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Introduction

In the course of technological progress more and more physical problems have become a matter
of high interest as an object of investigation. In order to be able to find a solution of these often
very complex problems simplified physical models have been introduced. In these models, even if
the real problem is simplified, the important phenomena can still be found in the solution. The
physical models consist usually of equations, algebraic or differential, and the goal is to find a
function solving these equations. Mathematical methods have been developed to find this solution
which is often a very challenging task depending on the character and properties of considered
equations.
A special part of physics deals with hyperbolic conservation laws, describing e.g., conservation
of mass, momentum or energy, leading to time-dependent hyperbolic partial differential equations
(PDEs). Their fields of application are very diverse, for example computational fluid dynamics
(CFD) is a numerical discipline used in car or plane construction as well as in power engineering.
The hyperbolic PDEs can also be found in the area of electromagnetism, chemistry, acoustics,
crystal growth or in various types of optimization such as shape or material optimization.
Hyperbolic PDEs have several properties that other equations such as elliptic or parabolic do not
have. The most important characteristics are that the information propagates with a finite speed
and that, independently from the smoothness of underlying data, discontinuities may occur in the
solution. Therefore, a special class of methods has been developed over time that aims at solving
the equations while at the same time dealing with discontinuities. These methods have to be con-
servative, which mimics the property of the exact solution that is conservative too, i.e., the mass
of certain quantities can change only due to the flux through boundary.
One of the first methods developed in this field was the finite difference method (FDM), approxi-
mating the exact solution at given points in the computational domain, more precisely at nodes
of a given computational mesh. However, it turned out that this method is not suitable for com-
putations on complex geometries in higher dimensions with unstructured grid. Another method,
the finite volume method (FVM), is more appropriate for this task and is one of the methods most
widely used to solve hyperbolic conservation laws. This method approximates local integral means
of the exact solution rather than point values and is conservative due to its construction.
The characteristic feature of the methods discussed above is that they require a mesh for the
computation. Especially in higher dimensions, the construction and maintaining of the grid can
become very costly or technically difficult. These issues resulted in a development of more flexible
methods, so-called meshfree methods, that need no mesh for the computation.
The finite volume particle method (FVPM) is a method based on a combination of a meshfree par-
ticle method, in this case the so-called Smoothed Particle Hydrodynamics (SPH), (see [45]), and of
the concept of FVM. The FVPM was first introduced by Hietel, Steiner and Struckmeier [24] and
further developed by Junk and Struckmeier [29]. The basic idea is to substitute the finite volumes
in FVM by volumes associated with particle basis functions but to preserve the computational
model of numerical flux developed in FVM. Instead of a mesh, FVPM relies on an underlying
structure given by particles - moving or non-moving points in the computational domain - and
their interaction provided by the nearest neighbors. In fact, FVPM can be considered to be a ge-
neralization of the classical FVM, as stated by Junk [30]. The resulting FVPM is a highly flexible
meshfree method suited to use for complicated or time-dependent geometries or for geometries in
high dimensions, but still possessing the core feature of FVM - the concept of numerical flux and
conservativity.
In the FVM framework, in the course of time, the need for higher accuracy of the method has arised
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Introduction

since the resolution of standard first order methods was not satisfactory for practical computations.
The contemporary state-of-the-art method is the ADER (Arbitrary DERivatives) method. It al-
lows for the construction of a numerical flux of arbitrarily high order of accuracy in time and space.
It can be considered to be a generalized Godunov method (see [17]) and the fully numerical scheme
was developed by Toro and Titarev in [65] by introducing their Toro-Titarev solver. The original
Godunov method approximates the exact solution with a piecewise constant function defined on
finite volumes and the time evolution is provided by solution of local Riemann problems on the
interfaces between two finite volumes. The generalized Riemann problem generalizes the appro-
ximation in the sense that a piecewise polynomial function is reconstructed out of the piecewise
constant data. As a result, the time evolution is provided by the solution of generalized Riemann
problems defined by two polynomials, left and right of an interface. The Toro-Titarev solver was
then developed to avoid solving this problem analytically which may become a very difficult task.
Nevertheless, this method is still not an ultimate tool for solving hyperbolic PDEs. Computational
problems were reported by Castro and Toro in [4] and by Montecinos et al. in [46] for non-linear
systems. For a rigorous analysis and a potential remedy we refer to the work of Goetz [18].
In the FVPM framework, most papers deal with a first order meshfree method. To the author’s
knowledge, it is only in the paper [47] by Nestor, Basa, Lastiwka and Quinlan, that a second order
FVPM is introduced, and there is also a method of second order provided by Teleaga in [59].
Nevertheless, there is no rigorous analysis of the convergence of the method. In our work, we are
going to bridge this gap and develop a meshfree method of second order of convergence in time and
space, for which we are able to show a standard result of convergence for a scalar linear equation
analytically. For further equations, such as non-linear ones, or systems, we present examples that
confirm the second order of convergence numerically.
Moreover, we introduce procedures enabling to add or remove a particle from a given general par-
ticle distribution which increases computational stability of the method.

The thesis is structured as follows: in the first chapter, Preliminaries, we introduce hyperbolic
conservation laws and their important properties as well as their numerical treatment via FVM.
Also, the concepts of the ADER method and of B-splines are presented.
In chapter 2, we present the derivation and properties of FVPM. We present a known correction
procedure for geometrical coefficients and extend it to a case of bounded computational domain
where boundary terms have to be treated. We formulate also a sufficient condition for the pro-
cedure to work properly. Finally, we introduce numerically exact procedures to add or remove a
particle to the particle distribution for an arbitrary partition of unity used in FVPM. This serves
to increase the stability of the method since low or even high density of particles at one place may
cause difficulties during the computations. Numerical examples are given in the last chapter.
Polyharmonic spline interpolation and WENO method are presented in chapter 3. Interpolation
with polyharmonic splines is a very powerful tool in the field of scattered data approximation and
the concept can be also used in the field of PDEs. We adapt already known results to the case of
FVPM, which is rather a technical issue, i.e., we analyse polyharmonic spline interpolation of data
given by weighted integral means. The WENO method is presented since it is a helpful technique to
suppress oscillations that may arise when using any type of approximation of discontinuous data.
Main results of this thesis can be found in chapter 4. We consider a one-dimensional conserva-
tion law and focus on non-moving particles coupled with linear B-splines. For this setting, we
introduce a method of second order of convergence in time and space. Making use of the ADER
method and Toro-Titarev solver, polyharmonic spline interpolation of the data and the WENO
approach presented in the previous chapters leads to the desired scheme. We show the second order
of consistency of the scheme for general one-dimensional scalar conservation law and the stability
of the scheme for a linear case. Altogether, we prove convergence for a scalar linear PDE. The
convergence is verified numerically on other prototype examples in the last chapter.
In chapter 5 several relevant examples are presented to demonstrate the quality of the developed
scheme. The analytical results for a scalar linear equation are verified. We show numerically
robustness and convergence of second order of the scheme for non-linear scalar equations, linear
systems and non-linear systems with smooth data. Non-linear systems with discontinuities produce
small non-physical oscillations. However, they do not lead to a blow-up of the whole numerical
solution. Possible remedy strategies would be the use of limiters or a modification of the ADER
scheme, lying beyond the scope of this thesis.
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1 Preliminaries

In the first section of this chapter, the theory of hyperbolic conservation laws is introduced. A finite
volume method is presented in order to solve these partial differential equations numerically. The
classical formulation of this method leads to a method of first order of accuracy. To increase the
order, the generalized concept of classical Riemann problem is shown as well as its utilization in the
ADER (Arbitrary DERivatives) method. Finally, the theory of B-splines functions is presented.
Altogether, based on this auxiliary theory we will be able to design a meshfree method for numerical
solution of hyperbolic problems in chapter 4.

1.1 Hyperbolic conservation laws

We introduce a special type of partial differential equations called hyperbolic conservation laws.
Conservation laws, or balance laws respectively, are used in physics to model a variety of problems
such as fluid dynamics, magneto-hydrodynamics, electromagnetism, motion of elastic materials or
traffic flow. Physical meaning of those equations is the conservation of certain quantities, such as
mass, momentum, energy or another quantity, whereas the hyperbolicity stands for the mathema-
tical structure of equations. The literature on these equations is vast. To mention just a few, see
e.g., [3], [7], [10], [14], [16], [38], [39] or [53].

Let U ⊂ Rm be an open and convex subset. A multidimensional system of conservation laws
can be written as a system of partial differential equations in a d-dimensional space for u =
u(x, t) : Rd × R+ → U ⊂ Rm

ut +∇ · F (u) = 0 in R
d , t > 0 (1.1)

with initial conditions

u( . , 0) = u0 in R
d , (1.2)

where u = (u1, . . . , um)
T ∈ Rm is the vector of conserved quantities, d ≥ 1, m ≥ 1 and F ∈ Rm×d

denotes the flux function of the conservation law, where F = (f1, . . . , fd), fj = (f1j , . . . , fmj)
T ∈

Rm, fj : U → Rm and ∇ · F (u) :=
∑d
j=1 ∂xj

fj(u). The initial conditions are given by a function

u0 : Rd → U .
The name “conservation laws” is motivated with its physical meaning, that is, the quantities
u = (u1, . . . , um)T are conserved in the following sense:
Consider a bounded domain Ω ⊂ Rd and denote n = (n1, . . . , nd)

T the outer unit normal to the
boundary ∂Ω of Ω. Then, integrating the equation (1.1) and using the divergence theorem, we
obtain

d

dt

∫

Ω

udx+

d∑

j=1

∫

∂Ω

fj(u)njdσ = 0 . (1.3)

This equation can be then interpreted in the sense that
∫
Ω
udx changes in time only due to the

flux of u through the boundary ∂Ω. In other words, the quantity u is conserved in Ω up to the
flux of u through the boundary ∂Ω.
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1 Preliminaries

Remark 1.1 (Boundary conditions)
If we solve the equation (1.1) on an open and bounded domain Ω ⊂ Rd, then additional boundary
conditions on the boundary ∂Ω of Ω have to be prescribed. We consider then a suitable boundary
operator B, such that

B(u) = 0 in ∂Ω× (0, T ) .

Further remarks on boundary conditions will be given later in this section.

Remark 1.2 (Source term)
If the right hand side of the equation (1.1) is non-zero, we speak about balance laws, which is a
more general case of equation (1.1). Then it has the form

ut +∇. F (u) = S(u) in R
d , t > 0 ,

where the vector function S(u) is called a source term. Shallow water equations are a typical
example of balance laws.

Let us introduce the following definitions.

Definition 1.3
Let Aj(u) :=

Dfj(u)
Du

denote the Jacobi matrices of fj, j = 1, . . . , d.

Definition 1.4 (Cauchy problem)
The problem (1.1) - (1.2) is called Cauchy problem.

Definition 1.5 (Hyperbolicity)
We say that a system of conservation laws (1.1) is (strictly) hyperbolic if for any u ∈ U and any
n = (n1, . . . , nd)

T ∈ Rd, n 6= 0, the matrix

A(u,n) =

d∑

j=1

njAj(u)

has only real (and distinct) eigenvalues λ1, . . . , λm and m linearly independent right eigenvectors
r1, . . . , rm.

Example 1.6 (Euler equations, [14], [64])
A typical example of a hyperbolic conservation law are the Euler equations used e.g., for modelling
of flow in aeronautics, the aviation industry and steam or gas turbine design. They are given for
d = 1, 2, 3 and m = d+ 2 by the equation

ut +
d∑

s=1

∂fs(u)

∂xs
= 0 in R

d , t > 0

4



1.1 Hyperbolic conservation laws

with the vector of unknowns

u =




u1

...

um




=




ρ
ρv1
...
ρvd
E




and physical fluxes

fs(u) =




ρvs
ρv1vs + δ1sp

...
ρvdvs + δdsp
(E + p)vs




=




us+1

u2us+1/u1 + δ1s(γ − 1)
(
um −∑m−1

i=2 u2i /(2u1)
)

...

um−1us+1/u1 + δm−2,s(γ − 1)
(
um −∑m−1

i=2 u2i /(2u1)
)

us+1

(
γum − (γ − 1)

∑m−1
i=2 u2i /(2u1)

)
/u1




.

One more equation is required to get a closed system of equations. For ideal gases it is the equation
of state

p = (γ − 1)
(
E − ρ|v|2/2

)
.

For the modelled gas, v = (v1, . . . , vd)
T is the velocity vector with components vs in the directions

xs, s = 1, . . . , d, ρ is the density, p is the pressure and E is the total energy. The parameter γ > 1
is the Poisson adiabatic constant. The variables ρ, v1, . . . , vd, p are called primitive variables and
u1 = ρ,u2 = ρv1, . . ., um−1 = ρvd, um = E are called conservative variables.
Obviously fs ∈ C1(U)m with

U =
{
u ∈ R

m
∣∣∣ u1 = ρ > 0 , us = ρvs−1 ∈ R for s = 2, . . . ,m− 1 ,

um − 1

2

m−1∑

i=2

u2i
u1

=
p

γ − 1
> 0
}
.

The eigenvalues of the matrix A(u,n) for the Euler equations are

λ1(u,n) = v · n− a|n| ,
λ2(u,n) = v · n ,

...

λm−1(u,n) = v · n ,

λm(u,n) = v · n+ a|n| ,

where a =
√
γp/ρ is the speed of sound.

Definition 1.7 (Classical solution)
We say that a function u : Rd × [0,∞) → U is a classical solution of the Cauchy problem (1.1) -
(1.2), if

a) u ∈ C1(Rd × (0,∞))m ∩ C(Rd × [0,∞))m

5



1 Preliminaries

b) u satisfies (1.1) and (1.2) for all (x, t) ∈ R
d × (0,∞) and x ∈ R

d, respectively.

In the linear one-dimensional case, i.e., F (u) = A ·u, where the constant matrix A ∈ Rm×m has m
real eigenvalues and is diagonalizable due to the assumed strict hyperbolicity, the problem can be
splitted into m independent scalar one-dimensional problems (1.1) and solved analytically with the
method of characteristics. If the initial conditions (1.2) are smooth, the existence and uniqueness
of the solution is proven (see e.g., [14]).

In the case of non-smooth initial conditions, the concept of the classical solution cannot be used.
Moreover, for the nonlinear case, it is well known, that even for smooth data, a shock in the so-
lution can develop in a finite time, which leads to the blow up of classical solution. Therefore, a
generalization of classical solutions was introduced, known as weak solutions.

Definition 1.8 (Weak solution)
Let u0 ∈ L∞(Rd,U)m. We say that a function u : Rd × [0,∞) → U is a distributional solution to
the Cauchy problem (1.1) - (1.2), if

∫

Rd

∫ ∞

0

(uϕt + F (u) · ∇ϕ) dtdx +

∫

Rd

ϕ(x, 0)u0(x)dx = 0 ∀ϕ ∈ C∞
0 (Rd × [0,∞)) ,

where C∞
0 (Rd × [0,∞)) denotes the space of all C∞-functions with compact support inside Rd ×

[0,∞).
Moreover, if u is a distributional solution such that the mapping t 7→ u(·, t) is continuous from
[0,∞) → L1

loc in each component, we say that u is a weak solution.

It can be shown, that a smooth weak solution is a classical solution. Hence, weak solutions are
indeed a generalization of classical solutions.
The weak solutions are, in general, not unique. In order to distinguish the physically relevant
solution from the non-physical ones, the so-called entropy weak solutions can be used, motivated
by the physical meaning of the solution.

Definition 1.9 (Entropy and entropy flux)
Let U ⊂ Rm be a convex set. A convex function η : U → R (η ∈ C1(U)) is called an entropy of
system (1.1), if there exist functions G = (G1, . . . , Gd) : U → R, called entropy fluxes, such that

∇η(u) · As(u) = ∇Gs(u) , u ∈ U , s = 1, . . . , d ,

whereas we mean ∇ = ∇u. The pair (η,G) is called an entropy-entropy flux pair.

Definition 1.10 (Entropy solution)
We say that a weak solution u of (1.1)-(1.2) is an entropy solution, if for every entropy η of system
(1.1) the condition

∂

∂t
η(u) +∇ ·G(u) ≤ 0 (1.4)

6



1.1 Hyperbolic conservation laws

is satisfied in the distributional sense on R
d × (0,∞), i.e.,

∫ ∞

0

∫

Rd


η(u)ϕt +

d∑

j=1

Gj(u)ϕxj


 dxdt ≥ 0 ∀ϕ ∈ C∞

0 (Rd × (0,∞)) , ϕ ≥ 0 .

The existence and uniqueness of weak solutions of the general system (1.1)-(1.2) is still an open
problem. Nevertheless, some theoretical results are available.
The theorem 1.11 states the unique solvability for one scalar conservation law. The proof can be
found in Dafermos [7].

Theorem 1.11
Let fj ∈ C1(R), j = 1, . . . , d. For any u0 ∈ L∞(Rd) there exists a unique weak entropy solution u
of the Cauchy problem for a scalar conservation law defined by

ut +

d∑

j=1

∂fj(u)

∂xj
= 0 , x ∈ R

d , t > 0 ,

u(x, 0) = u0(x) , x ∈ R
d ,

and

‖u(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd) .

The total variation of a function is defined by

TVR(u) = sup
{ k−1∑

j=1

|u(xj+1)− u(xj)|
∣∣∣ x1, . . . , xk ∈ R , x1 < x2 < . . . < xk , k ∈ IN

}
.

The space of all functions with bounded variation is defined as

BV (R,Rm) :=
{
v ∈ L1

loc(R,R
m)
∣∣∣ TVR(v) <∞

}
.

The next theorem states that there exists a solution of the general one-dimensional problem (1.1)-
(1.2) for “small data” and under some assumptions on the matrix A = Df(u)/Du, where we write
A := A1 and f := f1 for the case d = 1. The original proof was provided by Glimm in [16]. Bressan
[3] could prove the statement using a different technique. Also the uniqueness in the class of BV
functions with small BV-data for one-dimensional case was shown therein. Consider the previous
definition of hyperbolicity. For the next theorem we need the following definition:

Definition 1.12 (Genuinely nonlinear, linearly degenerate)
Consider the case d = 1. Let ∇ = ∇u.
We say that the k-th characteristic field is genuinely nonlinear, if

∇λk(u) · rk(u) 6= 0 ∀u ∈ U
or linearly degenerate, if

∇λk(u) · rk(u) = 0 ∀u ∈ U .

7



1 Preliminaries

Theorem 1.13 ([14])
Let us assume that d = 1, system (1.1) is strictly hyperbolic and all characteristic fields are either
genuinely nonlinear or linearly degenerate in a neighborhood of a constant state u. Then there
exist two positive constants δ1 and δ2 such that for initial data satisfying

‖u0 − u‖L∞(R)m ≤ δ1 , TVR(u0) ≤ δ2 ,

the Cauchy problem (1.1)-(1.2) has a global weak entropy solution u(x, t) in R× [0,∞) satisfying
entropy inequality (1.4) in the sense of distributions for any entropy-entropy flux pair and

‖u(·, t)− u‖L∞(R)m ≤ C0‖u0 − u‖L∞(R)m , t ∈ [0,∞) ,

TVR(u(·, t)) ≤ C0TVR(u0) , t ∈ [0,∞) ,

‖u(·, t1)− u(·, t2)‖L1(R)m ≤ C0|t1 − t2|TVR(u0) , t1, t2 ∈ [0,∞) ,

for some constant C0 > 0.

A special case of the Cauchy problem (1.1)-(1.2) in one spatial dimension is the Riemann problem,
which is the Cauchy problem with initial data given by piecewise constant states. The study of the
Riemann problem is important, since solution of this problem is a part of many modern numerical
methods, e.g., in the framework of finite volume methods. Because of its simpler structure, it is
also possible to find an analytic solution for some Riemann problems.

Definition 1.14
Consider the Cauchy problem for d = 1

ut + f(u)x = 0 , x ∈ (−∞,∞) , t > 0 , (1.5)

u(x, 0) =





uL , x < 0 ,

uR , x > 0 ,
(1.6)

for constant states uL, uR ∈ U . This problem is called the Riemann problem.

The solution of Riemann problem is self-similar as the next theorem claims. The proof and
terminology can be found in [14] and [3]. We just remark that a piecewise smooth weak solution
is a weak solution, which is piecewise smooth and on the interface of domains of smoothness
special conditions for the shock (so-called Rankine-Hugoniot conditions, see [14] and the following
example) have to be satisfied.

Example 1.15 (Rankine-Hugoniot conditions in 1D)
Consider the Riemann problem (1.5)-(1.6) and a function

u(x, t) =






uL , x < λt ,

uR , x > λt ,

for some λ ∈ R.
The Rankine-Hugoniot conditions for the shock are given by the relation

λ(uL − uR) = f(uL)− f (uR) .

8



1.2 Finite volume method

Theorem 1.16
If the Riemann problem (1.5)-(1.6) has a unique piecewise smooth weak solution u, then u can be
written for t > 0 in the similarity form u(x, t) = D(x/t), where D : R → Rm.

For the special case of genuinely nonlinear or linearly degenerate eigenvectors of the Jacobi matrix
A(u) there exists an explicit unique solution of the Riemann problem as formulated in the following
theorem. Again, the terminology and references for the proof can be found in [14].

Theorem 1.17
Let us assume that for each u ∈ U all eigenvalues λk(u) of the matrix A(u) are simple and that
every characteristic field is either genuinely nonlinear or linearly degenerate.
Then to any uL ∈ U there exists its neighborhood B(uL) ⊂ U such that the following statement
holds: for any uR ∈ B(uL) the Riemann problem (1.5)-(1.6) has a unique solution. This solution
consists of at most m + 1 constant states separated by simple waves or entropy shock waves or
contact discontinuities. There is exactly one solution of this structure.

1.2 Finite volume method

Now we are going to introduce a method for numerical solution of hyperbolic conservation laws
(1.1)-(1.2), the finite volume method. The method is based on the integral formulation of partial
differential equations leading to a conservative method. This property is very important since it
mimics the property of the exact solution to conserve certain quantities. The finite volume mesh,
introduced later in this section, offers also more flexibility on the method, e.g., in comparison
with the finite difference method. The finite volume method became very popular in the domain
of numerical solution of hyperbolic problems and theoretical results could be also revealed. The
convergence of FVM to the entropy weak solution in special cases is briefly discussed in [14] and
many references to this topic can be also found therein. Convergence theory for finite volume
schemes is summarized in LeVeque [39]. Convergence of finite volume schemes in two dimension
on unstructured grids is proven in Kröner [36]. See also the papers of Coquel and LeFloch [6]
Chainais-Hillairet [5] and Vila [68] for further results.
In this section, we follow the derivation of the method introduced in [14]. First, we define the mesh
and in the second step we introduce the numerical scheme itself.

Consider the equations (1.1)-(1.2) in an open and bounded computational domain Ω ⊂ Rd written
as

ut +

d∑

s=1

∂fs(u)

∂xs
= 0 in Ω× (0, T ) (1.7)

with initial conditions

u( . , 0) = u0 in Ω (1.8)

and boundary conditions

B(u) = 0 in ∂Ω× (0, T ) , (1.9)

where B is a suitable boundary operator. We discuss the numerical treatment of boundary condi-
tions later.

9



1 Preliminaries

Finite volume mesh

Now, for the sake of simplicity, let us consider the case d = 2. The 3-dimensional case is treated
in [14] and can be extended to an arbitrary dimension.
Denote by Ωh a polygonal approximation of Ω (i.e., the boundary ∂Ωh of Ωh consists of finite
number of closed simple piecewise linear curves). For the sake of simplicity, we assume, that Ω is
already a polygon, i.e., Ωh = Ω. Otherwise, one has to take the approximation error of Ω by Ωh
into consideration.
The set Dh = {Di}i∈J with J ⊂ Z+ = {0, 1, 2, . . .} and h > 0 is an index set and will be called
finite volume mesh in Ωh, if all Di are closed polygons with mutually disjoint interiors such that

Ωh =
⋃

i∈J

Di .

The elements Di ∈ Dh are called finite volumes. Two finite volumes Di, Dj ∈ Dh are either disjoint
or their intersection is formed by a common part of their boundaries ∂Di and ∂Dj. For the sake of
simplicity, we assume the intersection Γij = ∂Di ∩ ∂Dj to be a single point or a straight line (for
the more general case of intersection formed by multiple straight lines see [14]). If the intersection
Γij is a straight line, we will call these finite volumes neighbors.
We denote by nij the unit outer normal to ∂Di on Γij , hi = diam(Di), h = supi∈J hi. Additionally,
let s(i) = {j ∈ J | j 6= i , Dj is a neighbor of Di}.
The straight lines of the boundary ∂Ωh are denoted by Sj and numbered by negative indices j
forming an index set JB ⊂ Z− = {−1,−2, . . .}. Hence, J ∩ JB = ∅ and ∂Ωh =

⋃
j∈JB

Sj . For a
finite volume Di adjacent to the boundary ∂Ωh, i.e., if Sj ⊂ ∂Ωh ∩ ∂Di for some j ∈ JB, we set

γ(i) = {j ∈ JB | Sj ⊂ ∂Di ∩ ∂Ωh} ,
Γij = Sj for j ∈ γ(i) .

If Di is not adjacent to ∂Ωh, then we put γ(i) = ∅. In order to stay consistent (we assumed that a
non-empty intersection of any two neighboring finite volumes is a straight line), we assume also for
all i ∈ J that ∂Ωh ∩Di is either disjoint or a straight line. Again, intersections given by a single
point are not considered. Hence, the number of elements of γ(i) is at most 1.
By denoting S(i) := s(i) ∪ γ(i), we have for all i ∈ J

∂Di =
⋃

j∈S(i)

Γij ,

∂Di ∩ ∂Ωh =
⋃

j∈γ(i)

Γij .

Remark 1.18
An example on a mesh is a triangular or quadrilateral mesh, consisting of triangle or quadrilateral
finite volumes, respectively. For an illustration on a triangular mesh see the figure 1.1. For more
details and also for some terminology of meshes, see [14].

Having the finite volume mesh constructed, we can now derive the finite volume scheme.

Finite volume scheme

Let us assume that u : Ω × [0, T ] → Rm is a classical solution of (1.7), Dh = {Di}i∈J is a
finite volume mesh in a polygonal approximation Ωh of Ω. Discretize the time interval [0, T ] by
0 = t0 < t1 < . . . < tNT = T and denote ∆tn = tn+1 − tn the time step between tn and tn+1.
Integrate the equation (1.7) over the set Di × (tn, tn+1) and use divergence theorem on Di. We
obtain

∫

Di

(
u(x, tn+1)− u(x, tn)

)
dx+

∫ tn+1

tn

(∫

∂Di

d∑

s=1

fs(u)(ni)sdσ

)
dt = 0 ,
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1.2 Finite volume method

Figure 1.1: An illustration of a triangulation of a non-rectangular domain.

which can be rewritten as

∫

Di

(
u(x, tn+1)− u(x, tn)

)
dx+

∫ tn+1

tn




∑

j∈S(i)

∫

Γij

d∑

s=1

fs(u)(nij)sdσ



 dt = 0 .

Now we denote the integral averages over the finite volume Di at time tn by the value uni

uni =
1

|Di|

∫

Di

u(x, tn)dx ,

where |Di| stands for the area (2-dimensional volume) of the finite volume Di.

Furthermore, the flux
∑d

s=1 fs(u)(nij)s of the quantity u is approximated with a numerical flux

d∑

s=1

fs(u)(nij)s ≈ g(uni ,u
n
j ,nij) ,

where the function g(uni ,u
n
j ,nij) depends on the value uni , the neighbors’ values unj and the outer

normal vector nij between the neighboring finite volumes Di and Dj. If j ∈ JB, then there is no
neighbor Dj and the value of unj has to be specified on the basis of boundary conditions, see the
corresponding remark below.

Remark 1.19
There are several possibilities to define the numerical flux in the literature. In the upper derivation,
we approximate only the function

∑d
s=1 fs(u)(nij)s with the numerical flux. Also the spatial or the

time integral can be involved in the definition. See e.g., section 1.3.

We end up with the finite volume scheme

un+1
i = uni − ∆tn

|Di|
∑

j∈S(i)

g(uni ,u
n
j ,nij)|Γij | , Di ∈ Dh , tn ∈ [0, T ) . (1.10)

The initial condition is defined by

u0
i =

1

|Di|

∫

Di

u0(x)dx , i ∈ J .

The numerical solution of the problem (1.7)-(1.8) via FVM is defined by

uh(x, t) =

NT∑

n=0

∑

i∈J

uni χi(x)χ[tn,tn+1)(t) , x ∈ Ω , t ∈ [0, T ] , (1.11)

where χi denotes the characteristic function of interior of Di for all i ∈ J .
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Remark 1.20
In each time step, the numerical solution via FVM is defined as a piecewise constant function with
constants uni given by the formula (1.10).

Remark 1.21
The presented scheme is an explicit finite volume method. The construction of an implicit scheme
as well as further generalizations can be found in [14].

Remark 1.22 (Boundary conditions)
The numerical flux function g(uni ,u

n
j ,nij) is well-defined for the interior volumes Di for all i ∈ J .

However, if Di has a common line with ∂Ωh, i.e., it is a border finite volume, some of the values unj
have to be defined on the basis of boundary conditions. The treatment of boundary conditions is a
very delicate problem and has to be implemented carefully. In principle, the imposition of boundary
conditions is a physical problem, but it has to respect its mathematical structure. References to this
topic can be found in [14] as well as an implementation of boundary conditions for compressible
Euler equations used in practice. Further approaches can be also found in Teleaga [59] and LeVeque
[39].

We assume that the numerical flux g(u,v,n) is defined and continuous on U × U × S1, where
U ⊂ Rm is the domain of definition of the fluxes fs and S1 is the unit sphere in Rd.
To mimic the properties of the physical flux, the numerical flux has to fulfill certain requirements,
given by the next two definitions. These requirements ensure, that constant states and mass will
be conserved, see also section 1.1.

Definition 1.23
We say that a numerical flux g(u,v,n) is consistent, if

g(u,u,n) =

d∑

s=1

fs(u)ns , u ∈ U , n ∈ S1 .

Definition 1.24
We say that a numerical flux g(u,v,n) is conservative, if

g(u,v,n) = −g(v,u,−n) , u,v ∈ U , n ∈ S1 .

The definition of the numerical flux g completes the numerical scheme. There can be found many
numerical fluxes in the literature. We mention Lax-Friedrichs and Steger-Warming which we will
present in the following examples. Other numerical fluxes are e.g., Godunov, Vijayasundaram, Van
Leer etc. For further flux functions, also constructed in a very sofisticated way using reconstruction
strategies and slope limiters, see e.g., [14], [39] or [64].

Example 1.25 ([14])
Let us define

A(u,n) :=

d∑

s=1

fsns .

The Lax-Friedrichs numerical flux is given by

g(u,v,n) =
1

2

(
A(u,n) +A(v,n) − 1

λ
(v − u)

)
, u,v ∈ U ,n ∈ S1 .
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1.2 Finite volume method

The parameter λ > 0 is independent of u,v, but depends in general on edges Γij . Consider the
scheme with constant time step ∆t in two spatial dimensions with an uniform square mesh with
edges parallel to x1− and x2−axes. Then the parameter λ is given by λ = 2∆t/∆x.

Example 1.26 ([14])
If we assume that the system (1.7) is strictly hyperbolic, one can rewrite the matrix A(u) =∑d
s=1

Dfs(u)
du ns as

A(u) = TΛ\T−1

with a regular matrix T consisting of right eigenvectors of A, where each column represents one
eigenvector. The diagonal matrix Λ\ = diag(λ1, . . . , λm) consists of the eigenvalues λi of A. Clearly,
T and Λ\ are functions of u. Furthermore, let us define the matrices

Λ\± = diag(λ±1 , . . . , λ
±
m) ,

where

λ+ = max(0, λ) , λ− = min(0, λ)

and

A
± = TΛ\±T−1 .

Then the Steger-Warming numerical flux is defined as

g(u,v,n) = A
+(u,n) · u+ A

−(v,n) · v , u,v ∈ U ,n ∈ S1 .

Another very important component of the finite volume method is the CFL-condition (Courant-
Friedrichs-Lewy) defining the relation between the time step size ∆tn and mesh size h = ∆x in
order to ensure stability of the method. This condition is only a necessary, not sufficient, condition
for the stability, and therefore also for the convergence. It can be interpreted in the sense given by
LeVeque [39]: “A numerical method can be convergent only if its numerical domain of dependence
contains the true domain of dependence of the PDE, at least in the limit as ∆t and ∆x go to zero.”

Example 1.27 ([14])
For the nonlinear system

ut + f(u)x = 0 in R× (0,∞)

u(x, 0) = u0(x) , x ∈ R

solved by Lax-Friedrichs scheme the CFL-condition reads

∆tn ≤ CFL
∆x

σ(A(uni ))
,

where the suitable number CFL ∈ (0, 1), A(u) = Df(u)
Du

is the Jacobi matrix of f and σ(A) denotes
the spectral radius of matrix A.

A numerical flux of arbitrary high order of accuracy, the so-called ADER flux will be studied in
the next section.
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1.3 Generalized Riemann problem and the ADER method

In this section, we will present a construction of a finite volume method for a balance law in one
spatial dimension as proposed by Toro and Titarev [65] and Toro [64]. This method will be of
arbitrary high order of accuracy in time and space. We start with a derivation of the method and
motivate with this derivation the introduction of a generalization of the Riemann problem from
section 1.1. For the sake of completeness, we will present the method for a one-dimensional balance
law (i.e., conservation law with a source term) rather than for a conservation law (compare also to
(1.1))

ut + F (u)x = S(u) , x ∈ Ω , t > 0 , (1.12)

u(x, 0) = u0(x) , (1.13)

where u0 is a given initial condition.
A finite volume method for the solution of (1.12)-(1.13) can be constructed as follows (compare
with section 1.2). For the sake of simplicity, we will work with uniform discretizations in time
and space. Discretize the computational domain Ω with points xi+ 1

2
with ∆x = xi+ 1

2
− xi− 1

2
and

define the computational cells Ii = [xi− 1
2
, xi+ 1

2
]. The time interval [0, T ] is discretized with points

tn and the time step size ∆t = tn+1 − tn. The set [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] defines a control volume

in the computational and time domain Ω× [0, T ].
Integrating (1.12) over the control volume yields the exact equation

un+1
i = uni − ∆t

∆x

(
F i+ 1

2
− F i− 1

2

)
+∆tSi , (1.14)

where the cell average

uni =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx (1.15)

is the spatial integral average of u(x, t) at time t = tn. Further terms are

F i+ 1
2

=
1

∆t

∫ tn+1

tn
F (u(xi+ 1

2
, t))dt , (1.16)

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

S(u(x, t))dxdt , (1.17)

denoting the time integral mean of the physical flux and the space-time integral mean of the source
term, respectively. Suitable approximations of the terms F i+ 1

2
and Si yield a numerical method.

These approximations are then called numerical flux and numerical source, respectively. The con-
struction of the numerical flux is the core of the numerical method, allowing a higher order of
accuracy of the scheme. It should be remarked, that the numerical flux F i+ 1

2
is constructed as a

time integral mean of the physical flux, instead of evaluating the flux at a fixed time as done in
section 1.2.

