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A vast similitude interlocks all,
All spheres, grown, ungrown, small, large, suns, moons, planets

All distances of place however wide,
All distances of time, all inanimate forms,

All souls, all living bodies, though they be ever so different, or in different worlds,
All gaseous, watery, vegetable, mineral processes, the fishes, the brutes,

All nations, colors, barbarisms, civilizations, languages,
All identities that have existed, or may exist, on this globe, or any globe,

All lives and deaths, all of the past, present, future,
This vast similitude spans them, and always has spann’d,

And shall forever span them and compactly hold and enclose them.

Walt Whitman, “On the beach at night alone”

Out of the night that covers me,
Black as the pit from pole to pole,
I thank whatever gods may be
For my unconquerable soul.

In the fell clutch of circumstance
I have not winced nor cried aloud.
Under the bludgeonings of chance
My head is bloody, but unbowed.

Beyond this place of wrath and tears
Looms but the horror of the shade,
And yet the menace of the years
Finds and shall find me unafraid.

It matters not how strait the gate,
How charged with punishments the scroll,
I am the master of my fate:
I am the captain of my soul.

W.E. Henley, “Invictus”
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Introduction

The focus of the present thesis is the so-called Landau-Ginzburg/conformal field theory
(LG/CFT) correspondence. This correspondence dates from the late 80’s and early 90’s
in the physics literature ([KMS], [HW1], [HW2], [HW3], [Mar], [VW]) and in particular, it
predicts a relation between defects in Landau-Ginzburg models and defects in conformal
field theories. This relation is supported by examples, but not understood in general, nor
up to date is there a clear mathematical conjecture of the LG/CFT correspondence. The
pursuit of a precise mathematical statement of this conjecture continues to generate a rich
mathematical output, and this PhD thesis is another contribution towards this end.

On the one hand of this correspondence, by a Landau-Ginzburg model we mean a 2-
dimensional (2, 2)–supersymmetric model characterized by a polynomial W ∈ S (with S
a polynomial ring) called potential. Let two Landau-Ginzburg models be characterized
by two polynomials W and W ′ resp. A defect between two Landau-Ginzburg models is a
codimension one interface and it is described by a matrix (bi)factorization [BR1], which
is defined as a pair

(
M,dM

)
, where M is a Z2–graded free (bi)module over a polynomial

ring and dM is a degree 1 S–(bi)module morphism satisfying that dM ◦ dM = (W −
W ′).idM . In 1980 Eisenbud [Ei] first described matrix factorizations within the framework
of maximal Cohen-Macaulay modules. They have been shown to occur in many areas of
pure mathematics, such as representation theory, singularity theory, homological mirror
symmetry, knot invariants and topological field theories (see e.g. [Bu, KhR, Or1, Or2]).
Matrix factorizations are the most important concept and the main tool of this thesis.

On the other side of the correspondence we have conformal field theories (CFTs). More
precisely, we are interested in rational full CFTs, meaning a collection of single-valued func-
tions called the correlators which satisfy the so-called Ward identities, and are compatible
with the operator product expansion. In addition, a rational vertex algebra (some gener-
alization of a commutative algebra) describes the chiral symmetries of the CFT. Starting
from the ground–breaking paper by Moore and Seiberg [MS] and later by the works of
Fuchs–Runkel–Schweigert et al [FRS1, FRS2, FRS3, FRS4, FRS5], at present we have a
good understanding of their behaviour. More precisely, a full CFT can be fixed with only
a tuple (V , A) where V is a rational vertex algebra and A is a special symmetric Frobenius
algebra in the representation category Rep (V). Since V is rational, Rep (V) is a modular
tensor category. Defects between different CFTs are described by bimodules over two of
these special symmetric Frobenius algebras.

Inspired by the physics literature, we would like to compare defects from both sides
proving equivalences of tensor categories: on the one side we have categories of matrix
factorizations; on the other, categories of modules over special symmetric Frobenius alge-
bras. This was the main objective of the research carried out during the author’s PhD.
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Two papers came out of this research: [DRCR] and [CRCR].
This thesis is structured as follows: on Chapter 1 we offer a brief review on some con-

cepts of category theory required for the understanding of the later chapters, like e.g.
bicategories, modular categories or Temperley-Lieb categories.

In Chapter 2, we introduce matrix factorizations and review their basic properties, as
well as offer an exposition on how they arise within the physics context.

In Chapter 3, first we introduce the categorical approach to full CFTs and then ex-
plain the LG/CFT correspondence, reviewing results appearing in the physics literature
supporting this correspondence.

Chapter 4 contains the joint work developed together with Alexei Davydov and Ingo
Runkel described in the paper [DRCR]. In this project we compare a certain kind of
matrix factorizations, the so-called permutation-type matrix factorizations, and certain
representations of the vertex operator algebra associated to the coset ŝu(2)d−2⊕û(1)4

û(1)2d
. More

precisely, the setup is:

◦ Consider the Deligne tensor product of categories of representations

Rep (ŝu(1))d−2 � Rep (û(1))2d � Rep (û(1))4

where Rep (ŝu(1))d−2 is the category of integrable highest weight representations of
ŝu(2)d−2, Rep (û(1))2d (Rep (û(1))4) is the category of representations of the rational
vertex operator algebra obtained when extending the u(1)-current algebra by two
fields of weight d (resp. of weight 2). The overline means that we replace the
braiding and twist by their inverses. Label the simple objects as [l,m, s] where
l ∈ {0, . . . , d − 2}, m ∈ Z2d, s ∈ Z4. We will consider the full subcategory whose
objects are isomorphic to direct sums of simples satisfying that l+m ∈ 2Z and s = 0.
Denote it as C(N=2, d).

◦ By a permutation-type matrix factorization we mean a matrix bifactorization of xd−

yd of the form PJ =

 0
∏
i∈J

(x− ηiy)∏
i∈{0,...,d−1}\J

(x− ηiy) 0

 , where η = e2πi/d and

J is a subset of Zd. We denote the category whose objects are matrix factorizations
of W = xd − yd (∈ S = C [x, y]) and whose morphisms are S-linear maps of degree
zero closed with respect to the differential on the morphism space modulo homotopy
as HMFC[x,y],xd−yd . If we consider instead C-graded matrix factorizations as objects,
then we denote it as HMFgr

C[x,y],xd−yd . Consider the full subcategory of HMFgr
C[x,y],xd−yd

which is tensor generated by permutation-type matrix factorizations whose sets are
of the kind S = {m, ...,m + l} and whose morphisms are morphisms of matrix
bifactorizations with C-degree zero. Denote it as PT gr

d .

Our work builds on the following result:

Theorem. [BR1] C(N=2, d) and PT gr
d are equivalent as C-linear categories, via the as-

signment
[l, l + 2m, 0]←→ P{m,...,m+l} .
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Moreover, this equivalence is multiplicative.

This raises the following natural question: are these two categories equivalent as tensor
categories as well?

From a quantum field theory point of view, one expects a tensor equivalence, but math-
ematically this is surprising: the tensor product on the matrix factorization side is that
of the underlying modules over polynomial rings and has trivial associator. On the other
hand, the associator on the vertex algebra side involves the quantum 6j-symbols for su(2).

Our approach to this problem is the following: consider the Deligne tensor product of
the Temperley Lieb category T Lκ and the category of Zd-graded vector spaces Zd-Vec. For
d odd, one can construct tensor functors from this category to C(N=2, d) and PT gr

d resp.:

T Lκ � Zd-Vec→ PT gr
d

T Lκ � Zd-Vec→ C(N=2, d)
(0.1)

One then proves that both these functors annihilate the unique proper tensor ideal in
T Lκ and therefore descend to equivalences from the quotient category onto the image of
the functors:

Theorem. (4.2.14) For d odd, PT gr
d and C(N=2, d) are equivalent as tensor categories.

Which is the first main result of this thesis.
Chapter 5 contains the joint work with Nils Carqueville and Ingo Runkel described in

the paper [CRCR]. In this project we proved a conjecture stated in [CR2]. It is a well
known fact that simple singularities have an ADE classification. For two variables (where
more can be added via Knörrer periodicity), the associated polynomials are

WAd−1 = xd − y2 , WDd+1 = xd − xy2

WE6 = x3 + y4 , WE7 = x3 + xy3 , WE8 = x3 + y5

Landau-Ginzburg models with these potentials are believed to correspond to N = 2 min-
imal conformal field theories. These rational conformal field theories, for a given value of
the central charge, are expected to be (generalised) orbifolds of each other. Inspired by
this fact we wanted to prove a similar result for matrix factorizations.

The framework to approach this problem is the bicategory of Landau-Ginzburg models
LG, where the objects are pairs (S,W ) of a polynomial ring over k (for a fixed field k)
and a potential. The category of 1-morphisms from (S ′,W ′) to (S,W ) is that of (finite
rank) matrix bifactorizations hmfbi;(S,W ),(S′,W ′). The composition of 1-morphisms is given
by the tensor product of matrix factorizations. This bicategory has adjoints which can be
explicitly written via Atiyah classes providing a practical hands-on toolkit for computations
[CM1]. In [CR2] an equivalence relation on objects of LG is introduced, which states that
two objects are equivalent if there exists a 1-morphism between them which has invertible
quantum dimension (that means, it has to satisfy certain properties concerning its adjoints).
This implies non-obvious equivalences of categories, for example:
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Proposition 0.0.1. [CR2] Let (S,W ), (S ′,W ′) ∈ Ob (LG) and X ∈ hmfS⊗kS′,W−W ′ with
invertible quantum dimension. Denote by X† the right adjoint of X. Then,

hmfS′,W ′ ∼= mod
(
X† ⊗X

)
where X†⊗X is a symmetric separable Frobenius algebra object in the 1-morphism category
LG ((S,W ) , (S,W )) and mod

(
X† ⊗X

)
denotes the category of modules over X† ⊗X in

hmfS,W .

By giving explicitly matrix factorizations of non-zero quantum dimension, in [CRCR]
we classify equivalence classes within the ADE potentials listed above.

Theorem. (5.2.6) The equivalences between simple singularities are generated by (the
ring is C[x, y] in each case)

WAd ∼ WDd+1 , WA11 ∼ WE6 , WA17 ∼ WE7 , WA29 ∼ WE8 .

We also describe explicitly the symmetric separable Frobenius algebras from Proposition
0.0.1, that is, we give algebras ADd+1

, AE6 , AE7 , AE8 in the respective 1-endomorphism
categories, such that hmf

(
C[x, y],W T

) ∼= mod (AT ) for T ∈ {Dd+1, E6,7,8}.
In addition to these results, we also point out some guidelines with which we hope to

find new orbifold equivalences.
Finally, in the Appendix one can find a missing proof in Chapter 3, as well as a col-

lection of results on categories of equivariant objects and pointed categories useful for the
understanding of the approach taken in Chapter 4.
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1. Categorical background

In this chapter we will introduce some background on categories which will be necessary
for our exposition.

1.1. Category theory background: bicategories and
modular categories

We will assume only very basic knowledge of categories. Our main references are [Bor, Be,
McL, Mue, De, BK, Ke, CM1, Sch].

First of all, we would like to construct a certain higher categorical structure: that of
bicategories.

Definition 1.1.1. A bicategory B is specified by the following data:

◦ a class Ob (B) of objects;

◦ for each pairA,B ∈ Ob (B), a category B (A,B) whose objects are called 1-morphisms
and whose morphisms are called 2-morphisms ; we write α � β for the composite of
the 2-morphisms α, β;

◦ for each triple of objects A,B,C ∈ Ob (B), a composition law given by a functor

cABC : B (A,B)× B (B,C)→ B (A,C) ;

given 1-morphisms f : A → B, g : B → C of the bicategory B, we write g ◦ f for
their composite cABC (f, g); given other 1-morphisms f ′ : A → B, g′ : B → C and
2-morphisms γ : f ⇒ f ′, δ : g ⇒ g′, we write δ ∗ γ for their composite cABC (γ, δ);

◦ for each A ∈ Ob (B), there is a functor υA : 1 → B (A,A), where 1 is the terminal
objects of the category of small categories. The identity 1-morphism 1A : A → A
is the image of the unique object of 1 under the functor υA; we write ιA for the
identity 2-morphisms on 1A and ιf for the identity 2-endomorphism of a 1-morphism
f : A→ B;

◦ for each quadruple A,B,C,D ∈ Ob (B), a natural isomorphism

αABCD : cABD ◦ (1× cBCD)⇒ cACD ◦ (cABC × 1)

which is called the associativity isomorphism;
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1. Categorical background

◦ for each pair A,B ∈ Ob (B), two natural isomorphisms

λAB : cAAB ◦ (υA × 1)⇒ 1

ρAB : cABB ◦ (1× υB)⇒ 1

which are called the left and right unit isomorphisms resp.;

satisfying

1. Associativity coherence: given objects A,B,C,D,E ∈ Ob (B) and 1-morphisms

A
f // B

g // C h // D k // E

such that the following diagram commutes:

k ◦ (h ◦ (g ◦ f))

αg◦f,h,k
��

ιk∗αf,g,h // k ◦ ((h ◦ g) ◦ f)
αf,h◦g,k // (k ◦ (h ◦ g)) ◦ f

αg,h,k∗ιf
��

(k ◦ h) ◦ (g ◦ f)
αf,g,k◦h // ((k ◦ h) ◦ g) ◦ f

where we have written αf,g,h instead of (αABCD)(f,g,h) for the sake of simplicity.

2. Identity coherence: given objects A,B,C ∈ Ob (B) and 1-morphisms

A
f // B

g // C

such that the following diagram commutes:

(g ◦ 1B) ◦ f

ρg∗ιf &&

g ◦ (1B ◦ f)

ιg∗λfxx

αf,1B,goo

g ◦ f

where we have written λf , ρg instead of (λAB)f , (ρBC)g again for simplicity.

We will also introduce the notion of adjoints in a bicategory:

Definition 1.1.2. ◦ Let B be a bicategory. An adjunction in B is a tuple (f, g, coev, ev)
where f, g are two 1-morphisms (the adjoint pair) f : A → B and g : B → A (with
A,B ∈ Ob (B)) and

coev : 1B ⇒ f ◦ g
ev : g ◦ f ⇒ 1A

12



1.1. Category theory background: bicategories and modular categories

two 2-morphisms which altogether satisfy the following equalities 1:

(ιf ∗ ev)� αf,g,f � (coev ∗ ιf ) = ρf � λf
(ev ∗ ιg)� α−1

g,f,g � (ιg ∗ coev) = λg � ρg
(1.1)

In this case we say that g is left adjoint to f and that f is right adjoint to g. The
2-morphisms ev and coev are referred to as the evaluation and coevaluation maps
resp. of the adjunction.

◦ B has left adjoints (resp. right adjoints) if every 1-morphism in B admits a left
adjoint (resp. right adjoint).

If they exist these adjoints are unique up to isomorphism, and the left and right adjoints
of f are denoted by †f and f †, resp. If a 1-morphism f : A→ B has both a left and right
adjoint then we write the evaluation and coevaluation maps for †f left adjoint to f as:

evf : †f ◦ f ⇒ 1A

coevf : 1B ⇒ f ◦ †f

and for f left adjoint to f †,

ẽvf : f ◦ f † ⇒ 1B

c̃oevf : 1A ⇒ f † ◦ f
Note here that left and right adjoints do not coincide in general. We will see some

examples within the bicategory of Landau-Ginzburg models in Chapter 2.

Remark 1.1.3. Equations 1.1 are frequently called the “(right) snake diagrams” or also
the “(right) Zorro moves”. This is because adjoints have a graphical language which allows
a very comfortable description of these equations. We will though not introduce it here.

One may wonder at this point if one can relate these left and right adjoints. One case of
interest is when they coincide: †f = f †2. Under this assumption, we say such a bicategory
B is pivotal if the following diagrams commute:

f †

λ−1
BA
��

ρ−1
BA // f † ◦ 1B

ι
f†∗coevg

// f † ◦
(
g ◦ g†

) ι
f†∗(φ∗ιg†) // f † ◦

(
f ◦ g†

)
α−1

g†,g,f†
��

1A ◦ f †

c̃oevg∗ιf†
��

(
f † ◦ f

)
◦ g†

evf∗ιg†
��(

g† ◦ g
)
◦ f †

(ιg†∗φ)∗ιf† ''

g†

(
g† ◦ f

)
◦ f †

α
f†,f,g†// g† ◦

(
f ◦ f †

)ιg†∗ẽvf
// g† ◦ 1B

ρBA

88

1Notice here that we use explicitly the fact that α is an isomorphism, not just a natural transformation.
2Actually, one may soften this condition to an isomorphism instead of an equality. We choose the

strictified version for the sake of simplicity.
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1. Categorical background

for A,B ∈ Ob (B), f, g ∈ B (A,B), φ : f ⇒ g, and

(g ◦ f)†
λ−1
CA //

λ−1
CA

��

(g ◦ f)† ◦ 1C
ι
(g◦f)†∗coevg

// (g ◦ f)† ◦
(
g ◦ g†

)
α−1

g†,g,(g◦f)†
��

1A ◦ (g ◦ f)†

c̃oevf∗ι(g◦f)†

��

(
(g ◦ f)† ◦ g

)
◦ g†

ι
(g◦f)†◦g∗λBC

��(
f † ◦ f

)
◦ (g ◦ f)†

α
f†,f,(g◦f)†

��

(
(g ◦ f)† ◦ g

)
◦ 1B ◦ g†

ι
(g◦f)†◦g∗coevf∗ιg†

��

f † ◦
(
f ◦ (g ◦ f)†

)
ρBA∗ιf◦(g◦f)†

��

(
(g ◦ f)† ◦ g

)
◦
(
f ◦ f †

)
◦ g†

ι
(g◦f)†◦g∗αg†,f†,f

��

f † ◦ 1B ◦
(
f ◦ (g ◦ f)†

)
ι
f†∗c̃oevg∗ιf◦(g◦f)†
��

(
(g ◦ f)† ◦ g

)
◦ f ◦

(
f † ◦ g†

)
α

(g◦f)†,g,f∗ιf†◦g†
��

f † ◦
(
g† ◦ g

)
◦
(
f ◦ (g ◦ f)†

)
α−1

g,g†,f†
∗ι
f◦(g◦f)†

��

(g ◦ f)† ◦ (g ◦ f) ◦
(
f † ◦ g†

)
evg◦f∗ιf†◦g†

��(
f † ◦ g†

)
◦ g ◦

(
f ◦ (g ◦ f)†

)
ι
f†◦g†∗α

−1

(g◦f)†,f,g
��

1A ◦
(
f † ◦ g†

)
λCA

��(
f † ◦ g†

)
◦ (g ◦ f) ◦ (g ◦ f)†

ι
f†◦g†∗ẽvg◦f

--

f † ◦ g†

(
f † ◦ g†

)
◦ 1C

ρCA

OO

for A,B,C ∈ Ob (B) and composable 1-morphisms A
f // B

g // C and their duals.
One can show [CR3] that in a pivotal bicategory there are natural monoidal isomorphisms
{δf} (f ∈ B (A,B)) between the identity functor and (−)†† on B(A,B), see [CR2].

Then, one can write ẽv and c̃oev in terms of ev and coev and these natural isomorphisms:

ẽvf = evf† � (δf ◦ ιf†)
c̃oevf = (ιf† ◦ (δf )

−1)� coevf†

Let us introduce a special case of composition of the above described maps. The left
quantum dimension of f is the image of ιB under the map Dl(f) : End(1B) → End(1A)
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1.1. Category theory background: bicategories and modular categories

given by

Dl(f) = evf � [1f† ◦ (λf � ((−) ◦ 1f )� λ−1
f ))]� c̃oevf

and similarly for the right quantum dimension qdimr(f) = Dr(f)(ιA). For g ∈ B(B,C)
these operators satisfy

Dl(f)�Dl(g) = Dl(g ◦ f) , Dr(g)�Dr(f) = Dr(g ◦ f) ,

and for a proof we refer to e.g. [CM1].
If the class of objects of a bicategory consists of only one object, the bicategory is equiv-

alent to a monoidal3 category : with only one object, the 1-morphisms and 2-morphisms
are described by the objects and morphisms resp. of a category C. Denote the composition
functor c in this case as ⊗ : C ×C → C. We denote then the composition of the morphisms
of C with ◦. The identity 1–morphism 1C becomes a unit object I ∈ Ob (C), where the
identity 2–morphism ιC is the identity morphism idC, and similarly for the associativity and
unit isomorphisms: concerning the associativity isomorphisms, they become isomorphisms
αA,B,C : (A⊗B) ⊗ C → A ⊗ (B ⊗ C) called associators, natural in A, B, C ∈ Ob (C);
on the other hand the unit natural isomorphisms become isomorphisms λA : I ⊗ A → A,
ρA : A ⊗ I → A, natural in A ∈ Ob (C), called left and right unit isomorphisms. De-
note then the monoidal category and its structure morphisms as a tuple (C,⊗, I, α, λ, ρ)
–or simply as C when clear by the context–where some subindices will be added to pre-
vent confusion if necessary. This tuple of data must of course satisfy the corresponding
associativity and identity coherence conditions.

Remark 1.1.4. ◦ Assume C additive. The endomorphisms of the identity arrow (also
called the tensor unit) End (I) form a commutative ring k, called the ground ring,
and for every A,B ∈ Ob (C), C (A,B) is a k-module.

◦ If the natural isomorphisms α, ρ and λ are actually identities, we say the category
is strict. By the so-called coherence theorems (see e.g. [McL]) there is no loss of
generality in imposing this strictness property.

Define the following objects:

Definition 1.1.5. ◦ An algebra object, or simply an algebra, in a strict monoidal cat-
egory C is a triple (A,m, η) where A ∈ Ob (C), m ∈ Hom (A⊗ A,A) (multiplication
morphism) and η ∈ Hom (1, A) (unit morphism), such that:

m ◦ (m⊗ idA) = m ◦ (idA ⊗m)

m ◦ (η ⊗ idA)) = idA = m ◦ (idA ⊗ η)

3Sometimes monoidal categories are also called tensor categories, although both notions will not be the
same in this thesis. Let k be an algebraically closed field (which can be assumed to be the field C of
complex numbers). We call a category C tensor if it is an additive k-linear monoidal category such
that the tensor product is k-linear in both arguments.
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1. Categorical background

◦ A coalgebra in a strict monoidal category C is triple (A,∆, ε) where A ∈ Ob (C),
∆ ∈ Hom (A,A⊗ A) (coassociative coproduct) and ε ∈ Hom (A, I) (counit), such
that:

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆

(ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆

To call A an algebra is appropriate because in the particular case that C is the category
of C-vector spaces (or some other field), the prescription reduces to the conventional notion
of an algebra.

It is possible to define functors between monoidal categories, which are called accord-
ingly monoidal functors4, and natural transformations between monoidal functors, called
monoidal natural transformations and we will describe them now in detail.

Definition 1.1.6. ◦ Let (C,⊗C, αC, IC, λC, ρC) and (D,⊗D, αD, ID, λD, ρD) be two monoidal
categories. A monoidal functor from C to D is a triple (F, ϕ0, ϕ2) where:

– F is a functor F : C → D;

– ϕ0 is an isomorphism ϕ0 : ID → F (IC) in the category D;

– ϕ2 : ⊗D ◦ (F × F ) → F ◦ ⊗C is a natural isomorphism of functors C × C → D,
including in particular an isomorphism for any pair of objects A, B ∈ Ob (C),
ϕ2 (A,B) : F (A)⊗D F (B)→ F (A⊗C B);

such that:

– compatibility with associativity holds:

(F (A)⊗ F (B))⊗ F (C)
αF (A),F (B),F (C) //

ϕ2(A,B)⊗idF (C)

��

F (A)⊗ (F (B)⊗ F (C))

idF (A)⊗ϕ2(B,C)

��
F (A⊗B)⊗ F (C)

ϕ2(A⊗B,C)

��

F (A)⊗ F (B ⊗ C)

ϕ2(A,B⊗C)

��
F ((A⊗B)⊗ C)

F (αA⊗B⊗C) // F (A⊗ (B ⊗ C))

– compatibility with the left unit holds:

ID ⊗ F (A)
λF (A) //

ϕ0⊗idF (A)

��

F (A)

F (IC)⊗ F (A)
ϕ2(IC ,A) // F (IC ⊗ A)

F (λA)

OO

4The notion of tensor functor works analogously to the one for categories: a monoidal functor between
tensor categories is tensor if it is k-linear.
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1.1. Category theory background: bicategories and modular categories

– compatibility with the right unit holds:

F (A)⊗ ID
ρF (A) //

idF (A)⊗ϕ0

��

F (A)

F (A)⊗ F (IC)
ϕ2(A,IC) // F (A⊗ IC)

F (ρA)

OO

◦ Let (F, ϕ0, ϕ2), (F ′, ϕ′0, ϕ
′
2) be two monoidal functors. A monoidal natural trans-

formation between monoidal functors is a natural transformation η : F → F ′ such
that:

– compatibility with the tensor unit holds:

F (IC)

ηIC

��

ID

ϕ0

;;

ϕ′0

##
F ′ (IC)

– compatibility with the tensor product holds: for all pairs (A,B), A,B ∈ Ob (C)

F (A)⊗ F (B)
ϕ2(A,B) //

ηA⊗ηB
��

F (A⊗B)

ηA⊗B
��

F ′ (A)⊗ F ′ (B)
ϕ′2(A,B)

// F ′ (A⊗B)

Thanks to this last definition, then one can define:

Definition 1.1.7. Monoidal natural isomorphisms are invertible monoidal natural trans-
formations. An equivalence of monoidal categories is a pair of monoidal functors F : C → D,
G : D → C and monoidal natural isomorphisms η : idD → F ◦G, θ : G ◦ F → idC.

Our objective for the rest of this section is to introduce modular categories.
At this point, let us introduce the following kind of categories.

Definition 1.1.8. We say that a category C is an abelian category if there is a zero
object (that we will denote as 0) and the morphisms possess various properties: every
morphism set is an abelian group (i.e. for any two A,B ∈ Ob (C), C (A,B) is an abelian
group) and composition of morphisms is bilinear (i.e. for any morphisms f, f ′ ∈ C (A,B),
g, g′ ∈ C (B,C), (f + f ′) ◦ (g + g′) = f ◦ g + f ′ ◦ g + f ◦ g′ + f ′ ◦ g′, where we denote as +
the operation of the abelian group); every finite set of objects has a biproduct (i.e. we can
form finite direct sums and direct products); every morphism has a kernel and a cokernel;
every monomorphism is the kernel of its cokernel, and every epimorphism is the cokernel
of its kernel; and finally, every morphism f can be written as the composition f = h ◦ g of
a monomorphism h and an epimorphism g.
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1. Categorical background

Remark 1.1.9. Notice here that in abelian categories we can have finite direct sums (of
both objects and morphisms).

Assume from now on C to be an abelian strict tensor category with ground ring C. We
need to enrich it with quite a bit of structure.

Definition 1.1.10. A simple object U ∈ Ob (C) is an object satisfying that End (U) =
CidU

5. In particular, I is automatically simple. A semisimple category is then character-
ized by the property that every object is the direct sum of finitely many simple objects.

Semisimplicity of a tensor category C implies in particular dominance of C. This means
that there exists a family of {Ui}i∈I of simple objects with the following property: for
any A,B ∈ Ob (C) every morphism f ∈ Hom (A,B) can be decomposed into a finite sum
f =

∑
r

gr ◦hr with hr ∈ Hom (A,Ui) and gr ∈ Hom (Ui, B) for suitable members Ui = Ui(r)

(possibly with repetitions) of this family.
Assume C to be in addition semisimple. Next, we would like to supplement C with three

additional ingredients:

1. Dualities: the bicategorical adjoints for a bicategory with only one object (i.e. a
monoidal category) are usually called duals. A right adjoint is called a right dual,
and it is denoted with a left superscript ∨6.

2. Braiding: in a tensor category, a braiding consists of a family of isomorphisms bA,B ∈
Hom (A⊗B,B ⊗ A), one for each pair A, B ∈ C.

3. Twist: for each object A ∈ Ob (C), a family of isomorphisms θA.

Of course, braiding, twist and dualities are subject to a number of consistency conditions.
Namely, one has to impose:

◦ Equations 1.1 for the right duals,

◦ functoriality of the braiding,

bA,B ◦ (g ⊗ f) = bA′,B′ ◦ (f ⊗ g)

and tensoriality,

bA⊗B,D = (bA,D ⊗ idB) ◦ (idA ⊗ bB,D)

bA,B⊗D = (idB ⊗ bA⊗D) ◦ (bA⊗B ⊗ idD)

for any A,B,D,A′, B′ ∈ Ob (C) and f : A→ A′, g : B → B′,

5Actually this is the usual definition of an absolutely simple object, but in any abelian category over an
algebraically closed ground field the notions of simple and absolutely simple objects are equivalent.

6Resp. for left adjoints (left duals), denoted with a right superscript ∨. As we will see in a second, in
the category we want to construct there is automatically a left duality, so we only require existence of
right duals.
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1.1. Category theory background: bicategories and modular categories

◦ functoriality of the twist,
θB ◦ f = f ◦ θA

for any two objects A,B ∈ Ob (C) and f : A→ B, and

◦ compatibility of the twist with duality,

(θA ⊗ idA∨) ◦ coevA = (idA ⊗ θA∨) ◦ coevA

(for any A ∈ Ob (C)) and with braiding,

θA⊗B = bB,A ◦ (θB ⊗ θA) ◦ bA,B

One can provide a name for such a category with these morphisms:

Definition 1.1.11. A strict tensor category with a duality, a braiding and a twisting
satisfying the above specified compatibility conditions is called a ribbon category.

Note here that in a ribbon category there is automatically also a left duality. One can
check this left duality coincides with the right duality not only on objects, but also on
morphisms.

