
Efficient methods for matching RNA
sequence-structure patterns

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. nat.

an der Fakulẗat

für Mathematik, Informatik und Naturwissenschaften der

Universiẗat Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Fernando Meyer

aus Balnéario Camboríu, Brasilien

Juni 2014

Gutachter:
Dr. Michael Beckstette
Prof. Dr. Stefan Kurtz
Prof. Dr. Jan Gorodkin

Tag der Disputation:
16. April 2015

i

ii

Zusammenfassung

Die Sekundärstruktur eines RNA Moleküls ist eng mit seiner Funktion verbunden und häufig stärker

konserviert als die Sequenz. Folglich ist für die wichtigeAufgabe der Datenbanksuche nach funk-

tionell ähnlichen RNAs, welche sich evolutionär von einem gemeinsamen Vorgängermolekül ent-

wickelt haben (RNA Homologiesuche), die Suche nach Sequenz-Struktur-Mustern von großer Be-

deutung. Allerdings verfügen aktuelle Werkzeuge für diese Aufgabe nur über ein Laufzeitverhalten,

welches im besten Fall linear von der Größe der zu durchsuchenden Sequenzdatenbank abhängt.

Deshalb sind sie häufig wenig geeignet für die Suche in großen Datenbanken. Der Grund hierfür ist

der Verzicht auf Index-Datenstrukturen zur Beschleunigung der Suche. Ein weitere Nachteil aktu-

eller Werkzeuge zur Suche mit Sequenz-Struktur-Mustern, welcher insbesondere ein Hindernis bei

sensitiven und spezifischen Suchen darstellt, ist die nur sehr eingeschränkt vorhandene Möglichkeit

approximative Treffer struktureller RNA Suchmuster zu finden.

In dieser Arbeit präsentiere ich neue Methoden und direkt einsetzbare Werkzeuge zur schnellen

Suche mit RNA Sequenz-Struktur Mustern in großen Sequenzdatenbanken. Die erste vorgestellte

Methode basiert auf Affix-Arrays, einer relativ neuen Indexdatenstruktur, welche durch Vorver-

arbeitung der Zieldatenbank erstellt wird. Im Gegensatz zuetablierten Indexdatenstrukturen wie

Suffixbäumen oder arrays, unterstützen Affix-Arrays die bidirektionale Mustersuche. Diese ist not-

wendig, um die strukturellen Nebenbedingungen eines Suchmusters effizient zu berücksichtigen.

Strukturelle Muster, wie zum Beispiel Stem-Loops können von innen nach außen gesucht werden,

sodass zuerst die innere Loop Region und dann die paarenden Basen des Stem-Bereiches konse-

kutiv gesucht werden. Diese Vorgehensweise erlaubt das Ausnutzen von Basenpaarinformationen,

um den Suchraum zu reduzieren und führt zu einer erwartetenLaufzeit, welche sich sublinear zur

Größe der zu durchsuchenden Sequenzdatenbank verhält. Um die Beschreibung von RNA Mo-

lekülen, welche in komplexere Sekundärstrukturen mit multiplen Sequenz-Struktur Mustern falten,

zu unterstützen, wurde eine neue Methode zur Verkettung (Chaining) von Mustertreffern in die Mu-

stersuche integriert. Durch die Verkettung werden zufällige Mustertreffer, insbesondere hervorge-

rufen durch unspezifische Muster, aus der Menge von Zwischenresultaten entfernt. In Benchmark-

Experimenten auf der Rfam Datenbank war unsere Methode um bis zu zwei Größenordnungen

schneller als bisherige Methoden.

Während die erste in dieser Arbeit vorgestellte Methode zur effizienten Suche mit Sequenz-Struktur-

Mustern sehr schnell ist, verfügt sie nur über beschränkte Möglichkeiten approximative Treffer ei-

nes RNA Suchmusters, welche zum Beispiel Insertionen/Deletionen an beliebigen Positionen oder

die Sekundärstruktur verändernde Mutationen enthalten, zu finden. Diese Einschränkung erlaubt

iii

oftmals nicht die Beschreibung einer RNA Familie mit einem Muster, welches sowohl sensitiv,

als auch spezifisch genug ist, um alle Familienmitglieder zufinden. Aus diesem Grund habe ich

neue indexbasierte und online Verfahren zur approximativen Suche mit Sequenz-Struktur-Mustern

entwickelt, welche Edit-Operationen auf Einzelbasen und Basenpaaren erlauben. Aufgrund des ho-

hen Berechnungsaufwands des hierfür erforderlichen Sequenz-Struktur-Alignments, berechnet das

vorgestellte Verfahren effizient nur semi-globale Alignments zwischen strukturellen RNA Mustern

und Teilworten der zu durchsuchenden Sequenz, deren Alignmentkosten einen benutzerspezifi-

schen Schwellwert nicht überschreiten. Hierzu wird ein neues, auf dynamischer Programmierung

(DP) basierendes Berechnungsschema vorgestellt, welches(1) die Einträge der DP-Matrizen wie-

der verwendet und (2) die Alignmentberechnung für Teilworte, welche keinen Treffer erzeugen

können, vermeidet. Dieses neue Verfahren verwendet ein aus der zu durchsuchenden Sequenzda-

tenbank generiertes Suffix-Arrays und erzielt eine Laufzeit, welche sublinear mit der Größe der zu

durchsuchenden Sequenzen skaliert. Des Weiteren enthalten alle vorgestellten Algorithmen unse-

ren neuen Ansatz zum Verketten von Mustertreffern. Laufzeitexperimente zeigen, dass unser bestes

indexbasiertes Verfahren um zwei bis drei Größenordnungen schneller ist als bisherige Methoden.

iv

Abstract

The secondary structure of RNA molecules is intimately related to their function and often more

conserved than the sequence. Hence, the important task of searching databases for functionally

related RNAs evolving from a common ancestor, i.e. RNA homology search, requires to match

sequence-structure patterns. However, current tools for this task have, in the best case, a running

time that is only linear in the size of the sequence databases. Consequently, they are not well

suited for searching large databases. This can be explainedby their failure to use an appropriate

index data structure for fast searches. Furthermore, a disadvantage of current tools for matching

sequence-structure patterns is their limited capacity to find approximate matches to structural RNA

patterns, which poses an obstacle to sensitive and specific searches.

In this thesis, we present novel methods and readily applicable software for fast matching of RNA

sequence-structure patterns in sequence databases. Our first method is based on affix arrays, a

recently introduced index data structure, preprocessed from the target database. Unlike established

index data structures like suffix trees or arrays, affix arrays support bidirectional pattern search,

which is required for efficiently handling the structural constraints of the pattern. Structural patterns

like stem-loops can be matched inside out, such that the loopregion is matched first and then the

pairing bases on the boundaries are matched consecutively.This allows to exploit base pairing

information for search space reduction and leads to an expected running time that is sublinear

in the size of the sequence database. To support the description of RNA molecules that fold into

complex secondary structures with multiple ordered sequence-structure patterns, we incorporate in

the pattern search a new chaining approach. The chaining removes spurious matches from the set

of intermediate results, in particular of patterns with little specificity. In benchmark experiments on

the Rfam database, our method runs up to two orders of magnitude faster than previous methods.

While our first method is extremely fast, it has limited capacity to find approximate matches to RNA

patterns, such as matches with insertions or deletions at arbitrary positions relative to the pattern or

mutations affecting the secondary structure. This limitation often does not allow to define patterns

that are specific and sensitive enough to match the sequencesbelonging to the sought RNA family.

Therefore, we have developed novel index-based and online algorithms for approximate match-

ing of RNA sequence-structure patterns supporting a full set of edit operations on single bases

and base pairs. Due to the high computational cost of the underlying sequence-structure alignment

problem, our algorithms efficiently compute semi-global alignments of structural RNA patterns

and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit

distance threshold. For this purpose, we introduce a new computing scheme to reuse the entries

v

of the required dynamic programming matrices for all substrings and combine it with a technique

for avoiding the alignment computation of non-matching substrings. Our new index-based algo-

rithms exploit suffix arrays preprocessed from the target database and achieve running times that

are sublinear in the size of the searched sequences. Moreover, all the new algorithms integrate our

approach for chaining matches. Benchmark experiments showthat our best index-based algorithm

is two to three orders of magnitude faster than previous methods.

vi

Acknowledgments

I thank my main supervisor, Dr. Michael Beckstette, for introducing me to interesting research top-

ics and providing guidance throughout the years. I also thank Prof. Stefan Kurtz for his valuable

advisory and contributions to the carried research projects. I thank Dr. Sebastian Will for his con-

tributions to theStructatorproject. I thank Dr. Steffen Dettmann for his contributionsthat led to

the RaligNAtorproject. I thank my former office colleagues, Sascha Steinbiß and Dirk Willrodt,

for their readiness to help at all times and for proofreadingparts of my thesis. I thank the Center

for Bioinformatics of the University of Hamburg and Prof. Matthias Rarey for the financial and

infrastructural support required for carrying my research. I thank Karin Lundt not only for doing

part of the office work but also for her friendliness and support. Finally, I thank my girlfriend, Rika

Paulisch, for her support and patience and my parents for their support from abroad.

vii

viii

Publications

• Fernando Meyer, Stefan Kurtz, and Michael Beckstette. Fast online and index-based al-

gorithms for approximate search of RNA sequence-structurepatterns.BMC Bioinformatics,

14(1):226, 2013.

• Fernando Meyer, Stefan Kurtz, Rolf Backofen, Sebastian Will, and Michael Beckstette.

Structator: fast index-based search for RNA sequence-structure patterns.BMC Bioinformat-

ics, 12(1):214, 2011. This article was selected for theHighlight Track - Research Highlights

of the International German Conference on Bioinformatics, 2011.

Both publications acquired “highly accessed” designationfrom the publisher.

ix

x

Contents

1 Introduction 1
1.1 RNAs and their manifold functions 1

1.2 RNA structure and its importance 3

1.3 The challenge of RNA homology search 4

1.4 Thesis structure and contributions 7

2 Existing RNA homology search methods 9
2.1 Formal preliminaries 9

2.2 Introduction to existing methods 10

2.3 Comparative RNA analysis methods 10

2.3.1 Comparison of RNAs with unknown secondary structure 11

2.3.2 The three plans of comparative RNA analysis 13

2.3.3 Faster simultaneous RNA alignment and folding: Sankoff variants 15

2.3.4 Comparison of RNAs with known secondary structure 17

2.4 Secondary structure profiles:ERPIN . 18

2.5 Covariance models .. . 22

2.6 Descriptor-based search methods 36

2.7 Concluding remarks on existing RNA homology search methods 39

3 Fast index-based bidirectional search for RNA sequence-s tructure patterns 43
3.1 Introduction .. . 43

3.2 Formal preliminaries 44

3.3 The affix array data structure 45

3.4 Searching RNA databases with affix arrays 49

3.4.1 Unidirectional traversal of affix arrays 49

3.4.2 Bidirectional traversal of affix arrays 50

3.4.3 RNA sequence-structure pattern matching using affix arrays 52

3.4.4 An example of bidirectional RNA sequence-structure pattern search 53

3.4.5 Complexity analysis .. 56

3.4.6 A bidirectional search algorithm supporting variable length RSSPs 59

3.5 RNA secondary structure descriptors based on multiple ordered RSSPs 61

3.6 Implementation and computational results 66

3.7 Structatorsoftware package . 79

xi

Contents

3.8 Discussion and concluding remarks 81

4 Fast approximate search for RNA sequence-structure patte rns 83

4.1 Introduction .. . 83

4.2 Approximate matching of RNA sequence-structure patterns 84

4.2.1 Online approximate RNA database search for RSSPs:ScanAlign. 86

4.2.2 Faster online alignment with early-stop computation: LScanAlign 89

4.2.3 Index-based search:LESAAlign . 93

4.2.4 Enhanced index-based search:LGSlinkAlign 97

4.2.5 Example: searching for an RSSP with algorithmLGSlinkAlign 102

4.3 RNA secondary structure descriptors based on multiple ordered RSSPs 105

4.4 Implementation and computational results 105

4.5 RaligNAtorsoftware package . 121

4.6 Conclusions .. 126

4.7 Further techniques integrated in theRaligNAtorsoftware for search acceleration . . 127

4.7.1 Sequence-based filter acceleration 128

4.7.2 Multithreaded searching 128

4.7.3 Benchmark experiments .. 130

5 Conclusions and future work 135

5.1 Future work .136

Appendices 139

A Structator user’s manual 139

A.1 Introduction .. . 139

A.2 Index construction withafconstruct . 139

A.3 Searching withafsearch. 144

B RaligNAtor user’s manual 153

B.1 Introduction .. . 153

B.2 Database preprocessing withsufconstruct . 153

B.3 Searching withRaligNAtor . 159

Bibliography 171

xii

List of Figures

1.1 Secondary structure elements of an RNA molecule 4

1.2 Two different sequences forming the same secondary structure 5

2.1 Different representations of the secondary structure of an RNA 10

2.2 Example of a base pairing probability matrix 12

2.3 A multiple sequence alignment annotated with a consensus secondary structure . . 14

2.4 Substructural elements of an RNA according toERPIN 18

2.5 A multiple alignment formatted for input inERPINand respective profile 20

2.6 Example of a branching RNA secondary structure 24

2.7 Parses of two sequences for a given context-free grammar. 25

2.8 The guide tree of a structure-annotated multiple sequence alignment 27

2.9 Covariance model obtained from a guide tree 30

2.10 Covariance model and parse trees of given sequences 31

2.11 State transitions and base emissions probabilities ofa covariance model 33

2.12 Hammerhead ribozyme RNA and resp.RNAMotif andRNABOBdescriptors 37

2.13 RNAMOTandPatScandescriptors for the Hammerhead ribozyme RNA 38

3.1 Unidirectional and bidirectional searches for an RNA RSSP 45

3.2 Affix array example .. . 47

3.3 Algorithm for unidirectional search of a sequence pattern 50

3.4 Algorithm for bidirectional RSSP matching using affix arrays 54

3.5 Structural patterns supported byStructator . 60

3.6 Algorithm for bidirectional matching of the loop of a variable-length RSSP 62

3.7 Algorithm for bidirectional matching of the stem of a variable-length RSSP 63

3.8 Chaining of RSSP matches 64

3.9 Affix array construction times for genomes of different model organisms 67

3.10 Influence of loop length and unambiguous characters on search time 69

3.11 Distribution of speedup factors ofBIDsearchoverRNABOBandRNAMotif 71

3.12 Scaling behavior of searching subsets ofRFAM10 of different sizes 72

3.13 StructatorandRNAMotif descriptors for the OxyS RNA family 73

3.14 Consensus structure of the CTVrep sig RNA family and resp.Structatordescriptor 75

3.15 StructatorandRNAMotif descriptors for the HAR1F RNA family 76

3.16 Structatordescriptor for the HAR1F RNA family and examples of local chains . . 77

xiii

List of Figures

4.1 A semi-global alignment and the involved sequence-structure edit operations 84

4.2 DP tables for a sequence-structure alignment computation 90

4.3 Regions of a sequence-structure pattern 91

4.4 DP tables for a sequence-structure alignment computation andcomputed entries . 95

4.5 Pseudocode for algorithmLESAAlign . 96

4.6 Example of an enhanced suffix array 98

4.7 Pseudocode for algorithmLGSlinkAlign . 103

4.8 FunctionmarkSuffixesused by algorithmLGSlinkAlign 104

4.9 Consensus secondary structure of the tRNA family and resp. RSSP 107

4.10 Running times of the new algorithms to searchRFAM10.1 with a tRNA RSSP . . 108

4.11 Consensus structure of family Cripavirus internal ribosome entry site and resp. SSD 109

4.12 Running times of the new algorithms to searchRFAM10.1 with a stem-loop pattern 110

4.13 Consensus structure of family flg-Rhizobiales RNA motif and resp. SSD 112

4.14 Scaling behavior when searching subsets ofRFAM10.1 of different length 113

4.15 Search times for different number of bases in the loop and stem for given RSSPs . 114

4.16 RNAMotif descriptor without errors for the tRNA117

4.17 Results of ROC analyses usingRaligNAtorandblastn 123

4.18 Detailed results of ROC analyses usingRaligNAtorandblastn 124

4.19 Additional results of ROC analyses usingRaligNAtorandblastn 125

4.20 Running times of algorithmLGSlinkAlignusing a sequence-based filter 131

4.21 Running times of multithreaded algorithmsLGSlinkAlignandLScanAlign 132

4.22 Running times of algorithms searching with up to 32 threads 133

xiv

1 Introduction

1.1 RNAs and their manifold functions

Following the pioneering work of Crick, there was for a long time a general belief that the primary

function of RNAs was to carry information from DNA to proteins [1, 2]. This was an assumption

of the central dogma of molecular biology, according to which in most cells genetic information

can only flow from DNA to RNA and from this to protein. By the late 1970s, three types of RNAs

were known and relatively well understood:

• messenger RNA (mRNA), the carrier of information from DNA toprotein;

• ribosomal RNA (rRNA), the RNA component of the ribosome, which is a machinery that

synthesizes proteins by converting triplets of bases in theorder specified by the mRNA into

chains of amino acids; and

• transfer RNA (tRNA), an RNA that carries an amino acid to ribosomes and mediates its

recognition to the corresponding base triplet.

RNA molecules were, therefore, classified asprotein-coding(mRNA) andnon-protein-coding(tRNA

and rRNA) or simplynon-coding.

The focus on proteins was consistent with the conviction that they had unique importance in living

organisms by controlling the majority of regulatory transactions and being the main contributors to

organism complexity. In 1972, Ohno even used the termjunk DNAto denote untranslatable parts of

DNA and, a few years later, Orgel and Crick similarly classified pieces of DNA either as encoding

proteins by occurring as mRNA or as useless [3, 4]. However, in 1977 the question of the purpose of

the “useless parts” became increasingly intriguing with the discovery of Sharp and Roberts stating

that genes could be discontinuous in the genome [5, 6]. Theirworks, for which Sharp and Roberts

received a Nobel Prize in 1993, led to the discovery of the process of splicing and the fact that,

unlike in prokaryotes, most of the DNA in eukaryotes does notcode for proteins. Indeed, only

∼1.5% of the human genome is estimated to code for proteins [7], but83% to 85% is estimated

to be transcribed [8, 9]. This suggests that there exists a huge number of non-coding RNAs, whose

functions in humans and other organisms we have just startedto understand. Nevertheless, we can

already recognize RNAs as extremely important molecules.

Diverse findings have radically changed our views about RNAs, now known to participate in many

cellular processes. Certain RNAs, for example, can catalyze biochemical reactions similarly to

1

1 Introduction

protein enzymes. The first evidence for these RNAs, called ribozymes, was given by Cech, who

showed that a portion of an RNA can have enzyme-like properties that allow self-splicing, removing

non-coding parts (introns) of a pre-messenger RNA for the formation of a mature mRNA [10].

Thereafter, Altman showed that RNase P, a kind of ribozyme, acts in the maturation of tRNAs [11].

For their discoveries, Cech and Altman were awarded a Nobel Prize in 1989. Many other ribozymes

were later also discovered [12]. Due to the capacity of RNAs to store genetic information similarly

to DNA and in particular due to the discoveries of Cech and Altman disregarding the need for

enzymatic proteins for RNA replication (and therefore replication of genetic information), Gilbert

hypothesized anRNA world[13]. According to this hypothesis, RNAs may have pre-existed DNA

and proteins, until DNA undertook their role as informationcarrier due to its increased chemical

stability, whereas proteins could become more specializedmolecules due to the variety of amino

acids they are made of. RNAs, therefore, may have played major roles in the evolution of cellular

life.

Further discoveries also indicate RNAs as fundamental agents in life evolution. Contradicting the

central dogma, it is now known that reverse transcription, i.e. generation of DNA from RNA, oc-

curs in all domains of life [14]. Already in 1970, Temin and Baltimore independently discovered

an RNA-dependent DNA polymerase called reverse transcriptase, an enzyme that enables reverse

transcription [15, 16]. Their works helped to understand the replication of viruses whose genetic in-

formation is stored not in DNA, but in RNA. These so-called retroviruses use reverse transcriptase

to replicate themselves in the form of DNA integrated in a host genome. The discovery of reverse

transcriptase, for which Temin and Baltimore received a Nobel Prize in 1975, had a huge impact on

the research of tumor-causing viruses. The activity of thisenzyme also made possible the detection

e.g. of the HIV retrovirus in humans causing AIDS. There is also evidence that reverse transcriptase

played a major role in the formation of more than one third of the human genome by enabling the

replication of retrotransposons, i.e. DNA sequences that use RNA intermediates to amplify them-

selves in the genome [7]. In plants, the rate of DNA derived from transposable sequences shall be

even higher [17].

Non-coding RNAs are also accounted for many functions in (post-)transcriptional regulation of

gene expression. In 1993, small non-coding RNAs, called microRNAs, were discovered [18]. With

only 22 nucleotides, a microRNA was shown to inhibit the translation of a particular mRNA by

being partially complementary to it. In 1998, Fire and Mellomanaged to manipulate gene expres-

sion with RNAs, substantially inhibiting genes in the presence of double stranded RNAs [19]. The

inhibition of gene expression by RNAs, which is a post-transcriptional regulation of gene expres-

sion, became known as RNA interference (RNAi). These and other discoveries emphasizing the

importance in particular of small RNAs in RNAi were announced by the Science Magazine as the

Breakthrough of the Yearin 2002 [20]. In 2006, the work of Fire and Mello rendered thema Nobel

Prize. Today, RNAi is at the center of the research of many human diseases including cancer [21],

which are commonly related to down or upregulation of genes.

2

1.2 RNA structure and its importance

Additional examples of biological processes involving non-coding RNAs are as follows.

• Alternative splicing. Non-coding RNAs regulate the removal of introns and connection of

exons in the processing of pre-messenger RNAs. This regulation ensures a massive variety of

proteins and is considered an important source of complexity in (eukaryotic) organisms [22].

It is also suggested that an organism’s complexity correlates with the proportion of non-

coding DNA in its genome [23].

• Chromatin regulationin eukaryotes. Long non-coding RNAs, normally consisting of more

than 200 nucleotides, can mediate protein modifications in the cell nucleus leading to gene

silencing [24]. These RNAs can also silence one of the X chromosomes in female cells (of

mammals), leaving a single X chromosome to be transcribed inmales and females [24].

• RNA-RNA and RNA-protein interactions. These interactions, performed e.g. by riboswitches

[25], are forms of regulating gene expression. It is also hypothesized that RNA-protein inter-

actions are related to an ancient way by which proteins were directly produced from mRNAs

without the need for tRNAs and ribosomes. This idea gives additional support to theRNA

world hypothesis [26].

• Immune systems. RNAs can mediate activation and repression of immune response genes

in the antimicrobial defense of a host organism [27] and alsoregulate gene expression in

pathogenic bacteria avoiding detection by the host’s immune system [28].

These are only some of the functions of non-coding RNAs. Manymore could be listed here and

many others continue to be discovered.

1.2 RNA structure and its importance

An RNA molecule consists of a sequence of the nucleotides (orbases) adenine (A), cytosine (C),

guanine (G), and uracil (U). Unlike DNA, which usually occurs as a double-stranded molecule and

contains thymine instead of uracil, RNA is usually single stranded. On a basic level of organization

of an RNA molecule, one observes itsprimary structure, which is a simple specification of the

nucleotide sequence composing it. One also observes in RNA thatcomplementary basescan form

pairs via hydrogen bonds, such as the Watson-Crick pairs A-Uand C-G. Other pairings are also

possible, such as the wobble pair G-U. Due to these pairings,an RNA molecule can fold into

characteristic complexsecondaryand tertiary structures. The secondary structure, formed by the

set of base pairs occurring in the molecule, can consist of different substructural elements like stem-

loops with or without bulges or internal loops as shown in an example in Figure 1.1. The tertiary

structure additionally considers specific atomic positions in three-dimensional space [29, 30].

The secondary and tertiary structures are vital for the function of many non-coding RNAs and their

interaction with other molecules, with tRNAs and rRNAs being important examples. In all tRNAs,

the secondary structure necessary for protein synthesis resembles a characteristic cloverleaf with a

3

1 Introduction

C

A

C

A

C

A

U

C

A

G

U

G
GGUU

CI

N

A

C N
A G C C

G A

C

C

A

U

U

G
C C

G

A

U

A

A
A G

A

C

C
A

A

G

U

C
CU

C

A

A
AA

U

C

A
G

U
G A

I

A

CA

C
A

C
U

A
AG

U

G

U

G

1

10

20 30

40

50

60

70

80

C A C A C A U C A G U G G G U U C I N A C N A G C C G A C C A U U G C C G A U A A A G A C C A A G U C C U C A A A A U C A G U G A I A C A C A C U A A G U G U G

1 10 20 30 40 50 60 70 80

Interior LoopStem

Bulge
Loop

Stem Loop1 Stem Loop2 Stem Loop3

Figure 1.1: Secondary structure elements of an RNA moleculerepresented by a base-pair graph

(left) and as arc-annotated sequence (right). The depictedstructure contains three stem-

loop substructures.

stem and three stem-loop substructures similarly to the secondary structure shown in Figure 1.1.

In this structure, the loop opposite to the stem enables the recognition of triplets of bases from an

mRNA to the corresponding amino acid attached to the stem, whereas the other stem-loops further

assist in the recognition of the correct amino acid. rRNAs, on the other hand, form along with

proteins the structure of the two ribosomal subunits, one binding to an mRNA and the other to

tRNA and amino acids.

Most non-coding RNAs with enzymatic activities, either as ribozymes or associated to proteins,

also heavily rely on their structure to realize their functions. Ribozymes can use their secondary

structure to selectively cleave bases from other RNA molecules. Due to this property, ribozymes

have been since recently applied in the treatment of human diseases like AIDS [31]. Associated

with proteins, RNAs can also use their primary, secondary, or tertiary structure to act as guides by

targeting other RNA molecules or DNA [32]. Examples of such non-coding RNAs are:

• small interfering RNAs (siRNAs), which target mRNAs for degradation;

• small nuclear RNAs (snRNAs), which are involved in the modification of rRNAs; and

• guide RNAs (gRNAs), which catalyse the insertion or deletion of bases U in pre-mRNAs of

some protozoan organisms.

The structure is extremely important for the function of a number of other non-coding RNAs (see

e.g. [33]).

1.3 The challenge of RNA homology search

Primary and secondary structure conservation among RNAs with similar function is widely ac-

knowledged. Such structure similarities are either inherited from a common ancestor or result from

convergent evolution via natural selection. RNAs whose structure similarities classify in the former

case are said to behomologousand can be grouped into families. For instance, the Rfam database

4

1.3 The challenge of RNA homology search

G C C A G

A

U

G
A U G

A

C

G A C C U G G G U G

G
A

A

C

C

U

A

C

C

C
U

G

U

G

GG

CACCCAUGUC

C

G

A
GCC

C

C

CUGGC

1

63

G.gallus.2 UAUUUGUCAUGACAGUCACAGCAUAAA.GCGCA...GAC.GGCUGUGACCUGAUUUUAGAAAAUA

H.sapiens.1 GCCAGAUGAUGACGACCUGGGUGGAAACCUACCCUGUGGGCACCCAUGUCCGAG.CCCC.CUGGC

A

(A)

(B)

Figure 1.2: (A) Two RNA sequences which, despite differing at the positions marked in red,

form the same secondary structure and belong to the same SECIS 1 family (Rfam

Acc.: RF00031). (B) Corresponding secondary structure with bases from sequence

H.sapiens.1.

release 11.0 compiles 2,208 such families [34]. A very important task in bioinformatics is to search

sequence databases, e.g. genomes, for occurrences of RNA family members, since this can provide

insight about the functions encoded in the searched sequence. This task is calledhomology search.

However, effective RNA homology search is not trivial. Throughout evolution RNAs suffer pressure

to retain their function, and consequently also retain primary and secondary structure information,

because loss of function usually means an evolutionary disadvantage. Yet, evolutionary pressure on

the primary and secondary structure can occur with different intensities. For example, a large num-

ber of mutations such as base replacements, deletions, and/or insertions can occur in the sequence,

while the RNA may still be able to maintain its secondary structure and function. Even molecules

with a relatively low sequence similarity can form similar secondary structures, since the substi-

tution of a paired base can co-vary with the substitution of the other base of the pair, which still

allows them to pair according to Watson-Crick and wobble pairing rules (see an example in Fig-

ure 1.2). For this reason, primary and secondary structure conservation varies, to different degrees,

even among members of well-established RNA families. For example, while in some families of

snRNAs like the snRNA Z178 (Rfam Acc.: RF00306) one observeshigh primary and secondary

structure similarity, in others like the U3 family (Rfam Acc.: RF00012) only the secondary struc-

ture is highly conserved. Further hampering RNA homology search is the fact that RNAs can vary

considerably in length, as observed when comparing micro and long non-coding RNAs. In addition,

compared to proteins, the reduced alphabet size reflected bythe four nucleotides RNAs can consist

of also means reduced sequence information.

5

1 Introduction

Therefore, RNA homology search demands flexible tools making use of both primary and sec-

ondary structure information of the sought RNA family. Popular tools based only on sequence com-

parison likeBlast [35] andFasta[36], despite providing specific results, are provably not sensitive

enough to find members of RNA families folding into characteristic secondary structures but with

lower degrees of sequence conservation [37]. Besides ignoring secondary structure information,

the heuristic approach of these tools requires exact matching of short fixed-size sequences, which

is inappropriate for matching RNAs with frequent insertions and deletions. Combined with the his-

torical focus on the research of proteins, the misuse of these tools unsuitable for the search of RNAs

could explain why many non-coding RNAs remained undetectedduring a long time. Also, other

traditional more compute intensive algorithms are based only on sequence, e.g. Smith-Waterman

[38] and using HMMs [39]. Hence, newer tools have been developed to enable more sensitive RNA

homology searches. Some tools, e.g.Infernal [40], ERPIN [41], andRNAMotif [42], use a model

or pattern storing primary and secondary structure information of the sought RNA family. The goal

of the model, which can be used to search multiple databases,is to be general enough to represent

all members of the family but also be specific to avoid matching false members. Other tools, e.g.

Foldalign [43] andLocARNA[44], directly perform pairwise comparison of RNAs with known or

unknown secondary structures trying to identify sequence and structure similarities.

In addition to contributions from new software, much of our today’s knowledge about the functions

and complexity of the transcriptome (i.e. the set of all coding and non-coding RNAs) in a variety of

organisms can be credited to huge advancements in sequencing technologies in the last ten years.

For instance, the Human Genome Project initiated in 1990 to completely sequence a human genome

for the first time was costly and required thirteen years to complete [45]. Since then, new high-

throughput sequencing technologies able to produce millions of sequences in parallel have been

transforming genome sequencing into a much cheaper and routine task [46]. These technologies

made possible e.g. the complete sequencing of 1,092 human genomes announced in 2012 [47] and

put the race to sequence a human genome for a cost of less than 1,000 dollars close to an end

[46]. Also, high-throughput sequencing technologies enabled the development of techniques like

RNA-Seq [48] and Direct RNA Sequencing [49] for the identification of the whole transcriptome

in genomes. These technologies further facilitate the discovery of RNAs and their functions.

While new sequencing technologies can contribute to improving our knowledge about RNAs, the

increase in the amount of sequence data they produce by far exceeds the increase in computing

capacity for the data analysis. This can be observed in a comparison between the cost of genome

sequencing and the Moore’s law for computing power [50]. Because the running time of existing

tools for RNA homology search considering primary and secondary structure information scales at

best linearly in the size of the searched sequences, searching larger and larger sequence databases in

plausible time becomes increasingly challenging. Ideally, besides being able to handle primary and

secondary structure properties particular to each RNA family, a search tool should have a running

time that scales sublinearly in the size of the analyzed sequences.

6

1.4 Thesis structure and contributions

To accelerate sequence analysis, a well-known approach is to build an index from the target se-

quences using a full text index data structure like the suffixtree [51], the (enhanced) suffix array

[52], or a compressed structure [53]. Once constructed, theindex data structure can be used many

times to accelerate sequence analysis. This amortizes the time spent in its construction. In the con-

text of biological sequence analysis, enhanced suffix arrays have already successfully been applied

in e.g. [54], considerably speeding up database searches using position specific scoring matrices

(PSSMs) as query. PSSMs are sequence-based patterns typically used to model short amino acid or

nucleotide sequences. For searches with RNA patterns encoding primary and secondary structure

information of an RNA family, i.e.sequence-structure patterns, however, no practical tool that can

exploit an index data structure has yet been developed.

1.4 Thesis structure and contributions

This thesis is concerned with efficient methods for RNA homology search in large sequence da-

tabases. Therefore, in the following Chapter, we present existing methods for this task including

methods that perform direct comparison of RNAs as well as methods that use a model of an RNA

family for the search. We will see that methods following thelatter approach, in particular methods

for matching RNA sequence-structure patterns, are better suited for searches in a large scale.

In Chapter 3, we present our first novel method for fast matching of RNA sequence-structure pat-

terns. We employ in our method the affix array index data structure, which supports bidirectional

pattern search and allows to efficiently handle the structural constraints of the patterns. This leads to

an expected running time that is sublinear in the size of the sequence database. To search for com-

plex RNA molecules, we use a new chaining approach which consists in describing the molecule

with several patterns and then searching for chains of matches where the order of the patterns is

preserved.

To enable even more sensitive and specific searches, we present in Chapter 4 new online and index-

based algorithms for approximate matching of RNA sequence-structure patterns. Because this re-

quires to compute semi-global alignments of structural RNApatterns and substrings of the target

sequence, we begin with an efficient online algorithm for this purpose that reuses the entries of the

required dynamic programming matrices for all substrings.Then, we improve this algorithm by

incorporating a technique for avoiding the alignment computation of non-matching substrings and

subsequently apply to this algorithm the enhanced suffix array index data structure. We devise two

index-based algorithms, both which have a running time thatscales sublinearly in the size of the tar-

get database. As in our first method, our chaining approach isintegrated with all these algorithms.

In an extension, we apply general techniques to the algorithms like multithreaded computing for

further practical search acceleration.

Because our methods in Chapters 3 and 4 employ very differentalgorithms and also differ in terms

of sensitivity and specificity, each of these chapters present a detailed evaluation of the respective

7

1 Introduction

methods in terms of speed and performance in RNA homology search. Finally, last conclusions and

an outlook for future work are given in Chapter 5.

8

2 Existing RNA homology search methods

2.1 Formal preliminaries

We begin introducing some formal definitions and notations that are used throughout this thesis.

Additional definitions will be presented later as needed.

Definition 1 An RNA alphabetA = {A, C, G, U} is a set of characters coding for the bases

adenine (A), cytosine (C), guanine (G), and uracil (U).

Definition 2 Let Φ = {R, Y, M, K, W, S, B, D, H, V, N} be a set of characters. According to

the IUPAC definition, each character inΦ denotes a specific character classϕ(x) ⊆ A [55]. Each

characterx ∈ A can be seen as a character classϕ(x) = {x} of exactly one element.

Definition 3 An RNA primary structureor sequenceS of lengthn = |S| overA is a juxtaposi-

tion of n bases fromA. S[i], 1 ≤ i ≤ n, denotes thebase ofS at positioni.

Let ε denote the empty sequence, the only sequence of length0. By An we denote the set of

sequences of lengthn ≥ 0 overA. The set of all possible sequences overA including the empty

sequenceε is denoted byA∗. For a sequenceS = S[1]S[2] . . . S[n] and1 ≤ i ≤ j ≤ n, S[i..j]

denotes thesubstringS[i]S[i + 1] . . . S[j] of S.

Definition 4 LetS = uv, u andv ∈ A∗. u is aprefixof S andv is asuffixof S. Thek–th suffix

of S starts at positionk, while thek–th prefix ofS ends atk. For1 ≤ k ≤ n, Sk denotes thek–th

suffix of S.

Definition 5 Two bases(c, d) ∈ A × A are complementaryif and only if (c, d) ∈ C =

{(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}. Two complementary bases can form abase pair.

Less frequently, also non-complementary bases can form pairs.

Definition 6 A non-crossing RNA secondary structureR̂ of lengthm is a set ofbase pairs(i, j),

1 ≤ i < j ≤ m. Each pair(i, j) stands for the pairing of the base at positioni with the base at

positionj, such that for all(i, j), (i′ , j′) ∈ R̂: i < i′ < j′ < j or i′ < i < j < j′ or i < j < i′ < j′

9

2 Existing RNA homology search methods

U-A

G-C

C-G

A A A C AA

C

G

A

C
A

A

A

C

G

U

ACGACAAACGU

(((.....)))

(A) (B) (C)

S:

R:
1 2 3 4 5 6 7 8 9 10 11

R: {(1,11), (2,10), (3,9)}
1 11

Figure 2.1: (A) Example of an RNA sequenceS annotated with a non-crossing RNA secondary

structure stringR forming a stem-loop. Also shown is the corresponding set of base

pairsR̂. (B) The same RNA as a graph and (C) as a tree.

or i′ < j′ < i < j. In the following, we use the single wordstructureto refer to non-crossing RNA

secondary structures, unless the structure is explicitly qualified as primary (or tertiary).

A standard notation for̂R is astructure stringR over the alphabet{..., (((,)))} such that for each base

pair (i, j) ∈ R̂, R[i] = (((andR[j] =))), andR[r] = ... for positionsr, 1 ≤ r ≤ m, that do not occur

in any base pair of̂R, i.e.r 6= i andr 6= j for all (i, j) ∈ R̂.

R̂ is called astem-loopRNA structure if and only if for all(i, j), (i′, j′) ∈ R̂ : i < i′ < j′ < j

or i′ < i < j < j′. See Figure 2.1 for an example of a stem-loop structure in different notations.

Stem-loops can also be observed as substructures with bulges and interior loops in Figure 1.1. A

stem-loop structure is equivalently callednon-branching.

2.2 Introduction to existing methods

Given a query RNA sequence of known function or set of homologous RNA sequences belonging

to the same family, the goal of homology search methods is to measure similarities or differences

between the query and target sequences. High similarity or low difference level can suggest a ho-

mologous relationship between the sequences and, therefore, also similar function. Because often

sequence information alone is not sufficient to characterize an RNA family, we are interested in

methods that make use of both primary and secondary structure information.

2.3 Comparative RNA analysis methods

A recurrent approach for homology search is to directly compare RNAs. Depending on the amount

of information available from the primary and secondary structure, which can differ in the query

and the target, some methods can simultaneously compare theprimary and secondary structures

or first focus on comparing either one of them. In case the secondary structure of an RNA to be

10

2.3 Comparative RNA analysis methods

compared is not known, a secondary structure can also be computed from its sequence alone or be

inferred in combination with other RNAs.

2.3.1 Comparison of RNAs with unknown secondary structure

Commonly, tools for homology search of RNAs with unknown secondary structure make use of

methods for the prediction of the secondary structure, i.e.for RNA folding. We note that, although

folding can also refer to the prediction of the tertiary structure of an RNA molecule, here it is

exclusively used to refer to RNA secondary structure prediction. Despite advances of computational

methods for tertiary structure prediction, this remains a difficult problem and most mature software

for RNA homology search incorporating folding methods focuses on the secondary structure.

The obvious goal of computational methods for RNA folding isto find the structure that best “fits”

to the real structure of the RNA in nature. To start with, we are faced with the challenging fact

that the number of secondary structures into which an RNA sequence can fold grows considerably

(even exponentially, if not only complementary base pairs are allowed) with its length. An algorithm

solving this problem is the Nussinov algorithm [56, 39]. Using dynamic programming, it computes

the secondary structure with the maximum number of base pairs inO
(
n3

)
time andO

(
n2

)
space.

However, the real structure is influenced by the energetic stability of hydrogen bonds and their

effect on stacking (i.e. neighboring) base pairs, loop sizes, and possible different multi loops. Since

the Nussinov algorithm does not take these aspects in consideration, the structure for an RNA

sequence it computes is in general not biologically relevant. Nevertheless, as one of the first RNA

folding algorithms it served as a milestone for the development of new algorithms.

More accurate algorithms compute a secondary structure of asequence by minimizing its free

energy. This is in accordance with the assumption that an energetically stable structure is a struc-

ture with minimal free energy (MFE). In this approach, free energies are assigned to substructural

elements like stacking base pairs and loops. These free energies have experimentally been de-

termined more precisely over the years, including e.g. the widely used thermodynamic model of

Turner [57, 58]. Such a model defines a set of substructural elements with associated free energy

parameters. Given free energies, the overall free energy ofa structure is calculated as the sum of

the free energies of its substructures. A well-known algorithm for MFE computation is the Zuker

algorithm, whose dynamic programming recurrences are analogous to those of the Nussinov algo-

rithm [59, 39]. It also runs inO
(
n3

)
time if loop sizes are limited by a constant, otherwise it runs

in O
(
n4

)
time. An implementation of the Zuker algorithm is found in themfoldprogram [60].

A shortcoming of the MFE approach is the fact that the MFE secondary structure is not necessarily

the biologically correct one and there can be a huge number ofalternative reasonable structures

whose free energies differ only modestly. This suggests to introduce a probability distribution over

alternative structures. A dynamic programming algorithm for computing the partition function of

an RNA sequence over all its alternative secondary structures is given by McCaskill [61]. This

11

2 Existing RNA homology search methods

(A)

(B)

A C G U A A A A A A A A C G U A A A A C G U

A C G U A A A A A A A A C G U A A A A C G UA
C

G
U

A
A

A
A

A
A

A
A

C
G

U
A

A
A

A
C

G
U

A
C

G
U

A
A

A
A

A
A

A
A

C
G

U
A

A
A

A
C

G
U

A

C

G

U

A

A

A
A

A

A

A

A

C

G

U A A A A C G U

1 22

A C G U A A A A A A A A

C

G

U

A

A

A

A

C

G

U

1 22

A

C

G

U

A

A

A

A

A

A
A A

C

G

U

A

A

A

A

C

G

U

1 22

Figure 2.2: (A) Base pairing probability matrix for sequence S = ACGUAAAAAAAACGUAAA

ACGU shown repeatedly on the matrix edges. In the upper righttriangle, each square

denotes the probability of a base pair for the entire ensemble of possible secondary

structures. The area of a square is directly proportional tothe probability of the corre-

sponding base pair. The lower left triangle shows only squares for base pairs that form

the single secondary structure of minimum free energy. (B) Three possible secondary

structures derived from the base pair probabilities in the matrix. The color of the base

pairs matches the color of the corresponding square in the matrix.

12

2.3 Comparative RNA analysis methods

algorithm, which runs inO
(
n3

)
time andO

(
n2

)
space, computes for a given RNA sequence a

base pairing probability matrix; see an example in Figure 2.2. This matrix allows to explore the

space of possible secondary structures by a derivation of the structures from probable base pairs.

Hence, it gives a broader overview of feasible structures instead of a single MFE structure. The

algorithm of McCaskill is implemented in the programRNAfoldof theViennaRNA Package[62].

2.3.2 The three plans of comparative RNA analysis

The three algorithms from Nussinov, Zuker, and McCaskill work in their original form on a single

RNA sequence. However, since RNA molecules with similar function tend to form similar struc-

tures, the comparison ofseveralputative homologous sequences for the prediction of aconsensus

secondary structurecommon to all these sequences is often a more reliable approach than folding

of a single sequence. Even molecules with a relatively low sequence similarity can form similar

structures due to co-varying substitutions of bases forming pairs (see an example in Figure 1.2).

That is, mutations on the sequence level do not necessarily destroy base pairings. In [63], existing

methods for comparative RNA analysis are classified into thefollowing three approaches orplans.

1. The sequences are first aligned and then a consensus secondary structure is inferred from

the resulting multiple sequence alignment. For an example of a multiple sequence alignment

annotated with a consensus secondary structure stringR, see Figure 2.3.

2. The sequences are aligned while simultaneously inferring a consensus secondary structure.

3. The sequences are first individually folded and then a structure alignment is computed.

Plan 1 seems appropriate when the sequence conservation is sufficiently high, so that the “cor-

rect” bases are aligned in a certain column. However, when the sequence conservation is too low,

base shifts in the alignment can misalign base pairs and prevent the formation of consensus base

pairs in the folding phase, consequently leading to a suboptimal consensus secondary structure and

corrupting the homology analysis. Plan 3, on the other hand,seems appropriate when sequence

conservation is too low for the computation of a meaningful alignment based on sequence infor-

mation. Its disadvantage lies in the fact that individual folding of sequences on a first step by

computing e.g. minimum free energies can lead to very diverged secondary structures which can

hardly be aligned. Furthermore, any sequence similarity among sequences is completely ignored

in the folding phase. The best theoretical solution is to useplan 2, i.e. the Sankoff algorithm [64],

which simultaneously computes an optimal multiple alignment and consensus secondary structure

by combining recurrences of a standard dynamic programmingsequence alignment algorithm and

the Nussinov algorithm. However, form sequences of lengthn, its high complexity ofO
(
n3m

)

time andO
(
n2m

)
space makes it of no practical use. Therefore, variants of the Sankoff algorithm

with reduced time complexity have been introduced.

13

2 Existing RNA homology search methods

Bradyrhizobium-1 CGAACCCG--CCGGCUUGGGAGAGCUG-AACGGUUCA-GGAAGAC-CCGCU---GGACGCCGCCUUGGGAGAGGC-ACCGAA--AGCGG

Bradyrhizobium_japon-1 GAGACCCG--GGGGUUUGGGAGAACCU-GACGGUCUCGUUCACGG-GGUC-CG-CCAA-GGCGCUUGGGAGAGCG-AGGAGGCA-GAUC

Bradyrhizobium-2 CGAACCCG--CCGGCUUGGGAGAGCUG-AAAGGUUCGGAGAAGA--CCCGGUCG-AGACC-GCCUUGGGAGAGGC-GCCGCGGA-CGGG

Nitrobacter_winograd-1 GAA--CCGGA-AGGCUUGGGAGAGCCU-GAAGG-UUC----CGAUCGAUC-CGGUGCGGGCGGCUUGGGAGAGCCUUCCUCACG-GAUC

Nitrobacter_hamburge-1 CGAA-CCG--CAGGCUUGGGAGAGCCG-UGGGGUUCG---AAAAC-GAUC-CGGCG---GCGGCCUGGGAGGGCCUUCA-CGCG-GGUC

Nitrobacter-1 CGAA-CCGGA-AGGCUUGGGAGAGCCU-CAAGGUUCG---AUCAA-UCCGGUG-UGAC---GGCCUGGGAGGGCCUUCUUCACA-CGGA

Oligotropha_carboxid-1 GAA--CCG--UCCGCUUGGGAGAGCG--AACGG-UUU---AACG--GACCACC-AUCG---GCUUUGGGAGAGGC---CGGUCGCGGUU

Rhodopseudomonas_pal-1 GAA--CCA--C-UGCUUGGGAGAGC----GUGG-UUC---ACGGC-GAUC-CG-CGA-GA-GGUCUGGGAGGACC--GGGCGCG-GGUC

Rhodopseudomonas_pal-2 GCA--GCG--CGGGCUUGGGAGAGCCGCCGGGC-UGC---ACAAC-AACC--GGGACC-GGCCUUUGGGAGAGGG-ACGUU-CGCGGUU

Rhodopseudomonas_pal-3 UGAA-GCG---CGGCUUGGGAGAGCUUUAGCGCUUCG----CGGC-AACCACG-GA-C-GGCCUUUGGGAGAGGG-GC-GUGCGCGGUU

Rhodopseudomonas_pal-4 UGAG-CCG--CGCGCUUGGGAGAGCGCCUGCGGUUCG-----CAC-GAUC-CG-CCAC-C-GGUCUGGGAGGGCU-UGGCGGCG-GGUC

Rhodopseudomonas_pal-5 UGAG-CCG--CGCGCUUGGGAGAGCGCCUGCGGUUCG-----CAC-GAUC-CG-CCAC-C-GGUCUGGGAGGGCU-UGGCGGCG-GGUC

Rhodopseudomonas_pal-6 CGAG-CCG---CUGCUUGGGAGAGC---GCCGGUUCG----AGGC-GAUC-CG-CGGAA--GGUCUGGGAGGACC--GGGGGCG-GAUC

R ((((-(((--(((((((....))))))-.))))))))---.....-((((-((-......-(((((....)))))-......))-))))

B

R

A

A

CC
C

G
A

C
M

B

G

C

U

U

GG

G

A
G

A

G

C

Y

U

C
W

R M
G

G
U

U

Y

S

A

M

V

R

C

RMYC
A

YG

Y

V
MM

S

C

SSYYU
G

G

G

A G R R S Y

U

W
S S K

B

R

C R
C

G R U Y

U

A

U

W

Y

U

U

U

A
A

M
A R G G G

A
G

A

W

C

Y

A

C
C

G
A

U

G S A G A A
Y

R

C

B
C

UYCUC
R

U
C

G

G

M

Y

U

R

U

C

R

C

G

G

C

A

G

R
U

S
RYGYU

S
G

1

1020

30

4050

60

70

80

90

100

110

120

130

140

150

154

(A)

(B)

Figure 2.3: (A) Multiple alignment of sequence members of family flg-Rhizobiales RNA (Rfam

Acc.: RF01736) annotated with a consensus secondary structure stringR. Observe that

the alignment is truncated to contain only the columns corresponding to the first two

stem-loops of the secondary structure of this family in 5’ to3’ direction. (B) Complete

secondary structure of this RNA family with the first two stem-loops drawn in orange. In

this secondary structure, each ambiguous IUPAC symbolx ∈ Φ stands for a character

classϕ(x) ⊆ A.

14

2.3 Comparative RNA analysis methods

2.3.3 Faster simultaneous RNA alignment and folding: Sanko ff variants

Offering some relief from the high time complexity of the Sankoff algorithm, the programFoldalign

[65] provides a restricted version of it for the computationof pairwise local or global sequence-

structure alignments which does not allow for branching structures. In this way,Foldalign achieves

a time complexity ofO
(
n4

)
, instead ofO

(
n6

)
for the Sankoff algorithm. The restriction to non-

branching structures has been eliminated in a second version of the program [43], which accelerates

the computation by pruning the used dynamic programming matrices. However, the program does

not guarantee to find an optimal solution. Another program,Dynalign [66], simplifies the compu-

tation in the Sankoff algorithm by limiting the distance of aligned bases in two input sequences.

That is, for positionsk andl in each of the two sequences,|k − l| ≤ M must hold, whereM is a

constant. Such a distance is called thespanbetween the two positions.Dynalign limits, in addition,

the size of loops to achieve a time complexity ofO
(
n3M3

)
.

Two other variants of the Sankoff algorithm,PMcomp[67] and its successorLocARNA[44], use a

different approach to reduce computational demands. For a pairwise alignment, they use precom-

puted secondary structure information in the form of base pairing probabilities from each individ-

ual sequence, which can be obtained using McCaskill’s algorithm. In practice, they take as input

postscript files of base pairing probabilities generated for each sequence with programRNAfold.

In LocARNAandPMcomp, by transforming these base pairing probabilities into scores and also

assigning scores to sequence operations (i.e. (mis)matches, insertions, and deletions), the two in-

put sequences are simultaneously aligned and folded via thecomputation of an alignment that

maximizes the combined scores from the sequence operationsand the base pairings forming a con-

sensus secondary structure. More precisely, consider two sequencesS andT to be aligned using

given base pairing probability matricesPX , X ∈ {S, T}, of dimensions|X|× |X|. Let R̂X denote

the secondary structure of sequenceX. Here, an alignment ofS andT consists of

• a setA of alignment edges(i, k) between positionsi of S and positionsk of T and

• a consensus secondary structureζ of S andT , which is a set of pairs of base pairs((i, j), (k, l)),

with (i, j) ∈ R̂S and(k, l) ∈ R̂T . Additionally, (i, k) and(j, l) must be alignment edges in

A.

To speed up the computation of an alignment, an improvement of LocARNAoverPMcompconsists

in eliminating base pairs(i, j) from R̂X with very low probabilityPX
ij . That is, given a probability

cutoff pmin, if PX
ij < pmin, then(i, j) /∈ R̂X . This reduces the number of base pairs that are scored

and considered in the alignment computation. Both tools compute log-odds scores for base pairs.

In LocARNA, the score of a base pair(i, j) ∈ R̂X is computed as

scoreX(i, j) = log
PX
ij

p0
/ log

1

p0
. (2.1)

Termlog 1
p0

normalizes the score so that it does not exceed 1, wherep0 is the expected probability

for a pair to occur at random. For(i, j) /∈ R̂X , scoreX(i, j) = −∞. To score alignments on the se-

15

2 Existing RNA homology search methods

quence level, functionsσ(S[i], T [k]) andτ(S[i], S[j];T [k], T [l]) give the score for the substitution

of unpaired and paired bases, respectively. Letγ be a gap penalty andN be the number of gaps in

an alignment. The score of an alignment specified by the pair(A, ζ) is

∑

((i,j),(k,l))∈ζ

(scoreS(i, j) + scoreT (k, l) + τ(S[i], S[j];T [k], T [l])) + γN

+
∑

((i,j),(k,l)),((j,i),(k,l))/∈ζ

σ(i, k). (2.2)

This score is maximized byPMcompand LocARNAusing dynamic programming. Similarly to

Dynalign, PMcomplimits the size of loops and the span between aligned unpaired bases and base

pairs in the two sequences. For aligned base pairs(i, j) and(k, l), the span is computed as|(j −

i)− (l−k)|. Using these limitations,PMcompachieves time and space complexities ofO
(
n4

)
and

O
(
n3

)
, respectively.LocARNAalso uses this span limitation technique, but profits in addition from

a sparse computation of the dynamic programming matrices allowed by the reduced number of base

pairs, which are prefiltered according to variablepmin as described above. In this way,LocARNA

requiresO
(
n2 +m2

)
time andO

(
n2(n2 +m2)

)
space, wheren andm are the lengths of the

aligned sequences. While both tools can compute global alignments,LocARNAis also tailored for

computing local alignments. For this, it forbids negative entries in the computed matrices and uses

a suitable traceback technique similar to the technique used for computing local alignments of plain

sequences (see Smith-Waterman algorithm [38]).

PMcompandLocARNA, as well as the previously mentioned tools for comparative RNA analysis,

are suitable for comparing sequences of similar lengths by either computing global or local align-

ments. However, families of homologous RNAs are commonly characterized by short structural

motifs, which we often want to search for in large sequences such as genomes. That is, one of the

sequences to be aligned is much shorter than the other. In this case we want to compute semi-global

alignments by aligning the complete shorter “query” sequence to substrings of the larger sequence.

For this purpose, a variant ofLocARNAcalledLocARNAscan[68] slides a window over a large tar-

get sequence applying theLocARNAmethod, with the difference that it aligns the complete query

sequence to each window substring. Because the query can represent an RNA family of sequences,

LocARNAscanallows to incorporate, in the query, information from a multiple sequence alignment.

This is done by adjusting theσ andτ functions above to provide log-odds scores computed from a

multiple sequence alignment. Leta andb be bases from alphabetA. In addition, letfi,a denote the

frequency ofa in columni of the multiple alignment andfij,ab denote the frequency of base pair

(a, b) in columnsi andj. Functionsσ andτ are computed as

σ(a, b) = log
(
fi,a
ba

)
and τ(ij, ab) = log

(
fij,ab
bab

)
(2.3)

whereba = 1/4 andbab = 1/6 represent a uniform distribution of the background frequencies of

the 4 possible basesa and 6 possible complementary base pairs(a, b) ∈ C, respectively. In terms of

time and space complexity,LocARNA’s running time and space requirements scale at least quadrati-

16

2.3 Comparative RNA analysis methods

cally with the length of both input sequences. This forbids the direct application of its dynamic pro-

gramming recurrences when one of the sequences is very large. Therefore,LocARNAscanadapts

the recurrences so that the dynamic programming tables onlystore entries for the alignment compu-

tation for the current window. In addition, when shifting a window it reuses computed entries from

overlapping windows. For a window of lengthm and a target sequence of lengthn, it achieves time

and space complexities ofO
(
L2nm

)
andO (Lm), respectively, whereL is the maximal allowed

span between aligned base pairs in the two sequences. Furthermore, note thatLocARNAscanalso

requires a precomputation of base pairing probabilities. However, it cannot use programRNAfold

for this purpose since for a genome of lengthn it creates a huge matrix of size|n| × |n|. Therefore,

it uses instead a similar program also available in theViennaRNA PackagecalledRNAplfold, which

computes base pairing probabilities for windows of lengthm. This computation takesO
(
m2n

)

time.

2.3.4 Comparison of RNAs with known secondary structure

Although programsLocARNAandPMcompare in principle designed for the comparison of RNAs

with unknown secondary structure, known secondary structure information can be provided to these

programs via the precomputation of constrained base pairing probability matrices. A constraint can

be the requirement of a pair of bases to pair, realized by assigning probability 1 to the specific

pairing. Another constraint can be the requirement of a baseto pair with any other base or that a

specific base be unpaired. In the latter case, the pairing probability between the specific base and

every other base is 0. The computation of constrained base pairing probability matrices is supported

by programRNAfold.

Other tools strictly require known secondary structure of the RNAs to be compared. For example,

MARNA[69] computes a multiple alignment of a set of RNAs with knownstructure. It works in two

steps. First, it computes all pairwise sequence-structurealignments based on the dynamic program-

ming algorithm of Jianget al. [70]. Each pairwise alignment computation takesO
(
m2n2

)
time,

wherem andn are the lengths of the aligned sequences. Secondly, it uses the obtained alignments

to weigh edges in the multiple sequence alignment toolT-Coffee[71]. Note, however, that this step

does not compute a true alignment of primaryandsecondary structures, sinceT-Coffeeignores the

dependency between base pairs.

Another tool,RNAforester[72], computes a pairwise alignment of secondary structures, which is

suitable for aligning RNAs with very little sequence similarity. In RNAforester, secondary structures

are represented as trees in which internal nodes stand for base pairs and leaves stand for single bases

(see an example in Figure 2.1 (C)). An alignment of two trees can be seen as a generalization of

a standard sequence alignment. That is, the alignment is represented as another tree, whose nodes

are equivalent to alignment edges labeled with either a pairof nodes, one from each tree, or a

node from one tree and a gap symbol.RNAforestercan compute global or local alignments using

dynamic programming inO
(
mnd2

)
time, wherem andn are the number of nodes in each tree and

17

2 Existing RNA homology search methods

seq1: UUCAAAUGAA

seq2: UCGA-UGCGA

seq3: GUCAA--GAC

R: (((....)))

(A) (B)

U

U

C

A

A A

U

G

A

A1 10

1 2 3 4 5 6 7 8 9 10

Figure 2.4: (A) Example multiple sequence alignment annotated with a consensus secondary struc-

ture stringR. Paired (unpaired) positions in green (blue) describe one substructural

element for whichERPINconstructs a profile. (B) Corresponding consensus secondary

structure with bases from sequenceseq1highlighting its substructures with the same

colors as in the alignment.

d is the maximum degree, i.e. number of outgoing edges from a node, observed in the trees. The

degree is at least one, since a base pair node must always be connected to another base pair node or

leaf node.

MARNAandRNAforesterare suitable for integration in a pipeline of comparative RNA analysis.

More precisely, they can be used in the second step ofplan3 described above, taking as input RNA

sequences previously folded using e.g. programRNAfoldor mfold. However, they can suffer from

the relatively poor quality of folding of single RNAs. In addition, we remark that, by only support-

ing global or local alignment computations requiring timesthat scale quadratically in the length of

the sequences, these tools are not suitable for homology searches in large sequence databases.

2.4 Secondary structure profiles: ERPIN

ERPIN (Easy RNA Profile IdentificatioN) [73, 41] is a tool that takes as input an RNA multiple

sequence alignment annotated with a consensus secondary structure and builds a statistical model,

which it then uses to search sequence databases for matches of the model. The built model, called

secondary structure profile(SSP), is the combination of profiles for paired and unpairedsubstruc-

tural elements of the input alignment. In this context, a substructural element is a stretch of con-

tinuous unpaired positions of the alignment or continuous base paired positions belonging to the

same helical element, e.g. the stem of a stem-loop. For an example of a structure-annotated multiple

sequence alignment and involved substructural elements, see Figure 2.4. An SSP can be composed

of profiles of two types defined as follows.

Definition 7 Let m be the length of an unpaired substructure, e.g. the loop of a stem-loop. A

single-strand profileof lengthm is a two-dimensional matrix of size5 ×m modeling an unpaired

substructural element. Each column in this matrix corresponds to one unpaired column of the in-

put alignment and each row corresponds to a possible base from A with the addition of one row

18

2.4 Secondary structure profiles:ERPIN

representing a gap, which is treated like a base. An entry of the matrix is a log-odds score of the

respective base or gap in the corresponding alignment column.

The log-odds scores making up a single-strand profile are computed in two steps. First, a frequency

profile, which is a matrix with the same dimensions as the single-strand profile, is computed from

the input alignment. LetNi be the number of bases in unpaired columni of the alignment andni,a

be the number of occurrences of a specific basea ∈ A in this column. An entry of the frequency

profile is computed as

Pi,a =
ni,a

Ni
. (2.4)

In the second step, the frequency profile is used to compute the log-odds scores of the single-strand

profile. Letβa be the background frequencies of unpaired basea in the sequence to be searched.

An entry of the single-strand profile is computed as

scorei,a = log
(
Pi,a

βa

)
. (2.5)

Scores for gaps are calculated via simulations with profilesbuilt from random sequences with the

same composition as the target sequence. For details, see [41].

The profile for paired substructural elements of the input alignment is defined as follows.

Definition 8 Let p be the number of base pairs in a substructural element. Ahelix profileof

lengthp is a two-dimensional matrix of size16 × p modeling a base-paired substructural element.

Each column in this matrix corresponds to two base-paired columns of the input alignment and

each row corresponds to a possible base pair fromA × A. An entry of the matrix is a log-odds

score of the respective base pair in the corresponding alignment column.

Notably, a helix profile cannot model gaps. Consequently, columns of the input alignment cor-

responding to base-paired positions must be ungapped. Likein the computation of a single-strand

profile, the log-odds scores making up a helix profile are computed from a corresponding frequency

profile, i.e. a matrix with the same dimension as the helix profile. LetNij , i < j, be the number of

base pairs in paired columnsi andj of the alignment andnij,ab be the number of occurrences of

a specific base pair(a, b) ∈ A × A in these columns. An entry of the frequency profile for a helix

profile is computed as

Pij,ab =
nij,ab

Nij
. (2.6)

Let βab be the background frequencies of base pair(a, b) in the sequence to be searched. Using the

frequency profile, an entry of the helix profile is computed as

scoreij,ab = log
(
Pij,ab

βab

)
. (2.7)

The SSP of a structure-annotated RNA alignment can be composed of a number of helix and single-

strand profiles. For example, for the alignment in Figure 2.4annotated with a simple stem-loop, the

19

2 Existing RNA homology search methods

1 2 3

(A,A)

(A,C)

(A,G)

(A,U)

(C,A)

(C,C)

(C,G)

(C,U)

(G,A)

(G,C)

(G,G)

(G,U)

(U,A)

(U,C)

(U,G)

(U,U)

(B) 1 2 3 4

A

C

G

U

-

(C)>structure
(((----)))
>seq1
UUCA-AUGAA
>seq2
UCGAAUGCGA
>seq3
GUCAA--GAC

(A)

Figure 2.5: (A) Multiple alignment of the sequences shown inFigure 2.4 in a FASTA-like format for

input in ERPIN. In this format, the entry at the top describes the consensussecondary

structure using brackets and hyphens at paired and unpairedpositions, respectively. The

entries following it are the sequences of the alignment withgaps. (B) and (C) show the

matrices of the helix and single-strand profiles for the substructural elements in green

and blue of the given alignment, respectively. Because the entries in these profiles are

log-odds scores computed from both the input multiple sequence alignment and the

target sequence, concrete scores are not shown. For more details, see main text.

SSP consists of one helix profile and one single-strand profile. The required syntax of the input

alignment resembles the FASTA format, with the first entry being a consensus secondary structure

string similar to a structure stringR, but with hyphens (-) in the place of dots. The other entries are

the globally aligned sequences. See in Figure 2.5 (A) the alignment of Figure 2.4 in this format and

in Figures 2.5 (B) and (C) the respective SSP.

Given an SSP and a target sequenceS, the search for occurrences of the SSP inS is performed

by scoring substrings ofS. Scored substrings can contain deletions at unpaired positions just like

the sequences in the alignment used to build the SSP. Therefore, associated to each single-strand

profile of the SSP is a number of allowed deletions for the respective substructural element. For

a single-strand profile modeling unpaired alignment columns in the range from columnsi until j,

the associated number of allowed deletions is the maximum number of gaps observed in an aligned

sequence in the same range of columns fromi until j. No insertions are allowed in scored sub-

strings. As an example, the number of allowed deletions for the single-strand profile in Figure 2.5

(C) is 2, because in the respective alignment in Figure 2.5 (A) the loop substructure in sequence

seq3corresponding to alignment columns 4 until 7 contains 2 gaps(see in Figure 2.4 (A) the same

alignment with numbered columns).

Let m be the summed number of columns of each helix and single-strand profile constituting an

SSP andd be the total number of allowed deletions in substringsS′ of S to be scored. That is,

20

2.4 Secondary structure profiles:ERPIN

d is the sum of the deletions allowed per single-strand profile. To score these substrings with the

SSP, an algorithm slides alongS a window of lengthm, such that the scored substringsS′ have

length betweenm andm − d and begin at the first position covered by the window. The scoring

computation is performed by aligning all profiles constituting the SSP to each substringS′, so that

each single or pair of positions in the substring corresponds to a column of a profile. This means that

helix profiles are aligned simultaneously to the 5’ and 3’ ends of a base paired substructural element.

Since helix profiles do not allow for gaps, aligning them to the substring is straightforward, whereas

single-strand profiles are aligned using dynamic programming. The used dynamic programming

matrix for aligning a particular single-strand profile has sizem ×m, wherem is the length of the

profile. In this matrix, one dimension corresponds to the substring of lengthm of S to be aligned

and the other dimension corresponds to the profile. The scoreof an entire substringS′ covered by

a window is the sum of the entries of the corresponding base orbase pair in each aligned profile.

For each window shift, only the substringS′ with the highest score among all substrings of length

betweenm andm− d is a candidate match of the SSP.

For the example SSP in Figures 2.5 (B) and (C) modeling a stem-loop, the scoring of substrings

covered by a window is performed systematically as follows.Observe that the helix and single-

strand profiles contain 3 and 4 columns, respectively, and that the single-strand profile allows for 2

deletions. Therefore, the length of scored substrings can vary between 8 and 10. Given a window

of lengthm = 10 beginning at positioni of the target sequenceS, the algorithm places the helix

profile at the first three positions of the current window corresponding to the 5’ end of the stem

substructure. Then, it aligns the single-strand profile to substringsS′[4..5], S′[4..6], andS′[4..7]

obtaining a score for each. Note that, for all these substrings, the alignment requires to compute

only one dynamic programming matrix of size4 × 4, since extending the alignment to the right

only requires to compute an additional column and row of the matrix. For each of the substrings, the

algorithm also computes a score from the helix profile by placing it at the possible 3’ end positions

S′[6..8], S′[7..9], andS′[8..10] of the stem, respectively. The combined score from both profiles is

the score of the respective substring of length between 8 and10. Only the substring with the highest

score is a candidate match of the SSP at positioni of S. Such a scoring algorithm performsO (n)

window shifts for scanning a sequence of lengthn. Since in the worst case an SSP can consist of

only one single-strand profile, which is aligned to target substrings using dynamic programming in

O
(
m2

)
time, the scoring algorithm requiresO

(
nm2

)
time. To improve its practical running time,

ERPINcan assign score cutoffs to the profiles constituting an SSP.Using these cutoffs, a certain

profile is only aligned to a target substring if the score obtained from the previously aligned profiles

exceeds a cutoff.

ERPINallows to use pseudocounts to avoid overfitting of the SSP by employing two position inde-

pendent substitution matricesM1 andM2 similar to RIBOSUM in theRSEARCHprogram [74].

However, they are computed differently from RIBOSUM. In these matrices, an entryM1
cd contains

a value for substituting basec ∈ A by based ∈ A andM2
xy contains a value for substituting base

pair x ∈ A2 by base pairy ∈ A2. Hence,M1 has4 × 4 entries andM2 has16 × 16 entries.

21

2 Existing RNA homology search methods

More precisely, the value stored inM1
cd is the sum of the scalar product of the base counts ob-

served in a large “training” alignment, i.e.
∑w

i=1Qi,cQi,d, wherew is the number of columns of

the concatenated profiles of the SSP andQi,c is the number of basesc in one column of the training

alignment modeled by columni of the concatenated profiles. The entries are normalized so that

for all d,
∑

M1
cd = 1. M2

xy is analogously computed for base pairsx andy. With these computed

matricesM1 andM2, ERPIN then scores target sequences with a reformulated frequencyprofile

for each helix and single-strand profile. The frequency profile for an unpaired positioni of the input

alignment becomes

P ′
i,c =

∑

d∈A

M1
cdPi,d. (2.8)

The frequency profiles for paired positions are reformulated analogously.

2.5 Covariance models

Given a multiple sequence alignment of related RNAs (i.e. anRNA family) annotated with a con-

sensus secondary structure, a covariance model (CM) of the alignment can be used for searching

sequence databases for homologous RNAs and computing multiple sequence-structure alignments.

CMs extend the concept of profile hidden Markov models (pHMMs) [75, 39], which are very

prominent in the field of protein homology search [76, 77]. CMs, like pHMMs, contain position

specific information about the conservation of the columns of the multiple sequence alignment.

However, they are more complex than pHMMs, capturing not only primary sequence but also sec-

ondary structure information of the respective RNA family.This is achieved by treating base paired

positions of the sequence alignment as dependent units, in contrast to pHMMs where each position

of the alignment is treated independently.

Covariance models are the formulation of profile stochasticcontext-free grammars (SCFGs) to

model RNAs introduced by Eddy and Durbin [78, 39]. Therefore, to understand covariance models,

it is important to understand the underlying concept of grammars, which is reviewed next. We

remark that SCFGs for RNA analysis were independently introduced by Sakakibara et al. [79, 80].

Foundations of context-free grammars

Natural and computer languages present regularities, which are formalized and studied by gener-

ative grammars. These grammars have rules that define not only how strings are generated, but

also allow to determine whether existing strings could havebeen generated by a specific grammar.

These properties led to a wide application of generative grammars for the analysis of biological

sequences [39]. We define a generative grammar as follows.

Definition 9 A generative grammar is a tuple(N,Σ, P,S) where:

22

2.5 Covariance models

• N is a finite set of abstractnonterminal symbolsnot appearing in strings generated by the

grammar. By convention, these symbols are uppercase.

• Σ is a finite set ofterminal symbols, consisting e.g. of characters denoting a base from alpha-

betA. By convention, these symbols are lowercase.

• P is a finite set ofproduction rules(Σ ∪ N)∗N+(Σ ∪ N)∗ → (Σ ∪ N)∗, where(Σ ∪ N)∗

denotes zero or more occurrences ofΣ ∪ N andN+ denotes at least one occurrence of a

nonterminal symbol ofN . One says that the left-hand side of the ruleproduces, generates,

or emitsthe right-hand side.

• S ∈ N is astart symbolallowing for the application of production rules fromP .

Terminal and nonterminal symbols are also referred to as simply terminalsandnonterminals.

Generative grammars of particular interest for the analysis of RNA sequences arecontext-free

grammars(CFGs), which are formalized by Chomsky [81, 82] as follows.

Definition 10 A context-free grammar is a generative grammar(N,Σ, P,S), such that each

production rule ofP satisfiesα → β, whereα ∈ N andβ ∈ (Σ ∪N)∗. That is, the left-hand side

of the production rule must consist of one nonterminal only.

As an example, a CFG for generating strings with an equal number of 0s and 1s is ({S}, {0, 1},

S → 0S1S | 1S0S | ε, S), where ‘|’ meansor. To generate a string from this grammar, we apply,

beginning with nonterminal start symbolS, successive production rules fromP , replacing step by

step the left-hand side of the rule with the right-hand side.This can be repeated until the generated

string contains only terminal symbols. The successive application of production rules that trans-

forms the start symbolS into a string, replacing at each step the left-hand side of the rule with the

right-hand side, is called aderivationof the string from the grammar. A derivation of an example

string 00011101 generated by the above grammar can be represented as

S ⇒ 0S1S ⇒ 00S1S10S1S ⇒ 000S1S1101 ⇒ 00011101.

To determine whether a given string could have been generated by a given CFG, we build a deriva-

tion of the string or show that no such derivation exists. Thelatter means that the string cannot

be generated with the grammar. To build a derivation, we begin at its right-hand side and apply

production rules backwards until we obtain only the start symbol S. The process of building a

derivation for a given sequence is calledparsing, while a sequence of production rules generating

the sequence in question is called aparseof the sequence. If the CFG allows to build more than

one parse for the same sequence, the CFG isambiguous.

23

2 Existing RNA homology search methods

(B)

G

G

A
A

A

C

C C

C

A
A

A

G

G
5’ 3’

seqA: GGAAACCCCAAAGG

seqB: CCAAAGGCGAAACG

R: ((...))((...))

(A)

Figure 2.6: (A) Two example RNA sequences with a consensus secondary structure stringR. (B)

Drawing of the respective branching secondary structure with bases from sequence

seqA. In both (A) and (B), the first (second) stem-loop substructure in 5’ to 3’ direction

is highlighted in red (orange).

Using context-free grammars to model RNA primary and second ary
structure

A CFG can be used to model both the primary sequence and the secondary structure of RNAs. This

is accomplished with different nonterminals and production rules, including a nonterminal for the

simultaneous generation of two terminals corresponding toa base pair and nonterminals for the

generation of unpaired bases. For example, consider sequencesseqAandseqBgiven in Figure 2.6

(A) along with a consensus secondary structure stringR. To define a CFG generating these se-

quences and respective consensus secondary structure, we use nonterminalsP for an emission of

a base pair(a, b) ∈ A × A and production ruleP → aWb, whereW is any nonterminal symbol

from the set of nonterminalsN . For an emission of a single base on theleft of a nonterminal, we

use nonterminalsL and production ruleL → aW . Observe that the consensus secondary struc-

ture branches into two stem-loops (see Figure 2.6 (B)). Therefore, we also use a nonterminalB

denotingbifurcation (i.e. branching) allowing an emission of two nonterminals with a single pro-

duction rule. To denote thestart andendof the structure and structural elements like stem-loops,

we use nonterminalsS andE, respectively. We can now define the complete set of nonterminals

asN = {S, L, P, B, E}, the set of terminals asΣ = {a, b}, and the set of production rules as

P = ⋃
W∈N

{S → W, L → aW,P → aWb} ∪ {B → SS,E → ε}. Using this CFG, we give in

Figure 2.7 (A) the parses generatingseqAandseqBwith bases assigned to terminalsa andb. Note

that a parse of a sequence and structure can be represented inthe form of aparse tree, as shown in

Figure 2.7 (B) forseqA. By traversing the tree top down, we can obtainseqA. Note also that, given

only the tree, we can precisely obtain the structure stringR of seqAby looking at the topology of

the tree and observing that each base beside nodes with nonterminal L is unpaired and that bases

beside nodes with nonterminalP are paired. This representation of a sequence-structure parse as a

parse tree will be useful for defining CMs.

24

2.5 Covariance models

seqA seqB

GGAAACC

((...))

CCAAAGG

((...))

CCAAAGG

((...))

CGAAACG

((...))

S → B

B → SS

S → P

P → GPC

P → GLC

L → AL

L → AL

L → AE

E → ε

S → P

P → CPG

P → CLG

L → AL

L → AL

L → AE

E → ε

S → P

P → CPG

P → CLG

L → AL

L → AL

L → AE

E → ε

S → P

P → CPG

P → GLC

L → AL

L → AL

L → AE

E → ε

(B)

CG

A

CG

S

B

P

P

L

L

L

E

A

A

GC

A

GC

S

P

P

L

L

L

E

A

A

S(A)

Figure 2.7: (A). Parses of sequencesseqAandseqBand respective secondary structure for the CFG

given in the main text with bases assigned to terminal symbols. The first two produc-

tion rules on the left are common to the parses of both sequences. (B) Parse tree of

sequenceseqAand its secondary structure. Colors correspond to the respective stem-

loop substructures.

From stochastic context-free grammars to covariance model s

Commonly, more than one parse can generate the same sequenceand structure of an RNA using

a given CFG. That is, the CFG is ambiguous. Such a parse, as described until here, cannot be

preferred over another due to the absence of a measure of quality or scoring. However, for the

analysis of RNA sequences, we are not simply interested in determining whether a sequence can be

parsed by the grammar. We need a grammar allowing to model theprimary and secondary structure

of an RNA family provided as a multiple alignment of its members, which can be used to parse

and score a target sequence. This is possible withstochastic context-free grammars(SCFGs), the

probabilistic variants of (CFGs), defined as follows.

Definition 11 A stochastic context-free grammar(SCFG) is a CFGG = (N,Σ, P,S) that

assigns to each production ruleλ ∈ P a probabilityϕ(λ) : λ → R. For anyα ∈ N ,

k∑

i=1

ϕ(α → βi) = 1

must hold, whereβ1, β..., βk are all the possible productions fromα. The probabilityP (S, π | G)

that a sequenceS using a parse treeπ is generated givenG is the product of all probabilities

ϕ(α → β) for all usedα → β in π. The probabilityP (S|G) that sequenceS is generated givenG

is the sum overP (S, π |G) for all possible parse treesπ that generateS.

25

2 Existing RNA homology search methods

The idea of applying SCFGs for RNA analysis is to use it to build a model from an RNA family that

can parse and score target sequences. Target sequences or specific parses from the model generat-

ing the sequences with a high probability receive a high score. This score will suggest a possible

homology between the RNA family from which the model was built and the target sequence.

A limitation of SCFGs is that an emission of a terminal or nonterminal symbol only depends on

the available nonterminal symbol and production rule. Thatis, SCFGs do not contain information

about the columns of the alignment of the query RNA, such as base frequencies in each column or

the alignment length. This hinders the use of SCFGs for RNA homology search. This limitation is

overcome with the formulation of SCFGs to model RNAs called covariance models (CMs). Like

the CFG of the example above, CMs contain nonterminal symbols for base emissions and structure

modeling. To incorporate position specific information about the input multiple sequence align-

ment, like it is done in pHHMs, repetitive nonterminals for generating the primary and secondary

structure are connected via transitions. A transition froma nonterminal to another has a certain

probability. Base emitting nonterminals have a direct correspondence to one unpaired alignment

column or to two paired columns. Therefore, they are also assigned base emission probabilities re-

flecting the distribution of the bases observed in the specific column(s). All nonterminals of a CM

are calledstates.

Given a structure-annotated RNA multiple sequence alignment, to construct a CM we must, in a

first step, define its structure topology connecting its states. In a second step, we compute the state

emission and transition probabilities.

The CM topology is based on a tree-like structure resemblingthe consensus secondary structure of

the sequences in the input alignment. In fact, this structure, calledguide tree, is the parse tree of

the consensus structure. Because the guide tree representsthe consensus of both the structure and

sequence of an RNA family, certain columns of the alignment are ignored, e.g. columns consisting

mostly of gaps. Here, we assume that the consensus columns, i.e. columns that are not ignored, are

given. For an example of a guide tree built from an RNA alignment annotated with a consensus

secondary structure, see Figures 2.8 (A) and (B). The guide tree has different types of nodes. The

first five node types we list below are strictly required to define the tree topology and do not have a

direct relation to alignment columns.

1. A ROOT node is used at the top of the tree. See an example in Figure 2.8(B).

2. BIF nodes are used for bifurcations (i.e. branching) of multiple stem-loops and multi-branch

loops. Observe in the example in Figure 2.8 (A) that the consensus structurêR contains two

base pairs(2, 4) and(7, 9). These base pairs induce each a stem-loop substructure described

by a branch of the guide tree in subfigure (B). Hence, these stem-loops cause a bifurcation of

the tree into two branches.

26

2.5 Covariance models

1 2 3 4 5 6 7 8 9 10

seq1: CUAAUGCAG-

seq2: AGACA-GACU

seq3:

(A) (B) ROOT: S

MATL: L

MATR: R

BIF: B

BEGL: S

MATP: P

MATL: L

END: E

BEGR: S

MATL: L

MATP: P

END: E

MATL: L

1

10

2 4

3

5
7
8

9

A-A-A-CAGU
.(.).-(.).R:

Figure 2.8: (A) Example of an RNA multiple alignment consisting of sequencesseq1, seq2, and

seq3annotated with a consensus secondary structure stringR. Consensus alignment

columns are highlighted in gray. (B) Guide tree of the alignment in (A) resembling its

consensus secondary structure and alignment columns. The numbers beside each node

in the tree indicate the corresponding column of the alignment. S, L,R,B,P, andE

within each node are the associated states.

3. BEGL nodes are used at the beginning of a left branch of a bifurcation. In the example in

Figure 2.8, the left branch is the first stem-loop from left toright (5’ to 3’ direction) to which

base pair(2, 4) belongs.

4. BEGR nodes are used at the beginning of a right branch of a bifurcation.

5. END nodes are used at the end of the tree or branches of bifurcations.

The following three types of nodes correspond directly to one or two alignment columns.

1. MATP (match base pair) nodes correspond each to two base-paired columns of the align-

ment. As an example, see in the guide tree in Figure 2.8 (B) thetwo MATP nodes corre-

sponding to the two base pairs(2, 4) and(7, 9) in R̂ in subfigure (A).

2. MATL (match base leftwise) nodes correspond to a column of the alignment of an unpaired

base on the left-hand side of a base pair.MATL nodes are also used for columns within base

pairs, e.g. loops, and columns of an alignment without base pairs. As an example, theMATL

nodes in the guide tree in Figure 2.8 (B) correspond to alignment columns 1, 3, 5, and 8.

3. MATR (match base rightwise) nodes correspond to a column of the alignment of an unpaired

base on the right-hand side of a base pair. In the example in Figure 2.8, the onlyMATR

node corresponds to position 10 of the alignment. Note that position 5 of the alignment is

considered for modeling to be on the left of the second stem-loop from left to right and,

consequently, it is modeled with aMATL node.

To enable the generation of a sequence by the guide tree, its nodes are assigned each a state, i.e. a

nonterminal symbol. For emissions of single bases and base pairs there are three states. These are

27

2 Existing RNA homology search methods

node state (guide tree) production rule states (CM)

MATP P P → aWb MP,ML,MR, IL, IR,D

MATL L L → aW ML, IL,D

MATR R R → Wb MR, IR,D

ROOT S S → W S, IL, IR

BIF B B → SS B

BEGL S S → W S

BEGR S S → W S, IL

END E E → ε E

Table 2.1: Nodes that build up a guide tree for the construction of a covariance model, state asso-

ciated to each node in the guide tree, corresponding production rule, and states assigned

to each type of node in a covariance model.W is a symbol from the set of nonterminals

{P, L,R,S,B,E} anda andb are terminal symbols representing an arbitrary base. Table

adapted from [83].

stateP, assigned toMATP nodes for generatingbase pairs, and statesL andR, assigned toMATL

andMATR nodes, respectively, for generating bases on theleft- and right-hand side of the state

(also calledleftwiseandrightwisebase generation). Since there can be4 × 4 different base pairs,

P has 16 emission probabilities, andL andR have each 4 emission probabilities. There are also

three states which do not emit bases but are required for the nodes defining the guide tree topology.

These are stateB (bifurcation), assigned toBIF nodes, stateS (start), assigned toROOT, BEGL,

andBEGR nodes, and stateE (end) assigned toEND nodes.B, S, andE have emission probability

1, becauseB andS can only emit nonterminal symbols andE can only emit the empty stringε.

The types of guide tree nodes with each associated state and production rule are summarized in

Table 2.1. Observe also in Figure 2.8 (B) the guide tree example with states assigned to each type

of node.

A CM must allow for variations of the sequence and structure relative to the input RNA multiple

sequence alignment, so that it can be used to parse putative homologous sequences not occurring in

the input alignment. However, a guide tree can only represent the single RNA whose primary and

secondary structure corresponds to the consensus of the alignment. To obtain a CM from a guide

tree, we assign each node not only one but multiple states. These are essentially the same states

used in the guide tree, but some are expanded to various “specialized” states to differ between base

emissions that correspond to a base match or an insertion. Base emitting states receive a prefix

M and a prefix I indicating a match and an insertion, respectively. StatesP, L, andR, therefore,

becomeMP,ML,MR, IR, andIL. A new stateD is also created to model base deletion. In summary,

the nodes of a CM and their assigned states become as follows.

• NodeMATL: statesML, IL, andD (match leftwise, insert leftwise, and deletion, respectively).

28

2.5 Covariance models

• NodeMATR: statesMR, IR, andD (match rightwise, insert rightwise, and deletion, respec-

tively).

• NodeMATP: statesMP,ML,MR, IL, IR, andD. Here,ML andMR indicate a match of the

base occurring on the 5’ and 3’ side of the pair, respectively; IL andIR indicate an insertion

on the 5’ and 3’ side of the pair, respectively.

• NodeBIF: stateB (bifurcation).

• NodeROOT: statesS, IL, andIR (start, insert leftwise, insert rightwise, respectively).

• NodeBEGL: stateS (start).

• NodeBEGR: statesS andIL (start and insert leftwise, respectively).

• NodeEND: stateE (end).

All node types of a CM and respective states are summarized again in Table 2.1.

Once the nodes are assigned their respective states, statesare connected via transitions. States may

transition to all insert states of the same node and to all non-insert states of the next node. Insert

states have a state transition to themselves. In nodes modeling base pairs, insert statesIL have a

transition to insert statesIR but not vice versa.B states transition to twoS states andE states do not

transition do any state. The final CM (until here without calculated state transition and emission

probabilities) is a directed graph without cycles, except self transitions of insert states. For an

example of a CM showing its state transitions, see Figure 2.9. We note that, using a CM and its guide

tree, each sequence in the input multiple sequence alignment can be converted unambiguously to

a parse tree. In this parse tree, the bases of the sequence andalso the gaps, as they appear in

the alignment, are assigned to states of the CM. Conversely,the CM is able to generate the input

sequences via a traversal of the CM parse tree of each sequence beginning at its root state and

ending at its end states. See Figure 2.10 (A) for an example ofa CM traversal and Figure 2.10 (B)

for the respective parse tree generating a sequence.

The second step in the construction of a CM is to compute the state transition and emission proba-

bilities. For this computation, we count, in the parse treesof the sequences in the input alignment,

the number of times each particular transition and emissionoccurs. LetAk,q be the number of

counted transitions from a statek to a stateq. The transition probability from a statek to a stateq

is defined as

ak,q =
Ak,q∑
q′ Ak,q′

(2.9)

whereq′ is any state to which a transition fromk is possible. As an example, observe the transition

probabilities in Figure 2.11 (A) computed from the parse trees in Figure 2.10 (B). Now letEq(b)

be the number of observed emissions of a baseb in stateq. The emission probability of baseb in

statek is defined as

ek(b) =
Ek(b)∑
b′ Ek(b′)

(2.10)

29

2 Existing RNA homology search methods

ROOT

MATL

MATR

BIF

BEGL

MATP

MATL

BEGR

MATL

MATP

MATLEND

END

S

B

D

MR D

ML

IL

IL

IR

IR

S

MP MRML D

IRIL

DML

IL

E

S

DML

IL

MP MRML D

IRIL

DML

IL

E

IL

Figure 2.9: Covariance model obtained from the guide tree shown in Figure 2.8 (B). The names of

the states in small rectangles, which are mostly derived from the names of the states in

the guide tree by adding prefix M (match) and I (insertion), are grouped according to

the type of node. The arrows indicate the allowed state transitions.

30

2.5 Covariance models

C
S

ML

D

B

S

MP

ML

S

IL

MP

ML

E

E

U A
A

C G
G

A

A
S

ML

MR

B
S

MP

ML

S

ML

MP

MLE

E

G C
A G C

A

A

U
A

S

ML

MR

B

S

D

ML

S

ML

MP

MLE

E

A C G
A

A

U

MLU

(A)

(B)

seq1: seq2: seq3:

seq1: CUAAUGCAG-
seq2: AGACA-GACU
seq3: A-A-A-CAGU

.(.).-(.).

ROOT

MATL

MATR

BIF

BEGL

MATP

MATL

BEGR

MATL

MATP

MATLEND

END

S

B

D

MR D

ML

IL

IL

IR

IR

S

MP MRML D

IRIL

DML

IL

E

S

DML

IL

MP MRML D

IRIL

DML

IL

E

IL

Figure 2.10: (A) Covariance model from Figure 2.9 highlighting in green the path from the root

to its ending states that leads to the parse tree of sequenceseq1from Figure 2.8 and

shown again here in (B). (B) Parse trees of sequencesseq1, seq2, andseq3for the

given covariance model. The characters beside each node arethe bases emitted by the

node state. Note that a parse tree corresponds to exactly onepath in the covariance

model, as shown for the parse tree ofseq1highlighted in green.

31

2 Existing RNA homology search methods

whereb′ is any base fromA. Observe, as an example, the emission probabilities in Figure 2.11 (B)

computed from the parse trees in Figure 2.10 (B).

Parametersak,q andek(b) are themaximum likelihood estimatorsfor the CM [39]. That is, they

maximize the probability that the CM generates the sequences of the input alignment.

A problem that can occur with this simple computation of transition and emission probabilities is

the overfitting of the CM when it is used for homology search. In the extreme case, transitions and

emissions not occurring in the input alignment receive probability zero. This can be observed in the

example in Figure 2.11. Consequently, instead of penalizing e.g. the occurrence of a base in the tar-

get sequence corresponding to a position in the model where that base was not seen, the parse of the

complete target sequence will also have probability zero and therefore be forbidden. Consequently,

the target sequence will not be considered homologous. To avoid this, pseudocounts calledpriors

are added toAk,q andEq(b). If all priors are set equally, they are said to beuninformative. Unin-

formative priors, however, can disproportionately affectmodels built from only a few sequences.

A better choice is to computeinformativebiologically motivated priors, using e.g. mixture Dirich-

let densities [84]. These rely on the base distribution typically occurring in columns of multiple

alignments of a larger dataset. Mixture Dirichlet densities, combined with the observed counts in

the input multiple sequence alignment, were shown to considerably improve the sensitivity and

specificity of CMs [85].

Using covariance models for RNA homology search and alignme nt
computation

Consider a target RNA sequenceS and a CMθ built from a query RNA family. IfS can be gener-

ated fromθ with a reasonably high probabilityP (S, π | θ) using CM parse treeπ, then the usual

assumption is thatS and the query family are probably homologous.P (S, π | θ) is obtained by

simply multiplying the state emission and transition probabilities observed during a traversal of the

parse treeπ that generatesS. Alternatively, we can computeP (S| θ) by summing overP (S, π | θ)

for all possible parse treesπ that generateS. We remark that, commonly, the transition and emis-

sion probabilities are converted into log-odds scores and the sequence is then scored by summing

up these scores.

In practice, in homology search sequenceS can have a large lengthn, making it more sensible

to score substringsS′ of S of a certain lengthm < n. To score these substrings, a solution is

to consider the parse treeπ∗ that generates eachS′ with the highest probability, i.e. for anyπ,

P (S, π |θ) ≤ P (S, π∗ |θ). GivenS and CMθ, substringsS′ of S can be scored using a CM version

of the Cocke-Younger-Kasami (CYK) algorithm [86, 87, 88, 39], which simultaneously finds the

“best” parse treeπ∗ for each substring. Another way to score substringsS′ is to sum up the scores of

all parse trees that generateS′, obtaining the score equivalent ofP (S|θ). This can be done using the

Insidealgorithm [39].InsideandCYK use dynamic programming and requireO
(
nm3

)
time and

32

2.5 Covariance models

ROOT

MATL

MATR

BIF

BEGL

MATP

MATL

BEGR

MATL

MATP

MATLEND

END

S

B

D

MR D

ML

IL

IL

IR

IR

S

MP MRML D

IRIL

DML

IL

E

S

DML

IL

MP MRML D

IRIL

DML

IL

E

IL

S

B

D

MR D

ML

IL

IL

IR

IR

1

0.330.67

1 1

ROOT

MATL

MATR

BIF

A 0.67

C 0.33

G 0

U 0

MRML

A 0

C 0

G 0

U 1

(A)

(B)

Figure 2.11: (A) First four nodes of the covariance model in Figure 2.9 showing its state transition

probabilities. State transitions in red have probability zero. (B) Base emission proba-

bilities of the colored statesML andMR for this covariance model. The transition and

emission probabilities are computed from the parse trees inFigure 2.10 (B), remark-

ing that the emission probabilities follow the distribution of the bases observed in the

corresponding columns of the multiple alignment used to build the covariance model.

33

2 Existing RNA homology search methods

O
(
m3

)
space. Notably,CYKandInsideare analogous to theViterbi andForward algorithms [39]

for (profile) hidden Markov models.

TheCYK algorithm suggests that a given CM can be used to compute a multiple sequence align-

ment. For instance, consider a set of RNAs without secondarystructure annotation. For each of

these sequences, we can compute a CM parse tree, from which the columns of each sequence in

the alignment can directly be read. Hence, computing a multiple sequence alignment consists in

computing the best parse tree of each sequence, accomplished with theCYKalgorithm.

Software using covariance models

A major disadvantage of CMs is the large time complexity of the CYK andInsidealgorithms. For

this reason, CMs are often used in combination with pre-filters that use only sequence or some

amount of structure information of the query RNA. For example, an initial step in building an RNA

family of the Rfam database [34] is searching the Rfam sequence database withBlast [35] using

query sequences from the family’s seed alignment. The sequences below some E-value thresh-

old are then searched using theInfernal software [89, 40] with the CM built from the family’s

seed alignment annotated with secondary structure. Other tools apply different search strategies.

RaveNnA[90] converts CMs into pHHMs to take advantage of the reducedcomplexity of pHHMs.

Multi-segmentCYK (MSCYK) [91] simplifies CMs for the computation of ungapped structural

alignments. Structure-based query-dependent banding (QDB) [85] accelerates CM searches by

performing computationally expensive recursions only within bands of the dynamic programming

matrix where the optimal alignment is likely to lie.

The most prominent software using CMs isInfernal [89, 40]. It consists of tools for the CM

construction and database search of a query RNA multiple sequence alignment annotated with a

consensus secondary structure. It can also be used to make sequence- and structure-based RNA

sequence alignments. The CM constructed byInfernal follows the description above. State tran-

sition and base emission probabilities incorporate mixture Dirichlet priors for more sensitive and

specific searches. Since the algorithms for database searches using CMs are too slow for practical

use,Infernal uses a filtering pipeline comprising two main stages. The first stage consists in ap-

plying filters based on hidden Markov models (HMMs), i.e. pure sequence-based filters, whereas

the second stage consists in searching the (sub)sequences surviving the first stage with CMs. As

of version 1.0 ofInfernal, the first stage consists of a single filtering step relying onan imple-

mentation of pHHMs as in theRaveNnAtool mentioned above. The second stage consists of two

steps. First, accelerated CM searches are performed using query-dependent banding (QDB). And

second, CM searches use the slower but more specificInside algorithm. As of this writing, the

current version 1.1 ofInfernal incorporates a more sophisticated combination of algorithms in the

filtering pipeline. In the first stage,Infernalscores sequences using the following HMM-based algo-

rithms: (1)SSV(Single Segment Viterbi) computes and extends high-scoring ungapped alignments,

(2) Viterbi with gaps, and (3) localForward, i.e. the Forward algorithm operating in local mode.

34

2.5 Covariance models

These three algorithms, which are also implemented in theHMMER3software package [92], are

responsible for large speedups compared to previous versions of Infernal. In the second stage, the

(sub)sequences that survived each filter of the first stage are scored using banded versions of the

CYKandInsidealgorithms and are finally processed with the standardInsidealgorithm. For a more

detailed description of theInfernal filtering pipeline, see theInfernal manual [93]. We note that,

for accelerated searches of query RNAs without base pairs,Infernal applies only HMM-based fil-

ters, avoiding the CM-based stage. This is possible, since CMs mainly differ from HMMs by their

ability to model base pairs. In the absence of these, CMs and HMMs present the same sensitivity.

Obviously, filters are a trade-off between speed and sensitivity. Because stringent filters accelerate

search but can eliminate from the search space potentially high scoring sequences, they must be

used with caution. For a discussion about the filters implemented inInfernal 1.0, their tuning and

effect on search, see chapter 4 of [94].

Another program using CMs isRSEARCH[74]. An important difference toInfernal is that it builds

a CM from a single query RNA sequence annotated with secondary structure. Hence, the CM topol-

ogy is obtained from the guide tree of the unique sequence rather than from a multiple alignment

consensus. Because no emission and transition probabilities can be computed from the single query

RNA, RSEARCHuses a position independent substitution matrix called RIBOSUM and gap penal-

ties to score target sequences. RIBOSUM has4 × 4 and16 × 16 entries for the substitution of

single bases and base pairs, respectively, which are computed analogously to entries in BLOSUM

matrices used in protein searches [95]. That is, they are log-odds scores of the base frequencies ob-

served in alignments of homologous RNAs. The gap penalties are computed using a standard affine

gap penalty formulation asα + βn, whereα is the gap opening penalty,β is a gap extension, and

n is the size of the gap. Despite the different used scoring,RSEARCHuses for homology search

the sameCYK algorithm asInfernal. SinceRSEARCHenables the search for homologous RNAs

from a single query RNA, we remark, as in [94], that it partially addresses the problem of model

overfitting discussed above. However, its performance is largely influenced by the quality of the

used RIBOSUM matrix (see [74]).

The Rfam RNA family database

Rfam [34] is a database of families of homologous non-codingRNAs sharing sequence and struc-

ture information, primarily created for genome annotation. Each family is represented by a seed

and a full alignment annotated with a consensus secondary structure and a CM. The seed alignment

contains representative sequence members of the family andis hand-curated or experimentally vali-

dated from published literature. From the seed alignment, aCM is built using theInfernal software.

To search the Rfam sequence database, called Rfamseq, for putative homologous sequences, one

first appliesBlastN [35] using sequences from the seed alignment. The sequencesin Rfamseq sur-

viving an E-value threshold are then searched with the builtCM. Found putative homologues are

aligned using the CM and merged with the seed alignment to form the full alignment. Rfam was

35

2 Existing RNA homology search methods

first released in 2002 containing 25 families (version 1.0),whereas the latest release from 2012

contains 2,208 families (version 11.0). This tremendous growth became possible by the automatic

maintenance of the full alignments enabled byInfernal using CMs. But perhaps, more importantly,

it can also be credited to the search time improvements ofInfernal achieved by incorporating a fil-

tering pipeline as described above. This allowed to take into account many new non-coding RNAs

reported since 2002.

2.6 Descriptor-based search methods

Descriptor-based RNA homology search methods provide a language for defining RNA motif de-

scriptors, here also calledsequence-structure patterns, containing primary and secondary structure

properties of an RNA family. The pattern for a family must be predefined using e.g. information

from an externally computed multiple sequence-structure alignment of the specific RNA family. In

addition to a language, these tools provide a method to search with the patterns in large sequence

databases.

Sequence-structure patterns supported by the tools in thiscategory can, in general, describe all RNA

secondary structure elements (see Figure 1.1). The patterns normally consist of strings of IUPAC

characters including ambiguous symbols, e.g. N meaning anybase from alphabetA (formally,

ϕ(N) = A), and of base pairing information about these characters. These strings of IUPAC

characters indicate which bases canmatchdesignated positions within the pattern, whereas the base

pairing information further constrains matching bases. For example, allowing only complementary

bases to form pairs, two paired positions encoded with character N have only 6 combinations of

possible matching bases instead of4 × 4 for two unpaired positions. Commonly, a number of

allowed errors such as base mismatches can be specified. Overall, a sequence-structure pattern

describes a subset of strings fromA∗ \ {ε} matching the pattern. The goal of descriptor-based

search methods is to find all occurrences of the substrings inthis subset in a target database.

One of the most popular tools in this category isRNAMotif [42]. A sequence-structure pattern

in RNAMotif’s descriptor language consists basically of paired and unpaired elements. A single-

stranded element corresponding to continuous unpaired positions is described with the expression

ss and a helical element, e.g. the stem of a stem-loop, is described withh5 andh3 denoting the 5’

and 3’ sides of the stem. A pattern is defined as a list of such structural elements stating their rel-

ative positions within the pattern; see an example in Figure2.12 (B). Immediately following each

element, the user can specify in parenthesis the sequence information of the element, its minimum

and maximum length, a number of allowed mismatches, among other information. A description

of RNAMotif’s descriptor language is available in a detailed manual [96]. Previous tools in this

category areRNAMOT[97], a variant implementation of it calledRNABOB[98], andPatScan[99].

Patterns for these tools are also defined as a list of paired and unpaired elements, with some differ-

ences in syntax and flexibility. For instance,RNABOBallows for mismatches in paired and unpaired

36

2.6 Descriptor-based search methods

parms

 wc += gu;

descr

 ss(seq="^S$")

 h5(minlen=6, maxlen=8)

 ss(seq="^C$")

 h5(mismatch=1, seq="^UGKGC$")

 ss(mismatch=2, seq="^UWGA$")

 h3(seq="^GCMCA$")

 ss(seq="^CUGAYGA$")

 h5(seq="^GYCB$")

 ss(seq="^N\{0,3\}YUGARAUR$")

 h3(seq="^MGRC$")

 ss(seq="^GAA$")

 h3

 ss(seq="^S$")

s1 h1 s2 h2 s3 h2' s4 h3 s5 h3' s6 h1' s7

s1 0 S

h1 0:0 **NNNNNN:NNNNNN**

s2 0 C

h2 1:1 UGKGC:GCMCA

s3 2 UWGA

s4 0 CUGAYGA

h3 0:0 GYCB:MGRC

s5 0 [3]YUGARAUR

s6 0 GAA

s7 0 S

S A

W

V

A

G

U
C

U
G

K
G

C

U
W

G

A G
C

M
C

A

C

U

G

A Y G

A

G
Y

C
B

Y
U G

A

R

A

UR
M

G
R

C

G

A

A
A

C

U

Y

W

U S5’ 3’

(A)

(B) (C)
RNAMo�f RNABOB

Figure 2.12: (A) Consensus primary and secondary structureof RNA family Hammerhead ri-

bozyme (type III) (Rfam Acc.: RF00008). (B) Sequence-structure pattern inRNAMo-

tif ’s descriptor language capturing primary and secondary structure properties of this

family. The pattern is relaxed to match between 6 and 8 complementary base pairs in

the positions corresponding to the stem drawn in blue. In addition, the pattern allows

for mismatches in the structural elements specified with thekeywordmismatchand

for up to 3 insertions in the loop closed by the stem drawn in orange. (C) Sequence-

structure pattern inRNABOB’s descriptor language for the same RNA family. After

the list of structural elements defining their position within the pattern, each element is

more precisely defined. The single or pair of numbers, e.g. 1:1, following an identifier

of an unpaired or paired element, respectively, is the number of allowed mismatches

for the respective element. This pattern also allows to match between 6 and 8 comple-

mentary base pairs in the positions corresponding to the stem drawn in blue, where*

means 0 or 1 N. Similarly, “[3]” used in elements5means 0 to 3 Ns.

37

2 Existing RNA homology search methods

s1 H1 s2 H2 s3 H2 s4 H3 s5 H3 s6 H1 s7

s1 1:1 S

H1 6:8

s2 1:1 C

H2 5:5 1 UGKGC:GCMCA

s3 4:4 UWGA

s4 7:7 CUGAYGA

H3 4:4 0 GYCB:MGRC

s5 8:11 YUGARAUR

s6 3:3 GAA

s7 1:1 S

r1={AU,UA,CG,GC,GU,UG}

S

p1=6...8

C

p2=UGKGC

UWGA[2,0,0]

r1~p2

CUGAYGA

p3=GYCB

YUGARAUR

r1~p3

GAA

r1~p1

S

(A) (B)
RNAMOT PatScan

Figure 2.13: (A) Sequence-structure pattern inRNAMOT’s descriptor language for the RNA struc-

ture shown in Figure 2.12 (A). Despite sharing a similar syntax with RNABOB, here

the pair of numbers, e.g. 1:1 or 6:8, following each element identifier is the minimum

and maximum length of the element (instead of a number allowed mismatches as in

RNABOB). In RNAMOT, mismatches are only allowed in paired elements, specified

after the pair of numbers denoting possible lengths of the element. In this example, 1

mismatch is allowed for the paired elementH2 in green. (B) Sequence-structure pat-

tern inPatScan’s descriptor language.r1 defines a set of allowed base pairs. Unpaired

elements are simply given as a string of IUPAC characters (not preceded by character

p) optionally followed by three numbers in brackets meaning,in this order, a number

of allowed mismatches, insertions, and deletions. As an example, matches to unpaired

element UWGA can contain up to 2 mismatches. Strings preceded by ap are paired,

whereas their complement is specified with˜p. A range, e.g. 6...8 specified for element

p1, is the minimum and maximum length of the respective element.

38

2.7 Concluding remarks on existing RNA homology search methods

elements, whereasRNAMOTonly supports mismatches in paired elements. For an exampleof a

pattern forRNABOB, RNAMOT, andPatScan, see Figures 2.12 (C), 2.13 (A), and 2.13 (B), respec-

tively. Another tool,Palingol [100], provides a powerful descriptor language to model primary and

secondary properties of an RNA molecule. However, despite being powerful, its language complex-

ity may discourage its use by biologists. Except forRNABOB, all these tools provide a method to

score and rank matches, e.g. to prefer matches with a lower number of mismatches (RNAMotif and

RNAMOT), longer helices (RNAMOT), or minimum free energy (RNAMOT). PatScanandPalingol

can score matches using position weight matrices typicallyreflecting base frequencies in columns

of a multiple sequence alignment of the sought RNA family.

The search for occurrences of a given sequence-structure ina target sequence is performed in a

scanning fashion. For each position of the sequence, tools like RNAMotif andRNAMOTtry to se-

quentially match each paired and unpaired element in the pattern. If every element can be matched,

then an occurrence of the pattern can be scored and reported.Note that the same element sometimes

matches different substrings due to allowed errors, e.g. mismatches, and variable length specified

by the user. Hence, if an element cannot be matched using any of its variations, the tools step back

to a previously matched element, try to match it with e.g. a different length, and proceed with the

next element in a recursive manner. Due to the scanning of thetarget sequence, all tools in this

category have a running time that scales at least linearly inthe size of the sequence.

2.7 Concluding remarks on existing RNA homology search

methods

Given one or more homologous query RNAs belonging to the samefamily and a target sequence

to be searched for sequence and structure similarities withthe query, the choice for a specific RNA

homology search method (see a summary in Table 2.2) can depend on various properties of the

query and the target as follows.

• Number of homologous query sequences. If two or more homologous sequences are available,

it is important that information from the primary and secondary structure of all members of

the family can be combined into one query model for homology search. This is supported by

the models used byLocARNAscan, Infernal, ERPIN, as well as the descriptor-based meth-

odsRNAMotif, RNABOB, RNAMOT, PatScan, andPalingol. In the case of only one query

sequence, all these methods can still be used, whereasRSEARCHandERPINmay better bal-

ance sensitivity and specificity by using position independent substitution matrices. In this

second scenario, also methods performing pairwise comparisons may be applied.

• Local or global sequence and structure similarity. If two RNA sequences to be compared are

expected to contain sequence and structure similarities throughout their extension, then meth-

ods capable of performing global sequence-structure alignments can be appropriate. These

39

2 Existing RNA homology search methods

Method Description Time

Comparative methods (Sankoff-style simultaneous alignment and folding)

Foldalign [65, 43] Computes pairwise local or global sequence-structure alignment simplifying

Sankoff’s algorithm [64] by (1) not allowing for branching structures or (2)

using a heuristic for pruning the used dynamic programming matrices

O
(

n4
)

Dynalign [66] Computes a pairwise global sequence-structure alignment simplifying

Sankoff’s algorithm by limiting the spanM between aligned bases

O
(

n3M3
)

PMcomp[67] Computes pairwise global sequence-structure alignment saving running time by

using precomputed base pairing probabilities from each individual sequence

O
(

n4
)

LocARNA[44] PMcompsuccessor for computing pairwise local alignment saving additional

running time by ignoring base pairings with low probability

O
(

n2 +m2
)

LocARNAscan[68] Scanning variant of theLocARNAmethod suitable for searching for relatively

short homologs in a larger sequence database of known base pairings probabil-

ities. Limits the spanL between aligned base pairs

O
(

nmL2
)

Comparative methods (requiring known secondary structure)

MARNA[69] Computes a multiple alignment of a set of RNAs with knownstructure by using

(1) the algorithm of Jianget al. [70] for pairwise sequence-structure alignment

and (2) the multiple sequence alignment toolT-Coffee[71]

O
(

m2n2
)

RNAforester[72] Computes a pairwise local or global alignment of secondary structures repre-

sented as trees of maximal degreed

O
(

mnd2
)

Method using secondary structure profiles (not covariance models)

ERPIN[73, 41] Builds a secondary structure profile from a multiplesequence alignment an-

notated with a consensus secondary structure, which it thenuses for database

searches

O
(

nm2
)

Methods using secondary structure profiles (covariance models)

Infernal [89, 40] Builds a covariance model from a multiple sequence-alignment annotated with

a consensus secondary structure, which it can then use for database searches

O
(

nm3
)

RSEARCH[74] Builds a covariance model from a single structure-annotated sequence and uses

it combined with a position independent substitution matrix to score target se-

quences

O
(

nm3
)

Descriptor-based methods

RNAMotif [42] Scans a target database searching for matches of a pattern provided by the user

as a list of structural elements, each of which can allow for mismatches, inser-

tions, and deletions of single bases or base pairs. Can scorematched substrings

by number of mismatches or matches of specific bases

O (nm)

RNABOB[98] Similar toRNAMotif using its own descriptor language. Cannot rank matchesO (nm)

RNAMOT[97] Similar to RNAMotif using its own descriptor language, but allows for mis-

matches only in paired elements. Can rank matched substrings by number of

mismatches, helix length, and minimum free energy

O (nm)

PatScan[99] Similar toRNAMotif using its own descriptor language. Can score matches us-

ing position weight matrices

O (nm)

Palingol [100] Similar toRNAMotif using its own descriptor language. Can score matches us-

ing position weight matrices

O (nm)

Table 2.2: Summary of RNA homology search methods. Column “Time” refers to the time required

by the methods to compare two RNAs of lengthm andn or to search a sequence database

of lengthn.

40

2.7 Concluding remarks on existing RNA homology search methods

includeFoldalign, Dynalign, PMcomp, MARNA, RNAforester, Infernal, andRSEARCH. If,

however, the two sequences appear to be highly dissimilar and the intention is to discover

shorter common motifs, then methods for local sequence-structure alignments can be recom-

mended. These includeFoldalign, LocARNA, RNAforester, Infernal, andRSEARCH. Note

that some methods can operate to compute both global and local alignments.

• Length. Global and local alignments are a sensible way to compare sequences of similar

length. However, the high time complexity of methods based on covariance models and of

variants of the Sankoff algorithm enforces a limit on the length of the sequences. This lim-

itation affects programs likeFoldalign, Dynalign, andLocARNAdespite their running time

improvements compared to the original algorithm of Sankoff. In a different scenario, one

is interested in searching for occurrences of relatively short sequence-structure patterns or

motifs in large sequence databases. This can be accomplished by computing semi-global

alignments, aligning the complete motif model to substrings of the target sequence. Semi-

global alignment computation is supported byLocARNAscan, Infernal, RSEARCH, andER-

PIN. Although offering good sensitivity and specificity, all these methods suffer from high

computational demands and often can only be used with heuristics or filters that affect their

sensitivity. Consequently, they are not well-suited for rapid database searches. An alternative

is to search with sequence-structure patterns using descriptor-based methods.

• Knowledge about secondary structure. If the secondary structure of the RNAs to be compared

is not known, then the Sankoff-style methods are most appropriate. These methods can com-

bine information from the input sequences to infer a common secondary structure. Methods

like MARNAandRNAforestercan also be used, but the quality of the produced alignments

can suffer from the poor quality of the folding of single RNAs. However, as already noted,

all these methods suffer from high running time complexities.

These properties of query and target RNAs along with the respective applicable homology search

methods are summarized in Table 2.3. From this analysis of the methods it is easy to conclude

that a major limitation of these methods is their large running time, which is at least quadratic.

While descriptor-based methods are more appropriate for this task, they still have a running time

that scales at least linearly in the size of the sequence database. This makes searching ever-growing

databases challenging. Furthermore, these methods can poorly handle mutations occurring on both

the sequence and structure levels. For instance, allowed insertions, deletions, or mispairings must

be predefined by the user at specific positions of the patterns. This can lead to insensitive searches,

since RNAs often present low sequence conservation throughout their extension.

In the following chapters, we present novel methods for efficient matching of RNA sequence-

structure patterns. In this way, we address the limitationsof current methods by enabling fast sen-

sitive and specific searches in large databases.

41

2 Existing RNA homology search methods

many

query

sequences

one

query

sequence

global

similarity

local

similarity

similar

length

very

different

lengths

known

structure

unknown

structure
speed

Foldalign X X X X X −−

Dynalign X X X X −−

PMcomp X X X X X −

LocARNA X X X X X −

LocARNAscan X ✓ X X −

MARNA X X X X −

RNAforester X X X X −

Infernal X X X ✓ X −

RSEARCH X X X ✓ X −

ERPIN X X ✓ X +

RNAMotif X X ✓ X +

RNABOB X X ✓ X +

RNAMOT X X ✓ X +

PatScan X X ✓ X +

Palingol X X ✓ X +

Table 2.3: Possible properties of hypothetically given query and target RNAs to be compared and

suitable homology search methods for this task. For homology searches in large sequence

databases, one prerequisite is the capability of the methodto compare relatively short

sequence-structure patterns or models of the query with substrings of a larger target da-

tabase. Methods with this capability are indicated with a green check mark in column

“very different lengths”. Another prerequisite are short running times, informally de-

noted with column “speed”. For more details, see main text.

42

3 Fast index-based bidirectional search for
RNA sequence-structure patterns

3.1 Introduction

In the previous chapter, we described different approachesfor sensitive and specific RNA homology

search. We saw that comparative methods or methods using secondary structure profiles are too

slow for searching large databases. Therefore, descriptor-based methods are best suited for rapid

searches. However, since the running time of these methods also scales at least linearly in the size of

the target sequence database, searching with these tools isalso challenging when it comes to large

databases. A solution with sublinear running time would require index data structures. Still, widely

used index structures like suffix trees [51] or arrays [52] orthe FM-index [53] perform badly on

typical RNA sequence-structure patterns, because they cannot take advantage of the RNA structure

information.

Here, we present a fast descriptor-based method and software for RNA sequence-structure pattern

matching. The method consists of initially building an affixarray [101], i.e. an index data structure

of the target database. Affix arrays cope well with structural pattern constraints by allowing for an

efficient matching order of the bases constituting the pattern. Structurally symmetric patterns like

stem-loops can be matched inside out, such that first the loopregion is matched and, in subsequent

extensions, pairing positions on the boundaries are matched consecutively. Because the matched

substring is extended to the left and to the right, this pattern matching scheme is known asbidirec-

tional search. Unlike traditional left-to-right search where the two substrings constituting the stem

region of the pattern are matched sequentially, in bidirectional search base complementarity con-

straints are checked as early as possible. This leads to a significant reduction of the search space that

has to be explored and in turn to a reduced running time. We note that bidirectional search for RNA

sequence-structure patterns was also presented by Mauri etal. in [102]. However, their method uses

affix trees [103] instead of the more memory efficient affix arrays. Affix trees require with approx-

imately45 bytes per input symbol more than twice the memory of affix arrays (18 bytes per input

symbol), making their application infeasible on a large scale. Moreover, their method traverses the

affix tree in a breadth-first manner, leading to a space requirement that grows exponentially with in-

creasing reading depth. We instead employ a depth-first search algorithm whose space requirement

is only proportional to the length of the searched substring.

43

3 Fast index-based bidirectional search for RNA sequence-structure patterns

The affix array directly supports the search for sequence-structure patterns that describe sequence-

structure motifs with non-branching structure, for example stem-loops. In contrast, e.g. the search

for stems closing a multi-loop is not directly supported. Nevertheless, even for RNA containing

multi-loops, the affix array can still speed up the search. Our general approach for finding RNA

families with branching structure is to describe each stem-loop substructure by a sequence-structure

pattern. Each of these patterns is matched independently using the affix array. Then, with a new

efficient chaining algorithm, we compute chains of matches such that the chained matches reflect

the order of occurrence of the respective patterns in the molecule. Note that complex structures

containing one or more multi-loops can be expected to contain sufficiently many non-branching

patterns, such that the proposed chaining strategy identifies true matches with high specificity.

The description of our method closely follows [104].

3.2 Formal preliminaries

To formalize the concept of affix arrays and their application for bidirectional search of RNA

sequence-structure patterns, we complement our definitions given above with the following def-

initions.

Definition 12 We denote thereverse sequenceof a sequenceS = S[1]S[2] . . . S[n] with S−1 =

S[n]S[n − 1] . . . S[1]. Thek–th reverse prefixof S is thek–th suffix ofS−1. For 1 ≤ k ≤ n, Sk

denotes thek–th suffix ofS andS−1
k = (S−1)k denotes thek–th reverse prefix ofS.

Definition 13 A sequence patternis a sequenceP ∈ (A∪Φ)∗, recalling thatA = {A, C, G, U}

andΦ = {R, Y, M, K, W, S, B, D, H, V, N}. Letm denote its length|P |. An occurrenceof P in a

sequenceS is a positioni, 1 ≤ i ≤ n, such thatS[i+ k − 1] ∈ ϕ(P [k]) for all 1 ≤ k ≤ m.

Definition 14 An RNA sequence-structure pattern (RSSP)Q = (P,R) of lengthm is a pair of

asequence patternP and a structure stringR, both of lengthm.

Definition 15 A matchor occurrenceof Q of lengthm in an RNA sequenceS is an occurrence

i of P in S, such that for all base pairs(l, r) ∈ R̂ : (S[i + l − 1], S[i + r − 1]) ∈ C, whereC is

the set of complementary bases defined above. Note that, withthis definition, here we only allow

complementary bases to form base pairs. We define, in addition, CS as a mapping of a character

c ∈ Φ ∪ A to the set of its complementary characters inA, i.e. CS(c) = {d ∈ A| ∃e ∈ ϕ(c) :

(d, e) ∈ C}.

44

3.3 The affix array data structure

Figure 3.1: Unidirectional (left) and bidirectional (right) searches for the RNA sequence-structure

pattern (RSSP)Q = (P,R) with P = NNNUGCUNNN andR = (((....))), which

represents a stem-loop structure of lengthm = 10. The numbers indicate the order in

which the pattern characters are matched against the targetsequence. In the unidirec-

tional search, the characters are matched in a single direction, beginning (ending) with a

character inϕ(P [1]) (ϕ(P [m])). In the bidirectional search, the loop region of the pat-

tern can be matched first. Then, pairing bases are matched consecutively by switching

the search direction, represented by the red arrows.

In the following, structures described by RSSPs are non-branching. We also note that, for stating the

space requirements of our index structures, we assume that|S| < 232, such that sequence positions

and lengths can be stored in4 bytes.

3.3 The affix array data structure

In [101] the theoretical concept of an index data structure called affix array is described. This in-

dex structure supports efficient unidirectional as well as bidirectional searches and is more space

efficient than the affix tree [103, 105]. The termunidirectional searchrefers to the search for occur-

rences of a sequence pattern where the pattern characters are compared with sequence characters in

a left-to-right (right-to-left) order, i.e. the already compared (matched) prefix (suffix), of the pattern

is extended to the right (left). Notably, a change of the direction is not possible.

When searching for occurrences of sequence-structure patterns, however, unidirectional search can-

not exploit the complementarity condition on base paired pattern positions. To utilize this condition

as effectively as possible, both positions of a base pair need to be accessed immediately after each

other. This is enabled bybidirectional search, which refers to methods where the direction of the

match extension can be changed freely. Figure 3.1 illustrates the order of the character comparisons

of a sequence-structure pattern in the unidirectional and bidirectional searches.

Until now, affix arrays have received little attention in bioinformatics. Presumably, this has been

due to the lack of an open and robust implementation. As a consequence, their potential for efficient

database search with RSSPs has hardly been recognized and the details of this data structure are

45

3 Fast index-based bidirectional search for RNA sequence-structure patterns

not widely known in the field. Therefore, we briefly recall thebasic ideas of the affix array, which

constitutes the central component of ourStructatorapproach.

For notational convenience, we defineSF = S andSR = S−1. We useSX for statements that apply

to SF andSR. The subscriptX is used for other notions depending onSF andSR in an analogous

way. Furthermore, we introduce the notationF = R andR = F. We reserve a character$ 6∈ A,

calledterminator symbol, for marking the end of a sequence.$ is lexicographically larger than all

the characters inA.

The affix array data structure of a sequenceS is composed of six tables, namelysufF andsufR, lcpF

and lcpR, andaflkF andaflkR. They are calledsuffix, longest common prefix, andaffix link arrays

of SF andSR, respectively. TablesufR is also known asreverse prefix array. sufX is an array

of integers in the range1 to n + 1 specifying the lexicographic order of then + 1 suffixes of the

stringSX$. That is,SX
sufX [1], S

X
sufX [2], ..., S

X
sufX [n+1] is the sequence of suffixes ofSX$ in ascending

lexicographic order. Each of the tablessufF andsufR requires4n bytes and can be constructed in

O (n) time and space [106]. In practice non-linear time [107, 108]construction algorithms are often

used as they are faster and require less space.

lcpX is a table in the range1 to n+1 such thatlcpX [1] = 0, andlcpX [i] is the length of the longest

common prefix betweenSX
sufX [i−1] andSX

sufX [i] for 1 < i ≤ n+1. Each of the tableslcpF andlcpR

requiresn bytes and store entries with value up to255, whereas occasional larger entries are stored

in an exception table using8 bytes per entry [109]. More space efficient representationsof the lcp

table are possible (see [110]). The construction oflcpF and lcpR can be accomplished inO (n)

time and space givensufF andsufR [111]. In contrast to [101] where affix arrays were described

using a terminology derived from tree-like data structures, we explain the underlying concepts

of this data structure in terms of intervals in the suffix array sufX . Two important concepts of

affix arrays are suffix-intervals and lcp-intervals. An interval [i..j] representing the set of suffixes

SX
sufX [i], ..., S

X
sufX [j], 1 ≤ i ≤ j ≤ n+ 1, of width j − i+ 1, is asuffix-intervalin sufX with depth

(prefix length)ℓ ∈ {0, . . . , n}, or ℓ-suffix-interval, denotedℓ − [i..j], if and only if the following

three conditions hold:

1. lcpX [i] < ℓ;

2. lcpX [j + 1] < ℓ; and

3. lcpX [k] ≥ ℓ for all k ∈ {i+ 1, . . . , j}.

We call a suffix-intervalℓ − [i..j] in sufX lcp-interval in sufX with lcp-valueℓ ∈ {0, . . . , n}, or

ℓ-interval, if and only if i < j andlcpX [k] = ℓ for at least onek ∈ {i+ 1, . . . , j}.

For a suffix-intervalℓ − [i..j] in sufX , we denote the common prefix of lengthℓ of its suffixes

SX
sufX [i], . . . , S

X
sufX [j] by δX(ℓ − [i..j]) = SX [sufX [i]..sufX [i] + ℓ − 1]. In case of an lcp-interval

ℓ− [i..j] in sufX , δX(ℓ− [i..j]) is the longest common prefix of all suffixes in this interval.

In summary, a suffix-intervalℓ− [i..j] in sufX describes simultaneously:

46

3.3 The affix array data structure

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3
1

15
14
11

8
5

13
10

7
4
2

12
9
6

16

1
13
15
11

8
5
2

12
9
6
3

14
10

7
4

16

1

4
5
6

4
5
6

12
5
6

1

8
9

10

8
9

10

12
9

10

Figure 3.2: Affix array forS = AUAGCUGCUGCUGCA. Some lcp-intervals are marked by rect-

angles and the affix links from an lcp-interval to its reverseinterval are represented by

arcs. The solid arc points in two directions, from the lcp-intervalq = 5− [9..11] in sufF

(on the left-hand side) to its reverse intervalq−1 = 5− [5..7] in sufR (on the right-hand

side) and vice versa. That is,q = (q−1)−1 (see Lemma 2). The dotted arc points in

only one direction, from the lcp-intervalq = 4 − [5..7] in sufF to its reverse interval

q−1 = 5− [5..7] in sufR. In this case, the reverse ofq−1 is (q−1)−1 = 5− [9..11], and

q 6= (q−1)−1.

• A location in the index structuresufX by interval bordersi andj and depthℓ. For an example,

see the yellow marked region in Figure 3.2 which correspondsto the suffix-interval4− [5..7]

in sufF.

• A (lexicographically ordered) sequence of suffixesSX
sufX [i], . . . , S

X
sufX [j]. For an example,

consider the lexicographically ordered sequenceSF
sufF[5]

= CUGCA, . . . , SF
sufF[7]

= CUGC-

UGCUGCA of suffixes in the suffix-interval4− [5..7] in sufF in Figure 3.2.

• A substring ofSX of lengthℓ, namelyδX(ℓ− [i..j]). That is, for the suffix-interval4− [5..7]

in sufF in Figure 3.2,δF(4− [5..7]) = CUGC.

• The occurrences of this substring inSX , namely at positionssufX [i], . . . , sufX [j]. To give an

example, consider Figure 3.2 and observe that substring CUGC occurs at positionssufF[5] =

11, sufF[6] = 8, andsufF[7] = 5 in SF = AUAGCUGCUGCUGCA.

For unidirectional left-to-right search of some pattern inS it is sufficient to process lcp-intervals

only in sufF. For bidirectional pattern search using affix arrays, described in detail in the next

section, we employ information from tablesufF as well assufR. Therefore, we need to associate

information of one table to the other. This is done by linkingintervals via tablesaflkF andaflkR.

We observe that there exists a mapping between lcp-intervals in sufF andsufR. This is stated by the

following proven lemma [101].

47

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Lemma 1 For every lcp-intervalq = ℓ − [i..j] in table sufX there is exactly one lcp-interval

q−1 = ℓ′ − [i′..j′] in table sufX called reverse lcp-interval ofq, such thatℓ′ ≥ ℓ and theℓ − 1-th

prefix ofδX(q−1) equals(δX(q))−1. The number of suffixes (prefixes) represented byq andq−1 are

the same, i.e.,j − i = j′ − i′.

We note that the equivalenceq = (q−1)−1 is not necessarily true. This is stated by the next lemma.

Lemma 2 If the lcp-intervalq−1 with depthℓ′ in sufX is the reverse of the lcp-intervalq with depth

ℓ in sufX andℓ = ℓ′, thenq = (q−1)−1. Otherwise, ifℓ′ > ℓ, thenq 6= (q−1)−1.

The mapping between intervals inSF andSR is encoded in tablesaflkF andaflkR as follows. Tables

aflkF andaflkR store, for each lcp-interval insufF andsufR respectively, a pointer to the reverse

interval in the reverse tablessufF andsufR. The position in the tables where the pointers are stored

is determined by the functionhomeX , defined as

homeX ([i..j]) =

{
i, if lcpX [i] ≥ lcpX [j + 1],

j, otherwise,
(3.1)

whereℓ − [i..j] is an lcp-interval insufX . Hence, the home position is one of two boundary po-

sitions. Strothmann [101] shows thathomeX ([i..j]) 6= homeX ([i′..j′]) for different lcp-intervals

ℓ− [i..j] andℓ′ − [i′..j′].

TableaflkX of stringSX$ with total lengthn + 1 can now be defined as a table in the range1 to

n + 1 such thataflkX [homeX (q)] = i′, whereq is an lcp-interval insufX andi′ is the left border

of the reverse intervalq−1 = [i′..j′] in sufX . We refer to the entries in tableaflkX asaffix links.

TablesaflkF andaflkR occupy4n bytes each. They can be computed by traversing the lcp-intervals

in sufX while simultaneously looking for the corresponding reverse lcp-intervals insufX . Locating

reverse lcp-intervals can be accelerated by skp-tables. These tables, introduced in Beckstetteet

al. [54] and hereinafter referred to asskpF andskpR, can be constructed in linear time [112] and

allow one to quickly skip intervals insufX (for details, see [54]). The construction of tablesaflkF

andaflkR takesO
(
n2

)
time. Although the use of skp-tables requires additional2 × 4n bytes of

memory, they considerably reduce the construction times oftablesaflkR andaflkR in practice. We

note that Strothmann [101] describes a linear time construction algorithm for tablesaflkF andaflkR,

which employs suffix link and child-tables [109] and an additional table. Altogether these tables

require at least additional7n bytes of space. Moreover, even without applying the skp-table based

acceleration, Strothmann states that the quadratic time construction algorithm is fast in practice. An

example of the affix array for sequenceS = AUAGCUGCUGCUGCA highlighted with some of its

lcp-intervals connected to the respective reverse interval via theaflkX table is shown in Figure 3.2.

Because affix links in tableaflkX are only defined for lcp-intervals but not suffix-intervals in

general, which we require in bidirectional search, we introduce the concept ofaffix-intervals.

Affix-intervals are similar to affix nodes as defined in [101].An affix-interval in sufX is a triple

v = 〈k, q,X 〉, wherek is an integer designatedcontextof v andq is a suffix-interval insufX .

48

3.4 Searching RNA databases with affix arrays

An affix-interval v = 〈k, q,X 〉 in sufX , with q = ℓ − [i..j], ℓ > 0, −m < k < ℓ, describes

a substringωX(v) of SX of length ℓ − k, defined as thek-th suffix of δX(q), i.e. ωX(v) =

SX [sufX [i] + k..sufX [i] + ℓ − 1]. At the same timev identifies all occurrences ofωX(v) in SX ,

namely the positionssufX [i] + k, . . . , sufX [j] + k. For v = 〈k, q,X 〉, we therefore also use the

notation−→v = ωF (v) if X = F and−→v = ωR(v)
−1 if X = R. As an example, consider the affix-

interval v = 〈1, 4 − [5..7],F〉 in sufF of the affix array shown in Figure 3.2. In this case,k = 1,

q = 4 − [5..7], andX = F. v identifies all occurrences of substring−→v = UGC inSF at positions

sufF[5] + 1 = 12, sufF[6] + 1 = 9, andsufF[7] + 1 = 6. Observe that−→v = UGC is the first suffix

of δF(q) = CUGC due to contextk = 1.

3.4 Searching RNA databases with affix arrays

Pattern matching using affix arrays means the sequential processing of characters in the pattern

guiding the traversal of the data structure. This can be performed in either a traditional left-to-right

order resulting in a unidirectional search or in a bidirectional way where character comparison is

started at any position of the pattern extending the alreadymatched substring of the pattern to the

left or to the right. We will see that bidirectional search using alternating series of left and right ex-

tensions is very well suited for fast database search with RNA sequence-structure patterns (RSSPs)

containing both paired and unpaired bases. In the followingwe will explain the two different traver-

sal strategies underlying unidirectional and bidirectional search using affix arrays.

3.4.1 Unidirectional traversal of affix arrays

Let P = P [1] . . . P [m] ∈ (A ∪ Φ)m be a sequence pattern to be searched inS in a unidirectional

left-to-right way using information from tablesufF only. To search forP , we call the procedure

unidir-searchof Figure 3.3 byunidir-search([1..|S|+1], P, 1). Therefore, in step 0 we start search-

ing for the characters inϕ(P [1]) in the suffix-intervalq0 = 0− [1..n+1] in sufF, which represents

all suffixes ofS$. In each stepk, k ≥ 0, we locate thek + 1-suffix-intervalsqk of maximal width,

such thatP [1..k + 1] matchesδF(qk). For eachd ∈ ϕ(P [k + 1]), this step is performed by two

binary searches in the suffix-intervalqk−1 = ℓ− [i..j] for qk = (ℓ+ 1)− [i′..j′], i ≤ i′ ≤ j′ ≤ j,

j′ − i′ maximal, andS[sufF[i′] + k + 1] = d. With a binary search we locatei′ and with another

we locatej′.

After m steps, if allqk could be located,δF(qm), qm = m − [r..s], matches the patternP and the

occurrencessufF[r], sufF[r+1], . . . , sufF[s] of δF(qm) are reported as occurrences ofP in S. Note

that in this approach the matched substring ofS is extended only to the right and at each stepk the

occurrences of the already matched prefix are represented bya suffix-interval.

49

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.3: Unidirectional search algorithm for searchingfor a sequence patternP ∈ (A ∪ Φ)∗.

Given the suffix arraysufF of S, the procedure enumerates all occurrences ofP in S

when called byunidir-search([1..|S|+1], P, 1). In line 5, the suffix-intervalq′ is located

by binary search inO (log n).

3.4.2 Bidirectional traversal of affix arrays

For the bidirectional search, we start at some position inP ∈ (A ∪ Φ)m and then compare the

patternP character by character to indexed suffixes and reverse prefixes of the text, where we can

freely switch between extending to the left or to the right. Note that as in the case of unidirectional

search, ambiguous nucleotidesx in the pattern can be handled by enumerating all charactersc in

the corresponding character classϕ(x). We can focus on the situation in the search, where

• a ranger..r′ (1 ≤ r ≤ r′ ≤ m) of the patternP is already compared,

• the occurrences of a substringu ∈ Ar′−r+1 of S matchingP [r..r′] are represented by an

affix-intervalv = 〈k, ℓ− [i..j],X 〉 in sufX , and

• we want to extend−→v either to the left or to the right by a sequence characterc ∈ A (that

matches the respective pattern characterP [r − 1] or P [r′ + 1]). This will result in a new,

extended affix-intervalvx.

Switch of the search direction. Like its suffix-interval, an affix-interval directly supports

extension of the represented substring in only one direction, namely searching to the right for

X = F and to the left forX = R. However, there are “corresponding” affix-intervals representing

the same substring ofS but allowing extension to the opposite direction.

If the new search direction differs from the supported search direction ofv, this switch of the

search directionrequires determining the corresponding affix-intervalv′ in sufX unlessi = j or v

has non-empty contextk 6= 0. There are these two exceptions, since first ifi = j, independently of

the value ofk, ωX(v) is already a unique substring ofSX . Second, for a non-empty contextk 6= 0,

all occurrences of substringωX(v) in SX are followed (ifk > 0) or preceded (ifk < 0) by the

same substringu ∈ Ak.

50

3.4 Searching RNA databases with affix arrays

Let k = 0 and i < j. The affix-intervalv′ = 〈k′, ℓ′ − [i′..j′],X 〉 in sufX is called thereverse

affix-interval of v = 〈k, ℓ − [i..j],X 〉 if and only if j′ − i′ = j − i, ℓ′ ≥ ℓ, andωX(v)−1 =

ωX(v′). The interval boundariesi′ andj′ of v′ are determined via a lookup in tableaflkX . We set

i′ = aflkX [homeX ([i..j])] andj′ = i′ + (j − i). Observe thatℓ is not necessarily the length of the

longest common prefix of all suffixes in[i..j]. For this reason we defineℓlcp = min{lcpX [k] | i <

k ≤ j} ≥ ℓ and compute the context ofv′ ask′ = ℓlcp − ℓ. Further, we setℓ′ = ℓlcp. Hence the

reverse affix-intervalv′ = 〈k′, ℓ′ − [i′..j′],X 〉 is well defined andv′ is the required corresponding

interval ofv.

Right/left c-extension of an affix-interval In our situation,−→v = u represents the occur-

rences of a substringu of S matchingP [r..r′].

The right (left) extension ofv by a characterc ∈ A, also calledc-extension ofv, is an operation

that computes the affix-intervalvx representing all occurrences of a substringuc (cu). It fails, if

there is no such substring. We elaborate the cases for right extension. The cases for left extension

are symmetric and therefore omitted. For rightc-extension ofv = 〈k, ℓ − [i..j],X 〉, we determine

the intervalvx = 〈kx, ℓx− [ix..jx],Xx〉 with −→vx = −→v c. The first two cases do not require switching

the search direction.

• CaseX = F and i = j. u is a unique substring−→v of S. If S[sufF[i] + ℓ] = c, then

vx = 〈k, (ℓ+ 1)− [i..j],F〉.

• CaseX = F and i < j. We determine the minimalix ≥ i and maximaljx ≤ j in sufF

such thatS[sufF[ix] + ℓ] = c andS[sufF[jx] + ℓ] = c by binary search in the suffix-interval

ℓ− [i..j]. If ix andjx exist, we setvx = 〈k, (ℓ+ 1)− [ix..jx],F〉.

The following cases require switching the search direction.

• CaseX = R, i = j. We evaluateSR[sufR[i] + k − 1]. If SR[sufR[i] + k − 1] = c, set

vx = 〈k − 1, ℓ− [i..j],R〉.

• CaseX = R, i < j, andk = 0. We first determine the reverse affix-intervalv′ = 〈k′, ℓ′ −

[i′..j′],F〉 of v via a switch of the search direction as described above. Thenwe compute the

minimal ix ≥ i′ and maximaljx ≤ j′ via binary search, such thatS[sufF[ix] + ℓ′] = c and

S[sufF[jx] + ℓ′] = c. If ix andjx exist, we setvx = 〈k′, (ℓ′ + 1)− [ix..jx],F〉.

• CaseX = R, i < j, andk > 0. We evaluate the(k−1)–th character ofδR(ℓ− [i..j]). That is,

if δR(ℓ−[i..j])[k−1] = c, then we consume the contextk by settingvx = 〈k−1, ℓ−[i..j],R〉.

The operation fails ifvx cannot be determined.

51

3 Fast index-based bidirectional search for RNA sequence-structure patterns

3.4.3 RNA sequence-structure pattern matching using affix a rrays

Searching a sequenceS with an RNA sequence-structure pattern (RSSP)Q = (P,R) means to

find the occurrences ofP in S under the complementarity constraints imposed by the structure

stringR (cf. our definition of RSSP-occurrence). We introduce a search algorithm that checks for

complementarity constraints as early as possible in bidirectional search to maximally reduce the

search time due to this restriction.

For further considerations, we will assume a special ‘canonical’ form for RSSPs, which we define

in the following. Independently of a sequenceS, each RSSP describes a set of pattern instances, i.e.

the set of potential substrings matching the pattern. Often, there are several patterns that describe

the same set of instances. For example, the pattern(UNUACACGNR,(((....)))) describes

the same set of instances as(UNUACACGNR,((......))) since the additional base pair(3, 8)

in (((....))) does not make the pattern more specific. We will define a pattern to be structure

minimal if there is no, in this sense, equivalent pattern containing a true subset of the base pairs.

An RSSPQ = (P,R) is structure minimalif and only if for all base pairs(i, j) ∈ R̂ it holds that

ϕ(P [i]) ∩ CS(P [j]) × ϕ(P [j]) ∩ CS(P [i])

6= ϕ(d) × ϕ(e), for all d, e ∈ (A ∪ Φ).

Furthermore, a general pattern is calledinconsistentif it does not have any instance. Formally, a

pattern isconsistentif and only if for each base pair(i, j) it holds thatϕ(P [i]) ∩ CS(P [j]) 6=

∅ andϕ(P [j]) ∩ CS(P [i]) 6= ∅. An example of an inconsistent RSSP isQ = (P,R) with P

= UAUACACGAN and R = ((......)). Q is not consistent because there is a base pair

(2, 9) ∈ R̂ but the basesP [2] = A andP [9] = A are not complementary, i.e.(A,A) /∈ C. An

example of a structure minimal and consistent RSSP is(UNUACACGNR,((......))). Note

that a pattern can be transformed into an equivalent structure minimal pattern and checked for

consistency inO (m) time. For complexity considerations, we can therefore safely assume that

patterns are consistent and structure minimal.

In this case, one can restrict the search space by comparing the two positions of each base pair im-

mediately after each other. Due to this, the enumeration of characters matching the pattern symbols

at each base pair can be restricted to the smaller number of complementary ones. In the search for

a sequence-structure pattern this can reduce the number of enumerated combinations of matching

characters exponentially. Thus, for structure minimal patterns(P,R), the non-branching structure

R̂ suggests a search strategy, i.e. an order of left and right extensions, which requires switching the

search direction at every base pair but makes optimal use of the complementarity constraints due to

the base pairs.

Following this idea, Mauri and Pavesi [102] presented an algorithm for matching RNA stem-loop

structures using affix trees. This algorithm explores the search space in a breadth-first manner, so

memory use grows exponentially with increasing depth. Instead of an affix tree, we employ the

more space efficient affix array data structure and use a depth-first search algorithm which only

52

3.4 Searching RNA databases with affix arrays

requires space for the search proportional to the length of the substring searched. The depth-first

search for all occurrences of a stem-loop RSSPQ = (P,R) is performed by calling procedure

bidir-searchof Algorithm 2 (see Figure 3.4). Note that we explicitly support bulges andinternal

loops in the stem-loop pattern, i.e. we do not require perfect stacking of the base pairs but allow

general non-branching structures.

In our algorithm, we switch the search direction only once per base pair when matching the stem

region of the pattern, thus halving the number of lookups in the affix link tables compared to a naive

algorithm without this optimization. This was also observed by Strothmann [101] whose algorithm

did not support RSSPs containing bulges and internal loops.

To matchQ we call procedurebidir-searchinitially asbidir-search(〈0, 0−[1..n+1],F〉, r0−1, r0),

where〈0, 0− [1..n+1],F〉 is an affix-interval andr0 is any position in the loop region of the RSSP

or any position of a completely unpaired pattern. Then, the procedure traverses the affix-intervals

by performing right and left extensions, while at the same time checking base complementarity

of paired positions. This verification takes constant time by using a binary table of size|A| × |A|

containing all valid base pairings. Matching positions arereported whenever the boundaries of the

RSSP are reached.

In principle, we are free to choose any loop positionr0 (or any position ifR̂ is empty) for starting

our bidirectional search algorithm. However, in order to reduce the combinatorial explosion of the

search space due to ambiguous IUPAC characters, it is preferable to match unambiguous pattern

characters first. To keep the selection simple, we setr0 to the position of the first characterc in the

possible range such that|ϕ(c)| is minimal. That is, we start the search with the most specific(least

ambiguous) character.

3.4.4 An example of bidirectional RNA sequence-structure p attern search

As an example of bidirectional search for RSSPs using affix arrays, we search for the RSSPQ

in the sequenceS given in Figures 3.1 and 3.2, respectively. We recall thatQ = (P,R) with P

= NNNUGCUNNN andR = (((....))) represents a stem-loop structure of lengthm = 10

andS = AUAGCUGCUGCUGCA has length 15. We start matchingP in S by calling procedure

bidir-searchof Algorithm 2 asbidir-search(〈0, 0− [1..16],F〉, 3, 4). That is, the algorithm matches

the first positionP [4] = U of the loop region in left-to-right direction. Given thatX = F andi < j

(i.e.1 < 16) hold, it locates intervalvx = 〈0, 1− [12..15],F〉 with −→vx = U via binary search in the

interval0− [1..16] of sufF. Analogously, the following recursive calls ofbidir-searchperform right

c-extensions ofu = U = P [4..4] with charactersP [5] = G,P [6] = C, andP [7] = U, by searching

in the intervals1− [12..15], 2− [13..15], and3− [13..15], respectively. After these extensions, the

algorithm has located the affix-intervalvx = 〈0, 4 − [14..15],F〉 representing all occurrences of
−→vx = UGCU inS such that−→vx matchesu = P [4..7]. We setv = vx. Next, the algorithm performs

a right c-extension ofu with the pairing positionc ∈ ϕ(P [8] = N). Therefore, it enumerates all

53

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.4: Bidirectional recursive RSSP matching using anaffix array. Procedurebidir-search

finds all matches of a given RSSP(P,R), beginning the pattern extensions from any

position in the loop region or any position in a completely unpaired pattern. In each

call, parameterv denotes the affix-interval representing matches of the pattern sub-

stringP [r+1..r′−1], 1 ≤ r ≤ r′ ≤ m satisfying the structural constraints imposed by

R[r + 1..r′ − 1]. The procedure takes care to change the search direction only as often

as necessary, in particular it changes the direction only once per base pair.

54

3.4 Searching RNA databases with affix arrays

possiblevx such that−→vx = −→v d for somed ∈ ϕ(c). We observe thatvx = 〈0, 5 − [14..15],F〉

with −→vx = UGCUG is the only interval satisfying these conditions and concluded = G. As an

additional structural constraint, matches to positions3 and8 of P shall form a base pair. To fulfill

this constraint, the algorithm first switches the search direction by locating the reverse intervalv′ of

vx. The left boundary ofv′ is determined with a lookup in tableaflkF asaflkF[homeF([14..15])] =

6 and the right boundary as7. Further, we setℓlcp = min{lcpF[r] | 14 < r ≤ 15} = 6 and

calculate the context ofv′ as6 − 5 = 1. Hence, the reverse interval ofvx is determined asv′ =

〈1, 6 − [6..7],R〉 with −→v ′ = UGCUG and we setv = v′. Now the only interval satisfying (1)
−→vx = e−→v , e ∈ ϕ(P [3]), and (2) the complementarity condition between positions3 and8 of P ,

as required by the structure stringR, is the intervalvx = 〈1, 7 − [6..7],R〉 with −→vx = CUGCUG

representing occurrences of substrings matchingP [3..8]. Observe that−→vx[1] = C and−→vx[6] = G

can form a base pair as demanded byR[3] andR[8]. Consequently,−→vx matches(P [3..8], R[3..8])

and therefore we setv = vx. In the next step the algorithm performs another leftc-extension of
−→v by somec ∈ ϕ(P [2] = N) leading to intervalvx = 〈1, 8 − [6..7],R〉 with −→vx = GCUGCUG

representing occurrences of substrings matchingP [2..8]. We setv = vx. To match a character

d ∈ ϕ(c) that is complementary to−→v [1] = G the algorithm performs a rightc-extension of−→v using

a characterc ∈ ϕ(P [9]). Because the context ofv is larger than zero, it consumes the context and

remains in tablesufR. That is,X = R. The resulting interval after performing the rightc-extension

is vx = 〈0, 8 − [6..7],R〉 with −→vx = GCUGCUGC. Observe that−→vx[1] = G and−→vx[8] = C can

form a base pair and thusvx represents occurrences of substrings ofS matching(P [2..9], R[2..9]).

We setv = vx. The next operation is a leftc-extension by somec ∈ ϕ(P [1] = N). Hence,

the algorithm enumerates all intervalsvx such that−→vx = −→v d, d ∈ ϕ(c). There are two intervals

satisfying these conditions. Namely,vx1 = 〈0, 9 − [6..6],R〉 with −→vx1 = AGCUGCUGC and

vx2 = 〈0, 9 − [7..7],R〉 with −→vx2 = UGCUGCUGC. We setv1 = vx1 andv2 = vx2 and continue

by processingv1, which represents occurrences of−→v1 = AGCUGCUGC inS. Because−→v1 is a

unique substring ofS, for the following rightc-extension by somec ∈ ϕ(P [10] = N) we can

directly evaluateSR[sufR[6] − 1] = U. Bases(−→v1 [1] = A,U) are complementary, hence we set

vx = 〈−1, 9 − [6..6],R〉 and observe that occurrences of substring−→vx = AGCUGCUGCU of

S match(P [1..10], R[1..10]) and that the boundaries ofQ have been reached. With this, in the

following recursion the algorithm reports a matching position of Q via a lookup in tablesufR as

sufR[6]+(−1) = 5−1 = 4, where−1 is the context ofvx that has to be added tosufR[6]. Note that,

becauseX = R, 4 is a position inSR. Now the algorithm backtracks to interval〈0, 8 − [6..7],R〉

and continues to perform a rightc-extension of intervalv2 by somec ∈ ϕ(P [10]). Again,−→v2 =

UGCUGCUGC is a unique substring ofS and we can directly evaluateSR[sufR[7] − 1] = A.

Since bases(−→v2 [1] = U,A) can pair, we setvx = 〈−1, 9 − [7..7],R〉 with −→vx = UGCUGCUGCA

representing occurrences of substrings ofS matching(P [1..10], R[1..10]). The boundaries ofQ

have been reached again and in the following recursion the algorithm reports another matching

position ofQ, preciselysufR[7] + (−1) = 2− 1 = 1. There are no further intervals to process and

the search ends. In summary,bidir-searchhas found two occurrences ofQ in S.

55

3 Fast index-based bidirectional search for RNA sequence-structure patterns

3.4.5 Complexity analysis

We analyze the complexity for searching in a sequenceS of lengthn for an RSSPQ of length

m < n, where the index structures forS are already computed.

The bidirectional search algorithm requires tablessufF andsufR, lcpF andlcpR, andaflkF andaflkR.

Under our assumption thatn < 232, each of the four tablessufX andaflkX consumes4n bytes, and

the two tableslcpX are each stored inn bytes (X ∈ {F,R}). This amounts to a space consumption

of 18n bytes for the index structures. The algorithm performs a depth first search, where the depth

is limited bym, and therefore requiresO(m) space. The total space complexity is thereforeO(n).

We assume thatQ = (P,R) is structure minimal. Such a patternQ without ambiguity, i.e.P ∈ Am,

does not contain base pairs and the search forQ does not profit from bidirectional search. Although

such a pattern is processed by Algorithm 2, it can be handled by Algorithm 1 using only a suffix

array and saving some overhead.

Algorithm 1 accomplishes the search for an unambiguous patternQ on the suffix arraysufF using

binary search for locating intervals inO (m log n+ z) time, wherez is the number of occurrences

of P in S. We remark that this time bound can be lowered at the price of higher memory consump-

tion toO (m+ log n+ z) [52] or evenO (m+ z) [113, 109] time by using additional precomputed

information.

Notably, if there is ambiguity but no base pair inQ, bidirectional search can still be beneficial in

practice. This is the case when searching for a pattern in which a string of unambiguous characters

is surrounded on both sides by ambiguous IUPAC characters, because the comparison can start at

the most specific part of the pattern. The time complexities for searching ambiguous patterns with

Algorithm 1 can be estimated asO (n log n) in the worst case of searching for the sequence pattern

P consisting only of Ns. Furthermore, note that our Algorithm2 behaves exactly like Algorithm 1

on patterns without base pairs if we invoke the search procedure withr = 0 andr′ = 1.

For a patternQ = (P,R) of lengthm, let p ≥ 0 be the number of base pairs in̂R. In the worst case

P consists only of Ns. Moreover, all possible strings of length m satisfying the complementarity

constraints specified in̂R occur in the textS. Recall that, since we allow (G, U) pairs, there are

|C| = 6 possible complementary base pairs. Thus, there are|A|m−2p|C|p such strings and Algorithm

2 spans a virtual tree withEm,p = |A|m−2p|C|p paths from the root to a leaf. At each leaf, it reports

the occurrences of the respective matched substring.

On each path from the root to the leaf the algorithm performsm− 2p c-extensions and at most one

switch of the search direction for matching them − 2p unpaired characters. Then, it performs2p

56

3.4 Searching RNA databases with affix arrays

c-extensions andp switches of the direction for matching the base paired positions. Therefore, we

count the total number of c-extensions as

m−2p∑

i=1

|A|i + |A|m−2p
2p∑

j=1

2|C|j

=
|A|m−2p+1 − |A|

|A| − 1
+ 2|A|m−2p |C|

p+1 − |C|

|C| − 1
,

which is inO (Em,p).

The cost of eachc-extension consists of the cost of locating the suffix-interval of the new affix-

interval, which is performed by binary search inO (log n), and the cost for potentially computing

the reverse affix-interval when switching the search direction.

Instead of performing the binary search over the suffix tables, one can use the child-tables intro-

duced by Abouelhodaet al. in [109] to determine the child intervals and switch the search direction

in constant time. The child-tables, however, add at least2n bytes to the index and require additional

involved index construction. As the child-tables improve the worst case behavior but, on the other

hand, require more space, we analyze the complexity with andwithout these tables (i.e. with tables

sufX , lcpX , andaflkX only).

First, we analyze the time required for performing a single switch of the search direction. Therefore

we assume that the current affix-interval isv = 〈k, ℓ− [i..j],X 〉. Consider the following two cases.

1. Casei = j or k 6= 0. If i = j, −→v represents a unique substring ofS, or, if k 6= 0, all

occurrences of substring−→v in S are followed (ifk > 0) or preceded (ifk < 0) by the same

substring of length|k| (known as context). Switching the search direction does notrequire

locating the reverse interval ofv, because the algorithm can perform thec-extension in the

new search direction by consuming context. Therefore, thiscase requires constant time.

2. Casei < j andk = 0. The algorithm needs to locate the reverse affix-intervalv′ = 〈k′, ℓ′ −

[i′..j′],X 〉 of v. Interval boundariesi′ = aflkX [homeX ([i..j])] andj′ = i′ + (j − i) of v′ are

computed in constant time. By definition, computing the reverse affix-interval ofv requires

knowing ℓlcp. Then,ℓ′ = ℓlcp andk′ = ℓ′ − ℓ. Without child-tables, we determineℓlcp by

computing the length of the longest common prefix betweenSX
sufX [i] andSX

sufX [j]. It suffices

to performℓlcp − ℓ + 1 = k′ + 1 character comparisons only, since both suffixesSX
sufX [i]

andSX
sufX [j] share a common prefix of at least lengthℓ. With the help of child-tables,ℓlcp is

determined in constant time [109].

Due to the following lemma, the computation of all reverse affix-intervals on one path of our virtual

tree is inO (n) if child-tables are not used.

Lemma 3 Using tablessufX , lcpX , and aflkX , the computation of all contexts on a path in the

recursion of Algorithm 2 is inO (n).

57

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Proof. Let v1, v2, vt . . . , vC be the sequence of reverse intervals processed when matching Q, and

let kt denote the context ofvt for 1 ≤ t ≤ C.

To show
∑C

t=1 kt ≤ n, let v = 〈k, ℓ − [i..j],X 〉, with k = 0, i < j, andX = F (X = R),

be the current affix-interval. We assume without loss of generality that we perform a left (right)

c-extension ofv and thus locate the reverse intervalvt = 〈kt, ℓt − [it..jt],X 〉. Then the following

statements hold:kt ≥ 0, ℓt = ℓ+kt, andjt−it = j−i (see Lemma 1). Observe thatkt = 0 implies

ωX(vt) = δX(ℓt−[it..jt]) andkt > 0 implies that substringδX(ℓt−[it..jt]) has a non-empty prefix

of lengthkt, namelySX [sufX [it]..sufX [it]+kt−1]. Note thatvt is only located ifk = 0, otherwise

the contextk has to be consumed. Hence there is no reverse intervalvs = 〈ks, ℓs − [is..js],X 〉,

with 1 ≤ s ≤ C, s 6= t, andks > 0, such that the (ks − 1)-th prefix ofδX(ℓs − [is..js]) overlaps

with SX [sufX [it]..sufX [it]+kt−1] for the same positions inSX . From this,
∑C

t=1 kt ≤ n follows.

Since a single contextkt can be determined by performing exactlykt + 1 character comparisons,

this impliesO (n) time to compute all these contexts. With this, we conclude that all switches of

the search direction performed while inding one substringw in S that matchesQ take up toO (n)

time. �

Therefore, when searching forQ without child-tables, the total time for switching search directions

is coarsely estimated by multiplying the complexity for onepath with the number of paths as

O (Em,pn). The use of child-tables removes the linear factor.

For the worst case that all strings matching the pattern actually occur as substrings inS, the se-

quenceS must have a certain minimal length. In the case ofp = 0, the possible matches are the

words inAm and a sequence that contains all these matches is called|A|-ary de Bruijnsequence

of orderm [114] without wrap-around, i.e. ade Bruijn sequence with its firstm − 1 characters

concatenated to its end. Such a sequence was shown to have a length ofn0 = |A|m +m− 1. As a

consequence, the worst case requiresn ≥ n0.

We summarize the worst-case time complexities for Algorithm 2 as follows. 1.) From determining

new suffix-intervals, we get a contribution ofO (Em,p log n). Forn ≥ n0, this is inO (n log n).

Child-tables reduce this time further toO (n). 2.) Switching directions without child-tables is in

O (Em,pn) worst-case time, which is reduced toO (Em,p) when using child-tables. Forn ≥ n0,

Em,p is inO (n). Finally, Algorithm 2 runs inO (Em,p(n+ log n)), which is reduced toO (Em,p)

using child-tables (i.e.O (n) for n ≥ n0).

One should note that the worst-case time complexity of bidirectional search for sequence-structure

pattern is only in the order of online search algorithms. In our implementation, we use a minimal

set of tables in order to keep the implementation simple and save space.

However, it can be clearly seen from this analysis that the worst case is based on extremely pes-

simistic assumptions that are almost contrary to the expected application. 1.) It is assumed that a

pattern consists of wildcards N only. In the expected application, however, patterns will often spec-

ify bases in the loop region, which is of particular benefit for our algorithm. 2.) Sequences, like

58

3.4 Searching RNA databases with affix arrays

thede Bruijnsequence, that contain all possible matches of an average sized pattern will be rare in

practice. E.g. it could be assumed that a sequence that contains all possible matches of a patternQ

with p base pairs (andP =N. . .N) is at least as long as the|A|-aryde Bruijnsequence of orderm,

since one expects no significant bias for the specific complementarity due toR̂ over all substrings

of lengthm. However,Em,p = |A|m−p|C|p = 4m−2p6p = 4m/(16/6)p is even for smallp much

smaller thann0 = 4m +m − 1. For example, four base pairs (i.e.,p = 4) reduce the time bound

by a factor of(16/6)4 ≈ 50 and eight base pairs reduce time by a factor of about 2500.

3.4.6 A bidirectional search algorithm supporting variabl e length RSSPs

Algorithm 2 above matches fixed-length RSSPs. We now presentan extension of it also capable

of matching RSSPs with loop region allowing a variable number of additional extensions with

ambiguous characters N to the left and to the right. In combination, also stem region of variable

length is supported. We observe that this extended version is as efficient as the original algorithm

supporting fixed-length RSSPs. Additional computation time is only required for the traversal of

additional affix-intervals due to the increased sensitivity.

Before describing the algorithm, we define this extension ofRSSPs. Avariable-length RSSPQ

consists of an RSSP(P,R) and parametersmaxleftloopextent (mllex), maxrightloopextent (mrlex),

andmaxstemlength (msl). mllexandmrlexdenote the maximum number of respective left and right

extensions of the loop region specified inR andmsl denotes the maximum number of base pairs in

the stem. The minimum length of occurrences ofQ is m = |P | = |R|. For examples of variable-

length RSSPs, see Figure 3.5 (E) until (H).

To keep the code simple, we split the original algorithm intotwo procedures. (i) First the loop region

of a given variable-length RSSPQ is matched with procedurebidir-search-loop(see Algorithm 3,

Figure 3.6). (ii) Next, the stem region is matched with procedurebidir-search-stem(see Algorithm

4, Figure 3.7). Note thatbidir-search-stemis very similar to Algorithm 2. Prior to the search forQ,

the following variables are set:loopstart, minloopstart, loopend, maxloopend, minbps, andmaxbps.

These variables store the following information.loopstart(loopend) stores the position of the base

occurring in the left-most (right-most) position of the loop described by the structure stringR

in 5’ to 3’ direction, minloopstart = loopstart− mllex, maxloopend= loopend+ mrlex, and

minbps(maxbps= msl) is the minimum (maximum) number of base pairs occurring inQ. It holds:

minloopstart≤ loopstart≤ loopend≤ maxloopend. Note thatminloopstartcan be negative. As an

example, letR = (((....))), mllex= 5, andmrlex= 1. Thenloopstart= 4, minloopstart=

−1, loopend= 7, maxloopend= 8, andminbps= 3. To matchQ, procedurebidir-search-loopis

initially called asbidir-search-loop(〈0, 0 − [1..n + 1],F〉, r0 − 1, r0, true), where〈0, 0 − [1..n +

1],F〉 is an affix-interval,r0 is any position in the loop region ofQ, and parameter true states

that the pattern can be extended to the right. Procedurebidir-search-loopcalls bidir-search-stem

whenever substrings of minimum lengthloopend− loopstart+1 matching the loop in the searched

database are found. IfQ has no base pairs, i.e.msl = 0, it instead immediately reports the matching

59

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.5: Supported structural patterns and corresponding pattern definitions inStructatorsyntax

(see complete syntax description in Appendix A). Unambiguous nucleotides are marked

in red. Positions containing ambiguous nucleotides, denoted here with character N, are

marked in green and can contain any nucleotide fromA. Maximal allowed left and right

extensions of the loop region of a pattern as specified by parametersmaxleftloopextent

(mllex)andmaxrightloopextent (mrlex)are marked in yellow and blue, respectively. Al-

lowed possible extensions of a pattern’s stem region as specified by parametermaxstem-

length (msl)are marked in purple. As an example for the semantics of the parametermsl

consider pattern (G): it matches all substrings of the searched sequence that are able to

fold into a stem-loop structure with loop length6 and stem length between3 and8. For

further details, see corresponding text.

60

3.5 RNA secondary structure descriptors based on multiple ordered RSSPs

positions. This is reflected by callingbidir-search-stem(v′, loopstart−1, loopend+1, 0), wherev′

is the affix-interval representing all occurrences of substring −→v ′ in the searched database matching

the loop region ofQ, positionsloopstart− 1 and loopend+ 1 denote the inner-most base pair

(loopstart− 1, loopend+ 1) of the pattern, and0 is the number of currently matched base pairs.

Procedurebidir-search-stemreports matching positions ofQ whenever the boundaries of the RSSP

are reached orminbps ≤ bpcount ≤ maxbps holds.

3.5 RNA secondary structure descriptors based on multiple

ordered RSSPs

Obviously RNAs with complex, branching structures cannot be described completely by a single

RSSP. Describing an RNA by only a single unbranched fragmentis often inappropriate, since

searching a large sequence database or a complete genome forstructurally conserved RNAs (RNA

homology search) with a single RSSP will likely generate many spurious matches. However, larger

RNAs can often adequately be described by a sequence of RSSPs. This holds for1,247 out of

1,446 RNA families in Rfam 10.0 which have a structure containing several stem-loops but no

multi-loop. Only199 out of 1,446 (13.76%) RNA families in Rfam 10.0 containing multi-loops

cannot be modeled completely this way. Still, the consensusstructures of these199 families contain

on average4.06 stem-loops (standard deviation2.08, median3) which can be modeled as RSSPs.

In consequence, we can use a sequence of RSSPs that consist ofat least one pattern per stem-loop

(and potentially also unstructured patterns) for the description of those families. This allows to

accurately identify members even of those families containing multi-loops.

We address search for complex structured RNA families with the new concept of RNA secondary

structure descriptors (SSD for short). SSDs use the information of multiple ordered RSSPs de-

rived from the decomposition of an RNA’s secondary structure or from the consensus secondary

structure of a multiple sequence-structure alignment of related RNAs into stem-loop-like structural

elements. Such consensus secondary structures for multiple RNAs can be computed with a variety

of programs following one of the three strategies introduced in [63]. Namely: (A) alignment of

the sequences followed by joint folding [115, 116, 117, 118], (B) Sankoff style [64] simultaneous

alignment and folding [119, 44, 120, 121], and (C) individual folding of the sequences followed by

alignment of their structures [69, 122, 123]. In the following we make the concept of SSDs more

precise. LetA = A1, A2, . . . , AL be a sequence of non-overlapping alignment blocks. These align-

ment blocks are excised from a multiple sequence(-structure) alignment and represent regions of

the molecule that fold into stem-loop-like structures or remain unfolded. The indexing from1 toL

reflects their order of occurrence in the alignment. HenceA represents a sequential decomposition

of the molecule’s secondary structure (in5′ → 3′ direction) into regions, each of which can be

described by an RSSP. See Figure 3.8 (A) for an example.

61

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Algorithm 3: bidir-search-loop(affix-interval v = 〈k, ℓ − [i..j],X〉, pos r, pos r′,
allowrightext)

if r′ ≤ maxloopend and allowrightext = true then1

// perform right extension

if r′ > loopend then2

chr′ = ‘N’3

else4

chr′ = P [r′]5

end6

foreach v′ such that d ∈ ϕ(chr′) and −→v ′ = −→v d do7

if r < loopstart and r′ + 1 > loopend then8

if msl = 0 then // if entire pattern is single stranded9

report match at positions sufX [i] + k, ..., sufX [j] + k10

return11

else // otherwise loop of length r′ − r + 1 was matched12

// so extend stem region

bidir-search-stem(v′, loopstart − 1, loopend + 1, 0)13

end14

end15

if r′ + 1 ≤ maxloopend then16

bidir-search-loop(v′, r, r′ + 1, true)17

end18

if r′ + 1 > loopend then19

bidir-search-loop(v′, r, r′ + 1, false)20

end21

end22

else if r ≥ minloopstart then23

// perform left extension

if r < loopstart then24

chr = ‘N’25

else26

chr = P [r]27

end28

foreach v′ such that d ∈ ϕ(chr) and −→v ′ = d−→v do29

if r − 1 < loopstart and r′ > loopend then30

if msl = 0 then // if entire pattern is single stranded31

report match at positions sufX [i] + k, ..., sufX [j] + k32

return33

else // otherwise loop of length r′ − r + 1 was matched34

// so extend stem region

bidir-search-stem(v′, loopstart − 1, loopend + 1, 0)35

end36

end37

bidir-search-loop(v′ , r − 1, r′, allowrightext)38

end39

end40

Figure 3.6: Bidirectional recursive matching of the loop region of a variable-length RSSP using

an affix array. Procedurebidir-search-loopsearches for an RSSP(P,R) defined with

additional variablesmaxleftloopextent (mllex)and maxrightloopextent (mrlex)denot-

ing the maximum number of left and right extensions of the loop specified inR,

respectively, andmaxstemlength (msl)denoting the maximum number of base pairs.

Used variablesloopstart, minloopstart, loopend, andmaxloopendare preset accord-

ing to structure stringR, mllex, and mrlex (see text).bidir-search-loopcalls proce-

dure bidir-search-stem (see Algorithm 4) whenever substrings of minimum length

loopend− loopstart+ 1 matching the loop are found.
62

3.5 RNA secondary structure descriptors based on multiple ordered RSSPs

Algorithm 4: bidir-search-stem(affix-interval v = 〈k, ℓ− [i..j],X〉, pos r, pos r′, bpcount)

if (r < 1 and r′ > m) or (minbps ≤ bpcount ≤ maxbps) then1

report match at positions sufX[i] + k, ..., sufX[j] + k2

end3

if (minbps ≤ bpcount < maxbps) or (r ≥ 1 and r′ ≤ m and R[r] = ‘(’ and R[r′] = ‘)’)4

then

if minbps ≤ bpcount < maxbps then5

chr = ‘N’6

chr′ = ‘N’7

else8

chr = P [r]9

chr′ = P [r′]10

end11

if X = R then12

// perform left extension first

foreach v′ such that d ∈ ϕ(chr) and −→v ′ = d−→v do13

foreach v′′ such that e ∈ ϕ(chr′) and (d, e) complementary and −→v ′′ = −→v ′e do14

bidir-search-stem(v′′, r − 1, r′ + 1, bpcount+ 1)15

end16

end17

else18

// perform right extension first

foreach v′ such that e ∈ ϕ(chr′) and −→v ′ = −→v e do19

foreach v′′ such that d ∈ ϕ(chr) and (d, e) complementary and −→v ′′ = d−→v ′ do20

bidir-search-stem(v′′, r − 1, r′ + 1, bpcount+ 1)21

end22

end23

end24

else if r′ ≤ m and R[r′] = ‘.’ and (X = F or r < 1 or R[r] 6= ‘.’) then25

foreach v′ such that d ∈ ϕ(P [r′]) and −→v ′ = −→v d do26

bidir-search-stem(v′, r, r′ + 1, bpcount)27

end28

else if r ≥ 1 and R[r] = ‘.’ then29

foreach v′ such that d ∈ ϕ(P [r]) and −→v ′ = d−→v do30

bidir-search-stem(v′, r − 1, r′, bpcount)31

end32

end33

Figure 3.7: Bidirectional recursive matching of the stem region of a variable-length RSSP using an

affix array. Procedurebidir-search-stemis called by procedurebidir-search-loop(see

Algorithm 3) and extends substrings−→v matching the loop region of the RSSP(P,R)

to substrings matching also the stem. Used variablesminbpsand maxbpsare preset

according to structure stringR and variablemaxstemlength (msl)(see text).

63

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.8: (A) Non-overlapping alignment blocks of stem-loop regions excised from a multi-

ple sequence-structure alignment and derived sequence-structure patterns. Sinceli ≤

ri < lj ≤ rj and sequence regionsS[li . . . ri] fold into stem-loop structures for

1 ≤ i ≤ j ≤ 7, A = A1, A2, A3, A4, A5, A6, A7 is an ordered sequence of non-

overlapping alignment blocks suitable to construct an RNA secondary structure descrip-

tor R = Q1,Q2,Q3,Q4,Q5,Q6,Q7. The sequence-structure patternsQi, i ∈ [1, 7] of

R given on top of their underlying alignment blocks describe the seven marked stem-

loops shown in the RNA secondary structure (B) of the Citrus tristeza virus replication

signal (Rfam: RF00193). (C) Matches of RSSPsQi, i ∈ [1, 7], on sequenceS, sorted in

ascending order of their start position. (D) Graph-based representation of the matches

of Qi, i ∈ [1, 7]. An optimal chain of collinear non-overlapping matches is determined

by computing an optimal path in the directed acyclic graph. Observe that not all edges

in the graph are shown in this example and that the optimal chain (indicated here by

their red marked members) is not necessarily the longest possible chain.

64

3.5 RNA secondary structure descriptors based on multiple ordered RSSPs

An SSDR of lengthL is a sequence ofL RSSPsR = Q1,Q2, . . . ,QL whereQi denotes the

RSSP describingAi, i ∈ [1,L]. The order≪ of the RSSPs inR is imposed by the order of the

corresponding alignment blocks. Byli andri we denote the start and end positions ofAi in the

multiple alignment, respectively. In practice,R can be obtained from multiple sequence-structure

alignments of related RNA sequences (i.e., of an RNA family)as they are available in databases

like Rfam [124, 125]. A match toR is a non-overlapping sequence of matches for some or all of

the RSSPs inR in their specified order.

Consider an RNA SSDR with total order≪. LetMS be the set of all matches for all RSSP fromR

in sequenceS of lengthn. A match is represented by a pair(Q, p) such thatQ matches at position

p in S. With eachQ in R we associate a positive weightα(Q) which can be defined by the user.

This weight allows to quantify the expressiveness ofQ and/or its significance. For example,α(Q)

can be the length ofQ or it might be derived from the number of unambiguous nucleotides inQ

or the probability of obtaining a match forQ just by chance assuming a certain (mono-)nucleotide

background distribution.

We say that matches(Q, p) and(Q′, p′) arecollinear, written as(Q, p) ≪ (Q′, p′) if Q ≪ Q′ and

p+ |Q| − 1 < p′. A chainC for an SSDR is a sequence of matches

C = 〈(Qj1 , p1), (Qj2 , p2), . . . , (Qjk , pk)〉,

all from MS, such that(Qji , pi) ≪ (Qji+1
, pi+1) for all i, 1 ≤ i ≤ k − 1.

There are two modes to score chains, depending on the nature of the search problem. If the multiple

sequence-structure alignment our SSD is derived from and the searched sequences have comparable

length, we want the chain to cover as much as possible of the sequence and we define theglobal

chain scorefor chainC as follows:

gcsc (C) =
k∑

i=1

α(Qji). (3.2)

Then, the global chaining problem is to find a chainC with maximum global chain score.

If we are searching in a whole genome or chromosome for a relatively short structural RNA, we

are interested in local chains covering only parts of the genome or chromosome. Then we have to

penalize gaps using a penalty functiong and thus thelocal chain scoreis defined by

lcsc (C) =
k−1∑

i=1

(α(Qji)− g
(
(Qji , pi), (Qji+1

, pi+1)
)
) + α(Qjk) (3.3)

where

g
(
(Qji , pi), (Qji+1

, pi+1)
)
=

∣∣(pi+1 − pi)− (lji+1
− rji)

∣∣ . (3.4)

To solve the local chaining problem we use our own implementation of a fast local chaining algo-

rithm described in [126] with modified gap costs. While the algorithm of [126] penalizes gaps by

65

3 Fast index-based bidirectional search for RNA sequence-structure patterns

the sum of their lengths, our solution is based on the difference between their observed lengths (in

the chain of matches) and their expected lengths (as given bythe multiple alignment of the family);

confer Equation (3.4). This algorithm runs inO (q log q) time, whereq is the size ofMS.

To solve the global chaining problem we use an efficient chaining algorithm running inO (q) time.

This algorithm is described in [104].

3.6 Implementation and computational results

We implemented (1) the algorithms necessary for affix array construction, (2) the fast bidirectional

search of RSSPs using affix arrays as sketched in Algorithm 2 (hereinafter calledBIDsearch),

(3) an online variant operating on the plain sequence (hereinafter calledONLsearch) for valida-

tion of BIDsearchand reference benchmarking, and (4) integrated with the search algorithms the

efficient global and local chaining algorithms. AlgorithmONLsearchshifts a window of length

m = |RSSP | along the sequence of lengthn to be searched and compares the substring inside the

window with the RSSP from left to right until a mismatch occurs. Hence, it runs inO (nm) time in

the worst andO (n) time in the best case. AlgorithmsBIDsearchandONLsearchwere implemented

in the programafsearch. Theafconstructprogram makes use of routines from thelibdivsufsort2li-

brary (seehttp://code.google.com/p/libdivsufsort/) for computing thesufF and

sufR tables inO (n log n) time. For the construction of thelcpF and lcpR tables we employ our

own implementation of the linear time algorithm of [111]. TablesaflkF andaflkR are constructed in

O
(
n2

)
worst-case time with fast practical construction time due to the use of the skip tablesskpF

andskpR [54]. The programs were compiled with the GNU C compiler (version 4.3.2, optimization

option -O3) and all measurements were performed on a Quad Core Xeon E5410 CPU running at

2.33 GHz, with64 GB main memory (using only one CPU core). To minimize the influence of disk

subsystem performance the reported running times are user times averaged over10 runs. Allowed

base pairs were canonical Watson-Crick (A, U), (U, A), (C, G), (G, C), and wobble (G, U), (U, G),

unless stated otherwise.

Affix array construction times

In a first experiment we constructed the affix array for genomes of selected model organisms of

different sizes and stored it on disk. We measured the total running times needed byafconstructto

construct each table comprising the affix array. See Figure 3.9 for the results of this experiment. The

total size for each table is given in Table 3.1. Constructiontimes were in the range of25 minutes

for theC.elegansgenome containing∼ 100 megabases to15.7 hours for the∼ 2 gigabase genome

of the megabatP.vampyrus.

We also measured the running time ofafconstructto construct the affix array for a set of3,192,599

RNA sequences with a total length of∼ 622 MB compiled from the full alignments of allRfam

66

http://code.google.com/p/libdivsufsort/

3.6 Implementation and computational results

Figure 3.9: Experiment 1: Running times for affix array construction for genomes of different

model organisms. Genome sizes are given for each organism inmegabases in brack-

ets. We measured the running time in seconds for all tables the affix array consists of

(y-axis, log10 scale). Total construction times were in the range of∼ 25 minutes for

C.elegansup to15.7 hours forP.vampyrus.

release 10.0 families. The construction and storage on diskrequired126 minutes. In the following

we refer to this dataset asRFAM10 for short.

Influence of loop length on search performance

In a second experiment we investigated the influence of the loop length and the number of unam-

biguous characters in the loop of an RSSP on the running time of BIDsearchandONLsearch. For

this experiment we constructed artificial RSSPs with a fixed stem length of7 and a loop lengthl

varying from3 to 20. For each loop length, we also varied the number of consecutive unambiguous

charactersq from 0 to 4. For q = 0 this means that the RSSP contains structural constraints only.

That is, forq = 0 and l = 5 the used RSSP matches all substrings that are able to fold into a

stem-loop structure with loop length5 and stem length7. Such a pattern is written in dot-bracket

notation as(((((((.....))))))). Allowed base pairs were (A, U), (U, A), (C, G), and (G,

C). We measured the time needed byBIDsearchand ONLsearchto search for these patterns in

the RFAM10 dataset. Results are given in Figure 3.10. In this experiment BIDsearchperformed

very well and was faster thanONLsearchfor all parameter combinations. We also investigated the

67

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Organism Genome sufF lcpF lcpeF aflkF sufR lcpR lcpeR aflkR

size (n) (4n) (n) (4n) (4n) (n) (4n)

C.elegans 100.29 401.14 100.29 6.29 401.14 401.14 100.29 6.29 401.14

A.thaliana 119.67 478.67 119.67 8.85 478.67 478.67 119.67 8.85 478.67

D.melanogaster 168.74 674.95 168.74 94.34 674.95 674.95 168.74 94.34 674.95

C.intestinalis 173.52 694.02 173.50 28.03 694.02 694.02 173.50 28.03 694.02

O.sativa 374.33 1,497.33 374.33 71.05 1,497.33 1,497.33 374.33 71.05 1,497.33

M.gallopavo 1,087.50 4,349.99 1,087.50 2.01 4,349.99 4,349.99 1,087.50 2.01 4,349.99

G.gallus 1,108.48 4,433.93 1,108.48 98.86 4,433.93 4,433.93 1,108.48 98.86 4,433.93

D.rerio 1,481.32 5,925.08 1,481.27 457.26 5,925.08 5,925.08 1,481.27 457.26 5,925.08

X.tropicalis 1,510.98 6,043.63 1,510.91 310.89 6,043.63 6,043.63 1,510.91 310.89 6,043.63

P.vampyrus 1,999.71 7,998.82 1,999.71 170.84 7,998.82 7,998.82 1,999.71 170.84 7,998.82

Table 3.1: Sizes in megabytes of the different tables the affix array consists of for the genomes

used in Experiment 1.lcpeF andlcpeR are the exception tables storing entries with value

larger than 255 which cannot be stored in tableslcpF and lcpR, respectively. In tables

lcpeF andlcpeR, each entry consumes8 bytes.

influence of different stem length (data not shown here) and found that the impact on the total

running time is negligible. We observe that the advantage ofBIDsearchoverONLsearchdecreases

with increasing loop lengthl for fixed q. We explain this behavior with the increasing number of

affix-intervals that have to be processed for finding all different substrings of the sequences that

match the RSSP. However, even for an RSSP with loop lengthl = 20 containing only structural

constraints (q = 0), BIDsearchis still faster thanONLsearch. We further notice that the number of

unambiguous characters in the loop region has a strong influence on the running time ofBIDsearch.

That is, by specifying only a few conserved nucleotides in the RSSP’s loop region, the running time

of BIDsearchis reduced dramatically. For an example of this effect, see the running times ofBID-

searchin Figure 3.10 for parametersl = 15 andq ∈ {2, 3, 4}. This rendersBIDsearchin particular

useful for searching with RSSPs with moderate loop length orexisting sequence conservation in

the loop region. The speedup factors measured in this experiment were in the range from1.001 to

78.1 for q = 0 and from9.28 to 11 × 103 for q = 4. Table 3.2 gives more details on the speedups

of BIDsearchoverONLsearchfor all investigated combinations ofq andl.

Searching large sequence databases

To measure the performance ofBIDsearchfor non-artificial real-world RSSPs, we manually com-

piled a set of397 RSSPs describing42 highly structured RNA families taken from theRFAM10 da-

tabase. These were all families with a consensus secondary structure containing at least5 stem-loop

substructures. We measured the running time needed byBIDsearch, ONLsearch, and the widely

used toolsRNAMotif [42] andRNABOB[98] to search for these397 RSSPs in theRFAM10 dataset.

As expected, all tools delivered identical results. However, while it tookBIDsearchless than50 sec-

onds to search for the397 patterns as shown in Table 3.3,RNABOBandRNAMotif needed more

68

3.6 Implementation and computational results

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Loop length l

R
u

n
n

in
g

 t
im

e
[m

s]

0
50

00
0

10
00

00
15

00
00

Dependency of running time on loop length and #speci�ed characters (q) in loop region

BIDsearch(q=0)

ONLsearch(q=0)

BIDsearch(q=1)

ONLsearch(q=1)

BIDsearch(q=2)

ONLsearch(q=2)

BIDsearch(q=3)

ONLsearch(q=3)

BIDsearch(q=4)

ONLsearch(q=4)

Figure 3.10: Experiment 2: Influence of loop length and number of unambiguous characters in

loop region on total running time ofBIDsearchand ONLsearch. We measured the

running time in milliseconds to search with artificial RSSPswith loops of varying

length l ∈ {3, . . . , 20} on ∼ 622MB of RNA sequence data. For each loop lengthl

we also varied the numberq ∈ {0, . . . , 4} of unambiguous nucleotides in the loop.

The used RSSPs had a fixed stem length of 7. For more details on this experiment see

corresponding text.

l 3 4 5 6 7 8 9 10 11

q = 0 78.10 48.64 35.42 23.55 16.35 11.01 7.31 4.89 3.48

q = 1 329.81 180.45 105.67 57.41 33.75 19.20 11.30 7.14 4.81

q = 2 749.94 418.65 227.45 121.80 67.81 36.99 21.44 12.73 8.41

q = 3 2,345.17 1,169.53 653.31 353.49 188.34 103.34 56.59 33.08 20.79

q = 4 11,045.75 3,638.14 2,144.8 1,132.53 610.63 338.77 184.56 106.11 64.93

l 12 13 14 15 16 17 18 19 20

q = 0 2.67 2.15 1.79 1.51 1.37 1.20 1.13 1.07 1.00

q = 1 3.58 3.13 2.28 1.89 1.68 1.46 1.35 1.27 1.12

q = 2 5.96 4.88 3.64 2.94 2.57 2.19 2.02 1.82 1.63

q = 3 14.27 11.88 8.25 6.50 5.53 4.74 4.19 3.76 3.34

q = 4 43.09 35.23 25.74 19.52 15.91 13.25 11.75 10.32 9.28

Table 3.2: Experiment 2: Obtained speedup ofBIDsearch over ONLsearchfor different loop

length l ∈ {3, . . . , 20} and number of unambiguous characters in the loop region

q ∈ {0, . . . , 4}. For the parameter combinationl = 3, q = 4 also one character of

the stem was specified.

69

3 Fast index-based bidirectional search for RNA sequence-structure patterns

BIDsearch ONLsearch RNAMotif RNABOB

46.1(1) 6,203(134.5) 11,745(254.7) 9,061(196.5)

Table 3.3: Experiment 3 (A): Running times in seconds neededby the programs to search for397

RSSPs describing42 RFAM10 families in∼ 622 megabases of RNA sequence data. For

each program the speedup factor ofBIDsearchover the particular program is given in

brackets.

than2.5 and3.2 hours respectively to complete the same task. This made for aspeedup factor of

196.5 (254.7) for BIDsearchoverRNABOB(RNAMotif). Even if we include the time needed for

affix array construction,BIDsearchis still faster thanRNABOBandRNAMotif.

We also investigated the distribution of speedup factors obtained byBIDsearchwhen searching for

the 397 RSSPs. We observed thatBIDsearchis more than50,000 times faster thanRNABOBand

RNAMotif for the majority of the patterns and that the total search time required byBIDsearch

is dominated by only a small number of patterns. These patterns describe large unconserved loop

regions. See Figure 3.11 for a graphical visualization of the distribution of speedup factors.

Scaling behavior of bidirectional pattern search using affi x arrays

In a further experiment we investigated the scaling behavior of BIDsearchandONLsearchfor an

increasing size of sequences to be searched. For this, we searched with different RSSPs on random

subsets ofRFAM10 of different sizes and measured the running time for both algorithms. The

results are given in Figure 3.12. Herepattern1 is an RSSP containing only structural constraints.

It describes a stem-loop with loop length4, stem length10 and no specified nucleotides in the

loop region. The RSSPpattern2 (pattern3) only differ from pattern1 by containing one (two

consecutively) unambiguous nucleotides in the loop region.

In this experimentBIDsearchclearly showed a sublinear scaling behavior, whereasONLsearch

scaled only linearly. It tookBIDsearchonly566.8 (pattern1), 133.8 (pattern2), and37.1 (pattern3)

milliseconds to search the wholeRFAM10 dataset. The obtained speedups ofBIDsearchover

ONLsearchwere in the range from4.63 (1MB subset) to 104.79 (full RFAM10) for pattern1, from

12.23 (1MB subset) to 223.18 (full RFAM10) for pattern2, and from35.0 (1MB subset) to 618.37

(full RFAM10) for pattern3. We observe again that the specification of only one or two nucleotides

in an RSSP’s loop region considerably reduces the running time of theBIDsearchalgorithm.

RNA family classification by global chaining of RSSP matches

To demonstrate the effect of global chaining of RSSP matches, we searched with an SSD built for

theRfam family of OxyS RNAs (Acc.: RF00035). OxyS is a small109-nucleotide long non-coding

RNA which is included in response to oxidative stress inE.coli [127]. Members of this family fold

70

3.6 Implementation and computational results

1−
10

11
−

20
21

−
50

51
−

10
0

10
1−

20
0

20
1−

50
0

50
1−

10
00

10
01

−
20

00
20

01
−

30
00

30
01

−
40

00
40

01
−

50
00

50
01

−
60

00
60

01
−

70
00

70
01

−
80

00
80

01
−

90
00

90
01

−
10

00
0

10
00

1−
15

00
0

15
00

1−
20

00
0

20
00

1−
25

00
0

25
00

1−
30

00
0

30
00

1−
40

00
0

40
00

1−
50

00
0

50
00

1−
75

00
0

75
00

1−
10

00
00

10
00

01
−

20
00

00
20

00
01

−
30

00
00

30
00

01
−

50
00

00
50

00
01

−
10

00
00

0
>

10
00

00
0

#p
at

te
rn

s

Speedup obtained by Structator [S]

0
20

40
60

80

F
ra

ct
io

n
of

 p
at

te
rn

s
w

ith
 s

pe
ed

up
 g

re
at

er
 th

an
 S

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Speedup BIDsearch over RNAMotif

Speedup BIDsearch over RNABOB

Fraction of patterns with BIDsearch
speedup over RNAMotif greater than S

Fraction of patterns with BIDsearch
speedup over RNABOB greater than S

Figure 3.11: Distribution of speedup factors ofBIDsearchover RNABOB(yellow) andRNAMotif

(green) when searching for 397 RSSPs inRFAM10 consisting of∼ 622 megabases

of RNA sequence data. The red and blue curves show the values of one minus the

empirical cumulative distribution function of the speedupfactors distributions. That

is, for a given speedup factorS they show the fraction of RSSPs for whichBIDsearch

obtained a speedup greater thanS over RNAMotif (red curve) andRNABOB(blue

curve), respectively. We observed thatBIDsearchis more than50,000 times faster

thanRNABOBandRNAMotif for the majority of the patterns (see intersection point

of dashed lines). Moreover, the total search time required by BIDsearchis dominated

by only a small number of patterns describing large unconserved loop regions.

71

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.12: Scaling behaviorBIDsearch(left) andONLsearch(right). We measured the running

time needed to search with three different patterns on random subsets ofRFAM10 of

different sizes. For details, see main text.

into a characteristic secondary structure consisting of three stem-loop substructures, referred to as

HP1, HP2, andHP3 in Figure 3.13 (C). From the three stem-loops we derived three descriptors

calledRSSP1, RSSP2, andRSSP3, which constitute the SSD describing this family. We note

that in this experiment the RSSPs were constructed to guarantee high specificity and thus to mini-

mize the number of false positives. For the SSD specified inStructatorsyntax, see Figure 3.13 (A).

Searching for this SSD inRFAM10, Structatordelivers8,619 matches forRSSP1, 1,699 matches

for RSSP2, and142,219 matches forRSSP3. Instead of reporting these matches,Structatorcom-

putes high-scoring global chains for each sequence containing matches to all three RSSPs. The

chains and the sequences they occur in are reported in descending order of the chain score. This

procedure resulted in61 sequences, all belonging to the OxyS family which contains115 mem-

bers in total. Hence, by considering only high-scoring chains all the spurious RSSP matches were

eliminated. We also described the same three stem-loops in aformat compatible withRNAMotif

(see Figure 3.13 (B)). A search onRFAM10 with this descriptor returned exactly the same61 se-

quences. However,Structatoroperating inBIDsearch(ONLsearch) mode with subsequent global

chaining of RSSP matches needed only3.9 (122.5) seconds to identify all family members, whereas

RNAMotif needed84.7 seconds. The search times forStructatorinclude0.05 seconds required for

the chaining.

We also employed global chaining to detect members of the structurally more complex family of

Citrus tristeza virus replication signal (Rfam Acc.: RF00193). Therefore we built an SSD com-

prising 8 RSSPs, describing8 of 10 stem-loops the molecule is predicted to fold into. For more

information on the molecule’s secondary structure and the used descriptor, see Figure 3.14. Using

Structatoroperating inBIDsearch(ONLsearch) mode and global chaining of RSSP matches it took

only 1.3 (138.7) seconds to searchRFAM10 with this SSD, where0.06 seconds were required for

the chaining. The computed global chains with a minimum length of 5, computed from the184,199

72

3.6 Implementation and computational results

>RSSP1|maxrightloopextent=1|maxleftloopextent=1|maxmispair=6|weight=1

NNNNNNNNNNNNNNNNNNNNNNACCCNUNANNNNNNNNNNNNNNNN

(((((((.((((.((.((..........)).))..)))))))))))

>RSSP2|maxrightloopextent=5|weight=1

GNNNNNCUCACNN

((((.....))))

>RSSP3|maxmispair=2|maxrightloopextent=2|weight=1

NNGGANCUNNNNNNNNNNN

(((((((.....)))))))

(A) (B)

G U

(C)

parms

 wc +=gu;

descr

 h5(len=7)

 ss(len=1)

 h5(len=4)

 ss(len=1)

 h5(len=2)

 ss(len=1)

 h5(len=2)

 ss(seq="N\{0,1\}NNNNACCCNUN\{0,1\}",minlen=10,maxlen=12)

 h3(seq="NA",len=2)

 ss(len=1)

 h3(len=2)

 ss(len=2)

 h3(len=4)

 h3(len=7)

 ss(minlen=2,maxlen=3) #single strand between HP1 and HP2

 h5(len=4)

 ss(seq="NNCUCN\{0,5\}",minlen=5,maxlen=10)

 h3(len=4)

 ss(minlen=27,maxlen=31)#single strand between HP2 and HP3

 h5(len=7, seq="NNGGANC",mispair=2,ends='mm')

 ss(seq="UN\{4,6\}",minlen=5,maxlen=7)

 h3(len=7)

R

R

A

A

C

G

G

A

G

C

G

G

Y

W

Y

C

U

C

K

U

U

U

A A
C

C

C

U

U

G

A

A

G

W

C

A

C

Y

G

C

C

C

G

U

U

Y

M G A G

R

G

U

C

Y

C G A A A U A A C U A A A G C C A A G A A C U U U U G

C

G

G

A

Y

C

U

C
C

A

K

G

R

U

C

C

G

C U

10

20

30

40

60

100

110

c

g

A

A

W

U

C

U
C

u

HP1 HP2 HP3

C

Figure 3.13: (A) Secondary structure descriptor for the family of OxyS RNAs in Structatorsyn-

tax. The SSD consists of RSSPsRSSP1, RSSP2, andRSSP3 describing the three

stem-loop structures (HP1, HP2, and HP3, see (C)) of this small non-coding RNA. (B)

RNAMotifdescriptor for the same structural elements. (C) Consensussecondary struc-

ture of the OxyS RNA family as drawn byVARNA[128]. Sequence information (non-

wildcard nucleotides) used in both descriptors are marked with an asterisk. Observe

that both descriptors use predominantly structure and verylittle sequence information.

single RSSP matches, were ranked according to their global chain score. We observe that the se-

quences containing the37 highest scoring chains are exactly all37 members of the family.

In addition we measured the performance ofStructator using global chaining for RNA family

classification with manually compiled SSDs for42Rfam families. For the results of this experiment

see Table 3.4.

Searching whole genomes using local chains of RSSP matches

As an example of searching a complete genome or whole chromosomes for non-coding RNAs,

we searched for the RNA gene Human accelerated region 1F (HAR1F) on both strands of the

human genome sequence. HAR1F is one of49 regions in the human genome that differ significantly

from highly conserved regions of the chimpanzee [129]. The consensus structure of the HAR1F

family in Rfam (Acc.: RF00635) contains three stem-loop regions, denotedHP1, HP2, andHP3 in

Figure 3.16 (A). From these regions, we built an SSD for the family with RSSPsRSSP1, RSSP2,

andRSSP3, shown in Figure 3.16 (B). Since we were searching on complete chromosomes, we

only wanted to consider RSSP matches that occurred at a similar distance to each other w.r.t. to the

73

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Acc. #Matching

chains

#TP #FP #FN Sensitivity Specificity Accuracy Precision #RSSPs Min.chain

length

TBIDsearch[sec] TONLsearch[sec] SpeedupTchaining[sec]

RF00044 8 8 0 0 1.000 1.000 1.000 1.000 8 2 0.964 117.359 121.742 0.001

RF00193 37 37 0 0 1.000 1.000 1.000 1.000 8 5 1.220 140.681 115.312 0.063

RF00126 106 106 0 1 0.991 1.000 1.000 1.000 6 2 1.032 128.476 124.492 0.000
RF00503 78 78 0 2 0.975 1.000 1.000 1.000 10 2 1.084 164.866 152.090 0.002

RF00209 1,511 1,493 18 58 0.963 1.000 1.000 0.988 9 2 1.056 129.372 122.511 0.006

RF00625 24 22 2 1 0.957 1.000 1.000 0.917 5 3 3.304 102.066 30.892 0.656

RF00061 6,211 6,211 0 285 0.956 1.000 1.000 1.000 7 4 1.188 119.239 100.370 0.032
RF00224 21 21 0 1 0.955 1.000 1.000 1.000 10 3 1.508 202.661 134.391 0.138

RF00084 111 111 0 7 0.941 1.000 1.000 1.000 4 2 1.180 78.669 66.669 0.050

RF00372 42 42 0 3 0.933 1.000 1.000 1.000 7 3 1.092 104.663 95.845 0.007

RF00115 58 58 0 5 0.921 1.000 1.000 1.000 9 4 1.128 167.962 148.902 0.024
RF00488 24 24 0 3 0.889 1.000 1.000 1.000 6 4 1.084 94.938 87.581 0.043

RF00294 44 44 0 9 0.830 1.000 1.000 1.000 12 3 1.124 164.814 146.632 0.008

RF00210 345 345 0 72 0.827 1.000 1.000 1.000 14 3 1.308 206.133157.594 0.104

RF00228 348 346 2 79 0.814 1.000 1.000 0.994 13 2 1.048 225.982215.632 0.006
RF00036 18,312 18,312 0 4,452 0.804 1.000 0.999 1.000 16 3 1.464 224.778 153.537 0.145

RF00549 39 38 1 10 0.792 1.000 1.000 0.974 10 4 1.584 154.382 97.463 0.142

RF00448 11 11 0 3 0.786 1.000 1.000 1.000 7 4 1.000 102.730 102.730 0.002
RF00177 584,748 582,839 1,909 179,250 0.765 0.999 0.946 0.997 13 3 11.004 221.798 20.156 2.414

RF00101 142 142 0 45 0.759 1.000 1.000 1.000 6 3 1.000 119.407 119.407 0.004

RF00166 54 54 0 18 0.750 1.000 1.000 1.000 8 3 1.068 127.872 119.730 0.009

RF00018 278 272 6 96 0.739 1.000 1.000 0.978 11 5 3.944 212.13353.786 0.666
RF00252 26 26 0 10 0.722 1.000 1.000 1.000 10 3 1.260 143.709 114.055 0.057

RF00547 39 39 0 18 0.684 1.000 1.000 1.000 14 3 2.604 221.458 85.045 0.452

RF00011 355 353 2 185 0.656 1.000 1.000 0.994 10 4 2.988 183.923 61.554 0.582

RF00010 2,478 2,402 76 1,679 0.589 1.000 0.999 0.969 12 5 6.212 187.616 30.202 1.548
RF00449 33 32 1 26 0.552 1.000 1.000 0.970 9 3 1.308 154.726 118.292 0.073

RF00040 92 92 0 82 0.529 1.000 1.000 1.000 9 4 1.248 153.410 122.925 0.050

RF00023 1,362 1,362 0 1,699 0.445 1.000 0.999 1.000 11 3 2.076 193.740 93.324 0.229

RF00229 1,257 1,256 1 1,637 0.434 1.000 0.999 0.999 11 3 1.472 193.168 131.228 0.139
RF00222 26 26 0 35 0.426 1.000 1.000 1.000 12 3 1.148 201.557 175.572 0.025

RF00459 223 215 8 341 0.387 1.000 1.000 0.964 7 2 4.776 221.00246.273 0.012

RF00028 10,647 10,229 418 28,820 0.262 1.000 0.991 0.961 13 2 1.476 203.889 138.136 0.075

RF00261 21 21 0 65 0.244 1.000 1.000 1.000 8 4 1.552 171.063 110.221 0.130
RF00373 82 75 7 247 0.233 1.000 1.000 0.915 8 4 1.692 143.645 84.897 0.166

RF00230 2,059 1,753 306 6,507 0.212 1.000 0.998 0.851 8 3 39.006 220.410 5.651 0.471

RF00226 18 18 0 73 0.198 1.000 1.000 1.000 7 4 2.664 108.687 40.798 0.449
RF00009 136 111 25 455 0.196 1.000 1.000 0.816 11 3 3.260 190.164 58.333 0.480

RF00629 6 6 0 25 0.194 1.000 1.000 1.000 8 4 1.816 153.526 84.541 0.248

RF00030 20 20 0 476 0.040 1.000 1.000 1.000 9 5 10.632 175.559 16.512 2.427

RF00100 614 614 0 15,042 0.039 1.000 0.995 1.000 13 7 1.240 198.652 160.203 0.065
RF00004 257 257 0 7,252 0.034 1.000 0.998 1.000 8 4 1.320 128.812 97.585 0.034

Average(∅): 0.629 1.000 0.998 0.983 9.45 3.38 3.100 163.330 101.500 0.29

Total(Σ): 397 130.13 6,859.7 12.236

Table 3.4: Results ofStructatorsearches onRFAM10 (1,446 families;3,192,599 sequences) using

SSDs describing42 Rfam families. The manually compiled SSDs used in this experi-

ment are available on theStructatorwebsite. They were designed to be highly specific

and consist of397 RSSPs in total with an average of9.45 RSSPs per SSD. These are

the same397 RSSPs used in section “Searching large sequence databases”. Columns

2, 3, 4, and 5 show the number of sequences containing high-scoring global chains,

the numbers of true positives (TP), false positives (FP), and false negatives (FN), re-

spectively. Sensitivity is computed as #TP
#TP+#FN , specificity as #TN

#TN+#FP , accuracy as
#TP+#TN

#TP+#FP+#FN+#TN
, and precision as #TP

#TP+#FP
. Observe that these values strongly

depend on the used SSD. The number of RSSPs constituting an SSD is given in column

10. Column 11 shows the minimal required length of a chain to be considered a matching

chain. Total running times ofStructatoroperating inBIDsearchandONLsearchmode

are given in columns 12 and 13, respectively. Column 14 showsBIDsearch’s speedups

over ONLsearch. The running time required for chaining of RSSP matches is listed in

column 15. Observe that the sum of running times does not match the times needed

for searching with the397 single RSSPs reported above because here each SSD was

searched using a separateStructatorprogram call.

74

3.6 Implementation and computational results

Figure 3.14: Consensus secondary structure of the CTVrep sig family (RFAM Acc.: RF00193)

visualized with theVARNAprogram [128] and SSD inStructatorsyntax describing

this family. The8 given RSSPs correspond to the colored stem-loopsHP1 - HP8.

Positions at which sequence information is used in the descriptor are marked with an

asterisk.

distances of the corresponding descriptors in the SSD. Therefore, unlike in the previous experiment

where we searched for global chains of RSSP matches, we now computed high-scoring local chains.

Gap costs were computed according to Equation (3.4) and we used an RSSP weightα(RSSPi) =

10, for 1 ≤ i ≤ 3. Affix array construction for all human chromosomes was accomplished in12.6

hours byafconstruct. We searched withStructatorfor the three RSSPs and found15,090, 1,578,

and 14,491 matches forRSSP1, RSSP2, and RSSP3, respectively. For these RSSP matches

we computed local high-scoring chains (see Figure 3.16 (D)). ChainsC were ranked according

to their local chain scorelcsc (C). We observed that the highest-scoring chain corresponds tothe

correct location of the gene on chromosome20. Using BIDsearch(ONLsearch) this task needed

3.1 (633.4) seconds only, including0.02 seconds for the chaining.RNAMotif also found a single

match corresponding to the correct location of the gene, butneeded274.7 seconds. See Figure 3.15

for the usedRNAMotif descriptor.

Comparison of two implementations of bidirectional patter n search using
affix arrays

We measured the speedup ofStructator running inBIDsearchmode overONLsearchand com-

pared the results with previously reported measurements [101]. Because the implementation used

by Strothmann [101] is not available (personal communication), we calculated relative speedups

based on the absolute running times reported in [101]. We note that the measurements of [101]

were performed on different hardware. This can, according to our experiments, significantly influ-

ence the performance ofBIDsearch. See Table 3.5 for the results of the comparison ofBIDsearch

75

3 Fast index-based bidirectional search for RNA sequence-structure patterns

Figure 3.15: (A) SSD for HAR1F RNA family consisting ofRSSP1, RSSP2, andRSSP3 in

Structatorsyntax. RSSPs were built from stem-loopsHP1, HP2, andHP3 shown in

(C). (B) RNAMotif descriptor for the same structural elements. Secondary structure

drawing shown in (C) was generated withVARNA[128].

76

3.6 Implementation and computational results

>RSSP1|startpos=22|weight=10

NNNNNNNACAGCNNNNNNNNNNNN

((.((((.....))))......))

>RSSP2|startpos=46|weight=10

NNNNNNNNNNNNNUAGACNNNNNNNNNNNNNNNNNNNNNNNNN

(.(((.((..((......))..))..............))).)

>RSSP3|startpos=93|weight=10

NNNNNNNNNNNNUUURGAGNNNNN

(((((..............)))))

RSSP1
RSSP2

RSSP3

(A)

(C) distance=0 distance=4
distance=47

startpos=22 startpos=46 startpos=93
(RSSP1)=weight=10 (RSSP2)=weight=10 (RSSP3)=weight=10

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))

UCAAAAGAACAUGAAACGGAGGNNNNNNNACAGCNNNNNNNNNNNNNNNNNNNNNNNNNUAGACNNNNNNNNNNNNNNNNNNNNNNNNNUAUCNNNNNNNNNNNNUUURGAGNNNNNCCUCAAGUUUCAAAU

...........((((((.((((((.((((.....))))......))(.(((.((..((......))..))..............))).)....(((((..............)))))))))..))))))...

GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

(B)

U C S A A A G A A C A Y

G

A

A

A

U

G

G

A

G

G
A

G

A

A

A

U

U

A

C
A

G

C

A

A

U

U

U

A

U

C

A
R C

U

G
A

A
A

U

U

A

U

A

G

G

U

G

U

AG

A

C

A

C

A

Y

G

U
C

A

G

C

V

G

U

G
G A A

A

Y

R

G
U

U
U

C

U
A U

C

A A A A U

U

A
A A

G

U

R

U

U

U
AG

A

G

AUUUU

C

C

U

C

A

M

A

U

U

U

C

A A A U

20

30

40

50

60

70

80

90 100

110

120

HP1

HP2

HP3

distance=16 distance=10

distance=8

distance=50

C1

C2

C3

lcsc(C1)=8

lcsc(C2)=12

lcsc(C3)=17

(D)

AGAAAUUACAGCAAUUUAUCAACU

((.((((.....))))......))
GAAACUAUGGGCGUAGACGCACGUCAGCAGUGGAAAUAGUUUC

(.(((.((..((......))..))..............))).)

AAAAUUAAAGUAUUUAGAGAUUUU

(((((..............)))))

distance=2 distance=3

C4 lcsc(C4)=27

g((P1,p1), (P3,p3))=|47-50|=3

αα α

Figure 3.16: (A) Consensus secondary structure visualizedwith theVARNAprogram of the HAR1F

RNA family showing stem-loopsHP1, HP2, and HP3. (B) SSD consisting of

RSSP1, RSSP2, andRSSP3 in Structatorsyntax describing the three stem-loop re-

gions of HAR1F. (C) Regions of HAR1F described by the RSSPs, including distances

li+1 − ri, 1 ≤ i < 3, between neighbored RSSPs and RSSP weightsα(RSSPi),

1 ≤ i ≤ 3. (D) Examples of local chainsCi, 1 ≤ i ≤ 4 found with the SSD, show-

ing, in each chain, the distance between RSSP matches and their local chain score

lcsc (Ci). Gap cost computation according to Equation (3.4) is shown exemplary for

the two RSSP matches of chainC3.

77

3 Fast index-based bidirectional search for RNA sequence-structure patterns

P. horikoshii(1.7 MB) E. coli K12(4.5 MB) P. vampyrus(1.9 GB)

RSSP ONL BID Bvs.O STR ONL BID Bvs.O STR ONL BID Bvs.O STR

Hpin1 169.61 65.59 2.59 10.26432.94 141.84 3.05 12.17172,913.36 9,520.39 18.16 -

Hpin2 33.34 0.27 123.48 15588.61 0.45 196.91 99.2534,702.63 48.85 710.39 -

Hloop(5) 214.8 166.94 1.29 14.6552.67 372.57 1.48 18.09219,547.76 23,958.41 9.16 -

Hloop(10) 331.96 1,412.64 0.23 2.13842.32 3,235.11 0.26 2.43335,928.97 248,711.65 1.35 -

ACloop(5) 59.07 4.43 13.33 182152.87 9.91 15.43 81564,053.16 825.79 77.57 -

ACloop(10) 58.71 1.37 42.85 4152.12 3.45 44.09 7.2464,136.82 391.56 163.8 -

ACloop(15) 58.67 0.89 65.92 1.3152.01 1.86 81.73 1.3864,199.98 278.76 230.31 -

Table 3.5: Comparison of speedup ofStructator’s BIDsearchoverONLsearch(columnBvs.O) and

the speedup of affix array based search over searching on the plain text as reported

in [101] (columnSTR). The respective search times ofBIDsearch(column BID) and

ONLsearch(columnONL) are shown in milliseconds. ForP. vampyrusonly measure-

ments forStructatorare available.

with the method of [101]. For a description of the used RSSPs see [101]. The search was performed

in the genomes ofP. horikoshii(GenBank Acc.: NC 000961, 1.7 MB) andE. coli (GenBank Acc.:

AC 000091,4.5 MB), which were also used in [101]. Additionally we includedwith P. vampyrus

(GenBank Acc.: ABRP00000000, 1.9 GB) a larger eukaryotic genome in this experiment.

Surprisingly, with the RSSPsACloop(5), ACloop(10), andACloop(15) taken from [101], which

describe a loop consisting of 5 (10 and 15) repetitions of AC,the speedup of the affix array based

method of [101] decreased with increasing loop length. Thisis a behavior which is opposite to our

observations (see Figure 3.10). We also noticed thatBIDsearchobtained a higher speedup when

searching for RSSPHpin2 in E. coli than the method of [101] but not when searching in the smaller

genome ofP. horikoshii. This observation remains unclear and cannot be further investigated due

to unavailability of the implementation used in [101].

Comparison with an implementation of bidirectional patter n search using a
compressed data structure

In the last experiments we comparedStructator’s running time using usingBIDsearchwith the

time needed by a recently published bidirectional pattern search implementation for the same task.

The implementation of [130], to which we refer asBWI, uses a compressed data structure called

bidirectional wavelet index. We remark thatBWI can only search with a small set of hard-coded

patterns, i.e., the user cannot use it to search with his/herown patterns. Moreover, unlikeStructator,

which provides a full command line interface with many configurable options (see section about

the software package),BWI reports neither matching substrings nor matching positions (which is

known to be the most time consuming part when querying compressed index structures [53]). It only

outputs the search time of individual patterns and the number of matches. Thus, it serves rather as

a prototype implementation of the concepts introduced in [130]. Nevertheless, since it also makes

78

3.7 Structatorsoftware package

hairpin1 hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)

BWI 10,484 64 612 26,413 896 420

BIDsearch 8,325 32 330 16,768 511 295

BIDsearchvs.BWI 1.26 2 1.85 1.58 1.75 1.42

Table 3.6: Search time comparison betweenStructator’s BIDsearchand an implementation, here

called BWI, of bidirectional search using the wavelet tree data structure described

in [130]. Search times are in milliseconds. The last row shows the speedup ofBIDsearch

overBWI.

Organism Genome size BWI

C.elegans 100.29 157.96

A.thaliana 119.67 188.59

D.melanogaster 168.74 295.37

C.intestinalis 173.52 279.83

O.sativa 374.33 602.21

M.gallopavo 1,087.50 1,800.88

G.gallus 1,108.48 1,757.84

D.rerio 1,481.32 2,424.81

X.tropicalis 1,510.98 2,309.24

P.vampyrus 1,999.71 3,282.55

Table 3.7: Size in megabytes of the bidirectional wavelet index (BWI) [130] for different genomes.

use of bidirectional search, we comparedBWI with StructatorusingBWI’s hard-coded patterns.

See Table 3.6 for the results. Details of the database and patterns are as previously described [130].

We noticed thatBIDsearchwas faster thanBWI for matching all patterns by up to factor2, hence

making it preferable when speed is most important. However,we note thatBWI’s compressed

wavelet index consumes significantly less memory thanStructator’s affix array index, which would

makeBWI preferable in cases where space consumption is critical. See Table 3.7 for the memory

required byBWI’s index for different genomes.

3.7 Structator software package

Structatoris an open-source software package for fast database searchwith RNA structural patterns

implementing the algorithms and ideas presented in this work. It consists of the command line

programsafconstructandafsearch.

afconstructimplements all algorithms necessary for affix array construction, namely a lightweight

suffix sorting algorithm for construction of the suffix arrays sufF andsufR, the algorithm for con-

struction of tableslcpF and lcpR [111], and the algorithm for computation of the affix link tables

aflkF andaflkR. The program constructs all or if necessary only some of the tables of the affix array

for a target database provided in FASTA format and stores them on disk. Therefore the program

79

3 Fast index-based bidirectional search for RNA sequence-structure patterns

can also be used to compute only the tables needed for a traditional enhanced suffix array [109].

afconstructcan handle RNA as well as DNA sequences. Moreover, it supports the transformation

of input sequences according to user-defined (reduced) alphabets and allows the index construction

for transformed sequences. Such personalized alphabets are easily specified in a text file.

afsearchis the program for performing structural pattern matching.That is, it searches (ribo)nucleic

acid sequence databases for entries that can adopt a particular secondary structure. For an overview

of the supported RNA sequence-structure patterns (RSSPs),see Figure 3.5. The simplest RSSP

describes a single-stranded region, where ambiguous (not well-conserved) nucleotides can be spec-

ified with IUPAC characters. All ambiguous IUPAC charactersare hard-coded inafsearch, e.g. N

standing for nucleotides A, C, G, and U (and T) and R standing for A and G. Besides fixed-length

RSSPs with or without ambiguous characters (Figure 3.5 (A) until (D)), also RSSPs describing

loop or stem regions of variable size (Figure 3.5 (E) until (H)) are supported. More precisely, one

can specify with parametersmaxleftloopextent (mllex)andmaxrightloopextent (mrlex)a variable

number of allowed extensions to the left (nucleotides marked in yellow in Figure 3.5 (E)) and/or

to the right (nucleotides marked in blue in Figure 3.5 (F)) for the specified loop pattern. Variable

stem sizes can be addressed with parametermaxstemlength (msl)(see regions marked in pink in

Figure 3.5 (G)). Also supported is the combination of variable loop and stem size (see Figure 3.5

(H)) and a maximal number of allowed mispairings in the stem region. All these different RSSPs

can be specified by the user in a text file which use, as shown in Figure 3.5, an expressive but easy

to understand pattern syntax. For additional details on thesupported patterns see the corresponding

section in theStructatoruser manual.afsearchalso permits user-defined base pairing rules. That

is, the user can define an arbitrary subset fromA × A as valid pairings. This ensures a maximum

of flexibility. For example, the standard canonical Watson-Crick pairings as well as non-standard

pairings such as G-U can be specified.

The search is performed efficiently on a pre-computed affix array.afsearchimplements the bidirec-

tional index-based search algorithmsBIDsearchand the online algorithmONLsearchoperating on

the plain sequence, both extended to support patterns with variable loop size and/or stem length.

Further, it implements the methods for fast global and localchaining of RSSP matches. The search

with RSSPs can be performed on the forward and, in case of nucleotide sequences, also on the

reverse strand. Searching on the reverse strand is implemented by reversal of the RSSP and trans-

formation according to Watson-Crick base pairing. Hence itis sufficient to build the affix array for

one strand only.

RSSP matches can be reported directly byafsearchor can be used as input for the computation

of high-scoring global or local chains of matches. Computedchains resemble the order of the

RSSPs given in the pattern file and are reported in descendingorder of their chain score. This

allows the description of complex secondary structures with our new concept of secondary structure

descriptors (SSDs). This is done by simply specifying a series of RSSPs in the pattern file describing

the stem-loop substructures the RNA molecule is composed ofin the order of their occurrence in

80

3.8 Discussion and concluding remarks

5’ to 3’ direction. To incorporate different levels of importance or significance of an RSSP into

SSD models and subsequently in the computation of chain scores, RSSP specific weights can be

defined in the pattern file. This is particularly useful in thecontext of RNA family classification

where the used SSD may be derived from a multiple sequence-structure alignment or a consensus

structure-annotated multiple sequence alignment. Here, it permits the assignment of higher weights

to RSSPs describing highly conserved functionally important structural elements occurring in a

family of RNAs, and lower weights to RSSPs describing less conserved substructures that occur

only in certain members of the family.

The output format ofafsearchcontains all available information of a match or chain of matches,

either in a human-readable, or a tab-delimited format. Moreover,afsearchcan also report matches

in BED format. This allows a direct visualization of the results in e.g. the UCSC genome browser.

TheStructatorsoftware package including documentation is available in binary format for different

operating systems and architectures and as source code under the GNU General Public License

Version 3. Seehttp://www.zbh.uni-hamburg.de/Structator for details.

3.8 Discussion and concluding remarks

We have presented a method for fast index-based search of RNAsequence-structure patterns (RSSPs),

implemented in theStructatorsoftware. As part of the software, we give the first publicly available

implementation of bidirectional pattern search using the affix array data structure. For the majority

of biologically relevant RSSPs, our implementation ofBIDsearchshows superior performance over

previous programs. In a benchmark experiment on theRfam database,BIDsearchwas faster than

RNAMotif andRNABOBby up to two orders of magnitude. Furthermore, in a comparison between

BIDsearchand the program of [130], which works on compressed index data structures,BIDsearch

was faster by up to 2 times. We observed that for RSSPs with long unconserved loop regions, the

advantage ofBIDsearchover ONLsearchdecreases. For such cases,Structatorcan also employ

ONLsearchon the plain sequence data. As a further contribution, we presented for the first time a

detailed complexity analysis of bidirectional search using affix arrays. While bidirectional search

does not improve the worst-case time complexity compared toonline search, in practice it runs

much faster than online search algorithms and the running time scales sublinearly with the length

n of the searched sequences.

Our implementation of the affix array data structure requires only 18n bytes of space. This is a

significant space reduction compared to the∼45n bytes needed for the affix tree. With the program

afconstructwe present for the first time a command line tool for the efficient construction and per-

sistent storage of affix arrays that can also be used as a stand-alone program for index construction.

We note that bidirectional search with an affix array is also possible using 10n bytes of space as

observed in [131] after the publication of our work. This is achieved by avoiding the storage of the

affix link tables. However, this approach requires the computation of affix links during the search

81

http://www.zbh.uni-hamburg.de/Structator

3 Fast index-based bidirectional search for RNA sequence-structure patterns

for structural patterns and, consequently, increases the number of binary searches in the suffix and

reverse prefix arrays.

With the new concept of RNA secondary structure descriptors(SSDs) combined with fast global

and local chaining algorithms, all integrated intoStructator, we also introduce a powerful tech-

nique to describe RNAs with complex secondary structures. This even allows to effectively de-

scribe RNA families containing branching substructures like multi-loops, by decomposition into

sequences of non-branching substructures that can be described with RSSPs. Compared to pro-

grams likeRNAMotif, Structator’s pattern description language for RSSP formulation is simple

but powerful, in particular in combination with the SSD concept. Beyond the algorithmic con-

tributions, we provide with theStructator software distribution a robust, well-documented, and

easy-to-use software package implementing the ideas and algorithms presented in this work.

82

4 Fast approximate search for RNA
sequence-structure patterns

4.1 Introduction

OurStructatortool presented in the former chapter addresses a fundamental drawback of previous

descriptor-based RNA homology search methods, i.e. the fact that their running times scale at

least linearly in the size of the target sequence database.Structator, in contrast, achieves sublinear

running time by using the affix array index data structure, which allows to perform bidirectional

pattern search and efficiently handle the structural constraints of the patterns.

However, apart from running time constraints, another major disadvantage of all current tools that

search for sequence-structure patterns is their limited capacity to find approximate matches to the

patterns. Although variability in length of pattern elements is often allowed, this is constrained to

certain pattern positions that must be specified by the user.This limitation also holds forStructator.

Also, variations (insertions, deletions, or replacements) in the sequence that lead to small structural

changes, such as the breaking of a base pair, are not supported. This often hampers the creation

of patterns that are specific but generalized enough to matchall family members. An algorithm

presented in [132] only partially alleviates this problem by finding approximate matches of a helix

in a genome allowing edit operations on single bases, but noton the structure.

To overcome these issues, we present new fast index-based and online algorithms for approxi-

mate matching of sequence-structure patterns, all implemented in an easy-to-use software package.

Given one or more patterns describing any (branching, non-crossing) RNA secondary structure, our

algorithms compute alignments of the complete patterns to substrings of the target sequence, i.e.

semi-global alignments, taking sequence and structure into account. For this, they apply a full set of

edit operations on single bases and base pairs. Matches are reported for alignments whose sequence-

structure edit cost and number of insertions an deletions donot exceed user-defined thresholds. Our

most basic algorithm is a scanning variant of the dynamic programming algorithm for global pair-

wise sequence-structure alignment of Jianget al. [70], for which no implementation was available.

Because its running time is too large for database searches on a large scale, we present accelerated

online and index-based algorithms. All our new algorithms profit from a new computing scheme to

optimally reuse the required dynamic programming matricesand a technique to save computation

time by determining as early as possible whether a substringof the target sequence can contain

83

4 Fast approximate search for RNA sequence-structure patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AUAGAUUAC-AGUUAUGU-U-UAUCU-GGCAUGUGGAAU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 ..(.(...-).(....)..).

 AAUACUUA-GUAUCUAUCUGU

base match base mismatch

arc breaking arc removing arc altering

base insertion base deletion

P =

R =

S =

Figure 4.1: Example of a semi-global alignment of a sequence-structure patternQ = (P,R) and an

RNA sequenceS and involved sequence-structure edit operations. Continuous (dashed)

lines indicate match (gap) alignment edges fromAmatch (Agap).

a match. In addition, our index-based algorithms employ thesuffix array data structure compiled

from the search space. This further reduces the running time.

As in theStructator tool, our new algorithms also support the description of an RNA molecule

by multiple ordered sequence-structure patterns. In this way, the molecule’s secondary structure is

decomposed into a sequence of substructures described by independent sequence-structure patterns.

These patterns are efficiently aligned to the target sequences using one of our new algorithms and

the results are combined with fast global and local chainingalgorithms [104, 126]. This allows a

better balancing of running time, sensitivity, and specificity compared to searching with a single

long pattern describing the complete sequence and secondary structure.

The description of our algorithms closely follows [133]. For the used notation, please see the formal

preliminaries in Chapters 2 and 3.

4.2 Approximate matching of RNA sequence-structure

patterns

To find in a long RNA sequenceS approximate matches of an RSSPQ describing a part of an RNA

molecule, we compute alignments of the completeQ and substrings ofS considering edit opera-

tions for unpaired bases and base pairs. That is, we compute semi-global alignments simultaneously

obtaining the sequence-structure edit distance ofQ and substrings ofS.

We define the alignment ofQ and a substringS[p..q], 1 ≤ p ≤ q ≤ n, as setA = Amatch⊎Agap. The

setAmatch ⊆ [1..m] × [p..q] of match edges satisfies that, for all different(k, l), (k′, l′) ∈ Amatch,

k > k′ implies l > l′. The setAgap of gap edges is defined as{(x,−) | x ∈ [1..m] ∧ ∄y, (x, y) ∈

Amatch} ∪ {(−, y) | y ∈ [p..q]∧∄x, (x, y) ∈ Amatch}. See Figure 4.1 for an example of a semi-global

alignment and associated alignment edges. The alignment cost is based on a sequence-structure edit

distance. The allowed edit operations on unpaired basesP [k] andS[l], 1 ≤ k ≤ m, p ≤ l ≤ q, are:

84

4.2 Approximate matching of RNA sequence-structure patterns

• base mismatch, with costωm, which occurs if there is an edge(k, l) ∈ Amatch andS[l] /∈

ϕ(P [k]);

• base match, with cost zero, which occurs if there is an edge(k, l) ∈ Amatch andS[l] ∈

ϕ(P [k]);

• base deletion, with costωd, which occurs if(k,−) ∈ Agap; and

• base insertion, also with costωd, which occurs if(−, l) ∈ Agap.

The possible edit operations on base pairs were first introduced by Jianget al. [70] and are defined

as follows. Let(k1, k2) be a base pair in̂R andl1 andl2, p ≤ l1 < l2 ≤ q, be positions inS.

• An arc breaking, with costωb, occurs if(k1, l1) ∈ Amatch and(k2, l2) ∈ Amatch but bases

S[l1] andS[l2] are not complementary. An additional base mismatch costωm is caused if

S[l1] /∈ ϕ(P [k1]) and another ifS[l2] /∈ ϕ(P [k2]). To give an example, consider the semi-

global alignment in Figure 4.1. RSSPQ contains base pair(5, 9) ∈ R̂ and there exist edges

(5, 11) ∈ Amatchand(9, 16) ∈ AmatchbutS[11] = G andS[16] = G are not complementary.

We note a difference between our definition and the definitionof Jianget al., where both

aligned sequences are annotated with structure information. There, an arc breaking occurs

if basesS[l1] andS[l2] are annotated as unpaired in addition to the condition of existing

edges(k1, l1) ∈ Amatchand(k2, l2) ∈ Amatch. Hence, because in our case sequenceS has no

structure annotation, our definition is based on the complementarity of basesS[l1] andS[l2].

• An arc altering, with costωa, occurs if either (1)(k1, l1) ∈ Amatch and(k2,−) ∈ Agap or

(2) (k2, l2) ∈ Amatch and(k1,−) ∈ Agap. Each case induces an additional base mismatch

costωm if S[l1] /∈ ϕ(P [k1]) or S[l2] /∈ ϕ(P [k2]). As an example, observe in the alignment

shown in Figure 4.1 that there exist a base pair(11, 16) ∈ R̂ and edges(11,−) ∈ Agap and

(16, 21) ∈ Amatch.

• An arc removing, with costωr, occurs if(k1,−) ∈ Agapand(k2,−) ∈ Agap. As an example,

observe in the alignment in Figure 4.1 that there exist a basepair (3, 19) ∈ R̂ and edges

(3,−) ∈ Agap and(19,−) ∈ Agap.

With this set of edit operations on the sequence and structure we can now define the cost of the

alignment ofQ andS[p..q] as

dist(Q, S[p..q]) = min{distA(Q, S[p..q]) | A is an alignment ofQ andS[p..q]} (4.1)

85

4 Fast approximate search for RNA sequence-structure patterns

where
distA(Q, S[p..q]) =

∑
(k,l)∈A,R[k]=.,S[l]/∈ϕ(P [k])

ωm base mismatch

+
∑

(k,−)∈A,R[k]=.

ωd base deletion

+
∑

(−,l)∈A

ωd base insertion

+
∑

(k1,k2)∈R̂,(k1,l1)∈A,(k2,l2)∈A,(S[l1],S[l2])/∈C

ωb arc breaking

+
∑

(k1,k2)∈R̂,(k1,l1)∈A,(k2,−)∈A

ωa arc altering

+
∑

(k1,k2)∈R̂,(k2,l2)∈A,(k1,−)∈A

ωa arc altering

+
∑

(k1,k2)∈R̂,(k1,−)∈A,(k2,−)∈A

ωr arc removing.

(4.2)

An alignmentA of minimum cost betweenQ andS[p..q] is anoptimal alignmentof Q andS[p..q].

In practice, one is often interested in finding substrings ofan RNA sequenceS having a certain

degree of similarity to a given RSSPQ on both the sequence and structure levels. Therefore, we

are only concerned about optimal alignments ofQ and substringsS[p..q] with up to a user-defined

sequence-structure edit distance and a limited number of allowed insertions and deletions (indels).

More precisely:

• the costdist(Q, S[p..q]) should not exceed a given thresholdK, and

• the number of indels in the alignment should be at mostd.

Thus, the approximate search problem for finding occurrences of an RSSPQ in S, given user-

defined thresholdsK andd, is to report all intervals[p..q] such that

dist(Q, S[p..q]) ≤ K andm− d ≤ |S[p..q]| ≤ m+ d ≤ n. (4.3)

We call every substringS[p..q] satisfying Equation (4.3) amatch of Q in S. In the subsequent

sections we present algorithms for searching for matches ofan RSSPQ in a sequenceS.

4.2.1 Online approximate RNA database search for RSSPs: ScanAlign

A straightforward algorithm to search for approximate matches of an RSSPQ in an RNA sequence

S consists of sliding a window of lengthm′ = m + d alongS while computingdist(Q, S[p..q])

for 1 ≤ p ≤ q ≤ n andq − p + 1 = m′. We note that, although the length of a match can vary

in the rangem − d to m + d, to find matches of all possible lengths it suffices to slide a window

of lengthm′ alongS corresponding to substringsS[p..q]. This holds because the alignment to a

window of lengthm′ entails all possible alignments with up tod allowed indels. In the following we

present a dynamic programming algorithm computingdist(Q, S[p..q]) for every windowS[p..q].

86

4.2 Approximate matching of RNA sequence-structure patterns

Our recurrences are derived from the algorithm for global pairwise sequence-structure alignment

of Jianget al. [70], i.e. an algorithm for aligning sequences of similar lengths. Although Jiang’s

algorithm supports the sequence-structure edit operations described above, we emphasize that it is

not suitable for computing semi-global alignments, which is what we are interested in.

We begin the description of our algorithm by defining three functions required by the dynamic

programming recurrences. LetT = S[p..q].

1. For computing base match and mismatch costs for positionsi andj of the RSSPQ = (P,R)

and substringT , respectively, we define a functionχ : N× N → {0, 1} as:

χ(i, j) =

{
0 if T [j] ∈ ϕ(P [i]) (base match)

1 otherwise. (base mismatch)
(4.4)

2. To determine whether an arc breaking operation can occur,we must also be able to check

for base complementarity at positionsi andj of T . Therefore, we define a functioncomp :

N× N → {0, 1} as:

comp(i, j) =

{
0 if (T [i], T [j]) ∈ C (complementary)

1 otherwise. (not complementary)
(4.5)

3. For determining the correct row (of the dynamic programming matrices introduced below)

where certain operation costs must be stored we introduce a functionrow : N → N defined

as:

row(i) =

i′ if (i′, i) ∈ R̂ and1 < i′ < i < m andR[i+ 1] = . andR[i′ − 1] 6= (

0 if (i, i′) ∈ R̂ andR[i+ 1] = .

i otherwise.
(4.6)

Intuitively, functionrow satisfies the following: (1) given the right indexi of a base pair(i′, i), it

returns the left indexi′ if (i′, i) is preceded or followed by other structures; (2) given the left index

i of a base pair(i, i′), it returns 0 if the base at positioni + 1 of Q is unpaired; and (3) given any

other position indexi, it returnsi itself.

Using these three functions, our algorithm determines the sequence-structure edit distance

dist(Q, T [1..m′]) by computing a series ofm′ + 1 (m′ + 1) × (m′ − k + 1) matricesDPk,

for 1 ≤ k ≤ m′ + 1, such thatDP1(row(m),m′) = dist(Q, T [1..m′]). We remark thatDPk(i, j)

is not defined for every subinterval[i..j]. While the recurrences of Jiang’s algorithm are divided in

four main cases, we present a simplified recurrence relationwith only two main cases. In addition,

we observe that we use only three indices for a matrix entry instead of four. Our recurrences are as

follows.

87

4 Fast approximate search for RNA sequence-structure patterns

1. If i = 0 orR[i] = . (unpaired base), then

DPk(i, j) =

0 if i = 0 andj = 0

DPk(0, j − 1) + ωd if i = 0 andj > 0

DPk(row(i− 1), 0) + ωd if i > 0 andj = 0

min

DPk(row(i− 1), j) + ωd

DPk(i, j − 1) + ωd

DPk(row(i− 1), j − 1) + χ(i, j)ωm

if i > 0 andj > 0

(4.7)

2. If R[i] 6= . (paired base), then

(a) If R[i] =) wherei forms base pair(i′, i) ∈ R̂,

DPk(i, j) =

DPk(row(i− 1), 0) + ωr if j = 0

min

DPk(row(i− 1), j − 1) + χ(i, j + k)ωm + ωa

DPk+1(row(i− 1), j − 1) + χ(i′, k)ωm + ωa

DPk(row(i− 1), j) + ωr

DPk(i, j − 1) + ωd

DPk+1(i, j − 1) + ωd

DPk+1(row(i− 1), j − 2) + (χ(i, j + k) + χ(i′, k + 1))ωm+

comp(k + 1, j + k)ωb, if j > 1

if j > 0

(4.8)

(b) If (a) holds and eitherR[i′−1] = . orR[i′−1] =), compute in addition to Equation (4.8)

DPk(row(i), j) =

{
DPk(row(i

′ − 1), 0) +DPk(i, 0) if j = 0

min
{
DPk(row(i

′ − 1), j′) +DPk+j′(i, j − j′) | 0 ≤ j′ ≤ j
}

if j > 0
(4.9)

A natural way to compute theseDP matrices is top down, checking whether case 1, 2(a), or 2(b)

applies, in this order. Due to the matrix dependencies in cases 2(a) and (b), the matrices need to be

computed simultaneously.

Note that for allj, 1 ≤ j ≤ m′, clearly DP1(row(m), j) = dist(Q, T [1..j]). Therefore all

candidate matches shorter thanm′ beginning at positionp are also determined in the computation

of dist(Q, T [1..m′]). The following Lemma is another important contribution of this work and also

the key for the development of an efficient algorithm.

Lemma 4 When sliding a window alongS to computedist(Q, S[p..q]), 1 ≤ p ≤ q ≤ n, m′ =

q − p + 1 = m + d, a window shift by one position to the right requires to compute only column

m′ − k + 1, i.e. the last column of matricesDPk, 1 ≤ k ≤ m′.

Proof. Let T [1..m′] = S[p..q]. The computation ofdist(Q, T [1..m′]) requires to computem′ + 1

DP matrices, one for each suffixTk of string T = T [1..m′], 1 ≤ k ≤ m′, and one for the

88

4.2 Approximate matching of RNA sequence-structure patterns

empty sequenceε. As a result, it holds for everyk thatdist(Q, Tk) = DPk(row(m),m′) which is

obtained as a by-product of thedist(Q, T) computation. Because each substringTl+1[1..m
′ − l] =

S[p+ l..q], 0 ≤ l < m′, only differs by its last character fromS[p+ l+1..q+1] which are suffixes

of the window substring shifted by one position to the right,the lemma holds. �

Due to Lemma 4, our algorithm computes only the last column ofthe DP matrices for every

shifted window substring (see the example in Figure 4.2) andjust for the first windowS[1..m′]

it computes every column. We call this algorithmScanAlign. We note that during the reviewing

process of [133] where we for the first time describeScanAlign, Will et al. [68] submitted and

published an algorithm for semi-global sequence-structure alignment of RNAs. As our method,

this algorithm saves computation time by reusing entries ofdynamic programming tables while

scanning the target sequence.

Our ScanAlignalgorithm has the following time complexity: computingDPk(i, j) in cases 1 and

2(a) takesO(1) time and in case 2(b) it takesO(m′) time. Now consider the two situations:

• For the first computed window substringS[1..m′], cases 1 and 2(a) requireO(mm′2) time in

total and case 2(b) requiresO(mm′3) time in total. This leads to an overall time ofO(mm′3).

• For one window shift, cases 1 and 2(a) requireO(mm′) time in total and case 2(b) requires

O(mm′2) time in total, leading to an overall time ofO(mm′2).

Since there aren−m′−1window shifts, the computation for all shifted windows takesO(mm′2(n−

m′)) = O(mm′2n) time. We observe that the time needed byScanAlignto compute all window

shifts reduces toO(mm′n) if recurrence case 2(b) is not required. This is the case if the structure

of Q does not contain unpaired bases before a base pair constituting e.g. a left dangling end or left

bulge.

4.2.2 Faster online alignment with early-stop computation : LScanAlign

Often, before completing the computation of the alignment between an RSSPQ and a window sub-

stringS[p..q] of the searched RNA sequence, we can determine whether the cost of this alignment

will exceed the cost thresholdK. By identifying this situation as early as possible, we can improve

algorithmScanAlignto skip the window, thus saving computation time and proceedwith aligning

the next window. The idea consists in checking, during the alignment computation, whether the

cost of an already aligned region ofQ and a substring ofS[p..q] exceedsK. In such a case, the

alignment cost of the completeQ andS[p..q] will also exceedK. In more detail, this works as

follows.

• We decompose the RSSPQ into regions that can themselves represent a pattern, e.g. astem-

loop or unpaired region. A basic constraint is to not split base pairs to different regions.

89

4 Fast approximate search for RNA sequence-structure patterns

Figure 4.2:DP tables for the sequence-structure alignment computation of RSSP Q =

(AAGUUUC,..(...)) and window substringT = ACCCUCUU when scanning

a sequenceS with algorithmScanAlign. Only the entries in red have to be computed

for each window shift, whereas the entries in green are reused. Entries in yellow boxes

are on a possible minimizing path for alignments with up tod = 1 indels. The following

operation costs were used:ωd = ωm = 1, ωb = ωa = 2, andωr = 3.

• We compute the alignment of a given initial RSSP region and a substring of the current

windowS[p..q], progressively extending the alignment to other regions.

• If the cost of aligning an RSSP region to a substring of the window exceeds cost thresh-

old K, then the entire pattern cannot match the window. This meansthat the window can

immediately be skipped.

Formally, a valid RSSP regionQ[x..y], 1 ≤ x ≤ y ≤ m, satisfies exactly one of the following

conditions.

1. Q[x..y] is a left dangling (unpaired) end of the pattern in 5’ to 3’ direction, i.e.x = 1.

Alternatively, it is an unpaired region of maximal length such that positionx − 1 forms a

base pair(x − 1, y′) ∈ R̂ for some positiony′ of Q. Observe that no extension ofQ[x..y]

by another unpaired position is possible. As an example, consider the green marked regions

Q[1..2], Q[4..4], Q[6..8], andQ[12..15] in Figure 4.3.

2. Positiony is unpaired and there is at least one base pair(x′, y′) ∈ R̂, x ≤ x′ < y′ < y. No

extension ofQ[x..y] by another unpaired position is possible. As examples of regions under

these requirements, see the regions in orange of the RSSPQ in Figure 4.3, namelyQ[4..10],

Q[4..18], andQ[1..20].

3. (x, y) ∈ R̂ is a base pair. For examples of such RSSP regions, see the regions in blue of the

RSSP in Figure 4.3, namelyQ[5..9], Q[11..16], andQ[3..19].

90

4.2 Approximate matching of RNA sequence-structure patterns

AAUACUUAGUAUCUAUCUGU
..(.(...).(....)..).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q[6..8] Q[12..15]Q[4..4]Q[1..2]

Q[4..10]

Q[4..18]

Q[1..20]

Q[5..9] Q[11..16]

Q[4..9]

Q[4..16]

Q[1..19]

Q[3..19]

P =

R =

Figure 4.3: Regions of RSSPQ = (AAUACUUAGUAUCUAUCUGU,..(.(...).(....)..).)

according to conditions 1 (green), 2 (orange), 3 (blue), and4 (red) described in the text.

4. y forms a base pair(x′, y) ∈ R̂ where eitherR[x′−1] = . orR[x′−1] =), 1 ≤ x ≤ x′−1.

In addition,x = 1 or (x − 1, y′) ∈ R̂ for somey′ > y. Examples of such RSSP regions are

shown in red in Figure 4.3, i.e. regionsQ[4..9], Q[4..16], andQ[1..19].

Note that regions can be embedded in other regions but cannotpartially overlap another.

Our progressive alignment computation of an RSSPQ and a window substring of the searched RNA

sequenceS begins by considering only an in general small region ofQ embedded in another region.

The computation is then extended to a surrounding region, e.g. from regionQ[6..8] to Q[5..9] of

the RSSP shown in Figure 4.3, until it entails the largest region surrounding all other regions, e.g.

Q[1..20] of the same example. Formally, we elaborate the alignment computation as follows. Let

T = T [1..m′] be a window substring of lengthm′ = m+ d of S andd be the number of allowed

indels. Pattern regions have the property that, for any regionQ[x..y], computingdist(Q[x..y], T)

does not depend on any other regionQ[x′..y′] for somey′ < x andx′ < y. Therefore, they can

easily be sorted to indicate the order by which the rows of theDP matrices are computed. We

observe that the top-down computation of theDP matrices, as described above, automatically

sorts the regions and respects the dependency between rows.To obtain from the sorted regions the

indices of the rows to be computed, we consider the conditionsatisfied by each region. The rows

obtained according to each condition are computed according to one case of the recurrence. Given

regionQ[x..y] identified by one of the four conditions this region satisfies, the following rows of

the matrices have to be computed.

1. All rows in the interval[x..y] are computed by Equation (4.7).

2. One scans the structure of regionQ[x..y] from positiony to positionx until one finds a paired

positiony′. Then, all rows in the interval[y′ + 1..y] are computed by Equation (4.7).

91

4 Fast approximate search for RNA sequence-structure patterns

3. Rowy is computed by recurrence (a) of Equation (4.8).

4. Rowrow(y) is computed by recurrence (b) of Equation (4.8).

The sequential computation of the rows belonging to each region naturally leads to the computation

of the entire alignment ofQ and sequence-structure edit distancedist(Q, T).

Our improvement of theScanAlignalgorithm is based on the following two observations.

• The standard dynamic programming algorithm for aligning two plain text sequences of lengths

m andn requires an(m+ 1) × (n + 1) matrix. Leti andj be indices of each of the matrix

dimensions and a diagonalv be those entries defined byi andj such thatj − i = v. Given

that the cost of each edit operation is a positive value, the cost of the entries along a diagonal

of the matrix are always non-decreasing [134].

• Moreover, one indel operation implies that an optimal alignment path including an entry on

diagonalv also includes at least one entry on diagonalv + 1 or v − 1. Now let v be the

diagonal ending at the entry on the lower-right corner of thematrix andd be the number of

allowed indels. One can stop the alignment computation as soon as all the entries of one row

in the matrix and along diagonalsv + d′, −d ≤ d′ ≤ d, exceedK.

For our improvement of algorithmScanAlign, based on the following Lemma, we define a diagonal

for each RSSP region instead of only one for the entire matrices.

Lemma 5 Assume an RSSPQ = (P,R), a regionQ[x..y] of lengthl = y − x + 1, a window

substringT [1..m′] of the searched RNA sequence, a cost thresholdK, and numberd of allowed

indels. If for everyd′, −d ≤ d′ ≤ min{d, x}, z ∈ {|d′| − d,−|d′| + d}, y + d′ ≤ m′, it holds that

dist(Q[x..y], Tx+d′ [1..l + z]) > K, then, for everyd′′, 0 ≤ d′′ ≤ d, dist(Q, T [1..m′ − d′′]) > K.

Proof. If the RSSP regionQ[x..y] originates from condition 1 or 2 (3 or 4) above, we define the

entries on a diagonale as those entriesDPk(i, j) (DPk(row(y), j)), 1 ≤ k ± d ≤ m′, such that

j − i+ offset= e, whereoffset= x− 1. Without loss of generality letd = 1. Assumingx− 1 > 0

andy+1 ≤ m′, this means that an optimal alignment of patternQ and substringT requiresQ[x..y]

to align with:

• T [x..y], T [x..y − 1], or T [x..y + 1], requiring for all three alignments the computation of

dist(Q[x..y], Tx[1..l + z]) for z ∈ {0− 1, 0 + 1} = {−1, 1};

• T [x− 1..y− 1], requiring the computation ofdist(Q[x..y], Tx−1[1..l+ z]) for z ∈ {|− 1| −

1,−| − 1|+ 1} = {0}; or

• T [x + 1..y + 1], requiring the computation ofdist(Q[x..y], Tx+1[1..l + z]) for z ∈ {|1| −

1,−|1|+ 1} = {0}.

The alignments withT [x..y], T [x..y + 1], andT [x..y − 1] end in matrixDPx. The alignments

with T [x− 1..y − 1] end in matrixDPx−1, and the alignments withT [x+ 1..y + 1] end in matrix

DPx+1. Every minimizing path obtained for the entire alignment ofQ andT can only include the

92

4.2 Approximate matching of RNA sequence-structure patterns

entries on the diagonalse, e + 1, and/ore − 1 for the alignments withT [x..y], T [x..y + 1], and

T [x..y− 1], and can only include the entries on diagonale for the alignments withT [x− 1..y − 1]

andT [x+ 1..y + 1] because these substrings already imply alignments with oneindel. As the sum

of the cost of the edit operations on the minimizing path increases monotonically and there cannot

be other minimizing paths due to the limited number of indelsd, the lemma holds. �

Let Q be an RSSP whose regions are sorted by the order of computation of their respective rows

in theDP tables above, letd be the number of allowed indels, andT = T [1..m′] be a window

substring of the searched RNA sequence. Applying Lemma 5, wemodify algorithmScanAlign

to compute the alignment of each regionQ[x..y] to substringsTx+d′ , −d ≤ d′ ≤ min{d, x},

y + d′ ≤ m′, and progressively extend the alignment to other RSSP regions and substrings ofT

as long asdist(Q[x..y], Tx+d′ [1..l + z]) ≤ K, z ∈ {|d′| − d,−|d′| + d}, holds. That is, for each

RSSP region, it determines the rows and recurrence case required for their computation according

to conditions 1, 2, 3, or 4 above. Then, within each processedrow i, it checks whether for at least

one entryDPk(i, j) on a possible minimizing path, i.e. on diagonalse′, e − d ≤ e′ ≤ e + d,

DPk(i, j) ≤ K. If no entry is belowK, it skips the alignment computation for all remaining RSSP

regions and proceeds with aligning the next window. See Figure 4.2 for an example of theDP

matrices of an alignment computation whose entries on a possible minimizing path are highlighted

in yellow.

When scanning the searched RNA sequence, a window can be shifted before allDP matrices en-

tries are computed. Hence, a direct application of Lemma 4 isno longer possible. To overcome this,

we define an arrayZ in the range 1 toz, wherez is the number of RSSP regions, and associate

each region with an indexr, 1 ≤ r ≤ z. Let p be the starting position of the window substring

S[p..q] in the RNA sequence. We setZ[r] = p whenever allDP matrices rows and columns be-

longing to regionr are computed. This occurs when the cost of aligning this region does not exceed

cost thresholdK. Now, when aligning the same RSSP regionr to a different window substring

S[p′..q′], p′ > p, computing allDP matrices columns requires to compute the lastp′ − p columns.

If p′ − p < m′ (recall thatm′ = q − p = q′ − p′), this means that the two window substrings do

not overlap and therefore noDP matrix column can be reused.

Our improved algorithm, hereinafter calledLScanAlign, in the worst case needs to process ev-

ery RSSP region for every window shift. Hence, it has the sametime complexity as algorithm

ScanAlign. However, as in many cases only a few RSSP regions are evaluated, it is much faster in

practice as will be shown later.ScanAlignandLScanAlignare the basis for further improvements

presented in the subsequent sections.

4.2.3 Index-based search: LESAAlign

Suffix trees and enhanced suffix arrays are powerful data structures for exact string matching and

for solving other string processing problems [52, 109]. In the following we show how the use of

93

4 Fast approximate search for RNA sequence-structure patterns

enhanced suffix arrays leads to even faster algorithms for searching for matches of an RSSPQ in

an RNA sequenceS.

The enhanced suffix array of a sequenceS is composed of the suffix arraysuf and the longest

common prefix arraylcp. These correspond to tablessufF andlcpF defined above. In the following

we assume that the enhanced suffix array ofS has already been computed.

Consider an RSSPQ to be matched against an RNA sequenceS with up tod indels. For eachi,

1 ≤ i ≤ n, let pi = min{m + d, |Ssuf [i]|} be thereading depthof suffix Ssuf[i]. When searching

for matches ofQ in S, we observe that algorithmsScanAlignandLScanAlignscanS computing

dist(Q, S[p..q]) for every window substring of lengthq − p+ 1 = m+ d. In the suffix array, each

substringS[p..q] is represented by a suffixSsuf[i] up to reading depthpi, i.e. there is a substring

Ssuf[i][1..pi] such thatSsuf[i][1..pi] = S[p..q]. To matchQ in S using a suffix array, we simulate

a depth first traversal of the lcp interval tree [109] ofS on the enhanced suffix array ofS such

that the reading depth of each suffix is limited bypi. That is, we traverse the suffix array ofS top

down, computing the sequence-structure edit distancedist(Q, Ssuf [i][1..pi]) for each suffixSsuf[i].

We recall that candidate matches ofQ have length betweenm− d andm+ d and thatpi ≤ m+ d.

In casepi < m − d, we can skipSsuf[i]. Also, remember that all candidate matches shorter than

pi are obtained as a by-product of the computation ofdist(Q, Ssuf[i][1..pi]). Hence, for everyp′,

m− d ≤ p′ ≤ pi, if dist(Q, Ssuf [i][1..p
′]) ≤ K we report[suf[i]..suf[i] + p′] as a matching interval

of Q in S. That is,Q matches substringS[suf[i]..suf[i] + p′] beginning at positionsuf[i] of S.

Our algorithm for the suffix array traversal anddist(Q, Ssuf [i][1..pi]) computation, hereinafter

called LESAAlign, builds on algorithmsScanAlignand LScanAlign. ScanAlignand LScanAlign

exploit overlapping substrings of consecutive window substrings to avoid recomputation ofDP

matrices entries.LESAAlignexploits the enhanced suffix array in two different ways. First, for a

single suffixSsuf[i], i > 0, it benefits from the common prefix of lengthlcp[i] between two consecu-

tive suffixesSsuf[i] andSsuf[i−1] by avoiding the recomputation of columnsj, 1 ≤ j ≤ lcp[i]−k+1,

of each matrixDPk. This means that, forlcp = min{pi, lcp[i]}, it avoids the recomputation of∑lcp
k=1 lcp − k + 1 columns forSsuf[i]. See an example in Figure 4.4. We observe that ifpi ≤ lcp,

noDP entry needs to be recomputed. In this case, two situations arise:

1. If pi ≤ lcp anddist(Q, Ssuf [i−1][1..pi−1]) ≤ K, then clearlydist(Q, Ssuf [i][1..pi]) ≤ K and

at least one match ofQ starts at positionsuf[i] of S; and

2. If pi ≤ lcp anddist(Q, Ssuf[i−1][1..pi−1]) > K, thendist(Q, Ssuf [i][1..pi]) > K.

These situations allowLESAAlignto benefit from the enhanced suffix array in a second important

way. That is, it skips all suffixesSsuf[i], Ssuf[i+1], ..., Ssuf[j] sharing a common prefix of at least

length lcp with Ssuf[i−1]. To find the indexj of the last suffixSsuf[j] to be skipped, it suffices to

look for the largestj such that min{lcp[i], lcp[i + 1], ..., lcp[j]} ≥ lcp. If the first situation above

holds, there are matches ofQ in S at positionssuf[i], suf[i + 1], ..., suf[j]. We note that suffixes

can also be efficiently skipped using so-called skip-tablesas described in [54]. However, to save the

94

4.2 Approximate matching of RNA sequence-structure patterns

Figure 4.4:DP tables for the sequence-structure alignment computation of RSSP Q =

(AAGUUUC,..(...)) and substringSsuf[i][1..8] = ACCCUCUU. Given that suffix

Ssuf[i] shares a common prefix of lengthlcp[i] = 4 with Ssuf[i−1], algorithmLESAAlign

reuses the entries in green and computes the entries in red. Used operation costs:

ωd = ωm = 1, ωb = ωa = 2, andωr = 3.

4n additional bytes required to store such tables we do not use them here. Our algorithm continues

the top-down traversal of the suffix array with suffixSsuf[j+1], taking into account that theDP

tables were last computed forSsuf[i−1]. Consequently, the length of the longest common prefix

betweenSsuf[i−1] andSsuf[j+1] to be considered in the processing ofSsuf[j+1] is min{lcp[i], lcp[i+

1], ..., lcp[j], lcp[j + 1]}.

We also incorporate in our index-based algorithm the early-stop alignment computation scheme

of algorithmLScanAlign. This allows to skip suffixesSsuf[i] as soon as it becomes clear that the

sequence-structure edit distance of RSSPQ andSsuf[i] up to reading depthpi will exceed the cost

thresholdK. For this,LESAAlignprogressively aligns regions ofQ to a substring of the current

suffix as in algorithmLScanAlign, checking whether the cost of each subalignment remains below

the cost thresholdK, thus applying Lemma 5. If the cost exceedsK, the alignment computation

of the remaining pattern regions is skipped and the algorithm proceeds with processing the next

suffix. To avoid recomputing as many entries of theDP matrices as possible while traversing

the suffix array,LESAAligndiffers fromLScanAlignin the way it manages (non-) aligned regions

for each suffix. Lemma 4, which algorithmLScanAlignapplies to support early-stop computation,

relies on scanning the searched RNA sequenceS and overlapping window substrings. This makes

it unsuitable for use with the suffix array. Instead,LESAAlignonly uses information from thelcp

table as follows. Letz be the number of regions ofQ indexed from 1 toz andT = Ssuf[i][1..pi]

be the current substring. When progressively aligning the regions ofQ to a substring ofT , we

store the indexr of the first region whose alignment cost exceedsK, if there is any. That is, for

the first regionQ[x..y] whose indexr we store, it holds that for everyd′, −d ≤ d′ ≤ min{d, x},

dist(Q[x..y], Tx+d′ [1..l+z]) > K with l = y−x+1, z ∈ {|d′|−d,−|d′|+d}, andy+d′ ≤ m+d

95

4 Fast approximate search for RNA sequence-structure patterns

Algorithm 5: LESAAlign

input : Index tables suf and lcp of sequence S, RSSP Q
output: Matching positions of Q in S
iSuffix := 11

iLcp := 02

lastRegion := undefined3

while iSuffix ≤ n do4

(bMatched, lastRegion) := computeDP (DP, iSuffix, iLcp, lastRegion)5

iLcpCheck := lastRegion.r+ d6

if bMatched then7

reportMatch(Q,S, iSuffix) //Match found at position suf[iSuffix] of S8

end9

iSuffix := iSuffix+ 110

if iSuffix ≤ n then11

iLcp := lcp[iSuffix]12

while iSuffix ≤ n and lcp[iSuffix] ≥ iLcpCheck do13

if lcp[iSuffix] < iLcp then14

iLcp := lcp[iSuffix] //Store the smallest lcp value of the skipped interval15

end16

if bMatched then17

reportMatch(Q,S, iSuffix) //Match found at position suf[iSuffix] of S18

end19

iSuffix := iSuffix+ 120

end21

end22

Figure 4.5: Pseudocode for algorithmLESAAlign. For details, see main text.

(see Lemma 5). Then, when aligningQ to a subsequent substringSsuf[j][1..pj], we must distinguish

the regions ofQ previously computedfrom regionsnot computed.

• Previously computed pattern regionsare all regions whose index is strictly smaller than

r. The alignment computation of these regions profits from thecommon prefix between

Ssuf[i][1..pi] andSsuf[j][1..pj] by avoiding the recomputation ofDP matrices columns as

described above.

• Non-computed pattern regionsare all regions whose index is larger than or equal tor. In this

case, allDP matrices columns of the respective pattern region need to becomputed, even if

Ssuf[i][1..pi] andSsuf[j][1..pj] share a common prefix.

We observe that longer ranges of suffixes not containing matches toQ can be skipped thanks to the

early-stop alignment computation scheme. Note that the left-most character ofT needed to assert

dist(Q[x..y], Tx+d′ [1..l+ z]) > K is T [x+ l+ d− 1] = T [x+ y − x+ 1+ d− 1] = T [y+ d] as

l = y−x+1. Therefore, no suffix sharing prefixT [1..y+ d] can matchQ and thus can be skipped

in the top-down traversal of the suffix array ofS. Because in most casesy + d < pi, more suffixes

are likely to share a prefix of lengthy + d than of lengthpi with Ssuf[i].

The pseudocode for algorithmLESAAlignis given in Algorithm 5 (Figure 4.5).LESAAligntraverses

the suffix arraysuf of the target sequenceS top down, beginning with the lexicographically smallest

96

4.2 Approximate matching of RNA sequence-structure patterns

suffix Ssuf[iSuffix], whereiSuffix = 1 at this stage. During the traversal, it computes the sequence-

structure edit distancedist(Q, Ssuf [iSuffix][1..piSuffix]) between the RSSPQ and the prefix of length

piSuffix of each suffixSsuf[iSuffix], for 1 ≤ iSuffix ≤ n. This computation is done by function

computeDP in line 5. The input parameters ofcomputeDP are the computedDP matrices, the

indexiSuffix of the current suffix, the lengthiLcp of the common prefix between the last processed

suffix and the current suffix, and the last computed pattern region Q[x..y] denotedlastRegion

in the code. The last two variables are used to avoid recomputation of entries ofDP matrices.

FunctioncomputeDP returns a boolean value, stored inbMatched , stating whether the pattern

was matched, and the last newly computed regionlastRegion. lastRegion.r is the right boundary

of the last computed pattern regionQ[x..y] and is used to compute variableiLcpCheck in line 6.

iLcpCheck , in turn, is used to check whether suffixes of the suffix array sharing a common prefix

can be skipped. IfbMatched is true, matches are reported by functionreportMatch in lines 8 and

18.

4.2.4 Enhanced index-based search: LGSlinkAlign

Given an RSSPQ to be searched in an RNA sequenceS, algorithmLESAAlignis very fast when it

can

• avoid recomputation ofDP matrices columns due to a common prefix between suffixes of

S; and

• skip long ranges of suffixes of the suffix arraysuf whose common prefix up to a required

reading depth are known to match or not matchQ.

Therefore,LESAAlignexploits repetitions of substrings ofS, i.e. substrings shared by different

suffixes, and information of thelcp table to save computation time. However, the use of information

of thelcp table alone does not necessarily lead to large speedups. Consider e.g. theDP matrices for

the computation of the alignment ofQ = (AAGUUUC,..(...)) and substringSsuf[4][1..p4] =

ACCCUCUU in Figure 4.4. The enhanced suffix array ofS is shown in Figure 4.6. The substring

Ssuf[4][1..p4] of length 8 shares a common prefix of lengthlcp[4] = 4 with the previously processed

substringSsuf[3][1..p3]. Despite this common prefix, still182/252 ≈ 72% of the DP matrices

entries need to be computed (disregarding initialization rows and columns 0) in case no early-stop

is possible, i.e. in caseK > 4. This is more than the at most56/252 ≈ 22% of theDP matrices

entries computed by the online algorithmLScanAlignfor a window shift.

Our next goal is to develop an algorithm traversing the enhanced suffix array ofS that:

1. can skip more suffixes; and

2. improves the use of already computedDP matrices entries, reusing computed entries for as

many suffixes as possible.

97

4 Fast approximate search for RNA sequence-structure patterns

Figure 4.6: Enhanced suffix array of sequenceS$ = CCACCCCCCACCCACCACCCUCUU$

consisting of the suffix arraysuf, longest common prefix arraylcp, and inverse suffix

arraysuf−1.

98

4.2 Approximate matching of RNA sequence-structure patterns

To address the first goal, we motivate our method by recallingthe alignment computation example

in Figure 4.2. In this example, one of the regions ofQ = (AAGUUUC,..(...)) is Q[3..7] =

(GUUUC,(...)). AssumeK = d = 1 and observe thatdist(Q[3..7], T3+d′ [1..5 + z]) > 1 for

everyd′, −1 ≤ d′ ≤ 1, z ∈ {|d′| − 1,−|d′| + 1}, i.e. the alignment cost for this pattern region

already exceeds the cost threshold of 1 (in accordance with Lemma 5). In other words,Q[3..7]

cannot align to any of the substringsT [2..6] = CCCUC,T [3..6] = CCUC,T [3..7] = CCUCU,

T [3..8] = CCUCUU, orT [4..8] = CUCUU with a cost lower than 1. Observe further that the

alignment computation of regionQ[3..7] does not depend on any previous computation of any

other region. We can therefore conclude that no suffix containing substringT [2..8] = CCCUCUU

from position 2 to 8 can matchQ, independently of any prefix of length 1. Our goal is to find

and eliminate from the search space all such suffixes, in addition to skipping all suffixes sharing

prefixT [1..8] as performed byLESAAlign. That is, we want to skip suffixes sharing a substring, not

limited to a prefix, whose alignment cost to a pattern region exceeds cost thresholdK.

LetS be an arbitrary RNA sequence andT [x..y] = Ssuf[i][x..y] contain all substrings whose align-

ment cost to a region of an RSSPQ exceeds thresholdK. Consider the following two cases for

skipping suffixes that cannot matchQ as a consequence of containing substringT [x..y] from posi-

tionx to y. (1) For any value ofx, all suffixes sharing prefixT [1..y] can be skipped as performed by

algorithmLESAAlign. (2) Now letx > 1. To find all suffixes ofS sharing substringT [x..y] from

positionx to y, we first locate all suffixes sharingT [x..y] as a prefix. We begin by locating one such

suffix, in particular the suffix of indexsuf[j] that contains all but the firstx′ = x− 1 characters of

Ssuf[i], i.e. suffixSsuf[j] = Ssuf[i]+x′. We determinej using a generalization of a concept originated

from suffix trees. It is a property of suffix trees that for any internal node spelling out stringT there

is also an internal node spelling outT2 whenever|T | > 1 [135]. A pointer from the former to the

latter node is called asuffix link. In the case of suffix arrays, a suffix link can be computed using the

inverse suffix arraysuf−1 of S$. suf−1 is a table in the range1 to n+1 such thatsuf−1[suf[i]] = i.

It requires4n bytes and can be computed via a single scan ofsuf in O(n) time. Given tablesuf−1,

we can define the suffix link fromT = Ssuf[i] to T2 = Ssuf[i]+1 aslink = suf−1[suf[i] + 1], i.e. it

holds thatsuf[link] = suf[i] + 1. Now, if x′ = 1, we already find that the indexsuf[j] of the suffix

containing all but the first character ofSsuf[i] is suf[j] = suf[link] becauseSsuf[link] = Ssuf[i]+x′

holds. However, we also want to be able to determinej for anyx′ ≥ 1. The obvious solution is

to compute suffix linksx′ successive times. Each suffix link skips the first character of the previ-

ously located suffix. For a more efficient solution, we generalize suffix links to point directly to the

suffix without a prefix of any lengthx′ of the initial suffix. For this purpose we define a function

link : N× N → N as:

link(i, x′) = suf−1[suf[i] + x′]. (4.10)

Then, by lettingj = link(i, x′), Ssuf[link(i,x′)] = Ssuf[i]+x′ holds for anyx′ ≥ 1. All suffixes

sharingT [x..y] as a prefix are all suffixes in the rangejstart to jend wherejstart is the smallest and

jend is the largest index satisfying min{lcp[jstart+ 1], ..., lcp[j], ..., lcp[jend]} ≥ y − x+ 1. Finally,

we find that all suffixes ofS sharing substringT [x..y] from positionx to y are allSsuf[j′]−x′ ,

99

4 Fast approximate search for RNA sequence-structure patterns

jstart ≤ j′ ≤ jend, satisfyingsuf[j′] > x′. To skip these suffixes not containing matches toQ in the

top-down traversal of the suffix arraysuf, we mark their positions as true (for already“processed”)

in a bit arrayvtab of n bits. The suffix array traversal proceeds from positionsuf[i], but skips the

marked suffixes when their positions are reached.

We remark that the described method for skipping suffixes canprofit from a resorting according

to the order by which RSSP regions are aligned. In the alignment computation example in Figure

4.2, determiningdist(Q[4..6], T4+d′ [1..3 + z]) > 1, −1 ≤ d′ ≤ 1, z ∈ {|d′| − 1,−|d′| + 1},

does not depend on regionQ[1..2]. Hence, regionQ[1..2] is unnecessarily aligned first when the

regions are sorted by a top-down analysis of theDP tables. To decrease the chance that unnecessary

computations occur, we sort theRSSP regions to begin aligning with the left-mostRSSP region

Q[x..y] not depending on the alignment of any other region and satisfying x− d > 1.

We now address the second goal, namely reusing computedDP matrices entries for as many suf-

fixes as possible. Recall that computing the sequence-structure edit distancedist(Q, Ssuf [i][1..pi])

for each suffixSsuf[i] up to reading depthpi means computingpi + 1 DP matrices, one for each

suffix Tk of string T = Ssuf[i][1..pi], 1 ≤ k ≤ m′, and one for the empty sequenceε. Observe

that each suffixTk, Tk 6= T , also occurs itself as a prefix of a suffix in tablesuf, i.e. there exists

a suffixSsuf[j] shorter thanSsuf[i] by exactlyk − 1 characters which has prefixTk. Consequently,

Tk is processed again in an alignment to RSSPQ at a different point in time during the traversal of

suf. Let T ′ = Ssuf[j][1..pj]. Now note that ifT ′ is at a (nearly) contiguous position insuf to T , T ′

andT are likely to share a common prefix due to their similar lexicographic ranking. This allows

algorithmLESAAlignto avoid recomputation ofDP matrices columns by using information from

the lcp table. Unfortunately,T ′ andT can be lexicographically ranked far away from each other in

tablesuf, meaning that theDP matrices computed forT ′ either:

• were already computed once becauseT ′ is lexicographically smaller thanT , but were dis-

carded to allow the processing of other suffixes untilT was traversed; or

• are computed for the first time otherwise, but will not be reused to also allow the processing

of other suffixes untilT ′ occurs in tablesuf as a prefix of a suffix itself.

In both cases, redundant computations occur. To avoid this,we optimize the use of computed

DP matrices by processingT ′ directly after processingT for fixed k = 2, recalling thatT =

Ssuf[i][1..pi] and T ′ = Ssuf[j][1..pj]. This value ofk implies thatSsuf[j] does not contain the

first character ofSsuf[i] and that we can locateSsuf[j] in table suf by computing the suffix link

j = link(i, 1). Also, k = 2 implies thatT ′ only differs by its last character fromT , aside from

not beginning with characterT [1]. Therefore, to determinedist(Q, T ′), we only have to compute

the last column of theDP matrices required to computedist(Q, T) as shown by Lemma 4. We

note that, becausei andj are not necessarily contiguous positions insuf, we mark the processed

suffixSsuf[j] in the bit arrayvtab so that it is only processed once. If no match to RSSPQ begins at

positionsuf[j], we also mark and skip every suffix sharing the substring withT ′ whose alignment

to a region ofQ is known to exceed thresholdK. OnceT ′ is processed and all possible suffixes are

100

4.2 Approximate matching of RNA sequence-structure patterns

skipped, we recursively repeat this optimization scheme bysettingT = T ′ and processing the next

T ′ = Ssuf[j′][1..pj′] wherej′ = link(j, 1). The recursion stops whenpj′ < m − d, meaning that

T ′ is too short to matchQ, or whensuf[j′] is already marked as processed invtab. The suffix array

traversal proceeds at positioni+ 1 repeating the entire scheme.

We call our algorithm incorporating the presented improvementsLGSlinkAlign. LGSlinkAlignin-

herits all the improvements of the above presented algorithms. In summary, its improvements are

as follows.

• LGSlinkAligntraverses the enhanced suffix array of the searched sequenceS, i.e. the suffix

arraysuf enhanced with tableslcp andsuf−1. During this traversal, it benefits from common

prefixes shared among suffixes to (1) avoid the computation ofDP matrix columns and to

(2) skip ranges of suffixes known to match or not match RSSPQ as in algorithmLESAAlign.

• The suffix array traversal is predominantly top down, but non-contiguous suffixes are pro-

cessed to optimize the use of computedDP matrices.

• LGSlinkAlignstops the alignment computation as early as the alignment cost of a region of

RSSPQ and a substring of the prefix of the current suffix exceeds thresholdK, an improve-

ment first introduced in algorithmLScanAlign.

• Due to the early-stop computation scheme, suffixes sharing common prefixes shorter than

m+d can be skipped, leading to larger ranges of skipped suffixes.The early-stop computation

scheme also helps to identify and skip non-contiguous suffixes sharing a common substring

which is not their prefix.

The pseudocode for algorithmLGSlinkAlign is given in Algorithm 6 (Figure 4.7).LGSlinkAlign

traverses the suffix array in two combined strategies: top down and following suffix links. This is

managed in the code with two main while-loops, where an outerloop (lines 3 to 47) performs the

top down traversal and an inner loop (lines 13 to 46) performsthe traversal via suffix links. To

keep track of the last processed suffix via top down suffix array traversal, the index of this suffix

is stored in variableiSuffixTopDown . To keep the code short, all alignment computations are per-

formed only in the inner loop, distinguishing the strategy by which suffixes are traversed according

to the boolean variablebFollowedSuffixLink . This variable is set to true (line 41) when the inner

loop iterates and to false (line 4) when the iteration breaks. WhenbFollowedSuffixLink is false,

the samecomputeDP function used by theLESAAlignalgorithm is applied. Otherwise function

computeLastDPColumns is applied. This function does not use lcp information, but takes advan-

tage of the fact that the prefix of the current suffix, determined in line 36 by following a suffix link,

is equal to the previously processed suffix prefix, except by its last character. This property of the

suffix prefix allows to reuse already computed entries of matrices from the previously processed

suffix prefix, requiring for this only one shift of theDP matrices. This is done by functionshiftDP

in line 42. While traversing the suffix array, processed suffixes are marked in thevtab table. This

allows to avoid processing the same suffixes multiple times.In addition to these processed suffixes,

101

4 Fast approximate search for RNA sequence-structure patterns

non-contiguous suffixes of the suffix array that are known notto contain matches to RSSPQ are

also marked in this table. This is possible when patternQ, for the current suffix, has an unaligned

prefix of lengthiUnalignedPrefixLength > 0. For determiningiUnalignedPrefixLength in line

31, valuelastRegion.l is used. This value is the left boundary of the last computed pattern re-

gionQ[x..y]. Marking the additional suffixes invtab is performed by functionmarkSuffixes (see

Figure 4.8). This function receives as parameter a startingindexiSuffix , iUnalignedPrefixLength ,

and the required lengthiLcp of the common prefixes of the suffixes to be marked. The function

then traverses the suffix array top down and bottom up, marking all possible suffixes invtab.

4.2.5 Example: searching for an RSSP with algorithm LGSlinkAlign

We elucidate the ideas of algorithmLGSlinkAlignwith the following example. Consider the RSSP

Q = (AAGUUUC,..(...)) to be matched in the sequenceS whose enhanced suffix array is

shown in Figure 4.6. To keep the example simple, we only allowa small cost threshold and number

of indels, i.e. we setK = d = 1. The costs of the edit operations areωd = ωm = ωb = ωa = 1 and

ωr = 2. When traversing the enhanced suffix array ofS, LGSlinkAlignalways begins to alignQ

to a substring ofS with regionQ[4..6], because the alignment computation of this region does not

depend on any other region. In addition, the left index of this region satisfies4−d > 1. This means

that the alignment computation of regionQ[1..2] is avoided if the cost of aligning regionQ[4..6]

exceeds the thresholdK. The algorithm starts the traversal of the enhanced suffix array ofS aligning

Q[4..6] to substrings ofT = Ssuf[1][1..p1] = S14[1..8] from positions4 − d = 3 and6 + d = 7.

For this, it computesdist(Q[4..6], T4+d′ [1..3 + z]) for −1 ≤ d′ ≤ 1 andz ∈ {|d′| − 1,−|d′|+1}.

Observe thatdist(Q[4..5], T4+d′ [1..2 + z]) > 1 holds. Hence (1) no suffix with prefixT [1..6] =

AACACC can matchQ and thus can be skipped and (2) no suffix containing substringT [3..6] =

CACC from position4 − d = 3 to 5 + d = 6 can matchQ and thus can be skipped as well. We

notice that there is no other suffix with prefix AACACC becauselcp[2] < 6, so we analyze case

(2). The algorithm looks for suffixes sharing substring CACCfrom position3 to 6. It begins by

locating suffixes without the first two characters ofT and containing CACC as a prefix. It follows

the suffix link link(1, 2) = suf−1[suf[1] + 2] = suf−1[16] = 7 and looks for the smallestjstart

and largestjend satisfying min{lcp[jstart+ 1], ..., lcp[8], ..., lcp[jend]} ≥ 4 = |CACC|. It finds that

jstart= 5 andjend= 8, since min{lcp[5 + 1], lcp[7], lcp[8]} = min{4, 5, 5} ≥ 4 holds. The suffixes

containing CACC from position 3 to 6 areSsuf[5]−2 = S11, Ssuf[6]−2 = S7, andSsuf[8]−2 = S14.

S11 andS7 are marked in the bit arrayvtab, whereasS14 = Ssuf[1] was already processed and does

not need to be marked. We observe thatSsuf[7]−2 = S−1 is not a valid suffix. To reuse as many

computedDP matrices entries as possible, the algorithm next processesthe suffixSsuf[j] which

does not contain the first character ofSsuf[1]. It determinesj = link(1, 1) = suf−1[suf[1] + 1] =

11 and setsT = Ssuf[12][1..p12] = S15[1..8]. The alignment to this substringT begins with its

substrings from positions3 to 7 andQ[4..6]. We observe thatdist(Q[4..5], T4+d′ [1..2 + z]) > 1

holds and consequentlyT cannot matchQ. Because suffixSsuf[12] = S15 was traversed via a

102

4.2 Approximate matching of RNA sequence-structure patterns

Algorithm 6: LGSlinkAlign

input : Index tables suf, lcp, suf−1, and vtab of sequence S, RSSP Q
output: Matching positions of Q in S
iSuffixTopDown := 11

lastRegion := undefined2

while iSuffixTopDown ≤ n do //Begin traversing suffix array top down3

bFollowedSuffixLink := false4

iLcp := lcp[iSuffixTopDown]5

while vtab[suf[iSuffixTopDown]] do //Skip already visited suffixes6

iSuffixTopDown := iSuffixTopDown+ 17

if iLcp > lcp[iSuffixTopDown] then //Store the smallest lcp value of the skipped interval8

iLcp := lcp[iSuffixTopDown]9

end10

end11

iSuffix := iSuffixTopDown12

while not vtab[suf[iSuffix]] do13

if bFollowedSuffixLink then //Current suffix was obtained via a suffix link14

(bMatched, lastRegion) := computeLastDPColumns(DP, iSuffix, lastRegion)15

else//Current suffix was obtained via the top-down suffix array traversal16

(bMatched, lastRegion) := computeDP (DPTopDown, iSuffix, iLcp, lastRegion)17

end18

iLcpCheck := lastRegion.r+ d19

repeat20

vtab[suf[iSuffix]] := true21

if bMatched then22

reportMatch(Q,S, iSuffix) //Match found at position suf[iSuffix] of S23

end24

iSuffix := iSuffix+ 125

if iSuffix > n or vtab[suf[iSuffix]] then26

break27

end28

until lcp[iSuffix] ≥ iLcpCheck29

iSuffix := iSuffix− 130

iUnanlignedPrefixLength := lastRegion.l− d− 131

if iUnanlignedPrefixLength > 0 then32

markSuffixes(link(iSuffix, iUnanlignedPrefixLength), iUnanlignedPrefixLength,33

lastRegion.r+ d− iUnanlignedPrefixLength)34

end35

iSuffix := link(iSuffix, 1)36

if |Ssuf[iSuffix]| ≥ m− d then //If suffix is not shorter than the minimum required length37

if not bFollowedSuffixLink then38

DP := DPTopDown39

end40

bFollowedSuffixLink := true41

shiftDP (DP)42

else //Leave large while-loop and traverse suffix array top down43

break44

end45

end46

end47

Figure 4.7: Pseudocode for algorithmLGSlinkAlign. For details, see main text.

103

4 Fast approximate search for RNA sequence-structure patterns

Function markSuffixes(iSuffix, iUnanlignedPrefixLength, iLcpCheck)

//Mark suffixes by traversing suffix array top down1

iSuffixDown := iSuffix+ 12

while iSuffixDown ≤ n and lcp[iSuffixDown] ≥ iLcpCheck do3

if suf[iSuffixDown]− iUnalignedPrefixLength≥ 1 then4

vtab[suf[iSuffixDown]− iUnalignedPrefixLength] := true5

end6

iSuffixDown := iSuffixDown+ 17

end8

//Mark suffixes by traversing suffix array bottom up9

iSuffixUp := iSuffix− 110

while iSuffixUp ≥ 1 and lcp[iSuffixUp+ 1] ≥ iLcpCheck do11

if suf[iSuffixUp]− iUnalignedPrefixLength≥ 1 then12

vtab[suf[iSuffixUp]− iUnalignedPrefixLength] := true13

end14

iSuffixUp := iSuffixUp− 115

end16

Figure 4.8: FunctionmarkSuffixesused by algorithmLGSlinkAlignto mark processed suffixes in

tablevtab. For details, see text above.

suffix link, it is marked as processed invtab. We now again analyze two cases of suffixes that

cannot matchQ and therefore can be skipped: (1) suffixes sharing prefixT [1..6] = CCACCC

and (2) suffixes containing substringT [3..6] = ACCC from position3 to 6. Satisfying case (1)

are suffixesSsuf[11] = S1 andSsuf[10] = S8 since lcp[12] ≥ 6 and lcp[11] ≥ 6. These suffixes

are marked invtab. We now check if there are suffixes satisfying case (2). The algorithm begins

by locating suffixes containing substringT [3..6] = ACCC as a prefix. For this, it follows the

suffix link link(12, 2) = suf−1[suf[12] + 2] = 4 and determinesjstart = 2 and jend = 4. The

property min{lcp[2 + 1], lcp[4]} ≥ 4 is satisfied. The suffixes containing ACCC from position 3

to 6 areSsuf[2]−2 = S8, Ssuf[3]−2 = S1, andSsuf[4]−2 = S15. Since these were already marked in

vtab, none of them needs to be marked. The algorithmic scheme ofLGSlinkAlignto reuse as many

computedDP matrices entries as possible continues processing other suffixes which are located by

iteratively following the suffix links. It locates suffixesSsuf[8], Ssuf[4], Ssuf[18], andSsuf[19] because

link(12, 1) = 8, link(8, 1) = 4, link(4, 1) = 18, and link(18, 1) = 19, respectively. These

suffixes are processed analogously as above, one after the other, not resulting in matches toQ. The

iteration then leads to suffixSsuf[20], sincelink(19, 1) = 20. However,|Ssuf[20]| < m−d, meaning

that this suffix is too short to contain a match toQ. This causes the iteration to stop. The suffix

array traversal proceeds and repeats the entire matching scheme from the suffix that follows the

last processed suffix not located via a suffix link, i.e. suffixSsuf[2]. After processing and skipping

all possible suffixes, we note thatLGSlinkAligndoes not report any matches for the defined cost

threshold and allowed number of indelsK = d = 1. By settingK = 5, it reports a match at position

16.

104

4.3 RNA secondary structure descriptors based on multiple ordered RSSPs

4.3 RNA secondary structure descriptors based on multiple

ordered RSSPs

RNAs with complex branching structures often cannot be adequately described by a single RSSP

due to difficulties in balancing sensitivity, specificity, and reasonable running time of the used

search algorithm. Although their description by a single short RSSP specifying an unbranched

fragment of the molecule might be very sensitive, it is oftentoo unspecific and likely to generate

many spurious matches when searching for structural homologs in large sequence databases or

complete genomes. In contrast, using a single long RSSP often requires a higher cost thresholdK

for being sensitive enough which in turn, together with the increased RSSP length, has a negative

influence on the search time. This might lead to disadvantageous running times in larger search

scenarios in practice.

We solve this problem by applying the powerful concept of RNAsecondary structure descriptors

(SSDs for short), which we introduced with ourStructatormethod described above. We also use the

same efficient local and global chaining algorithms as inStructator. For chaining of approximate

RSSP matches, we use the fragment weightω∗
Q−dist(Q, T) for an RSSPQ of lengthm matching

substringT , whereω∗
Q = m ∗ ωm + bps ∗ ωr and bps denotes the number of base pairs inQ.

Hereω∗
Q is the maximal possible weightingQ can gain when being aligned and therefore it reflects

the situation of a perfect match betweenQ andT . With this definition of a fragment’s weight,

a positive weight is always guaranteed, thus satisfying a requirement for the chaining algorithm.

Once the chaining of matches to the RSSPs is completed, the high-scoring chains are reported in

descending order of their chain score. By restricting to high-scoring chains, spurious RSSP matches

are effectively eliminated. Moreover, the relatively short RSSPs used in an SSD can be matched

efficiently with the presented algorithms leading to short running times that even allow for the large

scale application of approximate RSSP search.

4.4 Implementation and computational results

We implemented (1) the fast index-based algorithmsLESAAlignandLGSlinkAlign, (2) the online

algorithmsLScanAlignandScanAlign, both operating on the plain sequence, and (3) integrated with

the search algorithms the efficient global and local chaining algorithms described in [104]. In our

experiments we useScanAlign, which is the scanning version of the method proposed in [70], for

reference benchmarking. All algorithms are included in theprogramRaligNAtor. The algorithms

for index construction were implemented in the programsufconstruct, which makes use of routines

from thelibdivsufsort2library (seehttp://code.google.com/p/libdivsufsort/) for

computing thesuf table inO(n log n) time. For the construction of tablelcp we employ our own

implementation of the linear time algorithm of [111]. All programs were written in C and com-

piled with the GNU C compiler (version 4.5.0, optimization option -O3). All measurements are

105

http://code.google.com/p/libdivsufsort/

4 Fast approximate search for RNA sequence-structure patterns

performed on a Quad Core Xeon E5620 CPU running at2.4 GHz, with 64 GB main memory

(using only one CPU core). To minimize the influence of disk subsystem performance, the re-

ported running times are user times averaged over10 runs. Allowed base pairs are canonical

Watson-Crick and wobble, unless stated otherwise. The usedsequence-structure operation costs

areωd = ωm = ωb = ωa = 1 andωr = 2.

Comparison of running times

In a first benchmark experiment we measure the running times needed by the four algorithms to

search with a single RSSP under different cost thresholdsK and number of allowed indelsd. We

set (1)K = d varying the values in the interval[0, 6], (2) K = 6 varying d in the interval[0, 6],

and (3)d = 0 varyingK in the interval[0, 6]. The searched dataset contains2,756,313 sequences

with a total length of≈ 786 MB from the full alignments of all Rfam release 10.1 families. The

construction of all necessary index tables needed forLESAAlignandLGSlinkAlignwith sufcon-

struct and their storage on disk required372 seconds. In the following we refer to this dataset as

RFAM10.1 for short. In this experiment we use the RSSPtRNA-pat of lengthm = 74 shown in

Figure 4.9 describing the consensus secondary structure ofthe tRNA family (Acc.: RF00005). The

results of this experiment are presented in Figure 4.10 and Tables 4.1, 4.2, and 4.3.LGSlinkAlign

andLESAAlignare the fastest algorithms.LGSlinkAlignis faster in particular for increasing values

of K andd, being only slower thanLESAAlignfor small values ofK andd and for fixedd = 0.

The advantage ofLGSlinkAlignoverLESAAlignwith higher values ofK andd is explained by the

increased reading depth in the suffix array implicated byK andd and the fewer suffixes sharing

a common prefix that can be skipped. This holds for bothLGSlinkAlignandLESAAlign, however

LGSlinkAligncounterbalances this effect by reusing computedDP matrices for non-contiguous

suffixes of the suffix array. In a comparison to the two online algorithms considering only approxi-

mate matching, i.e.K ≥ 1, the speedup factor ofLGSlinkAlignoverScanAlign(LScanAlign) is in

the range from560 for K = 1 andd = 0 to 17 for K = d = 6 (from 15 for K = 2 andd = 0

to 3 for K = d = 6). LESAAlignachieves a speedup factor overScanAlign(LScanAlign) in the

range from1,323 for K = 1 andd = 0 to 9 for K = d = 6 (29 for K = 1 andd = 0 to 1.6 for

K = d = 6). In a comparison between the online algorithms,LScanAlignis faster thanScanAlign

by up to factor45 for K ≥ 1. In summary, all algorithms exceptScanAlignprofit from low values

of K andd reducing their search times. This is a consequence of the useof the early-stop alignment

computation scheme. As shown in Figure 4.10 (2), also the number of allowed indelsd influences

the search time.

Influence of allowed edit costs and number of indels on search time

We describe an experiment comparing the running times of algorithmsLGSlinkAlign, LESAAlign,

LScanAlign, andScanAlignto search inRFAM10.1, similar to the benchmark described above.

106

4.4 Implementation and computational results

G

S

S

V

V

Y

R
U

R

GYYY

A
R

Y

U

G

G

U
U

A

R M R C

R

Y

Y

D

S

V
Y

U

B
H H

A

M

B

C

H

R

D W
R

R

U

Y

R

Y

R

G

G U
U

C

R
AW

U

C

C

Y

D

Y
H

N

B

B

N

S

Y R1 74
>tRNA-pat

GSSVVYRURGYYYARYUGGUUARMRCRYYDSVYUBHHAMBCHRDWRRUYRYRGGUUCRAWUCCYDYHNBBNSYR

(((((((..((((.........)))).(((((.......))))).....(((((.......)))))))))))).

Figure 4.9: Consensus secondary structure of the tRNA family (Acc.: RF00005) as drawn by

VARNA[128] (top) and respective sequence-structure patterntRNA-pat (bottom).

K = d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

0 1 1,582.03 21.81 0.53 3.09

1 168 1,581.86 50.36 2.53 3.81

2 900 1,643.86 68.26 5.95 13.17

3 3,050 1,670.71 100.22 16.22 30.29

4 9,274 1,710.75 141.12 42.23 43.66

5 28,603 1,759.80 196.09 90.61 64.74

6 77,805 1,830.33 319.32 198.94 107.63

Table 4.1: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlign to match inRFAM10.1 the single RSSP describing the consensus sec-

ondary structure of the tRNA (Acc.: RF00005). Times are influenced by the cost thresh-

old K and the number of allowed indelsd.

K d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

6 0 10,516 1,536.08 123.18 17.69 22.82

6 1 30,633 1,576.73 156.50 35.67 39.87

6 2 49,287 1,657.61 188.79 58.99 52.98

6 3 64,226 1,703.31 222.36 86.39 65.94

6 4 74,146 1,754.08 256.78 119.47 80.55

6 5 77,679 1,808.84 287.49 156.48 94.03

6 6 77,805 1,830.33 319.32 198.94 107.63

Table 4.2: Search times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlign to match inRFAM10.1 the single RSSP describing the consensus sec-

ondary structure of the tRNA (Acc.: RF00005). Here, the costthresholdK is constant

and the number of allowed indelsd increases progressively.

107

4 Fast approximate search for RNA sequence-structure patterns

lo
g

1
0
 (

ti
m

e
 [

m
in

.]
)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

K
=d

=0 (1
)

K
=d

=1 (1
68)

K
=d

=2 (9
00)

K
=d

=3 (3
,0

50)

K
=d

=4 (9
,2

74)

K
=d

=5 (2
8,6

03)

K
=d

=6 (7
7,8

05)

lo
g

1
0
 (

ti
m

e
 [

m
in

.]
)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

K
=6 (1

0,5
16)

d =
0

K
=6 (3

0,6
33)

d =
1

K
=6 (4

9,2
87)

d =
2

K
=6 (6

4,2
26)

d =
3

K
=6 (7

4,1
46)

d =
4

K
=6 (7

7,6
79)

d =
5

K
=6 (7

7,8
05)

d =
6

lo
g

1
0
 (

ti
m

e
 [

m
in

.]
)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

K
=0 (1

)

d =
0

K
=1 (1

66)

d =
0

K
=2 (4

39)

d =
0

K
=3 (1

,1
12)

d =
0

K
=4 (2

,9
63)

d =
0

K
=5 (6

,5
18)

d =
0

K
=6 (1

0,5
16)

d =
0

(1) (2)

(3)

ScanAlign LScanAlign LESAAlign LGSlinkAlign

Figure 4.10: Running times (in minutes and log10 scale) needed by the different algorithms to

search with an RSSP describing the tRNA inRFAM10.1. In (1) the cost threshold

K and the number of allowed indelsd are identical. In (2)K = 6 is constant andd

ranges from0 to 6. In (3) d = 0 is constant andK ranges from0 to 6. The numbers of

resulting matches are given on the x-axes in brackets.

K d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

0 0 1 1,582.03 21.81 0.53 3.09

1 0 166 1,601.82 35.39 1.21 2.86

2 0 439 1,601.20 45.20 2.05 3.00

3 0 1,112 1,601.90 54.83 2.87 3.72

4 0 2,963 1,606.61 74.29 4.90 5.71

5 0 6,518 1,601.01 96.93 9.53 11.57

6 0 10,516 1,601.93 118.26 17.34 21.87

Table 4.3: Search times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlign to match inRFAM10.1 the single RSSP describing the consensus sec-

ondary structure of the tRNA (Acc.: RF00005). Here, no indels are allowed and the cost

thresholdK increases progressively.

108

4.4 Implementation and computational results

G

U

A

A

A

U

A

U

G
U

G

A

U

C
U U

G

C

U

U

G

A

A

A

U

A

A

A

A

A

U
U

U G C
A

A

G

G

U

A

A

A

A

A
A

AUU

G

U

A

A

G

U

A

G

U

G

C
U

A

U

A

G

U

U

A

U A A U G A G C U U A

G

C

U

A

U U

U

A

G

C

U U U A C U A

G

C

C

A

G

G

A

U

G

G

C

G

A G

U

A

G

C
A G

C

C
C

U

A

C

A

A

U

A

U

C

C

A

G

G

A

A A C C C U U G C U G C U

G

C

G

U

U

A

A
A

G

A

U

U

A
G

G

U

A

G

U

C

U

U

U

A

A

G

A

A U A A G A A A U U C A G G U C C U A A A A A U A A A

>ires1|indels=0|cost=2

UGAWCUKD

........

>ires2|indels=1|cost=4

DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH

((((((........................))))))

>ires3|indels=0|cost=1

VNHUAUUUADNBWUAC

((((....))))....

>ires4|indels=2|cost=3

CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG

(.(((((....((((.....))))..))))).)

>ires5|indels=1|cost=3|deletion=2

BHKHDHDSNBHDRGUNSNSNNNWNN

(((...((((......))))..)))

pt1

pt2

pt3 pt4 pt5

Figure 4.11: Consensus secondary structure of family Cripavirus internal ribosome entry site (Acc.:

RF00458) showing its four characteristic stem-loop substructurespt2, pt3, pt4, and

pt5 and the moderately conserved strandpt1 as drawn byVARNA[128]. The sec-

ondary structure descriptor (SSD) for this family, on the right-hand side, consists of

five RSSPsires1, ires2, ires3, ires4, andires5 describing the strand and stem-loop

substructures.

This time we set (1)K = d varying the values in the interval[0, 7], (2)K = 7 varyingd in the inter-

val [0, 7], and (3)d = 0 varyingK in the interval[0, 7]. We use RSSPQ = (CARGAYSNVNNNND

GCRKYCCHVHRWNRUCYAG,(.(((((....((((.....))))..))))).)) of lengthm = 33

describing a stem-loop substructure of Rfam family Cripavirus internal ribosome entry site (Acc.:

RF00458) [136]. The secondary structure of this family and the substructure originating the pattern

can be visualized in Figure 4.11, where the substructure is denotedpt4. For the results of this ex-

periment, see Figure 4.12 and Tables 4.4, 4.5, and 4.6.LGSlinkAlignis the fastest algorithm with

measured speedup factors overScanAlign(LScanAlign) in the range of160.6 for K = d = 0 to 3.3

for K = d = 7 (17.8 for K = d = 1 to 3.3 for K = d = 7). In a comparison between the two online

algorithms,LScanAlignis faster thanScanAlignup to a cost threshold ofK = 6 and for any value

of K in case no indels are allowed, i.e.d = 0. LESAAlignis only faster than the online algorithms

for up to (K = d) ≤ 5 andK = 7 andd ≤ 3. For higher cost thresholds and allowed indels, its

performance decreases significantly. We explain this behavior with the increased reading depth in

the suffix array implicated byK andd and the reduced number of suffixes sharing a common prefix

that can be skipped.

109

4 Fast approximate search for RNA sequence-structure patterns

T
im

e
 [

m
in

.]

0
1

0
0

2
0

0
3

0
0

4
0

0

T
im

e
 [

m
in

.]

0
1

0
0

2
0

0
3

0
0

4
0

0

T
im

e
 [

m
in

.]

0
5

0
1

0
0

2
0

0

K
=0

 (4
)

d
=0

K
=1

 (7
)

d
=0

K
=2

 (1
0)

d
=0

K
=3

 (1
0)

d
=0

K
=4

 (1
1)

d
=0

K
=5

 (1
1)

d
=0

K
=6

 (5
0)

d
=0

K
=7

 (3
98

)

d
=0

K
=7

 (3
98

)

d
=0

K
=7

 (2
,8

73
)

d
=1

K
=7

 (2
3,

44
0)

d
=2

K
=7

 (1
03

,7
92

)

d
=3

K
=7

 (3
09

,4
64

)

d
=4

K
=7

 (6
88

,6
75

)

d
=5

K
=7

 (1
,4

34
,3

60
)

d
=6

K
=7

 (1
,5

46
,4

39
)

d
=7

K
=d

=0
 (4

)

K
=d

=1
 (2

3)

K
=d

=2
 (7

1)

K
=d

=3
 (1

64
)

K
=d

=4
 (3

54
)

K
=d

=5
 (3

,7
71

)

K
=d

=6
 (8

6,
50

9)

=7
 (1

,5
46

,4
39

)

K
=d

(1) (2)

(3)

ScanAlign
LScanAlign
LESAAlign

LGSlinkAlign

Figure 4.12: Running times needed by the different algorithms to search with a stem-loop pattern

of length 33 inRFAM10.1. In (1) the cost thresholdK and the number of allowed

indelsd increase equally. In (2)K = 7 is constant andd increases from0 to 7. In (3)

d = 0 is constant andK increases from0 to 7. The numbers of resulting matches are

given on the x-axes in brackets.

K = d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

0 4 261.80 14.60 0.56 1.63

1 23 270.43 43.83 3.62 2.46

2 71 282.99 67.87 12.39 6.06

3 164 291.66 124.34 43.19 19.90

4 354 300.93 203.04 125.74 43.01

5 3,771 323.66 256.16 246.60 66.25

6 86,509 326.85 294.44 348.69 83.96

7 1,546,439 339.55 342.66 459.26 104.08

Table 4.4: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlignto search with a stem-loop pattern of length 33 inRFAM10.1. Times are

influenced by the cost thresholdK and the number of allowed indelsd. For a graphical

representation of the measurements, see Figure 4.12(1).

110

4.4 Implementation and computational results

K d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

7 0 398 264.68 211.03 101.11 37.93

7 1 2,873 275.95 240.55 159.24 45.92

7 2 23,440 281.80 262.52 216.26 56.46

7 3 103,792 290.80 278.29 268.33 68.04

7 4 309,464 302.53 295.05 317.23 78.01

7 5 688,675 325.10 313.40 364.49 86.72

7 6 1,434,360 333.96 325.80 409.53 95.51

7 7 1,546,439 339.55 342.66 459.26 104.08

Table 4.5: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlignto search with a stem-loop pattern of length 33 inRFAM10.1. Here, the

cost thresholdK is constant and the number of allowed indelsd increases progressively.

K d #matches ScanAlign LScanAlign LESAAlign LGSlinkAlign

0 0 4 261.80 14.60 0.56 1.63

1 0 7 259.17 31.45 1.78 1.86

2 0 10 256.27 44.37 3.10 2.52

3 0 10 257.19 60.41 6.43 3.57

4 0 11 257.01 90.22 14.52 8.07

5 0 11 257.61 138.30 33.11 18.90

6 0 50 257.50 176.02 63.11 31.45

7 0 398 258.00 202.68 100.82 37.45

Table 4.6: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlignto search with a stem-loop pattern of length 33 inRFAM10.1. Here, indels

are not allowed and the cost thresholdK increases progressively.

111

4 Fast approximate search for RNA sequence-structure patterns

C

G

A

A

C

C

G

C

C

G

G

C

U

U

G

G
G

A

G

A

G

C

C

G

A

A

C

G

G

U

U

C

G A A G A C G

A

U

C

C

G
C

G

A

C

G

G

G

U

U

U

G

G G

A

G

A

G

C

C
U

C

G

G

C

G
C

G

G

G

U

C A A G

C

G

A

U

G

G

A

G

A

A

U

G C

G

C

U

U

C

U

C

A

U

C

G

G A C U G U C G C G G C A G A U G A U G C U C G

>flg1|cost=6|indels=3

BNRRCBCRBVNGYUUGGGAGARCBBNVNGSYHNV

((((.((((((((((....)))))).))))))))

>flg2|cost=4|indels=3

VNSBDBNVNKNBSSYYYGGGAGRRSBNBBNNVVVSNK

(((((.......(((((....)))))......)))))

>flg3|cost=2|indels=1

SCGRUGSMGAWYDCNMDBCUSRUCGS

(((((.(((((.....))))))))))

hp1 hp2 hp3

...

1 76 91 140

Figure 4.13: Consensus secondary structure of family flg-Rhizobiales RNA motif (Acc.: RF01736)

showing its three stem-loop substructureshp1, hp2, and hp3 as drawn by

VARNA[128]. The secondary structure descriptor (SSD) for this family, on the right-

hand side, consists of three RSSPsflg1, flg2, andflg3 derived from the stem-loop

substructures.

Scaling behavior of the online and index-based algorithms

In a third experiment, we investigate how the search time of algorithms ScanAlign, LScanAlign,

LESAAlign, andLGSlinkAlignscales on random subsets ofRFAM10.1 of increasing size. The

searched RSSPsflg1, flg2, andflg3 were derived from the three stem-loop substructures the mem-

bers of family flg-Rhizobiales RNA motif (Acc.: RF01736) [137] fold into. These patterns differ

in length, cost thresholdK and number of allowed indelsd; see Figure 4.13 for their definition,

noting thatK andd are simply denotedcostandindelsin theRaligNAtorRSSP syntax. The results

are shown in Figure 4.14 and Table 4.7.LGSlinkAlignandLESAAlignshow a sublinear scaling

behavior, whereasLScanAlignandScanAlignscale linearly. The fastest algorithm isLGSlinkAlign,

requiring only 11.68 (53.08) minutes to search for all threepatterns in the smallest (full) subset.

The second fastest algorithm isLESAAlign, followed byLScanAlignandScanAlign, which require

32.27 (126.97), 40.47 (321.01), and 98.35 (754.66) minutes, respectively, to search for all the pat-

terns in the smallest (full) subset. This corresponds to a speedup of8.4 to 14.2 of LGSlinkAlign

overScanAlignon the smallest and the full subsets. Comparing the search time for patternflg3 in-

dividually, the speedup ofLGSlinkAlignoverScanAlignranges from 22.6 to 38.8. We also observe

thatScanAlignrequires the longest time to match the longest patternflg2 of lengthm = 37. The

other algorithms profit from the early-stop computation approach to reduce the search time for this

pattern on every database subset.

112

4.4 Implementation and computational results

100 200 300 400 500 600 700 800

0
5

10
15

20
25

LGSlinkAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

0
10

20
30

40
50

60
70

LESAAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

20
40

60
80

10
0

14
0

LScanAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

100 200 300 400 500 600 700 800

50
10

0
15

0
20

0
25

0
30

0

ScanAlign

Database size [MB]

T
im

e
[m

in
.]

flg1
flg2
flg3

Figure 4.14: Scaling behavior of algorithmsLGSlinkAlign, LESAAlign, LScanAlign, andScanAlign

when searching with RSSPsflg1, flg2, andflg3 in subsets ofRFAM10.1 of different

length. For details, see main text.

RFAM10.1 subset ScanAlign LScanAlign LESAAlign LGSlinkAlign

size (MB) flg1 flg2 flg3 flg1 flg2 flg3 flg1 flg2 flg3 flg1 flg2 flg3

98.3 37.42 40.32 20.61 17.42 16.78 6.27 18.17 11.90 2.20 5.86 4.91 0.91

196.7 74.91 81.51 41.21 34.55 33.18 12.29 29.53 19.45 3.46 9.69 8.15 1.44

295.0 111.63 120.53 60.29 51.54 50.20 18.35 38.70 25.09 4.33 13.05 11.01 1.89

393.4 146.50 155.24 78.69 68.93 67.10 24.92 45.46 30.13 5.21 16.07 13.57 2.31

491.7 179.22 191.24 97.46 87.00 83.32 30.68 52.46 34.78 6.10 19.01 16.05 2.97

590.1 213.99 230.11 117.29 103.18 99.96 37.06 58.87 39.32 6.84 21.59 18.08 3.29

688.4 251.42 269.40 138.52 121.99 117.08 43.04 65.68 43.48 7.50 24.26 20.64 3.74

786.8 287.32 310.06 157.28 137.78 134.40 48.83 71.18 47.52 8.27 26.47 22.56 4.05

Table 4.7: Search times in minutes used to investigate the scaling behavior of algorithmsScanAlign,

LScanAlign, LESAAlign, andLGSlinkAlignon random subsets ofRFAM10.1 of increas-

ing size. See the definition of the searched RSSPsflg1, flg2, andflg3 in Figure 4.13 and

further details of this experiment on the main text.

113

4 Fast approximate search for RNA sequence-structure patterns

3 4 5 6 7 8 9 10 11 12

#bases in the loop

T
im

e
[m

in
.]

0
10

20
30

40
50

60

ScanAlign
LScanAlign
LESAAlign
LGSlinkAlign

2 3 4 5 6 7 8 9 10 11

#base pairs in the stem

T
im

e
[m

in
.]

0
20

40
60

80
10

0
12

0

Figure 4.15: Search times for different number of bases in the loop (left-hand side) and base pairs

in the stem (right-hand side) for given RSSPs.

Influence of stem and loop lengths on the search time

When searching a database for matches of a given pattern, ouralgorithms compute the required

DP matrices using recurrences according to two main cases: either a row corresponds to an un-

paired or to a paired base of the pattern. To analyze the influence of the used recurrence on the

search time of each algorithm, we searchRFAM10.1 for artificial stem-loop patterns. Therefore

we vary the number of bases in the loop of patternQ = (NNNACANNN,(((...)))) from 3

to 12 by using As and Cs. Additionally, we vary the number of base pairs in the stem of pattern

Q = (NNACANN,((...))) from 2 to 11 by pairs of Ns. Matching the patterns in these two

experiments means to increase the use of theDP recurrences in Equations (4.7) and (4.8), respec-

tively. The cost threshold and the number of allowed indels are fixed atK = d = 3. Allowed base

pairs are (A, U), (U, A), (C, G), and (G, C). The results are shown in Figure 4.15. We observe that

increasing the number of bases in the loop has little influence and even reduces the running time

of the two fastest algorithmsLGSlinkAlignandLESAAlign. This can be explained by the use of the

early-stop alignment computation scheme in these algorithms. The reduction of the running time

is explained by the fewer matches that need to be processed asthe pattern gets longer and more

specific. For an increasing number of base pairs in the stem,LGSlinkAlign is the least affected

algorithm. We also observe that the linear increase in running time of the basic online algorithm

ScanAlign, caused by an extension of the pattern by one base pair, is similar to the effect of adding

two bases in the loop.

Comparisons between RaligNAtor and RNAMotif in terms of sensitivity and
specificity

RNAMotif [42] is one of the most popular tools for approximate matching of RSSPs supporting the

operations replacement and mispairing (which correspondsto the arc breaking operation defined

114

4.4 Implementation and computational results

above). A number of allowed replacements and mispairings, which we here simply denoteerrors,

can be specified for each part of the structure along with an overall number constraining the entire

structure. However, the arc altering and arc removing operations are not supported. Also, insertions

and deletions are only supported by using regular expression quantifiers. This means that the user

has to know in advance for which positions of the pattern suchoperations can occur.

In this experiment we first analyze the results ofRaligNAtor when searchingRFAM10.1 with

the tRNA (Acc.: RF00005) RSSP shown in Figure 4.9. In particular, we show the importance of

secondary structure information incorporated in the search for homologous sequences by varying

the cost of edit operations on base pairs. Secondly, we compare the results obtained byRaligNAtor

with the results ofRNAMotif version 3.07 when searching with an equivalentRNAMotif pattern.

For the usedRNAMotif descriptor, see Figure 4.16.

For the searches withRaligNAtor, we vary the cost thresholdK and the number of allowed indels

d between 0 and 25 in steps of 5. We use operation costsωd = ωm = ωb = ωa = 1 andωr = 2.

Then we increase the costs of the operations arc breaking, arc altering, and arc removing. More

precisely, we setωd = ωm = 1, ωb = ωa = 2, andωr = 3. The results are shown in Table 4.8.

Unsurprisingly, we observe thatRaligNAtor’s sensitivity increases with increasing values ofK and

d. However, for low costs of the operations on base pairs, its specificity decreases considerably

whenK and d are increased from 20 to 25. For high costs of these operations, RaligNAtor is

sensitive while maintaining a high specificity.

To search withRNAMotif, we vary the number of allowed errors per substructure between 0 and 25

in steps of 5, constraining the total number of errors to thissame number. This means that no indels

are allowed, since this requires many different patterns specifying possible indels only for specific

pattern positions. The results are shown in Table 4.8.RNAMotif is highly specific for the complete

range of allowed indels, but it is not as sensitive asRaligNAtor. Notably, unlike in the search with

RaligNAtor, its sensitivity only marginally increases when the numberof allowed errors varies from

20 to 25, with some decrease of its specificity. Similar results can be obtained withRaligNAtorby

settingd = 0.

RNA family classification by global chaining of RSSP matches

In the next experiment we show the effectiveness of global chaining when searching with two

SSDs built for Rfam families Cripavirus internal ribosome entry site (Acc.: RF00458) and flg-

Rhizobiales RNA motif (Acc.: RF01736) [137]. These two families present only53% and69%

sequence identity, respectively, much below the average of∼80% of the Rfam 10.1 families. This

illustrates the importance of using both sequence and structure information encoded in the SSDs of

this experiment. The SSD of family RF01736 comprises three RSSPs, denoted byflg1, flg2, and

flg3 in Figure 4.13, derived from the three stem-loop substructures the members of this family fold

into. The SSD of family RF00458 comprises five RSSPs, denotedby ires1, ires2, ires3, ires4, and

115

4 Fast approximate search for RNA sequence-structure patterns

RaligNAtor, edit operation costs:ωd = ωm = ωb = ωa = 1, ωr = 2

K = d #TP #FP #FN Sensitivity Specificity Accuracy Precision

0 1 0 1,101,832 0.000 1.000 0.600 1.000

5 10,726 0 1,091,107 0.010 1.000 0.606 1.000

10 146,124 3 955,709 0.133 1.000 0.671 1.000

15 517,984 65 583,849 0.470 1.000 0.822 1.000

20 959,243 164,708 142,590 0.871 0.941 0.921 0.853

25 1,097,783 1,168,140 4,050 0.996 0.702 0.767 0.484

RaligNAtor, edit operation costs:ωd = ωm = 1, ωb = ωa = 2, ωr = 3

K = d #TP #FP #FN Sensitivity Specificity Accuracy Precision

0 1 0 1,101,832 0.000 1.000 0.600 1.000

5 10,427 0 1,091,406 0.009 1.000 0.606 1.000

10 127,865 2 973,968 0.116 1.000 0.662 1.000

15 263,277 8 838,556 0.239 1.000 0.722 1.000

20 669,252 262 432,581 0.607 1.000 0.874 1.000

25 1,034,028 122,285 67,805 0.938 0.956 0.951 0.894

RNAMotif

#Errors #TP #FP #FN Sensitivity Specificity Accuracy Precision

0 1 0 1,101,832 0.000 1.000 0.600 1.000

5 7,289 0 1,094,544 0.007 1.000 0.604 1.000

10 40,669 0 1,061,164 0.037 1.000 0.621 1.000

15 66,451 1 1,035,382 0.060 1.000 0.633 1.000

20 68,236 1 1,033,597 0.062 1.000 0.634 1.000

25 68,492 139 1,033,341 0.062 1.000 0.634 0.998

Table 4.8: Results of the searches inRFAM10.1 for the tRNA (Acc.: RF00005). For the two series

of searches withRaligNAtorusing the operation costs above, the sequence-structure pat-

tern shown in Figure 4.9 is used. For the searches withRNAMotif varying the number

of allowed errors (#Errors), the descriptor shown in Figure4.16 is used. These errors

comprehend replacements and mispairings. #TP, #FP, and #FNstand for number of true

positives, false positives, and false negatives, respectively. Sensitivity is computed as
#TP

#TP+#FN , specificity as #TN
#TN+#FP , accuracy as #TP+#TN

#TP+#FP+#FN+#TN
, and preci-

sion as #TP
#TP+#FP

. For additional details, see text above.

116

4.4 Implementation and computational results

parms

 wc += gu;

descr

 h5(seq="^GSSVVYR$")

 ss(seq="^UR$")

 h5(seq="^GYYY$")

 ss(seq="^ARYUGGUUA$")

 h3(seq="^RMRC$")

 ss(seq="^R$")

 h5(seq="^YYDSV$")

 ss(seq="^YUBHHAM$")

 h3(seq="^BCHRD$")

 ss(seq="^WRRUY$")

 h5(seq="^RYRGG$")

 ss(seq="^UUCRAWU$")

 h3(seq="^CCYDY$")

 h3(seq="^HNBBNSY$")

 ss(seq="^R$")

Figure 4.16:RNAMotif descriptor without errors for the tRNA.

ires5 in Figure 4.11, where the last four RSSPs describe the stem-loop substructures the members

of this family fold into.ires1 describes a moderately conserved strand occurring in thesemembers.

Observe also in Figures 4.13 and 4.11 the cost thresholdK and allowed number of indelsd used

per pattern, remembering that these are denotedcostandindelsin theRaligNAtorRSSP syntax.

Searching with the SSD of family RF00458 inRFAM10.1 delivers16,033,351 matches forires1,

8,950,417 for ires2, 1,052 for ires3, 112 for ires4, and1,222,639 for ires5. From these matches,

RaligNAtorcomputes high-scoring chains of matches, eliminating spurious matches and resulting

in exactly17 chains. Each chain occurs in one of the 16 sequence members ofthe family in the full

alignment except in sequence AF014388, where two chains with equal score occur. The highest

(lowest) chain score is171 (162). Using ScanAlign, LScanAlign, LESAAlign, andLGSlinkAlign,

the search for all five RSSPs requires688.32, 585.59, 186.88, and92.25 minutes, respectively,

whereas chaining requires13.66 seconds. See Table 4.9 for the time required to match each pattern

using the different algorithms.

The same search is performed using the SSD of family RF01736.It results in4,145 matches for

flg1, 68,024 for flg2, and67 for flg3. Chaining the matches leads to15 chains occurring each in

one of the15 sequence members of the family in the full alignment. The highest (lowest) chain

score is163 (156). UsingScanAlign, LScanAlign, LESAAlign, andLGSlinkAlign, the search for all

three RSSPs requires755.48, 336.69, 133.58, and52.86 minutes, respectively, whereas chaining

requires0.03 seconds. The time required to match each pattern using each algorithm is reported in

Table 4.10.

117

4 Fast approximate search for RNA sequence-structure patterns

RSSP ScanAlign LScanAlign LESAAlign LGSlinkAlign

ires1 13.13 12.85 1.02 2.68

ires2 203.67 356.78 135.03 60.12

ires3 51.21 8.54 0.37 1.61

ires4 281.44 103.52 28.11 14.53

ires5 138.86 103.90 22.35 13.31

Table 4.9: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlignto match the RSSPs that build the SSD for family Cripavirus internal ribo-

some entry site (Acc.: RF00458) inRFAM10.1.

RSSP ScanAlign LScanAlign LESAAlign LGSlinkAlign

flg1 288.21 143.23 74.90 27.03

flg2 310.68 141.73 50.01 22.00

flg3 156.60 51.74 8.67 3.83

Table 4.10: Times in minutes required by algorithmsScanAlign, LScanAlign, LESAAlign, and

LGSlinkAlignto match the RSSPs that build the SSD for family flg-Rhizobiales RNA

motif (Acc.: RF01736) inRFAM10.1.

Comparison with RSEARCH and ERPIN when searching a bacterial genome

We compareRaligNAtor’s performance when searching a bacterial genome using local chaining

with the performance of the well-known toolsRSEARCH[74] andERPIN[73, 41]. Also refer to the

section in Chapter 2 whereRSEARCHandERPINare explained. We search the complete forward

strand of the 5.2 MB genome of Rhodopseudomonas palustris HaA2 (EMBL Acc.: CP000250) for

an occurrence of family RF01736. For the search withRaligNAtor, we reuse the SSD shown in

Figure 4.13 of the previous experiment. To indicate the position of the RNA substructure modeled

by each RSSP within the molecule, we set optionstartposof RSSPsflg1, flg2, andflg3 to 1, 39,

and 92, respectively. For more details about this option, which is used to score local chains, see

Chapter 3 andRaligNAtormanual in Appendix B.3. For the search withRSEARCH, we compute

the consensus sequence from the family’s seed alignment anduse the consensus secondary structure

given by Rfam. For the scoring of the computed alignments, wearbitrarily choose the RIBOSUM85

scoring matrix provided withRSEARCH, where 85 is the percent identity of the sequences used for

the computation of this matrix [74]. For the search withERPIN, we use the structure-annotated

seed alignment of the family preprocessed with programparent2epn.pl. This program, which is

provided withERPIN, transforms paired positions aligned with gaps into unpaired positions, since

the secondary structure profile built byERPINonly supports gaps at unpaired positions (see Chapter

2). Searching withRaligNAtor results in 94 matches forflg1, 763 for flg2, and 5 forflg3. After

searching with each RSSP individually,RaligNAtorreports a single local chain of score 112 at the

correct location of the RNA in the genome. Using algorithmLGSlinkAlign, the total search time is

30 seconds.RSEARCH, which uses a different scoring system, reports hundreds oflocations for the

118

4.4 Implementation and computational results

given structure, with the correct location (with score 13.01) being on rank 217, i.e. there are 216

locations achieving a better score than the correct location. Besides the low specificity compared to

RaligNAtor, it is also orders of magnitudes slower, requiring 32.3 (user time) or 146.8 (real time)

hours of running time. The cause of the disparity between theuser and real times is unclear to us.

ERPINrequires 23.8 hours of running time and reports the single correct location of the RNA in the

genome. We note thatERPINallows to specify which positions of the query alignment arematched

first, so that other positions are only matched if previouslymatched positions achieve a certain score

cutoff (seeERPINmanual [138]). By specifying the positions corresponding to substructureshp1,

hp2, andhp3 shown in Figure 4.13 as initial positions, the running time of ERPINreduces to 10.5

minutes, which is still 21 times slower thanRaligNAtor.

RNA family classification using Structator

Structator (see previous chapter) is an ultra fast tool for RSSP matching. It is the first tool to

integrate algorithms for global and local chaining of RNA pattern matches. However, it has limited

support to approximate matching, lacking support of the sequence-structure edit operations allowed

by RaligNAtor.

Here, we report the number of sequence members obtained byStructatorwhen searchingRFAM10.1

with the SSDs of families RF00458 and RF01736. The SSDs are shown in Figures 4.11 and 4.13.

Despite sharing the same pattern syntax withRaligNAtor, we observe the following differences and

adaptations.

• Structatorcannot search for stem-loop patterns with dangling ends. Therefore, we remove

the dangling end of the RSSPires3 belonging to the SSD of family RF00458.

• As Structatordoes not allow for edit operations, parameterscostandindelshave no effect in

the search. However, a number of allowed mispairings for each pattern can be specified by

the user. We allow for each pattern a number of mispairings equal to the value of parameter

cost.

• Structatorhas lower sensitivity compared toRaligNAtor when the latter searches with al-

lowed costs greater than zero. For this reason, we chain the matches to the single RSSPs

varying the minimum required chain length between 2 and the total number of RSSPs of

each SSD.

The results are shown in Table 4.11. We observe that, in the search with the SSD of family RF00458,

Structatorcannot find all its true sequence members without increasingconsiderably the number of

false positives. In the search with the SSD of family RF01736, only up to 4 true sequence members

can be found.RaligNAtor, in contrast, finds all sequence members of both families andno false

positives as described in our experiment above performing chaining of matches.

119

4 Fast approximate search for RNA sequence-structure patterns

RF00458 RF01736

Min. chain length #TP #FP #FN Min. chain length #TP #FP #FN

2 16 5807 0 2 4 0 11

3 16 14 0 3 1 0 14

4 14 0 2

5 3 0 13

Table 4.11: Results obtained withStructator[104] when searching with the secondary descriptors

of families RF00458 and RF01736 inRFAM10.1. The first column for each family

indicates the minimum required length of a chain to be considered a matching chain.

#TP, #FP, and #FN stand for number of true positives, false positives, and false nega-

tives, respectively. For additional details, see text above.

Importance of structural constraints for RNA family classi fication

To assess the potential of using RSSPs for reliable RNA homology search on a broader scale and

to investigate the effect of using base pairing information, we evaluatedRaligNAtoron 35 RNA

families taken from Rfam 10.1 with different degrees of sequence identity and of different sizes.

See Table 4.12 for more information about the selected families. In our experiment, we compared

(1) RaligNAtor results obtained by using RSSPs derived from Rfam seed alignments with (2) re-

sults obtained for the same RSSPs ignoring base pairing information and (3) results obtained by

blastn[35] searches with the families’ consensus sequence. For each selected family, we automati-

cally compiled an RSSPQ = (P,R) from the family’s seed alignment using the following proce-

dure: at each position of the RSSP’s sequence patternP , we choose the IUPAC wildcard matching

all symbols in the corresponding alignment column. As structure stringR, we use the secondary

structure consensus available in the Rfam seed alignment. From the resulting RSSPs we remove

the maximum prefix and suffix containing neither sequence information (i.e. IUPAC symbol N)

nor base pairing information. To obtain a query sequence forblastn, we compute the consensus

sequence from the family’s seed alignment. Becauseblastndoes not appropriately handle IUPAC

wildcard characters in the query, we choose the most frequent symbol occurring in a column as

representative symbol in the consensus sequence. For theRaligNAtorsearches, we adjust the cost

thresholdK and number of allowed indelsd such that we match the complete family. That is, we

achieve a sensitivity of 100%. The used operation costs areωd = ωm = 1, ωb = ωa = 2, and

ωr = 3. For the Blast searches, we calledblastnwith parameters -m8 -b 250000 -v 250000 and a

very relaxed E-value cutoff of 1000. From the twoRaligNAtorand oneblastnoutputs we count the

number of true positives (#TPs) and false positives (#FPs) and compute ROC curves on the basis

of theRaligNAtorscoreω∗
Q − dist(Q, T) and theblastnbit score. See Table 4.12 and Figure 4.17

for the results of this experiment. A ROC curve with values averaged over all families is shown in

Figure 4.17(1). In addition, we show in Figures 4.17(2) and (3) the results of the ROC analysis for

the families with the lowest and highest degree of sequence identity. For the ROC curve of each

selected family, see Figures 4.18 and 4.19. Clearly, by using base pairing information,RaligNA-

120

4.5 RaligNAtorsoftware package

tor achieves a higher sensitivity with a reduced false positiverate compared to searches ignoring

base pairing (compare columns “RaligNAtor ” and “RaligNAtor (sequence only)” in Table 4.12).

This is in particular evident when searching for families with a low degree of sequence identity.

This can be explained by the small amount of information leftin the RSSP for such a family, once

the structural information is removed. Due to the high variability of bases in the columns of the

multiple alignment of the family, the pattern contains a large number of wildcards. These symbols

alone, without the constraints imposed by the base pairs, lead to unspecific patterns and therefore

to a large number of false positives. We observe that, for families with sequence identity of up to

59%, the area under the curve (AUC) is considerably larger when base pairing information is taken

into account. This difference decreases with increasing sequence identity (compare Figures 4.17

(2) and (3)). Overall, the average AUC value over all families is, with a value of 0.93, still notably

higher when base pairing information is considered compared to 0.89 if base pairing information

is ignored (see Table 4.12). In this experiment,blastn only finds all members of those families

whose sequence identity is at least 85%. This is due to the fact that blastncannot appropriately

handle IUPAC wildcard characters. Hence, by taking the mostfrequent symbol in an alignment

column as consensus symbol, the heterogeneity of less conserved positions in the alignment cannot

be adequately modeled. For theblastnsearches, the average AUC value over all families is only

0.72.

4.5 RaligNAtor software package

RaligNAtor is an open-source software package for fast approximate matching of RNA sequence-

structure patterns (RSSPs). It allows the user to search target RNA or DNA sequences choosing one

of the new online or further accelerated index-based algorithms presented in this work. The index

of the sequence to be searched can be easily constructed withprogramsufconstructdistributed with

RaligNAtor.

Searched RSSPs can describe any (branching, non-crossing)RNA secondary structure; see exam-

ples in Figures 4.1, 4.9, 4.11, and 4.13. Bases composing thesequence information of RSSPs can be

ambiguous IUPAC characters. As part of the search parameters for RSSPs, the user can specify the

cost of each sequence-structure edit operation defined above, the cost threshold of possible matches,

and the number of allowed indels. The RSSPs, along with costsand thresholds per RSSP, are spec-

ified in a simple text file using a syntax that is expressive buteasy to understand as shown in the

mentioned figures. Another possibility is to provide the same costs and thresholds for all searched

patterns as parameters in the command line call toRaligNAtor. To ensure maximal flexibility, the

user can also define the base pairing rules from an arbitrary subset ofA × A as valid pairings in

a separate text file. Searches can be performed on the forwardand reverse strands of the target

sequence. Searching on the reverse strand is implemented byreversal of the RSSP and transforma-

121

4 Fast approximate search for RNA sequence-structure patterns

RaligNAtor RaligNAtor(sequence only) blastn
Family

Acc.
Size

Seq.

ident.
K = d #TP #FP AUC (pAUC) K = d #TP #FP AUC (pAUC) #TP #FP AUC (pAUC)

RF00032 9,900 48% 3 9,900 1,088,131 0.95 (0.17) 3 9,900 2,723,135 0.82 (0.09) 3,000 68 0.29 (0.05)

RF00080 688 52% 33 688 698,942 0.71 (0.08) 19 688 1,279,375 0.60 (0.06) 326 540 0.42 (0.06)

RF02003 176 52% 21 176 1,174,167 0.53 (0.03) 6 176 1,168,093 0.32 (0.00) 28 814 0.11 (0.01)

RF00458 16 53% 20 16 88 0.94 (0.18) 14 16 2,688 0.96 (0.18) 12 1,224 0.73 (0.13)

RF00685 131 55% 18 131 40,952 0.98 (0.19) 7 131 103,276 0.97 (0.19) 88 2,945 0.63 (0.10)

RF00167 1,244 56% 25 1,244 2,514,701 0.58 (0.04) 17 1,244 2,611,256 0.28 (0.00) 660 624 0.52 (0.10)

RF01705 598 56% 26 598 2,704,796 0.49 (0.02) 17 598 2,698,712 0.42 (0.00) 57 60 0.08 (0.01)

RF01852 1,050 56% 22 1,050 1,026,233 0.99 (0.19) 14 1,050 1,488,254 0.94 (0.17) 543 83,268 0.44 (0.06)

RF01734 584 57% 10 584 2,614,228 0.69 (0.05) 5 584 2,668,392 0.46 (0.01) 201 114 0.30 (0.05)

RF00556 201 58% 8 201 69,808 0.97 (0.18) 6 201 1,514,311 0.92 (0.15) 91 1,024 0.44 (0.08)

RF00713 14 58% 27 14 10,349 0.99 (0.19) 18 14 16,477 0.88 (0.16) 13 552 0.92 (0.18)

RF00170 41 59% 13 41 53 0.97 (0.18) 9 41 9,197 0.96 (0.18) 29 176 0.70 (0.14)

RF00706 69 59% 13 69 1 1.00 (0.20) 9 69 12 0.97 (0.19) 66 194 0.95 (0.18)

RF00747 29 59% 20 29 130 0.97 (0.18) 16 29 159,898 0.96 (0.18) 28 236 0.96 (0.19)

RF00778 20 59% 33 20 394,560 0.93 (0.17) 23 20 167,029 0.79 (0.13) 17 390 0.84 (0.16)

RF01065 118 59% 17 118 0 1.00 (0.20) 9 118 0 1.00 (0.20) 70 305 0.59 (0.11)

RF01733 9 63% 9 9 0 1.00 (0.20) 7 9 0 1.00 (0.20) 7 918 0.77 (0.15)

RF00522 415 67% 5 415 1,461 0.99 (0.19) 5 415 32,224 0.99 (0.19) 359 391 0.63 (0.10)

RF01862 15 67% 7 15 0 1.00 (0.20) 5 15 0 1.00 (0.20) 10 82 0.66 (0.13)

RF00104 406 69% 24 406 989,362 0.99 (0.19) 14 406 1,560,674 0.99 (0.19) 237 72 0.45 (0.07)

RF00165 431 69% 9 431 0 1.00 (0.20) 8 431 1 0.99 (0.19) 318 192 0.73 (0.14)

RF01185 108 69% 13 108 24,759 0.99 (0.19) 13 108 24,759 0.99 (0.19) 104 329 0.93 (0.18)

RF01838 77 69% 4 77 0 1.00 (0.20) 4 77 0 1.00 (0.20) 77 172 1.00 (0.20)

RF02031 164 71% 17 164 297,941 0.99 (0.19) 12 164 521,018 0.99 (0.19) 100 218 0.60 (0.11)

RF00052 210 72% 16 210 0 1.00 (0.20) 12 210 0 1.00 (0.20) 207 12,496 0.98 (0.19)

RF00543 103 73% 26 103 0 1.00 (0.20) 19 103 0 1.00 (0.20) 102 110 0.99 (0.19)

RF01744 14 73% 7 14 0 1.00 (0.20) 5 14 0 1.00 (0.20) 11 5,377 0.74 (0.14)

RF01769 149 75% 16 149 0 1.00 (0.20) 10 149 0 1.00 (0.20) 149 150 0.99 (0.19)

RF00110 161 81% 19 161 0 1.00 (0.20) 17 161 0 1.00 (0.20) 160 791 0.99 (0.19)

RF01967 50 84% 37 50 660,130 0.98 (0.19) 26 50 475,242 0.98 (0.19) 48 691 0.95 (0.19)

RF01472 26 85% 6 26 0 1.00 (0.20) 1 26 0 1.00 (0.20) 26 412 1.00 (0.20)

RF01953 46 85% 32 46 0 1.00 (0.20) 22 46 0 1.00 (0.20) 46 772 1.00 (0.20)

RF00372 45 86% 28 45 0 1.00 (0.20) 24 45 0 1.00 (0.20) 45 197 0.99 (0.19)

RF01980 43 86% 39 43 830,971 0.97 (0.19) 28 43 702,352 0.96 (0.19) 43 341 1.00 (0.20)

RF00469 1,366 89% 12 1,366 46,351 0.99 (0.19) 7 1,366 99,045 0.99 (0.19) 1,341 474 0.97 (0.19)

Average 66% 0.93 (0.17) 0.89 (0.16) 0.72 (0.14)

Table 4.12: Results ofRaligNAtorandblastndatabase searches for members of RNA families of

different degrees of sequence identity inRFAM10.1. Searches are performed using

RaligNAtorwith and without base pairing information (column “RaligNAtor(sequence

only)”) and using programblastnwith the families’ seed alignment consensus sequence

as query. Column “size” indicates the number of members in a family. Column “seq.

ident.” gives the families’ sequence identity as listed in the Rfam database. #TP and

#FP stand for number of found true and false positives, respectively. AUC is the area

under the curve of the corresponding ROC curves shown in Figures 4.17, 4.18, and

4.19. Column pAUC gives the partial area under the curve up toa false positive rate of

20%. For additional details, see main text.

122

4.5 RaligNAtorsoftware package

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

S
e

n
si

ti
v

it
y

Average

RaligNAtor

RaligNAtor (seq. only)

blastn

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

S
e

n
si

ti
v

it
y

RF00469 − 89% sequence identity

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

S
e

n
si

ti
v

it
y

RF00032 − 48% sequence identity

(1)

(2) (3)

Figure 4.17: Results of ROC analyses usingRaligNAtorwith and without base pairing information

andblastnfor the 35 selected Rfam families shown in Table 4.12. ROC curves showing

RaligNAtor’s classification performance using (ignoring) base pairing information are

shown in green (blue). Blast performance results are shown in red. Subfigure (1) shows

the performance results averaged over all selected families. (2) and (3) show each the

ROC analysis for the family with the lowest and highest levelof sequence identity.

123

4
F

as
ta

pp
ro

xi
m

at
e

se
ar

ch
fo

r
R

N
A

se
qu

en
ce

-s
tr

uc
tu

re
pa

tte
rn

s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00032

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00080

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF02003

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00458

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00685

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.4
0

.8

False positive rate

S
e

n
si

ti
v

it
y

RF00167

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01705

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01852

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01734

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00556

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00713

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate
S

e
n

si
ti

v
it

y

RF00170

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00706

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00747

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00778

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01065

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01733

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00522

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01862

RaligNAtor

RaligNAtor (seq. only)

blastn

Figure 4.18: Results of ROC analyses usingRaligNAtorwith and without base pairing information andblastn[35] for the Rfam families shown in

Table 4.12. ROC curves showingRaligNAtor’s classification performance using (ignoring) base pairing information are shown in green

(blue). Blast performance results are shown in red. The ROC curves are sorted by increasing level of sequence identity ofthe respective

family, i.e. in the same order each family is listed in Table 4.12. Additional ROC curves are shown in Figure 4.19. For details of this

experiment, see corresponding text.

12
4

4.5
R

a
lig

N
A

to
rsoftw

are
package

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00104

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00165

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01185

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01838

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF02031

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate
S

e
n

si
ti

v
it

y

RF00052

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00543

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01744

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01769

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00110

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01967

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01472

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01953

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00372

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF01980

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False positive rate

S
e

n
si

ti
v

it
y

RF00469

RaligNAtor

RaligNAtor (seq. only)

blastn

Figure 4.19: Additional ROC curves. See description of Figure 4.18 for details.

125

4 Fast approximate search for RNA sequence-structure patterns

tion according to Watson-Crick base pairing. Wobble pairs{(G,U), (U,G)} automatically become

{(C,A), (A,C)}. Due to these transformations, the index is built for one strand only.

For describing a complex RNA with our concept of secondary structure descriptor (SSD), i.e. with

multiple RSSPs, the user specifies all RSSPs in one text file. The order of the RSSPs in the file

will then specify the order of the RSSP matches used to build high-scoring chains. The chain score

directly depends on the score of each match occurring in the chain. This is inversely proportional

to the sequence-structure edit distance of the RSSP and its matching substring in the target se-

quence. Hence, higher scores indicate sequences with a higher conservation which are probably

more closely related to the sought RNA family.

Chaining of matches discards spurious matches not occurring in any chain. An additional filtering

option eliminates matches overlapping another with a higher score for the same RSSP. This is

particularly useful when indels lead to almost identical matches that are only shifted by a few

positions in the target sequence.

The output ofRaligNAtorincludes not only matching positions to single RSSPs and chains, but their

sequence-structure alignment to the matched substrings aswell. Lastly, we remark that our soft-

ware also provides an implementation of the original algorithm of Jianget al. for global sequence-

structure alignment [70], easily applicable by the user.

TheRaligNAtorsoftware package including documentation is available in binary format for differ-

ent operating systems and architectures and as source code under the GNU General Public License

Version 3. Seehttp://www.zbh.uni-hamburg.de/ralignator for details.

4.6 Conclusions

We have presented new index-based and online algorithms forfast approximate matching of RNA

sequence-structure patterns. Our algorithms, all implemented in theRaligNAtor software, stand

out from previous search tools based on motif descriptors bysupporting a full set of edit opera-

tions on single bases and base pairs. See Table 4.13 for an overview of the algorithms. In each

algorithm, the application of a new computing scheme to optimally reuse the entries of the re-

quired dynamic programming matrices and an early-stop technique to avoid the alignment com-

putation of non-matching substrings led to considerable speedups compared to the basic scanning

algorithmScanAlign. Our experiments show superior performance of the index-based algorithms

LGSlinkAlignandLESAAlign, which employ the suffix array data structure and achieve running

time sublinear in the length of the target database. When searching for approximate matches of

biologically relevant patterns on the Rfam database,LGSlinkAlign (LESAAlign) was faster than

ScanAlignandLScanAlignby a factor of up to 560 (1,323) and 17 (29), respectively (seeFigure

4.10). Comparing the two index-based algorithms,LESAAlignwas faster thanLGSlinkAlignwhen

searching with tight cost threshold (i.e. sequence-structure edit distance) and no allowed indels, but

126

http://www.zbh.uni-hamburg.de/ralignator

4.7 Further techniques integrated in theRaligNAtorsoftware for search acceleration

algorithm online indexed
early-stop

acceleration

additional memory

requirements [bytes]

used index tables

suf lcp suf−1 vtab

ScanAlign X 0

LScanAlign X X 0

LESAAlign X X 5n X X

LGSlinkAlign X X 9.125n X X X X

Table 4.13: Overview of the presented algorithms. The two online algorithmsScanAlignand

LScanAlignneed no additional memory except for the searched sequence of length

n. Columnadditional memory requirementsrefers to the additional memory needed by

the used index tables. Recall that tablessuf andsuf−1 require4n bytes each. Tablelcp

can be stored in1n bytes and the bit arrayvtab requires onlyn bits (= 0.125n bytes).

became considerably slower when the number of allowed indels was increased. In this scenario,

LGSlinkAlignwas faster thanLESAAlignby up to 4 times. In regard to the two online algorithms,

LScanAlignwas faster thanScanAlignby up to factor 45. In summary,LGSlinkAlignis the best per-

forming algorithm when searching with diverse thresholds,whereasLScanAlignis a very fast and

space-efficient alternative.RaligNAtoralso allows to use the powerful concept of RNA secondary

descriptors [104], i.e. searching for multiple ordered sequence-structure patterns each describing a

substructure of a larger RNA molecule. For this,RaligNAtorintegrates fast global and local chain-

ing algorithms. We further performed experiments usingRaligNAtor to search for members of

RNA families based on information from the consensus secondary structure. In these experiments,

RaligNAtorshowed a high degree of sensitivity and specificity. Compared to searching with pri-

mary sequence only, the use of secondary structure information considerably improved the search

sensitivity and specificity, in particular for families with a characteristic secondary structure but low

degree of sequence conservation. We remark that, up to now,RaligNAtoruses a relatively simple

scoring scheme. By incorporating more fine grained scoring schemes like RIBOSUM [74] or energy

based scoring [139], we believe that the performance ofRaligNAtorfor RNA homology search can

be further improved. Beyond the algorithmic contributions, we provide with theRaligNAtorsoft-

ware distribution, a robust, well-documented, and easy-to-use software package implementing the

ideas and algorithms presented in this work.

4.7 Further techniques integrated in the RaligNAtor software

for search acceleration

To further accelerate the algorithms in theRaligNAtorsoftware, we apply to the algorithms two

general techniques which can be enabled and disabled by the user. An evaluation of these techniques

is given following their description.

127

4 Fast approximate search for RNA sequence-structure patterns

4.7.1 Sequence-based filter acceleration

Our search algorithms computing the sequence-structure edit distancedist(Q, T) of an RSSPQ

and a substringT of a target sequenceS with Equations 4.7, 4.8, and 4.9 requireO(mm′3) time and

usem′+1DP matrices, recalling thatm andm′ are the length ofQ andT , respectively. Searching

S of lengthn considering up ton substrings takesO(nmm′3) time. In practice, our experiments

show that our index-based algorithmsLGSlinkAlignand LESAAlignare very fast by exploiting

repetitions of substrings and using techniques like the early-stop computation described above.

Nevertheless, we observe that we can further accelerate thesearch by efficiently preprocessing the

search space to eliminate substrings not matchingQ. For this, in a first step we searchS using

only sequence information of the RSSPQ. After this sequence-based filtering step, we searchS

using both sequence and secondary structure information ofQ. We emphasize that, under a proper

selection of the edit operation costs, applying the sequence-based filter does not affect the sensitivity

of the search algorithms.

More precisely, we implement our sequence-based filter by using a cost thresholdK as usual, but

considering all positions of the given RSSPQ as unpaired. This allows to searchS using only

Equation 4.7 and computing for each aligned substringT a singleDP matrix of size ofm ×m′.

This means that we compute sequence edit distances, hence ignoring structural edit operations.

Consequently, this search takes onlyO(nmm′) time instead ofO(nmm′3) if structure information

is considered. After a substringT of S is aligned toQ, only if the obtained sequence edit distance

is belowK then, in a second step, it is realigned toQ to obtain the sequence-structure edit distance

dist(Q, T). Observe that the edit operations arc altering and arc removing involve one and two indel

operations, respectively. Therefore, to prevent the elimination from the search space of possible

matches to the RSSP with structure information, we must set the costωd of an indel as at most the

costωa of an arc altering and as at most two times the costωr of an arc removing. That is,ωd ≤ ωa

and2∗ωd ≤ ωr must hold. This guarantees that the sequence edit distance of each aligned substring

T to Q will not exceeddist(Q, T), since the constraints imposed by the base pairs can only lead

to edit operations increasing the edit distance. To also accelerate the filtering step in the index-

based algorithms, we avoid the computation of matrix entries by using information of thelcp table

and the early-stop computation technique. These techniques are applied as described above to the

single usedDP matrix. As of the writing of this work, the sequence-based filter is only integrated in

algorithmLGSlinkAlign, but it can easily be integrated in all our online and index-based algorithms.

4.7.2 Multithreaded searching

To take advantage of computer systems with multiple CPU cores, all search algorithms imple-

mented in theRaligNAtorsoftware support multithreading (POSIX threads). There are two modes

of parallelism. At first, different patterns are matched using each one thread. Additionally, the

128

4.7 Further techniques integrated in theRaligNAtorsoftware for search acceleration

search space (i.e. the sequence for the online algorithms and the index structure for the index-based

methods) is partitioned, being each part processed by a different thread.

The first mode of parallelism is particularly useful for searching with SSDs composed of multiple

RSSPs, such as the SSDs shown in Figures 4.11 and 4.13. The number of simultaneously executed

threads, which corresponds to the number of simultaneouslysearched patterns, can be specified

by the user or be automatically defined as the number of available CPU cores. Thus, specifying a

number of threads at least as large as the number of given RSSPs means that all RSSPs will be

simultaneously searched for. In the case of a smaller numberof threads, the patterns are put in

a queue and each is searched for as soon as a thread slot becomes available. Ideally, the number

of specified threads should not exceed the number of available CPU cores, since this causes the

threads to compete for CPU time.

In this first mode of parallelism, we observe that a number of threads larger than the number of

patterns does not further accelerate the search. In addition, searching with a single RSSP cannot

be accelerated at all. This is overcome by splitting the search space intok parts and searching

each part with a different thread, wherek can be defined by the user. With this approach, even

searches with a single RSSP can be accelerated by searching different parts of the search space

with the same RSSP. In the online algorithmsScanAlignandLScanAlign, splitting a sequenceS

of lengthn into k parts is trivially done by dividingn by k. Therefore, each partj, 1 ≤ j ≤ k,

has lengthnpart = ⌊n/k⌋ and begins at positionstartj = (j − 1) ∗ npart + 1 of S. It ends at

positionendj = j ∗ npart − 1 if j < k. Let mmin = m − d be the minimum length of a possible

match, recalling thatm is the pattern length andd is the number of allowed indels. For the case

thatj = k, we setendk = n −mmin to ensure that the last positions of the target sequenceS are

also searched. We note that a pattern can match a substring overlapping different partitions, e.g. a

substring beginning at a partitionj of S and ending at partitionj+1. In the index-based algorithms

LGSlinkAlignandLESAAlign, startj andendj refer to positions in the suffix arraysuf instead of

direct positions inS. Each thread in algorithmLESAAligntraverses the suffix array top down in

the interval between given index positionsstartj andendj. In LGSlinkAlign, each thread is also

assigned an index interval to be processed. However, a thread can also process suffixes whose index

in tablesuf belongs to an interval assigned to a different thread due to the use of suffix links. For this

reason, as in the single-threaded algorithm, every processed suffix is marked in tablevtab so that

it is processed only once, but in addition the algorithm mustsynchronizevtab among all threads.

This is done efficiently by reading and writing tovtab as atomic operations.

Both modes of parallelism can naturally be combined to optimize CPU usage. Givenp patterns to

be searched for ink sequences or index partitions,RaligNAtorconveniently queuesp∗k jobs, where

each job is characterized by a pattern and a partition, i.e. arange fromstartj to endj , 1 ≤ j ≤ k.

Given, in addition, a numbert of threads,RaligNAtorexecutes up tot jobs in parallel, starting new

jobs from the queue as threads terminate their search. With this combined approach, searching with

different patterns in parallel reduces the total practicalrunning time of the algorithms and splitting

129

4 Fast approximate search for RNA sequence-structure patterns

the search space better distributes the computation among the CPU cores, further speeding up the

search. In particular, splitting the search space reduces the chance that some CPU cores remain idle

after being used only for a relatively short time by threads searching with more specific or shorter

patterns, while other threads can take longer to terminate by searching with more sensitive or longer

patterns in the entire search space (see influence of patternlength, number of allowed indels, and

cost threshold on the search time in e.g. Figures 4.12 and 4.15). This situation is avoided by the use

of several threads to search with the same pattern in different parts of the search space.

Once all threads terminate, they are joined in the main program thread and found matches can then

be chained. We note that, during the search, the matches can immediately be printed out and/or be

stored in a temporary container for use in chaining, depending on the user choice. When a match is

immediately printed out, the standard output channel (stdout) is blocked to prevent another thread

from also printing a match and making the results unreadable. As a consequence, printing a large

number of matches can slow down the search. Using a containeris in general more sensible, since

each thread has its own container which does not have to be synchronized with other threads during

the search.

4.7.3 Benchmark experiments

We evaluate our two techniques for additional search acceleration described above on a computer

system with four Xeon E5-4640 CPUs running at 2.40 GHz and with 768 GB of main memory.

Each CPU has 8 cores, hence there are 32 cores in total (with disabled CPU threading). In our first

experiment we use only one CPU core and, posteriorly, exploit up to all cores.

Comparison of times to search with and without sequence-bas ed filtering

In an experiment, we compare the time required by algorithmLGSlinkAlignto searchRFAM10.1

with and without our sequence-based filter. We use the eight RSSPs shown in Figures 4.11 and 4.13

describing families Cripavirus internal ribosome entry site (Acc.: RF00458) and flg-Rhizobiales

RNA (Acc.: RF01736). For these patterns, exceptires5, ωd = 1, ωa = 2, andωr = 3. Therefore,

sinceωd ≤ ωa and 2 ∗ ωd ≤ ωr holds, applying the filter does not eliminate from the search

space potential matches to these patterns. Only forires5, ωd = 2. The results of this experiment

are shown in Figure 4.20. For all but one pattern, namelyires2, the filter considerably accelerates

the search. To explain this behavior, note that RSSPs can lose specificity when lacking secondary

structure information, as we show in an experiment above assessing the importance of secondary

structural constraints for RNA family classification. However, even when the filtering step ignores

the secondary structure information of the patterns, most patterns still present some specificity

which allows to remove from the search space a large number ofsubstrings whose sequence edit

distance to the patterns exceed the respective cost threshold. Patternires2, in contrast, is mostly

composed of wildcards N, D, and H, which can match any of the bases inϕ(N) = {A, C, G, U},

130

4.7 Further techniques integrated in theRaligNAtorsoftware for search acceleration

ires1 ires2 ires3 ires4 ires5 flg1 flg2 flg3

T
im

e
[m

in
.]

0
10

20
30

40
50 without filter

with filter

 1.6 1.1

48.848.9

 1.3 1.0

11.7

 3.2

10.8

 5.5

23.6

 7.3

19.7

 6.8

 3.2
 1.2

Figure 4.20: Running times of algorithmLGSlinkAlignto searchRFAM10.1 with and without a

sequence-based filter. The used RSSPs, whose names are shownon the x-axis, can be

seen in Figures 4.11 and 4.13.

ϕ(D) = {A, G, U}, or ϕ(H) = {A, C, U}. In addition, it is searched for using a relatively high

cost threshold of 4. Consequently, this pattern without structure information is too unspecific and

can be poorly exploited the sequence-based filter. While thefilter does not accelerate the search for

this pattern, we note that it only minimally slows it down. For all other patterns, the speedup factor

provided by the filter ranges from 1.3 for patternires3 to 3.6 for patternires4.

Comparison of running times of multithreaded searches

In another experiment, we compare the running times ofRaligNAtor to search with an SSD us-

ing different numbers of threads and partitions of the target databaseRFAM10.1. The used SSD,

composed of five RSSPs, is shown in Figure 4.11. Although multithreaded searching is possible

with all our algorithms, we only report results forLScanAlignandLGSlinkAlign, which are the

fastest online and index-based algorithms in the majority of our experiments described above. For

LGSlinkAlign, we enable sequence-based filtering.

First, we analyze the speedup obtained by (1) searching withone thread per pattern, thus using 5

threads, and (2) maintaining the number of simultaneously allowed threads, but in addition splitting

the search space into two parts. For comparison, we also search using a single thread. The results

are shown in Figure 4.21. UsingLGSlinkAlign(LScanAlign), searching with one thread per pattern

reduced the search time from 59.6 (455.0) minutes to 49.8 (279.3) minutes compared to single-

threaded searching, whereas in addition splitting the search space into two parts reduced the search

time to 27.4 (147.4) minutes. That is,LGSlinkAlign(LScanAlign) searching with 5 simultaneous

threads and no search space partitioning required 83% (61%)of the time to search with a single

thread, whereas by partitioning the search space it took only 45% (32%) of the time. These results

clearly show a benefit of splitting up the search space. Observe in Figure 4.21 that the green area

131

4 Fast approximate search for RNA sequence-structure patterns

1 thread,

1 partition

5 threads,

1 partition

5 threads,

2 partitions

T
im

e
 [

m
in

.]
ires1

ires2

ires3

ires4

ires5

1 thread,

1 partition

5 threads,

1 partition

5 threads,

2 partitions

T
im

e
 [

m
in

.]

0
1

0
0

2
0

0
3

0
0

4
0

0

0
1

0
2

0
3

0
4

0
5

0

LGSlinkAlign LScanAlign

All

Figure 4.21: Running times of algorithmsLGSlinkAlign (left-hand side) andLScanAlign(right-

hand side) to searchRFAM10.1 with the RSSPsires1 to ires5 shown in Figure 4.11.

The fist bar in each graph represents the time to sequentiallysearch with each RSSP

using a single thread. The other two bars indicate the total time to (1) simultaneously

search with one thread per pattern and to (2) search by, in addition, splitting the search

space into two parts.

denoting the time to search for patternires2 closely corresponds to the area denoting the time to

search for all patterns using 5 threads but no partitioning.This indicates that, when the search space

is not split, the total search time largely depends on the time to search for patternires2. This can

occur becauseires2 is searched for by a single thread in the entire search space,even though some

CPU cores may no longer be used by other threads. In contrast,splitting the search space into two

parts allows to search forires2 with two threads, leading to a larger speedup.

In the second part of our experiment we analyze the speedup obtained by equally increasing the

maximum number of simultaneously allowed threads and the number of search space partitions.

Beginning with single-threaded searching, we increase thenumber of threads and partitions to 2

and then increase these in steps of 4 up to 32, which is the total number of CPU cores of the

used computer system. The results are shown in Figure 4.22. Both LGSlinkAlignandLScanAlign

profit from the increasing number of threads and partitions.LGSlinkAlign(LScanAlign) reduces its

single-threaded running time of 61.0 (457.5) minutes to 5.5(21.3) minutes by using 32 threads and

partitions. We observe thatLGSlinkAlignsearching with 32 threads and partitions is 11 times faster

compared to searching with a single thread, whereasLScanAlignis 21 times faster compared to its

single-threaded searching time. This can be explained by some overhead computation occurring in

LGSlinkAlign, where the same thread can process suffixes belonging to different partitions. Never-

theless,LGSlinkAlignis about 4 times faster thanLScanAlignwhen searching with 32 threads and

partitions.

132

4.7 Further techniques integrated in theRaligNAtorsoftware for search acceleration

0 5 10 15 20 25 30

10
20

30
40

50
60

LGSlinkAlign

#threads = #partitions

T
im

e
[m

in
.]

61.0

34.0

17.8

10.1
 7.6 6.8 6.3 5.8 5.7 5.5

0 5 10 15 20 25 30

10
0

20
0

30
0

40
0

LScanAlign

#threads = #partitions

T
im

e
[m

in
.]

457.5

258.5

130.4

 73.9
 49.7

 38.1 32.2 27.2 24.5 21.3

Figure 4.22: Running times of algorithmsLGSlinkAlign (left-hand side) andLScanAlign(right-

hand side) to searchRFAM10.1 with the SSD shown in Figure 4.11. The number of

simultaneously allowed threads and the number of search space partitions used by both

algorithms equally vary between 1 and 32.

133

4 Fast approximate search for RNA sequence-structure patterns

134

5 Conclusions and future work

We have presented novel methods for fast online and index-based matching of RNA sequence-

structure patterns (RSSPs) in databases, all implemented in the well-documented and readily appli-

cableStructatorandRaligNAtorsoftware packages.

With Structator, we have presented the first publicly available tool for bidirectional pattern search

using the affix array index data structure. Employing our search algorithm based on affix arrays,

calledBIDsearch, Structatorwas in our experiments much faster than online algorithms and its

running time scaled sublinearly in the length of the searched sequences. Compared to the widely

known toolsRNAMotif [42] andRNABOB[98], it was faster by up to two orders of magnitude.

In addition, compared to the program of [130] working on compressed index data structures,BID-

searchyielded a speedup of factor 2. Although the speed ofBIDsearchcan decrease when searching

with RSSPs with long unconserved loop regions, it profits from even only a few bases specified in

the loop, which are expected to occur in the majority of biological patterns. Also, our detailed com-

plexity analysis shows that bidirectional search using affix arrays does not improve the worst-case

time complexity compared to online search. However, the unrealistic pattern for which the worst

case occurs consists only of wildcards and no base pairs which reduce the search space. In terms

of space consumption, our implementation of the affix array data structure requires 18n bytes for

a sequence of lengthn. This is a significant reduction compared to the∼45n bytes needed for the

affix tree. We note that, with a contribution from [131],Structatorcan also perform bidirectional

search using only 10n bytes. However, this requires a lazy construction of the affix links needed

for switching the search direction. An additional option inStructator is to search online with our

ONLsearchalgorithm running in linear time.

To search for RNAs with branching secondary structures,Structatoruses our new concept of sec-

ondary structure descriptors (SSDs) and integrates efficient global and local chaining algorithms.

With this concept, we allow an effective description of RNAscontaining branching structures like

multi-loops by their decomposition into sequences of non-branching substructures that can be de-

scribed with RSSPs. Combined with the matching of single RSSPs using the affix array, building

chains of matches of the RSSPs defined in a SSD eliminates spurious matches and constitutes a

very efficient method for RNA homology search.

RaligNAtoris the first tool for RSSP matching that supports a full set of edit operations on both the

primary and secondary structure levels. It includes onlineand index-based algorithms, all which

integrate a new computing scheme to optimally reuse the entries of the required dynamic program-

135

5 Conclusions and future work

ming matrices. By further integrating in our online algorithm LScanAligna technique to avoid the

alignment computation of non-matching substrings, it achieved in our experiments a speedup of

factor 45 compared to our most basic online algorithmScanAlign. Our index-based algorithms

LESAAlignandLGSlinkAlign, which operate on enhanced suffix arrays and scale sublinearly in the

length of the target sequence, were up to 1,323 and 560 times faster thanScanAlign, respectively.

Although not as fast asLESAAlignsearching with tight cost threshold,LGSlinkAlignwas up to 4

times faster thanLESAAlignwhen a larger number of insertions and deletions was allowed. Also,

LGSlinkAlignwas the overall best performing algorithm for a variety of patterns. Concerning the

space requirements,LESAAlignandLGSlinkAlignuse 5n and 9.125n bytes for the enhanced suffix

array, respectively.

As Structator, RaligNAtor allows to use our concept of SSDs by integrating the same efficient

global and local chaining algorithms. Even thoughRaligNAtorcan search with RSSPs describing

branching structures, searching with a SSD composed of a sequence of RSSPs allows to better bal-

ance sensitivity, specificity, and running time. Compared to RNAMotif in homology search,Ralig-

NAtor showed in our experiments higher sensitivity while having similar specificity. Compared to

Structator, RaligNAtorwas also more sensitive, although not as fast. Our experiments also showed

thatRaligNAtor is much more sensitive and specific if it uses information of the primary and sec-

ondary structure of the sought RNA family compared to using only information of the primary

structure, in particular of families with low degree of sequence conservation.

As a further contribution, both our software packages include tools for the efficient construction

and persistent storage of enhanced suffix and affix arrays.

5.1 Future work

Several extensions toStructatorandRaligNAtorare possible. We begin observing that both tools

can rank chains of matches by e.g. chain length to facilitatethe identification of matches that more

closely correspond to the sought RNA. However,Structator cannot rank matches of single pat-

terns, whereasRaligNAtorcan only use a relatively simple scoring scheme for ranking,which is

sequence-structure edit distance. Therefore, a more fine grained scoring scheme would be desir-

able. This could be achieved with the incorporation of the concept of secondary structure profiles,

for example based on log-odds scores as used in theERPIN tool [73, 41]. Alternatively, one could

use position independent scoring matrices such as RIBOSUM [74] or energy based scoring [139].

Another extension toStructatorwould be allowing a sequence edit distance between unpairedposi-

tions of the patterns and matched substrings with the goal ofincreasing the search sensitivity. In this

extension, matching the loop region of stem-loop patterns could be performed with standard dy-

namic programming. Then, pairing positions would be efficiently matched via bidirectional search

using the affix array data structure. We note thatERPINalso uses standard dynamic programming

for matching unpaired positions. However, it does not profitfrom affix arrays for search accelera-

136

5.1 Future work

tion. We also note that, although we would consider this extension an improvement toStructator, it

still would not have the same flexibility asRaligNAtor, since, likeERPIN, it does not support edit

operations on the secondary structure level.

Finally, to further increase the space efficiency ofStructatorandRaligNAtor, compressed index

data structures based e.g. on the FM-index [53] could be applied to both tools. However, such

structures can slow down the search for structural RNA patterns in databases, as we observed in

a comparison betweenStructatorand the implementation of bidirectional wavelet index of [130]

which can only be used to search with a small set of hard-codedpatterns. Unfortunately, the lack of

other suitable implementations of compressed structures hampers further investigation of the effect

on the running time of using such structures in the analysis of biological sequences. For instance, a

general and well-designed implementation of the FM-index is given in [140], but it is not optimized

to handle nucleotide sequences with a small alphabet. Also,while the BWA program [141] uses an

FM-index to process nucleotide sequences, its ad-hoc implementation of this structure cannot be

easily used as a stand-alone software library.

137

5 Conclusions and future work

138

A Structator user’s manual

A.1 Introduction

Structatoris a software package for time efficient matching of RNA sequence-structure patterns in

sequence databases. Its main features are:

• Persistent construction of an index data structure of the target database. The index, called

affix array, only needs to be constructed once and is stored ondisk.

• Flexible alphabet handling, including predefined DNA, RNA,and protein alphabets and the

possibility to use personalized ones.

• Matching on forward and reverse complement strands. Matching in plain FASTA files is also

possible.

• Support of a variety of patterns with ambiguous IUPAC symbols.

• Standard and user-defined base pairing rules.

• Integrated fast global and local chaining algorithms.

• Output of results in different formats, including BED for visualization in the UCSC Genome

Browser.

Structatorconsists of two command line programs:afconstructandafsearch. afconstructallows

the construction of tables that constitute the affix array index data structure of the target database.

afsearchallows fast sequence-structure pattern matching in a precomputed affix array or in the

plain database.

This software is available as open source under the GNU General Public License Version 3.

A.2 Index construction with afconstruct

afconstructconstructs the affix array index data structure of a given database. In summary, the

process of construction includes reading the database in FASTA format, mapping the sequences of

the database to an alphabet, selecting the desired tables ofthe index to be constructed, and saving

the index to files on disk. This process is performed smoothlyby afconstruct, where the user only

139

A Structatoruser’s manual

<file> Load FASTA file
-alph <file> Use alphabet defined in file
-dna Use 4-letter DNA alphabet (default)
-rna Use 4-letter RNA alphabet
-protein Use 20-letter protein alphabet
-a Construct all tables
-suf Construct suf table
-lcp Construct lcp table
-skp Construct skp table
-aflk Construct aflk table
-sufr Construct sufr table
-lcpr Construct lcpr table
-skpr Construct skpr table
-aflkr Construct aflkr table
-s <index> Save constructed structures to given index name
-x Do not save alphabetically transformed sequence
-c Output constructed structures to screen
-t <file> Output constructed structures to text file
-time Display elapsed times

Table A.1: Overview of options of programafconstruct.

needs to set a few options. An overview of all possible options is given in Table A.1 and their

detailed description is given below.

Index construction options

• <file>

<file> is the path and name of the FASTA file for which the is index is tobe constructed.

The file may contain one or more sequences and all are selectedfor index construction. Note

that index-based search in the forward and reverse complement sequences only requires the

construction of a single index.

• -alph <file>

-alph takes as parameter the path and name of the text file specifying an alphabet. The

sequences’ characters are mapped to this alphabet and the sequences are then said to be

alphabetically transformed. The index is constructed for the alphabetically transformed se-

quences. This option also allows alphabet reduction. Each line in the file specifies a class

of characters, which means that all characters of a class arenot distinguished between each

other. Below is an example of an alphabet file.

Aa A

Cc

Gg

140

A.2 Index construction withafconstruct

TtUu U

*BbDdHhNnYyRrSsVvWwKkMmXx

Lines beginning with *, like the last one, imply a class of wildcards (i.e. ambiguous char-

acters). Wildcards in the database indicate unknown or unsequenced regions, hence such

regions cannot be matched against any pattern. Furthermore, characters must be given with-

out spaces in each line. A space and a character imply that thefirst character after the space

is a so-calledclass representative. The class representative is shown in place of the original

character when outputting transformed sequences to file or screen. If no representative is ex-

plicitly specified, the first character of the line is chosen as the representative. In summary, in

the example above we have 5 character classes, whose representatives are A, C, G, U, and *.

As a remark, although ambiguous IUPAC character such as N, R,Y, etc. indicate unknown

regions in the database, they can be used for defining patterns. It is noted here that the user

does not have to create character classes for such characters since they are already recognized

by Structator. More about this is discussed in the section about programafsearch.

• -dna, -rna, -protein

These options allow transforming the input sequences to predefined alphabets. The alphabet

for DNA, RNA, and protein sequences has size 4, 4, and 20, respectively. More precisely, the

characters of each alphabet option are the following:

-dna: A, C, G, T

-rna: A, C, G, U

-protein: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y

Uppercase and lowercase characters are not distinguished.If the sequences contain characters

other than the ones above, one can create a new alphabet in a text file and use it with the option

-alph.

• -a

-a selects all eight tables of the affix array for construction.The tables are listed next.

• -suf, -lcp, -skp, -aflk,

-sufr, -lcpr, -skpr, -aflkr

These options allow the user to individually select the desired tables of the index to be con-

structed. Each option corresponds, as expected, to the table of the same name, that is:

-suf: suffix array

-lcp: longest common prefix

-skp: skip

-aflk: affix link

-sufr: reverse prefix (i.e. suffix array of the reverse sequences)

-lcpr: longest common prefix of the reverse sequences

141

A Structatoruser’s manual

-skpr: skip of the reverse sequences

-aflkr: affix link of the reverse sequences

Note that, because certain tables depend on another for their construction, a table may be con-

structed even if it is not selected. For example, tablesufF will automatically be constructed if

the user only selects tablelcpF. For constructing tableaflkF (aflkR) there are two possibilities.

By selectingaflkF (aflkR) only, tablessufF, lcpF (lcpR), andsufR are automatically selected

as well, and binary search method is used in the constructionof aflkF (aflkR). If the user addi-

tionally selectsskpF (skpR), the construction ofaflkF (aflkR) is sped up by the additional use

of this table. The skip tablesskpF andskpR can be deleted by the user after the construction

of the affix link tablesaflkF andaflkR because they are not required for pattern matching.

• -s <index>

By using the option-s along with an index name, each table that is constructed is stored on

disk in its own file. The name of each file is[index name].[table name]. Additional

files are also stored. One file with extension.alph stores the alphabet, one with extension

.base stores basic information about the sequences such as their length, and one with ex-

tension.des stores the description of each sequence. The sequences and alphabetically

transformed sequences are stored in a file with extension.seq and.tseq, respectively.

Note that all the generated files are binary.

• -x

This option preventsafconstructfrom saving alphabetically transformed sequences to file.

This is useful for saving disk space, but note that the sequences of the index will be trans-

formed each time programafsearch(see next section) is executed.

• -c

-c outputs the constructed tables and the corresponding suffixes (or reverse prefixes) to

screen. For ease of readability, the strings of the reverse prefixes are printed in reverse or-

der. This option is only recommended for small databases, say, with sequence length up to

100.

• -t <file>

-t works like the option-c, but it directs the output to the specified file.

• -time

With this option the time required to construct each selected table is displayed.

Be aware that the generated files may overwrite existing oneswithout warning!

142

A.2 Index construction withafconstruct

Using afconstruct

We show an example for constructing all tables of the affix array, including also tables skp and

skpr, for the Rfam database release 9.1. The database is stored in the fileRfam.fas. Because

the sequences contain characters different from the 4-character RNA alphabet, we use with option

-alph the same alphabet file that is exemplarily described above with 5 character classes. This file

is here calledmyrna.alph. Below is the program call and its screen output.

$./afconstruct /path/to/fasta file/Rfam.fas -alph

/path/to/alphabet file/myrna.alph -a -s /path/to/save/index/Rfam

Fasta file: Rfam.fas

Number of sequences: 1149685

Total length: 179030400

Computing suf... done

Computing lcp... done

Computing skp... done

Computing sufr... done

Computing lcpr... done

Computing skpr... done

Computing aflk with skpr... done

Computing aflkr with skp... done

The program execution produces these files:

$ ls -goh

total 5.0G

-rw-r--r-- 1 688M 2010-01-04 16:28 Rfam.aflk

-rw-r--r-- 1 688M 2010-01-04 16:39 Rfam.aflkr

-rw-r--r-- 1 68 2010-01-04 16:13 Rfam.alph

-rw-r--r-- 1 4.4M 2010-01-04 16:13 Rfam.base

-rw-r--r-- 1 29M 2010-01-04 16:13 Rfam.des

-rw-r--r-- 1 172M 2010-01-04 16:15 Rfam.lcp

-rw-r--r-- 1 116M 2010-01-04 16:15 Rfam.lcpe

-rw-r--r-- 1 116M 2010-01-04 16:17 Rfam.lcper

-rw-r--r-- 1 172M 2010-01-04 16:17 Rfam.lcpr

-rw-r--r-- 1 172M 2010-01-04 16:13 Rfam.seq

143

A Structatoruser’s manual

-rw-r--r-- 1 688M 2010-01-04 16:15 Rfam.skp

-rw-r--r-- 1 688M 2010-01-04 16:17 Rfam.skpr

-rw-r--r-- 1 688M 2010-01-04 16:15 Rfam.suf

-rw-r--r-- 1 688M 2010-01-04 16:17 Rfam.sufr

-rw-r--r-- 1 172M 2010-01-04 16:13 Rfam.tseq

A.3 Searching with afsearch

afsearchis the program for matching RNA sequence-structure patterns in a precomputed index or

directly in a plain FASTA file. In case an index is used, matching patterns containing no base pairs

and no ambiguous IUPAC characters requires only the precomputation of thesufF table, otherwise

tablessufF andsufR, lcpF and lcpR, andaflkF andaflkR are required. An overview of the options

of afsearchis given in Table A.2 and are explained in more detail below.

Pattern search options

• <data>

<data> is the path and target FASTA file or the path and prefix name of the files (i.e. file

name without extension) storing an index. Remember to map the desired tables in case the

target is an index.

• -alph

-alph takes as parameter the path and name of the text file specifying an alphabet. See the

full description of alphabet files above on the section aboutafconstruct. Note that this option

is only effective if the target data is a FASTA file. Otherwise, if it is an index, the alphabet

used is obtained from the index.

If the FASTA file or the pattern file (see below option-pat) contains ambiguous IUPAC

characters, e.g. N, R, S, Y, etc., these must be specified in the alphabet file. However, while in

the FASTA file they indicate unknown or unsequenced regions and hence cannot be searched,

these characters can be used to define patterns. It is noted that the use of ambiguous characters

in patterns does not require the user to create the corresponding character classes, e.g. N

denoting A, C, G, or U or R denoting A or G, since all standard IUPAC classes are already

recognized byStructator.

• -dna, -rna, -protein

Alphabet option for the respective kind of sequence data. For more details on the predefined

DNA, RNA, and protein alphabets see the section aboutafconstruct. As with the-alph

option, these are only effective if the target data is a FASTAfile.

144

A.3 Searching withafsearch

<data> Index name or FASTA file
-alph <file> Use alphabet defined by file (option applies only to FASTA file)
-dna Use 4-letter DNA alphabet (default) (option applies only toFASTA file)
-rna Use 4-letter RNA alphabet (option applies only to FASTA file)
-protein Use 20-letter protein alphabet (option applies only to FASTA file)
-pat <file> Search for (structural) patterns
-for Search in the forward sequence (default)
-rev Search in the reverse complement sequence. For searching inthe for-

ward sequence as well, combine it with -for
-comp <file> Load base-pair complementarity rules from file
-a Map all index tables
-suf Map suf table
-lcp Map lcp table
-aflk Map aflk table
-sufr Map sufr table
-lcpr Map lcpr table
-aflkr Map aflkr table
-bed Output matches in BED format
-allm Report all matches of variable length patterns, i.e. not only the longest

ones
-match <k> Report only sequences matching at least k different patterns
-t <file> Write matches to text file instead of to screen
-seqdesc Include sequence description in the results, otherwise tageach pattern

match with the sequence id
-time Display elapsed times
-silent1 Do not output matches
-silent2 Do not output anything

Chaining options:
-global Perform global chaining
-local Perform local chaining
-wf <wf> Apply weight factor> 0.0 to fragments
-maxgap <width> Allow chain gaps with up to the specified width
-minscore <score> Report only chains with at least the specified score
-minlen <length> Report only chains with number of fragments>= length
-top <#> Report only top # scoring chains of each sequence
-chainrep <file> Write chaining report to text file instead of to screen
-show Show chains in the report

Table A.2: Overview of options of programafsearch.

145

A Structatoruser’s manual

• -pat <file>

-pat takes as parameter a text file containing one or multiple sequence-structure patterns.

Each pattern is specified in three consecutive lines. The first line begins with the symbol>

followed by the description of the pattern. Optionally, thedescription may be followed by

pipe symbols| separating these supplemental options:

weight: a weight that is assigned to a chain fragment correspondingto a match of the re-

spective pattern. If no weight is provided, value 1 is assumed by default.

startpos: this option, used for computing the score of local chains, denotes the starting

position of the pattern within the modeled RNA molecule. Alternatively, it can also be used

to denote the expected starting match position of the pattern in the searched sequences, since

this can reflect the distance of the pattern to other patternsmodeling other substructures of

the same RNA. Note that this option must be specified for all ornone of the patterns. If not

specified, the starting position of the patterns are automatically computed in a stacked way,

i.e., startpos of the first pattern in a file is 1 and for other patterns it is thesum of the

length of all patterns defined before it+1.

instance: the instance is the number that defines the allowed order of occurrence of a

chain fragment in a chain of matches. Patterns of equal instance are equivalent w.r.t. the

chaining position. This option must be specified for none or all patterns. If not specified, the

order of occurrence of chain fragments respects the top-bottom order in which the respective

matching pattern is defined in the patterns file. For instance, a chain fragment of a pattern

defined in the beginning of the file must occur at a position prior to a chain fragment of a

pattern defined in the end of the file.

maxstemlength: maximum length (i.e. number of base pairs) of the stem region of the

pattern. The minimum length is derived from the dot-bracketsequence structure. For exam-

ple, if the pattern has structure((((...)))), the minimum stem length is 4 andmax-

stemlengthmust be at least 4. The pattern characters for base pairs occurring in number

above the minimum stem length are assumed to be ambiguous characters N.

maxrightloopextent (alternativelymrlex): number of positions by which to extend

the beginning (from left to right) of the loop region. The extended pattern positions are as-

sumed to be characters N. See the example below for the usage of this option.

maxleftloopextent (alternativelymllex): number of positions by which to extend the

end (from left to right) of the loop region. The extended pattern positions are assumed to be

characters N. See the example below for the usage of this option.

maxmispair: maximum number of base pairs that may not obey the chosen complemen-

tarity rules, say, the Watson-Crick (A, U), (U, A), (C, G), (G, C).

Supplemental options must be provided between two pipe symbols and its keyword, say,

weight, is followed by the equal sign (=) and a value.

The second line of the pattern definition contains the sequence information, i.e., a sequence

of bases possibly containing ambiguous IUPAC characters. It is noted thatStructatorauto-

146

A.3 Searching withafsearch

matically recognizes ambiguous characters and tries to match the corresponding base, e.g. A

or G in place of an R. The third line contains the structure information in dot-bracket notation.

In this notation, unpaired bases are represented by dots. and paired bases are represented by

(and). Note that positions specified by dots are not strictly unpaired, i.e., they may form

a base pair with another position although this is not required. Supported structures are hair-

pins with bulges and/or internal loops and also single strands. Observe that for specifying a

single stranded pattern it is necessary to provide a sequence of dots.

As an example, a patterns file may contain the following text.

>p0|maxleftloopextent=1|maxrightloopextent=1|maxstemlength=6

RNSNGKUNGCNHNSCY

(.((((....)))).)

The pattern above represents a set of patterns, namely:

>p0

RNSNGKUNGCNHNSCY

(.((((....)))).)

>p1

RNSNGKNUNGCNHNSCY

(.((((.....)))).)

>p2

RNSNGKUNGCNNHNSCY

(.((((.....)))).)

>p3

RNSNGKNUNGCNNHNSCY

(.((((......)))).)

>p4

NRNSNGKUNGCNHNSCYN

((.((((....)))).))

>p5

NRNSNGKUNGCNNHNSCYN

((.((((.....)))).))

>p6

NRNSNGKNUNGCNHNSCYN

((.((((.....)))).))

>p7

NRNSNGKNUNGCNNHNSCYN

((.((((......)))).))

147

A Structatoruser’s manual

• -for

Option for searching in the forward sequences. This option is selected by default.

• -rev

Option for searching in the reverse complement sequences. If used in combination with the

option-for, search is performed in both the forward and reverse complement sequences,

otherwise search is only performed in the reverse complement sequences. Observe that search-

ing in reverse complement sequences of a database does not require computing an index for

the reverse complement sequences.afsearchhandles this by automatically computing the

reverse complement of the patterns and by using these patterns for search.

• -comp <file>

The parameter of the option-comp is a file specifying complementary bases. A line with

two bases, given without any spaces or punctuation, impliesthat matches to the patterns can

contain such a base pair. It is not necessary to specify the pairing rule twice. For example, for

pairs (C, G) and (G, C) it suffices to have a lineCG. Below is a sample file.

AU

CG

GA

GU

According to this file, these base pairs are possible: (A, U),(U, A), (C, G), (G, C), (A, G),

(G, A), (U, G), (G, U). Note that if the option-comp is not used, Watson-Crick base pairs

are allowed by default.

• -a

-a maps all six tables of the index (see the next options) to memory. Mapping means that

they are made available toafsearch, but are not immediately loaded into memory. Blocks of

data are only effectively loaded into memory as parts of the tables are read during pattern

matching operations.

• -suf, -lcp, -aflk

-sufr, -lcpr, -aflkr

These options allow the individual selection of the tables that are mapped to memory. Match-

ing single-stranded patterns containing no ambiguous characters requires only tablesufF.

Otherwise, it is additionally mandatory the selection of tables sufR, lcpF, lcpR aflkF, and

aflkR.

• -bed

Option for printing out the matches in BED format. Otherwise, if not used, the matches are

printed out in a format similar to BED, but including the matched substring and its secondary

structure.

148

A.3 Searching withafsearch

• -allm

This option is only effective when matching patterns of variable length. By using it, all

matches of all possible different pattern lengths are reported. Otherwise, if not used and

there are matches embedded in other matches of the same pattern, embedded matches are

ignored. For example, consider a pattern with minimum length 6 and maximum length 10

and an arbitrary sequence. If the pattern matches with length 6 at sequence position 5 and

with length 10 it matches at position 2, then the match at position 5 is ignored because it is

embedded in the match at position 2.

• -match <k>

-match with parameterk neglects sequences and pattern matches occurring in them ifthe

matches are of not of at leastk different patterns.

• -t <file>

-t writes the matches to the specified file instead of to screen. The matches are sorted by

sequence and, within a sequence, by ascending matching position.

• -seqdesc

Option-seqdesc includes the sequences’ description in the list of pattern matches. If this

option is not used, the sequence is identified by a number thatcorresponds to its order of

definition in the database, beginning from 0.

• -time

Option to display the time needed to search for each pattern.

• -silent1

-silent1 avoids the output of matches and chains. Note that also the output to text file by

the use of option-t is neglected.

• -silent2

Option for not outputting anything.

Chaining options

• -global

Option to perform global chaining of matches. It is the default option.

• -local

Option to perform local chaining of matches.

• -wf <wf>

-wf takes as parameter a positive weight factor that is applied to all chain fragments. For

instance, if a chain fragment of a pattern has weight 2, a weight factor of 10 implies that the

chain fragment will have weight 20.

149

A Structatoruser’s manual

• -maxgap <width>

-maxgap takes as parameter the maximum distance (i.e. number of bases) allowed between

chain fragments.

• -minscore <score>

Report only chains with at least the specified score.

• -minlen <len>

Report only chains with at least the specified number of chainfragments.

• -top <#>

Report only top # scoring chains. If this option is not used, all chains are reported.

• -chainrep <file>

-chainrepwrites to the specified file the chaining report, otherwise the chains are written

to screen. Chains are reported in descending order of their chain score.

• -show

Show chain fragments and their coordinates (i.e. start and end matching position and weight)

in the chaining report.

Using afsearch

We useafsearchin this example to search with three patterns derived from the consensus structure

of the Rfam familyOxyS RNAs(Acc.: RF00035). The patterns, shown below, are assigned a weight

of 1 for computing global chains of matches. The patterns arestored in a file calledoxyS.pat.

We search in the index of Rfam release 10, here calledRfam10, which was preconstructed with

afconstruct. The allowed base pairs are (A, U), (U, A), (C, G), (G, C), (G, U), and (U, G), which

are specified in a text file and used with the option-comp. We also setafsearchto report global

chains of matches with at least score 2 by using the option-minscore. The pattern matches and

the chains are written to filesmatches.txt andchains.txt, respectively. The patterns file is

as follows.

>HP1|maxrightloopextent=1|maxleftloopextent=1|maxmispair=6|weight=1

NNNNNNNNNNNNNNNNNNNNNNACCCNUNANNNNNNNNNNNNNNNN

(((((((.((((.((.((..........)).))..)))))))))))

>HP2|maxrightloopextent=5|weight=1

GNNNNNCUCACNN

((((.....))))

>HP3|maxmispair=2|maxrightloopextent=2|weight=1

NNGGANCUNNNNNNNNNNN

150

A.3 Searching withafsearch

(((((((.....)))))))

The command to callafsearchand the screen output are:

$./afsearch /path/to/index/Rfam10 -pat /path/to/patterns file/oxyS.pat

-comp /path/to/comp file/wcgu.comp -a -t matches.txt -minscore 2 -show

-chainrep chains.txt

Number of sequences: 1149685

Total length: 179030400

!Searching for pattern HP1 in the forward sequence(s)... done

!#Matches: 8619

!Searching for pattern HP2 in the forward sequence(s)... done

!#Matches: 1699

!Searching for pattern HP3 in the forward sequence(s)... done

!#Matches: 142219

!#Total matches: 152537

The first 10 lines of the matches file are:

$ head -n 15 matches.txt

![matched substring/structure] [seq. id] [matching pos.] [pattern id]

[weight] [strand]

ACGGAUCUCUUGGUUCUGG 119 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCUGG 122 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCUGG 124 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCUGG 125 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCUGG 126 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCCGG 132 11 2 1 f

(((((((.....)))))))

ACGGAUCUCUUGGUUCUGG 136 11 2 1 f

(((((((.....)))))))

151

A Structatoruser’s manual

Observe that the matches are sorted by ascending sequence id. The id corresponds to the order

of occurrence of the sequence in the database. Below are the first 26 lines of the chaining report

showing 5 chains. There are in total 316 chains with at least score 2.

$ head -n 26 chains.txt

head -n 26 chains.txt

![sequence] [chain score] [chain length] [strand]

>CP000468.1+4477379-4477488 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

>CP000034.1+3532296-3532405 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

>AAJW02000005.1+188036-188145 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

>ABHW01000012.1+10515-10624 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

>AE014073.1+3594803-3594912 3 3 f

0 47 0 46 1

48 65 49 62 1

66 86 90 108 1

GAAACGGAGCGGCACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC GAGUUUCUCAACUC GCGGAUCUCCAGGAUCCGC

The chains are sorted by descending chain score. In this example, 3 is the maximum score possible.

Each chain contains the description of the sequence where itoccurs, the fragments’ coordinates

(i.e. expected or “stacked” start and end matching positions of the fragment, actual start and end

matching positions of the fragment, and fragment weight), and the matching substring of the frag-

ments.

152

B RaligNAtor user’s manual

B.1 Introduction

RaligNAtor is a software package for fast approximate matching of RNA sequence-structure pat-

terns. It searches sequence databases for occurrences of user-given patterns annotated with sec-

ondary structure. Its main features are:

• Implementations of new efficient user-selectable online and index-based matching algorithms.

• Matching computation based on a sequence-structure edit distance with a full set of edit

operations on single bases and base pairs.

• Patterns can describe any (branching, non-crossing) RNA secondary structures. Sequence

information can contain ambiguous IUPAC symbols.

• Search in DNA and RNA sequences possible due to flexible alphabet handling.

• Matching on forward and reverse complement strands.

• Customizable base pairing rules.

• Integrated fast algorithms for global and local chaining ofmatches.

• Output of results including matching positions, sequence-structure alignments, scores, etc.

For index-based matching,RaligNAtoruses a data structure based on the suffix array precomputed

from the target sequence database. This precomputation is performed by thesufconstructtool dis-

tributed withRaligNAtor, which is described next.RaligNAtor’s description follows subsequently.

This software is available as open source under the GNU General Public License Version 3.

B.2 Database preprocessing with sufconstruct

sufconstructpreprocesses a sequence database generating an index to be searched withRaligNAtor

using algorithmLESAAlignor LGSlinkAlign. In summary, this procedure consists of reading the

target database in FASTA format, mapping the sequences of the database to an alphabet consisting

e.g. of characters A, C, G, and U, computing the required index structures according to the desired

search algorithm, and saving the structures to files on disk.All this is performed smoothly, where

153

B RaligNAtoruser’s manual

<file> Load FASTA file
-alph <file> Use alphabet defined in file
-dna Use DNA alphabet{A, C, G, T} and IUPAC wildcards (default)
-rna Use RNA alphabet{A, C, G, U} and IUPAC wildcards
-lesa Construct index for LESAAlign (tables suf and lcp)
-lgslink Construct index for LGSlinkAlign and LESAAlign (tables suf, lcp, and suf

ˆ-1)
-s <index> Save constructed structures to given index name
-x Do not save alphabetically transformed sequence
-c Output constructed structures to screen
-t <file> Output constructed structures to text file
-time Display elapsed times

Table B.1: Overview of options of programsufconstruct.

the user only needs to set a few options. An overview of all possible options is given in Table B.1

and their detailed description is given below.

Preprocessing options

• <file>

<file> is the path and name of the FASTA file for which the is index is tobe constructed.

The file may contain one or more sequences and all are selectedfor index construction. Note

that index-based search in the forward and reverse complement sequences only requires the

construction of a single index.

• -alph <file>

-alph takes as parameter the path and name of the text file specifying an alphabet. The se-

quences’ characters are mapped to this alphabet and the sequences are then said to be alpha-

betically transformed. The index is constructed for the alphabetically transformed sequences.

This option also allows for alphabet reduction (see below).Note that the used alphabet will

also be used to map pattern characters when the constructed index is searched withRaligNA-

tor.

Each line in the file specifies a class of characters of the alphabet. These must be ASCII print-

able characters, i.e. they must have character code between32 and 127. A class of characters

can be of three types:

– Non-matching characters of the target sequence:specifies characters that can occur in

the target sequence butcannotmatch any pattern character. This is useful for cases

in which stretches of the target sequence are unknown, commonly represented by se-

quences of Ns. There can be only one such character class, specified in one line begin-

154

B.2 Database preprocessing withsufconstruct

ning with symbol!. We emphasize that this class does not do any transformationof

pattern characters. E.g.

!BbNnRrYySsWwKkMmDdHhVv

All characters used in this example that occur in the target sequence cause mismatches

to any pattern character. However, these characters can be used with a different behavior

in the pattern; see the following characters classes.

– Matching characters:a set of characters, whose members are not distinguished between

each other, mapping pattern characters to match the same setof characters in the tar-

get sequence. In other words, characters (of both the pattern and the target sequence)

belonging to one such class are transformed to a single symbol. Hence, this character

class can be used for alphabet reduction. Such a character class is specified in one line

with a simple list of the member characters. E.g.

Aa

The class above indicates thatA anda are not distinguished between each other. An-

other didactic example is

AaM

This class allowsM to be used in the pattern, even if it belongs tonon-matching char-

acters of the target sequence. M will be able to matchAs andas of the target sequence,

but it will not matchMs (if in the target sequenceM is a non-matching character). We

observe that, in the alignments reported byRaligNAtor, an alignment column of two

matching characters of the same class is marked with symbol|, e.g. an alignment ofA

with a.

– Wildcards of the patterns:a class of this type specifies a special pattern symbol that

can be used to match characters belonging to differentmatching characterclasses. A

typical application is to specify a character e.g.R to matchAs andGs in the target

sequence, whereA andG belong to two differentmatching characterclasses. Such a

class is specified in one line beginning with a*. E.g.

*RAG

This class defines a wildcard symbolR, i.e. the first symbol after*, to matchAs andGs

in the target sequence. In addition, it will match every character belonging to the classes

to whichA andG belong, for instanceas andgs. Attention: make sure that all characters

belonging to this class, exceptR, also belong to amatching characterclass. Otherwise,

this wildcard class will not be accepted. We observe that a wildcard character aligned

to amatching characterof its class is annotated with a+ in theRaligNAtoroutput, as

in the following example.

155

B RaligNAtoruser’s manual

Pattern ...((-..))..(((...)))

CCCAA-CCUUAAUCCAUARGA

| ||| |||| ||||| |+||

Target CGCAACCCUU-AUC-AAAGGA

...((...))-.((.....))

Naturally, alignments found withRaligNAtorshow, for each non-gapped position, a single

character of the corresponding character class. Each such character is called aclass represen-

tative. By default, the first character different from! and* of each line is the representative

of the class. Another more explicit way to specify the class representative is to end the class

definition with a whitespace followed by the desired representative character. As an example,

observe that the representative of the class ofnon-matching characters of the target sequence

above isB. To set it toN, define it instead as

!BbNnRrYySsWwKkMmDdHhVv N

Below is an example of a complete alphabet file.

Aa A

Cc C

Gg G

UuTt U

*AG R

*CTU Y

*CA M

*UTG K

*UTA W

*CG S

*CGUT B

*AGUT D

*ACUT H

*ACG V

*ACGUT N

!NnRrYySsWwKkMmBbDdHhVv N

This alphabet file defines fourmatching characterclasses, whose representatives areA, C,

G, andU. The class with representativeU, for example, allows for the use in the pattern of

both uppercase and lowercaseUs andTs, such that any of these characters will match both

uppercase and lowercaseUs andTs in the target sequence. BecauseU is the class representa-

tive, alignments found withRaligNAtorwill showUwherever these characters occur. The file

also defines several wildcards that can be used in the pattern, e.g.R, to match uppercase and

lowercaseAs andGs in the target sequence. Finally, it defines a class ofnon-matching char-

acters of the target sequence. This can contain characters of the previous two classes, e.g.R.

156

B.2 Database preprocessing withsufconstruct

However,Rs occurring in the target sequence will cause mismatches, whereasR used in the

pattern will match uppercase and lowercaseAs andGs in the target sequence. Remember that

– all characters used to define patterns must belong to amatching characterand/orwild-

card class and

– all characters occurring in the target sequence must belongto amatching characteror

non-matching characterclass.

• -dna, -rna

These options allow transforming the input sequences to predefined DNA or RNA alphabets.

The alphabets are equal to the alphabet file shown above. The DNA alphabet only differs from

the RNA alphabet by havingT as class representative instead ofU. If the target sequences

contain other characters, one can create a new alphabet in a text file and use it with the option

-alph.

• -lesa

-lesa selects for construction the structures needed for searching the target database with

algorithmLESAAlign. The structures consist of the suffix arraysuf and the longest common

prefix tablelcp. Note: suf and lcp are also constructed via option-lgslink. Hence, it is

not necessary to select option-lesa if the database was already processed for search with

theLGSlinkAlignalgorithm.

• -lgslink

-lgslink selects for construction the structures needed for searching the target database

with algorithmsLGSlinkAlignandLESAAlign. The structures consist of the suffix arraysuf,

the longest common prefix tablelcp, and the inverse suffix arraysuf−1.

• -s <index>

By using option-s along with an index name, each table that is constructed is stored on disk

in its own file. The name of each file is[index name].[table name]. Additional

files are also stored. One file with extension.alph stores the alphabet, one with exten-

sion.base stores basic information about the sequences such as their length, and one with

extension.des stores the description of each sequence. The sequences and alphabetically

transformed sequences are stored in a file with extension.seq and.tseq, respectively.

Note that all the generated files are binary.

• -x

This option preventssufconstructfrom saving alphabetically transformed sequences to file.

This is useful for saving disk space, but it will requireRaligNAtor to convert the sequences

of the index for each search run.

• -c

-c outputs the constructed tables and the corresponding suffixes to screen. This option is

only recommended for small databases, say, with sequence length up to 100.

157

B RaligNAtoruser’s manual

• -t <file>

-t works like the option-c, but it directs the output to the specified file.

• -time

With this option the elapsed construction time of each tableis displayed.

Be aware that the generated files may overwrite existing oneswithout warning!

Using sufconstruct

We show an example for preprocessing a database for search with algorithmLGSlinkAlign. The da-

tabase, stored in fileRfam.fas, consists of sequences obtained from the full alignments ofRfam

release 10.1. Below is the program call and its screen output.

$./sufconstruct /path/to/fasta file/Rfam.fas -rna -lgslink

-s /path/to/save/index/Rfam

Fasta file: Rfam.fas

Number of sequences: 2756313

Total length: 824991406

Computing suf... done

Computing lcp... done

Computing suf... done

The program execution produces these files:

$ ls -goh

total 11.0G

-rw-r--r-- 1 68 2012-02-24 16:02 Rfam.alph

-rw-r--r-- 1 11M 2012-02-24 16:02 Rfam.base

-rw-r--r-- 1 67M 2012-02-24 16:02 Rfam.des

-rw-r--r-- 1 790M 2012-02-24 16:08 Rfam.lcp

-rw-r--r-- 1 2.1G 2012-02-24 16:08 Rfam.lcpe

-rw-r--r-- 1 790M 2012-02-24 16:02 Rfam.seq

-rw-r--r-- 1 3.1G 2012-02-24 16:08 Rfam.suf

-rw-r--r-- 1 3.1G 2012-02-24 16:08 Rfam.sufinv

-rw-r--r-- 1 790M 2012-02-24 16:02 Rfam.tseq

158

B.3 Searching withRaligNAtor

B.3 Searching with RaligNAtor

RaligNAtorcan search for given sequence-structure patterns in (1) a precomputed index using algo-

rithm LESAAlignor LGSlinkAlignor (2) directly in a plain FASTA file using algorithmScanAlign

or LScanAlign. For computing an index, please refer to programsufconstructabove. All algorithms

deliver the same results, differing for the user only in their running times. For faster index-based

and online searches, we recommend using algorithmsLGSlinkAlignandLScanAlign, respectively.

An overview of the options ofRaligNAtor is given in Table B.2 and are explained in more detail

below.

Search options

• <data>

<data> is the path and target FASTA file or the path and prefix name of the files (i.e.

file name without extension) storing an index.RaligNAtor requires<data> to point to a

FASTA file in case the user wants to perform an online search with algorithmScanAlignor

LScanAlign(see options-scan and-lscan below). For index-based searches with algo-

rithm LESAAlignor LGSlinkAlign, RaligNAtor requires<data> to point to an index (see

options-lesa and-lgslink below).

• -alph

-alph takes as parameter the path and name of the text file specifying an alphabet. See the

full description of alphabet files above in the section aboutsufconstruct.

• -dna, -rna

Alphabet option for the respective kind of sequence. See section aboutsufconstructfor de-

tails.

• -pat <file>

-pat takes as parameter a text file containing one or multiple sequence-structure patterns de-

scribing any (branching, non-crossing) RNA secondary structures. Each pattern is specified

in three consecutive lines. The first line begins with the symbol > followed by the descrip-

tion of the pattern. Optionally, the description may be followed by pipe symbols| separating

these supplemental options:

replacement,deletion,arc-breaking,arc-altering,arc-removing: cost

of the respective edit operation, being the same whether theoperation occurs in the target se-

quence or the pattern. The default cost forarc-removing is 2 and for all others it is 1.

cost: cost (i.e. sequence-structure edit distance) threshold for matches. Its default value is

0.

indels: number of allowed indels. Its default value is the cost threshold divided by the cost

of an indel, i.e.cost/deletion. Note that sincecost bounds the number of indels that

159

B RaligNAtoruser’s manual

<data> Index name or FASTA file
-alph <file> Use alphabet defined by file (option applies only to FASTA file)
-dna Use DNA alphabet{A, C, G, T} and IUPAC wildcards (default)
-rna Use RNA alphabet{A, C, G, U} and IUPAC wildcards
-pat <file> Structural pattern(s) to search for
-for Search in the forward sequence (default)
-rev Search in the reverse complement sequence. For searching inthe forward

sequence as well, combine it with -for
-comp <file> Load base pair complementarity rules from file
-byseq Sort matches by sequence and matching position
-byscore Sort matches of the same pattern by descending score
-byscorea Sort matches of the same pattern by ascending score
-table Print matches in table format
-no-overlaps Filter out low-scoring overlapping matches of the same pattern
-silent Do not output matches
-progress Show progress message for each∼5% processed data

Operation costs and thresholds. These do not override parameters set in the patterns file
-replacement <cost> Cost of a base mismatch (default = 1)
-deletion <cost> Cost of base deletion/insertion (default = 1)
-arc-breaking <cost> Cost of an arc-breaking (default = 1)
-arc-altering <cost> Cost of an arc-altering (default = 1)
-arc-removing <cost> Cost of an arc-removing (default = 2)
-cost <x> Allow edit distance<= x (default = 0)
-indels <x> Allow number of indels<= x (default = cost / cost of one indel)

Index-based algorithmic variants*
-lgslink Uses early-stop acceleration, enhanced suffix array, and generalized suffix

links
-lgslink nof Variant lgslink with disabled sequence-based filter
-lesa Uses early-stop acceleration and enhanced suffix array
*lgslink requires tables suf, lcp, and sufinv. lesa requiresonly suf and lcp.

Online algorithmic variants
-scan Slides a window over the target sequence reusing matrix entries
-lscan Scanning variant with early-stop acceleration
-aligngl Aligns globally reporting the best alignment (no pattern matching)

Chaining options
-global Perform global chaining
-local Perform local chaining
-wf <wf> Apply weight factor> 0.0 to fragments
-maxgap <width> Allow chain gaps with up to the specified width
-minscore <score> Report only chains with at least the specified score
-minlen <length> Report only chains with number of fragments>= length
-top <#> Report only top # scoring chains of each sequence
-allglobal Report for each sequence all global chains satisfying abovecriteria
-show Show chains in the report
-show2 Print complete sequences and omit all other matching information

Table B.2: Overview of options ofRaligNAtor.

160

B.3 Searching withRaligNAtor

can actually occur in a match, ifindels*deletion>cost RaligNAtor will also auto-

matically setindels=cost/deletion.

weight: a weight that is assigned to a chain fragment correspondingto a match of the re-

spective pattern. Its default value is the score associatedto a match; see match score definition

in RaligNAtor’s publication.

startpos: this option, used for computing the score of local chains, denotes the starting

position of the pattern within the modeled RNA molecule. Alternatively, it can also be used

to denote the expected starting match position of the pattern in the searched sequences, since

this can reflect the distance of the pattern to other patternsmodeling other substructures of

the same RNA. Note that this option must be specified for all ornone of the patterns. If not

specified, the starting position of the patterns are automatically computed in a stacked way,

i.e., startpos of the first pattern in a file is 1 and for other patterns it is thesum of the

length of all patterns defined before it+1.

Supplemental options must be provided between two pipe symbols and its keyword, e.g.

weight, is followed by the equal sign (=) and a value. We observe thatthese options can also

be provided in the command line call toRaligNAtor, overriding the respective option value

given in the patterns file.

The second line of the pattern definition contains the sequence information, i.e., a sequence

of bases possibly containing ambiguous IUPAC characters.RaligNAtorautomatically recog-

nizes ambiguous characters and tries to match the corresponding base, e.g. A or G in place

of an R. The third line contains the structure information indot-bracket notation. In this no-

tation, unpaired bases are represented by dots. and paired bases are represented by(and).

Observe that for specifying a completely single stranded pattern it is necessary to provide a

sequence of dots.

As an example, a patterns file may contain the following text.

>tRNA-pat|replacement=2|deletion=3|arc-removing=5

GSSVVYRURGYYYARYUGGUUARMRCRYYDSVYUBHHAMBCHRDWRRUYRYRGGUUCRAWUCCYDYHNBBNSYR

(((((((..((((.........)))).(((((.......))))).....(((((.......)))))))))))).

Another example is a file containing multiple patterns as follows.

>ires1|cost=2|indels=0

UGAWCUKD

........

>ires2|indels=1|cost=4

DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH

((((((........................))))))

161

B RaligNAtoruser’s manual

>ires3|indels=0|cost=1

VNHUAUUUADNBWUAC

((((....))))....

>ires4|indels=2|cost=3

CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG

(.(((((....((((.....))))..))))).)

>ires5|indels=1|cost=3|deletion=2

BHKHDHDSNBHDRGUNSNSNNNWNN

(((...((((......))))..)))

• -for

Option for searching in the forward sequences. This option is selected by default.

• -rev

Option for searching in the reverse complement sequences. If used in combination with the

option-for, search is performed in both the forward and reverse complement sequences,

otherwise search is only performed in the reverse complement sequences. Observe that search-

ing in reverse complement sequences of a database does not require computing an index for

the reverse complement sequences.RaligNAtorhandles this by automatically computing the

reverse complement of the patterns and by using these patterns for search. The patterns will

contain complement characters according to the IUPAC table. This holds for alphabets spec-

ified with option-dna, -rna, or -alph. Characters not belonging to the IUPAC table

cannot be complemented and remain unchanged. Base pairing rules are also automatically

complemented. This means that, given Watson-Crick and wobble pairs, Watson-Crick pairs

remain unchanged but accepted pairs derived from wobble (U,G) and (G, U) pairs automat-

ically become (A, C) and (C, A). Note that (A, C) and (C, A) pairs must not be defined using

option-comp (see below), since these pairs are then allowed when searching the forward

sequences.

• -comp <file>

The parameter of option-comp is a file specifying complementary bases. A line with two

bases, given without any whitespaces or punctuation, implies that matches to the patterns can

contain such a base pair. It is not necessary to specify the pairing rule twice. For example, for

pairs (C, G) and (G, C) it suffices to provide a lineCG. Below is a sample file.

AU

CG

GA

GU

162

B.3 Searching withRaligNAtor

According to this file, these base pairs are possible: (A, U),(U, A), (C, G), (G, C), (A, G),

(G, A), (U, G), (G, U). Note that if the option-comp is not used, Watson-Crick base pairs

are allowed by default.

• -byseq

With this option matches are reported by sequence and matching position, such that matches

at the beginning of a sequence are reported first. Note that with this option matches are not

reported during search as they are found, but only once the search in the entire database is

completed.

• -byscore, -byscorea

With -byscore or -byscorea matches are sorted in descending or ascending order of

their score, respectively. The match score is inversely proportional to the cost associated to

a match; see exact score definition inRaligNAtor’s publication. Note that since the score for

different patterns is not normalized, matches of the same pattern are reported consecutively.

• -table

Option for reporting the matches in a table format, with one match per row.

• -no-overlaps

-no-overlaps filters out low-scoring overlapping matches of the same pattern. More pre-

cisely, if the starting and ending positions of a matched substring overlap with the starting

and ending positions of another matched substring of the same pattern, only the matched

substring with a higher score is reported. In the case of a tie, one of the matches is arbitrarily

filtered out.RaligNAtorchecks several times during search for overlapping matches, hence

avoiding a memory overflow in the case of highly sensitive patterns. Note that this option

used with the different online and index-based search algorithms does not guarantee an iden-

tical output of matches. This can occur due to the different order by which matches are found

and filtered out.

• -silent

-silent disables the output of matches.

• -progress

-progress shows a progress message for each∼5% processed data.

• -replacement,-deletion,-arc-breaking,-arc-altering,-arc-removing

Options taking each a value that specifies the cost of the respective edit operation, with mean-

ing and default value as detailed above for option-pat. A used option holds for all patterns

in a patterns file and overrides the respective value specified in that file. To specify different

operation costs for each searched pattern, see option-pat.

• -cost, -indels

Cost threshold and number of allowed indels for matches. As with the edit operation costs

provided in the command line, the value given via these options holds for all patterns of a

163

B RaligNAtoruser’s manual

patterns file and override the respective value specified in that file. To specify different cost

thresholds and number of allowed indels for each searched pattern, see option-pat above.

• -lgslink,-lesa

Selects one of the index-based algorithmsLGSlinkAlignor LESAAlign. These algorithms

require an index of the target database, which can be generated with thesufconstructtool

above.

Note: since version 1.1 ofRaligNAtor, LGSlinkAlignperforms in a first step sequence-based

filtering with standard dynamic programming considering only edit operations on single

bases, i.e. insertions, deletions, and replacements. In a second step, it considers also edit

operations on base pairs. This filtering can considerably speed up search and affects neither

sensitivity nor specificity, but the following condition must be fulfilled. If the cost of an in-

sertion operation is set to e.g. 2, then the cost of an arc altering (option-arc-altering)

and arc removing (option-arc-removing) must be set to at least 2 and 4, respectively,

since these imply one and two deletions. The user is responsible for this consistency.

• -lgslink nof

Selects algorithmLGSlinkAlignbut does not perform sequence-based filtering.

• -scan, -lscan

Selects one of the online algorithmsScanAlignor LScanAlign. These algorithms operate

directly on the database provided as FASTA file.

• -aligngl

Aligns globally each sequence-structure pattern and each sequence of the database reporting

the best alignment and the respective sequence-structure edit distance.

We remark that matches are reported on the standard output channel (stdout), whereas additional

information such as set costs and thresholds is redirected to the standard error channel (stderr).

Chaining options

The following options allow to chain matches of the different patterns specified in one patterns file.

A chain of matches is a sequence of non-overlapping matches (where each match is then called a

chainfragment) such that the order of the matches in the chain resembles theorder of the respective

patterns in the patterns file.

• -global

Option to perform global chaining of matches.

• -local

Option to perform local chaining of matches.

164

B.3 Searching withRaligNAtor

• -wf <wf>

-wf takes as parameter a positive weight factor that is applied to all chain fragments. For

instance, if a chain fragment of a pattern has score 2, a weight factor of 10 implies that the

chain fragment will have score 20.

• -maxgap <width>

-maxgap takes as parameter the maximum distance (i.e. number of bases) allowed between

chain fragments.

• -minscore <score>

Report only chains with at least the specified score.

• -minlen <len>

Report only chains with at least the specified number of chainfragments.

• -top <#>

Report only top # scoring chains. If this option is not used, all chains are reported.

• -allglobal

Guarantees that all global chains are reported without discarding any chains with the same

score.

• -show

Show chain fragments and their coordinates (i.e. start and end matching position and score)

in the chaining report.

• -show2

Print complete sequences for which at least one chain was found and omit all other match-

ing information. A sequence is only printed once. Sequencesare printed in their order of

occurrence in the database.

We note that chains are reported in descending order of theirchain score.

Using RaligNAtor

As an example, we usedRaligNAtor to search for five patterns derived from the consensus struc-

ture of the Rfam familyCripavirus internal ribosome entry site(Acc.: RF00458). The patterns,

called ires1, ires2, ires3, ires4, and ires5, are shown above in the description of option-pat. Here,

we stored these patterns in a file calledires.pat. The searched database contained sequences

obtained from the full alignments of Rfam 10.1. To search using algorithmLGSlinkAlign, we pre-

processed this database withsufconstructgenerating an index calledRfam. The allowed base pairs

were (A, U), (U, A), (C, G), (G, C), (G, U), and (U, G), which were specified in a text file and used

with the option-comp. We also setRaligNAtorto report global chains of matches with minimum

length 5 by using the option-minlen. Due to the large number of expected matches for single pat-

165

B RaligNAtoruser’s manual

terns, we used option-silent to prevent matches from being printed out but used option-show

to print out the resulting chains.

The command call toRaligNAtorand the screen output are as follows.

$./RaligNAtor/path/to/index/Rfam10 -pat /path/to/patterns file/ires.pat

-comp /path/to/comp file/rna.comp -lgslink -silent -global -minlen 5 -show

!Number of sequences: 2756313

!Total length: 824991406

!Searching for pattern ires1 in the forward sequence(s)...

Cost threshold (edist) = 2

Max. allowed indels = 0

Min./Max. match length = 8 / 8

Max. match score = 8

Costs: Replacement = 1

Deletion = 1

Arc-breaking = 1

Arc-altering = 1

Arc-removing = 2

Time: 160822.0290 ms

Number of matches: 16033351

!Searching for pattern ires2 in the forward sequence(s)...

Cost threshold (edist) = 4

Max. allowed indels = 1

Min./Max. match length = 35 / 37

Max. match score = 48

Costs: Replacement = 1

Deletion = 1

Arc-breaking = 1

Arc-altering = 1

Arc-removing = 2

Time: 3607395.4620 ms

Number of matches: 8950417

!Searching for pattern ires3 in the forward sequence(s)...

Cost threshold (edist) = 1

Max. allowed indels = 0

Min./Max. match length = 16 / 16

Max. match score = 24

Costs: Replacement = 1

Deletion = 1

Arc-breaking = 1

Arc-altering = 1

Arc-removing = 2

Time: 96774.9180 ms

Number of matches: 1052

!Searching for pattern ires4 in the forward sequence(s)...

Cost threshold (edist) = 3

Max. allowed indels = 2

Min./Max. match length = 31 / 35

Max. match score = 53

Costs: Replacement = 1

Deletion = 1

Arc-breaking = 1

Arc-altering = 1

Arc-removing = 2

Time: 871779.0860 ms

Number of matches: 112

166

B.3 Searching withRaligNAtor

!Searching for pattern ires5 in the forward sequence(s)...

Cost threshold (edist) = 3

Max. allowed indels = 1

Min./Max. match length = 24 / 26

Max. match score = 39

Costs: Replacement = 1

Deletion = 2

Arc-breaking = 1

Arc-altering = 1

Arc-removing = 2

Time: 798519.5760 ms

Number of matches: 1222639

Total number of matches: 26207571

!Chaining matches... done

Time: 13660.1450 ms

![sequence] [chain score] [chain length] [strand]

>AB183472.1/62866484 171 5 f

0 7 10 18 8

8 43 19 54 47

44 59 79 95 24

60 92 99 132 53

93 117 147 172 39

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++ ++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||++++++++++

UGAUCUGA UAGAAGUAAGAAAAUUCCUAGUUAUAA-UAUUUUUA AGUUAUUUAGCUUUAC CAGGAUGGGGUGCAGCGUUCCUGCAAUAUCCAG CCUUGUAGUUUUAGUGGACUUUAGG

........ ((((((.....................-..)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

>AB017037.1/62866484 171 5 +

0 7 10 18 8

8 43 19 54 47

44 59 79 95 24

60 92 99 132 53

93 117 147 172 39

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++ ++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||++++++++++

UGAUCUGA UAGAAGUAAGAAAAUUCCUAGUUAUAA-UAUUUUUA AGUUAUUUAGCUUUAC CAGGAUGGGGUGCAGCGUUCCUGCAAUAUCCAG CCUUGUAGUUUUAGUGGACUUUAGG

........ ((((((.....................-..)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

>AF218039.1/60286228 171 5 +

0 7 10 18 8

8 43 19 55 48

44 59 80 96 24

60 92 100 133 53

93 117 149 173 38

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||++++ +++++

UGAUCUUG UUGUAAAUACAAUUUUGAGAGGUUAAUAAAUUACAA AGCUAUUUAGCUUUAC CAGGAUGCCUAGUGGCAGCCCCACAAUAUCCAG UUUUUCAGAUUAGGUAGUC-GAAAA

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((....(((......)))-..)))

>AF014388.1/60786278 170 5 +

0 7 10 18 8

8 43 19 55 48

44 59 80 96 24

60 92 100 133 52

93 117 150 174 38

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| ++ ++++++++++||++++++++++

UGAUCUUG UUCCUUAUACAAUUUUGAGAGGUUAAUAAGAAGGAA AACUAUUUAGUUUUAC CAGGAUGCCUAUUGGCAGCCCCAUAAUAUCCAG UU-AUAUGAUUAGGUUGUCAUUUAG

........ ((((((........................)))))) ((((....)))).... (.(((((.....(((.....)))...))))).) ((-...((((......))))...))

>AF014388.1/60786278 170 5 +

0 7 10 18 8

8 43 19 55 48

44 59 80 96 24

60 92 100 133 52

93 117 149 174 38

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||++++++++++

UGAUCUUG UUCCUUAUACAAUUUUGAGAGGUUAAUAAGAAGGAA AACUAUUUAGUUUUAC CAGGAUGCCUAUUGGCAGCCCCAUAAUAUCCAG CUUAUAUGAUUAGGUUGUCAUUUAG

167

B RaligNAtoruser’s manual

........ ((((((........................)))))) ((((....)))).... (.(((((.....(((.....)))...))))).) ((....((((......))))...))

>AB006531.1/60036204 170 5 +

0 7 10 18 8

8 43 20 56 47

44 59 82 98 24

60 92 102 135 53

93 117 150 175 38

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ ++++++++ ++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||++++++++++

UGAUCUUA AAAAUUAGGUUAAAUUUCGAGGUUAAAAAUAGUUUU GUAUAUUUAUACUUAC CAAGAUGGACCGGAGCAGCCCUCCAAUAUCUAG GCUCAAACAUUAAGUGGUGUUGUGC

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) ((....((((......))))...))

>EU680971.1/184383 169 5 +

0 7 10 18 8

8 43 19 54 47

44 59 80 96 24

60 92 100 133 51

93 117 147 172 39

........ ((((((........................)))))) ((((....)))).... (.(((((....((-((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNN-DGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ ++++++++++++++++++++++ ++++|++++++++ +++||||||++++||| ||+||+ ++++++ +||+++||+++++++||+|| +++++++++++++||++++++++++

UGAUCUUU AUCGGGACAUGCAAAUGCAAGG-ACAAAACUCCGAU GGAUAUUUAUCCUUAC CAGGAU-CAGCUCAGGCAGCCCCGAAAAAUCCAG CUUCGAAGAGAAGGUGCUCUAGAAG

........ ((((((................-.......)))))) ((((....)))).... (.((((-....((.((.....))))...)))).) (((...((((......))))..)))

>AF183905.1/56475848 168 5 +

0 7 10 18 8

8 43 20 55 47

44 59 81 97 24

60 92 101 136 50

93 117 151 176 39

........ ((((((........................)))))) ((((....)))).... (.(((((....(-(((.....)))-)..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN-NDGCRKYCCHV-HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++|+ ++++++ +++||||||++++||| ||+||+++++++ ++||+++||++ +++++||+|| +++++++++++++||++++++++++

UGAUCUUG UGCGGAGGCAAAAUUUGCACAGUAUAAAA-UCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA

........ ((((((.......................-)))))) ((((....)))).... (.((((.....(.(((.....))).)...)))).) (((...((((......))))..)))

>EF517515.1/55125714 168 5 +

0 7 10 18 8

8 43 20 56 47

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ ((((((........................)))))) ((((....)))).... (.(((((....(-(((.....)))-)..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN-NDGCRKYCCHV-HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ ++++++++++++++++++++ ++++++|++++++++ +++||||||++++||| ||+||+++++++ ++||+++||++ +++++||+|| +++++++++++++||++++++++++

UGAUCUUG UGUGGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA

........ ((((((........................)))))) ((((....)))).... (.((((.....(.(((.....))).)...)))).) (((...((((......))))..)))

>DQ288865.1/58026001 168 5 +

0 7 10 18 8

8 43 20 56 48

44 59 81 97 24

60 92 101 134 52

93 117 149 173 36

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| + ++++++++++||++++++++++

UGAACUUG UCUCUCAACAAAAAGCCACCGACAUUAAGAGAGAGA CCCUAUUUAGGGUUAC CAGGAUCUGCAACAGCAUUCCUGUAUCAUCCAG GG-UGAGGAUUGAGUUGACCUCAUC

........ ((((((........................)))))) ((((....)))).... (.((((.....((((.....))))...)))).) ((-...((.(......).))...))

>EF517520.1/55135715 167 5 +

0 7 10 18 8

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ (-(((((........................)))))) ((((....)))).... (.(((((....(-(((.....)))-)..))))).) (((...((((......))))..)))

UGAWCUKD D-NNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN-NDGCRKYCCHV-HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ + +++++++++++++++++++ ++++++|++++++++ +++||||||++++||| ||+||+++++++ ++||+++||++ +++++||+|| +++++++++++++||++++++++++

UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA

........ (.(((((........................)))))) ((((....)))).... (.((((.....(.(((.....))).)...)))).) (((...((((......))))..)))

>EF517519.1/55125714 167 5 +

0 7 10 18 8

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ (-(((((........................)))))) ((((....)))).... (.(((((....(-(((.....)))-)..))))).) (((...((((......))))..)))

UGAWCUKD D-NNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN-NDGCRKYCCHV-HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ + +++++++++++++++++++ ++++++|++++++++ +++||||||++++||| ||+||+++++++ ++||+++||++ +++++||+|| +++++++++++++||++++++++++

168

B.3 Searching withRaligNAtor

UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA

........ (.(((((........................)))))) ((((....)))).... (.((((.....(.(((.....))).)...)))).) (((...((((......))))..)))

>EF517521.1/55135715 167 5 +

0 7 10 18 8

8 43 19 56 46

44 59 82 98 24

60 92 102 137 50

93 117 152 177 39

........ (-(((((........................)))))) ((((....)))).... (.(((((....(-(((.....)))-)..))))).) (((...((((......))))..)))

UGAWCUKD D-NNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNN-NDGCRKYCCHV-HRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ + +++++++++++++++++++ ++++++|++++++++ +++||||||++++||| ||+||+++++++ ++||+++||++ +++++||+|| +++++++++++++||++++++++++

UGAUCUUG UCGCAGAGGCAAAAAUUUGCACAGUAUAAAAUCUGCA ACCUAUUUAGGUUUAC CAAGAUCGGUGGAUAGCAGCCCUAUCAAUAUCUAG UUUAGAAGAUUAGGUAGUCUCUAAA

........ (.(((((........................)))))) ((((....)))).... (.((((.....(.(((.....))).)...)))).) (((...((((......))))..)))

>AF178440.1/59256123 166 5 +

0 7 10 18 8

8 43 31 66 45

44 59 79 95 24

60 92 99 132 52

93 117 148 172 37

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|||+||++ +++++++++++++++ +++++++++++ ++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| ++ ++++++++++||+++++++ ++

UGAUCUUG AUUCUGUACAUAAAAGUCGAAAGUAUU-GCUAUAGU GCCUAUUUAGGCAUAC CAGGAUGGCGCGUUGCAGUCCAACAAGAUCCAG UCCUAUACCUCGAGUCGGGUUU-GG

........ (((.((.....................-..)).))) ((((....)))).... (.((((.....((((.....))))...)))).) ((....((((......))))..-))

>AF536531.1/66416834 165 5 +

0 7 5 13 6

8 43 15 50 46

44 59 75 91 24

60 92 95 128 51

93 117 143 168 38

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

| |+ |++ + +++++++++++++++++++++++++|++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| ++ ++++++++++||++++++++++

UAAUUUGA U-UUAGGUUAUAAUGUUAGGACUAUAAAAAUUAGCU AGUUAUUUAACUUUAC CAAGAUGGCCGUUGGCAGCCCCACGAAAUCUAG CUAUUUUGAUUAGGUGGUCAGAUAG

........ .-((((........................)))).. ((((....)))).... (.((((......(((.....)))....)))).) (((...((((......))))..)))

>AF022937.1/69357121 162 5 +

0 7 3 11 6

8 43 15 50 44

44 59 68 84 24

60 92 88 121 51

93 117 134 158 37

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|| + |++ + ++ + ++++++++++++++++++++ ++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||+++++++ ++

UGUUGUGU U-UGCGCGAUAAAUGCUGACGUGAAAACGUUGCGUA AGCUAUUUAGCUUUAC CAAGACGCCGUCGUGCAGCCCACAAAAGUCUAG GAGCAUACGCUAGGUCGCGUUG-AC

........ (-((((........................)))).) ((((....)))).... (.((((......(((.....)))....)))).) (.....((((......))))..-.)

>EU282007.1/69357121 162 5 +

0 7 3 11 6

8 43 15 50 44

44 59 68 84 24

60 92 88 121 51

93 117 134 158 37

........ ((((((........................)))))) ((((....)))).... (.(((((....((((.....))))..))))).) (((...((((......))))..)))

UGAWCUKD DNNNDNDNHNDMWWDYBVNVDNBWHDWADNNNNNNH VNHUAUUUADNBWUAC CARGAYSNVNNNNDGCRKYCCHVHRWNRUCYAG BHKHDHDSNBHDRGUNSNSNNNWNN

|| + |++ + ++ + ++++++++++++++++++++ ++++++++ +++||||||++++||| ||+||+++++++++||+++||+++++++||+|| +++++++++++++||+++++++ ++

UGUUGUGU U-UGCGCGAUAAAUGCUGACGUGAAAACGUUGCGUA AGCUAUUUAGCUUUAC CAAGACGCCAUCGUGCAGCCCACAAAAGUCUAG GAGCAUACGCUAGGUCGCGUUG-AC

........ (-((((........................)))).) ((((....)))).... (.((((......(((.....)))....)))).) (.....((((......))))..-.)

Total number of chains: 17

Each chain contains the description of the sequence where the chain occurs followed by the chain

score, chain length, and matched strand direction (+ for forward or− for reverse). In addition, it

contains the fragments’ coordinates (i.e. expected or “stacked” start and end matching positions

of the fragment, actual start and end matching positions of the fragment, and fragment score) and

the matching substring of the fragments along with their sequence-structure alignment to the cor-

responding patterns.

169

Bibliography

[1] F. Crick. On protein synthesis. InSymposium of the Society for Experimental Biology,

volume 12, pages 138–163, 1958.

[2] F. Crick. Central dogma of molecular biology.Nature, 227(5258):561–563, 1970.

[3] S. Ohno. So much “junk” in our genome.Evolution of genetic systems. Brookhaven Symp

Biol., 23:366–370, 1972.

[4] L.E. Orgel and F.H.C. Crick. Selfish DNA: the ultimate parasite. Nature, 284(5757):604–

607, 1980.

[5] S. M. Berget, C. Moore, and P. A. Sharp. Spliced segments at the 5’ terminus of adenovirus

2 late mRNA. Proceedings of the National Academy of Sciences USA, 74(8):3171–3175,

1977.

[6] L.T. Chow, J.M. Roberts, J.B. Lewis, and T.R. Broker. A map of cytoplasmic RNA tran-

scripts from lytic adenovirus type 2, determined by electron microscopy of RNA: DNA hy-

brids. Cell, 11(4):819–836, 1977.

[7] The International Human Genome Sequencing Consortium.Initial sequencing and analysis

of the human genome.Nature, 409(6822):860–921, 2001.

[8] B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, C. Gunter, and M. Snyder. An integrated

encyclopedia of DNA elements in the human genome.Nature, 489(7414):57–74, 2012.

[9] M. J. Hangauer, I. W. Vaughn, and M. T. McManus. PervasiveTranscription of the Human

Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs.

PLoS Genet., 9(6):e1003569+, 2013.

[10] K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, and T. R. Cech. Self-

splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence

of Tetrahymena.Cell, 31(1):147–157, 1982.

[11] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, andS. Altman. The RNA moiety of

ribonuclease P is the catalytic subunit of the enzyme.Cell, 35(3):849–857, 1983.

[12] J. A. Doudna and T. R. Cech. The chemical repertoire of natural ribozymes. Nature,

418(6894):222–228, 2002.

[13] W. Gilbert. The RNA world.Nature, 319(6055):618, 1986.

171

Bibliography

[14] D. M. Simon and S. Zimmerly. A diversity of uncharacterized reverse transcriptases in

bacteria.Nucl. Acids Res., 36(22):7219–7229, 2008.

[15] H. M. Temin and S. Mizutani. RNA-dependent DNA Polymerase in Virions of Rous Sarcoma

Virus. Nature, 226(5252):1211–1213, 1970.

[16] D. Baltimore. Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase

in Virions of RNA Tumour Viruses.Nature, 226(5252):1209–1211, 1970.

[17] W. Li, P. Zhang, J. P. Fellers, B. Friebe, and B. S. Gill. Sequence composition, organization,

and evolution of the core Triticeae genome.The Plant Journal, 40(4):500–511, 2004.

[18] R. C. Lee, R. L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes

small RNAs with antisense complementarity to lin-14.Cell, 75(5):843–854, 1993.

[19] A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and

specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,

391(6669):806–811, 1998.

[20] J. Couzin. Breakthrough of the year. Small RNAs make bigsplash. Science,

298(5602):2296–2297, 2002.

[21] F. Calore, F. Lovat, and M. Garofalo. Non-Coding RNAs and Cancer. Int. J. Mol. Sci.,

14(8):17085–17110, 2013.

[22] Y. Barash, J. A. Calarco, W. Gao, Q. Pan, X. Wang, O. Shai,B. J. Blencowe, and B. J. Frey.

Deciphering the splicing code.Nature, 465(7294):53–59, 2012.

[23] J. S. Mattick. The hidden genetic program of complex organisms.Sci. Am., 291(4):60–67,

2004.

[24] J. H. Bergmann and D. L. Spector. Long non-coding RNAs: modulators of nuclear structure

and function.Curr. Opin. Cell Biol., 26:10–18, 2014.

[25] B.J. Tucker and R.R. Breaker. Riboswitches as versatile gene control elements.Curr. Opin.

Struct. Biol., 15(3):342–348, 2005.

[26] M. Hlevnjak, A. A. Polyansky, and B. Zagrovic. Sequencesignatures of direct comple-

mentarity between mRNAs and cognate proteins on multiple levels. Nucl. Acids Res.,

40(18):8874–8882, 2012.

[27] S. Carpenter, D. Aiello, M. K. Atianand, E. P. Ricci, P. Gandhi, L. L. Hall, M. Byron,

B. Monks, M. Henry-Bezy, J. B. Lawrence, L. A. J. ONeill, M. J.Moore, D. R. Caffrey,

and K. A. Fitzgerald. A Long Noncoding RNA Mediates Both Activation and Repression of

Immune Response Genes.Science, 341(6147):789–792, 2013.

[28] E. Loh, E. Kugelberg, A. Tracy, Q. Zhang, B. Gollan, H. Ewles, R. Chalmers, V. Pelicic,

and C. M. Tang. Temperature triggers immune evasion by Neisseria meningitidis.Nature,

0(0):8874–8882, 2013.

172

Bibliography

[29] E. Westhof and P. Auffinger. RNA Tertiary Structure.Encyclopedia of Analytical Chemistry,

pages 5222–5232, 2006.

[30] B. Lewin, J. E. Krebs, E. S. Goldstein, and S. T. Kilpatrick. Genes X. Jones & Bartlett

Learning, 2011.

[31] R. T. Mitsuyasu, T. C. Merigan, A. Carr, J. A. Zack, M. A. Winters, C. Workman, M. Bloch,

J. Lalezari, S. Becker, L. Thornton, B. Akil, H. Khanlou, R. Finlayson, R. McFarlane, D. E.

Smith, R. Garsia, D. Ma, M. Law, J. M. Murray, C. von Kalle, J. A. Ely, S. M. Patino, A. E.

Knop, P. Wong, A. V. Todd, M. Haughton, C. Fuery, J. L. Macpherson, G. P. Symonds, L. A.

Evans, S. M. Pond, and D. A. Cooper. Phase 2 gene therapy trialof an anti-HIV ribozyme

in autologous CD34+ cells.Nature Medicine, 15(3):285–292, 2009.

[32] A. Hüttenhofer and P. Schattner. The principles of guiding by RNA: chimeric RNA-protein

enzymes.Nature Reviews Genetics, 7(6):475–482, 2006.

[33] Y. Wan, M. Kertesz, R. C. Spitale, E. Segal, and H. Y. Chang. Understanding the transcrip-

tome through RNA structure.Nature Reviews Genetics, 12(9):641–655, 2011.

[34] S. W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barquist,E. P. Nawrocki, S. R. Eddy, P. P.

Gardner, and A. Bateman. Rfam 11.0: 10 years of RNA families.Nucl. Acids Res., 2012.

[35] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucl. Acids Res., 25(17):3389–3402, 1997.

[36] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.Pro-

ceedings of the National Academy of Sciences of the United States of America, 85(8):2444–

2448, 1988.

[37] E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Exploring genomic dark matter: A critical

assessment of the performance of homology search methods onnoncoding RNA.Genome

Research, 17(1):117–125, 2007.

[38] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.J. Mol.

Biol., 147(1):195–197, 1981.

[39] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.Biological Sequence Analysis: Proba-

bilistic Models of Proteins and Nucleic Acids. Cambridge University Press, May 1998.

[40] E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-fold faster RNA homology searches.

Bioinformatics, 29(22):2933–2935, 2013.

[41] A. Lambert, M. Legendre, J.F. Fontaine, and D. Gautheret. Computing expectation values

for RNA motifs using discrete convolutions.BMC Bioinformatics, 6:118, 2005.

[42] T. Macke, D. Ecker, R. Gutell, D. Gautheret, D.A. Case, and R. Sampath. RNAMotif – A new

RNA secondary structure definition and discovery algorithm. Nucl. Acids Res., 29(22):4724–

173

Bibliography

4735, 2001.

[43] J. H. Havgaard, E. Torarinsson, and J. Gorodkin. Fast Pairwise Structural RNA Alignments

by Pruning of the Dynamical Programming Matrix.PLoS Comput. Biol., 3(10):e193+, 2007.

[44] S. Will, K. Reiche, I. L. Hofacker, P. F. Stadler, and R. Backofen. Inferring noncoding RNA

families and classes by means of genome-scale structure-based clustering.PLoS Comput.

Biol., 3(4):e65+, 2007.

[45] The International Human Genome Sequencing Consortium. Finishing the euchromatic se-

quence of the human genome.Nature, 431(7011):931–945, 2004.

[46] C. S. Ku and D. H. Roukos. From next-generation sequencing to nanopore sequencing

technology: paving the way to personalized genomic medicine. Expert Rev Med Devices,

10(1):1–6, 2013.

[47] The 1000 Genomes Project Consortium. An integrated mapof genetic variation from 1,092

human genomes.Nature, 491(7422):56–65, 2012.

[48] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and M. Snyder.

The transcriptional landscape of the yeast genome defined byRNA sequencing.Science,

320(5881):1344–1349, 2008.

[49] F. Ozsolak, A. R. Platt, D. R. Jones, J. G. Reifenberger,L. E. Sass, P. McInerney, J. F. Thomp-

son, J. Bowers, M. Jarosz, and P. M. Milos. Direct RNA sequencing. Nature, 461(7265):814–

818, 2009.

[50] K. A. Wetterstrand. DNA Sequencing Costs: Data from theNHGRI Genome Sequencing

Program.http://www.genome.gov/sequencingcosts/, 2013. Accessed Octo-

ber, 2013.

[51] D. Gusfield. Algorithms on strings, trees, and sequences : computer science and computa-

tional biology. Cambridge Univ. Press, January 1997.

[52] U. Manber and E.W. Myers. Suffix arrays: a new method for on-line string searches.SIAM

Journal on Computing, 22(5):935–948, 1993.

[53] P. Ferragina and G. Manzini. Indexing compressed text.Journal of the ACM, 52(4):552–581,

2005.

[54] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz. Fast index based algorithms and

software for matching position specific scoring matrices.BMC Bioinformatics, 7:389, 2006.

[55] A. Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic acid se-

quences: recommendations 1984.Nucl. Acids Res., 13(9):3021–3030, 1985.

[56] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms for Loop Matchings.

SIAM Journal on Applied Mathematics, 35(1):68–82, 1978.

174

http://www.genome.gov/sequencingcosts/

Bibliography

[57] T. Xia, J. Santalucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox, and D. H.

Turner. Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Forma-

tion of RNA Duplexes with Watson-Crick Base Pair.Biochemistry, 37(42):14719–14735,

1998.

[58] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence of

thermodynamic parameters improves prediction of RNA secondary structure.J. Mol. Biol.,

288:911–940, 1999.

[59] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermo-

dynamics and auxiliary information.Nucl. Acids Res., 9(1):133–148, 1981.

[60] M. Zuker, D.H. Mathews, and D.H. Turner. Algorithms andThermodynamics for RNA

Secondary Structure Prediction: A Practical Guide.RNA Biochemistry and Biotechnology,

1999.

[61] J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for

RNA secondary structure.Biopolymers, 29(6-7):1105–1119, 1990.

[62] R. Lorenz, S. H. Bernhart, C. Höner Zu Siederdissen, H.Tafer, C. Flamm, P. F. Stadler, and

I. L. Hofacker. ViennaRNA Package 2.0.Algorithms Mol. Biol., 6(1):26+, 2011.

[63] P. Gardner and R. Giegerich. A comprehensive comparison of comparative RNA structure

prediction approaches.BMC Bioinformatics, 5(140), 2004.

[64] D. Sankoff. Simultaneous solution of the RNA folding, alignment and protosequence prob-

lem. SIAM Journal on Applied Mathematics, 45(5):810–825, 1985.

[65] J. Gorodkin, L. J. Heyer, and G. D. Stormo. Finding the most significant common sequence

and structure motifs in a set of RNA sequences.Nucl. Acids Res., 25(18):3724–3732, 1997.

[66] D. H. Mathews. Predicting a set of minimal free energy RNA secondary structures common

to two sequences.Bioinformatics, 21(10):2246–2253, 2005.

[67] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base pairing probability

matrices.Bioinformatics, 20(14):2222–2227, 2004.

[68] S. Will, M. Siebauer, S. Heyne, J. Engelhardt, P.F. Stadler, K. Reiche, and R. Backofen. Lo-

cARNAscan: incorporating thermodynamic stability in sequence and structure-based RNA

homology search.Algorithms Mol. Biol., 8:14, 2013.

[69] S. Siebert and R. Backofen. MARNA: multiple alignment and consensus structure predic-

tion of RNAs based on sequence structure comparisons.Bioinformatics, 21(16):3352–3359,

2005.

[70] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA structures.J.

Comput. Biol., 9(2):371–388, 2002.

175

Bibliography

[71] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: Anovel method for fast and accurate

multiple sequence alignment.J. Mol. Biol., 302(1):205–217, 2000.

[72] S. Schirmer and R. Giegerich. Forest alignment with affine gaps and anchors, applied in

RNA structure comparison.Theor. Comput. Sci., 483:51–67, 2013.

[73] D. Gautheret and A. Lambert. Direct RNA motif definitionand identification from multiple

sequence alignments using secondary structure profiles.J. Mol. Biol., 313:1003–11, 2001.

[74] R.J. Klein and S.R. Eddy. RSEARCH: finding homologs of single structured RNA se-

quences.BMC Bioinformatics, 4(1):44, 2003.

[75] S. R. Eddy. Profile hidden Markov models.Bioinformatics, 14(9):755–763, 1998.

[76] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting remote protein

homologies.Bioinformatics, 14(10):846–856, 1998.

[77] M. Madera and J. Gough. A comparison of profile hidden Markov model procedures for

remote homology detection.Nucl. Acids Res., 30(19):4321–4328, 2002.

[78] S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models.Nucl. Acids

Res., 22(11):2079–2088, 1994.

[79] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood, and

D. Haussler. The application of stochastic context-free grammars to folding, aligning and

modeling homologous RNA sequences.unpublished, 1994.

[80] Y. Sakakibara, M. Brown, R. C. Underwood, I. S. Mian, andD. Haussler. Stochastic context-

free grammars for modeling RNA. InProceedings of the Twenty-Seventh Hawaii Interna-

tional Conference on System Sciences, volume 5, pages 284–293. IEEE Computer Society

Press, 1994.

[81] N. Chomsky. Three models for the description of language. Information Theory, IRE Trans-

actions on, 2(3):113–124, 1956.

[82] N. Chomsky. On certain formal properties of grammars.Information and Control, 2(2):137–

167, 1959.

[83] S. R. Eddy. A memory-efficient dynamic programming algorithm for optimal alignment of

a sequence to an RNA secondary structure.BMC Bioinformatics, 3(1):18+, 2002.

[84] K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, Mian, and D. Haussler. Dirichlet

mixtures: a method for improved detection of weak but significant protein sequence homol-

ogy. Comput. Appl. Biosci., 12(4):327–345, 1996.

[85] E. P. Nawrocki and S. R. Eddy. Query-Dependent Banding (QDB) for Faster RNA Similarity

Searches.PLoS Comput. Biol., 3(3):e56+, 2007.

176

Bibliography

[86] J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduction to Automata Theory, Languages,

and Computation. Addison Wesley, 2nd edition, 2000.

[87] D. Younger. Recognition and parsing of context-free languages in time n3*.Information

and Control, 10(2):189–208, 1967.

[88] T. Kasami. An efficient recognition and syntax algorithm for context-free algorithms.Tech-

nical Report AFCRL-65-758, 1965.

[89] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal 1.0:inference of RNA alignments.

Bioinformatics, 25(10):1335–1337, 2009.

[90] Z. Weinberg and W. L. Ruzzo. Sequence-based heuristicsfor faster annotation of non-coding

RNA families. Bioinformatics, 22(1):35–39, 2006.

[91] D. L. Kolbe and S. R. Eddy. Fast filtering for RNA homologysearch. Bioinformatics,

27(22):3102–3109, 2011.

[92] J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta. Challenges in homology

search: HMMER3 and convergent evolution of coiled-coil regions. Nucl. Acids Res., 2013.

[93] Infernal User’s Guide.http://infernal.janelia.org/, 2013.

[94] E. P. Nawrocki. Structural RNA Homology Search and Alignment Using Covariance Mod-

els. PhD Thesis: Washington University School of Medicine, 2009.

[95] S. Henikoff and J. G. Henikoff. Amino acid substitutionmatrices from protein blocks.Proc.

Natl. Acad. Sci. USA, 89(22):10915–10919, 1992.

[96] RNAMotif Users’ Manual.http://casegroup.rutgers.edu/casegr-sh-2.5.html,

2001.

[97] D. Gautheret, F. Major, and R. Cedergren. Pattern searching/alignment with RNA primary

and secondary structures: an effective descriptor for tRNA. Comput. Appl. Biosci., 6(4):325–

31, 1990.

[98] RNABOB: a program to search for RNA secondary structuremotifs in sequence databases.

http://selab.janelia.org/software.html.

[99] M. Dsouza, N. Larsen, and R. Overbeek. Searching for patterns in genomic data.Trends

Genet., 13(12):497–8, December 1997.

[100] B. Billoud, M. Kontic, and A. Viari. Palingol: a declarative programming language to de-

scribe nucleic acids’ secondary structures and to scan sequence database.Nucl. Acids Res.,

24(8):1395–403, April 1996.

[101] D. Strothmann. The affix array data structure and its applications to RNA secondary structure

analysis.Theor. Comput. Sci., 389(1-2):278–294, 2007.

177

http://infernal.janelia.org/
http://casegroup.rutgers.edu/casegr-sh-2.5.html
http://selab.janelia.org/software.html

Bibliography

[102] G. Mauri and G. Pavesi. Algorithms for pattern matching and discovery in RNA secondary

structure.Theor. Comput. Sci., 335(1):29–51, 2005.

[103] Moritz G. Maaß. Linear bidirectional on-line construction of affix trees. Algorithmica,

37(1):43–74, 2003.

[104] F. Meyer, S. Kurtz, R. Backofen, S. Will, and M. Beckstette. Structator: fast index-based

search for RNA sequence-structure patterns.BMC Bioinformatics, 12(1):214, 2011.

[105] G. Mauri and G. Pavesi. Pattern discovery in RNA secondary structures using affix trees.

In Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching, volume

2676, pages 278–294. Springer, 2003.

[106] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. InProceedings

of the 13th International Conference on Automata, Langugesand Programming. Springer,

2003.

[107] S. J. Puglisi, W.F. Smyth, and A. Turpin. The performance of linear time suffix sorting

algorithms. InDCC ’05: Proceedings of the Data Compression Conference, pages 358–367,

Washington, DC, USA, 2005. IEEE Computer Society.

[108] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.

Algorithmica, 40:33–50, 2004.

[109] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix

arrays.Journal of Discrete Algorithms, 2:53–86, 2004.

[110] J. Fischer. Wee LCP.Information Processing Letters, 110(8-9):317–320, 2010.

[111] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix

computation in suffix arrays and its applications. InProceedings of the 18th Annual Sympo-

sium on Combinatorial Pattern Matching, pages 181–192, 2001.

[112] M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz. Significant speedup of database

searches with HMMs by search space reduction with PSSM family models.Bioinformatics,

25(24):3251–3258, 2009.

[113] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on

suffix arrays. InProceedings of the 9th International Symposium on String Processing and

Information Retrieval, volume 2476, pages 31–43. Springer, 2002.

[114] N. de Bruijn. A combinatorial problem.Koninklijke Nederlandse Akademie v. Wetenschap-

pen, 49:758764, 1946.

[115] I.L. Hofacker, M. Fekete, and P.F. Stadler. Secondarystructure prediction for aligned RNA

sequences.J. Mol. Biol., 319(5):1059–66, 2002.

[116] B. Knudsen and J. Hein. Pfold: RNA secondary structureprediction using stochastic context-

free grammars.Nucl. Acids Res., 31(13):3423–8, 2003.

178

Bibliography

[117] I.L. Hofacker. RNA consensus structure prediction with RNAalifold. Methods Mol. Biol.,

395:527–544, 2007.

[118] A. Bremges, S. Schirmer, and R. Giegerich. Fine-tuning structural RNA alignments in the

twilight zone.BMC Bioinformatics, 11(222), 2010.

[119] J.H. Havgaard, R.B. Lyngso, G.D. Stormo, and J. Gorodkin. Pairwise local structural align-

ment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21:1815–

1824, 2005.

[120] E. Torarinsson, J.H. Havgaard, and J. Gorodkin. Multiple structural alignment and clustering

of RNA sequences.Bioinformatics, 23:926–932, 2007.

[121] A.O. Harmanci, G. Sharma, and D.H. Mathews. Efficient pairwise RNA structure prediction

using probabilistic alignment constraints.BMC Bioinformatics, 8(130), 2007.

[122] J. Reeder and R. Giegerich. Consensus shapes: an alternative to the Sankoff algorithm for

RNA consensus structure prediction.Bioinformatics, 21(17):3516–23, 2005.

[123] A. Wilm, D.G.G. Higgins, and C. Notredame. R-Coffee: amethod for multiple alignment of

non-coding RNA.Nucl. Acids Res., 36(9), 2008.

[124] P.P. Gardner, J. Daub, J. Tate, B.L. Moore, I.H. Osuch,S. Griffiths-Jones, R.D. Finn, E.P.

Nawrocki, D.L. Kolbe, S.R. Eddy, and A. Bateman. Rfam: Wikipedia, clans and the “deci-

mal” release.Nucl. Acids Res., 2010.

[125] P.P. Gardner, J. Daub, J.G. Tate, E.P. Nawrocji, D.L. Kolbe, S. Lindgreen, A.C. Wilkinson,

R.D. Finn, S. Griffith-Jones, S.R. Eddy, and A. Bateman. Rfam: updates to the RNA families

database.Nucl. Acids Res., 37:D136–D140, 2008.

[126] M.I. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome comparison.

Journal of Discrete Algorithms, 3(2-4):321–341, 2005.

[127] S. Altuvia, A. Zhang, L. Argaman, A. Tiwari, and G. Storz. The Escherichia coli OxyS regu-

latory RNA represses fhlA translation by blocking ribosomebinding. EMBO, 15(20):6069–

75, 1998.

[128] K. Darty, A. Denise, and Y. Ponty. VARNA: Interactive drawing and editing of the RNA

seondary structure.Bioinformatics, 25(15):1974–1975, 2009.

[129] K.S. Pollard, S.R. Salama, N. Lambert, M.A. Lambot, S.Coppens, J.S. Pedersen, S. Katz-

man, B. King, C. Onodera, A. Siepel, A.D. Kern, C. Dehay, H. Igel, M.Jr. Ares, P. Vander-

haeghen, and D. Haussler. An RNA gene expressed during cortical development evolved

rapidly in humans.Nature, 443(7108):167–172, 2006.

[130] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in a string with wavelet trees

and bidirectional matching statistics.Inf. Comput., 213:13–22, 2012.

179

Bibliography

[131] B. Albrecht and V. Heun. Space Efficient Modifications to Structator - A Fast Index-Based

Search Tool for RNA Sequence-Structure Patterns. InExperimental Algorithms, volume

7276 ofLecture Notes in Computer Science, pages 27–38. Springer, 2012.

[132] N. El-Mabrouk, M. Raffinot, J. E. Duchesne, M. Lajoie, and N. Luc. Approximate matching

of structured motifs in DNA sequences.J. Bioinform. Comput. Biol., 3(2):317–342, 2005.

[133] F. Meyer, S. Kurtz, and M. Beckstette. Fast online and index-based algorithms for approxi-

mate search of RNA sequence-structure patterns.BMC Bioinformatics, 14(1):226, 2013.

[134] Esko Ukkonen. Algorithms for approximate string matching. Inf. Control, 64(1-3):100–118,

March 1985.

[135] E. Ukkonen. Online construction of suffix trees.Algorithmica, 14(3):249–260, 1995.

[136] Y. Kanamori and N. Nakashima. A tertiary structure model of the internal ribosome entry

site (IRES) for methionine-independent initiation of translation. RNA, 7(2):266–274, 2001.

[137] Z. Weinberg, J.X. Wang, J. Bogue, J. Yang, K. Corbino, R.H. Moy, and R.R. Breaker. Com-

parative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their

metagenomes.Genome Biology, 11(3):R31, 2010.

[138] ERPIN Documentation - Manual.http://tagc.univ-mrs.fr/erpin/, 2006.

[139] David H. Mathews and Douglas H. Turner. Prediction of RNA secondary structure by free

energy minimization.Current Opinion in Structural Biology, 16(3):270–278, 2006.

[140] S. Gog and M. Petri. Optimized succinct data structures for massive data.Software Practice

and Experience, 44(11):1287–1314, 2014.

[141] H. Li and R. Durbin. Fast and accurate short read alignment with BurrowsWheeler transform.

Bioinformatics, 25(14):1754–1760, 2009.

180

http://tagc.univ-mrs.fr/erpin/

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Doktorarbeit selbst verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Hamburg, den Juni 2014

Unterschrift

	Introduction
	RNAs and their manifold functions
	RNA structure and its importance
	The challenge of RNA homology search
	Thesis structure and contributions

	Existing RNA homology search methods
	Formal preliminaries
	Introduction to existing methods
	Comparative RNA analysis methods
	Comparison of RNAs with unknown secondary structure
	The three plans of comparative RNA analysis
	Faster simultaneous RNA alignment and folding: Sankoff variants
	Comparison of RNAs with known secondary structure

	Secondary structure profiles: ERPIN
	Covariance models
	Descriptor-based search methods
	Concluding remarks on existing RNA homology search methods

	Fast index-based bidirectional search for RNA sequence-structure patterns
	Introduction
	Formal preliminaries
	The affix array data structure
	Searching RNA databases with affix arrays
	Unidirectional traversal of affix arrays
	Bidirectional traversal of affix arrays
	RNA sequence-structure pattern matching using affix arrays
	An example of bidirectional RNA sequence-structure pattern search
	Complexity analysis
	A bidirectional search algorithm supporting variable length RSSPs

	RNA secondary structure descriptors based on multiple ordered RSSPs
	Implementation and computational results
	Structator software package
	Discussion and concluding remarks

	Fast approximate search for RNA sequence-structure patterns
	Introduction
	Approximate matching of RNA sequence-structure patterns
	Online approximate RNA database search for RSSPs: ScanAlign
	Faster online alignment with early-stop computation: LScanAlign
	Index-based search: LESAAlign
	Enhanced index-based search: LGSlinkAlign
	Example: searching for an RSSP with algorithm LGSlinkAlign

	RNA secondary structure descriptors based on multiple ordered RSSPs
	Implementation and computational results
	RaligNAtor software package
	Conclusions
	Further techniques integrated in the RaligNAtor software for search acceleration
	Sequence-based filter acceleration
	Multithreaded searching
	Benchmark experiments

	Conclusions and future work
	Future work

	Appendices
	Structator user's manual
	Introduction
	Index construction with afconstruct
	Searching with afsearch

	RaligNAtor user's manual
	Introduction
	Database preprocessing with sufconstruct
	Searching with RaligNAtor

	Bibliography