The idea of the method dates back to the seminal work of Godunov [17]. In the finite volume
framework, the exact solution of the equation (1.12) is approximated with its cell averages (1.15)
at the time step tn, building a piecewise constant approximation (1.11). The cell averages are
then evolved to the next time step tn+1 solving a local Riemann problem at each cell interface
xi :=

1
2 (xi− 1

2
+ xi+ 1

2
). These evolved cell averages define then the piecewise constant numerical

solution at the next time step tn+1. The choice of initial data for the local Riemann problems is
therefore crucial for the functionality and the accuracy of the scheme. For a scheme of first order
of accuracy the cell average from the left and the cell average from the right of the cell interface
xi are taken as the initial data for the local Riemann problem which is then solved exactly or
approximatively. These cell averages can be understood as a first order reconstruction of the exact
solution in the corresponding cell. We call this the Godunov method.
For a scheme of higher order than one, the exact solution is approximated within each cell utilizing
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the neighboring cell average data. This yields a higher order reconstruction. These reconstructions
are then used as the initial data for the local Riemann problem. Since they are no longer constant,
we have to consider the generalized Riemann problem. The whole scheme can be then considered
as a generalized Godunov method. This concept was introduced first by Kolgan in [35] followed
by van Leer in [66] and [67].

Definition 1.28
Consider the Cauchy problem

ut + F (u)x = S(u) , x ∈ (−∞,∞) , t > 0 , (1.18)

u(x, 0) =





uL(x) , x < 0 ,

uR(x) , x > 0 ,
(1.19)

where uL(x), uR(x) are vectors and their components are assumed to be smooth functions of x,
with K continuous, non-trivial spatial derivatives away from zero. That is, if the non-negative
integers KL and KR are minimal numbers such that

dk

dxk
uL(x) ≡ 0 ∀k > KL , ∀x < 0 ,

dk

dxk
uR(x) ≡ 0 ∀k > KR , ∀x > 0 ,

and K := max{KL,KR}.
This problem is then called the generalized Riemann problem of order K, denoted by GRPK .

If we consider the case that the system (1.18) is strictly hyperbolic such that every characteristic
field is either genuinely nonlinear or linearly degenerate, then there exists a neighborhood around
the origin in which the problem (1.18)-(1.19) has a unique entropy weak solution, provided the jump
in the initial condition |uL(0)−uR(0)| is sufficiently small. Moreover, at least for small times t > 0,
the solution of the generalized Riemann problem and the solution of the corresponding classical
Riemann problem with initial data uL(0) and uR(0) have similar wave structure. For details, see
[18], [40] and [57]. An illustration is given in figure 1.2. Details about the wave structure and
existence and uniqueness results on the solution of the classical Riemann problem were given in
theorem 1.17. The similarity of the wave structures allows to approximate GRP with a sequence
of classical Riemann problems as the ADER method does, proposed by Toro and Titarev [65],
yielding a robust scheme of higher order. However, it was observed in [4] and [46], that for non-
linear systems, numerical difficulties occur if there is a large jump in the initial data of GRP. This
phenomenon was described rigorously by Goetz [18]. An analysis of the ADER method concerning
consistency and stability can be found in [56] and [62].

Remark 1.29
Note that the definition of generalized Riemann problem is indeed a generalization of the Riemann
problem, since GRP0 defines the classical Riemann problem with piecewise constant initial data.

The Toro-Titarev solver works as follows. To define the numerical flux function, the exact solution
u(xi+ 1

2
, tn + t) in (1.16) is approximated by uLR(t) at the interface xi+ 1

2
and then a suitable

numerical quadrature is used to achieve the desired accuracy. The function uLR(t) is defined as
a truncated Taylor expansion of the exact solution in the time variable. This is a so-called state
expansion. We only remark that also another approach can be applied - the direct expansion of
the flux function F(u(xi+ 1

2
, tn + t)), see e.g., [56].

Using the Cauchy-Kowalewski procedure, the time derivatives are expressed in terms of spatial
derivatives. These spatial derivatives are defined by the solution of a local generalized Riemann
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x0

t

xx = 0

u(x, 0)

uL

uR

x0

t

xx = 0

u(x, 0)

uL(x)

uR(x)

Figure 1.2: Comparison of a classical and a generalized Riemann problem.
On the left: classical Riemann problem - above the piece-wise constant initial condition for a single
component of u(x, 0), in the bottom the corresponding wave structure of the solution in the x − t
plane. Characteristics are straight lines here.
On the right: generalized Riemann problem - above the piece-wise smooth initial condition for a
single component of u(x, 0), in the bottom the corresponding wave structure of the solution in the
x− t plane. Characteristics are curved lines here.

problem, which is approximated with a sequence of classical Riemann problems with initial data
given by the space reconstruction of the exact solution in each computational cell.
For the purposes of the numerical method (1.14) it is not necessary to compute the full solution of
a local generalized Riemann problem, which can be a very challenging task. For the method it is
enough to determine the solution right at the interface of two neighboring cells. The discretization
of numerical source is described later.

Cauchy-Kowalewski procedure

Now we introduce very briefly the Cauchy-Kowalewski procedure. It dates back to the Cauchy-
Kowalewski theorem (see e.g., [10]), which states that there exists a unique analytic solution of
the initial-value problem (1.12)-(1.13) provided that all involved functions are analytic. Since the
technique was used by Lax and Wendroff in [38] too, it is also known as the Lax-Wendroff procedure.
Using this procedure the time derivatives are expressed in terms of spatial derivatives. The idea
and its application are illustrated in the following example.
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Example 1.30
Consider the Cauchy problem

ut + f(u)x = 0 , x ∈ (−∞,∞) , t > 0 , (1.20)

u(x, 0) = u0(x) .

We assume f and u0 to be analytic and so the exact solution u.
As stated above, we first compute the truncated Taylor expansion of u(x, t) to the second order
around (0, 0)

u(x, t) ≈ u(0, 0) + ut(0, 0)t+ ux(0, 0)x (1.21)

+
1

2
uxx(0, 0)x

2 + uxt(0, 0)xt+
1

2
utt(0, 0)t

2 .

We see that the coefficients of the Taylor expansion are expressed in the terms of the function

values u(0, 0) and the derivatives ∂k

∂xltk−lu(0, 0). Now we apply the Cauchy-Kowalewski procedure
and express the time and mixed derivatives in terms of spatial derivatives of the initial condition
only. We use the initial condition and differentiate the equation (1.20), then the coefficients in
(1.21) can be expressed in the terms of spatial derivatives of the initial condition:

u(0, 0) = u0(0) ,

ut(0, 0) = −f ′(u)ux ,

ux(0, 0) = u′0(0) ,

uxx(0, 0) = u′′0(0) ,

uxt(0, 0) = −
[
f ′(u)uxx + f ′′(u)(ux)

2
]
,

utt(0, 0) = 2f ′(u)f ′′(u)u2x + (f ′(u))2uxx ,

where u = u(0, 0) = u0(0), ux = ux(0, 0) = u′0(0) and uxx = uxx(0, 0) = u′′0(0) on right hand sides.
These terms can be finally plugged into the expansion (1.21) and we get an approximation on
u(x, t) in spatial derivatives of u0 only.

Solution of the GRP

Consider again the GRPK from definition 1.28. The initial states uL(x) and uR(x) are assumed
to be smooth vector fields away from x = xi+ 1

2
. We assume that the requirements of the Cauchy-

Kowalewski theorem are satisfied. Then one can use the Cauchy-Kowalewski procedure to construct
a solution u(x, t) away from x = xi+ 1

2
. We do not require the full solution of the GRP, but only

the solution along the t-axis, i.e., along (x− xi+ 1
2
)/t, is constructed, as a function of time. On the

left and right side of the interface we have K + 1 non-trivial smooth data, with K + 1 jumps at
the interface for each component of the vector u, defining the generalized Riemann problem.
To approximate the solution of GRPK at the interface x = xi+ 1

2
, the function uLR(τ) is introduced,

defined as the time power series expansion

uLR(τ) = u(xi+ 1
2
, tn + 0+) +

K∑

k=1

[
∂
(k)
t u(xi+ 1

2
, tn + 0+)

] τk
k!

, (1.22)

where 0+ stands for the limit limt→0+ of functions ∂
(k)
t u(xi+ 1

2
, tn + t), k = 0, . . . ,K. The leading

term u(xi+ 1
2
, tn + 0+) and the higher-order terms ∂

(k)
t u(xi+ 1

2
, tn + 0+) will be approximated by

the solution of classical Riemann problems as follows.

The leading term accounts for the first-instant interaction of the initial data via the governing

17



1 Preliminaries

PDE. It is acquired as the solution of the classical Riemann problem

ut + F (u)x = 0 , x ∈ (−∞,∞) , t > 0 ,

u(x, 0) =






u
(0)
L := limy→x

i+1
2−

uL(y) , x < xi+ 1
2
,

u
(0)
R := limy→x

i+1
2+

uR(y) , x > xi+ 1
2
.

(1.23)

The source term S(u) is neglected here. Its influence on the solution of GRP is involved in higher

order terms. Denoting the similarity solution of (1.23) by D(0)
(
(x− xi+ 1

2
)/t
)
(see theorem 1.16)

the sought leading term is given by evaluating this solution along the t-axis

u(xi+ 1
2
, tn + 0+) = D(0)(0) .

This value is called the Godunov state.

For higher order terms the Cauchy-Kowalewski method is used to change from time to spatial
derivatives, for which evolution equations are constructed and solved.
The time derivatives are expressed as a function of spatial derivatives of u via the Cauchy-
Kowalewski procedure, more specifically

∂
(k)
t u(x, t) = P (k)

(
∂(0)x u, ∂(1)x u, . . . , ∂(k)x u

)
.

The source term S(u) is also included in the functions P (k). One denotes the derivatives

u
(k)
L (y) :=

dk

dxk
uL(y) , u

(k)
R (y) :=

dk

dxk
uR(y) ,

evaluates u
(k)
L (y) and u

(k)
R (y) at y = xi+ 1

2
and obtains

u
(k)
L := lim

y→x
i+1

2−

u
(k)
L (y) ,

u
(k)
R := lim

y→x
i+1

2+

u
(k)
R (y)

for k = 1, . . . ,K.
We differentiate (1.12) k times w.r.t. x and acquire the system of nonlinear inhomogeneous evolu-
tion equations

∂t(∂
(k)
x u(x, t)) +A(u) · ∂x(∂(k)x u(x, t)) = H(k) ,

where the matrix A(u) is the Jacobian matrix of the system (1.12) and H(k) is a function yielded
by the differentiation and including also the source term S(u)

H(k) = H(k)
(
∂(0)x u, ∂(1)x u, . . . , ∂(k)x u

)
.

To solve the GRPK efficiently, Toro and Titarev proposed the following simplifications: the source
term H(k) is neglected and the resulting homogeneous nonlinear equation is linearized around the
Godunov state. The linearization is denoted by

A
(0)
LR := A(u(xi+ 1

2
, tn + 0+))

and one ends up with a sequence of homogeneous, linearized, classical Riemann problems for each
k = 1, . . . ,K

∂t(∂
(k)
x u(x, t)) +A

(0)
LR · ∂x(∂(k)x u(x, t)) = 0 , x ∈ (−∞,∞) , t > 0 ,

∂
(k)
x u(x, 0) =





u
(k)
L , x < xi+ 1

2
,

u
(k)
R , x > xi+ 1

2
.

(1.24)
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1.3 Generalized Riemann problem and the ADER method

We denote again the similarity solutions of (1.24) by D(k)
(
(x− xi+ 1

2
)/t
)
yielding the higher order

terms

∂(k)x u(xi+ 1
2
, tn + 0+) = D(k)(0) .

We emphasize, that the Jacobian matrix A
(0)
LR needs to be evaluated only once and one has to

solve K linear PDEs which ensures smaller numerical costs. Numerical experiments show that
these simplifications are justified and one acquires a robust and accurate numerical method.

Altogether, plugging the terms ∂
(k)
x u(xi+ 1

2
, tn + 0+) = D(k)(0) for k = 0, 1, . . . ,K into equation

(1.22), one gets the approximation

uLR(τ) = D(0)(0) +
K∑

k=1

D(k)(0)
τk

k!
.

The numerical source (1.17) is treated in a similar way. One assumes, a high-order reconstruc-
tion of the exact solution u(x, t) is given for the initial time. Then, one possibility is to compute
the volume integral via some numerical quadrature using the appropriate weights and quadrature
points in the space domain. For each of these points, a time power series expansion is computed.
Further, the time derivatives are substituted with functions of spatial derivatives and the spatial
derivatives are evaluated on the initial data. This time-dependent function is then integrated over
the time interval. Alternatively, one computes a space-time power serious analogous to the case
(1.21) and replaces all time and mixed derivatives by spatial derivatives and integrates over time
and space. Both possibilities yield a high-order representation of the numerical source.

For the complete solution, one needs to solve one non-linear Riemann problem to get the leading
term and K linear Riemann problems for the higher-order terms. The leading term can be deter-
mined with a classical Riemann solver, exact or approximative. There is a variety on Riemann
solvers, see e.g., [64], where the exact Riemann solver for the Euler equations for ideal and covol-
ume gas is introduced or many approximative Riemann solvers, let us name the HLL, HLLC, the
Riemann solver of Roe or Osher and other ones. For the linear Riemann problem, many well-known
systems can be solved analytically, e.g., linearized gas dynamics (see [64]).

The reconstruction

The last task remaining to get a fully-discrete numerical scheme of higher order is to introduce a
reconstruction procedure to get initial data for GRPK and for the numerical source.
At any given time tn one has the data {uni }i available, defining a piece-wise constant approximation
of the exact solution. Based on these data, the spatial variation of the exact solution can be
reconstructed, usually with polynomials (so one gets a piece-wise polynomial approximation) or as
we will see in the chapter 3 with polyharmonic splines (where we will handle the more general case
of input data uni ). To this end, usually only the local data set is used to reconstruct the solution at
a given cell - one defines a set of neighbors of a given cell i, this set is called stencil, denoted by Si.
More specifically, for every two neighboring cells Ii and Ii+1, the corresponding reconstructions
Ri, based on data {unj }j∈Si , and Ri+1, based on data {unj }j∈Si+1 , are computed, such that

u(x, tn) ≈ Ri(x) , x ∈ Ii,

u(x, tn) ≈ Ri+1(x) , x ∈ Ii+1

with the appropriate approximation order K + 1. In order to keep the method conservative, the
reconstructions have to satisfy

1

∆x

∫

Ii

Ri = uni ,

1

∆x

∫

Ii+1

Ri+1 = uni+1 .
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1 Preliminaries

If we now take uL(x) := Ri(x) and uR(x) := Ri+1(x), the corresponding classical Riemann
problems (1.23) and (1.24) can be defined and solved for the initial data

u
(k)
L = lim

x→x
i+1

2 −

R
(k)
i (x) ,

u
(k)
R = lim

x→x
i+1

2 +

R
(k)
i+1(x)

for k = 0, . . . ,K.
The stencil can be chosen as a fixed stencil or a data-dependent stencil. The choice of a fixed
stencil leads to a linear scheme (i.e., the coefficients of the scheme are constant). According to the
Godunov’s theorem (see [17]), such a scheme is oscillatory if it is monotone and of accuracy greater
than one. That is why variable (adaptive) stencils should be used. Such reconstructions are called
non-linear reconstructions. These reconstructions can be chosen e.g., on the basis of TVD criterion
(see [64]) or using an ENO method (Essentially Non-Oscillatory), see [22]. The state-of-the-art is
the WENO method (Weighted Essentially Non-Oscillatory), which will be discussed in detail in
chapter 3.

1.4 B-splines

Let us briefly introduce B-spline functions in one dimension and some of their properties. B-splines
are of our interest since they build a partition of unity, have compact support and are positive on
it. Using these functions we can define a partition of unity needed in the finite volume particle
method (see chapter 2), allowing us to design a higher order scheme (see chapter 4).
The introduction is based on the textbook by Schaback and Wendland [50], where further theory
on B-splines can be found.

Definition and properties

Consider points . . . ≤ x−2 ≤ x−1 ≤ x0 ≤ x1 ≤ x2 ≤ . . ., such that limj→±∞ xj = ±∞.

Remark 1.31
The theory of B-splines allows multiple points xj (i.e., it is allowed xj = xj+1 = . . . = xj+k for
some j, k ∈ Z). In the construction of a high order finite volume particle method we will exclude
this case and will always require xj to be distinct.

Definition 1.32
Let X = {xj}j∈Z and m ∈ IN0. Define

ωmj (x) =

{
x−xj

xj+m−xj
, xj < xj+m ,

0 , otherwise .

Then the recursively defined functions

B0
j (x) = χ[xj ,xj+1)(x) =

{
1 , x ∈ [xj , xj+1) ,
0 , otherwise ,

and

Bmj (x) = ωmj (x)Bm−1
j (x) +

(
1− ωmj+1(x)

)
Bm−1
j+1 (x) , x ∈ R

will be called B-splines of degree m corresponding to point set X.
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1.4 B-splines

Example 1.33
B-splines of degree 0 are characteristic functions B0

j of intervals [xj , xj+1).

Example 1.34
For m = 1 one gets the so-called hat functions, i.e., piecesewise linear functions with compact
support. They will play an important role in chapter 4. More specifically, they are defined by

B1
j (x) =





x−xj

xj+1−xj
, x ∈ [xj , xj+1] ,

xj+2−x
xj+2−xj+1

, x ∈ [xj+1, xj+2] ,

0 , otherwise .

See also figure 1.3.

xj−2 xj−1 xj xj+1 xj+2

1

0

Figure 1.3: Example of linear B-splines B1
j .

We will denote by the symbol Pdm̃ the linear space of all d-variate polynomials of order at most m̃
(i.e., of degree at most m̃− 1). This notation for general d will be required in further chapters.

Proposition 1.35
The B-spline function Bmj consists of piecewise polynomial functions of degree at most m, more
specifically

Bmj (x) =

m+j∑

k=j

bmk (x)χ[xk,xk+1)(x) , x ∈ R ,

where bmk ∈ P1
m+1.

Further, Bmj is for xj < xj+m+1 positive on the interval (xj , xj+m+1) and equal to zero outside of
the interval [xj , xj+m+1]. More precisely it holds Bmj (xj+m+1) = 0 for all m ∈ IN0 and Bmj (xj) = 0
if xj < xj+m.

From the following identity one can deduce two important corollaries, saying that every polynomial
can be reproduced by B-splines and B-splines build a partition of unity on R.

Theorem 1.36 (Marsden identity)
Define ψj,0 ≡ 1 and ψj,m(x) = Πmi=1(xj+i − x), m ∈ IN0, j ∈ Z.
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1 Preliminaries

Then for every ξ ∈ R it holds

(x− ξ)m =
∑

j∈Z

ψj,m(ξ)Bmj (x) , x ∈ R .

Corollary 1.37
It holds P1

m+1 ⊆ span{Bmj : j ∈ Z}, m ∈ IN0. Every p ∈ P1
m+1 satisfies for arbitrary ξ ∈ R the

relation

p(x) =
∑

j∈Z

λj,m(p)Bmj (x) , x ∈ R ,

where

λj,m(p) =

m∑

l=0

(−1)l
p(m−l)(ξ)

m!
ψ
(l)
j,m(ξ) .

Corollary 1.38
B-splines build a partition of unity, i.e.,

∑

j∈Z

Bmj (x) = 1 , x ∈ R .
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2 Finite-volume particle method

The finite volume particle method (FVPM) is a relatively new method proposed in 1998 in the
paper of Hietel, Steiner and Struckmeier [24] for a multidimensional system of conservation laws.
This method combines advantages of FVM and meshfree particle methods, based on the Smoothed
Particle Hydrodynamics method (SPH) [45]. The resulting method is a highly flexible meshfree
method utilizing the concept of a numerical flux. Junk and Struckmeier [29] proposed then in
2000 a more stable discretization and could also prove a Lax-Wendroff consistency of the scheme
in the scalar case. It says, roughly speaking, that if a numerical solution by FVPM converges, then
it converges to a weak solution of the governing PDE. On the other hand, it does not guarantee
the convergence. For more details see [29] and for the background of the Lax-Wendroff theorem
in the case of finite volume methods see [39], where the theorem was slighly reformulated (with
essentially the same assumptions), which is especially useful for the class of TVD (Total Variation
Diminishing) methods. The original theorem can be found in [38].
Since then, more analysis of the scheme has been done. The FVPM combines two main features
- the numerical flux function from finite volume methods and the meshfree principle. A very
motivational text, where both, finite volume and finite volume particle method, are compared, was
written by Junk [30]. Different approaches for the correction procedure for geometrical coefficients
were proposed in [32],[58] and [59]. The particle motion was studied in [47] or [51] and also [59].
Some theoretical analysis, combining the method with B-splines and interesting physical examples
can be found in [31]. Boundary treatment is discussed in [59]. The topic of adaptivity was studied
in [51] or [37]. Also other authors deal with this topic, such as e.g., [19], [20], [23], [33], [48] or [60].
In [47], an approach using higher order space discretization and a predictor-corrector method for
the time discretization leads to a scheme of second order of accuracy.
The derivation of the FVPM is presented and its properties are discussed. We contribute to the
development of the method with a precise formulation of the correction procedure for geometrical
coefficients and also prove its correctness. Finally, we develop a new procedure to add and to
remove a particle without loss of conservativity of mass and constant states up to the machine
precision.

2.1 The derivation of finite volume particle method

Introduction

In this section, we follow [60] in the derivation of the method, which works with a bounded domain,
opposed to the original proposal done in [29], where the whole Rd was considered. The case of
moving boundary is described later in this thesis.

Let us consider a system of conservation laws in an open and bounded domain Ω ⊂ Rd

ut +∇ · F (u) = 0 in Ω ⊂ R
d , t > 0 (2.1)

with initial conditions

u( . , 0) = u0 in Ω ⊂ R
d (2.2)
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2 Finite-volume particle method

and with boundary conditions given by

B(u) = 0 in ∂Ω× (0,∞)

with a given operator B : U → R.
Let np ∈ IN . The functions

xi : [0,∞) → Ω , i = 1, . . . , np
t 7→ xi(t)

(2.3)

are called particles. These functions describe the motion of particle points located in the compu-
tational domain Ω.

Definition 2.1
Let W : R → R+ denote a compactly supported, non-negative and Lipschitz-continuous function
with a non-empty support. We define functions

Wi(x, t) := miW (x− xi(t)) , i = 1, . . . , np (2.4)

as a mass packet, where mi > 0 denotes the mass of the particle.
Further, we define the mass density

σ(x, t) :=

np∑

i=1

Wi(x, t)

and test functions

ψi(x, t) :=
Wi(x, t)

σ(x, t)
≥ 0 . (2.5)

Usually mi are set to 1. The test functions are compactly supported and positive on their support.
We assume, that

∀
t∈[0,∞)

∀
x∈Ω

∃
i∈{1,...,np}

Wi(x, t) 6= 0 . (2.6)

The last assumption stands for the condition, that the supports of functions ψi have to cover the
complete computational domain. From the properties of functions ψi also follows, that the sup-
ports of functions ψi overlap.

Observation 2.2

np∑

i=1

ψi(x, t) = 1 ,

np∑

i=1

∇xψi(x, t) = 0 .

We define volumes

Vi(t) :=

∫

Ω

ψi(x, t)dx , i = 1, . . . , np . (2.7)
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2.1 The derivation of finite volume particle method

Example 2.3

W (x) =





x+h
h , x ∈ [−h, 0) ,

−x+h
h , x ∈ [0, h) ,

0 , otherwise ,
(2.8)

where the parameter h > 0 is called the smoothing length. Examples on different choice of h are
shown in figure 2.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

Figure 2.1: Examples of functions ψi generated by function W in (2.8). The shape of all functions
is highlighted for one chosen function. On the left functions ψi for h = ∆x := xi+1 − xi, on the
right for h = 0.7∆x.

Example 2.4
Another example on W is

W (x) =






(x+ h)2 , x ∈ [−h,−h
2 ) ,

−x2 + h2

2 , x ∈ [−h
2 ,

h
2 ) ,

(x− h)2 , x ∈ [h2 , h) ,
0 , otherwise .

(2.9)

Examples with this W are shown in figure 2.2.

Derivation

Multiplying the equation (2.1) with the function ψi and integrating it over Ω leads to

∫

Ω

(ut +∇ · F (u))ψi dx = 0 ∀ i = 1, . . . , np ,

which yields after using the divergence theorem and interchanging the integral and derivation sign

d

dt

∫

Ω

ψiu dx =

∫

Ω

(ψi)t u dx+

∫

Ω

F (u) · ∇ψi dx−
∫

∂Ω

ψiF (u) · n dσ . (2.10)
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Figure 2.2: Examples of functions ψi generated by function W in (2.9). On the left, the shape of all
functions is highlighted for one chosen function, h = 2∆x. On the right one can see the functions
ψi for irregular random distribution of particles.

Define functions

Γij := ψi
∇Wj

σ
, i, j = 1, . . . , np.

Proposition 2.5
For i = 1, . . . , np it holds

(ψi)t =

np∑

j=1

(ẋjΓij − ẋiΓji) , (2.11)

∇ψi =

np∑

j=1

(Γji − Γij) , (2.12)

where ẋi = ẋi(t) =
d
dtxi(t) denotes the derivative of xi with respect to the time variable t.

Proof.
See [24].

Remark 2.6
In order to keep the notation simple, we will denote by ẋjΓij the standard scalar product ẋTj Γij of
vectors ẋj and Γij .

Denoting the boundary term

Bi :=
∫

∂Ω

ψiF (u) · n dσ

and using the proposition 2.5 substitute the corresponding terms (ψi)t and ∇ψi in the equation
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2.1 The derivation of finite volume particle method

(2.10)

d

dt

∫

Ω

ψiu dx =

np∑

j=1

∫

Ω

F (u) · (Γji − Γij) dx (2.13)

+

np∑

j=1



∫

Ω

u (ẋjΓij − ẋiΓji) dx


− Bi

=

np∑

j=1

∫

Ω

(F (u)− u⊗ ẋi) · Γji

−
np∑

j=1

∫

Ω

(F (u)− u⊗ ẋj) · Γij − Bi .

Let us assume, that u varies only slightly around a constant value ū on the intersection of the
supports of functions ψi and ψj as well as ẋi ≈ ẋj := ẋ, e.g., ẋ =

ẋi+ẋj

2 . Then

d

dt

∫

Ω

ψiu dx ≈ −
np∑

j=1

(F (ū)− ū⊗ ¯̇x) ·
∫

Ω

(Γij − Γji) dx − Bi .

We denote

γij(t) :=

∫

Ω

Γij(x, t) dx , i, j = 1, . . . , np

and acquire

d

dt

∫

Ω

ψiu dx ≈ −
np∑

j=1

(F (ū)− ū⊗ ¯̇x) · (γij − γji)− Bi . (2.14)

Remark 2.7
Note, that the functions Γij as functions of x are located on the intersection of supports of functions
ψi and ψj. Then γij = 0 for non-overlapping particles and for overlapping particles we only have
to compute the integral over the intersection ψi ∩ ψj and not over the whole domain Ω. The
computation of Γij is therefore local.

We define new quantities, the coefficients

ui(t) :=
1

Vi(t)

∫

Ω

u(x, t)ψi(x, t) dx , (2.15)

which denote the weighted integral mean of the function u with respect to the weight function ψi,
and

βij := γij − γji , nij :=
βij

|βij |
, (2.16)

where the vector nij plays a similar role as the outer unit normal vector between two neighboring
cells in FVM. Using this notation, one gets

d

dt
(uiVi) ≈ −

np∑

j=1

|βij |gij − Bi , (2.17)

where we approximate

(F (ū)− ū⊗ ¯̇x) · nij ≈ gij = g(t,xi,xj ,ui,uj ,nij) (2.18)
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2 Finite-volume particle method

with a function gij that is constructed on the basis of a numerical flux function from the framework
of FVM. Neglecting the error we arrive at a system of ODEs

d

dt
(uiVi) = −

np∑

j=1

|βij |gij − Bi ∀ i = 1, . . . , np . (2.19)

We want to choose arbitrarily the quantities ẋi, i = 1, . . . , np, whereas γij , βij can be computed
and the discretization of Bi will be specified later. The only unknowns are therefore ui and Vi, for
which we have only one equation. To get the second one, one can compute the integral (2.7) using
a numerical quadrature or differentiate the equation (2.7) w.r.t. the time t:

d

dt
Vi(t) =

np∑

i=1

(
ẋjγij − ẋiγji

)
.

Finally, one gets the following closed system of ODEs

ẋi(t) = a(xi, t,ui) , (2.20)

V̇i(t) =

np∑

j=1

(
ẋjγij − ẋiγji

)
, (2.21)

d

dt
(uiVi) = −

np∑

j=1

|βij |gij − Bi (2.22)

for all i = 1, . . . , np. The vector a(x, t,u) is an arbitrarily chosen velocity field. The initial
condition is given by the initial values xi(0) and

Vi(0) =

∫

Ω

ψi(x, 0)dx ,

ui(0) =
1

Vi(0)

∫

Ω

u0(x)ψi(x, 0)dx .

The semi-discrete scheme (2.20) - (2.22) can be discretized in the time variable e.g., with the
explicit Euler method yielding

ẋni = a(xni , t
n,uni ) ,

V n+1
i = V ni +∆t

np∑

j=1

(
ẋnj γ

n
ij − ẋni γ

n
ji

)
,

un+1
i V n+1

i = uni V
n
i −∆t

np∑

j=1

|βnij |gnij − Bi

for all i = 1, . . . , np. In the above scheme, we use the upper index n to denote the specific quantity
at a fixed time tn. The initial conditions are

x0
i = xi(0) ,

u0
i =

1

V 0
i

∫

Ω

u0(x)ψi(x, 0)dx ,

V 0
i =

∫

Ω

ψi(x, 0)dx .

We remark that also another discretization of the scheme in the time variable is possible, e.g.,
using some multi-step method or a predictor-corrector procedure, as in [47]. Another possibility
to discretize is via integrating the equation (2.22) over a time interval as we will do in the chapter
4 to get a higher order scheme.
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2.2 Properties of FVPM

If we discretize the time interval [0, T ], T > 0 as 0 = t0 < t1 < t2 < . . . < tNT = T , then the
numerical solution of the problem (2.1)-(2.2) via FVPM is defined by

uh(x, t) =

NT∑

n=0

np∑

i=1

uni ψi(x, t)χ[tn,tn+1)(t) , x ∈ Ω , t ∈ [0, T ] . (2.23)

Remark 2.8
In each time step, the numerical solution via FVPM is defined as a linear combination of basis
functions {ψi}np

i=1 with coefficients uni defined in (2.15). These coefficients approximate the weighted
integral means of the exact solution

1

V ni

∫

Ω

u(x, tn)ψi(x, t
n)dx ≈ uni .

As we will see later, since the functions {ψi}np

i=1 build a partition of unity and under further
assumptions on the numerical flux, this numerical scheme is conservative and reproduces constant
functions.

As well as in the FVM, the CFL-condition is an important part of the method that provides the
stability. For particular choices of CFL-condition we refer to [31] and [59].

2.2 Properties of FVPM

Geometrical coefficients

The coefficients βij from (2.16) are called geometrical coefficients. Since they are of particular
importance in the FVPM scheme, we will look at them in detail. Their geometrical interpretation
in comparison to FVM can be found in [30]. The following proposition lists properties of the geo-
metrical coefficients. Some of them are important for a correct numerical behavior of the method,
as we will see later.

Proposition 2.9
The coefficients βij satisfy the following relations

βij = −βji , ∀ i, j = 1, . . . , np , (2.24)

βij = 0 , if supp ψi ∩ ψj = ∅ , (2.25)

βii = 0 , ∀ i = 1, . . . , np , (2.26)

(2.27)

np∑

j=1

βij =





0 , if supp ψi ∩ ∂Ω = ∅ ,

−
∫
∂Ω

ψindσ , if supp ψi ∩ ∂Ω 6= ∅ ,
(2.28)

(2.29)

|βij | = O(hd−1) , h→ 0 , (2.30)

βij = 2

∫

Ω

ψi∇ψjdx−
∫

∂Ω

ψiψjndσ . (2.31)

Proof.
See [59].

Remark 2.10
The quantity h should be understood as the smoothing length, see (2.8) and (2.9) (for more details
see [59] or [60]). In one spatial dimension, it is usually half the length of the support of the func-
tions ψi. For example, in the case of uniform distribution of particle with distance ∆x, h is chosen
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2 Finite-volume particle method

as some positive multiple of ∆x. In more dimensions, depending on the definition of functions ψi,
it is, e.g., half of the diameter of the support of ψi. It has a similar meaning as the mesh size h in
the case of mesh-based methods.

Proposition 2.11 ([59])
If Ω = R, then for every x̄ ∈ R, we have

∑

xi(t)≥x̄

∑

xj(t)≥x̄

βij(t) = 1 ∀t ≥ 0 .

Correction procedure

The properties (2.24)-(2.28) ensure the proper behavior of the numerical solution via FVPM. If
we can compute the coefficients βij exactly, e.g., using B-splines in one dimension as the partition
of unity, the scheme will work properly. Otherwise, we have to use some numerical quadrature to
compute the geometrical coefficients. If we use the definition (2.16) rather than the formula (2.31),
the equation (2.24) will be satisfied as well as (2.25) and (2.26). However, the relation (2.28) does
not have to hold due to the discretization errors of the numerical quadrature applied to compute the
geometrical coefficients. Since the usage of a high order accurate numerical quadrature causes high
computational costs, other approaches were developed - see [32] and [58], where the geometrical
coefficients have been corrected, and [59], where the FVPM scheme has been modified. We will
follow the approach proposed in [32] and formulate the algorithm also for the case of bounded
domain Ω and prove its correctness. We remark that this approach can be found also in [70].
The principle of the algorithm is the following: for each particle i ∈ {1, . . . , np} we compute the
error of the sum

∑np

j=1 βij and shift it to the next particle i + 1. So all the errors are shifted to
the last particle. From the lemma 2.12 and theorem 2.15 it then follows, that the error does not
accumulate there, see also remark 2.14.
More specifically, we compute the geometrical coefficients out of the definition (2.16) using a

numerical quadrature as a first guess. These coefficients will be denoted by β̃ij . As already

mentioned, the conditions (2.24)-(2.26) are satisfied for β̃ij .
We denote by

Θi :=






0 , if supp ψi ∩ ∂Ω = ∅

−
∫
∂Ω

ψindσ , if supp ψi ∩ ∂Ω 6= ∅
(2.32)

the desired value of
np∑
j=1

β̃ij , which coincides with the condition (2.28). But due to the numerical

integration we have

np∑

j=1

β̃ij = Θi +Ei , (2.33)

where Ei denotes the error of the sum
∑np

j=1 β̃ij . The following proposition shows, that these
errors do not accumulate.

Lemma 2.12
The sum of errors defined in (2.33) satisfies

np∑

i=1

Ei = 0 . (2.34)
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2.2 Properties of FVPM

Proof.
According to the definition (2.33) it holds

np∑

i=1

Ei =

np∑

i,j=1

β̃ij −
np∑

i=1

Θi .

Further, since (2.24) and (2.26) hold, we have

np∑

i,j=1

β̃ij =

np∑

i=1

np∑

j=1

j 6=i

β̃ij +

np∑

i=1

β̃ii = 0 .

For the second term we can conclude

np∑

i=1

Θi =

np∑

i=1



−
∫

∂Ω

ψindσ



 = −
∫

∂Ω

np∑

i=1

ψindσ = −
∫

∂Ω

ndσ = 0 ,

which proves the statement.

The correction procedure, in which the terms β̃ij (computed via numerical quadrature) are cor-
rected to βij , follows.

Algorithm 2.13

Input: β̃ij , i, j = 1, . . . , np. Output: βij, i, j = 1, . . . , np.

1. For i = 1, . . . , np − 1:

a) compute Θi according to (2.32) ,

b) compute Ei =
np∑
j=1

β̃ij −Θi .

2. For i = 1, . . . , np − 1:

Define
βi,i+1 := β̃i,i+1 −

∑i
k=1 Ek ,

βij := β̃ij , j = 1, . . . , np; j 6= i± 1 ,

βi+1,i := β̃i+1,i +
∑i

k=1 Ek .

