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Abstract

Protein-ligand complexes play a key role in networks of biochemical signals and reactions.
These, in turn, are the building blocks that define the behavior of biological mechanisms. The
growing understanding of the process of protein-ligand complex formation permits to control
these mechanisms. To induce beneficial changes to them, rational approaches, such as drug
design and biotechnology, seek to discover targeted modifications to ligands and proteins. These
modifications alter or inhibit the biological functionality of the macromolecules.

In these research processes, classical experimental methods have increasingly been comple-
mented with computational approaches. These are usually more cost effective, less time consum-
ing, grant access to larger molecular libraries, and offer detailed visual insights into biochemical
processes. Fast computational methods that predict the interplay of proteins and ligands allow
for large-scale screening experiments to discover novel pharmaceutical substances. Further, these
methods can advance the productivity of researchers by enhancing the usability of their software
tools.

However, these fast methods are typically guided by coarse and approximative knowledge-
based or empirical scoring functions that quickly evaluate generated complexes. Consequently,
forces that determine the formation of protein-ligand complexes are only partly captured. To
compensate for this shortcoming, generated structures are frequently refined. A widely used ap-
proach for this is potential energy minimization, which relies on molecular mechanics force fields
as objective functions. If applied appropriately, this approach drives structures closer to their
experimentally measured conformations. However, performing force field-based minimizations is
by no means a free ride, as they are notoriously time consuming. Thus, they impair the beneficial
runtime behavior of otherwise fast computational methods.

This work addresses this drawback and presents Trooper, a versatile force field-based energy
minimization method, and its accelerated version GPUperTrooper. Trooper is applied at the
end of a pipeline of computational molecular design tools and is targeted at minimizing small
ligands, amino acid side chains in protein binding sites, or both at the same time. For a thorough
validation in these application scenarios, Trooper is applied to large data sets. This way, it is
demonstrated that Trooper performs on par with commercially available and widely used state-
of-the-art energy minimization methods. Furthermore, the range of Trooper’s applicability for
amino acid side chain optimizations is explored. At the same time, indications for a general limit
to these types of optimizations are gathered.

GPUperTrooper is designed for single instruction, multiple data architectures and imple-
mented for graphics processors manufactured by NVIDIA. It accelerates Trooper’s protein-ligand
complex optimizations. This fast optimizer produces results with a quality that is on par with
Trooper. At the same time, GPUperTrooper speeds computations up by two or three orders
of magnitude when compared to commercially available tools. Additionally, GPUperTrooper’s
computations typically save approximately 90% electric energy. This renders GPUperTrooper
suitable for time- and cost-efficient application in large- and small-scale scenarios.
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Zusammenfassung

Protein-Ligand-Komplexen kommt eine Schlüsselrolle in biochemischen Signal- und Reak-
tionsnetzwerken zu, welche wiederum das Verhalten ganzer biologischer Mechanismen bestim-
men. Die zunehmende Erforschung der Bildung von Protein-Ligand-Komplexen stellt somit eine
entscheidende Grundlage für die Beeinflussung dieser Prozesse dar. Um diese vorteilhaft zu mod-
ifizieren werden mit rationalen Ansätzen, beispielsweise der Biotechnologie und dem modernen
Wirkstoffentwurf, gezielte Modifikationen an Liganden und Proteinen erforscht. Diese Modifika-
tionen verändern oder hemmen die Funktionalität der Makromoleküle.

In diesen Forschungsvorhaben werden klassische, experimentelle Methoden zunehmend von
rechnergestützten Verfahren ergänzt. Diese sind für gewöhnlich kosten- und zeiteffektiver, bieten
Zugang zu größeren, virtuellen Molekülmengen und ermöglichen die Visualisierung biochemis-
cher Prozesse. Besonders schnelle, rechnergestützte Methoden zur Vorhersage der Struktur von
Protein-Ligand-Komplexen ermöglichen die Analyse großer Datensätze, beispielsweise mit dem
Ziel des Auffindens neuer pharmazeutischer Wirkstoffe. Des Weiteren ermöglichen diese Meth-
oden Produktivitätssteigerungen in der Forschung, da sie die Gebrauchstauglichkeit der dort
eingesetzten Software-Werkzeuge verbessern.

Allerdings basieren diese schnellen Methoden mehrheitlich auf approximativen und heuris-
tischen, empirischen oder wissensbasierten Bewertungsfunktionen. Diese ziehen Kräfte, welche
die Bildung von Protein-Ligand-Komplexen bestimmen nur teilweise in Betracht. Aus diesem
Grund werden von schnellen Methoden generierte Molekülstrukturen häufig mit nachgelagerten
Verfahren verfeinert. Weit verbreitet ist dabei die Minimierung der potentiellen Energie der
Strukturen. Dieser Ansatz nutzt Molekülmechanik-Kraftfelder als Zielfunktionen, was ihn sehr
zeitintensiv macht. Global betrachtet verschlechtert sich somit das vorteilhafte Laufzeitverhalten
der ansonsten schnellen rechnergestützten Generierungsmethoden.

Die folgende Forschungsarbeit befasst sich mit der Beseitigung dieses Nachteils. Dazu
werden die auf Molekülmechanik-Kraftfeldern basierende Minimierungsmethode Trooper und
ihre beschleunigte Version GPUperTrooper eingeführt. Trooper wird am Ende einer Kette
von rechnergestützten Molekülentwurfs-Software-Werkzeugen eingesetzt und optimiert an dieser
Stelle kleine Liganden, Seitenketten von Aminosäuren in Proteinbindungstaschen oder beides
in Protein-Ligand-Komplexen. Zu Validierungszwecken wird Trooper auf größeren Datensätzen
getestet. Auf diese Weise wird gezeigt, dass von Trooper verbesserte Strukturen ähnlich nah an
experimentell bestimmte Strukturen geführt werden wie jene, die von kommerziell verfügbaren,
aktuellen Methoden verfeinert werden. Des Weiteren wird der Anwendungsbereich von Trooper
für die Optimierung von Aminosäureseitenketten untersucht. Diese Experimente liefern gle-
ichzeitig Indizien für eine generelle Grenze der Anwendbarkeit von Seitenketten-Optimierungen.

GPUperTrooper wurde für moderne SIMD-Architekturen entworfen und wurde auf Grafik-
prozessoren der Firma NVIDIA implementiert. Dieser Algorithmus beschleunigt Troopers Protein-
Ligand-Komplex-Optimierungen und liefert dabei Strukturen von gleicher Qualität. Im Vergle-
ich zu kommerziell verfügbaren Methoden arbeitet GPUperTrooper allerdings um zwei bis drei
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Größenordnungen schneller. Zusätzlich spart GPUperTrooper etwa 90% an elektrischer Energie
ein. Somit ist GPUperTrooper eine ideale Verfeinerungsmethode für Ergebnisse, die von beson-
ders schnellen, rechnergestützten Verfahren geliefert werden. Dieses gilt sowohl für Anwendungen
im Hochdurchsatz- als auch im Desktop-Bereich.
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CHAPTER 1

Introduction

1.1. Motivation

Modern research has deciphered a growing number of biological mechanisms that have been
mapped to networks of biochemical signals and reactions. The latter are typically catalyzed in
binding sites of proteins. Therein, small molecules, so called ligands, are transformed and undergo
a change in their biological role. Alternatively, a ligand can block a binding site and, as a result,
inhibit a protein. Both scenarios require the formation of protein-ligand complexes, a process that
has been explored for more than a century. The lock and key principle postulated in 1894 [1] is
considered the first landmark theory in this field. According to this principle, protein and ligand
are rigid entities whose complementary shapes cause their close interaction. About 120 years
since this early concept, the idea of an interplay of forces exerted by ligands and proteins prevails.
These forces lead to mutual conformational reorganizations, during which proteins and ligands
exhibit varying degrees of structural flexibility. The result is a low energy equilibrium state [2].
In this state, the ligand is covalently or non-covalently bound in a cavity of the protein. This
deeper understanding is one of the decisive foundations for rational molecular design approaches
in pharmaceutical and biotechnical research. Two examples of these are rational drug design and
protein engineering.

Rational drug design regards pathological states as a result of networks of biochemical reac-
tions. Among these, key reactions are identified and proteins mediating them become targets of
intense research. Its efforts aim to identify chemical substances that inhibit, activate, or modify
the functionality of the respective target protein. A preferably exhaustive search constitutes the
first principal step in this process. This search is centered around discovering ligands that bind
to a given protein target. To accomplish this, millions of small molecules are tested in protein
assays. These large-scale experiments are named high throughput screenings. The following stage
refines these obtained ligands. For this, scientists introduce molecular optimizations based on
their experience and empirical rules. Results of these efforts are validated with more elaborate
experimental assays. This stage is referred to as lead optimization.

Biotechnology seeks to synthesize products like nutrition supplements, pharmaceutical sub-
stances, and cleaning agents with microorganisms and isolated enzymes. Protein engineering
enhances their throughput and specificity. For this, the effects of exchanging amino acids in pro-
tein binding sites are studied and exploited. Experiments are set up to produce large numbers
of subtypes of an enzyme. Here, a common approach is the random induction of mutations in
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CHAPTER 1. INTRODUCTION

the enzyme. A subsequent experimental selection identifies crucial modifications that enhance
productivity. A further refinement stage, comparable to lead optimization, then follows.

Experimental methods employed in the introduced research fields are increasingly comple-
mented with computational approaches. These are usually more cost effective, less time consum-
ing, grant access to larger molecular libraries, and offer detailed visual insights into biochemical
processes. The computational counterpart to high throughput screening is virtual screening.
Furthermore, in the lead optimization stage, molecular modeling tools help modify amino acid
side chains and parts of ligands. The effects of these refinement attempts are estimated using
the same tools.

A common computational method for virtual screening is molecular docking. This approach
rapidly places ligands into protein binding sites. This requires a large amount of alternative struc-
tural arrangements of the small ligand molecules. These arrangements are called conformations
and are defined by rotations about interatomic bonds. Conformations are often pre-computed
by conformation generators. Alternatively, they are incrementally constructed when fitting the
ligand to the binding pocket. Docking is also a useful tool in the lead optimization phase. Ad-
ditionally, altering ligands manually and then applying the refinement methods introduced next
is common practice.

An exemplary method for protein engineering is computational mutagenesis. It exchanges
amino acids in protein binding pockets. In this process, amino acid side chain conformations are
generated in accordance with empirically derived rotamer libraries.

The introduced computational methods, namely conformation generation, docking, and com-
putational mutagenesis, are most often guided by fast approximative knowledge-based or empir-
ical scoring functions. These grant a quick evaluation of generated amino acid side chain and
ligand conformations and poses. Conversely, forces that determine the formation of protein-ligand
complexes are only partly captured. To compensate for this shortcoming, generated structures
are frequently refined. A widely used approach for this is potential energy minimization, which
relies on molecular mechanics force fields as objective functions.

Molecular mechanics force fields describe the potential energy (in short referred to hereinafter
as energy) of a system of atoms. For this, functions grounded in classical physics are adapted and
specifically parameterized for molecular interactions on an atomic scale. These parameterizations
are derived from both quantum mechanical calculations and experimental results.

This work is centered around force field-based energy minimizations that are applied at the
end of a pipeline of computational molecular design tools. Therefore, this type of minimiza-
tions is hereinafter also referred to as downstream optimizations or post-optimizations. If applied
appropriately, post-optimizations drive structures closer to their experimentally measured con-
formations. At the same time, they compensate for structural overlaps, which preceding steps
may introduce. To support this process, constraints can be imposed on predefined degrees of
freedom of a molecular system. This way, existing knowledge on it is incorporated into the opti-
mization procedure. However, applying force field-based optimizations is by no means a free ride,
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1.2. PROJECT OVERVIEW AND MAIN CONTRIBUTIONS

as they are notoriously time consuming. Thus, they impair the cost-effectiveness of otherwise
fast computational methods in large-scale application scenarios, such as virtual screening. When
integrated into modeling tools that are applied in lead optimization, post-optimizations affect
the interactivity of design processes. This entails repercussions on team productivity and user
satisfaction, as pointed out in Section 3.1.

Computational power is thus a limiting factor for applying downstream optimizations. An-
other class of methods, namely molecular dynamics (MD) simulations, faces the same challenge.
For this reason, a large number of MD algorithms have recently been adapted to graphics pro-
cessing units (GPUs). General-purpose computing on graphics processing units (GPGPU ) is a
widely applied approach for reducing runtimes. Section 2.6 introduces publications that propose
different ways of porting MD simulations to the GPU. However, these efforts focus on speeding
up dynamics simulations of larger molecular systems. In contrast, this work concentrates on
quick downstream optimizations of molecules in protein binding pockets. These systems typi-
cally comprise less than 1,500 atoms. Furthermore, the complexity of downstream optimization
can be reduced by limiting the set of degrees of freedom.

1.2. Project Overview and Main Contributions

This work presents TRAmber’s Object-oriented OPtimizER (Trooper), a versatile down-
stream optimization method that uses the molecular mechanics force field SuperTrAmber (see
Section 3.4.1) as an objective function. Trooper is suitable for all application scenarios intro-
duced in the preceding section. Hence, it is explicitly designed for minimizing small ligands,
amino acid side chains in protein binding sites, or both at the same time. Into this process,
users can incorporate chemical knowledge by imposing constraints on dihedral angle rotations
and ligand movements.

For a thorough validation in ligand, side chain, and protein-ligand complex optimization sce-
narios, Trooper is applied to large data sets. This way, it is demonstrated that Trooper performs
on par with commercially available and widely used state-of-the-art energy minimization meth-
ods. Furthermore, the range of Trooper’s applicability for amino acid side chain optimizations
is explored. Thus, indications for a general limit to these types of optimizations are gathered.

GPUperTrooper, an algorithm designed for single instruction, multiple data (SIMD) archi-
tectures and implemented for GPUs manufactured by NVIDIA, accelerates Trooper’s protein-
ligand complex optimizations. This fast optimizer produces results with quality that is on par
with Trooper. At the same time, GPUperTrooper speeds computations up by two or three orders
of magnitude when compared to commercially available tools. Additionally, GPUperTrooper’s
computations typically save approximately 90% electric energy. This renders GPUperTrooper
suitable for time- and cost-efficient large- and small-scale application scenarios.

This work demonstrates that Trooper and GPUperTrooper distinguish themselves from pre-
vious work in the following aspects:
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CHAPTER 1. INTRODUCTION

• There are only a few downstream optimization methods whose efficacy in conjunction
with docking tools has been shown. This work demonstrates that Trooper improves
docking poses generated by TrixX (see Section 3.8.3), a state-of-the-art ultra-fast dock-
ing tool. For validating this, docking runs are carried out on protein-ligand complexes
of the community-wide used Astex Diverse Set [3].

• It has been disputed that force field-based downstream optimizations are beneficial
when applied prior to a rescoring stage with another objective functions [4, 5]. This
research refutes this hypothesis by showing that Trooper improves the rescoring efficacy
of HYDE (see Section 3.8.1), a scoring function based on a consistent model for hydrogen
bond and dehydration energies.

• As a downstream optimizer for the conformation generator CONFECT (see Section 3.8.5),
Trooper incorporates this tool’s dihedral angle constraints. In this fashion, Trooper
supplements force field potentials with knowledge-based constraints derived from co-
crystallized conformations by Schärfer [6]. With these, the bias of the SuperTrAmber
force field towards gas phase conformations is circumvented. Additionally, a highly
specific and transparent association between dihedral angle constraints and torsion
patterns is established.

• GPUperTrooper is the only algorithm developed for the SIMD architecture of GPUs
that is specifically designed for quick force field-based minimizations of molecules in
protein binding sites.

• Compared to widely used commercially available methods, GPUperTrooper optimizes
ligands and amino acid side chains in protein binding pockets about 10 times more
energy efficient. Hence, GPUperTrooper saves time, energy, and money in large-scale
application scenarios.

• In desktop usage scenarios, GPUperTrooper optimizes binding pockets about two or-
ders of magnitude faster than methods operating on a single CPU core. Hence, GPU-
perTrooper grants access to interactive force field-based minimizations, e.g. for lead
optimization tools.

• Coupling GPUperTrooper with the fastest available docking tools like TrixX and Ph-
DOCK [7] only negligibly affects their overall runtime behavior.

1.3. Thesis Overview

This work is structured as follows:

The Introduction continues with sections on force field-based energy minimizations and
the architecture of NVIDIA graphics processors.
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1.4. FORCE FIELD-BASED MOLECULAR ENERGY MINIMIZATIONS

Chapter 2 is a survey of the state-of-the-art of developments in fields relevant to fast
force field-based downstream optimizations. It provides an overview on versatile stand-
alone optimization tools, as well as conformation generation, docking and protein en-
gineering tools that include downstream optimizations. Furthermore, GPU portations
of molecular mechanics force field kernels are discussed.

Chapter 3 introduces methods applied in this work that have been previously developed
without contributions of the author of this work. Relevant molecular mechanics force
fields, in particular SuperTrAmber, are covered. Furthermore external tools to which
Trooper and GPUperTrooper are compared in evaluation experiments are introduced.
Finally, statistical methods for hypothesis testing are presented.

Chapter 4 details the major building blocks of Trooper and GPUperTrooper. Among
them is a structure for representing molecular data, a framework for implementing
molecular mechanics force fields, GPU-based data structures and algorithms that accel-
erate force computations with the SuperTrAmber force field, and a versatile framework
for designing optimization modules based on simulated annealing.

Chapter 5 comprehensively describes the preparation and composition of data sets used
in experiments in this work. Furthermore, technical specifications of all benchmarking
machines are detailed.

Chapter 6 reports on the application of Trooper and GPUperTrooper. In post-optimi-
zations after docking runs with TrixX, this work’s methods drive ligands closer to their
respective biologically active conformation. Also, the performance of the rescoring
function HYDE is improved. In a next step, the usefulness of these methods for amino
acid side chain and flexible protein-ligand optimizations is demonstrated. At the same
time, these methods are evaluated by comparative experiments with external meth-
ods. Additionally, the range of application of this work’s and the external methods is
explored. Along with the detailed experiments, GPUperTrooper is thoroughly bench-
marked and externally evaluated. Finally, this research shows that Trooper improves
results produced by the conformation generator CONFECT while taking its dihedral
angle constraints into account.

Chapter 7 comprises a summary of the content of this work and outlines perspectives
for future research on downstream optimizations and acceleration approaches targeted
at processors with SIMD technology.

The Appendix contains a manual for operating the downstream optimization tool and
outlines the structures of developed software libraries. Furthermore, this part comprises
acknowledgements, a formal declaration on oath, and the copyright notice for this work.

1.4. Force Field-Based Molecular Energy Minimizations

Molecular mechanics force fields are trained on data resulting from both experiments and
quantum chemical calculations. Based on this data, force field functions determine the potential
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CHAPTER 1. INTRODUCTION

Figure 1.1. Typical search paths produced by local and global energy mini-
mization algorithms.

energy of molecular systems with the coordinates of its atoms as parameters. Hence, the potential
energy varies with the atom coordinates, which yields an energy hypersurface. The minimum
points of this surface are assumed to correspond to stable and thus, biologically favorable, states
of the molecular system. While a minimum point in general is called a local minimum, the
minimum with the lowest energy is termed the global minimum. Energy minimization algorithms,
referred to as optimizations, find states of a molecular system that correspond to minimum energy
points. In this work, optimization methods are categorized as either local or global.

This work defines local minimizations as greedy local searches. As illustrated in Figure 1.1,
they are guided by the slope of energy functions. With a small number of steps, they detect the
local minimum that is nearest in a downhill sense from the starting point of the optimization. In
this process, energy barriers with positive slopes cannot be crossed. Thus, locating more than
one local minimum or the global minimum requires different starting points.

Most often, local optimization methods are gradient-based. This reflects that the first, and
in some cases, the second derivative of the energy function is computed for all atom coordinates.
The magnitude of changes to these varies with the slope of the energy function. Conjugate
gradient [8] and steepest descent [9] are commonly applied gradient-based methods. There are
also local minimization approaches that operate solely on the energy function. The most popular
among them is the downhill simplex method [10].

The term global minimization refers to randomized local searches. Figure 1.1 shows two of
their key traits. First, they perform randomized steps without taking the slope of the energy
function into account. Second, this class of algorithms can overcome energy barriers. Thus,
global minimizations are typically more suitable rough energy functions and potentially detect
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1.5. GPU ARCHITECTURE AND TERMINOLOGY

Table 1.1. Excerpt from technical specifications of NVIDIA GPUs of different
generations

generation shared
memory

memory
banks

cores per
SM

max. SMs
per GPU

ref.

Tesla 16 kByte 16 8 30 [12]
Fermi 48 kByte 32 32-48 16 [12,13]
Kepler 48 kByte 32 192 15 [12,14]

the global minimum of an objective function. Conversely, they are more time-consuming than
local minimizations and may yield a result far away from the global minimum. Their outcome
furthermore depends on the starting point, in which they resemble local minimizations.

Self-developed optimizations used in this work use simulated annealing (SA), a global min-
imization method comprehensively introduced in Section 3.3.1. Third-party methods often rely
on genetic algorithms whose search heuristic mimics the process of natural selection.

1.5. GPU Architecture and Terminology

State-of-the art graphics processors are widely and cheaply available. Desktop systems host
them as part of graphics cards that cost less than 500 euros. Furthermore, specially designed
accelerator cards for workstations and supercomputers are equipped with cutting-edge GPUs.
Their general-purpose computing functionality can be conveniently accessed via well-documented
application interfaces. Most accelerated algorithms described in this work are implemented with
CUDA [11] and thus are targeted at NVIDIA GPUs. The following introduces the CUDA
programming paradigm and the NVIDIA GPU architecture, as well as terminology linked to it.

1.5.1. Multiprocessors. A NVIDIA GPU is composed of multiple SIMD processing units
(see Figure 1.2.a). These are named streaming multiprocessors (SM ). Synonymously, the term
multiprocessor is employed. Depending on the GPU generation (see Table 1.1), they are com-
posed of 8 to 192 smaller processing units [12] that are named CUDA cores or, in short, cores
(see Figure 1.2.b). CUDA cores process threads. These are assigned to them by SMs which,
in turn, process multi-dimensional arrays of threads that are termed thread blocks. They are
decomposed by the SM into warps. These are arrays of 32 threads [12], which start program
execution at the same address.

In accordance with the SIMD model, all threads of a warp execute the same sequence of
instructions in lockstep, yet on differing data. Only one execution path can be followed by a
warp at a time. Thus, divergence of execution paths within warps is detrimental for performance.

In contrast, divergence of execution paths between different warps does not entail perfor-
mance drawbacks. Yet the exchange of data in a defined state between warps as well as SMs—
called synchronization—constitutes a costly operation. On older GPU generations it is even
infeasible.
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CHAPTER 1. INTRODUCTION

Figure 1.2.a: Sketch of general layout of NVIDIA GPUs.
Several SIMDmultiprocessors share access to global mem-
ory.

Figure 1.2.b: Sketch of general lay-
out of NVIDIA GPU multiproces-
sors. Several single cores perform
computations and have access to on-
chip shared memory.

Figure 1.2. Layout of NVIDIA graphics processors at two scales.

1.5.2. Memory hierarchy. NVIDIA GPUs have several layers of memory. Most impor-
tant to this work are shared and global memory. Shared memory is located on a SM and is used
by its CUDA cores (see Figure 1.2.b). It permits quick access and is limited in size as there are
16 to 48 kByte available per SM [13,14]. It can be regarded as an equivalent to L1 cache on x86
CPUs. However, the programming paradigms for CPUs and GPUs differ as it is completely up
to the programmer to control shared memory usage.

Shared memory is arranged in equally sized modules, named banks. They can be accessed
simultaneously, but memory requests for the same bank are serialized. This is detrimental for
data transfer rates. Among the most important measures for attaining high bandwidth is thus
avoiding memory bank conflicts.

All SMs of a device share access to global memory (see Figure 1.2.a). Vast amounts of it
can be allocated. However, frequent data transfer between SMs and global memory should be
avoided. Latency coupled to these operations is more than 100 times higher, while bandwidth
is considerably lower compared to on-chip shared memory [12]. Transfers between GPU device
and host main memory are even more disadvantageous, as they have low bandwidth and entail
a high overhead [12].

1.5.3. Kernels. CUDA allows the user to define kernels. These are functions that are
executed by threads. The number of kernel executions thus depends on the user-defined number
of threads. Each of these threads is assigned a unique ID, which permits controlling them
individually.
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1.5. GPU ARCHITECTURE AND TERMINOLOGY

For executing a kernel, the user triggers (i.e., calls) it. However, frequent calls to GPU
kernels should be avoided as they are coupled with a latency of approximately 5µs [15]. This is
about three orders of magnitude larger compared to x86 architecture.

1.5.4. Algorithmic implications. In summary, architectural details have to be considered
when designing algorithms for GPUs. On the kernel level, programmers should utilize shared
memory without causing memory bank conflicts. This way, access to global memory is avoided.
Furthermore, execution branch divergence and synchronizations have to be circumvented.

Having designed an efficient kernel, it is up to the programmer to integrate it into entire
algorithms while sustaining the speedup. This is a major challenge, as data transfer between
a host system and a GPU device, as well as the number of kernel calls, have to be kept at a
minimum.
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CHAPTER 2

Scientific Context

This work is centered around Trooper and its accelerated version GPUperTrooper. Trooper
is a versatile and fast optimization method that drives molecules towards experimentally deter-
mined bioactive conformations. This method optimizes small molecules as well as binding sites of
protein-ligand complexes. Its application scenarios cover downstream optimizations after molec-
ular docking and virtual screening, amino acid side chain optimizations for enzyme engineering,
lead optimizations, and small molecule conformation generation. These scenarios have in com-
mon that typically a tool with a simple heuristic objective function produces a set of molecule
conformations. As demonstrated in the experimental sections, Trooper enhances their average
quality. At the same time, its accelerated version GPUperTrooper sustains the speed of simple
heuristic approaches. Furthermore, it optionally incorporates chemical knowledge. This way,
spatial regions where atoms should be located, as well as favorable angles of rotatable dihedral
bonds, can be predefined. The following section discusses available methods that address the
same application scope as Trooper.

2.1. Stand-Alone Optimization Tools

This section introduces tools that offer a wide application range. It focuses on those suitable
for at least two, or have been employed in at least one, of the scenarios described previously. This
research analyzes each tool for its range of applicability, how it handles the selection of flexible
protein regions, and whether it offers constraints for optimizations. Furthermore, the research
discusses whether the efficacy of the tool for downstream optimizations has been shown. Finally,
this work evaluates whether published runtimes suffice for cost- and time-efficient large-scale
optimization runs, as well as an interactive workflow. As discussed in Section 3.1, this requires
runtimes below 1 s per protein-ligand complex minimization.

2.1.1. AMMOS. Pencheva et al. published AMMOS [16], a tool that minimizes small
molecules or protein-ligand complexes. This tool grants access to several gradient-based and
stochastic optimization procedures as well as molecular mechanics force fields that are part of
the AMMP package [17]. Pencheva et al. demonstrate the efficacy of AMMOS at improving
docked poses. Furthermore, they show that their downstream optimizations enhance enrichment
rates in virtual screening in some anecdotal cases.

AMMOS allows for defining a flexible protein region around ligands. However, neither spatial
nor dihedral constraints are provided. On a single 3.0 GHz core of an Intel Xeon CPU, AMMOS
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on average runs 0.3 s for optimizing small molecules, 24 s for optimizing ligands in rigid binding
pockets, and 44 s when treating atoms within a sphere with undefined radius around ligands as
flexible. For all optimization runs, the employed cutoffs are undefined. These runtimes are quite
promising. However, they neither suffice for performing cost-efficient large-scale optimization
runs nor for an interactive workflow in a workstation usage scenario.

2.1.2. MacroModel. MacroModel [18] is a molecular modeling program that offers access
to a wide range of molecular mechanics force fields. For performing minimizations, several
gradient-based methods are provided. Dihedral rotations can be constrained by force constants.
This keeps angles in a selected place. Multiple constraints on one torsion angle are not supported.
Explicit runtimes for minimization procedures are not specified.

Perola et al. applied MacroModel in an evaluation study [19] that assessed the docking tools
GOLD [20,21], ICM [22,23], and Glide [24]. For this study, gradient-based downstream mini-
mization of top-scored ligands resulting from cognate docking runs were performed. For this, the
MMFF94 (see Section 3.4.3) and the OPLS-AA [25,26] force fields were used as objective func-
tions. These optimizations improved the percentage of correct poses (as defined in Section 3.2)
for GOLD from 48% to 62%. For the other tested docking tools, the number of correct poses
stayed approximately constant. Perola et al. attribute this to force field-based post-optimization
procedures already included in ICM and Glide but not in GOLD. It is noteworthy that other
literature sources claim that GOLD comprises downstream optimizations [27]. Perola et al. also
conclude that the effects of employing an alternative force field are negligible.

All docking tools, plus the post-optimization procedure, were also tested in virtual screening
scenarios. For these, Perola et al. report that post-optimizations dramatically improve enrich-
ment rates for systems with tight binding pockets. Finally, runtimes for optimizations are stated,
which range from 30 s to 60 s per pose.

In summary, MacroModel is a versatile tool and offers limited constraints for dihedral angle
rotations. Improvements are necessary for incorporating further knowledge on dihedral angle
conformations. Apart from that, Perola et al. showed that post-optimizations can improve dock-
ing and virtual screening quality. Accelerating MacroModel in this scenario would improve its
usability and cost-effectiveness, as optimizations currently take 30 s to 60 s per pose.

2.1.3. MOE. The Molecular Operating Environment (MOE ) [28], which is commercially
available, is a fully integrated software package for drug discovery. It contains a module for all-
purpose local gradient-based molecular minimizations. MOE offers a broad range of molecular
mechanic force fields as objective functions. For defining flexible regions, MOE allows labeling
atoms as rigid. Additionally, assigning tether weights to an arbitrary set of atoms constrains their
movements and a single dihedral angle restraint interval can be assigned per set of four atoms.
Miura et al. [29] and Klenner et al. [30] employ MOE as a downstream optimization module (see
Section 2.2). Yet, they fail to analyze its runtime and efficacy. However, a thorough experimental
series on this issue is conducted in this work. As shown later, the runtime of MOE’s minimization
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module is far above the interactivity threshold (see Section 3.1). Consequently, applying it for
large-scale optimization runs entails disproportionate costs.

2.1.4. Rosetta. The Rosetta software suite for modeling macromolecular structures [31,32]
is built with the ROSETTA3 software library [33]. It offers several gradient-based optimization
procedures and an all-atom knowledge-based energy function as objective function, which was
initially developed for protein design [34]. However, Rosetta does not include an off-the-shelf
minimization tool. Instead, this has to be programmed with the ROSETTA3 library modules.
Despite this, the docking tools DARC [35] and RosettaLigand [36,37] described in Section 2.2
employ Rosetta for downstream minimizations.

2.1.5. SZYBKI. The yet unpublished commercially available tool SZYBKI [38] minimizes
small molecules, as well as protein binding pockets, without or in the presence of ligands. The
MMFF94 and MMFF94s force fields (see Section 3.4.3) serve as objective functions. SZYBKI
allows defining flexible regions on atomic basis or by SMARTS patterns [39]. It either optimizes
entire amino acid residues or their side chains only. Furthermore, harmonic constraints can be
imposed on all or a SMARTS pattern-based selection of atoms. However, dihedral rotations
cannot be constrained.

According to claims on SZYBKI’s homepage [38], 200 small molecules are optimized in 60 s.
Consequently, an optimization takes 0.5 s on average. It is unclear whether this figure refers
to a parallelized run and what kind of machine was used. However, the asymptotic runtime of
molecular mechanics force field-based optimization is quadratic. As binding pockets typically
contain at least one order of magnitude more atoms than small molecules, the data suggests
that SZYBKI’s runtime is at least 50 s for this kind of optimization. If that assumption is true,
this tool is not suitable for granting an interactive workflow. Furthermore, it renders large-scale
optimization campaigns time consuming and costly.

2.1.6. YASARA. Yet Another Scientific Artificial Reality Application (YASARA) [40] is
a commercially available molecular-graphics, -modeling and -simulation program. It comprises a
simulated annealing-based module for all-purpose molecular minimizations. Algorithmic details
on this module have not been published. YASARA allows selecting a flexible region and an
objective function from a wide range of molecular mechanics force fields. However, constraining
parts of molecules or dihedral rotations is only possible for MDsimulations. Nabuurs et al. [41]
demonstrate YASARA’s efficacy in downstream minimizations (see Section 2.2) and analyze its
runtime. This work benchmarks YASARA and shows that it cannot be used for interactive
minimizations or time- and cost-efficient large-scale optimization runs.

2.1.7. Summary. This section introduces the all-purpose energy minimization tools MOE,
YASARA, and MacroModel, as well as the downstream optimization tools AMMOS and SZYBKI.
All permit a precise selection of flexible protein regions. Furthermore, the efficacy in downstream
optimizations has been demonstrated for YASARA, MacroModel, and AMMOS. However, all
published runtimes for these tools indicate that speedups of two orders of magnitude are necessary
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for cost-efficient applications in large-scale drug development scenarios. The same applies to
interactive workflow scenarios. Additionally, only MacroModel and MOE partially support fine-
grained dihedral angle rotation constraints.

2.2. Optimizations in Docking and Virtual Screening Methods

The following introduces docking tools that include downstream or intermediate force field-
based minimizations. In the second type of tools, minimization procedures are clearly separable
steps of the overall docking algorithm. This research analyzes each tool to determine which
degrees of freedom are included in the minimization procedure. Furthermore, this work investi-
gates this procedure’s efficacy and its impacts on the runtime behavior and rescoring schemes of
the docking procedure. The latter question is quite interesting as Cole et al. and O’Boyle et al.
raised doubts that rescoring, especially with non-smooth functions, is effective when preceded by
optimizations with a different objective function [4,5]. Finally, a summary in Table 2.1 provides
an overview that concludes this section.

2.2.1. Docking approaches with downstream optimizations.

ADAM. ADAM [42], which was published by Mizutani et al., is a grid-based docking
procedure. For removing clashes and modeling induced fit effects, it employs a post-optimization
module named BLUTO. This module combines steepest descent and L-BFGS [43] to minimize
ligands and amino acid side chains in binding pockets. Here, the AMBER94 force field (see
Section 3.4.4) serves as an objective function. Mizutani et al. report runtimes between 1 s and
115 s for performing a docking run on an Intel Xeon running at 3.06 GHz. As neither the runtime
nor the efficacy of the BLUTO module is specified, comparisons with ADAM are impossible.

CRDOCK. Quite recently, Cabrera et al. reported on CRDOCK [44], a follow-up of
CDOCK [45]. CRDOCK flexibly docks ligands into rigid binding pockets. Several docking
protocols are available. By default, a BFGS [43] rigid-body minimization post-processes resulting
poses. For this, AMBER-like potentials stored in a three-dimensional grid serve as objective
functions. Cabrera et al. report a total average runtime of 10 s per conformation for their
procedure, measured on a 3.3 GHz Intel Core i5 CPU. However, runtimes for the optimization
procedure are not stated and its efficacy is not analyzed.

DARC. Recently, Khar et al. published DARC [35], a method for docking small molecules
into protein surface pockets. Based on a shape-matching algorithm, DARC places pre-generated
ligand conformations into rigid protein pockets. These generated poses are ranked according to
a crude and fast scoring scheme. In accordance with this ranking, DARC minimizes all rotatable
dihedral angles, in both the protein and the ligand for the top 10% of all generated complexes.
At this point, the Rosetta all-atom force field serves as an objective function (see Section 2.1).
Finally, DARC reranks minimized complexes based on energetic and structural considerations.

Khar et al. extensively analyze runtimes and speedups achieved through porting the core
DARC algorithm to GPU. However, neither the efficacy nor the runtime of performed downstream
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optimizations are discussed. Furthermore, the effect of optimizations on the reranking scheme is
not analyzed.

Fleksy. Nabuurs et al. compiled a tool chain named Fleksy [41] for fully flexible docking.
Fleksy employs FlexE [46] to perform ensemble docking. Resulting protein-ligand complexes
are optimized with YASARA (see Section 3.9.1), which uses the Yamber2 force field [47] as
an objective function. Subsequently, the optimized complexes are rescored with a consensus
function that encompasses FlexX [48] and piecewise linear potential (PLP) [49] scores as well
as interaction energies of the Yamber2 force field.

