und Endothelrezeptor, gerade in Bezug auf P-Selektin, zu ermitteln, erfolgte die Bindung unter verschiedenen Bedingungen. Zum einen wurden die Reaktionspartner unter statischen Bedingungen inkubiert, wobei alle 15 Minuten geschwenkt wurde. Zum anderen wurden die Bindungsexperimente unter kontinuierlich direktionaler Bewegung sowie kontinuierlich rotierender Bewegung durchgeführt. Diese Bindungsexperimente wurden mit vier unterschiedlichen Endothelrezeptoren (CD36, P-Selektin, CD9 und CD151) und dem *P. falciparum* Laborstamm FCR3 durchgeführt, der nach Standardbedingungen mit AlbuMAX® oder humanem Serum kultiviert wurde. Der Endothelrezeptor CD36 fungierte hierbei als Positivkontrolle, da an diesen Rezeptor nahezu alle *P. falciparum*-Isolate sowie Patienten-Isolate binden (Abbildung 22).

Abbildung 22: Bindungsexperimente des *P. falciparum*-Laborstammes FCR3 unter verschiedenen Bindungsbedingungen. Die Balken repräsentieren die mittlere Anzahl der infizierten Erythrozyten (iRBC), die spezifisch an 100 CHO-Zellen gebunden haben, auf welchen die Endothelrezeptoren CD36, P-Selektin, CD9 oder CD151 exprimiert werden. Es wurden jeweils 500 CHO-Zellen in drei unabhängig voneinander durchgeführten Experimenten mikroskopisch ausgezählt, wobei jedes in Triplikaten durchgeführt wurde. A. Kultivierung mit AlbuMAX® B. Kultivierung mit humanem Serum. Mithilfe des *Mann Whitney Tests* wurden die Signifikanzen ermittelt. ***: $p \le 0,001$; **: $p \le 0,01$; *: $p \le 0,05$.

I: statisch II: kontinuierlich direktionale Bewegung III: kontinuierlich rotierende Bewegung

Die Ergebnisse der Bindungsexperimente zeigten im Allgemeinen bei beiden Kultivierungsarten (AlbuMAX® respektive humanes Serum) ein ähnliches Gesamtbild, wobei die Bindung bei der Kultivierung mit humanem Serum etwa doppelt so hoch war. Bei dem als

Positivkontrolle fungierenden Endothelrezeptor CD36 nahm die Bindung sowohl bei der Kultivierung mit AlbuMAX® (I: 57,6 ± 38,4; II: 47,8 ± 31,9; III: 25,4 ± 29,6 (iRBC/100 CHO-Zellen)) als auch bei der Kultivierung mit humanem Serum (I: 148.8 ± 33.4 ; II: 140.0 ± 30.5 ; III: 58.8 ± 19.3 (iRBC/100 CHO-Zellen)) mit steigender Bewegungsintensität ab, wobei der jeweilige Unterschied der Bindungskapazität zwischen der Durchführung unter statischen und kontinuierlich rotierenden Bedingungen signifikant war (AlbuMAX \otimes : p = 0,0188; humanes Serum: p < 0,0001). Die Bindung infizierter Erythrozyten an P-Selektin zeigte ebenfalls eine Abnahme bei zunehmender Bewegung während der Bindung, wobei sie am niedrigsten bei der kontinuierlich direktionalen Bewegung war (AlbuMAX® II: 1,5 ± 1,9; humanes Serum II: 7,0 ± 5,1 (iRBC/100 CHO-Zellen)). Während bei den mit AlbuMAX® kultivierten Parasiten das Bindungsergebnis der kontinuierlich rotierenden Bewegung etwa dem der statischen Bindung entsprach (I: $3,6 \pm 4,6$; III: $3,8 \pm 5,8$), stieg sie bei der Kultivierung mit humanem Serum lediglich wieder etwas an (I: $10,8 \pm 6,4$; III: $7,7 \pm 5,4$). Für den Rezeptor CD9 ergab sich bei AlbuMAX® und humanem Serum ein vergleichbares Bild. Bei der kontinuierlich direktionalen Bewegung zeigte sich die im Vergleich stärkste Bindung (AlbuMAX \otimes II: 0,9 ± 1,0; humanes Serum II: $4,6 \pm 4,5$), wohingegen aus der kontinuierlich rotierenden Bewegung die niedrigste Bindung resultierte (AlbuMAX® I: 0.5 ± 0.4 ; III: 0.2 ± 0.4 ; humanes Serum I: 2.3 ± 2.8 ; III: 1,2 ± 1,8). Die insgesamt geringste Bindung war für CD151 zu beobachten. Bei der Kultivierung mit AlbuMAX® stieg die Bindung von 0.3 ± 0.4 iRBC/100 CHO-Zellen unter statischen Bedingungen (I) auf 1,1 ± 1,0 iRBC/100 CHO-Zellen bei der kontinuierlich direktionalen Bewegung (II), um dann bei der kontinuierlich rotierenden Bewegung (III) auf 0.5 ± 1.3 iRBC/100 CHO-Zellen zurück zu gehen. Mit humanem Serum führte der Anstieg der Bewegung zu einer kontinuierlichen Abnahme der Bindungskapazität (I: $2,6 \pm 4,0$; II: $1,8 \pm 2,1$; III: $1,4 \pm 2,0$ (iRBC/100 CHO-Zellen)). Die besten Resultate hinsichtlich des in dieser Arbeit fokussierten Rezeptors P-Selektin sowie CD36 wurden unter statischen Bindungsbedingungen und bei Kultivierung mit humanem Serum erzielt (Abbildung 22).

Basierend auf Hypothese bezüglich der Bedeutung von P-Selektin bei der Bindung an CD36 und unter Berücksichtigung der Existenz verschiedener Bindungsarten wie *slip bonds* respektive *catch bonds*, wurden parallel folgende Bindungsexperimente durchgeführt. Dazu wurde ein Gemisch von CHO-Zellen, die CD36 oder P-Selektin exprimieren, im gleichen Verhältnis (1:1) sowie im Verhältnis 1:3, ausgesät und letztlich mit infizierten Erythrozyten inkubiert, um zu untersuchen, ob bei steigender Bewegungsintensität und der Anwesenheit von P-Selektin die Bindung an CD36 zunimmt (Abbildung 23).

Abbildung 23: Bindungsexperimente des *P. falciparum* Laborstammes FCR3 unter verschiedenen Bindungsbedingungen und gemischten Zellpopulationen. Die Balken repräsentieren die mittlere Anzahl der infizierten Erythrozyten (iRBC), die spezifisch an 100 CHO-Zellen gebunden haben, auf welchen der Endothelrezeptor CD36 oder P-Selektin exprimiert war. Zusätzlich wurde die Bindung an 100 CHO-Zellen einer gemischten Zellpopulation von CD36 oder P-Selektin exprimierenden CHO-745-Zellen untersucht, wobei die unterschiedlichen CHO-Zelllinien im gleichen Verhältnis (1:1) oder im Verhältnis 1:3 ausgesät wurden. In drei unabhängig voneinander durchgeführten Experimenten wurden jeweils 500 CHO-Zellen mikroskopisch ausgezählt, wobei jedes in Triplikaten durchgeführt wurde. A. Kultivierung mit AlbuMAX® B. Kultivierung mit humanem Serum.

Die Ergebnisse dieser Bindungsexperimente wiesen insgesamt ein ähnliches Bild auf, unabhängig von der Art der Kultivierung (AlbuMAX® respektive humanes Serum) (Abbildung

23). Der als Positivkontrolle fungierende Endothelrezeptor CD36 sowie P-Selektin entsprechen den Ergebnissen des vorher beschriebenen Bindungsexperimentes (Abbildung 22) und sind zum besseren Vergleich und Einordnung hier nochmals abgebildet. Bei dem 1:1-Verhältnis von CD36 exprimierenden und P-Selektin exprimierenden CHO-Zellen nahm die Bindung sowohl bei der Kultivierung mit AlbuMAX® als auch bei humanem Serum mit steigender Bewegungsintensität ab (AlbuMAX® I: 48,3 ± 47,4; II: 42,0 ± 38,1; III: 26,8 ± 39,2; humanes Serum I: 153,9 ± 66,5; II: 1447 ± 52,2; III: 76,2 ± 32,6 (iRBC/100 CHO-Zellen)), vergleichbar mit der jeweils mitgeführten Positivkontrolle CD36. Analog dazu ergab sich bei dem Verhältnis 1:3 eine ähnlich starke Bindung wie bei der Positivkontrolle CD36, obwohl eine geringe Anzahl infizierter Erythrozyten der Gesamtpopulation an den in höherem Verhältnis ausgesäten P-Selektin bindet (humanes Serum I: 141,2 ± 23,5; II: 111,8 ± 38,2; III: 95,6 ± 63,14 (iRBC/100 CHO-Zellen)), wohingegen bei der Kultivierung mit AlbuMAX® die Bindungskapazität mit der Bewegungsintensität anstieg (AlbuMAX® I: 33,8 ± 25,2; II: 49,4 ± 41,4; III: 73,8 ± 81,2 (iRBC/100 CHO-Zellen)).

Im Allgemeinen war eine stärkere, teilweise doppelt so hohe Bindung bei der Kultivierung mit humanem Serum im Vergleich zu AlbuMAX® zu beobachten. Ein Anstieg der CD36-Bindung mit zunehmender Bewegungsintensität konnte, mit Ausnahme bei der Kultivierung mit AlbuMAX® und dem Verhältnis 1:3, nicht gesehen werden (Abbildung 23A). Allerdings blieb das Bindungsniveau bei der gemischten Zellpopulation von CD36 und P-Selectin (1:1 und 1:3) auf gleicher Höhe wie das der Positivkontrolle CD36, trotz der geringeren Anzahl an CD36-Rezeptoren und der im Vergleich dazu erhöhten Anzahl von P-Selektin-Rezeptoren, an die weniger inifzierte Erythrozyten der Gesamtpopulation binden. Insgesamt zeigte die Bindung unter statischen Bedingungen für den Rezeptor P-Selektin (wie auch für CD36) sowie die Kultivierung mit humanem Serum (zumindest bei Verwendung des Laborstammes FCR3) die besten Ergebnisse (Abbildung 22 und Abbildung 23).
3.1.2.2 Statische Bindungsexperimente mit den *P. falciparum* Laborstämmen 3D7 und FCR3

Aufgrund der vorangegangenen Bindungsversuche hinsichtlich der Bindungsbedingungen erfolgten die folgenden Bindungsexperimente unter statischen Bedingungen. Da sich bereits in den vorherigen Versuchen Unterschiede bezüglich der Kultivierung (AlbuMAX® respektive humanes Serum) innerhalb des Laborstammes FCR3 zeigten, sollte mithilfe einer größeren Anzahl P. falciparum-Isolate der mögliche Einfluss verschiedener Faktoren hinsichtlich der Bindungskapazität analysiert werden. Zudem sollten so die optimalen Bedingungen für die Untersuchung des Rezeptors P-Selektin hinsichtlich der Bindung an P. falciparum infizierte Erythrozyten ermittelt werden. Aus diesem Grund wurden statische Bindungsexperimente mit zwei verschiedenen Laborstämmen (3D7 respektive FCR3) durchgeführt, die mit AlbuMAX® oder humanem Serum kultiviert wurden (Abbildung 24 und Abbildung 25). Da diskutiert wird, ob Knobs an der Bindung an Endothelrezeptoren beteiligt sind (Biggs et al., 1989a; Crabb et al., 1997; Crandall et al., 1994; Horrocks et al., 2005; Luse und Miller, 1971; Rug et al., 2006; Udomsangpetch et al., 1989b), wurden zudem Parasiten mittels Gelafundin® hinsichtlich der Formation von Knobs auf der Oberfläche von infizierten Erythrozyten angereichert (Abbildung 16). Für die Untersuchung der Bindung wurden sieben verschiedene Endothelrezeptoren (CD36, P-Selektin, E-Selektin, ICAM-1, CD9, CD151 und MDR1) getestet (Abbildung 24, Abbildung 25). Als "schwach" wurde eine Bindung dabei definiert, wenn ≤5 infizierte Erythrozyten (iRBC) pro 100 CHO-Zellen gebunden hatten, wobei eine Bindung als "moderat" bei > 5 bis 50 gebundenen iRBC pro 100 CHO-Zellen und als "stark" ab 51 iRBC pro 100 CHO-Zellen bezeichnet wurde.

Abbildung 24: Statische Bindungsexperimente des *P. falciparum*-Laborstammes 3D7. Die Balken repräsentieren die mittlere Anzahl der infizierten Erythrozyten (iRBC), die spezifisch an 100 CHO-Zellen gebunden haben, auf welchen die Endothelrezeptoren CD36, P-Selektin, E-Selektin, ICAM-1, CD9, CD151 oder MDR1 exprimiert werden. Es wurden jeweils 500 CHO-Zellen in drei unabhängig voneinander durchgeführten Experimenten mikroskopisch ausgezählt, wobei jedes Experiment in Triplikaten durchgeführt wurde. A. Übersicht und B. Vergrößerung (des Ausschnittes bis 35 iRBC/ 100 CHO-745-Zellen) der Bindung von iRBC, die keine *Knobs* (-K) respektive *Knobs* (+K) auf der Oberfläche aufweisen bei der Kultivierung mit AlbuMAX®. C. Übersicht und D. Vergrößerung (des Ausschnittes bis 35 iRBC/ 100 CHO-745-Zellen) der Bindung von iRBC, die keine *Knobs* (-K) respektive *Knobs* (+K) auf der Oberfläche aufweisen bei der Kultivierung mit humanem Serum. Mithilfe des *Mann Whitney Tests* wurden die Signifikanzen ermittelt. ***: $p \le 0,001$; **: $p \le 0,01$; *: $p \le 0,05$.

Abbildung 25: Statische Bindungsexperimente des *P. falciparum*-Laborstammes FCR3. Die Balken repräsentieren die mittlere Anzahl der infizierten Erythrozyten (iRBC), die spezifisch an 100 CHO-Zellen gebunden haben, auf welchen die Endothelrezeptoren CD36, P-Selektin, E-Selektin, ICAM-1, CD9, CD151 oder MDR1 exprimiert werden. Es wurden jeweils 500 CHO-Zellen in drei unabhängig voneinander durchgeführten Experimenten mikroskopisch ausgezählt, wobei jedes Experiment in Triplikaten durchgeführt wurde. A. Übersicht und B. Vergrößerung (des Ausschnittes bis 35 iRBC/ 100 CHO-745-Zellen) der Bindung von iRBC, die keine *Knobs* (-K) respektive *Knobs* (+K) auf der Oberfläche aufweisen bei der Kultivierung mit AlbuMAX®. C. Übersicht und D. Vergrößerung (des Ausschnittes bis 35 iRBC/ 100 CHO-745-Zellen) der Bindung von iRBC, die keine *Knobs* (-K) respektive *Knobs* (+K) auf der Oberfläche aufweisen bei der Kultivierung mit humanem Serum. Mithilfe des *Mann Whitney Tests* wurden die Signifikanzen ermittelt. ***: $p \le 0,001$; **: $p \le 0,01$; *: $p \le 0,05$.

Bei der Kultivierung mit AlbuMAX® war sowohl bei den Knob-negativen (- K) als auch den *Knob*-positiven (+ K) Isolaten des *P. falciparum* Laborstammes 3D7 (Abbildung 24 A und B) bei allen getesteten Rezeptoren, mit Ausnahme von CD36 (-K: 44,3 ± 38,6; +K: 79,6 ± 64,9 (iRBC/100 CHO-Zellen)), keine oder lediglich eine schwache Bindung zu sehen (P-Selektin (-K): $0,1 \pm 0,1$; P-Selektin (+K): $0,2 (\pm 0,3)$; E-Selektin (-K): $0,0 \pm 0,0$; E-Selektin (+K): $0,1 \pm 0,1$ 0,4; ICAM-1(-K): 0,1 \pm 0,1; ICAM-1 (+K): 0,3 \pm 0,3; CD9 (-K): 0,1 \pm 0,2; CD9 (+K): 0,4 \pm 0,4; CD151 (-K): 0,3 ± 0,3; CD151 (+K): 0,2 ± 0,3; MDR1 (-K): 0,0 ± 0,1; MDR1 (+K): 0,1 ± 0,2 (iRBC/100 CHO-Zellen)), wobei der Unterschied der ICAM-1 Bindung zwischen Knobpositiven und –negativen Isolaten signifikant war (p = 0.0285). An CD36 waren dabei mehr infizierte Erythrozyten gebunden, die Knobs auf ihrer Oberfläche aufwiesen. Im Gegensatz dazu zeigte sich bei der Kultivierung mit humanem Serum (Abbildung 24 C und D) fast durchgehend eine stärkere Bindung im Vergleich zu AlbuMAX®. Neben der starken Bindung an CD36 (CD36 (-K): 250,4 ± 120,7; CD36 (+K): 170,0 ± 57,4 (iRBC/100 CHO-Zellen)) wiesen P-Selektin, ICAM-1 und CD9 zum Teil moderate Bindungen auf (P-Selektin (-K): 7,5 \pm 9,7; P-Selektin (+K): 0,2 \pm 0,7; ; ICAM-1(-K): 3,5 \pm 3,8; ICAM-1 (+K): 28,9 \pm 12,8; CD9 (-K): $5,0 \pm 6,7$; CD9 (+K): $9,6 \pm 5,7$ (iRBC/100 CHO-Zellen)). Für die Rezeptoren E-Selektin, CD151 und MDR1 war lediglich eine schwache Bindung zu beobachten (E-Selektin (-K): 0,7 ± 1,1; E-Selektin (+K): 0,7 ± 1,4; CD151 (-K): 1,8 ± 3,6; CD151 (+K): 2,3 ± 2,8; MDR1 (-K) 1,7 ± 2,3; MDR1 (+K): 2,9 ± 4,9 (iRBC/100 CHO-Zellen)). An ICAM-1, CD9, CD151 und MDR1 waren hierbei in Anwesenheit von Knobs mehr infizierte Erythrozyten gebunden, wohingegen an P-Selektin und CD36 mehr infizierte Erythrozyten in Abwesenheit von Knobs gebunden hatten. Die Bindungen an die Rezeptoren ICAM-1 und P-Selektin zeigten hierbei signifikante Unterschiede zwischen Knob-positiven und Knob-negativen Parasiten (P-Selektin: p = 0,0114; ICAM-1: p = 0,0019) (Abbildung 24).

Im Allgemeinen war die Bindung mit FCR3 infizierten Erythrozyten stärker als bei 3D7 infizierten Erythrozyten (Abbildung 25). So konnte bei Kultivierung mit AlbuMAX® neben der Positivkontrolle CD36 (-K: 76,9 ± 82,3; +K: 72,2 ± 75,6 (iRBC/100 CHO-Zellen)) bei allen getesteten Rezeptoren eine schwache Bindung gesehen werden P-Selektin (-K): 1,7 ± 1,2; P-Selektin (+K): 2,7 ± 2,9; E-Selektin: (-K): 0,1 ± 0,2; E-Selektin: (+K): 0,0 ± 0,1; CD9 (-K): 0,2 ± 0,5; CD9 (+K): 4,2 ± 2,8; CD151 (-K): 0,8 ± 1,3; CD151 (+K): 0,4 ± 1,0; MDR1: (-K): 0,1 ± 0,2; MDR1: (+K): 0,9 ± 1,1 (iRBC/100 CHO-Zellen)) (Abbildung 25 A und B), wobei ICAM-1 zum Teil eine moderate Bindung aufwies (ICAM-1 (-K): 0,1 ± 0,4; ICAM-1 (+K): 15,1 ± 6,9 (iRBC/100 CHO-Zellen)).

Neben ICAM-1 zeigte auch CD9 eine signifikant höhere Bindungskapazität (ICAM-1: p = 0,0003; CD9: p = 0,0003) bei *Knob*-positiven im Vergleich zu *Knob*-negativen Erythrozyten. Auch MDR1 wies bei *Knob*-positiven Isolaten eine stärkere Bindung auf, wohingegen dies für CD36, P-Selektin und CD151 bei Erythrozyten ohne *Knobs* der Fall war.

Die mit FCR3 infizierten Erythrozyten, welche mit humanem Serum kultiviert wurden, zeigten im Allgemeinen eine starke Bindung an CD36 (-K: $261,2 \pm 153,4$; +K: $113,7 \pm 50,9$ (iRBC/100 CHO-Zellen)), wohingegen die restlichen Rezeptoren (mit Ausnahme von ICAM-1) ausnahmslos schwach gebunden waren (P-Selektin (-K): $4,3 \pm 2,9$; P-Selektin (+K): $0,7 \pm 1,5$); E-Selektin (-K): 1,2 ± 2,1; E-Selektin (+K): 0,5 ± 0,8; ICAM-1 (-K): 2,5 ± 2,0; ICAM-1 (+K): $11,2 \pm 5,2$; CD9 (-K): $3,7 \pm 2,3$; CD9 (+K): $1,4 \pm 1,0$); CD151 (-K): $3,0 \pm 4,0$; CD151 (+K): $0,1 \pm 0,1$; MDR1 (-K): $1,6 \pm 2,2$; MDR1 (+K): $0,2 \pm 0,5$ (iRBC/100 CHO-Zellen)). Zudem war für CD36, P-Selektin, E-Selektin, CD9, CD151 und MDR1 eine stärkere Bindung zu beobachten, wenn sie keine Knobs auf der Oberfläche besaßen. Die Unterschiede zwischen *Knob*-positiven und -negativen Isolaten hierbei bei CD36. waren P-Selektin, CD9 und CD151 signifikant (CD36: p = 0,0023; P-Selektin: p = 0,0064; CD9: p =0,0104; CD151: p = 0,0476). Die größte Anzahl gebundener infizierter Erythrozyten an ICAM-1 konnte für Knob-tragende Erythrozyten ermittelt werden, wobei die Differenz zu *Knob*-negativen Erythrozyten signifikant war (p = 0,0003) (Abbildung 25 C und D). In Tabelle 5 sind die dem jeweiligen Rezeptor entsprechenden optimalen Bindungsbedingungen unter Berücksichtigung des Laborstammes (3D7 respektive FCR3) und der Kulturbedingungen (AlbuMAX® oder humanes Serum) sowie der Formation von Knobs auf der Erythrozytenoberfläche zusammenfassend dargestellt.

Tabelle 5: Übersicht über die dem jeweiligen Rezeptor entsprechenden optimalen Bindungsbedingungen unter Berücksichtigung des Laborstammes (3D7 respektive FCR3) und der Kulturbedingungen (AlbuMAX® oder humanes Serum) sowie der Formation von *Knobs* auf der Erythrozytenoberfläche. Bei keiner Nennung war die detektierte Bindung zu schwach.

	CD36	P-Selektin	E-Selektin	ICAM-1	CD9	CD151	MDR1
3D7 AlbuMAX®	+K	-	-	-	-	-	-
3D7 Humanes Serum	-K	-K	-	+K	+K	+K	+K
FCR3 AlbuMAX®	-K	+K	-	+K	+K	-K	+K
FCR3 Humanes Serum	-K	-K	-K	+K	-K	-K	-K

3.1.3 Lokalisation variabler Oberflächenantigene mittels Immunfluoreszenz-Analyse

Die Gruppe der variablen Oberflächenantigene von P. falciparum besteht aus den Proteinfamilien PfEMP1, RIFIN, STEVOR und PfMC-2TM, welche mithilfe von Immunfluoreszenz-Analysen vornehmlich in Maurerschen Spalten, aber auch in anderen Bereichen wie der parasitophoren Vakuole sowie deren Membran oder an der Erythrozytenmembran nachgewiesen werden konnten (Blythe et al., 2008; Petter et al., 2008; Przyborski et al., 2005; Tsarukyanova et al., 2009). Um eventuell divergierende Proteinpopulationen mit der Ausbildung von Knobs oder den jeweiligen Bindungseigenschaften korrelieren zu können, wurde die subzelluläre Lokalisation der variablen Oberflächenantigene mittels Immunfluoreszenz-Analyse untersucht. Die Ausstriche der verschiedenen P. falciparum Isolate mit 28 bis 32 Stunden alten Trophozoiten wurden mithilfe diverser Antikörper (aATSmono (PfEMP1), aRIF40 (RIFIN), aPFC0025c (STEVOR) und aPfMC-2TM-CT (PfMC-2TM)) analysiert, wobei die Anreicherung bezüglich der Ausbildung von Knobs mit Gelafundin® nicht länger als zwei Zyklen vor Anfertigen und Fixieren des Ausstriches zurücklag. Für die Quantifizierung der Lokalisation der variablen Oberflächenantigene wurden 100 infizierte Erythrozyten ausgezählt und in die jeweiligen subzellulären Bereichen eingeordnet (Abbildung 26-14).

Abbildung 26: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes 3D7, kultiviert mit AlbuMAX®. Für die Immunfluoreszenz-Färbungen wurden die Antikörper αATSmono (1:50), αRIF40 (1:300), αPFC0025c (1:200) und α*Pf*MC-2TM-CT (1:200) verwendet. **A.** 3D7 kultiviert unter Standardbedingungen (ohne *Knobs*). **B.** 3D7 mit Gelafundin® hinsichtlich der Ausbildung von *Knobs* angereichert. Links: Darstellung infizierter Erythrozyten mit spezifischer Immunfluoreszenz-Färbung und DNA-Färbung (Hoechst) sowie im Durchlicht und die Überlagerung der konfokalen Aufnahmen. Rechts: Quantifizierung der unterschiedlichen Lokalisationen variabler Oberflächenantigene. Hierfür wurden jeweils 100 infizierte Erythrozyten ausgezählt und die jeweilige Lokalisation (Parasit, MS, EM) dokumentiert. Die Prozentangabe der verschiedenen Lokalisationen bezeichnen die Häufigkeit bezogen auf die ausgezählten Zellen. Wurde ein Antikörper an mehr als einem Bereich detektiert, wurden beide Bereiche notiert, weshalb es teilweise zu über 100% kam.

Abbildung 27: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes 3D7, kultiviert mit humanem Serum. Für die Immunfluoreszenz-Färbungen wurden die Antikörper aATSmono aPFC0025c (1:50),aRIF40 (1:300),(1:200)und aPfMC-2TM-CT (1:200)verwendet. A. 3D7 kultiviert unter Standardbedingungen (ohne Knobs). B. 3D7 mit Gelafundin® hinsichtlich der Ausbildung von Knobs angereichert. Links: Darstellung infizierter Erythrozyten mit spezifischer Immunfluoreszenz-Färbung und DNA-Färbung (Hoechst) sowie im Durchlicht und die Überlagerung der konfokalen Aufnahmen. Rechts: Quantifizierung der unterschiedlichen Lokalisationen variabler Oberflächenantigene. Hierfür wurden jeweils 100 infizierte Erythrozyten ausgezählt und die jeweilige Lokalisation (Parasit, MS, EM) dokumentiert. Die Prozentangabe der verschiedenen Lokalisationen bezeichnen die Häufigkeit bezogen auf die ausgezählten Zellen. Wurde ein Antikörper an mehr als einem Bereich detektiert, wurden beide Bereiche notiert, weshalb es teilweise zu über 100% kam.

Abbildung 28: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes FCR3, kultiviert mit AlbuMAX®. Für die Immunfluoreszenz-Färbungen wurden die Antikörper α ATSmono (1:50), α RIF40 (1:300), α PFC0025c (1:200) und α *Pf*MC-2TM-CT (1:200) verwendet. A. FCR3 kultiviert unter Standardbedingungen (ohne *Knobs*). B. FCR3 mit Gelafundin® hinsichtlich der Ausbildung von *Knobs* angereichert. Links: Darstellung infizierter Erythrozyten mit spezifischer Immunfluoreszenz-Färbung und DNA-Färbung (Hoechst) sowie im Durchlicht und die Überlagerung der konfokalen Aufnahmen. Rechts: Quantifizierung der unterschiedlichen Lokalisationen variabler Oberflächenantigene. Hierfür wurden jeweils 100 infizierte Erythrozyten ausgezählt und die jeweilige Lokalisation (Parasit, MS, EM) dokumentiert. Die Prozentangabe der verschiedenen Lokalisationen bezeichnen die Häufigkeit bezogen auf die ausgezählten Zellen. Wurde ein Antikörper an mehr als einem Bereich detektiert, wurden beide Bereiche notiert, weshalb es teilweise zu über 100% kam.

Abbildung 29: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes FCR3, kultiviert mit humanem Serum. Für die Immunfluoreszenz-Färbungen wurden die Antikörper aATSmono (1:50),aRIF40 (1:300),aPFC0025c (1:200)und α*Pf*MC-2TM-CT (1:200)verwendet. A. FCR3 kultiviert unter Standardbedingungen (ohne Knobs). B. FCR3 mit Gelafundin® hinsichtlich der Ausbildung von Knobs angereichert.Links: Darstellung infizierter Erythrozyten mit spezifischer Immunfluoreszenz-Färbung und DNA-Färbung (Hoechst) sowie im Durchlicht und die Überlagerung der unterschiedlichen Lokalisationen variabler konfokalen Aufnahmen. Rechts: Quantifizierung der Oberflächenantigene. Hierfür wurden jeweils 100 infizierte Erythrozyten ausgezählt und die jeweilige Lokalisation (Parasit, MS, EM) dokumentiert. Die Prozentangabe der verschiedenen Lokalisationen bezeichnen die Häufigkeit bezogen auf die ausgezählten Zellen. Wurde ein Antikörper an mehr als einem Bereich detektiert, wurden beide Bereiche notiert, weshalb es teilweise zu über 100% kam.

Im Allgemeinen gab es keine großen Unterschiede bezüglich der Lokalisation der variablen Oberflächenantigene zwischen den verschiedenen P. falciparum-Isolaten. Die PfEMP1 Proteine konnten bei beiden Kultivierungsmethoden (AlbuMAX® respektive humanes Serum) mithilfe des aATSmono-Antikörpers sowohl bei 3D7 als auch FCR3 infizierten Erythrozyten hauptsächlich an den Maurerschen Spalten aber zum Teil auch im Parasiten detektiert werden. Mit Ausnahme von Knob-positiven FCR3 Parasiten, kultiviert mit AlbuMAX®, konnte eine Präsentation von PfEMP1 Proteinen an der Erythrozytenmembran nur selten oder gar nicht beobachtet werden. An dieser Stelle ist anzumerken, dass der verwendete PfEMP1-Antikörper (aATSmono) die var-kodierten Proteine auf der Erythrozytenmembran schlecht erkennt. Eine Lokalisation dieser Proteine auf der Oberfläche infizierter Erythrozyten konnte jedoch bereits an anderer Stelle nachgewiesen werden (Leech et al., 1984). Der aRIF40-Antikörper reagierte zum größten Teil mit den Parasiten und nur selten mit der Erythrozytenmembran. Hierbei war jedoch zu beobachten, dass ein Signal in der Erythrozytenmembran häufiger bei der Kultivierung mit AlbuMAX® detektiert werden konnte. Das Fluoreszenzsignal der Färbung mit dem STEVOR-Antikörper dominierte im Parasiten, war jedoch auch an der Wirtszellmembran zu sehen. Im 3D7-Laborstamm wurde STEVOR im Vergleich zwischen Knob-negativ und Knob-positiv öfter bei der Kultivierung mit AlbuMAX® mit Knobs detektiert, wohingegen bei der Kultivierung mit humanem Serum das Signal häufiger bei 3D7 infizierten Erythrozyten ohne Knobs zu sehen war. Bei dem Laborstamm FCR3 hingegen war ein derartiger Unterschied zwischen Knob-positiv und -negativ nicht zu erkennen. Auch das PfMC-2TM-Antiserum färbte infizierte Erythrozyten beider Laborstämme sowohl im Parasiten als auch an der Erythrozytenmembran an (Abbildung 26-Abbildung 29). Bei allen untersuchten Isolaten beider Laborstämme konnte für alle Proteinfamilien eine Lokalisation an der Erythrozytenmembran gesehen werden. Ausnahme war hierbei das PfEMP1, das lediglich in vier getesteten P. falciparum Isolaten an der Wirtszellmembran beobachtet werden konnte (Kultivierung mit AlbuMAX®: 3D7 Knob-negativ sowie -positiv, FCR3 Knob-positiv; Kultivierung mit humanem Serum: 3D7 Knob-negativ). Zudem fiel auf, dass die Fluoreszenzsignale der Antikörper beider Laborstämme (3D7 respektive FCR3) häufiger in der Wirtszellmembran detektiert werden konnte, wenn mit AlbuMAX® kultiviert wurde.

3.1.4 Transkriptom-Analyse mittels RNA-Sequenzierung (RNA-Seq) von *P. falciparum* FCR3-Isolaten

Das Transkriptom, die Gesamtheit der transkribierten Gene, gibt Aufschluss über die Aktivität der Genexpression. Um Informationen über die Genexpression der verschieden kultivierten Isolate des Laborstammes FCR3 zu erhalten, wurde eine auf dem Next Generation Sequencing (NGS) basierende RNA-Sequenzierung (RNA-Seq) durchgeführt. Damit sollte zunächst untersucht werden, ob und wie die Kultivierung mit AlbuMAX® auf der einen und die Kultivierung mit humanem Serum auf der anderen Seite Unterschiede auf Transkriptom-Ebene zu einem bestimmten Zeitpunkt (im Ringstadium) hervorruft. Des Weiteren wurde analysiert, ob die Ausbildung von Knobs auf die Expression bestimmter Gene zurückzuführen sein könnte. Zunächst wurde von den zu untersuchenden Isolaten die RNA (im Ringstadium) isoliert. PfEMP1 Proteine sind die wichtigsten Adhäsionsmoleküle im Zusammenhang mit der Zytoadhärenz (Leech et al., 1984). Aus diesem Grund sollte vor allem die Expression der var-Genfamilie, welche für die PfEMP1 Proteine kodiert, analysiert werden. Für diese Gene konnte gezeigt werden, dass eine exklusive Transkription im Ringstadium stattfindet (Kyes et al., 2000), weswegen für die Transkriptom-Analyse Parasiten-RNA des Ringstadiums verwendet wurde. Die Konzentration der jeweiligen Probe wurde direkt im Anschluss an die RNA-Isolierung mithilfe eines NanoDrops bestimmt (Tabelle 6). Um verlässliche Ergebnisse bezüglich der Expressionsprofile des Transkriptoms zu erhalten, war es notwendig, die Qualität der jeweiligen RNA zu kontrollieren. Die Überprüfung der RNA-Integrität erfolgte mithilfe des Bioanalyzers. Anhand des für jede RNA-Probe generierten RIN (RNA Integrity Number)-Wertes (Zahlenwert 1-10) wurde die RNA-Qualität ermittelt (Tabelle 6). Intakte, nicht degradierte RNA von sehr hoher Integrität wird hierbei durch einen hohen RIN-Wert von zehn repräsentiert, wohingegen vollständig degradierte RNA mit geringster Qualität einem RIN-Wert von 1 entspricht (Schroeder et al., 2006). Parallel dazu wurden auch das zugehörige Elektrogramm sowie das virtuelle Gelbild begutachtet (nicht abgebildet).

P. falciparum-Isolat	Kultivierungs- medium	Oberflächen- beschaffenheit	Biologische Probe	Konzentration [ng/µl]	RIN- Wert
FCR3 Stamm	Humanes Serum	Knob-negativ	1	770,4	9,0
FCR3 Stamm	Humanes Serum	Knob-negativ	2	616,5	8,8
FCR3 + Gelafundin®	Humanes Serum	Knob-positiv	1	607,8	n/a
FCR3 + Gelafundin®	Humanes Serum	Knob-positiv	2	727,8	n/a
FCR3 Stamm	AlbuMAX®	Knob-negativ	1	304,4	6,4
FCR3 Stamm	AlbuMAX®	Knob-negativ	2	189,7	6,5
FCR3 + Gelafundin®	AlbuMAX®	Knob-positiv	1	366,5	9
FCR3 + Gelafundin®	AlbuMAX®	Knob-positiv	2	309,9	9

Tabelle 6: Qualität der isolierten RNA aus den verschiedenen *P. falciparum* **FCR3 Isolaten.** Die Konzentration wurde mittels NanoDrop ermittelt, die RIN-Werte entstammen der Analyse mittels Bioanalyzer. n/a: es konnte kein RIN-Wert berechnet werden.

Bei der Gesamtheit der isolierten RNA handelte es sich um intakte, nicht degradierte RNA von teilweise hoher Integrität (RIN-Werte 8,8 und 9,0). Auch für die RNA-Proben, für die kein RIN-Wert generiert wurde, konnten anhand des jeweiligen Elektrogramms sowie des virtuellen Gelbildes als intakte, nicht degradierte RNA bewertet werden, sodass die RNA-Seq mit allen RNA-Proben durchgeführt werden konnte.

Mithilfe der Transkriptom-Analyse sollten mögliche Unterschiede in der Genexpression des Laborstammes FCR3 bezüglich des Kulturmediums (AlbuMAX® respektive humanes Serum) sowie zwischen *Knob*-negativen und *Knob*-positiven Isolaten beider Kultivierungsmethoden ermittelt werden. Dafür wurde das Expressionsprofil hinsichtlich der Gene untersucht, die bei dem Vergleich der Transkriptome der jeweiligen *P. falciparum* Isolate eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) aufwiesen (Abbildung 30, 32 und 34). Außerdem wurde, unabhängig von einer möglichen signifikant differentiellen Expression, die Expression der *var*-Gene untersucht (Abbildung 31, 33 und 35).

3.1.4.1 Vergleich der Genexpression des *P. falciparum*-Laborstammes FCR3 hinsichtlich der Kultivierung mit AlbuMAX® *versus* humanem Serum

(i) Gene mit einer signifikant differentiellen Expression

Abbildung 30: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (padj \leq 0,05; *Fold Change* \geq 2,5) von *Knob*-negativen *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum (blau) oder AlbuMAX® (violett). Die Balken repräsentieren das Transkriptionsniveau bei der Kultivierung mit humanem Serum (blau) im Vergleich zu der Kultivierung mit AlbuMAX® (violett) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.**var*-Gene (Nomenklatur siehe Anhang).

Bei dem Vergleich der Kultivierung mit AlbuMAX® mit der Kultivierung mit humanem Serum waren insgesamt 47 Gene signifikant differentiell exprimiert, wovon 44 Gene eine signifikant differentiell höhere und drei Gene eine niedrigere Expression bei Kultivierung mit AlbuMAX® zeigten (padj $\leq 0,05$; *Fold Change* $\geq 2,5$). Während bei den mit AlbuMAX® kultivierten Parasiten für sieben der differentiell exprimierten Gene ein Expressionslevel > 25.000, somit eine deutliche Expression, zu beobachten war, war das Transkriptionsniveau bei humanem Serum um das 8fache bis 110fache niedriger. In diesem Kontext fiel auf, dass das Gen PFIT_bin11000, ein *var*-Gen, ein 110fach höheres Expressionslevel bei Kultivierung mit AlbuMAX® und damit die größte Differenz hinsichtlich der Expression der beiden Kultivierungsmedien aufwies. Das Gen PFIT_0201400 zeichnete sich dadurch aus, dass es das einzige Gen war, das bei Kultivierung mit humanem Serum ein höheres Expressionslevel (> 6.000) als bei Kultivierung mit AlbuMAX® aufzeigte (Abbildung 30,

Tabelle 7).

Tabelle 7: Signifikant differentiell exprimierte Gene (padj ≤ 0.05 ; Fold Change ≥ 2.5) mit deutliche	r
Expression (> 25.000) von P. falciparum FCR3 (Vergleich AlbuMAX® mit humanem Serum). FC: Fold	l
Change. * einziges Gen, das bei Kultivierung mit humanem Serum ein höheres Expressionsniveau aufweist	•
violett: höhere Expression bei AlbuMAX®.	

Bezeichnung	Name	Funktion	FC
PFIT_0930500	MSP 1 (merozoite surface protein1)	Invasion, Pathogenität	8,6
PFIT_0302400	CLAG3.1 (cytoadherence linked asexual protein 3.1)	unbekannt	11,7
PFIT_0929600	RhopH2 (high molecular weight rhoptry protein 2)	unbekannt	8,4
PFIT_1411400	RAP1 (rhoptry-associated protein 1)	unbekannt	10,7
PFIT_1334300	MSP 7 (merozoite surface protein)	unbekannt	11,8
PFIT_bin11000	<i>Pf</i> EMP1 (<i>Plasmodium falciaprum eryrthrozyte membrane protein 1</i>), putativ	Zytoadhärenz (Rezeptor- Aktivität), Pathogenität,	109,9
PFIT_1252300	RON 3 (rhoptry neck protein 3)	unbekannt	11,2
PFIT_0201400*	LSAP2 (liver stage associated protein 2)	unbekannt	8,2

(ii) Expression der var-Gene

Unabhängig von einer möglichen signifikant differentiellen Expression, wurden die Transkriptome der Kultur mit AlbuMAX® und humanem Serum hinsichtlich der *var*-Genexpression untersucht (Abbildung 31).

Abbildung 31: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum (rot) oder AlbuMAX® (grün) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; * padj $\leq 0,05$.

Das Expressionsprofil der *var*-Gene zeigte bei dem Vergleich der Kultivierung mit AlbuMAX® und humanem Serum für zwei *var*-Gene, *it4_var46* und *it4_var67*, eine hoch signifikant differentielle Expression. Mit einem Expressionslevel von > 2.500 waren beide Gene bei der Kultivierung mit AlbuMAX® deutlich exprimiert, wohingegen sie bei humanem Serum eine geringe Expression aufwiesen. Zusätzlich war eine deutliche Expression für vier nicht signifikant differentiell exprimierte *var*-Gene zu beobachten, wovon zwei *var*-Gene eine höhere (*it4_var 65* und *it4_var 66*) und zwei eine niedrigere Expression (*it4_var34* und *it4_var35*) bei der Kultivierung mit AlbuMAX® im Vergleich zu humanem Serum demonstrierten (Abbildung 31).

3.1.4.2 Vergleich der Genexpression des *P. falciparum*-Laborstammes FCR3 hinsichtlich möglicher Unterschiede zwischen *Knob*-negativen und *Knob*-positiven Isolaten bei der Kultivierung mit AlbuMAX®

(i) Gene mit einer signifikant differentiellen Expression

Abbildung 32: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten (iRBC), kultiviert mit AlbuMAX®. Die Balken repräsentieren das Transkriptionsniveau *Knob*-negativer iRBC (dunkelviolett) im Vergleich zu *Knob*-positiven iRBC (hellviolett) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. * *var*-Gene (Nomenklatur siehe Anhang).