3. For j = 1, . . . , np; j 6= np − 1:

Define βnp,j := β̃np,j .

Remark 2.14
In order to express the algorithm in words, consider (β̃ij)i,j to be a matrix. Then for every

i = 1, . . . , np − 1 we sum the β̃ij and after subtracting the boundary value Θi we get the “row”

error Ei. This error is added with a minus sign to the “upper diagonal” term β̃i,i+1, so that
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2 Finite-volume particle method

the equation
∑np

j=1 βij = 0 holds. In order to preserve the skew-symmetry condition (2.24), it is

necessary to modify also the “lower diagonal” term β̃i+1,i by adding the error (with a plus sign).
Then one moves from the “row” i to the next “row” i+1 and repeats the procedure. The errors Ei
are hereby shifted to the last particle (while the condition (2.28) being fixed), where, due to lemma
2.12, they do not accumulate.

Theorem 2.15
Under the assumption

supp ψi ∩ supp ψi+1 6= ∅ ∀ i = 1, . . . , np − 1 , (2.35)

the coefficients βij , i, j = 1, . . . , np, defined in the algorithm 2.13, satisfy the conditions (2.24) -
(2.28).

Proof.
Consider (βij)ij as a matrix. Then, the only modified coefficient β̃ij are obviously the upper

diagonal (β̃i,i+1, i = 1, . . . , np − 1) and the lower diagonal terms (β̃i+1,i, i = 1, . . . , np − 1). For

the remaining β̃ij the conditions (2.24) - (2.26) hold.

Because of the assumption (2.35), the modification of the terms β̃i,i+1 and β̃i+1,i does not violate
the condition (2.25).
Due to the 2. step of the algorithm we have for i = 1, . . . , np − 1

βi,i+1 = β̃i,i+1 −
i∑

k=1

Ek

and

βi+1,i = β̃i+1,i +

i∑

k=1

Ek
(2.24)
= −β̃i,i+1 +

i∑

k=1

Ek = −βi,i+1 ,

which is the condition (2.24) for βi,j .

Finally, the condition (2.28) holds for βi,j , since

i = 1 :
np∑
j=1

βi,j =
np∑
j=1

j 6=i+1

β̃i,j +
(
β̃i,i+1 −Ei

)
=

np∑
j=1

β̃i,j −Ei = Θi ,

1 < i < np :
np∑
j=1

βi,j =
np∑
j=1

j 6=i±1

β̃i,j +

(
β̃i,i−1 +

i−1∑
k=1

Ek

)
+

(
β̃i,i+1 −

i∑
k=1

Ek

)

=
np∑
j=1

β̃i,j −Ei = Θi ,

i = np :
np∑
j=1

βi,j =
np∑
j=1

j 6=i−1

β̃i,j +

(
β̃i,i−1 +

i−1∑
k=1

Ek

)
=

np∑
j=1

β̃i,j +
i−1∑
k=1

Ek

= Θi +Ei +
i−1∑
k=1

Ek = Θi +
i∑

k=1

Ek = Θi .
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2.2 Properties of FVPM

Remark 2.16
The condition (2.35) ensures (2.25) to hold and can be achieved in the one dimensional case with
a simple ordering of the particles according to their position.

General properties

Proposition 2.17 ([59])
It holds

Vi = O(hd) , h→ 0 ,

where d is the spatial dimension.

We extend the result from [59] to particles moving with constant velocity:

Lemma 2.18 (Preserving constant states)
Consider the semi-discrete scheme (2.20)-(2.22). Assume that the velocity field is constant, i.e.,

ẋi(t) = a0 ∀ t ∈ [0,∞)

for a0 ∈ Rd. If gij is a consistent numerical flux in the case of constant velocity field, i.e., if it
holds for every c ∈ Rm

(F (c)− c⊗ a0) · nij = gij = g(t,xi,xj , c, c,nij) ,

then the scheme (2.20)-(2.22) preserves constant states.

Proof.
We recall the equation (2.22)

u̇iVi + uiV̇i = −
np∑

j=1

|βij |gij − Bi .

Plugging (2.21) into this yields

u̇iVi = −
np∑

j=1

|βij |gij − Bi − ui

np∑

j=1

(
ẋjγij − ẋiγji

)
.

Now consider the constant state ui = c ∈ Rm for all i = 1, . . . , np. Then

u̇iVi = −
np∑

j=1

|βij |(F (c) − c⊗ a0) · nij − Bi − c

np∑

j=1

(
a0γij − a0γji

)

= −
np∑

j=1

(F (c) − c⊗ a0) · (γij − γji)−
∫

∂Ω

ψiF (c) · n dσ − c⊗ a0 ·
np∑

j=1

(
γij − γji

)

= −
np∑

j=1

F (c) · (γij − γji)−
∫

∂Ω

ψiF (c) . n dσ

= −F (c) ·




np∑

j=1

βij +

∫

∂Ω

ψin dσ



 (2.28)
= 0
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2 Finite-volume particle method

Teleaga showed in [60], that the FVPM is conservative in the sense of classical finite volume
method:

Theorem 2.19 (Conservativity, [60])
If the numerical flux function g has the conservative property, i.e.,

g(t,xi,xj ,ui,uj ,nij) = −g(t,xj ,xi,uj ,ui,−nij) ,

and the coefficients βij satisfy the skew symmetry condition (2.24), then the FVPM (2.20)-(2.22)
is conservative in the sense that

d

dt

(
np∑

i=1

Viui

)
= −

∫

∂Ω

F (u) · n dσ .

Theorem 2.20 (Approximation property, [31] and [33])
Let the barycenter with respect to the test function ψi be defined as

bi :=
1

Vi

∫

Ω

xψi(x)dx

and assume u ∈ C2(Ω).
Then the discrete quantity ui satisfies, with respect to h = diam(supp ψi), the approximation
property

ui = u(bi) +O(h2) .

Theorem 2.21 (Approximation property, [32])
For the reconstruction (2.23) it holds

uh(x, t) = u(x, t) +O(h) ∀ (x, t) ∈ Ω× [0, T ] .

The approximation quality of the reconstruction (2.23) was verified for two-dimensional case.
Teleaga showed in [59] under suitable assumptions, that, for fixed t > 0, a scalar function
u(·, t) ∈ H1(Ω), Ω ⊂ R2 open set, can be approximated with uh(·, t) from (2.23) with the er-
ror

‖uh(·, t)− u(·, t)‖L2(Ω) ≤ Ch‖∇u‖L2(Ω) ,

where the constant C > 0 does not depend on h.
Under further assumptions, Junk and Struckmeier [29] proved a Lax-Wendroff consistency result
for the semi-discrete form of FVPM, i.e., if the numerical solution converges, then it convergences
to a weak solution of the original PDE.
Under suitable assumptions, a L∞-stability result for the scalar multidimensional case was given
by Kaland [31] in the sense that

‖uh(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd) ∀t > 0 .

Considering these assumptions, positivity preserving property, L1-estimate, weak BV-stability,
monotonicity and discrete entropy inequality for the FVPM scheme were also shown. For more
details, see [31].
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2.2 Properties of FVPM

Particle motion

As derived, the FVPM offers the possibility to define the particle motion arbitrarily. It is advan-
tageous for problems with moving boundary, as treated in [31] or [59], since the change of the
boundary is implicitly a part of the formulation of the method. However, the original scheme
(2.20)-(2.22) has to be reformulated, since the domain Ω = Ω(t) depends on time t.
Assume, that the boundary Γ(t) of the domain Ω(t) is moving with a velocity b(x, t), i.e.,

Γ(t) =




x(t) ∈ R
d
∣∣∣ x(t) = x0 +

t∫

0

b(x(τ), τ)dτ , x0 ∈ Γ0




 ,

where Γ0 is the initial boundary.
Considering (2.1) with Ω = Ω(t), multiplying with ψi and integrating over Ω(t), one gets the
equation (2.10) with new terms containing the velocity b

d

dt

∫

Ω(t)

uψi dx =

∫

Ω(t)

d

dt
(uψi) dx+

∫

∂Ω(t)

ψiu⊗ b · n dσ

=

∫

Ω(t)

(ψi)t u dx+

∫

Ω(t)

F (u) · ∇ψi dx−
∫

∂Ω(t)

ψi (F (u)− u⊗ b) · n dσ .

The derivation of the system of ODEs can be continued exactly as before and one ends up with
the system

ẋi(t) = a(xi, t,ui) ,

V̇i(t) =

np∑

j=1

(
ẋjγij − ẋiγji

)
+

∫

∂Ω(t)

ψib · ndσ ,

d

dt
(uiVi) = −

np∑

j=1

|βij |gij −
∫

∂Ω(t)

ψi (F (u)− u⊗ b) · n dσ .

The terms Vi(t) can be alternatively computed out of the definition (2.7).
Numerical experiments concerning problems with moving boundaries were shown in [59] (model of
a flow around an oscillating circle in two dimensions) and [31] (linearized piston problem).

In another approach, the particles are understood as physical particles carrying some physical
information. So, e.g., in fluid dynamics we would consider the particles as particles of the fluid
having velocity given by the fluid. Such particles are called (purely) Lagrangian particles. However,
the use of purely Lagrangian particles can cause several numerical difficulties as first observed by
Schick [51]. In special situations, for example near a discontinuity, the particles can incline to
accumulate, which, due to a CFL condition, makes the time step smaller and the computational
costs higher. Big variations of particle density can also cause numerical instabilities. Last but not
least, following the Lax-Wendroff consistency result for FVPM, the variations in the velocity of
the particles are required to be small. In the example given by Schick, this cannot be achieved
with purely Lagrangian particles.
To overcome these difficulties, Schick proposed to introduce “repelling forces” between the particles
to avoid the particles to get too close to each other. More specifically, consider the one-dimensional
case. Let uni = u(xi, t

n) denote the Lagrangian velocity of the fluid. Then the velocity of purely
Lagrangian particles is defined as

ẋni := uni .

Schick added to it a correction term

ẋni := uni + qni ,
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2 Finite-volume particle method

where

qni :=
∑

j

r(xni − xnj )nij

with nij = sgn(xni − xnj ) and r(x) being some function approximating the function f(x) = 1
x2 .

A similar idea was presented later in [47]. The velocity is computed at every time step tn, the
index n will be omitted here. For the multidimensional case the velocity

ẋi := ui + u′
i

was introduced. The correction term u′
i is defined as

u′
i = C

r̄i
∆t

Ri ,

where

r̄i =
1

#N(i)

∑

k∈N(i)

rik

is the average particle spacing in the neighborhood N(i) of i. C is a constant, in [47] set to 1/1000
and

Ri =
∑

k∈N(i)

1
(
rik
r̄i

)2nik ,

where rik and nik are the distance and unit vector, respectively, from particle i to particle k. The
approach was also demonstrated on relevant numerical examples.

Remark 2.22
In [47], the particle velocity in the numerical flux is computed as the average velocity of particles
i and j. More general definition of the velocity used in the numerical flux (depending then on the
choice of functions ψi) can be found in [31].

2.3 Adding a particle

Similarly to mesh-based methods, it is useful to have a possibility to add a new particle to the
given particle distribution during the computation. Having this, we can, e.g., refine the particle
distribution in the vicinity of a discontinuity to get a better resolution there. Another reason,
on the contrary to the mesh-based methods, is, that using moving particles can cause their poor
distribution in the computational domain or even “gaps” in their distribution. In other words,
non-overlapping particles arise, i.e., the condition (2.6) is violated. To avoid this situation, a
procedure of adding a particle is proposed. If a special choice of partition of unity is used, e.g.,
B-splines, specific properties of this partition of unity can be used to add a new particle in another,
possibly better, way. Anyway, the proposed procedure is general and can be used for every type
of particle functions building a partition of unity. In our approach, the supports of the original
particle functions do not change.
The addition of a new particle takes place at a fixed time t = tn and does not depend on the time
variable. For the sake of notation simplicity all functions appearing in this chapter will not depend
on the time variable t.
Refining of the particle distribution can be seen as a local operation. Then such a procedure of
adding a new particle should be defined as a local procedure. Furthermore, a standard requirement
is to preserve the mass and constant states. As we will see, the naive direct approach is a global
operation causing high computational costs. Our approach “localizes” these operations in order to
get a local method preserving mass and constant states at the same time.
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2.3 Adding a particle

The scheme to add a particle

Let us consider a set of particles {xi}np

i=1 in a bounded domain Ω ⊂ Rd defined in (2.3) and a
corresponding set of particle basis functions {ψi}np

i=1 defined in (2.5), such that (2.6) holds, with
the coefficients {ui}np

i=1 defined in (2.15) for some function u.
The linear combination

uh(x) =

np∑

i=1

uiψi(x)

builds an approximation of the function u given by FVPM (cf. (2.23)).

The scheme to add a new particle proceeds as follows:

Scheme 2.23

1. Define a new particle set {x+
i }

np+1
i=1 , such that

x+
i = xi , i = 1, . . . , np

and a new particle x+
np+1 ∈ Ω.

2. Define new particle basis functions {ψ+
i }

np+1
i=1 due to the definition (2.5) corresponding with

the particles {x+
i }

np+1
i=1 . It is assumed that the position of x+

np+1 is chosen in such a way, that

(2.6) holds for functions {ψ+
i }

np+1
i=1 . The functions {ψ+

i }
np+1
i=1 will build another partition of

unity in Ω.

3. Define new coefficients {u+
i }

np+1
i=1 (the specific choice will be shown later).

4. Define the new function

u+
h (x) :=

np+1∑

i=1

u+
i ψ

+
i (x) , x ∈ Ω .

Definition 2.24
We say that the scheme 2.23 preserves constant states if

uh(x) = C ,C ∈ R
m =⇒ u+

h (x) = C . (2.36)

We say that the scheme 2.23 preserves the conservativity property if

∫

Ω

uh(x)dx =

∫

Ω

u+
h (x)dx . (2.37)

Remark 2.25
Remark that

∫

Ω

uh(x)dx =

∫

Ω

u+
h (x)dx ⇐⇒

np∑

i=1

uiVi =

np+1∑

i=1

u+
i V

+
i .
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2 Finite-volume particle method

Let us now look at the step 3 of the adding procedure in more detail. The standard direct approach
would yield the definition

ũ
+
i :=

1

V +
i

∫

Ω

uh(x)ψ
+
i (x)dx =

1

V +
i

∫

Ω

np∑

j=1

ujψj(x)ψ
+
i (x)dx (2.38)

for i = 1, . . . , np+1. One can show, that the conditions (2.36) and (2.37) hold. The big disadvantage
of this approach is its global impact, i.e., after adding a particle we have to compute all coefficients
ũ
+
i , i = 1, . . . , np + 1 according to

ũ
+
i =

1

V +
i

np∑

j=1

uj

∫

Ω

ψj(x)ψ
+
i (x)dx 6= ui ,

since
∫
Ω ψj(x)ψ

+
i (x)dx 6= δij

∫
Ω ψ

+
i (x)dx = δijV

+
i , i, j = 1, . . . , np due to the overlapping of par-

ticles.

One can observe, that only the functions neighboring to ψ+
np+1 change after a particle has been

added and for the remaining ones it holds

ψ+
i = ψi , if supp ψ+

i ∩ supp ψ+
np+1 = ∅ , i ∈ {1, . . . , np}.

We see that the basis built with {ψi}np

i=1 differs from the new basis {ψ+
i }

np+1
i=1 only locally in the

surrounding of the added particle ψ+
np+1. Therefore, steps 1 and 2 are local.

The following definitions and lemmata are auxiliary steps for theorem 2.35, where coefficients
u+
i of our method are defined.

Definition 2.26
The sets of neighbors of the particle ψ+

np+1 are defined as

J := {j ∈ IN | supp ψj ∩ supp ψ+
np+1 6= ∅} ,

J+ := J ∪ {np + 1} .

Condition 2.27
Let ω ⊂ Ω be an open set. We define the condition

supp ψ+
n+1 ⊂ ω . (2.39)

Definition 2.28

∆j := supp ψj ∩ ω , j = 1, . . . , np ,

∆+
j := supp ψ+

j ∩ ω , j = 1, . . . , np + 1 ,

Vj :=

∫

∆j

ψj , V̊j :=
∫

supp ψj \ ∆j

ψj , j = 1, . . . , np ,

V+
j :=

∫

∆+

j

ψ+
j , V̊+

j :=

∫

supp ψ+

j
\ ∆+

j

ψ+
j , j = 1, . . . , np + 1 .
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Lemma 2.29
Let ω ⊂ Ω be an open set. Then we have for j = 1, . . . , np

∆+
j = ∆j ,

supp ψ+
j \ ∆+

j = supp ψj \ ∆j ,

ψ+
j = ψj on supp ψ+

j \ ∆+
j ,

Vj = Vj + V̊j
and for j = 1, . . . , np + 1

V +
j = V+

j + V̊+
j .

Proof.
The claims follow directly from the definitions.

Lemma 2.30
If ω ⊂ Ω satisfies (2.39), then

V̊+
j = V̊j , j = 1, . . . , np ,

V̊+
np+1 = 0 .

Proof.
For j ∈ {1, . . . , np}:

V̊+
j =

∫

supp ψ+

j
\ ∆+

j

ψ+
j =

∫

supp ψ+

j
\ ∆+

j

ψj =

∫

supp ψj \ ∆j

ψj = V̊j

and

V̊+
np+1 =

∫

supp ψ+

np+1
\ ∆+

np+1

ψ+
np+1 =

∫

∅

ψ+
np+1 = 0 .

Condition 2.31
Let ω ⊂ Ω be an open set. We define a set of indices K ⊂ {1, . . . , np}, such that

∑

j∈K

ψj(x) = 1 ∀ x ∈ ω . (2.40)

Definition 2.32
We define the set

K+ := K ∪ {np + 1} .
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2 Finite-volume particle method

Lemma 2.33
Let {ψj}np

j=1, {ψ+
j }

np+1
j=1 be the above defined partitions of unity in Ω, ω ⊂ Ω an open set and K

satisfy (2.40). Then:

a) K+ satisfies (2.40), i.e.,
∑

j∈K+

ψ+
j (x) = 1 ∀ x ∈ ω .

b) i ∈ {1, . . . , np} , i 6∈ K ⇒ supp ψi ∩ ω = ∅ , supp ψ+
i ∩ ω = ∅ .

c) If ω satisfies (2.39), then J ⊂ K and J+ ⊂ K+.

Proof.

a) K is a set of some indices of functions ψi where {ψi}np

i=1 build a partition of unity in Ω and
{ψi}i∈K build a partition of unity in ω. Then K+ is a set of some indices of functions ψ+

i

where {ψ+
i }

np+1
i=1 build a partition of unity in Ω and {ψ+

i }i∈K+ build a partition of unity in
ω.

b) Let us consider supp ψi ∩ ω 6= ∅. Then there exists x0 ∈ supp ψi ∩ ω, such that ψi(x0) > 0
and one can write

1 =

np+1∑

j=1

ψj(x0)
ψj≥0

≥ ψi(x0) +
∑

j∈K

ψj(x0) = ψi(x0) + 1 > 1 .

Hence, we have contradiction.
The proposition for supp ψ+

i follows from supp ψi = supp ψ+
i .

c) Follows directly from b).

Lemma 2.34
Let {ψj}np

j=1 and {ψ+
j }

np+1
j=1 be the above defined partitions of unity. Let ω be an open set satisfying

(2.39). Then it holds

a)
∑
j∈J

Vj =
∑
i∈J+

V +
i ,

∑
j 6∈J

Vj =
∑
i6∈J+

V +
i .

b)
∑
j∈J

Vj =
∑
i∈J+

V+
i .

c) Let K satisfy (2.40). Then

∑

j∈K

Vj =
∑

i∈K+

V +
i ,

∑

j 6∈K

Vj =
∑

i6∈K+

V +
i .

d) Let K satisfy (2.40). Then
∑
j∈K

Vj =
∑

i∈K+

V+
i .

Proof.
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2.3 Adding a particle

a)

1 =

np∑

j=1

ψj(x) ⇒ |Ω| =
np∑

j=1

∫

Ω

ψj(x)dx =

np∑

j=1

Vj ,

1 =

np+1∑

i=1

ψ+
i (x) ⇒ |Ω| =

np+1∑

i=1

∫

Ω

ψ+
i (x)dx =

np+1∑

i=1

V +
i ,

i.e.,

np∑

j=1

Vj =

np+1∑

i=1

V +
i .

Because of

ψ+
i = ψi , if supp ψ+

i ∩ supp ψ+
n+1 = ∅ , i ∈ {1, . . . , np} ,

it holds

Vi = V +
i , i ∈ {1, . . . , np} \ J .

Then

∑

j 6∈J

Vj =
∑

i6∈J+

V +
i ,

because {j 6∈ J} = {i 6∈ J+}. Finally,

∑

j 6∈J

Vj +
∑

j∈J

Vj =

np∑

j=1

Vj =

np+1∑

i=1

V +
i =

∑

i6∈J+

V +
i +

∑

i∈J+

V +
i

gives

∑

j∈J

Vj =
∑

i∈J+

V +
i .

b) Due to lemma 2.29 it holds

Vj = Vj + V̊j , j ∈ J .

Then

∑

j∈J

Vj =
∑

j∈J

Vj +
∑

j∈J

V̊j

⇒
∑

j∈J

Vj =
∑

j∈J

Vj −
∑

j∈J

V̊j =
∑

i∈J+

V +
i −

∑

i∈J+

V̊+
i =

∑

i∈J+

V+
i ,

where we used the statements of lemma 2.29 and 2.30.

c) and d) follow immediatelly from a), b) and lemma 2.33c).

To keep the notation in the next theorem simple, we set

unp+1 := 0 .
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2 Finite-volume particle method

Theorem 2.35
Let ω ⊂ Ω be an open set and K ⊂ {1, . . . , np}, such that (2.39) and (2.40) hold.
We define

u+
i :=

1

V +
i

[ ∫

ω

∑

j∈K

ujψj(x)ψ
+
i (x)dx+ uiV̊+

i

]
, i ∈ K+, (2.41)

u+
i := ui , i ∈ {1, . . . , np + 1} \K+. (2.42)

Then the scheme 2.23 preserves constant states, i.e., the condition (2.36) holds, and the conserva-
tivity property (2.37) is satisfied. Especially, we have

∑

i∈K+

u+
i V

+
i =

∑

i∈K

uiVi .

Proof.
We will show in two separate steps that (2.36) and (2.37) hold:

1) (2.36) holds:
A constant function uh(x) can be written as uh(x) =

∑np

i=1 uiψi(x), where ui = C, C ∈ R
m

is a constant vector, i.e., uh(x) = C
∑np

i=1 ψi(x) = C. Then for i ∈ {1, . . . , np + 1} \K+

u+
i = C

and for i ∈ K+

u+
i =

1

V +
i

[
C

∫

ω

∑

j∈K

ψj(x)ψ
+
i (x)dx+CV̊+

i

]

(2.40)
=

C

V +
i

[ ∫

ω

ψ+
i (x)dx+ V̊+

i

]

=
C

V +
i

[ ∫

∆+

i

ψ+
i (x)dx+ V̊+

i

]
=

C

V +
i

[
V+
i + V̊+

i

]
= C .

Hence, u+
i = C, i = 1, . . . , np+1, and therefore u+

h (x) =
∑np+1

i=1 u+
i ψ

+
i (x) =

∑np+1
i=1 Cψ+

i (x) =
C and (2.36) holds.

2) (2.37) holds:

∑

i∈K+

u+
i V

+
i =

∫

ω

∑

j∈K

ujψj(x)
∑

i∈K+

ψ+
i (x)dx+

∑

i∈K+

uiV̊+
i

(2.40)
=

∫

ω

∑

j∈K

ujψj(x)dx+
∑

i∈K+

uiV̊+
i

=
∑

j∈K

uj

∫

∆j

ψj(x)dx+
∑

i∈K

uiV̊i =
∑

j∈K

ujVj +
∑

i∈K

uiV̊i

=
∑

i∈K

ui(Vi + V̊i) =
∑

i∈K

uiVi .

According to lemma 2.33, if i 6∈ K+, then supp ψ+
i ∩ ω = ∅ and further, according to lemma

2.29, it holds

V +
i = Vi , i ∈ {1, . . . , np + 1} \K+.
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2.3 Adding a particle

Finally,

np+1∑

i=1

u+
i V

+
i =

∑

i∈K+

u+
i V

+
i +

∑

i6∈K+

u+
i V

+
i

=
∑

i∈K

uiVi +
∑

i6∈K

uiVi =

np∑

i=1

uiVi ,

so (2.37) holds.

Remark 2.36
The formula for u+

i in (2.41) is similar to (2.38). But now we split the integrand from (2.38) into
two parts: First, we integrate over ω, where (2.40) holds, and (2.36) and (2.37) can be proven
there. Second, in Ω \ ω, where the integration would bring troubles, the original value of ui (the
term uiV̊+

i ) is kept. Since Ω \ω does not involve supp ψ+
np+1 (the condition (2.39)), the functions

ψi do not change there (ψi = ψ+
i ). So, it is reasonable to keep old values in this area.

Theorem 2.35 states how the coefficients u+
i can be computed to obtain a scheme for which the

conditions (2.36) and (2.37) are satisfied and the computation is local. Moreover, there are pa-
rameters ω and K that can be chosen freely, allowing us to define different methods, provided that
(2.39) and (2.40) are satisfied. Numerical comparison of these methods is done in chapter 5.

Some possible choices of ω and K:

1) Method SUPP
ω := int( supp ψ+

np+1 )
K := J

2) Method JI
JI := {j ∈ J | 6 ∃k 6∈ J : supp ψk ∩ supp ψj 6= ∅}
(JI is a set of those neighbors of ψ+

np+1, whose neighbors are only elements of J , i.e., “inner

neighbors”)

ω := int(
⋃
j∈JI

supp ψj )
K := J

3) Method JPLUS
JP := {j ∈ IN | ∃i ∈ J : supp ψj ∩ supp ψi 6= ∅}
( JP is a set of all neighbors of elements of J including J too)

ω := int(
⋃
j∈J supp ψj )

K := JP

Numerical implementation

The proposed scheme (2.41)-(2.42) gives us the possibility to add a particle in such a way that
constants and mass are preserved. But, if the scheme is implemented directly, it will fail. The
reason are the discretization errors arising during the computation of integrals in (2.41). For an
illustration, consider the figure 2.3: The new particle is added at the position 0. Functions ψi
(dashed line), functions ψ+

i (solid line), coefficients ui (crosses) and coefficients u+i (circles) are
depicted. In the upper part of the plot, reconstructions of a given function

∑
i uiψi (dashed line)

and
∑
i u

+
i ψ

+
i (solid line), respectively, are depicted. Top figures: on the left the reconstruction

using the scheme (2.41)-(2.42) directly, on the right the expected result for a constant function.
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2 Finite-volume particle method

Bottom figures: on the left the reconstruction using the scheme (2.41)-(2.42) directly, on the right
the expected result for a linear function. The difference is caused by discretization errors.
The remedy is to take these errors into account. We introduce in this section a modification of
scheme (2.41)-(2.42), analytically equivalent to the original one, but preserving constant states
and conservativity also numerically. In this case, we consider only the discretization errors, the
rounding errors are not taken into account.
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Figure 2.3: Example of discretization errors in the scheme of adding a particle.

First important property necessary for the scheme to work properly is the statement of lemma 2.30

V̊+
j = V̊j , j ∈ K.

That is why we compute V̊+
j and V̊j from the definition and V+

j and Vj due to the lemma 2.29,
namely

Vj := Vj − V̊j , j ∈ K ,

V+
j := V +

j − V̊+
j , j ∈ K .

The values V +
j are computed due to the definition (2.7) for j ∈ K and

V+
np+1 = V +

np+1 :=

np∑

j=1

Vj −
np∑

i=1

V +
i ,

in order to conserve the total volume of particles (
∑np

j=1 Vj =
∑np+1

i=1 V +
i ), which is necessary for

conservativity in case of constant states.
Under the assumptions (2.39) and (2.40) we have proven, that the scheme (2.41)-(2.42) satisfies
(2.36) and (2.37). In (2.41) we compute the integrals

Iji =

∫

ω

ψj(x)ψ
+
i (x)dx , j ∈ K, i ∈ K+ ,
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2.3 Adding a particle

where the following discretization errors may arise.

Definition 2.37
Define the errors

Ej := Vj −
∑

i∈K+

Iji , j ∈ K,

E+
i := V+

i −
∑

j∈K

Iji , i ∈ K+.

If we compute the integrals Iji exactly, the terms Ej and E+
i will be 0. In that case, adding and

subtracting of these terms is equivalent to adding and subtracting of a zero.

Lemma 2.38
Let {ψj}np

j=1 and {ψ+
j }

np+1
j=1 be the above defined partitions of unity. Let ω ⊂ Ω be an open set and

K ⊂ {1, . . . , np}, such that (2.39) and (2.40) hold. Then

∑

j∈K

Ej =
∑

i∈K+

E+
i .

Proof.
Summing the errors

Ej = Vj −
∑

i∈K+

Iji

/
∑

j∈K

E+
i = V+

i −
∑

j∈K

Iji

/
∑

i∈K+

for all j and i, respectively, and subtraction of the sums gives

∑

j∈K

Ej −
∑

i∈K+

E+
i =

∑

j∈K

Vj −
∑

j∈K

∑

i∈K+

Iji −
∑

i∈K+

V+
i +

∑

i∈K+

∑

j∈K

Iji = 0 ,

due to the lemmata 2.29, 2.30 and 2.34 and the computation of V +
np+1 =

np∑
j=1

Vj −
np∑
i=1

V +
i .

The terms in (2.41) can be written as

u+
i =

1

V +
i

[
∑

j∈K

ujIji + uiV̊+
i

]
, i ∈ K+.
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2 Finite-volume particle method

Then, for i ∈ {1, . . . , np} we add the term 1
V +

i

uiE
+
i to the right hand side and acquire

u+
i =

1

V +
i

[
∑

j∈K

ujIji + uiE
+
i + uiV̊+

i

]
=

1

V +
i

[
∑

j∈K

(uj − ui)Iji + uiV
+
i

]

= ui +
1

V +
i

∑

j∈K

(uj − ui)Iji .

The term in (2.41) for i = np + 1 can be written as

u+
np+1 =

1

V +
np+1

∑

j∈K

ujIj,np+1.

We add the term 1
V +

np+1

∑
j∈K uj

(
Ej − E+

j

)
to this and get

u+
np+1 =

1

V +
np+1

[
∑

j∈K

ujIj,np+1 +
∑

j∈K

uj
(
Ej − E+

j

)
]
.

Theorem 2.39
Let ω ⊂ Ω be an open set and K ⊂ {1, . . . , np}, such that (2.39) and (2.40) hold.
We define

u+
i := ui +

1

V +
i

∑

j∈K

(uj − ui)Iji , i ∈ K+, i 6= np + 1, (2.43)

u+
np+1 :=

1

V +
np+1

[
∑

j∈K

ujIj,np+1 +
∑

j∈K

uj
(
Ej − E+

j

)
]
, (2.44)

u+
i := ui , i 6∈ K+. (2.45)

Then the scheme 2.23 preserves constant states, i.e., the condition (2.36) holds, and the conserva-
tivity property (2.37) is satisfied. Especially, we have

∑

i∈K+

u+
i V

+
i =

∑

i∈K

uiVi .

Proof.
The proof is similar to the proof of the theorem 2.35 and will be performed again in two steps to
prove that (2.36) and (2.37) hold.

1) (2.36) holds:
A constant function uh(x) can be written as uh(x) =

∑np

i=1 uiψi(x), where ui = C, C ∈ Rm

is a constant vector, i.e., uh(x) = C
∑np

i=1 ψi(x) = C.
Then, for i ∈ {1, . . . , np}, we have obviously

u+
i = C.

It remains to show the statement for i = np + 1.

u+
np+1 =

C

V +
np+1

[
∑

j∈K

Ij,np+1 +
∑

j∈K

Ej −
∑

j∈K

E+
j

]

=
C

V +
np+1

[
∑

j∈K

Ij,np+1 +
∑

j∈K+

E+
j −

∑

j∈K

E+
j

]

=
C

V +
np+1

[
∑

j∈K

Ij,np+1 + E+
np+1

]
=

C

V +
np+1

V +
np+1 = C ,
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because V̊+
np+1 = 0, so E+

np+1 = V +
np+1 −

∑
j∈K

Ij,np+1.

Hence, u+
i = C, i = 1, . . . , np+1, and therefore u+

h (x) =
∑np+1

i=1 u+
i ψ

+
i (x) =

∑np+1
i=1 Cψ+

i (x) =
C. Finally, (2.36) holds.

2) (2.37) holds:
We use the definitions (2.43) and (2.44) and acquire

∑

i∈K

u+
i V

+
i =

∑

i∈K

uiV
+
i +

∑

i∈K

∑

j∈K

ujIji −
∑

i∈K

∑

j∈K

uiIji ,

u+
np+1V

+
np+1 =

∑

j∈K

ujIj,np+1 +
∑

j∈K

ujEj −
∑

j∈K

ukE
+
k .

Then

∑

i∈K+

u+
i V

+
i =

∑

i∈K

u+
i V

+
i + u+

np+1V
+
np+1

=
∑

i∈K

uiV
+
i +

∑

i∈K

∑

j∈K

ujIji −
∑

i∈K

∑

j∈K

uiIji

+
∑

j∈K

ujIj,np+1 +
∑

j∈K

ujEj −
∑

j∈K

ukE
+
k

=
∑

i∈K

uiV
+
i +

∑

j∈K

ujIj,np+1

+
∑

j∈K

uj

(
∑

i∈K

Iji + Ej

)
−
∑

i∈K

ui



∑

j∈K

Iji + E+
i




=
∑

i∈K

uiV
+
i +

∑

j∈K

ujIj,np+1

+
∑

j∈K

uj

(
∑

i∈K

Iji +

[
Vj −

∑

i∈K+

Iji

])

−
∑

i∈K

ui




∑

j∈K

Iji +



V+
i −

∑

j∈K

Iji









=
∑

i∈K

uiV
+
i +

∑

j∈K

ujIj,np+1

+
∑

j∈K

uj
(
Vj − Ij,np+1

)
−
∑

i∈K

uiV+
i

=
∑

i∈K

uiV
+
i +

∑

j∈K

ujVj −
∑

i∈K

uiV+
i

=
∑

i∈K

uiV̊+
i +

∑

j∈K

ujVj =
∑

i∈K

uiV̊i +
∑

j∈K

ujVj

=
∑

j∈K

ujV̊j +
∑

j∈K

ujVj =
∑

j∈K

ujVj .

According to the lemma 2.33, if i 6∈ K+, then supp ψ+
i ∩ω = ∅ and further, according to the

lemma 2.29, it holds

V +
i = Vi , i ∈ {1, . . . , np + 1} \K+.
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2 Finite-volume particle method

Finally,

np+1∑

i=1

u+
i V

+
i =

∑

i∈K+

u+
i V

+
i +

∑

i6∈K+

u+
i V

+
i

=
∑

i∈K

uiVi +
∑

i6∈K

uiVi =

np∑

i=1

uiVi ,

hence, (2.37) holds.

Remark 2.40
Both schemes, (2.41)-(2.42) and (2.43)-(2.45), will be equivalent, if we can compute integrals
exactly. If not, the scheme (2.43)-(2.45) satisfies the properties (2.36) and (2.37) (up to the
machine precision), but the method (2.41)-(2.42) does not.

