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Abstract

Two colloidal model systems consisting of highly-charged poly-acrylate particles of
low polydispersity and two different particle radii were synthesized. Their static
(time-averaged) and dynamic behavior was studied for a broad range of particle
concentrations and added electrolyte by scattering methods using either visible light
or X-rays.

The static behavior revealed increasing direct particle interactions with increas-
ing particle concentration. The direct particle interactions were decreasing with
increasing electrolyte concentration, as expected for an enhanced screening of the
direct particle interactions, thus allowing a tuning of the direct particle interactions
from strongly interacting towards strongly screened systems. The extracted static
structure factors were in good agreement with the rescaled mean spherical approxi-
mation (RMSA), which describes the interparticle interactions in terms of a screened
Coulomb potential.

The characterization of the dynamics of the samples allowed the determination
of the normalized inverse diffusion coefficient D0/D(Q), which indicated a slowing
down of particle dynamics on length scales corresponding to the next neighbor dis-
tance. The short-time self diffusion coefficient Ds,short is decreasing with increasing
particle concentration. Furthermore D0/D(Q) , S(Q) as expected for the presence of
hydrodynamic interactions. The collective short-time diffusion coefficient DC indi-
cated enhanced collective dynamics with increasing direct interparticle interactions.

The peak values of the hydrodynamic functions H(Qmax) were found to be within
the theoretical limits given on the one hand by the hydrodynamic behavior of a
hard sphere system and on the other hand by the theoretical maximum of the
hydrodynamic functions for a charge-stabilized system within the δγ-expansion.
For small volume fractions (φ < 0.02), H(Qmax) is larger than unity and decreasing
with decreasing direct particle interactions. The hydrodynamic functions of these
samples are well described within the pairwise additive approximation, which takes
into account only two particle stationary hydrodynamic interactions. For samples of
volume fraction φ > 0.06 the maximum of the hydrodynamic function was smaller
than unity. This slowing down of the particle dynamics was more pronounced in
more concentrated systems. At the highest concentration φ ≈ 0.33 the hydrodynamic
functions are well characterized by the δγ-expansion (originally developed for hard-
sphere systems) using the measured static properties as input. In the intermediate
concentration range 0.06 ≤ φ ≤ 0.18 a quantitative description of the hydrodynamic
functions was achieved by the small-Q approximation of the δγ-expansion. The
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hydrodynamic functions showed an enhanced mobility in this intermediate volume
fraction range when compared to hard-sphere theory.



Zusammenfassung

Das statische und dynamische Verhalten von zwei kolloidalen Modellsystemen
bestehend aus hochgeladenen Polyacrylat-Kolloidteilchen dispergiert in Wasser
wurde mittels Streuung von sichtbarem Licht und Röntgenstrahlung als Funktion
der Kolloid- und Salzkonzentration untersucht.

Die statischen (zeitgemittelten) Messungen zeigten mit zunehmender Konzentrati-
on der kolloidalen Teilchen eine Zunahme der direkten Partikelwechselwirkungen
(höhere S(Q) Werte). Weiterhin wurde beobachtet, dass die direkte Wechselwirkung
wie erwartet mit steigender Salzkonzentration abnimmt. Dies zeigt, dass mittels
kontrollierter Zugabe von Salz die direkte Wechselwirkung zwischen den Parti-
keln gezielt eingestellt werden kann. Die gemessenen statischen Strukturfaktoren
konnten durch die Rescaled Mean Spherical Approximation (RMSA), die direkte
Wechselwirkungen der Teilchen mittels eines abgeschirmten Coulomb Potentials
beschreibt, gut angepasst werden.

Die dynamischen Messungen erlaubten eine Bestimmung des dynamischen Struk-
turfaktors D0/D(Q), der eine verlangsamte Dynamik auf genau den Längenskalen
zeigte, die dem mittleren Abstand der kolloidalen Teilchen entspricht. Der Kurzzeit-
Selbstdiffusionskoeffizient Ds,short nimmt mit zunehmender Partikelkonzentrati-
on ab. Weiterhin weicht der dynamische Strukturfaktor D0/D(Q) vom statischen
Strukturfaktor S(Q) ab, was auf die Existenz hydrodynamischer Wechselwirkungen
hinweist. Der kollektive Kurzzeitdiffusions-Koeffizient DC zeigte eine Zunahme der
kollektiven Dynamik mit zunehmender direkter Wechselwirkung.

Die Maximalwerte der extrahierten hydrodynamischen Funktionen H(Qmax) lagen
zwischen den theoretisch erwarteten Werten eines Hart-Kugel-Systems einerseits
und eines elektrostatisch wechselwirkenden Systems andererseits. Für kleine Volu-
menbrüche (φ < 0.02) war H(Qmax) > 1 und nahm mit zunehmender Abschirmung
der direkten Wechselwirkungen ab. Die hydrodynamischen Funktionen dieser
Proben konnten innerhalb der Pairwise Additive Approximation, die nur Zwei-
körperwechselwirkungen in Betracht zieht, beschrieben werden. Das Maximum
der hydrodynamischen Funktionen H(Qmax) der Proben höheren Volumenbruchs
(φ > 0.06) war kleiner als 1. Mit steigender Kolloidkonzentration wurde eine gerin-
gere Dynamik beobachtet. Die hydrodynamischen Funktionen der Proben mit den
höchsten Kolloidkonzentrationen φ ≈ 0.33 konnten innerhalb der δγ-Expansion,
mit den gemessenen Probenparametern als Eingabeparameter, gut beschrieben
werden. Die Probensysteme im mittleren Konzentrationsbereich 0.06 ≤ φ ≤ 0.18
konnten innerhalb der Small-Q Approximation der δγ-Expansion beschrieben wer-
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den. Hier zeigen die kolloidalen Teilchen eine im Vergleich zum Hart-Kugelfall
erhöhte Mobilität.
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1. Introduction

Colloidal systems have been a field of increasing scientific activity in both, funda-
mental and applied research during the last decades. Colloidal systems consist out of
particles with typical length scales from a few nanometers up to a millimeter which
are finely dispersed in a homogeneous molecular phase. These systems have a broad
appearance in daily live - micellar liquids such as milk, sun lotion with fine particles
that scatter or absorb ultraviolet light or paints where small dissolved particles stick
to a surface after the evaporation of the solvent are well known examples. Here
the continuous improvement of the products is the aim of applied research. Even a
living cell with it’s thousands of proteins, nucleotide strands and different cellular
compartments can be seen as a colloidal system - a system which is, although heavily
studied and of great biological and medical interest, still far from being understood.

The availability of well characterized colloidal model systems has been one of
the driving forces for fundamental research during the last decades. Due to their
mesoscopic length scales and the associated time scales, colloidal systems are often
easier accessible by a variety of experimental methods than atomic or molecular
systems. A particularity of colloidal systems is their interparticle interactions, which
allow self organization of the colloidal particles and the formation of fluid-like, glassy
or crystalline structures. Furthermore, the strength of the interparticle interactions
can be experimentally varied, allowing one to investigate systems in a wide range
from virtually none interacting systems to systems with very strong interparticle
correlations. The structures can be highly symmetric and can therefore be seen as
model systems for condensed matter physics. In 1991 the French physicist Pierre-
Gilles de Gennes received the Nobel price in physics for his work in the field
of condensed matter, especially on his research on ordering phenomena in simple
systems such as colloidal suspensions and their generalization towards more complex
systems (de Gennes, 1979).

An important aspect of colloidal suspensions is the dynamics of the system. As the
particles are small and in the ideal case stabilized against aggregation, the motion of
a colloidal system is nearly solely driven by the thermal excitation of the suspension.
While the particles are diffusing freely in the case of strongly diluted colloidal
suspensions, the dynamics are affected by the presence and the interactions of other
particles in more concentrated systems. Besides the influence of direct particle
interactions on the motion of the particles, hydrodynamic interactions are affecting
the dynamics of the particles. These indirect interactions, which are mediated by the
solvent, are generated by the motions of the particles in the suspension and can be
regarded as acting instantaneously on all colloidal particles present. Due to the many-
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1. Introduction

body character of the hydrodynamic interactions, the theoretical description and
experimental evaluation is complicated and controversially discussed in literature
especially in the case of colloidal particles interacting via a long-range interaction
potential. For these systems, a speeding up (Härtl et al., 1999) as well as a slowing
down (Grübel et al., 2000) of the particle dynamics due to hydrodynamic interactions
has been reported.

The aim of this thesis work is the synthesis and subsequent analysis of the structure,
the dynamics and hydrodynamic interactions of a colloidal system interacting via a
long-range interaction potential. Of particular interest are the static and dynamic
properties as a function of the strength of the direct particle interaction potential
for a broad range of concentrations ranging from dilute to strongly concentrated
systems.

The static and the dynamic behavior of colloidal systems can be experimentally
accessed by scattering methods. These experimental techniques offer the advantage
to probe an ensemble of colloidal particles in the scattering volume. In the case of
dilute to moderately concentrated suspensions, the scattering experiments can be
performed with visible light. In the case of more concentrated suspensions, which are
often optically opaque to visible light, the scattering experiments can be conducted
with X-rays which in addition offer the capability to probe the systems on smaller
length scales when compared to visible light. Here the availability of partially
coherent X-rays from third generation synchrotron sources offers the possibility not
only to perform static, but also dynamic measurements on mesoscopic systems of
high turbidity. Such experiments have been performed in the framework of this
thesis.
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The outline of the thesis is as follows

Chapter 2 gives an introduction into the world of Colloidal Systems treating their sta-
bilization and resulting interactions including the structure and dynamical behavior
of nano-particles suspended in a fluid.

In chapter 3 Scattering Theory and its application to colloidal systems is introduced.
In addition models describing the static and dynamic behavior of colloidal systems
are explained.

Chapter 4 describes the Experimental Techniques and methods used to get insight
into the behavior of colloidal systems.

The outcome of the performed scattering experiments applied to colloidal suspen-
sions is presented in Chapter 5 Experimental Results and Discussion, together with a
discussion of the results.

Chapter 6 comprises a Summary and Outlook of the work.
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2. Colloidal Systems

2.1. Interparticle forces

Colloidal systems have attracted increasing scientific, but also economic attention
during the last 30 years. The main characteristics of a colloidal system is their
mesoscopic nature: The typical length scale of a colloidal system ranges from a
few nanometers to a micrometer and is therefore situated between atomic systems
and macroscopic systems. This mesoscopic nature offers the advantage that it can
be probed by methods not applicable to atomic systems and that it can be often
described within the framework of classical physics.

A colloidal system is made out of two different phases - a dispersed phase, which
is evenly distributed in a second phase, the dispersion medium. Both phases can be
of different or of the same state of matter, so that typical natural colloidal systems
include fog (small water droplets in air), milk (micelles made out of amphiphilic
molecules dispersed in water) or ink (small pigments in a solvent). The colloidal
systems of particular interest for this work are made out of small solid state particles
dispersed in a fluid dispersion medium.

For the theoretical description of a colloidal system often a coarse-grained view-
point is used, in which the liquid dispersion medium is considered as an inert
continuum defined by its macroscopic properties. The colloidal particles dispersed
in this continuum interact with each other, and their hydrodynamic properties
are formally the same as those of an assembly of atoms making it possible to use
colloidal particles as a model system for atomic systems to study phenomena such as
structuring or the phase behavior on mesoscopic length scales.

A particular characteristic of a colloidal system are the interparticle interactions,
which permit self-organization of the colloidal particles and the formation of fluid-
like or crystalline structures. Regarding the complex multi-component colloidal
dispersions as a one component system of particles in which only the interparticle
potentials are required is justified by the solution theory (William G. McMillan and
Mayer, 1945; Kirkwood and Buff, 1951) and leads to the potential of mean force
U (rN ), which depends on the center-of-mass positions of all particles in a suspension
of N colloidal particles rN = (r1, r2, . . . , rN ). It is usually assumed that the potential
of mean force is the sum of the pair potentials between two particles V (rj − ri),
which, in the case of spherical particles, are spherically symmetric. The effective pair
potential V is the sum of the attractive and repulsive forces acting on the particle.

5



2. Colloidal Systems

The van-der-Waals force is an attractive force between bodies caused by interac-
tions between the fluctuating electromagnetic fields. Between two spherical particles
of radius R and a center-to-center distance r the resulting potential is given by

VA(r) = −H
6

[
2R2

r2 − 4R2 +
2R2

r2 + ln
(

1− 4R2

r2

)]
. (2.1)

The Hamaker constant H is depending on material properties of the colloidal
particles and the suspending fluid, in particular on their polarisability. If the at-
tractive van-der-Waals force would be the only acting force in a colloidal system,
the nano-particles would irreversibly aggregate over time. Therefore the colloidal
particles have to be stabilized against agglomeration, which can be achieved by
introducing a repelling force. This can be achieved in two different ways - either by
steric stabilization or by electrostatic stabilization.

2.1.1. Steric stabilization

Sterically stabilized colloidal particles have a surface which is covered by polymer
molecules, which may be chemically bonded or physically absorbed on the surface
of the nano-particles. In the simplest case these polymers are alkyl chains, but they
can also consist of more complex structures. If two colloidal particles come close
two each other, the interpenetrating polymers are compressed leading to a repulsive
force between the particles. The effective pair potential of two particles at contact
distance is infinite, while it is vanishing fast with increasing particle distance and
can be therefore approximated by

VHS(r) =

{
∞ r ≤ 2R
0 r > 2R.

(2.2)

Due to this short-range interaction potential such systems are called hard-sphere
systems, as illustrated in fig. 2.1.

The short-range nature of the particle interactions in a hard sphere system leads to
an universal phase behavior of hard spheres which is only depending on the volume
fraction φ of the colloidal particles, given by

φ =
4
3
πR3n (2.3)

where n is the number density of colloidal particles. Below a volume fraction of
φ = 0.494 the system is liquid, while the system is fully crystalline above a volume
fraction of φ = 0.545 (Hoover and Ree, 1968). Between these two limits a coexistence
of poly-crystalline and fluid phases can be observed (Pusey and van Megen, 1986).
Moreover, above a volume fraction of φ ≈ 0.58, hard sphere systems may form a
glassy state.





2.1. Interparticle forces

r 
R 

Figure 2.1.: Schematic drawing of a sterically stabilized (hard sphere) system. R is the radius
of the colloidal particles and r is the interparticle distance.

Already in the liquid state, at colloidal particle concentrations below the transition
to a crystalline state, the particles start to get ordered. This ordering can be described
by the radial distribution function g(r), which is described in more detail in section
2.2.

2.1.2. Electrostatic stabilization

In an electrostatically stabilized system the colloidal nanoparticles carry ionisable
groups on their surface. At least some of these groups dissociate in a polar solvent
such as water, resulting in charged colloidal nanoparticles which can be regarded
as macroions. The dissociated counter ions released into the dispersion medium
remain in the field of force of the colloidal particle and form an ionic cloud around
the particle, resulting in an electrical double layer. The overlap of these electrical
double layers surrounding two colloidal nanoparticles approaching each other is
causing a repelling force, which leads to a stabilization of the colloidal system. A
sketch of an electrostatical stabilized system can be seen in fig. 2.2.

A detailed description of the electric double layer is given by the Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory (Verwey and Overbeek, 1948). The small
counter ions, regarded as point charges, move rapidly enough due to Brownian
motion that their average spatial distribution can be assumed to be the equilibrium
Boltzmann distribution. The resulting Poisson-Boltzmann equation is linearized


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Figure 2.2.: Schematic drawing of an electrostatically stabilized colloidal system including
counter ions. r is the interparticle distance, R is the radius of the particles and κ−1 is the
Debye-Hückel screening length.

according to the theory of Debye and Hückel (Hückel, 1925) for simple electrolytes.
The approach leads to the DLVO expression for the interactions of two isolated
macroions suspended in a bath of electrolyte and can be described by a screened
Coulomb (Yukawa) potential (Nägele, 1996)

VCS
kBT

(r) =

∞ r ≤ 2R
e2

0Z
2
eff

εkBT

(
exp(κR)

1+κR

)2 exp(−κr)
r r > 2R.

(2.4)

Here kB is the Boltzmann constant, T is the absolute temperature, e0 is the elementary
charge, Zeff is effective charge of the colloidal nanoparticle and r is the distance
between two colloidal particles of radius R. The permittivity of the suspending
medium ε = ε0εr is given by the permittivity of vacuum ε0 and the dimensionless
relative permittivity of the medium εr .

The parameter κ is the inverse of the Debye-Hückel screening length which is
depending on the total amount of charges present in the colloidal solution and is
described by

κ2 =
4πe2

02NA
εkBT

I
1

1−φ
. (2.5)


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Figure 2.3.: Particle interaction potential as a function of the normalized interparticle dis-
tance (distance/particle radius). The black line shows the interaction potential of a
sterically stabilized system, the red, blue and green lines show the interaction potential of
electrostatically stabilized colloidal particles in a deionized medium with an effective
charge Zeff of 50, 100 and 200 e− respectively. The volume fraction for all colloidal systems
is φ = 0.1 and the relative permittivity of the dispersion medium εr = 80.1.

Here φ is the volume fraction of colloidal particles and NA is the Avogadro constant.
I is the ionic strength of the suspending medium and is given by

I =
1
2

∑
j

cjq
2
j (2.6)

where cj is the concentration of ions j having a charge of qj . Thus the ionic strength
of the medium is depending both on the amount of counter-ions released by the
macroions and the concentration of additionally added electrolyte increasing the
ionic strength of the suspending fluid.

The Yukawa potential is long-range in the κR→ 0 limit and the particles of the
system are strongly interacting with each other, even in a dilute suspension. In
the κR→∞ limit the particle interactions are becoming increasingly screened and
the system is adopting hard sphere properties. The particle interactions of a hard
sphere system and three electrostatically screened systems with increasing effective
charge Zeff at the same concentration and no additional electrolyte present in the
solution are shown in fig. 2.3. As can be seen in the graph, the interaction potential





2. Colloidal Systems

is increasing with increasing effective charge Zeff and is long-range, especially when
compared to the hard-sphere case.

The effective charge Zeff of the colloidal particles is depending on the number of
ionisable groups on the surface of the colloidal particles and the dispersion medium,
and is thus not identical to the absolute number of ionisable surface groups.

As the interactions of an electrostatically stabilized system are long-range, the
phase behavior of such systems is not only depending on the volume fraction φ of
the colloidal particles but also on the strength of the interaction potential. Therefore
the liquid-solid transition can occur already at much smaller concentrations as
compared to a hard sphere system (Robbins et al., 1988).

2.2. Static behavior of colloidal systems

In an ensemble of N particles the correlations between two particles at a distance r
is usually described by means of the pair distribution function g(r). For completely
uncorrelated systems, the pair distribution function of spherical particles g(r) = 1 at
distances r > R. With increasing ordering of the system, the value of g(r) starts to
deviate from unity. In a fluid or glassy systems, where short-range ordering of the
particles can be observed, the pair distribution function is converging to unity for
large distances. In crystalline systems with long-range ordering of the system, the
pair correlation function is always different from unity.

If the system is made out of spherical particles, the pair correlation function is just
depending on the modulus of the distance vector of two particles |r| = |ri − rj | = r. If
the positions ri of all N particles of the ensemble in a volume V are known, the pair
correlation function can be written as the mean value

g(r) =
1
n2

〈 N∑
i,j=1
i,j

 1
V
δ(r − ri + rj)

〉
(2.7)

where n =N/V . The pair correlation function g(r) describes thus the relative condi-
tional probability of finding a particle a distance r apart from another particle. The
average number of particles which can be found in a spherical shell of the width dr
and a distance r around a particle located at its center is given by 4πr2ng(r)dr.
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2.3. Dynamics of colloidal systems

2.3. Dynamics of colloidal systems

2.3.1. Free diffusion

In a colloidal system, the nanoparticles are dispersed in a solvent consisting of small
molecules. Due to the thermal energy inherent to the system at a temperature above
absolute zero, these small molecules are moving constantly in a diffusive, random
fashion. By collisions with the mesoscopic colloidal particles these particles are also
moving in a stochastic way, they perform a random walk in three dimensions. These
movements, which have first been described by Brown on pollen moving in water,
are called after their discoverer "Brownian" motion. As the time to cover a certain
distance by Brownian motion is proportional to the square of the distance, it is an
important way of transport in microscopic to mesoscopic systems while on longer
distances other means of transport such as convection are more important.

When the interactions between neighboring particles are small compared to the
thermal energy of the system, the particle is able to move freely in the surround-
ing fluid which can be regarded as a thermal bath for the colloidal particles. The
translation of the particle can be described by the free diffusion coefficient, which is
depending on the thermal energy of the system and the mobility µ of the particles
and is given by the Einstein–Smoluchowski relation

D0 = µkBT . (2.8)

The mobility µ = v/F is the ratio of the particles drift velocity to an applied force. In
a fluid the friction force F of a spherical particle of the radius R and the velocity v
moving in fluid of the viscosity η is after Stokes

F = 6πηRv. (2.9)

The free diffusion coefficient D0 of a spherical particle is thus given by the Stokes-
Einstein relation

D0 =
kBT

6πηR
. (2.10)

On very short time-scales, the colloidal particles can be seen to be essentially
stationary. The motion of the particles can be described in this regime as a random
ballistic flight. The Brownian relaxation time τB is the typical relaxation time of the
particle velocity due to solvent friction given by (Nägele, 1996)

τB =
m
ζ

(2.11)

where m is the mass of the colloidal particle and ζ = 6πηR is the friction coefficient.
For colloidal particles the Brownian relaxation time τB is typical in the order of
10−10 − 10−8 s (Pusey, 1991). The mean-square displacement of a free diffusing
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2. Colloidal Systems

particle is given by (Berne and Pecora, 1976)

〈[ri(0)− ri(t)]2〉 = 6D0t, t� τB (2.12)

where the particle motion is just influenced by collisions with the solvent molecules.

