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Zusammenfassung

Viele Anwendungen wie Texterkennungsverfahren oder Sensornetzwerke arbeiten hiufig auf unge-
nauen, unscharfen, oder zweifelhaften Informationen. Ein aktueller Trend in der Datenbankforschung
ist es, solche Unsicherheiten als wertvollen Bestandteil des Anwendungsergebnisses zu betrachten und
somit die Ausgaben dieser Anwendungen entsprechend anzureichern. Ein weit entwickeltes Werk-
zeug zur Modellierung von Unsicherheiten in Anwendungsdaten sind probabilistische Datenbanken.
Um verschiedene, heterogene probabilistische Datenbestidnde zu integrieren oder um einen einzelnen
probabilistischen Datenbestand von Inkonsistenzen zu bereinigen, bedarf es Verfahren, um Datenob-
jekte zu erkennen, die dasselbe Realweltobjekt referenzieren. Herkommliche Verfahren zum Aufspiih-
ren solcher sogenannten Duplikate wurden bisweilen allerdings nur fiir Datenobjekte konzipiert, die
durch einzelne, exakte Attributwerte beschrieben sind und deren Zugehorigkeit zum betrachteten Ge-
genstandsbereich als sicher angesehen wird. Probabilistisch modellierte Datenobjekte konnen jedoch
mehrere Werte pro Attribut aufweisen. Zudem kann ihre Relevanz fiir den betrachteten Gegenstands-
bereich infrage stehen. Aus diesen Griinden ist eine Verwendung herkémmlicher Duplikaterkennungs-
verfahren fiir probabilistische Datenbanken ohne wesentliche Anpassungen nicht geeignet.

In dieser Dissertation widmen wir uns dem Erkennen von Duplikaten in probabilistischen relatio-
nalen Datenbanken. Der zentrale Forschungsaspekt dieser Arbeit ist dabei der Entwurf eines gene-
rischen Ansatzes, der eine Anpassung an individuelle Bediirfnisse erlaubt und somit ein Erkennen
von probabilistischen Duplikaten in unterschiedlichen Anwendungsbereichen ermdglicht. Ein Vorteil
probabilistischer Datenbanken ist, dass wir nicht gezwungen sind, auftretende Unsicherheiten iiber
Duplikatsbeziehungen aufzulésen und solche Unsicherheiten stattdessen im Duplikaterkennungser-
gebnis modellieren konnen. Eine Vielzahl weit verbreiteter probabilistischer Datenmodelle, wie z.B.
Tupel-unabhingige Datenbanken, sind allerdings nicht méchtig genug, um Unsicherheiten iiber Du-
plikatentscheidungen modellieren zu konnen. Aus diesem Grund unterscheiden wir zwischen deter-
ministischen und indeterministischen Duplikaterkennungsverfahren. Erstere zeichnen sich dadurch
aus, dass sie jegliche Unsicherheiten iiber Duplikatentscheidungen beseitigen, indem sie ein einziges
Duplikat-Clustering als Ausgabe liefern. Das Ergebnis eines indeterministischen Verfahrens besteht
hingegen aus einer Menge an moglichen Duplikat-Clusterings, die jeweils mit einer Wahrscheinlich-
keit versehen sein konnen.

Wir identifizieren zwei sinnvolle Strategien, um herkdmmliche Duplikaterkennungsverfahren an
die inhdrenten Unsicherheiten probabilistischer Daten anzupassen. Basierend auf diesen Strategien
entwerfen wir zwei generische Ansitze zur deterministischen Duplikaterkennung in probabilistischen
Datenbanken und prisentieren verschiedene Techniken, um die Berechnungskomplexitit dieser bei-
den Ansitze zu verringern. In diesem Zusammenhang entwickelen wir ein AhnlichkeitsmaB fiir dis-
krete Wahrscheinlichkeitsverteilungen, das eine performante Alternative zur Earth Mover’s Distance
darstellt.

Hinsichtlich des Konzepts der indeterministischen Duplikaterkennung beginnen wir mit einer for-
malen Definition. Anschliefend prisentieren wir verschiedene Ansitze, die es gestatten, eine Menge
von moglichen Duplikat-Clusterings in einer probabilistischen Datenbank zu modellieren und disku-
tieren mogliche Arten und Weisen in denen ein solches Deduplizierungsergebnis verarbeitet werden
kann. Zudem prisentieren wir ein Clustering-Verfahren, das eine effiziente Berechnung von indeter-
ministischen Duplikaterkennungsergebnissen ermoglicht. Dariiber hinaus betrachten wir die Bedeu-
tung der Qualitit eines Duplikaterkennungsprozesses in Anbetracht unsicherer Duplikatentscheidun-
gen, konzipieren verschiedene Malle, um diese Qualitétsinterpretationen zu beziffern und priasentieren
Methoden, um diese MaBle kostengiinstig zu berechnen.

Den Abschluf} dieser Arbeit bildet eine experimentelle Evaluierung, in der wir zunéchst eine proto-

typische Implementierung prisentieren und dann verschiedene experimentelle Ergebnisse diskutieren.






Abstract

Many applications such as OCR systems or sensor networks have to deal with uncertain informa-
tion. One trend in current database research is to accept uncertainty as a ’fact of life’ and hence
to incorporate it into such applications’ results by producing probabilistic output data. To meaning-
fully integrate probabilistic data from multiple heterogeneous sources or to clean a single probabilistic
database, duplicate database entities need to be identified.

Duplicate detection has been extensively studied in the past, but conventional duplicate detection ap-
proaches are designed for matching database entities that are described by certain values and certainly
belong to the considered universe of discourse. In probabilistic databases, however, each database
entity can have several alternative values per attribute and the membership of an entity to a universe
can be questionable. As a consequence, conventional duplicate detection approaches cannot be used
for probabilistic databases without adaptation.

In this thesis, we consider the challenge of duplicate detection in probabilistic relational databases.
The central research aspect of this thesis is to develop a generic approach that enables detection of
probabilistic duplicates in highly diverse application domains by allowing an adjustment to individual
needs. The benefit of using a probabilistic database for modeling deduplication results is that we do
not necessarily need to resolve uncertainty on duplicate decisions, but instead can incorporate emerg-
ing decision uncertainty into the output database. Nevertheless, many commonly used probabilistic
representation systems such as tuple-independent probabilistic databases are not powerful enough to
model uncertainty on duplicate decisions. For that reason, we distinguish between deterministic du-
plicate detection approaches that completely resolve uncertainty on duplicate decisions by producing
a single duplicate clustering as a result and indeterministic duplicate detection approaches that provide
a set of possible duplicate clusterings as output.

We identify two meaningful strategies for adapting conventional duplicate detection approaches to
the uncertainty that is inherent in probabilistic data. According to these strategies, we propose two
generic approaches for deterministic duplicate detection in probabilistic databases and present several
techniques for reducing their computational complexity. In this context, we develop a similarity mea-
sure for discrete probability distributions that can be used as a fast alternative to the Earth Mover’s
Distance.

Additionally, we formalize the concept of indeterministic duplicate detection, propose approaches
for representing an indeterministic deduplication result within a probabilistic database, discuss pos-
sible ways to meaningfully process indeterministic deduplication results, and present a clustering
approach that can be used to efficiently compute a set of possible clusterings. Moreover, we discuss
the meaning of detection quality in the presence of uncertain duplicate decisions, present measures for
rating this meaning by numbers, and propose methods to compute these measures in an efficient way.

Finally, we present a prototypical implementation and the results of a set of experiments we con-

ducted on several test databases in order to prove the concepts of our proposed approaches.
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Chapter

Introduction

Relational database systems have been playing an important role in digital information management for
a long time because they provide mechanism to persist, query, and analyze data in an effective and ef-
ficient way. Conventional relational database systems [Cod83, UGMWO02] are designed to deal with
deterministic (certain) data that for example are produced by financial transactions, inventories, or cus-
tomer relationship management systems. In such cases, every database tuple belongs to its corresponding
database table with absolute certainty and fills each of the table’s attributes with a single element of the
attribute’s domain. To deal with missing data, the certain data assumption is usually relaxed by the uti-
lization of null values [Cod86, Cod87, UGMWO02], i.e. special constructs that can be used to replace an
attribute value if this value is not available.

Nowadays, however, many applications produce data as output that are not deterministic, but are rather
incomplete, imprecise, or vague. Moreover, null values are usually not sufficient to deal with such uncer-
tainty in an appropriate way [Pan09b]. For that reason, various extensions of the relational data model
have been developed during the last decades that are based on different concepts of modeling uncertain
information including fuzzy theory [Zad65] and probability theory [Kol60]. These approaches aim to
represent uncertainty within the database without loosing the great benefits of relational database sys-
tems like vertical scalability and the support of complex queries. From all these approaches, probabilistic
relational database systems [CP87, BGMP92, DS96, FR97, BSHWO06, SORK11] attract the most atten-
tion in the database research community in recent years. The underlying idea of uncertain database
systems is to manage and query a set of alternative database instances (called possible worlds) instead
of a single database instance [DS07c]. Probabilistic database systems extend this concept by ascribing
probabilities to the individual possible worlds. Although an incorporation of uncertainty into data repre-
sentation and data querying increases complexity, probabilistic database systems can provide powerful
mechanism for efficient data management [SORK11].

It is obvious that probabilistic databases suffer from similar quality problems as conventional databases
and therefore can lack consistency. An often considered type of data consistency concerns the unique
representation of real-world entities like persons or products within the database. In this case, a database
becomes inconsistent if a real-world entity is mistakenly modeled in the database for several times and
hence if the database is corrupted by so-called duplicates [EIV0O7, NH10, Chr12]. In many applica-

tions, duplicates can have disastrous consequences. For instance, in the medical area a non-detected
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duplicate can lead to a situation where a patient gets several non-compatible medications and hence her
health or even her life can be threatened by the unintended interdependencies between the administered
medications. In order to ensure consistency, the database needs to be cleaned from duplicate entity
representations [EIV07, NH10, Chr12].

Another important application for duplicate detection is an integration of data that originate from nu-
merous autonomic sources [Len02, HRO06, LN06, BJO7, HDI12]. If no universal identifier is available
or if the values of such an identifier are often missing or error-prone, duplicate detection is required to
meaningfully link tuples from the different sources that capture (maybe different) aspects of the same
real-world entities. As a consequence, methods for detecting duplicates in probabilistic databases are an
essential step towards a meaningful integration of probabilistic data.

Finally, duplicate detection can be used to identify semantic correspondences between the schemas
of different databases [BNOS, Bil06] and therefore can be beneficial to improve the quality of schema
matching [RBO1, BBR11] in particular and data integration in general.

Duplicate detection is a well-known operation for conventional (certain) databases [EIV07, NH10,
Chr12], but to this day got only less attention for probabilistic databases [MBGMO06, PvKdKR10]. How-
ever, whereas some detection aspects are quite similar for certain databases as well as probabilistic
databases and therefore can be adopted with only less adaptations, duplicate detection in probabilistic
databases poses some new challenges; functional as well as semantical. In this thesis we analyze the
semantics of duplicate detection in probabilistic databases and propose approaches for effectively and
efficiently detecting duplicates in a probabilistic database based on the analyzed semantics.

This chapter is structured as follows. First we provide an insight into the variety of applications
that produce probabilistic data or at least have to deal with probabilistic information for producing a
deterministic outcome. Second, we shortly present the principles of probabilistic databases and duplicate
detection on the basis of a simple example on criminal suspects. Then, we discuss the research questions
that are considered in this thesis and point out several challenges that we need to face for answering
these questions. Finally, we list the contributions that are provided by this thesis and give an outline of

the remainder of this thesis.

1.1. Probabilistic Data Applications

Probabilistic database systems are designed to manage and query uncertain information in a structured
way. Applications that produce (or at least need to deal with) uncertain information/data can be found in

many areas.

e In sensor networks multiple sensors are coupled to produce a global picture on a considered sce-
nario by combining a large number of local views. Nevertheless, it can happen that different
sensors report contrary data values on the same objects. Moreover, sensors are not immune to mea-
surement errors, especially if the considered objects dynamically change their observed state, e.g.
moving objects in spatiotemporal databases [CP03, Tao09]. For that reason, the produced informa-
tion is often imprecise and need to be managed and queried by taking this imprecision into account
[CP03, CKP04, Tao09, YTX 10, EKM™12]. In RFID management [GBF*06, KBS08, TSC*09]
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it can be useful to incorporate the noise of scanned RFID tags into the query results by ascribing

confidence scores to the output tuples.

e In data integration, database schemas need to be matched and automatic schema matching ap-
proaches [RBO1, BBR11] are far away from being perfect [GalO6b]. Since an introduction of man-
ual effort is often not possible due to time or monetary cost requirements, some schema matching
approaches (relational [MGO07, DHY09, SDH09, Gallla, ZCJC13] or XML [GCC12]) incorporate
emerging uncertainty on correct matches into the resultant schema mappings. Another source of
uncertainty in data integration is the elimination of duplicates, because it can be uncertain whether
or not two database tuples represent the same real-world entity. Moreover, detected duplicates can
have conflicting values and it is often not clear which merge of these values represents reality best.
Beskales et al. [BSIBD09], Ioannou et al. [INNV10, [oal1], van Keulen and de Keijzer [vKdK09],
and Panse et al. [PvKR13] present approaches that incorporate uncertainty on duplicate decisions
into the detection result. Several approaches [DeM89, T92, AFM06, HM(09, BCMP10, BBC"11]
resolve conflicts in merging duplicate tuples by modeling all plausible values inside the resultant

database.

e In the area of information extraction, applications aim to extract structured information from a
spate of unstructured data. This area becomes especially important since the world wide web
enables a collective access to the information that is provided by millions of webpages. Because
the extraction of concrete information from a bulk of unstructured information is a hard challenge
for automatic systems (sometimes even for humans), many extraction approaches as for example
Conditional Random Fields [LMP0O1] make use of probabilistic models to capture all the plausible
ways for interpreting an unstructured text. Information extraction approaches that incorporate
emerging uncertainty into the extraction result have been described in several proposals [GS06,
DBS09, WMF' 10, vKH11].

An interesting application of information extraction is the Never-Ending Language Learner! (short
NELL) that extracts structured data of the form (entity,relation,value) from millions of unstruc-
tured webpages. Since the reliability of webpages as well as the correct interpretation of the

parsed texts are uncertain, the resultant facts are annotated with confidence scores.

Another example of applications that have to deal with uncertainty in the extraction process are
those that strive to solve the Name Disambiguation Problem [FGL12] (also known as Named
Entity Recognition [WMM10]) or the Topology Disambiguation Problem [HvK12] in particular.
These applications try to map names that are mentioned in unstructured text document to the real-
world entities the considered names actually refer to. For illustration, without analyzing context
information it is often not clear whether the name ’Chelsea’ refers to the identically named area of
London, refers to the London football club "F.C. Chelsea’, or refers to ’Chelsea Clinton’ who is a

daughter of Bill Clinton a former president of the United States of America.

Upcoming applications for information extraction are product analyses and market investigations

because it can be useful to analyze the millions of twitter feeds in order to get feedback on already

"http://rtw.ml.cmu.edu/rtw/
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sold products or to find a frequently required market niche [SORK11]. However, for automatic
solutions it is often not clear whether a feedback is positive or negative (especially if the feed is
maybe meant ironic) and it is often not obvious to which product a considered twitter feed actually
refers to.

A particular area of sensor-based applications for information extraction is the field of optimal
character recognition (short OCR). The digital revolution is still young and many documents that
get dusty in the archives of companies, public institutes, or libraries are manually written (or are
written by type writers) and therefore are not digitally available yet. OCR systems get manuscripts
or typewriter documents as input, scan these documents, and produce digital text documents as
output. It is obvious that the automatic detection of correct words and numbers is challenging, if
handwritings are hard to read or documents are old and their contents already start to fade out.
For these reasons, OCR systems can benefit from using probabilistic data approaches [CKZ94,
KR11] that interpret the scanned documents in several possible ways. Similar potentials hold for
applications that aim to detect objects in photos and videos. Mandelbaum et al. [MKM98] propose
a stochastic approach to identify objects in images and several proposals [BI98, ORP98] make use
of probabilistic and/or statistical techniques to identify actions or interactions between objects in
images. Gee et al. [GBBH95] use a Bayesian framework to solve the atlas problem, i.e. to match a
template that represents the structural anatomy of the human brain with the anatomic brain images

from a particular person.

Many scientific applications produce uncertain data due to the inherent uncertainty of their mea-
surements. Suciu et al. study the use of probabilistic databases in the field of astronomy
[SCHO9]. Several works in the area of bioinformatics show the suitability of uncertain database
systems to operate on protein chemistry data [NJO2], in the prediction of protein functions
[DGL ™09, ZLLGZ10], or to model protein-protein interactions [PBGK10]. Moreover, probabilistic
databases can be useful to model uncertainty in biological image analyzation [LS09].

A yet less considered but potential field for uncertain data producing applications is the field of
criminal investigations. The statements of witnesses are often vague (e.g. ’the suspect was tall’),
imprecise (e.g. "the suspect was around forty years’), or conflicting due to subjective perceptions,
poor memory powers, or intended lies. Evidences that are found on the crime scene as for example
fingerprints, DNA evidences, or shoeprints are often of a poor quality and do not enable a con-
clusion of deterministic information. Moreover, a set of evidences can be usually interpreted in a
variety of ways. In the digital era a large amount of criminal investigations is realized by analyzing
web activities. Nonetheless, regardless of whether it is based on physical evidences or it is based
on virtual evidences criminal investigations are often full of uncertainties and considering these
uncertainties within the investigation process can increase the crime clearance rate to a large ex-
tent. As an example, credit card fraud detection using hidden Markov models has been considered
by Srivastava et al. [SKSMOS].

Finally, in many areas such as risk assessment [AJPT10, JXW 108, JXW 11, XBE'09], business

intelligence [SWFT09], or predictions of future events [QPB13] uncertainty does not arise be-
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cause of imperfect data production, but is inherent in the nature of the produced data. In logistics,
the transportation times need to be estimated by the shipping companies in order to determine
appropriate delivery schedules. Other examples concern forecasting the traffic on streets or data
networks, predicting prices on stock markets, or forecasting the number of cell phones within the
coverage region of a cell phone tower [RSG05]. Moreover, in many areas, current prices are based
on estimations on future demands. For instance, in deregulated electricity markets [Wol98] the
price of electricity determined by a specific company depends on the predicted energy demand
in an upcoming time period which in turn relies upon other uncertain factors such as the upcom-
ing weather conditions, but the price also depends on other uncertain factors as for example the
estimated bids of the company’s competitors [RSGO5]. Besides future demand and bids of com-
petitors, prices on petrol additionally depend on complex factors including political situations (e.g.
possible crisis in the middle-east) or the available reservoirs of fossil oil in particular areas. In gen-
eral, specific events as forthcoming strikes or legislative changes can influence the process of price

estimations in a variety of application areas.

As illustrated by the discussion presented above, the need for probabilistic data management and hence
the need for probabilistic databases has been emerged in many application areas. Consequently, cleaning
probabilistic databases or integrating probabilistic databases from different sources becomes more and

more important in today’s data management.

1.2. Probabilistic Data

Before going into detail on modeling uncertain information within a probabilistic database, we consider
an illustrative scenario that produces uncertain information by integrating data that his gathered from
several uncertain sources. This scenario is depicted in Figure 1.1 and considers the collection of infor-
mation on criminal suspects whereby the information on the individual suspects originate from three

different sources.

Witness Statements: First, we got information from witnesses. The information provided by the
witnesses is rather vague than exact, because it is based on subjective perceptions, individual
degrees of belief (the witness is possibly prejudiced), and ’sensors’ of poor quality (e.g. the size
or the age of a suspect is only estimated instead of exactly measured). The information provided
by a witnesses can be distorted if the witness has a poor memory power. Moreover, we do not
know whether or not we can trust the gathered information because it can be the case that some
witnesses give untrue statements by purpose in order to cover up their own secrets. Despite all
these uncertainties, witnesses can provide useful information on the age, the size, the gender, or

the hair color of the wanted criminals.

Evidence on the Crime Scene: The second information source is the crime scene itself, because it
often provides traces like fingerprints, shoeprints, or blood drops. Shoeprints can disclose the shoe
size of the criminals, blood drops can be used to detect DNA sequences as well as blood types,
and fingerprints are important evidences to identify criminals. In the real world, however, such

evidences are often not in a perfect state. Fingerprints can be incomplete or blurred so that they
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probabilistic

database

witness camera

statements | m :

evidences from
the crime scene

Figure 1.1.: Crime scenario®

cannot be used to clearly identify the criminal, but can be only used to exclude some persons from
the suspect list for sure. Moreover, fingerprints that have been found on the crime scene must not
necessarily belong to the wanted criminal, but can belong to any other person. In the case of blood
traces we can extract a full DNA sequence. However, such a sequence is often useless in an early
state of an investigation process because we have only less data to compare it. Nevertheless, such
blood drops can be also used to extract the gender of the criminal or to extract her blood type.
Since the crime scene can contain several blood traces and these traces can be spoiled, we often

can only derive a set of alternative values instead of a single one.

Observation Cameras: The last source includes information that is extracted from observation cam-
eras that are installed close to the crime scenes and that sometimes capture a picture from one or
more of the involved criminals. Besides concrete photos we can additionally derive information on
size, age, gender, and hair color from these video recordings. Nevertheless, observation cameras
often only produce gray scaled pictures so that we can indeed distinguish blond hair from black
hair, but cannot distinguish dark brown hair from black hair and cannot distinguish blond hair from
gray hair. Moreover, photos extracted from these videos are often blurry, the criminals are masked,
and they usually did not look directly into the camera. Finally, although we can derive informa-
tion on size and age from the video records, this information is still vague, because it results from

subjective estimations that are made by manually analyzing the camera pictures.

The artwork in this figure was provided by Christina Panse.
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1.2.1. Probabilistic Data Representation

To evaluate the information on the criminal suspects that we have gathered from the individual sources
we integrate them into a probabilistic database. As mentioned before, a probabilistic database theoreti-
cally corresponds to a probability distribution on a finite set of conventional database instances that are
typically called the database’s possible worlds [SORK11], i.e. one of these instances is assumed to rep-
resent the ’true’ state of the real world, but it is not completely known which of them. Since the number
of possible worlds can be considerably large, a separate storing of all these worlds is usually impractical
and a more succinct representation needs to be used instead.

During the last decades several probabilistic representation systems have been proposed [Gre09,
SBH™09, SD09, AKO09, SORK11]. These systems differ in their compactness, modeling power, and
representation/query complexity. It generally holds that a high compactness and a low representation/-
query complexity implicates a low modeling power, i.e. not every set of possible worlds can be rep-
resented by this system. For that reason, the choice of the used representation system always depends
on the requirements of the given application scenario. In our illustrative example, we work on informa-
tion that is highly uncertain and therefore require a system that enables a high compact representation.
For this reason, we use a simple representation system that we call AOR ?-databases in this thesis®.
AOR?-databases model uncertainty on two levels. First, they ascribe a probability to each database tu-
ple (tuple-level uncertainty) and consider all these tuples as mutually independent events. Second, they
consider the attribute values of one tuple as mutually independent probabilistic events (attribute-level
uncertainty). The probability of a tuple describes the likelihood that the tuple belongs to the database’s
"true’ world. The probability of an attribute value describes the likelihood that the corresponding tuple
has this value in the corresponding attribute in the case the tuple belongs to the database’s ’true’ world.
Thus, the probability of an attribute value is always conditioned by the probability of its corresponding
tuple. In order to differentiate between the tuples from an AOR?-database and the tuples from a conven-
tional database we adopt the notation from Das Sarma et al. [SBHT09] and denote the first as A-tuples.
Moreover, an A-tuple that has a probability lower than one is denoted to be maybe.

The independence assumptions (between attribute values as well as A-tuples) enable the system to
decompose the probability distribution over possible worlds into several probability distributions over
alternative attribute values and therefore is the key for the more compact representation that is provided
by AOR?-databases. However, because these assumptions AOR?-database are not powerful enough to
model every potential set of possible worlds. Despite of these shortcoming, they are useful in many

application scenarios.

Example 1 An AOR?-database that may result from the crime scenario is presented in Figure 1.2. This
database contains a single table *Suspect’ that has five A-tuples and ten attributes. The first attribute
is a surrogate key and the last attribute contains the A-tuples’ probabilities. Since the attribute ’SID’
serves as database internal identifier for all A-tuples of the considered table, we sometimes write t; to
refer to the A-tuple that has the value i in the attribute *SID’. In contrast to these two attributes, all

3 A uniform naming of representation systems is sometimes missing in the literature on probabilistic databases and we therefore
name systems by their significant properties if a universal name is missing. For instance, the name AOR ?-databases was
selected, because this representation system is based on the use of so-called attribute-ORs and it allows tuples to be maybe
(maybe-tuples are typically labeled with a question mark).
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Suspect
SID gender size age  haircolor bloodtype shoesize = fingerprint photo p
male :09/1.70-1.80 | 25-35 |brown :1.0 A 0.7 L 1.0 w 1.0 L 1.0
1 1.0
female :0.1 AB :0.3
female :0.7/1.65-1.70 | ca.45 |brown :1.0 B :0.8| 39 07 % 09 L :1.0
2 male  :0.3 0 :0.2| 40 :0.3 L/ 0.1 10
3 1 1.0/ ca. 1.75 30-40 |brown :0.8 B 1.0/ 40 05 1L 1.0 L 1.0 0.8
blond :0.2 41 0.5
, mde 10 175-180 20-30 brown :06 L 1.0 40 09 @ 10 H, 10 .
black :0.4 L 0.1 '
female :1.0/1.71-172| 4550 |gray :1.0 B 0.7 1 1.0 % 09| 1 1.0
5 AB 0.2 & o1 1.0
0 0.1

Figure 1.2.: Probabilistic database table 'Suspect’ modeling uncertain information on criminal suspects

other attributes of the considered table are uncertain, i.e. an A-tuple can have several alternative values
in each of these attributes. For instance, the blood type of A-tuple ts is either B (probability 0.7), AB
(probability 0.2), or 0 (probability 0.1). Notice that the fingerprint of A-tuple to is only incomplete.
Moreover it was not clear whether or not this fingerprint actually belongs to the considered criminal.
For that reason, a probability of 0.9 is ascribed to this fingerprint. Since it is not completely clear
whether or not the person that is described by A-tuple t3 is the actually wanted criminal (maybe it is a
person that was near the crime scene accidentally), ts is associated with a probability lower than one.
Note, for representation purposes we describe the uncertain age and the uncertain size of the suspects
by interval values (e.g. the age of the first suspect is between 25 and 30 years) or approximate values
(e.g. the second suspect is around 45 years old) in this table, but assume that the corresponding data
values are internally stored by the use of probability distributions. Moreover, we simplify the databases
by assuming that for each suspect only a single fingerprint and a single photo need to be stored. As in

conventional relational databases, a null value 1 is used to represent a missing attribute value.

Due to the assumed mutual independence between the A-tuples and due to the assumed mutual inde-
pendence between the attribute values of one A-tuple, a single possible world can be constructed from

an AOR?-database in two steps:
o First, we select all non-maybe A-tuples and select some of the maybe A-tuples.
e Second, we choose an alternative value per attribute for each of the selected A-tuples.

The probability of a possible world is computed by multiplying the probabilities of the selected A-tuples
with the probabilities of the selected attribute values and with the the inverse probabilities of all non-
selected maybe A-tuples. Note, null values are used as in conventional databases and therefore do not
need to be resolved for constructing a possible world, i.e. the null value from A-tuple ¢; in the attribute
’shoe size’ remains a null value in all the database’s possible worlds.

Similar to the possible worlds of a probabilistic database, an A-tuple models a set of possible in-

stances, i.e. the non-empty possible worlds of an AOR?-database that only contains this A-tuple. A
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<1>

Suspect
SID gender size age haircolor bloodtype shoesize fingerprint photo

1 | male 1.72 26 | brown A 1 w 1
2 |female | 1.67 44 | brown B 39 B 1
3 1L 1.76 31 | brown B 40 1 1
4 male 179 | 29 | black n 40 & B
5 female (170 | 46 grey B i B 1

Suspect™®

SID gender size age haircolor bloodtype shoesize fingerprint photo
1 male 170 | 30 brown AB 1 & 1
2 | male 1.70 41 | brown 0 40 1 1
4  male 1.76 20 | brown 1 L ﬁi B
5 female 171 | 50 | grey B L Ay i i

Figure 1.3.: Two possible worlds of the probabilistic database table 'Suspect’

possible instance of an A-tuple is constructed by selecting one of its alternative values per attribute.
Since all attributes are considered to be mutual independent events, the probability of a possible instance
is computed by multiplying the probability of the A-tuple with the probabilities of the selected values.
As a consequence, the world construction process described above corresponds to a process that selects
a possible instance per non-maybe A-tuple and selects a possible instance or none instance per maybe
A-tuple.

Example 2 For illustration, Figure 1.3 presents two possible worlds of the sample database from Fig-
ure 1.2. Notice, since A-tuple ts3 is only maybe, it is missing in some of the possible worlds, e.g. it is miss-
ing in the possible world that is presented in Figure 1.3. Altogether, if we assume that each value of the at-
tribute ’size’ is internally stored at the granularity of centimeters and if we assume that each approximate
value represents a probability distribution on ten alternative values, the sample AOR?-database repre-
sents a set of 3.89 x 10'2 possible worlds (e.g. A-tuple t1 has already 2x 11 x11x1x2x1x1x1 = 484
possible instances). This number is already large although we only consider information on five suspects
and it is up to the reader to imagine what incredible number of worlds is compactly modeled in a similar

AOR?-database with hundreds or thousands of suspects (or A-tuples respectively).

This small example already shows that a separate storing of possible worlds is usually not manageable

in practice and therefore emphasizes the importance of compact representation systems.

1.2.2. Querying Probabilistic Databases

In querying probabilistic databases, we have to distinguish between queries whose results are directly
presented to the user and queries whose results are used as input to another query, as for example in the
case of views. Whereas the results of the first need to be presented in a simple way, the results of the
second need to be compositional, i.e. the query results must represent a valid probabilistic database.

For answering queries in a compositional way, the possible worlds semantics [AKG87, DS07c] is

typically used as a reference. According to this semantics, the result of querying a set of possible worlds
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SID gender hair color p SID gender haircolor p
female :0.7 | brown :1.0 i taa 5 | female gray 0.7
male  :0.3 ' to 3 L brown 0.64

3 1 :1.0 brown :0.8 6 taz| 2 | female brown 0.56

blond :0.2 taal 2 male brown 0.24

5 |female :1.0 gray :1.0 0.7 tas| 3 L blond 0.16
(a) Compositional query result (b) User presented query result

Figure 1.4.: Result of the sample query evaluated under the two different semantics

is defined as another set of possible worlds where each output world corresponds to the query result of
any of the input worlds. The probability of an output world corresponds to the accumulative probability
of all input worlds that produce this output world as query result. In the case where a probabilistic
database is modeled in a compact representation system, the result of a query is expected to be the
probabilistic database that is modeled within the same system and that exactly represents the same set of

possible worlds that would result from posing this query to the possible worlds of the input database.

Example 3 For illustration, we consider a query that requests the SID, the gender, and the hair color
of all suspects that have the blood type B. By evaluating this query according to the possible worlds se-
mantics the query result is the AOR ?-database that is presented in Figure 1.4(a)*. Notice, the probability
of each output A-tuple results from multiplying the probability of its corresponding input A-tuple and the
probability that this input A-tuple has the value ’B’ in attribute *blood type’. Since the A-tuples t1 and
t4 do not have the value B’ in the attribute *blood type’ in any of their possible instances, they do not
belong to the query result.

In contrast, if the query result is presented to the user, it is usually modeled as a list of tuple-probability
pairs where the tuple is an ordinary database tuple (not an A-tuple!) and the probability is the likelihood
that its corresponding tuple belongs to the ’true’ world of the compositional query result. For reasons
of presentation, the tuple-probability pairs of the query result are usually sorted by their probabilities in
decreasing order [SORK11].

Example 4 For illustration, we consider the same query as we have considered in Example 3, but this
time we evaluate it as a user query. The corresponding query result is presented in Figure 1.4(b) and
contains five tuple-probability pairs (we denote the output tuples as t o1 to t a5). Note, the output tuples
tao and t a5 result from querying the maybe A-tuple ts. Therefore the probabilities of these two tuples
are computed by multiplying the probability of ts with the probability that ts has the corresponding
value in the attribute ’hair color’. It is obvious that the simpler presentation comes to the price of losing
information on tuple correlations because the mutual exclusion between the output tuples t 42 and t 45 as

well as t 43 and t a4 is not reflected by the query result.

“Note, because null values remain null values in every possible world, A-tuple £, does not belong to the query answer in any
of these worlds although its value in the attribute "blood type’ cannot be excluded to be B for sure.
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1.3. Duplicate Detection

Duplicate detection [EIVO7, NH10, HCMLO09] is the process of identifying data objects that refer to
the same real-world entity and is often also denoted as record linkage [NK62, FS69, Jar89, Win(2,
BG04, HSWO7], object matching [DLLHO03, ZSC10], or data matching [Chr12]. In order to clean a
database from duplicates, duplicate detection needs to be followed by a process that merges the detected
duplicates to single data objects. This process is usually denoted as duplicate merging [BGMM™09] or
data fusion [MA06, BNOS]. A combined execution of both processes is usually denoted as duplicate
elimination [LLLO1, SB04], deduplication [SB02, CG07a, ARS09], the merge/purge problem [HS95],
or entity resolution [BGMM™09, BG07c, Tall1, BBKL12, GM12, GM13].

Duplicate detection scenarios are typically restricted to single relational tables. In this case, each
database tuple is supposed to represent another real-world entity. In complex databases, however, real-
world entities often need to be represented by tuples in several tables (we denote such situations as
multi-table memberships). For that reason, we introduce the term database entity in this thesis in order
to encompass to all the information within a database that is considered to represent the same real-world
entity. As a consequence, we consider duplicate detection as the identification of different database
entities that refer to the same real-world entity. We will introduce the concept of database entities in
more detail in Section 2.1. Until then we consider database entities and database tuples (or A-tuples
respectively) synonymously.

Real-world equivalence is a transitive relation. Thus, if the database entity e, represents the same
real-world entity as the database entities e, and e; (and hence is a duplicate of them), e; and e; need to
represent the same real-world entity (and hence need to be duplicates) as well. Due to this transitivity, the
result of a duplicate detection process is a partition (called clustering) of all entities of the input database
into non-empty and disjoint partition claesses (called clusters) where each cluster refers to another real-
world entity. Since the clusters are disjoint and each database entity is assigned to exact one cluster, the

result is deterministic and we therefore speak about deterministic duplicate detection in such cases.

Example 5 In the illustrating example of this chapter, duplicate detection corresponds to the task of
identifying suspects that actually describe the same person. Individual criminals typically participate
in multiple crimes and it is often not obvious whether or not two suspects are actually the same person.
Thus, it is only natural that different A-tuples of the table *Suspect’ refer to the same person and hence

the table is commonly corrupted by many duplicates”.

Although the final detection result is a clustering, duplicate decisions are typically made in a pairwise
fashion before combining them to a globally consistent result, i.e. the duplicate clustering. In the pairwise
comparison step, each entity pair is assigned to the class of MATCHES (the supposed duplicates) or is
assigned to the class of UNMATCHES (the supposed non-duplicates) based on the similarities of their
attribute values. The underlying idea of the pairwise comparison approach is to use the similarity of

the attribute values as an indication for the real-world equivalence between the corresponding database

SNotice that the A-tuples in the considered sample table only contain information on the properties of the suspected person
and information on the crime or information on the crime scene are assumed to be stored separately. Thus, each A-tuple
represent a person and two A-tuples are considered to be duplicates if they represent the same person.
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Figure 1.5.: A certain clustering and two probabilistic clusterings of the A-tuples from Table 'Suspect’

entities. Nevertheless, because data is often corrupted by many errors and database entities are oftentimes
outdated, it can happen that the attribute values of some non-duplicate entities are more similar than the
attribute values of some duplicate entities (note, in the most data applications we do not have a property
like the fingerprint that enables a certain implication of real-world equivalence). This circumstance
makes duplicate detection a challenge, because it is often impossible to clearly demarcate duplicate pairs
from non-duplicate pairs. As a consequence, duplicate detection approaches are vulnerable for two kinds
of errors [MWGMI10]: (a) false positives, i.e. actual non-duplicates that have been incorrectly detected
as duplicates, and (b) false negatives, i.e actual duplicates that have not been detected as duplicates. For
the sake of completeness, actual duplicates that have been correctly detected as duplicates are called
true positives and actual non-duplicates that have been correctly detected as non-duplicates are called
true negatives. Relaxing the matching criteria usually decreases the number of false negatives, but also
increases the number of false positives. Therefore, duplicate detection is always a trade-off between both
kinds of errors that essentially depends on the considered application scenario because some applications
consider false positives to be worse than false negatives and some applications do the contrary.

Example 6 If we adopt the pairwise matching concept from conventional databases to probabilistic
databases, duplicate decisions on A-tuples are made by comparing the A-tuples’ attribute values. In
order to use all attribute values that are available in our crime scenario, we require specific similarity
measures for fingerprints and photos. It is obvious that the similarity in some attributes is more impor-
tant than the similarity in other attributes. For instance, whereas the same age or the same size is only a
small indication for a duplicate because there are many people having this age (or size respectively), an
identical fingerprint is already a clear proof of real-world equivalence if we can assume that the com-
pared values are free from errors. If we consider the sample table *Suspect’ and if we assume an error
free database, i.e. for each attribute value the ’true’ value is among the alternative values, we see that

the A-tuples t, and t4 are certainly duplicates (a hard MATCH) because they share the same fingerprint.
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Figure 1.6.: Possible cleaned version of ‘Suspect’

The A-tuples to and ts are highly similar in their sizes, ages and blood types. Moreover, they likely have
a high similar fingerprint and therefore are possibly a duplicate. Nevertheless, since we cannot classify
them as a M ATCH without doubt, we call them a POSSIBLE MATCH instead. Note that in deterministic
duplicate detection POSSIBLE MATCHES are usually resolved by manual reviews of domain experts and
therefore have to be small in numbers. Interestingly, t3 and t4 are somewhat similar. However, t1 and t3
are a hard UNMATCH because they have different blood types and therefore we can conclude that ts and
t4 must be a hard UNMATCH as well. A potential duplicate clustering of the five A-tuples is presented in
Figure 1.5(a). As shown by this figure, we usually present a clustering in this thesis as a graph that has
one node per database entity (in this case A-tuples) and connects two nodes by an edge if they belong to

the same duplicate cluster.

The main purpose of deduplication is to remove duplicate entities from the database and hence to make
the database (more) consistent. Nevertheless, merging duplicate database entities has a useful side effect,
because each of these entities can contain information that is not present in the others and combining their

information can lead to new conclusions.

Example 7 Thus, in the considered crime scenario we benefit from deduplication in two ways. First, by
removing duplicates we reduce the number of investigations that are need to be made. Second, dedupli-
cation can help to catch and arrest the wanted criminals because the data values of the merged A-tuples
become more informative and we therefore can make conclusions on the identities of the suspects that
could not been made by only considering the A-tuples of the uncleaned database.

The value of merging duplicates can be perfectly illustrated on the basis of the hard MATCH between
t1 and t4 because their information is complementary. Whereas t1 has a known blood type, t4 has a photo
and a shoe size. Merging is usually performed on an attribute-by-attribute basis and can be realized in
different ways. For illustration, we use a merging approach that computes a probabilistic version of the
set intersection operator for attribute values that do not contradict, e.g. the non-contradictory intervals
25 — 35 and 20 — 30 are merged to the interval 25 — 30, and computes a probabilistic version of the
set union operator in the case of contradictions, e.g. the certain but contradictory values 'brown’ and
‘gray’ are merged to a uniform probability distribution on both values. By assuming that t1 and t4 as
well as to and ts are classified as duplicates, Figure 1.6 presents a 'cleaned’ version of the initial table

"Suspect’ by using a variant of the above described merging approach. As we can see, the new A-tuples
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contain much more information that the original A-tuples from Figure 1.2 and hence can considerably

speed up the investigation process.

Detection of duplicates can only be based on matching attribute values, but can also profit from the
information on relationships to other database entities.

Example 8 For instance, let us assume a second table *Crime’ that stores information on the crime
scenes (e.g. place, time, date, and crime type) and let us assume a third table that connects the A-tuples
from the table *Suspect’ with tuples of the table ’Crime’. Criminals often work by a specific pattern.
Consequently, descriptions on the committed crimes can help to identify duplicate suspects. Moreover,
we can use information on crime scenes to exclude duplicates for sure (and hence to reduce the number
of false positives). For example, a criminal cannot commit two crimes at a similar time at two far afield
places. Thus, if two A-tuples from the table *Suspect’ refer to tuples from the table ’Crime’ that are not
compatible, we can classify them as an hard UNMATCH although the attribute values of these A-tuples
are similar to a large extent. Of course, such conclusions are always based on the condition that the
provided information on the crime, the crime scene, and the crime participation of individual suspects is

known to be correct.

1.3.1. Indeterministic Duplicate Detection

Until now, we consider duplicate detection as a process that eventually resolves any kind of uncertainty
on the made duplicate decisions because it produces a single clustering as a final result. In the con-
text of probabilistic databases, however, such a deterministic resolution is not necessarily required, but
ambiguous decisions can be probabilistically stored in the database instead. A so-called indeterministic
duplicate detection process [PvKR13, PR12, BSIBD09, INNV10] rather produces a probability distribu-
tion on a set of possible clusterings (called as probabilistic clustering in this thesis) instead of a single

clustering if some of the underlying duplicate decisions cannot be made with absolute confidence.

Example 9 A probabilistic duplicate clustering of the five A-tuples from the sample table *Suspect’ is
presented in Figure 1.5(b). In this case, we take into account that the two A-tuples to and t5 are a
POSSIBLE MATCH and therefore avoid a risky decision by modeling both plausible clusterings in the
detection results. Of course, the number of possible clusterings can be larger in numbers. For instance,
let us assume that the similarity between to and ts as well as the similarity between ts and ts is within
such a range that we cannot conclude with absolute certainty whether they are duplicates or not. For
considering all these uncertainties in the detection result, we need to create a probabilistic duplicate

clustering with five possible clusterings as presented in Figure 1.5(c).

It is important to note that an indeterministic deduplication result cannot be represented by an AOR?-
database because it requires a modeling of complex correlations between the existence of tuples, but the
A-tuples of an AOR?-database are considered to be mutual independent. For that reason, we will extend
our consideration to more powerful (but although more complex) representation systems in Chapter 3 of
this thesis.

In general, uncertainty on duplicate decisions can be caused by four reasons. First, uncertainty can be

introduced into the detection process by the processed data themselves as it is the case if we consider a
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probabilistic database as input. Second, it is often not known which process configuration detects du-
plicates best, because the quality of configurations essentially depends on the given database and essen-
tially depends on the considered application domain. Moreover, beyond a perfect detection the meaning
of quality is not even clearly defined and we therefore often cannot determine which process configura-
tion is most suitable for a given scenario. Third, high data similarity does not correspond to real-world
equivalence, but is only an indication for it. Thus, we cannot make all duplicate decisions with absolute
confidence even if a certain input database is processed and the best possible process configuration is
available. Finally, in contrast to the assumption that we made in the examples of the previous section we
usually cannot assume that the database is free of errors. Instead data values can contain typographical
errors, attribute values of one tuple can be confused and values can be even confused across tuples. Thus
even if a clear proof on real-world equivalence such as two identical fingerprints is given some amount

on duplicate uncertainty always remain.

The advantage of indeterministic duplicate detection is that we are not forced to make determinis-
tic duplicate decisions in ambiguous situations, but can incorporate emerging decision uncertainty into
the output database. This uncertainty in turn can be gradually resolved afterwards by introducing new
evidence time after time and therefore the indeterministic deduplication result can be considered as a
prompt cleaning answer (or integration answer respectively) that can be queried instantly (note that in
many applications, e.g. virtual data integration, the deduplication result must be immediately provided
to the user and there is no time left for manual reviews of domain experts or other time-consuming ac-
tivities). Moreover, indeterministic duplicate detection enables the usage of context information that was
not available at detection time. For instance, the deduplication result can be provided to a community and
the collective knowledge of this community can help to resolve indeterministically modeled decisions
afterwards [dKvKO07b, vKdK09].

Example 10 For demonstrating the benefits of indeterministic duplicate detection, we reconsider the
probabilistic clustering of the illustrative example that is presented in Figure 1.5(b). The A-tuples t and
ts are a POSSIBLE MATCH, i.e. they belong to the same cluster in the first possible clustering, but belong
to different clusters in the second possible clustering. In a deterministic duplicate detection approach, we
need to chose one of these possible clusterings as a final result and hence have to classify these A-tuples
either as a MATCH or have to classify them as an UNMATCH. In the first case, we risk a false positive
and hence risk a merging of information that actually does not describe the same person. This incorrect
merging can have serious consequences because we would only investigate for one suspect instead of two
suspects. Moreover, the investigation on this single suspect would be rely on incorrect information such
as properties that actually do not belong together (e.g. brown hair and blue eyes). As a consequence,
the investigations possibly become misdirected so that we do not suspect the actual criminal (even if we
known her) because she does not fit to the used searching scheme. In the second case, however, we risk
a false negative and therefore risk the chance of arresting the corresponding criminal because we do not
combine the information provided from both A-tuples. Of course, we can store the suspicion that both A-
tuples maybe refer to the same criminal in a separate document or database table. In that case, however,
this information is not directly incorporated into query evaluation and needs to be queried separately

instead.
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In contrast, if we use an indeterministic deduplication approach, the original A-tuples as well as the
merged A-tuple belong to the database and all of them are considered in answering the posed database
queries. For instance, if we request for all male suspects that are 45 years old, A-tuple to belongs to
the query result, because it satisfies both conditions in some of the database’s possible worlds. On the
other hand, if we request for all suspects that have gray hair and shoe size 39, the newly created A-tuple
to5 belongs to the query result, because the value in the attribute "hair color’ is either brown or gray
and the value in the attribute ’shoe size’ is either 39 or 40. Note that if we would use a deterministic
deduplication approach we would either miss tuple to in the result for the first query (t2 and t5 are a
MATCH) or we would miss tuple t2 5 in the result of the second query (t2 and t5 are an UNMATCH).

Recall that an indeterministically modeled decision is not considered as a final result, but should
be rather considered as a prompt answer that can be resolved gradually. Thus, every time we find a
new evidence about the two suspects, e.g. a shoeprint or a fingerprint, the indeterministically modeled

decision becomes more clear (in which direction however) until it is eventually resolved.

1.4. Research Questions

As we have presented throughout the previous sections, probabilistic data management is useful in sev-
eral application domains. Like a conventional database, a probabilistic database can be corrupted by
duplicates and eliminating these duplicates can considerably increase the quality of the database. More-
over, duplicate database entities need to be detected for meaningful integrating data that originate from
different sources and can be beneficial in matching database schemas.

Therefore, the goal of this thesis is to develop a generic approach for duplicate detection (deterministic
as well as indeterministic) in uncertain databases. Duplicate decisions are typically based on the simi-
larities between attributes values and/or relationship information. The meaning of similarity, however,
can strongly vary from one domain to another. Moreover, in which way we can conclude real-world
equivalence from data similarity considerably depends on the quality of the considered data because the
portion of data errors and the volume of missing values significantly affects the similarity between two
duplicates and significantly affects the similarity between two non-duplicates respectively. Finally, a per-
fect detection of duplicates is usually unrealizable and whether or not false positives are preferred to false
negatives depends on the considered database applications. Thus, although many duplicate detection al-
gorithm are entitled to be domain-independent [ME97, BM02, ZH06, Leh06, SBY 10] the actually used
duplicate detection process is not because some of the algorithms’ input parameters such as similarity
measures or thresholds need to be adapted to the given detection scenario. As a consequence, configu-
rating a duplicate detection process in an appropriate way strongly depends on the considered domain
and strongly depends on some quality characteristics (e.g. completeness or accuracy) of the deduplicated
database. For that reason, we strive for a detection approach that (a) provides a variety of meaningful
functionalities, and (b) allows a flexible composition of these functionalities so that the user becomes
enabled to design a duplicate detection process that fits best to her purpose.

The research question that is primarily considered in this thesis is therefore:

m In which ways we can effectively and efficiently detect duplicates in probabilistic relational

databases?




1.5. Challenges 17

Based on this question, we can derive a set of subquestions. It is obvious that the uncertainty of the
input data affects the detection process. Nevertheless, it is not completely clear in which way this process
is affected by uncertainty on tuple-level and is affected by uncertainty on attribute-level. This implicates
the following subquestion:

m How to match database entities in the presence of tuple-level uncertainty and attribute-level un-

certainty?

Strong probabilistic representation systems offer the opportunity to model uncertainty on duplicate
decisions in the detection result, but several representation systems do not. For this reason, we have to
distinguish between deterministic duplicate detection approaches and indeterministic duplicate detection
approaches. To produce a deterministic duplicate detection result we have to resolve the uncertainty of

the input database at some moment of the detection process. This poses two subquestions:
m At what moments we can resolve input data uncertainty?
m By which methods we can resolve input data uncertainty at a particular moment?

The underlying idea of indeterministic deduplication is to model uncertainty on duplicate decisions

within the output database. This leads us to the following subquestions:
m What types of applications can benefit from indeterministic deduplication results?
m How we can efficiently compute indeterministic duplicate detection results?

m How we can efficiently represent indeterministic deduplication results within a probabilistic rela-

tional database?

Decreasing the number of ambiguous duplicate decisions comes to the price of decreasing the certainty of
the output database. As a consequence, indeterministic duplicate detection is always a trade-off between
these two contrary goals. To quantify this trade-off in numbers we need measures for rating the quality

of indeterministic duplicate detection results. This implicates the following subquestion:

m What does detection quality mean in the presence of uncertain duplicate decisions?

1.5. Challenges
For answering the research questions presented above we have to face a set of challenges:

Type mismatch
The first challenge concerns the semantics of duplicate detection in relational data. Duplicate de-
tection itself is entity-based, i.e. it maps database entities to real-world entities, but the relational
data model is not because a database tuple cannot only represent an entity, but can also represent a
relationship between entities, or can represent the value of a multi-valued attribute. For detecting
duplicates in certain relational databases, this type mismatch usually does not matter because du-
plicate detection is typically restricted to single database tables or foreign key references from one

database table to another database table are always treated as relationship information. One aspect
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of probabilistic relational databases, however, is the uncertain membership of tuples to database
tables (i.e. tuple-level uncertainty) and therefore it is not unusual that entities are represented by
several tuples in different tables. For that reason, we require an entity-based interpretation of re-
lational data in general and require an entity-based interpretation of probabilistic relational data in

particular.

Representation heterogeneity

Probabilistic representation systems are used to compactly represent a probability distribution over
a set of possible worlds. Obviously, by using different representation systems, same information
(i.e. the same probability distribution over the same set of possible worlds) can be represented
in different ways. In this thesis, however, we strive for detection approaches that are independent
from the used representation and therefore always produce the same output clustering if same input
information is given. This property is especially necessary if we integrate probabilistic data from
several sources where some sources use another system for probabilistic data representation than
others. As a consequence, one challenge is to overcome the heterogeneity that is caused by the

usage of different representation systems.

Resolution of data uncertainty

For accomplishing deterministic duplicate detection results we need to resolve the uncertainty of
the input database. In theory, input data uncertainty can be resolved at different moments of the
detection process. For instance, the first moment is to aggregate all the possible worlds of the
probabilistic input database to a single world that is a certain database and the last moment is to
aggregate all possible duplicate clusterings to a single clustering. Intuitively, an aggregation of
worlds seems to be most efficient because duplicate detection can then be performed in a certain
database. In contrast, an aggregation of the duplicate clusterings seems to be most effective be-
cause uncertainty can be considered in any of the detection phases. Nevertheless, there are several
other moments where uncertainty can be resolved and it is not clear which of these moments pro-
vides a trade-off between effectiveness and efficiency that is best fitting to a specific application
scenario. For that reason, we have to examine aggregation methods for different domains such as
database instances, similarity scores, duplicate decisions, or clusterings. Moreover, different ap-
plications can have different quality requirements, e.g. some applications consider false positives
to be worse than false negatives or vice versa. As a consequence, we need to incorporate such

quality requirements into the aggregation process.

Matching database entities in the presence of uncertainty

If the uncertainty of the input database is not resolved beforehand (e.g. by an aggregation of
possible worlds), we need to deal with this uncertainty in the following detection phases. This
particularly concerns the pairwise matching of database entities. Although we cannot use the
possible worlds semantics as a reference for duplicate detection in probabilistic databases if we
need to compute a deterministic outcome, it seems most intuitive to classify two database entities
as a MATCH if they are similar in the majority of possible worlds. By doing so we produce a
deterministic detection result by aggregating the results that have been computed in the individual

worlds. However, this approach implicates a set of further challenges:
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We strive for an efficient detection approach. Nevertheless, as we have already illustrated in
the previous part of this thesis, the number of possible worlds of a probabilistic database is
usually extremely large and matching entities in each of these worlds is therefore impractical.
As a consequence, we need to develop detection approaches that process a set of possible

worlds without processing each of these worlds separately.

Due to tuple-level uncertainty, some database entities are missing in some of the possible

worlds and it is not clear how to incorporate such absences into the aggregation process.

Due to incorrect tuple dependencies, it can occur that duplicate entities do not coexist in any
possible world, i.e. duplicate-free worlds do not necessarily imply a duplicate-free prob-
abilistic database, and therefore will never be classified as a MATCH if the final detection
result is only based on the detection results of the individual worlds. Moreover, incorrect

tuple dependencies can cause that two duplicate entities are dissimilar in all possible worlds.

If the schema of a probabilistic database is designed by using an approach that has been de-
veloped for designing certain database schemas, it can contain incorrect dependencies from
attributes and/or relationship roles to table memberships. For instance, a database table ’Stu-
dent’ can contain the attribute 'name’, but the name of a person actually does not depend
on the fact whether or not she is a student. In certain databases such incorrect dependencies
do not matter, but in probabilistic databases such dependencies can negatively affect the de-
tection process if the membership to the considered table can be uncertain because in this
case an entity can only have a value in the incorrectly depending attribute if it belongs to
the corresponding table. As a consequence, the uncertainty whether or not a database entity

belongs to a table can influence the finally made duplicate decisions stronger than useful.

Most often the possible instances of a database entity are very similar to each other. Nonethe-
less, this is not a mandatory property and sometimes even the contrary is the case. In this
thesis we call such database entities to be scattered and call two scattered database entities
as scattered duplicates if they represent the same real-world entity. A scattered duplicate
can simply emerge by mistakenly inserting a scattered database entity into the database for
several times and therefore can be a not uncommon error. The accumulative probability of all
the possible worlds in which two scattered duplicate are similar, however, can be extremely
low if these entities are independent and each of them has a large number of possible in-
stances. For illustration, let e, and e5 be two database entities that both represent a uniform
probability distribution on the same set of ten possible instances. If the pairwise similarities
of these ten instances are low, both entities are only similar in these possible worlds in which
they have the same possible instance. As a consequence, the accumulative probability of the

worlds in which these entities are similar is only 10 x 0.1 x 0.1 = 0.1.

Modeling indeterministic deduplication results within probabilistic databases

After computing the probabilistic clustering, each duplicate cluster of any possible clustering is

merged to a single database entity by a conventional merging approach. To correctly represent

an indeterministic deduplication result into a probabilistic database, however, we cannot simply

insert the new entities into the database, but need to adopt cluster correlations that are inherently
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modeled in the probabilistic clustering from the duplicate clusters to the newly created entities.
For that reason, we need to study in which way such correlations can be efficiently modeled within

a probabilistic representation system.

Quality of indeterministic duplicate detection results
In order to compare two indeterministic duplicate detection results or to compare an indeterministic
duplicate detection result with a deterministic duplicate detection result, we demand for measures
that rate the quality of probabilistic duplicate clusterings. For that purpose, we need to identify the
criteria that are significant for the quality of an indeterministic duplicate detection result. More-
over, we need measures that can be used to quantify these criteria by numerical values. In this
context, it is not completely clear if we can reuse measures from other application domains, e.g.
duplicate detection in certain data, or if we need to design some measures by our own. Finally,
the quality of a database is typically considered as its fit for use. As a consequence, there is a
high correlation between the meaning of quality and the database application that need to work
on the deduplicated database. However, it is not clear in which way this correlation affects the
selection of the significant quality criteria and in which way this correlation affects the selection

of the quality measures that are used to quantify these criteria.

Factorization of probabilistic clusterings
In theory, an indeterministic duplicate detection process produces an uncertain clustering of all
database entities as output. However, the number of plausible duplicate clusterings can become
large and storing (over even enumerating) all these clusterings becomes infeasible already for a
small number of uncertain pairwise decisions. For that reason, we require for a more compact
representation of probabilistic clusterings. Since most duplicate decisions are mutual indepen-
dent, compactness can be achieved by factorizing the probabilistic clustering into its independent
components. Nevertheless, a subsequent factorization is commonly not practical and we require
detection approaches that directly produce the factorized representation of a probabilistic cluster-
ing as output. Moreover, factorization influences the way we have to represent an indeterministic
deduplication result within a probabilistic database. Finally, quality measures are usually defined
with a non-factorized uncertain clustering in mind and we therefore need methods to efficiently

compute the quality of an uncertain clustering based on its factorized representation.