Der Vergleich von *Knob*-positiven (+K) und *Knob*-negativen (-K) FCR3-Isolaten bei Kultivierung mit AlbuMAX® ergab für insgesamt 57 Gene eine signifikant differentielle Expression (*Fold Change* \geq 2,5), wovon bei zwölf Genen eine höhere Expression in *Knob*-positiven Isolaten (bei Kultivierung mit AlbuMAX®) zu beobachten war. Die restlichen 45 Gene demonstrierten hingegen in *Knob*-positiven Isolaten ein niedrigeres Transkriptionsniveau als in *Knob*-negativen Isolaten. In diesem Zusammenhang war für fünf dieser signifikant differentiell exprimierten Gene eine deutliche Expression zu erkennen (Expressionslevel > 30.000), wobei alle *Knob*-positiven Isolate. PFIT_0724500 und PFIT_0724600 besaßen hierbei bei *Knob*-negative Isolate. PFIT_0724500 und PFIT_0724600 besaßen hierbei bei *Knob*-positiven sowie *Knob*-negativen Isolaten die höchste Expression (Abbildung 32, Tabelle 8). Des Weiteren fiel auf, dass relativ viele *var*-Gene signifikant differentiell exprimiert

Tabelle 8: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 30.000) von *P. falciparum* FCR3 (Vergleich *Knob*-negativer (-K) mit *Knob*-positiven (+K) Isolaten bei Kultivierung mit AlbuMAX®. FC: *Fold Change*. (k) konserviert. violett: höhere Expression im *Knob*-negativen Isolat.

Bezeichnung	Name	Funktion	FC
PFIT_0724500	28S ribosomale RNA	Proteinsynthese	6,1
PFIT_0724600	28S ribosomale RNA	Proteinsynthese	6,1
PFIT_0107000	Plasmodium-Protein (k)	unbekannt	2,6
PFIT_bin11000	<i>Pf</i> EMP1 (<i>Plasmodium falciparum eryrthrozyte membrane protein 1</i>),	Zytoadhärenz (Rezeptor-Aktivität), Pathogenität	3,1
PFIT_0501500	interspersed repeat antigen	Hormon-Aktivität	5,0

(ii) Expression der var-Gene

Die Transkriptome der *Knob*-negativen und *Knob*-positiven Kultur bei der Kultivierung mit AlbuMAX® wurden unabhängig von einer möglichen signifikant differentiellen Expression analysiert (Abbildung 33).

Abbildung 33: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit AlbuMAX®. Die Balken repräsentieren das Transkriptionsniveau *Knob*-negativer iRBC (grün) im Vergleich zu *Knob*-positiven iRBC (rot) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj \leq 0,001; ** padj \leq 0,01; * padj \leq 0,05.

Das Expressionsprofil der *var*-Gene bei der Gegenüberstellung *Knob*-negativer (-K) mit *Knob*positiven (+K) Isolaten, kultiviert mit AlbuMAX®, zeigte für insgesamt 16 *var*-Gene eine signifikant differentielle Expression, wovon alle *Knob*-positiven ein im Vergleich signifikant differentiell niedrigeres Expressionsniveau aufwiesen. Lediglich zwei *var*-Gene (*it4_var46* und *it4_var 65*) präsentierten dabei eine deutliche Expression (Expressionslevel > 3.000), wohingegen die anderen signifikant differentiell exprimierten *var*-Gene ein vernachlässigbar geringes Transkriptionsniveau demonstrierten. Des Weiteren zeigten vier nicht signifikant differentiell exprimierte *var*-Gene (*it4_var35*, *it4_var35*, *it4_var66* und *it4_var67*) sowohl in *Knob*-negativen als auch -positiven Isolaten eine deutliche Transkription, wobei in *Knob*- positiven Parasiten ein niedrigeres Expressionslevel als in *Knob*-negativen Parasiten zu beobachten war (Abbildung 33).

3.1.4.3 Vergleich der Genexpression des *P. falciparum*-Laborstammes FCR3 hinsichtlich möglicher Unterschiede zwischen *Knob*-negativen und *Knob*-positiven Isolaten bei der Kultivierung mit humanem Serum

(i) Gene mit einer signifikant differentiellen Expression

Abbildung 34: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten (iRBC), kultiviert mit humanem Serum. Die Balken repräsentieren das Transkriptionsniveau *Knob*-negativer iRBC (dunkelblau) im Vergleich zu *Knob*-positiven iRBC (hellblau) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.

Bei dem Vergleich von *Knob*-negativen mit *Knob*-positiven FCR3-Isolaten, kultiviert mit humanem Serum, wurden nur vier Gene mit einer signifikant differentiellen Expression ermittelt. Diese Gene wiesen ausnahmslos ein höheres Expressionslevel in *Knob*-positiven Isolaten auf, wobei das Expressionslevel vernachlässigbar gering ausfiel (Abbildung 34, Tabelle 9).

Tabelle 9: Gene mit signifikant differentieller Expression (padj \leq 0,05; <i>Fold Change</i> \geq 2,5) von <i>P. falciparum</i>
FCR3 (Vergleich Knob-negativer (-K) mit Knob-positiven (+K) Isolaten bei Kultivierung mit humanem
Serum®. FC: Fold Change. (k) konserviert. hellblau: höhere Expression im Knob-positiven Isolat.

Bezeichnung	Name	Funktion	FC
PFIT_bin05500	Plasmodium exported protein (hyp15),	unbekannt	21,3
PFIT_0828000	Plasmodium-Protein (k)	unbekannt	38,4
PFIT_0401700	tRNA Asparagin	Translation	87,7
PFIT_0830900	ROM3 (rhomboid protease)	Proteolyse, Endopeptidase-Aktivität	12,3

(ii) Expression der var-Gene

Die Expressionsprofile der *var*-Gene der *Knob*-negativen und *Knob*-positiven Parasiten bei der Kultivierung mit humanem Serum wurden unabhängig von einer möglichen signifikant differentiellen Expression analysiert (Abbildung 35).

Abbildung 35: Expressionsprofil der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum. Die Balken repräsentieren das Transkriptionsniveau *Knob*-negativer iRBC (grün) im Vergleich zu *Knob*-positiven iRBC (rot) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.

Die Transkriptom-Analyse der *Knob*-negativen und -positiven Isolate ergab bei der Kultivierung mit humanem Serum keine signifikant differentiellen *var*-Gene. Eine deutliche Expression (Expressionslevel > 3.000) zeigten vier nicht signifikant differentiell exprimierte *var*-Gene, wobei drei dieser *var*-Gene (*it4_var34, it4_var35* und *it4_var66*) ein niedrigeres und ein *var*-Gen (*it4_var67*) ein höheres Transkriptionsniveau in *Knob*-positiven Isolaten aufwiesen als in *Knob*-negativen Isolaten. Das höchste Expressionslevel präsentierte dabei *it4_var34*, unabhängig von der Formation von *Knobs*, wohingegen *it4_var35* und *it4_var66* ein ähnlich hohes Expressionslevel aufwiesen (Abbildung 35).

3.1.4.4 Zusammenfassung

Zusammengefasst ergab sich für die untersuchten *P. falciparum* FCR3-Isolate hinsichtlich der identifizierten Gene mit einer signifikant differentiellen Expression das in Abbildung 36 dargestellte Mengenverhältnis.

Abbildung 36: Gene mit einer signifikant differentiellen Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) aller miteinander verglichenen *P. falciparum*-Isolate.

Die Kultivierung mit humanem Serum *vs.* AlbuMAX® ergab bei insgesamt 47 Genen eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$), von denen sechs Gene bei der Gegenüberstellung von *Knob*-negativen und -positiven Isolaten (AlbuMAX®) ebenfalls signifikant differentiell exprimiert wurden (insgesamt 51 Gene). Von den vier bei der Kultivierung mit humanem Serum in Erscheinung tretenden Gene zeigte keines eine Übereinstimmung mit den anderen untersuchten Expressionsprofilen (Abbildung 36).

Die var-Gene it4_var34 und it4_var35 zeigten bei allen untersuchten Isolaten ein sehr hohes Transkriptionsniveau gesehen, wobei beide Gene ein höheres Expressionslevel bei Kultivierung mit humanem Serum aufwiesen als bei Kultivierung mit AlbuMAX® sowie, unabhängig von der Kultivierungsmethode, bei Knob-negativen P. falciparum Isolaten. Bei der AlbuMAX® zeigten *it4_var66* Kultivierung mit und it4_var67 ein höheres Transkriptionsniveau als bei humanem Serum. it4_var66 wies zudem in Knob-negativen Isolaten (unabhängig von der Kultivierungsmethode) ein höheres Expressionslevel auf, bei it4_var67 hingegen war bei der Kultivierung mit humanem Serum eine höhere Expression in Knob-positiven Isolaten zu beobachten. Des Weiteren zeigte ein var-Gen, das it4_var46, ein relativ hohes Expressionsprofil bei der Kultivierung mit AlbuMAX®, wohingegen für dieses Gen bei den mit humanem Serum kultivierten P. falciparum Isolaten nur eine niedrige Expression messbar war (Abbildung 31, Abbildung 33, Abbildung 35).

3.2 Identifizierung eines Liganden für P-Selektin mittels Genexpressionsanalyse verschiedener *P. falciparum* FCR3-Populationen nach Anreicherung (*Panning*) in Bezug auf eine Bindung an P-Selektin

Die Parasiten eines *P. falciparum*-Stammes wie FCR3 besitzen ein identisches Repertoir an Genen, von denen jedoch nicht alle transkribiert werden. Die Expression der Gene ist abhängig von dem jeweiligen Entwicklungsstadium, den Kulturbedingungen und weiteren äußeren Einflüssen, sodass die Gesamtheit der exprimierten Gene, das Transkriptom, große Unterschiede bei gleichem Genom aufweisen kann. Die Transkriptom-Analyse erlaubt die Aktivität der Genexpression zu einem bestimmten Zeitpunkt in der Entwicklung in einer Zelle bzw. Zellpopulation zu untersuchen und gegebenenfalls Rückschlüsse auf die später synthetisierten Proteine zu schließen.

Um den oder die Liganden parasitären Ursprungs zu identifizieren, die für die Bindung an P-Selektin verantwortlich sind, wurde mittels Transkriptom-Analyse die Aktivität der Genexpression verschiedener P. falciparum Populationen im Ringstadium untersucht. Zu diesem Zweck wurde eine RNA-Sequenzierung (RNA-Seq) durchgeführt, eine Methode basierend auf dem Next Generation Sequencing. Für die Transkriptom-Analyse bezüglich der Bindung an P-Selektin wurden zunächst Parasitenpopulationen hinsichtlich der Bindung an den Endothelrezeptor P-Selektin angereichert. Mit Rücksicht auf die vorangegangenen Bindungsexperimente bezüglich der optimalen Bedingungen für den Rezeptor P-Selektin, wurde als Ausgangskultur P. falciparum FCR3, kultiviert mit humanem Serum ohne Knobs verwendet (siehe 3.1.2.2). Die Anreicherung erfolgte mittels Panning auf zwei Arten: In Experiment 1 wurde die Ausgangskultur nach dem ersten *Panning* im Ringstadium geerntet, wobei ein Teil weiter kultiviert wurde bis zum Trophozoitenstadium. Hier erfolgte dann das zweite Panning, von dem im anschließenden Ringstadium erneut geerntet wurde. Bei Experiment 2 wurde, ausgehend von der Ausgangskultur (P. falciparum FCR3, kultiviert mit humanem Serum), nicht im direkt auf das erste oder zweite Panning folgenden Ringstadium Material für die RNA-Isolierung geerntet. Hierbei erfolgte das nächste Panning erst, wenn die Kultur eine Parasitämie von mindestens 10% aufwies und die Ernte erfolgte erst nach der fünften oder sechsten Panning-Runde (Abbildung 37).

Abbildung 37: Übersicht über die Panning-Experimente.

3.2.1 Kontrolle der Anreicherung hinsichtlich der Bindung an P-Selektin mithilfe inverser Mikroskopie und statischer Bindungsexperimente

Im Anschluss an jede *Panning*-Runde wurde sowohl bei Experiment 1 als auch bei Experiment 2 die Anreicherung hinsichtlich der Bindung an P-Selektin mithilfe eines inversen Mikroskops begutachtet (Abbildung 38, Abbildung 39 und Abbildung 40). Die Anreicherung hinsichtlich der P-Selektin bindenden Parasitenpopulationen erfolgte bei Experiment 2 in zwei unabhängigen Versuchsansätzen. Das Prozedere des *Pannings* wurde jedoch unter gleichen Bedingungen durchgeführt.

Abbildung 38: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 1).

Bei Experiment 1 war mithilfe des inversen Mikroskops nach dem zweiten *Panning* keine Anreicherung zu sehen (Abbildung 38).

100 µm

Abbildung 39: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 2_Versuch 1).

100 µm

Abbildung 40: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 2_Versuch 2).

Bei dem Experiment 2 war bei beiden durchgeführten Anreicherungen (Versuch 1 und Versuch 2) hinsichtlich der Bindung an P-Selektin nach dem dritten *Panning* eine leichte Steigerung in der Anzahl der gebundenen infizierten Erythrozyten zu beobachten, wohingegen nach dem fünften *Panning* ein deutlicher Anstieg zu verzeichnen war (Abbildung 39, Abbildung 40). Um diesen Anstieg quantifizieren zu können sowie zwischen nicht infizierten und infizierten Erythrozyten, die gebunden hatten, zu unterscheiden, wurden zusätzlich statische Bindungsexperimente durchgeführt. Die Bindungsversuche erfolgten parallel zu jedem *Panning*, sodass die Ergebnisse des jeweiligen Bindungsexperimentes die Bindungskapazität der für das *Panning* verwendeten Kultur wiederspiegeln (Abbildung 41).

Abbildung 41: Statische Bindungsversuche zur Überprüfung der Anreicherung hinsichtlich der P-Selektin-Bindung. Die Balken repräsentieren die mittlere Anzahl der infizierten Erythrozyten (iRBC), die spezifisch an 100 CHO-Zellen gebunden haben, auf denen die Endothelrezeptoren CD36 bzw. P-Selektin exprimiert werden. Die für die Ausgangskultur abgebildeten Ergebnisse resultieren aus drei Bindungsversuchen und spiegeln das bekannte Bindungsprofil der Ausgangskultur bezüglich der Rezeptoren CD36 und P-Selektin wider. Es wurden jeweils 500 CHO-Zellen mikroskopisch ausgezählt, wobei jedes Experiment in Triplikaten durchgeführt wurde. A. Versuch 1 B. Versuch 2.

Im Allgemeinen zeigten die durchgeführten Bindungsexperimente beider Versuchsansätze (V1 und V2) ein ähnliches Bild und bestätigten die Tendenz, die bei Betrachtung der inversen Mikroskopie-Aufnahmen zu beobachten war. Für die Bestimmung der P-Selektin-Bindung der Ausgangskultur wurde nur ein Bindungsexperiment durchgeführt, da die infizierten Erythrozyten der Gesamtpopulation erfahrungsgemäß eine geringe Bindungsbereitschaft an P-Selektin $(1,0 \pm 0,6 \text{ (iRBC/100 CHO)})$ aufwiesen. Eine leichte Steigerung der Bindungskapazität konnte bereits nach dem ersten Panning (V1: 6,0 ± 1,6 (iRBC/100 CHO)) beziehungsweise nach Panning II gesehen werden (V2: 21,7 ± 8,0 (iRBC/100 CHO)). Bei beiden Versuchen lag die Bindungskapazität nach dem dritten *Panning* bei einem Wert von 26.2 ± 3.8 gebundenen infizierten Erythrozyten pro 100 CHO-Zellen (V1) respektive 25.9 ± 5.4 gebundenen infizierten Erythrozyten pro 100 CHO-Zellen (V2) und war somit um mehr als das 20fache gestiegen. Während die Bindungskapazität nach dem dritten und vierten Panning vergleichbar waren (V1: 27,1 \pm 1,1; V2: 24,8 \pm 8,7 (iRBC/100 CHO)), führte ein fünftes *Panning* zu einer erneuten Steigerung der Bindung (V1: 40.8 ± 1.3 ; V2: 41.6 ± 8.0 (iRBC/100 CHO)), sodass im Vergleich zur Ausgangskultur die Anzahl der an P-Selektin gebundenen infizierten Erythrozyten um das 40fache gestiegen war.

3.2.2 Transkriptom-Analyse mittels RNA-Sequenzierung (RNA Seq) von *P. falciparum* FCR3 nach Anreicherung in Bezug auf die Bindung an P-Selektin (*Panning*)

Die Transkriptom-Analyse der angereicherten *P. falciparum* FCR3-Isolate (nach *Panning*) sowie das als Kontrolle dienenden *P. falciparum* FCR3-Isolat, das nach Standardbedingungen kultiviert wurde (Ausgangskultur), erfolgte mithilfe einer RNA-Sequenzierung. So sollte ermittelt werden, ob die Steigerung der Bindungskapazität an P-Selektin mit der Expression bestimmter Gene korreliert.

Von den hinsichtlich der Bindung an P-Selektin angereicherten *P. falciparum* Isolaten wurde dazu in einem ersten Schritt die RNA isoliert und die Konzentration unmittelbar nach der RNA Isolierung mit einem NanoDrop bestimmt (Tabelle 10). Um bei der anstehenden Transkriptom-Analyse zuverlässige Ergebnisse zu generieren, war es unabdingbar, die Qualität der isolierten RNA zu überprüfen. Die RNA-Integrität wurde unter Zuhilfenahme des Bioanalyzers ermittelt, wobei für jede RNA-Probe ein RIN (*RNA Integrity Number*)-Wert (Zahlenwert 1-10) generiert wurde (Schroeder *et al.*, 2006), der die Qualität der jeweiligen RNA anzeigte (Tabelle 10) (siehe 3.1.4).

Tabelle 10: Qualität der isolierten RNA aus den verschiedenen *P. falciparum* **FCR3-Isolaten.** Die Konzentration wurde mittels NanoDrop ermittelt, die RIN-Werte entstammen der Analyse mittels Bioanalyzer. n/a: es konnte kein RIN-Wert berechnet werden. * degradierte RNA.

P. falciparum-Isolat	Bindungs- eigenschaften	Biologische Probe	Konzentration [ng/µl]	RIN- Wert	
FCR3 Stamm nach Panning I	gebundene Erythrozyten	1	765,9	5,5	
FCR3 Stamm nach Panning I	gebundene Erythrozyten	2	1134,6	6,8	ient 1
FCR3 Stamm nach Panning II	gebundene Erythrozyten	1	841,3	n/a	Experin
FCR3 Stamm nach Panning II	gebundene Erythrozyten	2	1027,3	2,1*	
FCR3 Stamm (Kontrolle)	-	1	1083,2	9,2	
FCR3 Stamm (Kontrolle)	-	2	406,4	6,7	
FCR3 Stamm nach Panning VI	ungebundene Erythrozyten	1	546,4	5,0	
FCR3 Stamm nach Panning VI	ungebundene Erythrozyten	2	526,5	5,6	
FCR3 Stamm nach Panning VI	gebundene Erythrozyten	1	161,4	8,8	
FCR3 Stamm nach Panning VI	gebundene Erythrozyten	2	194,3	7,7	aent 2
FCR3 Stamm nach Panning V	ungebundene Erythrozyten	1	157,9	6,6	Experin
FCR3 Stamm nach Panning V	ungebundene Erythrozyten	2	162,0	n/a	
FCR3 Stamm nach Panning V	gebundene Erythrozyten	1	146,2	8,6	
FCR3 Stamm nach Panning V	gebundene Erythrozyten	2	152,5	8,5	

Mit Ausnahme einer Probe (FCR3 Stamm nach *Panning* II, Experiment 1), handelte es sich bei der isolierten RNA um intakte, nicht degradierte RNA von zum Teil hoher Integrität (RIN-Werte 8,5 und 9,2). Die RNA-Proben, denen kein RIN-Wert zugeordnet wurde, konnten mithilfe des parallel erstellten Elektrogramms sowie des virtuellen Gelbildes als intakte, nicht degradierte RNA beurteilt werden. Anhand der Transkriptom-Analyse sollten mögliche Unterschiede in der Genexpression der Ausgangskultur zur angereicherten Kultur (*Panning* I+II, *Panning* V oder *Panning* VI) sowie von nicht gebundenen mit gebundenen infizierten Erythrozyten nach einem *Panning* eruiert werden. Aus diesem Grund wurde das Expressionsprofil im Hinblick auf die Gene untersucht, die bei dem Vergleich der Transkriptome der jeweiligen *P. falciparum*-Kulturen eine signifikant differentielle Expression aufwiesen (padj \leq 0,05; *Fold Change* \geq 2,5) (Abbildung 42, Abbildung 44, Abbildung 46, Abbildung 48, Abbildung 50), unabhängig von einer möglichen signifikant differentiellen Expression, wurde das Transkriptionsprofil der *var*-Gene ausgewertet (Abbildung 43, Abbildung 45, Abbildung 47, Abbildung 49, Abbildung 51).

3.2.2.1 Vergleich der Genexpression der Ausgangskultur und der Kultur nach *Panning* I+II (Experiment 1)

(i) Gene mit einer signifikant differentiellen Expression

Abbildung 42: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (padj $\leq 0,05$; Fold Change $\geq 2,5$;) und einem Expressionslevel ≥ 10 von P. falciparum FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen (blau) oder nach Panning I und II (rot). Die Balken repräsentieren das Transkriptionsniveau des jeweiligen P. falciparum Isolates im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.*var-Gene (Nomenklatur siehe Anhang).

Bei dem Transkriptom-Vergleich der Ausgangskultur mit der Kultur nach *Panning* I und II war für 45 Gene eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) zu beobachten, wovon 18 Gene in der Kultur nach dem *Panning* I und II eine höhere und 27 Gene eine niedrigere Expression im Vergleich zur Ausgangskultur präsentierten. In diesem Kontext war für zehn dieser signifikant differentiell exprimierten Gene eine deutliche Expression zu erkennen (Expressionslevel > 5.000), wobei die Gene PFIT_1107600 und PFIT_0406300 nach der Anreicherung ein auffallend hohes Expressionslevel aufwiesen. Im Gegensatz dazu zeigten die Gene PFIT_0100700 und PFIT_1149400, die in der in der Ausgangskultur am stärksten exprimiert wurden, in der Kultur nach *Panning* I und II nur noch ein geringes Transkriptionslevel (Abbildung 42, Tabelle 11).

Tabelle 11: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 5.000) von *P. falciparum* FCR3_Experiment 1 (Vergleich von Ausgangskultur (AK) mit *Panning* I und II (PI+II)). FC: *Fold Change*. blau: höheres Expressionslevel in AK, rot: höheres Expressionslevel in PI+II; (k) konserviert.

Bezeichnung	Name	Funktion	FC
PFIT_0100700	ring-infected erythrocyte surface antigen	Hitzeschockprotein-Bindung	22,5
		Invasion von Erythrozyten,	20,5
PFIT_1149400	ring-infected erythrocyte surface antigen	Pathogenität (Bindung an	
		Wirtszelloberfläche)	
PFIT_0833400	tryptophan/threonine-rich antigen	unbekannt	9,7
PFIT_0107000	Plasmodium-Protein (k)	unbekannt	9,7
PFIT_0627200	choline/ethanolaminephosphotransferase, putativ	Phosphotransferase-Aktivität	21,6
PFIT_0936100	gametocytogenesis-implicated protein	unbekannt	9,0
DEIT 1107600	protein linges putativ	Proteinphosphorylierung (Protein-	12,3
FFI1_1107000	protein kindse, putativ	tyrosinkinase-Aktivität, ATP-Bindung)	
PFIT_0406300	Plasmodium-Protein (k)	unbekannt	77,19
	PfEMP1 (Plasmodium falciparum	Zytoadhärenz (Rezeptor-Aktivität),	268,4
PFIT_bin8900	erythrocyte membrane protein 1)	Pathogenität	
PFIT_0410300	Plasmodium-Protein (k)	unbekannt	281,6

(ii) Expression der var-Gene

Die entsprechenden Expressionslevel der *var*-Gene der Ausgangskultur und der Kultur nach *Panning* I und II wurden unabhängig von einer möglichen signifikant differentiellen Expression analysiert (Abbildung 43).

Abbildung 43: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen (blau) und nach *Panning* I+II (rot). Die Balken repräsentieren das Transkriptionsniveau der Ausgangskultur im Vergleich zu der angereicherten Kultur nach dem ersten und zweiten *Panning* (im Ringstadium). Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; ** pad

Die Transkriptom-Analyse ergab in Bezug auf die *var*-Genexpression für zwei *var*-Gene eine signifikant differentielle Expression, wobei das *var*-Gen *it4_var2* in der angereicherten Kultur eine höhere und *it 4_var66* eine niedrigere Expression aufwiesen. Beide Gene zeigten mit einem Expressionslevel > 1.000 eine deutliche Expression und zeichneten sich dadurch aus, dass bei lediglich einer der beiden Kulturen ein nennenswertes Transkriptionsniveau, somit eine exklusive Expression zu beobachten war. Zudem präsentierten vier nicht signifikant exprimierte *var*-Gene eine deutliche Expression (> 1.000) (*it4_var34, it4_var35, it4_var44* und *it4_var51*), wobei *it4_var44* und *it4_var51* mehr in der angereicherten Kultur transkribiert wurden. Die *var*-Gene *it4_var34* und *it4_var35* demonstrierten in der Kultur nach *Panning* I und II ein im Vergleich niedrigeres Expressionslevel, zeigten jedoch auch hier noch ein Transkriptionsniveau von über 1.000 (Abbildung 43).

3.2.2.2 Vergleich der Genexpression der Ausgangskultur und der Kultur nach *Panning* V (Experiment 2)

(i) Gene mit einer signifikant differentiellen Expression (Ausgangskultur vs Panning V)

Abbildung 44: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel \geq 500 (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen (blau) oder nach *Panning* V (rot). Die Balken repräsentieren das Transkriptionsniveau des jeweiligen *P. falciparum*-Isolates im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.**var*-Gene (Nomenklatur siehe Anhang).

Insgesamt 226 Gene zeigten eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) zwischen der Ausgangskultur und der Kultur nach *Panning* V, wovon jedoch nur die 87 Gene mit einem Expressionslevel > 500 in Abbildung 44 dargestellt sind. Während der Großteil der Gene eine sehr geringe Expression aufwies, war bei zehn Genen eine deutliche Transkription (Expressionslevel > 9.000) zu beobachten. Acht Gene präsentierten hierbei in der angereicherten Kultur nach *Panning* V ein niedrigeres und nur zwei Gene ein höheres Expressionsniveau, wobei PFIT_0406300 und zusätzlich PFIT_1018600 hier im Vergleich zur Ausgangskultur ein höheres (exklusives) Expressionslevel in der angereicherten Kultur

Tabelle 12: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 9.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von Ausgangskultur (AK) mit *Panning* V (PV). FC: *Fold Change*. blau: höheres Expressionslevel in AK, rot: höheres Expressionslevel in PV; (k) konserviert.

Bezeichnung	Name	Funktion	FC
PFIT_0936500	REX1 (ring-exported protein 1)	unbekannt	2,8
PFIT_0724500	28S ribosomale RNA	Proteinsynthese	23,2
PFIT_0724600	28S ribosomale RNA	Proteinsynthese	23,2
PFIT_0623500	SNF2 Helikase, putativ	Regulation der Transkription (DNA-Bindung, ATP-Bindung, Helikase-Aktivität); Zink-Ion-Bindung	2,7
PFIT_0107000	Plasmodium-Protein (k)	unbekannt	3,9
PFIT_0219400	liver stage antigen 3	unbekannt	3,1
PFIT_0422900	serine/threonine protein kinase, FIKK family	Protein-Phosphorylierung (Proteintyrosinkinase-Aktivität, ATP-Bindung)	3,6
	Plasmodium exported protein		3,2
PFIT_0400500	(PHISTb)	unbekannt	
PFIT_0406300	Plasmodium-Protein (k)	unbekannt	7,9
PFIT_1018600	Plasmodium-Protein (k)	unbekannt	19,6

(ii) Expression der var-Gene (Ausgangskultur vs Panning V)

Abbildung 45: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen (blau) und nach *Panning* V (rot). Die Balken repräsentieren das Transkriptionsniveau der Ausgangskultur im Vergleich zu der angereicherten Kultur nach dem fünften *Panning* im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; * padj $\leq 0,05$.

Bei dem Vergleich der Transkriptome der Ausgangskultur (AK) mit der Kultur nach *Panning* V zeigten 17 *var*-Gene eine signifikant differentielle Expression. Vier *var*-Gene waren hierbei mit einem Expressionslevel über 1200 deutlich transkribiert, wohingegen die restlichen Gene ein vernachlässigbar geringes Transkriptionsniveau aufwiesen. Mit Ausnahme von *it4_var2*, war bei den Genen *it4_var35*, *it4_var66* und *it4_var67* ein niedrigeres Expressionsniveau in der angereicherten Kultur nach *Panning* V zu beobachten. Zudem zeigte ein nicht signifikant differentiell exprimiertes Gen, *it4_var34* die insgesamt höchsten Expressionslevel sowohl in der Ausgangskultur als auch nach dem *Panning* V (Abbildung 45).

(iii) Gene mit signifikant differentieller Expression (ungebundene infizierte Erythrozyten vs. *gebundene Erythrozyten (Panning V))*

Abbildung 46: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel \geq 500 (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten nach *Panning* V. Die Balken repräsentieren das Transkriptionsniveau der ungebundenen infizierten Erythrozyten (grün) und der gebundenen infizierten Erythrozyten (rot) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.**var*-Gene (Nomenklatur siehe Anhang).

Aus dem Vergleich der ungebundenen infizierten (UEV) mit den gebundenen infizierten (PV) Erythrozyten nach *Panning* V resultierten insgesamt 173 Gene mit einer signifikant differentiellen Expression (padj $\leq 0,05$; *Fold change* $\geq 2,5$), wobei in Abbildung 46 nur die 74 Gene mit einem Expressionslevel > 500 dargestellt sind. Während die Mehrheit dieser Gene eine geringe Expression demonstrierte, war bei zehn Genen eine deutliche Expression (Expressionslevel > 12.000) zu erkennen, von welchen zwei ein höheres und acht ein niedrigeres Expressionsniveau in gebundenen infizierten Erythrozyten (nach *Panning* V) aufwiesen (Abbildung 46, Tabelle 13).

Tabelle 13: Signifikant differentiell exprimierte Gene (padj \leq 0,05; *Fold Change* \geq 2,5) mit deutlicher Expression (> 12.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von ungebundenen infizierten Erythrozyten (UEV) mit gebundenen infizierten Erythrozyten nach *Panning* V (PV). FC: *Fold Change*. grün: höheres Expressionslevel in UEV, rot: höheres Expressionslevel in PV; (k) konserviert.

.

Bezeichnung	Name	Funktion	FC
PFIT_1034600	S-Antigen	unbekannt	2,5
		Nukleosom-Assemblierung,	2,7
PFIT_0616700	Histon H2A	Protein-Heterodimerisations-	
		Aktivität, DNA-Bindung	
		Nukleosom-Assemblierung,	2,9
PFIT_0609300	HistonH3	Protein-Heterodimerisations-	
		Aktivität, DNA-Bindung	
PFIT_0929600	RhopH2 (high molecular weight rhoptry protein 2)	unbekannt	2,6
	CLAG3.1 (cytoadherence linked asexual protein	unbekannt	2,6
PFIT_0302400	3.1)		
PFIT_0905600	RhopH3 (high molecular weight rhoptry protein 3)	unbekannt	2,9
		Proteolyse (Cystein-typ	3,2
PFIT_0206900	serine repeat antigen 5	Peptidase Aktivität)	
PFIT_1252300	RON3 (rhoptry neck protein 3)	unbekannt	2,7
PFIT_0406300	Plasmodium-Protein (k)	unbekannt	4,5
PFIT_1018600	Plasmodium-Protein (k)	unbekannt	9,0

(iv) Expression der var-Gene (ungebundene infizierte Erythrozyten vs. gebundene Erythrozyten (Panning V))

Als nächstes wurden in diesem Zusammenhang die Expressionslevel der infizierten gebundenen Erythrozyten (*Panning* V) mit den infizierten ungebundenen Erythrozyten nach *Panning* V (UEV) verglichen, um eventuelle Unterschiede zu ermitteln (Abbildung 47).

Abbildung 47: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach *Panning* V. Die Balken repräsentieren das Transkriptionsniveau der ungebundenen infizierten Erythrozyten (grün) im Vergleich den gebundenen infizierten Erythrozyten (rot) nach dem fünften *Panning* im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; * padj $\leq 0,05$.

Aus dem Vergleich der Expressionsprofile der ungebundenen und gebundenen infizierten Erythrozyten nach *Panning* V resultierten 17 signifikant differentielle Gene, wovon nur ein Gen $(it4_var2)$ eine deutliche und exklusive Transkription bei den gebundenen infizierten Erythrozyten nach *Panning* V aufwies (Expressionslevel > 1.000). Die nicht signifikant differentiell exprimierten *var*-Gene *it4_var34* und *it4_var35* wurden in gebundenen infizierten Erythrozyten mit annähernd gleichem Expressionslevel transkribiert wie in ungebundenen infizierten Erythrozyten nach der fünften *Panning*-Runde (Abbildung 47).

3.2.2.3 Vergleich der Genexpression der Ausgangskultur und der Kultur nach *Panning* VI (Experiment 2)

(i) Gene mit einer signifikant differentiellen Expression (Ausgangskultur vs Panning VI)

Abbildung 48: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel > 1.000 (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen (blau) oder nach *Panning* VI (rot). Die Balken repräsentieren das Transkriptionsniveau des jeweiligen *P. falciparum* Isolates im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.**var*-Gene (Nomenklatur siehe Anhang).

Eine signifikant differentielle Expression (padj ≤ 0.05 ; *Fold Change* ≥ 2.5) konnte bei dem Vergleich der Transkriptome der Ausgangskultur mit der Kultur nach *Panning* VI für insgesamt 290 Gene festgestellt werden. In Abbildung 48 sind die 95 Gene mit einem Expressionslevel > 1.000 dargestellt. In der Kultur nach *Panning* VI zeigten 32 dieser Gene ein höheres und 63 Gene ein niedrigeres Transkriptionsniveau im Vergleich zur Ausgangskultur. Während die Mehrzahl der Gene auf niedrigem Level transkribiert wurde, zeigten nur 14 signifikant differentiell exprimierte Gene ein Expressionslevel > 17.000 und somit eine deutliche Expression. Das Gen PFIT_14119800 wies neben PFIT_141140, PFIT_0406300 und PFIT_1018600 eine höhere Expression in angereicherten Erythrozyten nach *Panning* VI auf, wohingegen die verbleibenden neun Gene nach der Anreicherung ein niedrigeres Transkriptionsniveau präsentierten (Abbildung 48, Tabelle 14).

Tabelle 14: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 1.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von Ausgangskultur (AK) mit *Panning* VI (PVI).FC: *Fold Change*; blau: höheres Expressionslevel in AK, rot: höheres Expressionslevel in PVI; (k) konserviert.

Bezeichnung	Name	Funktion	FC
PFIT_0936500	REX1 (ring-exported protein 1)	unbekannt	3,0
PFIT_0724500	28S ribosomale RNA	Proteinsynthese	14,8
PFIT_0724600	28S ribosomale RNA	Proteinsynthese	14,9
PFIT_1024300	Plasmodium-Protein (k)	unbekannt	2,9
PFIT_1011300	QF122 antigen	RNA-Bindung	2,5
PFIT_1111200	asparagine-rich antigen	Nukleinsäure-Bindung	2,7
		Regulation der Transkription (DNA-	3,0
PFIT_0623500	SNF2 Helikase, putativ	Bindung, ATP-Bindung, Helikase-	
		Aktivität); Zink-Ion-Bindung	
PFIT_0833400	tryptophan/threonine-rich antigen	unbekannt	2,5
PFIT_0107000	Plasmodium-Protein (k)	unbekannt	4,6
PFIT_0219400	liver stage antigen 3	unbekannt	3,5
PFIT_1419800	SRP (signal recognition particle) RNA	Ribosomen-Bindung während Synthese	3,8
		und Translokation sekretorischer Proteine	
PFIT_1411400	RAP1 (rhoptry-associated protein 1)	unbekannt	2,8
PFIT_0406300	Plasmodium-Protein (k)	unbekannt	6,9
PFIT_1018600	Plasmodium-Protein (k)	unbekannt	17,7

(ii) Expression der var-Gene (Ausgangskultur vs Panning VI)

Die Expressionsprofile der *var*-Gene der Ausgangskultur und der angereicherten Kultur nach *Panning* VI wurden unabhängig von einer möglichen signifikant differentiellen Expression analysiert (Abbildung 49).

Abbildung 49: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen (blau) und nach *Panning* VI (rot). Die Balken repräsentieren das Transkriptionsniveau der Ausgangskultur im Vergleich zu der angereicherten Kultur nach dem sechsten *Panning* im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; * padj $\leq 0,05$.

Die Gegenüberstellung der Expressionsprofile der *var*-Gene in der Ausgangskultur und in der Kultur nach dem sechsten *Panning* (PVI) zeigte für insgesamt 19 *var*-Gene eine signifikant differentielle Expression, wobei nur vier *var*-Gene ein Expressionslevel über 1000 aufwiesen. Während drei *var*-Gene eine niedrigere (*it4_var35*) oder keine (*it4_var66* und *it4_var67*) Expression in der angereicherten Kultur zeigten, demonstrierte *it4_var2* als einziges Gen ein höheres sowie exklusives Transkriptionsniveau in der Kultur nach *Panning* VI. Das nicht signifikant differentiell exprimierte *var*-Gen *it4_var34* zeigte das höchste Expressionslevel sowohl in der Ausgangskultur als auch der angereicherten Kultur, wobei *it4_var34* sowie *it4_var35* auch in der im Vergleich weniger transkribierten angereicherten Kultur den definierten Schwellenwert von 1.000 erreichten (Abbildung 49).

(iii) Gene mit signifikant differentieller Expression (ungebundene infizierte Erythrozyten vs. gebundene Erythrozyten (Panning VI))

Abbildung 50: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel > 15 (padj \leq 0,05; *Fold Change* \geq 2,5) von *P. falciparum* FCR3 infizierten Erythrozyten nach *Panning* VI. Die Balken repräsentieren das Transkriptionsniveau der ungebundenen infizierten Erythrozyten (grün) und der gebundenen infizierten Erythrozyten (rot) im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet.**var*-Gene (Nomenklatur siehe Anhang).

Die Gegenüberstellung der ungebundenen und den gebundenen infizierten Erythrozyten nach *Panning* VI ergab bei insgesamt 61 Genen eine signifikant differentielle Expression (padj \leq 0,05; *Fold Change* \geq 2,5), wovon lediglich vier Gene ein höheres Expressionslevel in gebundenen infizierten Erythrozyten aufwiesen. Sieben dieser Gene zeigten eine deutliche Expression (Expressionslevel > 30.000), wohingegen die restlichen Gene vernachlässigbare Transkriptionsniveaus präsentierten (Abbildung 50, Tabelle 15).

Tabelle 15: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 30.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von ungebundenen infizierten Erythrozyten (UEVI) mit gebundenen infizierten Erythrozyten nach *Panning* VI (PVI). FC: *Fold Change*. grün: höheres Expressionslevel in UEVI; (k) konserviert.

Bezeichnung	Name	Funktion	FC
PFIT_0724500	28S ribosomal RNA	Proteinsynthese	32,9
PFIT_0724600	28S ribosomal RNA	Proteinsynthese	32,9
PEIT 0811000	PfEMP1 (Plasmodium falciparum erythrocyte	Zytoadhärenz (Rezeptor-	5,7
1111_0011900	membrane protein 1)	Aktivität), Pathogenität	
PFIT_1024300	Plasmodium-Protein (k)	unbekannt	2,6
	ring-infected erythrocyte surface antigen	unbekannt	2,7
PFIT_1149400	(Pseudogen)		
PFIT_0501400	SBP1 (skeleton-binding protein 1)	unbekannt	3,0
PFIT_0107000	Plasmodium-Protein (k)	unbekannt	6,5

(iv) Expression der var-Gene (ungebundene infizierte Erythrozyten versus gebundene Erythrozyten (Panning VI))

Die Transkriptome der gebundenen infizierten Erythrozyten (*Panning* VI) sowie ungebundenen infizierten Erythrozyten nach *Panning* VI (UEVI) bezüglich der *var*-Gene wurden unabhängig von einer möglichen signifikant differentiellen Expression miteinander verglichen, um mögliche Divergenzen zu erkennen (Abbildung 51).

Abbildung 51: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach *Panning* VI. Die Balken repräsentieren das Transkriptionsniveau der ungebundenen infizierten Erythrozyten (grün) im Vergleich zu den gebundenen infizierten Erythrozyten (rot) nach dem sechsten *Panning* im Ringstadium. Das Expressionslevel (x-Achse) wurde mittels Transkriptom-Analyse ermittelt und mithilfe bioinformatischer Methoden ausgewertet. *** padj $\leq 0,001$; ** padj $\leq 0,01$; * padj $\leq 0,05$.

Die Expressionsprofile der ungebundenen und gebundenen infizierten Erythrozyten nach dem sechsten Panning zeigten fünf signifikant differentiell exprimierte *var*-Gene, die alle eine deutliche Expression zeigten (Expressionslevel > 1.000) (*it4_var28, it4_var32A, it4_var32B, it4_var34* und *it4_var35*). Alle *var*-Gene präsentierten eine niedrigere Expression in den gebundenen Erythrozyten im Vergleich zu den ungebundenen infizierten Erythrozyten nach *Panning* VI. Wie zuvor war auch hier das *var*-Gen *it4_var2* in den gebundenen infizierten Erythrozyten in einem größeren Maße transkribiert als in den ungebundenen Infizierten. *it4_var34* und *it4_var35* zeigten auch hier im Allgemeinen, trotz der hoch signifikanten Unterschiede zwischen den Kulturen, wieder ein relativ hohes Expressionslevel in beiden

Kulturen (Abbildung 51).

3.2.2.4 Zusammenfassung

Für die untersuchten *P. falciparum* FCR3 Isolate ergab sich hinsichtlich der identifizierten Gene, die eine signifikant differentielle Expression aufwiesen, das in Abbildung 52 dargestellte Mengenverhältnis.

Abbildung 52 Gene mit einer signifikant differentiellen Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) aller miteinander verglichenen *P. falciparum*-Isolate (*Panning*).