Fleksy produces a single docking pose in about 180 s. Nabuurs et al. attribute the bigger
part of this runtime to the optimization step that "can take up to a few minutes per docking
pose" [41, p. 6511]. However, an analysis yields that omitting this step deteriorates the RMSD
of the best ranking solution in 10 out of 16 cases and the RMSD of the overall best solution is
worsened in 9 out of 16 cases. In a further experiment, generated docking poses were subjected to
the optimization procedure. For poses with an initial RMSD below 1.5 Å, Nabuurs et al. report
RMSD reductions by 0.31 Å to 0.41 Å.

In summary, the results gathered by Nabuurs et al. indicate that downstream optimizations
shift docking poses closer to the respective crystal structure conformation. Also, rescoring func-
tions apparently produce more realistic rankings when applied to optimized poses. In addition,
it would be interesting to determine whether optimizations with the rescoring function are more
effective than with the Yamber2 force field. Furthermore, the usability and cost-efficiency of
Fleksy would benefit from a faster optimization procedure.

FLOG. The Flexible Ligands Oriented on Grid (FLOG) algorithm by Miller et al. [50]
is similar to the DOCK procedure (see Section 2.2.2) in all its major steps. FLOG employs
a simplex-based [10] rigid-body optimization procedure to refine ligand poses as a final step.
Miller et al. demonstrate in an anecdotal case study that FLOG’s post-optimization procedure
enhances the score of ligand poses while doubling the runtime of the docking procedure. There-
fore, FLOG constitutes a further docking algorithm that would benefit from a fast downstream
optimization procedure.

FRED. With pre-generated conformations, FRED [51] produces docking poses by exhaus-
tively searching the space defined by ligand rotations and translations. During this search,
proteins are kept rigid and Chemgauss [51] and CGO [51] serve as objective functions. The top
100 scored poses are subjected to a rigid-body downstream optimization. Like the main proce-
dure, this optimization is based on an exhaustive search, yet with a higher resolution. Effects of
the post-optimization are not evaluated. Also, its runtime is not explicitly measured. FRED’s
total runtime for docking a single compound ranges from 1 s to 50 s on a single core of an Intel
Xeon with 2.4 GHz, depending on the resolution of exhaustive search and the employed docking
function.

15



CHAPTER 2. SCIENTIFIC CONTEXT

In conclusion, FRED employs coarse downstream optimizations and flexibly docks ligands in
less than a minute. It would be interesting to analyze the impact of downstream optimizations on
FRED’s results and whether FRED could benefit from fast all-atom force field post-optimizations

Glide SP/XP. Friesner et al. published Glide SP [24] and XP [52] that are both centered
around the same flexible docking method. Based on a pipeline of hierarchical filters, Glide ex-
haustively pre-screens the torsion angle space of ligands. Selected ligand poses are subsequently
optimized using the OPLS-AA force field [25,26] as an objective function. Energetic contribu-
tions of the receptor are projected onto a grid and all protein atoms are kept rigid during the
optimization. Following it, up to six of the lowest-energy poses are further optimized with a
Monte Carlo procedure to detect nearby torsional minima. Finally, a consensus scoring scheme
ranks the produced poses.

Friesner et al. state that their pre-screens avoid "computationally expensive energy and
gradient evaluations" [24, p. 1740]. However, explicit runtimes of the optimization procedure
are not given. Instead, docking times for 282 complexes of the Protein Data Bank (PDB) [53]
are reported. They range from 6 s to 2034 s with an average value of 134 s on an AMD Athlon
MP 1800+ CPU. Assuming that the optimizations consume the bulk of the runtime, a faster
procedure would improve Glide’s usability and cost effectiveness.

GOLD. GOLD [20,21] is an optimization procedure based on a genetic algorithm for plac-
ing ligands in binding pockets with flexible amino acid side chain. For this, a range of scoring
functions are available. Among these are GOLDscore [27], a molecular mechanics-like fitness
function, and Chemscore [54]. The latter can be mapped onto grids for representing receptors.
GOLD includes an optional simplex [10] downstream optimization [27]. It refines hydrogen bond
donors on the protein side as well as the position, the orientation, and torsions of the ligand.
Yet, neither the efficacy nor the runtime of this procedure have been reported.

Lead Finder. Stroganov et al. developed Lead Finder [55], a successor to the yet un-
published docking tool Bœuf. Lead Finder relies on a genetic algorithm to optimize ligands
in the presence of a rigid receptor. The best ligand poses emerging from this procedure are
post-optimized using a force field-based objective function that constitutes a cross-over of the
CHARMM19 [56] and OPLS-AA [25,26] force fields. Neither the efficacy nor the runtime of the
post-optimization procedure are analyzed.

NeuroDock. Klenner et al. reported the development of NeuroDock [30], a docking tool
based on the self-organizing algorithm SOCGEN. NeuroDock places a contracted ligand in a
user-defined binding pocket. Subsequently, a stochastic procedure guided by predefined optimal
bond lengths unfolds this ligand. Finally, NeuroDock applies MOE’s gradient-based optimization
procedure (see Section 3.9.2) to energetically minimize generated ligands along with hydrogen
atom positions in the protein.

The NeuroDock publication neither specifies the efficacy of the optimization procedure nor
any runtimes. Thus, comparisons are infeasible.
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PhDOCK. Joseph-McCarthy et al. developed PhDOCK [7] that represents binding pockets
and ligands as sets of pharmacophore points. For rapid docking, sets of mutually similar ligands
are subsumed by three-dimensional-pharmacophores. These are subsequently docked into the
pre-processed binding pockets. Then, all ligand conformations associated with the docked phar-
macophore are scored. For this, grid-based force field potentials corresponding to those in DOCK
(see Section 2.2.2) are employed. Optionally, 15 iterations of a simplex-based [10] rigid-body
minimization post-process ligand poses.

In a validation study, RMSDs of top scored poses are lowered when downstream minimiza-
tions are switched on. Joseph-McCarthy et al. thus propose to include these into PhDOCK’s
standard protocol. This suggests an extremely fast optimization procedure, as one of PhDOCK’s
main strengths is speed. It takes less than a second to place a single conformation. The data
suggests that PhDOCK’s docking performance could benefit from replacing the coarse grid
potential-based rigid-body minimization with an all-atom method that additionally optimizes
dihedral angles. A study by Wu et al. [57] on replacing grid-based potentials with an all-atom
approach support this view. Section 2.3.3 provides more details on this matter.

RosettaLigand. Meiler et al. and Davis et al. developed RosettaLigand [36,37], a docking
method that supports amino acid side chain and backbone flexibility. It places ligands randomly
in protein binding sites. Subsequently, thus obtained initial protein-ligand complexes are opti-
mized in six rounds with a Monte Carlo-based protocol. During this phase, random perturbations
alter ligand positions and conformations. These, along with surrounding amino acid side chains,
are subsequently energetically optimized. For this, a gradient-based method and softened poten-
tial of the Rosetta force field are used. Docking poses resulting from this minimization loop are
finally optimized with a gradient-based procedure and hard potentials.

Davis et al. discuss the effects of introducing backbone flexibility in this final optimization
step. However, their analysis is based on a small test set of 20 protein-ligand complexes. Further-
more, the statistical mean is employed as a measure although there are outliers. Thus, results
are hard to interpret.

In summary, RosettaLigand’s algorithm is a two-stage optimization procedure. Generating
one pose with it takes approximately 3,060 s, of which 10 s are dedicated to the final opti-
mization. Runtimes for the intermediate optimization steps are not specified. However, it is
reasonable to assume that significant parts of RosettaLigand’s runtime are dedicated to these
local optimizations, since they follow each ligand perturbation. Speeding them up would enhance
RosettaLigand’s usability and cost effectiveness.

SurFlex. SurFlex, published by Jain [58–60], makes use of protein conformations from mul-
tiple complexes to flexibly dock ligands into binding pockets. Therefore, fragments representing
hydrogen bond donors and acceptors, as well as hydrophobic regions, are placed in binding pock-
ets at ideal positions,according to SurFlex’s scoring function. Then, ligands are morphologically
aligned to these fragments. All degrees of freedom of resulting docking poses are subjected
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to a gradient-based optimization procedure. It employs the DREIDING force field [61] as an
objective function.

In a small-scale experiment involving four protein targets, Jain explored the effects of down-
stream optimizations. Adding them improves screening performance in two cases. Occasional
degradations of results is also described. In contrast, runtimes of the post-optimization procedure
have not been systematically analyzed. However, Jain reports an anecdotal case in which adding
pre- and post-optimizations for ligands increases the docking procedure’s runtime by 36% or 1.1 s

per rotatable bond. Consequently, systematic comparisons to Jain’s downstream optimizations
are not possible due to the lack of data.

2.2.2. Docking tools with intermediate optimizations.

DOCK. Kuntz et al. first published their pioneering DOCK algorithm in 1982 [62]. Follow-
up versions [63–67] are still based on the original concept. It represents binding sites by a set
of spheres. Onto these, ligand spheres and atoms are matched. The conformational space of the
ligand is then sampled via an incremental construction approach. DOCK employs pre-computed
grid-based force field potentials calculated with AMBER3 [68,69] for scoring. Simplex-based [10]
rigid-body optimizations improve ligand poses during the search algorithm. However, down-
stream optimizations are not performed. This is due to a study by Gschwend and Kuntz [70]
who conclude that intermediate optimizations incorporated into the DOCK procedure perform
on par with downstream optimizations. These were tested by Meng et al. [71] and were found to
drive docking poses significantly closer to experimentally determined bioactive structures. How-
ever, in both studies, optimizations increase DOCK’s runtime by up to one order of magnitude.
Consequently, Yang et al. [72] measured a runtime of 498 s per docking run with DOCK.

FITTED. Corbeil et al. reported on FITTED [73–75], a tool for flexible protein-ligand
docking. FITTED first generates initial docking poses by randomly placing ligand conformations
in binding pockets. At this point, conjugate gradient-based [8] optimizations are performed for
improving ligand poses. In these, the AMBER3 [68,69] and GAFF [76] force fields are used as
objective functions. Corbeil et al. describe their optimizations as "a time-consuming step in the
docking process" [74, p. 904]. However, exact runtimes are not reported.

Generated initial poses are refined by FITTED with a global optimization based on a genetic
algorithm. In each optimization cycle, a user-defined proportion of poses are additionally opti-
mized with the gradient-based method described previously. Again, no runtimes are reported.
Also, the efficacy of the single optimization steps is not analyzed.

In summary, Corbeil et al. do not provide a thorough report on their intermediate optimiza-
tion procedures. Still, there are strong indications that the usability of FITTED would benefit
from faster minimization methods.

Glide/IFD. Sherman et al. presented an induced-fit docking (IFD) procedure [77], which
builds upon the Glide docking tool (see Section 2.2.1) and a protein refinement module named
Prime [78–80]. IFD first docks ligands into a rigid receptor structure using Glide with a softened
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energy function. After scoring, the top 20 complexes are optimized as follows: in a first step, side
chains are sampled. Then, a more thorough procedure minimizes thus generated conformations,
including ligand and backbone atoms. For this, an adapted version of the OPLS-AA force
field [25, 26, 78] serves as an objective function. Ligands are subsequently redocked into the
generated receptor conformations. For this, Glide’s standard protocol is applied. It comprises
downstream optimizations for ligands.

An analysis on the efficacy of the single optimization steps is not given. Still, Sherman et al.
specify that the total average runtime of their procedure amounts to 18,000 s on a 1.6 GHz
AMD64 Opteron CPU. For a single complex, protein sampling alone takes 600 s. IFD could thus
benefit from a faster optimization procedure.

ICM. ICM [22,23] docks ligands into binding pockets while considering flexible amino acid
side chains. Therefore, it performs global Monte Carlo minimizations with a force field combined
of AMBER3 [68, 69] and ECEPP/3 potentials [81–83] as an objective function. Gradient-
based local optimizations follow each perturbation during this Monte Carlo procedure. However,
downstream optimizations following the global optimization are not performed. No reports on
the runtime or the efficacy of the intermediate optimization steps have been published.

PCRelax. May and Zacharias presented a docking approach whose protein flexibility model
is based on normal mode analysis [84,85]. Their docking protocol initially generates poses with
the PCRelax method [84]. These are subsequently refined in several optimization steps. For this,
the AMBER99 force field [86] is used as an objective function for proteins and the GAFF force
field [76] for ligands. Only non-bonded interactions and dihedral energies are considered and a
cutoff of 10 Å is imposed. The gradient-based L-BFGS method [43] is applied. Zacharias and
May measured an average runtime of 11 s for a single docking run, including side chain flexibility
in the binding pocket.

Optimization steps dominate the runtime of the fully flexible PCRelax approach. Speeding
them up would enhance usability cost effectiveness of this docking tool. To tackle this issue, Leis
and Zacharias published a grid-based version of their method [87]. However, this study neither
reports runtimes nor tests on larger data sets.

2.2.3. Summary. As evident in Table 2.1, force field-based optimizations are widely used
as an integral part of docking tools. Despite this popularity, the efficacy of these integrated
refinements has only been thoroughly demonstrated for Fleksy, PhDOCK, and DOCK. Further-
more, Perola et al. [19] analyzed an external downstream optimization scheme for GOLD, Glide,
and ICM that improved docking poses produced by GOLD.

Additionally, the effects of downstream optimizations on redocking schemes, which are typ-
ically part of docking pipeline, are virtually unknown. To the author’s knowledge, so far only
Nabuurs et al. have published a thorough analysis on this topic for their tool Fleksy. This work
contributes to rectifying the imbalance between the number of tools applying force field-based
optimizations and the number of studies analyzing their effects.

19



CHAPTER 2. SCIENTIFIC CONTEXT

Table 2.1. Docking and virtual screening tools with intermediate or down-
stream force field-based optimizations. The total docking runtime is given along
with the proportion of it consumed by the optimization procedure. The fourth
and the fifth column tell whether the efficacy of the optimization procedure and
its impact on rescoring are published.

tool runtime
per

pose (s)

runtime of
optimiza-

tion

efficacy
tested

rescoring
tested

ref.

ADAM 1-115 - no no [42]
CRDOCK 10 - no no [44]
DARC ∼ 3 - no no [35]
DOCK 498 up to 90% yes no [62–67,70,71]
FITTED 720 - no no [73–75]
Fleksy ∼ 180 ∼ 60 sb yes yes [41]
FLOG 35.66 15.82 s yesd no [50]
FRED 1-50 - no no [51]
Glide/IFD 1,200 > 600 s no no [77]
Glide SP/XP 6-2,034 - no no [24,52]
GOLD - - no no [20,21]
ICM - - no no [22,23]
Lead Finder 60 - no no [55]
NeuroDock - - no no [30]
PCRelax 11 - no no [84,85]
PhDOCK < 1 - yes no [7]
RosettaLigand ∼ 3,060 ∼ 10 sa no no [36,37]
SurFlex 24.6 6.6 sc yesd no [58–60]
a not including intermediate optimization steps
b "up to a few minutes" [41, p. 6511]
c for a ligand with six rotatable bonds
d anecdotal evidence

More data is available on runtimes of force field-based refinement procedures. The proportion
of computation time spent on these ranges from 27% to 90% for the analyzed docking tools.
Clearly, optimization procedures thus constitute major runtime bottlenecks. This explains why
ultra-fast docking approaches like PhDOCK refine their results with as little as 15 minimization
steps. More thorough optimizations would spoil the overall runtime behavior; thus, force field-
based optimization procedures should be significantly accelerated. This way they can be routinely
applied without impairing interactivity, usability, and cost effectiveness of docking tools.

2.3. Docking Tools Without Additional Force Field-Based Optimizations

A considerable number of tools perform protein-ligand docking without any additional op-
timizations. This research analyzes the most popular ones and evaluates whether they could
benefit from downstream optimizations.
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2.3.1. AutoDock. Similar to CDOCKER, AutoDock [88–91] uses a global search strategy
based on a genetic algorithm to find docking poses. Therefore, AutoDock maps energies of its
force field [92] onto grids. These are pre-computed for binding pockets before actual docking
runs start. No post-optimization is performed.

2.3.2. AutoDock vina. AutoDock vina [93] optimizes its objective function with a com-
bination of local and global optimization strategies, similar to that of ICM [22,23]. Based on
X-Score [94], this procedure takes all atom pairs in binding pockets into account. Downstream
optimizations are neither tested nor part of the protocol of AutoDock vina. One docking run
takes approximately 8 s on a single CPU core.

2.3.3. CDOCKER. The CHARMm-based DOCKER (CDOCKER) [57,95,96] docks lig-
ands into rigid binding pockets. Therefore, force grids based on the CHARMm force field [97]
are constructed. Subsequently, a SA-based algorithm optimizes randomly placed ligand poses.

Wu et al. [57] demonstrate that coupling CDOCKER with gradient-based all-atom force
field downstream optimizations improves docking accuracy by 10%. Thus, post-optimization can
improve pose accuracy even when complex functions are used for docking. At this point, it is
important to apply procedures that only negligibly contribute to CDOCKER’s main procedure
runtime of about 600 s per complex.

2.3.4. Flex-Screen. Based on a stochastic tunneling approach [98], Flex-Screen [99,100]
globally minimizes protein-ligand complexes. A force field projected onto a grid serves as an
objective function. It is composed of OPLS-AA [25,26] terms with additional hydrogen bond
parameters from AutoDock [92]. No post-optimizations are performed.

2.3.5. FlexX. FlexX by Rarey et al. [48] decomposes ligands into basic building blocks and
places one of these blocks as a base fragment in the protein binding site. Then, incremental steps
build up a complete ligand. Schneider et al. [101] introduced a post-optimization and rescoring
procedure based on HYDE (see Section 3.8.1) and tested it on docking poses produced by FlexX.
However, the effects of optimizations are not detailed. Thus, FlexX constitutes a docking tool
without downstream optimizations. It processes one compound in less than 10 s [102].

2.3.6. FlipDock. Zhao and Sanner [103] developed a data structure to store domain-
specific flexibility constraints for molecules. Based on this, they perform a constrained genetic
algorithm-based optimization of protein-ligand complexes for docking purposes. In this, side
chain rotations are performed according to rotamer libraries. For scoring, the AutoDock force
field [90] is employed. In contrast to AutoDock, energies are computed on an all-atom basis
instead of projecting forces onto grids.

Downstream optimizations are not part of the FlipDock algorithm. However, Zhao and San-
ner report that their procedure results in unfavorable side chain conformations. They attribute
this observation to the coarse sampling implied by using rotamer libraries. That data suggests
that downstream optimizations could compensate for this shortcoming.
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2.3.7. SLIDE. SLIDE [104,105] performs triangle-based matching of ligand anchor frag-
ments and binding sites. Subsequently, collisions are removed by translations of anchor fragments.
Then, all further ligand atoms are added to the anchor fragment. Finally, dihedral rotations in
side chains and ligands resolve clashes. During this procedure, scoring is performed with a simple
clash function.

2.3.8. TrixX. TrixX [102,106] is a docking tool that places pre-generated ligand confor-
mations in protein binding pockets. By employing database-stored and indexed bitmaps for
describing small molecules, TrixX screens large conformation sets in sublinear runtime. In a case
study by Schlosser et al. [102], TrixX processes one conformation in approximately 0.1 s. For
scoring ligand poses, TrixX utilizes a hierarchical scoring scheme based on the FlexX [48] model.

A downstream optimization method combined with TrixX should maintain its favorable
runtime behavior and enhance pose quality at the same time. The method presented in this
work fulfills these conditions, as demonstrated in the experimental section.

2.3.9. Summary. Docking procedures without additional force field-based optimizations
can roughly be divided into two categories. First, there are those that globally search force
field energy surfaces that have been projected onto grids (CDOCKER, FlexScreen, AutoDock).
Second, there are tools that rapidly produce docking poses using a simple heuristic scoring scheme
(AutoDock vina, FlexX, TrixX). According to Wu et al. [57], tools of the former category benefit
from downstream optimizations with all-atom force fields and data suggests that this is also true
for the latter. The experimental section shows that the hypothesis is true for TrixX. However,
only extremely fast force field-based minimizations preserve the runtime characteristics of tools
of the latter category. Thus, applying one of the previously introduced stand-alone optimization
tools is not advisable.

2.4. Side Chain Optimizations and Post-Optimization

In protein engineering scenarios, force field-based energy minimizations are used for refining
amino acid side chains of protein binding pockets. The following discusses a few examples.

2.4.1. AS-Dock with downstreamminimizations. Miura et al. [29] predict site-directed
mutagenesis effects on fructosyl amine oxidase. For this, they employ a pipeline composed of
MOE’s [28] docking module AS-Dock, followed by an energy minimization. Miura et al. re-
port the successful adaptation of the active site of fructosyl amine oxidase to fructosyl valine.
However, they do not provide a detailed analysis of their in-silico prediction procedure.

2.4.2. ICM. Bordner and Abagyan [107] introduce point mutations into binding pockets.
Their tool, ICM [22,23], subsequently energetically minimizes amino acid side chain dihedral an-
gles with the ECEPP/3 force field [81–83] as an objective function. For this, ICM’s BPMC [108]
module performs up to 100, 000 steps. This module couples local optimizations with a Monte
Carlo minimization—a procedure that is comparable to an extensive post-optimization. In total,
ICM consumes 720 s on a 1.3 GHz AMD Athlon CPU in this scenario.
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2.4.3. TINKER for protein engineering. Zhang et al. [109] perform force field-based
energy minimizations on wild type and mutated protein binding sites using the tool TIN-
KER [110]. The free energy change due to mutations is then computed with the resulting
structures. Details on the minimization procedure, including runtimes, are not reported.

2.4.4. Summary. Examples of force field-based downstream optimizations used in protein
engineering scenarios were presented. All reported runtimes indicate that faster minimizations
would boost the usability of the introduced tools. At the same time, a more thorough assessment
of the efficacy of the employed methods would be valuable.

2.5. Conformation Generators with Post-Optimizations

A large number of conformation generation methods have been published thus far. Among
them are systematic search algorithms, knowledge-based approaches, random searches, distance
geometry-based procedures, and global minimizations using Monte Carlo methods or genetic
algorithms. Consecutive force field-based minimizations—some supplemented with constraints
on dihedral angle rotations—constitute a widely applied method for downstream refinements.
The following sections introduce three conformation generators, two popular ones and one less
known tool, all of which employ force field-based post-optimizations. Further, this work analyzes
the runtime of this process and whether it allows for constraints on dihedral angle rotations. For a
more comprehensive overview on conformation generation tools and methods, refer to Schärfer’s
dissertation [6].

2.5.1. Catalyst. Using the CHARMm force field [97] Accelrys’s Catalyst [111] generates
conformations with two selectable levels of precision. Downstream optimizations are also per-
formed with CHARMm. This tool supports harmonic constraints around a given value for dihe-
dral angles. To the author’s knowledge, further details on CHARMm’s optimization procedure
are not published.

2.5.2. ConfGen. ConfGen [112] bases its knowledge-based conformation generation on
dihedral potentials of the OPLS_2001 force field [25, 113]. Optionally, gradient-based mini-
mizations using the OPLS_2005 force field [114] refine generated structures. No constraints are
imposed during this procedure. Depending on the selected level of precision, minimizations slow
down the conformation generation by factors of 3.8 to 12.9. Processing times for a single ligand
range from 4.2 s to 45.8 s on a single core of an Intel Core2 Quad CPU Q6600 at 2.40 GHz.

2.5.3. DG-AMMOS. Lagorce et al. reported the development of DG-AMMOS [115], a
conformation generator that makes use of distance geometries. This tool corrects generated
structures by applying unconstrained conjugate gradient optimizations [8] with the AMMP force
field sp4 [116]. Lagorce et al. report an average runtime of 0.61 s per compound on two 3.0

GHz cores of an Intel Xeon CPU. The proportional runtime of the minimization procedure is
not specified.
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Table 2.2. GPU-accelerated force field kernels along with reported speedups (SGPU ) and
the number of particles in tested systems. Test machine setups are listed in Table 2.3 and
referenced in the last column.

authors year kernel type #particles SGPU setup

Stone et al. [118] 2007 Coulomb not specified 40 1
Anderson et al. [119] 2008 Lennard-Jones up to 125,000 5-60 2
van Meel et al. [120] 2008 Lennard-Jones 200-70,000 2-40 3
Liu et al. [121] 2008 Lennard-Jones 8,192-131,072 11-20 4
Roh et al. [122] 2009 all non-bonded 3,204-13,296 33-287 5
Friedrichs et al. [123] 2009 full force field 544-5,078 128-735 6
Schmid et al. [124] 2010 solvent interactions 5,411-75,129 25-54 7
Eastman and Pande [125] 2010 all non-bonded 582-78,207 19-59 8
Ruymgaart et al. [126] 2011 all non-bonded 23,536 10 9
Ruymgaart and Elber [127] 2012 water interactions 21,036-92,328 37-49 10
Götz et al. [128] 2012 full force field 304-25,095 23-203a 11
Anthopoulos et al. [129] 2013 full force field 2,103-61,418 - 12
a extrapolated from runtimes given for two hex core CPUs

2.5.4. Summary. Conformation generators produce small molecule structures; some gen-
erators refine these structures with force field-based downstream optimizations. This process
should be efficient and thus, not overly enhance the runtime of the core tool, which seems largely
to be the case for the analyzed tools.

As Hawkins et al. [117] claim, force field-based minimization may bias molecules towards
their gas phase conformations. Supplementing force field potentials with knowledge-based con-
straints derived from co-crystallized conformations can counteract this effect. The torsion li-
braries developed by Schärfer [6] provide such a set of constraints. One of the main advantages
lies in the transparent association of angle constraints to specific torsion patterns. To the au-
thor’s knowledge, no post-optimization method makes use of constraints with such a high degree
of specificity.

2.6. Force Field Kernels for GPU

As listed in Table 2.2, various approaches that port force field kernels and MD simulations
to GPU have been published in recent years. For assessing their performance, Section 3.1 in-
troduces the economic efficiency (Eeco) and speedup (SGPU ) measures. Judging from specified
SGPU values, some algorithms Table 2.2 presents are quite efficient. The following sections dis-
cuss approaches that include interesting algorithmic aspects. Furthermore, this section analyzes
whether they are targeted at scoring protein binding sites in energy minimization scenarios rel-
evant to this work. In particular, a method has to be efficient for molecular systems comprising
less than 1,500 atoms. While minimizing their energies, regions with constant interaction forces
should be excludable from energy calculations.
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Table 2.3. Graphics processors used for benchmarking force
field kernels listed in Table 2.2.

ID CPU (single core) NVIDIA GPU

1 Intel Core 2 Extreme QX6700 GeForce GTX8800
2 Intel Xeon 80546K 3.0 GHz GeForce GTX8800
3 Intel Xeon 3.2 GHz GeForce GTX8800
4 Intel Pentium IV 3.0 GHz GeForce GTX8800
5 Intel Core2 2.93 GHz GeForce GT8600
6 Intel Xeon 2.66 GHz GeForce GTX280
7 AMD Athlon 64 X2 3.2 GHz Quadro FX5800
8 Intel Core 2 Duo 3.0 GHz GeForce GTX280
9 AMD Phenom IIX4 965 3.4 GHz GeForce GTX480
10 AMD Phenom 965 GeForce GTX480
11 Intel Xeon X5670 2.93 GHza GeForce GTX580b

12 Intel Xeon E5335 GeForce GTX680
a all six cores used in experiments
b further experiments with a Tesla C1060

2.6.1. Early full force field portation. Friedrichs et al. [123] were among the first to
publish a full force field portation for GPUs. According to their approach, all pairs of non-
bonded interactions are projected onto a force matrix. Due to its symmetry, only forces above
or along its diagonal must be calculated. This part of the matrix is thus split into quadratic
tiles whose dimensions reflect the warp size of NVIDIA GPUs (see Section 1.5). Friedrichs et al.
designed two specific looping schemes for tiles above and along the diagonal. Basically, a thread
loads data of one atom and then loops over all other atoms within the processed tile in both
schemes. Interaction pairs to be excluded are identified by an additional matrix. In contrast,
neither cutoffs nor selectable rigid regions are supported. This method is therefore not suited
for fast optimizations of protein binding sites.

Friedrichs et al. report speedup values ranging from 128 to 735. These values are quite high,
as the employed NVIDIA GeForce GTX280 GPU has only 240 cores [130]. Still, no explanation
for these measurements is provided.

2.6.2. Efficient cutoff mechanism. Eastman and Pande [125] proposed a cutoff mech-
anism for non-bonded interaction kernels. Their algorithm uses the approach of Friedrichs et
al. as a starting point. As an extension, bounding boxes are computed for groups of 32 atoms
belonging to one tile of the force matrix. For each atom, distances to all other bounding boxes
are computed. Based on these, the non-bonded kernel decides whether interactions are calcu-
lated. This mechanism results in divergent execution paths and the bounding boxes have to be
refreshed once every several time steps. Then again, the total number of non-bonded interaction
computations is reduced to O(n). All in all, Eastman and Pande report that measured speedups
range from 19 to 59. Furthermore, they state that their cutoff implementation is beneficial for
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systems larger than 1,500 atoms. However, the application scenario relevant in this work is
centered around systems with less than 1,500 atoms.

2.6.3. State-of-the-art MD package. Götz et al. [128] reported the portation of MD
simulations with the AMBER force field [131] to GPU. Their non-bonded interaction kernels
are based on the work of Friedrichs et al. In contrast to them, Götz et al. handle the exclusion
of atom pairs by compiling a list of 1-4 interactions (see Section 3.4.1), which is processed in the
kernel for bonded interactions.

Runtime and scaling behavior of the GPU-based AMBER algorithm are thoroughly analyzed.
Economic efficiencies of 1.48 to 13.14 and speedups of 23 to 203 are computed based on published
figures. These calculations refer to measurements with an Intel Xeon X5670 hex core CPU
clocked at 2.93 GHz and a NVIDIA GeForce GTX580 GPU on system sizes of 304, 1,231, and
2,492 atoms. Götz et al. state that their algorithm performs best for systems with at least 2,500

atoms. The computed performance figures support this statement.

2.6.4. New approach to handling irregular interactions. Anthopoulos et al. [129]
presented a full portation of the MMFF94s force field (see Section 3.4.3) to GPU. Their kernels
are explicitly optimized for the recent NVIDIA Kepler architecture. Their cutoff mechanism
uses a fine-grained cell-list approach. For excluding 1-2 and 1-3 interactions (see Section 3.4.1),
atoms are reordered to ascertain that bonded atoms are close to each other. Then, an integer
encoding the relative indices of neighboring atoms is assigned to each atom. With this, kernels
check a small number of atom pairs for exclusion criteria. Furthermore, an approach for handling
1-4 interactions and all bonded forces in one kernel is presented. It decomposes molecules into
pairs of bonded atoms. A data structure associates these with all further atoms that are bound
to them. This way, kernels have full information on the molecular graph around given atom
pairs. Furthermore, Anthopoulos et al. handle hydrogen bonds by flagging each atom either
as an acceptor, a donor, or neither. This permits kernels to switch at runtime to alternative
potentials for hydrogen bonds. At the same time, this approach entails divergence of execution
paths.

Using their force field algorithm, Anthopoulos et al. perform gradient-based minimizations
of molecular systems with approximately 200 to 60,000 atoms and a cutoff of 10.25 Å. For 1,000

minimization steps, runtimes between approximately 0.8 s and 8 s are reported on a NVIDIA
GeForce GTX680 GPU. For high throughput and interactive scenarios, these runtimes are insuf-
ficient. The data suggests that the approach for excluding close non-bonded interactions is too
tedious. It entails loading an additional integer value for each atom and distance checks during
force computations. Furthermore, Anthopoulos et al. point out that their cell-based approach
for cutoff exclusions is inefficient for systems with less than 7,000 atoms on GPU.

2.6.5. Summary. Over the last years, considerable effort has been devoted to porting force
field kernels and MD simulations to GPU. Friedrichs et al. [123] published a fundamental al-
gorithm for distributing non-bonded force calculations. Eastman and Pande [125], as well as
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Anthopoulos et al. [129], introduced innovative cutoff schemes relying on cell-lists to enhance
computational performance. Furthermore, various ways of excluding undesired non-bonded in-
teractions have been proposed by Friedrichs et al. [123], Götz et al. [128], and Anthopoulos et
al. [129]. However, research has been centered around MD simulations for systems comprised
of several thousand of atoms. Consequently, the proposed techniques are often inefficient for
smaller systems. For example, Eastman and Pande state that "the break-even point at which a
cutoff becomes beneficial appears to be ∼ 1,500 atoms" [125, p. 1271]. Furthermore, Götz et al.
find that "the real advantage of the...GPU implementation becomes apparent for...systems with
2,500 to 25,000 atoms" [128, p. 1550]. In fact, only Anthopoulos et al. test their approach for
minimizing ligands in the presence of a receptor, a scenario corresponding to optimizations in
drug discovery pipelines. However, their algorithm is optimized for systems with more than 7,000

atoms. Like all others, it fails to ignore non-bonded interactions that are irrelevant to coarse
binding site energy minimizations. Doing so would speed up computations significantly.

Thus far, this research concludes that the potential of GPUs for minimizing smaller systems
comprising less than 1,500 atoms has not been exploited. This is, nonetheless, a prerequisite for
efficiently employing GPU-accelerated minimizations in drug development scenarios introduced
in Section 1.1.
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Pre-Existing Methods

3.1. Measuring Implementation Performance

The speedup is a widely used measure for comparing sequential to parallel implementations:

Sp =
T1

Tp

Here, p is the number of processor cores used to execute the parallel implementation and Tp is its
runtime. The execution time of the sequential implementation (T1) is benchmarked on a single
processor core. In accordance with Gustafson’s law [132], Sp depends on the size of the analyzed
problem. Larger problem sizes are typically linked to higher speedups. As Gustafson points out,
this is due to the diminishing proportion of program parts that are computed sequentially. These
parts, in turn, limit the maximum attainable speedup, according to Amdahl’s law [133].

3.1.1. Comparing GPU- to CPU-based implementations. When comparing CPU- to
GPU-based implementations, a similar measure is commonly utilized. In this scenario, speedup
refers to

SGPU =
T1

TGPU
where T1 is the execution time of the CPU implementation on a single core, while TGPU is the
execution time of the GPU implementation on a graphics processor. In this work, the term
speedup refers to SGPU .

SGPU typically depends on the size of a problem, just like its counterpart Sp. However,
while implementations are compared on the same processor for computing Sp, the value of
SGPU is additionally influenced by the choice of GPU and CPU type. Hence, benchmarking on
processors of the same generation and performance segment is a prerequisite for fair comparisons,
as Lee et al. [134] pointed out. Therefore, this research compares implementations exclusively
on high-end processors of the same generation. In detail, test machine I (see Section 5.4) is
equipped with Intel Xeon E5420 CPUs and a NVIDIA Tesla C1060 GPU. Both processor types
were introduced to the market from 2007 to 2008 and target the high-performance segment.
Further comparisons were conducted on the Intel Xeon E5-2680 CPU of test machine III and the
NVIDIA GeForce GTX 680 of test machine II. Both high-performance processors were launched
in early 2012.

Lee et al. [134] argue that for a valid comparison, both GPU and CPU implementation
must be optimized for their respective platforms to exploit the full potential of the respective
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architectural features. Therefore, the author performed code optimizations for the CPU and
GPU implementations to the best of his knowledge.

As already discussed in Section 1.5, data transfer rates between host systems and GPUs
are comparatively low. For this reason, Gregg and Hazelwood [135] suggest that cross-platform
implementation comparisons must include all necessary data transfer processes. The author sup-
ports this notion and excludes only molecular initialization procedures from this work’s measure-
ments. Data transfer during optimizations and energy evaluations is captured by benchmarks.

3.1.2. Economic efficiency of implementations. The speedup constitutes a fairly good
measure to compare execution times of implementations. However, this measure is only weakly
linked to practical implications. Therefore, this work captures parts of the economic dimension
of implementations, and for this, introduces the economic efficiency (Eeco), which is based on
a performance per Watt (perf/W ) estimate introduced by Woo and Lee [136] for multi-core
systems. This measure relates the speedup to the thermal design power (TDP) of a processor.
The TDP is a upper limit to the power that a processor draws when executing performance-
demanding applications.