1.6. Contribution

For answering the research questions described in Section 1.4, we need to solve the challenges presented

in Section 1.5. The main contributions of this thesis can be therefore summarized as follows:

Entity-based interpretation of (probabilistic) relational data
Duplicate detection is per definition entity-based, but the relational data model is not. For that
reason, we propose an entity-based interpretation of relational data and extend it to probabilistic
relational data. In the context of the latter, we discuss the use of foreign keys in several probabilis-
tic representation systems and present methods to model the concept of inheritance within these

systems.
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Framework for deterministic duplicate detection in certain databases
We propose a framework for duplicate detection in certain databases. This framework is called
HaDDeF and serves as a fundamental baseline for the two approaches for detecting duplicates in
probabilistic data that are presented in this thesis. HaDDeF contains a seven-phase model for du-
plicate detection that is based on a pairwise matching of entity descriptions. With this framework,
we extend current research on duplicate detection in certain relational databases in three ways:
(a) we present a generic approach for incorporating relationship information into the detection
process, (b) we propose the concept of impact values that can be used to improve the effectiveness
of a duplicate detection process, and (c) we propose a method for modeling and matching database

entities with multi-table memberships.

Uncertain Value Theory
We propose a formalism called Uncertain Value Theory that extends the possible worlds semantics
from database level to arbitrary domains and hence can be used for modeling and managing uncer-
tainty at different levels of granularity (including functions). This formalism serves as a baseline

for all the formal definitions that we make in this thesis.

Deterministic duplicate detection in probabilistic data
We study several semantical issues that emerge in the context of deterministic duplicate detection
in probabilistic databases and elaborate a set of challenges that need to be considered for develop-

ing effective duplicate detection approaches.

A deterministic detection result need to be accomplished by the use of aggregation methods. For
that reason, we extensively discuss methods for aggregating (interim as well as final) detection
results. Furthermore, we conceptualize an approach that can be used to incorporate quality re-

quirements into the most of these aggregation methods.

We propose two generic approaches for deterministic duplicate detection in probabilistic databases.
Both approaches are based on the reuse of existing methods for detecting duplicates in certain
databases. The first approach is based on the principle idea of the possible worlds semantics and
therefore processes a set of sample worlds separately before aggregating the worlds’ detection
results to a deterministic one. We refer to this approach as world-based detection approach in
this thesis. The second approach considers uncertainty not on database level, but considers uncer-
tainty on description level and is therefore called as description-based detection approach. This
approach is based on pairwise matching probabilistic entity descriptions and thus processes all the
possible worlds per entity pair collectively. To make deterministic duplicate detection scalable,
we propose techniques that can be used to improve the efficiency of matching two probabilistic
entity descriptions. Moreover, we provide a theoretical and an experimental comparison of both

detection approaches.

A particular challenge is the detection of scattered duplicates. Because probabilistic entity descrip-
tions can be considered as probability mass functions, we survey existing methods for measuring
the similarity between two probability mass functions. Since none of these methods is suitable for
our purpose, we present a probabilistic extension of the Monge-Elkan Similarity (called Proba-

bilistic Monge-Elkan Similarity) and extend it to the use of entity correlations.
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Figure 1.7.: Overview on the connections between some of the chapters and sections of this thesis

The challenge of dealing with incorrect tuple dependencies and the challenge of poor schema
design require both a specific preparation of the input databases. For this reason, we propose two
preparation activities in this thesis. Whereas the first activity extracts entity correlations from the
input database, the second activity transforms the schema of input database in order to remove

incorrect dependencies from attributes and/or relationship roles to table memberships.

Finally, we study sources of uncertainty within a duplicate detection process and present methods

to incorporate process uncertainty into the description-based detection approach.

Indeterministic duplicate detection
We provide a formalization of probabilistic clusterings, indeterministic duplicate detection pro-
cesses, and probabilistic clustering factorizations. Moreover, we introduce an approach for model-
ing an indeterministic deduplication result within a probabilistic database and provide a discussion
on the different types of database applications that can profit from modeling decision uncertainty
within the database. Since a subsequent factorization of probabilistic clusterings is not practical,
we propose a clustering approach that directly computes a probabilistic clustering in a factorized
way. Finally, we study the meaning of detection quality in the presence of uncertain duplicate deci-
sions and propose measures that can be used to rate this quality. Because a probabilistic clustering
is usually given by its factorized representation, we elaborate properties that can be exploited to

efficiently compute the introduced quality measures based on the clustering’s factorization.

1.7. Outline

The rest of this thesis is structured in eleven chapters. Figure 1.7 graphically illustrates the connections

between some of these chapters and brings them into line with the topic of this thesis.
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e In Chapter 2 we introduce some preliminaries that are fundamentally required for this thesis.
First, we present an entity-based interpretation of relational databases in Section 2.1. Because
duplicate detection results are clusterings of database entities and we sometimes require operations

on clusterings we then introduce some background on clusterings in Section 2.2.

o Chapter 3 contains an extensive and formal presentation of probabilistic databases. First, we for-
mally introduce the fundamental principles of probabilistic databases such as the possible worlds
semantics in Section 3.2, then discuss some commonly used representation systems in Section 3.3,
adopt our entity-based interpretation from certain relational databases to probabilistic relational
databases in Section 3.4, give an overview on techniques for querying probabilistic databases in

Section 3.5, and conclude this chapter with some further remarks in Section 3.6.

e Chapter 4 is devoted to background information on duplicate elimination in general and duplicate
detection in particular. We first present a formal definition of both processes in Section 4.1 and
then shortly discuss the two most important application fields of duplicate elimination, namely
data cleaning and data integration, in Section 4.2. We precede with a detailed presentation of
conventional approaches for duplicate detection in certain databases in Section 4.3 and conclude

this chapter by a short discussion on existing approaches for duplicate merging in Section 4.4.

e Chapter S introduces the duplicate detection framework HaDDeF. First, we present methods for
describing database entities in Section 5.1. Then, we introduce the concept of impact values and
present a seven-phase model for duplicate detection that is based on a pairwise matching of entity
descriptions in Section 5.2. Section 5.3 describes our approach for matching database entities with

multi-table memberships.

e In Chapter 6 we present the principles of the Uncertain Value Theory. Moreover, we present

existing approaches for measuring data uncertainty in Section 6.10.

e In Chapter 7 we present our research on deterministic duplicate detection in probabilistic
databases. We first provide a study about semantical detection issues and list several detection
challenges in Section 7.1. Section 7.2 contains an extensive discussion on aggregation methods
that can be used for uncertainty resolution. Then, we present the world-based detection approach
as well as the description-based detection approach in Section 7.3 and Section 7.4 respectively. A
detection of scattered duplicates by using similarity measures for probability mass functions and
therefore the introduction of the Probabilistic Monge-Elkan Similarity are part of Section 7.5. Sec-
tion 7.6 describes several techniques for improving the efficiency of matching probabilistic entity
descriptions. The two new preparation activities are then discuss in Section 7.7. In Section 7.8 we
consider an incorporation of process uncertainty into the detection process Finally, we conclude
this chapter by comparing the world-based detection approach and the description-based detection
approach in Section 7.9.

o Chapter 8 covers our research on indeterministic duplicate detection. Section 8.1 and Section 8.2
formally introduce the concepts of probabilistic clusterings as well as indeterministic duplicate

detection processes and discuss the challenges that are caused by both concepts. A factorization of
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probabilistic clusterings is considered in Section 8.3. Then we present methods to model indeter-
ministic deduplication results within a probabilistic database in Section 8.4 and discuss different
types of applications that can profit from indeterministic duplicate detection results in Section 8.5.
In Section 8.7 we propose a duplicate clustering approach that instantly produces a probabilis-
tic clustering in a factorized way. Finally, we conclude this chapter, by an extensive study on
the meaning and the computation of the quality of indeterministic duplicate detection results in
Section 8.8.

In Chapter 9 we shortly describe our prototypical implementation called HaDES (Hamburg Du-
plicate Elimination System) and present the results of several experiments that we have conducted
in order to prove the concepts of the different approaches and techniques that we have proposed in
this thesis.

In Chapter 10 we present several works that are related to this thesis and compare these works

with the contributions that are provided by this thesis.

Chapter 11 concludes this thesis in Section 11.1 and gives a short outlook on open challenges as

well as upcoming research in Section 11.2.




Chapter

Preliminaries

In this chapter we introduce some preliminaries that are required in the remainder of this thesis. Due
to duplicate detection is entity-based by nature but the relational data model is not, we first present an
entity-based interpretation of relational data in Section 2.1. The result of a duplicate detection process is
a clustering of database entities. For that reason, we introduce some formal background on clusterings,

properties of clusterings, and operations on clusterings in Section 2.2.

2.1. Entity-Based Interpretation of Relational Data

The purpose of a database is to model a part of the real-world that is of interest for a specific class of
applications. Consequently, a database can be considered as an image or a view of the real-world. As in
many real-life areas, this image is a result of the subjective perceptions of the people that are responsible
to design the database and to fill it with data. Therefore, we have to distinguish between the actual
entities of the real-world and the entities the database considers to be real.

Definition 1 (Real-World Entity): A real-world entity is a distinguishable thing (or object) of the con-

sidered universe of discourse. The set of all real-world entities, i.e. the real-world itself, is denoted as
2.

Examples for real-world entities are persons, movies, books, cities, and so on. Note, the concrete set

of considered real-world entities always depends on the considered universe of discourse.

Definition 2 (Database Entity): A database entity is a digital representation of a real-world entity.
Thus, a database entity is a distinguishable thing (or object) of all digital images of the real-world.

Since data representation depends on the used data model (e.g. relational, XML, etc.) and because
data representation can be extremely complex, a database entity can be considered as a (logical) construct
that encapsulates all the database information that is assumed to describe the same real-world entity and
hence is associated with the same database entity identifier. As we will see in the remainder of this
section, we differentiate between a database entity itself, i.e. its identity, and its instance, i.e. its time-

variant properties. Whereas the first is defined by the aforementioned database entity identifier, the latter

25
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is defined by a set of data values. As a consequence, the latter depends on the used data model, but the
first does not.

Duplicate elimination is the process of removing database entities from the database that refer to the
same real-world entity. Whereas duplicate elimination is entity-based (it maps database entities to real-
world entities), the relational data model is only semi entity-based, because not every tuple of a relational
database corresponds to an own database entity, but can also represent a relationship between several
database entities or can represent a multi-valued attribute. Consequently, we have a type mismatch
between the entity-based consideration of the duplicate elimination process and the semi entity-based
modeling of the underlying data.

In most existing approaches, duplicate elimination is only applied to single database tables so that each
database entity can be adequately described by an ordinary database tuple and the aforementioned type
mismatch does not matter. Nevertheless, there are many cases in which duplicate elimination need to
be performed in a database with multiple tables that are linked by foreign keys. In such cases, however,
a single database tuple is most often not suitable to describe a database entity sufficiently and the type
mismatch need to be resolved.

Whereas the relational data model is not entity-based, the entity-relationship model (short ERM) is
entity-based. Since relational databases are usually designed by transforming an initially developed
entity-relationship schema into a set of database tables, we can use the transformation rules to interpret
a relational database in an entity-based way. For that purpose we first introduce the principles of the
entity-relationship model and the relational data model, then present rules for transforming an entity-
relationship schema (short ER-schema) into a relation database schema (short RM-schema) and finally
elaborate an entity-based interpretation of relational data.

2.1.1. Entity-Relationship Model

The entity-relationship model is a data model that was originally introduced by Chen [Che76] and that
is typically used in the conceptual design of a database in order to model the considered universe of
discourse in an implementation independent manner [Vos08, UGMWO02]. The advantage of the entity-
relationship model is that it is simple to understand even for people from outside the database community,
because it is based on the native concepts of entities and relationships between entities. Moreover it has
a straightforward graphical notation that helps to minimize the communication problem between the
application informed, but database technology unfamiliar users and the application unfamiliar database
designers.

To model entities and their interactions, the entity-relationship model is based on four main compo-

nents:

o Attribute: An attribute describes a real-world property as a name, a date, or a place and can be
associated to an entity as well as a relationship between entities. An attribute has a name and
a domain. It can be single-valued, i.e. its instance is a single domain element, or multi-valued,
i.e. its instance is a subset of the domain. Examples of single-valued attributes are age or weight,
because very object has a single age and a single weight (of course this uniqueness is restricted to a

single measure). Examples of multi-valued attributes are hobbies or qualifications, because every
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person can have more then one hobby or can have several qualifications. Moreover, an attribute
can be atomic or can be composed by a set of further attributes. A typical example of a composed
attribute is the address of a person, because it is often composed by the attributes ’street’, "house

number’, ’zip-code’, and ’city’.

The concrete value of an entity e in an attribute A is in the following denoted as e[A]. The same
holds for relationships. To make that notion useable across types (entity type as well as relationship
type) we assume that every two database attributes A1 and A, are clearly distinguishable by their

names.

o Entity Type: An entity set is a collection of entities that share some characteristics, i.e. attributes
and relationship roles. For instance, all students have a matriculation number and a library iden-
tifier (attributes). Moreover, they take exams and attend to lectures (relationships). An entity type
models the time-invariant structure of the characteristics shared by the entities of a specific entity
set and hence can be considered as the set’s schema. Since all entities of an entity set are distin-
guishable the corresponding entity type must contain an attribute or a set of attributes whose values
are unique for all entities that possibly belongs to the considered set at any time. This attribute set

is called the entity type’s primary key.

o Relationship Type: Relationships model interactions and connections between different entities.
A relationship type models the time-invariant structure of a set of semantically equivalent relation-
ships. Since entities can be involved in a relationship in several ways, each involvement is usually
annotated with a role name. A relationship can be one-to-many, i.e. one of the relationship roles
is unique and one entity can participate in that role maximally once, or can be many-to-many, i.e.
none of the roles is unique and entities can be participate in each role for several times. Due to
interactions between entities are often not only described by the involved entities themselves, rela-
tionships can be associated with attributes. For instance, two persons meet each other at a specific
place at a specific time.

o Inheritance: Entity sets can be formed at somebody’s leisure. Consequently, an entity set can be
a subset of another entity set and its corresponding entity type can therefore be a specialization of
another entity type. Such kinds of inheritance are incorporated into the entity-relationship model
by a specific is-a-relationship that connects an entity type (the subtype) with another entity type
(the supertype) if the first is a specialization of the second. A set of is-a-relationships that refer
to the same supertype can be disjoint (an entity of the supertype can only belong to one of the
subtypes), non-disjoint, total (an entity of the supertype belongs to at least one of the subtypes), or

partial (i.e. non-total).

To resolve the considered type mismatch, we need to differentiate between an entity that we already
have defined as a distinguishable thing and its instance, i.e. its time-variant characteristics. Obviously,
an entity can belong to several entity sets and hence its characteristics can be described by several entity
types. The description of an entity by a specific entity type is called an entity tuple that in turn is defined

as an element of the Cartesian Product of the domains of all the attributes of the corresponding entity
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type. Since at each time the characteristic of an entity is unique, each entity can only be described by

one entity tuple per entity type.

Definition 3 (Database Entity Instance): In the entity-relationship model, the instance of a database
entity is defined as the set of all entity tuples that contains the entity’s identifier in the attribute DEI. Let
e be a database entity and let db be a database that is represented by using the entity-relationship model,
we denote the instance of e in db at time T, i.e. the set of entity tuples in db at time T that describe e, as
Inst(e,db, T).

Notice, many database books, as for example [Vos08], do not distinguish between and entity and its
instance. In our work, however, such a distinction is inevitable, because we consider the identity of
distinguishable things of the real-world and not the identity of tuples.

Whereas the entity’s instance is described by a set of entity tuples, we need a universal identifier to
describe the entity itself. This leads us to the problem that primary keys are usually defined for single
entity types and guarantee uniqueness only for the type’s tuples. To identify entities, however, we need
keys that are unique beyond single entity types and hence are unique for the whole universe of discourse.
For that reason, we introduce a special attribute database entity identifier (short DEI) that is considered
to be unique for all considered entities whether or not they originate from the same database. Moreover,
we assume that the DEI is the primary key of each entity table. As we think, this assumption is not
too restrictive, because without having the ability of universally identifying entities, detecting duplicates
(especially across sources) is per definition meaningless. Furthermore, in cases where an entity type
already has a primary key, this key can be further used as a secondary key.

Since we distinguish between entities and their instances, we also need such a distinction on the level
of entity types. The set of entity tuples that belong to an entity type is called as its instance and the set
of entities that is described by an entity type is called as the type’s extension. Whereas the schema of an
entity type is time-invariant, the instance and the extension are not, because the membership of a single
entity to a specific entity set as well as its attribute values and relationship roles can change over time.
For example, a person can be a student at one time and can be a professor at another time. Moreover, her

age increases by one once in each year.

Definition 4 (Entity Type Instance): The instance of an entity type is the set of entity tuples that belong
to this type. Let E be an entity type, we denote the instance of E at time T as Inst(E, T).

Definition 5 (Entity Type Extension): The extension of an entity type is the set of database entities that
are described by this type. Let E be an entity type, we denote the extension of E at time T as Ext(E, T).
Since database entities are described by entity tuples, the extension of an entity type can be derived from
its instance, i.e. Ext(E,7) = {e | t € Inst(E, T),t|DEI| = e}.

The instance of a database contains all tuples that belongs to the instance of any of its entity types.
Accordingly, the extension of a database contains all database entities that belongs to the extension of
any of its entity types. Let db be a database, the instance and the extension of db at time 7 are denoted
as Inst(db, T) and Ext(db, T) respectively.
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Figure 2.1.: Sample ER-schema
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Specializations can be formalized by using the notion of extension. If an entity type E; is connected
to an entity type E by an is-a-relationship, it holds that at each time the extension of Ej is a subset of
the extension of Ey, i.e., V7 € Time: Ext(E;, 7) C Ext(E}, 7). Moreover, a set of is-a-relationships that

connects a set of subtypes & to a supertype FJ, is
(i) total, if: V7 € Time: Ve € Ext(Ey,7): AE; € £: e € Ext(E}, 7) and partial else
(i) disjoint, if: V7 € Time: VE,,, E;, € £: Ext(Ey,,7) N Ext(E},, 7) = 0 and non-disjoint else.

Note, in cases where the point of time is clear from context, e.g. in duplicate elimination we only
consider the starting time of the elimination process, we sometimes omit the quantification of time by
simply writing Inst(e, db), Inst(E), Ext(E), Inst(db), and Ext(db).

Obviously, the membership to the extension of an entity type models a characteristic of an entity just as
an attribute. Nevertheless, since collections of entities are often formed based on coincident properties
of attribute values, the concepts of entity type membership and attributes cannot be clearly distinct,
but instead whether an entity characteristic is represented by type membership or is represented by an
attribute depends on the used approach for designing the entity-relationship schema. For instance, the
gender of a person can be modeled by an attribute ’gender’, but can be also implicitly modeled by the
membership to one of the entity types 'Male’ and 'Female’. In general, both characteristics are often
correlated, e.g. a person can only belong to the extension of an entity type 'Senior’ if its value for the

attribute ’age’ is 65 or greater.

Example 11 For illustration we consider an entity-relationship schema that is graphically depicted in
Figure 2.1. The schema has the four entity types ’Person’, ’Student’, ’Professor’, and ’Lecture’ that
each has several attributes. Whereas all other attributes are single-valued, the attribute ’interest’ from
type ’Professor’ is multi-valued. The types *Student’ and ’Professor’ are specializations of the type
"Person’ and hence inherit all its attributes and relationship roles. Since no person can be a student and
a professor at the same time, the specializations are disjoint. Moreover, we do not model person that are
neither students nor professors. Thus the set of both specializations is total. Due to the given case of
inheritance, the extensions of the types ’Person’ and ’Student’ as well as *Person’ and ’Professor’ are
overlapping and hence some entities belong to the extensions of multiple types. The entity type ’Student’

is connected with the entity type ’Lecture’ by the relationship type *attend’ and the entity type *Professor’
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is connected with ’Lecture’ by the relationship type ’teach’. Whereas the first relationship type is many-

to-many, the second type is only one-to-many. Both relationship types do not have attributes.

Note, in this example the roles of each relationship type belong to different entity types. For that reason,
we can use the names of the entity types to clearly name the corresponding roles and therefore do not
need to define the role names explicitly.

2.1.2. Relational Data Model

The relational data model [UGMWO02, KE99, Vos08] is currently one of the most popular data models
and was first introduced by Codd et al. [Cod83]. A relational database consists of a set of database
relations which are commonly also called as database tables (in the rest of this thesis, we will use both
terms interchangeably). Besides tables, a relational database can possess a set of constraints that are
either restricted to single tables, e.g. primary keys, or consider multiple tables, e.g. foreign keys.

Similar to entity types, a database table has a time-invariant schema and a time-variant instance. By
considering first normal form [UGMWO02, KE99] the schema of a relational database table only consists
of a set of non-composed single-valued attributes, a primary key, and a set of foreign keys. Accordingly
to entity tuples, a database tuples of a specific database table is an element of the cross-product of all
the table’s attributes’ domains. To model missing information these domains are usually extended by the
null value to which we will simply refer as * 1L.” or 'NULL".

Note, besides its primary key value each database tuple has a numerical value, called fuple identifier,
that can be used to identify a tuple within the complete database. We sometimes use that identifier to
uniquely address tuples across tables in an easy way. This usage is especially useful if some of the
considered tuples have same key values as it can be the case if the primary key of one table is a foreign
key that references to the primary key of another table. Since that identifier is a database internal value
and hidden from the user, we do not represent it by an own attribute, but instead annotate the tuple that
has the identifier ¢ with the label ¢; if required (for demonstration, see Figure 2.2).

A relational database schema is usually designed by transforming an entity-relationship schema into
the relational data model. According to the ER-RM transformation rules presented in [Vos08], an entity-

relationship schema is transformed into a relational database schema as follows:

e Each entity type of the entity-relationship schema is mapped to a database table where each single-
valued attribute of this entity type is modeled by one of the table’s attributes. Moreover, single-
valued composed attributes are decomposed into their subattributes. Since such tables represent
entity types, we call them entity tables.

Note, due to normalization it can happen that an entity type is represented by multiple tables.
In that case, we either assume a logical denormalization to a single entity table, or we assume
that each of these tables represents another entity type that are connected by relationship types.
Since normalization' is only applied in the case of independence between some of the table’s
attributes, an entity table is only split into multiple entity tables if the original entity type was
"poorly’ modeled because it combined mutually independent information.

"We only consider normalizations into the second or third normal form in this thesis.




2.1. Entity-Based Interpretation of Relational Data 31

e Whereas the single-valued attributes of an entity type are modeled in the corresponding entity
table, multi-valued attributes are not, but in contrast are each modeled by an extra table instead.
Since such tables represent multi-valued attributes, we call them multi-value tables. If a multi-
valued attribute is non-composed, the resultant multi-value table has exact one attribute except the
foreign key attributes that references to the entity table of the corresponding entity type and has

several non foreign key attributes else.

e The relationship types of an entity-relationship schema are modeled either by foreign keys in the
entity tables and/or multi-value tables, or are modeled by an extra table. Usually, an extra table
is only used, if the relationship is many-to-many or more than two roles are involved. Since such
tables represent relationship types, we call them relationship tables. A relationship table contains
one foreign key per involved role where each of these foreign keys references to an entity table.

The primary key of a relationship table is the combination of all its foreign keys.

e Is-a-relationships can be transformed from the entity-relationship model into the relational data
model in several ways (for more detailed information we refer to any of the database books
[UGMWO02, KE99, Vos08]). Note, each of these approaches has its advantages and disadvantages
with respect to the complexity of different queries classes and space requirements. Therefore, the
best choice always depends on the considered use case. In this thesis, however, we restrict our
consideration to two approaches. The first of them does not require the use of foreign keys and
therefore can be adopted to probabilistic databases even if a simple representation system is used.
In contrast, the second one is standardly used in database literature and requires the least space in

graphical representations.

In the first approach, we create an extra entity table for each entity type that does not inherit from
any other entity type. Each of these tables does not only contain the attributes and relationship
roles of the entity type itself but also contains the attributes and the relationship roles from all of
its subtypes (directly or indirectly). For modeling the memberships to the individual subtypes, the
table additionally gets a boolean attribute per subtype that we call membership attribute in this
thesis. Since this approach models a complete inheritance hierarchy within a single database table,
we call it the Single Table Approach in the rest of this thesis.

In contrast, the second approach creates one entity table per entity type. The table contains only
the attributes and relationship roles of the modeled type. The is-a-relationship is then realized by
defining the primary key of an entity table that represents a subtype as a foreign key that references
to the primary key of the entity table that represents the direct supertype of the considered subtype.
Since this approach partitions the set of attributes and relationship roles that describes a single
entity and assigns each partition class to another entity table, we call it the Vertical Partitioning

Approach in the rest of this thesis.

Following the description above, the tables of a relational database can be partitioned into three classes:
(a) entity tables that represent entity types, (b) relationship tables that represent relationship types, and
(c) multi-value tables that represent multi-valued attributes. Note that there is a fluent passage between

the boundaries of the three classes. For instance, depending on the considered universe of discourse, the
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i Person (Entity Table) Student (Entity Table) Professor (Entity Table) A
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Figure 2.2.: Sample RM-schema with database instance

address of a person can be modeled in an entity-relationship schema by a composed attribute that has the
subattribute ’city’, can be modeled by a relationship that connects the entity type "Person’ with an entity
type ’City’, but can be also modeled as an own entity type that is in a relationship with the type "Person’.
This example illustrates that only a simple change on the underlying entity-relationship schema can have
a large affect on the classification of the tables of the transformed relational database. This fact, however,
is not necessarily a negative one, because it is not untypical that same (or similar) information can be
modeled in several ways.

Since we assume DEIs for the entity-relationship model, we assume all primary keys of an entity table
to consist of a single attribute, that is the DEI. Foreign keys most often reference to an entity table (the
single exception is a multi-value table that reference to a relationship table). Consequently, we consider
(most) foreign keys to consist only of a single attribute as well. Moreover, in this thesis we do not
consider multi-value tables.

Following the above described mapping between entity types and entity tables, we can adopt the
notions of database entity instances, entity type instances and entity type extensions from the entity-
relationship model to the relational data model and therefore distinguish between an entity table’s
schema, i.e. the time-invariant structure of all shared characteristics like attributes or relationship roles,
its instance, i.e. its set of database tuples, and its extension, i.e. the set of the tuple’s corresponding
database entities. Since an entity can belong to the extensions of several entity tables, the instance of a
database entity can consists of several tuples from different entity-tables, but contains at most one tuple
per entity table. If clear from context, we usually simply write t € T instead of ¢t € Inst(T') if we refer

to a tuple ¢ from the instance of a database table T'.

Example 12 Figure 2.2 presents the relational database schema that results from transforming the
ER-schema from Figure 2.1 into the relational data model by using the Vertical Partitioning Approach
for modeling inheritance. From each entity type one entity table is derived. Thus, the schema contains
four entity tables. Whereas the relationship type ’Attend’ is modeled by an extra table, i.e. the table
"Attend’, the relationship type "teach’ is modeled within the entity table ’Lecture’ by using a foreign key
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that references to the entity table *Professor’. Finally, the multi-valued attribute ’interest’ is transformed
into an extra table ’Interest’.

This example shows that tables can be simply classified into entity tables, relationship tables, and
multi-value table by considered the structure of their primary keys. The primary key of an entity table
only consists of the DEI In contrast, the primary key of a relationship table consists of several foreign
keys that each references to entity tables. In the case of a multi-value table, the primary key is composed
by one or more attributes and a foreign key that references to an entity table.

An instance of the database is represented in the same figure. This sample instance illustrates that
tuples from different tables, e.g. tuple t, and tuple t4, can share the same key value and we there-
fore require the tuple identifier to distinguish them. The corresponding extensions of the entity ta-
bles are Ext(’Person’) = {pi1,p2,p3}, Ext(’Student’) = {pi,ps}, Ext(’Professor’) = {p2}, and
Ext(’Lecture’) = {l1,l2}. As we can see, some of the entities belong to the extensions of several ta-
bles, e.g. entity pa, and hence are represented in the database by multiple tuples. Since we consider the
DEI as primary key in each table, the tuples representing the same database entity are exactly the tuples

that share the same key value.

In this thesis, database queries will be either represented by expression of the relational algebra or by
SQL-Statements. We use a version of the relational algebra that has the basic operations o (selection), 7
(projection), x (cross product), X (join), and d (renaming) as it is described in [KE99]. SQL queries are
based on the 2003 SQL-Standard [SQLO3].

2.2. Clustering Background

Duplicate detection results are represented by the use of clusterings and a variety of quality measures
for duplicate detection are based on comparing two clusterings. For that reason, we introduce some

preliminaries on clusterings and operations on clusterings in this section.

Definition 6 (Cluster & Clustering): A cluster C = {a,...,l} is a set of base elements (e.g. database
entities). A clustering C = {C1,Cy,...,Cy} is a set of clusters. The range of a clustering C is defined
as the set of all base elements that belong to any of its clusters, i.e. rng(C) = |JC. The set C-All(S) is
the set of all clusterings that can be defined on an element set S, i.e. YC € C-All(S): rng(C) = S.

Theoretically, C-All(.S) contains a clustering for each possible combination of subsets of .S so that each
element a € S is contained in at least one of these subsets, e.g. C; = {(a,b,¢)}, C2 = {{a), (a,b,¢)},
Cs = {{a,b),{(a,b,c)}, Cs = {{a,b), (b), (a,b,c)} and so on.

Since this number is extremely large even for small element sets, we make a restriction and declare
that a cluster C'is only allowed to belong to a clustering C, if C does not contain a cluster C’ that is a strict
superset of C, i.e. C' 2 C. Note, this restriction does not affect any of the aspects that are considered in
this thesis.

For ease of presentation and according to existing work on duplicate detection (e.g. [MWGM10]),
we use angle brackets to embrace base elements that belong to the same cluster within a clustering. To
pictorially present clusterings in this thesis, we use a graph based notation where each base element is

represented by a node and two elements are connected by an edge, if they belong to the same cluster.
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Figure 2.3.: The possible clusterings C: to Cs of S = {a, b, ¢}

Example 13 For illustration, we consider the set S = {a, b, c}. The eight possible clusterings of S are
depicted in Figure 2.3.

Two clusters C; and C; are disjoint, iff they do not overlap. For simplification, we introduce a short
notion of set disjointness and set overlap by using the symbols '®’ and '@, i.e., C; ® C; < C;NC;j =
(C; and Cj are disjoint) and C; ® C; < C; N C; # 0 = —(C; ® C)) (C; and C; overlap). A clustering
is called to be cluster-disjoint, if all its clusters are pairwise disjoint. In mathematics, a cluster-disjoint
clustering of the element set S is called a partition of .S. However, since in duplicate detection literature
the term ’clustering’ is primarily used, we will do the same but still have in mind that a cluster-disjoint

clustering of S always corresponds to a partition of .S.

Definition 7 (Cluster-disjoint Clustering): A clustering C is called to be cluster-disjoint, iff all its
clusters are pairwise disjoint. A cluster-disjoint clustering C is a partition on rng(C) and its clusters are
partition classes. The set C-Allg(S) is the set of all cluster-disjoint clusterings that can be defined on

an element set S.

In the graph-based notation, a clustering is cluster-disjoint if its graphical representation is equivalent

to its transitive closure.

Example 14 For illustration, from the eight possible clusterings depicted in Figure 2.3 only the cluster-
ings Cy, Co, Cs, C4, and Cg are cluster-disjoint.

Sometimes we are only interested in a part of a clustering. For that reason, we introduce the projection

operator.

Definition 8 (Projection of Clusterings): The result of projecting a clustering C on the element set
S C rng(C) is the clustering mg(C) = {C' NS | C € C}.

Note, since each cluster of the projection result is a subset of a cluster of the projected clustering, the

projection of a cluster-disjoint clustering is always cluster-disjoint as well.

Example 15 The projection of the clustering C = {{a,b), (c,d), (e)} on the element set S = {a,b,d}
results in the clustering C' = w5(C) = {({a, b), (d)}.
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Sometimes we need to select some particular clusterings from a set of clusterings. For that purpose,

we introduce the clustering selection operator.

Definition 9 (Clustering Selection): Ler CS be a set of clusterings and let ¢ be a predicate that can be
applied to clusterings of CS. Selecting elements of the set CS by using the predicate ¢ is defined as:

04(CS) ={C € CS | ¢(C) = true}

Example 16 Let CS = {C1,C2,C3} be a set containing the clusterings C1 = {(a,b),(c,d,e)}, Co =
{{a,b),(c),(d,e)}, and C3 = {(a,b,c),(d,e)}. Moreover, let ¢;: |C| = 3 be a boolean predicate that
returns 'true’ if the evaluated clustering C has exact three clusters and returns 'false’ otherwise. From
processing the selection o4, (CS) only the clustering Cy results. In contrast from processing the selection
04, (CS) with the boolean predicate ¢2: {{(a,b), (c)} < C that returns ’true’ if the evaluated clustering

dominates the clustering {(a, b), (c)} and returns ’false’ otherwise, the clusterings Cy and Cs result.

A clustering is dominated by another clustering, if the second clustering contains the information of

the first clustering.

Definition 10 (Domination of Clusterings): A clustering C; is dominated by a clustering C; (in symbols
Ci < Cj), zﬁrng(Cz) C rng(Cj) A 7"-7’7’Lg(Ci)(Cj) =Ci.

Example 17 For illustration, the clustering C1 = {{a,b),{(c), (d,e)} dominates the clustering Co =
{{a,b),(d)} because i, 4)(C1) = Ca, but does not dominate the clustering C3 = {(a,b), (d), (e)}
because T{a,b,d,e} (Cl) - {<CL, b)) <da 6>} 7& Cs.

Note, a clustering always dominates itself. Moreover, a disjoint clustering can only dominate disjoint
clusterings, but in turn can be dominated by non-disjoint clusterings. Let C; and C; be two clusterings.
If rng(C;) C rng(C;), it holds that S N rng(C;) € S Nrng(C;) for every set S. Thus, if clustering C;
dominates clustering C;, the projection of C; on a set S dominates the projection of C; on S for every set S.
We say that a clustering C; strongly dominates another clustering C;, if C; < C; and rng(C;) 2 rng(C;).

Multiple clusterings can be integrated to a single clustering by assuming a negative relationship (the
elements are assumed to belong to different clusters) for all elements that only belong to the range of one

the integrated clusterings.

Definition 11 (Integration of Clusterings): Two clusterings C; and C; can be integrated to the single
clustering C;; (in symbols: C;; = C; WX C;) by the union of their clustersets: Ci; = C; X C; = C; UC;.
The integration operator is reflexiv, symmetric and associativ. The n-ary integration of the k clusterings
Ci,...,Cy is defined as a subsequent execution of k — 1 binary integrations, i.e.: gleci = ((C1KCy) K
.. K Cy.

Example 18 The integration of the two clusterings C; = {(a,b)} and Co = {{a,c),(d,e)} is the clus-
teirng 612 = Cl X C2 = {<a7 b>7 <CL, C>, <d7 €> }
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Theorem 1 The clustering C;; = C; X C; is a cluster-disjoint clustering, iff C; and C; are cluster-disjoint
clusterings and either their ranges are disjoint or the elements of the ranges’ overlap only form clusters

that belongs to C; and Cj, i.e. VC1 € C;: VO3 € Cj: C1 @ Cp = C = Ch.
Theorem 1 is proved by Proof 13 in Section A.1.

Example 19 For illustration, we consider the three cluster-disjoint clusterings C1, Co and Cs:

G = {{a,b), ()} GG = {(a,b),(c), (e f,9), (M)}
Co = {le fr9), (M)} GXC = {(a,b),(c), (d,h)}
Cs = {<a,b>,< 7h>} CoXC3 = {<a,b>,(d,h>,<e,f,g>,<h>}

The integration of C1 and Ca results in the clustering C1 X Cy that is cluster-disjoint, because Cy1 and Ca
do not have an element in common. Although the clusterings C1 and C3 have two elements in common,
i.e. 'a’ and ’b’, their integration result is cluster-disjoint, because the shared elements form in both
clusterings the same cluster. In contrast, the result of integrating Co and Cs is not cluster-disjoint, because
they both contain the element "h’ in their range, but whereas ’h’ forms a cluster by its own in Ca it forms
a cluster with the element ’d’ in C3. Therefore, the clustering Co X C3 contains "h’ in two clusters and

thus is not cluster-disjoint.

Theorem 2 Let C be a clustering and S;, S; C rng(C) be two disjoint subsets of the clustering’s range.
If there is no cluster C € C its elements belong to S; and S;, i.e. VC € C: C ® S; VC ® S, it holds:

TSy (C) X TS, (C) = TS;US; (C)
Theorem 2 is proved by Proof 14 in Section A.1.

Example 20 For illustration, we consider the clustering C = {(a,b), (a,c), (d), (e, f)} and consider
the three sets S1 = {a,b}, Sy = {d, e}, and S3 = {c, f}:

TSy (C) X 7g, (C) = {<a7 b>7 <a>7 <d>7 <e>} TS1US2 (C) = {<CL, b>, <a>7 <d>7 <6>}
TSy (C) X 7g, (C) = {<a7 b>7 <CL>, <C>7 <f>} TS1US3 (C) = {<CL, b>, <a’ C>7 <f>}

The integration of g, (C) and ms,(C) results in a clustering that is equivalent to wg,s,(C) because
there is no cluster in C that contains elements that belongs to S1 and So. In contrast, the result of
integrating mg, (C) and wg,(C) is not equivalent to wg,,3,(C) because the cluster (a,c) has an element
of S1, i.e. ’a’, and has an element of S3, i.e. ’c’. In other words, by performing projection on S1 and
Ss separately first, the cluster (a,c) is split into the clusters (a) and (c) that is not re-merged by the

integration operator.

Theorem 3 LetC be a clustering and let S = {S1, . .., Sy} be a partition of rng(C). If there is no cluster
C' € C its element belongs to different partition classes, i.e. VC' € C: VS;,S; € S: C @ S;VC ® Sy, it

holds: [Xg,cs (s, (C)) = C.

Theorem 3 is proved by Proof 15 in Section A.1.
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Definition 12 (Factorization of Clusterings): A set of clusterings F = {Cp,,...,Cp,} is called a
factorization of the clustering C, iff C can be reconstructed from F by using the integration operator, i.e.
C = X\ F. The clusterings in F are called factors and the sets in F*' = {rng(Cr,) | Cr, € F} are

called factor sets.

Theorem 3 exactly describes the cases in which a partition of a clustering range can be used to construct
a factorization of that clustering. Thus, let C be a clustering and let S = {S,...,Si} be a partition
of rng(C). If there is no cluster C' € C whose elements belong to different partition classes, the set
F = {nms,(C) | Si € S} is a factorization of C and the partition classes S, . . ., Sy are the factor sets.







Chapter

Probabilistic Databases

In this chapter we survey existing approaches for modeling and managing probabilistic data. We start
with a formal definition of incomplete databases and probabilistic databases, and give a formal consid-
eration on the possible worlds semantics in Section 3.2. Then we discuss several systems for succinctly
representing probabilistic databases in Section 3.3. In Section 3.4, we adapt the entity-based interpre-
tation from certain relational data to probabilistic relational data. Section 3.5 contains an overview on
principles and techniques for querying probabilistic databases. Finally, in Section 3.6 we discuss some
further interesting aspects as referential integrity, schema design, sources of probabilities, and other

work on probabilistic databases that has not been covered in the main part of this chapter.

3.1. Possible Worlds

In Chapter 1, we introduce the concept of probabilistic databases only informally by presenting a simple
example. For that reason, we present the underlying theory of modeling and querying uncertain databases
in a more formal way in this chapter. Although uncertainty can be modeled by using other concepts
as possibility theory [Zad78] or Dempster-Shafer theory [Sha76], we primarily treat uncertain data as
incomplete data or probabilistic data in this thesis. Research on incomplete data [IL.84, SORK11] and
probabilistic data [CP87, BGMP92, Pit94, DS96, FR97, LLRS97] starts in the mid-eighties and to date
has been covered by several works.

According to Suciu et al. [SORK11], an incomplete database is defined as follows:

Definition 13 (Incomplete Database): An incomplete database idb is a set of possible worlds W =
{W1,..., Wy} where each world W € W is a conventional database instance and all worlds are defined

on the same database schema.

The set W is also called the possible world space of idb. In this thesis we restrict to incomplete databases
with finite sets of possible worlds. Note, in several research directions such as certain query answering,
the alternative database instances of an incomplete database are often also denoted as the database’s
possible repairs [Berll, DPW12]. According to Definition 13, all possible worlds of an incomplete
database are defined on the same schema. In order to distinguish this schema from the schema of the

compact representation (see Section 3.3), we denote it as world schema.

39
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The concept of probabilistic databases extends the concept of incomplete databases by ascribing prob-

abilities to the individual worlds.

Definition 14 (Probabilistic Database): A probabilistic database pdb is a probability space’ (W, Pr)
where W is a world space and Pr is a discrete probability distribution over these worlds, i.e. Pr: W —
(0,1] is a function so that )y, .y Pr(W) = 1.

A tuple belongs to an uncertain database, if it belongs to at least one of its possible worlds. The
marginal probability of a tuple ¢ in a probabilistic database pdb = (W, Pr) is described by the probability
mass function p and results in the accumulative probability of all possible worlds the considered tuple
belongs to, i.e. p(t) = >y ew e Pr(W). A tuple ¢ is called a maybe-tuple if it belongs to at least one
possible world, but does not belong to all possible worlds, i.e. p(t) € (0, 1). Itis called a certain-tuple if
it belongs to all possible worlds, i.e. p(t) = 1. Moreover, let p and py be two probability mass functions
that describe the probability that the "true’ world of pdb contains all tuples of tuple set 1" (function p, ) or
contains at least one tuple of tuple set T" (function py) respectively, i.e. pA(T) = >y ew 7w Pr(W)
and py(T') = ZWGW,TQW;&(B Pr(W).

In an incomplete database, two maybe-tuples ¢, and ¢ are called independent, if there exists at least
one possible world that contains none of them, there exists at least one possible world that contains ¢,
but does not contain tg, there exists at least one possible world that contains ¢ but does not contain %,
and there exists at least one possible world that contains both. Moreover, two maybe-tuples ¢, and ¢, are
called exclusive if they do not coexist in a possible world and a tuple ¢ is called to be included by a tuple

t, if all possible worlds that contains ¢, contains t5 as well.

In a probabilistic database, correlations (in this thesis, we use the terms correlation and dependency
interchangeably) are defined in a more subtler way because they also depend on the worlds’ probabilities.
For instance, two maybe-tuples ¢, and ¢, are independent if pa({t,,ts}) = p(t,) X p(ts) and therefore
pv({tr,ts}) =1 — (1 —p(t,)) x (1 — p(ts)). Table 3.1 lists the conditions that need to hold for the
probability mass functions p, and py if the two maybe-tuples ¢, and ¢ are in one of the three above

discussed states of dependency.

Independence: pal{tr,ts}) = p(tr) x p(ts) | pv({tr ts}) =1 — (1 —p(t,)) x (1 —p(ts))
Exclusion: pa({tr,ts}) =0 pv({tr, ts}) = p(t;) + p(ts)
Inclusion (¢, includes t5): | pr({t.,ts}) =t pv({tr,ts}) =ts

Table 3.1.: Dependencies between probabilistic database tuples

! Actually, a probability space [Kol60, CKO3] is a triple (€2, F, P) where € is a sample space, F C 2% (the set of all events)
is a o-algebra, and P is a probability measure defined on F. In the case of a probabilistic database, €2 corresponds to the set
of possible worlds W. Moreover, if consideration is restricted to discrete probability distributions on finite sets of worlds,
the sample space is always to be at most countable, F is usually implied to be 2, and Pr is a probability mass function
that ascribes probabilities to points of £2. In that case, the probability of an event results in the accumulative probability
of all outcomes o € (2 that belong to this event. For that reason, the notation (W, Pr) is a commonly used shorthand for
(W, 2%, P(X) > Sypex Pr(W)).
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SELECT * SELECT * SELECT *
FROM People FROM People FROM People
WHERE residence = 'Hamburg’ WHERE residence ~ 'Hamburg’ WHERE residence = "Hamburg’

WITH PROB >= 0.8

(a) Conventional db query (b) Uncertainty including db query (c) Uncertainty processing db query

Figure 3.1.: A sample query for each of the three query classes that can be considered in uncertain data querying

Note that three pairwise independent tuples ¢,, ts, and ¢,, does not need to be mutually independent, i.e.
although p/\({tm ts}) = p<tr) X p(ts)s p/\({tm tu}) = p(tr> X p(tu)’ and p/\({tSa tu}) = p(ts) X p(tu)
it can hold that pa ({t,, ts, tu}) # p(t,) X p(ts) X p(ty)-

3.2. Possible Worlds Semantics

Queries of uncertain databases can be categorized into three classes:

e Queries that are designed with certain data in mind and hence do not address uncertainty in any
of their conditions or operations. Since each of these queries has an equivalent in certain data

processing, we simply refer to them as Conventional Database Queries.

e Queries that do not directly address uncertainty of the input database in any of their clauses, but use
imprecise operators in their conditions and hence introduce uncertainty into the query answers by
themselves, i.e. they produce uncertain data as output even if certain data is given as input. Note,
since no uncertainty of the input data is considered, these queries can be posed to a conventional

database as well. We call these queries Uncertainty Including Database Queries.

e Queries that directly address data uncertainty in their clauses have no equivalents in certain data
processing because they are especially designed to process uncertain data. We call these queries

Uncertainty Processing Database Queries.

Example 21 For demonstration, we consider the three queries that are depicted in Figure 3.1. The first
query *Which people live in Hamburg?’ (see Figure 3.1(a)) is a conventional database query because it
does not address any kind of uncertainty. In contrast, the query *Which people live near to Hamburg?’
(see Figure 3.1(b)) belongs to the second class (uncertainty including database query) because the mean-
ing of the geographical relation 'near’ is not clearly defined so that the query is vague and the answer

becomes uncertain2

. Finally, the query *Which people live in Hamburg with a probability of at least
80%? (see Figure 3.1(c)) is an uncertainty processing query because it explicitly address uncertainty in

its request.

It is obvious that queries of the third class are especially designed for uncertain databases and are

used to extract information on the uncertainty of a specific part of the data. Thus, whereas queries of

20f course, the query answer can be considered to be certain if a specific distance measure and a specific threshold are used
to separate all people living near to Hamburg from all people living not near to Hamburg. However, in this case the relation
’near’ cannot be considered as vague anymore.
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Figure 3.2.: Querying a probabilistic database within the possible worlds semantics

the first two classes consider information on uncertainty of the queried database as meta data and expect
a certain database (a single possible world) as input, queries of the third class consider the database’s
uncertainty as instance data and hence expect to process a set of possible worlds in a collective fashion.
Consequently, the semantics of a query of the third class depends on the way uncertainty need to be
processed by this query. For that reason, we restrict our consideration to queries of the first two classes
if not explicitly stated otherwise.

With some exceptions [LD09, GJS10], querying a probabilistic database with a query of the first two
classes traditionally follows the Possible Worlds Semantics [AKG87, DS07c]. This semantics prescribes
that a world space is queried by querying each of its worlds separately. As a consequence, the result of
posing a query to a set of worlds is a second set of worlds where each of the output worlds results from
querying one of the input worlds. This principle is graphically illustrated in Figure 3.2.

Logically, redundant worlds of the query result are consolidated to a single one. Thus, the probability
of an output world is equivalent to the accumulative probability of all input worlds that produce this
world as query result. Note, that in the case of conventional database queries from each input world only
one output world can result, but several input worlds can produce the same output world. For that reason,
the number of output worlds is always equal to or lower than the number of input worlds and querying
can only decrease uncertainty, but can never increase uncertainty.

In summary, the possible worlds semantics can be defined as follows:

Definition 15 (Possible Worlds Semantics): Let pdb = (W, Pr) a probabilistic database and let () be
a database query, the result of posing Q) to pdb is the probabilistic database pdbg = (Wq, Prq) with

Wo ={Q(W) | W e W}

and YW € Wq: Pro(W) =Y Pr(w")

WeW,Q(W")=W

3.3. Representation Systems

The number of possible worlds of a probabilistic database is often tremendous. Moreover, many of
these worlds overlap to a large extent. Thus, storing each of these worlds separately is usually not only

impractical, but also unnecessary. For that reason, several representation systems have been developed
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[Gre09, SBHT09, SD09, AKO09, SORK 11] that are able to represent a probabilistic database in a more

succinct way.

In a narrow sense, storing all possible worlds separately is a representation system by itself. For that
reason, we consider it as a naive system that we call the possible worlds representation. Although the
possible worlds representation is not suitable as an actually used representation system, it usually serves

as a reference for all other representation systems because of its simplicity and its meaningful semantics.

Theoretically, the representation of a probabilistic database can be transformed from one representa-
tion system to another. Nevertheless, due to the different modeling power of the individual systems, a
lossless transformation is not always available. A lossless transformation into the possible worlds rep-
resentation, however, is a mandatory requirement of each probabilistic representation system. For that
reason, we introduce the mapping pwr that maps a probabilistic database that is modeled in any arbitrary
representation system ‘R into its possible worlds representation. Moreover, we introduce the mapping
pws that directly maps a probabilistic database that is modeled in any arbitrary representation system R
to its possible world space. Thus, let pdb be a probabilistic database and let pwr(pdb) = (W, Pr) be its
possible worlds representation, the mapping pws maps pdb to W, i.e. pws(pdb) = W.

To stay conform with the possible worlds semantics, even if the probabilistic database pdb is modeled
in an arbitrary representation system R, for each database query @) we need a system-specific query Q%
that directly computes the succinct represented probabilistic database that would result from applying
Q to the possible worlds representation of pdb, i.e. pwr(Q™(pdb)) = Q(pwr(pdb)). This principle is

illustrated in Figure 3.3 for two different representation systems R; and Rs.

As previously mentioned, a several number of representation systems has been proposed in recent
decades. The individual systems differ in several properties as compactness, modeling power, and repre-
sentation/query complexity (see Figure 3.4). In general, the more compact the system, the less powerful
it becomes or the more complex become representing and querying the database that is modeled by this
system. In contrast, the less complex the system’s representation and querying mechanisms are, the less
compact or the less powerful the system becomes. Indeed, these three properties are pairwise contrary to

each other, because improving one of them usually comes at the price of diminishing the others. Thus,
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selecting a representation system that is suitable for a given purpose is always a trade-off between these

three properties.

compactness modeling power

representation/query
complexity

Figure 3.4.: The three contradicting system properties compactness, representation/query complexity, and
modeling power

Representation systems that extends the relational data model typically model uncertainty on two lev-
els [SORK11]. By using tuple-level uncertainty, a database tuple can be considered as a boolean random
variable, i.e. it is uncertain whether the tuple belongs to the database’s ’true’ world or not. In contrast,
by using attribute-level uncertainty, an attribute value can be considered as a random variable, i.e. the
’true’ value of a tuple in an attribute is not exactly known. Whereas some representation systems such
as AOR?-databases use both modeling concepts to compactly represent a probability distribution over
a set of possible worlds, several representation systems only uses tuple-level uncertainty. Interestingly,
attribute-level uncertainty can be converted into tuple-level uncertainty by constructing a set of mutually
exclusive tuples.

In the remainder of this section, we present five probabilistic representation systems. We start with
a compact, less representation/query complex, but also less powerful system and close with a powerful
system that is less compact and highly representation/query complex. Therefore, by introducing these
representation systems one after another, we increase the modeling power at the cost of compactness
and representation/query simplicity step by step. Finally, we shortly discuss the differences in modeling
power of all these models in more detail. Querying a succinctly represented probabilistic database is
separately considered in Section 3.5.

Recall from Definition 13, an incomplete database corresponds to a set of possible worlds without
probabilities. Thus, for each of the discussed representation systems an incomplete version can be de-
fined accordingly by simply omitting probabilities. In the rest of this thesis, we will denote the incom-
plete versions of these systems by the same name as its probabilistic equivalent.

Before going into representation details, we shortly need to discuss the meaning of key attributes
in probabilistic representation systems. In probabilistic databases, we have to distinguish between the
world schema and the schema of the probabilistic representation and therefore have to distinguish be-
tween the conventional primary key of a database table and the primary key of the table’s probabilistic
representation. Whereas the first is only unique in every possible world, i.e. no two tuples that belong
to the same world have the same value in this key attribute, the latter is unique for all possible tuples
of this table. For a better differentiation we call the first as world (primary) key (short WK) and call the
second as representation (primary) key (short RK). Whether or not a table’s world key can be used as

its representation key, i.e. uniqueness in worlds implicates uniqueness in the representation, depends on
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Figure 3.5.: Sample Tl-database along with its possible worlds representation

the individual representation systems. Note, if the representation key does not correspond to the world
key, the representation key is a system-specific attribute that is required to model uncertainty within the
database and hence does not belong to the schema of the possible worlds. We consider world keys to be
always certain, i.e. all tuples of one table that represent the same database entity share the same world
key. If this certainty is not given, we simply assume that an additional surrogate key is considered as
world key instead. In the rest of this thesis, we mark world keys by a single underline (according to the
usual practice of primary keys) and mark representation keys by a double underline. Of course, if its
world key corresponds to its representation key, a database table does not contain a single underlined
attribute and we double underline the world key instead. As in certain databases each tuple is annotated

by a database unique tuple identifier (see Section 2.1.2) that enables an identification across tables.

3.3.1. Tuple-Independent Probabilistic Databases

The simplest way to model uncertainty in the relational data model is to assign each database tuple ¢ with
its marginal probability p(¢) € ]0,1] [FR97]. By doing so, each tuple is considered as an independent
probabilistic event (boolean random variable) that belongs to the extension of its corresponding database
table with its given probability. This representation system only uses the concept of tuple-level uncer-
tainty and is commonly known as tuple-independent database [SORK11] (short TI-database), but is also
denoted as Probabilistic-? Table [Gre(09]. Since the tuples of a TI-database are mutually independent,
each two tuples belong to at least one same world. As a consequence, the world key of a table is auto-
matically unique for all possible tuples of this table and we actually do not need to distinguish between

the world key and the representation key.

Recall, each tuple with a marginal probability lower than one is called a maybe-tuple and each tuple
with a probability of exact one is called a certain tuple. Due to the certain-tuples are certain events, the
set of possible worlds of a TI-database is implicated by the presence and absence of the maybe-tuples.
Let pdb be a TI-database, let pdb' be the set of all certain-tuples of pdb, and let pdb’ be the set of all
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Person
WK name age

t pl JDoe :1.0 27 0.8

28 :0.2

t, | p2 | KSmith :1.0 | 32 1.0

t, p3 |JDoe :0.7 28 :0.5

J.Ho :0.3 1 29 :0.5

(a) AOR-database

(W, Pr=0.28 W,, Pr=0.28 W, Pr=0.12 W,, Pr=0.12 A
WK name age WK name age WK name age DEI name age

t,  pl | JDoe | 27 t, | pl JDoe | 27 t, | pl | JDoe | 27 t, pl | JDoe | 27
t, | p2  KSmith | 32 t;  p2  KSmith | 32 t, | p2  KSmith| 32 t,  p2  KSmith 32
t; | p3 | JDoe | 28 t; p3  JDoe | 29 ts;  p3 | JHo 28 t; | p3 J.Ho 29

Ws, Pr=0.07 Ws, Pr=0.07 W5, Pr=0.03 W, Pr=0.03
WK name age WK name age WK name age DEI name age
t;  pl | JDoe | 28 t;  pl | JDoe | 28 t, | pl  JDoe | 28 t,  pl | JDoe | 28

t, | p2 | KSmith & 32 t, | p2  KSmith | 32 t, | p2  KSmith | 32 t, | p2 | KSmith | 32
t; | p3 @ JDoe | 28 t; | p3  JDoe | 29 t; | p3 J.Ho 28 t; | p3 J.Ho 29

J
(b) Possible worlds representation
Figure 3.6.: Sample AOR-database along with its possible worlds representation
maybe-tuples of pdb, the possible world space of pdb is defined as:
W = pws(pdb) = {pdb' U S | S C pdb"} (3.1

The probability of a possible world is computed as the product of the probabilities of all tuples that belong
to this world multiplied with the inverse probabilities of all tuples that do not belong to this world, i.e.
the probability of world W € W is defined as Pr(W) = [L;cy P(t) X [Licpapigw (1 — p(2)).

Since the space contains one possible world per possible subset of all maybe-tuples, the number of
possible worlds that is represented by a TI-database pdb is |W| = 2lpdb’]

Example 22 Figure 3.5(a) presents a Tl-database with a single table and three tuples. Whereas the

tuples t1 and t3 are maybe, tuple to is not. Consequently, this database represents the four possible
worlds W1 to Wy that are depicted in Figure 3.5(b).

The most probable world of a TI-database can be simply computed by removing all tuples that have a

marginal probability lower than 0.5 (note, if at least one tuple has a probability of exact 0.5, several most
probable worlds exist).

Note, in the incomplete version of TI-databases, maybe-tuples are distinguished from certain-tuples
by using a boolean attribute and are graphically marked by an annotated *?” symbol.
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3.3.2. Attribute-OR Probabilistic Databases

Another simple representation system is the concept of attribute-OR databases (short AOR-databases).
AOR-databases become popular by Barbara et al. [BGMP90, BGMP92] and are also denoted as Proba-
bilistic or-set-tables [Gre09] (or-set tables without probabilities are also known from [INV91, LW93]).
In contrast to TI-databases these databases consider all database tuples as certain events (no tuple-level
uncertainty), but consider all values in non-key attributes as mutually independent random variables, i.e.
each tuple can have several alternative values per non-key attribute where each of these values is ascribed
with a probability that prescribes the likelihood that this value is the ’true’ value (attribute-level uncer-
tainty). Tuples in AOR-databases can be therefore considered as sets of random variables and are also
denoted as A-tuples [SBH"09]. Due to the mutual independence of the attribute values, the database
cannot capture correlations between the attribute values of different A-tuples and cannot even capture
correlations between the attribute values of the same A-tuple. Since every tuple is present in every
possible world, the world key can be used as representation key.