Der Vergleich der Ausgangskultur mit *Panning* I und II ergab für insgesamt 45 Gene eine signifikant differentielle Expression (padj $\leq 0,05$;*Fold Change* $\geq 2,5$), von denen 14 Gene auch eine signifikant differentielle Expression bei den Vergleichen der Ausgangskultur mit der Kultur nach *Panning* V sowie nach *Panning* VI zeigten. Zwei Gene konnten zudem nur bei *Panning* I und II und *Panning* V ermittelt werden, wohingegen 164 Gene mit einer signifikant differentiellen Expression bei der Gegenüberstellung der Ausgangskultur mit den jeweils angereicherten Kulturen in Experiment 2 (*Panning* V und VI) übereinstimmten (Abbildung 52).

Zusammengefasst wurde bei allen miteinander verglichenen Transkriptomen zwischen Ausgangskultur und *Panning* ein analoges Bild gesehen, wobei *it4_var2* ausnahmslos als einziges *var*-Gen ein höheres Expressionslevel nach der Anreicherung aufwies (Abbildung 45, 11, 13, 15). Bei *it4_var34* und *it4_var35* konnte bei allen analysierten Kulturen ein hohes Grund-Expressionslevel beobachtet werden. Die *var*-Gene *it4_var66* und *it4_var67* zeigten im Gegensatz zu den ungebundenen sowie gebundenen infizierten Erythrozyten lediglich in der Ausgangskultur ein Expressionslevel über 1.000.

4. Diskussion

Die Pathogenität des Malariaerregers P. falciparum zeichnet sich unter anderem durch die Fähigkeit des Parasiten aus, an Endothelzellen seines Wirtes zu adhärieren. Dieses Vorgehen, die Sequestrierung, erlaubt dem Parasiten der Passage durch die Milz und seiner dortigen Erkennung und Eliminierung zu entgehen (MacPherson et al., 1985; Looareesuwan et al., 1987). Mithilfe der in vitro-Kultivierung asexueller Blutstadien von P. falciparum ist es möglich, grundlegende biologische Prozesse zu untersuchen. Limitierend sind hierbei zum einen genomische Veränderungen, die mit der Adaption an die Langzeitkultivierung der P. falciparum-Laborstämme einhergehen (Shirley et al., 1990). Zum anderen können in der in vitro-Kultur Interaktionen zwischen P. falciparum und dem humanen Wirt nur bedingt analysiert werden. Ziel dieser Arbeit war es, den bislang unbekannten Liganden auf parasitärer Seite hinsichtlich der Adhäsion an den Endothelrezeptor P-Selektin mithilfe von Bindungsexperimenten und der **RNA-Sequenzierung** angereicherten von Parasitenpopulationen im Ringstadium zu identifizieren. Für die Etablierung der Bindungsstudien hinsichtlich des Rezeptors P-Selektin, wurden zunächst die optimalen Bedingungen eruiert, um mit diesen in einem zweiten Schritt Parasitenpopulationen hinsichtlich der Bindung an P-Selektin anzureichern.

Parallel dazu wurde unter Verwendung sechs weiterer Endothelrezeptoren untersucht, ob die Bindungskapazität möglicherweise mit der Kultivierungsart oder der Formation von *Knobs* korreliert.

4.1. Morphologie der *Knobs* variiert zwischen den Laborstämmen 3D7 und FCR3 sowie zwischen der Kultivierung mit AlbuMAX® und humanem Serum

Die Präsentation von *Knobs* auf der Oberfläche infizierter Wirtszellen als wichtiger Faktor bei der Sequestrierung von *P. falciparum* wird kontrovers diskutiert (Miller *et al.*, 1969; Luse und Miller 1971). Vor kurzem konnte mithilfe Rasterkraft-mikroskopischer Messungen gezeigt werden, dass die *Knob*-Dichte mit der Dauer der *in vitro*-Kultivierung abnimmt (Quadt *et al.*, 2012). Vor diesem Hintergrund wurden in dieser Arbeit neben den nach Standardbedingungen kultivierten Laborstämmen 3D7 und FCR3 auch hinsichtlich der Formation von *Knobs*

angereicherte Isolate beider Stämme verwendet. Die Phänotypen aller P. falciparum-Isolate wurden zunächst mittels Transmissionselektronenmikroskopie untersucht, womit bestätigt werden konnte, dass die Laborstämme unter Standardbedingungen keine Knobs auf der Oberfläche präsentieren. Für die P. falciparum-Isolate, die auf die Formation von Knobs angereichert waren, konnten hingegen diese elektronendichten Membranausstülpungen auf der Oberfläche detektiert werden. Da sich bei Betrachtung der elektronenmikroskopischen Ergebnisse Hinweise auf eine mögliche Variation bezüglich der Größe der Knobs unter verschiedenen Kulturbedingungen zeigten, wurden die verschiedenen P. falciparum-Isolate zusätzlich anhand der Rasterkraftmikroskopie mit molekularer Resolution analysiert. Die Knob-Größe der angereicherten Laborstämme wurde hierbei mithilfe der Rasterkraftmikroskopischen Messungen durch Berechnung ihrer Oberfläche ermittelt. Hierbei waren bei einer Kultivierung mit AlbuMAX® oder mit humanem Serum innerhalb eines Laborstammes Variationen hinsichtlich der Größe der jeweiligen Knobs zu erkennen. So sind bei beiden Laborstämmen größere Knobs bei der Kultivierung mit AlbuMAx® zu verzeichnen als bei Kultivierung mit humanem Serum. Des Weiteren sind diesbezüglich Unterschiede zwischen den Laborstämmen 3D7 und FCR3 zu beobachten. Dass signifikante Variationen bezüglich der Größe der Knobs zwischen den Isolaten auftreten, wurde bereits an anderer Stelle beschrieben (Quadt et al., 2012). Für die bei Patientenisolaten respektive Kulturisolaten auftretenden Knobs konnte so eine durchschnittlich Breite von 64 nm (\pm 12, SD) respektive 80 nm (\pm 25, SD) und einer Höhe von 2,9 nm (± 1,7, SD) respektive 4,4 nm (± 2,5, SD) ermittelt werden, wobei auch hier innerhalb der Isolate die Größe der Knobs starken Schwankungen ausgesetzt war (Quadt et al., 2012). Ähnliche Knob-Dimensionen konnten auch Rug et al. (2006) feststellen. Zusammen mit den in dieser Arbeit generierten Daten (Tabelle 16) lässt sich vermuten, dass die nativen Knobs, die bei Patientenisolaten auftreten, im Allgemeinen kleiner sind als die Knobs, die auf der Oberfläche von Kulturisolaten präsentiert werden. Zudem könnte in diesem Kontext die geringere Größe der Knobs bei Kultivierung mit humanem Serum im Vergleich zu AlbuMAX® darauf hindeuten, dass die Kultivierung mit humanem Serum der Situation in vivo am ehesten entspricht.

	Breite (nm)	Höhe (nm)
3D7 AlbuMAX®	87 (± 38; SD)	13 (± 9; SD)
3D7 Humanes Serum	82 (± 27; SD	4 (± 3; SD)
FCR3 AlbuMAX®	115 (± 40; SD)	7 (± 4; SD)
FCR3 Humanes Serum	68 (± 26; SD)	6 (± 5; SD)

Tabelle 16: Übersicht über die gemessenen *Knob*-Dimensionen. Mittelwerte aller gemessenen *Knobs* eines Isolates. SD: Standardabweichung.

Anhand dieser Ergebnisse konnte gezeigt werden, dass die Größe der *Knobs* vom jeweiligen Laborstamm und der Kultivierung (AlbuMAX® respektive humanes Serum) abhängig ist, wobei eine Kultivierung mit humanem Serum den Eigenschaften eines Patientenisolates hierbei am nächsten kommt.

4.2 Die Laborstämme 3D7 und FCR3 weisen unterschiedliche Bindungseigenschaften unter verschiedenen Kulturbedingungen auf

Mithilfe statischer Bindungsversuche ist es möglich, auch Bindungen mit geringer Affinität zu detektieren, die beim Leukozyten *Rolling* oder dem Rollen infizierter Erythrozyten über Endothelzellen vorkommen (Cooke *et al.*, 1994; Ho *et al.*, 1998; Lawrence und Springer, 1991; Udomsangpatch *et al.*, 1997).

4.2.1 Bindungskapazität des Laborstammes FCR3 variiert mit der Bewegungsintensität während der Bindung

Die Bindungseigenschaften und somit auch die Funktion vieler Adhäsionsmoleküle werden erst unter Fließbedingungen ersichtlich. So protegieren Selektine beispielsweise nicht die stabile Bindung von Neutrophilen. Vielmehr sind sie in den Vorgang des *Rolling* involviert, bei dem die Zielmoleküle unter bestimmten Fließbedingungen gebunden werden müssen (Lawrence und Springer, 1991). In diesem Kontext wurde bereits gezeigt, dass die Induktion von P-Selektin die Anzahl der adhärenten infizierten Erythrozyten sowie die Anzahl der infizierten Erythrozyten, die in einer bestimmten Zeitspanne über Endothelzellen fließen (*Rolling*) erhöht (Yipp *et al.*, 2000). Im Gegensatz dazu reduzierte die Inhibierung von P-Selektin die Adhäsion von einigen klinischen Parasitenisolaten an CD36, wohingegen andere Parasitenisolate mit CD36 direkt zu interagieren schienen (Ho *et al.*, 1998). Aus diesem Grund wird angenommen, dass infizierte Erythrozyten synergistisch mit verschiedenen Adhäsionsmolekülen auf dem mikrovaskulären Endothelium interagieren (Yipp *et al.*, 2000). Die Bindungsexperimente wurden mit insgesamt vier verschiedenen Rezeptoren (CD36, P-Selektin, CD9 und CD151) durchgeführt, wobei die Bindung unter statischen Bedingungen, bei kontinuierliche direktionaler Bewegung sowie kontinuierlich rotierender Bewegung erfolgte. Die mit *P. falciparum* FCR3 infizierten Erythrozyten waren dabei mit AlbuMAX® oder mit humanem Serum kultiviert.

Die meisten gebundenen infizierten Erythrozyten (iRBC) waren bei CD36 unter statischen Bedingungen zu beobachten. Eine bevorzugte Bindung von infizierten Erythrozyten an CD36 konnte unter statischen Bedingungen bereits an anderer Stelle gezeigt werden (Chaiyaroj et al., 1996; Cooke et al., 1994; Heddini et al., 2001; Ockenhouse et al., 1991; Udomsangpetch et al., 1996). Zwar waren im Verhältnis bei P-Selektin auch die meisten infizierten Erythrozyten unter statischen Bedingungen gebunden, allerdings handelte es sich hier insgesamt um eine quantitativ schwächere Bindung im Vergleich zu der Bindung an CD36. An die Rezeptoren CD9 und CD151 war eine sehr schwache Bindung (1-5 iRBC/100 CHO) bei allen untersuchten Bedingungen zu beobachten, sodass hier keine Aussage bezüglich der optimalen Bedingung gemacht werden kann. Obwohl die Bindungen an CD9, CD151 und auch P-Selektin quantitativ schwächer waren, kann eine Beteiligung dieser Rezeptoren an der Zytoadhärenz nicht ausgeschlossen werden, da wie bereits erwähnt, einige Adhäsionsmoleküle erst unter Fließbedingungen eine Bindung aufweisen (Lawrence et al., 1991). Zusätzlich wurden CD36exprimierende CHO-Zellen mit CHO-Zellen, die P-Selektin auf der Oberfläche präsentieren, in verschiedenen Verhältnissen gemischt und für das Bindungsexperiment ausgesät. Aufgrund der Durchführung ist im Hinblick auf die gemischte Endothelzellpopulation lediglich eine Tendenz anzunehmen, da hier die tatsächlich vorhandenen Rezeptor-Verhältnisse nicht quantifiziert wurden. Hinsichtlich der gemischten Endothelzellpopulation konnte kein Unterschied in der Bindung im Vergleich zu CD36 festgestellt werden, wenn der prozentuale Anteil von P-Selektin-exprimierenden CHO-Zellen erhöht wurde. Dies könnte darauf hinweisen, dass P-Selektin die Bindung an CD36 begünstigt, wie bereits Ho et al. (1998) zeigten, und somit das Verhältnis der reduzierten Anzahl an CD36 Rezeptoren durch eine höhere Anzahl bindender infizierter Erythrozyten wieder ausgeglichen wird. Eine Korrelation zwischen gemischter Zellpopulation und Bindungskapazität bei Bewegung konnte nicht gesehen werden. In diesem Zusammenhang konnten Udomsangpetch et al. (1997) zeigen, dass infizierte Erythrozyten, abhängig von den Scherkräften über CD36, ICAM-1, P-Selektin und VCAM-1 rollen, aber dass die signifikante Adhäsion an CD36 erfolgte.

Die Bindungsexperimente präsentieren im Allgemeinen hinsichtlich unterschiedlicher Kultivierungsarten (AlbuMAX® respektive humanes Serum) ein ähnliches Gesamtbild, wobei

113

die Bindung bei der Kultivierung mit humanem Serum quantitativ etwa doppelt so hoch war. Das zeigt, dass die Kulturbedingungen einen Einfluss auf die Bindung haben, wobei bereits an anderer Stelle nachgewiesen wurde, dass die Kulturbedingungen das Wachstum von Subpopulationen von Parasiten begünstigen, die als Folge dessen verschiedene Phänotypen bezüglich der Adhäsionseigenschaft oder Präsentation von Antigenen aufweisen (Beeson *et al.*, 1999). Das insgesamt höhere Bindungsprofil bei der Kultivierung mit humanem Serum deutet darauf hin, dass dieser Kultivierungszusatz eher die Bedingungen in Patientenisolaten widerspiegelt, wobei erst kürzlich demonstriert wurde, dass ein aus mehreren Malariapatienten gepooltes Isolat ein höheres Bindungsprofil im Vergleich zu dem Laborstamm FCR3 aufweist (Esser und Bachmann *et al.*, 2014).

Zu berücksichtigen ist jedoch, dass die Durchführung des Bindungsversuches unter statischen Bedingungen erfolgte. Unter Fließbedingungen können feinere Unterschiede zwischen den jeweiligen Adhäsionseigenschaften detektiert werden (Cooke *et al.*, 2002). Aus diesem Grund sollte der hier durchgeführte Bindungsversuch, zum einen unter Fließbedingungen durchgeführt und zum anderen eine Zelllinie verwendet werden, die sowohl CD36 als auch P-Selektin auf der Oberfläche exprimiert.

4.2.2 Erhöhte Bindungskapazität des Laborstammes FCR3 im Vergleich zu 3D7 sowie bei Kultivierung mit humanem Serum

Die auf der Oberfläche infizierter Erythrozyten präsentierten *Knobs* fungieren als Kontaktpunkte zwischen infizierten Erythrozyten und Endothelzellen des Wirtes (Luse und Miller, 1971; Udeinya *et al.*, 1981) und konnten zudem als Verankerungsstruktur für das Adhäsionsmolekül *Pf*EMP1 beobachtet werden (Oh *et al.*, 2000). Da *Knob*-negative infizierte Erythrozyten eine reduzierte Adhäsionsbereitschaft an Endothelzelllinien oder gereinigten Wirtsrezeptor demonstrierten (Biggs *et al.*, 1989b; Udomsangpetch *et al.*, 1989b; Ruangjirachuporn *et al.*, 1991; Crandall *et al.*, 1994), wurde für die *Knobs* eine wichtige Rolle bei der Zytoadhärenz angenommen (Schmidt *et al.*, 1982; Horrocks *et al* 2005). Da bekannt ist, dass Kulturisolate nach einer bestimmten Zeit der *in vitro*-Kultivierung die *Knobs* spontan verlieren (Langreth *et al.*, 1979), wurden in dieser Arbeit Isolate hinsichtlich der Ausbildung von *Knobs* angereichert (Goodyer *et al.*, 1994). Die Ergebnisse der Bindungsexperimente sind in Abbildung 53 dargestellt.

^{*} auf ein 10faches der Originalgröße reduzier

Abbildung 53: Bindung der verschiedenen Isolate an die getesteten Rezeptoren (Übersicht). –K: Stamm (*Knob*-negativ); +K: + Gelafundin ® (*Knob*-positiv).

Hier variierten die Bindungsergebnisse bezüglich der unterschiedlichen Kultivierung (AlbuMAX® vs. humanes Serum). Zudem wies der Laborstamm FCR3 insgesamt eine quantitativ höhere Bindung auf als 3D7. An den Rezeptor CD36 war übereinstimmend mit den vorherigen Ergebnissen (siehe Abschnitt 4.2.1) sowie der Literatur (Ockenhouse et al., 1991; Cooke et al., 1994; Chaiyaroj et al., 1996; Udomsangpetch et al., 1996; Heddini et al., 2001) ausnahmslos die größte Anzahl an infizierte Erythrozyten gebunden. Bei ICAM-1 zeigte sich durchgehend eine signifikant erhöhte Bindung bei Knob-positiven Isolaten, wohingegen dies bei den übrigen Rezeptoren abhängig vom jeweiligen Laborstamm sowie der Kultivierung war. Die stabilsten Ergebnisse hinsichtlich der Bindung an P-Selektin ergaben sich bei der mit humanem Serum bei dem Laborstamm FCR3. Kultivierung Im Allgemeinen waren jedoch an alle weiteren getesteten Rezeptoren nur wenig infizierte Erythrozyten gebunden, was eine Beurteilung der Bindung (gerade im Hinblick auf die Standardabweichung) unmöglich machte.

Anhand der in dieser Arbeit generierten Daten scheinen die *Knobs* für die meisten Rezeptoren (mit Ausnahme von ICAM-1) keine essentielle Rolle für die Bindung unter statischen Bedingungen zu spielen. Es gibt auch in der Literatur Hinweise dafür, dass ein Verlust der Zytoadhärenz nicht unbedingt aus dem Verschwinden der *Knobs* resultiert (Biggs *et al.*, 1989a; Sherman *et al.*, 2003). Ein Argument gegen die *Knobs* als essentielle Protagonisten bezüglich der Zytoadhärenz ist, dass auch *P. malariae Knob*-Strukturen aufweist, jedoch nicht

sequestriert. Im Gegensatz dazu ist P. chabaudi dazu in der Lage, ohne Knobs an Zellen zu adhärieren (Sherman et al., 1995; Sherman et al., 2003). Ein von Crabb et al. (1997) angestellter Vergleich zwischen Bindungsversuchen unter physiologischen Fließbedingungen mit Bindungsversuchen unter statischen Bedingungen zeigte in Übereinstimmung mit den Daten dieser Arbeit bei dem statischen Versuch keinen Unterschied bezüglich der Adhäsion von Knob-negativen und Knob-positiven Isolaten. Anders verhielt es sich hierbei unter den der in vivo angenäherten Situation unter Fließbedingungen, bei denen die Bindung von Knobnegativen Parasiten stark reduziert war (Crabb et al., 1997). Demgegenüber zeigten Horrocks et al. (2005), dass Knob-negative Isolate sowohl unter statischen als auch unter Fließbedingungen eine geringere Bindungsaffinität aufweisen. Dies lässt vermuten, dass unter statischen Bedingungen die potentiellen Unterschiede in der Bindung Knob-positiver und -negativer Isolate an Endothelrezeptoren nicht erfasst werden können und konnten. Um somit eine Aussage bezüglich der Rolle der Knobs und möglicherweise auch der Rezeptoren mit einer geringen Anzahl gebundener infizierter Erythrozyten machen zu, sind Versuche unter den gleichen Bedingungen unter physiologischen Fließbedingungen unabdingbar. Zudem wurde gezeigt, dass innerhalb einer in vitro-Kultivierungsdauer von 26 bis 43 Tagen eine Abnahme der Zytoadhärenz erfolgt (Udeinya et al., 1983). So sollte im Hinblick auf die Rezeptoren, an die wenig infizierte Erythrozyten gebunden hatten, mit frischen Patientenisolaten gearbeitet werden. In diesem Zusammenhang sollten auch Bindungsexperimente bei Temperaturen über 37°C (Simulation von Fieber) durchgeführt werden, da bereits gezeigt werden konnte, dass an ICAM-1 bei Temperaturen über 37°C quantitativ mehr infizierte Erythrozyten binden (Udomsangpetch et al., 2002). Letztlich konnte keine Korrelation zwischen Bindungskapazität und der Formation von Knobs (zumindest unter statischen Bedingungen) gefunden werden und folglich keine eindeutige Aussage darüber getroffen werden, ob Knobs an der Zytoadhärenz beteiligt sind. Die Bindungskapazität ist vielmehr abhängig von dem jeweils fokussierten Rezeptor. Ein Einfluss der Kultivierungsbedingungen konnte auch hier gesehen werden (siehe 4.2.1).

4.3 Variable Oberflächenantigene zeigen kaum Variationen in ihrer Lokalisation in unterschiedlichen kultivierten *P. falciparum*-Isolaten

Eine weitere wichtige Eigenschaft im Hinblick auf die Pathogenität von *P. falciparum* ist die Expression parasitärer Antigene auf der Oberfläche infizierter Erythrozyten, die als variable Oberflächenantigene (*variable surface antigens*, VSA) bezeichnet werden. Zu den variablen 116

Oberflächenantigenen zählen *Pf*EMP1(Leech *et al.*, 1984), RIFIN (Cheng *et al.*, 1998; Kyes *et al.*, 1999; Fernandez *et al.*, 1999), STEVOR, (Kaviratne *et al.*, 2002; Blythe *et al.*, 2008; Niang *et al.*, 2009) und *Pf*MC-2TM (Lavazec *et al.*, 2006; Sam-Yellowe *et al.*, 2004) Proteine. Während für *Pf*EMP1 eine Beteiligung an der Zytoadhärenz als bewiesen gilt (Leech *et al.*, 1984; Baruch *et al.*, 1995; Cooke *et al.*, 2002), wird es für die anderen Proteine nicht ausgeschlossen. Mithilfe von Immunfluoreszenzanalysen wurden die Proteinkompositionen sowie die Lokalisation der variablen Oberflächenantigene in den verschiedenen Isolaten analysiert.

Zwischen den Laborstämmen 3D7 und FCR3 waren hierbei keine großen Unterschiede auszumachen. Auffällig war, dass bei der Kultivierung mit AlbuMAX® die variablen Oberflächenantigene öfter in der Erythrozytenmembran detektiert wurden als bei der Kultivierung mit humanem Serum. In der Literatur wurden Unterschiede bezüglich der Kultivierung noch nicht beschrieben. Die an der Zytoadhärenz beteiligten PfEMP1 Proteine konnten am häufigsten in Maurerschen Spalten, aber auch in den Parasiten nachgewiesen werden. Eine Lokalisation an der Erythroyztenmembran konnte hingegen nicht oder nur selten gesehen werden, obwohl bekannt ist, dass sich die Proteine auf der Wirtszellmembran befinden (Leech et al., 1984). Zum größten Teil war eine Lokalisation der RIFIN Proteine in den Parasiten zu beobachten. Eine Assoziation mit der Erythrozytenmembran zeigte sich hier ebenfalls wie in der Literatur bereits beschrieben (Fernandez et al., 1999; Kyes et al., 1999). Auch die STEVOR Proteine waren am häufigsten im Parasiten lokalisiert, wobei hier auch eine deutliche Präsenz in der Membran der Erythrozyten zu erkennen war. Auch dies wurde neben einer Lokalisation in Maurerschen Spalten bereits beschrieben (Blythe et al., 2008; Lavazec et al., 2006; Niang et al., 2009). Bei den PfMC-2TM Proteinen waren vergleichbare Ergebnisse wie bei RIFIN und STEVOR Proteinen zu verzeichnen. Neben einer Lokalisation in Parasiten wurden PfMC-2TM Proteine an der Erythrozytenmembran nachgewiesen. In der Literatur ist eine Lokalisation dieser Proteine neben der Assoziation an der Erythrozytenmembran (Lavazec et al., 2007) auch in Maurerschen Spalten postuliert (Lavazec et al., 2006; Sam-Yellowe et al., 2004; Tsarukyanova et al., 2009).

Dass *Pf*EMP1 Proteine nicht an der Oberfläche nachgewiesen werden konnten, ist auf den verwendeten Antikörper zurückzuführen. So ist es zum einen denkbar, dass dieser nur eine bestimmte *Pf*EMP1-Untergruppe erkennt.

Eine Korrelation zwischen Lokalisationsmuster und Bindungseigenschaften konnte nicht gesehen werden. Bei der Kultivierung mit AlbuMAX® waren bei den Bindungsversuchen weniger infizierte Erythrozyten gebunden als bei der Kultivierung mit humanem Serum,

obwohl mehr variable Oberflächenantigene an der Erythrozytenmembran zu finden sind. Trotzdem kann nicht ausgeschlossen werden, dass neben *Pf*EMP1 auch andere variable Oberflächenproteine an der Zytoadhärenz beteiligt sind.

Ein möglicher Grund hierfür könnte darin liegen, dass die Menge variabler Oberflächenantigene auf der Oberfläche infizierter Erythrozyten zu einer Inhibierung der Bindung führt. Durch das artifizielle AlbuMAX® könnten Rezeptoren oder auch Enzyme, die für die Regulation der präsentierten Oberflächenproteine zuständig sind, defekt, inhibiert oder nicht vorhanden sein. Das hätte dann als eine Art negativer Rückkopplung (wie bei der Glykolyse und dem Citratzyklus) zur Folge, dass immer mehr Proteine synthetisiert und an die Oberfläche transportiert würden, wo sie sich gegenseitig behindern und keine oder lediglich eine herabgesetzte Bindung stattfinden kann. Das AlbuMAX® könnte aber auch die Synthese von Proteinvarianten und deren Expression auf der Oberfläche infizierter Erythrozyten induzieren, die nur unter bestimmten Voraussetzungen vom Parasiten hergestellt werden und nicht zur Adhäsion geeignet sind.

4.4 Variation in der Genexpression im Laborstamm FCR3 bei der Kultivierung mit AlbuMAX® oder humanem Serum sowie bei *Knob*-negativen und -positiven Isolaten

Während der Blutphase adhärieren *P. falciparum* infizierte Erythrozyten an endotheliale Wirtszellen, um das humane Immunsystem zu umgehen. Die Adhäsion von infizierten Erythrozyten wird durch *Pf*EMP1 Proteine vermittelt, die an der Oberfläche von infizierten Erythrozyten exponiert werden (Leech *et al.*, 1984). Der diese Proteine kodierenden *var*-Genfamilie steht ein Repertoire von etwa 60 *var*-Genen pro Parasitengenom zu Verfügung, wodurch die Variation der Genexpression ermöglicht wird. Das Transkriptom der unterschiedlichen FCR3-Isolate wurde im Ringstadium untersucht, da hier die *var*-Gene exklusiv transkribiert werden (Kyes *et al.*, 2000; Llinas *et al.*, 2006), deren Proteine nachweislich an der Zytoadhärenz beteiligt sind (Leech *et al.*, 1984; Baruch *et al.*, 1995; Cooke *et al.*, 2002).

4.4.1 Kultivierung mit AlbuMAX® zeigt eine höhere Aktivität der Genexpression als mit humanem Serum

Es ist bekannt, dass die Art der Kultivierung die Parasiten hinsichtlich ihres Bindungsphänotyps beeinflussen kann (Beeson *et al.*, 1999). Eine Studie über die Aktivität der Genexpression bei Kultivierung mit unterschiedlichen Medienzusätzen wie AlbuMAX® oder humanem Serum gibt es hingegen nicht.

Da der Laborstamm FCR3 unter Standardbedingungen keine Knobs aufweist, wurden bei dem Vergleich der Transkriptome von AlbuMAX® und humanem Serum lediglich Knob-negative FCR3-Isolate miteinander verglichen. Dabei waren relativ viele Gene signifikant differentiell exprimiert (padj ≤ 0.05 ; Fold Change ≥ 2.5). Die meisten dieser Gene wiesen dabei jedoch eine geringe Expression auf und kamen deswegen nicht für die Ausprägung der sichtbaren Unterschiede in Frage. Das Gen, welches in diesem Zusammenhang die höchste Expression (sowohl bei AlbuMAX® als auch bei humanem Serum) aufwies, war das MSP1 (merozoite surface protein 1), welches bei der Invasion von Merozoiten eine Rolle spielt (Blackman et al., 1990). Bei Kultivierung mit AlbuMAX®, nicht jedoch mit humanem Serum, konnte ein var-Gen identifiziert werden (PFIT_bin11000; it4_var46), dem aufgrund seiner Zugehörigkeit zur PfEMP1 Proteinfamilie eine Funktion als Pathogenitätsfaktor zugeschrieben wird (Leech et al., 1984; Baruch et al., 1995; Cooke et al., 2002). Im Allgemeinen war eine höhere Expression bei Kultivierung mit AlbuMAX® zu sehen, was darauf hindeutet, dass durch die Verwendung des artifiziellen Zusatzstoffes einige Prozesse des Parasiten induziert werden, woraus eine höhere Aktivität der Genexpression resultiert. Diese Gene scheinen jedoch nicht für die Zytoadhärenz zuständig zu sein, da sonst die Bindung bei Kultivierung mit AlbuMAX® besser wäre im Vergleich zu humanem Serum. Ein anderer Grund könnte jedoch auch in diesem Zusammenhang in einer Störung der negativen Rückkopplung liegen (siehe 4.3).

Des Weiteren wurde das Expressionsprofil der *var*-Gene bei AlbuMAX® sowie humanem Serum analysiert. Hier waren die Gene *it4_var46* und *it4_var67* bei Kultivierung mit AlbuMAX® deutlich und zudem exklusiv exprimiert. Im Gegensatz dazu war das *var*-Gen *it4_var46* bereits zuvor im Zusammenhang mit den signifikant differentiell exprimierten Genen aufgefallen (siehe oben 4.4.1), weswegen es sich hierbei möglicherweise um ein *var*-Gen mit einer hohen "*on*"-Rate bei Kultivierung mit AlbuMAX® handelt. Zudem zeigten die *var*-Gene *it4_var34*, *it4_var35* (höher bei Kultivierung mit AlbuMAX®) und *it4_var66* (höher bei Kultivierung mit humanem Serum) deutliche Expressionen, die jedoch nicht signifikant differentiell war. *it4_var34* konnte bereits in anderen Analysen bezüglich des *var*-

Expressionsprofils des Laborstammes FCR3 gefunden werden (Berger *et al.*, 2013; Viebig *et al.*, 2007), ebenso wie *it4_var35* (Avril *et al.*, 2013). Da *it4_var34* in FCR3-Parasiten mit diversen Bindungsphänotypen nachgewiesen wurde, wird angenommen, dass hohe "*on*"-Raten dieses Gens in FCR3-Populationen auftreten (Viebig *et al.*, 2007). Dies könnte auch eine mögliche Erklärung für die Gene *it4_var35* und *it4_var66* (Avril *et al.*, 2013) sein, die in beiden Isolaten in etwa gleichen Expressionsstärken präsent sind. Eine Auswirkung auf den Bindungsphänotypen ist unwahrscheinlich, da die Isolate unterschiedliche Bindungseigenschaften aufweisen.

4.4.2 Die Aktivität der Genexpression zeigt kaum Variationen zwischen *Knob*-negativen und positiven FCR3-Isolaten bei gleicher Kultivierung

Knob-positive Parasiten weisen im Vergleich zu *Knob*-negativen Parasiten zum Teil unterschiedliche Bindungseigenschaften auf (Biggs *et al.*, 1989a; Crandall *et al.*, 1994; Horrocks *et al.*, 2005; Udomsangpetch *et al.*, 1989b). Des Weiteren werden mehr *Pf*EMP1 Proteine auf der Erythrozytenoberfläche von *Knob*-positiven Parasiten exponiert (Horrocks *et al.*, 2005).

(i) Genexpression bei Kultivierung mit AlbuMAX®

Der Vergleich der Transkriptome von *Knob*-positiven und *Knob*-negativen FCR3-Isolaten bei Kultivierung mit AlbuMAX® demonstrierte für einige Gene eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$), wovon die meisten ein niedriges Expressionslevel aufwiesen und deshalb nicht als Ursache für potentielle Unterschiede hinsichtlich des Bindungsphänotyps in Betracht kommen. Fünf dieser signifikant differentiell exprimierten Gene zeigten jedoch eine deutliche Expression (> 30.000) bei *Knob*-negativen Isolaten, wohingegen alle *Knob*-positiven Isolate ein signifikant niedrigeres Expressionsniveau präsentierten. PFIT_0724500 und PFIT_0724600 besaßen bei *Knob*- negativen sowie *Knob*-positiven Isolaten die höchste Expression. Hierbei handelt es sich um 28S rRNA, die für die Proteinsynthese wichtig ist.

Des Weiteren fiel auf, dass relativ viele *var*-Gene signifikant differentiell exprimiert wurden, aber auf sehr geringem Niveau, sodass ein Einfluss dieser Gene auf die Bindungseigenschaft nicht angenommen wird. Bei den *var*-Genen *it4_var34*, *it4_var35*, *it4_var46*, *it4_var65*, *it4_var66* und *it4_var67* war eine relative hohe Expression zu beobachten, wobei lediglich *it4_var46* und *it4_var65* signifikant differentiell exprimiert wurden. Die Ergebnisse bezüglich *it4_var46* bestärkten die Annahme, dass dieses Gen eine hohe "*on*"-Rate bei der Kultivierung mit AlbuMAX® aufweist, da sowohl bei *Knob*-positiven als auch -negativen Isolaten eine deutliche Expression zu verzeichnen war (siehe 4.4.1).

Eine Korrelation mit der Bindungskapazität konnte nicht gesehen werden, da die Bindung im Allgemeinen bei den *Knob*-positiven Isolaten stärker ausfiel, vor allem bei ICAM-1. Hier war jedoch kein Gen exklusiv exprimiert, woraus sich schließen lässt, dass die Unterschiede zwischen *Knob*-negativ und *Knob*-positiv unter statischen Bedingungen nicht allzu groß sind, was auch Crabb *et al.* (1997) zeigten. Unterschiede zwischen *Knob*-negativ und *Knob*-positiv konnten hierbei unter Fließbedingungen gesehen werden, wobei die Bindung bei *Knob*-positiven Parasiten stark erhöht war (Crabb *et al.*, 1997; Horrocks *et al.* 2005). Zudem könnten auch die entscheidenden Gene zu einem anderen Zeitpunkt exprimiert werden, sodass deren Expression in dem hier analysierten Transkriptom nicht auffällt.

(ii) Genexpression bei Kultivierung mit humanem Serum

Bei der Kultivierung mit humanem Serum waren lediglich vier Gene signifikant differentiell exprimiert. Da die Gesamtheit dieser Gene ein äußerst geringes Expressionslevel aufwies, kann davon ausgegangen werden, dass die detektierten Unterschiede keinen bemerkenswerten Einfluss auf die Ausprägung bestimmter Phänotypen ausüben. Auch bei den *var*-Genexpressionen war keine signifikant differentielle Expression zu sehen. Vielmehr zeigte sich ein homogenes *var*-Genexpressionsprofil. *it4_var34* und *it4_var35* sowie auch *it4_var66* und *it4_var67* präsentierten eine deutliche Expression (siehe 4.4.1 und 4.4.2 (i)), wobei *it4_var67* das einzige Gen war, das bei *Knob*-positiven Parasiten ein höheres, aber nicht signifikant differentielles Expressionslevel zeigt. In diesem Zusammenhang könnte man vermuten, dass es sich um das *var*-Gen handelt, das die Bindung von *Knob*-positiven Parasiten an ICAM-1 positiv beeinflusst. Die Bindung an ICAM-1 wurde mit einer DBLβ-Domäne assoziiert, die direkt auf die Domänen-Abfolge der Kopfstruktur anschließt (Bengtsson *et al.*, 2013; Oleinikov *et al.*, 2009; Smith *et al.*, 2000b). Des Weiteren wird angenommen, dass die ICAM-Bindung bei Proteinen der Gruppen B und C durch eine DBLβ5-Domäne und bei Proteinen der Gruppe A durch eine DBLβ3-Domäne vermittelt wird (Bengtsson *et al.*, 2013; Oleinikov *et al.*, 2009; Smith *et al.*, 2000b). IT4_var67 gehört zur Proteingruppe B, wobei auf die Domänen der Kopfstruktur eine DBLε2-Domäne folgt (Rask *et al.*, 2010). Für diese Domäne wurde noch keine Vorhersage bezüglich einer Bindung an ICAM-1 getroffen, folglich kann aber auch nicht ausgeschlossen werden, dass IT4_var67 mit ICAM-1 interagiert. Dass *it4_var46* bei der Kultivierung mit humanem Serum nicht exprimiert wurde, war ein weiterer Hinweis dafür, dass es sich bei diesem Gen um ein Charakteristikum für AlbuMAX® handelt.

Im Allgemeinen wiesen die miteinander verglichenen Transkriptome keine großen Variationen hinsichtlich der Aktivität der Genexpressionen auf. Vor allem die var-Genexpressionsprofile zeigten ein relativ homogenes Gesamtbild mit lediglich kleinen Divergenzen. Dies könnte eine Erklärung für die relativ einheitlichen Ergebnisse der Bindungsexperimente sein, da die Expression der var-Gene als Determinante für die Bindungseigenschaften von P. falciparum infizierten Erythrozyten gilt (Scherf et al., 1998). Ein weiterer Grund für die ähnlichen Bindungseigenschaften sowie var-Genexpressionsprofile könnte in der Langzeitkultivierung liegen, da mit der Adaption an die in vitro-Kultivierung eine Veränderung der var-Genexpression sowie der Rezeptorspezifität von P. falciparum-Isolaten einhergeht (Peters et al., 2007; Udeinya et al., 1983). Außerdem favorisieren P. falciparum-Isolate ein Expressionsprofil an var-Genen, wobei an dieser Stelle vor allem Gene der Gruppen B und C zu nennen sind (Jensen et al., 2004; Sharp et al., 2006; Dahlback et al., 2007; Frank et al., 2007; Bachmann et al., 2011). Die untersuchten FCR3-Isolate zeigten ausnahmslos eine Expression von var-Genen der Gruppen B (it4_var46 und it4_var67) und C (it4_var34 und it4_var66), was mit den Beobachtungen von Bachmann et al. (2011) übereinstimmt. Bezüglich der Bindung an den Rezeptor CD36, der in den durchgeführten Bindungsexperimenten als dominanter Adhäsionspartner für infizierte Erythrozyten fungierte, konnte gezeigt werden, dass lediglich Proteine der Gruppen B und C eine derartige Adhäsion erlauben (Robinson et al., 2003; Turner al., et 2013).

Auffällig war, dass bei allen analysierten FCR3-Isolaten mehrere *var*-Gene exprimiert wurden, obwohl die Expression von *var*-Genen *mutually exclusive* erfolgt. So wird zu einem Zeitpunkt nur ein *var*-Gen exprimiert, während die restlichen *var*-Gene inaktiviert sind (Chen *et al.*, 1998; Scherf *et al.*, 2008; Voss *et al.*, 2006). Die Expression mehrerer *var*-Gene deutet darauf hin, dass es sich hierbei um eine gemischte Parasitenpopulation handelt, die keinem Selektionsdruck unterworfen ist. Allerdings detektierten auch Avril *et al.* (2013) einige "Gewebe-spezifische *var*-Transkripte", unter anderem auch *it4_var66*, das ein relativ stabiles Expressionslevel aufwies. Zudem wurde die Expression der multiplen *var*-Gene mit einem daraus resultierenden

"multi-adhäsiven" Phänotypen erklärt (Viebig *et al.*, 2007). In diesem Zusammenhang konnte bereits eine Expression von zwei verschiedenen *Pf*EMP1 Proteinen auf der Oberfläche eines *P. falciparum* infizierten Erythrozyten gezeigt werden. Dabei konnte im Vergleich zu den infizierten Erythrozyten mit lediglich einer Proteinvariante auf der Oberfläche, eine effizientere Bindung beobachtet werden, wenn zwei *Pf*EMP1 Proteine präsentiert wurden (Joergensen *et al.*, 2010).

4.5 Transkriptom-Analyse mittels RNA-Sequenzierung von *P. falciparum* FCR3, die hinsichtlich der Bindung an P-Selektin angereichert waren (*Panning*)

Mithilfe von zwei verschiedenen Versuchsansätzen (Experiment 1 und 2) wurden *P. falciparum* FCR3-Parasiten angereichert (*Panning*), die eine gesteigerte Bindungskapazität an den Rezeptor P-Selektin aufwiesen. Für das Experiment 2, bei dem die Anreicherung in zwei unabhängigen Versuchsansätzen erfolgte, wurde eine Anreicherung mithilfe statischer Bindungsexperimente nachgewiesen, wohingegen dies aufgrund von begrenztem Untersuchungsmaterial für Experiment 1 nicht möglich war. Die auf diese Weise generierten Parasitenpopulationen wurden im Hinblick auf einen potentiellen Liganden mittels Transkriptom-Analyse untersucht, wobei den *Pf*EMP1 kodierenden *var*-Genen besondere Aufmerksamkeit galt, da *Pf*EMP1 Proteine als Pathogenitätsfaktoren beschrieben wurden (Baruch *et al.*, 1995; Cooke *et al.*, 2002; Leech *et al.*, 1984).

4.5.1 Zwei signifikant differentiell exprimierte Gene zeigen exklusive Genexpression nach *Panning* I und II (Experiment 1)

Bei dem Transkriptom-Vergleich der Ausgangskultur mit der Kultur nach *Panning* I und II wiesen die meisten differentiell exprimierten Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) ein geringes Expressionslevel auf, wodurch davon ausgegangen werden kann, dass diese nicht an der Bindung an P-Selektin beteiligt sind. Zwei der signifikant differentiell exprimierten Gene zeigten eine deutliche (mit Expressionslevel > 20.000) und zudem eine exklusive Expression in der angereicherten Kultur (*Panning* I+II). Hierbei handelte es sich zum einen um eine Proteinkinase (PFIT_1107600), zum anderen um ein *Plasmodium*-Protein mit unbekannter Funktion (PFIT_0406300). Eine Beteiligung beider Gene bzw. deren Proteine an der Ausbildung der P-Selektin-Bindung ist nicht ausgeschlossen, müsste aber verifiziert werden.

