Efficient methods for matching RNA
seguence-structure patterns

Dissertation
zur Erlangung des akademischen Grades
Dr. rer. nat.
an der Fakubt
fur Mathematik, Informatik und Naturwissenschaften der
Universitat Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik vo
Fernando Meyer
aus Balnéario Camboril, Brasilien

Juni 2014

Gutachter:

Dr. Michael Beckstette
Prof. Dr. Stefan Kurtz
Prof. Dr. Jan Gorodkin

Tag der Disputation:
16. April 2015

Zusammenfassung

Die Sekundarstruktur eines RNA Molekls ist eng mit sefgnktion verbunden und haufig starker
konserviert als die Sequenz. Folglich ist fur die wichtigefigabe der Datenbanksuche nach funk-
tionell ahnlichen RNAs, welche sich evolutionar von @ingemeinsamen Vorgangermolekil ent-
wickelt haben (RNA Homologiesuche), die Suche nach SegBémktur-Mustern von grof3er Be-
deutung. Allerdings verfiigen aktuelle Werkzeuge fusdigufgabe nur Uiber ein Laufzeitverhalten,
welches im besten Fall linear von der Grol3e der zu durclesutdn Sequenzdatenbank abhangt.
Deshalb sind sie haufig wenig geeignet fur die Suche inggrd¥atenbanken. Der Grund hierfur ist
der Verzicht auf Index-Datenstrukturen zur Beschleunigdar Suche. Ein weitere Nachteil aktu-
eller Werkzeuge zur Suche mit Sequenz-Struktur-Musteaicher insbesondere ein Hindernis bei
sensitiven und spezifischen Suchen darstellt, ist die riuresegeschrankt vorhandene Moglichkeit
approximative Treffer struktureller RNA Suchmuster zu énd

In dieser Arbeit prasentiere ich neue Methoden und direlgeetzbare Werkzeuge zur schnellen
Suche mit RNA Sequenz-Struktur Mustern in groRen Sequésizblanken. Die erste vorgestellte
Methode basiert auf Affix-Arrays, einer relativ neuen Indiatenstruktur, welche durch Vorver-
arbeitung der Zieldatenbank erstellt wird. Im Gegensatetablierten Indexdatenstrukturen wie
Suffixbaumen oder arrays, unterstiitzen Affix-Arrays diirbktionale Mustersuche. Diese ist not-
wendig, um die strukturellen Nebenbedingungen eines Sustars effizient zu beriicksichtigen.
Strukturelle Muster, wie zum Beispiel Stem-Loops kdnnen innen nach auf3en gesucht werden,
sodass zuerst die innere Loop Region und dann die paarerakanBles Stem-Bereiches konse-
kutiv gesucht werden. Diese Vorgehensweise erlaubt dasuizen von Basenpaarinformationen,
um den Suchraum zu reduzieren und fiihrt zu einer erwartetafzeit, welche sich sublinear zur
GroRRe der zu durchsuchenden Sequenzdatenbank verh@ltiéJBeschreibung von RNA Mo-
lektlen, welche in komplexere Sekundarstrukturen mittiplen Sequenz-Struktur Mustern falten,
Zu unterstitzen, wurde eine neue Methode zur Verkettuhgiftthg) von Mustertreffern in die Mu-
stersuche integriert. Durch die Verkettung werden zigialMustertreffer, insbesondere hervorge-
rufen durch unspezifische Muster, aus der Menge von Zwisebaltaten entfernt. In Benchmark-
Experimenten auf der Rfam Datenbank war unsere Methode srawbzwei GroRenordnungen
schneller als bisherige Methoden.

Wahrend die erste in dieser Arbeit vorgestellte Methodeffizienten Suche mit Sequenz-Struktur-
Mustern sehr schnell ist, verfugt sie nur Uber bescheaMoglichkeiten approximative Treffer ei-

nes RNA Suchmusters, welche zum Beispiel Insertionentidakn an beliebigen Positionen oder
die Sekundarstruktur verandernde Mutationen enthatterfinden. Diese Einschrankung erlaubt

oftmals nicht die Beschreibung einer RNA Familie mit einenagtér, welches sowohl sensitiv,
als auch spezifisch genug ist, um alle Familienmitgliedefiraden. Aus diesem Grund habe ich
neue indexbasierte und online Verfahren zur approximatieche mit Sequenz-Struktur-Mustern
entwickelt, welche Edit-Operationen auf Einzelbasen uageéBpaaren erlauben. Aufgrund des ho-
hen Berechnungsaufwands des hierfir erforderlichen Seg8truktur-Alignments, berechnet das
vorgestellte Verfahren effizient nur semi-globale Aligmtgezwischen strukturellen RNA Mustern
und Teilworten der zu durchsuchenden Sequenz, deren Adigtkosten einen benutzerspezifi-
schen Schwellwert nicht Uberschreiten. Hierzu wird einesg auf dynamischer Programmierung
(DP) basierendes Berechnungsschema vorgestellt, welthdge Eintrage der DP-Matrizen wie-
der verwendet und (2) die Alignmentberechnung fur Teiteiowelche keinen Treffer erzeugen
konnen, vermeidet. Dieses neue Verfahren verwendet aimauzu durchsuchenden Sequenzda-
tenbank generiertes Suffix-Arrays und erzielt eine Latfretlche sublinear mit der Grof3e der zu
durchsuchenden Sequenzen skaliert. Des Weiteren emtfaléevorgestellten Algorithmen unse-
ren neuen Ansatz zum Verketten von Mustertreffern. Latézperimente zeigen, dass unser bestes
indexbasiertes Verfahren um zwei bis drei GroRenordnuisglneller ist als bisherige Methoden.

Abstract

The secondary structure of RNA molecules is intimatelyteslao their function and often more
conserved than the sequence. Hence, the important taskaahgeg databases for functionally
related RNAs evolving from a common ancestor, i.e. RNA hagplsearch, requires to match
sequence-structure patterns. However, current toolshfertdsk have, in the best case, a running
time that is only linear in the size of the sequence databd3essequently, they are not well
suited for searching large databases. This can be explanduaeir failure to use an appropriate
index data structure for fast searches. Furthermore, a\diséage of current tools for matching
sequence-structure patterns is their limited capacityntbdppproximate matches to structural RNA
patterns, which poses an obstacle to sensitive and spesdfictes.

In this thesis, we present novel methods and readily agpéicsoftware for fast matching of RNA
sequence-structure patterns in sequence databases. €dbundthod is based on affix arrays, a
recently introduced index data structure, preprocessed fhe target database. Unlike established
index data structures like suffix trees or arrays, affix arsypport bidirectional pattern search,
which is required for efficiently handling the structurahstraints of the pattern. Structural patterns
like stem-loops can be matched inside out, such that therdegipn is matched first and then the
pairing bases on the boundaries are matched consecufiMgly.allows to exploit base pairing
information for search space reduction and leads to an &ghganning time that is sublinear
in the size of the sequence database. To support the destrgitRNA molecules that fold into
complex secondary structures with multiple ordered secgwstructure patterns, we incorporate in
the pattern search a new chaining approach. The chainingvesyspurious matches from the set
of intermediate results, in particular of patterns wittidispecificity. In benchmark experiments on
the Rfam database, our method runs up to two orders of maigriaister than previous methods.

While our first method is extremely fast, it has limited capaio find approximate matches to RNA
patterns, such as matches with insertions or deletiondaitaay positions relative to the pattern or
mutations affecting the secondary structure. This lingtabften does not allow to define patterns
that are specific and sensitive enough to match the sequbalmgjing to the sought RNA family.
Therefore, we have developed novel index-based and onljmeitams for approximate match-
ing of RNA sequence-structure patterns supporting a fullofeedit operations on single bases
and base pairs. Due to the high computational cost of therlyimlg sequence-structure alignment
problem, our algorithms efficiently compute semi-globagmients of structural RNA patterns
and substrings of the target sequence whose costs satiggralefined sequence-structure edit
distance threshold. For this purpose, we introduce a newpating scheme to reuse the entries

of the required dynamic programming matrices for all subgs and combine it with a technique

for avoiding the alignment computation of non-matchingsiribgs. Our new index-based algo-

rithms exploit suffix arrays preprocessed from the targétlaisse and achieve running times that
are sublinear in the size of the searched sequences. Moratitbe new algorithms integrate our

approach for chaining matches. Benchmark experiments gtaivour best index-based algorithm

is two to three orders of magnitude faster than previous austh

Vi

Acknowledgments

| thank my main supervisor, Dr. Michael Beckstette, forawlincing me to interesting research top-
ics and providing guidance throughout the years. | alsokifirnof. Stefan Kurtz for his valuable
advisory and contributions to the carried research prejé¢hank Dr. Sebastian Will for his con-
tributions to theStructatorproject. | thank Dr. Steffen Dettmann for his contributidhat led to
the RaligNAtor project. | thank my former office colleagues, Sascha StBimnid Dirk Willrodt,
for their readiness to help at all times and for proofreagiags of my thesis. | thank the Center
for Bioinformatics of the University of Hamburg and Prof. fMdas Rarey for the financial and
infrastructural support required for carrying my reseatdhank Karin Lundt not only for doing
part of the office work but also for her friendliness and supgeinally, | thank my girlfriend, Rika
Paulisch, for her support and patience and my parents fordheport from abroad.

Vii

viii

Publications

e Fernando Meyer, Stefan Kurtz, and Michael Beckstette. Fast online andxmsed al-
gorithms for approximate search of RNA sequence-strugtateernsBMC Bioinformatics
14(1):226, 2013.

e Fernando Meyer, Stefan Kurtz, Rolf Backofen, Sebastian Will, and MichaelcBstette.
Structator: fast index-based search for RNA sequencetstaipatternsBMC Bioinformat-
ics, 12(1):214, 2011. This article was selected forlthghlight Track - Research Highlights
of theInternational German Conference on Bioinformafi2f11.

Both publications acquired “highly accessed” designatiom the publisher.

Contents

~ D w R P

Inknown seconda J 11

a imultaneous RNA alignment and folding: SHinapiants 15
2.3.4 Comparison of RNAs with known secondary structure 17

mputational results

e 79

Xi

Contents

......................... 81
|4 Fast approximate search for RNA sequence-structure patte rns 83
A1 INOGUCHON . o o o o oot 83

4.2 Approximate matching of RNA sequence-structure paster. 84

4 Online approximate RNA database search for RSS&mAligh. 86

4 aster online alignment with early-stop computatiddcanAligh 89

Xii

List of Figures

4

5

10

12
14

/ ibstructural elements of an RNA accordin@gRPIN 18
A multiple alignment formatted for inpu uil' 20

6 xample of a branching RNA seconda Eture 24

2.7 Parses of two sequences fora gh&n_c_o_nle@mmar 25

Hammerhead ribozyme RNA and reRNAMotif andRNABORde p_LQIIS 37
RNAMOTandPatScardescriptors for the Hammerhead ribozyme RNA 38

6 Algorithm for bidirectional matching of the loop of a \asle-length RSSP 62

4 Consensu icture of the &6 sig RNA family and resp Lu_QLademLip_dr 75

atorand RNAMotif descripto or the HAR RNA family 76

6 Jctatordescriptor for the HAR RNA family and examples of localidsa . . 77

Xiii

List of Figures

Xiv

4 A semi-global alignment and the involved sequencesira edit operations. . . . 84
/ D P tables for a sequence-structure alignment computation a0
/ Regions of a sequence-structure pdttern 91
4.4 D P tables for a sequence-structure alignment computatiorcalmmme_d_enltilas 95
/ Pseudocode for algorithhESAAligh 96
4.6 xample of an enhanced suffixarray 98
/ Pseudocode for algorithhGSlinkAlign 103
4.8 FunctionmarkSuffixesised by algorithni inkAlign 104
4.9 onsensus seconda icture of the tRNA familyamm RSSP 107
4.10 Running times of the new algorithms to sedREAM10.1 with a tRNA RSSP . . 108
/ onsensu icture of fami ipavirus internabsiime en ite and resp. 3SD 109
/ Running times of the new algorithms to sedR#FAM10.1 with a stem-loop pattern 110
/ onsensu icture of family flg-Rhizobiales RNA framid resp. SSD 112
4,14 aling behavior when searching subsefRFAM10.1 of different length 113
4.15 Search times for different number of bases in the lodjséem for given RSSPs . 114
4.16 RNAMotif descriptor without errors forthe tRNA 117
/ Results of ROC analyses usiRgligNAtorandblastm. 123
4,18 Detailed results of ROC analyses usRajigNAtorandblastn 124
4,19 Additional results of ROC analyses usRaligNAtorandblastm 125
4.20 Running times of algorithmGSlinkAlignusing a sequence-based filter 131
ing ti ' i ' ' d.I_S_Qa.nAhgh 132
4.22 Running times of algorithms searching withupto 32aliee 133

1 Introduction

1.1 RNASs and their manifold functions

Following the pioneering work of Crick, there was for a loilge a general belief that the primary
function of RNAs was to carry information from DNA to proteifll,[2]. This was an assumption
of the central dogma of molecular biologwccording to which in most cells genetic information
can only flow from DNA to RNA and from this to protein. By thedat970s, three types of RNAs
were known and relatively well understood:

e messenger RNA (MRNA), the carrier of information from DNAmtein;

e ribosomal RNA (rRNA), the RNA component of the ribosome, efhis a machinery that
synthesizes proteins by converting triplets of bases irotHer specified by the mRNA into
chains of amino acids; and

o transfer RNA (tRNA), an RNA that carries an amino acid to siames and mediates its
recognition to the corresponding base triplet.

RNA molecules were, therefore, classifiegastein-codingmRNA) andnon-protein-codindtRNA
and rRNA) or simplynon-coding

The focus on proteins was consistent with the convictionttiey had unique importance in living
organisms by controlling the majority of regulatory tractsans and being the main contributors to
organism complexity. In 1972, Ohno even used the tiemia DNAto denote untranslatable parts of
DNA and, a few years later, Orgel and Crick similarly clagsifpieces of DNA either as encoding
proteins by occurring as mRNA or as useless [3, 4]. Howenerdir 7 the question of the purpose of
the “useless parts” became increasingly intriguing withdiscovery of Sharp and Roberts stating
that genes could be discontinuous in the gename! [5, 6]. Thaiks, for which Sharp and Roberts
received a Nobel Prize in 1993, led to the discovery of thegss of splicing and the fact that,
unlike in prokaryotes, most of the DNA in eukaryotes does auate for proteins. Indeed, only
~1.5% of the human genome is estimated to code for protéins [7]8B% to 85% is estimated
to be transcribed [8,/9]. This suggests that there existga humber of non-coding RNAs, whose
functions in humans and other organisms we have just stertedderstand. Nevertheless, we can
already recognize RNAs as extremely important molecules.

Diverse findings have radically changed our views about RMA®s/ known to participate in many
cellular processes. Certain RNAs, for example, can catabjmchemical reactions similarly to

1 Introduction

protein enzymes. The first evidence for these RNAs, calledziimes, was given by Cech, who
showed that a portion of an RNA can have enzyme-like prageettiat allow self-splicing, removing
non-coding parts (introns) of a pre-messenger RNA for thenédion of a mature mRNA_[10].
Thereafter, Altman showed that RNase P, a kind of ribozyrois, ia the maturation of tRNAS [11].
For their discoveries, Cech and Altman were awarded a Nafzed i 1989. Many other ribozymes
were later also discovered [12]. Due to the capacity of RNAstore genetic information similarly
to DNA and in particular due to the discoveries of Cech andnah disregarding the need for
enzymatic proteins for RNA replication (and therefore iegilon of genetic information), Gilbert
hypothesized aRNA world[13]. According to this hypothesis, RNAs may have pre-@dsDNA
and proteins, until DNA undertook their role as informaticarrier due to its increased chemical
stability, whereas proteins could become more specializelbcules due to the variety of amino
acids they are made of. RNAs, therefore, may have playedrmags in the evolution of cellular
life.

Further discoveries also indicate RNAs as fundamentaltagerdife evolution. Contradicting the
central dogmait is now known that reverse transcription, i.e. generattd DNA from RNA, oc-
curs in all domains of life[[14]. Already in 1970, Temin andlaore independently discovered
an RNA-dependent DNA polymerase called reverse transsgptan enzyme that enables reverse
transcription[[15, 16]. Their works helped to understaradréplication of viruses whose genetic in-
formation is stored not in DNA, but in RNA. These so-callettaeiruses use reverse transcriptase
to replicate themselves in the form of DNA integrated in atlygmome. The discovery of reverse
transcriptase, for which Temin and Baltimore received adllbize in 1975, had a huge impact on
the research of tumor-causing viruses. The activity oféhzyme also made possible the detection
e.g. of the HIV retrovirus in humans causing AIDS. There $®avidence that reverse transcriptase
played a major role in the formation of more than one thirdhef human genome by enabling the
replication of retrotransposons, i.e. DNA sequences thatRINA intermediates to amplify them-
selves in the genomel[7]. In plants, the rate of DNA derivedrfitransposable sequences shall be
even higher([17].

Non-coding RNAs are also accounted for many functions irstiwanscriptional regulation of
gene expression. In 1993, small non-coding RNAS, calledoRibIAs, were discovered [18]. With
only 22 nucleotides, a microRNA was shown to inhibit the $fation of a particular mMRNA by
being partially complementary to it. In 1998, Fire and Metlanaged to manipulate gene expres-
sion with RNAs, substantially inhibiting genes in the prase of double stranded RNAs [19]. The
inhibition of gene expression by RNAs, which is a post-tcaiptional regulation of gene expres-
sion, became known as RNA interference (RNAI). These andraliscoveries emphasizing the
importance in particular of small RNAs in RNAi were annouthd® the Science Magazine as the
Breakthrough of the Yean 2002 [20]. In 2006, the work of Fire and Mello rendered theiobel
Prize. Today, RNAi is at the center of the research of manyarudiseases including cancer|[21],
which are commonly related to down or upregulation of genes.

1.2 RNA structure and its importance

Additional examples of biological processes involving femding RNAs are as follows.

e Alternative splicing Non-coding RNAs regulate the removal of introns and cotioeoof
exons in the processing of pre-messenger RNAs. This régulabsures a massive variety of
proteins and is considered an important source of compgléxieukaryotic) organisms [22].
It is also suggested that an organism’s complexity comslatith the proportion of non-
coding DNA in its genome [23].

e Chromatin regulationin eukaryotes. Long non-coding RNAs, normally consistifignore
than 200 nucleotides, can mediate protein modificationkencell nucleus leading to gene
silencing [24]. These RNAs can also silence one of the X clasmmes in female cells (of
mammals), leaving a single X chromosome to be transcribeaaies and females [24].

¢ RNA-RNA and RNA-protein interactionghese interactions, performed e.g. by riboswitches
[25], are forms of regulating gene expression. It is alsaotlypsized that RNA-protein inter-
actions are related to an ancient way by which proteins wieeetty produced from mRNAs
without the need for tRNAs and ribosomes. This idea givestiatdl support to theRNA
world hypothesis[[26].

e Immune system&NAs can mediate activation and repression of immune respgenes
in the antimicrobial defense of a host organisml[27] and adgulate gene expression in
pathogenic bacteria avoiding detection by the host’s imersystem([28].

These are only some of the functions of non-coding RNAs. Maiaye could be listed here and
many others continue to be discovered.

1.2 RNA structure and its importance

An RNA molecule consists of a sequence of the nucleotidebdses) adenine (A), cytosine (C),
guanine (G), and uracil (U). Unlike DNA, which usually ocs&s a double-stranded molecule and
contains thymine instead of uracil, RNA is usually singlastied. On a basic level of organization
of an RNA molecule, one observes ftsimary structure which is a simple specification of the
nucleotide sequence composing it. One also observes in Ralsdamplementary basesn form
pairs via hydrogen bonds, such as the Watson-Crick pairs &) C-G. Other pairings are also
possible, such as the wobble pair G-U. Due to these pairagdRNA molecule can fold into
characteristic complegecondaryandtertiary structures The secondary structure, formed by the
set of base pairs occurring in the molecule, can consisffeirdnt substructural elements like stem-
loops with or without bulges or internal loops as shown in ganeple in Figuré 1]1. The tertiary
structure additionally considers specific atomic posgionthree-dimensional space [29] 30].

The secondary and tertiary structures are vital for thetfan®f many non-coding RNAs and their
interaction with other molecules, with tRNAs and rRNAs lieimportant examples. In all tRNAs,
the secondary structure necessary for protein synthesssntdes a characteristic cloverleaf with a

1 Introduction

f\\/\/\

Stem Loop1 ' Stem Loop2 Stem Loop3

Figure 1.1: Secondary structure elements of an RNA mole@pessented by a base-pair graph
(left) and as arc-annotated sequence (right). The depsttadture contains three stem-
loop substructures.

stem and three stem-loop substructures similarly to therskgy structure shown in Figure 1L.1.
In this structure, the loop opposite to the stem enablesdabegnition of triplets of bases from an
MRNA to the corresponding amino acid attached to the sterareds the other stem-loops further
assist in the recognition of the correct amino acid. rRNAstlee other hand, form along with

proteins the structure of the two ribosomal subunits, omgibg to an mMRNA and the other to

tRNA and amino acids.

Most non-coding RNAs with enzymatic activities, either @srzymes or associated to proteins,
also heavily rely on their structure to realize their fuans. Ribozymes can use their secondary
structure to selectively cleave bases from other RNA maésclDue to this property, ribozymes
have been since recently applied in the treatment of humseasdes like AIDS [31]. Associated
with proteins, RNAs can also use their primary, secondarteriary structure to act as guides by
targeting other RNA molecules or DNA [32]. Examples of suon+toding RNAs are:

o small interfering RNAs (siRNAs), which target mRNAs for dadation;
e small nuclear RNAs (snRNAs), which are involved in the madifion of rRNAs; and

e guide RNAs (gRNAs), which catalyse the insertion or detetid bases U in pre-mRNAs of
some protozoan organisms.

The structure is extremely important for the function of antner of other non-coding RNAs (see
e.g. [33)).

1.3 The challenge of RNA homology search

Primary and secondary structure conservation among RNA&s similar function is widely ac-
knowledged. Such structure similarities are either irthdrirom a common ancestor or result from
convergent evolution via natural selection. RNAs whosacstire similarities classify in the former
case are said to Heomologousand can be grouped into families. For instance, the Rfanbdata

1.3 The challenge of RNA homology search

(A)

G.gallus.2
H.sapiens.1

X

Figure 1.2: (A) Two RNA sequences which, despite differirigttee positions marked in red,
form the same secondary structure and belong to the sameSSE@Imily (Rfam
Acc.: RF00031). (B) Corresponding secondary structurdn Weises from sequence
H.sapiens.1

release 11.0 compiles 2,208 such families [34]. A very ingurtask in bioinformatics is to search
sequence databases, e.g. genomes, for occurrences of RiAfi@embers, since this can provide
insight about the functions encoded in the searched segué&hts task is calleilomology search

However, effective RNA homology search is not trivial. Thghout evolution RNAs suffer pressure
to retain their function, and consequently also retain pridand secondary structure information,
because loss of function usually means an evolutionaryldésdage. Yet, evolutionary pressure on
the primary and secondary structure can occur with differéansities. For example, a large num-
ber of mutations such as base replacements, deletiongranskrtions can occur in the sequence,
while the RNA may still be able to maintain its secondary aiee and function. Even molecules
with a relatively low sequence similarity can form similacendary structures, since the substi-
tution of a paired base can co-vary with the substitutionhef dther base of the pair, which still
allows them to pair according to Watson-Crick and wobbleipgirules (see an example in Fig-
ure[1.2). For this reason, primary and secondary structumeervation varies, to different degrees,
even among members of well-established RNA families. Farmgde, while in some families of
snRNAs like the snRNA Z178 (Rfam Acc.: RF00306) one obsehigh primary and secondary
structure similarity, in others like the U3 family (Rfam Ac&F00012) only the secondary struc-
ture is highly conserved. Further hampering RNA homologyrae is the fact that RNAs can vary
considerably in length, as observed when comparing mialdarg non-coding RNAs. In addition,
compared to proteins, the reduced alphabet size reflectdblfigur nucleotides RNAs can consist
of also means reduced sequence information.

1 Introduction

Therefore, RNA homology search demands flexible tools ntpkise of both primary and sec-
ondary structure information of the sought RNA family. Plaptools based only on sequence com-
parison likeBlast[35] andFasta[36], despite providing specific results, are provably restsitive
enough to find members of RNA families folding into charaistér secondary structures but with
lower degrees of sequence conservation [37]. Besidesiignsecondary structure information,
the heuristic approach of these tools requires exact nmagatfi short fixed-size sequences, which
is inappropriate for matching RNAs with frequent inseri@nd deletions. Combined with the his-
torical focus on the research of proteins, the misuse oéttads unsuitable for the search of RNAs
could explain why many non-coding RNAs remained undetedtgihg a long time. Also, other
traditional more compute intensive algorithms are basdg am sequence, e.g. Smith-Waterman
[38] and using HMMSs[[3B]. Hence, newer tools have been d@easldo enable more sensitive RNA
homology searches. Some tools, drdernal [40], ERPIN[41], andRNAMotif [42], use a model
or pattern storing primary and secondary structure inféionaof the sought RNA family. The goal
of the model, which can be used to search multiple databestesbe general enough to represent
all members of the family but also be specific to avoid matghHalse members. Other tools, e.g.
Foldalign [43] andLocARNA[44], directly perform pairwise comparison of RNAs with kmo or
unknown secondary structures trying to identify sequemckeséructure similarities.

In addition to contributions from new software, much of acealdy’s knowledge about the functions
and complexity of the transcriptome (i.e. the set of all ogdand non-coding RNAS) in a variety of
organisms can be credited to huge advancements in seqgdachmologies in the last ten years.
For instance, the Human Genome Project initiated in 19901tgatetely sequence a human genome
for the first time was costly and required thirteen years tmmlete [45]. Since then, new high-
throughput sequencing technologies able to produce mdlliaf sequences in parallel have been
transforming genome sequencing into a much cheaper anshedatsk [46]. These technologies
made possible e.g. the complete sequencing of 1,092 hunmamgs announced in 2012 [47] and
put the race to sequence a human genome for a cost of less @M dollars close to an end
[46]. Also, high-throughput sequencing technologies &aththe development of techniques like
RNA-Seq [48] and Direct RNA Sequencing [49] for the idengfion of the whole transcriptome
in genomes. These technologies further facilitate theodlisty of RNAs and their functions.

While new sequencing technologies can contribute to inipgpeur knowledge about RNAs, the
increase in the amount of sequence data they produce by dae@s the increase in computing
capacity for the data analysis. This can be observed in a aosom between the cost of genome
sequencing and the Moore’s law for computing power [50].&®se the running time of existing
tools for RNA homology search considering primary and sdeop structure information scales at
best linearly in the size of the searched sequences, segiahnijer and larger sequence databases in
plausible time becomes increasingly challenging. Idebigides being able to handle primary and
secondary structure properties particular to each RNARKamisearch tool should have a running
time that scales sublinearly in the size of the analyzedesstps.

1.4 Thesis structure and contributions

To accelerate sequence analysis, a well-known approachhsild an index from the target se-
quences using a full text index data structure like the suiféir [51], the (enhanced) suffix array
[52], or a compressed structute [53]. Once constructedinttex data structure can be used many
times to accelerate sequence analysis. This amortizesrthespent in its construction. In the con-
text of biological sequence analysis, enhanced suffix afnaye already successfully been applied
in e.g. [64], considerably speeding up database searclg pesition specific scoring matrices
(PSSMs) as query. PSSMs are sequence-based patterndlyymsea to model short amino acid or
nucleotide sequences. For searches with RNA patterns exgcpdmary and secondary structure
information of an RNA family, i.esequence-structure patterrisowever, no practical tool that can
exploit an index data structure has yet been developed.

1.4 Thesis structure and contributions

This thesis is concerned with efficient methods for RNA hargglsearch in large sequence da-
tabases. Therefore, in the following Chapter, we preseistieg methods for this task including
methods that perform direct comparison of RNAs as well ahaukt that use a model of an RNA
family for the search. We will see that methods following lditer approach, in particular methods
for matching RNA sequence-structure patterns, are betiwdsfor searches in a large scale.

In Chapter 3, we present our first novel method for fast matchf RNA sequence-structure pat-
terns. We employ in our method the affix array index data sire¢ which supports bidirectional
pattern search and allows to efficiently handle the stratttonstraints of the patterns. This leads to
an expected running time that is sublinear in the size ofélgeisnce database. To search for com-
plex RNA molecules, we use a hew chaining approach whichistsns describing the molecule
with several patterns and then searching for chains of reatefhere the order of the patterns is
preserved.

To enable even more sensitive and specific searches, waphesthapter 4 new online and index-
based algorithms for approximate matching of RNA sequategsture patterns. Because this re-
quires to compute semi-global alignments of structural Rddfterns and substrings of the target
sequence, we begin with an efficient online algorithm fos thirpose that reuses the entries of the
required dynamic programming matrices for all substrinfsen, we improve this algorithm by
incorporating a technique for avoiding the alignment cotafion of non-matching substrings and
subsequently apply to this algorithm the enhanced suffayandex data structure. We devise two
index-based algorithms, both which have a running timedbalies sublinearly in the size of the tar-
get database. As in our first method, our chaining approaithegrated with all these algorithms.
In an extension, we apply general techniques to the algositiike multithreaded computing for
further practical search acceleration.

Because our methods in Chapters 3 and 4 employ very diffatgatithms and also differ in terms
of sensitivity and specificity, each of these chapters prteaa@letailed evaluation of the respective

1 Introduction

methods in terms of speed and performance in RNA homologyglseginally, last conclusions and
an outlook for future work are given in Chapter 5.

2 Existing RNA homology search methods

2.1 Formal preliminaries

We begin introducing some formal definitions and notatidreg aire used throughout this thesis.
Additional definitions will be presented later as needed.

Definition 1 An RNA alphabetd = {A, C, G, U} is a set of characters coding for the bases
adenine (A), cytosine (C), guanine (G), and uracil (U).

Definition 2 Let® = {R,Y,M,K,W, S, B,D, H, V, N} be a set of characters. According to
the IUPAC definition, each character dndenotes a specific character clags) C A [55]. Each
character: € A can be seen as a character clags) = {z} of exactly one element.

Definition 3~ An RNA primary structurer sequences of lengthn = | S| over A is a juxtaposi-
tion of n bases fromA. S[i], 1 < i < n, denotes théase ofS at position:.

Let £ denote the empty sequence, the only sequence of léngBy A" we denote the set of
sequences of length > 0 over A. The set of all possible sequences ovemncluding the empty
sequence is denoted byA*. For a sequencs = S[1]S[2]... S[n] andl < i < j < n, S[i..j]
denotes thesubstringS[i|S[i + 1] ... S[j] of S.

Definition 4 Let.S = uv, v andv € A*. uis aprefixof S andv is asuffixof S. The k—th suffix
of S starts at positiork, while thek—th prefix of S ends at:. Forl < k < n, S; denotes thé—th
suffix of S.

Definition 5 Two bases(c,d) € A x A are complementanyf and only if (¢,d) € C =
{(A, V), (U, A), (C, G), (G, C), (G, V), (U, G). Two complementary bases can fornbase pair
Less frequently, also non-complementary bases can forrs. pai

Definition6 A non-crossing RNA secondary structuteof lengthm is a set obase pairgi, j),
1 < i < j < m. Each pair(i, j) stands for the pairing of the base at positionith the base at
position, such that for alli, j), (i, j') € Ri<i<j<jori<i<j<jori<j<i<j

2 Existing RNA homology search methods

(A) (C) uU-a
I
S: ACGACAAACGU o c
R (((.....))) |
1 2345672891011 c G
R: {(1,11), (2,10), (3,9)} IR~
A A ACA

Figure 2.1: (A) Example of an RNA sequenSeannotated with a non-crossing RNA secondary
structure stringR forming a stem-loop. Also shown is the corresponding setasieb
pairsﬁ. (B) The same RNA as a graph and (C) as a tree.

ori < j' < i < j.Inthe following, we use the single wostructureto refer to non-crossing RNA
secondary structures, unless the structure is explicitblified as primary (or tertiary).

A standard notation foR is astructure stringR over the alphabet., (,)} such that for each base
pair (i,j) € R, R[i] = (andR[j] =), andR][r] = . for positionsr, 1 < r < m, that do not occur
in any base pair oR, i.e.r # i andr # j for all (i,5) € R.

R is called astem-loopRNA structure if and only if for all(i,), (7', j) € R : i < i’ < j' < j
ori' < i< j < j. See Figuré2]l for an example of a stem-loop structure fardifit notations.
Stem-loops can also be observed as substructures withsbatgkinterior loops in Figufe 1.1. A
stem-loop structure is equivalently calledn-branching

2.2 Introduction to existing methods

Given a query RNA sequence of known function or set of hommggRNA sequences belonging
to the same family, the goal of homology search methods isdasure similarities or differences
between the query and target sequences. High similaritpvodifference level can suggest a ho-
mologous relationship between the sequences and, therefieo similar function. Because often
sequence information alone is not sufficient to charaaesiz RNA family, we are interested in
methods that make use of both primary and secondary steuictiormation.

2.3 Comparative RNA analysis methods

A recurrent approach for homology search is to directly carafRNAs. Depending on the amount
of information available from the primary and secondarydtire, which can differ in the query
and the target, some methods can simultaneously compagithary and secondary structures
or first focus on comparing either one of them. In case therstny structure of an RNA to be

10

2.3 Comparative RNA analysis methods

compared is not known, a secondary structure can also beutethfrom its sequence alone or be
inferred in combination with other RNAs.

2.3.1 Comparison of RNAs with unknown secondary structure

Commonly, tools for homology search of RNAs with unknownaetary structure make use of
methods for the prediction of the secondary structurefareRNA folding We note that, although
folding can also refer to the prediction of the tertiary stame of an RNA molecule, here it is
exclusively used to refer to RNA secondary structure ptamicDespite advances of computational
methods for tertiary structure prediction, this remaingfécdlt problem and most mature software
for RNA homology search incorporating folding methods feesion the secondary structure.

The obvious goal of computational methods for RNA foldingpi$ind the structure that best “fits”
to the real structure of the RNA in nature. To start with, we faced with the challenging fact
that the number of secondary structures into which an RNAiesgece can fold grows considerably
(even exponentially, if not only complementary base pagstowed) with its length. An algorithm
solving this problem is the Nussinov algorithm [56] 39]. stlynamic programming, it computes
the secondary structure with the maximum number of bass e (n?) time andO (n?) space.
However, the real structure is influenced by the energetibilgy of hydrogen bonds and their
effect on stacking (i.e. neighboring) base pairs, loopssiaad possible different multi loops. Since
the Nussinov algorithm does not take these aspects in @asioh, the structure for an RNA
sequence it computes is in general not biologically relevdavertheless, as one of the first RNA
folding algorithms it served as a milestone for the develepnhof new algorithms.

More accurate algorithms compute a secondary structuresaigaence by minimizing its free
energy. This is in accordance with the assumption that argetieally stable structure is a struc-
ture with minimal free energy (MFE). In this approach, freergies are assigned to substructural
elements like stacking base pairs and loops. These fregieadnave experimentally been de-
termined more precisely over the years, including e.g. thely used thermodynamic model of
Turner [57,/58]. Such a model defines a set of substructueah@hts with associated free energy
parameters. Given free energies, the overall free energystriucture is calculated as the sum of
the free energies of its substructures. A well-known atbarifor MFE computation is the Zuker
algorithm, whose dynamic programming recurrences aregoas to those of the Nussinov algo-
rithm [59,[39]. It also runs ir© (n?) time if loop sizes are limited by a constant, otherwise itsrun
in O (n4) time. An implementation of the Zuker algorithm is found ir thfold program [60].

A shortcoming of the MFE approach is the fact that the MFE sdaoy structure is not necessarily
the biologically correct one and there can be a huge numbalterihative reasonable structures
whose free energies differ only modestly. This suggeststtoduce a probability distribution over
alternative structures. A dynamic programming algorititmdomputing the partition function of
an RNA sequence over all its alternative secondary strestig given by McCaskill [61]. This

11

2 Existing RNA homology search methods

(A) ACGUAAAAAAAACGUAAAACGU

ffff#ffffff#ffffff#f

+ +t +t + +t F + F +t + +F + + + + + + + +

NO9DOVVVVNODOVVVVVVVVNDOV

T T T T T T W T T T T T T T T T T T T T

[S S S S SR S S = N S S S S S R S S S S

[S S e S S R S S S R AN S R SR S

[e e e e e e e e i s o SR

[S S S S S S S SR s S S S S A

[S S S S S R SRS SRS S SR S S S

Ft + f +t + F + + +f + + + + + +

[S S e S S S S S SR S S S

[S S S S S SR S S R S S

[S S S SR S S S S AR s LR S S S S S

F ot o+ F + F F + o+t £ o+ F + +F + o+t

[S S SR S S S S S PR oo oot orr b T

[S S S S S S S S SR S S S S S S S

F ot o+ F o+ o+ F o+t R e S S R S -

[S S S S S L S S S S S S S S S S

[S S S S F

[S S S S LR S S S S S SR S A

[FF + +F +t + +F +t +F +f + + £ + + f

SR ottt t +t +t f + +t + + + + + t +
+ LSRR S S S S S S R S R S S S SR S S S

ﬂDDVVVVﬂDDVVVVVVVVﬂDDV

ACGUAAAAAAAACGUAAAACGU

B R /A\f AV
~ (A)
yq/‘\,f‘\e\ A\A/ \Afc
(A) ® A e
s e 9] ©
(A) (A) (A) 0)
¥ A) ‘\e \) \\L‘J/\
A e
® ®
_))
[N (A)
e % x
N g \ . l,\/‘
A A an o
ﬁ\A/ \A/ \A/ \A/ \C/ \G/ \U/
\ \ ©
1 22 @
NN AYAY N YNRYNRYNRYNRYNRYNRYN H
WHC H\@/WU/H\A/H\A/H\A/H\A/H\A/H\A/H\A/@ © | |
! ! 1 22
1 22

Figure 2.2: (A) Base pairing probability matrix for sequertt = ACGUAAAAAAAACGUAAA

12

ACGU shown repeatedly on the matrix edges. In the upper tigdrigle, each square
denotes the probability of a base pair for the entire enserablpossible secondary
structures. The area of a square is directly proportion#hegrobability of the corre-

sponding base pair. The lower left triangle shows only segifor base pairs that form
the single secondary structure of minimum free energy. (Be& possible secondary
structures derived from the base pair probabilities in tlarix The color of the base
pairs matches the color of the corresponding square in thiéxma

2.3 Comparative RNA analysis methods

algorithm, which runs irO (n?) time andO (n?) space, computes for a given RNA sequence a
base pairing probability matrix; see an example in Fiqug Zhis matrix allows to explore the
space of possible secondary structures by a derivationeoftiiuctures from probable base pairs.
Hence, it gives a broader overview of feasible structuregead of a single MFE structure. The
algorithm of McCaskill is implemented in the prograRiNAfoldof the ViennaRNA Packadgé?2].

2.3.2 The three plans of comparative RNA analysis

The three algorithms from Nussinov, Zuker, and McCaskilfkva their original form on a single
RNA sequence. However, since RNA molecules with similarcfiom tend to form similar struc-
tures, the comparison gkveralputative homologous sequences for the prediction afrssensus
secondary structureommon to all these sequences is often a more reliable agiptban folding
of a single sequence. Even molecules with a relatively logueace similarity can form similar
structures due to co-varying substitutions of bases fogrpiairs (see an example in Figure]1.2).
That is, mutations on the sequence level do not necessaslyay base pairings. 10 [63], existing
methods for comparative RNA analysis are classified intddhewing three approaches ptans

1. The sequences are first aligned and then a consensus agcstrdcture is inferred from
the resulting multiple sequence alignment. For an exami@enuultiple sequence alignment
annotated with a consensus secondary structure dijsge Figuré 2]3.

2. The sequences are aligned while simultaneously infgaioonsensus secondary structure.

3. The sequences are first individually folded and then @tire alignment is computed.

Plan 1 seems appropriate when the sequence conservatiaffiéggestly high, so that the “cor-
rect” bases are aligned in a certain column. However, wherségjuence conservation is too low,
base shifts in the alignment can misalign base pairs anagptekie formation of consensus base
pairs in the folding phase, consequently leading to a sinaptonsensus secondary structure and
corrupting the homology analysis. Plan 3, on the other haadms appropriate when sequence
conservation is too low for the computation of a meaningfigrement based on sequence infor-
mation. Its disadvantage lies in the fact that individuddifogy of sequences on a first step by
computing e.g. minimum free energies can lead to very dagigpcondary structures which can
hardly be aligned. Furthermore, any sequence similaritgragrsequences is completely ignored
in the folding phase. The best theoretical solution is toplaa 2, i.e. the Sankoff algorithrh [64],
which simultaneously computes an optimal multiple aligntrend consensus secondary structure
by combining recurrences of a standard dynamic programsgagence alignment algorithm and
the Nussinov algorithm. However, fen sequences of length, its high complexity of© (n3m)
time andO (n2m) space makes it of no practical use. Therefore, variantseoBtnkoff algorithm
with reduced time complexity have been introduced.

13

2 Existing RNA homology search methods

(A)

Bradyrhizobium-1
Bradyrhizobium_japon-1
Bradyrhizobium-2
Nitrobacter_winograd-1
Nitrobacter_hamburge-1
Nitrobacter-1
Oligotropha_carboxid-1
Rhodopseudomonas_pal-1
Rhodopseudomonas_pal-2
Rhodopseudomonas_pal-3
Rhodopseudomonas_pal-4
Rhodopseudomonas_pal-5
Rhodopseudomonas_pal-6
R

Figure 2.3: (A) Multiple alignment of sequence members ofifg flg-Rhizobiales RNA (Rfam
Acc.: RF01736) annotated with a consensus secondary steustring?. Observe that
the alignment is truncated to contain only the columns epwoading to the first two
stem-loops of the secondary structure of this family in S3tdirection. (B) Complete
secondary structure of this RNA family with the first two stésops drawn in orange. In
this secondary structure, each ambiguous IUPAC symb®l®d stands for a character
classy(z) C A.

14

2.3 Comparative RNA analysis methods

2.3.3 Faster simultaneous RNA alignment and folding: Sanko ff variants

Offering some relief from the high time complexity of the Raff algorithm, the progranfoldalign
[65] provides a restricted version of it for the computatmfmpairwise local or global sequence-
structure alignments which does not allow for branchingditires. In this waykoldalign achieves

a time complexity ofO (n*), instead of0 (n°) for the Sankoff algorithm. The restriction to non-
branching structures has been eliminated in a second wesbthe program[43], which accelerates
the computation by pruning the used dynamic programmingioest However, the program does
not guarantee to find an optimal solution. Another progrBynalign [66], simplifies the compu-
tation in the Sankoff algorithm by limiting the distance difyaed bases in two input sequences.
That is, for positions: andl in each of the two sequences,— I| < M must hold, wheré\/ is a
constant. Such a distance is called shanbetween the two positionBynalignlimits, in addition,
the size of loops to achieve a time complexity®{n>1/?).

Two other variants of the Sankoff algorithiAMcomp[67] and its successdrocARNAJ44], use a
different approach to reduce computational demands. Fairaige alignment, they use precom-
puted secondary structure information in the form of basengaprobabilities from each individ-
ual sequence, which can be obtained using McCaskill's dhgor In practice, they take as input
postscript files of base pairing probabilities generatedeich sequence with prograRiNAfold

In LocARNAand PMcomp by transforming these base pairing probabilities intoes@nd also
assigning scores to sequence operations (i.e. (mis)nmgtoteertions, and deletions), the two in-
put sequences are simultaneously aligned and folded viadh®putation of an alignment that
maximizes the combined scores from the sequence operatiohthe base pairings forming a con-
sensus secondary structure. More precisely, consider égpoesicesS andT' to be aligned using
given base pairing probability matricés¥, X € {S, T}, of dimensiongX| x | X|. Let X denote
the secondary structure of sequetd€eHere, an alignment of andT" consists of

e asetA of alignment edge§;, k) between positions of S and positions: of 7" and

e aconsensus secondary structicé S and7’, which is a set of pairs of base paifs, j), (k,1)),
with (i,) € RS and(k,1) € RT. Additionally, (i, k) and(j,1) must be alignment edges in
A.

To speed up the computation of an alignment, an improvenfdra@RNAover PMcompconsists
in eliminating base pairg, j) from RX with very low probabilitfo]?. That is, given a probability
cutoff ppin, If PZ.;(< Pmin, then(i, j) ¢ RX. This reduces the number of base pairs that are scored
and considered in the alignment computation. Both toolsmamlog-odds scores for base pairs.
In LocARNAthe score of a base pdir, j) € R¥is computed as

score’ (i, j) = log ﬁ/log —. (2.1)

Termlog pio normalizes the score so that it does not exceed 1, whesethe expected probability
for a pair to occur at random. F6f, j) ¢ RX, score™ (i,7) = —oo. To score alignments on the se-

15

2 Existing RNA homology search methods

quence level, functions(S[i], T'[k]) andr(S[i], S[j]; T'[k], T'[l]) give the score for the substitution
of unpaired and paired bases, respectively.~Lbe a gap penalty anly be the number of gaps in
an alignment. The score of an alignment specified by the(phi¢) is

Z (score’ (i, j) + scorel (k,1) + 7(S[i], S[j]; T[k], T[l])) + YN
CNNES
+ o(i, k). (2.2)
((6), (kD)) ((,0), (k1) €

This score is maximized biPMcompand LocARNAusing dynamic programming. Similarly to
Dynalign PMcomplimits the size of loops and the span between aligned urghaiases and base
pairs in the two sequences. For aligned base gair9 and (k, 1), the span is computed &g —

i) — (I— k)|. Using these limitations?Mcompachieves time and space complexitiegofr?) and

@) (n3) respectivelyLocARNAalso uses this span limitation technique, but profits intiatdfrom

a sparse computation of the dynamic programming matritesed by the reduced number of base
pairs, which are prefiltered according to variaplg;,, as described above. In this wadygcARNA
requiresO (n* + m?) time andO (n*(n* + m?)) space, where: andm are the lengths of the
aligned sequences. While both tools can compute globairakmts,LocARNAis also tailored for
computing local alignments. For this, it forbids negatinries in the computed matrices and uses
a suitable traceback technique similar to the technique fsse&omputing local alignments of plain
sequences (see Smith-Waterman algorithm [38]).

PMcompandLocARNA as well as the previously mentioned tools for comparatidARnalysis,
are suitable for comparing sequences of similar lengthsthgrecomputing global or local align-
ments. However, families of homologous RNAs are commongratterized by short structural
motifs, which we often want to search for in large sequenceb 8s genomes. That is, one of the
sequences to be aligned is much shorter than the otherslndbée we want to compute semi-global
alignments by aligning the complete shorter “query” segedn substrings of the larger sequence.
For this purpose, a variant abcARNAcalledLocARNAscaf68] slides a window over a large tar-
get sequence applying th@cARNAmethod, with the difference that it aligns the complete guer
sequence to each window substring. Because the query caseapan RNA family of sequences,
LocARNAscaallows to incorporate, in the query, information from a riplé sequence alignment.
This is done by adjusting the andr functions above to provide log-odds scores computed from a
multiple sequence alignment. Letndb be bases from alphabet. In addition, letf; , denote the
frequency ofa in column: of the multiple alignment and;; ., denote the frequency of base pair
(a,b) in columnsi and;. Functionss andr are computed as

o(a,b) = log <fg—a“) and 7(ij,ab) = log (M) (2.3)

bab

whereb, = 1/4 andb,, = 1/6 represent a uniform distribution of the background freaiesof
the 4 possible basesand 6 possible complementary base péit$) € C, respectively. In terms of
time and space complexitypcARNAs running time and space requirements scale at least disadra

16

2.3 Comparative RNA analysis methods

cally with the length of both input sequences. This forblgsdirect application of its dynamic pro-
gramming recurrences when one of the sequences is very Engeefore LocARNAscamdapts
the recurrences so that the dynamic programming tablesstmlg entries for the alignment compu-
tation for the current window. In addition, when shifting &dow it reuses computed entries from
overlapping windows. For a window of length and a target sequence of lengtht achieves time
and space complexities 61 (LQnm) andO (Lm), respectively, wheré is the maximal allowed
span between aligned base pairs in the two sequences. ruoitee note that o)cARNAscamlso
requires a precomputation of base pairing probabilitieswvéler, it cannot use prograRNAfold
for this purpose since for a genome of length creates a huge matrix of size| x |n|. Therefore,

it uses instead a similar program also available iniiemnaRNA PackagealledRNAplfold which
computes base pairing probabilities for windows of lengthThis computation take® (m?n)
time.

2.3.4 Comparison of RNAs with known secondary structure

Although programd.ocARNAandPMcompare in principle designed for the comparison of RNAs
with unknown secondary structure, known secondary stred@tfiormation can be provided to these
programs via the precomputation of constrained base gairobability matrices. A constraint can
be the requirement of a pair of bases to pair, realized byisgj probability 1 to the specific
pairing. Another constraint can be the requirement of a bagair with any other base or that a
specific base be unpaired. In the latter case, the pairingapitity between the specific base and
every other base is 0. The computation of constrained baseggrobability matrices is supported
by programRNAfold

Other tools strictly require known secondary structurehef RNAs to be compared. For example,
MARNA[69] computes a multiple alignment of a set of RNAs with knastructure. It works in two
steps. First, it computes all pairwise sequence-struetijaments based on the dynamic program-
ming algorithm of Jianget al. [70]. Each pairwise alignment computation tak@gm?n?) time,
wherem andn are the lengths of the aligned sequences. Secondly, it heaxbtained alignments
to weigh edges in the multiple sequence alignment TeGbffee[71]. Note, however, that this step
does not compute a true alignment of primand secondary structures, sin€eCoffeeignores the
dependency between base pairs.

Another tool,RNAforestef72], computes a pairwise alignment of secondary strustusdich is
suitable for aligning RNAs with very little sequence simia In RNAforestersecondary structures
are represented as trees in which internal nodes standderdadrs and leaves stand for single bases
(see an example in Figure 2.1 (C)). An alignment of two trems lme seen as a generalization of
a standard sequence alignment. That is, the alignmentiiesepmted as another tree, whose nodes
are equivalent to alignment edges labeled with either a gfairodes, one from each tree, or a
node from one tree and a gap symtRNAforestercan compute global or local alignments using
dynamic programming i (mnd?*) time, wherem andn are the number of nodes in each tree and

17

2 Existing RNA homology search methods

(A) seql: UUCAAAUGAA (B)
seq2: UCGA-UGCGA
seq3: GUCAA--GAC
R: (C(.eev)))

12345678910

Figure 2.4: (A) Example multiple sequence alignment artedtavith a consensus secondary struc-
ture string R. Paired (unpaired) positions in green (blue) describe arstauctural
element for whichERPIN constructs a profile. (B) Corresponding consensus secpndar
structure with bases from sequersex|lhighlighting its substructures with the same
colors as in the alignment.

d is the maximum degree, i.e. number of outgoing edges fromda,nabserved in the trees. The
degree is at least one, since a base pair node must alwaystected to another base pair node or
leaf node.

MARNAand RNAforesterare suitable for integration in a pipeline of comparative/AR&halysis.
More precisely, they can be used in the second stepenf3 described above, taking as input RNA
sequences previously folded using e.g. progRiNAfoldor mfold. However, they can suffer from
the relatively poor quality of folding of single RNAs. In &tldn, we remark that, by only support-
ing global or local alignment computations requiring tinttegt scale quadratically in the length of
the sequences, these tools are not suitable for homologghesain large sequence databases.

2.4 Secondary structure profiles: ERPIN

ERPIN (Easy RNA Profile IdentificatioN[[73,[41] is a tool that takes as input an RNA multiple
sequence alignment annotated with a consensus secondanyist and builds a statistical model,
which it then uses to search sequence databases for mafdhesnoodel. The built model, called
secondary structure profilESSP), is the combination of profiles for paired and unpastustruc-
tural elements of the input alignment. In this context, astulrtural element is a stretch of con-
tinuous unpaired positions of the alignment or continuocaselpaired positions belonging to the
same helical element, e.g. the stem of a stem-loop. For anggaof a structure-annotated multiple
sequence alignment and involved substructural elemesgsriguré 24. An SSP can be composed
of profiles of two types defined as follows.

Definition 7 Let m be the length of an unpaired substructure, e.g. the loop té¢ra-kop. A
single-strand profileof lengthm is a two-dimensional matrix of sizZe x m modeling an unpaired
substructural element. Each column in this matrix corradpdo one unpaired column of the in-
put alignment and each row corresponds to a possible baseArwith the addition of one row

18

2.4 Secondary structure profildSRPIN

representing a gap, which is treated like a base. An entriefriatrix is a log-odds score of the
respective base or gap in the corresponding alignment ¢olum

The log-odds scores making up a single-strand profile argoated in two steps. First, a frequency
profile, which is a matrix with the same dimensions as thelsisggand profile, is computed from
the input alignment. LedV; be the number of bases in unpaired colunafi the alignment and;

be the number of occurrences of a specific bage.A in this column. An entry of the frequency
profile is computed as

n:
Pi,a = NLT. (24)

In the second step, the frequency profile is used to compat®¢hodds scores of the single-strand

profile. Let 5, be the background frequencies of unpaired hasethe sequence to be searched.
An entry of the single-strand profile is computed as

score; o = log (%f) . (2.5)

Scores for gaps are calculated via simulations with profilék from random sequences with the
same composition as the target sequence. For details, Eee [4

The profile for paired substructural elements of the inpiginahent is defined as follows.

Definition 8 Let p be the number of base pairs in a substructural elememielié profile of
lengthp is a two-dimensional matrix of sizi5 x p modeling a base-paired substructural element.
Each column in this matrix corresponds to two base-pairddnuas of the input alignment and
each row corresponds to a possible base pair frbm 4. An entry of the matrix is a log-odds
score of the respective base pair in the correspondingraégh column.

Notably, a helix profile cannot model gaps. Consequentljyrons of the input alignment cor-
responding to base-paired positions must be ungapped.ir.tke computation of a single-strand
profile, the log-odds scores making up a helix profile are agegfrom a corresponding frequency
profile, i.e. a matrix with the same dimension as the helifijerd_et IV;;, ¢ < j, be the number of
base pairs in paired columrsand j of the alignment ana;; ., be the number of occurrences of
a specific base paiw, b) € A x A in these columns. An entry of the frequency profile for a helix
profile is computed as

M ab
Pij,ab = JZ\JIQ . (26)
i

Let 5., be the background frequencies of base paib) in the sequence to be searched. Using the
frequency profile, an entry of the helix profile is computed as

score;jqp = log <%) : (2.7

The SSP of a structure-annotated RNA alignment can be cadmds number of helix and single-
strand profiles. For example, for the alignment in Fiquréshdotated with a simple stem-loop, the

19

2 Existing RNA homology search methods

(A) >structure (B) 212 (C) 2422
(((====))) @, 0) C
(A, G) G
>seql (A, 0) U
UUCA-AUGAA (C2) -
>seq? o
UCGAAUGCGA EEU;
>seq3 G.C)
GUCAA--GAC (6.,6)
(G,U)
(U,R7)
(U,C)
(U,G)
(U,0)

Figure 2.5: (A) Multiple alignment of the sequences showRigure 2.4 in a FASTA-like format for
input in ERPIN In this format, the entry at the top describes the consessctendary
structure using brackets and hyphens at paired and ungaisitibns, respectively. The
entries following it are the sequences of the alignment withs. (B) and (C) show the
matrices of the helix and single-strand profiles for the sultural elements in green
and blue of the given alignment, respectively. Because titrées in these profiles are
log-odds scores computed from both the input multiple secgalignment and the
target sequence, concrete scores are not shown. For maiks dete main text.