2.3.2. Diffusion of interacting colloidal particles

In an ensemble of interacting colloidal particles, the motion of the colloidal parti-
cles are influenced not only by collisions with solvent molecules, but also by the
presence of other colloidal particles. Two additional factors are thus influencing the
particles motion: On the one hand the direct particle interactions, which induce drift
velocities in the particles, and on the other hand hydrodynamic interactions, which
are transmitted through the suspending medium and couple both Brownian motions
and drift velocities between the particles.

On short time intervals, the mean-square displacement of the particles is small,
thus that the structure of the ensemble of colloidal particles in the system has
essentially not changed. The direct interaction forces experienced by one particle can
hence be assumed to be constant. The structural relaxation time τR is a measure of
the time of a perceptible change of the configuration of particles due to many-body
diffusion and is given by

τR =
R2

D0
. (2.13)

The structural relaxation time τR is the time in which a spherical particle is moving
a distance roughly equal to its radius R. For typical colloidal suspensions, this time
interval is usually in the order of 10−4 − 10−2 s.

On time intervals between the structural relaxation time and the Brownian relax-
ation time, where the configuration of the particles has nearly not changed, the mean
square displacement of a particle is given by the short-time self diffusion coefficient
Ds,short

〈[ri(0)− ri(t)]2〉 = 6Ds,shortt, τR� t� τB. (2.14)

On time scales t ≈ τR the motion of the particles becomes retarded due to the
direct and indirect interactions with the other particles of the system. On longer time
scales, where the particles have experienced many direct and indirect interactions
during their random walk, the mean square displacement yields the long-time self
diffusion coefficient Ds,long

〈[ri(0)− ri(t)]2〉 = 6Ds,longt, t� τR. (2.15)

Typically, in suspensions of interacting spheres, the long-time self diffusion coeffi-
cient Ds,long is smaller than the short-time self diffusion coefficient Ds,short, which
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can be attributed to the hindrance of the particle motions by direct forces (Nägele,
1996). This thesis will concentrate on the short-time dynamics.

Neglecting indirect hydrodynamic interactions, the second component which
contributes to the particles motion are the direct particle interactions inducing a
velocity drift of the particles. The interaction component to the velocity is given by

vIn(t) =
FI,i(t)
ζ

(2.16)

where FI,i is the interaction force effecting the particle i. For small time intervals ∆t,
which are larger than the Brownian relaxation time τB but smaller than the structural
relaxation time τR the location of the particle ensemble has essentially not changed
thus that FI,i(t) ≈ FI,i(0). The displacement of a particle ∆ri(∆t) is then given by

∆ri(∆t) = ∆rB,i(∆t) +
1
ζ
FI,i(0)∆t, τR� ∆t� τB. (2.17)

∆rB,i(t) is the displacement due to Brownian motion of the particles. The equation
describes the dynamics of a suspension of interacting spheres neglecting hydrody-
namic interactions where the moments and the positions of solvent molecules do
not appear explicitly. The effect of the suspending medium is to generate Brownian
motion and to provide friction.

Apart from the direct interactions, the presence of the suspending medium leads to
additional hydrodynamic interactions. A particle moving in the surrounding medium
will create a velocity field in the medium due to the coupling of the velocity of the
fluid to the velocity of the particle at the particles surface. The resulting indirect
hydrodynamic interactions between the particles can physically be interpreted
as shear waves traveling throughout the suspension and can be assumed to act
instantaneously throughout the colloidal system at times t� τS ≈ 10−12 s where τS
is the mean collision time of solvent molecules (Nägele, 1996). The displacement of
a particle is then given by (Ermak and McCammon, 1978)

∆ri(∆t) = ∆rB,i(∆t) +
3N∑
j=1

[
− 1
kBT

Dij[r
N (0)]

∂U [rN (0)]
∂rj

+
∂Dij[rN (0)]

∂rj

]
∆t (2.18)

where Dij[rN (t)] is the configuration-dependent diffusion tensor with symmetry
property Dij = Dji and rN denotes the spatial configuration of N particles. The
dynamics of a particle is thus depending on the overall configuration and motions of
the system.
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2.4. Model system

For the analysis of the direct and indirect interactions of colloidal particles a model
system was required - as the particles should be investigated both by visible and
X-ray scattering methods, the particles should fulfill the following characteristics:

• High monodispersity

• High surface charge allowing to tune the particle interactions

• Good scattering properties for visible as well as X-ray scattering methods

The model system of choice is a polymer-system made out of functionalized poly-
methyl methacrylate, where the sidegroups of the poly-methyl methacrylate back-
bone of the polymer contain elements of higher electron density than the polymer
backbone to enhance the scattering intensity in X-ray scattering experiments.
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3.1. Scattering introduction

If light, an electromagnetic wave, is impinging on a sample with a spatially inhomo-
geneous refractive index or electron density, such as a random assembly of colloidal
particles suspended in a fluid, it is scattered by these inhomogeneities, which can
lead to a change of the direction of propagation (or of the momentum) of the inci-
dent wave. Depending on whether or not the energy of the scattered light changes
during the scattering process, it can be differentiated between elastic and inelastic
scattering. In the following just the elastic or quasi-elastic case, where the energy
of the scattered light is not or just changed marginally, will be discussed. A typical
scattering process is sketched in fig. 3.1. An electromagnetic wave is impinging on a
sample and subsequently scattered. The scattered light is detected under a chosen
scattering angle θ relative to the incident beam.

The incoming electric field Ei is given by

Ei(r, t) = niE0 exp(i[ki · r −ωi · t]) (3.1)

where E0 is the amplitude of the electric field, ni is the polarization and ωi the
frequency of the incoming wave. The wave vector ki is inversely proportional to the
wave length λi of the incoming wave with the modulus

ki, λi, ni

kf, λf, nf

θ

Scattering volume

Figure 3.1.: Schematic sketch of a scattering experiment.
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3. Scattering Methods

|ki | =
2πn
λi

(3.2)

where n = c0/c is the index of refraction of the medium. The modulus of the momen-
tum transfer Q is given by

|Q| = |ki −kf |. (3.3)

Here ki and kf are the wave vectors of the incoming (index i = incoming) and the
scattered (index f = f inal) light. In an elastic scattering process |ki | = |kf |. The
momentum transfer can thus be calculated depending on the scattering geometry

|Q2| = |ki −kf |2 = ki
2 +kf

2 − 2kikf
= 2ki

2 − 2ki
2 cos(θ/2) = 4ki

2 sin2(θ/2)
(3.4)

Q =
4πn
λi
· sin

θ
2
. (3.5)

3.2. Static scattering

If an electro-magnetic wave is scattered by N scatterers, the amplitude of the scat-
tered wave can be seen as a superposition of the concentric waves originating from
the N scatterers. In the far-field, where the resulting wave is essentially a flat wave-
front, the instantaneous amplitude E(Q, t) of the field of the scattered light may be
described by

E(Q, t) = E0

N∑
i=1

ai(Q)exp(iQri − iωt). (3.6)

Here ai(Q) is the scattering amplitude of the ith scatterer at the position ri and ω is
the frequency of the scattered light. The scattered intensity I(Q, t) at a given point in
the far-field can be written as the square modulus of the scattered field E(Q, t)

I(Q, t) = |E(Q, t)|2 (3.7)

and is given in the temporal average by

〈I(Q)〉 = E2
0

N∑
i=1

N∑
j=1

〈ai(Q)aj(Q)exp(iQ[ri − rj])〉. (3.8)

In the case of identical scatterers the equation can be simplified to

〈I(Q)〉 = E2
0N

2[a(Q)]2
N∑
i=1

N∑
j=1

〈exp(iQ[ri − rj])〉. (3.9)
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3.2.1. Scattering of a single particle

From eq. (3.9) the scattering intensity of a single particle can be derived, given by

〈I(Q)〉 = |E(Q)|2 = |a(Q)|2 = a(Q) · a∗(Q) (3.10)

where a∗ is the complex conjugate of a. The scattering amplitude a(Q) is the Fourier
transform of the electron charge density ρ(r)

a(Q) =
∫
drρ(r)exp(iQr). (3.11)

If the scatterer is a homogeneous sphere with radius R and an uniform electron
density contrast ∆ρ, the charge density ρ(r) is given by

ρ(r) =

{
∆ρ, ||r|| ≤ R
0, ||r|| > R.

(3.12)

If the electron charge density ρ(r) is inserted in eq. (3.11) and a Fourier Bessel
transformation is performed, the scattered intensity of a single sphere of volume V
is derived

I(Q) = 9(∆ρ)2V 2
(

sin(QR)−QRcos(QR)
(QR)2

)2

. (3.13)

The normalized scattered intensity is referred to as the single particle formfactor
P (Q), given by (Pusey, 1991):

P (Q) = P (Q) =
I(Q)
I(0)

=
[
a(Q)
a(0)

]2

= 9
[

sin(QR)−QRcos(QR)
(QR)3

]2

. (3.14)

For large momentum transfers QR� 1, known as the Porod regime, P (Q) falls off
∼Q−4.

In fig. 3.2 the single particle form factor of a spherical particle as a function of
the normalized momentum transfer QR is shown. The position of the consecutive
maxima and minima are characteristic for the size of the particle and the first
minimum can be found at approximately QR ≈ 4.49.

3.2.2. Scattering of an ensemble of polydisperse spherical

particles

For colloidal suspensions made out of many nano-particles, the size of each particle
may be slightly different. The effect of the polydispersity can be taken into account by
assuming an appropriate size distribution f (R) for the ensemble of particles, which
describes the relative frequency of a given size. The polydispersity of a colloidal
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Figure 3.2.: Particle form factor P (QR) of a single spherical particle as a function of QR.

suspension can then be described by means of the average size R0 and the width ∆R
of the size distribution. For colloidal suspensions, the Schulz-Flory distribution is
often used

f (R,R0,Z) =
1

(Z + 1)!

(
Z + 1
R0

)Z+1

RZ exp
(
−Z + 1
R0

R

)
(3.15)

where R0 denotes the number averaged size of the particles. The polydispersity P of
the colloidal system can be obtained via

P =
∆R
R0

=

√
1

Z + 1
. (3.16)

By employing this size distribution, weighted by (R/R0)6, with a single particle
spherical form factor an average polydisperse form factor can be obtained

P (Q) =
∫ ∞

0
dR f (R,R0,Z) P (QR)

(
R
R0

)6

. (3.17)

The intensity of X-rays scattered by N particles of electron density contrast ∆ρ is

I(Q) = 9N (∆ρ)2V 2P (Q) (3.18)

where V = 4
3πR

3
0 is the volume of a sphere.
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Figure 3.3.: Polydisperse sphere form factor P (QR) as a function of QR. The polydispersity
was varied between 0.1 % and 20 %, which corresponds to Z = 999999 and to Z = 24
respectively.

Fig. 3.3 shows the evolution of the sphere form factor of an ensemble of increas-
ingly polydisperse spheres. For small polydispersities, the function resembles the
form factor of a single sphere (3.2). With increasing polydispersity the minima
are smeared out, a behavior which is more prominent for the oscillations at large
momentum transfers Q.

3.2.3. Scattering of interacting particles

For a system of monodisperse particles, as assumed in eq. (3.9), the scattered intensity
can be written as:

〈I(Q)〉 =N [a(0)]2P (Q)S(Q) (3.19)

where P (Q) is the single particle formfactor as described in eq. (3.14). The static
structure factor S(Q) describes the inter-particle structure of an ensemble of colloidal
particles given by

S(Q) =
1
N

N∑
i=1

N∑
j=1

〈exp(iQ[ri − rj])〉. (3.20)

For the limit of large momentum transfers, the structure factor S(Q) oscillates
around unity (limQ→∞S(Q) = 1), as on these small length scales (smaller than
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the particle radius R) no inter-particle correlations are observable. In the limit
of small momentum transfers (limQ→0) the static structure factor can be related
to macroscopic thermodynamical properties and gives access to the isothermal
compressibility χT of a colloidal suspension via

S(0) = nkBT χT (3.21)

where n =N/V is the particle number density. Expansion of eq. (3.20) yields

S(Q) = S(0) +O(Q2) (3.22)

so that S(0) can be estimated by an extrapolation of S(Q) versus Q2 towards Q = 0
(Donev et al., 2005). The S(Q→ 0) limit yields qualitative information about the
interaction properties of the sample, with S(0) < 1 for repulsive interactions.
S(Q) is related to the pair distribution function g(r), which describes the relative

conditional probability of finding a particle a distance r apart from another particle.
The static structure factor can be written as:

S(Q) = 1 + 4πn
∫ ∞

0
dr r2 [g(r)− 1]

sinQr
Qr

(3.23)

The inverse relation resulting in g(x = r/[2R]) from S(Q) is

g(x) = 1 +
1

12πφx

∫ ∞
0

d(2RQ) [S(2RQ)− 1]2RQ sin(2RQx) (3.24)

where φ = 4/3πR3n is the volume fraction of the particles.

3.2.4. Static structure factors of colloidal systems

The static structure factor S(Q) depends on the direct particle interactions described
by the pair potential V (r). The evaluation of the static structure factor for a given
pair potential is not straightforward and requires the determination of the pair
distribution function g(r) which is directly related to the potential of mean force
between two spherical particles U (r) via (Philipse and Vrij, 1988)

g(r) = exp
(
−U (r)
kBT

)
. (3.25)

For very dilute colloidal suspensions the potential of mean force equals the
interaction pair potential V (r). This is no longer valid for concentrated suspensions.
The derivation of the static structure factor for a given interaction pair potential
V (r) can be achieved by using the Ornstein-Zernike equation, which provides a
connection between the total correlation function h(r) and the direct two-particle
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correlation function c(r) and appropriate closure relations

h(r) = c(r) +n
∫

d(r
′
)c(|r − r

′
|)h(|r

′
|). (3.26)

In a many-body system the total correlation function results from the direct corre-
lation between two particles and many indirect contributions which are transferred
between the two particles by chains of other particles. The total correlation function
h(r) can be described by means of the pair correlation function

h(r) = g(r)− 1. (3.27)

In the case of colloidal particles interacting via a hard sphere interaction potential,
the Percus-Yevick approximation (Percus and Yevick, 1958) has been used as a closure
relation

g(r) = exp
(
V (r)
kBT

)
[g(r)− c(r)] (3.28)

and an analytical solution has been derived by Ashcroft and Lekner (Ashcroft and
Lekner, 1966) for a hard sphere model (see eq. (2.2)). The static structure factor of a
hard sphere system as a function of the momentum transfer Q normalized to the
radius of the particles R is only depending on the volume fraction. Fig. 3.4 shows the
evolution of the static structure factor S(QR) as a function of the volume fraction φ.

In the limit of dilute suspensions (limφ→0), the static structure factor equals unity
for all momentum transfers, displaying thus a complete absence of interparticle
interactions and subsequent ordering of the suspension of colloidal particles. For
higher concentrations of colloidal particles, the static structure factor evolves into
an oscillating function which displays a pronounced first maximum which can be
related to a mean interparticle distance. With increasing volume fractions φ the
height of the maximum increases, which corresponds to an increased ordering of the
sample, and the position of the peak is shifted towards bigger momentum transfers
Q, corresponding to a decrease of the mean interparticle distance.

For electrostatically stabilized systems, the evaluation of S(Q) has been performed
by Hayter and Penfold (Hayter and Penfold, 1981), using the closure relations of the
mean spherical approximation (MSA):

h(r) = −1 r < 2R (3.29)

c(r) = −V (r)
kBT

r > 2R

where V (r) for an electrostatical interacting system is given by a screened Coulomb
potential given by eq. (2.4), which is depending on the volume fraction φ, the
effective charge Zeff of the colloidal particles, the permittivity of the suspending
medium ε and the concentration of added electrolyte which increases the ionic
strength of the suspension.
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Figure 3.4.: Evolution of the static structure factor S(QR) as a function ofQRwith increasing
volume fraction φ calculated for a hard sphere interaction potential.

For charge stabilized systems, the MSA yields good agreement with medium to
fairly concentrated suspensions, while it is less accurate to predict the structure of a
dilute but still interacting system. Because of the long-range interactions the MSA
calculates negative contact distances in these cases. To circumvent these unphysical
results, a rescaling of the MSA is applied which results in the rescaled mean spherical
approximation (RMSA) (Hansen and Hayter, 1982). For this procedure the screened
Coulomb-interactions between the particles is reduced by scaling the radius of the
particles to a radius according to a hard sphere potential. After the calculation of the
static structure factor the radius is scaled back to the initial value.

In fig. 3.5 (top) the evolution of the static structure factor S(QR) for a charge
stabilized dispersion of colloidal particles as a function of the effective charge Zeff of
the particles is shown. The particles with a volume fraction φ = 0.1 are dispersed
in a deionized medium with the relative dielectric permittivity εR = 80.1 at room
temperature. It can be seen that the maximum of the static structure factor is
increasing and narrowing with increasing charge.

In fig. 3.5 (middle) the effect of additional electrolyte in the medium is shown
which is screening the electrostatic interactions between the colloidal particles. The
effective charge Zeff = 300e− while the other parameters are the same as in fig. 3.5
(top). The addition of electrolyte reduces the height of the maxima of the static
structure factor as the electrostatic interactions are more and more screened by
additional ions in the medium. The effect on the height and the shape of the peak
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Figure 3.5.: Static structure factors calculated within the rescaled mean spherical approxi-
mation as a function of QR. The colloidal particles are dispersed in a medium at room
temperature T = 293.15 K and a relative dielectric permittivity of εR = 80.1. Top: Evolu-
tion of the static structure factor as a function of the effective charge Zeff of a deionized
solution at a volume fraction φ = 0.1. Middle: Evolution of the static structure factor
as a function of the concentration of added electrolyte in the suspension. The other
parameters are Zeff = 300e− and φ = 0.1. Bottom: Evolution of the static structure factor
as a function of the volume fraction in a deionized solution. The effective charge of the
colloidal particles is Zeff = 200e−.
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of the static structure factor resembles the effect of a decreasing effective charge
displayed in fig. 3.5 (top). However, small deviations can be seen – on the one hand,
the isothermal compressibility of systems with higher amounts of added electrolyte
is increasing indicated by higher values of S(0) at similar peak values of S(Q). On the
other hand, a more pronounced shift towards higherQR values with decreasing peak
values of S(Q) can be noted for the addition of electrolyte as compared to decreasing
values of Zeff.

Fig. 3.5 (bottom) shows the effect of the concentration of colloidal particles on the
static structure factor S(QR). While the dispersion medium has the same characteris-
tics as in fig. 3.5 (top), the effective charge is Zeff = 200e−. While the first peak of
S(QR) is shifted to higher momentum transfers Q with increasing volume fraction,
the peak height is also increasing as the inter-particle interactions increase with
decreasing distance between the particles. This shift of the peak towards higher
momentum transfers Q with increasing volume fraction is much more pronounced
in an electrostatically stabilized system as compared to a hard sphere system (fig. 3.4
on page 22). This is due to the different spatial arrangements of the colloidal particles.
While in charge stabilized systems the colloidal particles are well separated and
thus maximizing the interparticle distance due to the long-range interactions, the
probability to find particles close to each other is higher in a hard sphere system.
These long-range interactions are also resulting in a lower isothermal compressibility
and corresponding lower S(0) values of electrostatic interacting systems as compared
to the hard sphere case.
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3.3. Dynamic Scattering

If a sample with disordered scatterers is illuminated with coherent light, the electric
field amplitudes scattered by different regions of the sample interfere and thus create
an intensity distribution pattern in the far-field. This pattern, made out of patches
of spatially or temporally fluctuating intensity, is called a "speckle" pattern, which
reflects the instantaneous configuration of the scatterers. If the spatial arrangement
of the scatterers in the sample is changing with time, (e.g. due to Brownian motion),
the corresponding speckle pattern is also changing such that dark regions of low
scattered intensity will become brighter and vice versa. At a given point of detection
with the size of a typical speckle, these changes of the speckle pattern are therefore
recorded as intensity fluctuations. These temporal fluctuations of the intensity are
related to the dynamics of the scatterers in the sample.

By analyzing the temporal intensity fluctuations it is thus possible to get informa-
tion about the underlying dynamics. At times short compared to the typical time
scales of configurational changes in the sample, the intensity at a given point of
detection will be correlated with the initial intensity. At long times, the configuration
of the scatterers has changed and the resulting speckle pattern bears no resemblance
to the initial speckle pattern and the intensity correlation will be thus lost. By
recoding the intensity fluctuations in a time interval between t and τ this property
can be quantified by the time correlation function

〈I(0)I(τ)〉 = lim
T→∞

1
T

∫ T

0
dtI(t)I(t + τ). (3.30)

For long times compared to the intensity changes the correlation between I(0) and
I(τ) are zero. The temporal evolution of the time correlation function drops from
〈I2〉 at t = 0 to the value 〈I〉2 at large times

lim
T→∞
〈I(0)I(τ)〉 = 〈I(0)〉〈I(τ)〉 = 〈I〉2. (3.31)

In a photon correlation spectroscopy experiment, a detector with an aperture
roughly the size of a single speckle of the sample is placed in the far-field region of the
scattering pattern. The fluctuating signal recorded by the detector is proportional
to the fluctuating scattered intensity I(Q,t). This allows the calculation of the
normalized intensity autocorrelation function g2(Q,t) at a given momentum transfer
Q:

g2(Q,τ) =
〈I(Q,0)I(Q,τ)〉
〈I(Q)〉2

. (3.32)

If the conditions i) that the scattering volume V contains a large number of
particles, ii) that the range of spatial correlation is much smaller than V 1/3 and
iii) that, given enough time, the particles can diffuse throughout the suspension
are fulfilled, the electric field amplitude E(Q,t) is a zero-mean complex variable.
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This allows to relate the second order correlation function g2(Q,τ) to the first order
correlation function g1(Q,τ) by the Siegert relation (Berne and Pecora, 1976):

g2(Q,τ) = 1 + β(Q)
〈E∗(Q,0) ·E(Q,τ)〉2

〈I(Q)〉2
= 1 + β(Q)[g1(Q,τ)]2. (3.33)

The contrast β(Q) is mainly depending on the coherence properties of the beam and
on the ratio of detector area to speckle size. For completely incoherent radiation,
β(Q) = 0 and g2(Q,τ) = 1 for all timescales. For fully coherent radiation, β(Q) = 1. In
an experiment using visible light, the contrast is usually close to the ideal value of
unity, while in a X-ray experiment the trade-off of between photon flux and coherence
usually leads to a contrast of 5 - 10 %.