2.4 Removing a particle

In some situations, it is also desired to remove a particle, e.g., to coarsen the distribution of parti-
cles or if a particle moves out of the computational domain. Following the concept of section 2.3,
we will introduce a method for removing a particle. The structure of the section and of the method
itself is very similar to the case of adding a particle, but is presented here due to the technical
differences. One further assumption (see condition 2.49) has to be added, since we should not
produce “holes” or “gaps” in the particle distribution.

The scheme of removing a particle

We adopt definitions of quantities parallel to the quantities of previous section.
For the sake of simplicity, assume that the index of the particle to be removed is the index np.

The linear combination

uh(x) =

np∑

i=1

uiψi(x)

builds an approximation of the function u.

We introduce the general scheme to remove a particle:

Scheme 2.41

1. Define a new particle set {x−
i }

np−1
i=1 , such that

x−
i = xi , i = 1, . . . , np − 1 .

2. Define new particle basis functions {ψ−
i }

np−1
i=1 due to the definition (2.5) corresponding with

the particles {x−
i }

np−1
i=1 . The functions {ψ−

i }
np−1
i=1 will build another partition of unity in Ω.
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2.4 Removing a particle

3. Define new coefficients {u−
i }

np−1
i=1 (the specific choice will be shown later).

4. Define the new function

u−
h (x) :=

np−1∑

i=1

u−
i ψ

−
i (x) , x ∈ Ω .

Definition 2.42
We say that the scheme 2.41 preserves constant states if

uh(x) = C ,C ∈ R
m =⇒ u−

h (x) = C . (2.46)

We say that the scheme 2.41 preserves the conservativity property if

∫

Ω

uh(x)dx =

∫

Ω

u−
h (x)dx . (2.47)

Definition 2.43
The sets of neighbors of the particle ψnp

are defined as

J := {j ∈ IN | supp ψj ∩ supp ψnp
6= ∅},

J− := J \ {np}.

Condition 2.44
Let ω ⊂ Ω be an open set. We define the condition:

supp ψnp
⊂ ω . (2.48)

Definition 2.45
Let ω ⊂ Ω be an open set. We define

∆j := supp ψj ∩ ω , j = 1, . . . , np ,

∆−
j := supp ψ−

j ∩ ω , j = 1, . . . , np − 1 ,

Vj :=

∫

∆j

ψj , V̊j :=
∫

supp ψj \ ∆j

ψj , j = 1, . . . , np ,

V−
j :=

∫

∆−
j

ψ−
j , V̊−

j :=

∫

supp ψ−
j

\ ∆−
j

ψ−
j , j = 1, . . . , np − 1 .

Condition 2.46
Let ω ⊂ Ω be an open set. We define a set of indices K ⊂ {1, . . . , np} such that

∑

j∈K

ψj(x) = 1 ∀ x ∈ ω . (2.49)
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2 Finite-volume particle method

Remark 2.47
From assumptions (2.48) and (2.49) it follows, that

np ∈ K .

Definition 2.48

K− := K \ {np} .

Condition 2.49
Let ω ⊂ Ω be an open set. We define the condition:

the condition (2.6) is satisfied on ω for functions corresponding
to the index set K−, i.e., the functions {ψj}j∈K− overlap in ω.

(2.50)

Lemma 2.50
Let {ψj}np

j=1 and {ψ−
j }

np−1
j=1 be the above defined partitions of unity. Let ω be an open set and

K ⊂ {1, . . . , np}, such that (2.48) and (2.49) hold. Let (2.50) be satisfied. Then we have
∑

i∈K−

(V−
i − Vi) = Vnp

.

Proof.
Similarly as in previous section

∑

i∈K−

V−
i =

∑

i∈K

Vi =
∑

i∈K−

Vi + Vnp
=
∑

i∈K−

Vi + Vnp
.

Similar results as in lemmata in the previous section can be achieved. To keep the thesis simple,
these technical lemmata are omitted here and only the main result of this section is shown.

Theorem 2.51
Let ω ⊂ Ω be an open set and K ⊂ {1, . . . , np}, such that (2.48) and (2.49) hold. Let (2.50) be
satisfied.
We define

u−
i :=

1

V −
i

[ ∫

ω

∑

j∈K

ujψj(x)ψ
−
i (x)dx+ uiV̊−

i

]
, i ∈ K−, (2.51)

u−
i := ui , i ∈ {1, . . . , np − 1} \K−. (2.52)

Then the scheme 2.41 preserves constant states, i.e., the condition (2.46) holds, and the conserva-
tivity property (2.47) is satisfied. Especially, we have

∑

i∈K−

u−
i V

−
i =

∑

i∈K

uiVi .
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2.4 Removing a particle

Proof.
The proof can be carried out in the same way as the proof of the theorem 2.35.

Numerical implementation

The discretization errors play again a significant role here. The remedy is achieved in a similar
way.
We compute the temporary values

Ṽ −
j , j ∈ K−

due to the formula (2.7). A non-zero computational error
∑

j∈K Vj −
∑
j∈K− Ṽ

−
j will occur. In

the case of adding a particle there was the term V +
np+1 where we could “store” this error. In case

of removing a particle we split this error among all new terms as follows

V −
i := Ṽ −

i +
1

#(K−)



∑

j∈K

Vj −
∑

j∈K−

Ṽ −
j


 , i ∈ K− ,

in order to conserve the total volume of particles (
∑np

j=1 Vj =
∑np−1

i=1 V −
i ), which is necessary for

conservativity in case of constant states. Another possibility is to store the error in only one of
the terms V −

i .

We compute V̊−
j and V̊j from the definition and V−

j and Vj according to

Vj := Vj − V̊j , j ∈ K ,

V−
j := V −

j − V̊−
j , j ∈ K− .

In this section, under the assumptions (2.48), (2.49) and (2.50) we have proven, that the scheme
(2.51)-(2.52) satisfies (2.46) and (2.47). In (2.51) we compute the integrals

Iji =

∫

ω

ψj(x)ψ
−
i (x)dx , j ∈ K, i ∈ K− ,

where substantial discretization errors arise.

Definition 2.52
Define the errors

Ej := Vj −
∑

i∈K−

Iji , j ∈ K,

E−
i := V−

i −
∑

j∈K

Iji , i ∈ K−.

Theorem 2.53
Let ω ⊂ Ω be an open set and K ⊂ {1, . . . , np}, such that (2.48) and (2.49) hold. Let (2.50) be
satisfied.
We define

u−
i =

1

V −
i



∑

j∈K

ujIji + unp
E−
i + (ui − unp

)Ei + uiV̊−
i


 , i ∈ K− , (2.53)

u−
i = ui , i 6∈ K−. (2.54)
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2 Finite-volume particle method

Then the scheme 2.41 preserves constant states, i.e., the condition (2.46) holds, and the conserva-
tivity property (2.47) is satisfied. Especially, we have

∑

i∈K−

u−
i V

−
i =

∑

i∈K

uiVi .

Remark 2.54
Other equivalent form of (2.53) is for i ∈ K−

u−
i =

1

V −
i



∑

j∈K−

(uj − unp
)Iji + unp

V−
i + (ui − unp

)Ei + uiV̊−
i


 , (2.55)

since

∑

j∈K

ujIji + unp
E−
i =

∑

j∈K−

ujIji + unp
Inp,i + unp

E−
i

=
∑

j∈K−

ujIji + unp
Inp,i + unp


V−

i −
∑

j∈K

Iji


 =

∑

j∈K−

(uj − unp
)Iji + unp

V−
i .

We will use this in the proof of theorem 2.53.

Proof of theorem 2.53.
The proof is similar to the proof of the theorem 2.51.

1) (2.46) holds:
A constant function uh(x) can be written as uh(x) =

∑np

i=1 uiψi(x), where ui = C, C ∈ Rm

is a constant vector, i.e., uh(x) = C
∑np

i=1 ψi(x) = C.
Then, for i ∈ {1, . . . , np − 1} \K−, we have obviously

u−
i = C.

And for i ∈ K− it follows from (2.55) that

u−
i =

1

V −
i

[
CV−

i +CV̊−
i

]
= C ,

hence, (2.46) holds.

2) (2.47) holds:
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2.4 Removing a particle

We multiply (2.55) with V −
i and sum over K−. We obtain

∑

i∈K−

u−
i V

−
i =

∑

j∈K−

(uj − unp
)
∑

i∈K−

Iji

+ unp

∑

i∈K−

V−
i +

∑

i∈K−

(ui − unp
)Ei +

∑

i∈K−

uiV̊−
i

=
∑

j∈K−

(uj − unp
)(Vj − Ej)

+ unp

∑

i∈K−

V−
i +

∑

i∈K−

uiEi − unp

∑

i∈K−

Ei +
∑

i∈K−

uiV̊−
i

=
∑

j∈K−

ujVj −
∑

j∈K−

ujEj − unp

∑

j∈K−

Vj + unp

∑

j∈K−

Ej

+ unp

∑

i∈K−

V−
i +

∑

i∈K−

uiEi − unp

∑

i∈K−

Ei +
∑

i∈K−

uiV̊−
i

=
∑

j∈K−

ujVj − unp

∑

j∈K−

Vj + unp

∑

i∈K−

V−
i +

∑

i∈K−

uiV̊−
i

=
∑

j∈K−

uj

(
Vj + V̊−

j

)
+ unp

∑

i∈K−

(
V−
i − Vi

)

=
∑

j∈K−

ujVj + unp
Vnp

=
∑

j∈K

ujVj .

Finally,

np−1∑

i=1

u−
i V

−
i =

∑

i∈K−

u−
i V

−
i +

∑

i6∈K−

u−
i V

−
i

=
∑

i∈K

uiVi +
∑

i6∈K

uiVi =

np∑

i=1

uiVi

and hence, (2.47) holds.

Remark 2.55
Both schemes, (2.51)-(2.52) and (2.53)-(2.54), will be equivalent, if we can compute integrals
exactly. If not, the scheme (2.53)-(2.54) satisfies the properties (2.46) and (2.47) (up to the
machine precision), but the method (2.51)-(2.52) does not.

The choice of ω and K can be made in the same way as in the section 2.3. Numerical examples
will be shown in chapter 5.
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3 Polyharmonic spline
interpolation and the WENO
method

To increase the order of accuracy of a scheme, it is usually necessary to construct a high order re-
construction of the solution at each time step. This is true for the finite volume method, for which
many results can be found in the literature, as well as for the finite volume particle method. In
this chapter we will treat the problem of reconstruction of a function from given data, particularly
we will look for an approximation of a function from given weighted integral means of this function
(FVPM), which is the generalization of classical integral means appearing in FVM. The obtained
knowledge will be utilized in chapter 4 to acquire initial data for local generalized Riemann prob-
lems in order to solve a one-dimensional hyperbolic conservation law using FVPM. Therefore, we
introduce the scattered data interpolation problem, which will be solved with the polyharmonic
spline interpolation and the WENO procedure. The combination of these two methods gives rise
to a powerful method to reconstruct a function from given data, proposed by Aboiyar, Georgoulis
and Iske [1]. WENO reconstruction by polyharmonic splines is numerically stable, if carefully
implemented, and in comparison with the polynomial reconstruction more flexible. Moreover, it
reproduces optimal reconstruction with respect to the seminorm in the Beppo-Levi space, and one
therefore acquires a natural choice for an oscillation indicator.

3.1 Polyharmonic spline interpolation

The polyharmonic spline interpolation is a popular method in the area of scattered data interpo-
lation. Scattered data interpolation problems can be stated in the following way: A data set of
an unknown function is given. This data set is typically formed as a set of function values at
some given points (Lagrange interpolation). One is interested in the interpolation of the data,
yielding an approximation of the unknown function. The approach, which we are interested in, is a
kernel-based interpolation - the polyharmonic spline interpolation. The advantages of this method
in combination with the WENO method will be explained throughout this chapter in more detail.
The interpolation can be understood in two ways - the global and the local. For the global inter-
polation, one increases the amount of interpolated points and expects a convergence at some rate
to the sought function. More details can be found in Wendland [69].
We will focus on the local interpolation, defined later in this section, since this approach is suitable
to define and analyse a high order FVPM, as done in chapter 4.
The usual function value data set can be also substituted with another data given by a linear
functional, e.g., with a data set defined by integral means (cell averages in the FVM framework).
For the purposes of FVPM, we will consider the case of data given by weighted integral means.
In this section, we will follow the work by Iske [26], where the polyharmonic spline interpolation
is described for the case of data set given by function values and also the numerical stability is
treated, see also [27]. This approach was later extended to the case of data set given by classical
integral means of a function, see e.g., [1] or [2], where also the numerical stability for the com-
putation of derivatives was investigated. In this thesis, we will introduce the polyharmonic spline
interpolation based on the data set defined by weighted integral means in order to utilize the data
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3 Polyharmonic spline interpolation and the WENO method

available in the framework of FVPM. Such interpolation is used then in chapter 4 to define a higher
order meshfree method for the solution of hyperbolic conservation laws.
We adopt the introduction and the proof techniques given by Iske [26] and adapt them to our
problem. The known results for data set given by function values are extended to the case of
weighted integral means in lemma 3.2 and theorem 3.3. Moreover, in the theorem 3.3 we introduce
the leading error term explicitly, which allows us to analyse the numerical methods in the following
chapter 4.

The interpolation problem

In the beginning we define the technical background of the interpolation problem with data given
by weighted integral means. We refer to the chapter 2 for the motivation of this paragraph. In
that chapter, the basis functions are denoted by ψi, whereas we will denote them by ψxi

in this
chapter since this notation is more suitable for our analysis.

Consider an open and bounded domain Ω ⊂ Rd. Let X = (x1, . . . ,xn) ⊂ Ω, d ≥ 1 denote a
given scattered point set. For these points construct non-negative and Lipschitz-continuous func-
tions with a compact support

ψxi
: Rd → R , (3.1)

such that the family {ψxi
}xi∈X is a partition of unity on Ω ⊂ Rd, i.e.,

n∑

i=1

ψxi
(x) = 1 ∀ x ∈ Ω .

We define the volumes by

Vxi
:=

∫

supp ψxi

ψxi
(x)dx , i = 1, . . . , n .

Further, we define a linear functional λxi
through

λxi
(f) :=

1

Vxi

∫

supp ψxi

f(x)ψxi
(x)dx , i = 1, . . . , n (3.2)

for all suitable functions f , e.g., f ∈ L1
loc(R

d).
The symbol λX will denote the set of functionals λX = {λx1

, . . . , λxn
}.

Now the following interpolation problem can be defined.

For an unknown function f : Rd → R, a data vector f
∣∣∣
λX

= (λx1
(f), . . . , λxn

(f))T ∈ Rn is given.

The interpolation problem reads: Find an interpolant s : Rd → R, s.t. s
∣∣∣
λX

= f
∣∣∣
λX

, i.e.,

λxi
(s) = λxi

(f) , i = 1, . . . , n (3.3)

and s ∈ M, where M is a suitable function space.
This problem can be solved in various manners. We will focus on polyharmonic spline interpola-
tion, a kind of kernel-based interpolation.

Polyharmonic spline interpolation

To solve the problem (3.3) with a kernel-based interpolation, we look for an interpolant s of the
form

s(x) =

n∑

j=1

cjλ
y
xj
φ(‖x − y‖) + p(x) , p ∈ Pdm , (3.4)
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where φ : [0,∞) → R is a fixed radial basis function, ‖.‖ is the Euclidean norm on R
d, and where

Pdm is the linear space of all d-variate polynomials of order at most m (i.e., of degree at most
m− 1). The dimension of Pdm is q = dim Pdm =

(
m−1+d

d

)
.

λyxj
denotes the action of the linear functional λxj

with respect to the variable y,

λyxj
φ(‖x− y‖) := 1

Vxj

∫

supp ψxj

φ(‖x− y‖)ψxj
(y)dy , j = 1, . . . , n .

The order m of p ∈ Pdm is given by the order m ≡ m(φ) of the radial basis function φ. For possible
choices of radial basis functions φ and further details see [1] or [69] and references therein. From
now on, we will work only with polyharmonic splines. A good summary on the advantages of
polyharmonic splines compared to another radial kernel functions, such as the numerical stability
or arbitrary local approximation order, can be found in [27]. We also mention that one of the
properties of polyharmonic splines is the reproduction of polynomials.

Polyharmonic spline interpolation is based on the choice of the radial basis function of the form

φd,k(r) =

{
r2k−d log(r) , d even,
r2k−d , d odd,

where 2k > d, k ∈ IN . The order of the conditionally positive (negative) definite function φd,k is
m = k−⌈d/2⌉+1. For more details about conditionally positive definite functions, see [44] and [49].

To find the reconstruction s we have to determine n parameters for the radial basis functions and
q parameters for the polynomial part, altogether n + q parameters. The interpolation conditions
(3.3) provide n conditions. We get the remaining q conditions by considering linear constraints

n∑

j=1

cjλxj
(p) = 0 ∀p ∈ Pdm .

The latter constraints have their origin in the theory of conditionally positive definite functions.
For details, see e.g., [69].
Under this consideration we have to solve a linear system of size (n+ q)× (n+ q)

[
A P
PT 0

]
.

[
c
d

]
=

[
f
∣∣∣
λX

0

]
, (3.5)

where

A =
(
λxxi

λyxj
φd,k(‖x− y‖)

)

1≤i,j≤n
∈ R

n×n ,

P = (λxi
(xα))1≤i≤n;|α|<m ∈ R

n×q ,

f
∣∣∣
λX

= (λxi
(f))1≤i≤n ∈ R

n ,

for the vectors of unknows c = (c1, . . . , cn)
T ∈ Rn and d = (dα)|α|<m ∈ Rq. This linear system

has always a solution, which is unique, provided that the set of functionals λX is Pdm-unisolvent,
which is equivalent to requiring that there is no nontrivial polynomial in Pdm that vanishes on all
functionals from λX , i.e., it has to hold for p ∈ Pdm

λxj
(p) = 0 ∀j = 1, . . . , n ⇒ p ≡ 0 .

The unique solvability is proven in [69] which utilizes the theory of conditionally positive definite
functions. The proof can be performed in the same way as in the mentioned book by considering
the functionals (3.2) instead of function point values.
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3 Polyharmonic spline interpolation and the WENO method

The local interpolation problem

Consider a fixed point x0 ∈ Rd and a Pdm-unisolvent set of functionals λX . Let h > 0.
Furthermore, we denote local volumes

Vhxi
:=

∫

supp ψhxi

ψhxi
(x)dx

and local functionals

λhxi
(f) :=

1

Vhxi

∫

supp ψhxi

f(x)ψhxi
(x)dx ,

where we use a shortened notation for the argument f = f(hx) of the functional λhxi
, i.e., λhxi

(f)
stands for λhxi

(f) = λhxi
(f(hx)). This notation will be used throughout this section for the sake

of notational simplicity.
Symbol ψhxi

denotes the scaled function (3.1) with respect to its center xi with the scaling pa-
rameter h > 0, i.e.,

ψhxi
(hx) = ψxi

(x) ∀x ∈ R
d .

See the figure 3.1 for an example on scaling.

❡
❡
❡
❡
❡
❡
❡
❡
❡

✪
✪

✪
✪

✪
✪

✪
✪
✪

☞
☞
☞
☞
☞
☞
☞
☞
☞

▲
▲
▲
▲
▲
▲
▲
▲
▲

1 1

-1 10 0 0.5-0.5

Figure 3.1: 1-d example of scaling a function ψxi
into ψhxi

. Function ψxi
is depicted on the left,

function ψhxi
on the right. Values of h and xi are chosen to be h = 1

2 , xi = 0.

The local interpolation problem reads: Find an interpolant sh : Rd → R in a local neighborhood
Uh(x0) of x0, such that

λhxi

(
sh(x0 + ·)

)
= λhxi

(f(x0 + ·)) , i = 1, . . . , n . (3.6)

For this local interpolation problem the asymptotic bound of the form

|sh(x0 + hx)− f(x0 + hx)| = O(hp) , h→ 0

is of our interest. The number p is said to be the approximation order at x0.

Since the polyharmonic spline interpolation is shift-invariant, we assume from now on x0 = 0
without loss of generality. Under this assumption (3.6) becomes

λhxi
(sh) = λhxi

(f) , i = 1, . . . , n , (3.7)

which leads to the next definition.
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Approximation order

Definition 3.1
Let sh denote the polyharmonic spline interpolant, using φd,k and satisfying (3.7). We say that the
approximation order of local polyharmonic spline interpolation with respect to the function space
F is p, if for any f ∈ F the asymptotic bound

|sh(hx)− f(hx)| = O(hp) , h→ 0

holds for any x ∈ Rd and any finite Pdm-unisolvent set of functionals λX .

As already explained, the interpolation problem (3.7) for any h > 0 and a fixed Pdm-unisolvent set
of functionals λX has under the constraints

n∑

j=1

chj λhxj
(p) = 0 ∀p ∈ Pdm (3.8)

a unique solution sh of the form

sh(hx) =

n∑

j=1

chj λ
hy
hxj

φd,k(‖hx− hy‖) +
∑

|α|<m

dhα(hx)
α , (3.9)

where the coefficients chj and dhα solve the linear system (3.10).

Symbol λhyhxj
denotes the action of the linear functional λhxj

w.r.t. the variable hy,

λhyhxj
φ(‖hx− hy‖) := 1

Vhxj

∫

supp ψhxj

φ(‖hx− y‖)ψhxj
(y)dy .

The conditions (3.7) and (3.8) can be rewritten as a linear system for coefficients ch = (ch1 , . . . , c
h
n)
T ∈

Rn and dh = (dhα)|α|<m ∈ Rq of the form

[
Φh Πh
ΠTh 0

]
.

[
ch

dh

]
=

[
f
∣∣∣
λhX

0

]
, (3.10)

where

Φh =
(
λhxhxi

λhyhxj
φd,k(‖hx− hy‖)

)

1≤i,j≤n
∈ R

n×n ,

Πh = (λhxi
((hx)α))1≤i≤n;|α|<m ∈ R

n×q ,

f
∣∣∣
λhX

= (λhxi
(f))1≤i≤n ∈ R

n .

If we denote

Ah =

[
Φh Πh
ΠTh 0

]
, bh =

[
ch

dh

]
and fh =

[
f
∣∣∣
λhX

0

]
,

the linear system (3.10) can be rewritten as

Ah · bh = fh .

Recall that the Lagrange representation of the interpolant sh in (3.9) given by

sh(hx) =
n∑

i=1

Lhi (hx)λhxi
(f) (3.11)
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with the Lagrange basis functions Lhi satisfying

λhxj
(Lhi ) = δij ,

where δij stands for the Kronecker delta.
Moreover, due to the reproduction of polynomials from Pdm, it holds

n∑

i=1

Lhi (hx)λhxi
(p) = p(hx) ∀p ∈ Pdm .

We can construct the Lagrange functions pointwise at any hx by solving the linear system
[

Φh Πh
ΠTh 0

]
.

[
Lh(hx)
µh(hx)

]
=

[
ϕh(hx)
πh(hx)

]
, (3.12)

where Lh(hx) = (Lhi (hx))1≤i≤n ∈ Rn is the vector of point value evaluations of the Lagrange
functions at hx and µh(hx) =

(
µhα(hx)

)
|α|<m

∈ Rq. The right hand side consists of

ϕh(hx) =
(
λhyhxj

φd,k(‖hx− hy‖)
)

1≤j≤n
∈ R

n ,

πh(hx) = ((hx)α)|α|<m ∈ R
q .

By denoting

νh(hx) =

[
Lh(hx)
µh(hx)

]
and βh(hx) =

[
ϕh(hx)
πh(hx)

]
,

we can abbreviate the system (3.12) by

Ah · νh(hx) = βh(hx) .

Let 〈·, ·〉 denote the inner product of the Euclidean space Rp for an appropriate p ∈ IN . The fol-
lowing computation shows the equivalence of the Lagrange representation (3.11) and the standard
representation (3.9) of the interpolant sh

sh(hx) =

〈
Lh(hx), f

∣∣∣
λhX

〉

=
〈
νh(hx), fh

〉

=
〈
A−1
h . βh(hx), fh

〉

=
〈
βh(hx), A

−1
h . fh

〉

=
〈
βh(hx), b

h
〉
.

The following lemma and theorem are based on the results from [26] but we formulate them for
the case of data set given by weighted integral means.

Lemma 3.2
The Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform
scalings, i.e., for any h > 0, we have

Lh(hx) = L1(x) ∀x ∈ R
d .

Proof.
Let

Sh =






n∑

j=1

cjλ
hy
hxj

φ(‖ · −hy‖) + p : p ∈ Pdm ,

n∑

j=1

cjλhxj
(q) = 0 ∀q ∈ Pdm




 , h > 0
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3.1 Polyharmonic spline interpolation

denote the space of all possible polyharmonic spline interpolants of the form (3.9) satisfying (3.8).
We will show that Sh is a scaled version of S1, i.e., Sh = {σh(s) : s ∈ S1}, where the dilatation
operator is given by σh(s) = s(·/h). From this follows, due to the uniqueness of the interpolation
in either space, Sh or S1, that their Lagrange basis functions satisfy Lh = σh(L

1), which is the
statement of this lemma.
We want to show Sh = {σh(s) : s ∈ S1}. To this end, we distinguish two cases - the space
dimension d is odd and d is even.
For d odd, substituting y = hz we have

Vhxj
=

∫

supp ψhxj

ψhxj
(y)dy = hd

∫

supp ψxj

ψhxj
(hz)dz = hd

∫

supp ψxj

ψxj
(z)dz = hdVxj

and

λhyhxj
φd,k(‖hx− hy‖) =

1

Vhxj

∫

supp ψhxj

‖hx− y‖2k−dψhxj
(y)dy

=
1

hdVxj

hd
∫

supp ψxj

‖hx− hz‖2k−dψhxj
(hz)dz

=
h2k−d

Vxj

∫

supp ψxj

‖x− z‖2k−dψxj
(z)dz

= h2k−dλzxj
φd,k(‖x− z‖) .

This gives immediately Sh = {σh(s) : s ∈ S1}, since also

0 =

n∑

j=1

cjλhxj
(q) =

n∑

j=1

cjλxj
(q̃)

for q ∈ Pdm and q̃(x) = q(hx) (hence, q̃ ∈ Pdm).

Now suppose that d is even. We use again the substitution y = hz

λhyhxj
φd,k(‖hx− hy‖) =

1

Vhxj

∫

supp ψhxj

‖hx− y‖2k−d log(‖hx− y‖)ψhxj
(y)dy

=
h2k−d

Vxj

∫

supp ψxj

‖x− z‖2k−d log(h‖x− z‖)ψxj
(z)dz

= h2k−d

(
λzxj

φd,k(‖x− z‖)

+ log(h)
1

Vxj

∫

supp ψxj

‖x− z‖2k−dψxj
(z)dz

)
.

Therefore, any function sh ∈ Sh has the form

sh(hx) = h2k−d




n∑

j=1

cjλ
y
xj
φ(‖x − y‖) + log(h)r(x)


 + p(x)

for some p ∈ Pdm and where

r(x) =

n∑

j=1

cj
1

Vxj

∫

supp ψxj

‖x− y‖2k−dψxj
(y)dy

61



3 Polyharmonic spline interpolation and the WENO method

is a polynomial (due to the fact that d is even) of degree at most m− 1, which can be seen from
another form of r

r(x) =

n∑

j=1

cj
1

Vxj

∑

|α|+|β|=2k−d

cα,βx
α

∫

supp ψxj

yβψxj
(y)dy

=
∑

|α|+|β|=2k−d

cα,βx
α

n∑

j=1

cjλ
y
xj
(yβ)

for some coefficients cα,β ∈ R with |α| + |β| = 2k − d. Due to the vanishing moment conditions
(3.8) for the coefficients c1, . . . , cn, the degree of r is at most 2k − d−m = k − d/2− 1 < m.
Therefore, sh ∈ σh(S1), and so Sh ⊂ σh(S1).
The inclusion S1 ⊂ σ−1

h (Sh) can be proven accordingly.
From that follows, Sh = σh(S1), and therefore Lh(hx) = L1(x).

The scale-invariance of the Lagrange basis functions of polyharmonic spline reconstruction spaces
has several important corollaries. Firstly, the numerical stability of the reconstruction can be
analysed and a preconditioning strategy can be developed. References can be found at the end of
this chapter. Secondly, arbitrary local approximation order of the approximation by polyharmonic
splines can be investigated and the main result of this section can be stated.

Theorem 3.3
The approximation order of local polyharmonic spline interpolation, using φd,k, with respect to
Cm(Ω), Ω ⊂ Rd, is m = k − ⌈d/2⌉+ 1, i.e.,

|sh(hx)− f(hx)| = O(hm) , h→ 0 .

Moreover, if f ∈ Cm+1(Ω), Ω ⊂ Rd, then

sh(hx) = f(hx)−
n∑

i=1

Lhi (hx)
∑

|α|=m

1

α!
Dαf(hx)(hxi − hx)α +O(hm+1) , h→ 0 .

Proof.
Let h > 0 and x ∈ Rd be fixed.
We prove the first statement. The m-th order Taylor polynomial of f ∈ Cm around hx reads

Tmf,hx(y) =
∑

|α|<m

1

α!
Dαf(hx)(y− hx)α .

Using the Lagrange representation of sh and the polynomial reproduction property, we acquire

f(hx)− sh(hx) =

n∑

i=1

Lhi (hx)
[
Tmf,hx(hxi)− f(hxi)

]
.

Due to the lemma 3.2, the Lagrange function

Λ(x) :=

n∑

i=1

|Lhi (hx)| =
n∑

i=1

|L1
i (x)|

is uniformly bounded in any local neighborhood of the origin. Since

Tmf,hx(hxi)− f(hxi) = O(hm) , h→ 0 ∀ 1 ≤ i ≤ n ,
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3.2 WENO method

this implies

|sh(hx)− f(hx)| = O(hm) , h→ 0 .

Now, if f ∈ Cm+1, then

Tmf,hx(hxi)− f(hxi) =
∑

|α|=m

1

α!
Dαf(hx)(hxi − hx)α +O(hm+1) , h→ 0 ,

which yields

sh(hx) = f(hx)−
n∑

i=1

Lhi (hx)
∑

|α|=m

1

α!
Dαf(hx)(hxi − hx)α +O(hm+1) , h→ 0

due to the boundedness of the Lagrange function Λ.

Optimal reconstruction

Having given the radial basis function φd,k with 2k > d, one can introduce the Beppo-Levi space

BLk(R
d) := {v : Dγv ∈ L2(Rd) ∀ |γ| = k} ⊂ C(Rd)

equipped with the seminorm | · |BLk(Rd) defined by

| · |2BLk(Rd) :=
∑

|γ|=k

(
k

γ

)
‖Dγv‖2L2(Rd) .

Based on the work of Duchon in [11], [12] and [13] and presented in [1], [2] and [69], one can show
also for data given by the weighted integral means the following: The interpolant s ∈ BLk(R

d),
given by (3.4) with a fixed polyharmonic spline kernel φd,k satisfying (3.3), is the unique minimiser

of the energy | · |BLk(Rd) among all interpolants v ∈ BLk(R
d) satisfying v

∣∣∣
λX

= f
∣∣∣
λX

, i.e.,

|s|BLk(Rd) ≤ |v|BLk(Rd) ∀ v ∈ BLk(R
d) with v

∣∣∣
λX

= f
∣∣∣
λX

.

In other words, one gets the optimal reconstruction in the Beppo-Levi space BLk(R
d). This

property allows a natural choice of oscillation indicator, which is the topic of following section.

3.2 WENO method

Let us first consider the framework of the finite volume method (FVM). The following results are
straightforward portable to the framework of FVPM.
While solving hyperbolic conservation laws, rapidly changing solutions or solutions with discon-
tinuities may arise. In many methods, these exact solutions are approximated with appropriate
functions to achieve higher order of accuracy of the scheme. This may however lead to non-physical
oscillations, having origin in the chosen numerical approximation. Therefore new techniques have
been developed to avoid these oscillations. We will focus on a WENO (Weighted Essentially Non-
Oscillatory) scheme, having its origin in ENO (Essentially Non-Oscillatory) schemes.
The ENO scheme for one-dimensional conservation laws was first proposed by Harten, Engquist,
Osher and Chakravarthy in [21]. In the ENO scheme, for each cell of the finite volume discretiza-
tion, a set of stencils (a set of neighboring cells) is chosen. On each stencil, a reconstruction function
based on the data of the stencil is computed. Afterwards, the smoothness of these reconstructions
is measured by introducing a suitable oscillation indicator. Finally, the smoothest reconstruction
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3 Polyharmonic spline interpolation and the WENO method

is selected among all the stencils for the given cell and used in further computations as the best
possible approximation.
WENO scheme represents an improvement of the ENO method. First proposals were made by
Liu, Osher and Chan in [41] and by Jiang and Shu in [28]. In the ENO scheme, only the smoothest
reconstruction is used and the reconstructions built on the remaining stencils are dropped. On the
contrary, the WENO reconstruction takes all the reconstructions into account by constructing a
convex combination of them. The weights are based on some oscillation indicator, e.g., on that of
the ENO scheme. In the resulting scheme, spurious oscillations are avoided.
There are many other works concerning the WENO method, let us mention e.g., [15], [25] or [52].

Let us get back to FVPM. In section 3.1 the interpolation of given data was considered. Let
us consider the framework of this previous section but let us look at the interpolation on a stencil.
We say, that two particles xi and xj are neighbors if the supports of their corresponding functions
ψxi

and ψxj
overlap.

For a fixed particle xi0 and its index i0 we define a stencil S of size ns as a set of ns arbitrary
indices of neighboring particles xi, i ∈ {1, . . . , n}, such that i0 ∈ S.
We also assume that the corresponding linear functionals {λxi

}i∈S are linearly independent.

Now, the interpolation problem (3.3) on the stencil reads

λxi
(s) = λxi

(f) , i ∈ S . (3.13)

The interpolant has the form

s(x) =
∑

j∈S

cjλ
y
xj
φ(‖x− y‖) + p(x) , p ∈ Pdm , (3.14)

with linear constraints
∑

j∈S

cjλxj
(p) = 0 ∀ p ∈ Pdm . (3.15)

To conserve the unique solvability, it is required that the set of functionals {λxi
}i∈S is Pdm-

unisolvent. Then all results of the previous section remain valid.

For a given index i0, consider the set of all stencils of given size ns containing the index i0

Ŝ := {Si}NS

i=1 , i0 ∈ Si , Si stencil ,

where NS stands for the number of such stencils and generally NS 6= ns.
For each stencil Si ∈ Ŝ compute the reconstruction si according to (3.14). With weights ωi ≥ 0,
given later in this section, define the WENO reconstruction

R(x) :=

NS∑

i=1

ωisi(x) with

NS∑

i=1

ωi = 1 . (3.16)

A suitable choice of the weights ωi leads to a non-oscillatory reconstruction. The weights ωi should
be small if the reconstruction si is highly oscillatory and it should be large if si varies slowly. As-
suming that the approximation si is highly accurate, and therefore the behavior of si imitates
the behavior of the interpolated function f , these properties of weights ωi will lead to damped
oscillations in the reconstruction R(x).
The weights ωi of a convex combination are freely to choose. In [41] the choice of weights was
based on undivided differences. Another approach can be found in [28]. We will follow the work
[1], where a natural choice of oscillation indicator, and therefore also of the weights, was made.
Moreover, this choice is in some sense optimal and available directly from the computations.

First of all, we define the oscillation indicator I : BLk(R
d) → [0,∞) by

I(v) := |v|2BLk(Rd) for v ∈ BLk(R
d). (3.17)
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3.2 WENO method

Furthermore, we define the values

ω̃i :=
1

(ǫ + I(si))ρ
, (3.18)

where ǫ > 0 is a fixed parameter used to avoid division by zero and ρ ∈ IN determines the
sensitivity of the weights with respect to the oscillation indicator I. In our numerical examples,
the parameters are set to ǫ = 10−6 and ρ = 2, as in the original paper [1].
Finally, we define the weights

ωi :=
ω̃i∑NS

j=1 ω̃j
. (3.19)

From the construction it is obvious that ωi ≥ 0 and
∑NS

i=1 ωi = 1.

