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Kurzfassung

Virtuelles Screening hat sich zu einem integralen Bestandteil der industriellen und

akademischen Arzneimittelforschung entwickelt. Es wird eingesetzt, um sehr große Sub-

stanzdatenbanken mit der Hilfe von computerbasierten Methoden auf eine überschaubare

Zahl vielversprechender Kandidaten zu reduzieren. Um eine möglichst hohe Vorhersage-

genauigkeit zu erreichen, wird hierbei versucht, so viele Informationen wie möglich über

das Zielprotein und seine bekannten Bindungspartner in die Berechnungen einfließen zu

lassen. Die resultierenden Arbeitsprozesse umfassen deshalb häufig mehrere Schritte, in

denen die verschiedenen Informationen berücksichtigt werden. Aufgrund der Vielzahl

verfügbarer Methodiken und des starken Einflusses jedes einzelnen Schrittes auf das

Ergebnis, ist virtuelles Screening eine Aufgabe von enormer Komplexität und mit vie-

len Fallstricken, die für gewöhnlich nur von Spezialisten durchgeführt werden kann.

Das Ziel der vorliegenden Arbeit war der Aufbau einer verlässliche Basis für die

Entwicklung von Software, die eine Integration von Medizinalchemikern in die com-

putergestützte Wikstoffsuche fördert. Das Ergebnis dieser Bemühungen ist ein neues

chemieinformatisches Softwareframework (NAOMI) für virtuelles Screening, welches

speziell auf die damit verbundenen Anforderungen angepasst wurde. Erstens erlaubt

NAOMI Medizinalchemikern, basierend auf innovativen und intuitiv verständlichen

Konzepten, ihre Erfahrung und ihr Spezialwissen an den Stellen der Berechnungen

einzubringen, die für den Erfolg ihrer Projekte maßgeblich sind. Zweitens umfasst

NAOMI zahlreiche neue chemieinformatische Methoden, die auf einem konsistenten

internen chemischen Modell aufbauen und eine effiziente Ausführung der einzelnen

Schritte des virtuellen Screenings erlauben. Die so erreichte Effizienz ist jedoch nicht

nur eine notwendige Voraussetzung für Hochdurchsatz-Screening, sondern spielt auch

eine zentrale Rolle in interaktiven Anwendungen, die in Kombination mit einer intu-

itiven Benutzerschnittstelle eine Schlüsselrolle in der Integration von Medizinalchemik-

ern in die computergestützte Wirkstoffsuche spielen. Drittens wurde viel Wert darauf

gelegt sicherzustellen, dass die Ergebnisse der verschiedenen Rechenschritte chemisch

sinnvoll sind und dass eine hoher Grad an Konsistenz zwischen den verschiedenen Kom-

ponenten des Prozesses sichergestellt ist. Dies ist von entscheidender Bedeutung, da

viele Schritte automatisiert werden müssen, um zu erreichen, dass Medizinalchemiker



sich auf die für sie relevanten Teilaspekte konzentrieren können. Wie in den Publikatio-

nen dieser kumulativen Dissertation gezeigt wird, sind zahlreiche Methoden in NAOMI

selbst relevante Beiträge in ihren jeweiligen Anwendungsgebieten und ihre Kombination

erlaubt den Aufbau effizienter, komplett automatisierter und hoch-adaptiver Screening-

Prozesse.



Abstract

Virtual screening has long since become an integral part of the drug discovery

process in both industry and academia. Its main purpose is to reduce huge compound

databases to a manageable number of promising drug candidates with the help of

computational methods. In order to provide reliable predictions, screening campaigns

always aim to incorporate as much knowledge as possible about the target protein and

its known binding partners. For that reason, the resulting workflows generally comprise

multiple consecutive stages in which the different types of information are processed.

The multitude of available methodologies and the strong dependency of the results

on each individual step make virtual screening a complex task with numerous pitfalls

which is usually only performed by specialized computational chemists.

The aim of the presented work was to provide a reliable basis for the development of

software applications supporting the inclusion of medicinal chemists in computer-aided

drug design activities. The result of this effort is a new cheminformatics framework

(NAOMI) for virtual screening which has been specifically designed to meet the de-

manding requirements imposed by this scenario. First, based on both innovative and

intuitively understandable concepts, NAOMI enables medicinal chemists to contribute

their expert knowledge and experience at those points of the calculations that are cru-

cial for the success of their current projects. Second, building on the consistent internal

chemical model NAOMI comprises numerous novel cheminformatics methods enabling

an efficient execution of each individual step of the virtual screening workflow. Apart

from being a crucial factor in high-throughput calculations, computational speed is

also of the essence in interactive applications which, in combination with intuitive user

interfaces, are a key factor in involving medicinal chemists in computational endeavors.

Third, great care was taken to ensure that the results of each stage are chemically

reasonable and that a high degree of consistency is maintained between the different

components of the pipeline. This is important as many steps of the process have to be

automated in order to allow medicinal chemists to focus on those aspects relevant for

their projects. As is shown in the publications presented in this work, many individual

methods included in the NAOMI framework are in themselves relevant contributions to

their specific field of application and their combination results in efficient, completely

automated, and highly adaptable screening workflows.
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Introduction

Over the course of the last few decades, computers have gained more and more impor-

tance throughout all fields of chemistry. They are the only viable means to store and

process the huge amount of experimental data produced by chemical research and to

perform demanding theoretical calculations with a sufficient level of accuracy. The ever-

growing need for more advanced computer-based approaches and improved application

programs eventually lead to the establishment of new disciplines, which exclusively

focused on the use and development of computational methods to solve chemical prob-

lems. The software produced in these fields was initially designed to be used by trained

specialists in a supporting capacity. This has, however, considerably changed over the

last ten to fifteen years. Nowadays, there is a computer on the desk of nearly every

chemist and scientific software is routinely used to help with the day-to-day work. The

typical user has evolved from a skilled computer professional with intricate knowledge

of the underlying algorithmic and conceptional details to a computationally literate re-

searcher without specific education in computer science. This change in clientele had an

enormous impact on the development and design of scientific software, as aspects such

as graphical user interface, usability and interactivity shifted more and more into fo-

cus. The disciplines of medicinal and pharmaceutical chemistry are no exceptions from

this general trend. Researchers in these fields routinely use computers to guide them

in decisions regarding the most promising strategies for the development of new and

improved drugs. As the associated scientific problems are far too complex to be solved

by any algorithm in an automated fashion, computers are mainly used to organize, an-

alyze, and visualize the available experimental data. Using different types of heuristics,

computer programs additionally can generate recommendations for the best course of

action on the basis of the available data, e.g., which molecules are promising candi-

dates for experimental testing. These application scenarios pose certain requirements

1



1. INTRODUCTION

on scientific software developed for computer-aided drug design. First, the underlying

algorithms must be efficient enough to make interactive workflows possible. Second,

the recommendations made by the programs must be both sensible and reliable. And

third, the application programs must allow medicinal chemists to contribute their ex-

pert knowledge and experience at those points of the calculations that are crucial for

the success of their current projects.

In the present thesis, a new cheminformatics framework for structure-based virtual

screening (NAOMI) will be introduced. The main goal was to establish a robust and

intuitive workflow which could serve as a basis for the development of scientific software

that both enables and motivates medicinal chemists to participate in computer-aided

drug design activities. For that purpose, the individual components of the pipeline

have been developed under careful consideration of the three central requirements men-

tioned above, namely efficiency, reliability, and interactivity. At the heart of NAOMI

is a robust and consistent description of chemical compounds which was developed

in the course of this work. NAOMI comprises various novel methods ranging from

standard cheminformatics operations such as the conversion of chemical file formats to

advanced applications such as the prediction of molecular interactions in protein-ligand

complexes. These methods are the building blocks of the above-mentioned screening

pipeline. The project was a cooperation between the Center for Bioinformatics Ham-

burg and Beiersdorf1. The prime objective was the development and application of

virtual screening methodologies for the discovery of bioactive natural products which

play an important role as active ingredients in the cosmetic industry. The presented

work benefited largely from the close cooperation with an industrial partner as the de-

veloped methods and computer programs were directly applied by their intended users.

The resulting feedback has positively influenced both the design and the functionality

of the software.

In the following, the basic principles and main applications of computer-aided drug

design are presented. The first two sections introduce the molecular basis of the com-

plex interactions between biological targets and drugs and explain how this knowledge

can be used for the rational design of drugs. The next sections emphasize the role com-

puters currently play in the drug development process with the focus being on virtual

screening methodologies. Afterwards, a cursory introduction to the fairly broad field

of cheminformatics is presented. Finally, a motivation for the project based on the

current problems and challenges in drug design is provided and the overall structure of

the thesis is outlined.

1Beiersdorf AG, Research Active Ingredients, Hamburg
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1.1 Protein-Ligand Interactions

1.1 Protein-Ligand Interactions

The specific interactions between proteins and small molecules are the molecular ba-

sis for the therapeutic effect of most common drugs. Proteins are biological macro-

molecules which play an essential role in virtually all cellular processes in living organ-

isms, e.g., metabolism, signal transduction, and energy transfer. They are composed

of one or multiple chains of amino acids, their molecular building blocks, whose respec-

tive linear sequence is determined by the genetic code. Of the more than 500 naturally

occurring amino acids currently known [1], only 22 are proteinogenic, i.e., protein build-

ing. These comprise an identical backbone part, the α amino acid substructure, and

a side-chain which is unique for each type and determines its characteristic physico-

chemical properties. Specific interactions between amino acids in a particular sequence

determine the overall three-dimensional structure of the protein which in turn is re-

sponsible for its biological function. The latter is directly connected to one of the most

characteristic features of proteins, the ability to bind other molecules at a specific loca-

tion called binding site. The shape and the physicochemical properties of this region,

determined by the side chains of the surrounding amino acids, regulate the specificity

and tightness with which the ligands are bound. The interaction with other molecules

gives rise to the vast array of functions proteins can serve in organisms including cell

signaling (scaffold proteins), forming connective tissue (structural proteins), and con-

tracting muscle fibers (motor proteins). The following discussion will be restricted to

the binding of small molecules which is of high importance in the context of drug de-

sign. A comprehensive overview of the structure and function of proteins can be found

in standard biochemistry textbooks [2, 3].

One of the most important roles of proteins in cells is that of a catalyst for chemi-

cal reactions. Such specialized proteins are called enzymes and the respective reaction

partners substrates. Many of the chemical transformations mediated by enzymes are

essential steps in metabolism and are thus vital for living organisms. The actual reac-

tion takes place in the active site, usually a small cavity in the protein, and involves

only a small number of the protein’s amino acids directly. Their three-dimensional

arrangement forms the molecular basis for the enzyme’s biological function by deter-

mining the shape and the physicochemical properties of its reactive center. The amino

acids are arranged in such a way that the transition state, the configuration with the

highest potential energy on the reaction coordinate, is stabilized. This generally results

in a considerably higher reaction rate compared to the uncatalyzed process under the

same conditions. Furthermore, the three-dimensional structure also accounts for the

3



1. INTRODUCTION

enzyme-substrate specificity as only molecules with complementary shape and physic-

ochemical properties can interact favorably with the atoms in the active site. This

concept is known as the “lock-and-key” principle, which was first introduced by Emil

Fischer [4]. It considers both protein and molecule as rigid entities which must fit to-

gether as lock and key. In view of the fact that proteins are flexible structures whose

conformations often change when interacting with other molecules, many experimental

observations are not in accordance with this model. In 1958, Daniel Koshland [5] pre-

sented the induced-fit theory, according to which the initial binding of the substrate

induces conformational changes in the enzyme which are essential for its catalytic ac-

tivity. Even today, the driving forces for the recognition of small molecules by proteins

are not fully understood and it is still not possible to predict the function of a protein

from its structure alone.

Nonetheless, many effects influencing the binding of small molecules to proteins have

been identified [6–8] and can be used for the rational design of drugs. Major contribut-

ing factors are hydrogen bonding, ionic interactions, metal-coordination, van-der-Waals

forces, and the hydrophobic effect. With exception of the latter, these contributions

are subsumed under the term electrostatic interactions and are frequently the predom-

inant reason for the specificity of molecular recognition [9]. A hydrogen bond can be

interpreted as a dipol-dipol attraction between an electronegative atom and a hydrogen

atom attached to a second electronegative atom [10]. Nitrogen, oxygen and fluorine

are, due to their high electronegativities, the most common elements to be involved in

this type of chemical bonding. As the strength of hydrogen bonds strongly depends on

the relative arrangement of the involved atoms, they are often characterized as directed

interactions. All standard amino acids can partake in hydrogen bonding owing to their

α amino acid substructure. Additionally, there are functional groups in particular side

chains which also have this ability, e.g the hydroxy group of serine. Attractive ionic

interactions, sometimes called “salt bridges”, are a result of coulomb forces between

atoms or groups of atoms with opposite charges. They are quite typical for amino

acids with side-chain functional groups which are ionized under physiological condi-

tions, e.g., arginine and aspartic acid. Hydrogen bonds and ionic interactions often

occur at the same time, as positively charged groups usually also have hydrogen atoms

attached to them. If a protein has bound metal ions in its active site, the coordination

by ligand atoms can also have an important stabilizing effect. Since metal atoms have

a preference for specific coordination geometries, their interactions with ligand atoms

can be categorized as directed. Van-der-Waals forces is a collective term for various

undirected attractive and repulsive dipol-dipol interactions which are usually weaker

than the aforementioned contributions. The interactions between nonpolar portions

4



1.2 Rational Drug Design

of a molecule and nonpolar amino acid side chains are subsumed under the term hy-

drophobic interactions. These are generally undirected as their strength only depends

on the distance between the respective substructures. Their contribution to stability

is mainly determined by the change in nonpolar surface of both protein and ligand

before and after binding. This has been summarized as the hydrophobic effect [11, 12],

which describes the tendency of nonpolar compounds to aggregate in aqueous solution

in order to avoid unfavorable interactions with water molecules.

1.2 Rational Drug Design

Historically, pharmaceutical research has mostly been governed by empirical observa-

tions, accidental discoveries, and trial and error methods [13]. With the advent of

molecular and structural biology and the associated increase in understanding of cellu-

lar processes and pathways as well as the simultaneous development and establishment

of advanced experimental methods, more systematic and targeted approaches to the

problem became available. These are often subsumed under the term rational drug

design which describes the process of inventing new medicines on the basis of the avail-

able knowledge of a particular biological target, i.e. the protein targeted by the drug.

This target is in some way specific to a disease condition, e.g, an enzyme involved in

vital cell processes of microbial pathogens, and its manipulation therefore results in

a therapeutic benefit. In most cases, the drug is a small organic molecule which in-

hibits the target protein from fulfilling its biological function. There are, however, also

numerous examples for conditions in which the activity of the target protein actually

needs to be enhanced. The principles applied to the design of new drugs are based

on the knowledge about protein-ligand interactions described in the previous section.

If the specific way a molecule interacts with a particular protein is known, then it is

possible to devise other compounds which behave in a similar fashion. According to

the “lock-and-key” principle such molecules must have a comparable shape and com-

patible physicochemical properties. A typical way to design an enzyme inhibitor, for

instance, is to find a molecule that binds tightly to the protein but does not undergo

the catalyzed chemical reaction. In this way the protein is no longer available for the

transformation of its actual biological substrates.

Depending on the amount of available experimental data, there are two complemen-

tary strategies for the rational design of drugs. In case of structure-based methods, the

three-dimensional structure of the target protein is used. Information of that kind is

typically obtained through X-ray crystallography [14] or NMR spectroscopy which yield

5



1. INTRODUCTION

three-dimensional positions of protein atoms as well as those of potentially bound lig-

ands and water molecules. Both methods provide immediate insight into the structure

of the protein’s binding pocket with respect to shape and potential interactions sites.

In the best case, the resolved structure also contains a bound ligand so that the respec-

tive binding mode can be directly inspected and interpreted. In case no experimental

protein structure data is available, ligand-based techniques are applied. These evaluate

the properties of molecules which are already known to interact with the target. The

basic idea of this indirect approach is to develop an idea of the potential binding mode

in the respective protein by analysis of the similarities between these molecules.

Rational design techniques are typically applied during the drug discovery stage

[15], the first step of the drug development process. The aim of drug discovery is to

identify biologically active small molecules with suitable characteristics for the approval

as drugs by the appropriate agencies. The high requirements of the latter constitute a

considerable difficulty for the task and can only be met with enormous research efforts

involving a large variety of experimental procedures. As rational drug design is focused

on the inhibition or activation of a specific biological entity, the identification of a

suitable drug target is naturally the first step of the process. This requires a thorough

understanding of the disease mechanisms and the roles particular proteins play in them.

In order to be worthy of consideration, a potential drug target must meet a number of

different criteria. First, it must be druggable, i.e. it must be possible to manipulate

the targets’ biological activity by drug molecules. Second, engaging the target does

result in a statistically relevant therapeutic benefit. And third, the pharmacological

modulation of the target does not compromise the safety of the patient even in long-

term clinical usage. After a valid target has been established, experimental methods

for the measurement of the target’s biological activity, so called assays, need to be de-

veloped. These are essential for assessing the inhibiting or activating effect molecules

have on the target protein. Assays form the basis for the subsequent hit discovery

phase in which molecules with the desired activity, called hits, are identified by using

one or multiple compound screening techniques. These processes are often completely

automated, especially in pharmaceutical companies, and can be used to test up to mil-

lions of compounds. From the often large number of initial screening hits, promising

candidates need to be selected as starting points for the following hit-to-lead phase.

This selection can be based on results of additional experimental procedures, e.g., con-

cerning pharmaco-kinetic properties, or considerations of aspects of chemical synthesis,

such as ease of preparation. The selected hit molecules generally do not fulfill all the

necessary requirement imposed on drugs and need to be further optimized with respect

to multiple parameters. At this stage structure-based and ligand-based methods can

6



1.3 Computer-Aided Drug Design

play an important role as they help in developing structure-activity relationships. If the

structural basis for the interaction with the target protein is known and understood,

compounds can be systematically modified in order to optimize both their potency and

selectivity. Apart from the ability to interact with a target protein, there are addi-

tional pharmaco-kinetic properties which are essential requirements for potential drug

candidates. The most relevant aspects are absorption, distribution, metabolism, and

excretion (ADME). When administered to a patient, the active molecule must find its

way to the intended target protein in the human body to take effect. This means it

must be absorbed into the bloodstream and transported to the respective effector site

without being inactivated by metabolic processes. Afterwards the drug must be com-

pletely removed from the body to avoid an accumulation which in turn could result

in adverse effects on normal metabolism. All of the above-mentioned parameters must

be optimized simultaneously in order to transform a hit molecule into an acceptable

lead structure. In the final phase, lead optimization, the lead from the previous step is

further characterized and improved, typically using more advanced experimental meth-

ods, until it is finally ready to be declared as preclinical candidate. In an industrial

setup, the initial screening typically starts out with several hundred thousand com-

pounds which are reduced to a few hundred during the hit-to-lead phase. From these

only one or two compounds are eventually submitted to the clinical phases[15].

1.3 Computer-Aided Drug Design

The ultimate goal of pharmaceutical research is the development of new medicines for

the treatment of diseases. The process of discovering novel drugs and converting them

into products ready for the market is extremely complex and involves a wide variety

of experimental procedures as was discussed in the previous section. This makes drug

development a generally time-consuming and, above all, cost-intensive endeavor. The

approximate time frame for the completion of a drug development cycle is 13 years and

the associated costs are estimated at 1.8 billion U.S.$ [16].

Computer-aided drug design (CADD) can help to considerably reduce the high costs

of the drug development process by replacing expensive experimental procedures with

cost-effective computations. This applies in particular to the early stages of drug dis-

covery, where computational methods can make valuable contributions to each of the

individual steps introduced in the previous section [17]. Bioinformatics approaches can

help in identifying and selecting potential disease targets as they provide the means

for the analysis and utilization of the vast amounts of heterogeneous data and informa-

tion gathered from diverse experiments, patents and literature sources [18]. Moreover,

7



1. INTRODUCTION

computational methods are an important tool to assess the druggability of potential

target proteins [19]. This prediction can either be based solely on the protein’s amino

acid sequence [20] or additionally incorporate information about its three-dimensional

structure [21]. In the context of the latter, the automated identification of protein

binding sites [22] often also plays an important role. Virtual screening methodologies

have long since become an integral part of the hit discovery phase as they help to

reduce the number of compounds which need to be tested in expensive experimental

screening campaigns [23]. Over the time, numerous efficient algorithms and methods

have been developed reflecting the multitude of different scenarios medicinal chemists

are confronted with. If the three-dimensional structure of the target protein is avail-

able, molecular docking [24] can be applied to find molecules with geometrical and

chemical properties that are complementary to those of the protein’s binding pocket.

Otherwise, ligand-based approaches, such as pharmacophore-based screening [25] and

3D-QSAR [26], are available which only rely on the properties of already known active

molecules. If the experimental screening setup is based on the combinatorial synthe-

sis of compounds, computational methods provide the means to select and combine

only those reagents that will result in libraries with a desired physicochemical profile

[27]. Such multiobjective optimization tasks are but one example of the many different

problems which cannot be efficiently solved without the use of computers. Apart from

these typical screening applications, computational methods can also be used to opti-

mize and focus compound libraries in a more general sense, e.g using parameters such

as diversity [28] and drug-likeness [29]. In this way, compounds which are either too

similar or have unfavorable physicochemical properties can be excluded even before the

experimental screening phase. Many of the methods mentioned above are, however,

not only useful when it comes to the design and optimization of screening libraries.

Docking, for instance, can also be used in the context of lead optimization in order to

verify if particular structural modifications in the molecule will result in a valid binding

mode. Moreover, fragment-based approaches, such as fragment growing and scaffold

hopping [30], provide a systematic way to identify sensible chemical transformations

under consideration of additional constraints imposed by the protein’s binding pocket.

Since eliminating unsuitable candidates as early as possible in the discovery pipeline

is one of the mayor concerns of medicinal chemists, the in silico prediction of drug

metabolism and toxicity [31, 32] is an important element of CADD, especially consid-

ering that these properties are experimentally assessed at late stages of the process.

In this context, aspects such as polypharmacology, adverse effects and drug promiscu-

ity are of great importance and have also been addressed by computational methods

[33–35].
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1.4 Virtual Screening

As the previous introduction shows, the number and kinds of applications of CADD

is diverse and includes a wide variety of methods from different fields, including chem-

informatics, bioinformatics, and computational chemistry. The following sections will

only focus on virtual screening methodologies as only those are relevant in the context

of the presented thesis. A more comprehensive overview of the whole field of CADD

can be found in standard text books [17, 36].

1.4 Virtual Screening

Virtual screening, as the name already suggests, can be considered as the in silico

analogue of experimental screening. Its main purpose is to analyze large compound

databases with the help of computational methods in order to identify possible new

drug candidates [37]. This is achieved by either prioritizing molecules on the basis

of a calculated score value, which reflects, at least to a certain extent, the associated

probability of activity against a particular target, or by eliminating unsuitable can-

didates using various types of filter criteria. Depending on the kind and amount of

structural and bioactivity data included in the prediction, virtual screening method-

ologies can be classified into different categories [38]. As was already mentioned above,

there is a fundamental distinction between structure-based and ligand-based method-

ologies. Structure-based approaches explicitly take the three-dimensional structure of

the target protein into account and try to identify promising candidates on the basis

of their geometric, and in many cases also physicochemical, complementarity to the re-

spective binding pocket. Molecular docking [39] is the most prominent example for the

structure-based approach. It is the computationally most demanding screening tech-

nique and has high requirements with respect to the quality of the provided structural

data. Ligand-based methods [40], on the other hand, make use of information derived

from one or multiple known bioactive molecules and are thus based on similarity rather

than complementarity. The underlying algorithmic strategies can range from simple

similarity searches which are applied in case of a minimal information basis, e.g., a

small number of known actives, to sophisticated machine learning techniques. The re-

sults are generally coarser than those of structure-based calculations but in contrast to

those ligand-based methods are also applicable if only little is known about the target,

e.g., at the early stages of projects when no protein structure is available and only a

few active molecules have been identified. Pharmacophore-based screenings [41] can be

counted among either of the two approaches as the underlying, often three-dimensional,

pharmacophore description can be generated from the protein’s binding pocket as well
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as the superposition of active ligands. With respect to ligand-based methods, phar-

macophores are often applied when multiple active ligands are known so that their

common features can help to find similar molecules. Naturally, it is also possible to

combine all types of approaches according to the requirements of the respective drug

design problem.

Virtual screening has long since become an established technology for the discovery

of new lead structures and is widely applied in both academical and pharmaceutical

research [42, 43]. It is a viable alternative to cost-intensive and time-consuming experi-

mental techniques and allows to perform large-scale drug discovery campaigns without

the need to maintain an expensive specialized screening laboratory. This fact can be of

particular value to smaller pharmaceutical companies and academic institutions which

often do not have access to automated high-throughput screening facilities in order to

identify new hit and lead structures. While the accuracy of current screening tools

is certainly by far not high enough to replace experimental research [44]–and maybe

never will be considering the complexity of the involved problems–there are numerous

examples for the successful combination of both approaches [23, 45]. In most cases,

virtual screening is used as a complement to experimental testing and serves as an

efficient prefilter with the aim to generate more focused and target-specific compound

libraries by explicitly taking the structure and physicochemical properties of the target

protein into account. Moreover, it can serve as an idea generator for the identification

of novel biologically active molecular scaffolds which, in the context of combinatorial

chemistry, may even include compounds that have not yet been synthesized.

The virtual screening process can be roughly divided into four individual steps [46],

all of which have a significant impact on the quality of the results. These are the

compilation of a small-molecule screening library, the selection and preparation of an

appropriate reference system, e.g., the target protein structure or the pharmacophore

model, the actual screening calculation, and the postprocessing of the obtained results.

Since the structure-based screening pipeline and its different stages will be presented

in detail in the following chapters of this thesis, the discussion at this point will focus

on more general aspects. Due to the fact that virtual screening has a strong tendency

to produce false-positive results [47], the postprocessing step is of great importance.

The aim is to minimize the number of false-positives and at the same time propagate

the true hits to the top of the result lists. This is usually hard to realize when relying

only on a single approach. Therefore, the combination of different screening approaches

which are applied sequentially according to their respective level of complexity [48] has

become a very popular strategy. In this way all available information about both target

and active ligands can be used to identify true hits and lead structures. However, even
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today there is still no general process for the application of virtual screening to specific

drug design problems. Determining which type of method or which combination is best

suited requires a fundamental understanding of the respective system and a careful

analysis of all available information.

Virtual screening methods are designed to process large databases containing up

to millions of compounds. In order to provide the necessary throughput for such a

demanding task, screening methods, in addition to the use of highly efficient algorithms,

generally need to rely on considerable simplifications concerning the physicochemical

description of molecules, proteins, and their respective interactions. For that reason,

the technology underlying the different approaches for virtual screening are largely

based on methods from the field of cheminformatics which will be introduced in the

next section.

1.5 Cheminformatics

When the term “cheminformatics” (synonymously used with chemoinformatics) was

first introduced in the literature fifteen years ago [49], computational methods had al-

ready been used for decades [50, 51] to solve problems in different areas of chemistry.

The multitude of sometimes even unrelated fields of application lead to a lot of contro-

versy [51] about the actual scope of this young discipline and its clear distinction from

related fields. Even today, this controversy is not yet completely resolved and the dis-

cussion about its distinctive underlying models and concepts is still ongoing [52]. The

very broad definition of cheminformatics given by one of its pioneers, Johann Gasteiger

[50], is a testimony to its expansive scope:

Chemoinformatics is the use of informatics methods to solve chemical prob-

lems.

In many alternative definitions of cheminformatics given over the years [49, 53, 54],

the term “chemical information” plays a preponderant role. Cheminformatics methods

are used to store, organize, visualize, and analyze chemical information. Data associ-

ated with particular chemical compounds or chemical reactions, typically experimental

results, is used to expand our chemical knowledge and to improve our understanding of

the relationship between chemical structure and properties. A comprehensive overview

about all applications of cheminformatics methods is well beyond the scope of this

work and the following discussion will focus on those aspects relevant for the methods

developed in the course of this thesis. A detailed introduction spanning the whole field

can be found in The Handbook of Chemoinformatics [50].
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As the initial definition by Brown [49] suggests, cheminformatics is closely con-

nected to drug design and many of its methods have been specifically designed to assist

computational medicinal chemists in their day-to-day work. The chemical problems

encountered in this field are mostly related to organic molecular chemistry and more

specifically to the relationship between molecular structure and its associated prop-

erties. Typical tasks involve the design of molecules with predetermined properties

or the identification of molecules with similar properties. The enormous complexity

of the structure-property relationship usually makes it impossible to solve most com-

mon medicinal chemical problems from first principles, so that cheminformatics has to

make use of different molecular models than physics-based disciplines such as quantum

chemistry [52]. The main goal is not the a priori calculation of molecular properties

to chemical accuracy, but the manipulation and analysis of large sets of molecules

[55]. Since its inherent models are not based on current physical theory, the appro-

priate representation of molecular structures in itself is one of the most basic aspects

of cheminformatics. Its conclusions are usually derived from the statistical analysis of

large amounts of data rather than rigorous physical concepts, so that the underlying

inference mechanism can be best described as inductive [52]. Apart from the rapidity

of such calculations, which make the processing of large molecule sets possible in the

first place, cheminformatics is generally able to predict any type of molecular property

assuming the existence of sufficient experimental data.

As a discipline dealing with large numbers of molecules, the concept of chemical

space [56], which comprises all possible small organic molecules, is central to chemin-

formatics. Representing and, more importantly, navigating this literally infinite space

is of crucial importance for the identification of new bioactive scaffolds and compound

classes. For that purpose, molecules are generally represented by either chemical graphs

[57] or descriptor vectors [58]. Both types of descriptions provide the basis for the effi-

cient handling of typical cheminformatics tasks, including similarity searching, scaffold

classification, structure clustering, or building QSAR models. Many theoretical and

practical aspects concerning the representation of molecules in the context of virtual

screening will be discussed in chapter 2. A more detailed and comprehensive discussion

of the application of cheminformatics methods in drug discovery can be found in [59].

1.6 Motivation

Computational methods have become an integral part of the drug discovery pipeline in

industry and academia and often play an important role in the decision making process

concerning the generation and selection of new lead structures [60]. The literature is
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full of accounts of successful applications of CADD and virtual screening [61, 62] for

the design of new lead compounds and drug molecules. Furthermore, the existence

of five scientific journals dealing exclusively with CADD is a testimony to the general

relevance of cheminformatics methods [63]. Nevertheless, in recent years there has also

been a lot of criticism concerning the quality, reliability, and general applicability of in

silico approaches, especially with respect to virtual screening methodologies [44, 64, 65].

Their predictive power is a long way from being sufficient enough to provide accurate

and reliable results that can be used without the careful analysis and interpretation

by experts. One of the main challenges in the future of CADD is the fundamental

improvement of the current screening approaches, including, above all, the scientific

foundation of the underlying scoring functions [66]. However, considering the complex-

ity of common drug design problems, the notion of a fully automated and universally

reliable virtual screening platform seems more or less illusory.

For that reason, it has been proposed that instead of focusing solely on the de-

velopment and application of new concepts and methods, “future success depends on

the proper integration of new promising technologies with the experience and strate-

gies of classical medicinal chemistry” [67]. An important step in this direction could

be the motivation of medicinal chemists to undertake CADD activities for themselves

[68]. In this way, experimental scientists could benefit from a better understanding of

the three-dimensional aspects of protein-ligand interactions including, for instance, the

implications of the conformational degrees of freedom of their synthesized molecules.

Moreover, computational methods could provide them with the means to efficiently

formulate and comprehensibly validate specific hypotheses based on their individual

experiences. The inclusion of medicinal chemists in CADD activities will, however,

have considerable influence on the way cheminformatics software has to be designed.

What is needed are application programs which are “well-thought-out, suitable for their

needs, [and] able to generate useful, timely and valid results” [68]. Such requirements,

particularly the design of well-thought-out interfaces and the maintenance of the cor-

responding software, are extremely time-consuming and generally also not in the focus

of academic research groups. Furthermore, complex software projects are virtually al-

ways carried out by highly interactive teams rather than isolated scientists which is

rather contradictory to the current structure in academia. For that reason the main

development in this field is done by professional software vendors [68, 69].

The goal of the presented work was the development of a new cheminformatics

framework for virtual screening which explicitly enables medicinal chemists to partake

in this particular stage of the computer-aided drug design process. This was done under

consideration of the requirements for scientific software stated in [68]. The challenges
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of such an endeavor are manifold and involve problems from many different areas. In

order to be “suitable for their needs” CADD tools need to both reflect the problems

and tasks medicinal chemists are typically confronted with and allow them to bring

their experience and knowledge to bear in the respective calculations. This usually re-

quires that the models and concepts underlying the respective methods are sufficiently

intuitive to be applied in the general context of medicinal chemistry. On the other

hand, drug design software should provide reliable automated procedures for all those

processes and operations which are not in the focus of the current projects but never-

theless have effects on the quality of the obtained results. Additionally, the tools must

be “well-thought-out”, meaning that they should be equipped with a well designed

and intuitive user interface which allows medicinal chemists to propagate their expert

knowledge in an appropriate way. Since “timely” results are a prerequisite for any type

of interactive application the underlying software must make use of efficient algorithms

and sophisticated concepts. Consistent chemical models, on the other hand, ensure that

the results are both scientifically “valid” and “useful”. In order to realize the above-

mentioned requirements, the NAOMI framework was implemented with the focus on

creating a reliable basis for the implementation of state-of-the-art virtual screening

platforms and other typical cheminformatics applications in both an academic and a

professional setup. The underlying software library should not only provide the means

for the development of innovative new methodologies but also the design of software

tools that are suitable for the professional use in the field of CADD.

In the following the conceptional and algorithmic contributions to the field of CADD

included in the NAOMI framework are presented which constitute the components of

the virtual screening pipeline and essentially correspond to the publications comprising

this cumulative dissertation. These include the interpretation of molecular structures

from chemical file formats, the processing, storage, and querying of large compound

collections, the prediction and evaluation of intermolecular interactions in the context of

protein-ligand complexes, and the identification of promising chemical structures by an

index-based docking approach. The text is organized into three chapters corresponding

to particular stages of the structure-based screening process as described in section

1.4. Each chapter begins with a short introduction to the general goals, requirements

and preconditions of the respective phase and is followed by multiple sections reflecting

problems and challenges typically encountered at this particular point of the process.

These sections comprise both a discussion of the respective topic in the general context

of drug design and cheminformatics as well as the presentation of the solution developed

in the NAOMI framework. Finally, the thesis finishes with a summary of the work and

an outlook to possible expansions.
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Screening Library

The compilation of a small-molecule screening library is the initial step of the vir-

tual screening pipeline. The starting point is usually a large compound collection,

e.g., a vendor catalog or an in-house database, from which a subset of molecules with

properties suitable for the respective drug design problem is selected. Many different

aspects have to be considered in order to assess the suitability of a particular com-

pound, including its physicochemical properties and structural features, its commercial

availability or synthetic accessibility and the current patent situation. In an optimal

case, the resulting library does only contain those compounds which are considered

as realistic candidates for the subsequent drug discovery pipeline as this both reduces

the runtime of the screening calculation and avoids any unnecessary effort during the

potentially time-consuming analysis of the obtained results. Apart from these more

general considerations, which, in principle, equally apply to the selection of compounds

for experimental testing, there are numerous technical issues which are specific to the

virtual screening approach. On the one hand, there are various aspects concerning

data maintenance. The validity of the chemical data provided by the primary sources

has to be ensured, as invalid data will inevitably lead to scientifically invalid and thus

useless results. Additionally, the chemical structure data must be normalized and orga-

nized, for instance by registration into an existing compound management system, in

order to eliminate duplicates, avoid inconsistencies, and enable different types of filter

and search capabilities. Furthermore, the molecules in the dataset usually have to be

subjected to specific ligand preparation routines ensuring that all the information re-

quired by the subsequent docking routines, e.g., three-dimensional atomic coordinates

or explicit positions of hydrogen atoms, is available.

The following subsections will highlight numerous aspects which play an important

role during the processing of the chemical data which typically stands at the beginning
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of the virtual screening pipeline. A more comprehensive discussion and additional

literature references can be found in [70].

2.1 Representation of Molecules

The explicit representation of atoms and their respective connectivity is the foundation

of a large number of common cheminformatics methods, e.g., substructure searching, 2D

structure depiction, or comparing molecules for identity. For this purpose, cheminfor-

matics employs the structural formula as a mathematical model of chemical structure.

This conception of molecules dates back to Gilbert N. Lewis [71] and is still today the

predominant notion among experimental chemists [72]. The structural formula repre-

sents molecules as an undirected graph, in which atoms are vertices labeled by their

elements and bonds are edges labeled by their bond order. The connectivity of such

chemical graphs is restricted by valence rules which state the number and the types of

bonds a particular chemical element can form considering its valence electrons. The

description of molecules as topological entities rather than geometrical ones has several

advantages with respect to typical cheminformatics problems, the most important ones

probably being the well-defined concept of molecular identity and a tangible notion

of structural similarity. Moreover, it allows to formulate, using both the terminology

and methods of chemical graph theory [57], many common chemical concepts, e.g., iso-

merism, tautomerism, and substructures, with mathematical stringency. An excellent

discussion of the topological description of molecules and its inherent implications for

chemistry, including the comparison to the physics-based concepts of quantum chem-

istry, can be found in [72]. A general introduction to the structure of molecules and

their associated representation is included in Linus Pauling’s standard work, the “Na-

ture of the chemical bond” [10]. According to Pauling, the term valence bond structure

will be used as a synonym for lewis structure, structural formula, and kekule structure

in the following.

The representation of molecules by a single valence bond structure is a common

practice throughout chemistry. Be it as a structural diagram in a research paper or as

a single entry in a chemical database, this description offers a simple and comprehensible

way to communicate to other chemists which molecule is actually meant. However, in

the context of cheminformatics, where the associated chemical graphs are used as a

mathematical description of molecules, this approximation is in many cases no longer

sufficient. The simple fact that the same molecule can be represented by different

valence bond structures can easily lead to inconsistencies and needs to be addressed
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explicitly by cheminformatics software systems. Two prototypical cases are shown in

Figure 2.1.

(1) (2)

Figure 2.1: Two examples for the ambiguities resulting from the description of molecules

by valence bond structures. In case of asymmetric substitution at the aromatic ring, the

two valence bond structures of example (1) are not identical due to the different locations

of the double bonds. The same applies for the three structures in (2) in which both the

double bond and the positive formal charge change positions.

Example (1) comprises two representations of a six-membered aromatic ring in

which the double bonds are occupying different positions. These are usually referred

to as kekule structures. Example (2) shows three representations of a guanidinium

group in which both the positive formal charge and the double bond have changed

their locations. Both cases actually correspond to the exact same chemical entities

and the existence of multiple distinct valence bond structures is an artifact of valence

theory. Although these limitations clearly show that the valence bond description

does not accurately model all aspects of chemical bonding, cases such as the ones

discussed above can, with the help of a few additional concepts, still be represented

with sufficient accuracy for the vast majority of cheminformatics applications. This is

due to the fact that such molecules, even though the description is ambiguous, can be

described in terms of valence theory at all. In contrast to that, there are different types

of chemical species for which this does not hold true. Typical examples are electron-

deficient compounds in which the chemical bond comprises more centers than electrons,

e.g. boranes, and organometallic compounds with haptic bonds such as ferrocene. The

bonding situation of such structures can only be accurately described using molecule

orbital theory. Although there are a few approaches trying to extend the usual valence

bond model of cheminformatics software systems, e.g. RAMSES [73], such compounds

are in most cases simply ignored. This is, apart from the extreme difficulties of modeling

such compounds without recurse to quantum-theoretical methods, probably also due

to their rather low significance in the field of medicinal chemistry and drug design.

In order to make use of the valence bond model and its numerous advantages in

cheminformatics software applications, molecules have to be translated into a computer-
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readable representation. The most common choice is the connection table [74] which

basically corresponds to a topological graph description of the molecule. Although vir-

tually all chemical software system are based on a valence bond representation, their

underlying chemical models often vary with respect to particular aspects [75]. First,

there is the internal valence model which defines the allowed valences of elements and

thus determines which types of molecules can be handled. It plays an important role

during chemical validity checks and is also needed for the calculation of implicit hydro-

gen atoms, e.g., when reading molecules from files as will be explained further down.

Second, there is the internal atom type model which extends the valence bond de-

scription in order to provide a more precise chemical description based on the atom’s

environment. Atom types can be considered as an additional annotation of chemi-

cal information which often play a crucial role in the prediction of physicochemical

properties and are an essential part of force field calculations [76]. Third, there is the

internal aromaticity perception which is often needed to compensate for the inherent

shortcomings and ambiguities of the valence bond model on a structural level. The

consistent handling of the alternating bonds from Example (1) in Figure 2.1 is a typi-

cal example. Additionally, aromaticity is an important physicochemical property since

aromatic rings are an ubiquitous feature of drug molecules. Unfortunately, there is,

to the best of the author’s knowledge, no review, publication, or other document dis-

cussing the respective chemical models of commonly used cheminformatics toolkits in

detail. The only definitive sources of information remain the documentations of the

respective software libraries or their source code in case of open source projects (a list

containing a selection of popular cheminformatics software systems with corresponding

references can be found in Table 2.1). Although the study performed by Sayle [75]

can only be considered as a first step in the systematic investigation of the chemical

models of cheminformatics toolkits, the provided benchmark calculations give at least

a general insight into the existing inconsistencies and problems.

The chemical model used for the representation of molecules in the NAOMI frame-

work [D1] is essentially based on a graph description. It comprises three distinct layers

of chemical information which have been designed to fulfill the different requirements

imposed on cheminformatics systems by typical application scenarios in the context of

CADD (see Figure 2.2). The element layer (A) offers the most basic level of description

and essentially reflects the underlying graph structure of the molecule. It comprises

the element identities of all atoms in combination with their respective connectivity.

The valence state layer (B) extends the graph properties by providing valence states

for atoms and bond orders for bonds thus corresponding directly to a valence bond

description of the molecule. Valence states represent valid bond order distributions for
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Table 2.1: Compilation of popular cheminformatics software libraries and frameworks

including online resources and literature references where available.

Toolkit Open source Publication Homepage

CACTVS yes [77] [78]

CDK yes [79, 80] [81]

MOE no - [82]

OpenBabel yes [83] [84]

OEChem no - [85]

PerlMol yes - [86]

Pipeline Pilot no - [87]

RDKit yes - [88]

atoms in valence bond structures and can be considered as their atomic building blocks.

As will be described in the following sections, they are the basis of the valence model of

the NAOMI software system and play a central role in many algorithms and methods.

The main purpose of the atom type layer (C) is to circumvent the limitations of valence

theory with regard to conjugated systems. On the one hand, this means providing a

united representation for cases in which multiple equivalent valence bond structures

could be formulated. On the other hand, effects such as aromaticity and planarity of

particular atoms due to hybridization effects need to be reflected. This is exemplified

in Figure 2.2 for two prototypical cases. First, there is a six-membered aromatic ring

which is drawn in circle notation indicating both the aromaticity of the system and

the ambiguous location of the double bonds. This is handled in the NAOMI model

by assigning an aromatic atom type (C-Aro) to the atoms of the ring and by marking

the ring itself as having alternating bonds. Second, there is an amidinium group with

a delocalized positive charge. In this case both nitrogen atoms, despite their differing

valence states, have an identical atom type (N-Deloc(+)) which labels them as conju-

gated, and thus sp2 hybridized, with a positive partial charge. Additionally, all bonds

of the group are marked as delocalized.

The hierarchical chemical model is the heart of the NAOMI framework and has

been specifically designed for the accurate and efficient handling of molecules relevant

in the context of drug design, i.e., organic compounds. One of its most important

purposes is to provide all the necessary structural information and chemical descriptors

needed for the development and implementation of diverse cheminformatics methods

and algorithms. In this respect, the separation of the valence bond description from

the handling of hybridization effects is an important concept underlying the NAOMI
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Valence State

N300 N210+

C210

Element

Nitrogen

Carbon
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Figure 2.2: The three layers comprising the chemical model of the NAOMI framework.

The Element layer (A) represents the graph structure of the molecule, the valence state

layer (B) corresponds to a valence bond description, and the atom type layer (C) describes

the effects resulting from the delocalization of electrons. The atomic descriptors associated

with each layer are shown for three atoms.

model. Both types of descriptions can be useful in different contexts and thus need to

be available when working with molecules. The valence state layer is often needed for

the modification of molecules or when their validity has to be ensured whereas the atom

type layer plays an important role during the calculation of physicochemical properties.

The independent handling of the perception of aromaticity based on Hueckel’s rule and

the identification of rings with alternating double bonds is another example for the ap-

plication of this concept. Both properties are relevant in different contexts and must be

available independently when needed in order to provide a more adaptable description

of molecules. For the reasons explained above, there is no feasible way to directly com-

pare the chemical models of different cheminformatics software systems with respect

to quality and generality. However, the investigation based on the conversion of file

formats presented in [D1] can be considered at least as an indication that the internal

chemical model of the NAOMI framework is indeed more robust than those underlying

other commonly used cheminformatics tools. Additionally, many successful applica-

tions to problems from both cheminformatics and CADD, which will be presented in

the following, demonstrate its suitability in the context of drug design.

2.2 Representation and Perception of Rings

Rings are an ubiquitous structural motif in synthetic and natural compounds and gen-

erally have large influence on their respective physicochemical properties. Ring strain

often enhances the reactivity of molecules and its relief can be one of the driving forces
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of chemical reactions. Cyclic delocalization gives rise to the important effect of aro-

matic stabilization which profoundly changes the chemical behavior of the respective

compounds compared to similar non-aromatic systems. The inherent rigidity of cyclic

structures results in a limited conformational flexibility which is often exploited by

medicinal chemists to establish and lock a specific spatial arrangement of atoms or

functional groups in a molecule. Furthermore, the replacement of acyclic parts in lead

compounds with ring structures is a common strategy in drug design to gain an entropy-

driven increase in receptor-ligand binding energy. Rings also have a strong impact on

a compound’s synthetic accessibility [89] and constitute a very important factor in the

assessment of molecular complexity. Aromatic and heteroaromatic rings, for instance,

are a common feature of drug molecules partly because there is a large number of

established methodologies for their synthesis and modification [90]. In the context of

cheminformatics, knowledge about the number of rings contained in a molecule or the

number of rings an atom is part of is crucial for a wide range of applications. Many

physicochemical properties and chemical features such as aromaticity can simply not

be determined without this type of information. Ring counts, e.g., the total number

of rings or the number of rings having a specific size, and ring sizes, the smallest or

largest ring for instance, are efficient prefilters for the preparation of screening libraries

and can be very useful for the elimination of unwanted molecules. Ring membership

is also a commonly used property for atoms and bonds in substructure queries as it

allows to specify their respective chemical environment more precisely. Furthermore,

the subdivision of molecules into cyclic and acyclic parts is a common heuristic strat-

egy in cheminformatics algorithms and workflows, including the generation of structure

diagrams [91] and three-dimensional atomic coordinates [92].

The perception and classification of ring systems and their individual rings is thus

a crucial aspect of the description of molecules and plays a major role in many chem-

informatics applications. It is not surprising, that a large number of different concepts

for their representation and algorithms for their perception have been developed over

the years. A thorough and comprehensive review of these approaches can be found in

[93]. In general, ring systems are represented by a set of individual rings resulting from

the detection of cycles within their underlying graph structure. However, the process

of identifying cycles in a graph is ambiguous so that both the size and the members

of the resulting set are determined by the respective perception strategy. The criteria

which are applied to decide whether a particular set is chemically useful are, as often in

cheminformatics, a compromise between chemical intuition and technical requirements

and also strongly depend on the respective context of application. The following dis-

cussion will be restricted to three instructive examples of ring descriptors, the set of all
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rings (Ω), the smallest set of smallest rings (SSSR), and the relevant cycles (RC). These

will be used to explain the relevance of those aspects that played the most important

role during the development of the ring perception method used in the NAOMI system.

A detailed and comprehensive discussion of possible criteria for the determination of

the chemical relevance of ring sets and a thorough investigation of their satisfaction by

previously described methods can be found in [94].

The set of all rings (Ω) [95] is based on an exhaustive ring perception meaning

that all cycles contained in the ring system are used as a representation of the same.

This concept fulfills one important criterion for chemically useful ring sets, namely

uniqueness. The resulting descriptor does neither depend on the concrete algorithm

used for its generation nor on the ordering of the vertices and edges of the graph it has

been derived from. On the other hand, the often huge number of rings that need to be

calculated and stored in order to obtain this descriptor is one of the method’s major

disadvantages. This property is usually referred to as exponential size, meaning that for

particular types of graphs the number of members in the ring set grows exponentially

with the number of vertices. Apart from problems with runtime and memory during

the actual calculation, the consideration of all rings can also be problematic for other

cheminformatics applications which depend on information about rings for their internal

heuristics. This is especially true if these heuristics have been developed on the basis

of different ring perception concepts, e.g., a decomposition into a set of smaller cycles,

as explained further down. Additionally, The set of all rings (Ω) is not necessarily

consistent with chemical intuition concerning the number of rings an atom is part of

as is shown for a simple example in Figure 2.3.

Figure 2.3: The set of all rings (Ω) for a bicyclic ring system. According to this perception

method, the circled atom is part of both a six-membered and a nine-membered ring.

The SSSR is without doubt the most common ring perception method in cheminfor-

matics, presumably because it can both be efficiently computed [96], i.e. in polynomial

time, and is easy to implement. The basic idea is to describe the ring system in terms

of a relatively small set of rings, a minimum cycle basis, from which all other cycles can

be constructed by defined mathematical operations. This has the advantage, that the
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descriptor is always polynomial in size and thus does not pose any problems concerning

both calculation and storage. Additionally, the subdivision of the ring system into its

smallest rings generally matches chemical intuition and has been the basis of most other

cheminformatics heuristics. Despite these significant advantages, there is a serious flaw

in the SSSR concept. Minimum cycle bases are generally ambiguous, i.e., there might

be multiple equivalent SSSRs for a particular ring system. Since the descriptor is not

unique, it is not independent from both implementational details and input data which

can lead to artificial results in cheminformatics calculations [97]. Additionally, this

ambiguity, in some cases, does also lead to incompatibility with chemical intuition as

shown for cubane in Figure 2.4. Only five of the six sides of the cube can be part of

an SSSR, meaning that atoms from the side which is not included are members of two

rings whereas all other atoms are part of three. Which of the six faces is not included

is, however, arbitrary.

Figure 2.4: SSSR of the cubane molecule. As only five sides of the cube can be part of

a SSSR, the descriptor is not unique in this case. If, for instance, the front side (grey)

is excluded, as shown on the right hand side, the circled atom is a member of two rings

whereas the squared atom is part of three.

The RC [98] are conceptionally similar to the SSSR in that ring systems are de-

scribed by a set of smallest cycles. But instead of arbitrarily selecting one of the multiple

minimum cycle bases the RC are defined as their union. In that way the problem of

ambiguity can be circumvented altogether. In case of the cubane molecule mentioned

above, for instance, all six sides of the cube will be part of the set. Using the union

instead of the smallest set of rings, however, brings back the problem of exponential

size for particular types of ring systems. The most relevant example for chemistry are

presumably cyclophane-type molecules as the one shown in Figure 2.5. Additionally,

the algorithm needed to calculate the RC [98] is rather complex and considerably more

difficult to implement than the ones described for the calculation of the SSSR.

The ring perception method in the NAOMI framework is based on the concept of

Unique Ring Families (URF) [D2]. The URF are a further development of the RC

with a particular focus on avoiding the exponential size for all types of ring systems.
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Figure 2.5: RC of [2.2]paracyclophane including two six-membered and four twelve-

membered rings. The number of relevant cycles for paracyclophanes grows exponentially

with an increasing number of additional para-linked six-membered ring inserted into the

chain. As indicated by the circles and squares, each additional six-membered ring intro-

duces two distinct paths in the larger cyclic structure thus increasing the number of large

rings by a factor of two.

This is achieved by merging the unintuitively large number of relevant cycles associ-

ated with particular types of ring systems into a unified ring description as indicated

for two simple examples in Figure 2.6. A comprehensive introduction into the termi-

nology, a stringent derivation of the respective mathematical theorems, and a thorough

description of the algorithmic details can be found in the original publication [D2].

URF2

URF4

URF8

URF6

URF5

URF1

URF3URF7 URF9

URF 1

URF 2

URF 3

Figure 2.6: URF for two prototypical types of ring systems. The multitude of rings

resulting from alternating paths through the different six-membered rings are merged into

a single ring family thus providing a unified description. Figure adapted from [D2].

The concept of URFs does, however, not only solve the problem of the exponential

size, but also provides a more intuitive description of the ring membership of particular

atoms compared to other approaches (see Figure 2.7 for examples). By being unique,

polynomial in size, and intuitive the URF is the first published cheminformatics ring

descriptor fulfilling all three criteria at the same time. Additionally, it can be calculated

in polynomial time and its generation does not pose problems with respect to computing

times even in complicated cases [D2].
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Figure 2.7: Comparison of different ring concepts with respect to ring membership of

particular atoms. Figure reprinted from [D2].

2.3 Interpretation of Molecules from Chemical File For-

mats

Cheminformatics methods are generally designed to process large numbers of molecules.

These are, in the vast majority of cases, not generated by the methods themselves, but

are compiled from external sources such as vendor catalogs and chemical databases.

Due to this inherent dependency on external data, the exchange of chemical informa-

tion, and of molecules in particular, plays a fundamental role in cheminformatics. Over

the years many specialized chemical file formats, the open babel project [83] currently

supports more than 100 different types, have been developed for that particular pur-

pose. Three of those are especially widely used, namely Tripos MOL2 [99], Symyx

SDF [100, 101], and SMILES [102], with the latter two being the de facto standards.

The following discussion is restricted to these three cases which are instructive to the

problems that arise during the interpretation of molecules from chemical file formats.

A more comprehensive discussion of file formats can be found in [74, 103]. Most chem-

informatics systems, if not all, are based on a description of molecules by valence bond

structures. This is naturally reflected in the file formats used to transfer data between

these systems. As a consequence, each format includes a certain way to specify element

identities, formal charges, and bond types. The graph structure is stored using either a

connection table (SDF, MOL2) or a specialized character string (SMILES) [74]. In ad-

dition to these rather obvious technical differences, there are also subtle dissimilarities

with respect to the underlying chemical models. Although essentially being based on
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a valence bond description, each format implements a different strategy to circumvent

the inherent shortcomings associated with this representation. The following discus-

sion will focus on those aspects that can easily lead to ambiguity and whose resolution

requires a robust and consistent internal chemical model. A more detailed description

of the concrete format-specific models and conventions is provided in [D1].

The reason for most problems encountered during the interpretation of molecules

from file formats is the omission of redundant chemical information. For instance, it

is very common to exclude hydrogen atoms in order to save disc space (SDF, MOL2)

or to obtain a more compact string representation (SMILES). This alone does not

pose a problem since the number and connectivity of missing hydrogen atoms can be

unambiguously derived from the bond orders and formal charges of the remaining non-

hydrogen atoms. Another example is the introduction of an additional bond type, called

aromatic bond, as it is done in both SMILES and MOL2. This extension is intended

to resolve the problem of arbitrary single and double bond positions in aromatic rings

(see Example (1) in Figure 2.1) such as benzene. In this case bond orders are omitted

and must be derived from the remaining data. The last example mentioned at this

point is the implicit handling of formal charges by specialized atom types such as they

are used in the MOL2 format. This does provide a unified description of delocalized

charges (see Example (2) in Figure 2.1), which otherwise could only be represented

by multiple mesomeric valence bond structures. Although each of these strategies is

not problematic on its own, ambiguities can arise when several are used at the same

time. This will be illustrated with the help of the three examples shown in Figure

2.8. Example (1) shows a five-membered carbon ring in which all bonds are annotated

with an aromatic type and which is stripped of all hydrogen atoms. In contrast to

its six-membered counterpart, there is no way to formulate a neutral valence bond

structure containing only sp2 hybridized carbon atoms for this particular case. The

structure could be interpreted as cyclopentadiene by assigning an sp3 hybridization

to a particular atom or as a cyclopentadienyl-anion by addition of a negative charge.

This means, however, that the molecule resulting from this input is ill-defined and its

final structure depends on the correction mechanisms of the respective cheminformatics

software system. Example (2) shows an unsymmetrical imidazole moiety which could

be perceived as either one of its two distinct tautomeric forms since the position of the

hydrogen atom bound to one of the nitrogen atom is not explicitly specified. Again, the

result will ultimately depend on the underlying algorithms of the respective software

system. The last example (3) shows a six-membered ring containing a nitrogen and

an oxygen atom. In this case the structure could correspond to two different oxidation
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forms, either the neutral 1,4-oxazine with an additional hydrogen at the nitrogen atom

or the pyrylium ion with a positively charged oxygen atom.

c1cccc1

c1c[C]cc1 c1c[C-]cc1

c1ncnc1

c1[nH]cnc1 c1nc[nH]c1

c1occnc1

c1occ[nH]c1 c1[o+]ccnc1

(1) (2) (3)

Figure 2.8: Three examples for the ambiguities resulting from the omission of chemical

information in chemical file formats. The ambiguous molecules are shown in the form

of a SMILES string (at the top) and a structural diagram with dashed lines indicating

aromatic bonds. The SMILES strings and valence bond structures below represent possible

interpretations of the respective input.

Despite the fact that all cheminformatics tools must provide functionality for the

interpretation of molecules from different file formats and offer ways for their respective

conversion, either explicitly of implicitly, this topic has not received much attention in

the scientific literature. This is probably due to the fact that these procedures are

generally considered as either trivial or too technical. Even comprehensive textbooks

restrict themselves to the mere enumeration of file format converters, with OpenBabel

being the most commonly cited tool [83]. Both the comparison of different commonly

used tools performed during the course of this thesis [D1] and the study by Sayle [75]

indicate that there is indeed a large potential for errors. Considering the fact that such

errors and inconsistencies almost certainly will have detrimental effects on the results

of downstream algorithms and calculations, it is the author’s belief that not enough

attention is payed to this basic first step in cheminformatics. Although the problem has

been recognized as a pitfall of virtual screening workflows [65, 104], it has, to the best

of the author’s knowledge, neither been systematically investigated nor conceptionally

addressed elsewhere.

The NAOMI framework enforces a very strict adherence to valence rules on the basis

of the valence state model presented in the previous sections. Molecules are considered
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as invalid and rejected if the valence state layer could not be consistently constructed.

The criterion for validity is that a valence state could be successfully assigned to each

atom and that a distribution of bond orders could be found which is in accordance

with this assignment. In the absence of aromatic bonds this process is straightforward.

The number of multiple bonds in combination with a formal charge are sufficient to

unambiguously identify valence states. Obscured bond types can make the assignment

more complicated since multiple valence states may be compatible with the atom’s

local topology. In this case, bond localization routines must be used after the initial

assignment in order to ensure the molecule’s validity. The complete workflow for the

interpretation of molecules from different file formats is shown in Figure 2.9. A more

detailed discussion of the individual steps can be found in the original publication [D1].

c
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C
CH

ccc
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symbol: C
...
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3.AtomType
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AtomType
Assignment

Element
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Figure 2.9: Schematic workflow for the interpretation of molecules from different file

formats in the NAOMI framework. Figure reprinted from [D1].

As shown by different evaluation procedures, the NAOMI framework [D1] is highly

consistent with respect to the interpretation and conversion of chemical file formats

both internally and in comparisons to other commonly used cheminformatics software

tools. By relying on a robust and consistent chemical model, the valence state layer in

particular, NAOMI is able to completely maintain the integrity of the data provided

by file formats with different underlying representations even after multiple conversion

runs. Furthermore, the presented workflow is highly efficient and shows better perfor-

mance than comparable methods. The validation procedures described in [D1] played

an important part in achieving this level of consistency and are now a permanent part

of the internal test suite (see Appendix C). With respect to virtual screening applica-

tions, the processing of input data from chemical file formats is a mandatory first step
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and typically needs to be performed for a large number of molecules. This means that

apart from being efficient, the process must be completely automated and unsupervised

which in turn requires that data from chemical file formats is accurately interpreted

and reliably propagated. On the one hand, the NAOMI framework has a strict rejection

policy with respect to chemical data which is either considered as invalid or cannot be

handled, so that a reasonable description of molecules can be guaranteed at all times.

On the other hand, it employs a number of correction mechanisms which help working

with input data containing inconsistencies, e.g., by not conforming to format specifica-

tions. Both strategies are perfectly suited for rather inexperienced users which are not

working with manually curated datasets.

2.4 Storage of Molecules in Databases

As already mentioned in Chapter 1, data management is one of the most central appli-

cations of cheminformatics methods and naturally also plays a crucial role in medicinal

chemistry and drug discovery. In order to make decisions at different stages of the

drug development process, medicinal chemists need easy access to the vast amounts of

available information on the compounds in question, e.g., physicochemical properties,

literature references, and experimental results. The ability to handle and retrieve this

data in an efficient and comprehensive manner can only be realized with the help of

chemical information systems. These comprise a database backend which provides the

possibility to assign different types of data from various sources to the same chemical

entities and a set of application programs for the formulation of search queries. In the

context of virtual screening, the storage of molecules in specialized database systems

also offers many technical advantages over the direct use of chemical data files. First,

the required disc space can be considerably reduced due to the omission of redundant

information. For instance, when working with multiple conformations of the same

molecules, which is common when using particular screening methods, the topological

information needs to be stored only once. The standard chemical file formats, on the

other hand, are not designed for this scenario so that each conformation corresponds

to an individual molecule entry. Second, the setup times are usually considerably lower

due to the possible reuse of data in different projects, meaning that compounds need

to be registered only once and become part of a global compound collection including

all annotated data. When working with chemical data files all entries in the file need

to be processed again for each application. Third, the fast and flexible data retrieval

capability associated with modern database systems allows to perform even complex
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queries with high efficiency. As will be discussed in the next section, the latter is of

central importance for the compilation of screening libraries.