The normalized field auto-correlation function g1(Q,τ) is also called normalized
intermediate scattering function f (Q,τ), defined by

f (Q,τ) =
F(Q,τ)
F(Q,0)

(3.34)

where F(Q,τ) is the intermediate scattering function given for N identical particles
by

F(Q,τ) =
1
N

N∑
i=1

N∑
j=1

〈exp(iQ[ri(0)− rj(τ)])〉 (3.35)

while F(Q,0) can be identified with the static structure factor S(Q).

3.3.1. Dynamics of colloidal suspensions

In a suspension of colloidal nano-particles with no inter-particle interactions the
displacement of the particles is just due to Brownian motion. The intermediate
scattering function F(Q,τ) equals the normalized intermediate scattering function
f (Q,τ) as F(Q,0) = S(Q) = 1 due to the absence of inter-particle interactions and is
given by

f (Q,τ) = F(Q,τ) =
1
N

N∑
i=1

〈exp(iQ[ri(0)− ri(τ)])〉 (3.36)

where the cross-terms i , j average out, so that it is simultaneously the self-part of
the intermediate scattering function in eq. (3.35).

The displacement of a free diffusing particle is a Gaussian random variable
ri(0)− ri(τ) of mean zero and with mean square value 〈[ri(0)− ri(τ)]2〉 (Pusey, 1991).
Thus eq. (3.36) can be simplified to

f (Q,τ) = exp
(
−Q

2

6
〈[ri(0)− ri(τ)]2〉

)
. (3.37)
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The mean square displacement for a free moving Brownian particle is given by
eq. (2.12) 〈[ri(0)− ri(τ)]2〉 = 6D0τ where D0 is the free particle diffusion constant of a
particle. The intermediate scattering function of non-interacting, Brownian particles
is a simple exponential function and

f (Q,τ) = exp(−Γ τ) (3.38)

where the relaxation rate Γ =D0Q
2.

In the presence of interparticle interactions, the decay of the intermediate scat-
tering function F(Q,τ) is generally non-exponential. The normalized intermediate
scattering function f (Q,τ) is then usually analyzed in terms of a cumulant expansion

f (Q,τ) = exp(−Γ1(Q)τ + Γ2(Q)τ2 − Γ3(Q)τ3 + ...). (3.39)

Here, Γ1(Q) = Γ (Q) is the first cumulant. The initial decay of the normalized interme-
diate scattering function f (Q,τ) yields the effective short-time diffusion coefficient
D(Q) of a colloidal suspension, according to Snook et al. (Snook et al., 1983)

lim
τ→0
−dlnf (Q,τ)

dτ
= Γ (Q) =D(Q)Q2. (3.40)

The dynamics probed by the effective short-time diffusion coefficient D(Q) depends
on the length scale (2π/Q). Neglecting hydrodynamic interactions and just tak-
ing into account the direct particle interactions, the effective short-time diffusion
coefficient is given by (De Gennes, 1959)

D(Q) =
D0

S(Q)
(3.41)

where D0 is the free diffusion coefficient (eq. (2.10)) and S(Q) is the static structure
factor. The expression is sometimes referred to as the "De Gennes" narrowing, ac-
cording to which the most likely density fluctuations decay the slowest. This effect,
in ω-space, leads to a narrowing of the quasi-elastic line-width. This was experi-
mentally observed for many systems, especially for diluted systems of interacting
spheres such as by Brown et al. (Brown et al., 1975).

With the inclusion of hydrodynamic interactions, the effective short-time diffusion
coefficient can be written as

D(Q) =D0
H(Q)
S(Q)

(3.42)

where H(Q) is the hydrodynamic function describing the effects of indirect particle
interactions mediated by the dispersion medium. The hydrodynamic function can
be expressed by (Nägele, 1996)
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H(Q) =
1

ND0Q2

N∑
i,j=1

〈Q̂ ·Dij(rN ) · Q̂exp(iQ[ri − rj])〉. (3.43)

Here rN denotes the spatial configuration of N particles, Q̂ is the unit vector in
the direction of the momentum transfer Q. Dij denotes the many body diffusion
tensor. The hydrodynamic function contains the configuration-averaged effect of the
hydrodynamic interactions on the short-time dynamics.

Eq. (3.42) can relatively easily be understood in the limiting cases of Q → ∞,
Q→ 0 and Q ≈Qmax, the position of the first maximum of the static structure factor.
On long length scales Q → 0 the collective short-time diffusion of the system is
probed. D(Q) is frequently observed to be substantially larger than the free particle
diffusion coefficient D0 (Nägele, 1996), especially for systems with strong repulsive
interaction forces.

With increasing momentum transfer Q, the dynamics on shorter length scales are
probed. On length scales corresponding to mean interparticle distance, the static
structure factor displays a first maximum while the dynamics of the system are
substantially slowed down. This phenomenon can be interpreted as a "caging" of the
particles by the neighboring particles, being thus not able to move freely at these
specific length scales ("De Gennes" narrowing).

At large momentum transfers Q→∞, the dynamics on length scales significantly
smaller than any interparticle distance are probed. The effective short-time diffusion
constant D(Q) reduces to the short-time self diffusion coefficient Ds,short (eq. (2.14))
of a single particle, which, in the absence of hydrodynamic interactions reduces to
D0

D(Q→∞) =Ds,short =D0 ·H(∞). (3.44)

3.3.2. Hydrodynamic functions

Intuitively, it might be expected that the hydrodynamic interactions in an suspen-
sions of colloidal particles act as an additional friction force experienced by the
particles causing a slowing down of the particles. This behavior should be even more
pronounced when the concentration of the colloidal particles increases.

Indeed, this behavior has been reported experimentally for systems interacting
via a hard-sphere potential (van Megen et al., 1985; Segrè et al., 1995; Fijnaut et al.,
1978), where the effective short-time diffusion coefficient D(Q) was measured in the
range covering in particular the region of the first peak of the static structure factor.
The hydrodynamic functions show a relaxation of the hydrodynamic resistance in
these systems at momentum transfers around the position of the maximum of the
static structure factor Qmax, but are still smaller than unity.

To derive a theoretical description of the hydrodynamic functions, Beenaker and
Mazur (Beenakker and Mazur, 1983, 1984) followed an approach were the mobility
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tensors µij(rN ), which depend on the configuration of all particles rN , were calcu-
lated (the δγ-expansion). The mobility tensors µij(rN ) relate the velocity vi of a
particle to the forces Fj exerted on each particle by the suspending fluid

vi = −
N∑
j=1

µijFj . (3.45)

While in the case of a dilute suspension the problem can be approximated by only
taking into account two-sphere hydrodynamic interactions, for concentrated suspen-
sions also many-body interactions have to be taken into account. By a resummation
of all hydrodynamic contributions through an expansion of correlation functions of
increasing order, Beenaker and Mazur derived an expression in terms of an ensemble
average of the spatial configurations of the particles.

The resulting hydrodynamic function of the δγ-expansion depends on the radius
R, volume fraction φ and the static structure factor S(Q) of the sample and is given
by

H(Q) =
Ds(φ)
D0

+
3

2π

∫ ∞
0

d(RQ′)
(

sin(RQ′)
RQ′

)2

[1 +φSγ0(RQ′)]−1

×
∫ 1

−1
dx (1− x2)(S |Q −Q′ | − 1)

(3.46)

where the integration variable x is defined as x = cos(Q̂,Q′). The first part is the nor-
malized short-time self diffusion coefficient Ds(φ)/D0, which is the Q-independent
self-part of the hydrodynamic function and is depending on the volume fraction φ
of the system via

Ds(φ)
D0

=
2
π

∫ ∞
0

dx
(

sinx
x

)2

[1 +φSγ0(x)]−1. (3.47)

The function Sγ0 is described in appendix A.
For (Q→∞) the hydrodynamic function equals Ds(φ)/D0, as the second term in

eq. (3.46), containing the static structure factor, vanishes as S(Q→∞)− 1 = 0.
Fig. 3.6 displays the evolution of the hydrodynamic functions H(QR) as a function

of the volume fraction φ using the δγ-expansion to zeroth order for colloidal systems
interacting via a hard sphere interaction potential.

The hydrodynamic functions show a pronounced Q-dependence, in particular a
peaking behavior at positions close to the peak of the static structure factors, thus
displaying a reduction of the hydrodynamic effects at length scales corresponding to
the mean interparticle distance. It can be also seen that the effect of hydrodynamic
interactions is more pronounced at small momentum transfer values Q→ 0 than at
large Q→∞, thus displaying a stronger effect on the collective diffusion than on the
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Figure 3.6.: Hydrodynamic functions H(QR) as a function of on the volume fraction φ of
hard-sphere colloidal systems, calculated using the δγ-expansion to zeroth order. The
volume fractions are φ = 0,0.1,0.2,0.3 and 0.4.

short-time self diffusion of the colloidal particles. The effect of the hydrodynamic
interactions increase with increasing volume fraction φ, which can be interpreted as
increasing near-field effects of the hydrodynamic interactions acting as additional
lubrication forces slowing down the dynamics of the system. For φ = 0 the hydrody-
namic function H(Q) = 1 at all momentum transfers. Note that the hydrodynamic
functions do not display values above unity.

For small wavevector transfers Q, Riese et al. (Riese, 2000; Riese et al., 2000b)
derived an expression for the δγ-expansion making use of Beenakkers approximation
of the fluctuation-expansion for small Q (Beenakker, 1984) that yields

H(Q) = D̃
{

1 +
3

2π

∫
d(RQ′)

[
1

(RQ′)2 −
1
3

+O(Q′2)
]

×
∫

dx(1− x2)(S |Q −Q′ | − 1)
}
.

(3.48)

Here, the prefactor D̃ = µ∗6πηR where η is the viscosity of the suspending solvent

and µ∗ is the prefactor of the effective mobility tensor µ̃ef fij in the small wavevec-
tor Q limit.The prefactor D̃ affects not only the Q-independent self-part of the
hydrodynamic function, but also acts on the Q-dependent part allowing thus a
scaling of the whole hydrodynamic function. The first part in square brackets in
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eq. (3.48) represents the Oseen term, while the following terms represent the dipole
contribution.

For a hard-sphere system with short-range interparticle interactions D̃HS is given by

D̃HS = µ∗6πηR =
η
η∗

(3.49)

where η is the viscosity of the solvent and η∗ is to linear order in the volume fraction
identical to the effective viscosity of the suspension given by (Beenakker, 1984)

η∗ = η

(
1 +

5/2φγ (2)
0

n

)
. (3.50)

Here n is the number density of the colloidal particles, the calculation of γ (2)
0 is

explained in appendix A.

In charge stabilized systems, the interparticle interactions can act on long distances
and are thus leading to ordered structures already at low particle concentrations.
Although the interparticle distances can be relatively large, hydrodynamic inter-
actions can play a decisive role in these systems. Contrary to the assumption that
hydrodynamic interactions always causes a delay of the particle dynamics, it has
been found in electrostatically interacting systems that the peak value of the hy-
drodynamic function can exceed unity H(Qmax) > 1 (Philipse and Vrij, 1988; Härtl
et al., 1999). This corresponds to a "speeding up" of the particle dynamics caused by
hydrodynamic interactions. It is claimed that the movement of a particle induces
a backflow of the displaced fluid, which can support the motion of a neighboring
particle into the opposite direction. The effect of this backflow is more pronounced in
suspensions of well separated particles, as it is the case for charge stabilized systems.

As a description of the hydrodynamic function in dilute to moderately con-
centrated electrostatically interacting colloidal suspensions, the pairwise additive
approximation has been developed (Nägele et al., 1993; Nägele et al., 1994; Nägele
and Baur, 1997). In this model, the hydrodynamic interactions are accounted for
by a far-field expansion of the two-body hydrodynamic mobility tensors, in terms
of the reciprocal interparticle distance r−1, including terms up to the power of r−8.
The resulting hydrodynamic function is split into a self-part H i(g(r)) and a distinct,
Q-dependent part Hd(Q,g(r)):

H(Q) =H i(g(r)) +Hd(Q,g(r)). (3.51)

The calculation of the pairwise additive approximation depends on the volume
fraction φ and the pair distribution function g(r) of the system and is given by
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Figure 3.7.: Hydrodynamic functions H(QR) as a function of the volume fraction φ of
electrostatically interacting deionized colloidal systems, calculated using the pairwise
additive approximation. The parameters used for the calculation were an effective charge
of 200 e−, a temperature of 293.15 K, and a relative permittivity εr of 80.1.

H i(g(r)) = 1 +φ
(
−15

8

∫ ∞
1

dx
g(x)
x2 +

17
64

∫ ∞
1

dx
g(x)
x4

+
253

1024

∫ ∞
1

dx
g(x)
x6 −

737
1024

∫ ∞
1

dx
g(x)
x8

) (3.52)

Hd(y,g(r)) = −15φ
j1(y)
y

+ 18φ
∫ ∞

1
dx[g(x)− 1]x

(
j0(xy)− j1(xy)

xy
+
j2(xy)
6x2

)
(3.53)

where jn are the spherical Bessel functions of order n. The self-part, H i(g(r)), is
again identical to the short-time self-diffusion coefficient Ds,short. A deficiency of the
pairwise additive approximation is the prediction of unphysical negative values at
larger volume fractions for wave-vectors Q smaller or bigger than the position of
the static structure peak Qmax (Nägele, 1996). The validity of the pairwise additive
approximation has thus to be restricted to systems below a volume fraction φ ≈ 0.1,
where the particles are still considerably separated from each other.

Fig. 3.7 shows the evolution of the hydrodynamic functionsH(QR) with increasing
volume fraction φ calculated using the pairwise additive approximation. In agree-
ment with the δγ-expansion, the hydrodynamic functions show a strong decrease of
the dynamics of the particles at small momentum transfers Q, where the hydrody-
namic interactions lead to a slowing down of the collective motions of the particles.
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At large wavevector transfers Q, the hydrodynamic functions oscillate around the
short-time self diffusion coefficient, which is approaching unity with decreasing
volume fraction. Contrary to the δγ-expansion results for a hard sphere model,
at values around the peak of the static structure factor H(QmaxR) is larger than
unity, indicating thus an increase of the particles’ dynamics due to hydrodynamic
interactions. This increase of particle mobility is more pronounced with increasing
volume fraction φ for the modeled interaction potential and can be attributed to
the dominant role of far-field effects in the hydrodynamic interactions in the case of
low volume fractions and electrostatically interacting systems. These are usually
interpreted as a backflow of displaced solvent by the motions of neighboring particles
on length scales of the mean interparticle spacing.

3.3.3. Experiments under flow

When performing scattering experiments with X-rays, the interaction of the photons
with the sample might cause damage to the sample due to the high energy of the
X-ray photons. To avoid beam damage of the colloidal samples, the X-ray scattering
experiments were performed on flowing samples to minimize the time the sample
was exposed to an X-ray beam.

In the case of a fluid in laminar flow the autocorrelation functions are determined
by three independent factors: The diffusive motion of the scatterers due to thermal
fluctuations in the sample and the direct and indirect particle interactions, the transit
time of the particles moving through the scattering volume and a shear induced
oscillatory decorrelation depending on the velocity gradient of the particles in the
scattering volume.

The contribution of diffusive motions of a sample undergoing shear flow with a
uniform shear rate γ̇ to the normalized intermediate scattering function is described
by (Ackerson and Clark, 1981)

| fD(Q, τ, γ̇) |2= exp

[
−2Γ (Q)τ

(
1−

Q‖Q⊥
Q2 γ̇τ +

1
3

Q2
‖

Q2 (γ̇τ)2

)]
(3.54)

where Q is the momentum transfer with the components Q‖ parallel and Q⊥ perpen-
dicular to the direction of the flow and Γ (Q) is the relaxation rate which is related to
the effective diffusion coefficient D(Q). In a scattering geometry perpendicular to the
flow direction Q‖ = 0 and Γ (Q) is thus independent of the the uniform shear rate γ̇ .

The second contribution to the intermediate scattering function arises from the
constant flow of particles through the scattering volume, where particles enter the
scattering volume replacing other particles that leave the scattering volume on
the other side. This results in a second relevant time scale, the transit frequency
νtr ∝ v0/h. The transit frequency is depending on the size of the scattering volume h
and the average velocity of the particles v0. The effect of the transit frequency on the
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normalized intermediate scattering function is given by (Busch et al., 2008)

| fT (τ) |2∝ exp[−(νtrτ)2]. (3.55)

The third contribution to the normalized intermediate scattering function is due
to shear induced effects, caused by particles moving with different average velocities.
It can be written as a double integral over the scattering volume which can be
approximated by a line of length R (Narayanan et al., 1997)

| fS(Q, τ) |2=
1

4R2

∫ R

−R

∫ R

−R
cos(Qτδv(r1, r2))dr1dr2 (3.56)

where δv is the velocity difference between two particles separated by the distance
r = r1 − r2. The integral has been solved analytically for a uniform shear rate

| fS(Q, τ) |2=
[

sin(Γsτ)
Γsτ

]2

. (3.57)

Here, Γs is the shear relaxation rate and depends on the momentum transfer Q and
the flow velocity v via Γs = Q‖v. If the scattering geometry is perfectly transverse,
Q‖ = 0 and thus the intermediate scattering function is not effected by shear induced
effects. As the three factors contributing to the normalized intensity autocorrelation
function g2 depend on the scattering geometry, they lead to (Busch et al., 2008)

g2,⊥(Q,τ) = β(Q) · exp[−2Γ (Q)τ] · exp[−(νtrτ)2] + 1 (3.58)

and

g2,‖(Q,τ) = β(Q) ·exp
[
−2Γ (Q)τ

(
1 +

(γτ)2

3

)]
·exp[−(νtrτ)2] ·

[
sin(Γsτ)
Γsτ

]2

+1. (3.59)

g2,⊥ is the normalized intensity autocorrelation function at momentum transfers
perpendicular and g2,‖ is the normalized intensity autocorrelation function at mo-
mentum transfers parallel to the flow direction while β(Q) denotes the speckle
contrast. During the experiment, the dynamic behavior of the sample was measured
just in the perpendicular direction to the flow to get the best access to the diffusion
depending relaxation rate Γ (Q).

3.4. Multiple scattering

The expressions for the scattered intensity and the intermediate scattering function
only hold for "single scattering" of light. In order to be able to measure the statics
and dynamics of a colloidal system, it has to be ensured that the measurements are
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performed in the single scattering limit. This limit is characterized by the condition

L� lS (3.60)

where L is the sample size and lS is the mean distance between two scattering events,
given in the dilute limit by

lS =
1
nσ
. (3.61)

Here n is the number density of the colloidal particles and σ is the scattering
cross section. The scattering cross section of colloidal particles of refractive index
n1 in a dispersion medium of refractive index n0 is given by the Rayleigh-Gans
approximation (van de Hulst, 1981)

σ ∝ πR2
∣∣∣∣n1

n0
− 1
∣∣∣∣ (3.62)

under the condition that the refractive index contrast is small |n1/n0 − 1| � 1 and
4πn0R |n1/n0 − 1| / λ � 1 where λ is the wavelength of the scattered light in vacuum.

The single scattering limit can thus be fulfilled by either working in the dilute
limit (n→ 0), which excludes the interesting case of concentrated samples exhibiting
strong particle interactions, or by ensuring that the refractive index of the scatterers
nearly matches the refractive index of the medium n1/n0→ 1.

By using X-rays the latter condition is always fulfilled, as the refractive index for X-
rays is always close to unity, so that multiple scattering is nearly absent. In the case of
visible light, this is not true. The necessity to match the index of refraction of particles
and surrounding medium restricts the choice of possible dispersion mediums, which
puts severe limits to the possibility to tune the direct particle interactions in the case
of electrostatically interacting systems which depend sensitively on the properties of
the suspending fluid.

Therefore the measurements of concentrated systems were performed using X-rays.
However, the concentration range of light scattering methods was enhanced by
employing cross-correlation dynamic light scattering which enables the detection of
the single scattering component of the total fraction of scattered light (Urban and
Schurtenberger, 1998).
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4.1. Synthesis of colloidal model systems

A standard method for the preparation of polymeric colloids is radical emulsion
polymerization. A radical emulsion process, schematically shown in fig. 4.1, is in the
simplest case a polymerization of a monomer of low water solubility in a reaction
vessel in an aqueous phase, where the polymerization process is initiated by a
water-soluble initiator (Thickett and Gilbert, 2007). The reaction can be divided into
three main phases: The particle formation, further propagational growth and the
termination process. In the first phase the nucleation of particles takes place. As the
reaction vessel is agitated during the synthesis process, the monomers form small
droplets in water which act as monomer reservoirs during the synthesis process.
The reactions starts when the monomers are being turned into radicals by the
reaction initiator. These radical monomers have a higher solubility in water which
allow them to enter the aqueous phase where they start to grow into small chains
of oligomers which still have a radical center on one end of the growing chain.
Depending on whether or not the reaction is taking place above or below the critical
micelle concentration (CMC), (Hergeth et al., 1992) two mechanisms of precursor
particle formation may occur: Above the CMC, the growing oligomers which reach
the chain length z become amphiphilic and are thus able to form micelles together
with other oligomers having reached the chain length z. These small micelles grow by
chain propagation into mature particles. Below the CMC, the first created oligomers
continues to grow until they reach the critical chain length jcrit where the growing
oligomer is no longer soluble in the aqueous phase and undergoes a coil-to-globule
transition forming a precursor particle which either continues growth or coagulates
with other precursor particles until a stable mature particle is formed, a process
known as homogeneous nucleation (Priest, 1952).