As already mentioned, this choice of oscillation indicator is natural, since the indicator I as a
semi-norm in the Beppo-Levi space measures the kth-order variations of interpolants si. It is also
optimal in that sense, that si is the optimal interpolant on the given data on stencil Si with respect
to the energy | · |BLk(Rd) (see previous section).
An additional benefit of such choice is the computation of the weights. It is not necessary to
compute the oscillation indicator I due to the definition (3.17). For the interpolant s from (3.14),
we have the formula

|s|2BLk(Rd) = cTAc , (3.20)

where c = (cj)j∈S ∈ Rns is the vector of coefficients in (3.14) (as solution of (3.5)) and A ∈ Rns×ns

is the matrix appearing in the corresponding linear system (3.5). Both quantities are available
during the computation which is a further advantage of this approach. For the use as an oscillation
indicator it was introduced by Iske in [27], who followed the work of Madych and Nelson in [42]
where the relation (3.20) was introduced. The whole concept is based on the seminal works of
Duchon [11], [12] and [13] and Meinguet [43]. The relation (3.20) was introduced by the referenced
authors for the case of Lagrangian interpolation but it can be shown also for the case of data given
by weighted integral means.

Stability

To obtain numerical stability, polyharmonic splines have to be treated carefully, since matrices
arising during the computation may be ill-conditioned. The instabilities arise especially in the
situation when the minimal Euclidean distance between barycentres of distinct cells in a stencil is
small. This is true for cell averages and can also be shown for other cases. This problem can be
overcome by using an appropriate preconditioning, see Iske [26] (for Lagrange interpolation) and
Iske, Aboiyar and Georgoulis [2] (for cell averages and also for the derivatives of the interpolant).
The preconditioning strategy can be straightforward extended to the case of weighted integral
means.

Flexibility

For good approximation quality of the reconstruction it is necessary to select the most suitable
stencil. For that, the most possible flexibility in stencil selection is desired. In the classical
polynomial WENO reconstruction, the size of a stencil has to be equal to the dimension of the
corresponding polynomial space. This restriction reduces the flexibility in the stencil selection. On
the contrary, for polyharmonic spline WENO reconstruction it is only required, that the stencil
size is at least the dimension of the polynomial space giving an enhanced flexibility to the method.
We emphasize that this is true especially in higher dimensions. For more comments and details
about the stencil selection see e.g., [2].
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4 A method of higher order

In this chapter, we combine various techniques presented in previous chapters to design a high
order meshfree method for the numerical solution of hyperbolic conservation laws in one spatial
dimension. Methods of higher order of accuracy than one are called high order scheme. In our
case, we will design a second order scheme which means that the numerical solution converges to
the exact solution with order 2 in time and space. We emphasize that in our case we do not speak
about a convergence of integral means but about the convergence of the numerical solution to the
exact solution in an appropriate function space.
Numerical schemes of higher order have become more and more important in the industrial usage
since more phenomena than earlier have been investigated and first order method often do not
provide a sufficient resolution of their solution. Schemes of first order are often not able to resolve
the fine structure of the solution and information about the exact solution can be lost. See e.g.,
the results of the example 5.2.3. From the computational point of view, one gets usually better
results if a higher order scheme is applied on a coarse mesh, possibly with mesh adaptation, than
to use a scheme of first order on a very fine grid.
In the finite volume framework, due to the Godunov’s theorem [17] non-linear schemes (i.e., schemes
with variable coefficients) have to be constructed to achieve higher order of accuracy. Otherwise,
non-physical oscillations may arise in the vicinity of large gradients or discontinuities, as reported
e.g., in Toro [64]. The ADER method, presented in chapter 1, defines the variable coefficients of
the scheme in a very sophisticated way, and in combination with polyharmonic splines and WENO
method used in the reconstruction step, embodies a very powerful tool for numerical solution of
hyperbolic conservation laws. More details can be found in [1] and [2]. We will follow the principles
introduced for FVM and adapt them to FVPM to design a similar but meshfree method.
In the first section, we formulate the scheme using the formulation of FVPM from chapter 2 and
the desired higher order of accuracy will be reached by use of the ADER scheme described in chap-
ter 1. For the construction some simplifications are necessary - we focus on the one-dimensional
problem, use non-moving particles and make the special choice of partition of unity built by linear
B-splines. More details about the FVPM with B-splines can be found in [31]. We will utilize
the theory of polyharmonic spline interpolation and the WENO technique from chapter 3 for the
reconstruction needed by the ADER method. This combination leads to a meshfree method of
second order, for which we will prove second order of consistency for a scalar nonlinear governing
PDE in theorem 4.5 and stability for a scalar linear conservation law in theorem 4.20. Hence, we
deduce also convergence in theorem 4.26 for a scalar linear conservation law. The convergence for
systems and nonlinear PDEs will be verified numerically in chapter 5.

4.1 Formulation of the method

Finite volume particle method

Let us consider the one-dimensional problem on the whole R

ut + F (u)x = 0 ∀ x ∈ R , ∀ t > 0 , (4.1)

u(x, 0) = u0(x) ∀ x ∈ R , (4.2)
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where u0 is a given initial condition.
Consider the method (2.20) - (2.22) from chapter 2 for the numerical solution of (4.1)-(4.2). Assume
non-moving particles, i.e., ẋ = 0. Under all these considerations the derivation step (2.13) reads

d

dt

∫

R

ψiu dx =
∑

j

∫

R

F (u) · Γji −
np∑

j=1

∫

R

F (u) · Γij . (4.3)

The last consideration is a special choice of partition of unity
∑
i

ψi(x, t) = 1 built by functions

{ψi}i. We choose linear B-spline functions from chapter 1, i.e., the functions ψi are defined by

ψi(x, t) =





x−xi−1

xi−xi−1
, x ∈ [xi−1, xi] ,

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1] ,

0 , otherwise ,

where we assume the points xi to be pairwise distinct. Notice the index shift in the notation
in comparison to chapter 1 (example 1.34) where we were more interested in the properties of
B-splines. We remind, that B-splines build automatically by their definition a partition of unity,
so that no more construction is necessary. Moreover, in the case of linear B-splines, every particle
has at most two neighbors.
Summarized, considering the hyperbolic system (4.1)-(4.2) on the whole real axis, non-moving
particles of the scheme (4.1)-(4.2) and choice of linear B-splines as a partition of unity, we can
conclude the following relation

(Γji − Γij)
∣∣∣
ψi∩ψj

=

{
(ψi)x = −1

xi+1−xi
, j = i+ 1 ,

(ψi)x = 1
xi−xi−1

, j = i− 1 ,

where ψi ∩ ψj := supp ψi ∩ supp ψj . Hence

(Γji − Γij)
∣∣∣
ψi∩ψj

= const.

Using this fact we can rewrite (4.3)

Vi
d

dt
ui =

∑

j

∫

ψi∩ψj

F (u)dx
1

|ψi ∩ ψj |

∫

ψi∩ψj

(Γji − Γij)dx (4.4)

= −
∑

j

1

|ψi ∩ ψj |

∫

ψi∩ψj

F (u)dx βij .

We approximate

F (u(x, t))
∣∣∣
ψi∩ψj

≈ F (u(xji , t))

with xji =
1
2 (xi + xj) denoting the centre of gravity of ψi ∩ ψj for j ∈ {i− 1, i+ 1}.

One gets

Vi
d

dt
ui ≈ −

∑

j

F (u(xji , t)) βij .

Now we integrate the equation over time interval [tn, tn+1] and divide by ∆tn

un+1
i − uni
∆tn

= − 1

Vi

∑

j

1

∆tn

∫ tn+1

tn
F (u(xji , t))dt βij .

The term 1
∆tn

∫ tn+1

tn
F (u(xji , t))dt

βij

|βij|
is approximated with an appropriate numerical flux

1

∆tn

∫ tn+1

tn
F (u(xji , t))dt

βij
|βij |

≈ gij ,
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more specifically, using an appropriate Gaussian quadrature with weights ws and quadrature points
τs, s = 1, . . . , qt on the time integral

1

∆tn

qt∑

s=1

wsF (u(xji , τs))
βij
|βij |

≈ gij .

The scheme becomes

un+1
i = uni − ∆tn

Vi

∑

j

|βij |gij .

This derivation allows us to work in the framework of finite volume particle method.
In the case of linear B-splines the coefficients βij have the simple form

βij =





1 , j = i + 1 ,
−1 , j = i − 1 ,
0 , else

and the scheme can be rewritten as

un+1
i = uni − ∆tn

Vi
(gi,i+1 + gi,i−1) .

If the numerical flux gij is assumed to be conservative, the last equation will read

un+1
i = uni − ∆tn

Vi
(gi,i+1 − gi−1,i) , (4.5)

which will motivate the definition of a higher order scheme.

Use of the ADER scheme

The notation used until now was very useful for the derivation of the method (2.20)-(2.22) and
to show the conservative form (4.5) of the method. For the purposes of the rest of this chapter
we will introduce a slightly different notation concerning the numerical flux: We will write gi+ 1

2

instead of gi,i+1 which denotes the approximation of the physical flux at point xi+ 1
2
.

Formally, we can rewrite the relation (4.5) in the form

un+1
i = uni − ∆tn

Vi
(gi+ 1

2
− gi− 1

2
) ,

where

uni =
1

Vi

∫

R

uψidx

and

gi+ 1
2

=
1

∆tn

qt∑

s=1

wsF (u(xi+ 1
2
, τs)) ≈

1

∆tn

∫ tn+1

tn
F (u(xi+ 1

2
, t))dt

for a suitable numerical quadrature with weights ws and nodes τs and xi+ 1
2
= 1

2 (xi + xi+1). This

is very similar to the finite volume scheme (1.14) and the numerical flux function (1.16).
Further, we follow the construction of the ADER method from chapter 1. We approximate the
exact solution with a truncated Taylor expansion in time,

u(xi+ 1
2
, τ) ≈ uGRPi+ 1

2

(xi+ 1
2
, τ) = u(xi+ 1

2
, 0+) + τut(xi+ 1

2
, 0+)

and use the Cauchy-Kowalewski procedure to replace the time derivative with spatial derivative,

uGRPi+ 1
2

(xi+ 1
2
, τ) = u(xi+ 1

2
, 0+)− τF ′(u(xi+ 1

2
, 0+))ux(xi+ 1

2
, 0+) .
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For data u
(j)
L ,u

(j)
R , j = 0, 1 given later in this section, we approximate the terms u(xi+ 1

2
, 0+) and

ux(xi+ 1
2
, 0+) with the solution of a generalized Riemann problem, which is approximated with a

truncated series of two classical Riemann problems for u and its derivative ux. More specifically,

u(xi+ 1
2
, τ) ≈ uGRPi+ 1

2

(xi+ 1
2
, τ) ≈ u

(0)

i+ 1
2

− τF ′(u
(0)

i+ 1
2

)u
(1)

i+ 1
2

,

where

u(xi+ 1
2
, 0+) ≈ u

(0)

i+ 1
2

= RPi+ 1
2
(u

(0)
L ,u

(0)
R ) ,

ux(xi+ 1
2
, 0+) ≈ u

(1)

i+ 1
2

= LRPi+ 1
2
(u

(1)
L ,u

(1)
R ) .

We denote by

u
(0)

i+ 1
2

= RPi+ 1
2
(u

(0)
L ,u

(0)
R ) (4.6)

the solution of Riemann problem (1.5)-(1.6) along (x− xi+ 1
2
)/t with the governing equation (4.1)

and with initial data

u(x, 0) =






u
(0)
L , x < xi+ 1

2
,

u
(0)
R , x > xi+ 1

2
.

By the term

u
(1)

i+ 1
2

= LRPi+ 1
2
(u

(1)
L ,u

(1)
R ) (4.7)

we denote the solution along (x− xi+ 1
2
)/t of a linearized Riemann problem for the derivatives ux

(ux)t(x, t) + F ′(u
(0)

i+ 1
2

)(ux)x(x, t) = 0 ,

ux(x, 0) =






u
(1)
L , x < xi+ 1

2
,

u
(1)
R , x > xi+ 1

2
,

where we linearize around u
(0)

i+ 1
2

.

In order to get a complete scheme, it remains to define the initial data u
(j)
L ,u

(j)
R , j = 0, 1. These

data are acquired from reconstructions Ri of the exact solution u for all i ∈ Z by polyharmonic
splines based on data ui, as treated in chapter 3. More specifically, for every i ∈ Z one constructs
several reconstructions and combine them using a WENO method to get the final non-oscillatory
reconstruction Ri. The construction follows.

We will consider stencils. A stencil is a set of neighboring particles (more precisely, a set of
indices of neighboring particles) to a given particle index i involving the particle index i itself too.
We define

Ŝi =
{
Sil
}NS

l=1

the set of all stencils corresponding to the given particle xi, where Sil is the l-th stencil of the set.
The size of a stencil Sil is a given number ns. The number NS denotes the number of elements of

Ŝi and it holds NS = ns in one dimension.
Consider the linear functional λi from (3.2) (we will use the simplified notation λi instead of λxi

in
this chapter). For each l ∈ {1, . . . , NS} find an interpolant sil on u, such that for every component
sil of s

i
l and u of u the relation

λj(s
i
l) = λj(u) ∀ j ∈ Sil (4.8)

holds. More precisely, we solve m separate interpolation problems for every component of a vector
function u = (u1, . . . , um)

T . The polyharmonic spline function is used as the sought interpolant
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4.1 Formulation of the method

in every component.
Having determined the interpolants sil for each l = 1, . . . , NS , we compute their oscillation indica-
tors by (3.17) and the corresponding weights ωil by (3.19) (componentwise for each component of
sil). First, we have to define the componentwise product.

Definition 4.1 (Componentwise product)
Let v,w ∈ Rm. The componentwise product (also known as Hadamard product, Schur product or
elementwise product) of vectors v and w is defined by

v ◦w =




v1
...
vm


 ◦




w1

...
wm


 :=




v1w1

...
vmwm


 .

Finally, we define the reconstruction Ri on u via (3.16), i.e.,

Ri(x) =

NS∑

l=1

ωil ◦ sil(x) . (4.9)

With this, we have determined for each particle xi a reconstruction Ri on the exact solution u,
such that

λi(Ri) = λi(u) .

This motivates the definition of the domain of definition of each reconstruction Ri, which we set
to supp ψi = [xi−1, xi+1] (compare with FVM). Consider, for the sake of simplicity, a scalar hyper-
bolic conservation law, i.e., m = 1. This is reasonable since the reconstructions are built for each
component of u separately. In the end, we will formulate the whole method for a general m ∈ IN .
Now, consider two neighboring reconstructions Ri and Ri+1, cf. figure 4.1. Based on these re-
constructions, we want to define a generalized Riemann problem similar to the problem for FVM
defined in definition 1.28 (cf. figure 1.2). But, compared to the FVM framework, where charac-
teristic functions χi of a given interval are used, our reconstructions in FVPM overlap, since the
basis functions ψi overlap. That is why the generalized Riemann problem for FVPM has to be
defined in a special way.
Consider the figure 4.2. If we take only the function values of Ri and Ri+1 depicted with full lines
in the figure into account, we can immediately define a generalized Riemann problem with these
data as initial values. More precisely, consider the center of gravity xi+ 1

2
:= 1

2 (xi + xi+1) of the

interval supp ψi ∩ supp ψi+1 = [xi, xi+1] and the values of Ri on the interval [xi−1, xi+ 1
2
] and

Ri+1 on the interval [xi+ 1
2
, xi+2]. Then the function

ũ0(x) =

{
Ri(x) , x < xi+ 1

2
,

Ri+1(x) , x > xi+ 1
2

(4.10)

represents a well-defined initial condition for the generalized Riemann problem from definition
1.28.
For j = 0, 1 we define the values at the interface xi+ 1

2

u
(j)
L = lim

x→x
i+1

2 −

∂(j)Ri(x) = ∂(j)Ri(xi+ 1
2
) ,

u
(j)
R = lim

x→x
i+1

2 +

∂(j)Ri+1(x) = ∂(j)Ri+1(xi+ 1
2
) .

Following chapter 1, the generalized Riemann problem from definition 1.28 with initial conditions
defined by (4.10) is then approximated by a truncated series of classical Riemann problems (4.6)
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4 A method of higher order

xi−1 xi xi+1 xi+2xi+ 1
2

Ri

Ri+1

Figure 4.1: An illustration of two neighboring reconstructions. A scalar case of hyperbolic conser-
vation law, i.e., m = 1, is considered. The reconstructions overlap in the interval [xi, xi+1].

and (4.7) with initial conditions given by the above defined values u
(j)
L and u

(j)
R . In the following

text, we will prove a consistency of definition of the GRP for FVPM and introduce the definition
of the high order FVPM.

Remark 4.2
The correct notation would be u

(j)

L,i+ 1
2

, u
(j)

R,i+ 1
2

and

RPi+ 1
2
(u

(0)

L,i+ 1
2

, u
(0)

R,i+ 1
2

) ,

LRPi+ 1
2
(u

(1)

L,i+ 1
2

, u
(1)

R,i+ 1
2

) ,

denoting the dependence of the data on i. For the sake of notational simplicity we omit the index

i+ 1
2 of data u

(j)
L , u

(j)
R .

Consistency of the definition of the generalized Riemann problem

Consider reconstructions Ri satisfying

1

Vi

∫

supp ψi

Riψidx =
1

Vi

∫

supp ψi

uψidx .

Then we defined for FVPM the generalized Riemann problem

GRPi+ 1
2
(uL(x),uR(x)) (4.11)

with data

uL(x) = Ri(x) , x < xi+ 1
2
,

uR(x) = Ri+1(x) , x > xi+ 1
2
.

This definition is consistent with the definition of GRP in the framework of FVM in the following
sense.
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4.1 Formulation of the method

xi−1 xi xi+1 xi+2xi+ 1
2

Ri

Ri+1

Figure 4.2: An illustration of two neighboring restricted reconstructions. A scalar case of hyperbolic
conservation law, i.e., m = 1, is considered. We consider only the values of Ri on [xi−1, xi+ 1

2
] and

Ri+1 on [xi+ 1
2
, xi+2]. A generalized Riemann problem with this data can be defined.

For the sake of simplicity we will consider uniform particle distribution, i.e., xi+1 − xi = ∆x
for all i ∈ Z. Consider the transformation functions ψαi defined for α ∈ [0, 1] as

ψαi (x) =






0 , x ∈
(
−∞, xi − 1+α

2 ∆x
]
∪
[
xi +

1+α
2 ∆x,∞

)
,

1 , x ∈
[
xi − 1−α

2 ∆x, xi +
1−α
2 ∆x

]
,

x−xi+
1+α
2

∆x

α∆x , x ∈
[
xi − 1+α

2 ∆x, xi − 1−α
2 ∆x

]
,

xi+
1+α
2

∆x−x
α∆x , x ∈

[
xi +

1−α
2 ∆x, xi +

1+α
2 ∆x

]
.

The graphs of the functions are shown in figure 4.3.
One can show, that it holds

ψ1
i (x) = ψi(x) ,

ψ0
i (x) = χi(x) := χ[x

i− 1
2

,x
i+1

2

](x) ,

‖ψαi − χi‖L1(R)
α→0+−→ 0 .

For every α ∈ [0, 1] define the interpolation problems

1

V αi

∫

R

Rα
i ψ

α
i dx =

1

V αi

∫

R

uψαi dx , i ∈ Z , (4.12)

which we solve via polyharmonic splines. Then the problem (4.12) has for every α ∈ [0, 1] a unique
solutionRα

i for every i ∈ Z. The idea now is, to show that if we change from particle basis functions
ψi to characteristic functions χi via limit transition with respect to α, the limit of reconstructions
Rα
i and Rα

i+1 will define a well-posed GRP for FVM. We define then the GRP for FVPM in that
sense, i.e., in the sense of FVM.
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4 A method of higher order

xi−1 xi xi+1

xi−1 xi xi+1

xi−1 xi xi+1xi− 1
2

xi+ 1
2

ψi = ψ1
i

ψαi

χi = ψ0
i

Figure 4.3: Functions ψi, ψ
α
i and χi.

It holds

V αi =

∫

supp ψi

ψαi (x)dx = xi+ 1
2
− xi− 1

2
= ∆x ∀ α ∈ [0, 1] .

Further, one can show that

Rα
i → R0

i pointwise.

The latter follows from the structure of every single component Rαi of Rα
i

Rαi (x) =

NS∑

l=1

ωi,αl si,αl (x) .

The values

ωi,αl = ωi,αl (si,αl )

depends continuously on si,αl (see (3.19) for the exact definition). Recall from (3.14) that

si,αl (x) =
∑

j∈Si
l

cαj λ
y,α
j φ(‖x− y‖) +

∑

|β|<m

dαβx
β ,

where the upper index α denotes the dependency on the parameter α. The functional λy,αi is
defined in the same way as in (3.2) with respect to the function ψαi . It can be easily verified that
λy,αi φ(‖x−y‖) → λy,0i φ(‖x−y‖) for α→ 0+. The coefficients cαj and dαβ are solution of the system
(3.5), i.e.,

[
Aα Pα

(Pα)T 0

]
.

[
cα

dα

]
=

[
u
∣∣∣
λα
X

0

]
,
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4.1 Formulation of the method

where

Aα =
(
λx,αi λy,αj φ(‖x− y‖)

)
i,j

∈ R
ns×ns ,

Pα =
(
λαi (x

β)
)
i,β

∈ R
ns×q ,

u
∣∣∣
λα
X

= (λαi (u))i ∈ R
ns .

Then cαj → c0j and dαβ → d0β . Altogether, using the triangle inequality, one gets the pointwise

convergence Rα
i → R0

i .
From that we deduce

1
V α
i

∫
R

Rα
i ψ

α
i dx = 1

V α
i

∫
R

uψαi dx

y α → 0+

y

1
∆x

∫
R

R0
iχidx = 1

∆x

∫
R

uχidx .

Then a generalized Riemann problem

GRPi+ 1
2
(uL(x),uR(x))

on the interface xi+ 1
2
with data

uL(x) = R0
i (x) , x < xi+ 1

2
,

uR(x) = R0
i+1(x) , x > xi+ 1

2
,

satisfying

1

∆x

x
i+1

2∫

x
i− 1

2

R0
i =

1

∆x

x
i+1

2∫

x
i− 1

2

u ,
1

∆x

x
i+3

2∫

x
i+1

2

R0
i+1 =

1

∆x

x
i+3

2∫

x
i+1

2

u

can be defined. This corresponds to the definition in the framework of FVM and the solution of
GRPi+ 1

2
(uL(x),uR(x)) defines an approximation on the exact solution u at the point x = xi+ 1

2
as

in the classical ADER method for FVM.

Definition of the method

Let us summarize the definition of the higher order FVPM for the general case m ≥ 1.

Definition 4.3 (Higher order method)
We define a finite volume particle method for the numerical solution of (4.1)-(4.2) with non-moving
particles using linear B-splines as the partition of unity given by the scheme

un+1
i = uni − ∆tn

Vi
(gi+ 1

2
− gi− 1

2
) , i ∈ Z (4.13)

with the numerical flux

gi+ 1
2
=

1

∆tn

qt∑

s=1

wsF
(
uGRPi+ 1

2

(xi+ 1
2
, τs)

)
. (4.14)

The values uGRP
i+ 1

2

(xi+ 1
2
, τ) are defined by

uGRPi+ 1
2

(xi+ 1
2
, τ) = u

(0)

i+ 1
2

− τF ′(u
(0)

i+ 1
2

)u
(1)

i+ 1
2

, (4.15)
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4 A method of higher order

where u
(0)

i+ 1
2

and u
(1)

i+ 1
2

stand for the solutions of classical Riemann problems (4.6) and (4.7), i.e.,

u
(0)

i+ 1
2

= RPi+ 1
2
(u

(0)
L ,u

(0)
R ) , (4.16)

u
(1)

i+ 1
2

= LRPi+ 1
2
(u

(1)
L ,u

(1)
R ) . (4.17)

Data u
(j)
L and u

(j)
R are defined for j = 0, 1 by

u
(j)
L = lim

x→x
i+1

2−

∂(j)x Ri(x) , (4.18)

u
(j)
R = lim

x→x
i+1

2+

∂(j)x Ri+1(x) , (4.19)

where the WENO reconstructions Ri(x) are given for i ∈ Z by (4.9), i.e.,

Ri(x) =

NS∑

l=1

ωil ◦ sil(x) . (4.20)

The function sil solves for l = 1, . . . , NS componentwise the interpolation problem (4.8) at a given
time level tn, i.e.,

λj(s
i
l) = unj , j ∈ Sil

by the use of polyharmonic splines.

Remark 4.4
In the practice, in order to get second order of accuracy, we will use the Gaussian quadrature
(more specifically Gauss-Legendre quadrature). We will use the number of nodes qt = 2, nodes
τs = ±

√
1/3 and weights ws = 1 for the integration over interval [−1, 1]. We also transform the

integral from a general interval [a, b] onto [−1, 1]. The final formula is

∫ b

a

f(t)dt =
b− a

2

∫ 1

−1

f

(
b− a

2
τ +

a+ b

2

)
dτ ≈ b− a

2

2∑

s=1

wsf

(
b− a

2
τs +

a+ b

2

)
.

In next sections, we are going to analyse the consistency and stability of the above defined scheme
for a scalar governing equation. Since we want to prove the order of accuracy to be 2, we will set
for polyharmonic splines the parameter k = 2. First, we investigate the scheme (4.13)-(4.20) for
special choices of parameters: We will simplify the scheme for the case of linear advection equation
and ns = 2. This will be later useful to prove stability. Moreover, we will introduce values of
WENO weights for ns = 3 in the case of linear advection equation to verify our hypotheses in the
section concerning consistency.
Consider for a moment the scheme (4.13)-(4.20) for a scalar linear conservation law ut + aux = 0,
a > 0 :

The scheme for ns = 2, k = 2

We will introduce the whole scheme.
On the stencil S = (i, i + 1) we have to determine the matrices A and P from (3.5). Direct
computation yields

A = ∆x3




31
105

841
420

841
420

31
105


 , P =

(
1 xi
1 xi+1

)
.
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4.1 Formulation of the method

The solution of the system (3.5), i.e.,

[
A P
PT 0

]
.

[
c
d

]
=

[
u
∣∣∣
λX

0

]
,

where u
∣∣∣
λX

= (ui, ui+1)
T , is

c =

(
0
0

)
, d =

1

∆x

(
xi+1ui − xiui+1

ui+1 − ui

)
.

The polyharmonic spline interpolant has then the form

s(x) =

2∑

j=1

cjλ
y
i+j−1φ(|x− y|) + d1 + d2x .

We can see that in this case s is a polynomial. Due to (3.20) |s|BL2
= 0, and therefore the

corresponding WENO weight is ω = 1
ns

= 1
2 .

So we see, we have the interpolant at the point xi+ 1
2
equal to si2(xi+ 1

2
) = 1

2 (u
n
i + uni+1) on the

stencil (i, i+1) and the value of interpolant si1 is si1(xi+ 1
2
) = − 1

2u
n
i−1+

3
2u

n
i on the stencil (i−1, i).

Then

Ri(xi+ 1
2
) =

1

2
si1(xi+ 1

2
) +

1

2
si2(xi+ 1

2
) = uni +

1

4
(uni+1 − uni−1) .

Analogously one gets

R′
i(xi+ 1

2
) =

1

2∆x
(uni+1 − uni−1) .

Since both Riemann problems are linear with the characteristic speed a > 0, we obtain

Ri(xi+ 1
2
) = RPi+ 1

2

(
Ri(xi+ 1

2
), Ri+1(xi+ 1

2
)
)
,

R′
i(xi+ 1

2
) = LRPi+ 1

2

(
R′
i(xi+ 1

2
), R′

i+1(xi+ 1
2
)
)
,

and

gi+ 1
2

=
1

∆t

∫ ∆t

0

a
(
Ri(xi+ 1

2
)− τaR′

i(xi+ 1
2
)
)
dτ

= aRi(xi+ 1
2
)− ∆t

2
a2R′

i(xi+ 1
2
)

= a(uni +
1

4

(
uni+1 − uni−1)

)
− 1

4

∆t

∆x
a2(uni+1 − uni−1) .

Analogously we get for gi− 1
2

gi− 1
2
= a

(
uni−1 +

1

4
(uni − uni−2)

)
− 1

4

∆t

∆x
a2(uni − uni−2) .

After plugging gi+ 1
2
and gi− 1

2
into (4.13) we rearrange and get

un+1
i =

1∑

j=−2

bju
n
i+j (4.21)

with the coefficients bj given by (4.38)-(4.41) yielding the explicit scheme.
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4 A method of higher order

The WENO weights for ns = 3, k = 2

Here we determine only the WENO weights since they are needed in the next section. Consider
the stencil S = (i − 1, i, i+ 1). The matrices A and P read

A = ∆x3




31
105

841
420 10

841
420

31
105

841
420

10 841
420

31
105




, P =




1 xi−1

1 xi
1 xi+1



 .

The solution of the corresponding matrix (3.5) with the corresponding right hand side, where

u
∣∣∣
λX

= (ui−1, ui, ui+1)
T , is

c =
D0

∆x3




ui−1 − 2ui + ui+1

−2(ui−1 − 2ui + ui+1)
ui−1 − 2ui + ui+1


 ,

d =




− 717∆x−604xi

1208∆x ui−1 +
1321
604 ui − 717∆x+604xi

1208∆x ui+1

1
2∆x (ui+1 − ui−1)



 ,

where the constant D0 = 105
604 . The polyharmonic spline interpolant then has the form

s(x) =

3∑

j=1

cjλ
y
i+j−2φ(|x − y|) + d1 + d2x .

Then from (3.20) we get

|s|2BL2(R)
= cTAc =

D0

∆x3
(ui−1 − 2ui + ui+1)

2 . (4.22)

The WENO weight can be now determined via (3.19).

4.2 Local truncation error

Consider a scalar conservation law in one dimension, i.e.,

ut + F (u)x = 0 , x ∈ R , t > 0 , (4.23)

u(x, 0) = u0(x) , x ∈ R . (4.24)

Assume, that the initial data (4.24) has compact support. Then the solution of the hyperbolic
problem (4.23) will have compact support for all times. Let Ω ⊂ R be an open and bounded
domain, such that supp u(·, t) ⊂ Ω for all times t ∈ [0, T ].
Furthermore, we will consider some smoothness on u over a domain Ω × [0, T ] to get bounds on
certain terms.
For the sake of simplicity, let us consider a uniform discretization in time and space

xi+1 − xi = ∆x > 0 ∀ i ∈ Z

and

tn+1 − tn = ∆t > 0 ∀ n ∈ IN0 .

Then all volumes have the same size, i.e., Vi = ∆x for all i ∈ Z.
Consider the scheme (4.13)-(4.20) applied on (4.23).
The local truncation error is defined by

T (xi, t
n) :=

u(xi, t
n +∆t)− u(xi, t

n)

∆t
+

1

∆x
(gi+ 1

2
− gi− 1

2
) , (4.25)
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4.2 Local truncation error

which is the difference of the left and of the right hand side of the formula (4.13) divided by ∆t.
More specifically, we plug the exact values u(xi, t

n) instead of uni into the formula (i.e., of the exact
solution of (4.23)) and also into the numerical flux functions gi+ 1

2
(see the details below). In order

to keep the notation simple, we will still denote the numerical flux with exact values by gi+ 1
2
in

this section.
Our goal is to show that the scheme (4.13)-(4.20) is of second order of accuracy in time and space,
i.e.,

T (xi, t
n) = O(∆t2) +O(∆x2) , ∆t→ 0 , ∆x→ 0 .

In the following we introduce useful results to show the local truncation error.

Some results on polyharmonic splines

In order to investigate the local truncation error of scheme (4.13)-(4.20) we will make use of results
of chapter 3. To this end, we will adapt the notation. Recall the results and the proof of theorem
3.3 in one dimension for some function f smooth enough:

f(hx̃)− sh(hx̃) =
∑

k

Lhk(hx̃)
[
Tmf,hx̃(hx̃k)− f(hx̃k)

]
(4.26)

=
∑

k

L1
k(x̃)

[
Tmf,hx̃(hx̃k)− f(hx̃k)

]
. (4.27)

Define x := hx̃ and xj := hx̃j and omit the upper index h at the function sh (in the following
analysis we consider always the scaled problem).
Consider for a moment the equivalent notation λxi

of the functional (3.2) instead of the notation
λi used otherwise in this chapter. We make the following consideration.
We want to solve the interpolation problems for all i ∈ Z and for all l = 1, . . . , ns:

λhx̃k

(
sil
)
= λhx̃k

(f) ∀ k ∈ Sil , (4.28)

where

λhx̃k
(f) :=

1

Vhx̃k

∫

supp ψhx̃k

f(y)ψhx̃k
(y)dy ,

Vhx̃k
:=

∫

supp ψhx̃k

ψhx̃k
(y)dy ,

with the scaling parameter h > 0. We choose the special problem for the parameter h = 1. In this
case

λx̃k

(
sil
)
= λx̃k

(f) ∀ k ∈ Sil .

Until now the points X̃ = {x̃k}ns

k=1 were some arbitrary points in Rd, s.t. λX̃ is Pdm-unisolvent.

For our considerations, since we use uniform distributions, let us assume fixed points X̃, s.t.

x̃k+1 − x̃k = 1 .

The points X̃ can be considered as reference points. Then

∆x = xk+1 − xk = hx̃k+1 − hx̃k = h(x̃k+1 − x̃k) = h .

With this we have derived the relation between the scaling parameter h in the general local inter-
polation problem (4.28) and the space discretization of the method (4.13)-(4.20), which will allow
us to investigate consistency of the scheme.
The assumption x̃k+1 − x̃k = 1 is without loss of generality with respect to the investigation of
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4 A method of higher order

convergence of the method. Indeed, for our case with uniform particle distribution, there would
be always some constant C, such that

x̃k+1 − x̃k = C ,

and therefore

h =
∆x

x̃k+1 − x̃k
=

∆x

C
.

Hence, one would work with ∆x scaled with a fixed factor 1/C.
Let us get back to (4.26)

f(hx̃)− sh(hx̃) =
∑

k

L1
k(x̃)

[
Tmf,hx̃(hx̃k)− f(hx̃k)

]
.

Now we can rewrite it for the “local” variable x as

f(x)− s(x) =
∑

k

L1
k(x̃)

[
Tmf,x(xk)− f(xk)

]
(4.29)

=
∑

k

L1
k(x̃)



∑

|α|=m

1

α!
Dαf(x)(xk − x)α +O(∆xm+1)


 (4.30)

=
∑

k

L1
k(x̃)

∑

|α|=m

1

α!
Dαf(x)(xk − x)α +O(∆xm+1) , (4.31)

since L1
k are uniformly bounded. We will use this representation of the error later in this section.

The derivative of Lagrange basis functions

We will also need to differentiate the Lagrange basis functions. Recall the relation

L1
k(x̃) = L1

k

(x
h

)
= L1

k

( x

∆x

)
.

Then

d

dx
L1
k(x̃(x)) =

d

dx
L1
k

( x

∆x

)
=

1

∆x
(L1

k)
′(x̃) .

Analysis of local truncation error

The main theorem of this section reads as follows.