It is also possible to define weaker notions than a ribbon category. If we simply have
a rigid category (that means, a category where every object has a left and a right dual
satisfying Equations 1.1 for the right duals and analogously for the left duals) which is in
addition equipped with a natural monoidal isomorphism between the identity morphism
and the double dual (−)∨∨ then we call it pivotal (note the analogy with the bicategorical
definition). Define left and right traces of endomorphisms f :

trl (f) = ev ◦ (id⊗ f) ◦ c̃oev

trr (f) = ẽv ◦ (f ⊗ id) ◦ coev

If these two notions of trace coincide, then we say the category is spherical. If one then
further introduces a braiding to a spherical category (satisfying the correct compatibility
conditions), then we recover the notion of ribbon category again.

At this point we are finally in a position to state the definition of a modular category.

Definition 1.1.12. A modular category is a semisimple abelian ribbon category with
ground field C that has only a finite number of isomorphism classes of simple objects
{Vi}i∈I and the |I| × |I|-matrix with entries Sij = tr

(
bVj ,Vi ◦ bVi,Vj

)
∈ End (I) ∼= C (called

the S-matrix ) is invertible over C.

Modular categories play an important role in this thesis as they show up in the context
of conformal field theory -as we will see in the next chapters.

To close this section, recall an extra definition we will need in later chapters:

Definition 1.1.13. Let k be an algebraically closed field. A fusion category is a rigid,
semisimple tensor category whose morphism spaces are finite dimensional k-vector spaces,
with finitely many isomorphism classes of simple objects and End (I) = k.idI .
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1. Categorical background

1.2. Temperley-Lieb categories

In this section we would like to briefly introduce a category which will be of special relevance
in Chapter 4: the Temperley-Lieb category. Our main sources for this section are [Ab],
[Mo], [Tu, Chapter XII] and the upcoming [Da].

Let I = [0, 1] ⊂ R be the standard interval.

Definition 1.2.1. ◦ A plane tangle (with n inputs and m outputs) consists of a finite
number of strings, arcs and circles in R× I, the end of the strings and/or arcs being
the n fixed points in the line R× 0 and m fixed points in the line R× 1.

◦ Two plane tangles t, t′ are isotopic if there is a smooth deformation of the first
embedding into the second.

◦ An isotopy class of a plane tangle is called a plane tangle diagram.

We will organize these plane tangles in a category, that we will denote as R. The objects
are labeled by natural numbers n ∈ Z≥0, and given two objects n,m the morphisms
are given by R (n,m), the class of tangle diagrams with n inputs and m outputs. The
composition is given by vertical concatenation of the plane tangle diagrams (which requires
the choice of a homeomorphism µ : I∪I → I) and it is associative (up to canonical isotopy).
The identity morphism is the plane tangle diagram consisting of n vertical strings.

In addition, one can check that this category is (strict) monoidal: given two objects n
and m, the tensor product acts on them as n⊗m = n+m. For the morphisms, it is given
by horizontal concatenation of plane tangle diagrams7. The monoidal unit is 0.

Note here that the morphism sets of R are graded by the number of circles:

R (n,m) =
⋃
l≥0

Rl (n,m)

Denote by κ ∈ R1 (0, 0) the class of a plane tangle consisting of one circle. Using this κ,
we define T R to be the quotient of R by the relation κ⊗ 1 = 1⊗ κ.

Actually, we are interested in categories related to this one.

Definition 1.2.2. ◦ T L is the category with objects labeled by natural number with
morphism spaces T L (n,m) = k [T R (n,m)], where k is a field.

◦ Denote by k (κ) the field of rational functions in the variable κ. The generic Temperley-
Lieb category T Lgen is the localization of T L, where we replace the morphism spaces
of T L by the tensor product over k [κ] of the morphism spaces of T L with k (κ).

The endomorphisms of the generic Temperley-Lieb category are precisely some well-
known algebra: the generic Temperley-Lieb algebra TLgen (n) = T Lgen (n, n) is the unital,

7This requires several choices of homeomorphisms, but we refer to the literature for further details.
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1.2. Temperley-Lieb categories

associative k (κ)-linear algebra with generators e1, . . . , en−1 satisfying:

ei ◦ ei±1 ◦ ei = ei

ei ◦ ei = κei

ei ◦ ej = ej ◦ ei (| i− j |> 1)

(1.2)

It can be shown that generic Temperley-Lieb algebras are semi-simple. This means that
T Lgen can be extended to a semi-simple category if we throw in images of projectors. A
formal procedure of doing it is via idempotent complete categories.

Definition 1.2.3. An idempotent complete category is a category where every idempotent
splits. A morphism e in a category C is idempotent if it satisfies that e2 = e, and that
splitting in C means that ∀e : A→ A (where A ∈ Ob (C)) an idempotent morphism, there
exists a B ∈ Ob (C) and two morphisms in C f : A → B, g : B → A such that g ◦ f = e
and f ◦ g = id.

We denote the idempotent completion of the category T Lgen as T Lic, and we will call
it the Temperley-Lieb category. Then, one can prove that:

Proposition 1.2.4. [Da] T Lic is semi-simple.

One can describe the set of simple objects as follows. In the generic Temperley-Lieb
algebras there is a morphism of particular interest:

Definition 1.2.5. The Wenzl-Jones idempotent or projector (denoted pn) is the morphism
in TL (n) defined via the relations:

pn 6= 0

pn ◦ pn = pn

pn ◦ ei = ei ◦ pn = 0 ∀i ∈ {1, . . . , n− 1}
(1.3)

Note here that the Wenzl-Jones idempotent, characterized by Equation 1.3, is unique
(for a proof see e.g. [Mo]). If we define:

Definition 1.2.6. Let k [κ] ⊂ k [q±1] be an extension where κ = q + q−1. The quantum
integer [l] is the element in the ring defined as:

[l] :=
ql − q−l

q − q−1

for any l ∈ N, where we call q the quantum parameter. If necessary, we will specify the
quantum parameter at the quantum integers with a subscript, i.e. [l]q instead of [l].

[l] pl will be called the unnormalized Wenzl-Jones idempotent. The Wenzl-Jones projec-
tors can be computed via the following recurrence formula:
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Proposition 1.2.7. (Wenzl recursive formula) [Wn] For n ≥ 1, the Wenzl-Jones idempo-
tent satisfies that

pn+1 = pn −
[n]

[n+ 1]
pn ◦ en ◦ pn

(with p1 = id).

Remark 1.2.8. Notice here that TLgen (n) naturally embeds into TLgen (n+ 1). This is
easy to describe in the planar tangle description: one only has to add a vertical string to
the right side of the TLgen (n) diagram to become one in TLgen (n+ 1). For this reason,
we slightly abused notation and wrote the Wenzl recursive formula as specified -with the
terms on the right hand living in TLgen (n+ 1) instead of in TLgen (n) as it may suggest.

Example 1.2.9. Using Proposition 1.2.7, one can compute some of the Wenzl-Jones pro-
jectors for the smallest values of n, e.g.

p1 = id

p2 = id− 1

[2]
e1

p3 = id− [2]

[3]
(e1 + e2) +

1

[3]
(e2 ◦ e1 + e1 ◦ e2)

Let us check that they satisfy Eq. 1.3. It is clear that they are not zero. Concerning
composition of the Temperley-Lieb generators with p2 and p3,

p2 ◦ e1 = e1 −
1

[2]
e1 ◦ e1 = 0

p3 ◦ e1 = e1 −
[2]

[3]
e1 ◦ e1 −

[2]

[3]
e2 ◦ e1 +

1

[3]
e2 ◦ e1 ◦ e1 +

1

[3]
e1 ◦ e2 ◦ e1 = 0

p3 ◦ e2 = e2 −
[2]

[3]
e1 ◦ e2 −

[2]

[3]
e2 ◦ e2 +

1

[3]
e2 ◦ e1 ◦ e2 +

1

[3]
e1 ◦ e2 ◦ e2 = 0

and analogously for e1 ◦p2, e1 ◦p3 and e2 ◦p3, using Eq. 1.2 and the identity [3]− [2]2 +1 =
0. Concerning idempotency, p1 is clearly idempotent; for p2 and p3 this follows quite
straightforward from the previous computation:

p2 ◦ p2 = p2 −
1

[2]
p2 ◦ e1 = p2

Analogously for p3:

p3 ◦ p3 = p3 +
[2]

[3]2
p3 ◦ (e1 + e2) +

1

[3]
p3 ◦ (e2 ◦ e1 + e1 ◦ e2) = p3

Consider the objects Ti ∈ T Lic (i ∈ Z≥0) defined as the images of the Wenzl-Jones
projectors

Ti = im (pi) . (1.4)

Actually,

22



1.2. Temperley-Lieb categories

Lemma 1.2.10. [Da] The set of simple objects of T Lic has the form {Ti|i ≥ 0}.

These Tis help to describe some property of T Lic –but we need to first introduce some
definitions.

Definition 1.2.11. ◦ We say that a tensor category C is freely generated by X ∈ Ob (C)
together with a collection of morphisms {fj : X⊗nj → X⊗mj} making a collection of
diagrams Ds commutative if for any tensor category D the functor of taking values

Fun⊗(C,D)→ D′, F 7→ F (X)

is an equivalence. Here, Fun⊗(C,D) is the category of tensor functors (with tensor
natural transformations as morphisms). The target D′ is the category with objects
(Y, {gj}), where Y ∈ D and the gj : Y ⊗nj → Y ⊗mj make the collection of diagrams
Ds, with X replaced by Y and fj by gj, commutative in D. Morphisms (Y, {gj})→
(Y ′, {g′j}) in D′ are morphisms Y → Y ′ in D fitting into commutative squares with
all gj, g

′
j.

◦ We call an object T of a tensor category C self-dual if it comes equipped with mor-
phisms

n : I → T ⊗ T , u : T ⊗ T → I ,

such that the diagrams

T id //

λ−1
T

��

T

I⊗T n⊗id // (T⊗T )⊗T
α−1
T,T,T // T⊗(T⊗T )

id⊗u // T⊗I

ρT

OO

T
id //

ρ−1
T

��

T

T⊗I id⊗n // T⊗(T⊗T )
αT,T,T // (T⊗T )⊗T u⊗id // I⊗T

λT

OO (1.5)

commute. The scalar κ ∈ k defined by the composition κ id = u ◦ n : I → I is called
the (self-dual) dimension of T .

Constructing such n and u maps for the Ti’s, it is possible to check that the dimension
of the Tn (which can also be computed as the trace of pn) is dim(Tn) = [n+ 1]q.

At this point, recall that T Lgen has a tensor product originally induced fromR. Actually,
T Lic also has a tensor product, induced from T Lgen. Then, we can state that:

Proposition 1.2.12. [Da] T Lic is the k (κ)-linear tensor category freely generated by the
self-dual object T = T1.
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Now choose q ∈ k. For q a root of unity of order > 2, the last well-defined Wenzl–Jones
projector is pd−1, where d is the order of q if it is odd and half the order of q if it is even.
In this case the category T Lic has a maximal fusion quotient Tκ which can be defined as
the quotient

Tκ := T Lic/〈pd−1〉

by the ideal of morphisms tensor generated by the Wenzl–Jones projector pd−1 ∈ TLd−1(κ),
see [EO].

Theorem 1.2.13 ([GW]). 〈pd−1〉 is the unique tensor ideal in T Lic.

One can restate this result as follows: any non-faithful tensor functor T Lic → D (where
D is a tensor category) factors through Tκ → D. Thus we have the following.

Theorem 1.2.14. A tensor functor from Tκ to a tensor category D is determined by a
self-dual object of dimension κ in D with vanishing Wenzl–Jones projector pd−1.

Remark 1.2.15. The condition on the Wenzl-Jones idempotent to vanish is a condition
on the self-dual object T : pd−1 is simply some combination of self-duality morphisms and
tensor products of them, so it reduces to be only some constraint on T .

The next corollary provides an easy-to-use replacement for the vanishing condition on
the Wenzl–Jones projector. Simple objects of Tκ are Ti, i = 0, ..., d−2 with T0 = I, T1 = T ,
and the tensor product with T is T⊗Ti ' Ti−1⊕Ti+1 for 0 < i < d−2 and T⊗Td−2 ' Td−3.
Then,

Corollary 1.2.16. Let D be a rigid fusion category with simple objects Si, i = 0, ..., d− 2
and the tensor product S1⊗Si ' Si−1⊕Si+1 for 0 < i < d − 2 and S1⊗Sd−2 ' Sd−3. A
tensor functor TLic → D such that Ti 7→ Si factors through Tκ.

Proof. The non-faithfulness of the tensor functor is manifest since TLic(T⊗Td−2, T⊗Td−2)
is 2-dimensional, while D(S1⊗Sd−2, S1⊗Sd−2) is only 1-dimensional.
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2. Matrix factorizations

2.1. Basic definitions

In this chapter we will describe our object of main interest, matrix factorizations, and
some of their related algebraic structures, as well as an overview of how they arise in the
physics framework. Some basic bibliography for matrix factorizations we use are [Ei, Bu,
Yo, KhR, Yo2].

Let k be a field, x = {x1, . . . , xn} a finite set of variables, S = k [x1, . . . , xn] a polynomial
ring. Consider a polynomial W ∈ S.

Definition 2.1.1. ◦ The Jacobi ideal is an ideal in S generated by the partial deriva-
tives ∂W

∂x1
, . . . , ∂W

∂xn
. Denote it as:

Jac (W ) := 〈∂W
∂x1

, . . . ,
∂W

∂xn
〉

◦ The Jacobi ring is the quotient ring S/Jac (W ).

◦ W is called a potential if the Jacobi ring is finite-dimensional.

Depending on the literature, a potential can also be called superpotential. Some other
property we may require for the potential is that:

Definition 2.1.2. (For the case k = C) We say a polynomial is homogeneous if there exist
ω1, . . . , ωn ∈ Q≥0 such that

W (λω1x1, . . . , λ
ωnxn) = λ2W (x1, . . . , xn)

for any λ ∈ C×.

The most important definition of the present thesis is the following:

Definition 2.1.3. A matrix factorization of a potential W consists of a pair
(
M,dM

)
where

◦ M is a Z2-graded free S-module;

◦ dM : M →M degree 1 S-linear endomorphism (the twisted differential) such that

dM ◦ dM = W.idM .

(where the right hand side of the equation stands for the endomorphism m 7→ W.m,
∀m ∈M).
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We may display the Z2-grading explicitly asM = M0⊕M1, dM =

(
0 dM1
dM0 0

)
or graphically

as:

M : M1

dM1
))
M0

dM0

ii

Example 2.1.4. Let S = C [x] and W = xd. One of the simplest matrix factorizations is

given by
(
C [x]⊕2 ,Mm

)
with Mm =

(
0 xm

xd−m 0

)
with 0 ≤ m ≤ d.

If there is no risk of confusion, we will denote
(
M,dM

)
simply as M . We say that a

matrix factorization is of finite rank if its underlying free S-module is of finite rank.
Given two matrix factorizations, we define a morphism between them as follows.

Definition 2.1.5. Given two matrix factorizations
(
M,dM

)
,
(
M ′, dM

′)
of a potential W ,

a morphism of matrix factorizations f :
(
M,dM

)
→
(
M ′, dM

′)
is a S-linear morphism.

With this data we can construct the following categories of matrix factorizations.

◦ MFS,W is the category whose objects are matrix factorizations of W and whose
morphisms are morphisms of matrix factorizations. Notice that each morphism space
of MFS,W is a Z2-graded complex with differential:

δf = dM
′ ◦ f − (−1)|f | f ◦ dM

where |f | denotes the degree of f , for f ∈ MFS,W (M,M ′). One can check that it is
a differential via double composition of δ:

δ ◦ δf = dM
′ ◦ δf − (−1)|δf | δf ◦ dM

= dM
′ ◦ dM ′ ◦ f − (−1)|f | dM

′ ◦ f ◦ dM + (−1)|f | dM
′ ◦ f ◦ dM − f ◦ dM ◦ dM

= W.idM ′ ◦ f − f ◦W.idM .

These last two terms cancel together because,

W.idM ′ ◦ f (m) = W.f (m)

f ◦W.idM (m) = f (W.m) = W.f (m)

for any m ∈M .

◦ ZMFS,W is the category whose objects are the same as MFS,W and whose morphisms,
for any two objects M and N , are those morphisms from M to M ′ which are of degree
zero and which lie in the kernel of δ:

ZMFS,W (M,M ′) = {f : M →M ′| f is S-linear of degree 0 and δ(f) = 0 }
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2.1. Basic definitions

◦ HMFS,W is the category whose objects are the same as those of ZMFS,W and whose
morphisms, given two objects M and M ′, are those of ZMFS,W (M,M ′) mod those
morphisms which are the image of the differential of morphisms of degree 1 from M
to M ′:

HMFS,W (M,M ′) = ZMFS,W (M,M ′)/{δ(g)| g : M →M ′ is S-linear of degree 1 }

Example 2.1.6. Following up with the previous example, if we have two matrix fac-
torizations

(
C [x]⊕2 ,Mm

)
and

(
C [x]⊕2 ,Ml

)
of the potential W = xd, the morphism

space in MFS,W between them is given by the set of 2 × 2 matrices with entries in C [x].
ZMF (Mm,Ml) needs to distinguish two cases:

◦ If l ≥ m, ZMF (Mm,Ml) = {
(
a 0
0 axl−m

)
|a ∈ C [x]}, and

◦ If l < m, ZMF (Mm,Ml) = {
(
axm−l 0

0 a

)
|a ∈ C [x]}

Finally, the morphism space in HMFS,W between Mm and Ml is isomorphic to C [x] /〈xi〉
where i is the smallest element among the set {l,m, d− l, d−m}.

Notice here that, from the definitions we just gave, the rank of the module of a matrix
factorization can be either of finite or infinite. We use lower case letters (mfS,W , zmfS,W ,
hmfS,W ) whenever we refer to the full subcategory of objects that are isomorphic, in their
respective categories, to finite rank matrix factorizations. For mfS,W and zmfS,W this just
means that one restricts to finite rank matrix factorizations. However, in hmfS,W there
are isomorphisms (in hmf, so up to homotopy) between finite and infinite rank matrix
factorizations.

Following up with the graphical display of the Z2-grading of a matrix factorization,
we will often write morphisms f ∈ ZMFS,W (M,M ′) (or representatives of classes in
HMFS,W (M,M ′)) in a diagram as follows:

M1

dM1
))

f1

��

M0

dM0

ii

f0

��
N1

dN1
))
N0

dN0

ii

That f is in ZMFS,W (M,M ′) is equivalent to f0 and f1 being S-linear maps such that the
subdiagram with upward curved arrows commutes and that with downward curved arrows
commutes:

f0 ◦ dM1 = dN1 ◦ f1 , f1 ◦ dM0 = dN0 ◦ f0 .
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2. Matrix factorizations

Note also that in the definition we have considered left modules -a definition for right
modules is analogous. In particular, we would like to use bimodules. Let (S,W ) and
(S ′,W ′) be two pairs of rings and potentials, and consider an S-S ′-bimodule -or, an S⊗kS ′-
left module1. Recall that an S-S ′-bimodule is free if the corresponding (S ⊗k S ′)-left
module is free. With this bimodule we construct a matrix factorization of the potential
W ⊗ 1− 1⊗W ′ 2, and in order to point out the difference between a matrix factorization
whose module is a bimodule instead of a left module we will call it a matrix bifactorization.

Example 2.1.7. [BR1] An example of a matrix bifactorization which will be later of
particular interest is the following: let (S,W ) =

(
C [x] , xd

)
, (S ′,W ′) =

(
C [y] , yd

)
. A

permutation-type matrix bifactorization of W −W ′ = xd − yd is a matrix bifactorization
of the shape

(
C [x, y]⊕2 , PJ

)
with:

PJ =

 0
∏
i∈J

(x− ηiy)∏
i∈J={0,...,d−1}\J

(x− ηiy) 0


where J ⊂ {0, . . . , d− 1} and η = e

2πi
d a primitive d-th root of unity.

We will denote categories of matrix bifactorizations as in the case of matrix factorizations
but adding a bi subscript: MFbi;(S,W ),(S′W ′) (or simply MFbi), and resp. ZMFbi;(S,W ),(S′,W ′)

(or ZMFbi) and HMFbi;(S,W ),(S′W ′) (or HMFbi). Analogously for mfbi;(S,W ),(S′W ′) (or simply
mfbi), zmfbi;(S,W ),(S′W ′) (or zmfbi) and hmfbi;(S,W ),(S′W ′) (or simply hmfbi)

2.1.1. The bicategory of Landau-Ginzburg models

At this point, we would like to go one step further concerning categories of matrix fac-
torizations. The purpose of this subsection is to construct a bicategory whose morphism
categories are categories of matrix factorizations, which we will denote as LG. We will
take:

◦ Objects: pairs (S,W ) where S is a polynomial ring over a fixed field k with an
arbitrary finite number of variables and W ∈ S a potential.

◦ 1- and 2-morphisms: for any two objects (S,W ), (S ′,W ′), the 1- and 2-morphisms
between them are given by hmfωbi;(S,W ),(S′,W ′)

3.

1Actually, it would be more correct to write S ⊗k S′op, but as our rings are commutative, we omit this
notation.

2If not in risk of confusion, we may sometimes write W −W ′ instead of W ⊗ 1− 1⊗W ′.
3The superscript ω means we take the idempotent completion of hmfbi: hmfS,W is not necessarily idempo-

tent complete, but its full subcategory whose objects are those matrix factorizations which are direct
summands of finite-rank matrix factorizations is. The reason for taking idempotent completions is
that when composing 1-morphisms in hmf the resulting matrix factorization is not a priori finite-rank,
only a summand in the homotopy category of something finite-rank. We thus obtain an object which
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2.1. Basic definitions

Next we would like to describe the tensor product of matrix factorizations. Let S1, S2 and
S3 be three polynomial rings, W1 ∈ S1, W2 ∈ S2 and W3 ∈ S3 three potentials, and two
matrix bifactorizations

(
B, dB

)
∈ HMFbi;(S1,W1),(S2,W2),

(
B′, dB

′) ∈ HMFbi;(S2,W2),(S3,W3).
From this, we define the tensor product matrix (bi)factorization(

B′ ⊗B, dB′⊗B
)
∈ HMFbi;(S1,W1),(S3,W3)

in terms of its underlying (S3 ⊗k S1)-module

((B′0 ⊗S2 B0)⊕ (B′1 ⊗S2 B1))⊕ ((B′1 ⊗S2 B0)⊕ (B′0 ⊗S2 B
′
1)) (2.1)

with differential dB′⊗B = dB′ ⊗ idB + idB′ ⊗ dB.

Remark 2.1.8. Whenever S2 6= k B′⊗B is an infinite-rank matrix factorization over
S3 ⊗k S1. However, as it was proved in [DM], B′ ⊗B is (naturally isomorphic to) a direct
summand of some finite-rank matrix factorizations in hmfbi;(S1,W1),(S3,W3).

Note here that we are dealing with tensor products of graded morphisms, and that we
choose to make an explicit use of the Koszul sign rule. That means: for b′ ∈ B′ and b ∈ B
we have

(
idB′⊗dB

)
(b′⊗b) = (−1)|b

′| b′⊗dB (b). For this reason, dB
′⊗B has such a simple

expression -otherwise it would be a bit more complicated. Let us prove that it is indeed a
differential:

Lemma 2.1.9. dB
′⊗B ◦ dB′⊗B = W3.idB′ ⊗ idB − idB′ ⊗ idB.W1

Proof.

dB
′⊗B ◦ dB′⊗B = (dB′ ⊗ idB + idB′ ⊗ dB) ◦ (dB′ ⊗ idB + idB′ ⊗ dB)

= (dB′ ⊗ idB) ◦ (dB′ ⊗ idB) + (dB′ ⊗ idB) ◦ (idB′ ⊗ dB)

+ (idB′ ⊗ dB) ◦ (dB′ ⊗ idB) + (idB′ ⊗ dB) ◦ (idB′ ⊗ dB)

= W3.idB′⊗idB − idB′ .W2 ⊗ idB + dB
′ ⊗ dB

− dB′ ⊗ dB + idB′ ⊗W2.idB − idB′ ⊗ idB.W1

= W3.idB′ ⊗ idB − idB′ ⊗ idB.W1

where the W2 terms cancel with each other because we are tensoring over S2. Because of
this, we can regard the action with W2 from the left side of the tensor product of identity
maps as an action from the right side of the tensor product -hence, both terms cancel.

doesn’t belong to this category –so taking the idempotent completion we recover an object in hmf. This
seems to be the less technical approach to solve this problem, with the advantage that the formalism
also applies to graded rings and graded matrix factorizations - the other approach would be working
throughout with power series rings and completed tensor products. Some more details on idempo-
tent complete categories can be found at [Nee], and for an example of hmfS,W not being idempotent
complete we refer to e.g. Example A.5 in [KMvB].
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2. Matrix factorizations

The tensor product of morphisms of matrix factorizations is defined as follows: let the
matrix bifactorizations B1, B2 ∈ HMFbi;(S1,W1),(S2,W2), B

′
1, B

′
2 ∈ HMFbi;(S2,W2),(S3,W3), and

two morphisms f : B1 → B2 and g : B′1 → B′2. We define the tensor product of morphisms
of matrix factorizations

g ⊗ f : B′1 ⊗B1 → B′2 ⊗B2

in HMFbi;(S1,W1),(S3,W3)
4

The above defined tensor product of matrix factorizations and morphisms of matrix
factorizations will describe the composition of 1- and 2-morphisms in our bicategory.

We still have to specify some more data for our bicategory:

◦ For B ∈ HMFbi;(S1,W1),(S2,W2), B
′ ∈ HMFbi;(S2,W2),(S3,W3), B

′′ ∈ HMFbi;(S3,W3),(S4,W4),
the associator is the 2-isomorphism

αB′′,B′,B : B′′ ⊗ (B′ ⊗B)→ (B′′ ⊗B′)⊗B

which is given by the isomorphism of bimodules

b′′ ⊗ (b′ ⊗ b) 7→ (b′′ ⊗ b′)⊗ b

for b ∈ B, b′ ∈ B′ and b′′ ∈ B′′.

◦ Concerning the unit 1-morphism, let us write Se = S⊗kS and W̃ = W ⊗1−1⊗W ∈
Se. If n is the number of variables in the ring of polynomials S, we fix n formal
symbols θi as a basis of (Se)⊕n. Then the Se-module underlying IW ∈ hmfSe,W̃ is the
exterior algebra

∆W =
∧(

n⊕
i=1

Seθi

)
on which the differential is given by

d∆W
=

n∑
i=1

(
(xi − x′i) θ∗i + ∂[i]W · θi ∧ (−)

)
where ∂[i]W = W

((
x′1, . . . , x

′
i−1, xi, . . . , xn

)
−W (x′1, . . . , x

′
i, xi+1, . . . , xn)

)
/ (xi − x′i)

and θ∗i is a derivation on ∆W satisfying that θ∗i (θj) = δi,j. The endomorphisms of
IW in hmfSe,W̃ are given by Jac (W ), see e.g. [KR].

4It is easy to see that the tensor product of morphisms belongs to this category. Simply recall that
(following the previous notation) for g ⊗ f ∈ HMFbi;(S1,W1),(S3,W3), the differential of the morphism
space is given by:

δ (h) = dB
′
2⊗B2 ◦ (g ⊗ f)− (−1)

|g⊗f |
(g ⊗ f) ◦ dB

′
1⊗B1 .
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2.1. Basic definitions

◦ The left and right unit isomorphisms on B ∈ hmfbi;(S1,W1),(S2,W2), λB : IW1 ⊗ B → B
and ρB : B ⊗ IW2 → B which are the composition of first projecting I to its θ-degree
zero component and then using the multiplication in the rings S1 and S2 resp. More
explicitly, set e.g. S = C [x]. In components – recall the direct sum decomposition
of the components of the matrix factorizations from Definition 2.1.3 and Equation
2.1–, λM and ρM look like:

λM =

(
LM0 0 0 0

0 0 0 LM1

)
, ρM =

(
RM0 0 0 0

0 0 RM1 0

)
where the maps LMi

and RMi
(i ∈ {0, 1}) are defined, for a given C [x]-C [x]-bimodule

B, as

LB : C [x, y]⊗C[x]B → B

f (x, y)⊗b 7→ f (x, x) .b

RB : B⊗C[x]C [x, y]→ B

b⊗ f (x, y) 7→ b.f (x, x)

(2.2)

In LB C [x] acts on C [x, y] via multiplication by y and in RB via multiplication by
x.

Remark 2.1.10. α is an isomorphism of free modules, but λ and ρ are only invertible up
to homotopy.

Altogether, we have specified all the necessary data of the bicategory LG of Landau-
Ginzburg models. The coherence axioms are indeed satisfied and this was checked in
[McN], [CR1]. Notice here this means that LG ((S,W ) , (S,W )), i.e. hmfbi, is monoidal.
However, the unit object in the category of Z2-graded S-S-bimodules, the bimodule S is
not free as an S ⊗k S-left module. As a consequence, the categories MFbi and ZMFbi are
non-unital monoidal.

