
Dynamically Adaptable I/O Semantics
for High Performance Computing

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat.

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Fachbereich Informatik von

Michael Kuhn

aus Esslingen

Hamburg, November 2014

Gutachter:
Prof. Dr. Thomas Ludwig

Prof. Dr. Norbert Ritter

Datum der Disputation: 2015-04-08

Abstract

File systems as well as libraries for input/output (I/O) offer interfaces that are used
to interact with them, albeit on different levels of abstraction. While an interface’s
syntax simply describes the available operations, its semantics determines how these
operations behave and which assumptions developers can make about them. There are
several different interface standards in existence, some of them dating back decades
and having been designed for local file systems; one such representative is POSIX.

Many parallel distributed file systems implement a POSIX-compliant interface to im-
prove portability. Its strict semantics is often relaxed to reach maximum performance
which can lead to subtly different behavior on different file systems. This, in turn,
can cause application misbehavior that is hard to track down. All currently available
interfaces follow a fixed approach regarding semantics, making them only suitable for
a subset of use cases and workloads. While the interfaces do not allow application
developers to influence the I/O semantics, applications could benefit greatly from the
possibility of being able to adapt them to their requirements.

The work presented in this thesis includes the design of a novel I/O interface called
JULEA. It offers support for dynamically adaptable semantics and is suited specifically
for HPC applications. The introduced concept allows applications to adapt the file
system behavior to their exact I/O requirements instead of the other way around.
The general goal is an interface that allows developers to specify what operations
should do and how they should behave – leaving the actual realization and possible
optimizations to the underlying file system. Due to the unique requirements of the
proposed interface, a prototypical file system is designed and developed from scratch.

The new I/O interface and file system prototype are evaluated using both syn-
thetic benchmarks and real-world applications. This ensures covering both specific
optimizations made possible by the file system’s additional knowledge as well as
the applicability for existing software. Overall, JULEA provides data and metadata
performance comparable to that of other established parallel distributed file systems.
However, in contrast to the existing solutions, its flexible semantics allows it to cover
a wider range of use cases in an efficient way.

The results demonstrate that there is need for I/O interfaces that can adapt to the
requirements of applications. Even though POSIX facilitates portability, it does not
seem to be suited for contemporary HPC demands. JULEA presents a first approach of
how application-provided semantical information can be used to dynamically adapt
the file system’s behavior to the applications’ I/O requirements.

Kurzfassung

Dateisysteme und Bibliotheken für Ein-/Ausgabe (E/A) stellen Schnittstellen für
den Zugriff auf unterschiedlichen Abstraktionsebenen bereit. Während die Syntax
einer Schnittstelle lediglich deren Operationen festlegt, beschreibt ihre Semantik das
Verhalten der Operationen. Es existieren mehrere Standards für E/A-Schnittstellen,
die teilweise mehrere Jahrzehnte alt sind und für lokale Dateisysteme entwickelt
wurden; ein solcher Vertreter ist POSIX.

Viele parallele verteilte Dateisysteme implementieren eine POSIX-konforme Schnitt-
stelle, um die Portabilität zu erhöhen. Ihre strikte Semantik wird oft relaxiert, um die
maximal mögliche Leistung erreichen zu können, was aber zu subtil unterschiedlichem
Verhalten führen kann. Dies kann wiederum zu schwer nachzuvollziehenden Fehlver-
halten der Anwendungen führen. Alle momentan verfügbaren Schnittstellen verfolgen
einen statischen Semantikansatz, wodurch sie nur für bestimmte Anwendungsfälle
geeignet sind. Während die Schnittstellen keine Möglichkeit für Anwendungsent-
wickler bieten, die Semantik zu beeinflussen, wäre ein solcher Ansatz hilfreich für
Anwendungen, um die Dateisysteme an ihre Anforderungen anpassen zu können.

Die vorliegende Dissertation beschäftigt sich mit dem Entwurf und der Entwick-
lung einer neuartigen E/A-Schnittstelle namens JULEA. Sie erlaubt es, die Semantik
dynamisch anzupassen und ist speziell für HPC-Anwendungen optimiert. Das ent-
wickelte Konzept erlaubt es Anwendungen, das Verhalten des Dateisystems an die
eigenen E/A-Bedürfnisse anzupassen. Das Ziel ist eine Schnittstelle, die es Entwick-
lern gestattet zu spezifizieren, was Operationen tun sollen und wie sie sich verhalten
sollen; die eigentliche Umsetzung und mögliche Optimierungen werden dabei dem
Dateisystem überlassen. Aufgrund der einzigartigen Anforderungen der Schnittstelle
wird außerdem ein prototypisches Dateisystem entworfen und entwickelt.

Das Dateisystem und die Schnittstelle werden mit Hilfe von synthetischen Bench-
marks und praxisnahen Anwendungen evaluiert. Dadurch wird sichergestellt, dass
sowohl spezifische Optimierungen als auch die Tauglichkeit für existierende Software
überprüft werden. JULEA erreicht eine vergleichbare Daten- und Metadatenleistung
wie etablierte parallele verteilte Dateisysteme, kann durch seine flexible Architektur
aber einen größeren Teil von Anwendungsfällen effizient abdecken.

Die Resultate zeigen, dass E/A-Schnittstellen benötigt werden, die sich an die
Anforderungen von Anwendungen anpassen. Obwohl der POSIX-Standard Vorteile
bezüglich der Portabilität von Anwendungen bietet, ist seine Semantik nicht mehr für
heutige HPC-Anforderungen geeignet. JULEA stellt einen ersten Ansatz dar, der es
erlaubt, das Dateisystemverhalten an die Anwendungsanforderungen anzupassen.

Acknowledgments

First of all, I would like to thank my advisor Prof. Dr. Thomas Ludwig for supporting
and guiding me in this endeavor. I first came into contact with high performance
computing and file systems during his advanced software lab about the evaluation of
parallel distributed file systems in the winter semester of 2005/2006 and have been
interested in this topic ever since.

I am grateful for the many fruitful discussions, collaborations and fun times with
my friends and colleagues from the research group and the DKRZ. In addition to my
family, I also want to thank my wife Manuela who readily relocated to Hamburg with
me. Special thanks to Konstantinos Chasapis, Manuela Kuhn and Thomas Ludwig for
proofreading my thesis and giving me valuable feedback.

Last but not least, I would also like to thank everyone that has contributed to JULEA
or this thesis in one way or another: Anna Fuchs for creating JULEA’s correctness
and performance regression framework and helping with the partdiff benchmarks,
Sandra Schröder for building LEXOS and JULEA’s corresponding storage backend,
and Alexis Engelke for implementing the reordering logic for the ordering semantics.

“There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable. There is another theory which states
that this has already happened.”

Douglas Adams – The Restaurant at the End of the Universe

Contents

1. Introduction 13
1.1. High Performance Computing . 13
1.2. Parallel Distributed File Systems . 15
1.3. Input/Output Interfaces and Semantics 17
1.4. Motivation . 18
1.5. Contribution . 21
1.6. Structure . 21

2. State of the Art and Technical Background 23
2.1. Input/Output Stack . 23
2.2. File Systems . 26
2.3. Object Stores . 29
2.4. Parallel Distributed File Systems . 30
2.5. Input/Output Interfaces . 35
2.6. Input/Output Semantics . 42
2.7. Namespaces . 46

3. Interface and File System Design 49
3.1. Architecture . 49
3.2. File System Namespace . 54
3.3. Interface . 55
3.4. Semantics . 60
3.5. Data and Metadata . 70

4. Related Work 75
4.1. Metadata Management . 75
4.2. Semantics Compliance . 77
4.3. Adaptability . 78
4.4. Semantical Information . 79

5. Technical Design 87
5.1. Architecture . 89
5.2. Metadata Servers . 91
5.3. Data Servers . 93
5.4. Client Library . 98

– 11 –

Contents

5.5. Miscellaneous . 103

6. Performance Evaluation 111
6.1. Hardware and Software Environment 111

6.1.1. Performance Considerations . 112
6.2. Data Performance . 113

6.2.1. Lustre . 114
6.2.2. OrangeFS . 119
6.2.3. JULEA . 122
6.2.4. Discussion . 134

6.3. Metadata Performance . 135
6.3.1. Lustre . 137
6.3.2. JULEA . 138
6.3.3. Discussion . 149

6.4. Lustre Observations . 149
6.5. Partial Differential Equation Solver . 150

6.5.1. Discussion . 154

7. Conclusion and Future Work 157
7.1. Future Work . 162

Bibliography 167

Appendices 179

A. Additional Evaluation Results 181

B. Usage Instructions 185

C. Code Examples 191

Index 201

List of Acronyms 203

List of Figures 205

List of Listings 207

List of Tables 209

– 12 –

Chapter 1.

Introduction

In this chapter, basic background information from the fields of high performance computing
and parallel distributed file systems will be introduced. This includes common use cases and
key architectural features. Additionally, the concepts of I/O interfaces and semantics will be
briefly explained. A special focus lies on the deficiencies of today’s interfaces which do not
allow applications to modify the semantics of I/O operations according to their needs.

1.1. High Performance Computing

High performance computing (HPC) is a branch of informatics that is concerned
with the use of supercomputers and has become an increasingly important tool for
computational science. Supercomputers combine the power of hundreds to thousands
of central processing units (CPUs) to provide enough computational power to tackle
especially complex scientific problems.1 They are used to conduct large-scale compu-
tations and simulations of complex systems from basically all branches of the natural
and technical sciences, such as meteorology, climatology, particle physics, biology,
medicine and computational fluid dynamics. Recently, other fields such as economics
and social sciences have also started to make use of supercomputers.

As these simulations have become more and more accurate and thus realistic over
the last years, their demands for computational power have also increased. Because
CPU clock rates are no longer increasing [Ros08] and the number of CPUs per com-
puter is limited, it has become necessary to distribute the computational work across
multiple CPUs and computers. Therefore, these computations and simulations are
usually realized in the form of parallel applications. While all CPUs in the same
computer can make use of threads, it is common to employ message passing between
different computers. Large-scale applications typically use a combination of both to
distribute work across a supercomputer.

Due to the heavy dependency of scientific applications on floating-point arithmetic
operations, floating-point operations per second (FLOPS) are used to designate a

1 CPUs typically contain multiple cores and the fastest supercomputers incorporate millions of cores.

– 13 –

CHAPTER 1. INTRODUCTION

supercomputer’s computational power and have replaced the simpler instructions
per second (IPS) metric. The performance development can be most easily observed
using the so-called TOP500 list. It ranks the world’s most powerful supercomputers
according to their computational performance in terms of FLOPS as measured by the
HPL benchmark [DLP03]. The performance of the supercomputers ranked number 1
and 500 as well as the sum of all 500 systems during 1993–2014 is shown in Figure 1.1
using a logarithmic y-axis. As can be seen, throughout the history of the TOP500
list, the computational power of supercomputers has been increasing exponentially,
doubling roughly every 14 months. The currently fastest supercomputers reach rates
of several PetaFLOPS – that is, more than 1015 FLOPS.

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

P
er

fo
rm

an
ce

 [
G

F
L

O
P

S]

Year

Sum #1 #500

Figure 1.1.: TOP500 performance development from 1993–2014 [The14c]

While the increasing computational power has allowed more accurate simulations to
be performed, this has also caused the simulation results to grow in size. Even though
data about the supercomputers’ storage systems is often not as readily available, the
highest ranking supercomputers currently have storage systems that are around 10–
60 petabytes (PB) in size and have throughputs in the range of terabytes (TB)/s. The
main memory of such systems usually already exceeds 1 PB. Consequently, simply
dumping the supercomputer’s complete main memory to the storage system – which
is a very common process called checkpointing – can already take several minutes in
the best case.2 However, it is also possible for checkpointing to take up to several
hours for imbalanced system configurations. Many HPC applications frequently
write checkpoints to be able to restart in case of errors due to their long runtimes.
Additionally, job execution is typically coordinated by so-called job schedulers; these

2 Storing 1 PB with 1 TB/s takes 1,000 s, which equals 16:40 min.

– 14 –

CHAPTER 1. INTRODUCTION

schedulers generally only allow allocations of up to several hours, that is, long-running
applications have to write checkpoints in order to split up their runtime into several
chunks. Due to the large amounts of data produced by parallel applications, the tools
to perform analysis and other post-processing often have to be parallel applications
themselves. Therefore, high performance input/output (I/O) is an important aspect
because storing and retrieving such large amounts of data can greatly affect the overall
performance of these applications.

For example, a parallel application may perform iterative calculations on a large
matrix that is distributed across a number of processes on different computers. To be
able to comprehend the application’s calculations, it is often necessary to output the
matrix every given number of iterations. This obviously influences the application’s
runtime since the matrix has to be completely written before the program can continue
to run. A common access pattern produced by these applications involves many
parallel processes, each performing non-overlapping access to a shared file. Because
each process is responsible exclusively for a part of the matrix, each process only
accesses the part of the file related to the data this specific process holds.

However, the I/O requirements of parallel applications can vary widely: While
some applications process large amounts of input data and produce relatively small
results, others might work using a small set of input data and output large amounts of
data; additionally, the aforementioned data can be spread across many small files or be
concentrated into few large files. Naturally, any combination thereof is also possible.
Additionally, the source of data is diverse: Detectors and sensors might deliver data at
high rates or parallel applications may produce huge amounts of in-silico data. As can
be seen, the different requirements of parallel applications can make high demands on
supercomputers’ storage systems.

1.2. Parallel Distributed File Systems

The storage system used by the parallel applications is usually made available by a
parallel distributed file system. File systems provide an abstraction layer between the
applications and the actual storage hardware, such that application developers do not
have to worry about the organizational layout or technology of the underlying storage
hardware. Additionally, file systems usually offer standardized access interfaces to
reduce portability issues. To meet the high demands of current HPC applications,
parallel distributed file systems offer efficient parallel access and distribute data across
multiple storage devices. On the one hand, parallel access allows multiple clients to
cooperatively work with the same data concurrently, which is a key requirement for
the parallel applications used today. On the other hand, the distribution of data allows
to use both the combined storage capacity as well as the combined throughput of the
underlying storage devices. This is necessary to be able to build the huge storage

– 15 –

CHAPTER 1. INTRODUCTION

systems with capacities of several PB and throughputs in the range of TB/s described
above. Figure 1.2 illustrates these two concepts: Multiple clients access a single file
concurrently while the file’s data is distributed across several storage devices.

Data

Clients

Servers

File

Figure 1.2.: Parallel access from multiple clients and distribution of data

While home directories and smaller amounts of data are sometimes still stored on
non-parallel file systems such as NFS3, large-scale I/O is almost always backed by
a parallel distributed file system. Two of the most widely used parallel distributed
file systems today are Lustre [Clu02] and GPFS [SH02], which power most of the
TOP500’s supercomputers [The14c].

Network

Clients

Servers

Figure 1.3.: Parallel distributed file system

Figure 1.3 shows the general architecture of an exemplary parallel distributed file
system. Machines can be divided into two groups: clients and servers. The clients

3 Network File System

– 16 –

CHAPTER 1. INTRODUCTION

have access to the parallel distributed file system and are used to execute the parallel
applications. They usually do not have storage attached locally and have to perform
all I/O by sending requests to the server machines via the network. The servers are
attached to the actual file system storage and process client requests. These servers
can be full-fledged computers or simpler storage controllers.

Because all I/O operations have to pass the network, they can be expensive to
perform in such an architecture. This is due to the fact that the network introduces
additional latency and throughput constraints. However, newer concepts such as
burst buffers are increasingly used to improve this situation [LCC+12]. Details about
the architecture of common parallel distributed file systems – including the different
kinds of servers and the distribution of data – will be given in Chapter 2.

1.3. Input/Output Interfaces and Semantics

Parallel distributed file systems provide one or more I/O interfaces that can be used to
access data within the file system. Usually at least one of them is standardized, while
additional proprietary interfaces might offer improved performance at the cost of
portability. Additionally, higher-level I/O interfaces are provided by I/O libraries and
offer additional features usually not found in file systems. Popular interface choices
include POSIX4, MPI-IO, NetCDF5 and HDF6. Almost all the I/O interfaces found in
HPC today offer simple byte- or element-oriented access to data and thus do not have
any a priori information about what kind of data the applications access and how the
high-level access patterns look like. However, this information can be very beneficial
for optimizing the performance of I/O operations.

There are notable exceptions, though: For instance, ADIOS7 outsources the I/O
configuration into an external XML8 file that can be used to describe which data
structures should be accessed and how the data is organized. On the one hand, this
additional information enables the I/O library to provide more sophisticated access
possibilities for developers and users. On the other hand, the knowledge can be used
by the library to efficiently handle I/O requests.

However, even these more advanced I/O interfaces do not offer support to specify
additional semantical information about the applications’ behavior and requirements.
Due to this lack of knowledge about application behavior, optimizations are often
based on heuristic assumptions which may or may not reflect the actual behavior.

The I/O stack is realized in the form of layers, with the typical view of a developer
being shown in Figure 1.4 on the next page. The parallel application uses a high-level

4 Portable Operating System Interface
5 Network Common Data Form
6 Hierarchical Data Format
7 Adaptable IO System
8 Extensible Markup Language

– 17 –

CHAPTER 1. INTRODUCTION

Parallel Application

NetCDF

Lustre

Figure 1.4.: Simplified view of the I/O stack

I/O interface – in this case, NetCDF – that writes its data to a file system – in this case,
Lustre. The underlying idea of this concept is that developers only have to care about
the uppermost layer and can safely ignore the other ones; in fact, it should be possible
to exchange the lower layers without any behavioral change. However, in reality,
the I/O stack is much more complex and features a multitude of intermediate layers
that have subtle influences on the I/O system’s behavior. Additionally, it is necessary
to take all layers into account to obtain optimal performance. This can lead to I/O
behavior that is very hard to predict, let alone explain and understand. Consequently,
it is a difficult task to improve potential performance problems. The whole I/O stack
and its problems will be described in more detail in Chapter 2.

While the I/O interface defines which I/O operations are available, the I/O seman-
tics describes and defines the behavior of these operations. Usually each I/O interface
is accompanied by a set of I/O semantics, tailored to this specific interface. The POSIX
I/O semantics is probably both the oldest and the most widely used semantics, even in
HPC. However, due to being designed for traditional local file systems, it imposes un-
necessary restrictions on today’s parallel distributed file systems. POSIX’s very strict
consistency requirements are one of these restrictions and can lead to performance
bottlenecks in distributed environments.

Parallel distributed file systems often implement the strictest I/O semantics – that
is, the POSIX I/O semantics – to accommodate applications that require it or simply
expect it to be available for portability reasons. However, this can lead to suboptimal
behavior for many use cases because its strictness is often not necessary. Even though
application developers usually know their applications’ requirements and could easily
specify them for improved performance, current I/O interfaces and file systems do
not provide appropriate facilities for this task.

1.4. Motivation

Performing I/O efficiently is becoming an increasingly important problem. CPU
speed and hard disk drive (HDD) capacity have roughly increased by factors of 500
and 100 every 10 years, respectively [The14c, Wik14e]. The speed of HDDs, however,
grows more slowly: Early HDDs in 1989 delivered about 0.5 megabytes (MB)/s, while

– 18 –

CHAPTER 1. INTRODUCTION

current HDDs manage around 150 MB/s [Wik14b]. This corresponds to a 300-fold
increase of throughput over the last almost 25 years. Even newer technologies such as
SSDs only offer throughputs of around 600 MB/s, resulting in a total speedup of 1,200.
For comparison, over the same period of time, the computational power increased
by a factor of more than 1,000,000 due to increasing investments. While this problem
can not be easily solved without major breakthroughs in hardware technology, it is
necessary to use the storage hardware as efficiently as possible to alleviate its effects.

To make the problem worse, the growth rate of HDD capacity has recently also
started to slow down. While the same is true for CPU clock rate, this particular problem
is being compensated for by growing numbers of increasingly cheap cores. However,
the price of storage has been staying more or less constant for the last several years,
requiring additional investment to keep up with the advancing processing power.

0.001

0.01

0.1

1

10

100

1,000

10,000

1980 1985 1990 1995 2000 2005 2010 2015

C
ap

ac
it

y
 [

G
B

]

Year

(a) HDD capacities from 1980–2014

0.001

0.01

0.1

1

10

100

1,000

10,000

1980 1985 1990 1995 2000 2005 2010 2015

Sp
ee

d
 [

M
B

/s
]

Year

(b) HDD speeds from 1989–2009

Figure 1.5.: Development of HDD capacities and speeds [Wik14a, Wik14b]

Figures 1.5a and 1.5b show the increase in HDD capacity and speed from roughly
the same period of time. As can be seen, HDD capacity is growing much faster than
their speed, which leads to various problems even outside of HPC. For example,
simply rebuilding a replaced HDD in a redundant array of independent disks (RAID)
took around 30 minutes in 20049, while the same operation takes more than seven
hours today10.

Although it is theoretically possible to compensate for this fact in the short term
by simply buying more storage hardware, the ever increasing gap between the ex-

9 Assuming a 160 gigabytes (GB) HDD with a throughput of 75 MB/s.
10 Assuming a 4 TB HDD with a throughput of 150 MB/s.

– 19 –

CHAPTER 1. INTRODUCTION

ponentially growing processing power on the one hand and the stagnating storage
capacity and throughput on the other hand, requires new approaches to use the
storage infrastructure as efficiently as possible.

Usage Component Size Speed

Desktop
CPU 8 cores 100 GFLOPS

Main Memory 16 GiB 50 GiB/s
Storage 4 TB 600 MB/s

TOP500, rank 1
CPU 3,120,000 cores 33.9 PFLOPS

Main Memory 1.3 PiB No data
Storage 12.4 PB No data

TOP500, rank 2
CPU 560,640 cores 17.6 PFLOPS

Main Memory 694 TiB No data
Storage 40 PB 1.4 TB/s

Table 1.1.: Comparison of important components in different types of computers

To properly assess a system’s performance, it is not only necessary to take the
absolute sizes and speeds into account, but also to consider their relationship with
each other. Interesting quantities include the amount of main memory per core, the
proportion of main memory and storage, as well as the main memory and storage
throughput per core. Table 1.1 contains typical sizes and speeds of the most important
computer components for different usage scenarios.11

Based on the given numbers, typical desktop computers are equipped with 2 gibibytes
(GiB) of main memory per core and offer 250 GB of storage per 1 GiB of main memory;
additionally, the storage can be accessed with 600 MB/s. Assuming a fair distribution
among all cores, this provides per-core throughputs of 6.25 GiB/s to the main memory
and 75 MB/s to the storage.

The numbers change drastically when looking at supercomputers: The TOP500
system ranked number 1 is equipped with a very large number of cores, a reasonable
amount of main memory and a relatively small storage system. It offers 0.44 GiB of
main memory per core and 9.5 GB of storage per 1 GiB of main memory; this equals
22 % and 3.8 % of the desktop computer’s main memory per core and storage per
main memory, respectively. While the moderate amount of main memory per core is
usually sufficient for the very compute-intensive HPC applications, the small amount
of storage dramatically limits the amount of data that can be stored. As mentioned
earlier, HPC applications often write checkpoints to storage. Using this configuration,
it is only possible to dump the main memory contents eight times before the storage

11 The components for the desktop usage represent a reasonably powerful desktop computer in 2014; the
data for the TOP500 systems ranked number 1 and 2 can be found in the 2014-06 list [The14c].

– 20 –

CHAPTER 1. INTRODUCTION

is filled up.12 This is a stark contrast to the 232 possible main memory dumps on a
typical desktop computer.

The TOP500 system ranked number 2 is equipped with much less cores, half the
amount of main memory, but a much larger storage system. It offers 1.27 GiB of main
memory per core and 57.6 GB of storage per 1 GiB of main memory. This corresponds
to 63.5 % and 23 % of the desktop computer’s main memory per core and storage
per main memory, respectively. While this amount of storage offers more freedom
for storing large checkpoints and application output, the actual storage throughput
warrants a closer look. Assuming that all cores access the storage in a fair manner, the
system offers a throughput of 2.5 MB/s per core; this merely corresponds to 3.3 % of
the desktop computer’s per-core storage throughput.

Due to the reasons outlined above, it is necessary to use the storage systems of super-
computers as efficiently as possible, both in terms of capacity as well as performance.
Many of the parallel distributed file systems in use today do not allow applications to
exhaust their potential. This is due to the fact that these file systems are optimized for
specific use cases and do not offer enough opportunities for application developers to
optimize them according to their applications’ needs.

1.5. Contribution

The goal of this thesis is to explore the usefulness of additional semantical information
in the I/O interface. The JULEA13 framework introduces a newly designed I/O
interface featuring dynamically adaptable semantics that is suited specifically for
HPC applications. It allows applications developers to specify the semantics of I/O
operations at runtime and supports batch operations to increase performance. The
overall goal is to allow the application developer to specify the desired behavior and
leave the actual realization to the I/O system. This should allow applications to make
the most of the available storage hardware and thus increase the overall efficiency
of I/O in HPC systems. This approach is expected to improve the current situation
because existing solutions simply do not allow such fine-grained control over so many
different aspects of file system operations.

1.6. Structure

This thesis is structured as follows: Chapter 2 contains an overview of the current state
of the art; all important concepts related to file systems, object stores, I/O interfaces
and I/O semantics are introduced and explained. The design of the JULEA I/O

12 The count of eight stems from the fact that main memory and storage are counted using GiB and GB,
respectively. While GiB use a base of two, GB use a base of ten.

13 JULEA is not an acronym.

– 21 –

CHAPTER 1. INTRODUCTION

interface is elaborated in Chapter 3, focusing on the differences to traditional I/O
interfaces and file systems. Chapter 4 covers related work and compares JULEA’s
design with existing approaches. Select parts of the implementation are presented
in-depth in Chapter 5. Chapter 6 contains an analysis of the behavior of different
file systems using both synthetic benchmarks as well as real-world applications. A
conclusion and future work are given in Chapter 7.

Summary

This chapter has introduced the I/O problems found in today’s HPC systems that are caused by
the ever increasing gap between computational speed on the one hand and storage capacity and
speed on the other hand. It has also given an overview of parallel distributed file systems as
well as I/O interfaces and semantics, and their impact on overall performance. Because current
supercomputers show a trend of neglecting their storage systems in favor of computation, new
approaches are necessary to make the most of the available storage hardware.

– 22 –

Chapter 2.

State of the Art and Technical
Background

In this chapter, an in-depth overview of existing technologies related to I/O interfaces and
semantics will be provided. Today’s I/O interfaces and semantics will be analyzed regarding
their suitability and adaptability for high performance computing applications. Additionally,
different approaches for managing the file system namespace will be compared.

2.1. Input/Output Stack

Input/output (I/O) stacks usually feature a strongly layered architecture. Traditionally,
this has been a major advantage because the clear separation between the different
layers provides benefits regarding portability and interchangeability of individual
layers. Figure 2.1a on the following page shows the relatively simple I/O stack of a
traditional application that directly uses the underlying file system’s I/O interface.
Since all layers interact using standardized interfaces, it is easily possible to exchange
the underlying storage device or even file system without adapting the application.

However, the I/O stack used by current high performance computing (HPC) ap-
plications is much more complex due to the more advanced requirements. This has
led to the situation visualized in Figure 2.1b on the next page, which illustrates all
the different layers involved in common scenarios. The different layers will be briefly
explained below; more detailed information can be found in the following sections.

Parallel Application This can be an arbitrary parallel program executed on a su-
percomputer. For instance, this could be an earth system model using the de-facto
standard MPI1 for communication. It uses NetCDF2 to read and write its data, which
is a popular choice because it allows easy exchange of data.

1 Message Passing Interface
2 Network Common Data Form

– 23 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

Application

File System

Block Storage

User
Space
Kernel
Space

(a) Traditional I/O stack

Parallel Application

NetCDF

MPI-IO

Block Storage

ADIO

HDF5

Lustre

ldiskfs

User
Space
Kernel
Space

(b) HPC I/O stack

Figure 2.1.: I/O stacks used in traditional and HPC applications

NetCDF This high-level I/O library provides a convenient interface to interact with
self-describing data. This allows storing additional meta information together with
the data, which is widely used in the natural sciences. However, it does not define its
own file format and thus does not directly store the data itself. Instead, it delegates
this task to yet another I/O library called HDF3.

HDF This high-level I/O library also provides an interface to interact with self-
describing data, similar to NetCDF. Additionally, it defines file formats to actually
store and access this data. It can use different storage backends such as POSIX4 for
serial I/O and MPI-IO for parallel I/O.

MPI-IO The so-called I/O middleware provides a portable interface for data access
that abstracts from the underlying file system. It usually includes optimizations
for different file systems to enable efficient I/O. Common implementations of MPI
include MPICH5 and OpenMPI; both use ROMIO to provide MPI-IO support. ROMIO
implements file-system-specific optimizations in the so-called ADIO6 layer [HK04].
This middleware then accesses a parallel distributed file system.

Lustre The parallel distributed file system provides common file system function-
alities such as metadata management, path lookup and striping to the upper layers.
Parallel distributed file systems often provide a POSIX interface for portable access;

3 Hierarchical Data Format
4 Portable Operating System Interface
5 MPICH acts as the base for many other popular MPI implementations such as MVAPICH, IBM MPI,

Intel MPI and Cray MPT.
6 Abstract-Device Interface for I/O

– 24 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

proprietary interfaces are also possible, however. Lustre uses another underlying
POSIX file system to store both its data and metadata. In this case, ldiskfs provides a
full-featured file system based on ext4.

Block Storage The low-level storage hardware provides storage capacity for the file
system. It is often supplied in a block-oriented fashion in the form of locally attached
hard disk drives (HDDs) or solid state drives (SSDs). However, it also possible to use
more complex architectures like a storage area network (SAN).

2.1.1. Problems

All I/O initiated by the application has to pass all the different layers and is potentially
copied and transformed multiple times along its way. While the clear separation
between layers provides advantages in terms of portability and interchangeability,
it can prove counterproductive for performance. The different interfaces are often
inappropriate to transport information necessary for high performance across layer
boundaries. Additionally, no reliable information might be available about the other
involved layers, making it hard – if not impossible – to adapt to the software environ-
ment at hand. This can have a negative impact on overall I/O performance.

The fact that the layers do not have any information about the the other layers often
implies that each layer has to perform its own optimizations to be able to use the I/O
system’s full potential. For instance, almost all layers implement their own caching
to reduce the number of I/O accesses that have to be performed. However, these
optimizations can also conflict and actually reduce the achieved performance.

While the upper layers usually provide more comfort and abstraction, the perfor-
mance yield might be lower. They often provide interfaces that are more suited for
handling data types actually found in parallel applications and it would therefore be
favorable to be able to use them. Because performance is often more important than
convenience, the difficult-to-use byte-oriented lower layers are often used directly
to harness the I/O system’s full potential. This has led to a multitude of different
libraries written around the low-level I/O interfaces.

One problem that drives developers to the low-level interfaces is the fact that the
high-level I/O libraries often do not offer fine-grained control over the actual I/O and
instead hide this complexity from the user. For instance, while it is easily possible to
align the I/O operations for optimal performance with POSIX and HDF, NetCDF does
not offer such functionality [Bar14].

Additional semantical information could help reducing the need for fine-grained
control by providing the I/O system with enough information to make meaningful
decisions by itself. Presently, support for modifying the I/O semantics is very limited
at best. While some layers provide basic support, it is currently not possible to pass
semantical information down through the I/O stack. To ease the development of codes

– 25 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

in need of high performance I/O, it would be very beneficial to provide easy-to-use
interfaces that are still able to provide adequate performance.

Abstraction

High

Low

~wwwwwwwwww�

Interface Data Types Control

NetCDF Structures Coarse-grained

MPI-IO Elements

POSIX Bytes Fine-grained

Figure 2.2.: Levels of abstraction found in the HPC I/O stack

Figure 2.2 gives an overview of the different levels of abstraction found in the
I/O stack. Higher levels of abstraction such as those provided by NetCDF allow
convenient access to data structures but only coarse-grained control over the I/O
interface’s behavior. The I/O middleware is provided by MPI-IO, which provides an
element-based interface and some degree of control over internal functionalities. The
lowest level of abstraction is provided by the POSIX interface; access is only possible
in the form of a byte stream but I/O can be manually tuned for optimal performance
due to the fine-grained control.

The remaining chapter will give an in-depth overview of the complete I/O stack
with the exception of block storage, which will only be mentioned briefly. To convey
how the different components build and improve upon each other, the overview will
be given bottom to top.

2.2. File Systems

File systems store, manage and make data available for later reuse in an organized
fashion. Without them, developers and users would have to interface directly with
the storage hardware – for example, HDDs and SSDs.

Traditionally, file systems expose two basic data structures called files and directories.
While files contain actual data, directories are used for organizational purposes. Direc-
tories can contain files as well as other directories, usually providing a hierarchical
file system namespace. Virtually all file systems distinguish these two concepts, even
if they are not necessarily called the same. Files and directories are usually accessed
by their name – called a path; more information about path traversal is available in
Section 2.7 on page 46. Examples for traditional file system include Windows’s NTFS7,
OS X’s HFS+8 or Linux’s ext4 [MCB+07].

7 New Technology File System
8 Hierarchical File System Plus

– 26 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

While files and directories represent the bare minimum in terms of file system
functionality, many file systems provide additional features such as so-called named
pipes and forks: Named pipes provide a first in, first out (FIFO) data structure for
inter-process communication (IPC) within the file system. Forks allow storing several
different data streams within a single file or directory [Wik14c, Mea03]. For instance,
image files could have an additional data stream storing thumbnails of the image to
make their on-the-fly generation redundant.

The explanations and observations in this thesis will focus on Linux because it is the
de-facto standard operation system used in the HPC field. It is therefore important to
note that almost all Linux file systems are POSIX-compliant. Consequently, the POSIX
standard plays an important role regarding file systems; more information about it
and its implications will be provided in Section 2.5.1 on page 35.

Linux kernel file systems are also generally implemented using the so-called virtual
file system (VFS) layer. This layer provides a standardized interface – in this case,
as defined by POSIX – that file systems can implement. The VFS then provides
uniform access for user space applications: Independent of the actual file system
implementation, applications can use the POSIX interface to perform I/O. The VFS
layer then takes care to forward the I/O operations to the appropriate file system
implementation. On the one hand, this provides benefits regarding portability because
applications do not have to be aware of the underlying file system. On the other hand,
it only allows file systems to provide a POSIX interface, making it more complicated
to experiment with alternative interface approaches.

2.2.1. File System Metadata

Files stored within a file system consist of data as well as metadata. While the file’s data
represents the actual content of the file (for example, an image or a movie), metadata
translates to “data about data” and refers to structural information in the context of file
systems. This information is required for data management and traditionally stored in
so-called inodes – or index nodes. File system metadata should not be confused with
metadata in the context of self-describing data formats; the latter refers to additional
information about the data and will be explained later.

File data can vary extremely in size, ranging from configuration files occupying only
some bytes to videos and simulation results that can easily use several gigabytes (GB)
or even terabytes (TB). Metadata usually only occupies several bytes – for example,
ext4’s default inode size is 256 bytes. Larger sizes of a few kilobytes (KB) are also
possible, but relatively uncommon. Inodes usually have a fixed size and a fixed format
with fields for permissions, ownership, different timestamps, flags and much more.

Figure 2.3 on the next page shows an excerpt of an inode as found in the ext4 file
system. The inode contains fields of fixed size for the different types of metadata;
these can be roughly separated into three main areas:

– 27 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

Size Content
2 bytes Permissions
2 bytes User identifier (ID)
4 bytes Size
4 bytes Access time
4 bytes Inode change time
4 bytes Data modification time
4 bytes Deletion time
2 bytes Group ID

...
...

60 bytes Block map, extent tree or inline data
...

...
4 bytes Version number
100 bytes Free space

Figure 2.3.: Structure of a 256 bytes inode (struct ext4_inode) [Won14]

1. The first fields are used to store access permissions, user and group ownership,
the file’s size, and different timestamps.

2. The block of 60 bytes in the middle of the inode can contain different kinds
of data, depending on the type of object an inode describes. ext4 supports a
new extent-based allocation scheme that stores the extent map inside this block.
However, if the extent-based allocation scheme is disabled9, the block is used
to store block mappings to direct, indirect, double indirect and triple indirect
blocks. If the file’s size is below 60 bytes, all file data is inlined into the block; this
can be beneficial for overall file system performance by reducing additional read
operations for the actual file data: In local file systems, additional read operations
usually require costly seek operations on the HDDs. In parallel distributed file
systems, the necessity to communicate with additional servers via the network
implies even more overhead. For example, the file tool has to read the first
few bytes of a file to determine its type. Operations such as running file on
large numbers of files can be sped up significantly by inlining data, because no
additional data blocks or extents have to be read. Obviously, this also applies to
all other tools which have to read file headers.

3. The 100 bytes of free space at the end of the inode can be used to store extended
attributes such as access control lists (ACLs). Should this space not be sufficient
to retain all extended attributes, additional entries can be stored in a data block.

9 This is always the case for ext2 and ext3. ext4 can also be used without extents, but this is uncommon.

– 28 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

Because of their fixed format and size, it is usually not possible to change or even
extend the schema of inodes after the file system’s creation and without breaking
compatibility. Examples of this are ext4’s repurposing of the block map field for data
inlining and the reservation of free space at the end of the inodes for future extensions.

2.3. Object Stores

In contrast to full-featured file systems, object stores provide only a very low level
of abstraction on top of storage devices. Strictly speaking, object stores simply offer
object-oriented access to data, which can be achieved on any abstraction layer. For
example, cloud services usually offer object stores for data storage. However, only
low-level object stores will be considered here. Instead of exposing raw block storage
to the end user, object stores offer access to so-called objects while handling tasks
such as block or extent allocation and management of free space internally [ADD+08].
These objects can optionally be organized in so-called object sets, which can be used to
group related objects.

While object stores are often discussed as a replacement for the low-level block
storage, they can also be used as light-weight and low-overhead replacements for file
systems when only basic storage management capabilities are required. File systems
such as btrfs10 and ZFS11 actually use object stores internally. This allows separating
the functionality for storage management and advanced file system features, leading
to cleaner and more maintainable code.

Objects are usually accessed using unique identifiers such as simple integers or
hashes. This can allow very fast access to the objects because no path lookup overhead
is incurred; more information about this is provided in Section 2.7 on page 46.

While there are a few object stores available, different technical issues prevent their
use by external third-party applications. First, the interfaces of the internal object
stores used by file systems are usually not exported for consumption by third parties.
Second, even exported interfaces may not be easily usable. For example, ZFS’s data
management unit (DMU) is largely undocumented and not meant to be used from
user space. Last, independently usable object stores are often discontinued in favor of
off-the-shelf file systems due to development and maintenance overhead. For instance,
Ceph developed and used its own EBOFS12 [WBM+06], but dropped it back in 2009; it
has since been replaced by btrfs.

10 b-tree file system
11 Zettabyte File System
12 Extent and B-tree-based Object File System

– 29 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

2.4. Parallel Distributed File Systems

As presented briefly in Chapter 1, parallel distributed file systems consist of clients and
servers that are communicating via a network. The servers can be separated into data
and metadata servers. Data servers are usually only used to store the actual file data,
while metadata servers hold all information regarding the file system’s organizational
structure, such as file metadata and directories.

The workload is distributed across all of them to increase capacity as well as per-
formance. While there are always multiple data servers, specific file systems still
use centralized metadata management, that is, they support only a single metadata
server. However, due to the difficulty of scaling such an approach to higher numbers
of clients and files, it is being increasingly replaced by distributed metadata, which
uses multiple metadata servers.

Due to this separation, data and metadata servers usually see different access
patterns. While file data is meant to be accessed in large chunks, file system metadata is
small by design. Consequently, metadata servers are often subject to large numbers of
small, random accesses. As HDDs are very bad at handling these kinds of workloads,
the problem is often mitigated using HDDs with a high number of revolutions per
minute (RPM) or – as is becoming more and more attractive – SSDs, which offer orders
of magnitude higher input/output operations per second (IOPS) than HDDs. There
have also been approaches using alternative storage technologies such as persistent
random access memory (RAM) but these have not been widely adopted [WKRP06].

Technology Device IOPS

HDD
7,200 RPM 75–100

10,000 RPM 125–150
15,000 RPM 175–210

SSD
Intel X25-M G2 8,600
OCZ Vertex 4 85,000–90,000

Table 2.1.: IOPS for exemplary HDDs and selected SSDs [Wik14d]

Table 2.1 contains a list of selected storage devices and their respective IOPS for
illustrative purposes. As can be seen, a single high-end SSD can easily provide as
many IOPS as 450 high-end HDDs.13 On the one hand, SSDs have a much higher price
per GB than HDDs – around 0.8e per GB for SSDs in comparison to around 0.04e
per GB for HDDs in 2014. On the other hand, metadata only occupies a fraction of
the space needed for the actual data – estimations for metadata size are usually in the
range of 5 % of the data contained within a file system. Overall, SSDs are an appealing
alternative for workloads limited by the number of IOPS such as those commonly

13 This example uses a modern SSD with 90,000 IOPS and a modern HDD with 200 IOPS.

– 30 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

seen on metadata servers. However, more research is needed to be able to fully take
advantage of the improved capabilities of SSDs; currently, the metadata performance
of parallel distributed file systems can only be sped up by a factor of 2–4 by using
SSDs [AEHH+11].