Theorem 4.5
Let the WENO weights satisfy ωil − ωi−1

l = O(∆x), ∆x → 0, l = 1, . . . , ns, i ∈ Z. Furthermore,
assume F ∈ C4(U), such that F (k) is bounded for k = 1, . . . , 4. Assume u ∈ C4(Ω × [0, T ]) and
∆t
∆x = K < +∞ remains constant.
Then the scheme (4.13)-(4.20) applied on the scalar conservation law in one dimension (4.23) is
of second order of consistency in time and space, i.e., it holds for the above defined local truncation
error

T (xi, t
n) = O(∆t2) +O(∆x2) , ∆t → 0 , ∆x→ 0 .
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4.2 Local truncation error

Proof.
The local truncation error of the scheme (4.13)-(4.20) is defined in (4.25) by

T (xi, t
n) =

u(xi, t
n +∆t)− u(xi, t

n)

∆t
+

1

∆x
(gi+ 1

2
− gi− 1

2
) .

We want to show

T (xi, t
n) = O(∆t2) +O(∆x2) , ∆t→ 0 , ∆x→ 0 .

The proof is divided into six subtasks.

I.

Consider the scheme (4.13)-(4.20). We start with the numerical flux gi+ 1
2
and the reconstructions

Ri(x) therein. From the theory of polyharmonic spline interpolation, theorem 3.3 and from the
formula (4.31), one gets

sil(x) = u(x, tn)− dil(x) +O(∆x3) ,

(sil)
′(x) = ux(x, t

n)− (dil)
′(x) +O(∆x2) ,

where

dil(x) =

ns∑

k=1

L1,i
l,k(x̃)

1

2!
uxx(x, t

n)(xi − x)2

is the leading term of the error and L1,i
l,k is the k-th Lagrange basis function on the l-th stencil with

respect to i, on that we solve the interpolation problem. With 1 is denoted the scaling parameter
h = 1 from the theory of polyharmonic splines. Then

Ri(x) = u(x, tn) +Ri(x) +O(∆x3) ,

R′
i(x) = ux(x, t

n) +R′
i(x) +O(∆x2) ,

where we used that WENO reconstruction is a convex combination of sil and where we define

Ri(x) := −
ns∑

l=1

ωild
i
l(x) ,

R′
i(x) := −

ns∑

l=1

ωil (d
i
l)

′(x) .

II.
Due to the Max-Min-Principle for the solution of (4.23) (see e.g., [18]) we have

u
(0)

i+ 1
2

= RPi+ 1
2
(u

(0)
L , u

(0)
R ) = u(xi+ 1

2
, tn) +Ri(xi+ 1

2
) +O(∆x3) ,

u
(1)

i+ 1
2

= LRPi+ 1
2
(u

(1)
L , u

(1)
R ) = ux(xi+ 1

2
, tn) +R′

i(xi+ 1
2
) +O(∆x2) .

For the sake of simplicity, we usually omit to write the arguments of functions u, R etc. In those
cases the argument will be always (xi+ 1

2
, tn). Then

uGRPi+ 1
2

(xi+ 1
2
, tn + τ) = u

(0)

i+ 1
2

− τF ′(u
(0)

i+ 1
2

)u
(1)

i+ 1
2

= u+Ri(x) +O(∆x3)− τ F ′(u+Ri +O(∆x3)) .

.
(
ux +R′

i +O(∆x2)
)
.

81



4 A method of higher order

Using Taylor expansion for F ′ one gets

uGRPi+ 1
2

(xi+ 1
2
, tn + τ) = u+Ri +O(∆x3)

−τ
(
F ′(u) + (Ri +O(∆x3))F ′′(u) +O(∆x4)

)
.

.
(
ux +R′

i +O(∆x2)
)

= u− τ F (u)x +Ri − τF ′(u)R′
i − τRiF

′′(u)ux

−τRiR′
iF

′′(u) +O(∆x3) ,

where we used the fact τ = O(∆t) and τO(∆x2) = O(∆x3). The latter is true, since we assumed
∆x/∆t < +∞ to be constant. Further, Ri(xi+ 1

2
) = O(∆x2) and R′

i(xi+ 1
2
) = O(∆x), see lemma

4.6. Then

uGRPi+ 1
2

(xi+ 1
2
, tn + τ) = u− τ F (u)x +Ri − τF ′(u)R′

i +O(∆x3) .

III.

F (uGRPi+ 1
2

(xi+ 1
2
, tn + τ)) = F

(
u− τ F (u)x +Ri − τF ′(u)R′

i +O(∆x3)
)
.

Using Taylor expansion again

F (uGRPi+ 1
2

(xi+ 1
2
, tn + τ)) = F (u) +

(
−τ F (u)x +Ri − τF ′(u)R′

i +O(∆x3)
)
F ′(u)

+
1

2

(
−τ F (u)x +Ri − τF ′(u)R′

i +O(∆x3)
)2
F ′′(u) +O(∆x3) .

We use F (u)x = −ut and F ′(u)ut = F (u)t. After further simplifications

F (uGRPi+ 1
2

(xi+ 1
2
, tn + τ)) = F (u) + τ F (u)t +RiF

′(u)− τR′
i(F

′(u))2

+
1

2
τ2(F (u)x)

2F ′′(u) +O(∆x3) .

IV.
According to Davis, Rabinowitz [9] (see also Davis [8]) the error of Gaussian numerical quadrature
is

∫ b

a

f −
qt∑

s=1

wsf(τs) =
(b − a)2qt+1(qt!)

4

(2qt + 1)[(2qt)!]3
f (2qt)(ξ) , ξ ∈ (a, b) ,

where a, b ∈ R, a function f ∈ C2qt [a, b] and where weights ws and nodes τs define the Gaussian
quadrature. In other words it holds

qt∑

s=1

wsf(τs) =

∫ b

a

f +O((b − a)2qt+1) provided that f (2qt) is bounded on [a, b].

Then, application of this result on a Gaussian quadrature with qt = 2, [a, b] = [0,∆t] and f(·) =
F (uGRP

i+ 1
2

(xi+ 1
2
, tn + ·)) on the time integral gives

1

∆t

qt∑

s=1

wsF (u
GRP
i+ 1

2

(xi+ 1
2
, tn + τs)) =

1

∆t

{∫ ∆t

0

F (uGRPi+ 1
2

(xi+ 1
2
, tn + τ))dτ +O(∆t5)

}
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and

1

∆t

qt∑

s=1

wsF (u
GRP
i+ 1

2

(xi+ 1
2
, tn + τs))

=
1

∆t

{∫ ∆t

0

[
F (u) + τ F (u)t +RiF

′(u)− τR′
i(F

′(u))2 +

+
1

2
τ2(F (u)x)

2F ′′(u) +O(∆x3)
]
dτ +O(∆t5)

}

= F (u) +
∆t

2
F (u)t +RiF

′(u)− ∆t

2
R′
i(F

′(u))2

+
∆t2

6
(F (u)x)

2F ′′(u) +O(∆x3) ,

i.e.,

gi+ 1
2

= F (u) +
∆t

2
F (u)t +RiF

′(u)− ∆t

2
R′
i(F

′(u))2

+
∆t2

6
(F (u)x)

2F ′′(u) +O(∆x3) .

Define

Ri+ 1
2

:= RiF
′(u)− ∆t

2
R′
i(F

′(u))2 +
∆t2

6
(F (u)x)

2F ′′(u) ,

then

gi+ 1
2

= F (u) +
∆t

2
F (u)t +Ri+ 1

2
+O(∆x3) .

Now, we expand the first two terms in a Taylor series at xi and get

gi+ 1
2

= F (u(xi, t
n)) + (xi+ 1

2
− xi)F (u)x(xi, t

n) +
1

2
(xi+ 1

2
− xi)

2F (u)xx(xi, t
n)

+
∆t

2

(
F (u)t(xi, t

n) + (xi+ 1
2
− xi)F (u)tx(xi, t

n) +O(∆x2)
)

+Ri+ 1
2
+O(∆x3)

= F (u(xi, t
n)) +

1

2
∆xF (u)x(xi, t

n) +
1

8
∆x2F (u)xx(xi, t

n)

+
∆t

2

(
F (u)t(xi, t

n) +
1

2
∆xF (u)tx(xi, t

n)

)
+Ri+ 1

2
+O(∆x3) .

Analogously, the numerical flux gi− 1
2
can be expanded into

gi− 1
2

= F (u(xi, t
n))− 1

2
∆xF (u)x(xi, t

n) +
1

8
∆x2F (u)xx(xi, t

n)

+
∆t

2

(
F (u)t(xi, t

n)− 1

2
∆xF (u)tx(xi, t

n)

)
+Ri− 1

2
+O(∆x3) .

Then

gi+ 1
2
− gi− 1

2
= ∆xF (u)x(xi, t

n) +
∆t

2
∆xF (u)tx(xi, t

n) +Ri+ 1
2
−Ri− 1

2
+O(∆x3) ,

1

∆x

(
gi+ 1

2
− gi− 1

2

)
= F (u)x(xi, t

n) +
∆t

2
F (u)tx(xi, t

n) +
1

∆x

(
Ri+ 1

2
−Ri− 1

2

)

+O(∆x2) .
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If 1
∆x(Ri+ 1

2
−Ri− 1

2
) = O(∆x2), then

1

∆x

(
gi+ 1

2
− gi− 1

2

)
= F (u)x(xi, t

n) +
∆t

2
F (u)tx(xi, t

n) +O(∆x2) .

Indeed, 1
∆x (Ri+ 1

2
−Ri− 1

2
) = O(∆x2) holds, as stated in theorem 4.12.

V.
We expand the first part of the truncation error

1

∆t
(u(xi, t

n +∆t)− u(xi, t
n)) = ut(xi, t

n) +
∆t

2
utt(xi, t

n) +O(∆t2) .

VI.
Putting all together we get the truncation error

T (xi, t
n) =

1

∆t
(u(xi, t

n +∆t)− u(xi, t
n)) +

1

∆x

(
gi+ 1

2
− gi− 1

2

)

= ut(xi, t
n) + F (u)x(xi, t

n) +
∆t

2
[utt(xi, t

n) + F (u)tx(xi, t
n)]

+O(∆t2) +O(∆x2)

= ut(xi, t
n) + F (u)x(xi, t

n) +
∆t

2

[
ut(xi, t

n) + F (u)x(xi, t
n)
]

t

+O(∆t2) +O(∆x2) .

Since u is the exact solution of ut + F (u)x = 0, the corresponding terms vanish and we get

T (xi, t
n) = O(∆t2) +O(∆x2) ,

which finalizes the proof.

The remainder error

In this technical subsection we are going to prove that for the remainder Ri+ 1
2
− Ri− 1

2
it holds

Ri+ 1
2
−Ri− 1

2
= O(∆x3) as ∆x→ 0.

Ri+ 1
2

= RiF
′(u)− ∆t

2
R′
i(F

′(u))2 +
∆t2

6
(F (u)x)

2F ′′(u) ,

Ri− 1
2

= Ri−1F
′(u)− ∆t

2
R′
i−1(F

′(u))2 +
∆t2

6
(F (u)x)

2F ′′(u) ,

where we use the shortened notation for

Ri+ 1
2
(xi+ 1

2
) = Ri(xi+ 1

2
)F ′(u)(xi+ 1

2
, tn)− ∆t

2
R′
i(xi+ 1

2
)(F ′(u))2(xi+ 1

2
, tn)

+
∆t2

6
(F (u)x)

2(xi+ 1
2
, tn)F ′′(u)(xi+ 1

2
, tn) ,

Ri− 1
2
(xi− 1

2
) = Ri−1(xi− 1

2
)F ′(u)(xi− 1

2
, tn)− ∆t

2
R′
i−1(xi− 1

2
)(F ′(u))2(xi− 1

2
, tn)

+
∆t2

6
(F (u)x)

2(xi− 1
2
, tn)F ′′(u)(xi− 1

2
, tn) .

Then

Ri+ 1
2
(xi+ 1

2
)−Ri− 1

2
(xi− 1

2
)

= Ri(xi+ 1
2
)F ′(u)(xi+ 1

2
, tn)−Ri−1(xi− 1

2
)F ′(u)(xi− 1

2
, tn)

−∆t

2

{
R′
i(xi+ 1

2
)(F ′(u))2(xi+ 1

2
, tn)−R′

i−1(xi− 1
2
)(F ′(u))2(xi− 1

2
, tn)

}

+
∆t2

6

{
(F (u)x)

2(xi+ 1
2
, tn)F ′′(u)(xi+ 1

2
, tn)− (F (u)x)

2(xi− 1
2
, tn)F ′′(u)(xi− 1

2
, tn)

}
.
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We estimate the three difference terms above. First, we introduce three auxiliary lemmata. In the
next three lemmata, we estimate the difference terms. In the end, we formulate the estimate on
Ri+ 1

2
(xi+ 1

2
)−Ri− 1

2
(xi− 1

2
). We will then also discuss the arising assumption ωil − ωi−1

l = O(∆x),
∆x→ 0.

Lemma 4.6
Let u ∈ C3(Ω× [0, T ]). Then for ∆x→ 0

Ri(xi+ 1
2
) = O(∆x2) ,

R′
i(xi+ 1

2
) = O(∆x) .

Proof.
The proof follows immediatelly from the definitions of Ri and R′

i as a Taylor expansion remainder
for polyharmonic splines, from boundedness of Lagrange functions and their derivatives.

Lemma 4.7
Under the assumptions ωil − ωi−1

l = O(∆x), ∆x → 0, l = 1, . . . , ns, i ∈ Z and u ∈ C3(Ω × [0, T ])
it holds

Ri(xi+ 1
2
)−Ri−1(xi− 1

2
) = O(∆x3) , ∆x→ 0 .

Proof.
From the definitions

Ri(xi+ 1
2
) = −

ns∑

l=1

ωild
i
l(xi+ 1

2
) ,

Ri−1(xi− 1
2
) = −

ns∑

l=1

ωi−1
l di−1

l (xi− 1
2
) ,

where

dil(xi+ 1
2
) =

ns∑

k=1

L1,i
l,k(x̃i+ 1

2
)
1

2!
uxx(xi+ 1

2
, tn)(xi − xi+ 1

2
)2 ,

di−1
l (xi− 1

2
) =

ns∑

k=1

L1,i−1
l,k (x̃i− 1

2
)
1

2!
uxx(xi− 1

2
, tn)(xi−1 − xi− 1

2
)2 ,

L1,i
l,k is the k-th Lagrange basis function on the l-th stencil with respect to i, on which we solve the

interpolation problem. With 1 is meant the scaling parameter h = 1.

Then

Ri(xi+ 1
2
)−Ri−1(xi− 1

2
) = −

ns∑

l=1

[
ωil(d

i
l(xi+ 1

2
)− di−1

l (xi− 1
2
)) + di−1

l (xi− 1
2
)(ωil − ωi−1

l )
]
.

Since di−1
l (xi− 1

2
) = O(∆x2) and from the assumption ωil − ωi−1

l = O(∆x), the second term in the

sum is of order O(∆x3).
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For the first term we have

dil(xi+ 1
2
)− di−1

l (xi− 1
2
) =

ns∑

k=1

{
L1,i
l,k(x̃i+ 1

2
)
1

2!
uxx(xi+ 1

2
, tn)(xi − xi+ 1

2
)2

−L1,i−1
l,k (x̃i− 1

2
)
1

2!
uxx(xi− 1

2
, tn)(xi−1 − xi− 1

2
)2
}
.

Due to the shift-invariance of the polyharmonic splines interpolation it holds for the Lagrange basis
functions

L1,i
l,k(x̃i+ 1

2
) = L1,i−1

l,k (x̃i− 1
2
) .

Further, we have xi − xi+ 1
2
= xi−1 − xi− 1

2
= −∆x, i.e.,

dil(xi+ 1
2
)− di−1

l (xi− 1
2
) =

ns∑

k=1

L1,i
l,k(x̃i+ 1

2
)
1

2
∆x2(uxx(xi+ 1

2
, tn)− uxx(xi− 1

2
, tn))

and

∣∣∣dil(xi+ 1
2
)− di−1

l (xi− 1
2
)
∣∣∣ ≤ 1

2
∆x2 max

i

∣∣∣uxx(xi+ 1
2
, tn)− uxx(xi− 1

2
, tn)

∣∣∣
ns∑

k=1

∣∣∣L1,i
l,k(x̃i+ 1

2
)
∣∣∣ .

Since
∑ns

k=1

∣∣∣L1,i
l,k(x̃i+ 1

2
)
∣∣∣ is uniformly bounded and because of the assumptions on u, that uxx is

Lipschitz continuous in x on Ω, we have

∣∣∣dil(xi+ 1
2
)− di−1

l (xi− 1
2
)
∣∣∣ ≤ C∆x3

for some constant C independent of ∆x.
Because the WENO weights satisfy 0 ≤ ωil ≤ 1, it holds

Ri(xi+ 1
2
)−Ri−1(xi− 1

2
) = O(∆x3) , ∆x→ 0 .

Lemma 4.8
Under the assumptions ωil − ωi−1

l = O(∆x), ∆x→ 0, l = 1, . . . , ns, i ∈ Z and u ∈ C3(Ω× [0, T ]),

R′
i(xi+ 1

2
)−R′

i−1(xi− 1
2
) = O(∆x2) , ∆x→ 0 .

Proof.
Consider the definitions

R′
i(xi+ 1

2
) = −

ns∑

l=1

ωil (d
i
l)

′(xi+ 1
2
) ,

R′
i−1(xi− 1

2
) = −

ns∑

l=1

ωi−1
l (di−1

l )′(xi− 1
2
) .
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We have

(dil)
′(xi+ 1

2
) =

ns∑

k=1

{ 1

∆x
(L1,i

l,k)
′(x̃i+ 1

2
)
1

2!
uxx(xi+ 1

2
, tn)(xi − xi+ 1

2
)2

+L1,i
l,k(x̃i+ 1

2
)
1

2!

[
uxxx(xi+ 1

2
, tn)(xi − xi+ 1

2
)2

+uxx(xi+ 1
2
, tn)2(xi − xi+ 1

2
)(−1)

]}
,

(di−1
l )′(xi− 1

2
) =

ns∑

k=1

{ 1

∆x
(L1,i−1

l,k )′(x̃i− 1
2
)
1

2!
uxx(xi− 1

2
, tn)(xi−1 − xi− 1

2
)2

+L1,i−1
l,k (x̃i− 1

2
)
1

2!

[
uxxx(xi− 1

2
, tn)(xi−1 − xi− 1

2
)2

+uxx(xi− 1
2
, tn)2(xi−1 − xi− 1

2
)(−1)

]}
.

The latter follows from

L1,i
l,k(x̃) = L1,i

l,k

( x

∆x

)
,

see the beginning of this chapter, and therefore

d

dx
L1,i
l,k(x̃(x))

∣∣∣
x=x

i+1
2

=
1

∆x
(L1,i

l,k)
′(x̃i+ 1

2
) .

It holds

R′
i(xi+ 1

2
)−R′

i−1(xi− 1
2
) = −

ns∑

l=1

[
ωil

(
(dil)

′(xi+ 1
2
)− (di−1

l )′(xi− 1
2
)
)
+ (di−1

l )′(xi− 1
2
)
(
ωil − ωi−1

l

)]
.

Since (di−1
l )′(xi− 1

2
) = O(∆x) and from the assumption ωil − ωi−1

l = O(∆x), the second term in

the sum is of order O(∆x2).
For the first term we have

(dil)
′(xi+ 1

2
)− (di−1

l )′(xi− 1
2
)

=

ns∑

k=1

1

∆x

1

2
(L1,i

l,k)
′(x̃i+ 1

2
)∆x2

[
uxx(xi+ 1

2
, tn)− uxx(xi− 1

2
, tn)

]

+

ns∑

k=1

1

2
∆x2L1,i

l,k(x̃i+ 1
2
)
[
uxxx(xi+ 1

2
, tn)− uxxx(xi− 1

2
, tn)

]

+

ns∑

k=1

(−1)∆xL1,i
l,k(x̃i+ 1

2
)
[
uxx(xi+ 1

2
, tn)− uxx(xi− 1

2
, tn)

]
,

where we used the following consideration: From the shift-invariance of the polyharmonic splines
interpolation, the Lagrange basis functions satisfy

(L1,i
l,k)

′(x̃i+ 1
2
) = (L1,i−1

l,k )′(x̃i− 1
2
) ,

where we used xi − xi+ 1
2
= xi−1 − xi− 1

2
= −∆x.

∣∣∣(dil)′(xi+ 1
2
)− (di−1

l )′(xi− 1
2
)
∣∣∣

≤ max
i

∣∣∣uxx(xi+ 1
2
, tn)− uxx(xi− 1

2
, tn)

∣∣∣
1

2
∆x

ns∑

k=1

∣∣∣(L1,i
l,k)

′(x̃i+ 1
2
)
∣∣∣

+max
i

∣∣∣uxxx(xi+ 1
2
, tn)− uxxx(xi− 1

2
, tn)

∣∣∣
1

2
∆x2

ns∑

k=1

∣∣∣L1,i
l,k(x̃i+ 1

2
)
∣∣∣

+max
i

∣∣∣uxx(xi+ 1
2
, tn)− uxx(xi− 1

2
, tn)

∣∣∣∆x
ns∑

k=1

∣∣∣L1,i
l,k(x̃i+ 1

2
)
∣∣∣ .
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The term
∑ns

k=1

∣∣∣(L1,i
l,k)

′
∣∣∣ is uniformly bounded since the polyharmonic spline interpolation sil(x) =∑ns

k=1 L
1,i
l,k(x)λk(u) (the Lagrange representation) is at least C1(Ω). Because of the assumptions on

u, uxx is Lipschitz continuous and uxxx is bounded on Ω. Hence, we have
∣∣∣(dil)′(xi+ 1

2
)− (di−1

l )′(xi− 1
2
)
∣∣∣ ≤ C∆x2

for some constant C independent of ∆x.
Because the WENO weights satisfy 0 ≤ ωil ≤ 1, it holds

R′
i(xi+ 1

2
)−R′

i−1(xi− 1
2
) = O(∆x2) , ∆x→ 0 .

Now, we estimate the three difference terms of Ri+ 1
2
−Ri− 1

2
with the help of the previous three

lemmata.

Lemma 4.9
Let F ′ be Lipschitz-continuous and bounded on U ⊂ R, ωil −ωi−1

l = O(∆x), ∆x→ 0, l = 1, . . . , ns,
i ∈ Z and u ∈ C3(Ω× [0, T ]). Then

Ri(xi+ 1
2
)F ′(u)(xi+ 1

2
, tn)−Ri−1(xi− 1

2
)F ′(u)(xi− 1

2
, tn) = O(∆x3) , ∆x→ 0 .

Proof.

∣∣∣Ri(xi+ 1
2
)F ′(u)(xi+ 1

2
, tn)−Ri−1(xi− 1

2
)F ′(u)(xi− 1

2
, tn)

∣∣∣

≤
∣∣∣Ri(xi+ 1

2
)
∣∣∣
∣∣∣F ′(u)(xi+ 1

2
, tn)− F ′(u)(xi− 1

2
, tn)

∣∣∣

+
∣∣∣F ′(u)(xi− 1

2
, tn)

∣∣∣
∣∣∣Ri(xi+ 1

2
)−Ri−1(xi− 1

2
)
∣∣∣

≤ C∆x3 ,

which follows from lemmata 4.6, 4.7 and from the assumptions on F and u.

Lemma 4.10
Let F ′ be Lipschitz-continuous and bounded on U ⊂ R, ωil −ωi−1

l = O(∆x), ∆x→ 0, l = 1, . . . , ns,
i ∈ Z and u ∈ C3(Ω× [0, T ]). Then

R′
i(xi+ 1

2
)(F ′(u))2(xi+ 1

2
, tn)−R′

i−1(xi− 1
2
)(F ′(u))2(xi− 1

2
, tn) = O(∆x2) , ∆x→ 0 .

Proof.

∣∣∣R′
i(xi+ 1

2
)(F ′(u))2(xi+ 1

2
, tn)−R′

i−1(xi− 1
2
)(F ′(u))2(xi− 1

2
, tn)

∣∣∣

≤
∣∣∣R′

i(xi+ 1
2
)
∣∣∣
∣∣∣(F ′(u))2(xi+ 1

2
, tn)− (F ′(u))2(xi− 1

2
, tn)

∣∣∣

+
∣∣∣(F ′(u))2(xi− 1

2
, tn)

∣∣∣
∣∣∣R′

i(xi+ 1
2
)−R′

i−1(xi− 1
2
)
∣∣∣

≤ C∆x2 ,
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4.2 Local truncation error

which follows from lemmata 4.6, 4.8, from the formula a2 − b2 = (a + b)(a − b) and from the
assumptions on F and u.

Lemma 4.11
Let F ′′ be Lipschitz-continuous and bounded on U ⊂ R and u ∈ C2(Ω× [0, T ]). Then

(F (u)x)
2(xi+ 1

2
, tn)F ′′(u)(xi+ 1

2
, tn)− (F (u)x)

2(xi− 1
2
, tn)F ′′(u)(xi− 1

2
, tn) = O(∆x) ,

∆x→ 0 .

Proof.
Since u is the exact solution of the conservation law, we have F (u)x = −ut.

∣∣∣u2t (xi+ 1
2
, tn)F ′′(u)(xi+ 1

2
, tn)− u2t (xi− 1

2
, tn)F ′′(u)(xi− 1

2
, tn)

∣∣∣

≤
∣∣∣u2t (xi+ 1

2
, tn)

∣∣∣
∣∣∣F ′′(u)(xi+ 1

2
, tn)− F ′′(u)(xi− 1

2
, tn)

∣∣∣

+
∣∣∣F ′′(u)(xi− 1

2
, tn)

∣∣∣
∣∣∣u2t (xi+ 1

2
, tn)− u2t (xi− 1

2
, tn)

∣∣∣ ≤ C∆x

which is a result of the formula a2 − b2 = (a+ b)(a− b) and the assumptions on F and u.

Now we can state the theorem concerning the remainder error.

Theorem 4.12
Let ωil − ωi−1

l = O(∆x), ∆x → 0, l = 1, . . . , ns, i ∈ Z and assume F : U → R s.t. F ′ is bounded
and F ′′ is bounded and Lipschitz-continuous. Assume u ∈ C3(Ω × [0, T ]). If ∆t

∆x = K < +∞
remains constant, then

Ri+ 1
2
−Ri− 1

2
= O(∆x3) , ∆x→ 0 .

Proof.
Since

Ri+ 1
2
(xi+ 1

2
)−Ri− 1

2
(xi− 1

2
)

= Ri(xi+ 1
2
)F ′(u)(xi+ 1

2
, tn)−Ri−1(xi− 1

2
)F ′(u)(xi− 1

2
, tn)

−∆t

2

{
R′
i(xi+ 1

2
)(F ′(u))2(xi+ 1

2
, tn)−R′

i−1(xi− 1
2
)(F ′(u))2(xi− 1

2
, tn)

}

+
∆t2

6

{
(F (u)x)

2(xi+ 1
2
, tn)F ′′(u)(xi+ 1

2
, tn)− (F (u)x)

2(xi− 1
2
, tn)F ′′(u)(xi− 1

2
, tn)

}
,

the statement of the theorem is a direct result of lemmata 4.9, 4.10, 4.11 and the assumption that
∆t
∆x = K remains constant.

Let us discuss the assumption

ωil − ωi−1
l = O(∆x) ,∆x→ 0 (4.32)
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4 A method of higher order

on the WENO weights. If the data and the solution of (4.23) are smooth, it is reasonable to assume
that ωil and ω

i−1
l do not vary “a lot” which is the meaning of the condition. Indeed, in the case of

parameters ns = 2, k = 2 and a linear governing PDE the scheme (4.13)-(4.20) becomes a linear
scheme (a scheme with constant coefficients) and all ωil = 1/ns. Then ωil − ωi−1

l = 0 and (4.32)
holds. The following lemma states the validity of condition (4.32) in the case ns = 3, k = 2.

Lemma 4.13
Consider the scheme (4.13)-(4.20) for parameters ns = 3, k = 2 and for the scalar linear equation

ut + aux = 0 , a > 0.

Let u ∈ C3(Ω× [0, T ]) and assume uxx 6= 0 on Ω× [0, T ].
Then

ωil − ωi−1
l = O(∆x) ,∆x→ 0 ∀l = 1, . . . , ns , i ∈ Z .

Proof.
We want to avoid the complicated notation of ω̃il in (3.18). Instead, we will use the notation ω̃j ,
since in the case ns = 3, k = 2 we can describe ωil in a simpler way. So let

ω̃j =
1

(
ε+ |s(j)|2BL2(R)

)2 ,

where s(j) is the interpolant (3.14) based on data uj−1, uj and uj+1, i.e., on the stencil (j−1, j, j+1)
with the center j. Then

ωil =
ω̃i−2+l

ω̃i−1 + ω̃i + ω̃i+1
, (4.33)

ωi−1
l =

ω̃i−3+l

ω̃i−2 + ω̃i−1 + ω̃i
. (4.34)

Using this special notation we can directly see that some terms on right hand side are the same
for both ωil and ω

i−1
l .

We want to prove ωil − ωi−1
l = O(∆x) for l = 1, 2, 3. Due to the symmetry of the terms in (4.33)-

(4.34) it is enough to prove it for one fixed l ∈ {1, 2, 3}, the other cases follow analogously. Let us
consider l = 1.
Recall equation (3.20), i.e.,

|s(j)|2BL2(R) = cT(j)A(j)c(j)

for the corresponding coefficients vector c(j) and matrix A(j).
The direct computation for ns = 3, k = 2 gives in the case of linear governing PDE due to the
identity (4.22)

cT(j)A(j)c(j) =
D0

∆x3
(uj−1 − 2uj + uj+1)

2 , D0 =
105

604
. (4.35)

For the consistency analysis we assume, that instead of data uj we look for an interpolation with
data u(xj , t

n), where u is the exact solution of (4.23). Then from (4.35) we deduce

cT(j)A(j)c(j) =
D0

∆x

(
uxx(xj , t

n) +O(∆x2)
)2

,

so that

ω̃j =
1

(
ε+ D0

∆x [uxx(xj , t
n) +O(∆x2)]2

)2 =
∆x2

(ε∆x+D0[uxx(xj , tn) +O(∆x2)]2)
2 .
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Define

αj =
(
ε∆x+D0[uxx(xj , t

n) +O(∆x2)]2
)2

.

Then

ω̃j =
∆x2

αj

and (4.33)-(4.34) for l = 1 reads

ωi1 =
αiαi+1

αi−1αi + αiαi+1 + αi−1αi+1
,

ωi−1
1 =

αi−1αi
αi−2αi−1 + αi−1αi + αi−2αi

.

Furthermore,

ωi1 − ωi−1
1 =

α2
i (α

2
i−1 − αi+1αi−2) + αi−1αiαi+1(αi−1 − αi−2)

(αi−1αi + αiαi+1 + αi−1αi+1)(αi−2αi−1 + αi−1αi + αi−2αi)
.

Since u ∈ C3, the terms αj can be rewritten in the form

αj = D2
0 [uxx]

4(xj , t
n) +O(∆x) .

Then, from the assumption uxx 6= 0 it follows for the denominator

(αi−1αi + αiαi+1 + αi−1αi+1)(αi−2αi−1 + αi−1αi + αi−2αi) = O(1) .

To complete the proof it remains to show that

α2
i (α

2
i−1 − αi+1αi−2) + αi−1αiαi+1(αi−1 − αi−2) = O(∆x)

holds for the numerator. Indeed,

|α2
i (α

2
i−1 − αi+1αi−2) + αi−1αiαi+1(αi−1 − αi−2)|

≤ |α2
i ||α2

i−1 − αi+1αi−2|+ |αi−1αiαi+1||αi−1 − αi−2| .
Since u ∈ C3, the following terms are bounded

|α2
i | ≤ C1 ,

|αi−1αiαi+1| ≤ C2

and since uxx is Lipschitz-continuous at x

|αi−1 − αi−2| ≤ O(∆x) ,

|α2
i−1 − αi+1αi−2| ≤ |α2

i−1 − αi−1αi+1 + αi−1αi+1 − αi+1αi−2|
≤ |αi−1||αi−1 − αi+1|+ |αi+1||αi−1 − αi−2| ≤ O(∆x) .

Altogether

α2
i (α

2
i−1 − αi+1αi−2) + αi−1αiαi+1(αi−1 − αi−2) = O(∆x) ,

i.e.,

ωi1 − ωi−1
1 = O(∆x) , ∆x→ 0 ,

which completes the proof.

Remark 4.14
In the case of uxx ≡ 0 the claim of lemma 4.13 remains valid. In that case it holds

ωil =
1

ns
=

1

3
∀l = 1, . . . , ns , ∀i ∈ Z ,

and therefore ωil − ωi−1
l = O(∆x) , ∆x→ 0.
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4 A method of higher order

4.3 Stability analysis

Consider the linear advection equation

ut + aux = 0 , a > 0 . (4.36)

The scheme (4.13)-(4.20) applied on (4.36) can be in the case ns = 2, k = 2 through direct
computation (see (4.21)) rewritten for all i ∈ Z into the form

un+1
i =

1∑

j=−2

bju
n
i+j (4.37)

with

b−2 =

(
−1

4

)
ν(1− ν) , (4.38)

b−1 =
1

4
ν(5− ν) , (4.39)

b0 = 1− 1

4
ν(3 + ν) , (4.40)

b1 =

(
−1

4

)
ν(1− ν) (4.41)

and

ν = a
∆t

∆x
.

Remark 4.15
In the case a < 0 the resulting scheme has similar form and can be treated in the same way as it
follows for a > 0. For the sake of simplicity, the case a < 0 is not considered in this thesis.

We are going to investigate the stability of the scheme. Roughly speaking, stability means, that
the global error of numerical solution defined by the scheme does not grow “catastrophically” and
can be bounded. We will define the term of stability and introduce a stability result in the sense
of L2-norm, also known as von Neumann stability. To this end, a theoretical procedure for investi-
gating a scheme on L2-stability will be presented, based on books by Strikwerda [55] and LeVeque
[39], where it is presented for finite difference and finite volume methods. We will see that it is
also possible to apply the principle on a finite volume particle method.

For v = {vi}∞i=−∞ consider the norm

‖v‖22,∆x =

∞∑

i=−∞

∆x|vi|2 ,

which approximates and is equal to the norm

‖f‖2L2(R) =

∫ ∞

−∞

|f |2

in the case of finite differences and finite volumes, respectively.

Definition 4.16
We say that a numerical scheme

un+1
i =

R∑

j=−L

bju
n
i+j , L,R ∈ IN0 (4.42)
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4.3 Stability analysis

is stable in the norm ‖ · ‖, if

‖un+1‖ ≤ ‖u0‖ ∀ n ∈ IN0 ,

where

un := {uni }i .

Stability theory

We will use the idea of von Neumann stability, i.e., stability in L2-norm, described in LeVeque [39]
and in more detail in Strikwerda [55].
For the discrete function un we assume that there exists its Fourier transform

ûn(ξ) =
1√
2π

∞∑

i=−∞

e−Iξi∆xuni∆x

for ξ ∈ R, where I is the complex unit (i.e., I2 = −1). This is true if, for instance, un ∈ l1.

Remark 4.17
We emphasize that the symbol i stands for an integer and the symbol I for the complex unit in this
section.

The Fourier inversion formula is given by

uni =
1√
2π

∫ ∞

−∞

eIξi∆xûn(ξ)dξ . (4.43)

Application of the difference method (4.42) on uni and manipulations with the terms typically gives
the expression

un+1
i =

1√
2π

∫ ∞

−∞

ûn(ξ)g(ξ,∆x,∆t)eIξi∆xdξ .