SSP consists of one helix profile and one single-strand profihe required syntax of the input
alignment resembles the FASTA format, with the first entringe consensus secondary structure
string similar to a structure string, but with hyphens (-) in the place of dots. The other entries a
the globally aligned sequences. See in Figure 2.5 (A) tigmalent of Figuré 214 in this format and
in Figured 2.5 (B) and (C) the respective SSP.

Given an SSP and a target sequeS¢ehe search for occurrences of the SSKiis performed
by scoring substrings of. Scored substrings can contain deletions at unpairedigasijust like
the sequences in the alignment used to build the SSP. Therefssociated to each single-strand
profile of the SSP is a number of allowed deletions for theaetype substructural element. For
a single-strand profile modeling unpaired alignment colsiimnthe range from columnisuntil j,
the associated number of allowed deletions is the maximumbeu of gaps observed in an aligned
sequence in the same range of columns frioamtil 5. No insertions are allowed in scored sub-
strings. As an example, the number of allowed deletionsHersingle-strand profile in Figure 2.5
(C) is 2, because in the respective alignment in Figure 2)5HA loop substructure in sequence
seq3corresponding to alignment columns 4 until 7 contains 2 gs@s in Figuré 214 (A) the same
alignment with numbered columns).

Let m be the summed number of columns of each helix and singlaesfpeofile constituting an
SSP andi be the total number of allowed deletions in substrif S to be scored. That is,

20

2.4 Secondary structure profildSRPIN

d is the sum of the deletions allowed per single-strand profitlescore these substrings with the
SSP, an algorithm slides alorffya window of lengthm, such that the scored substringshave
length betweemn andm — d and begin at the first position covered by the window. Theisgor
computation is performed by aligning all profiles consiitgtthe SSP to each substrisg, so that
each single or pair of positions in the substring correspaa@ column of a profile. This means that
helix profiles are aligned simultaneously to the 5’ and 3'softh base paired substructural element.
Since helix profiles do not allow for gaps, aligning them ® slubstring is straightforward, whereas
single-strand profiles are aligned using dynamic progrargmihe used dynamic programming
matrix for aligning a particular single-strand profile h&aesn x m, wherem is the length of the
profile. In this matrix, one dimension corresponds to thessiny of lengthm of S to be aligned
and the other dimension corresponds to the profile. The sdae entire substring’ covered by

a window is the sum of the entries of the corresponding basmase pair in each aligned profile.
For each window shift, only the substrirfj with the highest score among all substrings of length
betweenm andm — d is a candidate match of the SSP.

For the example SSP in Figures]2.5 (B) and (C) modeling a &tem-the scoring of substrings
covered by a window is performed systematically as follo@bserve that the helix and single-
strand profiles contain 3 and 4 columns, respectively, aattiie single-strand profile allows for 2
deletions. Therefore, the length of scored substrings eaybetween 8 and 10. Given a window
of lengthm = 10 beginning at position of the target sequencg, the algorithm places the helix
profile at the first three positions of the current window esponding to the 5" end of the stem
substructure. Then, it aligns the single-strand profileulosgingsS’[4..5], S’[4..6], and S'[4..7]
obtaining a score for each. Note that, for all these sulgdrithe alignment requires to compute
only one dynamic programming matrix of sizex 4, since extending the alignment to the right
only requires to compute an additional column and row of tagrixm For each of the substrings, the
algorithm also computes a score from the helix profile byiplai at the possible 3’ end positions
S’16..8], S’[7..9], and.S’[8..10] of the stem, respectively. The combined score from both Ipsoi$
the score of the respective substring of length between 8 an@nly the substring with the highest
score is a candidate match of the SSP at positiohS. Such a scoring algorithm perfornds(n)
window shifts for scanning a sequence of lengttSince in the worst case an SSP can consist of
only one single-strand profile, which is aligned to targddsstings using dynamic programming in
O (m?) time, the scoring algorithm requiré (nm?) time. To improve its practical running time,
ERPIN can assign score cutoffs to the profiles constituting an 8SiRg these cutoffs, a certain
profile is only aligned to a target substring if the score wigd from the previously aligned profiles
exceeds a cutoff.

ERPINallows to use pseudocounts to avoid overfitting of the SSPipl@ying two position inde-
pendent substitution matriced! and M2 similar to RIBOSUM in theRSEARCHorogram [74].
However, they are computed differently from RIBOSUM. Indbenatrices, an ent cld contains
a value for substituting basec A by basel € A and ng contains a value for substituting base
pair x € A? by base pairy € A% Hence,M' has4 x 4 entries andM? has16 x 16 entries.

21

2 Existing RNA homology search methods

More precisely, the value stored i1}, is the sum of the scalar product of the base counts ob-
served in a large “training” alignment, i.8.;" | Q; .Q; 4, Wherew is the number of columns of
the concatenated profiles of the SSP ghd is the number of basesin one column of the training
alignment modeled by columhof the concatenated profiles. The entries are normalizetiago t
foralld, > M}, = 1. Mgfy is analogously computed for base pairandy. With these computed
matricesM ' and M2, ERPINthen scores target sequences with a reformulated frequenéije
for each helix and single-strand profile. The frequency f@&dir an unpaired positiohof the input
alignment becomes

Pl.=) MyPa. (2.8)

de A

The frequency profiles for paired positions are reformdaealogously.

2.5 Covariance models

Given a multiple sequence alignment of related RNAs (i.eRBiA family) annotated with a con-
sensus secondary structure, a covariance model (CM) oflifrareent can be used for searching
sequence databases for homologous RNAs and computingphawéquence-structure alignments.
CMs extend the concept of profile hidden Markov models (pHMIFE, [39], which are very
prominent in the field of protein homology searchl[76], 77]. £Nke pHMMs, contain position
specific information about the conservation of the columhthe multiple sequence alignment.
However, they are more complex than pHMMs, capturing nog pniimary sequence but also sec-
ondary structure information of the respective RNA familiis is achieved by treating base paired
positions of the sequence alignment as dependent unitspirast to pHMMs where each position
of the alignment is treated independently.

Covariance models are the formulation of profile stochastistext-free grammars (SCFGs) to
model RNAs introduced by Eddy and Durbin [78] 39]. Thereftoainderstand covariance models,
it is important to understand the underlying concept of grears, which is reviewed next. We
remark that SCFGs for RNA analysis were independently dhtced by Sakakibara et dl. |[79,/80].

Foundations of context-free grammars

Natural and computer languages present regularities,hndre formalized and studied by gener-
ative grammars. These grammars have rules that define npthowl strings are generated, but
also allow to determine whether existing strings could Hasen generated by a specific grammar.
These properties led to a wide application of generativengrars for the analysis of biological
sequences [39]. We define a generative grammar as follows.

Definition 9 A generative grammar is a tupl&V, >, P,S) where:

22

2.5 Covariance models

e N is a finite set of abstragtonterminal symbolsot appearing in strings generated by the
grammar. By convention, these symbols are uppercase.

e Y is afinite set oferminal symbolsconsisting e.g. of characters denoting a base from alpha-
bet.A. By convention, these symbols are lowercase.

e P is afinite set oproduction rules(X U N)*NT (X U N)* — (X U N)*, where(X U N)*
denotes zero or more occurrencessbf) N and N+ denotes at least one occurrence of a
nonterminal symbol ofV. One says that the left-hand side of the mteduces generates
or emitsthe right-hand side.

e S € N is astart symbohllowing for the application of production rules from

Terminal and nonterminal symbols are also referred to aplgiterminalsandnonterminals

Generative grammars of particular interest for the anslpéiRNA sequences armontext-free
grammars(CFGs), which are formalized by Chomsky [81] 82] as follows.

Definition 10 A context-free grammar is a generative gramr >, P, S), such that each
production rule ofP satisfiesx — 3, wherea € N andg € (X U N)*. That is, the left-hand side
of the production rule must consist of one nonterminal only.

As an example, a CFG for generating strings with an equal eurobOs and 1s is{G}, {0, 1},
S — 0S1S | 1S0S | €, S), where {" meansor. To generate a string from this grammar, we apply,
beginning with nonterminal start symb®| successive production rules froRy replacing step by
step the left-hand side of the rule with the right-hand sides can be repeated until the generated
string contains only terminal symbols. The successiveiegidn of production rules that trans-
forms the start symbd into a string, replacing at each step the left-hand side efule with the
right-hand side, is called derivation of the string from the grammar. A derivation of an example
string 00011101 generated by the above grammar can be eepedsas

S = 0S1S = 00S1S10S1S = 000S1S1101 = 00011101.

To determine whether a given string could have been germebgta given CFG, we build a deriva-
tion of the string or show that no such derivation exists. Ter means that the string cannot
be generated with the grammar. To build a derivation, werbagits right-hand side and apply
production rules backwards until we obtain only the starhisgl S. The process of building a
derivation for a given sequence is callgarsing while a sequence of production rules generating
the sequence in question is callegharseof the sequence. If the CFG allows to build more than
one parse for the same sequence, the CREnisiguous

23

2 Existing RNA homology search methods

(A) seqd: cGrancc (B) oY@
seqB: CCAAAGG 6 @
R ((...)) | |
C—G

57 N3

Figure 2.6: (A) Two example RNA sequences with a consenstengary structure stringg. (B)
Drawing of the respective branching secondary structutl Wases from sequence
segA In both (A) and (B), the first (second) stem-loop substmecin 5’ to 3’ direction
is highlighted in red (orange).

Using context-free grammars to model RNA primary and second ary
structure

A CFG can be used to model both the primary sequence and theday structure of RNAs. This
is accomplished with different nonterminals and productioles, including a nonterminal for the
simultaneous generation of two terminals corresponding base pair and nonterminals for the
generation of unpaired bases. For example, consider seegssegAandseqBgiven in Figurd 2.6
(A) along with a consensus secondary structure stitngo define a CFG generating these se-
guences and respective consensus secondary structursgwmnterminal® for an emission of
abase pair(a,b) € A x A and production rul® — aWb, whereW is any nonterminal symbol
from the set of nonterminald’. For an emission of a single base on téf of a nonterminal, we
use nonterminalé and production ruld. — aWW. Observe that the consensus secondary struc-
ture branches into two stem-loops (see Fiduré 2.6 (B)). &fbeg, we also use a nontermirial
denotingbifurcation (i.e. branching allowing an emission of two nonterminals with a single pro-
duction rule. To denote th&tart andend of the structure and structural elements like stem-loops,
we use nonterminalS andE, respectively. We can now define the complete set of nontedsi
asN = {S, L, P, B, E}, the set of terminals a8 = {a, b}, and the set of production rules as
P=yy {S—> WL — aW,P - aWb} U{B — SS,E — ¢}. Using this CFG, we give in
Figurvél%i? (A) the parses generatisggAandseqBwith bases assigned to terminalandb. Note
that a parse of a sequence and structure can be represettiedonm of aparse treeas shown in
Figure[2.T (B) forseqA By traversing the tree top down, we can obtsémA Note also that, given
only the tree, we can precisely obtain the structure stfingf seqAby looking at the topology of
the tree and observing that each base beside nodes withrmamaél is unpaired and that bases
beside nodes with nonterminBlare paired. This representation of a sequence-structuse pa a
parse tree will be useful for defining CMs.

24

2.5 Covariance models

(A) seqA seqB
GGAAACC CCAAAGG B
((...)) ((...)) S

S>B S>P S>P M cBb

B>SS P->GPC P> CPG v
P> GLC P> CLG CHC <P
L-> AL L-> AL a L
L->AL L—>AL Al L
L-> AE L > AE A [
E—>¢ E—>¢ E

Figure 2.7: (A). Parses of sequensesjAandseqBand respective secondary structure for the CFG
given in the main text with bases assigned to terminal symbidie first two produc-
tion rules on the left are common to the parses of both seggeriB) Parse tree of
sequencesegAand its secondary structure. Colors correspond to the cigpestem-
loop substructures.

From stochastic context-free grammars to covariance model S

Commonly, more than one parse can generate the same se@mhstructure of an RNA using
a given CFG. That is, the CFG is ambiguous. Such a parse, ashdmb until here, cannot be
preferred over another due to the absence of a measure dfygmakcoring. However, for the
analysis of RNA sequences, we are not simply interestedterméning whether a sequence can be
parsed by the grammar. We need a grammar allowing to modgtitinary and secondary structure
of an RNA family provided as a multiple alignment of its menmdavhich can be used to parse
and score a target sequence. This is possible stidbhastic context-free grammaSCFGs), the
probabilistic variants of (CFGs), defined as follows.

Definition 11 A stochastic context-free gramm&CFG) is a CFGG = (N, %, P,S) that
assigns to each production ruile= P a probabilityp(A) : A — R. Foranya € N,

k
Z ola—=B) =1
i=1
must hold, wheres,, 3., i are all the possible productions fram The probabilityP(S, 7 | G)
that a sequencé using a parse tree is generated givelds is the product of all probabilities
o(a — B) for all useda: — S in 7. The probabilityP (S| G) that sequenc$ is generated givety
is the sum ove (S, 7 | G) for all possible parse treesthat generate.

25

2 Existing RNA homology search methods

The idea of applying SCFGs for RNA analysis is to use it tocbaimodel from an RNA family that
can parse and score target sequences. Target sequencesific parses from the model generat-
ing the sequences with a high probability receive a highescbhis score will suggest a possible
homology between the RNA family from which the model wastoaiild the target sequence.

A limitation of SCFGs is that an emission of a terminal or montinal symbol only depends on
the available nonterminal symbol and production rule. TisaBCFGs do not contain information
about the columns of the alignment of the query RNA, such ae fraquencies in each column or
the alignment length. This hinders the use of SCFGs for RNdlogy search. This limitation is
overcome with the formulation of SCFGs to model RNAs calledaziance models (CMs). Like
the CFG of the example above, CMs contain nonterminal sysrifbolbase emissions and structure
modeling. To incorporate position specific information aibthe input multiple sequence align-
ment, like it is done in pHHMSs, repetitive honterminals famgrating the primary and secondary
structure are connected via transitions. A transition fromonterminal to another has a certain
probability. Base emitting nonterminals have a direct egpondence to one unpaired alignment
column or to two paired columns. Therefore, they are alsigjagd base emission probabilities re-
flecting the distribution of the bases observed in the specdiumn(s). All nonterminals of a CM
are calledstates

Given a structure-annotated RNA multiple sequence alignymie construct a CM we must, in a
first step, define its structure topology connecting itsestalin a second step, we compute the state
emission and transition probabilities.

The CM topology is based on a tree-like structure resemiliegonsensus secondary structure of
the sequences in the input alignment. In fact, this strectcalledguide tree is the parse tree of
the consensus structure. Because the guide tree reprédsemisnsensus of both the structure and
sequence of an RNA family, certain columns of the alignmeatignored, e.g. columns consisting
mostly of gaps. Here, we assume that the consensus coluernlumns that are not ignored, are
given. For an example of a guide tree built from an RNA aligntrennotated with a consensus
secondary structure, see Figures 2.8 (A) and (B). The guédehtas different types of nodes. The
first five node types we list below are strictly required to wlefihe tree topology and do not have a
direct relation to alignment columns.

1. AROOT node is used at the top of the tree. See an example in Higu(8R.8

2. BIF nodes are used for bifurcations (i.e. branching) of mudtgiem-loops and multi-branch
loops. Observe in the example in Figlrel2.8 (A) that the cusIsE structuré? contains two
base pairg2,4) and(7,9). These base pairs induce each a stem-loop substructunébeesc
by a branch of the guide tree in subfigure (B). Hence, these-kieps cause a bifurcation of
the tree into two branches.

26

2.5 Covariance models

(A) seql: CUAAUGCAG- (B) ROOT: S
seq2: AGACA-GACU 1| MATL: L
seq3: A—A-A-CAGU MATR: R |10
R ANk BEGL'SBIF:B BEGR: S
12345678910 . .
2| MATP: P |4 5(MATL: L
3| MATL: L 7| MATP: P |9
END: E 8| MATL: L
END: E

Figure 2.8: (A) Example of an RNA multiple alignment conisigtof sequenceseql seq2 and
seq3annotated with a consensus secondary structure sRingonsensus alignment
columns are highlighted in gray. (B) Guide tree of the aligmtin (A) resembling its
consensus secondary structure and alignment columns.urhbars beside each node
in the tree indicate the corresponding column of the aligmm&, L, R, B, P, and E
within each node are the associated states.

3. BEGL nodes are used at the beginning of a left branch of a bifuncatn the example in
Figure 2.8, the left branch is the first stem-loop from leftigit (5’ to 3’ direction) to which
base pail2, 4) belongs.

4. BEGR nodes are used at the beginning of a right branch of a bifiorcat
5. END nodes are used at the end of the tree or branches of bifursatio
The following three types of nodes correspond directly te ontwo alignment columns.

1. MATP (match base pair) nodes correspond each to two base-paitatires of the align-
ment. As an example, see in the guide tree in Figure 2.8 (BjvibeMATP nodes corre-
sponding to the two base paif® 4) and(7,9) in Rin subfigure (A).

2. MATL (match base leftwise) nodes correspond to a column of tharaknt of an unpaired
base on the left-hand side of a base pdiATL nodes are also used for columns within base
pairs, e.g. loops, and columns of an alignment without bags.pAs an example, tHdATL
nodes in the guide tree in Figure 2.8 (B) correspond to algmtroolumns 1, 3, 5, and 8.

3. MATR (match base rightwise) nodes correspond to a column of itperaént of an unpaired
base on the right-hand side of a base pair. In the exampleguréfi2.8, the onlyMATR
node corresponds to position 10 of the alignment. Note tbaitipn 5 of the alignment is
considered for modeling to be on the left of the second steap-from left to right and,
consequently, it is modeled withMATL node.

To enable the generation of a sequence by the guide tremdesrare assigned each a state, i.e. a
nonterminal symbol. For emissions of single bases and kaisethere are three states. These are

27

2 Existing RNA homology search methods

node | state (guide tree) production rule| states (CM)

MATP P P— aWb MP, ML, MR, IL, IR, D
MATL L L—aW ML, IL,D

MATR R R— Wb MR,IR,D

ROOT S S—>W S,IL,IR

BIF B B — SS B

BEGL S S—W S

BEGR S S—>W S,IL

END E E—e E

Table 2.1: Nodes that build up a guide tree for the constynadif a covariance model, state asso-
ciated to each node in the guide tree, corresponding prioduetle, and states assigned
to each type of node in a covariance modglis a symbol from the set of nonterminals
{P,L,R,S, B, E} anda andb are terminal symbols representing an arbitrary base. Table
adapted from[83].

stateP, assigned td/ATP nodes for generatingase pairsand states andR, assigned td/ATL
and MATR nodes, respectively, for generating bases onldfte andright-hand side of the state
(also calledeftwiseandrightwise base generation). Since there cantbe 4 different base pairs,
P has 16 emission probabilities, ahdandR have each 4 emission probabilities. There are also
three states which do not emit bases but are required forathesdefining the guide tree topology.
These are statB (bifurcation), assigned t@&IF nodes, staté (start), assigned t&ROOT, BEGL,
andBEGR nodes, and state (end assigned t&ND nodesB, S, andE have emission probability
1, becausd3 andS can only emit nonterminal symbols atidcan only emit the empty string
The types of guide tree nodes with each associated stateraddgtion rule are summarized in
Table[2.1. Observe also in Figure]2.8 (B) the guide tree el@miph states assigned to each type
of node.

A CM must allow for variations of the sequence and structetative to the input RNA multiple
sequence alignment, so that it can be used to parse putativelbgous sequences not occurring in
the input alignment. However, a guide tree can only repitabensingle RNA whose primary and
secondary structure corresponds to the consensus of gmerant. To obtain a CM from a guide
tree, we assign each node not only one but multiple statesseTare essentially the same states
used in the guide tree, but some are expanded to variousidiiped” states to differ between base
emissions that correspond to a base match or an inserti@e &aitting states receive a prefix
M and a prefix | indicating a match and an insertion, respelstiStates, L, andR, therefore,
becomeMP, ML, MR, IR, andIL. A new stateD is also created to model base deletion. In summary,
the nodes of a CM and their assigned states become as follows.

e NodeMATL: statedviL, IL, andD (match leftwise, insert leftwise, and deletion, respexdyiu

28

2.5 Covariance models

e NodeMATR: statesMR, IR, andD (match rightwise, insert rightwise, and deletion, respec-
tively).

e NodeMATP: statesMP, ML, MR, IL, IR, andD. Here,ML andMR indicate a match of the
base occurring on the 5" and 3’ side of the pair, respectiélandIR indicate an insertion
on the 5’ and 3’ side of the pair, respectively.

e NodeBIF: stateB (bifurcation).
e NodeROOT: statesS, IL, andIR (start, insert leftwise, insert rightwise, respectively)
e NodeBEGL: stateS (start).
e NodeBEGR: statesS andIL (start and insert leftwise, respectively).
e NodeEND: stateE (end).
All node types of a CM and respective states are summarizaid agTabld 2.11.

Once the nodes are assigned their respective states,atatmsnnected via transitions. States may
transition to all insert states of the same node and to alinsert states of the next node. Insert
states have a state transition to themselves. In nodes mgdelse pairs, insert statdshave a
transition to insert statd® but not vice versaB states transition to twb states and states do not
transition do any state. The final CM (until here without ctd¢ed state transition and emission
probabilities) is a directed graph without cycles, excegdf sansitions of insert states. For an
example of a CM showing its state transitions, see Figuie/#eote that, using a CM and its guide
tree, each sequence in the input multiple sequence aligntaerbe converted unambiguously to
a parse tree. In this parse tree, the bases of the sequenadsanthe gaps, as they appear in
the alignment, are assigned to states of the CM. Convetbely\CM is able to generate the input
sequences via a traversal of the CM parse tree of each segbegnning at its root state and
ending at its end states. See Figure P.10 (A) for an examm@eQ traversal and Figufe 2J10 (B)
for the respective parse tree generating a sequence.

The second step in the construction of a CM is to compute #te #ansition and emission proba-
bilities. For this computation, we count, in the parse trefethe sequences in the input alignment,
the number of times each particular transition and emiseimurs. LetA;, , be the number of
counted transitions from a stateto a state;. The transition probability from a stafeto a statey

is defined as
Apg

kg = =3 — 2.9
k,q Zq, Ak7q/ ()

whereq’ is any state to which a transition froknis possible. As an example, observe the transition
probabilities in Figuré 2.11 (A) computed from the parsesren Figurd 2.70 (B). Now leE, (b)
be the number of observed emissions of a liasestateq. The emission probability of badein
statek is defined as

By (b)

ex(b) = WA (2.10)

29

2 Existing RNA homology search methods

BEGR
CIIL |

MATL ML D

IL

MATP L1 MPI[MR][D
IL IR
MATL

Figure 2.9: Covariance model obtained from the guide tregvshn Figurd 2.8 (B). The names of
the states in small rectangles, which are mostly derived fitte names of the states in
the guide tree by adding prefix M (match) and | (insertiong @rouped according to
the type of node. The arrows indicate the allowed state itrans.

30

2.5 Covariance models

(A) ROOT S
IL IR
MATL)
IL
MATR YRk
IR
BIF
[B]

—
(L= RD
VATL e

BED]

(B) seql: CUAAUGCAG-
seq2: AGACA-GACU
seq3: A-A-A-CAGU

()=l

seql: S seq2: S seq3: S
C| ML Al ML Al ML
D MR |U MR |U
B B B
S S S S S S
ULMP (A Ul ML G| MP |C A| ML D Al ML
Al ML GLIL A| ML G|MP |Cc Al ML C|MP |G
E CILMP |G E A ML E Al ML
A ML E E
E

Figure 2.10: (A) Covariance model from Figure]2.9 highlightin green the path from the root
to its ending states that leads to the parse tree of sequendérom Figure[2.8 and
shown again here in (B). (B) Parse trees of sequesegd seq2 andseq3for the
given covariance model. The characters beside each nodleedbases emitted by the
node state. Note that a parse tree corresponds to exactlpathen the covariance
model, as shown for the parse treesefjlhighlighted in green.

31

2 Existing RNA homology search methods

wherel’ is any base frond. Observe, as an example, the emission probabilities i@l (B)
computed from the parse trees in Figure 2.10 (B).

Parameters, , andey(b) are themaximum likelihood estimatorfer the CM [39]. That is, they
maximize the probability that the CM generates the sequeotthe input alignment.

A problem that can occur with this simple computation of siian and emission probabilities is
the overfitting of the CM when it is used for homology searchthie extreme case, transitions and
emissions not occurring in the input alignment receive phility zero. This can be observed in the
example in Figure 2.11. Consequently, instead of penaligig. the occurrence of a base in the tar-
get sequence corresponding to a position in the model whatbdase was not seen, the parse of the
complete target sequence will also have probability zetbtherefore be forbidden. Consequently,
the target sequence will not be considered homologous. did #his, pseudocounts callgxtiors
are added tod;, , and £, (b). If all priors are set equally, they are said todnr@nformative Unin-
formative priors, however, can disproportionately affiexidels built from only a few sequences.
A better choice is to compuieformativebiologically motivated priors, using e.g. mixture Dirich-
let densities[[84]. These rely on the base distributiondsity occurring in columns of multiple
alignments of a larger dataset. Mixture Dirichlet densijtieombined with the observed counts in
the input multiple sequence alignment, were shown to censiily improve the sensitivity and
specificity of CMs[85].

Using covariance models for RNA homology search and alignme nt
computation

Consider a target RNA sequenSeand a CM4 built from a query RNA family. IfS can be gener-
ated fromé with a reasonably high probabiliti (S, 7 | 8) using CM parse tree, then the usual
assumption is that' and the query family are probably homologow¥.S, 7 | §) is obtained by
simply multiplying the state emission and transition ptaibtes observed during a traversal of the
parse treer that generates§. Alternatively, we can comput®(.S| §) by summing ove (S, r | 0)

for all possible parse treesthat generaté&. We remark that, commonly, the transition and emis-
sion probabilities are converted into log-odds scores hadéquence is then scored by summing
up these scores.

In practice, in homology search sequere&an have a large length, making it more sensible
to score substring$’ of S of a certain lengthn < n. To score these substrings, a solution is
to consider the parse treg that generates eac$f with the highest probability, i.e. for any,
P(S,7|0) < P(S,7*|6). GivenS and CM@, substringsS’ of S can be scored using a CM version
of the Cocke-Younger-KasamC{YK) algorithm [86, 87| 88, 39], which simultaneously finds the
“best” parse tree™ for each substring. Another way to score substriiis to sum up the scores of
all parse trees that generatt obtaining the score equivalent B{ S|#). This can be done using the
Inside algorithm [39].Insideand CYK use dynamic programming and requife(nm?) time and

32

2.5 Covariance models

s

(A) ROOT 3
T A@

BIF

(B)

w o
w

ceap
cooo
ceap
~ O O O

Figure 2.11: (A) First four nodes of the covariance modeliguFe[Z2.9 showing its state transition
probabilities. State transitions in red have probabiliyaz (B) Base emission proba-
bilities of the colored statel¥lL. andMR for this covariance model. The transition and
emission probabilities are computed from the parse tre&sgire[2.10 (B), remark-
ing that the emission probabilities follow the distributiof the bases observed in the
corresponding columns of the multiple alignment used ttdibie covariance model.

33

2 Existing RNA homology search methods

O (m?*) space. NotablyCYK andInsideare analogous to théterbi andForward algorithms [39]
for (profile) hidden Markov models.

The CYK algorithm suggests that a given CM can be used to compute tiphaidequence align-
ment. For instance, consider a set of RNAs without second@iagcture annotation. For each of
these sequences, we can compute a CM parse tree, from whidoltmns of each sequence in
the alignment can directly be read. Hence, computing a plel8equence alignment consists in
computing the best parse tree of each sequence, acconaplisthethe CYK algorithm.

Software using covariance models

A major disadvantage of CMs is the large time complexity & @YK andInsidealgorithms. For
this reason, CMs are often used in combination with preréilthat use only sequence or some
amount of structure information of the query RNA. For exagnph initial step in building an RNA
family of the Rfam databaseé [B4] is searching the Rfam sexpieatabase witBlast [35] using
query sequences from the family’s seed alignment. The segsebelow some E-value thresh-
old are then searched using thdernal software [89] 40] with the CM built from the family’s
seed alignment annotated with secondary structure. Otloés apply different search strategies.
RaveNnA9QQ] converts CMs into pHHMSs to take advantage of the redwmedplexity of pHHMs.
Multi-segmentCYK (MSCYRK [91] simplifies CMs for the computation of ungapped struatu
alignments. Structure-based query-dependent bandind3J(&b] accelerates CM searches by
performing computationally expensive recursions onhhimitoands of the dynamic programming
matrix where the optimal alignment is likely to lie.

The most prominent software using CMslidernal [89, [40]. It consists of tools for the CM
construction and database search of a query RNA multipleeseg alignment annotated with a
consensus secondary structure. It can also be used to maikense- and structure-based RNA
sequence alignments. The CM constructedrfgrnal follows the description above. State tran-
sition and base emission probabilities incorporate mémirichlet priors for more sensitive and
specific searches. Since the algorithms for database ssansing CMs are too slow for practical
use,Infernal uses a filtering pipeline comprising two main stages. The siage consists in ap-
plying filters based on hidden Markov models (HMMs), i.e.@oeequence-based filters, whereas
the second stage consists in searching the (sub)sequanwasng the first stage with CMs. As

of version 1.0 ofinfernal, the first stage consists of a single filtering step relyingaonmple-
mentation of pHHMSs as in thRaveNnAool mentioned above. The second stage consists of two
steps. First, accelerated CM searches are performed usarg-dependent banding (QDB). And
second, CM searches use the slower but more spén#ide algorithm. As of this writing, the
current version 1.1 dinfernal incorporates a more sophisticated combination of algmstim the
filtering pipeline. In the first stagénfernal scores sequences using the following HMM-based algo-
rithms: (1)SSV(Single Segment Vitetbtomputes and extends high-scoring ungapped alignments,
(2) Viterbi with gaps, and (3) locaforward, i.e. the Forward algorithm operating in local mode.

34

2.5 Covariance models

These three algorithms, which are also implemented irHMMER3software package [92], are
responsible for large speedups compared to previous warsidnfernal. In the second stage, the
(sub)sequences that survived each filter of the first stagys@red using banded versions of the
CYKandlInsidealgorithms and are finally processed with the standi@sitiealgorithm. For a more
detailed description of thinfernal filtering pipeline, see thénfernal manual [[93]. We note that,
for accelerated searches of query RNAs without base gafiexnal applies only HMM-based fil-
ters, avoiding the CM-based stage. This is possible, sidds @ainly differ from HMMs by their
ability to model base pairs. In the absence of these, CMs aiMifigipresent the same sensitivity.
Obviously, filters are a trade-off between speed and seitgitBecause stringent filters accelerate
search but can eliminate from the search space potentigly dtoring sequences, they must be
used with caution. For a discussion about the filters imptaatkinInfernal 1.0, their tuning and
effect on search, see chapter 4[of|[94].

Another program using CMs RSEARCH74]. An important difference tinfernalis that it builds

a CM from a single query RNA sequence annotated with secgratiarcture. Hence, the CM topol-
ogy is obtained from the guide tree of the unique sequenber#tan from a multiple alignment
consensus. Because no emission and transition probedititin be computed from the single query
RNA, RSEARCHIses a position independent substitution matrix called®8BM and gap penal-
ties to score target sequences. RIBOSUM has 4 and 16 x 16 entries for the substitution of
single bases and base pairs, respectively, which are cechpmalogously to entries in BLOSUM
matrices used in protein searchies|[95]. That is, they aredity scores of the base frequencies ob-
served in alignments of homologous RNAs. The gap penaltees@nputed using a standard affine
gap penalty formulation as + Sn, whereq is the gap opening penalty, is a gap extension, and
n is the size of the gap. Despite the different used scoR®-ARCHises for homology search
the sameCYK algorithm asinfernal. SinceRSEARCHenables the search for homologous RNAs
from a single query RNA, we remark, as in [94], that it palfialddresses the problem of model
overfitting discussed above. However, its performancergels influenced by the quality of the
used RIBOSUM matrix (see [74]).

The Rfam RNA family database

Rfam [34] is a database of families of homologous non-co@NAs sharing sequence and struc-
ture information, primarily created for genome annotatiBach family is represented by a seed
and a full alignment annotated with a consensus secondaictste and a CM. The seed alignment
contains representative sequence members of the familig dwathd-curated or experimentally vali-
dated from published literature. From the seed alignme@iylas built using thdnfernal software.
To search the Rfam sequence database, called Rfamseqtdtiv@inomologous sequences, one
first appliesBlastN [35] using sequences from the seed alignment. The sequanBéamseq sur-
viving an E-value threshold are then searched with the RNt Found putative homologues are
aligned using the CM and merged with the seed alignment ta the full alignment. Rfam was

35

2 Existing RNA homology search methods

first released in 2002 containing 25 families (version lviereas the latest release from 2012
contains 2,208 families (version 11.0). This tremendowasvtir became possible by the automatic
maintenance of the full alignments enabledibfernal using CMs. But perhaps, more importantly,
it can also be credited to the search time improvemenisfefnal achieved by incorporating a fil-
tering pipeline as described above. This allowed to takeactount many new non-coding RNAs
reported since 2002.

2.6 Descriptor-based search methods

Descriptor-based RNA homology search methods provide gukege for defining RNA motif de-
scriptors, here also callesbquence-structure patterrsontaining primary and secondary structure
properties of an RNA family. The pattern for a family must begefined using e.g. information
from an externally computed multiple sequence-structliggment of the specific RNA family. In
addition to a language, these tools provide a method tolsedth the patterns in large sequence
databases.

Sequence-structure patterns supported by the tools iodtégory can, in general, describe all RNA
secondary structure elements (see Figure 1.1). The pattemmally consist of strings of IUPAC
characters including ambiguous symbols, e.g. N meaningbasg from alphabetl (formally,
©(N) = A), and of base pairing information about these charactdnesd strings of IUPAC
characters indicate which bases caatchdesignated positions within the pattern, whereas the base
pairing information further constrains matching bases.dxample, allowing only complementary
bases to form pairs, two paired positions encoded with chardN have only 6 combinations of
possible matching bases instead4ok 4 for two unpaired positions. Commonly, a number of
allowed errors such as base mismatches can be specifiedaliD@esequence-structure pattern
describes a subset of strings fradT \ {¢} matching the pattern. The goal of descriptor-based
search methods is to find all occurrences of the substrintigsrsubset in a target database.

One of the most popular tools in this categoryRBIAMotif [42]. A sequence-structure pattern
in RNAMotifs descriptor language consists basically of paired anciweg elements. A single-
stranded element corresponding to continuous unpairatigrsis described with the expression
ss and a helical element, e.g. the stem of a stem-loop, is destwithh5 andh3 denoting the 5’
and 3’ sides of the stem. A pattern is defined as a list of sucictstral elements stating their rel-
ative positions within the pattern; see an example in Fiui2 (B). Immediately following each
element, the user can specify in parenthesis the sequeiocmation of the element, its minimum
and maximum length, a number of allowed mismatches, amdmg atformation. A description
of RNAMotifs descriptor language is available in a detailed mariug]. [P6evious tools in this
category areRNAMOT[97], a variant implementation of it calldeNABOB98], andPatScar{99].
Patterns for these tools are also defined as a list of pair@digpaired elements, with some differ-
ences in syntax and flexibility. For instanédNABORBallows for mismatches in paired and unpaired

36

2.6 Descriptor-based search methods

RNAMotif RNABOB

(B) parms (C) s1 hl s2 h2 s3 h2' s4 h3 s5 h3' s6 hl' s7
wc += gu;
sl 0 S
descr hl 0:0 **NNNNNN : NNNNNN* *
ss (seg=""Ss$") s2 0 C
h5 (minlen=6, maxlen=8) h2 1:1 UGKGC:GCMCA
ss (seg=""C$") s3 2 UWGA
h5 (mismatch=1, seq="~UGKGCS$") s4 0 CUGAYGA
ss (mismatch=2, seg=""UWGAS") h3 0:0 GYCB:MGRC
h3 (segq=""~GCMCAS") s5 0 [3]YUGARAUR
ss (seg=""CUGAYGAS") s6 0 GAA
h5 (segq=""GYCBS$") s7 0 S

ss (seg=""N\{0, 3\ } YUGARAURS")
h3 (seg=""MGRCS$")

Ss (seg=""GAAS")
h3
ss (seg=""Ss$")

Figure 2.12: (A) Consensus primary and secondary struatfir@NA family Hammerhead ri-
bozyme (type Ill) (Rfam Acc.: RF00008). (B) Sequence-dtrue pattern irRNAMo-
tif 's descriptor language capturing primary and secondaugtsire properties of this
family. The pattern is relaxed to match between 6 and 8 comgigary base pairs in
the positions corresponding to the stem drawn in blue. litiatd the pattern allows
for mismatches in the structural elements specified withkhevord mismatchand
for up to 3 insertions in the loop closed by the stem drawn ange. (C) Sequence-
structure pattern iRNABOBs descriptor language for the same RNA family. After
the list of structural elements defining their position \vitthe pattern, each elementis
more precisely defined. The single or pair of numbers, elg fallowing an identifier
of an unpaired or paired element, respectively, is the nuraballowed mismatches
for the respective element. This pattern also allows to mb&tween 6 and 8 comple-
mentary base pairs in the positions corresponding to tme dtawn in blue, wher&
means 0 or 1 N. Similarly,[3]” used in elemens5means 0 to 3 Ns.

37

2 Existing RNA homology search methods

(A) sl
sl

s2
H2
s3
s4
H3
s5
s6
s7

RNAMOT PatScan
s2 H2 s3 H2 s4 H3 s5 H3 s6 HL s7 (B) r1={au,ua,cq,Gc,Gu, UG}

S

1:1 S
C

1:1 C P2=UGKGC

5:5 1 UGKGC:GCMCA UWGA[2,0,0]

4:4 UWGA rl~p2

7:7 CUGAYGA CUGAYGA

4:4 0 GYCB:MGRC p3=GYCB

8:11 YUGARAUR YUGARAUR

3:3 GAA rl~p3

1:1 S GAA

S

Figure 2.13: (A) Sequence-structure patterlRMAMOTS descriptor language for the RNA struc-

38

ture shown in Figuré 2.12 (A). Despite sharing a similar aynwith RNABOB here
the pair of numbers, e.g. 1:1 or 6:8, following each eleméaniifier is the minimum
and maximum length of the element (instead of a number atlowesmatches as in
RNABOB. In RNAMOT, mismatches are only allowed in paired elements, specified
after the pair of numbers denoting possible lengths of tameht. In this example, 1
mismatch is allowed for the paired eleméii2 in green. (B) Sequence-structure pat-
tern inPatScars descriptor language. defines a set of allowed base pairs. Unpaired
elements are simply given as a string of IUPAC charactersdrezeded by character
p) optionally followed by three numbers in brackets meaninghis order, a number
of allowed mismatches, insertions, and deletions. As amgl& matches to unpaired
element UWGA can contain up to 2 mismatches. Strings precbgep are paired,
whereas their complement is specified wjthA range, e.g. 6...8 specified for element
pl, is the minimum and maximum length of the respective element

2.7 Concluding remarks on existing RNA homology search oush

elements, whereaRNAMOT only supports mismatches in paired elements. For an exaofe
pattern foRNABOBRNAMOT, andPatScansee Figures 2.12 (), 2]13 (A), dnd 2.13 (B), respec-
tively. Another tool,Palingol [10Q], provides a powerful descriptor language to modehpriy and
secondary properties of an RNA molecule. However, despitegpowerful, its language complex-
ity may discourage its use by biologists. Except RMABOB all these tools provide a method to
score and rank matches, e.g. to prefer matches with a loweb&uof mismatched RNAMotif and
RNAMOQT), longer helicesRNAMOT), or minimum free energyRNAMOT). PatScarandPalingol

can score matches using position weight matrices typiceaflgcting base frequencies in columns
of a multiple sequence alignment of the sought RNA family.

The search for occurrences of a given sequence-structuagdrget sequence is performed in a
scanning fashion. For each position of the sequence, tikelRNAMotif andRNAMOTtry to se-
guentially match each paired and unpaired element in therpatf every element can be matched,
then an occurrence of the pattern can be scored and repddtsithat the same element sometimes
matches different substrings due to allowed errors, e.gmaiches, and variable length specified
by the user. Hence, if an element cannot be matched usingfatsyariations, the tools step back
to a previously matched element, try to match it with e.g.feedint length, and proceed with the
next element in a recursive manner. Due to the scanning dfatiget sequence, all tools in this
category have a running time that scales at least lineatlydrsize of the sequence.

2.7 Concluding remarks on existing RNA homology search
methods

Given one or more homologous query RNAs belonging to the daméy and a target sequence
to be searched for sequence and structure similaritiestidtiquery, the choice for a specific RNA
homology search method (see a summary in Table 2.2) can diegerarious properties of the
query and the target as follows.

e Number of homologous query sequendisvo or more homologous sequences are available,
it is important that information from the primary and secandstructure of all members of
the family can be combined into one query model for homolapreh. This is supported by
the models used byocARNAscaninfernal, ERPIN, as well as the descriptor-based meth-
ods RNAMotif, RNABOB RNAMOT, PatScan andPalingol. In the case of only one query
sequence, all these methods can still be used, whBI@BEARCHindERPINmay better bal-
ance sensitivity and specificity by using position indeparidsubstitution matrices. In this
second scenario, also methods performing pairwise cosgaimay be applied.

e Local or global sequence and structure similaritiitwo RNA sequences to be compared are
expected to contain sequence and structure similarittesdgihout their extension, then meth-
ods capable of performing global sequence-structure raligms can be appropriate. These

39

2 Existing RNA homology search methods

Method Description Time
Comparative methods (Sankoff-style simultaneous alignnre and folding)
Foldalign [65],/43] Computes pairwise local or global sequence-atrecalignment simplifying O (n4)
Sankoff’s algorithm[[64] by (1) not allowing for branchingrgctures or (2)
using a heuristic for pruning the used dynamic programmiagices

Dynalign [66] Computes a pairwise global sequence-structure akgnmsimplifying O (n*M?)
Sankoff’s algorithm by limiting the spaf/ between aligned bases

PMcomp[67] Computes pairwise global sequence-structure aligniseving running time by O (n4)
using precomputed base pairing probabilities from eacivithghl sequence

LocARNAJ44] PMcompsuccessor for computing pairwise local alignment savingjtamhal O (n” + m?)

running time by ignoring base pairings with low probability

LocARNAscaffi68] Scanning variant of theocARNAmethod suitable for searching for relativelyO (nmL2)
short homologs in a larger sequence database of known baseypgrobabil-
ities. Limits the sparl between aligned base pairs

Comparative methods (requiring known secondary structurg

MARNA[69] Computes a multiple alignment of a set of RNAs with knostructure by using O (m’n?)
(1) the algorithm of Jiangt al. [70] for pairwise sequence-structure alignment
and (2) the multiple sequence alignment tdaCoffed71]

RNAforestef72] Computes a pairwise local or global alignment of seeopdstructures repre- O (mnd2)
sented as trees of maximal degree

Method using secondary structure profiles (hot covariance rmdels)

ERPIN[73],[41] Builds a secondary structure profile from a multipegjuence alignment an- O (nm2)
notated with a consensus secondary structure, which ituken for database
searches

Methods using secondary structure profiles (covariance maals)

Infernal [89,(40] Builds a covariance model from a multiple sequealignment annotated with O (nmS)
a consensus secondary structure, which it can then usetfdvadse searches

RSEARCH74] Builds a covariance model from a single structure-aateal sequence and usesO (nm3)
it combined with a position independent substitution nxati score target se-
qguences

Descriptor-based methods

RNAMotif [42] Scans a target database searching for matches of arppiteided by the user O (nm)

as a list of structural elements, each of which can allow f@mmmatches, inser-
tions, and deletions of single bases or base pairs. Can s@iohed substrings
by number of mismatches or matches of specific bases
RNABOB[98] Similar toRNAMotif using its own descriptor language. Cannot rank matche® (nm)
RNAMOTI[97] Similar to RNAMotif using its own descriptor language, but allows for mis© (nm)
matches only in paired elements. Can rank matched substbnwgiumber of
mismatches, helix length, and minimum free energy

PatScan99] Similar toRNAMotif using its own descriptor language. Can score matches @{nm)
ing position weight matrices
Palingol [100Q] Similar toRNAMotif using its own descriptor language. Can score matches @3{nm)

ing position weight matrices

Table 2.2: Summary of RNA homology search methods. Colunimé&T refers to the time required
by the methods to compare two RNASs of lengttandn or to search a sequence database
of lengthn.

40

2.7 Concluding remarks on existing RNA homology search oush

include Foldalign, Dynalign, PMcomp MARNA RNAforesterInfernal, andRSEARCHIf,
however, the two sequences appear to be highly dissimildrttam intention is to discover
shorter common motifs, then methods for local sequencetsire alignments can be recom-
mended. These includeoldalign, LocARNA RNAforester Infernal, and RSEARCH Note
that some methods can operate to compute both global andalapaments.

e Length Global and local alignments are a sensible way to compareesees of similar
length. However, the high time complexity of methods basead@variance models and of
variants of the Sankoff algorithm enforces a limit on thegbnof the sequences. This lim-
itation affects programs likéoldalign, Dynalign andLocARNAdespite their running time
improvements compared to the original algorithm of Sankioffa different scenario, one
is interested in searching for occurrences of relativelyrskequence-structure patterns or
motifs in large sequence databases. This can be accomplisheomputing semi-global
alignments, aligning the complete motif model to subssinf the target sequence. Semi-
global alignment computation is supported llycARNAscannfernal, RSEARCHandER-
PIN. Although offering good sensitivity and specificity, alede methods suffer from high
computational demands and often can only be used with hiesri filters that affect their
sensitivity. Consequently, they are not well-suited fqidadatabase searches. An alternative
is to search with sequence-structure patterns using gésehased methods.

¢ Knowledge about secondary structuliethe secondary structure of the RNAs to be compared
is not known, then the Sankoff-style methods are most apiattep These methods can com-
bine information from the input sequences to infer a commemmordary structure. Methods
like MARNAand RNAforestercan also be used, but the quality of the produced alignments
can suffer from the poor quality of the folding of single RNAfowever, as already noted,
all these methods suffer from high running time complesitie

These properties of query and target RNAs along with theewsge applicable homology search
methods are summarized in Table]2.3. From this analysiseofitbthods it is easy to conclude
that a major limitation of these methods is their large ragniime, which is at least quadratic.
While descriptor-based methods are more appropriate ftdkk, they still have a running time
that scales at least linearly in the size of the sequencéakstaThis makes searching ever-growing
databases challenging. Furthermore, these methods cdg paodle mutations occurring on both
the sequence and structure levels. For instance, allovgedtions, deletions, or mispairings must
be predefined by the user at specific positions of the patt€his can lead to insensitive searches,
since RNAs often present low sequence conservation thouidheir extension.

In the following chapters, we present novel methods for iefficmatching of RNA sequence-
structure patterns. In this way, we address the limitatmfreurrent methods by enabling fast sen-
sitive and specific searches in large databases.

41

2 Existing RNA homology search methods

many one - very
global local similar . known unknown
query query . . different speed
similarity similarity length structure structure

sequencesequence lengths
Foldalign v v v v v ——
Dynalign v v v v -
PMcomp v v v v v —
LocARNA v v v v v —
LocARNAscan v a v v —
MARNA v v v v —
RNAforester v v v v -
Infernal v v v O v —
RSEARCH v v v O v —
ERPIN v v O v
RNAMotif v v 0 v
RNABOB v v 0 v
RNAMOT v v O v
PatScan v v a v
Palingol v v O v

Table 2.3: Possible properties of hypothetically givenrgund target RNAs to be compared and
suitable homology search methods for this task. For honyaegrches in large sequence
databases, one prerequisite is the capability of the mdihadmpare relatively short
sequence-structure patterns or models of the query witktisags of a larger target da-
tabase. Methods with this capability are indicated with @egrcheck mark in column
“very different lengths”. Another prerequisite are shartming times, informally de-
noted with column “speed”. For more details, see main text.

42

3 Fast index-based bidirectional search for
RNA sequence-structure patterns

3.1 Introduction

In the previous chapter, we described different approafthiesensitive and specific RNA homology
search. We saw that comparative methods or methods usingdaey structure profiles are too
slow for searching large databases. Therefore, desctijptsrd methods are best suited for rapid
searches. However, since the running time of these metteuls@ales at least linearly in the size of
the target sequence database, searching with these tadds ishallenging when it comes to large
databases. A solution with sublinear running time wouldinexindex data structures. Still, widely
used index structures like suffix treés [51] or arrays [52ihar FM-index [53] perform badly on
typical RNA sequence-structure patterns, because theyttaike advantage of the RNA structure
information.

Here, we present a fast descriptor-based method and seffalaRNA sequence-structure pattern
matching. The method consists of initially building an affixay [101], i.e. an index data structure
of the target database. Affix arrays cope well with strudtpedtern constraints by allowing for an
efficient matching order of the bases constituting the pattgtructurally symmetric patterns like
stem-loops can be matched inside out, such that first therbgipn is matched and, in subsequent
extensions, pairing positions on the boundaries are matcbasecutively. Because the matched
substring is extended to the left and to the right, this patteatching scheme is known bilirec-
tional search Unlike traditional left-to-right search where the two strings constituting the stem
region of the pattern are matched sequentially, in bidiveal search base complementarity con-
straints are checked as early as possible. This leads taificagt reduction of the search space that
has to be explored and in turn to a reduced running time. Weethat bidirectional search for RNA
sequence-structure patterns was also presented by Mailiriref102]. However, their method uses
affix trees[[103] instead of the more memory efficient affiags: Affix trees require with approx-
imately 45 bytes per input symbol more than twice the memory of affixye@@s bytes per input
symbol), making their application infeasible on a largdescsloreover, their method traverses the
affix tree in a breadth-first manner, leading to a space reougnt that grows exponentially with in-
creasing reading depth. We instead employ a depth-firstisedgorithm whose space requirement
is only proportional to the length of the searched substring

43

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

The affix array directly supports the search for sequencetsire patterns that describe sequence-
structure motifs with non-branching structure, for exaengtiem-loops. In contrast, e.g. the search
for stems closing a multi-loop is not directly supported.véitheless, even for RNA containing
multi-loops, the affix array can still speed up the search. @aneral approach for finding RNA
families with branching structure is to describe each dimop-substructure by a sequence-structure
pattern. Each of these patterns is matched independeritly tige affix array. Then, with a new
efficient chaining algorithm, we compute chains of matchaefhghat the chained matches reflect
the order of occurrence of the respective patterns in theecntd. Note that complex structures
containing one or more multi-loops can be expected to corgafficiently many non-branching
patterns, such that the proposed chaining strategy identifie matches with high specificity.

The description of our method closely follows [104].

3.2 Formal preliminaries

To formalize the concept of affix arrays and their applicatfor bidirectional search of RNA
sequence-structure patterns, we complement our defigitioren above with the following def-
initions.

Definition 12 We denote theeverse sequenas a sequencé = S[1]S[2] ... S[n] with S—! =
S[n])S[n — 1] ... S[1]. Thek-threverse prefiof S is the k—th suffix of S~L. For1 < k < n, S
denotes thé—th suffix of S and S, ' = (S~1); denotes thé—th reverse prefix of .

Definition 13 A sequence patteris a sequenc® € (AU®)*, recalling thatd = {A, C, G, U}
and® = {R,Y,M,K, W, S, B, D, H, V, N}. Let m denote its lengthP|. An occurrenceof P in a
sequence is a positioni, 1 < i < n, such thatS[i + k — 1] € p(P[k]) forall 1 < k < m.

Definition 14 An RNA sequence-structure pattern (RS&P¥ (P, R) of lengthm is a pair of
asequence patter®? and a structure string, both of lengthm.

Definition 15 A matchor occurrenceof Q of lengthm in an RNA sequenc# is an occurrence
i of Pin S, such that for all base paif,r) € R : (S[i +1 — 1], S[i +r — 1]) € C, whereC is
the set of complementary bases defined above. Note thatthigtllefinition, here we only allow
complementary bases to form base pairs. We define, in additi® as a mapping of a character
¢ € ® U A to the set of its complementary charactersdini.e.CS(c) = {d € A| Je € ¢(c) :
(d,e) € C}.

44

3.3 The affix array data structure

Bidirectional
search

Unidirectional
search

Figure 3.1: Unidirectional (left) and bidirectional (riglsearches for the RNA sequence-structure
pattern (RSSPQ = (P, R) with P = NNNUGCUNNNandR=(((....))),which
represents a stem-loop structure of length= 10. The numbers indicate the order in
which the pattern characters are matched against the segaence. In the unidirec-
tional search, the characters are matched in a singleigdinebieginning (ending) with a
character inp(P[1]) (¢(P[m])). In the bidirectional search, the loop region of the pat-
tern can be matched first. Then, pairing bases are matcheeadively by switching
the search direction, represented by the red arrows.

In the following, structures described by RSSPs are nondhiag. We also note that, for stating the
space requirements of our index structures, we assumgsthat232, such that sequence positions
and lengths can be stored4rbytes.

3.3 The affix array data structure

In [101] the theoretical concept of an index data structadéed affix arrayis described. This in-
dex structure supports efficient unidirectional as well igéréctional searches and is more space
efficient than the affix treé¢ [103, 105]. The tetmidirectional searchiefers to the search for occur-
rences of a sequence pattern where the pattern characemsmpared with sequence characters in
a left-to-right (right-to-left) order, i.e. the alreadyropared (matched) prefix (suffix), of the pattern
is extended to the right (left). Notably, a change of thedliom is not possible.

When searching for occurrences of sequence-structurerpsthowever, unidirectional search can-
not exploit the complementarity condition on base pairetepa positions. To utilize this condition
as effectively as possible, both positions of a base pail teebe accessed immediately after each
other. This is enabled blidirectional searchwhich refers to methods where the direction of the
match extension can be changed freely. Figurk 3.1 illestrite order of the character comparisons
of a sequence-structure pattern in the unidirectional dgidelotional searches.

Until now, affix arrays have received little attention in infimrmatics. Presumably, this has been
due to the lack of an open and robust implementation. As aecpuence, their potential for efficient
database search with RSSPs has hardly been recognizedeaddt#tils of this data structure are

45

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

not widely known in the field. Therefore, we briefly recall thasic ideas of the affix array, which
constitutes the central component of &iructatorapproach.

For notational convenience, we defifie = S andSR = S~1. We useS~ for statements that apply
to SF and SR. The subscripiX is used for other notions depending 8h and SR in an analogous
way. Furthermore, we introduce the notatibn= R andR = F. We reserve a charactér¢ A,
calledterminator symbaglfor marking the end of a sequendgis lexicographically larger than all
the characters inl.

The affix array data structure of a sequeide composed of six tables, namelyf andsufg, lcpg
andlcpr, andaflkg andaflkg. They are calleduffix longest common prefiandaffix link arrays
of SF and SR, respectively. Tablaufg is also known aseverse prefix arraysufx is an array
of integers in the rangé to n + 1 specifying the lexicographic order of the+ 1 suffixes of the
string.SX$. That is,Ss)ijm, Ss)ﬁfx[zp s szfx[nﬂ} is the sequence of suffixes 6 $ in ascending
lexicographic order. Each of the tablagr andsufg requires4n bytes and can be constructed in
O (n) time and spacé [106]. In practice non-linear time |07 HaBistruction algorithms are often

used as they are faster and require less space.

lcpx is atable in the rangéto n + 1 such thatcpx [1] = 0, andlcpx [4] is the length of the longest
common prefix betweeﬁs)lffx 1] andSs)lffX i for 1 <@ < n+ 1. Each of the tablepr andicpg
requiresn bytes and store entries with value uRfh, whereas occasional larger entries are stored
in an exception table usirgbytes per entry [109]. More space efficient representatidrise Icp
table are possible (see [110]). The constructioricpg andIcpg can be accomplished i€ (n)
time and space givesufg andsufg [111]. In contrast to[[101] where affix arrays were described
using a terminology derived from tree-like data structunge explain the underlying concepts
of this data structure in terms of intervals in the suffix grsaf x. Two important concepts of
affix arrays are suffix-intervals and Icp-intervals. An it [i..j] representing the set of suffixes
Ss)jfx[l.], . Ssiffx[j], 1 <i<j<n+1,ofwidthj — i+ 1, is asuffix-intervalin suf x with depth

(prefix length)¢ € {0,...,n}, or ¢-suffix-interval denoted? — [i..5], if and only if the following
three conditions hold:

1. lepx[i] < 4
2. lepx[j+1] < ¢;and
3. lepx[k] > tforallk e {i +1,...,5}.

We call a suffix-interval — [i..j] in suf x Icp-interval in suf x with Icp-value? € {0,...,n}, or
¢-interval, if and only if i < j andlcpx [k] = ¢ for at leastoné: € {i +1,...,5}.

For a suffix-intervall — [i..j] in suf x, we denote the common prefix of lengthof its suffixes

SX "Ss)ﬂfx[j} by 6x (¢ — [i..5]) = S¥[sufx[i]..suf x[i] + ¢ — 1]. In case of an Icp-interval

sufx[i]’ " *

¢ —[i..j]insufx, dx (¢ — [i..7]) is the longest common prefix of all suffixes in this interval.

In summary, a suffix-interval — [i..j] in suf x describes simultaneously:

46

3.3 The affix array data structure

i | sufeli] [lcpelil | aflkeli] | ST (SFy ? aflkli] | loprli] | sufrli] [i
1 3 0 1 | AGCUGCUGCUGCA AUAGCUGCUGCUGCA 1 0 1] 1
2 1 1 AUAGCUGCUGCUGCA AUA 1 13 2
3 15 1 A A 1 15| 3
4 14 0 4| CA e T AUAGC 8 0 1| 4
5 1 1 5 | CUGCA /ktiecuec 9 2 8|5
6 8 4 6 | CUGCUGCA AUAGCUGCUGC 10 5 506
7 5 7 CUGCUGCUGC AUAGCUGCUGCUGC 8 2 7
8 13 0 4 | GCA AUAG 8 0 12| 8
9 10 2 5 | GCUGCA AUAGCUG 9 1 91 9
10 7 5 6 | GCUGCUGCA AUAGCUGCUG 10 4 6|10
11 4 8 GCUGCUGCUGCA AUAGCUGCUGCUG 7 3011
12 2 0 12 | UAGCUGCUGCUGCA AU 12 0 14 |12
13 12 1 5 | UGCA AUAGCU 9 1 10 [13
14 9 3 6 | UGCUGCA AUAGCUGCU 10 3 7 |14
15 6 6 UGCUGCUGCA AUAGCUGCUGCU 6 4|15
16 16 0 0 16 | 16

Figure 3.2: Affix array forS = AUAGCUGCUGCUGCA. Some Icp-intervals are marked by rect-

angles and the affix links from an Icp-interval to its revergerval are represented by
arcs. The solid arc points in two directions, from the Icgeimalg = 5 — [9..11] in sufg
(on the left-hand side) to its reverse interyal' = 5 — [5..7] in sufg (on the right-hand
side) and vice versa. That ig,= (¢~!)~! (see Lemm&l2). The dotted arc points in
only one direction, from the Icp-interval = 4 — [5..7] in suf to its reverse interval
¢ ' =5—[5..7] in sufg. In this case, the reverse @f ! is (¢~ 1)~! = 5 — [9..11], and

q# (¢ H™h

Alocation in the index structuraif x by interval borders and;j and depthf. For an example,
see the yellow marked region in Figlirel3.2 which correspoadse suffix-intervalt — [5..7]

in sufg.

A (lexicographically ordered) sequence of suﬁiﬁgfx[i],...,sgjfxm. For an example,
consider the lexicographically ordered sequeﬁgﬁm = CUGCA, ... ,SSFume = CUGC-

UGCUGCA of suffixes in the suffix-interval — [5..7] in sufg in Figure[3.2.

A substring ofS¥ of length/, namelys x (¢ — [i..5]). That is, for the suffix-interval — [5..7]
in sufg in Figurel3.2 0F (4 — [5..7]) = CUGC.

The occurrences of this substringSrt, namely at positionsuf x[i], . . . , suf x [j]. To give an
example, consider Figure 3.2 and observe that substring@alBurs at positionsufg[5] =
11, sufg[6] = 8, andsufg[7] = 5 in SF = AUAGCUGCUGCUGCA.

For unidirectional left-to-right search of some patternsiit is sufficient to process Icp-intervals
only in sufg. For bidirectional pattern search using affix arrays, dbedrin detail in the next

section, we employ information from tabdefr as well assufg. Therefore, we need to associate
information of one table to the other. This is done by linkingervals via tableaflkg andaflkg.
We observe that there exists a mapping between Icp-inteivalifz andsufg. This is stated by the
following proven lemmal[101].

47

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Lemmal For every Icp-intervaly = ¢ — [i..j] in table suf x there is exactly one Icp-interval
g ! = ¢ —[i'..j"] in table suf+ called reverse Icp-interval af, such that?’ > ¢ and the/ — 1-th
prefix ofd (¢~ 1) equals(dx (¢)) ~*. The number of suffixes (prefixes) representegdydq ! are
the same, i.ej —i = ;' — 7'

We note that the equivalenge= (¢—1)~! is not necessarily true. This is stated by the next lemma.

Lemma 2 If the Icp-intervalg—! with depth?’ in suf+ is the reverse of the Icp-intervalwith depth
¢insufxy and/ = ¢, thenq = (¢~1)~L. Otherwise, i’ > ¢, thenq # (¢~ 1)L

The mapping between intervals $if and SR is encoded in tablesflkr andaflkg as follows. Tables
aflke andaflkr store, for each Icp-interval isufg andsufr respectively, a pointer to the reverse
interval in the reverse tablesfz andsuf. The position in the tables where the pointers are stored
is determined by the functioifome x, defined as

1, if |Cpx[i] > |Cp)([j + 1],

. : (3.1)
j, otherwise

homex ([i..j]) = {
where? — [i..j] is an Icp-interval insuf x. Hence, the home position is one of two boundary po-
sitions. Strothmanr [101] shows thadmex ([i..j]) # homex ([¢'..j']) for different Icp-intervals
¢ —[i..j] and?’ — [¢'..5'].

Tableaflkx of string SX$ with total lengthn + 1 can now be defined as a table in the range

n + 1 such thatflk x [homex (¢)] = ¢/, wheregq is an Icp-interval irsuf y andi’ is the left border
of the reverse intervaj~! = [i’..5"] in sufs. We refer to the entries in tablflk x asaffix links
Tablesaflkg andaflkg occupy4n bytes each. They can be computed by traversing the Icpraiter
in suf x while simultaneously looking for the corresponding reedcp-intervals irsuf+-. Locating
reverse Icp-intervals can be accelerated by skp-tablesseltables, introduced in Beckstette
al. [54] and hereinafter referred to akpr andskpg, can be constructed in linear time [112] and
allow one to quickly skip intervals isuf x (for details, se€ [54]). The construction of tablékk
andaflkg takesO (n?) time. Although the use of skp-tables requires additichal 4n bytes of
memory, they considerably reduce the construction timaalidésaflkg andaflkg in practice. We
note that Strothmanin [101] describes a linear time contrualgorithm for tableaflkg andaflkg,
which employs suffix link and child-tables [109] and an aiddial table. Altogether these tables
require at least additionaln bytes of space. Moreover, even without applying the skfetbhsed
acceleration, Strothmann states that the quadratic timgeation algorithm is fast in practice. An
example of the affix array for sequene= AUAGCUGCUGCUGCA highlighted with some of its
Icp-intervals connected to the respective reverse interaahe aflk x table is shown in Figurie 3.2.

Because affix links in tableflkx are only defined for Icp-intervals but not suffix-intervals i
general, which we require in bidirectional search, we itice the concept adffix-intervals
Affix-intervals are similar to affix nodes as defined [in_[10Ah affix-interval insuf x is a triple
v = (k,q, X), wherek is an integer designatembntextof v andgq is a suffix-interval insuf x.

48

3.4 Searching RNA databases with affix arrays

An affix-intervalv = (k,q, X) in sufx, with g = ¢ — [i.j], ¢ > 0, —m < k < /, describes
a substringwy (v) of SX of length ¢ — k, defined as the:-th suffix of 6x(q), i.e. wx(v) =
SX[suf x[i] + k..suf x[i] + ¢ — 1]. At the same time identifies all occurrences afx (v) in S,
namely the positionsuf x[i| + k,...,suf x[j] + k. Forv = (k,q, X'), we therefore also use the
notation v = wr(v) if X = Fand¥ = wgr(v)~! if X = R. As an example, consider the affix-
intervalv = (1,4 — [5..7], F) in sufg of the affix array shown in Figufe 3.2. In this cage= 1,

qg =4 —[5..7], and X = F. v identifies all occurrences of substring = UGC in SF at positions
sufe[5] + 1 = 12, sufg[6] + 1 = 9, andsufg[7] + 1 = 6. Observe thaly’ = UGC is the first suffix
of ¢ (¢) = CUGC due to context = 1.

3.4 Searching RNA databases with affix arrays

Pattern matching using affix arrays means the sequentiabpsing of characters in the pattern
guiding the traversal of the data structure. This can beopmed in either a traditional left-to-right
order resulting in a unidirectional search or in a bidirecél way where character comparison is
started at any position of the pattern extending the alreaatghed substring of the pattern to the
left or to the right. We will see that bidirectional searclngsalternating series of left and right ex-
tensions is very well suited for fast database search witA Bdtjuence-structure patterns (RSSPSs)
containing both paired and unpaired bases. In the follomiagvill explain the two different traver-
sal strategies underlying unidirectional and bidireciasearch using affix arrays.

3.4.1 Unidirectional traversal of affix arrays

Let P = P[1]... Pm] € (AU ®)™ be a sequence pattern to be searches! iima unidirectional
left-to-right way using information from tableufg only. To search forP, we call the procedure
unidir-searchof Figure[3.8 byunidir-searci([1..|S|+ 1], P, 1). Therefore, in step O we start search-
ing for the characters ip(P][1]) in the suffix-intervalgy = 0 — [1..n + 1] in sufg, which represents
all suffixes ofS$. In each stegk, £ > 0, we locate thé& + 1-suffix-intervalsg, of maximal width,
such thatP[1..k + 1] matchesig(qx). For eachd € o(P[k + 1)), this step is performed by two
binary searches in the suffix-intervgl_; = ¢ — [i..j] for g = (¢ + 1) — [¢/..j'], i < < j' <],

j' — i maximal, andS[sufg[i'] + k + 1] = d. With a binary search we locatéand with another
we locatey’.

After m steps, if allg;, could be locatedie (¢,,), g = m — [r..s], matches the patterR and the
occurrencesufg[r|,sufg[r+ 1], ..., sufg[s] of 6g (¢,) are reported as occurrencesfofn S. Note
that in this approach the matched substring @ extended only to the right and at each stepe
occurrences of the already matched prefix are representadbifix-interval.

49

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Algorithm 1: unidir-search(suffix-interval ¢ = [i..j], pattern P, position k)
1 if k= |P|+1 then
2 report match at positions sufgli], ..., suf g[/]
3 return
4 else
5 foreach ¢’ such that d € p(P[k]) and 0g((k + 1) — [i..j]) = 6p(k — [i..j])d do
6 unidir-search(q', P,k + 1)
7 end
8 end

Figure 3.3: Unidirectional search algorithm for searchioga sequence patterR € (A U ®)*.
Given the suffix arrapufg of S, the procedure enumerates all occurrence® af S
when called bynidir-search[1..|S|+1], P, 1). Inline 5, the suffix-intervad’ is located
by binary search it© (log n).

3.4.2 Bidirectional traversal of affix arrays

For the bidirectional search, we start at some positio® ik (A U ®)™ and then compare the
patternP character by character to indexed suffixes and reverse gsefixthe text, where we can
freely switch between extending to the left or to the righdtéthat as in the case of unidirectional
search, ambiguous nucleotidesn the pattern can be handled by enumerating all charactiers
the corresponding character class:). We can focus on the situation in the search, where

e aranger..r’ (1 <r <’ < m) of the patternP is already compared,

e the occurrences of a substringe A”~"+! of S matching P[r..’] are represented by an
affix-intervalv = (k, ¢ — [i..j], X) in suf x, and

e we want to extendv’ either to the left or to the right by a sequence character A (that
matches the respective pattern charaéter — 1] or P[r’ + 1]). This will result in a new,
extended affix-intervad,,.

Switch of the search direction. Like its suffix-interval, an affix-interval directly suppsr
extension of the represented substring in only one dinectimmely searching to the right for
X = F and to the left forX = R. However, there are “corresponding” affix-intervals rejereing
the same substring of but allowing extension to the opposite direction.

If the new search direction differs from the supported deaticection ofwv, this switch of the
search directiorrequires determining the corresponding affix-inten/aih suf+ unlessi = j or v
has non-empty context £ 0. There are these two exceptions, since firstf j, independently of
the value ofk, wx (v) is already a unique substring 8. Second, for a non-empty context£ 0,
all occurrences of substringy (v) in S* are followed (ifk > 0) or preceded (it < 0) by the
same substring e A*.

50

3.4 Searching RNA databases with affix arrays

Letk = 0 andi < j. The affix-intervalv’ = (K',¢' — [i’..j'], X) in suf is called thereverse
affix-intervalof v = (k,¢ — [i..j], X) ifand only if ' — ¢/ = j —4, ¢ > ¢, andwx(v)™' =
w(v"). The interval boundarieg and;j’ of +" are determined via a lookup in takiélk x. We set
i’ = aflkx [homex ([¢..5])] andj’ =i’ + (j — 7). Observe thaf is not necessarily the length of the
longest common prefix of all suffixes {i.;]. For this reason we defirtgy, = min{lcpx[k] | i <

k < j} > ¢ and compute the context of ask’ = 4, — ¢. Further, we set’ = /c,. Hence the

reverse affix-interval’ = (k’, ¢’ — [i’..5'], X) is well defined and’ is the required corresponding
interval ofv.

Right/left c-extension of an affix-interval In our situation,¥ = wu represents the occur-
rences of a substring of S matchingP(r..r'].

Theright (left) extension of by a characterc € A, also called:-extension ob, is an operation
that computes the affix-interval, representing all occurrences of a substring(cu). It fails, if
there is no such substring. We elaborate the cases for miggrigton. The cases for left extension
are symmetric and therefore omitted. For righextension ofv = (k, ¢ — [i..j], X), we determine
the intervalv, = (k,, 0y — [iz..Jz], Xz) With v7 = ¥ c. The first two cases do not require switching
the search direction.

e CaseX = Fandi = j. u is a unique substring/ of S. If S[sufg[i] + ¢ = ¢, then

e CaseX = F andi < j. We determine the minimal, > ¢ and maximalj, < j in sufg
such thatS[sufgi,] + ¢] = ¢ and S[sufg[j.] + ¢] = c by binary search in the suffix-interval
¢ — [i..j]. If i, andj, exist, we sev, = (k,({ + 1) — [iz..Jz], F).

The following cases require switching the search direction

e CaseX = R, i = j. We evaluateSR[sufg[i] + k — 1]. If SR[sufg[i] + & — 1] = ¢, set
vy = (k— 1,0 —[i..7],R).

e CaseX = R, i < j, andk = 0. We first determine the reverse affix-interval= (k', ¢ —
[i'..5'], F) of v via a switch of the search direction as described above. Westompute the
minimal i, > i’ and maximalj, < j’ via binary search, such th&{sufg[i,] + ¢'] = ¢ and
Slsufgljz] + ¢'] = c. If iy andj, exist, we sev,, = (K, (' + 1) — [iz..J], F).

e CaseX =R,i < j, andk > 0. We evaluate thék — 1)—th character ofg(¢—[i..j]). That s,
if 0r(¢—1i..j])[k—1] = ¢, then we consume the contexby settingv, = (k—1,¢—[i..j],R).

The operation fails if,, cannot be determined.

51

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

3.4.3 RNA sequence-structure pattern matching using affix a rrays

Searching a sequencewith an RNA sequence-structure pattern (RS&P¥ (P, R) means to
find the occurrences aP in S under the complementarity constraints imposed by the tsireic
string R (cf. our definition of RSSP-occurrence). We introduce adealtgorithm that checks for
complementarity constraints as early as possible in hitimeal search to maximally reduce the
search time due to this restriction.

For further considerations, we will assume a special ‘caradnform for RSSPs, which we define

in the following. Independently of a sequengeeach RSSP describes a set of pattern instances, i.e.
the set of potential substrings matching the pattern. Qftere are several patterns that describe
the same set of instances. For example, the paftdNMUACACGNR (((....)))) describes

the same set of instances(@NUACACGNR, ((.))) since the additional base pa#, 8)
in(((....))) does not make the pattern more specific. We will define a patitelbe structure
minimal if there is no, in this sense, equivalent patterntaiming a true subset of the base pairs.
An RSSPQ = (P, R) is structure minimalf and only if for all base pair$:, j) € Rit holds that

p(Pli]) NCS(Pj]) x (P[j]) N CS(Pli])
p(d) x p(e), foralld,e € (AU ®).

Furthermore, a general pattern is calledonsistentf it does not have any instance. Formally, a
pattern isconsistentif and only if for each base paifi, j) it holds thate(P[i]) N CS(P]j]) #

0 and o(P[j]) N CS(P[i]) # 0. An example of an inconsistent RSSP@ = (P, R) with P

= UAUACACGAN and R = ((......)). Q is not consistent because there is a base pair
(2,9) € R but the base®[2] = A and P[9] = A are not complementary, i.€¢A, A) ¢ C. An
example of a structure minimal and consistent RSSRISUACACGNR ((.))). Note
that a pattern can be transformed into an equivalent steichinimal pattern and checked for
consistency inO (m) time. For complexity considerations, we can thereforelgadssume that
patterns are consistent and structure minimal.

In this case, one can restrict the search space by compasrw positions of each base pair im-
mediately after each other. Due to this, the enumeratiomafacters matching the pattern symbols
at each base pair can be restricted to the smaller numbengilementary ones. In the search for
a sequence-structure pattern this can reduce the numbeuofezated combinations of matching
characters exponentially. Thus, for structure minimatgras(P, R), the non-branching structure
R suggests a search strategy, i.e. an order of left and riglmsions, which requires switching the
search direction at every base pair but makes optimal useaftmplementarity constraints due to
the base pairs.

Following this idea, Mauri and Pavesi [102] presented aoritlygm for matching RNA stem-loop
structures using affix trees. This algorithm explores tregdespace in a breadth-first manner, so
memory use grows exponentially with increasing depth.eldtof an affix tree, we employ the
more space efficient affix array data structure and use a diegttisearch algorithm which only

52

3.4 Searching RNA databases with affix arrays

requires space for the search proportional to the lengthettbstring searched. The depth-first
search for all occurrences of a stem-loop RS3P- (P, R) is performed by calling procedure
bidir-searchof Algorithm 2 (see Figuré_314). Note that we explicitly support bulges mernal
loops in the stem-loop pattern, i.e. we do not require pestacking of the base pairs but allow
general non-branching structures.

In our algorithm, we switch the search direction only oncelmese pair when matching the stem
region of the pattern, thus halving the number of lookups@dffix link tables compared to a naive
algorithm without this optimization. This was also obsehay Strothmann [101] whose algorithm
did not support RSSPs containing bulges and internal loops.

To matchQ we call procedur®idir-searchinitially asbidir-search((0,0—[1..n+1],F),ro—1,7¢),
where(0,0 — [1..n + 1], F) is an affix-interval and is any position in the loop region of the RSSP
or any position of a completely unpaired pattern. Then, tloegdure traverses the affix-intervals
by performing right and left extensions, while at the sameetichecking base complementarity
of paired positions. This verification takes constant tipeubing a binary table of sized| x |A]
containing all valid base pairings. Matching positions r@gorted whenever the boundaries of the
RSSP are reached.

In principle, we are free to choose any loop positigr{or any position ifR is empty) for starting
our bidirectional search algorithm. However, in order tduee the combinatorial explosion of the
search space due to ambiguous IUPAC characters, it is pléeto match unambiguous pattern
characters first. To keep the selection simple, wegat the position of the first charactetin the
possible range such thgt(c)| is minimal. That is, we start the search with the most spe@iéast
ambiguous) character.

3.4.4 An example of bidirectional RNA sequence-structure p attern search

As an example of bidirectional search for RSSPs using affixyar we search for the RSSP

in the sequencé given in Figures 3]1 and 3.2, respectively. We recall @at (P, R) with P

= NNNUGCUNNN andR = (((....))) represents a stem-loop structure of length= 10
and.S = AUAGCUGCUGCUGCA has length 15. We start matchiRgn S by calling procedure
bidir-searchof Algorithm 2 asbidir-search((0,0 — [1..16],F), 3,4). That is, the algorithm matches
the first positionP[4] = U of the loop region in left-to-right direction. Given thdt= F andi < j
(i.e.1 < 16) hold, it locates intervab, = (0,1 — [12..15], F) with v; = U via binary search in the
interval0 — [1..16] of sufg. Analogously, the following recursive calls bidir-searchperform right
c-extensions oft = U = P[4..4] with characters[5] = G, P[6] = C, andP[7] = U, by searching
in the intervalsl — [12..15], 2 — [13..15], and3 — [13..15], respectively. After these extensions, the
algorithm has located the affix-interval, = (0,4 — [14..15], F) representing all occurrences of
v = UGCU in S such thaty, matches: = P[4..7]. We setv = v,.. Next, the algorithm performs
a right c-extension ofu with the pairing positiorc € ¢(P[8] = N). Therefore, it enumerates all

53

3 Fast index-based bidirectional search for RNA sequetraetare patterns

Algorithm 2: bidir-search(affix-interval v = (k, ¢ — [i..j], X), pos r, pos 1)

1 if r <1 and ' > m then

2 report match at positions sufx[i] + k, ..., suf x [j] + &

3 return

4 else if r > 1and v <m and R[r] = ‘(" and R[r'] = ‘)’ then

5 if X = R then

// perform left extension first

6 foreach v’ such that d € p(P[r]) and v’ = dv do

7 foreach v" such that e € ¢(P[r']) and (d, e) complementary and 7" = ¥'e do
8 | bidir-search(v”, r —1, 7' +)

9 end

10 end

11 else

// perform right extension first

12 foreach v’ such that e € p(P[r']) and 7' = Ve do

13 foreach v” such that d € ¢(P[r]) and (d, e) complementary and ¥" = dv' do
14 | bidir-search(v", r — 1, r' + 1)

15 end

16 end

17 end

18 else if "< m and R[r']="‘" and (X = Forr <1 or R[r] # ‘) then
19 foreach v’ such that d € ¢(P[r']) and 7' = ¥d do
20 bidir-search(v', v, r' + 1)
21 end
22 else if r > 1 and R[r] = then
23 foreach v’ such that d € p(P[r]) and ¥’ = d¥ do
24 | bidir-search(v', v — 1, 1)
25 end
26 end

Figure 3.4: Bidirectional recursive RSSP matching usingafiix array. Procedurdidir-search
finds all matches of a given RSSP, R), beginning the pattern extensions from any
position in the loop region or any position in a completelyained pattern. In each
call, parameten denotes the affix-interval representing matches of theepatub-
string P[r+1..r' — 1], 1 < r <’ < m satisfying the structural constraints imposed by
R[r + 1..r" — 1]. The procedure takes care to change the search directiprasuiften
as necessary, in particular it changes the direction ontg @er base pair.

54

3.4 Searching RNA databases with affix arrays

possiblev, such thaty; = ¥'d for somed € ¢(c). We observe that, = (0,5 — [14..15], F)
with v, = UGCUG is the only interval satisfying these conditions andatuded = G. As an
additional structural constraint, matches to positidrad8 of P shall form a base pair. To fulfill
this constraint, the algorithm first switches the searcidation by locating the reverse intervalof
vz The left boundary of’ is determined with a lookup in tabllkg asaflkg[homeg([14..15])] =

6 and the right boundary && Further, we sefc, = min{lcpg[r] | 14 < r < 15} = 6 and
calculate the context af’ as6 — 5 = 1. Hence, the reverse interval of is determined as’ =
(1,6 — [6..7],R) with ¥/ = UGCUG and we set = v’. Now the only interval satisfying (1)
v =el,e € ©(P[3]), and (2) the complementarity condition between posit®rsd8 of P,
as required by the structure stritig) is the intervaly, = (1,7 — [6..7], R) with u; = CUGCUG
representing occurrences of substrings matctitfigy.8]. Observe that;[1] = C andv;[6] = G
can form a base pair as demandedijg] and R[8]. Consequentlyy; matches P[3..8], R[3..8])
and therefore we set = v,. In the next step the algorithm performs another tefixtension of
o by somec € ¢(P[2] = N) leading to intervab, = (1,8 — [6..7], R) with 7; = GCUGCUG
representing occurrences of substrings matctiti).8]. We setv = v,. To match a character
d € ¢(c) that is complementary t@'[1] = G the algorithm performs a rightextension oft’ using

a character € ¢(P[9]). Because the context ofis larger than zero, it consumes the context and
remains in tableufr. That is,X = R. The resulting interval after performing the righextension
is v, = (0,8 — [6..7],R) with 7, = GCUGCUGC. Observe that,[1] = G andu,[8] = C can
form a base pair and thug represents occurrences of substrings ofiatching(P[2..9], R[2..9]).
We setv = v,. The next operation is a left-extension by some € ¢(P[1] = N). Hence,
the algorithm enumerates all intervals such thatu, = ¥d,d € ¢(c). There are two intervals
satisfying these conditions. Namely,; = (0,9 — [6..6],R) with 721 = AGCUGCUGC and
vgo = (0,9 — [7..7],R) with U5 = UGCUGCUGC. We set; = v, andvs = v,9 and continue
by processing, which represents occurrences@f = AGCUGCUGC inS. Becauser is a
unique substring of, for the following rightc-extension by some € ¢(P[10] = N) we can
directly evaluateSR[sufr[6] — 1] = U. Bases(vi[1] = A,U) are complementary, hence we set
v, = (—1,9 — [6..6],R) and observe that occurrences of substiiig= AGCUGCUGCU of

S match(P[1..10], R[1..10]) and that the boundaries @ have been reached. With this, in the
following recursion the algorithm reports a matching gositof Q via a lookup in tableufg as
sufr[6]+(—1) = 5—1 = 4, where—1 is the context ob,, that has to be added $ofr[6]. Note that,
becauseX = R, 4 is a position inSR. Now the algorithm backtracks to intervél, 8 — [6..7],R)
and continues to perform a rightextension of intervab, by somec € ¢(P[10]). Again, 5 =
UGCUGCUGC is a unique substring 6f and we can directly evaluat§R[sufr[7] — 1] = A.
Since base$u;[1] = U, A) can pair, we set, = (—1,9 — [7..7], R) with 7, = UGCUGCUGCA
representing occurrences of substringsSafatching(P][1..10], R[1..10]). The boundaries o
have been reached again and in the following recursion tperitim reports another matching
position of Q, preciselysufg[7] + (—1) = 2 — 1 = 1. There are no further intervals to process and
the search ends. In summalbygir-searchhas found two occurrences ¢fin S.

55

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

3.4.5 Complexity analysis

We analyze the complexity for searching in a sequeticd lengthn for an RSSPQ of length
m < n, where the index structures férare already computed.

The bidirectional search algorithm requires tablgs andsufg, Icpr andlcpgr, andaflkg andaflkg.
Under our assumption that< 232, each of the four tablesuf x andaflk x consumesn bytes, and
the two tablescp x are each stored in bytes (X € {F,R}). This amounts to a space consumption
of 18n bytes for the index structures. The algorithm performs dtdést search, where the depth
is limited bym, and therefore requirg3(m) space. The total space complexity is therefore).

We assume tha® = (P, R) is structure minimal. Such a patteghwithout ambiguity, i.eP € A™,
does not contain base pairs and the searci®fdoes not profit from bidirectional search. Although
such a pattern is processed by Algorithm 2, it can be handteflidporithm 1 using only a suffix
array and saving some overhead.

Algorithm 1 accomplishes the search for an unambiguougpa® on the suffix arrayufg using
binary search for locating intervals & (m log n + z) time, wherez is the number of occurrences
of P in S. We remark that this time bound can be lowered at the pricégbien memory consump-
tionto O (m + logn + z) [52] or evenO (m + z) [113,[109] time by using additional precomputed
information.

Notably, if there is ambiguity but no base pairdh bidirectional search can still be beneficial in
practice. This is the case when searching for a pattern inlwdnstring of unambiguous characters
is surrounded on both sides by ambiguous IUPAC charactecsuse the comparison can start at
the most specific part of the pattern. The time complexitieséarching ambiguous patterns with
Algorithm 1 can be estimated &%(n log n) in the worst case of searching for the sequence pattern
P consisting only of Ns. Furthermore, note that our AlgoritBrhbehaves exactly like Algorithm 1

on patterns without base pairs if we invoke the search puoeedithr = 0 andr’ = 1.

For a patterr@ = (P, R) of lengthm, letp > 0 be the number of base pairsﬁh In the worst case
P consists only of Ns. Moreover, all possible strings of léngt satisfying the complementarity
constraints specified i® occur in the texts. Recall that, since we allow (G, U) pairs, there are
|C| = 6 possible complementary base pairs. Thus, there4if&—27|C|P such strings and Algorithm

2 spans a virtual tree with,,, , = |.A|™~?P|C|P paths from the root to a leaf. At each leaf, it reports
the occurrences of the respective matched substring.

On each path from the root to the leaf the algorithm perfomms 2p c-extensions and at most one
switch of the search direction for matching the— 2p unpaired characters. Then, it perforfis

56

3.4 Searching RNA databases with affix arrays

c-extensions ang switches of the direction for matching the base paired jposit Therefore, we
count the total number of c-extensions as

m—2p 2p
STOAF + APy 2y
i=1 j=1
A2 |4 e [l
— glAm-2p 1l ¢
R

which is inO (E,,).

The cost of eacle-extension consists of the cost of locating the suffix-wakof the new affix-
interval, which is performed by binary search@(log), and the cost for potentially computing
the reverse affix-interval when switching the search dioact

Instead of performing the binary search over the suffix gbime can use the child-tables intro-
duced by Abouelhodat al.in [109] to determine the child intervals and switch the skalirection

in constant time. The child-tables, however, add at IBadtytes to the index and require additional

involved index construction. As the child-tables improkie worst case behavior but, on the other
hand, require more space, we analyze the complexity withwaitgut these tables (i.e. with tables

suf x, lcpx, andaflkx only).

First, we analyze the time required for performing a singléch of the search direction. Therefore
we assume that the current affix-intervabis-= (k, ¢ — [i..j], X). Consider the following two cases.

1. Casei = jork # 0.1f i = j, o represents a unique substring $f or, if & £ 0, all
occurrences of substring in S are followed (if > 0) or preceded (it: < 0) by the same
substring of lengthk| (known as context). Switching the search direction doesemtire
locating the reverse interval ef because the algorithm can perform thextension in the
new search direction by consuming context. Therefore,cié® requires constant time.

2. Case < j andk = 0. The algorithm needs to locate the reverse affix-intesvat (k') ¢ —
[i..5'], X) of v. Interval boundarieg = aflk y [homex ([i..j])] andj’ = i’ + (j — i) of v’ are
computed in constant time. By definition, computing the regeaffix-interval ofv requires
knowing 4icp. Then, ¢’ = i, andk’ = ¢’ — ¢. Without child-tables, we determing,, by
computing the length of the longest common prefix bet\/\@gupx 0 andSs)lffX L It suffices

to performf, — £ + 1 = k' + 1 character comparisons only, since both suffi$§§X[i]

and Ss)jfx h share a common prefix of at least lengthWith the help of child-tables/, is

determined in constant timie [109].

Due to the following lemma, the computation of all reverdidhtervals on one path of our virtual
tree is inO (n) if child-tables are not used.

Lemma 3 Using tablessuf x, Icpx, and aflkx, the computation of all contexts on a path in the
recursion of Algorithm 2 is ir© (n).

57

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Proof. Letwy, v, v:...,vc be the sequence of reverse intervals processed when ngat@hand
let k; denote the context af, for 1 < ¢ < C.

To show> % ky < n, letv = (k,0 — [i..j], X), withk = 0,7 < j,andX = F (X = R),
be the current affix-interval. We assume without loss of gaitg that we perform a left (right)
c-extension ofy and thus locate the reverse interval= (k;, ¢; — [i;..5:], X). Then the following
statements hold; > 0, ¢; = £+ k;, andj; —i; = j— 1 (see Lemma 1). Observe that= 0 implies
wx(v) = 0 (4 —[ir..ji]) andk;, > 0 implies that substring(¢; — [i;..j;]) has a non-empty prefix
of lengthk;, namerSY[sufy[z‘t]..sufy[z‘t] + k. —1]. Note that, is only located ifc = 0, otherwise
the contextk has to be consumed. Hence there is no reverse integval (k. 0, — [is..js], X),
with1 < s < C, s # t, andk, > 0, such that thek, — 1)-th prefix of 5 (¢, — [is..js]) overlaps
with Sy[sufy[it]..sufy[it] +k, — 1] for the same positions i6~ . From this,Zle ky < n follows.
Since a single context; can be determined by performing exackly+ 1 character comparisons,
this impliesO (n) time to compute all these contexts. With this, we concludg &t switches of
the search direction performed while inding one substririg S that matche® take up toO (n)
time. O

Therefore, when searching f@ without child-tables, the total time for switching seardtedtions
is coarsely estimated by multiplying the complexity for queth with the number of paths as
O (Eppn). The use of child-tables removes the linear factor.

For the worst case that all strings matching the patternafigtoccur as substrings iff, the se-
guenceS must have a certain minimal length. In the case &f 0, the possible matches are the
words inA™ and a sequence that contains all these matches is ¢al|eaty de Bruijn sequence
of orderm [114] without wrap-around, i.e. de Bruijn sequence with its first» — 1 characters
concatenated to its end. Such a sequence was shown to haagttadény = [A|™ +m — 1. As a
consequence, the worst case requires ny.

We summarize the worst-case time complexities for Alganithas follows. 1.) From determining
new suffix-intervals, we get a contribution 6f(E,, , logn). Forn > nyg, this is inO (nlogn).
Child-tables reduce this time further @ (n). 2.) Switching directions without child-tables is in
O (E, pn) worst-case time, which is reduced @(E,, ,) when using child-tables. Far > n,
E,,,isin O (n). Finally, Algorithm 2 runs inO (E,, ,(n + log n)), which is reduced t® (E,, ;)
using child-tables (i.eO (n) for n > ny).

One should note that the worst-case time complexity of éafional search for sequence-structure
pattern is only in the order of online search algorithms. un implementation, we use a minimal
set of tables in order to keep the implementation simple amd space.

However, it can be clearly seen from this analysis that thesivgase is based on extremely pes-
simistic assumptions that are almost contrary to the erpeapplication. 1.) It is assumed that a
pattern consists of wildcards N only. In the expected apfitic, however, patterns will often spec-
ify bases in the loop region, which is of particular benefit dorr algorithm. 2.) Sequences, like

58

3.4 Searching RNA databases with affix arrays

thede Bruijnsequence, that contain all possible matches of an averagg sattern will be rare in
practice. E.qg. it could be assumed that a sequence thaireaibpossible matches of a pattepn
with p base pairs (an@ =N...N) is at least as long as thé|-ary de Bruijnsequence of order,
since one expects no significant bias for the specific comgtanity due tak over all substrings
of lengthm. However,E,, , = |A|™P|C[P = 4™2P6P = 4™ /(16/6)P is even for smalp much
smaller thamy = 4™ + m — 1. For example, four base pairs (i.e.= 4) reduce the time bound
by a factor of(16/6)* ~ 50 and eight base pairs reduce time by a factor of about 2500.

3.4.6 A bidirectional search algorithm supporting variabl e length RSSPs

Algorithm 2 above matches fixed-length RSSPs. We now presmemixtension of it also capable
of matching RSSPs with loop region allowing a variable numiifeadditional extensions with
ambiguous characters N to the left and to the right. In coatin, also stem region of variable
length is supported. We observe that this extended versian efficient as the original algorithm
supporting fixed-length RSSPs. Additional computationetiisonly required for the traversal of
additional affix-intervals due to the increased sensjtivit

Before describing the algorithm, we define this extensioR86Ps. Avariable-length RSSE
consists of an RSSEP, R) and parametemnnaxleftioopextent (mllexinaxrightloopextent (mrlex)
andmaxstemlength (msknllexandmrlexdenote the maximum number of respective left and right
extensions of the loop region specifiedRrandmsi denotes the maximum number of base pairs in
the stem. The minimum length of occurrencesdis m = |P| = |R|. For examples of variable-
length RSSPs, see Figurel3.5 (E) until (H).

To keep the code simple, we split the original algorithm imto procedures. (i) First the loop region
of a given variable-length RSSP is matched with procedutgidir-search-loop(see Algorithm 3,
Figure[3.6). (ii) Next, the stem region is matched with pchaebidir-search-sten{see Algorithm

4, Figurd 3.77). Note thdtidir-search-stenis very similar to Algorithm 2. Prior to the search Q)
the following variables are sdbopstart minloopstart loopend maxloopendminbps andmaxbps
These variables store the following informatidoopstart (loopend stores the position of the base
occurring in the left-most (right-most) position of the pdescribed by the structure stririg

in 5" to 3’ direction, minloopstart = loopstart — mllex, maxloopend= loopend+ mrlex, and
minbps(maxbps= ms) is the minimum (maximum) number of base pairs occurrin@irt holds:
minloopstart< loopstart< loopend< maxloopendNote thatminloopstartcan be negative. As an
example, letR = (((....))), mllex= 5, andmrlex= 1. Thenloopstart= 4, minloopstart=
—1, loopend= 7, maxloopend= 8, andminbps= 3. To matchQ, procedurebidir-search-loopis
initially called asbidir-search-loog(0,0 — [1..n + 1],F), 79 — 1,7, true), where(0,0 — [1..n +
1], F) is an affix-interval,ry is any position in the loop region a®, and parameter true states
that the pattern can be extended to the right. Procebiglie search-loopcalls bidir-search-stem
whenever substrings of minimum lendtdopend- loopstart+ 1 matching the loop in the searched
database are found. @ has no base pairs, i.e.sl = 0, it instead immediately reports the matching

59

3 Fast index-based bidirectional search for RNA sequetraetare patterns

!
>single stranded region >simple HP with wildcards N >HP with bulge >HP with interior loop

NACNUGUNNC

NNNNNNACUNNNNNNNN NNNNNNNNNNNNACUNNNNNNNN NNNNNNNNNNNNNACUNNNNNNNNNNNN
CCCCCaaeann))))) [T O G PRI))))))) [I O O Y A 1)) e)))

>HP with variable loop|mllex=3 >HP with var. loop|mllex=3|mrlex=2 >HP with var. stem|msl=8 >HP with var. loop and stem|mllex=3|mrlex=2|msl=8
NNNNNACNNNNNNNNNN NNNNNACNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNACNNNNNNNNNN

1)) COCCCa e))))) (CConnnnn 1)) [N O R)))))

Figure 3.5: Supported structural patterns and correspgrghittern definitions iStructatorsyntax

60

(see complete syntax description in Apperidix A). Unambiguaucleotides are marked
in red. Positions containing ambiguous nucleotides, dghbere with character N, are
marked in green and can contain any nucleotide frbrivaximal allowed left and right
extensions of the loop region of a pattern as specified bynpetersmaxleftloopextent
(mllex)andmaxrightloopextent (mrlexdgre marked in yellow and blue, respectively. Al-
lowed possible extensions of a pattern’s stem region asfigubby parametemaxstem-
length (msljare marked in purple. As an example for the semantics of tfempetems|
consider pattern (G): it matches all substrings of the $eatcequence that are able to
fold into a stem-loop structure with loop lengitand stem length betwe@&weands8. For
further details, see corresponding text.

3.5 RNA secondary structure descriptors based on multiglered RSSPs

positions. This is reflected by callinmdir-search-stertv’, loopstart — 1, loopend+1,0), wherev’

is the affix-interval representing all occurrences of stibgt’” in the searched database matching
the loop region ofQ, positionsloopstart— 1 andloopend+ 1 denote the inner-most base pair
(loopstart— 1,loopend+ 1) of the pattern, an@ is the number of currently matched base pairs.
Procedurdidir-search-stenteports matching positions @@ whenever the boundaries of the RSSP
are reached atinbps < bpcount < maxbps holds.

3.5 RNA secondary structure descriptors based on multiple
ordered RSSPs

Obviously RNAs with complex, branching structures canrtdescribed completely by a single
RSSP. Describing an RNA by only a single unbranched fragrigenften inappropriate, since
searching a large sequence database or a complete genostreiturally conserved RNAs (RNA
homology search) with a single RSSP will likely generate yrgpurious matches. However, larger
RNAs can often adequately be described by a sequence of REBiRsholds for1,247 out of
1,446 RNA families in Rfam 10.0 which have a structure containing several stem-loapsb
multi-loop. Only 199 out of 1,446 (13.76%) RNA families in Rfam 10.0 containing multi-loops
cannot be modeled completely this way. Still, the conseasustures of thest99 families contain
on averagel.06 stem-loops (standard deviati@r08, median3) which can be modeled as RSSPs.
In consequence, we can use a sequence of RSSPs that comasiltasft one pattern per stem-loop
(and potentially also unstructured patterns) for the deton of those families. This allows to
accurately identify members even of those families coirigimulti-loops.

We address search for complex structured RNA families vhighrtew concept of RNA secondary
structure descriptors (SSD for short). SSDs use the infiiomabf multiple ordered RSSPs de-
rived from the decomposition of an RNA's secondary struetoir from the consensus secondary
structure of a multiple sequence-structure alignmentlafed RNAs into stem-loop-like structural
elements. Such consensus secondary structures for rauRs can be computed with a variety
of programs following one of the three strategies introdute[63]. Namely: (A) alignment of
the sequences followed by joint folding [115, 116, 117,111B) Sankoff style([64] simultaneous
alignment and folding [119, 44, 120, 121], and (C) indivitiedding of the sequences followed by
alignment of their structure§ [69, 122, 123]. In the follogriwe make the concept of SSDs more
precise. Letd = Ay, Ao, ..., A be a sequence of non-overlapping alignment blocks. Thage al
ment blocks are excised from a multiple sequence(-strectalignment and represent regions of
the molecule that fold into stem-loop-like structures anaén unfolded. The indexing fromto L
reflects their order of occurrence in the alignment. HeAcepresents a sequential decomposition
of the molecule’s secondary structure {in— 3’ direction) into regions, each of which can be
described by an RSSP. See Fiduré 3.8 (A) for an example.

61

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Algorithm 3: bidir-search-loop (affix-interval v = (k,¢ — [i..j], X), pos r, pos 7/,
allowrightext)

1

© 00 N O A W N

= e
N = O

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40

if v’ < maxloopend and allowrightext = true then
// perform right extension
if ' > loopend then

| chr’ = ‘N’
else

| chr’ = P[r']
end

foreach v’ such that d € ¢(chr’) and ¥’ = v'd do

if r < loopstart and 7'+ 1 > loopend then

if msl =0 then // if entire pattern is single stranded
report match at positions suf x[i] + k, ...,suf x [j] + k

return

else // otherwise loop of length ' —r + 1 was matched
// so extend stem region
bidir-search-stem(v', loopstart — 1, loopend + 1, 0)

end

end

if ' + 1 < maxloopend then

| bidir-search-loop(v', v, v’ 4+ 1, true)
end

if ' + 1 > loopend then

| bidir-search-loop(v', v, v’ + 1, false)
end

end

else if r > minloopstart then
// perform left extension
if r < loopstart then

| chr = ‘N’
else
| chr = P[r]
end
foreach v’ such that d € ¢(chr) and v’ = dv do
if r — 1 < loopstart and 1’ > loopend then
if msl =0then // if entire pattern is single stranded
report match at positions suf x[i] + k, ...,suf x[j] + k
return
else // otherwise loop of length ' —r + 1 was matched
// so extend stem region
bidir-search-stem(v', loopstart — 1, loopend + 1, 0)
end
end
bidir-search-loop(v', r — 1, v/, allowrightext)
end
end

Figure 3.6: Bidirectional recursive matching of the loogiom of a variable-length RSSP using

62

an affix array. Procedureidir-search-loopsearches for an RSSP, R) defined with
additional variablesnaxleftloopextent (mllexand maxrightloopextent (mrlexjienot-
ing the maximum number of left and right extensions of thepl@pecified inR,
respectively, andnaxstemlength (mstienoting the maximum number of base pairs.
Used variabledoopstart minloopstart loopend and maxloopendare preset accord-
ing to structure stringRk, mllex and mrlex (see text).bidir-search-loopcalls proce-
dure bidir-search-stem (see Algorithm 4) whenever substrings of minimum length
loopend— loopstart+ 1 matching the loop are found.

3.5 RNA secondary structure descriptors based on multiglered RSSPs

Algorithm 4: bidir-search-stem(affix-interval v = (k, € — [i..j], X), pos r, pos ', bpcount)

1 if (r <1 and 7’ > m) or (minbps < bpcount < mazbps) then

2 ‘ report match at positions suf X[i] + k, ...,suf X [j] + k
3 end
4 if (minbps < bpcount < mazbps) or (r>1 and " <m and R[r]=‘(" and R[] =¢))
then

5 if minbps < bpcount < maxbps then
6 chr = ‘N’
7 chr’ = ‘N’
8 else
9 chr = PJr]
10 chr’ = P[r'
11 end
12 if X = R then

// perform left extension first
13 foreach v’ such that d € (chr) and ¥’ = d¥ do
14 foreach v" such that e € p(chr’) and (d,e) complementary and " = ¥’e do
15 | bidir-search-stem(v”, r — 1, ' + 1, bpcount + 1)
16 end
17 end
18 else

// perform right extension first
19 foreach v such that e € p(chr’) and ¥’ = Ve do
20 foreach v" such that d € ¢(chr) and (d,e) complementary and " = dv’ do
21 | bidir-search-stem(v”, r — 1, ' + 1, bpcount + 1)
22 end
23 end
24 end
25 else if ¥’ <m and R[r']="‘" and (X =F or r <1 or R[r] # ‘) then
26 foreach v such that d € ¢(P[r']) and ¥’ = ¥d do
27 | bidir-search-stem(v', r, v’ + 1, bpcount)
28 end
29 else if r > 1 and R[r] = ‘" then
30 foreach v’ such that d € ¢(P[r]) and ¥’/ =dv do
31 bidir-search-stem(v', r — 1, r', bpcount)
32 end
33 end

Figure 3.7: Bidirectional recursive matching of the stegiaa of a variable-length RSSP using an
affix array. Procedurbidir-search-sternis called by procedureidir-search-loop(see
Algorithm 3) and extends substrings matching the loop region of the RS$P, R)
to substrings matching also the stem. Used variablggpsand maxbpsare preset
according to structure string and variablenaxstemlength (ms{¥ee text).

63

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

) P1 P2 P3 P4 P5 P6 P7
NNNNNNUNGCNNNNCN ~ NNNNNGGUAANNNNN NNNNNUNUANNNNNN NNNNNNNNNNUNAACNNUNNNNNNNN &~ NNNNNNAAGUNNNNN NNNNCAAAGAANNNN NNNNNNNUUUACCNNNNNNN
OO 9 (... I .. DN e) OO 0)0)) (e N NN

I
|
I
|
[
I
I
I
I
I
|
LA, koA " LoaA Bk A, koA Sloa L A i
B) . ne2 @) D)
‘\m phe $¥upy S P e b ‘.\
HP2 LE wﬁy o
g 6 U P
Cantidid 4 J , o
HP3 ¥ Ea;a.f. P P P, 1
" e’ 5 HPE >
* o P, = P
A, LSS P, —
oy wé‘}"%cf“sHPS e, %]
u@ f A Pyg— b, |
8 P
M, ’ P PR
Hpa &, & i—i

P p+m-1 positions

Figure 3.8: (A) Non-overlapping alignment blocks of stemog regions excised from a multi-
ple sequence-structure alignment and derived sequencetst patterns. Sindg <
r; < l; < r; and sequence regions{l; ... r;] fold into stem-loop structures for
1 <i<j <7 A= A, Ay, A3, Ay, A5, Ag, A7 is an ordered sequence of non-
overlapping alignment blocks suitable to construct an RBéosdary structure descrip-
torR = Qq, Qo, Qs, Q4, 95, g, Q7. The sequence-structure pattedsi € [1, 7] of
‘R given on top of their underlying alignment blocks describe seven marked stem-
loops shown in the RNA secondary structure (B) of the Citris¢eza virus replication
signal Rfam: RF00193). (C) Matches of RSSBs, : € [1, 7], on sequencé, sorted in
ascending order of their start position. (D) Graph-basedesentation of the matches
of Q;,i € [1,7]. An optimal chain of collinear non-overlapping matcheseasegmined
by computing an optimal path in the directed acyclic grapbs€ve that not all edges
in the graph are shown in this example and that the optimahdfiradicated here by
their red marked members) is not necessarily the longesilgeschain.

64

3.5 RNA secondary structure descriptors based on multiglered RSSPs

An SSDR of length L is a sequence of RSSPsR = 9,1, Q», ..., Q; whereQ; denotes the
RSSP describingl;, i € [1, L]. The order< of the RSSPs irR is imposed by the order of the
corresponding alignment blocks. Byandr; we denote the start and end positionsAfin the
multiple alignment, respectively. In practicg, can be obtained from multiple sequence-structure
alignments of related RNA sequences (i.e., of an RNA fanalyhey are available in databases
like Rfam [124,[125]. A match tdR is a non-overlapping sequence of matches for some or all of
the RSSPs iR in their specified order.

Consider an RNA SSIR with total order<. Let M S be the set of all matches for all RSSP fr@n

in sequences of lengthn. A match is represented by a pa@, p) such that® matches at position
pin S. With eachQ in R we associate a positive weightQ) which can be defined by the user.
This weight allows to quantify the expressivenes®adind/or its significance. For example(Q)

can be the length of or it might be derived from the number of unambiguous nudiestin ©

or the probability of obtaining a match f@ just by chance assuming a certain (mono-)nucleotide
background distribution.

We say that matche®, p) and(Q’, p’) arecollinear, written as(Q, p) < (Q',p’) if @ <« @' and
p+|Q| —1 < p'. AchainC for an SSDR is a sequence of matches

C= <(Qj1,p1), (Qj23p2)> R (ijapk)>a

all from MS, such tha(Q;,, p;) < (Qj, ;. pi+1) foralld, 1 <i <k — 1.

There are two modes to score chains, depending on the nédtimesearch problem. If the multiple
sequence-structure alignment our SSD is derived from ansdlrched sequences have comparable
length, we want the chain to cover as much as possible of tiigesee and we define thgtobal
chain scorefor chainC as follows:

gese(C) =) a(Q;,). (3.2)

=1
Then, the global chaining problem is to find a ch@iwith maximum global chain score.

If we are searching in a whole genome or chromosome for avelatshort structural RNA, we
are interested in local chains covering only parts of theogemor chromosome. Then we have to
penalize gaps using a penalty functigand thus thdocal chain scords defined by

e

-1

lese (C) =) _(a(Qj,) — 9 ((Q);,1i)s (Qjs 41 Pi1))) + a(Qj,) (3.3)

1

-
Il

where

. (3.4)

9 ((Q),, i), (Qjisrspit1)) = |(pi+1 —pi) = iy, —75)

To solve the local chaining problem we use our own implentamaf a fast local chaining algo-
rithm described in[[126] with modified gap costs. While thgagsithm of [126] penalizes gaps by

65

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

the sum of their lengths, our solution is based on the diffeeebetween their observed lengths (in
the chain of matches) and their expected lengths (as givémehyultiple alignment of the family);
confer Equation[(3]4). This algorithm runs@h(qlog ¢) time, wherey is the size ofMS.

To solve the global chaining problem we use an efficient éhgialgorithm running irO (q) time.
This algorithm is described in [104].

3.6 Implementation and computational results

We implemented (1) the algorithms necessary for affix aromstruction, (2) the fast bidirectional
search of RSSPs using affix arrays as sketched in AlgorithmeBeinafter calledBIDsearch,
(3) an online variant operating on the plain sequence (hafteir calledONLsearch for valida-
tion of BIDsearchand reference benchmarking, and (4) integrated with theclsedgorithms the
efficient global and local chaining algorithms. Algorith@NLsearchshifts a window of length
m = |RSSP| along the sequence of lengthto be searched and compares the substring inside the
window with the RSSP from left to right until a mismatch ockurence, it runs il (nm) time in
the worst and (n) time in the best case. AlgorithnBiDsearchandONLsearchwere implemented
in the programafsearch Theafconstructprogram makes use of routines from thoelivsufsort2li-
brary (seéhtt p: // code. googl e. com p/ I'i bdi vsuf sort/) for computing thesufg and
sufr tables inO (nlogn) time. For the construction of thepe andlcpr tables we employ our
own implementation of the linear time algorithm bf [111]blesaflke andaflkg are constructed in
O (n?) worst-case time with fast practical construction time duthe use of the skip tabla&pg
andskpg [54]. The programs were compiled with the GNU C compiler $i@n 4.3.2, optimization
option -0O3) and all measurements were performed on a Quael X3awn E5410 CPU running at
2.33 GHz, with64 GB main memory (using only one CPU core). To minimize the irflce of disk
subsystem performance the reported running times areioses aiveraged ovei0 runs. Allowed
base pairs were canonical Watson-Crick (A, U), (U, A), (C, &), C), and wobble (G, U), (U, G),
unless stated otherwise.

Affix array construction times

In a first experiment we constructed the affix array for gerowfeselected model organisms of
different sizes and stored it on disk. We measured the totaling times needed kfconstructto
construct each table comprising the affix array. See F[g@éo8the results of this experiment. The
total size for each table is given in Talple]3.1. Constructiores were in the range @5 minutes
for the C.elegangienome containing- 100 megabases 5.7 hours for the~ 2 gigabase genome
of the megabalP.vampyrus

We also measured the running timead€onstructto construct the affix array for a set &f192,599
RNA sequences with a total length ef 622 MB compiled from the full alignments of aRfam

66

http://code.google.com/p/libdivsufsort/

3.6 Implementation and computational results

|

qgg\

Affix array construction times for genomes of different sizes

|

AQ)
s

= sufe
= lcpe
m aflke

sufg

lcpr
< - = aflkg ‘ <‘
o i

N \C

Figure 3.9: Experiment 1: Running times for affix array camsion for genomes of different
model organisms. Genome sizes are given for each organisnegabases in brack-
ets. We measured the running time in seconds for all tabkesffix array consists of
(y-axis, log;, scale). Total construction times were in the range-o25 minutes for
C.elegansip to15.7 hours forP.vampyrus

log1o (Running time [s])

Q »*?’QQ

release 10.0 families. The construction and storage onrdigkired126 minutes. In the following
we refer to this dataset &~AM10 for short.

Influence of loop length on search performance

In a second experiment we investigated the influence of the length and the number of unam-
biguous characters in the loop of an RSSP on the running tinBd@searchand ONLsearch For
this experiment we constructed artificial RSSPs with a fixedhdength of7 and a loop lengtfi
varying from3 to 20. For each loop length, we also varied the number of conaecutiambiguous
characterg; from 0 to 4. For¢ = 0 this means that the RSSP contains structural constraihts on
That is, forq = 0 and! = 5 the used RSSP matches all substrings that are able to faldaint
stem-loop structure with loop lengthand stem length. Such a pattern is written in dot-bracket
notation ad ((((((.....))))))) . Allowed base pairs were (A, U), (U, A), (C, G), and (G,
C). We measured the time needed BNDsearchand ONLsearchto search for these patterns in
the RFAM10 dataset. Results are given in Figlre 3.10. In this expetirBédsearchperformed
very well and was faster thadNLsearchfor all parameter combinations. We also investigated the

67

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Organism Genome sufg Icpe Icper aflke sufr Icpr Icper aflkgr

size (n) (4n) (n) (4n) (4n) (n) (4n)
C.elegans 100.29 401.14 100.29 6.29 401.14 401.14 100.29 6.29 401.14
A.thaliana 119.67 478.67 119.67 8.85 478.67 478.67 119.67 8.85 478.67

D.melanogaster 168.74 674.95 168.74 94.34 674.95 674.95 168.74 94.34 $74.9

C.intestinalis 173.52 694.02 173.50 28.03 694.02 694.02 173.50 28.03 B94.0
O.sativa 374.33 1,497.33 374.33 71.05 1,497.33 1,497.33 374.33 571.0,497.33
M.gallopavo 1,087.50 4,349.99 1,087.50 2.01 4,349.99 4,349.99 1,087.52.01 4,349.99
G.gallus 1,108.48 4,433.93 1,108.48 98.86 4,433.93 4,433.93 14808. 98.86 4,433.93
D.rerio 1,481.32 5,925.08 1,481.27 457.26 5,925.08 5,925.08 D481457.26 5,925.08
X.tropicalis 1,510.98 6,043.63 1,510.91 310.89 6,043.63 6,043.63 BH10310.89 6,043.63
Pvampyrus 1,999.71 7,998.82 1,999.71 170.84 7,998.82 7,998.82 17999170.84 7,998.82

Table 3.1: Sizes in megabytes of the different tables the affiay consists of for the genomes
used in Experiment 1cper andlcper are the exception tables storing entries with value
larger than 255 which cannot be stored in tabtgg andlcpr, respectively. In tables
lcper andlcper, each entry consumesbytes.

influence of different stem length (data not shown here) anohd that the impact on the total
running time is negligible. We observe that the advantag@btearchover ONLsearchdecreases
with increasing loop length for fixed q. We explain this behavior with the increasing number of
affix-intervals that have to be processed for finding alledi#ht substrings of the sequences that
match the RSSP. However, even for an RSSP with loop lehgth20 containing only structural
constraints { = 0), BlDsearchis still faster tharONLsearchWe further notice that the number of
unambiguous characters in the loop region has a strong maiéuen the running time @IDsearch
That is, by specifying only a few conserved nucleotides @RISSP’s loop region, the running time
of BIDsearchis reduced dramatically. For an example of this effect, beeunning times oBID-
searchin Figure[3.10 for parametets= 15 andq € {2, 3, 4}. This render8IDsearchin particular
useful for searching with RSSPs with moderate loop lengtbxisting sequence conservation in
the loop region. The speedup factors measured in this expatiwere in the range from001 to

78.1 for ¢ = 0 and from9.28 to 11 x 103 for ¢ = 4. Table[3.2 gives more details on the speedups
of BIDsearchover ONLsearchor all investigated combinations gfandi.

Searching large sequence databases

To measure the performance BiDsearchfor non-artificial real-world RSSPs, we manually com-
piled a set 0897 RSSPs describingR highly structured RNA families taken from tiRFAM10 da-
tabase. These were all families with a consensus secortacyuse containing at leaststem-loop
substructures. We measured the running time needdslbgearch ONLsearch and the widely
used toolRNAMotif[42] andRNABOH?98] to search for thes&d7 RSSPs in th&@FAM10 dataset.
As expected, all tools delivered identical results. Howewdile it took BIDsearchless tharb0 sec-
onds to search for th&97 patterns as shown in Talle BERNABOBand RNAMotif needed more

68

3.6 Implementation and computational results

Dependency of running time on loop length and #specified characters (q) in loop region

BIDsearch(q=0)
® ONLsearch(q=0)
BIDsearch(q=1)
ONLsearch(g=1)
- BIDsearch(q=2)
ONLsearch(q=2)
BlDsearch(q=3)
ONLsearch(q=3)
BIDsearch(q=4)
ONLsearch(q=4)

150000
L] []

100000
|

Running time [ms]

50000
|

o | | .,| |.| |.| |.| ||‘ 1L | |

3 4 5 6 7 8 9 10 11 12 13 1

‘:. ‘ il ‘l. MI
4 16 17 1

Il
15 1

8 9 20

Loop length |

Figure 3.10: Experiment 2: Influence of loop length and numdfeunambiguous characters in
loop region on total running time d8IDsearchand ONLsearch We measured the
running time in milliseconds to search with artificial RSS#Hth loops of varying
lengthl € {3,...,20} on~ 622MB of RNA sequence data. For each loop length
we also varied the number € {0,...,4} of unambiguous nucleotides in the loop.
The used RSSPs had a fixed stem length of 7. For more detaitésoexperiment see
corresponding text.

l 3 4 5 6 7 8 9 10 11
q=0 78.10 48.64 35.42 23.55 16.35 11.01 7.31 4.89 3.48
qg=1 329.81 180.45 105.67 57.41 33.75 19.20 11.30 7.14 4381
qg=2 749.94 418.65 227.45 121.80 67.81 36.99 21.44 12.73 8.41
q=3 2,345.17 1,169.53 653.31 353.49 188.34 103.34 56.59 33.08.792
g=4 | 11,045.75 3,638.14 2,1448 1,132.53 610.63 338.77 184.586.11 64.93

l 12 13 14 15 16 17 18 19 20
qg=0 2.67 2.15 1.79 151 1.37 1.20 1.13 1.07 1.00
qg=1 3.58 3.13 2.28 1.89 1.68 1.46 1.35 1.27 1.12
q=2 5.96 4.88 3.64 2.94 2.57 2.19 2.02 1.82 1.63
q=3 14.27 11.88 8.25 6.50 5.53 4.74 4.19 3.76 3.34
qg=14 43.09 35.23 25.74 19.52 15.91 13.25 11.75 10.32 9.28

Table 3.2: Experiment 2: Obtained speedupBiDsearch over ONLsearchfor different loop
lengthl € {3,...,20} and number of unambiguous characters in the loop region
q € {0,...,4}. For the parameter combinatidn= 3,q = 4 also one character of
the stem was specified.

69

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

BIDsearch ONLsearch RNAMotif RNABOB
46.1(1) 6,203(134.5) 11,745(254.7) 9,061(196.5)

Table 3.3: Experiment 3 (A): Running times in seconds nedwyetthe programs to search 897
RSSPs describing2 RFAM10 families in~ 622 megabases of RNA sequence data. For
each program the speedup factorBiDsearchover the particular program is given in
brackets.

than2.5 and3.2 hours respectively to complete the same task. This made dpeadup factor of
196.5 (254.7) for BIDsearchover RNABOB(RNAMotif). Even if we include the time needed for
affix array constructionBIDsearchis still faster tharRNABOBandRNAMotif.

We also investigated the distribution of speedup factotainkd byBIDsearchwhen searching for
the 397 RSSPs. We observed tBdDsearchis more tharb0,000 times faster thalRNABOBand
RNAMotif for the majority of the patterns and that the total searcle trequired byBlDsearch

is dominated by only a small number of patterns. These patteescribe large unconserved loop
regions. See Figufe_ 3111 for a graphical visualization efdistribution of speedup factors.

Scaling behavior of bidirectional pattern search using affi X arrays

In a further experiment we investigated the scaling behavidIDsearchand ONLsearchfor an
increasing size of sequences to be searched. For this, wehedawith different RSSPs on random
subsets 0RFAM10 of different sizes and measured the running time for botlordlgms. The
results are given in Figufe 3112. Hepatternl is an RSSP containing only structural constraints.
It describes a stem-loop with loop length stem length10 and no specified nucleotides in the
loop region. The RSSPattern2 (pattern3) only differ from patternl by containing one (two
consecutively) unambiguous nucleotides in the loop region

In this experimenBIDsearchclearly showed a sublinear scaling behavior, whe@aH search
scaled only linearly. It tooBIDsearchonly 566.8 (patternl), 133.8 (pattern2), and37.1 (pattern3)
milliseconds to search the whoRFAM10 dataset. The obtained speedupsBdDsearchover
ONLsearchwere in the range from.63 (1MB subsétto 104.79 (full RFAM10) for patternl, from

12.23 (1MB subseétto 223.18 (full RFAM10) for pattern2, and from35.0 (1MB subsétto 618.37

(full RFAM10) for pattern3. We observe again that the specification of only one or twéemtices
in an RSSP’s loop region considerably reduces the running ¢if theBIDsearchalgorithm.

RNA family classification by global chaining of RSSP matches

To demonstrate the effect of global chaining of RSSP matckesearched with an SSD built for
theRfam family of OxyS RNAs (Acc.: RF00035). OxyS is a small9-nucleotide long non-coding
RNA which is included in response to oxidative streskiooli [127]. Members of this family fold

70

3.6 Implementation and computational results

Q Q
(e} | —
|
' I Lo
' o
: %)
c
I L Qg
| © s
3 - | 5
| ~ 3
| - . @
SIC)
| (=)
Speedup BlDsearch over RNAMotif : © g-
| S 3
%)
c Speedup BlDsearch over RNABOB | i g
g o | _______T\ 4 _____ nlfl | w @
= < . . M o £
© Fraction of patterns with BIDsearch E=
o L . ;
H* speedup over RNAMotif greater than S -
) . | L < c
a Fraction of patterns with BIDsearch | o5
speedup over RNABOB greater than S | i %
| ngs | ma
- . _ | o5
o _
5 5
— NS
il o9
© &
S
L
L [-
o dlm rl'IIﬂ o
Speedup obtained by Structator [S] ©
O O 0O 0 000 00000 00000000000 0000 o o
NI OO O OO0 0 O 0000 00000000000 0o oo
I 1 1 "N OOO OO OO0 OO0 OO0 O0O0 O OO0 0 OO O o
A A A |] NN ON0000NnOoONnNOoOOo0OoOwm oo oo oo
— N o A A | | | I | I | Il A NANOMOFTOHNOOO O O O
Noodddd A A A A | | | | | | 1 | " NmMmLWO OO
A NO OO0 00O dddddAddd I | | |
N OO OO0 000000000000 dodoudd | A
AN MO T WO OO O OO0 O 00000 O O -
O OWOoOWmWoO OO OO0 o0 oo
A A N ANMOITOHOLO O O O
~N O O O O
- N ™M 8

Figure 3.11: Distribution of speedup factorsBiDsearchover RNABOB(yellow) andRNAMotif
(green) when searching for 397 RSSPRIFAM10 consisting of~ 622 megabases
of RNA sequence data. The red and blue curves show the vafumseaninus the
empirical cumulative distribution function of the speedaptors distributions. That
is, for a given speedup factérthey show the fraction of RSSPs for whiBhDsearch
obtained a speedup greater thérover RNAMotif (red curve) andRNABOB(blue
curve), respectively. We observed tiiDsearchis more than50,000 times faster
than RNABOBand RNAMoatif for the majority of the patterns (see intersection point
of dashed lines). Moreover, the total search time requiseBIDsearchis dominated
by only a small number of patterns describing large uncemeskeloop regions.

71

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

—— patternt % | — patternt
—— pattern2 * —— pattern2
pattern3 / pattern3 *

500
I
50000
I

400
|

running time [ms]
0
I
running time [ms]
30000
I
*

100
|
*\
%\
*
10000
|

*
*T %7

S
\s

*
0
L
i

0
L
|

T
0 100 200 300 400 500 600 0 100 200 300 400 500 600

search space size [MB] search space size [MB]

Figure 3.12: Scaling behavid@IDsearch(left) and ONLsearch(right). We measured the running
time needed to search with three different patterns on ramsldosets oRFAM10 of
different sizes. For details, see main text.

into a characteristic secondary structure consisting refetlstem-loop substructures, referred to as
HP1, HP2, andHP3 in Figure[3.1B (C). From the three stem-loops we derivedetidiescriptors
calledRSSP1, RSSP2, andRSSP3, which constitute the SSD describing this family. We note
that in this experiment the RSSPs were constructed to giggrdaigh specificity and thus to mini-
mize the number of false positives. For the SSD specifi&tinctatorsyntax, see Figufe 3.1.3 (A).
Searching for this SSD iRFAM10, Structatordelivers8,619 matches foRSSP1, 1,699 matches
for RSSP2, and142,219 matches foRSSP3. Instead of reporting these match8guctatorcom-
putes high-scoring global chains for each sequence camgainatches to all three RSSPs. The
chains and the sequences they occur in are reported in disgesrder of the chain score. This
procedure resulted iil sequences, all belonging to the OxyS family which contaitis mem-
bers in total. Hence, by considering only high-scoring ehaill the spurious RSSP matches were
eliminated. We also described the same three stem-loopgameat compatible wittRNAMotif
(see Figuré_3.13 (B)). A search ®&FAM10 with this descriptor returned exactly the safiiese-
guences. HoweveBtructatoroperating inBlDsearch(ONLsearch mode with subsequent global
chaining of RSSP matches needed ahfy(122.5) seconds to identify all family members, whereas
RNAMotif needed4.7 seconds. The search times fatructatorinclude0.05 seconds required for
the chaining.

We also employed global chaining to detect members of thetstrally more complex family of
Citrus tristeza virus replication signdRfam Acc.: RF00193). Therefore we built an SSD com-
prising 8 RSSPs, describing of 10 stem-loops the molecule is predicted to fold into. For more
information on the molecule’s secondary structure and el Wlescriptor, see Figure 3.14. Using
Structatoroperating inBlDsearch(ONLsearchmode and global chaining of RSSP matches it took
only 1.3 (138.7) seconds to seardRFAM10 with this SSD, wher®.06 seconds were required for
the chaining. The computed global chains with a minimumteied5, computed from thé84,199

72

3.6 Implementation and computational results

(A) >RSSP1|maxrightloopextent=1|maxleftloopextent=1|maxmispair=6|weight=1 (B) parms
'CCNU wc +=gu;
COCOOEE OO (. (Ceennntt.2))))-2))))))))))) descr
>RSSP2 |maxrightloopextent=5|weight=1 h5 (len=7)
GNNNNNCUCACNN ss (len=1)
e 1)) h5 (len=4)
>RSSP3 |maxmispair=2|maxrightloopextent=2|weight=1 ss (len=1)
NNGGANCUNNNNNNNNNNN h5 (len=2)
[))))))) ss (len=1)
h5 (1len=2)
LS ss (seq="N\{0,1\}NNNNACCCNUN\{0,1\}",minlen=10,maxlen=12)
(C) FORCRCN h3 (seq="NA",len=2)
© [Ch¢ ss (len=1)
© @ h3 (len=2)
20-@ ® ss (len=2)
® o h3 (len=4)
@ ©@=30 h3(len=7)
©
® ®® h5 (len=4)
® ss (seq="NNCUCN\{0,5\}" ,minlen=5,maxlen=10)
Y @ h3 (len=4)
| @ ss (minlen=27,maxlen=31) #single strand between HP2 and HP3
@ ® h5(len=7, seq="NNGGANC",mispair=2,ends='mm')
® ss(seq="UN\{4,6\}",minlen=5,maxlen=7)
© h3 (len=7)
®
8 _® %@
® W . e ®
© ‘o© © ©
5 OFQ@ %
© ®
®—© ® ® 0-® @
© © . =® ©
» ®
® © @\® ® Q- —©-
I
HP1? @ 9 OHp2 © 9 Hp3
® © ® O © ©
® ..@ COPOPOIOPPOODIOPPOOOPAODOOOOAOOOOODOO OO

Figure 3.13: (A) Secondary structure descriptor for theilfamf OxyS RNAs in Structator syn-
tax. The SSD consists of RSSRSSP1, RSSP2, andRSSP3 describing the three
stem-loop structures (HP1, HP2, and HP3, see (C)) of thidl simra-coding RNA. (B)
RNAMotif descriptor for the same structural elements. (C) Consesgumndary struc-
ture of the OxyS RNA family as drawn BYyARNA]128]. Sequence information (non-
wildcard nucleotides) used in both descriptors are markitidl an asterisk. Observe
that both descriptors use predominantly structure andlitdeysequence information.

single RSSP matches, were ranked according to their gldtzah score. We observe that the se-
guences containing tt&¥ highest scoring chains are exactly #llmembers of the family.

In addition we measured the performanceStfuctator using global chaining for RNA family
classification with manually compiled SSDs fir Rfam families. For the results of this experiment
see Tablé_3l4.

Searching whole genomes using local chains of RSSP matches

As an example of searching a complete genome or whole chmmess for non-coding RNAS,
we searched for the RNA gene Human accelerated region 1F {iIHABn both strands of the
human genome sequence. HAR1F is onédafegions in the human genome that differ significantly
from highly conserved regions of the chimpanzZee [129]. Téwsensus structure of the HAR1F
family in Rfam (Acc.: RF00635) contains three stem-loop regions, dendiet, HP2, andHP3 in
Figure[3.16 (A). From these regions, we built an SSD for theilfawith RSSPRSSP1, RSSP2,
andRSSP3, shown in Figuré_3.16 (B). Since we were searching on commlketomosomes, we
only wanted to consider RSSP matches that occurred at asidistance to each other w.r.t. to the

73

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

Acc. #Matching #TP #FP #FN Sensitivity Specificity Accuracy Precision #RSSMin.chain TgipsearcHSeC] TonLsearciSec] SpeedupTchainingSecl
chains length
RF00044 8 8 0 0 1.000 1.000 1.000 1.000 8 2 0.964 117.359 121.74 0.001
RF00193 37 37 0 0 1.000 1.000 1.000 1.000 8 5 1.220 140.681 3125. 0.063
RF00126 106 106 0 1 0.991 1.000 1.000 1.000 6 2 1.032 128.476.492 0.000
RF00503 78 78 0 2 0.975 1.000 1.000 1.000 10 2 1.084 164.866.09%2 0.002
RF00209 1,511 1,493 18 58 0.963 1.000 1.000 0.988 9 2 1.056 3129122511 0.006
RF00625 24 22 2 1 0.957 1.000 1.000 0.917 5 3 3.304 102.066 930.8 0.656
RF00061 6,211 6,211 0 285 0.956 1.000 1.000 1.000 7 4 1.188 .2399100.370 0.032
RF00224 21 21 0 1 0.955 1.000 1.000 1.000 10 3 1.508 202.661.39B4 0.138
RF00084 111 111 0 7 0.941 1.000 1.000 1.000 4 2 1.180 78.66966%6. 0.050
RF00372 42 42 0 3 0.933 1.000 1.000 1.000 7 3 1.092 104.663 495.8 0.007
RF00115 58 58 0 5 0.921 1.000 1.000 1.000 9 4 1.128 167.9629028. 0.024
RF00488 24 24 0 3 0.889 1.000 1.000 1.000 6 4 1.084 94.938 B7.58 0.043
RF00294 44 44 0 9 0.830 1.000 1.000 1.000 12 3 1.124 164.814.6326 0.008
RF00210 345 345 0 72 0.827 1.000 1.000 1.000 14 3 1.308 206.133.594 0.104
RF00228 348 346 2 79 0.814 1.000 1.000 0.994 13 2 1.048 225282632 0.006
RF00036 18,312 18,312 0 4,452 0.804 1.000 0.999 1.000 16 3 641.4 224.778 153.537 0.145
RF00549 39 38 1 10 0.792 1.000 1.000 0.974 10 4 1.584 154.3824637 0.142
RF00448 11 11 0 3 0.786 1.000 1.000 1.000 7 4 1.000 102.730 7302. 0.002
RF00177 584,748 582,839 1,909 179,250 0.765 0.999 0.946 9709 13 3 11.004 221.798 20.156 2414
RF00101 142 142 0 45 0.759 1.000 1.000 1.000 6 3 1.000 119.409.4Q7 0.004
RF00166 54 54 0 18 0.750 1.000 1.000 1.000 8 3 1.068 127.872.7309 0.009
RF00018 278 272 6 96 0.739 1.000 1.000 0.978 11 5 3.944 212133786 0.666
RF00252 26 26 0 10 0.722 1.000 1.000 1.000 10 3 1.260 143.709.083. 0.057
RF00547 39 39 0 18 0.684 1.000 1.000 1.000 14 3 2.604 221.4580485 0.452
RF00011 355 353 2 185 0.656 1.000 1.000 0.994 10 4 2.988 183.921.554 0.582
RF00010 2,478 2,402 76 1,679 0.589 1.000 0.999 0.969 12 5 26.21 187.616 30.202 1.548
RF00449 33 32 1 26 0.552 1.000 1.000 0.970 9 3 1.308 154.726.2948 0.073
RF00040 92 92 0 82 0.529 1.000 1.000 1.000 9 4 1.248 153.410.9222 0.050
RF00023 1,362 1,362 0 1,699 0.445 1.000 0.999 1.000 11 3 2.076 193.740 93.324 0.229
RF00229 1,257 1,256 1 1,637 0.434 1.000 0.999 0.999 11 3 1472 193.168 131.228 0.139
RF00222 26 26 0 35 0.426 1.000 1.000 1.000 12 3 1.148 201.553.527 0.025
RF00459 223 215 8 341 0.387 1.000 1.000 0.964 7 2 4.776 221.002273 0.012
RF00028 10,647 10,229 418 28,820 0.262 1.000 0.991 0.961 13 2 1.476 203.889 138.136 0.075
RF00261 21 21 0 65 0.244 1.000 1.000 1.000 8 4 1.552 171.0632210 0.130
RF00373 82 75 7 247 0.233 1.000 1.000 0.915 8 4 1.692 143.64589B4 0.166
RF00230 2,059 1,753 306 6,507 0.212 1.000 0.998 0.851 8 3 089.0 220.410 5.651 0.471
RF00226 18 18 0 73 0.198 1.000 1.000 1.000 7 4 2.664 108.687 79&0. 0.449
RF00009 136 111 25 455 0.196 1.000 1.000 0.816 11 3 3.260 640.158.333 0.480
RF00629 6 6 0 25 0.194 1.000 1.000 1.000 8 4 1.816 153.526 B4.54 0.248
RF00030 20 20 0 476 0.040 1.000 1.000 1.000 9 5 10.632 175.558512 2.427
RF00100 614 614 0 15,042 0.039 1.000 0.995 1.000 13 7 1.240 .68928 160.203 0.065
RF00004 257 257 0 7,252 0.034 1.000 0.998 1.000 8 4 1.320 128.897.585 0.034
Average(@): 0.629 1.000 0.998 0.983 945 3.38 3.100 163.330 101.500 0.29
Total(%): 397 130.13 6,859.7 12.236

Table 3.4: Results ddtructatorsearches oRFAM10 (1,446 families; 3,192,599 sequences) using

74

SSDs describing2 Rfam families. The manually compiled SSDs used in this experi-
ment are available on thgtructatorwebsite. They were designed to be highly specific
and consist 0897 RSSPs in total with an average @#5 RSSPs per SSD. These are
the same397 RSSPs used in section “Searching large sequence datab@sdsinns

2, 3, 4, and 5 show the number of sequences containing hainrgcglobal chains,
the numbers of true positives (TP), false positives (FPY, fafse negatives (FN), re-

spectively. Sensitivity is computed a7, specificity asz41 27, accuracy as

P T @nd precision ag-—4+ -7 Observe that these values strongly

depend on the used SSD. The number of RSSPs constitutingisg#&en in column
10. Column 11 shows the minimal required length of a chairetodnsidered a matching
chain. Total running times dbtructatoroperating inBIDsearchand ONLsearchmode
are given in columns 12 and 13, respectively. Column 14 sigMsearchs speedups
over ONLsearch The running time required for chaining of RSSP matchesstedi in
column 15. Observe that the sum of running times does nothrthte times needed

for searching with thed97 single RSSPs reported above because here each SSD was

searched using a separ&euctatorprogram call.

3.6 Implementation and computational results

>HP1 >HP3
NNNNNNUNGCNNNNCN ~ NNNNNUNUANNNNN ANGL
CCCCCCaa2)))))) CCCCCa.00))) CCCCCC2))))))
>HP2 >HP4 >HP6
NNNNNGGUNANNNNN UNAACNNU NNNNCAANGANNNNN
COCCCa 1)) (44 (llccooosannaas)))))))) (€cooooas 1))

Figure 3.14: Consensus secondary structure of the @R\sig family (RFAM Acc.: RF00193)
visualized with theVARNAprogram [128] and SSD iStructator syntax describing
this family. The8 given RSSPs correspond to the colored stem-ldép4 - HP8.
Positions at which sequence information is used in the g#ectare marked with an
asterisk.

distances of the corresponding descriptors in the SSD efdrer, unlike in the previous experiment
where we searched for global chains of RSSP matches, we moputed high-scoring local chains.
Gap costs were computed according to Equafiod (3.4) and ecears RSSP weight(RSSP;) =
10, for 1 < ¢ < 3. Affix array construction for all human chromosomes was aguashed in12.6
hours byafconstruct We searched witlstructatorfor the three RSSPs and found,090, 1,578,
and 14,491 matches forRSSP1, RSSP2, and RSSP3, respectively. For these RSSP matches
we computed local high-scoring chains (see Fidgurel3.16. (OhginsC were ranked according
to their local chain scorésc (C). We observed that the highest-scoring chain correspontigeto
correct location of the gene on chromosote Using BIDsearch(ONLsearch this task needed
3.1 (633.4) seconds only, including.02 seconds for the chainingfRNAMoatif also found a single
match corresponding to the correct location of the genenbetied74.7 seconds. See Figure 3115
for the usedRNAMotif descriptor.

Comparison of two implementations of bidirectional patter n search using
affix arrays

We measured the speedup $tiructator running in BIDsearchmode overONLsearchand com-
pared the results with previously reported measuremefi][Because the implementation used
by Strothmann[[101] is not available (personal commuriacgtiwe calculated relative speedups
based on the absolute running times reported_in|[101]. We tiatt the measurements of [101]
were performed on different hardware. This can, accordingutr experiments, significantly influ-
ence the performance &lDsearch See Tablé 315 for the results of the comparisoBl@search

75

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

(A) [>rsse1istartpos=22 (B)[pa==
'NNNNNNNACAGCNNNNNNNNNNNN we += gu;
CC OO M) eennnn 1) descr
>RSSP2|startpos=46 h5 (len=2)
ss (len=1)
oG (e e 1) e)) e 1)) h5 (len=4)
>RSSP3|startpos=93 ss (seq="ACAGC", len=5)
'NNNNNNNNNNNNUUURGAGI h3(len=4)
ss (1len=6)
h3(len=2)
h5 (len=1)
ss (len=1)
h5 (len=3)
ss(len=1)
h5 (len=2)
ss (len=2)
h5 (len=2)
ss (segq="NUAGAC", len=6)
h3(len=2)
ss (len=2)
h3 (len=2)
ss (len=14)
h3(len=3)
ss (len=1)
h3(len=1)
ss (len=4) #single strand between HP2 and HP3
h5 (len=5)
ss (seq="NNNNNNNUUURGAG", len=14)
h3 (len=5)

Figure 3.15: (A) SSD for HAR1F RNA family consisting &8SSP1, RSSP2, and RSSP3 in
Structatorsyntax. RSSPs were built from stem-lodgB1, HP2, andHP3 shown in
(C). (B) RNAMotif descriptor for the same structural elements. Secondaugtste

drawing shown in (C) was generated WifARNA[128].

76

3.6 Implementation and computational results

(A) (B) >RSSP1 | startpos=22|weight=10
AGC
CCOCe - DIV cooooe))
>RSSP2 | startpos=46|weight=10
JAGAC
(o (Lo (oo (@eococo Mool oococosonososo))).)
>RSSP3|startpos=93|weight=10
(€C(Cccoccoscoccoos 1))
: ‘ et RSSP2 s
(@)} RSSP1 istance= distance=47 spance= RSSP3
UCAAAAGAACAUGAAACGGA AGC JAGAC JAUC JUT 'CUCAAGUUUCAAAU
----------- COCCCC OO OO o)D) e) GO GG ea)) o)))) e OO e 2)))00))))0))) - s
QURSSP1)=weight=10 | OU(RSSP2)=weight=10 | OURSSP3)=weight=10
(D) startpos=22 startpos=46 startpos=93

AGAAAUUACAGCAAUUUAUCAACU _ distance=16 , GARACUAUGGGCGUAGACGCACGUCAGCAGUGGARRUAGUUUC distance=10, AAAAUUAAAGUAUUUAGAGAUUUU | csc(C1)=8
CC OO)RR DR)) (O O O PP M) ma! COCCC e 1))

AGAAAUUACAGCAAUUUAUCAACU distance=8 GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC
© TN » GO (e TS DU Y. lesc(C2=12

(3 AGAARUUACAGCAAUUUAUCAACU distance=50 , ARARUUARAGUAUUUAGAGAUUUU | (C3)—
(O P M)) g((P1,p1), (P3,p3))=[47-50|=3 BCGGGGoo0o0000000000 1))
distance=2 distance=3
4 BGARAUUACAGCAAUUUAUCAACU | GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAARAUAGUUUC |, ARAAUUAAAGUAUUUAGAGAUUUY | . (4)_)
(e (il ooas D)D) cocass D M OO O O O P Y G, 1) o)) e)))) OO e e)))))

Figure 3.16: (A) Consensus secondary structure visualizgdthe VARNAprogram of the HAR1F
RNA family showing stem-loopdHP1, HP2, and HP3. (B) SSD consisting of
RSSP1,RSSP2, andRSSP3 in Structatorsyntax describing the three stem-loop re-
gions of HAR1F. (C) Regions of HAR1F described by the RSSR$ding distances
liy1 —riy 1 < i < 3, between neighbored RSSPs and RSSP weigli&SSP;),

1 < i < 3. (D) Examples of local chaing;, 1 < i < 4 found with the SSD, show-
ing, in each chain, the distance between RSSP matches andot® chain score
lese (C;). Gap cost computation according to Equation](3.4) is shovemelary for

the two RSSP matches of chdip.

77

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

P.horikoshii(1.7MB) | E.coliK12(45MB) | P. vampyrug1.9 GB)
RSSP | ONL BID BisO STR ONL BID BisO STR ONL BID BvsO STR
Hpinl [169.61 6559 259 10.2832.94 141.84 3.05 12.]172,913.36 9,520.39 18.16
Hpin2 | 33.34 0.27 12348 15588.61 0.45 196.91 99.2534,702.63 48.85 710.39
Hloop(5) | 214.8 166.94 129 14|652.67 37257 1.48 18.0219,547.76 23,958.41 9.16
Hloop(10) |331.96 1,412.64 0.23 2.1842.32 3,235.11 0.26 2.4335,928.97 248,711.65 1.35
ACloop(5) | 59.07 4.43 13.33 18252.87 991 1543 81564,053.16 82579 77.57

ACloop(10)| 58.71 1.37 42.85 W52.12 3.45 44.09 7.2464,136.82 391.56 163.8

ACloop(15)| 58.67 0.89 65.92 1/352.01 1.86 81.73 1.3864,199.98 278.76 230.31

Table 3.5: Comparison of speedupSifuctators BIDsearchover ONLsearchcolumnBvsO) and
the speedup of affix array based search over searching onlalmetext as reported
in [101] (columnSTR. The respective search times BfDsearch(columnBID) and
ONLsearch(column ONL) are shown in milliseconds. F&. vampyrusonly measure-
ments forStructatorare available.

with the method of [101]. For a description of the used RS®B$HI1]. The search was performed
in the genomes d®. horikoshii(GenBank Acc.: NC.000961, 1.7 MB) ané. coli(GenBank Acc.:
AC_000091,4.5 MB), which were also used in_[101]. Additionally we includedth P. vampyrus
(GenBank Acc.: ABRP00000000, 1.9 GB) a larger eukaryotic genomeimekperiment.

Surprisingly, with the RSSPACloop(5), ACloop(10), andACloop(15) taken from [[101], which
describe a loop consisting of 5 (10 and 15) repetitions of &€ ,speedup of the affix array based
method of [101] decreased with increasing loop length. &hésbehavior which is opposite to our
observations (see Figure 3110). We also noticed BiBsearchobtained a higher speedup when
searching for RSSHpin2 in E. colithan the method of [101] but not when searching in the smaller
genome ofP. horikoshii This observation remains unclear and cannot be furthestigated due

to unavailability of the implementation used in [101].

Comparison with an implementation of bidirectional patter n search using a
compressed data structure

In the last experiments we compar8tructatots running time using usin@lDsearchwith the
time needed by a recently published bidirectional pattearch implementation for the same task.
The implementation of [130], to which we refer B§VI, uses a compressed data structure called
bidirectional wavelet index. We remark tHRWI can only search with a small set of hard-coded
patterns, i.e., the user cannot use it to search with hisiempatterns. Moreover, unlik&tructator
which provides a full command line interface with many coafaple options (see section about
the software packageBWI reports neither matching substrings nor matching postigvhich is
known to be the most time consuming part when querying cossgrkindex structures [63]). It only
outputs the search time of individual patterns and the nurobmatches. Thus, it serves rather as
a prototype implementation of the concepts introduced 8@]1Nevertheless, since it also makes

78

3.7 Structatorsoftware package

hairpinl hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)

BWI 10,484 64 612 26,413 896 420
BIDsearch 8,325 32 330 16,768 511 295
BIDsearchvs. BWI 1.26 2 1.85 1.58 1.75 1.42

Table 3.6: Search time comparison betw&tructatots BlDsearchand an implementation, here
called BWI, of bidirectional search using the wavelet tree data sirectescribed
in [130Q]. Search times are in milliseconds. The last row shthve speedup &IDsearch

overBWI.
Organism Genome size BWI
C.elegans 100.29 157.96
A.thaliana 119.67 188.59
D.melanogaster 168.74 295.37
C.intestinalis 173.52 279.83
O.sativa 374.33 602.21
M.gallopavo 1,087.50 1,800.88
G.gallus 1,108.48 1,757.84
D.rerio 1,481.32 2,424.81
X.tropicalis 1,510.98 2,309.24
P.vampyrus 1,999.71 3,282.55

Table 3.7: Size in megabytes of the bidirectional waveldéein(BWI) [130] for different genomes.

use of bidirectional search, we compa®@/| with Structatorusing BW/I's hard-coded patterns.
See Tablé_ 316 for the results. Details of the database atetpaare as previously described [130].
We noticed thaBIDsearchwas faster thaBWI for matching all patterns by up to fact®r hence
making it preferable when speed is most important. Howewernote thaBWI's compressed
wavelet index consumes significantly less memory tBactators affix array index, which would
makeBWI preferable in cases where space consumption is critical T8kld 3.7 for the memory
required byBW!I's index for different genomes.

3.7 Structator software package

Structatoris an open-source software package for fast database s@indRNA structural patterns
implementing the algorithms and ideas presented in thikwlbrconsists of the command line
programsafconstructandafsearch

afconstructimplements all algorithms necessary for affix array comsion, namely a lightweight
suffix sorting algorithm for construction of the suffix arsasyfe andsufr, the algorithm for con-
struction of tabledcpg andlcpr [111], and the algorithm for computation of the affix link
aflkg andaflkg. The program constructs all or if necessary only some ofahkes of the affix array
for a target database provided in FASTA format and stores the disk. Therefore the program

79

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

can also be used to compute only the tables needed for adradienhanced suffix array [109].
afconstructcan handle RNA as well as DNA sequences. Moreover, it supploet transformation
of input sequences according to user-defined (reducediladpé and allows the index construction
for transformed sequences. Such personalized alphaleetssity specified in a text file.

afsearchis the program for performing structural pattern matchirtat is, it searches (ribo)nucleic
acid sequence databases for entries that can adopt a [zartieaondary structure. For an overview
of the supported RNA sequence-structure patterns (RSS&es)Figuré_315. The simplest RSSP
describes a single-stranded region, where ambiguous @lbtenserved) nucleotides can be spec-
ified with IUPAC characters. All ambiguous IUPAC charactare hard-coded iafsearch e.g. N
standing for nucleotides A, C, G, and U (and T) and R standing\fand G. Besides fixed-length
RSSPs with or without ambiguous characters (Figuré 3.5 (&) (D)), also RSSPs describing
loop or stem regions of variable size (Figlrel 3.5 (E) untij)(&fe supported. More precisely, one
can specify with parameteraaxleftloopextent (mllexdnd maxrightloopextent (mrlex@ variable
number of allowed extensions to the left (nucleotides ndhikeyellow in Figure 3.b (E)) and/or
to the right (nucleotides marked in blue in Figlrel 3.5 (F))tfee specified loop pattern. Variable
stem sizes can be addressed with paramagetstemlength (ms(see regions marked in pink in
Figure[3.5 (G)). Also supported is the combination of vdedbop and stem size (see Figlrel3.5
(H)) and a maximal number of allowed mispairings in the stegian. All these different RSSPs
can be specified by the user in a text file which use, as showigindf3.5, an expressive but easy
to understand pattern syntax. For additional details omstipported patterns see the corresponding
section in theStructatoruser manualafsearchalso permits user-defined base pairing rules. That
is, the user can define an arbitrary subset ftdm A as valid pairings. This ensures a maximum
of flexibility. For example, the standard canonical Wat§ck pairings as well as non-standard
pairings such as G-U can be specified.

The search is performed efficiently on a pre-computed affeyaafsearchmplements the bidirec-
tional index-based search algorithEDsearchand the online algorithr®NLsearchoperating on
the plain sequence, both extended to support patterns aitable loop size and/or stem length.
Further, it implements the methods for fast global and lobaining of RSSP matches. The search
with RSSPs can be performed on the forward and, in case oéaiité sequences, also on the
reverse strand. Searching on the reverse strand is imptethbyg reversal of the RSSP and trans-
formation according to Watson-Crick base pairing. Henig sufficient to build the affix array for
one strand only.

RSSP matches can be reported directlyalfisearchor can be used as input for the computation
of high-scoring global or local chains of matches. Computkdins resemble the order of the
RSSPs given in the pattern file and are reported in descermiohgy of their chain score. This
allows the description of complex secondary structurek witr new concept of secondary structure
descriptors (SSDs). This is done by simply specifying eesasf RSSPs in the pattern file describing
the stem-loop substructures the RNA molecule is composédu tbe order of their occurrence in

80

3.8 Discussion and concluding remarks

5' to 3’ direction. To incorporate different levels of impance or significance of an RSSP into
SSD models and subsequently in the computation of chairesc®SSP specific weights can be
defined in the pattern file. This is particularly useful in ttantext of RNA family classification
where the used SSD may be derived from a multiple sequenegitgte alignment or a consensus
structure-annotated multiple sequence alignment. Hgpermits the assignment of higher weights
to RSSPs describing highly conserved functionally impdrttructural elements occurring in a
family of RNAs, and lower weights to RSSPs describing lessseoved substructures that occur
only in certain members of the family.

The output format offsearchcontains all available information of a match or chain of chast,
either in a human-readable, or a tab-delimited format. Meee afsearchcan also report matches
in BED format. This allows a direct visualization of the ritsun e.g. the UCSC genome browser.

TheStructatorsoftware package including documentation is availablériaty format for different
operating systems and architectures and as source codethedeNU General Public License
Version 3. Seftt p: // www. zbh. uni - hanbur g. de/ St r uct at or|for details.

3.8 Discussion and concluding remarks

We have presented a method for fast index-based search oSRiNAence-structure patterns (RSSPs),
implemented in th&tructatorsoftware. As part of the software, we give the first publickgitable
implementation of bidirectional pattern search using fffig array data structure. For the majority
of biologically relevant RSSPs, our implementatiorBtbsearchshows superior performance over
previous programs. In a benchmark experiment orRfean databaseBlDsearchwas faster than
RNAMotifandRNABOBby up to two orders of magnitude. Furthermore, in a comparisgiween
BIDsearchand the program of [130], which works on compressed index skaticturesBIDsearch
was faster by up to 2 times. We observed that for RSSPs with dmeonserved loop regions, the
advantage oBlIDsearchover ONLsearchdecreases. For such cas8#uctatorcan also employ
ONLsearchon the plain sequence data. As a further contribution, wegmted for the first time a
detailed complexity analysis of bidirectional search gsaffix arrays. While bidirectional search
does not improve the worst-case time complexity compareghtine search, in practice it runs
much faster than online search algorithms and the running $icales sublinearly with the length
n of the searched sequences.

Our implementation of the affix array data structure requoaly 18n bytes of space. This is a
significant space reduction compared to thn bytes needed for the affix tree. With the program
afconstructwe present for the first time a command line tool for the effiti@nstruction and per-
sistent storage of affix arrays that can also be used as aal@me program for index construction.
We note that bidirectional search with an affix array is alessible using 10 bytes of space as
observed in[[131] after the publication of our work. This ¢hieved by avoiding the storage of the
affix link tables. However, this approach requires the caaipen of affix links during the search

81

http://www.zbh.uni-hamburg.de/Structator

3 Fast index-based bidirectional search for RNA sequetraetsre patterns

for structural patterns and, consequently, increasesuhmbar of binary searches in the suffix and
reverse prefix arrays.

With the new concept of RNA secondary structure descrip8&Ds) combined with fast global
and local chaining algorithms, all integrated irtructator we also introduce a powerful tech-
nique to describe RNAs with complex secondary structuréds &ven allows to effectively de-
scribe RNA families containing branching substructuré&e linulti-loops, by decomposition into
sequences of non-branching substructures that can belsebsevith RSSPs. Compared to pro-
grams likeRNAMaotif, Structatofs pattern description language for RSSP formulation ispgm
but powerful, in particular in combination with the SSD cept Beyond the algorithmic con-
tributions, we provide with thé&tructator software distribution a robust, well-documented, and
easy-to-use software package implementing the ideas godthims presented in this work.

82

4 Fast approximate search for RNA
seguence-structure patterns

4.1 Introduction

Our Structatortool presented in the former chapter addresses a fundahdeateback of previous
descriptor-based RNA homology search methods, i.e. thetliat their running times scale at
least linearly in the size of the target sequence datal&isgctator in contrast, achieves sublinear
running time by using the affix array index data structureictvlallows to perform bidirectional
pattern search and efficiently handle the structural caimg of the patterns.

However, apart from running time constraints, another mdigadvantage of all current tools that
search for sequence-structure patterns is their limitpdaity to find approximate matches to the
patterns. Although variability in length of pattern elerteers often allowed, this is constrained to
certain pattern positions that must be specified by the ke limitation also holds foBtructator
Also, variations (insertions, deletions, or replacemeintthe sequence that lead to small structural
changes, such as the breaking of a base pair, are not suppdhis often hampers the creation
of patterns that are specific but generalized enough to natdamily members. An algorithm
presented in [132] only partially alleviates this probleynfinding approximate matches of a helix
in a genome allowing edit operations on single bases, butméte structure.

To overcome these issues, we present new fast index-basednéine algorithms for approxi-
mate matching of sequence-structure patterns, all impiegddn an easy-to-use software package.
Given one or more patterns describing any (branching, mossing) RNA secondary structure, our
algorithms compute alignments of the complete patternsibstsngs of the target sequence, i.e.
semi-global alignments, taking sequence and structuseaictount. For this, they apply a full set of
edit operations on single bases and base pairs. Matchesparad for alignments whose sequence-
structure edit cost and number of insertions an deletionsotiexceed user-defined thresholds. Our
most basic algorithm is a scanning variant of the dynamigiammming algorithm for global pair-
wise sequence-structure alignment of Jiahgl. [70], for which no implementation was available.
Because its running time is too large for database searchadawge scale, we present accelerated
online and index-based algorithms. All our new algorithrrafipfrom a new computing scheme to
optimally reuse the required dynamic programming matrazes a technique to save computation
time by determining as early as possible whether a substifirije target sequence can contain

83

4 Fast approximate search for RNA sequence-structurerpgstte

base match base deletion base mismatch
R=..(.(...—)—‘.(....)..).
P: 1 ZUAGIEJUB _glo 11|12|13|14 15|16|17 IBIGQZO
HHIERHUIHIBIRITIE
S - Agég‘égu 8 g_%gggé 15 §17 _g_ngo 21 22g_ 24|25 26%28 299 31 BZ%Q
T —l_l —l_ — |

N . .
arc breaking ~ arc removing arc altering

Figure 4.1: Example of a semi-global alignment of a sequatiteture patter® = (P, R) and an
RNA sequencé and involved sequence-structure edit operations. Camtis(dashed)
lines indicate match (gap) alignment edges frdmuich (Agap)-

a match. In addition, our index-based algorithms employstiféix array data structure compiled
from the search space. This further reduces the running time

As in the Structatortool, our new algorithms also support the description of &ARnolecule

by multiple ordered sequence-structure patterns. In thig the molecule’s secondary structure is
decomposed into a sequence of substructures describeddpeindent sequence-structure patterns.
These patterns are efficiently aligned to the target se@sensing one of our new algorithms and
the results are combined with fast global and local chaimilggrithms [104] 126]. This allows a
better balancing of running time, sensitivity, and speitificompared to searching with a single
long pattern describing the complete sequence and segostiacture.

The description of our algorithms closely follovis [1.33].rFoe used notation, please see the formal
preliminaries in Chapters 2 and 3.

4.2 Approximate matching of RNA sequence-structure
patterns

To find in along RNA sequencg approximate matches of an RS8Rlescribing a part of an RNA
molecule, we compute alignments of the compl@t@and substrings of considering edit opera-
tions for unpaired bases and base pairs. That is, we comgmitiegiobal alignments simultaneously
obtaining the sequence-structure edit distanc@ ahd substrings af.

We define the alignment @ and a substring[p..q], 1 < p < ¢ < n, as setd = Amatcn Agap The
set Amatch € [1..m] X [p..q] of match edges satisfies that, for all differ¢hti), (k',1') € Amaich
k > k' implies! > I'. The setdgap Of gap edges is defined §ér, —) | = € [1..m] A By, (z,y) €
Amaten} U {(—,9) |y € [p..q]ABz, (2,y) € Amatcn}. See FigurE4]1 for an example of a semi-global
alignment and associated alignment edges. The alignmenisdzased on a sequence-structure edit
distance. The allowed edit operations on unpaired bB§elsandS[l], 1 < k < m,p <1 < g, are:

84

4.2 Approximate matching of RNA sequence-structure padter

e base mismatchwith costw,,, which occurs if there is an eddé,!) € Amachand S[l] ¢
p(P[k]);
base matchwith cost zero, which occurs if there is an edgel) € Amarchand S[l] €
p(P[K]);

base deletionwith costwy, which occurs if(k, —) € Agap and

e base insertionalso with costuy, which occurs if(—, 1) € Agap

The possible edit operations on base pairs were first intexdiby Jianget al. [70] and are defined
as follows. Let(k, k2) be a base pair i andl; andly, p < l; < ly < ¢, be positions irS.

e An arc breaking with costwy, occurs if(k1,l1) € Amatchand(ka,l2) € Amatch but bases
S[l1] and S[l2] are not complementary. An additional base mismatch ©gsts caused if
S[l1] ¢ ¢(P[k1]) and another ifS[l5] ¢ ¢(P[kz]). To give an example, consider the semi-
global alignment in Figure_4.1. RSSP contains base pai,9) € R and there exist edges
(5,11) € Amarchand(9,16) € Amarchbut S[11] = G andS[16] = G are not complementary.
We note a difference between our definition and the definitibdianget al., where both
aligned sequences are annotated with structure informatfibere, an arc breaking occurs
if basesS|[l;] and S[l;] are annotated as unpaired in addition to the condition ditiex
edges(k,l1) € Amacchand(ksa,l2) € Amach HeNnce, because in our case sequehitas no
structure annotation, our definition is based on the comeiearity of basesl;] andS|[ls].

e An arc altering with costw,, occurs if either (1Yk1,l1) € Amatchand (ka, —) € Agap OF
(2) (k2,12) € Amacchand(ki,—) € Agap Each case induces an additional base mismatch
costwy, If S[l1] ¢ @(P[k1]) or S[la] ¢ ©(P[kz2]). As an example, observe in the alignment
shown in Figuré4]1 that there exist a base p&lr, 16) € R and edgegl1, —) € Agapand
(16,21) € Amatch

e An arc removing with costw,, occurs if(ky, —) € Agapand(kz, —) € Agap As an example,
observe in the alignment in Figure #.1 that there exist a pagg(3,19) € R and edges

With this set of edit operations on the sequence and steioter can now define the cost of the
alignment ofQ andS[p..q] as

dist(Q, S[p..q]) = min{dist4(Q, S[p..q]) | A is an alignment o andS[p..q]} 4.1)

85

4 Fast approximate search for RNA sequence-structurerpgstte

where
distA(Q, S[p..q]) =
Wm base mismatch

(k)€ A, R[Kk]=.,S[l]¢o(P[k])

+ > W base deletion

(k,—)EA,R[k]=.
+ > wy base insertion
(=HeA
+ > wy, arc breaking 4.2)
(k1,k2)ER,(k1,l1)€A, (ka,l2)EA,(S[11],S][la] ¢C

+ > Wa arc altering
(k1,k2)ER,(k1,l1)€A,(k2,—)EA

+ > Wa arc altering
(k1,k2)ER, (k,l2)€A, (k1,—)EA

+ > W arc removing

(k1,k2)ER, (k1,—)€A, (k2,—)EA

An alignmentA of minimum cost betwee® andS|[p..q| is anoptimal alignmenof Q andS|p..q|.

In practice, one is often interested in finding substringarMRNA sequencé having a certain
degree of similarity to a given RSSP on both the sequence and structure levels. Therefore, we
are only concerned about optimal alignmentodnd substrings$'[p..q] with up to a user-defined
sequence-structure edit distance and a limited numbetafed insertions and deletions (indels).
More precisely:

¢ the costdist(Q, S[p..q]) should not exceed a given threshdldand
¢ the number of indels in the alignment should be at ndost
Thus, the approximate search problem for finding occuremiean RSSRD in S, given user-

defined threshold& andd, is to report all interval$p..q| such that

dist(Q, S[p..q]) < Kandm —d < |S[p..¢]| <m+d<n. (4.3)

We call every substring[p..q| satisfying Equation[(4]3) awatch of Q in S. In the subsequent
sections we present algorithms for searching for matchas &SSR in a sequence.

4.2.1 Online approximate RNA database search for RSSPs: ScanAlign

A straightforward algorithm to search for approximate rhagof an RSSB in an RNA sequence

S consists of sliding a window of lengtlh’ = m + d along S while computingdist(Q, S[p..q])
for1 < p <gq<mnandg—p+ 1= m'. We note that, although the length of a match can vary
in the rangem — d to m + d, to find matches of all possible lengths it suffices to slideirdaw

of lengthm' along S corresponding to substring$p..¢|. This holds because the alignment to a
window of lengthm’ entails all possible alignments with upda@llowed indels. In the following we
present a dynamic programming algorithm computiagt(Q, S[p..q]) for every windowsS|p..q].

86

4.2 Approximate matching of RNA sequence-structure padter

Our recurrences are derived from the algorithm for globatwise sequence-structure alignment
of Jianget al. [70Q], i.e. an algorithm for aligning sequences of similandths. Although Jiang’s
algorithm supports the sequence-structure edit opesatescribed above, we emphasize that it is
not suitable for computing semi-global alignments, whielwhat we are interested in.

We begin the description of our algorithm by defining threections required by the dynamic
programming recurrences. L&t= S|p..q].

1. For computing base match and mismatch costs for positiand; of the RSSRO = (P, R)
and substrindg’, respectively, we define a function: N x N — {0, 1} as:
. 0 if T[j] € p(P[i]) (base match)
x(in5) = l € w(PE) | (4.4)
1 otherwise. (base mismatch)

2. To determine whether an arc breaking operation can oe@must also be able to check
for base complementarity at positiohandj of T'. Therefore, we define a functiamyp :
N xN— {0,1} as:

0 if (T[], T[j]) € C (complementary)

. (4.5)
1 otherwise. (not complementary)

comp(i,j) = {

3. For determining the correct row (of the dynamic programgminatrices introduced below)
where certain operation costs must be stored we introdugadiénrow : N — N defined
as:

i/ if (/,i) € Randl < i’ <i <mandR[i + 1] = . andR[i’ — 1] # (
row(i) =< 0 if (i,i’) € RandR[i + 1] = .
i otherwise
(4.6)

Intuitively, functionrow satisfies the following: (1) given the right indéxf a base paifi’, 7), it
returns the left indeX if (i,) is preceded or followed by other structures; (2) given tfighelex
i of a base paifi, i), it returns O if the base at positiant- 1 of Q is unpaired; and (3) given any
other position indey, it returns: itself.

Using these three functions, our algorithm determines thguence-structure edit distance
dist(Q,T[1..m']) by computing a series ah’ + 1 (m' + 1) x (m’ — k + 1) matricesD P,
for1 <k <m’+1, such thatD P, (row(m),m’') = dist(Q, T[1..m']). We remark thaD Py(i, 5)

is not defined for every subintervgl.j]. While the recurrences of Jiang’s algorithm are divided in
four main cases, we present a simplified recurrence relatittmonly two main cases. In addition,
we observe that we use only three indices for a matrix enstead of four. Our recurrences are as
follows.

87

4 Fast approximate search for RNA sequence-structurerpgstte

1. If i = 0 or R[] = . (unpaired base), then

0 ifi=0andj =0
DP(0,j — 1) + wq if i=0andj >0
DPy(i. f) = % (Trow(i),0')+wd. if i >0andj =0
DPy(row(i —1),j) + wa
min< DPy(i,j — 1) +wq if i >0andj >0
DPy(row(i—1),j — 1) + x(4, j)wm
4.7)
2. If R[i] # . (paired base), then
(@) If R[i] =) wherei forms base paifi’, i) € R,
DPy(row(i —1),0) 4+ wy if j=0

([DP,(row(i —1),7 — 1) + x(i, j 4 k)wm + wa

DPiy1(row(i —1),5 — 1) + x (i, k)wm + wa
DPy(row(i —1),j) + w;

min{ DPy(i,7 — 1) + wq ifj>0
DPyy1(i,j — 1) + wq

DPyr(row(i —1),§ — 2) + (x(i,j + k) + x (i’ k& + 1))wm+
comp(k+ 1,7+ k)wy, if j > 1

DPy(i,j) =

Vs
(4.8)
(b) If (a) holds and eitheR|[i’—1] = . or R[i'—1] =) , compute in addition to Equation (4.8)

N o _) DP(row(i’ —1),0) + DP;(i, 0) if j =0
DP]g(’l"O’U)(’L)a.])_{ min{DPk(row(i'))+DP]<I+_]()|0<] <]} |f]>0
(4.9)

A natural way to compute thede P matrices is top down, checking whether case 1, 2(a), or 2(b)
applies, in this order. Due to the matrix dependencies iaxa) and (b), the matrices need to be
computed simultaneously.

Note that for allj, 1 < j < m/, clearly DP;(row(m),j) = dist(Q,T[1..7]). Therefore all
candidate matches shorter than beginning at positiop are also determined in the computation
of dist(Q,T[1..m']). The following Lemma is another important contribution lustwork and also
the key for the development of an efficient algorithm.

Lemma4 When sliding a window along to computedist(Q, S[p..q]), 1 < p < g < n,m’ =
qg —p—+1=m+ d, awindow shift by one position to the right requires to cotepanly column
m’ — k + 1, i.e. the last column of matrice8P,, 1 < k < m/.

Proof. LetT[1..m'] = S[p..q]. The computation oflist(Q, T[1..m’]) requires to computer’ + 1
DP matrices, one for each suffik; of sting7 = T[1..m/], 1 < k < m/, and one for the

88

4.2 Approximate matching of RNA sequence-structure padter

empty sequence As a result, it holds for every thatdist(Q, Ty,) = D Py (row(m), m’) which is
obtained as a by-product of thlést(Q, T') computation. Because each substring; [1..m" —] =
Slp+1..q],0 <1 < m/, only differs by its last character frosip + [+ 1..q + 1] which are suffixes
of the window substring shifted by one position to the righg lemma holds. O

Due to Lemmd4, our algorithm computes only the last columithefD P matrices for every
shifted window substring (see the example in Fidure 4.2) jastifor the first windowS|1..m’]

it computes every column. We call this algoriti®tanAlign We note that during the reviewing
process of[[133] where we for the first time describeanAlign Will et al. [68] submitted and
published an algorithm for semi-global sequence-strecalignment of RNAs. As our method,
this algorithm saves computation time by reusing entriedyofamic programming tables while
scanning the target sequence.

Our ScanAlignalgorithm has the following time complexity: computidg/Py (i, j) in cases 1 and
2(a) takesD(1) time and in case 2(b) it take&3(m’) time. Now consider the two situations:

e For the first computed window substrissl..m’], cases 1 and 2(a) requit®mm’?) time in
total and case 2(b) requir€®mm’?) time in total. This leads to an overall time O mm’?).

e For one window shift, cases 1 and 2(a) requitenm’) time in total and case 2(b) requires
O(mm') time in total, leading to an overall time 6f(mm?).

Since there are—m’—1 window shifts, the computation for all shifted windows tak&(mm/?(n—
m')) = O(mm'n) time. We observe that the time neededSpanAlignto compute all window
shifts reduces t@)(mm/n) if recurrence case 2(b) is not required. This is the caseeikthucture
of Q does not contain unpaired bases before a base pair cangtitug. a left dangling end or left
bulge.

4.2.2 Faster online alignment with early-stop computation : LScanAlign

Often, before completing the computation of the alignmetiieen an RSSE and a window sub-
string S|p..q] of the searched RNA sequence, we can determine whethershefdbis alignment
will exceed the cost threshold. By identifying this situation as early as possible, we aapriove
algorithm ScanAlignto skip the window, thus saving computation time and proceitil aligning
the next window. The idea consists in checking, during tihgnatent computation, whether the
cost of an already aligned region ¢f and a substring of[p..q] exceedsC. In such a case, the
alignment cost of the complet@ and S[p..q] will also exceedK. In more detail, this works as
follows.

e We decompose the RSSPinto regions that can themselves represent a pattern, stgma
loop or unpaired region. A basic constraint is to not splieopairs to different regions.

89

4 Fast approximate search for RNA sequence-structurerpgstte

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9
eACICICUCUU| elCCCUICUU |elCCUICUU |eCUICUU] [eUCUU! |eCUU| €U €]
RIPIDP,(i, j)|0[112/314/5/678| |0[1|2[3|4|5|67| |0]112134{5]6| 0[1(2[3|4I5| |0]112/314] [0]12[3| |0/1 0
€ 001112/3/4/5/6/7/8| [011/2)34{5/6(7| [01]23/4]5]6] [0]112/34{5| [0[1]23}4] 0]1]23| |0[1 0
n 110123456' ;123456' 1123/4]58 [1]1/2[3[48] [1]1[2[3 [11[2]8 [2]2 1
. 2211234s|6ll 2223456/ (2122134508 (2212348 222314 2228 2] 2
(6 3/8/76l6|6/6 568 |87]7|7|7/6/68 (8717|7661 [8177I6/6/8 (SI7I6/6/8 (S|7/7/8 (8|7, 8
.U 410123(4l45|6[[1/2[2]33\4/58 1121234/ 1112/34 [1012)8 1112 [1)0 1
.U 5212[2[3/4l4|5|5[8 [2212[3(3/4418| [2]222[33@ [221228 [2/111]2 [22]18 2] 2
.U 6[31313[3/4/4]5/5/8| [33[3/3(3/414/d| 1313|3233 §F222 32218 332 (32 3
)(C 7l6(6/5/5/5/5/6/618| |6/5/5/5/55 68 [615/5/5458 |6/5(5/4148 |6/514/444) 16554 |6/5 6
Figure 4.2:.DP tables for the sequence-structure alignment computatibrR8SP Q@ =

(AAGUUUC,. . (. ..)) and window substring” = ACCCUCUU when scanning
a sequence with algorithm ScanAlign Only the entries in red have to be computed
for each window shift, whereas the entries in green are telsatries in yellow boxes
are on a possible minimizing path for alignments with ug te 1 indels. The following
operation costs were usedj = wy, = 1, wp, = wy = 2, andw, = 3.

e We compute the alignment of a given initial RSSP region andlstsing of the current
window S{p..q|, progressively extending the alignment to other regions.

o If the cost of aligning an RSSP region to a substring of thedawm exceeds cost thresh-
old IC, then the entire pattern cannot match the window. This m#satsthe window can
immediately be skipped.

Formally, a valid RSSP regio@[z..y], 1 < z < y < m, satisfies exactly one of the following
conditions.

90

1. Qlz..y] is a left dangling (unpaired) end of the pattern in 5’ to 3'edition, i.e.z = 1.
Alternatively, it is an unpaired region of maximal lengthcButhat positionz — 1 forms a
base paifz — 1,¢') € R for some positiony’ of Q. Observe that no extension ¢ffz..y|
by another unpaired position is possible. As an examplesidenthe green marked regions
Q[1..2], Q[4..4], Q[6..8], andQ[12..15] in Figurel4.3.

2. Positiony is unpaired and there is at least one base @éir)/) € R,z < 2/ <y < y. No
extension ofQ|x..y| by another unpaired position is possible. As examples abnsgunder
these requirements, see the regions in orange of the RS8Figurel4.8, namely[4..10],
Q[4..18], andQ[1..20].

3. (z,y) € Ris a base pair. For examples of such RSSP regions, see thagegiblue of the
RSSP in Figuré 413, namely[5..9], Q[11..16], andQ[3..19].

4.2 Approximate matching of RNA sequence-structure padter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P = AAUACUUAGUAUCUAUCUGU
R=..(.(...).(....)..).

| — -— L
QI.21 Q441 QI6.8] | | Q[12..15]
QI5..9] Ql11..16]
QI4..9]
Qi4..16]
QI3..19] |
QI1..19]

Figure 4.3: Regions of RSSP = (A AUACUUAGUAUCUAUCUGU,. . (. (...).(....)..).)
according to conditions 1 (green), 2 (orange), 3 (blue),4aréd) described in the text.

4. yforms a base paitr’,y) € R where eithelR[2/ —1] = .orR[z/ —1] =),1 <z < 2/ —1.
In addition,z = 1 or (z — 1,y) € R for somey’ > y. Examples of such RSSP regions are
shown in red in Figure 413, i.e. regiod4..9], Q[4..16], andQ[1..19].

Note that regions can be embedded in other regions but caantilly overlap another.

Our progressive alignment computation of an R€5#hd a window substring of the searched RNA
sequence begins by considering only an in general small regio@@&@mbedded in another region.
The computation is then extended to a surrounding region fem regionQ]6..8] to 9[5..9] of
the RSSP shown in Figure 4.3, until it entails the largesioregurrounding all other regions, e.g.
Q[1..20] of the same example. Formally, we elaborate the alignmempatation as follows. Let
T = T[1..m'] be a window substring of lengthh’ = m + d of S andd be the number of allowed
indels. Pattern regions have the property that, for anyore@[z..y], computingdist(Q[z..y], T')
does not depend on any other regigfi’..y'] for somey’ < x andz’ < y. Therefore, they can
easily be sorted to indicate the order by which the rows ofiiié matrices are computed. We
observe that the top-down computation of the&® matrices, as described above, automatically
sorts the regions and respects the dependency betweenTi@aistain from the sorted regions the
indices of the rows to be computed, we consider the cond#aisfied by each region. The rows
obtained according to each condition are computed acaptdione case of the recurrence. Given
region Q[x..y| identified by one of the four conditions this region satisfibe following rows of
the matrices have to be computed.

1. Allrows in the intervalz..y| are computed by Equation (4.7).

2. One scans the structure of regi@fe..y| from positiony to positionz until one finds a paired
positiony’. Then, all rows in the intervdl’ + 1..y] are computed by Equation(4.7).

91

4 Fast approximate search for RNA sequence-structurerpgstte

3. Rowy is computed by recurrence (a) of Equatibn4.8).
4. Rowrow(y) is computed by recurrence (b) of Equation [4.8).

The sequential computation of the rows belonging to eadlomagaturally leads to the computation
of the entire alignment of and sequence-structure edit distadée (Q,T').

Our improvement of th&canAlignalgorithm is based on the following two observations.

e The standard dynamic programming algorithm for aligning plain text sequences of lengths
m andn requires anim + 1) x (n + 1) matrix. Leti andj be indices of each of the matrix
dimensions and a diagonalbe those entries defined bynd; such thatj — i = v. Given
that the cost of each edit operation is a positive value, dséaf the entries along a diagonal
of the matrix are always non-decreasing [134].

e Moreover, one indel operation implies that an optimal atigmt path including an entry on
diagonalv also includes at least one entry on diagonat 1 or v — 1. Now let v be the
diagonal ending at the entry on the lower-right corner ofrttarix andd be the number of
allowed indels. One can stop the alignment computation @s &s all the entries of one row
in the matrix and along diagonals+ d’, —d < d’' < d, exceed(.

For our improvement of algorithr8canAlign based on the following Lemma, we define a diagonal
for each RSSP region instead of only one for the entire nesric

Lemma5 Assume an RSS = (P, R), a region Q[z..y| of lengthl = y — = + 1, a window
substringT'[1..m/] of the searched RNA sequence, a cost threskipldnd numberd of allowed
indels. If for everyl’, —d < d’ < min{d, z}, z € {|d'| — d,—|d'| + d}, y + d' < m/, it holds that
dist(Qlz..y], Tpra[1..1 + z]) > K, then, for everyl”, 0 < d" < d, dist(Q,T[1..m' — d"]) > K.

Proof. If the RSSP regioQ|x..y| originates from condition 1 or 2 (3 or 4) above, we define the
entries on a diagonal as those entrie® Py (i, j) (DPx(row(y),7)), 1 < k+d < m/, such that

j — i+ offset= e, whereoffset= x — 1. Without loss of generality lef = 1. Assumingz —1 > 0
andy+1 < m/, this means that an optimal alignment of pattéyand substring” requiresQ|x..y]

to align with:

o Tz.y|, T[x..y — 1], or T'[z..y + 1], requiring for all three alignments the computation of
dist(Q[z..y], Tp[1..l+ z])forz € {0 — 1,0+ 1} = {-1,1};
e T[x—1..y — 1], requiring the computation @fist(Q[x..y], Tp—1[1..l+ 2]) for z € {| — 1| —
1,—| =1+ 1} ={0}; or
e T[x + 1..y + 1], requiring the computation afist(Q|x..y], Tp+1[1..l + 2]) for z € {|1| —
1, -1+ 1} = {0}.
The alignments withl'[z..y], T'[z..y + 1], andT[z..y — 1] end in matrixDP,. The alignments

with T'[z — 1..y — 1] end in matrixD P, _1, and the alignments witli[x + 1..y + 1] end in matrix
DP, ;. Every minimizing path obtained for the entire alignmeniandT can only include the

92

4.2 Approximate matching of RNA sequence-structure padter

entries on the diagonals e + 1, and/ore — 1 for the alignments with'[z..y|, T'[z..y + 1], and
T[z..y — 1], and can only include the entries on diagon&dr the alignments witll'[x — 1..y — 1]
andT'[z + 1..y + 1] because these substrings already imply alignments witlinoleé As the sum

of the cost of the edit operations on the minimizing pathéases monotonically and there cannot
be other minimizing paths due to the limited number of indelhe lemma holds. O

Let @ be an RSSP whose regions are sorted by the order of computdtibeir respective rows
in the D P tables above, let be the number of allowed indels, afid= T[1..m'] be a window
substring of the searched RNA sequence. Applying Lemima 5madify algorithm ScanAlign
to compute the alignment of each regi@ix..y] to substrings?, ., —d < d’ < min{d,z},

y +d < m’, and progressively extend the alignment to other RSSPnegiad substrings af
as long aslist(Q[z..y], Tpra[1..l + 2]) < K, z € {|d'| — d,—|d'| + d}, holds. That is, for each
RSSP region, it determines the rows and recurrence casea@dor their computation according
to conditions 1, 2, 3, or 4 above. Then, within each processed, it checks whether for at least
one entryD Py (i,7) on a possible minimizing path, i.e. on diagonalse — d < ¢ < e + d,
DPy(i,j) < K. If no entry is belowt, it skips the alignment computation for all remaining RSSP
regions and proceeds with aligning the next window. SeerEig2 for an example of th® P
matrices of an alignment computation whose entries on dlgesainimizing path are highlighted
in yellow.

When scanning the searched RNA sequence, a window can Iedshéfore allD P matrices en-
tries are computed. Hence, a direct application of Lefnmand Isnger possible. To overcome this,
we define an array in the range 1 ta, wherez is the number of RSSP regions, and associate
each region with an index, 1 < r < z. Letp be the starting position of the window substring
S[p..q] in the RNA sequence. We sé&tr| = p whenever allD P matrices rows and columns be-
longing to region- are computed. This occurs when the cost of aligning thisoredoes not exceed
cost thresholdC. Now, when aligning the same RSSP regioto a different window substring
S[p'..q'], ¥ > p, computing allD P matrices columns requires to compute the }ést p columns.

If p" —p < m/ (recall thatm’ = q — p = ¢’ — p’), this means that the two window substrings do
not overlap and therefore @ P matrix column can be reused.

Our improved algorithm, hereinafter callécdscanAlign in the worst case needs to process ev-
ery RSSP region for every window shift. Hence, it has the siime complexity as algorithm
ScanAlign However, as in many cases only a few RSSP regions are esd]ubis much faster in
practice as will be shown lategcanAlignandLScanAlignare the basis for further improvements
presented in the subsequent sections.

4.2.3 Index-based search: LESAAIlign

Suffix trees and enhanced suffix arrays are powerful datatates for exact string matching and
for solving other string processing problems|[52,1109].He following we show how the use of

93

4 Fast approximate search for RNA sequence-structurerpgstte

enhanced suffix arrays leads to even faster algorithms &ockimg for matches of an RSSPin
an RNA sequencs§.

The enhanced suffix array of a sequerttés composed of the suffix arraguf and the longest
common prefix arrajep. These correspond to tablasf andlcpg defined above. In the following
we assume that the enhanced suffix array bias already been computed.

Consider an RSSE) to be matched against an RNA sequetsceith up tod indels. For each,

1 <i < n,letp; = min{m + d, |Se[; |} be thereading depthof suffix Sg.¢;;). When searching
for matches of@ in S, we observe that algorithnfdcanAlignand LScanAlignscanS computing
dist(Q, S[p..q]) for every window substring of length— p + 1 = m + d. In the suffix array, each
substringS[p..q] is represented by a suffi% ¢, up to reading depth;, i.e. there is a substring
Ssuf[i)[1.-pi] such thatSgp; [1..p;] = S[p..q]. To matchQ in S using a suffix array, we simulate
a depth first traversal of the Icp interval tree [109]%fon the enhanced suffix array 6f such
that the reading depth of each suffix is limited fgy That is, we traverse the suffix array 8ftop
down, computing the sequence-structure edit distaines Q, Sq¢(;[1..pi]) for each suffixSg,¢; -
We recall that candidate matches@thave length betweem — d andm + d and thatp; < m +d.

In casep; < m — d, we can skipS¢;;. Also, remember that all candidate matches shorter than
p; are obtained as a by-product of the computatiodiat(Q, Ssu;[1..p:]). Hence, for every/,
m—d < p' < pg, if dist(Q, Ssuepy [1.-p']) < K we reportfsuf[4]..suf[i] 4 p'] as a matching interval
of Qin S. That is,Q matches substring|suf|[:]..suf[¢] + p'] beginning at positiosuf|i] of S.

Our algorithm for the suffix array traversal anfdst(Q, Ssu;)[1.-p;]) computation, hereinafter
called LESAAIign builds on algorithmsScanAlignand LScanAlign ScanAlignand LScanAlign
exploit overlapping substrings of consecutive window stihgs to avoid recomputation db P
matrices entriesLESAAlignexploits the enhanced suffix array in two different waysst;ifor a
single suffixSg¢p;;, @ > 0, it benefits from the common prefix of lengtip[i] between two consecu-
tive suffixesSq¢p;) andSg,¢;;—1] by avoiding the recomputation of columpsl < j < lcp[i] —k+1,
of each matrixD P;,. This means that, folcp = min{p;, Icp[i]}, it avoids the recomputation of

ﬁfﬁl lep — k + 1 columns forSy,¢;;). See an example in Figure #.4. We observe that i lcp,
no D P entry needs to be recomputed. In this case, two situatioss: ar

1. If p; < lep anddist(Q, Ssyspi—11[1--pi—1]) < K, then clearlydist(Q, Ssusi)[1.-pi]) < K and
at least one match @ starts at positiosuf|:] of S; and

2. If p; <lep anddist(Q, Seufji—1)[1--pi—1]) > K, thendist(Q, Seu[1--pi]) > K.

These situations allolwESAAlignto benefit from the enhanced suffix array in a second important
way. That is, it skips all suffixes¢(;j, Ssuffi+1]s --» Ssuf[;] Sharing a common prefix of at least
lengthicp with S¢;_q)- To find the index;j of the last suffixS.¢;) to be skipped, it suffices to
look for the largest such that milcpl[i], lcp[i + 1], ..., Icp[j]} > lep. If the first situation above
holds, there are matches ¢fin S at positionssuf|:], suf[i + 1], ..., suf[j]. We note that suffixes
can also be efficiently skipped using so-called skip-tabtedescribed in [54]. However, to save the

94

4.2 Approximate matching of RNA sequence-structure padter

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9
eACCICUCUU| |elCCCUICUU |elCCUICUU] |eCUICUU] [eUCUU! |[eCUU| €U €
RIPIDP (i, j)|0[1{2[3|4|5/6|7|8| 0[1|2[3|4|5/6[7| |0|1/2|3|4{5/6| [0/1]2|3|45 [0]1]2|3|4] |0[12/3] |0]1]2 0
e 0011234)56/7|8| 10[1|2|3|45/6(7] |01]2/3/4|5/6] |0]1]2]34)5] |0[1)2|3/4| |0[12/3| |0j1]2 0
A 1/11/0/1/2|3 1(1|12(3 1112 11 1 1 1 1
A 212(1{1]2[3 2(2{2|3 21212 212 2 2 2 2
(G 3(8|7|6|6|6 8(7|7|7 877 8|7 8 8 8 8
.U 411{112|3|4 111123 111j2 11 1 1 1 1
.U 52|2/12|3|4 2223 2(22 22 2 2 2 z
.U 6/3(3(3(34 3(3(3/3 3(3(3 §3 3 3 3 §
)©___ 766555 6555 655 65 6 o5 o 5

Figure 4.4:DP tables for the sequence-structure alignment computatibbrR8SP © =
(AAGUUUC,. . (.. .)) and substrings; [1..8] = ACCCUCUU. Given that suffix
Ssuf[i) shares a common prefix of lengtp[i] = 4 with Sg¢;;_1), algorithmLESAAlign
reuses the entries in green and computes the entries in = bperation costs:

wqg = wm = 1, wp = w, = 2, andw, = 3.

4n additional bytes required to store such tables we do nothese here. Our algorithm continues
the top-down traversal of the suffix array with suffs ¢;;,j, taking into account that th& P
tables were last computed fck ;). Consequently, the length of the longest common prefix
betweenSg,¢j;—1) andSqf(;+1) to be considered in the processingSfs(;1) is min{lcpli], Icp[i +

1], ..., leplg], lep[j + 1]}

We also incorporate in our index-based algorithm the estdp- alignment computation scheme
of algorithm LScanAlign This allows to skip suffixes.¢;) as soon as it becomes clear that the
sequence-structure edit distance of RISBNd S,,¢;) Up to reading depth; will exceed the cost
threshold/C. For this, LESAAlignprogressively aligns regions @ to a substring of the current
suffix as in algorithmLScanAlign checking whether the cost of each subalignment remaimsvbel
the cost threshold’, thus applying Lemma@]5. If the cost exceédsthe alignment computation
of the remaining pattern regions is skipped and the alguoritinoceeds with processing the next
suffix. To avoid recomputing as many entries of thé® matrices as possible while traversing
the suffix arrayLESAAligndiffers from LScanAlignin the way it manages (non-) aligned regions
for each suffix. Lemm@l4, which algorithbScanAlignapplies to support early-stop computation,
relies on scanning the searched RNA sequéehead overlapping window substrings. This makes
it unsuitable for use with the suffix array. Instead; SAAlignonly uses information from thiep
table as follows. Let be the number of regions @ indexed from 1 toz andT" = Sy¢;[1..pi]

be the current substring. When progressively aligning #tggons of Q to a substring ofl’, we
store the index of the first region whose alignment cost exce&dsf there is any. That is, for
the first regionQ|[z..y] whose index- we store, it holds that for every/, —d < d’ < min{d, z},
dist(Qlz..yl, Tpra[1.142]) > Kwithl =y—xz+1, 2z € {|d'|—d,—|d'|+d}, andy+d < m+d

95

4 Fast approximate search for RNA sequence-structurerpgstte

Algorithm 5: LESAAlign

input : Index tables suf and Icp of sequence S, RSSP Q
output: Matching positions of Q in §
1 iSuf fizr:=1
2 iLep:=0
3 lastRegion := undefined
4 while iSuf fiz <n do
5 (bMatched, last Region) := compute DP(DP,iSuf fix,iLcp, last Region)
1LepCheck = lastRegion.r + d
if bMatched then
| reportMatch(Q, S,iSuf fix) //Match found at position suf[iSuf fiz] of S
end
10 iSuf fix :=iSuf fiz + 1
11 if iSuf fix < n then

© 0N o

12 | iLep :=lepliSuf fix]

13 while iSuf fix < n and lcp[iSuf fiz] > iLcpCheck do

14 if lep[iSuf fiz] < iLcp then

15 | iLep := lep[iSuf fix] //Store the smallest lep value of the skipped interval
16 end

17 if bMatched then

18 | reportMatch(Q,S,iSuf fix) //Match found at position suf[iSuf fiz] of S
19 end

20 iSuf fix :=iSuf fix+ 1

21 end

22 end

Figure 4.5: Pseudocode for algorititR SAAlign For details, see main text.

(see Lemmal5). Then, when alignigyto a subsequent substrisg,¢;;;[1..p;], we must distinguish
the regions ofQ previously computeftom regionsnot computed

e Previously computed pattern regiomase all regions whose index is strictly smaller than
r. The alignment computation of these regions profits from dbmmon prefix between
Ssufi)[1.-pi] and Sq¢p;1[1..p;] by avoiding the recomputation dbP matrices columns as
described above.

e Non-computed pattern regiomage all regions whose index is larger than or equal o this
case, allD P matrices columns of the respective pattern region need totmputed, even if
Ssuffi)[1--pi] andSgy¢;[1..p;] share a common prefix.

We observe that longer ranges of suffixes not containing meatto@ can be skipped thanks to the
early-stop alignment computation scheme. Note that tharekt character df' needed to assert
dist(Qlx..y], Tprq[l.l+2]) >KisTz+l+d—-1]=Tx+y—z+1+d—1]=T[y+d] as

| = y—x + 1. Therefore, no suffix sharing prefiX[1..y + d] can matchQ and thus can be skipped
in the top-down traversal of the suffix array 8f Because in most casgst d < p;, more suffixes
are likely to share a prefix of length+ d than of lengthp; with S

The pseudocode for algorithbESAAlignis given in Algorithm 5 (Figuré 4]151.ESAAligrntraverses
the suffix arraysuf of the target sequencetop down, beginning with the lexicographically smallest

96

4.2 Approximate matching of RNA sequence-structure padter

suffix Ssut[isugia]» WhereiSuffiz = 1 at this stage. During the traversal, it computes the semie
structure edit distancéist(Q, Ssuf(isugiz] [1--Pisugiz|) between the RSS@ and the prefix of length
Pisugic Of each suffixSq¢isums), for 1 < iSuffiz < n. This computation is done by function
computeDP in line 5. The input parameters ebmputeDP are the computed P matrices, the
indexiSuffiz of the current suffix, the lengtilcp of the common prefix between the last processed
suffix and the current suffix, and the last computed pattegioreQ|x..y| denotediast Region
in the code. The last two variables are used to avoid recaatipotof entries ofDP matrices.
Function computeDP returns a boolean value, stored iatched, stating whether the pattern
was matched, and the last newly computed re¢ignRegion. last Region.r is the right boundary
of the last computed pattern regi@x..y| and is used to compute variablBep Check in line 6.
iLepCheck, in turn, is used to check whether suffixes of the suffix artarieg a common prefix
can be skipped. IbMatched is true, matches are reported by functiamport M atch in lines 8 and
18.

4.2.4 Enhanced index-based search: LGSlinkAlign

Given an RSSK to be searched in an RNA sequerialgorithmLESAAlignis very fast when it
can

e avoid recomputation oD P matrices columns due to a common prefix between suffixes of
S; and

e skip long ranges of suffixes of the suffix arrayf whose common prefix up to a required
reading depth are known to match or not magzh

Therefore,LESAAlignexploits repetitions of substrings &f, i.e. substrings shared by different
suffixes, and information of thiep table to save computation time. However, the use of infaionat
of thelcp table alone does not necessarily lead to large speedupsideor.g. theD P matrices for
the computation of the alignment ¢ = (AAGUUUC, . . (. . .)) and substringS ¢4 [1..p4] =
ACCCUCUU in Figurd_4.4. The enhanced suffix arraySols shown in Figuré 416. The substring
Ssuff4)[1--p4] of length 8 shares a common prefix of length[4] = 4 with the previously processed
substringS¢3)[1..p3]. Despite this common prefix, still82/252 ~ 72% of the D P matrices
entries need to be computed (disregarding initializatmmsrand columns 0) in case no early-stop
is possible, i.e. in cas€ > 4. This is more than the at mos6,/252 ~ 22% of the D P matrices
entries computed by the online algoritir8canAlignfor a window shift.

Our next goal is to develop an algorithm traversing the ecbdrsuffix array ofS' that:
1. can skip more suffixes; and

2. improves the use of already computed® matrices entries, reusing computed entries for as
many suffixes as possible.

97

4 Fast approximate search for RNA sequence-structurerpgstte

i|suf[i]|lcplil|suf[i]|Ssuri

1 14/ 0 11|ACCACCCUCUUS

2 10 3 7/ACCCACCACCCUCUUS

3 3 4 3]ACCCCCCACCCACCACCCUCUUS
4/ 17 4/ 17ACCCUCUUS

5 13] 0| 16|CACCACCCUCUUS$

6/ 9 4 15CACCCACCACCCUCUUS

7 2| 5 14/CACCCCCCACCCACCACCCUCUUS
8 16 5 10/CACCCUCUUS

9 12| 1 6/CCACCACCCUCUUS

100 8 5 2|CCACCCACCACCCUCUUS

11 1 6 13|CCACCCCCCACCCACCACCCUCUUS
12| 15 6 9|CCACCCUCUUS$

13 11 2 5/CCCACCACCCUCUUS

14 7 6 1/CCCACCCACCACCCUCUUS

15 6 3 12|CCCCACCCACCACCCUCUUS

16/ 5 4 8/CCCCCACCCACCACCCUCUUS
170 4 5 4/CCCCCCACCCACCACCCUCUUS
18 18 3 18/CCCUCUUS

19 19/ 2 19/CCUCUUS

20 20 1| 20/cucuusS

21 22| 2| 22cuus

22/ 21 0 21jucuus

23 23 1| 23UUS

24 24 1 24(U$

25 25 0 25/$

Figure 4.6: Enhanced suffix array of sequert® = CCACCCCCCACCCACCACCCUCUUS
consisting of the suffix arrayuf, longest common prefix arrdygp, and inverse suffix
arraysuf 1.

98

4.2 Approximate matching of RNA sequence-structure padter

To address the first goal, we motivate our method by recalhiegalignment computation example
in Figure[4.2. In this example, one of the regions®f= (AAGUUUC,. . (...))Iis Q[3..7] =
(GUUUC, (. ..)). Assumell = d = 1 and observe thatist(Q][3..7], T3¢ [1..5 + 2z]) > 1 for
everyd, —1 < d <1,z € {|d| —1,—|d'| + 1}, i.e. the alignment cost for this pattern region
already exceeds the cost threshold of 1 (in accordance vethnal(b). In other wordsQ[3..7]
cannot align to any of the substring@§2..6] = CCCUC,T[3..6] = CCUC,T[3..7] = CCUCU,
T[3..8] = CCUCUU, orT'[4..8] = CUCUU with a cost lower than 1. Observe further that the
alignment computation of regio@][3..7] does not depend on any previous computation of any
other region. We can therefore conclude that no suffix coimgisubstringl’[2..8] = CCCUCUU
from position 2 to 8 can matcl®, independently of any prefix of length 1. Our goal is to find
and eliminate from the search space all such suffixes, irtiaddo skipping all suffixes sharing
prefix T'[1..8] as performed by ESAAlign That is, we want to skip suffixes sharing a substring, not
limited to a prefix, whose alignment cost to a pattern regiseeds cost threshold.

Let S be an arbitrary RNA sequence aiiftr..y] = Sqf); [+..y] contain all substrings whose align-
ment cost to a region of an RSSPexceeds threshol. Consider the following two cases for
skipping suffixes that cannot mat@as a consequence of containing substfifig..y] from posi-
tion z toy. (1) For any value of, all suffixes sharing prefiX’[1..y] can be skipped as performed by
algorithm LESAAlign (2) Now letz > 1. To find all suffixes ofS sharing substring’[x..y] from
positionz to y, we first locate all suffixes shariffjx..y] as a prefix. We begin by locating one such
suffix, in particular the suffix of indexuf[;] that contains all but the first = 2 — 1 characters of
Ssufi]» 1-€. SUffiXSgue(j) = Ssuffi)+o- We determing using a generalization of a concept originated
from suffix trees. It is a property of suffix trees that for anternal node spelling out stririg there

is also an internal node spelling dlif wheneverT'| > 1 [135]. A pointer from the former to the
latter node is called suffix link In the case of suffix arrays, a suffix link can be computedgidie
inverse suffix arraguf —! of $$. suf ~1 is a table in the rangeto n + 1 such thasuf ~![suf[i]] = 1.

It requires4n bytes and can be computed via a single scasubin O(n) time. Given tablesuf 1,
we can define the suffix link fror’ = Sq,¢p;) 10 Ty = Sqyfpi)41 @slink = suf [suf[i] + 1], i.e. it
holds thasuf[link] = suf[i] + 1. Now, if 2/ = 1, we already find that the indexf[;] of the suffix
containing all but the first character 8f¢(; is suf[j] = suf[link] becauseSy¢ink) = Ssuf[ij+a’
holds. However, we also want to be able to determjidier anyz’ > 1. The obvious solution is
to compute suffix linkse’ successive times. Each suffix link skips the first charadté¢ne previ-
ously located suffix. For a more efficient solution, we gelimgasuffix links to point directly to the
suffix without a prefix of any length’ of the initial suffix. For this purpose we define a function
link : N x N — N as:

link(i,z") = suf " [suf[i] + 2/]. (4.10)

Then, by lettingj = link(i,z"), Ssufftink(iz’)] = Ssuflij+or NOIDS for anyz’ > 1. All suffixes
sharingT'[z..y] as a prefix are all suffixes in the ran@ga to jend Wherejsiart is the smallest and
JendiS the largest index satisfying mfitep[jstart + 1], .-, lep[j], .-, lep[jend } = ¥ — + 1. Finally,
we find that all suffixes ofS sharing substring’[z..y] from positionz to y are all Sgy¢j1—o,

99

4 Fast approximate search for RNA sequence-structurerpgstte

Jstart < 7’ < jena Satisfyingsuf[j’] > 2’. To skip these suffixes not containing matche®tm the
top-down traversal of the suffix arrayf, we mark their positions as true (for already“processed”)
in a bit arrayvtab of n bits. The suffix array traversal proceeds from positiofi:], but skips the
marked suffixes when their positions are reached.

We remark that the described method for skipping suffixesprafit from a resorting according

to the order by which RSSP regions are aligned. In the alighiro@mputation example in Figure
4.2, determininglist(Q[4..6], Ty, ¢ [1.3 4+ 2]) > 1, -1 < d' < 1,z € {|d'| - 1,—|d'| + 1},

does not depend on regiad|[1..2]. Hence, regiorQ|[1..2] is unnecessarily aligned first when the
regions are sorted by a top-down analysis offfhe tables. To decrease the chance that unnecessary
computations occur, we sort tligS'S P regions to begin aligning with the left-mo&tS.S P region
Q[x..y] not depending on the alignment of any other region and gategst — d > 1.

We now address the second goal, namely reusing compfednatrices entries for as many suf-
fixes as possible. Recall that computing the sequencetsteuedit distancéist(Q, Suf(;)[1--pi])
for each suffixSf}; up to reading deptl; means computing; + 1 D P matrices, one for each
suffix Ty, of string T = Sg¢p;1[1.-pi], 1 < k < m/, and one for the empty sequenceObserve
that each suffixly, T, # T, also occurs itself as a prefix of a suffix in taklé, i.e. there exists
a suffix Sq,¢(;) shorter thanSg¢;; by exactlyk — 1 characters which has prefil.. Consequently,
T} is processed again in an alignment to RIS&t a different point in time during the traversal of
suf. LetT" = Sg¢(;1[1..p;]. Now note that if7” is at a (nearly) contiguous position sof to 7', 7"
andT are likely to share a common prefix due to their similar legiegphic ranking. This allows
algorithmLESAAIlignto avoid recomputation ab P matrices columns by using information from
thelcp table. Unfortunately]” andT can be lexicographically ranked far away from each other in
tablesuf, meaning that thé P matrices computed fdf” either:

e were already computed once becalias lexicographically smaller thaift, but were dis-
carded to allow the processing of other suffixes ufitivas traversed; or

e are computed for the first time otherwise, but will not be szl also allow the processing
of other suffixes untill” occurs in tableuf as a prefix of a suffix itself.

In both cases, redundant computations occur. To avoid weéspptimize the use of computed
DP matrices by processing’ directly after processing for fixed & = 2, recalling thatT' =
Ssuffi)[L--pi] andT” = Sg¢1;1[1..p;]. This value ofk implies thatS; ;) does not contain the
first character ofSy.¢;; and that we can locaté ;) in tablesuf by computing the suffix link
j = link(i,1). Also, k = 2 implies thatT” only differs by its last character froff, aside from
not beginning with charactéf|[1]. Therefore, to determingist(Q,T”), we only have to compute
the last column of thed P matrices required to comput&st(Q,T") as shown by Lemmia 4. We
note that, becauseand; are not necessarily contiguous positionsiifi, we mark the processed
suffix Sq,¢(;1 in the bit arraytab so that it is only processed once. If no match to R&€8begins at
positionsuf[j], we also mark and skip every suffix sharing the substring Wittwhose alignment
to a region ofQ is known to exceed threshold. OnceT” is processed and all possible suffixes are

100

4.2 Approximate matching of RNA sequence-structure padter

skipped, we recursively repeat this optimization schemsditing? = T’ and processing the next
T" = Sguj[1.-py] wherej’ = link(j, 1). The recursion stops whery < m — d, meaning that
T is too short to matcl®, or whensuf[;'] is already marked as processediab. The suffix array
traversal proceeds at position- 1 repeating the entire scheme.

We call our algorithm incorporating the presented improgetalLGSlinkAlign LGSIinkAlignin-
herits all the improvements of the above presented algositin summary, its improvements are
as follows.

o LGSIlinkAligntraverses the enhanced suffix array of the searched segdeneethe suffix
arraysuf enhanced with tabldsp andsuf —. During this traversal, it benefits from common
prefixes shared among suffixes to (1) avoid the computatiah Bfmatrix columns and to
(2) skip ranges of suffixes known to match or not match RE3# in algorithmLESAAlign

e The suffix array traversal is predominantly top down, but-oontiguous suffixes are pro-
cessed to optimize the use of compuieé# matrices.

e LGSIlinkAlignstops the alignment computation as early as the alignmestitof@ region of
RSSPQ and a substring of the prefix of the current suffix exceedstuiel IC, an improve-
ment first introduced in algorithrhScanAlign

e Due to the early-stop computation scheme, suffixes shawdngron prefixes shorter than
m+d can be skipped, leading to larger ranges of skipped suffifesearly-stop computation
scheme also helps to identify and skip non-contiguous s#fsharing a common substring
which is not their prefix.

The pseudocode for algorithinGSlinkAlignis given in Algorithm 6 (Figuré_4]7)LGSIinkAlign
traverses the suffix array in two combined strategies: tapndand following suffix links. This is
managed in the code with two main while-loops, where an dotgy (lines 3 to 47) performs the
top down traversal and an inner loop (lines 13 to 46) perfotimestraversal via suffix links. To
keep track of the last processed suffix via top down suffixyairaversal, the index of this suffix
is stored in variableSuffix Top Down. To keep the code short, all alignment computations are per-
formed only in the inner loop, distinguishing the strategyhich suffixes are traversed according
to the boolean variabléFollowedSuffixrLink. This variable is set to true (line 41) when the inner
loop iterates and to false (line 4) when the iteration bres¢sen b FollowedSuffizLink is false,
the samecomputeDP function used by th& ESAAlignalgorithm is applied. Otherwise function
computeLastDPColumns is applied. This function does not use Icp information, lalkes advan-
tage of the fact that the prefix of the current suffix, deteediim line 36 by following a suffix link,

is equal to the previously processed suffix prefix, exceptdbiast character. This property of the
suffix prefix allows to reuse already computed entries of itegrfrom the previously processed
suffix prefix, requiring for this only one shift of thB P matrices. This is done by functiohiftD P

in line 42. While traversing the suffix array, processed geffiare marked in thetab table. This
allows to avoid processing the same suffixes multiple tirireaddition to these processed suffixes,

101

4 Fast approximate search for RNA sequence-structurerpgstte

non-contiguous suffixes of the suffix array that are knowntaatontain matches to RSSP are
also marked in this table. This is possible when patt@rifior the current suffix, has an unaligned
prefix of lengthiUnalignedPrefizLength > 0. For determiningiUnaligned PrefizLength in line
31, valuelastRegion.l is used. This value is the left boundary of the last computitem re-
gion Q[z..y]. Marking the additional suffixes intab is performed by functiommarkSuffizes (see
Figurel4.8). This function receives as parameter a stairithex i.Suffix, i Unaligned PrefizLength,
and the required lengthiLcp of the common prefixes of the suffixes to be marked. The functio
then traverses the suffix array top down and bottom up, mguddirpossible suffixes intab.

4.2.5 Example: searching for an RSSP with algorithm LGSIlinkAlign

We elucidate the ideas of algorithin SlinkAlignwith the following example. Consider the RSSP
Q = (AAGUUUC,. . (.. .)) to be matched in the sequenSevhose enhanced suffix array is
shown in Figuré 416. To keep the example simple, we only adl@mall cost threshold and number
of indels, i.e. we seX’ = d = 1. The costs of the edit operations arg = wy, = w, = w, = 1 and

wy = 2. When traversing the enhanced suffix arraySol.GSlinkAlignalways begins to aligi®

to a substring o5 with region Q[4..6], because the alignment computation of this region does not
depend on any other region. In addition, the left index of tepion satisfieg — d > 1. This means
that the alignment computation of regi@j1..2] is avoided if the cost of aligning regio@|[4..6]
exceeds the threshold. The algorithm starts the traversal of the enhanced suff@yaf S aligning
Q[4..6] to substrings off" = Sg¢pyj[1..p1] = S14[1..8] from positionsd —d = 3 and6 +d = 7.
For this, it computedist(Q[4..6], Tyyq[1..3 + z]) for =1 < d’ < 1andz € {|d'| — 1, —|d'| + 1}.
Observe thatlist(Q[4..5], Ty [1..2 + z]) > 1 holds. Hence (1) no suffix with prefiX[1..6] =
AACACC can matchQ and thus can be skipped and (2) no suffix containing subs#Bg6] =
CACC from positiond — d = 3to 5 + d = 6 can match@ and thus can be skipped as well. We
notice that there is no other suffix with prefix AACACC becaligg2] < 6, so we analyze case
(2). The algorithm looks for suffixes sharing substring CAR@n position3 to 6. It begins by
locating suffixes without the first two charactersiofind containing CACC as a prefix. It follows
the suffix link link(1,2) = suf~![suf[1] + 2] = suf~![16] = 7 and looks for the smallestar
and largesyeng satisfying miflcp|[jstart + 1], .., lcp[8], ..., lcp[jend } = 4 = |CACC]. It finds that
Jstart= 5 @ndjeng = 8, since mi{lcp[5 + 1], Icp[7], Icp[8]} = min{4, 5,5} > 4 holds. The suffixes
containing CACC from position 3 t0 6 ai®¢(5)—2 = S11, Ssuf[g]—2 = 57, and Sgyegj—2 = S1a.
S11 andS7 are marked in the bit arraytab, whereasS14 = Sg.¢) Was already processed and does
not need to be marked. We observe thaf;;_», = S_1 is not a valid suffix. To reuse as many
computedD P matrices entries as possible, the algorithm next processesuffix S¢[;; which
does not contain the first characterSfy;. It determinesj = link(1,1) = suf ![suf[1] + 1] =

11 and setsI" = Sg¢19)[1--p12] = S15[1..8]. The alignment to this substring begins with its
substrings from position8 to 7 and Q[4..6]. We observe thatist(Q[4..5], Tyt [1..2 + 2]) > 1
holds and consequently’ cannot matchQ. Because suffiXSysi9 = S15 Was traversed via a

102

4.2 Approximate matching of RNA sequence-structure padter

Algorithm 6: LGSlinkAlign

© 0w N0 W N

AR A R A R R W W W W WWWWWNNNNDNNNNNNRERRRBRRRRKRR =
N O U W NRE O OO0 N0 R WNHE OO WO UA WNEO®©ONOORA WN RO

input : Index tables suf, lcp, suf ™1, and vtab of sequence S, RSSP Q
output: Matching positions of Q in §
iSuf fixTopDown := 1
last Region := undefined
while iSuf fixTopDown < n do //Begin traversing suffix array top down
bFollowedSuf fixLink := false
iLep := lepliSuf fixTopDown)
while vtab[suf[iSuf fizTopDown]] do //Skip already visited suffixes
iSuf fixTopDown := iSuf fixTopDown + 1
if ¢Lep > lep[iSuf fixTopDown] then //Store the smallest lep value of the skipped interval
| iLep := lep[iSuf fixTopDown]
end
end
iSuf fix :=iSuf fixTopDown
while not vtab[suf[iSuf fiz]] do
if bFollowedSuf fixLink then //Current suffix was obtained via a suffix link
| (bM atched, last Region) := compute Last DPColumns(DP,iSuf fix,last Region)
else//Current suffix was obtained via the top-down suffix array traversal
| (bM atched, last Region) := compute DP(DPTopDown,iSuf fix,iLcp, last Region)
end
iLepCheck := lastRegion.r + d
repeat
vtab[suf[iSuf fiz]] := true
if bMatched then
‘ reportMatch(Q, S,iSuf fix) //Match found at position suf[iSuf fiz] of S
end
iSuf fix :=iSuf fiz+ 1
if iSuf fiz > n or vtab[suf[iSuf fiz]] then
‘ break
end
until Icp[iSuf fixz] > iLepCheck
iSuf fix :=iSuf fizx —1
iUnanlignedPre fixLength := lastRegion.l —d — 1
if iUnanlignedPrefixzLength > 0 then
markSuf fizes(link(iSuf fiz,iUnanlignedPrefixLength),iUnanligned Pre fixLength,
lastRegion.r + d — iUnanlignedPre fixzLength)
end
iSuf fix := link(iSuf fiz,1)
if |Ssuffisus iz}l > m — d then //If suffix is not shorter than the minimum required length
if not bFollowedSuf fixLink then
‘ DP := DPTopDown
end
bFollowedSuf fixLink := true
shift DP(DP)
else //Leave large while-loop and traverse suffix array top down
| break
end

end
end

Figure 4.7: Pseudocode for algorithis SlinkAlign For details, see main text.

103

4 Fast approximate search for RNA sequence-structurerpgstte

Function markSuf fixes (iSuf fix,iUnanlignedPrefixLength,iLcpCheck)

1 //Mark suffixes by traversing suffix array top down

2 iSuf fixrDown :=iSuf fix + 1

3 while iSuf fixDown < n and lcp[iSuf fizDown] > iLepCheck do
4 if suf[iSuf fizDown] — iUnalignedPre fixzLength > 1 then

5 | vtab[suf[iSuf fiz Down] — iUnalignedPre fixLength] := true
6 end

7 iSuf fixrDown := iSuf fixDown + 1

8 end

9 //Mark suffixes by traversing suffix array bottom up

10 tSuf fixUp :=iSuf fix — 1

11 while iSuf fizUp > 1 and lcp[iSuf fiaUp + 1] > iLepCheck do
12 if suf[iSuf fizUp| — iUnalignedPrefizLength > 1 then

13 | vtab[suf[iSuf fizUp] — iUnalignedPre fizLength] := true
14 end

15 tSuf fizUp = iSuf fizUp — 1

16 end

Figure 4.8: FunctiormarkSuffixesised by algorithniLGSlinkAlignto mark processed suffixes in
tablevtab. For details, see text above.

suffix link, it is marked as processed vmab. We now again analyze two cases of suffixes that
cannot matchQ and therefore can be skipped: (1) suffixes sharing prEfix.6) = CCACCC
and (2) suffixes containing substrifig3..6] = ACCC from position3 to 6. Satisfying case (1)
are suffixesSq,e11) = S1 and Sgye;10) = Ss sincelcp[12] > 6 andlcp[11] > 6. These suffixes
are marked invtab. We now check if there are suffixes satisfying case (2). Tgeraghm begins
by locating suffixes containing substrifg[3..6] = ACCC as a prefix. For this, it follows the
suffix link link(12,2) = suf ![suf[12] + 2] = 4 and determineSsit = 2 and jeng = 4. The
property miflcp[2 + 1], lcp[4]} > 4 is satisfied. The suffixes containing ACCC from position 3
to 6 areSgfig)—2 = S8, Ssuf[zj—2 = S1, aNdSsyf4)—2 = S15. Since these were already marked in
vtab, none of them needs to be marked. The algorithmic scherh&8finkAlignto reuse as many
computedD P matrices entries as possible continues processing otfilmesuvhich are located by
iteratively following the suffix links. It locates suffixe& (g, Ssuf[as Ssuf[18], aNd Ssye[19) bECAUSE
link(12,1) = 8, link(8,1) = 4, link(4,1) = 18, andlink(18,1) = 19, respectively. These
suffixes are processed analogously as above, one aftetidse 0ot resulting in matches 9. The
iteration then leads to suffi o), sincelink(19,1) = 20. However,|S¢(20)| < m —d, meaning
that this suffix is too short to contain a matchd@ This causes the iteration to stop. The suffix
array traversal proceeds and repeats the entire matchiregnecfrom the suffix that follows the
last processed suffix not located via a suffix link, i.e. suffjxs;. After processing and skipping
all possible suffixes, we note theGSlinkAligndoes not report any matches for the defined cost
threshold and allowed number of indéls= d = 1. By settingkC = 5, it reports a match at position
16.

104

4.3 RNA secondary structure descriptors based on multiplered RSSPs

4.3 RNA secondary structure descriptors based on multiple
ordered RSSPs

RNAs with complex branching structures often cannot be aaledy described by a single RSSP
due to difficulties in balancing sensitivity, specificitypndareasonable running time of the used
search algorithm. Although their description by a singlersfiRSSP specifying an unbranched
fragment of the molecule might be very sensitive, it is ofteo unspecific and likely to generate
many spurious matches when searching for structural hayadlo large sequence databases or
complete genomes. In contrast, using a single long RSSR wdtpiires a higher cost threshdd

for being sensitive enough which in turn, together with theréased RSSP length, has a negative
influence on the search time. This might lead to disadvaptageunning times in larger search
scenarios in practice.

We solve this problem by applying the powerful concept of R&&&ondary structure descriptors
(SSDs for short), which we introduced with dbtructatormethod described above. We also use the
same efficient local and global chaining algorithms aStiructator For chaining of approximate
RSSP matches, we use the fragment weight- dist(Q, T') for an RSSRR of lengthm matching
substring”’, wherewy = m * wy + bps * w, andbps denotes the number of base pairs@n
Herewy, is the maximal possible weighting can gain when being aligned and therefore it reflects
the situation of a perfect match betweénhandT. With this definition of a fragment’'s weight,

a positive weight is always guaranteed, thus satisfyinggairement for the chaining algorithm.
Once the chaining of matches to the RSSPs is completed, gheshoring chains are reported in
descending order of their chain score. By restricting thfigoring chains, spurious RSSP matches
are effectively eliminated. Moreover, the relatively shR6SPs used in an SSD can be matched
efficiently with the presented algorithms leading to shonning times that even allow for the large
scale application of approximate RSSP search.

4.4 Implementation and computational results

We implemented (1) the fast index-based algorithtBS AAlignand LGSlinkAlign (2) the online
algorithmsLScanAligrandScanAlign both operating on the plain sequence, and (3) integratéd wi
the search algorithms the efficient global and local chaimilyorithms described in_[104]. In our
experiments we us8canAlign which is the scanning version of the method proposed_ih, fo0]
reference benchmarking. All algorithms are included inphegramRaligNAtor. The algorithms
for index construction were implemented in the progaufconstructwhich makes use of routines
from thelibdivsufsort2library (seeht t p: // code. googl e. coni p/1'i bdi vsuf sort/) for
computing thesuf table inO(nlogn) time. For the construction of tablep we employ our own
implementation of the linear time algorithm &f [111]. Allgmrams were written in C and com-
piled with the GNU C compiler (version 4.5.0, optimizatioption -O3). All measurements are

105

http://code.google.com/p/libdivsufsort/

4 Fast approximate search for RNA sequence-structurerpgstte

performed on a Quad Core Xeon E5620 CPU running.&tGHz, with 64 GB main memory
(using only one CPU core). To minimize the influence of disksyistem performance, the re-
ported running times are user times averaged dveruns. Allowed base pairs are canonical
Watson-Crick and wobble, unless stated otherwise. The segdence-structure operation costs
arewyg = wm = Wy = wy = 1 andw, = 2.

Comparison of running times

In a first benchmark experiment we measure the running tireedad by the four algorithms to
search with a single RSSP under different cost threshSldsid number of allowed indelé We
set (1)K = d varying the values in the intervd), 6], (2) £ = 6 varyingd in the interval[0, 6],
and (3)d = 0 varying K in the interval[0, 6]. The searched dataset conta®g56,313 sequences
with a total length of~ 786 MB from the full alignments of all Rfam release 10.1 famili@he
construction of all necessary index tables needed EB8AAlignand LGSlinkAlignwith sufcon-
struct and their storage on disk requir8@2 seconds. In the following we refer to this dataset as
RFAM10.1 for short. In this experiment we use the RSBRA-pat of lengthm = 74 shown in
Figure[4.9 describing the consensus secondary structdine 6RNA family (Acc.: RFO0005). The
results of this experiment are presented in Figure|4.10 ahted 4.1 4]2, arild 4.8GSlinkAlign
andLESAAlignare the fastest algorithmsGSlinkAlignis faster in particular for increasing values
of K andd, being only slower thahESAAlignfor small values ofC andd and for fixedd = 0.
The advantage dfGSlinkAlignover LESAAlignwith higher values ofC andd is explained by the
increased reading depth in the suffix array implicatedkbgnd d and the fewer suffixes sharing
a common prefix that can be skipped. This holds for hgiSlinkAlignand LESAAlign however
LGSlinkAligncounterbalances this effect by reusing computet matrices for non-contiguous
suffixes of the suffix array. In a comparison to the two onlilgpathms considering only approxi-
mate matching, i.eC > 1, the speedup factor &fGSlinkAlignover ScanAlign(LScanAlign is in
the range fromb60 for £ = 1 andd = 0to 17 for £ = d = 6 (from 15 for £ = 2 andd = 0
to 3 for £ = d = 6). LESAAlignachieves a speedup factor ov&eanAlign(LScanAligi in the
range from1,323 for X = 1 andd = 0to9for X = d = 6 (29 for L = 1 andd = 0 to 1.6 for
K = d = 6). In a comparison between the online algorithinScanAlignis faster tharScanAlign
by up to factord5 for I > 1. In summary, all algorithms excefanAlignprofit from low values
of K andd reducing their search times. This is a consequence of thefiise early-stop alignment
computation scheme. As shown in Figlre 4.10 (2), also thebeumof allowed indelg! influences
the search time.

Influence of allowed edit costs and number of indels on search time

We describe an experiment comparing the running times afrishgns LGSlinkAlign LESAAlign
LScanAlign and ScanAlignto search inRFAM10.1, similar to the benchmark described above.

106

4.4 Implementation and computational results

>tRNA-pat
GSSVVYRURGYYYARYUGGUUARMRCRYYDSVYUBHHAMBCHRDWRRUYRYRGGUUCRAWUCCYDYHNBBNSYR
COCCCOC. . COCCa et)))) OO0 e e DD DD I CCCCCa e)))))))))))) .

Figure 4.9: Consensus secondary structure of the tRNA yafitc.: RFO0005) as drawn by
VARNA[128] (top) and respective sequence-structure patiRA-pat (bottom).

K =d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
0 1 1,582.03 21.81 0.53 3.09
1 168 | 1,581.86 50.36 2.53 3.81
2 900 | 1,643.86 68.26 5.95 13.17
3 3,050 | 1,670.71 100.22 16.22 30.29
4 9,274 1,710.75 141.12 42.23 43.66
5 28,603 | 1,759.80 196.09 90.61 64.74
6 77,805| 1,830.33 319.32 198.94 107.63

Table 4.1: Times in minutes required by algorithr8sanAlign LScanAlign LESAAlign and
LGSlinkAlignto match inRFAM10.1 the single RSSP describing the consensus sec-
ondary structure of the tRNA (Acc.: RF00005). Times are ificed by the cost thresh-
old K and the number of allowed indefs

K | d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
6|0 10,516 | 1,536.08 123.18 17.69 22.82
6|1 30,633| 1,576.73 156.50 35.67 39.87
6|2 49,287 | 1,657.61 188.79 58.99 52.98
6 |3 64,226 | 1,703.31 222.36 86.39 65.94
6 | 4 74,146 | 1,754.08 256.78 119.47 80.55
6|5 77,679| 1,808.84 287.49 156.48 94.03
6|6 77,805| 1,830.33 319.32 198.94 107.63

Table 4.2: Search times in minutes required by algorit®eesnAlign LScanAlign LESAAlign and
LGSlinkAlignto match inRFAM10.1 the single RSSP describing the consensus sec-
ondary structure of the tRNA (Acc.: RFO0005). Here, the ¢betshold/C is constant
and the number of allowed indefsincreases progressively.

107

4 Fast approximate search for RNA sequence-structurerpsitte

(1) 2 | = ScanAlign ™ LScanAlign ® LESAAIign LGSImkAhgn 2) .
m
o
” o
2
wn
= ° n
< = o
£ £
P E o |
g = 2
= 2
o un | =
o - o |
o e -
o | 8
- e |
n
© L
o
S
© =
o
5N =
@ *“// *‘l/ *3/6 & A ” & \L”c \L”c
S
3) =
wn
o~
R
£
s
£ 4
8
o
|
e
P
<o
© e \b \s» \0 e «,\ Q\
6 NN D "'b// P ,vw// o S
¥ & é \{. 7

Figure 4.10: Running times (in minutes and Jgpgcale) needed by the different algorithms to
search with an RSSP describing the tRNARRFAM10.1. In (1) the cost threshold
K and the number of allowed indedsare identical. In (2)C = 6 is constant and
ranges fron? to 6. In (3) d = 0 is constant and” ranges fron? to 6. The numbers of
resulting matches are given on the x-axes in brackets.

K | d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
0|0 1 1,582.03 21.81 0.53 3.09
1|0 166 | 1,601.82 35.39 121 2.86
2|0 439 | 1,601.20 45.20 2.05 3.00
3|0 1,112 | 1,601.90 54.83 2.87 3.72
4|0 2,963 | 1,606.61 74.29 4.90 5.71
5|0 6,518 | 1,601.01 96.93 9.53 11.57
6|0 10,516 | 1,601.93 118.26 17.34 21.87

Table 4.3: Search times in minutes required by algoritBeenAlign LScanAlign LESAAlign and
LGSIlinkAlignto match inRFAM10.1 the single RSSP describing the consensus sec-
ondary structure of the tRNA (Acc.: RFO0005). Here, no isdek allowed and the cost
threshold/C increases progressively.

108

4.4 Implementation and computational results

>iresl|indels=0|cost=2

UGAWCUKD

>ires2|indels=1|cost=4
DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH
(€0 (C{cooo0o00000000000000000000))))))
>ires3|indels=0|cost=1
VNHUAUUUADNBWUAC

(((lcccold)))occo
>iresd4|indels=2|cost=3
CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG
(oo ool(oooon)))).))))))
>ires5|indels=1|cost=3|deletion=2
BHKHDHDSNBHDRGUNSNSNNNWNN

COCee e COCCe e e e e))))..)))

O-B-B-&-®H-BH-O-®®®

Figure 4.11: Consensus secondary structure of family @ngsinternal ribosome entry site (Acc.:
RF00458) showing its four characteristic stem-loop sulsstirespt2, pt3, pt4, and
pt5 and the moderately conserved straotd as drawn byWARNA[128]. The sec-
ondary structure descriptor (SSD) for this family, on thghtihand side, consists of
five RSSPsresl, ires2, ires3, ires4, andires5 describing the strand and stem-loop
substructures.

This time we set (1)C = d varying the values in the intervfll, 7], (2) = 7 varyingd in the inter-

val [0, 7], and (3)d = 0 varying K in the interval|0, 7]. We use RSS® = (CARGAYSNVNNNND
GCRKYCCHVHRWNRUCYAG, (. (((((. ... ((((.....))))..))))).))oflengthm = 33
describing a stem-loop substructure of Rfam family Cripawvinternal ribosome entry site (Acc.:
RF00458)([136]. The secondary structure of this family dreddubstructure originating the pattern
can be visualized in Figufe 4]11, where the substructurenstedpt4. For the results of this ex-
periment, see Figufe 4112 and Takles #.4), 4.5[add 4&6&linkAlignis the fastest algorithm with
measured speedup factors oBeanAlign(LScanAlign in the range 0l60.6 for K = d =010 3.3
fork =d=7(178for K =d=1t03.3for K =d = 7). Inacomparison between the two online
algorithms,L ScanAlignis faster tharScanAlignup to a cost threshold &f = 6 and for any value

of KC in case no indels are allowed, i€= 0. LESAAlignis only faster than the online algorithms
forupto(K = d) < 5andK = 7 andd < 3. For higher cost thresholds and allowed indels, its
performance decreases significantly. We explain this hehath the increased reading depth in
the suffix array implicated b¥ andd and the reduced number of suffixes sharing a common prefix
that can be skipped.

109

4 Fast approximate search for RNA sequence-structurerpsitte

(1) e ScanAlign (2)
LScanAlign
| e LESAAlign S 4
LGSlinkAlign N
‘ <
S |
(2}
o | | ‘
i £ g
o~
o ‘
J 8- I
N Y %) S
{ Qn) &
7

400

Time [min.]

Time [min.]
0 100 200 300
1 1
_
_
|
/_

= o
(\'\\ va“\ rg,\x\ N @q\ ‘;’?\ I8 ® (a o
A s /6‘1/ 6,))(\ ,,‘o@ b@@ R o \{!'\i,/g ,,’\Qj'\ A% /\Q /\Q_, & K ?,u
*‘ *‘/ ¥ %3’ ¥ \g/é \{:,6’ ,,6”/\ ¢ 6/55 NG ,)* N b,,‘b \{!«g,/@ \{:}g,;\
N

Time[min] GO
*
0 50 100 200
L Il Il Il Il I}
Yy,

S S S ' !
&
IR S

N
4 PN /{]/(\/Q /Q’Q/Q > Q /93 > 200 A @ Q
\{, 6 \{, 6 \{J 6/ ‘(_/ 6/ ‘(‘/ 2 $/ 4 6/, P

Figure 4.12: Running times needed by the different algoritho search with a stem-loop pattern
of length 33 inRFAM10.1. In (1) the cost threshold and the number of allowed
indelsd increase equally. In (2§ = 7 is constant and increases frond to 7. In (3)
d = 0 is constant and’ increases frond to 7. The numbers of resulting matches are
given on the x-axes in brackets.

K =d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
0 4 261.80 14.60 0.56 1.63
1 23 270.43 43.83 3.62 2.46
2 71 282.99 67.87 12.39 6.06
3 164 291.66 124.34 43.19 19.90
4 354 300.93 203.04 125.74 43.01
5 3,771 323.66 256.16 246.60 66.25
6 86,509 326.85 294.44 348.69 83.96
7 1,546,439 339.55 342.66 459.26 104.08

Table 4.4: Times in minutes required by algorithrBsanAlign LScanAlign LESAAlign and
LGSIlinkAlignto search with a stem-loop pattern of length 3RIRAM10.1. Times are
influenced by the cost threshold and the number of allowed indeds For a graphical
representation of the measurements, see Figuré 4.12(1).

110

4.4 Implementation and computational results

K | d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
710 398 264.68 211.03 101.11 37.93
711 2,873 275.95 240.55 159.24 45.92
712 23,440 281.80 262.52 216.26 56.46
713 103,792 290.80 278.29 268.33 68.04
714 309,464 302.53 295.05 317.23 78.01
715 688,675 325.10 313.40 364.49 86.72
7 | 6| 1,434,360 333.96 325.80 409.53 95.51
7 | 7| 1,546,439 339.55 342.66 459.26 104.08

Table 4.5: Times in minutes required by algorithr8sanAlign LScanAlign LESAAlign and
LGSlinkAlignto search with a stem-loop pattern of length 33RIRAM10.1. Here, the
cost thresholdC is constant and the number of allowed indéisicreases progressively.

K | d | #matches| ScanAlign LScanAlign LESAAlign LGSlinkAlign
0|0 4 261.80 14.60 0.56 1.63
110 7 259.17 31.45 1.78 1.86
210 10 256.27 44.37 3.10 2.52
310 10 257.19 60.41 6.43 3.57
4|0 11 257.01 90.22 14.52 8.07
5|0 11 257.61 138.30 33.11 18.90
6|0 50 257.50 176.02 63.11 31.45
710 398 258.00 202.68 100.82 37.45

Table 4.6: Times in minutes required by algorithr8sanAlign LScanAlign LESAAlign and
LGSlinkAlignto search with a stem-loop pattern of length 3RiFAM10.1. Here, indels
are not allowed and the cost thresh@ldncreases progressively.

111

4 Fast approximate search for RNA sequence-structurerpgstte

>flgl|cost=6|indels=3
BNRRCBCRBVNGYUUGGGAGARCBBNVNGSYHNV
CCCCCCCCCCCCCCaea))))))=))))I)))
>flg2|cost=4|indels=3
VNSBDBNVNKNBSSYYYGGGAGRRSBNBBNNVVVSNK
(lldocoocoo (CCCCocood)hD)oocoos)))))

g__g >flg3|cost=2|indels=1
©—0 SCGRUGSMGAWYDCNMDBCUSRUCGS
®--© 9 q.lp COCCC. CCCCCa e e))))))))))
hp1 03@ hp2 083 hp3 @—G
$2occoct le K-
—@00@0@@—@0 GOGO@O@'@@O@@OOOOOOO@O@'

140

Figure 4.13: Consensus secondary structure of family fligdtiales RNA motif (Acc.: RF01736)
showing its three stem-loop substructurbpl, hp2, and hp3 as drawn by
VARNA[128]. The secondary structure descriptor (SSD) for thisilfg on the right-
hand side, consists of three RSSRH., flg2, andflg3 derived from the stem-loop
substructures.

Scaling behavior of the online and index-based algorithms

In a third experiment, we investigate how the search timelgdrahms ScanAlign LScanAlign
LESAAIign and LGSlinkAlignscales on random subsets RFAM10.1 of increasing size. The
searched RSSRig 1, flg2, andflg3 were derived from the three stem-loop substructures the-mem
bers of family flg-Rhizobiales RNA motif (Acc.: RF01736) [ABfold into. These patterns differ
in length, cost threshol& and number of allowed indelg, see Figuré 4.13 for their definition,
noting thatC andd are simply denotedostandindelsin the RaligNAtorRSSP syntax. The results
are shown in Figure_4.14 and Talple 14L.IGSlinkAlignand LESAAlignshow a sublinear scaling
behavior, wherealsScanAlignrandScanAlignscale linearly. The fastest algorithmLi& SlinkAlign
requiring only 11.68 (53.08) minutes to search for all thpedterns in the smallest (full) subset.
The second fastest algorithmLi&SAAlign followed byLScanAlignandScanAlign which require
32.27 (126.97), 40.47 (321.01), and 98.35 (754.66) minuespectively, to search for all the pat-
terns in the smallest (full) subset. This corresponds toegdipp 0f8.4 to 14.2 of LGSIinkAlign
over ScanAlignon the smallest and the full subsets. Comparing the seanehftir patterrflg3 in-
dividually, the speedup dfGSlinkAlignover ScanAlignranges from 22.6 to 38.8. We also observe
that ScanAlignrequires the longest time to match the longest patigthof lengthm = 37. The
other algorithms profit from the early-stop computationrapph to reduce the search time for this
pattern on every database subset.

112

LGSlinkAlign

4.4 Implementation and computational results

flgl
fig2
fig3

25

20

Time [min.]
15
Il

10
|

LESAAlign

flgl
fig2
fig3

Time [min.]
10 20 30 40 50 60 70

0

100 200

300 400 500
Database size [MB]

LScanAlign

T
600

700

T
800 100

140
|

flgl
flg2
flg3

Time [min.]
20 40 60 80 100

T
200

T
300 400 500
Database size [MB]

T
600

ScanAlign

700

T
800

flgl
flg2
flg3

Time [min.]
100 150 200 250 300
Il

50

T T
100 200

T T T
300 400 500
Database size [MB]

T
600

T
700

T T
800 100

T
200

T T T T
300 400 500 600

Database size [MB]

T
700

T
800

Figure 4.14: Scaling behavior of algorithh& SlinkAlign LESAAIlign LScanAlign andScanAlign
when searching with RSSHg1, flg2, andflg3 in subsets oRFAM10.1 of different
length. For details, see main text.

RFAM10.1 subset ScanAlign LScanAlign LESAAlign LGSlinkAlign
size (MB) flgl flg2 flg3 flgl flg2 flg3 flgl flg2 flg3 flgl flg2 flg3
98.3| 37.42 40.32 20.61 17.42 16.78 6.27) 18.17 1190 2.200 586 491 0.91
196.7| 7491 8151 4121 3455 3318 1229 29.53 19.45 3.460 9.69 815 144
295.0| 111.63 120.53 60.29 5154 50.20 18.35 38.70 25.09 4.33 13.05 11.01 1.89
393.4| 146.50 155.24 78.69 68.93 67.10 24.92 4546 30.13 521 16.07 1357 231
491.7 | 179.22 191.24 97.46 87.00 83.32 30.68 52.46 34.78 6.10 19.01 16.05 2.97
590.1| 213.99 230.11 117.29 103.18 99.96 37.06 58.87 39.32 6.84 21.59 18.08 3.29
688.4| 251.42 269.40 138.52 12199 117.08 43.04 65.68 43.48 7.50 24.26 20.64 3.74
786.8 | 287.32 310.06 157.28 137.78 134.40 48.83 71.18 47.52 8.27| 26.47 2256 4.05

Table 4.7: Search times in minutes used to investigate #lgdehavior of algorithmScanAlign
LScanAlign LESAAlign andLGSlinkAlignon random subsets &FAM10.1 of increas-
ing size. See the definition of the searched RS®8Rsflg2, andflg3 in Figure[4.18 and

further details of this experiment on the main text.

113

4 Fast approximate search for RNA sequence-structurerpgstte

8 _| == ScanAlign o
LScanAlign N7
—— LESAAlign
3 LGSlinkAlign 8 |
—
— Q | —
c ¥ £ 8
E £
o 9O | L o |
E© E
[=
8 2
o J I IR b b B R R oJ i ln il I I
3 4 5 2 3 4 5 6 7

6 7 8 9 10 11 12 8 9 10 11

#bases in the loop #base pairs in the stem

Figure 4.15: Search times for different number of baseséarndbp (left-hand side) and base pairs
in the stem (right-hand side) for given RSSPs.

Influence of stem and loop lengths on the search time

When searching a database for matches of a given pattermlganthms compute the required
D P matrices using recurrences according to two main casd®reit row corresponds to an un-
paired or to a paired base of the pattern. To analyze the imdtuef the used recurrence on the
search time of each algorithm, we seaRBRAM10.1 for artificial stem-loop patterns. Therefore
we vary the number of bases in the loop of patt&n= (NNNACANNN, (((...)))) from 3

to 12 by using As and Cs. Additionally, we vary the number adebpairs in the stem of pattern
Q = (NNACANN,((...))) from 2 to 11 by pairs of Ns. Matching the patterns in these two
experiments means to increase the use oftierecurrences in Equatiors (#.7) ahd {4.8), respec-
tively. The cost threshold and the number of allowed indetsfixed atC = d = 3. Allowed base
pairs are (A, U), (U, A), (C, G), and (G, C). The results arevaiin Figure 4.15. We observe that
increasing the number of bases in the loop has little inflaeard even reduces the running time
of the two fastest algorithmsGSlinkAlignandLESAAIlign This can be explained by the use of the
early-stop alignment computation scheme in these algosithrhe reduction of the running time
is explained by the fewer matches that need to be processih@ asttern gets longer and more
specific. For an increasing number of base pairs in the st€SlinkAlignis the least affected
algorithm. We also observe that the linear increase in ngitime of the basic online algorithm
ScanAlign caused by an extension of the pattern by one base pair, ilaisioithe effect of adding
two bases in the loop.

Comparisons between RaligNAtor and RNAMotif in terms of sensitivity and
specificity

RNAMotif [42] is one of the most popular tools for approximate matglthRSSPs supporting the
operations replacement and mispairing (which corresptmdise arc breaking operation defined

114

4.4 Implementation and computational results

above). A number of allowed replacements and mispairingggctwwe here simply denoterrors,
can be specified for each part of the structure along with anativnumber constraining the entire
structure. However, the arc altering and arc removing dgjpemare not supported. Also, insertions
and deletions are only supported by using regular expmesgiantifiers. This means that the user
has to know in advance for which positions of the pattern sypgrations can occur.

In this experiment we first analyze the resultsRdligNAtor when searchindfRFAM10.1 with
the tRNA (Acc.: RFO0005) RSSP shown in Figlrel4.9. In paliicuwe show the importance of
secondary structure information incorporated in the $e@achomologous sequences by varying
the cost of edit operations on base pairs. Secondly, we aentipa results obtained WaligNAtor
with the results oRNAMotif version 3.07 when searching with an equivalB™NAMotif pattern.
For the usedRNAMotif descriptor, see Figufe 4]16.

For the searches witRaligNAtor, we vary the cost threshold and the number of allowed indels
d between 0 and 25 in steps of 5. We use operation ¢cqsts wy, = wy, = w, = 1 andw, = 2.
Then we increase the costs of the operations arc breakioglt@ring, and arc removing. More
precisely, we seby = wy = 1, w, = w, = 2, andw, = 3. The results are shown in Taljle 4.8.
Unsurprisingly, we observe thBRaligNAtors sensitivity increases with increasing values®éand

d. However, for low costs of the operations on base pairs,pieificity decreases considerably
when K and d are increased from 20 to 25. For high costs of these opesatitaligNAtor is
sensitive while maintaining a high specificity.

To search witRNAMotif we vary the number of allowed errors per substructure beivileand 25

in steps of 5, constraining the total number of errors toshime number. This means that no indels
are allowed, since this requires many different patteresifgng possible indels only for specific
pattern positions. The results are shown in Table RMAMotifis highly specific for the complete
range of allowed indels, but it is not as sensitiveRadigNAtor. Notably, unlike in the search with
RaligNAtor, its sensitivity only marginally increases when the nundfexlowed errors varies from
20 to 25, with some decrease of its specificity. Similar fsstan be obtained witRaligNAtorby
settingd = 0.

RNA family classification by global chaining of RSSP matches

In the next experiment we show the effectiveness of globainthg when searching with two
SSDs built for Rfam families Cripavirus internal ribosomatrg site (Acc.. RF00458) and flg-
Rhizobiales RNA motif (Acc.: RF01736) [137]. These two fées present onlyp3% and 69%
sequence identity, respectively, much below the averages8of% of the Rfam 10.1 families. This
illustrates the importance of using both sequence andtatautformation encoded in the SSDs of
this experiment. The SSD of family RF01736 comprises thr8&Rs, denoted g1, flg2, and
flg3 in Figurel4.18, derived from the three stem-loop substrastthe members of this family fold
into. The SSD of family RF00458 comprises five RSSPs, dertnpémbsl, ires2, ires3, ires4, and

115

4 Fast approximate search for RNA sequence-structurerpgstte

RaligNAtor, edit operation costsig = wm = wp = Wa = 1, wr = 2

K=d #TP #FP #FN Sensitivity Specificity ~Accuracy Precision
0 1 0 1,101,832 0.000 1.000 0.600 1.000
5 10,726 0 1,091,107 0.010 1.000 0.606 1.000
10 146,124 3 955,709 0.133 1.000 0.671 1.000
15 517,984 65 583,849 0.470 1.000 0.822 1.000
20 959,243 164,708 142,590 0.871 0.941 0.921 0.853
25| 1,097,783 1,168,140 4,050 0.996 0.702 0.767 0.484
RaligNAtor, edit operation costsig = wm = 1, wp = wa = 2, wy = 3
K=d #TP #FP #FN Sensitivity Specificity ~Accuracy Precision
0 1 0 1,101,832 0.000 1.000 0.600 1.000
5 10,427 0 1,091,406 0.009 1.000 0.606 1.000
10 127,865 2 973,968 0.116 1.000 0.662 1.000
15 263,277 8 838,556 0.239 1.000 0.722 1.000
20 669,252 262 432,581 0.607 1.000 0.874 1.000
25| 1,034,028 122,285 67,805 0.938 0.956 0.951 0.894
RNAMotif
#Errors #TP #FP #FN Sensitivity Specificity =~ Accuracy Precision
0 1 0 1,101,832 0.000 1.000 0.600 1.000
5 7,289 0 1,094,544 0.007 1.000 0.604 1.000
10 40,669 0 1,061,164 0.037 1.000 0.621 1.000
15 66,451 1 1,035,382 0.060 1.000 0.633 1.000
20 68,236 1 1,033,597 0.062 1.000 0.634 1.000
25 68,492 139 1,033,341 0.062 1.000 0.634 0.998

Table 4.8: Results of the searchesRBAM10.1 for the tRNA (Acc.: RFO0005). For the two series
of searches witlRaligNAtorusing the operation costs above, the sequence-structtire pa
tern shown in Figuré 419 is used. For the searches RittAMotif varying the number
of allowed errors (#Errors), the descriptor shown in Fidgdu®8 is used. These errors
comprehend replacements and mispairings. #TP, #FP, andtéRN for number of true

positives, false positives, and false negatives, respdygtiSensitivity is computed as
#TP

___ gL ifici #TN #TP+# TN .
TP rErN SPECificity asgrh-—rpp, accuracy asgrprippripnzryy and preci
sion as

%. For additional details, see text above.

116

4.4 Implementation and computational results

parms
wc += gu;

descr
h5 (segq=""GSSVVYRS")
ss (seg=""URS")
h5 (seg=""GYYYS")
ss (seg=""ARYUGGUUAS")
h3 (seg=""RMRCS$")
ss (seg=""RS$")
h5 (seg=""YYDSVS$")
ss (seg=""YUBHHAMS")
h3 (seg=""BCHRDS$")
ss (seg=""WRRUYS")
h5 (seg=""RYRGGS")
ss (seg=""UUCRAWUS")
h3 (seg=""CCYDYS$")
h3 (seg=""HNBBNSYS$")
ss (seg=""RS$")

Figure 4. 16 RNAMotif descriptor without errors for the tRNA.

ires5 in Figure[4.11, where the last four RSSPs describe the stemdubstructures the members
of this family fold into.ires1 describes a moderately conserved strand occurring in thesgbers.
Observe also in Figurés 4]13 and 4.11 the cost threskicdahd allowed number of indel$ used
per pattern, remembering that these are denobdstindindelsin the RaligNAtorRSSP syntax.

Searching with the SSD of family RFO0458RFAM10.1 delivers16,033,351 matches foiresl,
8,950,417 for ires2, 1,052 for ires3, 112 for ires4, and1,222,639 for ires5. From these matches,
RaligNAtorcomputes high-scoring chains of matches, eliminatingisparmatches and resulting
in exactly17 chains. Each chain occurs in one of the 16 sequence membéesfamily in the full
alignment except in sequence AF014388, where two chairts egual score occur. The highest
(lowest) chain score i$71 (162). Using ScanAlign LScanAlign LESAAlign and LGSlinkAlign
the search for all five RSSPs requirg®3.32, 585.59, 186.88, and 92.25 minutes, respectively,
whereas chaining requiré8.66 seconds. See Talile #.9 for the time required to match eatgpat
using the different algorithms.

The same search is performed using the SSD of family RFO178&sults in4,145 matches for
flgl, 68,024 for flg2, and67 for flg3. Chaining the matches leads 16 chains occurring each in
one of thel5 sequence members of the family in the full alignment. Théésg (lowest) chain
score is163 (156). Using ScanAlign LScanAlign LESAAlign andLGSlinkAlign the search for all
three RSSPs requiré$5.48, 336.69, 133.58, and52.86 minutes, respectively, whereas chaining
requiresD.03 seconds. The time required to match each pattern using &gmfittam is reported in
Tablel4.10.

117

4 Fast approximate search for RNA sequence-structurerpgstte

RSSP| ScanAlign LScanAlign LESAAlign LGSlinkAlign
iresl 13.13 12.85 1.02 2.68
ires2 203.67 356.78 135.03 60.12
ires3 51.21 8.54 0.37 161
ires4 281.44 103.52 28.11 14.53
ires5 138.86 103.90 22.35 13.31

Table 4.9: Times in minutes required by algorithr8sanAlign LScanAlign LESAAlign and
LGSlinkAlignto match the RSSPs that build the SSD for family Cripavirdsrimal ribo-
some entry site (Acc.: RF00458) RFAM10.1.

RSSP| ScanAlign LScanAlign LESAAlign LGSlinkAlign

flgl 288.21 143.23 74.90 27.03
flg2 310.68 141.73 50.01 22.00
flg3 156.60 51.74 8.67 3.83

Table 4.10: Times in minutes required by algorith®@sanAlign LScanAlign LESAAIign and
LGSIlinkAlignto match the RSSPs that build the SSD for family flg-RhizasaRNA
motif (Acc.: RF01736) irRFAM10.1.

Comparison with RSEARCH and ERPIN when searching a bacterial genome

We compareRaligNAtors performance when searching a bacterial genome usingd) ébeéning

with the performance of the well-known todRSEARCH74] andERPIN][73,/41]. Also refer to the
section in Chapter 2 wheRRSEARCHandERPINare explained. We search the complete forward
strand of the 5.2 MB genome of Rhodopseudomonas palustAg EMBL Acc.: CP000250) for

an occurrence of family RF01736. For the search dligNAtor, we reuse the SSD shown in
Figure[4.138 of the previous experiment. To indicate thetmsof the RNA substructure modeled
by each RSSP within the molecule, we set opttartposof RSSP4lg1, flg2, andflg3 to 1, 39,

and 92, respectively. For more details about this optioriclwis used to score local chains, see
Chapter 3 andRaligNAtormanual in Appendix B.3. For the search wWREEARCHwe compute

the consensus sequence from the family’s seed alignmenitsanthe consensus secondary structure
given by Rfam. For the scoring of the computed alignmentsanirarily choose the RIBOSUM85
scoring matrix provided witliRSEARCHwhere 85 is the percent identity of the sequences used for
the computation of this matriX [74]. For the search wiRPIN, we use the structure-annotated
seed alignment of the family preprocessed with progmarent2epn.pl This program, which is
provided withERPIN, transforms paired positions aligned with gaps into urguhpositions, since
the secondary structure profile built BRPINonly supports gaps at unpaired positions (see Chapter
2). Searching witfRaligNAtorresults in 94 matches fdlgl, 763 forflg2, and 5 forflg3. After
searching with each RSSP individualRaligNAtorreports a single local chain of score 112 at the
correct location of the RNA in the genome. Using algorith@SlinkAlign the total search time is

30 secondsRSEARCHwhich uses a different scoring system, reports hundretigafions for the

118

4.4 Implementation and computational results

given structure, with the correct location (with score 13.Being on rank 217, i.e. there are 216
locations achieving a better score than the correct lataBesides the low specificity compared to
RaligNAtor, it is also orders of magnitudes slower, requiring 32.3 (tisee) or 146.8 (real time)
hours of running time. The cause of the disparity betweerufee and real times is unclear to us.
ERPINrequires 23.8 hours of running time and reports the singleecblocation of the RNA in the
genome. We note th&RPINallows to specify which positions of the query alignmentrasgched
first, so that other positions are only matched if previousitched positions achieve a certain score
cutoff (seeERPINmanual [138]). By specifying the positions correspondimgubstructurelpl,
hp2, andhp3 shown in Figuré 4.3 as initial positions, the running timi&&PINreduces to 10.5
minutes, which is still 21 times slower th&aligNAtor.

RNA family classification using Structator

Structator (see previous chapter) is an ultra fast tool for RSSP majcHinis the first tool to
integrate algorithms for global and local chaining of RNAtpen matches. However, it has limited
support to approximate matching, lacking support of th&ieage-structure edit operations allowed
by RaligNAtor.

Here, we report the number of sequence members obtainStiumtatorwhen searchinRFAM10.1
with the SSDs of families RF00458 and RF01736. The SSDs anersin Figures 4.71 arld 4.11.3.
Despite sharing the same pattern syntax \RigigNAtor, we observe the following differences and
adaptations.

e Structatorcannot search for stem-loop patterns with dangling endsrefbre, we remove
the dangling end of the RSSies3 belonging to the SSD of family RF00458.

e As Structatordoes not allow for edit operations, parametstandindelshave no effect in
the search. However, a number of allowed mispairings foh gedtern can be specified by
the user. We allow for each pattern a number of mispairingsilety the value of parameter
cost

e Structatorhas lower sensitivity compared ®aligNAtor when the latter searches with al-
lowed costs greater than zero. For this reason, we chain #iehes to the single RSSPs
varying the minimum required chain length between 2 and oite humber of RSSPs of
each SSD.

The results are shown in Taltle 4.11. We observe that, in trelsavith the SSD of family RF00458,
Structatorcannot find all its true sequence members without increasingiderably the number of
false positives. In the search with the SSD of family RFO1 @88y up to 4 true sequence members
can be foundRaligNAtor, in contrast, finds all sequence members of both familiesremthlse
positives as described in our experiment above performiaining of matches.

119

4 Fast approximate search for RNA sequence-structurerpgstte

RF00458 RF01736

Min. chain length| #TP #FP #FN Min. chain length #TP #FP #FN
2 16 5807 0 2 4 0 11
3 16 14 0 3 1 0 14
4 14 0 2
5 3 0 13

Table 4.11: Results obtained wiStructator[[104] when searching with the secondary descriptors
of families RF00458 and RF01736 RFAM10.1. The first column for each family
indicates the minimum required length of a chain to be cared a matching chain.
#TP, #FP, and #FN stand for number of true positives, falsitipes, and false nega-
tives, respectively. For additional details, see text @abov

Importance of structural constraints for RNA family classi fication

To assess the potential of using RSSPs for reliable RNA hogyosearch on a broader scale and
to investigate the effect of using base pairing informatiee evaluatedRaligNAtoron 35 RNA
families taken from Rfam 10.1 with different degrees of sawe identity and of different sizes.
See Tablé 4.12 for more information about the selected fasiln our experiment, we compared
(1) RaligNAtorresults obtained by using RSSPs derived from Rfam seednadigts with (2) re-
sults obtained for the same RSSPs ignoring base pairingniafiion and (3) results obtained by
blastn[35] searches with the families’ consensus sequence. Ebredected family, we automati-
cally compiled an RSSB = (P, R) from the family’s seed alignment using the following proce-
dure: at each position of the RSSP’s sequence pafteme choose the IUPAC wildcard matching
all symbols in the corresponding alignment column. As $tm&stringR, we use the secondary
structure consensus available in the Rfam seed alignmem Ehe resulting RSSPs we remove
the maximum prefix and suffix containing neither sequencertinétion (i.e. IUPAC symbol N)
nor base pairing information. To obtain a query sequencelstn we compute the consensus
sequence from the family’s seed alignment. Becdastndoes not appropriately handle IUPAC
wildcard characters in the query, we choose the most fraégayenbol occurring in a column as
representative symbol in the consensus sequence. FRaligNAtorsearches, we adjust the cost
thresholdKC and number of allowed indel$ such that we match the complete family. That is, we
achieve a sensitivity of 100%. The used operation costsare wy, = 1, wp, = w, = 2, and

wy = 3. For the Blast searches, we calleldstnwith parameters -m8 -b 250000 -v 250000 and a
very relaxed E-value cutoff of 1000. From the t®RaligNAtorand oneblastnoutputs we count the
number of true positives (#TPs) and false positives (#FRd)campute ROC curves on the basis
of the RaligNAtorscorewy, — dist(Q, T') and theblastnbit score. See Table 4112 and Figlre 4.17
for the results of this experiment. A ROC curve with valuesraged over all families is shown in
Figure[4.1V(1). In addition, we show in Figutes 4.17(2) &8)dlfe results of the ROC analysis for
the families with the lowest and highest degree of sequethestity. For the ROC curve of each
selected family, see Figurés 4118 and 4.19. Clearly, bygusase pairing informatiorRaligNA-

120

4.5 RaligNAtorsoftware package

tor achieves a higher sensitivity with a reduced false positaite compared to searches ignoring
base pairing (compare columnBRdligNAtor” and “RaligNAtor (sequence only)” in Table_4.112).
This is in particular evident when searching for familieshna low degree of sequence identity.
This can be explained by the small amount of informationitethe RSSP for such a family, once
the structural information is removed. Due to the high \ailiiy of bases in the columns of the
multiple alignment of the family, the pattern contains @ytanumber of wildcards. These symbols
alone, without the constraints imposed by the base paad, tte unspecific patterns and therefore
to a large number of false positives. We observe that, foili@snwith sequence identity of up to
59%, the area under the curve (AUC) is considerably largemwdase pairing information is taken
into account. This difference decreases with increasingesgce identity (compare Figures 4.17
(2) and (3)). Overall, the average AUC value over all farsiii® with a value of 0.93, still notably
higher when base pairing information is considered contptre.89 if base pairing information
is ignored (see Table_4.112). In this experimérigstn only finds all members of those families
whose sequence identity is at least 85%. This is due to thetHatblastn cannot appropriately
handle IUPAC wildcard characters. Hence, by taking the rfresjuent symbol in an alignment
column as consensus symbol, the heterogeneity of lessreedgeositions in the alignment cannot
be adequately modeled. For thiastn searches, the average AUC value over all families is only
0.72.

4.5 RaligNAtor software package

RaligNAtoris an open-source software package for fast approximatehingtof RNA sequence-
structure patterns (RSSPs). It allows the user to seargattRNA or DNA sequences choosing one
of the new online or further accelerated index-based dlyns presented in this work. The index
of the sequence to be searched can be easily constructedragifamsufconstrucdistributed with
RaligNAtor.

Searched RSSPs can describe any (branching, non-crogditfgsecondary structure; see exam-
ples in Figures 4]1, 4.0, 4111, dnd 4.13. Bases composirgetheence information of RSSPs can be
ambiguous IUPAC characters. As part of the search parasieieRSSPs, the user can specify the
cost of each sequence-structure edit operation defineaatimvcost threshold of possible matches,
and the number of allowed indels. The RSSPs, along with emstshresholds per RSSP, are spec-
ified in a simple text file using a syntax that is expressivedady to understand as shown in the
mentioned figures. Another possibility is to provide the sarasts and thresholds for all searched
patterns as parameters in the command line cdRatigNAtor. To ensure maximal flexibility, the

user can also define the base pairing rules from an arbitrdoyes of A x A as valid pairings in

a separate text file. Searches can be performed on the foamardeverse strands of the target
sequence. Searching on the reverse strand is implementeddrgal of the RSSP and transforma-

121

4 Fast approximate search for RNA sequence-structurerpgstte

RaligNAtor RaligNAtor(sequence only) blastn
z?"y idii?' K=d #TP #FP AUC (pAUQ) K = d #TP #FP AUC (pAUQ) #TP #FP AUC (pAUC)
RF00032 9,900 489 3 9,900 1,088,131 0.95 (0.17 3 9,900 2,723,135 0.82 (0.09) 3,000 68 0.29 (0.05)
RFO0080 688 52% 33 688 698,942 0.71(0.08 19 688 1,279,375 0.60(0.06) 326 540 0.42(0.06)
RF02003 176 52% 21 176 1,174,167 0.53(0.03 6 176 1,168,093 0.32(0.00) 28 814 0.11(0.01)
RFO0458 16 53% 20 16 88 0.94 (0.18) 14 16 2,688 0.96(0.18) 12 1,224 0.73(0.13)
RFO0685 131 554 18 131 40,952 0.98 (0.19 7 131 103,276 0.97(0.19] 88 2,945 0.63(0.10)
RFO0167 1,244 56% 25 1,244 2,514,701 0.58 (0.04) 17 1,244 2,611,256 0.28 (0.00) 660 624 0.52(0.10)
RFO1705 598 56% 26 598 2,704,796 0.49(0.02) 17 598 2,698,712 0.42(0.00) 57 60 0.08(0.01)
RF01852 1,050 56% 22 1,050 1,026,233 0.99 (0.19) 14 1,050 1,488,254 0.94 (0.17) 543 83,268 0.44 (0.06)
RFO1734 584 57% 10 584 2,614,228 0.69 (0.05 5 584 2,668,392 0.46(0.01) 201 114 0.30 (0.05)
RFO0556 201 58% 8 201 69,808 0.97 (0.18 6 201 1,514,311 0.92(0.15) 91 1,024 0.44(0.08)
RFO0713 14 58% 27 14 10,349 0.99 (0.19 18 14 16,477 0.88(0.16) 13 552 0.92(0.18)
RFO0170 41 59% 13 41 53 0.97 (0.18) 9 41 9,197 0.96(0.18) 29 176 0.70(0.14)
RFO0706 69 59% 13 69 1 1.00 (0.20) 9 69 12 0.97(0.19)] 66 194 0.95(0.18)
RFO0747 29 59% 20 29 130 0.97 (0.18) 16 29 159,898 0.96(0.18] 28 236 0.96(0.19)
RFO0778 20 59% 33 20 394,560 0.93(0.17 23 20 167,029 0.79(0.13] 17 390 0.84 (0.16)
RF01065 118 59% 17 118 0 1.00(0.20) 9 118 0 1.00(0.200) 70 305 0.59(0.11)
RFO1733 9 63% 9 9 0 1.00(0.20) 7 9 0 1.00(0.20) 7 918 0.77(0.15)
RF00522 415 679 5 415 1,461 0.99 (0.19 5 415 32,224 0.99(0.19] 359 391 0.63(0.10)
RF01862 15 67% 7 15 0 1.00(0.20) 5 15 0 1.00(0.20)) 10 82 0.66(0.13)
RFO0104 406 69% 24 406 989,362 0.99 (0.19 14 406 1,560,674 0.99(0.19) 237 72 0.45(0.07)
RF00165 431 699 9 431 0 1.00(0.20) 8 431 1 0.99(0.19) 318 192 0.73(0.14)
RF01185 108 69% 13 108 24,759 0.99 (0.19 13 108 24,759 0.99(0.19) 104 329 0.93(0.18)
RF01838 77 69% 4 77 0 1.00(0.20) 4 77 0 1.00(0.20)| 77 172 1.00(0.20)
RF02031 164 71% 17 164 297,941 0.99 (0.19 12 164 521,018 0.99(0.19) 100 218 0.60 (0.11)
RFO0052 210 72% 16 210 0 1.00(0.20) 12 210 0 1.00(0.20) 207 12,496 0.98 (0.19)
RFO0543 103 73% 26 103 0 1.00(0.20) 19 103 0 1.00(0.20) 102 110 0.99 (0.19)
RFO1744 14 73% 7 14 0 1.00(0.20) 5 14 0 1.00(0.20)| 11 5,377 0.74(0.14)
RFO1769 149 75% 16 149 0 1.00(0.20) 10 149 0 1.00(0.20) 149 150 0.99 (0.19)
RFO0110 161 81% 19 161 0 1.00(0.20) 17 161 0 1.00(0.20) 160 791 0.99 (0.19)
RF0O1967 50 84% 37 50 660,130 0.98 (0.19 26 50 475242 0.98(0.19] 48 691 0.95(0.19)
RF01472 26 85% 6 26 0 1.00(0.20) 1 26 0 1.00(0.20) 26 412 1.00(0.20)
RF01953 46 85% 32 46 0 1.00(0.20) 22 46 0 1.00(0.20) 46 772 1.00(0.20)
RFO0372 45 86% 28 45 0 1.00(0.20) 24 45 0 1.00(0.20)) 45 197 0.99 (0.19)
RF0O1980 43 86% 39 43 830,971 0.97 (0.19 28 43 702,352 0.96(0.19] 43 341 1.00 (0.20)
RF00469 1,366 89% 12 1,366 46,351 0.99 (0.19 7 1,366 99,045 0.99(0.19) 1,341 474 0.97(0.19)
Average 669 0.93(0.17) 0.89 (0.16) 0.72 (0.14)

Table 4.12: Results dRaligNAtor andblastndatabase searches for members of RNA families of
different degrees of sequence identityRFAM10.1. Searches are performed using
RaligNAtorwith and without base pairing information (columRaligNAtor(sequence
only)”) and using prograrblastnwith the families’ seed alignment consensus sequence
as query. Column “size” indicates the number of members &naly. Column “seq.
ident.” gives the families’ sequence identity as listedtie Rfam database. #TP and
#FP stand for number of found true and false positives, disgedy. AUC is the area
under the curve of the corresponding ROC curves shown inr€s§d.1¥[4.78, and
4.19. Column pAUC gives the partial area under the curve @pftdse positive rate of
20%. For additional details, see main text.

122

4.5 RaligNAtorsoftware package

(1) Average
<
v | /
o
2 9
z°
S <
w o
~ RaligNAtor
e —— RaligNAtor (seq. only)
—— blastn
=
e T T T T T T
0.0 0.2 04 0.6 0.8 1.0
False positive rate
(2) RF00032 — 48% sequence identity (3) RF00469 — 89% sequence identity
= e | —
— - -
| < |
o o
> 9 | > 9 |
fg o ‘§ (=}
g < | g < |
" o v o
N ~N
o o
(= e
e T T T T T T < T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate

Figure 4.17: Results of ROC analyses udregigNAtorwith and without base pairing information
andblastnfor the 35 selected Rfam families shown in Tdble #.12. RO@asishowing
RaligNAtors classification performance using (ignoring) base pgififormation are
shown in green (blue). Blast performance results are shiowed. Subfigure (1) shows
the performance results averaged over all selected fan{R¢ and (3) show each the
ROC analysis for the family with the lowest and highest Iexfedequence identity.

123

4 Fast approximate search for RNA sequence-structurerpstte

Sensitivity
0.4

Sensitivity

04

Sensitivity
0.4

Figure 4.18: Results of ROC analyses usikaigNAtorwith and without base pairing
Table[4.TP. ROC curves showifpligNAtors classification performance using (ignoring) base pgintiormation are shown in green

RaligNAtor
RaligNAtor (seq. only)
blastn

0.8

0.0

0.8

0.0

0.8

0.0

RF00685

0.2 04 0.6 0.8 1.0

False positive rate

RF00556

T T T T T
0.2 04 0.6 0.8 1.0

False positive rate

RF00778

0.0

T T T T T
0.2 04 0.6 0.8 1.0

False positive rate

Sensitivity

Sensitivity
0.4

Sensitivity

04

Sensitivity
04

0.8

0.4

0.0

0.8

0.0

0.0

0.8

0.0

RF00032

RF00080

@ |
o
2
2 7
=
2 & | [
77777 % o " ol
1 - e
i’ |
il! o i
T T T T T T S T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate
RF00167 RF01705
@ |
o
2
= T
P 2 < |
i g ©
i
i i
i e
it o |7
T T T T T T S T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate
RF00713 RF00170
e S I I
i Q4
4 e 1
) b |
| = 1!
2 <1
& ° i
o ||
T T T T T T © T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
RF01065 RF01733
o ||
o i
> !
2 7!
= |
2 <1
& <]
o i
T T T T T T © T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

False positive rate

False positive rate

Sensitivity

Sensitivity
04

Sensitivity

04

Sensitivity
04

0.8

0.4

0.0

0.8

0.0

0.8

0.0

0.8

0.0

RF02003

RF00458

Sensitivity

0.8

0.4

4 =3
T T T T T T ° T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
RF01852 RF01734
41 «Q
| o
i 2
1t =
I -
[T o —
i vl (S B
Ji i
i i
41 o |t
T T T T T T S T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
RF00706 RF00747
B [P b Rl [R ——— e et
41 @ ||
i o i
! 2z !
41 g i
1 2 <1
I & <1
4! < !
T T T T T T S T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
RF00522 RF01862
i e o ||
s c 7|
- > ;
T e Z !
bomemimemr = |
41 2 < 1
I & <1
4! o]!
T T T T T T © M T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rate

information abthstn[35] for the Rfam families shown in

(blue). Blast performance results are shown in red. The R@@s are sorted by increasing level of sequence identitlyeofespective
family, i.e. in the same order each family is listed in Tdbl&24 Additional ROC curves are shown in Figlire 4.19. Forittetd this
experiment, see corresponding text.

124

1A)

Sensitivity

Sensitivity

Sensitivity

RF00104

!
@ ||
. =7
—— RaligNAtor 2 ! ;
i = | e
—— RaligNAtor (seq.only) | 2 | ! P
o o o -
—— blastn @
o]!
° T T T T T T
0.0 0.2 04 0.6 0.8 1.0
False positive rate
RF02031 RF00052
{———————— P
|
@ 1 x ‘
o | o
i > |
s 2 |
ol Rl
e i & ° |
S]! =] !
S T T T T T T S T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate
RF00110 RF01967
T L
2 2l
S 5]
| > |
11 = \
< l R l
S & ° 11
< | ! =3 !
4 T T T T T T 4 T T T T T T
0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 08 1.0
False positive rate False positive rate
RF01980 RF00469
e T ST
o || o ||
° °
| 2 |
1! :g 1!
< | l 2 < l
S & ° |l
o | ! o | !
4 T 4 T

T
0.0 0.2 04 0.6 0.8 1.0

False positive rate

T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 4.19: Additional ROC curves. See description of Fe¢i18 for details.

Sensitivity

Sensitivity
0.4

Sensitivity
0.4

0.8

0.4

0.0

0.8

0.0

0.8

0.0

RF00165

RF01185

RF01838

| r |

} @ ; @ ‘

1 | ° |

\ Z \ Zz \

I z 1 z 1!

‘ 2. 2]

| v o | v o |

| v | w i

! < ! < !

T T T T T T ° T T T T T T ° T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate False positive rate False positive rate
RF00543 RF01744 RF01769

[TTTTTTTTTTTEE TR 1 }77777777777777777777777 17

| 5 =]

| + |

\ Zz \ Zz \

| H 1!] 1!

l z] 2]

I & <] & <]

! o]! < | !

T T T T T T © T T T T T T © T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate False positive rate False positive rate
RF01472 RF01953 RF00372

| 11 17

‘ 2 ‘ x| ‘

\ S S

| 2 | 2 |

| :é 1! é 1!

l 2 < | l 2 < | l

i . i . i

! o]! o]!

T T T T T T < T T T T T T 4 T T T T T T
0.0 0.2 04 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rate

False positive rate

abeyoed aiemyosioiyNDOIey G

4 Fast approximate search for RNA sequence-structurerpgstte

tion according to Watson-Crick base pairing. Wobble p&{,U), (U,G)} automatically become
{(C,A), (A,C)}. Due to these transformations, the index is built for onargtronly.

For describing a complex RNA with our concept of secondamycstire descriptor (SSD), i.e. with

multiple RSSPs, the user specifies all RSSPs in one text file.ofder of the RSSPs in the file
will then specify the order of the RSSP matches used to bigla-scoring chains. The chain score
directly depends on the score of each match occurring inlbancThis is inversely proportional

to the sequence-structure edit distance of the RSSP andaitshimg substring in the target se-
quence. Hence, higher scores indicate sequences with ariighservation which are probably
more closely related to the sought RNA family.

Chaining of matches discards spurious matches not ocgurriany chain. An additional filtering
option eliminates matches overlapping another with a higloere for the same RSSP. This is
particularly useful when indels lead to almost identicaltchas that are only shifted by a few
positions in the target sequence.

The output oRaligNAtorincludes not only matching positions to single RSSPs anthshlaut their
sequence-structure alignment to the matched substringelasLastly, we remark that our soft-
ware also provides an implementation of the original athaniof Jianget al. for global sequence-
structure alignment [70], easily applicable by the user.

TheRaligNAtorsoftware package including documentation is availableniafy format for differ-
ent operating systems and architectures and as source eddethe GNU General Public License
Version 3. Sedt t p: / / wwv. zbh. uni - hanbur g. de/ r al i gnat or|for details.

4.6 Conclusions

We have presented new index-based and online algorithnfadbapproximate matching of RNA
sequence-structure patterns. Our algorithms, all impteetein theRaligNAtor software, stand
out from previous search tools based on motif descriptorsupporting a full set of edit opera-
tions on single bases and base pairs. See Tablé 4.13 for aviewvef the algorithms. In each
algorithm, the application of a new computing scheme tonogllly reuse the entries of the re-
quired dynamic programming matrices and an early-stopnigak to avoid the alignment com-
putation of non-matching substrings led to considerabéedpps compared to the basic scanning
algorithm ScanAlign Our experiments show superior performance of the indeedalgorithms
LGSlinkAlignand LESAAIlign which employ the suffix array data structure and achievainm
time sublinear in the length of the target database. Whertlsieg for approximate matches of
biologically relevant patterns on the Rfam databds@SlinkAlign (LESAAlign was faster than
ScanAlignand LScanAlignby a factor of up to 560 (1,323) and 17 (29), respectively (Sgere
[4.10). Comparing the two index-based algorithiESAAlignwas faster thabh GSlinkAlignwhen
searching with tight cost threshold (i.e. sequence-siraatdit distance) and no allowed indels, but

126

http://www.zbh.uni-hamburg.de/ralignator

4.7 Further techniques integrated in RaligNAtorsoftware for search acceleration

_ _ , early-stop additional memory used index tables
algorithm | online | indexed)) I
acceleration | requirements [bytes]| suf | lcp | suf™ | vtab
ScanAlign v 0
LScanAlign v v 0
LESAAlign v v 5n v | v
LGSIlinkAlign v v 9.125n v IV v v

Table 4.13: Overview of the presented algorithms. The twtnenalgorithms ScanAlignand
LScanAlignneed no additional memory except for the searched sequdneagih
n. Columnadditional memory requirementsfers to the additional memory needed by
the used index tables. Recall that tadesandsuf ! require4n bytes each. Tablep
can be stored iin bytes and the bit arraytab requires onlyn bits (= 0.125n bytes).

became considerably slower when the number of allowed snalek increased. In this scenario,
LGSlinkAlignwas faster thaESAAlignby up to 4 times. In regard to the two online algorithms,
LScanAlignwvas faster thacanAlignby up to factor 45. In summarkGSlinkAlignis the best per-
forming algorithm when searching with diverse thresholdseread ScanAlignis a very fast and
space-efficient alternativaligNAtoralso allows to use the powerful concept of RNA secondary
descriptors[[104], i.e. searching for multiple orderedusgwre-structure patterns each describing a
substructure of a larger RNA molecule. For thigligNAtorintegrates fast global and local chain-
ing algorithms. We further performed experiments usikaigNAtor to search for members of
RNA families based on information from the consensus semgnstructure. In these experiments,
RaligNAtor showed a high degree of sensitivity and specificity. Congbémesearching with pri-
mary sequence only, the use of secondary structure inf@mmatnsiderably improved the search
sensitivity and specificity, in particular for families Wwia characteristic secondary structure but low
degree of sequence conservation. We remark that, up toRaligNAtoruses a relatively simple
scoring scheme. By incorporating more fine grained scokchgmes like RIBOSUM[74] or energy
based scoring [139], we believe that the performandeadigNAtorfor RNA homology search can
be further improved. Beyond the algorithmic contribution® provide with theRaligNAtor soft-
ware distribution, a robust, well-documented, and eagyst software package implementing the
ideas and algorithms presented in this work.

4.7 Further techniques integrated in the RaligNAtor software
for search acceleration

To further accelerate the algorithms in tRaligNAtor software, we apply to the algorithms two
general techniques which can be enabled and disabled bgdheAn evaluation of these techniques
is given following their description.

127

4 Fast approximate search for RNA sequence-structurerpgstte

4.7.1 Sequence-based filter acceleration

Our search algorithms computing the sequence-structutelisthncedist(Q,7") of an RSSPQ
and a substring’ of a target sequencewith Equation§ 47, 418, and 4.9 requidémm’3) time and
usem’ +1 D P matrices, recalling that: andm’ are the length o® andT', respectively. Searching
S of lengthn considering up ta: substrings take® (nmm’?) time. In practice, our experiments
show that our index-based algorithra&SlinkAlignand LESAAlignare very fast by exploiting
repetitions of substrings and using techniques like théyséop computation described above.
Nevertheless, we observe that we can further acceleratettreh by efficiently preprocessing the
search space to eliminate substrings not matctihdror this, in a first step we searchusing
only sequence information of the RSSP After this sequence-based filtering step, we seatch
using both sequence and secondary structure informatigh We emphasize that, under a proper
selection of the edit operation costs, applying the seq#iased filter does not affect the sensitivity
of the search algorithms.

More precisely, we implement our sequence-based filter mgus cost threshold as usual, but
considering all positions of the given RS$Pas unpaired. This allows to searshusing only
Equation 4.7 and computing for each aligned substiing singleD P matrix of size ofm x m/.
This means that we compute sequence edit distances, hemméng structural edit operations.
Consequently, this search takes o6lgnmm’) time instead of) (nmm’3) if structure information

is considered. After a substririg of S is aligned toQ, only if the obtained sequence edit distance
is below/C then, in a second step, it is realigned@do obtain the sequence-structure edit distance
dist(Q,T). Observe that the edit operations arc altering and arc relgawolve one and two indel
operations, respectively. Therefore, to prevent the altndn from the search space of possible
matches to the RSSP with structure information, we mushsetdstuy of an indel as at most the
costw, of an arc altering and as at most two times the c@sif an arc removing. That isyq < w,
and2xwq < w, must hold. This guarantees that the sequence edit disthreglaligned substring

T to Q will not exceeddist(Q,T), since the constraints imposed by the base pairs can ordy lea
to edit operations increasing the edit distance. To alselacte the filtering step in the index-
based algorithms, we avoid the computation of matrix estoieusing information of th&p table
and the early-stop computation technique. These techsigueapplied as described above to the
single used) P matrix. As of the writing of this work, the sequence-basedeifik only integrated in
algorithmLGSlinkAlign but it can easily be integrated in all our online and indexdd algorithms.

4.7.2 Multithreaded searching

To take advantage of computer systems with multiple CPUs;atl search algorithms imple-
mented in theRaligNAtorsoftware support multithreading (POSIX threads). Theest@p modes
of parallelism. At first, different patterns are matchedngseach one thread. Additionally, the

128

4.7 Further techniques integrated in RaligNAtorsoftware for search acceleration

search space (i.e. the sequence for the online algorithththarindex structure for the index-based
methods) is partitioned, being each part processed byexeiiff thread.

The first mode of parallelism is particularly useful for skang with SSDs composed of multiple
RSSPs, such as the SSDs shown in Figures 4.1 and 4.13. Tlenahsimultaneously executed
threads, which corresponds to the number of simultaneaesdyched patterns, can be specified
by the user or be automatically defined as the number of &il@aPU cores. Thus, specifying a
number of threads at least as large as the number of given R@8&ns that all RSSPs will be
simultaneously searched for. In the case of a smaller numib#reads, the patterns are put in
a queue and each is searched for as soon as a thread slot besnailable. Ideally, the number
of specified threads should not exceed the number of avail@dBlU cores, since this causes the
threads to compete for CPU time.

In this first mode of parallelism, we observe that a numbehofads larger than the number of
patterns does not further accelerate the search. In addgaarching with a single RSSP cannot
be accelerated at all. This is overcome by splitting thecteapace intdt parts and searching
each part with a different thread, whetecan be defined by the user. With this approach, even
searches with a single RSSP can be accelerated by seardfiergrd parts of the search space
with the same RSSP. In the online algorith®sanAlignandLScanAlign splitting a sequencd

of lengthn into k parts is trivially done by dividing: by k. Therefore, each pagt 1 < j < k,
has lengthnpat = [n/k] and begins at positiostart; = (j — 1) * npat + 1 of S. It ends at
positionend; = j * npart — 1 if j < k. Let mmin = m — d be the minimum length of a possible
match, recalling thain is the pattern length and is the number of allowed indels. For the case
thatj = k, we setend, = n — mmin t0 ensure that the last positions of the target sequénae
also searched. We note that a pattern can match a substeniguying different partitions, e.g. a
substring beginning at a partitigiof S and ending at partitiosi+ 1. In the index-based algorithms
LGSlinkAlignandLESAAIign start; andend; refer to positions in the suffix arrayf instead of
direct positions inS. Each thread in algorithrhESAAligntraverses the suffix array top down in
the interval between given index positiongirt; andend;. In LGSIlinkAlign each thread is also
assigned an index interval to be processed. However, attiberaalso process suffixes whose index
in tablesuf belongs to an interval assigned to a different thread dugetase of suffix links. For this
reason, as in the single-threaded algorithm, every predessffix is marked in tabletab so that

it is processed only once, but in addition the algorithm nsysichronizevtab among all threads.
This is done efficiently by reading and writing ¥eab as atomic operations.

Both modes of parallelism can naturally be combined to ogBn€PU usage. Givep patterns to
be searched for ik sequences or index partitiorRaligNAtorconveniently queugs«k jobs, where
each job is characterized by a pattern and a partition, r@nge fromstart; toend;, 1 < j < k.
Given, in addition, a numberof threadsRaligNAtorexecutes up to jobs in parallel, starting new
jobs from the queue as threads terminate their search. Wéleombined approach, searching with
different patterns in parallel reduces the total practioahing time of the algorithms and splitting

129

4 Fast approximate search for RNA sequence-structurerpgstte

the search space better distributes the computation arhengRU cores, further speeding up the
search. In particular, splitting the search space redineeshtance that some CPU cores remain idle
after being used only for a relatively short time by threaslsrehing with more specific or shorter
patterns, while other threads can take longer to terminasearching with more sensitive or longer
patterns in the entire search space (see influence of pédtegth, number of allowed indels, and
cost threshold on the search time in e.g. Figlres| 4.12 a®i). & his situation is avoided by the use
of several threads to search with the same pattern in diffgrarts of the search space.

Once all threads terminate, they are joined in the main praghread and found matches can then
be chained. We note that, during the search, the matchesnraediately be printed out and/or be
stored in a temporary container for use in chaining, depgndin the user choice. When a match is
immediately printed out, the standard output channel (g)de blocked to prevent another thread
from also printing a match and making the results unread#@se consequence, printing a large
number of matches can slow down the search. Using a contaiiregeneral more sensible, since
each thread has its own container which does not have to lobsyrized with other threads during
the search.

4.7.3 Benchmark experiments

We evaluate our two techniques for additional search aat@e described above on a computer
system with four Xeon E5-4640 CPUs running at 2.40 GHz antl W8 GB of main memory.
Each CPU has 8 cores, hence there are 32 cores in total (wéhldd CPU threading). In our first
experiment we use only one CPU core and, posteriorly, expjoio all cores.

Comparison of times to search with and without sequence-bas ed filtering

In an experiment, we compare the time required by algoritl@$linkAlignto searcrRFAM10.1
with and without our sequence-based filter. We use the ei§®f® shown in Figurés 4111 dnd 4.13
describing families Cripavirus internal ribosome entrie gAcc.: RF00458) and flg-Rhizobiales
RNA (Acc.: RF01736). For these patterns, exdegs5, wg = 1, w, = 2, andw, = 3. Therefore,
sincewy < w, and2 x wyg < w; holds, applying the filter does not eliminate from the search
space potential matches to these patterns. Onlyrésb, wq = 2. The results of this experiment
are shown in Figure_4.20. For all but one pattern, nanrels2, the filter considerably accelerates
the search. To explain this behavior, note that RSSPs carsfzecificity when lacking secondary
structure information, as we show in an experiment abovesasyy the importance of secondary
structural constraints for RNA family classification. Hovee, even when the filtering step ignores
the secondary structure information of the patterns, mattems still present some specificity
which allows to remove from the search space a large numbsuhlftrings whose sequence edit
distance to the patterns exceed the respective cost thdes$tadternires2, in contrast, is mostly
composed of wildcards N, D, and H, which can match any of tleeding(N) = {A, C, G, U},

130

4.7 Further techniques integrated in RaligNAtorsoftware for search acceleration

8 T 48.848.9 = without filter
with filter

o |

<

o |

™

Time [min.]

20

10
I

23.6
19.7
L7 10.8
7.3
55 6.8
16 13 3.2 3.2
o J mm 1.1 3 1.0 - 1.2

iresl ires2 ires3 ires4 ires5 flgl flg2 flg3

Figure 4.20: Running times of algorithirGSlinkAlignto searchRFAM10.1 with and without a
sequence-based filter. The used RSSPs, whose names aremshtierx-axis, can be
seen in Figures 4,11 ahd 4113.

¢(D) = {A, G, U}, or p(H) = {A, C, U}. In addition, it is searched for using a relatively high
cost threshold of 4. Consequently, this pattern withoutcstire information is too unspecific and

can be poorly exploited the sequence-based filter. Whilélteedoes not accelerate the search for
this pattern, we note that it only minimally slows it down.riadl other patterns, the speedup factor
provided by the filter ranges from 1.3 for pattéres3 to 3.6 for patterrires4.

Comparison of running times of multithreaded searches

In another experiment, we compare the running timeRaligNAtor to search with an SSD us-
ing different numbers of threads and partitions of the tadgeabasékrFAM10.1. The used SSD,
composed of five RSSPs, is shown in Figure 4.11. Althoughithtéded searching is possible
with all our algorithms, we only report results faScanAlignand LGSIlinkAlign which are the
fastest online and index-based algorithms in the majofityun experiments described above. For
LGSlinkAlign we enable sequence-based filtering.

First, we analyze the speedup obtained by (1) searchingomighthread per pattern, thus using 5
threads, and (2) maintaining the number of simultaneouklyed threads, but in addition splitting
the search space into two parts. For comparison, we alsohsaaing a single thread. The results
are shown in Figure 4.21. UsingsSlinkAlign(LScanAlign, searching with one thread per pattern
reduced the search time from 59.6 (455.0) minutes to 49.8.82Mminutes compared to single-
threaded searching, whereas in addition splitting theckespace into two parts reduced the search
time to 27.4 (147.4) minutes. That isGSlinkAlign(LScanAlign searching with 5 simultaneous
threads and no search space partitioning required 83% (61%p time to search with a single
thread, whereas by patrtitioning the search space it took4s%o (32%) of the time. These results
clearly show a benefit of splitting up the search space. @bsarFigurd 4.2l that the green area

131

4 Fast approximate search for RNA sequence-structurerpgstte

LGSlinkAlign LScanAlign

1 thread, 5 threads, 5 threads, 1 thread, 5 threads, 5 threads,
1 partition 1 partition 2 partitions 1 partition 1 partition 2 partitions

ires1

ires2

ires3

ires4

ires5
u All

400
]

40
300
|

Time [min.]

Time [min.]
30
L
200
L

100
|

Figure 4.21: Running times of algorithmsGSlinkAlign (left-hand side) and.ScanAlign(right-
hand side) to seardRFAM10.1 with the RSSP#esl to ires5 shown in Figuré 4.11.
The fist bar in each graph represents the time to sequensiadlich with each RSSP
using a single thread. The other two bars indicate the tite to (1) simultaneously
search with one thread per pattern and to (2) search by, iti@ddsplitting the search
space into two parts.

denoting the time to search for pattéras2 closely corresponds to the area denoting the time to
search for all patterns using 5 threads but no patrtitiorilings indicates that, when the search space
is not split, the total search time largely depends on the tinsearch for patterines2. This can
occur becausies? is searched for by a single thread in the entire search spaee though some
CPU cores may no longer be used by other threads. In cordpiting the search space into two
parts allows to search fares2 with two threads, leading to a larger speedup.

In the second part of our experiment we analyze the speedinet by equally increasing the
maximum number of simultaneously allowed threads and tmeben of search space patrtitions.
Beginning with single-threaded searching, we increasentmeber of threads and partitions to 2
and then increase these in steps of 4 up to 32, which is thertotaber of CPU cores of the
used computer system. The results are shown in Flguré 4@&B.L& SlinkAlignand LScanAlign
profit from the increasing number of threads and partitiw@SlinkAlign(LScanAlign reduces its
single-threaded running time of 61.0 (457.5) minutes tq8153) minutes by using 32 threads and
partitions. We observe thatGSlinkAlignsearching with 32 threads and patrtitions is 11 times faster
compared to searching with a single thread, whet&xsanAlignis 21 times faster compared to its
single-threaded searching time. This can be explained tmg siverhead computation occurring in
LGSIlinkAlign where the same thread can process suffixes belonging ¢vediffpartitions. Never-
thelessL GSlinkAlignis about 4 times faster thdrScanAlignwhen searching with 32 threads and
partitions.

132

4.7 Further techniques integrated in RaligNAtorsoftware for search acceleration

LGSlinkAlign
o [£I0
o
o |
n
o |
- <
£
3 1340
[}
E 81
=
o |
N \17.8
o | \nlo.l
9 T—.I8 .88 63 s 57
T T T T J ! ‘
0 5 10 15 20 25 %0

#threads = #partitions

Time [min.]
200

400

300

100

LScanAlign

“457.5

0258.5

1228

0497
810322 272 L4513

10 15 20 25 30
#threads = #partitions

Figure 4.22: Running times of algorithms5SlinkAlign (left-hand side) and.ScanAlign(right-
hand side) to seardRFAM10.1 with the SSD shown in Figurfe 4111. The number of
simultaneously allowed threads and the number of searde fzatitions used by both
algorithms equally vary between 1 and 32.

133

4 Fast approximate search for RNA sequence-structurerpgstte

134

5 Conclusions and future work

We have presented novel methods for fast online and indsgebaatching of RNA sequence-
structure patterns (RSSPs) in databases, all implemeamtid ivell-documented and readily appli-
cableStructatorandRaligNAtorsoftware packages.

With Structatot we have presented the first publicly available tool for fgidiional pattern search
using the affix array index data structure. Employing ourcdealgorithm based on affix arrays,
called BIDsearch Structatorwas in our experiments much faster than online algorithntsin
running time scaled sublinearly in the length of the seatctejuences. Compared to the widely
known toolsRNAMotif [42] and RNABOBJ98], it was faster by up to two orders of magnitude.
In addition, compared to the program of [130] working on coesged index data structur@&D-
searchyielded a speedup of factor 2. Although the speeBliBfsearchcan decrease when searching
with RSSPs with long unconserved loop regions, it profitefeven only a few bases specified in
the loop, which are expected to occur in the majority of li@tal patterns. Also, our detailed com-
plexity analysis shows that bidirectional search usingafrays does not improve the worst-case
time complexity compared to online search. However, thealistic pattern for which the worst
case occurs consists only of wildcards and no base pairdwrbduce the search space. In terms
of space consumption, our implementation of the affix arrata dtructure requires &8ytes for

a sequence of length. This is a significant reduction compared to thé5n bytes needed for the
affix tree. We note that, with a contribution from [138tructatorcan also perform bidirectional
search using only k0bytes. However, this requires a lazy construction of the difiks needed
for switching the search direction. An additional optionStructatoris to search online with our
ONLsearchalgorithm running in linear time.

To search for RNAs with branching secondary structuggjctatoruses our new concept of sec-
ondary structure descriptors (SSDs) and integrates effigiebal and local chaining algorithms.
With this concept, we allow an effective description of RNZtaining branching structures like
multi-loops by their decomposition into sequences of ntambhing substructures that can be de-
scribed with RSSPs. Combined with the matching of single RS$ing the affix array, building
chains of matches of the RSSPs defined in a SSD eliminate®gpunatches and constitutes a
very efficient method for RNA homology search.

RaligNAtoris the first tool for RSSP matching that supports a full sediff @erations on both the
primary and secondary structure levels. It includes ondind index-based algorithms, all which
integrate a new computing scheme to optimally reuse théserif the required dynamic program-

135

5 Conclusions and future work

ming matrices. By further integrating in our online algbnit LScanAligna technique to avoid the
alignment computation of non-matching substrings, it @sbd in our experiments a speedup of
factor 45 compared to our most basic online algoritS8oanAlign Our index-based algorithms
LESAAlignandLGSlinkAlign which operate on enhanced suffix arrays and scale sulijiriedahe
length of the target sequence, were up to 1,323 and 560 tiasésr ftharScanAlign respectively.
Although not as fast asESAAlignsearching with tight cost thresholdGSlinkAlignwas up to 4
times faster thah ESAAlignwhen a larger number of insertions and deletions was allovisb,
LGSlinkAlignwas the overall best performing algorithm for a variety oft@ans. Concerning the
space requirementsESAAlignandLGSlinkAlignuse 5 and 9.12% bytes for the enhanced suffix
array, respectively.

As Structator RaligNAtor allows to use our concept of SSDs by integrating the sameesftic
global and local chaining algorithms. Even thougaligNAtorcan search with RSSPs describing
branching structures, searching with a SSD composed ofteeseq of RSSPs allows to better bal-
ance sensitivity, specificity, and running time. CompaeBMNAMotifin homology searchRalig-
NAtor showed in our experiments higher sensitivity while haviimgilar specificity. Compared to
Structator RaligNAtorwas also more sensitive, although not as fast. Our expetinadso showed
that RaligNAtoris much more sensitive and specific if it uses informationhef primary and sec-
ondary structure of the sought RNA family compared to usinty information of the primary
structure, in particular of families with low degree of segoe conservation.

As a further contribution, both our software packages ieltpols for the efficient construction
and persistent storage of enhanced suffix and affix arrays.

5.1 Future work

Several extensions t8tructatorand RaligNAtorare possible. We begin observing that both tools
can rank chains of matches by e.g. chain length to faciltte#edentification of matches that more
closely correspond to the sought RNA. Howev@tructator cannot rank matches of single pat-
terns, whereaRaligNAtorcan only use a relatively simple scoring scheme for rankivigich is
sequence-structure edit distance. Therefore, a more fairagt scoring scheme would be desir-
able. This could be achieved with the incorporation of thecept of secondary structure profiles,
for example based on log-odds scores as used iERf@INtool [73,[41]. Alternatively, one could
use position independent scoring matrices such as RIBOSUMIMof energy based scoring [139].

Another extension t&tructatorwould be allowing a sequence edit distance between unpairse
tions of the patterns and matched substrings with the gaatofasing the search sensitivity. In this
extension, matching the loop region of stem-loop pattemsdcbe performed with standard dy-
namic programming. Then, pairing positions would be effitiematched via bidirectional search
using the affix array data structure. We note tBRIPINalso uses standard dynamic programming
for matching unpaired positions. However, it does not pffaditn affix arrays for search accelera-

136

5.1 Future work

tion. We also note that, although we would consider thisresiten an improvement tStructator it
still would not have the same flexibility &aligNAtor, since, likeERPIN, it does not support edit
operations on the secondary structure level.

Finally, to further increase the space efficiencyStfuctator and RaligNAtor, compressed index
data structures based e.g. on the FM-index [53] could beieappb both tools. However, such
structures can slow down the search for structural RNA paten databases, as we observed in
a comparison betweestructatorand the implementation of bidirectional wavelet index/ 01
which can only be used to search with a small set of hard-cpd#drns. Unfortunately, the lack of
other suitable implementations of compressed structuaagpbrs further investigation of the effect
on the running time of using such structures in the analyididobogical sequences. For instance, a
general and well-designed implementation of the FM-indegiven in [140], but it is not optimized
to handle nucleotide sequences with a small alphabet. Msite the BWA program([141] uses an
FM-index to process nucleotide sequences, its ad-hoc mmgglation of this structure cannot be
easily used as a stand-alone software library.

137

5 Conclusions and future work

138

A Structator user’'s manual

A.1 Introduction

Structatoris a software package for time efficient matching of RNA segeestructure patterns in
sequence databases. Its main features are:

e Persistent construction of an index data structure of ttgetadatabase. The index, called
affix array, only needs to be constructed once and is storetisén

¢ Flexible alphabet handling, including predefined DNA, RNAd protein alphabets and the
possibility to use personalized ones.

e Matching on forward and reverse complement strands. Madahiplain FASTA files is also
possible.

e Support of a variety of patterns with ambiguous IUPAC syrabol

e Standard and user-defined base pairing rules.

¢ Integrated fast global and local chaining algorithms.

e Output of results in different formats, including BED fosualization in the UCSC Genome

Browser.

Structatorconsists of two command line progranafconstructand afsearch afconstructallows
the construction of tables that constitute the affix arraleindata structure of the target database.
afsearchallows fast sequence-structure pattern matching in a prpated affix array or in the
plain database.

This software is available as open source under the GNU @ERablic License Version 3.

A.2 Index construction with afconstruct

afconstructconstructs the affix array index data structure of a giveralztege. In summary, the
process of construction includes reading the database $TR4ormat, mapping the sequences of
the database to an alphabet, selecting the desired takiles infdex to be constructed, and saving
the index to files on disk. This process is performed smodililgfconstruct where the user only

139

A Structatoruser’'s manual

<file> Load FASTA file

-al ph <file> Use alphabet defined in file

-dna Use 4-letter DNA alphabet (default)

-rna Use 4-letter RNA alphabet

-protein Use 20-letter protein alphabet

-a Construct all tables

- suf Construct suf table

-lcp Construct Icp table

-skp Construct skp table

-afl k Construct aflk table

-sufr Construct sufr table

-l cpr Construct Icpr table

- skpr Construct skpr table

-af | kr Construct aflkr table

-S <index> Save constructed structures to given index name
- X Do not save alphabetically transformed sequence
-C Output constructed structures to screen

-t <file> Output constructed structures to text file

-tinme Display elapsed times

Table A.1: Overview of options of prograafconstruct

needs to set a few options. An overview of all possible ogti@ngiven in Tablé_AJl and their
detailed description is given below.

Index construction options

o <filex>

140

<fil e>isthe path and name of the FASTA file for which the is index ibéaonstructed.
The file may contain one or more sequences and all are sefectiedlex construction. Note
that index-based search in the forward and reverse comptesequences only requires the
construction of a single index.

-al ph <file>

- al ph takes as parameter the path and name of the text file sperifyiralphabet. The

sequences’ characters are mapped to this alphabet andghenses are then said to be
alphabetically transformed. The index is constructed lier dlphabetically transformed se-
quences. This option also allows alphabet reduction. Eiaehih the file specifies a class
of characters, which means that all characters of a classoamistinguished between each
other. Below is an example of an alphabet file.

Aa A
Cc

Gy

A.2 Index construction witfafconstruct

TtUu U
* BbDdHhNNYy Rr Ss W WKk MmiXx

Lines beginning with *, like the last one, imply a class of dgfrds (i.e. ambiguous char-
acters). Wildcards in the database indicate unknown orqueseed regions, hence such
regions cannot be matched against any pattern. Furtherctmaeacters must be given with-
out spaces in each line. A space and a character imply théitsheharacter after the space
is a so-callectlass representativel he class representative is shown in place of the original
character when outputting transformed sequences to filerees. If no representative is ex-
plicitly specified, the first character of the line is chosertte representative. In summary, in
the example above we have 5 character classes, whose r@pt@es are A, C, G, U, and *.

As a remark, although ambiguous IUPAC character such as N, &¢. indicate unknown
regions in the database, they can be used for defining pattéis noted here that the user
does not have to create character classes for such charsiciee they are already recognized
by Structator More about this is discussed in the section about progrisearch

-dna,-rna,-protein

These options allow transforming the input sequences tefireed alphabets. The alphabet
for DNA, RNA, and protein sequences has size 4, 4, and 20ectigply. More precisely, the
characters of each alphabet option are the following:

-dna:A,C,G, T

-rna:A,C,G,U

-protein:A,C,D,E,F,G,H,,K,L,M,N,P,Q,R,S, T,VW, Y

Uppercase and lowercase characters are not distingui$tiaelsequences contain characters
other than the ones above, one can create a new alphabexitiket@nd use it with the option

- al ph.

-a
- a selects all eight tables of the affix array for constructibhe tables are listed next.

-suf,-1lcp,-skp,-aflk,

-sufr,-1cpr,-skpr,-aflkr

These options allow the user to individually select the mesiables of the index to be con-
structed. Each option corresponds, as expected, to thedbtile same name, that is:

- suf : suffix array

- | cp: longest common prefix

- skp: skip

- af | k: affix link

- suf r: reverse prefix (i.e. suffix array of the reverse sequences)
- | cpr : longest common prefix of the reverse sequences

141

A Structatoruser’'s manual

- skpr : skip of the reverse sequences
- af | kr: affix link of the reverse sequences

Note that, because certain tables depend on another foctretruction, a table may be con-
structed even if it is not selected. For example, tabfe will automatically be constructed if
the user only selects tabler. For constructing tableflkg (aflkg) there are two possibilities.
By selectingaflkg (aflkg) only, tablessuf, Icpe (Icpr), andsufg are automatically selected
as well, and binary search method is used in the construcfiefikg (aflkgr). If the user addi-
tionally selectskpr (skpr), the construction offlkg (aflkg) is sped up by the additional use
of this table. The skip tableskpr andskpgr can be deleted by the user after the construction
of the affix link tablesaflkg andaflkg because they are not required for pattern matching.

e -S <index>
By using the optiorr s along with an index name, each table that is constructedisdibn
diskin its own file. The name of each file[is ndex nane] . [t abl e nane] . Additional
files are also stored. One file with extensioal ph stores the alphabet, one with extension
. base stores basic information about the sequences such asehgih| and one with ex-
tension. des stores the description of each sequence. The sequencedphiathedically
transformed sequences are stored in a file with extenss®y and. t seq, respectively.
Note that all the generated files are binary.

o -X
This option preventgafconstructfrom saving alphabetically transformed sequences to file.
This is useful for saving disk space, but note that the sexpgenf the index will be trans-
formed each time programfsearch(see next section) is executed.

e -C
- ¢ outputs the constructed tables and the corresponding esiffor reverse prefixes) to
screen. For ease of readability, the strings of the revenesiixps are printed in reverse or-

der. This option is only recommended for small databasegs wath sequence length up to
100.

o -t <file>
-t works like the option ¢, but it directs the output to the specified file.

o -tine
With this option the time required to construct each setbtable is displayed.

Be aware that the generated files may overwrite existing witbsut warning!

142

A.2 Index construction witfafconstruct

Using afconstruct

We show an example for constructing all tables of the affimygrincluding also tables skp and
skpr, for the Rfam database release 9.1. The database ésl siothe fileRf am f as. Because
the sequences contain characters different from the 4ctearRNA alphabet, we use with option
- al ph the same alphabet file that is exemplarily described abotreSgharacter classes. This file
is here calledryr na. al ph. Below is the program call and its screen output.

$./afconstruct /path/to/fastafile/ Rfamfas -al ph
[path/to/al phabet fil e/nyrna.al ph -a -s /path/to/save/index/ Rf am

Fasta file: Rf am f as
Nunber of sequences: 1149685
Tot al | ength: 179030400

Conputing suf... done

Computing lcp... done

Conputi ng skp... done

Computing sufr... done

Conputing | cpr... done

Computi ng skpr... done

Conmputing afl k with skpr... done
Computing afl kr with skp... done

The program execution produces these files:

$ Is -goh

total 5.0G

-rwr--r-- 1 688M 2010-01-04 16:28 Rfam afl k
-rwr--r-- 1 688M 2010-01-04 16: 39 Rfam afl kr
-rwr--r-- 1 68 2010-01-04 16: 13 Rfam al ph
-rwr--r-- 1 4.4M 2010-01-04 16: 13 Rf am base
-rwr--r-- 1 29M 2010-01-04 16: 13 Rfam des
-rwr--r-- 1 172M 2010-01-04 16: 15 Rfamlcp
-rwr--r-- 1 116M 2010-01-04 16: 15 Rfam | cpe
-rwr--r-- 1 116M 2010-01-04 16: 17 Rfam | cper
-rwWr--r-- 1 172M 2010-01-04 16: 17 Rfam | cpr
-rwr--r-- 1 172M 2010-01-04 16: 13 Rfam seq

143

A Structatoruser’'s manual

SrwWr--r-- 1
SrwWr--r-- 1
-rwr--r-- 1 688M 2010-01-04 16: 15 Rf am suf
SrwWr--r-- 1
SrwWr--r-- 1

688M 2010- 01- 04 16: 15 Rfam skp
688M 2010-01-04 16: 17 Rfam skpr

688M 2010-01-04 16: 17 Rf am sufr
172M 2010-01-04 16: 13 Rfam tseq

A.3 Searching with afsearch

afsearchis the program for matching RNA sequence-structure pattiera precomputed index or
directly in a plain FASTA file. In case an index is used, maighpatterns containing no base pairs
and no ambiguous IUPAC characters requires only the preotatipn of thesufg table, otherwise
tablessufg andsufg, lcpg andlcpr, andaflkg andaflkg are required. An overview of the options
of afsearchis given in Tablé_ A.R and are explained in more detail below.

Pattern search options

e <dat a>

144

<dat a> is the path and target FASTA file or the path and prefix nhame efitbs (i.e. file
name without extension) storing an index. Remember to mapld¢isired tables in case the
target is an index.

-al ph

- al ph takes as parameter the path and name of the text file spectyimlphabet. See the
full description of alphabet files above on the section aladednstruct Note that this option
is only effective if the target data is a FASTA file. Otherwiddt is an index, the alphabet
used is obtained from the index.

If the FASTA file or the pattern file (see below optieat) contains ambiguous IUPAC
characters, e.g. N, R, S, Y, etc., these must be specified @phabet file. However, while in
the FASTA file they indicate unknown or unsequenced regiods@nce cannot be searched,
these characters can be used to define patterns. It is natatiehuse of ambiguous characters
in patterns does not require the user to create the corrdspicharacter classes, e.g. N
denoting A, C, G, or U or R denoting A or G, since all standar@AC classes are already
recognized byStructator

-dna, -rna, -protein

Alphabet option for the respective kind of sequence datantare details on the predefined
DNA, RNA, and protein alphabets see the section aladeonstruct As with the- al ph
option, these are only effective if the target data is a FASIEA

A.3 Searching withafsearch

<dat a>

-al ph <file>
-dna

-rna
-protein
-pat <file>
-for

-rev

-comp <file>
-a

- suf

-lcp

-afl k

-sufr

-l cpr

-af | kr

- bed

-allm

-match <k>
-t <file>
- seqdesc

-tinme
-silentl
-silent2

Chaining options:

- gl obal

-1 ocal

-wf o <wf >

-maxgap <w dt h>
-m nscore <score>
-m nl en <l engt h>
-top <#>
-chainrep <file>
- show

Index name or FASTA file

Use alphabet defined by file (option applies only to FASTA file)
Use 4-letter DNA alphabet (default) (option applies onlfFASTA file)
Use 4-letter RNA alphabet (option applies only to FASTA file)

Use 20-letter protein alphabet (option applies only to FASIE)
Search for (structural) patterns

Search in the forward sequence (default)

Search in the reverse complement sequence. For searchihg for-
ward sequence as well, combine it with -for

Load base-pair complementarity rules from file

Map all index tables

Map suf table

Map Icp table

Map aflk table

Map sufr table

Map Icpr table

Map aflkr table

Output matches in BED format

Report all matches of variable length patterns, i.e. noy tm longest
ones

Report only sequences matching at least k different pattern

Write matches to text file instead of to screen

Include sequence description in the results, otherwisesaty pattern
match with the sequence id

Display elapsed times

Do not output matches

Do not output anything

Perform global chaining

Perform local chaining

Apply weight factor> 0.0 to fragments

Allow chain gaps with up to the specified width
Report only chains with at least the specified score
Report only chains with number of fragments- length
Report only top # scoring chains of each sequence
Write chaining report to text file instead of to screen
Show chains in the report

Table A.2: Overview of options of prograafsearch

145

A Structatoruser’'s manual

e -pat <file>

146

- pat takes as parameter a text file containing one or multiple esszpsstructure patterns.
Each pattern is specified in three consecutive lines. Thdlifiesbegins with the symbal-
followed by the description of the pattern. Optionally, tescription may be followed by
pipe symbolg separating these supplemental options:

wei ght : a weight that is assigned to a chain fragment corresportdirgmatch of the re-
spective pattern. If no weight is provided, value 1 is asslimedefault.

st art pos: this option, used for computing the score of local chaimsades the starting
position of the pattern within the modeled RNA molecule.effiatively, it can also be used
to denote the expected starting match position of the paittethe searched sequences, since
this can reflect the distance of the pattern to other pattmwdeling other substructures of
the same RNA. Note that this option must be specified for atiame of the patterns. If not
specified, the starting position of the patterns are auticalgt computed in a stacked way,
i.e.,st art pos of the first pattern in a file is 1 and for other patterns it is shien of the
length of all patterns defined beforetitl.

i nst ance: the instance is the number that defines the allowed ordecaircence of a
chain fragment in a chain of matches. Patterns of equalriostare equivalent w.r.t. the
chaining position. This option must be specified for nonellgpatterns. If not specified, the
order of occurrence of chain fragments respects the tapatrder in which the respective
matching pattern is defined in the patterns file. For instaaaghain fragment of a pattern
defined in the beginning of the file must occur at a positionrpid a chain fragment of a
pattern defined in the end of the file.

maxst em engt h: maximum length (i.e. number of base pairs) of the stem regiathe
pattern. The minimum length is derived from the dot-bradexjuence structure. For exam-
ple, if the pattern has structufg ((...)))), the minimum stem length is 4 andhax-

st el engt h must be at least 4. The pattern characters for base pairsrimgcin number
above the minimum stem length are assumed to be ambiguoractdra N.

maxr i ght | oopext ent (alternativelynr | ex): number of positions by which to extend
the beginning (from left to right) of the loop region. The exdled pattern positions are as-
sumed to be characters N. See the example below for the uttgs option.

max| ef t | oopext ent (alternativelym | ex): number of positions by which to extend the
end (from left to right) of the loop region. The extended @attpositions are assumed to be
characters N. See the example below for the usage of thisropti

maxmni spai r: maximum number of base pairs that may not obey the chosepleoran-
tarity rules, say, the Watson-Crick (A, U), (U, A), (C, G),,(G).

Supplemental options must be provided between two pipe skgrdnd its keyword, say,
weight is followed by the equal sign (=) and a value.

The second line of the pattern definition contains the serpiarformation, i.e., a sequence
of bases possibly containing ambiguous IUPAC characters.noted thatStructator auto-

A.3 Searching withafsearch

matically recognizes ambiguous characters and tries tomthé corresponding base, e.g. A
or G in place of an R. The third line contains the structurermfation in dot-bracket notation.

In this notation, unpaired bases are represented by dmtsl paired bases are represented by
(and) . Note that positions specified by dots are not strictly urgahii.e., they may form

a base pair with another position although this is not regliiSupported structures are hair-
pins with bulges and/or internal loops and also single gsa®bserve that for specifying a
single stranded pattern it is necessary to provide a segqumrdots.

As an example, a patterns file may contain the following text.

>p0| max| ef t | oopext ent =1| maxri ght| oopext ent =1 maxst em engt h=6
RNSNGKUNGCNHNSCY

¢ CCCC..0))))

The pattern above represents a set of patterns, namely:

>p0
RNSNGKUNGCNHNSCY
CCCCC-20))))
>pl
RNSNGKNUNGCNHNSCY

¢ CCCC e))))-)
>p2
RNSNGKUNGCNNHNSCY

¢ CCCC e))))-)
>p3
RNSNGKNUNGCNNHNSCY
COCCC e)))))
>p4
NRNSNGKUNGCNHNSCYN
(¢ CCCC--2))))-))
>p5
NRNSNGKUNGCNNHNSCYN
(COCCC e)))))
>p6
NRNSNGKNUNGCNHNSCYN
(COCCC e)))))
>p7
NRNSNGKNUNGCNNHNSCYN
C(COCCC e))))))

147

A Structatoruser’'s manual

o -for

148

Option for searching in the forward sequences. This opt®elected by default.

-rev
Option for searching in the reverse complement sequenicesed in combination with the
option- f or, search is performed in both the forward and reverse congiesequences,
otherwise search is only performed in the reverse complessguences. Observe that search-
ing in reverse complement sequences of a database doegjuiwereomputing an index for
the reverse complement sequenaasearchhandles this by automatically computing the
reverse complement of the patterns and by using thesemmftarsearch.

-conp <file>

The parameter of the optionconp is a file specifying complementary bases. A line with
two bases, given without any spaces or punctuation, imgiigsmatches to the patterns can
contain such a base pair. It is not necessary to specify ihagaule twice. For example, for
pairs (C, G) and (G, C) it suffices to have a li@&. Below is a sample file.

AU
CG
GA
QU

According to this file, these base pairs are possible: (A(U)A), (C, G), (G, C), (A, G),
(G, A), (U, G), (G, U). Note that if the optionconp is not used, Watson-Crick base pairs
are allowed by default.

-a

- a maps all six tables of the index (see the next options) to nmgnwtapping means that
they are made available &dsearch but are not immediately loaded into memory. Blocks of
data are only effectively loaded into memory as parts of #ides are read during pattern
matching operations.

-suf,-lcp,-afl k

-sufr,-lcpr,-afl kr

These options allow the individual selection of the tabked are mapped to memory. Match-
ing single-stranded patterns containing no ambiguousackens requires only tabkufr.
Otherwise, it is additionally mandatory the selection dfléa sufr, lcpg, lcpr aflkg, and
aflkg.

- bed

Option for printing out the matches in BED format. Otherwigaot used, the matches are
printed out in a format similar to BED, but including the ntad substring and its secondary
structure.

A.3 Searching withafsearch

e -allm

This option is only effective when matching patterns of &hle length. By using it, all
matches of all possible different pattern lengths are teporOtherwise, if not used and
there are matches embedded in other matches of the samm pattdbedded matches are
ignored. For example, consider a pattern with minimum ler&and maximum length 10
and an arbitrary sequence. If the pattern matches withhe®gtt sequence position 5 and
with length 10 it matches at position 2, then the match attjposb is ignored because it is
embedded in the match at position 2.

e -match <k>
- mat ch with parametek neglects sequences and pattern matches occurring in thm if
matches are of not of at ledstifferent patterns.

o -t <file>
-t writes the matches to the specified file instead of to screba.riatches are sorted by
sequence and, within a sequence, by ascending matchingposi

e -seqdesc
Option- segdesc includes the sequences’ description in the list of patteatches. If this
option is not used, the sequence is identified by a humberctiratsponds to its order of
definition in the database, beginning from 0.

e -tine
Option to display the time needed to search for each pattern.
e -silentl

- si | ent 1 avoids the output of matches and chains. Note that also tipeitolo text file by
the use of option t is neglected.

e -silent2
Option for not outputting anything.

Chaining options

e - gl obal
Option to perform global chaining of matches. It is the d&faption.

e -| ocal
Option to perform local chaining of matches.

o -W <wf>
-wf takes as parameter a positive weight factor that is apptieal tchain fragments. For
instance, if a chain fragment of a pattern has weight 2, ahtdagrtor of 10 implies that the
chain fragment will have weight 20.

149

A Structatoruser’'s manual

- maxgap <wi dt h>
- maxgap takes as parameter the maximum distance (i.e. number of)oafmved between
chain fragments.

-m nscore <score>
Report only chains with at least the specified score.

-mnlen <l en>
Report only chains with at least the specified number of clragments.

-top <#>
Report only top # scoring chains. If this option is not usdid;lains are reported.

-chainrep <file>
- chai nr ep writes to the specified file the chaining report, otherwisedhains are written
to screen. Chains are reported in descending order of thain Gcore.

-show
Show chain fragments and their coordinates (i.e. start addreatching position and weight)
in the chaining report.

Using afsearch

We useafsearchin this example to search with three patterns derived frasctinsensus structure
of the Rfam familyOxyS RNAgAcc.: RFO0035). The patterns, shown below, are assignesigiy
of 1 for computing global chains of matches. The patternssamed in a file calleabxyS. pat .
We search in the index of Rfam release 10, here calfeaiml 0, which was preconstructed with
afconstruct The allowed base pairs are (A, U), (U, A), (C, G), (G, C), (G, &hd (U, G), which
are specified in a text file and used with the opti@onp. We also setfsearchto report global
chains of matches with at least score 2 by using the optiimscor e. The pattern matches and
the chains are written to filesat ches. t xt andchai ns. t xt , respectively. The patterns file is
as follows.

>HP1| maxri ght | oopext ent =1| max| ef t | oopext ent =1| maxni spai r =6| wei ght =1
INININNNNNNNNNNNNNNNNNNNNACCCNUNANNNNNNNNNNNNNNNN

(CCCCCC COCC G 00y))-))-2)))))))))))

>HP2| maxri ght | oopext ent =5| wei ght =1

GNNNNNCUCACNN

(C((

.....))))

>HP3| maxni spai r =2| maxri ght| oopext ent =2| wei ght =1
NNGGANCUNNNNNNNNNNN

150

A.3 Searching withafsearch

CCCCCCC. oo)))))))

The command to califsearchand the screen output are:

$./afsearch /path/to/index/ RfamlO -pat /path/to/patternsfile/oxyS. pat
-conmp /path/to/conmpfile/wegu.conp -a -t matches.txt -minscore 2 -show
-chai nrep chai ns. t xt

Nunmber of sequences: 1149685
Tot al | ength: 179030400

I Searching for pattern HP1L in the forward sequence(s)... done
I #Mat ches: 8619

I Searching for pattern HP2 in the forward sequence(s)... done
| #Mat ches: 1699

I Searching for pattern HP3 in the forward sequence(s)... done
I #Mat ches: 142219

| #Tot al mat ches: 152537

The first 10 lines of the matches file are:

$ head -n 15 matches. t xt

I[mat ched substring/structure] [seq. id] [matching pos.] [pattern id]
[wei ght] [strand]

ACGGAUCUCUUGBUUCUGG 119 11 2 1 f

(CCCCCC e)))))))
ACGGAUCUCUUGGUUCUGG 122 11 2 1 f

CCCCCCC. -)))))))
ACGGAUCUCUUGGUUCUGG 124 11 2 1 f

(CCCCCC e)))))))
ACGGAUCUCUUGGUUCUGG 125 11 2 1 f

CCCCCCC. -)))))))
ACGGAUCUCUUGGUUCUGG 126 11 2 1 f

(CCCCCC e)))))))
ACGGAUCUCUUGGUUCCGG 132 11 2 1 f

CCCCCCC. -)))))))
ACGGAUCUCUUGGUUCUGG 136 11 2 1 f

CCCCCCC. oo)))))))

151

A Structatoruser’'s manual

Observe that the matches are sorted by ascending sequeneeidd corresponds to the order
of occurrence of the sequence in the database. Below aresh@8ilines of the chaining report
showing 5 chains. There are in total 316 chains with at leasts2.

$ head -n 26 chains.txt

head -n 26 chains.txt

I [sequence] [chain score] [chain |l ength] [strand]

>CP000468. 1+4477379- 4477488 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGECACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC
>CP000034. 1+3532296- 3532405 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCEUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCEC
>AAJW2000005. 1+188036- 188145 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCEUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCEC
>ABHW)1000012. 1+10515- 10624 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGECACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC
>AE014073. 1+3594803- 3594912 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGECACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

The chains are sorted by descending chain score. In thisg&afhis the maximum score possible.
Each chain contains the description of the sequence wheeeitrs, the fragments’ coordinates
(i.e. expected or “stacked” start and end matching postifnthe fragment, actual start and end
matching positions of the fragment, and fragment weightjl, the matching substring of the frag-
ments.

152

B RaligNAtor user’s manual

B.1 Introduction

RaligNAtoris a software package for fast approximate matching of RNfusece-structure pat-
terns. It searches sequence databases for occurrencesrafiven patterns annotated with sec-
ondary structure. Its main features are:

e Implementations of new efficient user-selectable onliritiadex-based matching algorithms.

Matching computation based on a sequence-structure edindie with a full set of edit
operations on single bases and base pairs.

e Patterns can describe any (branching, non-crossing) RNAnskary structures. Sequence
information can contain ambiguous IUPAC symbols.

e Search in DNA and RNA sequences possible due to flexible bfghHaandling.
e Matching on forward and reverse complement strands.

e Customizable base pairing rules.

¢ Integrated fast algorithms for global and local chainingnafiches.

e Output of results including matching positions, sequestogeture alignments, scores, etc.

For index-based matchinRaligNAtoruses a data structure based on the suffix array precomputed
from the target sequence database. This precomputatiaf@imed by thesufconstructool dis-
tributed withRaligNAtor, which is described nexRaligNAtors description follows subsequently.

This software is available as open source under the GNU @kRablic License Version 3.

B.2 Database preprocessing with sufconstruct

sufconstrucpreprocesses a sequence database generating an index&vdied witfRaligNAtor
using algorithmLESAAlignor LGSlinkAlign In summary, this procedure consists of reading the
target database in FASTA format, mapping the sequenceg afatabase to an alphabet consisting
e.g. of characters A, C, G, and U, computing the requiredxistieictures according to the desired
search algorithm, and saving the structures to files on dislthis is performed smoothly, where

153

B RaligNAtoruser's manual

<file> Load FASTA file

-al ph <file> Use alphabetdefined in file

-dna Use DNA alphabefA, C, G, T} and IUPAC wildcards (default)

-rna Use RNA alphabetA, C, G, U} and IUPAC wildcards

-l esa Construct index for LESAAlign (tables suf and Icp)

-l gslink Construct index for LGSlinkAlign and LESAAlign (tables sidp, and suf
~1)

-s <index> Save constructed structures to given index name

- X Do not save alphabetically transformed sequence

-C Output constructed structures to screen

-t <file> Output constructed structures to text file

-time Display elapsed times

Table B.1: Overview of options of prograsufconstruct

the user only needs to set a few options. An overview of alsides options is given in Table B.1
and their detailed description is given below.

Preprocessing options

o <filex>

154

<f il e>is the path and name of the FASTA file for which the is index ibéaonstructed.
The file may contain one or more sequences and all are sefectiedlex construction. Note
that index-based search in the forward and reverse comptesequences only requires the
construction of a single index.

-al ph <file>

- al ph takes as parameter the path and name of the text file sper#yimlphabet. The se-
guences’ characters are mapped to this alphabet and therseguare then said to be alpha-
betically transformed. The index is constructed for thdahetically transformed sequences.
This option also allows for alphabet reduction (see beldNote that the used alphabet will
also be used to map pattern characters when the constradiexis searched witRaligNA-
tor.

Each line in the file specifies a class of characters of theahlgth These must be ASCII print-
able characters, i.e. they must have character code be@2emmd 127. A class of characters
can be of three types:

— Non-matching characters of the target sequespecifies characters that can occur in
the target sequence boannotmatch any pattern character. This is useful for cases
in which stretches of the target sequence are unknown, colymepresented by se-
guences of Ns. There can be only one such character clasfjeshéen one line begin-

B.2 Database preprocessing wsthfconstruct

ning with symbol! . We emphasize that this class does not do any transformation
pattern characters. E.qg.

I BbNnRr Yy Ss WKk MhDdHh\W

All characters used in this example that occur in the targgtience cause mismatches
to any pattern character. However, these characters casedenith a different behavior
in the pattern; see the following characters classes.

Matching characters set of characters, whose members are not distinguishese et
each other, mapping pattern characters to match the samé cdwdracters in the tar-
get sequence. In other words, characters (of both the paitat the target sequence)
belonging to one such class are transformed to a single dyidbace, this character
class can be used for alphabet reduction. Such a charaassrislspecified in one line
with a simple list of the member characters. E.g.

Aa

The class above indicates thatanda are not distinguished between each other. An-
other didactic example is

AaM

This class allowdMto be used in the pattern, even if it belongsim-matching char-
acters of the target sequenddwill be able to matchAs andas of the target sequence,
but it will not matchMs (if in the target sequenddis a non-matching character). We
observe that, in the alignments reportedRgligNAtor, an alignment column of two
matching characters of the same class is marked with symtmb. an alignment oA
with a.

Wildcards of the patternsa class of this type specifies a special pattern symbol that
can be used to match characters belonging to differeatthing characteclasses. A
typical application is to specify a character eRjto matchAs andGs in the target
sequence, wherA and G belong to two differenmatching characteclasses. Such a
class is specified in one line beginning with aE.g.

* RAG

This class defines a wildcard symiRli.e. the first symbol after, to matchAs andGs

in the target sequence. In addition, it will match every aloter belonging to the classes
to whichAandGbelong, for instancas andgs. Attention: make sure that all characters
belonging to this class, exceRt also belong to anatching characteclass. Otherwise,
this wildcard class will not be accepted. We observe thatldcaid character aligned
to amatching charactenf its class is annotated with-ain the RaligNAtoroutput, as

in the following example.

155

B RaligNAtoruser's manual

156

Pattern ...((-..))..(((...)))
CCCAA- CCUUAAUCCAUARGA

L EEEE TEEEE T+l
Target CGCAACCCUU- AUC- AAAGGA

(G) (e))

Naturally, alignments found witRaligNAtor show, for each non-gapped position, a single
character of the corresponding character class. Each sachater is called elass represen-
tative By default, the first character different fromandx of each line is the representative
of the class. Another more explicit way to specify the claggesentative is to end the class
definition with a whitespace followed by the desired repnéstd/e character. As an example,
observe that the representative of the clagsoofmatching characters of the target sequence
above isB. To set it toN, define it instead as

I BONnRr Yy SsWwKk MhiDdHhW N
Below is an example of a complete alphabet file.

Aa A
Cc C

G G

WwTt U

«AG R

*CTU Y

«CA M

«UTG K

«UTA W

*CG S

«CGUT B

* AGUT D

« ACUT H

« ACG V

* ACGUT N

I NnRr Yy SsWAKKMTBoDdHh\W N

This alphabet file defines foumatching characteclasses, whose representatives Ar€,

G andU. The class with representatilé: for example, allows for the use in the pattern of
both uppercase and lowercdde andTs, such that any of these characters will match both
uppercase and lowercabe andTs in the target sequence. Becalks the class representa-
tive, alignments found witRRaligNAtorwill show Uwherever these characters occur. The file
also defines several wildcards that can be used in the patteriR, to match uppercase and
lowercaseAs andGs in the target sequence. Finally, it defines a classofmatching char-
acters of the target sequenckhis can contain characters of the previous two classgsRe.

B.2 Database preprocessing wsthfconstruct

However,Rs occurring in the target sequence will cause mismatchesrealR used in the
pattern will match uppercase and lowercaseandGs in the target sequence. Remember that

— all characters used to define patterns must belongnatahing characteand/orwild-
card class and

— all characters occurring in the target sequence must bétbagatching characteor
non-matching characteclass.

-dna,-rna

These options allow transforming the input sequences tibefireed DNA or RNA alphabets.
The alphabets are equal to the alphabet file shown above. NAalphabet only differs from
the RNA alphabet by havin@ as class representative insteadJoflf the target sequences
contain other characters, one can create a new alphabetxnfde and use it with the option
- al ph.

-l esa

- | esa selects for construction the structures needed for seay¢he target database with
algorithmLESAAIlign The structures consist of the suffix array and the longest common
prefix tablelcp. Note:suf andlcp are also constructed via optien gsl i nk. Hence, it is

not necessary to select optieh esa if the database was already processed for search with
the LGSlinkAlignalgorithm.

-1 gslink

-1 gsl i nk selects for construction the structures needed for sesydhee target database
with algorithmsLGSlinkAlignandLESAAlign The structures consist of the suffix armayf,
the longest common prefix tablep, and the inverse suffix arrayf—1.

-s <index>

By using option- s along with an index name, each table that is constructedisdbn disk

in its own file. The name of each file [s ndex nane] . [tabl e nane] . Additional
files are also stored. One file with extensioal ph stores the alphabet, one with exten-
sion. base stores basic information about the sequences such asdhgthl and one with
extension. des stores the description of each sequence. The sequencefphatdically
transformed sequences are stored in a file with extensg®y and. t seq, respectively.
Note that all the generated files are binary.

- X
This option preventsufconstrucfrom saving alphabetically transformed sequences to file.
This is useful for saving disk space, but it will requRaligNAtorto convert the sequences
of the index for each search run.

-C
- ¢ outputs the constructed tables and the corresponding esiffox screen. This option is
only recommended for small databases, say, with sequengthlap to 100.

157

B RaligNAtoruser's manual

o -t <file>
-t works like the option ¢, but it directs the output to the specified file.

o -tine
With this option the elapsed construction time of each tabbisplayed.

Be aware that the generated files may overwrite existing witbsut warning!

Using sufconstruct

We show an example for preprocessing a database for seatchlgaorithmLGSlinkAlign The da-
tabase, stored in filBf am f as, consists of sequences obtained from the full alignmenRfain
release 10.1. Below is the program call and its screen autput

$./sufconstruct /path/to/fastafile/Rfamfas -rna -1gslink
-s /path/to/ save/index/ Rf am

Fasta file: Rf am f as
Number of sequences: 2756313
Total |ength: 824991406

Computing suf... done
Conputing lcp... done
Computing suf... done

The program execution produces these files:

$ Is -goh

total 11.0G

-rwr--r-- 1 68 2012-02-24 16: 02 Rfam al ph
-rwr--r-- 1 11M 2012-02-24 16: 02 Rf am base
-rwr--r-- 1 67M 2012-02-24 16: 02 Rfam des
-rwr--r-- 1 790M 2012-02-24 16:08 Rfam |l cp
-rwr--r-- 1 2.1G 2012-02-24 16: 08 Rfam | cpe
-rwr--r-- 1 790M 2012-02-24 16: 02 Rf am seq
-rwr--r-- 1 3.1G 2012-02-24 16: 08 Rf am suf
-rwr--r-- 1 3.1G 2012-02-24 16: 08 Rf am sufinv
-rwr--r-- 1 790M 2012-02-24 16: 02 Rfamtseq

158

B.3 Searching witiRaligNAtor
B.3 Searching with RaligNAtor

RaligNAtorcan search for given sequence-structure patterns in (Bcamputed index using algo-
rithm LESAAlignor LGSlinkAlignor (2) directly in a plain FASTA file using algorithi8canAlign

or LScanAlign For computing an index, please refer to progaufconstrucabove. All algorithms
deliver the same results, differing for the user only inthiehning times. For faster index-based
and online searches, we recommend using algorith&SlinkAlignandLScanAlign respectively.
An overview of the options oRaligNAtoris given in Tabld B.2 and are explained in more detail
below.

Search options

e <dat a>
<dat a> is the path and target FASTA file or the path and prefix name effiles (i.e.
file name without extension) storing an inddXaligNAtor requires<dat a> to point to a
FASTA file in case the user wants to perform an online searth algorithmScanAlignor
LScanAlign(see options scan and- | scan below). For index-based searches with algo-
rithm LESAAIlignor LGSIinkAlign RaligNAtor requires<dat a> to point to an index (see
options- | esa and- | gsl i nk below).

e -al ph
- al ph takes as parameter the path and name of the text file spertyimlphabet. See the
full description of alphabet files above in the section atsafitonstruct

e -dna, -rna
Alphabet option for the respective kind of sequence. Setoseaboutsufconstructor de-
tails.

e -pat <file>
- pat takes as parameter a text file containing one or multipleesspistructure patterns de-
scribing any (branching, non-crossing) RNA secondaryctiines. Each pattern is specified
in three consecutive lines. The first line begins with the Isgim> followed by the descrip-
tion of the pattern. Optionally, the description may bedwléd by pipe symbolg separating
these supplemental options:
repl acenment,del eti on,arc-breaki ng,arc-altering,arc-renovi ng: cost
of the respective edit operation, being the same whethaygbeation occurs in the target se-
guence or the pattern. The default costdorc- r enovi ngis 2 and for all others it is 1.
cost : cost (i.e. sequence-structure edit distance) threshwlcthatches. Its default value is
0.
i ndel s: number of allowed indels. Its default value is the costshodd divided by the cost
of an indel, i.ecost / del et i on. Note that sinceost bounds the number of indels that

159

B RaligNAtoruser's manual

<dat a>

-al ph <file>
-dna

-rna

-pat <file>
-for

-rev

-comp <file>
- byseq
-byscore

- byscorea
-table
-no-overl aps
-silent

- progress

Index name or FASTA file

Use alphabet defined by file (option applies only to FASTA file)
Use DNA alphabefA, C, G, T} and IUPAC wildcards (default)
Use RNA alphabefA, C, G, U} and IUPAC wildcards

Structural pattern(s) to search for

Search in the forward sequence (default)

Search in the reverse complement sequence. For searchiing farward
sequence as well, combine it with -for

Load base pair complementarity rules from file

Sort matches by sequence and matching position

Sort matches of the same pattern by descending score

Sort matches of the same pattern by ascending score

Print matches in table format

Filter out low-scoring overlapping matches of the samegpatt
Do not output matches

Show progress message for each% processed data

Operation costs and thresholds. These do not override paeasrset in the patterns file

-repl acement <cost> Cost of a base mismatch (default = 1)

-del eti on <cost> Cost of base deletion/insertion (default = 1)

-arc-breaki ng <cost> Cost of an arc-breaking (default = 1)

-arc-altering <cost> Costofan arc-altering (default = 1)

-arc-renovi ng <cost> Cost of an arc-removing (default = 2)

-cost <x> Allow edit distance<= x (default = 0)

-indels <x> Allow number of indels<= x (default = cost / cost of one indel)

Index-based algorithmic variants*

-l gslink Uses early-stop acceleration, enhanced suffix array, anergkized suffix
links

-1 gsli nk_nof Variant Igslink with disabled sequence-based filter

-l esa Uses early-stop acceleration and enhanced suffix array

*|gslink requires tables suf, Icp, and sufinv. lesa requingly suf and Icp.

Online algorithmic variants

-scan Slides a window over the target sequence reusing matriiesntr
-1 scan Scanning variant with early-stop acceleration
-aligngl Aligns globally reporting the best alignment (no patterrtching)

Chaining options

- gl obal Perform global chaining
-l ocal Perform local chaining
-wb o <wf > Apply weight factor> 0.0 to fragments

-maxgap <wi dt h>
-m nscore <score>
-m nlen <l ength>

Allow chain gaps with up to the specified width
Report only chains with at least the specified score
Report only chains with number of fragments- length

-top <#> Report only top # scoring chains of each sequence

-al | gl obal Report for each sequence all global chains satisfying aboteria
- show Show chains in the report

-show?2 Print complete sequences and omit all other matching indion

Table B.2: Overview of options dRaligNAtor.
160

B.3 Searching witiRaligNAtor

can actually occur in a match, ifndel sxdel eti on>cost RaligNAtorwill also auto-
matically set ndel s=cost/ del eti on.

wei ght : a weight that is assigned to a chain fragment correspondirrgmatch of the re-
spective pattern. Its default value is the score associatedhatch; see match score definition
in RaligNAtors publication.

st ar t pos: this option, used for computing the score of local chaims)ades the starting
position of the pattern within the modeled RNA molecule.efitatively, it can also be used
to denote the expected starting match position of the paittethe searched sequences, since
this can reflect the distance of the pattern to other patterodeling other substructures of
the same RNA. Note that this option must be specified for afiare of the patterns. If not
specified, the starting position of the patterns are auticalyt computed in a stacked way,
i.e.,start pos of the first pattern in a file is 1 and for other patterns it is $hen of the
length of all patterns defined beforetil.

Supplemental options must be provided between two pipe slgrdnd its keyword, e.g.
weight is followed by the equal sign (=) and a value. We observettteste options can also
be provided in the command line call RaligNAtor, overriding the respective option value
given in the patterns file.

The second line of the pattern definition contains the sezpi@rformation, i.e., a sequence
of bases possibly containing ambiguous IUPAC characRabkgNAtorautomatically recog-
nizes ambiguous characters and tries to match the corrdisygohase, e.g. A or G in place
of an R. The third line contains the structure informatiomdt-bracket notation. In this no-
tation, unpaired bases are represented by.daisd paired bases are represented lyd) .
Observe that for specifying a completely single stranddtbpait is necessary to provide a
sequence of dots.

As an example, a patterns file may contain the following text.

>t RNA- pat | r epl acenent =2| del et i on=3]| ar c- r enovi ng=5
GSSVVYRURGYYYARYUGGUUARVRCRYYDSVYUBHHANMBCHRDVWRRUYRYRGGUUCRAWJUCCYDYHNBBNSYR
CCCCCCC- - CCCCe e)))) - CCCCC e))))) - (e et))))))))) .

Another example is a file containing multiple patterns aofos.

>ji resl| cost =2| i ndel s=0

UGAWCUKD

>ji res2|indel s=1| cost=4
DNNNDNDNHNDMAADY BVNVDNBWHDWADNNNNNNH
(CCCCCe e))))))

161

B RaligNAtoruser's manual

162

>i res3|indel s=0| cost=1
VNHUAUUUADNBWUAC

(CCC.o-)))) - e

>i res4| i ndel s=2| cost =3

CARGAY SNVNNNNDGCRKY CCHVHRWARUCYAG
CCCCCC - 000w v e))))--))))))
>j resb| i ndel s=1| cost =3| del eti on=2
BHKHDHDSNBHDRGUNSNSNNNWAIN
(CC- - CCCCe v))))--)))

-for
Option for searching in the forward sequences. This opsa@elected by default.

-rev
Option for searching in the reverse complement sequenicesed in combination with the
option- f or, search is performed in both the forward and reverse congiesequences,
otherwise search is only performed in the reverse complessguences. Observe that search-
ing in reverse complement sequences of a database doeguimereomputing an index for
the reverse complement sequendaligNAtorhandles this by automatically computing the
reverse complement of the patterns and by using these maftarsearch. The patterns will
contain complement characters according to the IUPAC tdlblis holds for alphabets spec-
ified with option-dna, -r na, or - al ph. Characters not belonging to the IUPAC table
cannot be complemented and remain unchanged. Base paitegyare also automatically
complemented. This means that, given Watson-Crick and leqidirs, Watson-Crick pairs
remain unchanged but accepted pairs derived from wobbl&J@nd (G, U) pairs automat-
ically become (A, C) and (C, A). Note that (A, C) and (C, A) gainust not be defined using
option- conp (see below), since these pairs are then allowed when segrte forward
sequences.

-comp <file>

The parameter of optionconp is a file specifying complementary bases. A line with two
bases, given without any whitespaces or punctuation, @apfiat matches to the patterns can
contain such a base pair. It is not necessary to specify ihagaule twice. For example, for
pairs (C, G) and (G, C) it suffices to provide a li@&. Below is a sample file.

AU

CG
GA
QU

B.3 Searching witiRaligNAtor

According to this file, these base pairs are possible: (A(U)A), (C, G), (G, C), (A, G),
(G, A), (U, G), (G, U). Note that if the optionconp is not used, Watson-Crick base pairs
are allowed by default.

- byseq

With this option matches are reported by sequence and matplisition, such that matches
at the beginning of a sequence are reported first. Note thhtthis option matches are not
reported during search as they are found, but only once tiretsén the entire database is
completed.

- byscore,-byscorea

With - byscor e or - byscor ea matches are sorted in descending or ascending order of
their score, respectively. The match score is inverselpgntenal to the cost associated to

a match; see exact score definitiorRaligNAtors publication. Note that since the score for
different patterns is not normalized, matches of the sartterpaare reported consecutively.

-table
Option for reporting the matches in a table format, with oretah per row.

-no-overl aps

- no- over | aps filters out low-scoring overlapping matches of the samespattMore pre-
cisely, if the starting and ending positions of a matchedssirg overlap with the starting
and ending positions of another matched substring of thee gaattern, only the matched
substring with a higher score is reported. In the case of afie of the matches is arbitrarily
filtered out.RaligNAtorchecks several times during search for overlapping matdterse
avoiding a memory overflow in the case of highly sensitivadgrat. Note that this option
used with the different online and index-based search ilfges does not guarantee an iden-
tical output of matches. This can occur due to the differedéoby which matches are found
and filtered out.

-sil ent
- si | ent disables the output of matches.

- progress
- progr ess shows a progress message for eacl¥; processed data.

-repl acenent ,-del eti on,-arc-breaki ng,-arc-al tering,-arc-renoving
Options taking each a value that specifies the cost of thectsp edit operation, with mean-
ing and default value as detailed above for optigrat . A used option holds for all patterns
in a patterns file and overrides the respective value spédifithat file. To specify different

operation costs for each searched pattern, see opgian .

-cost,-indel s
Cost threshold and number of allowed indels for matches. #s thie edit operation costs
provided in the command line, the value given via these aptioolds for all patterns of a

163

B RaligNAtoruser's manual

patterns file and override the respective value specifiellanfile. To specify different cost
thresholds and number of allowed indels for each searchierpasee option pat above.

-l gslink,-lesa

Selects one of the index-based algorithb@SlinkAlignor LESAAlign These algorithms
require an index of the target database, which can be gexevdth thesufconstructtool
above.

Note: since version 1.1 draligNAtor, LGSlinkAlignperforms in a first step sequence-based
filtering with standard dynamic programming considerindyoedit operations on single
bases, i.e. insertions, deletions, and replacements. &ét@nd step, it considers also edit
operations on base pairs. This filtering can consideraldgdpp search and affects neither
sensitivity nor specificity, but the following condition stiube fulfilled. If the cost of an in-
sertion operation is set to e.g. 2, then the cost of an andrajtéoption- ar c- al t eri ng)
and arc removing (optionar c- r enrovi ng) must be set to at least 2 and 4, respectively,
since these imply one and two deletions. The user is redgerfsir this consistency.

-1 gsl i nk_nof
Selects algorithnh GSlinkAlignbut does not perform sequence-based filtering.

-scan,-| scan
Selects one of the online algorithn8canAlignor LScanAlign These algorithms operate
directly on the database provided as FASTA file.

-al i gngl
Aligns globally each sequence-structure pattern and ezmlrenice of the database reporting
the best alignment and the respective sequence-strudlitrdistance.

We remark that matches are reported on the standard outpnheh(stdout), whereas additional
information such as set costs and thresholds is redirectdubtstandard error channel (stderr).

Chaining options

The following options allow to chain matches of the diffarpatterns specified in one patterns file.
A chain of matches is a sequence of non-overlapping matetiesré each match is then called a
chainfragmenj such that the order of the matches in the chain resemblesdee of the respective
patterns in the patterns file.

e - gl obal

Option to perform global chaining of matches.

e -| ocal

164

Option to perform local chaining of matches.

B.3 Searching witiRaligNAtor

o -W <wf>
-wf takes as parameter a positive weight factor that is apptieal tchain fragments. For
instance, if a chain fragment of a pattern has score 2, a Wweigtor of 10 implies that the
chain fragment will have score 20.

e -mMAXgap <w dt h>
- maxgap takes as parameter the maximum distance (i.e. number of)oamved between
chain fragments.

e -mmi nscore <score>
Report only chains with at least the specified score.

e -nminlen <len>
Report only chains with at least the specified number of cfiragments.

o -top <#>
Report only top # scoring chains. If this option is not usédllzains are reported.

e -al |l gl obal
Guarantees that all global chains are reported withoutdistg any chains with the same
score.

e -show
Show chain fragments and their coordinates (i.e. start addwatching position and score)
in the chaining report.

e -show2
Print complete sequences for which at least one chain waslfand omit all other match-
ing information. A sequence is only printed once. Sequelacesrinted in their order of
occurrence in the database.

We note that chains are reported in descending order ofcheain score.

Using RaligNAtor

As an example, we usddaligNAtorto search for five patterns derived from the consensus struc-
ture of the Rfam familyCripavirus internal ribosome entry sit@\cc.: RF00458). The patterns,
called iresl, ires2, ires3, ires4, and ires5, are shownealmohe description of optionpat . Here,

we stored these patterns in a file caliedes. pat . The searched database contained sequences
obtained from the full alignments of Rfam 10.1. To searcimgisilgorithmLGSlinkAlign we pre-
processed this database watlifconstrucgenerating an index calld&f am The allowed base pairs
were (A, U), (U, A), (C, G), (G, C), (G, U), and (U, G), which veespecified in a text file and used
with the option- conp. We also seRaligNAtorto report global chains of matches with minimum
length 5 by using the optionmi nl en. Due to the large number of expected matches for single pat-

165

B RaligNAtoruser's manual

terns, we used optionsi | ent to prevent matches from being printed out but used opt®inow
to print out the resulting chains.

The command call tRaligNAtorand the screen output are as follows.

$./RaligNAtor/path/to/index/ Rfanl0 -pat /path/to/patternsfile/ires.pat
-conp /path/to/conpfile/rna.comp -lgslink -silent -global -mnlen 5 -show

! Nunber of sequences: 2756313
! Total |ength: 824991406

I Searching for pattern iresl in the forward sequence(s)...
Cost threshold (edist) = 2

Max. allowed indels =0

Mn./Max. match length = 8 / 8

Max. match score = 8

Costs: Replacement = 1

Deletion = 1

Arc-breaking = 1

Arc-altering =
Arc-renoving = 2

I
i

Ti me: 160822. 0290 ns
Number of matches: 16033351

I Searching for pattern ires2 in the forward sequence(s)...
Cost threshold (edist) = 4

Max. allowed indels =1

Mn./Max. match length = 35 / 37

Max. match score = 48

Costs: Replacement = 1

Deletion = 1
Arc-breaking =
Arc-altering =
Arc-renoving = 2

o
e

Ti me: 3607395. 4620 ns
Number of matches: 8950417

I Searching for pattern ires3 in the forward sequence(s)...
Cost threshold (edist) =1

Max. allowed indels = 0

Mn./Max. match length = 16 / 16

Max. match score = 24

Costs: Replacenent = 1

Deletion = 1
Arc-breaking =
Arc-altering
Arc-renoving = 2

"o
e

Time: 96774.9180 ns
Nurmber of matches: 1052

I Searching for pattern ires4 in the forward sequence(s)...
Cost threshold (edist) = 3

Max. allowed indels = 2

Mn./Max. match length = 31 / 35

Max. match score = 53

Costs: Replacement = 1

Deletion = 1
Arc-breaking =
Arc-altering =
Arc-renoving = 2

|
PP

Ti me: 871779. 0860 ns
Nurmber of matches: 112

166

B.3 Searching witiRaligNAtor

I Searching for pattern ires5 in the forward sequence(s)...
Cost threshold (edist) = 3

Max. allowed indels =1

Mn./Max. match length = 24 / 26

Max. match score = 39

Costs: Replacement = 1

Deletion = 2

Arc-breaking = 1
Arc-altering = 1
Arc-renoving = 2

Time: 798519. 5760 ns
Number of matches: 1222639

Total nunber of matches: 26207571

! Chai ni ng mat ches... done
Time: 13660. 1450 ns

I [sequence] [chain score] [chain | ength] [strand]
>AB183472. 1/ 62866484 171 5 f

07 10 18 8

8 43 19 54 47

44 59 79 95 24

60 92 99 132 53

93 117 147 172 39

........ e D)) o) e OO (D)) D)) (e (e 0))
UGAWCUKD DINNNDINDINHNDIMAADY BVNVDINBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
L1+ ++ o [+]+ [+++] | 1+ I

UGAUCUGA UAGAAGUAAGAAAAUUCCUAGUUAUAA- UAUUUUUA AGUUAUUUAGCUUUAC CAGGAUGGGGUGCAGCGUUCCUGCAAUAUCCAG CCUUGUAGUUUUAGUGGACUUUAGG
........ e D)) o) e O (D))) (e (D)))))
>AB017037. 1/ 62866484 171 5 +

07 10 18 8

8 43 19 54 47

44 59 79 95 24
60 92 99 132 53
93 117 147 172 39

........ e D)) o) e O (D)) D)) (e (D)))))
UGAWCUKD DINNNDNDNHNDMAADY BVNVDNBWAHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
11+ ++ ol [+] [+++] | 1+ I

UGAUCUGA UAGAAGUAAGAAAAUUCCUAGUUAUAA- UAUUUUUA AGUUAUUUAGCUUUAC CAGGAUGGGGUGCAGCGUUCCUGCAAUAUCCAG CCUUGUAGUUUUAGUGGACUUUAGG
........ (O e o) e OO (D)) D)) (e (e 0))
>AF218039. 1/ 60286228 171 5 +

07 10 18 8

8 43 19 55 48
44 59 80 96 24
60 92 100 133 53
93 117 149 173 38

........ O e D))) e O (20D D)) (- (D)) -)))
UGAWCUKD DNNNDNDNHNDVADYBVINVDNBVWHDVADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNVKN
[ITH |+ b |+ S| T4]]+ [#+4] |+ttt [1H]| +rersrsrdes [+ +arat
UGAUCUUG UUGUAAAUACAAUUUUGAGAGGUUAAUAAAUUACAA AGCUAUUUAGCUUUAC CAGGAUGCCUAGUGGCAGCCCCACAAUAUCCAG UUUUUCAGAUUAGGUAGUC- GAAAA
........ CCCCCC D)) e GO ())) (o ()Y =0))
>AF014388. 1/ 60786278 170 5 +

07 10 18 8

8 43 19 55 48
44 59 80 96 24
60 92 100 133 52
93 117 150 174 38

........ e D) o) e O (D)) D)) (o ())))
UGAWCUKD DINNNDNDNHNDMAADY BVNVDNBWAHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
11+ ++ : ol [+] [+++] | 4]+ I

UGAUCUUG UUCCUUAUACAAUUUUGAGAGGUUAAUAAGAAGGAA AACUAUUUAGUUUUAC CAGGAUGCCUAUUGGCAGCCCCAUAAUAUCCAG UU- AUAUGAUUAGGUUGUCAUUUAG
........ O 0)) (O) I R (O (e I D D D N (N (e) D T)
>AF014388. 1/ 60786278 170 5 +

07 10 18 8

8 43 19 55 48
44 59 80 96 24
60 92 100 133 52
93 117 149 174 38

........ e D))) e O (20D D)) (- ()0 -)))
UGAWCUKD DINNNDINDNHNDIMAADY BVNVDINBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[1TH]+ bbb bbb bbb |+ S| T4]]+ [444 |+ttt [14]] +srsrsbabats [] bbbt

UGAUCUUG UUCCUUAUACAAUUUUGAGAGGUUAAUAAGAAGGAA AACUAUUUAGUUUUAC CAGGAUGCCUAUUGGCAGCCCCAUAAUAUCCAG CUUAUAUGAUUAGGUUGUCAUUUAG

167

B RaligNAtoruser's manual

........ e D) D) e e (D)) D)) (e (D)))
>AB006531. 1/ 60036204 170 5 +

07 10 18 8

8 43 20 56 47

44 59 82 98 24

60 92 102 135 53
93 117 150 175 38

........ D)) (D) e O (D)) D)) (o (D)))))
UGAWCUKD DINNNDNDNHNDMAADY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
11+ ++ : el L+]+ [+++] | 1+ I

UGAUCUUA AAAAUUAGGUUAAAUUUCGAGGUUAAAAAUAGUUUU GUAUAUUUAUACUUAC CAAGAUGGACCGGAGCAGCCCUCCAAUAUCUAG GCUCAAACAUUAAGUGGBUGUUGUGC
........ O D D D R (O) I A (T (e D D D N (O (e) D)
>EU680971. 1/ 184383 169 5 +

07 10 18 8

8 43 19 54 47
44 59 80 96 24
60 92 100 133 51
93 117 147 172 39

........ (S D D) D I ((O))) I N ((O (L (e D I DD DD D (PR (e D D I)Y
UGAWCUKD DNNNDNDNHNDMANDY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBVWUAC CARGAYSNVNNNN- DGCRKYCCHVHRVINRUCYAG BHKHDHDSNBHDRGUNSNSNNNANN
[]H] 4+ bbb bbb bbb bbb] b I N e IR e [+ ++rttsbbrass || 4+ttt
UGAUCUUU AUCGGGACAUGCAAAUGCAAGG: ACAAAACUCCGAU GGAUAUUUAUCCUUAC CAGGAU- CAGCUCAGGCAGCCCOGAAAAAUCCAG CUUCGAAGAGAAGGUGCUCUAGAAG
........ e D)) e e ())) (e (e 20))) 2)))
>AF183905. 1/ 56475848 168 5 +

071018 8

8 43 20 55 47
44 59 81 97 24
60 92 101 136 50
93 117 151 176 39

........ CCCCCC D) () e GO O))=) D)) (- (e 0))) -)))
UGAWCUKD DNNNDNDNHNDMAADYBVNVDNBVHDWADNNNNNNH VNHUAUUUADNBWIAC CARGAYSNVINNN- NDGCRKYCCHV- HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNVAN
11+]+ I+ S L]] | s o] [04] | 44] | 4]] I

UGAUCUUG UGCGGAGGCAAAAUUUGCACAGUAUAAAA- UCUGCA ACCUAUUUAGGUUUAC CAAGAUCGBUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA
........ (RS DO D D D IR (CCCTRTD))) PR CY (A ST GR CCCUTTER DD TR TUUD DO D U0 I ((CRUN (CCPRURI D D D TI D D)
>EF517515. 1/ 55125714 168 5 +

071018 8

8 43 20 56 47
44 59 82 98 24
60 92 102 137 50
93 117 152 177 39

........ CCCCCC e D) (D)) e GO o)) D)) (- (e))) -)))
UGAWCUKD DNNNDNDNHNDMANDY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN- NDGCRKYCCHV- HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNVWKN
| []+]] ++ ++t+tttttttttttttttt b4 | | | ||| A]]|]] A] |] |] |] | | | A
UGAUCUUG UGUGGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA
........ CCCCCC e D) (D)) e GO o))) D)) (o (e))) -)))
>DQ288865. 1/ 58026001 168 5 +

07 10 18 8

8 43 20 56 48
44 59 81 97 24
60 92 101 134 52
93 117 149 173 36

........ (O 5 0) D I (O)) T A ((O (e I D D R (O (e) D I D))
UGAVWCUKD DINNNDNDNHNDMAADY BVNVDNBWAHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[TT+]++ | AL+]]+ | [+++ | [T+ + I

UGAACUUG UCUCUCAACAAAAAGCCACCGACAUUAAGAGAGAGA COCUAUUUAGGGUUAC CAGGAUCUGCAACAGCAUUCCUGUAUCAUCCAG GG UGAGGAUUGAGUUGACCUCAUC
........ O D)) e e (D) D)) (e ())))
>EF517520. 1/ 55135715 167 5 +

071018 8

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ OO D)) (o)) e e D)))) (e (o)D))
UGAWCUKD D- NNNDNDNHNDMAADY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN- NDGCRKYCCHV- HRANRUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[[+] ++ + ettt | 4 b | []| A]|]]] |] | A] |]| | | ++++++++++
UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA
........ [(e ETRRES DD DD D I (IS D)) N G ((G (R (D DD IO BRER DD D IS I € C G (A C G DD D IR D D)
>EF517519. 1/ 55125714 167 5 +

0710188

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ (O)) D (S) R A (e A B I) D R (N (s D I)
UGAVCUKD D- NNNDNDNHNDMAYDY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWIAC CARGAYSNVNNN- NDGCRKYCCHV- HRANRUCYAG BHKHDHDSNBHDRGUNSNSNNNVRN
NEIEE ! S LT LT |t][] |+] | 4]] I

168

B.3 Searching witiRaligNAtor

UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA
........ O e D) D)) e e))))) (- (e))) -)))
>EF517521. 1/ 55135715 167 5 +

07 10 18 8

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ O e D) D)) e e o)))) (- (e))))
UGAWCUKD D- NNNDNDNHNDMANDY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNN- NDGCRKYCCHV- HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[[+] ++ + +ttttttttttttttttt+ bttt | 4+ttt FAt| |||]|]] R] |] | A] |]| A | | 4+ttt
UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA
-------- COOCCC e 0)00))) (CCC2))) e GG G OCC 000D) 000002) (OG- (OG- o2))))-4))
>AF178440. 1/ 59256123 166 5 +

07 10 18 8

8 43 31 66 45

44 59 79 95 24

60 92 99 132 52

93 117 148 172 37

-------- CCCCCC e ee00))0))) (OG-)))) e GO (OG- 220)))-000))) (G- (O - 22)))) - 4)))
UGAWCUKD DNNNDNDNHNDMANDYBYNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKY CCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[IT+1]++ L[]+]] [1+++] [T+ ++ [++
UGAUCUUG AUUCUGUACAUAAAAGUCGAAAGUAUU- GCUAUAGU GOCUAUUUAGGCAUAC CAGGAUGGCGCGUUGCAGUCCAACAAGAUCCAG UCCUAUACCUCGAGUCGGGEUUU- GG
........ (e)) (o)) e GO (o)) D)) (e (o)))
>AF536531. 1/ 66416834 165 5 +

075136

8 43 15 50 46

44 59 75 91 24

60 92 95 128 51

93 117 143 168 38

........ CCCCCC e D) (o)) e GO (o)) D)) (e (o))))
UGAWCUKD DNNNDNDNHNDMANDY BVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[+ [++ + | [+]] [T +++]] [T+ ++ I

UAAUUUGA U~ UUAGGUUAUAAUGUUAGGACUAUAAAAAUUAGCU AGUUAUUUAACUUUAC CAAGAUGGCCGUUGGCAGCCCCACGAAAUCUAG CUAUUUUGAUUAGGUGGUCAGAUAG
........ S D D) F C (G D D) P (N (e A G e DD PR D D B IS I ((R C (G DD D IS B B |

073116

8 43 15 50 44

44 59 68 84 24
60 92 88 121 51
93 117 134 158 37

........ CCCCCC e D)) e O (D)D) (- (D))
UGAWCUKD DNNNDNDNHNDVIAADYBVINVDNBVWHDVMADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNVKN
[] # [+ + 4 4 Frbbbbbbb bbb [LT+]]+] b [] | s [1H]] bbbt] bt +
UGUUGUGU U- UGCGCGAUAAAUGCUGACGUGAAAACGUUGCGUA AGCUAUUUAGCUUUAC CAAGACGCCGUCGUGCAGCCCACAAAAGUCUAG GAGCAUACGCUAGGUCGCGUUG- AC
........ O)) e G (D)D) e (e)) - m0)
>EU282007. 1/ 69357121 162 5 +

073116

8 43 15 50 44

44 59 68 84 24

60 92 88 121 51

93 117 134 158 37

........ e D)) D) e O (D)) D)) (o ())))
UGAWCUKD DINNNDNDNHNDMAADY BVNVDNBWAHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAY SNVNNNNDGCRKYCCHVHRWARUCYAG BHKHDHDSNBHDRGUNSNSNNNWAN
[+ [+ + o+ e [+]+ [++4 | 1+ l +
UGUUGUGU U- UGCGCGAUAAAUGCUGACGUGAAAACGUUGCGUA AGCUAUUUAGCUUUAC CAAGACGCCAUCGUGCAGCCCACAAAAGUCUAG GAGCAUACGCUAGGUCGCGUUG AC
........ O D D D I N (O) I L (T (O T D D D D N O G ((S) D

Total nunmber of chains: 17

Each chain contains the description of the sequence wherehthin occurs followed by the chain
score, chain length, and matched strand directipriof forward or— for reverse). In addition, it
contains the fragments’ coordinates (i.e. expected ocks@' start and end matching positions
of the fragment, actual start and end matching positionk@ftagment, and fragment score) and
the matching substring of the fragments along with theiusege-structure alignment to the cor-
responding patterns.

169

Bibliography

[1] F. Crick. On protein synthesis. I8ymposium of the Society for Experimental BioJogy
volume 12, pages 138-163, 1958.

[2] F. Crick. Central dogma of molecular biologiature 227(5258):561-563, 1970.

[3] S. Ohno. So much “junk” in our genomévolution of genetic systems. Brookhaven Symp
Biol., 23:366-370, 1972.

[4] L.E. Orgel and F.H.C. Crick. Selfish DNA: the ultimate psite. Nature 284(5757):604—
607, 1980.

[5] S. M. Berget, C. Moore, and P. A. Sharp. Spliced segmerttsesb’ terminus of adenovirus
2 late mRNA. Proceedings of the National Academy of Sciences,\J8{8):3171-3175,
1977.

[6] L.T. Chow, J.M. Roberts, J.B. Lewis, and T.R. Broker. Apnaf cytoplasmic RNA tran-
scripts from lytic adenovirus type 2, determined by elattmicroscopy of RNA: DNA hy-
brids. Cell, 11(4):819-836, 1977.

[7] The International Human Genome Sequencing Consortinitial sequencing and analysis
of the human genomeNature 409(6822):860-921, 2001.

[8] B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, C. Gurand M. Snyder. An integrated
encyclopedia of DNA elements in the human genoidature 489(7414):57-74, 2012.

[9] M. J. Hangauer, I. W. Vaughn, and M. T. McManus. Pervadik@nscription of the Human
Genome Produces Thousands of Previously Unidentified Liategdenic Noncoding RNAs.
PL0S Genet.9(6):e1003569+, 2013.

[10] K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. Etgabting, and T. R. Cech. Self-
splicing RNA: autoexcision and autocyclization of the sbmal RNA intervening sequence
of TetrahymenaCell, 31(1):147-157, 1982.

[11] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, 8ndltman. The RNA moiety of
ribonuclease P is the catalytic subunit of the enzy@ell, 35(3):849-857, 1983.

[12] J. A. Doudna and T. R. Cech. The chemical repertoire dfinah ribozymes. Nature
418(6894):222—-228, 2002.

[13] W. Gilbert. The RNA world.Nature 319(6055):618, 1986.

171

Bibliography

[14] D. M. Simon and S. Zimmerly. A diversity of uncharacier reverse transcriptases in
bacteria.Nucl. Acids Res36(22):7219-7229, 2008.

[15] H. M. Temin and S. Mizutani. RNA-dependent DNA Polymsan Virions of Rous Sarcoma
Virus. Naturg 226(5252):1211-1213, 1970.

[16] D. Baltimore. Viral RNA-dependent DNA Polymerase: RMi&pendent DNA Polymerase
in Virions of RNA Tumour VirusesNature 226(5252):1209-1211, 1970.

[17] W. Li, P. Zhang, J. P. Fellers, B. Friebe, and B. S. GikkgBence composition, organization,
and evolution of the core Triticeae genonTde Plant Journgl40(4):500-511, 2004.

[18] R.C. Lee, R. L. Feinbaum, and V. Ambros. The C. elegatsrbehronic gene lin-4 encodes
small RNAs with antisense complementarity to lin-2ell, 75(5):843—-854, 1993.

[19] A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Dniyand C. C. Mello. Potent and
specific genetic interference by double-stranded RNA innGdwbditis elegansNature
391(6669):806—811, 1998.

[20] J. Couzin. Breakthrough of the year. Small RNAs make bjgash. Science
298(5602):2296—2297, 2002.

[21] F. Calore, F. Lovat, and M. Garofalo. Non-Coding RNAgigancer. Int. J. Mol. Sci,
14(8):17085-17110, 2013.

[22] Y. Barash, J. A. Calarco, W. Gao, Q. Pan, X. Wang, O. SBal, Blencowe, and B. J. Frey.
Deciphering the splicing cod®ature 465(7294):53-59, 2012.

[23] J. S. Mattick. The hidden genetic program of complexanigms. Sci. Am, 291(4):60-67,
2004.

[24] J. H. Bergmann and D. L. Spector. Long non-coding RNAsdniators of nuclear structure
and function.Curr. Opin. Cell Biol, 26:10-18, 2014.

[25] B.J. Tucker and R.R. Breaker. Riboswitches as veesgghe control element&urr. Opin.
Struct. Biol, 15(3):342-348, 2005.

[26] M. Hlevnjak, A. A. Polyansky, and B. Zagrovic. Sequersignatures of direct comple-
mentarity between mRNAs and cognate proteins on multiplelde Nucl. Acids Res.
40(18):8874-8882, 2012.

[27] S. Carpenter, D. Aiello, M. K. Atianand, E. P. Ricci, Pa@lhi, L. L. Hall, M. Byron,
B. Monks, M. Henry-Bezy, J. B. Lawrence, L. A. J. ONeill, M.Moore, D. R. Caffrey,
and K. A. Fitzgerald. A Long Noncoding RNA Mediates Both Aetiion and Repression of
Immune Response Genescience341(6147):789-792, 2013.

[28] E. Loh, E. Kugelberg, A. Tracy, Q. Zhang, B. Gollan, H. [Es; R. Chalmers, V. Pelicic,
and C. M. Tang. Temperature triggers immune evasion by Begsmeningitidis. Nature
0(0):8874-8882, 2013.

172

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Bibliography

E. Westhof and P. Auffinger. RNA Tertiary Structutencyclopedia of Analytical Chemistry
pages 5222-5232, 2006.

B. Lewin, J. E. Krebs, E. S. Goldstein, and S. T. Kilpaltri Genes X Jones & Bartlett
Learning, 2011.

R. T. Mitsuyasu, T. C. Merigan, A. Carr, J. A. Zack, M. AimMeérs, C. Workman, M. Bloch,
J. Lalezari, S. Becker, L. Thornton, B. Akil, H. Khanlou, RnRyson, R. McFarlane, D. E.
Smith, R. Garsia, D. Ma, M. Law, J. M. Murray, C. von Kalle, J.BEy, S. M. Patino, A. E.

Knop, P. Wong, A. V. Todd, M. Haughton, C. Fuery, J. L. Macploer, G. P. Symonds, L. A.
Evans, S. M. Pond, and D. A. Cooper. Phase 2 gene therapyptal anti-HIV ribozyme

in autologous CD34+ celldNature Medicing15(3):285-292, 2009.

A. Huttenhofer and P. Schattner. The principles ofdgug by RNA: chimeric RNA-protein
enzymes Nature Reviews Genetics(6):475—-482, 2006.

Y. Wan, M. Kertesz, R. C. Spitale, E. Segal, and H. Y. Ghadnderstanding the transcrip-
tome through RNA structuréNature Reviews Genetick2(9):641-655, 2011.

S. W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barqlst?. Nawrocki, S. R. Eddy, P. P.
Gardner, and A. Bateman. Rfam 11.0: 10 years of RNA familMgcl. Acids Res2012.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein laz¢e search programs.
Nucl. Acids Res25(17):3389-3402, 1997.

W. R. Pearson and D. J. Lipman. Improved tools for bia@absequence comparisoRro-
ceedings of the National Academy of Sciences of the UnitgdsSof America85(8):2444—
2448, 1988.

E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Explpigenomic dark matter: A critical
assessment of the performance of homology search methadsnooeding RNA.Genome
Researchl17(1):117-125, 2007.

T. F. Smith and M. S. Waterman. Identification of commosnl@cular subsequences.Mol.
Biol., 147(1):195-197, 1981.

R. Durbin, S. R. Eddy, A. Krogh, and G. MitchisoBiological Sequence Analysis: Proba-
bilistic Models of Proteins and Nucleic Acid€ambridge University Press, May 1998.

E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-foldtéasRNA homology searches.
Bioinformatics 29(22):2933-2935, 2013.

A. Lambert, M. Legendre, J.F. Fontaine, and D. Gauthe@omputing expectation values
for RNA motifs using discrete convolution@MC Bioinformatics6:118, 2005.

T. Macke, D. Ecker, R. Gutell, D. Gautheret, D.A. Casgl R. Sampath. RNAMotif — A new
RNA secondary structure definition and discovery algorithucl. Acids Res29(22):4724—

173

Bibliography

4735, 2001.

[43] J. H. Havgaard, E. Torarinsson, and J. Gorodkin. Fastvid® Structural RNA Alignments
by Pruning of the Dynamical Programming MatrRLoS Comput. Bial3(10):e193+, 2007.

[44] S. Will, K. Reiche, I. L. Hofacker, P. F. Stadler, and Rad&ofen. Inferring noncoding RNA
families and classes by means of genome-scale structsest@ustering.PLoS Comput.
Biol., 3(4):e65+, 2007.

[45] The International Human Genome Sequencing Consortibimishing the euchromatic se-
guence of the human genomature 431(7011):931-945, 2004.

[46] C. S. Ku and D. H. Roukos. From next-generation sequentd nanopore sequencing
technology: paving the way to personalized genomic medicExpert Rev Med Devices
10(1):1-6, 2013.

[47] The 1000 Genomes Project Consortium. An integrated ofigienetic variation from 1,092
human genomesNature 491(7422):56-65, 2012.

[48] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, Mrstén, and M. Snyder.
The transcriptional landscape of the yeast genome defind®IN#y sequencing. Science
320(5881):1344-1349, 2008.

[49] F.Ozsolak, A. R. Platt, D. R. Jones, J. G. Reifenbelgdf, Sass, P. Mclnerney, J. F. Thomp-
son, J. Bowers, M. Jarosz, and P. M. Milos. Direct RNA sequnendNature 461(7265):814—
818, 2009.

[50] K. A. Wetterstrand. DNA Sequencing Costs: Data from ¢GRI Genome Sequencing
Program.htt p: // ww. genone. gov/ sequenci ngcost s/, 2013. Accessed Octo-
ber, 2013.

[51] D. Gusfield. Algorithms on strings, trees, and sequences : computenaeiand computa-
tional biology. Cambridge Univ. Press, January 1997.

[52] U. Manber and E.W. Myers. Suffix arrays: a new method fotine string searchesSIAM
Journal on Computing22(5):935-948, 1993.

[53] P.Ferragina and G. Manzini. Indexing compressed floadrnal of the ACM52(4):552-581,
2005.

[54] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtzsthadex based algorithms and
software for matching position specific scoring matrid@sC Bioinformatics 7:389, 2006.

[55] A. Cornish-Bowden. Nomenclature for incompletely Gfied bases in nucleic acid se-
guences: recommendations 198dcl. Acids Res13(9):3021-3030, 1985.

[56] R.Nussinov, G. Pieczenik, J. R. Griggs, and D. J. KlaimAlgorithms for Loop Matchings.
SIAM Journal on Applied Mathematic35(1):68-82, 1978.

174

http://www.genome.gov/sequencingcosts/

Bibliography

[57] T. Xia, J. Santalucia, M. E. Burkard, R. Kierzek, S. Jh&@eder, X. Jiao, C. Cox, and D. H.
Turner. Thermodynamic Parameters for an Expanded Neldmgtibor Model for Forma-
tion of RNA Duplexes with Watson-Crick Base PaiBiochemistry 37(42):14719-14735,
1998.

[58] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Exged sequence dependence of
thermodynamic parameters improves prediction of RNA sdapnstructure.J. Mol. Biol,
288:911-940, 1999.

[59] M. Zuker and P. Stiegler. Optimal computer folding aiga RNA sequences using thermo-
dynamics and auxiliary informatioucl. Acids Res9(1):133-148, 1981.

[60] M. Zuker, D.H. Mathews, and D.H. Turner. Algorithms amtiermodynamics for RNA
Secondary Structure Prediction: A Practical GuitRNA Biochemistry and Biotechnolqgy
1999.

[61] J. S. McCaskill. The equilibrium partition function éivase pair binding probabilities for
RNA secondary structuréBiopolymers29(6-7):1105-1119, 1990.

[62] R. Lorenz, S. H. Bernhart, C. Honer Zu SiederdissenTader, C. Flamm, P. F. Stadler, and
l. L. Hofacker. ViennaRNA Package 2.8lgorithms Mol. Biol, 6(1):26+, 2011.

[63] P. Gardner and R. Giegerich. A comprehensive compargaomparative RNA structure
prediction approache®8MC Bioinformatics 5(140), 2004.

[64] D. Sankoff. Simultaneous solution of the RNA foldindigament and protosequence prob-
lem. SIAM Journal on Applied Mathematic45(5):810-825, 1985.

[65] J. Gorodkin, L. J. Heyer, and G. D. Stormo. Finding thestrgignificant common sequence
and structure motifs in a set of RNA sequenddscl. Acids Res25(18):3724-3732, 1997.

[66] D.H. Mathews. Predicting a set of minimal free energyAR¥¢condary structures common
to two sequencesBioinformatics 21(10):2246-2253, 2005.

[67] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Aligeimhof RNA base pairing probability
matrices.Bioinformatics 20(14):2222-2227, 2004.

[68] S. Will, M. Siebauer, S. Heyne, J. Engelhardt, P.F. Ba&. Reiche, and R. Backofen. Lo-
cARNAscan: incorporating thermodynamic stability in sence and structure-based RNA
homology searchAlgorithms Mol. Biol, 8:14, 2013.

[69] S. Siebert and R. Backofen. MARNA: multiple alignmemndaconsensus structure predic-
tion of RNAs based on sequence structure comparidioénformatics 21(16):3352—-3359,
2005.

[70] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit digta between RNA structures.
Comput. Biol, 9(2):371-388, 2002.

175

Bibliography

[71] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffeeto&el method for fast and accurate
multiple sequence alignmeni. Mol. Biol,, 302(1):205-217, 2000.

[72] S. Schirmer and R. Giegerich. Forest alignment withnaffjaps and anchors, applied in
RNA structure comparisortheor. Comput. S¢i483:51-67, 2013.

[73] D. Gautheret and A. Lambert. Direct RNA motif definitiand identification from multiple
sequence alignments using secondary structure profilédol. Biol., 313:1003-11, 2001.

[74] R.J. Klein and S.R. Eddy. RSEARCH: finding homologs afgé structured RNA se-
gquencesBMC Bioinformatics4(1):44, 2003.

[75] S. R. Eddy. Profile hidden Markov modeBioinformatics 14(9):755-763, 1998.

[76] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov raledfor detecting remote protein
homologies.Bioinformatics 14(10):846-856, 1998.

[77] M. Madera and J. Gough. A comparison of profile hidden kdarmodel procedures for
remote homology detectiomNucl. Acids Res30(19):4321-4328, 2002.

[78] S. R. Eddy and R. Durbin. RNA sequence analysis usinguiance modelsNucl. Acids
Res, 22(11):2079-2088, 1994.

[79] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjiter, R. C. Underwood, and
D. Haussler. The application of stochastic context-fremrgnars to folding, aligning and
modeling homologous RNA sequencesipublished 1994.

[80] V. Sakakibara, M. Brown, R. C. Underwood, I. S. Mian, ahdHaussler. Stochastic context-
free grammars for modeling RNA. IRroceedings of the Twenty-Seventh Hawaii Interna-
tional Conference on System Sciencadume 5, pages 284-293. IEEE Computer Society
Press, 1994.

[81] N. Chomsky. Three models for the description of langudgformation Theory, IRE Trans-
actions on 2(3):113-124, 1956.

[82] N.Chomsky. On certain formal properties of grammémgrmation and Contrgl2(2):137—
167, 1959.

[83] S. R. Eddy. A memory-efficient dynamic programming aitjon for optimal alignment of
a sequence to an RNA secondary struct@®!C Bioinformatics 3(1):18+, 2002.

[84] K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogiian, and D. Haussler. Dirichlet
mixtures: a method for improved detection of weak but sigaiit protein sequence homol-
ogy. Comput. Appl. Bioscil2(4):327-345, 1996.

[85] E.P.Nawrocki and S. R. Eddy. Query-Dependent Band@igR) for Faster RNA Similarity
SearchesPLoS Comput. Biol.3(3):e56+, 2007.

176

Bibliography

[86] J. E. Hopcroft, R. Motwani, and J. D. Ullmamtroduction to Automata Theory, Languages,
and ComputationAddison Wesley, 2nd edition, 2000.

[87] D. Younger. Recognition and parsing of context-freegiaages in time n3*.Information
and Contro) 10(2):189-208, 1967.

[88] T. Kasami. An efficient recognition and syntax algomittior context-free algorithmsrlech-
nical Report AFCRL-65-758965.

[89] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal liference of RNA alignments.
Bioinformatics 25(10):1335-1337, 2009.

[90] Z.Weinberg and W. L. Ruzzo. Sequence-based heurfstidaster annotation of non-coding
RNA families. Bioinformatics 22(1):35-39, 2006.

[91] D. L. Kolbe and S. R. Eddy. Fast filtering for RNA homologgarch. Bioinformatics
27(22):3102-3109, 2011.

[92] J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Puntahallenges in homology
search: HMMERS3 and convergent evolution of coiled-coilioeg. Nucl. Acids Res2013.

[93] Infernal User's Guidehtt p://infernal.janelia.org/|,2013.

[94] E. P. Nawrocki. Structural RNA Homology Search and Aligent Using Covariance Mod-
els. PhD Thesis: Washington University School of Medic2@09.

[95] S. Henikoff and J. G. Henikoff. Amino acid substitutioratrices from protein block$2roc.
Natl. Acad. Sci. USA89(22):10915-10919, 1992.

[96] RNAMotif Users’ Manualhtt p:// casegroup. rutgers. edu/ casegr-sh-2.5. htni}

2001.

[97] D. Gautheret, F. Major, and R. Cedergren. Pattern baagfalignment with RNA primary
and secondary structures: an effective descriptor for tRBi&nput. Appl. Bioscib(4):325—
31, 1990.

[98] RNABOB: a program to search for RNA secondary structaifs in sequence databases.
http://selab.janelia.org/software. htn.

[99] M. Dsouza, N. Larsen, and R. Overbeek. Searching fadepat in genomic dataTrends
Genet, 13(12):497-8, December 1997.

[100] B. Billoud, M. Kontic, and A. Viari. Palingol: a declative programming language to de-
scribe nucleic acids’ secondary structures and to scaresequlatabaseéNucl. Acids Res.
24(8):1395-403, April 1996.

[101] D. Strothmann. The affix array data structure and iiegtions to RNA secondary structure
analysis.Theor. Comput. Sgi389(1-2):278-294, 2007.

177

http://infernal.janelia.org/
http://casegroup.rutgers.edu/casegr-sh-2.5.html
http://selab.janelia.org/software.html

Bibliography

[102] G. Mauri and G. Pavesi. Algorithms for pattern matchamd discovery in RNA secondary
structure.Theor. Comput. S¢i335(1):29-51, 2005.

[103] Moritz G. Maal3. Linear bidirectional on-line consttion of affix trees. Algorithmica
37(1):43-74, 2003.

[104] F. Meyer, S. Kurtz, R. Backofen, S. Will, and M. Bechkste Structator: fast index-based
search for RNA sequence-structure patteBSIC Bioinformatics 12(1):214, 2011.

[105] G. Mauri and G. Pavesi. Pattern discovery in RNA seaopndtructures using affix trees.
In Proceedings of the 14th Annual Symposium on Combinatoatiefy Matching volume
2676, pages 278-294. Springer, 2003.

[106] J. Karkkainen and P. Sanders. Simple linear work>safray construction. IfProceedings
of the 13th International Conference on Automata, Languayes ProgrammingSpringer,
2003.

[107] S. J. Puglisi, W.F. Smyth, and A. Turpin. The perforimarf linear time suffix sorting
algorithms. INDCC '05: Proceedings of the Data Compression Confergpages 358—-367,
Washington, DC, USA, 2005. IEEE Computer Society.

[108] G. Manzini and P. Ferragina. Engineering a lightweighffix array construction algorithm.
Algorithmicg 40:33-50, 2004.

[109] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replganffix trees with enhanced suffix
arrays.Journal of Discrete Algorithms2:53-86, 2004.

[110] J. Fischer. Wee LCRnformation Processing Letterd 10(8-9):317-320, 2010.

[111] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Parknéar-time longest-common-prefix
computation in suffix arrays and its applications.Pimceedings of the 18th Annual Sympo-
sium on Combinatorial Pattern Matchingages 181-192, 2001.

[112] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtignicant speedup of database
searches with HMMs by search space reduction with PSSM yamildels.Bioinformatics
25(24):3251-3258, 2009.

[113] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optinedat string matching based on
suffix arrays. InProceedings of the 9th International Symposium on Strirge€3sing and
Information Retrievalvolume 2476, pages 31-43. Springer, 2002.

[114] N. de Bruijn. A combinatorial problenkoninklijke Nederlandse Akademie v. Wetenschap-
pen 49:758764, 1946.

[115] I.L. Hofacker, M. Fekete, and P.F. Stadler. Second#mycture prediction for aligned RNA
sequencesl]. Mol. Biol,, 319(5):1059-66, 2002.

[116] B. Knudsen and J. Hein. Pfold: RNA secondary strucpuegliction using stochastic context-
free grammarsNucl. Acids Res31(13):3423-8, 2003.

178

Bibliography

[117] I.L. Hofacker. RNA consensus structure predictionwiRNAalifold. Methods Mol. Biol.
395:527-544, 2007.

[118] A. Bremges, S. Schirmer, and R. Giegerich. Fine-tgratiuctural RNA alignments in the
twilight zone. BMC Bioinformatics 11(222), 2010.

[119] J.H. Havgaard, R.B. Lyngso, G.D. Stormo, and J. GarodRairwise local structural align-
ment of RNA sequences with sequence similarity less than. Biginformatics 21:1815-
1824, 2005.

[120] E. Torarinsson, J.H. Havgaard, and J. Gorodkin. Mldtstructural alignment and clustering
of RNA sequencesBioinformatics 23:926-932, 2007.

[121] A.O. Harmanci, G. Sharma, and D.H. Mathews. Efficiaaitywise RNA structure prediction
using probabilistic alignment constrainBMC Bioinformatics 8(130), 2007.

[122] J. Reeder and R. Giegerich. Consensus shapes: amasilterto the Sankoff algorithm for
RNA consensus structure predictidBioinformatics 21(17):3516—23, 2005.

[123] A. Wilm, D.G.G. Higgins, and C. Notredame. R-Coffeenathod for multiple alignment of
non-coding RNA.Nucl. Acids Res36(9), 2008.

[124] P.P. Gardner, J. Daub, J. Tate, B.L. Moore, |I.H. Os&hGriffiths-Jones, R.D. Finn, E.P.
Nawrocki, D.L. Kolbe, S.R. Eddy, and A. Bateman. Rfam: Wédla, clans and the “deci-
mal” releaseNucl. Acids Res2010.

[125] P.P. Gardner, J. Daub, J.G. Tate, E.P. Nawrocji, DalbK, S. Lindgreen, A.C. Wilkinson,
R.D. Finn, S. Griffith-Jones, S.R. Eddy, and A. Bateman. Rigodates to the RNA families
databaseNucl. Acids Res37:D136—-D140, 2008.

[126] M.I. Abouelhoda and E. Ohlebusch. Chaining algorighior multiple genome comparison.
Journal of Discrete Algorithms3(2-4):321-341, 2005.

[127] S. Altuvia, A. Zhang, L. Argaman, A. Tiwari, and G. StoiThe Escherichia coli OxyS regu-
latory RNA represses fhlA translation by blocking ribosobieding. EMBO, 15(20):6069—
75, 1998.

[128] K. Darty, A. Denise, and Y. Ponty. VARNA: Interactiveaiving and editing of the RNA
seondary structureBioinformatics 25(15):1974-1975, 2009.

[129] K.S. Pollard, S.R. Salama, N. Lambert, M.A. LambotC8ppens, J.S. Pedersen, S. Katz-
man, B. King, C. Onodera, A. Siepel, A.D. Kern, C. Dehay, Hl)dM.Jr. Ares, P. Vander-
haeghen, and D. Haussler. An RNA gene expressed duringaod&velopment evolved
rapidly in humansNature 443(7108):167-172, 2006.

[130] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidiregicgearch in a string with wavelet trees
and bidirectional matching statistickf. Comput, 213:13-22, 2012.

179

Bibliography

[131] B. Albrecht and V. Heun. Space Efficient ModificationsStructator - A Fast Index-Based
Search Tool for RNA Sequence-Structure Patterns.Experimental Algorithmsvolume
7276 ofLecture Notes in Computer Scienpages 27-38. Springer, 2012.

[132] N. El-Mabrouk, M. Raffinot, J. E. Duchesne, M. LajoiedaN. Luc. Approximate matching
of structured motifs in DNA sequence. Bioinform. Comput. Biol.3(2):317-342, 2005.

[133] F. Meyer, S. Kurtz, and M. Beckstette. Fast online amkk-based algorithms for approxi-
mate search of RNA sequence-structure patteBhC Bioinformatics 14(1):226, 2013.

[134] Esko Ukkonen. Algorithms for approximate string ntaimg). Inf. Control, 64(1-3):100-118,
March 1985.

[135] E. Ukkonen. Online construction of suffix treedgorithmicg 14(3):249-260, 1995.

[136] Y. Kanamori and N. Nakashima. A tertiary structure mloof the internal ribosome entry
site (IRES) for methionine-independent initiation of s&tion. RNA 7(2):266—274, 2001.

[137] Z. Weinberg, J.X. Wang, J. Bogue, J. Yang, K. CorbindJ RMoy, and R.R. Breaker. Com-
parative genomics reveals 104 candidate structured RNAs bacteria, archaea, and their
metagenomesGenome Biology11(3):R31, 2010.

[138] ERPIN Documentation - Manuetht t p: //tagc. uni v-nrs. fr/erpin/|, 2006.

[139] David H. Mathews and Douglas H. Turner. Prediction dfARRsecondary structure by free
energy minimizationCurrent Opinion in Structural Biologyl6(3):270-278, 2006.

[140] S. Gog and M. Petri. Optimized succinct data structfioe massive dateSoftware Practice
and Experience44(11):1287-1314, 2014.

[141] H.LiandR. Durbin. Fastand accurate short read aligmravith BurrowsWheeler transform.
Bioinformatics 25(14):1754-1760, 2009.

180

http://tagc.univ-mrs.fr/erpin/

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die vorliegende Doktoe#rbelbst verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowiet&kanntlich gemacht habe.

Hamburg, den Juni 2014

Unterschrift

	Introduction
	RNAs and their manifold functions
	RNA structure and its importance
	The challenge of RNA homology search
	Thesis structure and contributions

	Existing RNA homology search methods
	Formal preliminaries
	Introduction to existing methods
	Comparative RNA analysis methods
	Comparison of RNAs with unknown secondary structure
	The three plans of comparative RNA analysis
	Faster simultaneous RNA alignment and folding: Sankoff variants
	Comparison of RNAs with known secondary structure

	Secondary structure profiles: ERPIN
	Covariance models
	Descriptor-based search methods
	Concluding remarks on existing RNA homology search methods

	Fast index-based bidirectional search for RNA sequence-structure patterns
	Introduction
	Formal preliminaries
	The affix array data structure
	Searching RNA databases with affix arrays
	Unidirectional traversal of affix arrays
	Bidirectional traversal of affix arrays
	RNA sequence-structure pattern matching using affix arrays
	An example of bidirectional RNA sequence-structure pattern search
	Complexity analysis
	A bidirectional search algorithm supporting variable length RSSPs

	RNA secondary structure descriptors based on multiple ordered RSSPs
	Implementation and computational results
	Structator software package
	Discussion and concluding remarks

	Fast approximate search for RNA sequence-structure patterns
	Introduction
	Approximate matching of RNA sequence-structure patterns
	Online approximate RNA database search for RSSPs: ScanAlign
	Faster online alignment with early-stop computation: LScanAlign
	Index-based search: LESAAlign
	Enhanced index-based search: LGSlinkAlign
	Example: searching for an RSSP with algorithm LGSlinkAlign

	RNA secondary structure descriptors based on multiple ordered RSSPs
	Implementation and computational results
	RaligNAtor software package
	Conclusions
	Further techniques integrated in the RaligNAtor software for search acceleration
	Sequence-based filter acceleration
	Multithreaded searching
	Benchmark experiments

	Conclusions and future work
	Future work

	Appendices
	Structator user's manual
	Introduction
	Index construction with afconstruct
	Searching with afsearch

	RaligNAtor user's manual
	Introduction
	Database preprocessing with sufconstruct
	Searching with RaligNAtor

	Bibliography