Blocks

Servers

Stripes

B1B0 B5 B6B3 B4B2 B7

B1

B7B5 B6

B3B2B0B4

Figure 2.4.: Round-robin data distribution

The file system logic is often implemented in the clients that can usually decide
autonomously which servers to contact; the servers do not have to communicate with
each other and act as simple data stores. The partitioning of data and metadata is
handled using so-called distributions.

As illustrated in Figure 2.4, round-robin schemes are a common approach for data
distribution; they are used to distribute data in equal chunks across multiple servers
in circular order. In this example, eight blocks of data (B0–B7) are distributed across
five data servers. The servers hold so-called stripes of the data; in this example,
the data blocks exactly correspond to the stripes. As can be seen, the round-robin
distribution does not necessarily have to start at the first data server; in this case, it
starts at the second. The starting server is usually chosen randomly to ensure an even
distribution.14 The data blocks are distributed normally until the last data server is
reached; afterwards, the distribution restarts with the first data server.

These round-robin schemes can lead to unbalanced distributions of data, as demon-
strated in this example. However, due to the random starting server and large file
sizes this problem can usually be ignored.

Metadata is often distributed by means of hashing; using cryptographic hash func-
tions such as the SHA family has the advantage of providing uniform distributions.
In these cases, the file name or full path is hashed to decide which metadata server to
target. While metadata is usually distributed across multiple metadata servers, it is

14 Otherwise, multiple clients accessing the beginning of different files would all contact the same data
server, which could have negative impacts on performance.

– 31 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

often not striped in any way, that is, the complete metadata for a single file is managed
by exactly one metadata server.

Clients and servers are usually hosted on different sets of physical machines to
provide more predictable performance characteristics as computational load on the
clients should not influence the servers’ I/O performance and vice versa [LM10].

Based on this generic explanation, a detailed description of Lustre’s architecture
and an overview of OrangeFS will be provided in the following sections.

2.4.1. Lustre

Lustre is an open source parallel distributed file system that is widely used on current
supercomputers. In contrast to other proprietary solutions such as GPFS15, it is
possible to adapt, extend and improve Lustre due to it being licensed under the GNU
General Public License (GPL) (version 2). Lustre powers around half of the TOP100
supercomputers and almost one third of all TOP500 supercomputers [Fel13].

Lustre was started in 1999 by Peter Braam, who founded his own company called
Cluster File Systems in 2001 to continue development. Cluster File Systems was
acquired by Sun Microsystems in 2007, which started bundling Lustre with its HPC
hardware. Oracle Corporation bought Sun Microsystems in 2010 and soon announced
that it would cease Lustre development. Today, Lustre is developed and supported by
Intel (formerly Whamcloud), Xyratex, OpenSFS16, EOFS17 and others.

As is common in parallel distributed file systems, Lustre distinguishes between
clients and servers. It is possible to run clients and servers on the same nodes for
testing purposes but it is common to distribute them to separate nodes in production
environments. While all clients are identical, the servers can have different roles:

• Object storage servers (OSSs) manage the file system’s data. They provide an
object-based interface that clients can use to access byte ranges within the objects.
Each OSS is connected to possibly multiple object storage targets (OSTs) that store
the actual file data.

• Meta data servers (MDSs) manage the file system’s metadata, such as directories,
file names and permissions. MDSs are not involved in the actual I/O but only
contacted once when a file is created or opened. The clients are then able to
independently contact the appropriate OSSs. Each MDS is connected to possibly
multiple meta data targets (MDTs) that store the actual metadata.

15 General Parallel File System
16 Open Scalable File Systems
17 European Open File Systems

– 32 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

Lustre does not grant the clients direct access to the storage, but instead delegates this
responsibility to the servers. Clients send their requests to the appropriate servers that
process them and then in turn send a response to the client. Both MDTs and OSTs use
an underlying file system to store their data. Traditionally, an improved version of
ext4 called ldiskfs has been used. However, support for ZFS’s DMU has been added
in Lustre’s version 2.4.

Lustre has been implemented as a Linux kernel file system. Its client supports
standard Linux kernels, though support for newer Linux versions had to be added
manually and was thus not available immediately. However, the client has been
merged into the Linux kernel as of version 3.12 and is now available without any
further actions.18 Lustre’s server part is only compatible with special enterprise kernels,
such as those found in SUSE Linux Enterprise Server and Red Hat Enterprise Linux.19

Network

Clients

MDSs
MDTs

OSSs
OSTs

Figure 2.5.: Lustre architecture

Figure 2.5 demonstrates the general architecture of Lustre using a simple example
with ten clients and eight servers. There are two MDSs handling all metadata accesses
and six OSSs processing all data accesses. Each MDS and OSS has two storage devices
attached that represent the MDTs and OSTs, respectively. The Lustre file system can be
accessed using a mount point on the clients; they handle all accesses and communicate
with the appropriate MDSs and OSSs via the network.

Traditionally, Lustre has only supported a single MDT and consequently one active
MDS, optionally complemented by a second failover MDS. With the growing number
of clients in today’s supercomputers, this posed a serious threat to future scalability

18 The Lustre client module included in the Linux kernel may occasionally lag behind upstream Lustre
development, however.

19 Free and binary-compatible alternatives such as CentOS and Scientific Linux are also available.

– 33 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

because all metadata was centralized on one server. Lustre 2.4 introduced the so-
called distributed namespace (DNE) which allows the system administrators to statically
distribute the file system namespace across multiple MDTs. While the current im-
plementation only supports a static partitioning, a feature planned for future Lustre
releases will offer true distributed metadata with which the directories themselves can
be striped across multiple MDTs.

For example, it is common for HPC systems to provide two directories /home
and /scratch that are used to house the users’ home directories and scratch data,
respectively. DNE can be used to provide appropriate resources depending on the
intended usage. /home usually contains many – possibly small – files, resulting in high
metadata access rates. Less metadata performance might be sufficient for /scratch
because it usually only contains a small number of large files. This could be solved
by using a high-end SSD with a large number of IOPS as /home’s MDT and a cheaper
but slower solution for /scratch’s MDT. The necessary commands to set up Lustre’s
DNE for this use case can be found in Appendix B.3.1 on page 190.

Network

Clients

MDS
MDTs

OSSs
OSTs

(a) Step 1: metadata lookup

Network

Clients

MDS
MDTs

OSSs
OSTs

(b) Step 2: data access

Figure 2.6.: One client accessing a file inside a Luste file system

Figure 2.6 shows how a typical access to a file inside a Lustre file system takes
place. The example uses five clients, one MDS with two MDTs and three OSSs with
two OSTs each. The highlighted connections indicate active communication between
the involved machines. The second client wants to access an arbitrary file. In order
to do so, it has to contact the MDS to perform a path lookup (see Figure 2.6a). The
MDS will return the file’s metadata, including its distribution information. Using
the distribution information, the client can autonomously determine which OSSs

– 34 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

contain parts of the file’s data. Afterwards, the client can contact the appropriate
OSSs concurrently (see Figure 2.6b on the preceding page). The fact that the MDS is
only involved during the initial opening of the file ensures that possible metadata
performance bottlenecks do not influence data performance.

2.4.2. OrangeFS

OrangeFS is another open source parallel distributed file system mainly developed by
Clemson University, Argonne National Laboratory and Omnibond. It is the successor
of the PVFS20 project, having started as a development branch of PVFS in 2007. In
2010, OrangeFS became the main branch and replaced PVFS.

OrangeFS supports multiple data and metadata servers in its current version 2.8.
Even though it supports multiple metadata servers, a single directory can not be
distributed across multiple servers. However, support for distributed directories is
scheduled for version 2.9. OrangeFS has excellent MPI-IO support because the widely
used MPI-IO implementation ROMIO provides a native backend.

Even though OrangeFS is not as commonly used as Lustre, it still provides interest-
ing features. It can be run completely from user space without the need for any kernel
modules: The servers run as normal user space processes, an MPI-IO interface is
provided through ROMIO and a POSIX interface is available via a FUSE21 file system.
An additional, optional kernel module is available that allows mounting OrangeFS
as any other Linux file system [VRC+04]. Moreover, OrangeFS’s code base is much
smaller than Lustre’s, making it easier to develop modifications and extensions for it.

2.5. Input/Output Interfaces

I/O interfaces define a set of possible operations that can be performed. Additionally,
each I/O interface is usually accompanied by its own set of I/O semantics that is
tailored specifically to this interface. A description of the most common I/O interfaces
and their corresponding semantics follows.

2.5.1. POSIX

The POSIX I/O interface has been originally designed for use in local file systems.
Its first formal specification dates back to 1988, when it was included in POSIX.1;
specifications for asynchronous and synchronous I/O were added in POSIX.1b from
1993 [IG13]. This interface is very widely used, even in parallel distributed file systems,
and thus provides excellent portability [VLR+08].

20 Parallel Virtual File System
21 Filesystem in Userspace

– 35 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

1 int open (const char *pathname, int flags, mode_t mode);
2 int close (int fd);
3 ssize_t pread (int fd, void* buf, size_t count, off_t offset);
4 ssize_t pwrite (int fd, const void* buf, size_t count, off_t

↪→ offset);
5 int fstat (int fd, struct stat *buf);
6 int unlink (const char *pathname);

Listing 2.1: POSIX I/O interface

To get an overview about POSIX’s functionality and usability, Listing 2.1 shows
selected functions provided by the POSIX interface:

• The open function can be used to create and open existing files (line 1). It accepts
a path pathname and returns a so-called file descriptor that is represented by an
integer. Its arguments flags and mode can be used to specify different file flags
and permissions for newly created files, respectively. There are actually three
versions of the open function: the presented one with three arguments, another
version with two arguments and the creat function. The version with two
arguments omits the mode argument and can only be used for already existing
files. The creat function is equivalent to the open function called with flags
set to O_CREAT | O_WRONLY | O_TRUNC, which specifies that the file should be
created if it does not exist, opened in write-only mode and truncated to size 0 if
it already exists.

• The close function simply closes the open file descriptor fd (line 2).

• The pread function reads data from a file specified by an open file descriptor
fd (line 3). It reads count bytes, starting at byte position offset, and stores the
read data in the buffer buf.

• The pwrite function performs the opposite operation (line 4). It writes count
bytes to the file specified by fd, starting at byte position offset; the to-be-
written data is taken from the buffer buf. The traditional read and write
operations work the same as their p-prefixed counterparts but do not accept the
offset argument. Instead, they operate using a file pointer that is advanced
automatically after each operation.

• The fstat function returns metadata about the open file descriptor fd and
stores it in buf (line 5). There are two more variants of the fstat function:
The stat function works the same but accepts a path instead of an open file
descriptor. The lstat function is identical to the stat function, except that it
does not dereference symbolic links. buf is a structure containing multiple fields

– 36 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

for the metadata, such as st_size for the file size and st_mtime for the last
modification timestamp.

• The unlink function deletes a file given by the path pathname (line 6). To be
precise, the unlink function only removes a link to a file. As files are reference
counted objects, they are only deleted if their reference count – that is, their
number of links – drops to zero. It is necessary to use the rmdir or remove
functions to delete directories. While the former only removes directories, the
latter is able to remove both files and directories.

A longer code example using the functions mentioned above can be found in Ap-
pendix C.1 on pages 192–194.

2.5.2. MPI-IO

The MPI-IO interface offers support for parallel I/O and was introduced in the MPI
standard’s version 2.0 in 1997 [Mes12]. All I/O operations are handled in an analogous
fashion to MPI’s normal message passing operations. It provides an I/O middleware
that abstracts from the actual underlying file system. The popular ROMIO imple-
mentation uses the ADIO layer that includes support and optimizations for POSIX,
NFS, OrangeFS and many other file systems [HK04]. In contrast to the byte-oriented
POSIX interface, the MPI-IO interface is element-oriented and uses the existing MPI
infrastructure of MPI datatypes to access data within files. However, the actual I/O
functions look very similar to their POSIX counterparts [Seh10].

1 int MPI_File_open (MPI_Comm comm, char* filename, int amode,
↪→ MPI_Info info, MPI_File* fh);

2 int MPI_File_close (MPI_File* fh);
3 int MPI_File_read_at (MPI_File fh, MPI_Offset offset, void* buf,

↪→ int count, MPI_Datatype datatype, MPI_Status* status);
4 int MPI_File_write_at (MPI_File fh, MPI_Offset offset, void* buf,

↪→ int count, MPI_Datatype datatype, MPI_Status* status);
5 int MPI_File_get_size (MPI_File fh, MPI_Offset* size);
6 int MPI_File_delete (char* filename, MPI_Info info);

Listing 2.2: MPI-IO I/O interface

Listing 2.2 shows selected functions provided by the MPI-IO interface. All functions
return an integer that signals whether the operation was successful or not; this can be
checked by comparing it with the status code MPI_SUCCESS and several error codes.

• Files are created and opened using the MPI_File_open function (line 1). It
accepts a path filename and returns a so-called file handle fh that can be used

– 37 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

to access the file with the following functions. Different file access modes can
be specified using the amode argument. MPI-IO provides access modes such
as MPI_MODE_CREATE and MPI_MODE_WRONLY that are identical to their POSIX
counterparts. The info argument can be used to provide so-called hints to
the MPI-IO implementation; for instance, this allows modifying internal buffer
sizes and timeouts. All processes in the MPI communicator comm perform the
operation collectively and must provide the same values for the amode and
filename arguments. Opening individual files can be accomplished using the
MPI_COMM_SELF communicator.

• MPI_File_close closes the file handle fh again (line 2).

• The MPI_File_read_at function reads data from the opened file handle fh
(line 3). It reads count elements of type datatype, starting at position offset;
the data is stored in buf. In contrast to POSIX’s byte-oriented interface, MPI-IO
provides an element-oriented interface. To work with single bytes, it is possible
to specify MPI_BYTE as the datatype argument. The operation’s status is stored
in status. Checking the number of read elements requires an additional step
after the operation has finished: The MPI_Get_count function can be used to
extract this information from the MPI_Status object.

• The MPI_File_write_at function performs the opposite operation, writing data
into the opened file handle fh (line 4). It writes count elements of type datatype,
starting at position offset; the data is taken from buf. Again, the number of
written elements can be checked using the MPI_Get_count function.

• The MPI_File_get_size function retrieves the size of the file opened using the
file handle fh and stores it in size (line 5). In contrast to the POSIX interface,
it is not possible to read additional metadata using the MPI-IO interface. For
example, it is not possible to get the last modification time.

• The MPI_File_delete function deletes the file specified by the path filename
(line 6). MPI-IO hints can be given using the info argument.

A longer example using the above mentioned MPI-IO functions can be found in
Appendix C.2 on pages 195–197.

2.5.3. SIONlib

SIONlib provides an I/O interface that allows scalable access to task-local files [FWP09].
It internally maps all accesses to a single or small number of physical files and aligns
accesses to the file system’s block size. Additionally, it strives to minimize the amount
of changes necessary to use the interface by providing wrappers for the common

– 38 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

fread and fwrite functions. Opening and closing files requires the use of special
SIONlib-specific functions, though.

1 int fd;
2 FILE* fp;
3
4 fd = sion_paropen_mpi(..., &fp, ...);
5
6 for (...)
7 {
8 fwrite(..., fp);
9 }

10
11 sion_parclose_mpi(fd);

Listing 2.3: SIONlib parallel I/O example

An example for parallel access using SIONlib is shown in Listing 2.3. A file is opened
in parallel mode with the collective function sion_paropen_mpi that returns both a
file descriptor fd as well as a so-called file stream fp (lines 1–4). A non-collective open
is available via the sion_open_rank function; serial access is provided by sion_open
and sion_close. After opening the file, some data is written using the standard
fwrite function (lines 6–9). Finally, the file is closed using the sion_parclose_mpi
function (line 11).

SIONlib is a good example for a library that exists primarily to overcome short-
comings in current file systems. On the one hand, current file systems often have
problems when dealing with large numbers of files. On the other hand, shared file
performance often degrades dramatically when the I/O operations are not aligned to
the file system’s block size due to locking overhead, which should not be necessary
if only non-overlapping accesses occur. SIONlib tries to mitigate these problems by
intelligently managing the number of underlying physical files and transparently
aligning the data; this is achieved by allocating contiguous chunks of data for each
process and remapping accesses to its own internal file layout.

In summary, using more intelligent file systems could make many libraries working
around file system limitations obsolete. The additional information that is required to
enable this kind of intelligence can be provided by semantical approaches such as the
one proposed in this thesis.

2.5.4. HDF

HDF comprises a set of file formats and libraries that allow storing and accessing self-
describing collections of data, and is widely used in scientific applications [The14a].

– 39 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

While HDF5 is the current version, HDF4 is still actively supported. However, due to
its complicated API and several limitations – such as the use of signed 32-bit integers
for addressing, limiting HDF4 files to a maximum size of 2 GiB – HDF4 is not a feasible
choice for newly developed codes anymore.

HDF5 supports two major types of data structures: datasets and groups. These two
objects are used analogously to files and directories, that is, datasets are used to store
data, while groups are used to structure the namespace. Groups can contain several
datasets as well as other groups, leading to a hierarchical layout. Datasets can store
multi-dimensional arrays of a given data type. Objects within an HDF5 file are then
accessed using POSIX-like paths such as /path/to/dataset. As can be seen, the
dataset name can be used to describe the meaning of the dataset’s values, such as
temperature or wind speed in a climate simulation.

Additionally, arbitrary metadata – that is, information about the data – can be at-
tached to datasets and groups in the form of user-defined, named attributes. This can
be used to store information such as the allowed minimum and maximum values
within a dataset together with the actual data. HDF files are self-describing and thus
allow accessing them without any prior knowledge about their structure or content.

HDF5 supports multiple storage backends, including POSIX and MPI-IO. Using
the MPI-IO backend, it is possible to perform parallel I/O from multiple clients into a
single HDF5 file.

2.5.5. NetCDF

NetCDF, like HDF, consists of a set of libraries and self-describing file formats, and is
used in scientific applications, especially from the fields of climatology, meteorology
and oceanography [RD90]. Three major NetCDF formats are in existence today: the
classic format, the 64-bit offset format and the NetCDF-4 format. While the former
two are independent data formats, the NetCDF-4 format uses HDF5 underneath.

There are several options for performing parallel I/O using NetCDF: Most impor-
tantly, NetCDF-4 supports parallel I/O for NetCDF-4 – that is, HDF5 – files. Parallel
I/O for classic and 64-bit offset files is possible using either recent versions of the
official NetCDF library or the third-party Parallel-NetCDF library that features an
incompatible interface.

2.5.6. ADIOS

ADIOS22 provides a high-level I/O interface that abstracts from the usual byte- or
element-oriented access as found in POSIX or MPI-IO [LKS+08, KLL+10]. It has been
designed to provide high performance especially for scientific applications [PLB+09].

22 Adaptable IO System

– 40 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

ADIOS outsources the actual I/O configuration into an external XML23 file that can
be used to describe which data structures should be accessed and to automatically
generate C or Fortran code. Due to this, the application developer does not need
to directly interact with the underlying I/O middleware or file system. ADIOS can
handle elemental data types as well as multi-dimensional arrays.

1 <adios-config host-language="C">
2 <adios-group name="checkpoint">
3 <var name="rows" type="integer"/>
4 <var name="columns" type="integer"/>
5 <var name="matrix" type="double" dimensions="rows,columns"/>
6 </adios-group>
7 <method group="checkpoint" method="MPI"/>
8 ...
9 </adios-config>

Listing 2.4: ADIOS XML configuration

Listing 2.4 shows an example ADIOS XML configuration file that is used to define the
data to be read or written. It specifies that C code should be generated by ADIOS’s
source code generator (line 1).24 Additionally, it defines a so-called group with the name
checkpoint; the group includes the variables rows, columns and matrix (lines 2–6).
While rows and columns are integers, matrix is a two-dimensional array consisting of
double-precision floating-point numbers. Finally, it specifies that the MPI-IO backend
should be used to access this group (line 7).

1 adios_open(&adios_fd, "checkpoint", "checkpoint.bp", "w",
↪→ MPI_COMM_WORLD);

2 #include "gwrite_checkpoint.ch"
3 adios_close(adios_fd);

Listing 2.5: ADIOS code

Using the XML configuration file, ADIOS can automatically generate C code to
read and write the defined variables and stores it in the gread_checkpoint.ch and
gwrite_checkpoint.ch files, respectively.25 Listing 2.5 demonstrates how the gener-
ated code can be used to write data. First, an ADIOS file has to be opened for writing
(line 1): The adios_open function takes parameters for a file descriptor (adios_fd),
a group name (checkpoint), a file name (checkpoint.bp), an access mode (w for

23 Extensible Markup Language
24 The actual source code can be generated by invoking ADIOS’s gpp.py utility and passing it the XML

file’s path as an argument.
25 If Fortran code is requested, ADIOS generates analogous .fh files.

– 41 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

writing) and an MPI communicator (MPI_COMM_WORLD). Writing the variables defined
in the configuration file is performed by simply including the generated source code
(line 2). Finally, the file has to be closed again (line 3).

As can be seen, all logic required to perform the actual I/O operations necessary
to store the checkpoint is contained within the automatically generated source code.
Therefore, application developers do not have to care about specifying the correct
amount of bytes to write or other specifics when using ADIOS.

2.6. Input/Output Semantics

In the following, the most common I/O semantics are presented and potential short-
comings are highlighted. The multitude of existing I/O semantics continues to create
problems because different layers within the I/O stack might feature different seman-
tics. Proper HPC-compatible I/O semantics on the upper layers are useless if the
semantics on the lower layers ruin any potential performance benefits [HNH09].

2.6.1. POSIX

The POSIX standard features very strict consistency requirements. For example, write
operations have to be visible to other clients immediately after the system call returns.
While this might be relatively easy to support in local file systems, it can pose a
serious bottleneck in parallel distributed file systems, because it effectively prohibits
client-side caching from being used and might require additional locking.

“The adjustment of the file offset and the write operation are performed as an
atomic step.”

Source: [The14b]

Even though POSIX requires some atomicity as shown in the quote above, it is not
specified whether the actual writing of the data has to be atomic. Technically, POSIX
only specifies that write operations to pipes and FIFO special files have to be atomic if
the size of the write request is not larger than PIPE_BUF.26 Even though the standard
intends I/O to be atomic, it does not require it to be so [IG13].

POSIX’s I/O semantics can only be changed in a very limited fashion. For instance,
the strictatime, relatime and noatime options change the file system’s behavior
regarding the last access timestamp. The traditional strictatime option causes the
last access timestamp to be updated on every file access, relatime causes it to be only
updated when it is older than the last modification timestamp and noatime disables

26 POSIX requires PIPE_BUF to be at least 512 bytes; on Linux, it is 4,096 bytes.

– 42 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

updates of the last access timestamp completely. Obviously, especially strictatime
can have a serious impact on performance, because every read operation results in an
additional write operation. While this introduces significant overhead even in local
file systems, parallel distributed file systems require network transfers for each write
operation, increasing the overhead even further.

Additional async and sync options are also available that allow switching between
asynchronous and synchronous I/O, respectively.

These options can be specified on a per-mount basis to be fixed at mount time or
using the O_NOATIME, O_ASYNC and O_SYNC flags of the open and fcntl functions.
However, the latter may not be easily possible when using high-level I/O libraries
that do not expose the underlying file descriptors. Consequently, these aspects can
often not be modified by users under normal circumstances.

The original POSIX interface did not offer ways to specify semantical information
about the accesses or the data. A feature added in POSIX.1-2001 is called posix_-
fadvise and allows announcing the pattern that will be used to access the data.

1 int posix_fadvise (int fd, off_t offset, off_t length, int advice);

Listing 2.6: posix_fadvise

Listing 2.6 shows the posix_fadvise function that can be used to advise the file
system about future accesses. It provides advice to the file descriptor fd for the
file range given by offset and length. However, this does not actually change
the semantics of any following I/O operations. It is typically only used to increase
the readahead window (POSIX_FADV_SEQUENTIAL), disable readahead (POSIX_FADV_-
RANDOM), or to populate (POSIX_FADV_WILLNEED) and free (POSIX_FADV_DONTNEED)
the file system cache.

2.6.2. NFS

The NFS27 protocol provides close-to-open cache consistency by default, which implies
that changes performed by a client are only written back to the server when the client
closes the modified file. However, NFS offers limited support for changing this
behavior: By mounting NFS using the cto or nocto options, close-to-open cache
coherence semantics can be switched on or off, respectively.

Additionally, the async and sync options can be used to modify the behavior of
write operations: While async causes writes to only be propagated to the server when
necessary28, sync will cause I/O operations to only return when the data has been

27 Network File System
28 Write operations are delayed until either memory pressure forces them to be sent or the file in question

is (un)locked, synchronized or closed [Unk12].

– 43 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

flushed to the server. Additional mount options are available to modify the caching
behavior of attributes and directory entries.

As in the POSIX case, the async and sync behavior can be specified at mount time
or using the O_ASYNC and O_SYNC flags of the open and fcntl functions. The cto and
nocto options, however, can only be specified at mount time by the administrator.

2.6.3. MPI-IO

MPI-IO’s consistency requirements are less strict than those defined by POSIX [SLG03,
CFF+95]. By default, MPI-IO guarantees that non-overlapping or non-concurrent
write operations will be handled correctly; changes are immediately visible only to
the writing process itself. Other processes first have to synchronize their view of the
file to see the changes.

1 MPI_File_sync(fh);
2 MPI_Barrier(MPI_COMM_WORLD);
3 MPI_File_sync(fh);

Listing 2.7: MPI-IO’s sync-barrier-sync construct

Listing 2.7 shows the so-called sync-barrier-sync construct that is necessary to handle
concurrent file modifications correctly. The first MPI_File_sync operation makes sure
that the changes of all processes are transferred to storage (line 1). The MPI_Barrier
provides an explicit synchronization point (line 2): Write operations performed before
the barrier will be visible to read operations performed after the barrier. The second
MPI_File_sync ensures that all file modifications flushed to storage during the first
call are visible to all processes (line 3).

For use cases requiring stricter consistency semantics, MPI-IO offers the so-called
atomic mode that causes all operations to be performed atomically; it can be enabled
and disabled on demand using the MPI_File_set_atomicity function. This special
mode allows concurrent and conflicting writes to be handled correctly and also causes
changes to be visible to all process within the same communicator without explicit
synchronization. From the implementer’s point of view, this can be difficult to achieve
because MPI-IO allows non-contiguous operations and parallel distributed file systems
can stripe single write operations over multiple servers [RLG+05, LRT07].

MPI-IO implementations are free to offer so-called hints that are mainly used to
control things like buffer sizes and participating processes. Because hints are optional,
however, different implementations are free to ignore them [TRL+10].

Additionally, MPI-IO offers several different access modes that can be specified
when a file is opened using MPI_File_open. The MPI standard specifies the following
access modes:

– 44 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

“The following access modes are supported (specified in amode, a bit vector OR of
the following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.”

Source: [Mes01]

The access modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY, MPI_MODE_-
CREATE and MPI_MODE_EXCL have the same meaning as their POSIX counterparts.
MPI_MODE_DELETE_ON_CLOSE and MPI_MODE_APPEND provide convenience functional-
ity: The former causes an implicit MPI_File_delete to remove the file when closing
it, while the latter causes an implicit MPI_File_seek to set the initial position of the
file pointer to the end of the file.

The only two access modes which can be considered semantical information are
MPI_MODE_UNIQUE_OPEN and MPI_MODE_SEQUENTIAL; these modes provide informa-
tion about how the file is going to be accessed and allow this information to be exploited
for more intelligent access. MPI_MODE_UNIQUE_OPEN specifies that the given file will
only be accessed by the current set of processes, which can be used to eliminating lock-
ing overhead. MPI_MODE_SEQUENTIAL allows optimizations based on the assumption
that the given file will only be accessed sequentially.

Even though MPI_MODE_SEQUENTIAL might look similar to POSIX’s POSIX_FADV_-
SEQUENTIAL mode, there are actually several differences: While POSIX_FADV_SE-
QUENTIAL simply increases the readahead window, MPI_MODE_SEQUENTIAL actually
influences future operations; for instance, it is not allowed to call MPI_File_seek
on files opened with MPI_MODE_SEQUENTIAL because seeking can be used to perform
random accesses. Additionally, it is not permitted to combine MPI_MODE_SEQUENTIAL
with MPI_MODE_RDWR according to the standard.

Discussion

As can be seen, there are numerous I/O interfaces available. This diversity can be
confusing for application developers and users, making it unclear which I/O interface

– 45 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

should be used for a given task. Additionally, different I/O libraries typically address
different use cases: For instance, while it would be beneficial to use I/O interfaces
such as NetCDF that offer access to self-describing data, SIONlib allows optimizing
performance when accessing shared files. It is, however, not easily possible to combine
the benefits of both approaches because SIONlib is orthogonal to NetCDF and its
dependencies. To make matters worse, each I/O interface typically comes with its
own set of semantics. This further complicates the use of the available I/O interfaces
because each one might behave differently, even for the same use case.

2.7. Namespaces

The file system’s namespace defines how data can be found and organized. File system
namespaces are usually organized hierarchically, starting with a so-called root directory
that includes further files and directories. However, other organizational approaches
are also possible. One popular approach is to add so-called tags to files and provide
powerful search capabilities such as full-text indexing [SM09, BVGS06]. This frees the
user from remembering where files are stored and instead allows them to access them
by content and association.

2.7.1. POSIX

POSIX-compliant file systems provide a standardized way to find and access files
and directories within them. The namespace is organized in a hierarchical way, with
directories serving as containers for files and other directories. The fully specified
name of a file or directory is called a path, consisting of one or more path components
that are separated using the delimiter /.

For example, given a file bar located inside a directory foo, the file’s path would
be foo/bar. This represents a relative path, because the foo directory could be located
inside any other directory. An absolute path starts in the file system’s root directory,
which can be accessed using the path /. Consequently, if the foo directory was located
inside the root directory, the file’s full path would be /foo/bar.

As can be seen, paths can become very long because directories can be arbitrarily
nested. This, in turn, can impact performance when a large number of files are accessed.
To access a file, a path lookup has to be performed, which involves each of the path
components. Consequently, this is a relatively expensive operation because several
checks and lookup operations have to be performed for each of the path components.

The following list gives an overview of the involved operations. The currently active
path component is marked in bold and underlined.

– 46 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

1. /foo/bar

a) The root directory’s inode is read.29

b) Permission checks are performed.

c) The root directory is read and searched for foo.

2. /foo/bar

a) The directory’s inode is read.

b) Permission checks are performed.

c) The directory is read and searched for bar.

3. /foo/bar

a) The file’s inode is read.

b) Permission checks are performed.

c) The file is accessed.

2.7.2. Cloud

Cloud storage services usually offer only flat namespaces. For example, both Amazon
S330 as well as Google Cloud Storage provide a global namespace in which users
can create so-called buckets. This namespace is shared between all users, that is, two
users can not create buckets with the same name. Within these buckets, objects can be
created. Each object is assigned a unique key that can be used to access it.

All accesses are performed using standard HTTP31 requests. See Listing 2.8 for a
list of exemplary uniform resource locators (URLs) used by the Amazon and Google
storage services; these can be accessed using HTTP methods such as GET, POST, PUT,
HEAD and DELETE.

1 http://s3.amazonaws.com/<bucket>/<key>
2 http://<bucket>.s3.amazonaws.com/<key>
3
4 http://storage.googleapis.com/<bucket>/<key>
5 http://<bucket>.storage.googleapis.com/<key>

Listing 2.8: Amazon S3 and Google Cloud Storage URLs

29 As there is no parent directory to search, the root directory’s inode must be known in advance. For
example, in ext4’s case the root directory’s inode always has the ID 2.

30 Amazon Simple Storage Service
31 Hypertext Transfer Protocol

– 47 –

CHAPTER 2. STATE OF THE ART AND TECHNICAL BACKGROUND

The namespaces provided by cloud storage services provide the opportunity to get
rid of the path traversal overhead usually found in file systems’ namespaces.

However, the actual interfaces are not suitable for use in file systems due to their
heavy dependence on HTTP. On the one hand, the overhead of HTTP is non-negligible
for small accesses because requests consist solely of strings that have to be parsed. On
the other hand, the interfaces themselves do not provide the flexibility required for
file systems. For instance, it is often impossible to only access specific byte ranges of
objects or even modify them once they have been uploaded completely.

Summary

This chapter has given an in-depth description of the current HPC I/O stack and its components.
While kernel file systems are generally forced to offer POSIX interfaces due to their use of the
VFS layer, object stores only provide basic storage management functionality and can mitigate
metadata overhead. Parallel distributed file systems such as Lustre and OrangeFS typically
have support for multiple data and metadata servers to distribute the load; this architecture
also allows them to handle the different access patterns more efficiently. Current I/O interfaces
only have very limited support for providing semantical information and their semantics have
often been designed for serial use cases, making them unsuited for HPC workloads. Whereas
traditional file system namespaces require expensive path lookup operations, cloud storage
services usually provide flat namespaces that can reduce the associated costs.

– 48 –

Chapter 3.

Interface and File System Design

Based on the information gathered in the previous chapter, this chapter will be dedicated to elab-
orating the design of the proposed I/O interface featuring adaptable semantics. All important
aspects of the file system’s design will be illustrated, including the general architecture, the
namespace, the data and metadata design, and – most importantly – its interface and semantics.
A special focus will lie on the design choices made to avoid the bottlenecks and problems present
in other contemporary file systems and interfaces.

As shown in the previous chapters, the interfaces and semantics currently used for
parallel distributed file systems are suboptimal because they are either not well-
adapted for the requirements and demands found in high performance computing
(HPC) today or do not allow fine-grained semantical information to be specified. To
further explore the optimization potential of adaptable semantics, a new I/O interface
as well as a file system prototype will be designed from scratch, suited specifically for
the demands found in HPC. The resulting framework is called JULEA.

While the overall design decisions and important key aspects will be explained in
this chapter, the technical architecture will be described in more detail in Chapter 5.

3.1. Architecture

JULEA’s general architecture will closely follow that of established parallel distributed
file systems such as Lustre and OrangeFS. Machines can have one or several of three
different roles: client, data server and metadata server. While it is possible to have a
machine perform all three roles simultaneously, it is recommended to separate the
clients from the servers to provide stable performance.1 JULEA will support multiple
data and metadata servers and allow data and metadata to be distributed among them;
it will be possible to influence the actual distribution of data using distributions.

A very brief general view of JULEA’s different components and their interactions
with each other are shown in Figure 3.1 on the following page. Applications will be

1 Depending on the actual access patterns, it might also be sensible to host the data and metadata servers
on different machines.

– 49 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

Metadata
Server

Data
Server

Client

Server Process Server Process

Application

JULEA

Figure 3.1.: JULEA’s file system components

able to use JULEA’s input/output (I/O) interface that talks directly to the data and
metadata servers; it will abstract all the internal details and provide a convenient in-
terface for developers. The metadata and data servers will run on dedicated machines
with attached storage hardware.

The remaining part of this chapter is devoted to a more detailed discussion of
several architectural design decisions.

3.1.1. Layers

Figures 3.2a and 3.2b on the next page show a comparison of the current HPC I/O
stack and the proposed JULEA I/O stack. In addition to the logical layers, the sep-
aration between kernel and user space is shown. All kernel space layers are either
implemented directly inside the kernel or as kernel modules; the user space layers
are either normal applications or libraries. As can be seen, JULEA’s architecture will
feature less layers, which will make it easier to analyze the actual I/O behavior of
applications. It will also allow concentrating all optimizations into a single layer,
reducing the implementation and runtime overhead.

Specifically, the current I/O stack is built in such a way that multiple different I/O
interfaces build upon each other. This results in several transformations of the data
as it is being transported through the different layers. The parallel application’s data
types are stored in NetCDF2 that in turn stores its data in HDF3’s datasets and groups.
This data is then transformed into a byte stream for MPI-IO. It then stores the data in
the actual parallel distributed file system that splits up the data and stripes it across its
servers, potentially storing it in yet another underlying local file system. For a more
in-depth description, refer to Section 2.1 on pages 23–26.

All of these layers have additional advanced concepts for optimizing the parallel
I/O. For example, NetCDF, HDF and MPI-IO all have the concept of individual and
collective I/O. However, all of them perform I/O in a slightly different way with

2 Network Common Data Form
3 Hierarchical Data Format

– 50 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

Parallel Application

NetCDF

MPI-IO

Block Storage

ADIO

HDF5

Lustre

ldiskfs

Kernel
Space

User
Space

(a) HPC I/O stack

Block Storage

JULEA

Object Store

Parallel Application

ADIOS

Kernel
Space

User
Space

(b) JULEA I/O stack

Figure 3.2.: Current HPC I/O stack and proposed JULEA I/O stack

different semantics. Several MPI-IO implementations contain optimizations targeted
specifically at collective I/O, such as Two-Phase I/O [TGL99, DT98] or Layout-Aware
Collective I/O [CST+11]. In addition to generic optimizations for collective I/O,
additional file-system-specific optimizations are also possible; for instance, ROMIO’s
ADIO4 layer contains a Lustre-specific module that can exploit Lustre’s capabilities
to offer improved performance [YVCJ07]. Nevertheless, NetCDF and HDF perform
their own optimizations on top of this. Sometimes these optimizations can be even
contradictory, resulting in performance degradations instead of improvements.

An important design goal of JULEA is to remove the duplication of functionality
found in the traditional HPC I/O stack. Because many distributed file systems use
an underlying local POSIX5 file system to store the actual data and metadata, a lot
of common file system functionality is duplicated. For example, path lookup and
permission checking are already performed by the parallel distributed file system and
should not be executed again by the underlying local file system. This can be achieved
by completely eliminating the underlying POSIX file systems and using suitable object
stores. As presented in Section 2.3 on page 29, object stores usually assign each object
a unique identifier (ID), removing the need for path lookups on the lower layers.

Because it is often unreasonable to port applications to new and experimental I/O
interfaces due to their size and complexity, it makes sense to leverage a layer providing
compatibility for existing applications. ADIOS6 is an established I/O interface and
specifically allows implementing different backends. To minimize the overhead,
ADIOS could be used as a relatively thin layer on top of JULEA to provide convenient
access for application developers.

4 Abstract-Device Interface for I/O
5 Portable Operating System Interface
6 Adaptable IO System

– 51 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

3.1.2. Protocol

One of the first and most important decisions is the communication schema between
the file system’s clients and servers. In parallel distributed file systems, two basic
approaches are possible for client-server communication:

1. The clients do not know which server can answer their current request and thus
contact a random server. If the contacted server is not responsible, two reactions
are possible:

a) The server silently forwards the request to the appropriate server and
returns the answer back to the client; this process is completely transparent
for the client.

b) The server tells the client which servers is responsible; the client communi-
cates with the correct server from this point on.

2. The clients know which server can answer their current request and directly
contact the appropriate one.

These approaches necessitate completely different communication schemes and each
has its own advantages as well as disadvantages:

1. • Advantages: Clients do not need to have any prior knowledge about the
distribution of data and metadata because they can simply contact any
server. It is relatively easy to implement load balancing because another
server can simply take over an overloaded server’s responsibilities by
redirecting the client.

• Disadvantages: Almost all initial requests suffer from additional network
latency because clients will only rarely contact the correct server right away;
in case the servers transparently forward messages, this also applies to
almost all subsequent requests.

2. • Advantages: The servers do not need to communicate with each other and,
in fact, do not even need to know about each other. The communication
protocol can be kept simple because there is no inter-server communication
that has to be considered.

• Disadvantages: All communication logic has to be implemented by the
clients. Additionally, clients need prior knowledge about the distribution
of data and metadata: For data, this usually involves contacting the appro-
priate metadata server first; for metadata, this implies that clients have to
be able to decide autonomously which metadata server to contact.

JULEA will use the second approach: Clients will be able to autonomously decide
which servers to contact whenever possible and then talk directly to the appropriate

– 52 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

data and metadata servers. As the servers will not have to communicate with each
other, their design can be kept simple: The data servers will act as basic object stores for
the clients’ I/O requests. This is similar to Lustre’s design – as shown in Section 2.4.1
on pages 32–35 – and has several advantages:

1. The servers’ behavior is easier to comprehend because only direct interactions
between the clients and servers have to be considered; the program flow only
includes requests from the clients and the corresponding replies issued by the
servers. Additionally, only replies from the contacted server have to be consid-
ered because no message forwarding takes place.

2. Problems in the servers are easier to debug because only one kind of communi-
cation has to be considered; this makes it much easier to understand the flow of
data and narrows the number of possible causes for errors.

3. The performance behavior is easier to comprehend because the servers simply
act on the clients’ behalf and do not perform more intelligent actions behind
their back.

3.1.3. Performance Analysis Functionality

Performance analysis of parallel distributed file systems is a complex topic and much
research has been done in this regard. It is necessary to have insight into the internals
of a file system to be able to understand its performance characteristics [Kun06, Tie09].
In addition to the complicated behavior regarding data performance, metadata per-
formance continues to play an important role; increasing numbers of clients want to
access increasing numbers of file system objects, quickly exposing bottlenecks in the
metadata design [Bia08].

Another important point are the connections between client operations and the
resulting behavior on the servers: Without the possibility to correlate the clients’
activities and the resultant events on the servers, finding and solving performance
problems becomes much harder [Kre06].

Consequently, JULEA will have built-in support for tracing client and server activi-
ties; it should also be possible to easily correlate them for the reasons mentioned above.
This will facilitate easier performance analysis because tracing support does not have
to be added retrospectively. Visualization of the resulting traces is also important
because the sheer amount of trace data is impossible to analyze manually [MSM+11].
Therefore, it should also be possible to leverage existing measurement tools such as
Jumpshot [LKK+07] or Vampir [GWT14] to visualize JULEA’s traces.