This compared to

un+1
i =

1√
2π

∫ ∞

−∞

eIξi∆xûn+1(ξ)dξ

given by (4.43) yields

ûn+1(ξ) = g(ξ,∆x,∆t)ûn(ξ) . (4.44)

We used also the fact, that the Fourier transform is unique.
Further, the idea utilizes the Parseval’s relation

‖un‖2,∆x = ‖ûn‖2 .

So, in order to show that un is bounded, it is sufficient to show that the Fourier transform ûn

remains bounded. For this reason we apply (4.44) iteratively and get

ûn+1
i (ξ) = gn+1(ξ,∆x,∆t)û0(ξ) .

If the condition

|g(ξ,∆x,∆t)| ≤ 1 (4.45)

holds, then

‖ûn+1‖2 ≤ ‖û0‖2

93



4 A method of higher order

and finally from the Parseval’s relation we also obtain

‖un+1‖2,∆x ≤ ‖u0‖2,∆x .
So, in order to investigate stability of the scheme (4.42) it is sufficient to verify the condition (4.45).
However, if condition (4.45) is violated, the scheme will not be stable.
Alternatively, g(ξ,∆x,∆t) can be determined by plugging uni = eIξi∆x into the formula (4.42). It
is a usual shortcut of the von Neumann analysis.

Stability of the scheme (4.37)

Due to the discussion above we will consider the case

uni+j = e(i+j)ξI∆x , (4.46)

where I is the imaginary unit.
We plug (4.46) into (4.37) and get

un+1
i =




1∑

j=−2

bje
jξI∆x


 eiξI∆x =




1∑

j=−2

bje
jξI∆x


uni .

We define

g(ξ,∆x,∆t) =

1∑

j=−2

bje
jξI∆x , (4.47)

which leads to

un+1
i = g(ξ,∆x,∆t)uni .

If we can show

|g(ξ,∆x,∆t)| ≤ 1,

then

‖un+1‖2,∆x ≤ ‖un‖2,∆x ,
which ensures the stability, since the repeated application of this inequality gives

‖un+1‖2,∆x ≤ ‖u0‖2,∆x .
An illustration of sets {g(ξ,∆x,∆t) | ξ ∈ R}ν ⊂ C for ν ∈ {0, 1, . . . , 10}, where ν = a∆t

∆x is given
in figure 4.4 promising stability for 0 ≤ ν ≤ 1. Now we are going to prove it analytically.

Lemma 4.18
Consider the scheme (4.37). Then, for g = g(ξ,∆x,∆t) defined in (4.47), the following identity
holds:

|g|2 =

(
1− 1

4
ν(3 + ν)

)2

+
1

16
ν2(1 − ν)2 + (−3 + ν)2

1

4
ν2

+
1

2
ν(1 − ν)

(
1− 1

4
ν(3 + ν)

)

+

[
2ν(1− 1

4
ν(3 + ν)) +

1

2
ν2(1− ν)(−3 + ν) +

1

2
ν2(1− ν)

]
cos(ξ∆x)

+

[
ν2 − 1

4
ν2(−3 + ν)2 − ν(1− ν)(1 − 1

4
ν(3 + ν))

]
cos2(ξ∆x)

+
1

2
ν2(1− ν)2 cos3(ξ∆x) .
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Figure 4.4: An illustration of sets g(ξ,∆x,∆t). Sets {g(ξ,∆x,∆t) | ξ ∈ R}ν ⊂ C are depicted for
ν ∈ {0, 1, . . . , 10}, where ν = a∆t

∆x . For ν = 1 one gets the unit circle (corresponding to the case
|g(ξ,∆x,∆t)| = 1), for ν = 0 the set is equal to the point 1.

Proof.
Denote g = a + Ib. Then, |g|2 = a2 + b2. From the identity eαIξ∆x = cos(αξ∆x) + I sin(αξ∆x)
for α ∈ R and using cos(−y) = cos(y), sin(−y) = − sin(y), cos(2y) = 2 cos2(y) − 1, sin(2y) =
2 sin(y) cos(y) one gets

a = 1− 1

4
ν(3 + ν)− 1

4
ν(1− ν)(2 cos2(ξ∆x) − 1) + ν cos(ξ∆x) ,

b =
1

2
ν sin(ξ∆x) [(1− ν) cos(ξ∆x) − 3 + ν] .

Some simple algebraic manipulations, such as using sin2(y) = 1 − cos2(y) and transforming the

result to the form
∑3
k=0 ak cos

k(ξ∆x), lead to the statement of the lemma.

The function |g|2(ξ,∆x,∆t) of variables ξ, ∆x and ∆t seems still quite complicated to analyse.
But we should notice, that the values of the functions | cosk(ξ∆x)| are bounded by 1 for all ξ ∈ R,
∆x > 0. So, if we look for a maximum of |g|2, we should look for which values of cosk(ξ∆x) there
is the maximum. To this end, we use the following technique introduced by Knobloch in [34], who
used it to investigate stability of another scheme.
Define a polynomial

ϕν(c) =
3∑

k=0

aνkc
k
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4 A method of higher order

with the coefficients depending on parameter ν

aν0 =

(
1− 1

4
ν(3 + ν)

)2

+
1

16
ν2(1− ν)2 + (−3 + ν)2

1

4
ν2

+
1

2
ν(1− ν)

(
1− 1

4
ν(3 + ν)

)
,

aν1 = 2ν(1− 1

4
ν(3 + ν)) +

1

2
ν2(1− ν)(−3 + ν) +

1

2
ν2(1− ν) ,

aν2 = ν2 − 1

4
ν2(−3 + ν)2 − ν(1 − ν)(1− 1

4
ν(3 + ν)) ,

aν3 =
1

2
ν2(1− ν)2

taken as coefficients corresponding to cosk(ξ∆x) from lemma 4.18. Then

|g(ξ,∆x,∆t)|2 =
3∑

k=0

aνk cos
k(ξ∆x) = ϕν(cos(ξ∆x))

and we will investigate the polynomial ϕν(c) =
∑3

k=0 a
ν
kc
k as a function of the variable c to find

the maximum of |g|. Since |g|2 ≥ 0, we also have ϕν ≥ 0 on [−1, 1].

Lemma 4.19
Let 0 ≤ ν ≤ 1. Then

max
c∈[−1,1]

ϕν(c) ≤ 1 .

Proof.
In the cases ν = 0 and ν = 1 we have ϕν(c) ≡ 1 for all c.
Consider ν ∈ (0, 1). The function ϕν can have extrema at the boundary points −1, 1 and all
points, where ϕ′

ν = 0.

ϕν(−1) = (1− 2ν)2 ∈ [0, 1) ,

ϕν(1) = 1 .

Further,

ϕ′
ν(c) = 3aν3c

2 + 2aν2c+ aν1 = 0 ⇔ c = c± =
−aν2 ±

√
(aν2)

2 − 3aν1a
ν
3

3aν3
.

For the argument of the square root we have

(aν2)
2 − 3aν1a

ν
3 = ν2(−1 + 2ν − 2ν2 + ν3︸ ︷︷ ︸

<0

)2

⇒
√
(aν2)

2 − 3aν1a
ν
3 = ν(1 − 2ν + 2ν2 − ν3) .

This leads to

c± =
−aν2 ± ν(1− 2ν + 2ν2 − ν3)

3aν3

and the points

c+ =

(
−1

3

) −4 + 5ν − 2ν2 + ν3

ν(1− ν)2
,

c− = 1
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4.3 Stability analysis

are solutions of the equation ϕ′
ν(c) = 0.

Now we want to show that c+ 6∈ [−1, 1]. To this end, define the right hand side of the formula for
c+ as a function of ν ∈ (0, 1)

ρ(ν) =

(
−1

3

) −4 + 5ν − 2ν2 + ν3

ν(1− ν)2
.

It holds

lim
ν→0+

ρ(ν) = +∞ , lim
ν→1−

ρ(ν) = +∞

and

ρ′(ν) = 0 ⇔
(
−1

3

) −4(−1 + 2ν)

ν2(1− ν2)
= 0 ⇔ ν =

1

2
,

i.e.,

ρ(ν) ≥ ρ

(
1

2

)
= 5 .

Hence, we have for all ν ∈ (0, 1)

c+ = ρ(ν) ≥ 5 , i.e., c+ 6∈ [−1, 1] .

Consider the function ϕν(c). Since c± ≥ 1, we have ϕ′
ν(c) > 0 for c ∈ (−1, 1). Together with

ϕν(−1) ∈ [0, 1) and ϕν(1) = 1 it follows

max
c∈[−1,1]

ϕν(c) ≤ 1 .

Theorem 4.20
Consider the scheme (4.37) and the corresponding function g(ξ,∆x,∆t) defined in (4.47). Let
0 ≤ ν ≤ 1. Then

|g(ξ,∆x,∆t)| ≤ 1

and

‖un+1‖2,∆x ≤ ‖u0‖2,∆x .

In other words, the scheme (4.37) is stable in ‖ · ‖2,∆x-norm.

Proof.
The result follows directly from lemma 4.19 and from the discussion above.

The theorem 4.20 states that the scheme (4.37) is stable in ‖ · ‖2,∆x-norm if 0 ≤ ν ≤ 1. This is an
optimal condition since it corresponds to the CFL-condition in the case of a linear hyperbolic PDE.
In the practical use, due to numerical reasons (e.g., round-off errors that we have not considered),
the CFL-condition is usually, also for linear hyperbolic PDEs, relaxed to 0 ≤ ν ≤ CFL for
CFL ∈ (0, 1) a suitable number, e.g., CFL = 0.95.
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4 A method of higher order

4.4 Convergence analysis

In the previous text of this chapter we have studied the scheme (4.13)-(4.20) in the terms of
consistency for the scalar conservation law (4.23) and stability for the linear advection equation
(4.36), where the latter is a special case of (4.23). In this section, we will make use of these results
and combine them to get convergence results of our scheme for the equation (4.36). We will prove
the expected convergence rate 2 of the scheme at a fixed time T > 0.

Definition 4.21
Let uh(x, t

n) =
∑

i u
n
i ψi(x) denote the numerical solution of equation (4.36) provided by the FVPM

(2.23) with non-moving particles at time t = tn = n∆t. Let u(x, t) denote the exact solution of
(4.36). Assume ∆t

∆x = K < +∞ remains constant. We say, that the method is convergent at time
T = NT∆t in the norm ‖.‖, if

lim
∆t→0, NT∆t=T

∥∥∥uh(x, T )− u(x, T )
∥∥∥ = lim

∆t→0, NT∆t=T

∥∥∥
∑

i

uNT

i ψi(x) − u(x, T )
∥∥∥ = 0 .

Moreover, if
∥∥∥uh(x, T )− u(x, T )

∥∥∥ = O(∆ts) +O(∆xr) , ∆t→ 0 , ∆x→ 0 ,

the method is said to be convergent of order s in time and r in space.

Due to the triangle inequality we obtain for the error of the approximation at time tn

∥∥∥uh(x, tn)− u(x, tn)
∥∥∥ =

∥∥∥∥∥
∑

i

uiψi(x) − u(x, tn)

∥∥∥∥∥ (4.48)

≤
∥∥∥∥∥
∑

i

uiψi(x) −
∑

i

u(xi, t
n)ψi(x)

∥∥∥∥∥ +
∥∥∥∥∥
∑

i

u(xi, t
n)ψi(x)− u(x, tn)

∥∥∥∥∥ .

The second term can be estimated for u ∈ C2(Ω× [0, T ]) by
∥∥∥∥∥
∑

i

u(xi, t
n)ψi(x) − u(x, tn)

∥∥∥∥∥ ≤ C∆x2

in the L1-, L2- or L∞-norm on a bounded domain, since it is an approximation of u by a piecewise
linear function. For the estimate see e.g., [50].

A general approach to investigate convergence of a numerical scheme for the solution of hyperbolic
PDEs was presented in LeVeque [39]. We will follow this approach to show

∥∥∥∥∥
∑

i

uiψi(x)−
∑

i

u(xi, t
n)ψi(x)

∥∥∥∥∥ = O(∆t2) +O(∆x2) ,

which together with the previous considerations will lead to a proof of convergence of the scheme
(4.13)-(4.20) of order 2. We begin with the referenced approach.

Convergence theory

A numerical scheme for the solution of hyperbolic conservation laws can be investigated on conver-
gence in the following way. One is interested in the global error of the scheme, which is, however,

98



4.4 Convergence analysis

difficult to determine directly. A way how to circumvent this difficulty, is to divide the investigation
into two parts. One computes the local error of every single time step, i.e., the consistency of the
scheme is studied. Then, provided that the scheme is stable, i.e., the growth of local errors can be
bounded, a bound on the global error can be found in terms of local errors and the convergence
order can be proven.
More specifically, a general explicit numerical method can be written as

un+1 = N (un) , (4.49)

where N represents the numerical operator mapping the approximate solution at one time step
to the approximate solution at the next step. Values un = {uni }i represent some discrete values
of the scheme, e.g., point values, integral means or weighted integral means, depending on which
method is investigated. Let unex = {u(xi, tn)}i be the values of exact solution at (xi, t

n). The local
truncation error τn = {T (xi, tn)}i is defined by the difference of left and right hand side of the
equation (4.49) divided by ∆t, where we use exact values unex and un+1

ex instead of values un and
un+1, respectively,

τn :=
1

∆t

(
un+1
ex −N (unex)

)
,

compare also with (4.25).

Remark 4.22
In section 4.2, we have shown that τn = O(∆t2) + O(∆x2) as ∆t → 0, ∆x → 0 for the scheme
(4.13)-(4.20) and linear advection equation (4.36).

Further, we define the global error of coefficients at time tn by

En := un − unex .

The numerical method (4.49) applied on un yields

un+1 = N (un) = N (unex + En) ,

which gives

En+1 = un+1 − un+1
ex

= N (unex + En)− un+1
ex

= N (unex + En)−N (unex) +N (unex)− un+1
ex

= [N (unex + En)−N (unex)]−∆tτn .

Stability theory allows to bound the first term [N (unex + En)−N (unex)] and the consistency ana-
lysis gives a bound on the one-step error ∆tτn yielding then a convergence result.
Assuming N is contractive in the norm ‖ · ‖, i.e.,

‖N (P )−N (Q)‖ ≤ ‖P −Q‖ for all suitable P,Q , (4.50)

we have

‖En+1‖ ≤ ‖N (unex + En)−N (unex)‖+∆t‖τn‖
≤ ‖En‖+∆t‖τn‖ .

In the case of a linear operator N , the contractive condition (4.50) reduces to

‖N‖ ≤ 1 , (4.51)

since for a linear operator we have ‖N (P )−N (Q)‖ ≤ ‖N‖‖P −Q‖ ≤ ‖P −Q‖.
A recursive application gives

‖ENT ‖ ≤ ‖E0‖+∆t

NT−1∑

n=0

‖τn‖ .
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4 A method of higher order

Assume a uniform bound on ‖τn‖, i.e.,

‖τ‖ := max
0≤n≤NT−1

‖τn‖ .

Then

‖ENT ‖ ≤ ‖E0‖+∆tNT ‖τ‖ = ‖E0‖+ T ‖τ‖ . (4.52)

Remark 4.23
Weaker requirements on N can be considered:

‖N (P )−N (Q)‖ ≤ (1 + α∆t)‖P −Q‖ for all suitable P,Q

with a constant α independent of ∆t.

Consider the inequality (4.52). If the error in the initial data satisfies ‖E0‖ → 0 and ‖τ‖ → 0,
then the numerical method (4.49) is convergent. Moreover, if ‖E0‖ = O(∆ts) + O(∆xr) and
‖τ‖ = O(∆ts) + O(∆xr), then the numerical method is convergent of order s in time and r in
space.

Convergence of the scheme (4.37)

Consider the linear advection equation (4.36) and the scheme (4.13)-(4.20) for ns = k = 2, i.e.,
the scheme (4.37). Consider now the L2-norm for the convergence. Nevertheless, we will be able
to show convergence also in L1-norm based on the convergence in L2-norm.
Get back to the inequality (4.48). We have shown that the second term on right hand side can
be bounded by O(∆x2). For the first term one can show an estimate on L2-norm via direct
computation

∥∥∥∥∥
∑

i

(uni − u(xi, t
n))ψi(x)

∥∥∥∥∥

2

2

≤ 4

3
∆x
∑

i

|uni − u(xi, t
n)|2 (4.53)

=
4

3

∥∥∥un − unex

∥∥∥
2

2,∆x
=

4

3

∥∥∥En
∥∥∥
2

2,∆x
.

For N1(u
n
i ) = uni − ∆t

∆x(gi+ 1
2
− gi− 1

2
) analysed in section 4.2 we have a bound on local truncation

error

‖τ‖2,∆x = O(∆t2) +O(∆x2) , ∆t → 0 , ∆x→ 0 .

This bound follows from theorem 4.5 and from the assumption that the initial data has compact
support (and so the solution of hyperbolic PDE for all times).
Due to theorem 4.20 we have the stability result

‖N2‖2,∆x ≤ 1

for N2(u
n
i ) = g(ξ,∆x,∆t)uni analysed in section 4.3.

The numerical methods N1 and N2 coincide in the case of linear advection equation (4.36) and
parameters ns = k = 2.

Lemma 4.24
Assume u0 ∈ C2(Ω). Then it holds for the scheme (4.13)-(4.20)

‖E0‖2,∆x = O(∆x2) , ∆x→ 0 .
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4.4 Convergence analysis

Proof.

‖E0‖22,∆x = ∆x

np∑

i=1

|u0i − u0(xi)|2 ≤ ∆x npC
2∆x4

for a constant C > 0 independent of ∆x. This follows from

u0i = u0(xi) +O(∆x2) ,

due to theorem 2.20 (where bi = xi). Then

‖E0‖22,∆x ≤ |Ω|C2∆x4 .

Altogether, we plug the bounds on ‖τ‖2,∆x and ‖E0‖2,∆x into (4.52) and obtain the following
result.

Lemma 4.25
Let u ∈ C4(Ω × [0, T ]) be the exact solution of the linear advection equation (4.36). Consider the
scheme (4.13)-(4.20) with parameters ns = k = 2 (i.e., the scheme (4.37)) for numerical solution
of (4.36). Let 0 ≤ ν ≤ 1. Then the global error of coefficients is of order 2 in time and space in
the norm ‖ · ‖2,∆x, i.e.,

‖ENT ‖2,∆x = O(∆t2) +O(∆x2) , ∆t → 0 , ∆x→ 0

for a fixed time T = NT∆t.

Now we can state the main theorem:

Theorem 4.26
Let u ∈ C4(Ω × [0, T ]) be the exact solution of the linear advection equation (4.36). Consider the
scheme (4.13)-(4.20) with parameters ns = k = 2 (i.e., the scheme (4.37)) for numerical solution
of (4.36). Let 0 ≤ ν ≤ 1. Then the scheme (4.37) is convergent of order 2 in time and space in
L1- and L2-norm, i.e.,

∥∥∥uh(x, T )− u(x, T )
∥∥∥
1

= O(∆t2) +O(∆x2) , ∆t→ 0 , ∆x→ 0 ,
∥∥∥uh(x, T )− u(x, T )

∥∥∥
2

= O(∆t2) +O(∆x2) , ∆t→ 0 , ∆x→ 0

for a fixed time T = NT∆t.

Proof.
The result for the L2-norm follows from the previous considerations - consider the inequality (4.48)
and the estimate on the second term

∥∥∥uh(x, T )− u(x, T )
∥∥∥
2
=

∥∥∥∥∥
∑

i

uiψi(x) − u(x, T )

∥∥∥∥∥
2

≤
∥∥∥∥∥
∑

i

uiψi(x) −
∑

i

u(xi, T )ψi(x)

∥∥∥∥∥
2

+O(∆x2).
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4 A method of higher order

The first term can be estimated as
∥∥∥∥∥
∑

i

uiψi(x) −
∑

i

u(xi, T )ψi(x)

∥∥∥∥∥
2

≤
√

4

3

∥∥∥ENT

∥∥∥
2,∆x

= O(∆t2) +O(∆x2) ,

where we used the relation (4.53) and lemma 4.25. Altogether, one gets the desired estimate.

For the L1-norm we have due to the Hölder’s inequality

‖f‖L1(Ω) ≤ |Ω| 12 ‖f‖L2(Ω)

for any function f ∈ L2(Ω).
We apply the above inequality with f := uh(·, T )− u(·, T ) and obtain

‖uh(x, T )− u(x, T )‖L1(Ω) ≤ |Ω| 12 ‖uh(x, T )− u(x, T )‖L2(Ω) ≤ |Ω| 12C(∆t2 +∆x2) ,

i.e., it is also

‖uh(x, T )− u(x, T )‖1 = O(∆t2) +O(∆x2) .

For the case of data smooth enough, we have hereby proven the convergence of order 2 of the
numerical solution obtained via the scheme (4.37) to the exact solution of a linear advection
equation in the L1- and L2-norm.
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5 Numerics

After the purely theoretical part, we will present numerical results that confirm results from previ-
ous chapters. First, we apply the algorithms, proposed in chapter 2, to add and remove a particle
on some examples to demonstrate its functionality concerning conservative approximation. Also
relevant examples with poor or too dense particle distribution are presented.
The second section of this chapter is more extensive. We apply the high order meshfree scheme
developed in chapter 4 on several relevant examples. We confirm numerically the theoretical result
of convergence of second order in the case of scalar linear equation in the L1- and L2-norm. More-
over, we show the convergence to the exact solution also in the L∞-norm. Furthermore, we present
examples on a wider class of hyperbolic conservation laws, such as non-linear scalar equations and
also linear and non-linear systems, for which the numerical scheme converges with order two to
the exact solution. We present also examples with a discontinuous solution. For such solutions, it
is not possible to measure the order of convergence. However, we observe better resolution of the
discontinuities in comparison to a first order method. One can conclude that the method is robust
and of a good approximation quality for scalar hyperbolic conservation laws as well as for linear
systems. For non-linear systems with smooth exact solutions, the method works still very well.
In the case of discontinuities in the solution one obtains non-physical oscillations in their vicinity.
Further techniques have possibly to be utilized to suppress them, such as the principle of limiters
(an overview on limiters and particular definitions can be found in Toro [64]) or a modification
of the ADER method, based on the analysis done by Goetz [18]. In the latter, it is shown that
the Toro-Titarev solver does not act properly for non-linear systems with discontinuous data. A
possible remedy could be the LeFloch-Raviart expansion presented therein. The inclusion of one
or both techniques lies however beyond the scope of this thesis.
We emphasize, that the presented convergence is not only the convergence of weighted integral
means to their exact values, but convergence of the numerical solution function to the exact solu-
tion function in a given function space.

5.1 Adding and removing a particle

Adding a particle

In this section, numerical results are shown for the theory developed in chapter 2, namely to add
and remove a particle. We provide computations for the methods SUPP, JI and JPLUS in order
to compare them (for the description of the methods, see the end of the section 2.3). We will
use the numerically optimized schemes (2.43)-(2.45) and (2.53)-(2.54) exclusively. For the sake
of simplicity, we will present one-dimensional results, but we remark that the presented method
can be used also for vector-valued functions in arbitrary dimensions. The methods SUPP, JI and
JPLUS yield comparable results in the presented examples.
As proven in theorems 2.39 and 2.53, the schemes preserve constant states and are conservative up
to the machine precision, which also numerical computations show for all three methods, namely
SUPP, JI and JPLUS. The numerical results for constant functions are not presented here. We
only remark that they confirm the theoretical results.
We will rather investigate the more interesting class of non-constant functions and compare the
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5 Numerics

Method
∫
u+h −

∫
uh ‖u+h − uh‖L1 ‖u+h − uh‖L2 ‖u+h − uh‖L∞

SUPP 0.0000E+00 1.8912E-02 2.3039E-02 4.8887E-02
JI 0.0000E+00 2.0671E-02 2.3411E-02 4.5856E-02
JPLUS 0.0000E+00 2.7201E-02 2.8884E-02 6.1403E-02

Table 5.1: Example 1. Conservativity and errors.

Method
∫
u+h −

∫
uh ‖u+h − uh‖L1 ‖u+h − uh‖L2 ‖u+h − uh‖L∞

SUPP 0.0000E+00 1.5390E-02 1.8478E-02 3.3207E-02
JI 0.0000E+00 1.6158E-02 1.7997E-02 3.0921E-02
JPLUS -1.7764E-15 2.2505E-02 2.2643E-02 4.3492E-02

Table 5.2: Example 2. Conservativity and errors.

methods SUPP, JI and JPLUS to each other. Also different partitions of unity will be chosen.

In all figures, the structure of the visualization is the same. The new particle is added at the
position 0. Functions ψi of the original partition of unity are represented with a dashed blue line
having values between 0 and 1, “new” functions ψ+

i with a solid red line, original coefficients ui
with blue crosses and coefficients u+i with red circles. In the upper part of the plot, a reconstruction
of a given function

∑
i uiψi is shown with a dashed blue line and

∑
i u

+
i ψ

+
i with a solid red line

respectively. In the figure one can immediately see how the partition of unity changes by adding
a new particle.
In the table, the conservativity and norms of the difference of the reconstructions uh =

∑
i uiψi

and u+h =
∑

i u
+
i ψ

+
i are shown for different methods. We achieve conservativity up to the machine

precision.
Different partitions of unity are used. They are based on the function

Wi(x) =






1 + x−xi

H , x ∈ [xi −H,xi] ,
1− x−xi

H , x ∈ [xi, xi +H ] ,
0 , otherwise ,

where Wi denotes the function (2.4) and H ∈ R+ is a parameter given in each example. The basis
functions are then defined as ψi =

Wi∑
j Wj

.

The symbol ∆x will denote the distance ∆x = xi+1 − xi in the case of uniformly distributed
particles.

Example 1 (2 neighbors)

The given function is u(x) = x2 + x+ 2, x ∈ [−1, 1].
The particles are distributed uniformly, xi = −1 + 2 i−1

9 , i = 1, . . . , 10. We choose H = ∆x, so
that the functions ψi are equal to B-spline functions. See figure 5.1 and table 5.1 for results. We
can see that the method is conservative. The resulting approximation changes due to the change
of underlying structure of particles.

Example 2 (6 neighbors)

The given function is u(x) = x2 + x+ 2, x ∈ [−1, 1].
The particles are distributed uniformly, xi = −1 + 2 i−1

19 , i = 1, . . . , 20. We choose H = 2∆x, so
we have another particle basis functions. For results see figure 5.2 and table 5.2. The method is
again conservative up to the machine precision.
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Figure 5.1: Example 1, adding a particle. From left to right and down the methods SUPP, JI and
JPLUS.
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Figure 5.2: Example 2, adding a particle. From left to right and down the methods SUPP, JI and
JPLUS.

Example 3 (the “gap”)

The given function is u(x) = x2 + x+ 2, x ∈ [−1, 1].
We deal with the situation, in which we have a “gap” in the particle distribution. The particles
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Method
∫
u+h −

∫
uh ‖u+h − uh‖L1 ‖u+h − uh‖L2 ‖u+h − uh‖L∞

SUPP -8.8818E-16 2.8652E-02 4.8770E-02 1.2978E-01
JI -8.8818E-16 3.5942E-02 4.6899E-02 1.2771E-01
JPLUS -8.8818E-16 4.2708E-02 4.9874E-02 1.2771E-01

Table 5.3: Example 3. Conservativity and errors.

are distributed as follows: xi = −1 + (i − 1)∆x̃, i = 1, . . . , 5 and xi = −1 + (i − 1)∆x̃ + 8
45 ,

i = 6, . . . , 10, where ∆x̃ = 82
405 . In the vicinity of the point x = 0, we have the interval in which

ψ5 and ψ6 overlap. Its length is 10
405 = 10

82∆x̃
.
= 0.12∆x̃. In order to improve the poor particle

distribution here, a new particle is added. We have H = ∆x̃. See figure 5.3 and table 5.3. The
example confirms that the algorithm suites for the case of poor particle distribution.
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Figure 5.3: Example 3, adding a particle. From left to right and down the methods SUPP, JI and
JPLUS.

Removing a particle

For completeness, we present also an example on removing a particle.

Example

The given function is u(x) = x2 + x+ 2, x ∈ [−1, 1].
In this example, the particle distribution is too dense. The particles are distributed as follows:
xi = −1 + (i − 1)∆x̃, i = 1, . . . , 5, x6 = 0 and xi = −1 + (i− 2)∆x̃, i = 7, . . . , 11, where ∆x̃ = 2

9 .
One can see, that in the vicinity of the point x = 0 the particle distribution density is higher. The
particle x6 = 0 will be removed. We have H = ∆x̃. See figure 5.4 and table 5.4. The algorithm
works as expected and we get a conservative approximation.
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Figure 5.4: Example, removing a particle. From left to right and down the methods SUPP, JI and
JPLUS.

Method
∫
u+h −

∫
uh ‖u+h − uh‖L1 ‖u+h − uh‖L2 ‖u+h − uh‖L∞

SUPP 8.8818E-16 1.1776E-02 1.3698E-02 2.9739E-02
JI 0.00000E+00 2.0068E-02 2.3260E-02 4.5083E-02
JPLUS 0.00000E+00 2.1865E-02 2.3989E-02 4.8213E-02

Table 5.4: Example on removing a particle. Conservativity and errors.
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5.2 Higher order scheme

In this section we are going to verify numerically the second order of convergence of the scheme
(4.13)-(4.20) in the L1-, L2- and L∞-norm.
In cases where discontinuities occur in the exact solution, the second order of convergence cannot
be determined by reason of the lack of smoothness. Nevertheless, one observes a better resolution
of the numerical solution in the vicinity of discontinuities, compared to a method of first order of
accuracy.
In the following examples, we compute the numerical solution with two methods - the scheme
(4.13)-(4.20) with parameters ns = 3, k = 2 (denoted by HO32) and a first order scheme (denoted
by o1). The only exception is the example 5.2.3 of linear advection equation with peaks where we
compare some more methods. We use the same CFL-number for all computations. The CFL-
condition is in our case defined as

∆t = CFL
∆x

Smax
,

where CFL ∈ (0, 1) and Smax is an estimate on the maximum wave speed of a given problem,
determined on the basis of the knowledge of the exact solution.
The first order method used here is a standard FVPM as defined in chapter 2, with the same
structure as our second order scheme, i.e., with linear B-splines defining the partition of unity. As
the numerical flux gnij from (2.22) we apply the Godunov approach, i.e., we solve local Riemann
problems defined by the coefficients uni of (2.23). It is also possible to use an arbitrary numerical
flux of first order, e.g., Lax-Friedrichs, Steger-Warming or Vijayasundaram numerical flux. The
only difference between the first and second order method used here for comparison, is the applied
numerical flux - in fact we compare the ADER-FVPM of first and of second order of accuracy.
The Riemann problems, that arise in the method (4.13)-(4.20), are solved exactly in each example.
For the shallow water equations and Euler equations we use exact Riemann solvers introduced by
Toro in [63] and [64], respectively.
In each example, we apply the numerical scheme for a sequence of particle distributions for a
parameter N =N0, 2N0, 4N0, . . ., where the number of particles is N + 1. Then we compare the
numerical solution with the exact solution and compute an error in the appropriate norm denoted
by Ep(N) = ‖uh − uexact‖p for p ∈ {1, 2,∞}. In the smooth cases, the knowledge of these errors
allows us to compute the numerical order of convergence via the formula

kp =
log(Ep(N)/Ep(2N))

log(2)
.

The errors Ep(N) are computed at 100000, in some cases at 200000 points. We remark that the
determined values of kp attain the expected value 2, i.e., the second order of accuracy is shown for
the presented examples. In the non-smooth cases, kp is not computed and only the errors Ep(N)
are shown for completeness. The exact solution is always depicted on a grid of 100000 or 200000
points connected with a line.

5.2.1 Linear advection equation

Consider a simple linear advection equation

ut + ux = 0 , x ∈ [−0.5, 0.5] , t ∈ [0, 1] ,

u(x, 0) = sin(2πx)

with periodic boundary conditions. The exact solution is determined by the method of character-
istics.
It holds for the exact solution, that the sinus wave is shifted to the right and due to the periodic
boundary conditions it arises from the left. At the final time the exact solution is equal to the
initial condition. We solved this equation with CFL = 0.95. The numerical order of convergence
was proven to be 2 in all three considered norms, see table 5.5 and compare to table 5.6 (first order
method o1). This confirms the theoretical results proven in chapter 4. See also figure 5.5.
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N E1(N) k1 E2(N) k2 E∞(N) k∞

38 1.3185E-02 — 1.5993E-02 — 3.9305E-02 —
76 3.5368E-03 1.90 4.2355E-03 1.92 9.9899E-03 1.98
152 9.0043E-04 1.97 1.0438E-03 2.02 2.3318E-03 2.10
304 2.2538E-04 2.00 2.6039E-04 2.00 6.7206E-04 1.79
608 5.6355E-05 2.00 6.4714E-05 2.01 1.7453E-04 1.95

Table 5.5: Linear advection equation. Errors and convergence order for the high order method
HO32 at time t = 1.

N E1(N) k1 E2(N) k2 E∞(N) k∞

38 1.9134E-02 — 2.1263E-02 — 3.1137E-02 —
76 8.9284E-03 1.10 9.9185E-03 1.10 1.4303E-02 1.12
152 4.3003E-03 1.05 4.7766E-03 1.05 6.8253E-03 1.07
304 2.1087E-03 1.03 2.3421E-03 1.03 3.3300E-03 1.04
608 1.0439E-03 1.01 1.1595E-03 1.01 1.6442E-03 1.02

Table 5.6: Linear advection equation. Errors and convergence order for the first order method o1
at time t = 1.
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Figure 5.5: Linear advection equation. Solutions for N = 38 at time t = 1. The exact solution
(green), the high order solution HO32 (red) and first order solution o1 (blue) are depicted.
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5.2.2 Burgers’ equation

In this example we will test our method on a non-linear scalar equation, the so-called Burgers’
equation

ut +

(
1

2
u2
)

x

= 0 , x ∈ [0, 2π] , t ∈
[
0,

19

70
π

]
.
= [0, 0.85271] ,

u(x, 0) =
1

2
+ sin(x)

with periodic boundary conditions. The exact solution is determined by the method of character-
istics. We solved this equation with CFL = 0.95.
The final time T = 19

70π
.
= 0.85271 < Tdisc ensures that the exact solution is still smooth, so we are

able to determine the numerical convergence order. The initial sinus function graph is deformed
in time and at the time Tdisc = 1 a discontinuity occurs in the exact solution.
We verify numerically that the method HO32 is of second order of convergence even for non-
linear equations (see table 5.7 and compare to table 5.8). Hence, our method is applicable also on
non-linear cases of hyperbolic PDEs. For solutions at final time T see figure 5.6.

N E1(N) k1 E2(N) k2 E∞(N) k∞

70 1.4503E-02 — 1.6042E-02 — 4.3619E-02 —
140 3.7217E-03 1.96 4.4309E-03 1.86 1.6881E-02 1.37
280 9.4923E-04 1.97 1.0905E-03 2.02 4.1130E-03 2.04
560 2.3292E-04 2.03 2.5577E-04 2.09 1.0214E-03 2.01
1120 5.8143E-05 2.00 6.2516E-05 2.03 2.2689E-04 2.17

Table 5.7: Burgers’ equation. Errors and convergence order for the high order method HO32 at
time t = T .

N E1(N) k1 E2(N) k2 E∞(N) k∞

70 1.0605E-01 — 7.9519E-02 — 1.8952E-01 —
140 5.5180E-02 0.94 4.8524E-02 0.71 1.4902E-01 0.35
280 2.9711E-02 0.89 2.8205E-02 0.78 8.6879E-02 0.78
560 1.5350E-02 0.95 1.5080E-02 0.90 4.7696E-02 0.87
1120 7.8671E-03 0.96 7.8477E-03 0.94 2.4997E-02 0.93

Table 5.8: Burgers’ equation. Errors and convergence order for the first order method o1 at time
t = T .