In the second phase, the particles grow by propagation of the polymer-chains in
the presence of monomers. In this phase no new precursor particles are formed,
as the probability for newly formed oligomers of chain length z to enter a mature
particle is much bigger than to form a new precursor particle. In the third phase,
when the monomer is exhausted, the remaining monomer contained within the
particles is polymerized until the reaction finally stops at the exhaustion of either
monomers or radicals.

While it is possible to stabilize also polymeric colloids both sterically (the hard
sphere case) and via electrostatic interactions, just the latter stabilization mechanism

37



4. Experimental Details

+ M + M + M

+ M

+ M

Length: z

Length: jcrit

Termination

Initiating

radical
Mature particle

Precursor

particle
Precipitation

Propagation and

Coagulation

Propagation

Figure 4.1.: Schematic representation of a radical emulsion polymerization above and below
the critical micelle concentration (CMC). M stands for monomer, jcrit for the critical chain
length of the formed oligomers and z for an oligomer made out of z monomers. The green
arrows show the entry points of the formed oligomers into the formed micelle respectively
precursor particle (modified from (Thickett and Gilbert, 2007)).

was used. The polymeric system of choice was a system made out of poly-methyl
methacrylate (PMMA). This system offers the advantage of a high surface charge by
the internalization of sulfate groups at the end of the propagating polymer chains.
To enhance the scattering properties of the polymer, two different functionalized
monomers were used for the radical polymerization containing either fluorine or
silicon atoms to enhance the electron density of the colloidal particles. A typical re-
action, as described by Härtl (Härtl and Zhang-Heider, 1997) took place in a 2.5-liter
three-neck flask equipped with a reflux condenser with a water cooling temperature
of about 281K, a nitrogen inlet tube, and a magnetic stirrer set to a stirring speed of
700rpm (rpm = revolutions per minute) during the whole synthesis process. The
reaction temperature was varied between 47.5 K and 65 K and held constant by
immersing the reaction vessel in a temperature bath. 1.5l of water was added to the
flask, and saturated with nitrogen to remove the oxygen in the water. A mixture
(molar ratio 1:1) of the two monomers 1H,1H,5H-Octafluoropentylmethacrylate
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(abcr GmbH & Co.KG, Karlsruhe, Germany) and Methacryloxymethyltrimethylsilane
(abcr GmbH & Co.KG, Karlsruhe, Germany) was added. In addition, a cross-linker,
2,2,3,3,4,4,5,5-Octafluorohexanediol-1,6-dimethacrylate (abcr GmbH & Co.KG, Karl-
sruhe, Germany), was added to allow cross-linking of the propagating chains to
stabilize the formed nano-particles. As a redox-system a solution of NaSO3 (Fluka,
Buchs, Switzerland) and (NH4)2Fe(SO4)2 (Fluka, Buchs, Switzerland) in deionized
water was added. The reaction was initialized by adding a solution of the initiator
K2S2O8 (Merck, Darmstadt, Germany) in deionised water.

To increase the charge of the colloidal particles, for some syntheses a subsequent
second synthesis step (Synthesis step B) was carried out, resulting in a further
growth of the colloidal particles accompanied by a higher surface charge. This
second synthesis step was carried out 24 h after the first synthesis step at the same
synthesis conditions. Therefore, a solution of the radical iniator K2S2O8 in water
and a monomer mixture of 1H,1H,5H-Octafluoropentylmethacrylate (abcr GmbH &
Co.KG, Karlsruhe, Germany) and Methacryloxymethyltrimethylsilane (abcr GmbH
& Co.KG, Karlsruhe, Germany) (molar ratio 1:1) was prepared. Every 30 min 0.5 ml
of the initiator solution and 0.5 ml of the monomer mixture were pumped by a peri-
staltic pump system into the reaction mixture. The reaction vessel was continuously
stirred and kept under nitrogen atmosphere. The newly formed oligomers were
incorporated in the colloidal particles, and due to the enhanced presence of initiator
resulting in sulfate groups at the surface of the colloids the effective charge of the
particles could be enhanced.

After the synthesis had finished, the remaining products of the reaction, like
remaining monomer or free oligomers of low molecular weight, were removed
by dialysis against deionized water for 10 to 12 days. Afterwards, the colloidal
suspensions were concentrated by vacuum distillation, and remaining stray ions
were removed by the addition of a mixed bed ion exchanger (Merck, Darmstadt,
Germany).

For the experiments, the ion exchanger was removed by filtering and the final
concentration of the colloidal particles was adjusted either by dilution with deionised
water or by gentle centrifugation for 24 h resulting in soft sediment of colloidal
particles which is easily redissolved in water. If electrolyte was added to the samples,
small volumes of different concentrations of dissolved potassium-chloride KCl
(Merck, Darmstadt, Germany) in deionized water were added instead of the same
volume of deionized water.

For the experiments two systems of different particle size and effective charge were
synthesized and used for investigation. One of these systems was already purified
after the first synthesis step, while for the other system the second synthesis step B
has been performed.
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4.2. Static and dynamic light scattering

The static and dynamic light scattering experiments have been performed using the
spectrometer-goniometer-system 3D LS Spectrometer (LS Instruments AG, Fribourg,
Switzerland), which is schematically sketched in fig. 4.2 and enables cross-correlation
experiments by performing two scattering experiments simultaneously.

As light source, a helium-neon-laser with a wavelength λ = 632.8 nm was used.
The emitted light with an intensity I0 is deflected by two mirrors and can be adjusted
in intensity by an absorber system with filters of an optical density (OD) between 0.3
and 5.3, where the optical density is the negative decadic logarithm of the absorption

Itrans = I0 · 10−OD . (4.1)

The transmitted intensity Itrans is monitored by a photo diode, which is situated
behind a semitransparent mirror which partially deflects the laser light. The beam is
afterwards split into two beams of equal intensity by a prism system, the resulting
two beams are focused by a lens on the same scattering volume in the sample cell. The
scattered light is defocused by a lens and subsequently detected by two avalanche
photo diodes placed on a goniometer arm which enables to detect the scattered
light at angles θ between 30◦ and 150◦. The resulting signal of the avalanche photo
diodes is fed into two hardware multitau-correlators, which compute the time
autocorrelation functions.

The round sample cell of a diameter of 10 mm consists out of quartz glass and is
placed in a temperature-controlled bath of cis/trans-decalin which is index-matched
to the refractive index of the sample cell to suppress scattering of the sample cell
wall.

The set-up enables cross-correlation experiments by using a so called 3D set-up,
expanding thus the possible range of concentrations which can be probed using
light scattering methods by isolating single scattering events from contributions
of multiple scattering. For this purpose, two scattering experiments are performed
simultaneously on the same scattering volume and at the same wavevector transfer
Q and the signals detected by two detectors are cross correlated

G12(τ) = 〈I1(0)I2(τ)〉 (4.2)

where I1 and I2 denote the intensity detected by detectors 1 and 2 respectively. In
the 3D set-up, both detectors detect the scattered light from both incident beams
and thus both scattering experiments. The cross-correlation function can be thus
written as (Urban, 1999)

G12(τ) = 〈I I1(0)I I2(τ)〉+ 〈I I1(0)I II2 (τ)〉+ 〈I II1 (0)I I2(τ)〉+ 〈I II1 (0)I II2 (τ)〉 (4.3)

where arabic numbers denote again the detector and roman numbers denote the
incident beam. The undesired contributions of the "wrong" incident beams are
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Figure 4.2.: Sketch of the light scattering set-up. The light emitted by the laser is deflected
by two mirrors and split into two beams which are focused on the same scattering volume
in the sample. This splitting of the beam enables cross-correlation experiments in a so
called 3D set-up. The scattered light is detected by two detectors (D) at a scattering angle
θ, the resulting signals are fed into two hardware multitau-correlators. The intensity of
the laser beam can be adjusted by an absorber system and is monitored by a photo diode.

detected by the detectors, but as they scatter at different momentum transfers due to
the geometry of the experimental set-up (Q1 ,Q2), they are completely uncorrelated
(Schätzel, 1991). In eq. (4.3) just the second term gives correlated contributions to
G12(τ), resulting in the normalized intensity correlation function (Urban, 1999)

g2,12(τ) =
3〈I1〉〈I2〉+ 〈I I1(0)I II2 (τ)〉
〈I I1 + I II1 〉〈I I2 + I II2 〉

. (4.4)

The possible maximal contrast of the normalized intensity correlation function in a
3D cross correlation experiment is thus β12 = 0.25.

4.3. X-ray scattering experiments

While coherent visible light is easily available since the invention of lasers, even
partially coherent light sources in the X-ray regime have become available just
recently. In addition, the flux of X-rays at third-generation synchrotron sources is
several orders of magnitude more intense than previously available. By using just
the partially coherent part of this X-ray beam it is possible to conduct coherent
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scattering experiments also with X-rays. The advantage of X-rays lies in their large
penetration depth, making it possible to also analyze opaque samples (Riese et al.,
2000a), the absence of multiple scattering and in the extended wavevector transfer
range accessible (Grübel et al., 2000).

Two wavefronts are coherent if their phase difference is temporarily constant,
allowing thus for constructive and destructive interference. The coherence time can
then be defined as the maximum time interval during which the phase differences
between all waves interfering at a certain point in space differ less than 2π. Analo-
gous, a wave field is spatially coherent if the phase difference of any partial wave
changes by less than 2π during a certain observation period. Since a real X-ray beam
is no perfectly coherent source as it is not completely monochromatic and does not
propagate perfectly into one direction, the coherence of the beam can be described
by coherence lengths.

The longitudinal or temporal coherence length ξl , which arises due to the not
perfect monochromaticity of the X-ray beam, depends on the wavelength λ and the
bandwidth ∆λ/λ of the beam and is given by (Als-Nielsen and McMorrows, 2001)

ξl =
λ
2
∆λ
λ
. (4.5)

The transverse coherence length is caused by the finite source dS of the X-ray beam,
which causes slightly different directions of propagation for the emitted waves at a
distances RS from the source. The transverse coherence length ξt can be defined as
(Als-Nielsen and McMorrows, 2001)

ξt =
λ
2
RS
ds
. (4.6)

In order to conduct experiments with partially coherent X-rays, the bandwidth
of the X-rays is monochromatized to typically ∆λ/λ ≈ 10−4 and the beam size is
adjusted to a size which is comparable to the transverse coherence length.

The X-ray scattering experiments have been performed at the beamline ID10A at
the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (Grübel
et al., 1994; Abernathy et al., 1998). A layout of the beamline and the experimental
set-up is schematically sketched in fig. 4.3.

The X-rays emitted by a set of three undulator segments are vertically focused by
a beryllium compound refractive lens, which is possible due to the smaller vertical
than horizontal source size and subsequently bigger transverse coherence length
ξt in the vertical than in the horizontal, and pass through a system of primary
slits. The X-ray beam is subsequently monochromatized by a silicon(111) crystal
to a photon energy of 8 keV, corresponding to a wavelength of λ = 1.55 Å. The
bandwidth provided by the monochromator ∆λ/λ ≈ 1.4×10−4 which corresponds to
a longitudinal coherence length of ξl ≈ 1µm.
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Figure 4.3.: Sketch of the beamline ID10A. The X-rays emitted by the source can be focused
by a set of beryllium lenses before passing through several slit systems. The X-rays are
monochromatized by a Si(111) monochromator and higher harmonics are suppressed
by reflection of a mirror placed in vertical reflection geometry. Further downstream the
beam size is collimated by a set of beam defining (BD) slits before a fraction of the beam is
scattered by a kapton foil and detected by a monitor detector. Finally the beam is scattered
by the sample placed behind a guard slit and the scattered intensity is subsequently
detected either by a point detector (D) connected to a multitau-correlator or a 2D-detector
(2D). The sample is being pumped by a syringe pump through a quartz capillary placed
in the X-ray beam.

Further downstream the reflection by a mirror suppresses higher harmonics
generated by the undulator and the X-ray beam is collimated to the final size by
a set of beam defining slits. During the experiments, the beam size was typically
between 10µm × 10µm and 20µm × 20µm. The intensity of the collimated beam
was monitored by a point detector which detects the scattering from a polyimid foil
placed in the beam path. This allows for the correction of intensity fluctuations in the
primary beam, which would cause additional effects in the intensity-autocorrelation
functions.

The Fraunhofer fringes resulting from the beam defining slits and additional
stray scattering are suppressed by a tantalum guard slit placed directly in front of
the sample. Finally the beam impinges on the sample, and the scattered intensity
is detected by either a 2D-detector in the case of the performed time-averaged
experiments or by a point detector for photon correlation experiments. Both detectors
can be interchanged during the experiment, enabling thus the measurement of the
static and dynamic behavior of the same sample. To avoid beam damage of the 2D
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detector, a beam stop was placed directly in front of the detector which blocks the
direct beam. The detectors were placed at a distance ≈ 2 m behind the sample.

The usage of a 2D detector offers enhanced statistics for the time-averaged scat-
tering experiments, especially in the case of high Q-values where the count rate is
drastically reduced due to the Q−4 dependence of the scattered intensity. As the
investigated samples consist of spherical particles, the scattered light by the sample
is completely isotropic and can be azimuthally averaged. The used 2D detector
was a charge coupled device detector with a total area of 1242 × 1152 pixels and a
pixel size of 22.5µm × 22.5µm. Typically a series of 100 to 200 pictures with a data
acquisition time of 0.1 s to 10 s was taken.

Series of 100 to 200 frames were averaged and a dark count value was subtracted
from the time averaged data. The dark count value was determined by taking a
picture series with the same number of pictures and the same data acquisition
time without any illumination of the detector and subsequently averaging of the
dark count series. The time-averaged data was normalized to the incident flux
on the sample, provided by the monitor detector and to the transmission of the
sample. To subtract the scattering of the dispersion medium and additional parasitic
scattering, the same experiment was performed on the pure dispersion medium. The
background data were afterwards subtracted from the normalized scattering image.
Finally the images were azimuthally averaged.

As the short-time dynamics of the colloidal particles investigated in the experi-
ments are on timescales faster than the possible frame-rates for present-day X-ray 2D
detectors, an avalanche photo diode was used for the detection of the dynamics of
the colloidal samples. The signal created by this point detector was subsequently fed
into a multitau-correlator, which calculated the normalized intensity autocorrelation
function. The slits directly in front of the point detector were set to a size of 50µm ×
50µm to 100µm × 100µm.

To prevent the colloidal samples from beam damage induced by the X-ray beam,
a flow-though device was used where the sample was pumped through a quartz
capillary with a diameter of 1 mm as sketched in fig. 4.3. The quartz capillary was
placed in a sample holder, which also allowed for the mounting of the tantalum
guard slits, and placed in the X-ray beam. The capillary was connected via a flexible
tube system to a syringe pump, which permitted constant and small flow-rates.
The transition time of the colloids in the beam was varied between 1 s and 0.1 s.
Apart from the prevention of beam damage, the use of a flow through device allows
the measurement and subsequent subtraction of the scattering arising from the
dispersion medium and the capillary itself with high precision. To achieve this, the
same capillary used for the static and dynamic behavior of a sample was subsequently
operated with water and the time-averaged scattering was detected.
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Discussion

The experiments have been performed on two systems of charge-stabilized colloidal
particles consisting of poly-methyl methacrylate with different particle radii and
effective charge. In both systems, the colloidal particles where dispersed in deionised
water. The two systems are labeled system PMMA542 and system PMMA1117 refer-
ring to their different particle radius. In the case of system PMMA1117, just the first
synthesis step has been performed, while system PMMA542 was synthesized perform-
ing an additional synthesis step B, a further growth of the colloidal particles, starting
from a radius R ≈ 45 nm. The system PMMA542 was investigated using mainly static
and dynamic light scattering experiments, while system PMMA1117 was investigated
using mainly X-ray scattering techniques because of its high concentration. System
PMMA542 has been investigated at five different nominal concentrations, while sys-
tem PMMA1117 was investigated at three different nominal concentrations, which
were achieved by either diluting or concentrating a deionised master suspension of
the two systems respectively.

Since both systems are highly monodisperse, the samples start to crystallize into
highly ordered arrays of particles in the presence of strong direct particle interactions.
For charge stabilized systems, this transition to the "solid" phase is depending on the
strength of the interaction potential and can thus be varied by the concentration of
particles and the screening of the particle interactions. For a deionised suspension
of system PMMA542, the phase transition to the solid phase occurred at a volume
fraction φ ≈ 0.003, while in the case of system PMMA1117 crystallization started in
deionised samples at volume fractions φ ≈ 0.25. The addition of salt to screen the
direct particle interactions was therefore always necessary for higher concentrations
than the onset of crystallization.

The amount of added salt screening the direct particle interactions has been
varied at all concentrations, the characteristics of the individual samples are listed
in table 5.1.

5.1. Statics of colloidal particles in solution

The static behavior of the samples was investigated by using either static light
scattering or small angle X-ray scattering. In the static light scattering experiments,
the scattered intensity was recorded by a point detector for typically 120 s per
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Table 5.1.: Dilution factors, nominal salt concentrations and nominal volume fractions φnom
of systems PMMA542 and PMMA1117.

System Dilution φnom Saltnom [µM]

PMMA542 Factor 20 0.001 0, 10
PMMA542 Factor 10 0.002 0, 10, 50, 100
PMMA542 Factor 5 0.004 5, 10, 50
PMMA542 Factor 3 0.008 5, 10, 20, 50
PMMA542 Factor 2 0.012 10, 20, 50
PMMA1117 Factor 2 0.08 0, 50, 200, 500, 2000, 5000
PMMA1117 Factor 1 0.16 0, 10, 35, 100, 500, 1000, 2000, 3500, 5000
PMMA1117 Factor 0.5 0.33 100, 200, 350, 3500, 5000, 10000

momentum transfer Q to measure the time averaged intensity. In the case of small
angle X-ray scattering, the experiments were performed using a 2D detector. Usually
series of 100 to 200 frames of 0.1 s to 1 s acquisition time per frame were taken, the
frames were averaged and a dark count value was subtracted. The static data were
normalized to the incident flux and to the transmission of the sample. Afterwards,
the scattering of the dispersion medium and additional parasitic scattering were
subtracted. Finally the images were azimuthally averaged.

5.1.1. Statics of diluted samples

Dilute samples were studied in the concentration regime φ < 0.005, where the
direct particle interaction were additionally screened by the addition of electrolyte
solution (200µM for system PMMA542 and 500µM for system PMMA1117) to achieve
non-interacting samples. The scattered intensity of these samples depends only on
shape, number density and electron density contrast of the colloidal particles. To get
information about the shape, size and size distribution of the colloidal particles, the
scattered intensity was measured in a static small angle X-ray scattering experiment
(SAXS) giving access to an increased range of momentum transfers Q as compared to
static light scattering experiments.

Fig. 5.1 shows the SAXS result of a dilute colloidal suspension of system PMMA542
with screened direct particle interactions. The scattered intensity falls off with
increasing Q and the intensity modulation of the formfactor indicates a relatively
monodisperse scattering object. The profile can be modeled by the expression for an
extended polydisperse sphere (eq. (3.17))

I(Q) = BG+ I0

∫ ∞
0
dRf (R,R0,Z)P (Q)

(
R
R0

)6

(5.1)
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Figure 5.1.: Scattering intensity of a sample of system PMMA542 with screened direct
particle interactions as a function of the momentum transfer Q. The solid red line is a fit
of eq. (5.1) to the data.

Table 5.2.: Average Radius R0 and polydispersity ∆R/R0 of the investigated systems.

System Material Radius R0 Polydispersity ∆R/R0

PMMA542 PMMA 542 Å 12.1 %
PMMA1117 PMMA 1117 Å 6.7 %

where BG refers to an experimental background, I0 is an intensity prefactor and P (Q)
is the sphere form factor convoluted with the size distribution function f (R,R0,Z).
A fit of eq. (5.1) to the data yields an average radius R0 of 542 Å and a polydispersity
∆R/R0 of 12.1 %.

Fig. 5.2 shows the scattering intensity of a non-interacting sample of system
PMMA1117. In comparison to system PMMA542 the positions of the minima are
shifted towards smaller momentum transfers, indicating thus that system PMMA1117
is made out of bigger particles as compared to system PMMA542. A fit of eq. (5.1)
to the SAXS data yields a mean radius R0 of 1117 Å and a polydispersity ∆R/R0 of
6.7 %. The results are summarized in table 5.2.
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Figure 5.2.: Scattering intensity of sample PMMA1117 with screened direct particle interac-
tions as a function of the momentum transfer Q. The solid red line is a fit of eq. (5.1) to
the data.

5.1.2. Static description of interacting samples

The scattering intensity is containing information on both the particle form factor
P (Q), which describes intra-particle correlations, and the static structure factor S(Q),
which describes inter-particle correlations:

I(Q) ∝ P (Q) · S(Q). (5.2)

Fig. 5.3, top panel, shows the scattering intensity of a concentrated sample of system
PMMA1117 with a nominal volume fraction of φnom = 0.35 and a concentration of
added electrolyte of 200µM, where ordering of the colloidal particles in the sample
is expected.