– 53 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

3.2. File System Namespace

Traditional file systems allow deeply nested directory structures. To avoid the over-
head caused by this, only a restricted and relatively flat hierarchical namespace will be
supported. While this approach might be unsuited for a general purpose file system,
JULEA is explicitly focused on specific use cases that are commonly found in HPC.
Therefore, JULEA is meant to be used in conjunction with traditional file systems like
NFS7 to provide other parts of the infrastructure such as the users’ home directories.

The file system namespace will be divided into stores, collections, and items. Each
store can contain multiple collections that can, in turn, contain multiple items. This
structure will be closer to that of popular cloud storage solutions than that of POSIX
file systems. The goal of these changes is to minimize the overhead during normal file
system operation. In traditional POSIX file systems, each component of the potentially
deeply nested path has to be checked for each access. This requires reading its associ-
ated metadata, checking permissions and so forth. As this process usually happens
sequentially, it can seriously hamper performance. Additionally, in distributed file
systems these operations can be very costly because metadata operations are usually
small in size; consequently, many small network messages are generated.

If absolutely necessary, it would be possible to extend the namespace by allowing
collections to include other collections, thus creating a nested namespace. However,
for all intents and purposes of the initial prototype, the flat namespace will be enough.
This is not expected to have any negative influences on usability because this kind
of namespace is already being commonly used in cloud-based storage solutions and
document database systems.

Items

• Project X
• Project Y
• Project Z

CollectionsStores

• GETM Input
• Experiment X
• Experiment Y
• Experiment Z

• Timestep 0
• Timestep 1
• Timestep 2

Figure 3.3.: JULEA namespace example

Figure 3.3 shows an exemplary JULEA namespace using an application from the
field of earth system science. The first level of the namespace hierarchy are the stores
that are used to group similar data. In this example, there are stores for different
research projects with the Project X store being expanded to show its collections. This
project is concerned with GETM8, an open source ocean model, and includes input

7 Network File System
8 General Estuarine Transport Model

– 54 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

data for said model in the GETM Input collection. During the imaginary research
project, several experiments have been conducted and the output of each experiment
has been stored in a separate collection. In this example, the Experiment Y collection is
expanded to show its items. Models usually perform their calculations in so-called
timesteps that define the model’s temporal resolution. For example, if a timestep
comprises 30 minutes, it is possible to output the state of the model in intervals of 30
minutes for later analysis; this state is stored in the Timestep i items.

Obviously, this example presents only one possible use of JULEA’s namespace. As
with any other file system namespace, administrators, developers and users should
think about a reasonable structure in advance.

To have access to a standardized way of accessing JULEA’s file system objects, it
makes sense to define paths in JULEA’s file system namespace. Using the information
above, paths are defined as follows:

• Each path consists of either one, two or three path components.

• The first path component refers to the store, the second path component refers
to the collection and the third path component refers to the item.

• The path components are separated using the / delimiter.

Because JULEA will not have a concept of a current working directory, all JULEA
paths are defined to be absolute.9 Using the exemplary namespace organization from
Figure 3.3 on the facing page again, the paths to refer to the store, collection and item
would look like the following:

• Project X

• Project X/Experiment Y

• Project X/Experiment Y/Timestep 1

3.3. Interface

JULEA’s interface will be designed from scratch to offer simplicity of use while still
meeting the requirements of high performance and dynamically adaptable semantics.
The functionality offered by the interface can be subdivided into five groups:

1. Batches: Multiple operations can be batched explicitly to improve performance.

9 In traditional POSIX file systems, each process possesses a current working directory that is used when
resolving relative paths. For example, assuming a current working directory of /home/foo, the relative
path bar would be resolved to /home/foo/bar. The current working directory can be retrieved using
the getcwd function or the pwd command line utility. For more information about absolute and relative
paths, see Section 2.7.1 on pages 46–47.

– 55 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

2. Distributions: It will be possible to influence the distribution of data directly.

3. Namespace: The file system namespace will be accessible using a convenient
abstraction called uniform resource identifiers (URIs).

4. Semantics: JULEA’s semantics will be dynamically adaptable according to the
applications’ I/O requirements.

5. Stores, collections and items: It will be possible to create, remove, open and
iterate over all of JULEA’s file system objects.

All of the above functionality will be available publicly and directly to developers.
While the underlying design principles and ideas for parts of the I/O interface will be
illustrated in this chapter, JULEA’s actual application programming interface (API) for
use by applications will be presented in detail in Chapter 5.

The two most important features will be the ability to specify semantical informa-
tion and to batch operations. Both approaches will give the file system additional
information that can be used to optimize accesses.

It will be possible for developers and users to specify additional information equiv-
alent to the coarse-grained statement “this is a checkpoint” or the more fine-grained
“this operation requires strict consistency semantics”. This will allow the file system
to tune operations for specific applications by itself. Additionally, developers will
be able to emulate well-established semantics as well as mixing different semantics
within one application.

Developers will perform all accesses to the file systems via so-called batches. Each
batch can consist of multiple operations. For example, multiple items can be created or
different offsets within an item can be accessed in one batch. It will also be possible to
combine different kinds of operations within one batch. For instance, one batch might
create a collection and several items within it, and write data to each of the items.

Because the file system will have knowledge about all operations within one batch,
more elaborate optimizations can be performed. This will also allow reordering the
operations to improve network utilization whenever possible. For example, multiple
metadata operations can be sent to the metadata servers with a single network message.
Since batches will be executed explicitly, they provide a defined point at which all
operations will be performed in contrast to traditional approaches.

Traditional POSIX file systems can also try to aggregate multiple operations to im-
prove network utilization. However, this can only be done by caching these operations
in the client’s main memory for a given amount of time and then performing these
optimizations. Because the POSIX interface does not provide enough information
to make reliable decisions for these kinds of optimizations, it is necessary to employ
heuristics. However, these heuristics are usually not correct all the time, resulting

– 56 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

in suboptimal behavior for borderline cases. Additionally, it is not possible to do
this in all cases because it would violate the POSIX semantics. Therefore, users can
never be sure when exactly operations are performed in such a system without calling
synchronization functions explicitly, which can be very expensive.10

1 batch = new Batch(POSIX_SEMANTICS);
2
3 store = julea.create("test store", batch);
4 collection = store.create("test collection", batch);
5 item = collection.create("test item", batch);
6 item.write(..., batch);
7
8 batch.execute();

Listing 3.1: Executing multiple operations in one batch

The pseudo code found in Listing 3.1 shows an example of how the interface generally
works. First, a new batch using the POSIX semantics is created (line 1). Afterwards,
the store, collection and item are created (lines 3–5); the store is created in the root
of the file system, the collection is created in the new store and the item is created
in the new collection. Additionally, some data is written to the item (line 6). All of
these operations are not executed right away but merely added to the batch that is
passed to each method as the last argument. Finally, the batch is executed, which in
turn executes all four operations with the previously specified semantics (line 8).

1 in_batch = new Batch(DEFAULT_SEMANTICS);
2 out_batch = new Batch(POSIX_SEMANTICS);
3
4 input = collection.get("input item");
5
6 input.read(..., in_batch);
7 in_batch.execute();
8
9 /* Calculation */

10
11 checkpoint = collection.create("checkpoint item", out_batch);
12 checkpoint.write(..., out_batch);
13 out_batch.execute();

Listing 3.2: Using multiple batches with different semantics

10 POSIX’s synchronization functions fsync and fdatasync only allow synchronizing whole files even if
this is not necessary.

– 57 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

An example for changing the semantics on a per-batch basis is given in Listing 3.2 on
the preceding page. Two batches are created using different semantics (lines 1–2). The
existing input item is opened (line 4) and then read (lines 6–7). After some calculations,
a new checkpoint item is created (line 11) that is then written to (lines 12–13).

Supporting different semantics on a per-batch basis will allow using the optimal
semantics for any given task. In the example given above, the semantics could
additionally be tuned to instruct the file system that the input item will be accessed in
a read-only fashion. Additionally, accesses to the checkpoint item could be optimized
for non-overlapping write accesses from multiple clients.

JULEA will require all operations to be performed in batches, even if the batch only
contains a single operation. This is a conscious design decision to make sure that
the file system will always have as much information as possible to make informed
optimization decisions. Even though this might appear as an inconvenience from the
application developers’ point of view, it will be easy for them to specify this informa-
tion and will only introduce negligible overhead. However, employing heuristics and
guessing appropriate optimizations after the fact is much harder and can result in
suboptimal behavior in many cases. For instance, traditional I/O interfaces are unable
to know whether a user is going to perform multiple operations in quick succession
because each operation is executed individually.

Additionally, each batch will require the semantics to be set explicitly. Combined
with the fact that all operations have to be performed in batches, this is supposed to
force application developers to think about the possible performance implications of
the chosen semantics.

3.3.1. Asynchronous Batches

To allow application developers to easily overlap calculations and I/O, it will be
possible to execute batches asynchronously. This support will be offered natively by
the I/O interface without forcing developers to resort to using background threads or
similar techniques.

1 batch = new Batch(DEFAULT_SEMANTICS);
2 checkpoint = collection.create("checkpoint 42", batch);
3
4 checkpoint.write(..., buffer, ..., batch);
5 batch.execute_async();
6
7 /* Calculation */
8
9 batch.wait();

Listing 3.3: Executing batches asynchronously

– 58 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

Listing 3.3 on the preceding page shows how the execution of asynchronous batches
works. In this example, the writing of a checkpoint should be overlapped with
some calculations to achieve optimal performance. First, a batch and an item for
writing the checkpoint are created (lines 1–2). Afterwards, the write operation is
added to the batch (line 4) and the batch is executed asynchronously (line 5). It is
important to note that the data stored in buffer is not allowed to be changed until
the batch execution has been completed. This is similar to MPI11’s non-blocking
(or immediate) operations. The execute_async method returns immediately and
allows the application to continue; calculations are then performed while the batch
is executed in the background (line 7).12 Last, the asynchronous batch is finalized by
waiting for its completion (line 9).

To lower the barrier of entry and encourage application developers to use both con-
cepts whenever appropriate, there are only two differences between the synchronous
and asynchronous execution of batches; all other aspects remain exactly the same:

1. How the execution is initiated, that is, whether the execute or execute_async
method is used. This also determines whether it is necessary to call the wait
method or not.

2. Whether it is possible to reuse the data buffer immediately. Modifying the buffer
during the execution of an asynchronous batch leads to undefined behavior.

3.3.2. Information Export

The file system should also export all the information that is necessary to reach optimal
performance; this information can then be used by other layers of the I/O stack.

One important aspect is the information about alignment of data to the file system’s
stripe size. When dealing with larger numbers of clients, aligning the accesses to the
file system’s stripe boundaries becomes especially important [Bar14].

1 batch = new Batch(DEFAULT_SEMANTICS);
2 checkpoint = collection.create("checkpoint 42", batch);
3
4 checkpoint.write(header, header_size, 0, batch);
5
6 data_size = checkpoint.get_optimal_access_size(header_size);
7 checkpoint.write(data, data_size, header_size, batch);
8

11 Message Passing Interface
12 In contrast to MPI, JULEA guarantees that the batch is executed asynchronously; the MPI standard

does not mandate that implementations actually have to perform operations asynchronously but only
that the operations are non-blocking and return immediately.

– 59 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

9 batch.execute();

Listing 3.4: Determining the optimal access size

Listing 3.4 on the preceding page shows how to extract the optimal access size from
the file system. Analogous to the previous examples, a checkpoint is created (lines 1–2).
However, the checkpoint contains a header this time; consequently, the actual data
starts at a specific offset. First, the header of size header_size is written to the item
at offset 0 (line 4). To be able to write the remaining data in a stripe-aligned fashion,
get_optimal_access_size is used (line 6); it takes an offset within the item as its
only argument and returns the number of bytes remaining for the responsible stripe.
This information is then used to fill the current stripe with data of length data_size
starting at offset header_size (line 7). Finally, the batch is executed, which causes the
write of a full stripe (line 9).

Because the data distribution could vary based on the current item or even server,
get_optimal_access_size provides a convenient way for application developers to
acquire this type of file system information without resorting to uncertain assumptions.
The availability of this information is especially important for higher layers within
the I/O stack or applications that want to manually make use of this information to
achieve optimal performance.

3.4. Semantics

The JULEA interface will allow many aspects of the file system operations’ semantics
to be changed at runtime. Several key areas of the semantics have been identified as
important to provide opportunities for optimizations: atomicity, concurrency, con-
sistency, ordering, persistency and safety. Even though it will be possible to mix the
settings for each of these semantics, not all combinations will produce reasonable re-
sults. In the following, detailed explanations and design choices for these key aspects
are provided. Additionally, further possible extensions for redundancy, security and
transformation semantics are introduced.

The semantics can be categorized into convenience-related and performance-related
ones. On the one hand, the performance-related aspects are clearly focused on achiev-
ing the maximum possible performance and require in-depth knowledge about the
application’s I/O behavior. On the other hand, the convenience-related ones are
supposed to ease application development by providing comfort features directly
within the file system.

– 60 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

3.4.1. Atomicity

The atomicity semantics can be used to specify whether accesses should be executed
atomically, that is, whether or not it is possible for clients to see intermediate states
of operations. These are possible because large operations usually involve several
servers. If atomicity is required, some kind of locking has to be performed to prevent
other clients from accessing data that is currently being modified. To cater to as many
I/O requirements as possible, several levels of atomicity will be provided:

• None: Accesses are not executed atomically. For example, a single write op-
eration that is striped over multiple data servers can be executed as several
independent accesses. If not all data servers have already finished the write
operation, concurrent read operations accessing the same data are able to return
partly written data.

No locking is required at all.

• Operation: Single operations are executed atomically. For example, a single
write operation that is striped over multiple data servers is guaranteed to be
executed atomically. Read operations accessing the same data concurrently are
not able to return partly written data, even if not all data servers have finished the
write operation. Instead, these operations are blocked until the write operation
is finished completely.

Locking is only required for pre-determined ranges within objects.

• Batch: Complete batches are executed atomically. Other batches accessing the
same data are blocked until the batch finishes.

Locking is required for potentially multiple complete objects.

The atomicity semantics is clearly performance-related. It can be used to avoid unnec-
essary locking overhead by completely avoiding locking whenever possible. Atomic
accesses operating on the same data have to be serialized, which implies a performance
penalty. If atomicity is not required, all operations can be executed in parallel.

Being able to specify the atomicity requirements has obvious advantages in contrast
to static approaches such as those dictated by POSIX because lockless access to shared
files can improve performance dramatically. For instance, many POSIX-compliant file
systems perform atomic write operations even if all clients accessing a shared file never
read or write to overlapping regions of the file. Since application developers know
the access patterns of their applications, they can easily specify whether atomicity is
required or not.

It is important to note that atomicity only applies to the visibility of modifications
in this context. That is, operations could still be only partially performed in case of
errors. Such guarantees are typically provided by atomicity, consistency, isolation

– 61 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

and durability (ACID) transactions as found in database systems and are not part
of JULEA’s initial design; for a discussion regarding full-featured transactions, see
Section 7.1.2 on pages 163–164.

3.4.2. Concurrency

The concurrency semantics can be used to specify whether concurrent accesses will
take place and, if so, how the access pattern will look like. This allows the file system
to appropriately handle different patterns without the need for heuristics recognizing
them. Depending on the level of concurrency, different algorithms might be appro-
priate for file system operations such as locking or metadata access; additionally, the
level of concurrency has an impact on whether locking is necessary at all. To support
as many I/O patterns as possible, several configurations will be available:

• None: No concurrent accesses will take place at all. The concerned objects will
only be modified by one client at a time and the results of concurrent accesses
are unspecified.

Efficient centralized algorithms can be used.

• Non-overlapping: Concurrent accesses might take place. However, no two
remote clients will modify the same area of an object. The results of modifying
the same area concurrently are unspecified.

Distributed algorithms have to be used but certain optimizations might be
possible because the operations do not access the same data.

• Overlapping: Concurrent accesses might take place and might modify the same
area of an object.

Distributed algorithms have to be used and no assumptions about access patterns
can be made.

Concurrency semantics are performance-related by allowing simpler and faster cen-
tralized algorithms to be used when no concurrent access is happening. Additionally,
the information about the actual access patterns can be used to make more intelligent
decisions. For instance, atomicity is only required for overlapping accesses. In case of
strictly serial accesses, even more optimizations are possible because no other clients
will be able to observe potential inconsistencies.

The use of centralized and distributed algorithms applies to different aspects of the
parallel distributed file system. For example, it is advisable to use different metadata
management approaches depending on the level of concurrency; this aspect will be
elaborated in Section 3.5.2 on pages 71–73.

– 62 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

3.4.3. Consistency

The consistency semantics can be used to specify if and when clients will see mod-
ifications performed by other clients and applies to both metadata and data. This
information can be used to enable client-side read caching whenever possible. To
support different consistency requirements, several levels will be supported:

• None: Clients might never have a consistent view of the file system, that is,
modifications performed by other clients might not be visible locally at all. This
is similar to NFS’s session semantics.

Allows data and metadata to be cached indefinitely.

• Eventual: Clients will eventually have a consistent view of the file system, that
is, modifications performed by other clients might not be immediately visible
locally. For example, reading an object’s modification time or size can return a
cached value. The period during which the view is inconsistent is unspecified.

Allows data and metadata to be cached for an unspecified amount of time.

• Immediate: Clients will always have a consistent view of the file system, that is,
modifications performed by other clients are immediately visible locally.

Data and metadata can not be cached; all data and metadata is retrieved directly
from the appropriate servers.

The consistency semantics is performance-related and can allow caching data and
metadata locally. It can be used to reduce the network traffic and thus increase
performance. This is especially important for metadata because sending and receiving
large amounts of small network messages can cause significant overhead.

3.4.4. Ordering

The ordering semantics can be used to specify whether operations within a batch are
allowed to be reordered. Because batches can potentially contain a large number of
operations, the additional information can be exploited to optimize their execution.

• Relaxed: Operations are allowed to be reordered as long as correct execution
can be guaranteed, that is, the batch’s result corresponds to that of the original
batch. For instance, a write operation can never be reordered to be performed
before the corresponding create operation. The order of two write operations
can be changed to allow merging them, however.

Inefficient operation orderings can be optimized to the best extent possible;
results must be identical to the original ordering.

– 63 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

• Semi-relaxed: Operations are allowed to be reordered as long as operations
pertaining to the same object are executed in the original order. For example,
write operations to several items can be reordered such that each item’s write
operations are executed together.

Inefficient operation orderings can be optimized to some extent; results must be
identical to the original ordering.

• Strict: Operations are not allowed to be reordered. All operations within a batch
are executed in exactly the same order as they are added to the batch.

Inefficient operation orderings can not be optimized. The overhead of reordering
can be avoided, however; this is especially useful if developers already perform
operations in the optimal order.

The ordering semantics is performance-related as it allows operations to be reordered
for more efficient access. It is especially important to group operations of the same
type to reduce the amount of network overhead. Additionally, it is usually beneficial
to order read and write operations by their offset because this might allow them to
be merged. While these optimizations are mainly aimed at delivering improved I/O
performance, they can also help to reduce the load on other involved components
such as the central processing unit (CPU) and network interface card (NIC).

3.4.5. Persistency

The persistency semantics can be used to specify if and when data and metadata must
be written to persistent storage. This can be used to enable client-side write caching
whenever possible. To support different persistency requirements, several levels will
be supported:

• None: Data might never be written to persistent storage, that is, the data might
reside in a client-side cache forever. This can be useful for local temporary data,
for example.

Allows modified data and metadata to be cached indefinitely and be discarded
when closing the concerned object.

• Eventual: Data will eventually be written to persistent storage, that is, the data
might reside in a client-side cache even after the operation finishes. A crash may
cause the data to be lost if it has not been transferred to the file system servers.
The period until the data is written is unspecified.

Allows caching modified data and metadata for an unspecified amount of time.

• Immediate: Data will be written to persistent storage immediately, that is, as
soon as the operation finishes the data will not be cached anymore.

– 64 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

Data and metadata can not be cached; all data and metadata must be immediately
sent to the appropriate servers.

The persistency semantics is performance-related and allows caching modified data
and metadata locally. For example, temporary data can be cached more aggressively
and does not necessarily need to be written to persistent storage at all. This can be
especially advantageous when different levels of storage such as node-local SSDs
are available as it allows writing the temporary data to the fast local storage without
communicating via the network at all.

3.4.6. Safety

The safety semantics can be used to specify how safely data and metadata should be
handled. It provides guarantees about the state of the data and metadata after the
execution of a batch has finished.

• None: No safety guarantees are made, that is, data and metadata might be lost
due to network or storage errors.

Data and metadata are sent to the file system servers but no checking is done on
whether the changes have been successful or not.

• Network: It is guaranteed that changes have been transferred to the servers as
soon as the operation finishes.

Data and metadata are sent to the file system servers and their reply is awaited.

• Storage: It is guaranteed that changes have been stored persistently on the
storage devices as soon as the operation finishes.

Data and metadata are sent to the file system servers and their reply is awaited.
Additionally, the file system servers flush the changes to disk before sending
their reply.

The safety semantics is performance-related by allowing to adjust the overhead in-
curred by data safety measures. For example, on the one hand, disabling data safety
can be used to eliminate one of two network messages by not requesting the server’s
acknowledgment when sending unimportant data; this allows having more operations
in-flight because their results do not have to be received and processed before sending
the next operation.13 On the other hand, it can be used to make sure that important
data will survive a system failure by flushing it to the storage devices immediately.

13 Batches can be used to reduce this problem to a certain extent by also batching replies. The general
problem remains the same, however: Waiting for a reply before sending the next operation at least
halves the throughput.

– 65 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

3.4.7. Further Ideas

The semantics presented above are going to be implemented and evaluated as part
of this thesis. However, even more semantical aspects lend themselves to being
configurable and will be briefly presented for completeness.

Redundancy

Redundancy semantics could provide users with a convenient way to store multiple
copies of file data or metadata. This could be used to ensure that very important data
is safe in case of system failures such as broken hard disk drives (HDDs). Similar
options are already being offered by providers of long-term archival services [Ger14].

While this feature has proven its worth in the context of long-term archival, it is not
clear whether the decision to store multiple copies of data and metadata should be
taken by the users of file systems. Therefore, this option is only mentioned here for
reference. Parallel distributed file systems are usually deployed in such a way that
the loss of single storage devices does not result in data loss. Consequently, it might
make more sense to leave this decision up to the storage system’s administrators. In
any case, proper accounting of the used file system resources is necessary, otherwise
users could simply force redundant storage of all data without consequences.

Security

Security semantics could be changed depending on the file system environment,
enabling or disabling more strict permission checks. JULEA’s current security policy
checks the permissions once when opening a collection or an item. That is, even if
the ownership of said collection or item is changed, all clients still holding an open
handle will continue to have access to it. Other environments might have different
requirements regarding the security policy, however.

Conducting these checks frequently – for example, for every access – can severely
impact performance because the required metadata has to be fetched. Therefore, it
would be worthwhile to consider making the security policy dynamic through this
extension; for instance, the following configurations are conceivable:

• None: No security policy is enforced, that is, every client can access and modify
all data and metadata.

• Open: Permissions are only checked when opening a collection or an item and
not rechecked while the client still holds an open handle.

This is the current security policy.

• Time-based: Permissions are rechecked periodically but not for every access.

– 66 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

• Strict: Permissions are rechecked for every access.

Obviously, the security semantics would need to be stored together with the relevant
file system object and should only be changeable by the object’s owner; otherwise,
other users could simply specify different security semantics to circumvent permission
checks.

Transformation

Transformation semantics could be useful to allow users to transform the data in
some way – for example, by compressing, deduplicating or encrypting it. Moving
this functionality into the file system would have the advantage of being completely
transparent to users and applications. For instance, application developers usually
know whether it makes sense to compress the produced data and could easily use this
semantics to handle it appropriately without the need to painstakingly adapt each
application or I/O library.

As illustrated previously, today’s HPC applications can produce tremendous amounts
of data due to the ever increasing computational power of supercomputers. The stor-
age systems, however, usually do not scale as well. One way to alleviate this problem is
to compress the data. Previous studies have shown that compression can reduce power
consumption as well as increase performance in certain use cases [CDKL14, KKL14].
Other techniques such as deduplication can also help to reduce the amount of stored
data [MKB+12]. Nevertheless, due to their associated costs, it makes sense to only
apply them when there is a clear benefit.

3.4.8. Interactions

All previously presented semantical aspects can be combined arbitrarily, resulting in a
huge amount of possible configurations.14 While some combinations of semantical
settings do not actually affect each other or might simply be unreasonable, there are
some interesting interactions between some of them:

• Concurrency: None

– It is possible to set the atomicity semantics to none because no operations
will be executed in parallel. Consequently, it is impossible for concurrent
operations to observe partially completed operations.

– The consistency semantics can be set to none because the relevant file sys-
tem objects will not be modified by other clients concurrently. Consequently,
it is possible to aggressively cache data and metadata.

14 To be precise, there are currently six semantical aspects with three different settings each; this results in
36 = 729 possible combinations.

– 67 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

• Concurrency: Non-overlapping

– It is possible to set the atomicity semantics to none if only write operations
are performed. Because write operations will only write to non-overlapping
regions of items, it is not necessary to lock them if no concurrent read
operation could potentially observe partial writes.

• Persistency: None

– It is possible to set the safety semantics to none because data will not be
sent to the data servers immediately. Therefore, it is not necessary to enforce
strong safety semantics.

For simplicity and performance reasons, the semantics will not be checked for conflicts;
application developers are responsible for ensuring that no contradictory semantics
will occur. For instance, different clients accessing the same file system object with a
mix of non-overlapping and overlapping concurrency semantics at the same time will
lead to undefined behavior.

3.4.9. Templates

To provide application developers with a convenient way of using different semantics,
semantics templates will provide predefined templates for specific use cases. The
following list provides an overview of the semantics templates that will be available
in the prototype; it also lists their concrete settings and reasonings for those:

• Default: This template provides JULEA’s default semantics. It is optimized
for concurrent clients executing non-overlapping operations; this is the kind of
access pattern that is often found in contemporary scientific applications.

– Atomicity: None
Atomicity is rarely required in parallel applications because I/O is usually
done in separate read and write phases.

– Concurrency: Non-overlapping
Parallel applications commonly write shared files using non-overlapping
accesses because each client is responsible exclusively for part of the data.

– Consistency: Eventual
As reading and writing is usually done in separate I/O phases, it is also not
necessary to provide immediate consistency.

– Ordering: Semi-relaxed
The actual ordering of I/O is usually not important as long as the result is
identical to the one specified by the application developer.

– 68 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

– Persistency: Immediate
Write operations should be synchronous by default to follow the principle
of least astonishment.

– Safety: Network
Completed operations should have reached the file system servers as appli-
cation crashes occur more frequently than file system server crashes.

• POSIX: This template is intended to mimic the current POSIX semantics as
closely as possible. It is provided for backwards compatibility with applications
that depend on POSIX semantics being available.

– Atomicity: Operation
Even though POSIX does not strictly mandate atomic operations (see Sec-
tion 2.6.1 on pages 42–43), this is a common expectation.

– Concurrency: Overlapping
To correctly handle arbitrary access patterns, overlapping accesses have to
be supported.

– Consistency: Immediate
Changes to file system objects have to visible immediately to all clients, as
specified by POSIX.

– Ordering: Strict
Even though POSIX does not explicitly mention the ordering of operations,
it might have an influence on the visibility of changes to other clients.

– Persistency: Immediate
The same reasoning as for the default semantics template applies.

– Safety: Network
The same reasoning as for the default semantics template applies.

• Temporary (local): This template is tuned for process-local temporary data. Its
semantics should also allow for transparent use of advanced technologies such
as burst buffers.

– Atomicity: None
Atomicity is not required because no concurrent accesses will be performed.

– Concurrency: None
No concurrent accesses will be performed because each process will access
its own data.

– Consistency: None
Consistency is not necessary as no concurrent accesses will be performed.

– Ordering: Semi-relaxed
The same reasoning as for the default semantics template applies.

– 69 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

– Persistency: None
As the data is only of a temporary nature, it does not have to be stored
persistently within the file system.

– Safety: None
Safety is not required because temporary data can be recreated if necessary.

The predefined semantics templates obviously can not cover all possible use cases.
Therefore, they should be viewed as bases upon which application-specific semantics
can be built. While it might be desirable to have support for user-definable semantics
templates, such functionality will not be included in the initial prototype; it will,
however, be possible to easily adapt the templates as shown in the following example.

1 atomic_semantics = new Semantics(DEFAULT_SEMANTICS);
2 atomic_semantics.set(ATOMICITY, ATOMICITY_OPERATION);
3
4 sync_semantics = new Semantics(POSIX_SEMANTICS);
5 sync_semantics.set(SAFETY, SAFETY_STORAGE);

Listing 3.5: Adapting semantics templates

Listing 3.5 shows how to adapt the predefined semantics templates. In the first
example, the default semantics are modified to provide atomic access (lines 1–2);
this is similar to enabling MPI-IO’s atomic mode. In the second example, the POSIX
semantics are adapted to provide synchronous I/O (lines 4–5); this is similar to
specifying O_SYNC when opening a file using the POSIX interface.

However, JULEA’s concept is more flexible because it allows the semantics to be
applied selectively by associating them with batches. In contrast, opening a POSIX file
with O_SYNC implies that all I/O operations will be synchronous.

The presented semantics parameters are a first proposal of factors that are important
for HPC applications. They have been determined by analyzing the use cases of appli-
cations as well as the underlying causes for prevailing performance problems found
in contemporary parallel distributed file systems. More analyses and discussions are
necessary to come up with a final list that is suitable for widespread adoption in other
file systems and I/O interfaces.

3.5. Data and Metadata

3.5.1. Distribution

By default, data will be distributed among all available data servers using a round-
robin scheme as commonly found in parallel distributed file systems. However,

– 70 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

support for multiple distribution schemes will be provided to allow optimizing I/O
performance. The distribution of metadata will also be supported explicitly to avoid
performance bottlenecks and scaling problems.

Previous studies have shown that different distributions can be beneficial for certain
kinds of files. For instance, distributing small files across many servers often does
more harm than good [KKL08, KKL09, CLR+09]. As application developers can most
accurately estimate the expected benefits of adapting the distribution, it has to be easy
for them to manually adapt the distributions; that is, the I/O interface should have
direct and adequate distribution support.

3.5.2. Metadata Management

As shown in Section 2.2.1 on pages 27–29, file systems usually keep a lot of metadata.
To reduce JULEA’s metadata overhead, collections and items will feature only a
reduced set of metadata. The following list gives an overview of the metadata that
needs to be stored for the different types of file system objects:

• Name (collection and item)

• Ownership (collection and item)

– User

– Group

• Distribution (item only)

– Varies depending on the chosen distribution

• Status (item only)

– Size

– Modification time

As already mentioned, unnecessary metadata will be omitted. For example, the last
access time will not be stored because it would introduce write overhead for each
read operation. While this information might be appropriate for general purpose file
systems, its usefulness in parallel distributed file systems targeted at HPC workloads
is questionable.15

File system metadata is usually stored in inodes that have a fixed format. Due to
JULEA’s dynamic nature, its metadata does not fit into such a fixed schema, because
different semantics can make it necessary to store different metadata. One obvious

15 In fact, current versions of Linux only update the last access time under certain circumstances even
for local file systems due to the implicit overhead [Zak14]. Linux versions 2.6.30 and up default to
relatime, which is explained in Section 2.6.1 on pages 42–43.

– 71 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

example is the distribution information which varies based on the chosen distribution
function. While it would be possible to reserve a certain amount of space for distribu-
tion information and future extensions, this would introduce the same inflexibilities
found in current inode designs.

However, other factors can also make it necessary to modify the metadata schema.
One of those factors is the rate with which the metadata is accessed and modified.
Regarding its access rate, the metadata can be separated into three groups:

1. Write-once

• The data distribution metadata is written once when the item is created and
not modified afterwards.

2. Occasionally changing

• The name and ownership metadata is only modified if explicitly requested
by the user.

3. Frequently changing

• The status metadata is potentially modified for each access.

While write-once and occasionally changing metadata can easily be kept on the meta-
data server, also storing frequently changing metadata there can result in a perfor-
mance bottleneck in specific cases. Fundamentally, there are two possibilities to
manage this information:

1. Frequently changing metadata is stored on the metadata servers. Even if meta-
data is distributed across multiple metadata servers, the metadata of a single
item is usually managed by exactly one metadata server. A large amount of
clients modifying a single item concurrently can cause a storm of updates on this
single metadata server, causing the already mentioned performance bottleneck.

2. Frequently changing metadata is not stored explicitly, but rather retrieved and
computed on demand. This can be achieved by collecting information about
the different data stripes from all data servers. For instance, while the item’s
size can be summed up over all servers, only the maximum of all servers’ last
modification times would be used to determine the item’s modification time.
These can be expensive operations as they involve contacting a potentially large
amount of data servers.

JULEA’s concurrency semantics provide information about the number of clients
accessing an item and can thus be conveniently used to determine the method to
use; this will make sure that frequently changing metadata such as the file size and
modification time are only stored explicitly for non-parallel workloads.

– 72 –

CHAPTER 3. INTERFACE AND FILE SYSTEM DESIGN

Even though parts of the metadata are write-once or occasionally changing, large
numbers of concurrently accessing clients can still cause congestions inside the meta-
data servers due to high rates of metadata operations. Batches provide the means
to solve this particular problem by aggregating many metadata operations and thus
reducing the metadata overhead.

Summary

This chapter has illustrated the design of JULEA’s parallel distributed file system and I/O inter-
face; the design includes the general architecture, the namespace, the interface, the semantics
and considerations regarding data and metadata handling. JULEA’s possible semantics, their
interactions and consequential optimization opportunities have been highlighted specifically.
In contrast to traditional I/O interfaces, JULEA allows its semantics to be adapted dynam-
ically; this allows applications to fine-tune the file system’s behavior according to their I/O
requirements instead of the other way around.

– 73 –

Chapter 4.

Related Work

In this chapter, an overview of existing work from the fields of parallel distributed file sys-
tems, I/O optimizations, interfaces and semantics will be given. Comparisons with existing
approaches will focus on their ability to provide semantical information for optimization and
convenience purposes as well as their capabilities regarding dynamic semantics.

4.1. Metadata Management

The traditional approach of metadata management is to have one or more metadata
servers and partition the file system namespace statically. In addition to this, more
sophisticated techniques for handling the increasing requirements regarding metadata
performance have started to emerge. A selection of popular ones will be presented
and compared to JULEA’s design.

GIGA+ GIGA+ presents a new file system directory service that is supposed to han-
dle millions of files and has been integrated into OrangeFS [PGLP07, PG11]. It stripes
directories over many servers by effectively splitting directories into multiple parti-
tions by hashing the name of directory entries; the appropriate partitions and servers
are found using low-overhead bitmaps. It supports traditional POSIX1 semantics and
is built for high throughput and scalability by minimizing the necessary amount of
shared state. Additionally, it can handle incremental growth of directories as well as
provide adequate burst performance.

GIGA+’s design is built and improved upon in [XXSM09] to efficiently support
a trillion files by employing an adaptive two-level directory partitioning scheme.
The presented approach allows scalable access to very large directories and dynamic
partitioning of the file system namespace for load balancing purposes.

One of GIGA+’s similarities with JULEA is the fact that metadata is also split into
different categories: Infrequently updated metadata such as the owner or creation
time are managed at a centralized server; highly dynamic metadata such as access and

1 Portable Operating System Interface

– 75 –

CHAPTER 4. RELATED WORK

modification times are allowed to vary across servers. The latter is then dealt with by
the clients that have to ensure consistency by themselves.

Coupled Data and Metadata Instead of providing dedicated metadata servers, it is
also possible to eliminate the metadata servers as shown in [ADD+08]. The authors
move as much metadata as possible to the data servers, leaving only a dedicated server
handling directory operations. On the one hand, this approach has the advantage that
it is not necessary to contact additional metadata servers when the data servers have
to be contacted anyway. On the other hand, metadata and data operations influence
each other because the hardware resources are shared.

Additionally, it makes it harder to handle metadata and data separately: As men-
tioned previously, it makes sense to use alternative storage technologies such as
dedicated solid state drives (SSDs) for metadata because metadata and data servers
usually experience completely different access patterns.

hashFS A new file system approach is presented in [LMB10, LCB13] that eliminates
the current need for many small accesses to get the metadata of all path components
during path lookup. By using the hashed file path to directly look up the related
data and metadata, this can be reduced to only require one read operation per file
access. While this can significantly decrease metadata overhead and increase small
file performance, the use of the full file path for hashing implies that the renaming
of parent directories causes the hashes of all their children to change. There are two
approaches to handle this fact:

1. All hashes are recomputed immediately after a rename operation. This approach
might lead to a lot of computational overhead, depending on the rate of rename
operations in the file system.

2. Rename operations are recorded in a translation table. While this approach
avoids costly recomputations, additional translation table lookup operations
have to performed for each metadata access.

As can be seen, both approaches introduce additional management effort. JULEA does
not use hashed path lookups for this reason, but implements a flat namespace to keep
metadata lookup overhead low.

SmartStore SmartStore provides a new metadata organization paradigm for file
systems [HJZ+09]. The authors have identified the traditional hierarchical file system
namespace as an obstacle for future scalability requirements. Instead of providing
a hierarchical namespace, SmartStore allows searching for data using database-like
queries. To be able to efficiently execute these queries, SmartStore exploits semantical
information to group metadata of correlated files.

– 76 –

CHAPTER 4. RELATED WORK

In contrast to SmartStore’s query-based approach, JULEA provides a traditional
namespace but limits its depth to minimize the metadata overhead.

4.2. Semantics Compliance

As already mentioned in Chapter 2, the POSIX input/output (I/O) interface and
semantics are a common choice among parallel distributed file systems. The following
list gives an overview of the supported I/O semantics of popular parallel distributed
file systems and their degree of standards compliance:

• Lustre: Lustre’s goal is to provide a fully POSIX-compliant file system even
though its current implementation might not be 100 % compliant. Among other
features, it provides POSIX-compliant handling of file sizes even in the context
of striping [SKH+08].

• GPFS: GPFS2 has been designed to be fully POSIX-compliant. Like Lustre, GPFS
can guarantee POSIX-compliant handling of file sizes and also supports strict
POSIX atomicity semantics [SKH+08, JKY00].

• OrangeFS: OrangeFS is not POSIX-compliant but provides support for atomic
non-overlapping writes, even if the write operations are non-contiguous [TSP+11,
LRT04]. One of OrangeFS’s new goals is to explore configurable semantics.

• CephFS: Ceph’s file system CephFS provides near-POSIX semantics [WBM+06].
One major difference is the fact that write operations are not guaranteed to be
atomic if they cross object boundaries. That is, similar to OrangeFS, if two clients
write to the same overlapping location, the resulting data might contain partial
data from different clients.

• GlusterFS: GlusterFS claims to be fully POSIX-compliant; no further details are
provided [Glu11].

As can be seen, even though many parallel distributed file systems provide some
kind of POSIX compliance and some are even fully POSIX-compliant, there are subtle
differences depending on the used file system. Therefore, application developers still
have to make sure that their applications work correctly on different file systems, even
though they use a seemingly portable I/O interface. One of the reasons for this state of
affairs is the fact that supporting POSIX semantics in a parallel distributed file system
is a complex task; striving to do the same while providing high performance only
exacerbates the problem.

2 General Parallel File System

– 77 –

CHAPTER 4. RELATED WORK

Another problem stems from the fact that the POSIX specifications are sometimes
not explicit enough and allow for different interpretations of the standard. For instance,
the different possible interpretations of POSIX’s atomicity semantics are the subject of
an ongoing debate (see Section 2.6.1 on pages 42–43). This ambiguity can also lead to
unexpected behavior; the write function’s manual contains the following statement:

“POSIX requires that a read(2) which can be proved to occur after a write()
has returned returns the new data. Note that not all filesystems are POSIX
conforming.”

Source: [The14b]

Even for local file systems, this behavior does not imply that data has been stored
on a storage device persistently; an additional call of fsync or fdatasync is required
to make it so. In the context of parallel distributed file systems, however, this has
additional implications that are illustrated based on the number of client machines
accessing a shared file:

• Single client machine: If the accesses to the shared file originate from only a
single client machine, the parallel distributed file system does not have to send
the data to the data servers for every single write call. Instead, it can aggregate
the data in the machine-local cache to increase performance. This behavior is
POSIX-compliant because all read calls can be satisfied from the client machine’s
cache. This allows for high performance even in the presence of suboptimal I/O
patterns because caching can be used to mitigate the problem.

• Multiple client machines: If the accesses to the shared file originate from multi-
ple client machines, the parallel distributed file system has to modify its behavior.
It has to send every write call’s data to the data servers immediately or employ
a locking scheme because clients on different client machines might issue read
calls that have to return the newly written data according to POSIX.

Consequently, applications will exhibit different performance characteristics depend-
ing on the currently used number of client machines even though the actual I/O
pattern does not change. This can be surprising for application developers and is
another fact to be taken into account when performing parallel I/O. The effects of this
behavior will be examined in more detail in Chapter 6.