4.5.2 Ein *var*-Gen (*it4_var2*) zeigt exklusive Genexpression nach *Panning* I und II (Experiment 1)

Im Hinblick auf die *var*-Genexpression zeigte ein *var*-Gen, das *it4_var2*, eine exklusive und außerdem deutliche Expression (mit einem Expressionslevel > 1.000). Dies lässt die Vermutung zu, dass es sich hierbei um das *var*-Gen handelt, das für die P-Selektin Bindung verantwortlich ist. Wie bereits bei den vorangegangenen Transkriptom-Analysen (siehe 4.4.1) konnte eine deutliche Expression der *var*-Gene *it4_var34* und *it4_var35* beobachtet werden, wobei das signifikant differentiell exprimierte IT4_var66 ausschließlich in der Ausgangskultur transkribiert wurde. Vor dem Hintergrund der *mutually exclusive* Expression kann es sich hierbei um das *var*-Gen handeln, was unter nicht selektiven Bedingungen in Parasiten des FCR3 Laborstammes aktiv ist, wohingegen eine Anreicherung hinsichtlich der Bindung an P-Selektin zur Selektion von Paraiten führt, deren *it4_var2* Gen exprimiert ist.

4.5.3 Die angereicherten Kulturen weisen nach *Panning* V und VI eine geringere Genexpression auf als die Ausgangskultur (Experiment 2)

Der Vergleich der Transkriptome der Ausgangskultur mit der Kultur nach dem fünften sowie nach dem sechsten Panning ergab für viele Gene eine signifikant differentielle Expression (padj ≤ 0.05 ; Fold Change ≥ 2.5). Aufgrund des geringen Expressionslevels wird für die meisten dieser Gene jedoch eine Beteiligung an der gesteigerten Bindung an P-Selektin ausgeschlossen. Im Gegensatz dazu konnte für zwei Gene, PFIT 0406300 und PFIT 1018600, eine deutliche und höhere Expression (Expressionslevel > 15.000) in der angereicherten Kultur nach Panning V gesehen werden, wobei die Funktion der beiden konservierten *Plasmodium*-Proteine nicht bekannt ist. Nach Panning VI hingegen zeigte PFIT_1419800, eine SRP (signal recognition particle) RNA, eine höhere und deutliche Expression (Expressionslevel > 60000) in der angereicherten Kultur als in der Ausgangskultur. Eine Funktion ist während der Synthese und Translokation sekretorischer Proteine in der Bindung von Ribosomen zu sehen. Auch PFIT_0406300 und PFIT_1018600 wurden neben einem weiteren Gen, PFIT_1411400, transkribiert, wobei die Funktionen der Proteine nicht bekannt sind. Da für die Gene PFIT_0406300 und PFIT_1018600 sowohl nach Panning V als auch nach Panning VI eine höhere und deutliche Expression (Expressionslevel > 17.000) in der angereicherten Kultur zu beobachten war, ist es wahrscheinlich, dass sie für die angereicherte Kultur und damit im Hinblick auf die P-Selektin-Bindung spezifisch sind.

4.5.4 Ein *var*-Gen (*it4_var2*) zeigt exklusive Genexpression nach *Panning* V und VI (Experiment 2)

Im Hinblick auf die *var*-Genexpression zeigte nach *Panning* V sowie nach *Panning* VI ein *var*-Gen, das *it4_var2*, eine exklusive und außerdem deutliche Expression (mit einem Expressionslevel > 1.000). Das deutet darauf hin, dass dieses Gen das *Pf*EMP1 kodiert, welches die Bindung an P-Selektin vermittelt. Im Gegensatz dazu wiesen die signifikant differentiell exprimierten Gene *it4_var35, it4_var66 und it4_var67* ein hohes Expressionslevel in der Ausgangskultur auf. Zudem konnte in beiden Parasiten-Kulturen eine relativ hohe, nicht signifikant differentielle Expression des *var*-Gens *it4_var34* gesehen werden (siehe 4.5.2).

4.5.5 Vergleich der gebundenen *versus* der ungebundenen infizierten Erythrozyten nach *Panning* V und VI zeigt eine höhere signifikant differentielle Expression bei den ungebundenen infizierten Erythrozyten (Experiment 2)

Der Vergleich der ungebundenen infizierten Erythrozyten mit den gebundenen infizierten Erythrozyten nach *Panning* V und VI ergab ein ähnliches Expressionsprofil wie bei dem Vergleich zur Ausgangskultur (siehe 4.5.3). So zeigten auch hier zunächst eine relativ hohe Anzahl an Genen eine signifikant differentielle Expression (padj $\leq 0,05$; *Fold change* $\geq 2,5$). Allerdings konnte nach *Panning* V für nur zwei Gene, PFIT_0406300 und PFIT_1018600, eine deutliche Expression (Expressionslevel > 20.000) gesehen werden (siehe 4.5.3). Die Funktion der beiden konservierten *Plasmodium*-Proteine ist jedoch nicht bekannt. Nach dem *Panning* VI sind keine signifikant differentiellen Gene mit einem deutlichen Expressionslevel in der angereicherten Kultur zu sehen. Dies ist damit zu begründen, dass eine der beiden biologischen Proben der ungebundenen infizierten Erythrozyten nach *Panning* VI eine mögliche "Verunreinigung" durch gebundene infizierte Erythrozyten nach *Panning* VI enthält, hervorgerufen durch eventuell zu grobes Waschen.

Hinsichtlich der *var*-Genexpression zeigte sich bei dem Vergleich von ungebundenen und gebundenen infizierten Erythrozyten nach *Panning* V ein ähnliches Bild wie bei dem Vergleich zur Ausgangskultur. Auch hier war für *it4_var2* nach *Panning* V als einziges *var*-Gen eine deutliche und signifikant differentielle Expression bei den gebundenen infizierten Erythrozyten zu beobachten, die bei *Panning* VI nicht in dieser Deutlichkeit zu erkennen war, was die Theorie hinsichtlich der "Verunreinigung" durch gebundene infizierte Erythrozyten unterstützt. Die *var*-Gene *it4_var34* und *it4_var35* präsentierten nach *Panning* V für beide Kulturen (gebunden

wie ungebunden) in etwa das gleiche Expressionsniveau, wohingegen nach *Panning* VI die Expression dieser Gene in der Kultur mit den ungebundenen infizierten Erythrozyten signifikant höher war (siehe 4.5.2). Anders als in der Ausgangskultur war hier jedoch kein weiteres *var*-Gen exprimiert, woraus sich schließen lässt, dass die ungebundenen infizierten Erythrozyten sich von den gebundenen infizierten Erythrozyten dadurch unterscheiden, dass sie das *var*-Gen *it4_var2* nicht exprimieren und so eine Bindung an P-Selektin nicht möglich ist.

Zusammengefasst konnte für das Gen PFIT_0406300 in allen angereicherten Kulturen (sowohl in Experiment 1 als auch in Experiment 2) eine höhere und deutliche Expression (Expressionslevel > 15.000 bzw. 17.000) gesehen werden. Dies lässt vermuten, dass dieses Gen für die angereicherte Kultur und damit im Hinblick auf die P-Selektin-Bindung spezifisch ist. Ein relativ homogenes Bild ergibt sich bezüglich der var-Genexpression der angereicherten Kulturen sowie der Ausgangskultur. Das var-Gen it4_var2 konnte übereinstimmend in allen hinsichtlich der Bindung an P-Selektin angereicherten Kulturen (sowohl in Experiment 1 als auch in Experiment 2) detektiert werden. In der Ausgangskultur, sowie in ungebundenen infizierten Erythrozyten nach Anreicherung ist dieses Gen jedoch nicht transkribiert. Anhand der Ergebnisse kann zunächst davon ausgegangen werden, dass es sich bei it4_var2 um das Gen handelt, welches das PfEMP1 Protein kodiert, das für die Bindung an P-Selektin verantwortlich ist. Hinsichtlich der Gene wie it4_var34 und it4_var35 scheint es sich um für den FCR3 Laborstamm charakteristische Subpopulationen zu handeln (Avril et al., 2013; Berger et al., 2013; Viebig et al., 2007), wobei für it4_var34 eine hohe "on"-Rate angenommen wird (Viebig et al., 2007). Ebenso scheint es sich für it4_var66 zu verhalten, da auch dieses Gen an anderer Stelle nachgewiesen werden konnte und als "Gewebe-spezifisches var-Transkript" eingestuft wurde (Avril et al., 2013). Allerdings ist in diesem Kontext das it4_var66 vermutlich das var-Gen, das anstelle des *it4_var2* exprimiert wird, wenn die Kultur keinem Selektionsdruck wie durch kontinuierliches Panning ausgesetzt ist.

4.6 Der putative Ligand für die Bindung an P-Selektin, IT4_var2, ist ein Mitglied der *Pf*EMP1 Gruppe A

Die Mehrheit der var-Gene kann aufgrund ihrer Transkriptionsrichtung, der Lokalisation auf dem Chromosom und ihrer 5'-Region in drei Gruppen A, B und C eingeteilt werden (Lavstsen et al., 2003). Eine Sonderstellung nehmen dabei die drei konservierten Genvarianten (var1, var2csa und type3 var) ein, die in den meisten Parasitengenotypen zu finden sind (Kraemer et al., 2007) und nicht in eine der drei Gruppen klassifiziert werden. Durch sequenzvergleichende Analysen von sieben P. falciparum Genomen konnten Kompositionen von zwei oder mehr Domänen bestimmter Subklassen, sogenannte Domänen-Kassetten (domain cassettes, DC), identifiziert werden, die innerhalb des Parasitengenoms hoch konserviert sind (Rask et al., 2010). Bei der Bindung spielt die semi-konservierte Kopfstruktur, die am N-terminalen Ende des Proteins lokalisiert ist, bzw. die dort befindliche CIDR-Domäne, eine wichtige Rolle. Proteine der Gruppen B und C sind aufgrund der CIDRα2-6 Domäne dazu in der Lage, an CD36 zu binden (Robinson et al., 2003; Turner et al., 2013), wohingegen Proteine der Gruppe A zwei verschiedene Protein-Kopfstrukturen und somit unterschiedliche Bindungseigenschaften aufweisen. Proteine mit der Domänen-Komposition DBLa1-CIDRa1 binden dabei an EPCR (Turner *et al.*, 2013), Proteine mit einer DBL α 1-CIDR $\beta/\gamma/\delta$ Domänen-Komposition sind mit der Rosetten-Bildung assoziiert (Ghumra et al., 2012). Für die CIDR β/γ/δ Domäne der mit der Rosetten-Bildung vermittelnden Kopfstruktur konnte gezeigt werden, dass diese nicht an CD36 und EPCR bindet (Robinson et al., 2003; Turner et al., 2013). Das PfEMP1 Protein, für welches it4_var2 kodiert, gehört zur Rosetten bildenden Gruppe A (Abbildung 54).

Abbildung 54: Aufbau des *PfEMP1*, für das das var-Gen *it4_var2* kodiert (Rask *et al.*, 2010; modifiziert). NTS: N-Terminal Segment; DBL: Duffy Binding Like Domain; CIDR: Cystein Rich Interdomain Region; ATS: Acidic Terminal Segment. DC: Domain Cassette. Für dieses Molekül konnte vor kurzem gezeigt werden, dass die Domänen-Kassette 5 (DC5) die Bindung an PECAM erlaubt (Berger *et al.*, 2013). Zudem wird die Gruppe A, zu denen IT4var2 gehört mit den schweren Krankheitsverläufen wie der zerebralen Malaria assoziiert (Jensen *et al.*, 2004; Kaestli *et al.*, 2006).

Aufgrund seiner Struktur wird angenommen, dass IT4_var2 als Mitglied der Gruppe A jedoch nicht die Möglichkeit hat, an CD36 zu binden (Robinson *et al.*, 2003; Turner *et al.*, 2013). Eine Frage, die sich hierbei stellt ist, wie die Bindung an CD36 bei den Bindungsexperimenten zustande kam, die zur Kontrolle der Anreicherung durchgeführt wurden. *Pf*EMP1 Proteine der Gruppen B (IT4_var67) und C (IT4_var34 und IT4_var66) sind durchaus dazu in der Lage (Robinson *et al.*, Turner *et al.*, 2013), und es ist anzunehmen, dass diese Proteine in dem Fall die Bindung an CD36 vermittelt haben. Dies würde darauf hindeuten, dass die *var*-Gene nicht *mutually exclusive* exprimiert werden, wobei es dafür in der Literatur jedoch keine gesicherten Hinweise gibt.

Um die Funktion des identifizierten IT4_var2 bezüglich der Bindung an P-Selektin zu verifizieren, müssen in einem nächsten Schritt die verschiedenen Domänen dieses PfEMP1 Proteins rekombinant exprimiert und hinsichtlich ihrer Bindungseigenschaften untersucht werden. Damit könnte auch gleichzeitig untersucht werden, ob die CIDR $\beta/\gamma/\delta$ Domäne tatsächlich keine Bindung an CD36 erlaubt. Ein Problem könnte hierbei die Expression in löslicher sowie richtig gefalteter Form spielen, die jedoch für die Bindung wichtig ist. Zudem würde eine in-situ-Hybridisierung Aufschluss darüber geben, wieviele Gene *in situ* exprimiert

II Zusammenfassung

Die Pathogenität des Malariaerregers P. falciparum beruht unter anderem auf der Zytoadhärenz von P. falciparum infizierten Erythrozyten an Endothelzellen des Wirtes. Diese sogenannte Sequestrierung, erlaubt dem Parasiten der Milzpassage und der dortigen Erkennung und Eliminierung zu entgehen. Bislang konnten 22 Endothelrezeptoren und Liganden beschrieben werden, die an der Bindung infizierter Erythrozyten beteiligt sind. Es wird angenommen, dass infizierte Erythrozyten synergistisch mit unterschiedlichen Adhäsionsmolekülen interagieren, um trotz der hohen Fließgeschwindigkeiten des Blutes eine effiziente Bindung an die Endothelzellen zu etablieren. Infizierte Erythrozyten gelangen zu den Endothelzellen und können dort mit Rezeptoren wie ICAM-1, VCAM-1 und P-Selektin interagieren. Durch eine schwache Bindung wird die Geschwindigkeit der infizierten Erythrozyten herabgesetzt, was zu einem Rollen der infizierten Erythrozyten über die Endothelzellen und einer weiteren Abnahme an Geschwindigkeit führt. Dies ermöglicht eine stabile Bindung an dem nahezu ubiquitär verbreiteten Rezeptor CD36. Auf Seiten des Parasiten konnten als Liganden Mitglieder einer großen Familie variabler Adhäsionsproteine, die PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) Proteine, für die Interaktion mit einigen Rezeptoren identifiziert werden. PfEMP1 Proteine sind bekannte Pathogenitätsfaktoren, die auf der Oberfläche infizierter Erythrozyten lokalisiert sind und von der var-Genfamilie kodiert werden. Abhängig von der Lokalisation auf dem Chromosom, der Transkriptionsrichtung sowie der Zusammensetzung der Protein-Domänen ist eine Klassifizierung in verschiedene Gruppen möglich. Ziel dieser Arbeit war es, durch vergleichende Transkriptom-Analysen den bislang unbekannten Liganden für den Endothelrezeptor P-Selektin zu identifizieren. Um dieses Ziel zu erreichen, wurden Parasitenpopulationen genutzt, die zuvor bezüglich der Bindung an P-Selektin angereichert wurden.

Im ersten Teil dieser Arbeit wurden zunächst die optimalen Bedingungen für die sich anschließenden Bindungsexperimente mit dem Endothelrezeptor P-Selektin bestimmt. Zeitgleich wurde mithilfe sechs weiterer Endothelrezeptoren untersucht, ob die Bindungskapazität von verschiedenen Laborstämmen variiert und möglicherweise mit der Kultivierungsart oder der Formation sogenannter *Knobs* (Ausstülpungen auf der Oberfläche infizierter Erythrozyten) korreliert. Dabei konnte keine Korrelation zwischen der

Ш

II Zusammenfassung

Bindungsfähigkeit und der Bildung von *Knobs* (mit Ausnahme des Rezeptors ICAM-1), wohl aber dem verwendeten Laborstamm sowie der Art der Kultivierung gefunden werden. Dabei zeigte sich, dass die stärkste Bindung fast aller Rezeptoren beim mit humanem Serum kultivierten Laborstamm FCR3 zu beobachten ist. Weitere vergleichende Analysen der unterschiedlich kultivierten Laborstämme zeigten Varianzen in der Größe der *Knobs*, dem Transkriptionsprofil und der Lokalisation verschiedener Mitglieder der variablen Oberflächenproteine (*variant surface antigens*) von *P. falciparum*. Allerdings konnte für keinen der gefundenen Unterschiede eine Korrelation zu der Bindung an Endothelrezeptoren gefunden werden.

Im zweiten Teil der Arbeit wurden vergleichende Transkriptom-Analysen mithilfe angereicherter Parasitenpopulationen durchgeführt, wobei die Anreicherung durch Bindung an den Rezeptor P-Selektin erfolgte. Hier konnte erstmals ein *var*-Gen, *it4_var2*, identifiziert werden, das exklusiv in der angereicherten Kultur exprimiert wird und somit ein potentieller Ligand für P-Selektin ist. Das entsprechende *Pf*EMP1 Protein (IT4_var2) wird in eine Proteingruppe eingeordnet, die mit schwerer Malaria assoziiert und auch als Interaktionspartner für den Rezeptor PECAM-1 beschrieben ist. Neben *it4_var2* wurde auch ein weiteres Gen (PFIT_0406300) identifiziert, dessen Expression in P-Selektin angereicherten Parasiten verstärkt ist. Es kann allerdings keine Aussage darüber getroffen werden, ob und welche Rolle das entsprechende Protein bei der Bindung an P-Selektin übernimmt.

II Abstract

The virulence of the human pathogen Plasmodium falciparum, responsible for the severe falciparum malaria, is based on the ability of infected red blood cells (iRBC) to adhere to endothelial host cells. This sequestration enables the parasite to avoid the passage through the spleen, recognition and subsequent killing. So far 22 endothelial receptors or ligands are known, for which an interaction with iRBC occurs. In this context it is suggested that iRBC synergistically interact with various adhesion molecules to establish an efficient binding to endothelial cells in spite of the physiological flow. In a first step, iRBC are recruited to the endothelium where they interact with receptors like ICAM-1, VCAM-1, and P-selectin by a weak bond. As a result the iRBC slow down their speed and begin to roll over the endothelial cells which reduces their speed additionally. This finally leads to a firm adhesion to the almost ubiquitous receptor CD36. Members of the clonally variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) protein family are parasitic proteins that mediate the binding to the different host cell receptors. These proteins are known virulence factors which are expressed on the surface of infected erythrocytes and are encoded by the var genes. With regard to their chromosomal localization, the direction of transcription as well as of the composition of the protein domains, the PfEMP1 members can be classified into different groups. According to this knowledge the aim of this work was to identify the unknown ligand (of parasitic origin) for the receptor P-selectin by comparative transcriptome analysis. To achieve this object parasites were enriched concerning their binding to P-selectin.

In the first part of this work the optimal conditions for the following binding experiments with P-selectin were determined. Simultaneously, it was investigated by the use of six additional receptors whether there is a correlation between binding capacity and used laboratory strain, cultivation and/or the formation of the so called knobs (small protrusions on the surface of iRBC). No correlation could be detected between the binding phenotype and the formation of knobs (except for the receptor ICAM-1). Nevertheless, it could be shown that the binding capacity depends on the used laboratory strain as well as on the kind of cultivation. The most efficient binding for almost all analyzed receptors were detected by using laboratory strain FCR3, cultivated with human serum. Furthermore, comparative studies of the different

laboratory strains showed a variation in knob dimension, in the transcription profil and in the localization of diverse members of the variable surface antigens of *P. falciparum*. However, a correlation between these differences and the adhesion to endothelial cells was not found.

In the second part of the work comparative transcriptome analysis were conducted with enriched *P. falciparum* populations, whereby the enrichment was achieved by binding to the receptor P-selectin. Here, one *var*-gene, *it4_var2*, could be identified to be expressed exclusively in the enriched parasites and is therefore a potential ligand for P-selectin. The *Pf*EMP1 protein (IT4_var2) is classified into a *Pf*EMP1 group which is associated with severe malaria and recently it was identified as an interaction partner of the endothelial receptor PECAM-1. Besides *it4_var2* another gene (PFIT_0406300) could be identified showing enhanced expression in parasites which were enriched for binding to P-selectin. So far, it is not known if the corresponding protein is involved in the interaction with P-selectin.

III LITERATURVERZEICHNIS

Anderson EC, Petersen DF, und Tobey RA: Density invariance of cultured Chinese Hamster Ovary Cells with stage of the mitotic cycle. *Biophys J* **10**(7): 630–645, 1970.

Asghari-Khiavi M, Wood BR, Mechler A, Bambery KR, Buckingham DW, Cooke BM, und McNaughton D: Correlation of atomic force microscopy and Raman micrspectroscopy to study the effects of *ex vivo* treatment procedures on human red blood cells. *Analyst* **135**(3): 525-530, 2010.

Avril M, Brazier AJ, Melcher M, Sampath Sowmya, und Smith JD: DC8 and DC13 *var* genes associated with severe malaria bind avidly to diverse endothelial cells. *PloS Pathog* **9**(6): e1003430, 2013.

Bachmann A, Esser C, Petter M, Predehl S, von Kalckreuth V, Schmiedel S, Bruchhaus I, und Tannich E: Absence of erythrocyte sequestration and lack of multicopy gene family expression in *Plasmodium falciparum* from a splenectomized malaria patient. *PloS One* **4**(10):e7459, 2009.

Bachmann A, Predehl S, May J, Harder S, Burchard GD, Gilberger TW, Tannich E, und Bruchhaus I: Highly co-ordinated *var* gene expression and switching in clinical *Plasmodium falciparum* isolates from non-immune malaria patients. *Cell Microbiol* **13**(9): 1397-1409, 2011.

Bannister LH, Hopkins JM, Fowler RE, Krishna S, und Mitchell GH: A brief illustrated guide to the ultrastructure of *Plasmodium falciparum* asexual blood stages. *Parasitol Today* **16**(10): 427-433, 2000.

Bannister LH, Hopkins JM, Margos G, Dluzewski, AR, und Mitchell GH: Threedimensional ultrastructure of the ring stage of *Plasmodium falciparum*: evidence for export pathways. *Microsc Microanal* **10**(5): 551-562, 2004.

Barnwell JW, Ockenhouse CF, und Knowles DM 2nd: Monoclonal antibody OKM5 inhibits the *in vitro* binding of *Plasmodium falciparum*-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells. *J Immunol* **135**(5): 3494-3497, 1985.

Barnwell JW, Asch AS, Nachman RL, Yamaya M, Aikawa M, und Ingravallo P: A human 88-kD membrane glycoprotein (CD36) functions *in vitro* as a receptor for a cytoadherence ligand on *Plasmodium falciparum*-infected erythrocytes. *J Clin Invest* **84**(3): 765-772, 1989.

Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, und Howard RJ: Cloning the *P. falciparum* gene encoding *Pf*EMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. *Cell* **82**(1): 77-87, 1995.

Baruch DI, Gormley C, Ma C, Howard RJ, und Pasloske BL: *Plasmodium falciparum* erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. *Proc Natl Acad Sci USA* **93**(8): 3497-3502, 1996.

Baruch DI, Ma XC, Singh HB, Bi X, Pasloske BL, und Howard RJ: Identification of a region of *Pf*EMP1 that mediates adherence of *Plasmodium falciparum* infected erythrocytes to CD36: conserved function with variant sequence. *Blood* **90**(9): 3766-3775, 1997.

Baruch DI: Adhesive receptors on malaria-parasitized red cells. *Baillieres Best Pryct Res Clin Haematol* **12**(4): 747-761, 1999.

Beeson JG, Brown GV, Molyneux ME, Mhango C, Dzinjalamala F, und Rogerson SJ: *Plasmodium falciparum* isolates from infected pregnant women and children are associated with distinct adhesive and antigenic properties. *J Infect Dis* **180**(2): 464-472, 1999.

Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, Lawson AM, Molyneux ME, und Brown GV: Adhesion of *Plasmodium falciparum*-infected erythrocytes to hyaluronic acid in placental malaria. *Nat Med* **6**(1): 86-90, 2000.

Bell GI: Models for the specific adhesion of cells to cells. Science 200(4342): 618-627, 1978.

Bengtsson A, Joergensen L, Rask TS, Olsen RW, Andersen MA, Turner L, Theander TG, Hviid L, Higgins MK, Craig A, Brown A, und Jensen AT: A novel domain cassette identifies *Plasmodium falciparum* PfEMP1 proteins binding ICAM-1 and os target of cross-reactive, adhesion-inhibitory antibodies. *J Immunol* **190**(1): 240-249, 2013.

Berendt AR, Simmons DL, Tansey J, Newbold CI, und Marsh K: Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for *Plasmodium falciparum*. *Nature* **341**(6237): 57-59, 1989.
Berger SS, Turner L, Wang CW, Petersen JE, Kraft M, Lusingu JP, Mmbando B, Marquard AM, Bengtsson DBAC, Hviid L, Nielsen MA, Theander TG, und Lavstsen T: *Plasmodium falciparum* expressing domain cassette 5 type *Pf*EMP1 (DC5-*Pf*EMP1) bind PECAM1. *PLoS ONE* **8**(7): e69117, 2013.

Biggs BA, Culvenor JG, Ng JS, Kemp DJ, und Brown GV: *Plasmodium falciparum*: cytoadherence of a knobless clone. Exp Parasitol **69**(2): 189-197, 1989a.

Biggs BA, Kemp DJ, und Brown GV: Subtelomeric chromosome deletions in field isolates of *Plasmodium falciparum* and their relationship to loss cytoadherence *in vitro*. *Proc Natl Acad Sci USA* **86**(7): 2428-2432, 1989b.

Blackman MJ, Heidrich HG, Donachie S, McBride JS, und Holder AA: A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. *J Exp Med* **172**(1):379–382, 1990.

Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K, Langhorne J, und Preiser PR: *Plasmodium falciparum* STEVOR proteins are highly expressed in patient isolates and located in the surface membrane of infected red blood cells and the apical tips of merozoites. *Infect Immun* **76**(7): 3329-3336, 2008.

Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, und Marsh K: Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. *Nat Med* **4**(3): 358-360, 1998.

Chaiyaroj SC, Angkasekwinai P, Buranakiti A, Looareesuwan S, Rogerson SJ, und Brown GV: Cytoadherence characteristics of *Plasmodium falciparum* isolates from Thailand: evidence for chondroitin sulfate a as a cytoadherence receptor. *Am J Trop Med Hyg* **55**(1): 76-80, 1996.

Chakravorty SJ, und Craig A: The role of ICAM-1 in *Plasmodium falciparum* cytoadherence. *Eur J Cell Biol* 84(1): 15-27, 2005.

Chen Q, Fernandez V, Sundstrom A, Schlichtherle M, Datta S, Hagblom P, und Wahlgren M: Developmental selection of *var* gene expression in *Plasmodium falciparum*. *Nature* **394**(6691): 392-395, 1998.

Chen M, und Gen JG: P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. *Arch Immunol Ther Exp* **54**(2): 75-84, 2006.

Cheng Q, Cloonan N, Fischer K, Thompson J, Waine G, Lanzer M, und Saul A: *stevor* and *rif* are *Plasmodium falciparum* multicopy gene families which potentially encode variant antigens. *Mol Biochem Parasitol* **97**(1-2): 161-176, 1998.

Chou KC: The convergence-divergence duality in lectin domains of selectin family and its implication. *FEBS Lett* **363**(1-2): 123-126, 1995.

Chou KC: Knowledge-based model building of the tertiary structures for lectin domains of the selectin family. *J Protein Chem* **15**(2): 161-168, 1996.

Claessens A, und Rowe A: Selection of *Plasmodium falciparum* Parasites for Cytoadhesion to Human Brain Endothelial Cells. *J Vis Exp* (**59**): e3122, 2012.

Cooke BM, Berendt AR, Craig AG, MacGregor J, Newbold CI, und Nash GB: Rolling and stationary cytoadhesion of red blood cells parasitized by *Plasmodium falciparum*: separate roles for ICAM-1, CD36 and thrombospondin. *BR J Haematol* **87**(1): 162-170, 1994.

Cooke BM, Glenister FK, Mohandas N, und Coppel RL: Assignment of functional roles to parasite proteins in malaria-infected red blood cells by competitive flow-based adhesion assay. *Br J Haematol* **117**(1): 203-211, 2002.

Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME, Brown GV, Coppe RL, und Cowman AF: Targeted gene disruption shows that knobs enable malaria-infected red cells to adhere under physiological shear stress. *Cell* **89** (2): 287-296, 1997.

Crandall I, Land KM, und Sherman IS: *Plasmodium falciparum:* pfalhesin and CD36 form an adhesion/receptor pair that is responsible for the ph-dependent protion of cytoadherence/sequestration. *Exp Parasitol.* **78**(2): 203-209, 1994.

Dahlbäck M, Lavstsen T, Salanti A, Hviid L, Arnot DE, Theander TG, und Nielsen MA: Changes in *var* gene mRNA levels during erythrocytic development in two phenotypically distinct *Plasmodium falciparum* parasites. *Malar J* **6**: 78, 2007. Das A, Das TK, Sahu U, Das BP, Kar SK, und Ranjit MR: CD36 T188G gene polymorphism and severe *falciparum* malaria in India. *Trans R Soc Trop Med Hyg* **103**(7): 687-690, 2009.

David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD: Parasite sequestration in *Plasmodium falciparum* malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. *Proc Natl Acad Sci USA* **80**(16): 5075-5079, 1983.

David OH, Handunnetti, SM, Leech JH, Gamage P, und Mendis KN: Rosetting: a new cytoadherence property of malaria-infected erythrocytes. *Am J Trop Med Hyg* **38**(2): 289-297, 1988.

Davis SP, Amrein M, Gillrie MR, Lee K, Muruve DA, und Ho M: *Plasmodium falciparum*induced CD36 clustering rapidly strengthens cytoadherence *via* p130CAS-mediated actin cytoskeletal rearrangement. *FASEB J* **26**(3): 1119-1130, 2011.

Doré M, Korthuis RJ, Granger DN, Entman ML, Smith CW: P-selectin mediates spontaneous leukocyte rolling *in vivo*. *Blood* **82**(4):1308, 1993.

Duffy MF, Reeder JC, und Brown GV: Regulation of antigenic variation in *Plasmodium falciparum*: censoring freedom expression. *Trends Parasitol* **19**(3): 121-124, 2003.

Esser C, Bachmann A, Kuhn D, Schuldt K, Förster B, Thiel M, May J, Koch-Nolte F, Yáñez-Mó M, Sánchez-Madrid F, Schinkel AH, Jalkanen S, Craig AG, Bruchhaus I, und Horstmann RD: Evidence of promiscous enddothelial binding by *Plasmodium falciparum*-infected erythrocytes. *Cell Microbiol* **16**(5): 701-708, 2014.

Febbraio M, Hajjar DP, und Silverstein RL: CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. *J Clin Invest* **108**(6): 785-791, 2001.

Fernandez V, Hommel M, Chen Q, Hagblom P, und Wahlgren M: Small, clonally variant antigens expressed on the surface of the *Plasmodium falciparum*-infected erythrocyte are encodes by the *rif* gene family and are the target of human immune responses. *J Exp Med* **190**(10): 1393-1404, 1999.

Ferreira MU, da Silva Nunes M, und Wunderlich G: Antigenic diversity and immune evasion by malaria parasites. *Clin Diagn Lab Immunol* **11**(6): 987-995, 2004.

Frank M, Dzikowski R, Amulic B, und Deitsch K: Variable switching rates of malaria virulence genes are associated with chromosomal position. *Mol Microbiol* **64**(6): 1486-1498, 2007.

Fried M, und Duffy PE: Adherence of *Plasmodium falciparum* to chondroitin sulfate A in the human placenta. *Science* 272(5267): 1502-1504, 1996.

Garcia JE, Puentes A, Curtidor H, Vera R, Rodriguez L, Valbuena J, Lopez R, Ocampo M, Cortes J, Vanegas M, Rosas J, Reyes C, und Patarroyo ME: Peptides from the *Plasmodium falciparum* STEVOR putative protein bind with high affinity to normal human red blood cells. *Peptides* **26**(7): 1133-1143, 2005.

Gardner JP, Pinches RA, Roberts DJ, und Newbold CI: Variant antigens and endothelial receptor adhesion in *Plasmodium falciparum*. *Proc Natl Acad Sci USA* **93**(8): 3503-3508, 1996.

Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE Bowman, S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig, A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut, J., Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, Mc Fadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, und Barrell B: Genome sequence of the human malaria parasite *Plasmodium falciparum. Nature* **419**(6906): 498-511, 2002.

Goodyer ID, Johnson J, Eisenthal R, und Hayes DJ: Purification of mature-stage *Plasmodium falciparum* by gelatine flotation. *Ann Trop Med Parasitol* **88**(2): 209-211, 1994.

Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P: Tumor necrosis factor (cachetin) as an essential mediator in murine cerebral malaria. *Science* **237**(4819): 1210-1212, 1987.

Grau GE, Pointaire P, Piguet PF, Vesin C, Rosen H, Stamenkovic I, Takei F, Vassalli P: Late administration of monoclonal antibody to leukocyte function-antigen 1 abrogates incipient murine cerebral malaria. *Eur J Immunol* **21**(9): 2265-2267, 1991.

Gruenberg J, Allred DR, und Sherman IW: Scanning electron microscope analysis of the protrusions (knobs) present on the surface of *Plasmodium falciparum* infected erythrocytes. *J Cell Biol* **97**(3): 795-802, 1983.

Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, und Tilley L: Electron tomography of the Maurer's cleft organelles of *Plasmodium falciparum*-infected erythrocytes reveals novel structural features. *Mol Microbiol.***67**(4): 703-718, 2008.

Heddini A, Pettersson F, Kai O, Shafi J, Obiero J, Chen Q, Barragan A, Wahlgren M, und Marsh K: Fresh isolates from children with severe *Plasmodium falciparum* malaria bind to multiple receptors. *Infect Immun* **69**(9): 5849-5856, 2001.

Helmby H, Cavelier L, Pettersson U, und Wahlgren M: Rosetting *Plasmodium falciparum*infected erythrocytes express unique strain-specific antigens on their surface. *Infect Immun* **61**(1): 284-288, 1993.

Ho M, White NJ, Looareesuwan S, Wattanagoon Y, Lee SH, Walport MJ, Bunnag D, und Harinasuta T: Splenic Fc receptor function in host defense and anemia in acute *Plasmodium falciparum* malaria. *J Infect Dis* **161**(3): 555-561, 1990.

Ho M, Schollaardt T, Niu X, Looareesuwan S, Patel KD, und Kubes P: Characterization of *Plasmodium falciparum*-infected erythrocyte and P-selectin interaction under flow conditions. *Blood* **91**(12): 4803-4809, 1998.

Horrocks P, Pinches RA, Chakravorty SJ, Papakrivos J, Christodoulou Z, Kyes SA, Urban BS, Fergusom DJ, Newbold CI: *Pf*EMP1 expression is reduced on the surface of knobless *Plasmodium falciparum* infected erythrocytes. *J Cell Sci* **118**(Pt 11): 2507-2518, 2005.

Howitt CA, Wilinski D, Llinás M, Templeton TJ, Dzikowski R, und Deitsch KW: Clonally variant gene families in *Plasmodium falciparum* share a common activation factor. *Mol Microbiol* **73**(6): 1171-1185, 2009.

Hsu-Lin SC, Berman CL, Furie BC, August D, und Furie B: A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. *J Biol Chem* **259**(14): 9121-9126, 1984.

Janeway CA, Travers P, Walport M, und Shlomchik MJ: Immunobiology: The immune system in health and disease. New York: Garland Science 7th edition; **88-89**, **2008**.

Jensen JB, und Trager W: *Plasmodium falciparum* in culture: establishment of additional strains. *Am J Trop Med Hyg* **27**(4): 743-746, 1978.

Jensen AT, Magistrado P, Sharp S, Joergensen L, Lavstsen T, Chiucchiuini A, Salanti A, Vestergaard LS, Lusingu JP, Hermsen R, Sauerwein R, Christensen J, Nielsen MA, Hviid L, Sutherland C, Staalsoe T, Theander TG: *Plasmodium falciparum* associated with severe childhood malaria preferentially expresses PfEMP1 endcoded by group A *var* genes. *J Exp Med* **199**(9): 1179-1190, 2004.

Joergensen L, Bengtsson DC, Bengtsson A, Ronander E, Berger SS, Turner L, Dalgaard MB, Cham GKK, Victor ME, Lavstsen T, Theander TG, Arnot DE, und Jensen ATR: Surface co-expression of two different PfEMP1 antigens on single *Plasmodium falciparum*-infected erythrocytes facilitates binding to ICAM1 and PECAM1. *PLoS Pathog* **6**(9): e1001083, 2010.

Johnston GI, Cook RG, und McEver RP: Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. *Cell* **56**(6): 1033-1044, 1989.

Kaestli M, Cortes A, Lagog M, Ott M, Beck HP: Longitudinal assessment *of Plasmodium falciparum var* gene transcription in naturally infected aymptomatic children in Papua New Guinea. *J Infect Dis* **189**(10): 1942-1951, 2004.

Kaviratne M, Khan SM, Jarra W, und Preiser PF: Small variant STEVOR antigen is uniquely located within Maurer's clefts in *Plasmodium falciparum*-infected red blood cells. *Eukaryot Cell* **1**(6): 926-935, 2002.

Kilejian A: Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with *Plasmodium falciparum*. *Proc Natl Acad Sci USA* **76**(9): 4650-4653, 1979.

Kilejian A, Rashid MA, Aikawa M, Aji T, und Yang YF: Selective association of a fragment of the knob protein with spectrin, actin and the red cell membrane. *Mol Biochem Parasitol* 44(2): 175-181, 1991.

Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, Smith LM, Wang W, Levin E, Newbold CI, Myler PJ, und Smith JD: Patterns of gene recombination shape *var* gene repertoires in *Plasmodium falciparum*: comparisons of geographically diverse isolates. *BMC Genomics* 8: 45, 2007.

Kyes SA, Rowe JA, Kriek N, und Newbold CI: Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with *Plasmodium falciparum*. *Proc Natl Acad Sci USA* **96**(16): 9333-9338, 1999.

Kyes SA, Pinches R, und Newbold C: A simple RNA analysis method shows *var* and *rif* multigene family expression pattern in *Plasmodium falciparum*. *Mol Biochem Parasitol* **105**(2): 311-315, 2000.

Kyes SA, Kraemer SM, und Smith JD: Antigenic variation in *Plasmodium falciparum*: gene organization and regulation of the *var* multigene family. *Eukaroyt Cell* **6**(9): 1511-1520, 2007.

Lambros C, und Vanderberg JP: Synchronization of *Plasmodium falciparum* erythrocytic stages in culture. *J Parasitol* 65(3): 418-420, 1979.

Langreth SG, Jensen JB, Reese RT, und Trager W: Fine structure of human malaria *in vitro*. *J Protozool* **25**(4): 443-452, 1978.

Langreth SG, Reese RT, Motyl MR, und Trager W: *Plasmodium falciparum*: loss of knobs on the infected erythrocyte surface after long-term cultivation. *Exp Parasitol* **48**(2): 213-219, 1979.

Langreth SG, und Peterson E: Pathogenicity, stability, and immunogenicity of a knobless clone of *Plasmodium falciparum* in Colombian owl monkeys. *Infect Immun* **47**(3): 760-766, 1985.

Lavazec C, Sanyal S, und Templeton TJ: Hyperariability within the Rifin, Stevor and Pfmc-2TM superfamilies in *Plasmodium falciparum*. *Nucleic Acids Res* **34**(22): 6696-6707, 2006.

Lavazec C, Sanyal S, Templeton TJ: Expression switching in the *stevor* and *Pfmc-2TM* superfamilies in *Plasmodium falciparum*. *Mol Microbiol* **64**(6): 1621-1634, 2007

Lavstsen T, Salanti A, Jensen AT, Arnot DE, und Theander TG: Sub-grouping of *Plasmodium falciparum* 3D7 *var* genes based on sequence analysis of coding and non-coding regions. *Malar J* **2**:27, 2003.

Lawrence MB, und Springer TA: Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. *Cell* **65**(5): 859-873, 1991.

Leech JH, Barnwell JW, Miller LH, und Howard RJ: Identification of a strain-specific malarial antigen exposed on the surface of *Plasmodium falciparum*-infected erythrocytes. *J Exp Med* **159**(6): 1567-1575, 1984.

Ley K, Bullard D, Arbones ML, Bosse R, Vestweber D, Tedder TF, Beaudet AL: Sequential contribution of L- and P-selectin to leukocyte rolling *in vivo*. *J Exp Med* **181**(2):669-675, 1995.

Llinas M, Bozdech Z, Wong ED, Adai AT, und DeRisi JL: Comparative whole genome transcriptome analysis of three *Plasmodium falciparum* strains. *Nucleic Acids Res* **34**(4): 1166-1173, 2006.

Looareesuwan S, Merry AH, Phillips RE, Pleehachinda R, Warranagoon Y, Ho M, Charoenlarp P, Warrell DA, und Weatherall DJ: Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. *Br J Haematol* **67**(4): 473-478, 1987.

Luscinskas FW, Ding H, und Lichtman AH: P-selectin and VCAM-1 mediate rolling and arrest, respectively, of CD4⁺ T-lymphocytes on TNF-a-activated vascular endothelium under flow. *J Exp Med* **181**(3): 1179-1186, 1995.

Luse SA, und Miller LH: *Plasmodium falciparum* malaria. Ultrastrucutre of parasitized erythrocytes in cardiac vessels. *Am J Trop Med Hyg* **20**(5): 655-660, 1971.

MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, und Warrell DA: Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. *Am J Pathol* **119**(3): 385-401,1985.

Magowan C, Wollish W, Anderson L, und Leech J: Cytoadherence by *Plasmodium falciparum*-infected erythrocytes is correlated with the expression of a family of variable proteins on infected erythrocytes. *J Exp Med* **168**(4): 1307-1320, 1988.

Maier AG, Cooke BM, Cowman AF, und Tilley L: Malaria parasite proteins that remodel the host erythrocyte. *Nat Rev Microbiol* **7**(5): 341-354, 2009.

Marsh K, Otoo L, Hayes RJ, Carson DC, und Greenwood BM: Antibodies to blood stage antigens of *Plasmodium falciparum* in rural Gambians and their relation to protection against infection. *Trans R Soc Trop Med Hyg* **83**(3): 293-303, 1989.

McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, und Bainton DF: GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. *J Clin Invest* **84**(1): 92-99, 1989.

McEver RP: Selectins: lectins that initiate cell adhesion under flow. *Curr Opin Cell Biol* 14(5): 581-586, 2002.