In the context of chemical databases, the well-defined concept of molecular identity,

as one of the most striking features of the representation of molecules as topological

entities [72], is of vital importance. The underlying chemical graphs provide both a

mathematically sound and computationally tractable way to determine whether two

molecules are identical independent from their rather fuzzy and ambiguous geometrical

properties. This important feature of valence bond structures makes it possible to

both formulate and perform queries based on molecular structure in a straightforward

and comprehensible way. It is thus not surprising that the valence bond description

of molecules is the foundation of virtually all chemical information systems. From a

technical point of view, any cheminformatics software system must provide some way to

compare molecules for identity in order to avoid duplicates when registering compounds

into a database. This task is, however, not trivial, considering that the description of

molecules by graphs or connection tables is in itself neither unambiguous nor unique. In

general, there are multiple ways to order its vertices and edges resulting in a multitude

of distinct but equally acceptable graph representations. For that reason, the atoms and

bonds of the molecule must be canonically ordered, or numbered, in advance to make

a reliable comparison possible. Although multiple approaches have been developed to

derive a canonical ordering over the years, the Morgan algorithm [105] and its variations,

e.g. the CANON algorithm [106] for the generation of unique SMILES, are still the

most common choices. For the storage of molecules in chemical databases, the canonical

molecule graphs are normally converted into unique string representations which can be

both efficiently compared and indexed by computers. The most widely used examples

are the above mentioned unique SMILES string [106] and more recently the InChI

identifier [107]. However, canonicalization does not only play an important role in the

context of data management, but every cheminformatics algorithm can benefit from

the enhanced degree of consistency when working with canonical structures, e.g. if the

result of the algorithm depends on graph traversal.

Considering the inherent ambiguities of the valence bond description discussed in

the previous sections, it becomes apparent that the canonicalization of the chemical

graph is not necessarily sufficient to provide a unique representation for a particular

compound. In case multiple valence bond structures, and thus different underlying

chemical graphs, can be formulated for a molecule, the result of the comparison will

ultimately depended on the ones that have been provided for the compounds in the

respective context. This problem is not only restricted to artificial cases such as the

two examples shown in Figure 2.1. Despite their different physicochemical properties,
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tautomers and protonation states are generally also considered to be the same chemical

compound. This interpretation gives rise to a number of additional problems with

respect to the storage, searching and retrieval of molecules. First, it complicates both

the concept and the determination of equality. Second, it eventually makes it necessary

to choose a suitable representation for a particular molecule, e.g. during visualization

or export to chemical file formats. In order to deal with these problems a general

methodology for the canonical generation and selection of valence bond structures for

molecules is needed. Such methods are a fundamental requirement for the appropriate

description of molecules and ignoring them will almost certainly lead to inconsistent and

thus unreliable results. The ramifications of this fact have been extensively reviewed

recently [108].

The functionality for the storage of molecules in the NAOMI framework [D3] is based

on a relational SQL database referred to as MolDB in the following. As most other

chemical database systems the MolDB establishes the identity of molecules on the basis

of their respective topology using an internal canonical string identifier (MolString).

One of the most important concepts of the MolDB is the distinction between molecules

and instances. The former term describes the actual compound, represented by its

topology, whereas the latter refers to its occurrence in a data set. Depending on

the context the interpretation of instances can vary. On the one hand, a particular

compound can be present in two distinct chemical files so that one of the instances can

be considered as a duplicate of the other. On the other hand, instances can correspond

to different conformations (see Figure 2.10). Upon registration into the database each

entry of a file is assigned both a MoleculeKey based on its topology and an unique

InstanceKey. The former plays an important role during the management of screening

sets as described in the next section, whereas the latter is mostly needed to manage

either data from different input files or docking poses depending on the context.

instances molecules
nameID

cyclohexan-chair1
cyclohexan-boat2

ID Topology
1
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Figure 2.10: Two conformations, boat and chair, of the six-membered ring on the left

correspond to different instances of the cyclohexane molecule. Both conformations receive

an unique InstanceKey and an identical MoleculeKey. Figure reprinted from [D3].

31



2. SCREENING LIBRARY

MolStrings are used for the assignment of instances to their corresponding molecules

and basically correspond to the valence state layer introduced in Section 2.1. Thus they

are closely related to the internal description of molecules in the NAOMI system. This

allows to rapidly convert them back to the internal molecule representation which is

needed for numerous applications of the MolDB. MolStrings are generated following the

typical workflow for unique molecule descriptors mentioned above. First, the molecule

graph is canonicalized and then the string identifier is generated on the basis of the

resulting canonical structure. The procedure used for the canonicalization on the basis

of the current valence bond structure corresponds with a few minor modifications to

the CANON algorithm [106]. The methods for the generation of canonical protomers

will be discussed in Section 2.6.

The requirements on chemical databases with respect to consistency are quite sim-

ilar to the ones discussed for the interpretation of molecules from different file formats.

It has to be ensured that compounds stored in the database can be retrieved without

modification or loss of information. This has been validated for the MolDB on the basis

of different large public datasets [D3] and the associated procedures have all become

part of the automated test framework. The consistency and robustness of the canoni-

calization methods, in particular with respect to different valence bond structures, have

also been thoroughly investigated [D4]. In spite of the fact that different topological

and physicochemical properties are calculated (see next section), molecules are sub-

jected to canonicalization procedures, string identifiers are generated, and a check for

duplicates is performed, the registration of compounds still remains very efficient [D3].

However, since the database can be saved and reloaded almost instantly, the runtime

are not of central importance in this particular case.

The general technical advantages of chemical database systems have already been

discussed above. There are, however, many additional benefits which can be gained

from integrating the MolDB system directly into a screening pipeline. First, it pro-

vides a clearer and more intuitive structure for the management of compounds and

the compilation of screening libraries than chemical file formats. The automated de-

tection of duplicates and an intuitive storage of multiple ligand conformations are but

two relevant features in this respect. Additionally, the visualization of molecules using

two-dimensional structure diagrams is an important way to inspect compound collec-

tions [D3]. Second, the binding poses and scores resulting from screening runs can

be handled in an efficient and consistent manner by storing them as instances. Since

the database can be saved and reloaded, the results of time-consuming docking calcula-

tions can thus be easily stored without the use of chemical file formats as intermediates.

Moreover, instances can be recreated from the MolDB without much effort, so that the
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associated three-dimensional coordinates can be easily accessed, for instance for the

three-dimensional visualization of binding poses. Third, results of screening calcula-

tions are directly integrated into the compound management system thus making it

possible to perform typical database operations such as selecting, sorting, and filtering

under consideration of the respective scores. The MolDB thus provides an intuitive and

comprehensible way to manage both screening libraries and results of virtual screening

applications at the same time.

2.5 Selecting Sets of Molecules

As the processing of large numbers of molecules is one of the main characteristics of

cheminformatics, it is not surprising that its methods are generally used when it comes

to the selection or prioritization of compounds from large collections. The task of re-

ducing large sets of molecules to a manageable number of promising candidates is quite

common in drug design. Often, the number of available compounds exceeds the capaci-

ties of the screening facilities so that many decisions have to be made prior to the actual

measurement and thus without the aid of experimental data. The careful compilation

of a screening library, for instance, is an important task for medicinal chemists as it has

substantial influence on the success of the associated screening campaign. The main

goal is to assemble a collection which is both enriched with molecules having favorable

property profiles and at the same time depleted of all undesirable compounds. This

increases the chances of finding viable lead structures with a high potential for becom-

ing actual drugs. The criteria which can be applied for that purpose are quite diverse

and depend on the respective application context. Physicochemical properties are gen-

erally a very important aspect as they have a strong influence on the bioavailability

of compounds [109, 110] which plays an important role in the later steps of the drug

development pipeline. Particular structural features, i.e. functional groups or substruc-

tures, are associated with toxicological effects [111] and are thus often excluded from

the drug development process in advance. Furthermore, there are compounds which

are known to interfere with experimental screening methods and thus tend to produce

false positive results for reasons other than specific activity towards the target protein

[112], so called screening artifacts. These also need to be excluded from screening sets

as well as pharmacologically promiscuous compounds which are prone to interact with

different types of unrelated targets.

Although the associated costs are substantially lower than those of their experi-

mental counterparts, the well-considered selection of molecules for screening libraries

is nevertheless also advisable for virtual screening applications. On the one hand, if
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Table 2.2: Filter types commonly used during the preparation of compound libraries for

virtual screening calculations.

Filter Type Example Application

Element Halogenated compounds

Topology Compounds with complex ring systems

Property Unpolar compounds (logP)

Substructure ’Pan Assay Interference Compounds’ (PAINS) [118]

Molecule Compounds protected by patents

particular compounds cannot be tested in an experimental setup or are not viable as

a drug for any reason, the results of the calculations will ultimately have no prac-

tical value. On the other hand, considering their role as prefilters for experimental

screenings, a lack of diversity [113] can easily lead to the omission of relevant classes

of compounds in subsequent experiments. Different preparation schemes for virtual

screening data sets have been described in the literature [114, 115]. An overview of

the respective publications and a broad introduction to the topic can be found in [70].

The filters routinely employed to select wanted and eliminate unwanted compounds

can vary widely and serve different purposes (see Table 2.2). These basic types are

often combined into more complex filters reflecting the desired physicochemical profile

of the remaining compounds. Lipinski’s ’Rule of five’ [116] and the criteria proposed

by Oprea [117] are prominent examples for this approach.

In order to perform the essential operations for the preparation of screening data

sets cheminformatics software offers two different approaches. On the one hand, there

are so-called workflow tools [119] which allow to create and maintain complex processing

protocols on the basis of isolated and configurable building blocks. These are called

“components” or “nodes” and directly correspond to typical cheminformatics tasks such

as filtering or substructure searches. Pipeline Pilot [87] and KNIME [120] are the most

commonly used tools for that purpose. One important advantage of this approach is

the complete automation of the process once the pipeline has been established. This

is especially useful if the same operations are performed repeatedly with varying input

data. On the other hand, there are chemical database systems [121] which are also often

used to store and manage compound collections as discussed in the previous section.

In many cases a predefined set of properties, both topological and physicochemical, are

calculated during the registration of molecules and stored in the database. This data

can be rapidly accessed and thus provides the basis for the implementation of efficient

filter mechanisms. One major disadvantage of chemical databases is the laborious
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installation and initialization of the associated server-based system. A third and quite

different option is to go without the help of specialized software tools by directly using

data sets which were specifically prepared for virtual screening applications such as

ZINC [122].

The functionality for the management of screening libraries in the NAOMI frame-

work is based on the MolDB which was introduced in the previous section. One of

its central concepts is the molecule set which is defined as a collection of pairwise dif-

ferent molecules (not instances) determined on the basis of their topology. Molecule

sets usually represent subsets of the complete compound database resulting from the

application of specific filter criteria. The MolDB offers different operations for the

generation and modification of molecule sets which are useful for the compilation of

screening libraries (see Figure 2.11).

operations signature description

∪ union(S1, S2, ... , Sn) ⟶Sr set with all molecules contained in any of the original sets

⧵ di�erence(S1, S2) ⟶Sr contains molecules from S1 that are not in S2

∩ intersect(S1, S2, ... , Sn) ⟶Sr set Sr contains molecules that are in all original sets

�lter set �lter(S) ⟶ Sr available �lters

physico chemical property molecular weight > 200
chemical element contains oxygen, no nitrogen

smarts contains c1ccccc1
functional group contains Pyridol

example

visual select subset select(S) ⟶ Sr select subset of S by picking structure diagrams

split subset split(S, n) ⟶ (S1, S2, ... , Sn) split set S into n equally sized parts 

Figure 2.11: Overview of the operation on molecule sets supported by the MolDB. Figure

reprinted from [D3].

First, there are the mathematical set operations, namely union, intersection, and

difference, which are relevant when working with two distinct molecule sets. The differ-

ence operation, for instance, can be used to eliminate predefined collections, e.g., lists of

compounds protected by patents, by subtracting them from the potential screening set.

Second, the MolDB supports various kinds of filter operations routinely used in the field

of CADD in order to eliminate compounds with unsuitable properties. The necessary

data for the respective queries is calculated during the registration of compounds into

the database [D3]. The only exception is substructure searching based on SMARTS as

the respective strings are defined externally and thus cannot be generated in advance.

Furthermore, the MolDB supports the concept of filter chains, meaning that different

elementary filters can be logically combined which allows to implement complex criteria
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such as the ’Rule of five’. Finally, the splitting of molecule sets into smaller units is

also supported and can be helpful, for instance, when preparing chemical files for test

cases or external tools.

Molecule sets are stored as simple lists of MoleculeKeys in the database. Since

all the mathematical set operations are solely based on molecular identities, i.e., the

comparison of MoleculeKeys, they can be realized directly by the database using SQL

statements and are thus very efficient. The same is essentially true for filter opera-

tions with the exception of SMARTS queries. The precalculated values are stored in

the database and can be accessed using its built-in functionality. In case of SMARTS,

molecules have to be recreated from the MolString representation and internally eval-

uated against the substructure pattern. This makes them less efficient than other type

of queries. Filter chains are in most cases as efficient as the contained elementary filter

operations. Only if tolerances are specified, meaning that only a part of the specified

filters need to be passed, this is not the case since multiple SQL statements are nec-

essary. The runtime associated with different kinds of operations has been thoroughly

investigated (see Figure 2.12). As internal consistency is an important feature of the

NAOMI framework the different operations provided by the MolDB have also been

extensively tested in various validation procedures [D3].

1000-1

60-1

1

60

3600

102 103 104 105 106 107

Ti
m

e 
(s

ec
on

ds
)

Molecules in resulting set

Intersection
Union

Di�erence
Symmetric di�erence

Picky property �lter
Simple property �lter

1000-1

60-1

1

60

3600

102 103 104 105 106 107

Ti
m

e 
(s

ec
on

ds
)

Molecules

Rule-of-Five
SMARTS �lter

Figure 2.12: Runtimes for different operations supported by the MolDB. The diagram

on the left shows a comparison of different types of filters, the diagram on the right for set

operations. Figure reprinted from [D3].

The presented approach to the manipulation and compilation of screening libraries

based on molecule sets is very intuitive and thus perfectly suited for the use by medici-

nal chemists. Furthermore, the operations of the MolDB are efficient enough to ensure

the interactivity of workflows with up to one million compounds. This is an important

feature, since in many contexts the best suited combination of filters for the current

drug design problem are not known in advance. Often, there are limitations with
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respect to the number of compounds that can be experimentally tested, so that the

dataset must be reduced using more and stricter filters until a specific size is reached.

In this scenario, the processing of molecule datasets becomes an interactive process in

which filters are iteratively applied and adapted according to the results of the previous

steps. MONA [D3] is an application offering this kind of functionality. It is an exam-

ple of how the NAOMI framework can be used to implement efficient and interactive

software with intuitive and sophisticated user interfaces for medicinal chemists. The

included set operations and filter options cover a wide variety of typical tools needed

for the identification of suitable candidates. Furthermore, the visualization of molecule

sets using structure diagrams provides an easy way to inspect the obtained results.

Moreover, the precalculated molecular properties are well known to chemists. The gen-

eration of SMARTS expressions is facilitated by the inclusion of the SMARTSeditor

[123], a graphical approach to pattern design developed in the same research group.

2.6 Generation and Selection of Protomers

The representation of molecules by a single valence bond structure, as already discussed

with respect to consistency for the registration of compounds into databases, can pose

significant problems for typical cheminformatics applications. This is especially true

when valence bond structures are not only used for the identification of compounds

but as a mathematical model of molecular structure. Numerous methods in the field

of cheminformatics are based on the general idea of calculating molecular properties

as a sum of contributions from atoms or larger structural units [76]. The individual

increments associated with these fragments are usually derived from the analysis of

experimentally measured values of series of compounds using multilinear regression.

In solution, which is the typical environment for these measurements, molecules can,

however, undergo rapid transformations such as acid-base reactions or tautomeric re-

arrangements. These lead to a set of new chemical species which also contribute to the

macroscopic properties of the system. This fact gives rise to a number of difficulties

concerning both the consistency of the respective approaches and the accuracy of their

predictions. Since multiple species can contribute to a macroscopic property, the result

of the calculation should not depend on the provided representation of the respective

compound, i.e. as input for the method. Readily interconvertible tautomeric forms of a

molecule, for instance, should not lead to different predictions when it comes to physic-

ochemical properties such as logP. This problem of alternative molecule forms, however,

is not only encountered at the actual prediction but already during the parametriza-

tion of the increments. Although the issues with consistency could be circumvented
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by transforming the input structure into a canonical form, the mere canonicalization

is nevertheless not a sufficient strategy in this scenario. Cheminformatics methods are

designed to predict properties of unknown compounds on the basis of their topological

features. Consequently, if the molecule is not well described by the provided representa-

tion, for instance because the chosen form does not correspond to the most energetically

stable or otherwise prevalent one, the estimation could be inaccurate [124]. For that

reason, a procedure called normalization, which not only produces a unique but also

a preferential representation, is usually applied as a preprocessing step. Alternatively,

the procedure could intrinsically work with an ensemble of reasonable structures. In

both cases a scoring scheme is needed which is able to reliably identify the prevalent

forms.

Virtual screening techniques such as molecular docking are another type of appli-

cation in which the restriction to a single valence bond structure can be problematic.

Docking methodologies usually rely on the explicit evaluation of intermolecular interac-

tions such as hydrogen bonds and salt bridges between the binding pocket of a protein

and its bound ligand. Each tautomeric form and protonation state of a molecule cor-

responds to a different topological and spatial distribution of hydrogen atoms and thus

can interact differently with the amino acids of the protein. The limitation to a single

tautomer or protonation state, even a normalized one, can therefore easily lead to false

negative predictions. On the other hand, working with a large ensemble of alternative

tautomers and protonation states including unrealistic species can cause false positive

results [125, 126]. Virtual screening is thus another application in which a reliable

scoring scheme is required.

The necessity to consider tautomers and protonation states, which will be subsumed

under the term protomers from this point on, has been ignored in the field of computer-

aided drug design for a long time [127]. It is only in the last ten years that the subject

of reliable protomer prediction has been starting to move to the forefront of cheminfor-

matics concerns and that efforts have been undertaken investigating its influence on the

quality of the results of various virtual screening applications [125, 126, 128]. One ma-

jor obstacle for the development of such methods was and still is the lack of knowledge

on how to predict relative stabilities of protomers in solution even when using high

level ab initio calculations [129]. This is aggravated by the fact that cheminformat-

ics methods are subject to restrictions concerning their runtime and generally cannot

rely on time intensive quantum chemical calculations. Despite these considerable dif-

ficulties, multiple protomer generation methods have been developed and published

in recent years [124, 128, 130–134]. Two aspects play a major role for the handling

of protomers in a cheminformatics context. On the one hand, there is the technical
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or algorithmic problem of efficiently and consistently enumerating a set of protomeric

forms on the basis of the valence bond description. On the other hand, there is the

need for a scoring scheme which is able to separate energetically inaccessible species

from realistic ones. A discussion of both aspects and the associated problems can be

found in [135]. According to Sayle [135], the approaches for the enumeration of pro-

tomers can be roughly divided into two categories, local approaches [124, 128, 130, 133]

and global approaches [131, 132, 134]. The former rely on predefined transformation

patterns which are successively applied to a molecule in order to generate new struc-

tures, whereas global approaches systematically enumerate alternatives in previously

determined substructures. Both strategies are, in principle, suitable to enumerate sets

of protomers for virtual screening approach.

In his publication, Sayle [135] additionally defined five specific tasks associated with

the handling of protomers in the context of cheminformatics, namely comparison (#1),

canonicalization (#2), enumeration (#3), selection (#4), and prediction (#5). The

first two tasks are usually closely related as the generation of a unique representation

can be considered as a preprocessing step for the determination of molecular identity.

Enumeration corresponds to the mere generation of alternative valence bond structures,

whereas selection and prediction typically involve additional scoring procedures. The

aim of selection is to generate a set of reasonable but otherwise unordered protomers

whereas prediction additionally involves the determination of their relative ratios.

The methods for the handling of protomers employed in the NAOMI framework

are based on the valence state combination (VSC) model [D4] developed in the course

of this thesis. It provides the basis for the realization of the specific tasks defined by

Sayle [135]. The normalization and canonicalization routines of the NAOMI framework

reflect the first two tasks. The main difference between the two is that in case of

canonicalization, the structure is arbitrary and does not necessarily correspond to a

energetically favorable or otherwise preferential structure. Normalization, on the other

hand, is used when a preferential representation is needed and thus involves scoring.

The other three tasks are part of the protomer generation routines whose aim is to

generate a set of reasonable protomers for typical cheminformatics applications. The

general principle of the VSC approach is outlined in Figure 2.13, a more detailed

description of the concepts, algorithms, and assumptions can be found in the original

publication [D4]. As a global approach, the methods starts with a subdivision of

the molecule into non-overlapping substructures which are then treated independently.

In each of those partitions atoms which can change their respective valence states

are identified and these additional states are used to enumerate valid valence bond
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structures. In the final step, a fragment-based scoring scheme is used to identify the

best solutions for the respective substructures.
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Figure 2.13: General workflow of the VSC approach. Figure adapted from [D4].

In contrast to many other approaches, the VSC model allows to consider all rel-

evant aspects of the problem, namely mesomerism, tautomerism, and ionization in a

consistent and comprehensive manner. By offering the means to systematically cat-

egorize the different types of transformations, the valence state description provides

the conceptional framework for this task. Additionally, it also plays an important part

in the generation step where the chemical validity of different valence bond structures

needs to be tested. The four steps of the procedure are completely decoupled and can

be individually customized in order to solve different tasks. For that reason, the VSC

model is not only used for the handling of protomers but also plays an important role in

many other applications of the NAOMI framework. It is used during the construction

of the atom type layer when equivalent resonance forms (see Figure 2.2) need to be

identified. Additionally, it is part of the correction mechanisms of the file formats in

case of aromatic bonds. It also plays a pivotal role for the interpretation of molecules

from three dimensional coordinates presented in the next chapter.

Several validation procedures show that the general concept is internally consistent

and, more importantly, that methods developed on this basis are independent of the

valence bond structure used as initial input [D4]. Furthermore, the comparison of the

generated results with valence bond representations found in curated datasets shows

the excellent performance of the associated scoring scheme [D4]. In combination with
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the reasonable number of additional protomers and the methods high efficiency it is

perfectly suited for application in the context of cheminformatics [D4].
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Protein Structure

The three-dimensional structure of the target protein is, besides the screening library,

the second essential prerequisite for the structure-based virtual screening approach.

The prediction of realistic binding poses by any docking engine is contingent upon

an accurate and detailed insight into the structure of the protein’s binding site on an

atomic level. Although there are multiple ways to obtain the necessary structural data

for that purpose, e.g., NMR or homology modeling, X-ray crystallography [14] is still

the standard method of choice in the context of CADD. The Protein Data Bank (PDB)

[136], with currently more than 90000 entries, is by far the most important source of

experimentally determined structures of proteins and protein-ligand complexes in the

public domain. Additionally, many academic institutions and pharmaceutical com-

panies maintain their own structural biology departments which can provide crystal

structures of specific targets that are needed in drug design projects.

The model of the protein used as a basis for virtual screening applications is gen-

erally treated as a direct three-dimensional image of its structure by cheminformatics

software. Therefore, it has a strong influence on the quality of the results of the cal-

culations and multiple aspects have to be considered in order to ensure an optimal

performance. First, there is the quality of the respective crystal structure data. Being

an experimental method, X-ray crystallography is subjected to measurement errors and

uncertainties which will inevitably be reflected in the generated model. Additionally,

the process of resolving the structure of a protein needs a lot of manual intervention

and computer-assisted refinement steps which both can easily lead to inaccuracies due

to misinterpretations of electron densities or insufficient parameterization of chemical

models [137]. Second, there are the conditions under which the structure was de-

termined. Even if the provided model is reasonable error free, crystal structures can
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nevertheless be unsuitable for specific screening contexts. The conditions during the ac-

tual measurement could, for instance, be extremely different from the ones encountered

in vivo so that the protein will most likely behave differently in its natural environ-

ment. The same also applies for proteins with and without bound ligands. Upon ligand

binding proteins often change their conformations which essentially means the unbound

form does not reflect the binding situation that needs to be modeled by the software.

Another problem are packing effects which are a result of the experimental method and

do not reflect the behavior of the protein in vivo. All in all, the evaluation and selection

of a suitable structural model for proteins is a complicated process with many pitfalls

and generally requires a lot of experience.

Before the actual docking calculation, protein structures generally need to be sub-

jected to preprocessing routines by the docking software in order to generate the nec-

essary data for the prediction of the binding poses. The first step is the definition

of the binding site, which can be done either manually or automatically using spe-

cialized algorithms [138]. Afterwards, the properties of the binding site have to be

calculated including, for instance, a representation of its shape, potential interaction

centers, and hydrophobic regions. The specifics of this step strongly depend on the

respective docking strategy and the underlying software library. Two aspects usually

play an important role during that process. First, there is the assignment of protomeric

states for the side chains of the protein’s residues, which will be discussed in more de-

tail further down, and the treatment of solvent molecules, first and foremost water.

A very common approach with respect to the latter is to simply let the user decide

which solvent molecules to consider in the actual docking calculation. The automated

classification of water molecules in the binding site as being displaceable or conserved

can, however, be helpful in this respect [139].

The following subsections will highlight some of the aspects which play an impor-

tant role during the processing of crystal structure data for the use as models of the

binding site in docking calculations. A more thorough discussion of the topics including

additional references to relevant literature can be found in [140].

3.1 Representation of Protein Structures

As was already mentioned in Chapter 1 proteins are biological macromolecules con-

sisting of chains of amino acids and both their description and classification play a

central role in the molecular life sciences. Depending on the application context there

are multiple aspects which are relevant for the characterization of protein structures,
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including the linear sequence of the amino acids (primary structure), the general three-

dimensional form of local segments (secondary structure) the overall geometric shape

(tertiary structure), or the arrangement of multiple protein chains (quartary structure).

In the context of virtual screening, where proteins are in most cases reduced to their

binding site, the most common approach is to rely directly on the three-dimensional

coordinates of the respective atoms and to generate various algorithm-specific repre-

sentations starting from this description, e.g., grid representations.

The representation of proteins in the NAOMI software system is based on the same

principles that are used for the description of small molecules presented in the previ-

ous section. All three layers of the chemical model are constructed for the atoms of

the protein chains and can be used in downstream methods and algorithms. The only

difference is an additional layer containing information about the individual residues of

the protein, e.g. their respective type, a decomposition into side chain and backbone

atoms, and the bonds connecting them to other residues. This subdivision is quite

common when working with proteins and provides the basis for a number of algorith-

mic strategies taking advantage of the constant recurrence of the same standard amino

acids. Another important difference to small molecules is the fact that, due to in-

sufficient resolution of crystallographic measurements, it is not uncommon for certain

portions, e.g., groups of atoms or complete residues, to be missing from the respec-

tive structural data. Since proteins are, however, considerably larger than their bound

ligands this does not mean that the respective structure is not suitable for cheminfor-

matics applications. In order to ensure a consistent construction of the layers of the

chemical model, missing atoms of known residues are topologically added to the protein

structure. Such atoms are, however, marked as artificial and can be easily excluded

from subsequent calculations if necessary. As binding pockets are in the main focus of

virtual screening applications, their representation naturally also plays an important

role in the NAOMI software system. Internally, they are composed of a set of residues

and a set of molecules which are not covalently bound to the protein chain. Prosthetic

groups and covalently bound ligands are treated as residues of unknown type.

Additionally, the NAOMI software system provides a database scheme for the effi-

cient storage of both proteins and binding sites definitions which will be referred to as

ProteinDB in the following. The ProteinDB [D9] is based on the same technology as

the MolDB introduced in the previous section but has been extended in order to cope

with the polymeric nature of proteins. The molecules of the MolDB correspond, in the

context of the ProteinDB, to so-called residue templates which represent the topologies

of the different types of residues. Since proteins consist of only a small number of

different amino acids, this has the advantage that the storage of redundant information
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about the chemical composition of repeating subunits can be avoided. One important

difference to the MolDB is, however, that residue templates are only fragments rather

than complete molecules so that the recreation of protein structures from the stored

data is less straightforward. For that purpose, two additional description layers are

needed, one of which corresponds conceptionally to the instances of the MolDB. The

occurrences of particular residues in the protein, so-called residue instances, are stored

in a separate table (for details see [D9]) and include information about their corre-

sponding residue template, chain, sequence index, and three-dimensional coordinates.

As instances in the MolDB, residue instances have different meanings depending on the

context. They can either correspond to residues of the same type at different positions

in the protein chain or to different conformations of the same residue. Both residue

templates and residue instances receive unique keys upon registration into the database

which can be used for the retrieval of the associated data. The third description layer,

the residue connection, has no counterpart in the MolDB. It reflects the covalent bonds

between different residue instances comprising the chain of the protein. As was dis-

cussed above, binding pockets in the NAOMI system are represented as lists of residues

and molecules. This is directly reflected in the ProteinDB by using lists of residue

instances and molecule instances for the storage in the database.

By being based on the same hierarchical chemical model as small molecules, the

associated concepts, algorithms, and methods presented in the previous section can be

directly transfered to protein structures. According to the concept of the separation

of chemical information, the description of substructures as residues is merely an addi-

tional layer of the model. On the one hand, this means that the same type of chemical

descriptions, e.g., valence states and atom types, are available when working with atom

of proteins or residues in the NAOMI framework. Therefore, in many cases it is not

even relevant if the respective atoms are part of proteins or small molecules. The han-

dling of protomers in binding pockets presented further down is an example for that.

On the other hand, additional information about residues is also available and can be

accessed when needed.

3.2 Structural Data of Protein-Ligand Complexes

Crystal structures of protein-ligand complexes play an important role in the drug de-

velopment process. They provide valuable insights into how and where small molecules

interact with the active site of a protein and thus often serve as a starting point for

both the development of new or the optimization of already known active molecules.

Furthermore, they are an important resource for the statistical analysis of geometrical
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data, e.g. favorable torsion angles or optimal interaction geometries, which are es-

sential for the parametrization of various common cheminformatics methods, e.g., the

generation of small-molecule conformations or molecular docking. They also provide

the structural basis for a large number of different computational tasks including the

identification of putative binding sites, the prediction of protein function, and the gen-

eration of pharmacophores. In the context of structure-based drug design, the interface

between protein and ligands, i.e., the binding pocket, is of particular importance. Un-

fortunately, for a long time the main efforts of crystallographers were directed towards

the generating reasonable protein conformations whereas bound molecules did not re-

ceive the same attention [141]. As a result, ligand structures in crystallographic data

are often poorly modeled and can even contain incorrect geometries [141, 142]. In or-

der to compensate for these shortcomings, robust cheminformatics methods are needed

which can help with the interpretation of questionable molecular models or even cor-

rect them if necessary. With respect to certain questions, the analysis small-molecule

crystal structures, for which the Cambridge Structural Database (CSD) [143] is by far

the most relevant repository, can also be a viable alternative.

As was already mentioned above, the PDB is the most important source for crys-

tallographic data of protein-ligand complexes. The structural data in the PDB can

be accessed via specialized file formats [144] containing only element identities and

three-dimensional atomic coordinates as reliable chemical information. This clearly

distinguishes them from chemical file formats described in previous sections, which

were based on the representation of molecules by valence bond structures. Conse-

quently, fundamentally different procedures are necessary for the interpretation of the

chemical information provided by these formats. The main task is the translation of

the three-dimensional data into a valid valence bond structure, which involves, simply

put, the identification of covalent bonds between atoms and the subsequent assignment

of bond types. Although this might seem straightforward at first glance, there are three

aspects that considerably complicate this task. First, there are the general shortcom-

ings of valence bond structures (for examples see Figure 2.1) which prevent a simple

mapping of bond lengths to bond orders. Benzene with its alternating bonds of equal

length is a prototypical example for that. Second, there is the requirement of chemical

validity which essentially means that certain bond order distributions are not possible

for existing molecules. This must be considered in order to avoid the generation of com-

pletely artificial valence bond structures. Third, the atomic coordinates provided by

the files are a result of experimental procedures and thus can contain a certain degree of

uncertainty. Therefore, deviations from ideal geometries are to be expected and must

be tolerated to a certain extend. In case of biopolymers such as proteins and nucleic
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acid the interpretation of data from PDB files can be considerably facilitated by relying

on predefined structural templates for the relatively small number of standard residues.

The necessary information for the unambiguous assignment of individual atoms to par-

ticular residues is also provided in the coordinate section of the file format. After the

construction of the isolated monomers, these need to be connected in order to obtain

the complete polymer chain. Since the type of functional group connecting residues is

also known in advance, e.g., an amide group in case of proteins, this can also be real-

ized with recurse to predefined patterns. Since this procedure is, however, obviously

not feasible in the absence of templates for a particular type of residue, which is often

the case for non-standard residues, cofactors and bound ligands, the above mentioned

coordinate-based routines are essential.

Since the interpretation of small molecules from three-dimensional coordinates is a

necessary task when working with protein crystal structures from the PDB, multiple

methods have been developed for that purpose [145–150]. These can be classified into

two separate categories depending on how the assignment of hybridizations and bond

orders are handled. In approaches from the first class, both assignments are handled

separately which usually requires an additional step in which potential inconsistencies

are resolved. This can, for instance, be realized with the help of substructure matching

and predefined patterns. In contrast to that, approaches from the second class derive

bond orders from a previous assignment of atomic hybridization using different opti-

mization strategies and bond localization routines. Although the published methods

already perform well on many different classes of molecules found in PDB entries, one

important aspect is generally neglected, namely the possibility to represent molecules

by different valence bond structures. As was explained above, the problem is compli-

cated by the fact that this usually involves the adherence to certain conventions for

the representation of molecules as well as the consideration of the inherent stabilities

of particular protomers. In combination with the above mentioned problems with re-

spect to the quality of ligands structures in PDB data, this essentially means that the

best suited valence bond structure often cannot be reliably determined on the basis

of three-dimensional coordinates alone, which is, however, the working assumption of

most of the published methods.

The individual steps of the procedure for the perception of molecules from three-

dimensional atomic coordinates included in the NAOMI framework are shown in Figure

3.1. A more detailed description of the method can be found in the original publica-

tion [D5]. In the first step, covalent bonds are identified on the basis of interatomic

distances. Based on the number of these bonds and the geometric arrangement of the

connected atoms potential valence states are identified for each atom. For each of these
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assignments a confidence score is calculated reflecting the agreement to the atom’s local

environment including both geometric and chemical criteria. Based on these alterna-

tive valence states multiple possible valence bond structures are calculated and scored

using a similar procedure as the one described for the generation of protomers in [D4].
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Figure 3.1: General workflow of the perception of molecules from three-dimensional

coordinates. The figure was taken from [D5].

As with many other methods in the NAOMI framework, the valence state concept

plays a central role for the interpretation of molecules from three-dimensional coordi-

nates. During the perception of covalent bonds it helps to ensure the chemical validity

of the resulting molecular scaffolds. If no valence state could be found which is in

agreement with the number of partners bound to a particular atom, the molecule is

discarded. In this way errors resulting from severe geometric distortions, which of-

ten result in the formation of highly cyclic structures, can be avoided in most cases.

Additionally, the enumeration of valence bond structures based on the valence state

combination methodology guarantees that only valid molecules will be generated by

the procedure. While the assignment of confidence values reflecting the compatibility

with the atom’s local environment enforces a good agreement with the provided three-

dimensional coordinates, the subsequent scoring procedure makes sure that the result-

ing structures are chemically reasonable at the same time. In contrast to previously

published approaches the possible existence of alternative representations is explicitly

considered and handled on the basis of the same methods which were developed for the

selection of reasonable protomers.

The perception workflow of the NAOMI framework has been evaluated by compari-

son of the resulting molecules to reference structures in two different contexts [D5]. On
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the one hand, an extensive analysis involving all small molecules deposited in the PDB

shows that the presented method is able to reproduce the expected results in the vast

majority of the cases even when distorted geometries are encountered. The reason for

deviations have been carefully investigated and could in most cases be attributed to in-

consistencies in the provided coordinates which could not be unambiguously resolved.

On the other hand, the comparison to the results from other previously published

methods shows that many of their errors can be avoided by the NAOMI approach.

In addition to the better performance in respect to quality, the method is also very

efficient and allows the processing of all small molecules contained in the PDB in mere

minutes.

3.3 Protomers in Protein-Ligand Complexes

The formation of hydrogen bonds plays a crucial role in stabilizing the three-dimensional

structure of biological macromolecules and is also an important factor governing the

interactions of proteins with their bound ligands. Knowledge about their frequency,

strength, and internal geometry, especially with respect to the involved atoms and

functional groups, is therefore of vital importance for the understanding of molecular

recognition as well as for the rational design of new drugs. Unfortunately, as light

atoms generally display only weak contributions to diffraction, the usual resolution of

X-ray protein crystallography is not sufficient to reliably determine the positions of hy-

drogen atoms. This information, however, is necessary for the systematic investigation

of hydrogen bonds and their geometric properties in different proteins and their re-

spective complexes. Additionally, the presence of hydrogen atoms allows to determine

the protonation states and tautomeric forms of both the residues of the binding site

and the bound ligand which cannot be reliably derived from the coordinates of heavy

atoms. Although the PDB does contain a small number of protein structures from

high-resolution measurements which include resolved hydrogen coordinates, the vast

majority of the deposited structures does only provide information about the positions

of heavy atoms. In order to be able to work with this kind of data, the automated ad-

dition of hydrogen atoms has become a very common step in crystallographic structure

refinement.

Apart form the statistical analysis of protein-ligand complexes, the explicit repre-

sentation of hydrogen atoms and their positions is also a necessary prerequisite for all

cheminformatics application dealing with hydrogen bonding, e.g., docking and other

virtual screening approaches. Due to the large number of degrees of freedom resulting

from different types of functional groups, this task is anything but trivial. Diverse
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aspects such as freely rotatable terminal groups, tautomers and protonation states,

alternative water orientations and terminal side chain flips have to be considered in

order to obtain a realistic prediction (see Figure 3.2 for examples). In particular, the

inclusion of ionization and tautomerism of ligands, due to their larger structural variety

compared to the small number of standard residues, makes the problem complicated

from a chemical point of view. Furthermore, there are many situations in which the

orientation or even presence of hydrogen atoms can only be deduced by consideration

of the surrounding chemical moieties. This in turn can lead to a high degree of mu-

tual dependency which additionally adds to the complexity of the problem. Typically,

algorithms start with assigning initial hydrogen positions on the basis of idealized ge-

ometries and then try to optimize their orientation, for instance by maximizing the

number of hydrogen bonds and by reducing internal clashes on the basis of either

energy-based functions or heuristic strategies [151].

(3)(1) (2)

Figure 3.2: Functional groups with variable hydrogen positions. Alcohols (1) are an

example for freely rotatable groups. The cyclic secondary amine in (2) can either be

protonated or neutral. In case of the latter the attached hydrogen atom can occupy two

distinct positions. The imidazole ring (3) has two tautomeric form in its neutral form but

can also be protonated under physiological conditions. The figure was taken from [D6].

Due to the importance of the automated processing of protein structures in CADD,

it is not surprising that a large number of different methods for the prediction of hydro-

gen positions in protein complexes have been developed. A thorough review of those

can be found in [151]. Despite considerable differences in their subjective functions and

optimization algorithms, the degrees of freedom covered by these approaches are rather

similar. Typically, the treatment of amino acids in proteins is quite comprehensive,

whereas variations in the protonation states and tautomeric forms of the ligands are

often ignored. Only a few more recent methods consider this aspect to some extend
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[152, 153]. Considering the fact that different protomers can interact differently with

the residues of the protein, ignoring them, or, more precisely, choosing the wrong one,

can have detrimental effects on the results of all subsequent calculations. The predic-

tion of suboptimal hydrogen bonding networks or the introduction of hydrogen clashes

are but a few possible consequences (see Figure 3.3 for examples).

2.86 Å

1.20 Å

Figure 3.3: Two examples for protein-ligand-complexes in which the omission of relevant

ligand protomers leads to hydrogen clashes or suboptimal hydrogen bonding-networks. The

red arrows on the left side indicate unfavorable interactions resulting from either hydrogen

clashes (top) or acceptor contacts (bottom). The optimal hydrogen network is shown on

the right side. Both examples were taken from the evaluation study presented in [D6].

The functionality for the prediction of hydrogen positions in protein-ligand com-

plexes in the NAOMI framework [D6] builds on the Protoss methodology previously

developed in the same research group [154]. Apart from being completely based on the

chemical and interaction model of the NAOMI framework, which the initial version of

Protoss was not, the most important extension is the comprehensive treatment of al-

ternative protomeric forms on the ligand side. The aim of the extended version is thus

to predict an optimal hydrogen bonding network under consideration of the relative

stabilities of the involved chemical moieties. An overview of the associated workflow
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3.3 Protomers in Protein-Ligand Complexes

is shown in Figure 3.4, a more detailed description can be found in the original publi-

cation [D6]. The first step is almost identical to the procedures for the generation of

protomers described in the previous section. The residues of the protein and the lig-

and molecule are partitioned into independent substructures for which both alternative

hydrogen positions (see Figure 3.2) and reasonable protomeric states are generated.

For each state in each substructure potential hydrogen bonding patterns are identified

on the basis of interaction surfaces which will be discussed in more detail in the next

chapter. An optimization procedure based on a dynamic programming approach [154]

is then used to find the best distribution of hydrogen atoms under consideration of both

the quality of the formed hydrogen bonds and the stability of the respective protomers.

H2O 208A H2O 208A H2O 208A

1. Partitioning 2. Mode Generation 3. Interaction Network

H2O 208A

H2O 208A

4. Optimization 5. Assignment

Figure 3.4: General workflow of the identification of the optimal hydrogen bonding net-

work in protein-ligand complexes.

Protoss can be considered as a typical cheminformatics application in which the

enumeration of a reasonable set of protomers without an exact prediction of the associ-

ated ratios in solution is needed. The actual states of both ligands and residues strongly

depend on the respective local environments and are predicted from a combination of

both hydrogen bond strengths and rather general stability considerations. By relying

on the VSC model [D4], Protoss is the only existing approach which is able to handle

the wide variety of chemical moieties contained in ligands in a generic manner. The gen-

53



3. PROTEIN STRUCTURE

eral necessity of such a treatment was demonstrated by a thorough analysis of different

tautomerizable and ionizable substructures contained in small molecules deposited in

the PDB [D6]. The performance of Protoss has been extensively investigated and com-

pared to previously published approaches on the basis of different validation procedures

[D6]. The most important criteria for the assessment of the quality of hydrogen predic-

tion tools are the frequency of undesirable interactions, e.g., hydrogen-hydrogen clashes

and acceptor-acceptor contacts, and the deviation from the expected protomeric forms.

In both respects, Protoss outperforms existing approaches which is mostly due to the

fact that it is the only approach which is able to handle protomers comprehensively.

Additionally, it is highly efficient and thus allows interactive workflows.
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Virtual Screening

After the compound library and the binding pocket have been carefully chosen and

prepared, the actual screening calculation can be performed. Molecular docking forms

the methodical core of the structure-based virtual screening approach. Its aim is to

predict the way in which molecules bind to the target protein, the so-called binding

mode, in combination with a score value reflecting the corresponding binding affinity.

As the predictive power of different docking methods strongly depends on the target

protein, which has been shown in various comparative studies [155–157], an appropriate

strategy must be carefully chosen in advance. This can be done, for instance, by

evaluating case studies found in the literature or by performing simple validation tests

such as redocking experiments. If the method in question is not able to reproduce the

binding mode of the molecule observed in the crystal structure of the protein-ligand

complex, the chances of finding reliable new leads are rather low. Depending on the

target, aspects such as the treatment of protein flexibility and solvation effects by the

respective method can also play an important role in this decision.

The number of molecules that can be processed by virtual screening approaches usu-

ally exceeds by far the available capacities for experimental testing so that the results

often need to be further prioritized in order to select the most promising candidates.

Unfortunately, the scores provided by the internal scoring functions of docking methods

are in general not sufficiently accurate to permit decisions of that kind. It has been

shown in different studies [158, 159] that the virtual screening efficacy, i.e., the ability

to discriminate true binders from inactive molecules, is far from ideal and the intrinsic

propensity for the generation of false-positive results is relatively high [65]. In order

to cope with these limitations, the hit lists from docking are usually subjected to ad-

ditional postprocessing steps. Typical strategies are the rescoring on the basis of more

advanced scoring schemes [160], the application of consensus scoring [161], the use of
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additional filter criteria [162], and the optimization of the binding poses using special-

ized force-fields [163]. Alternatively, information about known binders can be used to

reduce the number of hits by filtering binding poses on the basis of pharmacophoric

constraints [164]. However, despite all the progress that has been made with regard

to the development of automated procedures, one of the most important postprocess-

ing steps is still the visual inspection of the results by an experienced computational

medicinal chemist.

In general, structure-based screening is an extremely complex endeavor involving a

large number of different algorithms and concepts. The following subsections will only

highlight a small fraction of the problems associated with the prediction of accurate

binding poses in protein-ligand complexes. A more thorough introduction including

discussions of topics not covered here, e.g., protein flexibility, scoring, and fragment-

based approaches, can be found in [165].

4.1 Representation of Molecular Interactions

Medicinal chemists seek to design biologically active molecules by optimizing their

potential interactions with the binding pocket of target proteins on the basis of its

three-dimensional structure. In order to do so, extensive knowledge about the geome-

tries and the individual affinity contributions of particular types of interactions is of

the highest relevance. The major contributing factors for the binding of molecules to

proteins have already been introduced and discussed in Chapter 1. Considering the

multitude of fundamentally different effects governing the formation of protein-ligand

complexes, it becomes obvious that the accurate prediction of the respective association

energy is an extremely complex problem. In order to provide a useful estimation for

applications in the context of structure-based drug design the introduction of specific

approximations cannot be avoided. The most important concepts are the reduction

of the considered effects to a well-defined set of dominant contributions by particu-

lar interaction types and the assumption of their respective additivity. The quality of

the interactions in a protein-ligand complex is usually assessed using a scoring func-

tion which combines the various contributions in combination with their weights into

a functional form. Although not all aspects of protein-ligand binding, e.g., desolvation

or weak interactions, are modeled by such functions, they provide a reasonable starting

point for the identification of potentially bioactive molecules.

There are three different approaches to modeling the interactions of proteins and

ligands in cheminformatics applications which have been extensively reviewed in the

literature [6, 166, 167]. Force-field based methods rely on classical mechanics and try
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to describe the various aspects of ligand binding using specific individual contributions

including bond-stretching, angle-bending, torsional strain, electrostatic, and van-der-

Waals terms. The necessary parameters for the respective terms are usually derived

from physical measurements or ab initio calculations. Knowledge-based approaches

use information about frequently observed pairs of atoms to assess the quality of inter-

actions in protein-ligand complexes. The underlying potential, the so-called potential

of mean force, is derived from the frequency distribution of particular pairs found in

protein crystal structures using Boltzmann statistics. Empirical scoring methodologies

are based on the evaluation of localized and chemically intuitive interaction types with

a particular focus on the evaluation of their structural and geometric properties. Since

only the latter approach plays a role in the NAOMI framework, the following discussion

will be restricted to the empirical description of interactions.

Due to their fundamental role in biological recognition processes, the modeling of

hydrogen bonds is a central problem in docking and screening applications. As is

known from the analysis of crystal structure data, they usually adhere to strict rules

with respect to their geometric properties including both distances and angular distri-

butions. For that reason, hydrogen bonds are often scored on the basis of individual

donor-acceptor pairs which fall into a given distance and angle range favorable for hy-

drogen bonding. The score for such an individual interaction is additionally scaled by

a function that accounts for deviations from idealized standard values. Some scoring

schemes also distinguish between hydrogen bonds involving different types of atoms or

functional groups. The same general principles can also be applied to the evaluation of

ionic and metal interactions. The former are often handled as charge-assisted hydrogen

bonds which in some cases are associated with higher weight in order to reflect the

additional electrostatic attraction. With respect to the latter some scoring functions

also consider the specific coordination geometries associated with particular metal ions.

Hydrophobic contributions to affinity are usually estimated on the basis of the proxim-

ity of specific types of atoms, often called hydrophobic contacts, in the protein-ligand

complex. The foundation of this procedure is the classification of atoms by their hy-

drophilic or hydrophobic character and the subsequent identification of matching pairs

in close vicinity of each other. In some cases the unfavorable contributions of mis-

matched contacts are also considered. In order to enable a more specific evaluation,

the scoring scheme can be based on surfaces rather than individual atoms. In this way

the contact area buried upon complex formation can be estimated, thus providing a

more accurate measure. Empirical scoring functions can additionally include terms such

as lipohilic and aromatic contributions, loss of ligand flexibility, and in some cases also

desolvation effects. The individual terms of the scoring function are scaled to explain
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experimentally determined dG values. A more thorough overview of different scoring

concepts is provided in [167], a list of the most important scoring functions with the

corresponding original publications can be found in [168].

The representation and evaluation of hydrogen bonds in the NAOMI framework is

based on an empirical description of molecular interactions. The underlying concept

is derived from the interaction model of the FlexScore scoring function [169] and has

been further adapted to suit the needs of the different screening applications presented

in this thesis. Hydrogen bonding is described in terms of interaction surfaces which are

assigned to hydrogen bond donors and acceptors and whose mutual orientation in space

provides the basis for the assessment of the respective quality. Each interaction surface

corresponds to either one specific hydrogen atom or free electron pair thus reflecting

the ability of atoms to partake in multiple hydrogen bonds simultaneously (see Figure

4.1). While the number of donor interactions is obviously determined by the number

of bound hydrogens, the number of acceptor surfaces needs to be derived from the

hybridization of the respective atom. Such information is provided by the atom types

of the chemical model.

(1) (2) (3) (4)

Figure 4.1: Interaction surfaces for different types of atoms. Donor interactions are

depicted in blue, acceptor interactions in red. The geometrical shape of the respective

surfaces in reference to the plane of the drawing is indicated below the structural diagrams.

The general scheme for the evaluation of the quality of hydrogen bonds between

donors and acceptors is shown in Figure 4.2. The main direction, which corresponds

to the orientation of either a hydrogen atom (donor) or a free electron pair (acceptor),

determines the location of the respective binding partner in an ideal hydrogen bond.

Deviations from this optimal arrangement are penalized using a function including

terms for both distance and directions. During the calculation of interaction scores,

three chemical types of hydrogen bond acceptors are differentiated. First, there are

cases which are essentially treated as hydrogen bond donors. A typical example is

the aromatic nitrogen in pyridines (2). Second, there are cases in which an additional
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reference direction is needed in order to reflect additional constraints imposed by the

the ideal interaction geometries. For instance, the electron pairs of the oxygen atom in

carbonyl groups (3) lie, due to its sp2 hybridization, in the same plane as the atoms of

the functional group. In this case the scoring function needs to contain an additional

term penalizing deviations from the plane. Third, there are acceptors with an sp3

hybridization in which the orientation of electron pairs is arbitrary (4). These can be

considered as ’rotatable’, meaning that any orientation on the orbit of the respective

electron pairs is acceptable. The chemical type of an interaction is also annotated in

the interaction surface and is considered during the scoring procedure. Interactions of

metal atoms are, in principle, handled in the same way as hydrogen bond donors. The

associated directions are derived from the coordination geometry determined by the

analysis of the surrounding heavy atoms.

1.0

0.0
min max x

Devx

α β

d2

d1

H
D A

*

Score = Devd1* Devd2* Dev * Devα β

Figure 4.2: Scheme for the evaluation of interactions. The final score is calculated as

the product of deviation factors derived from four different geometric parameters. Each

deviation factor can have a value between zero and one which is determined using the step

function depicted on the right side.

Not every atom in a molecule or protein has a propensity to form stable hydrogen

bonds, which naturally must be reflected during the assignment of interaction surfaces.

In most applications it is sufficient to restrict the evaluation to the strong hydrogen

bonds involving nitrogen and oxygen atoms as it is done, for instance, in Protoss.

Although the NAOMI interaction model is conceptionally able to handle additional

types of hydrogen bonds, there is currently no case in which this is actually needed.

The presented interaction model is the foundation of applications in which directed

polar interactions need to be evaluated and thus plays a key role in virtually all screen-

ing methodologies of the NAOMI framework. As was the chemical model with respect

to molecules and proteins, the interaction model has been designed to provide relevant

structural information and chemical descriptions needed for the development and im-

plementation of different methods and concepts involving polar interactions. The clear

separation between the description of individual interaction partners and the evaluation

of the quality of hydrogen bonds is an important decision in this respect. Although
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the model constitutes a particular concept for the description of hydrogen bonding, the

data provided is still flexible enough to be used in different contexts, e.g., the evaluation

of hydrogen bonding networks or the generation of interactions triangles.

4.2 Molecular Docking

As has already been mentioned above, molecular docking is at the center of the structure-

based screening approach. The underlying algorithmic problem is to find a spatial

orientation of the molecule which geometrically fits into the cavity of the binding site

and which at the same time corresponds to a potential bioactive conformation, i.e. the

actual conformation of the ligand in its bound state. This involves the simultaneous con-

sideration of the inherent degrees of freedom resulting from the translation and rotation

of molecules within the binding pocket, their inherent conformational flexibility and the

effects governing favorable interactions between proteins and their bound ligands. In

order to fulfill these requirements, docking engines generally comprise two components,

a search strategy and and a scoring function, which, depending on the underlying algo-

rithmic concepts, may be strongly intertwined. Specialized search strategies are needed

in order to sample the search space with optimal efficiency, as an exhaustive exploration,

even if the flexibility of the protein is completely ignored, is generally not possible with

current computing resources. The approaches used to cope with the inherent flexibil-

ity of small molecules in the context of molecular docking are quite diverse and will

be introduced further down. The flexibility of proteins, although it plays an impor-

tant part during ligand binding, especially when considering the induced-fit mechanism

(see Chapter 1), is in many cases ignored due to the enormous increase in algorithmic

and conceptional complexity this additional degree of freedom entails. The number of

docking tools explicitly dealing with this difficult problem has, however, been growing

over the last years [170]. The purpose of the scoring function is to predict whether the

current orientation of the molecule does in fact correspond to a realistic binding mode

considering potential interactions with the target protein. Scoring is a central aspect

of any docking approach since the geometric fit of the compound into the protein’s

binding pocket alone is generally not sufficient to constitute a bioactive conformation.

Assessing the stability of protein-ligand complexes, as was explained in Chapter 1, is

extremely complex since a wide variety of fundamentally different effects needs to be

accurately modeled in order to produce reliable results. In the context of screening

applications this situation is additionally complicated by the fact that large numbers of

molecules need to be processed which considerably reduces the acceptable time frame

of such computations. Due to the fundamental importance of scoring functions in the
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docking process, it is not surprising that a large number of different approaches have

been developed over the years, an overview of which can be found in [167, 171, 172].

The trade-off between accuracy and efficiency, which is necessary to efficiently calculate

scores for hundreds of thousands of compounds in a reasonable time, often only permits

the use of rather basic scoring functions during the actual docking calculations. As a

consequence, the obtained results need to be carefully analyzed and possibly reworked

in a postprocessing step. Since the scoring of protein-ligand complexes is not in the

scope of the present thesis, the following discussion will be focused on strategies for

the placement of ligands. A thorough discussion of scoring functions and additional

literature references can be found in [167].

In case of fragment-based docking methods, molecules are partitioned into rigid

fragments which are then reconstructed inside the binding pocket of the protein. During

the addition of each new fragment, the conformational space of the joined components

is explored under explicit consideration of the surrounding residues of the protein. In

this way, the generation of a bioactive conformation can be guided directly by the

geometric and physicochemical properties of the binding pocket. The most common

algorithmic strategies applied for this approach are incremental construction [169, 173]

and place-and-join [174, 175]. Stochastic methods start with the initial placement of

an arbitrary ligand conformation in the binding site. This provides a starting point

for a series of random translations, rotations, and variations of torsion angles with

the aim of finding a bioactive conformation of the molecule. These random changes

are generated using different strategies, the most important among them being the

Monte Carlo method [176] and genetic algorithms [177, 178]. Multiconformer methods

enumerate a set of conformers prior to the actual docking calculation, thus completely

separating the handling of flexibility from the placement of the ligand in the binding

pocket. The latter is realized in a second step using rigid docking, e.g., on the basis

of shape complementarity [179]. Due to the strong dependency on the quality of the

precalculated conformations, post-optimization routines are a common means to further

improve the initial results [180].

The docking engine based on the NAOMI framework presented in the following sec-

tions is a further development of the TrixX approach [181, 182] previously developed in

the same research group. As the underlying screening procedure relies on a descriptor-

based bitmap search, the technology is referred to as rapid index-based screening engine

(RAISE). Its most prominent feature is the interaction triangle descriptor [D7], called

RAISE descriptor in the following, which plays a central role in various screening appli-

cations. RAISE descriptors are derived from interactions surfaces of polar atoms (see

4.1) and undirected hydrophobic interaction sites by forming triangles on the basis of
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different combinations of triplets. Each corner of the descriptor triangle corresponds to

one particular interaction site and encodes information about its type (donor, acceptor,

hydrophobic) and its directions in case of polar interactions. As metals generally in-

teract with acceptor type atoms, they are internally handled as hydrogen bond donors.

Each triangle additionally includes a description of its local geometric shape based on

eighty rays originating from its center (see Figures 4.3 and 4.4).

(A) (B) (C)

Figure 4.3: RAISE descriptors for binding sites. Each corner of the triangle corresponds

to one particular interaction type and has an associated direction in case of polar inter-

actions (A). The rays of the shape descriptor originate from the geometric center of the

triangle and represent the shape of the cavity (B). The final descriptor (C) is an abstract

representation of interaction patterns and does not encode information about the structure

it was derived from.

The positions of the triangle corners depend on the respective interaction types

and the chemical objects they are generated from (see Figures 4.3 and 4.4). In case

of hydrogen bond donors they are placed at a distance of an idealized hydrogen bond

(2.8 Å) away from the heavy atom in the direction of the corresponding hydrogen

atom. For hydrogen bond acceptors they reside on the corresponding heavy atom.

The directions associated with the triangle corners of polar interactions correspond

to the main directions of interaction surfaces (see 4.1). While hydrogen bond donor

corners still represent one particular hydrogen atom and thus one particular direction,

all acceptors interaction surfaces of the respective heavy atom are contracted into a

single triangle corner with multiple directions. The positions of hydrophobic interaction

sites are determined differently for molecules and binding pockets [D7]. In case of the

former they are placed on aromatic rings, aliphatic carbons, and halogen atoms and are

thus situated inside the respective molecule. For the latter they correspond to points

inside the cavity which are mainly surrounded by hydrophobic atoms and are identified

using a grid-based procedure. The different location of interaction triangles is directly

reflected in the rays of the associated shape descriptors. For molecules they correspond
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to the van-der-Waals volume, while they represent the interior volume of the cavity for

binding sites.

(A) (B) (C)

Figure 4.4: RAISE descriptors for molecules. Each corner of the triangle corresponds to

one particular interaction type and has an associated direction in case of polar interactions

(A). The rays of the shape descriptor originate from the geometric center of the triangle

and represent the van-der-Waals volume of the compound (B). The final descriptor (C) is

an abstract representation of interaction patterns and does not encode information about

the structure it was derived from.

The decision whether a molecule fits into the binding pocket of a protein is based

on a comparison between the respective RAISE descriptors. Since hydrogen bonds can

only be formed between donors and acceptors, triangle corners representing polar in-

teractions must have both complementary types and opposite directions. Additionally,

the side lengths of the triangles and their associated shape descriptors must be compat-

ible. With respect to the latter this means that all rays from the molecule descriptor

must be shorter than the corresponding ones from the site descriptor in order to avoid

steric overlap with the atoms of the protein. The individual steps are summarized in

Figure 4.5, a more detailed description of the matching process can be found in [182].

Ligand poses are generated by superposing matching triangles and applying the result-

ing affine transformation to the respective coordinates of the molecule. As the latter is

rigidly placed into the binding pocket of the protein and the shape descriptor only cap-

tures local features of both interaction partners a number of additional procedures are

necessary to ensure a reasonable binding mode. For this purpose, a hierarchical pose

filtering and scoring scheme is applied which, on the one hand, efficiently eliminates

poses with sparse contacts or clashes and, on the other, rapidly assesses the quality of

the fit between ligand and receptor. A detailed description of the scoring procedure

can be found in [D7].
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Matching Superposition Placement

Figure 4.5: General workflow for the generation of docking poses.

The RAISE technology and the associated docking method (cRAISE) are, in con-

trast to the older TrixX engine, completely based on the NAOMI framework and can

thus benefit from its consistent description of both molecules and proteins. Although

RAISE has adopted the general principles of the old approach, there are considerable

differences with respect to the underlying interaction model. The most prominent

one is the integration of the inherent flexibility of rotatable terminal groups into the

triangle descriptors for both binding pockets and molecules. In case of donors, i.e.,

rotatable hydrogens, multiple triangle corners are generated by the discretization of

the orbit resulting from the rotation of the hydrogen atom around the main axis of the

associated hetero atom. The associated procedure is quite similar to the generation of

modes in the context of Protoss. Acceptors, on the other hand, are contracted into a

single corner with multiple directions. Furthermore, the strategy for the generation of

hydrophobic corners in the binding pocket of proteins has been completely exchanged.