110



5.2 Higher order scheme

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6

u(
x,

T
)

x

Figure 5.6: Burgers’ equation. Solutions for N = 70 at time t
.
= 0.85271. The exact solution

(green), the high order solution HO32 (red) and first order solution o1 (blue) are depicted.
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5.2.3 Linear advection equation with peaks

Let us consider again the linear advection equation, but with different initial condition (initial
condition from [61] and references therein)

ut + ux = 0 , x ∈ [−1, 1] , t ∈ [0, 2] ,

u(x, 0) =






exp(− log(2)(x + 0.7)2/0.0009) , x ∈ [−0.8,−0.6] ,
1 , x ∈ [−0.4,−0.2] ,

1− |10x− 1| , x ∈ [0.0, 0.2] ,[
1− 100(x− 0.5)2

]1/2
, x ∈ [0.4, 0.6] ,

0 , otherwise

with periodic boundary conditions. The exact solution is determined by the method of charac-
teristics. Since there are discontinuities in the solution, we solve this equation with CFL = 0.8.
The final exact solution at time 2 is equal to the initial condition. Since the exact solution is not
smooth enough, we do not determine the convergence order. However, we are interested in another
phenomenon of our method, namely in the resolution of discontinuities and in the approximation
of sharp peaks of the solution.
For this example, we have to analyse the reconstruction step (4.20) more carefully. As discussed
in the chapter 4, there are several choices of parameters ns and k. If we choose ns = k = 2, we
get purely polynomial reconstruction of the exact solution with constant WENO weights. We will
denote it by HO22. For ns = 3 and k = 2 we obtain a non-trivial polyharmonic splines recon-
struction, denoted by HO32. The WENO coefficients are in this case variable (i.e., non-constant).
These two methods will be then compared as well as the first order method o1.
Let us consider the case ns = 3 and k = 2. This setting means, one has 3 stencils of length 3. On
each of these stencils of length 3 we have 2 degrees of freedom to determine a polynomial. Then
there are two possibilities. One defines another reconstruction including this polynomial as a part
of the reconstruction (the polyharmonic splines approach, i.e., the method HO32). The second
possibility is to use the least squares fitting to approximate the data given on a stencil by the
polynomial. However, the second approach is no more an interpolation on the data.
In more detail, consider a stencil of length 3, the corresponding linear functionals λ1, λ2 and λ3
from (3.2) on this stencil and corresponding data to be interpolated: u1, u2 and u3. We are looking
for a solution p to the interpolation problem

λi(p) = ui , i = 1, 2, 3 .

If we do not use a polynomial of degree 2, but of degree 1, we cannot interpolate. Then for a
polynomial of the form p(x) = d0 + d1x we solve the least square problem



λ1(p) 1
λ2(p) 1
λ3(p) 1


 .
[
d0
d1

]
=



u1
u2
u3


 .

We implemented the method using QR-decomposition in order to achieve a higher numerical
stability. If we take constant WENO coefficients, we obtain similar results as for the method
HO22. For a comparison with the method HO32, we have to define some non-constant WENO
weights. We define these weights as in (3.18) and (3.19). However, the oscillation indicator has to
be chosen in another way. We follow Jiang and Shu and their proposal on oscillation indicators on
pages 8 and 9 in [28]. Their proposal is related to a quadratic polynomial on stencils of length 3,
but can be applied also on a linear one, as we do. Since some terms vanish for a linear polynomial,
we end up with oscillation indicators

I(sj1) =
1

4
(uj−2 − 4uj−1 + 3uj)

2 ,

I(sj2) =
1

4
(uj−1 − uj+1)

2 ,

I(sj3) =
1

4
(3uj − 4uj+1 + uj+2)

2 ,
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5.2 Higher order scheme

for stencils (j − 2, j − 1, j), (j − 1, j, j + 1) and (j, j + 1, j + 2). In the following, we will name
this method LS and compare it to HO32. The errors are shown in tables 5.9 - 5.12 and diverse
comparisons of solutions in figures 5.7 - 5.12. We can see that the higher order methods HO22,
HO32 and LS yield significantly better results than the first order method o1. There is a lot of
information lost in the first order method o1 if a small amount of particles is used. For large N
the first order method o1 yields a better solution but the resolution of discontinuities and peaks is
still very poor.
HO32 and HO22 have very similar solutions with good resolutions of discontinuities and peaks.
This holds except for the area of discontinuities where the truly polynomial reconstruction by
HO22 with constant WENO weights causes a formation of oscillations. On the contrary, the
method HO32 remains stable due to non-trivial polyharmonic splines and the WENO reconstruc-
tion.
If we now compare HO32 with LS, we deduce that for smaller number of particles, HO32 yields
better results than LS. The reason for this is, that the peaks and discontinuities are strongly
smeared out. For large N the methods HO32 and LS seem to yield comparable results. Never-
theless, based on this example, we would recommend to use the method HO32 rather than LS if
discontinuities or peaks are present in the solution.

N E1(N) E2(N) E∞(N)

200 6.8338E-02 1.1139E-01 5.5199E-01
400 3.4464E-02 8.0949E-02 5.6467E-01
800 1.8610E-02 6.2309E-02 5.7764E-01
1600 1.0723E-02 4.8928E-02 5.9055E-01
3200 6.4434E-03 3.8831E-02 6.0290E-01

Table 5.9: Linear advection equation with peaks. Errors for the method HO22 at time t = 2.

N E1(N) E2(N) E∞(N)

200 4.9498E-02 1.0235E-01 5.5406E-01
400 2.8030E-02 7.6803E-02 5.6894E-01
800 1.7081E-02 5.9546E-02 5.8966E-01
1600 9.7031E-03 4.6671E-02 6.2372E-01
3200 6.0091E-03 3.9064E-02 6.7396E-01

Table 5.10: Linear advection equation with peaks. Errors for the method HO32 at time t = 2.

N E1(N) E2(N) E∞(N)

200 2.8547E-01 2.7568E-01 6.2751E-01
400 1.9399E-01 2.1188E-01 5.0569E-01
800 1.2706E-01 1.6177E-01 5.0311E-01
1600 8.1075E-02 1.2391E-01 5.0218E-01
3200 5.1154E-02 9.6760E-02 5.0150E-01

Table 5.11: Linear advection equation with peaks. Errors for the first order method o1 at time
t = 2.
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N E1(N) E2(N) E∞(N)

200 8.7075E-02 1.3103E-01 5.0237E-01
400 4.4786E-02 9.1427E-02 5.0874E-01
800 2.2433E-02 6.7441E-02 5.0991E-01
1600 1.1539E-02 5.1022E-02 5.1051E-01
3200 6.2025E-03 3.8989E-02 5.1100E-01

Table 5.12: Linear advection equation with peaks. Errors for the method LS at time t = 2.
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Figure 5.7: Linear advection equation with peaks. HO22 and o1 for N = 200. The exact solution
(green), the high order solution HO22 (red) and first order solution o1 (blue) are depicted at time
t = 2.
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Figure 5.8: Linear advection equation with peaks. HO22 and o1 for N = 4000. The exact solution
(green), the high order solution HO22 (red) and first order solution o1 (blue) are depicted at time
t = 2.
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Figure 5.9: Linear advection equation with peaks. HO32 and o1 for N = 200. The exact solution
(green), the high order solution HO32 (red) and first order solution o1 (blue) are depicted at time
t = 2.
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Figure 5.10: Linear advection equation with peaks. HO32 and o1 for N = 4000. The exact solution
(green), the high order solution HO32 (red) and first order solution o1 (blue) are depicted at time
t = 2.
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Figure 5.11: Linear advection equation with peaks. HO32 and LS for N = 200. The exact solution
(green), the high order solution HO32 (red) and high order solution LS (blue) are depicted at time
t = 2.
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Figure 5.12: Linear advection equation with peaks. HO32 and LS for N = 4000. The exact solution
(green), the high order solution HO32 (red) and high order solution LS (blue) are depicted at time
t = 2.
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5.2.4 Linearized gas dynamics with a smooth solution

Consider the problem of linearized gas dynamics presented in [64]

ut + A · ux = 0 , x ∈ [−0.5, 0.5] , t ∈ [0, 1] ,

where

u =

(
u1
u2

)
=

(
ρ
u

)
, A =

(
0 ρ0

a2/ρ0 0

)

with parameters a (sound speed) and ρ0 (reference density). The unknowns are density ρ and
velocity u. The exact solution is determined by the method of characteristics (see e.g., [64]). We
set a = 1 and ρ0 = 1.
As the initial condition, we choose the smooth function

u(x, 0) =

(
2 + sin4(2πx)

0

)

in order to determine the order of convergence (compare also to the initial condition in the example
Euler equations with smooth solution). We solve this equation with CFL = 0.95. The results for
the higher order method HO32 and the first order method o1 can be found in tables 5.13 and
5.14 and the components of solutions in figures 5.13 and 5.14. We can see that our method is also
applicable on systems of hyperbolic PDEs. We obtain second order of convergence in all three
considered norms. The relatively big error of the high order scheme in the second component (see
figure 5.14) is caused by the fact, that the second component of the exact solution is non-constant
(consisting of “waves”) for 0 < t < 1 and is equal to the constant 1 at the time t = 1. The
method HO32 is not able to resolve this transition from non-constant solution to a constant one
fine enough. The same behavior as for the high order method can be observed also for the first
order method but with a much smaller magnitude. To avoid this behavior one can e.g., use smaller
time steps to approximate the constant solution better. From table 5.13 we can see, that these
computational “oscillations” will decrease quadratically, if the number of particles grows, i.e., this
behavior has no influence on the convergence itself and on the convergence order.

N E1(N) k1 E2(N) k2 E∞(N) k∞

95 2.3643E-03 — 2.8817E-03 — 7.7941E-03 —
190 4.6739E-04 2.34 6.7324E-04 2.10 2.1843E-03 1.84

u1 380 9.1872E-05 2.35 1.1754E-04 2.52 3.6661E-04 2.57
760 1.9079E-05 2.27 2.3983E-05 2.29 5.9156E-05 2.63
1520 4.7545E-06 2.00 5.9514E-06 2.01 1.4588E-05 2.02

95 1.6104E-02 — 1.8669E-02 — 3.2828E-02 —
190 4.5389E-03 1.83 5.2142E-03 1.84 9.3228E-03 1.82

u2 380 1.1835E-03 1.94 1.3779E-03 1.92 2.5177E-03 1.89
760 2.9900E-04 1.98 3.4916E-04 1.98 6.0508E-04 2.06
1520 7.4857E-05 2.00 8.7466E-05 2.00 1.5196E-04 1.99

Table 5.13: Linearized gas dynamics with a smooth solution. Errors and convergence order for the
high order method HO32 in components u1 = ρ and u2 = u at time t = 1.
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N E1(N) k1 E2(N) k2 E∞(N) k∞

95 1.7581E-02 — 2.1033E-02 — 4.2642E-02 —
190 8.7022E-03 1.01 1.0467E-02 1.01 2.1104E-02 1.01

u1 380 4.3250E-03 1.01 5.2160E-03 1.00 1.0473E-02 1.01
760 2.1554E-03 1.00 2.6029E-03 1.00 5.2166E-03 1.01
1520 1.0759E-03 1.00 1.3001E-03 1.00 2.6029E-03 1.00

95 9.4974E-04 — 1.1233E-03 — 1.9703E-03 —
190 2.5788E-04 1.88 3.0308E-04 1.89 5.2719E-04 1.90

u2 380 6.7082E-05 1.94 7.8612E-05 1.95 1.3637E-04 1.95
760 1.7099E-05 1.97 2.0011E-05 1.97 3.4666E-05 1.98
1520 4.3156E-06 1.99 5.0472E-06 1.99 8.7384E-06 1.99

Table 5.14: Linearized gas dynamics with a smooth solution. Errors and convergence order for the
first order method o1 in components u1 = ρ and u2 = u at time t = 1.
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Figure 5.13: Lin. gas dynamics with a smooth solution, first component. First component of the
exact solution (green), the high order solution HO32 (red) and first order solution o1 (blue) are
depicted for N = 95 at time t = 1.
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Figure 5.14: Lin. gas dynamics with a smooth solution, second component. Second component of
the exact solution (green), the high order solution HO32 (red) and first order solution o1 (blue)
are depicted for N = 95 at time t = 1.
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5.2.5 Linearized gas dynamics with discontinuous solution

Consider the same governing equation as in the previous example on linearized gas dynamics with
the same parameter values a = 1, ρ0 = 1. The initial condition is set to be

u(x, 0) =






(
1
0

)
, x < 0 ,

(
0.5
0

)
, x > 0 .

The exact solution is obtained with the method of characteristics and can be found in [64]. We
solve this equation due to the discontinuities in the solution with CFL = 0.8 over the time interval
[0, 0.288] with fixed boundary conditions. The errors of solutions can be found in tables 5.15 and
5.16 and graphs in figures 5.15 and 5.16. We can see that in the case of linear hyperbolic system
the constant parts of solutions are reproduced correctly by the method HO32 (compare to the
following non-linear cases). Moreover, we acquire also better approximation on discontinuities in
comparison to a classical first order method o1.

N E1(N) E2(N) E∞(N)

50 8.1157E-03 2.4019E-02 1.3042E-01
100 4.7541E-03 1.8484E-02 1.3657E-01

u1 200 2.8778E-03 1.4671E-02 1.3605E-01
400 1.7349E-03 1.1290E-02 1.3779E-01
800 1.1191E-03 8.6132E-03 1.3968E-01

50 8.0230E-03 2.4015E-02 1.3043E-01
100 4.7519E-03 1.8484E-02 1.3657E-01

u2 200 2.8778E-03 1.4671E-02 1.3605E-01
400 1.7355E-03 1.1290E-02 1.3779E-01
800 1.1400E-03 8.6139E-03 1.3968E-01

Table 5.15: Linearized gas dynamics with discontinuous solution. Errors for the high order method
HO32 in components u1 = ρ and u2 = u at time t = 0.288.

N E1(N) E2(N) E∞(N)

50 1.4352E-02 3.2555E-02 1.2990E-01
100 9.8694E-03 2.6956E-02 1.2869E-01

u1 200 6.8750E-03 2.2468E-02 1.2772E-01
400 4.8245E-03 1.8809E-02 1.2698E-01
800 3.3983E-03 1.5780E-02 1.2636E-01

50 1.4352E-02 3.2555E-02 1.2990E-01
100 9.8694E-03 2.6956E-02 1.2869E-01

u2 200 6.8750E-03 2.2468E-02 1.2772E-01
400 4.8245E-03 1.8809E-02 1.2698E-01
800 3.3983E-03 1.5780E-02 1.2636E-01

Table 5.16: Linearized gas dynamics with discontinuous solution. Errors for the first order method
o1 in components u1 = ρ and u2 = u at time t = 0.288.
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Figure 5.15: Lin. gas dynamics with discontinuous solution, first component. First component of
the exact solution (green), the high order solution HO32 (red) and first order solution o1 (blue)
are depicted for N = 200 at time t = 0.288.
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Figure 5.16: Lin. gas dynamics with discontinuous solution, second component. Second component
of the exact solution (green), the high order solution HO32 (red) and first order solution o1 (blue)
are depicted for N = 200 at time t = 0.288.
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5.2.6 Shallow water equations - the dambreak problem

For more details about shallow water equations see e.g., [39] and [63].
In this example we consider the shallow water equations and the so-called dambreak problem given
by the initial condition. This problem can be considered as a model for a real dambreak, where
water is considered to be the investigated fluid. The problem reads

ut + F(u)x = 0 , x ∈ [−2, 2] , t ∈
[
0,

32

130

]
.
= [0, 0.24615]

with

u =

(
u1
u2

)
=

(
h
hu

)
, F(u) =

(
hu

hu2 + 1
2gh

2

)
=

(
u2

u2
2

u1
+ 1

2gu
2
1

)
,

where g = 9.81 stands for acceleration due to gravity. The unknowns are water depth h and fluid
velocity u. The initial condition is

u(x, 0) =





(
1
0

)
, x < 0 ,

(
2
0

)
, x > 0 .

We solve this equation due to the discontinuous initial condition with CFL = 0.8 with fixed
boundary conditions. The exact solution is computed via the exact Riemann solver proposed by
Toro in [63]. The resulting errors are given in tables 5.17 and 5.18, graphs in figures 5.17 - 5.19.
We can see that we acquire smaller errors for the high order method HO32 rather than for the first
order method o1. The discontinuity and the rarefaction wave are resolved better and are smeared
out significantly less than for the first order method. In the parts where the solution remains
constant, both methods are comparable and the constant states are conserved. Nevertheless, due
to the non-linear character of the governing equation, we obtain non-physical oscillations in the
middle part of the solution given by the high order method. Apparently, the WENO approach is
not able to damp enough the oscillations in the case of non-linear hyperbolic systems (compare with
the previous linear case of linearized gas dynamics) and possibly further techniques, e.g., limiters
or a modification of the ADER method, have to be applied. On the other hand, the oscillations
remain small in magnitude and do not spread out to further parts of solution, so that the character
of solution remains correct with a good resolution of the discontinuity and rarefaction wave.

N E1(N) E2(N) E∞(N)

50 4.6763E-02 6.1898E-02 2.3905E-01
100 2.2775E-02 3.8628E-02 2.5605E-01

u1 200 1.2791E-02 2.7460E-02 2.3443E-01
400 7.4648E-03 2.0110E-02 2.3409E-01
800 4.4334E-03 1.4134E-02 2.3307E-01

50 1.7408E-01 2.4887E-01 1.0703E+00
100 8.4215E-02 1.5759E-01 1.1255E+00

u2 200 4.6565E-02 1.1593E-01 1.0477E+00
400 2.5408E-02 8.4095E-02 1.0679E+00
800 1.4909E-02 5.8593E-02 1.0568E+00

Table 5.17: Shallow water equations - the dambreak problem. Errors for the high order method
HO32 in components u1 = h and u2 = hu at time t

.
= 0.24615.
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N E1(N) E2(N) E∞(N)

50 1.1775E-01 1.0661E-01 2.3313E-01
100 7.1722E-02 7.7310E-02 2.3305E-01

u1 200 4.2422E-02 5.4564E-02 2.3206E-01
400 2.4579E-02 3.7782E-02 2.2873E-01
800 1.4076E-02 2.5890E-02 2.2988E-01

50 4.4175E-01 4.1595E-01 1.0228E+00
100 2.6753E-01 3.0335E-01 1.0240E+00

u2 200 1.5776E-01 2.1562E-01 1.0275E+00
400 9.1239E-02 1.5067E-01 1.0457E+00
800 5.2166E-02 1.0446E-01 1.0669E+00

Table 5.18: Shallow water equations - the dambreak problem. Errors for the first order method o1
in components u1 = h and u2 = hu at time t

.
= 0.24615.
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Figure 5.17: Shallow water equations - the dambreak problem, first component. First component
of the exact solution (green), the high order solution HO32 (red) and first order solution o1 (blue)
are depicted for N = 800 at time t
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Figure 5.18: Shallow water equations - the dambreak problem, second component. Second compo-
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Figure 5.19: Shallow water equations - the dambreak problem. Zoom. The middle part of the
solution with the same scale for h and hu is depicted. On the left the first and on the right the
second component of solutions are depicted for N = 800 at time t

.
= 0.24615. The exact solution

(green), the high order solution HO32 (red) and first order solution o1 (blue) are depicted.
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5.2.7 Euler equations with smooth solution

Consider the one-dimensional Euler equations from example 1.6

ut + F(u)x = 0 , x ∈ [−0.5, 0.5] , t ∈ [0, 0.5]

with the vector of unknowns

u =




u1
u2
u3


 =




ρ
ρu
E




and the physical flux

F(u) =




ρu

ρu2 + p
u(E + p)



 =




u2
1
2 (3− γ)

u2
2

u1
+ (γ − 1)u3

γ u2

u1
u3 − 1

2 (γ − 1)
u3
2

u2
1


 .

The adiabatic exponent γ is chosen to be γ = 1.4. We follow the test problem provided by Titarev
[61], and choose the initial values of ρ, u and p to be

ρ(x, 0) = 2 + sin4(2πx) , u(x, 0) = 1 , p(x, 0) = 1 .

The exact solution is then given by

ρ(x, t) = 2 + sin4(2π(x− t)) , u(x, t) = 1 , p(x, t) = 1 .

We should remark here that it is usual to use the quantities ρ, u and p (also called primitive
or physical variables) rather than the conservative variables ρ, ρu and E to describe the fluid
dynamics given by Euler equations. We will follow this practice and analyse the results in the
language of primitive variables ρ, u and p, even if the whole computation is done for conservative
variables. For relevant relations see example 1.6.
We solve this equation with CFL = 0.8 with periodic boundary conditions. Since the solution is
smooth, we determine also the convergence order. For the high order method HO32, the errors
and experimental convergence orders for u1 = ρ can be found in table 5.19. The errors for u and p
are in the same table. The figure 5.20 shows the results in comparison to the exact solution and to
the first order method o1, notice the different scales. We can see that we get very good results for
the quantity ρ in comparison to the first order method o1 and we can also deduce the second order
of accuracy. However, for the quantities u and p we have to deal with “noise” in the solution. It
is caused by the fact, that they are not the conservative variables, so that their constant value 1
is not preserved necessarily. Nevertheless, this noise is relatively small and gets smaller with the
number of particles getting bigger. This noise behaves quite randomly and there is no relation
between the noise in the solutions for different values of N , e.g., N ∈ {40, 80, . . .}. That is why,
we do not determine the order of convergence in the variables u and p.
Results for first order method are given in table 5.20.
Altogether we can conclude that the method HO32 achieves the second order of convergence also
for non-linear hyperbolic systems.
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N E1(N) k1 E2(N) k2 E∞(N) k∞

40 1.4405E-02 — 1.8785E-02 — 6.5954E-02 —
80 5.0079E-03 1.52 6.5202E-03 1.53 2.1523E-02 1.62

ρ 160 1.3767E-03 1.86 1.7504E-03 1.90 6.2411E-03 1.79
320 3.5974E-04 1.94 4.5911E-04 1.93 1.7093E-03 1.87
640 9.8186E-05 1.87 1.2858E-04 1.84 5.6486E-04 1.60

40 1.3291E-09 — 2.1595E-09 — 9.6460E-09 —
80 9.9971E-09 — 2.1536E-08 — 1.1160E-07 —

u 160 5.9818E-06 — 1.0447E-05 — 4.9602E-05 —
320 2.5609E-06 — 4.5866E-06 — 2.7454E-05 —
640 9.0074E-06 — 1.2536E-05 — 7.6327E-05 —

40 2.4764E-09 — 3.9297E-09 — 1.4939E-08 —
80 1.7015E-08 — 3.6162E-08 — 1.8727E-07 —

p 160 1.0575E-05 — 1.8144E-05 — 8.3781E-05 —
320 4.8868E-06 — 8.8729E-06 — 4.7302E-05 —
640 1.7048E-05 — 2.3750E-05 — 9.7393E-05 —

Table 5.19: Euler equations with smooth solution. Errors and convergence order for the high order
method HO32 in ρ, u and p at time t = 0.5.

N E1(N) k1 E2(N) k2 E∞(N) k∞

40 1.6026E-01 — 1.8078E-01 — 3.4194E-01 —
80 9.6227E-02 0.74 1.1070E-01 0.71 2.1721E-01 0.65

ρ 160 5.3761E-02 0.84 6.3063E-02 0.81 1.2550E-01 0.79
320 2.8607E-02 0.91 3.4016E-02 0.89 6.7966E-02 0.88
640 1.4785E-02 0.95 1.7721E-02 0.94 3.5440E-02 0.94

40 2.6512E-16 — 3.7293E-16 — 1.1102E-15 —
80 3.9293E-16 — 4.8993E-16 — 1.4433E-15 —

u 160 3.4388E-16 — 5.0513E-16 — 3.9968E-15 —
320 4.0785E-16 — 5.6237E-16 — 3.2196E-15 —
640 7.0836E-14 — 8.6359E-14 — 1.5632E-13 —

40 4.9656E-13 — 4.9656E-13 — 4.9827E-13 —
80 4.9654E-13 — 4.9654E-13 — 4.9827E-13 —

p 160 4.9636E-13 — 4.9636E-13 — 4.9827E-13 —
320 4.9661E-13 — 4.9661E-13 — 5.0004E-13 —
640 6.7762E-13 — 6.9118E-13 — 9.2104E-13 —

Table 5.20: Euler equations with smooth solution. Errors and convergence order for the first order
method o1 in ρ, u and p at time t = 0.5.
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Figure 5.20: Euler equations with smooth solution. Up to down graphs of ρ, u and p of solutions
for N = 80 at time t = 0.5 with different scales. The exact solution (green), the high order solution
HO32 (red) and first order solution o1 (blue) are depicted.
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5.2.8 Euler equations - the Sod problem

The last example is the so-called Sod problem ([54]), also known as shock tube problem. We consider
again the Euler equations from the previous example, i.e.,

ut + F(u)x = 0 , x ∈ [−0.5, 0.5] , t ∈
[
0,

13

55

]
.
= [0, 0.23636]

with the vector of unknowns

u =




u1
u2
u3


 =




ρ
ρu
E




and the physical flux

F(u) =




ρu

ρu2 + p
u(E + p)



 =




u2
1
2 (3− γ)

u2
2

u1
+ (γ − 1)u3

γ u2

u1
u3 − 1

2 (γ − 1)
u3
2

u2
1


 .

The initial condition is




ρ
u
p



 (x, 0) =








1
0
1



 , x < 0 ,




0.125
0
0.1


 , x > 0 .

We set again γ to be γ = 1.4. We solve this equation with CFL = 0.8 with fixed boundary
conditions. The exact solution is computed via the exact Riemann solver proposed by Toro in
[64]. The resulting errors and graphs are given in tables 5.21 and 5.22 and figures 5.21 and 5.22,
respectively. We obtain similar results as in the example on the shallow water equations. The
constant states are preserved in the parts of solution where the solution is constant from the initial
time. The shocks, contact discontinuity and rarefaction waves are approximated better with the
high order method HO32 than with the first order method o1. This is a very good result especially
for the contact discontinuity since the classical first order methods smear out the solution usually
very strongly. In the middle parts of the solution we get again non-physical oscillations due to
the non-linearity of the problem. Again, further techniques to suppress it can possibly be applied.
However, the character of the solution is conserved and the oscillations do not spread out from the
middle part of the solution.
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N E1(N) E2(N) E∞(N)

100 5.4789E-03 1.1253E-02 8.6315E-02
200 2.8617E-03 7.5084E-03 8.3835E-02

ρ 400 1.5470E-03 5.1216E-03 8.2140E-02
800 9.1642E-04 3.6779E-03 9.2145E-02
1600 6.0233E-04 2.9021E-03 1.0157E-01

100 1.1347E-02 3.7863E-02 5.6965E-01
200 6.0217E-03 2.9609E-02 5.6320E-01

u 400 3.1242E-03 2.0477E-02 5.5908E-01
800 1.6639E-03 1.2704E-02 5.8740E-01
1600 1.1128E-03 1.0205E-02 5.5970E-01

100 5.0506E-03 1.0519E-02 1.1374E-01
200 2.5918E-03 6.9785E-03 1.0224E-01

p 400 1.3554E-03 4.4870E-03 1.0493E-01
800 7.5058E-04 2.8963E-03 1.1720E-01
1600 4.7378E-04 2.1023E-03 1.0554E-01

Table 5.21: Euler equations - the Sod problem. Errors for the high order method HO32 in ρ, u
and p at time t

.
= 0.23636.

N E1(N) E2(N) E∞(N)

100 1.6467E-02 2.4948E-02 9.1735E-02
200 1.0461E-02 1.8342E-02 8.9560E-02

ρ 400 6.6143E-03 1.3794E-02 8.7690E-02
800 4.1736E-03 1.0659E-02 8.6144E-02
1600 2.6362E-03 8.4519E-03 8.4890E-02

100 2.4711E-02 6.0842E-02 6.1111E-01
200 1.4109E-02 4.2447E-02 6.1957E-01

u 400 7.9847E-03 2.9331E-02 6.1283E-01
800 4.4845E-03 2.0214E-02 6.1846E-01
1600 2.5083E-03 1.4231E-02 6.1476E-01

100 1.3702E-02 2.4644E-02 1.1473E-01
200 8.2008E-03 1.6453E-02 1.1485E-01

p 400 4.8433E-03 1.0837E-02 1.1427E-01
800 2.8240E-03 7.0842E-03 1.1640E-01
1600 1.6268E-03 4.6328E-03 1.1484E-01

Table 5.22: Euler equations - the Sod problem. Errors for the first order method o1 in ρ, u and p
at time t

.
= 0.23636.
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Figure 5.21: Euler equations - the Sod problem. Up to down graphs of ρ, u and p of solutions for
N = 200 at time t

.
= 0.23636. The exact solution (green), the high order solution HO32 (red) and

first order solution o1 (blue) are depicted.
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Figure 5.22: Euler equations - the Sod problem. Zoom. The middle part of the solution with the
same scale for ρ, u and p is considered. Up to down graphs of ρ, u and p of solutions for N = 200
at time t

.
= 0.23636. The exact solution (green), the high order solution HO32 (red) and first order

solution o1 (blue) are depicted.
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Conclusions

We have dealt with hyperbolic conservation laws and their numerical treatment. The wide-spread
finite volume method (FVM) is a very suitable tool to compute a numerical solution of these partial
differential equations (PDEs). However, due to computational experience it is useful to develop
new methods, that combine advantages of FVM and are not mesh-based, in order to increase the
flexibility of the method. The proposals of Hietel, Steiner and Struckmeier [24] and Junk and
Struckmeier [29] deal with this assignment and their finite volume particle method (FVPM) seems
to be a good step to accomplish this goal. As FVM can attain higher order of accuracy, it is also
desirable to construct FVPM of higher order.
Although FVPM were analyzed by various authors, providing computational stability of the
method remains a challenging task we have tried to fulfill. It may seem to be of merely technical
meaning, but it has a deeper mathematical background. We have shown, for the general formu-
lation of FVPM, how to define the correction procedure for geometrical coefficients for bounded
domains. Furthermore, we have introduced a scheme that enables us to add a new particle to an
existing particle distribution, in order to preserve overlapping of the particles. A similar procedure
was developed to remove an existing particle, in the case of high density of particles. We have
shown, that both methods preserve constant states and are conservative, up to machine precision.
Having defined these procedures, one can apply them on arbitrary FVPM to ensure stability in
the above mentioned sense.
Polyharmonic spline interpolation (see [12], [26]) is a technique used to interpolate given data. The
results for data given in the form of point values or classical integral means are already known.
In this work, we have done the rigorous analysis for the case of weighted integral means. It was
combined with the WENO approach (see [15], [25], [52]) to construct a FVPM of higher order.
We have considered the ADER method (see [64], [65]), developed for the mesh-based FVM and we
have shown, that it is possible to adapt principles of the ADER method also on a meshfree scheme,
at least in one spatial dimension. For the proposed scheme, we have proven the second order of
convergence for a scalar linear PDE. Further cases, such as non-linear PDEs or systems, were
successfully tested numerically. We have observed, that the method is robust and attains second
order of accuracy in areas where the solution is smooth; in non-smooth areas, the scheme yields
at least a better resolution of shocks and rarefaction waves in comparison to a first order method.
Even if the method seems to work well, there are difficulties concerning non-linear systems. This
behavior needs more attention and has to be investigated in future. A remedy of the occurring
oscillations could be the use of limiters or an analysis of the ADER scheme. As a matter of fact,
one should take into account, that even the classical FVM ADER method with Toro-Titarev solver
does not work properly in this case. Based on [18], one could try to modify the Toro-Titarev solver
in the case of FVPM and make use of the LeFloch-Raviart expansion to circumvent the formation
of oscillations.
The proposed method can be considered to be the first step in the construction of a method of
arbitrary high order of convergence in arbitrary spatial dimensions. As known from the FVM
framework, the idea of the ADER method allows even to achieve arbitrary high order of discretiza-
tion in time and space. An even bigger challenge is to find a suitable and numerically efficient,
but more general partition of unity given in FVPM. But having found this, the combination of
the latter two steps may lead to a method of arbitrary high order of convergence. Also, another
generalization of the method, namely a formulation of the method in more spatial dimensions, is
desirable, since many practical computations take place in higher dimensions. Introducing a high
order method combined with moving particles is also a matter of particular interest. Providing
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an outlook for further investigation, these assignments may become an object of research in the
future.
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Abstract

We study numerical methods for the solution of hyperbolic conservation laws with particular em-
phasis on meshfree methods. The concept of the Finite Volume Particle Method (FVPM) and
properties of the scheme are presented. We contribute to the development of the method with new
results concerning stability and order of accuracy. To provide computational stability of a general
FVPM we propose algorithms to add and to remove a particle to a given particle distribution.
Furthermore, we focus on one-dimensional scalar problems and design and analyse a FVPM of
second order of accuracy. To this end, a kernel-based high order spatial reconstruction scheme
is combined with the ADER approach for the flux evaluation. Polyharmonic splines are used as
kernel functions in the reconstruction step. We analyse the local approximation order of poly-
harmonic splines for the case of data given by weighted integral means, as needed in FVPM. To
suppress oscillations in the reconstruction, we use the WENO technique. We generalize the ADER
method and the Toro-Titarev solver in order to apply them on a meshless scheme and provide
hereby the solution of a corresponding generalized Riemann problem with initial data given by the
WENO approximation by polyharmonic splines. The resulting scheme yields a prototype of highly
flexible high order meshfree method. Numerical examples are given to show the second order of
convergence and robustness of the method also for non-linear equations as well as for systems of
conservation laws.





Zusammenfassung

Wir studieren numerische, insbesondere gitterfreie, Methoden zur Lösung hyperbolischer Erhal-
tungsgleichungen. Das Konzept der Finite Volumen Partikel Methode (FVPM) und ihre Eigen-
schaften werden präsentiert. Wir tragen zu der Entwicklung der Methode mit neuen Resultaten
bezüglich der Stabilität und Genauigkeitsordnung bei. Um die Stabilität einer allgemeinen FVPM
zu gewährleisten, entwerfen wir Algorithmen zum Hinzufügen und Entfernen eines Partikels be-
züglich einer gegebenen Partikelverteilung. Darüber hinaus betrachten wir eindimensionale skalare
Probleme und befassen uns mit der Konstruktion und Analyse einer FVPM zweiter Ordnung. Zu
diesem Zweck kombinieren wir kernbasierte Rekonstruktion höherer Ordnung im Raum mit der
ADER-Methode für die Flussauswertung. Als Kern-Funktionen in dem Rekonstruktionsschritt
benutzen wir polyharmonische Splines. Für den in FVPM auftretenden Fall der Daten, die
durch gewichtete Integraldurschnitte gegeben sind, analysieren wir die lokale Approximationsord-
nung der polyharmonischen Splines. Mögliche Oszillationen werden mittels des WENO-Verfahrens
gedämpft. Wir verallgemeinern die ADER-Methode und den Toro-Titarev-Löser, um sie an gitter-
freie Schemata anzuwenden, und lösen hiermit das entsprechende verallgemeinerte Riemann Prob-
lem mit Anfangsdaten, welche durch die WENO-Approximation mit polyharmonischen Splines
gegeben werden. Das resultierende Schema stellt den Prototyp einer hochflexiblen gitterfreien
Methode höherer Ordnung dar. Schließlich werden numerische Beispiele präsentiert, die die Kon-
vergenz zweiter Ordnung und Robustheit des Schemas auch für nicht-lineare Gleichungen sowie
für Systeme hyperbolischer Erhaltungsgleichungen zeigen.
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