Miller LH, Baruch DI, Marsh K, und Doumbo OK: The pathogenic basis of malaria. *Nature* **415**(6872): 673-679, 2002.

Miller LH: Distribution of mature trophozoites and schizonts of *Plasmodium falciparum* in the organs of *Aotus trivirgatus*, the night monkey. *Am J Trop Med Hyg* **18**(6): 860-865, 1969.

Moxon CA, Wassmer SC, Milner DA Jr, Chisala NV, Taylor TE, Seydel KB, Molyneux ME, Faragher B, Esmon CT, Downey C, Toh CH, Craig AG, und Heyderman RS: Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. *Blood* **122**(5): 842-851, 2013.

Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B, Msobo M, Peshu N, und Marsh K: Receptor-specific adhesion an clinical disease in *Plasmodium falciparum*. *Am J Trop Med Hyg* **57**(4): 389-398, 1997.

Niang M, Yam XY, und Preiser PR: The *Plasmodium falciparum* STEVOR multigene family mediates antigenic variation of the infected erythrocyte. *PLoS Pathog* **5**(2): e1000307, 2009.

Ockenhouse CF und Chulay JD: *Plasmodium falciparum* sequestration: OKM5 antigen (CD36) mediates cytoadherence of parasitized erythrocytes to a myelomonocytic cell line. *J Infect Dis* **157**(3): 584-588, 1988.

Ockenhouse CF, Ho M, Tandon NN, Van Seventer GA, Shaw S, White NJ, Jamieson GA, Chulay JD, und Webster HK: Molecular basis of sequestration in severe and uncomplicated *Plasmodium falciparum* malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis **164**(1): 163-169, 1991.

Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, KAn KE, Thway Y, Win K, Aikawa M, Lobb RR: Human vascular endothelial cell adhesion receptors for *Plasmodium falciparum*-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. *J Exp Med* **176**(4): 1183-1189, 1992.

Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, Liu S, und Chishti AH: *Plasmodium falciparum* erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. *Mol Biochem Parasitol* **108**(2): 237-247, 2000.

Oleinikov AV, Amos E, Frye IT, Rossnagle E, Mutabingwa TK, Fried M, und Duffy PE: High throughput functional assays of the variant antigen *Pf*EMP1 reveal a single domain in the 3D7 *Plasmodium falciparum* genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. *PLoS Pathog* **5**(4): e1000386, 2009.

Oquendo P, Hundt E, Lawler J, Seed B: CD36 directly mediates cytoadherence of *Plasmodium falciparum* parasitized erythrocytes. *Cell* **58**(1): 95-101, 1989.

Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, Roberts DJ: Platelet-mediated clumping of *Plasmodium falciparum*-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. *Proc Natl Acad Sci USA* **98**(4): 1805-1810, 2001.

Pei X, An X, Guo X, Tarnawski M, Coppel R, und Mohandas N: Structural and functional studies of interaction between *Plasmodium falciparum* knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. *J Biol Chem* **280**(35): 31166-31171, 2005.

Peters JM, Fowler EV, Krause DR, Cheng Q, und Gatton ML: Differential changes in *Plasmodium falciparum var* transcription during adaption to culture. *J Infect Dis* **195**(5): 748-755, 2007.

Petter M, Bonow I, und Klinkert MQ: Diverse expression pattern of subgroups of the *rif* multigene family during *Plasmodium falciparum* gametocytogenesis. *PLoS One* **3**(11): e3779, 2008.

Ponnudurai T, Leeuwenberg AD, und Meuwissen JH: Chloroquine sensitivity of isolates of *Plasmodium falciparum* adapted to in vitro culture. *Trop Geogr Med* **33**(1): 50-54, 1981.

Pouvelle B, Matarazzo V, Jurzynski C, Nemeth J, Ramharter M, Rougon G, Gysin J: Neutral cell adhesion molecule, a new cytoadhesion receptor for *Plasmodium falciparum*infected erythrocytes capable of aggregation. *Infect Immun* **75**(7): 3516-3522, 2007.

Predehl S (Dissertation): Funktionsanalysen der *Pf*EMP1 Proteinfamilie von *Plasmodium falciparum* (Welch, 1897), 2010.

Preiser P, Kaviratne M, Khan S, Bannister L, und Jarra W: The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. *Microbes Infect* **2**(12): 1461-1477, 2000.

Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS, und Lanzer M: Trafficking of STEVOR to the Maurer's clefts in *Plasmodium falciparum*-infected erythrocytes. *Embo J* **24**(13): 2306-2317, 2005.

Puck TT, Cieciura SJ, und Robinson A: Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. *J Exp Med* **108**(6): 945-956, 1958.

Pye D, O'Brien CM, Franchina P, Monger C, und Anders RF: *Plasmodium falciparum* infection of splenectomized and intact Guyanan Saimiri monkeys. *J Parasitol* **80**(4): 558-562, 1994.

Quadt KA, Barford Lea, Andersen D, Bruun J, Gyan B, Hassenkam T, Ofori MF, Hviid L: The density of knobs on *Plasmodium falciparum*-infected erythrocytes depends on developmental age and varies among isolates. PLoS ONE **7**(9): e45658, 2012.

Rask TS, Hansen DA, Theander TG, Gorm PA, und Lavstsen T: *Plasmodium falciparum* erythrocyte membrane protein 1 diversity in seven genomes – divide and conquer. *PLoS Comput Biol* **6**(9): e1000933, 2010.

Reeder JC, Rogerson SJ, al-Yaman F, Anders RF, Coppel RL, Novakovic S, Alpers MP, Brown GV: Diversity of agglutinating phenotype, cytoadherence, and rosette-forming characteristics of *Plasmodium falciparum* isolates from Papua New Guinean children. *Am J Trop Med Hyg* **51**(1): 45-55, 1994.

Ribaut C, Berry B, Chevalley S, Reybier K, Morlais I, Parzy D, Nepveu F, Benoit-Vical F, und Valentin A: Concentration and purification by magentic separation of the erythrocytic stages of all human *Plasmodium* species. *Mal J* **7**: 45, 2008.

Roberts DD, Sherwood JA, Spitalnik SL, Panton LJ, Howard RJ, Dixit VM, Frazier WA, Miller LH, und Ginsburg V: Thrombospondin binds *falciparum* malaria parasitized erythrocytes and may mediate cytoadherence. *Nature* **318**(6041): 64-66, 1985. **Robinson BA, Welch TL, und Smith JD:** Widespread functional specialization of *Plasmodium falciparum* erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. *Mol Microbiol* **47**(5): 1265-1278, 2003.

Rogerson SJ, Chaiyaroj SC, Ng K, Reeder JC, und Brown GV: Chondroitin sulfate A is a cell surface receptor for *Plasmodium falciparum*-infected erythrocytes. *J Exp Med* **182**(1): 15-20, 1995.

Rogerson SJ, Tembenu R, Dobaño C, Plitt S, Taylor TE, Molyneux ME: Cytoadhrence characteristics of *Plasmodium falciparum*-infected erythrocytes from Malawian children with severe and uncomplicated malaria. *Am J Trop Med Hyg* **61**(3): 467-472, 1999.

Rowe JA, Moulds JM, Newbold CI, und Miller LH: *P. falciparum* resetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. *Nature* **388**(6639): 292-295, 1997.

Rowe JA, Claessens A, Corrigan RA, und Arman M: Adhesion of *Plasmodium falciparum*infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. *Expert Rev Mol Med* 11: e16, 2009.

Ruangjirachuporn W, Afzelius BA, Paulie S, Wahlgren M, Berzins K, und Perlmann P: Cytoadherence of knobby and knobless *Plasmodium falciparum*-infected erythrocytes. *Parasitology* **102**(Pt 3): 325-334, 1991.

Rug M, Prescott SW, Fernandez KM, Cooke BM, und Cowman AF: The role of KAHRP domains in knob formation and cytoadherence of *P falciparum*-infected human erythrocytes. *Blood* **108**(1): 370-378, 2006.

Sam-Yellowe TY, Florens L, Johnson JR, Wang T, Drazba JA, LeRoch KG, Zhou Y, Batalov S, Carucci DJ, Winzeler E, und Yates JR 3rd: A *Plasmodium* gene family encoding Maurer's cleft membrane proteins: structural properties nd expression profiling. *Genome Res* **14**(6): 1052-1059, 2004.

Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M: Antigenic variation in malaria: *in situ* switching, relaxed and mutually exclusive transcription of *var* genes during intra-erythrocytic development in *Plasmodium falciparum*. *EMBO J* **17**(18): 5418-5426, 1998.

Scherf A, Lopez-Rubio JJ, und Riviere L: Antigenic variation in *Plasmodium falciparum*. *Annu Rev Microbiol* **62**: 445-470, 2008.

Schmidt JA, Udeinya IJ, Leech JH, Hay RJ, Aikawa M, Barnwell J, Green I, Miller LH: *Plasmodium falciparum* malaria. An amelanotic melanoma cell line bears receptors for the knob ligand on infected erythrocytes. *J Clin Invest* **70**(2): 379-386, 1982.

Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, und Ragg T: The RIN: an RNA integrity number for assigning integrity values to RNA measurements. *BMC Mol Biol* **7**(3), 2006.

Serghides L, Smith TG, Patel SN, und Kain KC: CD36 and malaria: friends or foes? *Trends Parasitol* **19**(10): 461-469, 2003.

Sharp S, Lavstsen T, Fivelman QL, Saeed M, Mc Robert L, Templeton TJ, Jensen AT, Baker DA, Theander TG, und Sutherland CJ: Programmed transcription of the *var* gene family, but not of *stevor*, in *Plasmodium falciparum* gametocytes. *Eukaryot Cell* **5**(8): 1206-1214, 2006.

Sherman IW, Crandall IE, Guthrie N, Land KM: The sticky secrets of sequestration. *Parasitol Today* **11**(10): 378-384, 1995.

Sherman IS, Eda S, und Winograd E: Cytoadherence and sequestration in *Plasmodium falciparum*: defining the ties that bind. *Microbes Infect* **5**(10): 897-909, 2003.

Shirley MW, Biggs BA, Forsyth KP, Brown HJ, Thompson JK, Brown GV, und Kemp DJ: Chromosome 9 from independent clones and isolates of *Plasmodium falciparum* undergoes subtelomeric deletions with similar breakpoints *in vitro*. *Mol Biochem Parasitol* **40**(1): 137-145, 1990.

Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches
R, Newbold CI, und Miller LH: Switches in expression of *Plasmodium falciparum var* genes correlate with changes in antigenic and cytoadherence phenotypes of infected erythrocytes. *Cell* 82(1): 101-110, 1995.

Smith JD, Kyes S, Craig AG, Fagan T, Hudson-Taylor D, Miller LH, Baruch DI, und Newbold CI: Analysis of adhesive domains from the A4VAR *Plasmodium falciparum* erythrocyte membrane protein-1 identifies a CD36 binding domain. *Mol Biochem Parasitol* **97**(1-2): 133-148, 1998.

Smith JD, Subramanian G, Gamain B, Baruch DI, und Miller LH: Classification of adhesive domains in the *Plasmodium falciparum* erythrocyte membrane protein 1 family. *Mol Biochem Parasitol* **110**(2): 293-310, 2000a.

Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, Pinches R, Baruch DI, Newbold CI, und Miller LH: Identification of a *Plasmodium falciparum* intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. *Proc Natl Acad Sci USA* 97(4): 1766-17771, 2000b.

Smith JD: The role of *Pf*EMP1 adhesion domain classification in *Plasmodium falciparum* pathogenesis research. *Mol Biochem Parasitol* **195**(2): 82-87, 2014.

Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, und Gardiner DL: A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in *Plasmodium falciparum* codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. *Mol Biol Cell* **17**(8): 3613-3624, 2006.

Sturm A, Amino R, van der Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, und Heussler VT: Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. *Science* **313**(5791): 1287-1290, 2006.

Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, und Wellems TE: The large diverse gene family *var* encodes proteins involved in cytoadherence and antigenic variation of *Plasmodium falciparum*-infected erythrocytes. *Cell* **82**(1): 89-100, 1995.

Tjio JH, und Puck TT: Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. *J Exp Med* **108**(2): 259-268, 1958.

Trager W, und Jensen JB: Human malaria parasites in continuous culture. *Science* **193**(4254): 673-675, 1976.

Treutiger CJ, Heddini A, Fernandez V, Muller WA, Wahlgren M: PECAM-1/CD31, an endothelial receptor for binding *Plasmodium falciparum*-infected erythrocytes. *Nat Med* **3**(12): 1405-1408, 1997.

Tsarukyanova I, Drazba JA, Fujioka H, Yadav SP, und Sam-Yellowe TY: Proteins of the *Plasmodium falciparum* two transmembrane Maurer's cleft protein family, *Pf*MC-2TM, and

the 130 kDa Maurer's cleft protein define different domains of the infected erythrocyte intramembranous network. *Parasitol Res* **104**(4): 875-891, 2009.

Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Puritayakamee S, Nagachinta B, White NJ, Berendt AR: An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. *Am J Pathol* **145**(5): 1057-1069, 1994.

Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins ML, und Theander TG: Severe malaria is associated with parasite binding to endothelial protein C receptor. *Nature* **498**(7455): 502-505, 2013.

Udeinya IJ, Schmidt JA, Aikawa M, Miller LH, und Green I: Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. *Science* **213**(4507): 555-557, 1981.

Udeinya IJ, Graves PM, Carter R, Aikawa M, und Miller LH: *Plasmodium falciparum*: effect of tome in continuous culture on binding to human endothelial cells and amelanotic melanoma cells. *Exp Parasitol* **56**(2): 207-214, 1983.

Udomsangpetch R, Wåhlin B, Carlson J, Berzins K, Torii M, Aikawa M, Perlmann P, und Wahlgren M: *Plasmodium falciparum*-infected erythrocytes form spontaneous erythrocyte rosettes. *J Exp Med* **169**(5): 1835-1840, 1989a.

Udomsangpetch R, Aikawa M, Berzins K, Wahlgren M, und Perlmann P: Cytoadherence of knobless *Plasmodium falciparum*-infected erythrocytes and its inhibition by a human monoclonal antibody. *Nature* **338**(6218): 763-765, 1989b.

Udomsangpetch R, Taylor BJ, Looareesuwan S, White NJ, Elliot JF, und Ho M: Receptor specificity of clinical *Palsmodium falciparum* isolates: non-adherence to cell bound E-selcetin and VCAM-1. *Blood* **88**(7): 2754-2560, 1996.

Udomsangpetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, und Ho M: Promsicuity of clinical *Plasmodium falciparum* isolates for multiple adhesion molecules under flow conditions. *J Immunol* **158**(9): 4358-4364,1997. Udomsangpetch R, Pipitaporn B, Silamut K, Pinches R, Kyes S, Looareesuwan S, Newbold C, und White NH: Febrile temperatures induce cytoadherence of ring-stage *Plasmodium falciparum*-infected erythrocytes. *PNAS* **99**(18): 11825-11829, 2002.

Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, und Roberts DJ: *Plasmodium falciparum*-infected erythrocytes modulate the maturation of dendritic cells. *Nature* **400**(6739): 73-77, 1999.

Viebig NK, Levin E, Dechavanne S, Rogerson SJ, Gysin J, Smith JD, Scherf A, Gamain
B: Disruption of *var2csa* gene impairs placental malaria associated adhesion phenotype. *PLoS* ONE 2(9): e910, 2007.

Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, und Cowman AF: A *var* gene promotor controls allelic exclusion of virulence genes in *Plasmodium falciparum* malaria. *Nature* **439**(7079): 1004-1008, 2006.

Wendy ET, Trintchina E, Forero M, Vogel V, und Sokurenko EV: Bacterial Adhesion to target cells enhanced by shear force. *Cell* **109**(7): 913-923, 2002.

WHO Report 2013:

(http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/)

Woltmann G, McNulty CA, Dewson G, Symon FA, und Wardlaw AJ: Interleukin-13 induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. *Blood* **95**(10): 3146–3152, 2000.

Yipp BG, Anand S, Schollaardt T, Patel KD, Looareesuwan S, Ho M: Synergism of multiple adhesion molecules in mediating cytoadherence of *Plasmodium falciparum*-infected erythrocytes to microvascular endothelial cells under flow. *Blood* **96**(6): 2292-2298, 2000.

IV ABBILDUNGSVERZEICHNIS

Abbildung 1: Malaria-Risikogebiete.

Abbildung 2: Lebenszyklus des Malariaerregers P. falciparum.

Abbildung 3: Asexuelle Entwicklungsstadien von P. falciparum in Erythrozyten.

Abbildung 4: Adhäsion von *P.falciparum* infizierten Erythrozyten an verschiedene Wirtszellen.

Abbildung 5: Topologie des Endothelrezeptors CD36 (vorhergesagt).

Abbildung 6: Topologie des Zelladhäsionsmoleküls P-Selektin.

Abbildung 7: Adhäsion von infizierten Erythrozyten an CD36 (Modell).

Abbildung 8: Aufbau und Klassifizierung von PfEMP1 Proteinen.

Abbildung 9: Versuchsablauf eines statischen Bindungsexperimentes.

Abbildung 10: Versuchsablauf eines Pannings.

Abbildung 11: Trennung von Blutzellen und CHO-Zellen in einem kontinuierlichen Dichte-Gradienten.

Abbildung 12: Erstellen einer RNA-Seq Bibliothek mithilfe des ScriptSeqTM v2 RNA-Seq Library Preparation Kit.

Abbildung 13: Funktionsprinzip des Rasterkraftmikroskops

Abbildung 14: Rasterkraftmikroskop mit (inversem) Mikroskop.

Abbildung 15: Messspitze und Cantilever.

Abbildung 16:. Übersicht über die unterschiedlich kultivierten und behandelten *P. falciparum*-Isolate der Laborstämme 3D7 und FCR3.

Abbildung 17: Transmissionselektronenmikroskopie von *P. falciparum* 3D7 infizierten Erythrozyten im Trophozoitenstadium.

Abbildung 18: Transmissionselektronenmikroskopie von *P. falciparum* FCR3 infizierten Erythrozyten im Trophozoitenstadium.

Abbildung 19: Quantifizierung Knob-ausbildender Erythrozyten.

Abbildung 20: Rasterkraftmikroskopie von P. falciparum infizierten Erythrozyten.

Abbildung 21: Oberflächenmessung der verschiedenen *Knob*-positiven Isolate von 3D7 und FCR3 mittels Rasterkraftmikroskopie.

Abbildung 22: Bindungsexperimente des *P. falciparum*-Laborstammes FCR3 unter verschiedenen Bindungsbedingungen.

Abbildung 23: Bindungsexperimente des *P. falciparum*-Laborstammes FCR3 unter verschiedenen Bindungsbedingungen und gemischten Zellpopulationen.

Abbildung 24: Statische Bindungsexperimente des P. falciparum-Laborstammes 3D7.

Abbildung 25: Statische Bindungsexperimente des P. falciparum-Laborstammes FCR3.

Abbildung 26: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes 3D7, kultiviert mit AlbuMAX®.

Abbildung 27: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes 3D7, kultiviert mit humanem Serum.

Abbildung 28: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes FCR3, kultiviert mit AlbuMAX®.

Abbildung 29: Immunfluoreszenz-Analysen variabler Oberflächenantigene des Laborstammes FCR3, kultiviert mit humanem Serum.

Abbildung 30: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (*Fold Change* \geq 2,5; padj \leq 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum oder AlbuMAX®.

Abbildung 31: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum oder AlbuMAX® im Ringstadium.

Abbildung 32: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (*Fold Change* \geq 2,5; padj \leq 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten (iRBC), kultiviert mit AlbuMAX®.

Abbildung 33: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit AlbuMAX®.

Abbildung 34: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (*Fold Change* \geq 2,5; padj \leq 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten (iRBC), kultiviert mit humanem Serum.

Abbildung 35: Expressionsprofil der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum.

Abbildung 36: Gene mit einer signifikant differentiellen Expression (*Fold Change* \ge 2,5; padj \le 0,05) aller miteinander verglichenen *P. falciparum* Isolate.

Abbildung 37 Übersicht über die Panning-Experimente.

Abbildung 38: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 1).

Abbildung 39: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 2_Versuch 1).

Abbildung 40: Kontrolle der Anreicherung nach dem jeweiligen *Panning* mithilfe eines inversen Mikroskops (Experiment 2_Versuch 2).

Abbildung 41: Statische Bindungsversuche zur Überprüfung der Anreicherung hinsichtlich der P-Selektin-Bindung.

Abbildung 42: Expressionsprofil der Gene mit einer signifikant differentiellen Expression (*Fold Change* \geq 2,5; padj \leq 0,05) und einem Expressionslevel \geq 10 von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen oder nach *Panning* I und II.

Abbildung 43: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen und nach *Panning* I+II.

Abbildung 44: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel \geq 500 (*Fold Change* \geq 2,5; padj \leq 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen oder nach *Panning* V.

Abbildung 45: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen und nach *Panning* V.

Abbildung 46: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel \geq 500 (*Fold Change* \geq 2,5; padj \leq 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten nach *Panning* V.

Abbildung 47: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach *Panning* V.

Abbildung 48: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel > 1.000 (*Fold Change* \ge 2,5; padj \le 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach Standardbedingungen oder nach *Panning* VI.

Abbildung 49: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum unter Standardbedingungen und nach *Panning* VI.

Abbildung 50: Expressionsprofil der Gene mit einer signifikant differentiellen Expression und einem Expressionslevel > 15 (*Fold Change* \ge 2,5; padj \le 0,05) von *P. falciparum* FCR3 infizierten Erythrozyten nach *Panning* VI.

Abbildung 51: Expressionsprofile der *var*-Gene von *P. falciparum* FCR3 infizierten Erythrozyten, kultiviert mit humanem Serum nach *Panning* VI.

Abbildung 52: Gene mit einer signifikant differentiellen Expression und einem *Fold Change* $\geq 2,5$ aller miteinander verglichenen *P. falciparum*-Isolate (*Panning*).

Abbildung 53: Bindung der verschiedenen Isolate an die getesteten Rezeptoren (Übersicht).

Abbildung 54: Aufbau des *Pf*EMP1, für das das *var*-Gen *it4_var2* kodiert.

V TABELLENVERZEICHNIS

Tabelle 1: Verwendete primäre Antikörper mit der jeweils eingesetzten Verdünnung in Immunfluoreszenz-Analysen (IFA) bzw. *Fluorescence-activated cell sorting* (FACS).

Tabelle 2: Verwendete sekundäre Antikörper mit der jeweils eingesetzten Verdünnung in Immunfluoreszenz-Analysen (IFA) bzw. *Fluorescence-activated cell sorting* (FACS).

Tabelle 3: Übersicht über die verwendeten CHO-Zelllinien.

Tabelle 4: Eigenschaften der Cantilever der Serie CSG11 der Firma NT-MDT.

Tabelle 5: Übersicht über die dem jeweiligen Rezeptor entsprechenden optimalen Bindungsbedingungen unter Berücksichtigung des Laborstammes (3D7 respektive FCR3) und der Kulturbedingungen (AlbuMAX® oder humanes Serum) sowie der Formation von *Knobs* auf der Erythrozytenoberfläche.

Tabelle 6: Qualität der isolierten RNA aus den verschiedenen P. falciparum FCR3 Isolaten.

Tabelle 7: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 25.000) von *P. falciparum* FCR3 (Vergleich AlbuMAX® mit humanem Serum).

Tabelle 8: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 30.000) von *P. falciparum* FCR3 (Vergleich *Knob*-negativer (-K) mit *Knob*-positiven (+K) Isolaten bei Kultivierung mit AlbuMAX®.

Tabelle 9: Gene mit signifikant differentieller Expression (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) von *P. falciparum* FCR3 (Vergleich *Knob*-negativer (-K) mit *Knob*-positiven (+K) Isolaten bei Kultivierung mit humanem Serum®.

Tabelle 10: Qualität der isolierten RNA aus den verschiedenen P. falciparum FCR3-Isolaten.

Tabelle 11: Signifikant differentiell exprimierte Gene (padj ≤ 0.05 ; Fold Change ≥ 2.5) mitdeutlicher Expression (> 5.000) von P. falciparum-FCR3_Experiment 1 (Vergleich vonAusgangskultur (AK) mit Panning I und II (PI+II)).

Tabelle 12: Signifikant differentiell exprimierte Gene (padj ≤ 0.05 , *Fold Change* ≥ 2.5) mit deutlicher Expression (> 9.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von Ausgangskultur (AK) mit *Panning* V (PV).

Tabelle 13: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 12.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von ungebundenen infizierten Erythrozyten (UEV) mit gebundenen infizierten Erythrozyten nach *Panning* V (PV).

Tabelle 14: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; Fold Change $\geq 2,5$) mitdeutlicher Expression (> 1.000) von P. falciparum FCR3_Experiment 2 (Vergleich vonAusgangskultur (AK) mit Panning VI (PVI).

Tabelle 15: Signifikant differentiell exprimierte Gene (padj $\leq 0,05$; *Fold Change* $\geq 2,5$) mit deutlicher Expression (> 30.000) von *P. falciparum* FCR3_Experiment 2 (Vergleich von ungebundenen infizierten Erythrozyten (UEVI) mit gebundenen infizierten Erythrozyten nach *Panning* VI (PVI).

Tabelle 16: Übersicht über die gemessenen Knob-Dimensionen.

VI ANHANG

Tabelle A1: Transmissionselektronenmikroskopie (3D7).

	Infizierte	Infizierte	Infizierte	Anzahl der
	Erythrozyten	Erythrozyten	Erythrozyten	Versuche
	ohne Knobs	mit Knobs	(gesamt)	(n)
Stamm	64	6	70	2
AlbuMAX®II				
Anreicherung	12	54	66	2
AlbuMAX®II				
Stamm	35	0	35	1
Humanes Serum				
Anreicherung	0	24	24	1
Humanes Serum				

Tabelle A2: Transmissionselektronenmikroskopie (FCR3).

	Infizierte	Infizierte	Infizierte	Anzahl der
	Erythrozyten	Erythrozyten	Erythrozyten	Versuche
	ohne Knobs	mit Knobs	(gesamt)	(n)
Stamm	43	0	43	2
AlbuMAX®II				
Anreicherung	0	67	67	2
AlbuMAX®II				
Stamm	44	0	44	1
Humanes Serum				
Anreicherung	0	27	27	1
Humanes Serum				

Anzahl Knobs	Breite (nm)	Höhe (nm)	Oberfläche $A_{KK} = \pi * (a^2+h^2)$ in nm ²
1	135,56	4,4218	14494,30544
2	58,926	1,7635	2736,887351
3	49,105	1,4119	1900,094041
4	51,069	1,0543	2051,844027
5	102,18	4,7823	8271,997219
6	56,865	3,2803	2573,490362
7	57,872	1,8642	2641,348491
8	41,178	2,5582	1352,302668
9	112,07	4,73375	9934,751484
10	92,356	2,3123	6715,953566
11	106,1205	3,66955	8887,112371
12	72,7	3,0822	4180,902054
13	121,8850	10,6837	12026,42431
14	76,4710	5,8346	4699,810098
15	100,2100	5,1945	7971,772054
16	68,6500	3,9409	3750,233246
17	78,6080	6,7641	4996,883647
18	128,6005	7,1734	13150,64344
19	90,4900	9,4686	6712,843376
20	70,7090	2,1181	3940,898704
21	74,6370	2,2826	4391,571753
22	70,7720	2,8258	3958,890994
23	60,9620	2,1319	2933,105125
24	82,5170	4,7174	5417.73209
25	113,0600	4,0028	10089,73785
26	94,3020	2,9544	7011,862896
27	100,3500	2,8194	7934,028288
28	108,1200	3,5185	9220,145429
29	76,6700	2,7662	4640,836341
30	70,7190	2,8404	3953,261168
31	117,8700	2,2592	10927,83593
32	137,5400	14,4760	15515,90978
33	106,1500	6,8354	8996,510767
34	78,5950	5,0197	4930,701064
35	163,8000	23,6890	22835,54183
36	86,4450	4,6046	5935,68384
37	76,6745	4,9664	4694,827058
38	57,9965	3,4144	2678,385647
39	42,2710	3,7622	1447,845414
40	82,5860	3,4617	5394,413716
41	84,4385	3,6638	5641,950121
42	129,7700	4,6877	13295,33872
43	66,8330	3,1798	3539,863665
44	88,4230	3,0201	6169,38971
45	116,0100	4,4616	10632,67604
46	80,3920	3,9729	5125,515798
47	78,5870	5,9208	4960,684803
48	57,0580	3,1986	2589,096094
49	45,2530	2,9367	1635,458815
50	47,1540	2,5107	1766,135982
51	43,2300	3,0538	1497,075467
52	39,3000	2,0829	1226,669322

4,5114

2,7968

2,0951

2,0518

53

54

55

56

78,5860

80,5660

59,0190

55,0840

 Tabelle A3: Morphologie der Knobs des P. falciparum-Isolates 3D7 (+K), kultiviert mit humanem Serum (Rasterkraftmikroskopie). (a = Breite/2; h = Höhe)

4914,370074

5122,499332 2749,521998

2396,317803

57	74,7150	5,5722	4481,890297
58	68,7640	3,6257	3755,043988
59	55,0560	2,8859	2406,834459
60	90,3890	4,6800	6485,645969
61	72,6920	2,6998	4173,042352
62	98,0390	3,2737	7582,637539
63	86,4500	3,7467	5913,854604
64	66,8020	5,5447	3601,429138
65	64,8980	2,5319	3328,040267
66	70,7620	3,4114	3969,254069
67	79,5985	7,4181	5149,097088
68	70,7480	4,3866	3991,588671
69	165,0500	6,2206	21516,99267
70	90,3840	6,8047	6561,595781
71	74,5100	5,7962	4465,871219
72	76,5320	10,7181	4961,091352
73	78,5950	2,7199	4874,782184
74	62,8760	4,6022	3171,526027

Tabelle A4: Morphologie der Knobs des P. falciparum-Isolates 3D7 (+K), kultiviert mit AlbuMAX® (Rasterkraftmikroskopie). (a = Breite/2; h = Höhe)

Anzahl Knobs	Breite (nm)	Höhe (nm)	Oberfläche $A_{KK} = \pi * (a^2+h^2)$ in nm ²
1	95,2025	18,4360	8186,252487
2	88,395	10,4293	6478,55877
3	75,599	11,8855	4932,47459
4	118,85	14,4485	11139,39365
5	94,3495	11,07895	7377,084925
6	77,589	8,63045	4755,251866
7	95,332	7,83125	7330,517002
8	94,276	6,7163	7122,303856
9	120,695	43,2265	17311,2784
10	133,675	33,0765	17471,35889
11	96,237	14,621	7945,602047
12	136,43	37,174	14735,51538
13	86,302	15,59	6613,231296
14	41,2505	5,71865	1439,175832
15	6,2844	23,21	1723,407109
16	100,16	18,596	8965,532457
17	51,074	9,2554	2317,869567
18	95,1505	26,6625	9344,01804
19	80,553	18,187	6135,415537
20	76,471	21,208	6005,885482
21	54,994	13,916	2983,696411
22	63,7935	13,0172	3728,599732
23	47,09	6,112	1858,954471
24	45,162	6,1261	1719,804147
25	58,907	7,4476	2899,612761
26	47,1585	5,2897	1834,570593
27	62,892	7,0952	3264,7204
28	64,851	7,8063	3494,554892
29	68,781	8,0626	3919,802881
30	141,33	8,0236	15889,92551
31	70,7715	10,44545	4276,520422
32	72,774	11,262	4557,968433
33	31,431	3,1019	806,1286658
34	80,555	16,321	5933,375397
35	56,991	4,9351	2627,467033
36	64,851	9,0615	3561,070145

37	151,305	19,8025	19212,22063
38	94,6430	5,9021	7144,481668
39	84,5590	5,9872	5728,388477
40	112,0900	17,9450	10879,53972
41	147,2852	17,0945	17955,62976
42	102,1900	6,9156	8352,001191
43	130,7500	8,0289	13629,34062
44	68,8630	4,6927	3793,629032

Tabelle A5: Morphologie der Knobs des P. falciparum-Isolates FCR3 (+K), kultiviert mit humanem Serum (Rasterkraftmikroskopie). (a = Breite/2; h = Höhe)

Anzahl Knobs	Breite (nm)	Höhe (nm)	Oberfläche $A_{KK} = \pi * (a^2+h^2)$ in nm ²
1	66,7570	6,6181	3637,723992
2	65,8780	5,6096	3507,416457
3	79,5520	13,8735	5575,083449
4	77,5940	7,773	4918,561458
5	70,6505	7,84725	4113,766732
6	86,5230	8,42425	6102,623433
7	58,9080	6,20615	2846,45389
8	57,9360	4,05825	2687,991967
9	61,9315	3,6598	3054,481973
10	100,3700	11,345	8316,559946
11	49,1070	6,5672	2029,476639
12	74,6770	7,492	4556,231865
13	49,1300	5,9828	2008,210076
14	127,7900	19,505	14020,97844
15	84,5080	6,842	5756,068409
16	74,6810	5,4739	4474,496657
17	123,7930	3,8079	12081,55003
18	133,6400	21,7440	15511,73939
19	41,0000	2,3816	1338,073485
20	102,1850	5,8528	8308,566397
21	58,0005	6,0012	2755,677551
22	49,1480	6,6249	2035,031911
23	43,2165	6,0637	1582,372862
24	80,6450	3,7609	5152,363927
25	94,4140	5,4110	7093,024339
26	101,9600	9,2672	8434,678005
27	82,3550	7,6146	5508,998355
28	74,5120	3,8188	4406,37514
29	78,5850	6,4747	4982,007676
30	60,8430	3,5844	2947,805351
31	96,1720	5,4847	7358,694881
32	62,8760	1,3842	3111,005648
33	47,1520	1,1331	1750,203061
34	45,1880	0,4728	1604,450248
35	45,2010	0,8008	1606,685507
36	60,8560	0,6519	2910,020071
37	41,2250	0,5825	1335,850632
38	33,4050	0,4354	861,3456299
39	64,8510	0,7282	3304,777423
40	45,1010	0,4286	1598,155666

41	39,3040	1,3330	1218,868813
42	43,2250	1,2692	1472,499112
43	58,9610	0,6401	2731,644998

 Tabelle A6: Morphologie der Knobs des P. falciparum-Isolates FCR3 (+K), kultiviert mit AlbuMAX®

 (Rasterkraftmikroskopie). (a = Breite/2; h = Höhe)

Anzahl Knobs	Breite (nm)	Höhe (nm)	Oberfläche $A_{KK} = \pi * (a^2+h^2)$ in nm ²
1	152,9400	25,4310	20402,74884
2	129,6700	17,4720	14164,96378
3	112,1600	12,9590	10407,78884
4	86,5150	6,2342	6000,682476
5	80,6160	2,8587	5129,928728
6	66,8220	2,9646	3534,55492
7	157,2900	8,1116	19637,57442
8	116,9250	24,8075	12670,91013
9	98,2830	16,7775	8470,900985
10	80,3920	5,5895	5174,080347
11	106,1800	9,8851	9161,711366
12	89,1290	5,1074	6321,136359
13	75,4210	3,6014	4508,348482
14	86,1790	4,8075	5905,619486
15	103,8400	5,6311	8568,366254
16	121,683	10,6395	11984,82123
17	88,508	5,7225	6255,424694
18	143,64	6,5232	16338,36951
19	145,325	7,9963	16787,97911
20	74,68	3,91715	4428,450781
21	122,6035	3,69385	11848,67089
22	147,46	12,031	17532,78206
23	163,15	7,6947	21091,67614
24	79,4865	1,8308	4972,757108
25	151,32	3,7735	18028,57891
26	136,701	4,7922	14749,01106
27	110,8485	7,815	9842,363838
28	91,2655	7,5613	6721,503865
29	107,035	11,4306	9408,383316
30	94,2880	3,2592	7015,73912
31	155,2100	6,0284	19034,52546
32	106,1400	5,8654	8956,139727
33	76,5130	3,7489	4645,061424
34	68,8760	6,2500	3848,571462
35	82,5600	3,6865	5396,08965
36	64,8730	5,2082	3390,569776
37	78,6680	4,1342	4914,252537
38	139,4995	9,1567	15547,34237
39	64,7060	2,8936	3314,661516
40	176,9300	12,5060	25085,96428
41	129,8200	7,4754	13412,05501
42	136,6225	4,8694	14/34,50287
43	160,9500	12,8290	20862,71635
44	72,6350	4,0976	4196,385934

45	113,7600	8,6668	10400,07856
46	109,0300	8,3903	9557,611909
47	84,5790	7,1644	5779,683627
48	212,2100	10,59320	35721,43815
49	100,0000	5,06670	7934,630869
50	117,7550	4,55490	10955,69843
51	134,4300	4,29575	14251,23721

	CD36	CD36	CD36	P-Selektin	P-Selektin	P-Selektin	CD9	CD9	CD9	CD151	CD151	CD151	DE
	Ι	Π	III	Ι	П	Ш	Ι	П	III	Ι	П	III	DE
	94,372	131,684	70,111	6,9280	5,246	7,534	1,312	2,034	3,534	0	0,862	0,934	
	161,469	144,198	89,162	12,5050	5,236	9,516	0	1,484	0,1334	0	0	0	Ι
0	142,912	140,089	49,236	10,2610	3,108	nv	3,927	8,512	0,334	1,512	2,484	2,534	
CH	181,030	173,183	76,954	20,5590	7,885	7,067	0,733	3,533	0	0	0,719	4,867	
100	167,794	164,352	41,867	20,5490	14,295	18,067	0	1,251	0	10,197	5,704	0	Π
3C/	195,128	179,990	73,475	8,7220	16,568	11,507	0	2,933	0	3,591	0,809	0	
RI	161,608	132,587	39,521	2,2003	2,987	1,800	1,736	3,987	0	nv	nv	nv	
	111,608	110,106	55,278	10,8650	5,187	4,364	5,400	15,187	3,600	nv	nv	nv	III
	123,183	84,187	33,600	4,541	2,787	2,000	7,950	2,467	3,600	nv	nv	nv]

Tabelle A7: Bindungsexperiment (BE) mit unterschiedlichen Bindungsbedingungen (FCR3 Stamm, humanes Serum).

Tabelle A8: Bindungsexperiment (BE) mit unterschiedlichen Bindungsbedingungen (FCR3 Stamm, AlbuMAX®).

	CD36	CD36	CD36	P-Selektin	P-Selektin	P-Selektin	CD9	CD9	CD9	CD151	CD151	CD151	DE
	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III	BE
	41,010	34,574	6,9550	1,552	1,652	0,955	0,755	2,741	0	0,010	2,800	0	
	42,076	36,093	15,2070	0,983	0,200	0	0	0,556	0	0,798	1,000	0	Ι
OI	85,241	40,816	9,272	0,6040	0	0	0,404	0	0	0	0	0	
)CF	113,854	94,377	75,2870	5,394	0,693	5,400	0,406	0,334	0	0	1,534	3,2	
100	90,906	88,534	40,200	11,997	3,474	16,400	1,406	0,334	0	1,002	0,734	0	Π
BC/	93,897	82,574	71,8080	10,4260	5,627	9,840	0	2,456	0	0,206	0,534	0	
iRl	16,966	17,533	3,600	0,933	0	1,000	0,333	0,297	0,400	nv	nv	nv	
	13,535	15,533	2,200	0,333	1,733	0,200	0,333	0,533	0,400	nv	nv	nv	III
	20,800	19,733	4,400	0,333	0,133	0,600	0,733	0,533	1,163	nv	nv	nv	

	CD36+P-Selektin (1:1) I	CD36+P-Selektin (1:1) II	CD36+P-Selektin (1:1) III	CD36+P-Selektin (1:3) I	CD36+P-Selektin (1:3) II	CD36+P-Selektin (1:3) III	BE
	147,613	113,379	35,526	nv	nv	nv	
	149,775	151,523	69,435	nv	nv	nv	Ι
01	111,941	173,409	92,801	nv	nv	nv	
CE	156,717	189,099	22,771	165,028	153,933	188,746	
10(242,846	193,431	79,106	166,669	146,871	103,384	II
BC/	210,594	195,432	111,167	153,477	137,863	143,995	
iRI	198,604	43,387	66,200	123,200	82,962	76,200	
	155,985	92,175	84,600	127,411	78,587	30,000	III
	11,118	150,187	123,800	111,710	70,552	31,000	

 Tabelle A9: Bindungsexperiment (BE) mit unterschiedlichen Bindungsbedingungen_CD36 +P-Selektin (FCR3 Stamm, humanes Serum). Die jeweiligen Bindungen von CD36 und P-Selektin sind in Tabelle A7 aufgelistet.

 Tabelle A10: Bindungsexperiment (BE) mit unterschiedlichen Bindungsbedingungen_CD36 +P-Selektin (FCR3 Stamm AlbuMAX®). Die jeweiligen Bindungen von

 CD36 und P-Selektin sind in

Tabelle A8 aufgelistet.

	CD36+P-Selektin (1:1) I	CD36+P-Selektin (1:1) II	CD36+P-Selektin (1:1) III	CD36+P-Selektin (1:3) I	CD36+P-Selektin (1:3) II	CD36+P-Selektin (1:3) III	BE
	21,789	38,246	10,493	nv	nv	nv	
OI	15,296	31,785	12,449	nv	nv	nv	Ι
CE	27,929	27,870	2,355	nv	nv	nv	
10(140,906	115,523	21,104	49,505	96,627	187,079	
BC/	117,710	84,365	77,439	67,063	85,062	101,717	II
iRl	49,406	nv	109,500	51,940	78,334	142,328	
	19,133	5,333	1,000	8,848	5,733	3,600	III

26,933	16,333	0,600	12,133	14,133	4,600	
15,933	16,333	6,400	13,533	16,333	3,400	

Tabelle A11: Statische Bindungsexperimente (BE) mit unterschiedlichen Kultivierungsbedingungen (FCR3, kultiviert mit humanem Serum). iRBC: infizierte Erythrozyten. - K: Stamm (ohne *Knobs*) + K: angereichert mit Gelafundin® (mit *Knobs*)

	CD36 - K	CD36 + K	P- Selektin - K	P- Selektin + K	E- Selektin - K	E- Selektin + K	ICAM-1 - K	ICAM-1 + K	CD9 - K	CD9 + K	CD151 - K	CD151 + K	MDR1 - K	MDR1 + K	BE
	484,400	39,455	7,000	0,471	nv	nv	3,675	6,471	2,800	0,471	2,400	0,050	0	0	
	386,800	37,471	7,200	1,271	nv	nv	3,600	7,871	4,200	1,471	0,20	0	0	0	Ι
	nv	41,071	8,200	4,671	nv	nv	6,616	4,671	2,800	2,071	11,021	0,071	4,600	0	
	486,822	186,505	0	0	nv	nv	1,067	11,329	0,667	0	0	0,329	5,467	1,529	
	362,867	194,129	1,467	0	nv	nv	0,467	16,898	1,667	0,839	1,067	0	0,867	0,329	II
	544,867	151,625	4,867	0	nv	nv	0,267	13329	5,067	3,039	0	0	0	0	
0	279,067	169,533	1,537	0	nv	nv	2,667	19,533	3,267	2,533	7,867	0	0,829	0	
ΕH	216,067	136,379	4,181	0	nv	nv	2,267	14,333	3,789	0,333	0	0	nv	0	III
Š	206,067	155,338	4,380	0	nv	nv	1,467	5,933	8,667	1,533	4,667	0	1,067	0	
Z	159,933	98,733	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
ĕ	134,933	67,463	nv	nv	0,927	0	nv	nv	nv	nv	nv	nv	nv	nv	
iR	131,541	128,861	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	280,667	91,841	nv	nv	5,525	1,333	nv	nv	nv	nv	nv	nv	nv	nv	
	365,161	165,533	nv	nv	4,049	2,200	nv	nv	nv	nv	nv	nv	nv	nv	
	160,667	123,533	nv	nv	0	1,133	nv	nv	nv	nv	nv	nv	nv	nv	
	100,8	82,133	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	79,6	69,541	nv	nv	0,2	0	nv	nv	nv	nv	nv	nv	nv	nv	
	59,8	107,133	nv	nv	0,2	0	nv	nv	nv	nv	nv	nv	nv	nv	

 Tabelle A12: Statische Bindungsexperimente (BE) mit unterschiedlichen Kultivierungsbedingungen (FCR3, kultiviert mit AlbuMAX®). iRBC: infizierte Erythrozyten.

 - K: Stamm (ohne Knobs) + K: angereichert mit Gelafundin® (mit Knobs).

	CD36 - K	CD36 + K	P- Selektin - K	P- Selektin + K	E- Selektin - K	E- Selektin + K	ICAM-1 - K	ICAM-1 + K	CD9 - K	CD9 + K	CD151 - K	CD151 + K	MDR1 - K	MDR1 + K	BE
	131,400	186,392	2,600	6,800	nv	nv	0	23,400	0	7,600	1,600	3,170	0,200	0	
	111,800	140,400	3,338	6,600	nv	nv	0	27,200	0,200	3,400	3,400	0,4	0,200	1,4	Ι
	185,471	231,000	2,200	6,200	nv	nv	0	18,600	0	9,600	2,000	0	0	1,4	
	240,933	152,400	0,733	0	nv	nv	0	13,071	0	5,200	0	0	0	0,8	
	193,133	102,482	0	1,200	nv	nv	1,133	14,800	0	1,800	0	0	0,533	3,4	Π
	200,933	155,800	2,733	0	nv	nv	0	13,855	0	1,800	0	0	0,133	1,4	
	77,267	81,867	0,267	0,667	nv	nv	0	7,491	0,467	2,067	0	0	nv	0	
ЭНС	88,467	70,067	nv	1,467	nv	nv	0	6,467	0	1,804	0	0	0	0	III
00C	83,867	113,867	1,467	1,267	nv	nv	0,067	11,067	1,467	4,267	0	0	0	0	
C/1	13,614	2,867	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
IRB	13,014	10,267	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
ļ	8,014	10,067	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	13,0	4,877	nv	nv	0,4	1,333	nv	nv	nv	nv	nv	nv	nv	nv	
	7,647	7,6	nv	nv	0	2,200	nv	nv	nv	nv	nv	nv	nv	nv	
	9,831	14,6	nv	nv	0,4	1,133	nv	nv	nv	nv	nv	nv	nv	nv	
	1,2	3,8	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	2,4	4,8	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	1,6	6,2	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	

Tabelle A13: Statische Bindungsexperimente (BE) mit unterschiedlichen Kultivierungsbedingungen (3D7, kultiviert mit humanem Serum).iRBC: infizierte Erythrozyten.- K: Stamm (ohne Knobs) + K: angereichert mit Gelafundin® (mit Knobs).

	CD36 - K	CD36 + K	P- Selektin - K	P- Selektin + K	E- Selektin - K	E- Selektin + K	ICAM-1 - K	ICAM-1 + K	CD9 - K	CD9 + K	CD151 - K	CD151 + K	MDR1 - K	MDR1 + K	BE
	394,000	144,800	nv	0	nv	nv	8,800	21,600	3,800	9,000	3,000	0	0	2,000	
	262,800	143,600	0	0	nv	nv	0	36,267	0	1,400	0	0	0	0	I
	416,400	136,400	0,600	0	nv	nv	nv	nv	11,800	14,800	0	0	0	2,400	
	280,267	209,857	6,267	0	nv	nv	9,667	33,935	18,467	19,135	0	5,135		0	
	327,267	273,535	2,067	0	nv	nv	4,267	50,935	0	7,135	nv	5,935	3,867	1,135	II
	139,267	261,135	0	2,135	nv	nv	2,467	30,135	8,867	13,335	nv	6,735	5,667	15,621	
	314,246	110,667	5,577	0	nv	nv	0	7,929	0	2,467	0	1,667	3,469	2,867	
ΉC	440,446	98,667	20,446	0	nv	nv	0,846	31,067	1,046	8,267	9,646	0	0	0	III
))C	306,846	99,267	24,846	0	nv	nv	2,246	19,467	0,577	10,467	0	0,867	0,846	2,114	
C/10	413,733	114,310	nv	nv	3,387	0,967	nv	nv	nv	nv	nv	nv	nv	nv	
SBC	259,733	nv	nv	nv	1,533	4,067	nv	nv	nv	nv	nv	nv	nv	nv	
ii	240,933	140,867	nv	nv	0,517	0	nv	nv	nv	nv	nv	nv	nv	nv	
	166,2	184,533	nv	nv	0,600	0	nv	nv	nv	nv	nv	nv	nv	nv	
	88,4	157,810	nv	nv	0	0,133	nv	nv	nv	nv	nv	nv	nv	nv	
	144,4	196,241	nv	nv	0	0,133	nv	nv	nv	nv	nv	nv	nv	nv	
	78,846	161,354	nv	nv	0,2	0	nv	nv	nv	nv	nv	nv	nv	nv	
	111,961	183,171	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	1
	120,6	273,467	nv	nv	0,2	0	nv	nv	nv	nv	nv	nv	nv	nv]

	CD36 - K	CD36 + K	P- Selektin - K	P- Selektin + K	E- Selektin - K	E- Selektin + K	ICAM-1 - K	ICAM-1 + K	CD9 - K	CD9 + K	CD151 - K	CD151 + K	MDR1 - K	MDR1 + K	BE
	9,600	103,467	0	0,467	nv	nv	0	0	0,400	0,067	0	0,467	0,200	0	
	18,000	95,267	0,200	0	nv	nv	0,200	0,267	0	0,667	0,600	0	0	0	Ι
	15,200	84,067	0,200	0,867	nv	nv	0,200	0,667	0	0,867	0,800	0	0,200	0,067	
	26,400	207,333	0	0	nv	nv	0	0	0	0	0	0	0	0	
	25,00	158,933	0	0	nv	nv	0	0,133	0,600	0,871	0,400	0,533	0	0	II
	45,200	227,333	0	0	nv	nv	0	0,333	0	0	0	0	0	0	
	37,733	67,667	0,333	0,467	nv	nv	0	0,667	0,133	0,267	0,533	0	0	0,067	
ΉC	41,533	80,063	0	0	nv	nv	0,133	0,267	0	0,267	0	0,667	0	0,067	III
00	54,733	109,867	0	0,267	nv	nv	0,133	0,667	0	0,267	0	0,267	0	0,467	
C/1(167,733	5,098	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
SBC	62,867	3,622	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
II	98,867	10,533	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	29,0	50,533	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	29,8	24,133	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	50,8	16,533	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	15,49	78,933	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	
	nv	52,341	nv	nv	0	1,133	nv	nv	nv	nv	nv	nv	nv	nv	1
	25,4	56,533	nv	nv	0	0	nv	nv	nv	nv	nv	nv	nv	nv	

 Tabelle A14: Statische Bindungsexperimente (BE) mit unterschiedlichen Kultivierungsbedingungen (3D7, kultiviert mit AlbuMAX®).
 iRBC: infizierte Erythrozyten.

 - K: Stamm (ohne Knobs) + K: angereichert mit Gelafundin® (mit Knobs).

	CD36	P-Selektin	CD36	P-Selektin	CD36 (nach	P-Selektin	CD36 (nach	P-Selektin	CD36 (nach	P-Selektin	DF
	(AK)	(AK)	(nach P I)	(nach P I)	P III)	(nach P III)	P IV)	(nach P IV)	P V)	(nach P V)	DE
	324,533	1,333	350,733	6,933	354,474	29,474	488,800	28,400	539,667	39,867	
HC C	295,933	1,333	392,133	5,133	213,074	27,074	508,000	26,400	456,267	41,667	T 74
RB 0C	280,133	0,333	350,733	7,733		22,074	443,400	26,463	411,667		V1
i 1(4,333							

Tabelle A15: Statische Bindungsexperimente (BE) zur Überprüfung des *Pannings* (P) (Experiment 2_Versuch 1).

Tabelle A16: Statische Bindungsexperimente (BE) zur Überprüfung des *Pannings* (P) (Experiment 2_Versuch 2).

	CD36 (AK)	P-Selektin (AK)	CD36 (nach P II)	P-Selektin (nach P II)	CD36 (nach P III)	P-Selektin (nach P III)	CD36 (nach P IV)	P-Selektin (nach P IV)	CD36 (nach P V)	P-Selektin (nach P V)	BE
0	324,533	1,333	308,2	30,4	319,350	31,659	634,992	32,133	429,147	39,747	
RBC/ 0 CH	295,933	1,333	349,6	15,0		24,951	557,461	15,133	431,347	34,747	V2
i 10	280,133	0,333		19,6	319,751	20,951	509,304	27,133	470,747	50,347	

		Parasit	MS	EM	negativ
gene	<i>Pf</i> EMP1 (αATSmono)	34,95	86,41	4,85	5,83
able enantig örper)	RIFIN (αRif40)	98,04	2,94	21,57	0,98
Vari rfläche (Antik	STEVOR (αPFC0025c)	78,00	1,00	40,00	1,00
Obe	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	63,00	0	75,00	0

Tabelle A17: Quantifizierung der Lokalisation der variablen Oberflächenantigene (3D7 Stamm AlbuMAX®) (in %).

Tabelle A18: Quantifizierung der Lokalisation der variablen Oberflächenantigene (3D7 +Gelafundin® AlbuMAX®) (in%).

		Parasit	MS	EM	negativ
gene	<i>Pf</i> EMP1 (αATSmono)	53,33	97,14	0,95	0,95
able enantiș örper)	RIFIN (αRif40)	98,04	1,96	16,67	0,98
Vari rfläche (Antik	STEVOR (αPFC0025c)	89,42	0	94,23	1,92
Obe	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	66,02	0	91,26	0,97

Tabelle A19: Quantifizierung der Lokalisation der variablen Oberflächenantigene (3D7 Stamm humanes Serum) (in %).

		Parasit	MS	EM	negativ
gene	<i>Pf</i> EMP1 (αATSmono)	10,78	91,18	0,98	8,82
able enanti örper)	RIFIN (αRif40)	94,18	0	4,86	3,88
Vari rfläche (Antik	STEVOR (αPFC0025c)	75,00	0	33,65	14,42
Obei	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	95,00	0	33,00	0

Tabelle A20: Quantifizierung der Lokalisation der variablen Oberflächenantigene (3D7 +Gelafundin® humanes Serum) (in%).

		Parasit	MS	EM	negativ
Variable Oberflächenantigene (Antikörper)	<i>Pf</i> EMP1 (αATSmono)	28,85	89,42	0	1,92
	RIFIN (αRif40)	99,05	1,91	4,76	0,95
	STEVOR (αPFC0025c)	89,91	0	10,09	9,17
	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	82,35	0	40,20	7,84
		Parasit	MS	EM	Negativ
--	------------------------------------	---------	-------	-------	---------
Variable rflächenantigene (Antikörper)	<i>Pf</i> EMP1 (αATSmono)	29,70	51,49	0	28,71
	RIFIN (αRif40)	78,09	1,90	20,00	18,10
	STEVOR (αPFC0025c)	48,11	0,94	83,96	2,83
Obei	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	46,54	0	42,57	20,79

Tabelle A21: Quantifizierung der Lokalisation der variablen Oberflächenantigene (FCR3 Stamm AlbuMAX®) (in %).

Tabelle A22: Quantifizierung der Lokalisation der variablen Oberflächenantigene (FCR3 +Gelafundin® AlbuMAX®) (in%).

		Parasit	MS	EM	negativ
able enantigene örper)	<i>Pf</i> EMP1 (αATSmono)	35,24	53,33	14,29	22,86
	RIFIN (αRif40)	74,26	0	36,63	9,90
Vari rfläch (Antik	STEVOR (αPFC0025c)	14,29	0	98,10	0,95
Obe	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	38,61	0	50,50	15,84

Tabelle A23: Quantifizierung der Lokalisation der variablen Oberflächenantigene (FCR3 Stamm humanes Serum) (in %).

		Parasit	MS	EM	Negativ
Variable flächenantigene (Antikörper)	<i>Pf</i> EMP1 (αATSmono)	14,81	82,41	0	11,11
	RIFIN (αRif40)	89,72	0	0,94	10,28
	STEVOR (αPFC0025c)	84,62	0	4,81	11,54
Obe	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	85,00	0	23,00	2,00

Tabelle A24: Quantifizierung der Lokalisation der variablen Oberflächenantigene (FCR3 +Gelafundin® humanes Serum) (in%).

		Parasit	MS	EM	negativ
able enantigene örper)	<i>Pf</i> EMP1 (αATSmono)	13,79	74,14	0	17,24
	RIFIN (αRif40)	96,77	0	2,15	1,08
Vari rfläche (Antik	STEVOR (αPFC0025c)	87,50	0	7,69	10,58
Obe	<i>Pf</i> MC-2TM (αPfMC-2TM-CT)	79,21	0	44,55	5,94

XXXVIII

FCR3 Stamm (Humanes Serum) nach Panning II (Experiment 1)

FCR3 Stamm (Humanes Serum) ungebundene Erythrozyten nach Panning VI (Experiment 2)

FCR3 Stamm (Humanes Serum) nach Panning VI (Experiment 2)

Bio 1 Bio 2 [FU] **FEUT** 120 60 100 50 80 40 60 30 40 20 20 10 C 25 500 25 200 1000 2000 4000 [nt] 200 500 1000 2000 4000 [nt] Overall Results for sample 5 : Sample 5 **Overall Res** 5: Sa RNA Integrity Number (RIN) RNA Area: 889.9 8.8 (B.02.08) RNA Area: 693.9 RNA Integrity Number (RIN) 7.7 (B.02.08) RNA Concentration: 1,714 pg/µl RNA Concentration: 2,235 pg/µl Result Flagging Color: Result Flagging Color: RIN: 7.70 rRNA Ratio [28s / 18s]: Result Flagging Label RIN: 8.80 rRNA Ratio [28s / 18s]: 1.4 Result Flagging Label: 1.1 ent table for sa table fr Sa Fragm Name Start Size [nt] End Size [nt] Area % of total Area Name Start Size [nt] End Size [nt] Area % of total Area 1,773 3,704 2,356 4,313 173.8 189.0 19.5 21.2 1,765 3,634 2,293 4,428 84.2 120.6 12.1 17.4 185 285 18S 28S

[nt]

Anschließend wurden die Erythrozyten entsprechend den im Abschnitt 2.2.1.1 genannten Kulturbedingungen weiter kultiviert, wohingegen keine 0^+ -Erythrozyten zugegeben wurden.

Tabelle A25: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj \leq 0,05; *Fold Change* \geq 2,5)_Humanes Serum *vs*. AlbuMAX®. Kultivierung mit humanem Serum (h) *vs*. AlbuMAX®(a). sm: smooth (keine *Knobs*), padj: Signifikanz, TN: Transkriptionsniveau, FC: *Fold Change*

Gen	sm_h_1	sm_h_2	sm_a_1	sm_a_2	padj	TN (h)	TN (a)	FC
PFIT_bin11000	389	321	27592	42741	0,000	353	38788	109,9
PFIT_0828000	0	4	97	191	0,000	2	157	92,7
PFIT_bin05500	8	9	236	248	0,000	8	273	34,4
PFIT_0727300.2	0	8	115	162	0,000	3	154	47,1
PFIT_0827600	37	141	1355	1418	0,000	73	1567	21,4
PFIT_0401700	0	1	48	90	0,000	0	75	171,5
PFIT_1235400	65	145	1495	1889	0,000	92	1890	20,7
PFIT_1147500	1	3	91	83	0,000	2	99	56,3
PFIT_1241800	20	24	331	390	0,000	21	405	19,6
PFIT_0727300.1	0	16	111	177	0,000	6	159	25,2
PFIT_1116800	861	2379	17032	18821	0,000	1372	20195	14,7
PFIT_1240500	1686	2046	16851	26655	0,000	1763	23962	13,6
PFIT_0608400	71	191	1301	1407	0,001	112	1527	13,7
PFIT_1334300	1589	8480	41344	41330	0,001	3977	46864	11,8
PFIT_0302400	3797	21641	102044	104626	0,002	9989	116965	11,7
PFIT_0936400	489	3486	15414	16033	0,002	1534	17781	11,6
PFIT_1252300	1407	6068	29541	30330	0,002	3012	3388	11,2
PFIT_1011700	392	839	5166	5363	0,003	538	5954	11,1
PFIT 1355400	41	297	1259	1374	0,003	131	1484	11.3
	3262	11372	54506	59569	0,004	6031	64301	10,7
PFIT 0536600	116	174	2	12	0,004	133	8	1E-02
PFIT 0206500	4	48	216	251	0,005	20	262	13.0
PFIT 0526800	15	113	480	495	0,007	50	552	11.0
PFIT 1450400	149	815	3233	3572	0,007	381	3833	10,1
PFIT 0917400	1	160	525	583	0,008	58	624	10,7
PFIT 0522800	20	103	453	494	0.009	49	534	10.8
 PFIT_0207000	290	812	3900	3982	0,011	466	4462	9,6
PFIT 1141100	152	578	2460	2631	0,011	299	2874	9.6
PFIT 0720400	1256	1819	11533	12183	0,011	1418	13397	9.5
PFIT 1453200	992	2841	12706	14333	0,012	1616	15211	9,4
 PFIT_0501700	294	2848	9025	10746	0,013	1189	11084	9,3
PFIT 1452900	10	164	577	539	0,017	65	635	9.8
PFIT 0524800	22	112	444	483	0,021	54	523	9.7
PFIT 1465000	346	1721	6280	6567	0.021	822	7262	8.8
PFIT 1239800	978	2551	139	155	0,022	1505	166	4E-06
PFIT 0515800	489	3783	12187	13172	0,023	1639	14304	8,7
PFIT 0206900	1187	6024	21705	21806	0,025	2861	24657	8,6
PFIT 0930500	10359	52268	183123	195591	0.025	24858	213782	8.6
PFIT 1236600	20	229	718	777	0,030	94	843	9,0
PFIT 0212300	53	428	1369	1483	0,030	185	1608	8.7
PFIT 0929600	3676	27322	85531	91604	0,032	11921	99974	8,4
PFIT 0920600	28	457	1270	1450	0.037	180	1529	8.5
PFIT 0518300	5	107	349	336	0.038	42	389	9.3
PFIT 0201400	6539	7401	630	835	0.044	6649	816	2E-07
PFIT 1030600	117	225	1020	1257	0.044	152	1274	8.4
PFIT 1422900	13	160	497	515	0.046	66	572	8.7
PFIT_1035100	1288	2279	10696	12270	0.046	1600	12906	8.1
	1200				-)			-,-

Tabelle A26: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj $\leq 0,05$; FoldChange $\geq 2,5$)_Knob-negativ vs. Knob-positiv (Kultivierung mit AlbuMAX® (a)). sm: smooth (Knob-negativ),kn: knobby (Knobs-positiv), padj: Signifikanz, TN: Transkriptionsniveau, FC: Fold Change

Gen	sm_a_1	sm_a_2	kn_a_1	kn_a_2	padj	TN sm	TN kn	FC
PFIT_0404900	3582	4979	2415	2236	0	5618	1759	0,3
PFIT_0629200	1915	2228	1266	1311	0	2743	968	0,4
PFIT 0701300	7987	10694	4689	2689	0	12281	2863	0,2
PFIT 0805400	4601	5398	2813	3267	0	6618	2271	0,3
PFIT 1116800	17032	18821	8233	11445	0	23803	7278	0.3
PFIT 1245200	449	500	192	273	0	629	172	0.3
PFIT 1305000	565	788	293	295	0	888	221	0,2
PFIT 1415900	1321	1493	719	606	0	1866	503	0,2
PF aniconlast gen	1021	1195	/1/	000	0	1000	505	0,5
ome 105900	16000	22058	8820	7462	0	24983	6191	0,2
PFIT 1235400	1495	1889	859	1354	6E-13	2231	814	0.4
PFIT 0107000	30715	37708	19592	28293	1E-12	45182	17673	0.4
PFIT 1016400	948	1238	758	661	3E-11	1439	538	0.4
PFIT_0501500	26356	40999	9095	14728	9E-11	43945	8737	0.2
PFIT 1467300	677	856	461	535	1E-10	1011	372	0.4
PFIT 1475100	648	896	445	563	1E-10	1014	375	0.4
PFIT_0527900	122	182	643	800	2E-09	1011	570	2.9
PFIT_bin05500	236	248	130	102	2E 09	322	92	0.3
DELT 0810200	230	642	352	306	0E 00	715	240	0,5
PFIT_0827600	1355	1/18	9/3	868	7E-09	1846	685	0,5
PEIT 12/1600	307	426	263	205	7E-00 7E-08	547	200	0,4
DEIT 0707800	112	420	203 567	295	1E-00	100	209	0,4
PFII_0/0/800 DEIT_1244200	01	170	J07 424	600 620	1E-07	190	307	2,1
PFII_1344200 DEIT_1421000	91	119	434 501	614	2E-07	150	390	2,0
PFII_1421000	21992	1323	201	4001	0E-07	1019	413 5124	0,5
PFI1_1015800	21882	20336	8208	4991	2E-00	28279	5134	0,2
PFII_093/400	88	139	54 10122	49	4E-06	148	39	0,3
PFII_DIII11000	27392	42741	19152	20707	4E-00	43898	14905	0,5
PFI1_01009100	83 0551	119	54	02	0E-00	155	33 5900	0,3
PFI1_1023400	9551	14460	010/	9615	1E-05	15688	5800	0,4
PFI1_0825600	43	6/	234	344	3E-05	72	213	3,0
PFI1_0314600	217	332	155	220	4E-05	359	139	0,4
PFI1_1151000	323	503	203	304	6E-05	539	187	0,3
PFIT_bin02200	854	1387	493	622	9E-05	1459	415	0,3
PFIT_0618900	79	105	39	57	2E-04	121	36	0,3
PFIT_1219100	86	141	51	61	2 E-04	148	42	0,3
PFIT_1217800	69	55	262	328	0,000	83	220	2,6
PFIT_0721000	119	166	92	94	0,001	187	70	0,4
PFIT_bin08900	70	95	39	47	0,001	109	32	0,3
PFIT_0411500	988	1591	666	861	0,001	1680	567	0,3
PFIT_1221100	67	92	35	47	0,001	105	30	0,3
PFIT_bin02100	112	138	71	90	0,001	165	60	0,4
PFIT_0817000	8	13	77	112	0,001	14	70	5,1
PFIT_1350500	25	44	160	215	0,001	45	139	3,1
PFIT_0724600	416989	356133	56789	183069	0,002	520101	85020	0,2
PFIT_1457000	132	173	84	134	0,002	201	80	0,4
PFIT_0724500	417483	356239	56720	183395	0,002	520528	85100	0,2
PFIT_1037600	150	229	79	160	0,002	248	87	0,4
PFIT_0627300	21	31	129	173	0,003	34	112	3,3
PFIT_1302100	248	270	1193	1161	0,003	344	888	2,6
PFIT_1225900	52	52	210	255	0,010	69	173	2,5
PF_apicoplast_gen	22320	20442	10682	15030	0.013	28665	9807	03
ome_105100	22320	20442	10002	15757	0,015	20005	2007	0,5
PFIT_0814900	33	35	138	204	0,014	45	126	2,8
PFIT_1030600	1020	1257	461	1200	0,024	1503	595	0,4

PFIT_0419300	778	1379	402	559	0,028	1399	356	0,3
PFIT_0315200	363	599	273	353	0,029	626	233	0,4
PFIT_0502600	36	46	166	208	0,031	54	139	2,6
PFIT_bin04200	50	87	34	30	0,039	89	24	0,3
PFIT_1300600	2262	3614	1971	1466	0,044	3829	1316	0,3
PFIT_0502600 PFIT_bin04200 PFIT_1300600	36 50 2262	46 87 3614	166 34 1971	208 30 1466	0,031 0,039 0,044	54 89 3829	139 24 1316	2,6 0,3 0,3

Tabelle A27: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj $\leq 0,05$; Fold Change $\geq 2,5$)_Knob-negativ vs. Knob-positiv (Kultivierung mit humanem Serum (h)). sm: smooth (Knobnegativ), kn: knobby (Knob-positiv), padj: Signifikanz, TN: Transkriptionsniveau, FC: Fold Change

Gen	sm_h_1	sm_h_2	kn_h_1	kn_h_2	padj	TN sm	TN kn	F C
PFIT_bin05500	8	9	222	298	0,001	10	217	21,3
PFIT_0828000	0	4	97	100	0,002	2	83	38,4
PFIT_0401700	0	1	71	46	0,008	1	49	87,7
PFIT_0830900	4	25	230	212	0,036	15	185	12,3

Tabelle A28: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj \leq 0,05; *Fold Change* \geq 2,5)_Ausgangskultur (p0) vs. *Panning* I+II (p1 bzw. p2). Transkriptionsniveau \geq 10. padj: Signifikanz, TN: Transkriptionsniveau, FC: *Fold Change*.

Gen	p0_1	p0_2	p1_1	p1_2	p2_2	padj	TN p0	TN p1+2	FC
PFIT_bin07800	1	1	85	121	86	0,000	0	173	444,4
PFIT_0100700	92720	145690	1889	2145	264	0,000	45705	2035	0,0
PFIT_0627200	13427	26184	279	446	44	0,000	7525	348	0,0
PFIT_0604800	4354	8711	67	113	39	0,000	2480	114	0,0
PFIT_1149400	51132	79094	1137	1275	159	0,000	24982	1220	0,0
									3515240
PFIT_0202800	0	0	112	103	112	0,000	0	209	31533,0
PFIT_0808000	2159	4916	26	45	3	0,000	1336	33	0,0
PFIT_0406300	2135	3419	37105	60699	41331	0,000	1064	82124	77,2
PFIT_1406600	291	347	2303	2656	1420	0,000	124	3592	29,0
PFIT_0803100	315	622	2	8	1	0,000	178	5	0,0
PFIT_0301700	4741	7365	122	150	19	0,000	2322	138	0,1
									2832605
PFIT_0712800	0	0	97	69	91	0,000	0	168	80193,2
									6331124
PFIT_1338400	0	0	24	20	18	0,000	0	38	5866,1
PFIT_0206900	2299	4814	50	85	38	0,000	1347	94	0,1
PFIT_0819400	13	19	101	144	89	0,001	6	192	31,2
PFIT_1345900	25	22	724	744	724	0,001	9	1377	149,1
PFIT_0710800	9167	6734	132	112	130	0,001	3151	240	0,1
PFIT_0313500	15	27	431	513	458	0,001	8	869	108,4
PFIT_0101200	1679	3150	46	71	23	0,002	919	72	0,1
PFIT_0918800	3754	7330	114	193	55	0,003	2106	183	0,1
									7623133
PFIT_1104100	0	0	20	26	26	0,004	0	45	8685,8
PFIT_0219100	5045	6993	149	271	37	0,004	2320	210	0,1
PFIT_0421700	1005	2075	38	59	7	0,005	584	49	0,1

PFIT_1001600	4893	6419	113	274	56	0,007	2186	210	0,1
									1133243
PFIT_0619800	0	0	13	15	13	0,007	0	25	83742,3
PFIT_0107000	25366	29571	1414	645	80	0,010	10670	1096	0,1
PFIT_0833400	26519	31762	1201	793	224	0,011	11306	1166	0,1
PFIT_0410300	55	41	2087	3220	3119	0,013	19	5351	281,5
PFIT_0730700	2148	3270	62	102	36	0,015	1040	104	0,1
PFIT_1418900	7	15	55	61	49	0,016	4	99	23,7
Pf_M76611019									
00	1648	2574	58	115	10	0,018	810	81	0,1
PFIT_1322900	692	1544	22	46	11	0,022	423	39	0,1
PFIT_0101300	70	93	601	730	626	0,022	31	1204	38,3
PFIT_0936100	15998	23027	623	1270	70	0,023	7510	837	0,1
PFIT_0803700	787	1103	15	43	12	0,029	364	35	0,1
PFIT_1141100	305	644	12	12	3	0,030	180	14	0,1
PFIT_1450400	260	609	7	10	4	0,033	164	11	0,1
PFIT_1016300	4502	7162	129	395	53	0,034	2235	255	0,1
PFIT_1253800	2	0	16	23	20	0,039	0	36	89,5
PFIT_1107600	5770	8012	14810	25716	15985	0,040	2656	32747	12,3
PFIT_bin08900	66	61	2798	3498	3959	0,040	25	6687	268,4
PFIT_0406600	639	1495	23	33	7	0,041	403	31	0,1
PFIT_1009800	3759	5119	140	295	24	0,045	1713	201	0,1
PFIT_1237600	8079	18190	326	634	126	0,049	4962	517	0,1
PFIT_0301200	0	2	24	25	27	0,050	0	48	127,9

Tabelle A29: Transkriptom-Analyse (Gene mit signifikant differentieller Expression,	padj \leq 0,05; <i>Fold</i>
<i>Change</i> \geq 2,5)_Ausgangskultur (p0) vs. <i>Panning</i> V (p5). Transkriptionsniveau \geq 500. page	dj: Signifikanz, TN:
Transkriptionsniveau, FC: Fold Change.	

Gen	p0_1	p0_2	P5_1	P5_2	padj	TN p0	P1+2	FC
PFIT_0101300	70	93	352	361	0,000	66	431	6,5
PFIT_0101600	142	173	534	518	0,000	128	636	5,0
PFIT_0107000	25366	29571	3631	5888	0,000	22352	5720	0,3
PFIT_0112400	24	36	401	439	0,000	24	507	20,9
PFIT_0112800	579	573	26	33	0,000	472	36	0,1
PFIT_0208300	162	193	666	739	0,000	144	848	5,9
PFIT_0210900	85	106	366	375	0,000	78	447	5,8
PFIT_0313500	15	27	207	223	0,000	17	260	15,3
PFIT_0400700	277	276	15	13	0,000	226	17	0,1
PFIT_0410300	55	41	1095	1145	0,000	39	1352	34,3
PFIT_0503300	231	211	777	675	0,000	181	878	4,8
PFIT_0529200	1554	1664	194	245	0,000	1314	265	0,2
PFIT_0536300	196	210	15	13	0,000	166	17	0,1
PFIT_0624200	262	359	1032	1082	0,000	251	1276	5,1
PFIT_0701300	9558	9495	1135	1571	0,000	7801	1629	0,2
PFIT_0820200	2539	3096	385	377	0,000	2289	460	0,2
PFIT_0834300	592	573	25	16	0,000	477	25	0,1
PFIT_0835500	281	266	6	6	0,000	224	7	0,0
PFIT_0909300	71	73	571	584	0,000	59	697	11,9
PFIT_0933800	226	261	750	758	0,000	198	911	4,6

PFIT_0936800	809	804	89	83	0,000	660	104	0,2
PFIT_1000600	223	290	21	20	0,000	208	25	0,1
PFIT_1004000	899	884	128	144	0,000	730	164	0,2
PFIT_1015800	8165	12254	221	330	0,000	8226	331	0,0
PFIT 1018600	910	1282	12832	16009	0,000	885	17379	19,6
PFIT 1037600	42	64	291	336	0.000	43	378	8.8
PFIT 1102000	436	498	36	29	0.000	380	39	0.1
PFIT 1113400	63	75	253	284	0.000	56	324	5.8
PFIT 1115300	35	34	146	187	0,000	28	201	7.1
PFIT 1131900	174	193	665	779	0,000	150	871	5.8
PFIT 1149200	3243	3924	316	377	0,000	2912	418	0.1
PFIT 1149600	687	857	29	44	0,000	627	44	0,1
PFIT 1207000	53	51	418	538	0,000	43	576	13.5
DEIT 1210600	103	278	753	950 862	0,000	100	970	13,5
PFIT_1210000 PFIT_1241100	530	278 508	30	51	0,000	190	54	5,1
DEIT 1220400	205	256	710	901	0,000	423	070	0,1 5.2
PFII_1329400	205	230	220	206	0,000	10/	970	J,2
PFI1_1343900	25	22	520 1220	300	0,000	19	3/8	19,7
PFI1_1406600	291	347 175	1320	1517	0,000	259	1/11	0,0
PFI1_1433000	141	1/5	1103	114/	0,000	128	1358	10,6
PFIT_1444900	51	59	285	319	0,000	45	364	8,1
PFIT_1455300	14	10	111	126	0,000	10	143	14,6
PFIT_1476300	89	66	1044	969	0,000	64	1217	19,1
PFIT_bin00900	65	76	279	366	0,000	57	389	6,8
PFIT_bin04200	21	18	174	176	0,000	16	211	13,3
PFIT_bin08900	66	61	1295	1317	0,000	52	1577	30,4
PF_apicoplast_								
genome_10590								
0	8241	10432	1155	1616	0,000	7573	1668	0,2
PFIT_0711200	816	858	130	138	0,000	684	162	0,2
PFIT_bin07800	1	1	46	46	0,000	1	56	68,3
PFIT_1426600	158	191	463	521	0,000	142	594	4,2
PFIT_0201200	9	20	81	102	0,000	12	110	9,4
PFIT_0710800	9167	6734	41	57	0,000	6587	59	0,0
								8956100493
PFIT_0202800	0	0	28	40	0,000	0	41	9,9
PFIT_bin05800	12	10	77	79	0,000	9	94	10,5
PFIT_0607700	2110	1955	254	295	0,000	1669	331	0,2
PFIT_1200700	817	934	160	150	0,000	713	187	0,3
PFIT_0406300	2135	3419	12242	16901	0,000	2232	17542	7,9
PFIT 0113100	178	196	18	19	0,000	152	22	0,1
PFIT 0802300	1534	1980	327	361	0,000	1424	415	0,3
PFIT 0400500	13235	14381	2895	2930	0.000	11267	3518	0.3
PFIT 0804800	4093	4536	823	973	0.000	3518	1083	0.3
PFIT 0208400	2626	3221	502	719	0,000	2374	735	0,2
PFIT_0502400	11	21	20 <u>2</u> 76	95	0,000	13	103	8,0
PFIT 1244600	6102	7101	1448	1385	0,000	5372	1712	0,3
PFIT_0733100	179	165	17	1905	0,000	141	22	0,3
PFIT 1015100	580	541	68	86	0,000	464	93	0,2
PFIT 0833100	\$761	10542	1021	2360	0,000	78/5	95 2580	0,2
DELL UCO22100	070 4 70	05	1921 007	2300	0,000	704J 61	2500	0,5
DEIT 0204200	12	0J 101	221	212	0,000	04 72	203	4,2
FFI1_0204300	220	101	233	232	0,000	202	293	4,0
FFI1_040/000	529	391	/0/	800	0,000	293	946	3,2
PFI1_0536200	70	103	4	4	0,000	70	5	0,1

								1862442738
PFIT_0712800	0	0	22	30	0,000	0	31	80,7
PFIT_1219100	184	177	14	30	0,000	148	26	0,2
PFIT_1366800	11	20	75	79	0,000	13	93	7,4
PFIT_1205500	3034	2916	619	739	0,000	2439	819	0,3
PFIT_1151000	99	81	237	228	0,000	74	281	3,8
PFIT_0501900	216	212	466	473	0,000	175	567	3,2
PFIT_1021900	2831	2697	464	650	0,000	2267	671	0,3
PFIT_1125800	4395	4652	976	1168	0,000	3695	1293	0,3
PFIT_0905800	87	117	238	263	0,000	83	302	3,7
PFIT_1004900	14	4	58	58	0,000	7	70	9,4
PFIT_1119000	2957	2889	658	729	0,000	2395	837	0,3
PFIT_1421800	9	9	64	49	0,000	7	68	9,3
PFIT_1035000	84	157	256	303	0,000	97	337	3,5
PFIT_1400200	37	28	97	124	0,000	27	133	5,0
PFIT_0536400	507	525	98	110	0,000	422	126	0,3
PFIT_1426100	2	1	35	28	0,000	1	38	31,1
PFIT_1348000	574	458	929	1103	0,000	426	1225	2,9
PFIT_1358700	1324	1556	345	323	0,000	1171	404	0,3
PFIT_0623500	26386	33564	6873	8170	0,000	24308	9069	0,4
PFIT_0705400	8846	12269	2411	2835	0,000	8533	3163	0,4
PFIT_1007300	1672	1936	399	469	0,000	1468	523	0,4
PFIT_bin11100	303	293	40	69	0,000	244	66	0,3
PFIT_0822700	92	174	271	307	0,000	107	349	3,3
PFIT_0710900	41	42	112	133	0,000	34	148	4,4
PFIT_0107200	2039	2427	514	587	0,000	1816	664	0,4
PFIT_1430400	128	156	316	294	0,000	115	369	3,2
PFIT_1122000	32	29	101	97	0,000	25	120	4,8
PFIT_0832500	52	67	137	171	0,000	48	186	3,8
PFIT_bin00500	1050	1203	202	338	0,000	917	325	0,4
PFIT_0301600	819	1268	154	151	0,000	840	184	0,2
PFIT_1134300	552	400	866	927	0,000	394	1082	2,7
PFIT_1476600	14	25	69	80	0,000	16	90	5,7
PFIT_1355300	719	822	153	206	0,000	627	216	0,3
PFIT_1344800	76	162	236	292	0,000	95	318	3,3
PFIT_1003900	8482	9034	2061	2562	0,000	7152	2786	0,4
PFIT_0536800	8303	8669	1984	2508	0,000	6935	2706	0,4
PFIT_0308400	1028	1061	240	271	0,000	854	308	0,4
PFIT_0927800	54	52	168	134	0,000	43	183	4,2
PFIT_1443800	97	220	317	319	0,000	126	384	3,0
PFIT_0208800	110	229	343	330	0,000	135	407	3,0
PFIT_bin07600	19	17	67	73	0,000	15	84	5,7
PFIT_0920700	91	154	229	287	0,000	99	311	3,2
PFIT_1305200	107	128	254	247	0,000	96	303	3,2
PFIT_0101100	490	686	116	152	0,000	475	161	0,3
PFIT 1477300	2835	3301	784	819	0,000	2497	968	0,4
PFIT_1013700	27	43	89	116	0,000	28	124	4,4
PFIT_0803400	61	60	157	143	0,000	49	181	3,7
	1597	2151	434	526	0,000	1517	579	0.4
PFIT_1402100	265	314	64	50	0,000	235	69	0.3
PFIT_1445300	737	864	1391	1390	0,000	651	1680	2.6
PFIT 1451700	85	142	210	265	0,000	91	286	3.1
PFIT_1132700	433	656	906	991	0.000	439	1145	2.6
					,			=,0

PFIT_1478700	41	42	122	103	0,000	34	136	4,0
PFIT_bin01000	26	28	76	95	0,000	22	103	4,7
PFIT_1247900	44	87	138	164	0,000	53	182	3,5
PFIT_0811500	778	894	165	256	0,000	681	253	0,4
PFIT_0303400	350	474	689	744	0,000	333	865	2,6
PFIT_1235100	116	180	273	301	0,000	119	346	2,9
PFIT_1476500	306	283	519	533	0,000	242	635	2,6
PFIT_0729000	81	117	190	218	0,000	80	246	3,1
PFIT_0710600	372	390	81	94	0,000	311	106	0,3
PFIT_0207200	70	113	179	201	0,000	74	229	3,1
PFIT_1347900	19	28	66	82	0,000	19	89	4,7
PFIT_0509100	217	244	415	414	0,000	188	501	2,7
PFIT_1333600	197	191	31	43	0,000	159	45	0,3
Pf_M76611019								
00	1648	2574	3188	4071	0,000	1699	4373	2,6
PFIT_0805600	284	654	834	979	0,000	373	1093	2,9
PFIT_0923800	11	5	41	42	0,000	7	50	7,6
PFIT_0730500	764	711	192	196	0,000	605	234	0,39
PFIT_0501600	244	414	517	580	0,000	264	662	2,5
PFIT_0819500	574	558	144	150	0,000	464	178	0,4
PFIT_1348200	33	41	84	104	0,000	30	113	3,8
PFIT_0730200	2261	2099	534	618	0,000	1790	695	0,4
PFIT_1200800	361	428	105	88	0,000	321	117	0,4
PFIT_1306600	36	33	79	99	0,000	28	107	3,8
PFIT_0827200	43	59	104	127	0,000	41	139	3,4
PFIT_1242600	16	14	55	52	0,000	12	65	5,3
PFIT_1349800	89	99	185	182	0,000	77	222	2,9
PF_apicoplast_								
genome_10200								
0	24	17	62	66	0,000	17	77	4,6
PFIT_0711300	8	10	46	36	0,000	7	50	6,8
PFIT_0617800.								
1	49	83	149	126	0,000	53	166	3,1
PFIT_0315300	231	323	459	455	0,000	224	552	2,5
PFIT 1477000	25	18	71	59	0,000	18	79	4,5
PFIT 0819400	13	19	47	62	0,000	13	66	5,1
PFIT 0901900	180	217	35	48	0,000	161	50	0,3
PFIT 1136700	229	286	413	444	0,000	209	517	2,5
PFIT_0515200	166	157	306	261	0,001	132	343	2,6
PFIT_1366100	2431	2277	424	681	0,001	1932	664	0,3
PFIT 0419300	714	617	120	127	0,001	548	149	0,3
PFIT 0936500	286022	257976	61034	70514	0,001	223574	79334	0,4
PFIT 1240500	1701	1361	156	187	0.001	1264	207	0.2
PFIT 0409800	120	139	238	225	0.001	105	280	2.7
PFIT 0423500	6	1	23	31	0.001	3	33	11.3
PFIT 1019700	31	80	116	117	0.001	44	141	3.2
PFIT 1426300	286	616	1104	908	0.001	359	1218	3.4
PFIT_0201100	10	8	64	44	0.001	7	65	8.9
PFIT 1235500	59	72	130	135	0.001	53	160	3.0
PFIT 0724600	203454	135608	4454	5611	0.001	140970	6064	0.0
PFIT 0422900	18268	15739	2902	3554	0.001	14001	3891	0,0
PFIT 0109900	1200	127	217	225	0.001	101	267	2.6
PFIT hin03400	120	122	43	46	0.007	101	54	2,0 5 5
····	12	12	-15	+0	0,002	10	54	5,5

PFIT_1431900	21	33	69	72	0,002	22	85	3,9
PFIT_0724500	204214	135583	4454	5661	0,002	141296	6094	0,0
PFIT_1109500	1863	1730	366	537	0,002	1475	543	0,4
PFIT_1404100	0	2	20	16	0,002	1	22	27,0
PFIT_1335500	24	40	74	82	0,002	26	94	3,6
PFIT_0219700	301	380	85	91	0,002	276	106	0,4
PFIT_1103100	21	31	65	71	0,002	21	82	3,9
PFIT_1409800	6	14	41	38	0,002	8	48	5,9
PFIT_1446200	62	57	118	124	0,003	49	146	3,0
PFIT_1414600	25	56	83	97	0,003	32	109	3,3
PFIT_0416300	15	23	52	59	0,003	15	67	4,4
PFIT_0533400	58	70	134	117	0,003	52	152	2,9
PFIT 0111500	40	47	80	109	0,004	35	114	3,2
PFIT 0731700	6	13	33	51	0,004	8	51	6,6
PFIT_1337700	55	52	113	106	0,004	44	132	3,0
PFIT 0301200	0	2	18	16	0,005	1	21	25,5
PFIT 0927500	39	40	79	96	0.005	32	106	3.3
PFIT 0413000	41	36	140	102	0,006	32	147	4,6
PFIT 0222000	120	115	29	17	0.008	96	28	0.3
PFIT 0219400	21307	33837	5140	6552	0.010	22169	7044	0.3
PFIT 1450200	51	82	106	141	0.011	54	149	2.8
PFIT 1467100	9	6	31	33	0.012	6	39	6.3
PFIT 1305500	53	42	94	98	0.015	39	116	3.0
PFIT 1147000	6	20	43	39	0.016	10	50	4.8
PFIT 0808700	38	52	89	93	0.016	36	110	3.0
PFIT 0712200	52	100	125	143	0.017	61	162	2.6
PFIT 1249400	1	6	22	23	0.017	3	27	9.7
PFIT 1230900	158	392	465	471	0.017	218	565	2.6
PFIT 1471600	70	88	145	133	0.017	64	168	2.6
PFIT 1229800	35	67	99	98	0.018	41	119	2.9
PFIT_1236500	51	69	105	119	0.019	49	135	2.8
PFIT_1300500	141	117	15	26	0.019	106	25	0.2
PFIT 1442000	283	257	67	81	0.019	222	89	0,2
PFIT 1232500	96	251	292	333	0.020	138	377	2.7
PFIT_0719300	269	231	68	73	0.021	212	85	0.4
1111_0/19500	207	24)	00	15	0,021	212	05	2763619858
PFIT 1338400	0	0	8	13	0.021	0	13	60
PFIT_bin04600	76	68	123	136	0.021	59	156	2.6
PFIT 1206100	50	67	117	101	0.021	47	130	2,0
PFIT_0900100	56	55	107	104	0.022	45	132	2,8
PFIT_0515600	34	41	77	80	0.026	30	95	3.1
PFIT_0536500	61	48	6	7	0.027	45	8	0.2
PFIT 1462200	92	100	161	160	0.027	78	194	2.5
PFIT_0104000	33	34	66	79	0.029	27	87	3.2
PFIT_0507500	1295	3215	3652	4302	0.030	1785	4796	2.7
PFIT_0201000	1	3	16	29	0.043	2	27	16.8
PFIT 1454900	3300	2975	659	981	0.045	2579	986	0.4
PFIT_0201300	8	2273	21	34	0.045	4	33	8.0
PFIT 0628900	1	3	13	22	0.046	2	21	13.0
PFIT 1037700	9	11	33	35	0.047	8	41	5.0
PFIT 1009900	30	51	85	75	0.049	33	97	3.0
PFIT 0616500	326	286	51	85	0.049	252	82	0.3
PFIT 1035300	2293	5171	5633	6768	0.052	2963	7476	2.5
					·			,-

Tabelle A30: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj $\leq 0,05$; FoldChange $\geq 2,5$)_ungebundene Erythrozyten nach Panning V (s5) vs. gebundene Erythrozyten nach Panning V (s5) vs. gebundene Erythrozyten nach Panning V (p5). Transkriptionsniveau ≥ 500 . padj: Signifikanz, TN: Transkriptionsniveau, FC: Fold Change.

Gen	s5_1	s5_2	p5_1	p5_2	padj	TN s5	TN p5	FC
PFIT_0101300	209	276	352	361	0,000	151	570	3,8
PFIT_0101600	373	406	534	518	0,000	243	841	3,5
PFIT_0112400	35	54	401	439	0,000	28	671	24,3
PFIT_0204300	166	215	253	232	0,000	118	388	3,3
PFIT_0206300	4315	5259	510	794	0,000	2974	1037	0,3
PFIT_0206800	1704	1936	255	304	0,000	1133	446	0,39
PFIT_0206900	20494	24360	2519	3002	0,000	13942	4405	0,3
PFIT_0207000	2052	2472	236	283	0,000	1406	414	0,3
PFIT_0208300	302	318	666	739	0,000	193	1122	5,8
PFIT_0210900	217	333	366	375	0,000	170	592	3,5
PFIT_0302100	1580	2011	222	299	0,000	1114	415	0,37
PFIT_0302400	58562	73092	8240	11187	0,000	40863	15475	0,38
PFIT_0313500	55	69	207	223	0,000	39	344	8,9
PFIT_0320800	1133	1468	174	197	0,000	807	296	0,4
PFIT_0321500	2536	3012	393	476	0,000	1725	694	0,4
PFIT_0403400	10629	13390	1667	2023	0,000	7453	2944	0,4
PFIT_0403500	1950	2537	328	358	0,000	1391	548	0,4
PFIT_0410300	129	173	1095	1145	0,000	94	1790	19,1
PFIT_0501900	380	451	466	473	0,000	258	751	2,9
PFIT_0509100	302	377	415	414	0,000	211	663	3,1
PFIT_0609300	111973	131552	13474	19026	0,000	75719	25875	0,34
PFIT_0612400	1055	1161	148	192	0,000	690	271	0,4
PFIT_0616700	131473	151684	17554	23270	0,000	88089	32528	0,4
PFIT_0624200	775	1010	1032	1082	0,000	554	1689	3,1
PFIT_0702500	896	1146	120	155	0,000	634	219	0,3
PFIT_0803400	84	109	157	143	0,000	60	240	4,0
PFIT_0813800.1	648	851	92	89	0,000	465	145	0,3
PFIT_0820600	11899	14746	1627	2231	0,000	8272	3073	0,4
PFIT_0834500	13236	16937	1809	2212	0,000	9359	3207	0,3
PFIT_0903900	2658	2944	343	470	0,000	1745	648	0,4
PFIT_0909300	224	305	571	584	0,000	164	923	5,6
PFIT_0929600	70606	81693	10414	12819	0,000	47376	18529	0,4
PFIT_0933800	574	743	750	758	0,000	409	1206	2,9
PFIT_0936400	13889	16769	2035	2365	0,000	9525	3512	0,4
PFIT_1001200	2922	3367	455	506	0,000	1957	768	0,4
PFIT_1018600	3575	4712	12832	16009	0,000	2568	22997	9,0
PFIT_1034600	148334	188435	22571	28933	0,000	104474	41054	0,4
PFIT_1037600	106	122	291	336	0,000	71	501	7,1
PFIT_1113400	179	217	253	284	0,000	123	429	3,5
PFIT_1115300	83	107	146	187	0,000	59	266	4,5
PFIT_1131900	449	638	665	779	0,000	337	1153	3,4
PFIT_1134300	626	815	866	927	0,000	447	1433	3,2
PFIT_1141100	2234	2818	300	406	0,000	1568	563	0,4
PFIT_1151000	132	141	237	228	0,000	85	372	4,4

PFIT_1207000	186	193	418	538	0,000	118	762	6,4
PFIT_1210600	458	584	753	862	0,000	323	1289	4,0
PFIT_1216300	1246	1440	145	201	0,000	836	276	0,3
PFIT_1219400	649	814	87	105	0,000	454	153	0,3
PFIT_1223800	2372	3122	283	363	0,000	1703	515	0,3
PFIT_1234900	1583	1981	253	297	0,000	1106	439	0,4
PFIT_1322900	7177	8657	934	1236	0,000	4920	1730	0,4
PFIT_1329400	421	505	718	891	0,000	288	1283	4,5
PFIT_1333800	265	375	322	336	0,000	198	526	2,7
PFIT_1345900	108	112	320	306	0,000	69	501	7,3
PFIT_1355400	1020	1289	130	152	0,000	717	225	0,3
PFIT_1363100	2498	2871	391	429	0,000	1671	655	0,4
PFIT_1406600	910	1123	1320	1517	0,000	631	2265	3,6
PFIT_1413000	1482	1921	237	253	0,000	1055	392	0,4
PFIT 1426600	305	328	463	521	0,000	197	786	4,0
PFIT 1433000	263	342	1103	1147	0,000	188	1798	9,6
PFIT 1438500	873	1077	121	159	0,000	606	223	0,4
	264	343	285	319	0,000	188	482	2,6
PFIT 1447800	3093	3692	365	511	0,000	2109	698	0,3
PFIT 1450400	3300	4047	456	659	0,000	2282	888	0,4
PFIT 1453200	13459	17269	2104	2578	0,000	9530	3734	0,4
PFIT 1455300	38	42	111	126	0,000	25	189	7,6
PFIT 1473700	3419	4109	485	580	0,000	2339	850	0,4
PFIT 1476300	159	209	1044	969	0.000	114	1611	14.1
PFIT bin03400	5	4	43	46	0.000	3	71	25.3
PFIT_bin04200	16	29	174	176	0.000	14	280	20.0
PFIT_bin05800	21	19	77	79	0,000	12	125	10.0
PFIT bin07800	6	3	46	46	0,000	3	74	26.1
PFIT bin08300	175	187	225	273	0.000	113	397	3.5
PFIT_bin08900	148	185	1295	1317	0,000	104	2088	20.2
PFIT 0202800	1	105	28	40	0,000	1	54	20,2 87.0
PFIT 1103100	23	27	<u>-</u> 65	71	0,000	16	109	7.0
PFIT_0602300	1039	1168	950	1167	0,000	687	1689	2.5
PFIT 1422900	655	728	82	1107	0,000	431	160	2,5
PEIT 1252300	25578	33625	3801	4688	0,000	183/8	6770	0,4
PEIT_0503300	510	55025 622	5001 777	4000	0,000	352	1163	33
PEIT 1120700	1377	1813	221	256	0,000	080	381	0.4
PEIT_0005600	55310	73635	7604	0618	0,000	30051	13804	0,4
PFIT_0905000	55519	75055 774	101	121	0,000	39931 451	13004	0,5
PFIT_0712800	073	0	22	30	0,000	451	177	66.3
PEIT 0201200	52	54	22 81	102	0,000	33	1/6	4.4
DEIT 1226600	046	1021	126	102	0,000	55 675	220	4,4
PFI1_1230000 DEIT_1020800.2	940	1420	120	1/4	0,000	073 800	239	0,4
PFI1_1050800.2	1140	1439	105	233	0,000	800	31/ 176	0,4
PFI1_0411550	39 55	51	93	128	0,000	28 41	1/0	0,3
PFI1_1122000	55	/0	101	97	0,000	41	158	3,9
PFIT_0819300	434	512	61	66	0,000	294	101	0,3
PFI1_0108500	458	566	/9	65	0,000	318	115	0,4
PFI1_1006000	175	220	190	208	0,000	123	318	2,6
PFIT_0608500	197	259	227	212	0,000	142	351	2,5
PFTT_1366800	39	48	75	79	0,000	27	123	4,5
PFIT_0909700	306	409	37	47	0,000	222	67	0,3
PFIT_bin00900	224	231	279	366	0,000	142	514	3,6
PFIT_1116800	6103	8187	858	1109	0,000	4426	1568	0,4

PFIT_1011800	411	527	46	75	0,000	291	96	0,3
PFIT_0710900	95	107	112	133	0,000	63	196	3,1
PFIT_0900100	78	82	107	104	0,000	50	169	3,4
PFIT_1251500	490	565	72	89	0,000	328	129	0,4
PFIT_1325200	391	496	52	73	0,000	275	100	0,4
PFIT_0911200	333	440	43	59	0,000	240	81	0,3
PFIT_0724700	1374	1980	136	168	0,000	1037	243	0,2
PFIT_1200700	148	153	160	150	0,000	94	248	2,6
PFIT_0423500	3	5	23	31	0,000	2	43	17,3
PFIT_1111400	294	362	43	39	0,000	204	66	0,3
PFIT_1314500	473	637	79	91	0,000	344	136	0,4
PFIT_1230000	353	416	52	54	0,000	239	85	0,4
PFIT_1150900	131	142	145	138	0,000	85	226	2,7
PFIT_bin01000	57	67	76	95	0,000	39	136	3,5
PFIT_bin07600	42	46	67	73	0,000	27	112	4,1
PFIT_1214500	403	445	63	63	0,000	264	101	0,4
PFIT_0929800	442	501	70	77	0,000	294	117	0,4
PFIT_bin02100	70	120	113	147	0,000	59	207	3,5
PFIT_0502400	49	78	76	95	0,000	39	136	3,5
PFIT_0504100	425	486	71	70	0,000	284	113	0,4
PFIT 0406300	7417	9355	12242	16901	0,000	5204	23208	4,5
PFIT 1413100	2493	3404	453	457	0,000	1826	728	0,4
PFIT 0111500	56	71	80	109	0,000	39	151	3,8
PFIT 1219000	73	90	96	98	0.000	51	155	3.1
PFIT_0800100	78	97	90	112	0,000	54	161	3.0
PFIT 1477000	28	56	71	59	0,000	26	104	4,0
PFIT 1442100	587	826	89	98	0.000	437	149	0.3
PFIT 1478700	99	115	122	103	0.000	67	180	2.7
PFIT 0835600	123	141	117	141	0.000	82	206	2.5
PFIT 0623600	331	458	59	59	0.000	244	94	0.4
PFIT 1229800	557	775	99	98	0.000	412	158	0.4
PFIT 1117700	317	378	52	55	0.000	216	86	0.4
PFIT 1426100	8	14	35	28	0.000	7	50	7.4
PFIT 0103900.1	149	163	10	18	0.000	97	22	0.2
PFIT 1004900	30	49	58	58	0.000	24	93	3.8
PFIT_0522800	311	362	44	60	0.000	209	83	0.4
PFIT 1243500	225	336	27	25	0.000	173	42	0.2
Pf_M7661101700	92	140	9	5	0.000	72	11	0.2
PFIT 1034100	416	561	61	88	0.000	303	119	0.4
PFIT 0711300	23	20	46	36	0.000	13	66	4.9
PFIT 1452900	520	670	56	106	0.000	369	129	0.3
PFIT 1466700	129	99	108	112	0,000	72	176	2,5
PFIT 1348200	76	107	84	104	0,000	57	150	2,6
PFIT_0808700	75	107	89	93	0,000	55	145	2,6
PFIT_0720400	4119	5973	572	742	0,000	3119	1047	0.3
PFIT 1437100	27	44	51	51	0,000	22	82	3.7
PFIT 1341000	546	788	81	100	0,000	412	144	0.4
PFIT 0201300	6	8	21	34	0,000	4	44	10.1
PFIT 0104000	67	63	66		0.001	-+ 41	116	29
PFIT 0103900 2	107	126	6	14	0.001	+1 72	16	0.2
PFIT 1431900	65	63	69	72	0.001	40	113	2.8
PFIT 1421800	31	47	64	49	0.003	24	91	2,0 3 8
PFIT 0201100	18	20	64	44	0.003	12	87	7.3
	10	-5			-,		07	.,.

PFIT_1410100	4166	6036	705	853	0,004	3153	1243	0,4
PFIT_0728500	120	135	9	18	0,005	79	22	0,3
PFIT_0301200	0	8	18	16	0,005	2	27	11,1
PFIT_1111600	173	241	27	34	0,006	128	49	0,4
PFIT_0901100	4	4	19	15	0,006	2	27	10,9
PFIT_0524800	325	371	33	71	0,006	217	83	0,4
PFIT_1445400	136	179	17	23	0,007	98	32	0,3
PFIT_1147400	222	316	290	236	0,013	166	422	2,5
PFIT_0928100.2	118	157	12	21	0,013	85	26	0,3
PFIT_0820500	4704	7110	758	849	0,014	3647	1283	0,4
PFIT_0622300	33	43	47	46	0,017	24	74	3,2
PFIT_1409800	20	38	41	38	0,017	18	63	3,5
PFIT_1322100	47	65	63	55	0,019	35	94	2,7
PFIT_1432100	195	209	32	31	0,019	126	50	0,4
PFIT_1311500	26	30	37	40	0,023	17	62	3,5
PFIT_1354700	70	68	63	72	0,025	43	108	2,5
PFIT_0526800	322	335	31	68	0,030	205	79	0,4
PFIT_1338400	1	1	8	13	0,030	1	17	26,8
PFIT_0401300	4	3	17	12	0,039	2	23	10,6
PFIT_0923800	34	32	41	42	0,039	21	66	3,2
PFIT_bin06300	543	803	87	116	0,049	416	162	0,4
PFIT_0303600	167	189	22	33	0,051	111	44	0,4
PFIT 0628900	6	6	13	22	0,053	4	28	7,4

Tabelle A31: Transkriptom-Analyse (Gene mit signifikant differentieller Expression, padj \leq 0,05; *Fold Change* \geq 2,5)_Ausgangskultur (p0) vs. *Panning* VI (p6). Transkriptionsniveau \geq 1000. padj: Signifikanz, TN: Transkriptionsniveau, FC: *Fold Change*.

Gen	p0_1	p0_2	p6_1	p6_2	padj	TN p0	TN p6	FC
PFIT_0101300	70	93	352	516	0	74	462	6,3
PFIT_0101600	142	173	538	800	0	143	711	5,0
PFIT_0107000	25366	29571	4767	5001	0	24943	5403	0,2
PFIT_0112800	579	573	25	48	0	526	38	0,1
PFIT_0113100	178	196	12	18	0	170	16	0,1
PFIT_0313500	15	27	187	280	0	19	248	13,1
PFIT_0400500	13235	14381	2755	3736	0	12571	3486	0,3
PFIT_0400700	277	276	21	26	0	252	25	0,1
PFIT_0406300	2135	3419	13205	18775	0	2493	17088	6,9
PFIT_0501600	244	414	847	1307	0	295	1140	3,9
PFIT_0529200	1554	1664	198	251	0	1466	242	0,2
PFIT_0536300	196	210	12	20	0	185	17	0,1
PFIT_0607700	2110	1955	230	315	0	1861	292	0,2
PFIT 0701300	9558	9495	1564	2005	0	8702	1929	0,2
PFIT_0711200	816	858	102	204	0	763	158	0,2
PFIT_0729800	12543	14843	2850	3917	0	12427	3629	0,3
PFIT 0802300	1534	1980	220	381	0	1590	314	0.2
 PFIT_0804800	4093	4536	813	1048	0	3925	1004	0.3
PFIT 0820200	2539	3096	370	500	0	2554	467	0,2
PFIT 0834300	592	573	20	28	0	532	25	0,0
PFIT 0835500	281	266	18	17	0	250	19	0.1
PFIT 0909300	71	73	546	666	0	66	659	10.0
PFIT 0933800	226	261	678	943	0	221	868	3.9
PFIT 0936800	809	804	82	112	0	736	104	0.1
PFIT 1000600	223	290	8	34	0	232	21	0.1
PFIT 1004000	899	884	104	147	0	814	134	0.2
PFIT 1015100	589	541	56	86	0	517	75	0.1
PFIT 1015800	8165	12254	255	380	0	9185	337	0.0
PFIT 1018600	910	1282	14773	17193	0	988	17479	17.7
PFIT 1021900	2831	2697	415	481	0	2529	489	0.2
PFIT 1102000	436	498	31	60	0	424	47	0.1
PFIT_1115300	35	34	176	246	0	31	225	7.2
PFIT 1119000	2957	2889	560	847	0	2671	746	0.3
PFIT 1149200	3243	3924	326	532	0	3250	451	0.1
PFIT 1149600	687	857	41	75	0	699	61	0.1
PFIT 1200700	817	934	159	144	0	796	168	0.2
PFIT 1210600	193	278	859	1238	0	212	1118	5.3
PFIT 1219100	184	177	14	20	0	165	18	0.1
PFIT 1241100	530	508	71	73	0	475	79	0.2
PFIT 1329400	205	256	838	1158	0	209	1069	5.1
PFIT 1344800	205 76	162	379	569	0	106	503	47
PFIT_1406600	291	347	2106	2875	0	289	2673	9.2
PFIT_bin00900	65	76	568	707	0	64	691	10.8
PF aniconlast ge	00	70	500	101	0	01	071	10,0
nome 105900	8241	10432	1639	2195	0	8452	2062	0.2
PFIT 0805700	301	229	693	1065	6.24E-13	244	931	3.8
PFIT 1345900	25	22)	347	400	6.24E-13	21	408	19.0
PFIT 1348000	574	458	1239	1998	6.24E-13	47.5	1705	3.6
					., = - 0		2.50	-,5

PFT_0712800 0 0 35 54 6,24F-13 0 47 1 PFT_1207500 3034 2916 599 836 1,28F-12 2721 768 0,3 PFT_075040 884 12269 2171 3243 1,87E-12 9721 768 0,3 PFT_1471600 70 88 219 415 0,000 72 239 4.6 PFT_1471600 70 88 219 415 0,000 386 1435 3.7 PFT_020100 91 20 92 125 0,000 131 116 8.9 PFT_020100 913 2199 3754 5665 0,000 2717 16747 6.2 PFT_024200 1639 4524 13580 1738 0,000 2215 141 3.4 1405 3.5 PFT_04500 248 654 1113 1641 0,000 1312 1143 4.4 145 145 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>6817</th>									6817
PFTL_0712800 0 0 35 54 6.24E-13 0 47 1 PFTL_0705400 8446 12269 2171 3243 1.87E-12 9526 2876 0.3 PFTL_011100 303 2293 44 55 0.000 72 329 4.6 PFTL_142000 44 87 214 321 0.000 72 329 4.6 PFTL_142000 70 88 219 415 0.000 133 116 8.9 PFTL_0501700 913 2199 3754 5665 0.000 1378 4999 3.6 PFTL_072400 6102 7101 1833 2110 0.000 2205 807 0.3 PFTL_072400 1639 4524 13580 1738 0.000 2235 1025 0.3 PFTL_1476800 284 654 1113 1641 0.000 312 11413 3.4 PFT_0180500 284									0244
PFT_0712800 0 0 35 54 6,24E-13 0 47 1 PFT_10705400 8846 12269 171 3243 1,87E-12 9526 2876 0,3 PFT_50705400 8846 12269 1211 3243 1,87E-12 9526 2876 0,3 PFT_1147000 70 88 219 415 0,000 72 329 46 PFT_11471600 70 88 219 415 0,000 72 329 46 PFT_102100 9 20 92 125 0,000 138 1499 3.6 PFT_10201700 913 2199 3754 5665 0,000 1238 10.3 PFT_10450100 2632 1644 857 0,000 2315 10.2 0.3 PFT_10450100 2448 654 113 1641 0,000 4312 1.4 3.4 PFT_10135000 1517 1150 1449									3015,
PFTT_1205500 3034 2916 599 836 1.25E-12 2721 768 0.3 PFTT_05101 00 3233 1.87E-12 9526 2876 0.3 PFTT_1247900 44 87 214 321 0.000 59 284 4.8 PFTT_147100 70 88 219 415 0.000 72 233 4.6 PFTT_147100 70 88 219 415 0.000 72 346.6 PFTT_0501700 913 1193 3754 566.5 0.000 1378 4999 3.6 PFTT_020400 626 3221 644 857 0.000 2505 807 3.3 PFTT_020400 634 3559 835 1062 0.000 2385 1025 0.3 PFTT_148600 2446 654 1113 1641 0.000 312 11413 3.4 PFTT_011040 400 2573 517 821	PFIT_0712800	0	0	35	54	6,24E-13	0	47	1
PFTT_0105400 8846 12269 2171 3243 1,87E-12 9526 2876 0,3 PFTT_111100 303 293 44 55 0,000 272 53 0.2 PFTT_1217000 44 87 214 321 0,000 59 284 4,8 PFTT_1471000 70 88 219 415 0,000 386 1335 3,7 PFTT_02100 9 20 92 125 0,000 1378 4999 3,6 PFT_020400 2626 3221 644 857 0,000 2050 887 0,3 PFT_0208400 2626 3221 644 857 0,000 2171 16747 6.2 PFT_104800 2408 2573 517 821 0,000 3121 11413 3.4 PFT_014700 2408 2573 5171 8668 12780 0,000 3121 11413 3.4 PFT_011400	PFIT_1205500	3034	2916	599	836	1,25E-12	2721	768	0,3
PFTT_Lini1100 303 293 44 55 0,000 272 53 0,2 PFTT_L1247900 44 87 214 321 0,000 59 284 4.8 PFTT_L1450400 260 609 1008 1735 0,000 386 1435 3,7 PFTT_0201200 9 20 92 125 0,000 13 116 89 PFTT_0201200 9 20 92 125 0,000 13 116 89 PFTT_0201200 9 20 92 125 0,000 133 103 PFTT_020400 2626 3221 644 857 0,000 2255 0.3 PFTT_0805600 284 654 1113 1641 0,000 417 1465 3.5 PFT_017806 203 5427 476 737 0,000 2026 642 0.3 PFT_0170500 1167 1150 2560 414	PFIT_0705400	8846	12269	2171	3243	1,87E-12	9526	2876	0,3
PFTT_1247900 44 87 214 321 0,000 59 284 4,8 PFTT_1471600 70 88 219 415 0,000 72 329 4.6 PFTT_0201200 9 20 92 125 0,000 13 1116 8.9 PFT_0201200 913 2199 3754 5665 0,000 1378 4999 3.6 PFT_1244600 6102 7101 1383 2110 0,000 2650 807 0.3 PFT_024200 1639 4524 13580 17386 0,000 2171 16747 6.2 PFT_04500 2484 654 1113 1641 0,000 4174 4363 3.4 PFT_05000 2293 5171 8668 12780 0,000 312 1413 3.4 PFT_011400 4100 5512 150 1449 0,000 733 110 0.0 PFT_0103200 1633	PFIT_bin11100	303	293	44	55	0,000	272	53	0,2
PFIT_1471600 70 88 219 415 0.000 72 329 4.6 PFTT_1450400 260 609 1008 1735 0.000 386 1435 3.7 PFTT_0201700 913 2199 3754 5665 0.000 1378 4999 3.6 PFTT_1202400 6102 7101 1383 2110 0.000 5995 1851 0.3 PFTT_024200 1639 4524 13580 17386 0.000 2265 807 0.3 PFTT_14465100 3544 6545 1113 1641 0.000 312 1143 3.4 PFTT_1478600 2408 2573 517 821 0.000 3312 1143 3.4 PFTT_011040 4100 5171 8668 12780 0.000 1332 3474 0.3 PFTT_010700 1537 673 297 0.60 0.00 733 110 0.0 PFTT_010700	PFIT_1247900	44	87	214	321	0,000	59	284	4,8
PFIT_1450400 260 609 1008 1735 0.000 386 1435 3,7 PFIT_0201200 9 20 92 125 0.000 13 116 8,9 PFIT_0201700 913 2199 3754 5565 0.000 1378 49999 3,6 PFIT_0202400 6102 7101 1383 2110 0.000 2630 807 0.3 PFIT_0202400 6264 3221 644 857 0.000 2285 1025 0.3 PFIT_072040 3544 3659 835 1062 0.000 312 1143 3,4 PFIT_1478600 2408 2573 517 821 0.000 4324 13,4 3,7 PFIT_1035300 2293 5171 8668 12780 0.000 1332 14143 3,4 PFIT_013500 11517 11550 2560 4014 0.000 1332 3474 0,3 PFIT_01300	PFIT 1471600	70	88	219	415	0,000	72	329	4,6
PFT_0201200 9 20 92 125 0.000 13 116 8,9 PFT_0201700 913 2199 3754 5665 0.000 1378 4999 3.0 PFT_024200 1639 4524 13580 17386 0.000 2650 807 0.3 PFT_024200 1639 4524 13580 17386 0.000 3285 1025 0.3 PFT_14500 244 654 1113 1641 0.000 3285 1141 3.4 PFT_0103500 2203 5171 868 12780 0.000 3312 11413 3.4 PFT_01020 2039 2427 476 737 0.000 312 1141 3.4 PFT_01020 2039 2427 476 737 0.000 63 359 5.7 PFT_114400 63 75 297 476 0.000 63 359 5.7 PFT_010800 9167	PFIT 1450400	260	609	1008	1735	0,000	386	1435	3,7
PFIT_0501700 913 2199 3754 5665 0.000 1378 4999 3,6 PFIT_1244600 6102 7101 1383 2110 0.000 5995 1851 0.3 PFIT_024200 1639 4524 13580 17386 0.000 2717 16747 6.2 PFIT_1465100 3544 3659 835 1062 0.000 3285 1025 0.3 PFIT_1478600 2448 2573 517 821 0.000 312 11413 3.4 PFIT_1035300 2293 5171 8668 12780 0.000 4384 1407 0.3 PFIT_010200 2039 2427 476 737 0.000 2032 3474 0.3 PFIT_0107200 2039 2427 476 737 0.000 743 110 0.3 PFIT_0107200 26386 3556 6919 10032 0.000 743 1109 0.3 PFIT_	PFIT 0201200	9	20	92	125	0,000	13	116	8,9
PFIT_1244600 6102 7101 1383 2110 0.000 5995 1851 0.3 PFIT_0208400 2626 3221 644 857 0.000 2650 807 0.3 PFIT_01524200 1639 4524 13580 17386 0.000 2255 1025 0.3 PFIT_165100 3544 3659 835 1062 0.000 2269 706 0.3 PFIT_1478600 2408 2573 517 821 0.000 312 11413 3.4 PFIT_0103500 2293 5171 8668 12780 0.000 3312 11413 3.4 PFIT_011400 4100 5612 1150 1449 0.000 4384 1407 0.3 PFIT_010120 2039 2427 476 737 0.000 27131 9037 0.3 PFIT_010120 2039 2424 423 0.000 27131 9037 0.3 PFIT_010100 <t< td=""><td>PFIT 0501700</td><td>913</td><td>2199</td><td>3754</td><td>5665</td><td>0,000</td><td>1378</td><td>4999</td><td>3,6</td></t<>	PFIT 0501700	913	2199	3754	5665	0,000	1378	4999	3,6
PFIT_0208400 2626 3221 644 857 0.000 2650 807 0.3 PFTT_0724200 1639 4524 13580 17386 0.000 2717 16747 6.2 PFTT_080560 284 654 1113 1641 0.000 3285 1023 0.3 PFTT_080560 284 654 1113 1641 0.000 3285 1023 0.3 PFTT_0180500 2293 5171 8668 12780 0.000 3312 11413 3.4 PFTT_010800 9167 6734 841 123 0.000 2026 642 0.3 PFTT_0710800 9167 6734 84 123 0.000 27131 9037 0.3 PFTT_0710800 9167 634 842 20.000 27131 9037 0.3 PFT_0710800 12160 13012 3096 4021 0.000 11465 3842 0.3 PFTT_0120900 <t< td=""><td>PFIT 1244600</td><td>6102</td><td>7101</td><td>1383</td><td>2110</td><td>0,000</td><td>5995</td><td>1851</td><td>0.3</td></t<>	PFIT 1244600	6102	7101	1383	2110	0,000	5995	1851	0.3
PFIT_0724200 1639 4524 13580 17386 0,000 2717 16747 6,2 PFIT_1465100 3544 3659 835 1062 0,000 3285 1025 0.3 PFIT_0805600 284 654 1113 1641 0,000 417 1465 3,5 PFIT_145800 2293 5171 8668 12780 0,000 3312 11413 3,4 PFIT_011400 4100 5612 1150 1449 0,000 4384 1407 0,3 PFIT_0107200 2039 2427 476 737 0,000 2713 9037 0,3 PFIT_010800 9167 6734 84 123 0,000 7433 110 0,0 PFIT_010800 9167 6734 84 123 0,000 27131 9037 0,3 PFIT_01800 402 932 1444 2253 0,000 571 364 0,33 955 3,3	PFIT_0208400	2626	3221	644	857	0.000	2650	807	0.3
PFIT_1465100 3544 3659 835 1062 0,000 3285 1025 0,3 PFIT_0805600 284 654 1113 1641 0,000 417 1465 3,5 PFIT_1035300 2293 5171 8668 12780 0,000 3312 1143 3,4 PFIT_011400 4100 5612 1150 1449 0,000 4384 1407 0,3 PFIT_011000 2039 2427 476 737 0,000 2036 642 0,3 PFIT_010800 9167 6734 84 123 0,000 27131 9037 0,3 PFIT_011400 63 75 297 366 0,000 63 359 5,7 PF_apicoplast ge nome_105100 12160 13012 3096 4021 0,000 11465 3842 0,3 PFIT_010100 490 686 111 171 0,000 531 149 0,3	PFIT 0724200	1639	4524	13580	17386	0.000	2717	16747	6.2
PFT_0805600 284 654 1113 1641 0,000 417 1465 3,5 PFT_1478600 2408 2573 517 821 0,000 2269 706 0.3 PFT_011400 4100 5612 1150 1449 0,000 4384 1413 3,4 PFT_011400 4100 5612 1150 1449 0,000 10532 3474 0,3 PFT_0107200 2039 2427 476 737 0,000 2026 642 0,3 PFT_0107200 26386 3354 6919 10032 0,000 63 359 5,7 PFT_aptoptast_ge nome_105100 12160 13012 3096 4021 0,000 11465 3842 0,3 PFT_0210900 85 106 381 471 0,000 87 462 5,3 PFT_0210900 85 106 381 471 0,000 797 2689 0,3	PFIT 1465100	3544	3659	835	1062	0.000	3285	1025	0.3
PFTT_1478600 2408 2573 517 821 0,000 2269 706 0,3 PFTT_1035300 2293 5171 8668 12780 0,000 3312 11413 3,4 PFTT_011400 4100 5612 1150 1449 0,000 4384 100 0,00 PFTT_0107200 2039 2427 476 737 0,000 2026 642 0,3 PFTT_0107200 2039 2427 476 737 0,000 7343 110 0,0 PFTT_010800 9167 6734 84 123 0,000 27131 9037 0,3 PFTT_1400630 63 75 297 366 0,000 613 359 5,7 PFT_apicoplast_ge	PFIT 0805600	284	654	1113	1641	0.000	417	1465	3.5
PFTT_1035300 2293 5171 8668 12780 0,000 3312 11413 3,4 PFTT_0111400 4100 5612 1150 1449 0,000 4384 1407 0,3 PFTT_0107200 2039 2427 476 737 0,000 2032 3474 0,3 PFT_010800 9167 6734 84 123 0,000 27131 9037 0,3 PFT_01113400 63 75 297 366 0,000 27131 9037 0,3 PFT_1113400 63 75 297 366 0,000 2145 343 110 0,0 PFT_00180 402 932 1444 2253 0,000 592 1955 3,3 PFT_0101900 85 106 381 471 0,000 57 642 5,3 PFT_0101900 842 9034 2077 2958 0,000 797 2689 0,3 PFT_010300 </td <td>PFIT 1478600</td> <td>2408</td> <td>2573</td> <td>517</td> <td>821</td> <td>0.000</td> <td>2269</td> <td>706</td> <td>0.3</td>	PFIT 1478600	2408	2573	517	821	0.000	2269	706	0.3
PFTT_0111400 4100 5612 1150 1449 0,000 4384 1407 0,3 PFTT_0107200 2039 2427 476 737 0,000 2032 3474 0,3 PFTT_0107200 2039 2427 476 737 0,000 2032 642 0,3 PFT_0710800 9167 6734 84 123 0,000 7343 110 0,0 PFT_0710800 63 75 297 366 0,000 63 359 5,7 PFT_aptoplast_ge 0,000 11465 3842 0,3 PFTT_010100 402 932 1444 2253 0,000 592 1955 3,3 PFT_0101100 490 686 111 171 0,000 87 462 5,3 PFT_010300 8482 9034 2077 2958 0,000 7639 332 149 0,3 PFT_010300 1672	PFIT 1035300	2293	5171	8668	12780	0.000	3312	11413	3.4
PFTT_1365900 11517 11550 2560 4014 0.000 10532 3474 0,3 PFTT_0107200 2039 2427 476 737 0,000 2026 642 0,3 PFTT_0710800 9167 6734 84 123 0,000 7343 110 0,0 PFT_0113400 63 75 297 366 0,000 63 359 5,7 PF_apicoplast_ge 0,000 1465 3842 0,3 PFT_11407800 402 932 1444 2253 0,000 87 462 5,3 PFT_010100 490 686 111 171 0,000 87 462 5,3 PFT_1003900 8482 9034 2077 2958 0,000 7979 2689 0,3 PFT_1007300 1672 1936 443 527 0,3 194 5,1 PFT_10107300 16172 1936 443	PFIT 0111400	4100	5612	1150	1449	0.000	4384	1407	0.3
PFTT_0107200 2039 2427 476 737 0.000 2026 642 0,3 PFTT_0710800 9167 6734 84 123 0.000 7343 110 0,0 PFT_00623500 26386 33564 6919 10032 0.000 27131 9037 0,3 PFT_11113400 63 75 297 366 0.000 63 359 5,7 PF_apicoplast_ge	PFIT 1365900	11517	11550	2560	4014	0.000	10532	3474	0.3
PFTT_0710800 9167 6734 84 123 0,000 7343 110 0,0 PFT_0623500 26386 33564 6919 10032 0,000 27131 9037 0,3 PFT_1113400 63 75 297 366 0,000 63 359 5,7 PF_apicoplast_ge nome_105100 12160 13012 3096 4021 0,000 11465 3842 0,3 PFT_1407800 402 932 1444 2253 0,000 592 1955 3,3 PFT_0210900 85 106 381 471 0,000 87 462 5,3 PFT_103900 8482 9034 2077 2958 0,000 7979 2689 0,3 PFT_00710900 41 42 160 199 0,000 38 194 5,1 PFT_0819500 574 558 105 176 0,000 517 148 0,3 PFT_10819500 574 558 105 176 0,000 4518 1536	PFIT 0107200	2039	2427	476	737	0.000	2026	642	0.3
PFTT_0623500 26386 33564 6919 10032 0,000 27131 9037 0,3 PFT_012023500 26386 33564 6919 10032 0,000 27131 9037 0,3 PFT_apicoplast_ge	PFIT 0710800	9167	6734	84	123	0.000	7343	110	0.0
PHT_1113400 63 75 297 366 0,000 63 359 5,7 PF_apicoplast_ge nome_105100 12160 13012 3096 4021 0,000 11465 3842 0,3 PFT_1407800 402 932 1444 2253 0,000 592 1955 3,3 PFT_0101100 490 686 111 171 0,000 531 149 0,3 PFT_1007300 1672 1936 443 527 0,000 1639 527 0,3 PFT_010900 41 42 160 199 0,000 38 194 5,1 PFT_010900 41 42 160 199 0,000 38 194 5,1 PFT_018050 574 558 105 176 0,000 9386 34402 0,3 PFT_1242100 4290 5710 1175 1708 0,000 4518 1536 0,3 PFT_1455300 <td>PFIT_0623500</td> <td>26386</td> <td>33564</td> <td>6919</td> <td>10032</td> <td>0,000</td> <td>27131</td> <td>9037</td> <td>0.3</td>	PFIT_0623500	26386	33564	6919	10032	0,000	27131	9037	0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PFIT 1113400	63	75	297	366	0.000	63	359	5.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PF apicoplast ge	00	10	_>,	000	0,000	00		0,7
PFIT_1407800 402 932 1444 2253 0,000 592 1955 3,3 PFIT_0210900 85 106 381 471 0,000 87 462 5,3 PFIT_0101100 490 686 111 171 0,000 531 149 0,3 PFIT_1003900 8482 9034 2077 2958 0,000 7979 2689 0,3 PFIT_0710900 41 42 160 199 0,000 38 194 5,1 PFIT_0710900 41 42 160 199 0,000 3083 0,33 PFIT_0819500 574 558 105 176 0,000 517 148 0,3 PFIT_1242100 4290 5710 1175 1708 0,000 4518 1536 0,3 PFIT_1358700 1324 1556 324 471 0,000 1307 423 0,3 PFIT_1366100 2431 2277 466 526 0,000 2155 543 0,3 PFIT_136	nome 105100	12160	13012	3096	4021	0.000	11465	3842	0.3
PFIT_0210900 85 106 381 471 0,000 87 462 5,3 PFIT_0101100 490 686 111 171 0,000 87 462 5,3 PFIT_1003900 8482 9034 2077 2958 0,000 7979 2689 0,3 PFIT_0710900 41 42 160 199 0,000 38 194 5,1 PFIT_0819500 574 558 105 176 0,000 910 3083 0,3 PFIT_1242100 4290 5710 1175 1708 0,000 4518 1536 0,3 PFIT_1358700 1324 1556 324 471 0,000 1307 423 0,3 PFIT_1455300 14 10 157 1788 0,000 11 179 16,3 PFIT_5008500 72 85 229 295 0,000 71 282 4,0 PFIT_1366100 2431	PFIT 1407800	402	932	1444	2253	0.000	592	1955	3.3
PFTT_01011004906861111710,0005311490,3PFTT_100390084829034207729580,000797926890,3PFTT_1007300167219364435270,00016395270,3PFTT_071090041421601990,000381945,1PFT_1352200890910977239933620,000901030830,3PFT_08195005745581051760,0005171480,3PFT_124210042905710117517080,000451815360,3PFT_1358700132415563244710,00013074230,3PFT_145530014101541730,0001117916,3PFTT_1368100243122774665260,00021555430,3PFTT_1366100243122774665260,00021555430,3PFTT_1320900159721514605994,95E-0916935710,3PFTT_133360019719126457,06E-09177370,2PFT_1320900159721514605994,95E-098779,3PFT_1358003669218729841,14E-0873727750,4PFT_1205364005075251061591,29E-0847	PFIT 0210900	85	106	381	471	0.000	87	462	5.3
PFIT_1003900 8482 9034 2077 2958 0,000 7979 2689 0,3 PFIT_1007300 1672 1936 443 527 0,000 1639 527 0,3 PFIT_0710900 41 42 160 199 0,000 38 194 5,1 PFIT_0819500 574 558 105 176 0,000 9010 3083 0,3 PFIT_0819500 574 558 105 176 0,000 99386 34402 0,3 PFIT_1242100 4290 5710 1175 1708 0,000 4518 1536 0,3 PFIT_1358700 1324 1556 324 471 0,000 1107 423 0,3 PFIT_1366100 2431 2277 466 526 0,000 2155 543 0,3 PFIT_1320900 1597 2151 460 599 4,95E-09 1693 571 0,3 PFIT_1035200	PFIT 0101100	490	686	111	171	0.000	531	149	0.3
PFTT_1007300167219364435270,00016395270,3PFIT_071090041421601990,000381945,1PFIT_1352200890910977239933620,000901030830,3PFIT_08195005745581051760,0005171480,3PFIT_102430010110211778927338366010,00099386344020,3PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_1366100243122774665260,00021555430,3PFIT_1366100243122774665260,00021555430,3PFIT_1320900159721514605994,95E-0916935710,3PFIT_10352008863817210333447,64E-09807428740,4PFIT_120364005075251061591,29E-084701410,3PFIT_05364005075251061591,29E-084701410,3PFIT_05064005075251061591,29E-084701410,3PFIT_0711000192286536 <td>PFIT 1003900</td> <td>8482</td> <td>9034</td> <td>2077</td> <td>2958</td> <td>0.000</td> <td>7979</td> <td>2689</td> <td>0.3</td>	PFIT 1003900	8482	9034	2077	2958	0.000	7979	2689	0.3
PFIT_071090041421601990,000381945,1PFIT_1352200890910977239933620,000901030830,3PFIT_08195005745581051760,0005171480,3PFIT_102430010110211778927338366010,00099386344020,3PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_1320900159721514605994,95E-0916935710,3PFIT_103520088638817210333447,64E-09807428740,4PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin07600191778 <td>PFIT 1007300</td> <td>1672</td> <td>1936</td> <td>443</td> <td>527</td> <td>0.000</td> <td>1639</td> <td>527</td> <td>0.3</td>	PFIT 1007300	1672	1936	443	527	0.000	1639	527	0.3
PFIT_1352200890910977239933620,000901030830,3PFIT_08195005745581051760,0005171480,3PFIT_102430010110211778927338366010,00099386344020,3PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_1320900159721514605994,95E-0916935710,3PFIT_13360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_05364005075251061591,29E-084701410,3PFIT_05364005075251061591,29E-084701410,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin07600191778 <t< td=""><td>PFIT 0710900</td><td>41</td><td>42</td><td>160</td><td>199</td><td>0.000</td><td>38</td><td>194</td><td>5.1</td></t<>	PFIT 0710900	41	42	160	199	0.000	38	194	5.1
PFIT_08195005745581051760,0005171480,3PFIT_102430010110211778927338366010,00099386344020,3PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_600850072852292950,00021555430,3PFIT_1366100243122774665260,00021555430,3PFIT_13060076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_103520088638817210333447,64E-09807428740,4PFIT_105368009963799,32E-098779,3PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_10370048615770137019213,55E-08482417610,4PFIT_105013003042319075512055,54E-08284110340,4	PFIT 1352200	8909	10977	2399	3362	0,000	9010	3083	0,3
PFIT_102430010110211778927338366010,00099386344020,3PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133660019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_053680083038669218729841,14E-08773727750,4PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT 0819500	574	558	105	176	0,000	517	148	0.3
PFIT_124210042905710117517080,000451815360,3PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_136610076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_13360019719126457,06E-09177370,2PFIT_14218009963799,32E-098779,3PFIT_05364005075251061591,29E-084701410,3PFIT_10001922865367062E-082156693,1PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_05013003042319075512055,54E-08284110340,4	PFIT 1024300	101102	117789	27338	36601	0,000	99386	34402	0,3
PFIT_1358700132415563244710,00013074230,3PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_05364005075251061591,29E-084701410,3PFIT_05364005075251061591,29E-084701410,3PFIT_0711001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT 1242100	4290	5710	1175	1708	0,000	4518	1536	0,3
PFIT_145530014101541730,0001117916,3PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT 1358700	1324	1556	324	471	0,000	1307	423	0,3
PFIT_060850072852292950,000712824,0PFIT_1366100243122774665260,00021555430,3PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT 1455300	14	10	154	173	0,000	11	179	16,3
PFIT_1366100243122774665260,00021555430,3PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_0608500	72	85	229	295	0,000	71	282	4,0
PFIT_bin0460076681793273,71E-09662634,0PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1366100	2431	2277	466	526	0,000	2155	543	0,3
PFIT_1320900159721514605994,95E-0916935710,3PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_bin04600	76	68	179	327	3,71E-09	66	263	4,0
PFIT_133360019719126457,06E-09177370,2PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1320900	1597	2151	460	599	4,95E-09	1693	571	0,3
PFIT_103520088638817210333447,64E-09807428740,4PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1333600	197	191	26	45	7,06E-09	177	37	0,2
PFIT_14218009963799,32E-098779,3PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1035200	8863	8817	2103	3344	7,64E-09	8074	2874	0,4
PFIT_053680083038669218729841,14E-08773727750,4PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1421800	9	9	63	79	9,32E-09	8	77	9,3
PFIT_05364005075251061591,29E-084701410,3PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_0536800	8303	8669	2187	2984	1,14E-08	7737	2775	0,4
PFIT_1200800361428781111,34E-083581010,3PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_0536400	507	525	106	159	1,29E-08	470	141	0,3
PFIT_07110001922865367062E-082156693,1PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1200800	361	428	78	111	1,34E-08	358	101	0,3
PFIT_140370048615770137019213,55E-08482417610,4PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_0711000	192	286	536	706	2E-08	215	669	3,1
PFIT_bin076001917781134,9E-08161026,2PFIT_05013003042319075512055,54E-08284110340,4	PFIT_1403700	4861	5770	1370	1921	3,55E-08	4824	1761	0,4
PFIT_0501300 3042 3190 755 1205 5,54E-08 2841 1034 0,4	PFIT_bin07600	19	17	78	113	4,9E-08	16	102	6,2
	PFIT_0501300	3042	3190	755	1205	5,54E-08	2841	1034	0,4

PFIT 0724100	1358	4210	12534	15422	5.77E-08	2446	15188	6.2
PFIT 0803400	61	60	186	232	5.79E-08	55	226	4.1
PFIT_0410300	55	41	1161	1187	6 3E-08	44	1303	29.5
PFIT 1125800	4395	4652	1270	1542	8.4F-08	4122	1509	0.4
PFIT 1476300	89	66	1024	1098	0,000	71	1171	16.4
PFIT 1134300	552	400	803	1445	0,000	/1	1231	2.8
PEIT 0730200	2261	2000	458	723	0,000	1006	624	2,0
DEIT 1000100	2201	2099	430	120	0,000	375	115	0,5
DEIT him00100	240	-+-J 274	620	129 800	0,000	275	792	2.2
DEIT 0822500	249 50	67	140	009 242	0,000	230 54	763	3,5
PFI1_0652500	106	522	794	1222	0,000	210	200	5,0 2,5
PFI1_0/29500	190	323 201	784	071	0,000	210	1108	3,5
PFII_0407000	529	591	1547	9/1	0,000	527	919	2,8
PFI1_1431500	5900	5670	1547	2266	0,000	5291	2030	0,4
PFI1_1426100	2	1	32	40	0,000	1	39	28,4
PFI1_0833400	26519	31/62	814/	11241	0,000	26435	10395	0,4
PFIT_1011300	34896	43096	10/30	15323	0,000	35335	13914	0,4
PFIT_0721600	7359	7988	2106	2999	0,000	6986	2727	0,4
PFIT_0733100	179	165	34	31	0,000	157	35	0,2
PFIT_0301600	819	1268	132	220	0,000	938	185	0,2
PFIT_1236500	51	69	150	227	0,000	54	200	3,7
PFIT_0714100	4196	4760	1278	1671	0,000	4070	1590	0,4
PFIT_1032600	2240	2440	644	880	0,000	2130	817	0,4
PFIT_0418600	12360	17410	4075	5967	0,000	13423	5347	0,4
PFIT_1349800	89	99	215	309	0,000	85	279	3,3
PFIT_bin08900	66	61	1409	1405	0,000	58	1566	26,9
PFIT_0809100	149	252	375	609	0,000	180	518	2,9
								1239
								1239 6472
								1239 6472 7559,
PFIT_0202800	0	0	59	54	0,000	0	63	1239 6472 7559, 6
PFIT_0202800 PFIT_1477300	0 2835	0 3301	59 890	54 1133	0,000 0,000	0 2786	63 1094	1239 6472 7559, 6 0,4
PFIT_0202800 PFIT_1477300 PFIT_0624200	0 2835 262	0 3301 359	59 890 1017	54 1133 1228	0,000 0,000 0,000	0 2786 280	63 1094 1222	1239 6472 7559, 6 0,4 4,4
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200	0 2835 262 917	0 3301 359 912	59 890 1017 1606	54 1133 1228 2415	0,000 0,000 0,000 0,000	0 2786 280 835	63 1094 1222 2135	1239 6472 7559, 6 0,4 4,4 2,6
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900	0 2835 262 917 174	0 3301 359 912 193	59 890 1017 1606 838	54 1133 1228 2415 973	0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167	63 1094 1222 2135 990	1239 6472 7559, 6 0,4 4,4 2,6 5,9
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200	0 2835 262 917 174 5086	0 3301 359 912 193 4080	59 890 1017 1606 838 8735	54 1133 1228 2415 973 17019	0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219	63 1094 1222 2135 990 13282	1239 6472 7559, 6 0,4 4,4 2,6 5,9 3,1
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600	0 2835 262 917 174 5086 124	0 3301 359 912 193 4080 256	59 890 1017 1606 838 8735 364	54 1133 1228 2415 973 17019 555	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170	63 1094 1222 2135 990 13282 487	1239 6472 7559, 6 0,4 4,4 2,6 5,9 3,1 2,9
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_bin07000	0 2835 262 917 174 5086 124 116	0 3301 359 912 193 4080 256 202	59 890 1017 1606 838 8735 364 302	54 1133 1228 2415 973 17019 555 493	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143	63 1094 1222 2135 990 13282 487 418	$ \begin{array}{c} 1239\\6472\\7559,\\6\\0,4\\4,4\\2,6\\5,9\\3,1\\2,9\\2,9\end{array} $
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_1335900	0 2835 262 917 174 5086 124 116 6917	0 3301 359 912 193 4080 256 202 8490	59 890 1017 1606 838 8735 364 302 2213	54 1133 1228 2415 973 17019 555 493 3033	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982	63 1094 1222 2135 990 13282 487 418 2814	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 2,9 \\ 0,40 \\$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_bin07000 PFIT_0905800	0 2835 262 917 174 5086 124 116 6917 87	0 3301 359 912 193 4080 256 202 8490 117	59 890 1017 1606 838 8735 364 302 2213 234	54 1133 1228 2415 973 17019 555 493 3033 296	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92	63 1094 1222 2135 990 13282 487 418 2814 286	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 1200 \\ 3,1 \\ 1000$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_bin07000 PFIT_1335900 PFIT_0905800 PFIT_1357500	0 2835 262 917 174 5086 124 116 6917 87 27	0 3301 359 912 193 4080 256 202 8490 117 41	59 890 1017 1606 838 8735 364 302 2213 234 89	54 1133 1228 2415 973 17019 555 493 3033 296 156	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31	63 1094 1222 2135 990 13282 487 418 2814 286 128	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 1$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_0905800 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1232800	0 2835 262 917 174 5086 124 116 6917 87 27 467	0 3301 359 912 193 4080 256 202 8490 117 41 519	59 890 1017 1606 838 8735 364 302 2213 234 89 119	54 1133 1228 2415 973 17019 555 493 3033 296 156 179	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448	63 1094 1222 2135 990 13282 487 418 2814 286 128 158	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,1 \\ 0$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_1335900 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1232800 PFIT_1111200	0 2835 262 917 174 5086 124 116 6917 87 27 467 29588	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_0905800 PFIT_0905800 PFIT_1232800 PFIT_1232800 PFIT_1232800 PFIT_0729000	0 2835 262 917 174 5086 124 116 6917 87 27 467 29588 81	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520 89	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 1000 \\ $
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_004900	0 2835 262 917 174 5086 124 116 6917 87 27 467 29588 81 14	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520 89 8	63 1094 1222 2135 990 13282 487 418 2814 286 128 128 158 12215 277 91	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ $
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_004900 PFIT_0422000	0 2835 262 917 174 5086 124 116 6917 87 27 467 29588 81 14 1025	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520 89 8 1466	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 1000 \\ 2,8 \\ 1000 \\ 10$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_1357500 PFIT_1232800 PFIT_1232800 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_0422000 PFIT_0422000 PFIT_1402100	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ \end{array}$	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091 84	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 0,3 \\ 0,3 \\ 0,3 \\ 0,4 \\ 0,3 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,4 \\ 0,3 \\ 0,4 \\ $
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1232800 PFIT_1232800 PFIT_1232800 PFIT_1232800 PFIT_0729000 PFIT_0422000 PFIT_0422000 PFIT_0422000 PFIT_0112400	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ 27\\ \end{array}$	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091 84 465	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 17,2 \\ 1000 \\ 10$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_004900 PFIT_0422000 PFIT_0422000 PFIT_0112400 PFIT_0112400 PF apicoplast ge	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ 27\\ \end{array}$	$\begin{array}{c} 63\\ 1094\\ 1222\\ 2135\\ 990\\ 13282\\ 487\\ 418\\ 2814\\ 286\\ 128\\ 158\\ 12215\\ 277\\ 91\\ 4091\\ 84\\ 465\end{array}$	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 10,9 \\ 10$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_0729000 PFIT_0422000 PFIT_0112400 PFIT_0112400 PF_apicoplast_ge nome 102000	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414 64	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424 115	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520 89 8 1466 263 27	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091 84 465 93	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 5.0 \\ 100$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_0729000 PFIT_0422000 PFIT_1402100 PFIT_0112400 PFIT_0112400 PF_apicoplast_ge nome_102000 PFIT_1472700	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ 24\\ 75\end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414 64 160	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424 115 246	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0 2786 280 835 167 4219 170 143 6982 92 31 448 32520 89 8 1466 263 27 19 65	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091 84 465 93 215	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 5,0 \\ 3.3 \\ 17,2 \\ 5,0 \\ 3.3 \\ 17,2 \\ 10,10 \\ 10,$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1227200 PFIT_1457600 PFIT_07000 PFIT_07000 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_111200 PFIT_0729000 PFIT_0422000 PFIT_0422000 PFIT_0112400 PFIT_0112400 PF_apicoplast_ge nome_102000 PFIT_1472700 PFIT_1316400	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ 24\\ 75\\ 615\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36 17 68 755	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414 64 160 169	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424 115 246 272	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ 27\\ 19\\ 65\\ 621 \end{array}$	$\begin{array}{c} 63\\ 1094\\ 1222\\ 2135\\ 990\\ 13282\\ 487\\ 418\\ 2814\\ 286\\ 128\\ 158\\ 12215\\ 277\\ 91\\ 4091\\ 84\\ 465\\ 93\\ 215\\ 232\\ \end{array}$	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 5,0 \\ 3,3 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,100 \\ 0$
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_144200 PFIT_131900 PFIT_1227200 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_0729000 PFIT_004900 PFIT_0422000 PFIT_0112400 PFIT_0112400 PFIT_0112400 PFIT_0112400 PFIT_0112400 PFIT_1316400 PFIT_1316400 PFIT_1016600	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ 24\\ 75\\ 615\\ 228\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36 17 68 755 449	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414 64 160 169 560	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424 115 246 272 934	0,000 0,000	$\begin{array}{c} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ 27\\ 19\\ 65\\ 621\\ 302\\ \end{array}$	63 1094 1222 2135 990 13282 487 418 286 128 128 128 128 12215 277 91 4091 84 465 93 215 232 784	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 5,0 \\ 3,3 \\ 0,37 \\ 2,6 \\ 1000 $
PFIT_0202800 PFIT_1477300 PFIT_0624200 PFIT_1444200 PFIT_1131900 PFIT_1227200 PFIT_1457600 PFIT_1457600 PFIT_07000 PFIT_0905800 PFIT_0905800 PFIT_1357500 PFIT_1357500 PFIT_1357500 PFIT_1232800 PFIT_1232800 PFIT_1111200 PFIT_0729000 PFIT_0729000 PFIT_0422000 PFIT_0422000 PFIT_012400 PFIT_012400 PFIT_012400 PFIT_012400 PFIT_012400 PFIT_1316400 PFIT_1016600 PFIT_1445300	$\begin{array}{c} 0\\ 2835\\ 262\\ 917\\ 174\\ 5086\\ 124\\ 116\\ 6917\\ 87\\ 27\\ 467\\ 29588\\ 81\\ 14\\ 1025\\ 265\\ 24\\ 24\\ 75\\ 615\\ 228\\ 737\\ \end{array}$	0 3301 359 912 193 4080 256 202 8490 117 41 519 42596 117 4 2277 314 36 17 68 755 449 864	59 890 1017 1606 838 8735 364 302 2213 234 89 119 9270 224 79 2995 51 414 64 160 169 560 1359	54 1133 1228 2415 973 17019 555 493 3033 296 156 179 13691 290 88 4759 111 424 115 246 272 934 2011	0,000 0,000	$egin{array}{cccc} 0\\ 2786\\ 280\\ 835\\ 167\\ 4219\\ 170\\ 143\\ 6982\\ 92\\ 31\\ 448\\ 32520\\ 89\\ 8\\ 1466\\ 263\\ 27\\ 19\\ 65\\ 621\\ 302\\ 727\\ \end{array}$	63 1094 1222 2135 990 13282 487 418 2814 286 128 158 12215 277 91 4091 84 465 93 215 232 784 1792	$1239 \\ 6472 \\ 7559, \\ 6 \\ 0,4 \\ 4,4 \\ 2,6 \\ 5,9 \\ 3,1 \\ 2,9 \\ 2,9 \\ 0,40 \\ 3,1 \\ 4,2 \\ 0,4 \\ 0,4 \\ 3,1 \\ 10,9 \\ 2,8 \\ 0,3 \\ 17,2 \\ 5,0 \\ 3,3 \\ 0,37 \\ 2,6 \\ 2,5 \\ 1000 \\$

PFIT 1130400	136	274	354	598	9.86E-06	183	499	2.7
PFIT 0730500	764	711	190	260	1.03E-05	675	241	0.357
PFIT_bin04200	21	18	168	181	1,002 00 1,21E-05	18	192	10.8
PFIT 1400200	37	28	89	143	1,21E 05	30	122	4 1
PFIT 1347900	19	28 28	81	103	0.000	71	226	3.2
PEIT 0728600	65	02	161	270	0,000	82	312	3.8
PEIT_0204300	80	101	260	270	0,000	62 62	205	3,0
PFIT_0204300	58	80	156	230	0,000	740	203	5,5
DEIT 1201100	J0 745	00	212	230	0,000	260	290	0,4
PFII_1201100 DEIT_1122600	280	908 201	213 529	550 704	0,000	209	097	2,0
PFII_1122000 DEIT_1426400	289	100	328 266	/ 84	0,000	11/	337	5,1 2 2
PFI1_1450400	110	100	200	408	0,000	151	400	5,2
PFI1_0208800	110	229	390	518	0,000	25	107	4,4
PFIT_bin01000	26	28	87	112	0,000	34	130	3,9
PFIT_1348200	33	41	98	148	0,000	53	179	3,4
PFIT_1206100	50	67	136	201	0,000	108	312	2,9
PFIT_1035000	84	157	244	340	0,000	78	14	0,2
PFIT_0536200	70	103	11	15	0,000	161	867	5,4
PFIT_0208300	162	193	737	847	0,000	259	86	0,3
PFIT_1133500	293	274	69	91	0,000	87	259	3,0
PFIT_1461100	60	134	193	296	0,000	488	184	0,376
PFIT_1402200	544	524	123	230	0,000	48	416	8,7
PFIT_1037600	42	64	362	393	0,000	171	457	2,7
PFIT_1113500	206	167	320	554	0,000	372	937	2,5
PFIT_0303400	350	474	758	977	0,000	611	144	0,2
PFIT_0419300	714	617	108	164	0,000	210	67	0,3
PFIT_1410800	240	219	46	81	0,000	782	313	0,4
PFIT_0827300	813	907	219	379	0,000	1645	608	0,4
PFIT_1109500	1863	1730	483	648	0,000	2	33	18,4
PFIT 0201000	1	3	27	35	0,000	346	850	2,5
PFIT 1410400	268	505	628	981	0.000	18	84	4,8
PFIT 1476600	14	25	68	89	0.000	490	1318	2,7
PFIT 1132700	433	656	1067	1373	0.000	436	164	0.38
PFIT_1364100	468	488	126	183	0.000	134	361	2.7
PFIT_0515700	128	167	286	388	0.000	250	623	2.49
PFIT_0315300	231	323	465	710	0,000	269	660	2 45
PFIT 1476500	306	283	502	739	0,000	15614	3896	0.2
PFIT 0422900	18268	15739	3127	4096	0,000	249355	81811	0,2
PFIT 0936500	286022	257976	65831	85738	0,000	249333 487	1142	23
PFIT 1000700 1	461	617	790	1400	0,000	605	1404	2,5
PEIT 1235400		685	1070	1554	0,000	3600	13/0	0.37
DEIT_1200600	4116	3762	1079	15/3	0,000	2009	586	2.5
PFIT_1300000 DEIT_1242200	4110	211	1005	1545	0,000	230	110	2,5
PFII_1342300 DEIT_1225500	210	311	423	000	0,000	29	110	5,0 2,5
PFII_1333300	24	40	02 412	120	0,000	223	557	2,3
PFII_1327700	255	257	412	042	0,000	24 107	97	4,1
PFI1_1103100	21	31	/3	109	0,000	107	27	0,3
PFIT_0222000	120	115	18	34	0,000	188	724	3,9
PFIT_0932500	117	307	589	750	0,000	71	207	2,9
PF_apicoplast_ge								
nome_102900	64	93	154	237	0,000	192	476	2,5
PFIT_1006900	151	278	341	566	0,000	48	440	9,3
PFIT_1207000	53	51	389	407	0,000	148	376	2,5
PFIT_1364600	130	198	288	419	0,000	1410	222	0,2
PFIT_1240500	1701	1361	183	227	0,000	871	2585	3,0

PFIT_0503500	542	1430	1904	2989	0,000	107	285	2,7
PFIT_1305200	107	128	216	320	0,000	148	374	2,5
PFIT_1472500	119	210	262	452	0,000	71	226	3,2
PFIT_1433000	141	175	1389	1413	0,000	143	1556	10,9
PFIT_0507800	11891	17384	4091	5716	0,000	13182	5250	0,4
PFIT 0819400	13	19	56	73	0,001	14	69	4,8
PFIT 0515800	1200	2795	3793	5496	0,001	1771	4952	2,8
PFIT 1454900	3300	2975	796	916	0,001	2876	936	0.3
PFIT 0727300.2	22	24	62	101	0.001	21	86	4.1
PFIT 1230900	158	392	516	788	0.001	244	691	2.8
PFIT 0920700	91	154	232	303	0.001	110	288	2,6
PFIT_0615800	305	280	65	128	0.001	268	100	0.37
PEIT 1232400	87	200	305	450	0,001	137	401	2 93
PEIT_0502400	11	222	82	00	0,001	137	-01 0/	2,75
DEIT_0522400	50	21 70	126	190	0,001	59	94 171	0,0
PFII_0333400 DEIT_0214000	50	106	150	102	0,001	30 77	1/1	2,9
PFII_0314900	05	100	70	234	0,001	22	212	2,0 4.2
PFI1_0/2/300.1	28	19	/8	92	0,001	22	92	4,3
PFI1_1213000	43	45	107	133	0,001	40	130	3,2
PFIT_0401700	30	14	55	112	0,001	20	86	4,2
PFIT_0822700	92	174	236	329	0,001	119	302	2,5
PFIT_1478700	41	42	101	128	0,001	38	123	3,3
PFIT_1417900	190	200	48	68	0,001	178	62	0,3
PFIT_1122000	32	29	77	110	0,001	28	100	3,6
PFIT_0416300	15	23	60	76	0,001	17	73	4,3
PFIT_1477000	25	18	57	94	0,002	20	79	4,0
PFIT_0927800	54	52	168	193	0,002	48	197	4,1
PFIT_0616900	452	1112	1558	2202	0,002	692	2010	2,9
PFIT_1369100	0	1	14	25	0,002	0	20	45,1
PFIT_1229800	35	67	102	162	0,002	46	139	3,0
PFIT_0311000	1030	1578	305	428	0,002	1173	392	0,3
PFIT_1419800	17075	20248	39290	86244	0,002	16935	63907	3,8
PFIT_0501900	216	212	481	580	0,002	195	577	3,0
PFIT_0515600	34	41	86	123	0,002	34	111	3,3
PFIT_0111300	73	101	145	252	0,003	79	208	2,6
PFIT 0103900.2	6	7	29	49	0,003	6	41	6,9
PFIT 0929700	0	7	23	37	0,003	3	32	10,1
PFIT 1242600	16	14	53	62	0.003	14	62	4.6
PFIT_1319700	207	249	70	73	0.003	207	78	0.38
PFIT 0536100	2537	2105	407	613	0.003	2134	541	0.3
PFIT 1433600	81	87	153	225	0.004	76	201	2.6
PFIT_0617700	88	80	151	229	0,004	77	201	2.6
PFIT_0711300	8	10	41	45	0.004	8	47	2,0 5.7
PFIT 0901900	180	217	50	75	0,004	180		0.37
PFIT 0219400	21307	33837	5701	7334	0,004	24755	7045	0,57
PFIT 1232500	21307 96	251	340	402	0,004	154	443	2 88
DEIT 1454300	74	231	154	205	0,004	134	103	2,00
DEIT 1225500	/4 50	07 77	104	203	0,004	13	173	2,0 2 75
DEIT 0608600	ענ דרבס	11205	120	190	0,003	0020	104	2,13
TTT_0008000	0521	11293	3320	48/1	0,005	0000	4303	0,5
rrii_1414000	25	20	88	125	0,005	30	114	3,1
PFII_1016/00	36	47	76	148	0,005	38	116	3,1
PFII_1366800		20	89	93	0,005	14	100	7,2
PFIT_0536500	61	48	6	9	0,005	50	8	0,2
PFIT_1444900	51	59	352	358	0,006	50	394	7,9

PFIT_1013700	27	43	81	110	0,006	32	102	3,2
PFIT_0613600	86	104	157	257	0,006	86	218	2,5
PFIT_1467100	9	6	39	42	0,006	7	44	6,4
PFIT_0620000	301	675	827	1229	0,006073	434	1093	2,5
PFIT 0501800	39	61	96	153	0,006205	45	131	2,9
PFIT 0507500	1295	3215	4009	6097	0,006247	1995	5359	2,7
PFIT 0908600	13	14	42	65	0,006449	12	57	4,6
PFIT 1300500	141	117	22	37	0.009044	118	31	0.3
PFIT 1006800	138	392	501	776	0.009076	234	676	2.9
PFIT 0616500	326	286	79	111	0.009544	281	101	0.4
PFIT_0617800.1	49	83	123	175	0.010033	59	159	2.7
PFIT_0103800	78	188	220	361	0.01145	118	306	2.6
PFIT 0724600	203454	135608	9804	8916	0.011523	157126	10527	<u>-</u> ,0
PFIT_0616300	11	31	46	90	0.011815	10/120	71	3.8
PFIT 1137400 1	45	83	114	177	0.011013	57	154	2,0 2,7
PFIT bin09700	10951	8670	1560	1002	0.01287	9037	1071	0.2
DEIT 1400800	10951	14	30	1992 50	0,012513	9037	1921	0,2 5 1
DEIT 0012000 1	51	14	150	290	0,013515	و 10	40	2.0
PFII_0813800.1	02	124	206	280	0,013009	/ 0 174	223 527	2,9
PFI1_1470300	92	303	590 05	021	0,013009	1/4	557	5,1 2.0
PFI1_0004400	45	42	83 10016	133	0,013/10	40	110	2,9
PFI1_0/24500	204214	135583	10016	8888	0,014269	15/489	10660	0,1
PFI1_0423500	6	1	44	42	0,015414	3	48	14,/
PFIT_1305500	53	42	100	130	0,015508	44	124	2,8
PFIT_1341000	55	85	135	168	0,016417	63	164	2,6
PFIT_1477400	149	358	426	657	0,017332	225	573	2,5
PFIT_0712200	52	100	134	191	0,01771	68	173	2,5
PFIT_0819900	34	23	66	94	0,021214	26	85	3,3
PFIT_bin02200	854	636	86	110	0,021499	688	106	0,2
PFIT_1433100	65	82	113	211	0,023042	67	168	2,5
PFIT_0423700	34	20	54	104	0,023194	25	82	3,3
PFIT_bin07800	1	1	54	43	0,025859	1	55	60,6
PFIT_1417800	150	146	30	67	0,026128	135	50	0,37
PFIT_0624600	191	204	55	81	0,02645	180	72	0,40
PFIT_1420500	21	32	57	94	0,026569	24	79	3,32
PFIT_1411400	4290	11910	14876	22491	0,029228	7139	19827	2,78
PFIT_0607800	105	107	217	258	0,033026	97	258	2,7
PFIT_0310900	16	13	43	59	0,033498	13	54	4,1
PFIT_0532600	290	881	1121	1699	0,035853	515	1496	2,9
PFIT_0503300	231	211	816	872	0,036006	202	932	4,60
PFIT_1137400.2	31	48	74	120	0,044091	36	102	2,87
PFIT 0209700	53	66	8	17	0,045136	54	13	0,24
PFIT 0413000	41	36	103	117	0.046243	35	120	3.41
PFIT 1214100	142	158	44	53	0.047779	136	52	0.38
PFIT 0905700	164	409	517	738	0,048404	254	670	2.64
PFIT 1426500	11	26	44	72	0.048777	17	61	3.68
PFIT 0206500	48	-9 59	103	135	0.049238	49	128	2.63
PFIT 0828600	1	3	105	31	0.052035	2	20	12 11
PFIT 1000800	196	154	14	50	0.054546	161	32	0.2
	170	1.0 1	1 T	50	0,00 10 10	101	52	0,2

Tabelle A32: Transkriptom-Analyse (alle Gene mit signifikant differentieller Expression, padj $\leq 0,05$; FoldChange $\geq 2,5$)_ ungebundene Erythrozyten nach Panning VI (s6) vs. gebundene Erythrozyten nach Panning VI (p6). Transkriptionsniveau ≥ 15 . padj: Signifikanz, TN: Transkriptionsniveau, FC: Fold Change.

Gen	s6_1	s6_2	p6_1	p6_2	padj	TN s6	TN p6	FC
FCPFIT_0208400	1838	2630	644	857	0,000	2188	743	0,3
PFIT_0219400	20684	33625	5701	7334	0,000	26331	6493	0,2
PFIT_0400900	2304	3427	808	1067	0,000	2798	929	0,3
PFIT_0416900	5837	7997	1906	2579	0,000	6795	2219	0,3
PFIT_0422500	1785	2270	673	888	0,000	2002	773	0,4
PFIT_0422900	10069	14054	3127	4096	0,000	11831	3588	0,3
PFIT_0501400	31644	43931	10555	14288	0,000	37081	12304	0,3
PFIT_0501500	20750	26062	7847	9725	0,000	23144	8788	0,4
PFIT_0603000	1315	1818	494	699	0,000	1538	587	0,4
PFIT_0605900	11115	16920	4449	6581	0,000	13661	5409	0,4
PFIT_0607700	616	732	230	315	0,000	668	268	0,4
PFIT_0724500	276808	379696	10016	8888	0,000	322406	9803	0,0
PFIT_0724600	276832	379080	9804	8916	0,000	322157	9682	0,0
PFIT_0811900	78256	97245	13584	16641	0,000	86842	15137	0,2
PFIT_1003900	4961	7622	2077	2958	0,000	6128	2479	0,4
PFIT_1006400	8374	13891	2219	3117	0,000	10779	2632	0,2
PFIT_1030600	256	402	43	61	0,000	321	51	0,2
PFIT_1109500	1527	2467	483	648	0,000	1938	560	0,3
PFIT_1119000	1604	1905	560	847	0,000	1741	688	0,4
PFIT_1205500	2014	3270	599	836	0,000	2563	708	0,3
PFIT_1228300	6921	10643	2806	3624	0,000	8552	3200	0,4
PFIT_1331500	3957	5468	1249	1625	0,000	4626	1427	0,3
PFIT_1366100	2047	3211	466	526	0,000	2557	499	0,2
PFIT_1406600	522	542	2106	2875	0,000	533	2464	4,6
PFIT_bin09700	9346	12043	1560	1992	0,000	10554	1767	0,2
PF_apicoplast_genome								
_105100	12146	16429	3096	4021	0,000	14048	3538	0,3
PF_apicoplast_genome								
_105900	6883	8330	1639	2195	0,000	7542	1900	0,3
PFIT_1034800	3699	5919	1401	1751	0,000	4669	1574	0,3
PFIT_bin06300	230	312	73	100	0,000	266	85	0,3
PFIT_1024300	64526	102960	27338	36601	0,000	81315	31712	0,4
PFIT_0107000	24331	43280	4767	5001	0,000	32561	4978	0,2
PFIT_1329400	292	529	838	1158	0,000	396	985	2,5
PFIT_0720400	2619	4385	871	1210	0,000	3389	1027	0,3
PFIT_1026100	11556	18987	4385	5752	0,000	14797	5038	0,3
PFIT_0524800	212	267	58	115	0,000	236	83	0,4
PFIT_1015800	2028	2049	255	380	0,000	2049	311	0,2
PFIT_1320900	1077	1759	460	599	0,000	1375	526	0,4
PFIT_0522800	191	275	68	105	0,000	228	84	0,4
PFIT_1017700	1384	2289	577	789	0,000	1779	675	0,4
PFIT_1149400	60050	99563	25018	33764	0,000	77270	29128	0,4
PFIT_1021900	1354	2368	415	481	0,000	1795	451	0,3
PFIT_0303600	127	168	42	50	0,000	145	46	0,3
PFIT_1004000	299	517	104	147	0,000	394	123	0,3
PFIT_1133500	195	219	69	91	0,000	206	79	0,4
PFIT_1465100	2122	3622	835	1062	0,000	2775	946	0,3
PFIT_0833400	19525	33496	8147	11241	0,000	25603	9583	0,4

PFIT_0418200	5135	8894	2212	3057	0,001	6770	2604	0,4
PFIT_0800300	51	82	14	15	0,001	65	14	0,2
PFIT_0834800	27106	26884	6483	6758	0,002	27182	6753	0,2
PFIT_0724300	57	70	15	16	0,004	63	15	0,2
PFIT_1107800	180	332	65	85	0,005	246	74	0,3
PFIT_1134400	11167	19621	4974	7243	0,005	14841	6003	0,4
PFIT_bin06400	85	99	26	36	0,006	91	30	0,3
PFIT_1476300	135	312	1024	1098	0,010	212	1078	5,1
PFIT_1454900	3267	6820	796	916	0,034	4802	863	0,2
PFIT_1345900	122	122	347	400	0,035	122	376	3,1
PFIT_1352200	5869	10893	2399	3362	0,047	8048	2843	0,4

Tabelle 33: Nomenklatur der var-Gene des P. falciparum-Laborstammes FCR3 (nach Rask et al., 2010).

var-Gene	PlasmoDB
IT4_var1	PFIT_0616500
IT4_var2	PFIT_bin08900
IT4_var3	PFIT_bin02700, PFIT_bin00200
IT4_var4	PFIT_1200200
IT4_var5	PFIT_1240400
IT4_var7	PFIT_1300100
IT4_var8	PFIT_1150900
IT4_var9	PFIT_1400200
IT4_var10	PFIT_0411300
IT4_var11	PFIT_0500100
IT4_var12	PFIT_bin00300
IT4_var13	PFIT_0411400, PFIT_0800100
IT4_var14	PFIT_bin07000
IT4_var15	PFIT_bin10700
IT4_var16	PFIT_bin09100
IT4_var17	PFIT_bin07600
IT4_var18	PFIT_bin10900
IT4_var19	PFIT_bin09600, PFIT_bin06100
IT4_var20	PFIT_bin10800
IT4_var21/IT4_var59	PFIT_bin10500
IT4_var22	PFIT_bin01000
IT4_var23	PFIT_0411000
IT4_var24	PFIT_bin07650
IT4_var25	PFIT_0537600
IT4_var26	PFIT_1400100
IT4_var27	PFIT_0411500
IT4_var28	PFIT_0711000
IT4_var29	PFIT_bin02100
IT4_var30	PFIT_bin11100
IT4_var31	PFIT_bin02200
IT4_var32A	PFIT_bin00100
IT4_var32B	PFIT_bin00900
IT4_var33	PFIT_bin04200
IT4_var34	PFIT_0811900
IT4_var35	PFIT_0536800 (Pseudogen)
IT4_var36	PFIT_0100100
IT4_var39	PFIT_1240000

IT4_var40	PFIT_0731700
IT4_var41	PFIT_0900100, PFIT_bin10300
IT4_var44	PFIT_1151000
IT4_var45	PFIT_bin04300
IT4_var46	PFIT_bin11000
IT4_var47	PFIT_1241100
IT4_var51	PFIT_bin08300
IT4_var54	PFIT_bin06200
IT4_var58	PFIT_0411350
IT4_var59	PFIT_bin10500
IT4_var60	PFIT_bin06900
IT4_var61	PFIT_0835600
IT4_var62	PFIT_0419300
IT4_var63	PFIT_1219000
IT4_var64	PFIT_0710900
IT4_var65	PFIT_0811500
IT4_var66	PFIT_0710800
IT4_var67	PFIT_1240500
IT4_var68	PFIT_0710600

DANKSAGUNG

An dieser Stelle möchte ich mich bei einigen Menschen von ganzem Herzen bedanken.

Mein besonderer Dank gilt **Prof. Dr. Iris Bruchhaus** dafür, dass ich bei ihr diese Doktorarbeit anfertigen durfte. Als meine Professorin stand sie mir auch als kollegiale Freundin immer zu Seite. Sie diente mir als moralisches und fachliches Vorbild und hat mir viele Freiheiten zugestanden.

Prof. Dr. Egbert Tannich danke ich für das zur Verfügungstellen der finanziellen Mittel. Seine immer den Kern treffenden Fragen und Anmerkungen im Seminar haben mir so manch neue Idee eröffnet.

Bei **Prof. Dr. Thomas Gutsmann** möchte ich mich für die Biologen-gerechte Einführung in die Welt der Rasterkraftmikroskopie bedanken. An dieser Stelle danke ich auch **Kerstin Stephan** für das Anfertigen der elektronenmikroskopischen Aufnahmen sowie der gesamten **Biophysik des Forschungszentrums Borstel** für die nette Aufnahme und fachliche Unterstützung. Ich fühlte mich immer willkommen.

Jenny Thiede möchte ich für ihren unerschütterlichen Einsatz bei der Kulturschlacht für das *Panning* sowie bei der Quantifizierung der variablen Oberflächenantigene und bei der Rasterkraftmikroskopie bedanken. Ob im Hellen oder Dunkeln, ob oberirdisch oder im Keller, es war sehr förderlich und aufmunternd.

Labor 4 und Labor 6 danke ich für nette Gespräche und Späße, die gerade die nicht so optimalen Versuchsausgänge nur halb so schlimm erscheinen ließen; hier v.a Dr. Jenny Matthiesen für die tiefgreifenden Diskussionen im und um das Labor 4 und Heidrun von Thien für die aufschlussreichen Gespräche in der Plasmodien-Kultur und das Beibringen des "Ritzen"-Tests. Bei Jannika Brandt möchte ich mich für manch kreative Pause an der frischen Luft, fürs Korrekturlesen und fürs gemeinsame wöchentliche Rumhüpfen bedanken.

Ein besonderer Dank gilt auch **Hendrik Hermann**, der mir einen Einblick in die Welt der Transmissionselektronenmikroskopie gab und mit voller Motivation mit seiner korrelativen Mikroskopie durchstarten wollte. Leider verstarb Hendrik viel zu früh.

Susann Ofori möchte ich für die Vorbereitung der Proben für die Transmissionselektronenmikroskopie danken.

Bei **PD Dr. Sabine Lüthje** möchte ich mich dafür bedanken, dass sie die verantwortungsvolle Aufgabe als Zweitgutachterin übernommen hat.

Meinen Co-Betreuern Dr. Maya Kono und PD Dr. Thomas Jacobs danke ich für manch interessante Idee und Anregung und das Gefühl, immer da zu sein.

Bei Jonas bedanke ich mich aus tiefstem Herzen fürs Ertragen der Launen seiner panischen Mutter. Auch hier kann ich nur sagen, dass Du das Beste bist, was mir im Leben passiert ist!! Matthias danke ich neben dem Ertragen meiner Launen für die grandiose Hilfe bei der Lösung des einen oder anderen unüberwindbar scheinenden Computerproblems. Meinen Eltern, ganz tief meinem geliebten Papa möchte ich an dieser Stelle für die finanzielle Unterstützung in allen Lebenslagen danken. Er ist immer für mich und Jonas da. Lilly danke ich dafür, dass sie mir viel Ruhe gegeben und es sogar am Ende noch geschafft hat, mir ein Lächeln auf die Lippen zu zaubern.

Eidesstattliche Versicherung

Hiermit erkläre ich, Ann-Kathrin Tilly, an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, 26. November 2014

Ann-Kathrin Tilly