For deriving an upper limit to perf/W for a CPU with n cores, this work assumes a best-case
scenario, in which implementations scale perfectly and all cores run at maximum performance.
Thus, the speedup Sp is at its theoretical maximum, namely p. With this, the performance per
Watt boils down to

perf

W
(CPU) =

Sp
TDP

=
p

TDP
For GPUs, the theoretical optimal value Sp is substituted for experimentally determined values
of SGPU :

perf

W
(GPU) =

SGPU
TDP

These two measures are set into proportion to compute the economic efficiency:

Eeco =
perf
W (GPU)
perf
W (CPU)

As more efficient processors are developed with each new generation, Eeco depends on the com-
pared platforms. However, in contrast to SGPU , this measure provides an estimate by which
factor computations are cheaper. Furthermore, it constitutes a lower bound, as a best-case
scenario is assumed for perf

W (CPU).

3.1.3. Interactivity. Measuring economic efficiency is relevant when judging the applica-
bility of programs in large-scale usage scenarios. However, a more important factor in a typi-
cal workstation-usage scenario is response times. As they decrease, user productivity increases
substantially [137]. In practice, lowering response times of 3.0 s by as little as 2.5 s enhances
productivity [138]. Furthermore, delays of more than 15 s [139] or even as little as 1 s [140] can
be demoralizing. As a rule of thumb, the user’s flow of thought is interrupted when waiting more
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than 1 s for computations to finish [139–141] . Therefore, a process is defined as interactive if
it returns its results in less than 1 s.

To compare the interactivity of programs executed on GPU and CPU, this work assumes
that workstations are equipped with quad-core processors and that CPU-based implementations
scale perfectly to all cores. Consequently, measured single core runtimes are divided by four for
judging interactivity. Runtimes measured for GPU implementations are not modified.

3.1.4. Comparing GPU-based implementations. Typically, publications on GPU im-
plementations employ SGPU to measuring speedups. As discussed previously, SGPU depends on
problem sizes and utilized hardware, which is taken into account when conducting SGPU -based
speedup comparisons. Furthermore, speedup values reported for isolated kernels can be orders
of magnitude higher than those attainable for complete algorithms. This is partially due to
Amdahl’s law. Thus, this research only compares similar parts of implementations.

3.2. Measuring Distances

The root-mean-square deviation (RMSD) measure is computed to average distances between
atoms of molecules:

RMSD =

√√√√ 1

N

N∑
i=1

δ2
i

where N is the number of atom pairs to compare and δi is the distance between two equivalent
atoms. This research expresses all atomic distances and the RMSD in ångström (Å), where
1 Å = 0.1nm [142].

The following employs the terms correct and excellent ligand pose, which refer to poses with
an RMSD below 2.0 Å and 1.0 Å to the ligand’s crystal structure, respectively. Furthermore, the
term clash refers to two atoms i and j whose overlap is greater than zero:

overlapij = rV DWi
+ rV DWj

− distij − 0.2Å

Here, rV DWi
and rV DWj

refer to the van der Waals radius of i and j, respectively, while distij
is the interatomic distance between i and j. Hydrogen bonds are excluded from this rule.

3.3. Algorithms

3.3.1. Simulated annealing. Simulated annealing (SA) [143, 144] is a modification of
the Metropolis-Hastings algorithm [145], which is a Monte Carlo method. It thus constitutes
a stochastic, non-deterministic, heuristic optimization procedure that approximates the global
minimum of an objective function. Depending on parameterizations, its tendency to yield local
minima varies.

The convergence behavior of SA procedures has been analyzed extensively in numerous
publications (see e.g., [146–158]). In summary, these indicate that choosing a cooling schedule
appropriate for the targeted objective function is vital for obtaining the global minimum with
SA.
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Cooling schedules govern the SA process, which encompasses three key steps. As laid out in
Algorithm 3.1, these steps are generating a new state, evaluating it with an objective function,
and finally accepting or rejecting it. The result of the latter step is probabilistically determined,
typically by the Metropolis Criterion [145]:(

∆E < 0
)
∨
(
e−∆E/T > Rand[0, 1]

)
It thus depends on the difference between objective function values for the new and the previous
state (∆E), the temperature parameter T (named currTemp in Algorithm 3.1), and a sample
drawn from a uniform distribution on the closed interval [0, 1]. Setting T to zero yields an
optimization procedure that solely accepts states that entail lower objective function values.

Algorithm 3.1 Basic simulated annealing

SimulatedAnnealing
1 lastScore ← scoreCurrentState()
2 bestScore ← lastScore
3 currTemp ← getInitialTempFromCoolSchedule()
4 while !isCoolScheduleAbort(currTemp) and !isEarlyAbort(currScore)
5 do currTemp ← updateTempAccordingToCoolSchedule()
6 generateNextState()
7 currScore ← scoreCurrentState()
8 if !isAccepted(currScore, lastScore, currTemp)
9 then restorePreviousState()
10 continue
11 lastScore ← currScore
12 if isBetterThan(currScore, bestScore)
13 then bestScore ← currScore
14 saveCurrentStateAsBest()
15 restoreBestState()
16 return scoreCurrentState()

During the SA loop, the temperature parameter T is adapted by cooling schedules, of which
a large variety has been developed. Nourani and Andresen [159] provide an overview. Cool-
ing schedules are categorized into two classes: static schedules typically reduce T , while adap-
tive schedules adjust T to the state of the system that is subject to the optimization. Sec-
tion 4.6 introduces self-developed adaptive schedules. The previously published exponential
cooling scheme [143] is also employed in this work.

3.3.2. Reductions on GPU. Summations in parallel are termed reductions. To efficiently
sum up the elements of an array A on GPU, A is split into subarrays A0 . . . AN of equal size.
These subarrays are subsequently assigned to GPU multiprocessors that reduce them to a sin-
gle value. At this point, synchronizing multiprocessors would allow continuing the summation
process. However, NVIDIA GPUs do not permit this operation. Therefore, standard algorithms
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Figure 3.1. Reduction with sequential addressing. On-chip shared memory
stores array elements a0 . . . a31.To sum them up, threads access a contiguous
memory region that spans all shared memory banks. Consequently, each memory
bank is accessed once and conflicts are avoided.

emulate synchronization by decomposing reductions into multiple kernel calls. This corresponds
to hierarchically merging the sums subarrays A0 . . . AN in a tree-like manner.

The same approach is used to reduce a single subarray Ai on a multiprocessor. Efficient
implementations accumulate Ai’s values with sequential addressing. This technique executes the
loop specified in Algorithm 3.2 in parallel and thereby reduces Ai to half its size. The sequential

Algorithm 3.2 Basic parallel reduction on GPU

1 for i = 0 to size(array)/2
2 do array [i]← array [i] + array [2 · i]

addressing approach avoids bank conflicts, as illustrated in Figure 3.1.
Reduction kernels execute the loop specified in Algorithm 3.2 until only a single resulting

value remains. Unrolling the thus introduced outer loop reduces instruction overhead. This
entails synchronizing multiprocessor cores after every execution of the inner loop. It is preferable
to avoid this time consuming step. Therefore, an approach by Harris [160] takes standard warp
sizes of NVIDIA GPUs into account. For an in-depth discussion of efficient reduction techniques,
please refer to Harris’ slides.

3.3.3. Kahan’s numerical stabilization for summations. The Kahan algorithm [161]
reduces the numerical error coupled to floating-point summations. Typically, adding two binary
represented floating-point numbers a and b leads to the absorption effect. Its magnitude depends
on the employed floating-point precision and the difference in magnitude between a and b.

Kahan’s algorithm reduces absorption effects by introducing a compensation variable that
keeps track of the accumulated error. In Algorithm 3.3, this compensation variable is c, which
stores proportions lost due to absorption of the current addend.
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Algorithm 3.3 Kahan’s summation algorithm

KahanSum(array)

1 sum ← 0.0
2 c← 0.0
3 for i = 0 to len(array)− 1
4 do y ← array [i]− c
5 t ← sum + y

6 c ← (t − sum)− y

7 sum ← t
8 return sum

3.3.4. Trilinear interpolation. As depicted in Figure 3.2, trilinear interpolation [162]
aims to approximate a function value f(p) for point p = (xp, yp, zp) by computing a distance
weighted average of function values assigned to the corner points of a 2× 2× 2 grid cell.

For this, bilinear interpolations for the x- and y-dimensions of p with respect to the lower
and upper grid square are computed in the first step. Therefore, scaling factors dx and dy are
computed:

dx = (xp − x0)/(x1 − x0)

dy = (yp − y0)/(y1 − y0)

Interpolated values are computed using these factors for projections of p onto the lower [plower =

(xp, yp, z0)] and the upper grid square [pupper = (xp, yp, z1)] where

f(plower) = (1− dy)(1− dx) · f((x0, y0, z0)) + dy(1− dx) · f((x0, y1, z0))

+ dydx · f((x1, y1, z0)) + (1− dy)dx · f((x1, y0, z0))

and analogously

f(pupper) = (1− dy)(1− dx) · f((x0, y0, z1)) + dy(1− dx) · f((x0, y1, z1))

+ dydx · f((x1, y1, z1)) + (1− dy)dx · f((x1, y0, z1))

A linear interpolation of plower and pupper with respect to the z-coordinate of p is performed in
the last step.

3.4. Molecular Mechanics Force Fields

This work utilizes the molecular mechanics force fields SuperTrAmber [163], MMFF94s
[164], AMBER94 [131], and AMBER03 [165] as objective functions for optimizations. The
commercially available tools MOE and YASARA (see Sections 3.9.2 and 3.9.1) are applied for
optimizations and include implementations of the two variants of AMBER. MMFF94s and Su-
perTrAmber are implemented in the force field framework (see Section 4.2). The author selected
them for this work as they are both targeted at energy minimizations for protein-ligand com-
plexes. Furthermore, the parameters of MMFF94s are published and a large molecular library
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Figure 3.2. A 2×2×2 cubic grid cell with a point p for which an interpolated
functional value derived from those of the cell’s corner points is computed.

for testing implementations is available. Also, the author of SuperTrAmber provided all param-
eters and a reference FORTRAN implementation of the force field, which facilitated testing the
implementation.

3.4.1. SuperTrAmber. The yet unpublished force field SuperTrAmber [163] was devel-
oped for optimizing protein-ligand complexes. It combines the AMBER3 [68,69] and the Tripos
force field (TAFF ) [166] and therefore handles molecules that are assigned to either AMBER3 or
TAFF atom types (=SYBYL atom types). Both assignments may be mixed in the same system.

For molecules that are within the scope of application of AMBER3, SuperTrAmber produces
the same energies as the original AMBER3. TAFF force field parameters were replaced by AM-
BER3 parameters by mapping AMBER3 to SYBYL atom types whenever possible. In all other
cases, TAFF parameter sets are unmodified. Hence, SuperTrAmber allows for easy parameteri-
zation and energy calculations for both proteins specified in pdb format [167] and small ligands
specified in Tripos MOL2 format [168].

Although SuperTrAmber is based on AMBER3, of which several successors have been de-
veloped, there is good reason to assume that SuperTrAmber still performs well. Comparative
studies benchmarking AMBER3 [169,170] support this view.

This work utilizes SuperTrAmber’s non-bonded van der Waals and electrostatic energy terms,
as well as its hydrogen bond and torsional energy terms. The van der Waals energy term includes
the attractive dipole-dipole, dipole-induced dipole, and dispersion forces, as well as a repulsive
component due to the Pauli exclusion principle. All these forces are approximated by a 12-6-
Lennard-Jones potential:

EvdW =
εij ·R∗12

ij

R12
ij

−
2 · εij ·R∗6ij

R6
ij
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where εij is the specific well-depth, R∗ij is the reference distance between atoms i and j, and Rij
is the actual distance between atoms i and j. Electrostatic contributions are calculated using
the Coulomb potential:

Eelectrostatic =
332.05222 · qi · qj

D ·Rij
where qi and qj are partial charges and Rij is the distance between atoms i and j while D is the
dielectric constant, which set to 4.0.

Atomic partial charges qi and qj for small molecules are user-defined. They can, for example,
be computed using the Gasteiger-Marsili method [171] (see Section 3.6.1). Protein atoms are
assigned AMBER3 charges [68] (see Section 3.6.3). These are selected from a table according to
atom and residue (amino acid) types.

Atom pairs that can form hydrogen bonds are predefined and identified by their atom type.
They are treated separately, as done in AMBER3. Instead of a 12-6-potential, a 12-10-Lennard-
Jones potential is applied to hydrogen bond pairs:

EHbond/Coord =
5 · εij ·R∗12

ij

R12
ij

−
6 · εij ·R∗10

ij

R10
ij

Atom pairs forming coordination bonds, e.g., between a metal cation and a coordinating
counter atom, can be defined and treated the same as hydrogen bond pairs in SuperTrAmber.
Therefore, specifically adjusted parameters are employed for the well-depth εij and the reference
distance R∗ij . This makes it possible to assign special geometries to metal complexes without
encountering the problems that arise using models with covalent bonds.

Atom pairs separated by one bond (1-2 interactions) or two bonds (1-3 interactions) are
excluded from non-bonded van der Waals, H-bond, and Coulomb energy calculations. Non-
bonded 1-4 interaction contributions are scaled by a factor of 0.5.

Finally, torsional energies are computed for atom quadruples (four consecutive atoms in the
molecular graph) using a cosine potential:

Etorsion =
∑
m

0.5 · V ijklm · (1 + cos(nijklm · Φijkl − γijklm ))

where V ijklm is an atom type-dependent force constant, nijklm is the periodicity of the cosine
potential, Φijkl is the dihedral angle between atoms i, j, k, l, and γijklm is the phase shift of the
cosine potential.

The full SuperTrAmber force field also comprises the harmonic bond stretch and angle bend-
ing energy terms, as well as the improper dihedral term as applied in AMBER3 [68]. Additionally,
the TAFF [166] out-of-plane term is integrated in SuperTrAmber. Because the intramolecular
degrees of freedom in the presented optimization procedure are restricted to torsions, i.e., rota-
tions about rotatable bonds, rotations, and translations of whole molecules, these terms are not
relevant to optimization procedures described in this work.
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3.4.2. SuperTrAmber with emphasized hydrogen bonds. A modified version of Su-
perTrAmber emphasizes the hydrogen bond potential. For this, the well-depth εij for atom
pairs forming hydrogen bonds is multiplied by a factor of eight. This results in local minima in
accordance with the HYDE function (see Section 3.8.1). Interestingly, the scoring function of
AutoDock [92], which employs a force field-based scoring function, uses the same approach for
modeling hydrogen bonds.

3.4.3. MMFF94s. The Merck Molecular Force Field (MMFF94 ) was developed by Hal-
gren and became fully accessible through a series of publications [172–176] in 1996. The force
field was designed to model protein-ligand interactions but also receptors and ligands in isolated
form. To achieve this goal, Halgren constructed a large training set consisting mostly of ab
initio data obtained from quantum mechanical calculations, but also of experimentally derived
structures.

MMFF94s [164] is a variant of MMFF94 specifically designed for energy minimizations.
These two force fields mainly differ when evaluating amides and unsaturated amines. For these
moieties, MMFF94s is trained to yield nearly planar geometries at the delocalized trigonal ni-
trogen center, which accords with the expectations of medicinal chemists.

MMFF94s and MMFF94 share the same terms for computing the potential energy of molec-
ular systems:

Etotal =
∑
Ebondij +

∑
Eangleij +

∑
Estretch-bendijk

+
∑
Eout-of-planeijk;l

+
∑
Etorsionijkl

+
∑
Evan-der-Waalsij +

∑
Eelectrostaticij

For optimizations carried out in this work, only van der Waals, electrostatic, and torsion
energies are relevant. The term modeling the latter energy type for a torsion angle Φ formed by
atoms i, j, k, and l is:

Etorsionijkl
= 0.5{V1[1 + cos (Φ)] + V2[1− cos (2Φ)] + V3[1− cos (3Φ)]}

where V1, V2, and V3 are constants that depend on the types of the atoms enclosing the torsion
angle.

The van der Waals energy of an atom pair (i, j) is approximated by a buffered 14-7 form of
the Lennard-Jones potential:

Evan-der-Waalsij = εIJ

(
1.07 ·R∗IJ

Rij + 0.07 ·R∗ij

)7(
1.12 ·R∗7IJ

R7
ij + 0.12 ·R∗7ij

− 2

)
where Rij is the distance between atoms i and j. Depending on the atom types I and J to which
atoms i and j correspond, the parameters εIJ and R∗IJ determine the well-depth in kcal/mol and
the minimum energy separation (and thus the location of the potential’s minimum) in ångström.

The electrostatic energy is modeled by a slightly modified Coulomb potential:

Eelectrostaticij =
332.0716 · qi · qj
D(Rij + δ)n

37



CHAPTER 3. PRE-EXISTING METHODS

where qi and qj are the partial charges on atoms i and j, Rij is the interatomic distance in
ångstrom, D is the dielectric constant set to 4.0, and δ = 0.05 Å is the electrostatic buffering
constant.

The MMFF94s force field is completed by an atom and a partial charge model, which are
introduced in Sections 3.5.3 and 3.6.2.

3.4.4. AMBER94. In 1994, Cornell et al. published AMBER94 [131] as a successor to
the force field published by Weiner et al. [68, 69] a decade earlier. The growth of computer
power permitted explicit solvent representations. In the presence of these, systems were modeled
to derive parameters of AMBER94. This resulted in a complete updating of the partial charge
model that, in turn, allowed for dropping the explicit 12-10 Lennard-Jones potential modeling
hydrogen bonds. Furthermore, new van der Waals atomic parameters were derived from liquid
simulations. All other energy terms were retained from Weiner et al. The same applies to most
term parameters, for which only minor extensions were added.

3.4.5. AMBER03. AMBER03 [165], which was published by Duan et al. in 2003, retains
the potential functions of AMBER94 while atomic point charges are derived from condensed
phase quantum mechanical simulations of small peptides. According to Duan et al., this allows for
more accurate simulations of protein dynamics in solution. Furthermore, AMBER03 comprises
more precise torsion parameters for protein backbone Φ and Ψ torsion angles.

3.5. Atom Type Models

Atom type models permit categorizing atoms according to their molecular environments and
their hybridization state. This approach allows deriving force field parameters from a molecular
moiety and applying them in a similar one. Atom type are thus a means of reducing complexity
and making chemical information available for computational processing.

3.5.1. AMBER atom type model. From a quantum mechanical view point, the electron
configuration suffices as a description of atoms. Atom types are therefore only based on this
property in AMBER3 [68]. However, subsuming different electron configuration under a single
atom type entails compromises between obtaining the most accurate representation and having
a manageable number of types. Counting only the types relevant in this work, namely those
representing single atoms, the AMBER3 model consists of 30 atom types. These directly map to
peptide and nucleic acid atoms and thus permit a clearly defined assignment of types to protein
atoms. For other molecule types, most notably ligands, there is no trivial mapping procedure.
The SuperTrAmber force field (see Section 3.4.1) therefore accepts ligands characterized by
SYBYL atom types.

3.5.2. SYBYL atom type model. SYBYL atom types were introduced for the force field
TAFF [166], which is targeted at simulating small molecules. SYBYL types are therefore suitable
for representing small organic molecules typically found in the field of drug development.
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3.5.3. MMFF94 atom type model. According to the MMFF94 model, each atom is as-
signed one of 95 available atom types [172]. These comprise information on an atom’s element
type, its hybridization state, the number and types of bonds it forms, and its aromaticity. Fur-
thermore, the MMFF94 atom type is often linked to specific functional group that an atom is
part of. Thus, MMFF94 atom types allow for mapping molecular information to a comparatively
complex but informative representation.

3.5.4. Naomi. The Naomi model [177] represents atoms on three levels of abstraction.
The basic level captures information derivable from an atom’s element such as the van der
Waals radius and whether the atom is a metal. On the second level of abstraction, valence
state information is stored, which captures an atom’s formal charge, number of bonds, and bond
orders. Finally, the third level of abstraction provides information on aromaticity and alternative
resonance forms.

3.6. Partial Charge Models

For computing the Coulomb energy, molecular mechanics force fields use partial atomic
charges. They represent the distribution of electrons in chemical bonds, which is non-symmetric
and fluctuating. Thus, only a time-dependent function can correctly represent molecular charge
distributions. Hence, partial charge constitutes an approximative approach. Different models
have been developed and the following introduces those relevant to this work.

3.6.1. Gasteiger-Marsili partial charge model. Gasteiger and Marsili [171] were the
first to develop a method for computing partial atom charges. Their approach distributes charges
among the constituent atoms of a molecule according to electronegativity differences. For this,
the bonds of a molecule serve as a network for disseminating charges. In an iterative proce-
dure, the initial charges are transferred between neighboring atoms based on the difference in
electronegativity. In each step, the electronegativities are recomputed and thus adapted to the
newly derived partial atom charges. To avoid an over-accumulation of charges, a damping factor
limits the charge transfer. The algorithm exponentially reduces this factor in each round and
aborts as soon as it reaches convergence. This work implements the Gasteiger-Marsili partial
charge algorithm as part of the force field framework (see Section 4.2).

3.6.2. MMFF94 charge model. The MMFF94 model assigns partial charges to atoms
based on their formal charge and on the electronegativity of the atoms they are bound to. In
detail, an atom i with formal charge q0

i is assigned the partial charge qi:

qi = q0
i +

∑
ωKI

where ωKI is the bond charge increment, which specifies the partial charge in elementary charge
unit that a neighboring atom k of type K transfers to i. The magnitude of ωKI is decided by
the polarity of the bond between atoms i and k and thus captures the electronegativity gradient
between i and k.
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Delocalized charges are handled by distributing formal charges among atoms of the affected
functional group. For example, the unit charge in a deprotonated carboxyl group is split between
its two oxygen atoms.

3.6.3. AMBER3 charge model. For deriving AMBER3 charges, Weiner et al. [68] rely on
fitting partial charges to quantum mechanically calculated electrostatic potentials. This method
is conformation dependent, only applicable to smaller molecular fragments, and yields varying
results for different basis sets. However, Weiner et al. modified their model wherever calculated
charges caused significant deviations of AMBER3 potential energies from experimentally derived
values.

To establish a charge model for peptides, Weiner et al. first constructed a consistent set of
charges for peptide backbone atoms, irrespective of peptide side chains. To achieve this, they
mapped a quantum mechanically calculated electrostatic potential surface onto dipeptide nuclei.
In the next step, the derived point charges were fitted such that the AMBER3 model reproduced
experimentally derived potential energy values.

Subsequently, polar side chains were broken down into the buffer and the chromophore
fragments. The former comprised the α and β carbons with their corresponding hydrogens and
the latter comprised the remaining side chain. For chromophores, representative molecules were
selected, for which quantum mechanically derived charges were computed. For example, phenol
and imidazole were used as chromophores for tyrosine and histidine, respectively. The computed
charges were mapped onto the nuclei of the side chain.

Peptides with polar side chains thus consist of a backbone fragment with partial charge
−0.246, a buffer, and a chromophore fragment. The latter is either neutral, singly anionic,
or singly protonated. Excess charges are distributed between atoms of the buffer fragment.
Hydrocarbon side chains are regarded as a buffer fragment as a whole and thus have a partial
charge of +0.246.

Hence, AMBER3 provides pre-calculated partial charges for all relevant amino acids, includ-
ing histidines protonated at both the ε and δ positions. These partial charges are looked up
according to amino acid types and then assigned to residue atoms.

3.7. Grid-Based Acceleration of Force Field Calculations

To reduce the complexity of computing SuperTrAmber’s non-bonded interaction energies (see
Section 3.4.1) from O(N2) down to O(N), the van der Waals and electrostatic forces exerted by
proteins were projected onto a cubic lattice. This concept is largely based on unpublished ideas by
Klein and is also widely used in docking tools, e.g., ICM [22,23], Glide [24], AutoDock [88–91],
CDOCKER [95,96], and DOCK [62–67,70,71].

The three-dimensional grid encloses the binding pocket region surrounding a given ligand.
Each grid point represents a probe atom and stores force field energies for its location. Electro-
static and van der Waals energies are handled in separated grids, as described in the following.
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For pre-computing electrostatic energies, a singly charged (qg = 1) probe atom g iterates
over all grid points. At each of these, the electrostatic energy resulting when g interacts with
all protein atoms within a cutoff radius of 16 Å is computed. As SuperTrAmber’s electrostatic
energy for two atoms i and j is:

Eelec =
332.05222 · qi · qj

D ·Rij
the electrostatic energy at grid point (xg, yg, zg) amounts to:

Eelec(xg, yg, zg) =
332.05222 · qg

D
·
|P |∑
j=1

qj√
(xg − xj)2 + (yg − yj)2 + (zg − zj)2

where |P | is the total number of atoms within cutoff distance in protein P and (xj , yj , zj) are
the coordinates of protein atom j.

In the hypothetical case that a ligand atom l with charge ql is located exactly on a point of
the pre-calculated grid with coordinates (xl, yl, zl), the electrostatic interaction energy between l
and all protein atoms boils down to ql ·Eelec(xl, yl, zl). In the more realistic case of l being located
between grid points, this research applies a trilinear interpolation, as introduced in Section 3.3.4.

Furthermore, SuperTrAmber’s van der Waals energy formula is rearranged to pre-compute
energies for grid points. For a pair of atoms i and j, the van der Waals energy is given by:

(1) EvdWij
=
εij ·R∗12

ij

R12
ij

−
2 · εij ·R∗6ij

R6
ij

where the van der Waals well-depth εij for atoms i and j is derived from the well-depth parameter
of the single atoms such that εij =

√
εi ·
√
εj . Furthermore, R∗ij is the sum of the van der Waals

radii of atoms i and j and thus R∗ij = RvdWi
+RvdWj

. With these substitutions, Equation 1 can
be rewritten as:

EvdWij
=
√
εi ·
√
εj

(
(RvdWi

+RvdWj
)12

R12
ij

−
2 · (RvdWi

+RvdWj
)6

R6
ij

)
This allows pre-computing the van der Waals energy between probe atom g with √εg = 1 and
all atoms within cutoff distance of protein P at all grid points:

(2) EvdW (xg, yg, zg) =

|P |∑
j=1

√
εj

(
(RvdWg

+RvdWj
)12

R12
gj

−
(RvdWg

+RvdWj
)6

R6
gj

)
As the van der Waals radius RvdWg

of atom g cannot be extracted from Equation 2, five are
computed grids using probe atoms with radii 1.0 Å, 1.6 Å, 1.7 Å, 1.85 Å, and 2.0 Å, respectively.
These probe atoms represent generic hydrogen, oxygen, nitrogen, carbon, and sulfur according
to the AMBER3 atom model (see Section 3.5.1).

The van der Waals energy of an ideal atom l with well-depth parameter
√
εl, a van der

Waals radius matching that of one of the grids, and coordinates (xl, yl, zl) equal to those of
a grid point can now be computed as

√
εl · EvdW (xl, yl, zl). If the van der Waals radius of
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atom l does not match that of any of the five pre-computed grids, this research applies a linear
interpolation. Energies for atoms located between grid points are again approximated with the
trilinear interpolation method described in Section 3.3.4.

3.8. In-House Software Tools

3.8.1. HYDE. To approximate the free energy of binding, Reulecke et al. [178] and Schnei-
der et al. [179] developed HYDE, a scoring function based on a consistent model for hydrogen
bond and dehydration energies in protein-ligand complexes. HYDE takes the formation and
breaking of hydrogen bonds and thus, the dehydration of ligands and binding sites into account.
This way, the HYDE function captures major energetic contributions determining the formation
of protein-ligand complexes. In contrast to other available scoring methods, HYDE’s parameters
are not trained on experimental binding affinity data. Instead, logP increments mapped to atoms
serve as a basis for evaluating protein-ligand complexes. HYDE was successfully evaluated in
the course of a docking and scoring symposium that took place during the 241st ACS National
Meeting [101].

3.8.2. ProToss. ProToss [180] assigns hydrogen atoms to binding pockets of protein-ligand
complexes. Commonly used crystallographic methods do not resolve hydrogen atoms. Their
positions depend on tautomeric and protonation states, as well as torsional changes and are thus
reflect a given molecular environment. ProToss employs a dynamic programming algorithm to
place hydrogen atoms in accordance with a scoring model similar to that of FlexX [48].

3.8.3. TrixX. TrixX [102,106] is a docking tool that places pre-generated ligand confor-
mations in protein binding pockets. By employing database-stored and indexed bitmaps for
describing small molecules, TrixX screens large conformation sets in sublinear runtime. For
scoring ligand poses, TrixX utilizes a hierarchical scoring scheme based on the FlexX [48] model.

3.8.4. TrixX Conformation Generator. Griewel et al. [181] developed the TrixX Con-
formation Generator (TCG) to generate ensembles of molecular conformations that exhibit a
low RMSD to biologically active conformers. The TCG represents molecules in a tree-based data
structure. This permits an incremental construction procedure for conformers in which rotat-
able dihedral bonds constitute degrees of freedom. Consequently, the algorithm has the means
to reproduce large parts of a molecule’s conformational space. This can entail a considerable
computational effort. Thus, the TCG allows setting a quality level to vary the balance between
accuracy and number of generated conformations.

3.8.5. CONFECT. Like the TCG, CONFECT [182] generates ensembles of molecular
conformations. While both tools are algorithmically similar, CONFECT’s evaluation of gener-
ated conformations is based on frequency distributions of torsional bond angles extracted by
Schärfer et al. [183] from the Cambridge Structural Database (CSD) [184]. According to Schär-
fer’s model, substructures defining a torsion angle are associated with a set of legal angle intervals.
For each substructure, this set is derived from standard deviations of observed torsional angle
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distributions. Threshold factors—named level I and II—are applied to the standard deviations
to define the parts of the distributions to be considered. For accessing angle interval sets, CON-
FECT provides an internal interface.

3.9. External Software Tools

3.9.1. YASARA. YASARA [40] is a molecular modeling and simulation package that
provides scripted access to force field-based scoring and minimizations. For performing the latter,
the author prepares molecules with YASARA’s Clean function, which adds missing hydrogen
atoms, and then employs YASARA’s Experiment:Minimization procedure as follows. The
structure is energy-minimized, to remove bumps and correct the covalent geometry, using the
AMBER03 force field (see Section 3.4.5) when optimizing ligands in rigid binding pockets. All
other scenarios employ the AMBER94 force field (see Section 3.4.4). Force cutoffs are imposed,
as described in the respective section. After removal of conformational stress by a short steepest
descent minimization, the procedure continues by SA (time step 2 fs, atom velocities scaled down
by 0.9 every 10th step) until convergence is reached, i.e., the energy improves by less than 0.05
kJ/mol per atom during 200 steps.

3.9.2. MOE. The Molecular Operating Environment (MOE ) [28] offers a wide range of
molecular modeling and simulation tools. Scripted access is granted by the included svl language.
MOE’s force field-based scoring, and particularly its gradient-based deterministic minimization
procedure, is employed. In effect, this procedure is a succession of three methods: steepest
descent [9], conjugate gradient [8], and truncated newton. MOE’s reference manual provides
explicit directions for applying it.

In detail, the AMBER03 force field (see Section 3.4.5) serves as objective function for optimiz-
ing ligands in rigid binding pockets. Otherwise, this research employs the AMBER94 force field
(see Section 3.4.4). Preparatory measures include adding hydrogen atoms to proteins according
to MOE’s model. Furthermore, partial charges matching the employed force field are computed.
For fixing atoms during minimization procedures, this work sets their tether weight values to
100,000. For implementing a cutoff on non-bonded interactions, MOE employs a switching func-
tion. The experimental descriptions section specifies its interval. Finally, MOE’s MM[] function
carries out the optimization until the energy gradient becomes smaller than 0.05RMS kcalmol /Å

2.
Two versions of MOE were used for this work: version 2010.10 for minimizing ligands in

rigid binding pockets and version 2012.10 in all other cases.

3.10. Hypothesis Testing

In this work, hypothesis testing boils down to the following problem: given the samples
a and b drawn from population distributions PA and PB , respectively. Determine whether PA
and PB differ. Obviously, various characteristics allow comparing PA with PB . For this work’s
experiments, the most relevant among those is the mean (µ). Additionally, the median (x̃)
derived from samples facilitates statistical inferences on the underlying population distribution.
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To employ these key characteristics for reasoning, this work adheres to the following standard
procedure for hypothesis testing:

(1) Formulate a null hypothesis H0. This work assumes that PA and PB are the same.
(2) Set the criterion for deciding whether H0 is true. As PA and PB are inaccessible,

the decision is based on characteristics derived from the samples. In detail, this work
computes p(b)|PA (abbr. p), which is the probability of drawing b from PA. H0 is
rejected if p is below the level of significance.

(3) Select and compute the test statistics. Depending on the characteristics of the sample
distributions derived from a and b, an appropriate test for computing p is selected.

(4) Accept or reject H0. Unless p is less or equal to the standard level of significance, which
is 0.05, it is assumed that H0 is true. Otherwise, the alternative hypothesis H1, which
is the logical opposite of H0, is true. Further levels of significance used in this work are
p ≤ 0.01 and p ≤ 0.001. They signify an enhanced confidence that H0 is false.

3.10.1. Test statistics. For appropriately choosing test statistics, the experiments derive
from the samples whether the population distributions are normally distributed and assume that
this is not the case if a sample contains severe outliers or if a sample’s mean and median value
exhibit large differences. For normally distributed populations, this research compares sample
distribution mean values. If at least one population is not normally distributed, the experiments
resort to median-based test statistics.

A further step decides on which specific test to apply. For this, Levene’s test [185] assesses
whether the variances of the population distributions differ. Therefore, this work utilizes the
levene function of the scipy.stats package [186,187] for Python.

Mean testing. Given two population distributions PA, PB , the null hypothesis H0 assumes
that the means of the population distributions are equal µPA

= µPB
. However, PA and PB are

inaccessible. Currently available are the samples a and b. As µPA
= µPB

, the mean difference of
the sample means µĀ−B̄ should be zero. As this is an average value, the difference of the means
of the samples x = ā− b̄ most probably differs from µĀ−B̄ .

Given the samples a and b, t-statistics allow for deriving the probability that x = ā − b̄

under the pre-condition that µĀ−B̄ = 0. This is because the t-distribution yields an empirical
value for µĀ−B̄ derived from a sample mean, a sample variance, and a sample size that is termed
degrees of freedom. Also, the t-distribution allows for computing the likelihood of the empirically
derived mean difference of sample means. Therefore the t-value has to be computed. Depending
on characteristics of the examined population distributions, different methods are applicable for
this task.

Assuming that PA and PB are normal distributions with equal variance, Student’s t-test [188]
is applicable. Based on the samples a and b of size n andm, respectively, the t-value is computed:

t =
ā− b̄
σĀ−B̄

·
√

nm

n+m
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where σĀ−B̄ is the pooled standard deviation of the distribution of the differences of sample
means. It is approximated by weighting the corrected sample standard deviations sa and sb

according to the sample sizes:

σĀ−B̄ =

√
(n− 1)s2

a + (m− 1)s2
b

n+m− 2

Furthermore, the degrees of freedom df = n+m− 2 are computed. If |t| > t(1− 0.525, df) then
the probability that x = ā− b̄ is less that 0.05 given that H0 is true, and therefore H0 is rejected.

If Levene’s test indicates that the variances of PA and PB differ, the t-value is computed
according to Welch’s t-test [189]:

t =
ā− b̄√
s2a
n +

s2a
m

Here, sa and sb are the corrected sample standard deviations of a and b, respectively. The degrees
of freedom are approximated with the Satterthaite-Welch adjustment [190] such that

df =
(
s2a
n +

s2b
m )2

s2a
n

n−1 +
s2
b

m

m−1

The criterion for rejecting H0 is the same as for Student’s t-test.
All t-tests are computed with the ttest_ind function that is part of the scipy.stats

package [186,187] for Python.

Median testing. Whenever PA or PB is not normally distributed, median-based statistical
tests are applied. They are centered around the assumption that given PA and PB are equal it
follows that on average the difference of the sample medians must be zero.

Under the pre-condition that the variances of PA and PB are equal, the Mann-Whitney U
test [191] is applicable. It merges and then ranks the observations that two samples a and b

are composed of according to the observation values. Then, the sum of ranks Ra and Rb are
computed for a and b. With these values, the test computes the U-statistics

U = R− n(n− 1)

2

which allows for deriving the probability of the difference of the medians of sa and sb given that
the H0 is true. This work computes the Mann-Whitney U test with the mannwhitneyu function,
which is part of the scipy.stats package for Python.

If the variances of PA and PB are unequal, Mood’s median test [192] is applied. It merges
samples a and b to determine the common median. Subsequently, the merged observations are
split into those smaller and those larger than the common median. For both obtained sets, a chi-
squared test is performed to assess whether samples from a and b exhibit differing distributions.
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CHAPTER 4

Developed Methods

Quick force field-based protein binding pocket and small ligand minimizations necessitate
a fast and versatile optimization method with easily adaptable functionality. Furthermore, a
compact and standardized molecular representation is required. Therefore, in Section 4.1, a data
structure for uniformly representing all types of molecules occurring in protein binding pockets
is introduced. Operating on it, a force field framework, which is outlined in Section 4.2, facil-
itates implementing, mixing, and switching between energy terms from different all-atom force
fields. Based on this framework, the force fields SuperTrAmber and MMFF94s (see Sections 3.4.1
and 3.4.3) were fully implemented. For these force fields, accelerated GPU- and grid-based algo-
rithms were developed that overcome runtime limitations otherwise coupled to force field-based
minimizations, which Sections 3.7, 4.3, and 4.4 discuss. The sections that follow introduce a
broad spectrum of force field-based objective functions. To harness them, a framework for per-
forming SA-based optimizations was developed, which is introduced in Sections 4.5 and 4.6. This
framework seamlessly integrates with pharmacophore-like constraints, as discussed in Section 4.7.
Finally, data preparation methods for manipulating binding sites are presented in Section 4.9.

4.1. Molecule Data Structure

Force field-based optimizations evaluate and modify molecule conformations. To achieve this,
they require atom coordinates and molecular connectivity information. This work condenses this
information in the molecular representation, which provides an unified interface for accessing
proteins, cofactors, and other small molecules.

4.1.1. Molecule and atom representation. This molecular representation, which is
shown in Figure 4.1, is centered around the Molinfo component. It provides access to its FFAtom
components that store coordinate, type, and charge data of single atoms. Furthermore, the
Molinfo component contains the component tree that stores all molecular connectivity informa-
tion required during optimization runs.

In contrast, during the initialization phase of force field-based scoring the complete molecular
graph is required. It is only comprised in the external all-purpose molecular data structures
of Naomi (see Section 3.5.4). An interface to these is provided by the Molinfo and FFAtom

components.
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Figure 4.1. Components of the molecule data structure. Molinfo provides
a common interface for accessing proteins and small molecules. Atom-specific
data, most notably coordinates, are stored in FFAtom components. Information
stored in external data structures only is accessed via interface functions.

To represent proteins and small molecules, the components Protein and SmallMolecule

derive from Molinfo. They implement specialized functionality to which the Molinfo component
provides a common interface.

4.1.2. Component tree. The component tree is an undirected graph G = (V,E) whose
vertices V represent components. A component comprises a set of atoms that are connected by
non-rotatable bonds, which are defined as bonds that are not rotatable bonds. These, in turn, are
single bonds connecting non-terminal heavy atoms. In a component tree, rotatable bonds are
represented by edges E. Figure 4.2 illustrates the division of a molecule into components that
are connected by rotatable bonds.

The component tree is constructed using the DetectComponents algorithm (see Algorithm 4.1).
It is based on a breadth-first-search (BFS ) over the components V of a molecule. The algorithm
is initialized by inserting an arbitrary atom of a given molecule into the seed queue. This instance
contains atoms that are passed to the AnalyzeComponent procedure (see Algorithm 4.2). For
each member of the seed queue, this procedure starts the detection of connected atoms that then
form a new component v ∈ V . For this, the AnalyzeComponent procedure employs a modified

Algorithm 4.1 Adapted BFS algorithm for constructing a component tree

DetectComponents(molecule)

1 push(seedQueue,getFirstAtom(molecule))
2 visited ← NewVector(GetNofAtoms(molecule))
3 setAllFalse(visited)
4 while !isEmpty(seedQueue)
5 do append(newComponents,AnalyzeComponent(seedQueue, visited))
6 return newComponents
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depth-first-search (DFS ). It pushes the top atom of the seed queue onto a DFS stack. Then, the
algorithm loops over the bonds of the top atom of the DFS stack.

If a bond is rotatable, the algorithm creates a new edge e, adds it to the edges E of the
component tree and associates it with the new component v. The newly discovered opposite
atom a reachable through e is pushed to the front of the seed queue.

If a bond is non-rotatable, the opposite atom a is added to the new component v and pushed
on top of the DFS stack. The algorithm then restarts its main loop and processes the top
element of the DFS stack. After the DetectComponents algorithm has finished, the elements of

Algorithm 4.2 Adapted DFS algorithm for detecting atoms forming a component

AnalyzeComponent(seedQueue, visited)

1 push(DFSStack,pop(seedQueue))
2 while !isEmpty(DFSStack)
3 do stackSizeBefore ← size(DFSStack)
4 topAtom ← top(DFSStack)
5 for bond in getBonds(topAtom)
6 do oppositeAtom ← getOpposite(bond , topAtom)
7 if ! visited [oppositeAtom]
8 then visited [oppositeAtom]← true
9 if isRotatable(bond)
10 then pushBack(newComponent .bonds, bond)
11 push(seedQueue, oppositeAtom)
12 else push(DFSStack , oppositeAtom)
13 break
14 if stackSizeBefore = size(DFSStack)
15 then pushBack(newComponent.atoms,pop(DFSStack))
16 return newComponent

the component tree are post-processed. Therefore, all its edges E are copied and then stored
separately. Additionally, unique IDs are created for the rotatable bonds of the analyzed molecule.
These IDs are mapped to the component tree edges E. Furthermore, the post-processing assures
that each component v ∈ V stores all edges connected with it. In components that contain atoms
that should not be transformed during an optimization, a flag signaling rigidity is set.

Subsequently, information on reachable components is added to the edges E. Each edge e ∈
E has a "from" and a "to" direction. For each edge and each direction, a DFS algorithm
compiles a list of reachable components. These lists are stored in the edge data structure and
are subsequently employed to add two flags to each edge. These tell whether there are rigid
components in "from" and "to" direction. Figure 4.2 depicts a fully initialized component tree
resulting from the described procedure.

Later, the component tree is utilized to quickly determine which components are affected by
rotations around dihedral bonds and whether there are any rigid ones among them.

49



CHAPTER 4. DEVELOPED METHODS

Figure 4.2. Component tree representing flexible amino acid side chains (light
gray) and a rigid bulk that encompasses backbone and non-flexible side chain
atoms (dark gray). Component tree vertices are labeled as rigid when rep-
resenting a non-flexible region (see vertex 6). Component tree edges contain
the compFrom and compTo lists that store the IDs of vertices reachable when
traversing the edge either leftwards or rightwards. If during this traversal a
rigid component is encountered, the flexFrom and flexTo flags are set to false
accordingly.

4.1.3. Modifying the component tree for protein flexibility. For processing flexible
amino acid side chains, this work modifies the component tree initialization procedure. Therefore,
the user initially either spatially defines a flexible region with a set of spheres or provides a list
of flexible amino acids. Irrespective of the selection method, proline, alanine, and glycine as well
as metals and cofactors are treated as rigid. Subsequently, the DetectComponents procedure
(see Algorithm 4.1) is started. As before, it assigns side chain atoms of flexible residues to
components. To exclude backbone and non-flexible amino acid atoms, the procedure considers
Cα atoms as terminal. Consequently, they are not pushed into the seed queue. When the
DetectComponents procedure finishes, all atoms of the backbone and of non-flexible amino acid
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Figure 4.3. Components of the force field representation. The KeyGenerator
generates keys for extracting parameters from the ParameterMap, a parame-
ter database. An optional ParameterProcessor then optimizes the extracted
parameters while ScoreTerm components get a set of parameters as input for
computing energy values.

side chains are assigned to a single component, which is flagged as rigid. The initialization
procedure then continues as described previously. Figure 4.2 depicts an example of a component
tree representing flexible amino acid side chains.

4.2. Framework for All-Atom Force Fields

This section presents a framework that provides a unified implementation and access scheme
for all-atom force fields. It facilitates scoring molecular systems with different force fields via a
consistent interface.

4.2.1. Common functionality of force fields. The design of the framework is derived
from the observation that commonly used classical all-atom force fields share certain functional-
ity. SuperTrAmber, MMFF94(s), AMBER (see Section 3.4), as well as OPLS-AA [25,26] and
CHARMM [97], evaluate non-bonded atom pairs and molecular moieties to produce an energy
value. These molecular moieties are invariably atomic bonds, angles, dihedral angles, and out-
of-plane bonds. Additionally, 2nd generation force fields [193] like MMFF94 can include cross
terms. As for atom pairs, some force fields treat hydrogen bonds differently. Still, the similar-
ities among all-atom force fields permit a unified detection procedure for molecular fragments
and atom pairs.

Using force field-specific atom type models, these fragments and atom pairs are then cate-
gorized. This allows for applying a consistent parameterization scheme. In this way, force fields
impose a model on molecules that transforms them into lists of variable atom coordinates and
constant parameters. The latter also comprises atomic partial charges computed with suitable
models. Finally, term-specific functions operate on the parameter lists to compute potential
energy values.
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4.2.2. Components of force fields. The sections following this analysis divide the func-
tionality of all-atom force fields into the components depicted in Figure 4.3. Thus, a strategy
pattern [194] arises that allows for altering functionality by replacing components.

According to this work’s model, a given combination of atoms along with an energy term
type is passed to the KeyGenerator by the ForceField component. This component constructs
an energy term-specific key. During this process, it utilizes the AtomTypeModel component
to determine atom types for the given combination of atoms. The ForceField component
subsequently passes the resulting key to the ParameterMap component. If the key refers to
a valid entry, this triggers the extraction of scoring parameters. Optionally, the ForceField

component passes these parameters to the ParameterProcessor component, which optimizes or
dynamically adapts them to certain molecular fragments. Finally, the ForceField component
returns the processed atom combination along with the extracted parameters.

To obtain energy values, a set of scoring parameters along with the desired energy term
type is passed to the ForceField. This component consequently selects the suitable ScoreTerm
component, which then employs the scoring parameters to compute an energy value.

4.2.3. Force field initialization. To initialize force fields, the author designed an XML-
based file format that stores information for registering force fields, their energy term types, and
parameters for defined atom combinations. The file format permits mixing terms of several force
fields and stores their parameters in a human-readable way.

This file format is formally defined by Grammar 4.1. Therein, 〈forcefield-collection〉 is a
start symbol and {‘float’,‘int’, 〈string〉, 〈float〉 ,〈int〉} are terminal symbols. The latter three
represent arbitrary character sequences that are casted to the denoted type.

Grammar 4.1. XML-based file format for storing force field parameter and
term type information

〈forcefield-collection〉 ::= 〈forcefield〉 | 〈forcefield-collection〉 〈forcefield〉

〈forcefield〉 ::= 〈name〉 〈term〉

〈term〉 ::= 〈name〉 〈key_value_pair〉

〈key_value_pair〉 ::= ε | 〈atom_type〉 | 〈key_component〉 | 〈parameter〉
| 〈key_value_pair〉 〈key_value_pair〉

〈atom_type〉 ::= 〈name〉 〈val〉

〈key_component〉 ::= 〈name〉 〈val〉

〈parameter〉 ::= 〈type〉 〈name〉 〈val〉

〈type〉 ::= ‘float’ | ‘int’

〈name〉 ::= 〈string〉

〈val〉 ::= 〈string〉 | 〈float〉 | 〈int〉
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When initialized, the ForceField component parses a parameter file. During this process,
it passes pairs consisting of an atom type combination and a parameter set to the ParameterMap
database for storage. For loading the energy terms specified in the XML file, the ForceField

component has to be provided with force field-specific mappings from energy term types to
ScoreTerm components. Using this mapping, energy terms are registered in the force field and
associated with an energy term type.

4.2.4. Scorer component. For energetically evaluating sets of molecules, the author de-
veloped the Scorer component. It detects molecule moieties as well as atom pairs and utilizes
the ForceField component for obtaining matching scoring parameters. With these and the help
of the ForceField component, the Scorer component computes potential energy values.

Detecting Bonded Interactions. The Scorer component detects fragments that consti-
tute the following bonded interaction types: bonds, angles, dihedrals, out-of-plane, and stretch-
bend. To perform this task, it traverses the molecular graph.

Bonds connecting two atoms are detected with the FindBonds algorithm (see Algorithm 4.3)
that is an adapted DFS. Starting from a given atom a, the algorithm iterates over all bonds (a, b)

Algorithm 4.3 An adapted DFS algorithm for detecting bonds in a molecular graph.

FindBonds(parentAtom, currAtom, color)

1 � color code: white=undetected, gray=detected, black=fully processed
2 color [currAtom]← gray
3 while neighAtom ← getNextNeighborAtom(currAtom)
4 do if neighAtom = parentAtom
5 then continue
6 if color [neighAtom] = white or color [neighAtom] = gray
7 then addBond(currAtom,neighAtom)
8 if color [neighAtom] = white
9 then FindBonds(currAtom,neighAtom, color)
10 color [currAtom] = black

to neighboring atoms b. If b is not already marked as completely processed, the algorithm stores
(a, b). If b is not marked as already visited, the algorithm recursively calls itself with b as the
atom to process next. After having visited all its neighbors, the algorithm marks a as completely
processed.

By detecting all unique paths of length two in the molecular graph, molecular parts that
form scorable angle and stretch-bend interactions are identified. For this, the Scorer component
again utilizes an adapted DFS algorithm. It traverses the molecular graph and iterates for each
newly discovered atom a over pairs of neighboring atoms b, c such that b 6= c. Thus, the algorithm
detects the set all unique paths P = {〈b0, a0, c0〉 . . . 〈bn, an, cn〉}.

Atoms associated to paths of length three in the molecular graph form dihedral angles. The
Scorer component offers two methods for detecting them. The first one solely considers dihedral

53



CHAPTER 4. DEVELOPED METHODS

angles with central bonds that are rotatable. These are detected by iterating over all edges of
the component tree. Each edge represents a rotatable bond (a, b). With (a, b) as central bond,
all unique paths 〈c, a, b, d〉 where c 6= d are enumerated. The second method detects all dihedral
angles in a molecule. It iterates over all molecular bonds (a, b) and then enumerates the set of
all unique paths like the first method.

Molecular mechanics force fields utilize out-of-plane energy terms to force atoms into a plane
often spanned by member atoms of rings. Without this correction, the dihedral term would
drive the affected molecule parts into energetically unfavorable conformations. The out-of-plane
term therefore operates on fragments formed by a central atom that is covalently bound to three
neighbor atoms. These fragments are detected by iterating over all atoms and checking whether
they have three distinct neighbor atoms.

Detecting non-bonded interactions. In general, all-atom force fields evaluate all pairs of
atoms in molecular systems. However, some force fields employ differing parameters for hydrogen
bonds. Furthermore, intramolecular interactions between two atoms (a, b) for which a path pa,b
of length one or two (1-2 interactions and 1-3 interactions) exists are typically ignored and 1-4
interactions for which pa,b of length four exists are oftentimes dampened (see e.g., SuperTrAm-
ber force field in Section 3.4.1). Furthermore, runtime-lowering cutoffs introduce a threshold c
according to which all atom pairs (a, b) with dist(a, b) > c are ignored.

Consequently, the Scorer component iterates over all atom pairs (ai, aj) with j > i, imposes
a cutoff c by ignoring all (ai, aj) with dist(ai, aj) > c and determines the path length of pai,aj if
ai and aj are part of the same molecule. For this, the Scorer component employs a BFS over
the molecular graph starting at ai. This search terminates as soon as it is certain that the path
length is larger than three.

To determine whether the pair (ai, aj) forms a hydrogen bond according to the selected force
field model, the Scorer component requests hydrogen bond scoring parameters for (ai, aj) from
the ForceField component. If that attempt fails, it is assumed that (ai, aj) does not form a
hydrogen bond.

4.2.5. ParameterProcessor component. Following the detection of molecule moieties,
the ParameterProcessor can modify parameters. This allows for pre-calculating force field-
specific constant values and for dynamically adapting parameters to unusual moieties.

Parameter processing constitutes the end of the initialization phase. The Scorer component
now stores all relevant scoring parameters in term-specific arrays. This permits computing energy
values for all initialized energy terms.

4.2.6. SuperTrAmber implementation. Components for the force field framework that
fully implement the SuperTrAmber force field (see Section 3.4.1) were developed. In this process,
a main design objective was the fast calculation of non-bonded interactions. Hence, these are
processed in a single ScoreTerm component. This allows to compute the distance for each atom
pair just once and then using it in all non-bonded interaction terms.
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Figure 4.4. Data structure for non-bonded interaction scoring parameters of
the SuperTrAmber force field. For each atom pair, pointers to the respective
FFAtom data structures (a1 and a2) are stored. Furthermore, a hydrogen bond
flag (hb) permits selecting an alternative potential for hydrogen bonds at run-
time. Finally, the numerator of the Lennard-Jones potential is pre-calculated
and stored for all combinations of atom types in advance. LJ1 and LJ2 point
to the numerator corresponding to their respective atom pair.

Furthermore, a ParameterProcessor component was developed to pre-calculate constant
parameters for non-bonded interactions. In detail, when analyzing SuperTrAmber’s van der
Waals term (defined in Section 3.4.1):

(3) EvdW =
εij ·R∗12

ij

R12
ij

−
2 · εij ·R∗6ij

R6
ij

and its hydrogen bond term:

(4) EHbond/Coord =
5 · εij ·R∗12

ij

R12
ij

−
6 · εij ·R∗10

ij

R10
ij

it becomes obvious that the numerators in both terms are constant for a given atom type combi-
nation. This bears optimization potential, especially because calculating the square root function
in εij =

√
εi · εj is computationally demanding. The ParameterProcessor component thus com-

putes the numerators of Equations (3) and (4) once for all combinations of atom types. Resulting
values are stored separately. This permits the non-bonded scoring parameters to point to them.
For that, a data structure as depicted in Figure 4.4 is constructed.
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4.2.7. MMFF94s implementation. In the course of his Master’s project [195], Gent de-
veloped components for the force field framework that fully implement the MMFF94s force field
(see Section 3.4.3). One of the project’s main focuses was the proper validation of the implemen-
tation with the MMFF94s validation data suite [196]. As the MMFF94s model necessitates the
dynamic computation of empirical parameters for certain atom type combinations, an adapted
dynamic ParameterProcessor component had to be designed and implemented.

4.3. Porting the SuperTrAmber Force Field to GPU

To speed up computations, the SuperTrAmber force field (see Section 3.4.1) was ported
to GPU. Consequently, all data essential for energy calculations is pre-processed and arranged
so the GPU accesses it with maximum speed. Additionally, kernels that compute non-bonded
interaction and dihedral energies were tuned for high computational performance.

Section 1.5 introduces basic GPU terminology and details on hardware layout, which con-
strains the design of algorithms and data structures described in this section. Readers unfamiliar
with GPU computing are referred to the Introduction prior to continuing.

4.3.1. Atom and parameter data on GPU. Computing energy values requires atom
coordinates and force field parameters. These parameters differ depending on the evaluated en-
ergy term. Among these, the non-bonded interaction terms read atom and parameter data most
frequently. Therefore, this work optimizes their arrangement for rapid access. Consequently,
x-, y-, and z-coordinates of an atom along with its partial charge q are stored in a 16-byte
data structure. It constitutes the basic building block of the coordinate array. An atom’s van
der Waals radius RvdW and specific Lennard-Jones potential well-depth parameter ε are stored
together in a 8-byte data structure. It is the basic building block of the parameter array (see
Figure 4.5).

Access to global GPU memory is performed coalesced via reading 32-, 64-, or 128-byte
chunks. Splitting atom-related data and storing it in two independent data structures is therefore
advantageous. First, it avoids unnecessary memory transfer, as 128 byte is an integral multiple
of the size of both basic data structures. Furthermore, it allows accessing atom coordinates
without reading all additional parameters and thus, reduces overhead. Lastly, the two arrays
provide efficient read access to atom coordinates and parameters. This work ensures this by
arranging atom data belonging to the same molecule contiguously. For data of atoms belonging
to the same component, this research applies the same arrangement strategy.

Dummy atoms are added to each molecule. Their coordinate and parameter data form a
padding at the end of both the coordinate and parameter array (see Figure 4.5). This ensures
that the number of atoms in a molecule is an integral multiple of 32. As discussed later, this is
helpful when optimizing the intramolecular kernel.

Dihedral data. SuperTrAmber’s dihedral energies are computed for all flexible molecules.
This requires the coordinates of four atoms i, j, k, and l, their atom type-dependent constant
(V ijklm ) as well as the specific phase shift and the periodicity of the cosine potential ( γijklm and
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Figure 4.5. Storage model for coordinate and parameter data in GPU memory.
For each atom, the coordinate array stores coordinates (x,y,z ) and the partial
charge q. The parameter array comprises the specific well-depth for the van der
Waals term (eps/ε) and the van der Waals radius (RvdW ). Both data arrays are
ordered according to molecular components and end with a padding of dummy
atoms. This enlarges each molecule so that its atom count is an integral multiple
of 32.
Furthermore, parameters and positional data for dihedral angles and hydrogen
bonds are stored. In the dihedral array, a1 . . . a4 denote positions of atoms in the
coordinate array, Vm is an atom type-dependent force constant, γm is the phase
shift of the cosine potential, and nm is the periodicity of the cosine potential.
For hydrogen bonds, the sum of the van der Waals radii to the power of six
and ten (R∗

6

ij and R∗
10

ij ) and the specific well-depth for the van der Waals term
(eps/ε) are stored.

nijklm ). These parameters are stored in 4-byte memory blocks. In contrast, atom coordinate data
is read from the coordinate array. This necessitates storing the coordinate array positions of i,
j, k, and l in a block of size 16 byte. This work names the overall data structure comprising
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the described dihedral data the dihedral array. It is depicted in Figure 4.5, along with data
structures discussed in the following paragraphs.

Hydrogen bond data. To calculate hydrogen bond energies, this GPU portation stores the
coordinate array positions of two atoms i and j, the sum of their van der Waals radii to the
power of six and ten (R∗

6

ij and R∗
10

ij ), as well as the square root of their multiplied eps values.
All of these parameters are stored in 4-byte memory blocks and form the hydrogen bond array.

Rescaling matrices. According to the SuperTrAmber model, intramolecular non-bonded
1-4 interactions are scaled down, while 1-3 and 1-2 interactions (see Section 4.2.4) are excluded.
Two bit matrices are created to implement these constraints on GPU. For each atom pair, one
of the matrices indicates whether the pair forms a 1-4 interaction and the other matrix indicates
whether the pair constitutes a 1-3 or 1-2 interaction.

Storing energy values. Energy kernels copy their results to the global energies array. The
GPU portation initializes this data structure so that it contains at least as many 4-byte storage
locations as there are total thread blocks.

4.3.2. Data preparation for non-bonded interactions kernels. Efficient computation
of non-bonded interactions on GPU requires preparatory steps. With these, unnecessary data
transfer is avoided and irrelevant computations are excluded. This work thus defines the energy
matrix, a symmetric N -by-N matrix based on a coordinate array of length N . Its entries rep-
resent all non-bonded interatomic energy values. The upper left triangular part of the matrix
is partitioned into intermolecular and intramolecular interaction energy regions (see Figure 4.6).
They are assigned to the intramolecular and the intermolecular energy kernel, respectively. For
that, the intramolcular region is divided into tiles of size 1 × 32 and the intramolecular region
into tiles of size 4× 32.

This coarse division produces some unfavorable tiles covering both intra- and intermolecular
energy values. Furthermore, tiles located at the right border of the matrix refer to undefined seg-
ments of the coordinate array. These two issues are circumvented by introducing the previously
described padding of dummy atoms (see Figure 4.7).

To assign tiles to thread blocks, a start index array is computed for the intra- and inter-
molecular data. These arrays contain start index pairs (x, y) that specify the upper left corner
for each tile with respect to the energy matrix. Thus, x and y also refer to positions in the
coordinate array where atom data associated to a tile is stored.

In-component interaction energies remain constant throughout an optimization run. These
interactions are therefore excluded by skipping (i.e., not storing) start indices of tiles correspond-
ing to them. For example, the atom data of a component c of length n occupies a contiguous
segment from startc to startc + (n− 1) in the coordinate array. Thus, the GPU portation skips
tiles with indices (startc . . . startc + (n − 1), startc . . . startc + (n − 1)). Figure 4.7 shows this
concept.
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Figure 4.6. Simplified N ×N energy value matrix for an exemplary protein-
ligand complex. Intramolecular energy values of proteins that are labeled as
rigid are ignored. Additionally, atom pairs whose interatomic distance exceeds
a cutoff threshold are excluded. Most often, the cutoff block is not as clearly
separated from the other entries as in the illustrated scenario.

To further reduce the number of non-bonded interaction tiles, the following introduces the
concept of rigidity. The user can label a molecule as rigid. This entails the exclusion of all
interactions within rigid molecules (see Figure 4.6).

Cutoffs constitute an additional measure to reduce the computational complexity of non-
bonded energy calculations. Based on a given cutoff distance, an algorithm analyzes all tiles
to determine whether they contain at least one atom pair whose distance is lower than the
cutoff. Should that not be the case, the algorithm excludes that respective tile from the energy
calculations by deleting its index from the start indices array, as shown in Figure 4.8.

4.3.3. Non-bonded interactions kernels. Atom and parameter data on GPU is now
prepared for energy calculations. The following discusses these starting with the non-bonded
interaction kernels that compute van der Waals, electrostatic and hydrogen bond energies.

Intermolecular kernel. Each thread block executing the intermolecular kernel first loads
the starting indices (x, y) of its associated tile into the registers of its SM. The threads with IDs
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Figure 4.7. Region of an energy matrix containing intramolecular energy val-
ues. Intracomponent interactions are ignored. The rest of the matrix is split
into tiles of size 1× 32. Each of these is assigned to one thread block. Contrary
to the depiction, one tile often spans several components. Occasionally, a tile’s
length excels the number of remaining atoms. In these cases, the algorithm pro-
cesses padding region dummy atoms instead of causing errors by accessing data
belonging to the next molecule.

0 . . . 31 then copy the coordinate and parameter array segments with index range x . . . x+31 and
y . . . y+ 3 to shared memory. There, the x-, y-, and z-coordinates, as well as the parameters, are
stored in separate arrays. For saving computed energy values, an array of size 4× 32 is allocated
in shared memory, which is named the local energies array.

Based on the copied coordinate and parameter data, each thread computes van der Waals
and Coulomb energies for one atom pair. The resulting values are stored in the local energies
array at a position according to the ID of the thread.

To compute hydrogen bond energies, the intermolecular kernel is provided with the total
number of hydrogen bonds. Each thread determines whether this number is larger than its
unique incremental ID. If that is the case, the thread loads the entry from the hydrogen bond
array whose position corresponds to its ID. Additionally, the thread loads the van der Waals
term parameters for the atoms of its hydrogen bond. With these parameters, the van der Waals
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Figure 4.8. Indexing scheme for blocks of intermolecular interactions. A tile
for intermolecular interactions comprises 4× 32 energy values. For all included
tiles, the coordinate array indices (x, y) of the atom pair in the tile’s upper
left corner are stored. Thread blocks read them for identifying their associated
atoms ax . . . ax+31 and ay . . . ay+3. A tile is excluded if all atom pairs represented
by it have distances above the cutoff threshold. Consequently, no energy values
are computed for these atom pairs.

energy is computed and then subtracted from the thread’s local energies array storage location.
Eventually, the hydrogen bond energy is added. Thus, the van der Waals energy of an atom pair
is replaced by its hydrogen bond energy.

Finally, the intermolecular kernel reduces all values of the local energies array to a single
one with the implementation of the reduction algorithm described in Section 3.3.2. Each thread
block copies its final result to its storage location in the global energies array.

Intramolecular kernel. The intramolecular kernel starts just like its intermolecular ener-
gies counterpart. As the tile size for intramolecular energies is just 1×32, this kernel copies only
coordinate and parameter array segments with index range x . . . x+ 31 and y to shared memory.

Subsequently, the relevant tiles of the rescaling bit matrices are copied to shared memory.
From these matrices, each thread derives the scaling factor for the van der Waals and Coulomb
terms. In case of an 1-4 interaction, this factor is 0.5, in case of an 1-2 or 1-3 interaction, it
is 0.0.

Each thread then computes accordingly scaled van der Waals and Coulomb energy for one
atom pair. Results are stored in the local energy array, which is allocated for each thread block
as previously described for the intermolecular energy kernel. The intramolecular kernel employs
the same algorithm as the intermolecular kernel for finally reducing its energy values.

Remarks on efficacy. Harvesting the full computational potential of GPUs requires some
deeper insights into their hardware architecture and their memory access model. Using this
knowledge, this research optimized the non-bonded interaction kernels at different key points
for performance. The storage model allows for accessing coordinates and parameters for one
warp perfectly coalesced and without any overhead (see Depiction 4.9). This applies for all GPU
compute capabilities, although the number of memory request and transactions differs.
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Figure 4.9. A warp of thread accesses the coordinate array. The coalesced
storage of coordinate and charge data enables warps to read a contiguous mem-
ory region whose length is a multiple of the optimal memory transaction size.
This maximizes throughput and access speed when reading from the coordinate
array.

Furthermore, this GPU algorithm stores data in separate arrays in shared memory—one for
x-, y-, and z-coordinates, respectively, and one for each parameters type. This way, the algorithm
avoids shared memory bank conflicts when accessing these values.

When reducing a thread block’s energy values, the algorithm employs sequential addressing
and loop unrolling (see Section 3.3.2) and thus circumvent memory bank conflicts and instruction
overhead. Additionally, this work avoids synchronizing the threads of a warp by not allowing for
divergent execution branches.

Replacing the sqrtf function with its reciprocal counterpart rsqrtf yields further perfor-
mance gain on hardware of the Kepler generation as the Newton-Raphson method [197, Ch. 9
p. 456] operates without any division operations.

Finally, rescaling interaction in the intramolecular kernel is coupled to a minimum diversion
of control flow. The algorithm achieves this by multiplying the van der Waals and Coulomb terms
with a variable scaling factor that each thread modifies depending on its respective rescaling
matrix entries.

4.3.4. Dihedral energies kernel. For dihedral energy calculations, thread blocks of size
1×32 are created. Each thread computes the energy of one dihedral angle. Therefore, the kernel
accesses the dihedral array to load four positions of atoms in the coordinate array along with
three parameters specific to the dihedral angle. Then, atom coordinates are loaded from the
coordinate array and the dihedral energy value is computed. It is written to shared memory,
reduced on-chip, and thereafter transferred to the global energies array.

4.3.5. Reductions. After having finished all energy calculations, results stored in the
global energies array are reduced to a single total energy value. For this, Algorithm 4.4 is
employed, which performs reductions on a single SM utilizing only one thread block of size
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1 × 32. Consequently, only a small fraction of the GPU’s computational power is utilized. At
the same time, synchronizations of GPU multiprocessors are circumvented. For enhancing the
efficiency of this implementation, sequential addressing and full loop unrolling, as described in
Section 3.3.2 are employed.

Algorithm 4.4 Reduction algorithm for a single SM

SingleStepReduce
1 while globalPos < nofValues
2 do for all threads in parallel
3 do tempVals[threadID ]← tempVals[threadID ] + energyArray [globalPos]
4 globalPos ← globalPos + blockSize
5 localReduce(tempVals)
6 return tempVals[0]

4.4. Accelerated GPU Algorithm for Flexible Amino Acid Side Chains

To sustain the performance of the GPU algorithm when considering flexible amino acid
side chains, several adaptations are necessary. These mainly concern the selection of a flexible
molecular region and the intramolecular kernel that copes with at least one order of magnitude
more input data.

4.4.1. Altered data preparation. The altered preparatory phase either starts with the
selection of a spatial region within the provided molecules or a set of amino acid side chains.
Atoms contained in this selection form the set FlexRegion. Members of this set are subject
to transformations during the minimization procedure (see Section 4.6). A further set, named
OptAtoms, encompasses all atoms within a radius of 8 Å around members of FlexRegion. An atom
a is thus member of OptAtoms if there exists an atom b ∈ FlexRegion for which distance(a, b) <
8 Å. The following initialization procedure applies to members of OptAtoms. All other atoms
are ignored by the accelerated GPU algorithm.

All atoms of OptAtoms are grouped into components, as defined in Section 4.1.2. Ordered
according to their component numbers, the atom data of members of OptAtoms are uploaded
to the GPU. There, atom coordinates form the coordinate array, while atom parameters con-
stitute the parameter array. Additionally, the component number of each atom is stored in the
component array. Furthermore, the coordinate array positions of atom pairs forming hydrogen
bonds are stored in the hydrogen bond array, while positions of atom pairs with 1-2, 1-3, and
1-4 interactions (see Section 3.4.1) form the rescaling array. Figure 4.10 outlines the altered
molecular representation.

This representation bears two advantages. First, it completely excludes atoms that are
irrelevant to changes in the energy value of the molecular system to be optimized. This allows
for a far more efficient cutoff mechanism for intramolecular interactions in proteins. Second, it
abolishes the rescaling bit matrices and introduces the rescaling array instead. This consumes
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Figure 4.10. Adapted storage model for processing intramolecular interactions
more efficiently. Most data correspond to those introduced in Figure 4.5. For
each atom, the component ID (c) is added to the coordinate array. Furthermore,
all intercomponent 1-2, 1-3, and 1-4 interactions are comprised in the newly
introduced rescaling array. It consist of the coordinate array positions a1 and
a2 of interacting atom pairs and the respective factors s for rescaling the non-
bonded energy terms. The dihedral and hydrogen bond array remain unchanged.

far less memory and speeds up calculations. Reasons for this are reduced memory transfers and
flow of control divergences as explained in the next section.

4.4.2. Kernel for intramolecular energies. To compute intramolecular energies, the
intramolecular part of the energy matrix (see Figure 4.6) is split into tiles of size 4× 32. Then,
a cutoff is imposed by following the procedure described in Section 4.3.2.

When called, the intramolecular kernel copies coordinates, force field parameters, and com-
ponent IDs of the atoms of its thread block to shared memory. Based on these values, the kernel
computes intramolecular van der Waals and Coulomb energies. With the help of the component
IDs, calculations of in-component interactions are skipped. After this, each entry of the rescaling
array is associated to a thread. Each thread reads the rescaling factor as well as the atom coordi-
nates and force field parameters of its atom pair. With these values, a scaled non-bonded energy
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Figure 4.11. The optimization cycle: a decomposition of the SA algorithm
into functional units. The flow of control is symbolized by arrows.

value is computed for the atom pair. The thread subsequently subtracts this value from its
storage position in the local energies array. Thus, 1-2, 1-3, and 1-4 interactions are appropriately
rescaled.

Energies of 1-2 interactions tend to be quite high in comparison to other non-bonded inter-
action energies. As this algorithm operates with single-precision floating-point numbers, this can
entail numerical instabilities due to loss of significance accuracy problems. The introduction of
Kahan’s algorithm (see Section 3.3.3) tackles this issue for reductions and summations within
the intramolecular energy kernel.

4.4.3. Reductions. The results stored in the global energies array are reduced to a sin-
gle value with the TwoStepReduce algorithm. In the first step, it employs Algorithm 4.4—the
SingleStepReduce—to reduce the global energies array with 32 thread blocks of size 8×32 such
that all GPU multiprocessors are utilized. The 32 remaining values are subsequently reduced to
a single one by utilizing the SingleStepReduce algorithm again, this time with one thread block
of size 1× 32 and thus a single multiprocessor.

4.5. Optimizations for Flexible Ligands in a Rigid Binding Site

For optimizing ligand molecules in rigid binding sites, this research employs a basic SA
approach as outlined in Section 3.3.1. It operates according to a fixed exponential cooling sched-
ule and terminates after a user-defined number of steps. Optionally, an early abort-mechanism
interrupts the procedure if a given set of conditions is fulfilled.

4.5.1. Optimization cycle. The following decomposes the SA procedure into four func-
tional units, named Transformation Generation, Transformation Execution, Scoring, and Evalu-
ation. These units form the optimization cycle (Figure 4.11), which reflects the main loop of the
SA algorithm.
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Figure 4.12. Exchangeable components of the SA algorithm. The
StateManager, CoolingPolicy, and EarlyAbortPolicy components are or-
thogonal and can thus be altered independently. This controls and changes
the behavior of the SA procedure.

In the Transformation Generation Unit, a degree of freedom is selected. Depending on its
type, parameters such as rotation angle, rotation axis, and translation vector are generated.
Using these parameters, the Transformation Execution Unit subsequently generates a new state
after saving the old one. Thereafter, the Scoring Unit computes the value of the objective
function for the newly generated state. Based on this value, the Evaluation Unit either accepts
or rejects the new state. In the latter case, the cycle continues after having restored the saved
previous state. Furthermore, the Evaluation Unit breaks the optimization cycle if the maximal
number of steps is exceeded or conditions for an early abort event are fulfilled.

4.5.2. Components forming the optimization. Altering the functionality of units of the
optimization cycle changes the overall behavior of the SA procedure. This work groups orthogonal
functionality into components with the result that modules arise that are exchangeable without
side effects (see Figure 4.12). This design allows for controlling aspects of the behavior of the
algorithm according to the strategy pattern [194].

The main Simulated Annealing component controls the flow of the SA procedure according
to the optimization cycle. It therefore makes use of functionality comprised in the components
described next. Furthermore, it contains the acceptance criterion of the Evaluation Unit. In all
SA protocols described in this work, a new state is accepted if its energy is lower than that of
the previous one or the Metropolis Criterion [145] is fulfilled:

∆E < 0 ∨ e−∆E/T > Rand[0, 1]
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Acceptance thus depends on the difference between objective function values for the new and
the previous state (∆E), the temperature parameter T , and a sample drawn from a uniform
distribution on the closed interval [0, 1].

The CoolingPolicy component controls parameters that guide the SA process. In detail,
these are the temperature (T ), the cooling factor (cf ), the number of steps per cooling cycle,
and the maximum total number of optimization steps (smax).

The EarlyAbortPolicy component stores a set of conditions under which the optimization
procedure instantly terminates without performing the maximum number of steps.

The StateManager subsumes components that allow for altering, storing, and scoring the
state of molecules. These components are non-orthogonal, as their interfaces depend on data
structures used for molecular representation and transformation operations. The Scorer compo-
nent provides the functionality of the Scoring Unit, the Transformation Generator component
the functionality of the Transformation Generation Unit. The functionality of the Transforma-
tion Execution Unit is split between two components named Transformation Executor and
StateMementos. The former transforms molecules according to parameters provided by the
Transformation Generator component. The latter saves and restores atom coordinates.

4.5.3. CPU- and GPU-based algorithms. The author designed the SA procedure such
that it either operates mainly on GPU or on CPU. The strategy pattern allows for distinguishing
the components both algorithms share and those which encapsulate differing implementation
aspects.

4.5.4. Common components. The CoolingPolicy, EarlyAbortPolicy, and
Transformation Generator components are shared between the CPU- and GPU-based algo-
rithms. Parameters for two cooling policies were derived from optimizations, as described in
Sections 6.1.3 and 6.4.2. One policy is designed for local optimizations and the other for global
optimizations. The former starts with temperature T = 0, while the latter starts with varying
temperatures, as described in Section 4.6.3 and in the experimental section, and follows an ex-
ponential cooling scheme according to which Tnew = Told ∗ cf with cf = 0.98. A cooling event is
triggered every 100 steps. Both cooling policies allow for a maximum number of smax = 3,000

optimization steps.
The shared EarlyAbortPolicy component comprises two conditions that, whenever at least

one of them is fulfilled, lead to the termination of the optimization. These conditions are the
maximum number of consecutively rejected states earejmax and the minimal absolute energy
reduction over the last 10 minimal states |earedmin |. These parameters are set to:

earejmax = 200

|earedmin | = 0.1 kcal/mol

When initialized, the shared Transforansformation Generator component uses the current
system time as a seed for its random number generator. This stores which transformation types
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are allowed for each of the provided molecules. There are three types of transformations available,
namely dihedral rotations, molecular rotations, and molecular translations. The optimization
algorithm for protein-ligand complexes with flexible ligands permits all transformation types for
ligands and none for all other molecules. The Transformation Generator randomly selects one
of the flexible molecules and a valid transformation type. Subsequently, it randomly determines
parameters for the selected transformation.

For dihedral rotations, these parameters comprise the ID of the rotatable bond, the rotation
angle Φ, and the rotation direction. The value of the latter parameter is either from or to. This
refers to the directions stored component tree edges (see Section 4.1.2). This way, it is determined
which molecular part adjacent to the rotatable bond is transformed. For molecular rotations,
the Transformation Generator randomly selects a rotation axis and a rotation angle ρ while
for molecular translations a direction vector ~t along with its length |~t | are determined.

User-provided parameters set the maximum angle for molecular and dihedral rotations (ρmax
and Φmax) as well as the maximum length of the translation vector [max(|~t |)]. For all ligand
minimizations in rigid binding pockets (excluding parameterization runs), these parameters are
fixed:

ρmax =
π

48
RAD

Φmax =
π

48
RAD

max(|~t |) = 0.1 Å

4.5.5. Differing components. As described in Section 4.3, this work implemented the Su-
perTrAmber force field on GPU. Thus, the Scorer component differs in the CPU and GPU opti-
mization procedure. Additionally, the Transformation Executor component has architecture-
specific implementations.

4.5.6. Components of the CPU-based algorithm. The author designed a basic CPU-
based StateManager component. Exchanging its Scorer component allows for switching between
three objective functions as illustrated in Figure 4.13. Namely, these are the MMFF94s force
field (see Section 3.4.3) and two flavors of the SuperTrAmber force field. These differ in the way
hydrogen bonds are scored. Either the default model is used or hydrogen bonds are emphasized,
as described in Sections 3.4.1 and 3.4.2.

The Scorer components compute the energy of a given combination of molecules using the
Coulomb, van der Waals, hydrogen bond, and dihedral energy terms of their respective force
field. To speed up calculations, a cutoff of 12 Å is imposed on non-bonded interactions during
the initialization phase. To further reduce the number of non-bonded interactions, proteins and
their cofactors are labeled as rigid. Consequently, all interactions within these molecules are
excluded. Furthermore, the scoring component utilizes the reduced dihedral angle detection
method described in Section 4.2.4 and thus computes dihedral energies only for rotatable bonds
that are represented by an edge of the component tree.
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Figure 4.13. Overview on available state managers. All state manager derive
their interface from the basic StateManager component and provide an objective
function for the SA procedure. Four state managers are available that provide
access to the MMFF94s force field, the accelerated GPU-based implementation
of the SuperTrAmber force field, and two CPU-based SuperTrAmber flavors of
which one emphasizes hydrogen bond energies.

The Scorer components employs the partial charge model of their respective force field.
Thus, SuperTrAmber-based scorers assigns AMBER3 charges (see Section 3.6.3) to proteins and
Gasteiger-Marsili charges (see Section 3.6.1) to all other molecules. In contrast, MMFF94s-based
scorers assign partial charges according to the MMFF94 model (see Section 3.6.2) to all types of
molecules.

The Transformation Executor component computes a 4 × 4 affine transformation matrix
based on parameters generated by the Transformation Generator component. This transfor-
mation matrix is multiplied with all atom coordinates of a selected molecule in case of global
rotations and translations. In case of dihedral rotations, the Transformation Executor utilizes
the component tree to obtain all atoms in from or to direction of a selected rotatable bond.
Coordinates of thus identified atoms are subsequently transformed.

The StateMementos component stores atom coordinates for all non-rigid molecules. This
way, it saves three states of molecular systems: the current, last, and best state. Molecule coor-
dinates are always in the current state, which resulted from transforming the last state. The best
state is the energetically most favorable one yet detected. The interface of the StateMementos

component allows for saving the last or the best state and for restoring the best state. Conse-
quently, the StateMementos component is unaware of the meaning of the single states.

4.5.7. Components of the GPU-based algorithm. To accelerate the optimization pro-
cedure, the Scorer component is relocated to GPU. This is clearly the most promising measure
as the scoring functionality consumes most of the runtime. However, force field-based scoring
requires atom coordinates, force field parameter data and molecular connectivity information.
The algorithm uploads all these data in advance to avoid data traffic between host system and
device. This, in turn, necessitates porting the Transformation Executor component to GPU.
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Consequently, the management of molecular states and thus the StateMementos component has
to be ported to GPU as well. In short, a StateManager component for GPUs is required.

The GPU-based StateManager component assigns partial charges to proteins according to
the AMBER3 model, which is introduced in Section 3.6.3. For all other types of molecules, the
Gasteiger-Marsili model as described in Section 3.6.1 is employed. Furthermore, the GPU state
manager sets the cutoff value to 12 Å. Then, it calls the data preparation of SuperTrAmber’s
GPU implementation as described in Section 4.3.1. This functionality is encompassed by the
GPU-specific Scorer component. The main task of this component is calling the dihedral and
non-bonded interaction kernels, which are described in Sections 4.3.4 and 4.3.3 and then calling
the reduction kernel described in Section 4.3.5. When finished, the Scorer component returns a
single-precision floating-point energy value, which is transferred back to the host.

The GPU-specific Transformation Executor component operates on the coordinate array
(see Section 4.3.1) and executes transformations for which the Transformation Generator com-
ponent creates parameters on CPU. To globally rotate molecules, corresponding parameters are
uploaded to GPU. There, the targeted segment of the coordinate array is divided into tiles of size
1× 32. For each of these, a thread block computes an affine transformation matrix and applies
it to the coordinates of its assigned segment.

For the translation kernel, the relevant segment of the coordinate array is again divided into
tiles of size 1 × 32. Each thread block then simply adds the uploaded translation vector to the
atom coordinates of its assigned segment.

For each rotatable bond, there is a fixed set of components affected by a dihedral rotation.
These components occupy contiguous segments of the coordinate array. Their positions and
lengths are stored on GPU. This allows for quick access when a dihedral rotation is requested.
To perform a rotation, each affected component is assigned to a thread block of size 1 × 32. A
thread block then loads the coordinate array position and length of its segment. Subsequently,
it constructs an affine transformation matrix and applies it to the coordinates of its segment.

The StateMementos component stores atom coordinates of the last and the best state in sep-
arate coordinate arrays on GPU. To avoid unnecessary kernel calls, copy operations for generating
and restoring states are handled in the transformation kernels. Consequently, they operate on
the coordinate array for the last state whenever a restore operation is requested and on the
current coordinate array otherwise. The kernels apply their respective transformations and save
the resulting coordinates to the coordinate array for the current state. This way, restoring and
transforming coordinates is handled at the same time.

4.5.8. A modified optimization cycle for GPU-based optimizations. The described
modifications for porting the optimization algorithm to GPU result in an altered optimization
cycle as depicted in Figure 4.14. With this cycle, the computational power of the GPU is
harnessed while data transfer is kept at merely 164 byte per optimization cycle.
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Figure 4.14. Modified optimization cycle for including GPU-based scoring into
the SA procedure. Scoring and all operations on atom coordinates are conducted
on GPU. This approach leads to sparse data exchange between the GPU device
and its host system. Only 4 byte of data are downloaded from the device and
160 byte are uploaded to it per optimization cycle. Furthermore, the number of
kernel calls is kept at a minimum by integrating intermolecular and hydrogen
bond energy computations into a single kernel. The computation of dihedral and
intramolecular energies require one kernel call, respectively. This also applies to
the reduction of all calculated energy values. All in all, the force field energy of
protein-ligand complexes is computed with four kernel calls. Restoring, saving,
and transforming is handled in a single kernel.

4.6. Extension for Flexible Side Chains

The following describes adaptations to the optimization procedure that permit handling
flexible amino acid side chains. As an additional step, a set of these are selected. Therefore, the
user either provides a list of amino acids encoded in three letter code or a reference ligand and a
radius r. In the latter case, all amino acid side chains that contain atoms located within at least
one sphere with radius r around a ligand atom are considered flexible.

4.6.1. Adaptations to SA protocol. Rotatable amino acid side chains entail a larger
number of degrees of freedom. To cope with these, the temperature parameter T of the SA
algorithm is coupled with the energy deviations ∆E, which result from molecular transforma-
tions. Furthermore, parameters of the Transformation Generator component, which determine
the magnitude of molecular transformations, are periodically scaled down. These changes en-
tail the introduction of a JournalPolicy component and modifications to the Transformation
Generator, CoolingPolicy, Scorer, and EarlyAbortPolicy components.

4.6.2. Optimization procedure. With the newly introduced parameters and modified
components, the SA procedure—now named Adaptive SimulatedAnnealing—adapts the tem-
perature at the end of each cooling cycle. For this, the median energy deviation value ∆Emed

is utilized to determine the temperature Tnew, which entails an average acceptance rate of 0.5
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according to the Metropolis criterion:

Tnew =
∆Emed

log(accRatedes)

Furthermore, the transformation parameters ρmax, Φmax, and max(|~t|) are rescaled with the
transformation downscaling factor rescaletrans. The newly introduced parameters and modified
components are discussed in the following.

Algorithm 4.5 Adaptive SimulatedAnnealing

AdaptiveSimulatedAnnealing
1 nofSteps ← 0
2 transParameters ← initTransParameters()
3 lastScore ← scoreCurrentState()
4 bestScore ← lastScore
5 nofStepsPerCycle ← getConstantNofStepsPerCycle()
6 while !isCoolScheduleAbort(currTemp) and !isEarlyAbort(lastScore)
7 do� periodically update temperature and transformation parameters
8 if nofSteps mod nofStepsPerCycle = 0
9 then currTemp ← adaptTemperature()
10 transParameters ← rescaleTransParameters()
11 � update and evaluate state of the system under optimization
12 generateNextState(transParameters)
13 currScore ← scoreCurrentState()
14 nofSteps ← nofSteps +1
15 if !isAccepted(currScore, lastScore, currTemp)
16 then restorePreviousState()
17 continue
18 lastScore ← currScore
19 if isBetterThan(currScore, bestScore)
20 then bestScore ← currScore
21 saveCurrentStateAsBest()
22 restoreBestState()
23 return scoreCurrentState()

4.6.3. Cooling policy. The CoolingPolicy component is altered by setting the maximum
number of steps in a complete optimization procedure smax to 15,000. Furthermore the initial
value for the temperature T is set to 30 and the number of steps per cooling cycle to 100. Two
new parameters are introduced. First, the transformation downscaling factor rescaletrans = 0.97

and, second, the desired acceptance rate accRatedes = 0.5.

4.6.4. Journal policy. The SimulatedAnnealing component depicted in Figure 4.12 now
encompasses an additional subcomponent: the JournalPolicy. It keeps track of the energy,
temperature, and acceptance rate values during the optimization. Consequently, it also provides
median ∆E values, which are used to determine new temperatures Tnew, as described previously.
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4.6.5. Early abort policy. The EarlyAbortPolicy component undergoes only slight mod-
ifications. Its maximum number of consecutively rejected states parameter (earejmax) stays con-
stant and is thus set to 200. Conversely, the minimal absolute energy reduction over the last 10
minimal states parameter (|earedmin |) is altered and set to 0.2 kcal/mol.

4.6.6. Transformation generator. The parameter set utilized by the Transformation

Generator component is adapted. It still comprises the maximum angle for molecular and di-
hedral rotations (ρmax and Φmax), as well as the maximum length of the translation vector
[max(|~t |)]. In all experiments but the parameterization phase, the initial values of these param-
eters are fixed to:

ρmax =
π

16
RAD

Φmax =
π

2
RAD

max(|~t |) = 0.2 Å

An interface for rescaling these parameters with the rescaletrans factor is provided.
During the initialization of the Transformation Generator component, the total number of

degrees of freedom is now computed. For proteins with flexible side chains this number is equal to
the number of rotatable dihedrals (#rotatable_dihedrals). For fully flexible molecules, the six
degrees of freedom for rotations and translations are additionally considered. The total number
thus amounts to (6 + #rotatable_dihedrals). During the optimization, degrees of freedom are
randomly selected for performing transformation operations.

4.6.7. Scoring components. In all Scorer components, the cutoff on non-bonded inter-
actions is reduced to 8 Å. Furthermore, non-bonded interactions between rigid parts of molecules
are excluded, which mainly affects rigid protein regions and cofactors.

This work employs the altered algorithm described in Section 4.4 for scoring on GPU. The
flexible region FlexRegion, described in this section is determined by applying the procedure
specified in the introductory paragraph to Section 4.6. The advanced GPU algorithm enhances
the number of kernel calls to five for the scoring functionality in the optimization cycle (see
Figure 4.14). At the same time, the amount of data uploaded remains constant. These effects
are mainly due to a second kernel call for performing reductions, as introduced in Section 4.4.3.

4.7. Introducing Constraints

By modifying the Transformations Generator component, this research introduces con-
straints to the optimization procedure. This approach is centered around limiting dihedral rota-
tions and atom translations.

4.7.1. Constraining dihedral rotations. For constraining dihedral rotations, quadruples
of atoms that form a dihedral angle and have a rotatable central bond can be associated to a list
of legal angle intervals (see Figure 4.15). This list is constructed from internal data structures
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Figure 4.15. Limiting rotation angle intervals for quadruples of atoms forming
dihedral angles. The quadruples are associated to their respective rotatable
central bond. This facilitates fast access when checking constraints.

of CONFECT (see Section 3.8.5). When the Transformation Generator component computes
a dihedral rotation, all corresponding angle constraints are looked up and checked. In case of
a constraint violation, an alternative dihedral rotation is generated and the constraint check is
repeated.

4.7.2. Spatial constraints. The StateManager component allows registering radial dis-
tance constraints for the atoms of a molecule. For this, the initial coordinates of the selected
atoms are saved. Whenever the Transformation Generator component produces a transfor-
mation affecting these atoms, it checks whether any of the distance constraints is violated. In
that case, the generated transformation is rejected and a new movement is generated.

4.8. Trooper and GPUperTrooper

Trooper and GPUperTrooper employ the methods introduced in this chapter for small mol-
ecule and protein binding pocket optimizations. They operate in two distinct modes: the local
minimization mode or local parameterization and the global minimization mode or global param-
eterization. The first one is used for minimizing small molecules in rigid protein binding sites.
In contrast, the second mode is employed whenever amino acid side chain conformations are also
optimized.
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Table 4.1. Default parameterization of the basic SA procedure for minimizing
ligands in rigid binding pockets.

parameter name symbol value section

objective function - SuperTrAmber 3.4.1
maximum number of steps smax 3,000 4.5.4
steps per cycle - 100 4.5.4
initial temperature T 0 4.5.4
cooling factor cf 0.98 4.5.4
maximum angle for molecular rotations ρmax

π
48 RAD 4.5.4

maximum angle for dihedral rotations Φmax
π
48 RAD 4.5.4

maximum length of translation vector max(|~t |) 0.1 Å 4.5.4
maximum number of rejected states earejmax

200 4.5.4
minimal absolute energy reduction |earedmin

| 0.1 kcal/mol 4.5.4
cutoff - 12 Å 4.5.5

4.8.1. Local minimization mode. Trooper’s and GPUperTrooper’s local minimization
mode use the basic SA algorithm introduced in Section 4.5. Hence, the optimization procedure
follows a predefined exponential cooling scheme. Furthermore, GPUperTrooper scores molecules
with the basic GPU portation of SuperTrAmber, which Section 4.3 introduces. Table 4.1 provides
an overview on all parameters defining the local minimization mode. They are introduced in
detail in the preceding sections and experimentally derived in Section 6.1.3.

4.8.2. Global minimization mode. In the global minimization mode, Trooper and GPU-
perTrooper are based on the Adaptive SimulatedAnnealing algorithm, which Section 4.6 in-
troduces. Furthermore, GPUperTrooper uses the advanced GPU portation of SuperTrAmber
presented in Section 4.4. Table 4.2 provides an overview on all further relevant parameters of the
global mode. They are introduced in detail in the preceding sections and experimentally derived
in Sections 6.4.2 and 6.6.

4.9. Binding Site Manipulation

4.9.1. ActiveSiteWobbler. To apply random transformations to molecules in binding
sites, the author developed the ActiveSiteWobbler. It employs the previously introduced
Transformation Generator and Transformation Executor components. With these, global
molecule rotations and translations, as well as dihedral rotations are performed. Thus, the
ActiveSiteWobbler operates on the same degrees of freedom as the optimization method.

To utilize the ActiveSiteWobbler, the user provides molecules containing binding sites. In
these, flexible molecules and regions must to be selected with the procedure described in Sec-
tion 4.6. Then, a user-defined number of transformations are randomly generated and executed.
For these, the maximum angle for molecular and dihedral rotations (ρmax and Φmax), as well as
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Table 4.2. Default parameterization of the adaptive SA procedure for mini-
mizing flexible ligands and amino acid side chains.

parameter name symbol value section

objective function - SuperTrAmber 3.4.1
maximum number of steps smax 15,000 4.6.3
steps per cycle - 100 4.6.3
initial temperature T 30 4.6.3
transformation downscaling factor rescaletrans 0.97 4.6.3
desired acceptance rate accRatedes 0.5 4.6.3
maximum angle for molecular rotations ρmax

π
16 RAD 4.6.6

maximum angle for dihedral rotations Φmax
π
2 RAD 4.6.6

maximum length of translation vector max(|~t |) 0.2 Å 4.6.6
maximum number of rejected states earejmax

200 4.6.5
minimal absolute energy reduction |earedmin | 0.2 kcal/mol 4.6.5
cutoff - 8.0 Å 4.6.7

Figure 4.16. The ConformationPorter transfers side chain conformations be-
tween matching residues. This operation employs affine transformation matrices.
These are constructed by matching fixed points on protein backbones.

the maximum length of the translation vector [max(|~t |)], are set to:

ρmax =
π

48
rad

Φmax =
π

48
rad

max(|~t |) = 0.1 Å

The ActiveSiteWobbler finally saves proteins to PDB [167] or an internal database format and
small molecules to mol2 format [168].
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4.9. BINDING SITE MANIPULATION

4.9.2. Transferring side chain conformations. The ConformationPorter transfers side
chain conformations between binding pockets. Therefore, it constructs planes formed by back-
bone Cα, C, and N atoms for selected pairs of source and target residues. Then, normals to
the planes are computed. This procedure yields four points that describe the backbone con-
formations of source and target residues. The ConformationPorter computes transformations
between these point sets and applies them to the atom coordinates of selected side chains. In
this way, side chain conformations are transferred from source to target residues. The process is
shown in Figure 4.16.
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CHAPTER 5

Data Sets and Machines

5.1. Astex Diverse-Set

For a large part of experiments in this work, data sets formed of protein-ligand complexes
of the Astex Diverse Set [3] are utilized. The following introduces them in detail.

5.1.1. Selected docking poses. The experimental section describes how optimizations
for flexible ligands in rigid binding pockets are parameterized, the runtime behavior of the Su-
perTrAmber GPU implementation is tested, and the speedup of the GPU-based optimization
procedure is measured. For these tasks, subsets of the Astex Diverse Set were used. This set
includes pre-assigned protonations for proteins according to the ChemScore [54] model. They
were taken as provided. At the same time, water molecules were removed. As proteins were
kept rigid, their conformations were taken directly from the data set. In contrast, ligand confor-
mations resulted from docking runs performed with the docking tool TrixX, which Section 3.8.3
introduces.

ADS I. This set comprises 13,255 ligand poses. All in all, there is at least one pose for 83 of
the 85 targets in the Astex Diverse Set. Among these is at least one correct docking pose (term
defined in Section 3.2) for 61 and at least one excellent docking pose for 22 protein targets. No
poses exist for targets tryptophane synthase (1k3u) and prostaglandin H2 synthase 1 (1q4g).

ADS II. This set is a subset of ADS I. It comprises 125 ligand poses with an RMSD between
1.5 Å and 3.0 Å to the respective crystal structure. The average RMSD is 2.22 Å. ADS II contains
poses for 63 of the 85 protein targets of the Astex Diverse Set.

ADS III. This is another subset of ADS I which is disjointed from ADS II. ADS III com-
prises 67 ligands poses and covers 60 protein targets of the Astex Diverse Set. Again, the RMSDs
of the ligand poses range between 1.5 Å and 3.0 Å. the average RMSD is 2.35 Å.

ADS IV. This set is a further subset of ADS I and encompasses 15 protein-ligand complexes
with one randomly selected docking pose as ligand. Table 5.1 provides a detailed list of the
complexes and the number of atoms in their binding pockets.

ADS V. The fifth subset of ADS I. Its members are specified in Section 6.1.8.
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Table 5.1. Protein targets comprised in data sets ADS IV and ADS VI, marked
by an X. For set ADS IV, the numbers of ligand atoms and binding site atoms
within 12.0 Å of the ligand are listed.

pdb
code

name ADS IV #ligand
atoms

total
#binding

site
atoms

ADS VI

1g9v deoxy hemoglobin - - - X
1gkc matrix metalloprotease 9 - - - X
1gm8 penicillin G acylase - - - X
1hnn phenylethanolamine

N-methyltransferase
- - - X

1hq2 6-hydroxymethyl-7,8-
dihydropterin
pyrophosphokinase

X 23 974 X

1j3j dihydrofolate reductase - - - X
1jd0 carbonic anhydrase XII X 19 1,161 -
1jje metallo β-lactamase X 41 1,000 -
1jla HIV-1 reverse transcriptase - - - X
1mmv neuronal nitric-oxide synthase - - - X
1mzc protein farnesyltransferase X 69 1,707 -
1nav thyroid hormone receptor α1 X 38 1,459 X
1of6 DAHP synthase X 24 1,185 -
1p2y cytochrome P450cam X 27 1,294 -
1r1h neprilysin X 56 1,655 -
1s19 vitamin D nuclear receptor X 70 1,821 -
1sj0 estrogen receptor α X 63 871 -
1t40 aldose reductase X 37 1,244 -
1tow adipocyte fatty acid-binding

protein
- - - X

1u1c uridine phosphorylase X 36 1,444 X
1v0p protein kinase 5 X 54 1,294 -
1ygc factor VIIa X 67 1,453 -
2br1 Chk1 X 50 1,160 -

5.1.2. ADS VI. As opposed to the previously introduced sets, ADS VI is not a subset of
ADS I. Instead, it is formed of 11 proteins of the Astex Diverse Set. Their total atom count
covers the range from 2,058 to 22,434. All members are detailed in Table 5.1.

5.1.3. ACS challenge modifications. Section 6.1.7 describes a cognate docking experi-
ment that evaluates the optimization method for flexible ligands in rigid binding sites. For this
experiment, a revised version of the Astex Diverse Set, referred to as ADS VII, is processed. It
was compiled for the Docking and Scoring Symposium, which took place during the 241st ACS
National Meeting. The goal of this Symposium was to evaluate the performance of current dock-
ing and scoring methods. The most relevant research groups in the field of docking participated
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5.2. ASTEX NON-NATIVE DATA SET

in the Symposium. Their results were published in 2012 in the 6th issue of volume 26 of the
Journal of Computer-Aided Molecular Design.

Schneider et al. [101] comprehensively describe the preparation process that resulted in the
revised version of the Astex Diverse Set. This set includes all ligands to be found in crystal
structures of the original set. Therefore, the number of distinct binding pockets increased from
the originally 85 to 151.

5.1.4. Wobbled side chains. Starting from Section 6.4, this work parameterizes and eval-
uates optimizations for binding sites with flexible side chains in the presence of a rigid ligand. For
this, this research constructed a set of binding sites named ADS VIII. It encompasses modified
complexes of the Astex Diverse Set. To create it, water molecules were removed and dihedral
angles of amino acid side chains were randomly rotated. In detail, this procedure defined all
amino acid side chains containing atoms within a radius of 4.0 Å around atoms of native lig-
ands as flexible. Then, the ActiveSiteWobbler, introduced in Section 4.9, randomly changed
dihedral angles of rotatable bonds. For each protein-ligand complex, the ActiveSiteWobbler

produced 11 wobbled binding sites by performing 0, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000,
50,000, 100,000, 250,000, and 500,000 random transformations. To quantify their effect, the
RMSD (see Section 3.2) of the atoms of the wobbled side chains to the respective atoms in the
crystal structure was computed. Figure 5.1 shows the resulting deviations.

Protonations for this data set were generated with the Naomi library introduced in Sec-
tion 3.5.4. From this process, some histidines with an erroneous protonation at the δ- and ε-
nitrogens of the imidazole resulted. Binding sites containing these were excluded. Consequently,
data set ADS VIII overall encompasses 748 protein-ligand complexes.

5.1.5. Wobbled binding sites. With the ActiveSiteWobbler, the author created ADS
IX, another wobbled data set based on the Astex Diverse Set. This work utilizes it for parameter-
izing and validating optimizations of flexible ligands in binding sites with flexible amino acid side
chains in Section 6.6. For this, this research created 330 protein-ligand complexes by introducing
0, 500, 1,000, and 2,000 random transformations to the members of the Astex Diverse Set. The
definition of the flexible region was the same as in the last section. This time, the ligand was
subject to the wobbling procedure as well. Deviations of ligands from their respective crystal
conformation are shown in Figure 5.2.

5.2. Astex Non-Native Data Set

For evaluating rigid ligand-flexible side chain optimizations, this work utilized an unmodified
version of the Astex Non-Native data set [198]. All in all, this set comprises 1,112 protein-
ligand complexes. For constructing it, binding sites sequentially identical to any of those in the
Astex Diverse Set were gathered from the PDB [53]. Matching non-native binding sites were
superposed with the corresponding template structure from the Astex Diverse Set. In addition to
this, protonation states were adjusted to that of the respective template structure. The following
names the unmodified Astex Non-Native Set NN I.
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Figure 5.1. RMSDs of wobbled binding sites of the ADS VIII data set to
the respective crystal structures. Binning scheme corresponds to RMSD limits
plotted on the x-axis where labels to the left of a bin constitute the respective
lower limit. Structures with binding site RMSDs above 3.5 Å were not considered
in this depiction.
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the ADS IX data set. Binning scheme corresponds to RMSD limits plotted on
the x-axis where labels to the left of a bin constitute the respective lower limit.
Structures with RMSDs above 3.5 Å are excluded in this depiction.
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Figure 5.3. RMSDs of transferred amino acid side chains of the NN II data set
to the respective crystal structures. Binning scheme corresponds to RMSD limits
plotted on the x-axis where labels to the left of a bin constitute the respective
lower limit. Structures with side chain RMSDs above 2.0 Å were not considered
in this depiction.

5.2.1. Transferred side chains. The author created data set NN II by modifying the As-
tex Non-Native Set. With the ConformationPorter, which Section 4.9 describes, the research
transferred binding site amino acid side chain conformations from non-native structures to the
backbone of the respective template structure. All side chains having atoms closer than 8.0 Å to
any atom of the respective native ligand were transferred. During this process water molecules
were removed and protonation states were adapted with the Naomi library introduced in Sec-
tion 3.5.4. Again, some histidines with an erroneous protonation at the δ- and ε- nitrogens of
the imidazole resulted. Binding sites containing these were excluded. This method produced 686

distinct complexes. For these, Figure 5.3 shows deviations of transferred side chains from the
template structure conformation. It is noteworthy that the Astex Non-Native Data Set is biased
towards certain proteins. For example, there are overall 373 conformations of HIV-1 protease,
thrombin, and carbonic anhydrase II.

5.3. CONFECT Test Data Set

For testing downstream optimizations in conjunction with CONFECT, this work applied
this tool to generate a set of 4,997 small ligand conformations. They were constructed from a
subset of the CSD [184], which encompasses 75 ligands. These, in turn, were extracted from
protein-ligand complexes of the PDB [53].
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Table 5.2. Machines used for benchmark experiments. The OpenSUSE oper-
ating system (OS ) was installed on all systems. Different versions of the gcc
and nvcc were used.

Machine CPU type ID
(Table 5.3)

GPU type ID
(Table 5.4)

RAM
(GByte)

OS gcc nvcc (gcc)

I 1 1 16 11.3 4.5.0 4.0 (4.4.5)
II 2 2 8 12.2 4.7.1 5.0 (4.4.5)
III 3 - 128 12.2 4.7.1 -
IV 3 3 128 12.2 4.7.1 5.5 (4.7.1)
V 4 4 12 11.3 4.5.0 4.2 (4.5.0)

Table 5.3. Processors of benchmarking systems. Their TDP values (see Sec-
tion 3.1) are specified along with their release dates.

ID Intel CPU GHz #cores TDP (W ) launch quarter
(Q/Y Y Y Y )

ref.

1 Xeon E5420 2.5 4 80 4/2007 [199]
2 Xeon E5-2609 2.4 4 80 1/2012 [200]
3 Xeon E5-2680 3.5 8 130 1/2012 [201]
4 Xeon E5630 2.66 4 80 1/2010 [202]

Table 5.4. Graphics processors of benchmarking systems. Their TDP values
(see Section 3.1) are specified along with their release dates.

ID NVIDIA GPU chip type core clock
(MHz)

#cores TDP
(W )

launch
(Q/Y Y Y Y )

ref.

1 Tesla C1060 GT200 1,296 240 187.8 1/2008 [203]
2 GeForce GTX680 GK104 1,058 1,536 195 1/2012 [204]
3 Tesla K20 GK110 706 2,496 225 4/2012 [205]
4 Quadro 4000 GF100 475 256 142 4/2010 [206]

5.4. Machines

Runtime evaluation experiments were carried out on workstations with differing setups.
Table 5.2 provides an overview on them. When compiling CUDA application with nvcc, the
author set the flags O3 and use_fast_math. For x86 code compilation with gcc, the author set
the flags O3, fomit-frame-pointer, funroll-loops, and ftracer.
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CHAPTER 6

Experiments

6.1. Optimizing Ligands in Rigid Binding Pockets

The following experiment assesses whether force field-based ligand minimizations can en-
hance results produced by docking tools. It therefore compares local and global optimization
methods and gauges the effects of employing different force fields. Based on thus gained insights,
the research parameterizes and subsequently validates and externally evaluates Trooper.

6.1.1. Assessing the potential of downstream optimizations. To gauge the impact
of downstream optimizations on the geometrical quality of docking poses, the experiment opti-
mized the 13,255 ligand poses of data set ADS I (see Section 5.1.1) with YASARA’s standard
minimization procedure (see Section 3.9.1) using the AMBER03 force field (see Section 3.4.5) as
an objective function.

As the ligand poses of data set ADS I result from a cognate docking run, receptor conforma-
tions correspond to those of the respective crystal structure. Thus, the experiment kept binding
sites rigid in all optimization runs. To speed up computations while assuring that YASARA
captures all relevant non-bonded interactions, a 13.1 Å cutoff was imposed.

The following judges the usefulness of downstream optimizations in terms of the number of
correct and excellent ligand poses (see Section 3.2) gained. The pre-optimized data set ADS I
contains at least one correct docking pose for 61 and at least one excellent docking pose for 22
protein targets. YASARA’s optimization raises the former number to 66 and the latter to 50.
Figure 6.1 provides an overview on all measured results.

Discussion. Evidently, a force field-based optimization can improve the geometry of dock-
ing poses. This particularly applies to poses with an RMSD to the crystal structure below 1.5 Å.
These measurements coincide with those of Nabuurs et al. [41] who report reductions by 0.31 Å

to 0.41 Å for poses with an initial RMSD below 1.5 Å with YASARA.
For poses with an RMSD above 2.0 Å, the results indicate that optimization effects are less

apparent. Furthermore, YASARA’s optimization procedure seems to drive poses with initial
RMSDs larger than 3.0 Å away from crystal structure poses. This is acceptable, this work aims
at refining pre-determined conformations that are already close to biologically active ones. For
discovering genuinely new binding modes, other approaches have to be applied prior to quick
optimization methods. Thus, this focuses on poses with an RMSD in the range of 1.5 Å to 3.0 Å in
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Figure 6.1. Effects of downstream optimizations with YASARA on ligand
poses resulting from a cognate docking experiment with TrixX. The bars de-
pict the number of binding pockets for which there is at least one pose with an
RMSD below the threshold value denoted on the x-axis. Grey bars represent the
pre-optimized and red bars the optimized data set. The rightmost bar illustrates
the number total number of binding pockets in the experiment’s data set.

the following and analyze whether a less complex and thus presumably faster local optimization
method can sustain YASARA’s performance or even produce better results.