4.3. Adaptability

There are a few approaches to provide configurable behavior and semantics in parallel
distributed file systems. However, they are usually limited to single aspects of the file
system or too static because they do not allow changes at runtime [PGG+09].

– 78 –

CHAPTER 4. RELATED WORK

MosaStore MosaStore is a versatile storage system that is configurable at application
deployment time and thus allows application-specific optimizations [AKGR10].

This approach is similar to the JULEA approach, however, MosaStore provides
a storage system bound to specific applications instead of a globally shared one.
Additionally, the storage system can not be reconfigured at runtime and keeps the
traditional POSIX I/O interface.

CAPFS CAPFS introduces a new content-addressable file store that allows users
to define data consistency semantics at runtime [VNS05]. While providing a client-
side plug-in API allows users to implement their own consistency policies, CAPFS is
limited to tuning the consistency of file data and keeps the traditional POSIX interface.
Additionally, the consistency semantics can only be changed on a per-file basis.

Configurable Security In [GAKR08], the authors present a configurable security
approach that allows using scavenged storage systems – that is, storage systems con-
sisting of unused workstation hardware – in trusted, partially trusted and untrusted
environments in a secure way.

While JULEA does not use scavenged storage hardware and currently does not
support dynamic security semantics, the cited work shows that configurable security
can be achieved with relatively low overhead.

4.4. Semantical Information

The problem of missing semantical information making heuristics necessary to im-
prove performance is of course not unique to file systems. Many fields in informatics
are affected by this and can benefit from the additional knowledge provided by
developer-provided information.

Custom Metadata In [SNAKA+08], the authors propose to use custom metadata
such as extended attributes for cross-layer optimizations in storage systems. This
means that applications can provide additional information to the storage system via
custom metadata and vice versa. The authors give several examples about how this
can be used to improve the storage system’s efficiency:

• Files can be annotated as temporary and thus be treated differently: Temporary
files can be cached more aggressively or be purged automatically.

• Annotations can be used to specify quality of service requirements such as
durability, security and privacy.

• Consistency requirements can be specified to manage performance tradeoffs.

– 79 –

CHAPTER 4. RELATED WORK

The idea of custom metadata is very similar to JULEA’s semantical information. The
main difference between the two approaches is that custom metadata is explicitly
stored and interpreted by the storage system, while JULEA’s semantical information
is specified for each batch and passed directly to the file system. Additionally, the
authors present a generic approach, while JULEA is tailored to high performance
computing (HPC) applications.

Amino Amino’s authors have designed and implemented a file system supporting
atomicity, consistency, isolation and durability (ACID) semantics [Wri06, WSSZ07].
Amino is a POSIX-compliant user space file system that uses the ptrace tracing
framework to intercept POSIX I/O system calls. It is built on top of Berkeley DB
(BDB), which provides a well-tested infrastructure for transactions.

1 amino(BEGIN_TXN, "/path/to/file", 0);
2
3 fd = open("/path/to/file", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR |

↪→ S_IWUSR);
4 pwrite(fd, data, sizeof(data), 0);
5 close(fd);
6
7 amino(COMMIT_TXN, 0);

Listing 4.1: Amino transactions

Listing 4.1 shows pseudo code for Amino transactions. The transaction is started
for a given path using the amino function with the BEGIN_TXN parameter (line 1).
Afterwards, arbitrary POSIX I/O functions can be executed (lines 3–5). Finally, the
transaction is committed by passing the COMMIT_TXN parameter to the amino function.
In case of an error, the transaction could be aborted using the ABORT_TXN parameter.

As can be seen, the concept of transactions is similar to that of JULEA’s batches even
though the latter do not offer ACID support. A downside of Amino’s transactions is
that they can not be adapted dynamically when full ACID semantics are not required.

Networking A feature found in TCP3 is the Nagle algorithm that tries to aggregate
small network messages into larger ones to reduce the number of packets sent over
the network. For instance, an application sending ten messages containing 1 byte
each would generate ten network packets with a size of at least 41 bytes each.4 Conse-

3 Transmission Control Protocol
4 In addition to the actual data, each packet carries several headers. While TCP adds a header of 20 bytes,

the size of the header added by the Internet Protocol (IP) depends on the protocol version: An IPv4
header has a size of 20 bytes and an IPv6 header has a size of 40 bytes. The underlying network
technology – such as Ethernet – usually increases the packet size even further.

– 80 –

CHAPTER 4. RELATED WORK

quently, this application would generate ten network packets with a cumulative size
of 410 bytes. The Nagle algorithm can aggregate all these small messages into one
network packet with a size of 50 bytes, reducing the overhead by more than 85 %.

However, the Nagle algorithm uses heuristics to decide which messages to aggregate
and when to actually send a network packet. Due to several factors, this can result in
delays of up to 500 ms [MSMV00]. While it is possible to disable the Nagle algorithm
using setsockopt’s TCP_NODELAY option, this undoes all possible optimizations. A
better approach is the so-called corking: The TCP_CORK option allows developers to
manually control the message aggregation feature [MM01]. This can be used to cork the
connection before sending many small messages, which causes them to be queued and
aggregated instead of being sent immediately. As soon as the connection is uncorked,
the queued messages are flushed and sent using as few network packets as possible.

1 int fd;
2 int flag;
3
4 flag = 1;
5 setsockopt(fd, IPPROTO_TCP, TCP_CORK, &flag, sizeof(flag));
6
7 write(fd, &flag, sizeof(flag));
8 write(fd, &flag, sizeof(flag));
9 write(fd, &flag, sizeof(flag));

10
11 flag = 0;
12 setsockopt(fd, IPPROTO_TCP, TCP_CORK, &flag, sizeof(flag));

Listing 4.2: TCP corking

Listing 4.2 shows code demonstrating the use of TCP corking. The file descriptor fd
is assumed to be an open network socket (line 1); the integer variable flag will be
used to pass arguments to the setsockopt function and used as dummy data (line 2).
Before sending any data, the setsockopt function is used together with the 1 flag to
cork the connection (lines 4–5). Afterwards, several small messages are sent (lines 7–9).
Finally, the connection is uncorked using the 0 flag (lines 11–12).

As can be seen, this is similar to the concept of batch operations in JULEA but on a
much lower level. In fact, the additional semantical information provided by JULEA’s
batch operations can and will be utilized to make use of this TCP optimization.

Memory Ordering In parallel programming for shared memory architectures, mem-
ory ordering and consistency are important factors for both performance and correct-
ness. Because central processing units (CPUs) usually reorder memory load and store

– 81 –

CHAPTER 4. RELATED WORK

operations to improve performance, it is necessary to take this fact into account when
using multiple threads to access shared memory [GLL+90, GGH91].

1 /* Thread 1: */
2 x = 1;
3 r1 = y;
4
5 /* Thread 2: */
6 y = 1;
7 r2 = x;

Listing 4.3: Memory operation reordering

Listing 4.3 shows the memory operations of two concurrent threads (lines 1–3 and 5–7,
respectively). x and y are variables in the shared memory that are initialized with 0.
Each thread writes to one of the variables (thread 1 to x and thread 2 to y) and then
reads the variable written to by the other thread into a register (threads 1 and 2 write
into r1 and r2, respectively).

The order of operations suggests that at least one of the registers will contain the
value 1 after both threads have finished running. However, due to reordering, both
registers could actually contain the value 0: The CPU could first execute both load
operations into the registers and then store the values into x and y.

1 #include <stdatomic.h>
2
3 atomic_int guide = ATOMIC_VAR_INIT(42);
4 atomic_init(&guide, 42);

Listing 4.4: Atomic variables in C11

Modern concepts such as those supported by C++11 and C11 allow developers to
specify different constraints to achieve optimal performance while still maintaining
correct execution of their applications [ISO11]. Those features are usually leveraged
by making use of atomic variables. Listing 4.4 shows how atomic variables can
be declared and defined: First, it is necessary to include the stdatomic.h header
providing the atomic functionality (line 1). This makes available new atomic data
types that are denoted by the atomic_ prefix.5 Afterwards, an atomic integer is
declared and initialized using the ATOMIC_VAR_INIT function (line 3). Alternatively, it
is possible to initialize atomic variables using the atomic_init function (line 4).

Depending on the used CPU architecture, memory operations can be reordered
differently. Consequently, C++11 and C11 allow providing information that can be

5 Alternatively, data types can be made atomic using the _Atomic type qualifier.

– 82 –

CHAPTER 4. RELATED WORK

used to produce the optimal code for each CPU architecture. The memory_order type
defines several possible orderings that can be used to specify the semantics necessary
to obtain the correct results:

• memory_order_seq_cst: Guarantees that no reordering is performed and pro-
vides sequential consistency.

• memory_order_acquire: Guarantees that no subsequent load operation is
moved before the current one.

• memory_order_release: Guarantees that no preceding store operation is moved
beyond the current one.

• memory_order_acq_rel: Combines the previous two guarantees.

• memory_order_consume: Provides guarantees similar to memory_order_ac-
quire but only for operations that are dependent on the current load operation.

• memory_order_relaxed: All orderings are allowed.

Using these memory ordering settings, the above example can be rewritten to solve
the problem by forcing the CPU to not reorder operations in an incorrect way.

1 /* Thread 1: */
2 atomic_store_explicit(&x, 1, memory_order_seq_cst);
3 r1 = atomic_load_explicit(&y, memory_order_seq_cst);
4
5 /* Thread 2: */
6 atomic_store_explicit(&y, 1, memory_order_seq_cst);
7 r2 = atomic_load_explicit(&x, memory_order_seq_cst);

Listing 4.5: Atomic operations in C11

Listing 4.5 shows the example from Listing 4.3 on the preceding page in a modified
form to use atomic operations and sequential consistency [Lam79]. This guarantees
that at least one of the registers contains the value 1 because the operations are not
allowed to be reordered due to the requested memory ordering.

Being able to specify the memory ordering has several advantages: On the one hand,
it allows the compiler to produce optimal code for the given CPU architecture. On the
other hand, it is not necessary to force sequential consistency at all times to guarantee
correctness. JULEA’s ordering semantics provide the same benefits by allowing the
developer to provide additional semantical information to optimize execution.

– 83 –

CHAPTER 4. RELATED WORK

ADIOS As shown in Section 2.5.6 on pages 40–42, ADIOS6 offers a novel and
developer-friendly I/O interface: It allows specifying the I/O configuration in an
XML7 file that can be changed without recompiling the application. Newer releases of
ADIOS have added features to provide improved performance and convenience:

1. Read scheduling: Version 1.4 has added support for scheduling read operations.
Several read operations can be scheduled using the adios_schedule_read func-
tion and then executed using the adios_perform_reads function.

2. Data transformations: Version 1.6 has added support for on-the-fly data trans-
formations. Each variable can be assigned a different transformation using
the XML configuration file or the adios_set_transform function.8 Currently,
data transformations allow compressing variables using different compression
algorithms. However, as the transformations are implemented in the form of
plug-ins, additional transformations can be added [BLZ+14].

1 adios_schedule_read(adios_fd, NULL, "var1", 0, 1, &var1);
2 adios_schedule_read(adios_fd, NULL, "var2", 0, 1, &var2);
3 adios_schedule_read(adios_fd, NULL, "var3", 0, 1, &var3);
4 adios_perform_reads(adios_fd, 1);

Listing 4.6: ADIOS read scheduling

Listing 4.6 shows an example of read scheduling. First, three variables var1, var2 and
var3 are scheduled for reading using the adios_schedule_read function (lines 1–
3). Afterwards, all scheduled reads are executed using the adios_perform_reads
function (line 4). In the best case, this allows reading a contiguous chunk of data
instead of many small ones.

1 <var name="matrix" type="double" dimensions="rows,columns"
↪→ transform="bzip2"/>

Listing 4.7: ADIOS variable transformation (XML)

Data transformations can be assigned to individual variables in the XML file, as shown
in Listing 4.7. The matrix variable, which is a matrix of dimensions rows×columns
and contains double values, is transformed using the bzip2 data transform.

6 Adaptable IO System
7 Extensible Markup Language
8 The adios_set_transform function has been added in ADIOS version 1.9.

– 84 –

CHAPTER 4. RELATED WORK

1 int64_t var_id;
2
3 var_id = adios_define_var(...);
4 adios_set_transform(var_id, "bzip2");

Listing 4.8: ADIOS variable transformation

Listing 4.8 shows how data transformations can be used manually. First, a variable
has to be defined using the adios_define_var function (line 3); the function returns
a 64-bit integer identifier (ID). Afterwards, it is possible to set the data transformation
using the adios_set_transform function by passing the variable ID as well as the
desired data transformation bzip2 (line 4).

Read scheduling is very similar to JULEA’s batches: It allows aggregating multiple
operations for improved performance. However, in contrast to JULEA’s batches that
can contain arbitrary operations, ADIOS’s read scheduling is limited to read operations.
The availability of this information could be exploited when using ADIOS on top
of JULEA. ADIOS’s data transformations implement the transformation semantics
proposed in Section 3.4.7 on page 67, demonstrating their usefulness. Exposing this
functionality in a convenient way lifts the burden of manually implementing data
compression from the application developers.

Summary

This chapter has presented related work and compared it with JULEA’s approach. The related
concepts have been grouped according to their metadata management, the adaptability of
semantics and the ability of specifying additional semantical information. Additionally, a
comparison as to the semantics compliance of several parallel distributed file systems has been
performed. While other fields of informatics have used semantical information to improve
performance, support for similar facilities is very sparse with respect to file systems.

– 85 –

Chapter 5.

Technical Design

In this chapter, the technical design of the file system and I/O interface with dynamically
adaptable semantics will be presented. Because both have been designed with modularity
in mind, extension points will be highlighted specifically. Additionally, important software
components that have been used during the development phase will be introduced.

Modifying an existing parallel distributed file system to implement the design pre-
sented in Chapter 3 seems like an obvious choice. While it has been considered to
use Lustre or OrangeFS, this has been deemed unreasonable because neither Lustre
nor OrangeFS are prepared for this kind of functionality. Therefore, large parts of
the their existing implementations would have to be changed. On the one hand,
their respective input/output (I/O) interfaces would have needed to be adapted to
support batch operations and to allow specifying semantical information. On the
other hand, modifications to the actual file system code would have been required to
take advantage of the information delivered by the interface.

Previous experience has shown that it can be difficult to adapt existing architectures
for features affecting the fundamental file system functionalities [KKL08, KKL09]. In
addition to the actual implementation, this would have meant getting to know the
existing large code bases: Lustre and OrangeFS contain more than 550,000 and 250,000
lines of code, respectively. While OrangeFS can be run completely in user space,
Lustre’s client and server code have been implemented in the form of kernel modules
and patches (see Chapter 2). Consequently, even more major modifications would
have been required because Lustre’s client interface is limited by Linux’s virtual file
system (VFS) layer as described in Section 2.2 on pages 26–29. Due to its complexity,
OrangeFS’s native I/O interface is usually not used directly but only through either
MPI-IO or POSIX1; that is, changes to the OrangeFS interface would have also required
modifications to at least one of those additional I/O interfaces. Therefore, it has been
decided to implement a prototypical file system with all other necessary components
to evaluate the proposed design. The resulting framework is called JULEA.

While the file system prototype has been built from scratch to suit the needs of
the proposed I/O interface, care has been taken to use existing technology whenever

1 Portable Operating System Interface

– 87 –

CHAPTER 5. TECHNICAL DESIGN

possible. This approach has two major advantages: First, it helps minimizing the
development overhead while implementing the already complex parallel distributed
file system. Second, widely used software components are expected to be well-tested
and thus contain fewer bugs than self-developed ones.

Because developing and maintaining a kernel module can present a significant
burden, JULEA will run completely in user space. JULEA provides a user space library
that can be linked to applications, allowing them to use the JULEA I/O interface.
An additional user space daemon handles storing the file data on the data servers.
Metadata is stored in a NoSQL database system called MongoDB [Cat10]. It can be
scaled horizontally by simply adding more servers and will be explained in more
detail in Section 5.2 on pages 91–93. The library communicates via TCP2 with both
the JULEA daemons and the MongoDB servers running on the data and metadata
servers, respectively. By providing all functionality in user space, JULEA is largely
independent of the used operating system and can be easily ported to new software
environments. An increasing number of parallel distributed file systems – such as
CephFS, GlusterFS and OrangeFS – also prefer this kind of architecture.

Implementing a parallel distributed file system in user space has several advantages:
First, user space code is much more portable because – in contrast to the internal kernel
interfaces – the user space application programming interface (API) and application
binary interface (ABI) are stable. Second, in case of problems, user space applications
can simply be restarted; kernel problems might make it necessary to restart the whole
machine. Third, support for user space performance analysis and debugging is better
than for kernel space due to comprehensive tool support.

However, providing file system functionality from user space also has disadvan-
tages: For instance, instead of faster mode switches, more expensive context switches
might be necessary because file systems will run as normal user space processes.3 In
real-world usage, this problem can typically be neglected due to the high latencies
that occur when accessing the storage devices and the network.

Many distributed file systems use underlying local POSIX file systems to store the
actual data. For example, Lustre uses ldiskfs that is based on the ext4 file system;
OrangeFS is able to use arbitrary POSIX file systems. Obviously, this introduces
additional overhead because a lot of the common file system functionality – such as
path lookup or permission checking – is duplicated. While all this functionality is
already present and handled in the parallel distributed file system, the underlying
local file systems perform the same work redundantly. As presented in Chapter 3, the
goal is to use an object store for storing the actual file data. Since an object store only

2 Transmission Control Protocol
3 A mode switch denotes a switch from user mode to kernel mode and vice versa. A context switch

denotes a switch from one user space process to another process and requires more state to be saved
and restored; this makes them slower by a factor of up to 50.

– 88 –

CHAPTER 5. TECHNICAL DESIGN

provides the most essential functions like creating, reading, writing and removing
objects, this will help avoiding the overhead mentioned before.

In order to provide as much flexibility as possible regarding the underlying storage
system, JULEA offers native support for multiple backends in the form of interchange-
able modules. These backends implement a common interface that abstracts the actual
storage system and provides transparent access to different storage technologies.
While this makes it possible to easily support different object stores as intended, it also
allows using existing file systems for compatibility reasons.

JULEA’s software framework also features auxiliary tools such as command line
utilities and a FUSE4 file system for compatibility with POSIX applications. Addition-
ally, unit tests and benchmarks are included to be able to easily find functionality and
performance regressions.

5.1. Architecture

Figure 5.1 on the following page illustrates JULEA’s architecture in more detail. As
mentioned before, JULEA’s architecture comprises three major component classes:
clients, data servers and metadata servers. All communication between instances of
these three components is handled using TCP. While it is possible to run all of them
on the same physical nodes for testing purposes, production environments usually
have dedicated nodes for each component instance. The figure shows the default
configuration that groups related services together on the same node; however, specific
services such as the router and config servers could also be placed on separate nodes.

Client To make use of JULEA’s features, client applications simply have to be linked
against JULEA’s client library called libjulea.so. The library provides a cleanly
separated namespace for JULEA’s functionality: All function names begin with j_, all
data types are prefixed with J and all preprocessor macros and enum values have a
leading J_ in their name.

Applications are usually executed on designated compute nodes that are reserved
exclusively for computational tasks. There is no limit as to the number of clients;
depending on the particular use case, one or multiple clients can be run on each node.
While the application and client library communicate via shared memory, the router is
connected to via TCP.

• Application: The JULEA client library can be used with any kind of application,
including parallel applications using MPI5 and threads.

4 Filesystem in Userspace
5 Message Passing Interface

– 89 –

CHAPTER 5. TECHNICAL DESIGN

Data Server

Data Daemon
(julea-daemon)

Backend
(libposix.so)

Metadata Server

Shard
(mongod)

Config
(mongod)

Client

Router
(mongos)

Application

JULEA
(libjulea.so)

Figure 5.1.: JULEA’s general architecture

• Client library: All functionality is contained in JULEA’s libjulea.so. An
additional library called libjulea-private.so provides internal functionality
for other JULEA components; this separation allows minimizing the publicly
available interface. Concentrating as much functionality as possible in these
central libraries avoids code duplication and facilitates reuse of existing code.
The client library transparently handles all communication with the data and
metadata servers by communicating with JULEA’s data daemon and MongoDB’s
daemon or router as necessary.

• Router: The MongoDB router is used in case MongoDB’s sharding is activated.
Client applications can connect to the router process mongos that behaves like a
normal MongoDB server. It retrieves the shard configuration from the MongoDB
config server and routes all traffic to the appropriate MongoDB shards.

Metadata Server The metadata servers are executed on a subset of the so-called
storage nodes and make use of the MongoDB database system. While each of the nodes
runs a shard, only three of them house a config server; both communicate via TCP
connections. The metadata servers consist of two user space processes each:

• Shard: A MongoDB shard holds a part of the complete MongoDB database; the

– 90 –

CHAPTER 5. TECHNICAL DESIGN

actual distribution is performed by the mongos routers. In non-sharded configu-
rations, there is only one MongoDB server that holds the complete database.

• Config server: A MongoDB config server holds sharding metadata. While it
is possible to run only a single config server, production sharded clusters are
supposed to contain exactly three config servers for redundancy and safety
reasons. All sharding metadata is stored in a special config database that can
be accessed using the normal MongoDB interface if absolutely necessary.

Data Server The data servers run a user space daemon called julea-daemon that
handles all I/O on behalf of JULEA’s clients. This daemon has access to multiple
storage backends that are compiled as shared libraries and loads one of them at startup.
In this example, the POSIX backend contained in libposix.so is used.

The data servers are also executed on a subset of the storage nodes; depending on
the use case, it might or might not overlap with the one used by the metadata servers.
Each node houses a single data daemon that is linked to a single storage backend; the
data daemon and storage backend communicate via shared memory.

• Data daemon: JULEA’s data daemon runs as a normal user space process and
waits for TCP connections from JULEA’s client library. Each one is uniquely
associated with one client process and handled by its own dedicated thread.

• Storage backend: The storage backend is dynamically loaded by the data dae-
mon on startup. Consequently, only one storage backend can be active at the
same time. All I/O requests are handled by the data daemon and delegated to
the storage backend for the actual processing.

5.2. Metadata Servers

To reduce the implementation overhead, JULEA’s metadata servers are realized using
an existing database system. JULEA’s metadata design has two main requirements
that must be met by the potential candidates:

1. Scalability: It must be possible to scale the metadata servers horizontally with-
out much effort. Centralized services can quickly become performance bottle-
necks with the ever increasing numbers of accessing clients.

2. Flexibility: Metadata must not be constrained into a fixed format. JULEA’s
dynamic behavior makes it necessary to store different kinds of metadata de-
pending on the current semantics.

Even though traditional SQL database systems such as MySQL Cluster offer possi-
bilities for horizontal scaling [Ora11], they were not considered because the fixed

– 91 –

CHAPTER 5. TECHNICAL DESIGN

format of their tables is not suited for JULEA’s dynamic metadata format. NoSQL
database systems are often designed with horizontal scalability in mind. Addition-
ally, document-oriented NoSQL database systems usually offer the ability to store
documents with differing schemas.

5.2.1. MongoDB

MongoDB is such a document-oriented NoSQL database system with support for
dynamic document schemas [10g13] that are well-suited for JULEA’s non-uniform
metadata. A multitude of programming languages are supported through official and
third-party client interfaces and libraries. MongoDB supports replication and high
availability for use in production environments.

MongoDB’s namespace is organized into databases, collections and documents: Multi-
ple related documents can be combined into collections and a database can consist of
multiple collections. Collections are referred to by the concatenation of the database
name and the collection name with a period. For example, the bar collection in the
foo database would be accessed using foo.bar.

Documents are sets of key-value pairs. While keys are always strings, values
can have arbitrary data types such as strings, integers or even arrays. This makes
MongoDB documents the perfect candidate to store JULEA’s metadata.

1 {
2 "_id" : ObjectId("51caae667d1a000000000014"),
3 "text" : "Lorem ipsum dolor sit amet, ...",
4 "length" : 42
5 }

Listing 5.1: MongoDB document in JSON format

Listing 5.1 shows an exemplary MongoDB document in JSON6 format. Each document
has a unique identifier (ID) called _id (line 2); the ID is automatically generated if it is
omitted when creating the document. As can be seen, values can be of arbitrary type:
While the value belonging to the key text is a string (line 3), the value associated with
the key length is an integer (line 4). By default, the _id key is indexed, allowing fast
lookups using this key; additional indexes can be added easily, however.

MongoDB also supports a technique called sharding that enables horizontal scaling.
It allows the documents to be distributed across multiple servers and is performed
on a per-collection basis. By default, the distribution is handled automatically by
MongoDB. However, it is also possible to specify the so-called shard key MongoDB

6 JavaScript Object Notation

– 92 –

CHAPTER 5. TECHNICAL DESIGN

uses to determine the distribution for more fine-grained control; this allows optimizing
the way the documents are distributed.

5.3. Data Servers

The data daemon handles all access to item data on behalf of the clients that do
not have direct access to the actual storage hardware. Like the JULEA library, it is
implemented as a user space application to minimize portability issues. The data
daemon is completely threaded and handles each connection in its own separate thread.
This ensures that clients can not block each other from proceeding and guarantees
fast response times. Its source code can be found in the daemon directory and more
specifically in daemon/daemon.c.

5.3.1. Storage Backends

The JULEA daemon uses so-called storage backends to abstract the underlying storage
technologies. These backends can be easily exchanged and allow using existing
technologies as well as fast prototyping of new approaches. For instance, storage
backends can be adapted for a given computer system without having to modify the
internals of the daemon. Additionally, they can be used to integrate new approaches
such as objects stores into the system. JULEA already includes numerous storage
backends for different use cases that can be found in the daemon/backend directory:

• NULL (daemon/backend/null.c): This storage backend is intended for per-
formance measurements of the overall I/O stack. It excludes the influence of
underlying storage hardware by returning dummy information and discarding
all incoming data.

• POSIX (daemon/backend/posix.c): This storage backend provides compatibil-
ity with existing POSIX file systems. Due to using a full-featured file system as
the storage backend, certain functionalities – such as path lookup and permis-
sion checking – are duplicated within the I/O stack. It is intended as an interim
solution until object stores with sufficient functionality are available.

• GIO (daemon/backend/gio.c): This storage backend uses the GIO library that
provides a modern, easy-to-use VFS API supporting multiple backends including
POSIX, FTP7 and SSH8. It is mainly intended as a proof of concept and allows
experimenting with GIO’s more exotic backends.

7 File Transfer Protocol
8 Secure Shell

– 93 –

CHAPTER 5. TECHNICAL DESIGN

• ZFS (daemon/backend/jzfs.c): This storage backend uses ZFS9’s data man-
agement unit (DMU) to provide a low-overhead data store. Since the underlying
object store only provides the most essential I/O operations, no high-level file
system functionality is duplicated.

• LEXOS (daemon/backend/lexos.c): This storage backend uses LEXOS10 to
provide a light-weight data store [Sch13]. The underlying object store only
provides basic I/O operations.

Object Stores

The ZFS storage backend uses the JZFS library that has been developed to provide
user space access to the ZFS DMU; its source code can be found in the zfs directory. It
provides a convenient object store interface and can handle ZFS pools, object sets and
objects. However, ZFS’s DMU interface is largely undocumented and is apparently
not intended to be used from user space. Several patches are required to make it work
from user space; it is therefore considered experimental and unstable.

While initial evaluations have been promising and have demonstrated good perfor-
mance, more in-depth analysis has revealed problems regarding multi-threading that
have not been solved until now. Because JULEA’s data daemon uses multi-threading
extensively, it has not been possible to use the ZFS storage backend. Consequently,
it is mainly intended as a proof of concept and has been deprecated in favor of the
LEXOS storage backend. Because LEXOS is still in an earlier stage of development,
the POSIX storage backend remains the default, however.

5.3.2. Backend Interface

JULEA uses a modular approach for the storage backends: They are provided as so-
called modules in the form of shared libraries that are loaded dynamically by the data
daemon at runtime. JULEA defines a common backend interface that is implemented
by all storage backends.

1 gboolean backend_init (gchar const* storage_path);
2 void backend_fini (void);
3
4 gpointer backend_thread_init (void);
5 void backend_thread_fini (gpointer data);
6
7 gboolean backend_create (JBackendItem* backend_item, gchar const*

↪→ store, gchar const* collection, gchar const* item, gpointer
↪→ data);

9 Zettabyte File System
10 Low-Level Extent-Based Object Store

– 94 –

CHAPTER 5. TECHNICAL DESIGN

8 gboolean backend_delete (JBackendItem* backend_item, gpointer data);
9

10 gboolean backend_open (JBackendItem* backend_item, gchar const*
↪→ store, gchar const* collection, gchar const* item, gpointer
↪→ data);

11 gboolean backend_close (JBackendItem* backend_item, gpointer data);
12
13 gboolean backend_status (JBackendItem* backend_item,

↪→ JItemStatusFlags status_flags, gint64* modification_time,
↪→ guint64* size, gpointer data);

14 gboolean backend_sync (JBackendItem* backend_item, gpointer data);
15
16 gboolean backend_read (JBackendItem* backend_item, gpointer buffer,

↪→ guint64 length, guint64 offset, guint64* bytes_read, gpointer
↪→ data);

17 gboolean backend_write (JBackendItem* backend_item, gconstpointer
↪→ buffer, guint64 length, guint64 offset, guint64*
↪→ bytes_written, gpointer data);

Listing 5.2: JULEA’s storage backend interface

Listing 5.2 on the facing page shows the generic storage backend interface that all
storage backends have to implement; it can be found in daemon/backend/backend-
internal.h. The interface is simple by design and only provides support for the most
essential operations: creating, deleting, opening and closing an item, getting an item’s
status, syncing an item’s data to the underlying storage, and reading from and writing
to an item (lines 7–17). Additionally, there are operations to initialize and finalize the
storage backend both globally and per thread (lines 1–5).

All operations return error codes and can store additional state and information in
the opaque JBackendItem structure. The per-thread initialization function can also
return an opaque pointer that is passed to all file operations as their last parameter.

It is important to note that these functions are not called directly by clients; instead,
everything is handled transparently by the data daemon that receives high-level
operations and calls the appropriate low-level storage backend functions. Because of
this, storage backends can rely on their functions being called in a specified sequence:

• backend_init (once)

– backend_thread_init (once per thread)

∗ backend_create or backend_open (once per operation)

∗ backend_status, backend_sync, backend_read and backend_write
(multiple times and in arbitrary order)

– 95 –

CHAPTER 5. TECHNICAL DESIGN

∗ backend_close or backend_delete (once per operation)

– backend_thread_fini (once per thread)

• backend_fini (once)

This guaranteed calling sequence makes it easy to build upon and use information from
earlier function calls: The status, sync, read, write, close and delete functions
can be sure that the item has been successfully opened or created before and do not
have to handle different cases. Additionally, more elaborate functionality is relatively
easy to implement: For instance, the POSIX storage backend uses both the global and
per-thread initialization functions to implement a file descriptor cache in order to
avoid opening the underlying files multiple times. The data daemon makes sure to
pass the cache returned by the per-thread initialization function to all other functions.

1 G_MODULE_EXPORT
2 gboolean
3 backend_status (JBackendItem* bf, JItemStatusFlags flags, gint64*

↪→ modification_time, guint64* size, gpointer data)
4 {
5 gint fd = GPOINTER_TO_INT(bf->user_data);
6 gint ret = -1;
7
8 (void)data;
9

10 j_trace_enter(G_STRFUNC);
11
12 if (fd != -1)
13 {
14 struct stat buf;
15
16 j_trace_file_begin(bf->path, J_TRACE_FILE_STATUS);
17 ret = fstat(fd, &buf);
18 j_trace_file_end(bf->path, J_TRACE_FILE_STATUS, 0, 0);
19
20 if (flags & J_ITEM_STATUS_MODIFICATION_TIME)
21 {
22 *modification_time = buf.st_mtime * G_USEC_PER_SEC;
23
24 #ifdef HAVE_STMTIM_TVNSEC
25 *modification_time += buf.st_mtim.tv_nsec / 1000;
26 #endif
27 }

– 96 –

CHAPTER 5. TECHNICAL DESIGN

28
29 if (flags & J_ITEM_STATUS_SIZE)
30 {
31 *size = buf.st_size;
32 }
33 }
34
35 j_trace_leave(G_STRFUNC);
36
37 return (ret == 0);
38 }

Listing 5.3: JULEA’s POSIX storage backend

To demonstrate the usefulness of the storage backend interface, Listing 5.3 on the
preceding page shows the status operation implemented by the POSIX storage
backend as found in daemon/backend/posix.c. This function is a good example of
how to use information returned by the underlying POSIX file system and fit it into
JULEA’s metadata concept. The file descriptor that was previously opened by the open
operation has been stored in the JBackendItem’s user_data member and can be used
by all other operations (line 5). The per-thread data returned by the thread_init
function is ignored (line 8). Before the actual work starts, JULEA’s tracing framework
is used to trace the status function’s invocation (line 10); similarly, the function’s
completion is traced after all work has been done (line 35). The POSIX storage backend
uses the fstat function to obtain the underlying file’s metadata (line 17); fstat’s
invocation is traced in more detail (lines 16 and 18). The status operation supports
specifying exactly which parts of the metadata should be returned using the flags
parameter (lines 20–32). Because POSIX’s stat functions always return all metadata,
there is no significant advantage in this case; other backends could use this information
to avoid performing unnecessary work, however. Finally, fstat’s return value is used
to determine the status function’s return value (line 37).

1 G_MODULE_EXPORT
2 gboolean
3 backend_write (JBackendItem* bf, gconstpointer buffer, guint64

↪→ length, guint64 offset, guint64* bytes_written, gpointer data)
4 {
5 (void)buffer;
6 (void)data;
7
8 j_trace_enter(G_STRFUNC);
9

– 97 –

CHAPTER 5. TECHNICAL DESIGN

10 j_trace_file_begin(bf->path, J_TRACE_FILE_WRITE);
11 j_trace_file_end(bf->path, J_TRACE_FILE_WRITE, length, offset);
12
13 if (bytes_written != NULL)
14 {
15 *bytes_written = length;
16 }
17
18 j_trace_leave(G_STRFUNC);
19
20 return TRUE;
21 }

Listing 5.4: JULEA’s NULL storage backend

The NULL storage backend is very useful for analyzing the performance of JULEA’s
general architecture because the I/O operations are not actually performed. However,
all operations are still recorded using the tracing framework. Listing 5.4 on the preced-
ing page shows the write operation implemented by the NULL storage backend as
found in daemon/backend/null.c. This particular function nicely demonstrates how
different use cases can be covered using the storage backend interface. All function call
and I/O activity is traced (lines 8, 10–11 and 18) while all other data and information
is discarded (lines 5–6). To maintain compatibility with existing applications, the caller
is told that all data has been written to storage successfully (lines 13–16 and 20).

5.4. Client Library

The JULEA library allows applications to use the native JULEA interface to perform
I/O. All other JULEA components such as the FUSE file system and command line
utilities use this library to interact with the servers. Its source code can be found in the
lib directory; all headers are located in the include directory.

A code example demonstrating the use of JULEA’s client library can be found in
Appendix C.3 on pages 198–200.

5.4.1. Data Distributions

To allow analyzing the influence of different data distributions on overall performance
and to facilitate future research in this direction, JULEA contains a generic distribu-
tion interface that allows implementing different data distributions with a relatively
low implementation overhead. JULEA already provides a number of different data
distributions that can be found in the lib/distribution directory:

– 98 –

CHAPTER 5. TECHNICAL DESIGN

• Round robin (lib/distribution/round-robin.c): The round robin distribu-
tion divides the data into equally sized blocks and distributes them in a round-
robin fashion across all data servers. The starting server is picked randomly
to distribute the load evenly; developers can also specify the starting server
manually, however.

• Single server (lib/distribution/single-server.c): The single server distri-
bution stores all data on a single data server that is chosen randomly to distribute
the load; as with the round robin distribution, the server can be specified manu-
ally by developers if necessary. Data is still divided into equally sized blocks to
enable locking on a block level.

• Weighted (lib/distribution/weighted.c): The weighted distribution divides
the data into equally sized blocks and applies user-specified per-server weights
to determine how much data each data servers holds. The distribution always
starts at the first data server but single servers can be excluded by setting their
weight to 0.

All data distribution functions use a default block size of 4 mebibytes (MiB) that can
easily be changed using the j_distribution_set_block_size function.

1 struct JDistributionVTable
2 {
3 gpointer (*distribution_new) (guint server_count);
4 void (*distribution_free) (gpointer distribution);
5
6 void (*distribution_set) (gpointer distribution, gchar const*

↪→ key, guint64 value);
7 void (*distribution_set2) (gpointer distribution, gchar const*

↪→ key, guint64 value1, guint64 value2);
8
9 void (*distribution_serialize) (gpointer distribution, bson*

↪→ bson_object);
10 void (*distribution_deserialize) (gpointer distribution, bson

↪→ const* bson_object);
11
12 void (*distribution_reset) (gpointer distribution, guint64

↪→ length, guint64 offset);
13 gboolean (*distribution_distribute) (gpointer distribution,

↪→ guint* index, guint64* new_length, guint64* new_offset,
↪→ guint64* block_id);

14 };
15

– 99 –

CHAPTER 5. TECHNICAL DESIGN

16 typedef struct JDistributionVTable JDistributionVTable;

Listing 5.5: Data distribution interface

Listing 5.5 on the previous page shows JULEA’s distribution interface that can be
found in lib/distribution/distribution.h. It provides functions to instantiate
and free distribution objects (lines 1–2): The distribution_new function takes the
number of data servers and returns a distribution object; the distribution_free
function frees an existing distribution object.

The distribution_set and distribution_set2 functions allow setting various
distribution attributes such as the block size or the starting server. The only difference
between the functions is the number of arguments they accept.

To store and restore the distribution information on JULEA’s metadata servers, the
distribution_serialize and distribution_deserialize functions serialize and
deserialize the distribution information, respectively; the information is returned in
the form of BSON11 objects that can be stored directly in MongoDB.

The distribution_reset function allows initializing the distribution with a given
offset and count. Finally, the distribution_distribute function actually calculates
the data distribution by returning the data server’s index, offset, count and a unique
block ID that is used for locking.

1 static
2 gboolean
3 distribution_distribute (gpointer data, guint* index, guint64*

↪→ new_length, guint64* new_offset, guint64* block_id)
4 {
5 JDistributionRoundRobin* distribution = data;
6
7 gboolean ret = TRUE;
8 guint64 block;
9 guint64 displacement;

10 guint64 round;
11
12 j_trace_enter(G_STRFUNC);
13
14 if (distribution->length == 0)
15 {
16 ret = FALSE;
17 goto end;
18 }
19

11 Binary JavaScript Object Notation

– 100 –

CHAPTER 5. TECHNICAL DESIGN

20 block = distribution->offset / distribution->block_size;
21 round = block / distribution->server_count;
22 displacement = distribution->offset % distribution->block_size;
23
24 *index = (distribution->start_index + block) %

↪→ distribution->server_count;
25 *new_length = MIN(distribution->length,

↪→ distribution->block_size - displacement);
26 *new_offset = (round * distribution->block_size) + displacement;
27 *block_id = block;
28
29 distribution->length -= *new_length;
30 distribution->offset += *new_length;
31
32 end:
33 j_trace_leave(G_STRFUNC);
34
35 return ret;
36 }

Listing 5.6: Round robin distribution

To demonstrate how the data distribution interface enables easy prototyping of differ-
ent data distribution functions, Listing 5.6 on the facing page shows the distribu-
tion_distribute function as found in lib/distribution/round-robin.c. As can
be seen, the data distribution’s execution is traced using JULEA’s tracing framework
(lines 12 and 33). The function splits up the item into equally sized blocks (lines 20–
22). Afterwards, it determines which data server handles this particular block and
calculates the data-server-local length and offset (lines 24–27). This process is repeated
until no data is left to distribute (lines 14–18 and 29–30). The function returns TRUE if
there is still data to distribute; otherwise, FALSE is returned (lines 7 and 35).

5.4.2. Metadata Serialization and Deserialization

MongoDB stores its documents in the so-called BSON format that has been designed to
be lightweight and efficient. In contrast to JSON, BSON does not require string parsing,
allowing it to be processed very quickly. BSON does not force specific schemas to be
used and thus fits perfectly to MongoDB’s schema-less design.

JULEA stores different metadata for each object depending on the current semantics.
The schema-less design of BSON allows easy serialization and deserialization of
JULEA metadata.

– 101 –

CHAPTER 5. TECHNICAL DESIGN

1 {
2 "_id" : ObjectId("51c999896035000000000014"),
3 "Collection" : ObjectId("51c999896035000000000000"),
4 "Name" : "test-19",
5 "Credentials" : {
6 "User" : 1000,
7 "Group" : 1000
8 },
9 "Distribution" : {

10 "Type" : 1,
11 "BlockSize" : NumberLong(4194304),
12 "StartIndex" : 0
13 }
14 }

Listing 5.7: JSON representation of an item’s metadata using default semantics

Listing 5.7 shows the serialized metadata of an item created with the default semantics.
Each collection and item is assigned a unique BSON ObjectId (lines 2–3) and name
(line 4). Additionally, user and group credentials are stored to enable permission
checking (lines 5–8). The item’s data distribution is also stored with the metadata
(lines 9–13); each data distribution may have different parameters, however. In this
example, the data distribution’s Type specifies that the round robin distribution is
used; BlockSize is set to the default of 4 MiB and the StartIndex key indicates the
data server that holds the first block of data.