The scattered intensity of the sample shows a pronounced peak in the small Q
region, not described by the particle form factor. The bottom graph of fig. 5.3 shows
the extracted static structure factor of the sample. It was obtained by dividing the
scattering intensity of the sample 〈I(Q)〉 by the scattering intensity of a sample
exhibiting no interparticle interactions 〈I(Q)〉0 scaled by a prefactor α ≈ NS /N0
where NS and N0 are the number of particles in the scattering volumes of the
interacting sample and the disordered sample respectively

S(Q) =
〈I(Q)〉
α〈I(Q)〉0

. (5.3)
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Figure 5.3.: Top: Scattering intensity of an ordered PMMA1117 sample with a nominal
volume fraction of φnom = 0.35 and a concentration of added electrolyte of 200µM.
Bottom: Static structure factor S(Q) as a function of the momentum transfer Q.

The static structure factor shows a pronounced peak at small Q values and oscil-
lates around unity for large momentum transfers.

Fig 5.4 to fig. 5.6 display the extracted static structure factors S(Q) of system
PMMA542, measured by static light scattering. The 16 samples were measured at 5
nominal volume fractions φnom = 0.001, 0.002, 0.004, 0.008 and 0.012.

The static structure factors for system PMMA1117 are shown in fig. 5.7 and fig. 5.8.
These are colloidal PMMA particles suspended in water at high volume fractions,
measured with small angle X-ray scattering. The nominal volume fractions of the
samples φnom were 0.08, 0.16 and 0.33 respectively. To screen direct interparticle
interactions, electrolyte solution in different concentrations was added for all of the
eight investigated particle concentrations.

The peak of the static structure factor shifts to higher momentum transfers Q with
increasing particle concentration, as displayed in fig. 5.9 for the samples with the
lowest concentration of added electrolyte at the 5 different nominal volume fractions
measured for system PMMA542.
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Figure 5.4.: Static structure factors S(Q) of system PMMA542 for two nominal volume
fractions φnom of 0.001 (top) and 0.002 (bottom). The red lines show RMSA fits with fit
parameters φ and Zeff to the data.
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Figure 5.5.: Static structure factors S(Q) of system PMMA542 for two nominal volume
fractions φnom of 0.004 (top) and 0.008 (bottom). The red lines show RMSA fits with fit
parameters φ and Zeff to the data.
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Figure 5.6.: Static structure factors S(Q) of system PMMA542 for a nominal volume fraction
φnom of 0.012. The red lines show RMSA fits with fit parameters φ and Zeff to the data.

This shift of the peak position indicates a compression of the interparticle distance
in the suspension with increasing particle concentration, as the position of the first
maximum of the static structure factor Qmax can be related to the next neighbor
distance in the systems via rm = 2π/Qmax. For sample series measured at the same
nominal volume fraction, the position of the peak of the static structure factor Qmax
shifts to higher Q-values with increasing electrolyte concentration. For the sample
series of nominal volume fractions φnom = 0.008 (fig. 5.5 (bottom)) and φnom = 0.012
(fig. 5.6) deviations from this behavior can be noted, which might be explained by
variations of the particle concentration caused by the preparation of the samples.

The height of the static structure peak increases (at a given electrolyte concentra-
tion) with increasing volume fraction (see for example the graphs of the two samples
at 0µM and the two samples at 5µM added salt in fig. 5.9), denoting an increase
of the direct interparticle interactions. At a given volume fraction, an increase of
the salt concentration is accompanied by a decrease of the peak height of the static
structure factor, indicating a screening of the direct particle interactions, as displayed
in fig. 5.4 to fig. 5.8. This decrease of the peak height is accompanied by a broadening
of the peak shape, indicating a relative relaxation of the particle positions.

The red lines in fig. 5.4 to fig. 5.8 show the corresponding fits of the rescaled
mean spherical approximation (RMSA) to the data, which models the direct particle
interactions via a screened Coulomb potential (Hayter and Penfold, 1981; Hansen
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Figure 5.7.: Static structure factors S(Q) of system PMMA1117 for two nominal volume
fractions φnom of 0.08 (top) and 0.33 (bottom). The red lines show RMSA fits with fit
parameters φ and Zeff to the data.
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Figure 5.8.: Static structure factors S(Q) of system PMMA1117 for a nominal volume fraction
φnom of 0.16. The red lines show RMSA fits with fit parameters φ and Zeff to the data.
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Figure 5.9.: Static structure factors S(Q) of system PMMA542 for 5 samples of different
nominal volume fractions φnom of 0.001 to 0.012 and the lowest concentration of added
salt measured at the respective volume fraction. The red lines show RMSA fits to the data.

and Hayter, 1982). The input parameters for the model were the temperature T =
293.15K, the dielectric permittivity of the dispersion medium εr = 80.1 and the
mean radius of the particles with 542 Å and 1117 Å respectively. The model fit
evaluates the parameters volume fraction φ, concentration of monovalent electrolyte
ions and effective charge Zeff of the colloids. As the two parameters electrolyte
concentration and effective charge are degenerate and depend on each other (see
section 3.2.4), the electrolyte concentrations was also kept constant and set to the
value of the nominal salt concentration added to the system. In the case of high salt
concentrations, Csalt ≥ 2000µM, the fits were performed using the mean spherical
approximation without a rescaling procedure. The results of the model fits to the
data are summarized in table 5.3.

In total, the model fits displayed in fig. 5.4 to fig. 5.8 are in good agreement with
the measured static structure factors. While the model fits of the static structure
factors obtained with small angle X-ray scattering are matching the data points over
the whole momentum transfer Q range (fig. 5.7 and fig. 5.8), for the static light
scattering data a deviation of the model fit can be seen for small wavevector transfers
(fig. 5.4 and fig. 5.5). This might by caused by additional stray light at detector angles
close to the directly transmitted laser beam which is not completely removed when
subtracting the background scattering. Another reason might be a small amount
of impurities of big volume which scatter strongly at small wavevector transfers,
causing thus an increase in the background scattering.
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Table 5.3.: System, salt concentration, nominal volume fraction φnom, position Qmax and
height of the static structure factor S(Qmax) and parameters yielded by a fit of the RMSA
model to the static structure factors S(Q). Model parameters were the temperature
T = 293.15K, the dielectric permittivity of the dispersion medium εr = 80.1, the salt
concentration and the mean radius R0 = 542 Å and R0 = 1117 Å for system PMMA542 and
PMMA1117 respectively.

System φnom Saltnom [µM] Qmax [Å−1] S(Qmax) φ Zeff [e−]

PMMA542 0.001 0 0.0009 1.35 0.0010 214
PMMA542 0.001 10 0.0012 1.06 0.0010 224
PMMA542 0.002 0 0.0011 2.09 0.0027 381
PMMA542 0.002 10 0.0011 1.26 0.0021 461
PMMA542 0.002 50 0.0015 1.05 0.0016 706
PMMA542 0.002 100 0.0019 1.03 0.0018 747
PMMA542 0.004 5 0.0014 1.89 0.0052 432
PMMA542 0.004 10 0.0016 1.31 0.0052 267
PMMA542 0.004 50 0.0017 1.08 0.0030 572
PMMA542 0.008 5 0.0017 2.31 0.0089 487
PMMA542 0.008 10 0.0018 2.11 0.0115 497
PMMA542 0.008 20 0.0017 1.52 0.0084 510
PMMA542 0.008 50 0.0017 1.16 0.0053 722
PMMA542 0.012 10 0.0019 2.69 0.0135 710
PMMA542 0.012 20 0.0018 1.76 0.0106 602
PMMA542 0.012 50 0.0021 1.26 0.0112 483
PMMA1117 0.08 0 0.00213 1.28 0.142 75
PMMA1117 0.08 50 0.00236 1.10 0.087 69
PMMA1117 0.08 200 0.00236 1.09 0.077 149
PMMA1117 0.08 500 0.00236 1.10 0.080 320
PMMA1117 0.08 2000 0.00252 1.09 0.086 403
PMMA1117 0.08 5000 0.00263 1.09 0.093 856
PMMA1117 0.16 0 0.00244 1.32 0.218 98
PMMA1117 0.16 10 0.00244 1.30 0.193 82
PMMA1117 0.16 35 0.00244 1.29 0.178 101
PMMA1117 0.16 100 0.00244 1.29 0.169 143
PMMA1117 0.16 500 0.00244 1.29 0.160 429
PMMA1117 0.16 1000 0.00248 1.26 0.158 523
PMMA1117 0.16 2000 0.00248 1.25 0.158 644
PMMA1117 0.16 3500 0.00255 1.17 0.147 674
PMMA1117 0.16 5000 0.00255 1.16 0.145 766
PMMA1117 0.33 100 0.00276 2.89 0.360 325
PMMA1117 0.33 200 0.00280 2.57 0.365 349
PMMA1117 0.33 350 0.00280 2.15 0.341 364
PMMA1117 0.33 3500 0.00280 1.70 0.325 864
PMMA1117 0.33 5000 0.00280 1.50 0.315 665
PMMA1117 0.33 10000 0.00280 1.40 0.298 560
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The resulting values for the effective charge Zeff show overall an increase with
increasing volume fraction for both systems, while at a given nominal volume fraction
an increase with increasing concentration of added electrolyte can be observed. The
obtained volume fractions show some deviation from the nominal values, but are in
relatively good agreement with the nominal values. For the three nominal volume
fractions of system PMMA1117 a slight decrease of the extracted volume fraction
with increasing salt concentration can be observed.

For all nominal volume fractions, the height of the first maximum of the static
structure structure S(Qmax) is decreasing with increasing electrolyte concentration as
expected for an enhanced screening of the direct particle interactions. It is surprising
that the peak values S(Qmax) for the two series at φnom of 0.08 and 0.16 show only
small changes upon changes of the salt concentration.

During data evaluation it was found that when the RMSA model was applied to
the static structure factors by assuming a constant effective charge Zeff of 496e−

(PMMA542) and 221e− (PMMA1117) per colloid good fits were achieved. By keeping
the effective charge of the colloidal particles constant, the RMSA model returns
the strength of the interaction potential as a function of the amount of added ions
screening the interparticle interactions. The obtained fits were of similar quality to
the fits shown in fig. 5.4 to fig. 5.8; the obtained parameters are given in appendix B.

For system PMMA542, the obtained values for the concentration of added elec-
trolyte correspond well to the nominal salt concentration. For system PMMA1117
the obtained salt concentrations with the RMSA model show discrepancies to the
nominal concentrations of additional monovalent salt ions. While the fits display
the overall feature of an increasing salt concentration in all of the three series, the
absolute values differ. The volume fractions obtained by the fits differ only slightly
from the volume fractions shown in table 5.3. The only two exceptions are the two
volume fractions φnom = 0.08 and φnom = 0.16 at 0µM salt, which are ≈ 20% smaller
in the case of a constant effective charge Zeff.

Note that the further extraction of the dynamics and hydrodynamics are inde-
pendent of the modelization of the static structure factor, since the measured static
behavior of the system has been used as input for dynamics modeling.
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Figure 5.10.: Mean interparticle spacing rm normalized to the particle diameter 2R as a
function of the volume fraction φ. The dashed line shows the maximal geometrical
distance for a system of spheres on the positions of a simple cubic lattice, the solid red
line is a fit of the maximal geometrical distance times a constant (0.65) to the data.

5.1.3. Discussion of the static behavior

The time-averaged scattering of ultra-dilute samples of both systems could be
modeled by a spherical particle form factor, which yielded a mean radius of 542 Å
and 1117 Å and a polydispersity ∆R/R0 of 0.12 and 0.07 for system PMMA542 and
system PMMA1117 respectively. The higher polydispersity of system PMMA542 is
correlated to the smaller size of the colloidal particles, since the polydispersity is
found to decrease for poly-methyl methacrylate particles with increasing radius of
the particles (Pusey, 1991).

At higher concentrations (volume fractions from 0.001 to 0.33) an ordering of the
samples was observed and described by a static structure factor S(Q) that deviates
from unity. The extracted static structure factors S(Q) were modeled using the
rescaled mean spherical approximation (RMSA) giving information on the volume
fraction and the effective charge of the particles.

The position of the static structure peak is related to the mean interparticle
spacing rm ≈ 2π/Qmax. To compare the two systems, the mean interparticle spacing
is divided by the diameter of the colloidal particles 2R. In fig. 5.10 the normalized
mean interparticle spacing rm is shown as a function of the volume fraction φ as
determined by a fit of the RMSA model to the data.
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The mean interparticle spacing decreases with increasing volume fraction, as
expected for the evolution of a more compressed system with increasing volume
fraction. For the most concentrated system of φnom = 0.33, the mean interparticle
distance is getting close to unity. An upper limit for the mean interparticle spacing as
a function of the volume fraction is given by the mean geometrical distance between
the colloidal particles, which depends on the number density n and is proportional
to n−1/3. The dashed line in fig. 5.10 is the mean geometrical distance for a system
of spheres placed on positions of a simple-cubic lattice. The mean interparticle
spacing of all samples is below the mean geometric distance, as expected since the
simple-cubic lattice corresponds to a packing factor (or volume fraction) of 0.52.
The solid red line is a fit of the maximal geometric distance scaled by a constant
factor (× 0.65) to the data. The agreement is reasonable, however deviations are
displayed. The mean interparticle spacing of samples of the lowest volume fraction
(φnom = 0.08) of system PMMA1117 are below the mean value, indicating a less dense
packing of the particles. In contrast, the mean interparticle distance of samples
of the highest nominal volume fraction (φnom = 0.33) are all more dense packed
than the average value. This observation is in agreement with the strength of the
interparticle interactions, displayed by the peak values of the static structure factor
S(Qmax) (table 5.3), which are for all samples of φnom = 0.33 higher than for the
samples of φnom = 0.08, resulting in a denser packing of the spherical particles.

The second factor influencing the mean interparticle distance is the amount of
added electrolyte, which screens the interparticle interactions. The evolution of the
mean interparticle spacing with increasing concentrations of added electrolyte is
shown in fig. 5.11.

The mean interparticle spacing shows a slight decrease with increasing electrolyte
concentration for the eight nominal volume fractions. This behavior corresponds to a
relaxation of the system with decreasing direct particle interactions, as the positions
of particles surrounding another particle start to relax.

The low momentum transfer Q limit S(Q → 0) is a measure of the isothermal
compressibility χT as χT ∝ S(0) (see eq. (3.21)). The value of S(0) can be extracted
by a linear extrapolation of the static structure factor as a function of Q2 (eq. (3.22)).
As the static structure factors measured by static light scattering show a strong
influence of stray light at small momentum transfers, this extrapolation has only
been performed for the small angle X-ray scattering data. To evaluate the S(0) values
of the light scattering data, the corresponding fits of the RMSA model to the data
have been extracted forQ = 0. The values of S(0) as a function of the volume fraction
are plotted in fig. 5.12. For the static structure factors measured with static light
scattering, the S(0) values have been extracted from RMSA model fits to the data.

The values of S(0) decrease with increasing volume fraction for both systems,
corresponding to an increased compression of the two systems. A similar behav-
ior holds for a hard sphere system, for which the values have been obtained by
calculating S(Q = 0) of a theoretical hard sphere structure factor using the Percus
Yevick approximation. Apart from two exceptions at the highest salt concentration
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Figure 5.11.: Mean interparticle distance rm normalized to the particle diameter 2R as a

function of the electrolyte concentration of the eight nominal volume fractions. Filled
symbols refer to system PMMA1117, open symbols refer to system PMMA542. The samples
at a nominal salt concentration of 0µM have been plotted at 0.1µM, corresponding to the
self dissociation of the dispersion medium water at a neutral pH of 7.

of φnom = 0.08, the values obtained from an extrapolation of the data for S(0) are
smaller when compared to the hard sphere behavior, indicating a stronger compres-
sion of the systems due to the electrostatic interactions. In addition, the samples
show an increase of S(0) at a given volume fraction with increasing salt concentration.
The S(0) behavior is an indicator of the type of interactions. As repulsive systems
have a tendency to withstand compression, the values of S(0) are often rather close to
0. As expected, all values are smaller than unity. Moreover, the interaction strength
of the repelling forces are for most samples bigger than expected for a hard sphere
system. Just in the case of two samples (at a nominal volume fraction φnom = 0.08)
the measured S(0) is bigger than for a hard sphere system of corresponding volume
fraction φ.

The evolution of the peak value of the static structure factor with increasing
volume fraction is shown in fig. 5.13 (top). For both systems, a trend towards higher
peak values of S(Q) with increasing volume fraction can be seen. The maximum
peak height S(Qmax) is below the onset of crystallization at a peak height of 2.85
for all samples except one sample at φnom = 0.33 where S(Qmax) = 2.89. The onset
for crystallization can be shifted up to a peak value of S(Qmax) = 3.1 in the case of
low-salinity systems of strongly interacting charge stabilized systems (Gapinski et al.,
2010), which is the case for the respective sample. As the sample showed additionally
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Figure 5.12.: Extrapolated values of the static structure factor S(0) as a function of the
volume fraction φ. Filled symbols refer to system PMMA1117, open symbols refer to
system PMMA542. The volume fraction is plotted on a linear scale in the top graph, and
on a logarithmic scale on the bottom graph. The dashed lines represent the behavior of a
hard sphere system.

no signs of crystallization in the scattered intensity, all samples can be considered to
be in the fluid phase.

Since the peak height is additionally depending on the electrolyte concentration of
the system, the middle and bottom part of fig. 5.13 display the evolution of the peak
value S(Qmax) for both systems individually depending on the salt concentrations.
A binning of all samples of one nominal volume fraction to the respective mean
volume fraction has been performed, the error bars indicate the difference between
the individual and the mean volume fraction of the samples.

The static structure factors show a clear decrease with increasing salt concentration,
as expected for an enhanced screening of the direct particle interactions with in-
creasing ionic strength of the dispersion medium. This trend can be clearly observed
for all sample series investigated, as displayed in fig. 5.14. The decrease of the peak
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Figure 5.13.: Peak value of the static structure factor S(Qmax) as a function of the volume
fraction. Top: Both System, the volume fraction of the samples is the result from the
RMSA fit. Middle: System PMMA542, the volume fraction of the samples shown is the
average volume fraction of all samples of one nominal volume fraction, the error bars
indicate the difference between average and sample volume fraction yielded by RMSA
model. Bottom: System PMMA1117, the displayed volume fractions are similarly obtained
as for system PMMA542.
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Figure 5.14.: Peak value of the static structure factor S(Qmax) as a function of the electrolyte

concentration. The different colors indicate the 8 different nominal volume fractions, the
solid lines are guides to the eye. Filled symbols refer to system PMMA1117, open symbols
refer to system PMMA542. The samples at a nominal salt concentration of 0µM have been
plotted at 0.1µM, corresponding to the self dissociation of the dispersion medium water
at a neutral pH-value of 7.

value S(Qmax) as a function of the salt concentration is more pronounced for the sam-
ple series at higher volume fractions for system PMMA542 (0.001 ≤ φnom ≤ 0.012).
The same trend can be seen for system PMMA1117 when comparing the samples of
φnom = 0.33 to the samples of 0.08 ≤ φnom ≤ 0.16.

The RMSA fits to the static structure factor S(Q) yield the effective charge Zeff and
the volume fractions of the individual samples. For the two highest concentrations,
φnom = 0.16 and 0.33, the fit shows a tendency towards lower volume fractions for
increasing salt concentrations as listed in table 5.3

The effective charge Zeff as extracted by the RMSA model shows a trend towards
higher effective charges with increasing salt concentration as displayed in fig. 5.15.

For both systems PMMA542 and PMMA1117 a similar behavior can be observed:
While the effective charge is increasing slowly at small salt concentrations, the
increase becomes steeper for higher concentrations of added electrolyte. For the
eight volume fractions investigated here, it can be observed that this transition to
a faster increase of the effective charge occurs at smaller concentrations of added
electrolyte with decreasing volume fractions. A similar effect has been observed
by Gapinski et al. (Gapinski et al., 2009), who attribute this behavior to a transition
from an counterion dominated to a salt ion dominated screening when the number
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Figure 5.15.: Evolution of the effective charge Zeff yielded by the RMSA model fits to the

data as a function of electrolyte concentration. Filled symbols refer to system PMMA1117,
open symbols refer to system PMMA542. The samples at a nominal salt concentration of
0µM have been plotted at 0.1µM corresponding to the self dissociation of the dispersion
medium water at a neutral pH-value of 7. The dotted lines indicate the constant effective
charge Zeff = 496e− and 221e− for system PMMA542 and PMMA1117 respectively.

of salt ions exceeds the number of counterions with increasing salt concentration.
This change of the screening behavior explains in addition the shift of the transition
to smaller amounts of added electrolyte concentrations with decreasing volume
fraction, as the concentration of counterions decreases similarly.
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5.2. Dynamics of colloidal particles in suspensions

To investigate the dynamics of colloidal particles in solution, photon correlation
spectroscopy experiments using coherent light were performed. While it is possible
to probe dilute or semi-dilute samples with visible light, more concentrated samples
are often opaque. Therefore X-rays with their high penetration depth were used for
the determination of the dynamics of moderate to strongly concentrated systems.
To deduce the dynamics of a colloidal suspension, the temporal changes of the
recorded scattered interference pattern (speckle pattern) are analyzed by means
of the normalized intensity autocorrelation function g2(Q,τ) as a function of the
momentum transfer Q given by

g2(Q,τ) = β(Q)exp(−2Γ (Q)τ) + 1. (5.4)

Here, β denotes the speckle contrast at a given momentum transfer Q and Γ (Q) is
the momentum transfer dependent relaxation rate related to the effective short-time
diffusion coefficient D(Q) by

Γ (Q) =D(Q) ·Q2. (5.5)

5.2.1. Dynamics of non interacting colloidal suspensions

In the absence of interparticle interactions, the diffusive motion of a colloidal particle
is unaffected by other particles. Therefore the dynamics is independent of the probed
length scale and D(Q) =D0 for all momentum transfers Q.

The normalized intensity autocorrelation functions for six different momentum
transfers Q are shown in fig. 5.16. With increasing wavevector transfer Q the expo-
nential decay of the intensity autocorrelation functions is shifting towards smaller
lag times τ , corresponding to a faster decay of the correlations in the sample on the
corresponding smaller length scales investigated.