Although the influence of each individual modification has not been investigated, the

poses generated using the RAISE [D7] technology are generally of higher quality than

those of the TrixX approach [182]. As redocking experiments and enrichment studies

show, the docking performance of RAISE is comparable to those of common docking

tools [D7]. One has to keep in mind, however, that the intended purpose of the RAISE

technology is not high-precision docking but large-scale virtual screening which will be

presented in the next sections.

4.3 Structure-Based Pharmacophores

The concept of the pharmacophore plays an important role in rational drug design

and provides the basis for a number of established virtual screening techniques. The

currently accepted definition was given by Wermuth et al. [183]: “A pharmacophore is
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the ensemble of steric and electronic features that is necessary to ensure the optimal

supramolecular interactions with a specific biological target and to trigger or block

its biological response”. Pharmacophore models are thus a compact representation of

the chemical features which are thought to be relevant for the interactions of proteins

with their respective ligands. In general, they comprise elements such as hydrophobic

regions, aromatic rings, hydrogen bond donors and acceptors, and positively and neg-

atively charged groups. Pharmacophores are often used to find compounds which can

form similar interactions with a particular target without restricting them to specific

molecular structures (scaffold-hopping). As has been mentioned in Chapter 1 pharma-

cophores can be derived from both superpositions of multiple active ligands (ligand-

based) and interaction patterns observed in protein-ligand complexes (structure-based).

A general introduction to pharmacophore methods is beyond the scope of this thesis

and the following discussion will be restricted to their applications in structure-based

virtual screening. A comprehensive overview of different methodologies and algorithms

can be found in [41, 184].

In the context of structure-based virtual screening, pharmacophore models can be

useful in many different ways. Since they essentially incorporate the same information

as molecular docking, e.g., hydrogen bonds and hydrophobic interactions, pharma-

cophores provide the basis for specialized screening methodologies of their own [185].

These are, due to the reduced description of the relevant properties in the binding

pockets, in most cases considerably more efficient than workflows involving docking

calculations. Therefore, they can serve as an efficient prefilter to reduce the size of

the screening library prior to the application of computationally more demanding tech-

niques. Pharmacophoric constraints can, however, also be used as a postfilter after

docking calculations with the aim of prioritizing poses with particular chemical fea-

tures [164, 186]. This integration of both approaches usually results in better binding

mode predictions and improved enrichment of active molecules. Instead of performing

both calculations separately there are also a few approaches [187] which incorporate

pharmacophoric constraints into the docking calculation. In this way the search space

can be effectively reduced resulting in much more efficient calculations as unsuitable

compounds are removed directly during the generation of poses.

The RAISE engine supports the specification structure-based pharmacophoric queries

on the basis of inclusion and exclusion features whose evaluation is directly incorpo-

rated into the generation of binding poses. The building blocks for the definition of

pharmacophore hypotheses essentially correspond to the interaction types modeled by

the triangle corners (see section 4.2) and are represented as spheres with a tolerance

radius. This includes hydrogen bond donors, hydrogen bond acceptors, hydrophobic
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regions and, additionally, the presence of any atom. In case of polar interactions, the

locations of ligand atoms can be further constrained by specifying the respective di-

rectionality of either the hydrogen atom or the free electron pair. A compilation of all

supported types can be found in [D7]. Inclusion features require the presence of ligand

atoms at specific regions in the binding site of the protein, whereas exclusion features

explicitly prevent it. The final pharmacophore hypothesis comprises an arbitrary com-

bination of both feature types in combination with the number of inclusion features

(Ne) that need to be fulfilled simultaneously (see Figure 4.6).
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Figure 4.6: Definition of pharmacophores in the context of cRAISE. Example (1) contains

one hydrophobic inclusion feature meaning that at least one hydrophobic atom of the ligand

has to be located inside the area marked by the circle. In this case Ne has to be one in order

for the pharmacophore to have any effect. Example (2) contains an exclusion feature of

the acceptor type meaning that no acceptor atom of the ligand must be placed in the area

marked by the circle. In this case Ne is not relevant as no inclusion features are defined.

Example (3) contains an inclusion feature of acceptor type including the specification of its

directionality. Example (4) contains two inclusion features which depending on Ne need

to be fulfilled simultaneously.

Pharmacophoric constraints are evaluated at two different stages of the docking

procedure [D7]. Inclusion features can be already taken into consideration during the

generation of RAISE descriptors. If an interaction triangle does not contain at least

one corner which fulfills one of the essential features defined in the pharmacophore (see

(B) in Figure 4.7), it can be omitted. In this way the number of query triangles can be

reduced which leads to an considerable decrease in runtime. As RAISE descriptors only

capture a local environment of the binding pocket enforcing more than one inclusion

feature could easily lead to false negative predictions and is therefore not supported.

Since the remaining constraints cannot be evaluated without recourse to the concrete

orientation of the molecule inside the binding pocket they have to be processed during

the generation of ligand poses. Exclusion features can be considered as inaccessible

regions and are thus incorporated directly into the clash testing routines of the pose
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4.3 Structure-Based Pharmacophores

filtering step. By handling them as clashes, violating poses can be eliminated very early

in the process. The fulfillment of all essential features is checked after the placement

of the molecule in the binding pocket (see (C) in Figure 4.7).

Protein

Hypothesis

N

N

e
N =1:

N
e
=2:

e
N =1:

N
e
=2:

(A) (B) (C)

Figure 4.7: Evaluation of Pharmacophores in RAISE. The definition of a pharmacophore

hypothesis for a particular binding pocket is shown in (A). During the generation of RAISE

descriptors the pharmacophore can be used to exclude particular triangles (B). After the

placement of the ligand, the remaining constraints are evaluated (C).

The chemical features contained in the presented pharmacophore concept are well

known to medicinal chemists so that the resulting models are intuitively understand-

able to them. The reduction of the complex interactions between ligands and proteins

to a set of clearly defined building blocks facilitates their access to the otherwise com-

plex screening methodologies. Even without intricate knowledge of the underlying

technology it is possible to formulate and evaluate hypotheses about potential binding

modes and important contributions to affinity. Additionally, pharmacophores provide

the means to directly influence the screening process with external knowledge and

thus pave the way for the integration of medicinal chemists in the screening process.

As both redocking experiments and enrichment studies show [D7], the docking and

screening performance of cRAISE can be considerably improved by the inclusion of

pharmacophore constraints. In contrast to other approaches, this can also results in an

considerable decrease in runtime which essentially means the method gets faster and

more accurate at the same time.
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4. VIRTUAL SCREENING

4.4 Protomers in Docking

Structure-based virtual screening is an application in which the explicit handling of

protomers is generally required (see Section 2.6). As the presence and the positions

of hydrogen atoms change, so do the potential hydrogen bond networks which in turn

can result in alternative binding modes. If this fact is neglected during the screening

calculation the risk of false negative results increases. One possible way to avoid this

is to transform every chemical moiety into a representation which corresponds to the

form assumed to be the most stable under the respective conditions. As has been shown

by different studies, this procedure is generally preferable to a more or less exhaustive

enumeration of protomers as this can easily lead to a high rate of false positive pre-

dictions [125, 126, 128]. This results from the fact that current scoring functions are

not equipped to reliably differentiate reasonable from unreasonable protomers. There

are, however, a number of functional groups and ringsystems with protomers of similar

stability for which this selection is rather arbitrary [188]. Typical examples are aro-

matic heterocycles such as pyrazole and imidazole. In these cases the consideration of

multiple protomers is necessary in order to maximize the chances of finding the best

possible binding mode.

Although the same types of moieties, namely imidazole in case of histidine, can

be found in the side chains of amino acids, the consideration of different protomers in

virtual screening is generally restricted to the ligand side. This is probably due to the

fact that protomers of small molecules can be enumerated and sequentially processed

without the need to modify the underlying docking procedure. If their respective num-

ber is additionally restricted to a reasonable size, the associated increase in runtime

is usually acceptable. The same strategy, however, is not applicable with respect to

proteins or binding pockets. In case of enumeration multiple docking runs would have

to be performed for the complete library which in turn would result in an consider-

able increase of runtime. Considering the fact that binding pockets can include a large

number of residues, the number of relevant protomeric states can easily become very

large. Thus, the best course of action is to incorporate the handling of protomers into

the docking procedure.

The RAISE engine is able to implicitly handle multiple protomeric forms of both

ligands and residues using the interaction triangle description introduced in Section 4.2.

This is realized by generating triangle corners of both hydrogen bond donor and accep-

tor type for atoms changing their state in different protomers. The latter are generated

using the methods for the generation of protomers based on the VSC model (see section
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4.4 Protomers in Docking

2.6). A general scheme for the procedure is shown in Figure 4.8, a more detailed de-

scription can be found in [D8]. First, normalization is applied to the functional groups

and rings in order to transform them into their most stable form as was suggested by

the previous studies [125, 126, 128]. Afterwards, reasonable protomers are generated

and used to identify atoms which change their role from donor to acceptor or vice versa.

During the generation of interaction triangles these atoms are considered as both donor

and acceptor and the respective triangles are created for both cases. The same pro-

cedure is applied to the atoms of the binding site. Both the triangle matching and

the subsequent generation of binding poses are identical to the procedure explained in

Section 4.2. However, after the placement of the ligand the optimal hydrogen bonding

network needs to be generated using the Protoss approach (see section 3.3).

(A) (B) (C)

Figure 4.8: Handling of protomers in the context of cRAISE. The relevant protomers of

the imidazole group (A) are transformed into a unified representation including multiple

interaction surfaces (B). These are converted into individual RAISE descriptors under

consideration of the possible combinations (C).

By relying on both the VSC model [D4], Protoss [D6] and the efficient RAISE

technology the presented method for the handling of protomers in docking calculations

has many advantages compared to other approaches. For the screening library, the

drawbacks associated with an explicit enumeration of states can be entirely avoided.

In this case conformations would need to be calculated for each individual protomer

and consequently RAISE descriptors for each conformation. This in turn would lead

to a large number of redundant triangles considering the large conformational overlap

between the resulting structures. By generating triangles using the procedure intro-

duced above their resulting number can be considerably reduced. This means that the
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4. VIRTUAL SCREENING

consideration of additional protomers do not lead to an linear increase of runtime as it

does with other approaches. The treatment of protomers on the protein side is unique

in its way and cannot be realized by other current approaches. As the comparison to

the calculation without protomers shows, the respective treatment does not result in a

large increase in runtime [D8].

4.5 Virtual High-Throughput Screening

Structure-based virtual screening is a complex and computationally intensive proce-

dure. Predicting the binding modes of millions of compounds generally requires con-

siderable computing capacities and is also often coupled with a high storage complexity.

Even today, large-scale screenings can be prohibitively time-consuming without access

to an advanced computer infrastructure. Only improvements in hardware performance

and massive parallelization have made it possible to keep track with the ever growing

runtime and storage requirements of large structure-based screening projects. Addition-

ally, constant algorithmic and methodical optimizations further increased the efficiency

of many contemporary docking tools. In some cases, modes of different complexity are

available in order to find the right balance between runtime and accuracy for screen-

ing experiments of different scales. The Glide [180] software, for instance, offers an

high-throughput screening mode using a less advanced scoring function for the sake

of runtime optimization. Despite all these efforts and strategies, there are still many

scenarios extending the boundaries of the possible. Extensive ensemble docking, i.e.,

modeling the flexibility of proteins by an iterative screening against multiple protein

conformations, is but one typical example.

An alternative way to enhance the efficiency of virtual screening approaches is to

abandon the sequential screening paradigm as has been realized in the TrixX approach

[181, 182]. Instead of iteratively docking each potential ligand into the binding site,

TrixX relies on a combination of pharmacophoric constraints, docking, and bitmap

indexing techniques in order to overcome the linear dependency on the size of the

screening library. This concept forms the basis of the RAISE strategy implemented us-

ing the NAOMI framework. At its core is the ability to precalculate and store RAISE

descriptors using a compressed bitmap index and to realize their comparison using the

native and thus efficient database functionality. The main advantage of this approach

is the separation of the screening procedure into two independent phases, the prepro-

cessing of the screening library and the generation of binding poses. The former has

only to be performed once and the resulting index can be used any number of times.
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4.5 Virtual High-Throughput Screening

The individual steps of the preprocessing procedure are shown in Figure 4.9. First,

the entire screening library is registered into the MolDB (see Section 2.4), in order to

ensure both a consistent and efficient storage of the respective molecules. Afterwards,

conformations are generated using CONFGEN [189], a tool for the enumeration of

bioactive conformations based on the NAOMI framework, and stored in the MolDB

as instances. Then, RAISE descriptors are calculated and registered to the descriptor

index for each of these conformations. A detailed description of the indexing techniques

as well as the associated query procedures can be found in [182]. Since the preprocessing

is performed without a specific target, the respective molecules usually constitute the

complete compound database.

Descriptor
calculation

A B C D E F

000100001110000
110001110000010
001010101111111
111111001000000
110111010101011

RAISE index

Descriptor
indexing

Conformational
sampling*

MolDB

id 1: c1ccc1CC(N)C
id 2: CCC(N)CCSCC
id 3: c1ccnc1C(C)C
id 4: CCNC1(N)CC1
...

Compound
registration

Figure 4.9: Workflow for the preprocessing of screening libraries.

The screening procedure (see Figure 4.10) starts with the generation of interaction

triangles for the binding pocket, which in turn provide the basis for the formulation of

queries to the bitmap index. If pharmacophore constraints have been specified these

are used to reduce the number of query triangles as described in Section 4.3. Since the

static database generated in the preprocessing step has not been optimized for a specific

purpose, the MolDB can be used to tailor the screening library to the optimal target

profile using the filter mechanisms presented in Section 2.5. The subsequent triangle

matching is only performed for molecules in the active screening set. In this context

the MoleculeKeys assigned by the MolDB play a central role. These are also stored

in the bitmap index and are the connection between the two databases. In case of

matches the respective conformations are fetched from the MolDB using the respective

InstanceKeys and placed into the binding site as described in 4.2.

Descriptor-based
docking

Pose filtering
& scoring

Pharmacophore
filtering*

Query descriptor
calculation

Hitlist

1. -46.893
2. -37.913
3. -24.127
4. -21.122
...

Figure 4.10: Workflow for virtual screening.
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The presented structure-based pipeline essentially combines all methods and con-

cepts developed in this thesis. The result is a highly efficient screening workflow which

is, in principle, completely automated, but allows interventions at different relevant

stages. Both the compilation of the screening library and the formulation of pharma-

cophore hypotheses are intuitive procedures which can be easily performed by medicinal

chemists.

Additional Applications

The models, concepts, and methods presented in the previous sections are not only

relevant in the context of structure-based virtual screening but can also be successfully

applied to other common tasks from the field of CADD. These are inverse virtual screen-

ing and the comparison of binding sites of different proteins. Since the contributions

of the author to the development and the subsequent evaluation of the corresponding

methodologies are not as central as in the previously described cases, only a cursory

overview of the underlying problems and a short description of the solution will be

presented. The focus will be on those parts the author was mainly concerned with.

Additional details can be found in the respective publications [D9,D 10].

4.6 Inverse Virtual Screening

Binding selectivity is one of the most important aspects in the discovery and devel-

opment of drug molecules [190]. A lot of effort is usually put into the design and

optimization of molecules which bind with the highest affinity to their intended target

proteins. In fact, most of the methods presented in this thesis up to this point have been

developed to that purpose. However, the problem of avoiding or restricting the poten-

tial interactions with other components of the biological system, e.g., other enzymes, is

at least as important. Unexpected interactions can easily result in adverse side effects

which are one of the reasons for the high attrition rates of potential candidates in late

stages of the drug development process. On the other hand, polypharmacology can

also have positive aspects, e.g., drug repurposing [191] or multi-targeted drugs [192].

Considering the multitude of different chemical species which could serve as potential

interaction partners, gaining the complete target profile of potential drug candidates is

significantly more complex than optimizing their interactions with a single target. A

description of existing methods and a more detailed introduction to the topic including

literature references can be found in the original publication [D9].
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4.7 Comparison of Binding Pockets

Although serving a completely different purpose, the fundamental challenges of

inverse screening approaches are very similar in many respects to those of conventional

structure-based screening approaches. The underlying problem is still to predict the

binding pose of a ligand in the binding pocket of a protein. For that reason, the inverse

screening pipeline of the NAOMI software system is based on the same concepts as

the previously presented methods. Matching interaction triangles are identified and

subsequently used to generate the respective ligand poses in the binding pocket in the

same way as described above. The major difference is that these binding poses are not

generated for multiple ligands in the same binding pocket, but for a single ligand in

binding sites of different proteins. For that reason the pipeline presented in the previous

section has to be inverted. This means that the RAISE descriptors of different binding

pockets are registered into the bitmap index and those of the ligand are used for the

generation of the respective queries. In this context the MolDB from the conventional

pipeline is replaced by the ProteinDB introduced in Section 3.1. The scoring function is

also modified as its purpose is now to rank different poses in different binding pockets

instead of ranking poses in a single binding pocket. A detailed description of the

associated procedures and a discussion of the results can be found in [D9].

4.7 Comparison of Binding Pockets

The annotation of protein function is an important task in many different fields includ-

ing biology, biotechnology and pharmaceutical research. Although structural genomics

projects have provided access to large amounts of protein sequence and structure data,

current experimental methods are not able to keep up with the sheer quantity of un-

characterized cases. For that reason, computational approaches are of high practical

relevance in this context. The function of unknown structures is generally inferred from

either sequence or structural similarity to already annotated proteins. This methodol-

ogy is, however, not only restricted to whole proteins but can also be applied to the

comparison of different binding sites which in turn can help to gain insight into aspects

such as substrate specificity or potential mutation sites for enzyme optimization. The

number of computational approaches for the comparison of binding sites is quite large

and an overview can be found in the respective original publication [D10].

The concepts, methods and components underlying the structure-based virtual

screening pipeline presented in the previous section are the foundation for the effi-

cient comparison of protein binding sites in the NAOMI software system. In this case

also the comparison of interaction triangles forms the core of the approach. In con-

trast to the prediction of binding poses compatible descriptors need to represent similar
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4. VIRTUAL SCREENING

rather than complementary features. For that reason, the matching procedure needs to

be slightly modified with respect to the evaluation of both the types of triangle corners

and the associated interaction directions. Furthermore, as the shape descriptors of the

triangles in this context are not intended to avoid steric overlap but rather to assess

structural similarity the matching procedure has to be adapted accordingly. This is

realized by allowing partial bulk matches. If compatible triangles have been identified,

the respective binding pockets are aligned in the same way as described for molecules.

An affine transformation is determined by superposing the respective triangles which

is then applied to the coordinates of the atoms of the binding site. The superimposed

binding pockets are then scored based on this overlap. The complete matching pro-

cedure is described in more detail in the original publication [10]. In analogy to the

structure-based screening pipeline the comparison of binding pockets is divided into two

separate steps. First, descriptors for a collection of binding pockets are calculated and

storied in a triangle index which can be reused indefinitely. Then the actual screening

calculation can be performed. A detailed description of the associated procedures and

a discussion of the results can be found in [D10].
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Summary and Outlook

In the presented work a consistent framework for automated virtual high-throughput

screening (NAOMI) has been introduced. Based on a robust chemical description,

NAOMI incorporates numerous innovative concepts and methods which together form

the foundation of the RAISE screening pipeline. Each of its individual components

has been designed in order to provide an intuitive and comprehensible way to perform

screening calculations and was subsequently investigated with respect to its suitability

for completely automated workflows. It could be shown in multiple evaluation studies

that the underlying models and algorithms are both efficient and reliable thus allowing

a balanced combination of automatic and interactive steps. This in turn is an im-

portant prerequisite for the implementation of highly adaptive screening workflows for

different contexts of applications. The handling of molecules and proteins is based on

a consistent and robust chemical model which was shown to produce reliable results in

many different cheminformatics contexts. The newly developed methods represent sig-

nificant improvements over existing approaches in their respective fields. This includes

the conversion of file formats, the interpretation of molecules from three-dimensional

coordinates, the canonicalization of molecules, and the generation of protomers. Addi-

tionally, many of the presented concepts can be considered as important contributions

to the accurate solution of cheminformatics problems, e.g., the representation of rings

by URF and the handling of protomers based on the VSC Model. The databases

for both molecules (MolDB) and proteins (ProteinDB) allow an efficient storage and

processing of the respective structures and provide the basis for the interactive func-

tionality for the compilation of screening libraries. The consistent handling of ioniza-

tion and tautomerism allows the comprehensive treatment of protomers in the context

of protein-ligand complexes thus making Protoss and the inclusion of protomers in
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structure-based virtual screening unique solutions in their respective fields of applica-

tion. The presented RAISE technology is the foundation for a very efficient screening

engine which also supports the formulation of intuitive pharmacophoric constraints.

The additional RAISE applications, inverse screening and comparison of binding pock-

ets, show the generic nature of the approach and the high potential for the solution of

different cheminformatics problems.

Although the presented pipeline marks an important milestone in the development

of an interactive virtual screening approach, there is still room for improvements. On

the one hand, the performance of the docking method with respect to the reliable rank-

ing of binding poses could be enhanced by using a subsequent optimization routine.

As has already been demonstrated in combination with the docking tool FlexX, a pro-

cedure based on the HYDE scoring function, which was also developed in this group,

would be perfectly suitable for that purpose [193]. The integration of both approaches

has already been realized on the software level with the help of the author. However,

the respective results need to be carefully evaluated and it is to be expected that mod-

ifications on both sides will be necessary in order to achieve an optimal performance.

Considering the high efficiency of the RAISE approach and, in particular, the ability

to handle cases of high computational and storage complexity, the treatment of protein

flexibility, which is still one of the unsolved problems of virtual screening, could also be

considered as a prospective application. As the NAOMI framework already contains

the necessary functionality for the generation of side chain conformations, the step to-

wards putting it to use in a flexible docking and screening scenarios seems promising.

Additionally, the RAISE technology is not necessarily restricted to structure-based ap-

proaches and could also serve as a basis for the development of a ligand-based screening

methodology. This in turn could build on the strategies developed for the comparison of

binding pockets. The internal screening pipeline would largely profit from ligand-based

components.

As the NAOMI framework provides a solid basis for the development of meth-

ods and algorithms involving small molecules, proteins, or protein-ligand complexes, a

large variety of future applications are quite conceivable. The robust chemical model

could be used to analyze crystal structure data of protein-ligand complexes in order to

identify potential inconsistencies. New concepts for the visualization of molecule sets

based on structural similarity or common molecular scaffolds would further increase

the value of the MONA software with respect to the analysis of compound databases.

The generic interaction model could provide the basis for the systematic investigation

and classification of interaction patterns in protein-ligand complexes. Another part of

the NAOMI framework which has not been discussed in this thesis are fragment spaces.
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In this context both the consistent chemical model and the extremely efficient proce-

dures developed for the handling of molecules can be of great value. It is the author’s

believe that, particularly in combination with the MolDB, there are a lot of promising

applications in this direction.

In addition to the establishment of a fully automated screening workflow, one of the

main goals during the development of NAOMI was creating the necessary conditions

for the inclusion of medicinal chemists in CADD. By providing reliable and efficient

methods for that purpose, NAOMI is a robust foundation for the implementation of

intuitive and interactive software tools. MONA, as a solution for the preparation of

screening libraries, can be considered as a first step in this direction. The SeeSAR soft-

ware developed by the BiosolveIT is another example for an application program based

on the NAOMI framework. Both examples show the inherent potential of the NAOMI

framework as the basis for the development of sophisticated drug-design software in

both an academic and an industrial setup.
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[162] M. Stahl and H.-J. Böhm. Development of filter functions for protein-ligand docking. J.

Mol. Graph. Model., 16(3):121–132, 1998.

[163] R.D. Taylor, P.J. Jewsbury, and J.W. Essex. Fds: Flexible ligand and receptor docking

with a continuum solvent model and soft-core energy function. J. Comput. Chem., 24(13):

1637–1656, 2003.

[164] D. Muthas, Y.A. Sabnis, M. Lundborg, and A. Karlen. Is it possible to increase hit rates

in structure-based virtual screening by pharmacophore filtering? an investigation of the

advantages and pitfalls of post-filtering. J. Mol. Graph. Model., 26(8):1237–1251, 2008.

90



BIBLIOGRAPHY

[165] C. Sotriffer, editor. Virtual Screening - Principles, Challenges, and Practical Guidelines,

volume 48 of Methods and Principles in Medicinal Chemistry. Wiley-VCH, Weinheim, 2011.
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Appendix A

Publications and conference

contributions

A.1 Publications in scientific journals

This section summarizes the author’s publications in scientific journals and specifies

the author’s contributions.

D1 S. Urbaczek, A. Kolodzik, J.R. Fischer, T. Lippert, S. Heuser, I. Groth, T.

Schulz-Gasch and M. Rarey. NAOMI: On the Almost Trivial Task of Reading

Molecules from Different File Formats. Journal of Chemical Information and

Modeling, 51(12):3199-3207, 2011.

Based on preliminary work of S. Wefing, S. Urbaczek developed the concepts

of the chemical model and the computational representation of molecules in the

NAOMI framework as well as the procedures for the assignment of the necessary

data (initialization procedures). S. Urbaczek, assisted by A. Kolodzik, designed

and implemented the workflows for the interpretation of molecules from chemical

file formats. The NAOMI software library was developed and implemented in a

joint effort by S. Urbaczek, A. Kolodzik, J.R. Fischer, and T. Lippert. I. Groth,

S. Heuser, and T. Schulz-Gasch provided general support. M. Rarey supervised

the work.

D2 A. Kolodzik, S. Urbaczek, and M. Rarey. Unique Ring Families: A Chemically

Meaningful Description of Molecular Ring Topologies. Journal of Chemical In-

formation and Modeling, 52(8):2013-2021, 2012.
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The general idea for the URF was developed by A. Kolodzik and S. Urbaczek

in a joint effort. A. Kolodzik both established the theoretical foundation for

the description of the URF and developed the algorithms for their calculation.

A. Kolodzik integrated the method into the NAOMI framework. Together, A.

Kolodzik and S. Urbaczek designed the validation procedures which were carried

out by A. Kolodzik. M. Rarey supervised the work.

D3 M. Hilbig, S. Urbaczek, S. Heuser, I. Groth, and M. Rarey. MONA - Interac-

tive Manipulation of Molecule Collections. Journal of Cheminformatics, 5(1):38,

2013.

A preliminary version of MONA, which provided the basis for the work presented

in the publication, was developed as a student project under the supervision of

M. Hilbig and was refined and improved by M. Hilbig and S. Urbaczek. M. Hilbig

and S. Urbaczek developed the concepts for the design of the MolDB in a joint

effort. This includes the distinction between molecules and instances as well as

the idea of handling compound collections as sets of molecules rather than sets

of instances. S. Urbaczek developed the algorithms, both canonicalization and

string generation, for the generation of MolStrings and the procedures for the

rebuilding of molecules from this description. Additionally, S. Urbaczek designed

the methods for the calculation of molecular properties based on the NAOMI

framework and also developed the necessary functionality for element and func-

tional group filters. MONA was designed and implemented by M. Hilbig. S.

Urbaczek assisted with design of the user interface and software testing. I. Groth

and S. Heuser provided general support. M. Rarey supervised the work.

D4 S. Urbaczek, A. Kolodzik, and M. Rarey. The Valence State Combination

Model: A Generic Framework for Handling Tautomers and Protonation States.

Journal of Chemical Information and Modeling, 54(3):756-766, 2014.

The general concept for the generation of tautomers and protonation states was

developed by S. Urbaczek and A. Kolodzik in a joint effort. S. Urbaczek devised

the VSC model which provides the theoretical framework of the associated meth-

ods. S. Urbaczek developed the algorithms for the selection of valence states,

the generation of valid valence bonds structures, the scoring of solutions and the

enumeration of the remaining results. A. Kolodzik developed the functionality for

the partitioning of molecules into zones. S. Urbaczek developed the algorithmic
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strategies for the canonicalization, normalization and generation workflows and

integrated them into the NAOMI system. S. Urbaczek and A. Kolodzik devised

and performed the evaluation in a joint effort. M. Rarey supervised the work.

D5 S. Urbaczek, A. Kolodzik, S. Heuser, I. Groth and M. Rarey. Reading PDB:

Perception of Molecules from 3D Atomic Coordinates. Journal of Chemical In-

formation and Modeling, 53(1):76-87, 2013.

The general concept for the perception of molecules from 3D coordinates was de-

veloped by S. Urbaczek and A. Kolodzik in a joint effort. S. Urbaczek developed

the algorithms and methods for the individual steps of the workflow and derived

the parameters for the scoring of individual valence state assignments. S. Ur-

baczek integrated the methods in the NAOMI framework. Together, S. Urbaczek

and A. Kolodzik designed the validation procedures which were carried out by S.

Urbaczek. M. Rarey supervised the work.

D6 S. Bietz, S. Urbaczek, B. Schulz, and M. Rarey. Protoss: A Holistic Approach to

Predict Tautomers and Protonation States in Protein-Ligand Complexes. Jour-

nal of Cheminformatics, 6(1):12, 2014.

Precursors of the presented Protoss version were developed in two individual stu-

dent projects. During his master thesis and a following project, S.Bietz created

a prototype for the integration of tautomers and protonation states into Pro-

toss which was based on a tautomer and protonation state generation module

developed by S.Urbaczek. During the diploma thesis of B. Schulz, B. Schulz and

S. Urbaczek, who supervised this project, refined and reimplemented this con-

cept on the basis of the NAOMI model. Eventually, S.Bietz and S. Urbaczek

completed this second prototype for the final version presented in the publica-

tion. S. Urbaczek devised the computational representation of proteins in the

NAOMI framework and developed the procedures for the assignment of the nec-

essary data (initialization procedures). This includes both the perception of pro-

teins from PDB files and the calculation of initial hydrogen positions. S. Bietz

contributed to the evaluation and the stabilization of the protein initialization

procedure. Based on the valence state combination model, S. Urbaczek imple-

mented the handling of tautomers and protonation states for both ligand and

protein residues. S. Urbaczek also designed the methods for the identification of

variable mode regions and the conversion of different tautomeric and protonation
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states into interaction modes. S.Bietz developed the enhanced scoring scheme

for the evaluation of hydrogen bonds, metal interactions, and unfavorable polar

interactions. The integration of the chemical stabilities into the Protoss objective

function was performed by S.Bietz and S. Urbaczek in a joint effort. S. Bietz

also adapted and improved the network optimization algorithm. B. Schulz, in ad-

dition to his work during the development of the second prototype, contributed

substantially to the improved stability of the respective software tool. The vali-

dation procedures were designed and carried out by S. Bietz. This includes the

selection and preprocessing of the datasets, the implementation of the automated

evaluation experiments, and the result analyses. M. Rarey supervised the work.

D7 A.M. Henzler, S. Urbaczek, M.Hilbig, and M. Rarey. An Integrated Approach

to Knowledge-Driven Structure-Based Virtual Screening. Journal of Computer-

Aided Molecular Design, 28(9):927-939, 2014.

Although the RAISE approach is still based on the general ideas of the TrixX

screening tool previously developed by I. Schellhammer and J. Schlosser, it is a

modified reimplementation on the basis of the NAOMI framework. The RAISE

platform has been implemented by S. Urbaczek and A.M. Henzler in a joint effort.

S. Urbaczek developed the concepts for the representation of directed interactions

in the NAOMI framework as well as the procedures for their generation in the

context of both molecules and proteins. Based on this representation, S. Ur-

baczek developed a generic approach for the generation of RAISE descriptors.

The strategy for the identification of apolar points in the binding pockets has

been designed by A.M. Henzler. In a joint effort, S. Urbaczek and A.M. Henzler

devised the general concepts, structures, and procedures for descriptor matching

in the RAISE framework. The respective implementation and subsequent refine-

ment was conducted by A.M. Henzler. A.M. Henzler developed all algorithms and

strategies necessary for both the generation and assessment of ligand poses and

the creation and evaluation of pharmacophores and combined these components

into a working screening pipeline. M. Hilbig assisted with the integration of the

MolDB into the screening procedure. A.M. Henzler designed and performed the

evaluation studies. M. Rarey supervised the work.

D8 A.M. Henzler, S. Urbaczek, S. Bietz, and M. Rarey. Consistent Handling of

Tautomers and Protonation States in Virtual Screening. Journal of Computer-

Aided Molecular Design, in preparation.
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The general concept for the integration of protomers in the RAISE workflow

was developed by A.M. Henzler and S. Urbaczek in a joint effort. Based on the

VSC method and the Protoss approach, S. Urbaczek developed the workflow for

the default protomer generation for both proteins and molecules. Furthermore,

S. Urbaczek developed the concepts for the handling of directed interactions by

a unified representation in the context of protomers. The transformation into

RAISE multi-state descriptors was developed by A.M. Henzler and S. Urbaczek

in a joint effort. A.M. Henzler adapted the methods for descriptor matching and

pose generation. The final screening pipeline was also implemented by A.M. Hen-

zler. The evaluation studies were designed by S. Urbaczek and A.M. Henzler in

a joint effort and were performed by A.M. Henzler.

D9 K. Schomburg, S. Bietz, H. Briem, A.M. Henzler, S. Urbaczek, and M. Rarey.

Facing the Challenges of Structure-based Target Prediction by Inverse Virtual

Screening. Journal of Chemical Information and Modeling, 54(6):1676-1686, 2014.

K.T. Schomburg established the general concept for the inverse screening proce-

dure and implemented the associated workflow. Fundamental RAISE functional-

ity was contributed by A. M. Henzler and S. Urbaczek. K.T. Schomburg designed

the ProteinDB and implemented it with the assistance of S. Urbaczek and S. Bi-

etz. In a joint effort, S. Urbaczek and S. Bietz developed the methods for the

generation of unique string identifiers for the storage of proteins in the ProteinDB

and the procedures to recreate proteins from this data. K.T. Schomburg designed

and performed the evaluation studies. M. Rarey supervised the work.

D10 M. v. Behren, A. Volkamer, A. M. Henzler, K. T. Schomburg, S. Urbaczek,

and M. Rarey. Fast protein binding site comparison via an index-based screening

technology. Journal of Chemical Information and Modeling, 53(2):411-422, 2013.

M. v. Behren, A. Volkamer and M.Rarey jointly established the idea of the new

binding site comparison method TrixP. M. v. Behren implemented the method,

assisted by A. Volkamer. Together, they designed and performed the evaluation

studies. Fundamental TrixX functionality was provided by A. M. Henzler, K. T.

Schomburg, S. Urbaczek. M. Rarey supervised this work.
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A.2 Conferences

This section lists the author’s presentations at international conferences.

Talk S. Urbaczek, S. Bietz, M. Rarey, Automated Prediction of Tautomeric States

in Protein-Ligand Complexes, 240th ACS National Meeting, 2010, Boston, USA

Poster S. Urbaczek, A. Kolodzik, R. Fischer, T. Lippert, M. Rarey, The File IO Round

Robin Game: On the Development of a Consistent Chemical Representation, 9th

International Conference on Chemical Structures, 2010, Noordwijkerhout, NL.

Poster S. Urbaczek, A. Kolodzik, S. Heuser, I. Groth, M. Rarey, NAOMI: On the

Almost Trivial Task of Reading Molecules from Different File Formats, Gordon

Research Conference, 2011, Tilton, USA
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Appendix B

Additional Data

In this chapter, additional data which was not included in the publications comprising

this thesis is presented. This includes a list of valence states currently supported by the

NAOMI framework, a table containing the corresponding pairs of valence states needed

for the selection step as well as the substructure patterns underlying the scoring step of

the VSC method. Additionally, a more detailed description of the associated methods

is provided.

B.1 Valence States

The construction of the valence state layer is the internal valence check of the NAOMI

framework. Molecules are rejected if this stage could not be successfully passed. The

causes for rejection are undefined element identities, failed assignment of valence states

to atoms, and failed localization of aromatic bond orders. The process starts with a

list containing all valence states associated with the atom’s element (see Table B.1 for

a complete list). Each valence state is checked for compatibility with the atom and a

list of accordant states is compiled. A valence state is compatible if its formal charge

is identical to the atom’s and the following conditions for the numbers of single (NSB),

double (NDB), and triple bonds (NTB) hold true:

NAtom
SB ≤ NState

SB NAtom
DB = NState

DB NAtom
TB = NState

TB

Aromatic bond orders (NAtom
AB ) are converted to additional single bonds (NAdd

SB ) and

double bonds (NAdd
SB ) prior to each individual comparison in the following way:

NAdd
DB = max(NState

DB −NAtom
DB , 0) NAdd

SB = NAtom
AB −NAdd

DB
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Table B.1: Valence states of elements with covalent bonds. Valence states are represented

as element symbol followed by the number of single, double, triple bonds and the formal

charge. The most relevant valence states of each element are underlined. For all elements

not listed generic valence states without bond orders are used.

Element Valence states

Hydrogen H100 H000+ H000-

Boron B300 B400-

Carbon C400 C210 C101 C020 C300+ C300- C001-

C110-

Nitrogen N300 N110 N210+ N400+ N020+ N101+ N001

N010- N200-

Oxygen O200 O010 O100- O110+ O300+ O001+ O000-2

Fluorine F100 F000-

Silicon Si400

Phosphorus P310 P300 P400+ P600- P500 P110 P001

Sulfur S220 S200 S010 S210 S300+ S100- S110+

S400 S310+ S600 S020 S030 S410 S000-2

Chlorine Cl100 Cl000- Cl130 Cl120 Cl110 Cl020 Cl110

Cl200 Cl020+ Cl300 Cl500

Germanium Ge400

Arsenic As300 As500 As310 As400+

Selenium Se200 Se220 Se210

Bromine Br100 Br000- Br130 Br120 Br110 Br300 Br500

Iodine I100 Il000- I200- I120 I300 I500 I700

B.2 Corresponding Pairs of Valence States

As explained in [D4], the selection step in the VSC workflow is based on pairs of valence

states corresponding to particular types of transformations. These are listed in Table

B.2 for all cases which are considered in the current implementation of the protomer

generation routines. This restriction is, however, not necessary and the method is able

to handle every pair adhering to the rules for corresponding valence states shown in

B.3. The protonation type pairs are implemented for all valence states and are not

explicitly shown here. These can be easily derived from Table B.1 by application of the

rules in B.3.
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Table B.2: Valence states and corresponding donors and acceptors used for the state

selection step of the VSC method.

Element Valence Protonation Tautomer Resonance

State Donor Acceptor Donor Acceptor Donor Acceptor

Carbon C400 - C300- - C210 - -

C210 - C110- C400 - - -

Nitrogen N300 N400+ N200- - N110 - N210+

N110 N210+ N010- N300 - N200- -

N210+ - N110 - - N300 -

N200- N300 - - - - N110

Oxygen O200 O300+ O100- - O010 - O110+

O010 O110+ - O200 - O100- -

O100- O200 O000-2 - - - O200

O110+ - O010 - - O200 -

Sulfur S200 S300+ S100- - S010 - S110+

S010 S110+ - S200 - S100- -

S100- S200 S000-2 - - - S200

S110+ - S010 - - S200 -

Table B.3: Rules for the identification of the different types of corresponding valence

states.

Type Single Bonds Double Bonds Formal Charge

Tautomer Donor +2 -1 =

Tautomer Acceptor -2 +1 =

Resonance Donor +1 -1 -1

Resonance Acceptor -1 +1 +1

Protonation Donor +1 = +1

Protonation Acceptor -1 = -1
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B.3 Substructure Patterns

As explained in [D4], the scoring scheme of the VSC method is based on the identi-

fication of predefined structural fragments corresponding to either rings or functional

groups. The resulting scores are calculated using the following equations:

SV SC =
∑

Sring +
∑

Sgroup (B.1)

Sring =
∑

cycle+
∑

Ssub (B.2)

Sgroup =
∑

Ssubgroup (B.3)

The patterns for cycles (see Table B.5), substituents (see Table B.6) and functional

groups (see Table B.4) are provided using SMILES-like identifiers. The scoring proce-

dure is performed in two steps, the calculation of the bond order including tautomers

and resonance forms and the subsequent calculation of the protonation score involving

only the addition or removal of hydrogen atoms. For this reason two distinct score val-

ues are provided. It must be noted that the omission of particular patterns corresponds

to a penalty as the generic scores are always smaller than the arbitrary value of the

reference system (see [D4]).

Table B.4: Patterns and associated scores for functional groups used in the scoring step

of the VSC method. The first value of the score pair represents the score of the bond order

arrangement, the second value the score of the ionization state.

Pattern Scores Pattern Scores

ON (100,100) O=N (50,100)
NN (100,100) N=N (100,100)
O (100,100) N (100,100)
[NH+] (100,111) [NH2+] (100,111)
[NH3+] (100,111) [NH4+] (100,111)
O=CN (100,100) OC=N (50,100)
O=S(=O)(N)NC=N (100,100) O=S(=O)(N)N=CN (100,100)
N=CN (100,100) [NH+]=CN (80,127)
[NH2+]=CN (80,127) N=[N+]=N (100,0)
N=[N+]=[N-] (100,100) [N-]=[N+]=[N-] (100,140)
C=NNC=O (100,100) O=CO (100,100)
O=C[O-] (100,111) O=C(O)O (100,100)
O=C(O)[O-] (100,111) O=C([O-])[O-] (100,112)
N=C(N)N (100,100) [N+]=C(N)N (80,100)
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[NH+]=C(N)N (80,132) [NH2+]=C(N)N (80,132)
N=C(N)NC(=N)N (100,100) N=C(N)N=C(N)N (100,100)
[NH2+]=C(N)NC(=N)N (100,132) [NH2+]=C(N)N=C(N)N (100,132)
N=C(N)[NH+]=C(N)N (100,132) ONC(=N)N (100,100)
ON=C(N)N (110,100) NNC(=O)N (100,100)
NNC(=S)N (100,100) SNC=O (100,100)
SNC(=O)N (100,100) SC=O (100,100)
SC(=O)O (100,100) N=S=N (100,100)
O=C(N)N (100,100) OC(=N)N (80,100)
O=C (100,100) OC=C (50,100)
S=C(N)N (100,100) SC(=N)N (80,100)
ONC(S)=O (100,100) ON=C (100,100)
NN=C (100,100) O=[N+]O (100, 0)
O=[N+][O-] (100,100) O=[N+](O)O (100, 0)
O=[N+](O)[O-] (100,200) NNC=O (100,100)
NNC(=N)N (100,100) [N+]NC(=N)N (100,100)
O=S(=O)N (100,100) O=S(=O)[NH-] (100, 85)
O=S(=O)[N-] (100, 85) O=S(=O)(N)N (100,100)
O=S(=O)NC(=O)N (100,100) O=S(=O)[N-]C(=O)N (100,105)
SC(=O)N (100,100) S=CN (100,100)
SC=N (80,100) O=C(O)N (100,100)
ONC(=O)N (100,100) ONC=O (100,100)
[O-]NC=O (100,93) ON=CN (100,100)
O=S=O (100,100) O=PO (100,100)
O=P[O-] (100,120) O=P(O)O (100,100)
O=P(O)[O-] (100,123) O=P([O-])[O-] (100,125)
O=P(N)(N)N (100,100) O=P(O)(O)O (100,100)
O=P(O)(O)[O-] (100,123) O=P(O)([O-])[O-] (100,124)
O=P([O-])([O-])[O-] (100,125) S=P(O)(O)O (120,100)
S=P(O)(O)[O-] (120,120) S=P(O)([O-])[O-] (120,121)
S=P([O-])([O-])[O-] (120,122) SP(=O)(O)O (100,100)
SP(=O)(O)[O-] (100,121) SP(=O)([O-])[O-] (100,122)
S=P(S)(O)O (100,100) SP(=O)(O)N (100,100)
SP(=O)([O-])N (100,120) O=P(O)(O)N (100,100)
O=P(O)([O-])N (100,120) O=P([O-])([O-])N (100,125)
O=P(O)(O)[N-] (100, 90) O=P(O)([O-])[N-] (100,110)
O=P([O-])([O-])[N-] (100,115) O=P(O)N (100,100)
O=P([O-])N (100,120) O=P(O)[N-] (100, 90)
O=P([O-])[N-] (100,110) O=P(O)(N)N (100,100)
O=P([O-])(N)N (100,120) O=S(=O)(O)N (100,100)
O=S(=O)([O-])N (100,180) O=S(=O)O (100,100)
O=S(=O)[O-] (100,200) O=S(=O)(O)O (100,100)
O=S(=O)(O)[O-] (100,200) O=S(=O)([O-])[O-] (100,220)
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O=S(=O)S (100,100) O=[N+](O)N (100, 0)
O=[N+]([O-])N (100,100) N#C (100,100)
[O-][N+]=C (100,100) O[N+]=C (100, 0)
S (100,100) [S-] (100, 80)
[S+] (100,100) [F-] (100,100)
[Cl-] (100,100) [Br-] (100,100)
[I-] (100,100) [O+]#[C-] (100,100)

Table B.5: Patterns and associated scores for cycles used in the scoring step of the VSC

method. In this particular case the SMILES-like identifiers differ from their usual meaning.

The symbol [C] represents carbon atoms with an sp3 hybridization, the symbol C without

an adjacent = represents carbon atoms with an sp2 hybridization in which the double bond

is not part of the cycle. The first value of the score pair represents the score of the bond

order arrangement in case of isolated rings, the second represents the score of the bond

order arrangement in case of rings which are fused to another conjugated rings, the third

value the score of the ionization state.

Pattern Scores Pattern Scores

c1ccccc1 (100,100,100) C1C=CCCC=1 ( 95, 40,100)
C1=CCC=CC1 (100, 70,100) n1ccccc1 (100,100,100)
[n+]1ccccc1 ( 80,100,100) [nH+]1ccccc1 (100,100, 93)
N1CCC=CC=1 ( 99,100,100) N1CC=CCC1 ( 99,100,100)
N1C=CCC=C1 ( 99,100,100) N1C=CC=CC1 ( 99,100,100)
[N-]1C=CC=CC1 ( 99,100, 93) [N-]1C=CCC=C1 ( 99,100, 93)
n1ncccc1 (100,100,100) N1N=CC=CC1 (100,100,100)
N1N=CCC=C1 (100,100,100) N1NCC=CC1 (100,100,100)
n1cnccc1 (100,100,100) [n+]1cnccc1 ( 80,100,100)
[nH+]1cnccc1 (100,100, 93) N1C=CCNC1 ( 99,100,100)
[N-]1CNC=CC1 ( 99,100, 93) [N-]1C=CCNC1 ( 99,100, 93)
N1C=CC=NC1 ( 99,100,100) N1CN=CCC1 ( 99,100,100)
N1C=NC=CC1 ( 99,100,100) [N-]1C=NC=CC1 ( 99,100, 93)
[NH+]1=CNC=CC1 ( 99,100, 93) N1C=NCC=C1 ( 99,100,100)
[N-]1C=NCC=C1 ( 99,100, 93) N1CN=CC=C1 ( 99,100,100)
N1CNC[C]C1 ( 60,100,100) N1CN=C[C]C1 ( 60,100,100)
N1C=NC[C]C=1 ( 60,100,100) [NH+]1C=NC[C]C=1 ( 60,100,110)
[NH+]1=CN=C[C]C1 ( 60,100,110) N1[C]C=CNC1 ( 80,100,100)
n1ccncc1 (100,100,100) [nH+]1ccncc1 (100,100, 93)
N1C=CNC=C1 ( 80,100, 80) N1C=CN=CC1 ( 99,100,100)
N1C=NCNC1 ( 99,100,100) N1C=CNCC1 ( 99,100,100)
[N-]1C=CNCC1 ( 99,100, 80) n1cncnc1 (100,100,100)
N1C=NC=NC1 (100,100,100) N1C=NCN=C1 (100,100,100)
N1CNCNC1 (100,100,100) [N-]1CNCNC1 (100,100, 80)
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n1nccnc1 (100,100,100) N1N=CCN=C1 (100,100,100)
N1N=CN=CC1 (100,100,100) N1N=CC=NC1 (100,100,100)
N1C=CN=NC1 (100,100,100) N1N=CNC=C1 ( 80,100, 80)
N1NC=CN=C1 ( 80,100, 80) N1N=CCNC1 (100,100,100)
[N-]1CNN=CC1 (100,100, 80) N1C=NN=CC1 (100,100,100)
[N-]1C=NN=CC1 (100,100, 80) O1C=CN=CC1 (80,0,80)
O1CCNC=C1 (80,0,80) N1C=CC=C1 (100,100,100)
N1C=CCC1 (100,100,100) N1=CC=CC1 ( 90,100,100)
N1CC=CC1 (100,100,100) N1C=C=CC1 (100,100,100)
N1[C]C=CC1 ( 90,100,100) N1C=C[C]C1 ( 90,100,100)
S1C=CC=C1 (100,100,100) O1C=CC=C1 (100,100,100)
N1N=CC=C1 (100,100,100) N1N=CCC1 (100, 90,100)
N1=NCC=C1 ( 90,100, 80) N1NCC=C1 ( 90,100, 80)
N1C=NC=C1 (100,100,100) [N+]1C=NC=C1 (100,100,100)
[NH+]1=CNC=C1 (100,100, 95) [N-]1C=NC=C1 (100,100, 60)
N1C=NCC1 (100,100,100) N1CC=NC=1 (100,100,100)
N1CCN=C1 (100,100,100) N1C=CNC1 (100,100,100)
N1[C]CNC1 ( 95,100,100) N1C=N[C]C1 (100,100,100)
[NH+]1[C]CNC=1 (100,100,90) O1N=CC=C1 (100,100,100)
O1NCC=C1 ( 90,100,100) O1C=NC=C1 (100,100,100)
N1N=NC=C1 (100,100,100) N1N=CC=N1 ( 90, 0, 90)
N1N=CN=C1 (100,100,100) N1C=NN=C1 (100,100,100)
N1N=CNC1 (100,100,100) N1NC=NC1 (100,100,100)
N1NC=NC(=O)1 (100,100,100) N1N=CNC(=O)1 (100,100,100)
N1N=NN=C1 (100,100,100) N1N=NC=N1 (100,100,100)
[N-]1N=NN=C1 (100,100,105) [N-]1N=NC=N1 (100,100,105)
S1N=CC=C1 (100,100,100) S1C=NC=C1 (100,100,100)
S1C=CNC1 (100,100,100) S1C=[N+]C=C1 ( 80,100,100)
O1N=CC=N1 (100,100,100) O1NCC=N1 ( 80,100, 80)
O1N=CN=C1 (100,100,100) O1C=NN=C1 (100,100,100)
S1N=NC=C1 (100,100,100) S1N=CN=C1 (100,100,100)
S1C=NN=C1 (100,100,100) S1N=CC=N1 (100,100,100)
S1NCC=N1 ( 80,100,100)
[N-]1C=CC=NC=CC[N-]CC=CN=CC=C1 (200,100,360)
N1C=CC=NC=CCNCC=CN=CC=C1 (200,100,200)
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Table B.6: Patterns and associated scores for ring substituents used in the scoring step

of the VSC method. The first value of the score pair represents the score of the bond order

arrangement, the second value the score of the ionization state.

Pattern Scores Pattern Scores

CN (100, 100) C=N ( 60, 60)
C=[NH+] ( 60, 50) C=[NH2+] ( 60, 50)
CO (100, 100) C[O-] (100, 90)
C=O (115, 115) CS (100, 100)
C[S-] (100, 90) C=S (115, 115)
C=NO (110, 110) CN=O (100, 100)
C=CN (110, 110) CC=N (100, 100)
C=NN (120, 120) CN=N (100, 100)
NO (100, 100) [N+]O (140, 0)
[N+][O-] (140, 160) S=O (150, 150)
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Appendix C

Software Architecture

In this chapter, the software architecture of the NAOMI framework is presented in-

cluding a description of the underlying software components, the application programs

based on them and the automated test framework used to ensure that these programs

are reliable and have a high degree of internal consistency. The aim is to provide some

insight into the design decisions made during the development of the NAOMI frame-

work considering its potential application scope and to give an idea about the effort put

into the internal consistency and reliability with respect to the developed algorithms

and software tools. The chapter is organized into three sections. First, the general con-

cepts, central classes, and mutual dependencies of the internal libraries are presented

and discussed. Then, an overview about the numerous application programs is given

including tools developed by the author and additional software based on the library.

The third section gives a quick overview about the automated test framework which is

used to ensure stable development and consistent results.

C.1 Software Libraries

The NAOMI framework follows a library-centric software design principle with the aim

to provide wide-ranging and highly reusable components for the rapid development of

both new scientific methods and application programs in the context of CADD. The in-

dividual libraries encapsulate data structures and associated functionality with a clearly

defined scope of application. The purpose of this section is not to provide a compre-

hensive and detailed description of each component including its classes and functions

but to give a general insight into the system’s structure and to relate it to the methods

presented in the previous chapters. For a better overview, the libraries are classified

into different categories (see figure C.1). Support libraries provide basic functionality
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which is essentially required in many applications in the context of cheminformatics.

As they do not depend on other libraries of the system they can be considered as its

lowest hierarchical level. Core libraries focus on those chemical objects which play

the most central role in typical cheminformatics and screening applications. These are

small molecules, proteins, protein-ligand complexes, and molecular interactions. As has

been described previously, a lot of effort has been put into the appropriate and consis-

tent modeling of each of these structures. Database libraries implement the different

database schemes, while Application libraries incorporate the data structures and

algorithms for specific applications. In the following six libraries will be discussed in

order to present the core structure of the NAOMI framework.

FileHandling GeometryChemistryParser

Support Libraries

InteractionComplex

Molecule Protein

Core Libraries

Protoss RAISE

Hyde

Application Libraries

MolDB ProteinDB

FastBitIndex

Database Libraries

Figure C.1: General structure of the libraries in the NAOMI framework.

File Handling - Support Library

Specialized file formats are the most common source of chemical structure data in the

context of cheminformatics. The corresponding files are structured in such a way that

they comprise multiple entries corresponding to different chemical entities. The main

purpose of the File Handling library is to process the supported types of chemical

data files (SDF, MOL2, Smiles, PDB) and to provide access to their individual entries.
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This is the first step of the input procedure shown in Figure C.4. The most central

classes are InputSplitter, IODevice, and MultiDeviceHandler. The InputSplitter is an

abstract base class with the purpse to split an input file into its individual entries.

As the exact way to do this depends on the respective chemical file format, different

InputSplitters have to be implemented for each of these cases. IODevice is a container

for exactly one input file and provides access to its individual entries in textual form.

MultiDeviceHandler essentially offers a consecutive index for the unified handling of

multiple input devices.

Parser - Support Library

Chemical file formats are based on different concepts for the description of molecules,

e.g., string identifiers or connection tables. Each of these has its own specification

and needs to be interpreted accordingly. The main purpose of the Parser library is to

provide parsers for each supported chemical file format which are used to both extract

the included data and at the same time check the adherence to format specifications.

The parsed information is stored in specialized data objects which can be passed on

to other libraries. This is the second step of the input procedure shown in Figure C.4.

Currently, parsers for the following formats are included: PDB, MOL, MOL2, SDF,

SMILES.

Chemistry - Support Library

The Chemistry library incorporates the data associated with different layers of the in-

ternal chemical model presented in Section 2.1. This includes both classes representing

the basic objects and their properties (Element, ValenceState, AtomType) and global

containers reflecting their respective connections (see figure C.2). This information is

needed in the third step of the of the input procedure shown in figure C.4.

Molecule - Core Library

The Molecule library is the most extensive of the core libraries and is at the heart of

the NAOMI framework. Its central class is the Molecule which is implemented as an

undirected graph based on an adjacency-list representation. Its nodes and edges cor-

respond to Atoms and Bonds respectively. The latter structures play a prominent role

throughout the core libraries as they incorporate both the internal chemical description

as well as information about the molecule’s topology (see figure C.3.

As Molecules are complex objects, they are created by specialized builder classes

which use the format-specific data provided by the Parser library in order to build
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Figure C.2: Internal structure of the Chemistry library.

the internal representation according to the procedures described in section 2.3. This

workflow generally consists of two parts, a format-dependent build-up step in which the

complete graph structure is created and a format-independent initialization procedure

during which additional information, e.g., atom types, functional groups, and rings, is

calculated (see figure C.4).

The Molecule library additionally includes a number of submodules providing func-

tionality for canonicalization, superposition, export to different file formats, and the

calculation of physicochemical properties (see table C.1). Each submodule incorporates

its own data structures which can be used by other libraries.
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Figure C.3: Internal representation of molecules in the NAOMI framework.

Protein - Core Library

As was explained in Section 3.1, the internal representation of proteins in the NAOMI

framework is largely based on the same models developed for the description of molecules.

This is directly reflected on the software level as shown in figure C.5. Proteins are

composed of molecules, which represent their connected molecular components, and

individual Residues. Additionally, they include data structures which allow the map-

ping of particular atoms to their respective residues. Not storing the information about

residues in the Atom class was a conscious decision in order to avoid mutual dependen-

cies between the libraries.

Proteins are created by specialized builder classes based on the same general pro-

cedure shown in figure C.4. As they consist of the same data structures as molecules,

functionality from the submodules of the Molecule library can be easily reused. The

protein library also has a similar structure as the latter and thus includes additional

submodules (see table C.2). Some functionality such as the superimposition of protein

structures is implemented in a library of its own due to the inherent complexity of the

task.
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Figure C.4: General procedure for the creation of Molecules in the NAOMI framework.

Table C.1: Submodules of the Molecule library.

Submodule Description

Assigner Builders for the internal chemical description

Builder MoleculeBuilders for different file formats

Canonizer Canonicalization of molecules and atoms

MultiState Handling of protomers

Properties Calculation of physicochemical properties

Superposer Superposition of molecules

Writer Export of molecules to different file formats

Complex - Core Library

Complexes in the NAOMI framework are essentially a combination of proteins and

molecules, so that the Complex library directly builds on the functionality associated

with the respective objects. Apart from the Complex class, the library introduces the

ActiveSite as an additional data structure. A Complex is a composition of a protein,

waters, metals, and all remaining molecules. The ActiveSite class is structured similarly,

but does include a list of residues rather than the complete protein (see figure C.6).

Table C.2: Submodules of the Protein library.

Submodule Description

Builder ProteinBuilders for different file formats

Chain Handling of protein chains

MultiState Handling of protomers in residues

Writer Export of proteins to different file formats
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Figure C.5: Internal representation of Proteins in the NAOMI framework.

C.2 Application Software

The NAOMI software system includes a large number of application programs which

have been implemented using the functionality provided by the software libraries pre-

sented in the previous section. These range from small command-line tools to complex

GUI-based programs covering a broad scope of different application scenarios.

C.3 Software Testing

In order to ensure both the constant scientific quality of the included methods and

algorithms as well as the technical reliability of its individual components, the NAOMI

framework employs a number of completely automated software tests.

Unit-Tests

The unit tests are based on the QtTest framework[194] and can be compiled and ex-

ecuted locally. They exist for each of the internal libraries and usually cover most of

their basic functionality.
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Figure C.6: Internal representation of Complexes and ActiveSites in the NAOMI frame-

work.

System-Tests

The internal system tests are based on the continuous integration tool jenkins[195] and

which is extended by a python-based automated test framework developed and main-

tained by the BioSolveIT. On the one hand, this approach ensures that both libraries

and application software can be compiled and executed on different platforms. On the

other, it allows to perform tests encompassing the complete system in an automated

fashion.
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C.3 Software Testing

Table C.3: Software applications using the NAOMI framework.

Tool Type Availability

LeadIT1 GUI application www.biosolveit.de/LeadIT

MONA GUI application www.zbh.uni-hamburg.de/Mona

NAOMI Command-line tool www.zbh.uni-hamburg.de/NAOMI

Protoss Web server www.zbh.uni-hamburg.de/protoss

SMARTSviewer Web server smartsview.zbh.uni-hamburg.de

SMARTSeditor GUI application www.zbh.uni-hamburg.de/smartseditor

SeeSAR GUI application www.biosolveit.de/SeeSAR

Torsion Analyzer GUI application www.biosolveit.de/TorsionAnalyzer
1The handling of small-molecules is based on NAOMI
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Appendix D

Software Tools

NAOMI Converter

The NAOMI converter is a command-line tool for the conversion of the most com-

mon chemical file formats (MOL2, SDF, SMILES, PDB). It is completely based on

the NAOMI software system and incorporates both the method for the consistent con-

version of molecules described in [D1] and the method the perception of molecules

from three-dimensional coordinates presented in [D5]. As a batch processing tool, the

NAOMI converter does not need any kind of manual intervention and all relevant pro-

gram options can be specified using predefined command-line parameters.

==============================================================
NAOMI

Molecule f i l e conve r t e r ( 2 . 0 )
==============================================================

Authored by : S . Urbaczek , A. Kolodzik , R. F i s che r and T. Lippert
Many thanks to : Prof . M. Rarey , Dr . H. Claussen ( BioSolveIT ) ,

and R. Kraus ( BioSolveIT )

Supported f i l e formats :
Input :
∗ . mol ∗ . mol2 ∗ . pdb ∗ . s d f ∗ . smi ∗ . s m i l e s

Output :
∗ . mol ∗ . mol2 ∗ . s d f ∗ . smi ∗ . s m i l e s

General opt ions :
−h [ −−help ] Pr in t s he lp message
−v [ −−v e r b o s i t y ] arg Set v e r b o s i t y l e v e l (0 = Quiet ,
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D. SOFTWARE TOOLS

1 = Errors , 2 = Warnings , 3 = In fo )

Input opt ions :
− i [ −−input ] arg Input f i l e ( s ) , s u f f i x i s r equ i r ed .

Seve ra l input f i l e s can be
g iven separated by spaces ,
e . g . − i a . mol2 b . sd f

Output opt ions :
−o [ −−output ] arg Output f i l e , s u f f i x i s r equ i r ed .

Conf igurat ion :
−−a l l Convert a l l components from entry

( Largest Component i s converted
by d e f a u l t ) .

Although being first and foremost a conversion tool, the NAOMI converter can also

be applied in several other scenarios depending on the input format and the chosen

options.

• Concatenation of Datasets - The NAOMI can accepts multiple input files and

combines their respective entries in a single output file

• Concatenation of Datasets - The NAOMI can accepts multiple input files and

combines their respective entries in a single output file

• Cleanup of Datasets - The NAOMI converter does convert neither invalid file

entries nor invalid molecules. This feature can be used to eliminate such entries

from datasets.

• Calculation of three-dimensional hydrogen coordinates - The NAOMI adds miss-

ing hydrogens to molecules and calculates three-dimensional coordinates if possi-

ble. If no conversion is performed, meaning that input and output file have the

same format, this feature can be used to eliminate invalid entries.

• Generation of unique SMILES - The NAOMI converter generates unique SMILES

by default.

• Extraction of small molecules from pdb data
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Journal articles
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E. JOURNAL ARTICLES

NAOMI: On the Almost Trivial Task of Reading Molecules

from Different File Formats

[D1] S. Urbaczek, A. Kolodzik, J.R. Fischer, T. Lippert, S. Heuser, I. Groth, T.

Schulz-Gasch and M. Rarey. NAOMI: On the Almost Trivial Task of Reading Molecules

from Different File Formats. Journal of Chemical Information and Modeling, 51(12):3199-

3207, 2011.

http://pubs.acs.org/articlesonrequest/AOR-hRTTf9abf9PGggQX9ztR

Reproduced with permission from S. Urbaczek, A. Kolodzik, J.R. Fischer, T. Lippert,

S. Heuser, I. Groth, T. Schulz-Gasch and M. Rarey. NAOMI: On the Almost Trivial

Task of Reading Molecules from Different File Formats. Journal of Chemical

Information and Modeling, 51(12):3199-3207, 2011. Copyright 2011 American

Chemical Society.
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’ INTRODUCTION

Chemical file formats provide the necessary data for applica-
tion programs and offer a means to share results with other
scientists in a computer readable form. For small molecules, the
most commonly used formats are Symyx SDF V2000 (formerly
MDL SDF),1 Tripos MOL2,2 and Daylight SMILES.3 Virtually
all public databases provide molecular files of at least one of
these types.

Unfortunately, many programs do not accept all formats as
input or generate only some of them as output. Hence, file format
converters are needed to exchange data between these tools. This
becomes especially important if several of these tools are com-
bined in a workflow. The consistent conversion of molecules is
crucial at this point, since even minor alterations might result in
errors in subsequent calculations.

The conversion process is difficult and error prone. File for-
mats implicitly represent an underlying chemical model which
has to be taken into account. Hence, the file format conversion is
actually a conversion between different chemical representations.
Furthermore, some programs generate files that do not follow
format specifications or contain errors. Converters must thus be
able to identify errors and ambiguities in input data and resolve
them consistently or discard the corresponding molecule.

Since chemical file formats play such a central role in chemin-
formatics, every tool and software package must be able to read
and write molecular files. Hence, every tool that supports more
than one file format can be used as a converter. However, there
are tools which have specifically been designed for file format
conversion, such as the free software OpenBabel4 and, more

recently, fconv5 or the commercial tools MOL2Mol,6 MN.
Convert,7 and Babel.8 Furthermore, there is a large number of
programming libraries for cheminformatics, both open source
and proprietary, which provide the necessary functionality to
read and write molecules. Evidently, these can be used to imp-
lement converter tools. Examples of such libraries are Open
Babel,9 CDK,10 CACTVS,11 JOELib,12 PerlMol,13 OEChem,14

and RDKit.15 Additionally, some tools are routinely used
for file format conversions, although that is not their spe-
cific purpose. Typical examples are programs for the genera-
tion of 3D coordinates, such as CORINA,16 LigPrep,17 and
CONCORD.18

We have implemented a new tool for the consistent conversion
of chemical file formats called NAOMI. This converter is based on
a robust chemical model which is designed to appropriately
describe organic molecules relevant in the context of drug
discovery. It provides a reliable and accurate internal representation
which allows for a consistent interconversion of the widely used

Figure 1. Different representations of carboxylates as observed in
MOL2 files.
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molecular file formats SDF V2000,1 MOL2,2 and SMILES.3

NAOMI also supports reading and writing SDF V3000 files but
does currently not implement all associated features, e.g., self-
contained sequence representation. NAOMI checks the chemical
validity of molecules and calculates molecular descriptors indepen-
dent of input file formats.

Although file IO is a task all cheminformatics tools have to per-
form, not very much is known about the methodologies applied
to address the problems related to file conversion. We assume
that many tools use approaches very similar to NAOMI, but un-
fortunately these are mostly not published. Furthermore, file IO
and conversion is rarely tested and validated exhaustively. The
aim of this paper is to explicitly put the focus on these tasks to
demonstrate the complexity and typical pitfalls. We present a
round robin test for cheminformatics tools able to read and write
different file formats and advocate the use of such tests routinely.
File Format Conversion. The conversion of file formats in-

volves two steps: First, the information provided by the input
format is interpreted to build an internal representation of themol-
ecule. Second, all relevant data for the target format is derived from
this representation. Due to the different underlying chemical mo-
dels of the file formats, the conversion usually involves switching
from one chemical description to another. Thus, it is important to
consider the requirements and limitations of these descriptions.
The Symyx SDF format1 represents molecules by a single va-

lence bond structure, also called Lewis structure.19 Hydrogens
are frequently omitted to save disk space, while the file format
specification ensures the presence of formal charges. The valence
bond description has limitations concerning kekule and resonance

structures, since multiple equivalent valence bond forms of the same
molecule may exist.
SMILES20 can represent molecules by a single valence bond

structure, whereas hydrogens are virtually always omitted. The
format also implements the concept of aromatic atoms and
bonds, which allows to represent aromatic systems with different
equivalent kekule forms by a single delocalized description. Ac-
cording to the Daylight theory manual,20 aromaticity in SMILES
is however not intended to model physicochemical properties
(Daylight theory manual, page 14). Nevertheless, aromatic atoms
and bonds are commonly used to describe molecules which are
aromatic in a chemical sense, although a single valencebond structure
would be sufficient to characterize these molecules unambiguously.

Figure 3. Schematical view of the three steps of molecule initialization.

Figure 2. Annotation of the three levels of chemical information for an oxygen of a carboxylate.

Figure 4. If no valence state can be identified for an atom, then a set of
simple correction patterns is applied.
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The TRIPOS MOL2 format implements the concept of aro-
matic atoms and bonds, too. Furthermore, the format offers the
possibility to describe equivalent resonance forms of common
functional groups, such as carboxylates and guanidinium groups,
with a delocalized representation. This is realized using specific
atom types, called sybyl types, which include information about
the atom’s hybridization. Usually, MOL2 files do not provide for-
mal charges, but hydrogens are specified. Unfortunately, there is
no exact documentation on how the sybyl types must be as-
signed. This leads to considerable differences between MOL2
files written by different tools. As shown in Figure 1 there are
many ways to combine sybyl types, bond orders, and charges to
describe the same functional group.

’METHODOLOGY

Chemical Model.A consistent chemical model is the keystone
for an appropriate internal representation ofmolecules in chemin-
formatics application. It also provides the framework for the
identification and correction of erroneous input molecules.
The atom-centered chemical model of NAOMI comprises

three different levels of chemical information which are assigned
to each atom during an initialization procedure. Each level ex-
tends the environment that is considered and provides a more
detailed description of the atom.
The element is the first and most basic level of description. It

provides properties which depend only on the atom’s chemical
element. These properties comprise the element symbol, the ele-
ment name, the atomic number, the atomic weight, the van der
Waals radius, the number of valence electrons, the covalent ra-
dius, and whether the element is considered a metal.
The valence state is the second level of chemical information

and extends the scope of the chemical element by taking bonds
and formal charges into account. Each valence state represents a
valid bond pattern of an atom in a valence bond structure of the
molecule. Valence states contain topological information which
include formal charge, number of bonds, bond orders, number of
free electrons, and whether the corresponding atom can be part
of a conjugated or aromatic system.
The atom type extends the valence state to model effects, such

as aromaticity and the existence of equivalent resonance forms.
This is needed to compensate for the shortcomings of a localized
molecular description.
To determine an atom type, the atom and all atoms in its con-

jugated system (if applicable) are considered. Atom types provide
an ideal geometry, a corresponding sybyl type, mark atoms as
conjugated or aromatic, and contain information about delocalized
electrons. Additionally, an atom type marks the corresponding
atom as a hydrogen-bond acceptor or as a potential hydrogen-
bond donor.

Each atom is assigned a corresponding element, valence state
and atom type (see Figure 2). Valence states ensure that each mole-
cule has a valid valence bond structure, while atom types allow easy
access to a delocalized description.
The basic assumption of the chemical model is that organic

molecules which are relevant in the drug discovery context can
always be represented by at least one valence bond structure. If that
is not the case, then the molecule will either be corrected or dis-
carded. Since there are no strict valence rules for metallic elements,
only monatomic ions are accepted. Molecules containing cova-
lently bound metals are currently not supported by the model.
Molecule Initialization. Overview. During the molecule in-

itialization data from input files is used to build the internal re-
presentation of the molecule. This task is carried out in three
separate steps (see Figure 3).
Element Assignment. First, the molecular graph is built from

the connectivity data provided by the input file. During this pro-
cess, the element for each atom is determined, and initial bond
types are assigned. The perception of elements, bond types, and
connectivity from the different file formats is implemented ac-
cording to their respective specifications. All elements of the
periodic table and bonds of type single, double, triple, and aro-
matic are supported. Molecules which have atoms or bonds with
undefined types are discarded at this point, since this information
is required in the subsequent steps.
The initial data are used to generate a valid valence bond form

of the molecule. A valence bond form is valid if valence states can
be assigned to all atoms and the aromatic bonds can be local-
ized. If no valence bond form can be generated and no correction is
possible, the molecule is discarded.
Valence State Assignment. They are selected on basis of the

formal charge and bond orders of the atom. Hence, molecules with
formal charges, hydrogens, and localized bond orders are the op-
timal input for this procedure. In this case, the assignment is
straightforward and unambiguous. The omission of hydrogens or
the use of aromatic bonds, which basically corresponds to the omis-
sion of bond orders, also poses no problem, since the remaining
properties are still sufficient to reach an unambiguous assignment.
If charges or multiple properties are missing, then additional data
from the input format is necessary to resolve ambiguities.
Each file format makes use of a different molecular representa-

tion and applies certain strategies to omit redundant information.
Hence, individual assignment procedures are needed for each file
format.
Molecules from SDF are supplied in a valence bond form,

which allows a direct comparison to valence states. If hydrogens are

Figure 5. If an input file annotates aromatic atoms and bonds (A), default
valence states are assigned in a first step (B). If this attempt is not successful,
alternative valence states are considered (C) to correct the input. Figure 6. Molecules are partitioned into zones of conjugated atoms.

The two oxygen atoms of the carboxylate group and the two nitrogen
atoms of the imidazole ring have different valence states but identical
atom types. Therefore, the valence states describe a localized structure
with a defined formal charge, and the atom types describe a delocalized
structure, with a delocalized charge.
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omitted, formal charges and multiple bonds are sufficient to un-
ambiguously identify the correct valence states.
Molecules from SMILESmay provide information on the bond

orders explicitly, whereas hydrogens are virtually always omit-
ted. If this is the case, the assignment works the same way as for
SDF. Additionally, SMILES implements the concept of aromatic
bonds. This means that bond orders and hydrogens can be mis-
sing, and hence ambiguities arise for certain types of atoms. The
most prominent example is the pyrrole-like aromatic nitrogen
(see Figure 5) which has to be provided with explicit hydrogens
for an unambiguous assignment.
Molecules from MOL2 usually have all hydrogens attached

but lack the specification of formal charges. If they also contain
aromatic bonds, two properties are missing. These ambiguities
can only be resolved by using sybyl type information. Addition-
ally, some resonance forms of common functional groups are
indicated by specific sybyl types. Their bond types and valence
states are adapted accordingly in a postprocessing step.
If no valence state could be found for an atom, the atom’s en-

vironment is checked by using simple patterns representing
common valence errors (see Figure 4). If a pattern matches, then
a valence state is assigned, and the bond orders and valence states of
the environment are adapted. Otherwise the molecule is discarded.
Afterward, the bonds marked as aromatic in the input file are

localized to ensure a valid valence bond form. Information about
the localized bond orders for each atom is provided by its

corresponding valence state. The information is used in a
recursive algorithm to assign defined bond orders to all bonds.
If the assignment of bond orders was not successful using the

default valence states, all atoms of a molecule are checked for an
alternative valence state assignment using rule sets specific to the
respective file formats (see Figure 5). All combinations of these
alternatives are enumerated, and the most probable solution is
picked by a simple scoring scheme. The score is calculated as the
sum of atoms which have the same valence states with respect to
the initial structure. Thus, the procedure assures a minimum de-
viation from the default assignment. If there are multiple solu-
tions with equal scores, a canonical solution is picked. If no so-
lution could be found, then the molecule is discarded.
Atom Type Assignment. At this point, a valid valence bond

form of the molecule is available and can be accessed during
subsequent calculations. Since all necessary information can now
be derived from the internal representation, the following steps are
independent of the input file format.
The next step is the generation of a delocalized description for

the molecule. The description allows to overcome the limitations
of the valence bond representation concerning kekule and re-
sonance structures. Although these aspects are handled by
separate procedures, both need information about the molecule’s
rings. These are calculated using the relevant cycles algorithm as
described by Vismara.21

Since equivalent kekule structures can only occur in cyclic sys-
tems, this information is stored directly in the molecule’s rings.
A ring is marked as delocalized if it has alternating single and double
bonds and the number of delocalized electrons does fulfill Hueckel’s
rule. Bonds from rings which are already marked are considered
both single and double during the check of neighboring rings. To
ensure that the assignment for all rings is independent from the
initial valence bond form, the assignment procedure is repeated until
the total number of marked rings does not change anymore.
For the identification of equivalent resonance forms, the mol-

ecule is partitioned into zones which correspond to its conjugated
systems (see Figure 6). This is done by using the information
provided by the valence states in combination with the molecule’s
rings. Each zone is checked for pairs of atoms for which a formal
charge can be exchanged. These atoms can be identified by
comparison of their corresponding valence states. Then all
possible resonance forms are enumerated, and all atoms with de-
localized charges aremarked. Finally, suitable atom types are selected
from a list provided by the valence state using the information about
the conjugated system and the delocalization of the atom.
After the initialization procedure, themolecule is represented by

a valence bond description (valence states and bond orders) and a
delocalized description (atom types and delocalization flags). Both
descriptions can be used in subsequent steps.
Validation. To evaluate the quality of file format conversions,

a method for comparing input and converted molecules is re-
quired. Unfortunately, there is no direct way to determine if two
molecular representations are identical. This is especially true if
they are stored in different file formats.

Figure 7. Various procedures test different aspects of file format
conversions. During these procedures, molecules are converted by
different combinations of tools. USMILES are used for the comparison
of the resulting molecules.

Table 2. Validation of Input Data Sets by NAOMI

data set

no.

molecules

no. rejected

molecules

corrected

molecules

no. diffs

MOL2 T SDF

DUD ligands23 3961 0 10 0

DUD decoys23 124 413 1 13 0

Table 1. Options Used for Computing Time Benchmarks

tool/options explanation

CORINA

�d wh write hydrogens to output file

�d no 3d disable generation of 3D coordinates

�t n do not write trace file

MOE

�SVL script (see Supporting Information)

NAOMI

�v 0 do not print messages to shell

Open Babel

�o can generate USMILES (only for SMILES as output)
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The comparison of unique SMILES (USMILES)22 is an easy
and verifiable way to identify differences between molecules. Two
things have to be taken into consideration with this approach:
First, USMILESgeneratedwith different tools are often not identical.
This means that the method will only be reliable if the USMILES
come from the same source. Second, some file format specific infor-
mation will be lost during the conversion. Therefore, USMILES
should be obtained from SDF files, since it provides an un-
ambiguous valence bond structure.
The public DUD ligand and the DUD decoy23 data sets are

used in all validation procedures. To establish a reference for the
comparison, both were converted from SDF and MOL2 to
USMILES (see Figure 7). These USMILES serve as a basis to de-
termine whether molecules change during conversion steps.
To investigate a tool’s ability to convert file formats, four valid-

ation procedures are used as shown in Figure 7. In the first

procedure, the internal error correction of the tools is analyzed by
conversion of molecules from SDF to SDF. The ability to convert
molecules from one format into another is investigated in the
second procedure by converting molecules from MOL2 to SDF.
The third procedure focuses on a tool’s internal consistency by
converting back and forth using the same tool twice. Finally, the
robustness is checked by using different tools subsequently in a
pipeline.
All validation procedures are performed with CORINA,24

MOE,25 Open Babel,4 and NAOMI. CORINA is commonly
used for generating 3D coordinates and for molecular file format
conversion and is considered the gold standard. MOE is used for
a variety of applications in drug design and supports preparation
of ligands for subsequent calculations. This includes the gen-
eration of protonation states and tautomers as well as filtering
according to molecular descriptors. Correct and consistent
reading and writing of molecules forms the basis for these
applications. An open source alternative to these tools is Open
Babel. Open Babel supports a variety of molecular file formats
and is designed to be used as a file format converter.
Computing Time Benchmarks. Although the consistency

and the quality of the converted molecules are of superior imp-
ortance, computing times play a significant role due to the in-
creasing sizes of current data sets. Hence, the runtime behavior is
analyzed in order to assess their applicability in large setups.
To investigate NAOMI’s performance, the ZINC-every-

thing data set is converted from and to MOL2, SDF, and
USMILES. Measured computing times are compared to the
commonly used tools CORINA, Open Babel, and MOE. For
an unbiased comparison, optional settings of these tools are
selected to yield similar results compared to NAOMI. There-
fore, generation of USMILES and writing of hydrogens are
enforced, and output of additional information is minimized
(see Table 1). Conversion from SMILES to MOL2 and SDF
using CORINA is omitted since CORINA automatically gene-
rates 3D coordinates upon conversion. Furthermore, SMILES is
not supported as an output format by CORINA. Although,
NAOMI is able to conduct its calculations in parallel, this option
is disabled for an easier comparison. All file format conversions are
performed on a Linux PC with two Intel Xeon CPUs (2.53 GHz)
and 32 GB of main memory.

’RESULTS

Data Set Validation. Results of the validation of the DUD
ligand and DUD decoy data sets23 are shown in Table 2. NAOMI
successfully converts all molecules except one from MOL2 and
SDF toUSMILES. A small number of incorrectly protonated nitro-
gens are corrected. Onemolecule (ZINC1583034) is rejected, as it
contains invalid phosphorus and nitrogen atoms (see Figure 8)
which cannot be corrected and localized. Since USMILES

Figure 8. Molecule ZINC0153034: (A) Rejected by NAOMI in DUD
decoy data set and (B) in current ZINC database.

Table 3. Data Sets Converted To USMILES by MOE and
Open Babela

MOL2 T SDF

tool data set no. rejected molecules no. diffs % of data

MOE DUD ligands 0 1598 40%

DUD decoys 0 67 042 54%

Open Babel DUD ligands 0 1875 47%

DUD decoys 0 46 987 38%
a Shown are the differences between the generated USMILES originat-
ing from MOL2 and SDF.

Table 4. Investigation of Correction Functionality

DUD decoys DUD ligands

tool no. rejected no. corrected no. rejected no. corrected

CORINA 0 0 0 0

MOE 0 13 0 8

NAOMI 1 13 0 10

Open Babel 0 0 0 0

Figure 9. (A) Molecule from DUD ligand data set. (B) Corrected molecule from MOE. (C) Corrected molecule from NAOMI.
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generated by NAOMI are identical for both file formats, they can
serve as a reference for the following validation procedures.
Both data sets could also be successfully converted to USMILES

by MOE and Open Babel. The molecule which was rejected
by NAOMI is neither discarded nor corrected by both tools.

USMILES originating from MOL2 and SDF, however, differ
significantly (see Table 3).
Tool Validation 1: Correction. As mentioned above, the

DUD data sets contain 24 invalid molecules in total of which one
has been rejected and 23 could be corrected. CORINA and Open
Babel convert those without performing any error correction
(Table 4). MOE and NAOMI correct the nitrogens with invalid
protonation states with differing results (see Figure 9 for an
example). Additionally, NAOMI corrects invalid phosphate groups.
Tool Validation 2: Conversion. Results of the investigation

of the conversion functionality (see Figure 7) are shown in
Table 5. By inspection of the differing molecules, we were able to
identify a small number of error classes that will be discussed
for every tool:
CORINA places positive charges on carbon atoms of guani-

dinium- and amidinium-like groups. This error also occurs in
five-membered aromatic rings containing this substructure.
MOE places positive charges on carbon atoms of guanidinium-

and amidinium-like groups in five-membered aromatic rings.
Depending on the substituents, the carbon atom is either charged
twice or a carbon atom next to it is negatively charged.
Open Babel’s most prominent class of errors is the incorrect

conversion of aromatic systems containing charged nitrogen
atoms. All bonds in these systems are converted to single bonds
in the resulting SDF file. The second kind of error concerns
protonation states. Open Babel does not consider input hydro-
gens to determine formal charges. Therefore, many atoms are
neutralized during the conversion process. Since MOL2 entries
often do not provide formal charges, this may lead to unexpected
results.

Table 5. Investigation of Conversion Functionality

DUD decoys DUD ligands

tool no. diffs % of data no. diffs % of data

CORINA 5522 4% 439 11%

MOE 4287 3% 181 5%

NAOMI 0 0% 0 0%

Open Babel 13 469 11% 966 24%

Table 6. Investigation of tool consistency

DUD decoys DUD ligands

tool starting file format no. diffs % of data no. diffs % of data

CORINA MOL2 5522 4% 439 11%

SDF 4174 3% 235 6%

MOE MOL2 5770 5% 457 12%

SDF 5683 5% 453 11%

NAOMI MOL2 0 0% 0 0%

SDF 0 0% 0 0%

Open Babel MOL2 17 351 14% 1168 29%

SDF 17 364 14% 1168 29%

Table 7. Investigation of Tool Robustness

DUD decoys DUD ligands

tool X tool Y starting file format no. diffs % of data no. diffs % of data

CORINA MOE MOL2 4265 3% 176 4%

SDF 5931 5% 449 11%

NAOMI MOL2 58 0% 0 0%

SDF 4149 3% 235 6%

Open Babel MOL2 5522 4% 439 11%

SDF 19 192 15% 1371 35%

MOE CORINA MOL2 6755 5% 504 13%

SDF 4656 4% 245 6%

NAOMI MOL2 3159 3% 167 4%

SDF 4585 4% 239 6%

Open Babel MOL2 4483 4% 174 4%

SDF 19 311 16% 1374 35%

NAOMI CORINA MOL2 0 0% 0 0%

SDF 643 1% 17 0%

MOE MOL2 176 0% 0 0%

SDF 1217 1% 221 6%

Open Babel MOL2 0 0% 0 0%

SDF 14 172 11% 1164 29%

Open Babel CORINA MOL2 29 896 24% 1887 48%

SDF 10 047 8% 289 7%

MOE MOL2 13 693 11% 973 25%

SDF 43 285 35% 1703 43%

NAOMI MOL2 13 469 11% 966 24%

SDF 1790 1% 24 1%
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Tool Validation 3: Consistency. Results of the investigation
of consistency (see Figure 7) are shown in Table 6. Starting from
MOL2, the numbers of differences should be identical to those of
validation procedure 2 (see Table 5), since no additional file format
conversion is performed. A higher number of errors indicates in-
consistencies in reading and writing from and to MOL2. Starting
from SDF, no differences at all should occur.
CORINA andNAOMI convert molecules consistently in both

cases. The differences which were observed for CORINA when
the first input was provided from SDF are introduced by switching
from a delocalized to a localized description. Nevertheless, they

only represent different valid resonance forms of the original data
and are therefore not considered conversion errors.MOE andOpen
Babel show inconsistencies in both cases.
Tool Validation 4: Robustness. The robustness of the in-

vestigated tools is analyzed by combining two different tools in a
pipeline. Since tools tend to interpret input from file formats
differently, the molecules can change with each additional tool
included in the workflow. Table 7 indicates that inconsistencies
during file format conversion are not uncommon and depend
both on the kind of tools used and on the order in which they are
combined.

Figure 10. Examples of conversion problems with CORINA, MOE, and Open Babel.

Figure 11. Computing times (wall clock time) for file format conversion of the ZINC-everything data set. For CORINA and MOE, only the
computation from SDF and MOL2 are comparable, since the conversion from SMILES includes 3D coordinate generation which is not the case for
NAOMI and OpenBabel. Furthermore, CORINA does support SMILES as output format.
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Furthermore, the success of the conversion strongly depends
on the source of the input data. The experiment clearly shows that
all tools benefit significantly from preprocessing data sources with
NAOMI toward consistency and high quality (see Figure 10).
Computing Time Benchmarks. Figure 11 summarizes the

computing times for conversion of the ZINC-everything data set.
Since NAOMI is designed for large scale cheminformatics ap-
plications, it is not surprising that it is substantially faster than the
modeling platform MOE. NAOMI supports multithreading re-
sulting in a speed-up by another factor of 1.4. For SDF and
SMILES, file IO is usually the rate-determining step. Therefore,
threading does not lead to an improvement of runtimes. TheMOL2
format however needs a more advanced initialization pro-
cedure, thus leading to gains in runtimes when threading is enabled.
In summary, NAOMI achieves a conversion speed of up to

2841 molecules/second on a PC with two Intel Xeon CPUs
(2.53 GHz) and 32 GB of main memory.

’CONCLUSION

Handling chemical structures is and remains a complex task.
File formats contain chemical descriptions at different levels of
detail and are therefore not easy to convert. Since the description
of file formats are sometimes ambiguous when it comes to details,
software tools tend to interpret them differently. This in turn
causes errors in data sets and misinterpretations in tools. For the
cheminformatics community, it would be a great benefit to build
clear standards for file formats and to certify software with re-
spect to these standards.

Meanwhile, it is important that software tools are at least self-
consistent when reading and writing file formats. Evidently, errors
in reading molecules from files usually have a substantial impact on
downstream algorithms and methods. NAOMI will most certainly
have flaws of its own, and in order to find them, constistency checks
as those presented are needed. We urge that more of these tests
should be published and that the existing ones become a standard
validation procedure for all cheminformatics applications.

The command-line converter NAOMI has been implemented
in C++ and can be downloaded at http://www.zbh.uni-hamburg.
de/naomi. It will be available free of charge for academic use.
A convenient graphical user interface for NAOMI’s functionality
will soon be provided by the chemical library preprocessor
MONA (see http://www.zbh.uni-hamburg.de/mona).

’ASSOCIATED CONTENT

bS Supporting Information. Original and corrected struc-
tures for both DUD data sets are provided. The corrected struc-
tures are supplied in the same file format as the respective input
files (SDF orMOL2). Furthermore, a text file containing the SVL
commands used for the computations with MOE is supplied.
This material is available free of charge via the Internet at http://
pubs.acs.org/.
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ABSTRACT: The perception of a set of rings forms the basis
for a number of chemoinformatics applications, e.g. the
systematic naming of compounds, the calculation of molecular
descriptors, the matching of SMARTS expressions, and the
generation of atomic coordinates. We introduce the concept of
unique ring families (URFs) as an extension of the concept of
relevant cycles (RCs).1,2 URFs are consistent for different
atom orders and represent an intuitive description of the rings
of a molecular graph. Furthermore, in contrast to RCs, URFs
are polynomial in number. We provide an algorithm to efficiently calculate URFs in polynomial time and demonstrate their
suitability for real-time applications by providing computing time benchmarks for the PubChem Database.3 URFs combine three
important properties of chemical ring descriptions, for the first time, namely being unique, chemically meaningful, and efficient to
compute. Therefore, URFs are a valuable alternative to the commonly used concept of the smallest set of smallest rings (SSSR)
and would be suited to become the standard measure for ring topologies of small molecules.

■ INTRODUCTION

Ring perception is a crucial step in many chemoinformatics
applications, including the calculation of molecular descriptors,
the matching of SMARTS expressions, and the generation of
two- and three-dimensional atomic coordinates. In order to
obtain consistent results, a set of rings has to be unique in the
sense that it depends only on the molecule’s topology. Efficient
algorithms and ring perception concepts that lead to a limited
number of cycles provide the means for interactive applications.
Chemically meaningful rings allow for an easy analysis and
interpretation of the resulting set of rings. Due to their high
relevance in chemistry, several computational methods for auto-
matic ring perception have been developed over the past 35
years.4 Each of these methods has deficiencies in being either
not unique or not polynomial in number or not chemically
meaningful. The paper of Berger et al.5 impressively demon-
strates this for a number of ring perception concepts including
the widely used SSSR.4

A molecule can be interpreted as a simple, connected,
unweighted and undirected graph G = (V,E) where the atoms
are interpreted as a set of vertices V and bonds are considered a
set of edges E. A cycle is a subgraph of G such that any vertex
degree is exactly two. A connected cycle is called elementary.
Since elementary cycles meet our expectation of rings in a
molecular graphs we will use the terms elementary cycle and
ring synonymously. E(v1,v2) is the edge connecting the vertices
v1 and v2. For the set of vertices or edges of a cycle (or a general
subgraph) C, we will write V(C) and E(C), respectively. A cycle
C containing the edges E(C) has a length of |C| which is equal
to its number of edges |E(C)|. It can be described by the in-
cidence vector of its edges. A cycle with n edges is called n-cycle.

A connected n-cycle is called n-ring. A chord is an edge e
connecting two vertices of a ring C with e ∉ E(C). A ring is
chord-less if it has no chord. Cycles can be combined to larger
ones by forming the symmetric difference of their edges; this
operation is considered the “addition” of cycles. In order to
describe the addition of cycles, we utilize the xor operator ⊕ in
agreement with the nomenclature used by Berger et al.5 Thus,
the addition of two cycles CA and CB that forms the cycle CC

will be written as CA ⊕ CB = CC. All cycles of G form the cycle
space S(G). A cycle base B(G) is a subset of S(G) that allows to
construct all cycles of S(G) by the addition operation. The
length of B(G) is equal to the sum of the lengths of its cycles.
All cycles of a cycle base are elementary.
In the following, we will discuss common concepts of ring

perception in order to motivate our new approach. The set of
all rings6 (Ω) includes all elementary rings of a molecular
graph and efficient algorithms for its calculation have been
developed. The number of rings and the computational run-
times, however, grow dramatically for complex ringsystems.
Additionally, not all resulting rings are meaningful in a chemical
context, and Ω is, thus, a unique description that is neither
chemically meaningful nor polynomial in size.
The most frequently applied strategy of ring perception is the

calculation of the smallest set of smallest rings4 (SSSR) which
is a subset of Ω. An SSSR represents a minimum cycle base
(MCB). It contains a polynomial number of rings and can be
calculated in polynomial time.7 If a molecular graph contains
only a single MCB, the SSSR is unique and intuitive. If this is
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not the case, the resulting SSSR is arbitrary and depends on the
specific algorithm used for its construction. Furthermore, the
selected SSSR often depends on the input atom order.8

The problems arising from nonunique ring descriptions can
be exemplified with SMARTS pattern matching. According to
page 20 of the Daylight Theory Manual,9 the SMARTS pattern
[R3] describes an atom which is part of three SSSR rings. The
matching of this SMARTS pattern on the highly symmetric
molecule cubane (SMILES = C12C3C4C1C5C2C3C45) using
the Daylight web service10 illustrates the problems arising from
the SSSR’s lack of uniqueness (see Figure 1). Any combination

of five of the shown 4-rings forms a valid SSSR. The sixth ring
can be constructed by adding the rings of the SSSR.11

Consequently, the SMARTS pattern [R3] only matches four
of the eight equivalent carbon atoms depending on the selected
SSSR.
The essential set of essential rings (ESER)12 and the

approaches published by Corey13 and Wipke14 try to perceive
chemically meaningful rings by calculating an MCB and adding
rings up to a certain size or rings including certain elements.
Due to their heuristic nature, these approaches lack a mathe-
matical foundation and are not suitable for all kinds of
molecular graphs.5

In addition, there is a number of graph theoretical ring
perception concepts which are limited to planar graphs. The
minimum planar cycle base and the extended set of smallest
rings15 are examples of such concepts. Since molecular graphs
are not necessarily planar, these ring perception concepts are of
limited use for general applications in chemoinformatics.
The set of β-rings16 is defined on a plane embedding of a

molecular graph. The chord-less faces of the embedding are
processed by increasing size. The set of β-rings includes all
faces representing 3-rings or 4-rings. Additionally, it contains all
faces which are linearly independent of three or less shorter
faces already contained in the set. Berger et al.5 suggested to use
the β*-rings instead. These rings are calculated on all chord-
less rings of a graph instead of the chord-less faces of a specific
plane embedding. In contrast to the set of β-rings, the set of
β*-rings is unique but contains an exponential number of rings.
An additional set of rings which is defined for general graphs

is the set of smallest cycles at edges (SSCE).17 The SSCE is
calculated on the basis of Ω by recursively deleting all edges
included in more than one ring. The SSCE does, however, not
necessarily contain a cycle base. Consequently, it does not
provide a complete description of the rings of a molecular
graph.
Relevant cycles1,2 (RCs) are defined as the union of all

MCBs. They comprise a unique set of rings and an intuitive
description of most molecular graphs. Some molecules, how-
ever, contain an exponential number of RCs. Examples are

cyclophane-like structures which will be discussed in more
detail in the following sections.
To tackle the exponential number of rings, Gleiss et al.11

suggested to classify RCs into interchangeability classes (ICs).
ICs are calculated by dividing RCs into essential and
interchangeable rings. An essential ring is included in all
MCBs. Rings which are not essential are called interchangeable.
An IC contains either a single essential ring or all inter-
changeable rings which can be constructed from a subset of the
IC and shorter cycles. While treating the rings of an inter-
changeability class as a union can be suitable for the prediction
of RNA secondary structures, this concept is not generally
applicable in chemoinformatics. For example, the description of
the six RCs of cubane or the 6-rings of fulleren as single ICs is
too coarse for most applications and, especially in the case of
fullerene, it is not chemically meaningful.
Relevant cycle families (RCFs)1 are conceptually similar to

ICs. An RCF contains all RCs generated on the basis of a single
relevant cycle prototype (RCP). RCPs are not unique and their
number depends on the order of the molecule’s atoms. Since
each RCP results in an RCF, the RCFs are also not unique and
their number can vary for a molecule.
None of the mentioned concepts of ring perception effi-

ciently calculate a complete and polynomial set of unique and
chemically intuitive rings for molecular graphs. We introduce
the concept of unique ring families (URFs), which meets all of
these requirements.

■ UNIQUE RING FAMILIES
Generation of Relevant Cycles. Since unique ring families

(URFs) are defined on the basis of RCs, we provide a short
outline of Vismara’s RC detection algorithm.1 The perception
of RCs involves five consecutive steps which are explained
below (see Figure 2):

1. Calculate all 2-connected components of the molecular
graph G.

2. For each 2-connected component, calculate the shortest
paths from each vertex r to each other vertex, only
passing through vertices which follow r in an arbitrary
but fixed order π.

3. Calculate RCPs by combining pairs of shortest paths of
identical size starting from the same vertex r.

4. Eliminate RCPs which linearly depend on strictly smaller
cycles with respect to cycle addition.

5. Calculate RCs by a backtracking procedure on the basis
of the RCPs.

2-Connected components of the molecular graph can be
calculated using the algorithm published by Tarjan.18 The 2-
connected components will be called ringsystems in the
following sections. An order π of the vertices is established
by sorting them according to their degree in descending order.
Vertices of identical degree are ordered arbitrarily. This
ordering guarantees polynomial runtime complexity for the
calculation of RCPs. In the second step, a breadth-first-search is
used to calculate a single shortest path P(r,t) from each vertex r
to each other vertex through vertices following r in the ordering
π. Thus, only paths through vertices of equal or lower degree
are considered. If two shortest paths P(r,p) and P(r,q) of
identical size solely share the vertex r, and if furthermore p and
q are directly connected by an edge, an uneven ring is
identified. If p and q are both directly connected to a vertex z
which is neither a member of P(r,p) nor a member of P(r,q), an

Figure 1. Cubane contains six alternative MCBs. Each combination of
five of the 4-rings forms an SSSR.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci200629w | J. Chem. Inf. Model. 2012, 52, 2013−20212014



even RCP is identified. The length of the shortest paths used to
identify an RCP of size n is therefore given by the following
equation:

= | | =

−

−

⎧
⎨
⎪⎪

⎩
⎪⎪

E P r p E P r q

n
n

n
n

( ( , )) ( ( , ))

1
2

if is odd

2
1 if is even

(1)

As described above, only a single shortest path is considered
for each pair of vertices. Multiple shortest paths connecting two
vertices may exist, however. Thus, the polynomial number of
RCPs represent only a subset of the exponential number of
RCs. To identify all RCs on the basis of the RCPs, Vismara’s
algorithm uses a backtracking procedure. The set of RCs
calculated during backtracking on the basis of a single RCP is
defined as an RCF. This backtracking procedure includes the
following steps:
First, for each RCP the set Sp of all shortest paths from p to r

and the set Sq of all shortest paths from q to r are calculated. If
an RCP is uneven, each combination of P(r,p) ∈ Sp and P(r,q)
∈ Sq forms an uneven RC with the edge E(p,q) (see, for
example, the 11-ring in Figure 2E). If an RCP is even, each
combination of P(r,p) ∈ Sp and P(r,q) ∈ Sq forms an even RC
with the edges E(p,z) and E(q,z).
Note that all RCs of an RCF have the same size. If their size

is uneven, they share at least the vertices r, p, and q and the
edge E(p,q). Otherwise, they share at least the vertices r, p, q,
and z and the edges E(p,z) and E(q,z). All RCFs of a molecular
graph are disjoint with respect to their rings and their union
forms the set of all RCs of a graph. In the following, the RCF of
a ring Cx will be called RCFx. Furthermore, we will write
E(RCFx) and V(RCFx) to denote the union of the edges or
vertices of all rings of an RCFx, respectively.
Introduction of Unique Ring Families. On the basis of

the RCs of a molecular graph, we define the terms URF-pair-
related and URF-related as follows:

Definition 1. Let C1 and C2 be two RCs of a graph G, then
C1 and C2 are URF-pair-related if and only if all of the following
conditions hold:

1. |C1|=|C2|
2. E(C1) ∩ E(C2) ≠ 0̷
3. It exists a set S of strictly smaller rings in G such that C1

⊕ (⊕c∈Sc) = C2

Definition 2 . The URF-relation is defined as the transitive
closure of the URF-pair-relation. A URF is defined as the set of
URF-related RCs and hence represents an equivalence class.
The length |URF| is defined as the length of each of its RCs.
The number of URFs of a graph is called URF-number.
For an efficient calculation of molecular ring topologies in

case of complex ringsystems, a description of rings should be at
most polynomial in number with respect to the size of the
graph. In the following, we estimate the URF-number of a
molecular graph by comparing it to the polynomial number of
RCFs.

Theorem 1. Any two rings of an RCF are URF-related.
Due to the construction of RCFs as described above, any two

RCs of an RCF have identical lengths and share at least either
an edge E(p,q) or the edges E(p,z) and E(q,z). Thus, all rings of
an RCF meet conditions 1 and 2 of definition 1. Furthermore,
the RCs of an RCF differ only by alternative shortest paths
replacing P(r,p) or P(r,q). As a consequence of eq 1, the
following equation describes the length of two shortest paths
used to construct an RCP of size n:

| ∈ | = | ∈ | <P r p S P r q S
n

( , ) ( , )
2p q (2)

Since P(r,p) contains less than half of the edges of the RCP,
the symmetric difference of any two alternative shortest paths
of Sp forms a set of rings which are smaller than n. Since the
same is true for any two alternative paths of Sq, each two rings
of an RCF can be constructed by cycle addition of each other
and a set of smaller rings. Hence, all rings of an RCF meet
condition 3 of definition 1. Consequently, any two RCs of an

Figure 2. Process to identify the RCs of a molecular graph. (A) At first, 2-connected components are calculated (B) and vertices are ordered
according to their degree. Vertices of higher degree are labeled with higher numbers than vertices of lower degree. (C) Shortest paths only passing
through vertices following r in the order π are calculated from each vertex r to each other vertex of the graph (shown for vertices 14 and 15). (D)
The polynomial number of RCPs are calculated on the basis of the identified shortest paths. Two shortest paths of equal lengths which only share
the vertex r form an uneven RCP if their end points (p, q) are adjacent. If they share an adjacent vertex z, they form an even RCP. (E) RCs are
enumerated on the basis of RCPs by combining alternative shortest paths (red arrows) connecting p or q to r.
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RCF are URF-related and the URF-number is less or equal to
the number of RCFs. Since the number of RCPs and RCFs is
polynomial according to Theorem 4 of Vismara’s paper,1 the
URF-number is at most polynomial, too.
Calculation of URFs. In the following, we provide an

algorithm to calculate the polynomial number of URFs in
polynomial time on the basis of the RCPs. The algorithm uses
the described properties of RCPs as well as their linear de-
pendency with respect to cycle addition in order to describe
URFs by their edges sets.
Lemma 1 . Let CA and CB be two URF-related RCs, then CA

and CB linearly depend on each other and a set of smaller rings
with respect to cycle addition.
According to condition 3 of definition 1, two URF-pair-

related RCs linearly depend on each other and a set of smaller
rings with respect to cycle addition. Since a URF consists of the
transitive closure of the URF-pair-relation, any two URF-
related RCs linearly depend on each other and a set of smaller
rings. Thus, URFs can be calculated in three steps.

1. Calculate RCPs according to Vismara’s algorithm.
2. Let B<(G) be a subset of a minimum cycle basis B with

B<(G) = {C ∈ B| |C| < |CA| = |CB|}. Identify all 2-pairs of
RCPs (CA, CB) with

⊕ ⊕ =
∈ <

C c C( )
c B G

A
( )

B
(3)

Note that this operation is already performed during the
calculation of RCPs. In Vismara’s ring construction
algorithm, a Gaussian elimination is used to eliminate
rings which depend on smaller rings. Any ring CA which
depends on smaller and equal sized rings is marked as
relevant. If the set of equal sized rings on which CA
depends on, only consists of a single ring CB, CA and CB
are marked as potentially URF-related. Furthermore,
please note that any two rings of RCFA ∪ RCFB meet
conditions 1 and 3 for being URF-pair-related.

3. If any two rings of RCFA and RCFB share an edge, these
two rings are URF-pair-related. Since the URF-relation is
an equivalence relation, CA and CB are URF-related if

∩ ≠ ̷E E(RCF ) (RCF ) 0A B (4)

In order to calculate RCPs according to Vismara’s algorithm,
rings which linearly depend on strictly smaller rings are
eliminated. If a ring depends linearly on rings of the same size
and strictly smaller rings, it is marked as relevant. All RCs of
identical size which are identified in this step to be linearly
dependent on each other and a set of smaller rings form pairs of
possibly URF-related RCPs. For each RCP, all edges and
vertices belonging to the same RCF can be identified using a
simple breadth first search starting from r followed by a
backtracking procedure involving the following steps:

1. Starting from r each vertex v is labeled according to its
distance dv to r using a breadth-first-search.

2. Ecur and Vcur represent the vertices and edges currently
identified as belonging to ERCF and VRCF, respectively.
Vcur is initialized with Vcur ← {p,q,z} if CA has even size
and Vcur ← {p,q} if CA has uneven size. Ecur is initialized
with Ecur ← {E(p,z),E(q,z)} if CA has even size and Ecur
← {E(p,q)} if CA has uneven size. A list Q of vertices is
initialized with Q ← {p,q}.

3. For a vertex vcur ∈ Q identify each directly connected
vertex vadj. If dvcur − 1 = dvadj, then

• Ecur ← Ecur ∪ E(vcur,vadj)
• Vcur ← Vcur ∪ (vadj)
• Q ← Q ∪ vadj if vadj ∉ Vcurr

4. Q ← Q\vcur.
5. If Q = 0̷, then Ecur = E(RCFA) and Vcur = V(RCFA).

Otherwise, continue with step 3.

For a connected graph containing |E| edges and |V| vertices,
RCPs can be calculated in (Z|E|3) with Z = |E| − |V| + 1 being the
cyclomatic number of G.1 A Gaussian elimination to identify RCPs
of identical size, which depend on each other and strictly smaller
rings, can be performed in (|E|R2) operations with R being the
number of RCPs. The sets of edges belonging to each RCF are
calculated in (|E|R). Finally, the edge set intersections of all 2-pairs
of RCFs can be calculated in (|E|R2). According to Visamara1 the
number of RCPs (R) is limited by the following relation:

≤ | | + | | ⇒ ≤ | | + | || |R E Z V R E E V2 22 2 (5)

Consequently, the Gaussian elimination and the calculation of
the edge intersection of 2-pairs of RCPs are the speed-limiting
steps and URFs can be perceived in (|E|5+|V|2). Thus, URFs
represent a polynomial description of the ring topologies of a
molecular graph and can be calculated in polynomial time.

Interpretation of URFs. From a chemical perspective,
URFs can be best understood by calculating the union of the
edges of all URF-related rings. Since a URF can contain smaller
URFs, it can be illustrated by merging these smaller URFs to
single nodes. This illustration represents a quotient graph of the
partition of smaller URFs. Examples of molecular graphs and their
corresponding RCs, RCPs and URFs are shown in Figures 3 and 4.

Compared to common strategies of ring perception, URFs
have the major advantages that they are unique, intuitive,
polynomial in number and provide a complete description of

Figure 3. Ring system (A) containing 2 RCPs of size 6 (B) and 2
RCPs of size 12 (C). The two small rings form individual URFs (E).
The two 12-rings belong to the same URF since they have the same
size, share edges, and are linearly dependent on each other and one of
the 6-rings. The molecular graph contains a total of six RCs (D) and
three URFs (E). The URFs are illustrated as a quotient graph with the
smaller URFs merged to individual nodes.
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the ring topology of a molecular graph. Macrocycles with para-
substituated rings are a well-known problem (see Figures 3
and 4). The molecular structure shown in Figure 4 contains
264 RCs and 256 different possible SSSR cycle bases. The 256
large RCs belong to the same URF, resulting in 9 URFs.
Thereby, URFs model the intuitive description of the molecule
as a macrocycle containing eight smaller rings.
A frequently found specification in chemical patterns is the

number of rings an atom is involved in. In the pattern language
SMARTS, this is modeled with the R-feature. As discussed in
the introduction, the R-feature is based on an SSSR which
causes problems due to nonuniqueness. So far, no alternative
approach resulting in a unique and polynomial number of ring
representatives was available. Describing atoms by the number
of URFs they are involved in represents an easy to implement
solution to this problem.
Figure 5A shows the number of rings that contain the atoms

A1 and A2. Using SSSRs, the result depends on the selected
cycle base. In contrast, the number of RCs is large and
chemically nonintuitive. Similar problems occur for symmetric
cyclic structures like cubane (see Figure 5B). The calculation of
URFs results in a consistent and chemically meaningful value
for each atom. Furthermore, if an application requires the con-
struction of an MCB, this can be easily achieved by selecting a

single arbitrary RCP of each URF followed by a Gaussian
elimination of the resulting set of rings. Since the number of
URFs is greater than or equal to the number of cycles of an
MCB and smaller than or equal to the number of RCPs, the
URF-number can be estimated by the following equation:

− + ≤ − ≤ +E V E EV( 1) URF number (2 )2
(6)

Figure 4. Ring system (A) consisting of 8 RCPs of size 6 (B) and 4 RCPs of size 24 of which 2 are illustrated (C). While the large RCPs have the
same size and are linearly dependent according to condition 3 of definition 1, they do not share any edge. Their RCFs, however, share 36 edges.
Note that this demonstrates, that two URF-related rings are not necessarily URF-pair-related. (D) The molecular graph contains 8 RCs of size 6 and
256 RCs of size 24. The set of all 264 RCs can be represented by 9 URFs. Eight URFs each contain a single 6-ring. One URF represents a
macrocycle including the small URFs. This URF is illustrated as a quotient graph of the partition of smaller URFs. Note that the number of RCs
increases exponentially with the number of para-bridged 6-rings, while the number of URFs increases linearly and stays intuitive.

Figure 5. Two complex ring systems with their number of SSSR-rings,
relevant cycles, and unique ring families. Additionally, ring member-
ships for the marked atoms are listed.
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■ COMPUTING TIME BENCHMARKS

Ring perception is an important step in almost all chemo-
informatics tasks. Applications which process large data sets
thus require a fast method to identify the rings of molecular
graphs. To check the large-scale applicability of the described
method to calculate URFs, we measured the runtimes for the
perception of URFs for a number of test sets. Time measurements
were performed in a single thread on a PC with an Intel Core2
Quad Q9550 CPU (2.83 GHz) and 4 GB of main memory. For
each molecule of the data set, the runtime for 100 iterations of
ring perception was measured and on the basis of this mea-
surement, the average runtime for a single ring perception was
calculated. For file-IO we used the NAOMI framework.19

Measured runtimes shown in Figure 7 do not include file I/O
and molecular preprocessing. The data structures of the
NAOMI framework are not specifically optimized for the
detection of URFs but focus on the correct chemical modeling
of small molecules. The listed runtimes thus provide an

estimate of URF detection in the context of a common che-
minformatic application.
To investigate the maximum runtime for the perception of

URFs, we generated a number of molecules containing highly
complex ring systems. First, we generated cyclophane-like
structures that contain a large macrocycle with n para-bridged
6-rings. The generated molecules have a cyclomatic number Zn

of Zn = n + 1, contain n2 + n RCs and n + 1 URFs. The runtime
for the calculation of the URFs of these molecules is shown in
Figure 6A. The required runtime for molecules containing |V|
atoms and a cyclomatic number of Z increases approximately
with |V|2 and Z2.
As a second type of molecules that contain complex rings,

single walled nanotubes were generated using ConTub.20 While
the parameters i and k were set to 5 nm, the length of the
nanotube was increased in steps of 5 nm starting with a length
of 10 nm up to a maximum of 100 nm. Both V and Z increase
linearly with the length of the nanotube. As shown in Figure 6B,

Figure 6. Required runtimes for the calculation of URFs depending on the number of atoms (left) and the cyclomatic number (right) for
cyclophane-like structures (A), nanotubes (B), and fullerenes (C).
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the runtime for the calculation of URFs increases slower than
V3 or Z3.
As a third set of complex molecules, a number of fullerenes

ranging from C24 to C320 were generated. Coordinates of
these molecules were taken from a Fortran program specialized
in the generation of fullerenes.21 The runtime requirement
again increased approximately with V2 as well as with Z2 (see
Figure 6C).
Finally, to investigate the runtime which is required to per-

ceive rings of commonly used molecules, we perceived URFs
for the PubChem Compound 2D data set.3 The data set was

downloaded on March 27th, 2011 from ftp://ftp.ncbi.nlm.nih.
gov/pubchem/Compound/CURRENT-Full/ and contains 32
593 299 molecular structures. These include a number of
molecules of high complexity not present in the respective 3D
data set. Figure 7A illustrates the complexity of the data set by
showing the maximum cyclomatic number for the ringsystems
of each molecule.
Shown runtimes represent the required runtime for 100

iterations of ring perception. Nevertheless, these runtimes are
close to zero for most common molecules. The median for the
percerption of URFs for a molecule of the Pubchem Data set is

Figure 7. (A) Maximum cyclomatic number of the ringsystems of the molecules of the Pubchem-2D data set. (B) Benchmarks for URF perception
for those molecules of the PubChem-2D data set having a cyclomatic number of at least one.
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0.02 ms, the average runtime is 0.05 ms, and the maximum
runtime is 102 ms. This demonstrates that URFs can be
calculated on the fly even for interactive applications and large
databases. Only 34 490 molecules (0.11% of the database)
show runtimes of more than 1 ms for the calculation of URFs.
A list of those 100 molecules which require the highest run-
times for the calculation of URFs is added to this paper as
Supporting Information. Some representative examples are
shown in Figure 8.
A common molecular file format conversion, tested with

Open Babel for the ZINC-everything data set, requires ap-
proximately 2 ms.19 Due to the low runtime for calculating
URFs of about 0.02 ms for commonly used molecules, the
perception of URFs is suitable for high throughput chemo-
informatics applications. Even for an artificially complex
cylophane-like structure containing 100 + 2100 RCs, the URFs
can be calculated in less than 2 s.

■ CONCLUSION

We have introduced the concept of unique ring families (URFs).
In contrast to common ring perception approaches, URFs are
polynomial in number, unique, and provide a complete de-
scription of the rings of a molecular graph. Furthermore, we
have described an efficient method to calculate URFs in
polynomial time. We demonstrated its applicability on large
scale by showing computing time benchmarks for the Pubchem
2D data set. For these reasons, URFs represent a valuable
alternative to common ring perception concepts and are worth-
while to be considered as a standard description for ring
topologies in molecular graphs.
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Abstract

Working with small-molecule datasets is a routine task for cheminformaticians and chemists. The analysis and
comparison of vendor catalogues and the compilation of promising candidates as starting points for screening
campaigns are but a few very common applications. The workflows applied for this purpose usually consist of
multiple basic cheminformatics tasks such as checking for duplicates or filtering by physico-chemical properties.
Pipelining tools allow to create and change such workflows without much effort, but usually do not support
interventions once the pipeline has been started. In many contexts, however, the best suited workflow is not known
in advance, thus making it necessary to take the results of the previous steps into consideration before proceeding.
To support intuition-driven processing of compound collections, we developed MONA, an interactive tool that has
been designed to prepare and visualize large small-molecule datasets. Using an SQL database common
cheminformatics tasks such as analysis and filtering can be performed interactively with various methods for visual
support. Great care was taken in creating a simple, intuitive user interface which can be instantly used without any
setup steps. MONA combines the interactivity of molecule database systems with the simplicity of pipelining tools,
thus enabling the case-to-case application of chemistry expert knowledge. The current version is available free of
charge for academic use and can be downloaded at http://www.zbh.uni-hamburg.de/mona.

Background
The compilation and preparation of small-molecule
datasets forms the core of virtually all cheminformatics
applications. The careful selection of relevant compounds
and the thorough processing of the associated data are
essential in order to obtain meaningful results. Although
the necessary steps for this process strongly depend on
the respective context, there are nevertheless a number
of common and recurring tasks. These include, among
others, the removal of duplicates, filtering by physico-
chemical properties or substructure matching and the
visual inspection of the respective compounds.

Workflow or pipelining tools support this recurrence
by providing components or nodes corresponding to such
common tasks. These nodes can be individually param-
eterized and combined in a pipeline, thus enabling the
generation of a variety of customized workflows. The
specification of these workflows is usually facilitated by a

*Correspondence: rarey@zbh.uni-hamburg.de
1Center for Bioinformatics (ZBH), University of Hamburg, Bundesstrasse 43,
20146 Hamburg, Germany
Full list of author information is available at the end of the article

graphical interface. The most commonly used programs
in the context of cheminformatics are Pipeline Pilot [1]
and the open-source alternative Knime [2] which have
been compared in a recent review [3]. There are numerous
further examples of scientific workflow systems described
in the literature [4]. All these programs contain a cer-
tain number of predefined components and are exten-
sible by allowing users to program their own modules.
In addition to the flexibility concerning the specifica-
tion of workflows, pipelining tools have the advantage
that the processes are completely automated. This makes
workflow processing the method of choice when all steps
are known in advance and no intervention is necessary.
Furthermore, there are usually only short setup times
compared to the laborious installation and initialization
of a server-based molecular database system. Molecular
databases, on the other hand, make it possible to com-
pile datasets in a more interactive manner. Data needed
for common cheminformatics tasks can be calculated in
advance and stored in the database, resulting in notice-
ably reduced run times for data access. For most common
database systems chemical cartridges exist which provide

© 2013 Hilbig et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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the functionality to import chemical data. Molecules are
typically written to SQL tables in the form of line nota-
tions such as (U)SMILES [5] or InChI [6]. These unique
topological identifiers are used to ensure the uniqueness
of molecules or to rapidly find particular molecules in
the database. It is possible to reduce run times for sub-
structure searches by annotating common substructures
in molecules and for similarity searches by using pre-
calculated fingerprints. Physico-chemical properties can
be stored in databases using indices to boost the run
times of filter operations. Depending on the number and
kind of pre-calculated molecular descriptors, run times
for setting up the databases can be quite large. Addition-
ally, database systems often need to be installed on the
respective operating system.

Here, we present MONA, a software tool aiming at com-
bining the advantages of both approaches. In this way, the
software enables a more interactive and intuitive approach
to deal with large compound collections. In different vali-
dation procedures we show the internal consistency of all
provided operations. Additionally we provide benchmarks
showing that all provided operations are sufficiently fast
for interactive use.

Methods
Based upon the NAOMI framework [7], MONA allows
to interactively prepare, inspect and convert small-
molecule datasets. The most important aspect of MONA
is that the primary objects handled are molecules, not
their occurrences in a particular dataset. During the
import procedure, molecules are converted into a unique

topological description, duplicates are automatically
detected and stored as so-called instances. A typical
MONA workflow scheme is shown in Figure 1. To ensure
high efficiency, MONA employs a relational SQL database
for all operations on datasets. Furthermore, MONA’s
architecture allows an efficient handling of molecule sets
including their instant creation as well as classical set
operations like union, intersection and difference.

The following sections describe the concepts behind
MONA. This includes molecular representation and man-
agement by a relational database, performing operations
on molecule sets, and rapid visualization of large com-
pound collections.

Molecules and instances
In the context of MONA the terms molecule and instance
are used to distinguish between the actual compound and
its occurrence in a dataset (see Figure 2). There can be
multiple instances of the same molecule originating from
different entries of input files. Depending on the context
these instances can be interpreted as either conformations
or duplicate entries. In order to reliably assign instances
to their corresponding molecules, a canonical topologi-
cal description is needed. MONA uses an internal string
representation called MolString which serves two pur-
poses. First and foremost it is used to efficiently rebuild
the molecule as this is needed for particular operations as
explained in the following sections. Furthermore, it is used
as unique topological descriptor for the assignment of
instances to molecules during registration. Molecules are
serialized to and from the database, where each molecule

Figure 1 Schematic of a typical workflow using MONA.
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Figure 2 Handling of instances in MONA. Input structures with
different coordinates but identical topology are assigned to the same
molecule.

and each instance is identified internally by an unique id
called Molecule Key and Instance Key respectively.

Instances can be imported from common chemical file
formats (SMILES, SDF, MOL2) using the NAOMI frame-
work. The procedures for the consistent handling of these
formats have been described in detail in [7]. If an entry
consists of multiple disconnected components, currently
solely the largest component is kept. Furthermore, it is
possible to import small molecules from PDB files using
the method described in [8]. In this case all components
of the entry are imported. Additional data from SDF files
is stored for each entry and can be recreated during
export. Since the identification of molecules is based on
a topological description, different tautomeric forms and
protonation states are generally handled as separate enti-
ties. The same also applies to molecules with and without
explicit specification of stereo descriptors. In order to
customize the way molecules are assigned to instances,
MONA offers different rules for the import of molecules.
Depending on the context, molecules can be imported in
a neutralized form, as canonized tautomer and without
stereochemistry.

Molecule sets
MONA allows to organize compounds in molecule
sets. Molecule sets are collections of pair-wise different
molecules (not instances) which are used for all operations
in MONA. As has been mentioned above, molecules are
considered equal if and only if their canonical MolString
representation is identical. We believe that this concept
of molecular identity follows the basic understanding of
chemists. Additionally, there are various technical rea-
sons why sets of molecules are used rather than sets
of instances. All available operations, such as filtering,
manual selection and visualization, are based on molec-
ular topology, so that there would not be any benefit
from using sets of instances. Furthermore, some opera-
tions are based on the equality of the sets’ elements. Due
to the additional data from the input format equality of
instances is ambiguous at best, whereas it is well defined
for molecules on the topological level. In the end, working
with molecule sets is more efficient and the results from
set operations can be intuitively understood.

Molecule sets are stored internally as lists of Molecule
Keys. MONA is able to handle an arbitrary number by
keeping these lists in a relational database. When export-
ing molecule sets to chemical file formats, molecules must
be converted back to instances. As instances for a given
molecule may come from different input files, it is nec-
essary to choose which source should be used for output
generation. For that purpose, a list of original molecule
sources is kept in the database. Data associated with a
molecule, such as names and coordinates, are then either
taken from the first found instance or from all instances
in the chosen data sources and eventually exported to the
output file.

Visualization of molecule sets
The analysis of the distribution of different physico-
chemical properties is a simple way to get a first impres-
sion of a molecule set. For that purpose MONA offers
customizable histograms for a number of common
physico-chemical properties. It is also possible to include
multiple sets in one histogram, which allows to compare
their properties at a quick glance.

For further analysis, MONA offers a fast visualization
of molecule sets using two-dimensional structure dia-
grams. This provides a means to visually inspect large
molecule collections and manually select molecules for
the creation of smaller sets. MONA does not offer
any type of three-dimensional visualization which would
only be needed to show differences between instances
such as conformational variability. The necessary two-
dimensional coordinates are generated by a built-in layout
algorithm on the fly. In order to browse large molecule
sets, the results of such calculations for the molecules
must be available instantly. Even with a fast layout algo-
rithm the pre-calculation of coordinates for all molecules
in a set would take a prohibitively long time. Fortunately,
coordinates for all molecules are really never needed.
By using a model-view architecture and lazily calculat-
ing coordinates only when they are needed, browsing
of molecule sets with hundred thousands of molecules
becomes instantaneous. On modern hardware depictions
of the few molecules a user can capture simultaneously
on the computer screen appear without much latency. By
intelligent multi-threading, including the cancellation of
coordinate calculations for molecules that are no longer
visible, fast scrolling of large sets does not lead to con-
gested threads.

Operations on molecule sets
In general, MONA operates on molecule sets and cre-
ates new sets as results (see Figure 3). All sets can be
used in further operations resulting in a high degree of
flexibility. The intention of the set concept is to enable
the typical workflow of interactive processing, namely to
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Figure 3 Supported operations in MONA.

browse, select, and store data iteratively. The common
mathematical set operations (union, intersection and dif-
ference) work on multiple input sets and produce a single
set as result. Since these operations are solely based on
the evaluation of identities of the contained molecules,
they can be realized directly by the database using SQL
statements. Because molecule sets are internally handled
as lists of Molecule Keys the respective operations can be
carried out efficiently. Mathematical set operations pro-
duce results instantaneously even for large datasets, which
makes them suitable for interactive use. For the same rea-
sons, the splitting of molecule sets by various criteria is
interactively possible.

Filtering and visual selection
Both filtering and visual selection are operations on a
single molecule set which generate a subset by exclud-
ing particular elements. The criterion for the exclusion
is either a combination of molecular properties or man-
ual selection. Filter chains for molecular properties are
specified as a logical conjunction of elementary filters.
Four elementary filter types are currently supported: (a)
physico-chemical properties, (b) chemical elements, (c)
functional groups, and (d) SMARTS patterns.

The physico-chemical properties comprise mostly topo-
logical descriptors such as the number of rings, molecular
weight, and the topological surface area. This is extended
by properties which can be derived from the chemical
structure such as LogP [9]. Property filters always include
or exclude a range of values the molecules must conform
to. In contrast to that, substructure filters only ensure
the presence or absence of a specific substructure in the
molecules of the set. Chemical element filters are the most

basic type of substructure filters. They are typically used
to remove large classes of molecules such as halogenated
compounds. Functional group filters allow the exclusion
or inclusion of a set of common functional groups includ-
ing both aromatic rings and acyclic structures. The num-
ber of groups and their types are currently predefined
in MONA. If these should not be sufficient, SMARTS
expressions can be used to handle any type of chemical
patterns. Additionally, MONA allows to upload collec-
tions of SMARTS patterns and use them in a single query.
The efficiency of the filtering operation strongly depends
on the selected filter types. Property filters are fast since
the values for molecules are pre-calculated and stored in
the database. These filters can therefore be realized by
directly using database functionality. The same holds true
for element and functional group filters. Both resort to
pre-calculated bitfields saved in the database. These are
slower than the property filter as SQL databases do not
support bitfield matches. SMARTS filters are the compu-
tationally most demanding types, since all molecules have
to be rebuild from their MolString and tested against the
SMARTS expression.

Elementary filters can be combined into complex
queries which can be applied to any molecule set. In order
to make filtering with criteria such as the Rule-of-Five for
orally bioavailable molecules [10] possible, a tolerance can
optionally be specified for a filter chain. This means that
not all elementary filters need to match but only m of n
filters, where m ≤ n can be arbitrarily chosen. Using tol-
erances has an impact on the speed of filtering operations.
If m < n the filter process becomes slower, since the fil-
ter chain needs to be transformed into multiple database
queries instead of one.
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MONA as application
MONA is a cross-platform application, which can be
started without prior installation as no setup of an exter-
nal database system is required. Currently SQLite is used
as underlying database backend for its simplicity in setup
and administration. SQLite is connected via a regular SQL
API such that any other relational database system could
be used instead.

The user interface consists of three different areas
reflecting the functionality described in the previous
sections. Imported molecule files are contained in the
molecule sources view, from where molecule sets can
be created at any time. The current molecule sets are
shown in the list on the left side. They can be visual-
ized in the respective views either as histograms or as a
sortable table of structure diagrams. Operations for sets
as described above are available in the toolbar or via the
context menu. Filter chains can easily be build in the fil-
ter view (see Figure 4) using particular GUI elements for
each type of elementary filter. Physico-chemical property
filters are created with the help of a histogram that shows
the distribution of the selected property in the currently
chosen set. Chemical elements in the element filter can
be selected in a periodic table, and functional groups are
specified using structure diagrams. SMARTS expressions
are entered in text form, the syntax is checked while typing
and wrong expressions are highlighted.

All operations run in separate threads, which is the
basis of this responsive user interface. It maintains its
performance even if more demanding tasks are running
in the background. Created molecule sets can be saved
persistently in the database and restored when open-
ing the database again. Molecule sets can eventually be
exported to one of the supported chemical file formats
from the context menu.

Results and discussion
The main focus of MONA are interactive scenarios where
large molecule files need to be handled. To illustrate this
further, three different workflows are described:

Scenario 1: Preparing a molecule dataset for screening
The compilation of a set of molecules for a virtual or
experimental screening is a very common task in chemin-
formatics. Starting with a large collection of compounds
the preparation mainly consists of selecting a subset of
molecules with suitable properties for the target to be
addressed (see Figure 5). For this purpose various fil-
ters can be iteratively created and tested. A few com-
mon filters, e.g., the Rule-of-Five, are already predefined
in MONA and can be used directly. In addition to the
use of filters, molecules can also be selected manually
using visual selection. The manual selection can often
be facilitated by sorting the molecules according to a
specific property. If the results of different filter runs
are kept as sets, they can be compared to each other
using set operations. Set operations can also be used to
eliminate particular molecules (rather than substructures)
from molecule sets. One can simply load a file containing
unwanted compounds and subtract them from the cur-
rent set. All steps can be iteratively applied after visual
inspection of the remaining and the rejected molecules.
For example, bounds related to physico-chemical prop-
erties can be adapted on a case-to-case basis depending
on the size of the remaining library. After finding the
right combination of filters the final candidate set can
be exported into an appropriate file format and used by
another program. All data including 3D coordinates from
instances previously read into the database are retained in
this step.

Figure 4 MONA running on Linux. Molecules are added from files via the file menu or the Molecule Sources tab shown on the left. 2D structure
diagrams can be browsed in the Visual Selection tab shown in the middle, and filter chains are created using the Filters tab on the right.
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Figure 5 Preparing a molecule dataset for virtual screening.
MONA allows to iteratively and interactively apply filtering steps to
create suitable candidate sets.

Scenario 2: Handling catalogs of molecules
The second scenario is taken from the field of compound
management. Many vendors offer their compound cata-
logs in the form of chemical data files. These files can be
used to compare the compound portfolio of the different
vendors with each other or with an in-house library (see
Figure 6). This task is usually complicated by the fact that
each vendor uses different standards for the representa-
tion of the respective compounds. When loading vendor
catalogs as sets within MONA, different file formats and
molecules across different vendors are automatically uni-
fied. Optionally, the user can decide to unify additional
properties like the tautomeric state or the protonation.
The resulting individual sets can be intersected with each
other for comparison and evaluation. In this way either
compounds offered by various vendors or substances
that are uniquely supplied by one vendor can be easily
identified. Furthermore, the sets can also be intersected
with a current in-house collection, so that potential addi-
tions may be identified. Vendor catalogs usually contain
price information and order numbers for each compound.
Exporting all instances for molecule sets preserves this
information and allows to compare prices for all molecules
in the exported set.

in-house
collection

vendor1

vendor2

new compounds 

already available
compounds

Figure 6 Handling catalogs of molecules. Set operations can be
used to compare different compound collections by identifying
molecules present in both.

Scenario 3: Verifying existing molecular databases
Databases like DUD-E [11,12] are widely used to test
and evaluate the performance of docking algorithms. The
functionality provided by MONA can be used to simplify
verification tasks that are tedious to do manually. In order
to validate the new DUD-E database, we tried to answer
the following three questions (see Figure 7):

• Are any of the actives decoys for other targets?
• Are any of the decoy molecules ligands found in

structurally resolved protein-ligand complexes?
• Are any of the decoy molecules already known drugs?

In order to investigate the first question, one molecule
set with actives and one set with decoys was created from
the respective files for each individual target. Then, all
active sets where united into one set A and all decoys
where united into one set D. The intersection of both
sets directly provides the answer to the first question.
The resulting set contains 123 molecules (provided in
Additional file 1).

To answer the second question, the decoy set D has to
be intersected with a set containing known ligands from
protein-ligand complexes. The necessary data is provided
by LigandExpo [13,14] which offers a SMILES file con-
taining all small molecules from crystal structures in the
Protein Data Bank (PDB) [15]. The resulting intersection
contains 141 decoys which are ligands of at least one
protein in the PDB (provided in Additional file 2).

The third question can be answered in the same way.
This time, a substance set of approved drugs from Drug-
bank [16,17] was used as reference. Drugbank currently
lists 1395 molecules registered as drugs. The intersec-
tion of these molecules with D contains 26 molecules
(provided in Additional file 3) each of which is approved
as a drug. Most interestingly, the resulting set contains
the compound cladribine (see Figure 8), which is known
to interact to deoxycytidine kinase and considered as a
decoy molecule of mitogen-activated protein kinase 1.
The compound nandrolone phenpropionate is a known
substrate to cytochrome P450 19A1 and considered decoy
for cytochrome P450 3A4. Although these two molecules
might in fact be inactive against their decoy targets, this
analysis at least points to critical cases where the decoy
status should be further clarified.

Furthermore, it is possible to quickly exploit the data
sources like the PDB for seeking alternative targets for all
the actives in the DUD-E dataset. Let Ai be the set of active
compounds for each target i. The intersections between
each Ai and the LigandExpo set results in one set per
target containing all compounds for which complex struc-
tures are deposited in the PDB. Exporting these sets with
all instances taken from LigandExpo results in one file
for each target containing other proteins in the PDB with



Hilbig et al. Journal of Cheminformatics 2013, 5:38 Page 7 of 10
http://www.jcheminf.com/content/5/1/38

Figure 7 Verifying existing molecular databases. Set operations between different DUD-E subsets for different targets can be used to identify
potentially problematic molecules.

the same ligand. As an example the active flavopiridol for
cdk2 was found which also inhibits glycogen phosphory-
lase (PDB code 1e1y). Note that searching for flavopiridol
in the PDB easily gives the same result but with MONA,
this search process was performed with all 20289 active
molecules of DUD-E simultaneously without the need for
scripting.

It took seven minutes to import all 1.2 million molecules
necessary for this scenario into the database and one
minute to create all sets in the GUI on an Intel Core
i7-2600 CPU with 3.4 GHz and 8 GB of memory. All
individual set operations ran in less than 10 seconds.

Correctness
All operations provided by MONA depend on the consis-
tent internal representation of molecules and their respec-

Figure 8 Cladribine and nandrolone phenpropionate are two
examples from the 26 molecules that are contained in both
DUD-E decoys and Drugbank.

tive properties. This applies to both the internal chemical
model and the operations performed by the underlying
database. The consistency of the chemical model concern-
ing the handling of different chemical file formats has
already been validated in [7]. Therefore, the validation of
MONA was focused on the correctness of the database
functionality. This was done by ensuring the following
invariants:

1. Molecules stored in the database are restored exactly
as before.

2. Molecule sets can be created and combined with set
operations.

3. Different types of filters can be correctly applied to
molecule sets.

Storage of molecules in the database is tested by com-
paring a molecule restored from the database with the
original molecule. The order of atoms and bonds may
change, but if any valence states or atom coordinates differ
the test fails. All molecules passing NAOMI initialization
from PubChem Substance (100 M molecules) [18,19] and
from emolecules (5 M molecules) [20] can be correctly
restored from the database.

Operations on sets of molecules were tested against
each other by verifying that the general equation in
Figure 9 holds. Sets S1, S2 and S3 are created by randomly
distributing molecules of a test set to one, two or all three
sets. Then the union of S1, S2 and S3 must be the same
as the union of the symmetric difference (S1�S2�S3), the
intersection of all three sets and all pair-wise intersections
of two sets.
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Figure 9 Testing set operations against each other. The shown
equation was evaluated with three randomly created sets S1, S2 and
S3, where � is the symmetric difference of two sets.

Confirming filter operations was done by compar-
ing results returned by the database against the results
retrieved by linearly applying each filter against every
molecule in turn.

Computing time
In order to assess the computing time requirements
of MONA, scaling tests for important operations on
the database were performed. As most of the opera-
tions only consist of database queries the results are
highly dependent upon the used database backend. Here,
SQLite was used with a page cache of 1 GB. This
value was chosen as the best compromise for modern
workstations.

All benchmarks were done on a workstation with an
Intel Xeon E5630 CPU running at 2.53 GHz and 64 GB
of available main memory. A subset of molecules from
the PubChem Substances database was used as bench-
mark set. The molecules in this set were randomly cho-
sen with uniform probability from the whole PubChem
Substance database.
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Figure 10 Requirements for reading molecules from SDF
including insertion and duplicate detection. The red curve shows
overall loading time for data files of a particular size (approximately
one millisecond per molecule is needed) and the green curve shows
the time needed to create a molecule set of this size once the
molecules are stored in the database.

Naturally, the size of the database depends linearly on
the size of the input. In our case the size of the database
corresponds roughly to the size of a compressed SD file of
the same compound set. All in all it takes approximately
1000 seconds to read 1 million molecules from SDF (see
Figure 10), resulting in a database of size 1 GB, which is
much smaller than the respective uncompressed MOL2 or
SDF files.

The relative order of run times for different types
of filters (see Figure 11) has been discussed in Section
“Filtering and visual selection”. Additionally, all filters and
set operations do not only depend linearly upon the size of
the input set but also on the size of the resulting set. This
can be seen when comparing the picky property filter to
the simple property filter from Figure 11 as the picky filter
has to write considerable less results into a new subset in
the database.
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In summary, we conclude that MONA is efficient
enough to handle sets with up to one million molecules
interactively on a current workstation with at least 2 GB
of main memory. Therefore, it can be used as a desktop
application for most cheminformatics tasks.

Conclusion
MONA is an intuitive, interactive tool for processing large
small-molecule datasets. It offers functionality to perform
many common cheminformatics tasks such as combining
datasets, filtering by molecular properties, and visualiza-
tion using a built-in 2D engine. Since MONA is based
on a robust cheminformatics framework, molecules from
common file formats (SMILES, SDF, MOL2) can be han-
dled consistently. The low setup time despite the use
of a database makes MONA a reasonable compromise
between pipelining tools and molecule database systems.
More importantly, MONA offers a different way of work-
ing with molecule datasets. Compared to pipelining tools,
it supports an interactive and case-driven process. While
chemical databases and pipelining tools are mostly in
the hands of cheminformaticians, MONA’s lightweight
interface offers chemists an easy way to deal with large
compound collections.

We have provided three prototypical scenarios from dif-
ferent fields of applications which emphasize the great
versatility of MONA. Various validation procedures show
that MONA is internally consistent concerning both the
representation of molecules and the database operations.
Furthermore, the run times for dataset operations from
the benchmarks are sufficient for interactive use in most
situations with up to one million molecules.

Since working with datasets is such a central task in
cheminformatics there are a lot of potential additional
features which could be included in future versions of
MONA. We are confident, that MONA’s functionality will
be substantially extended over the next year. The main
focus will be on the introduction of new types of visu-
alizations for molecular sets with respect to molecular
similarity and molecular scaffolds. The current version
can be downloaded at http://www.zbh.uni-hamburg.de/
mona. It is available free of charge for academic use.

Additional file

Additional file 1: The file contains all molecules from the intersection
between a set containing all DUD-E decoys and a set containing all
DUD-E actives (123 molecules).

Additional file 2: The file contains all molecules from the intersection
between a set containing all DUD-E decoys and a set containing all
LigandExpo molecules (141 molecules).

Additional file 3: The file contains all molecules from the intersection
between a set containing all DUD-E decoys and a set containing all
DrugBank molecules (23 molecules).
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ABSTRACT: The consistent handling of molecules is
probably the most basic and important requirement in the
field of cheminformatics. Reliable results can only be obtained
if the underlying calculations are independent of the specific
way molecules are represented in the input data. However,
ensuring consistency is a complex task with many pitfalls, an
important one being the fact that the same molecule can be
represented by different valence bond structures. In order to
achieve reliability, a cheminformatics system needs to solve
two fundamental problems. First, different choices of valence
bond structures must be identified as the same molecule.
Second, for each molecule all valence bond structures relevant
to the context must be taken into consideration. The latter is
especially important with regard to tautomers and protonation states, as these have considerable influence on physicochemical
properties of molecules. We present a comprehensive method for the rapid and consistent generation of reasonable tautomers
and protonation states for molecules relevant in the context of drug design. This method is based on a generic scheme, the
Valence State Combination Model, which has been designed for the enumeration and scoring of valence bond structures in large
data sets. In order to ensure our method’s consistency, we have developed procedures which can serve as a general validation
scheme for similar approaches. The analysis of both the average number of generated structures and the associated runtimes
shows that our method is perfectly suited for typical cheminformatics applications. By comparison with frequently used and
curated public data sets, we can demonstrate that the tautomers and protonation state produced by our method are chemically
reasonable.

■ INTRODUCTION

One of the most fundamental requirements in cheminformatics
is the consistent handling of molecules from different sources.
There is always the implicit assumption that the results of
cheminformatics software applications are only dependent on
the actual compounds and not on the way these are provided in
the input data. Yet, apart from problems arising from the
interpretation of data from chemical file formats, there are
certain ambiguities in the way molecules are represented which
considerably complicate this task. Virtually all modern
cheminformatics systems are based on a description of
molecules by valence bond structures (Lewis structures). The
inherent limitations of this molecular representation and their
implications on tautomer generation have been recently
discussed in detail by Sayle.1 In the following, we will largely
follow the nomenclature used in his publication and refer back
to particular aspects mentioned therein.
The main problem with respect to consistency is the fact that

different valence bond structures can represent the same
molecule. Some of these correspond to distinct chemical
entities, e.g., tautomers and protonation states, whereas others
are artifacts of valence theory, i.e., resonance forms and Kekule
structures. In some contexts even oxidation states may be

interpreted as alternative forms of the same molecule (see
Figure 1 for examples).
From a formal point of view, each of these valence bond

structures could be chosen as a representation for a particular
compound. In practice, not all members of this set of
alternatives are equally likely to be encountered due to
automated normalization procedures and manual curation.
However, despite all these efforts, a certain degree of ambiguity
cannot be entirely avoided. The resulting implications for
cheminformatics systems in general2 and large compound
databases in particular3 have been thoroughly investigated in
the literature. In his publication, Sayle1 has identified five
specific tasks associated with the ambiguities of molecular
representations. With respect to consistency; these are
comparison (#1) and, more importantly, canonicalization
(#2). A cheminformatics system must be able to reliably
identify and treat alternative valence bond structures as the
same molecule. This is usually done by conversion to a
canonical form which serves as input for subsequent methods.
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The generation of unique identifiers, e.g., InChI,4,5 is a typical
application scenario for canonicalization procedures.
Another quite opposite problem arises with regard to the

general reliability of cheminformatics calculations. In many
cases, it is necessary to consider multiple valence bond
structures to sufficiently represent a molecule. The most
prominent examples are certainly tautomers and protonation
states, which will be summarized under the term protomers in
the following. Since these correspond to actual physical entities,
their respective ratios can have significant influence on a
compound’s observed physicochemical properties.6−11 The
problem is, however, not exclusive to this scenario, as different
resonance forms also play a role during the calculation of partial
charges.12 The respective tasks identified by Sayle1 are
(complete) enumeration (#3) and selection (#4). Both refer
to the generation of valence bond structures, the difference
being that selection (#4) restricts the results to a subset
containing only relevant, e.g., energetically stable, solutions.
Virtual screening techniques such as molecular docking are
applications in which selection (#4) plays an important role.
Relying on only one valence bond structure can lead to false-
negative results as particular protomers may interact differently
with target proteins. On the other hand, a large number of
(possibly energetically unfavorable) alternatives can result in an
increased false-positive rate and unnecessarily high runtimes.
The general implications on structure-based and ligand-based
screening methods have been investigated in several
publications.13−15 The final task mentioned by Sayle1 is
prediction (#5), which extends selection by additionally ranking
the relevant solutions by their respective energy.
The basic problem associated with the interconversion of

valence bond structures is to transform groups of atoms
according to specific rules with respect to bond orders and
atomic properties (formal charges, bound hydrogens). As has
been proposed by Sayle,1 the methods developed for that
purpose can be roughly divided into two categories: (1) Local
approaches rely on pattern matching to identify relevant groups
of atoms. These patterns are associated with rules describing
the respective changes in the molecule. Pattern-based methods
thus only use transformations that were anticipated in advance,
thereby reducing the risk of generating unexpected and
probably unwanted results. On the other hand, there is always
the possibility of omitting relevant structures due to missing
patterns. This can occur even if rules of a similar type are
already included in the pattern library. Transformations
covering long bond paths are a typical example for that
problem. There are multiple publications describing local
methodologies in the literature.13,16−18 (2) Global approaches

predefine substructures in a molecule, identify atoms with
variable states within, and subsequently enumerate valid valence
bond structures. This is usually done in a more generic manner
than matching specific patterns, so that the results can easily
contain completely artificial, i.e. chemically unreasonable,
results. These either have to be omitted directly during or
removed after the enumeration procedure. The omission of
transformations in more complex structures, however, is
generally not a problem. Global approaches have also been
described in the literature19−21 and other sources.22 It must be
noted that the previous differentiation between the two types of
methods has been introduced mainly for classification purposes.
Local approaches, for instance, often include a number of long-
range patterns which, in combination with the underlying
transformation engine, makes them suitable for the handling of
the vast majority of molecules relevant in the field of drug
design.
Here, we present the valence state combination model, a new

concept for the description and classification of valence bond
structures based on the NAOMI23 framework. Using this
model, we have developed, based on similar ideas as the ones
presented by Sayle et al.,22 an extended and significantly
improved method for the generation of valence bond structures
which falls into the general category of global approaches. By
application of a generic scoring scheme, this method combines
the inherent consistency of the global strategy with the high
reliability generally attained by local approaches. In contrast to
previously published global methods, our approach consistently
deals with all aspects relevant for the generation of protomers,
including resonance forms and ionization states. Our method
has been used to solve three common cheminformatics tasks,
namely the generation of a canonical form (canonicalization),
the generation of a preferential representation (normalization),
and the generation of a set of reasonable protomers
(generation). We have tested each application with respect to
consistency using a general and comprehensible validation
scheme. Furthermore, we have assessed the general suitability
of our approach for common cheminformatics applications on
the basis of these three operations. The criteria for the
evaluation comprise runtime, the average number of generated
structures, and the quality of the resulting protomers.

■ METHODOLOGY
Valence State Combination Model. Valence bond

structures of molecules are generally represented as graphs in
which nodes correspond to atoms and edges correspond to
bonds. Each atom is associated with an element and a formal
charge and each bond with a localized bond order (single,

Figure 1. (A) Different valence bond structures of the imidazole ring of histidine including prototropic tautomers, protonation states, and resonance
forms. (B) Two oxidation forms (quinone and hydroquinone) may in some context be considered as the same molecule. (C) Kekule structures are
valence bond structures of aromatic rings with alternating single and double bonds.
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double, or triple). In the NAOMI model,23 this description is
extended by an atom-based valence state descriptor. A valence
state is a chemically valid combination of bond orders and
formal charge for a particular element (see Figure 2). This

additional descriptor is used to ensure the chemical validity of a
molecule. A valence bond structure is valid if a valence state
with the given bond orders and formal charge exists for each
atom. Furthermore, valence states provide the means to
systematically classify and generate different valence bond
structures of molecules as explained below.
A set of valence states for all atoms of the molecule is called a

valence state combination (VSC). A VSC is valid if a
distribution of bond orders compatible with these valence
states exists. Valid VSCs thus correspond to valence bond
structures associated with a particular heavy atom skeleton.
Note that bond orders are not part of the VSC representation;
they are used for validation purposes only. Relations between
valence bond structures can be determined by comparison of
their corresponding VSCs (see Figure 3).
The description of these relations is based on atoms with

different valence states, considering both their number and
their types. Depending on the changed properties, substitutions
of valence states for atoms are classified as protonation type,
tautomer type, and resonance type as shown in Table 1. The
involved states are called donors (higher number of single
bonds) or acceptors (lower number of single bonds). The
respective numbers of substitutions in VSCs are denoted as
Δtype(D→A) and Δtype(A→D).
Table 2 lists the six basic relation types together with their

conditions. Distinct valence bond structures with identical
VSCs correspond to Kekule forms. They differ only in their
respective bond order distribution. If all substitutions between
two VSCs are of the protonation type, two cases need to be
distinguished. When changing a donor to an acceptor or vice
versa, the formal charge of the respective atom changes due to
the addition or removal of hydrogen atoms. If the number of
substitutions of donors and acceptors is not equal, the total
charge of the molecule is altered, resulting in a different
ionization state. Otherwise, the net charge of the molecule is
identical, meaning that protons are merely occupying different
locations. Tautomers and mesomers contain only changes of
the tautomer-type and the resonance-type, respectively. Addi-
tionally, the number of donors and acceptor substitutions must
be equal. Otherwise, the VSCs represent different redox forms
of the molecule.
Substitution types can also occur in mixed constellations, and

the resulting relations are best described as combinations of the
just presented basic types. The 1-hydroxy-2-pyridone men-

tioned by Sayle1 is an interesting example. The valence bond
structures shown in Figure 4 can be best characterized as
different resonance forms, a zwitterionic and a neutral one, with
different proton positions.
The algorithms presented in the following chapters are based

on the VSC representation of molecules. One of its major
advantages is the fact that all of the potentially relevant
molecule states can be consistently generated by considering
different types of valence state substitutions. By explicitly
handling all the different cases described in this section, a high
degree of generality can be achieved.

Overview. The complete workflow for the generation of
valence bond structures is shown in Figure 5. In the first step,
the molecule is subdivided into multiple nonoverlapping
substructures which are then treated independently. This
partitioning reduces the computational costs for both the
generation and the subsequent scoring of VSCs. A partition is
considered valid if the independent enumeration of VSCs of
each part and a subsequent combination of these lead to the
same VSCs as if the enumeration would have been performed
on the whole molecule. A partition is optimal if it is valid and
has the smallest possible substructures. In the following
sections, two partitioning schemes (generic and heuristic) are
presented. Both are applied for the solution of different
cheminformatics tasks described in later sections.
After partitioning, the atoms of each substructure are

checked for alternative valence state assignments. Which
valence states are included strongly depends on the context
and will be explained in more detail later. As well as
partitioning, valence state selection has a strong influence on
the computational costs of the subsequent steps. The more
alternatives are selected, the more VSCs must be generated and
potentially scored. An optimal selection scheme thus only
selects valence states for atoms that actually need to be
modified. Again, two selection schemes (generic and heuristic)
for different applications will be presented.
In the next step, VSCs are generated for each substructure

using the alternative states selected in the previous step. Each of
these VSCs is checked for validity by attempting to calculate a
bond order distribution. VSCs for which this is not possible are
invalid and therefore rejected. During the calculation, additional
boundary conditions, e.g., the oxidation state of the initial
molecule, are preserved.
The resulting VSCs are all chemically valid but may still

contain undesired valence bond structures. These include
unstable tautomers, unlikely protonation states, unreasonable
resonance forms, or unusual representations of functional
groups. In order to identify and eventually remove these VSCs,
a pattern-based scoring scheme is applied. The resulting score
expresses how well a particular substructure of the molecule is
represented by the respective VSC. It must be stressed that the
scoring scheme has not been designed to accurately predict the
ratios between different molecular species. Its two main
purposes are the elimination of completely artificial representa-
tions, i.e., energetically inaccessible states, and the coarse
categorization of the remaining VSCs into stability classes. After
eliminating all undesired VSCs, the final valence bond
structures are completely enumerated by combining the VSC
of the different substructures.

Partitioning of Molecules. The partitioning algorithm is
based on the exclusion of atoms and bonds from the molecular
graph and the subsequent identification of the remaining
connected components. These will be referred to as Multi State

Figure 2. Example of a valence state descriptor for a nitrogen atom.
The descriptor comprises the atom’s element, bond order distribution,
and formal charge.
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Partitions (MSP) in the following discussion. The generic
partitioning scheme only involves the exclusion of sp3-
hybridized carbon atoms (corresponds to valence state

C400). There are only two particular cases in which atoms
with valence state C400 are included in MSPs: first, if the atom
is bound to an atom with valence state C210, which in turn has

Figure 3. Differences between protonation states (A), tautomers (B), resonance forms (C), Kekule structures (D), and redox forms (E).

Table 1. Substitution Types for Valence States Including the
Affected Propertiesa

examples

type double bonds # bonds charge donor acceptor

protonation 0 ± ± O200 O100-
resonance ± 0 ± O100- O010
tautomer ± ± 0 O200 O010

aChanged properties are marked with a ± and unchanged properties
with 0. The pairs of valence states on the right side of the table
represent common substitutions for oxygen atoms.

Table 2. Relations between Valence Bond Structures on the
Basis of Valence State Substitution

relation substitution type condition

kekule none
ionization protonation Δ(D → A) ≠ Δ(A → D)
protonation protonation Δ(D → A) = Δ(A → D)
mesomer resonance Δ(D → A) = Δ(A → D)
tautomer tautomer Δ(D → A) = Δ(A → D)
redox resonance Δ(D → A) ≠ Δ(A → D)

tautomer Δ(D → A) ≠ Δ(A → D)

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400724v | J. Chem. Inf. Model. XXXX, XXX, XXX−XXXD



at least one neighbor with the element nitrogen, oxygen or
sulfur, and second, if the atom is part of a ring and is the only
atom with valence state C400 in this ring. Bonds are excluded if
one of the connected atoms is excluded.
The MSPs resulting from the generic partitioning scheme are

usually large, and it is often possible to further reduce their size.
This is achieved by removing bonds within the MSPs with the
goal to effectively split them into smaller substructures. The
exclusion of a bond is only valid if its bond order in the current
structure is identical in all relevant VSCs. Since the final bond
orders are not known at this point, the decision that a bond will
keep its current type must be in accordance with the
subsequent scoring procedure. This means that VSCs with a
different bond order would be rejected in the follwing steps in
any case.
The heuristic partitioning scheme builds on the results from

the generic scheme and uses a set of rules to identify additional
bonds for exclusion. These rules are based on the classification
of each MSP into conjugated rings, conjugated chains, and
functional groups. Rings are considered conjugated if all of their
atoms are part of the respective MSP. Conjugated chains
consist only of carbon atoms which have a multiple bond and
are bound only to other carbon atoms. The remaining
connected components represent functional groups. In a first
step, bonds connecting functional groups with conjugated rings
or conjugated chains are investigated. A bond is excluded if it is
a single bond and the atom from the functional groups does not
fulfill one of the following two criteria: (1) It has a valence state
of type N300. (2) It has a valence state of type O200 or S200
and only one non-hydrogen bond. In these cases, a change in
bond order is not unlikely, as is shown for two examples in
Figure 6.
Since conjugated chains consist of only carbon atoms, they

are merely bridges between the other two types of

substructures. Therefore, if a conjugated chain has only one
bond to another structure (ring or functional group), this bond
can be safely excluded. This is also done if the chain has
multiple bonds which were previously excluded by the
functional group rule. The complete partitioning of the NAD
+ molecule is shown as an example in Figure 7.

Selection of Valence States. The selection of valence
states is based on the substitution types introduced above (see
Table 1). Each substitution corresponds to a pair of valence
states which are known in advance and can be retrieved starting

Figure 4. Example for the combination of valence state substitutions.
The relation between the pyridone form (A) and the pyridine form
(B) cannot be described by one of the basic types from Table 2.

Figure 5. Overview of the generation of protonation states for an input molecule (1). In a first step, the molecule is partitioned into substructures
(2) which are handled separately. In the next step, alternative valence states are selected (3). Afterward, valid VSCs are generated (4). These are
scored (5), and only the best solutions for each zone are retained. The final list of valence bond structures results from the combination of all
remaining VSCs.

Figure 6. Two examples for which functional groups and conjugated
rings have to be treated as a union to avoid missing VSCs.

Figure 7. Partitioning of NAD+ into functional groups and conjugated
rings. The amide group and the pyridine ring have been separated,
whereas the amino group remains connected to the purine.
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from any valence state. A list of alternatives for an atom can
thus be easily obtained by consecutively and uniquely adding
the respective members of the pairs for each of the relevant
substitution types. In order to select an alternative assignment,
the compatibility with the atom’s topology must be ensured.
This means that the number of bonds of the valence state must
be larger than or equal to the atom’s number of non-hydrogen
bonds. Otherwise, the assignment would correspond to the
removal of non-hydrogen bonds. Although this may be
interesting with respect to transformations such as ring−chain
tautomerism, it will not be further considered here.
For the sake of generality, the generic selection procedure

includes all possible valence states for each atom in a MSP. This
usually results in potentially many more alternatives than are
actually needed. The heuristic selection scheme aims at
reducing this number by explicitely excluding valence states
for particular atoms. The problem at this point is similar to the
one discussed in the previous section. The final VSCs are not
yet known, and the decisions must be in accordance with the
subsequent scoring procedure in order to avoid missing VSCs.
The exclusion of particular valence states in the heuristic

selection scheme is based solely on an analysis of the atom’s
environment. For atoms in functional groups, this includes their
direct neighbors from the same functional group. These are
transformed into a SMILES-like identifier which reflects the
valence bond structure of the input molecule. This identifier is
looked up in a list of predefined structures. If the identifier is
present, information concerning the exclusion of particular
substitution types is retrieved. In this way, groups that already
have a preferred representation in the initial valence bond
structure need not be modified. The information provided from
the patterns is described in Figure 8.

For the generation of tautomers, carboxylic acids are
irrelevant. Due to the symmetry of the group the transfer of
the hydrogen from one oxygen to the other would only result
in a different rotamer. In this case both oxygen atoms are
excluded from tautomer substitution. With respect to
protonation, both the charged and the neutral form need to
be included. This means that both oxygens are not excluded
from protonation substitution. The same procedure is applied
to atoms in conjugated rings with the ring constituting the
atom’s environment. If the identifier is not included, the
generic scheme is used to identify alternative states for the
atom.
Generation of Valid VSCs. Prior to the generation of

VSCs, each MSP is analyzed to ensure that the generation of
additional states is at all possible. MSPs can be ignored if no
atom with alternative valence states could be found. For

tautomers and mesomers, i.e. if new bond order distributions
are to be generated, MSPs can also be omitted if only either
donors or acceptors are present. In this case, no substitution of
valence states is possible (see Figure 9 for examples). Changing
the number of donors and acceptors corresponds to changing
the oxidation state of the molecule, which is not desired in most
contexts.

The algorithm for the generation of valid VSCs is based on a
backtracking procedure with pruning. The atoms of the MSP
are processed in a specific order which is established prior to
the actual assignment procedure. The algorithm starts with
terminal atoms, i.e. atoms with only one bond in the MSP,
followed by internal atoms with at least one terminal neighbor.
The remaining atoms are processed last. The order of the
atoms inside the three classes is arbitrary and does not affect
the result. As a combinatorial problem, the procedure can be
represented by a tree, where each node corresponds to the
assignment of a valence state to an atom. Inner nodes thus
represent partial VSCs while the tree’s leaves correspond to
complete VSCs. For each node, the chemical validity of the
corresponding VSC is verified. In most cases, this can be
performed without actually generating bond orders for the
bonds of the MSP. The checks are based on the compatibility
between valence states of different atoms with respect to the
expected bond types as well as their oxidation states: (1) For
atoms with only one bond in the MSP, the assignment of a
valence state is equivalent to the assignment of a bond order to
the corresponding bond. The compatibility with the atom’s
neighbors can be easily checked by ensuring that the count of
this particular bond type is not exceeded. This check is always
performed when an atom with terminal neighbors is
encountered. (2) When reaching a leaf, the valence states
with an uneven number of multiple bonds are counted. If this
number is uneven, no valid bond order distribution exists, and
the VSC can be further ignored. (3) The number of donors in
the initial valence bond structures is counted in order to retain
the molecule’s oxidation state. VSCs differing in the number of
donors compared to the initial valence bond structures can be
discarded. Note that since information about being a donor or

Figure 8. Selection of valence states for carboxylic acid and amidine
groups. Due to the group’s symmetry, different tautomers of carboxylic
acids are not considered.

Figure 9. Criteria for the generation of additional states. The
generation of tautomers requires at least one tautomer acceptor and
one tautomer donor in a zone. Pyridine (A) has only a single tautomer
acceptor, and the imidazolium ion (B) only has one tautomer donor.
No tautomers can be generated in such cases. Imidazole (C) contains
a tautomer acceptor as well as a tautomer donor and can tautomerize.
Protonation states (D) can also be generated if a molecule only
contains either protonation-type donors or acceptors.
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acceptor is also stored in the valence states, VSCs not fulfilling
this boundary condition can be easily identified. (4) Eventually,
for each VSC passing all previous checks, a recursive bond
localization routine is used which assigns bond orders to all
bonds in the MSP. If this routine is successful, the solution
represents a valid valence bond structure and is stored.
Scoring of VSCs. Scores for each VSC are calculated under

consideration of the bond order distribution generated in the
previous step. The scoring procedure is mainly based on the
recognition of predefined structural fragments contained within
particular substructures, i.e., conjugated rings and functional
groups, of the molecule. The final score of the VSC (SVSC) is
calculated as the sum of the individual scores obtained for each
of these substructures (see eq 1). Please note that due to
changes in bond orders and valence states, the scores have to be
recalculated for each VSC.

∑ ∑= +S S SVSC ring group (1)

∑ ∑= +S Scyclering sub (2)

∑=S Sgroup subgroup (3)

The structural fragments in the substructures are identified
using canonical SMILES-like identifiers. These are generated on
the basis of the bond types and valence states of the respective
VSC. The predefined data are stored in multiple databases
which can be queried with the identifiers in order to retrieve the
score associated with a fragment.
In case of conjugated rings, the score Sring comprises two

types of contributions, one from the ring itself, Scycle, and one
from its substituents, Ssub (see eq 2). The reference point for
Scycle is the isolated aromatic system without exocyclic double
bonds, e.g., pyrrole for a five-membered ring with one nitrogen
atom. In case there are multiple structures fulfilling this
requirement, e.g., the 1H and 2H tautomers of 1,2,3-triazole,
one is arbitrarily selected. The score of the reference system is
set to an arbitrary value of 100. If a ring with an identical heavy
atom connectivity does contain a structural deviation from the
reference, e.g., an sp3 hybridized carbon atom, the associated
fragment has an individual score. This can be higher or lower
depending on the stability assigned to this particular arrange-
ment. The substructures representing ring substituents
comprise the ring atom, the exocyclic atom, and the exocyclic
atom’s direct neighbors. The associated scores have fixed values
and are independent from the concrete ring system they are
connected to. Again, one particular representation of the
substituent, the one with an exocyclic single bond and without
charges, receives an arbitrary reference score of 100. Functional
groups are first treated as a whole; i.e., an identifier for the
complete group is generated. If the pattern was present, the
associated score is directly set as the score of the substructure.
Otherwise, the group is partitioned into smaller pieces which
serve as starting points for further queries. In this case, the
score for the group is composed of the scores of the smaller
fragments (see eq 3). The reference system for a subgroup is
preferably neutral and corresponds to the most stable
tautomeric form where possible.
If no predefined data are available in any of the three cases, a

generic score is calculated according to eq 4:

∑= −S Pmax(0, 80 )generic (4)

This is done by subtracting various penalties (P) which are
summarized together with the respective conditions in Table 3.

Since Sgeneric is used only as a fallback, the respective maximal
score is deliberately set lower than that of the reference system.
If the sum of the penalties (P) exceeds 80, the score of the
substructure is set to zero.
The relative differences between the scores of rings,

substituents, and functional groups have been derived from
multiple pairs of tautomers and ionization states for which the
major form was known from either experiments or theoretical
calculations.24 The databases currently contain 252 entries in
total (113 in cycles, 121 in subgroups, 18 in substituents).
Examples for ring and functional groups patterns are shown in
Figure 10.

■ VSC MODEL APPLICATIONS
In the following applications, we will consider resonance forms,
prototropic tautomers, and protonation states as instances of
the same molecule, whereas oxidation forms are interpreted as
distinct chemical species. The method is, however, not
restricted to this assumption in general and can be easily
modified so that different types of valence bond structures are
perceived as identical.

Canonicalization. The generation of a canonical repre-
sentation is the first workflow in which our method is applied.
Canonical representations are mainly used to determine
whether two valence bond structures represent the same
molecule. In this context, it does not matter if the result
corresponds to the most stable form or even a chemically
reasonable one.
The workflow starts with the partitioning of the molecule

into MSPs and the selection of alternative valence states as
described above. The atoms of each MSP are then sorted in a

Table 3. Classification and Conditions for the Penalties used
during the Calculation of Generic Scores

substructure type penalty condition

ring aromaticity 20 nonaromatic ring (Hueckel’s rule)
ring charge 20 single charge in ring
ring charge 80 multiple charges in ring and

substituents
ring stability 80 three consecutive donorsa in the ring
substituent bond order 20 substituent has exocyclic double

bond
substituent charge 20 single charge in substituent
substituent charge 80 multiple charges in substituent
group charge 80 multiple positive charges in group

aDonors are atoms with the following valence states: O200, N300,
S200.

Figure 10. Examples for ring and functional groups patterns. (A) A
reference score of 100 is assigned to isolated aromatic rings without
exocyclic double bonds. (B) The score for rings with exocyclic double
bonds comprises one contribution from the ring and another from the
carbonyl substituent.
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canonical way using a variant of the Morgan extended sums
algorithm.25 The backtracking algorithm in the generation step
processes the atoms in this exact order until the first valid VSC
has been found. This VSC serves as the canonical form of the
respective substructure. Since no additional scoring is needed,
the canonical VSCs of each substructure can be directly
combined to yield the canonical representation for the
complete molecule.
For the canonicalization to work correctly, the results must

be identical for each possible valence bond structure of the
molecule provided as input. This can only be achieved if the
substructures generated in the partitioning step and the lists of
valence states identified in the selection step are both identical
in each case. The heuristic algorithms for partitioning and
selection are therefore inappropriate, and the generic variants
are applied. Since only a single valid VSC must be generated in
the end, the size of the substructures and the number of
alternative states are of less importance for the resulting
compute time. Nevertheless, in order to further accelerate the
process, all charged valence states are transformed into their
neutral states where possible (considering the number of
hydrogens) using the protonation-type substitution. Conse-
quently, only tautomer-type and resonance-type substitutions
need to be considered in the next steps.
The canonicalization procedure applied to the atoms of each

substructure differs only in one aspect from the CANON
algorithm used for the generation of USMILES.26 In the
CANON algorithm, the atomic invariants correspond to the
atom’s valence state in combination with the number of
attached hydrogens. This means that the initial ranks of atoms
can normally be deduced by comparing valence states and
hydrogens. In case of a yet unknown valence bond structure,
the final valence state of an atom is, however, not defined.
Instead, a list of valence states is used to describe the topology
of each atom and provide the initial ranks. Furthermore, the
number of non-hydrogen bonds serves as a replacement for the
number of hydrogens.
Normalization. The aim of normalization is the generation

of a canonical valence bond structure which additionally
adheres to common conventions for the representation of
molecules. This task seems, at least at first glance, quite similar
to the previously described canonicalization. The main
difference results from the necessity of a scoring step in
order to determine the best suited choice for the molecule. This
implies that multiple VSCs have to be generated and compared
with each other. Here, we have chosen a neutral form as
normalized representation, meaning that all atoms are
neutralized when possible (considering bound hydrogens).
The only exception to this rule is functional groups which are
represented in a zwitterionic form by convention, e.g., nitro
groups and n-oxides. The method is, however, not restricted to
this preference and can be easily modified so that, for instance,
the preferred ionization state is generated.
Again, the workflow starts with the partitioning of the

molecule into substructures and the selection of alternative
valence states. Due to the enumeration of VSCs in the later
steps, the size of the substructures and the number of states are
relevant factors. Therefore, the heuristic strategies for both
partitioning and state selection are used. In contrast to
canonicalization, the initial substructures and alternative
valence states do not have to be identical for each starting
structure. The additional scoring step ensures that the results
are consistent.

In the next two steps, valid VSCs are generated and scores
are assigned as explained in the sections above. For each
substructure, only those solutions with the highest score are
retained. If there is only one VSC left for a substructure, it can
be directly assigned, and no further steps are necessary.
Otherwise, a canonical solution has to be picked from the VSCs
with the highest score. This is done using the canonicalization
method described in the previous section. However, since this
method only works correctly in case of identical MSPs and lists
of valence states, a preprocessing step is required. The
respective MSP is repartitioned by exclusion of bonds having
the same bond type in all VSCs. Additionally, all valence states
which could not be found in one of the remaining VSCs are
removed from the lists of alternatives. This eventually creates
the necessary conditions for the canonicalization procedure.

Generation. The last application of our method is the
generation of a set of reasonable tautomers and protonation
states of a molecule. The resulting molecules can be used as
input for methods that rely on the positions of hydrogen atoms
such as docking. They can also serve as a starting point for the
determination of the energetically most stable form of a
molecule under consideration of the molecule’s local environ-
ment, e.g., bound to a protein. The inclusion of multiple
resonance structures, although possible with our method, is not
considered useful in this context.
The initial steps of the workflow are identical to those

described for normalization. But instead of canonically selecting
one of the remaining VSCs of each zone, the combinations are
enumerated in order to generate a set of molecules. One major
difference from the previously presented approaches is the
possibility of generating duplicates due to molecular symmetry.
This is avoided by removing VSCs from each zone that would
lead to identical valence bond structures in the resulting
molecules. For this purpose, automorphism classes for atoms
are calculated using the Morgan algorithm, which is also used
for the canonicalization. In combination with the respective
valence state of an atom in a VSC, these classes can be used to
generate a string representation of each VSC in a zone, which
are used to identify and remove duplicates.
For molecules containing more than one ionizable group, it is

usually not desirable to enumerate all combinations of VSCs
from the respective zones. To avoid chemically unreasonable
species with a high number of charges, the maximum number
of charges in the complete molecule is restricted by three
simple rules: (1) The number of charged groups must be
smaller than four, (2) the number of pairs of oppositely charged
groups is smaller than two, and (3) the maximum number of
positive charges in a ring system is restricted to one.

■ RESULTS AND DISCUSSION
The three applications presented in the previous sections are
the basis for the evaluation of our method in terms of
consistency, quality, and performance. Throughout these
studies, the following commonly used public data sets served
as input: (1) ZINC clean leads27,28 (ZINC-CL), (2)
LigandExpo component dictionary29,30 (LEXPO-CD), (3)
Drugbank31,32 (DRUGBANK), and (4) ChEMBL.33,34 All
calculations and runtime measurements were performed on a
PC with an Intel Core i5−3570 CPU (3.40 GHz) and 8 GB of
main memory.

Consistency. Independence from the initial valence bond
structure of a molecule is a fundamental requirement of the
presented method and has been thoroughly investigated for
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each of the three applications. Consistency can be verified by a
simple and straightforward procedure. The starting point is a
set containing different representations of the same molecule,
e.g., as different molecule entries in a file. After applying the
respective workflow to each representation, the resulting
molecules are converted to USMILES for comparison. If the
method is consistent, all resulting USMILES are identical. In
case of enumeration, lists of USMILES must be compared.
The best way to ensure consistency would be to test all

possible valence bond structures of the molecule with the
procedure described above. This is, however, not feasible in
many cases due to the prohibitively large number of resulting
molecular states. We therefore decided to reduce the set by
exclusion of protonation and ionization states (see Table 2 for
our definition), since the main complexity of the task results
from valence bond structures with different bond order
distributions.
The input structures needed for the assessment of our

method’s consistency were generated using a workflow
corresponding to the one described for the canonicalization
of molecules. But instead of selecting a canonical form, we
generated valid VSCs without any scoring step and enumerated
all possible combinations. Identical results could be achieved
for all three workflows, canonicalization, normalization, and
generation, with all four data sets mentioned above.
Runtimes. Table 4 lists the runtimes for the three

workflows with the above-mentioned data sets. The results
for canonicalization and normalization are comparable in both
cases, whereas the time needed for the generation of a set of
states is higher. This is not surprising since the workflow
involves the enumeration of multiple molecule states and the
built-in elimination of duplicates based on automorphism
classes. In all cases, an average runtime lower than 1.5 ms per
molecule is measured, thus showing that our method is suitable
for processing large data sets. The similarity of results for
canonicalization and normalization are most probably a
consequence of the normalization procedures used during the
curation of the used data sets. As has been explained above, the
runtimes for normalization are highly dependent on the input
form of the molecule, and the process is accelerated by
reasonable initial representations.
Normalization. The main purpose of normalization is to

transform different input forms of the same molecule into an
identical and at the same time chemically reasonable
representation. We have already shown that our normalization
workflow is consistent for the four data sets used in this study.
Here, we will focus on the second aspect. We believe that the
best way to investigate if results are chemically reasonable is to
compare the resulting valence bond structure with those found
in frequently used and curated public data sets.
The procedure applied for this purpose is again based on the

comparison of USMILES. Directly using the input molecule
and the normalized version is, unfortunately, not suitable in
many cases. As has been explained above, a canonicalization
step at the end of the workflow is used to arbitrarily select one

of multiple equally acceptable solutions. This makes the
comparison to a reference structure, which has most likely
been normalized by a different procedure, pointless. We
therefore decided to enumerate all combinations of VSCs
with the highest score and to check if the input structure is
contained within the obtained set (best). A negative result does,
however, not necessarily mean that our method generated an
unreasonable result. The representation in the data set could
simply correspond to a VSC which received a lower score based
on our scoring scheme. For that reason, we additionally
enumerated all VSCs with a score of at least 75% of the best
score and also searched in this extended set (extended). The
results of this validation procedure are summarized in Table 5.

The differences encountered during the process can be
subdivided into two classes. First, there are input structures
which are not found in the best set, but in the extended set.
These correspond in many cases to keto and enol tautomers of
aromatic heterocycles, which are ranked differently by our
scoring method (see 138 in Figure 11). Second, there are input
structures which are not present in either of both sets. After
visual inspection, we think that the results generated by our
method are in general at least equally acceptable and in some
cases even better than the representations found in the data set.
The latter especially applies to charged structures for which a
reasonable neutral form can be formulated (see 3MC in Figure
11). The normalized molecules generated by our method are
provided as Supporting Information for all entries of LEXPO-
CD and DRUGBANK which were not included in either of the
two sets.
Finding the input structure in a set of equally scored

alternatives is, however, only one aspect of the method’s
performance. Additionally, one has to make sure that the
success is not simply based on the enumeration of an
unreasonably large number of representations. For that reason,
the sizes of the respective sets are also an important
performance indicator and are shown in Table 6.
The average number of generated states is considerably lower

than the result of an exhaustive enumeration. Only for a small
percentage of molecules (less than 0.5%) does the number of
equivalent structures actually exceed a size of five. This is in all
cases caused by the combination of states from independent
zones, e.g., molecules having multiple imidazole rings.

Generation. The aim of our generation workflow is to
generate a set of chemically reasonable protomers of a molecule

Table 4. Runtimes for the Three Workflows with Different Data Sets

ZINC-CL LEXPO-CD DRUGBANK ChEMBL

# total molecules 5735035 17310 6583 1318187
runtime canonicalization [ms/cmpd] 0.28 0.41 0.45 0.71
runtime normalization [ms/cmpd] 0.31 0.50 0.6 0.73
runtime generation [ms/cmpd] 0.45 0.75 0.75 1.37

Table 5. Classification of the Input Structures from Three
Data Sets into Mutually Exclusive Categories for the
Generation of Tautomers

LEXPO-CD DRUGBANK ChEMBL

# total molecules 17310 6583 1318187
# molecules (best) 16837 6431 1252408
# molecules (extended) 364 118 52491
# molecules (not found) 135 48 11433
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for typical cheminformatics applications, e.g., docking calcu-
lations. Considering this context, the resulting set should only
contain states which are realistically expected to be stable in a
protein−ligand complex. In order to assess the quality of our
results, we used ZINC-CL as a reference set since it was
generated for the exact same scenario. The procedure is
identical to the one described for the evaluation of the
normalization workflow. The input structure is searched in two
sets, one containing the states with the highest score (best) and
one containing states with a score of at least 75% of the highest
score (extended). The results of the procedure are summarized
in Table 7.

As has already been discussed above, one important
parameter for the evaluation of the method’s performance
certainly is the number of generated states. The results for all
four data sets are summarized in Table 8.

■ CONCLUSION
The simple fact that the same molecule can be represented by
different valence bond structures constitutes a complex
challenge for cheminformatics applications. It complicates the
determination of molecular identity and makes the results of
cheminformatics calculations prone to inconsistencies. Fur-
thermore, it imposes the task of selecting the best suited
structure or structures for the respective context of application.
The identification, description, and consistent handling of these

different molecular representations is thus a fundamental
requirement in the field of cheminformatics.
To cope with these problems, we have introduced a

formalism which describes different valence bond structures
of a molecule on the basis of the recently published NAOMI
model. Using this description, we developed a general method
for their fast and consistent enumeration and presented three
exemplary applications. In our validation, we have shown that
the devised methodology can be successfully applied to relevant
tasks in cheminformatics in a consistent manner. We have also
demonstrated the low runtime of our approach which makes it
suitable for processing large data sets.
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Table 6. Number of Molecules with More than One and
More than Five Tautomers in the Best Seta

ZINC-CL LEXPO-CD DRUGBANK ChEMBL

# total molecules 5735035 17310 6583 1318187
# tautomers >1 207207 1483 520 93430
# tautomers >5 671 5 5 4699
# average 2.27 2.21 2.37 8.3

aThe provided average refers only to cases with more than one
tautomer.

Table 7. Classification of the Input Structures from the
ZINC-CL Data Set into Mutually Exclusive Categories for
the Generation of Protomers

ZINC-CL

# total molecules 5735035
# molecules (best) 4764463
# molecules (not best) 914921
# molecules (not found) 55651

Table 8. Number of Molecules with More than One and
More than Five Protomers in the Best Seta

ZINC-CL LEXPO-CD DRUGBANK ChEMBL

# total molecules 5735035 17310 6583 1318187
# protomers >1 1007976 2221 770 159663
# protomers >5 9240 183 78 13231
# average 2.54 3.14 3.20 4.40

aThe provided average refers only to cases with more than one
protomer.
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ABSTRACT: The analysis of small molecule crystal structures is a common
way to gather valuable information for drug development. The necessary
structural data is usually provided in specific file formats containing only
element identities and three-dimensional atomic coordinates as reliable
chemical information. Consequently, the automated perception of molecular
structures from atomic coordinates has become a standard task in
cheminformatics. The molecules generated by such methods must be both
chemically valid and reasonable to provide a reliable basis for subsequent
calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to
experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it
difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation
of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this
consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules
from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved
with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the
PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that
our approach is suitable for large scale applications.

■ INTRODUCTION
Crystal structures of protein−ligand complexes provide
valuable insights into the interactions between proteins and
small molecules. The statistical analysis of these structures has
become an important tool in many different areas of research in
the life sciences. Because of the large number of entries, the
Protein Data Bank (PDB)1 is the most important resource for
experimentally determined structures of protein−ligand com-
plexes. The structural data in the PDB is made available via
different chemical file formats (PDB, mmCIF, PDBML/
XML),2 of which the PDB format3 is the most common.
PDB files contain element identities, three-dimensional
coordinates, and connectivities for all atoms. However, unlike
many other chemical file formats, this format does neither
provide information about bond orders, formal charges, and
aromaticity nor any kind of atom typing. Many cheminfor-
matics methods and tools, however, depend on those and
similar properties. Hence, when PDB files are supported as
input, those properties have to be derived from the information
provided by the file format. Although many current software
packages include functionality to perceive molecular structures
from three-dimensional coordinates, only a small number of
these approaches has been published.4−10

The initial steps of all methods are similar to a certain extent.
First, covalent bonds between atoms are identified by either
using distance criteria or by simply relying on the connectivity
data (CONECT entries) provided by the PDB format. In some
approaches, this step is followed by a valence check during
which spurious bonds arising from distorted geometries are

removed. Subsequently, possible hybridizations for atoms are
determined by analyzing bond lengths and bond angles. In the
next step bond orders and atom types are assigned. Depending
on the way these assignments are handled, the methods can be
divided into two classes. Approaches from the first class
determine bond orders independently of hybridization states,
either by using the bond lengths directly or by matching of
functional group patterns. This is often followed by an
additional step during which inconsistencies in the assignments
are handled. In methods from the second class, bond orders are
derived directly from previously determined hybridization
states using different bond localization routines.
We present a new method for the perception of molecular

structures from three-dimensional atomic coordinates, which is
based on the recently published NAOMI model.11 Using its
robust chemical description, the molecules are constructed in a
hierarchical scoring approach. The first steps are based on the
local geometry of each individual atom, whereas later steps
include larger parts of the atom’s environment to generate a
correct chemical representation. This bottom-up approach has
the advantage that it does not rely on definite assignments at
early stages, for example, by assigning bond orders by torsion
angles, or by matching of functional group patterns. In contrast
to previously published methods, the final solution is selected
from a list of potential candidate structures which are ranked
using both confidence values for the atoms’ geometry and

Received: July 30, 2012
Published: November 25, 2012

Article

pubs.acs.org/jcim

© 2012 American Chemical Society 76 dx.doi.org/10.1021/ci300358c | J. Chem. Inf. Model. 2013, 53, 76−87



chemical knowledge. This combination is the key to circumvent
the shortcomings of other approaches, which either put too
much focus on the provided coordinates or simply ignore them
by using pattern-matching. The method’s robustness and
reliability are validated in different procedures by comparing
reference molecules to the generated molecular structures.
Furthermore, benchmark studies show its suitability for large
scale applications.

■ METHODOLOGY
Overview. The aim of the presented method is the

generation of both chemically valid and reasonable molecular
structures from element identities and three-dimensional
atomic coordinates. A molecule is considered chemically valid
if a valence bond structure (Lewis structure) can be found, in
which the valences of the atoms’ elements are not violated. Not
every possible valid valence bond form, however, provides a
reasonable description of the molecule. On the one hand,
geometric features, for example, interatomic distances and
planar groups, must be reflected in the assigned bond orders.
On the other hand, common standards for the representation
of particular functional groups and resonance forms should be
met. The last point is especially important since resonance
forms and, depending on the quality of the provided
coordinates, even tautomeric forms can not be deduced from
geometry alone. For this purpose, we make use of the NAOMI
model,11 which has been successfully applied to the consistent
conversion of chemical file formats. In this model, atoms are
represented by three chemical descriptors, namely element,
valence state, and atom type, which are assigned in three
consecutive steps. Valence states represent valid bond order
distributions for atoms in valence bond structures. They are
defined by an element identity, the number of associated single,
double, and triple bonds and a formal charge (e.g., N400+ for
quaternary nitrogen atoms). As will be explained below, valence
states can be used to generate valence bond forms if the atoms’
connectivities are known. Atom types are derived from valence
states and are thus independent of the input file format.
The perception of molecular structures from atomic

coordinates is performed in four steps (see Figure 1). At first,
covalent bonds are identified on the basis of interatomic
distances. The second step comprises identification of possible
valence states for each atom and scoring according to the
atom’s local environment. In the third step valence bond forms
of the molecule are generated by enumerating valid

combinations of valence states and their associated bond
orders. These combinations are scored in the final step to
determine the most appropriate valence bond representation of
the molecule. The strategy adopted in our method is based on
the opinion that the best possible compatibility between the
perceived molecules and the provided coordinates should be
sought. We believe, that the best way to do so is to build the
molecular structure based on the atom’s local geometries and
use chemical knowledge only when either inconsistencies are
encountered or ambiguities need to be resolved.

Identification of Bonds. To determine if a covalent bond
exists between two atoms, the distance criterion originally
proposed by Meng4 is applied. A bond is created if

δ = − + <r R R( ) 0.4 Åij i jbond (1)

where rij is the distance between the atoms i and j and Ri and Rj
denote the covalent radii12 of the atoms’ corresponding
elements. The high tolerance value of 0.4 Å in eq 1 ensures
that no potential covalent bond is missed during the
identification process. The softness of the criterion can,
however, lead to an erroneous bond perception in case of
distorted geometries. The resulting superfluous bonds give rise
to two different types of chemical errors, which can readily
occur at the same time. On the one hand, the atom’s number of
bonds may exceed the maximum valence of its associated
element. On the other hand, distorted geometries may lead to
the formation of incorrect cyclic structures (usually rings of size
three or four). To deal with these errors, the bond perception is
performed in several consecutive steps: (1) identification of
bonds between non-hydrogen atoms, (2) valence check for all
atoms and removal of superfluous bonds, (3) perception of the
molecule’s rings, (4) length check for all ring bonds and
removal of superfluous bonds, and (5) identification of
hydrogen bonds.
After the perception of all non-hydrogen bonds, each atom is

checked for violations of its valence. This is done by comparing
the number of identified bonds to the number of allowed bonds
for its element. If a violation is encountered, long bonds (δbond
> 0.1 Å) are removed in order of their lengths until either the
valence is restored or all long bonds are eliminated. In case of
short non-hydrogen bonds (rij < 0.5·(Ri + Rj)), the coordinates
are considered incorrect and the molecule cannot be
constructed. After the ring perception each ring is checked
for long bonds (δbond > 0.1 Å). If such a ring is encountered, its
longest bond is removed and the molecule’s rings are

Figure 1. Schematic view of the workflow for the generation of molecules from three-dimensional coordinates.
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recalculated. This process is repeated until all long bonds in
rings are eliminated. In contrast to non-hydrogen atoms,
hydrogens are only allowed to have one bond and only the
closest heavy atom needs to be identified. The hydrogen bond
is created if the resulting bond is not short (⇒ rij ≥ 0.5·(Ri +
Rj)) and the heavy atom’s valence is not violated. Otherwise the
hydrogen atom is discarded.
Selection of Valence States. In the next step, suitable

valence states are selected from a list of allowed states for the
respective element for each atom. Since bond orders have not
been assigned at this point and formal charges are usually not
provided, the number of bonds from the previous step is the
only criterion for this selection. Valence states are selected in
two cases. First, if the valence state and the atom have an
identical number of bonds. Second, if the atom’s bond count is
smaller, but the missing bonds can be saturated by hydrogens.
Charged valence states are only considered if no corresponding
neutral state exists or a formal charge has been specified for the
atom. Examples for this identification procedure are shown in
Figure 2.
In many cases, this results in an ambiguous assignment since

multiple valence states may be compatible with a particular
number of bonds. To deal with this ambiguity, all selected
valence states are scored to determine the most appropriate
choice as explained below. This score reflects the state’s
compatibility with the atom’s local environment, which is
characterized by the spatial distribution of the atom’s neighbors
and their respective element identities. The use of a predefined
list of valid valence states is an important aspect of ensuring a
molecule’s chemical validity. Atoms with an invalid number of
bonds can be easily identified by the fact that no candidate
valence state has been found. This evidently applies to all cases,
where the number of bonds exceeds the maximum allowed
number for the respective element. In addition to that, it is also
possible to identify atoms with unusual bond counts in case of
higher row elements such as sulfur or phosphorus. A typical

example would be a phosphate group that is missing two of its
terminal oxygen atoms thus leaving the central phosphorus with
only two covalent bonds. This constellation is rather unlikely in
organic molecules and simply saturating the atom’s valences by
addition of hydrogens seems questionable in a chemical sense.
If no candidate valence state for an atom can be found, the
molecule is considered incorrect and cannot be constructed.
The most common candidate valence states for typical
elements in organic molecules are shown in Table 1.

Evaluation of Geometrical Parameters. The compati-
bility of valence states is mainly assessed on the basis of the
atom’s local geometry. For that purpose, several geometrical
parameters g are evaluated and used to derive scores Gp(g) for
different chemical properties p, for example, bond orders.
These scores are calculated according to the following scheme.
For each property, a minimum and a maximum value are
defined, which correspond to the scores of 0.0 and 1.0,
respectively (see Table 2). Between the minimum and the
maximum values a linear function is used.
The absolute value of the scalar triple product π of the

normalized bond vectors connecting an atom and its neighbors

Figure 2. Examples for the selection of valence states. The crossed-out states are not selected since they can be deduced from the corresponding
neutral states shown in the same box.

Table 1. Most Common Candidate Valence States for Typical Elements in Organic Moleculesa

element valence states

hydrogen H100
carbon C400 C210 C101 C020
oxygen O200 O010 O110+ O300+ O001+
nitrogen N300 N110 N210+ N400+ N020+ N101+ N001
phospohrous P310 P300 P400+
sulfur S220 S210 S300+ S200 S110+ S010 S001+

aValence states are represented as element symbol followed by the number of single, double, and triple bonds and the formal charge.

Table 2. Parameters for the Calculation of Scores Gp(g) for
Different Properties pa

property parameter minimum (0.0) maximum (1.0)

Gplanar(π) π ≥0.6 ≤0.15
Glinear(α) α[°] ≤150 ≥170
Gsp

2(α) α[°] ≤114 ≥118
Gsingle(δ) δ[Å] ≤−0.1 ≥−0.04
Gdouble(δ) δ[Å] ≥−0.04 ≤−0.1
Gtriple(δ) δ[Å] ≥−0.15 ≤−0.25
Gplanar(τ) τ[°] ≥40 ≤10

aBetween the minimum and the maximum values a linear function is
used.
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is a direct measure for its planarity (Gplanar(π)) and can thus be
used to distinguish sp2 from sp3 hybridizations. A triple product
smaller than 0.15 indicates planarity, whereas a value larger than
0.6 (the triple product of an ideal tetrahedron is approximately
0.7) indicates the opposite. Bond angles α are used to
determine the hybridization of an atom. They are especially
important for the identification of linear geometries (Glinear(α)),
for example, in the presence of triple bonds. Because of the
large difference to the bond angles of other hybridizations, sp
hybridization can be easily distinguished. The smaller difference
between the angles associated with sp2 and sp3 hybridizations
makes the distinction between these cases rather difficult
(Gsp

2(α)). Scores for particular bond orders (Gsingle(δ),
Gdouble(δ), Gtriple(δ)) are determined using the bond length δ
which is calculated as described in eq 1. In the case of double
bonds, the largest torsion angle τ at the respective bond is
taken into consideration (Gplanar(τ)). Torsion angles can be
used to check if the atoms surrounding the bond partners are
coplanar, which is a precondition for double bonds. By taking
torsion angles into account, invalid double bond assignments
due to shortened interatomic distances can be avoided. Single
bonds joining an aromatic ring with either an alkyl substituent
or another aromatic ring are typical examples for this case.
Although the bond length might be shortened, the torsion
angle often clearly contradicts the double bond order. The
torsion bond probability Gdouble(δ,τ) is the product of Gdouble(δ)
and Gplanar(τ). For atoms in rings, torsion angles τ can be used
to determine the planarity of the ring. In this case, only bonds
in the same ring are included during the calculation of the
largest torsion angle.

Probabilities of Hybridization States. The scores Gp(g)
are the basis for the calculation of probabilities for different
hybridization states Phyb. Since the number and kind of
parameters used strongly depends on the atom’s topology,
each case is discussed separately.
For atoms with one bond, the bond length is the only

available geometrical parameter.

δ=P G ( )sp triple (2)

δ δ= −P G G( ) ( )sp double triple2 (3)

δ=P G ( )sp single3 (4)

In this case the probabilities for the hybridization states
correspond to the scores for the respective bond orders as
described in eqs 2−4. Since sp hybridization is always
associated with a linear geometry, the number of bonds at
the atom’s neighbor is checked. If the neighbor has more than
two bonds this condition cannot be fulfilled and the value of Psp
is added to Psp2 and then set to 0.0.
For atoms with two bonds, one bond angle and two bond

lengths are available. The score for the presence of a double
bond at the atom Adouble is calculated as the sum of the torsion
bond scores Gdouble(δ, τ) of the atom’s bonds, whereas its
maximum value is limited to 1.0.

∑ δ τ=A Gmin(1.0, ( , ))double double (5)

The sum in eq 5 is used to account for the limitations of
valence bond structures. In delocalized systems, for example,
aromatic rings, bonds can have lengths between the expected

Figure 3. A: Score for the planarity of an atom using the triple product. B: Score for bond orders using the bond length. C: Score for an sp2

hybridization on the basis of an atom’s bond angle. D: Score for planarity using the largest torsion angle.
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values of single and double bonds. In this case, the score for the
presence of a double bond might be underestimated if only the
larger of both values is considered. Because of the geometric
restraints in small rings, we then distinguish two cases. For
atoms in an acyclic environment or in large rings (at least eight
atoms), the following probability scheme is used:

α= · + ·P G A2/3 ( ( ) 0.5 )sp linear double (6)

α
=

· − >

· + ·⎪
⎪⎧⎨
⎩

P
P P

A G

1/2 (1.0 ) if 0.0

2/3 ( 0.5 ( )) else
sp

sp sp

double sp

2

2

(7)

= − +P P P1.0 ( )sp sp sp3 2 (8)

Since only the sp hybridization is compatible with a linear
geometry, the bond angle has a higher weighting factor in the
calculation of the associated probability in eq 6. For the
probability of an sp2 hybridization in eq 7 it is considered less
reliable due to the small difference to the ideal value of the sp3

hybridization. If the atom is part of a small ring (less than eight
atoms), ring torsion angles can be used as an additional
parameter to assess the planarity of the respective ring.
Furthermore, a linear arrangement is extremely unlikely in
these cases, so that only sp2 and sp3 hybridizations need to be
considered. The probabilities and scores are adapted in the
following way:

α= · + + ·P A A G2/5 ( 0.5 ( ))sp double planar sp2 2 (9)

= −P P1.0sp sp3 2 (10)

Since bond angles in rings with a size smaller than six are
strongly influenced by the strain of the cyclic arrangement, they
are not a reliable measure for the atom’s hybridization. In this
case, the score is automatically set to 0.5 to indicate that no
decision can be made. The planarity score Aplanar in eq 9 for an
atom is the minimum of the Gplanar(τ) (see Figure 3D) scores of
each bond.
For atoms with three bonds, three bond angles, three bond

lengths, and one triple product can be calculated. Since sp
hybridization is not possible in this case, a decision between sp2

and a sp3 hybridization has to be made. For the calculation of
the atom’s angle score Asp

2(α) the mean bond angle α̅ is used.

π α= · · + · +P G A A1/6 (3 ( ) 2 ( ))sp planar double sp2 2 (11)

= −P P1.0sp sp3 2 (12)

Again, the geometrical parameters are not considered equally
reliable which is reflected in the different weighting factors in eq
11. The scoring of valence states for atoms with four or more
bonds is solely based on scores for bond orders, and no
probabilities for hybridizations need to be calculated for these
cases.
Scoring of Valence States. The probabilities Phyb from the

previous step are used to calculate integer-based scores for all
selected valence states of each atom. This score reflects the
compatibility between the atom’s local environment and the
respective valence state and is used to identify the best suited
state for an individual atom. Additionally, the absolute value of
the score also provides a measure of confidence, which can be
used to compare possible valence state assignments for different
atoms. The scoring procedure makes use of the fact that
valence states are not compatible with all hybridization states.

In case of compatibility, the score SVS is calculated using the
probability Phyb according to the following scheme:

=
<

⌊ · + ⌋⎪
⎪⎧⎨
⎩

S
P

P c

1 if 0.6

0.5 elseVS
hyb

hyb (13)

The confidence factor c in eq 13 determines the maximum
value of the score and depends on the topology of the
respective atom (see Table 3). The values are based on the

number of geometrical parameters available for the calculation
of the probabilities Phyb. A single bond length, for example, is
not well suited to reliably distinguish between hybridizations,
since even small geometrical distortions may cause the bond
order perception to fail. This lack of reliability is reflected in a
small confidence factor of 2.0 for atoms with one bond. The
integer-based scheme ensures that only those valence states
which are clearly favored by the atom’s local geometry receive
scores larger than one. This prevents the elimination of valence
states based on small geometrical differences.
If the compatibility between the selected valence states and

their associated hybridization states is mutually exclusive, the
scoring procedure is straightforward. Because of the limitation
of valence bond structures, this is, however, not always the case
(see Figure 4 for examples). On the one hand, there are atoms
which are represented by the same valence state but have
different hybridizations, such as nitrogens in amines and
amides. These cases are handled by assigning the largest score
obtained for all compatible hybridizations to the respective
valence state. On the other hand, some atoms are not
sufficiently represented by a single valence state such as
oxygens in a carboxylate group. In this case both compatible
valence states receive identical scores. Examples for the scoring
procedure are shown in Figure 5.
The calculation of scores for atoms with four or more bonds

can in most cases be avoided due to the fact that there is only
one suitable valence state. If this is not the case, the multiple
bond score Adouble introduced in eq 5 is used in place of Phyb to
calculate the score for all selected valence states. This is always
sufficient to distinguish between the alternatives.
In some cases, it is beneficial to remove valence states from

the list of candidates if their associated hybridization is not
compatible with the atom’s local geometry (Phyb = 0.0). These
valence states will not be considered during the generation of
valence state forms, which in turn reduces the complexity of the
next steps. Since distorted geometries could easily lead to the
premature exclusion of relevant valence states, this is only done
in two rather unambiguous cases. First, if the corresponding
valence state is only compatible with an sp hybridization and
second if the atom has three bonds.
Distorted geometries can also result in incorrect scores which

will eventually lead to undesired valence bond structures. This
is especially true if atoms with only one bond are involved since
the resulting assignment cannot be corrected by the valence
states of the surrounding atoms. To avoid these errors, valence

Table 3. Confidence Values for Different Topologies

topology confidence c

1 bond 2.0
2 bonds(acyclic) 3.0
2 bonds(cyclic) 4.0
≥3 bonds 5.0
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state scores of atoms that are part of specific substructures are
increased by +2 (see Figure 6). These resulting scores are,
however, not high enough to change the assignment in case of a
perfect geometric compatibility.
The purpose of the described procedure is to provide reliable

scores which can be used to identify the best valence state

representation of the molecule. Due to the differing quality of
available input data, this must also apply if the provided
coordinates are of poor quality. As mentioned above, the scores
are not only used to find the best choice for an individual atom
but also to compare assignments between atoms. This means
that valence states with higher scores have a stronger influence

Figure 4. Limitations of valence bond structures: (a) Nitrogens in amides and amines have the same valence states but different geometries. (b)
Oxygens in carboxylates have different valence states but have the same bond length.

Figure 5. Examples for the valence state scoring procedure. Relevant geometrical parameters are triple products, bond lengths, bond angles and
torsion angles. If bond angles and bond lengths do not indicate a linear geometry, valence states associated with a linear geometry are excluded
(marked in red). For the atoms A, C, and D the geometrical parameters clearly support one of the valence states. In the case of atom B, there is no
clear preference and two valence states are equally probable.
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on the resulting valence state form. The score does not only
depend on the number of available parameters at the respective
atom, but also on their consistency. This is assessed by the
individual evaluation of the geometrical parameters during the
calculation of the probabilities Phyb. A value of 1.0 is only
possible if all geometrical parameters are consistent, which in
turn results in low scores for atoms with inconsistent local
geometries.
Generation of Valence Bond Forms. In the next step,

chemically valid valence bond representations of the molecule
are generated by assigning valence states to all atoms and bond
orders to all bonds. A combination of valence states is valid if a
bond order distribution can be generated which is in
accordance with the valence states of the atoms. The score of
such a combination is calculated as the sum of the scores of the
valence states from the previous step. The best combination
can be identified by enumerating all valid combinations with a
maximum score. For the enumeration a branch and bound
algorithm with a depth-first search strategy is used. Prior to the
enumeration, the list of valence states for each atom is checked
for cases where only one valence state is remaining. This state is
assigned directly and the orders of the adjacent bonds are
adapted accordingly. Afterward, the molecule is partitioned into
zones containing atoms connected by bonds with unassigned
bond orders. The individual processing of each zone further
decreases the number of possible combinations. If a single best
scored combination for a zone exists, it is selected. Otherwise,
combinations with equal scores are ranked using additional
geometrical and chemical criteria as described below.
Scoring of Valence Bond Forms. Each combination of

valence states generated in the last step is a valid valence bond
form (in the sense that no valences are violated) and is also
compatible with the local geometry of the atoms. This does,
however, not necessarily imply that each form provides a
reasonable description of the molecule. On the one hand,
discrepancies between the assigned bond orders and the actual
bond lengths might exist, which could not be resolved during
the atom based valence state scoring procedure. On the other
hand, the combination might contain unusual representations
of functional groups or conjugated systems, which could not be
excluded using geometrical parameters alone. Hence, an
additional scoring scheme, which makes explicit use of the
assigned bond orders, is applied to distinguish reasonable from
undesired valence bond forms. In contrast to the previous steps,
where geometrical parameters had a high priority, this step
focuses mainly on chemical aspects.
Prior to the scoring procedure, valence states and bond

orders are assigned if they are identical in all generated valence
bond forms. Afterward, the molecule is again partitioned into
zones containing atoms connected by bonds with unassigned
bond orders. Then, substructures (see Figure 7) including at
least one of the unassigned atoms are identified in each of the
remaining valence bond forms. These substructures correspond
to preferred representations of functional groups and for each

match a score of +1 is assigned to the respective form. If an
unassigned atom is part of a ring with a size smaller than eight,
Hueckel’s rule is applied to assess its aromaticity. Valence bond
forms receive a score of +1 for each ring, where the rule is
fulfilled. It must be stressed that our approach does not favor
particular functional groups or aromatic rings in general but
only if the geometrical parameters were not sufficient to resolve
the structure.
If a bond with an unassigned bond order is part of a

substructure or ring which has been scored in the previous step,
no further scoring is performed. Otherwise, Gorder(δ) from
Table 2 is used to determine if the current bond order is
compatible with the calculated bond length. In the case of
double bonds, Gdouble(δ,τ) is used. If the respective value
exceeds a threshold of 0.7 a score of +1 is assigned to the
valence bond form. Hence, solutions in which bond lengths do
not correspond to the assigned bond orders receive lower
scores. If the bond is also part of a ring with less than eight
atoms, Gplanar(τ) is used as an additional parameter to assess the
bond’s planarity. A score of +1 is assigned if either Gplanar(τ) is
smaller than 0.3 (planar geometry) for a double bond or
Gplanar(τ) is larger than 0.7 (ring is not planar) for a single bond.
Again, only the solutions with the largest scores are kept. If

there are still multiple solutions left, they are considered
equivalent and a canonization scheme is used to choose a
unique form for each zone. Since a detailed explanation of the
canonization algorithm extends the scope of this publication,
only a brief description of the general idea will be given. The
atoms of the respective zone are ordered in a procedure similar
to the CANON algorithm13 used for the generation of
USMILES. The zone is then processed atom by atom according
to this newly generated order. At each step the respective
solutions are sorted by the valence states (using ids as sorting
criterion) of the particular atom and all solutions with lower
ranks are eliminated. This process is repeated until only one
solution remains. Obviously, it is also possible to omit the
canonization and use the solutions for each zone to enumerate
all equivalent valence bond forms of the molecule.

■ RESULTS AND DISCUSSION
Validation with Curated Structures. In a first validation

procedure we tested if our method was able to generate the
expected valence bond structures for small molecules from
different PDB entries. The success was verified by comparison
of the resulting molecules to manually curated reference
structures provided as USMILES.13 Small molecules were
extracted from PDB entries used in the studies of Hendlich6

and Labute.7 Because of its importance in the field of

Figure 6. Additional scores of +2 are assigned to valence states for
atoms (marked with red spheres) in specific substructures. The
number of bonds at the atoms corresponds to the number of bonds
identified during the bond perception.

Figure 7. Substructures representing favored representations of
particular functional groups in valence bond structures. The R
represents both carbon and hydrogen.
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cheminformatics, we also included the ligands from the PDB
entries of the Astex Diverse Set.14 The complete validation set
consists of 563 molecules from 363 PDB entries. Both PDB
entries and SMILES files for the respective compounds are
provided as Supporting Information. Table 4 lists the PDB

entries and the component names of the ligands for which our
method failed to generate the expected structure. Five of these
examples are shown together with the reference structures
taken from the respective publications in Figure 8.
The dihydro-oxazol ring of ligand W71 from 2R04 (see

Figure 8A) is perceived as oxazol. Because of a short bond of
C4A to the nitrogen atom and the planarity of the five-
membered ring, the valence state C210 (which is compatible
with an sp2 hybridization) receives a higher score. This
eventually leads to a structure including an aromatic ring.
One of the hydroxy groups of the flavin mononucleotide ligand
FMN from 3FX2 (see Figure 8B) is interpreted as a carbonyl
group. In this case the valence state C210 is favored due to the
trigonal planar geometry of C2′. The same also applies to the α
carbon CA2 in BAN from 5TLN (see Figure 8E). The carbonyl
group of the molecule XLS from 8XIA (see Figure 8C) is
interpreted as a hydroxy group because of the tetrahedral
geometry at C2. The double bonds of the olefinic moiety of
OLA (1PMP) (see Figure 8D) and of one of the vinylic groups

in HEM (1G9V, 1Q4G) are perceived as single bonds due to
the bond lengths and associated bond angles.
Our method was able to generate the correct structure in

98% of the cases. All observed differences were caused by
strong deviations from the expected molecular geometries. The
valence bond forms generated by our method are, however,
equally reasonable in a chemical sense and also in agreement
with the supplied atomic coordinates. Only in the case of BAN
the generated structure does not correspond to the tautomeric
form which would be expected for the isolated compound with
respect to the hydroxamic acid group. The molecular geometry
may, however, be influenced by the interactions with a metal
atom in the protein−ligand complex. The PDB entry CFM
contains an Fe−Mo−S cluster, for which our method does not
produce a valence bond form but isolated atoms. Since valence
bond forms are not well suited to describe metal clusters, we do
not consider this a perception error, but think it should be
mentioned at this point. The same is true for the vanadate in
6RSA in which no bonds between the oxygens and the
vanadium atom are formed. The uridine molecule, however, is
perceived correctly.

Comparison with Other Methods. To compare our
results with those of other existing methods, we used the tools
I-interpret,15 fconv16 and MOE17 to generate molecules for the
above-mentioned 363 PDB entries. This was done by first
converting the entries from PDB to SDF (since fconv does not
support sdf as output format, mol2 was chosen in this case) and
then using the converted file as input for the comparison to the
reference structures. The results are summarized in Table 5.
Since our method will be part of the NAOMI converter, it is
referred to as NAOMI in the table. The comparison to the
reference structures was done using the NAOMI framework.
Since all files (PDB input, SDF/MOL2 files from different
tools, SMILES for comparison) are supplied as Supporting

Table 4. PDB IDs and Component Names of All Molecules
for Which Our Method Did Not Generate the Expected
Structure

Labute7 Hendlich6 Astex14

2R04 (W71) 1MIO (CFM) 1G9V (HEM)
3FX2 (FMN) 1PMP (OLA) 1Q4G (HEM)
5TLN (BAN) 6RSA (UVC)
8XIA (XLS)

Figure 8. Five of the nine molecules for which our method did not generate the expected structure. The expected results are shown on the left side
of the arrow, the results of our method on the right. The names from the PDB files are listed for all atoms for which incorrect valence states were
identified.
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Information, the comparison can be carried out using other
tools with the same functionality. The differences between the
generated molecules and the references can be divided into two
categories. First, there are molecules for which hybridization
states or bond orders have been differently assigned. All of
these differences are caused by deviations from the expected
geometries and are thus directly linked to the quality of the
respective coordinates. Second, there are molecules with
unusual or even chemically unreasonable resonance or
tautomeric forms. Although these differences are not wrong
considering the molecule’s geometry, they deviate from
conventions concerning the representation of particular
substructures. Depending on the gravity of these deviations,
the solutions are either considered invalid or simply not
optimal. Examples for both cases are shown in Figure 9.
Table 5 shows that many differences appearing with other

tools are avoided by our method. Incorrect perceptions because
of geometrical distortions are often prevented by considering all
aspects of an atom’s environment. The confidence values for
valence states are derived from multiple geometrical parameters
so that the assignment has a certain stability against small
geometrical distortions. This is a considerable advantage over
methods which rely on definite assignments based on particular
geometrical parameters. By considering the confidence values
of surrounding atoms during the generation of valence bond

structures even strong distortions can be compensated in some
cases. The explicit inclusion of chemical knowledge in the last
step of the workflow helps to reliably resolve the remaining
ambiguities. Errors concerning the representation of molecules
typically occur with methods that put too much emphasis on
the evaluation of the geometrical parameters during the
generation of valence bond forms. One has to keep in mind
that localized bond orders are only an approximation and do

Table 5. Results of the Generation of Molecules from the 363 PDB Entries Using Different Toolsa

aThe colors represent the quality of the resulting structures. Green cells: Correct structure. Yellow cells: Suboptimal structure. Red cells: Structure
substantially differing from reference. X: No structure generated.

Figure 9. Comparison of reference structures and perceived structures
generated by other tools. The structures A and B are classified as
errors, whereas structure C is classified as not optimal.
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not have to strictly adhere to molecular geometries. By scoring
multiple alternative structures using a combination of chemical
and geometrical criteria, our method is able to generate
molecules that are both in agreement with the atomic
coordinates and chemically reasonable.
Validation with Complete Ligand Expo Data Set. The

main purpose of our method is the automatic generation of
reasonable molecular representations for large data sets. To
show that our method is both, efficient and robust, we applied
it to all entries of the Ligand Expo data set18 in PDB format and
analyzed the results in terms of runtime and quality. The
generated structures were compared to the respective
molecules in the SDF format, which are also provided on the
Ligand Expo Web site.19 Again, USMILES served as a basis for
the comparison. Since the NAOMI model does not support
covalently bound metal atoms, all metal bonds were ignored
and only the largest resulting component was used. Addition-
ally, monatomic entries were skipped, since the ionization state
of single atoms can not be deduced without knowledge of the
environment. Empty entries and entries with multiple
disconnected components were also ignored, since this usually
indicates missing atoms. Some entries were rejected due to
unusually small distances between atoms (coordinate errors).
The results of this procedure are summarized in Table 6.

Both data sets initially contained 602704 entries, of which
334121 (55.4%) were eventually used for comparison. To avoid
inconsistencies concerning ionization states, all molecules were
neutralized in advance (see Figure 10). In 91.7% (306341) of
the cases identical valence bond structures were found. The
reasons for the observed 27780 differences are quite diverse, as
shown shown in Table 7.
In 10012 (36.0%) of the cases, a different tautomeric form of

the molecule was generated. Tautomeric forms can often not be
distinguished on the basis of the provided coordinates and
multiple solutions are equally acceptable. As described above
these cases are handled by a canonization procedure, so that
different tautomeric forms do not indicate perception errors but
rather different default representations. Typical examples for
substructures with equivalent tautomeric states are substituted
imidazoles, pyrimidones, and guanidinium groups. 810 (2.9%)

of the differences were due to different oxidation states of
particular heterocyclic compounds such as NAD/NADP. As
with tautomers, these states can not be reliably distinguished on
the basis of atomic coordinates, especially in entries with low
resolution. Therefore, these cases are also not considered
perception errors meaning that 94.9% of the results are
essentially identical.
The remaining 16958 entries were further investigated in

order to determine the reason for the incorrect perception.
These entries correspond to 2341 different components, of
which the 20 with the highest counts are shown in Table 8.
Evidently, 22.8% (3864) of the differences are caused by only
1% of the components. These entries will be used for the
discussion of specific problems encountered with the
LigandExpo data set.
The errors associated with HEM are almost exclusively

caused by the vinylic double bonds. As discussed above, the
number of available geometrical parameters for the determi-
nation of bond orders for terminal bonds is small and makes
the perception less stable with respect to deviations from ideal
geometries. PGV, BCR, PEK, PEV, and OLC are molecules
with long aliphatic chains and a specific number of double
bonds. In many entries there is a considerable disagreement
between our method and the LigandExpo references
concerning both the presence and position of these double
bonds. We have encountered numerous examples where we did
not even find a single shortened bond length in the molecule
although a double bond was present in the LigandExpo
structure. Many of the incorrect perceptions concerning FAD,
NAD, and UMP are caused by strong geometrical distortions of
the respective aromatic rings. In some cases torsion angles that
reach up to 40° are encountered in these usually completely
planar structures. In case of CYC, BLA, and MDO exocyclic
carbon−carbon double bonds at five-membered aromatic
heterocyclic are interpreted as single bonds. These assignments
were in all cases a result of an unambiguous single bond length
at the respective bond. The difference from the entries ACB,
MLE, and MYR are caused by the specific way covalently
bound compounds are handled in the PDB format. If a
molecule is bound to a residue of a protein or nucleic acid, the
atom involved in this bond is usually assigned to the residue.

Table 6. Results of the Analysis of the 602704 Entries in the
Ligand Expo Data Set for Both SDF and PDB

SDF PDB

no. total 602704 602704
mo. format errors 0 3015
no. empty entries 7688 7678
no. monatomic entries 241002 239452
no. disconnected entries 10254 10193
no. coordinate errors 499 939
no. converted entries 343261 341427
no. compared entries 334121

Figure 10. Scheme for the comparison of molecules from the Ligand Expo data set. Generated molecules from the PDB format are compared to the
respective structures from the SDF format.

Table 7. Analysis of the Reasons for Different Valence Bond
Structures for the 334121 Compared Entries of the Ligand
Expo Data Seta

entries % of data set
% of

differences

no. different valence bond form 27780 8.3 100
no. different tautomeric form 10012 3.0 36.0
no. different oxidation state 810 0.2 2.9
no. different bond order 10349 3.1 37.3
no. different terminal bond order 6063 1.8 21.8
no. small molecule 3523 1.1 12.7
aMolecules are considered small if they have less than 8 heavy atoms.
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This means that the compound in the entry does not represent
an isolated molecule and that necessary information is missing.
These errors can often be avoided when the complete PDB
entry including the protein environment is used. The reasons
for the differences encountered for PSO are quite similar. The
psoralen is also covalently bound to a nucleotide but in this
case no atoms from the initial component are missing. This
connection is, nevertheless, reflected in the coordinates by a
change of hybridization geometries for the carbon atoms in the
five-membered ring. Since the molecule contained in the
LigandExpo data set is an isolated psoralen, the different
perception is not surprising. In case of LLP, PDU, and 7MG
the structures provided by the LigandExpo data set seem to be
wrong (see Figure 11).

The compound LLP represents a lysine residue covalently
linked to a pyridoxal phosphate via an imine group. This double
bond is not present in any of the structures from LigandExpo
although it is reflected by a short bond length in the
coordinates. The name for the compound PDU on the
LigandExpo Web site is 5(1-propynyl)-2′-deoxyuridine-5-
monophosphate which indicates the presence of a triple
bond. This is also confirmed by an analysis of the molecule’s
geometry. This triple bond is, however, not present in the
reference structure. 7MG is supposed to be 7N-methyl-
guanosine-5′-monophosphate, a molecule with a charged five-
membered heterocycle which is generated by our method. The
structure found in the LigandExpo data set, however, has a
carbon atom with an sp3 hybridization in the five-membered
ring.
We think that these examples are sufficient to provide a

general overview of the reasons for the observed differences. A
special case worth mentioning are molecules with fewer than
eight heavy atoms, such as solvents and auxiliary agents.
Because of the extreme deviations from ideal geometries, these
entries can often not be handled on the basis of atomic
coordinates alone. We believe that in some cases these
molecules were of minor interest to the researchers and less
care was taken during the structure determination process.

When interpreting the results of the comparison one has to
keep in mind that our method solely relies on the atomic
coordinates provided by the file format. The reference
molecules in the Ligand Expo data set are, however, derived
from various inputs. In particular, this includes information
about the components provided by the crystallographers. This
means that the provided coordinates are not necessarily in
perfect agreement with the structures present in the data set. In
the end 10349 (61.0%) of the 16958 remaining entries differ by
only one bond order and the respective bond is terminal in
6063 (35.8%) of these cases. This shows that the generated
structures, even if they are not identical, are generally in good
agreement for the larger part of the molecules.

Runtimes. The runtimes for the conversion from both the
PDB and the SDF format to USMILES are shown in Table 9.

The conversion from SDF provides a point of reference for the
performance of our method, since the steps after the generation
of the valence bond structure are identical for both formats.
Due to the numerous monatomic and small molecules (e.g.,
solvent molecules) in the data set, we also used a subset where
all entries with less than eight atoms have been excluded. This
data set provides a more realistic picture of the average
runtimes per molecule. The molecule entries in the PDB format
were only supplied as single files in a tar archive, which can
cause large IO overhead. To avoid this, we concatenated all files
into one large file which is a common procedure for other
formats such as SDF.
Time measurements were performed on a PC with an Intel

Core2 Quad Q9550 CPU (2.83 GHz) and 4 GB of main
memory. The average runtime for the conversion of a single
molecule from the PDB format is approximately 1 ms. The
comparison to the value obtained for the SDF format (0.4 ms/
molecule) shows, that the runtimes lie well in the range of
conventional file format conversions. Our method can hence be
used even in large scale applications.

■ CONCLUSION
We have presented a novel method for the perception of
molecular structures from atomic coordinates. This method is
based on the recently published NAOMI model,11 which has
been developed for the appropriate representation of organic
molecules. The robustness of our approach has been assessed
by processing the Ligand Expo data set in PDB format and
comparing the resulting molecules to the structures from the
corresponding SDF files. The results are correct in more than

Table 8. PDB Component Names and Numbers of Errors for Those Molecules for Which the Most Errors Occured

name no. errors name no. errors name no. errors name no. errors name no. errors

HEM 1794 PGV 194 CYC 187 BCR 182 LLP 164
ACB 124 FAD 124 PEK 120 PEV 102 MLE 84
PSO 124 BLA 83 1MA 81 MYR 80 7MG 80
OLC 79 MDO 77 NAD 77 PDU 76 UMP 73

Figure 11. Comparison of inconsistent structures from the
LigandExpo data set to those generated by NAOMI.

Table 9. Runtimes for the Conversion of the Ligand Expo
Data Set from PDB and SDF to USMILES

data set entries runtime (s)

PDB (all) 602704 147
SDF (all) 79
PDB (>7 atoms) 204797 110
SDF (>7 atoms) 64
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95% of the cases showing that our method is able to produce
reasonable results even when working with coordinates of
varying quality. The method’s accuracy has been demonstrated
by comparison to manually curated molecules from previously
published benchmarking sets. Our method was successful in
98% of the cases and was able to generate reasonable molecular
representations even from structures with distorted geometries.
A direct comparison to the tools fconv, I-interpret, and MOE
shows that the combination of geometrical and chemical
criteria used in our method is the key to avoid many assignment
problems. Due to the average runtime of less than 1 ms per
molecule the method is perfectly suitable for large scale
applications.
Since the method is based on the NAOMI model, it is

currently limited to organic molecules which can be
represented by valence bond structures. This limitation does,
however, only exclude a small number of molecules in the PDB
and is thus considered acceptable. Because of missing hydrogen
atoms and low resolution of most PDB entries the appropriate
tautomeric form can usually not be deduced from the atomic
coordinates alone. This would require a more advanced analysis
of the ligand’s energy or the explicit consideration of the
molecule’s environment, for example, the binding pocket of the
protein, neither of which are in the scope of our method. The
method is included in the current version of the NAOMI-
converter which can be downloaded at http://www.zbh.uni-
hamburg.de/naomi. It is available free of charge for academic
use.
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Abstract

The calculation of hydrogen positions is a common preprocessing step when working with crystal structures of
protein-ligand complexes. An explicit description of hydrogen atoms is generally needed in order to analyze the
binding mode of particular ligands or to calculate the associated binding energies. Due to the large number of
degrees of freedom resulting from different chemical moieties and the high degree of mutual dependence this
problem is anything but trivial. In addition to an efficient algorithm to take care of the complexity resulting from
complicated hydrogen bonding networks, a robust chemical model is needed to describe effects such as
tautomerism and ionization consistently. We present a novel method for the placement of hydrogen coordinates in
protein-ligand complexes which takes tautomers and protonation states of both protein and ligand into account. Our
method generates the most probable hydrogen positions on the basis of an optimal hydrogen bonding network
using an empirical scoring function. The high quality of our results could be verified by comparison to the manually
adjusted Astex diverse set and a remarkably low rate of undesirable hydrogen contacts compared to other tools.

Keywords: Protein-ligand complex, Tautomers, Protonation states, Hydrogen placement

Background
Crystal structures of protein-ligand complexes play an
important role in the drug development process. They
provide valuable insights into where and how molecules
interact with their respective target proteins and thus are
the basis for further optimization strategies. They also
serve as starting point for numerous structure-based in-
silico techniques such as molecular docking or pharma-
cophore generation. Furthermore, the statistical analysis
of large collections of crystal structures is a common
means to gain general knowledge about molecular inter-
actions and geometry. These results are often used to
derive parameters for various computational methods. All
of the above-mentioned applications depend on informa-
tion about the interactions between protein andmolecules
with hydrogen bonds being one of the most important
types. Due to insufficient resolution, the vast majority of
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†Equal contributors
1Center for Bioinformatics(ZBH), Universität Hamburg, Bundesstr. 43, 20146
Hamburg, Germany
Full list of author information is available at the end of the article

the entries in the Protein Data Bank (PDB) [1] only con-
tain coordinates of non-hydrogen atoms. In order to be
able to work with these entries, automated procedures for
the placement of hydrogen atoms are needed. Consider-
ing its importance, it is not surprising that a large number
of different methodologies have been developed to tackle
this task. A thorough review of these different approaches
has been given by Forrest and Honig [2].
While many of these applications show substantial dif-

ferences concerning their subjective function or their
underlying optimization algorithms, most of them share
the degrees of freedomwhich are used to tackle the uncer-
tainties of structure determination [3-8]. Typically, these
comprise rotatable hydrogens, tautomers and protonation
states of particular amino acids, alternative water orien-
tations, and terminal side chain flips. Indeed, this covers
the most important ambiguities of protein structures, but
neglects crucial aspects of ligandmolecules. Different tau-
tomers and protonation states can lead to substantially
different interaction patterns. Hence, considering alterna-
tive ligand states has a high impact on the quality of hydro-
gen bonding networks, especially for applications dealing

© 2014 Bietz et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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with ligand binding. Neglecting these degrees of freedom
might easily lead to erroneous predictions, including the
omission of relevant hydrogen bonds and the generation
of hydrogen clashes. Nevertheless, targeting this problem
has not drawn much attention in the literature yet. This
might be reasoned in a deviating focus of most hydro-
gen prediction tools, which concentrate rather on the
whole protein than on single binding sites, but it might
also reflect the difficulty of properly modeling complex
phenomena like tautomerism and ionization of arbitrary
organic molecules. However, some of the more recently
developed methods consider these effects at least to some
extent.
Protonate 3D [9,10] has been developed for the predic-

tion of hydrogen coordinates as a preprocessing step to
structure-based computational applications, e.g. protein-
ligand docking or molecular dynamics. Beside well-
established degrees of freedom for protein side chains, it
is also capable of considering selected alternative states
of other chemical groups. This is technically realized by
a SMARTS [11]/SMILES [12]-based template collection
stored in a predefined parameter file whichmust explicitly
contain all tautomeric and protonation states that should
be considered for a specific chemical group. Furthermore,
Protonate 3D uses a prioritizing branch-and-bound algo-
rithm in combination with a preceding dead-end elimina-
tion to handle the state space optimization problem and a
force field based energy model including additional terms
for tautomerism and ionization effects.
The modeling and simulation suite YASARA [13,14]

provides a sub-module for the prediction of hydrogen
coordinates which is able to consider alternative proto-
nation states and tautomers of non-protein-like chemical
substructures. Similarly to Protonate 3D, a configura-
tion file contains template definitions for different poten-
tial states of these substructures represented as SMILES
strings. Its default collection of considered substructures
is a little more comprehensive, but its generality is still
limited by the fact that all molecular states have to be
explicitly defined. The optimization problem is tackled
with an algorithm, originally developed for side chain
prediction, which combines a dead-end elimination, a
branch-and-bound backtracking, and a graph decomposi-
tion approach [15]. Interestingly, the underlying empirical
scoring model, in contrast to most other hydrogen pre-
diction tools, targets a minimization of the amount of
unsaturated hydrogen bond donors or acceptors instead of
a maximization of the number of attractive interactions.
We present a novel method for the placement of hydro-

gen coordinates in protein-ligand complexes. By using the
consistent chemical description provided by the NAOMI
model [16], tautomeric and protonation states of both
protein and ligand are handled consistently. The method
is a substantial extension of Protoss [17] which has been

developed earlier. The optimal hydrogen bonding network
is determined on the basis of the quality of all possi-
ble hydrogen bonds in combination with the stability of
the involved chemical groups. There is to the best of our
knowledge no other method described in the literature
which is able to handle the degrees of freedom for protein
and ligand in an comparable generality.

Methods
The purpose of the presented method is the genera-
tion of the most probable hydrogen placement for a
given protein-ligand complex. The underlying optimiza-
tion procedure is based on an empirical scoring scheme
designed to identify an optimal hydrogen bonding net-
work. This scheme takes both the quality of hydrogen
bond interactions and the relative stability of different
chemical species into account. The procedure is per-
formed in separate steps which will be explained in detail
in the following sections. Due to the exceptional impor-
tance of the PDB as source for input structures, we have
added a subsection in which the necessary preprocessing
steps for working with PDB files are discussed.

Input from PDB files
In contrast to most other chemical file formats, the PDB
format [18] does not include any information about bond
orders or atom types so that these properties must be
derived directly from the provided atomic coordinates.
In case of biological macromolecules, e.g., proteins, this
process can be considerably facilitated by using structural
templates for standard residues. The necessary data for
both the subdivision of proteins into residues and the
identification of particular atoms is provided in the coor-
dinate section of the PDB format. In case of incomplete
residues, the missing atoms are topologically added in
order to ensure an accurate description. They will, how-
ever, not have valid coordinates and are thus ignored
during the calculation of interactions. For the large and
steadily growing number of different small molecules in
the PDB, predefined structural templates are generally
not a viable option. In this case a generic method for
the construction of molecules from three-dimensional
coordinates is needed. This evidently also applies to non-
standard residues for which no predefined template is
available. We use a method based on the NAOMI model
for that purpose [19]. Both strategies eventually result
in isolated components which have to be connected in
order to build the complete protein structure. The con-
nection of standard residues with peptidic bonds is again
handled with recourse to predefined templates. All other
types are based on a procedure similar to that used for
the generic construction from three-dimensional coordi-
nates. The only difference is that the method is applied to
a substructure rather than the complete molecule. In this
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way the consistent description of molecules can be used
to reliably handle the integration of residues into proteins.
The description of both proteins and molecules is based
on the NAOMI model, meaning that consistent atom type
and bond order information is available throughout the
next steps.

Initial hydrogen positions
Initial hydrogen coordinates are calculated on the basis of
idealized geometries provided by the atom types of the
NAOMI model. These geometries reflect the hybridiza-
tion states of the respective atoms and are based on
the general concepts of VSEPR theory [20]. In combina-
tion with the coordinates of the covalently-bound non-
hydrogen atoms, knowledge about the atom’s hybridiza-
tion state can be used to calculate reasonable positions
for hydrogens. The concrete orientation of the respective
hydrogen bonds is in many cases unambiguously deter-
mined by the constraints imposed by the atom’s local
geometry. In case of an sp3 hybridized carbon atom with
three non-hydrogen bonds, for instance, the direction
of the bond coincides with the connection line to the
unoccupied vertex position of the underlying tetrahedron.
There are, however, a few cases for whichmultiple accept-
able orientations exist. The most prominent examples in
protein-ligand complexes are isolated atoms (e.g. water),
terminal atoms (e.g. alcohols, acyclic amines) and partic-
ular types of ring atoms (e.g. cyclic secondary amines).
In these cases the orientation of hydrogens cannot be
unambiguously derived from the heavy atom skeleton of
the respective molecule. The final decision can only be
made under consideration of all chemicalmoieties in close
vicinity so that only preliminary positions can be calcu-
lated at this point. Another type of ambiguity arises with
respect to the initial tautomeric and ionization states of
both residues and ligands as these will obviously influ-
ence the corresponding hydrogen positions. For this pur-
pose the normalization procedures described in [21] are
applied prior to the generation of initial hydrogen coor-
dinates. Free amino and acid groups of residues resulting
from chain breaks are a special case. If the PDB file does
not indicate that these residues are in fact terminal, they
will be treated internally as incomplete parts of an amide
bond and thus kept in their neutral state. At the end of the
procedure, each hydrogen atom in the protein will have
three-dimensional coordinates which are in accordance
with the hybridization states of the respective bond part-
ners. In case of multiple alternatives, these preliminary
positions, however, are just needed for technical reasons
and will be adapted in later steps.

Enumeration of alternative hydrogen positions
Based on the initial assignment of hydrogen positions,
tautomers and protonation states, substructures with

variable hydrogen positions in both protein and ligand are
identified. The considered types of variability are rotations
of terminal hydrogen atoms, potential side-chain flips for
specific residues, alternative tautomeric forms, different
protonation states, and alternative orientations of water
molecules. For each substructure, all different placements
of hydrogen atoms, called alternative modes in the fol-
lowing, are enumerated (see Figure 1 for examples). In
contrast to the previously published Protoss version, tau-
tomeric and protonation states for small molecules and
non-standard residues are also taken into account. These
are generated using the valence state combination model
presented in a separate publication [21]. Since the details
of these calculations are beyond the scope of the pre-
sented method, we will only give a short overview with
focus on those aspects relevant in the current context.
The workflow starts with the partitioning of the molecule
into non-overlapping substructures which correspond for
the most part to conjugated ringsystems and functional
groups. In some cases substituents, e.g., alcohols and
amines, are considered as part of a ringsystem as they are
necessary for the consistent generation of tautomers. The
partitioning is retained throughout the following steps as
it reflects the dependency between the hydrogen positions
for the atoms in the substructures. These will be referred
to as Variable Mode Regions (VMR) in the following. Pro-
tonation states and tautomers are enumerated for each
VMR individually and stored in form of a list contain-
ing the alternative modes together with an integer-based
score. These scores provide an order of preference which
is crucial when deciding if the default mode of a VMR
should be changed in order to optimize the hydrogen

(A) (B) (C)
Figure 1 Three examples for VMRs with alternative hydrogen
positions and free electron pairs. Primary alcohols (A) are
considered as rotatable and the associated hydrogen atom can
occupy any position on the orbit around the oxygen atom. Three
exemplary orientations are shown. Cyclic secondary amines (B) can
either be protonated and positively charged or neutral. In the latter
case the hydrogen atom can occupy two distinct positions. The
imidazole ring (C) can either occur as one of the two different
tautomeric species or in its ionized form. In contrast to the other
examples the VMR contains multiple atoms in this case.



Bietz et al. Journal of Cheminformatics 2014, 6:12 Page 4 of 12
http://www.jcheminf.com/content/6/1/12

bonding network. The underlying scoring scheme is based
on the identification of predefined structural fragments
in the respective modes of the VMRs. Each fragment
corresponds to a different tautomeric form or protona-
tion state and is associated with a partial score. The total
score of the mode is calculated as the sum of these indi-
vidual contributions. In case of ringsystems the score
comprises contributions from each ring and its respective
substituents. Scores for functional groups are either gen-
erated by matching the whole group directly, which is the
usual case, or by partitioning the group into subgroups
and adding the scores of the smaller subgroups. The values
for the individual contributions of the respective substruc-
tures have been derived from different pairs of tautomers
for which the preference was experimentally known and
from pKa tables.

Hydrogen bond interactions
Since Protoss is designed to identify the best hydro-
gen bonding network, it requires structural information
for the evaluation of potential polar interactions. There-
fore, each mode is internally represented as a set of
interaction surfaces, originally developed in the context
of molecular docking [22]. This is shown in Figure 2
(A) for the straightforward case of a rotatable hydroxyl
group. Each mode includes one interaction surface asso-
ciated with the orientation of the hydrogen atom (donor
surface) and two additional interaction surfaces associ-
ated with the atom’s free electron pairs (acceptor sur-
face). The modes for a secondary amine are shown in
Figure 2 (B) in order to exemplify the handling of pro-
tonation states. In this case the number of donor and
acceptor surfaces of eachmode is not necessarily identical.
Modes for tautomeric states introduce a higher com-
plexity since they involve hydrogen positions at multiple
atoms simultaneously. The corresponding modes for an

(A) (B) (C)
Figure 2 Three examples for VMRs with alternativemodes.Donor
surfaces are represented by blue half-circles and acceptor surfaces are
represented by red half-circles. In the first two examples, primary
alcohol (A) and cyclic secondary amine (B), each mode comprises
multiple interaction surfaces for a single atom. In case of the imidazole
ring (C) the respective surfaces are associated with different atoms.

imidazole moiety are shown in Figure 2 (C). In this case,
only specific combinations of interaction surfaces are con-
sidered reflecting the different tautomeric states of the
molecule. These combinations are derived from the alter-
native modes for the VMRs generated in the previous
step.
The objective function for the evaluation of the hydro-

gen bonding network comprises, as in the previous
Protoss version, the analysis of hydrogen bonds as well
as metal interactions. In order to prevent the generation
of undesirable contacts of polar groups in the protein-
ligand interface, the scoring function has been extended
by an additional term for the assessment of repulsive
contributions such as donor-donor, donor-metal, or acceptor-
acceptor contacts. The interaction quality is for both
cases, attractive and repulsive interactions, determined
by a geometric criterion which measures the relative ori-
entation of two interaction surfaces (see [22]). However,
in contrast to hydrogen bonds and metal interactions,
repulsions have naturally a destabilizing influence on the
total energy of the hydrogen bonding network.

Optimization procedure
The optimization procedure is based on twomain aspects,
namely the scoring of hydrogen bond interactions and
the resolution of dependencies in the hydrogen bonding
network. The latter is represented by a graph structure
in which each node corresponds to a single VMR with
all its associated alternative modes. Edges between nodes
are formed if there exists at least one relevant interac-
tion between the atoms of the respective VMRs. This is
determined by a geometric criterion. In the first step, the
scoring phase, the alternative modes of each node are
assigned a base score which is composed of an intrin-
sic stability contribution reflecting the preference of the
respective tautomeric form or protonation state it rep-
resents and a term for the interaction energies with all
non-variable parts of the complex. The value of the sta-
bility contribution is derived from the score calculated by
the generic scoring scheme described above. Each edge
contains a matrix that stores an interaction score for
each combination of modes of its two incident nodes. In
the second step, the optimization phase, a combination
of a cycle decomposition and a dynamic programming
algorithm is used to find an optimal hydrogen bonding
network by minimizing the total score and selecting a dis-
tinct mode for every VMR. For a set of selected modesM,
the total score is therefore calculated by Equation 1.

totalScore(M) =
∑

m∈M
baseScore(m)

+
∑

m,n∈M
(interactions(m,n) + repulsions(m,n))

(1)
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Further details about the optimization procedure can be
found in a previous publication [17]. Finally, the optimized
coordinates of all variable hydrogen atoms are generated
by transferring the structural information of the individual
modes back onto the protein-ligand complex.

Results and discussion
Tautomeric frequencies
Most hydrogen prediction tools for protein-ligand com-
plexes only handle tautomerism for moieties from pro-
teinogenic amino acids or by explicit lists of substructure
transformation rules. In order to demonstrate the insuf-
ficiencies of this approach, we counted all substructures
contained in the Ligand Expo database (accessed Jan 3,
2014) [23], for which we were able to identify sensible
alternative tautomers or protonation states. Furthermore,
we split the set into two groups. First, the set of functional
groups which also appear in protein side chains, namely
carboxylates, primary amines, and imidazoles (classical
VMRs). Second, all other functional groups and con-
jugated substructures for which more than one sensi-
ble state could be created (advanced VMRs). Rotational
degrees of freedom were neglected for this analysis.
We found that only 19% of the Ligand Expo database

molecules did not show any VMR with alternative tau-
tomers or protonation states. Furthermore, 17% of all
molecules only contain substructures from the classical
VMRs set. For all other molecules, at least one advanced
VMR was observed.
Overall, we found 1802 structurally different, canoni-

cal VMR types. In order to analyze the relevance of these
different substructures, we first sorted the list of VMRs
according to the portion of molecules containing the
respective VMR and then plotted the amount ofmolecules
whose variability with respect to tautomerism and proto-
nation can be completely described by a set of the k most
frequent VMRs (see Figure 3). The results show that, e.g.,

a set of approximately 430 substructures is required to
consider the full variability for 90% of all molecules in the
Ligand Expo database. In general, the curve progression
clearly illustrates the strong dependency of low predic-
tion error rates on the consideration of a wide range of
chemical substructures.
Figure 4 additionally depicts the absolute amount of

different VMRs for various chemical classes. This classi-
fication demonstrates that the high amount of different
VMRs is mostly reasoned in the diversity of aromatic
substructures. The difficulty of correctly treating more
complicated substructures, such as annulated aromatic
ringsystems, motivates a generic approach for handling
tautomerism.

Undesirable contacts
One of the primary requirements on hydrogen placement
is to avoid the generation of undesirable contacts such
as close donor-donor, donor-metal or acceptor-acceptor
interactions. In order to evaluate the effect of consider-
ing alternative protonation and tautomeric states on this
issue, we analyzed the occurrence of undesirable contacts
in the results of the hydrogen prediction tools Protonate
3D (as implemented inMOE 2013.08 [10]), YASARA (ver-
sion 13.9.8 [14]), and Protoss. The latter was used in two
alternative versions, with and without an analysis of alter-
native tautomers and protonation states. Apart from that,
all tools were applied with default settings. The sc-PDB
database v.2012 [24] served as basis for this test, as it
constitutes a comprehensive and diverse database of phar-
macological relevant protein-ligand complexes. However,
as the protein files provided by the sc-PDB do not contain
water molecules, we used the corresponding original files
from the PDB instead. The sc-PDB v.2012 consists of all in
all 8077 protein-ligand complexes. Nine of them were not
available in the PDB anymore (November 2013) and have
therefore been excluded. The remaining 8068 structures
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Figure 4 Relative amount of structurally different VMR types in
the Ligand Expo database.

were further processed by a clean-up step removing all
existing hydrogen atoms, atom duplicates, and overlap-
ping entities in order to reduce possible error sources
which might bias the hydrogen prediction and validation
experiments. This procedure comprises a series of atom
entry filtering steps which were processed in the following
order. First, all hydrogen atom entries were erased. Sec-
ond, all residue entries were identified that overlap with
the reference ligand. In this and all following cases, an
overlap was defined as an atom distance of equal or less
than 1 Å. Furthermore, an overlapping residue entry was
defined to represent a part of the reference ligand if for
each of its atom entries the closest atom of the reference
ligand has amaximum distance of 1 Å and the same chem-
ical element type. (This rather fuzzy matching criterion
was chosen because some sc-PDB ligands are shifted or
have a slightly different conformation compared to the
original PDB structure). Otherwise the overlapping entry
was removed. If an overlapping residue entry contains
alternate locations we only kept that conformation which
fits the reference ligand best. In case that the best confor-
mation does not fulfill the matching criterion, the residue
entry was only retained if the first alternate location has
no overlap with the reference ligand. In the third step, all
other atom entries were checked for alternate locations
and only the first position per atom was kept. In a final
step, all residue entries were dropped, which overlap with
any preceding entry in the file or exhibit an internal atom
overlap.
In 27 cases this cleanup procedure led to a partial or

total removal of the reference ligand’s heavy atoms, e.g. if
the sc-PDB ligand, compared to the original PDB struc-
ture, exhibits a different conformation, deviating element,
additional atoms, or an internal atom overlap. Therefore
these structures were also removed.
For the remaining set of 8041 files, all three tools were

used to add new hydrogen atoms and to optimize the

hydrogen bonding networks. As the Yasara version used in
this study shuts down during the prediction for one com-
plex (3ptq), this structure was also excluded. Eventually,
the results were scanned for undesirable contacts, which
were defined as follows: All oxygen and nitrogen atoms
of the ligand or the active site (6.5 Å around the ligand)
which have at least one hydrogen bound were considered
as hydrogen bond donors. Two hydrogen bond donors are
defined to form an undesirable contact if the hydrogen
atom distance is equal or less than a certain threshold.
Likewise, an undesirable contact between a donor and a
metal ion is determined on the basis of the hydrogen-
metal distance (see Figure 5). For both cases, exactly one
of the counterparts had to be part of the ligand. Beside
this simple distance criteria, we also analyzed both types
of contacts under consideration of additional measures,
namely the heavy atom distance and the angles formed by
both heavy atoms and one of the hydrogens (see Figure 6).
We also defined different threshold sets to investigate the
dependency of the error frequency on the precision of the
interaction criterion. All used precision levels and their
respective thresholds are listed in the tables in Figure 5
and Figure 6. Although an additional investigation of
acceptor-acceptor contacts could provide further insights,
we explicitly avoided this analysis, because acceptor orien-
tations cannot be analyzed without interpreting the input
data on the basis of geometric assumptions of an internal
chemical model, which would compulsorily influence the
evaluation. Overall, the possibly most conspicuous and
expected finding is that the error frequency increases
with decreasing precision of the interaction criterion.
This effect can be observed for all prediction tools. The
higher rate of undesirable contacts for the Protoss ver-
sion without tautomer analysis throughout all precision
levels clearly demonstrates the benefit of considering tau-
tomerism and protonation states for the performance of
hydrogen prediction.

Comparison to manual adjustment
Ultimately, a hydrogen prediction tool should be validated
against experimental data. Unfortunately, there is only a
very limited amount of experimental data that might be
used for such an evaluation due the difficulties of deter-
mining hydrogen coordinates with X-ray crystallography.
As a result of the insufficient amount of experimen-

tal data, we intend to demonstrate the properness of
our approach on the basis of the Astex diverse set [25]
(Astex Set). This collection of 85 protein-ligand com-
plexes, which was developed for the validation of dock-
ing performance, contains ligands which are manually
adjusted with respect to their protonation and tautomeric
states. Therefore, the Astex Set seems to be suitable for
a verification of predicted ligand states. For each target
structure in the dataset, the original file was retrieved
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distance criteria. A contact is considered undesirable, if the distance between the respective atoms falls under the threshold given in the table on
the left. The interaction schemes illustrate donor (D), hydrogen (H), and metal (M) atoms as well as the measured distances.

from the PDB, preprocessed as described in the previous
section (removing existing hydrogen atoms, atom dupli-
cates, and overlapping entities) and given to Protonate 3D,
YASARA, and Protoss for generating new hydrogens as
well as their coordinates. The results were then written to
PDB files and compared to the ligand topology given in
the Astex Set.
The topological ligand comparison was realized by a

simple string comparison of Unique SMILES [26]. How-
ever, as the bond orders of the internal molecule represen-
tation that was used for the Unique SMILES generation
are derived from PDB files, there is still a theoretical risk
of misinterpreting the molecular topology. Therefore, all
automatically detected deviations where additionally con-
firmed by visual comparison to the graphical molecular
representations of the respective tools.
The deviating solutions are classified according to the

deviation type, thus whether the solution constitutes
a different tautomer, protonation state, or redox form.

Furthermore, the quality of the hydrogen bonding net-
work with respect to undesirable contacts and missing
a hydrogen bonds is analyzed. Since a different redox
form constitutes a more serious problem, the latter aspect
is only evaluated for deviating tautomers and protona-
tion states. In contrast to erroneous redox forms, deviat-
ing protonation or tautomeric states are not necessarily
incorrect. However, a worse hydrogen bonding network
is at least a strong hint that the respective structure
is inferior. A hydrogen bond was defined by a max-
imum heavy atom distance of 3.5 Å and a minimal
donor-hydrogen-acceptor angle of 150°. Undesirable con-
tacts were defined on the basis of precision level 2 (**)
(see Figure 5).
Figure 7 illustrates the amount of accordant and deviat-

ing ligand states as well as the five classes of the deviating
solutions. For all of the three hydrogen prediction tools,
the set of proposed solutions which are in accordance
with the ligand states in the Astex Set (depicted in green)
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angle/distance criteria. A contact is considered undesirable, if all four measured values fall under the thresholds given in the table on the left. The
interaction schemes illustrate donor (D), hydrogen (H), and metal (M) atoms as well as the measured distances and angles.

constitutes the major portion. A closer look to the frac-
tions of different tautomers and protonation states which
form less interactions or even undesirable contacts (light
and dark red), as well as incorrect redox forms (purple)
demonstrate the importance of a comprehensive initial-
ization of ligand molecules. A comparison to the Protoss
version which does not execute an analysis of tautomers
and protonations state (TPA) demonstrates the reduction

of critical cases and hence, also the ability of resolving
erroneous prediction performance.
The classification is also illustrated by the following

case studies taken from the Astex Set. Given the com-
plex of the human thyroid receptor beta ligand-binding
domain and its 6-azauracil-based ligand from PDB struc-
ture 1n46 [27], Protoss proposes a negatively charged
state of the azauracil moiety which is able to form three

YASARA Protonate 3D Protoss Protoss without TPA

Astex

Taut_NE  

Prot_NE

Redox

Taut_IE   

Prot_IE
81

3 1

60
2

8

1 7
7

55
3

7

2 6

12

68

2 8
6

1

Figure 7 Classification of the prediction results for YASARA, Protonate 3D, Protoss, and Protoss without tautomer and protonation state
analysis (TPA) on the Astex Set. Absolute fractions of all 85 Astex Set complexes are shown. The classification is depending on whether the ligand
state is accordant to the Astex Set reference or represents a different tautomeric state without interaction errors (Taut_NE), a different protonation
state without interaction errors (Prot_NE), a different tautomer or protonation state exhibiting interaction errors (Taut_IE / Prot_IE) or an incorrect
redox form (Redox).
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hydrogen bonds with the surrounding arginine residues
(see Figure 8). This prediction is in accordance with the
ligand state given by the Astex Set. In contrast to this,
Protonate 3D chooses a neutral ligand state and depro-
tonates Arg320 instead. Although this leads to the same
number of hydrogen bonds, considering the pKa values
of 6-azauracil (pKa = 6.9 [28]) and the protonated argi-
nine side chain (pKa = 12.5 [29]) this solution seems to
be less likely. YASARA neither deprotonates the azauracil
moiety nor the guanidinium of Arg320 which leads to the
loss of a hydrogen bond and simultaneously to the for-
mation of a close donor-donor contact with a hydrogen
distance of 1.20 Å. Figure 8 also depicts the solutions for
serine/threonine-protein kinase Chk1 complexed with a
furanopyrimidine inhibitor (2br1) [30]. While both Pro-
toss and YASARA successfully reproduce the state of the
reference ligand, which is stabilized by a hydrogen bond to
the backbone of Cys87 and an internal interaction with a
hydroxyl group, Protonate 3D selects a different tautomer.
Thereby, the hydrogen bond to Cys87 is replaced by a
contact of two donors with a hydrogen distance of 1.21 Å.

All in all there are only four cases where Protoss pro-
duces a ligand state that differs from the reference given
by the Astex Set. However, we did not observe a missing
hydrogen bond or an undesirable contact in any of these
binding sites. For an inhibited thrombin complex (1oyt,
not shown) [31] Protoss proposes a protonated nitrogen in
contrast to a neutral state in the Astex Set. However, this
does not change the quality of the hydrogen bonding net-
work since this atom is not involved in a polar interaction.
In case of an adenosine deaminase structure complexed
with a non-nucleoside inhibitor (1uml, not shown) [32],
Protoss protonates an imidazole ring of the ligand, which
enables the formation of a hydrogen bond to Asp296. The
same interaction can be found in the Astex Set structure,
though here the hydrogen is located at Asp296 instead.
In another example, shown in Figure 9, Protoss chooses
a double protonated state of a piperazine ring (1t46) [33].
This can be explained by the fact that only conjugated ring
systems are handled as a unit, while polar groups in others
rings are treated separately. Here, only Protonate 3D iden-
tifies themore likely single protonated state. YASARA also

YASARA Protonate 3D Protoss 

1n46

2br1

1.20 Å  

1.21 Å  

Figure 8 Exemplary comparison of YASARA, Protonate 3D and Protoss predictions on two complex structures from the Astex Set (PDB
codes 1n46 and 2br1). Hydrogen bonds are depicted as green dashed lines. Undesirable contacts are indicated by red arrows. The frame coloring
corresponds to the classification depicted in Figure 7.
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YASARA Protonate 3D Protoss 

1t46

H2O 1108A 
H2O 1108A 

1hq2

H2O 1108A 

2.86 Å  2.86 Å  

H2O 208A H2O 208A H2O 208A 

Figure 9 Exemplary comparison of YASARA, Protonate 3D and Protoss predictions on two complex structures from the Astex Set (PDB
codes 1t46 and 1hq2). Hydrogen bonds are depicted as green dashed lines. Undesirable contacts are indicated by red arrows. The frame coloring
corresponds to the classification depicted in Figure 7.

predicts the double charged piperazine ring. However, as
one of the piperazine nitrogen only interacts with a water
molecule, this deviation has no significant effect on the
hydrogen bonding network.
The only critical solution produced by Protoss con-

stitutes the complex of E.coli 6-Hydroxymethyl-7,8-
dihydropterin pyrophosphokinase and its substrate. For
this target, all three tools fail to produce the correct redox
form of the ligand. This might be reasoned in the excep-
tionally short bond length of carbon C7 and nitrogen N8
with a distance in the PDB file of 1.35 Å (1hq2) [34].
Interestingly, there is another PDB structure of the same
complex which contains the oxidized form of the ligand
(3ip0) [34]. Here, the same bond has a length of 1.34 Å
(see Figure 10). In this case, it is obviously a tough task to
predict the correct redox form automatically only on the
basis of heavy atom coordinates.

Computing time
On average, the hydrogen prediction by Protoss took 2.47
seconds for a complex from the Astex Set. The median
of this prediction series is 0.93 seconds. This includes
file IO, preprocessing, and hydrogen bonding network
optimization for the whole protein-ligand complex with

all ligands, co-factors and water molecules. All runtime
measurements were performed on a single core of an Intel
Core i7-2600 with 3.4 GHz and 8 GB of memory.

Conclusion
There are several known cases in which a small change
in the ligand molecule, resulting in a single additional
hydrogen bond, makes a huge difference in binding affin-
ity. Therefore, the correct assignment of the ligand’s

Figure 10 Structure diagrams of
6-Hydroxymethyl-7,8-dihydropterin (HP) and
6-Hydroxymethylpterin (HPO).
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tautomeric form, its protonation state and hydrogen ori-
entations is a mandatory step in structure-based molec-
ular design. Especially precise protein-ligand scoring
functions, as a key component in docking and lead opti-
mization procedures, rely on a correct protonation. Since
validation procedures for docking and scoring are mostly
based on carefully, hand-prepared test cases, the influ-
ence of wrong tautomerism and protonation is quickly
overseen.
Several methods exist already addressing this important

preprocessing step, however, most approaches lack a com-
prehensivemodel of ligand tautomerism. Here, we present
a novel method for the placement of hydrogen coordinates
in protein-ligand complexes under consideration of both
tautomeric and protonation states. The method imple-
ments an optimization procedure designed to identify the
best hydrogen bonding network based on a generic scor-
ing function. Its main application is the automatic prepa-
ration of protein binding sites for structure-based virtual
screening and large-scale statistical analysis of molecular
interactions in biological systems. Our validation stud-
ies show that for this purpose our approach yields results
which are in good agreement with manually adjusted lig-
and states. Numerous case studies demonstrate that the
resulting molecular states are both comprehensible and
chemically reasonable.
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Abstract In many practical applications of structure-

based virtual screening (VS) ligands are already known.

This circumstance requires that the obtained hits need to

satisfy initial made expectations i.e., they have to fulfill a

predefined binding pattern and/or lie within a predefined

physico-chemical property range. Based on the RApid

Index-based Screening Engine (RAISE) approach, we

introduce CRAISE—a user-controllable structure-based VS

method. It efficiently realizes pharmacophore-guided pro-

tein-ligand docking to assess the library content but thereby

concentrates only on molecules that have a chance to fulfill

the given binding pattern. In order to focus only on hits

satisfying given molecular properties, library profiles can

be utilized to simultaneously filter compounds. CRAISE

was evaluated on a range of strict to rather relaxed

hypotheses with respect to its capability to guide binding-

mode predictions and VS runs. The results reveal insights

into a guided VS process. If a pharmacophore model is

chosen appropriately, a binding mode below 2 Å is suc-

cessfully reproduced for 85 % of well-prepared structures,

enrichment is increased up to median AUC of 73 %, and

the selectivity of the screening process is significantly

enhanced leading up to seven times accelerated runtimes.

In general, CRAISE supports a versatile structure-based VS

approach allowing to assess hypotheses about putative

ligands on a large scale.

Keywords Structure-based virtual screening � Protein-

ligand docking � Pharmacophore � Molecular properties �
RAISE

Introduction

Virtual screening (VS) assists researchers in picking a few

candidates from a vast amount of compounds giving a hint

which chemical class of substances might be worth for

optimization and further experimental testing. There exist

various VS strategies [1]. Which strategy is deployed

depends on the kind of information given in advance.

Structure-based methods basically require a protein struc-

ture. Docking calculations predict the binding mode of a

ligand that is assessed by scoring its protein-ligand inter-

actions. In contrast to other VS approaches, the rather

thorough assessment of compounds is at the expense of

efficiency. Moreover, confronted with the well-known

scoring problem, protein-ligand docking occasionally fails

to predict the native binding mode [2] particularly, when

protein flexibility is involved [3]. Pharmacophore-based

strategies require a pharmacophore hypothesis given in

advance. Meanwhile often applied in VS scenarios, the

widespread feature-based models can be established from

already known bioactive compounds, apoproteins, or pro-

tein-ligand complexes [4–8]. If a pharmacophore model

compiles a few essential features representing commonly

established protein-ligand interactions, the feature match-

ing approach of pharmacophore-based VS is expedient to

support fast compound selection. The scoring generally

relies on geometric criteria assessing the alignment of the

queried and matched features. Structure-based pharmaco-

phore modeling offers the possibility to state excluded

volume spheres and thereby to define a steric imprint of the
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targeted protein. Since they geometrically limit the search

space, VS gets more restrictive. However, in contrast to the

atomic protein representation of classical structure-based

methods, excluded volume spheres are generally porous

and untyped i.e., they allow to roughly assess the shape but

miss essential atom type information which is required to

assess the electrostatic propensity of the screened com-

pounds to bind to the target. If a pharmacophore hypothesis

and a protein structure are both available, an integrated

approach is motivated by observations made in several

studies. It has been shown that combining docking with

pharmacophore filtering improves binding mode predic-

tions and the enrichment of actives [9–11]. Pharmaco-

phore-based docking may therefore serve as an attractive

alternative to substitute consecutive or parallel pharmaco-

phore filtering and docking phases in screening projects.

There already exist docking approaches that allow the

propagation of pharmacophore hypotheses. Methods such

as Gemdock [12], SP-Dock [13], and Gold [14] use the

additional information to adapt their underlying scoring

function. Additional terms examine the similarity of a

posed ligand to the pharmacophore hypothesis giving

rather similar poses a greater weight. As demonstrated by

FlexX-Pharm [15], a pharmacophore hypothesis can also

reduce the underlying search space. Incremental construc-

tion algorithms like FlexX [16] can discard partial solu-

tions as soon as the given hypothesis cannot be fulfilled

anymore. As a result, poses obeying the pharmacophore

emerge and the guided approach can be applied in VS more

efficiently.

Besides the observed synergetic effects with respect to

prediction quality and efficiency, together with a pharma-

cophore-based docking engine, the highly interactive pro-

cess of pharmacophore modeling can pave the way towards

a user-directed VS process. With the development of

CRAISE our main concern was to provide an externally

controllable platform for structure-based VS. Herein we

describe the methodology of CRAISE which is a completely

redesigned adaptation of the TrixX approach [17, 18].

CRAISE is now based on the NAOMI framework [19], a

robust chemical model which is designed to appropriately

describe organic molecules relevant in the context of drug

discovery. Nevertheless, CRAISE still captures the core

idea of TrixX which postulates that a VS compares to a

search that is only realized efficiently under the support of

indexing-techniques. Essential search attributes, such as

pharmacophore-like descriptors, are precalculated and

stored in a way that allows to directly access relevant and

omit irrelevant data during the search. The indexing

requires costs and its benefit becomes apparent if multiple

searches are performed. Moreover, an index requires that

the prepared data remains unchanged throughout its com-

plete lifetime. We assume that a typical large library, e. g.

collections of external vendor catalogs or in-house collec-

tions, hardly changes its content but is frequently queried

with diverse target proteins—a screening scenario for that

our approach is designed. Under this premise computa-

tional effort can be shifted to a preparative process that

enables efficient, succeeding VS runs. The most probable

conformations of compounds can be computed in advance,

stored, and accessed later without traversing through the

conformation space again. However, the aim of CRAISE to

intervene in VS applications seems to be limited by the

necessity of the TrixX approach to utilize a static com-

pound library. Various screening projects may demand that

the library content satisfies project-specific requirements,

e. g. omit compounds that later will lead to experimental

artifacts. Moreover, VS is often performed in iterations

learning from and following-up on first round results. Once

a screening result is obtained, analyzed, and the molecules

retrieved show properties not corresponding with the

expectations, it arises the need to adapt initially made

hypotheses. Opposed to the former implementation

CRAISE now offers a broad range of search possibilities in

order to avoid a recalculation of the index with a restricted

library in such situations. It enforces guided docking runs

when a pharmacophore hypothesis is stated. The additional

information tailors the search space as soon and as much as

possible. Moreover, molecular library profiles about con-

stitutional or topological ligand features can be stated and

utilized to gain further external control over the VS

process.

The results of a method requiring external knowledge

strongly depend on the provided information. Nevertheless,

in order to reveal insights how CRAISE can be controlled

and how it reacts on the given information, we automati-

cally derived pharmacophore models covering a range of

strict to rather relaxed model definitions. Utilizing this data,

we evaluated our method to demonstrate the directionality

of the pharmacophore-driven approach i.e., its capability to

suggest solutions that meet the externally made expecta-

tions, which was our major design goal. Within our study

we could also observe the synergetic effect of pharmaco-

phore-guided docking and thus confirm the results that have

been already stated by others. The pharmacophore models

were derived from standardized forms of the Astex Diverse

[20] and the DUD [21] datasets that have been previously

used to comparatively assess the most popular docking

algorithms. A complete issue of this journal addresses the

competition to which our results can be directly compared.

[22–29] On the given datasets the predictions of those

methods strongly depended on the data preparation and the

utilized docking protocol, thus, mean AUC values ranging

between 59 and 80 % were reported. Our guided redocking

and enrichment studies on this data show that if a phar-

macophore model is chosen appropriately, a binding mode
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below 2 Å is successfully reproduced for 85 % of well-

prepared structures. Compared to unguided predictions, we

were able to increase enrichment with our hybrid screening

approach resulting to a median AUC of 73 % with auto-

matically derived pharmacophore models and there is still

room to enhance the enrichment further with more sophis-

ticated models. Benchmark studies on subsets of the ZINC

database [30, 31] show that external knowledge in form of

pharmacophore models and molecular profiles enhance the

selectivity of the screening process leading up to seven

times accelerated runtimes. All in all, our method provides a

versatile tool to intervene in structure-based VS by means of

pharmacophore hypotheses and library profiles. Thereby it

allows to encounter the generally conflicting aims of

structure-based VS that requires choosing a trade-off

between accuracy and efficiency when utilizing large-scaled

molecular libraries.

Methods

Overview

CRAISE is a two-tiered procedure. In the preparatory

phase, molecular feature detection, conformational sam-

pling [32], and descriptor generation for the given com-

pound library is realized. The features and conformations

are stored in a database, the descriptors in a bit-compressed

index both remaining static throughout subsequent VS runs

(see also Fig. 1).

As illustrated in Fig. 2, the screening phase derives

combined spatial and physico-chemical RAISE descrip-

tors from a given protein active site that are translated to

SQL-like queries. Using the compressed bitmap index

structure, the queries detect matching molecule descrip-

tors. The conformers of the matches are fetched from the

database, placed into the active site by descriptor super-

imposition, and scored keeping only the best pose of a

compound for the final hit list of the screening run. An

optional pharmacophore hypothesis is used to restrict the

set of queries and furthermore, to early reject poses

before they are actually scored. A library profile is

directly encoded in the query such that violating mole-

cules are never fetched.

The descriptor and concepts behind the indexing and

matching phase have been described before [17]. Here we

focus on the processing of pharmacophore hypotheses and

library profiles to support externally guided VS.

CRAISE docking and virtual screening

CRAISE places ligands into a targeted protein active site by

aligning complementary interaction sites. The determina-

tion of interaction sites is now based on the NAOMI model

[19]: for hydrogen-bond donor or positively charged atoms,

donor sites are placed at a distance of an idealized hydro-

gen bond (2.8 Å) away from the heavy atom center into the

directions of their protons. Acceptor sites remain on the

center of a hydrogen-bond acceptor or a negatively charged

generate and register
conformers

Descriptor
index

generate and register
RAISE descriptors

initialize molecules and
 register 1D-, 2D-features

Stop

Molecules

Conformers

Molecules

Conformers

Output
Start

Fig. 1 Library preparation workflow: precalculation of constitutional

and topological molecule features, conformations, and RAISE

molecule descriptor indexing. The output is reused throughout

succeeding VS runs

fomulate SQL-queries
with library profile

pharmacophore
pre-filtering of descriptors

Start

Stop

descriptor matching

pose processing: pharmaco-
phore filtering, scoring, etc.

initialize protein, calculate
RAISE descriptors1

2

3

4

5

Descriptor
index

ConformersConformers

MoleculesMolecules

Input

Fig. 2 Screening workflow: RAISE protein descriptor calculation,

SQL-query generation, descriptor matching, pose generation, scoring.

A pharmacophore hypothesis affects step 1, 2, and 5, a library profile

step 3 and 4 of the workflow
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heavy atom. Donor and acceptor sites possess attached

directions indicating the orientation of protons or lone pairs

and thus, possible interaction directions. Hydrophobic sites

are undirected and reside on aliphatic and aromatic regions

of small molecules. They are placed at carbons of acyclic

aliphatic chains, at halogens, and on centers of aliphatic

and aromatic rings. For adjacent carbon atoms, only a

single site is created in the middle of the bond. In branched

regions where a tertiary or quaternary central carbon is

bound only to carbons, a single site is created in the center

of the branch. The hydrophobic protein active site coun-

terparts reside in volumes with a mostly hydrophobic

environment. They are calculated by probing the active site

volume with methyl-like representatives that are assessed

by a classical Lennard–Jones (12, 6) potential. Surrounding

hydrophilic atoms contribute to repulsion, but do not

contribute to the attractive part of the potential. The top-

scored representatives are selected and converted into

hydrophobic interaction sites. Basically, CRAISE identifies

an interaction in a protein-ligand complex if complemen-

tary interaction sites properly align in three-dimensional

space i.e., if a donor site covers the site of an acceptor and

if both sites posses roughly opposite interaction directions.

Hydrophobic interaction sites do not have to fulfill the

direction criterion.

Each triplet of interaction sites forms the corners of a

triangle, the basis of the RAISE descriptor. A corner

encodes the type (donor, acceptor, or hydrophobic) and

obtains the associated interaction direction(s) of hydro-

philic interaction sites. The descriptor additionally stores

the lengths of the triangle sides. Some constitutional and

geometric criteria ensure triangle angles being not too

acute. Furthermore, each triplet must contain at least one

hydrophilic corner. A special feature of the RAISE

descriptor is that it encodes molecular shape relative to

pharmacophoric features in a transformation invariant

fashion. This is achieved with the lengths of 80 steric bulk

rays that originate from the center of the triangle. The rays

locally describe the van-der-Waals volume of a molecule

or the interior volume of an active site. In order to decide

whether a molecule fits into the active site, descriptor

features can be simply compared. A descriptor match is

recognized if complementary triangle corner types, oppo-

site interaction directions, similar triangle side lengths, and

an inclusion of all of the 80 ligand bulk rays in their

respective active site descriptor counter-parts is detected.

Then CRAISE accesses the molecule of origin designated

by the descriptors compound/conformation ID from the

molecule database. The coordinates of the triangle corners

are used to calculate an affine transformation that super-

poses a pair of matching molecule and active site triangles.

The transformation is applied to the molecule producing

the actual pose. The basic idea of the RAISE screening

procedure is to avoid evaluating each molecule descriptor.

This is achieved with an efficient bitmap indexing and

compression system [33, 34]. Essentially, CRAISE per-

forms rigid body docking. Molecular flexibility is intro-

duced with conformers generated with an integrated

conformer sampling method based on CONFECT [32]. CON-

FECT was reparameterized for the CRAISE docking meth-

odology: for rather small and rigid compounds slight

suboptimal conformers are generated in order to increase

the chance of a shape fit. However, to keep a large-scale

application tractable it is necessary to provide an upper

bound for the number of generated conformers [35]. Thus,

the conformation set is restricted to at most 250 conformers

per compound. For rather large and flexible compounds, a

k-medoid cluster algorithm using the TFD [36] as a dis-

tance measure, samples rotatable bonds rather granular and

selects diverse representatives out of the conformation

space.

Integration of library profiles

The molecular feature handling of CRAISE is based on

functionalities of MONA [37], a tool for visualization and

statistical analysis of molecular libraries. Constitutional

and topological features of compounds are calculated

during the library preparation step and stored in the mol-

ecule database. Basically, the registered features can be

categorized according to the kind of supported query.

Table 1 summarizes all supported molecular features.

In order to support a guided VS run, a library profile can

be defined by an arbitrary combination of feature range and

existence conditions. As soon as a profile is given, CRAISE

determines the IDs of compounds that are in accordance

with the conditions prior to descriptor matching. The IDs

constrain the SQL-queries and enforce a fetching of

Table 1 Supported library profile features

Type Features

Rangea Total charge, molecular weight, volume, topological

polar surface area (TPSA), calculated octanol/water

partition coefficient (logP), number of heavy atoms,

hetero atoms, hydrogen-bond donors, hydrogen-bond

acceptors, aromatic atoms, halogenic atoms, total

number of bonds, rotatable bonds, maximum number

of continuous rotatable bonds, number of ring systems,

individual rings, aromatic rings, maximal ring size,

maximal ring system size, number of stereo centers

Existenceb Chemical elements of the periodic table, any predefined

molecular pattern (SMARTS), common functional

groups (alcohol, ether, ketone, aldehyde, ester, amine,

amide, amidine, guanidine, azide, nitrile, pyrrole,

furan, thiophene, phenyl, pyridine)

a Features registered and evaluated on a value range
b Features registered and examined for existence
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appropriate descriptor matches from the index. Figure 3

visualizes this process.

Integration of pharmacophore hypotheses

CRAISE supports the specification of pharmacophore-type

inclusion and exclusion features directly influencing its

pose sampling stage. An inclusion feature is a constraint

defining a region in the protein active site where a ligand

atom has to reside. Exclusion features define forbidden

regions of the active site. Each feature has either the type

donor, acceptor, hydrophobic, hydrophilic, or any and is

represented by a sphere defined by center and tolerance

radius. Some features are directed to further constrain the

location of a ligand atom with an appropriate proton or lone

pair orientation. Table 2 summarizes all kinds of supported

feature types and describes which constraints are enforced

during the CRAISE pose sampling stage. A pharmacophore

hypothesis can be defined by an arbitrary set of inclusion

and exclusion features. Additionally, the number of

essential inclusion features Ne states how many inclusion

features have to be fulfilled simultaneously by a placed

ligand.

Predefined pharmacophore features are used at two

stages of the screening process: (1) prior to descriptor

matching to reject pharmacophore violating query

descriptors and (2) during the post-matching phase to reject

pharmacophore-violating poses. Figure 4 demonstrates the

effect of a pharmacophore hypothesis on query construc-

tion. Only triangles with at least one corner contained in a

donor, acceptor, hydrophilic, or any inclusion feature are

built. Since RAISE descriptors cover molecules only

locally, false negative predictions could occur if one

enforces more than one inclusion feature at this stage.

Hydrophobic features do not restrict query descriptors but

are evaluated in the post-matching phase. In consequence,

hypotheses stating only hydrophobic features do not

influence the query construction at all.

Descriptor
index

Molecules

4

3 Filter set = 
SELECT mid FROM Molecules
WHERE mid satifies profile features

Matches = 
SELECT did, mid, cid FROM Index
WHERE did satisfies query descriptor
AND mid IN (Filter set)

Input

Fig. 3 For each protein descriptor, a library profile reformulates its

SQL-query to select respective matches from the descriptor index

(step 3 and 4 of the screening workflow). did ;mid; cid denote

descriptor, molecule, and conformer IDs, respectively. They enable

proper compound/conformer selection for pose initialization

Table 2 Supported pharmacophore features and their interpretation

during pose sampling

Type Feature interpretation

Donor inclusiona Place only an H-bond donor/cation center with

proper proton direction here

Acceptor

inclusiona
Place only an H-bond acceptor/anion center with

proper lone pair direction here

Hydrophobic

inclusionb
Place only a hydrophobic group here

Hydrophilic

inclusiona
Place an H-bond donor/acceptor/cation/anion

center with proper proton/lone pair direction

here

Any inclusionb Place any atom center here

Donor exclusionb Do neither place H-bond donor nor cation atom

centers here

Acceptor

exclusionb
Do neither place H-bond acceptor nor anion atom

centers here

Hydrophobic

exclusionb
Do not place hydrophobic atom centers here

Hydrophilic

exclusionb
Do neither place H-bond donor, acceptor, cation,

nor anion atom centers here

Any exclusionb Do not place atom centers here

a Directed feature
b Undirected feature

Protein

Hypothesis

Fig. 4 A pharmacophore hypothesis is locally tested on query

construction (step 2 of the screening workflow): an acceptor feature

(red) restricts the calculation of query descriptors. Only active site

descriptors with a complementary donor (blue) corner in the feature

sphere and an opposite direction are built. Descriptors that would be

built without the hypothesis are omitted (grayed out). Hydrophobic

(yellow) features are not evaluated at this stage

J Comput Aided Mol Des

123



Figure 5 shows how a hypothesis is tested in the post-

matching phase. All inclusion features are tested and if at

least Ne features are fulfilled, the pose globally satisfies the

hypothesis. This simple approach realizes the following

task: If Ne equals the number of inclusion features defined

by the user any of the generated poses need to obey the

complete pharmacophore model, otherwise, for each pose

all possible feature combinations of the given size are

tested until either a single or none of them is fulfilled.

Hierarchical pose filtering and scoring scheme

A docking engine applied for large-scale VS produces a

large amount of poses. The direct use of elaborate scoring

functions too early without prior pose reduction hinders the

throughput and eliminates the advantage in speed gained

by the non-sequential screening paradigm of RAISE. The

hierarchical pose-filtering scheme introduced here is

intended to efficiently eliminate poses with sparse contacts,

clashes, and pharmacophore violating poses as much and as

soon as possible and to rapidly assess the quality of fit for

succeeding poses. Initiating a VS run, CRAISE calculates

information relevant for pose evaluation in advance. It

determines an active site volume by computing the convex

hull [38] from the active site atoms. A fine granular clash

grid for hydrophilic and hydrophobic probes (0.25 Å voxel

spacing) detects a clash for a grid point if the probe sphere

contains any atom center. Moreover, a probe is assessed

with its surrounding protein atoms and individual score

contributions, namely possible protein counter interaction

directions and Lennard–Jones-like potential values, are

annotated at the grid. If a pharmacophore hypothesis states

an exclusion feature, it is quasi seen as a protein atom

sphere and grid points therein are flagged as clashes of the

respective feature type.

The actual pose processing starts with two initial

placement tests: to avoid sparse contacts with the protein,

the majority of pose atoms has to reside in the precalcu-

lated convex hull after transformation. Ligand atoms

clashing into the protein or intruding into exclusion vol-

umes are rapidly identified using the clash grid. Then, each

inclusion feature is tested until the number of fulfilled

inclusion features Ne is achieved. The initial scoring stage

accesses individual potentials for each atom and evaluates

opposed interaction directions. These contributions com-

pile the complete score for a ligand. It estimates the quality

of fit by an empirical scoring function that accounts for

hydrogen bonds, metal interactions, lipophilic contacts, and

the loss of torsional entropy of the ligand. Essentially, the

function is the Boehm scoring function [39], which was

recalibrated on the Iridium Highly Trustworthy dataset [40]

(v1.1) for which Ki/Kd values are published. Instead of

piecewise linear penalty functions, Lennard–Jones-like

potentials honor good and penalize close atom contacts

(see Supplementary Material). The cosine assesses the

angle deviations from the ideal geometry of opposed

interaction directions. After ranking the poses by this score,

similar poses closer than 0.5 Å RMSD to higher ranked

ones are eliminated. Eventually, the pose-processing phase

captures the scoring discrepancies that might occur due to

grid mapping. It re-ranks the poses according to the

CRAISE scoring function but this time evaluated on exact

pose atom coordinates. The best pose for each compound

Ne = 1:Ne = 1:

N N

Ne = 2:Ne = 2:

Fig. 5 A pharmacophore hypothesis is globally tested for poses

(during step 5 of the screening workflow). Left the pose satisfies a

single feature but violates the hypothesis if it requires two features.

Right another pose satisfies the hypothesis

initialize protein:1

- annotate exclusion features
- calculate clash grid

- calculate potential grid

- determine active volume

pose processing:5

- clash test
- active volume test

- global pharmacophore test

- initialize pose

- pose clustering
- grid-based scoring

- final scoring

Conformers

Input

Start

Stop

Fig. 6 Step 1 and 5 of the screening workflow: Relevant information

is precalculated (step 1) and accessed later for pose evaluation (step 5)
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contributes to the final hit list of the screening run. Figure 6

summarizes the individual preparation and pose evaluation

steps.

Results and discussion

Datasets

For evaluating the pharmacophore-guided binding mode

predictions and screening performance, data sets provided

by the organizers of the ACS docking symposium 2011

were used. Several docking tools and scoring functions

have already been evaluated with these standardized sets

[22–29]. In the following, we refer to the datasets as

AstexACS and DUDACS respectively. The AstexACS set

comprises crystal structures of 85 protein targets of the

Astex Diverse Set [20] with rerefined protein heavy atom,

hydrogen atom, and ligand coordinates. For monomeric

structures only a single ligand is provided as reference for

active site definition, while for multimeric structures all

ligands are supplied. Taking protein atoms with a heavy

atom distance of 6.5 Å from any ligand atom center into

account, all in all 146 well-resolved active site definitions

can be obtained from the dataset. The symposium orga-

nizers provided a non-crystallographic structure for each

ligand as starting point for docking calculations in order to

support an objective, comparable evaluation. We will

report values that take all (n ¼ 146) and only a single,

namely the qualitatively best site (n ¼ 85) into account.

Since the quality of the multiple active site copies differs,

the values will provide a hint at what the precision of our

method is and moreover, will provide comparability to the

other, already published methods that haven been evaluated

with this dataset and reported the values, as well. The

DUDACS set covers active and decoy ligands for the 40

different targets of the DUD dataset [21]. The protein

structures have been rerefined by the symposium organiz-

ers as well but opposed to the targets of the AstexACS set,

the targets of the DUDACS set retained their key crystal

waters. The Supplementary Material summarizes further

corrections made to the datasets. Our large-scale studies

were carried out with subsets of the ZINC database [30,

31]. From the ZINC clean leads subset [41] comprising

4,230,832 compounds at access time, we randomly selected

one, two, and three millions of unique compounds. We

further refer to these libraries as ZINCCL1M;ZINCCL2M,

and ZINCCL3M set, respectively.

Definition of pharmacophore hypotheses

Pharmacophore models introduce a strong bias in docking

calculations. Although this is intended in practical

applications, it causes major deficiencies in validation

studies with respect to objectivity and reproducibility. We

therefore decided to derive them automatically from indi-

vidual protein-ligand complexes. The method initially

places inclusion features centered at sites complementary

to protein interaction sites. Tolerance spheres are scaled to

a 1.7 Å radius, a common default value for structure-based

models. To identify features that propagate binding, then

only those that are complementary to the given ligand with

respect to interaction type and geometry are selected. In

order to create a scenario close to practice, feature sphere

centers are not positioned on ligand atoms. Instead, they

are derived relatively to protein atom coordinates. We

generated various versions of each model linearly

decreasing the number of inclusion features Ne being

essential, i.e. are expected to be fulfilled. A relaxation of Ne

has two practicable applications: First, a structure-based

model derived from protein atom coordinates can result in

feature constellations that require tensed or even unrealistic

ligand conformations for entire fulfillment. Second, usually

not all features are obeyed by all binding ligands in a VS

scenario. Relaxed models allow to implicitly account for

both situations and to explore only subsets of feature

combinations of size Ne during the pharmacophore

matching phase.

Pharmacophore-guided binding mode predictions

With the AstexACS set and automatically derived models

for these structures we performed pharmacophore-guided

binding mode predictions. Figure 7 exemplarily depicts the

guided top predictions found for four complexes of the

AstexACS set (green). They were predicted on lower ranks

if the placement procedure was not guided by any feature.

CRAISE does not explicitly change the score of a pose

based on pharmacophore information but discards poses

that contradict the given features. As a result, guided pre-

dictions let pharmacophore fulfilling poses emerge on

higher ranks if the unguided prediction does not already

rank a fulfilling pose on top. These observations show how

guided binding mode predictions implicitly exert leverage

on pose ranking.

Sometimes the automatically derived, structure-based

models require extremely tensed conformations for optimal

fulfillment. We explicitly neglect to put features on refer-

ence ligand coordinates, a procedure that would capture

such situations. Instead, we implicitly relieve some tension

during pharmacophore matching by relaxing the number of

demanded features Ne. If a few feature definitions geo-

metrically contradict each other within the model, the

relaxation enables a recovery of near native poses that

would require unrealistic ligand coordinates for matching

all features.
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In order to quantify the effect of pharmacophore-driven

binding mode prediction for the entire AstexACS set, we

characterized a successful prediction as a reproduction of a

pose with a root mean square deviation (RMSD) of less

than 2.0 Å to the respective reference ligand. A partially

predicted pose was characterized by an RMSD above

2.0 Å, but below 3.0 Å. The total success rate was defined

as the percentage of successful reproductions on all com-

plexes. Figure 8 plots the success rates of the top sampled

CRAISE poses for linearly increasing the number of

demanded inclusion features. A tendency to guide binding

mode predictions is observed if the poses have to satisfy up

to 80 % of the demanded inclusion features (blue bars).

Partially predicted poses and docking failures are reduced

(green bars). However, for some structures the models were

already too strict to successfully recover a pose at all (red

bars) and the trend to direct top predictions further by

demanding more features being fulfilled is reversed. Those

failures can be captured by appropriate Ne relaxation which

is part of the pharmacophore elucidation process before a

guided docking with cRAISE can be accomplished. In

order to show what our method can potentially achieve if

this task is realized properly, we selected a good model for

each target i.e., Ng
e which minimizes the RMSD of the top

prediction (Ng
e -bars). On the AstexACS set, the number of

features was typically relaxed by 5–25 % to allow the

poses to fulfill tensed models at least partially. Table 3

summarizes the guided success rates on the AstexACS set

with appropriately relaxed models and compares it with

unguided predictions. A paired t-test was used to assess the

significance of the comparisons. Therefore, we compared

the paired RMSD differences within various rank cutoffs

(for all protein-ligand complexes docked without any and

with the use of the Ng
e -model). Under the assumption that

the paired differences are independent and identically

normally distributed, the probability p that the difference

between the guided versus the unguided top predictions is

random is far below 0.001. With increased rank cutoff the

value successively increases since the chance of finding an

identical pose within those ranks by the unguided docking

Fig. 7 Pharmacophore-guided

binding mode predictions

(green) are identified close to

native binding modes (gray) on

higher ranks. Donor inclusion

(blue), acceptor inclusion (red),

hydrophobic inclusion (gold).

a 1hvy_3 at rank 1 (unguided

147), b 1jla_1 at rank 1

(unguided 5), c 1sqn_1 at rank 1

(unguided 5), d 2bm2_2 at rank

1 (unguided 143)

Ne
g

Fig. 8 Success rates of top predictions linearly increasing the number

of demanded inclusion features Ne (blue bars). Less top predictions

deviate from the native binding mode if they have to satisfy more

pharmacophore features (green bars). Too strict model definitions

lead to docking failures if the features cannot be satisfied by any pose

(red bars). A relaxation of Ne recovers those failures (Ng
e -bars)
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runs increases as well. Moreover, the success rates reveal

that the pharmacophore fulfilling poses with an

RMSD [2 Å (green bars) mostly correspond to partially

docked ligands. They are the result of pharmacophore

models guiding the prediction by features covering poses

only locally (compare e. g. the model of 1hvy in Fig. 7a).

As a result, these models allow the remaining flexible

ligand portion to freely explore unconstrained regions of

the binding site. In general, our observations suggest that

pharmacophore-guided binding mode prediction directs

pose sampling and appropriately influences pose ranking.

Pharmacophore-guided enrichment studies

To assess the enrichment performance under pharmaco-

phore type constraints we automatically derived models

from the initially given 40 protein-ligand complexes of the

DUDACS set as described above. We performed pharma-

cophore-guided VS runs on the libraries consisting of the

respective actives and decoys sets. Thereby, the enriched

hits had to share at least a linearly increased amount of

common features. The total area under (AUC) the receiver

operating characteristic (ROC) curve served as a measure

for the discriminative power of our method to separate

actives from decoys. We additionally determined the true

positive rate at a false positive rate of 1 and 2 % of the

ROC showing the ability of our method to enrich actives

early. The total enrichment performance was determined

by averaging the AUC values of all 40 screening runs.

Since our models were derived from individual protein-

ligand complexes i.e., determined from a single active,

their features depict a superset of the real pharmacophore

which is a particular feature combination therein. A

Table 3 Pharmacophore-guided and unguided pose sampling success

rates (%) of the AstexACS n ¼ 85 (n ¼ 146 in braces)

Rank B1.0 Å B2.0 Å B3.0 Å p

Guided

1 35 (32) 85 (80) 97 (95) \0.001

5 41 (40) 91 (87) 97 (95) 0.002

20 48 (45) 93 (91) 99 (99) 0.151

32 51 (47) 93 (93) 100 (99) 0.227

All 52 (49) 95 (95) 100 (100) 0.562

Unguided

1 29 (25) 71 (64) 84 (82) –

5 38 (36) 86 (81) 94 (95) –

20 46 (44) 87 (84) 97 (98) –

32 47 (45) 91 (88) 99 (98) –

All 55 (51) 97 (97) 99 (98) –

Paired t-test p was determined for the complete dataset

unguided

45%

40%

30%

20%

50%

60%

65%

unguided

Ne
g

relaxed

more relaxed

even more relaxed

strict

stricter

even stricter

Fig. 9 Impact of strict and relaxed model definitions on enrichment

behavior of the neuraminidase (na, Ng
e ¼ 45 %), the human heat shock

protein 90 kinase (hsp90, Ng
e ¼ 75 %), the estrogen receptor antag-

onist (er_antagonist, Ng
e ¼ 65 %), the hydroxymethylglutaryl-CoA

reductase (hmga, Ng
e ¼ 65 %), the dihydrofolate reductase (dhfr,

Ng
e ¼ 55 %), and the adenosine deaminase (ada, Ng

e ¼ 75 %)
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stringent model demanding all features being fulfilled

identifies solely actives with that specific binding pattern.

A relaxed model allows to introduce some tolerance and to

explore various feature combinations during the pharma-

cophore matching phase. The degree of relaxations influ-

ences the enrichment of actives. This is demonstrated in

Fig. 9 by example of six DUDACS targets. Demanding

more features being fulfilled, the global enrichment with

respect to the AUC metric is improved (green curves). In

contrast, strict models enrich only subsets of actives—

however, most often earlier (blue curves). All in all, these

results show that CRAISE VS can be externally controlled

by utilizing pharmacophore hypotheses.

It was not our goal to provide a tool for pharmacophore

elucidation but for externally guided VS if well-prepared

pharmacophore hypotheses have been already stated. In

order to show what our screening method can potentially

achieve in this case, in analogy to the above described

guided docking experiments, we selected a good model for

each target i.e., Ng
e , but this time with respect to maximize

the global enrichment (Fig. 9, red curves). Basically, Ng
e

represents an upper bound for the size of the actual phar-

macophore. In our experiments this value ranged between

10 % and 95 % and there is still room to further improve

the models, namely, if one determines the perfect Ng
e -

combination that is able to recognize all actives. The fol-

lowing results represent realistic key figures what to expect

from pharmacophore-guided VS. In Fig. 10 enrichment

values for VS runs on the DUDACS sets guided by these

models are plotted (blue bars). Most often guided VS sig-

nificantly improves the early as well as the global

enrichment of actives with respect to unguided predictions

(gray bars). In case of hmga the pharmacophore model

turns screening towards a highly directive process resulting

in an AUC that is maximally improved by 36 %, while

unguided VS enriches actives only close to random. A few

models decreased the AUC, most often, if our model

generation was confronted with problematic complexes

that lead to ambiguous feature definitions. Table 4 sum-

marizes the performance on the complete dataset and

shows the statistical information on the enrichment metrics

including 95 % confidence limits on the mean metrics.

Guided
Unguided

ROC2%

ROC1%

A
U

C
R

O
C

x%

Fig. 10 ROC1 %;ROC2 %, and AUC for the Ng
e -models of the individual DUDACS sets

Table 4 Pharmacophore-guided and unguided enrichment perfor-

mance on the DUDACS sets

ROC1% ROC2% AUC

Guided

Mean 0.123 (±0.055) 0.177 (±0.064) 0.704 (±0.052)

SD 0.173 0.201 0.164

Median 0.060 0.090 0.730

Min 0.000 0.000 0.280

Max 0.850 0.880 0.990

Unguided

Mean 0.087 (±0.041) 0.142 (±0.059) 0.651 (±0.047)

SD 0.129 0.185 0.145

Median 0.050 0.090 0.610

Min 0.000 0.000 0.280

Max 0.520 0.700 0.950

Error ranges represent 95 % confidence limits
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Large-scale studies

We conclude with guided and unguided large-scale VS

studies and runtime evaluations on subsets of the the ZINC

comprising one, two, and three million compounds,

respectively. For these lead-like libraries on average 239

conformations per compound and 108 descriptors per

conformation were generated and stored in the ZINCCL1M,

ZINCCL2M, and ZINCCL3M indices. Since it affects the

runtime of CRAISE, we chose representative targets of the

DUDACS set reflecting lower and upper bounds with

respect to the number of query descriptors. Pharmacophore

models showing promising capabilities in the above

enrichment studies were used to guide the following VS

runs. Table 5 summarizes the target data employed in the

experiments. Inclusion features of type donor, acceptor, or

hydrophilic restrict the number of query descriptors of the

targeted protein active site. Our models contain on average

four of these features which reduce the ordinary queries (on

average 30,000) by around three quarters. Basically, Ne

does not affect the number of queries and increasing this

number does not restrict the search space further. To verify

how many inclusions are satisfied, the poses have to be

actually built. However, increasing Ne reduces the kept

poses forwarded to the scoring stage. Thus, a stricter

pharmacophore model can save expensive scoring

calculations.

All computations were performed in a parallel screening

setting on a high performance cluster of 25 Intel Xeon CPU

E5630 dual quad core nodes with 2.53 GHz. Each process

consumed maximally 8 GByte of main memory. The

ZINCCL1M;ZINCCL2M, and ZINCCL3M indices were split

into packages of 2,500 compounds (á 6.9 GByte) each and

were distributed over the local hard drives of each cluster

node in order to reduce the network load during a VS run.

Our measured runtimes are given in form of wall clock

times. The processing time tc for a single compound is

given by tc ¼ ttotal=N, where N is the number of given

compounds and ttotal is the total VS time i.e. the sum of the

wall clock times of all distributed jobs. tc allows to

estimate the CRAISE screening time independent of the

parallel setup and the size of the employed compound

library. The processing time tm for a single conformation is

given by tm ¼ ttotal=M, where M is the number of generated

conformations. It allows to estimate the CRAISE screening

time if externally provided conformers are processed. The

parallel run time tp is variable due to the current avail-

ability of compute nodes. Thus, it was estimated by the

average of the VS time of individual jobs on basis of an

optimal availability of 200 cores. Then, tp reflects the best

possible run time in a parallel setting of 25 freely available

dual quad core nodes.

The observed timings of our large-scale experiments are

summarized in Table 6. We achieved an up to seven times

accelerated run time with pharmacophore hypothesis

guiding the screening process. Basically, the runtime var-

ies from target to target. The cause is found in the selec-

tivity of the query: If an index contains n descriptors, a

single query descriptor has the potential to extract all of

them. If a target possesses m query descriptors, in the

worst case, a screening produces n� m descriptor matches.

Even if this worst-case scenario never occurs, the run time

depends on how many poses are actually processed in the

post-matching phase i.e. on the amount of extracted index

descriptors. Table 6 shows the observed selectivity values

r ¼ #matches=#index descriptors for the targets

employed in the VS runs. A selectivity of 1 indicates that

the whole index is extracted. These values correlate with

the observed runtimes. Guiding a VS by a pharmacophore

hypothesis generates queries that are more selective and

explains the accelerated run time behavior of CRAISE.

Molecular profiles—an example

The definition of molecular profiles allows to further guide

the VS process with respect to retrieve only hits satisfying

user-defined molecular properties. For the sake of com-

pleteness we demonstrate here a simple screening scenario:

The ZINCCL3M library contains three millions of lead-like

compounds. We defined a molecular profile with MONA

restricting this library to molecules with a molecular

weight of at most 300, maximally 5 rotatable bonds, and a

logP of at most 3.5 (provided in the Supplementary

Material). It was utilized to determine the runtime if the

ZINCCL3M library is simultaneously filtered during a VS

run of er_agonist. The retrieved timings were as expected.

The profile indirectly reduced the library by 75 to 707,770

% compounds and the timings (tc ¼ 2:06 s, tp ¼ 9:25 h)

were reduced by approximately the same amount. This

experiment verifies that library profiles can be used ad hoc

during a VS run without the necessity to rebuild the static

index for a restricted library.

Table 5 Number of pharmacophore-guided and unguided query

descriptors

Guided Unguided

sahh 5,678 10,677

gpb 15,433 37,579

hsp90 2,934 19,637

fxa 3,996 31,510

er_agonist 7,756 13,042

dhfr 7,491 36,943
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Conclusion

We have described CRAISE, a VS tool that propagates

additional knowledge to support pharmacophore-driven

pose sampling and library profiling in structure-based VS.

This is particularly useful if hypotheses about desired key

interactions and/or physico-chemical features of the com-

pounds are known beforehand. In such situations CRAISE

allows to focus on predictions that are of major interest.

Our pharmacophore-guided approach leads to an effective

search space reduction and as a result, it reduces compu-

tational demand. Opposed to many other pharmacophore-

guided docking approaches, it thereby provides a screening

platform that allows the testing of hypotheses on a large

scale.

Our results demonstrate that pharmacophores allow to

externally direct the docking process. The implemented

search space reduction does not lead to a loss of quality. To

the contrary, if the models are prepared properly, they offer

the chance to improve binding mode predictions. Poses that

violate the given feature definitions are either not generated

at all or rejected before they are actually scored. The

procedure lets pharmacophore fulfilling poses emerge

without the need to adapt the underlying scoring function.

The presented enrichment studies reveal that early as well

as global enrichment can be enhanced by this mean.

Relaxed models offer the possibility to simultaneously

evaluate different feature combinations. They enforce only

some pharmacophoric commonality on the retrieved

screening results. Nevertheless, by the use of strict model

definitions it is possible to focus on compounds that reveal

a specific binding pattern.

Confronted with millions of compounds, the once pre-

pared CRAISE descriptor index basically enables fast

information retrieval in succeeding VS runs. In order to

benefit from our index-based VS technique the precalcu-

lated information needs to be permanently stored and the

content needs to remain unchanged throughout its complete

lifetime. The methods of CRAISE introduced here provide

a versatile interface to support flexible queries on this static

compound library for different screening projects. Given

pharmacophore definitions are utilized to guide CRAISE to

extract only information of molecules with an improved

chance to result in a pharmacophore-obeying pose. We

showed that pharmacophore definitions can drastically

accelerate the screening process. Moreover, CRAISE

allows to state library profiles by constitutional and topo-

logical ligand conditions. The additional constraints restrict

the index-based search further and filter out compounds

without any loss of efficiency simultaneously during a VS

run.

Our introduced hybrid method demonstrates how to gain

external control over structure-based VS. Essentially, tak-

ing the best out of both worlds, it is a first step towards an

integrated, synergetic VS platform combining structure-

and ligand-based techniques. Relevant for any three-

dimensional VS strategy is the consideration of tautomers

and ionization states of query and library molecules.

CRAISE provides the option to account for these degrees of

freedom during pharmacophore guided and unguided VS.

This extension accompanied with the respective results will

be published separately. The CRAISE software is available

for Linux operating systems (http://www.zbh.uni-hamburg.

de/raise).
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ABSTRACT: Computational target prediction for bioactive
compounds is a promising field in assessing off-target effects.
Structure-based methods not only predict off-targets, but,
simultaneously, binding modes, which are essential for
understanding the mode of action and rationally designing
selective compounds. Here, we highlight the current open
challenges of computational target prediction methods based
on protein structures and show why inverse screening rather
than sequential pairwise protein−ligand docking methods are
needed. A new inverse screening method based on triangle
descriptors is introduced: iRAISE (inverse Rapid Index-based
Screening Engine). A Scoring Cascade considering the
reference ligand as well as the ligand and active site coverage is applied to overcome interprotein scoring noise of common
protein−ligand scoring functions. Furthermore, a statistical evaluation of a score cutoff for each individual protein pocket is used.
The ranking and binding mode prediction capabilities are evaluated on different datasets and compared to inverse docking and
pharmacophore-based methods. On the Astex Diverse Set, iRAISE ranks more than 35% of the targets to the first position and
predicts more than 80% of the binding modes with a root-mean-square deviation (RMSD) accuracy of <2.0 Å. With a median
computing time of 5 s per protein, large amounts of protein structures can be screened rapidly. On a test set with 7915 protein
structures and 117 query ligands, iRAISE predicts the first true positive in a ranked list among the top eight ranks (median), i.e.,
among 0.28% of the targets.

■ INTRODUCTION

Controlling the protein selectivity of a lead compound in drug
discovery is crucial for avoiding adverse effects and, thus,
lowering the high attrition rates of drugs during the past
decade.1−3 For rational protein selectivity enhancement, the
uttermost goal is the complete target profile for a compound on
human targets. Furthermore, protein target predictions may
reveal hidden opportunities in drug repurposing projects,4−6

support the difficult but promising design process of multitarget
drugs,7−9 and reveal targets of drugs with so far unknown
mechanisms-of-action (in the DrugBank,10 more than 80 drug
entities are registered with unknown mechanisms-of-action).
Other scientific fields, such as biotechnology, are profiting from
target prediction methods, e.g., for the design of in vitro
synthetic reaction pathways.11

Strategies to predict targets for a small molecule are either
computational or experimental.12,13 So far, the use of
experimental activity assays for a broad range of targets still
dominates in drug development processes. However, computa-
tional methods can complement or reduceand even
substitutesome costly and time-consuming experimental
methods. In contrast to high-throughput screening of
thousands of molecules for one target, no such time- and

cost-efficient experimental methods exist for screening
thousands of proteins.
Depending on the available data, computational target

prediction methods can be classified as ligand-based, network-
based, side-effect-based, or protein-structure-based.
Ligand-based methods couple ligand similarity measurements

with experimental data.14−18 Network-based methods exploit
available data on ligand and target interactions for compiling
networks and deduce thereof new predictions.19−22 Side-effect-
based methods derive target predictions from phenotypic
(adverse) effects of drugs.23 Protein-structure-based methods
use docking, pharmacophore searching, binding site compar-
ison or protein−ligand interaction fingerprints to predict new
targets.24

Ligand-based, network-based, and side-effect-based methods
show good results, if the molecules with available data are
similar enough to those for which predictions should be made,
following the paradigm of “If something has been observed,
knowledge can be deduced for similar things”. However, these
methods fail to predict effects that are outside the compound
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domain used to generate the respective model. Protein-
structure-based methods are dependent on three-dimensional
(3D) protein structures. Furthermore, pharmacophore
searches, binding-site comparisons, and interaction fingerprints
need at least one starting co-crystallized complex as input.
Docking-based target prediction is the only method that is
independent of such preliminary information, needing only the
3D protein structure and the active site location, e.g., identified
by any co-crystallized ligand or a pocket identification
algorithm. The amount of available 3D structures of proteins
grows rapidly, promising increasing importance for this method
in future.
In the following, we will focus on docking-based target

prediction methods. These approaches have one further major
advantage: simultaneously with predicting a target, the binding
mode of a ligand to a protein is predicted. However, compared
to classic protein−ligand docking, the reverse setup has
different requirements. Four main challenges must be addressed
in the development of structure-based target prediction
methods:

(1) Preprocessing and handling many protein structures: In
classical screening, a single protein is used and the active
site preparation is rather complex and time-consuming.
For inverse screening, the method must be able to deal
with at least 104 structures, calling for completely
automated time-efficient processes.

(2) Efficient and consistent handling of structural data:
Protein structure data is storage-demanding defining a
need for new approaches to handle large amounts of
protein structures consistently and efficiently.

(3) Ranking of targets: As has been stated and observed
previously,25 scoring functions that were developed for
assessing protein−ligand complexes in classic docking are
problematic when applied to intertarget ranking.
Measures accounting for the diversity of protein pockets
concerning shape and properties26 must be included.

(4) Significant evaluation methods: Prospective evaluation is
expensive and not feasible for intermethod comparison.
Therefore, reliable datasets for retrospective studies are
needed. For inverse docking/screening, no standard
evaluation datasets exist yet on which new methods can
be evaluated and compared among each other, such as,
e.g., the DUD27 for classic docking and virtual screening.
The main problem is the categorization of targets as true
negatives for small molecules. Unfortunately, literature
data rarely reveal negative results, i.e., if a molecule does
not interact with a protein. In summary, a dataset is
needed that contains a sufficient number of molecules
and proteins with a reliable assignment of targets and
nontargets.

So far, the available docking-based target prediction methods
only barely account for the challenging requirements of the
reverse scenario.
Invdock, which is the first published docking-based target

prediction method, uses the DOCK docking algorithm.28,29 A
threshold score is applied to avoid the high computing time of
classic docking approaches for the reverse setup. Once any pose
in a cavity is found with a score better than the threshold, the
exhaustive search of the best pose is aborted. For evaluation, a
redocking study on nine proteins,28 as well as a screening of
eight compounds against the TTD (therapeutic target data-
base30) of, at that time, 1040 structures of 38 proteins related to

side effects were conducted. Of the 43 experimentally
documented protein−ligand interactions, Invdock finds 38.29

TarFisDock, which is another inverse docking approach,was
published in form of a web-service of inverse docking based on
DOCK against the PDTD (Potential Drug Target Data-
base31).32 For evaluation, Li and co-workers screened the
PDTD of, at that time, 698 structures of 371 targets with two
compounds. For vitamin E, 50% of reported targets were
ranked among the first 10% of the targets and for 4H-tamoxifen
among the first 5%.
Another inverse screening application utilizes DOCK for

building a chemical-protein interactome for deriving relevant
genes of adverse drug reactions, in particular for the
identification of risk-alleles.33,34

The sc-PDB is a subset of the protein−ligand complexes
contained in the Protein Data Bank35 relevant to drug
design.36,37 Paul et al. inversely screened an early version of
the database with 2148 binding sites of 1045 different proteins
with five chemically diverse ligands with GOLD.38 Of these, for
four compounds, enrichment factors at 1% of the dataset
between 26 and 102 are reported and, for one compound
(AMP = adenosine monophosphate), poor performance was
reported, leading the authors to recommend to use the inverse
docking approach for selective ligands.
In an application study of Muller, the sc-PDB was also

screened using GOLD with five combinatorial molecules
sharing a 1,3,5-triazepan-2,6-dione scaffold.39 Of five exper-
imentally tested targets, one was confirmed as true target. Later,
Kellenberger evaluated a combination of GOLD docking scores
and an interaction fingerprint for the ranking of true targets for
the same four ligands25 on the sc-PDB consisting at that time of
4300 protein ligand binding sites of 1550 different proteins. For
the four compounds, targets were predicted with AUCs
between 0.7 and 0.95 for the GoldScore and AUCs between
0.45 and 0.9 for the interaction fingerprint scoring.
An evaluation of Glide in an inverse docking scenario on the

Astex Diverse Set shows limitations in its intertarget ranking
capability and coins the term “interprotein scoring noise”.40 It
was found that a correction of the standard Glide scoring
function, considering protein properties, improved target
predictions.
In the following, we introduce a new structure-based target

prediction method, which is based on protein−ligand screening
and applies measures to account for the requirements of the
reverse setup. Special care is taken regarding the preparation
and handling of protein structure data. In addition, the method
is a true inverse screening approach, substantially reducing the
computing time compared to the application of a classic
docking method. Finally, to address the intertarget ranking
issue, several special scoring measures are applied, taking into
account the diversity of protein pockets.

■ METHODS

The overall screening process is divided into two parts: a
preliminary registration procedure and the actual screening
procedure (see Figure 1). The registration procedure enables
fast screening by performing precalculations and data setup
only once for a protein dataset. The screening procedure can
then be performed recurrently on the prepared dataset. The
basis of the screening technology is a descriptor-based bitmap
search, called RAISE technology (where RAISE represents
RApid Index-based Screening Engine). Since the RAISE
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technology, in this context, is applied in an inverse protein−
ligand scenario, the tool is thus called iRAISE (inverse-RAISE).
Registration Procedure. Starting with a set of 3D protein

structures (Figure 1A), first, the active sites are determined with
a radius of 6.5 Å around a reference ligand (Figure 1B). The
reference ligand can either be supplied by the user or identified
in an automatic mode. In automatic mode, all ligands in a
protein structure are used to build active sites except for co-
factors, ions, crystallization agents, solution buffer agents, and
ligands with covalently bound metals. The exclusion list is
compiled by joining our own list with those from other
publications37,41,42 and contains, in total, 1207 PDB HET codes
(see the Supporting Information). Next, descriptors are
calculated for all active sites (Figure 1C, see the section
entitled “Triangle Descriptor”). Finally, the active sites and the
protein structures are stored in a relational database (see the
section entitled “Protein Structure Database”), enabling
efficient and consistent data handling.
Screening Procedure. Initially, conformations for the

query ligand are sampled with the CONFECT conformation
generator43 (Figure 1E). Triangle descriptors are calculated for
each conformation (Figure 1F). Then, these descriptors are
matched against the protein descriptors (Figure 1G). A
descriptor match corresponds to one protein−ligand pose
with at least three matching interactions and a rough shape fit.
Each found pose is then scored by the Scoring Cascade (Figure
1H; see the section entitled “Scoring Cascade”). The result of
the screening procedure is a ranked list of targets for the query
ligand as well as poses of the ligand for all hit targets are the
results of the screening procedure.
Triangle Descriptor. In order to obtain a rapid screening

procedure, ligand−protein matching is abstracted by a
descriptor representing pharmacophoric and steric features.
With the descriptor, the time-consuming multiple sequential
placing of each ligand into each active site is circumvented. In
iRAISE, the same triangle descriptor that was published for the
virtual screening tool TrixX is used.44,45 In brief, the descriptor
has the following properties. A triangle descriptor consists of
interaction spots of type hydrogen bond acceptor, donor, or
hydrophobic at the corners. Each hydrophilic interaction spot is

annotated with one or several interaction directions. The
triangle side lengths encode the distance between the
interaction spots. The shape of the ligand and, accordingly,
the space of the active site around a triangle descriptor is
encoded by 80 bulk rays originating from the center of the
triangle limited by the surface of the ligand or the protein,
respectively.
A novel feature of the triangle descriptor in iRAISE is the

integration of flexibility of hydrophilic rotatable terminal groups
(such as hydroxyl groups) of the active site and the query
molecule. Rotatable groups are handled by interaction spots
with multiple directions (for acceptors) or multiple possible
interaction spots (for donors).

Unifying Query Descriptors. In molecular conformations
where, e.g., only a terminal part of the ligand changes, many
identical descriptors are generated. Therefore, a clustering
procedure is applied reducing the total descriptor set to unique
descriptors. Since the triangle descriptor contains only binned
values, the clustering of identical descriptors is performed
rapidly. The clustering reduces the number of descriptors
significantly with which the index will then be queried: For an
average of 200 query ligand conformations, the unique
descriptor clustering reduces the amount to 35% of all
descriptors.

Storing and Matching. The triangle descriptors of the active
sites are stored in a FastBit compressed bitmap index44,46 In
iRAISE, this index is extended by storing the coordinates of the
triangle corners next to the triangle descriptors, enabling
immediate superposition of descriptors. This modification is
mandatory for inverse screening due to the time-consuming
calculation of active site descriptors, in contrast to ligand
descriptors in a standard virtual screening setup.
The triangle descriptors of the query ligand are matched

complementary concerning interaction spots, interaction
directions, shape, and triangle side lengths to those of the
active sites in the bitmap index. Once a match is found, the
transformation needed to superpose the triangles is applied to
the respective conformation(s) of the query molecule,
producing the pose(s) in the protein active site.

Figure 1. Workflow of the iRAISE inverse screening algorithm. Steps A−C of the registration procedure must be done only once for a dataset of
protein structures. Steps D−H are part of the screening procedure.
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Protein Structure Database. For a storage- and time-
efficient handling of the protein structure data as well as
consistent representation of active sites calculated in the
preparation procedure, a SQLite (www.sqlite.org) database is
used. In Figure 2, the scheme of the database is sketched. The
database consists of tables for protein data (blue tables); for
data of ligands, water molecules, and metal ions (red tables);
and for active site data (purple tables).
The protein data is represented in three tables: the

Mainprotein table, containing general information, such as the
protein name; and the Residue templates and Residue coordinates
tables, containing amino acids. The Mainprotein table has two
keys: a protein key and a conformation key, enabling the
storage of protein ensembles. The Residue templates table
contains each topological distinct amino acid of all proteins
once. The USMILES47 is used as unique identifier while the
MolString contains the information on atoms, bonds, and
valence states needed for reinitialization.48,49 While each amino
acid is added only to the Residue templates table if a
topologically identical one previously has not been registered
there, its coordinates, name, type, chain, and sequence index are
written to the Residue coordinates table. Each Residue coordinates
entry is mapped with a key to a Residue templates entry. With

this setup of storing amino acids, the repeated information on
the chemical composition of amino acids is stored only once in
the database.
For storing ligands, the same concept of templates is used.

The Ligands table contains a unique identifier in form of a
USMILES and the MolString, coding the topology of a ligand.
In this table, only a new entry is added, if the table yet does not
contain the USMILES of the ligand. The coordinates of the
ligands and distinct data such as the name and the
corresponding protein key are stored in the Ligand Instances
table. Water molecules are handled separately in the Water
table containing the coordinates, a water key, and the protein
key.
Active sites are stored in the Pockets table, which contains the

key of the corresponding protein, the radius, the key of the
ligand used as reference and the keys of the residues belonging
to the active site. The keys of further ligands or metal ions
contained in the active site are stored in the Pocket ligands table
and keys of active site water molecules in the Pocket water table.
Storing the protein−ligand complexes in the database takes

only 60% of the size needed to store the raw PDB files: For
storing protein−ligand complexes of 100 random files from the
PDB, the database size is 36MB (in comparison to 63MB for

Figure 2. Database scheme of the protein structure database. Blue tables code the information on the protein. Red tables contain information on
small molecules such as ligands, co-factors, metal ions, and water molecules. Purple tables code the information on the active site.
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the raw files), 333MB for 1000 random PDB files (in
comparison to 558MB for the raw files), and 3.4GB for
10.000 random PDB protein files (in comparison to 5.7GB for
the raw files). Reading a protein and the annotated active site
from the database on average takes only 60 ms, independent
from the database size as long as the database fits into main
memory.
Scoring Cascade. A Scoring Cascade of five steps,

accounting for active site diversity, is used to overcome
interprotein scoring noise. The Scoring Cascade starts with all
ligand poses obtained from the descriptor matches for one
protein. It applies five steps to discard irrelevant poses and
obtain a score comparable among proteins with diverse
features:
1. Clash Test. The clash test discards clashing poses rapidly

with a grid representation of the active site. This step already
discards two-thirds of all poses from the descriptor matching.
2. Interaction Score. The second step is the scoring of each

pose with a simple interaction score based on Lennard-Jones
potentials for hydrophilic interactions, metal interactions,
hydrophobic contacts, and hydrophobic−hydrophilic mis-
matches (see Supporting Information for Lennard-Jones
parameters). Beforehand, for each pose, the best hydrogen
bond network in the active site is calculated with Protoss.50

Also, the reference ligands that were used to determine the
active sites are scored with this simple interaction score.

3. Reference Score Cutoff. For each pose, its interaction
score is compared to the interaction score of the reference
ligand of that active site. If the score of the pose is less than
75% of the score of the reference ligand, then this pose is
discarded. This step discards, on average, 50% of the target
matches for a query ligand.
Taking the reference ligand into account in scoring renders

the method dependent on reliable crystallized protein−ligand
complexes. In addition, not each ligand of each co-crystallized
complex binds with high binding energy. However, since this
step is used only as a cutoff, the binding affinity variations are
not problematic: A reference ligand with low binding energy is
scored only lowly by the energy-based scoring function and,
thus, fewer ligands are discarded by this cutoff step.

4. Ligand Coverage Score. This score measures how well a
ligand is buried in a pocket and is used to discard poses that
protrude with a large part into solvent. Consulting the reference
ligand enables comparing pockets with different shapes, e.g.,
comparing scores of shallow to buried pockets. If the coverage
of a ligand pose multiplied by a factor of 1.2 is less than the
coverage of the reference ligand, or if <10% of all ligand atoms
are covered in total, the pose is discarded.

Figure 3. Schematic representation of the ligand coverage and pocket coverage in the Scoring Cascade. Panels (A−D) represent ligand coverage: (A)
a reference ligand in a buried pocket with all atoms covered; (B) a ligand pose protruding into the solution with some noncovered atoms, highlighted
by pink circles (this pose would be discarded due to insufficient ligand coverage); (C) a shallow pocket with a reference ligand with some
noncovered atoms; (D) a docking pose in the shallow pocket with fewer noncovered atoms (thus, this ligand would not be discarded). Panels (E and
F) represent pocket coverage: (E) a pocket with a reference ligand, which occupies most of the pocket and therefore has only a few noncovered
pocket atoms; and (F) a small ligand in a large binding pocket with many noncovered atoms in the pocket, the score of which would be weighted
down, because of insufficient pocket coverage.
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The ligand coverage is the average ligand atom coverage
(where A is the set of heavy atoms of a ligand):

∑=
| | ∈

aligand coverage
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with the coverage of an atom a given as
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Close receptor atoms are all atoms of the active site, which are in
a radius of 4.5 Å of the ligand atom a. Furthermore, the average
coverage of the covalently bound atoms N(a) is added. As
shown exemplarily in Figure 3, the ligand coverage is able to
differentiate between binding scenarios to pockets with
different shapes.
5. Pocket Coverage Score. The fifth and final step of the

Scoring Cascade is the pocket coverage score, which addresses
how well a ligand fills a pocket. Poses that produce insufficient
pocket coverage in comparison to the pocket coverage
produced by the reference ligand (<80% of the reference
pocket coverage) are weighted down with a factor of 0.8. The
pocket coverage is calculated as follows:

∑=
| | ∈

apocket coverage
1
P

coverage( )
a P

where P is the set of pocket atoms.
Thus, the pocket coverage is the number of covered active site

protein atoms divided by the total number of active site protein
atoms. The coverage of a receptor atom a is calculated using the
following formula:

=
< ̊

⎪

⎪⎧⎨
⎩acoverage( )

1 if distance to any ligand atom 4.5 A

0 otherwise

Since all pockets are determined with a cutoff distance of 6.5
Å around the ligand, reference ligands have a pocket coverage
of ∼5%−40%. In Figures 3E and 3F, a schematic representation
of the pocket coverage demonstrates how query ligands are
scored higher in pockets that they fill in a similar way as a
reference ligand. This step is only used as a weight to the score
instead of as a cutoff.

Gauss Cutoff Score. After the Scoring Cascade, the score
of each pose is used to rank the proteins as targets for the query
ligand. A final step is applied to further tune the ranking
capability of iRAISE. A Gaussian score weight (gsw-score) is
applied to the score of the Scoring Cascade (sc-score) to be
able to decide if a score is statistically significant for a protein
pocket. Taking the sc-score in relation to the gsw-score results
in the final iRAISE score, which is statistically significant, if it is
>1. The gsw-score is a characteristic score for each protein
pocket. It is obtained using the following steps:

(1) The complete protein pocket library of an iRAISE
project is screened with the 84 chemically diverse ligands
of the Astex Diverse Set.51

Figure 4. Distribution of target-specific gsw-scores. The complex 3S0B with a minor gsw-score of −21 is highly hydrophobic. The complex 2ZNP
with an average gsw-score of −39 is a larger pocket containing many hydrogen bond partners. The complex 4EWV with a high gsw-score of −60 is
hydrophilic and contains a metal ion. (#HB donors = number of hydrogen bond donors, #HB acceptors = number of hydrogen bond acceptors,
hydrophobicity = number of hydrophobic amino acids of active site divided by total number of amino acids of active site.)
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(2) For each protein pocket, the sc-score is calculated for
those of the 84 ligands, which could be placed into the
pocket. The reference score cutoff-step (Step 3) of the
Scoring Cascade is omitted to obtain a full spectrum of
scores.

(3) The gsw-score of each protein pocket is defined as the
average score of all 84 ligand scores. Parameterization
showed that using a score of the average plus twice the
standard deviation as assessment of statistical significance
was too strict.

(4) All protein pockets with less than 20 of the 84 ligand
scores are discarded, since the average score would be
calculated from too few data points.

In Figure 4, the score distribution of the scores on the ∼8000
targets of the sc-PDB dataset37 screened with all 84 Astex
ligands is shown. The scores are binned at units of 5. The gsw-
score ranges between −21 and −60, and the median average
score of all targets is −39. Between 0 and all of the 84 ligands
can be docked to structures. The median is 67 ligands per
target. Only 77 of the more than 8000 protein structures of the
data set are scored with less than 20 ligands, leaving totally
7915 protein pockets. In Figure 4, a hydrophobic pocket with a
minor gsw-score, a pocket with an average score and a
hydrophilic pocket containing a metal ion are shown.

■ RESULTS
The evaluation of inverse screening tools still poses a huge
challenge since no standard evaluation datasets or standard
statistical metrics are established. Therefore, we focus on
quantitative statistical evaluation, in comparison to other
methods and evaluation of the gain of the individual steps of
the Scoring Cascade.
In total, five evaluation experiments were performed:

(1) Binding mode prediction evaluation: Redocking study
with RMSD values

(2) Evaluation of the ranking capacity of the Scoring Cascade
(3) Comparison of the ranking capability of iRAISE with

FlexX/Hyde and Glide
(4) Comparison of ranking capabilities with a pharmaco-

phore-based method on a large dataset
(5) Computing-time analysis

Software and Data Sets. FlexX/Hyde. FlexX52 was applied
as integrated in the LeadIT software suite (version 2.1, www.
biosolveit.de) and for scoring the Hyde scoring function53 was
used. Default parameters were used. The docking was started
with a conformation generated by Corina.54

Glide. For Glide docking, the XGlide script (Version 3.3,
provided by Schrodinger, Inc.) was used. XGlide automates the
protein preparation and Glide grid generation step, based on
the native X-ray ligand complex. Subsequently, XGlide
performs Glide SP (Version 6.1) docking runs with default
parameters. Starting conformations of the input ligands were
generated by Corina.54

Pharmacophore Search. For comparison of the ranking
capability of iRAISE with a pharmacophore-based search
strategy, we used the results published by Meslamani et al.55

Astex Diverse Set. For experiments 1−3, the Astex Diverse
Set51 was used. This dataset consists of 85 manually curated
high quality diverse protein−ligand complexes. In the screening
experiments, all 84 ligands were screened against all 85 protein
structures (one ligand is present twice in the dataset). The
objective of this experiment is to predict the co-crystallized

target for each of the 85 query ligands as a true target and to
rank the true target to the first positions of the list of all targets.
This experiment is suited for simple evaluation and for
comparison to other methods, but some caution is necessary
when interpreting the results: Redocking the ligands into the
target with which they have been co-crystallized is an artificial
use case and is only useful for proof-of-concept evaluation. For
estimating practical applicability, experiments with structures
not crystallized with the query ligand are necessary.
Furthermore, for the Astex Diverse Set, it is not known,
whether ligands bind to multiple of the 85 targets.

sc-PDB Diverse Set. For the fourth experiment, the sc-PDB
Diverse Set55 consisting of 157 diverse ligands and the sc-PDB
protein structure data set was used. The sc-PDB is a subset of
the Protein Data Bank filtered with quality and druggability
criteria. Meslamani used the 2010 version of the sc-PDB for the
pharmacophore searches. This version is no longer available;
therefore, we used the 2012 version of the sc-PDB.56 We
downloaded the original PDB files from the PDB instead of
using the preprocessed files contained in the sc-PDB. Of
originally 8077 structures, we used 7992, since, of these, 51
were discarded due to several errors during initialization of the
reference ligand or the protein, 25 due to a mismatch of the
reference ligand provided in sc-PDB, and 9 due to obsolete
PDB codes. Annotation of the 7992 structures with the gsw-
score further reduces the number to 7915. The sc-PDB Diverse
Set of ligands consists of 157 ligands, which are co-crystallized
with targets of the sc-PDB. Of these, we took a subset of 117
ligands of which the co-crystallized PDB structure reported by
Meslamani was also present in the sc-PDB 2012 version. The
7915 structures of the sc-PDB 2012 were clustered by
UniProtPK ID, as provided with the sc-PDB 2012 version,
resulting in 2879 different proteins. True positive structures for
the 117 ligands were assigned by two protocols: First, proteins
with the same UniProtPK ID as the co-crystallized protein are
considered true positives only.55 Second, also structures with
the same EC number as the co-crystallized protein were
considered as true positives.

1. Redocking Study. As an initial study, we evaluated the
ability of iRAISE to predict binding modes comparing the poses
generated by iRAISE with the crystal structures. iRAISE was
started with a Corina-generated conformation of the Astex
ligands and up to 200 conformations were sampled. In Figure 5,
the bars show the sum of ligands that can be predicted with
RMSDs lower than the value indicated on the abscissa. In the
30 best-scored poses of each ligand, a solution with RMSD

Figure 5. RMSDs for redocking each Astex ligand into its true target
with iRAISE.
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values of <2.0 A were observed in ∼84% of the cases. This value
is slightly below the performance of optimized protein−ligand
docking methods. One has to keep in mind, that iRAISE is a
fully automated procedure enabling large throughput and
therefore does not perform a post-optimization of poses. In
such a scenario, the redocking performance is comparable to
the state of the art.
2. Evaluation of the Ranking Capacity of the Scoring

Cascade. In order to evaluate the effect of the Scoring Cascade,
the rank of the true target for each Astex ligand was compared if
only the simple interaction score, as a ranking measure, was
used opposed to the full sc-score, based on the ligand poses
obtained from descriptor matching (see Figure 6). This

evaluation highlights two important points. First of all, the
Scoring Cascade indeed ranks the true targets much better than
the simple interaction score. With the Scoring Cascade, ∼35%
of all ligand queries result in a ranking of the true target at
position one, and for more than two-thirds of all ligands the
rank of the true target in the score-ordered list is among the
best 5%, i.e. among the top four ranks. Second, since the
Scoring Cascade tunes the selectivity, for some ligands the true
target is not found in the target list. For these examples, the
scoring is too strict, as can be seen in the diagram in Figure 6 in
the fact that only 90% of the ligands get a rank for their true
target.
3. Comparison of the Ranking Capability of iRAISE with

FlexX/Hyde and Glide. As a third test on the Astex Diverse Set,
we compared the ranking results to standard docking
approaches to see how iRAISE performs in comparison (see
Figure 6). The diagram shows that Glide and iRAISE predict
almost the same number of targets at the first position (∼35%).
Ranking the true target in the first 5% of the target is
accomplished by iRAISE for ∼63% of the ligands, which is
superior to standard docking. At 10%, iRAISE’s performance is

still marginally superior to the docking programs, while at
higher percentages FlexX/Hyde shows better performance.
This is due to the fact that iRAISE, as discussed in the previous
section, does not generate a pose for each ligand in its true
target, because of the selectivity enhancement of the Scoring
Cascade. However, on large datasets, enrichment at the first
percentages is important for the choice of targets to test
experimentally. In summary, the diagram shows that taking the
co-crystallized reference ligand into account, as in the Scoring
Cascade, substantially improves inverse screening performance.

4. Comparison to a Pharmacophore-Based Method.
Following the evaluation protocol by Meslamani,55 we screened
117 ligands of the sc-PDB Diverse Set against the 7915 protein
structures of the sc-PDB 2012 with iRAISE. The rank of the
first true positive target in a score-ordered list of all targets is
consulted as a measure of success. Therefore, Table 1 contains
the median rank (median of the 117 ligands) of the first true
positive target identified by the methods in absolute number, as
well as in percentage of the dataset. In Table 1, the results of
iRAISE, as well as the data extracted from the supporting
information of Meslamani’s publication, are shown. The
medians of four different pharmacophore-based methods
(rigid1, rigid2, flex1, flex2), and of Surflex57 and Plants58

docking were extracted for 117 ligands from Meslamani55 (the
names of the methods are adopted). Since the number of
protein clusters (UniProtKB ID clusters) differs in the sc-PDB
version used by Meslamani and the one screened by iRAISE
(2556 vs 2879 different proteins), we calculated the percentage
of the first rank on all clustered proteins. For screening with
iRAISE, two protocols for ligand preparation were used:
Initially, 200 conformations of the ligand were used without the
co-crystallized ligand (called “iRAISE flex” in Table 1). Then,
the co-crystallized ligand structure was used as input for iRAISE
screening without generating conformations (called “iRAISE
crystal” in Table 1). Clearly, the second experiment is artificial
and much “easier” for the method, since the correct
conformation already is used. We performed this experiment
to be able to compare the results to the pharmacophore-based
methods, since those deduce the pharmacophore from the co-
crystallized complex, which, then again, is a true positive in the
dataset.
For the experiment with the crystal ligand, iRAISE performs

better than the pharmacophore methods, independent of the
way how true positives are annotated, following Meslamani by
UniProtKB ID or by the EC number. The first true positive is
found at 0.07% of the database, while the best pharmacophore-
based method ranks the first true positive at 0.16% of the
proteins. For the iRAISE screening with conformations, the first
true positive is ranked at 1.15% of the protein structures,
following the assignment of true positives by UniProtKB ID,
compared to 2.5% of Surflex and 4.4% of Plants. If the EC
number is considered during assignment of true positives,
iRAISE ranks the first true positives at the median at 0.28%. In
contrast to the UniProtKB ID, the EC number is not organism-
specific, but, nevertheless, does classify the same protein
justifying the usage of EC numbers in this case. The
comparison of both assignment methods shows that the targets
ranked toward the beginning of the list, which are not true
positives after the UniProtKB ID, are nevertheless frequently
correct predictions. The analysis shows, in total, that the
ranking of iRAISE of the first true positive is comparable to the
pharmacophore-based method and clearly outperforms both
docking-based methods Surflex1 and Plants1. The docking

Figure 6. Ranking of true target for each of the 85 ligands of the Astex
Diverse Set. The yellow bars show the ranks of the iRAISE poses
scored only with the simple interaction score, the red bars show the
ranking of the iRAISE poses scored with the full Scoring Cascade. The
purple bars show the ranking if the FlexX docking with Hyde scoring is
used and the green bars show the ranking of Glide. On the y-axis, the
percentage of ligands is annotated, on the x-axis, the rank at which the
true target was found. “Best” means the true target was found at rank 1
and the percentages show among which percent of the score-ordered
list of targets the true target was ranked.
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methods Surflex1 and Plants1 can only be compared to the
iRAISE flex method, since the results of starting them with the
co-crystallized ligand are not available. However, the results of
Surflex2 and Plants2 can be compared to the iRAISE crystal
results, since they take into account interaction fingerprints
derived from co-crystallized complexes, which also helps to
select the correct conformation. The ranks of the first true
positives of all 117 ligands are listed in the Supporting
Information.
5. Computing-Time Analysis. To evaluate the computing

time of iRAISE, its two stepsthe registration procedure and
the screening procedureare evaluated separately. The
registration procedure, including the triangle descriptor
generation and the protein database generation, takes, on
average, ∼7 s per target (all time measurements on a
workstation with Intel Core i5/3570 CPU@3.4 GHz, 4 cores
and 8GB RAM, single-threaded). The screening step requires,
on average, 7 s per target (a median of 5 s per target) for a
query ligand with an average conformation ensemble size of
200. However, the screening is highly dependent on the
structure of the query ligand, ranging from, e.g., 1 s per target
for a ligand with few triangle descriptors such as indirubin-3′-
monoxime up to 38 s per target for a small hydrophilic ligand
with many hits during the descriptor matching step such as
pantoate (examples from the Astex Diverse Set). The iRAISE
procedure is easily parallelizable with an automatic data
partition during precalculation of data chunks of ∼100 proteins.
Therefore, with a small computing cluster of ∼128 cores, a
nonredundant PDB protein set with ∼50 000 proteins can be
screened within ∼1−2 h.

■ CONCLUSION
With iRAISE, we introduce the first structure-based inverse
screening method, which deviates from classic reverse docking
approaches by applying several measures for facing the
challenges of the reverse setup. An abstraction of protein−

ligand matching with a triangle descriptor breaks the sequential
screening course and saves computing time. To handle huge
amounts of protein structures efficiently and consistently, a
protein structure database was introduced. By precalculating
and storing descriptors and active sites only once for a set of
protein structures, screening with a query ligand can be
performed rapidly. The problem of interprotein scoring noise
of common docking scoring functions is addressed by a five-
step Scoring Cascade, which substantially increases selectivity
of the target ranking. To assess the statistical significance of a
score for a protein structure, we introduced a Gaussian-based
weighting score. Weighting the iRAISE score with it, the
ranking of proteins is further improved. The resulting score can
be used as a cutoff to decide up to which ranks proteins should
be tested experimentally. Such a dynamic approach is better
suited than a fixed cutoff at, e.g., 10% of the ranking list, since
experimentally testing many targets for a ligand is much more
complex than screening the same amount of ligands for one
target. Therefore, in target prediction, false positives have a
worse effect than in ligand prediction. Adding selectivity in the
true positive assignment led to missing some true target
structures, because of the strict scoring scheme. Therefore, the
balance of selectivity versus sensitivity is an area of improve-
ment in iRAISE.
iRAISE has been evaluated thoroughly, concerning its

binding mode prediction and ranking capabilities. On the
Astex Diverse Set with 85 diverse high-quality protein−ligand
complexes, it has been shown that the Scoring Cascade boosts
the ranking of the true target at the first position from 9% to
35%. Furthermore, the ability of iRAISE to predict the correct
binding mode was evaluated by root-mean-square deviations
(RMSDs) on the Astex Diverse Set. Of the 85 complexes, 74
were redocked with a RMSD value of <2.0 Å. The comparison
to classic docking methods shows that iRAISE outperforms
these in ranking, because of its measures accounting for protein
pocket diversity. Finally, we evaluated the performance of

Table 1. Median Ranking of First True Positive Identified by Pharmacophore-Based Methods (rigid1, rigid2, flex1, flex2), Two
Docking Methods (Surflex1 and Plants1), Two Docking Plus Interaction Fingerprint-Based Methods (Surflex2 and Plants2), for
iRAISE with Conformations (iRAISE flex), and for iRAISE with the Crystallized Ligand (iRAISE crystal)a

method
median rank of first
TP on 2556 proteins

median rank in
percent of proteins

median rank first TP
on 2879 proteins

median rank in
percent of proteins

median rank first TP on
2879 proteins with EC-TPb

median rank in percent of
proteins with EC-TPb

rigid1
(pharm)

4 0.16

rigid2
(pharm)

4 0.16

flex1
(pharm)

6 0.23

flex2
(pharm)

4 0.16

Surflex1 65 2.5
Surflex2 11 0.43

Plants1 113 4.4
Plants2 29 1.13

iRAISE flex 33 1.15 8 0.28

iRAISE
crystal

2 0.07 2 0.07

aAll results except those from iRAISE are extracted from the supporting information given in the Meslamani work.55 Boldface font indicates numbers
that are comparable and should be used for interpretation; other numbers are given for completeness. bEC-TP = annotation of true positives (TP)
with EC numbers.
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iRAISE on a large data set of 7915 protein structures and 117
diverse ligands. The first true positive was ranked at 0.28% of
the dataset, i.e., it is found among the first 8 ranks (median). In
comparison to four pharmacophore-based protocols and two
docking-based methods, iRAISE performs comparably and even
better, if the same amount of preinformation is incorporated.
So far, iRAISE has only been evaluated on retrospective

experiments. Prospective evaluation would be the next step to
prove its usability. The iRAISE software is available for Linux
operating systems (www.zbh.uni-hamburg.de/raise).
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ABSTRACT: We present TrixP, a new index-based method for fast protein binding
site comparison and function prediction. TrixP determines binding site similarities
based on the comparison of descriptors that encode pharmacophoric and spatial
features. Therefore, it adopts the efficient core components of TrixX, a structure-
based virtual screening technology for large compound libraries. TrixP expands this
technology by new components in order to allow a screening of protein libraries.
TrixP accounts for the inherent flexibility of proteins employing a partial shape
matching routine. After the identification of structures with matching pharmacophoric
features and geometric shape, TrixP superimposes the binding sites and, finally,
assesses their similarity according to the fit of pharmacophoric properties. TrixP is
able to find analogies between closely and distantly related binding sites. Recovery
rates of 81.8% for similar binding site pairs, assisted by rejecting rates of 99.5% for
dissimilar pairs on a test data set containing 1331 pairs, confirm this ability. TrixP
exclusively identifies members of the same protein family on top ranking positions out of a library consisting of 9802 binding
sites. Furthermore, 30 predicted kinase binding sites can almost perfectly be classified into their known subfamilies.

■ INTRODUCTION

Due to large scale structural genomics projects, the amount of
available protein structures in databases expands at an
exponential rate.1 Experimental methods for feature annotation
are not able to keep up with this data quantity due to time and
cost limitations. Thus, computational methods for automatic
analysis, e.g., annotation of protein function or druggability, are
of high practical relevance for pharmaceutical and biotechno-
logical industry. Exploiting structures with annotated function,
knowledge can be transferred to unknown proteins. Therefore,
elucidating similarities between proteins or binding sites can
help in many drug discovery contexts, e.g., to address drug
promiscuity and polypharmacology. Success stories exist for
predicting cross-reactivity,2 adverse effects,3 off-targets,4 and
multidrug resistance.5 Furthermore, comparing active sites of
enzymes can give hints about substrate specificity or potential
mutation sites for enzyme optimization, and thus, assist in
rational enzyme design for biotechnological research.
The number of computational methods for binding site

comparisons is large6,7 and notably either based on sequence or
structural similarities. For a long period of time, sequence-based
homology transfer has been the gold standard for protein
annotation. Knowledge is transferred based on the similarity
agreement of multiple sequence alignments of the complete
protein sequence (BLAST8) or sequence motifs (PROSITE,9

BLOCKS,10 PRINT11). The fast progress in 3D protein
structure elucidation, enhanced by the fact that structure was
found to be more conserved than sequence,12 recently
promoted structure-based methods for protein comparison.

Classically, structure-based comparison methods rely on
multiple structural alignments of complete structures (FAT-
CAT,13 PAST,14 VAST,15 3DCOMB16) or structural fragments
(PROCAT17). Nevertheless, the amount of required overall
sequence18 or structure identity to reliably transfer function
information is debatable. Examples showed that nonhomolo-
gous proteinsin terms of overall sequence or structurealso
share functions, which shifted the focus toward binding site
analysis. Specific interaction partners and their arrangement are
responsible for the recognition and binding of small molecules,
hence, determining the protein’s function. Thus, most
approaches follow the assumption that similar ligands bind to
similar cavities.19 As stated in several reviews,6,7 the three main
components of methods for binding-site comparison are
molecular recognition feature encoding, similarity searching,
and scoring. In the first step, the complexity of the comparison
problem is reduced by using simplified representations of the
binding site encoded in structural features. Second, similarities
are identified for these representations, mostly by structural
alignment overlap or fingerprint comparisons. Third, a scoring
function is applied to quantify the similarity between two sites.
The number of approaches trying to solve the comparison

problem is manifold and can be rudimentarily divided into
alignment-based and alignment-free methods. Alignment-based
algorithms rely on superimposing two structures. Strategies
used for structural alignments are mostly geometric matching
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(ProSurfer,20 SuMo,21 SiteBase22), geometric hashing (SiteEn-
gine23), or clique detection (CSC,24 Cavbase,25,26 eFsite,27 eF-
seek,28 IsoCleft,29 ProBis30). Cavbase, e.g., uses a grid
representation of the binding site, in which cavity-flanking
residues are mapped to pseudocenters, representing the
chemical properties of the binding site. Cavities are compared
using a clique detection algorithm identifying three-dimensional
(3D) pseudocenter arrangements that are common for two
cavities. Since the alignment of structures is computationally
expensive, effort is undertaken to develop alignment-free
methods. A common approach is to convert cavity properties
into simple 1D fingerprints, facilitating high-throughput
comparisons.31−38 Due to the speed of these methods, large
screening scenarios with a few thousand up to a million binding
site comparisons are feasible. One group of methods compares
lists of sorted distances between, e.g., critical atoms
(PocketMatch31), conserved atoms,32 and surface curvature.33

Other methods analyze distances between centroids of
fragment pairs34 or property-encoded shape distributions
(PESD).35 Using pharmacophore-based fingerprints is another
prominent approach (FLAP,36 SiteAlign,37 FuzCav38). In
SiteAlign,37 a fingerprint overlap based on properties projected
on an 80 triangle-discretized sphere is introduced. The mapping
on the sphere comparison allows for easy alignments. A
subsequent development, FuzCav38 is completely alignment-
free and performs comparisons based on a fingerprint of counts
of pharmacophoric triplets. Moment-based methods use
rotational invariant pocket representations by 3D mathematical
functions that describe the protein surface space. Spherical-
harmonics19 or 3D Zernike descriptors39 are employed to
represent the structure as a vector of coefficients of the function
series. Repurposing methods from other fields like image
processing40 or word processing41 also proved useful. Merelli et
al.,40 e.g., used spin-images for surface matching. Pang et al.41

calculate a “visual words” descriptor and uncover similarities
between binding sites based on a fast algorithm from the
information retrieval area. Ito et al.42 achieved a good running
time by representing the binding site as a bit string, combined
with the application of ultra fast all pair similarity search
methods.
Nevertheless, the speed of structural alignment free methods

entails a lack of interpretability of the results. Besides the
fingerprint-based similarity score, no information about the
features responsible for the similarity is returned. Thus, the
shortcomings of boththe slower character of alignment-based
and the low interpretability of alignment-free methodshave
recently been faced.43,44 BSAlign,43 e.g., finds the largest
common subgraph based on clique detection and subgraph
isomorphism with high-throughput. A sparse graph is built
based on residuestogether with geometric and physicochem-
ical informationinstead of point-based representations. An
efficient algorithm has been invented to circumvent the
computational expensive (NP-hard) problem of finding the
maximum common subgraph.
In this work, we introduce TrixP, a new method for index-

based binding site comparison which falls in the latter category
of alignment-based but efficient algorithms. TrixP allows for
fast structure-based screening of a query binding site against a
library of precalculated sites. The method exploits the main
advantages of TrixX,45 a method for structure-based high-
throughput screening. Pharmacophoric features present in the
binding site are identified and a triangle descriptortogether
with an 80-ray bulk spanned from the triangle centeris used

to represent physicochemical and spatial information of the
binding site. The use of a bitmap index46 and an efficient data
partitioning scheme avoids the sequential evaluation of binding
sites. Binding sites can either be identified by providing a
reference ligand or automatically predicted by the built-in
DoGSite47 method. For a query protein, descriptors are
calculated and binding sites with matching descriptors are
returned from the bitmap index. The respective sites are
superposed onto the query based on calculated clusters of
matching descriptors. A scoring scheme, considering matching
and mismatching pharmacophoric interaction sites, is intro-
duced to rank the library binding sites by their similarity to the
query. The method is evaluated on a set of 1331 pairs38 and
successfully retrieves 81.8% of the similar pairs while rejecting
99.5% of the dissimilar pairs. These results are in good
agreement with the results achieved by FuzCav.38 Furthermore,
an index is built on 9802 structures from the sc-PDB48 and
screened against four different protein families. Querying the
index with an estrogen receptor, e.g., delivers a ranked list of
similar sites with 98.5% of the contained estrogen receptors
among the top ranking positions. Next, the method is used to
classify kinases into subfamilies, and achieves classifications
similar to those of Cavbase and SCOP.49 Furthermore, the
quality and runtime of TrixP is compared to other recently
published methods, on a data set containing eight protein pairs
sharing only partial similarities which are hard-to-detect.31

TrixP finds similarities for seven of the eight pairs in a few
seconds per comparison. Thus, the running time is comparable
to BSAlign, another alignment-based algorithm and faster than
earlier alignment-based methods, which are in the order of
minutes. Nevertheless, alignment-based methods are still slower
than 1D fingerprint methods, which perform comparisons in
the order of milliseconds. Finally, high-throughput screening
studies are executed in parallel on the eight cores of an Intel(R)
Xeon(R) E5630 @ 2.53 GHz machine with 32 GB RAM.
Building an index takes 6.3 h for the sc-PDB data set with 9802
protein binding sites but has to be done only once. The
estrogen receptor query on this library including query
preprocessing, matching, and scoring takes 37.5 min.
The high recovery rate and the speed of the method show its

importance in fields like protein function prediction, rational
enzyme design, and polypharmacology.

■ DATA PREPARATION
Sc-PDB Data Sets for Method Evaluation. The sc-PDB48

data set, released in 2011, containing 9877 entries, correspond-
ing to 3034 different proteins and 5339 different ligands, has
been downloaded and used throughout this work. Due to
nonstandard PDB annotations or errors in the respective ligand
mol2 files, 75 of the entries are discarded by NAOMI,50

yielding a total of 9802 structures in our data set.
To determine a reliable score cutoff within TrixP, a similar

and dissimilar pair sc-PDB subset is used. The pair sets have
originally been setup by Weill and Rognan38 to define a cutoff
for FuzCav. Starting from the complete sc-PDB (Version
2008), Weill et al. clustered the entries according to their
UniProt name. Subsequently, they randomly selected two
entries (only cofactor-free ones) from each cluster based on the
SiteAlign37 distance value, yielding 769 pairs. The same number
of dissimilar pairs has been selected from the clusters, with the
requirement of having an EC number differing at the first level.
Due to changes between the sc-PDB versions and some
discards by NAOMI, only 683 similar and 648 dissimilar pairs
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could be recovered from the 2008 version (used in SiteAlign)
and are used within the TrixP study.
Since the entries of the sc-PDB are always annotated with a

drug-like cocrystallized ligand, we used those ligands to
determine the binding sites of the proteins within the sc-PDB
experiments. Therefore, we selected every amino acid within a
radius of 6.5 Å as part of the binding site. To evaluate the
performance of TrixP on this data set, different protein families
with a sufficient large amount of representatives are chosen.
Iteratively, one randomly chosen representative of each of these
families is used to query the complete data set. The chosen
families are estrogen receptors (PDB codes: 1qkt, 1l2j, 2ewp),
proteases (2q54), reverse transcriptases (1klm), and carbonic
anhydrases (3bet). The sc-PDB contains 34 estrogen receptors
α, 23 estrogen receptors β, and 5 estrogen related receptors γ.
Furthermore, the sc-PDB contains five estrogen receptors,
which are not further specified. According to the information
present in the PDB entries of those proteins, two of them can
be counted as estrogen receptors α (3l03 and 3hlv). The
remaining three estrogen receptors (2yat, 3os9, and 3osa) have
to be labeled as “unknown form” during the result evaluation.
The other three families consist of 174 proteases, 75 reverse
transcriptases, and 105 carbonic anhydrases.
Kinase Data Set for Subfamily Based Classification. To

show TrixP’s sensitivity in protein family annotation, we
perform a classification study on kinases, an enzyme class which
is of special biochemical interest. In 2006,26 Kuhn et al.
collected a set of eukaryotic protein kinases to evaluate the
performance of Cavbase. This data set consists of 30 binding
sites of 28 kinases from five different kinase subfamilies. The
challenge within this classification problem lies in the
separation of closely related subfamilies, containing active and
inactive conformations with significant differences in the local
conformation of the ATP binding sites. In this experiment,
binding sites are predicted using the DoGSite47 method,
likewise for holo- and apo-structures . To distinguish between
the different families, an all vs. all comparison is performed. The
resulting similarity matrix is used as input for a hierarchical
clustering procedure.
Benchmark Data Set for Comparison Study. To directly

compare TrixP with other recently published methods for
binding site comparison, a data set originally introduced by
Yeturu et al.31 and extended by Weill et al.38 is used. The data
set contains eight binding site pairs: three from the same SCOP
family and five belonging to different SCOP families. The
ligands present in 1v2q, 2ayw, and 1o3p are all bound to the
same binding site, but in different orientations and interacting
with varying residues. The four remaining pairs introduced by
Yeturu et al. contain different folds, and therefore even belong
to different SCOP families, but show similar binding sites as

reported in the literature. Furthermore, Weill et al. included an
additional pair of two proteins showing a cross-reactivity,
explained by the similarity of a small-sized subpocket within
both binding sites. For this data set, we again used the
respective ligands to determine the binding sites. The pdb
codes of the eight pairs present in the data set can be seen in
Table 1.

■ METHODS

TrixP is based substantially on the TrixX technology, a novel
approach for structure-based virtual screening of large
compound libraries. For a detailed description of the
technology we refer to the original publications.45,51 Here, we
briefly overview the basic concepts of TrixX and focus on the
explanation of the adaptations, necessary to employ this
technology for pocket similarity prediction. TrixP compares
pockets, i.e., it screens a library of protein binding sites and
identifies matching binding site descriptors. Therefore, TrixP
follows the general TrixX proceeding of a first library indexing
step followed by a screening step, in order to avoid repetitive
calculations and to perform efficient virtual screening runs.
Similarly in both methods, triangle descriptors for a given
library are calculated and stored in a bitmap index, during the
indexing phase. This bitmap index is created once and is
reusable in subsequent virtual screening runs. In the screening
phase, descriptors are derived for the binding site of a query
protein and only matching descriptors and their associated
structures are extracted from the index. Those hits are then
transformed and scored according to their agreement of
pharmacophoric features with the binding site of the query
protein. The TrixP method mainly differs in four points from
TrixX: First, instead of small molecules TrixP stores descriptors
derived from protein binding sites in the index. Second, in
order to account for the inherent flexibility of proteins, TrixP
employs an adapted descriptor matching method. Third,
instead of placing small molecules into the binding site, it
aligns binding sites. And finally, TrixP uses a new scoring
scheme that assesses the hits according to their similarity with
the query protein. We introduce the new concepts in the
following sections in more detail.

Recognition Feature Encoding. TrixP identifies the
similarity between proteins by comparing pharmacophoric
binding site features presumably responsible for the recognition
of ligands. The starting point for the calculation of descriptors
encoding these features is a binding site of a protein which can
be determined using different strategies. The most straightfor-
ward way is the use of a reference ligand to identify surrounding
residues or atoms. In this case, every amino acid within a
distance threshold of 6.5 Å has been selected. Alternatively,

Table 1. Overview of All Protein Pairs of the Benchmark Data Set

first protein protein family second protein protein family

1gjc utpaa 1v2q trypsin
1gjc 2ayw trypsin
1gjc 1o3p utpaa

1ecm chorismate mutase 4csm chorismate mutase
1m6z cytochrome c4 1lga peroxidase
1zid enoyl-ACP reductase 2cig dihydrofolate reductase
1v07 mini-hemoglobin 1hbi hemoglobin
6cox prostaglandin G/H synthase 2 1oq5 carbonic anhydrase 2

aurokinase type plasminogen activator.
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potential binding sites can be detected ligand-independently
using the built-in DoGSite47 method.
For each detected pocket, TrixX triangle descriptors are

calculated based on present pharmacophoric features. The used
triangle descriptors, hereby, resemble three-point pharmaco-
phores, and the triangle corners have one of the three types:
donor, acceptor, or hydrophobic. Hydrophilic features are
generated from hydrogen-bond donor and acceptor atoms and
possess potential main interaction directions. These directions
indicate the locations of hydrogens or lone pairs, respectively.
Hydrophobic features are derived from a grid placed in the
binding site and are undirected. Grid points with a sufficient
number of surrounding hydrophobic atoms represent hydro-
phobic regions and therefore become hydrophobic features.
Since hydrophilic features are far more specific than hydro-
phobic features, triangle descriptors with only hydrophobic
corners are not allowed. Nevertheless, hydrophobic features are
of great importance since they increase the number of possible
active site superpositions. Additionally, the descriptor is
equipped with 80 steric bulk rays, aligned in an icosahedron,
radiating from the center of the triangle. These rays represent
the shape of the pocket relative to the triangle, since the length
of each ray is the distance of the triangle center to the surface of
the binding site. Due to the large number of possible triangle
descriptors (on average 6090) per binding site, the derived data
requires an efficient space management. For descriptors derived
from the protein library, this is realized by binning the features
of the descriptors and converting them into bitmaps. Thereby,
the descriptors are separated and stored according to their
descriptor attributes (types of corners, directions, lengths of
triangle sides and of bulk rays) in the triangle descriptor index.
Figure 1 summarizes the workflow of recognition feature
encoding and depicts a descriptor of a binding site.

Similarity Searching. A comparison of query and library
descriptors can reveal similarities between associated proteins.
Therefore, descriptors are generated from the query protein
and used to formulate logical expressions that directly access
and extract only similar descriptors, and thus, similar pockets
from the index. A query descriptor matches if the types of the
corners, the directions, the lengths of the triangle sides, and the
lengths of each of the 80 bulk rays are in accordance with a
descriptor of the index. In order to allow a certain amount of
structural flexibility during the matching procedure, tolerances
are added to the lengths of the triangle sites and bulk rays.
Then, the associated structures are identified as potential
similar proteins. Due to data partitioning by type, the index
structure avoids the evaluation of dissimilar descriptors and
supports a rapid data querying. However, since even closely
related binding sites exhibit differences in their overall shape,
the bulk descriptor matching in its original form turned out to
be a too rigorous matching criterion. Furthermore, the TrixX
bulk descriptor ensures that the ligand completely fits into the
binding site avoiding steric overlap. While steric overlap is
forbidden in general, shape similarity considered in TrixP can
also occur partially. Therefore, the shape-descriptor matching
procedure is adapted to allow matches with only partial shape
agreement. As depicted in Figure 2, this partial bulk
implementation uses multiple subsets of rays as matching
criteria for querying. A shape requirement of 25% is realized
using only those rays going through triangles surrounding a
particular icosahedron vertex. Since a vertex is enclosed by five
triangles, only 20 out of 80 rays are selected as matching
constraints at a time. Each vertex of the icosahedron defines a
subset of rays leading to 12 possible sets of rays for a single
query descriptor. These subsets are logically ORed during the
evaluation of a query descriptor, i.e., it is sufficient if only 25%

Figure 1. (left) Recognition feature encoding. For a given protein library, binding sites are detected and attributes of site descriptors are converted
and stored in a bitmap index. (right) The Binding site descriptor encodes three types of pharmacophoric features in its triangle corners, three main
interaction directions if the corners are of hydrophilic type, three triangle side lengths that describe the relative arrangement of the pharmacophores,
and a set of 80 bulk rays through the 20 triangle faces of an icosahedron (four rays per triangle face) that locally describe the interior volume of a
pocket.

Figure 2. Partial bulk implementation: An icosahedron is orientated relative to a pharmacophoric triangle. For each vertex of the icosahedron, all rays
going through a surrounding triangle are used to define a partial bulk. Combining them with a logical OR during descriptor matching indirectly
introduces protein flexibility as only 25% of the shape of the compared binding sites have to match.
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of the binding site shape of a library protein matches to indicate
similarity with the query protein. Note that this matching 25%
has to occur in one connected region of the active site.
Structure Alignment. The search procedure of TrixP

results in a list of matching query and library descriptors. Each
triangle descriptor match holds the information to superpose a
pair of binding sites. The transformation of the query triangle
onto the matching index triangle is calculated and applied to
the coordinates of the query binding site. In order to reduce the
number, as well as to improve the quality, of the trans-
formations, matching descriptor pairs are clustered.52 The aim
of the clustering is to identify groups of descriptor pairs whose
transformation results in a very similar superimposition of the
binding sites. A complete linkage clustering algorithm compares
the descriptor matches on the basis of their transformation
result. To evaluate the distance between any two descriptor
matches, both query descriptors are transformed once with
each of the two corresponding transformations. The RMSD
between the resulting triangle descriptor corner coordinates of
both transformations is used as distance measure for the
clustering algorithm. In the end, only one combined trans-
formation is calculated for each cluster by optimizing the
simultaneous overlay of all included query pharmacophore
points on their respective matching points in the index
structure. This transformation is applied to superimpose the
binding sites for subsequent scoring. Figure 3 illustrates the
structure alignment resulting from a transformation based on a
matching triangle descriptor.
Scoring. For each returned alignment of the query to a

binding site of the library, named target in the following, a
similarity score is calculated based on the compliance of
pharmacophoric features. Therefore, let Q be the set of features
q of a query protein and T be the set of target features t.
Furthermore, let A(Q, T) be the set of alignments of Q onto T
gained by the clustering method. The similarity S(Q, T)
between Q and T maximizes the similarity scores sa(Q,T) of all
structural alignments of A(Q, T). sa(Q, T) is determined by
scanning the environments of the query features for matching
features in the target.
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Furthermore, we define Tsphere(qi) to be the set of target
features with a maximum distance dmax = 1.5 Å from qi, i.e.,
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Where n is the number of target features within Tsphere(qi). The
individual similarity scores sdir(qi, tj) of directed hydrophilic
matches, sundir(qi, tj) of hydrophobic matches, and smis(qi, tj) of
mismatches of the query feature qi and the target feature(s) are
defined as follows:
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Figure 4 illustrates possible matching cases that might occur
during the scanning and scoring of local query feature
environments.

(a) The similarity sdir(qi, tj) between directed hydrophilic
features is determined linearly based on the distance
d(qi, tj) and the angle difference α(qi, tj) between the
main interaction directions of the features. Therefore, we
define the maximal score smax = 10 and the angle weight
parameter w = 0.8, resulting in an absolute score of 18 for

Figure 3. Structure alignment: Schematic superposition of binding sites based on a descriptor match. The colors of the triangle corners indicate their
respective type: hydrophobic (yellow), hydrogen-bond donor (blue), or hydrogen-bond acceptor (red).
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a perfect overlay of a query and a target feature. The
hydrophilic score drops to 0 if dmax = 1.5 Å and αmax =
65° is reached.

(b) As hydrophobic features are undirected, the score
sundir(qi, Tsphere(qi)) only depends on the distance of the
features. However, since hydrophobic features often
appear in clusters of discrete features describing
hydrophobic binding site volumes, a special case is
introduced for the match of a hydrophobic feature with
multiple other hydrophobic features. In this case, the
score sundir(qi, ti) is maximized over all hydrophobic target
features in Tsphere(qi).

(c) If the types of features differ but are located close to each
other, this mismatch of query and target features is
penalized by pmax = −2.

(d) Generally, if no match or mismatch is identified in
Tsphere(qi), there is no contribution to the score since
there is no evidence for similarity or an explicit mismatch
in such a case.

(e) Simultaneous matches or mismatches in the query
feature sphere are seldom. However, in these rare cases
their contributions are averaged in order to account for
the heterogeneity of matched regions.

Finally, in order to grant comparability, the similarity score
sa(Q, T) is normalized with respect to the query protein to
reflect a value between 0 and 1. All chosen parameters within

the equations, e.g. maximal score, distance, and angle, as well as
angle weight and maximal penalty, have been optimized on a
small training set (see Supporting Information Material A) and
proved to produce a reliable score for the overall similarity of
two binding sites.

■ RESULTS AND DISCUSSION
In the following, different aspects of the presented binding site
comparison tool are analyzed. First, TrixP is evaluated in terms
of its ability to find similar sites while discarding dissimilar ones
based on ligand-defined binding sites, with respect to studies
from FuzCav.38 Second, the methods capability to distinguish
between subfamilies based on predicted binding sites is
investigated and the results are compared to Cavbase.53 Finally,
several benchmark studies are executed comparing TrixP to
other recently published efficient algorithms38 and showing its
potential as a high-throughput method.

Separating Similar from Dissimilar Protein Pairs. In a
first experiment, the pair data set introduced by Weill et al.38 is
used to determine a reliable cutoff value for the TrixP similarity
score. Two indices are built containing all similar and dissimilar
pairs, respectively. For each pair A, B, protein A is used to query
the corresponding index.
First, the TrixP similarity score between each pair is

investigated. The average score of all similar pairs is 0.46,
while the average score of all dissimilar pairs is 0.17. A
histogram of the achieved scores for similar and dissimilar pairs
(see Figure 5) shows that a TrixP score of 0.3 is well suited to
distinguish between similar and dissimilar binding sites. With
this cutoff value, 81.8% of all similar pairs can be retrieved,
while 99.5% of all dissimilar pairs are discarded.
Second, aside from the pairwise comparisons of proteins, the

screening procedure allows to rank the respective partner
relative to all other 1366 proteins in the index of the pair
screening run. The first finding is that the method recovers the
protein itself, which is also contained in the index, as top
ranking hit (self-match) in all cases. This self-match is excluded
from the following analysis. Figure 5 shows the distribution of
the position at which the respective similar pair occurs within
the result list. TrixP retrieves 69.4% of all similar pairs at the
top ranking position. Furthermore, only 18.7% of the pairs are
found on a rank below four. In total, 209 respective pairs do not
occur at the first rank. In 54% of the cases, the best ranking hit
as well as the query have an annotated EC number, which can
be used to assess the quality of those matches. In the majority

Figure 4. Schematic depiction of the scoring procedure: Around a
query feature a sphere with 1.5 Å radius is placed and scanned for
matching target features. (a) Match of hydrophilic features. (b) Match
of hydrophobic features. (c) Mismatch of features. (d) No match
within the 1.5 Å around a donor feature. (e) Mismatch between a
hydrophobic and an acceptor feature, and a simultaneous match with a
hydrophobic feature.

Figure 5. Results of the sc-PDB pair data set screening. (left) Distribution of the achieved scores for similar (blue) and dissimilar (red) pairs,
displayed is the respective number of pairs within a certain score range. (right) Number of respective pairs found on a certain rank within the
screening results sorted by similarity score.
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of those cases, the top ranking match had at least the first three
EC digits in common with the query. Only for as few as 0.7%,
the method is unable to recover the respective pair at all. A
further examination of those cases showed problems during the
correct binding site determination, leading to disproportionally
small binding sites.
In order to further demonstrate the discriminative power of

TrixP, the scores of all similar (true positives) and dissimilar
pairs (false positives) are sorted in descending order resulting
in a ROC curve (see Supporting Information Material B).
Generally, in the first 41.5% of the ranked data points true
positives are exclusively found. An AUC of 0.96 is achieved for
the performance of TrixP. Although the pair data set slightly
differs (see above), these results are in good agreement with the
data published by Weill et al.38

sc-PDB Screening. Multiple screening runs are performed
on an index containing all 9802 binding sites of the sc-PDB
data set, measuring the potential of TrixP to select binding sites
similar to a query site. Six proteins from four different protein
families, i.e., carbonic anhydrase 2 (CA2), protease (PR),
reverse transcriptase (RT), and estrogen receptor (ER), are
chosen as examples to query the index. For all queries, in total
only 1−9% of the binding sites in the data set are returned as
matches with a TrixP score above 0.3 (Table 2). For each

target, the number of family members present in the index is
assigned beforehand and the recovery rate per target is
analyzed. Between 84% and 100% of the contained family
members can be recovered for the respective queries.
Furthermore, the 50 top ranking positions are occupied by
members of the same family in 88% up to 100% of the cases.
Similar to an experiment performed in the evaluation of

SiteAlign,37 the ERα, ERβ, and ERγ queries are further
investigated. The query with an ERα receptor (1qkt) retrieved
in total 98.5% of the ERs present in the library, more precisely
all ERα, all ERβ, all ERγ structures, and two out of the three
nonspecified estrogen receptors. The missed nonspecified
estrogen receptor (1qkn) achieved a score of 0.20. In contrast
to the query, which had been crystallized in complex with the
estrogen estradiol, the antagonist raloxifene is bound to 1qkn.
These two ligands differ significantly, especially concerning
their size. Since the bound ligands have been used to determine
the binding sites of the proteins, the significant differences of
the bound ligands might be the reason for the low similarity
score in this case. Using an ERβ structure (1l2j) as query
retrieved all 23 ERβ structures, and additionally all 67 other
present estrogen receptors. Finally, for an ERγ (2ewp) structure
as query, four of five ERγ, 34 of 36 ERα, all ERβ structures, and
two out of three nonspecified estrogen receptors are recovered.
The results for ERα are further analyzed, with respect of high-
scoring family and nonfamily members. Two out of the four
missed ERs during this screening run, ERγ 2gpp and
nonspecified ER 3os9, still achieved a score higher than 0.29.
Even if the threshold of 0.3 had not been exceeded in these two
cases, both receptors still show a relatively high similarity to the
query. Note, that similarity is always rated with respect to the
query protein. In the case of the two missed ERα proteins, their
ligands differ from the ligand bound to 2ewp and might cause
the low similarity. Figure 6 shows the top ranking binding sites
up to rank 150. The 16 top ranking positions are exclusively
occupied by ERαs, which are still dominant on ranks up to 40.

Table 2. sc-PDB Screening Results Using Different Queries

protein
family

PDB
code

family
hits

present in
sc-PDB

members
within top 50

general hits
with score > 0.3

CA2 3bet 100 105 50 385
PR 2q54 147 174 50 151
RT 1klm 63 75 48 162
ERα 1qkt 36(66)a 36(67) 31(49) 843
ERβ 1l2j 23(67) 23(67) 14(44) 467
ERγ 2ewp 4(63) 5(67) 4(45) 245

aNumber in parenthesis represents the combined number of all
estrogen receptors.

Figure 6. Results for the query with an ERα (PDB code: 1qkt) ranked by TrixP score. ERα and other estrogen receptors are colored in red and
green, respectively. Nonestrogen receptor family matches are colored in gray.
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ERβs and ERγs capture most of the following ranks up to 70.
Furthermore, the eight non-ER proteins found within these
ranks belong to other human nuclear receptors also binding
steroid hormones like progesterone (four), aldosterone (one),
glucocorticoid (one), and mineralocorticoid (two).
Kinase Subfamily Detection. In a third experiment, the

kinase data set introduced by Kuhn et al.53 is used to evaluate
the ability of TrixP to distinguish between closely related
binding sites. Binding sites are predicted with the built-in
DoGSite method,47 and the resulting 30 kinase pockets are
stored in the index. The index is queried with all pockets and a
hierarchical clustering is performed on the resulting similarity
matrix. As previously described in the scoring section, the score
of TrixP is calculated with respect to the query binding site and,
therefore, not symmetric by design. In order to account for the
fuzziness in the definition of the pocket boundary, the
maximum of the two respective scores for comparing A vs B
and B vs A is used. Applying an agglomerative clustering results

in six clusters (Figure 7). SCOP annotations are indicated by
number: MAP kinases (1), CDK2 (2), PKA (3), Ser/Thr
kinases (4), and Tyr kinases (5). Clearly, the clustering based
on TrixP similarity is in good agreement with the SCOP
classification. All Tyr kinases (5) and PKA (3) structures
aggregate within one cluster, respectively. The Tyr kinase
cluster hereby contains two active (1ir3 and 3lck) as well as
three inactive structures (1fgi_a, 1fgi_b, and 2src), which were
nevertheless correctly classified as members of the same family.
The only exception, hereby, is the PKA structure 1stc, which
ended up in a cluster mostly occupied by MAP kinase
structures. The binding of a large rigid inhibitor (STU) to 1stc
may have introduced a change in its binding site conformation,
causing the missclassification. Similar to the findings by
Cavbase53 on this data set, TrixP is able to distinguish between
the different activation states of CDK2s. The CDK2 (2) main
cluster contains two subclusters: one is occupied by inactive
CDK2s (1b38, 1ckp, 1hck), and the other one contains active

Figure 7. Agglomerative clustering of 30 kinase pockets by TrixP similarity score. SCOP annotation of the structures is indicated as a number: MAP
kinases (1), CDK2 (2), PKA (3), Ser/Thr kinases (4), and Tyr kinases (5).

Figure 8. Superimposition of the two cycline-dependent kinases 2 (CDK2) 1b38 (cyan) and 1hck (dark green) on the left and of the two mitogen-
activated protein (MAP) kinases 1bmk (cyan) and 1bl7 (dark green) on the right.
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CDK2s (1fin chain A and C). Furthermore, the two Ser/Thr
kinases (4) are assigned to the CDK2 cluster. Although the
ligand is not considered within this experiment, all structures
(except 1ckp) of this cluster contain a bound ATP, and thus,
the method detects the common interaction points within
similar distances present in these structures. The MAP kinases
(1) span over three clusters. One cluster exclusively contains all
structures from the p38α subfamily (1bmk, 1p38, 1bl7, and
1a9u). A second MAP kinase cluster holds only structures from
the Erk2 subfamily (1gol, 1erk, and 4erk). The third cluster
contains the remaining two Erk2 structures (1pme and 3erk),
paired with the only miss-annotated PKA kinase 1stc. The
correct classification of active as well as inactive structures
within certain families, like the Tyr kinases and CDK2 kinases,
proved the flexibility of TrixP regarding local changes within
overall similar binding sites. Figure 8 shows the super-
impositions of the CDK2 structures 1b38 and 1hck and of
the MAP kinases 1bmk and 1bl7, as examples.
Qualitative and Quantitative Comparison to Other

Methods. To compare the performance of TrixP with other
recent methods, a small set of eight difficult targets is
investigated. Yeturu et al.31 and Weill et al.38 evaluated the
performance of multiple recent methods on this data set,
concerning their ability to identify similarities as well as their
run time requirements. As shown in Table 3, TrixP was able to

assign a similarity score to seven out of those eight difficult
pairs. Regarding the three pairs of proteins belonging to the
same SCOP families, TrixP like most other methods detects
similarities between the sites and exhibits a similar score trend
as BSAlign43 and PocketMatch,31 by assigning a higher score to
the pair of urokinase type plasminogen activators (1gjc and
1o3p). For the five pairs of proteins belonging to different
SCOP families, TrixP and PocketMatch are the only methods
able to derive a score for four out of the five present pairs, while
FuzCav38 is the only method assigning a score to the new pair
of a prostaglandin G/H synthase 2 (6cox−1oq5). Furthermore,
the TrixP and PocketMatch comparably assign higher scores to
the pairs of a cytochrome c4 with a peroxidase (1m6z−1lga)
and of a mini-hemoglobin with a hemoglobin (1v07−1hbi).
Using the determined threshold of 0.3 for the TrixP similarity
score would only yield two cases of possible cross-reactions or

related function among the eight pairs present in this data set.
Nevertheless, the results of TrixP show a certain degree of
similarity for five of the six remaining pairs and therefore
confirm the possibility of the observed cross-reactions.
Furthermore, TrixP is able to reproduce the same score trends
among the different pairs as BSAlign. Figure 9 shows the
superimposition of mini-hemoglobin 1v07 and hemoglobin
1hbi as calculated by TrixP. The calculated score of 0.43
indicates high similarity between the two binding sites even if
they belong to different SCOP families and therefore have
different folds. The figure shows an almost perfect super-
imposition of the two heme groups with an RMSD of 0.93 and
reasonable alignments of some residues common in both sites.
In terms of run-time requirements, the pairwise comparison of
the eight protein pairs, using TrixP, takes on average 19 s,
including index querying and scoring. Thus, TrixP performs in
the same speed order (seconds) as BSAlign, another method
designed for efficient alignment-based comparison. Further-
more, both methods are faster than general alignment-based
methods executed on this data set (ProFunc,54 SitesBase,55

SuMo,21 SiteEngine56), as can be seen in the extended table
within the publication of Weill et al. But clearly, the
performance of alignment based-methods is still slower than
the millisecond range of efficient fingerprint-based methods,
such as PocketMatch and FuzCav, which on the other hand
often produce results with a lack of interpretability.

Pocket-Based High-Throughput Screening. The TrixP
high-throughput screening process can be parallelized by
splitting up the data into subindices, simultaneously screening
each on one CPU core. As a test scenario, the index in this
study is split into eight equal parts, and TrixP is run on the
eight cores of an Intel(R) Xeon(R) E5630 @ 2.53 GHz with 32
GB RAM.
The most time-consuming task within TrixP is the initial

creation of indices. Calculating descriptors for one binding site
and writing them into the bitmap index takes on average 14.25
s. Thus, building the sc-PDB index containing 9802 structures,
when equally split onto eight cores for parallel screening, takes
6.3 h, but has to be done only once. The time for screening an
index with a protein query depends on two components: First,
the number of structures in the index and second, the size of
the query’s binding site. The first part within TrixP is the
matching phase. The average time needed to evaluate the sc-
PDB index is 1.76 s per query descriptor. The efficiency within
TrixP arises from the usage of the index technology. First, the
sequential screening scheme is overcome by efficient horizontal
data partitioning based on the descriptor’s triangle corner types.
Second, the number of binding sites to be scored is greatly
reduced to the number of matches returned by the initial index
query. The second part of TrixP captures postprocessing
from reinitialization to superposition and scoring. Hence,
postprocessing can be done on average in 1.18 s per matching
binding site returned by the index query. For ERα (1qkt), 5179
descriptors are calculated, a number close to the average
number of 6090 descriptors per binding site for the sc-PDB
data set. Using this ERα to query the sc-PDB index, the parallel
screening finishes after 37.5 min. Note that the scoring time
needed to screen each of the subindices could be further
reduced by splitting the data either more reasonable or onto
more cores.

Table 3. Comparison of TrixP to an Extraction of Other
Recently Published Binding Site Comparison Toolsa

efficient
alignments fingerprints

PDB1−lig1 PDB2−lig2 TrixPb BSAlignc PocketMatchd FuzCave

pairs of proteins belonging to the same SCOP family
1gjc−130 1v2q−ANH 0.18 31.77 50.17 0.19

2ayw−ONO 0.27 31.51 52.29 0.18
1o3p−655 0.65 42.26 88.01 0.18

pairs of proteins belonging to different SCOP families
1ecm−TSA 4csm−TSA 0.16 × 55.56 0.18
1m6z−HEC 1lga−HEM 0.24 × 63.85 ×
1zid−ZID 2cig−IDG 0.19 × 56.01 ×
1v07−HEM 1hbi−HEM 0.43 × 61.42 0.18
6cox−S58 1oq5−CEL × × × 0.16
speed order s s ms ms
aThe full list can be found in the publication of Weill et al.38 bTrixP
similarity score. cBSAlign alignment score.43 dPocketMatch
PMScore.31 eFuzCav similarity score.38
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■ CONCLUSION

Due to the growing amount of available protein structures,
computer methods are required to efficiently tackle the
annotation problem. In this study, we introduced TrixP, a
new method for fast binding site comparison and function
prediction based on structural alignments of the binding sites.
The main invention is hereby the representation of binding
sites by chemical and structural triangle descriptors, stored in a
bitmap index technology, allowing for time-efficient screening.
In multiple experiments, the ability of TrixP to efficiently

produce reliable results, comparable or partially superior to
other state of the art methods, is shown. Screening two data
sets containing known similar and dissimilar binding sites, a
reliable cutoff value for the TrixP similarity score is determined.
With this cutoff value, 81.8% of all similar pairs can be
recovered with TrixP, while rejecting 99.5% of all dissimilar
pairs. Furthermore, 69.4% of all similar pairs have been ranked
at position one of 1331 screened binding sites. Large scale
screening experiments using four different protein families as a
query against the sc-PDB index containing 9802 structures are
performed. TrixP is capable of identifying similar binding sites
to the respective query, to assign an appropriate score to them,
and thus, rank related above unrelated binding sites. For each
tested protein family, TrixP recovers at least 84% of all family
members present in the library. Another experiment on a small
data set containing representatives of five kinase subfamilies
proved TrixP’s ability to distinguish between closely related
binding sites.
Besides the quality assessment of TrixP, the efficiency of the

method is investigated on a prereleased comparison study on
eight binding site pairs. The experiments showed that TrixP is
able to perform pairwise comparisons in a few seconds while
recovering similarities between so-classified difficult binding
sites. Parallel screening, using eight cores, allows TrixP to build
the index for the whole sc-PDB database within 6.3 h and
afterward to screen it within only 37.5 min.
The application scenarios show the assistance of binding site

comparison tools like TrixP to solve important and challenging
tasks of today’s biochemical research. Nevertheless, as some
studies indicate, geometric rearrangements of some amino acid
side chains result in different similarity scores. As demonstrated

with the kinase data set, TrixP already is able to take into
account a certain amount of protein flexibility by its
representation of rotatable hydrophilic interactions as well as
by using tolerance values for the matching of the lengths of
triangle sides and bulk rays. However, there is still room for
further improvement. Especially, large changes of the structure
like different possible folds could not be handled by the recent
version of TrixP. Another improvement of TrixP might be to
also value the shape similarity of two binding sites during the
scoring procedure.
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