1 {
2 "_id" : ObjectId("51caae667d1a000000000014"),
3 "Collection" : ObjectId("51caae667d1a000000000000"),
4 "Name" : "test-19",
5 "Status" : {
6 "Size" : NumberLong(0),
7 "ModificationTime" : NumberLong("1372237414990586")
8 },
9 "Credentials" : {

10 "User" : 1000,
11 "Group" : 1000
12 },
13 "Distribution" : {
14 "Type" : 2,
15 "BlockSize" : NumberLong(4194304),
16 "Index" : 0

– 102 –

CHAPTER 5. TECHNICAL DESIGN

17 }
18 }

Listing 5.8: JSON representation of an item’s metadata using custom semantics

In contrast, Listing 5.8 on the facing page shows the serialized metadata of an item
using different concurrency semantics and a different data distribution. As can be seen,
the serial concurrency semantics caused the item’s size and modification time to be
stored on the metadata server as described in Section 3.5.2 on pages 71–73 (lines 5–8).
In contrast to the previous example, the data distribution’s Type shows that the single
server distribution is used. This distribution also does not have a StartIndex key but
rather an Index key that specifies the server all of the data is stored on.

As mentioned before, the item’s metadata is serialized into BSON format by the data
distribution’s serialize function. Afterwards, the data distribution’s deserialize
function can construct an item out of the BSON data returned by MongoDB. The
Type key is handled by JULEA’s data distribution interface and is used to select the
appropriate implementation for deserialization.

5.5. Miscellaneous

The JULEA framework contains a multitude of miscellaneous functionality that will
be briefly described for completeness. This includes support for POSIX applications,
tools for convenient use of the parallel distributed file system as well as tests to track
functionality and performance regressions.

5.5.1. Tracing Framework

JULEA includes its own tracing framework to provide as much information as possi-
ble to developers and users; its implementation and headers can be found in lib/j-
trace.c and include/jtrace-internal.h, respectively.12 This can be used to visu-
alize the inner workings in a graphical way and can be very helpful when debugging
errors or searching for performance issues. It supports tracing of functions, file opera-
tions and counters with precise timestamps. While function tracing only shows when
and which functions have been entered and left, file tracing also records information
about the actual file operation and its result: The traces include the operation’s type
(for example, open, close or delete) as well as the number of accessed bytes and the
file offset for read and write operations. Counters allow collecting statistics such as
the total amount of accessed data or the number of created files. Additionally, the
tracing framework is fully thread-safe and supports multiple backends:

12 Even though the tracing framework is integrated into JULEA’s client library, it does not have any
JULEA-specific dependencies and can be easily built as a standalone library for external use.

– 103 –

CHAPTER 5. TECHNICAL DESIGN

• Echo: The echo backend simply outputs the trace information to the standard
error output stream (stderr). This allows easy debugging without the need for
complex graphical tools.

• HDTrace: The hdtrace backend is based on the HDTrace tracing library devel-
oped within the research group [MMK+12]. It features a file format based on
XML13 and a relatively simple interface that allows storing arbitrary parameters
in the resulting XML file. HDTrace trace files can be visualized using the Sunshot
visualization tool [LKK+07].

• OTF: The otf backend is based on the widely used OTF14 tracing library [KBB+06].
It makes use of a portable ASCII15 encoding and can merge multiple so-called
streams into a single trace. Its interface is complex and does not easily allow
storing arbitrary parameters. OTF trace files can be visualized using the Vampir
visualization tool [GWT14].

1 $ J_TRACE=echo,hdtrace ./application
2 $ J_TRACE=echo J_TRACE_FUNCTION=j_batch*,j_distribution*

↪→ ./application

Listing 5.9: JULEA tracing framework

Listing 5.9 shows an example of how to use JULEA’s tracing framework. Its behavior
can be modified using environment variables: The J_TRACE variable allows enabling
one or more tracing backends at the same time by simply giving the appropriate values
separated by commas; in this case, the echo and hdtrace backends are activated
(line 1). Additionally, it is possible to filter the tracing framework’s output in order to
reduce the trace’s size: The J_TRACE_FUNCTION variable can be used to only include
the listed functions in the resulting trace; in this example, all functions pertaining
to JULEA’s batches (j_batch*) and data distributions (j_distribution*) are traced
while all other function calls are discarded (line 2).

Figure 5.2 on the facing page shows exemplary traces of the client (top) and data
daemon (bottom) activities that have been created using the OTF tracing backend
and visualized using Vampir [GWT14]. The y-axis shows several so-called timelines
containing the activities of separate threads. The timelines themselves are annotated
with the performed functions; only long-lasting functions are shown by default,
zooming in allows viewing shorter ones. In this example, the client is a benchmark
application that first writes data and then reads it back; all I/O is performed using
blocks of a size of 4 MiB. The benchmark uses 12 threads, each writing and reading 25

13 Extensible Markup Language
14 Open Trace Format
15 American Standard Code for Information Interchange

– 104 –

CHAPTER 5. TECHNICAL DESIGN

Fi
gu

re
5.

2.
:T

ra
ce

s
of

th
e

cl
ie

nt
an

d
da

ta
da

em
on

’s
ac

ti
vi

ti
es

– 105 –

CHAPTER 5. TECHNICAL DESIGN

blocks; consequently, each thread accesses a total of 200 MiB comprising 100 MiB of
written and 100 MiB of read data. The client library is configured to use a maximum of
four connections to connect to the data daemon; consequently, the data daemon uses
four threads to service the client’s requests.

The top of Figure 5.2 on the previous page shows the client’s trace that contains
13 threads in total. This is due to the fact that JULEA starts an internal thread for
background operations that is used when the persistency semantics are modified.
Thread 6 simply waits inside the j_operation_cache_thread function all the time
because no background operations are taking place. All threads synchronize between
the write and read phase; this can be seen at the 2.5 s time mark when the last thread
finishes writing and all threads begin reading. All threads take another 0.5 s for
reading and are finished after a total runtime of 3 s.

The bottom shows the data daemon’s trace with five threads in total: four threads to
service client requests (threads 2–5) and the data daemon’s idle main thread (thread 1).
As can be seen, not all threads finish at the same time: While threads 2 and 4 finish
after 3 s when the client finishes reading, threads 3 and 5 take around 2 s longer to
delete the files. This slowdown is likely due to the underlying file system.

5.5.2. POSIX Compatibility Layer

Looking at the number of different I/O interfaces in existence today, it is unrealistic
to expect all existing applications to be ported to new I/O interfaces. For proprietary
software that does not offer source code access and other special cases it might even
be impossible to do so. Therefore, to keep compatibility with existing and widely used
software, a POSIX compatibility layer is provided.

There are several possibilities to implement such a compatibility layer. For instance,
the environment variable LD_PRELOAD instructs the dynamic linker to preload a speci-
fied library before all other shared libraries. This allows overwriting existing functions
such as open, close, read and write. Using this mechanism, it would be possible to
provide wrappers for the POSIX I/O functions that use the JULEA interface to perform
the actual I/O. However, there are several problems regarding this approach: One has
to be very careful when overwriting low-level I/O functions using the LD_PRELOAD
approach because it not only wraps the function calls within the actual application
but also all calls within other libraries and low-level functions.

Therefore, another approach has been used to realize JULEA’s POSIX compatibility
layer. It has been accomplished using the FUSE framework and can be found in the
fuse directory. The FUSE framework provides a stable and easy-to-use interface to
implement POSIX-compliant file systems in user space. It consists of a user space
library, a kernel module and some auxiliary command line utilities. FUSE file systems
run as ordinary applications in user space that are linked against the libfuse.so
library. This library communicates with the FUSE kernel module that, in turn, relays

– 106 –

CHAPTER 5. TECHNICAL DESIGN

I/O accesses done via the VFS to the user space file system. While this allows con-
veniently implementing POSIX-compliant file systems in user space, the additional
indirection of I/O accesses has impacts on I/O performance [RG10, IMOT12]. Even
though there have been recent improvements to FUSE, kernel file systems still offer
higher performance in many cases [Duw14]. However, as the compatibility layer’s
main objective is to provide backwards compatibility instead of high performance,
this is not an obstacle in this case. An important advantage of this approach is that
FUSE file systems can be used by ordinary non-root users.

1 $ mkdir /tmp/julea-fuse
2 $ julea-fuse /tmp/julea-fuse
3 $ ls -l /tmp/julea-fuse
4 $ fusermount -u /tmp/julea-fuse
5 $ rmdir /tmp/julea-fuse

Listing 5.10: FUSE file system

Listing 5.10 shows how to use JULEA’s POSIX compatibility layer. First, the FUSE
file system’s mount point is created (line 1). All FUSE file systems require an existing
directory within the normal file system namespace to be used as a mount point.
Afterwards, the actual FUSE file system – which is called julea-fuse – is mounted
on top of the given directory (line 2). As soon as the FUSE file system is mounted,
all accesses within the mount point /tmp/julea-fuse will be handled by JULEA’s
FUSE file system and can be accessed by POSIX-compliant clients (line 3). When
POSIX compatibility is no longer required, the FUSE file system has to be unmounted
(line 4). This is accomplished using the fusermount command that is part of the FUSE
software package. As the last step, the mount point is cleaned up (line 5).

5.5.3. Command Line Tools

Data management on supercomputers is typically performed using the command line.
When using JULEA, it is impossible to use existing command line tools such as cp,
mv, stat or even cat because these tools only support the POSIX interface. While it
would be possible to use them on top of JULEA’s POSIX compatibility layer, native
command line tools are preferable for performance and reliability reasons. Therefore,
special command line tools are provided to allow easy data management outside of
full-blown applications. They have support for all basic operations such as creating,
deleting, listing and getting the status of stores, collections and items. Additionally,
items can be copied between collections.

– 107 –

CHAPTER 5. TECHNICAL DESIGN

1 $ julea-cli create-all julea://foo/bar/baz
2 $ julea-cli list julea://foo/bar
3 $ julea-cli status julea://foo/bar/baz
4 $ julea-cli delete julea://foo/bar/baz

Listing 5.11: JULEA command line tools

Listing 5.11 shows how JULEA’s command line tools can be used: All functionality
is available through the julea-cli application that supports several different com-
mands. First, the create-all command is used to create the foo store, bar collection
and baz item (line 1); in contrast to the create command that only creates the last
path component, all missing path components are created when using create-all.
Afterwards, it is possible to use the list command to list the contents of stores and
collections; in this case, the bar collection’s items are listed (line 2). The status com-
mand returns all available metadata for collections and items; in this case, it lists the
credentials, modification time and size of the newly created baz item (line 3). Finally,
the delete command is used to delete the baz item (line 4); the bar collection and
foo store are not deleted.

5.5.4. Correctness and Performance Tests

JULEA includes a wide range of tests and benchmarks that are used to periodically
check its correctness and performance. Because providing efficient access to data
is one of a file system’s main features, it is not only necessary to provide unit and
regression tests for correctness but also for performance.

In addition to the possibility to execute these checks manually, JULEA includes
functionality to trigger them automatically whenever a code change occurs. These
automatisms have been realized using so-called hooks provided by the Git version
control system (VCS) that is used for JULEA development [Fuc13]. The hooks allow
performing fast correctness tests before each commit and more elaborate performance
tests after each commit. All performance results are kept in a separate Git repository
and linked to the commit that has been used to produce them. This can be used to
effectively analyze JULEA’s performance history and assess the influence of specific
changes as it allows correlating performance changes with individual commits.

Figure 5.3 on the facing page demonstrates how JULEA’s performance history can
be visualized over time. It has been generated by running a benchmark application
for a selected range of commits in JULEA’s Git repository; the x-axis contains the
times and IDs for all examined commits. Individual commits can be analyzed in more
detail using the git show -p command by specifying the commit ID as its argument.
Several observations can be made using the available performance data:

– 108 –

CHAPTER 5. TECHNICAL DESIGN

200

210

220

230

240

250

260

270

280

290
20

14
-0

1-
27

(e
60

f9
86

)

20
14

-0
1-

27
(e

5f
77

d
2)

20
14

-0
1-

30
(a

b
ea

92
0)

20
14

-0
2-

10
(b

67
e6

5e
)

20
14

-0
2-

19
(d

44
50

58
)

20
14

-0
2-

27
(a

b
8d

d
20

)

20
14

-0
2-

27
(8

a8
b

78
d

)

20
14

-0
3-

03
(b

8d
b

a7
b

)

20
14

-0
3-

03
(2

7a
2f

46
)

20
14

-0
3-

03
(e

b
f7

95
3)

20
14

-0
3-

04
(d

6e
a5

5e
)

20
14

-0
3-

04
(4

8ff
81

c)

20
14

-0
3-

04
(4

2c
a0

d
4)

20
14

-0
3-

04
(0

51
a3

65
)

20
14

-0
3-

13
(8

15
20

ca
)

20
14

-0
3-

16
(1

96
d

35
a)

20
14

-0
3-

17
(0

b
f1

d
c9

)

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

Commit time and ID

Write Read

Figure 5.3.: Performance history over time

1. Commit b67e65e on 2014-02-10 has significantly reduced both read and write
performance. Examining the commit reveals that a bug was fixed that caused
JULEA to open more TCP connections than the allowed maximum. This bug
lead to higher performance in this limited local benchmark; too many TCP
connections can be detrimental to performance in large-scale scenarios, however.

2. Performance data is missing between commits b8dba7b and 27a2f46 on 2014-
03-03. Consulting the raw data reveals that commit 77d5df8 on 2014-03-03
introduced a bug that crashed the benchmark and thus did not deliver perfor-
mance data.16

3. Commit d6ea55e on 2014-03-04 introduced the use of TCP corking as described
in Section 4.4 on pages 80–81. As can be seen, merging multiple TCP packets
provides clear performance benefits in this case.

Making this kind of fine-grained information available can help analyzing perfor-
mance problems during the file system’s development. The above example has only
used a single benchmark but the automatic hooks perform a multitude of benchmarks
pertaining to different areas of the file system. Users upgrading from one version
to another could use this information to find the reason for changes in performance
regarding specific access patterns.

16 It is necessary to look at the raw data because gnuplot does not draw the x-axis entry for missing data.

– 109 –

CHAPTER 5. TECHNICAL DESIGN

Summary

This chapter has presented an in-depth description of JULEA’s technical design. The main
points have been the general architecture as well as detailed specifications for the client library,
the data servers and the metadata servers. Additionally, JULEA’s built-in tracing framework,
POSIX compatibility layer, command line tools, and framework for automated correctness and
performance tests have been explained. JULEA has been implemented completely in user space
to make use of the comprehensive tool support for both analysis and debugging purposes.

– 110 –

Chapter 6.

Performance Evaluation

In this chapter, the efficiency of the new I/O interface with dynamically adaptable semantics
will be evaluated using synthetic benchmarks as well as real-world applications. While the
synthetic benchmarks will be used to analyze the specific optimizations made possible by the
file system’s additional knowledge about the applications’ I/O requirements, the real-world
applications will be used to demonstrate the applicability for existing software.

Benchmarks will be used to evaluate different performance aspects of JULEA and
other selected parallel distributed file systems. Specifically, data and metadata perfor-
mance will be evaluated independently. Lustre and OrangeFS have been selected as
representative parallel distributed file systems: While the former strives to support
POSIX1 semantics, the latter is optimized for non-overlapping writes.

In addition to comparing JULEA to the other parallel distributed file systems, a
number of different semantics will be evaluated. However, due to the sheer amount
of different semantics combinations, only those expected to have a significant impact
on performance will be analyzed in more detail. JULEA’s data performance will be
evaluated using different atomicity, concurrency and safety semantics; its metadata
performance will be benchmarked using different concurrency and safety semantics.
Additionally, the usefulness of batches will be analyzed.

6.1. Hardware and Software Environment

All evaluations have been conducted on the cluster of the Scientific Computing re-
search group at the University of Hamburg. The benchmarks have been performed
using a total of 20 nodes, with 10 nodes running the file system clients and 10 nodes
hosting the file system servers. The nodes’ hardware and software setup is as follows:

The client nodes each have two Intel Xeon Westmere EP HC X5650 central pro-
cessing units (CPUs) (2.66 GHz, 12 cores total), 12 gigabytes (GB) DDR3/PC1333
error-correcting code (ECC) random access memory (RAM), a 250 GB SATA2 Seagate
Barracuda 7200.12 hard disk drive (HDD) and two Intel 82574L gigabit (Gbit) Ethernet

1 Portable Operating System Interface

– 111 –

CHAPTER 6. PERFORMANCE EVALUATION

network interface cards (NICs). They run Ubuntu 12.04.3 LTS with Linux 3.8.0-33-
generic and Lustre 2.5.0 (client); the MPI2 implementation is provided by Open-
MPI 1.6.5.

The server nodes each have one Intel Xeon Sandy Bridge E-1275 CPUs (3.4 GHz, 4
cores total), 16 GB DDR3/PC1333 ECC RAM, three 2 terabytes (TB) SATA2 Western
Digital WD20EARS HDDs, one 160 GB SATA2 Intel 320 solid state drive (SSD) and two
Intel 82579LM/82574L Gbit Ethernet NICs. They run CentOS 6.5 with Linux 2.6.32-
358.18.1.el6_lustre.x86_64 and Lustre 2.5.0 (server).

6.1.1. Performance Considerations

To allow a proper assessment of the results, the following theoretical performance
considerations should be kept in mind.

• Even though all client and server nodes are equipped with two NICs each, only
one of them is used. OpenMPI transparently uses all found NICs whenever
possible; however, since only insignificant amounts of data are transmitted via
MPI in the following measurements, this is negligible.

• The theoretical maximum performance of Gbit Ethernet is 125 megabytes (MB)/s.3

However, it is usually not possible to reach more than 117 MB/s due to overhead.
Consequently, the maximum achievable performance between the clients and
servers is approximately 1,170 MB/s.4

• SATA2 has a transfer rate of 3 Gbit/s which translates to 300 MB/s due to
8b/10b encoding.5 Consequently, storage devices are able to deliver a max-
imum throughput of 300 MB/s. Because this is much higher than the maximum
network transfer rate, this limitation can be ignored for the measurements.

• While the HDDs’ maximum throughput is 117 MiB/s for both reading and
writing, the SSDs deliver up to 251 MiB/s when reading and 164 MiB/s when
writing. Because these numbers are higher than the network throughput, they
can also be ignored when determining the maximum performance.

• The average round-trip time (RTT) between the client and server nodes is
0.228 ms.6 Ignoring actual processing times, it is therefore possible to send
and receive 4,386 requests/s.

2 Message Passing Interface
3 8 bits = 1 byte, consequently 1 Gbit = 1,000 megabits (Mbits) = 125 MB.
4 1,170 MB/s correspond to 1,115 mebibytes (MiB)/s which is the unit that will be used in the following

measurements.
5 A 8b/10b encoding requires 10 bits to transfer 8 bits of information and is commonly used for commu-

nication technologies.
6 The average RTT has been sampled using the ping command with at least 100 packets; the standard

deviation was 0.019 ms.

– 112 –

CHAPTER 6. PERFORMANCE EVALUATION

6.2. Data Performance

The file systems’ data performance will be evaluated using a large number of con-
currently accessing clients that first write data and then read it back again; the write
and read phases are completely separated and barriers ensure that only one type of
operation takes place at any given time. The benchmark uses MPI to start multiple
processes accessing the file systems in a coordinated fashion. There are two basic
modes of operation:

1. Individual files: Each process only accesses its own file or item.7 Even though
all processes access the file system concurrently, the individual files are accessed
serially because only one process has exclusive access to it.

2. Shared file: All processes access a single shared file. Consequently, the shared
file will be accessed concurrently.

All accesses use a variable block size and are non-overlapping, that is, no write
conflicts occur. The following block sizes have been used for the following evaluation:
4 kibibytes (KiB), 16 KiB, 64 KiB, 256 KiB and 1,024 KiB. The processes repeatedly read
or write data using the block size until each process has accessed 2 gibibytes (GiB)
per phase; the number of iterations is denoted by m. This allows evaluating the file
systems’ behavior with many small accesses as well as fewer large ones.

Process 0 0 . . . 0
Iteration 0 1 . . . m

...
Process n n . . . n
Iteration 0 1 . . . m

Figure 6.1.: Access pattern using individual files

Process 0 1 . . . n . . . 0 1 . . . n
Iteration 0 0 . . . 0 . . . m m . . . m

Figure 6.2.: Access pattern using a single shared file

Figures 6.1 and 6.2 show the access patterns when using individual files and a
shared file, respectively. Each rectangle represents one file and each column inside
a rectangle denotes one data block. For each data block, its accessing process and
iteration are given. The areas of the file that are accessed concurrently are enclosed in

7 For readability reasons, the rest of the chapter will only mention files when either files or items are
considered.

– 113 –

CHAPTER 6. PERFORMANCE EVALUATION

double lines. When using individual files, each process possesses its own file that it
accesses exclusively, as can be seen in Figure 6.1 on the preceding page. All accesses are
done sequentially from the start of the file to its end. For the shared file, however, the
accesses of all processes happen in an interleaved fashion, as can be seen in Figure 6.2
on the previous page.

To evaluate the file systems’ behavior with different numbers of accessing clients,
the following n/p configurations (where n stands for the number of client nodes and p
stands for the total number of client processes) have been used: 1/1, 1/2, 1/4, 1/8,
1/12, 2/24, 3/36, 4/48, 5/60, 6/72, 7/84, 8/96, 9/108 and 10/120. These numbers have
been chosen because each of the client nodes has 12 cores, therefore, real applications
would strive to use all of them to reach optimal performance. All parallel distributed
file systems have been set up to provide ten data servers and one metadata server.

The benchmark supports several input/output (I/O) interfaces to allow comparing
different parallel distributed file systems using their respective interfaces. Currently,
POSIX, MPI-IO and JULEA are available.

Each benchmark has been repeated at least three times to calculate the arithmetic
mean as well as the standard deviation. To force the clients to read the data from the
data servers during the read phase, the clients’ cache was dropped after the write
phase.8 The servers’ caches were dropped by completely restarting and remounting
the file systems after each configuration; the server caches were not touched between
the write and read phases, however. This represents a realistic use case because it
is common for applications to write out results that are afterwards post-processed
by different applications that do not have access to the cached contents. The servers,
however, try their best to keep requested data in their caches.

This benchmark represents a very simple and common I/O pattern because all
data is accessed sequentially, that is, lower offsets are accessed before higher ones.
Consequently, reading can be sped up using readahead and data can be written in a
streaming fashion without the need for random I/O.

6.2.1. Lustre

For the following measurements, Lustre has been set up using its default options
except for the stripe count that has been set to -1 to enable striping over all available
object storage targets (OSTs); the stripe size has been set to 1 MiB. While each OST
has been provided by one of the servers’ HDDs, the meta data target (MDT) has been
provided by one of the SSDs.

8 For Lustre, the /proc/sys/vm/drop_caches file was used; for OrangeFS and JULEA, nothing was
done because both file systems do not cache data on the clients by default.

– 114 –

CHAPTER 6. PERFORMANCE EVALUATION

POSIX

Lustre has been mounted using the client module as a normal POSIX file system with
the flock option that enables support for file locking. The option should not have any
influence on the benchmark results because they do not use file locking.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.3.: Lustre: concurrent accesses to individual files via the POSIX interface

Individual Files Figure 6.3 shows Lustre’s read and write performance when using
individual files via the POSIX interface.

Regarding read performance, it is interesting to note that configurations with a
single node exhibit different performance characteristics depending on the number of
processes. While the configurations with one, eight and twelve processes all achieve
a throughput of roughly 100 MiB/s, the configurations with two and four processes
deliver 200-300 MiB/s; while this effect has to be related to some data being read
from the cache of the operating system (OS), the exact reasons for this are unclear.
As explained earlier, the benchmark drops all caches between the read and write
phases, therefore, this effect should not occur. The remaining configurations gradually
deliver more performance as more nodes are added until reaching their maximum
performance with ten nodes; the block sizes of 64 KiB, 256 KiB and 1,024 KiB all achieve
a maximum of roughly 850 MiB/s. As expected, smaller block sizes result in lower read

– 115 –

CHAPTER 6. PERFORMANCE EVALUATION

performance due to additional overhead. However, it is interesting to note that even
with a single process and a block size of 4 KiB, Lustre achieves a read performance of
roughly 100 MiB/s. As mentioned in Section 6.1.1 on pages 112–113, the Gbit Ethernet
network can transfer at most 4,386 requests/s. Taking this into account, Lustre should
only be able to read at a maximum of 17 MiB/s. This discrepancy is due to Lustre
performing client-side readahead to increase performance.

When considering write performance, it can be seen that all block sizes deliver
the same performance. This is most probably due to Lustre’s use of client-side write
caching. Because individual files are used and each file is only accessed by one node,
Lustre can utilize caching without sacrificing POSIX compliance. Using the POSIX
I/O interface and semantics, each access theoretically needs one network round
trip to send the actual data to the data server and return its reply. Consequently,
accesses can not be pipelined because the write operations block until the reply
has been received. Lustre seems to use a different approach in this case that can be
demonstrated using the following theoretical performance estimation: When assuming
a maximum of 4,386 requests/s and using a block size of 4 KiB, this results in a
maximum throughput of roughly 17 MiB/s per process. While the configurations
using twelve client processes per node can overlap multiple write operations to achieve
higher performance, the configuration using one node and one process should not be
able to deliver more than the previously mentioned 17 MiB/s. Due to this and the fact
that Lustre manages to deliver the same performance regardless of the chosen block
size, it can be concluded that it does not actually send each request to the data servers
and instead collects data in the local cache to aggregate accesses. This also implies
that the number of bytes that has been written – as returned by the write function –
does not originate from the data server but instead from the local cache.

Shared File Figure 6.4 on the next page shows Lustre’s read and write performance
when using a single shared file via the POSIX interface.

The read performance for the configurations using one node behaves in a similar
way to the test case with individual files. When using more than two nodes, however,
the results are distinctly different: For block sizes of 4 KiB, 16 KiB and 64 KiB not all
results could be collected because Lustre’s performance was too low and the jobs
exceeded the job scheduler’s time limit. For 256 KiB and 1,024 KiB, the performance
increases until six and seven nodes, respectively. Afterwards, performance drops
with each additional node. This result is surprising because only read operations are
performed by all accessing clients, that is, no locking should be required. However,
it appears that Lustre still introduces some overhead for these accesses, decreasing
overall performance significantly.

For the write phase, an interesting effect occurs: While using only a single node,
performance is stable for all block sizes. As soon as the number of accessing nodes is
larger than one, performance drops for all block sizes less than 1,024 KiB. This is likely

– 116 –

CHAPTER 6. PERFORMANCE EVALUATION

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.4.: Lustre: concurrent accesses to a shared file via the POSIX interface

due to the effect described in Section 4.2 on pages 77–78: As soon as multiple nodes are
involved, Lustre has to send all write operations directly to the data server to achieve
POSIX compliance. Using the same estimation as before, a block size of 1,024 KiB
and 4,386 requests/s results in a theoretical maximum of 4.3 GiB/s which is in stark
contrast to the actual maximum of 180 MiB/s when using five nodes. Consequently,
additional factors have to be responsible for Lustre’s low performance in this case.
One of them could be write locking that needs to be performed due to the concurrently
accessing clients.

MPI-IO (Atomic Mode)

The following results demonstrate Lustre’s performance when accessed using the
MPI-IO interface. Because it was not possible to compile ADIO9’s native Lustre
backend, MPI-IO falls back to its generic POSIX backend. Because the results for both
individual and shared files using non-atomic accesses are largely identical to their
POSIX counterparts, they have been omitted.

9 Abstract-Device Interface for I/O

– 117 –

CHAPTER 6. PERFORMANCE EVALUATION

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.5.: Lustre: concurrent atomic accesses to individual files via the MPI-IO
interface

Individual Files Figure 6.5 shows Lustre’s read and write performance when using
individual files via the MPI-IO interface with atomic mode.

Regarding read performance, the results are largely identical to the POSIX results for
the larger block sizes of 1,024 KiB to 64 KiB. For block sizes of 16 KiB and 4 KiB, there
are significant drops in performance: Using ten nodes, it decreases from 800 MiB/s
to 700 MiB/s and 700 MiB/s to 300 MiB/s, respectively. Consequently, the overhead
introduced by atomic mode can likely be neglected for block sizes equal to or larger
than 64 KiB. One noteworthy exception is the performance when using ten nodes,
which is slightly lower than the one with nine nodes for almost all block sizes. Since
measurements have only been performed with a maximum of ten nodes, it is not
possible to determine whether performance would continue to drop when using more
than ten nodes or if this effect is limited to this specific configuration.

Considering write performance, the results look similar to the ones using the POSIX
interface: Performance is identical for the block sizes from 1,024 KiB to 64 KiB and
flattens out when using seven nodes or more; as in the read phase, performance
actually decreases slightly when using more nodes. For the block sizes of 16 KiB and
4 KiB, performance drops significantly due to the introduced overhead.

– 118 –

CHAPTER 6. PERFORMANCE EVALUATION

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.6.: Lustre: concurrent atomic accesses to a shared file via the MPI-IO interface

Shared File Figure 6.6 illustrates Lustre’s read and write performance when using a
single shared file via the MPI-IO interface with atomic mode.

For both the read and write phases, performance is almost identical to that of their
POSIX counterparts. Since performance was already poor for the POSIX case due to
the overhead introduced by the shared file accesses, the additional overhead caused by
atomic mode does not decrease performance further. One noteworthy exception is the
read performance using a block size of 256 KiB: While performance in the POSIX case
was identical to the one using a block size of 1,024 KiB until six nodes were used and
then decreased, the overhead produced by MPI-IO’s atomic mode causes performance
to already drop when using six nodes.

6.2.2. OrangeFS

OrangeFS has been set up using its default configuration. Its storage space for both
data and metadata has been provided by an ext4 file system located on the data
servers’ system HDDs. Placing the metadata on an HDD should not have negatively
influenced performance because the number of metadata operations can be neglected
for the data benchmark.

– 119 –

CHAPTER 6. PERFORMANCE EVALUATION

MPI-IO

All benchmarks have been performed using the MPI-IO interface and ADIO’s native
OrangeFS backend; since the backend does not support atomic mode, only non-atomic
results are provided.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.7.: OrangeFS: concurrent accesses to individual files via the MPI-IO interface

Individual Files Figure 6.7 displays OrangeFS’s read and write performance when
using individual files via the MPI-IO interface.

When considering read performance, it can be observed that larger block sizes do
not necessarily result in higher performance as it was the case with Lustre. Instead,
performance increases until a block size of 64 KiB is reached and then drops again for
larger ones; a block size of 1,024 KiB performs worse than 256 KiB. This is likely due
to the fact that OrangeFS’s default stripe size is 64 KiB; it is unclear why larger block
sizes are handled in such a suboptimal way, however. Apart from this inconsistency,
performance increases steadily up to 600 MiB/s until six nodes are used; as soon as
more nodes are used, performance drops to 200–300 MiB/s. As will be explained in
more detail later, this is due to the underlying POSIX file system.

Regarding write performance, larger block sizes result in higher overall performance
as expected. That is, the performance inconsistency caused by the striping seems to be

– 120 –

CHAPTER 6. PERFORMANCE EVALUATION

limited to read operations. Performance improves to a maximum of 600 MiB/s with
seven nodes and decreases slowly as more nodes are added. Again, this is due to the
underlying POSIX file system.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.8.: OrangeFS: concurrent accesses to a shared file via the MPI-IO interface

Shared File Figure 6.8 shows OrangeFS’s read and write performance when using a
single shared file via the MPI-IO interface.

During the read phase, performance looks largely similar to that of the individual
case except for configurations using eight or more nodes. While the performance
curve flattened out when using this amount of nodes in the individual case, the shared
case shows much more erratic performance behavior for all but the largest block size
of 1,024 KiB, which remains relatively stable. For instance, when using a block size of
4 KiB, performance increases when going from seven to eight nodes, then decreases for
nine nodes and finally increases again for ten nodes. However, overall performance
using small block sizes is better than in the individual case: While the block size of
4 KiB achieved a maximum of roughly 280 MiB/s with the configuration using five
nodes for individual files, it manages a maximum of 360 MiB/s with six nodes when
using a shared file. This abnormal behavior is likely due to scheduling problems inside
the underlying file system and will be explained in more detail later.

– 121 –

CHAPTER 6. PERFORMANCE EVALUATION

During the write phase, the performance curve again looks erratic except for the
largest block size of 1,024 KiB. For example, for all but the smallest and the largest
block sizes, performance abruptly increases for the configuration using five nodes and
then decreases again for more nodes; when going from nine to ten nodes, it increases
sharply again. Even though the largest block size of 1,024 KiB manages to deliver
stable performance for all configurations, its performance is significantly lower than
when using individual files: Instead of reaching roughly 600 MiB/s, performance is
reduced to a maximum of 350 MiB/s when using a shared file; this corresponds to a
performance drop of more than 40 %. Again, the unpredictable performance behavior
is likely due to the underlying file system and will be analyzed later.

6.2.3. JULEA

JULEA has been configured to use the data daemon’s POSIX storage backend due
to the experimental nature of the object store storage backends. Both the storage
backend as well as MongoDB stored their data within an ext4 file system located on
the data servers’ system HDDs. Analogous to OrangeFS, placing the metadata on an
HDD should not have influenced performance negatively for the given benchmark.
Additionally, JULEA was set to use a maximum of six client connections per node
because it was observed that the default of twelve caused severe performance problems
due to the large amount of TCP10 connections.11

Default Semantics

The following measurements have been performed using JULEA’s default semantics
to establish a performance baseline. The default semantics provide support for non-
overlapping parallel accesses and do not cache data; for a detailed explanation, see
Section 3.4.9 on pages 68–70. Missing values are due to the benchmarks exceeding the
job scheduler’s time limit.

Individual Items Figure 6.9 on the facing page shows JULEA’s read and write per-
formance when using individual items via the native JULEA interface.

Regarding read performance, it is interesting to note that JULEA’s performance
figure looks very similar to the OrangeFS counterpart. In contrast to OrangeFS,
however, performance increases with growing block sizes. Using the block size
of 1,024 KiB, performance increases until a maximum of approximately 700 MiB/s is
reached with six nodes. Afterwards, performance drops drastically to about 250 MiB/s
and continues to decrease as more nodes are used. This is likely due to an inefficiency

10 Transmission Control Protocol
11 The default value for the maximum number of connections is determined based on the number of cores

present in the system.

– 122 –

CHAPTER 6. PERFORMANCE EVALUATION

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.9.: JULEA: concurrent accesses to individual items

inside the Linux kernel that is exposed when using a large amount of parallel I/O
streams and will be analyzed in more detail later.

Regarding write performance, JULEA’s performance figure again looks similar to
the OrangeFS counterpart except for a higher overall performance. While OrangeFS
reaches a maximum performance of roughly 600 MiB/s using a block size of 1,024 KiB,
JULEA manages to achieve 700 MiB/s. The performance with a block size of 4 KiB
is especially noteworthy because JULEA’s maximum of roughly 400 MiB/s is almost
double that of OrangeFS’s 200 MiB/s. Performance begins to decrease as soon as more
than eight nodes are used, regardless of the block size. This is due to too many parallel
I/O streams that can not be handled efficiently anymore.

Shared Item Figure 6.10 on the next page shows JULEA’s read and write perfor-
mance when using a single shared item via the native JULEA interface.

During the read phase, the performance curve looks almost identical to its coun-
terpart using individual items up to six nodes. Even though the same performance
drop is present when using more than six nodes, its extent is less severe: Instead
of dropping from roughly 700 MiB/s to 250 MiB/s, JULEA still manages to deliver
350 MiB/s when using a shared item. Additionally, performance improves slightly
again when more than eight or nine nodes are used, depending on the block size.

– 123 –

CHAPTER 6. PERFORMANCE EVALUATION

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.10.: JULEA: concurrent accesses to a shared item

During the write phase, the performance is even more irregular than when reading.
While performance increases until five nodes are used, it fluctuates when more nodes
are used. Whereas performance remains relatively constant for five to eight nodes
for the block sizes of 256 KiB and 1,024 KiB, there is a performance drop when using
nine nodes, followed by a significant performance increase for ten nodes. This effect
is similar to the one found when using OrangeFS. Overall, performance is lower
than when using individual items, especially for the smaller block sizes. While the
block size of 4 KiB reached a maximum of 400 MiB/s using individual items, it only
achieves slightly more than 200 MiB/s when using a shared item; this corresponds to a
performance drop of roughly 50 %. When comparing the results to their counterparts
using individual items, the erratic behavior can only be explained by an inefficient
handling of shared files by the Linux kernel.

To analyze the performance problems further, additional measurements have been
performed using varying numbers of connections per client, a different underlying
POSIX file system and the NULL storage backend. Measurements using two and
six connections per clients have shown that these problems are present regardless of
the number of connections; the results using two connections will not be presented
because they are almost identical to those when using six connections. Additionally,
XFS has been used for comparison purposes using three and six connections per client;

– 124 –

CHAPTER 6. PERFORMANCE EVALUATION

these measurements can be found in Appendix A.1 on pages 181–184 and show that
the performance problems are independent of the underlying file system. To check
whether the problems lies within JULEA’s implementation, measurements using the
NULL storage backend will be presented in the following section.

NULL Storage Backend

The NULL storage backend allows analyzing JULEA’s architecture for performance
bottlenecks by excluding the influence of the underlying POSIX file system or object
store. JULEA’s behavior is not changed in any way except for the storage backend not
actually accessing a storage device.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.11.: JULEA: concurrent accesses to individual items using the NULL storage
backend

Individual Items Figure 6.11 shows JULEA’s read and write performance when us-
ing individual items via the native JULEA interface using the NULL storage backend.

During the read phase, performance is improved by larger block sizes, with 256 KiB
and 1,024 KiB providing almost identical performance. Both block sizes almost reach
the maximum possible performance and end up with 1,000 MiB/s when using ten
nodes; the speedup decreases slightly when going from nine to ten nodes.

– 125 –

CHAPTER 6. PERFORMANCE EVALUATION

During the write phase, performance is very similar to the read phase; however,
performance for the smallest block size of 4 KiB is higher while performance for block
sizes of 16 KiB and 64 KiB is lower. Again, block sizes of 256 KiB and 1,024 KiB achieve
almost the same throughput and are also close to the maximum possible performance;
the speedup decreases significantly when going from nine to ten nodes.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.12.: JULEA: concurrent accesses to a shared item using the NULL storage
backend

Shared Item Figure 6.12 shows JULEA’s read and write performance when using a
single shared item via the native JULEA interface using the NULL storage backend.

During the read phase, performance is improved slightly across the board when
compared with its individual counterpart. The only difference between the indi-
vidual and shared cases is the number of accessed items which leads to a different
communication scheme between the clients and data servers:

• Individual: Because the data distribution’s starting server is chosen randomly,
communication happens with all data servers at once in a random fashion as
soon as enough clients start accessing them. Therefore, each client node will
likely communicate with all data servers at once.

– 126 –

CHAPTER 6. PERFORMANCE EVALUATION

• Shared: Because all clients share the same item and thus the same starting
server, communication is more uniform. Due to JULEA’s default stripe size
of 4 MiB, consecutive clients are likely to communicate with the same data
server. Consequently, each client node will likely communicate only with a small
number of data servers at once. For example, when using a block size of 4 KiB,
all clients only have to communicate with one or – less likely – two data servers
in each iteration because only 480 KiB are accessed per iteration. Using a block
size of 1,024 KiB, all twelve clients on a single node only have to communicate
with at most four data servers.

Even though the clients are not synchronized for each iteration, this communication
pattern improves overall performance and eliminates the speedup’s slowdown that
was present in the individual case when using nine and ten nodes.

During the write phase, the same effect has a negative influence on overall perfor-
mance, especially for block sizes of 16 KiB and 64 KiB.

In conclusion, the following observations can be made about the underlying perfor-
mance problems found using OrangeFS and JULEA:

1. The inefficiency is independent of the number of files because the same behavior
occurs regardless of whether individual items or a shared item are used. Using
the POSIX storage backend, each item results in one file being created on each
data server that holds data of this item.

2. The number of open file descriptors seems to be irrelevant as the POSIX storage
backend only keeps one open file descriptor for each individual file to avoid
running out of file descriptors.12 Consequently, only one file descriptor is used
in the shared case.

3. The problem is also independent of the number of I/O threads as it also occurs
with two, three and six connections per client; this number directly translates to
two, three and six I/O threads per client node within the data servers.

4. The underlying file system has no effect on this problem as it occurs with at least
XFS and ext4. This makes it likely that it is a fundamental problem inside the
Linux kernel and not a problem restricted to one specific file system.

Additional specialized analyses are necessary to be able to pinpoint the exact reason
for this performance anomaly.

12 This is necessary because the number of open file descriptors is usually limited to 1,024 per process. It
is possible for users to raise this soft limit to the hard limit of 4,096 using the ulimit command.

– 127 –

CHAPTER 6. PERFORMANCE EVALUATION

Default Semantics (Reduced Number of Clients)

The only way to mitigate the performance problem found when using both OrangeFS
and JULEA as well as a large number of concurrently accessing clients is to reduce the
number of clients. Consequently, to make sure that the results are not influenced by
this underlying performance problem and to be able to demonstrate JULEA’s different
semantics, the remaining performance measurements have been performed with a
reduced number of clients.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

R
ea

d
0

200

400

600

800

1,000

1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.13.: JULEA: concurrent accesses to individual items

Individual Items Figure 6.13 shows JULEA’s read and write performance when
using individual items via the native JULEA interface.