To probe the free diffusion coefficient D0, ultra-dilute samples of volume fraction
φ < 0.001, with completely screened interparticle interactions (100µM for both
systems PMMA542 and PMMA1117) were measured at different wavevector transfers
Q. The short-time regime of the recorded normalized intensity autocorrelation
functions were fitted using eq. (5.4). In fig. 5.17 the extracted relaxation rates
Γ (Q) are shown as a function of the square of the momentum transfer Q2 for the
two systems PMMA542 and PMMA1117. The intensity autocorrelations of system
PMMA542 show a faster decay compared to system PMMA1117 at similar momentum
transfers Q as can be seen by the higher values of the corresponding relaxation rates
Γ (Q).

A fit of eq. (5.5) to the data yields the free diffusion coefficient D0 for the two
systems, shown in table 5.4. The hydrodynamic radius of the particles can be
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Figure 5.16.: Normalized intensity autocorrelation functions g2−1(τ) as a function of the lag
time τ . The autocorrelation functions have been detected at the wavevector transfers Q =
4.6×10−4 Å−1, 6.4×10−4 Å−1, 9.0×10−4 Å−1, 1.3×10−3 Å−1, 1.8×10−3 Å−1 and 2.5×10−3 Å−1.
The red lines show fits of eq. (5.4) to the data.

Table 5.4.: Hydrodynamic radius RH , geometrical radius R0 extracted by a fit of a sphere
form factor to the time-averaged scattering intensity of a dilute sample (table 5.2) and
free diffusion coefficient D0 of the investigated systems.

System Hydrodynamic
radius RH [Å]

Geometrical
radius R0 [Å]

D0 [m2/s]

PMMA542 614 542 3.49 · 10−12

PMMA1117 1128 1117 1.90 · 10−12

calculated using eq. (2.10) assuming a dynamic viscosity of 1.002 · 10−3 kg/ms for the
dispersion medium water at a temperature of 293.15K.

The hydrodynamic radius is 614 Å and 1128 Å for system PMMA542 and PMMA1117
respectively. For both samples, the hydrodynamic radius is bigger than the geometri-
cal radius R0 derived from the particle form factor model fit to the static scattering
data. This can be partially attributed to a layer of solvent molecules and counter ions
which move together with the colloidal particles in the suspension (Pecora, 2000).
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Figure 5.17.: Relaxation rate Γ (Q) as a function of the squared momentum transfer Q2

for two samples of systems PMMA542 and PMMA1117 respectively. The direct particle
interactions of the samples are completely screened. The red lines show fits to the data
yielding the free diffusion coefficient D0.

5.2.2. Dynamics of interacting colloidal suspensions

If colloidal particles in a suspension are interacting with each other, the diffusion
of the particles is influenced by the interactions and thus D(Q) , D0. In fig. 5.18
the relaxation rates Γ (Q) of two samples with interparticle interactions are shown.
While for one sample no electrolyte was added (0µM), for the other sample the direct
interparticle interactions were screened by the addition of 10µM electrolyte. The
resulting different strengths of interparticle interactions are reflected by the values
of the static structure peaks of S(Qmax) = 2.09 and S(Qmax) = 1.26, respectively. The
static structure peak can be found for both samples at the position Qmax = 1.12×
10−3 Å−1. The dashed line illustrates the calculated relaxation rates Γ (Q) for a sample
without particle interactions and thus free diffusing particles.

In both cases deviations from the dynamics of a dilute system can be seen. The
relaxation rates are oscillating around the ones of a dilute system. At the position of
the first maximum of the static structure factor S(Q) the dynamics are slowed down,
compared to the free particle dynamics, a phenomenon known as the de Gennes
narrowing (De Gennes, 1959), D(Q) =D0/S(Q) predicting a momentum transfer Q
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Figure 5.18.: Relaxation rates Γ (Q) of two samples of volume fractionφ ≈ 0.002 as a function
of the square of the momentum transferQ2. Both samples exhibit interparticle interactions.
The dashed line shows the calculated relaxation rates Γ (Q) of a sample without particle
interactions. The arrow indicates the position of the first maximum of the static structure
factors S(Qmax) at Q2 = 1.25 · 10−6 Å−2, which is at the same position for both samples.
The inset shows the corresponding static structure factors were the solid lines display a
fit of the RMSA model.

dependence in interacting systems when S(Q) , 1. This description is not taking into
account hydrodynamic interactions. The slowing down effect is more pronounced
for the sample exhibiting strong interparticle interactions, manifested in a larger
peak value of the static structure factor.

In order to quantify the deviations from the dilute case, the normalized inverse
diffusion coefficient or dynamic structure factor D0/D(Q) is calculated. Fig. 5.19 to
fig. 5.21 show the normalized inverse effective diffusion coefficients for the samples
of system PMMA542 at five different nominal volume fractions φnom of 0.001, 0.002,
0.004, 0.008 and 0.012. For comparison the measured static structure factors are
also displayed by solid lines.

The normalized effective diffusion coefficients follow the shape of the static
structure factors for all samples. They show a maximum at approximately the same
position as the peak of the static structure factor, indicating a slowing down of the
system at these length scales. The peak is shifting to higher wave vectors Q with
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Figure 5.19.: Static structure factor S(Q) (solid lines) and normalized inverse diffusion
coefficient D0/D(Q) (symbols) of system PMMA542 for two different nominal volume
fractions φnom of 0.001 (top) and 0.002 (bottom). Lines and symbols of the same color
belong to the same sample system.
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Figure 5.20.: Static structure factor S(Q) (solid lines) and normalized inverse diffusion
coefficient D0/D(Q) (symbols) of system PMMA542 for two different volume fractions
φnom of 0.004 (top) and 0.008 (bottom). Lines and symbols of the same color belong to
the same sample system.
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Figure 5.21.: Static structure factor S(Q) (solid lines) and normalized effective diffusion

coefficient D0/D(Q) (symbols) of system PMMA542 for a volume fraction φnom of 0.012.
Lines and symbols of the same color belong to the same sample system.

increasing volume fraction. The peaking behavior is more pronounced in samples of
higher volume fraction, and is decreasing with increasing electrolyte concentration
at a given volume fraction. In general, the values of the normalized effective diffusion
coefficients are close to the values of the static structure factors. For samples showing
static structure factor peak values S(Qmax) < 1.5 the values of the normalized inverse
diffusion coefficient D0/D(Q) around the peak position are close to the values of the
static structure factor. For samples exhibiting stronger direct particle interactions
and thus a peak value S(Qmax) > 1.5, the values of the normalized inverse diffusion
coefficients are slightly smaller than the values of the static structure factor. At
higher volume fractions φnom from 0.004 to 0.012, a deviation towards higher values
for the normalized effective diffusion coefficient can be seen for small momentum
transfers.

The normalized inverse diffusion coefficients D0/D(Q) of system PMMA1117 at
nominal volume fractions φnom = 0.08, 0.16 and 0.33 are shown in fig. 5.22 and
fig. 5.23. The solid lines display the corresponding static structure factors. The
dynamic structure factor peaks around the maximum of the static structure factor
similar to system PMMA542. Contrary to system PMMA542, we note that for the
high volume fractions studied here, the normalized inverse diffusion coefficients
show values higher as compared to the static structure factors S(Q). With decreasing
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Figure 5.22.: Static structure factor S(Q) (solid lines) and normalized inverse diffusion
coefficient D0/D(Q) (symbols) of system PMMA1117 for two different nominal volume
fractions φnom of 0.08 (top) and 0.33 (bottom). Please note the different vertical scale for
the bottom graph. Lines and symbols of the same color belong to the same sample system.
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Figure 5.23.: Static structure factor S(Q) (solid lines) and normalized inverse diffusion
coefficient D0/D(Q) (symbols) of system PMMA1117 for a nominal volume fraction φnom
of 0.16. Lines and symbols of the same color belong to the same sample system.
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Figure 5.24.: Static structure factor S(Q) and normalized inverse diffusion coefficient
D0/D(Q) of system PMMA1117 for a nominal volume fraction φnom of 0.08. The elec-
trolyte concentrations of the samples are 0µM, 50µM, 200µM, 500µM, 2000µM and
5000µM. The red lines are fits of the RMSA model to the static structure factor.

strength of the interparticle interactions and subsequently lower values for the
maximum of the static structure factor S(Qmax), the height of the normalized inverse
diffusion coefficients D0/D(Q) is also decreasing.

In fig. 5.24 to fig. 5.26 the results for system PMMA1117 are shown individually.
For φnom = 0.08 the normalized inverse diffusion coefficients have approximately
the same values as the static structure factors of the corresponding sample. The
dynamic structure factors of the more concentrated sample (φnom = 0.16) display
higher values than the corresponding static structure factors. In addition the peak
height of D0/D(Q) decreases for the samples with increasing salt concentration. The
same trend is clearly visible for the samples of the highest concentration of colloidal
particles φnom = 0.33: The samples show a strong decrease of the dynamic structure
factor with increasing electrolyte concentration. Furthermore, it can be seen that the
normalized inverse diffusion coefficients at this nominal volume fraction show the
highest values of all samples investigated, indicating a strong slowing down of the
system at this high concentration.

5.2.3. Discussion of the dynamic behavior

Free diffusion of colloidal particles was studied by dynamic light scattering show-
ing Stokes-Einstein diffusion for the two systems. The hydrodynamic radius was
slightly bigger than the geometrical radius as extracted by a fit of a polydisperse
spherical form factor to the static data. This is usually interpreted by the presence
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Figure 5.25.: Static structure factor S(Q) and normalized inverse diffusion coefficient
D0/D(Q) of system PMMA1117 for a nominal volume fraction φnom of 0.16. The elec-
trolyte concentrations of the samples are 0µM, 10µM, 35µM, 100µM, 500µM, 1000µM,
2000µM, 3500µM and 5000µM. The red lines are fits of the RMSA model to the static
structure factor.

of temporarily attached solvent molecules to the surface of the colloidal particles.
This enlargement effect of the hydrodynamic radius is more pronounced for system
PMMA542, which might be explained by a higher charge per particle. The higher par-
ticle charge of system PMMA542 is consistent with the observation that the onset of
crystallization in a deionised suspension of particles occurs at lower concentrations
as compared to system PMMA1117. It is furthermore reflected by the fact that RMSA
modeling assuming a constant effective charge yields Zeff(PMMA542) = 496e− and
Zeff(PMMA1117) = 221e− respectively.

The dynamics characterization of the samples with direct interparticle interactions
allowed the determination of the Q dependent effective diffusion coefficient D(Q).
The limiting values of the effective diffusion coefficient give access to the collective
diffusion coefficient DC in the limQ→0 and to the short-time self diffusion coefficient
Ds,short in the limQ→∞. For large wavevector transfers Q, the dynamics are probed
on length scales smaller than the particle size, yielding the short-time diffusion
coefficient Ds,short. For the dynamic light scattering experiments performed on
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Figure 5.26.: Static structure factor S(Q) and normalized inverse diffusion coefficient
D0/D(Q) of system PMMA1117 for a nominal volume fraction φnom of 0.33. The elec-
trolyte concentrations of the samples are 100µM, 200µM, 350µM, 3500µM, 5000µM
and 10000µM. The red lines are fits of the RMSA model to the static structure factor.

system PMMA542, the biggest attainable momentum transfer Q ≈ 0.00255 Å−1 was
far below the Q-values corresponding to the diameter of a single spherical particle
Q ≈ 0.0058 Å−1. The effective diffusion coefficient at the largest Q-values is therefore
still influenced by the motions and interactions of an ensemble of colloidal particles,
displayed in modulations of the dynamic structure factor (e.g. fig. 5.19, sample
φnom = 0.002 and 0µM electrolyte). For system PMMA1117 measured with X-rays,
the largest momentum transfers investigated (Q ≈ 0.0035 Å−1) are only slightly
bigger than the Q-values corresponding to the diameter of a single colloidal particle
Q ≈ 0.0028 Å−1. As the mean particle spacing of system PMMA1117 is small, the short-
time self diffusion coefficient extracted at the highest probed momentum transfers
can only provide a qualitative description of the self diffusion. The normalized
short-time self diffusion coefficients D(Q→∞)/D0, which have been extracted from
the highest Q-values investigated for the corresponding sample, are displayed in
fig. 5.27.

For system PMMA542, D(Q→∞)/D0, is close to unity for the samples with the
highest electrolyte concentrations and slightly above the hard sphere values. At
lower salt concentrations, the values of Ds,short/D0 are randomly oscillating around
unity. This is due to the strong influence of the shape of the dynamic structure
factor at the largest investigated Q-values (see for example fig. 5.21 on page 71: The
samples at salt concentrations of 10µM and 20µM). The short-time self diffusion
coefficients of system PMMA1117 decrease with increasing volume fraction φwithout
displaying a clear dependence on the electrolyte concentration, showing the same
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Figure 5.27.: Normalized short-time self diffusion coefficient D(Q→∞)/D0 as a function of
the volume fraction φ. The solid line displays the short-time self diffusion coefficient of
a hard sphere system calculated within the δγ-approximation. Filled symbols refer to
system PMMA1117, open symbols refer to system PMMA542.

qualitative behavior as predicted for deionised charge stabilized systems (Banchio
et al., 2008). This is in agreement with experimental results (Horn et al., 2000).
While the Ds,short/D0 values are close to unity or smaller, they are, except for one
sample, higher than the corresponding hard sphere value. These low values of
Ds,short compared to D0 can be attributed to the presence of indirect hydrodynamic
interactions mediated by the dispersion medium.

At small wavevector transfers (Q→ 0), corresponding to length scales of several
diameters of the particles, the collective motions of the colloids are probed. The
normalized effective diffusion coefficients D(Q→ 0)/D0 are shown in fig. 5.28.

The collective short-time diffusion coefficient DC is always above unity indicative
of faster dynamics compared to free diffusion. For both systems D(Q→ 0) increases
with increasing volume fraction (and thus increasing direct particle interactions)
and decreases with increasing concentration of additional salt ions at a given volume
fraction (and thus decreasing direct particle interactions). The collective diffusion
coefficient describes the initial decay of long-wavelength density fluctuations. For
systems of strong repulsive interactions DC/D0 is found to be substantially larger
than unity (Nägele, 1996), and has also been found to increase with increasing
volume fraction and increasing strength of the interaction potential (Tirado-Miranda
et al., 2003) in agreement with our findings. Moreover, the observed effect of an
enhancement of the collective diffusion in moderately concentrated suspensions (φ =
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Figure 5.28.: Normalized collective short-time self diffusion coefficient D(Q → 0)/D0 as
a function of the volume fraction φ. The solid line displays the short-time collective
diffusion coefficient of a hard sphere system. Filled symbols refer to system PMMA1117,
open symbols refer to system PMMA542.

0.01− 0.04) of charged spheres with weakly screened particle interactions has been
calculated theoretically (Daguanno et al., 1990) and found experimentally (Chatenay
et al., 1987). For hard-sphere systems, the normalized short-time collective diffusion
coefficient can be approximated by DC/D0 = 1 + 1.454φ (Cichocki and Felderhof,
1988), as displayed by the dashed line in fig. 5.28. While the values of system
PMMA542 are substantially higher than the calculated hard sphere behavior, the
normalized collective diffusion coefficients of system PMMA1117 follows qualitatively
the hard sphere behavior.

The D0/D(Q) values are relatively close to the static structure factor S(Q) for
volume fractions φ < 0.02 and peak values of the static structure factor S(Qmax) < 1.5.
D0/D(Q) displays stronger deviations from the static structure factor at higher
volume fractions or stronger interparticle interactions with a higher peak value
S(Qmax). Since the dynamics and the static structure factor are similar without
considering hydrodynamic interactions (see eq. (3.41)), this observation points
to the presence of hydrodynamic interactions in the probed samples. We note
further that for dilute to moderate concentrated systems φ < 0.2 the peak values
of D0/D(Q) are smaller than the corresponding maximum of the static structure
factor S(Qmax), indicating an increase of the particles’ mobility due to hydrodynamic
interactions. At higher volume fractions, the peak values ofD0/D(Q) are smaller than
S(Qmax), denoting a slowing down of the dynamics as a result of the hydrodynamic
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Figure 5.29.: Peak values of the normalized inverse effective diffusion coefficient
D0/D(Qpeak) as a function of the volume fraction φ. Filled symbols refer to system
PMMA1117, open symbols refer to system PMMA542.

interactions. Fig. 5.29 displays the evolution of the peak values D0/D(Qpeak) as a
function of the volume fraction.

Both systems show an increase of the dynamic structure factor maximum with
increasing volume fraction. While the increase is moderate for system PMMA542, the
steepness of the increase is higher for system PMMA1117. Subsequently, the highest
peak values are measured at the highest investigated volume fraction φnom = 0.33.
Moreover, the peak values are decreasing with increasing salt concentration. Fig. 5.30
shows the evolution of the peak values as a function of the concentration of added
ions.

The peak values D0/D(Qpeak) decrease with increasing salt concentration for the
eight volume fractions investigated. This effect is more pronounced for samples
with stronger particle interactions (higher value of S(Qmax), samples at a nominal
volume fraction of 0.004, 0.008, 0.012 and 0.33). The same trend, an increase of
the peak values D0/D(Qpeak) with increasing volume fraction and decreasing salt
concentration have been found by Gapinski et al. (Gapinski et al., 2007, 2009). We
note that the absolute peak values found by these authors are D0/D(Qpeak) < 3. Peak
values of the same magnitude have been found by Robert et al. (Robert et al., 2008)
for the highest volume fraction investigated, as it is the case in our experiments.
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Figure 5.30.: Peak values of the normalized inverse effective diffusion coefficient
D0/D(Qpeak) as a function of the electrolyte concentration. Filled symbols refer to system
PMMA1117, open symbols refer to system PMMA542.

5.3. Hydrodynamic interactions of colloidal

suspensions

The differences between the measured static structure factor and the dynamic struc-
ture factor already point towards the presence of hydrodynamic interactions. This
indirect, hydrodynamic interactions between the colloidal particles in a suspension
are interactions which are mediated by the dispersion medium. The hydrodynamic
behavior of a colloidal suspension can be quantified in the short-time limit by calcu-
lating the hydrodynamic function, using as input the measured static and dynamic
properties of a sample

H(Q) =
D(Q)
D0
· S(Q). (5.6)

It is thus possible to extract the hydrodynamic functions from the measured static
and dynamic behavior of a sample without referring to a theoretical model, as shown
exemplary in fig. 5.31.

The hydrodynamic function H(Q) of a sample of system PMMA1117 at φnom =
0.33 and 200µM of added salt is at all momentum transfers below unity, since the
normalized inverse diffusion coefficient lies always above the static structure factor.
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Figure 5.31.: Top: Static structure factor and normalized inverse diffusion coefficient of
a PMMA1117 (φnom = 0.33, 200µM salt) sample as a function of wavevector transfer Q.
Bottom: Hydrodynamic function of the same sample as a function of wavevector transfer
Q.

Similar to the static and dynamic behavior, the hydrodynamic function shows a
pronounced peak at Q-values around the mean interparticle spacing.

Subsequently, the hydrodynamic functions of all samples were extracted. The
hydrodynamic functions of system PMMA542 are shown in fig. 5.32, fig. 5.33, fig. 5.34,
fig. 5.35 and fig. 5.36 while the hydrodynamic functions of system PMMA1117 are
shown in fig. 5.37, fig. 5.38 and fig. 5.39.

Similar to the static structure factor S(Q) and the normalized inverse diffusion
coefficient D0/D(Q), all extracted hydrodynamic functions show a maximum. This
behavior is always more pronounced for samples of low electrolyte concentration.
Moreover, the peak position shifts to higher momentum transfers with increasing
volume fraction and is thus located at momentum transfers around the peak position
of the static structure factor S(Qmax), which corresponds to the mean interparticle
spacing of particles in the sample.

The peak values of the hydrodynamic functions H(Qmax) are above unity for the
samples of system PMMA542, indicating for volume fractions φ smaller than 0.015
an increased particle mobility caused by hydrodynamic interactions. For samples
of higher direct particle interactions, characterized by a more pronounced first
maximum of the static structure factor, the peak of the hydrodynamic functions
displays also a higher value, as summarized in table 5.5.
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Figure 5.32.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φnom of 0.001. The electrolyte concen-
trations of the samples are 0µM and 10µM. The blue lines show the predictions of the
pairwise additive approximation using the measured static structure as input. The red
lines are fits of the pairwise additive approximation with fit parameters φ and Zeff to the
data.

For high volume fractions (φ > 0.06), investigated with samples of system PMMA1117,
the peak values of the hydrodynamic function are smaller than unity, indicating
a slowing down of the system due to the hydrodynamic interactions. The only
exception from this behavior is the deionised sample (salt concentration 0µM) with
a nominal volume fraction φnom = 0.08. The peak values of the hydrodynamic
functions decrease with increasing volume fractions, the lowest peak value can
be observed at the highest nominal volume fraction of φ = 0.33, as displayed in
table 5.5.

For the further analysis of the hydrodynamic interactions, the hydrodynamic
functions have been compared with theoretical models, the pairwise additive ap-
proximation (PA) and the δγ-expansion.
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Table 5.5.: System, salt concentration, nominal volume fraction φnom, peak value of the
static structure factor S(Qmax), φ extracted by the RMSA fit to the static structure factors
S(Q) and peak value of the hydrodynamic function H(Qmax).

System φnom Saltnom [µM] S(Qmax) RMSA-φ H(Qmax)

PMMA542 0.001 0 1.35 0.0010 1.05
PMMA542 0.001 10 1.06 0.0010 1.02
PMMA542 0.002 0 2.09 0.0027 1.11
PMMA542 0.002 10 1.26 0.0021 1.04
PMMA542 0.002 50 1.05 0.0016 1.02
PMMA542 0.002 100 1.03 0.0018 1.01
PMMA542 0.004 5 1.89 0.0052 1.12
PMMA542 0.004 10 1.31 0.0052 1.05
PMMA542 0.004 50 1.08 0.0030 1.02
PMMA542 0.008 5 2.31 0.0089 1.15
PMMA542 0.008 10 2.11 0.0115 1.14
PMMA542 0.008 20 1.52 0.0084 1.10
PMMA542 0.008 50 1.16 0.0053 1.03
PMMA542 0.012 10 2.69 0.0135 1.19
PMMA542 0.012 20 1.76 0.0106 1.12
PMMA542 0.012 50 1.26 0.0112 1.05
PMMA1117 0.08 0 1.28 0.142 1.03
PMMA1117 0.08 50 1.10 0.087 0.93
PMMA1117 0.08 200 1.09 0.077 0.97
PMMA1117 0.08 500 1.10 0.080 0.97
PMMA1117 0.08 2000 1.09 0.086 0.97
PMMA1117 0.08 5000 1.09 0.093 0.97
PMMA1117 0.16 0 1.32 0.218 0.91
PMMA1117 0.16 10 1.30 0.193 0.91
PMMA1117 0.16 35 1.29 0.178 0.90
PMMA1117 0.16 100 1.29 0.169 0.87
PMMA1117 0.16 500 1.29 0.160 0.88
PMMA1117 0.16 1000 1.26 0.158 0.88
PMMA1117 0.16 2000 1.25 0.158 0.87
PMMA1117 0.16 3500 1.17 0.147 0.83
PMMA1117 0.16 5000 1.16 0.145 0.82
PMMA1117 0.33 100 2.89 0.360 0.61
PMMA1117 0.33 200 2.57 0.365 0.61
PMMA1117 0.33 350 2.15 0.341 0.59
PMMA1117 0.33 3500 1.70 0.325 0.54
PMMA1117 0.33 5000 1.50 0.315 0.54
PMMA1117 0.33 10000 1.40 0.298 0.53
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Figure 5.33.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA542 for a nominal volume fraction φnom of 0.002. The electrolyte concen-
trations of the samples are 0µM, 10µM, 50µM and 100µM. The blue lines show the
predictions of the pairwise additive approximation using the measured static structure as
input. The red lines are fits of the pairwise additive approximation with fit parameters φ
and Zeff to the data.

5.3.1. Pairwise additive approximation

A description of the hydrodynamic functions in dilute to moderately concentrated
suspensions of electrostatically interacting colloidal particles is possible by the
pairwise additive approximation (Nägele et al., 1993; Nägele et al., 1994; Nägele and
Baur, 1997), which assumes pairwise additivity of the hydrodynamic interactions
and expresses the mobility tensors in terms of an expansion in the inverse distance
r−1 up to terms r−8. The resulting hydrodynamic function is given by eq. (3.52) and
eq. (3.53) and depends on the pair distribution function g(r) and the volume fraction
φ of the system.

The pair distribution function g(r) of the analyzed systems was calculated from
the measured static structure factors S(Q), parametrized by the RMSA model. The
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Figure 5.34.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φnom of 0.004. The electrolyte concentra-
tions of the samples are 5µM, 10µM and 50µM. The blue lines show the predictions of
the pairwise additive approximation using the measured static structure as input. The
red lines are fits of the pairwise additive approximation with fit parameters φ and Zeff to
the data.
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Figure 5.35.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA542 for a nominal volume fraction φnom of 0.008. The electrolyte con-
centrations of the samples are 5µM, 10µM, 20µM and 50µM. The blue lines show the
predictions of the pairwise additive approximation using the measured static structure as
input. The red lines are fits of the pairwise additive approximation with fit parameters φ
and Zeff to the data.

resulting hydrodynamic functions H(Q) are shown as solid blue lines in fig. 5.32
to fig. 5.38. The red lines are fits of the PA approximation to the data as described
later. As the assumption of pairwise additive hydrodynamic interactions restricts
the analysis to systems of volume fractions φ < 0.1, it is no surprise that the pairwise
additive approximation fails to describe the extracted hydrodynamic functions at
high volume fractions (φnom = 0.16, see fig. 5.38). For the highest nominal volume
fraction investigated (φnom = 0.33), the pairwise additive approximation yields
unphysical results with H(Q) < 0 and is thus not displayed.

The calculated pairwise additive approximation is in good agreement with the
extracted hydrodynamic functions of system PMMA542 (fig. 5.32 to fig. 5.36) at
nominal volume fractions 0.001 ≤ φnom ≤ 0.012. The position and height of the
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Figure 5.36.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φ of 0.012. The electrolyte concentrations
of the samples are 10µM, 20µM and 50µM. The blue lines show the predictions of the
pairwise additive approximation using the measured static structure as input. The red
lines are fits of the pairwise additive approximation with fit parameters φ and Zeff to the
data.
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Figure 5.37.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA1117 for a nominal volume fraction φnom of 0.08. The electrolyte concentra-
tions of the samples are 0µM, 50µM, 200µM, 500µM, 2000µM and 5000µM. The blue
lines show the predictions of the pairwise additive approximation using the measured
static structure as input.
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Figure 5.38.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of sys-
tem PMMA1117 for a nominal volume fraction φnom of 0.16. The electrolyte concentrations
of the samples are 0µM, 10µM, 35µM, 100µM, 500µM, 1000µM, 2000µM, 3500µM and
5000µM. The blue lines show the predictions of the pairwise additive approximation
using the measured static structure as input.

maximum of the hydrodynamic functions as well as the overall shape of H(Q) are
well characterized.

With increasing volume fraction φ ≥ 0.06, the calculated pairwise additive approx-
imation underestimates the height of the hydrodynamic function H(Q), as depicted
in fig. 5.37 for samples of system PMMA1117. As the validity of the pairwise additive
approximation is restricted for systems of volume fraction φ . 0.1, it in fact starts
to fail in describing the data at a nominal volume fraction φnom = 0.16 (fig. 5.38),
where it calculates unphysical negative values for the sample with an electrolyte
concentration of 0µM.

For samples of nominal volume fractions 0.001 ≤ φnom ≤ 0.012, the pairwise addi-
tive approximation has also been fitted to the data. The constant input parameters
were the mean radius R0 =542 Å, the temperature T = 293.15K, the dielectric per-
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Figure 5.39.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of sys-
tem PMMA1117 for a nominal volume fraction φnom of 0.33. The electrolyte concentrations
of the samples are 100µM, 200µM, 350µM, 3500µM, 5000µM and 10000µM.
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Table 5.6.: Nominal volume fraction φ, electrolyte concentration, height of the peak of
the hydrodynamic function H(Qmax), parameters yielded by a fit of the RMSA model
to the static structure factor S(Q) of system PMMA542 and parameters yielded by a fit
of the pairwise-additive approximation to the extracted hydrodynamic function. The
temperature T = 293.15K, the dielectric permittivity of the dispersion medium εr = 80.1,
the mean radius of the particles R0 =542 Å and the concentration of added electrolyte
were kept constant.

φnom Saltnom [µM] RMSA-φ RMSA-Zeff PA-φ PA-Zeff H(Qmax)

0.001 0 0.0010 214 0.0011 110 1.05
0.001 10 0.0010 224 0.0020 301 1.02
0.002 0 0.0027 381 0.0025 399 1.11
0.002 10 0.0021 461 0.0022 530 1.04
0.002 50 0.0016 706 0.0019 1593 1.02
0.002 100 0.0018 747 0.0018 2158 1.01
0.004 5 0.0052 432 0.0055 423 1.12
0.004 10 0.0049 267 0.0053 234 1.05
0.004 50 0.0030 572 0.0030 501 1.02
0.008 5 0.0089 487 0.0078 325 1.15
0.008 10 0.0115 497 0.0101 315 1.14
0.008 20 0.0084 510 0.0083 420 1.10
0.008 50 0.0053 722 0.0045 729 1.03
0.012 10 0.0135 710 0.0115 424 1.19
0.012 20 0.0106 602 0.0110 336 1.12
0.012 50 0.0112 483 0.0126 224 1.05

mittivity of the dispersion medium water at 293.15 K εr = 80.1 and the electrolyte
concentration while the volume fraction φ and the effective charge Zeff were var-
ied during the fit procedure. The resulting hydrodynamic functions are shown in
fig. 5.32 to fig. 5.36 by the solid red lines, the resulting parameters are listed in
table 5.6 together with the values obtained by a fit of the rescaled mean spherical
approximation to the static structure factor S(Q).

The parameters are in good agreement with the values obtained by the RMSA
model fits to the static structure factors of the samples. The obtained volume
fractions were very close to the values obtained by the RMSA model fits to S(Q)
except for the sample at a nominal volume fraction φ of 0.001 and a nominal salt
concentration of 10µM. For this sampleφ shows a strong deviation and overestimates
the concentration of the colloidal particles by a factor of two, which might be
explained by the fact that the extracted hydrodynamic function is close to unity for
all momentum transfers as shown in fig. 5.32.
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The values obtained for the effective charge Zeff are also in reasonably good
agreement with the values obtained by a fit to the static structure factor except for
the high salt systems at φnom = 0.002 and for the samples of φnom = 0.012.

5.3.2. δγ-expansion

Since the pairwise-additive approximation, taking into account only two-body
hydrodynamic interactions, is not able to describe the hydrodynamic behavior of the
more concentrated colloidal systems, the fluctuation- or δγ-expansion was used. This
theory, developed originally by Beenakker and Mazur for hard-sphere suspensions,
takes into account many-body interactions between the colloidal particles (Beenakker
and Mazur, 1983, 1984). The resulting hydrodynamic function depends on the radius
R, volume fraction φ and the static structure factor of the sample and is given by
eq. (3.46) and eq. (3.47).

To adopt the δγ-expansion for an electrostatically interacting system, the measured
static structure factors S(Q) were used as inputs for the δγ-expansion to zeroth order.
The resulting hydrodynamic functions are shown in fig. 5.40 to fig. 5.44 for system
PMMA542 and fig. 5.45 to fig. 5.47 for system PMMA1117.

For nominal volume fractions 0.001 ≤ φnom ≤ 0.012 of system PMMA542 the
calculated hydrodynamic functions by the δγ-expansion coincide nicely with the
extracted hydrodynamic functions of the system. The position and the magnitude of
the peak of the hydrodynamic function H(Qmax) as well as the overall shape is well
captured by the δγ-expansion.

The samples with higher nominal volume fractions 0.08 ≤ φnom ≤ 0.33 show
some discrepancies between the calculated model hydrodynamic functions of the
δγ-expansion and the measured hydrodynamic functions. The overall shape and
position of the peak of the hydrodynamic function is in reasonable agreement
with the extracted experimental values. For the samples measured with a nominal
volume fractions φnom of 0.08 to 0.16, (shown in fig. 5.45 and fig. 5.46) the measured
hydrodynamic functions displays higher values as predicted by the δγ-expansion.
Just for the nominal volume fraction φnom = 0.33 (fig. 5.47) the predicted and the
measured hydrodynamic functions show approximately the same magnitude.

5.3.3. Small-Q approximation of the δγ-expansion

In order to describe the observed deviations of the measured hydrodynamic function
H(Q) from the δγ-expansion, the fluctuation-expansion is approximated for small
momentum transfers Q yielding eq. (3.48) (Riese et al., 2000b), where the prefactor
D̃ = µ∗6πηR is depending on the viscosity η of the suspending medium and on the

prefactor µ∗ of the effective mobility tensor µ̃ef fij in the small-Q limit.
By using the small-Q approximation of the δγ-expansion it is possible to charac-

terize the measured hydrodynamic functions using the prefactor D̃ as the only fit
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Figure 5.40.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φnom of 0.001. The electrolyte concen-
trations of the samples are 0µM and 10µM. The solid green line shows the predicted
δγ-expansion using the measured static structure factor S(Q) as input, the red line shows
a fit to the hydrodynamic function using the small-Q approximation of the δγ-expansion.

parameter. The results of a fit of eq. (3.48) to the extracted hydrodynamic functions
is shown in fig. 5.40 to fig. 5.47 by the solid red lines.

For nominal volume fractions ranging from 0.001 ≤ φnom ≤ 0.012 the fits of the
small-Q approximation are in good agreement with the hydrodynamic functions
over the whole Q range.

The agreement of the small-Q approximation with the measured hydrodynamic
functions is also good for the samples of nominal volume fractions 0.08 ≤ φnom ≤
0.33. The magnitude as well as the position of the peak of the hydrodynamic func-
tions is well described by the small-Q approximation of the δγ-expansion. At a
nominal volume fraction φnom = 0.33 deviations from the measured hydrodynamic
functions can be seen for small Q-values.
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Figure 5.41.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA542 for a nominal volume fraction φnom of 0.002. The electrolyte concentra-
tions of the samples are 0µM, 10µM, 50µM and 100µM. The solid green line shows the
predicted δγ-expansion using the measured static structure factor S(Q) as input, the red
line shows a fit to the hydrodynamic function using the small-Q approximation of the
δγ-expansion.

The D̃HS of a hard-sphere system with short-range interparticle interactions can
be calculated using eq. (3.49) and is solely depending on the volume fraction of
the colloidal particles. The resulting D̃ values and the ratio of D̃HS /D̃ are given in
table 5.7.

The results for D̃ display an decrease with increasing volume fraction φ over the
whole range of samples, indicating thus a decrease of the particle mobility with
increasing volume fraction.
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Figure 5.42.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φnom of 0.004. The electrolyte concentra-
tions of the samples are 5µM, 10µM and 50µM. The solid green line shows the predicted
δγ-expansion using the measured static structure factor S(Q) as input, the red line shows
a fit to the hydrodynamic function using the small-Q approximation of the δγ-expansion.
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Table 5.7.: Nominal volume fraction φnom, electrolyte concentration, peak value of the
hydrodynamic function H(Qmax), volume fraction determined by the RMSA fit to the
static structure factors S(Q), D̃ from a fit of the small-Q approximation to the data and
ratio D̃HS /D̃.

φnom Salt [µM] φ H(Qmax) D̃ D̃HS /D̃

0.001 0 0.0010 1.05 0.99 1.01
0.001 10 0.0009 1.02 1.00 1.00
0.002 0 0.0027 1.11 0.96 1.03
0.002 10 0.0021 1.04 1.00 0.99
0.002 50 0.0016 1.02 0.99 1.01
0.002 100 0.0019 1.01 1.01 0.98
0.004 5 0.0052 1.12 0.99 1.00
0.004 10 0.0049 1.05 1.00 0.98
0.004 50 0.0031 1.02 0.99 1.00
0.008 5 0.0089 1.15 0.98 0.99
0.008 10 0.0115 1.14 0.98 1.00
0.008 20 0.0084 1.10 0.98 1.00
0.008 50 0.0055 1.03 0.99 0.99
0.012 10 0.0137 1.19 0.97 1.00
0.012 20 0.0107 1.12 0.97 1.00
0.012 50 0.0118 1.05 0.94 1.03
0.08 0 0.113 1.03 0.91 0.81
0.08 50 0.078 0.93 0.87 0.92
0.08 200 0.075 0.97 0.93 0.87
0.08 500 0.081 0.97 0.91 0.87
0.08 2000 0.094 0.97 0.90 0.88
0.08 5000 0.090 0.97 0.92 0.85
0.16 0 0.174 0.91 0.77 0.80
0.16 10 0.163 0.91 0.77 0.83
0.16 35 0.161 0.90 0.77 0.84
0.16 100 0.163 0.87 0.74 0.86
0.16 500 0.165 0.88 0.76 0.83
0.16 1000 0.164 0.88 0.78 0.82
0.16 2000 0.162 0.87 0.77 0.83
0.16 3500 0.144 0.83 0.74 0.90
0.16 5000 0.141 0.82 0.75 0.91
0.33 100 0.376 0.61 0.32 1.09
0.33 200 0.376 0.61 0.37 0.88
0.33 350 0.356 0.59 0.39 0.90
0.33 3500 0.324 0.54 0.39 1.03
0.33 5000 0.326 0.54 0.44 0.97
0.33 10000 0.285 0.53 0.39 1.09
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Figure 5.43.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA542 for a nominal volume fraction φnom of 0.008. The electrolyte concentra-
tions of the samples are 5µM, 10µM, 20µM and 50µM. The solid green line shows the
predicted δγ-expansion using the measured static structure factor S(Q) as input, the red
line shows a fit to the hydrodynamic function using the small-Q approximation of the
δγ-expansion.
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Figure 5.44.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA542 for a nominal volume fraction φnom of 0.012. The electrolyte concen-
trations of the samples are 10µM, 20µM and 50µM. The solid green line shows the
predicted δγ-expansion using the measured static structure factor S(Q) as input, the red
line shows a fit to the hydrodynamic function using the small-Q approximation of the
δγ-expansion.





5.3. Hydrodynamic interactions of colloidal suspensions

0 . 0

0 . 5

1 . 0

1 . 5

0 . 0

0 . 5

1 . 0

1 . 5

0 . 0 0 1 0 . 0 0 2 0 . 0 0 30 . 0

0 . 5

1 . 0

1 . 5

0 . 0 0 1 0 . 0 0 2 0 . 0 0 3

 

 

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

H(
Q)  

 

P M M A 1 1 1 7
φn o m  =  0 . 0 8
2 0 0 0  µM  s a l t

P M M A 1 1 1 7
φn o m  =  0 . 0 8
5 0 0 0  µM  s a l t

P M M A 1 1 1 7
φn o m  =  0 . 0 8
5 0 0  µM  s a l t

P M M A 1 1 1 7
φn o m  =  0 . 0 8
2 0 0  µM  s a l t

P M M A 1 1 1 7
φn o m  =  0 . 0 8
0  µM  s a l t

 

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

P M M A 1 1 1 7
φn o m  =  0 . 0 8
5 0  µM  s a l t

 

 

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

H(
Q)

 

 

 

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

 

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

H(
Q)

Q  [ Å - 1 ]

  

 

 H ( Q )
 δγ- e x p a n s i o n
 S m a l l - Q  a p p r o x i m a t i o n

Q  [ Å - 1 ]
Figure 5.45.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of

system PMMA1117 for a nominal volume fraction φnom of 0.08. The electrolyte concentra-
tions of the samples are 0µM, 50µM, 200µM, 500µM, 2000µM and 5000µM. The solid
green line shows the predicted δγ-expansion using the measured static structure factor
S(Q) as input, the red line shows a fit to the hydrodynamic function using the small-Q
approximation of the δγ-expansion.
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Figure 5.46.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of sys-
tem PMMA1117 for a nominal volume fraction φnom of 0.16. The electrolyte concentrations
of the samples are 0µM, 10µM, 35µM, 100µM, 500µM, 1000µM, 2000µM, 3500µM and
5000µM. The solid green line shows the predicted δγ-expansion using the measured
static structure factor S(Q) as input, the red line shows a fit to the hydrodynamic function
using the small-Q approximation of the δγ-expansion.
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Figure 5.47.: Hydrodynamic functions H(Q) as a function of momentum transfer Q of
system PMMA1117 for a nominal volume fraction φnom of 0.33. The electrolyte concentra-
tions of the samples are 100µM, 200µM, 350µM, 3500µM, 5000µM and 10000µM. The
solid green line shows the predicted δγ-expansion using the measured static structure
factor S(Q) as input, the red line shows a fit to the hydrodynamic function using the
small-Q approximation of the δγ-expansion.
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5.3.4. Discussion of the hydrodynamic behavior

The extracted hydrodynamic functions are all peaked functions which display
maxima H(Qmax) at the position of the mean particle distance. This feature is more
pronounced for stronger direct particle interactions corresponding to higher peak
values of the static structure factor. The maximum of the extracted hydrodynamic
functions H(Qmax) as a function of the volume fraction φ is plotted in fig. 5.48.
The behavior of a hard-sphere case is well approximated by (Banchio et al., 1999)

H(Qmax) = 1− 1.35φ. (5.7)

This expression was derived using a Verlet-Weiss correction to the static structure fac-
tor of a hard-sphere system. An upper limit for the peak value of the hydrodynamic
function H(Qmax) was obtained by using the δγ-expansion with help of a RMSA
static structure factor S(Q) as input as proposed by Gapinski et al. (Gapinski et al.,
2010). The static structure factors S(Q) were calculated for different volume fractions
φ using the respective parameters for the two systems assuming a deionized solution
of colloidal particles (added electrolyte concentration = 0µM). The effective charge
was varied until a peak value of the static structure factor S(Qmax) ≈ 2.85 was found,
the cutoff value for the onset of crystallization. The resulting upper limits for both
systems are very similar for all volume fractions so that just the average upper limit
for both systems is displayed in fig. 5.48.

The peak values of the hydrodynamic functions H(Qmax) are within the limits of
the theoretical maxima of the hydrodynamic functions given by the two limiting
cases. Just for the highest nominal volume fraction φnom = 0.33 one sample with an
electrolyte concentration of 10000µM is below the theoretically expected value of a
hard sphere system. A strong slowing down of the colloidal systems below the hard
sphere behavior, as previously found by Robert et al. (Robert et al., 2008) and Grübel
et al. (Grübel et al., 2000), is not observed for the samples probed here.

The peak value of the hydrodynamic function H(Qmax) depends on the volume
fraction.H(Qmax) is larger than unity for small volume fractions (φ < 0.02) indicating
an increase of the particle mobility due to the indirect hydrodynamic interactions.
For samples with a volume fraction φ > 0.06 the maximum of the hydrodynamic
function is smaller than unity, indicative of a slowing down of the system. This holds
except for one deionised sample at a nominal volume fraction φnom = 0.08.

In order to illustrate the H(Qmax) dependence on the electrolyte concentration,
the results for both systems PMMA542 and PMMA1117 have been sorted according
to the salt concentration as shown in fig. 5.49.

The volume fractions φ have been binned for this figure: All samples of one
nominal volume fraction have been set to the mean volume fraction φmean of this
set of samples, the error bars were calculated using the difference between this new
φmean and the volume fraction φ given by the RMSA model fit to the static structure
factor.
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Figure 5.48.: Peak value of the hydrodynamic function H(Qmax) as a function of the volume
fraction φ. Filled symbols refer to system PMMA1117, open symbols refer to system
PMMA542. The solid line indicates the maximum peak value of H(Qmax) calculated with
the δγ-expansion using a calculated RMSA structure factor as input, the dashed line is
the predicted behavior of a hard sphere system (eq. (5.7)).

A clear dependence on the electrolyte concentration in the suspension can be
seen for the whole range of concentrations The maximum of the hydrodynamic
function H(Qmax) decreases with increasing electrolyte concentration which is the
result of the enhanced screening of the direct particle interactions. The samples
(for a given mean volume fraction φmean) which have the lowest concentration of
electrolyte are closest to the theoretical maximum peak values of H(Q): The samples
with the highest salt concentration are closest to the hard-sphere prediction. Just in
one case for a nominal volume fraction of φ = 0.08 one sample shows a lower peak
value H(Qmax) than samples at the same nominal volume fraction and higher salt
concentration.

The trend towards hard sphere behavior for increased screening of the electrostati-
cal interactions is expected by accelerated Stokesian dynamics simulations (Banchio
et al., 2006) and has been also found experimentally by Gapinski et al (Gapinski et al.,
2009) for a volume fraction range 0.07 ≤ φ ≤ 0.14. The evolution of the peak value of
the hydrodynamic function as a function of the electrolyte concentration is further
illustrated in fig. 5.50.

By comparing the sample series of the two systems PMMA1117 and PMMA542
individually, the decrease of the peak values H(Qmax) seems to be more pronounced
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Figure 5.49.: Peak value of the hydrodynamic functionsH(Qmax) as a function of the volume
fraction φ. The different colors and symbols indicate the amount of electrolyte. Top:
Samples of a nominal volume fraction 0.001 ≤ φnom ≤ 0.012. Bottom: Samples of a
nominal volume fraction 0.08 ≤ φnom ≤ 0.33. Filled symbols refer to system PMMA1117,
open symbols refer to system PMMA542. The solid lines are the maximum peak values of
H(Qmax), the dashed line is the predicted behavior of a hard sphere system (eq. (5.7)).
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Figure 5.50.: Peak value of the hydrodynamic functions H(Qmax) as a function of the elec-
trolyte concentration for eight volume fractions. Filled symbols refer to system PMMA1117,
open symbols refer to system PMMA542. The dashed lines indicates H(Qmax) = 1. The
samples at a nominal salt concentration of 0µM have been plotted at 0.1µM, correspond-
ing to the self dissociation of the dispersion medium water at a neutral pH-value of
7.

for sample series with higher volume fractions exhibiting stronger direct interparticle
interactions when compared to less concentrated sample series of the same system.
This effect has also been reported by Gapinski et al. (Gapinski et al., 2009).

The hydrodynamic functions H(Q) for φ < 0.02 could be modeled quantitatively
within the pairwise-additive approximation (see fig. 5.32 to fig. 5.39). Already the
calculated hydrodynamic functions showed a good agreement with the data, a fit of
the pairwise-additive approximation to the data gave only minor deviations from the
system parameters. This model, which takes into account only two body-interactions,
fails however for samples of higher volume fractions, where many-body interactions
play a significant role in the hydrodynamic behavior of the colloidal systems.

To model these many-body interactions the δγ-expansion to zeroth order (Beenakker
and Mazur, 1983, 1984) using the static parameters of the samples as input param-
eters were calculated, which resulted in a good agreement of the model with the
hydrodynamic functions H(Q) for φ < 0.02 (displayed in fig. 5.40 to fig. 5.44).
However, at intermediate volume fractions 0.05 < φ < 0.2 the δγ-expansion, while
qualitatively reflecting the shape and the peak position of the measured hydrody-
namic functions, underestimates the values of H(Q) (fig. 5.45 and fig. 5.46). Only for
the highest volume fraction (φnom = 0.33), displayed in fig. 5.47, the deviations of
the calculated δγ-expansion from the measured H(Q) are decreasing again.
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Figure 5.51.: D̃ as a function of the volume fraction φ. The solid line is the prediction for
a hard sphere system. Filled symbols refer to system PMMA1117, open symbols refer to
system PMMA542.

A quantitative description of the samples at higher volume fractions was achieved
with the δγ-expansion in the small-Q approximation resulting in a prefactor D̃ which
depends on the mobility tensors of the colloidal particles (the fits are displayed in
fig. 5.40 to fig. 5.47). The D̃ values for the measured samples and D̃HS corresponding
to the calculated prefactor of a hard sphere system are shown in fig. 5.51 as a function
of the volume fraction φ .

As can be seen in fig. 5.51, D̃ is decreasing with increasing volume fraction φ for all
sample concentrations. The D̃ values for the samples with a volume fraction φ < 0.02
and φ > 0.25 are consistent with the theoretical values for a hard sphere system. For
the intermediate volume fractions from 0.05 < φ < 0.2, the values of D̃ are higher
than expected for a hard sphere system, indicating thus an increased short-time
self-diffusion due to hydrodynamic interactions. For the most concentrated samples
φnom = 0.33 the ratio D̃HS /D̃ is again close to unity.

The enhanced mobility in the volume fraction range of 0.05 < φ < 0.2 might be
interpreted as a coexistence of far-field and near-field effects. In a hard sphere system,
where the hydrodynamic interactions lead to a hindrance of the dynamics, near-field
hydrodynamic interactions acting as lubrication forces are of great importance due
to the high probability of pairs of nearly touching particles. In contrast, near-field
effects are relatively unimportant in dilute systems of electrostatically interacting
particles. In these systems, the probability to find two spheres in close proximity
is close to zero due to the strong interaction potential. In these systems far-field





5.3. Hydrodynamic interactions of colloidal suspensions

effects play a dominant role - at a length scale of 2π/Qmax the motion of neighboring
particles leads to backflow effect of displaced fluid, leading to an enhancement of the
motion of the particles at Qmax (Nägele and Baur, 1997; Banchio et al., 1999). While
the far-field effects dominate the hydrodynamic behavior of the systems of volume
fractions φ < 0.02, the near-field effects are prominent at high volume fractions
φ = 0.3− 0.35. In the intermediate volume fraction range both effects play a role and
the extracted hydrodynamic functions show a slowing down (H(Q) < 1) while the
motions of the system are still considerably faster than the hard sphere behavior.

In general, the peak values of the hydrodynamic functions H(Qmax) fall into the
theoretical range spanned by the hydrodynamic behavior of hard spheres on the one
hand and the theoretical maximum of the hydrodynamic functions calculated by the
δγ-expansion with an RMSA input on the other hand.
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6. Summary and Outlook

Highly-charged poly-acrylate nano-particles have been synthesized using emul-
sion polymerization and two sample series PMMA542 and PMMA1117 with different
particle radii were studied. These systems interact via long-range electrostatic inter-
actions, which can be screened by the addition of salt to the suspensions. The static
and dynamic behavior of these colloidal samples was studied by scattering methods
using either visible light or X-rays. Ultra-dilute samples as well as eight different
concentrations with different amounts of electrolyte were further investigated at
nominal volume fractions ranging from 0.001 ≤ φnom ≤ 0.33.

Static small angle X-ray scattering (SAXS) data on ultra-dilute samples were
analyzed yielding a mean radius of 542 Å and 1117 Å respectively with a low polydis-
persity ∆R/R0 of 0.12 and 0.07 for system PMMA542 and PMMA1117, respectively.

At higher concentrations interparticle interactions were observed showing an
ordering of the particles for volume fractions from 0.001 to 0.33. The peak of the
static structure factor shifted with increasing volume fraction to higher wavevector
transfers Q, corresponding to a smaller interparticle spacing. With increasing elec-
trolyte concentration (for the same nominal volume fraction), the position of the
S(Q)-peak shifted to higher momentum transfers Q, indicating a relative relaxation
of the particle positions. The same trend was observed for the extrapolated values of
S(0), which can be related to the isothermal compressibility of the samples: S(0) is de-
creasing with increasing volume fraction for both systems PMMA542 and PMMA1117
and increasing with increasing salt concentration, displaying thus a higher com-
pressibility of the interparticle spacing at lower volume fractions and higher salt
concentrations. This observation was further confirmed by the peak values of the
static structure factor S(Qmax), which increased with increasing volume fraction.
In addition, S(Qmax) displayed a clear decrease with increasing salt concentration
(for samples of the same nominal volume fraction), as expected for an enhanced
screening of the direct particle interactions with increasing salt concentration.

The extracted static structure factors S(Q) were modeled using the rescaled mean
spherical approximation (RMSA) giving information on the volume fraction and the
effective charge Zeff of the colloidal particles. The calculated RMSA models agree
well with the measured static structure factors, characterizing not only the first
peak of S(Q) but also the subsequent maxima. The obtained values for the particle
concentration were in good agreement with the nominal volume fractions of the
samples. The resulting effective charges of the samples increased with increasing
electrolyte concentrations. This effect is more pronounced for higher salt concen-
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trations. This observation may be interpreted as the transition from a counterion
dominated screening towards a salt ion dominated screening.

Free diffusion of the colloidal particles was studied by dynamic light scattering
and X-ray photon correlation spectroscopy yielding Stokes-Einstein diffusion for
the two systems. The hydrodynamic radius was slightly bigger than the geometrical
radius as extracted by a fit of a polydisperse sphere form factor to the static data. This
is usually interpreted by the presence of (temporarily) attached solvent molecules
to the surface of the colloidal particles. The effect is more pronounced for system
PMMA542. The characterization of the dynamics of samples with direct interparticle
interactions allowed the determination of the Q dependent diffusion coefficient
D(Q). The normalized inverse diffusion coefficient D0/D(Q) displays a maximum at
momentum transfersQ corresponding to the position of S(Qmax). This peak indicates
a slowing down of the sample dynamics on length scales corresponding to the mean
particle spacing as expected by theory. The observation that the dynamic structure
factor D0/D(Q) , S(Q) already points out the presence of indirect hydrodynamic
interactions in addition to direct particle interactions.

At high momentum transfers Q and thus small length scales, the short-time self
diffusion coefficient D(Q→∞) =Ds,short was measured. The normalized short-time
self diffusion coefficients Ds,short/D0 displays a decrease with increasing particle
concentration, giving additional evidence of the presence of hydrodynamic interac-
tions in the samples. The collective short-time diffusion coefficients DC =D(Q→ 0)
normalized to the free diffusion coefficient D0 was always found to be greater than
unity, indicating enhanced collective dynamics as expected by theory. The collective
dynamics were furthermore more enhanced in samples with higher direct interparti-
cle interactions, since DC increased with increasing volume fraction and decreasing
salt concentration.

The peak values of the dynamic structure factor increased with increasing volume
fraction and decreasing salt concentration and displayed thus also a strong depen-
dence on the strength of the direct interparticle interactions manifested in higher
values of S(Qmax). The highest peak values were measured at the highest nominal
volume fraction φnom = 0.33.

The extracted hydrodynamic functions are peaked functions and showed thus
a dependence on the length scale. The maxima of the hydrodynamic functions
H(Qmax) were located at momentum transfers corresponding to the average particle
spacing and were more pronounced in the case of stronger direct particle interactions
(larger peak values of the static structure factor). The maximum of the hydrodynamic
function H(Qmax) was depending on the volume fraction. H(Qmax) is larger than
unity for small volume fractions (φ < 0.02) indicating an increase of the mobility
of the colloidal particles due to the indirect hydrodynamic interactions on these
length scales. For samples of volume fraction φ > 0.06 the maximum of the hy-
drodynamic function was smaller than unity. This slowing down of the particle
dynamics was more pronounced in more concentrated systems. In addition, the
extracted hydrodynamic functions showed a clear dependence on the electrolyte
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concentration in the suspension. With increasing salt concentration, accompanied by
an enhanced screening of the direct particle interactions, H(Qmax) decreased. This
evolution towards hard sphere behavior for increased screening of the electrostatical
interactions is expected by theory. In general, the peak values of the hydrodynamic
functions H(Qmax) fall between the theoretical limits given by the hydrodynamic
behavior of a hard sphere system on the one hand and the theoretical maximum
expected for a low salt system of highly charged spherical particles on the other
hand.

The hydrodynamic functions for samples with a volume fraction φ < 0.02 (dis-
playing H(Qmax) > 1) could be described within the truncated pairwise additive
approximation, which takes into account only two body-interactions terms. The
speeding up of the particles mobility at momentum transfers corresponding to the
mean interparticle spacing can be attributed to the dominant role of far-field effects
in the hydrodynamic interactions. These are usually interpreted as a backflow of
displaced solvent by the motions of neighboring particles on length scales of the
mean interparticle spacing which leads to the observed increased mobility of the
particles.

The pairwise additive approximation failed to describe the measured hydro-
dynamic functions H(Q) at higher volume fractions, φ > 0.06, where many-body
interactions play a significant role for the hydrodynamic behavior of the colloidal
systems. A quantitative description of the samples at these higher volume fractions
was achieved by using the δγ-expansion in the small-Q approximation, yielding
a mobility that is slightly higher than expected for a pure hard-sphere system in
the volume fraction range 0.06 ≤ φ ≤ 0.18. This might be an indication for the
coexistence of far-field and near-field effects of the hydrodynamic interactions. For
the most concentrated analyzed samples φnom = 0.33, the δγ-expansion yields a
good description of the data. At elevated volume fractions it is thus possible to screen
direct long-range interparticle interaction via the addition of electrolyte and the
resulting hydrodynamics is the one of a hard-sphere system, where near-field effects
of the hydrodynamic interactions acting as lubrication forces are dominant.

The possibility to tune the direct particle interactions offers the potential to
investigate the transition to the glassy or crystalline state. While colloidal systems of
high monodispersity often evolve into a crystalline state with strong direct particle
interactions, more polydisperse systems can evolve into a glassy state, where the
dynamics of the systems are strongly slowed down. These quasi-static samples offer
the opportunity to investigate the eventual existence of local symmetries in such
disordered systems via the analysis of higher order correlation functions as proposed
in the X-ray cross correlation analysis concept (Wochner et al., 2009). A Free Electron
Laser (FEL) would offer the possibility to investigate these local symmetries not
only in the glassy, but also in the fluid phase over the whole range of colloidal
concentrations.
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A. δγ-expansion

A theoretical description of the hydrodynamic functions has been derived by Beenaker
and Mazur (Beenakker and Mazur, 1983, 1984) who followed an approach were the
mobility tensors µij(rN ), which depend on the configuration of all particles rN , were
calculated – the δγ-expansion. The mobility tensors µij(rN ) relate the velocity vi of
a particle to the forces Fj exerted on each particle by the suspending fluid

vi = −
N∑
j=1

µijFj . (A.1)

While in the case of a dilute suspension the problem can be approximated by
only taking into account two-particle hydrodynamic interactions, for concentrated
suspensions also many-body interactions have to be taken into account. By a re-
summation of all hydrodynamic contributions through an expansion of correlation
functions of increasing order, Beenaker and Mazur derived an expression in terms of
an ensemble average of the spatial configurations of the particles.

The resulting hydrodynamic function depends on the radius R, the volume fraction
φ and the static structure factor S(Q) of the sample and is given by

H(Q) =
Ds(φ)
D0

+
3

2π

∫ ∞
0

d(RQ′)
(

sin(RQ′)
RQ′

)2

[1 +φSγ0(RQ′)]−1

×
∫ 1

−1
dx (1− x2)(S |Q −Q′ | − 1)

(A.2)

where the integration variable x is defined as x = cos(Q̂,Q′).

The function Sγ0 depends on the volume fraction via the scalars γ (l)
0 and is given

by

Sγ0(x) = C(x) +
∞∑
p=2

9
4
πεp

(
γ

(p)
0
n/V

− 1

)
(2p − 1)2x−3J2

p−1/2(x) (A.3)

where Jn is the Bessel function of order n and εp is

εp =

{
5/9 p = 2
1 p > 2.

(A.4)
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The function C(x) is given by

C(x) =
9
2

(
Si(2x)
x

+
cos(2x)

2x2 +
sin(2x)

4x3 − sin2(x)
x4 − 4[sin(x)− xcos(x)]2

x6

)
(A.5)

where Si(x) is the sine integral

Si(x) =
∫ x

0
dt

sin(t)
t

. (A.6)

The quantities γ (l)
0 can be calculated from

γ
(m)
0 −γ (m)

0 φ(2m− 1)
∫ ∞

0

dk
k
J2
m−1/2(k)Sγ0(k)[1 +φSγ0(k)]−1 =

n
V

m = 2,3, . . .
(A.7)

To obtain a closed set of equations, the difference γ (l)
0 −n/V is negelcted for l > 5.

The first part of eq. (A.2) is the normalized short-time self diffusion coefficient
Ds(φ)/D0, which is the Q-independent self-part of the hydrodynamic function and
is given by

Ds(φ)
D0

=
2
π

∫ ∞
0

dx
(

sin(x)
x

)2

[1 +φSγ0(x)]−1. (A.8)
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B. RMSA results assuming a

constant effective charge

The rescaled mean spherical approximation was fitted to the static structure factors
assuming a constant effective charge Zeff of 496e− and 221e− per colloid for system
PMMA542 and PMMA1117 respectively. The other input parameters for the model
were the temperature T = 293.15K, the dielectric permittivity of the dispersion
medium εr = 80.1 and the mean radius of the particles with 542 Å and 1117 Å for
system PMMA542 and PMMA1117 respectively. By keeping the effective charge of
the colloidal particles constant, the RMSA model yields the strength of the interac-
tion potential depending on the amount of added ions screening the interparticle
interactions. The obtained parameters by the model fits are displayed in table B.1.

The obtained volume fractions φ are in good agreement with the nominal values
for all volume fractions.

For the smaller volume fractions φ < 0.02 the extracted salt concentrations are
in good agreement with the nominal salt values. For the samples at higher volume
fractions φ > 0.06, the salt concentrations obtained by the RMSA model show dis-
crepancies to the nominal concentrations of monovalent salt ions. While the fits
display the overall feature of an increasing salt concentration in all of the three
concentration series, the absolute values differ. While the model overestimates the
electrolyte concentration at small nominal salt concentrations, it underestimates the
salt concentration at high nominal concentrations of added electrolyte (> 500µM).

115



B. RMSA results assuming a constant effective charge

Table B.1.: System, nominal salt concentration, nominal volume fraction φnom, position
Qmax and height of the peak of the static structure factor S(Qmax) and parameters yielded
by a fit of the RMSA model to the static structure factors S(Q). Model parameters were
the temperature T = 293.15K and the dielectric permittivity of the dispersion medium
εr = 80.1. For system PMMA542 the mean radius of the particles was R0 = 542 Å and the
effective charge Zeff = 496e−, for system PMMA1117 the mean radius of the particles was
R0 = 1117 Å and the effective charge Zeff = 221e−.

System φnom Saltnom [µM] Qmax [Å−1] S(Qmax) φ Salt [µM]

PMMA542 0.001 0 0.0009 1.35 0.0010 4.1
PMMA542 0.001 10 0.0012 1.06 0.0009 18.6
PMMA542 0.002 0 0.0011 2.09 0.0027 2.4
PMMA542 0.002 10 0.0011 1.26 0.0021 10.6
PMMA542 0.002 50 0.0015 1.05 0.0016 40.6
PMMA542 0.002 100 0.0019 1.03 0.0019 78.7
PMMA542 0.004 5 0.0014 1.89 0.0052 6.3
PMMA542 0.004 10 0.0016 1.31 0.0049 18.9
PMMA542 0.004 50 0.0017 1.08 0.0031 45.7
PMMA542 0.008 5 0.0017 2.31 0.0089 5.2
PMMA542 0.008 10 0.0018 2.11 0.0115 10.0
PMMA542 0.008 20 0.0017 1.52 0.0084 19.5
PMMA542 0.008 50 0.0017 1.16 0.0055 39.3
PMMA542 0.012 10 0.0019 2.69 0.0137 4.7
PMMA542 0.012 20 0.0018 1.76 0.0107 16.4
PMMA542 0.012 50 0.0021 1.26 0.0118 54.4
PMMA1117 0.08 0 0.00213 1.28 0.113 89
PMMA1117 0.08 50 0.00236 1.10 0.078 343
PMMA1117 0.08 200 0.00236 1.09 0.075 332
PMMA1117 0.08 500 0.00236 1.10 0.081 356
PMMA1117 0.08 2000 0.00252 1.09 0.094 617
PMMA1117 0.08 5000 0.00263 1.09 0.090 1400
PMMA1117 0.16 0 0.00244 1.32 0.174 202
PMMA1117 0.16 10 0.00244 1.30 0.163 185
PMMA1117 0.16 35 0.00244 1.29 0.161 180
PMMA1117 0.16 100 0.00244 1.29 0.163 207
PMMA1117 0.16 500 0.00244 1.29 0.165 213
PMMA1117 0.16 1000 0.00248 1.26 0.164 301
PMMA1117 0.16 2000 0.00248 1.25 0.162 313
PMMA1117 0.16 3500 0.00255 1.17 0.144 457
PMMA1117 0.16 5000 0.00255 1.16 0.141 555
PMMA1117 0.33 100 0.00276 2.89 0.376 19
PMMA1117 0.33 200 0.00280 2.57 0.376 62
PMMA1117 0.33 350 0.00280 2.15 0.356 143
PMMA1117 0.33 3500 0.00280 1.70 0.324 399
PMMA1117 0.33 5000 0.00280 1.50 0.326 354
PMMA1117 0.33 10000 0.00280 1.40 0.285 1030
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