At this point, we would like to describe further structures inside LG, namely adjunctions
and duals. It was recently proved in [CM1] that:

Theorem 2.1.11. Every 1-morphism in LG has both a left and a right adjoint. Specifically,
if a 1-morphism is represented by a finite-rank matrix factorization X of V −W , where
W ∈ S1 = k [x1, . . . , xn] and V ∈ S2 = k [z1, . . . , zm] are potentials, then

X† = S1 [n]⊗S1 X
∨

†X = X∨ ⊗S2 S2 [m] ,

where X∨ := Homk[x1,...,xn,z1,...,zm] (X,k [x1, . . . , xn, z1, . . . , zm]) and [n] is the n-fold shift
functor (which exchanges dX0 and dX1 n times), are resp. the right and left adjoints of X
in LG.
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2. Matrix factorizations

The evaluation and coevaluation morphisms act on the elements of the basis of X {ei}
and γ ∈ ∆W :

ẽvX (ej ⊗ e∗i ) =
∑
l>0

∑
a1<...<al

(−1)l+(n+1)|ej | θa1 . . . θalRes

[
{∂z,z

′

[al]
dX . . . ∂

z,z′

[a1]dXΛ(x)}ijdx
∂x1W, . . . , ∂xnW

]

evX (e∗i ⊗ ej) =
∑
l>0

∑
a1<...<al

(−1)(
l
2)+l|ej | θa1 . . . θalRes

[
{Λ(z)∂x,x

′

[a1] dX . . . ∂
x,x′

[al]
dX}ijdz

∂z1V, . . . , ∂zmV

]
c̃oevX (γ̄) =

∑
i,j

(−1)(r̄+1)|ej |+sn {∂x,x
′

[b̄r̄]
(dX) . . . ∂x,x

′

[b̄1̄]
(dX)}jie∗i ⊗ ej

coevX (γ) =
∑
i,j

(−1)(
l
2)+mr+sm {∂z,z

′

[b1] (dX) . . . ∂z,z
′

[br]
(dX)}ijei ⊗ e∗j

where Λ(x) := (−1)n ∂x1dX . . . ∂xndX , Λ(z) := (−1)n ∂z1dX . . . ∂zmdX and bi, b̄j̄ and sn,
sm ∈ Z2 are uniquely determined by requiring that b1 < . . . < br, b̄1 < . . . < b̄r̄ and
γ̄θb̄1 . . . θb̄r̄ = (−1)sn θ1 . . . θn and γθb1 . . . θbr = (−1)sm θ1 . . . θm

5. 6

These formulas from Theorem 2.1.11 arose by approaching the problem of finding the
adjoints using the so-called associative Atiyah classes. A complete description and proofs
of Theorem 2.1.11 and Proposition 2.1.13 are given in [CM1]. In addition, this approach
also served to find an expression for the inverses of the unit morphisms:

Theorem 2.1.12. Following the notation of Theorem 2.1.11, the unit morphisms have the
following inverses:

λ−1
X (ei) =

∑
l>0

∑
a1<...<al

∑
j

θa1 . . . θal{∂
z,z′

[al]
dX . . . ∂

z,z′

[a1]dX}ji ⊗ ej

ρ−1
X (ei) =

∑
l>0

∑
a1<...<al

∑
j

(−1)(
l
2)+l|ej | ej ⊗ {∂x,x

′

[a1] dX . . . ∂
x,x′

[al]
dX}jiθa1 . . . θal

With adjoints and unit inverses, one can check the following proposition.

Proposition 2.1.13. Let X, Y be matrix factorizations of V (z1, . . . , zm)−W (x1, . . . , xn)
and U (y1, . . . , yp) − V (z1, . . . , zm) resp., and ϕ : X → Y a morphism (†ϕ : †Y → †X).
Then,

1. (ϕ⊗ 1†X) ◦ coevX =
(
1Y ⊗ †ϕ

)
◦ coevY ,

2. evY ◦ (1†Y ⊗ ϕ) = evX ◦
(†ϕ⊗ 1X

)
,

5A full, detailed description of these maps can be found in [CM1]
6For convenience in our computations in Chapter 4, we will use the formulas of the evaluation and

coevaluation maps for one variable (i.e. m = n = 1) from [CR3].
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2.2. On Landau-Ginzburg models

3. †ϕ = λ†X ◦ (evY ⊗ 1†X) ◦ (1†Y ⊗ ϕ1†X) ◦ (1†Y ⊗ coevX) ◦ ρ−1
†Y

and similarly for ẽv and c̃oev. Also,(
ev(Y⊗X)† ⊗ idX† ⊗ idY †

)
◦
(
id(Y⊗X)† ⊗ coevX ⊗ coevY

)
'
(
idX† ⊗ idY † ⊗ ẽv(Y⊗X)†

)
◦
(
c̃oevX† ⊗ c̃oevY † ⊗ id(Y⊗X)†

)
(where ' hides some signs which are explained in detail in [CM1, Section 7]) and similarly
for the left dual.

Thanks to these results, we can also provide an explicit description of the quantum
dimension associated to a matrix factorization:

Proposition 2.1.14. Let V (x1, . . . , xm) and W (y1, . . . , yn) be two potentials and X a
matrix factorization of W − V . Then, the left quantum dimension is:

qdiml (X) = (−1)(
m+1

2 ) Res

[
str
(
∂x1d

X . . . ∂xmd
X∂y1d

X . . . ∂ynd
X
)
dy

∂y1W, . . . , ∂ynW

]

and the right quantum dimension is:

qdimr (X) = (−1)(
n+1

2 ) Res

[
str
(
∂x1d

X . . . ∂xmd
X∂y1d

X . . . ∂ynd
X
)
dx

∂x1V, . . . , ∂xmV

]

2.2. On Landau-Ginzburg models

Landau-Ginzburg models are a topic which by itself is of high interest in the physics liter-
ature. Initially a model to describe superconductivity [GL, Abr], in 1988 Vafa and Warner
proposed a generalization to (2, 2)–supersymmetric theories in 2 spacetime dimensions in
[VW]. This was the beginning of a fertile research (see e.g. [GVW, Wi, GGS]) which con-
tinues to this date. They in addition play an important role in the active field of research
of mirror symmetry and algebraic geometry [KL, Or1].

In this section we would like to introduce them. We will give an overview of how to
construct the action of a Landau-Ginzburg model the way it is performed in the physics
literature, and hence in this section we will not be mathematically rigorous. We will
also explain the relation between matrix factorizations and Landau-Ginzburg models. We
follow and mix together the expositions of [BHLS], [BR1], [BR2] and [HKKP].

Let Σ and X be two manifolds, which are called the worldsheet and the target manifold
resp. and which are Riemannian in general. We are going to choose the worldsheet to be
Σ = R2, and the target manifold to be X = C

n. Denote the coordinates of the worldsheet
as (x0, x1), they commute: [x0, x1] = 0. We will say these coordinates are bosonic and
functions of bosonic coordinates φ (x0, x1) will be called bosonic fields.

33



2. Matrix factorizations

We will extend the worldsheet by adding to the bosonic coordinates four coordinates
θ+, θ−, θ̄+ and θ̄−. They are related to each other via complex conjugation, [θ±]

∗
= θ̄±

7. These new coordinates square to zero (θ+)
2

= 0 = (θ−)
2

(and analogously for their
complex conjugate) and they anticommute8 with each other:

{θα, θβ} = 0, {θα, θ̄β} = 0, {θ̄α, θ̄β} = 0

with α, β ∈ {+,−} (any possible combination of values of α and β is allowed). These
anticommuting coordinates will be called fermionic coordinates and functions of them will
be called fermionic fields. If the action of a model depending on bosonic and fermionic
fields is invariant under supersymmetric transformations we call it a supersymmetric sigma
model.

Remark 2.2.1. With respect to the partial derivatives with respect to the bosonic and
fermionic variables, it will be useful for us to recall that:

◦ For each pair of fermionic coordinates, the partial derivatives with respect to them
anticommute the same way as the respective coordinates do, that means for example
{ ∂
∂θ±

, ∂
∂θ̄±
} = 0.

◦ The partial derivatives with respect of a bosonic coordinate and a fermionic coordi-
nate commute, e.g.

[
∂
∂x0 ,

∂
∂θ+

]
= 0.

◦ The anticommutator of a fermionic coordinate with its partial derivative is equal to
one, e.g. {θ+, ∂

∂θ+} = 1.

◦ In general, for any two fermionic coordinates F1 and F2 and a bosonic coordinate B,
it holds

{F1, F2B} = {F1, F2}B − F2 [F1, B]

Given all these, the (2, 2)-superspace is the space with coordinates x0, x1, θ
±, θ̄± as de-

scribed above, and we will denote it with Σsup. The superfields Φ
(
x0, x1, θ

±, θ̄±
)
∈ Σsup

are functions defined on the superspace. We will denote the complex conjugate of a given
superfield Φ as Φ̄.

7With the ± supercripts we mean right-moving or left-moving under a Lorentz transformation, i.e. it
acts on bosonic and fermionic coordinates as:(

x0

x1

)
7→
(

cosh γ sinh γ
sinh γ cosh γ

)(
x0

x1

)
θ± 7→ e±γ/2θ±

θ̄± 7→ e±γ/2θ̄±

for γ ∈ (1,∞).
8Recall that anticommutators satisfy {a, b} = {b, a}, for any a,b bosonic (or fermionic) coordinates.
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2.2. On Landau-Ginzburg models

Consider the change of bosonic coordinates x± = x0 ± x1. Let us introduce some differ-
ential operators in this superspace, the so-called supercharges :

Q± =
∂

∂θ±
+ iθ̄±∂±

Q̄± = − ∂

∂θ̄±
− iθ±∂±

where ∂± = 1
2

(
∂
∂x0
± ∂

∂x1

)
. The supercharges satisfy:

{Q±, Q̄±} = −2i∂± (2.3)

with all the other anticommutators vanishing. Actually, this is easy to see –let’s take for
example {Q+, Q̄+}:

{Q+, Q̄+} = −{ ∂

∂θ+
,
∂

∂θ̄+
} − i{ ∂

∂θ+
, θ+∂+} − i{θ̄+∂+,

∂

∂θ̄+
}+ {θ̄+∂+, θ

+∂+}

= −2i∂+

where we have used the commutators and anticommutators detailed in Remark (2.2.1).
Furthermore, let us introduce another set of differential operators which we will call the

covariant derivatives :

D± = Q± − 2iθ̄±∂±

D̄± = Q̄± + 2iθ±∂±
(2.4)

or more explicitly,

D± =
∂

∂θ±
− iθ̄±∂±

D̄± = − ∂

∂θ̄±
+ iθ±∂±

Similarly to Eq. 2.3, D±, D̄± anticommute with the supercharges and satisfy

{D±, D̄±} = 2i∂±

with all other anticommutators vanishing. Let us compute some cases as an instance. Take
for example the case {D+,Q+}:

{D+,Q+} = { ∂

∂θ+
,
∂

∂θ+
}+ i{ ∂

∂θ+
, θ̄+∂+} − i{θ̄+∂+,

∂

∂θ+
}+ {θ̄+∂+, θ̄

+∂+}

= 0

Concerning the anticommutativity of the covariant derivatives, take {D+, D̄+} for example:

{D+, D̄+} = −{ ∂

∂θ+
,
∂

∂θ̄+
}+ i{ ∂

∂θ+
, θ+∂+}+ i{θ̄+∂+,

∂

∂θ̄+
}+ {θ̄+∂+, θ

+∂+}

= 2i∂+
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2. Matrix factorizations

Among all possible superfields, there is a special kind which will be important for us. A
chiral superfield is a superfield which satisfies:

D̄±Φ = 0 (2.5)

In case a superfield satisfies:
D±Φ̄ = 0

then it is called an anti-chiral superfield.
A result concerning products of chiral superfields which we give without proof is that if

Φ1 and Φ2 are chiral superfields, then their product Φ1Φ2 is also a chiral superfield. This
will be specially useful for us to construct an action.

Consider the following change of variables: y± = x± − iθ±θ̄±, which rearranges the
coordinates dependence so we can write chiral superfields as Φ = Φ (y±, θ±). Furthermore,
we can describe a general chiral superfield in terms of fermionic and bosonic fields:

Φ
(
y±, θ±

)
= φ

(
y±
)

+ θ+ψ′+
(
y±
)

+ θ−ψ′−
(
y±
)

+ θ+θ−F ′
(
y±
)

= φ− iθ+θ̄+∂+φ− iθ−θ̄−∂−φ− θ+θ−θ̄−θ̄+∂+∂−φ

+ θ+ψ+ − iθ+θ−θ̄−∂−ψ+ + θ−ψ− − iθ+θ−θ̄+∂+ψ− + θ+θ−F

(2.6)

We can see this as follows. Consider the chiral superfield Φ (y±, θ±). We can make a
Taylor expansion around θ± = 0; due to the dependence of y± on θ± it is notation-wise
convenient to rewrite Φ (y±, θ±) = Ξ (x±, θ±). Then, taking into account that the fermionic
variables square to zero:

Ξ
(
x±, θ±

)
= Ξ

(
x±, 0

)
+ θ+∂Ξ (x±, 0)

∂θ+
+ θ−

∂Ξ (x±, 0)

∂θ−
+ θ+θ−

∂2Ξ (x±, 0)

∂θ+∂θ−

Redefine:

φ := Ξ
(
x±, 0

)
= Φ

(
y±, 0

)
ψ′± :=

∂Ξ (x±, 0)

∂θ±

F ′ :=
∂2Ξ (x±, 0)

∂θ+∂θ−

We obtain the first line of Eq. 2.6. Then, acting via partial derivation and using Remark
(2.2.1) we can see more explicitly that these fields are of the shape:

ψ′± =
∂Φ (y±, 0)

∂y±
∂y±

∂θ±
+
∂Φ (y±, 0)

∂θ±
= −iθ̄±∂±Φ

(
y±, 0

)
+
∂Φ (y±, 0)

∂θ±

= −iθ̄±∂±φ+ ψ±

F ′ =
∂ψ−
∂θ+

= −θ̄−θ̄+∂+∂−φ− θ̄−∂−ψ+ − iθ̄+∂+ψ− + F

where we have redefined ψ± =
∂Φ(y±,0)
∂θ±

and F =
∂2Φ(y±,0)
∂θ+∂θ−

. Plugging together everything,
we recover the second line of 2.6.
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2.2. On Landau-Ginzburg models

φ is a bosonic field, and ψ± are fermionic fields. F is called the auxiliary field.
With all these ingredients, a 2-dimensional (2, 2)-supersymmetric Landau-Ginzburg model

is a supersymmetric model whose worldsheet is the 2-dimensional (2, 2)-superspace Σsup,
whose target manifold isCn9 and it is characterized by the fact that its action contains a po-
tential term specified by a non-trivial holomorphic function called potential W : Cn → C.

In order to build an action for our Landau-Ginzburg model, we first aim to construct
action functionals of superfields. We require them to be invariant under the transformation:

δ = ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+ (2.7)

(which we will call the variation) where ε+ and ε− are complex fermionic parameters. To
begin with, notice that the variations of the fields φ, ψ± take the form:

δφ = ε+ψ− − ε−ψ+ δφ̄ = −ε̄+ψ̄− + ε̄−ψ̄+

δψ+ = 2iε̄−∂+φ+ ε+F δψ̄+ = −2iε−∂+φ+ ε̄+F̄

δψ− = −2iε̄+∂−φ+ ε−F δψ̄− = 2iε+∂−φ̄+ ε̄−F̄

(2.8)

One gets these variations as follows. Applying the variation (2.7) to the chiral superfield,
we get 4 terms for each supercharge. For the first two supercharges, we apply simply partial
derivation and the Taylor expansion of our chiral superfield (2.6):

Q−Φ
(
y±, θ±

)
=

(
∂

∂θ−
+ iθ̄−

∂

∂x−

)
Φ
(
y±, θ±

)
=
∂Φ (y±, θ±)

∂θ−

=
∂

∂θ−
(
Φ
(
y±, 0

)
+ θ+ψ+ + θ−ψ− + θ+θ−F

)
= ψ− + θ+F

and analogously for Q+Φ (y±, θ±), which is equal to ψ+− θ−F . On the other hand, for the
conjugated supercharges, we use the chiral superfield condition (2.5) and Remark 2.4:

Q̄−Φ
(
y±, θ±

)
=
(
D̄− − 2iθ−∂−

)
Φ
(
y±, θ±

)
= −2iθ−∂−Φ

(
y±, θ±

)
Q̄+Φ

(
y±, θ±

)
=
(
D̄+ − 2iθ+∂+

)
Φ
(
y±, θ±

)
= −2iθ+∂+Φ

(
y±, θ±

)
Putting together terms,

δΦ
(
y±, θ±

)
= (ε+ψ− − ε−ψ+) + θ+

(
ε+F − ε̄−2iθ+∂+Φ

(
y±, θ±

))
+ θ−

(
ε−F + 2iε̄+∂−Φ

(
y±, θ±

))
we can recognize the variations of φ and ψ±.

We would like to construct some supersymmetric bulk action for this model-and for this,
we need our action to be invariant under the variation δ. As we would like to also integrate
over fermionic coordinates, we need to specify that, for a general fermionic coordinate θ,∫

dθ = 0∫
θdθ = 1

9In the physics literature one sometimes takes a complex Riemannian manifold instead of Cn. For
simplicity reasons we follow our choice.
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2. Matrix factorizations

Then, in general, for a superfield Fi, let us first consider the functional:

SD =

∫
Σ

d2xdθ+dθ−dθ̄−dθ̄+K (Fi)

where K (Fi) is an arbitrary differentiable function of the Fi’s (usually called the Kähler
potential). Under the variation, this functional actually satisfies that

δSD = 0

One can check this as follows. We have:

δSD =

∫
Σ

d2xdθ+dθ−dθ̄−dθ̄+
(
ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+

)
K (Fi)

The integration over d4θ is only nonzero if we have some coefficient θ+θ−θ̄+θ̄− in front of us.
For example, concerning the first supercharge, the first term vanishes since the integrand
does not have θ− (because of the derivative ∂/∂θ−). The second term is a total derivative
and vanishes after integration over d2x. The others work the same.
SD is called the D-term (the kinetic term). We will choose for simplicity reasons that

K
(
Φ, Φ̄

)
= Φ̄Φ: a Kähler potential of this shape is invariant under any assignment of

R-charges to Φ, and hence the D-term is invariant under vector and axial R-symmetries.
Hence, for the D-term, we have

SD =

∫
Σ

d2xd4θΦ̄Φ

Recall that if Φ1 and Φ2 are chiral superfields, then their product Φ1Φ2 is also a chiral
superfield and that Φ has the θ-expansion (2.6). The integration over d4θ amounts to
extracting the coefficient of θ4 = θ+θ−θ̄−θ̄+ in the θ-expansion of the product. Via direct
computation, it is easy to see that:

Φ̄Φ|θ4 = −φ̄∂+∂−φ+ ∂+φ̄∂−φ+ ∂−φ̄∂+φ− ∂+∂−φ̄φ+ ψ̄+∂−ψ+ − i∂−ψ̄+ψ+

+ iψ̄−∂+ψ− − i∂+ψ̄−ψ− + |F |2

Acting via partial integration, we finally get that:

SD =

∫
Σ

d2x

(
|∂0φ|2 − |∂1φ|2 +

i

2
ψ̄+ (∂0 − ∂1)ψ+ +

i

2
ψ̄− (∂0 + ∂1)ψ− + |F |2

)
Apart from a functional of all the considered superfields, we can consider (for supersym-

metry reasons) a functional only with the potential, of the form:

SF =

∫
Σ

d2xdθ−dθ+W (Φi) |θ̄±=0 + c.c.

Again, this functional satisfies that δSF = 0:

δSF =

∫
Σ

d2xdθ−dθ+
(
ε+Q− − ε−Q+ − ε̄+Q̄− + ε̄−Q̄+

)
W (Φi) |θ̄±=0
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2.2. On Landau-Ginzburg models

For the first two supercharges, the integral has the form

±
∫

Σ

d2xdθ−dθ+ε±

(
∂

∂θ∓
+ iθ̄∓∂∓

)
W (Φi) |θ̄±=0

The first term vanishes for the standard reason, and the second because we set θ̄± = 0.
For the other two supercharges, first recall (2.4)and then, the integral has the form:

∓
∫

Σ

d2xdθ−dθ+ε̄±
(
D̄± − 2iθ±∂±

)
W (Φi) |θ̄±=0

The first term vanishes as we are considering chiral superfields. Note that W (Φi) is a
holomorphic function and it doesn’t contain Φ̄i. The second term vanishes because it is a
total derivative in the bosonic variables.

We are going to call SF the F -term (the potential term). It will then be given by:

SF =

∫
Σ

d2xd2θW (Φ) + c.c.

Again the integration over d2θ amounts to extracting the coefficient of θ2 = θ+θ− in the
θ-expansion of W (Φ):

W (Φ) = W |θ±=0 + θ+∂W

∂θ+
+ θ−

∂W

∂θ−
+ θ+θ−

∂2W

∂θ+∂θ−

I.e. the coefficient we are looking for is:

W |θ2 =
∂2W

∂θ+∂θ−
=
∂2W

∂Φ2

∂Φ

∂θ+

∂Φ

∂θ−
+
∂W

∂Φ

∂2Φ

∂θ+∂θ−
= −W ′′ψ+ψ− +W ′F

And analogously for the complex conjugate term of the potential term. Hence,

SF =

∫
Σ

d2x
1

2

[
−W ′′ψ+ψ− +W ′F − W̄ ′′ψ̄+ψ̄− + W̄ ′F̄

]
Summing kinetic and potential terms together, we finally obtain the bulk action of a
Landau-Ginzburg model:

Sbulk =

∫
Σ

d2x(|∂0φ|2 − |∂1φ|2 +
i

2
ψ̄+ (∂0 − ∂1)ψ+ +

i

2
ψ̄− (∂0 + ∂1)ψ−

− 1

4
|W ′|2 − 1

2
W ′′ψ+ψ− − 1

2
W̄ ′′ψ̄+ψ̄− + |F +

1

2
W̄ ′|2)

(2.9)

where the last term can be eliminated if we solve the equation of motion F = −1
2
W̄ ′.
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2. Matrix factorizations

2.2.1. Matrix factorizations in Landau-Ginzburg models

So far, we have formulated our theory on a worldsheet without boundary. The introduction
of boundaries breaks the translation symmetry normal to the boundary, and hence, half of
the supersymmetries. This will give rise to some interesting phenomena which will trigger
the emergence of matrix factorizations.

Whenever we consider boundaries, there are two types of supersymmetry one can impose:
B-type supersymmetry, which preserves the supercharge QB = Q+ +Q− and its conjugate
Q̄B everywhere in the theory; and A-type supersymmetry, which preserves the combination
QA = Q+ + Q̄− and its conjugate Q̄A.

We choose the worldsheet Σ to be the strip with coordinates (x0, x1) ∈ (R, [0, π]). We
will focus our attention to B-type supersymmetry. In terms of the parameters ε± one can
describe B-type supersymmetry by setting ε = ε+ = −ε−.

In this new setting we can recombine the fermions as:

η = ψ+ + ψ−

ϑ = ψ− − ψ+

(2.10)

and the variation (2.7) becomes:

δ = ε+
(
Q̄− + Q̄+

)
− ε̄+ (Q− +Q+) = εQ̄ − ε̄Q

Hence, in the new variables (2.10),

δφ = εη δφ̄ = −ε̄η̄
δη = −2iε̄∂0φ δη̄ = 2iε∂0φ̄

δϑ = 2iε̄∂1φ+ εW̄ ′ δϑ̄ = 2iε∂1φ̄+ ε̄W ′
(2.11)

The boundary superspace is spanned by the coordinate θ0 and its complex conjugate θ̄0

which is defined as θ0 = 1
2

(θ+ + θ−). Hence,

1

2

∂

∂θ0
=

∂

∂θ+
+

∂

∂θ−

and the supercharges and covariant derivatives become

Q̄ =
1

2

∂

∂θ0
+ iθ̄0 ∂

∂x0

Q = −1

2

∂

∂θ̄0
− iθ0 ∂

∂x0

D =
1

2

∂

∂θ0
− iθ̄0 ∂

∂x0

D̄ = −1

2

∂

∂θ̄0
+ iθ0 ∂

∂x0

After imposing B-type supersymmetry, one can collect the fields of the chiral superfield
Φ into a bosonic and a fermionic multiplet Φ′ (y0, θ0) and Θ′

(
y0, θ0, θ̄0

)
resp., where y0 =

x0 − iθ0θ̄0. On the one hand, the bosonic multiplet looks like

Φ′
(
y0, θ0

)
= φ

(
y0
)

+ θ0η
(
y0
)
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2.2. On Landau-Ginzburg models

which comes from Taylor expanding Φ (y±, θ±) around θ± = 0 and then changing coordi-
nates (y± → y0 and θ± → θ0). On the other hand, the fermionic multiplet looks like

Θ′
(
y0, θ0, θ̄0

)
= θ

(
y0
)
− 2θ0F

(
y0
)

+ 2iθ̄0
[
∂1φ

(
y0
)

+ θ0∂1η
(
y0
)]

and which comes from Taylor expanding Φ
(
y±, θ±, θ̄±

)
around θ̄± = 0 and changing coor-

dinates again (as in the bosonic case).

Remark 2.2.2. ◦ The bosonic multiplet is chiral, DΦ′ = 0.

◦ The fermionic one is not chiral, and rather satisfies DΘ′ = −2i∂1Φ′.

Back to the Lagrangian, we would like to construct the necessary boundary terms in
order to get a fully supersymmetric action. If we set the potential to zero, the B-type su-
persymmetry variation of the action gives rise to a surface term which can be compensated
by

S∂Σ =
i

4

∫
dx0

[
ϑ̄η − η̄ϑ

]
|π0

But if we turn on the potential, there is an extra term coming from the variation of the
bulk action (2.9) plus the boundary action:

δ (SF,B−susy + S∂Σ) =
i

2

∫
dx0

[
εη̄W̄ ′ + ε̄ηW ′] |π0 (2.12)

which cannot be compensated by any boundary action as the transformations (2.11) do
not provide the necessary terms.

In order to force our model to be supersymmetric, we introduce the following ansatz.

Ansatz. Introduce a boundary fermionic superfield Π which is not chiral (it rather satisfies
DΠ = E

(
Φ̄′
)
) and has the expansion

Π
(
y0, θ0, θ̄0

)
= π

(
y0
)

+ θ0l
(
y0
)
− θ̄0

[
E (φ) + θ0η

(
y0
)
E ′ (φ)

]
The component fields of Π transform as:

δπ = εl − ε̄E
δl = −2iε̄∂0π + ε̄ηE ′

δπ̄ = ε̄l̄ − εĒ
δl̄ = −2iε∂0π̄ − εη̄Ē ′

Define a fermionic field J via
l = −iJ̄ (2.13)

Using 2.13 and making an analogous construction as we did for the bulk action, we can
build two terms for the boundary action,

S∂Σ = −1

2

∫
dx0d2θΠ̄Π|π0 −

i

2

∫
dx0dθΠJ (Φ)θ̄=0 |

π
0 + c.c.

=

∫
dx0

[
iπ̄∂0π −

1

2
J̄J − 1

2
ĒE +

i

2
πηJ ′ +

i

2
π̄ηJ̄ ′ − 1

2
π̄ηE ′ +

1

2
πη̄Ē ′

]
|π0
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2. Matrix factorizations

Equation 2.13 also makes the variation of the boundary fermion become:

δπ = −iεJ̄ − ε̄E
δπ̄ = iε̄J − εĒ

The boundary action is not supersymmetric but rather generates:

δS∂Σ = − i
2

∫
dx0

[
εη̄
(
ĒJ̄
)′

+ ε̄η (EJ)′
]
|π0

But this expression is exactly what we need to compensate (2.12), if

W=EJ (2.14)

Or also, W = JE as E and J commute. Any pair (E, J) that satisfies this condition
makes the theory supersymmetric. One may also want to introduce not only one fermionic
superfield but m such fields Πm, together with the associated Ei’s and Ji’s. The action of
our theory will be then supersymmetry-preserving if Ei and Ji assemble into (2m−1 × 2m−1)-
matrices Ẽ and J̃ that satisfy the factorization condition:

ẼJ̃ = J̃Ẽ = W.12m−1×2m−1 .

If we define D =

(
0 E
J 0

)
, we can rewrite Eq. 2.14 as:

D2 = W.12m×2m

Then, in this shape, we can recognize E and J as the twisted differentials of a matrix
factorization of the potential W , and thus interpret the Lagrangian description of boundary
conditions in Landau-Ginzburg models in terms of matrix factorizations.

The interpretation of this condition as a matrix factorization was first suggested by
Kontsevich [Ko], and later developed in several works by [Do, BHLS, KL, Laz, Car], within
the context of (open topological) string theory. Kontsevich’s realization opened the doors
for applications in this active field of physics of the mathematical background already
independently developed by the mathematics community.

To finish this section, let us briefly remark that we have seen the rise of matrix factoriza-
tions when we introduce boundaries, and one may wonder what is the situation for defects
in Landau-Ginzburg models. Recall that, given two Landau-Ginzburg models character-
ized by two potentials W1 and W2 resp., a defect between two Landau-Ginzburg models
is a codimension 1 interface between them. If our defect is for instance over the real line,
so one of our Landau-Ginzburg models (say W1) is on the upper half complex plane and
the other (W2) on the lower, we can perform the so-called folding trick : fold the lower
half complex plane onto the upper. The defect can then be understood as a boundary,
and our Landau-Ginzburg model will be now parametrized by W1 − W2 (the minus for
W2 is because of the different relative orientations of the boundary). Hence, again, we
can understand defects in terms of matrix bifactorizations and apply all our mathematical
machinery to them. For more details on this discussion we refer to [BR1].

To conclude, we recapitulate the mathematical realization of Landau-Ginzburg models
described along this Section in Table 2.1.
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2.2. On Landau-Ginzburg models

Physical entities Mathematical interpretation
Landau-Ginzburg model (S,W )

B-type boundaries Matrix factorization of W
B-type defects Matrix bifactorization of W1 −W2

Table 2.1.: Mathematical interpretation of Landau-Ginzburg models
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3. The Landau-Ginzburg/conformal
field theory correspondence

In this chapter, we would like to motivate the topic of the present thesis: the Landau-
Ginzburg/conformal field theory correspondence (from now on, LG/CFT). We will review
some features of conformal field theory (CFT) and then explain the relation between defects
in Landau-Ginzburg models and defects in CFT. Our main sources for this chapter will be
[MS, FRS1, FRS2, FRS3, FRS4, FRS5, DKR, ICM, CR2].