Regarding read performance, it can be seen that the scaling is much improved when
compared to the measurements using twelve clients per node. Instead of the steep
performance drop when using more than six nodes, they provide almost linear scaling
until seven to eight nodes are used. Afterwards, the speedup slows down, reaching
a maximum of more than 900 MiB/s using a block size of 1,024 KiB. As expected,
smaller block sizes provide a lower overall performance with the exception of 16 KiB
and 64 KiB that are reversed. It is also interesting to note that the block size of 4 KiB is

– 128 –

CHAPTER 6. PERFORMANCE EVALUATION

the only one to suffer from the reduction of clients; its performance is roughly halved
when compared to twelve clients.

Regarding write performance, the same effects as in the read case can be observed.
While the reduced number of clients per node provides more stable performance re-
sults, it does not actually improve performance in this case. However, it is noteworthy
that even though the performance does not increase with more than seven clients, it
remains at a stable level in contrast to its counterpart using twelve clients.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

R
ea

d
0

200

400

600

800

1,000

1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.14.: JULEA: concurrent accesses to a shared item

Shared Item Figure 6.14 shows JULEA’s read and write performance when using
individual items via the native JULEA interface.

During the read phase, the performance curve looks almost identical to its coun-
terpart using individual items when using large block sizes and less than ten nodes.
While the performance speedup slowed slightly when going from nine to ten nodes
using individual items, the shared item case is not affected by this drop and reaches a
maximum of more than 1,000 MiB/s. Additionally, the block size of 16 KiB provides a
more stable performance curve. It is interesting to note that the block size of 16 KiB
consistently provides better performance than the block size of 64 KiB; the reason for
this is unclear and has to be looked into further.

– 129 –

CHAPTER 6. PERFORMANCE EVALUATION

During the write phase, the performance curve looks less smooth than when using
individual items. For instance, using the largest block size of 1,024 KiB, performance
drops when increasing the number of nodes from five to six, only to rise again when
using seven nodes. Overall, performance is more stable than when using twelve
clients per node, however. The fact that overall performance is lower than when using
individual items and roughly on the same level as when using twelve clients indicates
that the handling of shared files is suboptimal in the Linux kernel. As demonstrated
using the NULL storage backend, these performance inconsistencies only occur if the
underlying file system is actually accessed using shared files.

To reduce the number of results and exclude the influences of the performance
inconsistencies when using a single shared file, the following measurements have only
been performed using individual items.

Batch Operations

The following measurements have been performed using JULEA’s batch support.
To limit the batch size to a reasonable amount, at most 1,000 operations have been
grouped together into a batch.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.15.: JULEA: concurrent batch accesses to individual items

– 130 –

CHAPTER 6. PERFORMANCE EVALUATION

Individual Items Figure 6.15 on the facing page shows JULEA’s read and write
performance when using individual items via the native JULEA interface.

Regarding read performance, it can be seen that batches provide improved per-
formance especially for smaller block sizes: While the block size of 4 KiB achieved a
maximum of 350 MiB/s using individual operations, batches boost this number to
almost 600 MiB/s; this corresponds to an increase of 65 %. For the larger block sizes,
this effect is not as pronounced but it is interesting to note that the block sizes of
64 KiB, 256 KiB and 1,024 KiB all reach the same performance. The only exception
occurs when using nine or ten nodes, where the speedup for the two largest block
sizes starts to slow down. The block size of 64 KiB continues scaling and reaches a
maximum of 1,000 MiB/s, however. The results can be explained as follows, based on
the used block size:

• 16 KiB: A batch of 1,000 operations bundles read operations of 16,000 KiB, that is,
15.63 MiB. Due to the default stripe size of 4 MiB, each client contacts four servers.
This does not introduce enough parallelism to reach maximum performance.

• 64 KiB: The batch reaches a size of 64,000 KiB, that is, 62.5 MiB. This implies that
each client reads data from all ten data servers in parallel.

• 256 KiB and 1,024 KiB: The batches are sized 250 MiB and 1,000 MiB, respec-
tively. These huge batches reduce performance because they exclusively lock the
connections for too long.

Consequently, the results indicate that it might prove beneficial to limit the size of
batches internally to improve parallelism.

Regarding write performance, it can be observed that batches provide significant
performance boosts especially for small amounts of client processes: A single process
already reaches a performance of more than 90 MiB/s even for the smallest block
size of 4 KiB. Overall, batches deliver a mixed picture regarding their impact on
performance. On the one hand, they reduce performance for the largest block size
of 1,024 KiB: While individual operations achieved roughly 650 MiB/s, batches only
deliver 550 MiB/s. On the other hand, batches deliver significant improvements for
the smallest block size of 4 KiB: Individual operations delivered a maximum of roughly
290 MiB/s, while batches manage to achieve more than 350 MiB/s. Additionally, the
performance maximum is reached using a smaller amount of nodes. Overall, there
is still room for improvements. Even though the data server handles batches more
efficiently by merging multiple write operations, the clients do not perform such
optimizations yet. Batching 1,000 operations with even a small block size of 4 KiB
should be able to deliver at least the same performance as individual operations using
a block size of 1,024 KiB.

– 131 –

CHAPTER 6. PERFORMANCE EVALUATION

Safety Semantics

The following measurements have used the safety semantics to disable write acknowl-
edgments for all write operations. A detailed description of the safety semantics can
be found in Section 3.4.6 on page 65.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.16.: JULEA: concurrent accesses to individual items using unsafe safety se-
mantics

Individual Items Figure 6.16 shows JULEA’s read and write performance when
using individual items via the native JULEA interface.

During the read phase, there are only minor differences in performance in com-
parison to the default semantics (see Section 6.2.3 on pages 128–130). This is to be
expected because the read operations are not handled differently depending on the
safety semantics.

During the write phase, performance is improved across the board for all block sizes.
It is especially interesting to note that even a single process achieves the maximum
performance of 110 MiB/s using a block size of 4 KiB because the clients do not
have to wait for the write acknowledgments from the data servers. Using a block
size of 4 KiB, the maximum performance is increased from less than 300 MiB/s to
roughly 400 MiB/s when using ten nodes; this corresponds to an improvement of 33 %.

– 132 –

CHAPTER 6. PERFORMANCE EVALUATION

The largest block size of 1,024 KiB manages to achieve a maximum performance of
approximately 800 MiB/s, an improvement of 23 % when compared to the maximum
of 650 MiB/s delivered by the default semantics.

Atomicity Semantics

The following measurements have used the atomicity semantics to enforce atomic
access for each read and write operation. For a detailed explanation of the atomicity
semantics, see Section 3.4.1 on pages 61–62.

JULEA currently implements atomicity using a centralized locking algorithm. As
explained in Section 5.4.1 on pages 98–101, JULEA’s data distributions split up items
into blocks of equal size. Locking is then performed on a per-block basis by inserting
and removing documents from a MongoDB collection. Each lock operation requires
one insert operation and each unlock operation needs one remove operation.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/6 2/12 3/18 4/24 5/30 6/36 7/42 8/48 9/54 10/60

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure 6.17.: JULEA: concurrent accesses to individual items using per-operation atom-
icity semantics

Individual Items Figure 6.17 shows JULEA’s read and write performance when
using individual items via the native JULEA interface.

– 133 –

CHAPTER 6. PERFORMANCE EVALUATION

Regarding read performance, it is interesting to note that different block sizes
show different scaling behavior: While the block sizes of 4 KiB and 16 KiB quickly
reach a maximum and stay at this level, the remaining block sizes deliver more
performance as more nodes are used. This behavior can be explained using a rough
performance estimation: As will be presented in Section 6.3, MongoDB manages to
deliver roughly 20,000 inserts/s and 6,000 removes/s. Taking into account that each
read or write operation requires one insert and one remove operation, a maximum
of 13,000 operations/s can be performed.13 This implies a maximum performance of
roughly 50 MiB/s for a block size of 4 KiB and 200 MiB/s for a block size of 16 KiB.
According to the measurements, 42 MiB/s and 170 MiB/s are reached for block sizes
of 4 KiB and 16 KiB, respectively. Because a block size of 64 KiB can already support up
to 800 MiB/s according to this approximation, the remaining block sizes’ performance
scales with the number of nodes. Interestingly, the largest block size of 1,024 KiB
almost reaches the same performance as when using the default semantics: While
the default semantics manage to deliver slightly more than 900 MiB/s, the atomicity
semantics achieve a maximum of 880 MiB/s. For smaller block sizes, the slowdown is
more severe, however. The maximum performance using a block size of 64 KiB drops
from roughly 740 MiB/s to 530 MiB/s; this corresponds to a decrease of almost 30 %.

Regarding write performance, the small block sizes manage to deliver almost the
same performance as during the read phase. While the block size of 4 KiB reaches a
maximum of 40 MiB/s, the block size of 16 KiB is limited to 140 MiB/s. The remaining
block sizes perform much worse, however. This is due to the lower write performance
that is already present when using the default semantics. Whereas the maximum
performance of roughly 650 MiB/s is reached when using seven or more nodes with
the default semantics, the atomicity semantics achieve a maximum of slightly less
than 400 MiB/s when using six or more nodes. This corresponds to a performance
degradation of almost 40 % even when using the largest block size of 1,024 KiB.

6.2.4. Discussion

The results demonstrate that the current state of parallel distributed file systems is
mixed and that performance can be very hard to predict and understand. Even simple
access patterns as the ones used for the presented benchmarks do not achieve the
maximum performance. This is true for all tested file systems but has different reasons
for each of them.

Lustre deals well with a large number of concurrent clients. This is most likely
because Lustre can easily use the OS’s file system cache due to being implemented
in kernel space. This allows Lustre to aggregate accesses and thus reduce the load
on the servers. However, Lustre’s performance is abysmal when accessing a single

13 This number is only intended to provide a rough estimate. In practice, the number might be lower due
to the high discrepancy between insert and remove performance.

– 134 –

CHAPTER 6. PERFORMANCE EVALUATION

shared file as commonly done in scientific applications: Read performance decreases
with more than seven client nodes and write performance does not scale beyond one
client node. Consequently, only individual files are efficiently usable because it is not
possible to inform Lustre about the application’s I/O requirements to mitigate these
performance problems.

OrangeFS’s handles shared files much better but its overall performance is held
back by problems found within the underlying OS and file systems. In contrast to
Lustre, it is not possible to use OrangeFS for I/O patterns requiring correct handling
of overlapping writes.

While JULEA suffers from the same problems as OrangeFS when using an under-
lying POSIX file system, its NULL storage backend demonstrates that the overall
architecture is able to handle high throughputs. Additionally, its different semantics
allow it to adapt to a wide range of I/O requirements:

• Its default semantics enable performance results similar to those of Lustre when
using large block sizes. Lustre has advantages for small block sizes due to its
client-side caching and readahead functionalities. However, these advantages
vanish as soon as shared files are used.

• JULEA’s batches can be used to improve throughput for small block sizes by
reducing the number of network messages and round trips. However, there is
still potential to improve their use for large block sizes.

• The safety semantics can be used to reduce the network overhead by not awaiting
the data servers’ replies. This is similar to Lustre’s default behavior when using
individual files.

• Atomic operations can be achieved by using the atomicity semantics. While
the performance of large read operations is not reduced significantly, write op-
erations suffer a performance penalty of up to 40 %. However, using JULEA’s
fine-grained semantics, it is possible to use atomic operations only when abso-
lutely necessary.

In contrast to Lustre and OrangeFS, JULEA can be adapted to different applications
by setting its semantics appropriately. While it is neither possible to improve Lus-
tre’s shared file performance due to its POSIX compliance nor to use OrangeFS for
workloads requiring overlapping writes, it is possible for JULEA to support and to be
tuned for these specific use cases.

6.3. Metadata Performance

Due to the growing number of clients accessing parallel distributed file systems
concurrently, metadata performance plays an increasingly important role for overall

– 135 –

CHAPTER 6. PERFORMANCE EVALUATION

file system performance. Therefore, the following measurements are meant to provide
an overview of the current state of metadata performance and to highlight possibilities
of exploiting semantical information to improve it.

The file systems’ metadata performance will be evaluated using a large number of
concurrently accessing clients that perform a variety of metadata operations: First, a
number of files is created. Afterwards, the files are opened and their status is retrieved.
Finally, all files are deleted again. The benchmark uses MPI to start and coordinate
multiple processes accessing the file systems. There are two basic modes of operation:

1. Individual directories: Each process only accesses its own directory or store.14

Even though all processes access the file system concurrently, the individual
directories are accessed serially because only one process has exclusive access.

2. Shared directory: All processes access a single shared directory. Consequently,
the shared directory will be accessed concurrently.

To evaluate the file systems’ behavior with different numbers of accessing clients, the
following n/p configurations (where n stands for the number of client nodes and p
stands for the total number of client processes) have been used: 1/1, 1/2, 1/4, 1/8,
1/12, 2/24, 3/36, 4/48, 5/60, 6/72, 7/84, 8/96, 9/108 and 10/120; these are the same
configurations as used for the evaluation in Section 6.2. All parallel distributed file
systems have been set up to provide ten data servers and one metadata server.

The benchmark supports several I/O interfaces to support the comparison of differ-
ent parallel distributed file systems using the respective interfaces. Currently, POSIX
and JULEA are available. MPI-IO has not been included due to its inability to query
more metadata than just the file size. Additionally, OrangeFS has been excluded due
to its metadata performance problems: Previous results have shown that OrangeFS
has been unable to deliver more than approximately 100 operations/s for all metadata
operations that perform write accesses [Kuh13].

Each benchmark has been repeated at least five times to calculate the arithmetic
mean as well as the standard deviation. To force the clients to contact the metadata
servers, the clients’ cache was dropped after the write phase.15 The servers’ caches
have been dropped by completely restarting and remounting the file systems after
each configuration; the server caches have not been touched between the different
phases, however.

14 For readability reasons, the rest of the chapter will only mention directories when either directories or
stores are considered.

15 For Lustre, the /proc/sys/vm/drop_caches file has been used; for JULEA, nothing has been done
because no metadata has been cached on the clients.

– 136 –

CHAPTER 6. PERFORMANCE EVALUATION

6.3.1. Lustre

Lustre has been set up using its default options and the ldiskfs backend. The MDT
has been provided by one of the SSDs, while each OST has been provided by one of
the servers’ HDDs.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.18.: Lustre: concurrent metadata operations to individual directories via the
POSIX interface

Individual Directories Figure 6.18 shows Lustre’s metadata performance when
using individual directories via the POSIX interface.

As can be seen, the create performance increases together with the growing number
of client nodes until it reaches its maximum of roughly 17,000 operations/s with ten
nodes. The delete performance already reaches its maximum of 6,500 operations/s
with five nodes and remains relatively constant even with more nodes. The perfor-
mance of the open operation already reaches its maximum of 3,000 operations/s with
three nodes and stays steady until five nodes are used; as soon as more nodes are
used, it drops until it reaches a low point of 800 operations/s with ten nodes. It is
unclear why the open operations performs so badly; the behavior might be due to
atime updates as explained in Section 2.6.1 on pages 42–43 but more investigation
regarding the underlying cause is necessary. As can be expected, the stat operation
delivers high performance because it does not require any write operations; it reaches
its maximum of almost 40,000 operations/s with seven nodes and sharply drops to
24,000 operations/s with nine nodes. When using ten nodes, performance increases
again, which may be partly due to measurement inaccuracies because the standard

– 137 –

CHAPTER 6. PERFORMANCE EVALUATION

deviation is extremely large when using more than six nodes. These varying results
hint at congestions inside Lustre’s meta data server (MDS).

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.19.: Lustre: concurrent metadata operations to a shared directory via the
POSIX interface

Shared Directory Figure 6.19 shows Lustre’s metadata performance when using a
shared directory via the POSIX interface.

Regarding create performance, the performance curve looks similar to the individual
case except for a lower overall performance; the maximum performance with ten nodes
is roughly 13,500 operations/s and thus about 20 % lower than when using individual
directories. The delete operation is 30 % slower than its individual counterpart. In
contrast to the individual case, the open operation’s performance stays constant at
roughly 800 operations/s regardless of the number of nodes. The stat operation’s
performance curve shows a similar form as previously with a sharp drop at nine nodes
and an increase with ten nodes; however, the maximum performance is reduced by
more than 60 % when compared to the individual case. The reduced performance
across all metadata operations can be explained by the fact that all clients access the
same shared directory which makes additional locking necessary.

6.3.2. JULEA

JULEA has been configured to use a maximum of six connections per node and to
utilize the data daemon’s POSIX storage backend. MongoDB has stored its data within
an ext4 file system on one of the servers’ SSDs, while the storage backend has used an
ext4 file system located on the servers’ system HDDs.

– 138 –

CHAPTER 6. PERFORMANCE EVALUATION

Default Semantics

The following measurements have been performed using JULEA’s default semantics to
establish a performance baseline; for a detailed explanation of them, see Section 3.4.9
on pages 68–70.

Shared Collection JULEA uses separate MongoDB databases for each of its stores;
all collections and items within a store are saved within the corresponding database.
As MongoDB performs locking on a per-database basis, using individual collections
within the same store results in the same performance as using a shared one; this is
different from traditional file systems where locking is usually performed on a per-
directory basis. Due to this, the benchmarks using a shared collection are presented
first and used as a baseline. Because developers are unlikely to use multiple stores
simultaneously, this represents a more common use case.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.20.: JULEA: concurrent metadata operations to a shared collection

Individual Operations Figure 6.20 shows JULEA’s metadata performance when
using a shared collection.

Regarding create performance, it is interesting to note that performance increases
when using more clients even on a single node. Using twelve clients yields the max-
imum performance of 22,000 operations/s; the performance increase from eight to
twelve clients is negligible which is to be expected since JULEA has been config-
ured to use a maximum of six connections per client. As soon as a second node is
used, performance drops to roughly 19,000 operations/s and continues to do so as

– 139 –

CHAPTER 6. PERFORMANCE EVALUATION

more nodes are used, reaching 16,500 operations/s with ten nodes. Delete perfor-
mance decreases slightly as more nodes are used; while JULEA achieves roughly
7,000 operations/s when using one or two nodes, performance decreases to slightly
less than 6,000 operations/s for the ten node configuration. The low performance is
due to a combination of two factors:

1. Write operations in MongoDB are inherently slower than read operations because
the indexes have to be updated and the changed data has to be synchronized
to stable storage. Even though JULEA does not wait for the synchronization by
default, the updates still result in lower performance.

2. Delete operations do not only have to contact the metadata servers but also all
data servers that contain data of the item that is to be deleted. Even though the
data servers are contacted in parallel, their reply has to be awaited by default,
slowing down this part of the operation.

Open performs very well because JULEA sets up MongoDB indexes for fast lookups.
The open operation reaches its maximum performance of 90,000 operations/s with
six clients and stays constant for more clients. This presents a stark contrast to
Lustre, where the open operation is the slowest metadata operation. It is especially
important for JULEA to have a high open performance because the other metadata
operations (that is, delete and stat) require opening the corresponding item first. The
stat operation’s performance curve looks similar to that of the open operation but the
overall performance is considerable lower. It reaches its maximum performance of
65,000 operations/s with seven nodes and increases only slightly for more clients. The
lower performance is caused by the fact that the item’s metadata has to be fetched
from the data servers by default. Again, all data servers are contacted in parallel to
maximize throughput but this additional step decreases overall performance.

Batch Operations Figure 6.21 on the next page shows JULEA’s batch metadata
performance when using a shared collection.

The performance of the stat operation is almost identical to that of its counterpart
using individual operations due to the fact that it is currently not handled differently
even if executed in batch mode. Even though the delete and open operations also
do not perform optimizations when batched, their throughput is improved by the
reduced overhead. The delete operation increases its maximum throughput to al-
most 13,000 operations/s, which equals an improvement of more than 110 % when
compared to individual operations. Open reaches its maximum performance of
120,000 operations/s when using six nodes and stays constant when using up to ten
nodes. Consequently, the open operation is sped up by 33 % when batching operations.
The largest performance gain can be witnessed for the create operation. While its
maximum performance was slightly less than 10,000 operations/s when using individ-
ual operations, batch operations boost this number to roughly 160,000 operations/s.

– 140 –

CHAPTER 6. PERFORMANCE EVALUATION

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.21.: JULEA: concurrent batch metadata operations to a shared collection

This huge performance improvement is due to the fact that JULEA makes use of
MongoDB’s support for so-called bulk inserts when possible. This allows MongoDB
to improve throughput when inserting a large number of documents.16 The create
operation achieves its maximum performance when using four to six nodes and drops
slightly when using more nodes. Additionally, the performance numbers show much
higher deviations due to congestion in the MongoDB servers.

Individual Collections and Stores The following measurements have been per-
formed using individual collections and stores to analyze the scaling behavior with
multiple MongoDB databases. To keep the number of MongoDB databases at a rea-
sonable level, one store per client node has been used; all clients located on this node
have then created their individual collections within this store.

Individual Operations Due to a bug in MongoDB, it has not been possible to collect
reliable measurements when using individual stores combined with individual opera-
tions. The high rate of operations consistently triggers the bug when multiple nodes
are used. Consequently, only results for batch operations will be presented.

Batch Operations Figure 6.22 on the following page shows JULEA’s batch metadata
performance when using individual stores.

16 MongoDB versions 2.6 and later support more generic bulk write operations that extend the bulk concept
to all write operations. JULEA does not yet make use of this new feature, however.

– 141 –

CHAPTER 6. PERFORMANCE EVALUATION

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.22.: JULEA: concurrent batch accesses to individual stores

The open and stat operations’ performance is slightly higher than when using
a shared collection. While the open operation reaches a maximum performance
of 125,000 operations/s instead of 120,000 operations/s, the stat operation achieves
69,000 operations/s instead of 67,000 operations/s; this corresponds to improvements
of 4 % and 3 %, respectively. These results are to be expected because these operations
do not modify data within MongoDB which is where bottlenecks would occur during
locking. The delete operation’s performance curve behaves differently to its counter-
part using a shared collection: Instead of delivering constant performance regardless
of the number of accessing clients, performance increases until reaching its maximum
of 43,000 operations/s when using five or more nodes. This corresponds to a perfor-
mance increase of 230 % when compared to the results using a shared collection. The
same applies to the create operation’s performance: Instead of providing roughly the
same performance for all configurations, using individual stores enables better scaling.
It reaches its maximum performance of 280,000 operations/s when using ten nodes;
this equals a performance increase of 75 %.

Concurrency Semantics

The following measurements have used differing concurrency semantics as explained
in Section 3.4.2 on page 62.

Shared Collection The following measurements have been performed using a
shared collection.

– 142 –

CHAPTER 6. PERFORMANCE EVALUATION

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.23.: JULEA: concurrent metadata operations to a shared collection using serial
concurrency semantics

Individual Operations Figure 6.23 shows JULEA’s metadata performance when
using a shared collection and serial concurrency semantics.

The performance of the create and open operations is identical to that of their
counterparts using the default semantics; the delete operation is slower by about
100 operations/s. There are, however, some subtle differences in behavior that might
or might not have an impact on performance:

1. The create operation has to send more metadata to the MongoDB servers because
the serial concurrency semantics cause the items’ sizes and modification times to
be stored in MongoDB. This does not have a negative effect on performance in
this case because the total amount of metadata is still relatively low.17

2. The additional metadata also has to be fetched from the MongoDB servers when
opening items because the complete MongoDB document is requested by default.
This also does not have any measurable effect in this case.

3. The delete operation has to remove more data from MongoDB due to the in-
creased document size. Because the indexes have to be updated in addition to
the actual deletion, this causes a slight performance drop.

Regarding stat performance, it is interesting to note that it is nearly identical to the
open operation’s performance, resulting in a speedup of almost 40 % when compared

17 Specifically, 20,000 operations/s are not enough to saturate the network due to the small size of each
individual operation.

– 143 –

CHAPTER 6. PERFORMANCE EVALUATION

to the default semantics. This is due to the fact that the items’ sizes and modification
times can be fetched from MongoDB. Even though this still involves two lookup
operations instead of one (that is, first opening the item and then getting its status),
it can be overlapped efficiently and results in higher performance than with the
default semantics. In contrast to the default semantics, this reduces the number of
internal operations from eleven to two; instead of contacting ten data servers, only
one additional MongoDB lookup is required. Additionally, MongoDB lookups are
very fast due to the previously mentioned indexes.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.24.: JULEA: concurrent batch metadata operations to a shared collection using
serial concurrency semantics

Batch Operations Figure 6.24 shows JULEA’s batch metadata performance when
using a shared collection and serial concurrency semantics.

The delete and open operations’ performance is almost identical to that of their
counterparts using the default semantics. The create operation’s performance, how-
ever, decreases from a maximum of 163,000 operations/s to 157,000 operations/s. This
slight slowdown of approximately 4 % is most likely due to the increased amount of
metadata that has to be sent to the metadata server. While this effect was negligible for
individual operations due to their low create performance, it becomes noticeable for
batch operations. The stat performance drops from a maximum of 65,000 operations/s
to 50,000 operations/s. While performance is increased by 40 % when using serial
concurrency semantics with individual operations, batch operations actually slow
down throughput by 25 %. This performance drop is likely due to the fact that batch
operations can cause less opportunity for overlapping metadata operations because
they currently lock a MongoDB connection for their entire duration.

– 144 –

CHAPTER 6. PERFORMANCE EVALUATION

Individual Collections and Stores The following measurements have been per-
formed using individual collections and stores.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.25.: JULEA: concurrent batch accesses to individual stores using serial con-
currency semantics

Batch Operations Figure 6.25 shows JULEA’s batch metadata performance when
using individual stores and serial concurrency semantics.

The open operation provides almost identical performance when compared to
the default semantics; all other operations are slowed down, however. The create
operation reaches a maximum performance of roughly 260,000 operations/s which
corresponds to a slowdown of 7 %. While the delete operation’s performance is
decreased by approximately 5 % with a maximum throughput of 41,000 operations/s,
the stat operation achieves a maximum of 53,000 operations/s which equals a decrease
of more than 20 %. As explained earlier, there are two factors that are responsible for
the decline in performance:

1. There is less opportunity for overlapping operations when using batch opera-
tions because the MongoDB connections are exclusively locked for the batch
operation’s entire duration.

2. More information has to be sent to and retrieved from the metadata servers
which is due to the serial concurrency semantics causing additional metadata to
be stored in MongoDB.

While the reduced amount of overlapping is responsible for the stat operation’s
performance drop, the additional metadata causes slight slowdowns for both the
create and delete operations.

– 145 –

CHAPTER 6. PERFORMANCE EVALUATION

Safety Semantics

The following measurements have used differing safety semantics as explained in
Section 3.4.6 on page 65.

Shared Collection The following measurements have been performed using a
shared collection.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.26.: JULEA: concurrent metadata operations to a shared collection using
unsafe safety semantics

Individual Operations Figure 6.26 shows JULEA’s metadata performance when
using a shared collection and unsafe safety semantics.

The open operation’s performance is identical to that of its counterparts using
the default semantics. The delete operation’s behavior is slightly modified by not
awaiting MongoDB’s reply when removing documents which improves performance
by roughly 200 operations/s. Regarding create operation, it is interesting to note
that there is a huge performance spike of 55,000–65,000 operations/s when using a
single node and one or two clients. Afterwards, performance decreases to roughly
25,000 operations/s for twelve clients on one node. As in the previous cases, increas-
ing the amount of nodes causes performance to gradually decrease until it reaches
20,000 operations/s when using ten nodes. Overall, performance is increased by 4,000–
5,000 operations/s which corresponds to a 20 % improvement. The open operation’s
performance is reduced, however. This is most likely due to the fact that its perfor-
mance is measured directly after the create operation. Because JULEA does not await

– 146 –

CHAPTER 6. PERFORMANCE EVALUATION

MongoDB’s reply for the create operations in this case, the server might still be busy
inserting documents when the benchmark’s open phase begins.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.27.: JULEA: concurrent batch metadata operations to a shared collection using
unsafe safety semantics

Batch Operations Figure 6.27 shows JULEA’s batch metadata performance when
using a shared collection and unsafe safety semantics.

The stat operation’s performance is identical to that of its counterpart using the
default semantics; since no optimizations can be performed in this case, this is ex-
pected behavior. Regarding the create operation, it can be seen that the performance
remains more or less constant when using more than one node; overall, performance
is much higher than when using the default semantics. This is due to the fact that
no write acknowledgment is requested from MongoDB. In comparison to the de-
fault semantics, performance is increased by almost 70 % from 160,000 operations/s
to 270,000 operations/s. Due to the decreased overhead facilitated by the batch op-
erations, the delete operation’s maximum performance reaches 25,000 operations/s
when using more than three nodes; compared to the default semantics, this equals an
increase of roughly 85 %. Again, this is due to the fact that no write acknowledgments
are requested from MongoDB. Curiously, the open operation’s performance is reduced
to a maximum of approximately 70,000 operations/s, even though it does not behave
differently depending on the chosen safety semantics. Compared to the maximum of
120,000 operations/s using the default semantics, this equals a performance drop of
more than 40 %. This performance decline can be explained by the fact that the open
operation is measured directly after the create operation in the benchmark applica-
tion. Due to the high create throughput coupled with JULEA not waiting for write

– 147 –

CHAPTER 6. PERFORMANCE EVALUATION

acknowledgments, the MongoDB server is likely still busy inserting documents and
updating its indexes when the open phase starts. The high performance deviations
are also an indication of this because the open operation provided very stable results
in all other benchmarks.

Individual Collections and Stores The following measurements have been per-
formed using individual collections and stores.

0

100,000

200,000

300,000

400,000

500,000

600,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[O

p
er

at
io

n
s/

s]

Configuration (Nodes/Processes)

Create Delete Open Stat

Figure 6.28.: JULEA: concurrent batch accesses to individual stores using unsafe safety
semantics

Batch Operations Figure 6.28 shows JULEA’s batch metadata performance when
using individual stores and unsafe safety semantics.

The stat operation’s performance is mostly identical when compared to that of its
counterpart using the default semantics; this is not surprising because there are no
differences regarding this operation when changing the safety semantics. As expected,
the create operation’s performance is greatly increased by almost 70 %; it reaches its
maximum of 475,000 operations/s with ten nodes. Again, this improvement is due to
not requesting write acknowledgments from MongoDB. Due to the congestion caused
by the higher rate of document insertions, the performance deviations are much higher
than with the default semantics. For the same reason, the delete operation’s maximum
performance increases from 43,000 operations/s with the default semantics to almost
60,000 operations/s with the unsafe safety semantics; this corresponds to an improve-
ment of 40 %. The open operation’s performance drops from 125,000 operations/s to
117,000 operations/s in comparison to the default semantics; this corresponds to a

– 148 –

CHAPTER 6. PERFORMANCE EVALUATION

drop of roughly 6 %. In contrast to the results when using a shared collection – where
performance was decreased by 40 % – the effect of MongoDB’s congestion causing a
slowdown during the open phase is not as pronounced. This is likely due to the fact
that multiple databases allow MongoDB to distribute the load more efficiently.

6.3.3. Discussion

The results demonstrate that Lustre’s metadata performance is relatively low, even
though the MDS has been configured to use an SSD as its MDT. It is especially inter-
esting to note that while the create operation’s performance scales with the number
of concurrently accessing client nodes, the open operation’s performance is signifi-
cantly lower and deteriorates with an increasing number of clients. Consequently, this
makes it possible to create files with a high rate but impossible to open them again
in a passable amount of time. Additionally, the stat operation’s performance is very
unstable when using more than five nodes and actually decreases with an increasing
number of clients. Using a shared directory again degrades the overall performance,
though not as pronounced as when using shared files.

JULEA delivers performance that is capable of competing with Lustre for the create
and delete operations. The open and stat operation’s performance, however, is much
higher than in Lustre’s case. This demonstrates that the use of optimized database
systems such as MongoDB can make sense for metadata servers. Projects such as
the Robinhood policy engine also use database systems to speed up common file
system operations [CEA14]. The different semantics and batch operations can provide
significant benefits regarding metadata performance: While the concurrency and
safety semantics can help to improve the performance of the stat and create operations,
batch operations reduce the overall overhead caused by many small metadata requests.
However, the results indicate that more fine-tuning is required for batches because
they can actually reduce performance in some cases depending on the workload and
metadata operation in question.

6.4. Lustre Observations

The following observations have been made while performing the previous data and
metadata measurements. It has emerged that Lustre’s behavior is different from that
of other file systems in various ways; it is important to keep the following quirks in
mind to obtain meaningful results.

Lustre caches data very aggressively. For example, when a write call returns, the
data has usually not reached the object storage servers (OSSs) yet but has only been
cached in the client’s RAM. Additionally, subsequent read calls do not request any

– 149 –

CHAPTER 6. PERFORMANCE EVALUATION

data from the OSSs if the data is still cached. Consequently, it is necessary to force
Lustre to flush the data to the OSSs and also retrieve the data from there.

When writing, this can be easily achieved using the fsync function that forces
data to be flushed to stable storage, that is, the OSSs.18 When reading, the easiest
method to guarantee that data is actually retrieved from the OSSs is to empty the
caches. However, there is no single simple method to accomplish this. One could
use the previously mentioned posix_fadvise function together with its POSIX_-
FADV_DONTNEED advice. Because these advices are not well-specified and could have
different behavior depending on the software environment, they are not suited for
this purpose. Alternatively, Linux offers a mechanism to drop the OS’s page cache:
By writing the value 3 to the /proc/sys/vm/drop_caches file, the OS drops all non-
dirty cached pages.19 However, Lustre apparently does not mark its cached pages
as non-dirty immediately after calling fsync. This makes it necessary to implement
workarounds such as sleeping for a certain amount of time or repeatedly using this
mechanism while monitoring the amount of cached pages to make sure that all cached
data has been dropped.

Lustre provides very inconsistent performance results directly after starting the file
system servers and mounting the file system. It is therefore necessary to wait for an
appropriate amount of time before the file system has settled down.

It is sometimes not possible to unmount the Lustre file system directly after the end
of a benchmark because it is still busy. In this case, it is also necessary to wait for a
certain amount of time or to repeatedly check whether the file system has become idle.

As with any other kernel module, bugs can make it necessary to reboot the complete
machine in order to restore functionality. It is usually not a problem to reboot the Lustre
client nodes because job schedulers will take care of restarting applications. However,
the load caused by the highly parallel benchmark applications also frequently made it
necessary to reboot the Lustre server nodes. This was especially pronounced when
performing parallel metadata measurements.

6.5. Partial Differential Equation Solver

To evaluate the different I/O interfaces’ behavior with real-world applications, ad-
ditional benchmarks using the partdiff application have been performed. partdiff
solves partial differential equations (PDEs) using the Jacobi and Gauß-Seidel methods
and is parallelized using MPI. Its basic memory structure is a matrix that is refined

18 To be precise, fsync flushes data as well as metadata to stable storage. If only data should be flushed,
fdatasync can be used.

19 The value to be written is actually a bitmask: A value of 1 causes the page cache to be dropped, while a
value of 2 causes cached directory entries and inodes to be dropped. Consequently, a value of 3 drops
all of the above.

– 150 –

CHAPTER 6. PERFORMANCE EVALUATION

iteratively with each MPI process being responsible exclusively for a contiguous part
of the matrix.

As mentioned previously, a common operation in scientific applications is check-
pointing: All information that is necessary to resume the application later is written to
storage. partdiff implements checkpointing by writing out the complete matrix to two
alternating files; as soon as a checkpoint has been written out successfully, another
file is used to guarantee that one valid checkpoint is available at all times, even if the
application happens to crash during checkpointing. The checkpointing rate can be
configured to be able to manage the I/O overhead. Since each process is responsible
for a part of the matrix, the processes can write the matrix without any coordination
or overlapping.

partdiff supports several different I/O interfaces to perform its checkpointing:
POSIX, individual and collective MPI-IO, and JULEA. For the following evaluation,
the first three I/O interfaces have been used on top of Lustre; both Lustre and JULEA
have been configured as in Section 6.2.

Nodes Matrix Size
1 4.89 GiB
2 9.77 GiB
3 14.65 GiB
4 19.54 GiB
5 24.42 GiB
6 29.30 GiB
7 34.18 GiB
8 39.06 GiB
9 43.95 GiB

10 48.83 GiB

Table 6.1.: partdiff matrix size depending on the number of client nodes

To evaluate the scaling behavior of the I/O interfaces and file systems, the measure-
ments have been performed using an increasing number of clients. partdiff allows
specifying the matrix’s size which has been chosen in relation to the number of client
nodes. To keep the amount of required computation and I/O constant, the matrix
size was adjusted in such a way that doubling the amount of nodes also doubled
the matrix size. The chosen matrix sizes can be found in Table 6.1. Consequently,
assuming perfect scaling, the runtime for both computation and I/O should remain
constant for all configurations.

partdiff has been configured to calculate 100 iterations and write checkpoints for six
of these iterations; the checkpoints have been distributed evenly across all iterations.
Because each client node writes 4.89 GiB of data, this results in a total of 29.32 GiB per

– 151 –

CHAPTER 6. PERFORMANCE EVALUATION

node and 293.15 GiB when all ten nodes are used. Using the theoretical maximum
of 1,115 MiB/s for all ten nodes, partdiff’s I/O is expected to take at least 262.9 s to
complete. The writing of the checkpoint is accomplished using a single call to the I/O
library’s respective write function, that is, block sizes are not relevant in this case.20

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

[s
]

Configuration (Nodes)

POSIX
POSIX (I/O)

Collective
Collective (I/O)

Individual
Individual (I/O)

JULEA
JULEA (I/O)

Figure 6.29.: partdiff checkpointing using one process per node

One Process Per Node Figure 6.29 shows partdiff’s runtime and I/O time using
different I/O interfaces with one MPI process per node. The time for computation is
roughly the same for all I/O interfaces with approximately 255 s when using one node
and increases slightly to about 260 s with ten nodes.

As can be seen, all I/O times increase as more nodes are used. Additionally, the
changes in the total runtime mirror those in the I/O time, that is, the time consumed
for computation remains constant as expected. All I/O interfaces achieve an I/O time
of 268 s when using a single node. POSIX’s I/O time increases to 467 s; this equals
a slowdown of 74 %. The I/O time of MPI-IO’s individual mode lengthens to 459 s,
which corresponds to an increase of 71 %. Using MPI-IO’s collective mode, it grows to
428 s, resulting in an increase of 60 %. JULEA’s I/O time increases by 31 % to 350 s.

As expected, the behavior of POSIX and individual MPI-IO is largely equivalent.
This is due to the fact that ADIO’s POSIX backend is used and individual MPI-IO
thus is simply a wrapper around the POSIX interface. Using MPI-IO’s collective
mode provides higher performance due to the optimizations enabled by the additional
information provided by the mode’s functionality.

20 In MPI-IO’s case, the checkpoint writing had to be split up into multiple calls because different MPI-IO
implementations are still not fully 64-bit-safe, making it impossible to write more than 2 GiB per call.

– 152 –

CHAPTER 6. PERFORMANCE EVALUATION

It is interesting to note that the I/O time of all I/O interfaces except for JULEA
sharply increases when going from one to two nodes and then decreases to a normal
level again; this is most likely due to Lustre changing its behavior to be POSIX-
compliant. Even though all I/O interfaces are only slightly slower than the theoretical
maximum when using one node, all of them slow down as more nodes are used.
However, this could be due to the relatively low amount of parallelism caused by
limiting the amount of processes per node to one.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

[s
]

Configuration (Nodes)

POSIX
POSIX (I/O)

Collective
Collective (I/O)

Individual
Individual (I/O)

JULEA
JULEA (I/O)

Figure 6.30.: partdiff checkpointing using six processes per node

Six Processes Per Node Figure 6.30 shows partdiff’s runtime and I/O time using
different I/O interfaces with six MPI processes per node. The time for computation is
roughly the same for all I/O interfaces with approximately 90 s when using one node
and increases to about 135 s with ten nodes.

As seen before, all I/O interfaces start out with an I/O time of 268 s when using
one node. That is, more MPI processes do not influence the throughput when using a
single node. However, the picture changes when more nodes access the file system
concurrently. Even though the slowdown is less pronounced than in the previous
benchmarks in Section 6.2, the I/O time of POSIX and both MPI-IO modes increases
rapidly when more than one node is used. This is due to locking overhead introduced
by many clients accessing the same shared file even when using a larger access size.

POSIX’s I/O time lengthens to 563 s, which equals a slowdown of 110 %. While the
I/O time of MPI-IO’s individual mode increases to 565 s (111 %), the collective mode’s
time lengthens to 614 s (129 %). Interestingly, the collective mode does not provide
performance benefits in this case. While the I/O time is roughly the same as for

– 153 –

CHAPTER 6. PERFORMANCE EVALUATION

MPI-IO’s individual mode until nine nodes are used, the collective mode slows down
significantly with ten nodes. Additionally, both modes are slower than when using
only a single MPI process per node. Consequently, the increased parallelism actually
degrades performance. Even though the computation is sped up by the additional
processes, the overall runtime with ten nodes remains the same as when using a single
process per node due to the massive I/O slowdown.

In contrast to the other I/O interfaces, JULEA’s performance is improved by more
concurrent clients: When going from one to ten nodes, JULEA’s I/O time only grows
to 318 s, which corresponds to an increase of 19 %.