A possible world is constructed from an AOR-database by selecting for each A-tuple one of its alterna-
tive values per attribute. Thus, let pdb be an AOR-database with a single table 7', let A = { Ay, ..., Ay}
be the attributes of table 7', and let Prob(t[A] = a) be the probability that A-tuple ¢ has the alternative
value a in attribute A. The set of possible instances of an A-tuple ¢t € T is defined as:

pws(t) ={(a1,...,am) | Vi € {1,...,m}: Prob(t[4;] = a;) > 0} (3.2)

where each possible instance t*) € pws(t) has the probability p(t*)) = [[", Pr(t[A;] = t™[A})).

Since all A-tuples are certain and because the possible instances of the individual A-tuples are mutually
independent, the possible world space of an AOR-database pdb corresponds to the set of all minimal
hitting sets® for the collection C' = {pws(t) | t € pdb}. The probability of each world W € W is
computed as Pr(W) = [T, ey ().

Example 23 Figure 3.6(a) presents an AOR-database with a single table and three A-tuples. Whereas
the A-tuples t1 and t3 have probabilistic attribute values, e.g. the age of A-tuple t, is either 27 (prob-
ability 0.8) or 28 (probability 0.2), A-tuple to has only certain ones. The corresponding possible world

space is presented in Figure 3.6(b) and consists of eight worlds.

The most probable world of an AOR-database can be simply computed by selecting the most probable
alternative value per attribute for each A-tuple. Obviously, if at least one A-tuple has several most

probable alternative values in at least one attribute, more than one most probable world exist.

3.3.3. Attribute-OR Probabilistic Databases with Maybe-Tuples

A more complex representation system that we already have used in Chapter 1 to present the concept
of probabilistic databases are attribute-OR databases with maybe-tuples (short AOR ?-databases) that are
also denoted as p-or-set-?-tables [Gre09]. AOR?-databases enable a modeling of uncertainty on table

3 According to Garey and Johnson [GJ79], a set H is a hitting set for a collection of sets C'if H C |JC and H N S # 0 for
each S € C and is a minimal hitting set for C' if no strict subset of H is a hitting set for C, i.e. |H N S| = 1 for each
SedC.
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Person

WK name age p
JDoe :1.0 27 :0.8

tl pl 0.8
28 :0.2

t,  p2 KSmith :1.0 32 1.0 1.0
J.Doe :0.7 | 28 0.5

3 1.0
J.Ho 0.3 1 29 :0.5

(a) AOR?-database

W, Pr=0.224 W,, Pr=0.224 W, Pr=0.096 W,, Pr=0.096 h
WK name age WK name age WK name age WK name age
t, pl  JDoe | 27 t,  pl JDoe | 27 t, pl JDoe & 27 t,  pl JDoe | 27
t, | p2 | KSmith | 32 t, | p2  KSmith| 32 t, | p2 | KSmith | 32 t,  p2 | KSmith | 32
t; p3 JDoe | 28 t; | p3  JDoe | 29 t; p3 JlHo | 28 t;  p3 | JHo | 29

Ws, Pr=0.056 Ws, Pr=0.056 WS-, Pr=0.024 Ws, Pr=0.024

WK name age WK name age WK name age WK name age
ty  pl | JDoe | 28 t, | pl | JDoe | 28 ty | pl | JDoe | 28 t,  pl | JDoe | 28
t, | p2 | KSmith | 32 t,  p2 | KSmith | 32 t, | p2 | KSmith | 32 t, | p2  KSmith 32
t; | p3 | JDoe | 28 t; | p3 | JDoe | 29 t; | p3 J.Ho 28 t; | p3 J.Ho 29

W, Pr=0.07 W1q, Pr=0.07 W1, Pr=0.03 Wiy,, Pr=0.03
WK name age WK name age WK name age WK name age
t, p2 | KSmith | 32 , | P2 | KSmith | 32 t,  p2 | KSmith | 32 > | P2 | KSmith | 32

t;  p3 | JDoe | 28 t; | p3 | JDoe | 29 t; | p3 J.Ho 28 t; | p3 J.Ho 29
\ J

~+
~+

(b) Possible worlds representation

Figure 3.7.: Sample AOR?-database along with its possible worlds representation

membership as well as uncertainty on attribute values by combining the ideas of TI-databases as well
as AOR-databases and therefore by using tuple-level uncertainty and attribute-level uncertainty. As an
AOR-database an AOR?-database is a set of A-tuples. However, in contrast to AOR-databases these
A-tuples are not longer considered as certain events, but instead are considered as mutual independent
events that are associated with its marginal probability as we know it from TI-databases. Note, due to

the mutual independence of the individual A-tuples, the world key can be used as representation key.

In contrast to AOR-databases, the probability Prob(t[A] = a) only denotes the likelihood that A-
tuple ¢ has the value a in attribute A if ¢ exists. Thus, this probability is not absolute anymore, but is
conditioned by the existence of the corresponding A-tuple. As a consequence, the probability that an
A-tuple ¢ with the marginal probability p(t) is represented in a possible world of a probabilistic database
pdb by its possible instance t*) € pws(t) results in Prob(t™*) € pdb) = p(t) x p(t™*)).

Therefore, let pdb' be the set of all certain A-tuples and let pdb’ be the set of all maybe A-tuples of
an AOR?-database pdb. The possible world space of pdb corresponds to the union of all minimal hitting
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sets for one of the collections

Ce (U, tPos®}Us 1S U, st} (3.3)

The probability of each world W € W is computed as

Pr(W) = Ht ew Prob(t™* € pdb) x [ | (1—p(t)) (3.4)

tepdb” pws(t)NW =0

Example 24 Figure 3.7(a) presents an AOR ?-database with a single table and three A-tuples. The only
difference to the AOR-database from Figure 3.6(a) is that the first A-tuple is maybe. As a consequence,
instead of eight worlds the corresponding world space consists of twelve worlds. These worlds are

presented in Figure 3.7(b).

The most probable world of an AOR?-database can be simply computed by selecting the most probable
possible instance per certain A-tuple and by selecting the most probable state (most probable possible
instance or no instance) per maybe A-tuple. Of course, if at least one A-tuple has several most probable
possible instances (or states respectively), more than one most probable world exist.

An AOR?-database can be specialized to a TI-database by constraining that each A-tuple has a single
possible instance and can be specialized to an AOR-database by constraining that each A-tuple is certain.
Note, as in TI-databases, in the incomplete version of AOR?-databases, maybe A-tuples are annotated

with a question mark.

3.3.4. Block-Independent-Disjoint Probabilistic Databases

A more powerful representation system is the class of the so-called Block-Independent-Disjoint Prob-
abilistic Databases [DS96, DRS09, SORK11] that are also shortly denoted as BID-databases or even
BID-tables if they contain a single table. Another name that has been used for such databases is tuple-
disjoint independent databases [DK10a].

Although BID-databases only use tuple-level uncertainty they extent AOR?-databases to a modeling
of correlations between the attribute values of one A-tuple. Such correlations are incorporated into the
database by utilizing so-called tuple-ORs. A tuple-OR is a block of ordinary tuples (not A-tuples!) that
each is associated with its marginal probability. All tuples of one block are considered to be mutually
exclusive probabilistic events and tuples from different blocks are considered to be mutually independent
probabilistic events. Since the tuples of one block are mutually exclusive, their sum in probability must
be lower than or equal to one. A block is called maybe if the accumulative probability of its tuples is

lower than one and is called certain otherwise.

Example 25 Figure 3.8(a) presents a BID-database with a single table and five tuples that are grouped
into three blocks (attribute ’BNo.”). For a better graphical representation, tuples that belong to the same
block do not only share the same value in the attribute ’BNo.’, but are also not separated by horizontal
lines. Whereas the probabilities of the tuples of the last two blocks each sum up to one, the first block is
maybe. The corresponding possible world space is presented in Figure 3.8(b) and consists of six worlds

(note that person p is missing in the worlds Ws and Wg due to its corresponding block is maybe).




50 3. Probabilistic Databases

Person
RK BNo. WK name age p
tt/ 1 | 1 | pl | JlDoe | 27 | 0.6

t, 2 1 pl J.Doe 28 | 0.2
t,) 3 2  p2 KSmith 32 10
t, 4 3 | p3 | JDoe | 28 | 08
ts' 5 3  p3 JHo 29 02
(a) BID-database
W, Pr=0.48 W,, Pr=0.16 W,, Pr=0.16 )
WK name age WK name age WK name age

t, | pl | JDoe | 27 t, pl | JDoe | 28 3 | p2 | KSmith | 32
t; | p2 | KSmith | 32 t; | p2 | KSmith| 32 | t, | p3 | JDoe | 28
t, p3 | JDoe | 28 t,  p3 | JDoe | 28
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W,, Pr=0.12 Ws, Pr=0.04 Ws, Pr=0.04

WK name age WK name age WK name age
t, | pl | JDoe | 27 t, pl | JDoe | 28 t; | p2  KSmith| 32
t; | p2 | KSmith | 32 t; | p2  KSmith| 32 | t; | p3 | JHo 29
ts p3 | JHo | 29  t; p3  JHo @ 29

(b) Possible worlds representation

Figure 3.8.: Sample BID-database along with its possible worlds representation

In contrast to the representation systems that we have discussed in the previous sections, tuples in a
BID-table can share the same world key value. Since they need to be mutual exclusive, tuples with same
world key value have to belong to the same block. Although, not all tuple of one block need to have
the same world key value, we usually restrict blocks to single world key values in our examples and
therefore typically consider the block number (attribute ’BNo.”) and the world key value to represented
by the same attribute.

Several proposals on BID-databases do not use a specific representation key attribute to identify tu-
ples within a BID-table, but consider the block number as world key, additionally introduce a numerical
attribute that enumerates all tuples per block, and consider the combination of both attributes as repre-
sentation key. Nevertheless, this approach can lead to larger schemas if we define a foreign key of one
table as a reference to the representation key of another table. For that reason, we decide to use an extra
attribute as representation key instead. However, the notation ¢; ; that is commonly used to refer to the
j-th tuple of the ¢-th block can be useful in some situations. Thus, we sometimes adopt this notation and
consider that ¢; ; refers to the tuple that has the j-th smallest representation key value among all tuples
from block .

An AOR?-database can be transformed into a BID-database by constructing one block per A-tuple and
by filling this block with all the A-tuple’s possible instances, i.e. for each A-tuple ¢ of the AOR?-database
we construct a block B that contains the ordinary tuples pws(t). It is obvious that compared to AOR?-

databases the improved modeling power of BID-databases comes to the price of compactness, because a




3.3. Representation Systems 51

block corresponds to a plain representation of all the A-tuples’ possible instances. For example, an A-
tuple with 5 attributes and 3 alternative values per attribute (in overall 15 values) needs to be represented
by a block with 3% = 243 ordinary tuples that each has 5 attribute values (in overall 1215 values). For
that reason, BID-databases are internally often stored similar to AOR?-databases by dividing the set of
all attributes into independent subsets [BSHWO06].

A possible world is constructed by selecting one tuple per certain block and by selecting one or no
tuple per maybe block. Thus, let pdb be a BID-database, let B' be the set of all certain blocks of pdb, and
let B” be the set of all maybe blocks of pdb where each block B has the probability p(B) = >, 5 p(t).
the possible world space of pdb is defined as the union of all minimal hitting sets for one of the collections
C € {B'US | S C B}. The probability of each world W € W is computed as Pr(W) = [[,cy p(t) x
pes? Brw=p(1 —p(B)).

The most probable world of a BID-database can be simply computed by selecting the most probable
tuple per certain block and by selecting the most probable state (most probable tuple or no tuple) per
maybe block. Of course, if at least one block has several most probable tuples (or states respectively),
more than one most probable world exist.

BID-databases are closely related to the ULDB model that has been proposed by Benjelloun et al.
[BSHWO6] (see next section). Lakshmanan et al. introduce the concept of FP-Relations [LLRS97]. FP-
Relations are generalizations of BID-tables that use interval probabilities instead of point probabilities.

As for the previously presented representation systems that can model uncertainty on tuple member-

ship, in the incomplete version of BID-databases maybe-tuples are annotated with a question mark.

3.3.5. Probabilistic Conditional Databases

A powerful representation system for incomplete databases is the concept of conditional tables (short c-
tables) [1L84, LSV02, Gra09] that has been originally introduced by Imielinski and Lipski [IL.84] in the
eighties. In c-tables, each tuple is associated with a boolean condition* over discrete random variables
(tuple-level uncertainty) where the domain of each variable theoretically can be infinite. If a tuple is
associated with a tautology (e.g. the boolean constant true), this tuple belongs to every possible world of
the incomplete database and we typically omit its condition in our examples.

Theoretically, the tuples’ conditions can be restricted to disjunctions of atomic events without losing
any modeling power [SORK11]. In that case, however, it can happen that we require one variable per
possible world and therefore run into the same problem as in the possible worlds representation because
the number of variables can be infeasible in size.

Since same random variables can appear in the conditions of several tuples, they can be used to in-
corporate correlations between these tuples. Moreover, random variables can be used as attribute values
(attribute-level uncertainty) which can increase compactness further on. Nevertheless, since the repre-
sentation system does not lose any modeling power if variables are restricted to the tuples’ conditions
[Koc09] and the use of variables in attribute values complicates data processing and data modeling, we

will consider only c-tables with constant attribute values in this thesis.

“In c-tables, a boolean condition is considered as a logical expression that is built up by atomic conditions that are connected
by the logical operators V, A, and —. Atomic conditions are either the boolean values frue and false, or are of the form
X0Y or X0Oc where X and Y are variables, c is a constant, and 6§ € {=, <} [LSV02].
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Person Variables

RK WK name age condition var value Prob
t 1 pl J.Doe 27 | X=1 X 1 0.6
L 2 pl J.Doe 28 | X=2 X 2 0.2
;| 3 p2 | KSmith | 32 |Y=1 X 3 0.2
t, 4 p2  SKmith | 32 |Y=2 Y 1 0.8
| 5 p3 J.Doe 28 | X=1v X=3 Y 2 0.2
ts 6 p3 J.Ho 29 | X=2

(a) Probabilistic conditional database
( W3, Pr=0.48 W,, Pr=0.16 WS, Pr=0.16 B
WK name age WK name age WK name age

t,  pl | JDoe | 27 t, pl  JDoe | 28 t; | p2 | KSmith | 32
t; | p2  KSmith | 32 t; | p2  KSmith| 32 ts | p3 | JDoe | 28
ts p3  JDoe | 28 ts  p3 | JHo 29

W,, Pr=0.12 Ws, Pr=0.04 W, Pr=0.04
WK name age WK name age WK name age
t, | pl | JDoe | 27 t, | pl JDoe | 28 t, p2 SKmith 32

t, | p2 | SKmith | 32 t, | p2 | SKmith | 32 ts | p3 | JDoe | 28
ts | p3 | JDoe | 28 ts | p3 J.Ho 29

(b) Possible worlds representation

Figure 3.9.: Sample probabilistic conditional database along with its possible worlds representation

Grahne [Gra84] proposes an extension of c-tables that is also able to capture constraints beyond sin-
gle tables from which we abstract in this thesis. Well known restrictions of c-tables are v-tables and
Codd-tables [IL84]. Both systems uses variables only as attribute values and do not annotate tuples by
conditions. Whereas in v-tables same variables can be assigned to different attribute values and hence can
be used to model correlations between these values, in Codd-tables the variables from different attribute
values need to be distinct. As a consequence, v-tables can be considered as databases with labeled null
values and Codd-tables can be considered as databases with unlabeled null values. Codd-tables roughly
correspond to the currently standardized mechanism for using NULL values in relational database sys-
tems.

Probabilistic conditional tables [SORK11] (short pc-tables) are the probabilistic extensions of c-tables,
i.e. each random variable is associated with a probability distribution. To avoid confusions between
databases and single database tables, we will refer to databases with several tables where the tuples of all
tables are defined on a single set of random variables as pc-databases in this thesis.

If probabilistic databases are restricted to finite sets of possible worlds, the possible values of the
variables need to be finite, too. For that reason, the probability distribution of each random variable
corresponds to a probability mass function. Let dom x be the domain of the random variable X and let
Prob(X = x) be the probability that X corresponds to the value € domx, the set of possible values
of X is defined as {z | z € domx, Prob(X = z) > 0}.
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Example 26 Figure 3.9(a) presents a pc-table with six tuples. For ease of presentation, tuples that
share the same world key value are not separated by horizontal lines. Each tuple is associated with
a condition that contains one of the two variables X and Y. The probability distributions on these
variables are stored in a separate table. This database represents the six possible worlds that are depicted
in Figure 3.9(b). Note that this database contains complex correlations. For instance, the existence of

tuple t1 includes the existence of tuple ts.

An assignment 6 is a function that maps each random variable to one of its possible values. The
mapping of the random variable X to its possible value x by the assignment 6 is therefore denoted as
0(X) = z and is sometimes also written as X — x. Let X be the set of all random variables that are
used in the considered pc-database, due to these variables are mutually independent, the probability of

an assignment 6 is defined as:

Prob(f) = HXEX Prob(X = 6(X)) (3.5)

Example 27 For instance, the assignment (X +— 1,Y > 1) consists of the two atomic assignments
X — landY — 1. Thus, its probability results in Prob(6) = Prob(X = 1) x Prob(Y =1) = 0.48.

Theoretically, for each variable assignment another possible world can be constructed from the pc-
database where the constructed world contains each tuple whose condition is satisfied by the selected
assignment. Let pdb be a pc-database, let @, be the boolean condition of tuple ¢, and let 8 be the used

assignment, the corresponding possible world results in:
Wiy = {t | t € pdb, ®,(0) = true} (3.6)

Consequently, let © be the set of all assignments that are possible for the given set of random variables
X, the possible world space of a pc-database pdb can be constructed as:

W =pws(pdb) = J,_ {Wyw} = {(Wya | 0 € ©} 3.7)

The probability of a possible world results in the accumulative probability of all assignments that lead to

this world. Consequently, the probability of world W € W is computed as:

Pr(w) = Zee@,we _yy Prob(®) (3.8)

pdb™—

Example 28 For instance, the possible world W1 from Figure 3.9(b) results from using the assignment
0(X — 1,Y — 1) and therefore has the probability Pr(W;) = Prob(X = 1) x Prob(Y =1) = 0.48.

If each variable assignment leads to another possible world, the most probable world of a pc-database
can be simply computed by selecting the most probable value per random variable and then by removing
all tuples whose conditions are not satisfied by the selected assignment. Of course, if at least one random
variable has several most probable values, more than one most probable world exist. If different variable

assignments can lead to the same world, the computation process is much more complicated. In the worst
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case it requires an enumerating of all possible worlds which is impractical already for small databases.
In such cases, the most probable world can often only be approximated instead of exactly computed.

By definition, the marginal probability of a tuple corresponds to the accumulative probability of all
possible worlds this tuple belongs to and hence results in the accumulative probabilities of all assignments
that satisfy the tuple’s condition. Therefore, the marginal probability of a tuple ¢ with the condition &,
can be computed as:

p(t) - ZOG@,@z(G):tme PrOb(G) (3.9)

Example 29 For demonstration, tuple t4 from Figure 3.9(b) is present in the possible worlds Wy, W,
and Wg. These worlds in turn result from the assignments 04(X — 1,Y — 2), 05(X — 2,Y +— 2) and
06(X — 3,Y +— 2). Therefore, the marginal probability of tuple t4 results in:

p(ts) = Prob(X=1) x Prob(Y=2) + Prob(X=2) x Prob(Y=2) + Prob(X=3) x Prob(Y=2)
= (Prob(X=1) + Prob(X=2) + Prob(X=3)) x Prob(Y=2)
= Prob(Y=2)
= 0.2

Each BID-database can be transformed into a pc-database by introducing one variable per block and
by setting the condition of each of the block’s tuple to another assignment of the block’s corresponding
variable. In contrast, not every pc-database can be transformed into a BID-database. For instance, the
possible world space presented in Figure 3.9(b) cannot be represented by a BID-database, because the
inclusion of tuple ¢5 from tuple ¢; cannot be modeled in this system. As a consequence, the concept of
pc-databases is a more powerful representation system as the concept of BID-databases.

Two well known probabilistic database management systems are MayBMS [KO08, HAKOO09, Koc09]
and Trio [Wid09, ABST06, MTdK"07]. Both systems use a representation system that is based on the

concept of pc-databases.

e MayBMS uses U-databases as representation system. A U-database is a set of U-relations. As
in pc-databases, in U-relations each tuple is associated with a condition on discrete variables. In
U-relations the use of variables is restricted to the tuples’ conditions and these conditions are
restricted to conjunctions of k£ atomic events where each atomic event X = x compares a random
variable X with one of its possible values x. For storing conditions, an U-relation uses two extra
columns V and D (condition columns) per atomic event (note, the restriction to k£ atomic events
follows from the restriction to k pairs of condition columns). The column V contains the variable
and the column D contains the variable’s possible value of its corresponding atomic event, i.e. an
atomic condition X = x is stored by setting its corresponding condition columns to V = X and
D = z. Disjunctions of conjunctions are modeled by the use of several tuples with same attribute
values, but different settings in the condition columns. The representation key of a U-relation is
the combination of all condition columns and the world key. The possible values of the variables

along with their probabilities are separately stored in a ternary relation that is called World-Table.
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Person[hame] Person[age] World-Table

V D RK WK name V D RK WK age V D Pr
tt X 1 1 pl JDoe ts X 1 1 p1 27 X | 1 06
b X | 2| 2 pl | JDoe tt X 2 2 pl| 28 X 202
t; Y | 1 | 3 | p2 | KSmith to L L 3 p2 3R X 302
tw Y | 2 4 | p2 | S.Kmith ty X 1 4  p3 28 Y 1 08
ts X | 1| 5 p3 | lDoe tp, X | 3 5| p3 | 28 Y 2 02
tt X 3| 6 | p3  JDoe tz X | 2 6 p3 29
| X 2 7  p3 J.Ho

(a) Sample U-Database

Person Correlation Table

XID AID WK name age lineage p XID AID value p
t, 1 1  pl JDoe & 27 AL1)=(41) (0.6) t, 41 1 | 06
t, 1 2  pl JDoe | 28 A(1.2)=(42) (0.2) ts 4 2 2 02
t; 2 1 | p2 | KSmith | 32 |- 0.8 tv| 4 3 3 0.2
ty 2 2 | p2 | SKmith | 32 |- 0.2
ts 3 1  p3 JDoe 28 AB1)=(41)v(43) (08)
ts 3 2 p3  JHo | 29 A(32=(42) (0.2)

(b) Sample ULDB

Figure 3.10.: Sample U-Database (MayBMS) and sample ULDB (Trio) both having the possible worlds
representation depicted in Figure 3.9(b)

To increase compactness further on, U-databases use vertical partitioning to decompose tables into
several probabilistic independent sets of attributes and then store each of these sets using an own
table. This process is also denoted as normalization [SORK11].

Due to its architecture, U-databases are especially convenient to model the answers of UCQ queries
(Unions of Conjunctive Queries) to other U-databases or BID databases [SORK11]. Since queries
of this class can be evaluated efficiently in most cases, this property can be useful in many appli-

cations.

e The concept of Uncertainty-Lineage Data Bases (short ULDBs) [BSHWO06] is the representa-
tion system that is used in the Trio system. A ULDB is a set of so-called x-relations that each
consists of a set of x-tuples. The concept of x-tuples corresponds to the concepts of tuple-ORs
and hence is a block of mutually exclusive ordinary tuples, which are simply called alternatives.
Each x-tuple is identified by an x-tuple identifier (short XID) and each alternative of one x-tuple
is identified by an alternative identifier (short AID). Thus, the XID serves as world key and the
combination of the XID and the AID serves as representation key. Each x-tuple alternative can be
annotated with a lineage formula (noted by ) that is a boolean condition like the conditions that
are used in pc-tables. Although these formulas have the primary purpose to model the lineage of
query output alternatives to query input alternatives, i.e. a lineage formula models in which way

a set of input alternatives have to be combined in order to compute the formula’s corresponding
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output alternative, they can be also used to model correlations between the alternatives of different
x-tuples. For this purpose we need to construct a separate x-relation whose x-tuples are used as
random variables. We will refer to this x-relation as correlation table. ULDBs distinguish between
base-tuples, which are x-tuples whose alternatives do not have any lineage, and non-base-tuples,
which are x-tuples whose alternatives have a lineage because these tuples have been derived from
some base-tuples. For that reason, the lineage of each non-base tuple alternative directly or indi-
rectly refers to a set of base-tuples it is derived from. Whereas the probabilities of the base-tuples’
alternatives are directly associated to them, the probabilities of the non-base-tuples’ alternatives
are computed based on the lineage conditions and the probabilities of the referenced base-tuples.
As we will see in Section 3.5, the latter corresponds to the mechanism of computing the probabil-
ities of query output tuples in pc-databases. The first is a consequence from the fact that ULDB
assigns AIDs to the x-tuple alternatives and hence inherently model the mutual exclusion between
them without using random variables. This kind of inherent modeling, however, is only possible
for base-tuples, i.e. the x-tuple’s alternatives have an empty lineage and therefore are indepen-
dent from the alternatives of all other x-tuples. Note, an x-relation without lineage conditions
corresponds to a BID-table.

Example 30 A sample U-database is presented in Figure 3.10(a). Due to normalization the database
consists of two U-relations, i.e. one for the attribute 'name’ and one for the attribute *age’. In contrast,
a sample ULDB is presented in Figure 3.10(b) (the probabilities of all non-base tuples are written in
brackets because they are actually not stored in this table). The similarity between the world-table,
the correlation table, and the variable map of the pc-database from Figure 3.9(a) cannot be denied.
Moreover, the resemblance of the boolean conditions that are modeled by the condition columns (U-
database) or that are modeled by the lineage formulas (ULDB) to the conditions that are modeled in
the pc-database is obvious. Indeed, the possible worlds representations of both databases are exact the

same as the one depicted in Figure 3.9(b).

3.3.6. Properties of Representation Systems

Two important properties that describe the modeling power of probabilistic representation systems are
completeness and closeness.
According to [SORK11], a representation system for probabilistic databases is called to be complete,

if each possible worlds representation can be losslessly transformed into this system.

Definition 16 (Completeness): Let R be a representation system, let R be the set of all possible

representations of that system, R is complete if it can represent any probabilistic database (W, Pr), i.e.
Y(W, Pr): Ipdby € R pwr(pdby) = (W, Pr).

It has been proven that the concept of pc-databases is a complete representation system [SORK11].
The same holds for U-Databases [Koc09, SORK11] and ULDBs [BSHWO06]. In contrast, TI-databases,
AOR-databases, AOR ?-databases, and BID-databases are no complete representation system as it can be
simply illustrated by the world space that is depicted in Figure 3.9(b), because it cannot be represented by
any of these systems. Although BID-databases are not complete, they are stronger than AOR?-databases
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pc-databases
BID-databases

AOR?-databases

TI-databases | | AOR-databases

conventional
databases

Figure 3.11.: The semi-ordering of the modeling power of the representation systems considered in this thesis

because the world space that is depicted in Figure 3.8(b) cannot be represented by the latter system.
AOR?-databases are in turn stronger than TI-databases and AOR-databases which can be demonstrated
by the world space that is depicted in Figure 3.7(b), because none of the latter two systems can be used to
represent this space. The possible world space presented in Figure 3.5(b) cannot be modeled by an AOR-
database and the possible world space presented in Figure 3.6(b) cannot be modeled by a TI-database.
Thus, none of both systems has a greater modeling power than the other. In summary, by considering
the modeling power of the representation systems that we have presented in this chapter, we get the
semi-ordering that is presented in Figure 3.11.

According to Green [Gre(09] a representation system for probabilistic databases is closed under a
query language, if every probabilistic database that can result from posing a query of this language to a

probabilistic database that is represented in this system can be represented in this system as well.

Definition 17 (Closeness): Let R be a representation system, let R% be the set of all possible repre-
sentations of that system, and let L be a database query language. The system ‘R is closed under L if
for any query Q € L and any database pdb, € R there is a database pdby, € R that represents the

result of posing Q to pdb, i.e. pwr(pdbsy) = Q(pwr(pdb,)).

It is obvious that completeness implicates closeness. Therefore, pc-databases are closed under the
relational calculus. The other four systems are not closed under the join operator® as we can illustrate by

a simple example.

By considering the possible worlds semantics, AOR-databases are even not closed under the selection operator. For that
reason, former research on AOR-databases (e.g. [BGMP92]) introduce a definition of the selection operator that selects
complete A-tuples instead of alternative instances of A-tuples. By doing so, however, the operator is not conform to the
possible worlds semantics as we have presented it in Section 3.2 because it retains worlds in which some tuples do not
satisfy the condition of the applied selection operator.
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SELECT t.name AS nameA, u.name AS nameB
FROM Person t, Person u

WHERE tWK # uWK

AND t.age < u.age

(a) Sample query Q4

W,, Pr=0.48 W, Pr=0.3 W¢, Pr=0.22

nameA nameB nameA nameB nameA nameB
tg | J.Doe | K.Smith ts | J.Doe | K.Smith ts | J.Doe | K.Smith
t; | J.Doe J.Doe ts JHo | K.Smith

ty | J.Doe J.Ho
(b) The possible worlds representation that results from applying query Q4 to the BID-table "Person’ from Figure 3.8(a)

Figure 3.12.: Sample for illustrating that BID-databases are not closed under the join operator

Example 31 For the purpose of illustration we consider the database query Q4 that is presented in
Figure 3.12(a) and pose this query to the BID-database from Figure 3.8(a). This query computes the
is-younger-than relationship between two persons by using a theta join and returns the name of the
younger person followed by the name of the older person. Recall that the join needs to be processed in
each possible world separately. Therefore, the resultant possible world space contains the three possible
worlds presented in Figure 3.12(b). Note that world W 5 results from querying world W1, world Wp
results from querying one of the worlds Wo and W, and world W results from querying one of the
worlds W3, Wy, and Wg. Since J.Doe can only be younger than J.Ho if tuple t5 belongs to the processed
world and because the single tuple with WK = py belongs to all of the processed worlds, the presence
of tuple tg implies the presence of tuple tg and vice versa. These implications, however, cannot be
represented within a BID-database. Consequently, BID-databases are not closed under the join operator
which in turn implies that TI-databases, AOR-databases, and AOR?-databases are not closed under the

join operator as well.

3.3.7. Coupling Representation Systems with Views

Example 31 moreover demonstrates that queries can introduce correlations between tuples that are not
present in the source data. At a first glance, this property looks like a great disadvantage because using
a less powerful representation system automatically restricts the set of queries that is applicable to the
represented database. On a second look, however, we will see that this property can be also useful,
because it enables us to use a less powerful representation system even if we need to represent highly
complex correlations.

In relational databases, views are used to recompose tables that have been decomposed into several
small tables because of functional dependencies (normalization). As a consequence, queries are utilized
to introduce correlations between the tuples of different tables. Obviously, we can apply the same prin-
ciple to probabilistic data and hence can define views to introduce tuple correlations into probabilistic

database by purpose. Therefore, instead of modeling all correlations into the database we can use a less




3.4. Entity-based Interpretation of Probabilistic Data 59

powerful representation system and then shift complexity from the database to a set of queries, i.e. the
particularly defined views. Consequently, we can make use of the expressiveness of a query to reduce
the complexity of the stored database.

Suciu et al. [SORK11] show that TI-databases and BID-databases become complete representation
systems if we couple them with views. Whereas TI-databases require views using the complete expres-
sion spectrum of the relational calculus, BID-databases only require views that are conjunctive queries,
i.e. queries that do not use negations or disjunctions. It is important to note that although these com-
binations are complete representation systems, it can happen that they require as many tuples as pos-
sible worlds and hence are sometimes impractical. Nevertheless, in many use cases they are suitable
to represent a highly complex database with high compactness and a manageable representation/query

complexity.

Example 32 For illustration, we cannot represent the possible world space from Figure 3.12 in a BID-
database, but we can represent it with a BID-database if we combine it with a view. For that purpose we

simply retain the BID-database from Figure 3.8(a) and define a view that corresponds to query Q4.

3.4. Entity-based Interpretation of Probabilistic Data

As the conventional relational data model, the above presented representation systems are not inherently
entity-based. As introduced in Section 2.1, we consider each database entity to be identified by its
DEI. Since an entity can only belong to every table once, all tuples with the same DEI need to be
mutually exclusive, i.e. in every possible world only one of them is allowed to be present. Thus, the DEI
corresponds to the world key of each table and we therefore assume in the rest of this thesis that each
table of a probabilistic database uses the DEI as world key (recall in certain databases, we assume that
each table uses the DEI as primary key).

In general, in an entity-based interpretation, we can distinguish between membership uncertainty and
value uncertainty. Whereas the first models the uncertainty whether or not an entity is represented in a
particular entity table (and hence whether or not it belongs to the table’s corresponding extension), the
second models uncertainty on the entity’s attribute values. Membership uncertainty and value uncertainty
should not be confused with tuple-level uncertainty and attribute-level uncertainty. The first describe the
uncertainty on some properties of a database entity and only depend on the considered world schema, but
does not depend on the used representation system. In contrast, tuple-level uncertainty and attribute-level
uncertainty are modeling concepts and whether they are used or not depend on the used representation
system, but does not depend on the considered world schema. Because the membership of an entity
to a specific collection can be described by a membership attribute and because an attribute can be
represented by the memberships to a set of collections (recall Section 2.1.1) membership uncertainty can
be transformed into value uncertainty and vice versa by changing the database schema. Membership
uncertainty can be stored as value uncertainty by adding an extra boolean attribute to the schema of the
considered table. The value of this attribute is ’true’ if the tuple (and hence the corresponding entity)
belongs to the table and is ’false’ otherwise. Note, if several tables have mutual exclusive memberships a

categorical attribute can be used instead of a boolean attribute. In the opposite direction, the uncertainty
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on the value of a tuple (database entity) in a specific attribute can be transformed into membership

uncertainty by creating a separate table per element of the attribute’s corresponding domain.

Example 33 For illustration, value uncertainty on the gender of a person can be transformed into mem-
bership uncertainty by splitting the table *Person’ into the two tables 'Man’ and *Woman’. On the
contrary, the uncertainty of the membership to the tables "Man’ and *"Woman’ can be transformed into
value uncertainty by combining both tables to the table ’Person’ and by adding an attribute ’ gender’ that

has the two domain elements ‘'man’ and 'woman’ to the table’s schema.

In Section 2.1, we denote the set of tuples that represent a database entity e in a database db as the
entity’s instance Inst(e, db). It is obvious that in a probabilistic database an entity can have several possi-
ble instances. The probability of an instance results in the accumulative probability of all the database’s

possible worlds that contain this instance.

Definition 18 (Possible Entity Instance): Let (W, Pr) be the possible worlds representation of a prob-
abilistic database pdb and let Jpqp be the space of all entity instances that are conform to the given

database schema. The probability that an entity e has the instance I € Jpqp results in:
Prob(Inst(e,pdb) = I) = Z

The set of possible instances of e in pdb is therefore defined as Instp,ss(e,pdb) = {I | I €
3, Pr(Inst(e,pdb) = I) > 0}.

Pr(W)
WeW,Inst(e, W)=I

The extension of a probabilistic database (or table of a probabilistic database respectively) can be
uncertain, if the underlying system is able to model membership uncertainty. Whereas the set of possible
database entities of a probabilistic database is defined as the set of all database entities that belong to
the extension of at least one of the database’s possible world, the probability that an entity belong to the
"true’ extension of the probabilistic database results in the accumulative probability of all the database’s

worlds whose extensions contain this entity.

Definition 19 (Probabilistic Database Extension): Let (W, Pr) be the possible worlds representation
of a probabilistic database pdb. The ’true’ extension of pdb is represented by the probability space
Ext(pdb) = (Wgy, Prey) where
Wiy = {Ext(W) | W € W}
and Y€ € Wgy: Prpg(€) = Pr(W)
The probability that a database entity e belongs to the 'true’ extension of pdb is therefore defined as:
Prob(e € Ext(pdb)) = Z Prey(€) =

The probability that a database entity belong to the extension of a single database table is defined

ZWeW,Exz(W):e

Z Pr(W)
WeW,ecExt(W)

@EWEX[@G@
accordingly.

The possible extension of pdb, i.e. the set of database entities that possibly belong to the ’true’ exten-
sion of pdb, is denoted as Extp,ss(pdb) and is defined as the set of all database entities that belong to the

extension of at least one world in W, i.e.:

Extpss(pdb) = UWGWExt(W) = {e | Prob(e € Ext(pdb)) > 0}
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The ’true’ extension and the set of possible database entities of an incomplete database are defined
accordingly.
Due to the DEI must be unique per table in every possible world, we make the following conventions

for the individual representation systems:

o TI-databases: In tuple-independent databases we cannot model exclusion between tuples. As a
consequence, all tuples of one table must represent another database entity. This in turn implicates
that this representation system is only able to model the uncertain membership of a database entity

to a database table, but is not able to model uncertainty on any of the entity’s attribute values.

o AOR-databases: In attribute-OR databases, all A-tuples are present in every world. Therefore,
all A-tuples of one table need to represent another database entity and the table membership of all
entities is certain. However, since each A-tuple can have several alternative values per attribute,

this system is able to model value uncertainty.

o AOR?-databases: In attribute-OR databases with maybe-tuples, A-tuples are independent to each
other. For that reason, all A-tuples of one table need to represent another database entity. In
contrast, to TI-databases and AOR-databases, however, an AOR ?-database is able to model uncer-
tainty on table membership as well as uncertainty on the entity’s values. Let T be a table of an
AOR?-database and let ¢ be an A-tuple that represents a database entity e in 7', the probability that
e belongs to the extension of 7" results in the probability of ¢, i.e. Prob(e € Ext(T)) = p(t).

e BID-databases: In block-independent-disjoint databases, the tuples of one block are mutually
exclusive. Thus, all tuples of one block can represent the same entity, and BID-databases are able
to model uncertainty on table membership (blocks can be maybe) and uncertainty on the entity’s
values (the tuples of one block disagree in some attributes). Let B be the block of tuples that
represent entity e in table 7', the probability that e belongs to the extension of 7" results in the
probability of B, i.e. Prob(e € Ext(T)) = p(B) = >_,.gp(1).

Of course, a block can be also used to represent a mutual exclusion between different entities. In
this thesis, however, we consider each block to represent a single database entity and instead use a

pc-database if mutual exclusions between tuples from different entities are required.

e PC-databases: In probabilistic conditional databases, several tuples of the same table can rep-
resent the same database entity, but their conditions need to be exclusive. Thus, let s(®) be
the set of all variable assignments that satisfy the condition ®, a pc-database is only consistent
if for each tuple set {t1,...,¢;} that represent the same database entity in one table, the sets
{5¢(®y,), ..., (P, )} are pairwise disjoint. This condition cannot be ensured by the representa-
tion system itself, but need to be considered by the user or need to be considered by the application
that is used for manipulating the stored data (insert, update, delete). Nonetheless, database con-
straints can be used to prevent data changes that lead to inconsistent results. In this thesis, we

always assume that the considered pc-databases are consistent.

Let {t1,...,t;} be the tuples of a pc-table 7" that represent entity e. Since the satisfying assign-
ments of all these tuples need to be disjoint, the probability that e belongs to the extension of T’

results in Prob(e € Ext(T)) = %, Ypesan,) Prob(0) = e | @,y Prob(0).
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Due to no correlations between the tuples of different entities can be modeled, we sometimes refer to
TI-databases, AOR-databases, AOR?-databases, and BID-databases as entity-independent probabilistic
databases.

In general, an entity can be represented by a tuple in several entity tables. In the aforementioned
entity-independent probabilistic representation systems, however, tuples from different tables are mu-
tually independent. Thus, we cannot even model correlations between the attribute values of the same
entity if the corresponding attributes belong to different tables and we cannot model correlations between
the memberships of one entity to the individual tables. From the latter follows that we cannot model a
membership exclusion between different entity tables as for example an exclusion between the two tables
‘Student’ and ’Professor’. As we will demonstrate in Section 3.6.2, this property has a strong influence
on the strategy by which the database schema need to be designed if the underlying ER-schema contains
some inheritance hierarchies.

In ULDB, each x-tuple is usually considered to represent an own database entity. To simplify the
notion of BID-databases and pc-databases, we adopt the concept of x-tuples and x-tuple alternative to
these two systems and therefore sometimes call all tuples of the same table (BID-table or pc-table) that
share the same DEI as alternatives of the same x-tuple.

Moreover, we adapt the relational concept to store variable assignments that is used by U-databases

and denote the database table that stores all variable assignments in a pc-database as World-Table.

3.5. Querying Probabilistic Databases

Querying a probabilistic database has two main challenges. The first challenge is to compute the query
answers efficiently even if the database is large and the query is complex. The second challenge is to
present the query answers to the user in a simple but informative way. For presentation reasons we start

with the second challenge and then continue with a discussion on the first.

3.5.1. Presentation of Query Answers in Probabilistic Databases

Following the possible worlds semantics, from querying a probabilistic database another probabilistic
database results. Since each of the resultant worlds serves as a possible set of query answers, this seman-
tics is also denoted as possible answer sets semantics [SORK11]. The advantage of the possible worlds
semantics is that it is compositional, i.e. the result of one query can be used as input to another query.
This compositional property is important because it enables the use of views. The disadvantage of this
semantics is that due to its possibly large number of worlds, a query result usually cannot be presented to
the user in the possible worlds representation, but need to be presented in a more compact representation
instead. However, even if the query result is presented to the user in its succinct representation such as a
pc-table, it can be difficult to understand (especially for unfamiliar user).

For that reason, from a usability perspective it is more practical to present the user a list of all result
tuples, i.e. all possible query answers, along with their probabilities regardless to which worlds these
tuples belong and hence by ignoring any kind of tuple dependency in the final presentation. Obviously,

by doing so the query result does not correspond to an accurate probabilistic database anymore and hence
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cannot be used as input to another query. For that reason, this query semantics is not compositional and
should be only used to evaluate queries whose answers are directly passed to the user.

The idea behind this query semantics is that the user gets a simple presentation of all possibly answer
tuples and if she is interested in a specific dependency she has to request this dependency by another
query. For instance, if the user wants to know the probability that two query answers belong to the same
possible world she can pose a second query that explicitly ask for tuple pairs and hence the result of this
query will reflect the correlation between both tuples. This query semantics is usually called as Possible
Answers Semantics [SORK11] and is defined as:

Definition 20 (Possible Answers Semantics): Let pdb = (W, Pr) a probabilistic database and let )
be a database query, the result of posing Q) to pdb, in the possible answers semantics is a set of tuple-
probability pairs Qpess(pdb) = {(t1,p(t1)), ..., (tk, p(tr))} where t is a tuple and p(t) is its marginal
probability so that for each pair (t;,p(t;)) € Qposs(pdb) holds:.

tie{t|IWeW:teQW)}

and p(t;) = ngw,tieQ(W) Pr(w)

Each tuple t € Q55 (pdb) is called a possible answer of query @ to database pdb. Moreover, each tuple
that belongs to the set Qcer(pdb) = {t | VW € W:t € Q(W)} = {t | t € Qposs(pdb),p(t) = 1} C
Qposs(pdD) is called a certain answer of query () to database pdb.

To increase the quality of presentation further on, the possible query answers are usually returned in
the decreased order of their marginal probabilities. Moreover, often only the k£ most probable answers are
required. In this case, the computation complexity of query evaluation can be considerably reduced. The
challenge of efficient fop-k query answering has been studied in several works [RDS07, SIC07, GZM09,
LCHI13a, SLG13].

Note, if the set of all possible query answers @),y is presented in a table-based fashion its represen-
tation corresponds to a table of a TI-database, but its semantics is different, because from such a set
of tuple-probability pairs we cannot derive a possible worlds representation as we can derive it from a
TI-database.

3.5.2. Query Evaluation in Probabilistic Databases

The possible worlds semantics is defined on the possible worlds representation and hence only gives
a reference for query evaluation instead of a concrete solution for any compact representation system.
A tuple is a possible query answer if it results from the considered query in any of the probabilistic
database’s possible worlds. Moreover, each world consists of a subset of all tuples of a probabilistic
database. Consequently, a tuple can only be a possible query answer if there are some tuples in the
probabilistic database that produce this tuple as query output. Note that this condition is necessary, but
not sufficient because it can happen that the corresponding input tuples do not coexist in any of the
possible worlds. Nonetheless, because of this condition we can compute all possible answers of a query
that does not use aggregation by querying all the database’s tuples collectively, i.e. by ignoring any of
the underlying correlations. To compute the concrete set of possible query answers or to compute the

concrete marginal probabilities of the output tuples, however, we need to take all tuple correlations into
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IsYoungerThan Person (World Table)

nameA nameB lineage p DEI name age p
te | J.Doe | KSmith  (e1A€3)V (e2A€3)V (esA€3) | 1.0 t, pl J.Doe 27 1 0.8
t;  JDoe | JDoe | (e1A€) 0.48 t; pl JDoe 28 02
ts J.Ho K.Smith | (e3Aes) 0.3 t; | p2 | KSmith| 32 | 1.0
ty | J.Doe JHo | (e1A€s)V (e2A€5) 0.3 t,  p3 J.Doe 28 | 0.6

ts | p3 J.Ho 29 | 03

Figure 3.13.: A pc-database having the possible worlds representation depicted in Figure 3.12

account (correlations modeled in the queried database as well as correlations introduced by the query).
For that reason, query evaluation is based on the concept of lineage. As we have already introduced in
Section 3.3.5, the lineage of an output tuple traces back from which input tuples the considered output
tuple is derived from. Moreover, we have shown that lineage can be used to represent tuple correlations.

Thus, lineage can be also used to represent tuple correlations that have been introduced by a query.

Example 34 This is demonstrated by the pc-database presented in Figure 3.13. Notice that this pc-
database exactly models the possible worlds representation from Figure 3.12 and recall that this query
result cannot be represented by a BID-database without using views.

Apparently, this pc-database looks different to this pc-database we have presented in Figure 3.9(a).
The world table is substituted by the input database, i.e. the BID-table 'Person’ from Figure 3.8(a).
Moreover, instead of comparisons of variables with values, the tuples’ conditions are build on atomic
events where each event €; refers to an input tuple t; and is true iff t; belongs to the input database’s
‘true’ world. In other words, these events correspond to boolean random variables and the set of possible
assignments to all these variables, i.e. events, is defined by the set of possible worlds of the input
database, i.e. each possible world of the input database corresponds to another variable assignment.
The marginal probabilities of all possible answers can be computed based on their lineage. For instance,
tuple tg is a true query answer, if its lineage formula ®y, is satisfied which in turn exactly corresponds
to the cases where the tuples t1 and ts or the tuples to and ts belong to the input database. Since t1
and ty are exclusive and both independent to ts, the marginal probability of tg is computed as: p(tg) =
(p(t1) + p(t2)) x p(ts) = (0.8 +0.2) x 0.3 =10.3

As illustrated by this example, the problem of computing the marginal probability of a possible query
answer can be reduced to the problem of computing the probability of a propositional formula. However,
for computing the probability of such a formula, we need to detect all combinations of events (e.g.
variable assignments in pc-databases) that satisfy this formula. This well known problem of probabilistic
inference can be solved in several ways. One way is to use one of the traditional inference algorithms
that have been developed in the research of artificial intelligence [Dar09]. Another way is to directly

integrate inference into the query evaluation process.

¢ Intensional Query Evaluation: By using the intensional query semantics, query evaluation and

probabilistic inference are considered as two separate processes. First a database engine evaluates
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the query on the database and produces query answers along with their lineage formulas. Second
a general-purpose algorithm for probabilistic inference as for example Monte-Carlo Simulation
[KLM8&9] (approximate), Variable Elimination [Dec96] (exact) or the Junction Tree Algorithm
[HD96] (exact) is used to compute the marginal probabilities of the possible query answers based
on their lineage. Nevertheless, probabilistic inference is generally known to be a hard problem
[Rot96] and even approximative approaches usually scale bad if large lineage expressions need
to be exploited. Due to this expensiveness marginal probabilities are often only computed for
individual tuples ad-hoc on user request [Wid09].

o Extensional Query Evaluation: In extensional query evaluation, probabilistic inference is incor-
porated into query evaluation, i.e. instead of performing a separate process for computing proba-
bilities, these probabilities are directly computed by the database engine. This approach, however,

is not an exact inference method and only works correctly for specific cases.

We start with a short introduction of intensional query evaluation and then discuss the underlying
idea, benefits and shortcomings of extensional query evaluation. Note, although the ULDB model uses
the symbol X to denote lineage formulas, we will adopt the general notion of pc-databases and therefore

will denote a lineage formula by .

3.5.2.1. Intensional Query Evaluation

Since for computing the tuple probabilities based on the lineage formulas traditional methods of proba-
bilistic inference are used, we focus on the database-specific part of intensional query evaluation, i.e. the
query-specific construction of the lineage formulas of the output tuples from the lineage formulas of the
input tuples. Logically, the construction depends on the individual semantics of the relational operators.
For instance, the join operator can only join two tuples, if both tuples exist in the joined tables. As a
consequence, given the two input tuples ¢, and ¢, with the lineage formulas ®;, and ®;, respectively, the
join operator constructs the lineage formula of the output tuple ¢ = ¢, X t5 as &, = P4, A ®,. The
lineage construction rules of some other relational operators (here we restrict to the basic operators) are
listed in Table 3.2 and are based on the rules given by Fuhr and Rolleke [FR97].

Relational Operator Lineage Construction Rule

Projection: tema(Q) Pt =V comaitr)=t Pt

Selection: t €o.(Q) Dy = Dy where t, € Q,t, =1

Cross Product: ¢t € Q1 X Q2 | ©: = Py, A Dy, where t, € Q1,ts € Qa,t, Xty =1
Set Union: teQruUQs | = Vtrte,tT:t Dy, V \/tSEQz,ts:t D,

Set Difference: t€ Q1 — Q2 >, Dy A(Pry) i3t € Qails =1 ypere tr € Qi t, =t

P, else.

T

Identity: teT P, =¢; where ¢; is the event that t; € T'

Table 3.2.: The lineage construction rules for the individual relational basic operators
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Person Read

DEI name age p DEI person title year p
t; pl | JDoe @ 27 |08 g rl pl | TheStranger| 1998 | 0.6
t, | pl | JDoe | 28 | 0.2 t; | r2 p2 Pale Fire | 2003 | 1.0
t; | p2 | KSmith | 32 1.0 tg 13 p2 | TheStranger | 1997 | 0.4
t,  p3 | JDoe | 28 | 0.6 ty ré p3 | White Nights| 2002 | 0.8
ts | p3 J.Ho 29 | 03 tw 15 p3 | Homo Faber | 2001 | 1.0

(a) Sample BID-database

SELECT p.name

FROM Person p, Read r name lineage p
WHERE p.DEI = r.person ty; | KSmith | (e3A &) 1.0
AND r.year > 2000 t,  JDoe | (eaAeo)V (€ahew) | 0.6

ti3 JHO | (esAe9)V(esA€) | 0.3

(b) Sample query Qs (c) Possible query answers

Figure 3.14.: Sample for a BID-database, a query on this database, and its set of possible query answers

Note that the operators selection and cross product does not eliminate duplicate entries and hence
we always assume that the input tuple ¢, (or the input tuples ¢, and ¢ respectively) are exactly known
and unique for each output tuple t. Moreover, recall that the event ¢; can be represented by another

propositional formula, i.e. the condition of tuple ¢;, if T" is a pc-table.

Example 35 For demonstrationS, we consider the BID-database from Figure 3.14(a). This database
contains the BID-table *Person’ that we already know from Figure 3.8(a) and in addition contains a
second BID-table ’Read’ (note, due to the tuples in ’Read’ are mutually independent it is even a TI-
table). For simplification, we do not model foreign keys in this database (see discussion on referential
integrity in Section 3.6.1). Moreover, we consider the query Qs from Figure 3.14(b) and pose it to the
given BID-database. This query requests for the names of the persons that have read a book since 2001.
Its set of possible answers is presented in Figure 3.14(c) and contains three output tuples. In order
to illustrate the construction of the lineage formulas of the output tuples, we consider tuple t12 as an
example. This tuple is a query answer if tuple t4 is joined with tuple tg or if t4 is joined with tuple t.
Consequently, its lineage formula results in @y, = (€4 N €9) V (€4 A €10) where the logical ’"AND’s are
constructed from the join operator and the logical 'OR’ is constructed by the final projection.

The probabilities of the three possible query answers are presented in Figure 3.14(c) and can be
explained as follows: Tuple t11 result from joining two certain tuples and therefore is certain by itself.
The probability of tuple t12 is exactly the marginal probability of tuple t4. This is correlation can be in
turn simply explained. Due to tuple t1q is certain and belongs to all possible input worlds, its existence
includes the existence of tuple tg. Thus, the lineage condition (€4 N €19) covers the condition (€4 N €9)
and we therefore can ignore the latter condition for computing the probability of condition ®;,,. As
a consequence, the tuple t' = t4 X tig (and hence the tuple t13) results from each input world that

contains t4 and hence has the same probability than t4. The same principle holds for tuple t13. Because

®This example is based on a sample given by Dalvi et al. in [DRS09].
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the existence of tyg includes the existence of tuple ty, we only need to consider the condition (€5 N €19)
to compute the probability of t13. Since this condition is true if tuple ts exists, the probability of t13 is
equal to the probability of ts.

3.5.2.2. Extensional Query Evaluation

The advantage of the extensional query semantics is that we can leverage standard optimization tech-
niques of conventional database systems to speed up query evaluation in probabilistic databases. For this
purpose, probability computation is incorporated into the operators of the relational algebra’.

For instance, let ¢t be a tuple that results from joining the two tuples ¢, and tg, i.e. t = ¢, X .
Following the possible worlds semantics, ¢ belongs to all possible worlds of the join result that are
produced from any input world containing both ¢, and ts, i.e. p(t) = pa({t;,ts}). In the simplest case,
all input tuples are independent and the accumulative probability of all input worlds that produces any
output world that contains ¢ can be computed by the product of the marginal probabilities of ¢, and ¢,
ie. p(t) = p(t,) x p(ts). In contrast, it holds that p(t) = p(t,) if the presence of ¢, in any of the
possible worlds includes the presence of ¢4 in the same world and results in p(t) = 0 if ¢, and ¢4 are
exclusive, i.e. they do not coexist in any of the possible worlds. In summary, the probability computed
by an implementation of the join operator depends on its assumed tuple dependency and can contain one

of the three computation rules:

p(ty) X p(ts), ift, and t, are independent,
p(t) = p(tr), if ¢, includes ¢, (3.10)

0, if ¢, and ¢, are exclusive,

Similar computation rules can be inferred for the other relational algebra operators by assuming a
specific kind of tuple dependency. For instance, the projection operator eliminates duplicate entries.
Thus, let ¢ be a tuple that results from projecting any of the tuples 1, ..., t; on an attribute set .4, i.e.
t = ma(t;) foreachi € {1,...,k}. Tuple ¢ only belongs to a possible world of the projection result if any
of the k input tuples belong to a corresponding world of the input database, i.e. p(t) = pyv({t1,...,tk}).
Consequently, the probability of ¢ is computed as p(t) = 1 — Hle(l — p(t;)) if all these input tuples
are mutually independent and results in p(t) = Zle p(t;) if all these tuples are mutually exclusive.

Therefore, an implementation of the projection operator can perform one of the following rules:
1-— Hle(l —p(ti)), ifty,...,t, are mutually independent,
p(t) = < p(ts), ifty € {t1,...,t;} isincluded by t1, ..., . (3.11)
Zle p(ti), if t1,...,t; are mutually exclusive,

Note that the operator cannot assume different kinds of dependencies for different input sets, but has to
assume the same kind of dependency for all possible inputs. As a consequence, for each kind of assumed

dependency we need another implementation per operator of the relational algebra.

"In an alternative approach, the relational operators are left unchanged and probability computation is hard coded into the
query [DRS09].
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¢(t11)=(63 A 67):1.0)(1.0:1.0 ¢(t11):(63 A E7):1.0x1.0:1.0
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nﬁi"me > iDEI:person
> iDEl:person ";iaerson
Oyear>2000 Gyear|>2ooo
(a) Unsafe query plan (b) Safe query plan

Figure 3.15.: An unsafe plan of sample query Qs and a safe plan of of sample query Qs

Obviously, the computed probabilities are only correct if the actual dependencies between the input
tuples correspond to the dependencies that are assumed by the used operator implementation. A query
plan that returns a correct probability is called to be a safe plan [DS0O7b]. The concept of safe plans
is a difference to query optimization in conventional databases, because not all query plans that can be
constructed for a given query are safe and the query optimizer has to check safety during optimization,
i.e. it has to find the cheapest plan that is safe.

Example 36 For demonstration, we reconsider query Qs from Figure 3.14(b). Two of its plausible
query plans are presented in Figure 3.15(a) and Figure 3.15(b). If all relational operators assume
independence between the input tuples (denoted by X' and 7'), the first plan is not safe, but the second
is. This can be explained as follows. In the first plan we first select all readings since 2001 and then
join these readings with persons on the condition person = DEI. Finally, we project on the name of
these persons. The two tuples tg and t1g are both joined with the maybe-tuple t4. Since the join results
t' =ty X tg and t* = t4 W t1g only belong to an output world if t4 belongs to the input world, they are
not independent®. Nevertheless, both tuples have the same value in the attribute *name’ and consequently
are combined to tuple t12 by the finally performed projection operator. Thus, by assuming independence
the finally computed probability of t12 incorrectly results in 0.792. Note that this incorrectness can be
simple illustrated by the fact that the computed probability of 112 is greater than the probability of t4, but
as we have explained above t15 can only result from worlds that contain ty and hence p(ti2) can be at
most as great as p(ty). The same holds for the output tuple t13 because its existence strongly depends on
the existence of the input tuple ts.

In contrast, if we first project all readings since 2001 on the attribute *person’ before performing the
join with the table *Person’, there is only one tuple, i.e. 1° = Tperson(t9) = Tperson(t10), that is joined with
t4 and the finally performed projection operator does not combine correlated tuples under an incorrect

assumption. The independence assumption on the first projection, however, is valid because it combines

8Note, the tuples ¢’ and ¢* are also neither exclusive nor include one the other, but they are correlated in a more complex way.
Thus, even using another implementation of the projection operator cannot change the unsafe plan into a safe one.
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only tuples from the table *Read’ and all these tuples are mutually independent. As a consequence, by

using this query plan the probability of tuple t12 correctly results in 0.6.

The problem with this approach is that tuple dependencies can become really complex in intermediate
query results even if the queried database is modeled in a simple representation system with only less
dependencies. However, it is impossible to cover any kind of dependence by an own operator imple-
mentation, because the number of different kinds of dependencies can become infinite. For that reason,
extensional query evaluation approaches usually restrict their implementations of the algebra operators
to general kinds of dependencies as independence, exclusion, or inclusion. Moreover, an operator imple-
mentation needs to assume the same dependency for all its possible inputs. As a consequence, for some
queries we cannot construct a safe plan. A query is called safe (and tractable) if it has a safe plan and
is called unsafe (and intractable) otherwise [DSO7b]. Algorithms to find safe plans for safe queries are
presented in [DS07b, SORK11].

Example 37 A simple example of a query that is unsafe with respect to BID-databases, is query Q4
from Figure 3.12(a). The fact that this query is unsafe can be demonstrated by the possible answer tg
(see Figure 3.13). This tuple results from joining the tuples t1 and ts, results from joining the tuples to
and ts, and results from joining the tuples t4 and ts. Tuple t3 is independent to all other tuples. The two
tuples t1 and to are exclusive (they belong to the same block), but tuple t, is independent to both (belongs
to another block). Therefore, a projection operator would not compute a correct probability neither by
assuming independence (p(tg) # 1 — (1 — p(t1) X p(t3)) x (1 — p(t2) x p(t3)) x (1 — p(ts) x p(t3)))
nor by assuming exclusion (p(te) # p(t1) x p(ts) + p(t2) x p(t3) + p(ts) x p(ts)).

Note that this query becomes safe (with respect to BID-databases) if we include the world keys of both
Jjoin members into the finally projected set of attributes because all tuples that have the same values in
these attributes result from joining different tuples of the same blocks and hence are mutually exclusive.
Thus, probabilities can be correctly computed by using an implementation of the projection operator
that assumes a mutual exclusion between all input tuples. The corresponding query Qg is presented in
Figure 3.16(a).

Interestingly, this modified query becomes in turn unsafe (with respect to BID-databases), if we only
Jjoin on the attribute ’age’ and remove the comparison on the non-equivalence of the world key from the
Jjoin condition (see query Q7 in Figure 3.16(b)), because in this case we join tuples with themselves and
such queries are per se unsafe [DSO7b]. In general, as Dalvi and Suciu have figured out, queries with
selfjoins are rarely safe [DSO7b].

Whether or not a query is safe does not only depend on the query itself, but also depends on the cor-
relations between the queried tuples and therefore essentially depends on the considered representation
system. As a consequence, queries that contain joins and/or projections are rarely safe with respect to
pc-databases, because in this case the tuple correlations are not predefined by the representation system,
but can be individually defined for each tuple set instead.

By only considering data complexity® all queries that are written in a specific query language can be
distinct into two complexity classes [DSO7b]. Whereas the evaluation of the queries of the first class

Data complexity refers to the complexity of evaluating a fixed query depending on the size of the input data [Var82].




70 3. Probabilistic Databases

SELECT t.WK, t.name, u.WK, u.name SELECT t.WK, t.name, u.WK, u.name
FROM Person t, Person u FROM Person t, Person u
WHERE tWK!=uWK WHERE tage < u.age
AND t.age < u.age
(a) Safe sample query Qg (b) Unsafe sample query Q)7

Figure 3.16.: Sample of a safe selfjoin query and a sample of an unsafe selfjoin query

is always in PTIME, the evaluation of the queries of the second class is always #P-hard. According to
Dalvi et al. [DS07b] independent from the considered language the first complexity class corresponds
to the class of safe queries and the second complexity class corresponds to the class of unsafe queries.
Dalvi et al. present such a Dichotomy for conjunctive queries without self joins and with respect to
TI-databases in [DS07b, DS07a] and detect that in this case the set of safe queries corresponds to the
class of hierarchical queries (a further dichotomy is proven in [DS12]). Interestingly, if the complexity
of approximations is additionally taken into account, some query classes even form a trichotomy [RS09].
The advantage of this observation is that if this dichotomy (or trichotomy respectively) is known for the
used query language and the used representation system, safe queries can be detected with manageable
effort (usually in polynomial time [DSO7b]).

Due to the high complexity of probabilistic inference, it is desirable to use extensional query evalua-
tion as often as possible. Nevertheless, if we require for exact probabilities in the case of an unsafe query,
we usually have no other choice than using intensional query evaluation and to compute marginal prob-
abilities by a conventional probabilistic inference algorithm instead. However, as presented by Olteanu
et al.[OHK10, SORK11] extensional query evaluation can be used even for unsafe queries. By doing so,
the resultant probabilities are indeed incorrect, but can be used as approximations of the correct proba-
bilities. Obviously, the accuracy of the resultant approximations depends on the considered query. For
instance, in the case of unsafe UCQ queries without self joins, an extensional plan that computes tuple
probabilities by the independence assumption returns an upper bound for the correct probabilities of the
possible query answers [OHK10]. This upper bound in turn can be suitable to remove a tuple from the
final query result if only the k£ most probable query answers are requested.

In recent time several research has been done to blur the hard line between both data complexity
classes. One approach is to use materialized views [RS07, DRS11]. In that case frequently used unsafe
subqueries are persisted in the database and queries using these subqueries are reformulated in order to
use the corresponding views instead. Another approach is to decompose a query plan into sub-plans and
to evaluate as many sub-plans by using extensional querying mechanisms as possible [DS07b]. Finally,
functional dependencies, e.g. keys, can help to transform an unsafe query into an semantically equivalent
safe query [DS07b, OHKO09].

3.5.3. Approximation based on Sampling Possible Worlds

In a later section, we will make use of an approximation technique that is based on the Monte-Carlo

Simulation [KLM89] and that is the fundamental query mechanism in Monte-Carlo databases (short




3.5. Querying Probabilistic Databases 71

MCDBs) [JXW 108, AJPT10, JXWT11]. The underlying semantics of this approximation technique
is not to evaluate the considered query in all possible worlds, but to rather evaluate it in a set of NV
sample worlds where NV is the number of Monte-Carlo iterations specified. MCDBs model uncertainty by
assigning variable generation functions (discrete or continuous), as for example the normal distribution,
to single attribute values, to sets of correlated attribute values, or to sets of correlated tuples. Therefore,
sampling one world is done by selecting a value from each variable generation function randomly.

The probability of a possible query answer is finally approximated as the proportion of sample worlds
in which this tuple is a query answer. Thus, let () be the considered query that is posed to a probabilistic
database pdb = (W, Pr), let Wy C W be the set of the NV sample worlds, and let M < N be the
number of all sample worlds in which tuple ¢ is a query answer, the marginal probability that ¢ is an
answer of Q(pdb) is approximated as:

W eWy[teQUV)Y _ M

t = — 3.12
0 - v a.12)

The drawback of this naive approach is that each world can be large in size and that the number of
Monte-Carlo iterations N usually need to be between 10 and 1000 to guarantee an appropriate accuracy
of the approximated probabilities [JXW*11]. Moreover, many queries only return few tuples, i.e. the
most tuples are filtered out by the queries’ conditions. This leads to the problem that in many cases
the most samples will not contain a single possible query answer and hence we expend much effort in
sampling and querying tuples to almost no value. To solve this problem, sampling is often processed
after applying the query to all input tuples. By doing so each tuple needs to be queried only once. In
addition, MCDBs use some model-specific optimization methods to decrease runtime further on.

In general, the same approximation principle can be applied to any of the representation systems we
have presented in Section 3.3. In that case, all tuples are collectively queried at a stroke and a lineage
function is build for each of them. Since the lineage functions refer to the original representations of
uncertainty (e.g. probabilities or variable assignments), sampling can be performed afterwards. Of
course, compared to MCDBs another sampling method need to be used, e.g. by selecting a variable

assignment randomly (pc-databases) or by selecting a tuple per block randomly (BID-databases).

3.5.4. Evaluation of Aggregate Queries in Probabilistic Databases

Evaluating aggregate queries over uncertain data has been considered in several works [GMSS09,
MIW11, CCT96, MSSO1, LSV02, CKP03, JKV07, ACNO8, IMMVO0S, MIW11, YWCKI11, FHO12,
BKOZ13, CD0S8]. Obviously, from each possible world another aggregation can result. Thus, in the
worst case the number of possible aggregations is close to the number of possible worlds and there-
fore can be prohibitively large. As a consequence, aggregation results often need to be presented in a
more compact way. Gal et al. [GMSS09] define three semantics for evaluating aggregate queries over
probabilistic databases.

e Range Semantics: In the range semantics the aggregation result is presented by a lower and an
upper bound, i.e. let pdb = (W, Pr) be a probabilistic database and let () be an aggregate query,
the result of Q(pdb) is a pair [, u| with [ = miny cwQ (W) and v = maxy cwQ(W).
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e Distribution Semantics: In the distribution semantics every possible aggregation result is listed
along with its probability, i.e. let pdb = (W, Pr) be a probabilistic database and let () be an
aggregate query, the result of Q(pdb) is a set of pairs (v,p) where v € {Q(W) | W € W} and

b= ZWEW,Q(W):U Pr(W).

e Expected Value Semantics: In the expected semantics the aggregation result is presented by its
expected value, i.e. let pdb = (W, Pr) be a probabilistic database and let () be an aggregate query,
the result of Q(pdb) is a the single value exp = > e Pr(W) x Q(W).

It is simple to see that the distribution semantics corresponds to the possible worlds semantics and
hence has the aforementioned complexity of the number of possible worlds. Of course, the result of the
first semantics and the result of the third semantics can be derived from the result of second semantics.
Nevertheless, in most cases the computation of these semantics is much more efficient if we compute
them directly on the input data instead of computing the result of the distribution semantics first. Obvi-
ously, let ) be an arbitrary aggregate query, let pdb a probabilistic database, let [/, u] be the aggregation
result of Q(pdb) under the range semantics and let be exp the aggregation result of Q(pdb) under the
expected value semantics, it generally holds that [ < exp < u.

Whether or not an aggregate query can be exactly computed in an efficient way depends on the used
aggregate operator, the used aggregation semantics, and the considered representation system. Gal et al.
[GMSSO09] consider aggregate queries under the by-tuple semantics in the presence of uncertain schema
mappings. Evaluating an aggregate query under the by-fuple semantics in the presence of uncertain
schema mappings corresponds to evaluating the same aggregate query on a BID-table. Thus, we can
adopt the results provided by Gal et al. from the by-tuple semantics to BID-tables. Queries using the
aggregate operator COUNT can be evaluated in polynomial time under each of the three aggregation
semantics. In the case of the aggregate operator SUM, Gal et al. found a method for computing the
aggregation result in polynomial time only for the range semantics and the expected semantics, but have
not found such a method for the distribution semantics. In the case of the aggregate functions MIN,
MAX, and AVG, they found a polynomial time computation method only for the range semantics.

Ross et al. [RSGO02, RSGOS5] analyze aggregate queries for FP-Relations under the distribution se-
mantics, propose an exact and generic (but usually intractable) approach for aggregate computation, and
present an algorithm that approximate the aggregation result in polynomial time by processing only some
of the possible worlds. Obviously, the accuracy of the approximated result increases with the number of
processed worlds, but it has been shown that in most cases a manageable number of worlds is sufficient
to produce a result of acceptable quality. Since FP-relations are generalizations of BID-tables, i.e. each
BID-table can be represented as a FP-relation by setting the upper bound and the lower bound to the
same probability value, these approximation algorithm can be used for querying a BID-table, too.

Murthy et al. [MWO07, MIW11] describe how aggregate queries are evaluated in the Trio system
[Wid09]. In general, Trio supports all three aggregation semantics, but restricts the evaluation of ag-
gregate queries to base-tables that do not contain lineage and therefore correspond to BID-tables. They
present methods to compute COUNT, MIN, MAX, and SUM exactly under all semantics, present meth-
ods to compute AVG exactly under the range semantics and the distribution semantics, and propose an

algorithm to approximate AVG under the expected value semantics. In the case of the distribution seman-
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tics, aggregation results are computed by enumerating all possible worlds and hence are only tractable
for small world spaces. In contrast, in the range semantics and the expected value semantics, Trio uses
its encoding scheme to rewrite a TriQL query, i.e. a query written in the query language of Trio, into
a conventional SQL query or uses a stored procedure that is composed by a sequence of conventional
SQL queries and thus is able to compute aggregate queries under this semantics in an efficient way. The
only exception is the computation of the expected value of the AVG operator. For this operator such
a rewriting approach is currently not known, but its result need to be approximated instead. In Trio,
approximation is done by dividing the expected SUM aggregation by the expected COUNT aggregation.

In summary, we have a powerful repertoire of exact algorithms and approximate algorithms to compute
an aggregate query on a BID-database. In contrast, an evaluation of aggregate queries in pc-databases is
more complex and has been only less considered in the research community so far. Lechtenborger et al.
[LSVO02] consider an evaluation of the distribution semantics on c-tables and illustrate the exponentially
complexity of the size of the aggregation result (recall, the number of possible aggregation results can
be equal to the number of possible worlds). Moreover, they present algorithms to approximate a prob-
ability distribution on possible aggregation results of a reasonable size. Fink et al. [FHO12] introduce
a specific representation system called probabilistic value-conditioned tables (short pvc-tables) in order
to represent the enormous complexity of the aggregation result computed with the distribution semantics
in a more compact way. Koch et al. [Koc09] incorporate the range semantics and the expected value
semantics into the MayBMS system. However, they do not provide details on this incorporation so that

we do not know whether these values are exactly computed or only approximated.

3.6. Further Remarks

In this section, we conclude our presentation of uncertain databases by discussing some further interest-
ing aspects of uncertain data

3.6.1. Referential Integrity

To the best of our knowledge, referential integrity in uncertain databases has not been considered in
database literature so far. For that reason, we present some of our own thoughts in this section and
discuss what kinds of restrictions are required in the individual representation systems in order to ensure
referential integrity.

An integrity constraint is satisfied by an uncertain database if it is satisfied in every possible world of
this database. Thus, to satisfy referential integrity in an uncertain database, a referencing tuple can only
belong to a possible world if its referenced tuple belongs to this world as well.

In general, foreign keys can reference to every attribute (or combination of attributes) that is unique
in every possible world. In this thesis, we restrict our consideration to references to the world key and
references to the representation key that are both unique in every possible world per definition.

Recall, in TI-databases, AOR-databases, and AOR ?-databases the world key corresponds to the repre-
sentation key so that we do not need to distinguish between both cases. In AOR-databases all tuples are
certain and key attributes have to be certain. Consequently, referential integrity in AOR-databases corre-

sponds to referential integrity in conventional databases, i.e. it is satisfied if every foreign key value refers
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to an existing primary key value of the referenced table. In contrast, TI-databases and AOR?-databases
can contain (A-)tuples that are only maybe. Moreover, all (A-)tuples are mutually independent. Thus, by
constructing the possible world space as defined in Section 3.3.1 (or as defined in Section 3.3.3 respec-
tively), referential integrity can only be ensured if all referenced (A-)tuples are certain. In theory, this
requirement can be relaxed by including a check for referential integrity into the world space construc-
tion algorithm, i.e. worlds are only added to the resultant world space if they satisfy referential integrity.
In this case, the referencing (A-)tuple is always at most as probable as its referenced (A-)tuple, because
the existence of the first includes the existence of the latter. This approach, however, does not only in-
troduce dependencies between the referencing (A-)tuple and the referenced (A-)tuple, but also introduce
dependencies between other (A-)tuples. For instance, if two (A-)tuples ¢, and ¢, both reference to a third
(A-)tuple t,, the (A-)tuples ¢, and ¢ are not independent anymore. Moreover, they do not necessarily
include or exclude each other, but can be correlated in a much more complex way. Nevertheless, by using
intensional or extensional query mechanisms the possible world space is never constructed. Thus, worlds
cannot be directly checked for satisfying referential integrity and the aforementioned correlations need
to be stored in the database instead. Since this is not the purpose of TI-databases or AOR?-databases and
because ignoring these correlations can cause incorrect query answers, adapting the world space con-
struction algorithm for checking referential integrity is only an option if queries are answered by using

an approximative approach that samples possible worlds such as the Monte-Carlo Simulation.

In BID-databases and pc-databases, we have to distinguish between references to world keys and ref-
erences to representation keys. Whereas a foreign key that references to a representation key always
corresponds to a reference to a single tuple, a foreign key that references to a world key corresponds to
a collective reference to a block of tuples, i.e. all tuples that share the same world key value. Under the
entity-based interpretation the second corresponds to a reference to an entity and the first corresponds to
a reference to a possible instance of an entity, i.e. it restricts the existence of the modeled relationship to
a specific instance of the referenced entity. For example, a car can belong to a person regardless of its
residence (reference to an entity), but a car can also belong to a person only if she lives in Hamburg (ref-
erence to a possible instance of an entity). Thus, by defining a foreign key as a reference to a world key,
the value uncertainty that is modeled in the referencing table is independent from the value uncertainty
that is modeled in the referenced table. In contrast, a reference to a representation key can introduce

correlations between the value uncertainties that are modeled in both tables.

Since the representation key is not part of the world schema, the referenced representation key value
need to be replaced by its corresponding world key value, i.e. the DEI of the referenced entity, for
constructing a possible world (recall, the world key value can be deterministically derived from the
representation key value). For the same reason, the system needs to rewrite queries that are written based
on the world schema and therefore aim to select tuples or aim to join tuples based on the referenced
world key value. We demonstrate such a rewriting in Example 39. Another option is to define the foreign
key not only on the representation key, but to define it on the combination of the representation key and
the world key instead, i.e. a foreign key that references to the table 7" is composed by the two attributes
A; and Ay and is of the form (A, A2) — T.(RK,WK). In this case, the world key value of the
referenced tuple is additionally stored in the referencing tuple and queries do not need to be rewritten

and possible worlds do not need to be manipulated. Due to space reasons, however, we abstain from
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Figure 3.17.: Sample of foreign keys within BID-databases

using this solution in modeling ordinary relationships and use it only for modeling is-a-relationships
within inheritance hierarchies, because otherwise entity tables that represent subtypes would not contain
the DEI attribute which complicates an entity-based interpretation of probabilistic databases.

In BID-databases, tuples from different blocks and thus tuples from different tables are independent
(recall, in the entity-based interpretation of BID-databases, we consider that all tuples of one block
represent the same database entity and therefore the DEI (i.e. the world key) can be used as block
number). Due to the aforementioned independencies, referential integrity is only satisfied if all the
referenced key values are certain. Thus, if a referenced value is a representation key value, we need to
constrain that its corresponding tuple is certain and hence need to constrain that its corresponding entity
has a single possible instance in the referenced table. In contrast, if a referenced value is a world key
value we need to constrain that its corresponding block is certain and thus need to constrain that the
membership of its corresponding entity to the considered table is certain.

Note that it makes only less sense to define a foreign key on the representation key of a database
table, i.e. the table’s representation key references to the representation key (or world key respectively)
of another table, because in this case the table cannot model any uncertainty, i.e. each tuple of the
referenced table can only be referenced once in the referencing table.

The world key of a relationship table results in the combination of its foreign keys and maybe some
additional attributes. Since all tuples of one block need to share the same world key value, in BID-
databases we can only model uncertainty on the attributes that do not belong to the world key. Thus, if
we want to model uncertainty on the referenced entities that fill the individual roles, we need to add a

surrogate key attribute that serves as world key instead.

Example 38 For illustration we consider the BID-database presented in Figure 3.17. This database
contains three tables, two entity tables ("Person’ and ’Lecture’) and one relationship table (’ Attend’)
where the latter table connects the first two tables by foreign keys. In a certain relational database, the
table’ Attend’ would contain two foreign keys. One that references to the world key (the DEI) of the table
"Person’ and one that references to the world key (the DEI) of the table ’Lecture’. Of course, several
possible instances per relationship are enabled by representing this table as a BID-table and therefore
by adding the representation key attribute to the table’s schema. If we additionally want to correlate
a particular possible instance of a relationship with a particular possible instance of the entities that

are referenced by this relationship, we need to replace the foreign key that references to the world key
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Figure 3.18.: Sample of foreign keys within pc-databases

by a foreign key that references to the corresponding representation key. In our example, we perform
such a replacement for the table *Person’, i.e. the attribute ’pers’ references to the representation key
of table ’Person’ instead of its world key, but do not make such a replacement for the table *Lecture’.
As a consequence, we can define a relationship of the type *Attend’ depending on a particular possible
instances of a person, but cannot define it depending on a particular possible instances of a lecture.

The world key of the relationship table ’ Attend’ corresponds to its primary key in the possible worlds
representation and therefore is composed by its foreign key attributes, i.e. the two attributes ’pers’ and
"lect’.

Since we use the world key as block number, tuples in relationship tables that share the same world
key value represent mutual exclusive alternative instances of the same relationship. For demonstration,
whereas the first two tuples of the table ’ Attend’ model two alternative instances of a possible atten-
dance of person po at the lecture 1, the third tuple models the single alternative instance of a possible
attendance of person ps at the lecture ls.

Recall, in BID-databases all referenced tuples and all referenced blocks need to be certain. Con-
sequently, tuple ts (and hence person ps) is the only tuple from table *Person’ that is allowed to be
referenced in table ’Attend’. In contrast, lecture l3 is the only lecture than is not allowed to be refer-
enced in table ’ Attend’, because it is the only lecture that is not represented by a certain block, i.e. this

entity is maybe not a lecture.

The given example shows that using foreign keys in BID-databases is very restrictive, because we
cannot model a lecture attendance for some persons and cannot model the attended persons for some
lectures if we connect the individual tables by foreign keys.

In pc-databases, we are able to model any kind of dependency and hence do not need to restrict to
cases where foreign keys reference to certain representation key values (single tuples) or certain world

key values (tuple blocks) respectively. Nevertheless, we need to ensure that the referencing tuple only
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belongs to worlds that contain the referenced tuple (or the referenced block respectively) as well. For
that reason, the condition of the referencing tuples is only allowed to be satisfied if the condition of the
referenced tuple (or block respectively) is satisfied. Therefore, let ¢, be a tuple that references to tuple ¢,
referential integrity is only satisfied if s¢(®;,) C s(®;,)'°. Moreover, let ¢, be a tuple that references to
a tuple block Bs, referential integrity is only satisfied if »(®y,) C \/, g s(®P¢,). Note as for referential
integrity in certain databases, these constraints do not need to be considered during query evaluation or
possible world space construction, but need to be validated during data insertion, data updating, or data
deletion instead.

Example 39 For illustration we consider the same world schema as in the previous example, but now
assume that the database is represented as a pc-database, i.e. each tuple stores a condition instead of a
probability and a separate world-table stores the assignments of all variables that are used in the tuples’
conditions. The correspdoning pc-database is presented in Figure 3.18. The first three tuples of the rela-
tionship table > Attend’ are the same as in the previous example. The tuples t11 and t12 each references
only to certain tuples and therefore only require a condition that models the given uncertainty on the
attribute *year’ by using the variable Y. The third tuple references to a certain tuple (table ’Person’) and
a certain block (table ’Lecture’) respectively. Since its condition is covered by the combined conditions
of the tuples that represent lecture lo, the reference to this lecture is valid.

In contrast to BID-databases, in pc-databases we are not restricted to references to certain tuples and
certain blocks. This is illustrated by the last two tuples in table > Attend’. The fourth tuple references to
the uncertain tuple t1 and references to the uncertain block ls, but because its condition is covered by
the condition of tuple t1, i.e. x(X =1NZ =1) C 2(X =1V X = 2), and is covered by the combined
condition of the tuples tg and tyg, i.e. (X = 1NZ = 1) C »(Z = 1V Z = 2), referential integrity
is satisfied. Similar holds for the condition of tuple t15, i.e. #((X =1V X =3)ANZ =2) C »(X =
1VX =3)and »((X =1V X =3)ANZ =2) C x(true).

Note, a reference to a particular entity instance is demonstrated by tuple t14. Since this tuple references
to tuple t1 and there is no other tuple that references to the other possible instances of person pi, we
condition the attendance of p1 at lecture l3 to the case where p1 is 27 years old.

A sample for query rewriting in the presence of foreign keys that references to representation keys is
presented in Figure 3.19. The original query is defined on the world schema and therefore aim to select
all lectures (including annual details) that have been attended by person py. Since the DEI of the person
is not stored in the table ’ Attend’, we need to rewrite the query into one that first joins the tables * Attend’

and *Person’ on the defined foreign key and then selects all tuples with the wanted DEI.

The decision whether a foreign key should reference to a representation key or should reference to
a world key must be made on schema level and consequently is made for all tuples that are stored in
the designed table collectively. Thus, references to representation keys can implicate an overload in
cases of independencies, because each possible combination must be explicitly modeled by an own tuple
in the referencing table. Such a waste of storage can be avoided if we define the foreign key on the
aforementioned combination of the world key and the representation key, and then set the representation
key value to null if the modeled relationship is valid for all possible instances of the referenced entity. Of

!%Recall »(®) is the set of all variable assignments that satisfy condition ®).
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SELECT a.lect, a.year SELECT alect, a.year

FROM Attend a . FROM Attend a, Person p
rewrite

WHERE a.pers = ’'pl’ WHERE a.pers = p.RK

AND p.DEI =’pl’

Figure 3.19.: A sample query and its rewritten equivalent defined on the database schema from Figure 3.18

course, such an adaptation possibly requires a rewriting of queries that directly address the representation
key.

3.6.2. Modeling Inheritance Hierarchies in Probabilistic Representation Systems

As referential integrity, a modeling of inheritance hierarchies within a probabilistic representation system
has not been considered in existing literature so far. In general, inheritance is an entity-specific concept.
For that reason, we directly interpret it in an entity-based way.

In Section 2.1.2, we present two approaches for modeling an inheritance hierarchy within the relational
data model. One by storing all attributes as long as some specific membership attributes in a single
entity table (Single Table Approach) and one that creates one entity table per involved entity type and
that connects these tables with foreign keys (Vertical Partitioning Approach). In certain relational data,
the main difference between both approaches are the space requirements and the complexity of query
answering, but each of them is applicable for every possible scenario and it is often only less important
which of them is actually used in relational schema design. With respect to probabilistic representation
systems, however, these approaches have some essential differences that we will present in this section.

Of course, the concept of pc-databases is a complete representation system and therefore for designing
a pc-database the Single Table Approach and the Vertical Partitioning Approach can be used abundantly.
In contrast, there are several scenarios in which a possible world space cannot be represented by a BID-
database if its schema has been designed by using the Vertical Partitioning Approach, but an information
equivalent world space can be represented by a BID-database if its schema has been designed by using
the Single Table Approach. For instance, uncertainty on whether a specific person is a student or a
professor cannot be stored in a BID-database by using the Vertical Partitioning Approach, because both
memberships are mutual exclusive and this exclusion cannot be modeled between tuples from different
tables. In contrast, we can model this membership exclusion in a BID-database if we use the Single
Table Approach, because in this case we can utilize the system’s inherent mutual exclusion between the
tuples of one block to model the exclusion between the aforementioned memberships. Altogether, we
observe four cases in which an inheritance hierarchy cannot be modeled within a BID-database if it has
been designed by using the Vertical Partitioning Approach, but can be modeled within a BID-database if
it has been designed by using the Single Table Approach. Such a case occur, if

o the inheritance hierarchy contains a disjoint set of specializations,
e the inheritance hierarchy contains a total set of specializations,

e the membership to a supertype can be uncertain, or
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(d) BID-database representation of pdb’

Figure 3.20.: Modeling a set of disjoint specializations in BID-databases

o for some entities the memberships to some subtypes are correlated.

This curiosity can be explained by the fact that in BID-databases all the tuples from different tables
are always independent and whereas the Vertical Partitioning Approach models inheritance by the use
of different tables (and hence different tuples) the Single Table Approach does not. Therefore, the latter
can introduce correlations that cannot be introduced by the first.

We start with the aforementioned situation where two or more subtypes of the same supertype are
membership exclusive, i.e. these types form a disjoint set of specializations to the same supertype.
Note, modeling such a situation within a BID-database can become crucial in many uncertain database

applications because it is often not known to which subtype an entity actually belongs to.

Example 40 For illustration, we consider an inheritance hierarchy that includes the three entity types
"Person’, *Student’, and ’Professor’. Obviously, the first is a supertype of the latter two. Furthermore,
the extensions of ’Student’ and ’Professor’ are disjoint. Moreover, we consider the uncertain instance
of a database entity p1. In the first instance p1 is a person and a student and in the second instance p1 is
a person and a professor. As a consequence, py is certainly a person, but it is unknown whether she is a

student or a professor.
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Now, we consider the possible worlds representations of two probabilistic databases pdb, and pdb|
that are depicted in . Figure 3.20(a) and Figure 3.20(b) respectively. The possible worlds of the first
database are defined on a relational schema that results from transforming the aforementioned inheri-
tance hierarchy into the relational data model by using the Vertical Partitioning Approach. In contrast,
the schema of the possible worlds of the second database results from transforming the same inheritance
hierarchy into the relational data model by using the Single Table Approach. Note that the attribute ’is-
Stud’ models the membership to the subtype ’student’ and the attribute *isProf’ models the membership
to the subtype ’professor’. Recall, in certain databases (and possible worlds are certain databases) both
transformation approaches produce semantically equivalent database schemas. Moreover, as depicted
in Figure 3.20(a) and Figure 3.20(b) respectively both possible worlds representations model the same
instance data, i.e. the two possible instances of p1. Thus, despite of the differences in their schemas, both
possible worlds representations model the same information.

The possible worlds representation of pdb,, however, cannot be modeled within a BID-database, be-
cause it contains dependencies between tuples from different tables. For demonstration, we consider the
BID-database pdb7y presented in Figure 3.20(c). This database has all three tuples of the considered pos-
sible worlds and indeed assigns each tuple with its correct marginal probability. The mutual exclusion
between tuple to and tuple ts, however, is not captured in this database. As a consequence, the possible
worlds representation of pdb] is not the one from Figure 3.20(a), but is one that has four possible worlds
(one with only t1, one with t| and to, one with t| and ts, and one with all three tuples).

Interestingly, the possible worlds representation of pdb) can be represented by a BID-database as
presented in Figure 3.20(d). Since both tuples of this BID-database belong to the same block (i.e. they
share the same DEI), the mutual exclusion between the membership to the subtype ’student’ and the
subtype *professor’ is modeled by using the system-specific mutual exclusion between tuples from the

same block.

This example demonstrates that we can represent a set of disjoint specializations within a BID-
database if we use the Single Table Approach for schema design, but cannot represent such a case if
we design the schema by using the Vertical Partitioning Approach. For the first, we simply require a
constraint that guarantees that a tuple cannot have the value ’true’ in two membership attributes that
represent membership exclusive subtypes.

A similar observation can be made if a set of specializations is total, because the correlation that the
entity must belong to any of the subtypes if it belongs to the supertype cannot be modeled within a BID-
database if the entity is represented by tuples in different tables. Nevertheless, we can model it by the
use of integrity constraints if all membership information of one entity is modeled within the same tuple.

Example 41 For illustration, we re-consider Example 40 and assume that each person need to be a
student or a professor. This additional requirement can be simply incorporated into the BID-database
presented in Figure 3.20(d) by adding the constraint that a tuple is not allowed to have a null value in
both of the membership attributes *isStud’ and isProf’.

Thus, for modeling a total set of specializations, we simply require a constraint that ensures that each

tuple has the value ’true’ in at least one of the corresponding membership attributes.
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(c) BID-database representation of pdb,

Figure 3.21.: Modeling uncertain memberships to supertypes in BID-databases

A third difference can be observed if the membership of an entity to a supertype is uncertain. Due
to in BID-databases, foreign keys are only allowed to reference to certain blocks (or certain tuples re-
spectively), we cannot represent such a situation in a BID-database if its schema is designed by using
the Vertical Partitioning Approach. Nevertheless, it can be modeled by using the Single Table Approach
because in that case we do not need foreign keys and can model the uncertainty of a supertype by tuple

uncertainty or block uncertainty instead.

Example 42 For illustration we consider the possible worlds representation of the two probabilistic
databases pdb, and pdb', that are presented in Figure 3.21(a) and Figure 3.21(b) respectively. The
world schemas of both databases are defined as in the previous example, i.e. the world schema of the
first database has been designed by using the Vertical Partitioning Approach and the world schema of the
second database has been designed by using the Single Table Approach. Both databases are information
equivalent, because they model both the information that entity pl is either a person and a student, is
only a person but not a student, or is not a person at all. The possible worlds representation of pdb,
cannot be represented by a BID-database, because we cannot model the correlation that the existence of
tuple to requires the existence of tuple ty (recall foreign key references to maybe blocks are not allowed

in BID-databases). In contrast, the possible worlds representation of pdbly can be represented by the
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BID-database that is presented in Figure 3.21(c). Note that the uncertain membership of py to the table
"Person’ is modeled by the fact that the corresponding block is only maybe.

As a consequence, if the database schema has been designed by using the Single Table Approach, the
uncertain membership to a supertype can be modeled by setting the value ’false’ in the corresponding
membership attribute if the supertype is a subtype of another supertype or can be modeled by a maybe
block if the supertype is the root of the considered inheritance hierarchy.

The last difference appears if we consider a situation where the membership of an entity to one subtype
is correlated to another subtype as for example a person whose membership to the group of students and
whose membership to the group of library users is unknown, but we know that her membership to the
library users implicates a membership to the group of students. Note that such a correlation must not
be valid for all entities, but can be specific for an individual entity and therefore cannot be modeled by
the schema itself. If we use the Vertical Partitioning Approach for schema design, both memberships are
represented by tuples from different tables. As a consequence, we are not able to introduce the given
correlation into the BID-database. In contrast, if we consider a schema that is designed by using the
Single Table Approach, the given inclusion can be modeled by correlations between the attribute values

of the same tuple.

Example 43 For illustration we consider a concrete instance of the situation described above. For this
purpose, we consider the the possible worlds representations of the two probabilistic databases pdbs and
pdbl that are presented in Figure 3.22(a) and Figure 3.22(b) respectively. Note, the *isLU’ models the
membership to the entity type ’Library User’). As it can be simply seen, the world schema of the first
database has been designed by using the Vertical Partitioning Approach and the world schema of the
second database has been designed by using the Single Table Approach. Whereas pdbs cannot be repre-
sented as a BID-database, a possible BID-database representation of pdby is presented in Figure 3.22(c).

Notice, by using the Single Table Approach even a representation of more complex membership corre-
lations, e.g. given by a joint probability distribution, are possible. Actually, we are even able to introduce
correlations between the attributes from different subtypes of the modeled inheritance hierarchy.

Modeling an inheritance hierarchy within a TI-database is only possible to a limited extent because we
cannot introduce any kind of correlation. Even if we use the Single Table Approach we require a mutual
exclusion between tuples to model uncertain memberships to subtypes. As a consequence, the only
situation in which in an inheritance hierarchy can be modeled within a TI-database is if the memberships
to all subtypes are automatically implicated by the membership to the supertype and we only require a
single tuple to model all the uncertainty on the memberships to the individual types of the considered
hierarchy.

Similar holds for AOR-databases and AOR?-databases. Of course, both systems are able to represent
uncertainty of attribute values, but they are not able to model correlations between the values of several
uncertain attributes. Such correlations, however, are required if the underlying schema is designed by
using the Single Table Approach because the value of an attribute that originates from a specific subtype
depends on the value of the type’s corresponding membership attribute. For instance, in the above
considered examples, the value in the attribute 'course’ always depends on the value in the attribute
"isStud’.




3.6. Further Remarks 83

(W;, Pr=0.6 N (wipr=06
Person Student Library User Person
DEl name age DEl sem. course DEl account DEl name age isStud sem. course isLU account
t;| pl JDoe |27 |t pl 4 | Math pl 3525 t{| pl JDoe 27 [true 4 | Math |true |35.25
DEI — Person.DEI DEI — Person.DEI
. J/ |\
(W,, Pr=0.2 ) (Wi Pr=0.2
Person Student Library User Person
DEI name age DEIl sem. course DEI account DEI name age isStud sem. course isLU account
t, pl JDoe 27 [t pl 4 | Math ty| pl lDoe |27 [true 4 | Math | false |1
DEI — Person.DEI DEI — Person.DEI
. J .
(W3, Pr=0.2 ) (W4 Pr=0.2
Person Student Library User Person
DEl name age  DEl sem. course DEI' account DEI name age isStud sem. course isLU account
ty| pl |JDoe |27 ty pl JDoe 27 [false |1 |1 false | 1
DEI — Person.DEI DEI — Person.DEI
. J (&
(a) Possible worlds representation of pdb, (b) Possible worlds representation of pdby
Person

RK DEI name age isStud sem. course isLU account p

tt 1 | pl JDoe |27 | true 4 Math | true |35.25 0.6
t5) 2 | pl JDoe |27 | true |4 Math | false @ L 0.2
t5 3 | pl JDoe |27 | false L 1 false | L 0.2

(c) BID-database representation of pdb

Figure 3.22.: Modeling correlations between the memberships to different subtypes of the same supertype in
BID-databases

In conclusion, modeling an inheritance hierarchy in a probabilistic database essentially depends on the
used representation system and depends on the used transformation approach. Whereas in pc-databases
all transformation approaches can be used abundantly, a BID-database is more powerful if its world
schema is designed by using the Single Table Approach than by using the Vertical Partitioning Approach.

Despite of the discussed benefits of the Single Table Approach compared to the Vertical Partitioning
Approach, we think the latter is more suitable for graphical presentations. For that reason, we will
always use the Vertical Partitioning Approach in the rest of this thesis and assume that in cases in which
we consider a BID-database the concrete schema of this database is actually designed by using the Single
Table Approach. In order to improve the graphical presentation of inheritance hierarchies further on we
use the graphical notion of is-a-relationships to connect the entity tables that represent the subtypes with
the entity table that represents the supertype. For instance, Figure 3.23 shows the BID-database from
Figure 3.20(c) by using this enhanced graphical notion.

3.6.3. Sources of Probabilities

Probabilities are usually used to describe the likelihood that a particular event will occur in the future, or

to describe the likelihood that a particular unknown event has already occurred in the past. Both cases
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Figure 3.23.: Enhanced graphical notion of the BID-database pdb; from Figure 3.20(c)

can be illustrated by rolling a dice. In the first case we want to role a dice and try to predict the result
beforehand. In the second case, the dice has already been rolled, but its result is still unknown to us
(maybe the dice still lies below the dice box) and we want to estimate it.

In both cases, the probabilities can be estimated in several ways. The way of estimation in turn
depends on the known context information. In general, the less information is available the more vague

and subjective the defined probabilities become.

e Mathematical Probabilities (mathematical models): In the most conventional meaning, prob-
abilities are related to mathematical models and hence can be derived from them. In this
case, a probability is called a mathematical probability [Eis69] or a theoretical probability
[Por94, LeB04, Ros11]. and is typically defined as the number of ways the considered event

can occur divided by the to the total number of ways any event can occur.

Example 44 For illustration, we assume a dice with six sides that is well-shaped (all sides are
equally large and each edge is rectangular) and where each side presents another number between
1 and 6. Under this condition, the probability that casting the dice results in a six can be exactly

computed to 1/6, because each of the six numbers is verifiable equally likely.

Although a mathematical model enables a computation of exact probabilities, the accuracy of these
probabilities can be vague because the used model often does not perfectly fit to the considered
situation or it is based on a simplified situation. Moreover, this way of probability computation is
not always applicable, because in many situations a corresponding model is not known or simply

does not exist.

o Empirical Probabilities (statistical analysis): Another way to estimate probabilities is to consult
the past (the known) to make predictions on the future (the unknown). This way is usually used if
no mathematical model is available and the considered future (unknown) event is closely related to
a set of past (known) events. Obviously, the closer the relations between the individual events and
the more related past (known) events are available, the more exact become the made predictions

and hence the more exact become the estimated probabilities.
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Example 45 For illustration, the chances of recovery of a cancer patient is usually predicated by
consulting statistics on patients with similar properties as gender or age that have been suffered
by the same type of cancer. In this case, the likelihood that the patient will recovery is estimated

as the proportion of similar cancer patients that have been successfully cured from their diseases.

This way of probability computation corresponds to an empirical observation that is made on the
possible outcomes of an experiment by performing a number of trials. In this case, a probability is

typically called an empirical probability [LeB04, Ros11] or an a-posteriori probability [AM74].

¢ Subjective Probabilities (degrees of belief):

A third way of estimating probabilities is based on the intuition and experience of peoples. Since
every person has another intuition and every person has another experience, probabilities that are

estimated in this way are usually denoted as subjective probabilities [Hub06].

Example 46 For demonstration, let us assume that we have to estimate the likelihood that a
stranger man is older than forty years. Although we do not know any mathematical model that
can be used to derive this likelihood from the properties of his outer appearances as hair color,
number of skin folds, or style of clothing, and also we are not able to perform several trials on
highly similar events at hand, we can make an estimation of that likelihood because in our lifetime
we have already seen many peoples in different ages with different clothing styles and we are able

to conclude correlations between the different properties and a person’s age by ourselves.

Actually, this way of estimating probabilities is a mix of using a mathematical model and of using
known results of past related events, because experience is nothing else than information on past
events and logical reasoning is nothing else than applying a mathematical model. Nevertheless,
because each person has another experience and each person has another way of thinking, the
accuracy of the estimated probabilities becomes more vague and becomes more subjective than by
using an exact mathematical model or by objectively performing an empirical study on a large set

of similar events.

Obviously, the meaning of probabilities rather depends on the way these values have been produced
than on the way they will be used. For this reason, a data consuming application should always be aware
of the sources from which the processed probabilities originate in order to be able to verify the data’s
suitability for its consuming purpose. Nonetheless, the possible query answers are usually ranked by their
probabilities in decreasing order and in this case the order of these answers is often more informative to
the user than their actual probabilities.

Since the meanings of probability values depend on the way these values have been produced, it is
important to note that if probabilities do not originate from the same model or if probabilities do not
originate from the same empirical study, these probabilities can be conflicting, i.e. the sum of these
probabilities can be larger than one although they describe mutually exclusive events, they possibly do
not sum up to one even they describe jointly exhaustive events, or the probability of an event is lower

than the probability of a second event that implicates the first.
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Example 47 For illustration, at the beginning of the basketball season we ask people from different fan
sets about the likelihood that their team will win the season’s championship. Due to the evaluations are
made independently, it can happen that the fans of the Miami Heat will estimate the likelihood to become
the champion to 60%, but the fans of the Los Angeles Lakers will do the same. However, since only one

team can become the champion, these probabilities are in a conflict.

In duplicate detection, decisions on individual entity pairs are usually made independently before
combining them to a single clustering. In reality, however, the decision on one pair can influence the
decision on another pair because real-world identity is a transitive relation. As a consequence, if we
compute the probabilities for the duplicate decisions in a pairwise fashion, these probabilities can be

conflicting and we have to resolve these conflicts in a later detection phase.

3.6.4. Point Probabilities vs. Interval Probabilities

In the previous sections of this chapter, we considered probability values as certain information and
hence represent them by a single numerical value. Probabilities of this kind are called point probabilities
[SD09]. However, many sources of probabilities are rather vague than certain and modeling uncertainty
in the probabilities itself seems to be the logical consequence. To model such kinds of uncertainty, some
probabilistic data approaches [LLRS97, ELWO01, RSG05, MMO08a] use interval probabilities instead of
point probabilities. By doing so each probability is represented by a lower bound and an upper bound

instead of a single value.

Barbara et al. [BGMP92] extent their probabilistic data model by specific **’ values in order to rep-
resent missing probabilities, i.e. situations where the probability distribution is only partially known or
cannot be exactly specified, inside the database. An incorporation of uncertainty on probabilities into
an uncertain database is also discussed in [AW10]. Nevertheless, using interval probabilities (and hence
using any model for uncertain probabilities in general) makes processing a probabilistic database much
more complex and sophisticated. For this reason, we abstain from using interval probabilities in this

thesis and always assume that concrete probabilities are available.

3.6.5. Continuous Probabilistic Data

In this thesis we restrict to probabilistic databases that each represents a finite number of possible
worlds. Consequently, we only consider discrete probability distributions. In many use cases, how-
ever, the resultant probability distributions are not discrete, but continuous. For that reason, several
research on probabilistic data focus on the modeling and processing of continuous probabilistic data
[SMM108a, KK10, JXW*11, CKP04, FRC11, ACKT11]. In these models continuous distributions are
often restricted to single attribute values as for example the speed of a car or the position of a moving
object. Nonetheless, the most research on probabilistic databases consider finite sets of possible worlds.
Since these databases already pose a variety of challenges, we adopt this restriction in this thesis and

therefore only consider probabilistic databases that represent finite sets of possible worlds.
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3.6.6. Meaning of Null Values in Uncertain Databases

Over decades several semantics have been defined for null values. The three most commonly used
semantics are 'inapplicable’, "applicable, but unknown’, and 'unknown whether applicable or not’ (also
known as ’no information’ semantics) [KleO1, LNO6]. Note, whereas the last two semantics represent
incomplete information, the first does not. In theory, we do not need null value semantics that represent
any kind of incomplete information in an uncertain database, because we can explicitly represent that
information by the concept of possible worlds. In reality, however, we need null values with incomplete

information semantics even in uncertain databases, because:

e the number of possible values that is required to represent incomplete information on a particular
attribute value can be extremely large in domains that are only less restricted and in cases where
we only have less information available. For instance, it is unclear which set of possible values
should be used to model the unknown name of a person, because her name can theoretically be any
possible string. If the considered domain is not discrete, the number of possible worlds would be-
come even infinite and a modeling of infinite world spaces is not provided by the most probabilistic

representation systems.

e incomplete information can implicate missing information on probability distributions. Thus,
some lacks of information cannot be represented by point probabilities, but actually require any

concept to represent missing or imprecise probabilities like interval probabilities instead.

For demonstration, to model the semantics ’applicable, but unknown’ in a categorical attribute A
that has the domain dom(A), we actually need to associate each of the possible values v € dom(A)
with an interval probability [0, 1], because we do not know which of them is how likely. As a con-
sequence, if the used representation systems is restricted to point probabilities, we have to assume
some information that is actually not available. The closest semantics to ’applicable, but unknown’
that can be represented by point probabilities is to use an uniform probability distribution on all
domain elements and hence to assign each possible value with the probability 1/|dom(A)|. This
assignment, however, can lead to incorrect conclusions, because the query evaluation mechanisms

assume that these probabilities are precise.

For both reasons null values are usually used in probabilistic databases to express incomplete informa-
tion that cannot be represented by a simple probability mass function. Moreover, in uncertain databases
null values are typically handled as in conventional databases. This means that they are not resolved
for constructing a possible world, but instead remain in the possible worlds as null values. According
to the possible worlds semantics, a set of possible worlds is queried by querying each of these worlds
separately. In addition, each possible world is queried like a conventional database.

As a consequence, let () be a query that selects all tuples that have the value X’ in attribute "A’, and let
t be a tuple that has the null value in attribute 'A’ in every possible world. By using the three-valued logic
of relational databases the condition A = ’x’ is evaluated to UNKNOWN for ¢ in each of these worlds.
Thus ¢ is not selected in any of these worlds and therefore is not a possible query answer although it
cannot be excluded for sure that this tuple actually has the value ’x’ in the selected attribute. Obviously,

this approach is a contradiction to the idea of returning all possible query answers, because ¢ possibly
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satisfies the query condition. However, it is not possible to compute the probability to which ¢ satisfies
the query condition. For this reason, probabilistic databases usually query null values in the same way
as conventional databases do (in most research on probabilistic databases, the challenges that result from
using null values are actually ignored).

3.6.7. Further Models for Uncertain Data

Although we consider uncertain databases to be incomplete or probabilistic in this thesis, other con-
cepts have been used to model uncertainty within a database. A common way for modeling imperfect
information is to use possibility theory instead of probability theory and hence to utilize the concept
of fuzzy sets [Zad65, Zad78, PG98] to model uncertainty, imprecision, or vagueness inside a database
[ZK84, SM90, UF94, MPM94, Pet96, GUP0O6]. The use of fuzzy terms, e.g. possibility distributions
that are represented by words like *young’ or ’large’, enables a direct incorporation of imprecision that
is inherent in natural languages into the data.

Lehrack et al. [Leh09, DLKS10, LSS12] uses quantum logic to query uncertain databases in a natural
imprecise way. Gatterbauer et al. [GBKSO09] introduce the concept of belief databases in order to
capture individual degrees of believe on the stored information by annotating the operational data (or
belief annotations) with belief statements. The Dempster-Shafer theory [Sha76] is another concept that
has been used to model uncertain information inside a database [LSS96b, AW 10].

In this thesis, we restrict our consideration to probabilistic extensions of the relational data model.
Nevertheless, other data models can be adapted to a representation of uncertainty as well. For instance,
probabilistic representation systems that are based on XML have been considered in several works [NJ02,
HGS03, HGS07, vKdKA05, dKvK08, BKOS10, KS13]. Senellart et al. [KNS10, ACK ' 11, SS13] exten-
sively study querying and updating probabilistic XML data. Hollander and van Keulen [HvK10] as well
as Amarilli and Senellart [AS13] build connections between relational probabilistic representation sys-
tems and XML based probabilistic representation systems. Probabilistic deductive databases have been
elaborated by Kiessling et al. [KTG92] and by Lakshmanan and Sadri [LS94a, L.S94b, L.S97, LSO1].
Eiter et al. [ELLSO1] research on probabilistic object bases. Probabilistic temporal databases have been
studied by Dyreson and Snodgrass [DS98] and Subrahmanian et al. [DRSO1, Sub09]. A straightfor-
ward way to incorporate probability theory into a database is to use a well-studied probabilistic graphical
model [Pea88, CDLS99] as Bayesian Networks [BG07a] (directed) or Markov Networks [KS80] (undi-
rected). Sen and Deshpande [SD07, DGS09] propose a probabilistic database approach that is based on

such graphical models.

3.6.8. Managing Uncertain Data

In recent time a large amount of concepts have been adapted from certain relational databases to un-
certain relational databases in order to enable an appropriate uncertain data management. The mean-
ing of functional dependencies in probabilistic databases has been examined in [DK10a]. Schema
design, i.e. normalization with respect to functional dependencies, has been considered by Sarma
et al. [SUWO09]. Approaches for indexing uncertain databases has been proposed by several par-
ties [CXPT04, TCX ™05, LS07, PSS09, KMZ10]. Techniques for efficiently evaluating joins on dis-
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crete probabilistic databases as well as continuous probabilistic databases are surveyed by Kriegel
et al. [KBRZ09]. The meaning and evaluation of skyline queries [PJLY07, BFO™09, KML10],
nearest-neighbor queries [RCK ™10, NZE " 13], similarity joins [KKPRO06, LC11b], similarity searches
[XZTY12], or ranking [HPZLOS, LSD09, CLY09, IS11] has been adapted to uncertain databases in sev-
eral works. Materialized views have been adapted to probabilistic databases by Dalvi et al. [DRS11].
Managing probabilistic data streams is considered in [CG0O7b, AY08a, RLBS08, Vee09, ZC13].

Several concepts of data warehousing and data mining has been adapted to probabilistic data, too.
Warehousing of uncertain data has been considered by Burdick et al. [BDJT07, BDJT06] and Mokhtar
[Mok11]. Moreover, approaches for frequent item set mining [CKHO07, ALWWQ9, wCCt12,BCC*t13],
clustering [KPOS, NKCT06, Agg09, JPTL13], classification [QXPT09, SSRS10], or outlier detection
[AY08b, JP11] in probabilistic databases have been developed in recent years.

3.6.9. Uncertain Database Management Systems

Besides MayBMS'! [HAKO09, Koc09] and Trio!? [Wid09, ABS*06, MTdK*07] several incom-
plete/probabilistic database management systems (with discrete probability distributions as well as con-
tinuous probability distributions) have been developed in recent years. Whereas MystiQ'> [BDM™05,
RS08], PossDB'* [GOT13b, GOT13a], Sprout'> [OHK09, FHOR11], BayesStore!® [WMGHO08], and
PrDB!7 [SD07] are based on discrete probability distributions, Orion'® [SMM*08b, SMM™*08a] (orig-
inally called as U-DBMS [CSP05]), Pip'® [KK10], and MCDB [JXW*08, AJPT10, JXW*11] are also
designed for managing uncertainty that is modeled by probability density functions.

To represent correlations between tuples, PrDB and BayesStore use probabilistic graphical models that
are very popular in the statistics and machine learning communities. PossDB is a native implementation
of c-tables. MystiQ is able to evaluate uncertain query predicates on uncertain databases. ProbView
[LLRS97] was an early probabilistic database system that works on a finite number of possible worlds,
but associates interval probabilities to these worlds instead of point probabilities. ProQua*® [LSW13,
LSS12] is a probabilistic data management system that couples the concept of uncertain databases with

quantum logic.
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Chapter

Duplicate Elimination

This chapter gives an overview on the principles of duplicate elimination in general and duplicate de-
tection as well as duplicate merging in particular. It especially shows the variety of existing approaches
for duplicate detection in certain databases and therefore is intended to illustrate the great challenge
of finding an appropriate configuration for a duplicate detection process with respect to a specific ap-
plication scenario. We start with a formal discussion on all three concepts in Section 4.1 and shortly
present the application fields of data cleaning and data integration in Section 4.2. Then we describe
the problem of detecting duplicates in certain relational databases, examine the individual phases of a
conventional duplicate detection approach in more detail, and present some information on related as-
pects in Section 4.3. Finally, we conclude this chapter with a short consideration on duplicate merging

in Section 4.4.

4.1. Problem Description

A database can be considered as a digital image of the real world. (or a part of the real world respectively).
Due to errors in data acquisition and data maintenance, there are usually some divergences between the
real world and the database’s image of this world. One type of divergence appear if a single real-world
entity is mistakenly presented in the database for multiple times

As illustrated in Figure 4.1, a database maps real-world entities to database entities.

Definition 21 (Real World Mapping): Ler 20 be the set of all real-world entities and let db be a
database with the extension Ext(db), the mapping w: Ext(db) — 2% maps each entity of db to some
entities of 1.

In a clean database the mapping w is 1:1, i.e. each real-world entity is mapped to exact one database
entity and vice versa. However, due to the above mentioned errors in data acquisition and data mainte-
nance, a real-world entity can be mapped to several database entities and in turn a database entity can
mistakenly combine information that actually belongs to different real-world entities. A resolution of the
latter is a very difficult task and is not in the focus of this thesis. For that reason, in the rest of this thesis
we assume that each database entity maps to exact one real-world entity. A database is duplicate-free,

iff the mapping w is injective w.r.t. the database’s extension, i.e. all entities of this database are mapped
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Figure 4.1.: Mapping from database entities to real-world entities

to different real-world entities. Two database entities e, and e, are called duplicates and are called to be
real-world equivalent (notation e, =iq e5), iff w(e,) = w(es).

Duplicate elimination [LLLO1, SB04] (also known as deduplication [Chr11, SB02, ARS09] or entity
resolution [Chr12, Talll, BGO7b, BGMM109, BBKL12, GM12, GM13]) is the process of removing
duplicate entities from a database so that the database becomes duplicate-free. A duplicate elimination
process is usually decomposed into two subphases: duplicate detection and duplicate merging.

Duplicate detection [EIV07, NH10] (also known as record linkage [NK62, FS69, Jar89, Win02, BG04,
HSWO07], object matching [DLLHO03, ZSC10], or data matching [Chr12]) is the process of identifying
entities in a database that refer to the same real-world entity. Since we consider the concept of indeter-
ministic duplicate detection in this thesis, we will refer to conventional duplicate detection approaches
as deterministic ones. Since identity is a transitive relation, a deterministic duplicate detection process is
a partitioning of the database entities into clusters (equivalence classes) such that all database entities of

one cluster are assumed to refer to the same real-world entity.

Definition 22 (Deterministic Duplicate Detection): Formally, a deterministic duplicate detection pro-
cess is a function 04 that maps a set of database entities € = {e1, ..., en} to a disjoint clustering C =
{C1,...,Cy} such that | JC = € (each entity is assigned to a cluster) and (VC),,Cy € C): C,NCy =0

(the clusters are disjoint). The duplicate detection process is considered to be perfect, iff:

o VC € C: Vep,es € C: w(e,) = w(es), i.e. all database entities from one cluster represent the
same real-world entity (all detected duplicates are true duplicates and hence the number of false

positives is zero).

o VC),Cy € C: Ve, € Cp: Ves € Cy: Cp # Cy = w(e,) # wles), Le. all database entities from
different clusters represent different real-world entities (all true duplicates are detected and hence

the number of false negatives is zero).

Duplicate detection can become extremely difficult, if the considered database is corrupted by many
errors, is corrupted by serious errors, or if the database is highly incomplete, i.e. many attribute values are
missing. We will extensively discuss the challenges of duplicate detection as well as existing solutions

to these challenges in Section 4.3.
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Customer Customer

DEI fname Iname residence balance DElI fname Iname residence balance

pl Frank | Smith | New York | 100$ sertion pl Frank | Smith | New York | 100$

p2 |John Doe Boston 2500% of p5 p2 | John Doe Boston 2500%
E—

p4 [ Tom Lee Miami 203 p4 Tom Lee Miami 203

p3 |Jane Doe Boston 430$ p3 | Jane Doe Boston 430$ :>duplicates
p5 | Jane Smith | New York | 150%

Figure 4.2.: Inserting a duplicate into a customer database

In the duplicate merging phase, all the database entities of one duplicate cluster are merged to a single
representation by using a merge function f, that maps a set of database entities € = {eq,...,e,} toa

single database entity e.

Definition 23 (Duplicate Merging): Formally, a duplicate merging process is a function u that maps a
clustering of database entities C to a set of database entities € by using a merge function f, that merges

the entities of each cluster in C to a single entity, i.e. u(C) = {f,(C) | C € C}.

Duplicate merging becomes especially a challenge, if the attribute values of the detected duplicates
contradict each other and it is unclear which of them represents reality best. Detailed information on
duplicate merging is presented in Section 4.4.

By using Definition 22 and Definition 23 a deterministic duplicate elimination process can be defined

as a composition of a duplicate detection process and a duplicate merging process.

Definition 24 (Deterministic Duplicate Elimination): Formally, a deterministic duplicate elimination
process is a function €z that maps a set of database entities € = {e1,...,emn} to a second set of
database entities € = {e/, ... el } withn < m. Let §4, be a deterministic duplicate detection process
and let i be a duplicate merging process that uses the merge function f,, the deterministic duplicate

elimination process €4, = |1 © 0ge; 0N a Set of database entities € is defined as: €4o,(€) = 1 0 Jger(€) =

{fu(C) | C € daes(€)}.

4.2. Application Fields

Duplicate elimination is primarily used in two contexts: data cleaning and data integration.

4.2.1. Data Cleaning

The purpose of data cleaning [GFST01, LN06, Chr12, GS13] is to eliminate errors from the database
and hence to increase the database’s quality. A variety of cleaning tasks focus on the correction of
small errors as typos or adapt the data values to standards and conventions. Since the most of these
tasks also improve the effectiveness of a duplicate detection process we will discuss them in more detail
in Section 4.3.3. In a single database, duplicate database entities are primarily caused by mistakenly

inserting a representation of the same real-world entity for several times.




94 4. Duplicate Elimination

Example 48 A simplified example is illustrated in Figure 4.2. A customer database initially contains
the account information of four different customers of an e-commerce company (for space reasons we
assume that the account number corresponds to the DEI). After some time, one of these customers, Jane
Doe, want to make a new order. Due to several reasons, she does not know her account number anymore
or forget that she already has an account for that company. Moreover in the meantime she has married
and therefore changed her last name and her residence. As a consequence, the system does not recognize
that this customer is already contained in the database and inserts a new database entity ps that is a
duplicate to the existing entity ps.

In the presented scenario of a Customer Relationship Management, the risk of duplicate entities is
especially high because customers often forget that they already have an account on the corresponding
system and therefore often create a new customer account when they want to make a new order. Moreover,
having multiple accounts can be deliberated by the customer as for example for criminal reasons or

privacy reasons.

This example perfectly illustrates the challenge in duplicate detection because duplicate database en-
tities such as p3 and p5 can more dissimilar than non-duplicate database entities such as po and p3. To
reduce the number of duplicates that result from erroneous insertions into the database, an identity man-
agement system can be used (see Section 4.3.10.3). This system is able to store information on past
detection results and is able to capture changes of data values such as those changes that are caused by

marriage or are caused by house moving.

4.2.2. Data Integration

The second field of applications that require duplicate elimination techniques is the field of data inte-
gration [Len02, LN0O6, HRO06, BJO7, HDI12]. Data is often stored decentralized and is not completely
managed by a single owner, but is distributed around the world and managed autonomously by different
owners instead. Since the number of data sources that are connect by the internet increases from year to
year, it becomes more and more worthwhile to meaningfully combine data that originate from different
sources. This integration can be done physically or can be realized virtually. Physical data integration
means that the data are extracted from the sources and are physically stored in a single target database
system. By doing so, any kind of data heterogeneity has to be resolved by the extraction process and
database queries can then be posed to the target system in a conventional manner. Popular examples for
such data integration systems are data warehouses [Leh03, KE99, UGMWO02, Vos08] that are designed to
analyze historical data extracted from several sources. In contrast, virtual data integration means that the
data remain at the sources (and hence are still managed autonomously) and are only integrated into the
target system at query time. Of course, this makes query evaluation more challenging than in a physical
integration system. However, all the data that is used for answering a query are up to date.

In data integration, duplicate database entities appear because of the autonomy of the integrated
sources. Moreover, duplicate detection and duplicate merging can become more challenging, due to
the different conventions of the individual sources.

Since the source data can be represented in different schemas or can be represented even in different

data models, before integrating these data a schema matching need to be performed [RBO1, HMHO1,
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CustomerS1 CustomerS2 CustomerS3
DElI fname Iname residence balance DEl Iname fname residence DEI name  balance
pl Frank |Smith | New York |100$ p5 Smith | Frakn | Albany p6 |LeaBrown |€0
p2 |John Doe Boston 2500$ p6 | Brown |Lea Paris p9 Tomleee |€30
p3 Jane Doe Boston 4308 p7 |Lee Tom Florida p8 |Wulli €1200
p4 Tom Lee Miami 20% p8 | Li Wu Seattle p10 | Doe, Janet | €380
(a) Data source S1 (b) Data source Ss (¢) Data source Ss
DEI fname Iname residence balance
pl |Frank |Smith | New York | 100$
p5 | Frakn |Smith | Albany L
CustomerResult merge: ? Smith 2 2
DElI fname Iname residence balance lineage
pl |Frank |Smith | New York |100$ S1 DEI fname Iname residence balance
p2 |John Doe Boston 25008 | S1 p3 | Jane Doe Boston 4303%
p3 |Jane Doe Boston 430$ S1 pl0 |Doe Janet || €380
p4 Tom Lee Miami 20% S1 merge: ? ? ? ?
p5 | Frakn Smith | Albany 1 $2x 1
pé |Lea Brown | Paris €0 $2 x S3 DEI  fname Iname residence balance
p7 Tom Lee Florida 1 S2xL p4d  Tom Lee Miami 20$
p8 Wu Li Seattle €1200 |S2xS3 p7 | Tom Lee Florida L
p9 | Tom Leee 1 €30 1xS3 p9 | Tom Leee n €30
p10 | Doe Janet | | €380 1 xS3 merge: Tom 2 2 2
(d) Integration result without duplicate elimination (e) Duplicate database entities

Figure 4.3.: Example for the emerge of duplicates in the integration of three data sources

Gal06b, BBR11]. Furthermore, in a complex integration system queries do not only combine single
tables by using the set union operator, but can be decomposed into subqueries that are each posed to
another source and then their results are combined to the result of the original query by joins or even more
complex data operations. For that reason, there are two aspects where detecting real-world equivalence
becomes crucial: (a) in combining subquery results that originate from different data sources that do not
share a common database identifier, and (b) in cleaning the final query result from duplicate answers.
For combining/joining tables from different sources during query evaluation instead of an expensive of
duplicate detection process usually a cheaper similarity join technique is used (see Section 4.3.10.1). A
complete duplicate elimination process is then only applied to the final result. Obviously, besides the
duplicates that are caused by combining the entities from the different sources, each of the integrated

sources can contain duplicate entities by itself.

Example 49 An integration example with three sources is illustrated in Figure 4.3. Let us assume an
integration query that returns the names of a customer, his residence, and his balance. Source Sy (Fig-
ure 4.3(a)) contains all of these data, but source S (Figure 4.3(b)) and source S3 (Figure 4.3(c)) contain
only a part of it. One option is to simple query Sy. This result, however, would not be as complete as

possible, because the other two sources contain customers that are not provided by source Sy. Therefore,
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it can be useful to pose a more complex query that first performs a join between the sources Ss and S3
and then combine the join result with the data of source Sy by using the set union operator. Since source
Ss has a different schema, before joining it with So we need to split the attribute *name’ into the two at-
tributes *fname’ and *Iname’. The query therefore results in: Q = S1 U (S2 DT Splityame—s fname iname(53))

where split

name—sfname,iname 1S the aforementioned split operation and >< is a full-outer join. The query

result is depicted in Figure 4.3(d) and contains ten database entities (tuples). Note that we assume that
all databases use the same database identifier, namely the DEI, and hence joining entities from different
sources does not require a kind of similarity join in this example. Nevertheless, although all sources use
the DEI to identify their customers, some customers have been modeled by different DEIs in the differ-
ent sources and the final result is corrupted by duplicates. These duplicates are listed in Figure 4.3(e).
The challenge of duplicate detection is to identify these duplicates despite of data errors like misspelled
names (e.g. 'Frank’ vs. 'Frakn’) or value transpositions (e.g. the values first name and the last name
of entity pyg are transposed), despite of data heterogeneity that results from using distinct aggregation
levels (e.g. "Miami’ vs. 'Florida’) or that results from using distinct units of measurement (e.g. $ vs. ) €,
and despite of missing data (e.g. "Miami’ vs. 1 ). The challenge of duplicate merging is to select a value
for each attribute despite the contradictions provided by the duplicate database entities. For instance, it
is not clear which value should be used for the attributes 'residence’ in the merge of the three database
entities p4, p7, and ps. Moreover, sometimes an appropriate merge depends on the considered semantics.
For example, it is unclear if the values in the attribute *balance’ that are provided by the different sources
represent the same set of transactions (or at least overlapping sets) or if they represent values that result
from different sets of transactions. Whereas in the first case the merge result should be close to at least

one of the provided values, the merge result should be computed by their sum in the second case.

More information on data integration, especially on resolving schema heterogeneity and on query
evaluation in virtual integration systems, can be found in the books of Leser and Naumann [LNO06] and
Halevy et al. [HDI12].

4.3. Duplicate Detection

In this section, we survey existing research in duplicate detection in relational databases. For that pur-
pose, we start with the problem description in Section 4.3.1, give an overview on the whole detection
process in Section 5.2.3, and then consider each of the detection phases in more detail in Section 4.3.3 to
Section 4.3.7. Finally, we discuss measures to evaluate the quality of duplicate detection results in Sec-
tion 4.3.8, existing research on duplicate detection in multi-table databases in Section 4.3.9, and consider

several topis that are closely related to duplicate detection in Section 4.3.10.
4.3.1. Problem Description

Designing an appropriate duplicate detection process has two goals:

(i) Effectiveness: The resultant duplicate clustering should be as close to the perfect clustering as
possible.

(ii) Efficiency: The detection process should have a low runtime and a low storage requirement.
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Figure 4.4.: The main phases of a process for matching database entities

It can be easily seen that these two goals are contradictory, because a higher effectiveness usually im-
plies a larger runtime and more storage required. Thus, the suitability of a duplicate detection process is
always a trade off between these two goals and mainly depends on the considered application scenario.
For example, an online performed duplicate detection process as it is used in a virtual integration process
must be efficient in terms of time and storage, because no user is willing to wait several hours for her
query answer and a lot of queries are answered simultaneously. In contrast, in a physical integration
process, e.g. a one time fusion of the databases of multiple companies, or in a data cleaning process it is
usually not a problem to perform duplicate detection offline in several hours or even several days. More-
over, a lot of storage can be explicitly reserved for this process so that it does not negatively influence
other running applications and processes. Since the requirements of efficiency are less restrictive in such

integration processes, more effective duplicate detection processes can be used or are even required.

4.3.2. Detection Process

Most duplicate detection approaches only consider a detection of duplicates within a single database
table. For that reason, we will first present the state of the art on detecting entities in a single entity table
where each database entity is represented by a single tuple. For that reason, we consider the concepts of
database entities and tuples interchangeably in this section. Existing extensions to multi-table databases
are then discussed in Section 4.3.9.

Conventional approaches for duplicate detection [NH10, Chr12] are based on subsequently performed
pairwise comparisons of database entities and therefore are called to be iterative [NH10, BG0O4, LFO5b].
Iterative duplicate detection approaches consist of an extraction phase and the five main phases that are
presented in Figure 4.4. The input to the extraction phase is a database from which a set of database
entities is extracted. The output of the last phase is a partitioning of this entity set. We now give a short
overview about the individual phases and then, exept the trivial extraction phase, consider each of these

phase in more detail in the following sections.

1. Data Extraction: Obviously, some attributes are more suitable to detect duplicates than others.
Moreover, comparing attribute values is one of the most expensive procedure in duplicate detec-
tion. For that reason, duplicate detection processes usually do not use the complete tuples as de-
tection input but only extract some of their attributes. Naumann et al. [NH10] construct an object

description from the extracted attribute values and then match the database entities by matching
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1.-5.

their descriptions. We will present such a description-based detection approach in more detail in

Chapter 5 and consider each database entity to be represented by an ordinary tuple by then.

Data Preparation/Data Cleaning: After extraction, the extracted values are standardized (e.g.,
unification of conventions and units) and cleaned (elimination of easy to recognize errors) to obtain

a homogeneous representation of all database entities.

Candidate Pair Space Construction: Since a comparison of all pairwise combinations of entities
is mostly too inefficient, the search space is usually reduced by using heuristic methods such as
the Sorted Neighborhood Method or any other blocking technique [Chr11]. The result of this
phase is the Candidate Pair Space that is a set containing all entity pairs that are assumed to be
duplicates. Note that all entity pairs that do not belong to this space are not matched and hence are
automatically considered to be non-duplicates if the final clustering phase does not change them

into MATCHES because of consistency reasons.

Attribute Value Matching: The similarity between two entities depends on the similarity be-
tween their attribute values. Despite data preparation, syntactic as well as semantic irregularities
remain. Thus, the similarity between two valid elements of an attribute domain is quantified by
syntactic (e.g. edit-based measures, token-based measures or hybrid measures [EIV07, NH10])
and/or semantic (e.g. glossaries or ontologies) means. From comparing two entities, we obtain a
comparison vector ¢ = (c1,. .., c,), Where ¢; represents the similarity of the values from the ith

attribute.

Decision Model: The comaprison vector is then used as input for a decision model [GB06, EIV07]
that classifies the considered entity pair into the set of MATCHES (duplicate pair) or the set of
UNMATCHES (non-duplicate pair).

The decision model can be internally divided into two (or three respectively) subphases. In the
first subphase (Similarity Computation) a single similarity score per candidate pair is computed on
the basis of the comparison vector. In the second subphase (Classification) a threshold is used to
classify each candidate pair as a MATCH or an UNMATCH based on its similarity score. In semi-
automated approaches, a third set of POSSIBLE MATCHES is introduced by using two thresholds
instead of one. In this case, each candidate pair that has been classified as a POSSIBLE MATCH
by the automatic detection process is then manually classified as a MATCH or an UNMATCH by

domain experts. The process of manual assignment is typically called a clerical review.

Duplicate Clustering: Based on the decisions made for the individual candidate pairs, a globally
consistent result is finally achieved by using a duplicate clustering technique, as for example the
technique of connected components that computes the transitive closure of all detected MATCHES
[NH10].

Evaluation/Verification: In cases where the gold standard is available, e.g. in test runs that are
used to identify an adequate process configuration, the effectiveness of the applied duplicate de-

tection process can be evaluated in terms of recall, precision, F}-measure, or any other evaluation
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Person
DEI name DoB city country phone email
el | DejohnW. Tucker 1974-05-03 U.S.A. Manhattan 0345233848 | abc@me.cmo
€2 | John Bill Tacker 5 march 1974 | New York U.S. (0345)233848 | tucker@xy.com
e3 | Bill Tacker 1974-05-03 | Albany United States 1 tacker@xy.com
e4 | John William Tucker | 03.05.74 New York City | United States of America | 0345-233884 @ |
e5 | Tacker, BillThomas |03 may 1974 | Albany USA 233884(0335) | 123@ab.com
e6 | BillT. Tacker 03.05.1975 | NY-Albany 1 (0335)233884 | btacker@xyz.com
e7 | Lilou Zoe Lefebvre 23.09.1976 Paris France 567312 lilou@me.fr
e8 | Lilu Lefevre 23.09.1967 | Paris-Sarcelles | French Republic 0221-567312 | lileff@home.fr
e9 | Phil T. Tacker 1 New York USA. (0543)848233 | ptacker@xyz.com
€10 | Philip Tiberius Tacker | 1965-05-06 | NYC US.A. (0543)848233 | ptt@ny.com

Figure 4.5.: Unprepared sample table

measure (see Section 4.3.8). If the computed effectiveness is not satisfactory, duplicate detection

is repeated with other, better suitable thresholds or methods.

To illustrate the individual phases of a duplicate detection process we will use the sample table "Person’

that is depicted in Figure 4.5. This table contains ten tuples, each representing another database entity.

Besides the entity identifier, the table has six attributes. The values of the different entities are formatted

in different standards and are corrupted in different ways.

4.3.3.

Data Preparation/Data Cleaning

Databases are usually corrupted by errors and their values are often non-standardized which makes du-

plicate detection a though challenge. However, standardization can be obtained and many of existing

data errors can be erased by simple preparation activities. Thus, the effectiveness of a duplicate detection

process can be dramatically increased by preparing data first.

Some often used preparation activities are [LNO6]:

Upper Case/Lower Case: To enable a more effective matching of attribute values, letters are

transformed into upper cases or lower cases respectively.

Discarding Stop Words and Stop Symbols: To get a unified representation of attribute values,

3 999 9,9

stop words (e.g. ’and’, ’or’, "the’) and stop symbols (e.g. °-’,’.’,’;’) are discarded.

Spell Checking: Errors in text data that consist of words from natural language (e.g. movie titles)

can be removed by applying a spell checker to the data.

B

Removing Abbreviations: Well known abbreviations are replaced by their full spelling (e.g. *Av.
is transformed to ’Avenue’, 'NY’ is transformed to 'New York’, or "U.S.A.’ is transformed to

"United States of America’).

Format Standardization: Formats are unified by choosing a standard representation form. This

is especially useable for phone numbers or dates of birth (see Example 50).
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e Unification of Units: Often data values are described in different units of measurement as for

example some values of an attribute speed are defined in kilometer per hour and some other values
are defined in miles per hour. In such cases, one of the units is selected and all data values that are

modeled in another unit are recomputed to the selected unit.

Unification of Accuracy: Besides different units, data can be also described in different degrees
of accuracy, as for example some time values are accurate to two decimal places and some other
values are accurate to five decimal places. In such cases, a re-computation to the lowest accuracy

degree can be useful.

Unification of the Aggregation Level: Values of one attribute can be defined on different ag-
gregation levels. For example, an attribute 'residence’ can contain the values "Hollywood’, "Los
Angeles’ and ’California’. Whereas *Hollywood’ refers to a district, ’Los Angeles’ refers to a city
and ’California’ refers to a state. Such inconsistencies can be reduced by first choosing an ade-
quate level of aggregation (e.g. city) and then by transforming all values from a lower aggregation
level to the selected level (e.g. district to city). Remaining inconsistencies can be handled during
attribute value matching by taking the different aggregation levels into account. For example, in
matching a person living in Los Angeles with a person living in California, we can use the infor-
mation that Los Angeles is a city in California. Of course, the aggregation level that is selected
for unification should not be too coarse, because in that case a lot of information can be lost. For
instance, if we select the level state as the aggregation level and thus transform all values that de-
scribe cities to their corresponding states, the difference that one person lives in Los Angeles and

a second person lives in San Francisco is lost by the transformation.

Value Transpositions: By comparing attribute values with other values of the same attribute
transpositions between different attributes, for example city="France’ and country="Paris’, can be

detected and repaired.

Reference List based Value Checking: Reference lists can be used to prove the consistency of
the given data values and to repair them if necessary. A simple example is a lists of all countries
of the world. If a value of the attribute ’country’ is not contained in this list and if this value is
not detected to be part of an attribute transposition, it can be assumed that this value is incorrect.
Since many reasons for inconsistency are typos, the country list mostly contains an element that is
very similar to the considered value and the given inconsistency can be repaired by replacing the

incorrect value with the list’s element that is most similar to that value.

o Attribute Splitting/Merging: In many cases, it is useful to split an attribute in a set of subat-

tributes or to merge a set of subattributes to a single attribute. Splitting is often used for attributes
of names where first names and last names are written in the same value (often separated by a
delimiter) or for attributes of addresses where street names, zip-codes and cities are collectively
stored in a single attribute, but matching becomes much more effective if they are stored in differ-
ent attributes. Sometimes it is known that there exists a high number of transpositions between two

attributes, but the concrete cases of transpositions are unknown. In that case it can be valuable to
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Person
DEI fname Iname DoB city country phone email
el | dejohnw. tucker 1974-05-03 | newyork city | usa (0345)233848 | abc@me.com
e2 | johnbill tacker 1974-03-05 | newyork city | usa (0345)233848 | tucker@xy.com
e3 | hill tacker 1974-05-03 albany usa 1 tacker@xy.com
e4 | johnwilliam | tucker 1974-05-03 | newyork city | usa (0345)233884 | 1
e5 | billthomas | tacker 1974-05-03 | albany usa (0335)233884 | 123@ab.com
e6 | billt. tacker 1975-05-03 | albany 1 (0335)233884 | btacker@xyz.com
e7 | lilouzoe lefebvre 1976-09-23 | paris france (567312 lilou@me.fr
e8 | lilu levefre 1967-09-23 | paris france (0221)567312 | lileff@home.fr
e9 | philt. tacker 1 newyork city | usa (0543)848233 | ptacker@xyz.com
el10 | philip tiberius | tacker 1965-05-06 | newyork city | usa (0543)848233 | ptt@ny.com

Figure 4.6.: Prepared sample table

merge both attributes and then to use a set-based similarity measure for attribute value comparison
(see Section 4.3.5.1).

Example 50 For preparing the illustrating sample table from Figure 4.5, we convert all string values
into lower case. Furthermore, we split the attribute 'name’ info the two attributes *fname’ (first name)
and ’lname’ (last name). We standardized the data on the date of birth and the phone number by using
a unique representation style for both attributes. In the attribute ’city’ we replaced district names by
their corresponding city names ('Manhattan’ — 'New York’ and ’Paris - Sarcelles’ — ’Paris’). In
the attribute *country’ we replace the different spellings of the United States of America by a single
one (here we choose ’usa’ because of its short length, but in real scenarios the value ’united states of
america’ could be more useful). Finally, we correct the value transposition between the attributes ’city’
and ’country’ for entity e1 and correct some typos (e.g. ".cmo’ — ’.com’). The cleaned database table is
presented in Figure 4.6.

Of course, despite of data preparation, the database contains still some unresolved errors. This es-
pecially concerns the attributes *fname’, ’Iname’, ’DoB’, ’phone’, and ’email’, because the values of
these attributes are not predefined by some external list' and reference data can only be used to a limited
extent. Moreover, a conflict of aggregation level maybe exists in the attribute ’city’, because ’New York’

can also refer to a state.

Further information on data preparation and data cleaning (also known as data cleansing or data scrub-
bing) can be found in [GS13, GFS™01, Chr12, HDI12, LNO6].
4.3.4. Candidate Pair Space Construction

Iterative duplicate detection is based on pairwise comparisons of database entities. Without any reduc-

tion, the candidate pair space of an entity set € = {e1, e, ..., e, } is principally the set of all comparable

'Of course, the values of the attribute ’DoB” are predefined, but typos are hard to detect because for each incorrect date we
have a set of similar dates, e.g. *1974-12-41" can be transformed into several valid dates, and even incorrect dates can
correspond to a correct element of the domain, e.g. *1974-12-31" is a valid date although it contains a typo and actually has
to be the date *1974-12-21’ instead.
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DEI bkv code block DEI bkv  windows DEl  bkv suffixe blocks
el tucde |t230 Bl e8 | lefl7 | {w1} el edcut | {edcut,dcut,cut} | {B1,B2,B3}
e2 |tacjo |t220 B2 e7 lefle | {W1,wW2} e2 | ojcat |{ojcat,jcat,cat} | {B4,B5B6}
e3 | tachi | t210 | B3 e3 tacb4 | {W1,w2,W3} e3 |ibcat | {ibcatbcat,cat}  {B7,B8B6}
ed |tucjo |t220 B2 e5 tacb4 | {W2,W3,W4} e4 |ojeut | {ojcutjcut,cut} | {B9,B10,B3}
e5 tachi | t210 | B3 e6 | tach5 | {W3,wW4,W5} e5 |ibcat | {ibcatbcat,cat} | {B7,B8B6}
e6 tachi | t210 | B3 e2 |tacjd | {W4,W5We6} e6 |ibcat | {ibcatbcat,cat} | {B7,B8B6}
e7 lefli |1140 | B4 e9 tacp5 | {W5,W6,W7} e7 |ilfel | {ilfel lfel fel} {B11,B12,B13}
e8 lefli | 1140 B4 e10  tacp5  {W6,W7,W8} e8 |ilfel  {ilfel Ifel fel} {B11,B12,B13}
e9 |tacph t210 | B3 el | tucd4 | {w7,w8} e9 | hpcat | {hpcat,pcat,cat} | {B14,B15;86}
el0  tacph | t210 | B3 ed4 tucid | {w8} €10 | hpcat | {hpcat,pcat,cat} | {B14,B15,86}
(a) Standard Blocking (b) SNM (c) Suffix-Array Blocking
€2 €3 €4 €5 €6 €7 €5 €9 €10 €y €3 €4 €5 €5 €7 €3 €9 €10 €2 €3 €4 €5 €6 €7 €5 €9 €10
e, € €1
€2 €2 €2
€3 €3 €3
€4 €4 €4
€s €5 €s
€g €6 €6
e; €7 €7
eg €g €s
€9 €9 €9
(d) CPS Standard Blocking (e) CPS SNM (f) CPS Suffix-Array Blocking

Figure 4.7.: lllustration of several techniques for candidate pair space construction

entity pairs:
CPSpaive = {{6r7 63} | eres € €, e # e, 60 = 65} 4.1

where e, = e, is a boolean condition that is true if e, and e, are comparable and false otherwise. Since

two entities only need to be compared once and an entity does not need to be compared with itself,
H _ \@Ir";l@\

the naive candidate pair space consists of IG‘X(‘f'* entity pairs (complexity O(|€|?)), if
all entities of & are pairwise comparable. For large databases with millions or more database entities,
the size of the naive candidate pair space explodes and hence duplicate detection becomes impractical.
For that reason, the candidate pair space need to be initially reduced before comparing entities in detail.
Reduction is realized by rejecting pairs of entities being no duplicates for sure and adding them to the
set of UNMATCHES without any detailed comparison. The construction of such a reduced candidate
pair space CPS C CPS,,iv. 1s usually performed by heuristic approaches that are commonly denoted as
blocking [BCCO03]. Besides blocking, entity pairs can be sometimes rejected by the use of additional
context information. For instance, if we consider the result of integrating several sources and if we
know that one source is duplicate-free, we can reject all entity pairs whose entities originate from the
duplicate-free source from the candidate pair space because these entities cannot be duplicates. This kind

of reduction is typically denoted as pruning [BS06].
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Candidate pair space reduction is effective, if the number of rejected entity pairs is high, but is the
more accurate, the less true duplicate pairs are rejected. In general, blocking is based on cheap com-
parisons and hence is known to cause two kinds of errors: a false acceptance, i.e. leaving an actual
UNMATCH in the candidate pair space, and — even worse — a false rejection, i.e. removing an actual
MATCH from the candidate pair space by assigning it to the set of UNMATCHES. False rejection is worse
than false acceptance, because an actual MATCH that is rejected from the space is not considered again
and therefore changes the duplicate detection result for the worse, whereas a false acceptance is eventu-
ally corrected during the following phases and hence has no impact on the effectiveness of the duplicate
detection process at all, but only on its efficiency (each false rejection leads to a false negative, but not

each false acceptance leads to a false positive).

Since the goals of effectiveness and accuracy?® are contradictory (i.e. the more pairs are rejected,
the smaller the candidate pair space, but the higher is the likelihood that an actual MATCH is rejected
mistakenly), an appropriate blocking technique has to deal with an adequate trade-off between both

requirements.

To illustrate the principle of candidate pair space construction we consider three simple blocking tech-
niques, namely the Standard Blocking, the Sorted Neighborhood Method, and the Suffix-Array Blocking..
All these techniques are based on the use of a blocking key (short bk) that is a function that extracts a
string value from a set of attribute values by concatenating some proportions of them. Blocking keys
are usually defined on schema level so that a single blocking key can be applied to the set of all entities
sharing the same schema. An example of a blocking key defined for a schema having the three attributes
‘fname’, ’Iname’, and 'DoB’ is to take the first four letters of the last name, the first two letters of the
first name, the last two digits of the date of birth and to concatenate them in exact this order. The string
that result from applying a blocking key to the attribute values of a concrete database entity is called a
blocking key value (short bkv).

e Standard Blocking [Jar85, LF05a] is one of the oldest and simplest blocking techniques that
groups all entities with the same bkv together in the same block and then constructs the candidate
pair space by pairing all entities of one block. Standard blocking can be considered as hashing
where the bkv serves as hash code. Since only entities with the same bkv are paired, this technique
is very sensitive to errors in the bkvs. To reduce this effect a phonetic encoding like Soundex (see
Section 4.3.5.3) can be applied to the bkvs before grouping them. This encoding transforms the

bkvs in a way that values with similar sounding patterns become equal.

The effectiveness of standard blocking essentially depends on the size of the largest block. Thus,
the goal is to uniformly distribute the entities on an adequate number of blocks. This makes the
selection of the blocking key always a trade off between accuracy and effectiveness. Long keys
lead to small blocks, but typically cause many false rejections. In contrast, short keys reduce the

risk of false rejections, but tend to produce large blocks.

Recall, the purpose of candidate pair space reduction is to reduce the number of pairwise entity comparisons. Thus, a
candidate pair space reduction is effective if it increases the efficiency of the considered duplicate detection process and is
accurate if it does not decrease the effectiveness of this detection process.
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e The Sorted Neighborhood Method (short SNM) [HS95, HS98] constructs the candidate pair

space from the bkvs in two steps. First the entities are sorted - usually lexicographically - by their
respective bkvs. Second a window of fixed size w slides sequentially over the sorted entities. All
entities being within the window at the same time are paired with each other and added to the
candidate pair space. Due to the fixed window size, each entity is compared with at most 2w — 2
entities from its immediate neighborhood. The underlying assumption of the SNM is that duplicate
entities have similar bkvs and hence are sorted close together. The problem of a fixed window size
is that a high number of entities can have the same bkv (for example a bkv that is derived from the
last name ’Smith’), but do not fit together in the window at the same time. One solution to that
problem is to only sorts the bkvs and to annotate each bkv with its corresponding a set of entities
[Chr11]. To solve the problem of many similar bkvs an extended version using a variable window
size has been proposed by Yan et al. [YLKGO7].

By assuming a data set with n entities and a window of a fixed size w, the number of candidate

pair that result from using the SNM with a single pass is O(wn) [HS95].

Suffix-Array Blocking [AO05] is an extension of standard blocking that enables the use of short
keys (the shortest suffix allowed) without risking to produce large blocks. First a key of median
size is selected and for each entity a corresponding bkv is extracted. Then all suffixes of the initial
bkvs that are longer than a minimal length are built and each suffix serves then as an additional
bkv (optionally a phonetic encoding can be applied to the suffixes before). Due to each entity
has now multiple bkvs, it is inserted into several blocks. To avoid large blocks that would result
from common suffixes (common bkvs of short keys), blocks with more than a specific number of
entries are removed from further considerations. Finally, the candidate pair space is constructed
by pairing all entities being in at least one same block. In conclusion, this technique always uses
the shortest key per entity that does not produce a large block>.

An extended version that is additionally robust against typos in the suffixes has been proposed by
Vries et al. [dVKCC09, dVKCC11].

Example 51 For illustration, we consider the cleaned sampled table from Figure 4.6. Each of these

three techniques has different requirements to the characteristics of the blocking key. For that reason, we

use a different blocking key for each technique. For standard blocking we select a key that concatenates
the first three letters of the last name with the first two letters of the first name. Since we encode the bkvs
with using Soundex, the first letter of the key must be the most identifying. The bkvs and the Soundex

codes are presented in Figure 4.7(a).

The key that is used for suffix-array blocking is exact the inverse of the key for standard blocking,

because here the most identifying letters have to be at the end of the bkvs. In our example, we set the

3The complexity of standard blocking depends on the size of the largest block. Thus, using short bkvs can be bad, because it

risks the appearance of a large block. In contrast, if the bkvs are too large, many true duplicates will not be added to the

candidate pair space. If two pairs have the same bkv, they will also agree in any substring of this bkv. Thus, if two pairs

agree in a long suffix they will also agree in a short suffix. Consequently, by utilizing suffix-array blocking we do not use a

universal key length for all entities, but use an individual key length per entity, i.e. the shortest bkv that does not produce a

large block.




4.3. Duplicate Detection 105

minimal suffix length to three and set the maximal block size to five (see Figure 4.7(c)). For that reason,
for each entity three bkvs are created and block 'B6’ is finally removed.

For the SNM we use a key that concatenates the first three letters of the last name with the first
letter of the first name and the last digit of the year of birth. Moreover, we use a window of size three.
Figure 4.7(b) presents the sorted list of entities along with their bkvs and the different window positions
they belong to.

The candidate pair spaces that result from these techniques are presented by the matrices in Fig-
ure 4.7(d) (standard blocking), Figure 4.7(e) (SNM), and Figure 4.7(f) (suffix-array blocking). All can-
didate pairs that are accepted correctly, i.e. all true acceptances, are colored green. As you can see, the
SNM produce a lot of false acceptance (blue colored), but because of the high number of candidate pairs
it produces only one false rejection (red colored). Standard blocking produces a smaller candidate pair
space, but produces one false rejection more. Suffix-array blocking has no false acceptance, but has as
many false rejections as standard blocking. To illustrate the effect of the block removal that is performed
in the suffix-array blocking, we mark all candidate pairs that have been avoided by removing block 'B6’
with a stripped pattern. As it can be seen, without bock removal the number of false acceptance increases
by eleven, but the number of true acceptance does increase by a single pair. This demonstrates that the

removal of the large blocks cans increase the effectiveness of blocking to a large extent.

Obviously the definition of the blocking key is a crucial point for all techniques. A poor blocking
key will always lead to a poor candidate pair space. For that reason, keys should be designed in a way
that duplicate tuples do have similar bkvs. Moreover, less error-prone attributes should be used. To
reduce this bottleneck further on Hernandez et al. [HS95] propose a multi-pass approach where a single
blocking technique is performed for several times and at each time another blocking key is used. The
final candidate pair space contains then all candidate pairs that at least belong to the space produced by
one pass, or is determined by a voting strategy. It is obvious that the resultant candidate pair space is
much larger than the space that results from a single pass approach. However, the risk of choosing a poor
blocking key is lowered and the result is usually more accurate.

Besides the three techniques presented above a variety of further techniques has been proposed during
the last decades. Sorted Blocks [DN11] is a technique that aims to avoid the problem of a fixed window
size in the SNM by combining the ideas of standard blocking and the SNM. Q-gram Indexing [BCCO03]
is based on the idea that the number of false rejections that are caused by typos in the bkvs can be reduced
by using combinations of their g-grams for block building instead the bkvs themselves. A very effective
and accurate technique is the RAR-algorithm proposed by Sung et al. [SLPO2]. This algorithm combines
the SNM and the TI-similarity that is a computational efficient measure for string similarity. Although
this technique is originally designed with having the SNM in mind, the concept of using TI-similarity
can be simply combined with any other blocking technique.

Further blocking techniques are K-way Sorting [FCO00], Similarity-Aware Inverted Indexing [CGOS],
String Map based Indexing [JLMO3], Priority Queue [ME97], Adaptive Filtering [GB04], Locality-
Sensitive Hashing [sKL10], Fuzzy Blocking [NT07], Canopy Clustering [MNUO0O, CR02, FGPP10],
Spectral Neighborhood Blocking [SCXM11], CBLOCK [SJMBI11], and blocking with MFIBlocks
[KGO09]. Kolbe et al. [KTR10, KTR12] consider a parallelization of blocking using the MapReduce

programming model. Approaches for blocking based on semantic relationships between data items
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are proposed in [NMMMBLP0O7b, NMMMBLPO7a] (tuple relationships given by foreign keys) and
[PWNOO] (hierarchical relationships in XML documents). In [PINF11] blocking data items with het-
erogeneous data structures is considered. Further interesting and useful work on blocking can be found
in [BKM06, MK06, Chr07, WMK™09, PINT11]. Recently, Christen wrote a survey on some of the

techniques mentioned above [Chr11].

4.3.5. Attribute Value Matching

In the phase of attribute value matching, the attribute values of two database entities are compared by the
use of syntactic and semantic similarity measures. Since the subsequently made duplicate decisions are
based on the similarity scores that are computed in this phase, attribute value matching is the fundamental
phase in a duplicate detection process and a poor selection of similarity measures immediately leads to a
poor detection result.

Due to typos and other data errors, a test of equivalence is usually not sufficient for similarity compu-
tation but attribute values need to be compared by more complex similarity measures instead. In many
contexts, however, the meaning of similarity is not clear and therefore a variety of similarity measures
has been developed during the last decades from which no one can be considered as an ultimate so-
lution. In contrast, each of these similarity measures has been designed with some specific input data
and with some specific error pattern in mind. Data types can be strings, numbers, or dates and they
can be defined on single values or sets/bags of values. Principally, existing similarity measures can be
distinguished into three classes: measures that aim to score syntactic similarity, measures that aim to
score semantic similarity, and measures that aim to score phonetic similarity. Because scoring semantic
similarity is only possible with additional context information such as Thesauri or ontologies available
(see Section 4.3.5.4), the most similarity measures focus on syntactic similarity.

Most often only values of the same attribute are compared. However, it can be also valuable to match
values across attributes. For instance, the email address of a person often contains the name of the person
and hence matching email addresses with names can produce some further evidence for the following
decision model.

We start with a presentation of syntactic similarity measures for sets and strings. Then we continue
with a discussion on phonetic similarity measures as well as semantic similarity measures of strings, and
consider the similarity of numbers and dates. Finally, we present some hybrid measures that are able to

incorporate some of the previously presented measures into a measure for set similarity.

4.3.5.1. Set Similarity

Intuitively, two sets are the more similar, the more elements they have in common. Although the un-
derlying idea is quite simple, measuring set similarity is not straightforward as we will illustrate by the

following four measures:

e The Common Neighbor Score [BG07b] scores the overlap between two sets and normalize it by
a large constant. Due to all overlaps are normalized by the same value, the resultant scores can

become unrepresentative, if the considered sets vary a lot in their size, because an overlap of size
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two obviously implies a greater similarity for two sets each having three elements than for two sets

each having hundred elements.

e For that reason, the Jaccard Coefficient [NH10] presented in Equation 4.2 computes the amount
of elements two sets S,,, and S, have in common and hence normalizes the overlap by the number

of elements that belong to any of both sets instead by a constant:

_Sm N Sy

JaCC(Sm, Sn) = m

4.2)

The Jaccard Coefficient can be generalized to the Tversky Similarity [Tve77] that allows to define

penalizations for missing elements.

The shortcoming of the Jaccard Coefficient is twofold: (i) First, all elements are considered
equally, but the set membership of an element that only belongs to few sets is much more dis-
tinguishing than an element that belongs to many sets. (ii) Second, the coefficient only compares
on equality and does not consider cases, where set elements are unequal but very similar as it can
result from typos or different standardizations that has not been resolved during the data prepara-
tion phase.

e A generic version of the Adamic/Adar Similarity [AAO03] that has been proposed by Bhattacharya
et al. [BGO7b] aims to neglect the first shortcoming of the Jaccard Coefficient by taking the unique-
ness of each element into account. Let u(e) be the uniqueness of element e, the Adamic/Adar

Similarity of two sets S,,, and S, is defined as:

Zeesmmsn u(e)

Adar(Sy,, Sp) = Zeesmusn @

4.3)

A well known measure for uniqueness is the ferm frequency - inverse document frequency (short
TF-IDF) [BYRN99] that comes from the area of information retrieval and defines the uniqueness
of an element based on the number of sets (documents) in the considered database this element
belongs to. The term frequency #f(¢, d) scores how often the term ¢ appears in the document d
and the document frequency df{(t) scores the number of documents in which the term ¢ appears.
Due to a term is more unique, the less often it appears in all documents, the inverse document
frequency idf(t) = n/df(t), where n is the total number of documents, is used as a measurement

of uniqueness.

As described by Halevy et al. [HDI12] term frequency and inverse document frequency can be

combined in different ways. The most common variant of TF-IDF is defined as:

TF-IDF(t,d) = log(tf(t,d) + 1) x log(idf(t)) (4.4)

e The Cosine Similarity [NH10] is another weighting based approach for measuring set similarity*.
It first builds the two vectors Vs, and Vg, from the two compared sets .S, and S, and then

*Actually the Cosine Similarity is the similarity measure that is used for matching the sets’ corresponding vectors, but its
name has been adopted to the presented measure of set similarity, i.e., CosineSim(Sm, Sn) = CosineSim(Vs,,, Vs, ).
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computes the final similarity score as the angle between these vectors:

k . .
CosineSim(Sy,, Sy) Vi - Vs, _ >ic1 Vs, (i) X Vs, (i) 4.5)

Vs TVsIL Sk (v, (0)2 (/R (Vs, ()2

The vector space contains one dimension per possible set element and the value V(i) of a vector
Vs in the i-th dimension is the weight of the corresponding element to the set .S. As for the
Adamic/Adar Similarity, the TF-IDF is typically used for weighting the individual elements.

Whereas the Adamic/Adar Similarity and the Cosine Similarity aim to solve the first shortcoming of
the Jaccard Coefficient, the second shortcoming is still present in all measures, but can be resolved by
using a hybrid similarity measures as described in Section 4.3.5.6,

Measures for set similarity can be applied to any kind of set. However, because most attribute values
are strings, in the context of duplicate detection, measures for set similarity are typically used to compare
two string values by initially decomposing the strings into their sets of tokens or by decomposing the
strings into their sets of g-grams [NH10].

Example 52 For illustration we consider the two name values vy = ’Tacker, Bill Thomas’ and vy =
"John Bill Tacker’ from the sample table from Figure 4.5 (here we assume that data preparation has not
been applied to the data). A tokenization of both names leads to the following two token sets: S, =
tokenize(v1) = {’Tacker’, Bill’, "Thomas’} and Sy = tokenize(vy) = {’John’, Bill’, "Tacker’}. The
Jaccard Coefficient of both sets is Jacc(S1, S2) = 2/4 = 0.5. The term frequency, document frequency
and the TF-IDF-score of the individual tokens are listed in Table 4.1. Consequently, the Adamic/Adar
Similarity of both sets results in Adar(S1,S2) = (0.0668 + 0.1198)/(0.0668 + 0.1198 + 0.2104 +
0.301) = 0.1812 and the Cosine Similarity results in CosineSim(S1, So) = 0.2262 (for illustration, see
Figure 4.1). Due to the latter two measures consider the fact that the shared tokens are very common
in the considered database, but the non shared tokens are not, the similarity score that results from the
Adamic/Adar Similarity and the similarity score that results from the Cosine Similarity are likely more
representative then the similarity score that results from the Jaccard Coefficient.

As a second example, we consider the two strings vs = 'John’ and vy = ’Dejohn’. Both string only
consist of one token so that performing a tokenization as we have used in the first example does not bring
any advantage and the Jaccard Coefficient as well as the Adamic/Adar Similarity produce a similarity
score of zero. It is obvious that this score does not represent the actual similarity of both strings. To
improve representativeness, we can decompose both string into two sets of q-grams. From using ¢ = 3,

the two values v3 and vy can be transformed into the sets Ss and Sy where # is a padding character:
Sy = {’##]’,'#Jo’, "Joh’,’ohn’,"hn#’, 'n##’}
Sy = {'##D’,'#De’, Dej’, ’ejo’, joh’, ’ohn’, "hn#’, 'n##’}

The Jaccard Coefficient of both sets results in Jacc(Ss, Sy) = 4/10 = 0.4. Thus, by using q-gram

decomposition, the set similarity measure is able to capture the significant resemblance of both string

value, although they are not identical.
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t = "Tacker’ | t = Bill’ | t = *Thomas’ | ¢ = ’John’

df(t) 6 4 1 2

1(t, S1) 1 1 1 0

if(t, S2) 1 1 0 1

TF-IDF(t, ;) | 0.0668 0.1198 | 0.301 0

TF-IDF(t,S5) | 0.0668 0.1198 |0 0.2104

diml | dim2 | dim3 | dim4 = Vs, - Vs, = 0.0188

Vs, | 0.0668 | 0.1198 | 0.301 | 0 = Vs, ] - [[Vs,|| = 0.3308 - 0.2512 = 0.0831
Vs, | 0.0668 | 0.1198 | 0 0.2104 = CosineSim(S1, S2) = 0.2262

Table 4.1.: The df, the tf, and the TF-IDF of four sample tokens and the Cosine Similarity of two token sets

4.3.5.2. String Similarity

The purpose of a measure for string similarity is to compute a score that reflects the syntactic similarity
of two strings as good as possible despite the presence of typos or letter transpositions. We will illustrate
the variety of different solutions by presenting two simple approaches.

e The Levenshtein Distance [Lev66] is the simplest variant of a family of measures for string sim-
ilarity that is well known as Edit-Distance. The underlying idea of Edit-Distance measures is
that the distance between two strings can be defined by the lowest cost that is required to trans-
form one of these strings into the other by the use of a specific set of edit operations where each
edit operation can be associated with an individual cost. The Levenshtein Distance uses the three
edit operations letter insert, letter delete, and letter replace each associated with the same cost of
one. Further edit-distance measures are the Needleman-Wunch Distance [INW70], the Affine Gap
Distance [WSB76], the Smith-Waterman Distance [SW81], and the Typewriter Distance [BL13].

They all differ in their set of edit operations and/or cost assignments.

The Edit-Distance between two string values vy, and v,, can be computed based on the method of
dynamic programming [Nav01, NH10], because a transformation between two strings can always
be broke down into transformations of their substrings. Let 7, j be two variables with 0 < i < |v,,|
and 0 < j < |v,| and let vy, ; be the [-th letter of string vy, a corresponding algorithm that computes
the Levenshtein Distance between v,,, and v,, is based on filling a |v,,| X |v,| matrix M by the

following computation rules:

Mg = i
My; = J

M; 151, if vy = v g,
M; ;

min(Mi_Lj, Mm'_l, Mi—l,j—l) + 1, otherwise.

The algorithm starts at M o and computes all positions of the matrix from top left to bottom right.

The last computed value M), | |,,| corresponds to the Levenshtein Distance of v, and v,,. Due to
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e dejohn ew i | I i am
€|0[1]2(3]4([5]6 €|0]1[2|3]|4(5]|6]|7
J |11 1p2p2(3|4]|5 bl1|1|2]|3[4]|5|6|7
0|2]2|2|3[2]3]|4 i|212[1]2]|3[4|5]|6
h|3[3[3[3]3]2]3 [1313[2]1]2(3|4]|5
nj4|4(4(4(4(3]|2 l14(4]|3]|2[1p2p3p4
(a) Sample 1: "john’ vs. ’dejohn’ (b) Sample 2: *bill’ vs. *william’

Figure 4.8.: Two samples of computing the Levenshtein Distance with dynamic programming

all cells of the matrix need to be computed once, the algorithm has the computational complexity
O(|vm| X |vp|). Other variants of the Edit-Distance differ to the Levenshtein Distance in their

computation rules.

The Levenshtein Distance between two strings can be normalized by the length of the longer string,
because in the worst case where the two compared strings v,, and v,, does not share a single letter,
the cheapest transformation is made by first replacing each letter of the shorter string v,,, by one
letter of v,, and then by inserting the remaining letters of v,. As a consequence, we maximally
need |vy,| letter replaces and |v,| — |vy,| letter inserts to transform vy, into v,,. The normalized

Levenshtein Similarity is defined as the difference of the normalized distance to one:

Levenshtein Distance (v, vy,)

max(|vm|, [vn)])

LevSim(vy,, vy,) = (4.6)
e Jaro Similarity is a measure for string similarity that in contrast to the measures of the Edit-
Distance family cannot be computed by dynamic programming. The Jaro Similarity has been
primarily designed for matching short strings [Jar89] and it aims to overcome syntactical dis-
similarities that result from letter transpositions. A transposition is considered to be a swap of a
common letter, where a letter is only considered common, if its occurrence in both strings is close

to each other.

Let S be the set of letters that the two strings v.,, and v,, have in common, i.e. their position distance
is less than 0.5 x min(|v,,|, |v,|), and let ¢ be the number of transpositions, the Jaro Similarity of
v, and vy, i1s defined as:

1 S S S| — 0.5t
JaroSim(vy,, v,) = 3 X (M + |‘v| + H|S\> 4.7)

An extension of the Jaro Similarity is the Jaro-Winkler Similarity [WT91] that is tailor made for
domains where a common prefix is sometimes followed by an additional suffix (e.g. the domain

of firstnames: 'Bill’ vs. ’Bill Thomas’).

Example 53 To demonstrate the dynamic programming based algorithm of the Levenshtein Distance,
we compare two pairs of string values from the sample table from Figure 4.6. The matrix of vi = ’john’

and vo = ’dejohn’ is presented in Figure 4.8(a) and the matrix of vs = ’bill’ and vy = ’william’
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is presented in Figure 4.8(b) (the symbol ¢ represents an empty string). In each case, one of several
possible sequences of edit operations that lead to a transformation with minimal costs is colored yellow
and emphasized by arrows. Going a cell to the right means that a new letter is inserted, going a cell down
means that a letter is deleted and going a cell diagonal down means that either nothing has been edited or
a letter is replaced. ’john’ can be transformed into ’dejohn’ by inserting two letters at the beginning. In
contrast, 'bill’ can be transformed into "william’ by replacing the first letter and by appending the letters
‘i’Va’, and 'm’ at the end. Since ’dejohn’ has six letters and "william’ has seven letters, the normalized
scores of the Levenshtein Similarity result in LevSim(v1,v2) = 2/3 and LevSim(vs,v4) = 3/7.

The maximal distance that is allowed for letters of ’dejohn’ and ’john’ in order to be denoted as
common is 0.5 x min(|v1|, [va|) = 2. Thus, the set of common letters of vi and vy is {’j’,’0’,’h’, ’'n’}.
In this case, the number of transpositions is zero and the Jaro Similarity of vy and vy results in 0.89.
Let us compare vy with another string vs = ’‘nojha’. The maximal distance is still 2, but the set of
common letters is only {’j’,’0’,"h’}, because the distance of the appearances of letter 'n’ is too large.
The common letter sequence in vy is 'joh’, but is "ojh’ for vs. Thus, we have one transposition and the

Jaro Similarity of vi and vs results in 0.73.

4.3.5.3. Phonetic String Similarity

The similarity measures discussed in the previous section consider the syntactic similarity of strings.
Nevertheless, many string errors can result from mishearing as for example in a Customer Relationship
Management scenario where information is often exchanged by phone. Similar sounding strings must
not be syntactical similar. Thus, phonetic encodings have been developed as another type of similarity
measure in order to neglect such errors in string matching.

The idea of a phonetic encoding is that similar sounding strings get similar (or in the optimal case even
identical) codes. From these codes a similarity score is derived. In the simplest case, the similarity of
two strings is set to 1 if they have the same code and is set to O otherwise.

For illustration, we present the Soundex Code [?, Rus22] which is one of the most used phonetic
encoding algorithm and which we have already used to illustrate Standard Blocking in Section 4.3.4.
The Soundex Code is designed for the English language and transforms a string value v in its code by
deleting or replacing letters in four steps:

99 % 939 9 % 5.9 99

1. All occurrences of ’a’, ’e’, ’i’, ’0’, ’u’, ’y’, ’h’, and *w’ except the first letter are deleted from s.

2. All remaining letters of s except the first letter are replaced by digits following the mapping pre-
sented in Table 4.2, e.g. the letters ’b’ and ’f” are replaced by the digit ’1°.

3. All consecutive appearances of the same digit are replaced by a single appearance of this digit.

4. Finally, the code is truncated to length four if it is longer than four or filled up to a length of four
by appending ’0’s if it is shorter than four.

Example 54 For demonstration, we consider the four strings "Tukker’, "Tacker’, *William’, and ’Bill’

from our sample table and transform them to their soundex code. The individual steps of transformation
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digit | letter

1 B,EPV

2 CGJ,KQ,S, X, Z *Tukker’ | *Tacker’ | *William’ | *Bill’

3 D, T Step 1 | *Tkkr’ "Tekr’ "Wlm’ "BII’

4 L Step 2 | 'T226’ 'T226° "W445° 'B44’

5 M, N Step 3 | 'T26’ 'T26° "W45° ‘B4’

6 R Step 4 | *T260’ ’T260° *W450° ’B400°
Table 4.2.: Soundex letter-digit map Table 4.3.: Four Samples Soundex Encoding

are presented in Table 4.3. As you can see, the two similar sounding strings 'Tukker’ and ’Tacker’ are
both transformed into the same code. In contrast, the somewhat similar sounding strings *William’ and

'Bill’ are not, because the soundex algorithm lets the first letter unchanged.

Further phonetic similarity measures are Metaphone, Double Metaphone, Metaphone 3 [Phi90, Phi00],
Caverphone [PLSMO09], the NYSIIS Algorithm [Taf70], Daitch-Mokotoff Soundex® (jewish and east eu-
ropean names), Kolner Phonetik (german language) [Pos69], Match Rating Approach [MK77], Phonix
[Gad98], and the Oxford Name Compression Algorithm [Gil97].

The measures Editex [ZD96] and Syllable Alignment Distance [GC06] combines several of the afore-

mentioned techniques in order to rate syntactic similarity and phonetic similarity within a single score.

4.3.5.4. Semantic Similarity

Although two strings are syntactically dissimilar and phonetically dissimilar, they can have some seman-
tical resemblance if they are closely related by any meaning. To score semantic similarity additional
context information is required. Such information is usually represented by ontologies that range from
informal ones that are primarily designed for human usage to formal ones from which knowledge can be
automatically derived by the use of inference [LNO6].

Thesauri are examples of informal ontologies. A Thesaurus is a collection of words that have a
similar meaning [LNO6]. It usually includes but is not limited to synonyms, hyponyms, umbrella terms,
and sometimes antonyms. A sample Thesaurus for the German language is OpenThesaurus®. Another
Thesaurus that is specialized on names is Onomastik’. Figure 4.9 lists some names that Onomastik
proposes to have some resemblance to the name ’Alexander’ along with their Levenshtein Distance. An
interesting example is the name *Sascha’. Syntactically both names have nearly nothing in common, but
in Russian ’Sascha’ is used as a nickname for ’Alexander’. Another commonly used synonym is word
’Down Under’ that refers to Australia. An approach that incorporates information on such synonyms
into the detection process has been proposed by Arasu et al. [ACGKOS].

Thesauri are also often used to model hierarchies of terms. Such hierarchies can be useful for detecting

duplicates, because they help the system to detect and handle cases where two values are defined on

Shttp://www.jewishgen.org/InfoFiles/soundex.html
®http://www.openthesaurus.de/
"http://www.onomastik.com/
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name LevSim
Alejandro | 0.67
Aleksandr | 0.67

US.A.

Alessandro | 0.6 A
Alexandros | 0.8 New York California
Alexis 0.44
Leszek 0.33 New York (City)  Albany Los Angeles
Sascha 0.11

Bronx Manhattan Queens Hollywood
Xander 0.67

Figure 4.9.: Names related to 'Alexander’  Figure 4.10.: Hierarchy on districts, cities, and states within the U.S.A.

different aggregation levels. A part of an ontology that models the geographical hierarchy of the United
States of America is depicted in Figure 4.10.

Example 55 In the sample table from Figure 4.6, a Thesaurus can help us to detect that the name ’bill’
is often used as a short version of the name "william’ and hence they are semantically similar. Moreover,
it can improve the matching result by providing the information that New York is not only a city, but is
also a state and that Albany is a city (even the capital) of this state. Thus, the semantic similarity between

the two values ’Albany’ and 'New York’ is much higher than its syntactic similarity.

4.3.5.5. Number & Date Similarity

Values of the domains of numbers or the domains of dates are difficult to compare. On one hand they
are as sensitive against typos as string values (e.g. *12.05.2012° vs. *05.12.2012’), but on the other hand
their domains are ordered and hence are associated with a natural meaning of distance (e.g. *31.12.2012’
vs. ’01.01.2013”). As a consequence, values of both domains should be matched by a combination of a
measure for string similarity that is resistant against typos and a second measure that scores the natural
distance between the compared numbers (or date values respectively).

Another aspect that need to be considered is that the meaning of the natural distance depends on the
considered use case. For example, a distance of 1cm is not much for the size of persons, but can be
worlds in micro biology. More information on matching values from numerical domains like date, age,
time can be found in [Chr12].

4.3.5.6. Hybrid Similarity Measures

A major shortcoming of the set similarity measures presented in Section 4.3.5.1 is that they only distin-
guish between equal elements and non-equal elements. On the other hand, the string similarity measures
presented in Section 4.3.5.2 are extremely sensitive to the token order. Thus, it is only a logical con-
sequence to combine both concepts. Hybrid similarity measures integrate domain-specific measures for
element similarity into measures for set similarity to overcome the shortcomings mentioned above. In

general, the integrated measure for element similarity can be of any nature. It can be a measure for the
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similarity of strings, numbers, or dates, it can be a measure for semantic similarity, it can be a measure
for phonetic similarity, or it can be a combination of several measures.

We illustrate the concept of integration by two straightforward approaches.

e As its name implies, the Extended Jaccard Coefficient [NH10] integrates a measure for element
similarity into the Jaccard Coefficient that we have presented in Section 4.3.5.1. Given two sets
Sy, and Sy, a measure for element similarity sim,, and a threshold 6 € [0, 1], the extended Jaccard
Coefficient initially computes the set of all elements shared by .S, and 5, the set of elements of

Sy, that are unique, and the set of elements of S, that are unique:

Shared(Sp,, Sn) = {(er,es) | er € Sm,es € Sp,sime(er,es) > 0} (4.8)
Unique(S,,) = {e, | e, € S, Pes € Sy (e, es) € Shared(Sp,, Sn)} 4.9)
Unique(S,) = {es|es € Sp,Pe, € St (er,es) € Shared(Sp,, Sp)}  (4.10)

Using these three sets the Extended Jaccard Coefficient is then computed as:

|Shared(Sy,, Sp)|
|Shared(Syy,, Sy)| + |Unique(Sy,)| + |Unique(Sy,)|

ExtJacc(Sy,, Sp) = 4.11)
Another extension of the Jaccard Coefficient has been proposed by Naumann et al. [NH10]. This
approach first assigns a weight to each pair of shared elements and assigns a weight to each unique
element and then aggregates these weights to compute a score for each of the three sets. Finally,
the scores are used instead of the sets’ sizes to compute the final result. An intuitive setting of this
approach is to weight a pair by its similarity, to weight a single element by one and to use the sum

operator for aggregation.

A third version that is described in [HDI12] uses a maximum-weight matching between the shared

elements.

e The Monge-Elkan Similarity [ME96] computes the average maximal similarity the elements of
a first set have to the elements of a second set. Thus, given the two sets S, and S, as well as a
measure for element similarity s¢m., the Monge-Elkan Similarity from S, to .S, results in:

MongeElkanSim(Sy,, Sy,) |S P ZmaX|S"1$2me (e, ;) 4.12)

The problem with the Monge-Elkan Similarity is that this measure is non-symmetric, i.e.
MongeElkanSim(Sy,, Sn) # MongeElkanSim(S,,, Sy,). A possible solution to this shortcoming
is to use the average (or the minimum/maximum respectively) of both directions as a final similar-

ity score.
An hybrid version of the Cosine Similarity is described in [NH10, HDI12].

Example 56 As an example we consider the two token sets S1 = {’John’,’Bill’, Tacker’} and
Sy = {’John’, William’, "Tucker’}. As computed in Example 52, the Jaccard Coefficient of them is
only Jacc(S1,S2) = 0.2. The Levenshtein Similarities of the token pairs are presented in Figure 4.4.
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’John’ | ’Bill’ | ’Tacker’

’John’ 1 0 0
"William” | O 3/7 0
*Tucker’ 0 0 5/6

Table 4.4.: The Levenshtein Similarity between the tokens of the sample sets S; and S-

Using these similarities and by using a threshold @ = 0.5, the sets Shared(S1, S2), Unique(S1), and

Unique(Sz) are computed as follows:

Shared(S1,S2) = {("John’,’John’), ("Tucker’, Tacker’)}
Unique(S1) = { William’}
Unique(S2) = {’Bill’}

Consequently, the Extended Jaccard Coefficient as defined in Equation 4.11 results in
ExtJacc(S1,52) = 0.5. In contrast to the standard variant of the Jaccard Coefficient the similarity
is increased from 0.2 to 0.5 because the two tokens "Tucker’ and "Tacker’ are now considered to be iden-
tical. Note, the Monge-Elkan Similarities between S1 and S even results in MongeElkanSim(S1, S2) =
MongeElkanSim(Ss, S1) = 0.754.

A shortcoming of all the approaches presented above (except the extended version of the Jaccard
Coefficient presented in [HDI12]) is that they map the elements of one set to the elements of the other
set, but do not take care whether the resultant mapping is 1:1 or not. In the extreme case, all elements of
one set are mapped to the same element of the second set which in turn can lead to a similarity score that
is extremely unrepresentative for the actual similarity between both sets. Nevertheless, a 1:1 mapping as
it can be achieved by an algorithm that solves the Stable Marriage Problem [GI89] is computationally
much more expensive and therefore is usually avoided within the application of matching attribute values

for duplicate detection.

4.3.5.7. Similarity of Null Values

A less considered, but important challenge, especially for databases that are corrupted by many null
values, is to rate the similarity between two attribute values if at least one of them is a null value. One
standard approach is to consider the similarity between any value and a null value as zero, but this
approach can create many false negatives, especially if null values occur in important attributes. Another
approach is to use a fix standard similarity, but here we have a similar problem. If the chosen similarity is
too low, the risk of producing false negatives increases, but if the chosen similarity is too high, producing

false positives becomes more likely.

4.3.6. Decision Model

The input to the decision model is a candidate pair and the comparison vector that has been computed

for this pair in the previous phase of attribute value matching. The purpose of the decision model is to
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decide whether the considered candidate pair is a duplicate or not based on the values provided by the
comparison vector. All pairs classified as duplicates are collected in the set of MATCHES and all pairs
classified as non-duplicates are collected in the set of UNMATCHES. In semi-automatic approaches, a
third set of POSSIBLE MATCHES is intermediately introduced. In that case, each candidate pair that has
been classified as a POSSIBLE MATCH is later manually assigned to the set of MATCHES or the set of
UNMATCHES by a domain expert. For space reasons, we sometimes refer to the three sets also by M
(MATCHES), U (UNMATCHES), and P (POSSIBLE MATCHES).

Existing approaches for decision models can be classified into five classes: Distance-based
Approaches, Rule-based Approaches, Probabilistic Approaches, Learning-based Approaches, and
Clustering-based Approaches. In order to give an impression on the large diversity of decision mod-
els, we will present the individual classes in more detail in the remainder of this section.

Besides the classification results, many approaches of the finally performed duplicate clustering phase
(see Section 4.3.7) additionally require a similarity score for each candidate pair as input. For that
reason, we consider a duplicate decision as an ordered pair whose first element is a matching class,
i.e. the classification result MATCH, UNMATCH, or POSSIBLE MATCH, and whose second element is a
similarity score. By using distance-based decision models, the computed distances can be transformed
into similarity scores. In the most machine learning techniques a confidence value can be computed for
the classification result, for example in Support Vector Machines the distance to the hyperplane can be
used as confidence. From these confidence values a similarity score can be derived. The same holds for
rule-based decision models that work with confidence values. For decision models that do not produce
a distance score or a confidence value, a separate function (e.g. a distance-based decision model) for
similarity score computation need to be utilized.

Note, each position ¢ of the comparison vector represents a pair of attributes { Ay, A;}. For that reason,

we sometimes use the notion ¢( Ay, 4;) instead of ¢[i] when it is more illustrative for the reader.

4.3.6.1. Distance-based Decision Models

Distance-based approaches for decision making can be decomposed into two steps. First, a distance
(or a similarity) score between the two compared entities is computed on the basis of the comparison
vector. Finally, the candidate pair is classified as a MATCH, a POSSIBLE MATCH, or an UNMATCH by
comparing the computed distance (or similarity) score with two thresholds.

Let dst be a normalized distance measure, let sim = 1 — dst be the corresponding similarity measure,
and let Oyyp, Opy € [0, 1] be two thresholds with 6yp > Opsy, the classification of two entities e, and e
that is made by a distance-based decision model that utilizes dst, 6p/y, and 0y p is computed as:

MATCH, if sim(ey, es) > Opu,
classify(er, es) =  POSSIBLE MATCH,  if Oyp < sim(ey, es) < Opm, (4.13)
UNMATCH, if sim(e,, es) < Oysp.

This principle of thresholding is graphically illustrated in Figure 4.11. Note, in the case of an automatic

decision making process (no clerical review), both thresholds are identical, i.e. Opp = Oyyp.
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Figure 4.11.: The principle of thresholding in duplicate decision making

The simplest approach for distance computation is to concatenate all attribute values per entity to a
single large string, and then to define the distance between two entities as the distance between their
strings. For computing the distance between the two strings, any of the similarity measures (or distance
measures respectively) that we have presented in Section 4.3.5 can be used. By doing so a separate phase
of attribute value matching is not required, because the comparison vector is not used and similarity is
directly computed in the decision model instead. Nevertheless, this approach is usually not very effective
and a more complex distance computation is required instead.

Two interesting approaches for distance computation that are based on the comparison vector are:

e The Average Attribute Distance defines the distance between two entities as the average distance
of their attribute values. Since some attributes are more suitable for distinguishing one entity from
another than other attributes, decision quality is increased by weighting the individual attributes
and hence to compute the weighted average instead of the simple average. Let W = {wy, ..., w)g }
be a weighting scheme, the average attribute distance of the two entities e, and es; having the
comparison vector ¢ is defined as:

AAD(ey, 60, W) = S wi x (1 - &)

(4.14)

A property of the average attribute distance is that the entity distance increases and decreases
linearly with the similarity of any of their attributes. In many scenarios, however, it is desirable
that only some of the given similarity scores need to be high (e.g. a combination of name and
phone, or a combination of name and address, or a combination of phone and address) to produce
a high score for entity similarity. Dey [DeyO8] and Halevy et al. [HDI12] describe an extension
of the average attribute distance that aims to overcome this shortcoming by the use of logistic

regression.

e The Vector Space Distance [DSD98] considers the normalized comparison vector ¢ as a point in

an |c] dimensional vector space. The distance of two entities is then defined as the distance of ¢
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to the point 15 = (1,1,..., 1) that represents the situation of absolute similarity. Because we re-
quire a normalized distance score, the computed distance is finally divided by the greatest possible
distance in that space, i.e. the distance between the point 1z and the point 0jz = (0,0,...,0) that
represents the situation of absolute dissimilarity. The incorporation of a weighting scheme can be
additional useful to take the different significance of the individual attributes into account. Let dst
be a distance measure, let W = {wy, ..., w4} be a weighting scheme, the vector space distance

of the two entities e, and e, having the comparison vector ¢'is defined as:

dst(Z, 14, W
VSD(er, 0, W) = —25& L V) 4.15)

N dst(0|51, 1|g|, W)

For distance computation any vector-based distance measure as for example the Euclidean Dis-
tance [DD09, JH11, SB12] can be used. A weighted version of the euclidean distance is defined
as:

dstg(x,y, W) = \/Z'Axll w; X (x —y)? (4.16)

Interestingly, by using the weighted version of the Manhattan Distance [JH11] (also known as
City-Block Distance [SB12)), i.e. dsty(z,y, W) = Zlﬂl w; X |z — yl|, to compute the distance
between the vectors, the vector space distance corresponds to the average attribute distance that
we have defined in Equation 4.14.

Example 57 For demonstration, we consider the two entities e1 and es from the prepared sample table
from Figure 4.6. Both entities as well as their comparison vector and the used weighting scheme are
presented in Figure 4.12. The weighted average attribute distance results in AAD(eq, ea, W) = 0.292,
and the vector space distance results in VSD(e1, ea, W) = 0.208. Consequently, the similarity computed
by the first approach results in 1 — 0.292 = 0.708 and the similarity computed by the second approach
results in 1 — 0.208 = 0.782.

The advantage of distance-based decision models is that they are simple to understand and hence
more meaningful to the user than some of the models we will present in the remainder of this section.
This makes adaptations to the domain and reconfigurations as a reaction to poor detection results much
more intuitive. The problem with the weighting based approaches is that the model’s quality essentially
depends on the used weighting scheme, but the goodness of a weighting scheme always depends on the

considered domain. This makes finding an adequate weighting scheme a non-trivial but crucial task.

4.3.6.2. Rule-based Decision Models

Rule-based decision models have first been proposed by Wang and Madnick [WM&9]. The underlying
idea of these models is to map domain knowledge into a set of identification rules and then to make
duplicate decisions based on these rules.

Although they are often designed in a more informal way, identification rules can be typically trans-

formed into logical expressions of the form [NH10, Chr12]:

Premise = Conclusion 4.17)
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DEI fname Iname DoB city country phone email
el | dejohnw. tucker 1974-05-03 | newyork city | usa (0345)233848 | abc@me.com
e2 | johnbill tacker 1974-03-05 | newyork city | usa (0345)233848 | tucker@xy.com

(a) Two sample database entities

fname Iname DoB city country phone email
weighting scheme W 0.4 0.4 0.2 0.1 0.1 0.2 0.2
comparison vectorc | 0.5 5/6 1.0 1.0 1.0 1.0 0.0

(b) Weighting scheme and comparison vector

Figure 4.12.: A sample candidate pair, a weighting scheme and the pair’s comparison vector

where the premise is a predicate written in the conjunctive normal form:
Premise = (termy 1 V termyo V ...) A ... A (termp 1 V termy o V .. .) (4.18)

and the conclusion is either MATCH, POSSIBLE MATCH, or UNMATCH. The terms used in the premise
are usually atomic predicates that compares a value of the comparison vector with a constant, e.g. ¢[1] >
0.7, but can also be predicates that work on single attribute values, e.g. e1[A1] = X Vez[As] =Y.

One of the first rule-based approach has been proposed by Hernandez and Stolfo and is known as
Equational Theory [HS95, HS98]. In Equational Theory, only positive rules, i.e. rules of the form
Premise — MATCH, are considered. A candidate pair is classified as a MATCH, if at least one of the
given rules is triggered and is classified as an UNMATCH otherwise.

Profile-based approaches [DLLH03, WNJ08] make additionally use of negative rules, i.e. rules of
the form Premise — UNMATCH that directly classify a candidate pair as an UNMATCH, and sometimes
use maybe rules (Premise — POSSIBLE MATCH), i.e. rules that directly classify a candidate pair as a
POSSIBLE MATCH. Whereas in Equational Theory the order in which the rules are checked is irrelevant,
the checking order is significant in profile-based approaches if negative rules and positive rules are al-
lowed to have overlapping premises, i.e. there can be cases where rules of both kinds are triggered by the
same input. Moreover, by using negative rules, an UNMATCH is not implicated by the case where none of
the rules is triggered and the set of rules either has to be complete, i.e. they cover all possible values of the
comparison vector, or a default classification result has to be defined (e.g. True = POSSIBLE MATCH
or True = UNMATCH).

Doan et al. [DLLHO03, SLDO05] propose a rule-based approach that additionally use (negative) rules
for modeling constraints between the values of different attributes, as for example a rule that specifies
that a six year old kid cannot have an income of 100, 000$. In this case, the rules are not applied to the
comparison vector, but directly work on the attribute values of the compared entities.

Defining an identification rule is always a trade off between accuracy and coverage. On one hand a
rule should only trigger if its conclusion can be made with an high confidence (high accuracy), but on
the other hand it should trigger for as many candidate pairs as possible (high coverage) in order to held

the number of rules small and manageable.
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Rules are typically considered to be hard, i.e. they make decisions with absolute certainty. Nonethe-
less, rules can be also defined to be soft by attaching a confidence score to each of them (confidences
can be also assigned to set of rules). After checking all rules (negatives as well as positives) a final con-
fidence is derived from the confidences of the triggered rules. The final confidence is then used as input
to a threshold-based classification as it is known from the distance-based decision models.

Rules can be learned by a sequential covering algorithm [HKPO6] or by decision trees (see Sec-
tion 4.3.6.4). The problem with a rule-based decision model is that in cases where these rules cannot
be automatically learned, they need to be manually designed by domain experts which is expensive in
terms of time and money. Moreover, the modeled knowledge is most often only domain-specific and
hence cannot be used across different applications.

Further rule-based approaches are described by Galhardas et al. [GFSS00, GFS*01], Lim et al.
[LSPRO3], and Low et al. [LLLO1]. A similar approach that is based on knowledge pattern has been
proposed by Schewe and Wang [SW12].

Example 58 7o illustrate the concept of identification rules, we consider the sample data table from
Figure 4.6 and design a profile of hard identification rules that is shown in Figure 4.13. The first rule
classifies a candidate pair as a MATCH if both entities have the same birthday, have a first name that
is more similar than 0.6, and have a last name that is more similar than 0.8. The rules Ro and R3 are
additionally defined for cases where first names and last names are mistakenly swapped. The fourth
rule classifies two entities as an UNMATCH, if they live in different countries and their last names are
less similar than 0.5. The fifth rule handles the case where the first name and the last name of the first
person are both included in the email address of the second person. Finally, the default rule classifies all

candidate pairs for which none of the previous rules has been triggered as UNMATCHES.

R;:  (¢(frame, fname) > 0.6) A (€(Iname, Iname) > 0.8) A (¢(DoB, DoB) = 1.0) = MATCH
Ry :  (¢(frame, Iname) > 0.6) A (¢(iname, fname) > 0.8) A (¢(DoB, DoB) = 1.0) = MATCH
R3:  (c(iname, fname) > 0.6) A (C(tname, lname) > 0.8) A (€(DoB,DoB) = 1.0) = MATCH
Ry :  (c(iname, name) < 0.5) A (&(country, country) # 1.0) = UNMATCH
R5:  (&(iname, email) > 0.5) A (&(mame, email) > 0.5) = MATCH
Reefaure = True = UNMATCH

Figure 4.13.: Sample profile that consists of five hard identification rules

4.3.6.3. Probabilistic Decision Models

The statistical concept of probabilistic decision models was initially introduced by Newcombe et al.
[NKAJ59, NK62] and has first been formalized by Fellegi and Sunter [FS69]. The underlying idea of
probabilistic decision models is to classify a candidate pair based on the probability whether its compar-

ison vector is typical for a MATCH or is typical for an UNMATCH.
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Let Prob(C' | €) be the conditional probability that an entity pair with a comparison vector is identical
to ¢ belongs to the matching class C' € {MATCH, UNMATCH}. A candidate pair {e,, e5} is classified by
the following rule:

MATCH, if Prob(MATCH | ¢) < Prob(UNMATCH | ©),
classify(e,, es) = (4.19)

UNMATCH, otherwise .

Using Bayes Theorem [CAO3] and the binary logarithm to keep the ranges of the computed ratios

small, this rule can be transformed into:

. Prob(¢IMATCH) Prob(UNMATCH)
MATCH, if logy <Prob(c‘1UNMATCH)> < logy < Prob(MATCH)

) T (4.20)

classify(ei, ej) =
UNMATCH, otherwise .

Prob(C]MATCH)
Prob(¢]lUNMATCH)

[EIVO7]) of this comparison vector and the ratio logy(

The ratio Wz = logs( ) is called the matching weight (also known as likelihood ratio

Prob(UNMATCH)

m) corresponds to the threshold that

leads to the minimal classification error [EIVO7].

The problem with this statistical approach is that the probabilities Prob(MATCH) and
Prob(UNMATCH) as well as the conditional probabilities Prob(Z | MATCH) and Prob(Z | UNMATCH)
have to be known for any possible comparison vector Z. Since these values are usually not available,
they need to be estimated using a set of labeled training data.

A common way to reduce computational complexity and to reduce the dependency to large training
data sets is to assume conditional independence between the values from different vector positions. By
doing so, the conditional probability Prob(¢ | C') of a comparison vector ¢ and a matching class C' can
be computed as:

|€]

Prob(¢| C) = 1 Prob(cli] | C) (4.21)

It is obvious that the number of probabilities that need to be computed (or estimated respectively)
essentially depends on the number of possible comparison vectors. Since this number is unmanageable
in cases where the similarity scores of the comparison vector are real-valued, complexity is usually
further reduced by discretizing these scores. A discretized comparison vector is also called a probabilistic
matching pattern [Tall1]. After discretizing the comparison vectors, the matching patterns are used as
input for the decision model instead of the original comparison vectors.

In the extreme case, the real-valued scores are discretized into the binary domain {0, 1} where the
value 0 represent the case of disagreement and the value 1 represents the case of agreement. Let § € [0, 1]
be a threshold, two attribute values are considered to agree if their similarity is above 6 and are considered
to be disagree otherwise, i.e. the i-th position of the probabilistic matching pattern PMP is defined as:

) irdi >,
PMP[i] = 4.22)

0, otherwise.

Discretization makes probabilistic decision model useable in practice. However, the distinction into 0

(disagreement) and 1 (agreement) is not exactly enough for many use cases. Moreover, the number of
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possible patterns is only restricted to 2/ which is still a lot for large vectors. Thus, on the one hand,
the stronger the scores are discretized, the less accurate the resultant patterns become because the more
entity pairs are represented by the same pattern. On the other hand, the number of possible patterns
grows exponentially to the size of the domains into which the scores are discretized. Thus, the strength
of discretization is always a trade-off between accuracy and complexity.

For discretization a variety of functions can be used and it makes sometimes sense to use different
functions for different positions of the comparison vector, because the scores of some positions are more
discriminating than others. For example, the similarity of persons’ last names is more important for
decision making than the similarity of their residences. Thus, the similarity scores of the former are
discretized into a larger domain than the similarity scores of the latter.

In the case of a binary discretization, Naive Bayes can be further simplified by defining m; as the
probability that two duplicates agree at pattern position ¢ and by defining u; as the probability that two
non-duplicates agree at pattern position ¢. Based on these probabilities, the matching weight for the

pattern position ¢ is defined as:

log, <TZ>, if PMP[i] = 1,

Wa(i) = (4.23)
log, (“mf)), if PMPi] = 0.

(1—uy)
The matching weight of the whole pattern can then be computed as Wz = Lclo Wa(i).

Example 59 For illustration, we consider the sample table schema from Figure 4.6. We use a compar-
ison vector that consists of two similarity scores. The first score represents the similarity between the
entities’ first names and the second score represents the similarity between the entities’ last names.

In the first example, we use a binary discretization. Two first names agree if their similarity score is
greater than 0, = 0.7 and two last names agree if their similarity score is greater than 0, = 0.6. As
presented in Figure 4.14(a), the domain of possible patterns is of size four, namely ’11°, ’10°, ’01’, and
"00°.

Let us assume that we have made a statistical analysis on labeled training data. The resultant prob-
abilities for all four possible patterns are depicted in Figure 4.14(a) by two bars where the first bar
represents the probability that two duplicate entities have that pattern and the second bar represents

the probability that two non-duplicates have that pattern. In the second step, we order the patterns by
ProblUNMATCH) y ) g

Prob(MATCH)
Op/v < logﬂ%ﬁ) to separate the patterns into the sets of MATCHES, POSSIBLE MATCHES,

and UNMATCHES. The closer a pattern is to one of the two thresholds the higher is the risk to produce

their matching weight (see Figure 4.14(c)) and use the two thresholds 61/ p > logs(

a false positive or the higher is the risk to produce a false negative respectively. Since we partition the
set of possible patterns by their matching weight, each pattern is associated with a matching class and a
new candidate pair can now be simply classified by computing its pattern.

To demonstrate the differences that result from increasing the domain of possible patterns, we con-
sider a second example that is presented in Figure 4.14(b) and Figure 4.14(d), where we use a ternary
discretization, i.e. each similarity score is discretized to 0, 1, or 2. The similarity of two first names is

represented by 2 if it is greater than 0,1 = 0.7, is represented by 0 if it is lower than 0,2 = 0.3, and
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Figure 4.14.: The concept of probabilistic decision model illustrated by binary and ternary patterns

is represented by 1 otherwise. The similarity scores for last name are discretized accordingly by using
the thresholds 0;,7 = 0.8 and 0,0 = 0.4. We present five candidate pairs along with their comparison
vectors in Table 4.5. All pairs have different comparison vectors that are not even similar to each other.
Whereas the five candidate pairs are only assigned to two different patterns in the binary case, each of
them is assigned to another pattern in the ternary case. Thus, the patterns resulting from the ternary
discretization represent the original comparison vectors much better than the patterns that result from
the binary discretization. On the other hand this example illustrates the dramatic increase of possible
patterns (9 instead of 4), although we only consider comparison vectors of size two. For each pattern
two conditional probabilities are required. Thus, the number of probabilities that need to be computed
increases from 8 to 18. If we assume a conditional independence between the similarities of first name
and last name, the number of required probabilities can be decreased from 18 = 2x 3% t0 12 = 2x 3 x 2,

but is still one and a half as much as in the binary case.

Fellegi and Sunter [FS69] as well as Jaro [Jar89] primarily consider the case of a binary discretiza-
tion. Porter and Winkler [PWCC97, Win90, WT91] extend these considerations to larger domains of
patterns. For the case of Naive Bayes, Dempster et al. [DLR77] suggests to use the expectation maxi-
mization algorithm to estimate the conditional probabilities of the individual pattern positions. To relax
this assumption of attribute independence, Winkler et al. present an unsupervised estimation model that

is based on general expectation maximization [Win93] and propose a semi-supervised model that com-
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Candidate Pair | Comparison Vector | Binary Pattern | Ternary Pattern
{e1,e2} (0.4,1.0) (0,1) (1,2)
{e1,es} (0.7,0.7) (1,1) (2,1)
{e1,e4} (0.9,1.0) (1,1) (2,2)
{e1,e5} (0.1,0.6) (0,1) (0,1)
{e1,e6} (0.6,0.6) (0,1) (1,1)

Table 4.5.: Sample candidate pairs along with their comparison vectors and their probabilistic matching patterns

bines the Fellig-Sunter Method with Bayesian Networks [Win02]. Similar combination approaches have
been proposed by Fortini et al. [FLNS01] and Herzog et al. [HSWO07].

Since agreements on less frequent attribute values are usually better indications for duplicates than
agreements on high frequent values, Winkler and Thibaudeau [WT91] as well as Herzog et al [HSWO07]
consider the incorporation of attribute value frequency into weight estimation. An adaptation that in-
cludes a special handling of null values has been made by du Bois [NDB69]. A cost-based extension
of the Fellegi-Sunter Method that enables an assignment of specific costs to the four error classes true
positives, false positives, true negatives, and false negatives was firstly considered by Tepping [Tep68]
and has been later formalized by Verykios et al. [VMEOQ3, VMO04].

An extensive discussion on probabilistic decision models is given in [Mag08]. A mathematically less
detailed, but very illustrative presentation can be found in the book published by Talburt [Tal11].

4.3.6.4. Learning-based Decision Models

The idea of learning-based decision models is to construct a classifier using a conventional learning

algorithm.

Unsupervised Learning-based Decision Models Unsupervised learning [HTF11, BB10] is
characterized by the fact that all the processed data is unlabeled, and so the learning algorithm has to
directly infer the desired properties from the input data without an external prompting by a supervisor.
The most intuitive approach for an unsupervised learning based decision model is to cluster the candidate
pairs by their comparison vectors into two clusters as it can be realized by using the k-means algorithm
[HW79]. Finally, one of the resultant clusters is marked as the set of MATCHES and the other is marked
as the set of UNMATCHES where marking can be done based on the closeness of the clusters to the two
points 07 = (0,0,...,0) and 1 = (1,1,..., 1). Learning three clusters (an additional one for the
POSSIBLE MATCHES) has shown to be less effective, because POSSIBLE MATCHES can be very dissim-
ilar [GBO6]. Instead Gu and Baxter recommend to build a class of POSSIBLE MATCHES afterwards by
selecting the candidate pairs whose comparison vectors have similar distances to the centroids of both
clusters.

An unsupervised approach that has been implemented in the TAILOR system [EEV02] clusters all
candidate pairs by their comparison vector using an unconstrained clustering algorithm, i.e. an algorithm
where the number of clusters is not predefined. Then one candidate pair of each cluster is manually

classified by a domain expert and the resultant matching class is adopted to all candidate pairs of the same
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(a) Decision model based on supervised learning (b) Decision model based on the hybrid learning approach

Figure 4.15.: Principle Concepts of supervised learning decision models and hybrid learning decision models

cluster. The advantage of this approach is that the number of clusters can be larger than in the approach
presented above and thus the boundaries between the clusters is usually more clear. Its shortcoming is
that the approach is only semi-automatic and requires the contribution of domain experts.

It is important to note that by using an unsupervised learning approach, the decision model is not

applied to each candidate pair separately, but to the whole candidate pair space at a stroke.

Supervised Learning based Decision Models In contrast to unsupervised learning techniques,
supervised learning techniques require the existence of labeled training data. This training data set is used
to learn a classifier that can then be utilized to classify unlabeled data of the same domain. The principle
of a decision model that is based on a supervised learning algorithm is presented in Figure 4.15(a). First
a sample set of candidate pairs along with their comparison vectors is selected and manually labeled
(optionally an already labeled set of training data can be used). Second, the supervised learning algorithm
is used to learn a classifier based on the labeled data. Then the remaining entity pairs are classified using
the learned classifier.

Two supervised learning algorithms that are primarily used in the context of duplicate detection are

Decision Trees and Support Vector Machines.

e A Decision Tree learning algorithm starts with the set of all labeled training elements and splits
this set step by step into disjoint subsets until each of these subsets only contains equally labeled
elements. Usually, the information gain is used as splitting criterion. Popular decision tree learning
algorithms are CART [BFOS84], ID3 [Qui83], and its successor C4.5 [Qui93]. The result of such a
learning algorithm is a tree structure where the inner nodes represent sets of possible classification
results, the leaf nodes represent single classification results, and the edges represents boolean
conditions that are based on the comparison vectors. Since the tree should be able to classify each
possible input element, the conditions that are represented by the outgoing edges of one node must
cover the complete range of possible inputs, i.e. for each possible comparison vector the condition
of one of these edges must be satisfied. Figure 4.16(a) shows a sample decision tree that has been
produced by the CART algorithm.
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Figure 4.16.: Samples of a Decision Tree and a Support Vector Machine

In principle, each path from the root to any leaf in a decision tree can be considered as an own
identification rule. All root-leaf paths together form a profile. Since a decision tree is deterministic,
i.e. for each input exact one path is chosen, the profile’s rules have disjoint conditions and hence

represent a profile with an irrelevant checking order.

Support Vector Machines [SS02] represent a class of algorithms for learning binary classifiers.
The algorithm considers the numerical training elements as points in a multidimensional vector
space and constructs a hyperplane that separates the training elements into two groups so that
all elements in the same group are equally labeled and the distance of the nearest element to the

hyperplane (the so called margin) is maximized.

Since a hyperplane is always linear and the most element sets cannot be linearly separated, the Sup-
port Vector Machine uses the kernel trick. The kernel trick is based on the idea that transforming
the vector space (and with it the training elements) into a higher dimensional space which makes
a linear separation possible. The shortcoming of this approach is twofold. First the transformation
is computational expensive and second the re-transformation most often produces a function that
cannot be simply represented. For that reason, the transformation is realized by specific kernel
functions that guarantee that the re-transformed function is less complex.

A set of training elements as well as the hyperplane that has been produced by a linear kernel are

graphically presented in Figure 4.16(b).

For making duplicate decisions, the Support Vector Machine was firstly used by Bilenko et al.
[BMO3]. Note, the set of POSSIBLE MATCHES can be introduced afterwards by defining an un-

certainty region around the hyperplane.

Of course, other supervised learning algorithm such as Bayesian Networks [Was04, NJ09], Nearest

Neighbor Classifier [Chr08a, HTF11], or Neural Networks [HTF11, Kanl1] can be (and already have

been) used for learning classifiers as well.
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Figure 4.17.: Sample of an agglomerative hierarchical clustering on five entities

The accuracy of a classifier trained by a supervised learning algorithm essentially depends on the used
training data. Sarawagi and Bhamidipaty [SB02, SBKMO02] propose an active learning technique that
iteratively selects a small set of candidate pairs for manual labeling that are considered to be most am-
biguous and hence their labeling is expected to improve the accuracy of the preliminary learned classifier
best.

Hybrid Decision Model The idea of an hybrid decision model is to combine a supervised learn-
ing algorithm with an unsupervised learning algorithm [Chr(O8a] or to combine a supervised learning
algorithm with a distance-based decision models [CKLS01, ChrO8a]. The principle of a hybrid decision
model is depicted in Figure 4.15(b). First the unsupervised learning algorithm (or the distance-based
decision model respectively) is used to label a small set of candidate pairs. Then the labeled pairs are
used as training data for the the supervised learning algorithm. Christen [ChrO8a, ChrO8b] analyzes
the effectiveness of different combinations by evaluating them on real-world databases and synthetic

databases.

4.3.6.5. Clustering-based Decision Models

The underlying idea of a clustering-based decision model is to directly partition the input set of entities
(not comparison vectors!) into a set of clusters [HDI12]. A popular representative of such decision
models is based on the agglomerative hierarchical clustering [ZKFO05] and is performed in an iterative
fashion. At the beginning, each entity is considered as an own cluster. Then, in each iteration all clusters
are pairwise matched and the most similar cluster pair is merged to a single cluster. The process stops
if a predefined number of iterations is reached or the highest similarity score that has been computed in
the current iteration is smaller than a predefined threshold. In the first iteration, the similarity between
two clusters corresponds to the similarity between two entities. Thus any of the distance computation
approaches that have been presented in Section 4.3.6.1 can be used. The similarity between two larger

clusters can be defined in different ways. Two of the most interesting methods are:

e The Average Link method defines the similarity between two clusters as the average similarity

between two of their entities. Let C)., Cs be two clusters and let sim be a measure for entity
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similarity, the average link similarity between C;. and Cj is defined as:

267-607- Zesecs Sim(eTa es)

ALSim(C,., Cy) = X Gl

(4.24)

e The Canonical Entity method creates an entity that represents all the entities of one cluster and
defines the similarity between two clusters as the similarity between their canonical entities. A
canonical entity is usually created by merging the clusters’ entities on attribute basis, i.e. per
attribute a new value is created by either aggregating the values of all entities or by selecting one
of them. Selection can be done by a voting strategy that takes the most often occurring non-null
value. Aggregation can be done by string operations (e.g. the name values ’Bill Tucker’ and ’John
B. Tucker’ are aggregated to the value ’John Bill Tucker’) or by computing the average value for
numbers. Thus, this method incorporates the process of duplicate merging (see Section 4.4) into

the detection process in order to increase the process’s accuracy.

Two other similarity computation methods that are listed in [HDI12] are the Single Link method and
the Complete Link method. The first defines the similarity between two clusters as the highest simi-
larity between two of their entities and the second defines the similarity between two clusters as the
lowest similarity between two of their entities. However, both methods are identical with a combination
of a distance-based decision model and a specific approach for the phase of duplicate clustering (see
Section 4.3.7). The single link method corresponds to applying the Partitioning based on Connected
Components to the duplicate pair graph and the complete link method is identical to applying a duplicate

clustering approach that divides the duplicate pair graph into its completely connected components.

4.3.7. Duplicate Clustering

In the final phase of the duplicate detection process, the pairwise made duplicate decisions need to be
combined to a global result, i.e. the cluster-disjoint clustering of the database entities. Thus, the input
to this phase is a set of database entities and a set of pairwise duplicate decisions for some entity pairs.
The output is a cluster-disjoint clustering of all database entities. Notice, the clustering algorithm used
for this phase needs to be unconstrained because we do not know the number of resultant clusters in
advance.

We will illustrate this phase by three simple approaches: the Partitioning based on Connected Compo-
nents, the Partitioning based on Centers, and the approach of Edge Removal. All three approaches only
take those entity pairs into account that have been classified as a MATCH and use them to initially build a
so-called duplicate pair graph [NH10]. The duplicate pair graph is a weighted graph that has a node per
database entity. Two nodes are connected by an edge, if the corresponding entities have been classified
as a MATCH. The weight of an edge is the similarity of the corresponding entities. A sample duplicate
pair graph is illustrated in Figure 4.18(a). The perfect clustering of this example has four clusters and is
depicted in Figure 4.18(b).

Partitioning based on Connected Components [HS98] is the simplest clustering approach, because
it just considers each connected component of the duplicate pair graph as an own cluster. This approach
corresponds to an algorithm that forms the transitive closure of all proposed MATCHES and is used in

many duplicate detection approaches.
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(c) Result: Connected Components (d) Result: Center (e) Result: Edge Removal

Figure 4.18.: Sample scenario for duplicate clustering along with three illustrating results

From applying this approach to our sample duplicate pair graph, a clustering with three clusters results
(see Figure 4.18(c)). Building the transitive closure can group sets of entities together in the same cluster
even if the evidence that they represent the same real-world entity is rather low. For instance, consider
the two entity sets {e1, e2,e4} and {es, e5, €6, €9} from the given sample graph. Across these two sets
only the entities es and e have been classified as a MATCH. The other pairs (11 in numbers) either have
not been classified because of the candidate pair space reduction or have been classified as an UNMATCH.
Thus, using this approach implies a high risk of producing false positives (15 in our example). To reduce
that risk, this approach should be combined with a restrictive decision model that classifies an entity pair
only as a MATCH if it is somewhat confident in this decision.

Since the approach based on connected components tends to produce too many false positives, other
clustering approaches aim to divide the connected components into smaller clusters.

o Partitioning based on Centers [HGI00] is an approach that selects for each connected component
some nodes as centers and then puts each node into the cluster of its closest center. One strategy
for center selection is to sort all edges by their similarity in descending order and then to scan
the sorted list from the top to the bottom. Each scanned edge falls in one of the following four
cases: (a) both nodes are already assigned to a cluster, (b) only one node is already assigned to a
cluster, but is not a center, (c) only one node is already assigned to a cluster and has been selected
as a center, or (d) both nodes have not been assigned to a cluster. In the first case, nothing is
done because both nodes are already assigned to a cluster and if assigned once the cluster of a
node never changes. In the second case, the node that has not been assigned to a cluster so far is
selected as a new center. In the third case, the node that has not been assigned to a cluster so far is

added to the cluster of the other node. In the last case, one of the two nodes is selected as a new
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center and the other node is added to this center’s cluster. It can be easily seen, that this strategy
of center selection and hence the final clustering is affected by the strategy that sorts edges with
equivalent similarities and is affected by the strategy that selects one node as a new center when
both nodes have not been assigned to a cluster so far. Since for both strategies often a random
function is used, this effect can lead to non-deterministic results, i.e., the same process applied to
the same duplicate pair graph can lead to different clusterings. Moreover, experimental studies
showed that the approach of Partitioning based on Centers often produces many small clusters and
thus tends to produce many false negatives. An extension that diminishes both effects by finally
merging clusters with similar centers has been proposed by Hassanzadeh et al. [HM09, HCMLO09].

e The approach of Edge Removal [NH10] iteratively removes the edge with the lowest weight
from the initial duplicate pair graph until a stop criterion is satisfied and then builds the connected
components of the modified graph. A sample stop criterion could be that the graph does not contain
a transitivity path (the shortest path between two nodes) being longer than a certain number of
edges. Since paths are restricted to components, edge removal can be restricted to components as

well.

Example 60 For illustration, we reconsider the duplicate pair graph from Figure 4.18(a). If we al-
ways select the node with the lower index as a center in the fourth scanning case, independent from
the sorting strategy the Partitioning based on Centers always produces the clustering that is depicted in
Figure 4.18(d). This clustering has six clusters (the center nodes are colored green). Due to the clusters
being smaller than the clusters resulting from the approach of Partitioning based on Connected Compo-
nents, the number of false positives has been reduced to zero. On the other hand three false negatives
have been produced.

Using the stop criterion that no transitivity path is longer than two edges, the approach of edge removal
modifies the duplicate pair graph from Figure 4.18(a) by removing the edges {es,es5}, {ea2,es4}, and
{ea, €3} in exact this order. The final clustering depicted in Figure 4.18(e) has three clusters. Compared
to the Partitioning based on Connected Components, the number of false positives has been reduced from

fifteen to three without producing any additional false negative.

Partitioning based on Connected Components and Partitioning based on Centers belong to the class of
single-path clustering algorithms that perform the final clustering by iterating over the edges of the dupli-
cate pair graph only once. Thus, the complexity of these approaches is linear to the number of proposed
MATCHES and therefore scales even for large sets of database entities (always provided that the number
of proposed MATCHES does not escalate). The complexity of the approach of edge removal essentially
depends on the stop criterion. However, if the computation of the stop criterion is less complex, the total
complexity of this approach is similar to the one of the single-path algorithms.

Further approaches that can be utilized for duplicate clustering are the Star Clustering algorithm
[APRO4], the algorithms of the Ricochet family [WB09], Correlation Clustering [BBC04, DEFIO06,
ACNO8, ARS09], Markov Clustering [vD0O9], Cut Clustering [FTTO03], and Articulation Point Clustering
[THCS90, BCKTO7]. Experimental evaluations of some of these clustering algorithms can be found in
[HCMLO9, Har12]. Note, these approaches are no single-path algorithms and therefore are computa-

tionally more expensive than the three approaches presented above. Moreover, some of these approaches
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(star-clustering, articulation point clustering, and some algorithms of the ricochet family) can produce
non-cluster-disjoint clusterings. In such cases, appearing overlaps must be eliminated afterwards either
by clerical reviews or by an automatic solution.

An interesting approach has been proposed by Chaudhuri et al. [CGMO0S5]. In contrast to the duplicate
pair graph, the approach only considers the similarities between two entities and not their matching class.
The final clustering is then created based on the two properties sparse neighborhood and compact set
so that all entities of one cluster are high similar (compact set) and all entities of different clusters are
less similar (sparse neighborhood). By doing so this approach does not use the same two thresholds to
classify all candidate pairs based on their similarities, but uses two individual thresholds per candidate
pair instead.

Note, since a meaningful clustering approach would never assign two entities to the same cluster if the
duplicate-pair graph does not contain a path between them, all meaningful duplicate clustering solutions
are always dominated by the clustering that result from computing the connected components of the

duplicate pair graph.

4.3.8. Quality Evaluation

As mentioned before, designing an appropriate duplicate detection process is always a trade-off between
effectiveness and efficiency. The efficiency of a duplicate detection process can be simply rated by its
processing time and the size of the required storage. The effectiveness of a duplicate detection process
is evaluated by comparing its resultant clustering with a benchmark clustering (called as gold standard
Cgold) that is considered to be perfect. Usually, the effectiveness of a duplicate detection process is
considered as its quality. The meaning of quality is not universal and depends on the considered use
case, because sometimes a not detected duplicate is much worse than an incorrectly classified duplicate
and sometimes the contrary is the case. Moreover, even if both errors are considered to be equally poor it
is generally not completely clear which quality measure represents the intended meaning of quality best,
because the similarity to the gold standard can be defined in several ways.

Existing quality measures for deterministic duplicate detection [MWGMI10, Tall1, Chr12, MNHG12]
can be classified into pair-based evaluation measures and cluster-based evaluation measures. Measures of
the first class treat duplicate detection as a binary classification problem, i.e. each entity pair is classified
as a MATCH or an UNMATCH, and hence define quality on the pairwise duplicate decisions made. In
contrast, measures of the second class rate detection quality as the similarity between two clusterings,

i.e. the detection result and the gold standard.

4.3.8.1. Pair-based Evaluation

Iterative approaches for duplicate detection [NH10] are based on matching entities in a pairwise fashion.
For that reason, the quality of an iterative duplicate detection process is usually measured by the quality
of the pairwise duplicate decisions that have been made by this process.

The set of all entity pairs that are modeled in a clustering C is defined as:

Pairs(C) = {{er,es} | er,es € rng(C), e, # €5} (4.25)
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The set of pairwise MATCHES (short M (C)) and the set of pairwise UNMATCHES (short U(C)) that

are implicated by a cluster-disjoint clustering C are defined as:

M(C) = {{er’eS} | {67‘768} € Pairs(C), JC € C: {eraes} - C} (4.26)
= UCEC Pairs({C}) (4.27)
Ul€) = {eresh|{eres} & M(C)} (4.28)
= {{e, es}|{er,es} € Pairs(C), BC € C: {er,es} C C} (4.29)

= {{er es} | {er,es} € Pairs(C),3C,,Cq € C: e, € Cp,es € Cg, Cp # Cy} (4.30)

It is important to note that each entity pair is either a MATCH or an UNMATCH and hence it holds that
Pairs(C) = M(C)UU (C). In standard duplicate detection scenarios, the number of UNMATCHES exceeds
the number of MATCHES by far. Thus, computing the exact set of UNMATCHES can be computational
very expensive and hence need to be avoided. For that reason, an entity pair {e,,es} € Pairs(C) is
usually only logically assigned to U(C) by not being in M (C), i.e. by using the equation U(C) =
Pairs(C) — M(C).

To shorten the formulas, we sometimes denote a quality score QM(C, Cgo1q) that result from evaluating
the clustering C on the clustering Cgo14 by using the quality measure QM simply as QM as long as C and
Cgolq are clear from context.

Measures for pair-based quality evaluation are based on the set of Pair True Positives (short pTP), the
set of Pair False Positives (short pFP), and the set of Pair False Negatives (short pFN):

pTP(C,Coo1a) = M(C) N M (Cgold) (4.31)
pFP(C, Cgold) = M(C) N U(Cg01d) = M(C) — M(Cgold) 4.32)
PEN(C, Caora) = U(C) N M (Cyota) = M (Cora) — M(C) (4.33)

The most commonly used pair-based quality measures are:

e The Number of False Decisions is the size of the set of Pair False Decisions (short pFDec) and
hence is the total number of entity pairs that are incorrectly classified as an UNMATCH or are

incorrectly classified as a MATCH respectively:

pFDec(C, Cgold) = pFP(C, Cgold) U pFN(C, Cgold) 4.34)
= |pFDeC(C,Cgold)| = |pFP(C, Cgold)| + ‘pFN(C, Cgold)| 4.35)

e The Pair Recall (short pRec) is the amount of true duplicates that are correctly classified as a

MATCH:
|M(C) N M(Cgola)|
Rec(C, C. = 4.36
_ [pTP|
= [pTP|+ PN @37

e The Pair Precision (short pPrec) is the amount of all MATCHES that are correctly classified as a

MATCH:
IM(C)N M (Ceoa)]  |PTP|

pPrec(C, Coold) = 1M (C)] ~ [pTP| + |pFP|

(4.38)
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Figure 4.19.: The Pair True Positives, Pair False Positives, and Pair False Negatives of C1, C2, and C3
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Quality Measure: | Clustering C; | Clustering Co | Clustering C3
Number of pTP 7 5 7

Number of pFP 15 0 3

Number of pFN 1 3 1

Number of pFDec | 16 3 4

pRec 7/8=0.875 5/8=0.625 7/8=0.875
pPrec 7/22=0.318 5/5=1.0 7/11=0.636
pFy 7/15=0.467 10/13=0.769 7/9=0.778

Table 4.6.: Quality scores of C1, C2, and C3 for the discussed pair-based evaluation measures

e The Pair F’-score (short pF7) is the harmonic mean of Pair Recall and Pair Precision:

2 x pRec x pPrec 2 x |pTP|

= 4.39
2 % [pTP| + |pEP| + [pFN] (4.39)

i (C.C =
PF(C, Cola) pRec + pPrec

The number of Pair False Decisions is an element of the domain Ny. In contrast, the quality score of
Pair Recall, Pair Precision, and Pair F}-score is a normalized value in the range [0, 1].

Because the most entity pairs are no duplicates and are correctly classified as UNMATCHES, the set of
Pair True Negatives pTN = U(C) N U(Cgola) clearly dominates the classification problem, i.e. |[pTN| =
|CPS,aive| — |pTP| — |pFP| — |pFN| >> |pTP|+ |pFP|+ |pFN]|. For that reason, measures for classification
quality that are based on the number of Pair True Negatives, e.g. Accuracy [Chr12], are most often less
suitable for duplicate detection, because the trivial and unacceptable solution of classifying all entity
pairs as UNMATCHES would produce a result of high quality.

Example 61 For illustration, we consider the three clusterings from Figure 4.18. The clustering that
results from the partitioning based on connected components (see Figure 4.18(c)) is denoted as C1, the
clustering that results from the partitioning based on centers (see Figure 4.18(d)) is denoted as Co, and
the clustering that results from the approach of edge removal (see Figure 4.18(e)) is denoted as Cs.

The Pair True Positives, the Pair False Positives, and the Pair False Negatives of these clusterings are
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graphically presented by the three matrices in Figure 4.19. The size of these three sets as well as the
quality scores of the other pairwise evaluation measures for these three clusterings are listed in Table 4.6.

Whereas clustering Co has a perfect Pair Precision, clustering Cs has the best Pair Recall and F-
score. In contrast, clustering C1 has by far the worst quality in Pair Precision and hence a low Fy-score
as well. By considering these quality measures, clustering Cy is clearly dominated by clustering Cs
because the latter has the same quality score as the first one or has a better quality score than the first
one for every measure. In contrast, the decision whether Co is better than Cs or Cs is better than Co

depends on the quality requirements of the considered application.

A less often used (but also little-known) pair-based quality measure is the Efficacy [BT06] that com-
putes a recall value and a precision value per duplicate cluster and finally aggregates these values by
computing the average Fi-score of all clusters. To illustrate the robustness of a duplicate detection ap-
proach against variations in parameter settings a graphical representation as the Recall-Precision Graph
or the ROC-curve is often used [Chr12].

In the context of candidate pair space construction, Pair Recall is typically denoted as Pairs Com-
pleteness and Pair Precision is typically denoted as Pairs Quality [Chr11] where in both measures the
candidate pair space, i.e. the set of all acceptances, is considered as the set of MATCHES and the set of
all rejections is considered as the set of UNMATCHES. As a consequence, the set of true acceptances
corresponds to the set of Pair True Positives, the set of false acceptance corresponds to the set of Pair
False Positives, and the set of false rejections corresponds to the set of Pair False Negatives. Another
typical measure that is used to rate the effectiveness of a blocking method is the Reduction Ratio [Chr11]
that computes the amount of rejected entity pairs among all possible entity pairs and hence reflects the
percentage of entity pairs that are removed from the search space. Note, the Reduction Ratio is not
affected by the gold standard. Let CPS be the constructed candidate pair space and let CPS,;,. be its

corresponding naive candidate pair space, the Reduction Ratio is computed as:

P naive P P
RRath(CPS, CPSnaive) = % =1- % (440)

4.3.8.2. Cluster-based Evaluation

In measures for cluster-based evaluation the quality of a duplicate detection process is rated by the
similarity of its final clustering C to the perfect clustering Cgoq. The more similar both clusterings are,
the better is the process’s quality.

The simplest cluster-based measures are Cluster True Positives, Cluster False Positives, Cluster False
Negatives, Cluster Recall, Cluster Precision, and Cluster F-score [MWGM10] that are defined accord-
ingly to their pairwise equivalents, but computes set intersections and set exclusions of clusters instead
of pairs. The problem with these measures is that a cluster is already classified as a false positive, if it
differs from its corresponding cluster of the gold standard only by a single entity. This usually leads to
a low number of true positives even if many clusters of both clusterings are very similar. As a conse-
quence, these measures are only less suitable for quality evaluation and more sophisticated measures are
typically used instead.

More suitable cluster-based quality measures are:
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e The Closest Cluster I -score (short ccF1) [MWGM10, MNHG12] eliminates the drawback of the
Cluster F-score by also taking similar clusters into account. It is defined as the harmonic mean of
the Closest Cluster Precision and the Closest Cluster Recall. The Closest Cluster Precision (short
ccPrec) is defined as:

ZCP eC maxcq eCgold Sim(Cp7 CQ)

ccPrec(C, Coola) = IC

(4.41)

where sim(Cp, C,) is a set-based similarity function (e.g. the Jaccard Coefficient Igi BgZI ). Thus,

the closest cluster precision is the average maximal similarity the clusters of C have to a cluster of

the gold standard. Similarly, the Closest Cluster Recall (short ccRec) is defined as:

Ecq €Cood maxc,ccsim(Cp, Cq)

’Cgold‘

ccRec(C, Cyola) = (4.42)

As a consequence, the Closest Cluster F-score is defined as:

2 x ccPrec x ccRec
ccF1(C, Cooa) = ccPrec + ccRec (4.43)

The score domain of all three measures is the range [0, 1].

A quality measure which is based on a similar idea is the K-measure [CGLO7] that uses the

Average Cluster Purity and the Average Author Purity to compute a representative quality score.

e The Variation of Information [Mei03, Mei07] (short VI) measures the ’information’ that is lost
or gained by converting the clustering C to the gold standard Cy1g and is defined as follows:

VI(C, Cgold) = H(C) + H(Cgold) — 2[(0, Cgold) (4.44)

The function H represents the the total entropy of the individual clusters and the function I repre-

sents the mutual information between C and Cgolg:

B e e
HEO) = =D e fng(@)] X10g<mg<c>\> (44

_ NGl o, (160Gl x Irag(€)
1 G = D ye 2uccn g <TG TG ) 44

By comparing two clusterings C and C’ with the same range r = rng(C) = rng(C’), the Variation

of Information produces a quality score that is a normalized value in the range [0, log(r)] [Mei03],
where 0 means that there is no distance between the compared clusterings, i.e. C = C’, and
log(r) means that one of the clusterings contains a single cluster and the other clustering contains

r clusters.

Extensions of the Variation of Information are the LogN Normalized Variation of Information
[Mei07] and the Normalized Variation of Information [RR09]. Two other entropy based measures
are the V-measure that has been introduced by Rosenberg et al. [RHO7], and the Normalized
Mutual Information proposed by Strehl [Str02, SGO3].




136 4. Duplicate Elimination

e The Basic Merge Distance (short BMD) [AKE(04] has been inspired by the Edit-Distance. Recall,
the Edit-Distance between two strings is the minimal cost that is required to transform the first
string into the second one by using letter operations such as insert, delete, update, or swap. In the

domain of clusterings, the fundamental ’edit’ operations are cluster split and cluster merge.

A cluster split is an operation C' — C), C, that partitions a cluster C' into the two disjoint non-
empty clusters Cp, and Cy, ie. C,NCy = 0,C, U Cy, = C,Cp,C, # (. Applying a split
C — Cp,C, to a clustering C results in the clustering (C — {C}) U {C),, C,} and is only a valid
operation on C if C € C.

In contrast, a cluster merge is an operation C),, C, — C' that merges two clusters to a single one,
ie. C = C,UC,. Applying a merge C),C, — C to a clustering C results in the clustering
(C —{Cp,Cq}) U{C} and is only a valid operation on C if Cp,, C;; € C.

To avoid trivial and less meaningful transformations such as to initially merge all cluster of C to a
single one and then to split this single cluster into the clusters of Cgo1q, Al-Kamha et al. [AKE04]
additionally introduce the condition of path legality that defines a path (sequence) of merge and
split operations from the clustering C to the clustering C’ to be legal, if each cluster that result from

any of the path’s merge operations is the subset of any cluster in C’.

The BMD of C and Cyyq is then defined as the number of operations in the shortest legal path from
C to Cgola- A quality score resulting from using the BMD is a natural number or zero if C = Cgolg.
A normalized version of the BMD has been proposed by Menestrina et al. [MWGM10].

e Menestrina et al. [MWGM10] extend the Basic Merge Distance by two cost functions f,, and f
that penalize merge and split operations depending on the sizes of the clusters that are merged or
split respectively. Thus, the Generalized Merge Distance (short GMD) from a clustering C to the

gold standard Cgoq is the minimum cost of a legal path from C to Cgo14, where:
e the cost of a merge operation Cp, Cy — C'is fi, (|Cy|, |Cyl),
e the cost of a split operation C' — C), Cy is fs(|Cpl, |Cyl).

Both cost functions cannot produce negative costs, are symmetric, i.e. f(z,y) = f(y,x), and
monotonically increase with their parameters, i.e. f(x,y) < f(x + j,y + k) for non-negative j, k.
Obviously, the GDM can be specialized to the BMD using f,,(x,y) = fs(x,y) = 1. Interestingly,
Menestrina et al. show that the GMD can be specialized to Pair Recall, Pair Precision, and the

Variation of Information using specific configurations of the two costs functions f,, and f.

A quality score resulting from using the GMD is a positive real number or zero if C = Cyq.

A commonly used measure for computing clustering similarity is the Rand Index [Ran71] that is
equivalent to the accuracy of a binary classification problem. Because accuracy is dominated by the high
number of Pair True Positives, the same holds for the Rand Index, the Adjusted Rand Index [HA85] and
the recently developed Talburt-Wang Index [Tall1] which is a lighter version of the Rand Index that aims
to simulate the same result with lower computation effort. As a consequence, all these measures are only

less suitable for evaluating the quality of a duplicate detection process.
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L cluster of C1, C2,and C3  Cooa — | {€1,€2,€4) | (e3,€5,€6) | (e7,es) | (€9, e€10)
Cy = {e1,e9,e3,¢€4, €5, €6,€10) 3/7 3/7 0 1/7
Cy = (er, eg) 0 1 0

Cs = {eo) 0 0 1/2
Cy = {e1,e2,e4) 1 0 0

Cs = {es) 0 1/3 0 0

Cs = (es, €6) 0 2/3 0 0

Cr = (o) 0 0 0 1/2
Cs = (es, €5, €6, €10) 0 3/4 0 1/5

Table 4.7.: The Jaccard Coefficient between the individual clusters of C1, C2, C3 and the clusters of the gold
standard Cgolg

split: {1,2,3,4,5,6,10} >{1,2,4} {3,5,6,10} split: {3,5,6,10} >{3,5,6},{10} merge: {9},{10} >{9,10}

Clustering C; Clustering Cgoiq

Figure 4.20.: The shortest legal split / merge path from C; to Cgoia

Further cluster-based quality measures are the MUC-Fy-score [VBAT95], the B3-F,-score [BB98],
the Automatic Content Extraction (ACE) evaluation score [DMPT04], and the Constrained Entity-
Alignment F-score [Luo05]. All these measures are described and compared in the survey written by
Maidasani et al. [MNHG12].

Example 62 7o illustrate the Closest Cluster F-score, we first compute the Jaccard Coefficient between
all clusters in C1, C, and Cs to all clusters of Cypiq. These values are presented in Table 4.7. From these
similarities, the Closest Cluster Recall and the Closest Cluster Precision can be computed from which
in turn the Closest Cluster F-score can be derived. The respective results as well as the quality score
for the Variation of Information are presented in Table 4.8. Note that the Variation of Information is a
distance measure (best value is 0.0) whereas the Closest Cluster F-score is a similarity measure (best
value is 1.0).

To illustrate the Merge Distance, we choose clustering C1 and transform it into the gold standard
by two split operations and one merge operation. The transformation is graphically presented in Fig-
ure 4.20. The BMD of all clusterings are presented in Table 4.8.

As you can see in this example, the BMD is often not as selective as the Closest Cluster F'i-score,

because Cy and C3 have both the same distance, but have different Closest Cluster Fy-scores.

More detailed comparisons of the individual evaluation measures can be found in [MWGMIO,
MNHGI12, Rem12].
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Quality Measure: | C; = {C1,C2,C3} | Co = {C2,C5,C4,C5,Cs,Cr} | C3 = {C2,C35,C4,Cs}
ccRec 0.589 0.792 0.8125

ccPrec 0.643 0.667 0.8125

ccFy 0.615 0.724 0.8125

VI 0.36553 0.1427 0.09764

BMD 3 2 2

Table 4.8.: Quality scores for C1, C2, and Cs for the discussed cluster-based evaluation measures

4.3.9. Duplicate Detection in Multi-Table Databases

In complex databases, tables are connected by foreign keys and thus tuples from different tables are
related with each other. Although database entities can theoretically belong to the extensions of several
entity tables, such a multi-table membership not been considered in duplicate detection approaches so
far and is firstly discussed in Section 5.3 of this thesis. Therefore, existing approaches for duplicate
detection in multi-table databases still consider each entity to be represented by a single tuple, but in
contrast to single-table approaches they additionally take relationships between these tuples (and hence
their corresponding entities) into account. Such relationship information can be used to improve the
effectiveness (and sometimes even the efficiency) of the detection process.

Relationship information is usually described by a set of related entities. Thus, let e be a database
entity, Naumann and Herschel [NH10] define the relationship description of e (denoted as RD(e)) as
the set of all database entities that are descriptive of e.

Example 63 For demonstration we consider the database presented in Figure 4.21. This database con-
tains the three tables ’Person’, ’"Book’, and *Purchase’. Whereas the first two tables are entity tables, the
third table is a relationship table. The extension of the first table contains two entities (persons) and the
extension of the second table contains four entities (books). Person py bought the three books b1, ba, and
bs, and person pa purchased the three books ba, b3, and by. As a consequence, if we consider all directly

related entities to be descriptive, the relationship descriptions of the individual database entities are:

RD(p1) = {b1, b2, b3} RD(b1) = {p1}
RD(p2) = {b2,b3,b4} RD(bz) = RD(b3) = {p1,p2}
RD(by) = {p2}

Of course, the meaning of related entities is not necessarily restricted to relationships that are directly
modeled in the database, but can be extended to indirectly modeled relationships. For instance, we
could also say that book b is related to book by because they have been bought by the same person. In
general, which relationships are included into the relationship description depends on the respective use
case. Sometimes it can be even beneficial to include implicit relationships into the description and to
exclude explicit relationships from the description if the information of the first one is useful to identify

duplicate database entities while the information of the second one is not.

Measures that rate the similarity between two relationship descriptions can be classified into two

classes: (a) measures that use the identities of the related entities to compute a similarity between the
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Person (Entity Table) Purchase (Relationship Table) Book (Entity Table)
DEI name person book DEI title author
pl John Doe pl bl bl | Stranger,The| AKamu
p2 Joan Doe pl b2 b2 Pale Fire V.Nabokov
pl b3 b3 | MrsDalloway V.Woolf
p2 b2 b4 | TheStranger | A.Camus
p2 b3
p2 b4
person = Person.DEI,
book - Book.DEI

Figure 4.21.: Multi-table database with two entity tables and one relationship table

compared entity sets and (b) measures that use the similarities of the related entities to compute the
similarity between the compared entity sets [BGO7b].

o Identity-based Entity Set Matching: Identity-based measures rate the similarity between two
relationship descriptions based on the number of shared entities, i.e. the more entities both de-
scriptions share, the more similar they are. As a consequence, we can use a set similarity measure

like the Jaccard Coefficient as an identity-based measure to compare two relationship descriptions.

o Similarity-based Entity Set Matching: In contrast to measures of the first class, similarity-based
measures do not use the identities of the related entities to compute the similarity between two
entity sets, but use the similarities between these entities instead. By doing so, two entity sets are
considered to be similar, if their entities are similar. Nevertheless, a high similarity between two
entity sets is not restricted to cases where all their elements are pairwise similar to each other,
but rather have to satisfy the condition that a set .S is always maximally similar to itself, i.e.
sim(S,S) = 1. For that reason, the similarity between two relationship descriptions should
not be computed as the average similarity between their elements, but should be computed by
using a hybrid similarity measures like the Monge-Elkan Similarity. Recall, hybrid measures
use an internal measure for element similarity. In the case of entity sets, the similarity between
two elements corresponds to the similarity between two entities. As a consequence, the internal
similarity measure needs to be a method for matching whole entities as we have described in the

previous sections.

Example 64 To illustrate the difference between both matching approaches, we reconsider the two re-
lationship descriptions RD(p1) = {b1,b2,bs} and RD(p2) = {ba, b3, by} from Example 63. If we
use the Jaccard Coefficient to compute the identity-based similarity of these descriptions, we receive
the similarity score sim(RD(p1), RD(p2)) = 2/4 = 0.5. In contrast, if we assume the follow-
ing entity similarities sim(b1,b2) = 0.1, sim(b1,b3) = 0.0, sim(by,bs) = 0.5, sim(bz,b3) = 0.2,
sim(ba, by) = 0.1, and sim(bs,bs) = 0.2, the Monge-Elkan Similarity between RD(p1) and RD(p2)
results in sim(RD(p1), RD(p2)) = sim(RD(p2), RD(p1)) = (0.5+1+41)/3 =5/6.
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4.3.9.1. Collective Duplicate Detection

Naive approaches for relationship-based duplicate detection [BGO7b] incorporate the similarity of their
relationship information into the decision process, but still make their duplicate decisions independently,
i.e. the decision on one pair only depends on the initially given data and is not affected by the decisions
on the other candidate pairs. Note that in this case each candidate pair is only matched once and if a
similarity-based measure is used for matching relationship descriptions, the similarity between related
entities is then only computed on the basis of the similarities between the entities’ attribute values.

In contrast, approaches for collective duplicate detection make all the pairwise duplicate decisions in
a collective way, i.e. for making the decision on one candidate pair all decisions on the other candidate
pairs are taken into account. For that reason, the effectiveness of collective detection approaches is
usually improved compared to naive approaches.

Collective duplicate detection approaches can be further categorized into two classes. Approaches of
the first class [DHMOS5, BGO7b, BG07c, HNST12] consider the fact that the result of matching one entity
pair can affect the relationship similarity of other entity pairs. In the case of an identity-based measure,
relationship similarities are affected by a detected MATCH because two previously distinguished enti-
ties become equal. In contrast, if a similarity-based measure is used, the similarities of the relationship
descriptions are directly affected by the newly computed entity similarities. Since the increase of rela-
tionship similarity can in turn increase the final similarity between two entities, their rematch can cause
new affections. In order to incorporate these affections into the detection process, collective duplicate
detection approaches perform multiple iterations on the matching phases and rematch an entity pair if it
has been affected by a newly computed duplicate decision. To reduce the number of required iterations,
several approaches, e.g. [WNO6b, HNST12], use a queue that contains all candidate pairs that still need
to be matched and update the queue for each newly detected affection, i.e. all newly affected pairs that
are not already in the queue are added to the queue. Changing the queue order can save a lot of computa-
tion time, because it can reduce the number of newly detected affections (and hence can reduce the total
number of required matchings). For that reason, several algorithms for optimizing the queue order have
been proposed [WNO6b]. The iteration process stops if all pairs have been matched, i.e. the queue is
empty. To avoid endless iterations in cases where a similarity-based measure is used to rate relationship
similarity, affections are typically only considered if its underlying change in the corresponding entity
similarity is above a given threshold.

Approaches of the second class of collective duplicate detection are based on the use of probabilistic
inference [MWO04, PD04, PMM ™02, SD06, BG06, HSMO08] and hence make duplicate decisions in a
truly collective manner. Rastogi et al. [RDG11] present message based strategies that enable a paral-
lelization of both class of collective detection approaches.

4.3.9.2. Negative Information

Another way to use information on entity relationships in order to increase the effectiveness of a duplicate
detection process is to extract negative information from the database. Negative information means
evidence that two entities must be an UNMATCH. For instance, if we detect that one person has been

the coauthor of a second person in several papers, the likelihood that both persons are duplicates is
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minimized, because otherwise the database must be heavily corrupted. Thus, we can certainly classify
both persons as an UNMATCH without matching their attribute values or relationship information first.
Consequently, negative information does not only help to increase the confidence of the made duplicate
decisions, but can also save matching time. An approach that extract negative information from the
database by using specific rules is Dedupalog which has been developed by Arasu et al. [ARS09].

4.3.10. Related Topics

The presented approach for iterative duplicate detection is closely related to some topics that we have
not discussed in this chapter so far.

4.3.10.1. Similarity Joins

A closely related area of research focuses on the efficient computation of similarity joins. Similarity joins
are join operators that do not only join tuples on equivalent values, but join two tuples if their similarity
is above a given threshold.

From a computational viewpoint, a similarity join can be considered as a light version of a duplicate
detection process that need to be computed in at most a few seconds if a low response time is required.
From a semantical viewpoint, however, there is an essential difference between both concepts. Whereas
duplicate detection only uses the property of data similarity to infer real-world equivalence, the goal of
a similarity join is to compute all pairs of similar tuples. Thus, duplicate detection is a heuristic process
and its exact result is usually not known. Moreover, the quality of its result essentially depends on
the suitability of the selected similarity measures for indicating real-world equivalence. In contrast, the
result of a similarity join is clearly defined by the used similarity measure and can be exactly computed.
Nevertheless, many techniques from duplicate detection can be adopted for similarity join computation

and vice versa. Recently a survey on similarity joins has been published by Augsten and Bohlen [AB13].

4.3.10.2. Stanford Entity Resolution Framework

The Stanford Entity Resolution Framework® (short SERF) [BGMK T 06] is a well known framework for
duplicate elimination that incorporates duplicate merging into the detection process in order to increase
detection effectiveness. Thus, in contrast to the general approach for duplicate elimination that we have
presented in this chapter, SERF does not separate the phases of duplicate detection and duplicate merging,
but perform both phases in an interleaved manner. Once a MATCH is detected, the corresponding entities
are immediately merged and replaced by the merged entity so that subsequently performed matching
processes will use the values from the merged entity instead of the values from the original entities. In
general, this approach is quite similar to a clustering-based decision model that uses the canonical entity
method to compute the similarity between two clusters (see Section 4.3.6.5).

In SERF, the matching process as well as the merging process are considered as abstract functions that
can be implemented in several ways, but always need to satisfy some fundamental requirements. To date
several duplicate elimination approaches that are conform to SERF have been proposed. Implementations
that have been developed within the SERF project are G-Swoosh [BGMM™09], R-Swoosh [BGMM™109],

8http://infolab.stanford.edu/serf/
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F-Swoosh [BGMM™T09], D-Swoosh [BGMG'07], and P-Swoosh [HHMO™06]. All these approaches
differ in the way they match and merge entities. Koosh [MBGMO06] is an implementation that take
confidence values of the input data, e.g. reliability of the source or accuracy of the value, into account.
Whang et al. [WBGMO09] published an extension of SERF to negative rules, i.e. rules that restrict the
space of possible merge outputs. Blocking approaches for scaling up duplicate elimination with SERF
has been proposed by Whang et al. [WMK™09] and Kim et al. [sKL10]. More details on SERF can be
found in the papers that are referenced in this subsection or can be found in the book written by Talburt
[Talll].

4.3.10.3. ldentity Management

Talburt et al. [Tall1] developed a system called Oyster® that is not only designed to eliminate duplicates
in a database, but rather to manage database entities over a life cycle.

Conventional duplicate elimination approaches get a database as input and produce a database as out-
put. An application that works on the output database has no information on the origins of the processed
database entities and therefore can never check and repair a false positive afterwards. Moreover, a con-
ventional database system only stores the current value of an attribute.

In contrast, the Oyster system manages all database entities along with all the changes that have been
applied to their data values, e.g. a change in the address of a person. This information can help to improve
duplicate detection quality because the system automatically provides context data to overcome value
conflicts that result from outdated data. Moreover, the system does not only store the current instance of
the database, but also stores any of its old entities, i.e. entities that have been removed from the actual
database. For instance, if a duplicate cluster is merged, the old entities are kept in the system. Thus, the
system is able to check and repair false positives when new evidence becomes available. Moreover, the
system helps to avoid duplicates that results from duplicative insertions into the database. Each time a
new entity is inserted into the database, the existing entities (current as well as old ones) are checked for
a duplicate by considering current values as well as old values. If the new database entity is detected to
be a duplicate of an already existing one, it is not inserted into the database, but the data on the existing

entity is changed instead.

4.3.10.4. Non-relational Approaches

Naturally, research on duplicate detection has not been restricted to relational databases. Sev-
eral approaches for detecting duplicates in XML documents have been proposed by Herschel et al.
[WNO5, WNO06a, PWNO06, WeiO8] and Leitao et al. [LCWO07, CHL10, LCH13b, LC13]. Volz et al.
[VBGKO09b, VBGK09a] and Jentzsch et al. [JIB10] consider the detection of duplicates in RDF data.

4.3.10.5. Data Coupling and Entity Identification

Two specific problems that are similar to the one of duplicate detection are data coupling [vK12] and
entity identification [TWPHO7] (also denoted as entity search [NH10]). In data coupling the entities of

two duplicate-free databases are matched with each other in order to create an 1:1 mapping between the

*http://sourceforge.net/projects/oysterer/
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Duplicate Detection Data Coupling Entity Identification
Matching
Approach - -
all with all all of one side with one with all

all of the other side

©) OO
O\ O | 0“0
@ Q@ O

Result

©)
OO
@

clustering 1:1 mapping found identity

Figure 4.22.: Differences of duplicate detection, data coupling, and entity identification

entities of both databases. This scenario often appears in the integration of autonomic, but clean sources.
In entity identification, the identity of a given database entity needs to be detected by investigating
the entities in a database. This scenario often appears to avoid duplicates at the time of data insertion
by matching each newly inserted database entity with all existing database entities (see discussion on
identity management above) and can be also used in applications where a specific entity from the database

is searched based on some of its remarkable characteristics.

The differences to the general consideration of duplicate detection are illustrated in Figure 4.22.
Whereas in duplicate detection each database entity is theoretically matched with each other database
entity and the result of the detection is a clustering of the entities, in data coupling the database entities
of one source are only matched with database entities of the other source. The result is an 1:1 mapping,
where it can happen that a database entity of one source does not have a partner in the other source. As
a consequence, in data coupling we have only pairs of matching entities instead of clusters. In entity
identification the single inserted entity (or searched entity respectively) is matched with all entities of the
database and the result is a single database entity that corresponds to the searched entity or is the empty

set if the database does not contain a corresponding entity.

Nevertheless, as it can be seen easily, both problems are special cases of the problem of duplicate
detection. For instance, duplicate detection can be specialized to data coupling by restricting the search
space to only candidate pairs that originate from different sources and to classify all entities from the
same source as hard UNMATCHES in order to avoid that an entity of one source is classified as a MATCH

with several entities of the other source.

Some methods that are considered in duplicate detection literature have been originally designed for
data coupling (e.g. the ranking based decision model presented in [GKMSO04]) or entity identification
(e.g. some indexing techniques by Christen [Chr11]), but they can be usually adopted to duplicate

detection with only marginal changes.
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DEI fname Iname DoB city country phone email

el | dejohnw. tucker 1974-05-03 | newyork city | usa (0345)233848 | abc@me.com
e2 | johnhbill tacker 1974-03-05 | newyork city |usa (0345)233848 | tucker@xy.com
e4 | johnwilliam | tucker 1974-05-03 | newyork city |usa (0345)233884 | |

(a) Duplicate cluster with three entities

DEI fname Iname DoB city country phone email
e* | dejohn william | tucker 1974-05-03 | newyork city | usa (0345)233848 | tucker@xy.com
(b) Merging with conflict resolution
RK DEI fname Iname DoB city country phone email p
1  e* | dejohnw. tucker 1974-05-03 | newyork city | usa (0345)233848 | abc@me.com 1/3
2 | e* | johnbill tacker 1974-03-05 | newyork city | usa (0345)233848 | tucker@xy.com 1/3
3 | e* | johnwilliam | tucker 1974-05-03 | newyork city | usa (0345)233884 | I 1/3
(c) Merging with conflict repairing (tuple level)
DEI fname Iname DoB city email
dejohnw. :1/3| tucker :2/3| 1974-05-03 :2/3| newyorkcity :1.0 abc@me.com :0.5
johnwilliam :2/3| tacker :1/3| 1974-03-05 :1/3 tucker@xy.com :0.5

(d) Merging with conflict repairing (attribute value level)

Figure 4.23.: Sample for merging three duplicate entities with different merging functions

4.4. Duplicate Merging

After detecting duplicate database entities, these duplicates need to be eliminated by merging all the
entities of one duplicate cluster to a single entity. Since database entities are only logical constructs,
their underlying data need to be merged instead. Existing research on duplicate merging [WBGMO09,
L.SS96b] (also known as data fusion [MA06, BBBT05, BNOS, DN09, ZH11]) in relational data focuses
on the merge of database entities that corresponds to single database tuples. As already presented in
Example 49, merging a set of duplicate tuples is a challenge because the values of the individual tuples
are usually conflicting and these conflicts need to be handled by the merging approach.

Approaches for duplicate merging can be divided into two classes; approaches that completely resolve
conflicts by condensing all duplicate tuples to a certain database tuple and approaches that do not com-
pletely resolve conflicts, but instead model all plausible alternatives in an uncertain database. In the rest
of this thesis, we will refer to the first class as conflict resolution and will refer to the second class as

conflict repairing.

1. Conflict Resolution: Approaches of conflict resolution resolve all conflicts for individual at-
tributes by preferring non-null values to null values and by utilizing aggregation functions that
either select one of the conflicting values (deciding strategy) or aggregate them to a new value

(mediating strategy). Conflict resolution approaches always produce a certain output and hence
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are closed under the relational data model, i.e. the merging result can always be represented by an
ordinary database tuple. Resolution approaches have been considered by Bleiholder et al. [BNO06]
and Talburt et al. [Talll, ZKT12].

2. Conflict Repairing: In contrast to approaches of conflict resolution, conflict repairing approaches
do not necessarily resolve every conflict, but instead produce a set of possible repairs if the given
conflict cannot be resolved in an appropriate way. Repairing approaches usually produce an un-
certain output and hence are not closed under the relational data model, i.e. an uncertain database
is produced by the merging process. Existing approaches either model conflicts on tuple level
[AFMO06, HMO09] or model conflicts on attribute value level [DeM89, T92, TCY93]. Whereas
the first approaches produce an x-tuple per duplicate cluster, the latter produce an A-tuple per

duplicate cluster.

We will illustrate the fundamental differences of these two merging concepts by the following example.

Example 65 For that purpose, we consider the three database entities e, ea, and ey from the running
example (see Figure 4.23(a)). These three entities form a duplicate cluster and therefore need to be
merged to a single entity that we identify as e* in this example.

First, we consider a conflict resolution approach. The corresponding merge function, merges the
conflicts in the individual attributes by means of aggregation functions. In this example, aggregation
is performed by choosing the most often occurring non null-value per attribute (voting strategy). For
instance, the last name ’tucker’ is selected in attribute ’Iname’. If no most often occurring value exists,
aggregation has to be performed in another way. Since the name ’dejohn’ contains the name ’john’ and
because 'w.” and ’bill’ are typical shortcuts for the name "william’, the most plausible aggregation of the
three conflicting first names is the name ’dejohn william’. In the case of the email address, mediating the
given values does not make any sense because the chance that the aggregation result is an existing email
address is very low. Actually, the most plausible solution is to keep both addresses because persons can
own several email addresses. Nevertheless, this approach would imply a modification of the schema,
because in this case the resolution result is a multi-valued attribute instead of a single-valued attribute.
If schema modifications should be avoided, one of the conflicting values needs to be selected. In our
example, we choose the value 'tucker @xy.com’ because it contains the last name of the considered person
and therefore seems most reliable. The resultant database tuple is presented in Figure 4.23(b).

Second, we consider a conflict repairing approach that repairs conflicts on tuple level. In this case,
the merging result is an x-tuple that simply contains each of the duplicate database tuples as one of
its alternatives. The resultant x-tuple is presented in Figure 4.23(c). In this example, we simply assign
a uniform probability distribution to the alternatives. Nevertheless, more sophisticated approaches for
probability computation are possible. For instance, the approach proposed by Andritsos et al. [AFMO06]
computes a vector that serves as a mean of all considered tuples and then defines the probability of each
alternative based on its distance to this mean.

Finally, we consider a conflict repairing approach that repairs conflicts on attribute value level. In this
case, the result is the tuple of an attribute-OR database that is presented in Figure 4.23(d). In general,

we use the conflicting input values as the alternative values of the output tuple in the corresponding
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attribute, but sometimes restrict on the most plausible values. For example, in the first name we omit
the value ’john bill’ because ’bill’ is a nickname of "william’ and it looks quite confident that this value
correspond to ’john william’. Again, probabilities are computed by assuming a uniform distribution on
the input set, i.e. the probability of an alternative value is the amount of all input tuples that have this
value. For instance the probability that the last name is ’tucker’ is set to 2/3 and the probability that the
last name is "tucker’ is set to 1/3.

Obviously, by modeling uncertainty on attribute level instead of tuple level the number of possible
instances of the output entity increases because we neglect the originally given dependencies between
the input values and therefore enable possible instances that do not correspond to any of the input tuples.
For example, an instance that contains the combination of the attribute values 'tucker’ and *1974-03-05’

is possible for the tuple of the attribute-OR database, but is impossible for the x-tuple from Figure 4.23(c).

Merging database entities in a complex database goes far beyond simply merging a set of duplicate
tuples that originate from a single entity table, but appearances in multiple, maybe semantically exclu-
sive, entity tables need to be considered instead. Moreover, values of multi-valued attributes need to be
merged by modifying the corresponding tuples in multi-value tables and relationship information need
to be combined by modifying the corresponding tuples in relationship tables. A simple method to merge
multi-valued attributes or relationship information is to compute the set union. In that case, only all
foreign key values referencing to one of the duplicate entities need to be replaced by the identifier of the
merged entity. Afterwards, we possibly need to remove some tuples from these tables in order to avoid
identical tuples and to avoid a violation of primary key constraints. In 1:n relationships, however, such a
simple approach cannot be used and a more complex approach is required instead.

Duplicate merging is out of the scope of this thesis. Thus, in the rest of this thesis we will abstract
from a particular merging approach and will assume a merge function that is associative and idempotent.
Therefore, let J be the space of all entity instances that are conform to the considered target schema
and let f,, be the considered merge function, it holds that: VI € J: f,({/}) = I and it holds that:
VS1, 8u C T 808 = 0= fu({fu(S)}USu) = Fu({fu(S0)} U S)).




Chapter

HaDDeF - A Duplicate Detection Framework

In this chapter we present a framework for duplicate detection in certain databases. This framework ex-
tends the five-phase model for duplicate detection that we have presented in Section 4.3 in different ways.
First we present methods to extract and match complex entity descriptions in Section 5.1 and Section 5.2.
Then, we extend the detection process by some helpful ideas such as the Belief Map (Section 5.2.1) and
the concept of Impact Values (Section 5.2.2). Finally, we extend the presented framework to a considera-
tion of multi-table memberships in Section 5.3, i.e. we adapt the approaches for describing and matching
entities from databases where each entity is only represented in exact entity table to database where each

entity can be represented by tuples in several entity tables.

As presented in Section 4.3, a variety of duplicate detection approaches has been developed in the
last decades. Nonetheless, the most of these approaches focus on detecting duplicates in single entity
tables or only consider multi-table databases where each entity belong to a single entity table. In com-
plex databases, however, it can happen that single database entities belong to several entity tables, e.g.
an entity is a person, a doctor, and a patient at the same time. Moreover, membership uncertainty is
an important aspect in probabilistic databases. For that reason, we extend existing duplicate detection
approaches by a method for handling multi-table memberships. In addition, we propose the concept of
impact values which is intended to increase the effectiveness of a conventional duplicate detection ap-
proach, but can be also very useful in the detection of duplicates in probabilistic data. Finally, in order to
enable a matching of abstract database entities we consider a description-based matching approach. For
consolidating all these conceptions within a single model, we introduce a duplicate detection framework
in this chapter that we call HaDDef (HAmburg Duplicate DEtection Framework). This framework serves
as a fundamental baseline for our consideration of duplicate detection in probabilistic data that we will

propose in the remaining chapters of this thesis.

The rest of this chapter is constructed as follows. First we present our approach of describing database
entities in Section 5.1, then we introduce the belief map and the concept of impact values in Section 5.2.1
and Section 5.2.2. Then, we present the individual phases of HaDDeF for description-based entity match-
ing in Section 5.2.3 and extend our description-based matching approach to multi-table memberships in
Section 5.3.

147



148 5. HaDDeF - A Duplicate Detection Framework

5.1. Describing Database Entities

A database entity is a logical concept for encapsulating information that can be represented by several
data tuples. For that reason, in multi-table databases, database entities cannot be directly compared, but
first for each database entity a description need to be generated from the underlying database instead.
Obviously, this description can contain information on the entity’s attribute values as well as information
on its relationships to other entities. In the optimal case, it only contains information that is useful for
identifying duplicates.

For describing a database entity we adopt the concepts of the object description and the relationship
description that has been described by Naumann and Herschel in [NH10] (recall that we have described
the concept of a relationship description already in Section 4.3.9). Whereas an object description de-
scribes the attribute values of an entity, the relationship description describes its relationships to other
database entities by listing a set of related entities. In HaDDeF we use this description approach, but
make some extensions. First, we extend the modeling concept of relationship information by using a
more complex, but also more informative description concept. Second, we incorporate membership
information into the description approach. Finally, because we aim to create a single description per
database entity, we encapsulate both, the object description and the relationship description, in a single
concept, namely the entity description. To avoid semantical confusions and to make the naming more

meaningful, we rename the object description into attribute description in this thesis.

Let fzp be a function that is used to extract entity descriptions from a database, i.e. fgp(e,db) is
the entity description of the database entity e that is extracted from database db by using extraction
function fgp. For incorporating multi-table membership into the description approach, we extract an
entity description for the whole database by extracting entity descriptions for some of its tables. For
that reason, we generalize the aforementioned notation by considering a database to be a set of tables,
e.g. fep(e,{T1,T»}) is the entity description of e that is extracted from the two tables 77 and T5. If the
considered database is clear from context, we sometimes shorten this notation by omitting the database
variable, that is, fzp(e, db) is represented by fgp(e). Since the description of an entity can change during
the detection process, e.g. in the phase of data preparation, we use the function dgp to map to the current

description of an entity.

Since entity descriptions only contain information that is useful for duplicate detection (no surrogate
keys) and because data preparation methods can replace different values by the same value, two database
entities can have equivalent descriptions, i.e. Ve,,es € Ext(db): e, # es # 0gp(er) = 0gp(es). The
underlying idea of the description-based matching approach is that duplicate decisions on entity pairs are
made by matching their descriptions. That means we consider a pair of database entities to be a MATCH
if they have similar descriptions, i.e. dgp(e,) ~ gp(es) = {er,es} € MATCH. Thus, in the optimal
case, the descriptions are real-world unique, i.e. 9gp(e:) = 0gp(es) = w(er) = w(es), because entities
with same descriptions are automatically classified as a MATCH if no external knowledge is considered
by the matching process. Of course, to avoid a high number of mismatches the descriptions need to be

well designed.

The role of an entity description in the duplicate detection process is illustrated in Figure 5.1: First

for each database entity a description is extracted from the database, and then the entities are pairwise
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Figure 5.1.: Role of entity descriptions in a description-based matching process

matched by matching their descriptions. Finally from the pairwise matching results, the clustering of the

database entities is derived.

Example 66 In the sample of Figure 5.1, we have six database entities that map to three different real-
world entities and are modeled in the database by tuples of several tables. In the first step we extract the
descriptions from the database. Since some database entities have the same description, instead of six
only four different entity description result. If entity matching does not use any external knowledge, i.e. it
is only based on the descriptions, a pairwise matching of all entities can be reduced to a pairwise match-
ing of all descriptions. In the considered example, we assume such a simple matching approach. Thus,
the entity pairs {e2, es} and {e4, e5} are automatically classified as MATCHES. In the third step, all four
descriptions are pairwise matched (for matching details see Section 4.3). The matching process assigns
each description pair (or entity pair respectively) to the set of MATCHES or the set of UNMATCHES,
where two descriptions match if they are so similar that it can be implied with a high confidence that
their corresponding entities are duplicates.

In the given example, we assume that only the descriptions A and B are classified as a MATCH and
therefore the entity pairs {e1,e2} and {e1,e3} are indirectly classified as MATCHES. From the set of
MATCHES and UNMATCHES the final duplicate clustering is derived. In the considered example, three
duplicate cluster result: One with the database entities ey, ea, and es, one with the database entities e,

and es, and one with only the database entity eg.

Before going into description details, we have to distinguish between a concrete description of a

specific database entity and a description type that is a rule that determines how the description of a
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database entity looks like. Thus, the description type can be considered as a schema that models all

duplicate detection relevant characteristics of a set of database entities.

Definition 25 (Entity Description:) An entity description d is a pair d = (da,dR), where d 4 is an

attribute description and dg is a relationship description.

Recall, the function fgp(e,db) extracts the entity description of a database entity e from the considered
database db and the function 0gp (e, db) maps e to its entity description that is currently used for detecting
duplicates in database db.

An entity description is denoted to be empty, if its attribute description and its relationship description

are empty.

Definition 26 (Description Type:) A description type T is a pair T = (TA TRel) where TAM s an

attribute description type and TR is a relationship description type.

5.1.1. Describing Attribute Information

The attribute description of a database entity contains all the entity’s attribute values that are useful for
detecting duplicates. Since surrogate keys typically do not represent a property of a real-world entity,
it is usually excluded from the entity description. In this thesis, we restrict to single-valued attributes.
Nevertheless, the description approach can be simply extended to multi-valued attributes. Recall, in turn
to single-valued attribute, multi-valed attributes are modeled by tuples in multi-value tables and therefore
need to be extracted by specific queries.

An attribute description and an attribute description type are defined as follows.

Definition 27 (Attribute Description:) An attribute description da is a set of attribute-value pairs
{(A1,v1),..., (A, vr)}, where each value v; 1<i<, is an element of its corresponding attribute domain
dom(A;) or the null value L. Since the value for each attribute should be unique, each attribute-value

pair refers to another attribute, i.e.: ¥(A;,v;), (Aj,v5) € da: A; = Aj = v; = v;.

An attribute description is denoted to be empty, if it is the empty set or if all attributes are paired with
the null value.

Definition 28 (Attribute Description Type:) An attribute description type T is a set of attributes
{Ay,..., Ax}. An attribute description d 4 is conform to an attribute description type TV (denoted as
da = TAT), if it is defined on the same set of attributes, i.e.: Uaea tA4t = AN,

In the rest of this thesis, we sometimes directly address the attribute description of a database entity.
For that purpose, we introduce the two functions fap(-) and 94p(-) The function fap(e, db) extracts the
attribute description of database entity e from the considered database db and the function d4p(e, db)

maps e to its attribute description that is currently used for detecting duplicates in database db.
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Figure 5.2.: Example for illustrating the disadvantages of the simple approach for describing relationship
information
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5.1.2. Describing Relationship Information

The relationship description of a database entity should describe the interactions of this entity to other
database entities. Obviously, we have to distinguish between a type of relationship (e.g. is brother of)
and a specific instance of a relationship (e.g. Tim is brother of Max). In general, a database entity can
strike up multiple instances of the same type (e.g. a person can be the brother of several other persons).
In addition, relationship types can be equipped with attributes. Moreover, the database entities that
are involved in a relationship are associated with role names (e.g. wife and husband in a relationship
marriage) and an entity can fill in different roles in different instances (or even the same instance) of the
same relationship type. Finally, a database entity can be in different relationships with another database
entity (e.g. the brother of Tim is also his neighbor). In summary, the relationships of a database entity
model complex information.

Due to this complexity, a complete description of all relationship information is usually not desired and
an incomplete, but a simpler description method is used instead. Recall, Naumann and Herschel [NH10]
simply describe the relationship information of a database entity by the set of all other entities that are
related with the considered entity by any mean. Thus, this description approach does not distinguish
between the semantics, i.e. types, of the relationships nor take the role names of the related entities nor
attribute values into account. Consequently, this approach produces very simple descriptions that are fast
and easy to match, but can loss some useful information.

The disadvantage of this simple description approach should be illustrated by the following example.

Example 67 Let us consider the scenario pictured in Figure 5.2 where we have to describe the relation-
ship information of two persons p1 and po, the first is named ’Jane Doe’ and the second is named ’Janet
Doe’. Jane Doe has a husband who is named 'John Doe’ (ps3) and three children which are named ’Jill
Doe’ (p4), "James Doe’ (ps), and ’Jim Doe’ (pg). Janet Doe is married with James Doe. Consequently,
John Doe is her father-in-law and Jill Doe as well as Jim Doe are her siblings-in-law. If the information
that *Jane Doe’ is the mother-in-law of ’Janet Doe’ is unknown or if we would ignore the given informa-
tion in the extraction of the relationship description for whatever reason, the relationship descriptions
of both persons would result in the same related entity set, i.e.. RD(p1) = RD(p2) = {p3, p4, D5, D6 }-
As a consequence, the risk to mistakenly classify both persons as a MATCH is very high, because they
have similar names and have the same relationship description. On the contrary, if we additionally take
the respective relationship types into account and compute a set of related entities per type instead of

computing a single set, the descriptions of both persons would result in:
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husband child Jather-in-law | sibling-in-law

p1 | {ps} | {pa,ps5.p6} 0 0
p2 | {ps} 0 {p3} {pa,pe}

Thus, although p1 and p2 are related to the same set of persons, the descriptions are now so discrimi-

native that we can clearly distinguish between both persons.

In general, the more information is considered for describing relationship information, the more dis-
criminative the resultant descriptions become. Since we still neglect information on role names and
attributes in the previous example, more sophisticated but also more complex description approaches are
theoretically possible. Complex approaches can be especially useful in cases where duplicates can be
most often only detected by their relationships as for example in social networks where, because of the
use of alias names, the relationships to other persons, or marked items (e.g. favorite movies or books) is
the most identifying kind of information.

A complete discussion about describing relationship information is out of the scope of this thesis.
Nevertheless, our formalism should be as generic as possible so that more detailed description approaches

can be incorporated easily. For that reason, we define a relationship description in a flexible way.

Definition 29 (Relationship Description:) A relationship description dg is a set of label-set pairs
{(L1,51),...,(Lg, Sk)} where each label serves as a semantical key for a specific kind of relation-
ship information and each set is a collection of description items. Since the set of description items
should be unique for each label, each label-set pair refers to another label, i.e.: ¥(L;, S;), (L, S;) €
dr: L; ZLj =5, = Sj.

A relationship description is denoted to be empty, if it is the empty set of if all sets of description items
are empty, i.e. if for each (R, S) € dg holds: S = .

Each label represents a specific kind of relationship information and therefore need to be connected
with a query that extracts this information from the database. In the simplest case, we only consider
a single query that selects all entities which are related with the considered entity by any mean and
hence produce a single set of database entities. By doing so, relationship information is described by a
single label-set pair where the description items are database entities and the relationship descriptions is
conform to the original definition made by Naumann and Herschel [NH10].

Nevertheless, this description approach is not restricted to the simple case, but multiple complex
queries can be used instead. One option is to define a query per relationship type that is explicitly
modeled in the database either by a relationship table (many-to-many) or by a foreign key (one-to-one or
one-to-many). If the queries return all the entities that are involved in such a relationship with the con-
sidered entity, the relationship description contains a set of label-set pairs where each label corresponds
to a relationship type and each set corresponds to a set of related entities. Queries, however, can also
extract entities that are implicitly related or can extract more complex description items that include the

correlations of roles and/or attributes.

Example 68 We want to illustrate the flexibility of this description approach by four sample queries that
are defined on a database schema that contains the relationship table ’Medicates’. This table is repre-

sented in Figure 5.3(e) and models the relationship information which doctor medicates which patient
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SELECT m.patient AS Entity SELECT m.patient AS Entity SELECT m2.patient AS Entity

FROM Medicates m FROM Medicates m FROM Medicates m1, Medicates m2
WHERE m.doctor =’p1’ WHERE m.doctor =’pl’ WHERE ml.doctor = m2.doctor
UNION AND ml.patient ="pl’

SELECT m.doctor AS Entity AND m2.patient # 'pl’

FROM Medicates m
WHERE m.patient ="pl’

(a) Query returning all related persons (b) Query returning all patients (c¢) Query returning implicit relationships

Medicates (Relationship Table)

SELECT m.patient, m.medicine, m.date doctor patient medicine date dose
FROM Medicates m pl p3 ml 12.11.07 3ml
WHERE  m.doctor = p1’ p2 p3 ml  08.10.06  4ml
p2 pl m2 21.05.07 10g
pl p5 ml 05.06.10 3ml
pl p5 m2 17.01.09 109
doctor > MedStaff.DEl, patient - Patient.DEl,
medicine - Medicine.DEI
(d) Query returning complex relationship information (e) Relationship table "Medicates’

Figure 5.3.: Four sample queries for extracting relationship information from a database

by giving her which dose of which medicine at which date. Thus, this table has five attributes. Whereas
the first three attributes *doctor’, ’patient’, and *medicine’ are foreign keys that reference to entity ta-
bles, the last two attributes ’date’ and ’dose’ are ordinary attributes. The first query (Figure 5.3(d))
returns all persons that are related to the considered person py by a relationship of the type medicates
whereby we do not distinguish between the individual roles, i.e. the query returns all persons that have
been medicated by py or that have medicate py. In the given sample instance, the result is the entity set
{p2,p3,p5}-

In contrast, the query from Figure 5.3(b) restrict to a specific role and only returns person that have
been medicated by py. The query result is the entity set {ps, ps}.

The third query (Figure 5.3(c)) returns all persons that have been medicated by the same doctor than
p1 and therefore returns persons that are related by an implicitly modeled relationship, i.e. it returns the
entity set {ps}.

Finally, the last query presented in Figure 5.3(a) does not return a set of entities, but re-
turns a set of triples where the first two elements are entities, i.e. persons and medicines,
that are associated with roles and the last element is an attribute. The query result is there-
fore a set with the three description items ((’patient’, ’ps’), ("medicine’, 'm;’), ("date’,*12.11.07")),
((’patient’, "p5’), ("'medicine’, 'm;’), ("date’,’05.06.10%)), and ((’patient’, 'p5’), ("medicine’, ‘mso’),
(*date’,’17.01.09”)).
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Figure 5.4.: Execution model of the pairwise matching phases with HaDDeF

Definition 30 (Relationship Description Type:) A relationship description type TR is a set of label-
domain pairs {(L1,dom1), . .., (Lk, domy)} where each label is unique, i.e. ¥(L;, dom;), (L, dom;) €
GRel. I, = L; = dom; = domj. A relationship description dg is conform to a relationship description
type TR (denoted as dr - TRE), if it is defined on the same set of labels and if for each label its set
of description items is a subset of the domain that is assigned to this label by the description type, i.e.:
Ur.s)eantl} = U domyesra{ L} AV(L, S) € dr: I(L,dom) € TRel. S C dom.

In this thesis, we will restrict our considerations of description items to the domain of database entities.
Nevertheless, the approaches presented in this thesis can be easily extended to more complex domains if

measures for computing the similarity between two elements of these domains are given.

Function fgp(e,db) extracts a relationship description of database entity e from the considered
database db and function dgp(e,db) maps e to its relationship description that is currently used for

detecting duplicates in database db.

5.1.2.1. Comparability

Two entity descriptions are comparable, if their description types are comparable. Whether or not two
description types ¥ 4 and T g are comparable needs to be defined by a domain expert. Usually only entity
descriptions that are conform to the same description type are matched. Sometimes, however, it makes
sense to compare descriptions of non-equal types. For example, if pets are allowed to have human names
and it cannot be excluded that a family’s pet is confused with one of the family’s kids and it can make
sense to compare pets with peoples. For example in some circumstances it can be not completely clear, if
the attribute description {(’firstname’,”’Bob’), (’lastname’,”Smith’), ("DoB’,”13.12.2003") } describes a
kid or a pet. For simplification we always assume a comparison of entity descriptions that are conform

to the same description type.
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5.2. Description-based Entity Matching

As mentioned above database entities are matched by comparing their entity descriptions. Principally,
HaDDeF is based on the five phase model that we have introduced in Section 4.3, but we divide the
decision model phase into two subphases: The similarity computation phase and the classification phase.
Whereas the first computes a single similarity score (called entity similarity) per candidate pair based on
the similarities of their attribute descriptions and relationship descriptions, the classification phase uses
one or two thresholds to derive a matching class based on the given score of entity similarity. Note, the
most of the decision models presented in Section 4.3.6 can be used to compute a similarity score and
therefore can be used as an implementation of the similarity computation phase in HaDDeF.

Due to the consideration of relationship information, we need to analyze the attribute description
and the relationship description and therefore do not consider attribute value matching as an own phase
anymore, but consider it as a part of a larger phase that we call the Feature Matching Phase. Moreover
we extend some phases to the use of two concepts, the belief map and the impact values, making the
detection process more effective. Figure 5.4 presents the execution model of the pairwise matching
phases of HaDDeF and illustrates the interactions between the belief map and the individual matching
phases.

We start with introducing the new concepts that extent the matching process in Section 5.2.1 (belief
map) and Section 5.2.2 (impact values). Then we present an overview over the whole matching process
in Section 5.2.3 and describe in which way the individual phases are adapted to the use of relationship
information, the belief map, and the impact values. Finally, we present a method for incorporating

information on multi-table memberships into our approach for describing and matching entities.

5.2.1. Belief Map

To enable an incorporation of external knowledge on concrete entity pairs into the detection process, we
propose the Belief Map. The belief map is managed separately from the individual phases and stores a
belief vector v € [0, 1] x [0, 1] per entity pair. The first element of the belief vector is the confidence that
both entities are a MATCH and the second element is the confidence that both entities are an UNMATCH.
It is important to note that we consider confidences instead of probabilities and a confidence of O for a
MATCH does not implicate a confidence of 1 for an UNMATCH. In contrast, the standard belief vector
(no knowledge is incorporated) is ¥ = (0, 0). Theoretically, the belief map contains a belief vector per
entity pair. Nevertheless, since for most entity pairs no external knowledge is available, the vector is
actually only stored for pairs with 05 # (0, 0). A sample instance of a belief map is shown in Table 5.1.

The purpose of the belief map is manifold (see Figure 5.4). First, it enables the domain expert to incor-
porate his expertise or any external knowledge permanently into the detection process at any matching
phase (e.g. by clerical reviews). Second, unnecessary computations can be avoided. For example, if the
confidence that a candidate pair is a MATCH or an UNMATCH is equal to 1, the pair’s decision is obvious
without performing any of the matching phases. At least, it unburdens domain experts in clerical reviews

because it enables them to also incorporate their own degree of belief rather than a certain knowledge.

Example 69 For illustration we consider a scenario in which duplicate database entities from several

different sources need to be identified and it is known for sure that one of the sources is duplicate-free,
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candidate pair confidence MATCH confidence UNMATCH

{e1,e2} 0.9 0.0
{e1,es} 0.2 0.7
{es.e7} 04 0.0
{es.e5} 0.0 1.0

Table 5.1.: Sample instance of the belief map

i.e. two entities of this source cannot be duplicates. Without using the belief map, we can incorporate this
knowledge only by omitting such pairs from the candidate pair space and hence by initially classifying
them as UNMATCHES. Nevertheless, some approaches for duplicate clustering change UNMATCHES to
MATCHES in order to satisfy the transitivity of real-world equivalence. Changing two entities from the
duplicate-free source to a MATCH, however, contradict to the external knowledge. As a consequence,
simply omitting these pairs from the candidate pair space is not sufficient to ensure that the detection
result is conform with this knowledge. However, if we store this knowledge into the belief map, we can
incorporate it at any matching phase and hence enable the clustering approach to distinguish between
hard UNMATCHES (certainly no MATCH) and soft UNMATCHES (likely no MATCH).

In another integration scenario we may know that some entities are certainly duplicates, because they
are explicitly linked to be real-world equivalent (see concept of Linked Data [HB11]). In such a case,

the belief map can be used to ensure that these entities will end up in the same duplicate cluster.

The belief map can be of an additional use to store certain decisions that result from evaluating non-
identity constraints on the database, e.g. if two database entities are detected to be father and son they
are certainly no duplicates. Moreover, it can be used in collective duplicate detection approach in order
to propagate decisions from one iteration to another.

5.2.2. Impact Values

We have observed that the identification power of two attribute values does not only depend on their
similarity and the importance of the attributes these values belong to, but is also affected by some further
characteristics of these values as their content size and their value rarity'. As a consequence, in many
use cases, the effectiveness of a decision model could be improved, if its decision making is not only
based on the similarity scores of the comparison vector and the importance of the attributes, but also
takes the significance of the computed similarity scores into account. For that purpose we introduce the
concept of impact values. An impact value is a real number between 0 and 1 and models the significance
of its corresponding similarity score. The impact values of all similarity scores of the comparison vector
form a so called impact vector. A similar approach can be used for the similarity scores that result from
comparing two relationship descriptions.

For duplicate detection in probabilistic data, impact values can be even useful for the results of later

matching phases. For that purpose, we compute an impact value for the result of each matching phase

"Notice, similar characteristics have been listed by Leitao and Calado [LC11a] in order to measure the identification power
of attributes. However, they consider these characteristics on the level of attributes and not on the level of attribute values.
Therefore, the observations that have been made by these authors cannot be adopted to our purpose.
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where the impact value of one phase is computed based on the impact values of its previous phase, i.e.
the impact value of an entity similarity is based on the impact values of the attribute similarities and the
relationship similarities the entity similarity is computed from.

Actually, an impact value refers to a similarity score. Nevertheless, if clear from context we sometimes
simply write ’impact (value) of the two attribute values v, and v’ or ’impact (value) of the attribute A’
instead of writing 'impact value of the similarity score that has been computed for the two values v, and
vs from the attribute A’. Note, referring to a single attribute is only possible if we consider a matching
of values that belong to the same attribute. In the case of matching values across attributes we need to
write 'impact (value) of the attribute pair (A;, A;j)’ instead. Nevertheless, to simplify representation we
usually abstain from matching values across attributes in this section. The impact of the values from two
database entities e, and e in attribute A, i.e. e, [A] and e4[A], is denoted as imp(e,[A], es[A]). Impact
values within an impact vector 7 can be also addressed as (7) (the ith value in this vector) or as i(A;, A;)
(the impact value in this vector that represents the attribute pair (A;, 4;)).

The remainder of this section is structured as follows. First we present several factors that determine
the significance of a score that represents the similarity between two attribute values. Then we discuss
strategies to incorporate the impact vectors into the different types of decision models. Finally, we shortly

discuss methods to compute the impacts of the later matching phases.

5.2.2.1. Factors that describes the Significance of the Similarity between two Values

A similarity scores gives an idea how similar two values are, but does not necessarily describe the like-
lihood that these values actually refer to the same thing of the real-world. To which extent a similarity
score can be used to conclude on real-world equivalence depends on several factors, four of them are:

o Content Size: The first factor of significance is the content size of the compared values (e.g. length
of strings or cardinality of sets). The greater the content size of two values, the more significant is
the similarity between them, because the less this similarity has been affected by small errors (e.g.
typographical errors in strings).

For illustration, we consider the normalized Levenshtein Similarity between two strings of length
three and two strings of length twelve. First, we assume that each pair of strings represents the
same thing of the real-world, e.g. the same first name. Although the two short strings are actually
equivalent, one typo is sufficient to reduce the similarity from 1 to 2/3 and a swap of letters already
decreases the similarity from 1 to 1/3. In contrast, a reduction of similarity between two strings
of length twelve from 1 to 2/3 requires at least four typos and a reduction from 1 to 1/3 would
implicate at least eight typos. Thus, the likelihood that two dissimilar long strings actually refer to

the same real-world thing is much less than for two dissimilar short strings.

This problem is also present in the other direction where strings that do not refer to the same thing
of the real-world become very similar or even equivalent by chance or by accident. For instance,
it requires only two typos to increase the similarity from 1/3 to 1, if the strings have only three
letters. In contrast, an increase of similarity from 1/3 to 1 requires at least eight typos for strings of
length twelve. As a consequence, a high similarity between two long strings is an higher indication

for real-world equivalence than a high similarity between two short strings.
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Example 70 We want to demonstrate it by a concrete example. The two strings 'Jim’ and ’Jon’
have only one letter in common and hence have a normalized Levenshtein Similarity of 1/3. In-
deed, on a first look it seems to be high likely that they actually refer to different names. On the
other hand, the letters ’i’ and 'o’ as well as 'm’ and 'n’ are neighbored on a typical keyboard and
hence make a sequence of two typos also possible. In contrast, the similarity of 1/3 between the
two strings ’Christian’ and ’Fabian’ is an high indication that both strings refer to different names

and a sequence of typos can be nearly excluded for sure.

Another illustrative case of application is a matching of middle names that are often only given by
their first letter. The similarity between the two middle names "M’ and "M’ is 1.0, but is only a
low indication for a duplicate whereas the similarity between the two middle names "Marcus’ and
"Markus’ is an higher indication for a duplicate although it is only 5/6 (Levenshtein Similarity)
and thus lower than the first. The same holds in the inverse direction. The similarity between the
middle names "W’ and ’B’ is zero, but is only a low indication for a non-duplicate because they
could represent the highly related names *William’ and *Bill’ or the difference between them could
be caused by a mistake that is based on the phonetic similarity between "W’ and 'B’. In contrast,
the Levenshtein Similarity between the middle names *Werner’ and *Bernd’ is a much higher indi-
cation for a non-duplicate despite it is 0.5 and thus greater than the Levenshtein Similarity between
"W’ and ’B’. This example moreover demonstrates that a utilization of impact values enables a bet-
ter use of secondary attributes, i.e. attributes that are generally suitable to discriminate MATCHES
from UNMATCHES, but its values are often missing or are only filled partially, to classify candidate

pairs.

The same problem holds for the similarity of sets as they result from tokenizing string values or
as they appear in a consideration of relationship descriptions. The larger the compared sets the
more significant is the similarity between them. For instance, the Jaccard Coefficient of the two
sets S1 = {e1} and S; = {e1,e2} is 0.5 even only a single element is missing in S;. In contrast,
for large sets with around 1000 elements, a Jaccard Coefficient of 0.5 requires a high number of

non-common elements.

Value Rarity: Besides content size, the frequencies of the compared values have an impact on the
significance of their similarity, because the more rare a value is, the less likely is the case that two
different entities share that value. For example, an equal last name ’Smith’ (in the year 2000, this
last name occurs in the United States 2, 376, 206 times?) is a much less indication for a MATCH
than an equal last name ’Ribak’ (in the year 2000, this last name occurs in the United States 106

times?).

Of course, the significance of a similarity score does not only depend on the frequency of the
compared values, but also on their contexts. As an example we consider an attribute description
with the tree attribute-attribute value pairs (’first name’,”Maximilian’), (’last name’,’Cheng’),

and (’residence’,’Berlin’). "Max’ is a common first name, ’Cheng’ is a common last name and

Zhttp://names.mongabay.com/data/sm/SMITH. html
3http://names.mongabay.com/data/ri/RIBAK .html
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around three million people live in Berlin. Nevertheless, whereas *Cheng’ is a common last name
in Beijing, it is less common in Berlin. Moreover, whereas "Max’ and Cheng’ are both frequent
names, the combination is less frequent. Thus, for computing the significance of the similarity
between two attribute values, it can be useful to compute the values’ frequencies in combination

with the values of some related attributes.

Similar holds for sets, especially sets of related entities, because an often related entity is not
as discriminating than a less often related entity. For instance, the information that two person
both like the relatively unknown singer Kat Frankie (220, 522 ’scrobbels’ on lastfm®) is an higher
indication for a MATCH than the information that they both like Madonna (around 117,117,854

>scrobbels’ on lastfm?).

As presented in Section 4.3.5, some set similarity measures take the frequency of values into
account, e.g. by using TF-IDF, but restrict this consideration to weight the individual elements in
computing the similarity of the compared sets. In the end, however, two sets with many common
elements will be associated with a high similarity score, even if all their elements are frequent (in
that case, the weighting compensate itself). This characteristic is a necessity for these measures as
well as a disadvantage at the same time. On one hand, two equivalent sets must produce a similarity
score of 1, because otherwise it could finally happen that identical entities are not detected as
MATCHES, but on the other hand a high similarity between two sets with rare elements is much
more significant than a high similarity between two sets with frequent elements. Due to the first,
the latter cannot be handled by the similarity measure itself and thus must be considered in another

way as we do with the impact values.

e Measure Significance: The third factor is the suitability of the measure that has been used for
computing the similarity score. Obviously, this factor is primarily relevant if values of the same
pair of attributes are matched by different measures. This is especially the case in the presence
of null values, because conventional similarity measures are inapplicable to match them and a
fixed similarity score is used instead. Nonetheless, as discussed in Section 4.3.5.7, using a fixed
similarity score implicates a trade-off between running the risk of producing a false positive (high
score for null values) or running the risk of producing a false negative (low score for null values).
By assigning low significances to similarity scores that result from comparing one or two null
values, we can simply avoid this trade-off, because it enables the decision model to prefer the
similarity scores of non-null value pairs to the similarity scores of null-value pairs for making its

final decision.

This factor is also useful, if we need to compare values from a domain for which we do not
know a suitable similarity measure, but instead have to use a conventional measure without having
any information on its suitability. In that case, we can inform the subsequent phases about this

ambiguity by decreasing the impact of the produced similarity scores.

Finally, for reasons of efficiency values are sometimes initially matched by using a simple simi-

larity measures and then are only re-matched by using a more complex similarity measure if the

“http://www.lastfm.de/music/Kat+Frankie, date:01.05.2014.
Shttp://www.lastfm.de/music/Madonna,date:01.05.2014.
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score that was computed by using the simple measure is above a given threshold. Obviously, the
result of the complex measure is more reliable than the result of the simple measure. Nevertheless,
by doing so some of the finally used scores are computed by using the simple measure and some
of the finally used scores are computed by using the complex measure. As a consequence, these

scores are only less comparable.

Example 71 For illustration, we consider a matching approach that compares two values by first
computing their simple similarity and then computes their complex similarity only if the simple
similarity is above the threshold 0 = 0.3. Now we assume two value pairs. The first pair has a
simple similarity of 0.4 and the second pair has a simple similarity of 0.2. As a consequence, the
first pair is additionally matched by using the complex similarity measure, but the second is not.
Now let us assume that the complex similarity of the first pair is only 0.1. Thus, in the final com-
parison vector, the first pair is represented by a similarity of 0.1 and the second pair is represented
by the a similarity of 0.2. These similarity scores, however, are somewhat misleading because
according to the simple measure, the similarity of the first pair is greater than the similarity of the

second pair.

To solve this conflict, we can assign a low impact value to all similarity scores that have been
computed by using the simple measure and can assign a high impact value to all similarity scores

that have been computed by the complex measure.

o Range Significance: In some cases the significance of a similarity score also depends on the score

itself, because it is only informative, if it is inside a specific range.

Example 72 For instance, two equal or high similar email addresses are an high indication for a
MATCH, but two dissimilar email addresses are not an high indication for an UNMATCH, because
it is not unusual that a person has several email addresses. For that reason, the resultant similarity

score is only significant if it is close to one and non-significant else.

Whereas most decision models can handle that problem, decision-based models as described in
Section 4.3.6.1 can not, because assigning such an attribute with a high weight implicates that
two dissimilar values are an high indication for an UNMATCH and assigning it with a low weight
implicates that two similar values are not an high indication for a MATCH. This shortcoming,

however, can be solved by using different impact values for different ranges.

5.2.2.2. Computing Impact Values

In the previous section, we present several factors that influence the significance of a similarity score.

The next challenge is to rate these influences by numbers and to combine them to a single impact value.

o Content Size: We start with the content size. Intuitively, we can use the maximal content size of
the database (or any other available statistic) to normalize the size of the individual value pairs.

Thus, let A be the considered attribute, let |v| be the size of value v, and let s, be the maximal
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size that appears in the values’ domain, the content size of the two values v, and v in A can be

computed as:

ContSize(vn, v, A) — 288UV [vs)) (5.1)

Smax

where agg is an aggregation function that is most suitable for the considered domain.

However, we think that the likelihood that two strings each with three letters are accidentally high
similar because of a sequence of typographical errors is independent from the maximal length the
strings of the corresponding domain can have. Moreover, as we have observed in our experiments,
this computation is often too strict because the most string values have a length less than 50%
of the maximal length, but are still long enough to produce significant similarity scores. For that
reason, we use a functions that does not increase linear, but polynomial and therefore compute the

content size of the values v, and v, in attribute A as:

1

ContSize(vy,v5, A) =1 —
(v ) =1 = T e aga(lon], oo

5.2)

where ¢ € R™ is a constant that can be used to adjust the function’s slope to the considered use

case.

It is important to note that we abstract from the used aggregation function because in some domains
suing the maximal size seems to be most suitable, but in other domains sing the minimal size seems
to be the better option. For illustration, in the domain of first names that are usually written-out,
the maximal string length seems to be most appropriate because it determines the number of typos
that are required to transform one string into the other. In contrast, in the domain of middle names,
names are often abbreviated by a single letter and using the maximal length to compute the impact
value would implicate that the low similarity between the two values "W’ and *William’ is highly
significant, but it is obvious that this is actually not the case because the first can be an abbreviation

of the second.

e Value Rarity: The most intuitive measures for quantifying the rarity of two values is based on
their aggregated frequency. Let A be the considered attribute, let freq(v, A) be the frequency of
value v in A, and let m be a value with max, ¢ ofreq 4 (v) < m < |A|, the value rarity factor of the

two values v,- and v in A can be computed as:

A) = agg(freqa(v,),freq 4 (vs))

ValRarity(vy, vs,
m

(5.3)

where agg is an aggregation function that is most suitable for the considered domain.

Of course, more complex measures are conceivable and maybe more suitable. For instance, as
mentioned before it can be useful to consider the frequency of the individual values in combination

with the values of some related attributes.

e Measure Significance: In the case of measure significance we restrict our consideration to the
special case of null values and set measure significance to 0 if at least one of the compared values

is null.
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e Range Significance: Range significance depends on the semantics of the considered attributes.

Thus, we cannot define a general computation method for this factor.

A similarity score is already less significant if one of its factors is low. For that reason, we compute
the impact value for a similarity score by the product of its content size, its value rarity, its measure

significance, and its range significance.

5.2.2.3. Incorporating Impact Values into Similarity Computation

After analyzing the factors that affect significance, we discuss methods to incorporate the produced

impact values into the decision model.

¢ Distance-based Decision Models: First we consider distance-based decision models as presented
in Section 4.3.6.1. The idea here is that we do not use the same weighting scheme for all candidate
pairs, but use the impact values to compute an individual weighting scheme per pair. Let {e;, e;}
be an candidate pair with the comparison vector ¢ = (cj, ¢a,. .., ¢,) and the impact vector i =
(v1,v9,...,vy), and let W = {w;,we,...,w,} be the weighting scheme that is used for all
candidate pairs whose descriptions agree with a specific description type, the individual weighting

scheme of {e,, e} is computed as W,.; = {w1 X v1,wa X va, ..., wy X vy}

e Rule-based Decision Models: In rule-based decision models, the values of the impact vector can
be included into the rules’ predicates. For example, the first rule from Figure 4.13 can be adapted
to the following two rules by demanding that for high impact values a lower similarity score is
required than for smaller impact values.

-

Ry, :  (&(fname, fname) > 0.6) A (i(fname, fname) > 0.9) A... = MATCH

Ry :  (¢(fname, Iname) > 0.8) A (Zﬁ(fname7 fname) > 0.7) A... = MATCH

e Learning-based Decision Models: For learning-based decision model the impact vector can be
appended to the comparison vector so that the learning algorithm use the similarity scores as well

as the impact values to train the classifier.

For demonstrating an incorporation of impact values into distance-based decision models and to illus-

trate the positive effects that result from using impact values, we consider the following example.

Example 73 For illustration, we consider the five entities from Figure 5.5(a) and consider the three
candidate pairs {e1, ea}, {es, e4}, and {eq, e5}. The comparison vectors and the impact vectors of these
pairs are presented in Figure 5.5(b) and Figure 5.5(c) respectively. The values of the impact vectors
result as follows: Due to the names 'tim’ and "tom’ are both short and frequent, their impact is relatively
small. The middle names 'marcus’ and 'markus’ have an average length and have an average rarity.
Therefore, we set their impact to 0.6. The last names ’ribak’ are rather short but less frequent and hence
they get an impact of 0.7. The phone numbers of e; and ea are complete and equal. Therefore, they are a
good indication for a MATCH and we assign a high impact value (range significance) to their similarity.

In contrast, the email addresses are long, less frequent and dissimilar. Therefore, because of the range
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DEI fname mname  Iname DoB phone email

el |tim marcus ribak 1982-07-23 0345-233848 | abc@me.com

e2 | tom markus ribak 1 0345-233848 | tribak@you.uk

e3 | chandrashekhar | george tucker 1974-03-11 1 ctacker@me.com
e4 | chandrasehkar | g tacker 1974-03-11 0542-624678 | ctacker@me.com
e5 | charles g tacker 1974-11-03 | 0542-639999 | chtacker@you.com

(a) Sample database table

fnrame mname Iname DoB phone email fname mname Iname DoB phone email
Tlere,) 273 5/6 10 1 00 10 | 00 Tlere;) 04 0.6 07 00 10 0.0
Teses) 1114 1/6 56 10 | 00 | 10 T(eses) 09 0.1 04 10 00 10

-

Teses) 5/13 | 1.0 10 08 02 | 08 T(eses) 0.9 0.1 04 10 02 | 02

(b) Sample attribute comparison vector (c) Sample attribute impact vector

Figure 5.5.: Sample for illustrating the incorporation of impact values into a distance-based decision model

significance (only equal email addresses are useful) their impact is set to a low value. For the candidate
pair {es, e}, we use a high impact value for their first names because they are both rare and long, but
use a lower impact value for their last names because both names are frequent and of an average length.
The similarity of their middle names is associated with a low impact, because of the length of the shorter
one. The birthdays are equal and complete and hence get the maximal impact (here we assume that each
date is equally frequent in the database). The email addresses are equal and complete. Thus, we set
their impact to 1.0. The first names ’charles’ and ’chandrasehkar’ are average frequent (’charles’) or
less frequent (’chandrasehkar’) respectively. Moreover, the longest of these names has an above-average
length. Therefore, the corresponding impact is set to a high value. The middle names of e4 and es only
have a single letter and therefore have a low impact. The last names of both entities are frequent and of
an average length. For that reason, we assign them with an impact value of an average size. The phone
numbers and email addresses of e4 and es are similar, but not high similar and hence they are only
associated with a low impact value. Finally, all value pairs with at least one null value get an impact
value of zero, because we cannot derive any useful information from them.

Now, let us assume that the two entities €1 and es as well as the two entities es and e4 are duplicates,
but the entities e4 and e5 are not.

For decision making we use a distance-based decision model that computes the average attribute
distance with the weighting scheme W = {0.2,0.1,0.2,0.1,0.2,0.2}. First we compute the weighted

average similarities without using the impact vectors. These similarities result in:

|
S
<)

1

AAD(e1,e2, W) =02 % 2/34+0.1 x5/64+02x1+0.1x0402x1+02x0
AAD(e3,e4, W) =02 x 11/14+ 0.1 x 1/6 4+ 0.2 x5/6+0.1x1+02x0+0.2 x 1 0.641
AAD(eq,e5,W) =02 x5/13+ 0.1 x 1.0+0.2 x 1.0+ 0.1 x 0.8 4+0.2 x 0.2+ 0.2 x 0.7 = 0.637

N

All similarities are between 0.6 and 0.7 and it is impossible to classify the two true duplicate pairs
as a MATCH without classifying the true non-duplicate pair {ey4,e5} as a MATCH as well. As a con-
sequence, without using the impact vectors the true MATCHES cannot be clearly distinguished from the

true UNMATCH.
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Now, we use the impact vectors to compute an individual weighting scheme per candidate pair:

Wia = {0.2 X 0.4,0.1 x 0.6,0.2 x 0.7,0.1 x 0,0.2 x 1,0.2 x 0} = {0.08,0.06,0.14,0,0.2,0}
Wsy = {0.2 x 0.9,0.1 x 0.1,0.2 x 0.4,0.1 x 1.0,0.2 x 0,0.2 x 1} = {0.18,0.01,0.08,0.1,0,0.2}
Wis = {0.2 X 0.9,0.1 x 0.1,0.2 x 0.4,0.1 x 1.0,0.2 x 0.2,0.2 x 0.2} = {0.18,0.01,0.08,0.1,0.04, 0.04}

If we use these schemes to compute the weighted average similarities, the following scores result:

AAD(ey,e9,Wi3) = (0.08 x 2/340.06 X 5/6+0.14 x 1 +0 x 04 0.2 x 140 x 0)/0.48

=0.924

AAD(e3,e4,W34) = (0.18 x 11/14+0.01 x 1/6 4+ 0.08 x 5/6 +0.1 x 1 +0 x 0+ 0.2 x 1)/0.57
= 0.894

AAD(ey,e5,Wy5) = (0.18 x 5/13 + 0.01 x 1.0+ 0.08 x 1.0 + 0.1 x 0.8 + 0.04 x 0.2 4 0.04 x 0.7)/0.45
=0.617

For the first candidate pair, the phone number and the last name have the greatest impact on the final
score. In contrast, for the second candidate pair, the first name, the date of birth, and the email address
have the greatest impact on the computed similarity score. In the case of the third candidate pair, the
first name and the date of birth have the greatest impact on the resultant similarity.

As we can see, the similarities of the two duplicate pairs are now around 0.9 and the similarity of
the non-duplicate pair is still around 0.6 and hence the true MATCHES can be clearly demarcate from
the true UNMATCH. The reason is simple. The similarity score of the first pair was kept down because
the average similarity of the first names and the zero similarity scores of the date of birth and the email
address. Whereas the second similarity was zero because of null values and hence missing information,
the third one was zero because of completely different email addresses. By using the impact vectors, these
malfunctions become erased by assigning an average impact value to the attribute ’fname’ (content size)
and by assigning an impact value of zero to the attributes "DoB’ and ’email’ (measure significance
and range significance respectively). In the case of the second candidate pair, the similarity score was
initially decreased because of the missing phone number and the dissimilar middle names. The impact
values, however, neglect the first effect due to the significance of the used measure and neglect the second
effect because of the short lengths of the names. The main reason that the similarity score of the third
candidate pair {ey, e5} decreases slightly by using the impact values is the fact that the similarity of
the equal last names and the similarity of the equal middle names are both counted into the average
similarity computation with lower weights. This in turn is caused by the low rarity of that last names and
the short length of the middle names.

For all three candidate pairs, the impact values of the middle names improve the result much, because
the high similarity score between the middle names of ey and es as well as the low similarity score be-
tween the middle names of e and ey are relativized, i.e. they do not have much impact on the aggregation
result, and the high similarity score between the middle names of e; and es is not relativized, i.e. it still
has a high impact on the aggregation result.

In summary, the impact vectors enable the decision model to base its decisions on the information that
is most distinguishing for each of the individual candidate pairs and hence can improve the accuracy of

the duplicate detection process to a large extent.
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5.2.2.4. Computing Impact Values for Subsequent Matching Phases

As we will discuss in Section 7.2.1, for detecting duplicates in probabilistic data, it can be useful to also
compute impact values for the results of the later detection phases. Intuitively, the impact of a duplicate
decisions corresponds to the impact of the entity similarity it is derived from. Thus, regarding pairwise
matching results we only need a method to derive an impact of the entity similarity score from the impact
values that are computed for the value pairs that are used for computing the considered entity similarity.
As we think, the similarity between two entities (or their descriptions respectively) is the more reliable
the more significant the similarities between their attribute descriptions and their relationship descriptions
are. Obviously, some attribute value similarities (or relationship similarities) have a greater impact on the
similarity between the entities than others. In distance-based decision models, we can derive this impact
from the individually computed weighting schemes. On a first glance, an attribute value similarity with
zero impact should not affect the impact value of the corresponding entity similarity because it did not
contribute to that score. On the other hand, the larger the number of significant attribute value similarities
that contribute to the computation of the entity similarity, the more reliable is this computed score. By
considering the first argument, we would assign the maximal impact value imp(e,, es) = 1 to an entity
pair {e,, e, } if only one of its attribute value similarities has the maximal impact and all the other attribute
value similarities have the impact zero. It is obvious that this is in conflict with the second argument.
For that reason, we compute the impact an entity similarity score by the difference of the individually
computed weighting scheme and the maximal possible weighting scheme, i.e. the scheme that result if all
impact values are one. Note, the latter is identical to the original weighting scheme. Thus, let e, and e,
be two database entities, let W = {w1, ..., wy,} be a weighting scheme and let W, = {w]®,..., w;°}
be the individual weighting scheme that has been computed for {e,, e5}, the impact value of the entity

similarity between e, and e is therefore computed as:

Yy wi '
i=1 Wi

A probabilistic database can be represented by a set of possible worlds. Thus, we sometimes even

imp(ey,es) =1 —

need an impact value for a whole database or the database’s duplicate clustering respectively. Let db be
a database, we denote the impact value of this database as imp(db).

Its seems intuitive to compute the impact of a clustering as the average impact of its entity pairs. By
doing so, however, we ignore the fact that we do not have an impact value for each entity pair because
most of them do not belong to the candidate pair space. Moreover, some possible worlds can contain
more entities than others and a duplicate clustering is the more informative the more entities it contains.
By simply computing the average impact of all entity pairs, however, we can come into a situation where
a clustering with less entities gets a larger impact than a clustering with more entities. For both reasons,
computing the impact of a clustering as the average impact of all its pairwise duplicate decisions should
be treat with caution.

Another conceivable approach is to use the attribute features proposed by Leitao and Calado [LC11a].
By doing so we can compute the uniqueness, the content length, and the absence for each attribute
as described in [LCl11a], then combine all these values to a single normalized value that describes the

information content of the whole database, and to use this value as the database’s impact. Of course,
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it seems useful to weight the individual attributes with their importance for the detection process. The
shortcoming of this approach, however, is that it does not consider the individual impact values that we
have computed for the individual value pairs. As a consequence, it does not make a difference whether
or not we use these impact values in the used decision model.

In summary, computing suitable impact values for whole databases (or whole duplicate clusterings
respectively) is not straightforward. For that reason, we encourage the user in Section 7.2.1 to use

impact values of pairwise matching results instead of using impact values of whole databases.

5.2.3. Matching Process: An Overview

This section gives an overview of the six detection phases. We present each of these phases in detail
and discuss which adaptation are possible or even necessary because of the relationship descriptions, the

belief map, and the impact values.

5.2.3.1. Data Extraction

In the first phase, the entity descriptions need to be extracted from the databases. This is realized by user
defined queries that either select useful attributes from an entity table (attribute description) or extract

sets of related entities from entity tables or relationship tables (relationship description).

5.2.3.2. Data Preparation

The most preparation activities are only performed for increasing the effectiveness of the duplicate detec-
tion process and are not intended to increase the quality of the original data. Thus, we prepare the entity
descriptions instead of the original data. We call a sequence of preparation activities as a preparation
process. Formally, a preparation process is a function that maps an entity description to another entity
description by applying all its preparation activities to the input description in the predefined order. Since
a preparation process can include activities that change the structure of the data, e.g. merges or splits of
attributes, the description type of the output description can differ from the description type of the input
description.

Usually for each description type another preparation process can be defined. Thus, we usually work

with a set of preparation processes (one for each description type of the input).

5.2.3.3. Candidate Pair Space Construction

The input to the candidate pair space construction phase is a set of database entities along with their
entity descriptions. If relationship descriptions do not contain attributes, blocking key values are only
extracted from the attribute description.

In HaDDeF the candidate pair space is constructed as described in Section 4.3.4. Sometimes, however,
it is useful to expand the candidate pair space dynamically during one of the following phases by some
specific entity pairs. Thus, the only difference to the standard execution model is that we allow a post-
fetching of candidate pairs.

For illustration we consider a duplicate clustering phase in which the two entity pairs {e,, es} and

{e,, e} are classified as a MATCH, but the pair {es, e;} is not part of the candidate pair space. Due to
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the transitivity of identity, the pair {es, e;} must be a duplicate as well. One option is to classify it as
a MATCH without further analysis as it is done by the approach of partitioning based on components.
However, the confidence of the made decisions can be increased by matching the missing entity pair sub-
sequently and hence by post-fetching it. Another useful example is a case where the similarity between

two entities is required for matching the relationship descriptions of two other entities.

5.2.3.4. Feature Matching

The feature matching phase gets a candidate pair {e,, e, }, the entity descriptions dgp(e,) and dgp(es),
and the belief map as input. Moreover, if needed for impact value computation it collects data statistics
from the database. The purpose of the feature matching phase is to extract all the information from
the two descriptions that is required by the decision model to classify {e,,es} as a MATCH, a POSSI-
BLE MATCH, or an UNMATCH. The output of this phase is a feature score fs(e,., e5) = (Gi, 74, Cr, ir)
that encapsulates the results of matching and analyzing the attribute descriptions and the relationship

descriptions of both entities as described below:

e Attribute descriptions are matched by using some of the similarity measures that we have described
in Section 4.3.5. Since attribute values can be transposed (e.g. the last name and the first name of
a person), we also allow a matching of values that belong to different attributes. Such an attribute
across matching can be also valuable, if values of different attributes are often very similar or one
is often encoded in the other. A good example for the latter case is the name of a person and its

email address, because the email address often contains the person’s name.

From comparing two attribute descriptions d; and dy where d; is conform to type T{"" and d
is conform to type T4, we obtain the attribute comparison vector ¢4 = (ci,...,cn,) and the
attribute impact vector iy = (v1,...,Um), where each ¢; represents the similarity of the values
from the ith pair of attributes (A1, Ay) € T4 x T4 and each v; represents the impact of the ith

similarity score.

e Recall, in the case of relationship descriptions, we restrict our consideration on pairs of labels
and entity sets. Two sets of related entities are matched as described in Section 4.3.9. Relation-
ship information can be transposed as well. For example, a database tuple is inserted into the
relationship-table reviewer instead of the relationship-table author. For that reason, we also allow

a matching of sets from different labels.

From comparing two relationship descriptions d; and dy where d; is conform to type TX¢ and d
is conform to type TX¢, we obtain the relationship comparison vector ¢g = (c1,...,c,) and the
relationship impact vector ig = (v1, . .., vy), where each ¢; represents the similarity of the entity
sets from the ith pair of labels (L1, Ly) € TR¢! x TR and each v; represents the impact of the ith

similarity score.

The configuration of the feature matching phase generally depends on the description types the con-

sidered entity descriptions are conform with.
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5.2.3.5. Similarity Computation

The similarity computation phase gets an entity pair {e,, e5}, the feature score fs(e,, e5), and the belief
map as input and produces a pair (sim(e,, es), imp(e,, e5)) as output where sim(e,, ;) is the normal-
ized similarity between the entities e, and e; and imp(e,, e5) is the corresponding impact value. In
general, any of the decision models that we have presented in Section 4.3.6 can be used to compute a
single similarity score from the feature score. An incorporation of impact vectors into these decision
models has been already discussed in Section 5.2.2.

Existing approaches that incorporate relationship similarity into decision models typically compute the
similarity between the attribute value information and compute the similarity between the relationship
information separately and finally aggregate both similarity scores by calculating the weighted average.

For example Bhattacharya and Getoor [BG07b] use the following aggregation function:
sim(ep,es) = (1 — ) X simy(ey, e5) + a X simpg(ey, es) (5.5)

where sim 4 is the entity similarity derived from the attribute information, sim g is the entity similarity
derived from the relationship information, and « is the weighting factor.

Since we construct one comparison vector for the attribute description and construct one comparison
vector for the relationship description, the similarities sim4 and simp can be computed by different
decision models (e.g. distance-based, learning-based, rule-based with confidences) or the final entity
similarity sim(e,, es) can be directly computed by concatenating both comparison vectors to a single

one.

5.2.3.6. Classification

The classification phase gets an entity pair {e,, e}, the entity similarity sim(e,, es), and the impact
value imp(e,, es) as input and then uses two thresholds 6p,, and 6y,p in order to classify {e,,es} as a
MATCH, POSSIBLE MATCH, or UNMATCH by comparing sim(e,, es) with these thresholds. The output
of the classification phase is a duplicate decision that we formally define as the triple dec(e,,es) =
(C, sim(ey,es),imp(er, es)) where C € {MATCH, POSSIBLE MATCH, UNMATCH} is the computed
matching class.

If the similarity score that has been computed for an entity pair has a low impact value, it means that
this score is likely not very representative for the considered entity pair. As a consequence, it makes
sense to classify it as a POSSIBLE MATCH. In conclusion, we do not only classify pairs with an average
similarity as POSSIBLE MATCHES, but also classify pairs whose similarity has a low impact as POSSIBLE
MATCHES.

The purpose of the belief map is to store external knowledge on the decisions of individual can-
didate pairs. Thus, if the belief map stores the information that two entities are certainly a MATCH
or are certainly an UNMATCH, the pair’s decision can be automatically set to (MATCH, 1.0,1.0) or
(UNMATCH, 0.0, 1.0) without invoking the decision model. Thus, if a domain expert manually deter-
mines a candidate pair as a MATCH or UNMATCH once, this decision will never change except this
expert or another expert revokes this determination afterwards. In cases, where the belief vector does

not contain a value of absolute confidence, but instead only contains an assumption the belief map has
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to be used in another way. One option is to use the belief values as an additional input to the decision
model (similarity computation phase), for example by considering them as two extra input parameters
of a learning algorithm, or as two extra values for a distance-based decision models where we automat-
ically use an impact value of 0 if the confidence value is 0 (no external knowledge was available) or 1
otherwise. Another option is to use the confidence values to boost the computed similarity afterwards
negatively (confidence of UNMATCH > 0) or positively (confidence of MATCH > 0).

5.2.3.7. Duplicate Clustering

Principally, the duplicate clustering phase is applied as usual and therefore gets all entities and all com-
puted duplicate decisions as input. If required, an impact value for the whole duplicate detection result,
i.e. its reliability, is computed as described in Section 5.2.2.4.

If we use the belief map, we have to distinguish between soft decisions, i.e. decisions that have been
made by the decision model, and hard decisions, i.e. decisions that have been manually made by domain
experts or have been derived from external knowledge. Since the individually taken decisions can be
contradictory, the clustering algorithm often need to revoke some of them. Nevertheless, in the presence
of hard decisions we want to avoid a revocation of any of them. In general, there are two ways to
guarantee that every hard decision is not revoked by the duplicate clustering algorithm. The first way is
to use a clustering algorithm that is able to differentiate between hard decisions and soft decisions as for
example the extended version of the correlation clustering algorithm that has been proposed by Arasu et
al. [ARS09]. The other way is to prepare the set of given decisions so that two entities that have been
declared as an hard UNMATCH can never become a MATCH. For example, if the clustering algorithm
is working on the Duplicate-Pair Graph, we need to transform the initial graph in a way that each two
entities that have been classified as an hard UNMATCH belong to different components without shifting
the entities of any hard MATCH into different components.

Example 74 A simple example of such a preparation is illustrated in Figure 5.6. Let us assume that
the two entities es and e4 are a hard UNMATCH and the two entities eo and e3 are a hard MATCH.
To guarantee that any clustering algorithm will not group es and ey together in the same cluster, we
transform the duplicate pair graph so that both entities belong to different components without revoking
the hard MATCH between eo and es3. In this case, this transformations can be done either by revoking
the two MATCHES {e1,e4} and {ez, e4} (see Figure 5.6(b)) or by revoking the two MATCHES {ej, e}
and {ea, e4} (see Figure 5.6(c)). Since the similarity between ey and ey is smaller than the similarity

between e1 and es, the first transformation can be considered as the cost optimal one.

As a simple preparation algorithm, the approach of the edge-removal (see Section 4.3.7) can be used.
The edge-removal algorithm removes edges with the lowest weights from the graph until the entities of all
hard UNMATCHES belong to different components. The solution computed by this approach, however,
can be far away from being cost optimal (cost in terms of the accumulative similarity of all revoked
MATCHES) in complex graphs. Nevertheless, depending on the number of hard decisions a cost optimal

preparation algorithm can be computational expensive.
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(a) Initial Duplicate Pair Graph (b) Transformation 1 (c) Transformation 2

Figure 5.6.: Sample transformations of a duplicate pair graph that guarante the hard UNMATCH between e3 and e

If different hard decisions contradict each other, guaranteeing that no hard decisions is revoked is de
facto impossible and existing contradictions are either resolve automatically by minimizing the number

of revoked hard decisions or are reported to the user.

5.3. Modeling and Matching Database Entities with Multi-Table Memberships

Until now, we restrict our considerations to duplicate detection in databases in which each database
entity can only belong to the extension of one entity table. In many real-world scenarios, however, a
database entity can belong to different collections and hence can belong to the extension of several entity
tables. To the best of our knowledge, none of the existing duplicate detection approaches takes multi-
table memberships into account. For that reason, we extend the description-based detection approach
that we have presented in the previous section to an handling of such multi-table memberships.

The remainder of this section is structured as follows: First, we give an example to motivate the need
for dealing with multi-table memberships. Then we present an approach for incorporating information on

multi-table memberships into entity descriptions and finally presents methods to match such descriptions.

5.3.1. Motivating Example

As a motivating example, we consider the information system of an hospital. Figure 5.7 presents the
entity-relationship schema of this system. The schema has seven entity types that are connected by
several specializations and one ternary relationship type. The basic entity type is 'Person’ having the
three attributes DEI, 'name’ and 'DoB’ (date of birth). A person can be specialized to a member of the
hospital’s staff (entity type "Staff’) or can be specialized to a patient (entity type "Patient’). Staff members
can be in turn specialized to members of the hospital’s administration staff (entity type 'AdmStaff’) and
can be specialized to members of the hospital’s medical staff (entity type 'MedStaff’). Moreover, a
patient can be specialized to a dialysis patient (entity type 'Dialysis Patient’). Each staff member either
belongs to the hospital’s administration staff or belongs to the hospital’s medical staff, but cannot belong
to both at the same time. Consequently, the set of these two specializations is total and disjoint. Every
person can be a patient (even a member of the hospital’s staff). Thus, the specialization of person to the
entity type ’Patient’ and the specialization of person to the entity type ’Staff” are non-disjoint. Moreover,
not every person need to be a patient or a staff member. As a consequence, this set of specializations is

not total but only partial. Every dialysis patient is a patient, but not every patient is a dialysis patient.
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Figure 5.7.: Sample ER-schema with multi-type memberships
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Thus, the specialization of patient to dialysis patient is partial. The last entity type 'medicine’ is neither
a specialization nor is a generalization of any other entity type of this schema. The entity type ’Staff’
has the attributes ’salaray’ and ’EoC’ (end of contract), the entity type 'AdmStaff’ has the attribute
‘dept’ (department), the entity type 'MedStaff’ has the attribute 'grade’, the entity type 'Patient’ has the
attribute "HlIns’ (health insurance), the entity type 'Dialysis Patient’ has the attribute 'period’ (describes
the period of days in which a patient gets his dialysis), and the entity type 'Medicine’ has the attributes
DEI and 'name’. Recall, every entity can be identified by its DEI.

Besides specialization this information schema contains a ternary relationship type. This relationship
type has three roles and models the medication that has been applied to a patient by a member of the
medical staff. Therefore, the roles are filled by an entity of the type 'MedStaff’ (doctor), an entity of the
type 'Patient’, and an entity of the type 'Medicine’. Since every patient can be medicated for several
times, a member of the medical staff can medicate a patient for several times, and a medicine can be used

for medication for several times, the relationship type is many-to-many.

Figure 5.8 shows a relational database its schema results from transforming the entity-relationship
schema given in Figure 5.7 to the relational data model and shows a sample instance for this database
(recall that we know table "Medicates’ already from Example 68). The database schema consists of eight
tables where the primary key of each table is the combination of the underlined attributes. Foreign keys
are presented by additional notes of the form attr — table.attr below the corresponding tables. Note,
the tables "Person’, 'Staff’, '"AdmStaff’, ’"MedStaff’, ’Patient’, and ’Dialysis Patient’ are entity tables, the

table "Medicates’ is a relationship table.

The extension of the database contains seven entities; five persons and two medicines. As an example

of multi-table membership, person pg belongs to the extension of four different entity tables.
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Ve

Person (Entity Table) Medicine (Entity Table) Medicates (Relationship Table)
DEl name DoB DEI name doctor patient medicine date = dose
pl J.Smith |10.11.94 ml | medicine A pl p3 m1l 12.11.07 | 3ml
p2 |John Doe | 03.05.67 m2 | medicine B p2 p3 ml 08.10.06 | 4ml
p3 | J.Schmitt | 10.11.49 p2 pl m2 21.05.07 | 10g
p4  loanDoe  03.05.67 SR AT IR pl | ps5 ml 050610  3ml
p5 KSmith | 11.10.94 DEl salary EoC pl p5 m2  17.01.09 ' 10g
pl | 50k 2015 doctor — MedStaff.DEI,
patient — Patient.DEI,
p2 | 30k 2018 medicine — Medicine.DEI
p3 | 45k 2015
DEI — Person.DEI
AdmStaff (Entity Table) MedStaff (Entity Table) Patient (Entity Table) Dialysis Patient (Entity Table)
DEl dept DEI grade DEl  Hins DEl period
p3 | logistic pl | chief resident pl | Ins. A. pl 2
DEI — Staff.DEI p2 | nurse p3 | Ins. A p5 3
DEI — Staff.DEI p5 | Ins.B. DEI — Patient.DEI
DEI — Person.DEI
.

Figure 5.8.: Sample RM-schema with multi-table memberships

Regarding this database it is not clear in which way we can describe the individual persons by a
single description. The most intuitive approach is to adopt the Single-Table Approach for modeling
inheritance within the relational data model. By doing so, we consider all entity tables that are related
by specializations as a single table and hence construct an attribute description type that contains each
attribute of one of these tables. This approach enables a simple modeling of membership information
into the descriptions, but it cannot avoid that same membership information is redundantly stored in
these descriptions. If this effect is not considered in the matching process, the redundantly described
information can have a strong influence on the detection result. To regulate this influence, we present an

approach that makes use of the previously introduced impact values.

5.3.2. Membership Dependencies between Entity Tables

Before presenting our approach for describing and matching entities with multi-table memberships in
detail, we have to introduce two kinds of dependencies that can exist between two entity tables.
Let 7 be a set of entity tables.

e Membership Exclusion: Two entity tables 7;,7; € T are called to be membership exclusive
(noted as =), if an entity can never belong to the extensions of both tables at the same time, i.e.:

T, =M T; < Vr € Time: Ext(T;, ) N Ext(Tj,7) = )

An example of two membership exclusive entity tables are 'Person’ and 'Medicine’, because a

person can never become a medicine and vice versa. A less restricted example are the tables
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"AdmStaff” and "MedStaff’, because no person can be a member of the administration staff and the

medical staff at the same time.

e Membership Inclusion: An entity table 7; € T is called to be membership included by an entity
table T; € T (noted as —M)_ if each entity that belongs to the extension of T); always belongs to

the extension of 7}, too, i.e.:
T, =™ T; & V1 € Time: Ext(Tj, 1) C Ext(T}, 7)

An example of two entity tables where the first is membership included by the second are "Person’
and ’Patient’, because every patient is a person.

Membership inclusion between entity tables conceptually corresponds to a specialization (is-a rela-
tionship) of entity types in the entity-relationship model. Thus, let E; be the entity type that is repre-
sented by entity table 7}, an entity table 77 € T is membership included by an entity table T € T, if
Esis-aF,. Nonetheless, because of bad schema design or because of considering tables from indepen-
dent integration sources, membership inclusion is not necessarily restricted to specializations.

However, if all membership inclusions are modeled by specializations, we can also derive the mem-
bership exclusions from it. If neither E; is a specialization nor a generalization of E; and if for each
entity type F; that is generalization of E; and FE; the two specializations Fjis-aF; and Ejis-aE; are
disjoint (note, this condition is also satisfied if there is no entity type that is a generalization of both), the

two entity tables T}, T; € T are membership exclusive.

Example 75 In our motivating example, the entity table *Person’ is membership included by all other
entity tables except medicine’. The entity table *Staff’ is membership included by the entity tables
>AdmStaff’ and *MedStaft’, and the entity table *Patient’ is membership included by the entity table
’Dialysis Patient’. The entity table Medicine’ is membership exclusive to all other entity tables and the
entity table > AdmStaff’ is membership exclusive to the entity table ’MedStaff’.

Of course, not all cases of membership exclusions need to be modeled in the entity descriptions. For
instance, the membership exclusions between the table "Medicine’ and all other entity tables are automat-
ically implicated by defining different and non-compareable description types. In contrast, the member-
ship exclusion between ’AdmStaff’ and 'MedStaff” cannot be modeled by non-compareable description
types, because although their extensions cannot overlap they both can overlap with the extension of a
third entity table and all entities of the same extension should be compareable. For instance, each person
should be compareable with another person whether or not one of them is a medical staff member and
the other is an administration staff member. For that reason, we introduce the concept of membership

correlation sets.

Definition 31 (Membership Correlation Set:) A set of entity tables T is called a membership correla-
tion set if it cannot be partitioned in any two disjoint and non-empty subsets so that all two elements
of different subsets are pairwise membership exclusive to each other, i.e. T is called a membership

correlation set if:

LT, CT, Ti 20, T, 20, iNT; =0:VT; € T;: VT; € T;: T, =M T;
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For instance, the entity tables of our motivating example can be partitioned into two membership cor-
relation sets. Whereas the first set only contains the table 'Medicine’, the other set contains all other
entity tables, because each of them is a specialization of the table ’Person’ and each of them is member-
ship exclusive to table "Medicine’. Obviously, we define an own entity description type per membership

correlation set.

5.3.3. Describing Entities with Multi-Table Memberships

In general, there is no need for a specific description approach that handles multi-table memberships, if
we can enforce single-table membership by transforming the database schema in another semantically
equivalent schema that only contains entity tables with disjoint extensions. One way to enforcing single-
table membership is to flatten the hierarchy of tables within a membership correlation set by merging
all these tables into a single one and hence to use the Single-Table Approach for modeling inheritance.
The resultant table contains every attribute that belongs to one of the merged tables and entities of that
table can fill in any relationship role that can be filled in by an entity of the merged tables (recall that we
consider attribute names to be clearly distinguishable so that no name conflict between the attributes of
different tables can appear). The extension of the resultant table is the union of all the merged tables’
extensions. Recall in order to model the membership to the individual entity types (or entity tables
respectively), we need to add a membership attribute per entity table.

Of course, we do not actually need to merge tables, but instead generate the entity description types
and the concrete entity descriptions of that type like the tables were actually merged. For each member-
ship correlation set we generate a separate entity description type as follows: Let 7 be a membership
correlation set, we generate an attribute description by adding all attributes of each table of 7 and by

adding a membership attribute per table of T, i.e.

FA(T) = UTET (TA™(T) U {Ar}) (5.6)

where Ar is the membership attribute that is created for entity table 7. If one entity table is membership
included by all other tables of this correlation set, this table does not need to be represented by a mem-
bership attribute, because it always has the value ’true’ for all entities whose descriptions are conform to
this type. For instance, in our motivating example, the table ’Person’ does not need to be represented by
a membership attribute.

Moreover, the relationship description type of 7 contains each label-domain pair of one of its tables.
Here we assume that each label is assigned by the same domain in the description type of each table. In
that case, the relationship description type of 7 results in:

gRel (7—) — U

The concrete entity description of an entity is then constructed as usual, i.e. for each attribute an

Rel
ey TT) (5:7)

attribute-value pair is extracted from the database. Each attribute the entity does not have a value for,
because it does not belong to the extension of the corresponding table, is paired with the null value. A
membership attribute is set to ’true’ if the considered entity belongs to the corresponding table and is set

to false’ otherwise. Thus, let e be a database entity, let T,y C T be the set of entity tables in which e is
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DElI  name DoB isStaff salary EoC isAS dept isMS grade isPat HIns isDPat period
pl |JSmith |10.11.94  true 50k 2015 |false | L true |chiefresident |true |Ins.A. |true |2

p2 |John Doe |03.05.67 | true 30k 2018 false | L true | nurse false |1 false | L
p3 | J.Schmitt |10.11.49 | true 45k 2015 |true |logistic | false |1 true |Ins.A. |false | L
p4 JoanDoe 03.05.67 |false | L L false |L false | L false | L false |1
p5 |K.Smith 11.10.94 false | L L false | L false | L true |Ins.B. |true |3

(a) Attribute description type and concrete attribute descriptions of the sample entities

DEI doctor patient
pl | {p3,p5mim2} = {p2,m2}
p2 | {p2,p3,m1,m2} 1]

p3 @ {p1,p2,m1}
p4 ) @

p5 @ {p1,m1,m2}

(b) Relationship description type and concrete relationship descriptions of the sample entities

Figure 5.9.: The attribute descriptions and the relationship descriptions of the sample entities by using the
proposed description approach

represented by a tuple, and let 77 = 7 — Ty be the set of entity tables in which e is not represented by

a tuple, the attribute description of e in 7 is defined as:

fAD(e, T) = fAD(e, TM) U fAD(e, TU) (5.8)

where fap(e, Tar) and fap(e, Tyr) are defined as:

fan(e, Tv) = UTeTM (fan(e, {T}) U (A7, "true’)) (5.9
fap(e, Ty) = UTGTU (UAE@M(T)(A, L) U (Ap, false’)) (5.10)

The related sets of the relationship descriptions are first extracted for each table separately and then
combined. To guarantee the uniqueness of each label, the set per label is constructed by computing the
union of all the sets this label has in any of the merged tables, i.e.

fRD(ff,T) = U {(L’UTET{S ‘ (LvS) € fRD<€7 {T})})} (5.11)

(L,dom)eTRel(T)

Example 76 For illustration we reconsider the motivating example of this section. As mentioned before,
the tables *Person’, *Staff’, > AdmStaff’, "MedStaff’, *Patient’, and ’Dialysis Patient’ form a membership
correlation set. The attribute description type of this correlation set corresponds to the schema of a table
that result from merging all these tables in the previously proposed way. The resultant table is presented
in Figure 5.9(a). In this example, the membership attributes are named as ’isStaff’, ’isAS’ (shortcut
for ’isAdmStaff’), ’isMS’ (shortcut for ’isMedStaff’), ’isPat’ (shortcut for ’isPatient’), and ’isDPat’
(shortcut for ’isDialysisPatient’). We omit the membership attribute of table *Person’, because each

entity that belongs to any table of this correlation set belongs to the *Person’ as well. Since, we only
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consider single-valued attributes, the attribute descriptions of the individual entities correspond to the
tuples of the newly constructed table.

The considered database schema contains only a single relationship and only the two roles *doctor’
and ’patient’ reference to an entity table of the considered membership correlation set. In this example,
we assume that relationship information is modeled by two labels. The first label corresponds to the role
"doctor’ and refers to all entities that are correlated with the considered person acting as a doctor. The
second label corresponds to the role ’patient’ and refers to all entities that are correlated with the con-
sidered person acting as a patient. Consequently, the relationship description type of this membership
correlation set consists of two label-domain pairs where the domain is a set of entities for both pairs. The
relationship instances of the label *doctor’ originates from the entity table ’"MedStaff’ and the relation-
ship instances of the label ’patient’ originates from the entity table *Patient’. The concrete relationship

descriptions of all entities that belong to the considered correlation set are presented in Figure 5.9(b).

5.3.4. Matching of Entity Descriptions with Membership Attributes

A big advantage of the presented approach for describing entities with multi-table memberships is that
the resultant descriptions are structurally equivalent to the conventional case of single-table membership.
Therefore, two entity descriptions that contain information on multi-table memberships can be matched
as usual, i.e. by matching their attribute descriptions and their relationship descriptions as presented in
Section 5.2. Nevertheless, as we will illustrate below, these descriptions can contain same information

for several times which in turn can distort the matching result significantly.

Example 77 For illustration we consider the entity pl from our motivating example. Due to it is a dial-
ysis patient, it is automatically a patient as well and hence the value ’true’ in the membership attribute
“isPat’ is implicated by the value ’true’ in the membership attribute isDPat’. Another dependency can
be observed for pl’s value in the membership attributes *iSAS’ and ’isMS’. Because a person cannot
belong to the administration staff and the medical staff at the same time, the value ’true’ in the attribute
iSMS’ implicates the value false’ in the attribute *1sAS’. Finally, the value ’false’ in the membership

attributes *1sAS’ implicates a null value in the attribute *dept’.

As we have shown by this example, the values of some attributes can be implicated by the values of
other attributes. We can generalize such implications by the following observations:

e An attribute is implicated to contain the null value, if its corresponding membership attribute is
’false’. Similar holds for relationship types, because the related entity set of a specific label is

empty if the considered entity does not belong to one of the corresponding entity tables.

e The value of the membership attribute A7, is implicated to "false’, if the value of a membership
attribute A7, with T; M T} (T; is membership included by T}) is *false’. In contrast, the value
of a membership attribute A7 is implicated to ’true’, if the value of a membership attribute Ar,
with T, —M T} is ’true’.

e The value of a membership attribute A7, is implicated to ’false’, if the value of a membership
attribute A, with T; =M T} is true’.
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By matching all attribute value pairs independently, these implications can lead to the case that same
information is considered in several similarity scores of the produced feature score and hence will have
a stronger influence on the later made duplicate decision than other information. Since these implica-
tions are value dependent, i.e. they only appear for specific values in the considered attributes, these

dependencies cannot be handled by the attributes’ weights.

Example 78 For illustration we consider some of the entities from the motivating example. First, we
compare the two entities p1 and py. The first is a staff member and the second not. Thus, their values
do not only disagree in the membership attribute *isStaff’, but also disagree in the attributes ’salary’
and *EoC’. The disagreement in the latter is caused by the disagreement in the first. Consequently, the
information that one is a staff member and the other not is considered for three times. In general, two
different values in a membership attribute will imply a low similarity score in a set of further attributes.

Another situation of redundant matching information appears in comparing entity pl with entity p5.
Both entities are dialysis patients. The agreement in the membership attribute *isDPat’, however, im-
plicates an agreement in the membership attribute ’isPat’, because for both entities, the value ’true’
in the attribute *isDPat’ implicates the value ’true’ in the attribute ’isPat’. Again, same information is
considered in multiple similarity scores.

A third situation of redundant matching information can be observed by comparing entity pl with
entity p2. Both entities are medical staff members and hence both have the value 'true’ in the membership
attribute 1SMS’. The memberships to the medical staff and the administration staff are excluding and
the value ’true’ in the attribute *isMS’ implicates the value ’false’ in the attribute isAS’. Thus, the
agreement in the attribute *isMS’ implicates an agreement in the attribute *isAS’.

Finally, we consider the entities pl and p3. Whereas the first is a medical staff member, the second is
an administration staff member. Thus, the disagreement in the attribute ’isMS’ implicates a disagreement

in the attribute *1sAS’ and vice versa.

These negative effects of matching redundantly modeled information, however, can be avoided if we
set the impact values of the produced similarity scores by a set of rules. For simplification, we restrict
to the case where we do not match values across attributes and therefore the considered similarity scores
and the considered impact values are clearly determined by the considered attribute.

e Rule 1: If the matched entities have both the value ’false’ in a membership attribute A, the
impact value of each attribute from table 7' is set to zero, because the agreements in the null values

of these attributes are already considered by the agreement in attribute A7.

Rule 1: e, [A7] = es[Ar] = "false’ = VA € TA(T): imp(e,[A], es[A]) = 0

e Rule 2: If the matched entities have different values in a membership attribute A, i.e. one
has false’ and the other has ’true’, the impact value of each attribute from table 7' is set to zero,
because the disagreements in values of these attributes are already considered by the disagreement

in attribute Ap.

Rule 2: e, [A7] = *false’ A es[A7] = true’ = VA € TA(T): imp(e,[A], es[A]) = 0
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e Rule 3: If the matched entities have both the value ’false’ in a membership attribute A7, the
impact value of each membership attribute Ar; is set to zero if table 7; is membership included by
table T}, i.e. T; —™ T}, because the agreements in the value *false’ of these attributes are already
considered by the agreement in attribute A7,.

Rule 3: e,[A1,| = es[Ar,] = false’ = VI; € T,T; —M Tj: imp(er[Ar;], es[A;]) = 0

e Rule 4: If the matched entities have both the value ’true’ in a membership attribute A7, the
impact value of each membership attribute Ar; is set to zero if table 7} is membership included
by table T3, i.e. T} —M T because the agreements in the value ’true’ of these attributes is already
considered by the agreement in attribute Ar; .

Rule 4: e,[Ar] = es[Ar)] = "trve’ = VT € T, T; =™ T;: imp(e,[Ar,], es[Ap,]) = 0

e Rule 5: Let A be a set of membership attributes which represent a set of tables that are mutual
membership exclusive. If the matched entities have both the value "true’ in one of these attributes
A7, € A, the impact value of each other attribute in A is set to zero, because its agreement is
already considered by the agreement in attribute A .

Rule 5: A1, € A: e,[Ar)] = es[Ar,] = "true’
= VATj eA-— {ATZ} imp(er[ATj], €S[AT].]) =0

e Rule 6: Let A be a set of membership attributes which represent a set of tables that are mutual
membership exclusive. If the matched entities have the value ’true’ in different attributes of A,
i.e. one in the attribute A7, and the other in the attribute A7, they automatically disagree in these
two attributes. For that reason, either A, or ATj is chosen and the impact value of the non-chosen
attribute is set to zero.

Rule 6: 3AT,, A, € A: e,[Ar,] = es[Ar,] = "true’ A e, [Ar;] = es[Ar;] = false’
= imp(e.[Ar ], es[A1]) =0V imp(eT[ATj], es[AT].]) =0

Note that if the entities disagree in the two membership attributes A7, and Ar;, they automatically
agree in all membership attributes A — {Ar,, A7, }. Thus, the information e, [A7,] # es[Ar;] A
er[Ar;] # es[Ar,], the information e, [A7,] # es[AT,] A A\ gpca—¢ Ar, Ag,} € [A7] = es[Ar] and
the information e, [A7,| # es[A7; AN 4, c4-g A, Ag,} €0 [A7] = es[Ar] are redundant. Therefore
another possible reaction would be to let the impact values of Ay, and A, unchanged and to set
the impact values of the other membership attributes A — { Ar;, A7, } to zero. Nevertheless, since
the non-membership to some entity sets can be a better indication for a duplicate than the non-
memberships to other entity sets, the decision model benefits more from setting the impact value
of either A7, or ATj to zero than by setting the impact values of all attributes in A — { A7, AT].}

to zero.

Example 79 For illustration, we reconsider the matching situations from the previous example and
again assume that we only match values from same attributes and not across attributes. Moreover,

for representation purposes, we assume that the default impact computation method always returns the
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(a) Sample scenario of the first impact rule (b) Sample scenario of the third impact rule
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(c) Sample scenario of the fourth impact rule (d) Sample scenario of the fifth impact rule

Figure 5.10.: Sample scenarios for using the impact rules to avoid a multiple consideration of same information in
the feature matching phase

value 1.0 and therefore impact values are only set to a value lower than 1.0 by any of the rules described
above.

In the first scenario, due to Rule 2, the impact values of the attributes ’salary’ and "EoC’ are set to zero.
In contrast, the impact value of the attribute *isStaft’ is computed as usual. This scenario is presented in
Figure 5.10(a).

In the second scenario depicted in Figure 5.10(b), we use Rule 4 to set the impact value of the attribute
’isPat’ to zero. The impact value of the attribute *isDPat’ is computed as usual. Note, the impact value
of the attribute "HlIns’ is not affected by this rule.

To resolve the third scenario, we use Rule 5 to set the impact values of the attribute *i1sAS’ to zero and
compute the impact value of the attribute *1sMS’ as usual. Note, the impact value of the attribute *dept’
is set to zero due to Rule 1. This scenario is presented in Figure 5.10(c).

Finally, in the comparison of the entities p1 and p3 we use Rule 6 to set the impact value of the attribute
"1SAS’ to zero. Note, in this case we have the choice to either set the impact value of the attribute *isAS’
to zero or to set the impact value of the attribute *isMS’ to zero. In this example we decide to do the first

without any specific reason.

Similar rules need to be defined for the relationship descriptions. For instance, if the compared entities
have both the value *false’ in the membership attribute ’isMS’, the sets of related entities for label 'doctor’
are both implicated to be empty. For that reason, the impact value of this relationship information need
to be set to zero because the agreement in this information is already considered by the agreement in the

attribute isMS’.







Chapter

Uncertain Value Theory

In this chapter, we present a formalism for modeling and processing uncertainty in data and data op-
erations. We will use this formalism in the rest of this thesis as a theoretical foundation for modeling
and processing data uncertainty as well as process uncertainty. The formalism is based on the possible
worlds semantics and is defined in an abstract way so that it can be reused in many application scenarios.
We accomplish this high level of abstraction by defining certainty and uncertainty on domain level where
a domain can theoretically be any set of things. First, we informally present the principle idea of the
possible worlds semantics in Section 6.1. Then we formally introduce the fundamental concepts of crisp
values and uncertain values in Section 6.2. We then discuss several characteristics and possible trans-
formations of uncertain values in Section 6.3, Section 6.4, Section 6.5, and Section 6.6. In Section 6.7,
we present concepts to adapt functions that are originally defined for crisp values to the handling of
uncertain values. Then, we extend our considerations to the domain of functions and hence introduce the
concept of uncertain mappings in Section 6.8. Section 6.9 summarizes the fundamental contributions of
the formalism. Finally, we present some measures that can be used to rate the (un)certainty of uncertain

values in Section 6.10.

6.1. Possible Worlds Semantics

A variety of formalisms that incorporate uncertainty has been proposed in different research areas. The
most of these formalisms are logic-based (for an overview see [Cus07]). Examples of formalisms
which incorporate logic and probability are Probabilistic Logic Programming [NS92], Probabilistic
Horn abduction [Po093], the Independent Choice Logic [Poo97], Probabilistic knowledge bases [NH97],
Bayesian Logic Programs [KRO1], Relational Bayesian Networks [Jae13], or Stochastic Logic Programs
[Mug00] to name just a few.

Nonetheless, whereas these formalism are logic-based, many formal foundations of probabilistic
databases are not. Therefore, in order to stay consistent with the terminology and formalism used in
relational database research in general and probabilistic relational database research in particular, we
decided to abstain from using a logic-based approach for modeling uncertainty, but generalized the pos-
sible worlds semantics from database instances to arbitrary domains instead. Note that the presented

formalism is based on the ideas of the possible worlds semantics as we know them from probabilistic
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database research [DS07c, AKG87], and hence it may differ from the interpretations of the possible
worlds semantics that are used in other research directions such as logic [Car50, Hin62, Kri63, Hal90]
or philosophy [Lew86].

Recall from Chapter 3, the core principle of the possible worlds semantics informally means that if
we do not know the exact state of the real world, we have to model it by a set of possible states which
are mutually exclusive, i.e. only one of these states can be the ’true’ one. Each possible state of the
real world is usually called a possible world. Moreover, each possible world can be associated with a
probability which represent the likelihood that this world corresponds to the real world.

Besides modeling the uncertainty of the fixed state of the real world, the possible world semantics
defines how to consider changes in this state as well: If we perform an action in the real world and we
want to know the possible results of that action, we have to perform this action in all possible worlds
separately. An action result belongs to the set of possible action results, if it results from performing this
action in at least one possible world. The probability of an action result is equivalent to the accumulative
probability of all possible worlds that lead to that action result.

These principles are illustrated in Figure 6.1.

real world action result
Reality Q action A ‘8
mode/l model
Q action A ‘8
Uncertain -
actj
Model of QQ w
Reality action A >
set of possible set of possible
worlds action results

Figure 6.1.: Principle of the possible worlds semantics

6.2. Values for Modeling Uncertainty

As mentioned above, certain information on real-world facts are modeled by the concept of crisp values
(also denoted as certain values in this thesis). Since a crisp value represents absolute certainty about the

modeled fact, the ’true’ value of that fact is exactly known (or at least is assumed to be known').

Definition 32 (Crisp Value): Let dom be an arbitrary domain. A crisp value of dom is a single value

x € dom.

"Note, since data can be certain but incorrect, the single value that is assumed to be the ’true’ value must not necessarily be
the actual ’true’ value.
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It is obvious that a crisp value of a domain corresponds to an element of that domain. As a consequence,
in the rest of the paper, we will use the notation © € dom to describe a crisp value of domain dom. A
crisp value corresponds to a value of absolute certainty. For that reason, we will use the terms crisp and
certain interchangeably in this thesis.

In order to enable a modeling of uncertainty about a fact’s "true’ value, we generalize the concepts of
incomplete databases and probabilistic databases that we defined in Chapter 3 and therefore introduce
the concepts of incomplete values and probabilistic values. An incomplete value is considered as a
non-empty and finite set of alternative values so that one of these alternatives is the ’true’ value. On
attribute value level that concept is also known as OR-Set value [MG88, Imi89] or partial value [Gra79,
DeM89, TCY93]. A probabilistic value is an incomplete value where each alternative is associated
with a probability. On attribute value level that concept is also known as probabilistic partial value
[TCY93]. In contrast to former research we use these definition in a more generalize sense, because we
consider a value to be of any domain (even domains of functions). For example, we can use this concept
to describe uncertain entity descriptions, uncertain similarity scores, uncertain duplicate decisions, or
uncertain duplicate clusterings, but it can be also used to define an indeterministic duplicate detection
process that incorporates uncertainty in the detection result.

Definition 33 (Incomplete Value): Let dom be an arbitrary domain. An incomplete value y of dom,
denoted as y € dom, is a non-empty and finite subset of dom, i.e. y C dom Ay # ), where each x € y
is a crisp value of dom and is called an alternative of y. All alternatives are mutually exclusive, i.e. each

of them represent a different possible state of the real-world fact that is modeled by y.

Note, the concept of incomplete values is a generalization of the concept of crisp values, because an
incomplete value y €/ dom with exact one alternative, i.e. |y| = 1, corresponds to a crisp value of dom.
The set of all possible incomplete values of domain dom is called the incomplete version of dom and
is denoted as dom!" = {y | y € dom}. Theoretically, it holds that dom! = 29™ —(), but because of the
inherit semantics of the mutual exclusion the incomplete version of dom is its power set, but not every
domain that is defined as the power set of dom is its incomplete version. Consequently, an incomplete

value of the domain dom is a crisp value of the domain dom!, i.e. y €l dom < y € dom!.

Definition 34 (Probabilistic Value): Let dom be an arbitrary domain. A probabilistic value z of dom,
denoted as z €' dom, is a pair z = (y, Pr) where Pr is a discrete probability distribution on dom, i.e.
Pr:dom — [0,1] and

all alternative values of z, i.e. y = {z | x € dom, Pr(z) > 0}.

scdom Pr(x) =1, and y €l dom is an incomplete value of dom that contains

For ease of presentation, a probabilistic value z = (y,Pr) can be also represented as z =
Upe, {(z: Pr(x))}.

Note, in contrast to the definition of probabilistic databases, we define the probability distribution Pr
on the considered domain dom instead of the set of alternative values y. That is because we sometimes
need to use the probability of a domain element that does not belong to the set of alternative values. Of
course, such a probability is per definition zero, but using a probability distribution that maps each of the

domain elements to a probability simplifies some formalizations notably.
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According to Definition 34, the probability of all alternative values have to sum up to one. Never-
theless, it can be useful to relax this requirement in situations where a probabilistic value is temporary
split into several smaller probabilistic values for processing reasons, i.e. the set of alternative values is
partitioned into smaller sets and each of these sets is processed separately. For that reason, we sometimes
relax the condition that the accumulative probability of all alternative values must be one if we consider
interim detection results.

Note, as the concept of incomplete values, the concept of probabilistic values is a generalization of
the concept of crisp values, because a probabilistic value 2z € dom with z = (y, Pr) where |y| = 1
corresponds to a crisp value of dom.

The set of all the probabilistic values that are possible for the domain dom is called the probabilistic
version of dom and is denoted as dom!” = {z | z € dom}. Consequently, a probabilistic value of the
domain dom is a crisp value of the domain domV, i.e. z €l dom < 2 € dom".

As mentioned in the introduction of this chapter, we summarize the concepts of incomplete value and

probabilistic value by the concept of uncertain values.

Definition 35 (Uncertain Value): Let dom be an arbitrary domain. An uncertain value of dom,
denoted as v €'/?! dom, is either an incomplete value or a probabilistic value of this domain, i.e.
u €7 dom = u € dom Vv u €V dom.

The uncertain version of a domain dom is denoted as dom!"/? and is the set of all incomplete values of
dom and all probabilistic values of dom, i.e. dom!"?' = dom!" U dom!”\.

To make a general discussion on uncertain values possible, we define the two mappings alt(-) and
pd(-). The mapping alt(-) maps an uncertain value u €/ dom to its sets of alternatives and is defined
as follows:

u, iff u € dom,
alt(u) =

y, iffu €Y dom,u = (y, Pr).

The mapping pd(-) maps an uncertain value v €“# dom to its probability distribution (if applicable)
and is defined as follows:

undefined, iff u € dom,
pd(u) =
Pr, iff u €' dom,u = (y, Pr).

For ease of presentation, we introduce some naming conventions for this chapter. In the remainder
of this chapter, we will use the letter "z’ for naming crisp values, the letter "y’ for naming incomplete
values, the letter *2’ for naming probabilistic values, and the letter v’ for naming uncertain values.
Note, an uncertain value of one domain can be a crisp value of another domain (simply recall a crisp
value of domain dom!! is a probabilistic value of domain dom). Thus this notation is only valid in
relation to the considered context which we will always concretize by a specific domain. Moreover, the
incomplete value that describes the alternatives of a probabilistic value and the probability distribution
of a probabilistic value will always be indicated by the same subscript as the probabilistic value itself,

e.g. z1 = (y1, Pri1).
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Example 80 Let the set Colors = {white,yellow, green, red, cyan, blue, black} be a domain of colors
that cars can have. The value x = red is a crisp value of the domain Colors and models the color of
a car that is exactly known to be red. The value y = {red, blue,black} is an incomplete value of the
domain Colors and models the color of a car that is not exactly known, but is either red, blue, or black.
The value z = {(red: 0.6), (green: 0.4)} is a probabilistic value of the domain Colors and models the
color of a car that is red with a probability of 0.6 and is green with a probability of 0.4.

A domain can be build on other domains. This lead to some interesting circumstances. Naturally,
uncertainty can be defined on several levels. For example, the value z €' dom!" is a probabilistic value
that has incomplete values of dom as alternatives. For this reason we will consider some characteristics

of uncertain values in the following subsections.

6.2.1. Analogies

As it can be simply seen, the concept of probabilistic values is closely related to probability mass func-
tions and is closely related to random variables.

A probability mass function [Das10] that is defined on a domain dom is a function that associates
probabilities to a finite number of elements of dom so that the accumulative probability of all domain
elements is exact one, i.e. it is a discrete probability distribution on dom. Thus, from a mathematical
point of view, a probabilistic value corresponds to a probability mass function that additionally stores all
the domain elements having a probability greater than zero.

A random variable is a function that maps elements of an event space to elements of a measurable
space [FG96] where the set of the real numbers is typically used as output space. A random variable
corresponds to an incomplete value if the domain of the latter is a measurable space. In that case the
variable’s range, i.e. its set of possible output values, corresponds to the set of alternatives of the incom-
plete value. Typically a random variable is combined with a probability mass function that associates
probabilities to the elements of the variable’s range. In that case, a random variable corresponds to a
probabilistic value.

6.3. Uncertain Value Transformation

In some use cases, it is useful to transform an incomplete value into a probabilistic value or vice versa.
A probabilistic value of the domain dom can be transformed to an incomplete value of the same

domain by ignoring its probability distribution.

Definition 36 (Probabilistic Value Transformation): Let dom be an arbitrary domain and let z; =
(yi, Pri) €7 dom be a probabilistic value of dom. The functi