3.1. The 2-categorical approach to conformal field
theories

We will think of a conformal field theory as being defined by its correlation functions. By a
full CFT (as opposed to a chiral CFT) we mean a collection of single-valued functions (the
correlators) which satisfy the so-called Ward identities, and are compatible with the oper-
ator product expansion. An important case is that of those full CFTs which are rational.
Recall here that by rational we mean a CFT whose symmetries are described by a rational
vertex algebra (recall that vertex algebra is a generalization of a commutative algebra) 1.
This particular kind of CFTs is so well-understood thanks to the fact that rational vertex
algebras have a finite number of (isomorphism classes of) simple representations and any
representation is a finite direct sum of the simple ones –facts that simplify their study.

Full CFTs can be described in a very concise way and have been intensively studied,
among others, in [MS, FRS1, FRS2, FRS3, FRS4, FRS5]. We are going to summarize the
most important result for our purposes.

To begin with, we need to introduce some necessary definitions.

Definition 3.1.1. ◦ A Frobenius algebra in a (strict) monoidal category C is an object
that is both an algebra and a coalgebra and for which the product and coproduct
are related by

(idA ⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA ⊗∆)

◦ A ∆-separable algebra in a tensor category is an object that is both an algebra and a
coalgebra and that in addition satisfies m ◦∆ = idA. By misuse of language, we will

1We will not need to work out with the inner structure of these algebras for our results, nor for motivating
the LG/CFT correspondence. Thus, for a precise definition of vertex algebras and rationality we will
refer to the foundational papers [BPZ, Boc] and also [Ba1, Ba2, Kac, FLM, vEk].
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3. The Landau-Ginzburg/conformal field theory correspondence

refer to this property simply as separable. If in addition it satisfies that ε ◦ η = β1id1
(for non-zero β1 ∈ k), then we say it is a special algebra.

◦ A symmetric algebra in a pivotal category is an algebra object (A,m, η) together
with a morphism ε ∈ Hom (A,1) such that the two morphisms Φ1,Φ2 ∈ Hom (A,A∨)
defined as

Φ1 := [(ε ◦m)⊗ idA∨ ] ◦ (idA ⊗ coevA)

Φ2 := [idA∨ ⊗ (ε ◦m)] ◦ (c̃oevA ⊗ idA)

are equal.

In addition, we also need define an analogous concept to that of modules over an algebra
but in the bicategorical setting (we follow here the notation of Section 1.1).

Definition 3.1.2. Let B be a bicategory and (A, µ, η) an algebra object in B (a, a) for
some a ∈ Ob (B).

◦ A left A-module is a 1-morphism X ∈ B (b, a) for some b ∈ Ob (B), together with a
left action of A ρAX : A ◦X → X 2 compatible with the algebra multiplication and
counit:

ρAX � (µ ∗ idX) = ρAX � (idA ∗ ρAX)

ρAX � (η ∗ idX) = idX .

An analogous definition follows for right A-modules, and in this case we will denote
the right action as ρXA : X ◦ A→ X.

◦ A 2-morphism φ : X → Y between two left A-modules is called a module map if it is
compatible with both the left actions of A on X and Y resp., that means,

φ� ρAX = ρAY � (idA ∗ φ) .

◦ Let A ∈ B (a, a) and B ∈ B (b, b) be two algebras. An B-A-bimodule is a 1-morphism
X ∈ B (a, b) that is simultaneously a right A-module and a left B-module, together
with the condition that both actions have to be compatible:

ρXA � (ρBX ∗ idA) = ρBX � (idB ∗ ρXA) .

◦ Given two B-A-bimodules X, Y , a 2-morphism φ : X → Y is called a bimodule map
if it is both a map of left and right modules.

Now let us define a tensor product between these modules. Let A ∈ B (a, a) be an
algebra as before, and let X ∈ B (a, b), Y ∈ B (c, a) be right and left A-modules, resp.

2One should not confuse the action of a module with the right unit isomorphism of Definition 1.1.1.
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FrobM CFT interpretation
Hom (I, I) Tensor category of chiral data
Hom (I, A) Bondary conditions for the full CFT labelled by A
Hom (A,A) Topological defects in the full CFT associated to A
Hom (A,A′) Topological defect lines which separate

two different CFTs sharing the same chiral data

Table 3.1.: Mathematical interpretation of chiral rational CFTs

Definition 3.1.3. The tensor product of X and Y over A, that we will denote as X ◦AY ∈
B (c, b), is defined to be the coequalizer of r = ρXA ∗ 1Y and l = 1X ∗ ρAY 3.

At this point we state an important result concerning full CFTs.

Theorem 3.1.4. [FRS1] A full CFT can be fixed with only a tuple (V , A) where:

◦ V is a rational vertex algebra which encodes the chiral symmetry of a rational CFT,
and

◦ A is a symmetric special Frobenius algebra A in the representation category C =
Rep (V).

This representation category C = Rep (V) is C-linear and abelian by definition. For
vertex algebras satisfying certain conditions4, Rep (V) is a modular tensor category.

Then, given a modular category and all the possible full CFTs one can construct from
it, we can define the following bicategory.

Definition 3.1.5. Let M be a modular tensor category. The bicategory FrobM is the
bicategory with:

◦ Objects: special symmetric Frobenius algebras in Ob (M);

◦ Morphism category: given two special symmetric Frobenius algebras A,B ∈ Ob (M),
the 1- and 2-morphisms are given by the category of A−B−bimodules.

It is possible to attribute a physical interpretation to the morphisms of FrobM, that we
specify in Table 3.1.

An important proposition concerning the structure of this category is the following:

Proposition 3.1.6. [DKR] FrobM is pivotal and has adjoints.

3This means, X ◦A Y is equipped with a map ϑ : X ◦ Y → X ◦A Y with ϑ � l = ϑ � r such that for all
φ : X ◦ Y → Z with φ� l = φ� r there is a unique map ζ : X ◦A Y → Z with ζ � ϑ = φ.

4For more information on these conditions, we refer to [Hu, Theorem 4.6].
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3. The Landau-Ginzburg/conformal field theory correspondence

Thus we have learnt that the data of a family of full rational CFTs based on the same
chiral data are described by a bicategory, and use this description for our purposes. As we
already mentioned, topological defects in a full CFT are described by categories of A-A-
bimodules. As we have seen in the previous chapter, (B-type supersymmetry preserving)
defects in Landau-Ginzburg models are indeed described by categories of matrix factor-
izations. Hence, a legitimate question at this point is if one could relate these two in a
systematic way. This kind of relation was already noticed in the physics community and
quite some works were dedicated to the study this topic. In the next subsection we review
some of the most interesting results.

3.2. On the Landau-Ginzburg/conformal field theory
correspondence

Between the late 80’s and early 90’s a remarkable amount of physics literature focused in
the similarities exhibited between Landau-Ginzburg models and N = 2 superconformal
field theories in two dimensions. The chiral symmetries of N = 2 superconformal field
theories are described by the so-called N = 2 superconformal algebra:

Definition 3.2.1. The N = 2 Lie superalgebra (also called N = 2 superconformal algebra)
is a super-vector space with the basis of the even central element c, even Ln, Jn and odd
G±r elements, labelled by integers n ∈ Z and half integers r ∈ 1

2
+Z for the Neveu-Schwarz

N = 2 Lie super-algebra ns (and by integers r ∈ Z for the Ramond N = 2 Lie super-algebra
r), with brackets

[Lm, Ln] = (m− n)Lm+n + c
12

(m3 −m)δm+n,0,

[Jm, Jn] = c
3
mδm+n,0,

[Ln, G
±
r ] = (m

2
− r)G±m+r,

[Jm, G
±
r ] = ±G±m+r,

[Lm, Jn] = −nJm+n,

{G−r , G+
s } = 2Lr+s − (r − s)Jr+s + c

3
(r2 − 1

4
)δr+s,0.

There are indeed many results indicating that Landau-Ginzburg models and N = 2
superconformal field theories are connected by a deeper reason. Let us give a short overview
(not necessarily in chronological order) of some of them of particular relevance:

◦ In [HW1], Howe and West show how to compute the fixed point of the Landau-
Ginzburg Hamiltonian, the conformal weights of the chiral operators and their OPEs,
as well as the central charge. In these computations, performed via the so-called ε
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3.2. On the Landau-Ginzburg/conformal field theory correspondence

expansion 5, an essential role was played by the N = 2 non-renormalization theorem.
Happily, these results totally agree with the corresponding N = 2 minimal model.
Further, in [HW2], they compute the two- and three-point functions for N = 2
minimal models and the chiral correlators for fields whose U (1) charges sum to 1.

◦ Martinec [Mar] provided a more algebraic geometric approach to this relation, linking
N = 2 Landau-Ginzburg models and conformal field theories on a Kähler manifold
whose first Chern class vanishes via algebraic varieties defined by the potential in
the Landau-Ginzburg model (after previous work by Gepner [Ge]). In [GVW], one
can further find a way to represent a large class of Calabi-Yau manifolds in terms of
renormalization fixed points of Landau-Ginzburg models.

◦ Renormalization group flow provides a map from certain boundary conditions and
defects lines in the LG model to certain conformal boundary conditions and defects
lines in the CFT, see e. g. [BHLS, BR1]. In general, charges and correlators of fields
in the LG model vary along the flow. However, by N = 2 supersymmetry the charges
and correlators in a subsector of the LG model consisting of chiral primary fields are
preserved and can be directly compared to their CFT equivalents.

◦ In [LVW], the comparison between CFT and LG models is pushed one step forward.
There, Lerche, Vafa and Warner compare the ring of chiral fields of CFTs and the
Jacobi ring of Landau-Ginzburg models. In addition, they show they also need to be
finite-dimensional.

◦ In [VW], Vafa and Warner state the relation between Landau-Ginzburg models and
conformal field theories as follows:
Result. The infrared fixed point of a Landau-Ginzburg model with potential W is
a conformal field theory with central charge cW , where

cW :=
n∑
i=1

(1− |xi|)

(which is related to the central charge of the Virasoso algebra of the CFT via cVir =
3cW ) with |xi| ∈ Q the degrees associated to each variable xi.

And in addition they begin a classification program of conformal theories with the
help of singularity theory as described e.g. in [Ar].

◦ Actually, this classification program continued in works by Gannon [Ga] and Gray
[Gr], and before these two, in [CV] -in this last case, within the frame of the classifi-
cation of N = 2 supersymmetric theories.

5This strategy was not suitable for application to general (non-homogeneous) N = 2 potentials, an issue
which was solved later in [HW3] with the Parisi approach.
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3. The Landau-Ginzburg/conformal field theory correspondence

All this evidence suggests some kind of relation between modules over vertex operator
superalgebras, which model topological defects between two conformal field theories and
matrix factorizations, describing defects between Landau-Ginzburg models, as one may
already have noticed when comparing Tables 2.1 and 3.1.

To close up this chapter, let us strongly remark that although it is a clear conjecture that
at the level of bulks the subspace of chiral primary bulk fields (for the CFT side) should
correspond to the Jacobi ring of the associated Landau-Ginzburg model, up to date there
is no clear mathematical conjecture of the Landau-Ginzburg/CFT correspondence at the
level of boundaries and defects.
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4. N=2 minimal conformal field
theories and matrix bifactorizations
of xd

This chapter contains the joint work [DRCR] with Alexei Davydov and Ingo Runkel. We
describe a tensor equivalence between two categories: one of representations associated to
the N = 2 superconformal algebra and another of permutation-type matrix factorizations.

Let k be an algebraically closed field (which can be assumed to be the field C of complex
numbers).

4.1. Categories of representations for N=2 minimal
super vertex operator algebras

4.1.1. Representations of N = 2 minimal super vertex operator
algebras

Let V (N=2, d) be the super vertex operator algebra of the N = 2 minimal model of central

charge c = 3(d−2)
d

, where d ∈ Z≥2, see [Ade] and e.g. [DiV, EG, Ada] for more on N = 2
superconformal algebras. Its bosonic part V (N=2, d)0 can be identified with the coset

(ŝu(2)d−2 ⊕ û(1)4)/û(1)2d [DiV] (see [Ca] for a proof in the framework of conformal nets).

Accordingly, the category C(N=2, d) of representations of V (N=2, d)0 can be realised
as the category of local modules over a commutative algebra A in the product

E = Rep(ŝu(2)d−2) � Rep(û(1)2d)� Rep(û(1)4)

= C(su(2), d−2)� C(Z2d, q
−1
2d )� C(Z4, q4) , (4.1)

see [FFRS1]. Here, for a ribbon category C the notation C stands for the tensor category C
with the opposite braiding and ribbon twist. The category C(su(2), d−2) = Rep(ŝu(2)d−2)
is the category of integrable highest weight representations of the affine su(2) at level
d−2. Its simple objects [l] are labelled by l = 0, ..., d−2 and have lowest conformal weight

hl = l(l+2)
4d

. Their dimensions are dim[l] = ηl+1−η−l−1

η−η−1 with η = e2πi/d and their ribbon twists
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4. N = 2 minimal conformal field theories and matrix bifactorizations of xd

are θl = e2πihl id[l]. The fusion rule of C(su(2), d−2) is

[k]⊗ [l] '
min(k+l,2d−4−k−l)⊕
m=|k−l| step 2

[m] .

The category Rep(û(1)2d) of representations of the vertex operator algebra for u(1), ratio-
nally extended by two fields of weight d, is a pointed fusion category (a fusion category
with a group fusion rule) with group G of isomorphism classes of simple objects given by
Z2d. Braided monoidal structures on pointed fusion categories require G to be abelian
and are classified by quadratic functions q : G → C

∗ [JS]. The ribbon twist of C(G, q) is

θa = q(a) id. The qm appearing in (4.1) are defined as qm : Zm → C
∗ with qm(r) = e

πir2

m

and m even.
We can label simple objects of E by [l, r, s], where l ∈ {0, ..., d− 2}, r ∈ Z2d and s ∈ Z4.

The ribbon twist for E is given by θ[l,r,s] = e2πihl,r,s id with

hl,r,s ≡
l(l + 2)

4d
+
s2

8
− r2

4d
mod Z .

The underlying object of the algebra A in the product (4.1) is [0, 0, 0]⊕[d−2, d, 2]. Note that
[d−2, d, 2] is an invertible object of order 2 and ribbon twist 1, so that [0, 0, 0]⊕ [d−2, d, 2]
has a uniquely defined commutative separable algebra structure. The tensor product with
[d−2, d, 2] has the form

[d−2, d, 2]⊗ [l, r, s] ' [d−2−l, r+d, s+2].

In particular no simple objects are fixed by tensoring with [d−2, d, 2] and hence all simple
A-modules are free:

A⊗ [l, r, s] ' A⊗ [d−2−l, r+d, s+2] ' [l, r, s] ⊕ [d−2−l, r+d, s+2] . (4.2)

Recall that a simple A-module is local if all its simple constituents have the same ribbon
twist (see [Pa, KO] and [FFRS2, Cor. 3.18]). Thus local A-modules correspond to [l, r, s]
with even l + r + s:

hd−2−l,r+d,s+2 − hl,r,s =
(d−2−l)(d−l)− l(l+2)

4d
+

(s+2)2 − s2

8
− (r+d)2 − r2

4d
=
s− l − r

2
.

The fermionic part V (N=2, d)1 of V (N=2, d) corresponds to the A-module

A⊗ [0, 0, 2] ' [0, 0, 2] ⊕ [d− 2, d, 0]

so that the simple objects of the NS (R) sector of C(N=2, d) are A⊗[l, r, s] with even (odd)
s:

hl,r,s+2 − hl,r,s − h0,0,2 =
(s+ 2)2 − s2 − 4

8
=
s

2
.

Denote by C(N=2, d)NS the full subcategory of C(N=2, d) consisting of NS objects, i.e.
with simple objects of the form A⊗[l, r, s] with even s. By (4.2) any simple object in
C(N=2, d)NS can be written as

[l, r] := A⊗[l, r, 0] with l ∈ {0, 1, . . . , d− 2} , r ∈ Z2d , l + r even . (4.3)
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4.1. Categories of representations for N = 2 minimal super vertex operator algebras

4.1.2. The structure of C(N=2, d)NS for odd d

Note that direct sums of objects [l, r, s] with even l+r+s form a ribbon fusion subcategory
Eeven of E . It can be characterised as the Müger centraliser of [d−2, d, 2] in E . Recall
that the Müger centraliser of a subcategory D ⊂ C in a ribbon fusion category is {X ∈
C | θX⊗Y = θX⊗θY , ∀Y ∈ D} [Mue].

The induction functor A⊗− : E → AE is a faithful tensor functor. Its restriction to Eeven
is in addition ribbon, so that

Eeven
A⊗−−−−→ AEeven = AE loc = C(N=2, d)

is a faithful ribbon tensor functor. For odd d the object [1, d, 0] lies in Eeven and tensor
generates a subcategory of Eeven with simple objects [l, dl, 0], l = 0, ..., d− 2 and the fusion
with [1, d, 0] given by

[1, d, 0]⊗ [l, dl, 0] '

{
[l−1, d(l−1), 0] ⊕ [l+1, d(l+1), 0] ; 1 ≤ l < d− 2

[d−3, d(d−3), 0] ; l = d− 2
(4.4)

Since the last entry in [l, dl, 0] is zero, the restriction of the induction functor A⊗− to this
subcategory is fully faithful. Denote by T its image in C(N=2, d).

The invertible object [0, 2, 0] belongs to the Müger centraliser of [1, d, 0] in Eeven:

exp 2πi
(
h1,d+2,0 − h1,d,0 − h0,2,0

)
= exp 2πi

( (d+2)2−d2−4
4d

)
= 1 .

It tensor generates a pointed subcategory V in Eeven equivalent to C(Zd, q−2
d ). The restric-

tion of the induction functor A⊗− to this subcategory is fully faithful.
For d odd, [1, d] ∈ C(N=2, d)NS and it is straightforward to see that C(N=2, d)NS is

tensor generated by [1, d] and [0, 2] (recall the notation (4.3)). Furthermore, the intersection
of the subcategories tensor generated by [1, d] and by [0, 2] is trivial. Since (the associated
bicharacter of) q−2

d is non-degenerate the subcategory V is non-degenerate as a braided
category. Hence by Müger’s centraliser theorem [Mue, Prop. 4.1] C(N=2, d)NS ' T �V as
ribbon fusion categories.

Finally, we will show that as a tensor category and for odd d, C(Zd, q−2
d ) is equivalent to

the category V(Zd) of Zd-graded vector spaces with the trivial associator. The quadratic
form q−2

d ∈ Q(Zd,C∗) determines the braided tensor structure on C(Zd, q−2
d ) via the canon-

ical isomorphism from Q(Zd,C∗) to the third abelian group cohomology H3
ab(Zd,C∗) [JS].

The associator on C(Zd, q−2
d ), i.e. the structure as a tensor category, is determined by the

image under the homomorphism H3
ab(Zd,C∗) → H3(Zd,C∗). For d odd, this homomor-

phism is trivial, hence the associator on C(Zd, q−2
d ) is trivial.

The above discussion is summarised in the following statement.

Proposition 4.1.1. For an odd d there is an equivalence of braided fusion categories

C(N=2, d)NS ' T � V(Zd) .
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4.1.3. Universal properties

Recall the universal property of Temperley-Lieb categories described in Section 1.2. Here,
we describe a universal property of C(N=2, d)NS for odd d as a tensor category. This de-
scription makes use of group actions on tensor categories and equivariant objects, which we
review in Appendix B. In the following proposition, a pointed subcategory of a tensor cat-
egory D with underlying group Zd acts by conjugation, and DZd denotes the corresponding
tensor category of equivariant objects.

Theorem 4.1.2. Let d be odd. A tensor functor F : C(N=2, d)NS → D is determined by

◦ a tensor functor V(Zd)→ D,

◦ a self-dual object T = F ([1, d]) in the category DZd of quantum dimension dim(T ) =
2 cos

(
π
d

)
such that the induced functor TL2 cos(π

d
) → DZd is not faithful.

Proof. By Proposition 4.1.1, the category C(N=2, d)NS is tensor equivalent to the Deligne
product T �V(Zd). By Theorem B.3.2, a tensor functor F : T �V(Zd)→ D is determined
by a tensor functor V(Zd)→ D and a tensor functor T → DZd .

The dimension of [1, d] ∈ T (which coincides with the dimension of [1, 0, 0] in E) is
equal to 2 cos

(
π
d

)
. The fusion rules of T (see (4.4)) show that it is freely generated as

a tensor category by [1, d], and that the Wenzl–Jones projector pd−1 vanishes (Corollary
1.2.16). By semi-simplicity, it follows that TL2 cos(π

d
) → T descends to a tensor equivalence

T2 cos(π
d

) → T . Consequently, a tensor functor T → DZd is determined by a self-dual object

T = F ([1, d]) in the category DZd with quantum dimension dim(T ) = 2 cos
(
π
d

)
and such

that the induced functor TL2 cos(π
d

) → DZd is not faithful.

4.2. On matrix factorizations

4.2.1. Categories of matrix factorizations and tensor products

Recall the facts and notation in Chapter 2 for matrix (bi)factorizations. From here on and
for the remainder Section 4.2 we fix

S = C[x] , W = xd , where d ∈ Z , d ≥ 2 .

For calculations it will often be convenient to describe C[x]-C[x]-bimodules as C[x, y]-left
modules M . Here, the left action of p ∈ C[x] is by acting on M with p(x) and the right
action by acting with p(y). We will employ this tool without further mention.

The tensor unit in HMFbi is

I : C[x, y]

d1=x−y
,,
C[x, y]

d0=xd−yd
x−y

ll .
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4.2. On matrix factorizations

The left and right unit isomorphisms λM : I⊗M →M and ρM : M ⊗ I →M are given by

I⊗M

λM

��

I1 ⊗M0

⊕
I0 ⊗M1

(0 LM1
)

��

 (x−y)⊗id 1⊗dM1
−1⊗dM0

xd−yd
x−y ⊗id


--
I0 ⊗M0

⊕
I1 ⊗M1

(LM0
0)

��

 xd−yd
x−y ⊗id −1⊗dM1

1⊗dM0 (x−y)⊗id


mm

M M1

dM1

,,M0

dM0

ll

M⊗I

ρM

��

M1 ⊗ I0

⊕
M0 ⊗ I1

(RM1
0)

��

 dM1 ⊗1 id⊗(x−y)

−id⊗x
d−yd
x−y dM0 ⊗1


--
M0 ⊗ I0

⊕
M1 ⊗ I1

(RM0
0)

��

 dM0 ⊗1 −id⊗(x−y)

id⊗x
d−yd
x−y dM1 ⊗1


mm

M M1

dM1

,,M0

dM0

ll

(4.5)

The maps L and R were, for a given C[x]-C[x]-bimodule N , already defined in Eq. 2.2.
It is easy to verify that λM and ρM are in ZMFbi. As we have previously mentioned, they
have homotopy inverses, see [CR1].

Finite rank factorizations in HMFbi have right duals [CR3, CM1]. We will only need
explicit duals of matrix factorizations M ∈ HMFbi for which M0 and M1 are of rank 1. In
this case we have [CR3]:

M : C[x, y]

d1(x,y)
++
C[x, y]

d0(x,y)

kk  M+ : C[x, y]

dM
+

1 :=−d1(y,x)
++
C[x, y]

dM
+

0 :=d0(y,x)

kk

Note that I+ = I. Since the corresponding duality maps play an important role in our
construction, we take some time to recall their explicit form and some properties from
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[CR3]. The coevaluation coevM : I →M ⊗M+ is the simpler of the two,

I

��

C[x, z]

x−z
,,

 1

1



��

C[x, z]

xd−zd
x−z

ll

 d1(x,y)−d1(z,y)
x−z

d0(x,y)−d0(z,y)
x−z



��
M ⊗M+

C[x, y, z]⊕2

 d1(x,y) −d1(z,y)

−d0(z,y) d0(x,y)


--
C[x, y, z]⊕2 d0(x,y) d1(z,y)

d0(z,y) d1(x,y)


mm

Here the left and the right bottom instances of C[x, y, z]⊕2 correspond to

(M ⊗M+)1 =
M1 ⊗M+

0

⊕
M0 ⊗M+

1

, (M ⊗M+)0 =
M0 ⊗M+

0

⊕
M1 ⊗M+

1

,

resp. It is immediate that this is indeed a morphism in ZMFbi. The evaluation evM :
M+ ⊗M → I takes the form

M+ ⊗M

��

C[x, y, z]⊕2

(BM CM )

��

 −d1(y,x) d1(y,z)

−d0(y,z) d0(y,x)


--
C[x, y, z]⊕2

(AM 0)

��

 d0(y,x) −d1(y,z)

d0(y,z) −d1(y,x)


mm

I C[x, z]

x−z
,,
C[x, z]

xd−zd
x−z

ll

Here the left and the right top instances of C[x, y, z]⊕2 correspond to

(M+ ⊗M)1 =
M+

1 ⊗M0

⊕
M+

0 ⊗M1

, (M+ ⊗M)0 =
M+

0 ⊗M0

⊕
M+

1 ⊗M1

,

resp. The C[x, z]-module maps AM , BM , CM are defined as follows. The map CM is simply
minus the projection onto terms independent of y: CM(ym) = −δm,0. For AM and BM we
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introduce the auxiliary function

GM(f) =
1

2πi

∮
x− z − y
y d1(y, z)

f(x, y, z)dy , f ∈ C[x, y, z] .

The contour integration is along a counter-clockwise circular contour enclosing all poles.
It is not immediately evident but still true that GM(f) is a polynomial. One way to see
this is to rewrite GM(f) = 1

2πi

∮
x−z−y
y(yd−zd)

d0(y, z)f(x, y, z)dy and to expand (yd − zd)−1 =∑∞
m=0(z/y)m. In this way one can rewrite the integrand as a formal Laurent series in y

whose coefficients are polynomials in x, z. The contour integration picks out the coefficient
of y−1.

We will need two further properties of GM :

GM
(
d1(y, z) ym

)
= (x− z)δm,0 , GM

(
d1(y, x) f(x, y, z)

)
∈ (x− z)C[x, z] . (4.6)

The first property is clear. For the second property, let g(x, z) := GM
(
d1(y, x) f(x, y, z)

)
.

The condition g(z, z) = 0 is then immediate from the first property.
We can now give the maps AM and BM :

AM(f) = −GM(f) , BM(f) =
GM
(
d1(y, x)f(x, y, z)

)
x− z

.

To verify that evM ∈ ZMFbi(M
+⊗M, I), it suffices to check (evM)0 ◦dM

+⊗M
1 = dI1 ◦ (evM)1

on (ym, yn) for all m,n ≥ 0. This is straightforward using (4.6):

(evM)0 ◦ dM
+⊗M

1 (ym, yn) = AM
(
− d1(y, x)ym + d1(y, z)yn

)
= GM(d1(y, x)ym)− (x− z)δn,0 ,

dI1 ◦ (evM)1(ym, yn) = (x− z)(BM(ym) + CM(yn)) = GM(d1(y, x)ym)− (x− z)δn,0 .

The zig-zag identities for evM and coevM are verified in [CR3, Thm. 2.5].

4.2.2. Permutation-type matrix bifactorizations

In this Subsection we review some facts on permutation-type matrix bifactorizations (recall
Definition 2.1.7). For a subset S ⊂ Zd we will write S = Zd \ S.

The bifactorizations P∅ and P{0,1,...,d−1} are isomorphic to the zero object in HMFbi. The
remaining PS are non-zero and mutually distinct. To see this, in the following remark we
recall a useful tool from [KhR].

Remark 4.2.1. Given a matrix bifactorization (M,d), we obtain a Z2-graded complex
by considering the differential d̄ on M/〈x, y〉M . Since xd − yd ∈ 〈x, y〉, d̄ is indeed a
differential. Denote by H(M) the homology of this complex. Then [KhR, Prop. 8] states
that f ∈ HMFbi(M,N) is an isomorphism in HMFbi if and only if the induced map
H(f) : H(M)→ H(N) is an isomorphism of C-vector spaces.
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Lemma 4.2.2. Let R, S ⊂ Zd be nonempty proper subsets. The permutation-type matrix
bifactorizations PR and PS are non-zero, and they are isomorphic in HMFbi if and only if
R = S.

Proof. For a non-empty proper subset S, the matrix factorization PS is reduced, that is,
the differential d̄ induced on the quotient PS/〈x, y〉PS is zero. Thus H(PS) ' C ⊕ C.
It follows that f ∈ ZMFbi(PS, PR) is an isomorphism in HMFbi if and only if f0 and f1

contain a non-zero constant term. Writing out the condition that f is a cycle shows that
this is possible only for R = S.

We will mostly be concerned with a special subset of permutation-type bifactorizations,
namely those with consecutive index sets. For a ∈ Zd and λ ∈ {0, 1, 2, . . . , d− 2} we write

Pa:λ := P{a,a+1,...,a+λ}

We define PT d to be the full subcategory of HMFbi consisting of objects isomorphic (in
HMFbi) to finite direct sums of the Pa:λ. A key input in our construction is the following
result established in [BR1, Sect. 6.1].