6.5.1. Discussion

The measurements using partdiff represent a very simple and common use case
because checkpointing is frequently used in high performance computing (HPC)
applications. Additionally, partdiff’s distribution of data across several MPI processes
results in a seemingly uncomplicated I/O pattern of streaming and non-overlapping
writes to a shared file.

Lustre shows scaling inefficiencies even when using only one MPI process per
node. Its performance decreases by 40–45 % when going from one to ten client nodes.
Using more processes per node exacerbates the problem, causing a performance
drop of 55–60 %. Increasing the number of processes per node further is expected
to make this problem even worse as demonstrated in the earlier benchmarks. While
JULEA’s performance drops by 33 % when using one process per node under the
same circumstances, more processes per node improve performance and reduce the
performance degradation to 16 %. This is due to the different semantics found in
Lustre and JULEA. While it is not possible to modify Lustre’s behavior to support this
use case better, JULEA’s semantics handle it well by default. Additionally, JULEA’s
semantics can be changed dynamically to support different I/O requirements.

These results make it clear that even uncomplicated use cases require workarounds
to achieve maximum performance when using parallel distributed file systems such
as Lustre. One such approach could be having dedicated I/O processes per node to
reduce the amount of concurrent file system clients. That is, the applications have
to be adapted to the parallel distributed file system instead of the other way around.
This problem is especially severe if applications are supposed to run efficiently on a
number of different file systems. It could be mitigated by informing the file system
about the applications’ actual I/O requirements as supported by JULEA.

– 154 –

CHAPTER 6. PERFORMANCE EVALUATION

Summary

This chapter has presented a detailed performance evaluation of multiple parallel distributed
file systems and I/O interfaces. Both the data and metadata performance of Lustre, OrangeFS
and JULEA has been measured using different use cases and workloads; OrangeFS has been
skipped for specific measurements due to its low performance. Additionally, JULEA’s batches
and semantics have been thoroughly analyzed; being able to batch operations and dynamically
adapt the file system’s semantics depending on the applications’ I/O requirements can have
significant benefits. It has been shown that static approaches such as Lustre’s POSIX semantics
can degrade performance dramatically even for common use cases.

– 155 –

Chapter 7.

Conclusion and Future Work

In this chapter, the thesis will be concluded and its results will be summarized. Additionally,
an outlook regarding future work will be presented. This mainly includes additional features
and improvements for the proposed JULEA I/O stack that were out of scope for this thesis.

This thesis presents a new approach for handling application-specific input/output
(I/O) requirements in high performance computing (HPC). The JULEA framework
includes a prototypical implementation of a parallel distributed file system and pro-
vides a novel I/O interface featuring dynamically adaptable semantics. It allows
applications to specify their I/O requirements using a fine-grained set of semantics.
Additionally, batches enable the efficient execution of file system operations.

The results obtained in this thesis demonstrate that there is need for I/O interfaces
that can adapt to the requirements of applications in order to provide adequate
performance for a variety of different use cases.

While Lustre’s POSIX1 interface has advantages regarding portability, its inflexibility
can cause considerable performance degradations: When using shared files, Lustre
has to perform locking to remain POSIX-compliant; because there is no way to tell
the file system that POSIX semantics are unnecessary or unwanted, it is not possible
to avoid this performance penalty. These performance problems are even noticeable
for small amounts of client processes and straightforward I/O patterns: For example,
checkpointing writes data in large contiguous blocks and results in streaming I/O.
However, the overhead incurred by Lustre’s shared file handling still slows down
performance significantly. These issues also affect higher levels of the I/O stack
because Lustre effectively forces POSIX semantics upon other layers.

Other file systems such as OrangeFS are not affected by this particular issue be-
cause they do not aim to be POSIX-compliant; they are, however, also limited to
their respective semantics. While this allows to deliver high performance for shared
access, it excludes other I/O patterns such as conflicting and overlapping writes. For
instance, this makes it impossible to use these file systems for workloads involving
coordinated access to shared data structures such as file headers. Supporting them
requires implementing appropriate synchronization schemes outside or on top of

1 Portable Operating System Interface

– 157 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

the file system. Consequently, the prevailing problems can not be solved by simply
relaxing or tightening the semantics. All static approaches have the drawback of being
only suitable for a subset of use cases and workloads.

The current circumstances effectively leave application developers with two choices
to be able to achieve the best possible performance:

1. Make use of different parallel distributed file systems depending on the applica-
tions’ specific I/O patterns. That is, applications requiring correct handling of
conflicting write operations have to be executed using a POSIX-compliant file
system, while applications in need of efficient shared file handling have to use
different file systems such as OrangeFS.

2. Adapt applications to work around limitations found in specific file systems.
That is, applications utilize a single available file system but have to implement
additional measures to make efficient use of them. For instance, writing check-
points to node-local files could be used to circumvent Lustre’s poor shared file
performance. This is sometimes accomplished using specialized high-level I/O
libraries such as SIONlib.

Because the first option is generally not feasible due to the given hardware and
software environment of the used supercomputers, developers are usually forced to
adapt their applications. An indication for this is the wide variety of I/O libraries
dealing with particular file system constraints.

Even though developers and users are theoretically able to execute arbitrary user
space applications – including user space file systems –, access to the supercomputers’
dedicated storage is usually restricted. That is, user space file systems can typically
only be set up to use the storage space available on the compute nodes. Since compute
nodes are only assigned temporarily and are sometimes not even equipped with
user-accessible local storage devices, this solution is not viable.

Additionally, HPC applications are often executed on multiple supercomputers that,
in turn, might use different parallel distributed file systems. This can significantly
increase the development and maintenance overhead because applications have to be
optimized for different file systems’ semantics instead of being able to optimize the
file systems according to their I/O requirements.

Current file systems and I/O interfaces do not allow semantical information to be
specified by the application developers even though this information could be used
to optimize the file systems’ behavior and thus enable high performance for a wider
range of use cases. Instead, applications have to be adapted to work around the file
systems’ specific limitations that are imposed by their respective semantics.

JULEA presents a first approach of how application-provided semantical informa-
tion can be used to adapt the file system’s behavior to the applications’ I/O require-
ments. Measurements using a wide range of I/O interfaces and workloads show that

– 158 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

the exploitation of this information can significantly improve performance even for
common use cases.

The concept introduced by the JULEA framework fills the gap by allowing applica-
tions to adapt the file system to their exact I/O requirements instead of the other way
around. For instance, this can be used to determine whether atomicity is required to
handle overlapping writes correctly. Because JULEA offers a large amount of possibili-
ties to influence the file system’s semantics, only certain aspects could be evaluated in
detail. Nevertheless, the available results show that the supplementary semantical in-
formation can be used to adapt the file system’s behavior in such a way as to optimize
performance for specific use cases. A discussion regarding application support and
ideas to ease the porting of existing applications to JULEA will be presented later.

Overall, JULEA provides data and metadata performance comparable to that of
other established parallel distributed file systems. In contrast to the existing file sys-
tems, its flexible semantics allow it to cover a wider range of use cases efficiently.
JULEA’s data performance is currently being held back by underlying problems in
Linux’s I/O stack: Too many parallel I/O streams significantly reduce performance
even for relatively easy access patterns such as streaming I/O. Additionally, more
investigation and tweaking of the MongoDB configuration will be required to elim-
inate the performance drop-off with larger amounts of client processes. Sharded
configurations of MongoDB are also expected to increase performance even further.

These underlying problems might make it necessary to take control of the complete
I/O stack to deliver high performance. JULEA is already prepared for this with its
storage backend interface that makes it possible to easily support custom backends
such as user space object stores. Providing all functionality of a parallel distributed
file system in user space has several advantages:

1. Kernel space implementations are not as portable as those in user space due to
changing kernel interfaces. An example of this is Lustre’s requirement for special
enterprise kernels; it is not easily possible to use Lustre’s server components in
combination with newer kernel versions.

2. Problems in kernel space code can make it necessary to reboot the complete
machine. This is especially true for problems in Linux’s virtual file system (VFS)
layer that can render the complete system unusable.

3. Analyzing and debugging user space code is much easier. While a plethora of
user space tools – such as GDB, Valgrind or VampirTrace – provide sophisticated
and easy-to-use debugging and performance analysis functionality, analyzing
and debugging the kernel is usually more tedious.

However, user space file systems also have disadvantages regarding performance:
Because the file system is a normal user space process, additional context switches

– 159 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

might be necessary whenever a file system operation is invoked. In contrast to the
mode switches that are required for kernel space file systems, context switches are
more expensive because more state has to be saved and restored. Due to the high
latencies of the involved network and storage operations, these additional costs can
often be ignored. Overall, the benefits outweigh the drawbacks in the context of
parallel distributed file systems.

JULEA’s convincing metadata performance results also imply that modern database
systems such as MongoDB present an interesting alternative to traditional metadata
server designs. Database indexes allow fast lookups that are necessary to achieve high
performance. This has also been recognized by other projects such as the Robinhood
policy engine that exploit the superior performance of database systems to speed up
common metadata-intensive file system operations.

Overall, the need for a more dynamic approach for parallel distributed file systems
as the one implemented by JULEA is reinforced by a trend observed in several other
data-centric software packages: As already presented in Section 4.4 on pages 84–85,
ADIOS2 has recently added support for read scheduling and data transformations.
While read scheduling introduces the batching of read operations to improve perfor-
mance, data transformations allow – among other things – to transparently compress
data and thus reduce the amount of required storage and network capacities. Ad-
ditionally, MongoDB has lately gained support for write concerns and bulk write
operations. Write concerns allow specifying the required safety level for data and
bulk write operations can be used to improve throughput. These approaches are very
similar to JULEA’s concepts of batches and dynamic semantics.

While there are detached activities to improve I/O interfaces, there is no uniform
approach that allows the semantical information to be exploited across the complete
I/O stack. This is mainly due to the fact that such activities are usually focused on
high-level I/O libraries such as ADIOS. Low-level layers like MPI-IO or the actual
file system are not changed. JULEA’s semantics, however, establish a way to hand
this information down into the file system and allow adapting it to a wide range of
I/O requirements. While the aspects of atomicity, concurrency and safety have been
evaluated in detail, more adjustments are possible. Additionally, semantics templates
make it easy to use and adapt JULEA’s semantics.

Even though JULEA provides a convenient testbed to experiment with different
semantics and prototype new functionality, it is necessary to provide dynamically
adaptable semantics for established I/O interfaces and parallel distributed file systems
for widespread adoption of these new features. These interfaces have to be standard-
ized and supported by a sufficiently large subset of file systems to provide consistent
functionality across different implementations.

2 Adaptable IO System

– 160 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

First of all, it is necessary to agree on default semantics suited for modern HPC
applications and a common set of parameters that should be configurable. While
POSIX allows portability across a wide range of existing file systems, it does not seem
to be suited for contemporary HPC demands, as demonstrated by the results at hand.
The semantics presented in this thesis are meant to provide a good starting point for
further evaluation. Backwards compatibility for existing applications could also be
ensured using a concept akin to JULEA.

Although JULEA’s primary motivation is to establish and evaluate dynamically
adaptable I/O semantics for HPC, another important goal is providing an environment
to foster research. This includes file systems and object stores in general as well as
novel approaches regarding I/O interfaces and semantics. It has already proven to be
a good testbed for a number of bachelor and master theses that have been conducted
in relation to it:

• Different parallel distributed file systems as well as I/O interfaces and semantics
have been evaluated in [Jan11].

• JULEA’s automatic correctness and performance regression framework has been
developed in [Fuc13].

• The LEXOS3 object store and the related JULEA storage backend have been
created in [Sch13].

• A detailed analysis regarding the scalability of different I/O interfaces including
HDF4 and NetCDF5 has been conducted in [Bar14].

• The potential performance disadvantages of user space file systems implemented
using FUSE6 have been analyzed in [Duw14].

3 Low-Level Extent-Based Object Store
4 Hierarchical Data Format
5 Network Common Data Form
6 Filesystem in Userspace

– 161 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1. Future Work

While the prototypical JULEA framework demonstrates that semantical information
can be exploited to adapt the file system’s behavior, not all of its possibilities could be
explored in the frame of this thesis. The following sections will give an overview of
several ideas for future work.

7.1.1. Application Support

As mentioned previously, it is often unreasonable to port applications to new I/O
interfaces due to their size and complexity. Because many applications already use
high-level I/O libraries such as ADIOS or NetCDF, JULEA could be integrated into
applications by providing backends for these I/O libraries. While ADIOS includes
its own backends and could thus be extended to provide a native JULEA backend,
NetCDF support could be achieved by adding a JULEA backend to HDF. HDF al-
ready includes support for POSIX and MPI-IO, and NetCDF simply delegates all I/O
operations to HDF, making this a viable approach.

However, ADIOS’s design is closer to JULEA due to its support for read scheduling
and other advanced I/O features. Providing a backend for ADIOS would enable all
ADIOS-aware applications to use JULEA without any further modifications.

ADIOS

ADIOS makes use of XML7-based configuration files to specify the applications’ I/O.
This could be easily extended to add more semantical information about the actual
data, similar to what has been done in [KMKL11]. A prerequisite for this is a native
JULEA backend for ADIOS as this additional information currently can not be handed
down in the storage stack. Otherwise, the optimizations made possible by this in-
formation would have to be implemented within ADIOS – or any other high-level
I/O library wanting to support such features. This is due to the fact that the lower
layers do not support such semantical information or that it is lost through the layers.
Therefore, it would be beneficial to be able to pass this information into the file system,
thus alleviating the need to implement such optimizations over and over again within
the upper layers as well as providing more room for optimizations in general.

1 <adios-config host-language="C">
2 ...
3 <semantics group="checkpoint" safety="storage"/>
4 <semantics group="temp_data" template="temporary-local"/>
5 </adios-config>

7 Extensible Markup Language

– 162 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

Listing 7.1: ADIOS extensions

Due to ADIOS’s rich XML configuration format, it would be relatively easy to extend it
to support the semantical information understood by JULEA as shown in Listing 7.1 on
the facing page. Analogous to the current way of being able to select the I/O method
per group, the new semantics element would allow defining arbitrary semantics on
a per-group basis. In this example, the application is supposed to write a checkpoint
and some temporary data: Since the purpose of a checkpoint is to be able to restart the
program in the event of a crash, it is important that it is written to persistent storage
and does not end up in some kind of cache. Therefore, the safety semantics are used
to ensure this property (line 3). Temporary data, however, may not need to be written
to persistent storage at all. JULEA provides a semantics template for this use case that
can be used (line 4).

7.1.2. Transactions

While databases usually offer atomicity, consistency, isolation and durability (ACID)
semantics by means of full-featured transactions, file systems do not provide such
guarantees or features. As even standard non-database applications deeply care
about at least atomicity, consistency and durability, application developers have to
implement appropriate measures themselves to ensure these properties. Consequently,
it would be desirable to have support for transactions within file systems in some
cases [WSSZ05].

While JULEA supports changing the atomicity semantics, this currently only ap-
plies to single operations within a batch and does not provide all the features real
transactions provide. The atomicity semantics only apply to the operation’s visibility
by other processes; operations can still complete only partially in case of an error. A
single failing operation within a batch could leave the data in an unexpected state and
thus force the application developer to closely check each operation’s result.

1 semantics = new Semantics(DEFAULT_SEMANTICS);
2 semantics.set(TRANSACTION, TRANSACTION_BATCH);
3
4 batch = new Batch(semantics);
5
6 item.write(..., batch);
7 item.write(..., batch);
8 item.write(..., batch);
9

10 if (!batch.execute())

– 163 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

11 {
12 error();
13 }

Listing 7.2: JULEA transactions

The pseudo code in Listing 7.2 on the previous page shows how transactions could
be used in JULEA. First, a new semantics object is created (line 1) and its transaction
semantics are set to provide transactions for the complete batch (line 2). Afterwards, a
batch is created using these semantics (line 4). Several write operations are performed
using this batch (lines 6–8). Should any of these write operations fail, the whole
batch will fail and the item’s contents will equal those before the batch’s execution
(lines 10–13).

Providing this kind of support directly in the file system would free application
developers from the burden of complex error handling. Transactions fit naturally into
the concept of batches since there are already well-defined start and end points for
batches, similar to transactions. Support for full-featured transactions would be more
oriented towards programming efficiency rather than increased performance as they
mainly offer convenient ways for error handling and cleanup. However, it would
allow developers to focus on the actual I/O instead of worrying about correct error
handling, which would in turn lead to cleaner and more maintainable code.

7.1.3. Object Store

As explained in Chapter 3, it would be beneficial for JULEA to make use of an object
store in order to avoid the overhead of a full-featured POSIX file system. As JULEA
already handles most file system operations itself, it is not necessary for an underlying
file system to perform redundant operations such as path lookup and permission
checking. As the storage backends’ primary purpose it to efficiently handle parallel
I/O streams and the actual block allocation, object stores provide a fitting alternative.
Another important aspect is the fact that JULEA’s performance is negatively impacted
by Linux’s current VFS layer. To take control of the complete I/O stack, it is necessary
to eliminate this dependency and provide a storage backend that is tailored to JULEA’s
requirements regarding batches and semantics. This can be accomplished most easily
and effectively using user space object stores as they are easier to adapt than full-
featured kernel space file systems.

LEXOS is an initial prototype of such an object store and has been implemented as
a shared library in user space. This allows it to be used easily in other projects and
would enable JULEA to have complete control over all aspects of the resulting I/O
path. It already supports batches and could thus be easily integrated into JULEA’s I/O
stack. However, it still requires further evaluations and optimizations for massively
parallel workloads as found in parallel distributed file systems.

– 164 –

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1.4. Client Optimizations

The results shown in Chapter 6 demonstrate that there are still a few possibilities for
further optimizations within JULEA:

• Merging of write operations currently happens inside the data daemon. How-
ever, overall performance could be increased by already merging them in the
client library to reduce the overhead of the involved network messages. This is
due to the fact that the offsets and lengths of all operations have to be sent to the
data daemon only to be merged there. Consequently, merging them in the client
library would reduce the amount of data that has to be sent across the network.

• Even though the use of TCP8 corking reduces the network overhead, it should
be investigated whether small write operations can be handled more efficiently
by storing the data of all operations in a contiguous buffer to reduce the number
of network send operations.

• Merging of operations is currently only performed for write operations. Read
operations could benefit from a similar handling, both within the client library
and the data daemon.

• Scheduling many small operations within a batch currently involves many
memory reallocations. More intelligent algorithms could be used to reduce the
number of reallocations and thus speed up the handling of large batches.

Summary

This chapter has summarized the insights gained in this thesis. Due to their static approaches
regarding I/O semantics, traditional parallel distributed file systems can not be suited for
all possible use cases and workloads. JULEA’s dynamically adaptable semantics present a
first approach for exploiting application-provided semantical information to optimize I/O
performance. Additionally, several tasks for future work have been presented to improve
JULEA’s coverage of the I/O stack: While support of existing applications can be eased
by providing backends for ADIOS or HDF, object stores provide opportunities to become
independent of underlying POSIX file systems.

8 Transmission Control Protocol

– 165 –

Bibliography

[10g13] 10gen, Inc. MongoDB. http://www.mongodb.org/, 2013. Last ac-
cessed: 2014-11.

[ADD+08] Nawab Ali, Ananth Devulapalli, Dennis Daless, Pete Wyckoff, and
P. Sadayappan. Revisiting the Metadata Architecture of Parallel File
Systems. Technical Report OSU-CISRC-7/08-TR42, 2008.

[AEHH+11] Sadaf R. Alam, Hussein N. El-Harake, Kristopher Howard, Neil
Stringfellow, and Fabio Verzelloni. Parallel I/O and the Metadata
Wall. In Proceedings of the sixth workshop on Parallel Data Storage, PDSW
’11, pages 13–18, New York, NY, USA, 2011. ACM.

[AKGR10] Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. The Case
for a Versatile Storage System. SIGOPS Oper. Syst. Rev., (1):10–14, 01
2010.

[Bar14] Christopher Bartz. An in-depth analysis of parallel high level I/O
interfaces using HDF5 and NetCDF-4. Master’s thesis, University of
Hamburg, 04 2014.

[Bia08] Christoph Biardzki. Analyzing Metadata Performance in Distributed File
Systems. PhD thesis, Heidelberg University, Germany, 12 2008.

[BLZ+14] D.A Boyuka, S. Lakshminarasimham, Xiaocheng Zou, Zhenhuan Gong,
J. Jenkins, E.R. Schendel, N. Podhorszki, Qing Liu, S. Klasky, and N.F.
Samatova. Transparent in Situ Data Transformations in ADIOS. In
Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM Inter-
national Symposium on, pages 256–266, May 2014.

[BVGS06] Stephan Bloehdorn, Max Völkel, Olaf Görlitz, and Simon Schenk. TagFS
— Tag Semantics for Hierarchical File Systems. In Proceedings of the 6th
International Conference on Knowledge Management, 2006.

[Cat10] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
(39-4):12–27, 2010.

[CDKL14] Konstantinos Chasapis, Manuel Dolz, Michael Kuhn, and Thomas
Ludwig. Evaluating Power-Performace Benefits of Data Compression

– 167 –

http://www.mongodb.org/

Bibliography

in HPC Storage Servers. In Steffen Fries and Petre Dini, editors, IARIA
Conference, pages 29–34. IARIA XPS Press, 04 2014.

[CEA14] CEA. Robinhood Policy Engine. https://github.com/cea-hpc/
robinhood/wiki, 08 2014. Last accessed: 2014-11.

[CFF+95] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg,
Jean-Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong.
Overview of the MPI-IO Parallel I/O Interface. In IPPS’95 Workshop on
Input/Output in Parallel and Distributed Systems, pages 1–15, 1995.

[CLR+09] Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian Kunkel,
and Thomas Ludwig. Small-File Access in Parallel File Systems. In Pro-
ceedings of the 2009 IEEE International Symposium on Parallel Distributed
Processing, IPDPS ’09, pages 1–11, Washington, DC, USA, 2009. IEEE
Computer Society.

[Clu02] Cluster File Systems, Inc. Lustre: A Scalable, High-Performance File
System. http://www.cse.buffalo.edu/faculty/tkosar/cse710/
papers/lustre-whitepaper.pdf, 11 2002. Last accessed: 2014-11.

[CST+11] Yong Chen, Xian-He Sun, Rajeev Thakur, Philip C. Roth, and William D.
Gropp. LACIO: A New Collective I/O Strategy for Parallel I/O Sys-
tems. In Proceedings of the 2011 IEEE International Parallel and Distributed
Processing Symposium, IPDPS ’11, pages 794–804, Washington, DC, USA,
2011. IEEE Computer Society.

[DLP03] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: Past, present, and future. Concurrency and Computation:
Practice and Experience, 15:2003, 2003.

[DT98] Phillip M. Dickens and Rajeev Thakur. A Performance Study of Two-
Phase I/O. In In Proceedings of the 4th International Euro-Par Conference.
Lecture Notes in Computer Science 1470, pages 959–965. Springer-Verlag,
1998.

[Duw14] Kira Isabel Duwe. Comparison of kernel and user space file systems.
Bachelor’s thesis, University of Hamburg, 08 2014.

[Fel13] Dave Fellinger. The State of the Lustre File System and The Lustre
Development Ecosystem. http://www.opensfs.org/wp-content/
uploads/2013/04/LUG_2013_vFinal.pdf, 04 2013. Last accessed:
2014-11.

[Fuc13] Anna Fuchs. Automated File System Correctness and Performance
Regression Tests. Bachelor’s thesis, University of Hamburg, 09 2013.

– 168 –

https://github.com/cea-hpc/robinhood/wiki
https://github.com/cea-hpc/robinhood/wiki
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.opensfs.org/wp-content/uploads/2013/04/LUG_2013_vFinal.pdf
http://www.opensfs.org/wp-content/uploads/2013/04/LUG_2013_vFinal.pdf

Bibliography

[FWP09] Wolfgang Frings, Felix Wolf, and Ventsislav Petkov. Scalable massively
parallel I/O to task-local files. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, New
York, NY, USA, 2009. ACM.

[GAKR08] Abdullah Gharaibeh, Samer Al-Kiswany, and Matei Ripeanu. Config-
urable security for scavenged storage systems. In Proceedings of the 4th
ACM international workshop on Storage security and survivability, Storage
’08, pages 55–62, New York, NY, USA, 2008. ACM.

[Ger14] German Climate Computing Center. Tape Archive – HPSS filesystems.
https://www.dkrz.de/Nutzerportal-en/doku/hpss, 11 2014. Last
accessed: 2014-11.

[GGH91] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Perfor-
mance Evaluation of Memory Consistency Models for Shared-memory
Multiprocessors. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS IV, pages 245–257, New York, NY, USA, 1991. ACM.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-memory Multiprocessors. In Proceedings of
the 17th Annual International Symposium on Computer Architecture, ISCA
’90, pages 15–26, New York, NY, USA, 1990. ACM.

[Glu11] Gluster, Inc. GlusterFS General FAQ. http://gluster.org/
community/documentation/index.php/GlusterFS_General_FAQ#
What_file_system_semantics_does_GlusterFS_Support.3B_is_

it_fully_POSIX_compliant.3F, 05 2011. Last accessed: 2014-11.

[GWT14] GWT-TUD GmbH. Vampir. https://www.vampir.eu/, 07 2014. Last
accessed: 2014-11.

[HJZ+09] Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. SmartStore:
A New Metadata Organization Paradigm with Semantic-Awareness for
Next-Generation File Systems. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, New
York, NY, USA, 2009. ACM.

[HK04] Rainer Hubovsky and Florian Kunz. Dealing with Massive Data: from
Parallel I/O to Grid I/O. Master’s thesis, University of Vienna, Depart-
ment of Data Engineering, 01 2004.

– 169 –

https://www.dkrz.de/Nutzerportal-en/doku/hpss
http://gluster.org/community/documentation/index.php/GlusterFS_General_FAQ#What_file_system_semantics_does_GlusterFS_Support.3B_is_it_fully_POSIX_compliant.3F
http://gluster.org/community/documentation/index.php/GlusterFS_General_FAQ#What_file_system_semantics_does_GlusterFS_Support.3B_is_it_fully_POSIX_compliant.3F
http://gluster.org/community/documentation/index.php/GlusterFS_General_FAQ#What_file_system_semantics_does_GlusterFS_Support.3B_is_it_fully_POSIX_compliant.3F
http://gluster.org/community/documentation/index.php/GlusterFS_General_FAQ#What_file_system_semantics_does_GlusterFS_Support.3B_is_it_fully_POSIX_compliant.3F
https://www.vampir.eu/

Bibliography

[HNH09] Dean Hildebrand, Arifa Nisar, and Roger Haskin. pNFS, POSIX, and
MPI-IO: A Tale of Three Semantics. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, PDSW ’09, pages 32–36, New York,
NY, USA, 2009. ACM.

[IG13] The IEEE and The Open Group. Standard for Information Technology –
Portable Operating System Interface (POSIX) Base Specifications, Issue
7. IEEE Std 1003.1, 2013 Edition (incorporates IEEE Std 1003.1-2008, and
IEEE Std 1003.1-2008/Cor 1-2013), pages 1–3906, April 2013.

[IMOT12] Shun Ishiguro, Jun Murakami, Yoshihiro Oyama, and Osamu Tatebe.
Optimizing Local File Accesses for FUSE-Based Distributed Storage.
High Performance Computing, Networking Storage and Analysis, SC Com-
panion:, 0:760–765, 2012.

[ISO11] ISO/IEC JTC 1/SC 22 – Programming languages, their environments
and system software interfaces. ISO/IEC 9899:2011 – Information
technology – Programming languages – C. 12 2011.

[Jan11] Christina Janssen. Evaluation of File Systems and I/O Optimization
Techniques in High Performance Computing. Bachelor’s thesis, Uni-
versity of Hamburg, 12 2011.

[JKY00] T. Jones, A Koniges, and R.K. Yates. Performance of the IBM General
Parallel File System. In Parallel and Distributed Processing Symposium,
2000. IPDPS 2000. Proceedings. 14th International, pages 673–681, 2000.

[KBB+06] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and
Wolfgang E. Nagel. Introducing the Open Trace Format (OTF). In
Vassil N. Alexandrov, Geert Dick Albada, Peter M.A. Sloot, and Jack
Dongarra, editors, Computational Science – ICCS 2006, number 3992 in
Lecture Notes in Computer Science, pages 526–533, Berlin / Heidelberg,
Germany, 2006. Springer-Verlag GmbH.

[KKL08] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Directory-Based
Metadata Optimizations for Small Files in PVFS. In Euro-Par ’08: Pro-
ceedings of the 14th international Euro-Par conference on Parallel Processing,
pages 90–99, Berlin, Heidelberg, 2008. University of Las Palmas de Gran
Canaria, Springer-Verlag.

[KKL09] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. Dynamic file sys-
tem semantics to enable metadata optimizations in PVFS. Concurrency
and Computation: Practice and Experience, pages 1775–1788, 2009.

– 170 –

Bibliography

[KKL14] Julian Kunkel, Michael Kuhn, and Thomas Ludwig. Exascale Storage
Systems – An Analytical Study of Expenses. Supercomputing Frontiers
and Innovations, pages 116–134, 06 2014.

[KLL+10] Scott Klasky, Qing Liu, Jay Lofstead, Norbert Podhorszki, Hasan Abbasi,
CS Chang, Julian Cummings, Divya Dinakar, Ciprian Docan, Stephanie
Ethier, Ray Grout, Todd Kordenbrock, Zhihong Lin, Xiaosong Ma, Ron
Oldfield, Manish Parashar, Alexander Romosan, Nagiza Samatova,
Karsten Schwan, Arie Shoshani, Yuan Tian, Matthew Wolf, Weikuan Yu,
Fan Zhang, and Fang Zheng. ADIOS: powering I/O to extreme scale
computing. In SciDAC 2010 Conference Proceedings, pages 342–347, 2010.

[KMKL11] Julian Kunkel, Timo Minartz, Michael Kuhn, and Thomas Ludwig.
Towards an Energy-Aware Scientific I/O Interface – Stretching the
ADIOS Interface to Foster Performance Analysis and Energy Awareness.
Computer Science - Research and Development, 2011.

[Kre06] Stephan Krempel. Tracing the Connections Between MPI-IO Calls
and their Corresponding PVFS2 Disk Operations. Bachelor’s thesis,
Heidelberg University, 03 2006.

[Kuh13] Michael Kuhn. A Semantics-Aware I/O Interface for High Perfor-
mance Computing. In Julian Martin Kunkel, Thomas Ludwig, and
Hans Werner Meuer, editors, Supercomputing, number 7905 in Lecture
Notes in Computer Science, pages 408–421, Berlin, Heidelberg, 06 2013.
Springer.

[Kun06] Julian Kunkel. Performance Analysis of the PVFS2 Persistency Layer.
Bachelor’s thesis, Heidelberg University, 02 2006.

[Lam79] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput., 28(9):690–691,
September 1979.

[LCB13] Paul Hermann Lensing, Toni Cortes, and André Brinkmann. Direct
lookup and hash-based metadata placement for local file systems. In
Proceedings of the 6th International Systems and Storage Conference, SYS-
TOR ’13, pages 5:1–5:11, New York, NY, USA, 2013. ACM.

[LCC+12] N. Liu, J. Cope, Philip H. Carns, C. D. Carothers, Robert B. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the Role of Burst Buffers in
Leadership-Class Storage Systems. In Proceedings of MSST/SNAPI 2012,
Pacific Grove, CA, 04/2012 2012.

– 171 –

Bibliography

[LKK+07] Thomas Ludwig, Stephan Krempel, Michael Kuhn, Julian Kunkel, and
Christian Lohse. Analysis of the MPI-IO Optimization Levels with the
PIOViz Jumpshot Enhancement. In Franck Cappello, Thomas Hérault,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, number 4757 in Lecture Notes in Com-
puter Science, pages 213–222, Berlin / Heidelberg, Germany, 2007.
Institut national de recherche en informatique et automatique, Springer.

[LKS+08] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and
Chen Jin. Flexible IO and integration for scientific codes through the
adaptable IO system (ADIOS). In Proceedings of the 6th international
workshop on Challenges of large applications in distributed environments,
CLADE ’08, pages 15–24, New York, NY, USA, 06 2008. ACM.

[LM10] Paulo A. Lopes and Pedro D. Medeiros. pCFS vs. PVFS: Comparing
a Highly-Available Symmetrical Parallel Cluster File System with an
Asymmetrical Parallel File System. In Proceedings of the 16th international
Euro-Par conference on Parallel processing: Part I, EuroPar’10, pages 131–
142, Berlin, Heidelberg, 2010. Springer-Verlag.

[LMB10] Paul Lensing, Dirk Meister, and André Brinkmann. hashFS: Applying
Hashing to Optimize File Systems for Small File Reads. In Proceedings
of the 2010 International Workshop on Storage Network Architecture and
Parallel I/Os, SNAPI ’10, pages 33–42, Washington, DC, USA, 2010. IEEE
Computer Society.

[LRT04] Robert Latham, Robert B. Ross, and Rajeev Thakur. The Impact of File
Systems on MPI-IO Scalability. In Dieter Kranzlmüller, Péter Kacsuk,
and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, number 3241 in Lecture Notes in Com-
puter Science, pages 87–96. Springer, 2004.

[LRT07] Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-IO
Atomic Mode and Shared File Pointers Using MPI One-Sided Commu-
nication. International Journal of High Performance Computing Applications,
(21-2):132–143, 2007.

[MCB+07] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-
ger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current
status and future plans. In Proceedings of the Linux Symposium, 2007.

[Mea03] Ryan L. Means. Alternate Data Streams: Out of the Shad-
ows and into the Light. http://www.giac.org/paper/gcwn/230/
alternate-data-streams-shadows-light/104234, 2003. Last ac-
cessed: 2014-11.

– 172 –

http://www.giac.org/paper/gcwn/230/alternate-data-streams-shadows-light/104234
http://www.giac.org/paper/gcwn/230/alternate-data-streams-shadows-light/104234

Bibliography

[Mes01] Message Passing Interface Forum. Opening a File. http://
www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/node175.htm, 09
2001. Last accessed: 2014-11.

[Mes12] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Version 3.0. http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf, 09 2012. Last accessed: 2014-11.

[MKB+12] Dirk Meister, Jürgen Kaiser, Andre Brinkmann, Michael Kuhn, Julian
Kunkel, and Toni Cortes. A Study on Data Deduplication in HPC
Storage Systems. In Proceedings of the ACM/IEEE Conference on High
Performance Computing (SC). IEEE Computer Society, 11 2012.

[MM01] J. C. Mogul and G. Minshall. Rethinking the TCP Nagle Algorithm.
SIGCOMM Comput. Commun. Rev., 31(1):6–20, January 2001.

[MMK+12] Timo Minartz, Daniel Molka, Julian Kunkel, Michael Knobloch, Michael
Kuhn, and Thomas Ludwig. Tool Environments to Measure Power Con-
sumption and Computational Performance, chapter 31, pages 709–743.
Chapman and Hall/CRC Press Taylor and Francis Group, 6000 Broken
Sound Parkway NW, Boca Raton, FL 33487, 2012.

[MSM+11] Christopher Muelder, Carmen Sigovan, Kwan-Liu Ma, Jason Cope, Sam
Lang, Kamil Iskra, Pete Beckman, and Robert Ross. Visual Analysis
of I/O System Behavior for High–End Computing. In Proceedings
of the third international workshop on Large-scale system and application
performance, LSAP ’11, pages 19–26, New York, NY, USA, 2011. ACM.

[MSMV00] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul, and Ben Verghese. Ap-
plication Performance Pitfalls and TCP’s Nagle Algorithm. SIGMET-
RICS Perform. Eval. Rev., 27(4):36–44, March 2000.

[Ora11] Oracle. Guide to Scaling Web Databases with MySQL Cluster, 10 2011.

[PG11] Swapnil Patil and Garth Gibson. Scale and Concurrency of GIGA+:
File System Directories with Millions of Files. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies, FAST’11, pages 13–13,
Berkeley, CA, USA, 2011. USENIX Association.

[PGG+09] Swapnil Patil, Garth A. Gibson, Gregory R. Ganger, Julio Lopez, Milo
Polte, Wittawat Tantisiroj, and Lin Xiao. In search of an API for scalable
file systems: Under the table or above it? In Proceedings of the 2009
conference on Hot topics in cloud computing, HotCloud’09, Berkeley, CA,
USA, 2009. USENIX Association.

– 173 –

http://www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/node175.htm
http://www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/node175.htm
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Bibliography

[PGLP07] Swapnil V. Patil, Garth A. Gibson, Sam Lang, and Milo Polte. GIGA+:
Scalable Directories for Shared File Systems. In Proceedings of the 2Nd
International Workshop on Petascale Data Storage: Held in Conjunction with
Supercomputing ’07, PDSW ’07, pages 26–29, New York, NY, USA, 2007.
ACM.

[PLB+09] Milo Polte, Jay Lofstead, John Bent, Garth Gibson, Scott A. Klasky, Qing
Liu, Manish Parashar, Norbert Podhorszki, Karsten Schwan, Meghan
Wingate, and Matthew Wolf. ...And eat it too: High read performance
in write-optimized HPC I/O middleware file formats. In Proceedings
of the 4th Annual Workshop on Petascale Data Storage, PDSW ’09, pages
21–25, New York, NY, USA, 2009. ACM.

[RD90] Russ Rew and Glenn Davis. Data Management: NetCDF: an Interface
for Scientific Data Access. IEEE Computer Graphics and Applications,
(10-4):76–82, 1990.

[RG10] Aditya Rajgarhia and Ashish Gehani. Performance and Extension of
User Space File Systems. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, New York, NY, USA, 2010. ACM.

[RLG+05] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen. Implementing
MPI-IO atomic mode without file system support. In Proceedings of the
Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’05) - Volume 2 - Volume 02, number 2 in CCGRID ’05, pages
1135–1142, Washington, DC, USA, 2005. IEEE Computer Society.

[Ros08] P. E. Ross. Why CPU Frequency Stalled. IEEE Spectr., 45(4):72–72, April
2008.

[Sch13] Sandra Schröder. Design, Implementation, and Evaluation of a Low-
Level Extent-Based Object Store. Master’s thesis, University of Ham-
burg, 12 2013.

[Seh10] Saba Sehrish. Improving Performance and Programmer Productivity for I/O-
Intensive High Performance Computing Applications. PhD thesis, School
of Electrical Engineering and Computer Science in the College of En-
gineering and Computer Science at the University of Central Florida,
2010.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for
Large Computing Clusters. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association, USENIX Association.

– 174 –

Bibliography

[SKH+08] Jan Stender, Björn Kolbeck, Felix Hupfeld, Eugenio Cesario, Erich Focht,
Matthias Hess, Jesús Malo, and Jonathan Martí. Striping without Sacri-
fices: Maintaining POSIX Semantics in a Parallel File System. In First
USENIX Workshop on Large-Scale Computing, LASCO’08, Berkeley, CA,
USA, 2008. USENIX Association.

[SLG03] Thomas Sterling, Ewing Lusk, and William Gropp. Beowulf Cluster
Computing with Linux. MIT Press, Cambridge, MA, USA, 2 edition,
2003.

[SM09] Margo Seltzer and Nicholas Murphy. Hierarchical File Systems are
Dead. In Proceedings of the 12th conference on Hot topics in operating
systems, HotOS’09, pages 1–1, Berkeley, CA, USA, 2009. USENIX Asso-
ciation.

[SNAKA+08] Elizeu Santos-Neto, Samer Al-Kiswany, Nazareno Andrade, Sathish
Gopalakrishnan, and Matei Ripeanu. Hot Topic: Enabling Cross-Layer
Optimizations in Storage Systems with Custom Metadata. In Proceed-
ings of the 17th international symposium on High performance distributed
computing, HPDC ’08, pages 213–216, New York, NY, USA, 2008. ACM.

[TGL99] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the The 7th Symposium on the
Frontiers of Massively Parallel Computation, FRONTIERS ’99, pages 182–,
Washington, DC, USA, 1999. IEEE Computer Society.

[The14a] The HDF Group. Hierarchical data format version 5. http://www.
hdfgroup.org/HDF5, 07 2014. Last accessed: 2014-11.

[The14b] The Linux man-pages project. write(2). http://man7.org/linux/
man-pages/man2/write.2.html, 05 2014. Last accessed: 2014-11.

[The14c] The TOP500 Editors. TOP500. http://www.top500.org/, 06 2014. Last
accessed: 2014-11.

[Tie09] Tien Duc Tien. Tracing Internal Behavior in PVFS. Bachelor’s thesis,
Heidelberg University, 10 2009.

[TRL+10] Rajeev Thakur, Robert Ross, Ewing Lusk, William Gropp, and Robert
Latham. Users Guide for ROMIO: A High-Performance, Portable MPI-
IO Implementation. http://www.mcs.anl.gov/research/projects/
romio/doc/users-guide.pdf, 04 2010. Last accessed: 2014-11.

[TSP+11] Wittawat Tantisiriroj, Seung Woo Son, Swapnil Patil, Samuel J. Lang,
Garth Gibson, and Robert B. Ross. On the Duality of Data-intensive

– 175 –

http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://www.top500.org/
http://www.mcs.anl.gov/research/projects/romio/doc/users-guide.pdf
http://www.mcs.anl.gov/research/projects/romio/doc/users-guide.pdf

Bibliography

File System Design: Reconciling HDFS and PVFS. In Proceedings of
2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 67:1–67:12, New York, NY, USA, 2011.
ACM.

[Unk12] Unknown. nfs(5). http://linux.die.net/man/5/nfs, 10 2012. Last
accessed: 2014-11.