6.1.2. Comparing global to local optimizations. This experiment assesses whether less
complex local optimizations produce better or equal results compared to a global optimization
procedure. Theoretically, global optimization schemes could drive ligands towards minimal poses
far away from the respective crystal structure.

This experiment therefore minimizes data set ADS III, which comprises ligand poses, with
RMSDs to their respective crystal structures in the range of 1.5 Å to 3.0 Å. As explained in the
preceding section, this RMSD range is of high relevance.

Global and local optimizations were performed with YASARA and MOE, respectively. Pro-
tein atoms were fixed during the experiment as the ligands of data set ADS III result from a
cognate docking run. For YASARA, this experiment employed its standard minimization proce-
dure (see Section 3.9.1) with AMBER03 (see Section 3.4.5) as an objective function and imposed
a cutoff of 13.1 Å on non-bonded interactions. As YASARA performs stochastic optimizations,
the data are averaged over the results of three optimization runs when computing RMSD values.

With MOE, a single run of its deterministic gradient-based optimization procedure (see
Section 3.9.2) was conducted using AMBER03 as an objective function. Proteins were prepared
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Figure 6.2. RMSD values of ligands before and after optimization in their
rigid binding sites. MOE employed a local and YASARA a global minimization
scheme.

by adapting their protonation states and assigning partial charges. Furthermore, the experiment
set the boundaries of MOE’s cutoff switching function to 12 Å and 14 Å.

RMSDs for ligand poses were calculated with MOE’s integrated method. The average RMSD
of the data set’s ligands to their respective crystal structure is reduced from an initial value
of 2.35 Å down to 2.07 Å by MOE and down to 1.67 Å by YASARA. Figure 6.2 shows the
experiment’s results.

Discussion. YASARA’s global minimization procedure outperforms MOE’s local one, es-
pecially on ligand poses with a RMSD above 2.0 Å to the respective crystal structure. This is
striking in the light of the analysis of downstream optimization procedures in Section 2.2. All
therein introduced tools apply local optimization techniques. However, this experiment sug-
gests to learn from YASARA’s approach and employ a global minimization strategy based on
SA. Trooper was developed in accordance with the findings. It is parameterized in the next
experiment.

6.1.3. Parameterizing Trooper’s SA algorithm. Results of the preceding experiments
suggest to employ a SA-based method for ligand optimizations. For this, parameterization runs
are required.

For minimizing the 125 ligands of training data set ADS II (see Section 5.1.1), Trooper
was tested various settings. While protein structures were kept rigid and SuperTrAmber (see
Section 3.4.1) served as an objective function in all runs, the maximum angle for molecular
and dihedral rotations (ρmax and Φmax) as well as the maximum length of the translation
vector [max(|~t |)] and the initial temperature (T ) were subject to the tuning procedure. All
combinations of the assignments T = {0, 10, 100}, ρmax = {π4 ,

π
12 ,

π
48}, Φmax = {π4 ,

π
12 ,

π
48}, and
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Figure 6.3. Median potential force field energy of protein-ligand complexes
resulting from ligand minimizations. The median energy values were computed
for minimization runs conducted with the same initial temperature parameter
T . For all other parameters, different combinations were tested.
Symbols above the whiskers indicate whether the respective median energy value
differs significantly from that produced by optimization runs with temperature
setting T = 0. Three stars (***) denote a significance level of 0.1%.

max(|~t |) = {0.1, 0.2, 0.4} were tested. For all optimization runs, the maximum number of steps
was set to 3,000 and the cooling factor (cf ) to 0.98.

For selecting the best performing parameter combination, the author computed the median
potential energy values of optimized complexes for all optimization runs conducted with the same
initial temperature T . The obtained results are shown in Figure 6.3.

Furthermore, Table 6.1 lists the median potential energy of structures resulting from Trooper’s
minimization procedure for all parameter combinations when keeping initial temperature T fixed
to 0.

Discussion. Apparently, Trooper’s optimization performance is best when setting the ini-
tial temperature to 0 (p ≤ 0.001). This results in a hill climb-like and thus local minimization
procedure. As the previous experiment with MOE and YASARA suggests that YASARA’s adap-
tive SA procedure is superior to MOE’s gradient-based local optimization, data suggests that
the non-adaptive exponential cooling schedule (see Section 4.5.4) employed in the tested version
of Trooper could be the reason for the worse performance measured for global optimizations.
However, the work sets the initial temperature T to 0 for the following ligand minimizations
without protein flexibility. An adaptive cooling schedule is tested for optimizing amino acid side
chains in Section 6.4.
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Table 6.1. Median potential energies (E) of binding pockets resulting from
ligand minimizations performed with Trooper utilizing SuperTrAmber as an
objective function. For parameterization purposes, different combinations of
the maximum angle for molecular and dihedral rotations (ρmax and Φmax) as
well as the maximum length of the translation vector [max(|~t |)] were tested.
The last column specifies whether the respective median potential energy value
significantly differs from the one in the first row of the table. The minus symbol
(-) denotes no significance.

max(|~t |) (Å) ρmax (RAD) Φmax (RAD) median E kcal
mol significance

0.1 0.78 0.06 -17.39 -
0.1 0.26 0.78 -17.34 -
0.4 0.06 0.78 -16.94 -
0.1 0.06 0.78 -16.92 -
0.1 0.26 0.06 -16.32 -
0.4 0.26 0.26 -15.96 -
0.4 0.78 0.26 -15.86 -
0.4 0.06 0.26 -15.71 -
0.2 0.06 0.78 -15.65 -
0.4 0.78 0.06 -15.64 -
0.4 0.26 0.78 -15.36 -
0.2 0.78 0.06 -15.33 -
0.2 0.06 0.26 -15.19 -
0.2 0.26 0.78 -15.12 -
0.1 0.06 0.06 -15.10 -
0.2 0.26 0.26 -14.95 -
0.4 0.26 0.06 -14.93 -
0.1 0.78 0.78 -14.91 -
0.1 0.06 0.26 -14.80 -
0.2 0.26 0.06 -14.71 -
0.2 0.78 0.26 -14.58 -
0.4 0.78 0.78 -14.54 -
0.1 0.26 0.26 -14.52 -
0.1 0.78 0.26 -14.38 -
0.4 0.06 0.06 -14.37 -
0.2 0.06 0.06 -14.36 -
0.2 0.78 0.78 -13.78 -

For all other parameters, the experiment yields no indications on a preferable combination.
As this research focuses on optimizing ligands with distance less than 3 Å to their respective crys-
tal pose, it assumes that rather small movements suffice for the purpose of this work. Therefore,
this research sets ρmax = 0.06RAD, Φmax = 0.06RAD, and max(|~t |) = 0.1 Å for the following
ligand optimization experiments. This setting, along with the SA parameterization introduced
previously is named the local parameterization. Section 4.8.1 summarizes it.
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6.1.4. Force field comparison: MMFF94s vs SuperTrAmber. To assess whether
utilizing the MMFF94s force field (see Section 3.4.3) instead of SuperTrAmber as an objective
function yields better results when minimizing ligands within rigid binding pockets, Gent con-
ducted a study as part of his Master’s thesis [195]. Its results are relevant to this work as all
following optimization experiments could be performed with MMFF94s, which is part of the
force field framework (see Section 4.2).

Gent optimized the 67 docking poses of data set ADS III (see Section 5.1) with Trooper. The
initial temperature T was set to 0 and the maximum number of steps smax to 3,000. Parameters
of the movement magnitudes for molecule transformations are not specified in Gent’s work but
were kept constant in all optimization runs. Of these, Gent conducted 20 with MMFF94s and
SuperTrAmber as an objective function.

RMSDs of resulting ligand poses to their respective crystal structure were computed with an
unspecified method. Averaging over the thus obtained values for all runs yields an RMSD value
of 2.03 Å for SuperTrAmber and 2.05 Å for MMFF94s. The difference between these two results
is not significant (p = 0.5) according to Student’s t-test (see Section 3.10).

Discussion. Optimizations with Trooper using either the MMFF94s or the SuperTrAmber
force field as an objective function yield the same results. This finding correspond to that of
Perola et al. [19] who reported similar downstream optimization performance for the MMFF94
and OPLS-AA [25,26] force fields.

At the same time, SuperTrAmber’s parameter set and its atom type model (see Section 3.5)
are simpler than those of MMFF94s. In accordance with Occam’s principle of parsimony, this
work selects the simpler model and conducts the following experiments with SuperTrAmber as
an objective function. In the next experiments, this work proceeds by evaluating the now fully
parameterized Trooper by comparing its performance to external tools.

6.1.5. Optimizing selected docking poses. For evaluation purposes, this experiment
optimized the 67 ligands of test data set ADS III (see Section 5.1.1) in their respective binding
pocket with Trooper’s local minimization mode and compared the results to those obtained with
MOE and YASARA from the experiment described in Section 6.1.2.

During all optimization runs, protein atoms were kept fixed and the local parameterization
specified in Section 4.8.1 was employed. A cutoff of 12 Å around ligand atoms was introduced
for non-bonded interactions. The experiment performed 10 optimization runs and computed
an average RMSD (using MOE’s internal implementation) of 1.95 Å for the minimized ligands
to their crystal structure. As shown in Figure 6.4, Trooper performs best on structures with
an RMSD between 1.5 and 2.5 Å. The quality of poses with an initial RMSD above 2.5 Å is
enhanced in some cases while most often, only negligible effects are observable.

Discussion. Trooper’s local optimization mode performs better than MOE’s and is out-
performed by YASARA’s global minimization, especially on ligand poses with an initial RMSD
above 2.5 Å to the respective crystal structure. This is another indicator that testing an adaptive
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Figure 6.4. RMSD values of ligands before and after optimization in their
rigid binding sites. MOE, YASARA, and Trooper’s local parameterization were
employed for minimizing the structures.

cooling scheme as employed by YASARA might be worthwhile. Sections 6.4 and 6.6 therefore
assess this methodology. At the same time, Trooper apparently already performs sufficiently well
to employ it for downstream optimizations in cognate docking. The following experiments test
this assumption.

Results produced by Trooper in this section’s experiment are apparently slightly better than
those reported in Gent’s experiments (see Section 6.1.4). At the same time, a comparison is
hardly valid as Gent’s parameterization is partly unknown and the employed method for RMSD
value calculations is not specified.

6.1.6. Downstream optimization of cognate docking results. To gauge Trooper’s
potential to ameliorate cognate docking results, this experiment optimized the docking poses of
data set ADS I (see Section 5.1.1). For this, Trooper’s local parameterization was employed (see
Section 4.8.1). Furthermore, a cutoff of 12 Å was imposed on non-bonded interactions. The work
then compares the thus produced results with those obtained when optimizing with YASARA
(see Section 6.1.1). For this, the RMSD (see Section 3.2) of an optimized ligand’s atoms to the
respective crystal structure atoms are computed. Figure 6.5 summarizes the results. Therein,
it is shown that the number of binding pockets for which there is at least one correct docking
pose (defined in Section 3.2) is enhanced from 61 to 66 by YASARA and to 68 by Trooper. For
excellent poses, YASARA increases this number from 22 to 50 and Trooper to 44.

Discussion. When considering the number of binding pockets for which excellent or correct
poses are produced, results produced by Trooper are almost on par with YASARA’s especially
for the region below 1.5 Å. Certainly, the up to 200 starting poses per binding pocket entail a
high number of attempts to produce a correct or excellent pose. However, this experiment still
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Figure 6.5. Effects of downstream optimization with YASARA and Trooper’s
local minimization mode on ligand poses resulting from a cognate docking ex-
periment with TrixX. The single bars represent the number of binding pockets
for which there is at least one pose with an RMSD below the threshold value
denoted on the x-axis. The rightmost bar illustrates the number total number
of binding pockets in the experiment’s data set.

demonstrates that Trooper can enhance the results of cognate docking runs. The next experiment
assesses whether this observation holds true when rescoring with HYDE (see Section 3.8.1) to
select the top-ranking poses.

6.1.7. The ACS docking challenge. This research evaluated Trooper’s potential to im-
prove results of cognate docking experiments by optimizing and rescoring ligand poses produced
by TrixX (see Section 3.8.3). In detail, this research post-processed docking poses by option-
ally minimizing them with Trooper’s local mode, followed by a rescoring with HYDE (see Sec-
tion 3.8.1), which optionally employed its internal numerical optimization. Thus, four pipelines
for ligand refinement were tested:

(1) HYDE rescoring
(2) HYDE optimization → HYDE rescoring
(3) Trooper’s force field optimization → HYDE rescoring
(4) Trooper’s force field optimization → HYDE optimization → HYDE rescoring

This work prepared the docking run by generating conformations for each of the 151 ligands of
data set ADS VII (see Section 5.1.3) with the TCG (see Section 3.8.4), whose clustering threshold
was set to 1.2 and the quality level to 1. The research subsequently set TrixX’s clash parameter
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Figure 6.6. Effects of Trooper’s downstream optimizations in combination
with HYDE rescoring on the results of a cognate docking run with TrixX. Four
refinement pipelines (HYDE, HYDEOpt, Trooper + HYDE, and Trooper + HY-
DEOpt) were tested. The single bars represent the percentage of binding pock-
ets for which there is at least one ligand pose among the top 32 ranked with an
RMSD to the respective crystal structure below the threshold value denoted on
the x-axis.

to 0.5 and attempted to dock all generated conformations into their respective binding pocket.
This resulted in a maximum of 200 docking poses per ligand.

For downstream optimizations, this experiment used Trooper’s local parameterization (see
Section 4.8.1) and imposed a cutoff of 12 Å on non-bonded interactions.

Rescoring was performed with the HYDE tool with parameters –Hnetwork 1 and –optimize 2.
This enabled the numerical optimization and the ProToss algorithm (see Section 3.8.2) for im-
proving the hydrogen bond network in binding pockets.

A comprehensive overview on the experiment’s results is given in Table 6.2 and Figure 6.6.
Due to the large amount of data therein, the following discusses selected points.

Discussion. It is evident that downstream optimizations with Trooper enhance the number
of excellent docking poses (term defined in Section 3.2). This conclusion is based on the results
produced by pipeline 3, which increases the number of binding pockets with at least one excellent
pose from 59 to 85 when considering the top 200 ranked poses (see last row of Table 6.2). Here,
the ranking is irrelevant for deriving the number of excellent poses and thus HYDE’s rescoring
has no influence. Hence, Trooper is the sole cause for the improved results.

Remarkably, Trooper furthermore boosts the performance of HYDE’s internal optimizer. As
visible in the last row of Table 6.2, for the number of binding pockets with at least one excellent
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Table 6.2. Effects of Trooper’s downstream optimizations in combination with
HYDE rescoring on the results of a cognate docking run with TrixX. Table cells
contain the number of binding pockets for which at least one ligand pose with
an RMSD below the given threshold is ranked among the top n. The numerical
column labels refer to the four downstream refinement pipelines that are defined
in experiment’s description. Columns containing raw TrixX results are labeled
with ’-’.

RMSD (Å)
≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0

Rank - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4

≤ 1 6 4 1 10 27 34 17 20 38 67 61 37 56 55 88 82 56 79 72 98
≤ 5 8 6 4 12 37 49 30 41 56 83 81 68 84 84 108 101 93 105 101 117
≤ 10 8 7 6 13 44 53 39 49 65 89 94 77 90 101 114 116 101 115 116 125
≤ 20 8 8 8 16 45 57 52 53 74 95 96 86 99 109 119 120 118 124 125 130
≤ 32 8 8 8 19 45 57 54 56 78 99 99 91 100 113 123 124 121 129 129 132
≤ 200 9 9 9 20 47 59 59 59 85 101 104 104 104 121 126 134 134 134 135 135

docking pose among the top 200 ranked, no improvement is observable when comparing the
results of pipelines 1 and 2. Thus, HYDE’s internal optimizer has no effect in this scenario.
However, as visible when comparing the result of pipelines 3 and 4, the number of binding pockets
with at least one excellent ligand pose among the top 200 ranked is enhanced by 16. Clearly,
the cause of this effect is that HYDE’s optimizer operates on poses minimized by Trooper. This
suggests combining the HYDE and SuperTrAmber functions for improving docking results in
future work.

When considering rescoring effects, HYDE’s optimizer again benefits from preceding mini-
mizations with Trooper. Looking at the top-ranked pose (see first row of Table 6.2), one can
compare the result of pipelines 1 and 2. Here, the internal HYDE optimization additionally
yields three excellent and 23 correct poses. In contrast, the number of excellent and correct
poses is increased by 29 and 26, respectively, when performing HYDE optimizations downstream
on poses refined by Trooper. This follows from comparing the figures of pipelines 3 and 4.

Furthermore, Trooper outperforms HYDE’s internal optimizer in terms of producing excel-
lent poses that at the same time match with the HYDE model. When scoring with HYDE
after using its internal optimization (pipeline 2), 56 binding pockets with at least one excellent
ligand pose are among the top 32 ranked results (see next to last row in Table 6.2). In contrast,
when replacing HYDE’s optimization with Trooper in pipeline 3, 78 such binding pockets result.
This contradicts a hypothesis by Cole et al. [4] and O’Boyle et al. [5]. They independently
claimed that rescoring, especially with non-smooth functions, is ineffective when preceded by
optimizations with another objective function

To sum it up, Trooper’s local minimization mode by itself bears the potential of improving
the placement of docking poses. Further pose enhancements result from a combination with
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Table 6.3. Number of binding pockets for which the specified docking pipeline
generated excellent and correct ligand poses. The number of top-ranked poses
that were considered are enclosed in parentheses.

RMSD pipeline 4 FlexX ICM SurFlex Lead Finder GOLD DOCK6 MOE

≤ 1.0Å 66 (32) 69 (32) 86 (3) - - 76 (25) - 62 (30)
≤ 2.0Å 87 (32) 89 (32) 95 (3) 93 (20) 91 (20) 91 (25) 92 (32) 87 (30)

HYDE. This scoring function benefits from an enhanced number of geometrically sound poses
that at the same time match its scoring model.

External evaluation. For externally evaluating docking pipeline 4, this work compares
its results in Table 6.3 to those reported after the Docking and Scoring Symposium that took
place during the 241st ACS National Meeting. For this Symposium, the work groups developing
FlexX [101], ICM [207], SurFlex [208], Lead Finder [209], GOLD [210], DOCK [211], and
MOE [212] tested their respective docking tool on data set ADS VII.

GOLD and ICM apparently produce a higher number of excellent poses than all other tools.
However, pipeline 4 performs on par with the external tools at generating correct poses. Conse-
quently, the following focuses on the time consumption of Trooper. Clearly, next to the quality
of results, a low runtime is a vital trait of a well-engineered docking pipeline.

6.1.8. Optimization runtime. To evaluate optimization runtimes, this research compiled
a subset of data set ADS I (see Section 5.1.1) which comprises the complexes carbonic anhy-
drase XII (1jd0 ), DAHP synthase (1of6 ), protein kinase 5 (1v0p), uridine phosphorylase (1u1c),
protein farnesyltransferase (1mzc), and vitamin D nuclear receptor (1s19 ). The binding pock-
ets of complexes 1jd0 and 1of6 contain a relatively small number of atom pairs while those of
complexes 1v0p and 1u1c contain an average number of atom pairs. Furthermore, the ligands
of complexes 1mzc and 1s19 are comparatively large and contain a high number of rotatable
bonds, which enhances the complexity of minimizations. In all enumerated pairs of complexes,
the total number of atoms differ significantly.

With the compiled test set, the author aimed at deriving whether binding pocket or total
protein sizes determine the runtime of the tested tools and therefore minimized 200 ligand poses
for each complex while keeping the protein rigid using Trooper, MOE, and YASARA. For both
MOE and YASARA, the respective standard minimization procedure, described in Sections 3.9.2
and 3.9.1 was employed. The upper and lower limit of MOE’s cutoff switching function were set
to 12 Å and 14 Å, while YASARA’s cutoff on non-bonded interactions was set to 13.1 Å. Trooper
was tested with its local parameterization, which Section 4.8.1 specifies, and a cutoff of 12 Å.
The experiment was executed on test machine I (see Table 5.2) using a single CPU core.

YASARA consumes 700 s and MOE 1,363 s for minimizing 200 ligand poses in the binding
pocket of complex 1of6. For both external methods, this constitutes the highest runtime in this
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Table 6.4. Runtime for optimizing 200 poses of the specified protein’s cognate
ligand. Furthermore, the number of atom pairs considered by Trooper is stated
along with the protein’s total number of atoms.

Complex
pdb code

#pairs #atoms Trooper [s] MOE [s] YASARA [s]

1jd0 11,649 8,142 9.95 187.87 129.60
1of6 15,670 41,839 14.25 1,363.09 700.00
1u1c 22,365 22,641 23.51 475.50 411.62
1v0p 30,308 8,753 24.31 182.50 131.05
1mzc 39,108 11,698 40.05 337.50 300.00
1s19 47,222 4,055 46.16 227.79 168.65

experiment. At the same time, 1of6 has 41, 839 atoms and is thus the largest complex in the
test set.

In contrast, Trooper exhibits its highest runtime (46.16 s) when optimizing 200 ligand poses
for complex 1s19, whose binding pocket has the largest number of atom pairs (47,222) in the
test set.

On average, an optimization run with Trooper takes about 30 s, while YASARA’s and MOE’s
procedure consume 307 s and 462 s, respectively, and are thus one order of magnitude slower.
All further results are presented in detail in Table 6.4.

Discussion. YASARA’s high time consumption corresponds to results by Nabuurs et al.
[41], which are discussed in Section 2.2. Evidently, the runtimes of both external methods
correlate with the total number of atoms while Trooper’s runtime depends on the number of atom
pairs in binding pockets. This highlights the benefits of focusing on binding site minimizations.
The external tools apparently spend time calculating intramolecular interactions for protein
atoms, although this experiment explicitly set all protein atoms as rigid. In contrast, the number
of rotatable ligand bonds seemingly has no major impact on the optimization runtime, as no
method exhibits larger aberrations for complexes 1mzc and 1s19.

Trooper’s runtime behavior is on par with that of local optimization procedures used in
RosettaLigand and SurFlex (see Section 2.2). However, significant accelerations are necessary
for enhancing the throughput of force field-based optimizations in computational drug design
contexts. In virtual screening runs, they constitute a runtime bottleneck and in lead optimiza-
tion scenarios, methods that allow for an interactive workflow (see Section 3.1) are preferable.
Therefore, the following focuses on this issue.

6.2. Grid-Based Acceleration

This section compares Trooper’s local mode to the alternative accelerated grid-based version,
which Section 3.7 introduces. This experiment therefore minimized the ligands of data set ADS
III (see Section 5.1.1) in their respective binding pocket, which was kept rigid. As in the preceding
experiments, this experiment used the local parameterization (see Section 4.8.1) for Trooper but
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Figure 6.7. Average RMSD to the respective crystal structure of ligand poses
optimized in binding pockets with the accelerated grid-based procedure. Grid
spacings as specified in ångstrom by the labels of the x-axis were tested.

employed SuperTrAmber-based grid potentials as an objective function. This work evaluated
grid spacing settings 0.1 Å, 0.15 Å, 0.2 Å, and 0.25 Å. Details on the grid construction procedure
are laid out in Section 3.7

Further, this experiment computed energy values by applying the trilinear interpolation
scheme (see Section 3.3.4). As shown in Figure 6.7, computing the average RMSD of the min-
imized ligands to their respective crystal structure yields values between 2.18 Å and 2.24 Å,
depending on the employed grid size.

A further experiment tested the runtime of grid-based scoring and grid construction. To
test this, the experiment built the grids described in Section 3.7 with grid spacing 0.1 Å in the
binding pocket of carbonic anhydrase XII (1jd0 ). This pocket was defined as the spatial region
enclosed by spheres with radius 6 Å around the 19 atoms of the native ligand.

After constructing the grids, the experiment computed the non-bonded interaction energies
between ligand and binding pocket atoms 10,000 times. This computation took less than 1 s on
a single CPU core of test machine I (see Table 5.2) while building the grids consumed 419 s.

Discussion. The grid-based version of Trooper performs significantly worse than its stan-
dard method (see Section 6.1.5) irrespective of the selected grid spacing. These findings accord
with those of Wu et al. who report that "No significant differences in docking accuracy were
observed using a grid spacing ranging from 0.25 to 1.0 Å" [57, p. 1551] and "full force field
minimization leads to a significant improvement in docking accuracy" [57, p. 1556]. At the
same time, preliminary computations for building the grid consume several minutes. Thus, data
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suggests that the grid-based method lacks an additional benefit. Therefore, this work focuses on
GPU-based optimizations.

6.3. Accelerating Ligand Optimizations with GPUperTrooper

All in all, four experiments evaluate and validate GPUperTrooper. The first experiments
assesses the runtimes of the CPU- and GPU-based force field energy function implementations
on complete protein-ligand complexes and compares them to MOE and YASARA. The following
two experiments demonstrate that the speedup (see Section 3.1) obtained with the GPU-based
force field energy function implementation is sustainable when scoring and optimizing ligands
in binding pockets. As discussed in Section 1.5, harnessing the speedup obtained through im-
plementing energy functions on GPU in a complete optimization procedure constitutes a major
challenge. Finally, the fourth experiment compares the quality of results produced by GPU-
perTrooper and Trooper. The following sections employ GPU-specific terminology and therefore
readers are recommend to read Section 1.5 before continuing.

6.3.1. Scoring full protein-ligand complexes. The following experiment assessed the
potential speedup, which the GPU-based force field energy kernels yield. For this, total energies
for the 11 proteins in data set ADS VI (see Section 5.1) were computed 1,000 times. In this way,
runtimes of MOE, YASARA, and the CPU- and GPU-based versions of the SuperTrAmber force
field were compared.

MOE (see Section 3.9.2) was set up by selecting the AMBER03 force field (see Section 3.4.5).
Then, missing hydrogen atoms were added to the complexes and partial charges were assigned.
For calculating energies, this experiment utilized the Potential[] function, which is part of
MOE’s SVL interface. For YASARA (see Section 3.9.1), this experiment prepared the complexes
with the Clean routine and then calculated AMBER03 force field energies using the Energy

function.
To evaluate the effect of large systems on runtime behavior, no cutoffs were imposed in any

of the experiments. For YASARA, this proved to be impossible, as it requires the user to set a
minimum cutoff of 20.97 Å for van der Waals interactions.

All CPU-based experiments were conducted on a single core of test machine I (see Table 5.2),
while GPU-based computation were performed on a NVIDIA Tesla C1060 with 240 cores. Com-
paring results of the CPU- and GPU-based force field implementations yields a speedup of
roughly 300. Furthermore, the GPU-based implementation performs about 100 times faster
than MOE. Measurements for YASARA are ambiguous, as discussed next. Figure 6.8 provides
an overview on all results.

Discussion. As expected, runtimes for computing force field energies correlate with the
number of atoms in the target system. This is not perfectly apparent for YASARA, as it does
not allow for switching off the cutoff for van der Waals interactions. Furthermore, YASARA
repetitively performs parameterizations for dihydropterin pyrophosphokinase (1hq2 ) and thus
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Figure 6.8. Runtime for computing the force field energy for protein-ligand
complexes. Runtimes are specified in seconds on the log-scaled y-axis while
complex sizes are specified on the x-axis. The experiment was conducted with
YASARA, MOE, and the CPU-based version of the SuperTrAmber force field
on a single CPU core. For SuperTrAmber, the GPU-based algorithm was tested
as well.

produces a runtime peak. For these reasons, runtimes measured for YASARA are difficult to
compare.

In contrast, MOE clearly performs computations faster than the CPU-based force field im-
plementation. This is not surprising, as this method is mainly optimized for evaluating ligands
in binding pockets and smaller molecular systems.

Despite this, the GPU-based kernels consistently produce force field energies two orders of
magnitude faster than MOE. This speedup is in the same range as speedups reported by other
groups. Stone et al. [118] measured a speedup of 40 when benchmarking their GPU and CPU
implementations of a Coulomb summation. Their comparison runs were executed on a NVIDIA
GeForce 8800 GTX with 128 CUDA cores and a single core of a 2.6 GHz Intel Xeon processor.

Van Meel et al. [120] ported a Lennard-Jones potential to GPU. This resulted in a speedup
of 80 on a NVIDIA GeForce 8800 GTX, in comparison to a single core of a 3.2 GHz Intel
Xeon processor. The experiment of van Meel et al. covers system sizes ranging from 200 up
to 70,000 atoms and their implementation takes about 50 s to compute the pairwise Lennard-
Jones potential 1,000 times for 10,000 atoms. In comparison, this research additionally calculates
the Coulomb potential and dihedral angle energies and evaluates a system with 11,937 atoms
1,000 times in 90 s.
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Schmid et al. [124] designed a full non-bonded kernel for solvent–solvent interactions. They
observed speedups in the regime of 50 for long-range and 25 for short-range interactions when
computing energies for systems with 5,411 up to 75,129 atoms. Their implementations were
executed on a NVDIA Quadro FX 5800 equipped with 240 CUDA cores and a single AMD
Athlon X2 core running at 3.2 GHz.

Friedrichs et al. [123] employed a 2.66 GHz Intel Xeon and a NVIDIA GeForce GTX 280
with 240 CUDA cores to obtain a speedup of 128, up to 735, with their full force field kernel
implementation. Tested system sizes ranged from 544 up to 5,078 atoms. However, the rescaling
of intramolecular interactions between neighboring atom pairs was neglected.

Recently, Götz et al. [128] evaluated their GPU portation of the AMBER force field on a
NVIDIA Tesla C1060 GPU, which this research also employed. For systems of sizes 2,492 and
25,094 atoms, respectively, their full force field kernels took 5.48 s and 432 s to execute 1,000

times. For this work’s GPU algorithm, the measured runtimes were 5 s and 260 s for systems
with 2,525 and 22,434 atoms, respectively. Even on larger systems, this work’s GPU algorithm
thus performs on par with a commercially available portation.

In conclusion, the GPU-based energy kernels yield a speedup for larger molecular systems
capable of competing with recent implementations. The next experiment assesses whether this
speedup is sustainable when focusing on binding pockets.

6.3.2. Focused scoring of binding pockets. With the following experiment, the speed
of the objective function employed in actual optimization runs was evaluated. In contrast to
the full force field kernels tested in the preceding experiment, this objective function is designed
to operate on binding pockets. The function was tested on the 15 binding pockets of data set
ADS IV (see Section 5.1). This set covers the range of non-bonded atom pairs occurring in
binding pockets of the Astex Diverse Set.

The experiment imposed a cutoff of 12 Å on non-bonded interactions around ligand atoms.
For both the CPU and GPU methods, the kernels constituting the objective function of the
optimization were called 1,000,000 times and the accumulated runtime was measured.

On average, computations on the Tesla C1060 GPU of test machine I (see Table 5.2) took
about 100 s and are thus 102 times faster than on a single core of the CPU of test machine I.
The reader is referred to Figures 6.9.a and 6.9.b for a detailed visualization of measured runtimes
and speedups.

Discussion. As apparent in Figure 6.9.a, there is a quadratic relationship between the ob-
jective function runtime and the number of processed atom pairs. This result is in accordance
with that of the preceding experiment. However, the number of considered atom pairs differs
between the CPU- and GPU-based objective functions. First, this is due to the modified cutoff
computations for the GPU-based algorithm. Second, ligand sizes have a major impact as in-
tramolecular interactions between protein atoms are ignored. Dummy atoms added to ligands
on GPU hence boost the number of considered atom pairs.
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Figure 6.9. Runtime and speedup for binding pocket scoring on GPU

Interestingly, speedups become larger as molecular system sizes increase (see Figure 6.9.b).
This outcome can be linked to the constant kernel call overhead that can surpass the runtime
of called GPU-based functions. Additionally, a relatively low number of thread blocks per mul-
tiprocessor results from smaller system sizes. This potentially entails insufficient workloads due
to a certain number of thread blocks required per multiprocessor in order to hide global memory
access latencies.

Furthermore, the observed speedups are on average about three times smaller than in the
preceding experiment, which can be attributed to the less precise block-wise cutoff mechanism of
the GPU implementation (see Section 4.3.2). It enhances the number of atom pairs processed on
GPU in comparison to the CPU implementation. This also explains the smoother shape of the
runtime curve for the CPU implementation in Figure 6.9.a. Furthermore, padding atoms added
to ligands on GPU (see Section 4.3.1) necessitate additional computations.

Overall, this experiment reveals aspects of the GPU implementation that bear potential for
further runtime reductions. At the same time, the observed speedups are sufficient for very fast
optimizations. The next experiment evaluates whether the optimization algorithm efficiently
maintains the speedup achieved up to this point.

6.3.3. Runtime of GPUperTrooper when optimizing ligands in binding sites. The
runtime of GPUperTrooper was assessed with the experimental setup described in Section 6.1.8.
Thus, the described set of protein-ligand complexes was optimized. Therefore, standard local pa-
rameters (see Section 4.8.1) were selected for GPUperTrooper. Furthermore, a cutoff of 12 Å was
imposed on non-bonded interactions and protein atoms were fixed. The experiment furthermore
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Table 6.5. Runtime of GPUperTrooper based minimizations for 200 cognate
ligand poses in their respective binding pockets. The pdb codes of the tested
protein-ligand complexes are specified, along with the number of atom pairs
considered by GPUperTrooper. The last column specifies runtimes for mini-
mization runs with activated early abort-mechanism. Speedup (SGPU ) and eco-
nomic efficiency (Eeco) values for Trooper, MOE, and YASARA refer to runtime
measurement described in Section 6.1.8.

pdb
code

#pairs run-
time
[s]

SGPU
Trooper

Eeco
Trooper

SGPU
MOE

Eeco
MOE

SGPU
YASARA

Eeco
YASARA

runtime [s]
w/ early
abort

1jd0 18,256 0.26 38 4.0 426 45.4 618 65.8 0.09
1of6 18,576 0.26 55 5.9 1,961 208.8 3,820 406.8 0.16
1v0p 39,680 0.27 90 9.6 485 51.7 676 72.0 -
1u1c 45,056 0.27 89 9.5 1,553 165.4 1,795 191.2 0.20
1mzc 78,720 0.35 114 12.1 857 91.3 964 102.7 -
1s19 84,048 0.28 163 17.4 220 23.4 297 31.6 -

tested the early abort-mechanism (see Section 4.5.4) by switching it on in a second optimization
run for complexes carbonic anhydrase XII (1jd0), DAHP synthase (1of6), and uridine phosphory-
lase (1u1c). The experiment was conducted on a single CPU core of test machine I (see Table 5.2)
and on its NVIDIA Tesla C1060 GPU with 240 cores.

On average, an optimization run on GPU takes about 0.28 s per complex. This corresponds
to a speedup of about 92 and an economic efficiency (see Section 3.1) of 9.7, with respect to
the CPU-based implementation. Compared to the tested external software tools, the experiment
yields speedup factors between 220 and 3,820. Economic efficiency factors range between 23.4

and 406.8.
Furthermore, optimization runs with activated early abort-mechanism yield an average run-

time of 0.14 s per complex and thus speed up computations by about 50%. All further results
are presented in detail in Table 6.5.

Discussion. In comparison to MOE and YASARA, GPUperTrooper speeds up calculations
by at least two orders of magnitude and thus minimizes binding pockets of protein-ligand com-
plexes in less than 0.3 s on average. A further runtime reduction by about 50% is achieved with
the early abort-mechanism. This is very promising; it remains to be seen that the quality of the
results is unaffected. This issue is tackled with the following experiment.

Recently, Anthopoulos et al. [129] published a GPU-based minimization approach that uses
the MMFF94s force field (see Section 3.4.3). Their method takes about 1 s to perform 1,000

optimization steps. They use a NVIDIA GeForce GTX680 GPU, a processor that is nominally
three times faster than the Tesla C1060 GPU which this research employs, as laid out in Sec-
tion 5.4. Anthopoulos et al. optimized their algorithm for the Kepler architecture of the GeForce
GTX680. For comparison, the runtimes of the early abort-accelerated approach are consequently
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Table 6.6. Average over RMSDs between pre-optimized and optimized ligands
and their respective crystal conformation. Two optimization protocols were
applied for GPU-based minimizations: a standard and an accelerated one (early
abort).

pre-minimization GPUperTrooper GPUperTrooper (early abort)

RMSD (Å) 2.35 1.95 1.99
σ - 0.029 0.026

multiplied with a scaling factor of 0.33. With this, GPUperTrooper is about 30 times faster than
that of Anthopoulos et al.

Overall, the low runtimes enhance GPUperTrooper’s usability in lead optimization applica-
tions and render downstream optimizations after large-scale docking runs more attractive. The
fastest virtual screening methods known to the author, TrixX [102] and PhDOCK [7], take at
least 0.1 s to process a single conformation. When applying GPUperTrooper in a drug design
pipeline in combination with these tools, runtimes remain in the same order of magnitude.

Further, applying GPUperTrooper bears economic advantages: it performs minimizations at
least 4.0 times cheaper than any tested CPU-based method. Compared to MOE and YASARA,
GPUperTrooper saves approximately more than 95% electric energy.

6.3.4. Quality of results of GPUperTrooper’s ligand optimizations. To check the
quality of results produced by the GPU-based optimization, it was applied for rerunning the min-
imization experiment described in Section 6.1.5. Thus, this experiment treated all protein atoms
of complexes in data set ADS III (see Section 5.1.1) as rigid, imposed a cutoff of 12 Å around
ligand atoms, and employed standard parameters for local optimizations (see Section 4.8.1). To
obtain statistically sound results, 10 optimization runs were conducted. Further, 10 runs were
started with the early abort-mechanism (see Section 4.5.4) switched on. For computing RMSD
values, this experiment employed MOE and averaged over the 10 runs, respectively. Table 6.6
summarizes the results.

Discussion. In terms of quality, GPUperTrooper is an equivalent replacement of Trooper.
This experiment’s results show no significant aberrations between the two. The early abort-
mechanism does not affect the RMSDs of poses produced by GPUperTrooper. At the same time,
this mechanism significantly speeds up computations. The early abort-mechanism is therefore
worth using.

6.4. Optimizing Amino Acid Side Chain Conformations

The following series of experiments elucidates areas of application and limitations of amino
acid side chain optimizations without backbone flexibility. All experiments test Trooper’s global
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minimization mode, which uses the adaptive SA procedure described in Section 4.6. Exter-
nal comparisons apply the minimization methods provided by MOE and YASARA, which Sec-
tions 3.9.2 and 3.9.1 introduced.

6.4.1. Determining a parameterization range. The following experiment gauges the
effects of modifying the maximum dihedral rotation parameter (Φmax) of Trooper’s adaptive SA
procedure (see Section 4.6). Therefore, the amino acid side chains of binding pockets of data set
NN I (see Section 5.2) were minimized. This data set comprises conformations of binding pockets
superimposed onto sequentially identical template structures of the Astex Diverse Set [3]. The
crystal conformation of template structure ligands were placed into the superimposed binding
pockets. This entailed clashes between ligand and amino acid side chain atoms. In detail,
these occurred for Lys99 in a human hemoglobin mutant (1a0u), Lys33, which is part of the
binding pocket of human cyclin dependent protein kinase 2 (1h0w), Lys89 in themolysin (1pe5 ),
Asn67, which is located in the binding region of protein kinase C (1tb0 ), Lys88, which belongs
to p. falciparum pfpk5 (1ob3 ), and Met357 in human phosphodiesterase 4d (1y2k). Additionally,
the side chain and backbone atoms of Tyr35 clash with the ligand in p38 (1zzl).

This research aimed at parameterizing Trooper such that it produces amino acid side chain
conformations closer to the crystal structure and at the same time resolves clashes. To this
end, this experiment tested all members of the set { π32 RAD, π

16 RAD, π8 RAD,π4 RAD, π2 RAD,
π RAD} for parameter Φmax. Furthermore, the maximum number of optimization steps (smax)
was set to 15,000, the starting temperature T was set to 30 and the SuperTrAmber force field
(see Section 3.4.1) was employed as an objective function.

To assess the thus generated solutions, the author visually inspected them and categorized
them as resolved if the optimizer removed the clashes between the ligand and the amino acids.
The research furthermore analyzed whether conformations produced by Trooper were close to the
crystal structure and discovered that this was the case for all settings of Φmax but π. Table 6.7
summarizes the observations and Figures 6.10.a and 6.10.b present a pair of structures for which
altering the Φmax parameter leads to a resolved clash.

Discussion. Unresolved clashes occur when setting Φmax to less than π
8 RAD, which can

be attributed to rather unlikely long sequences of energetically unfavorable transformations that
have to be performed to attain clash-free conformations. Conversely, setting Φmax to values
above π

2 RAD drives conformations away from the crystal structure. Presumably, recovering the
global minimum is unlikely after randomly accepted large dihedral rotations have resulted in
significant structural changes. Based on these results, this work searches for a favorable setting
of Φmax in the range from π

8 RAD to π
2 RAD.

6.4.2. Parameterizing Trooper’s global minimization mode. This research deter-
mined a favorable parameterization for Trooper’s global mode by minimizing the protein-ligand
complexes of data set NN II (see Section 5.2) using all combinations of the parameter sets
{π8 RAD,

π
4 RAD,

π
2 RAD} for the maximum dihedral rotation parameter (Φmax) and
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Figure 6.10.a: Binding pocket of a
human hemoglobin mutant (1a0u)
with crystal pose of ligand of deoxy
hemoglobin (1g9v), which clashes
with the side chain of Lys99.

Figure 6.10.b: Optimized binding
pocket of a human hemoglobin mu-
tant (1a0u) with crystal pose of
ligand of deoxy hemoglobin (1g9v)
with resolved clash.

Figure 6.10. Clash resolution by appropriately parameterized side chain opti-
mization.

Table 6.7. Depending on the choice of the maximum dihedral rotation param-
eter (Φmax), Trooper manages to resolve clashes between a ligand and amino
acid side chains. The tested structures are composed of a ligand and a binding
pocket that originate from different protein-ligand complexes, whose pdb codes
are specified.

clash resolved if Φmax is set to (RAD)

Protein pdb
code

Ligand pdb
code

π
32

π
16

π
8

π
4

π
2 π

1a0u 1g9v no no no no yes yes
1h0w 1ke5 no no yes yes yes yes
1pe5 1ke5 no no no yes yes yes
1tb0 1oq5 no no no yes yes yes
1ob3 1v0p no no no no yes yes
1y2k 1xoq no no no no yes yes
1zzl 1ywr no no no yes yes yes

{0.98, 0.96, 0.94, 0.92} for the transformation downscaling factor (rescaletrans). Also, parame-
terizations entailing local optimizations were tested. Therefore, no transformation rescaling was
performed and the temperature T was set to zero. For all other test runs, T was initially set
to 30. Additionally, the number of optimization steps smax was fixed to 15,000 and the Super-
TrAmber force field served as an objective function for all test runs. Furthermore, all amino acid
side chains with at least one atom closer than 4 Å to the ligand were treated as flexible and a
cutoff of 8 Å was imposed on non-bonded interactions.
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Table 6.8. Median potential energies of binding pocket conformations result-
ing from minimizations performed with Trooper utilizing the SuperTrAmber
force field as an objective function. For parameterization purposes, different
combinations of the maximum dihedral rotation angle (Φmax) and the transfor-
mation downscaling factor (rescaletrans) as well as parameterizations for local
optimizations were tested.
The last column specifies whether the median potential energy value in the re-
spective row differs significantly from the one in the first row. The levels of
significance are 0.1% (***), 1% (**), and 5% (*). The minus (-) symbol denotes
no statistical significance.

Φmax (RAD) Φmax (DEG) rescaletrans median E kcal
mol significance

π/2 90.0 0.98 -182.17 -
π/4 45.0 0.98 -179.99 -
π/2 90.0 0.96 -179.44 -
π/8 22.5 0.98 -177.50 *
π/4 45.0 0.96 -177.11 -
π/2 90.0 0.94 -175.81 *
π/2 90.0 local -175.80 *
π/4 45.0 0.94 -175.42 *
π/8 22.5 0.96 -174.06 **
π/4 45.0 0.92 -173.58 **
π/4 45.0 local -172.75 **
π/2 90.0 0.92 -171.26 **
π/8 22.5 0.94 -169.41 ***
π/8 22.5 local -169.27 **
π/8 22.5 0.92 -165.76 ***

The median force field energy was computed for the set of minimized conformations resulting
from each of the tested parameter combinations. Table 6.8 offers a sorted overview of the results.
Figure 6.11 shows the decline of Φmax for the set of tested rescaletrans factors.

Discussion. Analyzing the top-ranked parameter sets in Table 6.8, this work derives that
using global parameters yields a better minimization performance. This discovery is additionally
supported by a higher number of outliers produced by local parameterizations, which are not
captured by the median energy value.

Furthermore, a gentle freezing of the system with the rescaletrans parameter in the range
from 0.96 up to 0.98 is evidently favorable. Figure 6.11 provides an explanation for this observa-
tion: for rescaletrans values below 0.96, the optimization terminates prematurely. This happens
as soon as the Φmax parameter is reduced to a value close to zero. However, setting rescaletrans
to 0.98 would require performing 15,000 steps in every optimization. Otherwise, the cooling
phase would be interrupted. As the results in Table 6.8 suggest that a rescaletrans factor of
0.96 yields optimization results of equivalent quality, this work sets rescaletrans to 0.97 in future
experiments. This constitutes a compromise between speed and quality.
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Figure 6.11. Effect of different transformation downscaling factors
(rescaletrans) on the maximum dihedral rotation angle (Φmax) observed
for an optimization run with 15,000 steps in total, a cooling cycle length of 100
steps, and an initial setting of π/2RAD for Φmax.

For the Φmax parameter, results suggest that a maximum rotation angle of less than π
4 RAD

is detrimental for the minimization performance. Furthermore, it is unclear whether setting
Φmax to π

2 RAD is superior to π
4 RAD. Still, the experiment described in the previous section

suggests that larger rotation angles entail a better clash resolution performance. Therefore, this
work sets Φmax to π

2 RAD and names the described settings along with the SA parameterization
introduced above Trooper’s global parameterization and summarize it in Section 4.8.2.

Trooper is thus fully parameterized for minimizations with the standard SuperTrAmber force
field. The following experiments test test whether the early abort acceleration mechanism lowers
the quality of the results. Furthermore, an alternative parameterization of the SuperTrAmber
force field is assessed.

6.4.3. Emphasizing hydrogen bonds. Focusing on hydrogen bonds could enhance the
quality of the optimization’s results. To test this hypothesis, this research reran the parame-
terization experiment described in Section 6.4.2 with the StateManager component that imple-
ments the SuperTrAmber force field with emphasized hydrogen bond energies (see Sections 3.4.2
and 4.5.5). All parameters and preparatory steps were left unmodified and all combinations of
the parameter sets Φmax = {π8 RAD,

π
4 RAD,

π
2 RAD} and rescaletrans = {0.98, 0.96, 0.94, 0.92}

were tested.
An overview on the median complex energies resulting from the parameterized optimization

runs is provided in Table 6.9. It is evident that the experiment’s optimization runs, for which
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Table 6.9. Median potential energies of binding pocket conformations resulting
from minimizations with Trooper employing the SuperTrAmber force field with
emphasized hydrogen bond energies as an objective function. For parameteriza-
tion purposes, different combinations of the maximum dihedral rotation angle
(Φmax) and the transformation downscaling factor (rescaletrans) were tested.
The last column specifies whether the median potential energy value of the re-
spective row differs significantly from the one in the first row. The levels of
significance are 0.1% (***), 1% (**), and 5% (*). The minus (-) symbol denotes
no statistical significance.

Φmax (RAD) Φmax (DEG) rescaletrans median E kcal
mol significance

π/4 45.0 0.98 -209.07 -
π/2 90.0 0.98 -208.70 -
π/4 45.0 0.96 -204.79 *
π/8 22.5 0.98 -204.25 *
π/8 22.5 0.96 -201.69 **
π/4 45.0 0.94 -201.43 *
π/2 90.0 0.96 -200.81 *
π/4 45.0 0.92 -200.12 **
π/2 90.0 0.94 -199.76 *
π/2 90.0 0.92 -197.10 **
π/8 22.5 0.94 -195.56 ***
π/8 22.5 0.92 -192.06 ***

rescaletrans was set to 0.96 or 0.98, produced complexes with lower median energies. Apart
from that, no clear correlation between the setting of parameter Φmax and the optimizer’s energy
reduction performance is apparent.

Discussion. Both parameterization experiments suggest that the value of the rescaletrans
parameter should be close to 0.98. Therefore, all the following experiments set this parameter
to 0.97. This facilitates comparisons between the optimization procedures. Further reasons for
this choice are discussed in the preceding parameterization experiment in Section 6.4.2.

For the Φmax parameter, it is apparent that values of π2 RAD and π
4 RAD yield equivalent

results, under the pre-condition that the value of rescaletrans is within the favorable value range.
For the same reasons discussed in Section 6.4.2 , the experiment sets Φmax to π

2 RAD. The impact
of this parameterization, in combination with the tested derivative of the SuperTrAmber force
field, is assessed in Section 6.4.5.

6.4.4. Accelerations with the early abort-mechanism. To accelerate optimizations,this
research parameterized the early abort-mechanism, which is described in Section 4.5.4. There-
fore, this work reran the minimization experiment described in the previous section with the
standard global parameterization (see Section 4.8.2). Energy curves were plotted and analyzed
for all optimization runs. Typically, they initially exhibit a steep gradient. However, from the
8,000th step onwards, most minimization runs reduce their respective molecular system’s energy
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Effects of early abort-mechanism

Figure 6.12. Force field energy of binding pocket conformations during op-
timization runs with Trooper. Its standard global minimization mode results
in energy curves shown in the upper depiction. Switching the early abort-
mechanism on produces energy curves shown in the lower depiction. In the
highlighted regions, the gradient of most energy curves is close to zero. This
triggers the early abort-mechanism.

by less than 5 kcal/mol, as highlighted in Figure 6.12. Consequently, the author activated the
early abort-mechanism and set the maximum number of consecutively rejected states (earejmax)
to 200 and the minimal absolute energy reduction (|earedmin |) to 0.2 kcal/mol.

The experiment was rerun with these settings and the resulting energy curves were plotted
(see Figure 6.12). These curves suggest that almost all minimization runs terminate in the region
between the 8,000th and the 12,000th step. Furthermore, it is visible that the energy curves of
most minimization runs exhibit virtually no slope before the optimization terminates. However,
a few cases exist in which the energy values are still significantly reduced shortly before the
termination.

Discussion. The energy curves in Figure 6.12 suggest that, in most runs, virtually no
energy minimization takes place from the 9,000th step onwards. Thus, the optimization either
detects the funnel of the energy function’s global minimum, and thereafter stays in it, or is
unable to overcome the energy barriers of a local minimum. Figure 6.11 provides one possible
explanation for the latter case. In the late stage of the optimization, the maximum dihedral
rotation parameter (Φmax) is far below 10◦. This value could be too low in some critical cases.
This hypothesis could be verified by implementing and testing a dynamic reheating scheme.
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In summary, the determined parameter settings shorten most optimization runs by approxi-
mately 33%. The following experiment assesses whether the optimization’s quality is affected by
these accelerations.

6.4.5. Optimizing wobbled flexible side chains. Trooper’s performance was assessed
and externally evaluated on the wobbled amino acid side chains in the binding pockets of data
set ADS VIII (see Section 5.1.4). For this, this experiment employed Trooper’s global minimiza-
tion mode (standard method), its accelerated version featuring the early abort-mechanism (fast
method), and its version that emphasizes hydrogen bonds (strong H-bond method). For external
comparisons, MOE and YASARA were tested (see Sections 3.9.2 and 3.9.1). In all binding pock-
ets, this experiment allowed dihedral bond rotations for all amino acid side chains that contain at
least one atom that is closer than 4 Å to any ligand atom. The ligand itself remained rigid during
the optimization. Furthermore, a cutoff of 8 Å was introduced for non-bonded interactions.

For performing minimizations with MOE, this experiment followed the specific standard
procedure described in Section 3.9.2. The boundaries of the switching function interval were
set to 8 Å and 10 Å. This experiment followed the specific standard procedure described in
Section 3.9.1 for YASARA. Here, a cutoff of 8 Å was imposed on non-bonded interactions.

The standard global parameterization, as specified in Section 4.8.2, was employed for Trooper.
To assess the quality of the results, the RMSD (see Section 3.2) was computed between the op-
timized and crystal structures using the in-house tool. All atoms of amino acid residues with
flexible side chains, including the respective backbone atoms, were considered in the calculations.

An overview on the experiment’s results is provided in Figure 6.13. For drawing it, the
wobbled binding pockets of data set ADS VIII were binned according to their initial RMSD
to the respective crystal structure. Subsequent to the optimization procedures, the experiment
computed the mean binding pocket RMSD of the minimized structures for the members of each
bin and for each tested method. Furthermore, this experiment employed Welch’s t-test (see
Section 3.10) to assess, for each tested method, whether the mean RMSD values obtained with
it differ significantly from those resulting from minimizations with Trooper’s standard method.

Discussion. As apparent in Figure 6.13, Trooper’s standard global mode guides wobbled
side chains with an initial RMSD above 0.5 Å closer to the respective crystal structure conforma-
tion (p ≤ 0.01). For the fast method and the strong H-bond method, this research observes no
significantly different results for all but one bin. Thus, there is no point in employing the strong
H-bond method, as there is no experimental support for the parameterization of its hydrogen
bond potential. In contrast, it is recommendable to utilize the fast method, as it reduces the
number of optimization steps by about 30% compared to the standard method.

It would be desirable to improve Trooper’s performance on conformations with an initial
RMSD below 0.5 Å. Here, unfavorable results routinely occurred in binding pockets with erro-
neously protonated functional groups. For example, assigning protons to the δ and ε nitrogens
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Figure 6.13. Average RMSD values of binding pocket conformations before
and after optimization with MOE, YASARA, and Trooper. Randomly wobbling
selected amino acid side chains produced the initial binding pocket conforma-
tions. Conformations are binned according to their RMSD to the respective
crystal structure. An optimized conformation was associated to the bin of its
initial conformations.
For Trooper, experiments with standard parameters for global optimizations
(standard), activated early abort-mechanism (fast), and a SuperTrAmber ver-
sion with emphasized hydrogen bond energies as an objective function (strong
HB) were conducted.
Symbols above a method’s error bar indicate whether the mean RMSD value
of its produced conformations differs significantly from the one produced by
Trooper’s standard method. The levels of significance are 0.1% (***), 1% (**),
and 5% (*). The minus (-) symbol denotes no statistical significance.

of histidines typically lead to outliers. Thus, great care must to be taken when generating pro-
tonation states. The SuperTrAmber force field itself is another reason deviations from crystal
structures occur. As visible in Figure 6.14, these typically have lower potential energies than
wobbled structures. However, often there exist accessible conformations with an even lower en-
ergy. Hence, the objective function has to be adapted rather than the optimization procedure.

111



CHAPTER 6. EXPERIMENTS

0 2000 4000 6000 8000 10000 12000 14000
# steps

0

500

1000

1500

2000

2500

3000
e
n
e
rg

y
 k

ca
l/
m

o
l

Energy curves for optimizations of crystal
and wobbled structures

crystal

wobbled

Figure 6.14. Force field energy of binding pocket conformations during opti-
mization runs. Energy curves for runs with wobbled and crystal structures are
shown in gray and green, respectively.

Alternatively, a parameterization for structures with low initial energy values could be developed.
For this, the temperature could initially be set to zero and the movement parameters could be
set to lower initial values.

Furthermore, for wobbled binding pockets with an initial RMSD between 0.5 Å and 1.0 Å,
Trooper’s standard global mode is outperformed by YASARA and MOE (p ≤ 0.001). Conversely,
Trooper performs better than these external tools on binding sites with an initial RMSD above
2.5 Å (p ≤ 0.05). For the rest of the tested structures, there are no significant differences between
the tested methods. Thus, over the whole range of considered structures, all methods perform
more or less on par.

Overall, this experiment provides evidence that all tested methods guide amino acid side
chains towards their respective crystal structure conformation. For this, taking backbone flex-
ibility into account proved to be unnecessary. Further experiments must be performed to de-
termine whether this observation holds true for structures with varying backbone conformations
and natural side chain conformations.

6.4.6. Force field comparison. To ascertain that selecting the MMFF94s force field (see
Section 3.4.3) as an objective function has no major impact on the optimization results, the data
set ADS VIII (see Section 5.1) was minimized with MOE. In this experiment, MMFF94s was
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selected as the objective function instead of the AMBER94 force field. All other parameters and
settings remained unchanged and can be looked up in Section 6.4.5.

The average RMSD to the crystal structure of structures resulting from minimizations with
MOE and MMFF94s amounts to 1.039 Å with standard deviation σ = 0.713. The same experi-
ment performed with AMBER94 yields an average RMSD of 1.078 Å with a standard deviation
of σ = 0.743. According to Welch’s t-test, the null hypothesis that these two results do not differ
significantly cannot be refuted (p ' 0.26).

Discussion. There is no evidence that choosing MMFF94s instead of AMBER94 for the
optimizations enhances the quality of the resulting structures. As minimization with Super-
TrAmber performs at least as well as those carried out with MOE and AMBER94, there is no
need to consider employing MMFF94s as an alternative to SuperTrAmber.

6.4.7. Optimizing transferred amino acid side chains. The following experiment as-
sessed whether Trooper optimizes naturally occurring amino acid side chain conformations. At
the same time, it tested whether considering solely dihedral rotation degrees of freedom suffices
for this task. This research therefore evaluated the optimization performance of Trooper’s global
mode, MOE, and YASARA on amino acid side chain conformations occurring in protein crys-
tal structures. To accomplish this, the experiment minimized the binding pockets of the 686

protein-ligand complexes of data set NN II. This set was created by transferring amino acid side
chain conformations of binding pockets taken from the Astex Non-Native Set [198] to sequen-
tially identical template structures of the Astex Diverse Set [3]. Section 5.2.1 provides a detailed
description of this procedure.

For selecting flexible amino acid side chains, this experiment proceeded as the preceding one
described in Section 6.4.5. Therein, Trooper’s standard minimization with global parameteriza-
tion and the experimental setups of the external tools is also described.

Prior to and after the minimization procedures, the RMSD of the flexible amino acids was
measured against their respective template structures with the in-house tool. Figure 6.15 shows
the results, which were binned as described in Section 6.4.5.

Discussion. Trooper drives naturally occurring amino acid side chain conformations to-
wards their respective crystal conformation. This hypothesis holds true if the RMSD of the initial
conformation to the crystal structure is larger than 0.5 Å and smaller than 1.5 Å (p < 0.05). For
further assessing this observation, it would be interesting to enrich the tested set with structures
that have binding site RMSD values above 1.5 Å. Currently, the set contains only eight of these.
However, to the knowledge of the author, the Astex Non-Native Set [198]—of which the current
test set is formed—is the largest collection of sequentially identical protein binding sites publicly
available.

Furthermore, the results demonstrate that Trooper’s parameters are not overfitted as it yields
similar results, irrespective of whether it is provided with natural or wobbled conformations,
though it was trained on the latter. This observation also holds true for conformations with an
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Figure 6.15. Average RMSD values of binding pocket conformations before
and after optimization with Trooper, MOE, and YASARA.
Side chain conformation transfers from binding pockets to corresponding sequen-
tially identical template structures produced the initial conformations, which
were binned according to their RMSD to the respective template structure’s
original conformation. Optimized conformations were associated with the bins
of their initial conformations.
Symbols above a method’s error bar indicate whether the represented mean
RMSD value differs significantly from the one produced by Trooper. The lev-
els of significance are 0.1% (***), 1% (**), and 5% (*). The minus (-) symbol
denotes no statistical significance.

initial RMSD to the crystal structure below 0.5 Å. For these, a slight deterioration of RMSD
values is again observed, which is discussed in detail in Section 6.4.5.

For large parts of the tested data set, Trooper evidently performs on par with MOE and
YASARA. Interestingly, the optimized amino acid side chain conformation oftentimes slightly
differ from crystal structure conformations in terms of binding angles. In contrast to this work’s
method, YASARA optimizes this degree of freedom, which is found to be apparently negligible.

Overall, this experiment indicates that amino acid side chain optimizations yield favorable
results when provided with natural conformations with more than minor deviations from the
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Figure 6.16. Average RMSD values of binding pocket conformations before
and after optimization with Trooper and YASARA. For the latter, a second
experiment was conducted that included backbone atoms in the minimization
procedure (YASARA + BB).
Initial conformations were taken from the Astex Non-Native Set and binned
according to their RMSD to the respective template structure. Optimized con-
formations were associated to the bins of their initial conformations.
Symbols above a method’s error bar indicate whether the represented mean
RMSD value differs significantly from the one produced by Trooper. The lev-
els of significance are 0.1% (***), 1% (**), and 5% (*). The minus (-) symbol
denotes no statistical significance.

respective crystal structure. Apparently, no additional degrees of freedom are required at this
point. To further explore the limits of side chain optimization methods, aberrations in the
backbone have to be introduced.

6.4.8. Optimizing the Non-Native Data Set. This work assessed whether side chain
optimizations cope with varying backbone conformations. To achieve this, the research minimized
the amino acid side chains of all binding pockets of the Astex Non-Native Set [198] with Trooper
and YASARA and again proceeded as in the previous experiment, described in Section 6.4.5, for
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Figure 6.17. Initial binding pocket backbone RMSD plotted against the
change in amino acid side chain RMSD relative to the respective crystal struc-
ture conformation. Green dots represent complexes with backbone variations
that entail clashes between side chains and the ligand. Most often, only large
side chain flips can resolve these clashes.

selecting flexible side chains. This section also specifies parameterizations and set-up procedures
for the employed minimization methods. Additionally, the global parameterization of Trooper is
listed in Section 4.8.2 and that of YASARA in Section 3.9.1.

The current experiment added a YASARA minimization run to test the effects of incorpo-
rating backbone flexibility. For this, the flexible regions of binding pockets were extended. They
included all amino acids containing at least one atom with distance lower than 7 Å to any ligand
atom. The backbone in this region was flexible during optimizations.

Following the minimizations, this work employed the in-house tool for measuring RMSDs of
flexible amino acids against their respective template structures. A binning scheme, as described
in Section 6.4.5, was applied for producing Figure 6.16, which shows the results. Furthermore,
the author visually inspected complexes with an initial average binding pocket backbone RMSD
of 0.5 Å and less for which the optimization drove side chain conformations further away from
their respective crystal structure conformation. This inspection determined that slight backbone
variations can entail clashes between side chains and the ligand. Figure 6.17 shows that this
observation applies to the majority of the analyzed cases. Only large side chain flips could
resolve these clashes.

Discussion. On average, none of the tested methods drive flexible amino acid side towards
their respective crystal conformation. Small backbone variations often lead to conformations that
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side chain optimizations cannot bring closer to their respective crystal structure. This is partly
due to the rigid ligand. However, if the ligand was flexible, the optimization would most probably
move it away from its crystal pose, which is undesired. From this, this work concludes that with
the given degrees of freedom, aberrations in backbone conformations cannot be compensated for.
This experiment thus defines the limit of applicability of Trooper. Furthermore, it contributes
to elucidating the application range of amino acid side chain optimizations.

Incorporating backbone flexibility in the optimization procedure changes the results produced
by YASARA for the worse. This observation suggests that either the objective function or the
minimization method is inappropriate. The former hypothesis can be tested by performing
optimization runs with YASARA and a wider range of force fields. Still, this work considers that
the latter hypothesis is closer to the truth, as the force field comparison in Section 6.4.6 suggests.

As a next step, the author proposes to identify prerequisites for successfully optimizing struc-
tures with backbone variations. This could start with an analysis of structures that YASARA
successfully optimizes. Considering multiple pre-determined backbone conformations would be
another option. This way, potentially flexible segments of the protein backbone could be rep-
resented by an ensemble of pre-determined sound conformations. Also, softened potentials and
cooling schedules that only moderately enhance the temperature parameter when clashes are
present could be tested.

6.5. Accelerating Amino Acid Side Chain Conformation Optimizations

Runtimes are a critical aspect in application scenarios for amino acid side chain optimizations.
As pointed out in Section 3.1.3, user productivity is enhanced if process response times are
interactive. Conversely, slow response times demoralize users. This has to be avoided when lead
optimizations are performed that test alternatives to certain amino acids in binding pockets.
Furthermore, in large-scale optimization scenarios, energy efficient algorithms reduce the cost of
scientific research.

The following sections therefore determine runtimes of different CPU-based amino acid side
chain minimization procedures and assess the speedup that the utilization of GPUperTrooper
engenders. GPUperTrooper is tested in its global mode. Thus, it uses the advanced GPU-based
algorithm, which Section 4.4 described. The following sections employ GPU-specific terminology
and therefore, reading Section 1.5 is recommended before continuing.

6.5.1. Runtime of amino acid side chain minimizations. This experiment assessed
the runtime of Trooper, MOE, and YASARA for minimizing amino acid side chains in the
binding pockets of the 748 protein-ligand complexes of data set ADS VIII (see Section 5.1).
As in previous experiments, the crystal structure of the respective native ligand was placed in
the binding pocket and remained rigid throughout the optimization. Flexible amino acid side
chains were selected, as described in Section 6.4.5. That section also specifies the parameters
and settings for all employed minimization procedures. In addition, the experiment tested the
runtime of Trooper with activated early abort-mechanism (see Section 4.5.4). All runtimes were

117



CHAPTER 6. EXPERIMENTS

Table 6.10. Median and mean runtime in seconds, along with standard devia-
tion (σ) for optimizing binding pocket conformations with YASARA, MOE, and
Trooper. For the latter, the mean runtime of minimizations conducted with the
early abort-mechanism is specified as well.

tool mean (s) σ median (s)

Trooper 142.72 38.68 140.94
Trooper w/ early abort 92.67 28.89 89.02
MOE 76.42 88.34 49.00
YASARA 160.09 666.11 60.00

measured on a single core of the x86 CPU of test machine III (see Section 5.4). This CPU ranked,
at the time of writing, among the fastest available. The resulting average and median runtimes
are listed in Table 6.10.

Discussion. Judging from the measured mean runtimes, the speed of all methods is in the
same range. Compared to Trooper, YASARA consumes 173% runtime and MOE 83%. At the
same time, YASARA and MOE produce a large amount of runtime outliers. This is indicated
by differing mean and median runtime values, as well as high standard deviations. In contrast,
the runtime of Trooper is stable.

As YASARA employs an adaptive SA algorithm with a variable number of steps, it is clear
that the variance of runtimes is high. MOE employs a gradient-based approach, which terminates
if the slope is below a given energy value. This can entail longer runtimes if a system does not
converge well.

However, all procedures exhibit runtime behaviors that prohibit a productive usage in scenar-
ios where responsiveness and interactivity (as defined in Section 3.1.3) are of importance. Also,
processing larger data sets is overly time consuming. The following sections test GPUperTrooper,
the accelerated version of Trooper.

6.5.2. Quality of GPU-based optimizations. The following experiment assures that
the results reported in Section 6.4.5 also apply to GPUperTrooper. Therefore, this experiment
compared the quality of results produced by Trooper’s and GPUperTrooper’s global mode (see
Section 4.8.2) when optimizing amino acid side chains. To achieve this, this experiment min-
imized those 491 binding pockets of data set ADS VIII (see Section 5.1) that resulted from
0, 10,000, 20,000, 50,000, 100,000, and 500,000 wobbling operations. Parameterization and flexi-
ble side chain selection procedures conform to those described in Section 6.4.5.

On average, the RMSD of optimized binding pockets to their respective crystal structure
amounts to 1.13 Å with a standard deviation of σ ' 0.73 for Trooper and 1.12 Å with standard
deviation σ ' 0.72 for GPUperTrooper. These figures strongly support the hypothesis that the
results of the GPU- and CPU-based algorithms are equally distributed. Therefore, this work
regards them as equal in terms of their optimization performance. The following compares their
runtimes and assesses whether it is worthwhile to apply GPUperTrooper.

118



6.5. ACCELERATING AMINO ACID SIDE CHAIN CONFORMATION OPTIMIZATIONS

Table 6.11. Mean runtimes in seconds, along with standard deviations (σ) for
optimizing binding pocket conformations. Figures for YASARA, MOE, Trooper,
and GPUperTrooper with activated early abort-mechanism are given. Measure-
ments on CPU were conducted on a single core. The last two columns specify the
speedup (SGPU ) and the economic efficiency (Eeco) of GPUperTrooper relative
to the method named in the respective row.

tool runtime(s) σ SGPU Eeco

GPUperTrooper 0.79 0.18 - -
Trooper 92.67 28.89 117.0 9.8
MOE 76.42 88.34 96.5 8.0
YASARA 160.09 666.11 202.1 16.8

6.5.3. Runtime of GPUperTrooper optimizations. This research measured runtimes
of GPUperTrooper’s global mode (see Section 4.8.2) for amino acid side chain minimizations.
For this, GPUperTrooper optimized the binding pockets of data set ADS VIII (see Section 5.1)
in the presence of the respective rigid ligand in its crystal conformation. Additional optimization
runs were conducted with activated early abort-mechanism (see Section 4.5.4). Furthermore, this
experiment tested the GPU-based minimization algorithm benchmarked in Section 6.3, which
GPUperTrooper’s local mode employs. The following refers to it as the basic GPU algorithm
and refers to GPUperTrooper’s global mode algorithm as the advanced GPU algorithm.

All parameters and settings corresponded to those employed in the runtime experiment for
CPU-based methods described in Section 6.5.1. Runtimes of CPU-based methods are also taken
from this section. The experiment used the GeForce GTX680 GPU of test machine II (see
Section 5.4). All but the runtimes of the basic GPU algorithm are shown in Figure 6.18. For the
basic GPU algorithm, the experiment measured an average runtime of 1.8 s per minimization run
without early abort-mechanism. With the same setup, the advanced GPU algorithm consumes
1.1 s on average. Furthermore, Table 6.11 lists speedup factors and economic efficiencies with
respect to the CPU-based methods. The two measures are introduced in Section 3.1.

Discussion. The results show that the advanced GPU-based algorithm is about 40% faster
than its basic version. Compared to external tools, the advanced algorithm exhibits significantly
less variance in the measured runtimes. Furthermore, it performs amino acid side chain mini-
mizations about two orders of magnitude faster than all tested CPU-based methods. In addition,
it saves at least 87.5% electric energy according to the economic efficiency.

When minimizing ligands only, the experiment measured higher speedup factors relative
to the external CPU-based methods (see Section 6.3.3). The data suggests that the external
tools treat intramolecular non-bonded interactions more efficiently in the current experiment’s
scenario.

In conclusion, GPUperTrooper’s global mode minimizes amino acid side chains of binding
pockets in less than 0.8 s on average. This allows for an interactive workflow (as defined in
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Figure 6.18. Median runtimes for optimizing binding pocket conformations
with MOE, YASARA, Trooper, and GPUperTrooper. For the latter two, the
standard versions and those accelerated with the early abort-mechanism (w/
early abort) were tested. Boxes span the 25th to the 75th percentile of the data
range, while whiskers extend to data points within 1.5 times the data range
represented by the boxes. Remaining values are outliers and depicted by the
small (+) symbols.
The y-axis, which specifies the runtime in seconds, is logarithmically scaled.

Section 3.1.3) in drug development tools. Further, cost- and time-efficient optimizations of larger
molecular libraries are now feasible. With 100 accelerator cards, GPUperTrooper minimizes
1,000,000 binding pockets in less than three hours. It can therefore be applied in combination with
even the fastest docking methods, such as TrixX [102] and PhDOCK [7], without significantly
enhancing their runtimes. Furthermore, GPUperTrooper could significantly speed up protein
engineering. Bordner and Abagyan [107] applied ICM in this scenario and measured an average
runtime of 720 s on a single core of a 1.3 GHz AMD Athlon CPU. Also, Miura et al. [29] applied
the benchmarked minimization of MOE for predicting site-directed mutagenesis effects. The
data showed that GPUperTrooper performs on par with MOE in terms of quality, yet it is two
orders of magnitude faster.

For future large-scale cluster use, it would be enlightening to test whether GPUperTrooper
scales well on different GPU generations. The next experiment is centered around this question.
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Table 6.12. Mean runtime in seconds for minimizing binding pocket confor-
mations with GPUperTrooper on different NVIDIA GPUs. The table specifies
the respective processor’s number of CUDA cores (#cores), the clock frequency
of the multiprocessors (core clock), and the nominal performance in teraFLOPs
(TFLOPS ) along with the host test machines.

test machine GPU (chipset) #cores core clock TFLOPS runtime (s)

I Tesla C1060 (Tesla) 240 1,296 MHz 0.936 2.48
V Quadro 4000 (Fermi) 256 475 MHz 0.486 3.17
II GeForce GTX680 (Kepler) 1,536 1,058 MHz 3.090 1.13
IV Tesla K20 (Kepler) 2,496 706 MHz 3.520 1.41

6.5.4. Scaling behavior of GPUperTrooper. This experiment tested the scaling behav-
ior of GPUperTrooper’s global mode by rerunning the runtime evaluation experiment described
in the preceding section. Therefore, test machines I, II, IV, and V (see Section 5.4) were em-
ployed, as they host GPU devices with chipsets of the Tesla, Fermi, and Kepler generations.

To produce comparable results, the early abort-mechanism was switched off. This work
lists the measured runtimes, along with relevant technical specifications of the test machines, in
Table 6.12.

Discussion. GPUperTrooper runs properly on all NVIDIA GPU generations produced
since 2007 up to the writing of this work. This research measures the lowest runtimes on GPUs
of the recent Kepler generation. The performance on the most recent GPU, the Tesla K20, which
is lower than that of the GeForce GTX680, is surprising. Neither the nominal performance in
teraFLOPs, nor the number of cores in combination with the core clock explains this behavior.

For elucidating it, the author proposes to design a benchmarking protocol to assess the
speed of the test machines. This would capture the performance differences entailed by their
heterogeneous hardware setups. Based on these findings, a more reliable predictor of the runtime
behavior could be established.

Further insights could arise from in-depth profiling of GPUperTrooper; specifically the oc-
cupancy of the GPU multiprocessors would be of interest. This occupancy could be low, as
computing the force field energy of binding pockets with GPUperTrooper requires a compara-
tively small number of arithmetic operations. This could prove to slow larger GPUs down as
their architecture requires a large pool of operations in order to hide memory latencies.

6.6. Optimizing Entire Binding Pockets

The previous sections were centered on parameterizing Trooper for the exclusive optimization
of either amino acid side chains or ligands. In contrast, the following experiments concentrate
on minimizations that take ligand and amino acid side chain flexibility into account at the same
time. Additionally, constraints for the ligand are introduced. This permits a coarse definition of
binding pockets.
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Table 6.13. Median and mean potential energies of protein-ligand complex
binding pockets resulting from minimizations with Trooper employing the stan-
dard SuperTrAmber force field as an objective function. Both amino acid side
chains and the ligand were flexible during the minimization. For parameter-
ization purposes, different combinations of the maximum molecular rotations
angle (ρmax) and the maximum length of the translation vector [max(|~t |)] were
tested.
The last column specifies whether the median potential energy value in the re-
spective row differs significantly from the one in the first row. One-tailed Mann-
Whitney U tests were performed. The minus (-) symbol denotes no statistical
significance.

max(|~t |) (Å) ρmax (RAD) mean E kcal
mol median E kcal

mol significance

0.4 0.39 -116.73 -196.18
0.2 0.09 147.37 -194.15 -
0.2 0.39 233.08 -193.66 -
0.4 0.19 -125.63 -193.56 -
0.1 0.39 -100.22 -193.26 -
0.2 0.19 158.83 -193.13 -
0.1 0.19 -117.92 -192.09 -
0.4 0.09 -113.72 -191.59 -
0.1 0.09 311.40 -189.24 -

6.6.1. Parameterization. The first experiment determines a favorable parameterization
for Trooper’s global mode for entire binding pockets. For this, it minimized the 340 wobbled
binding pockets of data set ADS IX (see Section 5.1). Parameters were taken from the set
{0.1 Å, 0.2 Å, 0.4 Å} for the maximum length of the translation vector [max(|~t |)] and
{π8 RAD,

π
16 RAD,

π
32 RAD} for the maximum molecular rotations angle (ρmax). This experi-

ment treated all amino acid side chains containing atoms closer than 4 Å to any ligand atom as
flexible and imposed a cutoff of 8 Å around the flexible region. Additionally, it constrained ligand
atoms to a maximum deviation of 6.5 Å from their initial location. For all other parameters, this
experiment employed the standard settings for global optimizations specified in Section 4.8.2.
In this way, all protein-ligand complexes were processed. Table 6.13 lists the resulting mean
and median force field energies, along with significance levels. For computing these, one-tailed
Mann-Whitney U tests (see Section 3.10) were performed.

Discussion. The large deviations between the mean and median energy values of optimized
complexes signify a non-normal distribution of the results. Apparently, a certain proportion of
structures remain on a comparatively high energetic level depending on the selected parameter
combination. The mean energy values thus incorporate information on how severely the force
field energies of outliers deviate from the bulk of produced results. Therefore the effect of the
parameter choice is judged based on the resulting mean energy values. Setting max(|~t |) to
0.4 Å is thus a sound choice. For the selection of parameter ρmax, the results provide only
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Figure 6.19. Median RMSD values of ligands optimized in binding pockets
with flexible amino acid side chains. The results are binned according to the
RMSD values of the pre-optimized ligand structures. Boxes span the 25th to the
75th percentile of the data range while whiskers extend to data points within
1.5 times the data range, represented by the boxes. Symbols above the whiskers
indicate whether the median of the RMSD values produced by Trooper and the
respective whisker’s method differ significantly. The levels of significance are
0.1% (***), 1% (**), and 5% (*). The minus (-) symbol denotes no statistical
significance.

little help. The parameter was set to 0.39RAD, as the exponential downscaling scheme would
otherwise limit rotations to comparatively small angles after a few thousand steps. The following
experiment evaluates whether Trooper’s thus parameterized global mode successfully optimizes
ligands in the presence of flexible amino acid side chains.

6.6.2. Optimizations. To evaluate Trooper’s global mode, this experiment compared its
performance to that of MOE and YASARA. To evaluate the ligands and binding pockets of data
set ADS IX (see Section 5.1) were minimized. Trooper was parameterized, as specified in the
preceding section. Further parameters correspond to the standard settings for the global mode
specified in Section 4.8.2. For MOE and YASARA, the experiment defined a flexible region that
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Figure 6.20.a: Wobbled binding pocket of peni-
cillin G acylase (1gm8 ). The fuchsia colored wob-
bled ligand clashes with the binding pocket and
is still close to the original crystal structure pose,
which is colored in mint.

Figure 6.20.b: Optimized binding pocket of peni-
cillin G acylase (1gm8 ). Optimizing the wobbled
binding pocket depicted to the left drives the ligand
(colored in fuchsia) further away from the crystal
pose, which is colored in mint.

Figure 6.20. Ligand in binding pocket before and after optimization.

included the ligand and all amino acid side chains containing atoms closer than 4 Å to any ligand
atom. YASARA’s cutoff for non-bonded interactions was set to 8 Å and the limits of MOE’s
switching function were set to 8 Å and 10 Å. All further details on the optimization procedures
for the external tools are given in Sections 3.9.2 and 3.9.1.

This experiment measured RMSDs of minimized ligand poses to their respective crystal
structure with the in-house tool for Trooper and YASARA. For results produced by MOE, this
experiment employed its own RMSD calculation method. Significance levels were computed using
two-tailed Mann Whitney U and Mood tests, which is introduced in Section 3.10. Figure 6.19
provides an overview on the obtained results.

Discussion. On average, Trooper drives ligands with an initial RMSD above 0.5 Å signifi-
cantly towards their respective crystal structure (p < 0.01). All other poses are not significantly
impaired by Trooper. In contrast, YASARA and MOE significantly deteriorate ligand poses
with an initial RMSD of less than 0.5 Å to their respective crystal structure (p < 0.001). Over-
all, Trooper performs at least as well as the tested external tools at minimizing ligand poses in
binding pockets with flexible amino acid side chains.

At the same time, results produced by Trooper exhibit a comparatively high level of vari-
ance. This research analyzed outliers with ligand RMSD values above 5 Å after the minimization
procedure and discovered a common pattern. When optimizing a ligand pose that clashes with
amino acid atoms (see Figure 6.20.a), Trooper’s adaptive cooling scheme causes the system to
heat up (see Figure 6.21). This allows the ligand to cross larger energy barriers and thus tran-
scend parts of the binding pocket. This resolves the initial clash that then, in turn, results in
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Figure 6.21. System temperature (upper depiction) and potential force field
energy (lower depiction) while optimizing the wobbled binding pocket of peni-
cillin G acylase (1gm8 ). An initial clash between ligand and binding pocket
entails high potential energy, which causes the system to heat up.

Figure 6.22.a: Wobbled binding pocket of dihy-
drofolate reductase (1s3v). A methyl group of
the fuchsia colored wobbled ligand clashes with the
binding pocket. The original crystal structure pose
is colored in mint.

Figure 6.22.b: Optimized binding pocket of dihy-
drofolate reductase (1s3v). All clashes in the pre-
optimized binding pocket depicted to the left are
resolved. The minimized ligand (colored in fuchsia)
almost matches the crystal pose, which is colored
in mint.

Figure 6.22. Ligand in binding pocket before and after optimization.

125



CHAPTER 6. EXPERIMENTS

a cooling of the system. In some cases, the path of the ligand pose to the crystal pose is now
blocked by amino acids of the binding pocket (see Figure 6.20.b).

This pattern only occurs in rare cases. Most initial clashes do not lead to outliers, but are well
resolved (see Figures 6.22.a and 6.22.b). However, to further improve Trooper, the data suggests
an initial local minimization if a high force field energy is measured. This could circumvent the
heating up of the system. Furthermore, it is likely that a ligand that is already close to its crystal
pose would be further driven towards it. Additionally, it should be considered to allow the user
to mark certain protein-ligand interactions as vital, which would add to the already available
spatial constraints on atoms. Incorporating available knowledge into the optimization procedure
could help produce results desired by the user.

6.7. Constrained Optimization of Molecular Conformations

All of the preceding experiments are centered around optimizing structures in binding pockets
of protein-ligand complexes. However, the scope of application for Trooper is larger. As part
of CONFECT, a conformation generator introduced in Section 3.8.5, Trooper minimizes small
molecules while observing constraints on dihedral angle rotations. The following experiments
test the efficacy of these downstream optimizations.

6.7.1. Parameterization. In the first experiment, Trooper was parameterized for down-
stream optimizations of small molecules. This experiment minimized the 4,997 conformations
contained in the CONFECT test data set, which is introduced in Section 5.3.

The parameterization run tested all values of the set {5◦, 10◦, 15◦, 20◦} for the maximum
dihedral rotation parameter [Φmax (DEG)] of Trooper. As only single molecules were minimized,
dihedral rotations were the only allowed transformation operation. The initial temperature
T was set to 0, the maximum number of steps (smax) to 1,000, and the maximum number
of failed steps to 100. The early abort-mechanism (see Section 4.5.4) was switched on. Its
maximum number of consecutively rejected states (earejmax

) and the minimal absolute energy
reduction (|earedmin

|) parameters were set to 100 and 0.1 kcal/mol, respectively. Furthermore,
the experiment constrained the dihedral rotations according to CONFECT’s level II thresholds,
as described in Section 4.7. After the minimization runs, the experiment computed the mean
potential energy of the resulting conformations for each tested parameterization. To test whether
mean energies differ significantly, the standard t-test (see Section 3.10) was applied. Table 6.14
provides an overview of the result.

Discussion. This experiment sets the value 15◦ for the Φmax parameter. As visible in Ta-
ble 6.23, this parameterization results in low energy conformations. Choosing smaller maximum
dihedral angles clearly leads to unfavorable higher energies (p < 0.001). Setting Φmax to 20◦

produces conformations with lower potential energies (p < 0.05). Still, larger dihedral rotations
entail more constraint violations and therefore an enhanced runtime.
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Table 6.14. Mean potential energy of conformations optimized with Trooper
and different settings for the maximum dihedral rotation parameter (Φmax). The
last column specifies whether the respective measured mean value differs signif-
icantly from that for parameter setting Φmax = 15◦. The levels of significance
are 0.1% (***) and 5% (*) and were computed with the standard t-test.

Φmax (DEG) mean E kcal
mol significance

5◦ 23.01 ***
10◦ 20.04 ***
15◦ 13.10 -
20◦ 12.09 *
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Figure 6.23. Potential force field energy of conformations before and after
minimization with Trooper and parameter setting Φmax = 15◦

6.7.2. Optimization quality and runtime. The parameterization selected, described in
the preceding section, was evaluated. This research analyzed whether downstream optimizations
enhanced the quality of conformations generated by CONFECT. A key performance figure is
the number of constraint violations in the CONFECT test data (see Section 5.3) set before
and after minimization runs. The experiment found that 485 out of an initial number of 4,997

conformations exhibit constraint violations after the optimization. The success rate is thus
about 90%.

Furthermore, this research measured CONFECT’s runtime with and without downstream
optimizations. In the former case, generating conformations takes 20 s on test machine I. In the
latter case, the procedure consumes 120 s. When utilizing eight CPU cores, optimizing a single
conformation takes 0.02 s. In comparison, SZYBKI (see Section 2.1) consumes 0.5 s to minimize
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a small molecule on an unknown machine and DG-AMMOS [115] consumes 0.61 s on two cores
of an Intel Xeon CPU. Furthermore, ConfGen [112] generates conformations for one ligand in
4.2 s to 45.8 s on a single core of an Intel Core2 Q6600 processor. Therefore, Trooper is at least
as fast as commercially available tools.

Overall, Trooper reduces the number of CONFECT’s constraint violations by one order of
magnitude. However, this enhanced quality comes at the cost of speed. Further reparameter-
izations could allow for reduction of small molecules with fewer optimization steps. Still, the
runtime issue should only be tackled if speed proves to be vital for the usability of CONFECT.
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CHAPTER 7

Conclusion and Outlook

This work presents a novel method that substantially accelerates force field-based optimiza-
tions of small molecules outside of, and especially within, protein binding sites. This chapter
recapitulates the building blocks, features, and application scenarios of this method. Further-
more, it summarizes experiments performed for its parameterization, validation, and evaluation.
Key findings of these experiments are highlighted. Finally, limits of application for the method
are discussed and an outlook on topics worth investigating in future research is given.

7.1. Original Work: Trooper and GPUperTrooper

This work is centered around Trooper, a force field-based downstream optimization method.
It is specifically designed to energetically minimize ligand molecules outside and inside protein
binding sites. Therein, amino acid side chain conformations are also optimized. Trooper is a
refinement method and intended to be applied within a pipeline of tools. Thus, initial structures
for it must be generated previously by structure prediction methods. Examples of these are ligand
conformation generators, molecular docking and lead optimization tools, as well as computational
mutagenesis methods for protein design. Trooper refines the structures that these methods
produce. In this process, it removes clashes and drives molecules closer to their experimentally
determined conformations and poses.

Trooper targets systems that typically contain less than 1,500 atoms. The degrees of freedom
it considers are rotations and translations of entire molecules. Furthermore, rotations about single
dihedral bonds are performed. This operation optimizes amino acid side chain conformations.
Consequently, small systems of which large parts stay rigid are minimized. Trooper exploits this
by avoiding calculations of non-bonded forces between and within rigid regions.

The SuperTrAmber force field is Trooper’s default objective function. Alternatively, the
MMFF94s force field can be used. Two distinct operation modes minimize these objective func-
tions. Both employ SA algorithms. The first one is a standard approach with a predefined
exponential cooling scheme, which is applied for local optimizations that target ligand molecules
and rigid protein binding sites. Consequently, it is called the local minimization mode. In con-
trast, the second mode dynamically adapts its parameterization to energies measured during the
optimization process, which facilitates the removal of severe clashes between parts of molecules.
Furthermore, energetic barriers can be crossed. At the same time, transformations that are en-
ergetically overly unfavorable are avoided. This second SA protocol is used whenever amino acid
side chains are included in the optimization procedure. It is called the global optimization mode.
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GPUperTrooper is an accelerated version of Trooper. Its purpose is to sustain the low
computational cost of the aforementioned upstream methods that generate molecule structures.
It is designed for optimizing ligand molecules in protein binding sites and takes amino acid
side chain flexibility into account. It operates on modern SIMD graphics processors. Conse-
quently, it builds upon data structures and algorithms that are designed for this processor and
memory architecture. With these algorithms, GPUperTrooper performs SuperTrAmber force
field energy computations and atom coordinate transformations in parallel. At the same time,
GPUperTrooper seamlessly integrates with the same optimization framework that Trooper uses.
This way, the SA procedure operates on the CPU of a host system, while time-demanding com-
putations are executed on GPU. Consequently, GPUperTrooper uses the parameterizations of
Trooper’s local and global minimization modes. In the latter mode, GPUperTrooper additionally
employs a refined algorithm that handles short-range intramolecular interactions more efficiently.
GPUperTrooper is carefully tuned to avoid overheads. These commonly occur when accessing
GPU memory and in the intercommunication between host and GPU devices.

7.2. Experimental Findings

7.2.1. Optimizing ligands in rigid protein binding pockets. The first series of exper-
iments of this work spans Sections 6.1.1 to 6.1.5. These are centered around optimizing ligands
in rigid protein binding pockets. This scenario is relevant when refining structures resulting from
molecular docking runs. For parameterizing and validating Trooper, the docking tool TrixX (see
Section 3.8.3) was used to produce ligand poses. Of these, 125 were selected to form a training
set and another 67 were selected to form a test set. The RMSDs of docking poses to their re-
spective crystal structure ranges from 1.5 Å to 3.0 Å in both sets. Trooper was parameterized
on the training set and subsequently successfully validated on the test set. With the same set,
Trooper’s minimization results were compared to those of the commercially available tools MOE
and YASARA, which Sections 3.9.2 and 3.9.1 introduced. In this evaluation experiment, Trooper
reduced the average RMSD of docking poses from 2.35 Å to 1.95 Å. It performed better than
MOE, which reduced the average RMSD of the poses to 2.07 Å, however, YASARA yielded the
best results as it reduced the average RMSD to 1.67 Å.

In Sections 6.1.6 and 6.1.7, Trooper was evaluated in cognate docking experiments. For the
first one, TrixX docked the ligands of the protein targets of the Astex Diverse Set [3]. This way,
TrixX produced excellent and correct poses (as defined in Section 3.2) for 22 and 61 protein
targets, respectively. YASARA and Trooper optimized all docking poses resulting from this
docking run. In this refinement stage, Trooper enhanced the number of protein targets with
excellent and correct poses to 44 and 68, respectively. YASARA’s optimization performed on
par and yielded 50 and 66 protein targets with excellent and correct poses, respectively.

For a further cognate docking experiment, a pipeline formed of TrixX, Trooper, and the
scoring function HYDE (see Section 3.8.1) was constructed. This experiment aimed at assessing
three key questions: first, whether Trooper enhances the quality of TrixX’s results in cognate
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docking runs. Second, whether applying Trooper before HYDE helps this tool to identify cor-
rectly placed ligand poses. Third, whether the constructed pipeline performs on par with other
state-of-the-art docking approaches. The experiment was conducted on a revised version of the
Astex Diverse Set. This data set was compiled for the Docking and Scoring Symposium that took
place during the 241st ACS National Meeting. The goal of this symposium was to evaluate the
performance of current docking and scoring methods. The most relevant research groups in the
field of docking participated in this symposium. The experiment determined that using Trooper
to optimize results produced by TrixX drives docking poses closer to their respective experimen-
tally determined structure: the number of binding pockets with excellent docking poses increases
from 59 to 85. Furthermore, Trooper enhances HYDE’s rescoring performance. The number of
excellent ligand poses ranked among the top 32 increases by 24 when post-optimizations with
Trooper precede the rescoring step. Finally, it was found that the whole pipeline performs on
par with the state-of-the-art docking tools FlexX, SurFlex, Lead Finder, GOLD, DOCK, and
MOE (these tools are introduced in Chapter 2) for producing correct docking poses.

GPUperTrooper was validated for ligand optimizations in rigid protein binding pockets in
Sections 6.3.4 and 6.3.2. First, minimization results produced by Trooper and GPUperTrooper
were compared in terms of quality. For this, GPUperTrooper optimized the previously introduced
test set that comprises 67 docking poses. No significant aberrations between the average RMSDs
of structures minimized with Trooper and GPUperTrooper were measured. In the second step,
the runtimes of potential energy calculations were assessed for Trooper and GPUperTrooper.
For this assessment, 15 binding pockets containing one random docking pose, respectively, were
selected from the Astex Diverse Set. The total number of considered atoms in these binding
pockets ranged from 871 to 1,821. Relevant SuperTrAmber potentials were computed 1,000,000

times with Trooper on CPU and GPUperTrooper on GPU. Measured speedup values (SGPU ,
defined in Section 3.1) vary with the number of considered atom pairs in the binding pockets
and range from 60 to 160.

Section 6.3.3 describes the evaluation of GPUperTrooper. It was performed on six protein
binding sites. In each of these, 200 docked ligand poses were minimized with Trooper, GPU-
perTrooper, MOE, and YASARA. Depending on the selected parameterization, GPUperTrooper
minimizes the ligands of the data set in 0.09 s to 0.35 s on average. Compared to the external
methods, this implies a speedup of at least 100. Furthermore, computations with GPUperTrooper
are cheaper by a factor of at least 23.4, according to the economic efficiency measure introduced
in Section 3.1. Compared to Trooper, applying GPUperTrooper is at least four times cheaper
and 38 times faster.

7.2.2. Optimizing amino acid side chains. Section 6.4 describes the validation and
evaluation of amino acid side chain optimizations with Trooper’s global minimization mode. The
first experiment establishes a parameterization for this adaptive SA procedure. The following
stage successfully validates Trooper. This validation was carried out on a data set comprising
748 protein-ligand complexes. Their binding sites contained randomly wobbled amino acid side
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chain conformations and the crystal structure pose of the respective ligand. However, only the
side chain conformations were optimized.

In the same experiment, Trooper’s performance is compared to those of MOE and YASARA.
Two further evaluation experiments probe the limits of application of side chain-only optimiza-
tions. The first experiment is conducted on 686 protein-ligand complexes. Naturally occurring
amino acid side chain conformation variations were introduced in their binding pockets. These
were taken from the Astex Non-Native Set [198]. At the same time, the backbone conforma-
tions remained unchanged. The second experiment attempts an optimization of the protein-
ligand complexes of the Astex Non-Native Set. These contain backbone conformation variations.
Trooper performed side chain-only optimizations, while YASARA was tested with and without
additional degrees of freedom for backbone flexibility.

The experiments determined that on average, Trooper, MOE, and YASARA drive amino
acid side chains closer to their respective experimentally determined conformation. All tested
methods perform on par at this task. These observations hold if the average RMSD of the
initial side chain conformations to their respective crystal structure is larger than 0.5 Å. Fur-
thermore, the backbone conformation must be correct. If this is not the case, neither Trooper
nor YASARA minimizations are effective. Also, including backbone flexibility in YASARA’s op-
timization procedure is shown to be useless. Thus, simply adding backbone flexibility appears to
be an insufficient measure to cope with backbone variations in force field-based protein binding
site optimizations.

Further experiments, documented in Section 6.5, assess the global minimization mode of
GPUperTrooper. First, a validation run compares the performances of Trooper and GPU-
perTrooper. For this, the previously introduced data set comprised of 748 protein-ligand com-
plexes was used. This experiment demonstrates that there are no significant differences between
results produced by Trooper and GPUperTrooper. In the same data set, GPUperTrooper’s
runtime is compared to those of Trooper, MOE, and YASARA. It is determined that applying
GPUperTrooper yields speedup values ranging from 96.5 to 202.1. Furthermore, computations
with GPUperTrooper are 8.0 to 16.8 times cheaper than with the other tested methods. These
figures were established with the economic efficiency measure. A final experiment shows that
GPUperTrooper runs efficiently on the Tesla, Fermi, and Kepler generations of NVIDIA GPUs.
Thus, GPUperTrooper is suitable for all NVIDIA GPUs released since 2007.

7.2.3. Optimizing entire binding pockets. The experiments in Section 6.6 test Trooper’s
global mode for optimizing ligands and amino acid side chains in protein binding sites. For this,
the parameters for molecule translations and rotations are retrained. With this new parameteri-
zation, Trooper is compared to MOE and YASARA on a data set comprised of 330 protein-ligand
complexes. Their binding sites contain randomly wobbled amino acid side chains and ligands.
Trooper drives these wobbled ligands closer to their respective crystal structure poses. If the
initial RMSD of a ligand is below 0.5 Å, Trooper, on average, performs better than MOE and
YASARA. For all other cases, all tested tools perform on par.
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7.2.4. Constrained optimization of molecular conformations. Section 6.7 describes
how Trooper’s local mode is tested for optimizing small molecule conformations. These are
generated by CONFECT, which uses a sophisticated set of dihedral constraints, introduced in
Section 3.8.5. Trooper incorporates these constraints. In the first experimental step, a parameter-
ization run determines a favorable dihedral angle rotation limit. With this, Trooper minimizes
4,997 conformations generated by CONFECT. Initially, all of these violate CONFECT’s con-
straints. After the optimization run, 485 constraint violations are detected. Thus, Trooper’s
success rate is approximately 90%. Its average runtime for optimizing one conformation is 0.02 s.
This figure is in the same regime as those reported for state-of-the-art tools such as SZYBKI
(see Section 2.1) and DG-AMMOS [115].

7.3. Limits of Application

Trooper is a post-optimization method for refining small molecules inside and outside of pro-
tein binding sites. As such, it is not meant to generate entirely new molecule poses. Therefore,
it should be applied in a pipeline of tools. In this, upstream methods must produce reasonable
initial molecule poses and conformations. This task includes the generation of ring conforma-
tions, bond angles, and lengths. Also, a correct protonation state must be assigned in advance.
Trooper was trained on structures with average deviations from their respective crystal struc-
ture of 3.0 Å and less. Its performance on structures with higher deviations is unknown. In
protein binding sites, Trooper solely modifies amino acid side chain conformations. Evaluations
show that deviating backbone conformations may have negative impacts on optimization results.
Finally, Trooper is a stochastic energy minimization method. Therefore, it is not suitable for
studying MD and minimization trajectories.

GPUperTrooper accelerates optimizations of protein-ligand binding pockets. It is possible
to include water molecules in this procedure. However, all molecules are padded with dummy
atoms so that they contain at least 32 atoms. Consequently, the handling of water molecules
may impair efficiency. Therefore, these molecules should be added with care. Furthermore,
GPUperTrooper performs best on systems comprised of 1,500 atoms or less and it is likely to be
inefficient for larger systems. It has been neither designed nor benchmarked for small molecule
optimizations.

7.4. Substantial Contributions

The results of this work show that Trooper and GPUperTrooper distinguish themselves from
previous work by the following properties:

• GPUperTrooper is the only algorithm for graphics processors and, thus for SIMD ar-
chitectures, which is specifically designed for quick force field-based minimizations of
molecules in protein binding sites.

• GPUperTrooper saves time, energy, and money in large-scale application scenarios.
With the economic efficiency this observation can be quantified. According to this
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measure, optimizations with GPUperTrooper are at least eight times less energy con-
suming than those with the commercially available tools MOE and YASARA.

• GPUperTrooper makes interactive force field-based minimizations in desktop usage sce-
narios (e.g., lead optimizations) possible. This is due to the speedup of approximately
two orders of magnitude that GPUperTrooper offers, compared to methods that operate
on a single CPU core.

• Coupling GPUperTrooper with the fastest available docking tools like TrixX and Ph-
DOCK [7] only negligibly affects their overall runtime. These tools produce docking
poses in approximately 0.1 s. GPUperTrooper operates in the same runtime regime
when optimizing ligands in binding pockets.

• There are only a few downstream optimization methods whose efficacy in conjunction
with docking tools has been shown. This work contributes to existing studies by demon-
strating that Trooper drives docking poses generated by TrixX closer to experimentally
determined structures.

• It has been disputed that force field-based downstream optimizations are beneficial
when applied prior to a rescoring stage that uses another objective functions [4, 5].
This hypothesis is refuted in this work. The experiment in Section 6.1.7 clearly shows
that Trooper improves the rescoring efficacy of HYDE.

• Trooper incorporates the dihedral angle constraints of CONFECT. In this fashion,
Trooper supplements force field potentials with knowledge-based constraints derived
from co-crystallized conformations by Schärfer [6]. With these, a highly specific and
transparent association between dihedral angle constraints and torsion patterns is es-
tablished.

7.5. Outlook

Experimental results of this work suggest several topics worth investigating in future re-
search. Furthermore, there are application scenarios for downstream optimizations that are
neither thoroughly analyzed in this nor in other studies.

• As discovered in Section 6.4.5, the minima of the SuperTrAmber force field often do
not correspond to experimentally determined crystal structures of amino acid side chain
conformations. However, energies of randomly wobbled structures are on average con-
siderably higher than those of crystal structures. Therefore, parameters should be
identified that prevent Trooper from driving conformations away from their crystal
structure. With these, an alternative optimization mode could be established. A low
initial energy could serve as an indication for using it.

• The experiment in Section 6.4.8 shows that neither Trooper nor YASARA drive amino
acid side chains towards their respective crystal structure conformation in the presence
of protein backbone variations. Including backbone flexibility in YASARA’s optimiza-
tion procedure yields the same results. Thus, prerequisites for successfully optimizing
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structures with backbone variations should be searched for. This could start with an
analysis of structures that YASARA successfully optimizes. Considering multiple pre-
determined backbone conformations would be another option. This way, potentially
flexible segments of the protein backbone could be represented by an ensemble of pre-
determined sound conformations.

• Trooper is sensitive to falsely protonated molecules. Before applying it, a reasonable
protonation state must thus be determined. A yet unpublished version of ProToss (an
older version is introduced in Section 3.8.2) reliably assigns sound protonation states
to protein binding site atoms and ligand molecules therein. Including this version of
ProToss in the default preparatory steps of Trooper could prove to be beneficial.

• Trooper could benefit from including more pre-existing chemical knowledge, which could
be mapped to further constraints. This would also permit a more fine-grained spatial
and pattern-based definition of flexible molecular regions. Furthermore, vital inter-
actions, e.g., certain hydrogen bonds, could be marked and thus protected from being
broken during the optimization. These measures would enhance Trooper’s usefulness in
lead optimization scenarios. In virtual screenings, an upstream docking method could
pass its pharmacophore-like constraints to Trooper.

• Including experimentally observed water molecules in binding site optimization could
enhance the quality of results. This assumption should be validated. In a next step,
GPUperTrooper could be adapted to efficiently handle water molecules. A possible
approach would treat them all as a single molecule and its individual water molecules
could be treated as components. Applying transformations to these would require minor
adaptations to the Transformation Executor component of GPUperTrooper.

• The current Intel Haswell CPU generation features 16 SIMD registers, each 256 bits
wide [213]. Future Intel Xeon processors will include more and wider SIMD regis-
ters [214]. The fundamental algorithms and data structures of GPUperTrooper are
designed for the SIMD architecture. Therefore, it should be analyzed whether it is
possible and sensible to implement them for x86 CPUs. For this, the usage of the
OpenCL [215] standard should be considered.

• Perola et al. [19] demonstrated for two protein targets that force field-based post-
optimizations improve enrichments in virtual screening. They claim that this obser-
vation only holds for tight binding pockets and provide one anecdotal experiment to
prove this hypothesis. Further investigations on the interplay between downstream
optimizations and rescoring functions in virtual screening should be conducted.
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APPENDIX A

Appendix

A.1. Software Packages

The methods described in this work were implemented in C++ and are grouped into three
main packages. These are, as Figure A.1 shows, the Forcefield, ForcefieldCUDA, and Optimization
packages.

The Forcefield package comprises five subpackages:

Core implements the force field framework that Section 4.2 introduces. Figure 4.3 captures
the architecture of the force field implementation. Furthermore, the Core package
contains the Scorer class that represents the component with the same name introduced
in Section 4.2.4.

Molinfo implements the molecule representation and the component tree introduced in
Section 4.1. Figure 4.1 reflects the class design of this subpackage.

ChemModels contains partial charge and atom type assigning classes. As Figure A.2 shows,
assigners for AMBER types, SYBYL types, and MMFF94 types are available. The
corresponding atom type models are introduced in Section 3.5. Implemented partial

Forcefield

Core Molinfo

ChemModels Constraints

PostOptimizer

ForcefieldCUDA

GPUScorer

MoleculeSet

Optimization

AdaptiveSA

Figure A.1. Main packages of this work. Subpackages are shown in gray and
the most relevant classes in yellow.
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Forcefield::Core

Forcefield

Scorer

Forcefield::ChemModels

Charge Assignment

AMBERChargesPolicy

GasteigerChargesPolicy

MMFFChargesPolicy

ChargeAssigner

<<AssignmentPolicy>>

Type Assignment

AMBERTyper

SYBYLTyper

MMFFTyper

Figure A.2. Detail on subpackages of the Forcefield package. Nested sub-
packages are shown in gray and the most relevant classes in yellow.

charge models, namely Gasteiger-Marsili, MMFF94, and AMBER, are described in
Section 3.6.

PostOptimizer comprises the CPU-based components of the optimization algorithm that
Section 4.5.5 describes. Next to classes that compute molecular transformations, this
package implements all CPU-based StateManager components shown in Figure 4.13.

Constraints contains data structures and functions that permit to constrain an opti-
mization, as described in Section 4.7 .

The ForcefieldCUDA package contains the GPU portation of the SuperTrAmber force field.
Its main classes are MoleculeSet and GPUScorer. The former implements the data structures
described in Sections 4.3.1 and 4.4, while the latter offers the scoring functionality described in
Sections 4.3.3 and 4.6.7.

Finally, the Optimization package implements the generic SA framework introduced in
Sections 4.5 and 4.6, including the policies that guide the optimization procedure.
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A.2. TOOL MANUAL

A.2. Tool Manual

A.2.1. Trooper and GPUperTrooper. The executable postOptimizer provides access
to Trooper and GPUperTrooper, the two main methods of this work introduced in Section 4.8.
This executable is called via the command line using the following parameters:

--help display help
--gpu GPUperTrooper mode, SuperTrAmber force field, CUDA required
--complex-flexible flexible protein-ligand complex mode (default)
--complex-ligRigid flexible protein-rigid ligand complex mode
--complex-protRigid rigid protein-flexible ligand complex mode
--local local parameterization (default)
--global global parameterization
--tramber SuperTrAMBER force field (default)
--mmff94s MMFF94s force field—no GPU support
--strongHBonds switch on SuperTrAmber’s strong H-Bond mode
--fast switch on early-abort mechanism
-l [ --ligand ] arg path to input ligand molecule file
-p [ --protein ] arg path to input protein molecule file
--proteinDB arg path to input protein database
--ligand_out arg path to ligand output file
--protein_out arg path to protein output file
--proteinDB_out arg path to output protein database
--log_out arg path to log output file
--steps arg number of optimization steps
--temperature arg set initial temperature
--max-dihedral arg set maximal dihedral rotation
--max-rotation arg set maximal rotation
--max-translation arg set maximal translation
--rescaling-factor arg set transformation rescaling factor
--flexible-side-chains arg list of flexible amino acids. Format: TYR981 ARG771
--constrainLigand arg radial constraint (Å) for ligand movements (CPU only)

A.2.2. ActiveSiteWobbler. The executable ActiveSiteWobbler can manipulate bind-
ing pockets of proteins by applying random transformations to molecules in binding sites, as
described in Section 4.9. For this purpose, this program performs global molecule rotations and
translations, as well as dihedral rotations. For amino acid side chains, only the latter transforma-
tion type is available. Thus, the ActiveSiteWobbler operates on the same degrees of freedom as
Trooper and GPUperTrooper. Additionally, the ActiveSiteWobbler permits transferring side
chain conformations between binding pockets. The executable is called via the command line
using the following parameters:
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--help display help
-p [ --protein ] arg protein structure to manipulate (pdb format)
-l [ --refLig ] arg reference ligand defining the active site
-d [ --radius ] arg radius (Å) around reference ligand defining the active site
-n [ --nofSteps ] arg number of random transformations to perform
--includeLigand switch for including ligand in wobbling operations
-o [ --outProt ] arg path for saving transformed protein structure (pdb format)
--outDB arg path to database for saving transformed complex (internal database for-

mat)
--outLigand arg path for transformed ligand structure
--transferConformation arg source complex for transferring conformations of binding

site amino acid side chains (pdb format)
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