Theorem 4.2.3. PT d is closed under taking tensor products. Explicitly, for λ, µ ∈
{0, . . . , d− 2},

Pm:λ ⊗ Pn:µ '
min(λ+µ,2d−4−λ−µ)⊕

ν=|λ−µ| step 2

Pm+n− 1
2

(λ+µ−ν):ν

For the dual of a permutation-type matrix bifactorizations one finds (PS)+ ' P−S.
Explicitly:

P−S

��

C[x, y]

∏
j∈S

(x−η−jy)

,,

(−1)|S|+1
∏
j∈S η

−j

��

C[x, y]∏
j∈S

(x−η−jy)

ll

1

��
(PS)+

C[x, y]

−
∏
j∈S

(y−ηjx)

,,
C[x, y]∏

j∈S
(y−ηjx)

ll

(4.7)

The self-dual permutation-type matrix bifactorizations of the form Pa:λ therefore have to
satisfy 2a ≡ −λ mod d. Depending on the parity of d, one finds:

◦ d even: λ must be even and a ≡ λ
2

mod d or a ≡ λ+d
2

mod d,

◦ d odd: λ can be arbitrary and a ≡ d−1
2
λ mod d.
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4.2.3. A tensor functor from Zd to PT d
Consider the algebra automorphism σ of C[x] which acts on x as σ(x) = ηx. It leaves
the potential xd invariant and generates the group of algebra automorphisms with this
property. We get a group isomorphism

Zd −→ Aut(C[x] with xd fixed) , k 7→ σk .

Given a matrix bifactorization M ∈ MFbi and a, b ∈ Zd, we denote by aMb the matrix
bifactorization whose underlying C[x]-bimodule is equal to M as a Z2-graded C-vector
space, but has twisted left/right actions (p ∈ C[x], m ∈M):

(p,m) 7→ σ−a(p).m , (m, p) 7→ m.σb(p) ,

where the dots denotes the left/right action on the original bimoduleM . Since Zd is abelian,
we get a left action even if we were to omit the minus sign in σ−a, but we include it to
match the conventions of [CR2, Sect. 7.1]. For permutation-type matrix bifactorizations
we have isomorphisms:

PS−a−b

sa,b

��

C[x, y]

∏
j∈S

(x−ηj−a−by)

,,

η−|S|a ·σ−a⊗σb

��

C[x, y]∏
j∈S

(x−ηj−a−by)

ll

σ−a⊗σb

��

a(PS)b a(C[x, y])b

∏
j∈S

(x−ηjy)

,,
a(C[x, y])b∏

j∈S
(x−ηjy)

ll

(4.8)

Here, σ−a ⊗ σb is the automorphism of C[x, y] which acts as x 7→ η−ax and y 7→ ηby.
The following lemma is straightforward.

Lemma 4.2.4. For all a, b ∈ Zd, a(−)b defines an auto-equivalence of HMFbi and of
PT d. If b = −a, this auto-equivalence is tensor with a(M ⊗ N)−a = aM−a ⊗ aN−a and
sa,−a : I → aI−a.

Consider the objects aI ∈ HMFbi for a ∈ Zd. Applying the functor a(−) to the unit
isomorphism λ

bI : I ⊗ bI → bI gives the isomorphism

µa,b := a(λbI) : aI ⊗ bI → a+bI . (4.9)

By Zd we mean the monoidal category whose set of objects is Zd, whose set of morphisms
consists only of the identity morphisms, and whose tensor product functor is the group
operation (i.e. addition), see Appendix B.1.

Proposition 4.2.5. χ : Zd → PT d, χ(a) = aI, together with µa,b : χ(a)⊗χ(b)→ χ(a+b),
defines a tensor functor.
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4. N = 2 minimal conformal field theories and matrix bifactorizations of xd

Proof. First note that by (4.8), aI ' P{−a}, so that indeed χ(a) ∈ PT d. It is shown in
[CR3, Prop. 7.1] that the µa,b satisfy the associativity condition

µa,b+c ◦ (idaI ⊗ µb,c) = µa+b,c ◦ (µa,b ⊗ idcI) for all a, b, c ∈ Zd .

This amounts to the hexagon condition for the coherence isomorphisms µa,b.

We can now construct two tensor functors Zd → Aut⊗(PT d). The first functor takes
a ∈ Zd to a(−)−a; we denote this functor by A. This functor is strictly tensor: A(0) = Id
and A(a) ◦ A(b) = A(a+ b).

The second functor is the adjoint action of χ; we denote it by Adχ. Given a ∈ Zd, on
objects the functor Adχ(a) acts as M 7→ χ(a) ⊗M ⊗ χ(−a). The morphism f : M → N
gets mapped to idχ(a)⊗f⊗idχ(−a). The isomorphisms µ−a,a : χ(−a)⊗χ(a)→ χ(0) = I give
the tensor structure on Adχ(a). So far we saw that for all a ∈ Zd, Adχ(a) ∈ Aut⊗(PT d).
Next we need the coherence isomorphisms Adχ(a)◦Adχ(b)→ Adχ(a+b). These are simply
given by µa,b ⊗ (−)⊗ µ−b,−a.

The following lemma will simplify the construction of Zd-equivariant structures below.

Lemma 4.2.6. A and Adχ are naturally isomorphic as tensor functors.

Proof. We need to provide a natural monoidal isomorphism α : Adχ → A. That is, for
each a ∈ Zd we need to give a natural monoidal isomorphism α(a) : Adχ(a)→ A(a), such
that the diagram

Adχ(a) ◦ Adχ(b)

α(a)◦α(b)
��

µ∗ // Adχ(a+ b)

α(a+b)
��

A(a) ◦ A(b) A(a+ b)

(4.10)

commutes, where µ∗ := µa,b ⊗ (−)⊗ µ−b,−a. Define

α(a)M :=
[
aI ⊗M ⊗ −aI

a(λM )⊗(s−1
−a,a)−a

−−−−−−−−−−→ aM ⊗ I−a
a(ρM )−a−−−−−→ aM−a

]
.

α(a) is tensor: we need to verify commutativity of

Adχ(a)(M)⊗ Adχ(a)(N)

α(a)M⊗α(a)N
��

∼ // Adχ(a)(M ⊗N)

α(a)M⊗N
��

A(a)(M)⊗ A(a)(N) A(a)(M ⊗N)

where the top isomorphism is id⊗µ−a,a⊗id. Commutativity of this diagram is a straightfor-
ward calculation if one notes the following facts: M⊗−aI = M−a⊗I andM−a⊗aN = M⊗N
(equal as matrix factorizations, not just isomorphic), and

[
M ⊗ −aI

id⊗(s−1
−a,a)−a

−−−−−−−→M ⊗ I−a
(ρM )a−−−→M−a

]
=
[
M−a ⊗ I

ρM−a−−−→
]
.
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4.2. On matrix factorizations

α satisfies (4.10): One way to see this is to act on elements. The unit isomorphisms (4.5)
are non-zero only on summands in the tensor products involving I0, in which case they act
as

λM : p(x, y)⊗m 7→ p(x, x).m , ρM : m⊗ p(x, y) 7→ m.p(x, x) .

One verifies that the top and bottom path in (4.10) amount to mapping

u(x, y)⊗ v(x, y)⊗m⊗ p(x, y)⊗ q(x, y) ∈ (aI)0 ⊗ (bI)0 ⊗M ⊗ (−bI)0 ⊗ (−aI)0

to {
σ−b(u(x, x)) v(x, x)

}
.m .

{
σ−b(p(x, x))σ−a−b(q(x, x))

}
∈ a+bM−a−b .

4.2.4. A functor from TLκ to Zd-equivariant objects in PT d
We write PT Zd

d for the category of Zd-equivariant objects in PT d, where the Zd action is
given by the functor A defined in the previous section. The definition and properties of
categories of equivariant objects are recalled in Appendix B.1.

By Theorem 4.1.2, our aim now is to find a tensor functor

F : TLκ → PT Zd
d .

According to Section 1.2, to construct a functor out of TLκ, we need to give a self dual
object, duality maps, and compute the resulting constant κ. We will proceed as follows:

1. Give a self dual object T ∈ PT d.

2. Give duality maps u, n, show they satisfy the zig-zag identities (1.5), and compute
κ.

3. Put a Zd-equivariant structure on T and show that the maps u, n are Zd-equivariant.

Step 1: we listed self-dual objects of the from Pa:λ at the end of Section 4.2.2. By Theorem
4.2.3, there are only two choices which match the tensor products required by Corollary
1.2.16. In both cases, d is odd, and either λ = 1, a = (d − 1)/2 or λ = d − 3, a =
(d − 3)(d − 1)/2. Both choices can be used in the construction below; we will work with
the first option:

d odd , T := P d−1
2

:1 = P{ d−1
2
, d+1

2
} .

Explicitly,

T : C[x, y]

K(x,y)
,,
C[x, y]

xd−yd
K(x,y)

ll ,

where

K(x, y) =
(
x− η

d−1
2 y
)(

x− η
d+1

2 y
)

= x2 + y2 + κxy, κ = −(η
d−1

2 + η
d+1

2 ) = 2 cos π
d
.
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4. N = 2 minimal conformal field theories and matrix bifactorizations of xd

Writing κ for the coefficient of xy will be justified below, where we will find it to be the
parameter in TLκ.

Step 2: denote the isomorphism given in (4.7) by t : T → T+, t = (id,−id). Define maps
u : T ⊗ T → I and n : I → T ⊗ T via

u =
[
T ⊗ T t⊗id−−→ T+ ⊗ T evT−−→ I

]
, n =

[
I

coevT−−−→ T ⊗ T+ id⊗t−1

−−−−→ T ⊗ T
]
. (4.11)

From this one computes u ◦ n = κ. For example,

u0 ◦ n0 = AT (x+ z + κy) = κ .

Together with the zig-zag identities for evT and coevT established in [CR3] we have proved:

Proposition 4.2.7. u and n are morphisms in ZMFbi. The satisfy the zig-zag identities
in HMFbi, as well as n ◦ u = κ.

Step 3: we can make the PS Zd-equivariant via

τS;a : PS → a(PS)−a , τS;a = η
d+1

2
a(|S|−1) sa,−a , (4.12)

where sa,−a was given in (4.8). These maps satisfy a(τS;b)−a ◦ τS;a = τS;a+b, as required
(cf. Appendix B.1). Note that on I = P{0}, the above Zd-equivariant structure is just

sa,−a : I → aI−a, in agreement with the one on the tensor unit of PT Zd
d as prescribed by

Lemma 4.2.4 and Proposition B.1.1.

Lemma 4.2.8. The maps evPS and coevPS composed with the isomorphism P−S ' (PS)+

from (4.7) are Zd-equivariant.

Proof. For coev we need to check commutativity of

I
coevPS //

sa,−a

��

PS ⊗ (PS)+ ∼ // PS ⊗ P−S
τS;a⊗τ−S;a

��

aI−a
a(coevPS )−a //

a(PS ⊗ (PS)+)−a
∼ // a(PS)−a ⊗ a(P−S)−a

= a(PS ⊗ P−S)−a

which follows straightforwardly by composing the various maps. The corresponding dia-
gram for ev is checked analogously.

Corollary 4.2.9. u and n are Zd-equivariant morphisms.

According to Section 4.1.3, at this point we proved the existence of the tensor functor
TLκ → PT Zd

d . To describe its image and to show that it annihilates the non-trivial tensor
ideal in TLκ, we need to introduce a graded version of the above construction.
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4.2. On matrix factorizations

4.2.5. Graded matrix factorizations

There are several variants of graded matrix factorizations, see e.g. [KhR, HW, Wu, CR1].
The following one is convenient for our purposes. We take the grading group to be C,
which is natural from the relation to the R-charge in conformal field theory, but other
groups are equally possible. For example, to construct the tensor equivalence in Theorem
4.2.14, the grading group d−1Z is sufficient.

Definition 4.2.10. Let S be a C-graded k-algebra such that W ∈ S has degree 2. A
C-graded matrix factorization of W over S is a matrix factorization (M,d) of W over S
such that the S action on M is compatible with the C-grading and d has C-degree 1. That
is, if q(s) (resp. q(m)) denotes the C-degree of a homogeneous element of S (resp. M),
then q(s.m) = q(s) + q(m) and q(d(m)) = q(m) + 1.

In analogy with Section 4.2.1 we define MFgr
S,W , ZMFgr

S,W and HMFgr
S,W to have C-graded

matrix factorizations as objects and only C-degree zero morphisms. For example,

HMFgr
S,W (M,N) =

{
f ∈ ZMFS,W (M,N) | f has C-degree 0

}
/
{
δ(g)

∣∣ g : M → N is S-linear, Z2-odd and of C-degree −1
}
.

The same definitions apply to matrix bifactorizations, giving categories MFgr
bi;S,W , etc.

Under tensor products, the C-degree is additive.

We will again restrict our attention to the case S = C[x] and W = xd, so that q(x) = 2
d
.

As an example, let us describe all C-gradings on permutation-type matrix bifactoriza-
tions. The C-grading on C[x, y] is fixed by choosing the degree of 1. Let thus C[x, y]{α}
be the graded C[x]-C[x]-bimodule with q(1) = α. The possible C-gradings on PS are

PS{α} : C[x, y]{α + 2
d
|S| − 1}

d1=
∏
j∈S

(x−ηjy)

--
C[x, y]{α}

d0=
∏
j∈S

(x−ηjy)

nn
.

The unit isomorphism λM given in (4.5) above becomes a morphism in HMFgr
bi precisely if

the unit object is C-graded as

I = P{0}{0} .

To see this note that xmyn ∈ I0 = C[x, y] will act as a degree 2(m+n)/d map on M . With
this charge assignment for I, HMFgr

bi is tensor.

Next we work out the grading on M+ for M with M0 and M1 of rank 1. One first
convinces oneself that for a homogeneous p ∈ C[x, y, z] we have deg(AM(p)) = deg(p) −
deg(dM1 (x, y)) + 1, where deg denotes the polynomial degree. So if M0 = C[x, y]{α}, for
AM to give a C-degree 0 map, we need M+

0 = C[x, y]{−α + 2
d
(1 − deg(dM1 ))} (cf. [CR3,
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4. N = 2 minimal conformal field theories and matrix bifactorizations of xd

Sect. 2.2.4]). This forces the C-grading to be

M : C[x, y]{α + 2
d
deg(d1)− 1}

d1(x,y)
,,
C[x, y]{α}

d0(x,y)
oo

 M+ : C[x, y]{−α− 1 + 2
d
}

dM
+

1 :=−d1(y,x)
..
C[x, y]{−α + 2

d
(1− deg(d1))}

dM
+

0 :=d0(y,x)

nn .

One can check that ev and coev are indeed degree 0 maps with respect to these gradings.
Note that we have I+ = I also as graded matrix bifactorizations.

In the next section we will be interested in the PS{α} with α = 1−|S|
d

. We abbreviate

these as P̂S. This subset of graded permutation-type matrix bifactorizations is closed under
taking duals:

(P̂S)+ ' P̂−S , where P̂S = PS
{1−|S|

d

}
.

An explicit isomorphism is again given by (4.7), which is easily checked to have C-degree
0.

The next two lemmas show that the P̂S generate (under direct sums) a semi-simple
subcategory of HMFgr

bi .

Lemma 4.2.11. ZMFgr
bi(P̂R, P̂S) is Cid if R = S and 0 else.

Proof. Write α = 1−|R|
d

and β = 1−|S|
d

, such that P̂R = PR{α} and P̂S = PS{β}. The

morphism space ZMFbi(PR, PS) is given by all (p, q) with p, q ∈ C[x, y] such that p · dPR1 =
dPS1 · q. For (p, q) to be also in ZMFgr

bi(PR{α}, PS{β}), we need p, q to be homogeneous
and α = β + 2

d
deg(p) and α + 2

d
|R| − 1 = β + 2

d
|S| − 1 + 2

d
deg(q). This simplifies to

2 deg(p) = |S| − |R| and 2 deg(q) = |R| − |S|, which is possible only for |R| = |S|, in
which case p, q are constants. Finally, the condition p · dPR1 = dPS1 · q has non-zero constant
solutions only if R = S.

Lemma 4.2.12. P̂∅ and P̂Zd are zero objects in HMFgr
bi. For R, S 6= ∅,Zd we have

HMFgr
bi(P̂R, P̂S) = ZMFgr

bi(P̂R, P̂S).

Proof. That P̂∅ and P̂Zd are zero objects in HMFgr
bi follows since one component of the

twisted differential is 1, and hence there is a contracting homotopy for the identity mor-
phism.

Let now R, S be nonempty proper subsets of Zd. For the second part of the statement one
checks that there are no Z2-odd morphisms of C-degree −1 from P̂R to P̂S. For example,
a C-degree −1 map ψ0 : (P̂R)0 → (P̂S)1 has to satisfy

1 + |S|
d

− 1 +
2 deg(ψ0(x, y))

d
− 1− |R|

d
= −1 ,
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where deg(ψ0) is the polynomial degree of ψ0(x, y). Thus deg(ψ0) = − |S|+|R|
2

, and ψ0 can
be non-zero only if |R| = |S| = 0. An analogous computation for ψ1 shows deg(ψ1) =
|S|+|R|

2
− d, and so ψ1 can be non-zero only if |R| = |S| = d.

We now focus on the graded matrix factorizations P̂a:λ, i.e. the PS{α} with consecutive
set S = {a, a+1, . . . , a+λ} and α = −λ/d. We define

PT gr
d =

〈
P̂a:λ

∣∣ a ∈ Zd, λ ∈ {0, . . . , d− 2}
〉
⊕ ⊂ HMFgr

bi ,

i.e. the full subcategory of HMFgr
bi consisting of objects isomorphic, in HMFgr

bi, to finite

direct sums of the P̂a:λ.
Then we need to check whether the decomposition of tensor products in Theorem 4.2.3

carries over to the graded case. This could be done by adapting the method used in [BR1],
which works in the stable category of C[x, y]/〈xd − yd〉 modules. We give a related but
different proof by providing explicit C-charge 0 embeddings of the direct summands in the
decomposition of P̂a:1⊗ P̂b:λ and proving that they give an isomorphism via Remark 4.2.1.
This is done in Appendix A.

Theorem 4.2.13. The category PT gr
d is semi-simple with simple objects P̂a:λ, a ∈ Zd and

λ ∈ {0, 1, . . . , d− 2}. It is closed under tensor products and the direct sum decomposition
of P̂m:λ ⊗ P̂n:ν in HMFgr

bi is as in Theorem 4.2.3.

4.2.6. A functor from TLκ to Zd-equivariant objects in PT gr
d

The morphisms µa,b in (4.9) have C-degree 0. The functor χ in Proposition 4.2.5 therefore
also defines a tensor functor

χ : Zd −→ PT gr
d .

As in Section 4.2.3 we obtain two tensor functors A,Adχ : Zd → Aut⊗(PT gr
d ). The

natural monoidal isomorphism A→ Adχ established in Lemma 4.2.6 uses only C-degree 0
morphisms.

Next we follow the three steps in Section 4.2.4 and verify that they carry over to the
C-graded setting. Consider the self-dual object T̂ ∈ PT gr

d . The duality maps n and u from
(4.11) are of C-degree 0 since t, evT , coevT are. The maps τ from (4.12) are equally of
C-degree 0 and hence equip T̂ with a Zd-equivariant structure. The proof of Lemma 4.2.8
still applies and shows that u and n are Zd-equivariant morphisms in HMFgr

bi.

By Section 1.2 the data T̂ , τ , u and n determine a tensor functor

F : TLκ → (PT gr
d )Zd .

Here we used that T̂ ∈ PT gr
d and that by Theorem 4.2.13, PT gr

d is a full tensor subcategory
of HMFgr

bi.

Theorem 4.2.14. There is a tensor equivalence G : C(N=2, d)NS → PT gr
d such that

G([l, l + 2m]) ' P̂m:l.
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Proof. Corollary 1.2.16 and the tensor product established in Theorem 4.2.13 show that
F is not faithful and induces a fully faithful embedding F̃ : Tκ → (PT gr

d )Zd . By Theorem
4.1.2 the embedding F̃ gives rise to the functor G : C(N=2, d)NS → PT gr

d . The functor
G is fully faithful (it sends simple objects to simple objects) and surjective on (simple)
objects. Thus G is an equivalence.

Recall that the Zd-action on PT gr
d is such that a ∈ Zd gets mapped to aI ∼= P{−a},

and that F̃ maps T ∈ Tκ to P̂ d−1
2

:1 ∈ PT
gr
d . We choose the monoidal embedding Zd →

C(N=2, d) as a 7→ [0,−2a] (to avoid this minus sign, one can define χ in Proposition 4.2.5
as χ(a) = −aI, resulting in lots of minus signs in other places). The induced tensor functor
G obeys G([1, d]) = P̂ d−1

2
:1 and G([0, 2a]) = P{a}.

Remark 4.2.15. Note that one can replace η with any other primitive d’th root of unity
ηl (here l is coprime to d). In particular replacing η with ηl in (2.1.7) gives another matrix
bifactorization, PS(ηl). It is not hard to see that P{ d−1

2
, d+1

2
}(η

l) is a self-dual object of

dimension κl = 2 cos πl
d

and defines a fully faithful embedding Tκl → HMFbi. Its image is
additively generated by the direct summands in tensor powers of P{ d−1

2
, d+1

2
}(η

l) and can be

computed explicitly from Theorem 4.2.13 with ηl in place of η. This is an instance of the
action of a Galois group on categories of matrix factorization, see [CRCR, Rem. 2.9] for a
related discussion.
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5.1. Orbifold completion

In this section we will briefly recall the highlights of [CR2], where a proof of all the results
we present can be found in detail. This paper presents a description in bicategorical terms
of a generalization of the orbifolding procedure1, especially for the case of topological
field theories and with special attention to the case of 2 dimensions. They develop a
general framework which takes a bicategory B as an input and returns its so-called orbifold
completion Borb. This completion supports the construction of new equivalences of 1-
morphisms of our interest. Then, they focus on the example of the bicategory of Landau-
Ginzburg models and apply there this framework.

Let B a bicategory whose morphism categories are idempotent complete.

Definition 5.1.1. The equivariant completion of B, denoted Beq, is the bicategory with:

◦ Objects: pairs (a,A) where a ∈ Ob (B) and A ∈ B (a, a) is a separable Frobenius
algebra;

◦ 1-morphisms: given two objects (a,A) and (b, B), a 1-morphismX : (a,A)→ (b, B) ∈
B (a, b) is a B-A-bimodule;

◦ 2-morphisms: 2-morphisms in B that are bimodule maps;

◦ Composition: let X : (a,A) → (b, B) and Y : (b, B) → (c, C) be two 1-morphisms;
their composition is given by the tensor product X ⊗B Y : (a,A)→ (c, C). Compo-
sition of 2-morphisms is that of B. The associator in Beq is the one induced from B
as well.

◦ Unit 1-morphism: for (a,A) ∈ Beq is A. The left and right unit action onX : (a,A)→
(b, B) is given by the left and right action on the corresponding bimodule.

Remark 5.1.2. Note here that B fully embeds in Beq. In addition, this bicategory also
satisfies that (Beq)eq ∼= Beq.

1By orbifolding, we mean the following procedure, which is standard in (quantum) field theory, string
theory, algebraic geometry and representation theory. Consider a theory (let us be slightly vague in
this regard) together with a symmetry group. Gauging this symmetry amount to restricting to the
invariant sectors while simultaneously adding new twisted sectors. In this way, the orbifold theory is
constructed from the original one, and it often inherits nice properties from the symmetry group.
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5. Orbifold equivalence

Note here that in general, the tensor product over a given algebra A may not exist, but
in the following lemma we provide an existence criterion which suffices for our purposes.

Lemma 5.1.3. Suppose that A is separable Frobenius. Then X⊗AY exists for all modules
X, Y .

Before we continue, we demand in addition that B has adjoints satisfying †X = X† for
all 1-morphisms X, and that B is pivotal. With a bit of work, it is possible to prove the
following theorem in Beq.

Theorem 5.1.4. Let X ∈ B (a, b) have invertible right quantum dimension. Then A :=
X†⊗X is a symmetric separable Frobenius algebra in B (a, a) and X : (a,A)� (b, Ib) : X†

is an adjoint equivalence in Beq.

Note here that A not only needs to be separable but also symmetric. Then, introduce
the following related bicategory.

Definition 5.1.5. The orbifold completion Borb of B is the full subbicategory of Beq whose
objects are pairs (a,A) where a ∈ Ob (B) and A a separable symmetric Frobenius algebra.
We refer to the objects of this subbicategory as generalized orbifolds.

Notice here that B ⊂ Borb ⊂ Beq. The orbifold completion Borb is pivotal as well, and
the same results for Beq hold for this case: one can show that (Borb)orb ∼= Borb, and in
addition, an analogous theorem of 5.1.4 holds for this subbicategory. It is precisely this
result what will be most useful for us. To finish this review, let us focus our attention on
the special example of LG. In this bicategory, one can state the following proposition as a
consequence of Theorem 5.1.4.

Proposition 5.1.6. Let X : (R,W )→ (S, V ) (with R = k [x1, . . . , xn], S = k [z1, . . . , zm])
with invertible right quantum dimension in LG. Then m = n mod 2, †X ∼= X† and

X† ⊗ (−) : hmfωS,V
∼= mod

(
X† ⊗X

)
: X ⊗ (−)

where by mod
(
X† ⊗X

)
we mean the category of X† ⊗X-modules.

There is some kind of polynomials which we will pay careful attention to: that of simple
singularities. They have an ADE classification ([Ar]), and as we have mentioned in 3.2,
it was conjectured in the physics literature ([Mar, VW, HW1, HW2, HW3]) that Landau-
Ginzburg models with these potentials correspond to N = 2 minimal conformal field
theories. These rational CFTs are known to be (generalized) orbifolds of each other ([Gr,
FFRS3]), hence it makes sense to conjecture some equivalences of categories relating these
potentials. This was a starting point which inspired the next section.
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5.2. Orbifold equivalent potentials

5.2. Orbifold equivalent potentials

This section contains the paper [CRCR], where our purpose was two-fold. Firstly, we
defined an equivalence relation on the set Pk of all potentials, where the number of variables
in the polynomial ring is allowed to vary, but where the field k is kept fixed. Secondly, in
the case k = C we listed all equivalence classes in the restricted set of simple singularities,
leading to new equivalences of categories predicted by the LG/CFT correspondence. Let
us first give a flavour of the highlights of this joint work with Nils Carqueville and Ingo
Runkel.

The equivalence relation between potentials is defined by the existence of a matrix fac-
torization with certain properties. Let us write x for the sequence of variables x1, . . . , xm.

Definition/Theorem 5.2.1. We say that two homogeneous potentials V (x1, . . . , xm),
W (y1, . . . , yn) ∈ Pk are orbifold equivalent, V ∼ W , if there exists a finite-rank graded
matrix factorization of W−V for which the left and right quantum dimension are non-zero.
This defines an equivalence relation on Pk.

We shall prove the above statement, as well as Propositions 5.2.3 and 5.2.5, in Sub-
section 5.2.2. The name ‘orbifold equivalence’ has its roots in the study of orbifolds via
defects in two-dimensional quantum field theories [FFRS3, DKR, CR2].

Recall here that for ungraded matrix factorizations the quantum dimensions can be
polynomials, but in the graded case the quantum dimensions are just numbers:

Lemma 5.2.2. Quantum dimensions of graded matrix factorizations take value in k.

Proof. By construction the adjunction maps of [CM1] have degree zero for any graded
matrix factorization X. Hence qdiml(X) and qdimr(X) must be in k since the variables
have positive degrees and every closed endomorphism of the unit factorization is homotopy
equivalent to a polynomial. Alternatively, one may simply count degrees in the explicit
formulas in 2.1.14.

As a consequence of this lemma, in the graded case the statements “X has non-zero
quantum dimensions” and “X has invertible quantum dimensions” are equivalent.

Two basic properties of orbifold equivalences are:

Proposition 5.2.3. Let V (x),W (y), U(z) ∈ Pk.

1. (Compatibility with external sums) If V ∼ W , then V + U ∼ W + U .

2. (Knörrer periodicity) W ∼ W + u2 + v2.

The following proposition gives some simple necessary conditions for any two potentials
to be orbifold equivalent.

Proposition 5.2.4. Suppose V,W ∈ Pk are orbifold equivalent. Then

1. m− n is even, where V ∈ k[x1, . . . , xm] and W ∈ k[y1, . . . , yn].
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5. Orbifold equivalence

2. cV = cW .

Part (i) is trivial since the supertrace in Proposition 2.1.14 is zero for an odd matrix.
Part (ii) is proved in [CR2, Sect. 6.2].

The converse of Proposition 5.2.4 is expected to be false. For example, consider the
family of potentials x 3

1 +x 3
2 +x 3

3 + c x1x2x3 with c ∈ C which all have central charge 3 and
whose zero locus is an elliptic curve in CP2. In analogy with [FGRS, BBR] we expect the
potentials for different values of c to be orbifold equivalent iff the complex structure param-
eters of the corresponding curves are related by some GL(2,Q) transformation, resulting
in infinitely many equivalence classes for these potentials.

If V,W ∈ Pk are orbifold equivalent, then the corresponding categories of matrix
factorizations are closely related. Namely, let X = (X, dX) be a finite-rank graded
matrix factorization of W (y) − V (x) with non-zero quantum dimensions. Let further
M = (M,dM) be a graded matrix factorization of V (x). Then their tensor product
X ⊗M := (X ⊗k[x]M,dX ⊗ 1 + 1⊗ dM) is a graded matrix factorization of W (y) (which is
necessarily of infinite rank, but still equivalent to a finite-rank factorization, for M 6= 0).

Proposition 5.2.5. Suppose that V (x), W (y) ∈ Pk are orbifold equivalent and let X ∈
hmfgr

k[x,y],W−V have non-zero quantum dimensions. Then every matrix factorization in

hmfgr
k[y],W occurs as a direct summand of X ⊗M for some M ∈ hmfgr

k[x],V . This remains
true if ‘hmfgr’ is replaced by ‘hmf’ everywhere.

5.2.1. Orbifold equivalence for simple singularities

Now we take k = C and consider the subset of potentials which define simple singularities.2

These fall into an ADE classification and can be taken to be the following elements of
C[x1, x2] (see e. g. [Yo, Prop. 8.5]):

W (Ad−1) = x d1 + x 2
2 c = 1− 2

d
(d > 2)

W (Dd+1) = x d1 + x1x
2
2 c = 1− 2

2d
(d > 3)

W (E6) = x 3
1 + x 4

2 c = 1− 2
12

(5.1)

W (E7) = x 3
1 + x1x

3
2 c = 1− 2

18

W (E8) = x 3
1 + x 5

2 c = 1− 2
30

From Proposition 5.2.4 we know that for two potentials to be orbifold equivalent, their cen-
tral charges have to agree. The preimages of the central charge function on the potentials
in (5.1) are precisely the sets{

W (Ad−1)
}

for d odd,{
W (Ad−1),W (Dd/2+1)

}
for d even and d /∈

{
12, 18, 30

}
, (5.2){

W (A11),W (D7),W (E6)
}
,
{
W (A17),W (D10),W (E7)

}
,
{
W (A29),W (D16),W (E8)

}
.

2As we shall see in Section 5.2.2, particularly in Remark 5.2.16, we can also work over the cyclotomic
field k = Q(ζ) for an appropriate root of unity ζ.
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In fact, this list exhausts the relevant orbifold equivalences:

Theorem 5.2.6. The orbifold equivalence classes of the potentials (5.1) are precisely those
listed in (5.2).

This is our main result (together with Corollary 5.2.7 below and Proposition 5.1.6),
which we prove in Section 5.2.2 by explicitly constructing graded matrix factorizations X
with non-zero quantum dimensions for the equivalences W (A2d−1) ∼ W (Dd+1) (already given
in [CR2]), as well as W (A11) ∼ W (E6), W (A17) ∼ W (E7) and W (A29) ∼ W (E8).

Proposition 5.2.5 and Theorem 5.2.6 can be strengthened to equivalences of categories
by invoking the general theory of equivariant completion -see Proposition 5.1.6.

In Section 5.2.2 we will explicitly compute X† ⊗ X for the matrix factorizations X
giving rise to the orbifold equivalences of simple singularities. For those involving E-type
singularities we find that X†⊗X decomposes into sums of well-known matrix factorizations:

Corollary 5.2.7. We have

hmfgr

C[x],V (E6)
∼= mod

(
P{0} ⊕ P{−3,−2,...,3}

)
,

hmfgr

C[x],V (E7)
∼= mod

(
P{0} ⊕ P{−4,−3,...,4} ⊕ P{−8,−7,...,8}

)
, (5.3)

hmfgr

C[x],V (E8)
∼= mod

(
P{0} ⊕ P{−5,−4,...,5} ⊕ P{−9,−8,...,9} ⊕ P{−14,−13,...,14}

)
where the rank-one matrix factorizations PS are those defined in Example 2.1.7.

Remark 5.2.8. 1. The construction of the equivalence relation can be repeated in a
number of slightly modified settings. For example, one can work with ungraded
matrix factorizations, or one can work over any commutative ring k as in [CM1]. Or,
instead of using a Q-grading, one can consider matrix factorizations with R-charge
in the sense of [CR3] (which is more general).

The setting used in this paper was chosen to be on the one hand as simple as possible
and on the other hand to be strong enough for us to be able to prove the decompo-
sition of simple singularities into equivalence classes (5.2) – hence the homogeneous
potentials and the Q-grading. (In the ungraded setting we do not know how to
exclude the existence of equivalences beyond those in (5.2).)

2. The decompositions (5.2) and (5.3) are expected from two-dimensional rational con-
formal field theory.

3. It was shown in [KST] that for a simple singularity V ∈ C[x], hmfgr
C[x],V is equivalent

to Db(RepCQ), where Q is (any choice of) the associated Dynkin quiver. Thus by
Theorem 5.2.6 and [CR2] the derived representation theory of ADE quivers enjoys
orbifold equivalences analogous to (5.3).3 The monoids X†⊗X ∼= P{0}⊕ . . . translate
into functors on Db(RepCQ) whose actions on simple objects are easily computable.

3Such a relation between A- and D-type quivers was already proven in [RR] by different methods.
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5.2.2. Proofs

In this subsection we provide proofs of the results summarised above. The discussion for
simple singularities can also be viewed as showcasing methods that may prove useful for
constructing further orbifold equivalences between potentials.

Pivotal bicategories

We will use the concepts and notation from Subsection 1.1. The notion of orbifold equiv-
alence actually makes sense between objects in any pivotal bicategory.

Definition 5.2.9. Let B be a pivotal bicategory. Two objects a, b ∈ B are orbifold
equivalent, a ∼ b, if there is an X ∈ B(a, b) such that

1. X has invertible left and right quantum dimensions, and

2. Dl(X) and Dr(X) map invertible quantum dimensions to automorphisms.

Condition (ii) is needed for orbifold equivalence in this general setting to be an equiv-
alence relation (see Theorem 5.2.10). This condition may be hard to check directly, as
it requires knowing all invertible elements in End(Ia) and End(Ib) which arise as quan-
tum dimension of some 1-morphism. A special case where condition (ii) is already im-
plied by condition (i) is if B is such that every Hom-category B(a, b) is R-linear for some
fixed commutative ring R, and such that the left and right quantum dimensions of ev-
ery 1-morphism X ∈ B(a, b) are in R · 1Ia and R · 1Ib , resp. In this case one may
think of the left/right quantum dimension as an element of R, and one can check that
qdiml/r(X ⊗ Y ) = qdiml/r(X) · diml/r(Y ), where the product on the right is in R. Graded
finite-rank matrix factorizations are an example of this R-linear setting (see Lemma 5.2.2
below).

Theorem 5.2.10. Orbifold equivalence is an equivalence relation.

Proof. To see reflexivity a ∼ a one can take X = Ia, for which Dl(Ia) = 1Ia = Dr(Ia).
For symmetry and transitivity it is helpful to expand condition (ii) of the equivalence

relation in more detail:

(ii-r) for every e ∈ B and every Z ∈ B(e, a) such that qdimr(Z) is invertible in End(Ia),
we have that Dr(X)(qdimr(Z)) is invertible in End(Ib);

(ii-l) for every f ∈ B and every Z ′ ∈ B(b, f) such that qdiml(Z
′) is invertible in End(Ib),

we have that Dl(X)(qdiml(Z
′)) is invertible in End(Ia).

Of course, since (ii-r) holds for all Z, it also holds for all Z†, and hence Dr(X) also maps
invertible left quantum dimensions to automorphisms. The same applies to (ii-l).

Symmetry a ∼ b ⇔ b ∼ a follows by replacing X by X†. That X† satisfies (i) follows
from that qdiml(X

†) = qdimr(X). To see (ii-r) for X†, use Dr(X†) = Dl(X) and that (ii-l)
holds for X. Condition (ii-l) follows analogously.
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5.2. Orbifold equivalent potentials

To check transitivity, consider X ∈ B(a, b) and Y ∈ B(b, c) satisfying conditions (i) and
(ii). Then qdimr(Y ⊗X) = Dr(Y )(qdimr(X)) which is invertible by (i) for X and (ii-r) for
Y . Dito for qdiml. Next let Z ∈ B(e, a) be as in (ii-r) above. Then Dr(Y ⊗X)(qdimr(Z)) =
Dr(Y )(qdimr(X ⊗ Z)). Now qdimr(X ⊗ Z) is invertible by (ii-r) for X and therefore
Dr(Y )(qdimr(X ⊗ Z)) is invertible by (ii-r) for Y . That Y ⊗ X satisfies (ii-l) is seen
similarly.

We conclude our brief general discussion with an implication of the existence of orbifold
equivalences in the setting of retracts and idempotent splittings. An object S in some
category is called a retract of an object U if there are morphisms e : S → U and r : U → S
such that r ◦ e = 1S. In particular, e is mono and so S is a subobject of U .

Proposition 5.2.11. Let a, b, c, d ∈ B and let X ∈ B(a, b), Y ∈ B(c, d) have invertible
left quantum dimensions. Every Z ∈ B(a, c) is a retract of Y † ⊗ F ⊗X for some suitable
(Z-dependent) F ∈ B(b, d).

Proof. We set F = Y ⊗ Z ⊗ X† and define the maps e : Z → Y † ⊗ F ⊗ X and r :
Y † ⊗ F ⊗X → Z by

e = c̃oevY ⊗ 1Z ⊗ c̃oevX ,

r =
(
qdiml(Y )−1 ⊗ 1Z ⊗ qdiml(X)−1

)
◦
(
evY ⊗ 1Z ⊗ evX

)
. (5.4)

Clearly, r ◦ e = 1Z .

Remark 5.2.12. If the Hom-categories of B are additive and if idempotent 2-morphisms
split, we can improve on Proposition 5.2.11 slightly: instead of Z just being a retract,
it now even occurs as a direct summand of Y † ⊗ F ⊗ X for a suitable F . To see this,
take the maps e, r from the proof, note that p = e ◦ r is an idempotent endomorphism of
Y † ⊗ Y ⊗ Z ⊗ X† ⊗ X, and consider the decomposition 1 = p + (1 − p) into orthogonal
idempotents.

We may now proceed to prove the results advertised in Section 5.2.

Proof of Theorem 5.2.1. This is a corollary of [CM1, Prop. 8.5]: reflexivity and symme-
try follow analogously to Theorem 5.2.10, and transitivity follows from the fact that the
quantum dimensions 2.1.14 are manifestly multiplicative up to a sign.

Proof of Proposition 5.2.3. From 2.1.14 it is clear that quantum dimensions are multiplica-
tive (up to a sign) also for the external tensor product ⊗k, showing part (i). Part (ii) is
proven in [CR2, Sect. 7.2].

Proof of Proposition 5.2.5. This is a direct consequence of the proof of Proposition 5.2.11
and Remark 5.2.12 as we are dealing with idempotent complete matrix factorization cate-
gories.
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Simple singularities

Let W (y1, y2) be one of the potentials W (Dd/2+1),W (E6),W (E7),W (E8) in (5.1), and let
V (x1, x2) = W (Ad−1) = xd1 + x2

2 be the corresponding A-type potential of the same central
charge as W . To avoid too many indices, we rename

x1  u , x2  v , y1  x , y2  y . (5.5)

In this section we will give a finite-rank graded matrix factorization of W (x, y)−V (u, v)
of non-zero left and right quantum dimension in each case, thus proving the results collected
in Section 5.2.1. These matrix factorizations have all been constructed along the following
lines:

1. Pick a matrix factorization X0 of W (x, y)− v2 that is of low rank.

2. Thinking of u as a deformation parameter, add to each entry of the matrix dX0 the
most general homogeneous polynomial of the form u ·p(u, v, x, y) with the same total
degree as the given entry. Let dXu be the resulting matrix.

3. Reduce the number of free parameters in the polynomials p by absorbing some of
them via a similarity transformation dXu 7→ Φ ◦ dXu ◦ Φ−1.

4. Try to find a set of parameters (the remaining coefficients in the polynomials p) such
that dXu ◦ dXu = (W − V ) · idXu .

Choosing a low-rank starting point in (i) and reducing the number of parameters via
(iii) only serves to simplify the problem in (iv). We will work through these steps for
W = W (Dd/2+1) and W = W (E6) in some detail, while our discussion will be briefer for
W (E7) and W (E8).

W (Dd/2+1) ∼W (Ad−1)

We set b = d/2, so that W = xb + xy2 and V = u2b + v2, and we write R = C[u, v, x, y].
As the starting point in step (i) we choose X0 = (X, dX0) with Z2-graded R-module X =
R2 ⊕R2 and twisted differential

dX0 =

(
0 d1

X0

d0
X0

0

)
with d1

X0
=

(
x v
v xb−1 + y2

)
. (5.6)

Since det(d1
X0

) = xb+xy2−v2, the component d0
X0

is determined to be the adjunct matrix,
d0
X0

= (d1
X0

)#. Recall that the adjunct M# of an invertible matrix M has entries which
are polynomial in those of M and satisfies M−1 = (detM)−1 ·M#.

The deformed matrix factorization Xu has the same underlying R-module R2⊕R2. For
step (ii) we need to pick the most general homogeneous deformation of d1

X0
, which is

d1
Xu =

(
x+ u p11 v + u p12

v + u p21 xb−1 + y2 + u p22

)
where pij ∈ C[u, v, x, y] . (5.7)
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The degrees of the variables are |u| = 1/b, |v| = 1, |x| = 2/b, and |y| = 1− 1/b. Hence the
total degrees of the pij have to be

|p11| = 1
b
, |p12| = 1− 1

b
, |p21| = 1− 1

b
, |p22| = 2− 3

b
. (5.8)

From this it follows that p11 = a1u for some a1 ∈ C, but the remaining pij will contain of
the order b many free coefficients.

Moving to step (iii), we will now use degree-preserving row and column operations on
d1
Xu

to reduce the number of free coefficients. By applying the inverse operations to d0
Xu

one produces in this way an isomorphic matrix factorization. The most general such row
and column manipulations turn out to be(

1 0
f 1

)
d1
Xu

(
1 g
0 1

)
=

(
x+ a1u

2 v + u p12 + g(x+ a1u
2)

v + u p21 + f(x+ a1u
2) ∗

)
(5.9)

where |f | = |g| = 1− 2/b. We see that f, g can be used to remove any x-dependence from
p12 and p21, and we arrive at the following reduced ansatz: d1

Xu
of the form (5.7) with

p11 = a1u , p12 = a2y + a3u
b−1 ,

p21 = a4y + a5u
b−1 , p22 = q1v + q2y + q3 , (5.10)

where ai ∈ C and qi ∈ C[u, x] with degrees |q1| = 1−3/b, |q2| = 1−2/b, and |q3| = 2−3/b.
Step (iv) amounts to the tedious task of trying to find conditions such that dXu ◦ dXu =

(W −V ) ·1. The second component of the twisted differential is uniquely determined to be
d0
Xu

= q/ det(d1
Xu

) · (d1
Xu

)# with q = xb + xy2 − u2b − v2, and we need to find values of the
deformation parameters so that this matrix has polynomial entries. Since q ∈ C[x, y, u, v]
is irreducible, either q is a factor of det(d1

Xu
), or det(d1

Xu
) has to cancel against the entries

of (d1
Xu

)#. Degree considerations show that the latter is not possible, and in fact det(d1
Xu

)
equals q up to a multiplicative constant. By rescaling d1

Xu
if necessary, without restriction of

generality we can impose det(d1
Xu

) = q. In solving this condition, one is lead to distinguish
between two cases, a2 = 0 and a2 6= 0. Setting a2 = 0 produces a solution with zero left
and right quantum dimension. On the other hand, keeping s := a2 6= 0 forces

d1
Xu =

(
x− (su)2 v + y(su)

v − y(su) xb−(su)2b

x−(su)2 + y2

)
where s2b = 1 . (5.11)

For s = 1 this is the solution given in [CR2, Sect. 7.3]. The quantum dimensions are

qdiml(Xu) = −2s , qdimr(Xu) = −s−1 . (5.12)

What remains to be done is to check that there exists a Q-grading on Xu = (X, dXu)
such that dXu has Q-degree 1. It is in fact easy to write down all such gradings. The
Q-grading on the ring R is fixed by |1| = 0, with the variables u, v, x, y having degrees as
stated below (5.7). Writing R[α], α ∈ Q, for R with |1| = α, the possible gradings on X
are

X0 = R[α]⊕R[α− 1 + 2
b
] , X1 = R[α− 1 + 2

b
]⊕R[α] , α ∈ Q . (5.13)
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This completes the proof that the potentials W (Ad−1) and W (Dd/2+1) are orbifold equiva-
lent. We can summarise the above discussion as follows.

Lemma 5.2.13. Let Y be a rank-two Q-graded matrix factorization of xb +xy2−u2b− v2.
Suppose that (i) Y has non-zero quantum dimensions and (ii) when setting u to zero, Y
is equal to X0 in (5.6). Then Y is isomorphic in hmfgr

C[u,v,x,y],xb+xy2−u2b−v2 to Xu in (5.11)

for some choice of s.

Let us analyze the matrix factorization Xu a bit further. First we recall the definition of
the permutation-matrix factorizations PS from 2.1.7. The left and right quantum dimen-
sions of a permutation-type matrix factorization PJ were computed in [CR3, Sect. 3.3] to
be

qdiml(PJ) =
∑
l∈J

ζ ld , qdimr(PJ) =
∑
l∈J

ζ−ld . (5.14)

The automorphism σ of C[u] determined by σ(u) = ζdu leaves the potential ud invariant.
Given a matrix factorization X of W − ud for some W ∈ C[x], twisting the C[u, x]-action
onX by σl (with σ extended toC[u, x] via σ(xi) = xi) results again in a matrix factorization
of W − ud which we denote by Xσl . It follows from [CR1, Lem. 2.10] that

Xσl
∼= X ⊗ P{−l} (5.15)

in hmfgr
C[u,x],W−ud .

Remark 5.2.14. The observation (5.15) together with the classification given in Lemma
5.2.13 explains the 2b-th root of unity s appearing as a parameter in (5.11). To wit, given
any 1-morphism P : V → V of non-zero quantum dimensions, the composition Xu ⊗ P :
V → W also has non-zero quantum dimensions. Consider the choice P = P{l} ⊗C Iv2 ,

where Iv2 the unit 1-morphism for the potential v2 with twisted differential ( 0 v′−v
v′+v 0 ).

Then P is a 1-endomorphism of u2b + v2 and Xu ⊗ P is again a rank-two factorization
satisfying the conditions in Lemma 5.2.13. Hence Xu ⊗ P must be isomorphic to Xu for
a possibly different choice of s. But different choices of s precisely amount to twisting the
u-action by some power of the automorphism σ.

It was checked in [CR2, Sect. 7.3] that for d ∈ {2, 3, . . . , 10}, and up to a trivial factor
of the unit Iv2 the monoid X†u′ ⊗Xu is isomorphic to

P{0} ⊕ P{0,1,...,d−1}\{ d
2
} . (5.16)

It is straightforward to compute an explicit basis for the endomorphisms of Xu in the
homotopy category, e. g. by using the Singular code of [CDR]. We have done so for small
values of d, with the result

End(Xu) ∼=
( d−2⊕

i=0

Ci· 2
d

)
⊕C d−2

d
(5.17)

where Cj denotes the one-dimensional subspace of maps of Q-degree j. Both (5.16)
and (5.17) are expected to be the correct expressions for all d.
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W (E6) ∼W (A11)

Our starting point in step (i) now is the matrix factorization X0 = (R2 ⊕ R2, dX0) of
x3 + y4 − v2 with R = C[u, v, x, y] and twisted differential

d1
X0

=

(
y2 − v −x
x2 y2 + v

)
, d0

X0
= (d1

X0
)# . (5.18)

This is one of the six indecomposable objects of hmfgr

C[v,x,y],W (E6)−v2 listed in [KST, Sect. 5].

The variable degrees are

|u| = 1
6
, |v| = 6

6
, |y| = 3

6
, |x| = 4

6
. (5.19)

Carrying out steps (ii) and (iii) leads to the possibility

d1
Xu =

(
y2 − v + a1xu

2 + a2u
6 −x+ a3yu+ a4u

4

x2 + a5yxu+ a6xu
4 + a7vu

2 + q y2 + v + a8xu
2 + a9u

6

)
(5.20)

for the reduced ansatz, where ai ∈ C and q ∈ C[u, y] with |q| = 8/6. Of course a different
choice of similarity transformation may give a different (but isomorphic) reduced ansatz.
Here, the row and column manipulations were used to absorb the terms yu3 in the diagonal
entries.

By the same argument as used in the D-case, we now need to solve the condition
det(d1

Xu
) = x3 + y4 − u12 − v2 under the extra constraint that Xu has non-zero quan-

tum dimensions. This leads to

d1
Xu =

(
a b
c d

)
with a = y2 − v + 1

2
x(su)2 + 2t+1

8
(su)6 ,

b = −x+ y(su) + t+1
4

(su)4 ,

c = x2 + yx(su) + t
4
x(su)4 + 2t+1

4
y(su)5 − 9t+5

48
(su)8 ,

d = y2 + v + 1
2
x(su)2 + 2t+1

8
(su)6 , (5.21)

and d0
X0

= (d1
X0

)#. Here, s and t can be any solution of

t2 = 1
3
, s12 = −576 (26 t− 15) . (5.22)

Note that s can be modified by a 12-th root of unity – the interpretation of this is as in
Remark 5.2.14.

The quantum dimensions of Xu are

qdiml(Xu) = s , qdimr(Xu) = 3 (1− t)s−1 , (5.23)

and all possible Q-gradings on Xu are again easily found: the underlying Z2-graded
R-module X = X0 ⊕X1 has components with Q-grading

X0 = R[α]⊕R[α− 1
3
] , X1 = R[α]⊕R[α− 1

3
] , α ∈ Q. (5.24)

As in the D-case, we can summarise the above as:
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5. Orbifold equivalence

Lemma 5.2.15. Let Y be a rank-two Q-graded matrix factorization of x3 + y4 − u12 − v2.
Suppose that (i) Y has non-zero quantum dimensions and (ii) when setting u to zero, Y
is equal to X0 in (5.18). Then Y is isomorphic in hmfgr

C[u,v,x,y],x3+y4−u12−v2 to Xu in (5.21)

for some solution s, t of (5.22).

Computing the endomorphism ofXu in the homotopy category one finds the 16-dimensional
space

End(Xu) ∼=
( 10⊕

i=0

Ci· 2
12

)
⊕
( 7⊕

i=3

Ci· 2
12

)
. (5.25)

As mentioned in Section 5.2.1 and explained in detail in [CR2], a matrix factorization X
of W (y) − V (x) with invertible quantum dimensions allows us to describe all matrix fac-
torizations of W in terms of modules over A := X† ⊗X ∈ hmfgr

k[x,x′],V (x)−V (x′). The matrix
dX†⊗X also depends on the y-variables, and hence the matrix factorization A is of infinite
rank. However, by the results of [DM] it is homotopy equivalent (and thus isomorphic in
hmfgr

k[x,x′],V (x)−V (x′)) to a finite-rank matrix factorization.
The construction of this finite-rank factorization and the explicit homotopy equivalence

can be implemented on a computer; this was done in [CM2], where it was used to compute
Khovanov-Rozansky link invariants. In our present situation we can use this implementa-
tion to find that X†u′ ⊗ Xu is equivalent to the matrix factorization A′ ⊗k Iv2 , where the
twisted differential of A′ is represented by a 4-by-4 matrix a′ with nonzero entries

a′13 = (76
3
− 44t)u8 + (136

3
− 80t)u′u7 + (44− 76t)u′2u6 + (152

3
− 88t)u′3u5

+ (208
3
− 120t)u′4u4 + (152

3
− 88t)u′5u3 + (20t− 12)u′6u2

+ (88t− 152
3

)u′7u+ (52t− 92
3

)u′8 ,

a′14 = (224− 384t)u5 + (832− 1440t)u′u4 + (1440− 2496t)u′2u3

+ (1440− 2496t)u′3u2 + (832− 1440t)u′4u+ (224− 384t)u′5 ,

a′23 = (5
3
− 19t

6
)u11 + (49

6
− 43t

3
)u′u10 + (287

18
− 28t)u′2u9 + (361

18
− 35t)u′3u8

+ (208
9
− 241t

6
)u′4u7 + (475

18
− 46t)u′5u6 + (64

3
− 223t

6
)u′6u5 + (23

6
− 7t)u′7u4

+ (65t
3
− 227

18
)u′8u3 + (74t

3
− 259

18
)u′9u2 + (65t

6
− 58

9
)u′10u+ (5t

3
− 19

18
)u′11 ,

a′24 = (16− 28t)u8 + (104− 180t)u′u7 + (908
3
− 524t)u′2u6 + (524− 908t)u′3u5

+ (1780
3
− 1028t)u′4u4 + (448− 776t)u′5u3 + (652

3
− 376t)u′6u2

+ (60− 104t)u′7u+ (20
3
− 12t)u′8 ,

a′31 = 3tu4

4
− 3u′u3

4
+ u′2u2

4
+ 3u′3u

4
+ (−3t

4
− 1

4
)u′4 ,

a′32 = 6u− 6u′ ,

a′41 = (−13t
32
− 3

16
)u7 + ( 7t

32
+ 1

8
)u′u6 + (−13t

32
− 31

96
)u′2u5 + ( 3t

32
+ 19

96
)u′3u4

+ ( t
8

+ 1
48

)u′4u3 + ( t
16
− 1

12
)u′5u2 + ( t

8
+ 11

96
)u′6u+ ( 3t

16
+ 13

96
)u′7 ,

a′42 = (3t
4
− 1

4
)u4 + 2u′u3 − 3u′2u2 + 5u′3u

2
+ (−3t

4
− 5

4
)u′4 . (5.26)

This is a graded matrix factorization with grading:

X0 = R[α]⊕R[α− 1
2
] , X1 = R[α + 1

3
]⊕R[α− 1

6
] , α ∈ Q. (5.27)
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In anticipation of the comparison to conformal field theory in Subsection 5.2.3 we single
out one of the roots of (5.22),

tcft = −1/
√

3 . (5.28)

Choosing t = tcft and performing a series of row and column manipulations produces the
isomorphism 

φ 6 0 0
− 1

32
(12t+ 7) 0 0 0

0 0 1 0
0 0 ψ 1

 : A′ −→ P{0} ⊕ P{−3,−2,...,3} (5.29)

where φ = 1
4
(u + u′)(3tu2 − 3uu′ + u′2 + 3tu′2) and ψ = 1

24
(u3 − 3tu3 − 7u2u′ − 3t2u′ +

5uu′2 − 3tuu′2 − 5u′3 − 3tu′3). This proves the first third of Corollary 5.2.7.

Remark 5.2.16. One may wonder what the monoid X†u′ ⊗ Xu reduces to for the other
solution t = 1/

√
3 of (5.22), i. e. what is the equivalent to the right-hand side of (5.29).

As we will see momentarily, the other solution can be related to tcft via the action of an
appropriate Galois group.

Define ζd = e2πi/d and consider the cyclotomic field k = Q(ζd), i. e. the field obtained
from Q by adjoining the d-th primitive root of unity ζd. The Galois group is isomorphic to
the group of units in Zd, Gal(k/Q) ∼= Z×d . Given ν ∈ Z×d the action of the corresponding
Galois group element σν is σν(ζ

a
d ) = ζνad .

Let now V ∈ Q[x] be a potential with rational coefficients and let M be a finite-rank
matrix factorization of V over k[x]. We may take M = (k[x]2r, dM), where dM is a matrix
with entries in k[x]. Let σ ∈ Gal(k/Q) be an element of the Galois group and denote by
σ(dM) the matrix obtained by applying σ to each entry. Since σ(V ) = V , σ(dM) is still a
factorization of V , and we set σ(M) = (k[x]2r, σ(dM)). Analogously, if f : M → N is a
morphism with entries in k[x], then σ(f) is a morphism from σ(M) to σ(N).

Let us apply this to the isomorphism in (5.29). Write A′(t) for A′ to highlight the t-
dependence. We choose k = Q(ζ12) so that all PS are matrix factorizations over k[u, u′].
Since

tcft = −1
3

(
ζ12 + ζ−1

12

)
, (5.30)

also A′(tcft) has entries with coefficients in k. The same holds for the isomorphism (5.29),
and so we get an isomorphism from σ(A′(tcft)) to σ(P{0}⊕P{−3,−2,...,3}). Since the entries of
A′(t) are polynomials in u, u′, t with rational coefficients, we have σ(A′(tcft)) = A′(σ(tcft))),
and σ(PS) = Pσ∗(S), where σ∗ is the permutation of Z12 induced by the action of σ on the
12-th roots of unity.

It turns out that the orbit of tcft under Gal(k/Q) covers all, namely both, roots of (5.22):
we have σ5(tcft) = −1

3
(ζ5

12+ζ−5
12 ) = 1/

√
3 and σ5∗({−3,−2, . . . , 3}) = {−5,−3,−2, 0, 2, 3, 5}

and so we obtain the isomorphism

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{−5,−3,−2,0,2,3,5}

)
⊗k Iv2 for t = σ5(tcft) . (5.31)

Note that by construction A′(tcft) and A′(σ5(tcft)) are Morita equivalent, i. e. the category
mod(X†u′ ⊗Xu) does not depend on the choice of solution t. The situation is analogous for
the E7- and E8-singularities, cf. Remarks 5.2.18 and 5.2.19.
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5. Orbifold equivalence

W (E7) ∼W (A17)

In step (i) we pick the matrix factorization X0 = (R2 ⊕ R2, dX0) of x3 + xy3 − v2 with
twisted differential

d1
X0

=

(
v −x

x2 + y3 −v

)
, d0

X0
= (d1

X0
)# , (5.32)

one of the seven indecomposable objects of hmfgr

C[v,x,y],W (E7)−v2 listed in [KST]. In step (iii)

we again choose a similarity transformation that removes the term xu3 in the diagonal
entries. The result of step (iv) reads

d1
Xu =

(
a b
c d

)
with a = v − t2−10t+19

2
(su)9 + (t−2) y(su)5 + y2(su) ,

b = −x+ (2t−5) (su)6 + y(su)2 ,

c = x2 + y3 + (2t−5)2 (su)12 + (2t−5)x(su)6

+ 2(2t−5) y(su)8 + xy(su)2 + y2(su)4 ,

d = −v − t2−10t+19
2

(su)9 + (t−2) y(su)5 + y2(su) (5.33)

and d0
X0

= (d1
X0

)#. This time s and t can be any solution of

t3 − 21 t+ 37 = 0 , s18 = 26220 t2 + 67488 t− 376912 . (5.34)

We find that

qdiml(Xu) = −2s , qdimr(Xu) = (−30 + 5 t+ 2 t2)s−1 , (5.35)

and the the possible Q-gradings on Xu are given by

X0 = R[α]⊕R[α− 1
3
] , X1 = R[α]⊕R[α− 1

3
] , α ∈ Q. (5.36)

Lemma 5.2.17. Let Y be a rank-three Q-graded matrix factorization of x3 +xy3−u18−v2.
Suppose that (i) Y has non-zero quantum dimensions and (ii) when setting u to zero, Y is
equal to X0 in (5.32). Then Y is isomorphic in hmfgr

C[u,v,x,y],x3+xy3−u18−v2 to Xu in (5.33)

for some solution s, t of (5.34).

As before we compute the endomorphisms of Xu in hmfgr
C[u,v,x,y],x3+xy3−u18−v2 to be the

27-dimensional space

End(Xu) ∼=
( 16⊕

i=0

Ci· 2
18

)
⊕
( 12⊕

i=4

Ci· 2
18

)
⊕C 8

18
, (5.37)

and using the code of [CM2] together with row and column manipulations as in the previous
example, for the solution

tcft = 3
(
ζ18 + ζ−1

18

)
− 2
(
ζ2

18 + ζ−2
18

)
, (5.38)
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with ζd as in the WE6 case, to (5.34) we find that X†u′ ⊗Xu is isomorphic, up to the factor
Iv2 , to the rank-three graded matrix factorization

P{0} ⊕ P{−4,−3,...,4} ⊕ P{−8,−7,...,8} , (5.39)

proving the second third of Corollary 5.2.7.

Remark 5.2.18. As in Remark 5.2.16 one can check that the other solutions t to (5.34)
form a single orbit under the Galois group Gal(Q(ζ18)/Q): the other two solutions are

σ5(tcft) = 3
(
ζ5

18 + ζ−5
18

)
− 2
(
ζ10

18 + ζ−10
18

)
,

σ7(tcft) = 3
(
ζ7

18 + ζ−7
18

)
− 2
(
ζ14

18 + ζ−14
18

)
. (5.40)

Computing the actions of σ5∗ and σ7∗ on {−4,−3, . . . , 4} and {−8,−7, . . . , 8}, for example
σ5∗({−4,−3, . . . , 4}) = {0,±2,±3,±5,±8}, one thus finds that

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{0,±2,±3,±5,±8} ⊕ P{−8,−7,...,8}

)
⊗k Iv2 for t = σ5(tcft) ,

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{0,±3,±4,±7,±8} ⊕ P{−8,−7,...,8}

)
⊗k Iv2 for t = σ7(tcft) . (5.41)

W (E8) ∼W (A29)

The E8-case is considerably more complicated than the cases already treated. This starts
already in step (i) as the smallest factorizations of W (E8) − v2 are of rank four. Let us
choose

d1
X0

=


−v 0 x y
0 −v y4 −x2

x2 y −v 0
y4 −x 0 −v

 , d0
X0

=


v 0 x y
0 v y4 −x2

x2 y v 0
y4 −x 0 v

 , (5.42)

see [KST, Sect. 5]. This is a matrix factorization of x3 + y5 − v2.

In step (ii), the most generic homogeneous deformation of d1
X0

(deforming also the zero
entries, of course) has 82 free parameters. Via the similarity transformation in step (iii)
one can reduce this to 60 parameters. We refrain from giving this general deformation
explicitly.

For step (iv) one has to use a different method than in the other cases, because now
det(d1

X0
) = (x3 + y5 − v2)2 and imposing det(d1

Xu
) = (x3 + y5 − u30 − v2)2 turns out to be

impractical as it results in too many non-linear conditions. Instead, we make the ansatz
d0
Xu

= (x3 + y5 − u30 − v2)−1 · (d1
Xu

)# and require that d0
Xu

be a matrix with polynomial
entries. As before, this leads to a (very long) matrix factorization of x3 + y5 − u30 − v2

in terms of two parameters s, t, where t satisfies an eighth order equation and s30 is equal
to some polynomial in t. The eighth order equation, however, is a product of two fourth
order ones, and we select one of these and use it to simplify the matrix factorization. One
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is left with the matrix m := d1
Xu

, where with ς = su the matrix entries mij are as follows:

m11 = −v − (1+t)(3+t)(5+7t)
64

ς15 − 1+t
4
ς5x− 19+47t+25t2+5t3

192
ς9y − 1

2
ς3y2 ,

m12 = ς ,

m13 = x+ (−1+t)(23+36t+5t2)
96

ς10 ,

m14 = y ,

m21 = −138089−562209t−600371t2−116355t3

11520
)ς29 + −73−280t−285t2−50t3

160
ς19x

+ −29−25t+25t2+5t3

96
ς9x2 + −2107−8545t−9085t2−1735t3

960
ς23y

+ −33−57t−11t2+5t3

64
ς13xy + (5+7t)(13+36t+7t2)

384
ς17y2 − 3+4t

4
ς7xy2

+ −35−49t+7t2+5t3

96
ς11y3 − ςxy3 − 1

2
(1 + t)ς5y4 ,

m22 = −v + (1+t)(3+t)(5+7t)
64

ς15 + 1+t
4
ς5x+ 19+47t+25t2+5t3

192
ς9y + 1

2
ς3y2 ,

m23 = y4 + 3587+14687t+15785t2+3125t3

1920
ς24 + (1−t)(23+36t+5t2

96
ς9v

+ 43+102t+67t2+12t3

96
ς14x− (1+t)(81+126t+17t2)

384
ς18y + 2+3t

4
ς8xy

+ (2+t)(7+6t−5t2

96
ς12y2 + ς2xy2 + 1+2t

4
ς6y3 ,

m24 = −x2 + (−1+t)(23+36t+5t2)
96

ς10x+ 2+21t+32t2+9t3

48
ς14y ,

m31 = x2 + (1−t)(23+36t+5t2)
96

ς10x− 2+21t+32t2+9t3

48
ς14y ,

m32 = y ,

m33 = −v + −37−39t+29t2+15t3

192
ς15 + 1+t

4
ς5x+ −65−73t+37t2+5t3

192
ς9y − 1

2
ς3y2 ,

m34 = (1−t)(23+36t+5t2)
96

ς11 + ςx+ 1+t
2
ς5y ,

m41 = y4 + 3587+14687t+15785t2+3125t3

1920
ς24 + (−1+t)(23+36t+5t2)

96
ς9v

+ 43+102t+67t2+12t3

96
ς14x− (1+t)(81+126t+17t2

384
ς18y + 2+3t

4
ς8xy

+ (2+t)(7+6t−5t2)
96

ς12y2 + ς2xy2 + 1+2t
4
ς6y3 ,

m42 = −x+ (1−t)(23+36t+5t2)
96

ς10 ,

m43 = −569+2615t+2855t2+425t3

1920
ς19 + 17+t−37t2−5t3

96
ς9x+ −17−17t+13t2+5t3

64
ς13y

− 1+2t
4
ς7y2 − ςy3 ,

m44 = −v + 37+39t−29t2−15t3

192
ς15 − 1+t

4
ς5x+ 65+73t−37t2−5t3

192
ς9y + 1

2
ς3y2 .

The parameters s, t can be any solution of the equations

s30 = 1
4
(45308593275 t3 − 32199587625 t2 − 973905678975 t− 395277903075) ,

5 t4 − 110 t2 − 120 t− 31 = 0 . (5.43)

As already noted above, the matrix d0
Xu

is given by (x3 +y5−u30− v2)−1 · (d1
Xu

)#, which
has polynomial entries provided s, t solve (5.43). It is now straightforward to determine
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the Q-gradings on Xu to be given by

X0 = R[α]⊕R[α− 14

15
]⊕R[α− 1

3
]⊕R[α− 3

5
] ,

X1 = R[α]⊕R[α− 14

15
]⊕R[α− 1

3
]⊕R[α− 3

5
]

(5.44)

with α ∈ Q, and compute the quantum dimensions to be

qdiml(Xu) = 2s , qdimr(Xu) = 5
16

(−27− 86 t− 3 t2 + 4 t3) s−1 , (5.45)

which are indeed non-zero for all choices of s, t. This concludes the proof of Theorem 5.2.6.
Because we have made a number of restricting assumptions before arriving at (X, dXu),

we cannot claim a statement analogous to Lemmas 5.2.13, 5.2.15 and 5.2.17.

Finally we compute the endomorphisms of Xu in hmfgr
C[u,v,x,y],x5+y3−u30−v2 to be the 60-

dimensional space

End(Xu) ∼=
( 28⊕

i=0

Ci· 2
30

)
⊕
( 23⊕

i=5

Ci· 2
30

)
⊕
( 19⊕

i=9

Ci· 2
30

)
⊕C 28

30
. (5.46)

For the solution

tcft = −1
5

(
7 + 4

(
ζ30 + ζ−1

30

)
+ 8
(
ζ2

30 + ζ−2
30

)
− 16

(
ζ3

30 + ζ−3
30

))
(5.47)

of (5.43), X†u′ ⊗ Xu is isomorphic, up to the factor Iv2 , to the rank-four graded matrix
factorization

P{0} ⊕ P{−5,−4,...,5} ⊕ P{−9,−8,...,9} ⊕ P{−14,−13,...,14} . (5.48)

This concludes the proof of Corollary 5.2.7.

Remark 5.2.19. The other solutions of (5.43) are found via the Galois group Gal(Q(ζ30)/Q)
to be

σ7(tcft) = −1
5

(
7 + 4

(
ζ7

30 + ζ−7
30

)
+ 8
(
ζ14

30 + ζ−14
30

)
− 16

(
ζ21

30 + ζ−21
30

))
,

σ11(tcft) = −1
5

(
7 + 4

(
ζ11

30 + ζ−11
30

)
+ 8
(
ζ22

30 + ζ−22
30

)
− 16

(
ζ3

30 + ζ−3
30

))
,

σ13(tcft) = −1
5

(
7 + 4

(
ζ13

30 + ζ−13
30

)
+ 8
(
ζ26

30 + ζ−26
30

)
− 16

(
ζ9

30 + ζ−9
30

))
. (5.49)

The corresponding decompositions of X†u′ ⊗Xu are, with Z = P{0}⊕P{−14,−13,...,14} and up
to the factor Iv2 ,

Z ⊕ P{0,±2,±5,±7,±9,±14} ⊕ P{0,±2,±3,±4,±5,±7,±9,±11,±12,±14} for t = σ7(tcft) ,

Z ⊕ P{0,±3,±5,±8,±11,±14} ⊕ P{0,±2,±3,±5,±6,±8,±9,±11,±13,±14} for t = σ11(tcft) ,

Z ⊕ P{0,±3,±4,±5,±8,±9,±13} ⊕ P{0,±1,±4,±5,±8,±9,±12,±13,±14} for t = σ13(tcft) . (5.50)
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5. Orbifold equivalence

Another method to construct orbifold equivalences

There is another way, slightly different from the one described at the beginning of Sec-
tion 5.2.2, of obtaining the orbifold equivalences W (Dd/2+1) ∼ W (Ad−1), W (E6) ∼ W (A11),
and W (E7) ∼ W (A17). Roughly, this method starts with a matrix factorization M of a
potential W and computes the deformations [Lau, Siq] Mu of M . Then instead of setting
the deformation parameters to be solutions of the obstruction equations (which would give
factorizations of W ), one tries to re-interpret some of the parameters u as variables of
another potential V while choosing the remaining parameters such that Mu becomes a
factorization of W − V .

As this method may prove useful to construct further orbifold equivalences, we illustrate
it in more detail in the example of W (E6) ∼ W (A11):

1. Start with the matrix factorization (5.18) of W = W (E6)− v2 and compute its defor-
mations, using e. g. the implementation of [CDR].4

2. One obtains a 4-by-4 matrix D with polynomial entries in the variables v, x, y and
two deformation parameters u1, u2. By construction D squares to W · 1 + R, where
the matrix R vanishes if u1, u2 satisfy the obstruction equations.

3. Interpret the parameter u1 as the (rescaled) variable u and choose u2 ∈ C[u] such
that D becomes a factorization of W (E6)− u12− v2. This turns out to be isomorphic
to Xu of (5.21) with t = −1/

√
3.

In the cases W+v2 ∈ {W (Dd/2+1),W (E6),W (E7)} this method is especially straightforward
as the matrix D already squares to (W + f) · 1, where f is a polynomial with leading term

u
d/2
1 , u12

1 , u
18
1 , resp. On the other hand, for W = W (E8) − v2 the square of D is a more

generic matrix, rendering the problem D2 = (W − u30) · 1 much more computationally
involved.

5.2.3. Comparison to conformal field theory

In this subsection we describe how the orbifold equivalences we just described are precisely
the expected ones from the Landau-Ginzburg/conformal field theory correspondence, and
compare the conjectured algebra objects and defect spectra with those obtained.

Recall here that conformal field theories (as described in Section 3.1) form a bicategory.
Because of Proposition 3.1.6, the general concept of orbifold equivalence is applicable, and
then, there cannot be a topological defect joining two CFTs of different Virasoro central
charge. As a consequence, equality of central charges provides a necessary condition for
an orbifold equivalence to exist, cf. Proposition 5.2.4. Contrary to the matrix factorization
framework, for CFTs a useful sufficient condition is known for the existence of an orbifold
equivalence [FFRS3]:

4Of course the indecomposable object (5.18) has no nontrivial deformations, but that does not matter
here.
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5.2. Orbifold equivalent potentials

Let V be a rational vertex operator algebra. Suppose two CFTs have unique
bulk vacua and their algebra of bulk fields contains V ⊗C V as a subalgebra.
Then these two CFTs are orbifold equivalent.

Here the bar over V indicates that the second factor is embedded in the anti-holomorphic
fields.

Those LG models whose potentials define simple singularities are believed to renormalize
to CFTs that contain the N = 2 minimal super Virasoro vertex operator algebra with the
same central charge. The latter are rational, so by the above criterion all these CFTs of
the same central charge are orbifold equivalent.

One may expect topological defects between two infrared CFTs to have analogues already
in the corresponding LG model. Furthermore, one may expect that composition of topo-
logical defects commutes with renormalisation group flow. If so, the orbifold equivalences
of infrared CFTs should exist also for LG models. This is the reason why Theorem 5.2.6
is expected from the above CFT criterion.

After these qualitative considerations, we now turn to quantitative, more technical com-
parisons. The correspondence between topological defect lines of LG models of A-type
singularities and those of the associated diagonal N = 2 CFTs motivates the following
conjecture, whose ingredients we explain directly after stating it.

Conjecture 1. For any integer d > 3, consider the monoidal subcategory of the category
hmfgr(C[x, x′], xd − x′d) whose morphisms only have Q-degree zero, and which is gener-
ated by {P{a,a+1,...,a+b} | a, b ∈ Zd} with respect to tensor products and direct sums. This
subcategory is monoidally equivalent to Cd.

Where we have followed the notation introduced along this thesis.
We denote the simple objects of Cd by Ul,m, where l ∈ {0, 1, . . . , d − 2} and m ∈
{0, 1, . . . , 2d − 1}. As previously mentioned in Chapter 4, via the coset construction,
this describes the NS sector of the representations of the N = 2 minimal super Virasoro
vertex operator algebra at central charge c = 3(1 − 2/d), see again [CR1, App. A.2] for
details and references.5

The status of Conjecture 1 is currently as follows.

- The functor which conjecturally provides the tensor equivalence acts on simple ob-
jects as P{a,a+1,...,a+b} 7→ Ub,b+2a. It is verified in [BR1] that this is compatible with
the tensor product on the level of isomorphism classes.

- Some, but far from all, associativity isomorphisms were proved to be compatible in
[CR1].

- For odd d, this was proved in Chapter 4.

5In [CR1] the (−)NS is missing in (A.38) and (A.45). This is a typo or an error, depending on one’s
disposition towards the authors.
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5. Orbifold equivalence

Comparison of algebra objects

According to [FRS1, FFRS], the full conformal field theories (with unique bulk vacuum)
that can be constructed starting from a rational vertex operator algebra V are parametrised
by Morita classes of special symmetric Frobenius algebras in the modular tensor category
of representations of V . The algebras relevant for the CFT describing the infrared fixed
point of an LG model with ADE-type potential are predicted from [Ga, Gr] to be non-
trivial only in the su(2) factor of D. More specifically, they are representatives of the ADE

classification of Morita classes of such algebras in Csu(2)
d−2 given in [Ost]. As objects in D

these algebras are

F (Ad−1) = U0,0 for d > 2 ,

F (Dd/2+1) = U0,0 ⊕ Ud−2,0 for d ∈ 2Z+ ,

F (E6) = U0,0 ⊕ U6,0 for d = 12 ,

F (E7) = U0,0 ⊕ U8,0 ⊕ U16,0 for d = 18 ,

F (E8) = U0,0 ⊕ U10,0 ⊕ U18,0 ⊕ U28,0 for d = 30 . (5.51)

Topological defects between a diagonal, i. e. A-type, CFT and another CFT from the
above list with the same value of d given by some algebra F are described by F -modules in
D [FFRS4]. This is consistent with the point of view of orbifold equivalences. There, the
algebra describing the theory on one side of a topological defect X in terms of the other
is X† ⊗ X, see [CR1] for details. In the present setting one has X = FF , X† = FF , and
FF ⊗F FF ∼= F as algebras.

On the matrix factorization side, the objects underlying the algebras describing the D-
and E-type singularities as orbifolds of A-type singularities are those in (5.16), (5.29),
(5.39) and (5.48) above. Under the tensor equivalence of Conjecture 1, they are indeed
mapped to the corresponding objects in the list (5.51). (It would of course be enough to
land in the same Morita class, but for our choices of matrix factorizations we get the actual
representatives chosen in (5.51).)

Comparison of defect spectra

Given the above observations on the objects underlying the algebras establishing the orb-
ifold equivalences, it is natural to expect that the matrix factorizations of the potential
differences described in Section 5.2.2 get mapped to the topological defects described by
the modules FF for F the corresponding algebra in (5.51). This expectation can be tested
by comparing the spectra of chiral primaries.

The chiral primaries in D are the ground states in the representations labelled Ul,l with
l ∈ {0, 1, . . . , d− 2}; their charge is l/d. The space of chiral primaries of holomorphic and
antiholomorphic labels l and m, resp., on the defect FF is isomorphic to the vector space

HomF (F ⊗ Ul,l ⊗ Um,−m, F ) ∼= Hom(Ul,l ⊗ Um,−m, F ) , (5.52)
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5.3. Further examples of orbifold equivalent potentials

where ‘HomF ’ comprises only F -module maps in D, and ‘Hom’ all maps in D. We refer to
[FFRS4] for an explanation of this formula. The total charge (as seen on the LG side) of
these chiral primaries is (l +m)/d.

Let us consider the example F = F (E6) in some detail. The first thing to note is that
Hom(Ul,l ⊗ Um,−m, Un,0) has dimension zero unless l = m. (Actually the fusion rules in

Cu(1)
2d tell us that l−m ∼= 0 mod 2d, but for the given range on l and m this just amounts

to l = m.) For l = m, the space is one-dimensional if n is even and n/2 6 l 6 d− 2− n/2,

as follows from the fusion rules of Csu(2)
d−2 . From the summand U0,0 in F (E6) we therefore get

one state at each charge l/6, l ∈ {0, 1, . . . , 10}, and from the summand U6,0 another state
of charge l/6 for each l ∈ {3, 4, . . . , 7}. Hence the total dimension of the space of chiral
primaries is 16, and we have perfect agreement with (5.25).

It is straightforward to carry out the analogous computations for F = F (Dd/2+1), F =
F (E7) and F = F (E8), again consistent with the charges and multiplicities of the matrix
factorization results listed in (5.16), (5.37) and (5.46), resp.

5.3. Further examples of orbifold equivalent potentials

At this point, one may wonder how to find further examples of orbifold equivalences, and
if possible in a structured way: this is the aim of current work in progress [RC]. For that,
our main strategy/idea is via the so-called Berglund-Hübsch transposition, which was first
defined in [BH]. Let W = W (x1, . . . , xn) be a potential, and fix k = C.

Definition 5.3.1. Consider a homogeneous polynomial W (x1, . . . , xn) whose number of
variables is equal to the number of monomials in W , namely,

W (x1, . . . , xn) =
n∑
i=1

ai

n∏
j=1

x
Eij
j

for some coefficients ai ∈ C∗ and Eij ∈ Z≥0. The Berglund-Hübsch transpose of W , W T is
defined to be the polynomial:

W T (x1, . . . , xn) =
n∑
i=1

ai

n∏
j=1

x
Eji
j

We denote as E = (Eij) the matrix of exponents, and as ET = (Eji) its Berglund-Hübsch
transposed matrix of exponents.

As it was proved in [BH] and explored in other later works (e.g. [ET]), this operation
provides pairs of mirror symmetric manifolds. Mirror symmetry is expected to be a special
case of orbifold equivalence, hence this strategy should be a candidate to generate new
orbifold equivalences.

Let us start with the three ADE potentials from the previous section. WAd−1
as well

as WE6 and WE8 , have diagonal matrices of exponents and hence E = ET for these three
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5. Orbifold equivalence

cases. Thus, WAd−1
= W T

Ad−1
, WE6 = W T

E6
and WE8 = W T

E8
. That means: these three

potentials are orbifold equivalent via the identity matrix factorization.
The remaining two polynomials, WE7 and WDd+1

are slightly different. For WE7 ,

E =

(
3 0
1 3

)
 ET =

(
3 1
0 3

)
but the resulting Berglund-Hübsch transposed polynomial is the same as the original one,
after an exchange of variables x! y. The only polynomial which will somehow change
after Berglund-Hübsch transposing is WDd+1

, giving W T
Dd+1

= xdy + y2.

One can check that W T
Dd−1

is equivalent to:

◦ WAd−1
: for the potential W = xdy + y2 − u2d − v2, consider the matrix factorization

given by the differential

d1 =

(
x− au −

(
y − iud − v

)
y − iud + v y x

d−(au)d

x−au

)

where a satisfies ad = −2i, with d0 = det (d1) d−1
1 . Computing the quantum dimen-

sions of this matrix factorization, we find out that

qdimr = −a−1

qdiml = −a

Hence WDTd+1
and WAd−1

are orbifold equivalent.

◦ WDd+1
: for the potential W = ud + v2u− xdy− y2, consider the matrix factorization

given by the differential

d1 =

ud−(x2a−2)
d

u−a−2x2 + v2 −
(
y + xd

2
− xv

a

)
−y − xd

2
+ xv

a
u− a−2x2


where a satisfies ad = −2i, with d0 = det (d1) d−1

1 . Computing the quantum dimen-
sions of this matrix factorization, we find out that

qdimr = −a

qdiml = −2

a

But notice here that the WDTd+1
is WDd+1

after a clever change of variables (y = xv
a
− xd

2
,

x2 = ua2), and the WAd−1
∼orb WDd+1

equivalence was already known. Hence, strictly
speaking, this is not a new orbifold equivalence.
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5.3. Further examples of orbifold equivalent potentials

As the simple singularities are only some special polynomials belonging to larger classes
of polynomials, one may wonder what other kinds of polynomials can one expect, in the
hope that maybe one could trace back other examples of orbifold equivalences via Berglund-
Hübsch transposition.

Let us first review some already existing results 6. According to Arnold [Ar],

Proposition 5.3.2. Any homogeneous potential of two variables of corank two7 contains
with nonzero coefficients one of the following sets of monomials:

Monomials
Class I {xa, yb}
Class II {xa, xyb}
Class III {xay, xyb}

(where a, b ∈ N, a, b ≥ 2).

Analogously, a similar phenomenon happens with potentials of three variables.

Proposition 5.3.3. Every homogeneous potential on three variables of corank 3 contains
with nonzero coefficients (for a suitable numbering of the variables) one or other of the
following sets of monomials:

Monomials
Class I {xa, yb, zc}
Class II {xa, yb, zcy}
Class III {xa, ybx, xzc}
Class IV {xa, ybz, zcy}
Class V {xa, ybz, zcx}
Class VI {xay, ybx, zcx}
Class VII {xay, ybz, zcx}

where a, b, c ∈ N, a, b, c ≥ 2, except for classes III and VI there are some conditions on the
powers a, b, c:

1. For Class III, the least common multiple [b, c] of b and c is divisible by a− 1.

2. For Class VI, (b− 1) c is divisible by the product of a − 1 and the greatest common
divisor (b, c) of b and c.

A special kind of polynomials of certain interest in several papers by Takahashi and
Ebeling (e.g. [ET]) are the so-called invertible polynomials, which one can define with a
given potential and its Berglund-Hübsch transpose.

6Polynomials over an algebraically closed field (say e.g. C) with an isolated singularity in 0, i.e. a single
critical point at 0, which have finite-dimensional Jacobi ring, are called nondegenerate. Potentials are
indeed nondegenerate polynomials.

7By cokernel of a function we mean the dimension of the kernel of the differential of the map.
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5. Orbifold equivalence

Definition 5.3.4. A homogeneous polynomial W (x1, . . . , xn) is invertible if the following
conditions are satisfied:

1. The number of variables has to be equal to the number of monomials in W , namely,

W (x1, . . . , xn) =
n∑
i=1

ai

n∏
j=1

x
Eij
j

for some coefficients ai ∈ C∗ and Eij ∈ Z+.

2. The matrix E := (Eij) is invertible over Q.

3. The Jacobian rings of W and W T have both to be finite dimensional algebras over
C and the dimension of the Jacobi rings of W and W T have to be greater or equal
than 1.

In [KS], one can find the following result, claiming that any invertible polynomial W is
a (Thom-Sebastiani) 8 sum of invertible polynomials of the following types:

1. xa1
1 (“Fermat type”);

2. xa1
1 x2 + xa2

2 x3 + . . .+ x
am−1

m−1 xm + xamm (“chain type”; m ≥ 2);

3. xa1
1 x2 + xa2

2 x3 + . . .+ x
am−1

m−1 xm + xamm x1 (“loop type”; m ≥ 2)”.

The E and ET matrices for the Fermat type are in both cases a diagonal matrix. For
the chain case, they look slightly different:

E =



a1 1 0 0 . . . 0 0
0 a2 1 0 . . . 0 0
0 0 a3 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . am−1 1
0 0 0 0 . . . 0 am



ET =



a1 0 0 0 . . . 0 0
1 a2 0 0 . . . 0 0
0 1 a3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . am−1 0
0 0 0 0 . . . 1 am


8[Wa] If the sum of two homogeneous potentials W ′ (x1, . . . , xl) + W ′′ (xl+1, . . . , xn) of degree d for a

choice of homogeneous coordinates (xi)
n
i=1 and some 2 ≤ l ≤ n− 1 represents a homogeneous potential

W of degree d, we say this sum is a Thom-Sebastiani sum of potentials.
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5.3. Further examples of orbifold equivalent potentials

|xEk | |xETk |
Fermat 2

ak

2
ak

Chain 2
m∑
i=k

(−1)i−k
i∏
l=k

a−1
l 2

k∑
i=1

(−1)k−i
k∏
l=i

a−1
l

Loop 2
1+

k+1∑
l′=k−1

l′∏
i′=k−1

(−ai′ )

1+(−1)m+1
m∏
i′=1

ai′
2

1+
k−1∑

l′=k+1

l′∏
i′=k+1

(−ai′ )

1+(−1)m+1
m∏
i′=1

ai′

Table 5.1.: Degrees of variables of invertible polynomials. 2 ≤ k ≤ m; l, i, l′, i′ mod m with
representatives {1, . . . ,m}. Boldface indices means we sum backwards.

and same for the loop case,

E =



a1 1 0 0 . . . 0 0
0 a2 1 0 . . . 0 0
0 0 a3 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . am−1 1
1 0 0 0 . . . 0 am



ET =



a1 0 0 0 . . . 0 1
1 a2 0 0 . . . 0 0
0 1 a3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . am−1 0
0 0 0 0 . . . 1 am


These matrices allow us to compute the degrees of the variables for each considered

case. These values are given in detail by Table 5.19. These formulas are easily proved
by induction. For instance, take the case of chain polynomials. For a start, compute the
degrees of xm, xm−1 and xm−2 from E:

|xEm| =
2

am

|xEm−1| =
2

am−1

(
1− 1

am

)
|xEm−2| =

2

am−2

(
1− 1

am−1

+
1

am−1am

)
9The sum over l′ between k+ 1 and k− 1 in the numerator of the degree |xET

k | for the loop case is meant
to be run between k + 1 to m and from 1 to k − 1. We shortcut notation in the written down way
hoping it is not too confusing.
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5. Orbifold equivalence

Then, claim that |xEk | = 2
m∑
i=k

(−1)i−k
i∏
l=k

a−1
l , and prove by induction. The induction base

is clear for k = m,m− 1,m− 2, and proceed with the induction step:

|xk+1| =
1

ak+1

(2− |xk|) =
2

ak+1

(
1−

m∑
i=k

(−1)i−k
i∏
l=k

a−1
l

)

=
2

ak+1

+ 2
m∑
i=k

(−1)i−k−1
i∏
l=k

a−1
k+1a

−1
l = 2

m∑
i=k+1

(−1)i−k−1
i∏

l=k+1

a−1
l

as expected.
Thanks to this result, we can state that in fact,

Lemma 5.3.5. Invertible polynomials have the same central charge than their Berglund-
Hübsch transpose.

Proof. The Fermat case is trivial. For the other two cases, perform the sum of all |xEk |
(resp. |xETk |). Let us explain in a bit of detail the case of chain as an enlightening case
–the loop one is analogous. We need to sum all |xEk | for values of k between 1 and m, and
the same with |xETk |. For |xEk |, we sum between k and m products of a−1

l between k and

i, where for |xETk | we sum between 1 and k products of a−1
l between i and k. One can

realize here that we are only transposing the way we run over the indices of the sums and
products – but still, covering the same values. Hence we obtain the same total sum and
thus the same central charge.

Looking again at the Arnold classification, we can recognize that:

◦ For two variables, Class I is clearly Fermat, Class II is chain and Class III is obviously
loop.

◦ For three variables, let us call those classes which are not of any invertible kind (nor
combinations of these) simply not invertible. Then:

Class Invertibility
I Fermat
II Fermat+chain
III not invertible
IV Fermat+loop
V chain
VI not invertible
VII loop

An obvious corollary then for Lemma 5.3.5 is that potentials of Classes I, II, IV, V and
VII have the same charge than their corresponding Berglund-Hübsch transpose. Surpris-
ingly, a direct computation pointed out that:
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5.3. Further examples of orbifold equivalent potentials

Lemma 5.3.6. For three variables, polynomials of Classes III and VI have the same central
charge as their corresponding Berglund-Hübsch transposes.

But a crucial problem arising might be that of the shape of the potentials: at least for
the case of three variables, the Berglund-Hübsch transposed polynomials of polynomials of
Classes III and VI do not have finite dimensional Jacobian ring and hence should not be of
our interest. In general, we do not know if this is the case for all the classes of polynomials
which are not of invertible type.

Because of this, one may adventure herself to state that, conjecturally, only invert-
ible polynomials are going to be interesting regarding finding orbifold equivalences via
Berglund-Hübsch transposition, as these provide non-degenerate polynomials when Berglund-
Hübsch transposed. It is work in progress to prove this, and then find new orbifold equiv-
alences between potentials and their Berglund-Hübsch transpose. This preliminary work
should serve as a good source for chasing new equivalences, and we hope it provides more
examples or orbifold equivalences between potentials and their Berglund-Hübsch transpose
soon.

93





Outlook

There is still a great amount of work to do in order to reach a better understanding of the
Landau-Ginzburg/CFT correspondence, and several immediate follow-up projects from the
results presented in this thesis, which seem to be only the top of the iceberg.

To begin with, extending an equivalence between categories like the one proved in Chap-
ter 4 to the case where d is even is an inmediate follow-up project. In addition, recall that
for this result we only considered the bosonic part of the N = 2 superconformal algebra –
but we do not have an intuition of what should the corresponding equivalence be for the
fermionic part. In this paper we focused exclusively on the N = 2 minimal models, but
one may wish to explore other models like e.g. the Kazama-Suzuki models, where in [BF]
matrix factorizations were already detected.

Concerning Chapter 5, we hope to find more orbifold equivalences, hopefully via the
Berglund-Hübsch transposition (as explained in Section 5.3). In addition, it would be
interesting to analyse further orbifold equivalences in the framework of quivers (as explained
in Remark 5.2.8.3). Further higher categorical aspects of matrix factorizations should also
be an object of future study.

In addition, on a more representation-theoretical side, it is still missing some work re-
lating maximal Cohen-Macaulay modules and representations of vertex operator algebras.
On first glance, one might not realize how deeply connected these structures seem to be.
Light shed by the Landau-Ginzburg/CFT correspondence on their relationship may be
useful for the representation theory community. E.g. understanding the orbifold equiva-
lence in terms of Cohen-Macaulay modules may also give some new insights into this area
of mathematics.

It is the intention of the author to continue in this line of research –involving mathematics
and physics in such a beautiful way– for a long time, hopefully giving more and many results
soon. In the end, this is only the beginning.

95





A. Proof of Theorem 4.2.13

Semi-simplicity of PT gr
d follows from Lemma 4.2.12, as does the list of simple objects.

Let λ, µ ∈ {0, 1, . . . , d−2} and a, b ∈ Zd. To show the decomposition rule

P̂a:λ ⊗ P̂b:µ '
min(λ+ν,2d−4−λ−ν)⊕

ν=|λ−µ| step 2

P̂a+b− 1
2

(λ+µ−ν):ν , (A.1)

we verify the cases λ = 0 and λ = 1 explicitly. The general case follows by a standard
argument using induction on λ.

Case λ = 0: The isomorphism P̂a:0 ⊗ P̂b:µ ' P̂a+b:µ is immediate from the isomorphism

P̂a:0 ' −aI given in (4.8), the isomorphism −aI ⊗ M̂ → −aM provided by −a(λM) for any
matrix factorization M , and −a(PS) ' PS+a, again from (4.8).

Case λ = 1: For µ = 0 the isomorphism P̂a:1 ⊗ P̂b:0 ' Pa+b:1 constructed as in case λ = 0,
using Pb:0 ' I−b. To show the decomposition (A.1) for µ ∈ {1, 2, . . . , d − 2} we start by
giving maps

g− : P̂a+b+1:µ−1 −→ P̂a:1 ⊗ P̂b:µ , g+ : P̂a+b:µ+1 −→ P̂a:1 ⊗ P̂b:µ

in ZMFgr
bi . Write A = P̂a:1, B = Pb:µ, Q− = P̂a+b+1:µ−1 and Q+ = Pa+b:µ+1. We have to

find gεij that fit into the diagram

Qε

��

C[x, z]
{
µ+2+ε
d
− 1
} qε(x,z)

--

 gε10

gε01


��

C[x, z]
{
−µ+2

d

}
xd−zd
qε(x,z)

mm

 gε00

gε11


��

A⊗B
C[x, y, z]

{
3−µ
d
− 1
}

⊕
C[x, y, z]

{
1+µ
d
− 1
}

 p1(x,y) pµ(y,z)

yd−zd
pµ(y,z)

xd−yd
p1(x,y)


.. C[x, y, z]

{
−µ+1

d

}
⊕

C[x, y, z]
{

5+µ
d
− 2
} xd−yd

p1(x,y)
−pµ(z,y)

yd−zd
pµ(y,z)

p1(x,y)


nn

(A.2)
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Here,

p1(x, y) = (x− ηay)(x− ηa+1y) , q−(x, z) =

a+b+µ∏
j=a+b+1

(x− ηjz) ,

pµ(y, z) =

b+µ∏
j=b

(y − ηjz) , q+(x, z) =

a+b+µ+1∏
j=a+b

(x− ηjz) .

Comparing C-degrees determines the polynomial degrees of the individual maps to be

deg(gε10) = µ− 1
2
(1− ε) , deg(gε00) = 1

2
(1− ε) ,

deg(gε01) = 1
2
(1 + ε) , deg(gε11) = d− 2− µ− 1

2
(1 + ε) .

Commutativity of (A.2) is equivalent to

(i) qε(x, z) g
ε
00(x, y, z) = p1(x, y) gε10(x, y, z) + pµ(y, z) gε01(x, y, z)

(ii) qε(x, z) g
ε
11(x, y, z) = − y

d − zd

pµ(y, z)
gε10(x, y, z) +

xd − yd

p1(x, y)
gε01(x, y, z)

These conditions imply the remaining two conditions. Let us show how one arrives at g−

in some detail and then just state the result for g+.

We have deg(g−01) = 0 and we make the ansatz g−01 = 1 (choosing g−01 = 0 forces g− = 0, so
this is really a normalisation condition). The polynomial g−00 is of degree 1, so g−00(x, y, z) =
αx+ βy + γz for some α, β, γ ∈ C. Condition (i) determines g−10 uniquely to be

g−10(x, y, z) =
q−(x, z)(αx+ βy + γz)− pµ(y, z)

p1(x, y)
.

We need to impose the condition that g−10 is a polynomial. This amounts to verifying that
the numerator has zeros for y = η−ax and y = η−a−1x. Using

pµ(µ−ax, z) = q−(x, z) η−a(µ+1)(x− ηa+bz) ,

pµ(µ−a−1x, z) = q−(x, z) η−(a+1)(µ+1)(x− ηa+b+µ+1z)

gives the unique solution

g−00(x, y, z) = η−aµ

(
− η−a−1 1− η−µ

1− η−1
x+

1− η−µ−1

1− η−1
y − ηb z

)
.

Finally, a short calculation shows that condition (ii) is equivalent to

g−11 =
1

p1(x, y)

(
xd − zd

q−(x, z)
− yd − zd

pµ(y, z)
g−00(x, y, z)

)
.
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The term in brackets is clearly a polynomial. To show that it is divisible by p1(x, y), one
simply verifies that the term is brackets is zero for y = η−ax and y = η−a−1x.

For g+ the calculation works along the same lines with the result

g+
00 = 1

g+
01 = ηa(µ+1)

(
1− ηµ+2

1− η
x− ηa+1 1− ηµ+1

1− η
y − ηa+b+µ+1 z

)

g+
10 =

q+(x, z)− pµ(y, z) g+
01(x, y, z)

p1(x, y)

g+
11 =

1

p1(x, y)

(
xd − zd

q+(x, z)
g+

01(x, y, z)− yd − zd

pµ(y, z)

)
As above, one verifies that the g+

10 and g+
11 are indeed polynomials in x, y, z.

We will now establish that (g−, g+) : P̂a+b+1:µ−1 ⊕ P̂a+b:µ+1 −→ P̂a:1 ⊗ P̂b:µ is an iso-
morphism in HMFbi (and thereby also in HMFgr

bi as g± have C-degree 0). We do this by
employing Remark 4.2.1 (see [Wu, Cor. 4.9] for the corresponding graded statement), that
is, by showing that (H(g−), H(g+)) : H(P̂a+b+1:µ−1)⊕H(P̂a+b:µ+1) −→ H(P̂a:1⊗ P̂b:µ) is an
isomorphism.

For P̂S we have H(P̂∅) = H(P̂Zd) = 0 and H(P̂S) = C ⊕C if S 6= ∅,Zd. The first case

occurs only for µ = d− 2, where H(P̂a+b:µ+1) = 0.

For H(P̂a:1 ⊗ P̂b:µ) we need to compute the homology of the complex

C[y]
⊕
C[y]

 η2a+1y2 yµ+1

−yd−µ−1 −η−2a−1yd−2


,,
C[y]
⊕
C[y] −η−2a−1yd−2 −yµ+1

yd−µ−1 η2a+1y2


ll

Define the vectors v0 := (η2a+1,−yd−µ−3) (this has second entry equal to y−1 for µ = d−2,
but the results below are polynomial nonetheless) and v1 = (−yµ−1, η2a+1). One finds

ker(d̄0) = C[y]v0 ·

{
1 ;µ < d− 2

y ;µ = d− 2
ker(d̄1) = C[y]v1

im(d̄1) = y2
C[y]v0 im(d̄0) = yC[y]v1 ·

{
1 ;µ < d− 2

y ;µ = d− 2

Writing [· · · ] for the homology classes, the homology groups Hi := Hi(P̂a:1⊗ P̂b:µ) are given
by

H0 =

{
{[v0], [yv0]} ;µ < d− 2

{[yv0]} ;µ = d− 2
, H1 =

{
{[v1], [yv1]} ;µ < d− 2

{[v1]} ;µ = d− 2
.
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A. Proof of Theorem 4.2.13

The map (g−, g+) acts on homology by, for µ < d− 2,

H0(g−, g+) =
(
η−2a−1β− [yv0] , η−2a−1[v0]

)
,

H1(g−, g+) =
(
η−2a−1[v1] , η−2a−1β+ [yv1]

)
.

Here β− is the coefficient of y in g−00 and β+ is the coefficient of y in g+
01. For µ = d − 2,

the second entry in the above maps is absent, as H(P̂a+b:µ+1) = 0 in this case. Altogether
we see that H(g−, g+) is indeed an isomorphism.

This proves the decomposition P̂a:1 ⊗ P̂b:µ ' P̂a+b+1:µ−1 ⊕ P̂a+b:µ+1 in HMFgr
bi and

completes the proof of Theorem 4.2.13.
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B. Equivariant objects and pointed
categories

Here we collect some (well known) categorical trivialities which allow us to avoid difficult
calculations with matrix bifactorizations. Throughout Appendix B all tensor (and in par-
ticular all fusion) categories will be assumed to be strict. In labels for some arrows in our
diagrams we suppress tensor product symbols for compactness.

B.1. Categories of equivariant objects

Let G be a group. An action of G on a tensor category C is a monoidal functor F : G →
Aut⊗(C) from the discrete monoidal category G to the groupoid of tensor autoequivalences
of C. More explicitly, a G-action on C consists of a collection {Fg}g∈G of tensor autoe-
quivalences Fg : C → C labelled by elements of G together with natural isomorphisms
φf,g : Ff ◦ Fg → Ffg of tensor functors such that φf,e = 1, φe,g = 1 and such that the
diagram

Ff ◦ Fg ◦ Fh
φf,g◦1 //

1◦φg,h
��

Ffg ◦ Fg
φfg,h
��

Ff ◦ Fgh
φf,gh // Ffgh

commutes for any f, g, h ∈ G.

Let C be a tensor category together with a G-action. An object X ∈ C is G-equivariant
if it comes equipped with a collection of isomorphisms xg : X → Fg(X) such that the
diagram

X
xfg //

xf

��

Ffg(X)

Ff (X)
Ff (xg)

// Ff (Fg(X))

φf,g

OO

commutes for any f, g ∈ G.

A morphism a : X → Y between G-equivariant objects (X, xg), (Y, yg) is G-equivariant
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B. Equivariant objects and pointed categories

if the diagram

X
xg //

a

��

Fg(X)

Fg(a)

��
Y

yg // Fg(Y )

commutes for any g ∈ G. Denote by CG the category of G-equivariant objects in C.

Proposition B.1.1. Let C be a strict tensor category with a G-action. Then the category
CG is strict tensor with tensor product (X, xg)⊗(Y, yg) = (X⊗Y, (x|y)g), where (x|y)g is
defined by

X⊗Y xgyg // Fg(X)⊗Fg(Y )
(Fg)X,Y // Fg(X⊗Y )

and with unit object (I, ι), where ιg : I → Fg(I) is the unit isomorphism of the tensor
functor Fg.

Proof. All we need to check is that theG-equivariant structures of the triple tensor products
(X, xg)⊗((Y, yg)⊗(Z, zg)) and ((X, xg)⊗(Y, yg))⊗(Z, zg) coincide. TheseG-equivariant struc-
tures x|(y|z), (x|y)|z are the top and the bottom outer paths of the diagram

X⊗Y⊗Z
xgygzg

**
Fg(X)⊗Fg(Y )⊗Fg(Z)

(Fg)X,Y id
//

id(Fg)Y,Z
��

Fg(X⊗Y )⊗Fg(Y )

(Fg)XY,Z
��

Fg(X)⊗Fg(Y⊗Z)
(Fg)X,Y Z // Fg(X⊗Y⊗Z)

whose commutativity is the coherence of the tensor structure of Fg.

Clearly the forgetful functor

CG → C, (X, x) 7→ X

is tensor.

Remark B.1.2. It is possible to define more general G-actions on (tensor) categories in-
volving associators for G (3-cocycles for G). All constructions generalise straightforwardly.

B.2. Inner actions and monoidal centralisers of pointed
subcategories

An object P of a tensor category C is invertible if the dual object P ∗ exists and the
evaluation evP : P ∗⊗P → I and coevaluation coevP : I → P⊗P ∗ maps are isomorphisms.
Clearly an invertible object is simple since C(P, P ) ' C(I, I) = k.
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B.2. Inner actions and monoidal centralisers of pointed subcategories

The set Pic(C) of isomorphism classes of invertible objects is a group with respect to the
tensor product (the Picard group of C). Choosing a representative s(p) in each isomorphism
class p ∈ Pic(C) and isomorphisms σ(p, q) : s(p)⊗s(q)→ s(pq) for each pair p, q ∈ Pic(C)
allows us to define a function α : Pic(C)×3 → k

∗ (here k∗ is the multiplicative group of
non-zero elements of k). Indeed for p, q, r ∈ Pic(C) the composition

s(pqr)
σ(pq,r)−1

−−−−−→ s(pq)⊗s(r) σ(p,q)−1 id−−−−−−→ s(p)⊗s(q)⊗s(r) idσ(q,r)−−−−→ s(p)⊗s(qr) σ(p,qr)−−−−→ s(pqr)

is an automorphism of s(pqr) and thus has a form α(p, q, r)ids(pqr) for some α(p, q, r) ∈ k∗.
It is easy to see that α is a 3-cocycle and that the class [α] ∈ H3(Pic(C),k∗) does not
depend on the choice of s and σ.

A tensor category C is pointed if all its simple objects are invertible. A fusion pointed
category C can be identified with the category V(G,α) of G-graded vector spaces, where
G = Pic(C) and with the associativity constraint twisted by α ∈ H3(Pic(C),k∗).

Let P be an invertible object of a tensor category C. The functor

P⊗−⊗P ∗ : C → C, X 7→ P⊗X⊗P ∗

comes equipped with a monoidal structure

P⊗X⊗P ∗⊗P⊗Y⊗P ∗ id evP id // P⊗X⊗Y⊗P ∗

making it a tensor autoequivalence, the inner autoequivalence corresponding to P . The
assignment P 7→ P⊗−⊗P ∗ defines a homomorphism of groups Pic(C) → Aut⊗(C) .

The monoidal centraliser ZD(F ) of a tensor functor C → D is the category of pairs (Z, z),
where Z ∈ D and zX : Z⊗F (X) → F (X)⊗Z are a collection of isomorphisms, natural in
X ∈ C, such that ZI = id and such that the diagram

Z⊗F (X⊗Y )

idFX,Y
��

zXY // F (X⊗Y )⊗Z
FX,Y id

��
Z⊗F (X)⊗F (Y )

zX id ))

F (X)⊗F (Y )⊗Z

F (X)⊗Z⊗F (Y )

id zY

55

commutes for any X, Y ∈ C. A morphism (Z, z) → (Z ′, z′) in ZD(F ) is a morphism
f : Z → Z ′ in D such that the diagram

Z⊗F (X)
zX //

f id
��

F (X)⊗Z
id f
��

Z ′⊗F (X)
z′X // F (X)⊗Z ′

commutes for any X ∈ C.
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B. Equivariant objects and pointed categories

Proposition B.2.1. Let F : C → D be a tensor functor between strict tensor cat-
egories. Then the monoidal centraliser ZD(F ) is strict tensor with the tensor product
(Z, z)⊗(Z ′, z′) = (Z⊗Z ′, z|z′) where (z|z′)X is defined by

Z⊗Z ′⊗F (X)
(z|z′)X //

id z′X ((

F (X)⊗Z⊗Z ′

Z⊗F (X)⊗Z ′
zX id

66

and with the unit object (I, 1).

Proof. Note that the monoidal centraliser ZD(IdD) of the identity functor IdD : D → D
is the monoidal centre Z(D). The proof of the proposition is identical to the proof of
monoidality of the monoidal centre (see [JS2]).

Clearly the forgetful functor

ZD(F ) → D, (Z, z) 7→ Z

is tensor.
Let G be a group and V(G) be the pointed tensor category whose group of isomorphism

classes of objects isG and which has trivial associator. A tensor functor F : V(G)→ C gives
rise to the action of G on C by inner autoequivalences Fg(X) = F (g)⊗X⊗F (g)∗, g ∈ G.

Theorem B.2.2. Let G be a group and let C be a tensor category with a tensor functor
F : V(G)→ C. Then the monoidal centraliser ZC(F ) is tensor equivalent to the category of
G-equivariant objects CG, where the G-action is defined by the functor V(G)→ C as above.

Proof. Define a functor ZC(F )→ CG by assigning to (Z, z) ∈ ZC(F ) a G-equivariant object
(Z, z̃g)g∈G with z̃g : Z → Fg(X) = F (g)⊗X⊗F (g)∗ given by

Z
id coevF (g) // Z⊗F (g)⊗F (g)∗

zg id // F (g)⊗Z⊗F (g)∗ .

It is straightforward to see that this is a tensor equivalence.

B.3. Tensor functors from products with pointed
categories

Recall from [De, BK] that the Deligne product C � D of k-linear semi-simple categories
C and D is a semi-simple category with simple objects X � Y for X and Y being simple
objects of C and D correspondingly. One can extend the definition of X � Y to arbitrary
X ∈ C and Y ∈ D. The hom spaces between these objects are

(C �D)(X � Y,X ′ � Y ′) = C(X,X ′)⊗kD(Y, Y ′) ,
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B.3. Tensor functors from products with pointed categories

where on the right is the tensor product of vector spaces over k.
The Deligne product of fusion categories is fusion with the unit object I � I and the

tensor product defined by

(X � Y )⊗(X ′ � Y ′) = (X⊗X ′)� (Y⊗Y ′) .

The Deligne product of fusion categories has another universal property, which we describe
next.

We say that a pair of tensor functors Fi : Ci → D has commuting images if they come
equipped with a collection of isomorphisms cX1,X2 : F1(X1)⊗F2(X2) → F2(X2)⊗F1(X1)
natural in Xi ∈ Ci and such that the following diagrams commute for all Xi, Yi ∈ Ci:

F1(X1)⊗F2(I)
cX1,I //

��

F2(I)⊗F1(X1)

��
F1(X1)⊗I F1(X1) I⊗F1(X1)

F1(I)⊗F2(X2)
cI,X2 //

��

F2(X2)⊗F1(I)

��
I⊗F2(X2) F2(X2) F2(X2)⊗I

F1(X1⊗Y1)⊗F2(X2)
cX1Y1,X2 //

(F1)X1,Y1
1

��

F2(X2)⊗F1(X1⊗Y1)

1(F1)X1,Y1
��

F1(X1)⊗F1(Y1)⊗F2(X2)

1cY1,X2 ++

F2(X2)⊗F1(X1)⊗F1(Y1)

F1(X1)⊗F2(X2)⊗F1(Y1)

cX1,X2
1

33

F1(X1)⊗F2(X2⊗Y2)
cX1,X2Y2 //

1(F2)X2,Y2
��

F2(X2⊗Y2)⊗F1(X1)

(F2)X2,Y2
1

��
F1(X1)⊗F2(X2)⊗F2(Y2)

cX1,X2
1 ++

F2(X2)⊗F2(Y2)⊗F1(X1)

F2(X2)⊗F1(X1)⊗F2(Y2)

1cX1,Y2

33

Proposition B.3.1. The Deligne product C1 � C2 of fusion categories C1 and C2 is the
initial object among pairs of tensor functors Fi : Ci → D with commuting images, that is
for a pair of tensor functors Fi : Ci → D with commuting images there is a unique tensor
functor F : C1 � C2 → D making the diagram

C1

##

F1

��

C2

{{

F2

��

C1 � C2

F
��
D

commutative.
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B. Equivariant objects and pointed categories

Proof. Note that the assignments X1 7→ X1 � I, X2 7→ I � X2 define a pair of tensor
functors Ci → C1 � C2 with commuting images.

Conversely let Fi : Ci → D be a pair of tensor functors with commuting images. Define
F : C1 � C2 → D by F (X1 � X2) = F1(X1)⊗F2(X2). Since C1 and C2 are fusion, this
determines F uniquely as a k-linear functor. The monoidal structure for F is uniquely
determined to be

F (X1 �X2)⊗F (Y1 � Y2)
FX1�X2,Y1�Y2 // F

(
(X1 �X2)⊗(Y1 � Y2)

)
F (X1)⊗F (X2)⊗F (Y1)⊗F (Y2)

1cX2,Y1
1

��

F
(
(X1⊗Y1)� (X2⊗Y2)

)
F (X1)⊗F (Y1)⊗F (X2)⊗F (Y2)

(F1)X1,Y1
(F2)X2,Y2 // F1(X1⊗Y1)⊗F2(X2⊗Y2)

It is straightforward to check that this definition satisfies the coherence axioms of a
monoidal structure.

Remark B.3.2. Note that the data of a pair of tensor functors Fi : Ci → D with commut-
ing images amounts to a tensor functor C1 → ZD(F2) whose composition with the forgetful
functor ZD(F2)→ D equals F1.

Theorem B.3.3. Let C be a fusion category and let G be a finite group. Then the data
of a tensor functor C � V(G) → D amounts to a tensor functor V(G) → D and a tensor
functor C → DG, where the G-action is defined by the functor V(G) → D as in Appendix
B.2.

Proof. By Proposition B.3.1 a tensor functor C�V(G)→ D corresponds to a pair of tensor
functors F : V(G) → D, F ′ : C → D with commuting images. By Remark B.3.2 this is
equivalent to a tensor functor C → ZD(F ) to the centraliser of F . Finally by Theorem
B.2.2 the centraliser ZD(F ) is canonically equivalent to the category of equivariant objects
DG.

Remark B.3.4. It is possible to extend Theorem B.3.3 to the case of pointed categories
V(G,α) with non-trivial associators α ∈ Z3(G,k∗). As for Remark B.1.2 all constructions
generalise straightforwardly.
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[FFRS1] J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Algebras in tensor categories and
coset conformal field theories, Fortsch. Phys. 52 (2004) 672–677, arXiv:hep-th/0309269.
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Summary

In this thesis we focus on the Landau-Ginzburg/conformal field theory correspondence,
a correspondence which in particular predicts some relation between defects of Landau-
Ginzburg models –described by matrix factorizations– and defects in conformal field the-
ories – described by representations of vertex operator algebras. Matrix factorizations are
the most important concept of this thesis and our main tool. With them, we describe
several results conjectured in the physics literature.

On the first chapter we introduce some categorical background necessary for the later
chapters. On the second, we introduce matrix factorizations and on the third describe the
Landau-Ginzburg/conformal field theory correspondence (which up to date has no clear
mathematical conjecture).

Chapter 4 deals with the first result of this thesis. We describe a tensor equivalence be-
tween a category generated via direct sums of permutation-type matrix factorizations with
consecutive sets with morphisms of C-degree zero and the subcategory of representations
of the vertex operator algebra associated to the coset ŝu(2)d−2⊕û(1)4

û(1)2d
generated by direct sums

of simples (which are of the shape [l,m, s] satisfying that l+m ∈ 2Z and s = 0. We prove
this tensor equivalence with the help of Temperley-Lieb categories.

Chapter 5 deals with the second result of this thesis. We prove several equivalences
of categories involving Landau-Ginzburg models described by simple singularities (which
have an ADE classification). We support this result on the theory of orbifold completion
developed by Carqueville and Runkel, where an equivalence relation between potentials
was described. We also include some remarks about a possible strategy to find more of
these equivalence relations.
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Zusammenfassung

In dieser Dissertation betrachten wir die Landau-Ginzburg/konformale Feldtheorie Korre-
spondenz, die eine Beziehung zwischen Defekten in Landau-Ginzburg Modellen (beschrieben
durch Matrixfaktorisierungen) und Defekten in konformalen Feldtheorien (beschrieben
durch Darstellungen von vertex operator Algebren) vorhersagt. Matrixfaktorisierungen
sind die Hauptkonzepte in dieser Arbeit und unser allgemeines Werkzeug. Mit diesem
beschreiben wir mehrere in der Physikliteratur vorhergesagte Ergebnisse.

Im ersten Kapitelbeschreiben wir einigen Grundlageder Kategorientheorie, die man für
die spätere Kapitel braucht. Im zweiten Kapitel führen wir Matrixfaktorisierungen ein
und im dritten die Landau-Ginzburg/konformale Feldtheorie Korrespondenz (die bis heute
nicht durch eine klare mathematische Vermutung beschrieben wird).

Kapitel 4 beschäftigt sich mit den ersten Ergebnissen dieser Arbeit. Wir beweisen eine
Tensoräquivalenz von einer Kategorie, dargestellt durch direkte Summen von Matrixfak-
torisierungen vom Permutationstyp mit konsekutiver Menge und Morphismen mit C-Grad
Null, und der Unterkategorie von Darstellungen von der vertex Operator Algebra, welche
zu den Nebenklassen ŝu(2)d−2⊕û(1)4

û(1)2d
assoziiert ist, dargestellt durch direkte Summen von ein-

fachen Objekten (die [l,m, s] aussehen), sodass l + m ∈ 2Z und s = 0. Wir behelfen uns
mit Temperley-Lieb Kategorien, um diesen Satz zu beweisen.

Kapitel 5 beschäftigt sich mit den zweiten Ergebnissen dieser Arbeit. Wir beweisen
mehrere Kategorienäquivalenzen mit Landau-Ginzburg Modellen, beschrieben durch ein-
fache Singularitäten (diese haben eine ADE Klassifizierung). Wir unterstützen diese Ergeb-
nisse mit der Theorie der Vervollständigung von Orbifaltigkeiten, entwickelt von Car-
queville und Runkel, wobei eineÄquivalenzrelation zwischen Potentialen beschrieben ist.
Wir enden mit einigen Bemerkungen zu einer möglichen Strategie, um mehrere dieser
Äquivalenzrelationen zu finden.


	Introduction
	Categorical background
	Category theory background: bicategories and modular categories
	Temperley-Lieb categories

	Matrix factorizations
	Basic definitions
	The bicategory of Landau-Ginzburg models

	On Landau-Ginzburg models
	Matrix factorizations in Landau-Ginzburg models


	The Landau-Ginzburg/conformal field theory correspondence
	The 2-categorical approach to conformal field theories
	On the Landau-Ginzburg/conformal field theory correspondence

	N=2 minimal conformal field theories and matrix bifactorizations of xd
	Categories of representations for N=2 minimal super vertex operator algebras
	Representations of N=2 minimal super vertex operator algebras
	The structure of C(N=2,d)NS for odd d
	Universal properties

	On matrix factorizations
	Categories of matrix factorizations and tensor products
	Permutation-type matrix bifactorizations
	A tensor functor from Zd to PTd
	A functor from TL to Zd-equivariant objects in PTd
	Graded matrix factorizations
	A functor from TL to Zd-equivariant objects in PTdgr


	Orbifold equivalence
	Orbifold completion
	Orbifold equivalent potentials
	Orbifold equivalence for simple singularities
	Proofs
	Comparison to conformal field theory

	Further examples of orbifold equivalent potentials

	Outlook
	Appendix Proof of Theorem 4.2.13
	Appendix Equivariant objects and pointed categories
	Categories of equivariant objects
	Inner actions and monoidal centralisers of pointed subcategories
	Tensor functors from products with pointed categories