[VLR+08] M. Vilayannur, S. Lang, R. Ross, R. Klundt, and L. Ward. Extending
the POSIX I/O Interface: A Parallel File System Perspective. Technical
Report ANL/MCS-TM-302, 10 2008.

[VNS05] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. Pro-
viding Tunable Consistency for a Parallel File Store. In Proceedings of
the 4th conference on USENIX Conference on File and Storage Technologies -
Volume 4, FAST’05, Berkeley, CA, USA, 2005. USENIX Association.

[VRC+04] Murali Vilayannur, Robert B. Ross, Philip H. Carns, Rajeev Thakur,
Anand Sivasubramaniam, and Mahmut Kandemir. On the Performance
of the POSIX I/O Interface to PVFS. Parallel, Distributed, and Network-
Based Processing, Euromicro Conference on, page 332, 2004.

[WBM+06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A Scalable, High-performance Distributed File
System. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006.
USENIX Association.

[Wik14a] Wikimedia Commons. File talk:Hard drive capacity over
time.svg. http://commons.wikimedia.org/wiki/File_talk:Hard_
drive_capacity_over_time.svg, 11 2014. Last accessed: 2014-11.

[Wik14b] Wikipedia. Festplattenlaufwerk – Geschwindigkeit. http://de.
wikipedia.org/wiki/Festplattenlaufwerk#Geschwindigkeit, 11
2014. Last accessed: 2014-11.

[Wik14c] Wikipedia. Fork (file system). http://en.wikipedia.org/wiki/
Fork_(file_system), 11 2014. Last accessed: 2014-11.

[Wik14d] Wikipedia. IOPS. http://en.wikipedia.org/wiki/IOPS, 11 2014.
Last accessed: 2014-11.

[Wik14e] Wikipedia. Mark Kryder – Kryder’s Law. http://en.wikipedia.org/
wiki/Mark_Kryder#Kryder.27s_Law, 11 2014. Last accessed: 2014-11.

– 176 –

http://linux.die.net/man/5/nfs
http://commons.wikimedia.org/wiki/File_talk:Hard_drive_capacity_over_time.svg
http://commons.wikimedia.org/wiki/File_talk:Hard_drive_capacity_over_time.svg
http://de.wikipedia.org/wiki/Festplattenlaufwerk#Geschwindigkeit
http://de.wikipedia.org/wiki/Festplattenlaufwerk#Geschwindigkeit
http://en.wikipedia.org/wiki/Fork_(file_system)
http://en.wikipedia.org/wiki/Fork_(file_system)
http://en.wikipedia.org/wiki/IOPS
http://en.wikipedia.org/wiki/Mark_Kryder#Kryder.27s_Law
http://en.wikipedia.org/wiki/Mark_Kryder#Kryder.27s_Law

Bibliography

[WKRP06] An-I Andy Wang, Geoff Kuenning, Peter Reiher, and Gerald Popek. The
Conquest File System: Better Performance Through a Disk/Persistent-
RAM Hybrid Design. Trans. Storage, (3):309–348, 08 2006.

[Won14] Darrick J. Wong. Ext4 Disk Layout. https://ext4.wiki.kernel.org/
index.php/Ext4_Disk_Layout, 11 2014. Last accessed: 2014-11.

[Wri06] Charles Philip Wright. Extending ACID Semantics to the File System via
ptrace. PhD thesis, Stony Brook University, 05 2006.

[WSSZ05] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez
Zadok. Amino: Extending ACID Semantics to the File System. In
FAST 2005 2nd Usenix Conference on File and Storage Technologies, Berke-
ley, CA, USA, 2005. USENIX Association.

[WSSZ07] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez
Zadok. Extending ACID Semantics to the File System. ACM Trans-
actions on Storage (TOS), (2):1–42, 06 2007.

[XXSM09] Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. Adaptive and scal-
able metadata management to support a trillion files. In Proceedings of
the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, New York, NY, USA, 2009. ACM.

[YVCJ07] Weikuan Yu, Jeffrey Vetter, Shane R. Canon, and Song Jiang. Exploit-
ing Lustre File Joining for Effective Collective IO. In Proceedings of
the Seventh IEEE International Symposium on Cluster Computing and the
Grid, CCGRID ’07, pages 267–274, Washington, DC, USA, 2007. IEEE
Computer Society.

[Zak14] Karel Zak. mount(8). http://man7.org/linux/man-pages/man8/
mount.8.html, 07 2014. Last accessed: 2014-11.

– 177 –

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
http://man7.org/linux/man-pages/man8/mount.8.html
http://man7.org/linux/man-pages/man8/mount.8.html

Appendices

– 179 –

Appendix A.

Additional Evaluation Results

A.1. JULEA (XFS Storage Backend)

This section contains additional evaluation results regarding JULEA’s data perfor-
mance. Due to the performance problems that are present when using JULEA’s data
daemon with ext4 (see Section 6.2.3 on pages 122–125), additional measurements have
been conducted with XFS to assess whether these problems are specific to ext4.

Three Connections

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure A.1.: JULEA: concurrent accesses to individual items using XFS and three
connections per client

– 181 –

APPENDIX A. ADDITIONAL EVALUATION RESULTS

Individual Items Figure A.1 on the preceding page shows JULEA’s performance
when using individual items via the native JULEA interface using XFS and three
connections per client.

Regarding read performance, the performance curve looks very similar to its coun-
terpart using ext4 (see Figure 6.9 on page 123). The only significant difference can be
observed for the configurations using seven to ten nodes: Whereas ext4’s performance
decreased when using more nodes, XFS immediately drops to roughly 160 mebibytes
(MiB)/s when going to seven nodes and stays at this level. Additionally, in contrast to
ext4, XFS’s results are almost identical regardless of the chosen block size.

Regarding write performance, it can be seen that XFS reaches almost the same
throughput for all block sizes larger than 4 kibibytes (KiB); when using ext4, the block
sizes of 16 KiB and 64 KiB performed significantly worse than the block sizes of 256 KiB
and 1,024 KiB. When using a block size of 4 KiB, performance is almost identical to
that of ext4.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure A.2.: JULEA: concurrent accesses to a shared item using XFS and three connec-
tions per client

Shared Item Figure A.2 shows JULEA’s performance when using a single shared
item via the native JULEA interface using XFS and three connections per client.

Regarding read performance, the performance curve looks similar to that of its
counterpart using ext4 (see Figure 6.10 on page 124). However, the performance drop
when using more than six client nodes is less severe. Additionally, the performance is

– 182 –

APPENDIX A. ADDITIONAL EVALUATION RESULTS

more stable and roughly the same when using seven to ten nodes; in ext4’s case, it
decreased from six to eight or nine nodes, and then increased again.

Regarding write performance, XFS remains stable until six nodes are used, similar
to the read case. Afterwards, performance becomes more erratic, especially for the
larger block sizes of 256 KiB and 1,024 KiB. It is interesting to note that the block size
of 4 KiB achieves better performance than the block size of 16 KiB when using more
than seven nodes. Overall, XFS seems to handle the shared case better than ext4; it
also provides better performance, especially for the smaller block sizes.

Six Connections

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure A.3.: JULEA: concurrent accesses to individual items using XFS and six connec-
tions per client

Individual Items Figure A.3 shows JULEA’s performance when using individual
items via the native JULEA interface using XFS and six connections per client.

During the read phase, for all block sizes except for 4 KiB, the performance is mostly
identical to that of its counterpart using three connections per client. When using a
block size of 4 KiB, however, performance is degraded by roughly 33 %; this is likely
due to the fact that the increased parallelism causes additional congestion.

During the write phase, as long as less than ten client nodes are used, the perfor-
mance is roughly the same as that of its counterpart using three connections per client
for all block sizes except for 4 KiB. While performance is decreased for large numbers

– 183 –

APPENDIX A. ADDITIONAL EVALUATION RESULTS

of nodes when using three connections per client, it is more stable when using six
connections per client. When using a block size of 4 KiB, performance is reduced by
approximately 35 %; like in the read case, this is likely due to additional congestion.

0

200

400

600

800

1,000

1,200
1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

R
ea

d

0

200

400

600

800

1,000

1/1 1/2 1/4 1/8 1/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96 9/108 10/120

T
h

ro
u

g
h

p
u

t
[M

iB
/s

]

W
ri

te

Configuration (Nodes/Processes)

4 KiB 16 KiB 64 KiB 256 KiB 1,024 KiB

Figure A.4.: JULEA: concurrent accesses to a shared item using XFS and six connec-
tions per client

Shared Item Figure A.4 shows JULEA’s performance when using a single shared
item via the native JULEA interface using XFS and six connections per client.

During the read phase, performance is largely identical to that of its counterpart
using three connections per client for the larger block sizes of 256 KiB and 1,024 KiB.
While performance is only slightly decreased for the block sizes of 16 KiB and 64 KiB,
it drops by 20 % when using a block size of 4 KiB. It is also interesting to note that the
performance decrease only applies to the configurations using less than seven nodes,
that is, performance is not degraded further for the congested case.

During the write phase, the performance is more stable than when using three
connections per client, especially for the larger block sizes of 256 KiB and 1,024 KiB.
While the performance using block sizes of 16 KiB and 64 KiB is more or less the
same, it is decreased significantly when using a block size of 4 KiB. XFS’s peculiar
performance behavior in this case hints at inefficient handling of very small accesses.

– 184 –

Appendix B.

Usage Instructions

B.1. JULEA

The following instructions show how to set up JULEA from scratch.

B.1.1. Downloading Source Code and Dependencies

1 $ git clone https://redmine.wr.informatik.uni-hamburg.de/git/julea

Listing B.1: JULEA download

Listing B.1 shows how to download JULEA’s source code, which is available via Git.

1 # Debian/Ubuntu
2 $ apt-get install libglib2.0-dev
3 $ apt-get install libfuse-dev
4 # Fedora
5 $ yum install glib2-devel
6 $ yum install fuse-devel
7
8 $ cd julea/external
9 $./mongodb-client.sh

10 $./mongodb-server.sh
11 $./hdtrace.sh
12 $./otf.sh

Listing B.2: JULEA dependencies

Listing B.2 shows how to install all external dependencies. GLib and FUSE1 have to
be installed using the software management provided by the operating system (OS);
all other dependencies can be installed using the provided scripts that automatically

1 Filesystem in Userspace

– 185 –

APPENDIX B. USAGE INSTRUCTIONS

download and compile the source code locally. Except for GLib and MongoDB, all
dependencies are optional and can be omitted.

B.1.2. Configuring, Compiling and Installing

1 $ cd julea
2 $./waf configure --prefix=${PWD}/install --debug

Listing B.3: JULEA configuration

1 Setting top to : ${PWD}
2 Setting out to : ${PWD}/build
3 Checking for ’gcc’ (c compiler) : /usr/bin/gcc
4 Checking for program pkg-config : /usr/bin/pkg-config
5 Checking for ’gio-2.0’ >= 2.32 : yes
6 Checking for ’glib-2.0’ >= 2.32 : yes
7 Checking for ’gmodule-2.0’ >= 2.32 : yes
8 Checking for ’gobject-2.0’ >= 2.32 : yes
9 Checking for ’gthread-2.0’ >= 2.32 : yes

10 Checking for ’fuse’ : yes
11 Checking for header bson.h : yes
12 Checking for header mongo.h : yes
13 Checking for header hdTrace.h : yes
14 Checking for header otf.h : yes
15 Checking for stat.st_mtim.tv_nsec : yes
16 ’configure’ finished successfully (0.543s)

Listing B.4: JULEA configuration output

Listing B.3 shows how to configure JULEA. It is possible to specify a custom instal-
lation prefix using the --prefix option. During development, it is strongly recom-
mended to enable debug mode using the --debug option. The output produced by
the configuration step should look similar to Listing B.4.

1 $ cd julea
2 $./waf
3 $./waf install

Listing B.5: JULEA compilation and installation

Listing B.5 shows how to compile and install JULEA once all dependencies have been
installed and the project has been configured.

– 186 –

APPENDIX B. USAGE INSTRUCTIONS

1 $ cd julea
2 $./waf environment > env.sh
3 $. ./env.sh
4 $ julea-config --local --data=$(hostname) --metadata=$(hostname)

↪→ --storage-backend=posix --storage-path=/tmp/julea-$(id -nu)

Listing B.6: JULEA configuration file

Listing B.6 shows how to create a configuration file for JULEA. The environment
command allows exporting all necessary environment variables to be able to use an
installation in a custom path.

B.1.3. Tests and Benchmarks

1 $ cd julea
2 $./waf test
3 $./waf benchmark

Listing B.7: JULEA tests and benchmarks

Listing B.7 shows how to run JULEA’s basic tests and benchmarks; they are integrated
into JULEA’s build system and can be called through waf.

B.1.4. Documentation

1 $ cd julea
2 $ doxygen
3 $ xdg-open html/index.html

Listing B.8: JULEA documentation

Listing B.8 shows how to generate and view JULEA’s documentation.

– 187 –

APPENDIX B. USAGE INSTRUCTIONS

B.2. Benchmarks

The following instructions show how to set up the benchmarks used in Chapter 6.

B.2.1. Downloading Source Code and Dependencies

1 $ git clone \
2 https://redmine.wr.informatik.uni-hamburg.de/git/julea-benchmarks

Listing B.9: Benchmarks download

Listing B.9 shows how to download the benchmarks’ source code, which is also
available via Git.

1 # Debian/Ubuntu
2 $ apt-get install libglib2.0-dev
3 $ apt-get install libopenmpi-dev openmpi-bin
4 # Fedora
5 $ yum install glib2-devel
6 $ yum install openmpi
7 $ module add mpi/openmpi-$(arch)
8
9 $ cd julea-benchmarks/external

10 $./mongodb-client.sh
11 $./orangefs.sh

Listing B.10: Benchmarks dependencies

Listing B.10 shows how to install all external dependencies. While GLib and MPI2

have to be installed using the OS’s software management, all other dependencies
can be installed using the provided scripts; again, they automatically download and
compile the source code locally. All dependencies except for GLib are optional and
can be omitted.

B.2.2. Configuring, Compiling and Installing

1 $ cd julea-benchmarks
2 $. ${JULEA}/env.sh
3 $./waf configure --prefix=${PWD}/install --debug

Listing B.11: Benchmarks configuration

2 Message Passing Interface

– 188 –

APPENDIX B. USAGE INSTRUCTIONS

1 Setting top to : ${PWD}
2 Setting out to : ${PWD}/build
3 Checking for ’gcc’ (c compiler) : /usr/bin/gcc
4 Checking for program mpicc :

↪→ /usr/lib64/openmpi/bin/mpicc
5 Checking for program pkg-config : /usr/bin/pkg-config
6 Checking for ’glib-2.0’ >= 2.32 : yes
7 Checking for ’openssl’ : yes
8 Checking for ’julea’ : yes
9 Checking for ’lexos’ : yes

10 Checking for header bson.h : yes
11 Checking for header mongo.h : yes
12 Checking for header math.h : yes
13 Checking for header pthread.h : yes
14 Checking for header pvfs2.h : yes
15 Checking for header mpi.h : yes
16 ’configure’ finished successfully (0.479s)

Listing B.12: Benchmarks configuration output

Listing B.11 on the facing page shows how to configure the benchmarks. A custom
installation prefix can be specified using the --prefix option. It is strongly recom-
mended to enable debug mode during development; this can be accomplished using
the --debug option. The configuration step should produce output similar to that
shown in Listing B.12.

1 $ cd julea-benchmarks
2 $./waf
3 $./waf install

Listing B.13: Benchmarks compilation and installation

As soon as all dependencies have been installed and the project has been configured,
the benchmarks can be compiled and installed as shown in Listing B.13.

– 189 –

APPENDIX B. USAGE INSTRUCTIONS

B.3. Lustre

The following instructions show how to configure Lustre’s distributed namespace
(DNE) as explained in Section 2.4.1 on pages 32–35.

B.3.1. Distributed Namespace

1 $ lfs mkdir --index 0 /lustre/home
2 $ lfs mkdir --index 1 /lustre/scratch

Listing B.14: Setting up Lustre’s Distributed Namespace

Listing B.14 shows the necessary commands to set up DNE in such a way that metadata
accesses inside /lustre/home are handled by meta data target (MDT) number 0, while
metadata accesses within /lustre/scratch are served by MDT number 1.

– 190 –

Appendix C.

Code Examples

To give a rough idea of the structure and usability of the major input/output (I/O)
interfaces, the following code examples all implement the same basic application:

1. A new file or item is created.

2. 42 bytes of data are written to the file or item.

3. The file or item’s metadata is queried.

4. 42 bytes of data are read from the file or item.

5. The file or item is closed.

6. The file or item is deleted.

The application has been implemented using the POSIX1, MPI-IO and JULEA inter-
faces to be able to compare them to each other. The following sections contain code
examples using the interfaces’ respective functionality including error handling as
well as detailed descriptions of the different implementations.

1 Portable Operating System Interface

– 191 –

APPENDIX C. CODE EXAMPLES

C.1. POSIX

1 #define _POSIX_C_SOURCE 200809L
2
3 #include <fcntl.h>
4 #include <inttypes.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <sys/stat.h>
8 #include <sys/types.h>
9 #include <unistd.h>

10
11 int
12 main (int argc, char const* argv[])
13 {
14 struct stat stat_buf;
15 char data[42];
16 int fd;
17 int ret;
18 ssize_t nbytes;
19
20 memset(data, 42, sizeof(data));
21 fd = open("/tmp/posix", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR |

↪→ S_IWUSR);
22
23 if (fd == -1)
24 {
25 goto error;
26 }
27
28 nbytes = pwrite(fd, data, sizeof(data), 0);
29
30 if (nbytes != sizeof(data))
31 {
32 goto error;
33 }
34
35 ret = fstat(fd, &stat_buf);
36
37 if (ret == -1)
38 {

– 192 –

APPENDIX C. CODE EXAMPLES

39 goto error;
40 }
41
42 nbytes = pread(fd, data, sizeof(data), 0);
43
44 if (nbytes != sizeof(data))
45 {
46 goto error;
47 }
48
49 printf("File size is %" PRIdMAX " bytes.\n",

↪→ (uintmax_t)stat_buf.st_size);
50 printf("File was last modified at %" PRIdMAX ".\n",

↪→ (uintmax_t)stat_buf.st_mtime);
51
52 ret = close(fd);
53
54 if (ret == -1)
55 {
56 goto error;
57 }
58
59 ret = unlink("/tmp/posix");
60
61 if (ret == -1)
62 {
63 goto error;
64 }
65
66 return 0;
67
68 error:
69 return 1;
70 }

Listing C.1: POSIX example

– 193 –

APPENDIX C. CODE EXAMPLES

Listing C.1 on page 192 shows the application as implemented using the POSIX
interface. First, the most recent POSIX standard is enabled by defining the appropriate
preprocessor macro (line 1). Afterwards, all necessary headers are included (lines 3–
9); as can be seen, the POSIX interface’s functionality is spread over a multitude of
different headers.

As the actual application’s first step, the file /tmp/posix is created using the open
function (line 21). While specifying the O_CREAT flag causes the file to be created,
the O_TRUNC flag indicates that the file should be truncated to size 0 if it already
exists. Additionally, the file is made readable and writable only by the current user by
specifying the S_IRUSR and S_IWUSR permission bits. The open function’s success is
checked by comparing its returned file descriptor to -1 (lines 23–26); a return value of
-1 traditionally indicates that an error has happened.

Afterwards, the data is written to the file using the pwrite function at offset 0
(line 28). The function’s success is checked by comparing the returned number of
written bytes to the data’s size (lines 30-33).

As the next step, the file’s metadata is queried using the fstat function (line 35);
it stores the metadata of an opened file into a stat structure. fstat’s success is then
checked analogously to open (lines 37–40).

Reading the data is accomplished using the pread function (line 42); it accepts the
same parameters as the pwrite function. Again, its success is checked by comparing
the number of read bytes to the data’s size (lines 44–47).

Afterwards, the file descriptor is closed using the close function (line 52). This
operation can potentially fail and will return a value of -1 in that case (lines 54–57).

Finally, the file is deleted using the unlink function (line 59). POSIX does not
provide a way to delete a file based on an open file descriptor; therefore, the file’s path
is passed to the function. Again, its success is checked by comparing its return value
to -1 (lines 61–64).

– 194 –

APPENDIX C. CODE EXAMPLES

C.2. MPI-IO

1 #include <mpi.h>
2
3 #include <inttypes.h>
4 #include <stdio.h>
5 #include <string.h>
6
7 int
8 main (int argc, char const* argv[])
9 {

10 MPI_File fh;
11 MPI_Offset size;
12 MPI_Status status;
13 char data[42];
14 int ret;
15 int nbytes;
16
17 MPI_Init(&argc, (char***)&argv);
18
19 memset(data, 42, sizeof(data));
20 ret = MPI_File_open(MPI_COMM_WORLD, "/tmp/mpi-io",

↪→ MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
21
22 if (ret != MPI_SUCCESS)
23 {
24 goto error;
25 }
26
27 MPI_File_write_at(fh, 0, data, sizeof(data), MPI_BYTE, &status);
28 ret = MPI_Get_count(&status, MPI_BYTE, &nbytes);
29
30 if (ret != MPI_SUCCESS || nbytes != sizeof(data))
31 {
32 goto error;
33 }
34
35 ret = MPI_File_get_size(fh, &size);
36
37 if (ret != MPI_SUCCESS)
38 {

– 195 –

APPENDIX C. CODE EXAMPLES

39 goto error;
40 }
41
42 MPI_File_read_at(fh, 0, data, sizeof(data), MPI_BYTE, &status);
43 ret = MPI_Get_count(&status, MPI_BYTE, &nbytes);
44
45 if (ret != MPI_SUCCESS || nbytes != sizeof(data))
46 {
47 goto error;
48 }
49
50 printf("File size is %" PRIdMAX " bytes.\n", (uintmax_t)size);
51
52 ret = MPI_File_close(&fh);
53
54 if (ret != MPI_SUCCESS)
55 {
56 goto error;
57 }
58
59 ret = MPI_File_delete("/tmp/mpi-io", MPI_INFO_NULL);
60
61 if (ret != MPI_SUCCESS)
62 {
63 goto error;
64 }
65
66 MPI_Finalize();
67
68 return 0;
69
70 error:
71 MPI_Finalize();
72
73 return 1;
74 }

Listing C.2: MPI-IO example

– 196 –

APPENDIX C. CODE EXAMPLES

Listing C.2 on page 195 shows the application as implemented using the MPI-IO
interface. First, MPI2’s single header mpi.h is included to make all functionality
available (line 1).

Before being able to use any MPI functionality, it is necessary to initialize the MPI
library using the MPI_Init function (line 17). Applications that use threads have to
call the MPI_Init_thread function instead.

Afterwards, the /tmp/mpi-io file is created using the MPI_File_open function
(line 20). Its MPI_MODE_RDWR and MPI_MODE_CREATE flags are analogous to POSIX’s
O_RDWR and O_CREAT flags, respectively. In contrast to POSIX, MPI-IO does not allow
the file to be truncated if it exists already. The function’s success can be checked using
its return value (lines 22–25); MPI specifies MPI_SUCCESS as well as several error codes
for this purpose.

The data is then written to the file using the MPI_File_write_at function (line 27).
It works in a similar fashion as POSIX’s pwrite function and accepts an offset. To
signify that the data is an array of bytes, the MPI_BYTE data type is used. The MPI_-
Get_count function is used to check the number of written bytes (line 28). This
information is used to check whether the write operation was successful (lines 30–33).

In contrast to POSIX, MPI only allows querying a limited subset of metadata. For
instance, it is not possible to get the last modification time. Therefore, only the file’s
size is checked using the MPI_File_get_size function (line 35). Its success can be
checked using its return value (lines 37–40).

Afterwards, the data is read again using the MPI_File_read_at function (line 42).
It takes the same arguments as the MPI_File_write_at function and works like
POSIX’s pread function. Again, the function’s success is checked using the number of
read bytes as returned by the MPI_Get_count function (line 43–48).

The file is then closed using the MPI_File_close function (line 52). Similar to
POSIX, closing the file can return an error that is checked using the return value
(lines 54–57).

Finally, the file is deleted using the MPI_File_delete function (line 59). Like POSIX,
it is necessary to specify the file name instead of being able to use an existing file
handle to delete the file.

Before terminating the application, it is necessary to finalize the MPI library using
the MPI_Finalize function (line 66).

2 Message Passing Interface

– 197 –

APPENDIX C. CODE EXAMPLES

C.3. JULEA

1 #include <julea.h>
2
3 #include <stdio.h>
4 #include <string.h>
5
6 int
7 main (int argc, char const* argv[])
8 {
9 JBatch* batch;

10 JItem* item;
11 JURI* uri;
12 gboolean ret;
13 guint64 nbytes;
14 char data[42];
15
16 j_init();
17
18 memset(data, 42, sizeof(data));
19 batch = j_batch_new_for_template(J_SEMANTICS_TEMPLATE_DEFAULT);
20
21 uri = j_uri_new("julea://tmp/tmp/julea");
22 ret = j_uri_create(uri, TRUE, NULL);
23
24 if (!ret)
25 {
26 goto error;
27 }
28
29 item = j_uri_get_item(uri);
30 j_item_write(item, data, sizeof(data), 0, &nbytes, batch);
31 j_batch_execute(batch);
32
33 if (nbytes != sizeof(data))
34 {
35 goto error;
36 }
37
38 j_item_get_status(item, J_ITEM_STATUS_ALL, batch);
39 ret = j_batch_execute(batch);

– 198 –

APPENDIX C. CODE EXAMPLES

40
41 if (!ret)
42 {
43 goto error;
44 }
45
46 j_item_read(item, data, sizeof(data), 0, &nbytes, batch);
47 j_batch_execute(batch);
48
49 if (nbytes != sizeof(data))
50 {
51 goto error;
52 }
53
54 printf("File size is %" G_GUINT64_FORMAT " bytes.\n",

↪→ j_item_get_size(item));
55 printf("File was last modified at %" G_GINT64_FORMAT ".\n",

↪→ j_item_get_modification_time(item));
56
57 j_collection_delete_item(j_uri_get_collection(uri), item,

↪→ batch);
58 ret = j_batch_execute(batch);
59
60 if (!ret)
61 {
62 goto error;
63 }
64
65 j_uri_free(uri);
66 j_batch_unref(batch);
67
68 j_fini();
69
70 return 0;
71
72 error:
73 j_fini();
74
75 return 1;
76 }

Listing C.3: JULEA example

– 199 –

APPENDIX C. CODE EXAMPLES

Listing C.3 on page 198 shows the application as implemented using the JULEA
interface. First, JULEA’s single header julea.h is included (line 1). This takes care of
making available all of JULEA’s functionality.

Before any JULEA functionality can be used, the library has to be initialized using
the j_init function (line 16). A batch using the default semantics is created to be able
to execute any operations (line 19).

Afterwards, a JULEA uniform resource identifier (URI) is created to refer to the tmp
store, the tmp collection and the julea item (line 21). URIs provide a convenient way
for application developers to use JULEA’s interface without performing too many
operations manually. Afterwards, the item and its parent collection and store are
created using the j_uri_create function (line 22). Its success is checked by means of
the returned boolean value (lines 24–27).

Afterwards, the data is written to the item by scheduling a write operation using
the j_item_write function (line 30) and executing the batch (line 31). The write
operation’s success can be checked by comparing the number of written bytes to the
data’s size (lines 33–36).

The item’s metadata is queried by scheduling a get status operation using the
j_item_get_status function (line 38) and executing the batch (line 39). Similar to
POSIX, JULEA provides a single function to query an item’s metadata; JULEA allows
specifying which metadata should be returned, however. By specifying the J_ITEM_-
STATUS_ALL flag, all metadata is returned. Again, the j_batch_execute function’s
boolean return value is used to check the operation’s success (lines 41–44).

Reading the data is performed by scheduling a read operation using the j_item_-
read function (line 46) and then executing the batch (line 47). Its success can be
checked by comparing the number of read bytes to the data’s size (lines 49–52).

Finally, the item is deleted by scheduling its deletion using the j_collection_-
delete_item function (line 57) and executing the batch (line 58). Again, its success is
checked using the j_batch_execute function’s boolean return value (lines 60–63).

In contrast to POSIX and MPI-IO, JULEA does not provide a function to explicitly
close an item. Instead, the item is closed implicitly by freeing the URI (line 65).

Before terminating the application, the JULEA library has to be finalized using the
j_fini function (line 68).

– 200 –

Index

A
adaptable semantics . . 21, 55, 111, 160
ADIOS 17, 40, 84, 160, 162
Amazon S3 . 47
asynchronous I/O 43, 58

B
batch . 56, 58, 84, 85, 130, 140, 141, 144,

145, 147, 148, 160, 164, 165
block storage . 25
BSON . 101

C
checkpoint 14, 20, 150
collective I/O . 50
command line interface 107
communication protocol 52
context switch 88, 159
cork . 80
correctness . 108
CPU speed . 13, 18

D
data distribution 70, 98

round robin 31, 98, 101
single server 98
weighted . 98

data server 30, 49, 89, 91, 93
data transformation 67, 84
deserialization 101
distributed metadata 33, 70, 75, 91

F
file system 26, 80, 88

file system namespace 46, 54
cloud . 47
JULEA . 54
POSIX . 46

FLOPS . 13
FUSE . 106

G
Google Cloud Storage 47

H
hashing . 76
HDF 17, 24, 39, 162
HDTrace . 103
heuristics . 56, 81
HPC . 13, 157
HTTP . 48

I
I/O interface 17, 35, 157

ADIOS 40, 84, 162
JULEA 55, 122, 138, 198
MPI-IO 37, 117, 120, 195
POSIX 35, 106, 115, 137, 192
SIONlib . 38

I/O requirements 15, 157, 158
I/O semantics . 18, 25, 42, 77, 157, 158,

162
JULEA 56, 60, 122, 128, 139
MPI-IO . 44
NFS . 43, 63
POSIX 42, 77, 157

I/O stack 17, 23, 26, 50
inode . 27

– 201 –

Index

IOPS . 30

K
kernel space 33, 87, 159

L
layers . 25, 50
Lustre 16, 24, 32, 87, 114, 137, 149

M
metadata . 27, 75

JULEA . 71, 88
metadata server 30, 49, 89–91
mode switch 88, 159
MongoDB 88, 92, 101, 160
MPI . 23, 150
MPI-IO . 24, 37

N
Nagle . 80
NetCDF 17, 23, 26, 40, 162
NFS . 16

O
object store 29, 51, 88, 94, 164
OrangeFS 35, 87, 119
OTF . 103, 104

P
parallel distributed file system . 15, 30,

78
path

cloud . 47
JULEA . 55
POSIX . 46

path delimiter 46, 55
performance analysis 53
performance assessment . 20, 112, 149
performance history 108
POSIX . 17, 26, 35
preload . 106

R
regression . 108

S
semantics

atomicity 44, 61, 67, 77, 82, 117, 133,
163

concurrency 62, 67, 142
consistency . 63
ordering 63, 82
persistency 64, 67
safety 65, 67, 132, 146

semantics template 68
serialization . 101
SIONlib . 38
storage backend 93

GIO . 93
LEXOS . 93, 164
NULL 93, 98, 125
POSIX . 93, 97
ZFS . 93

storage capacity 18
storage speed . 18
striping 59, 120, 126, 131
Sunshot . 103
synchronous I/O 43

T
TCP . 80, 122
TOP500 . 13, 20
tracing . 103, 104
transaction 80, 163

U
user space 35, 87, 98, 159

V
Vampir . 103, 104
VFS 27, 87, 106, 159, 164

W
working directory 55
wrapper . 106

– 202 –

List of Acronyms

ABI . Application binary interface
ACID . Atomicity, consistency, isolation and durability
ACL . Access control list
ADIO . Abstract-Device Interface for I/O
ADIOS . Adaptable IO System
Amazon S3 . Amazon Simple Storage Service
API . Application programming interface
ASCII . American Standard Code for Information Interchange
BDB . Berkeley DB
BSON . Binary JavaScript Object Notation
btrfs . B-tree file system
CPU . Central processing unit
DMU . Data management unit
DNE . Distributed namespace
EBOFS . Extent and B-tree-based Object File System
ECC . Error-correcting code
EOFS . European Open File Systems
FIFO . First in, first out
FLOPS . Floating-point operations per second
FTP . File Transfer Protocol
FUSE . Filesystem in Userspace
GB . Gigabyte (109 bytes)
Gbit . Gigabit (109 bits)
GETM . General Estuarine Transport Model
GiB . Gibibyte (230 bytes)
GPFS . General Parallel File System
GPL . GNU General Public License
HDD . Hard disk drive
HDF . Hierarchical Data Format
HFS+ . Hierarchical File System Plus
HPC . High performance computing
HTTP . Hypertext Transfer Protocol
I/O . Input/output
ID . Identifier
IOPS . Input/output operations per second

– 203 –

List of Acronyms

IP . Internet Protocol
IPC . Inter-process communication
IPS . Instructions per second
JSON . JavaScript Object Notation
KB . Kilobyte (103 bytes)
KiB . Kibibyte (210 bytes)
LEXOS . Low-Level Extent-Based Object Store
MB . Megabyte (106 bytes)
Mbit . Megabit (106 bits)
MDS . Meta data server
MDT . Meta data target
MiB . Mebibyte (220 bytes)
MPI . Message Passing Interface
NetCDF . Network Common Data Form
NFS . Network File System
NIC . Network interface card
NTFS . New Technology File System
OpenSFS . Open Scalable File Systems
OS . Operating system
OSS . Object storage server
OST . Object storage target
OTF . Open Trace Format
PB . Petabyte (1015 bytes)
PDE . Partial differential equation
POSIX . Portable Operating System Interface
PVFS . Parallel Virtual File System
RAID . Redundant array of independent disks
RAM . Random access memory
RPM . Revolutions per minute
RTT . Round-trip time
SAN . Storage area network
SSD . Solid state drive
SSH . Secure Shell
TB . Terabyte (1012 bytes)
TCP . Transmission Control Protocol
URI . Uniform resource identifier
URL . Uniform resource locator
VCS . Version control system
VFS . Virtual file system (or virtual filesystem switch)
XML . Extensible Markup Language
ZFS . Zettabyte File System

– 204 –

List of Figures

1.1. TOP500 performance development from 1993–2014 [The14c] 14
1.2. Parallel access from multiple clients and distribution of data 16
1.3. Parallel distributed file system . 16
1.4. Simplified view of the I/O stack . 18
1.5. Development of HDD capacities and speeds [Wik14a, Wik14b] 19

2.1. I/O stacks used in traditional and HPC applications 24
2.2. Levels of abstraction found in the HPC I/O stack 26
2.3. Structure of a 256 bytes inode (struct ext4_inode) [Won14] 28
2.4. Round-robin data distribution . 31
2.5. Lustre architecture . 33
2.6. One client accessing a file inside a Luste file system 34

3.1. JULEA’s file system components . 50
3.2. Current HPC I/O stack and proposed JULEA I/O stack 51
3.3. JULEA namespace example . 54

5.1. JULEA’s general architecture . 90
5.2. Traces of the client and data daemon’s activities 105
5.3. Performance history over time . 109

6.1. Access pattern using individual files . 113
6.2. Access pattern using a single shared file 113
6.3. Lustre: concurrent accesses to individual files via the POSIX interface . 115
6.4. Lustre: concurrent accesses to a shared file via the POSIX interface . . 117
6.5. Lustre: concurrent atomic accesses to individual files via the MPI-IO

interface . 118
6.6. Lustre: concurrent atomic accesses to a shared file via the MPI-IO interface119
6.7. OrangeFS: concurrent accesses to individual files via the MPI-IO interface120
6.8. OrangeFS: concurrent accesses to a shared file via the MPI-IO interface 121
6.9. JULEA: concurrent accesses to individual items 123
6.10. JULEA: concurrent accesses to a shared item 124
6.11. JULEA: concurrent accesses to individual items using the NULL storage

backend . 125

– 205 –

List of Figures

6.12. JULEA: concurrent accesses to a shared item using the NULL storage
backend . 126

6.13. JULEA: concurrent accesses to individual items 128
6.14. JULEA: concurrent accesses to a shared item 129
6.15. JULEA: concurrent batch accesses to individual items 130
6.16. JULEA: concurrent accesses to individual items using unsafe safety

semantics . 132
6.17. JULEA: concurrent accesses to individual items using per-operation

atomicity semantics . 133
6.18. Lustre: concurrent metadata operations to individual directories via

the POSIX interface . 137
6.19. Lustre: concurrent metadata operations to a shared directory via the

POSIX interface . 138
6.20. JULEA: concurrent metadata operations to a shared collection 139
6.21. JULEA: concurrent batch metadata operations to a shared collection . . 141
6.22. JULEA: concurrent batch accesses to individual stores 142
6.23. JULEA: concurrent metadata operations to a shared collection using

serial concurrency semantics . 143
6.24. JULEA: concurrent batch metadata operations to a shared collection

using serial concurrency semantics . 144
6.25. JULEA: concurrent batch accesses to individual stores using serial con-

currency semantics . 145
6.26. JULEA: concurrent metadata operations to a shared collection using

unsafe safety semantics . 146
6.27. JULEA: concurrent batch metadata operations to a shared collection

using unsafe safety semantics . 147
6.28. JULEA: concurrent batch accesses to individual stores using unsafe

safety semantics . 148
6.29. partdiff checkpointing using one process per node 152
6.30. partdiff checkpointing using six processes per node 153

A.1. JULEA: concurrent accesses to individual items using XFS and three
connections per client . 181

A.2. JULEA: concurrent accesses to a shared item using XFS and three con-
nections per client . 182

A.3. JULEA: concurrent accesses to individual items using XFS and six
connections per client . 183

A.4. JULEA: concurrent accesses to a shared item using XFS and six connec-
tions per client . 184

– 206 –

List of Listings

2.1. POSIX I/O interface . 36
2.2. MPI-IO I/O interface . 37
2.3. SIONlib parallel I/O example . 39
2.4. ADIOS XML configuration . 41
2.5. ADIOS code . 41
2.6. posix_fadvise . 43
2.7. MPI-IO’s sync-barrier-sync construct . 44
2.8. Amazon S3 and Google Cloud Storage URLs 47

3.1. Executing multiple operations in one batch 57
3.2. Using multiple batches with different semantics 57
3.3. Executing batches asynchronously . 58
3.4. Determining the optimal access size . 59
3.5. Adapting semantics templates . 70

4.1. Amino transactions . 80
4.2. TCP corking . 81
4.3. Memory operation reordering . 82
4.4. Atomic variables in C11 . 82
4.5. Atomic operations in C11 . 83
4.6. ADIOS read scheduling . 84
4.7. ADIOS variable transformation (XML) 84
4.8. ADIOS variable transformation . 85

5.1. MongoDB document in JSON format . 92
5.2. JULEA’s storage backend interface . 94
5.3. JULEA’s POSIX storage backend . 96
5.4. JULEA’s NULL storage backend . 97
5.5. Data distribution interface . 99
5.6. Round robin distribution . 100
5.7. JSON representation of an item’s metadata using default semantics . . 102
5.8. JSON representation of an item’s metadata using custom semantics . . 102
5.9. JULEA tracing framework . 104
5.10. FUSE file system . 107
5.11. JULEA command line tools . 108

– 207 –

List of Listings

7.1. ADIOS extensions . 162
7.2. JULEA transactions . 163

B.1. JULEA download . 185
B.2. JULEA dependencies . 185
B.3. JULEA configuration . 186
B.4. JULEA configuration output . 186
B.5. JULEA compilation and installation . 186
B.6. JULEA configuration file . 187
B.7. JULEA tests and benchmarks . 187
B.8. JULEA documentation . 187
B.9. Benchmarks download . 188
B.10. Benchmarks dependencies . 188
B.11. Benchmarks configuration . 188
B.12. Benchmarks configuration output . 189
B.13. Benchmarks compilation and installation 189
B.14. Setting up Lustre’s Distributed Namespace 190

C.1. POSIX example . 192
C.2. MPI-IO example . 195
C.3. JULEA example . 198

– 208 –

List of Tables

1.1. Comparison of important components in different types of computers 20

2.1. IOPS for exemplary HDDs and selected SSDs [Wik14d] 30

6.1. partdiff matrix size depending on the number of client nodes 151

– 209 –

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ort, Datum Unterschrift

	Introduction
	High Performance Computing
	Parallel Distributed File Systems
	Input/Output Interfaces and Semantics
	Motivation
	Contribution
	Structure

	State of the Art and Technical Background
	Input/Output Stack
	File Systems
	Object Stores
	Parallel Distributed File Systems
	Input/Output Interfaces
	Input/Output Semantics
	Namespaces

	Interface and File System Design
	Architecture
	File System Namespace
	Interface
	Semantics
	Data and Metadata

	Related Work
	Metadata Management
	Semantics Compliance
	Adaptability
	Semantical Information

	Technical Design
	Architecture
	Metadata Servers
	Data Servers
	Client Library
	Miscellaneous

	Performance Evaluation
	Hardware and Software Environment
	Data Performance
	Metadata Performance
	Lustre Observations
	Partial Differential Equation Solver

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendices
	Additional Evaluation Results
	JULEA (XFS Storage Backend)

	Usage Instructions
	JULEA
	Benchmarks
	Lustre

	Code Examples
	POSIX
	MPI-IO
	JULEA

	Index
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables

