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Kurzfassung

Design und Optimierung des Gitter Monochromators für Soft
X-Ray Self-Seeding FELs
Freie Elektronen Laser (FEL) sind bahnbrechende Lichtquellen der vierten Generation. FELs
für den Röntgenspektralbereich (XFEL) ermöglichen völlig neuartige Experimente, von de-
nen die meisten Naturwissenschaften profitieren können. Selbstverstärkte spontane Emission
(Self-amplified spontaneous emission, SASE) ist der Standart Arbeitsmodus eines FELs. Der
Strahlungspuls ensteht durch spontane Emission aus dem Elektronenbündel und wird verstärkt
bis Sättigung eintritt. Die SASE FEL Strahlung hat üblichweise mangelhafte Eigenschaften
bezüglich ihrer spektralen Bandbreit oder longitudinalen Kohärenz. Self-seeding ist ein vielver-
sprechender Ansatz die SASE Bandbreite von XFELs signifikant zur schmälern und tranfor-
mationslimitierte Pulse zu erzeugen. Self-seeding wird durch die Monochromatisierung des
Strahlungspulses während der FEL Verstärkung erreicht.

Nach der erfolgreich demonstrierten self-seeding Konfiguration im harten Röntgenspektrum
an der Linear Coherent Light Source (LCLS), soll nun auch das self-seeding für den weichen
Röntgenspektralbereich erweitert werden.

Hier werden numerische Methoden vorgestellt, um die Monochromatorleistung für das soft
X-ray self-seeding (SXRSS) zu simulieren. Sie erlauben eine Anfang bis Ende self-seeding
FEL Simulation. Basierend auf dieser Methode wurde die Leistung des LCLC self-seeding
Betriebs in Einklang mit den Experiment simuliert. Weiterhin wurde das bei SLAC entwickelte
SXRSS Monochromatordesign für die SASE3 Undulator Station des European XFEL.

Das optische System wurde mit Hilfe von Gausstrahlen Optik, wellenoptischer Propagation
und Ray Tracing behandelt um die Leistung des Monochromator zu beschreiben. Wellenop-
tische Analysen berücksichtigen die Wellenfront kohärenter FEL Quellen, Aberrationen dritter
Ordnung und Höhenfehler jedes optischen Elements.

Das Monchromatordesign basiert auf einen toroidialen Gitter mit variablem Linienabstand
bei einem festen Eintrittswinkel ohne Eintrittsspalt. Im optimierte Spektralbereich zwischen
300− 1200 eV erreicht man Auflösungen von über 7000. Der vorgeschlagene Monochromator
besteht aus drei Spiegeln und dem Gitter. Weiterhin wird die Anfang zu Ende Simulation als
Fallstudie der self-seeded European XFEL Leistungsfähigkeit vorgestellt. Sie zeigt Laserpuls
Leistungen im TW-Bereich und einer im Vergleich zu konventionellen SASE Pulsen 80-fach
höheren spektralen Leistungsdichte.
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Abstract

The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a break-
through. FELs operating in the X-ray range (XFEL) allow one to carry out completely new ex-
periments that probably most of the natural sciences would benefit. Self-amplified spontaneous
emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a sponta-
neous emission from the electron bunch and is being amplified during an FEL process until it
reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral
bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach
to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transform-
limited pulses. It is achieved by the radiation pulse monochromatization in the middle of an
FEL amplification process.

Following the successful demonstration of the self-seeding setup in the hard X-ray range at
the LCLS, there is a need for a self-seeding extension into the soft X-ray range.

Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator
performance is presented. It allows one to perform start-to-end self-seeded FEL simulations
along with (in our case) GENESIS simulation code. Based on this method, the performance of
the LCLS self-seeded operation was simulated showing a good agreement with an experiment.
Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type
undulator beamline at the European XFEL.

The optical system was studied using Gaussian beam optics, wave optics propagation
method and ray tracing to evaluate the performance of the monochromator itself. Wave optics
analysis takes into account the actual beam wavefront of the radiation from the coherent FEL
source, third order aberrations and height errors from each optical element.

The monochromator design is based on a toroidal VLS grating working at a fixed incidence
angle mounting without both entrance and exit slits. It is optimized for the spectral range
of 300 − 1200 eV providing resolving power above 7000. The proposed monochromator is
composed of three mirrors and the grating. Start-to-end simulation as a case study of the self-
seeded European XFEL performance with a proposed SXRSS monochromator is presented. It
shows that the laser pulse power reaches a TW-level with its spectral density about eighty times
higher than that of the conventional SASE pulse at saturation.
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Chapter 1

Introduction

Current Chapter presents the brief introduction to the Free Electron Lasers: some milestones
of history of the development and working principle of FEL (Section 1.1). In Section 1.2 SASE
and Seeded operation regimes of the laser are outlined. Seeding and self-seeding techniques
and their comparison are presented.

Chapter 2 contains the theory, required to solve tasks of designing the monochromator and
study its performance at the self-seeding operation regime. Wave optics approach is presented in
Section 2.1, where the spatial-frequency transfer function and the Gaussian optics relations are
derived. In the following chapters the Gaussian optics approach is used for the analytical design
of the self-seeding monochromator, while the spatial frequency transfer function is necessary
in order to perform the numerical simulations of both the monochromator performance and the
self-seeded Free Electron laser operation. Propagation of the radiation in an inhomogeneous
medium with a split-step method is discussed in Section 2.2. It was used to prove the applica-
bility of the phase-shifter approach to simulate height errors of optical components. A way to
describe a variable space grating with a toroidal shape is discussed in Section 2.3. Analytical
derivation of resolution of such grating (Section 2.4) is presented and resolution demands of the
self-seeding monochromator are discussed. In Section 2.5 a way to simulate surface errors of
reflective optical components is described.

In Chapter 3 the self-seeding scheme installed at the LCLS free electron laser is de-
scribed (Sec. 3.1) and studied. Monochromator is analyzed analytically (Sec. 3.2) and numer-
ically: two numerical simulation approaches were developed to simulate the monochromator
performance (Sec 3.3). They are compared with each other and with an experiment (Sec. 3.4).
Self-seeding commissioning challenges at the LCLS are presented as well in Sec 3.5.

Chapter 4 is devoted to the self seeding monochromator perspectives at the European
XFEL. Facility and SASE beamline features are presented in Sections 4.1 and 4.2 respectively.
In the latter section an attention to both the source specification of the SASE3 beamline and its
response to the reimaging were paid. In Section 4.3 the proposed Self-seeding monochromator
design is described in details. Its performance is calculated both analytically - with Gaussian
optics (Sec. 4.4.1) and numerically (with both ray tracing (Sec. 4.4.2) and wave optics meth-
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ods). With a start-to-end simulation the technical feasibility of the self-seeding scheme for the
European XFEL is shown in Section 4.4.3. Grating heat load and single shot damage, which
are of the great importance for the high repetition rate European XFEL facility, are discussed in
Section 4.6.

1.1 X-Ray Free Electron Lasers

1.1.1 Brief history of the FEL technology development

The Free electron lasing concept was proposed by John M.J. Madey [1] in 1971 and confirmed
experimentally later in 1977 as a working FEL oscillator [2]. Theoretical work on the possibil-
ity of a single pass gain FEL was developed by N. Kroll and W. Mc Mullin in 1978 [3].

In 1979 M. Kondratenko and E. Saldin proposed [4, 5] to use the FEL collective instability
to produce optical radiation using a single pass amplifier starting from shot noise. The first
proposal to use this instability in a single pass amplifier starting from shot noise for a soft X-ray
FEL was published by Ya. S. Drebenev, A. M. Kondratenko and E. Saldin [6]. The term “Self

amplified spontaneous emission (SASE)” appeared in 1986 work by R. Bonifacio and others [7]
and was accepted by the physics community.

First experimental results of the high-gain linear regime of the SASE FEL were obtained
in 1997 [8]. In 1998 statistical properties of the High-gain FEL were predicted by E.Saldin,
E.Schneidmiller and M.Yurkov [9].

Saturation of a SASE FEL in visible region (390 nm) was reached in 2000 in Argonne
National Laboratory (ANL) [10], and in 2001 saturation was achieved at 98 nm in Tesla Test
Facility (TTF) in DESY [11]. Angstrom-wavelength lasing was reached in 2009 in LCLS set-
ting up a new milestone in FEL wavelength range [12, 13]. In 2011 sub-angstrom lasing was
reported in SACLA facility [14].

1.1.2 The principle of Free Electron Laser operation

First of all, FEL is a vacuum tube device. The essential difference between conventional lasers
and the FEL is that laser medium is the bunch of unbounded electrons in vacuum. In conven-
tional LASER (Light Amplification by Stimulated Emission of Radiation), the amplification
comes from the stimulated emission of electrons bound to atoms at a certain resonant frequen-
cies forming energy levels. In the FEL the electrons are responsible for the light emission as
well, but via the synchrotron radiation mechanism. This way, the FEL was developed from the
synchrotron technology, being referred to as a light source of the 4-th generation.

Charged particle radiates energy in the form of electromagnetic radiation when it is being
accelerated. Electromagnetic energy may be effectively extracted from the kinetic energy of
a relativistic electron beam by propagating it along the axis of a periodic lattice of alternat-
ing magnetic dipolar fields, known as an “undulator” [15]. This forces the beam to undulate
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transversely, thus causing the electrons to emit electromagnetic radiation [16]. When electron
propagates in an undulator, a co-propagating radiation will always move ahead of it. Based on
wave interference considerations, only those wavelengths that propagate ahead of the electron
by an integer number of wavelengths in one undulator period will constructively interfere (see
Figs. 1.1. Time required for an electron propagating in an undulator with mean speed ῡe to

z

v
x

v
x

v
x

v
x

E
x

E
x

Electron trajectory

Light wave

Figure 1.1: Condition for sustained energy transfer from electron to light wave in an undulator: The light
wave has to slip forward by per half-period of the electron trajectory. Adapted from [17]

travel one undulator period λu is t = λu/ῡe. Interference takes place when the radiation wave-
front at a wavelength λn travels the distance λu+nλn, during the time t = (λu+nλn)/c, where
c is the speed of light and n is an integer number. By equating the relations tor t the resonant
wavelength is obtained:

λn =
λu
n

(
1− ῡe/c

ῡe/c

)
≃ λu

2nγ2
(1 +K2) , (1.1)

where ῡe = c
(
1− 1+K2

2γ2

)
, K is the RMS of undulator parameter, dependent on the undulator

period λu and the magnetic field B.

K =
λueB

2
√
2πmec

. (1.2)

The electron charge is e mass - me and γ is a Lorenz factor. Equation (1.1) is called the undu-

lator equation, and it shows that the resonance can take place at harmonics n of the resonant
wavelength, which is called fundamental at n = 1.

Electron bunch with N ≫ 1 electrons in an undulator emits the power [16]:

P ∼

∣∣∣∣∣
N∑
j=1

Eje
iϕj

∣∣∣∣∣
2

=
N∑
j=1

E2
j +

∣∣∣∣∣
N∑
j=1

∑
k ̸=j

EjEke
i(ϕj+ϕk)

∣∣∣∣∣ , (1.3)

where ϕi are relative phases of the emitted radiation electric fields Ej . For a system with
uncorrelated phases, the second sum of ∼ N2 terms tends to destructively interfere. In this case
a radiation of the “spontaneous” source is observed with a power emitted approximately equal
to the sum of powers from N independently emitting electrons, which is valid for undulator
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radiation in synchrotron. In case when electron phases are correlated, i.e. periodically bunched
at resonant wavelength, the coherent term ∼ N2 predominates, giving a major increase of
power, observed in an FEL.

Bunching of the electron beam appears and is preserved due to a positive feedback process -
intrinsic property of a free electron laser. Lorentz equation describes the motion of the electrons
in combined undulator and radiation fields, while Maxwell’s wave equation provides the electric
field of radiation generated by a current from electrons transverse motion. Following equations
are self-consistently coupled.

dυ⃗

dt
= − e

γm

(
E⃗ + υ⃗ × B⃗

)
∇2E⃗ − 1

c2
∂2E⃗

∂t2
=

4π

c2
∂j⃗

∂t
, (1.4)

This self-consistency leads to the positive feedback - FEL collective instability. Electrons in the
beam interact with emitted light and are grouped in bunches by resulting periodical pondero-
motive potential. Electrons become strongly bunched, what results in domination of N2 term
in Equation. (1.3). This way we can conclude that a resonant interaction in an undulator causes
an energy modulation of the electron beam, leading to a density modulation of the latter (an
undulator magnetic field causes dispersion). The resulting density modulation (e.g. bunching)
causes even higher intensity of the radiation since electrons radiate coherently within a bunches.
It leads to even stronger resonant interaction.

Another very useful way do describe FEL is to treat it as an electromagnetic radiation am-

plifier. An electron beam is an active medium of the amplifier and an undulator is an interaction
region. If the length of an electron beam is finite (which is the case for FELs), then amplifier
is parametric, e.g. it’s properties change with time, so electron beam length defines pulse dura-
tion. The key specification of the FEL amplifier is the Pierce parameter ρ [18]. It is a measure of
radiation-electron interaction efficiency, ranging typically around 10−4 < ρ < 10−3 for XFELs
and is inversely proportional to undulator periods on the gain length Nlg

ρ ∼ λu
lg
, (1.5)

Also FEL gain is dependent on input signal wavelength, with its maximum at the resonant one.
Frequency response bandwidth is defined by ρ parameter as well:

∆λ

λ
∼ ρ (1.6)

As any amplifier, it has linear and non-linear operation regime. Variation of input signal
power affects amplified signal proportionally when linearly amplified. Non-linear amplifica-
tion regime is called saturation. If we provide a monochromatic electromagnetic radiation as
an input signal with an effective power P0 and observe the amplified output P in a linear am-
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plification regime we can measure the gain of an amplifier. Amplified power grows along an
undulator length z exponentially.

P = P0 exp
2z

lg
, (1.7)

where lg is defined as a gain length.
The energy efficiency of an FEL at the saturation is quite low, as it is roughly given by ρ

parameter in the X-ray region. Once the fractional energy loss of the electron beam becomes
comparable to the FEL parameter ρ, most of the electrons fall out of the resonant bandwidth
of the radiation, leading to the FEL saturation. Nevertheless, one can then gradually change
(taper) the undulator strength parameter (parameter K) to maintain the resonant condition as
the electron beam loses energy:

1 +K(z)2

2γ(z)2
= constant. (1.8)

The strong radiation field produces a ponderomotive well which is deep enough to trap the
electrons. The radiation produced by these captured particles increases the depth of the pon-
deromotive well, so that electrons are effectively decelerated, leading to growth of the radiated
power. Tapering thus results in a much higher output power compared to the case of a uniform
undulator. This way one can extract an additional energy from the electron beam after reaching
the saturation [19, 20]. A further increase in power is achievable by starting the FEL process
from the monochromatic seed, rather than from shot noise. The reason is the higher degree of
coherence of the radiation in the seed case, thus involving, with tapering, a larger portion of the
bunch in the energy-wavelength synchronism [21].

1.2 FEL operation regimes

1.2.1 Self Amplified Spontaneous Emission (SASE)

In the FEL amplifier there is an intrinsic noise. When the electron passes the undulator, it
interacts with the electromagnetic field produced by other electrons and also emits radiation.
If we consider the microstructure of the electron current, we can find that electrons enter the
undulator randomly in time. This noise is caused by quantum nature of electron emission from
the gun - shot noise. Its spectral power is frequency independent, which means the noise is
white.

If we assume there are no neither initial radiation overlapped with an electron beam nor
the externally imposed electron beam modulations (which is the nominal case for convenient
XFELs), the high gain amplification starts from the shot noise in electron beam or, in other
words, spontaneous undulator radiation. FEL instability leads to bunching of an initially nearly
uniformly distributed electron beam thanks to a Poisson distribution of electrons in the beam.
This process is called Self-Amplified Spontaneous Emission (SASE) [4, 7]. During the SASE
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Figure 1.2: Simulation of microbunching by Sven Reiche, SLS (code GENESIS)

Cooperation 

length
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Figure 1.3: Presence of numerous independent longitudinal modes is a natural property of SASE FEL
operation

FEL operation regime, the radiation and bunching develop at different parts of the electron beam
simultaneously and independently (see Figs 1.2 and 1.3). Due to radiation slippage electrons
communicate with ones in front only if their separation is smaller than the total slippage. This
length is known as cooperation or coherence length [22]:

lc =
λ

4πρ
∼ lg

2γ2
(1.9)

Electrons emit radiation coherently within these regions, but phase differences of bunching
between any two of them are independent, thus uniformly distributed from 0 to 2π. It results as
a numerous longitudinal modes of the radiation in both time and frequency domains.

In other words, SASE is the operation of the FEL amplifier, when it’s intrinsic noise is being
amplified. After amplification power is distributed within FEL gain curve with bandwidth ρ
given by Equation (1.6). An effective power of shot noise is given by [23, 24]

Pn ≃ ρ2ω0γmc
2/2 . (1.10)

FEL radiation produced with a SASE mechanism reveals shot-to-shot fluctuations of the
pulse energy when operates in a linear amplification regime. A probability density distribution
of the SASE FEL pulse energy after the monochromator is described rather well by a gamma
probability density function [9]. In a linear amplification regime it tends towards the negative
exponential distribution.
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Figure 1.4: Layout of the HHG experiment. The C-band linac modules are the two last units of the SCSS
whole accelerator. Reprinted from the original article [36].

1.2.2 Seeding schemes

In fact, the main interest in FEL, as well as in other lasers is to obtain the high-intensity radi-
ation with controlled wavelength, pulse length and intensity within narrow spectral bandwidth.
As mentioned before, FEL amplification line (or gain curve) is defined by Pierce parameter
(Eq. 1.5), and in SASE FEL all frequencies present in noise are amplified within this ∼ 10−3

bandwidth. In terms of time domain, electron bunch length is usually much larger than the
cooperation length. This way SASE radiation of XFELs has relatively poor temporal (i.e. lon-
gitudinal) coherence. A significant increase in power and spectral density is achievable by start-
ing the FEL process from a monochromatic seed rather than from shot noise [20, 21, 25–30].
The most used and acknowledged seeding techniques are outlined below, as direct seeding with
radiation (HHG), seeding by electron beam manipulation (HGHG, EEHG), and self-seeding.
Essentially they are all focused on increasing cooperation length. There are other methods to
increase that time based on SASE FEL - with introduction of additional phase-shifts along un-
dulator (iSASE [31], HB-SASE [32]), or amplifying SASE at combination of fundamental and
n-th harmonic FEL (pSASE [33]). Extensive overview of seeding methods can be found in [23],
and following subsection is based on that reference, including [34] and [35].

Direct seeding

Seeding FEL with radiation, that has the same wavelength as the resonance wavelength of the
FEL and the power level above shot noise is called “direct seeding”. High-order Harmonic
Generation (HHG) seeding was described in [36] and essentially lies in direct seeing the FEL
with radiation at it’s fundamental harmonic (see Fig. 1.4). Seed radiation at the resonant wave-
length is obtained via interaction of infra-red Ti:sapphire laser with gas [37]. A successful
experiment has been carried out at the SPring-8 Compact SASE Source (SCSS) test acceler-
ator at 160 nm FEL fundamental harmonic [38]. 38 nm wavelength seeding was reached at
FLASH [39].
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Figure 1.5: Configuration for the HGHG FEL experiment as carried out at the Accelerator Test Facility
at Brookhaven National Laboratory. The 40-MeV electron beam had a current of 120 A (0.8 nC in
6 ps) with a normalized emittance of 5 mm-mrad. L, length; l, wavelength; Ppk, peak power; Bw, peak
undulator magnetic field; λw, undulator period. Reprinted from the original article [41].

Seeding by electron beam manipulation

FEL can be seeded by introduction of a coherent bunching to the electron beam at the resonant
wavelength. One of the methods is a so-called High-Gain Harmonic Generation (HGHG)
process [40–43]. Working principle of HGHG is well described in [42]: “A small energy mod-
ulation is imposed on the electron beam by its interaction with a seed laser in a short undulator
(the modulator) tuned to the seed frequency ω; the resulting energy modulation is then converted
into a longitudinal density modulation as the electron beam traverses a magnetic dispersion; in
a second undulator (the radiator), which is tuned to the n-th harmonic of the seed frequency, the
microbunched electron beam emits coherent radiation at the harmonic frequency nω, which is
then amplified in the radiator until saturation is reached. The output property of the HGHG FEL
is a direct map of the seed laser’s attributes which can have a high degree of temporal coherence.
The additional benefits derived from this configuration are superior stability and control of the
central wavelength, narrower bandwidth, and much smaller energy fluctuations than SASE.”

Bunching created in the modulator at n-th harmonics is given by bn = exp [−(nσγ/∆γ)
2/2]

and it drops quickly when the induced energy modulation ∆γ gets smaller than the product of
intrinsic energy spread σγ and harmonic number n. At higher harmonics a very large energy
modulation needs to be applied to the electron beam in order to obtain bunching above shot noise
level. A high stability HGHG seeding was demonstrated at FERMI lasing at 32 nm wavelength
in 2012 [44].

Another method to create density modulation of the electron beam is the Echo-Enabled
Harmonic Generation (EEHG), proposed in [45] and extensively studied in [46]. It is similar
to HGHG, but uses two modulators with two chicanes in order to introduce electron density
modulation at significantly higher frequencies.In modulators the electron beam interacts with
two laser pulses which may have the same or different frequencies.

After the magnetic chicane of the first modulation stage, phase space of the beam is strongly
filamented. After the consecutive energy modulation by the second laser in modulator 2 and
passing through the second chicane it exhibits a numerous peaks in the electron density. Fourier
spectrum of this energy density extends to very high frequencies.
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Figure 1.6: Schematic of the EEHG FEL. The beam
energy is modulated in the first undulator (modu-
lator 1) tuned at frequency ω1 due to the interac-
tion with the first laser beam. After passing through
the first dispersion section, the beam energy is then
modulated in the second undulator (modulator 2)
tuned at frequency ω2 due to the interaction with the
second laser beam. The beam passes through the
second dispersion section and emits radiation in the
last undulator (radiator). Reprinted from the original
article [46].

(E
-E

0
)/

E

z/c

Figure 1.7: Longitudinal phase space dis-
tribution in a EEHG after the first undula-
tor (top left), the first dispersive element
(top right), the second undulator (bottom
left), and the second dispersive element
(bottom right). Horizontal axes in the
plots are dimentionless coordinates along
the beam, and the vertical axes are rela-
tive electron energies. Reprinted from the
original article [45].

Two proof-of-principle experiments of the EEHG technique have been carried out at SDUV-
FEL [47] and NLCTA [48] independently.

Self-seeding

One of main problems with seeding FEL externally along with obtaining short-wavelength seed
pulses is the temporal synchronization of the FEL electron bunch. This problem is automatically
solved if the same electron bunch both creates seeding radiation and amplifies the seed.

This scheme is referred to as a “self-seeding” and was proposed in [49] in soft X-ray and
in the hard X-ray regimes [50–52]. Such scheme was successfully realized in LCLS in both
wavelength ranges [53, 54].

In general, a self-seeding setup consists of two undulators separated by a photon monochro-
mator and an electron bypass, normally a four-dipole chicane (see Figures 1.8).

The two undulators are resonant at the same radiation wavelength. The SASE radiation is
generated by the first undulator before reaching saturation. Then it passes through the narrow-
band monochromator. In case of the SXRSS the key element of the monochromator is a grating
(Fig. 1.8), while in HXRSS, FEL pulse is monochromatized with a single diamond crystal
(Figs. 1.9,1.10). In both cases pulses close to transform-limited are created, which are used as a
coherent seed in the second undulator. Chromatic dispersion effect in the bypass chicane smears
out the microbunching in the electron bunch produced by the SASE lasing in the first undulator.
The electrons and the monochromatized photon beam are recombined at the entrance of the
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Figure 1.8: The principal scheme of the self-seeded FEL with a monochromator. Reprinted from the
original article [49].

Figure 1.9: Hard x-ray FEL self-seeding
scheme uses x rays from the first half of the
magnetic undulator system U1 to seed the elec-
tron bunch in the second half U2 via a single
crystal x-ray monochromator. The monochro-
mator produces the delayed monochromatic
seed under the forward Bragg diffraction
(FBD) conditions. Reprinted from [55].

Figure 1.10: Wake monochromator based on a
0.1 mm-thick diamond crystal at 8 keV for self-
seeded operation of the LCLS baseline hard
X-ray FEL. Reprinted from the original arti-
cle [51].

second undulator, and radiation is amplified by the electron bunch until saturation is reached.
The required seed power at the beginning of the second undulator must dominate over the shot
noise power within the FEL gain curve. Shot noise effective power is in order of a kW in the
soft X-ray range.

The comparison of the seeding methods is outlined in Table 1.1
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Method Direct seeding
(HHG)

HGHG or EEHG Self-Seeding

Wavelength limit >20 nm >1 nm >0.1 Å
Synchronization
requirement

Good Good None

Brilliance Similar to SASE Better than SASE Much better than
SASE

Pulse length ∼10 fs 10-100 fs As electron bunch
Signal to back-
ground

Poor Moderate Good

Complexity Moderate High Moderate
Electron beam re-
quirements

Arrival time, energy
stability

Arrival time, energy
stability, energy
spread

Energy stability

Undulator length Less than SASE
FEL

Comparable with
SASE FEL

50% longer than
SASE FEL

Table 1.1: Comparison of seeding methods. Reprinted from [34]
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Chapter 2

Theoretical background for designing a
grating monochromator

2.1 Wave optics approach

Wave optics is a very promising straightforward approach to characterize the propagation of
the FEL pulse through the optical system of the monochromator. It is good for both analytical
calculations and numerical simulations. In this section we derive the spatial frequency transfer
function for wave propagation and the Fresnel diffraction formula commonly used in Fourier
optics. Then the propagation of a Gaussian beam through ideal lenses and mirrors spaced apart
from each other is analyzed.

2.1.1 Wave equation

The fundamental theory of electromagnetic fields is based on the Maxwell equations. In differ-
ential form and in the space-time domain, these can be written as1:

∇⃗ · E⃗ = 4πρ , (2.1a)

∇⃗ · B⃗ = 0 , (2.1b)

∇⃗ × E⃗ = −1

c

∂B⃗

∂t
, (2.1c)

∇⃗ × B⃗ =
4π

c
j⃗ +

1

c

∂E⃗

∂t
. (2.1d)

Here j⃗ is the current density and ρ denotes the electric charge density. E⃗ and B⃗ are the
electric and magnetic fields in the time domain.

Maxwell equations can be manipulated mathematically in many ways in order to yield de-
rived equations more suitable for certain applications. For example, from Maxwell equations

1For reasons of simplicity, in this thesis we will work with the Gaussian unit system
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we can obtain an equation which depends only on the electric field vector E⃗ by taking curl of
both sides Eq. 2.1c and implying Eq. 2.1d:

∇⃗ × (∇⃗ × E⃗) = −4π

c2
∂j⃗

∂t
− 1

c2
∂2E⃗

∂t2
. (2.2)

the ∇⃗ × (∇⃗ × (·)) operator is not very easy to use, so that it is advantageous to use the vector
identity

∇⃗ × (∇⃗ × E⃗) = ∇⃗(∇⃗ · E⃗)−∇2E⃗ , (2.3)

which holds if we use a cartesian coordinate system. Exploiting Eq. (2.3) and incorporating
Eq. (2.1a), we rewrite Eq. (2.2) as

∇2E⃗ − 1

c2
∂2E⃗

∂t2
=

4π

c2
∂j⃗

∂t
+ 4π∇⃗ρ . (2.4)

This is the wave equation in the most general form. It separates terms which are present in
free-space (on the left hand side) from terms related with the propagation through the dielectric

medium (on the right-hand side).

2.1.2 Spatial frequency transfer function

We will start with the basic treatment of radiation: propagation in a free space.
Let us consider the inhomogeneous wave equation for the electric field in the space-time

domain (Eq. (2.4)). In space free of all sources and medium (⃗j = 0, ρ = 0) it reduces to the
homogeneous wave equation:

∇2E⃗ − 1

c2
∂2E⃗

∂t2
= 0 . (2.5)

Here c indicates the speed of light in vacuum, t is the time and r⃗ is a 3D spatial vector identified
by cartesian coordinates x, y, z. As a consequence, the following equation for the field ⃗̄E(ω, r⃗)

in the space-frequency domain holds:

∇2 ⃗̄E + k20
⃗̄E = 0 , (2.6)

where k0 = ω/c. Eq. (2.6) is the well-known Helmholtz equation. Here ⃗̄E(ω, r⃗) is a temporal
Fourier transform of the electric field. The definitions of the Fourier transform and inverse
Fourier transform for a function ⃗̄E(ω, x, y) are defined below.

⃗̄E(ω, x, y) =

∫ ∞

−∞
E⃗(t, x, y) exp[iωt]dt ,

E⃗(t, x, y) =
1

2π

∫ ∞

−∞

⃗̄E(ω, x, y) exp[−iωt]dω . (2.7)
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Similarly, the 2D spatial Fourier transform of ⃗̄E(x, y, z, ω), with respect to the two trans-
verse coordinates x and y will be written as

⃗̂
E(ω, kx, ky, z) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy ⃗̄E(ω, x, y) exp[ikxx+ ikyy] , (2.8)

so that

⃗̄E(ω, x, y, z) =
1

4π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

⃗̂
E(ω, kx, ky) exp[−ikxx− ikyy] . (2.9)

With the help of this transformation the Helmholtz equation, which is a partial differential
equation in three dimensions, reduces to a one-dimensional ordinary differential equation for
the spectral amplitude ⃗̂

E(ω, kx, ky, z). In fact, by taking the 2D Fourier transform of Eq. (2.6),
we have

d2
⃗̂
E

dz2
+ k20

(
1− k2x

k0
−
k2y
k20

)
⃗̂
E = 0 . (2.10)

We then obtain straightforwardly

⃗̂
E(ω, kx, ky, z) =

⃗̂
E(ω, kx, ky, 0) exp

[
ik0z

√
1− k2x

k20
−
k2y
k20

]
, (2.11)

where Ê(ω, kx, ky, z) is the output field and Ê(ω, kx, ky, 0) is the input field. Further on, when
the temporal frequency ω will be fixed, we will not always include it into the argument of the
field amplitude and simply write e.g. Ê(kx, ky, z). It is natural to define the spatial frequency
response of the system as

H(kx, ky, z) =
⃗̂
E(kx, ky, z)

⃗̂
E(kx, ky, 0)

= exp

[
ik0z

√
1− k2x

k20
−
k2y
k20

]
. (2.12)

Here the ratio between vectors has to be interpreted component by component. H is the spatial
frequency transfer function related with light propagation through a distance z in free space. If
we assume that k2x+ k2y ≪ k20 , meaning that the bandwidth of the angular spectrum of the beam
is small we have

⃗̂
E(kx, ky, z) =

⃗̂
E(kx, ky, 0)×H(kx, ky, z) ,

H(kx, ky, z) ≃ exp[ik0z] exp

[
− iz

2k0
(k2x + k2y)

]
. (2.13)

In other words, we enforce the paraxial approximation. In order to obtain the output field
distribution in the space-frequency domain ⃗̄E(x, y, z) at the distance z away from the input
position at z = 0, we simply take the inverse 2D Fourier transform of ⃗̂E(kx, ky, z) with Eq. (2.9).
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2.1.3 Gaussian beam optics

In order to present a convenient analytical representation of a wave optics calculation method
it is convenient to specialize our discussion considering a model Gaussian beam. In order to
simplify the notation, we will consider a monochromatic radiation at frequency ω in the space-
frequency domain only. Let us consider a Gaussian intensity distribution with initially (at z = 0)
plane wavefront in two transverse dimensions.

Ē(x, y, 0) = A exp

[
−x

2 + y2

w2
0

]
, (2.14)

where w0 is the transverse waist size of the Gaussian beam. The spatial Fourier transform of Ē
is given by

Ê(kx, ky, 0) = Aπw2
0 exp

[
−w

2
0

4

(
k2x + k2y

)]
. (2.15)

Using Eq. (2.13), after propagation over a distance z one obtains

Ê(kx, ky, z) = Ê(kx, ky, 0)H(kx, ky, z)

= Aπw2
0 exp[ik0z] exp

[
− iz

2k0

(
k2x + k2y

)]
exp

[
−w

2
0

4

(
k2x + k2y

)]
= Aπw2

0 exp[ik0z] exp

[
− iq

2k0
(k2x + k2y)

]
, (2.16)

where q is the so-called q-parameter of the Gaussian beam

q = z − izR , (2.17)

where zR defines the Rayleigh range of the Gaussian beam

zR = k0w
2
0/2 . (2.18)

The spatial profile of the beam after propagation through a distance z can be found by taking
the inverse Fourier transform of Eq. (2.16):

Ē(x, y, z) = −iAk0w
2
0

2q
exp[ik0z] exp

[
i
k0
2q

(x2 + y2)

]
, (2.19)

which can also be written as

Ē(x, y, z) = A
w0

w(z)
exp[iϕ(z) + ik0z]

× exp

[
−(x2 + y2)

w2(z)

]
exp

[
i
k0

2R(z)
(x2 + y2)

]
, (2.20)
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Figure 2.1: Wavefront of the Gaussian beam in far zone becomes spherical with the center at the waist

where

w2(z) = w2
0

[
1 +

(
z

zR

)2
]
, (2.21)

R(z) =
1

z

(
z2 + z2R

)
, (2.22)

and

ϕ(z) = − arctan

[
z

zR

]
, (2.23)

with zR defined in Eq. (2.18). Note that the width w(z) of the Gaussian beam is a monotonically
increasing function of the propagation distance z, and reaches

√
2 times its original width, w0,

at z = zR. The radius of curvature R(z) of the wavefront is initially infinite (see Fig. 2.1),
corresponding to an initially plane wavefront, but it reaches a minimum value of 2zR at z = zR,
before starting to increase again. The slowly varying phase ϕ(z), monotonically varies from 0

at z = 0 to −π/2 as z −→ ∞, assuming the value π/4 at z = zR. At large z divergence angle
θ is

θ(z) =
w(z)

z
≃ 2

k0w0

. (2.24)

Note that the q-parameter contains all information about the Gaussian, namely its curvature
R(z) and its waist w(z). The knowledge of the transformation of q as a function of z fully
characterizes the behavior of the Gaussian beam.

An optical system would usually comprise lenses or mirrors spaced apart from each other.
While Gaussian beam propagation in between optical elements can be tracked using the trans-
lation law above, Eq. (2.19), we still need to discuss the law for the transformation of q by a
lens. The transparency function for a thin converging lens is of the form
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Figure 2.2: Gaussian beam transformation by a lens. A Gaussian beam with plane wavefront and waist
w1, located at a distance d1 from the thin lens with focal length f is transformed to a Gaussian beam of
plane wavefront and waist w2, located at a distance d2, according to Eq. (2.30).

Tf (x, y) = exp

[
− ik0
2f

(x2 + y2)

]
. (2.25)

The optical field immediately behind a thin lens at position z is related to that immediately
before a lens by

Ēafter lens(x, y, z) = Tf (x, y)Ēbefore lens(x, y, z)

= −iAk0w
2
0

2q
exp[ik0z] exp

[
i
k0
2q

(x2 + y2)

]
exp

[
− ik0
2f

(x2 + y2)

]
= −iAk0w

2
0

2q
exp[ik0z] exp

[
i
k0
2ql

(x2 + y2)

]
(2.26)

where Ēbefore lens(x, y, z) is given by Eq. (2.16) and ql, the transformed of q, is defined by

1

ql
=

1

q
− 1

f
. (2.27)

As an example of an application we analyze the focusing of a Gaussian beam by a converging
lens. We assume that a Gaussian beam with a plane wavefront and the waist w1, is located at a
distance d1 from a thin lens with the focal length f . After the propagation through a distance d2
behind the lens, it is transformed to a beam with a plane wavefront and the waist w2, Fig. 2.2.
Using Eq. (2.17) and Eq. (2.27) we can find the transformed q-parameter at a distance d2. From
Eq. (2.17), immediately in front of the lens we have

q(d1) = q(0) + d1 , (2.28)

Immediately behind the lens, the q-parameter is transformed to ql according to Eq. (2.17):
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1

ql
=

1

q(0) + d1
− 1

f
. (2.29)

Finally, using again Eq. (2.17), we find the q-parameter after propagation through a distance d2
behind the lens:

q(d2 + d1) = ql + d2 . (2.30)

The Gaussian beam is said to be focused at the point z = d2 + d1 where q(d2 + d1) becomes
purely imaginary again, meaning that the Gaussian beam has a planar wavefront. Thus, calcu-
lating explicitly q(d2 + d1), setting q(d2 + d1) = ik0w

2
2/2, and equating imaginary parts we

obtain

w2
2 =

w2
1f

2

[(d1 − f)2 + (k0w2
1/2)

2]
. (2.31)

Equating the real part of q(d2 + d1) to zero one obtains instead

d2 = f + f 2 (d1 − f)

[(d1 − f)2 + (k0w2
1/2)

2]
. (2.32)

Note that the Gaussian beam does not exactly focus at the geometrical back focus of the lens.
Instead, the focus is shifted closer to the lens. In other words the “lensmaker” equation valid in
geometrical optics

1

d1
+

1

d2
=

1

f
(2.33)

is modified to

1

d1 + z2R/(d1 − f)
+

1

d2
=

1

f
, (2.34)

which is just another way of writing Eq. (2.32) and is well known from a long time (see
e.g. [56]).

2.2 Beam propagation in inhomogeneous medium

In section 2.1, we considered the problem of wave propagation in a homogeneous medium,
namely vacuum, characterized by constant permittivity, ϵ = 1. We specialized our investiga-
tions to the case of a Gaussian beam and, additionally, we analyzed propagation of a Gaussian
beam through a thin lens using the wave optics formalism. The description of wave propagation
through a thin lenses does not require the use of wave propagation theory in inhomogeneous
media. In fact, as we have seen, thin lenses contribute to the wave propagation via a phase mul-
tiplication. In other words, if we consider a wave field in front of and immediately behind a lens,
we find that the phase of the wave has changed, while its amplitude has remained practically
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the same. A mirror may be equivalently modeled by a similar phase transformation.
Of course, strictly speaking, the polarization of the light has an influence on its reflection

properties from the lenses. However, if we are willing to disregard such reflection phenomena,
we are justified to use the scalar wave equation to describe the wave optics of lenses, and to
model a thin lens as described before. In this section we will study, at variance, wave propa-
gation in a medium that is inhomogeneous. Therefore, we will be in position to numerically
analyze such effects as reflection of X-rays from gratings or mirrors.

2.2.1 Wave equation for inhomogeneous medium

Let’s consider Eq. (2.4) once again for the case of a dielectric medium.

∇2E⃗ − 1

c2
∂2E⃗

∂t2
=

4π

c2
∂j⃗

∂t
+ 4π∇⃗ρ . (2.4 revisited)

Charge density ρ can be seperated into two terms ρ = ρbound+ρfree, where ρbound represents
charge density caused by polarization of medium, and ρfree is free charges density. The latter
term in our case equals zero. Polarization of dielectric is related to the electric field E⃗ according
to P⃗ = χE⃗, where χ is the electric susceptibility. It induces polarization currents (for time-
dependent polarization) and bound charge density (for inhomogeneous polarization) within a
medium in the following way:

∇⃗P⃗ = −ρbound , (2.35a)

∂P⃗

∂t
= j⃗ . (2.35b)

Incorporating Eq. (2.35a) to the first Maxwell’s equation (2.1a), we obtain

∇⃗(E⃗ + 4πP⃗ ) = 4πρfree = 0 . (2.36)

Value in brackets is convenient to redefine as the electric displacement field

D⃗ = E⃗ + 4πP⃗ = (1 + 4πχ)E⃗ = ϵE⃗ , (2.37)

where ϵ denotes the permittivity of medium. This way source (right-hand side) terms in wave
equation 2.4 can be rewritten via polarization induced in the medium:

4π

c2
∂j⃗

∂t
=
4π

c2
∂2P⃗

∂t2
=

(ϵ− 1)

c2
∂2E⃗

∂t2
, (2.38a)

4π∇⃗ρ =− 4π∇⃗(∇⃗P⃗ ) = ∇⃗

[
∇⃗D⃗

ϵ

]
= ∇⃗

[
∇⃗D⃗
ϵ

+ D⃗∇⃗1

ϵ

]
= −∇(D⃗

∇ϵ
ϵ2

) = −∇⃗

[
E⃗
∇⃗ϵ
ϵ

]
.

(2.38b)
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Consequently we obtain the wave equation

∇2E⃗ − 1

c2
∂2E⃗

∂t2
=

(ϵ− 1)

c2
∂2E⃗

∂t2
− ∇⃗

[
E⃗
∇⃗ϵ
ϵ

]
, (2.39)

By taking temporal Fourier transform of Eq. (2.39) we obtain

c2∇2 ⃗̄E + ω2 ⃗̄E = −(ϵ− 1)ω2 ⃗̄E − c2∇⃗

[
⃗̄E
∇⃗ϵ
ϵ

]
, (2.40)

where ⃗̄E = ⃗̄E(ω, x, y, z) is the temporal Fourier transform of an electric field.
In the special case that ϵ is constant in space, the gradient of ϵ vanishes, and Equation (2.40)

assumes the form of the wave equation:

∇2 ⃗̄E + k20ϵ
⃗̄E = 0 , (2.41)

where k0 = ω/c. Qualitatively it is similar to the one for a free space (2.6). In our case
we consider an inhomogeneous medium, so in order for this approximation to be applicable
the gradient term must not introduce important changes to the part of the equation relative to
propagation through the dielectric. In other words, the gradient term should be small compared
with (ϵ−1)

c2
∂2E⃗
∂t2

. The following analysis is very similar to the treatment in [57] and applies only
to order of magnitude estimates and must not be taken to be precise. The first term is of the
order of

(ϵ− 1)

c2
∂2E⃗

∂t2
∼ (ϵ− 1)

ω2

c2
E⃗ . (2.42)

Replacing gradient by a derivative with respect to some direction S we can write second term
with order of magnitude

∇⃗

[
E⃗
∇⃗ϵ
ϵ

]
∼ ∂

∂S

[
E⃗
∇⃗ϵ
ϵ

]
∼ 2π

λ
E⃗
∇ϵ
ϵ

+ E⃗
∂

∂S

∇⃗ϵ
ϵ
. (2.43)

Derivative of the ∇ϵ is beyond our precision. Comparing of the two terms we obtain

R =

∇⃗

[
E⃗
∇⃗ϵ
ϵ

]
(ϵ− 1)

c2
∂2E⃗

∂t2

=

2π

λ
E⃗
∇ϵ
ϵ

(ϵ− 1)
ω2

c2
E⃗

=
1

2π

λ

∆S

ϵ2 − ϵ1
ϵ− 1

∼ ϵ2 − ϵ1
ϵ− 1

, (2.44)

since it is convenient to consider ∆S to be comparable with the wavelength If we want to
neglect the gradient term in Eq. (2.39), we must require R ≪ 1.

For optical wavelengths and in general, in regimes where ϵ is sensibly larger than unity, con-
dition (2.44) will not lead to much different regions of applicability compared to the condition
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proposed in [57]:
R′ ∼ ϵ2 − ϵ1

ϵ
(2.45)

An important difference arises when one considers the x-ray range, where ϵ is very close to
unity. In that case, according to condition (2.44), the wave equation is not applicable in such
situations. However, in that case we can limit ourselves to small angles of incidence. But this
condition may be modified under the additional small angle approximation.

Applying Fourier transform to Eq. (2.4) we obtain the inhomogeneous Helmholtz equation.

c2∇2 ⃗̄E + ω2 ⃗̄E = −4πω2 ⃗̄P − 4πc2∇⃗
(
∇⃗ · ⃗̄P

)
. (2.46)

Here ⃗̄E and ⃗̄P are temporal Fourier transforms of electric field E⃗ and polarization P⃗ .
We now introduce a Green function for the Helmholtz wave equation, G(r⃗, r⃗′), defined as

(
∇2 + k20

)
G(r⃗, r⃗′) = −δ

(
r⃗ − r⃗′

)
. (2.47)

For unbounded space, a Green function describing outgoing waves is given by [57, p. 33]:

G(r⃗, r⃗′) =
1

4π

exp
[
ik0|r⃗ − r⃗′|

]
|r⃗ − r⃗′|

. (2.48)

With the help of Eq. (2.48) we can write a formal solution for the field equation (2.46) as
the convolution of the Green function with right-hand side of equation representing radiation
sources:

⃗̄Ed =
4π

c2

∫
dr⃗′ G(r⃗, r⃗′)

[
ω2 ⃗̄P (r⃗′) + c2∇⃗

(
∇⃗ · ⃗̄P (r⃗′)

)]
, (2.49)

Eq. (2.49) is the integral equivalent of the differential equation (2.46). This integral form is
convenient to overcome the difficulty of comparing the two terms on the right-hand side of
Eq. (2.46). Integrating by parts the term in grad ∇⃗

(
∇⃗ · ⃗̄P (r⃗′)

)
twice2 we obtain

⃗̄Ed = 4πk20

∫
dr⃗′ G(r⃗, r⃗′)

[
⃗̄P (r⃗′)− n⃗(n⃗ · ⃗̄P (r⃗′))

]
, (2.50)

where n⃗ = (r⃗ − r⃗′)/|r⃗ − r⃗′| is the unit vector from the position of the “source” to the observer.
We assume that the condition that observation distance is much larger than radiation wavelength

2Knowing that

∫ ∞

−∞
dr⃗′ G∇⃗P⃗ =�

�>
0

GP⃗ −
∫ ∞

−∞
dr⃗′ P⃗ ∇⃗G

∇⃗G(r⃗, r⃗′) = G(r⃗, r⃗′)
(r⃗ − r⃗′)

|r⃗ − r⃗′|

(
ik0 +

1

|r⃗ − r⃗′|

)
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|r⃗ − r⃗′| ≫ k0 holds for all values of r⃗ occurring in the integral in Eq. (2.50). We thus account
for the radiation field only. Moreover, the edge term in the integration by parts vanishes since
P⃗ = 0 at infinity. We note that the combination of the first and second term in the integrand
obviously exhibits the property that the diffracted field E⃗d is directed transversely with respect
to vector n⃗, as it must be for the radiation field. Furthermore, one can see that only the second
term is responsible for the polarization dependence.

Returning to X-ray optics, we can easily obtain that the second term in the integrand of
Eq. (2.50) includes, in this case, an additional small factor proportional to the the diffraction
angle θd ∼ (n⃗ · P⃗ )/|P⃗ | ≪ 1, which can be neglected under the grazing incidence approxima-
tion. Finally, we conclude that for describing the reflection of a coherent X-ray beam from the
interface between two dielectrics, one can use the wave equation Eq. (2.41) under the grazing
incidence condition with accuracy

θ2i ≪ 1 ,

θ2d ≪ 1 . (2.51)

It is important that, in order for Eq. (2.41) to apply, it is not sufficient that the paraxial approx-
imation for X-ray propagation in vacuum or in a dielectric be satisfied. Additionally, incident
and diffracted angles relative to the interface between dielectric and vacuum must be small
compared to unity, according to condition (2.51).

2.2.2 The split-step beam propagation method

Let us return to the model for inhomogeneous media given by the wave equation, Eq. (2.41).
As discussed in the previous section, it is valid for the X-ray beam reflection from the surface
at a small angle.

∇2 ⃗̄E + k20ϵ
⃗̄E = 0 . (2.41 revisited)

We can always write the radiation beam in the form of it’s amplitude and phase

⃗̄E(x, y, z) = A⃗(x, y, z) exp[ik0z] . (2.52)

By substituting this expression into Eq. (2.41) we derive the following equation for the complex
field envelope:

∇2
⊥A⃗+

∂2A⃗

∂z2
+ 2ik0

∂A⃗

∂z
+ k20δϵA⃗ = 0 , (2.53)

where ∇2
⊥ denotes the transverse Laplacian, and δϵ(x, y, z) ≡ ϵ(x, y, z) − 1. If the electric

field is predominantly propagating along z-direction with an envelope A⃗ which varies slowly
with respect to the wavelength, Eq. (2.52) separates slow from fast varying factors. We actually
assume that A⃗ is a slowly varying function of z in the sense that
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∣∣∣∣∣∂A⃗∂z
∣∣∣∣∣≪ k0A⃗ . (2.54)

This assumption physically means that, within a propagation distance along z of the order of
the wavelength, the change in A⃗ is much smaller than A⃗ itself. With this assumption, Eq. (2.53)
becomes the paraxial Helmholtz equation for A⃗ in inhomogeneous media, which reads

∇2
⊥A⃗+ 2ik0

∂A⃗

∂z
+ k20δϵA⃗ = 0 , (2.55)

A large number of numerical methods can be used for analyzing beam propagation in inhomo-
geneous media. The split-step beam propagation method is an example of such methods. To
understand the idea of this method, we re-write Eq. (2.55) in the operator form [58, 59]

∂A⃗

∂z
= (D + S)A⃗ , (2.56)

where D = −(2ik0)
−1∇2

⊥ is the linear differential operator accounting for diffraction, also
called the diffraction operator, and S = (ik0/2)δϵ is the space-dependent, or inhomogeneous
operator. Both operators act on A⃗ simultaneously, and a solution of Eq. (2.56) in operator form
is given by

A⃗(x, y, z + δz) = exp [(D + S) δz] A⃗(x, y, z) . (2.57)

Note that, in general, D and S do not commute. In order to see this, it is sufficient to consider
the dependence of S on z. As a result, exp [(D + S) δz] ̸= exp[Dδz] exp[Sδz]. More precisely,
for two non-commuting operators D and S , we have

exp[Dδz] exp[Sδz] = exp[(D + S)δz] + [D,S]δz
2

2
+ ... , (2.58)

where [D,S] = DS − SD is the commutator of D and S. However, for an accuracy up to the
first order in δz, we can approximately write:

exp[(D + S)δz] ≃ exp[Dδz] exp[Sδz] . (2.59)

This means that, when the propagation step δz is sufficiently small, the diffraction and the
inhomogeneous operators can be treated independently of each other in Eq. (2.57), and we
obtain

A⃗(x, y, z + δz) = exp[Sδz] exp[Dδz]A⃗(x, y, z) . (2.60)

The role of the operator acting first, exp[Dδz], is better understood in the spectral domain. This
is the propagation operator that takes into account the effect of diffraction between the planes
at position z and z + δz. Propagation is readily handled in the spatial-frequency domain using
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transfer function for propagation given by

HA(kx, ky, δz) =
Â(kx, ky, δz)

Â(kx, ky, 0)
= exp[−i(k2x + k2y)δz/(2k0)] . (2.61)

This is nothing but Eq. (2.13), specialized for the slowly varying envelope of the field.
Hence, the action of the exponential operator exp[Dδz] is carried out in the Fourier domain

using the prescription

exp[Dδz]A⃗(x, y, z) = FT−1
{
exp[−i(k2x + k2y)δz/(2k0)]Â(kx, ky, δz)

}
, (2.62)

where “FT−1” refers to the inverse spatial Fourier transform defined as in Eq. (2.9). The second
operator, exp[Sδz], describes the effect of propagation in the absence of diffraction and in the
presence of medium inhomogeneities, and is well-described in the spatial domain.

Summing up, a prescription for propagating A(x, y, z) along a single step in δz can be
written as

A(x, y, z + δz) = exp[ik0δϵ δz/2]

× FT−1
{
exp[−i(k2x + k2y)δz/(2k0)]Â(kx, ky, δz)

}
. (2.63)

The algorithm repeats the above process until the field has traveled the desired distance. The
usefulness of the Fourier transform lies in the fact that one can reduce a partial differential
operator to a multiplication of the spectral amplitude Â(kx, ky, z) with a phase transformation
function. Since D is just a number in the spatial Fourier domain, the evaluation of Eq. (2.60) is
straightforward.
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2.3 Grating Theory

The derivation of the grating condition describing the geometry of light diffraction by gratings
presented in textbooks usually relies on Huygens principle. At variance, there is another treat-
ment of gratings theory is based on first principles, namely Maxwell equations, still retaining
basic simplicity.

2.3.1 Plane grating

Ruled gratings are essentially two-dimensional structures. As such, their surface S can be
described by a function, e.g. x = f(y, z), which expresses one of the three coordinates (in this
case, x) as a function of the other two, Fig. 2.3. Let the beam be incident from vacuum (x > 0)
on the periodic cylindrical interface illustrated in Fig. 2.4.

x

z

D

ℇ

ℇ = 0

Figure 2.3: Grating geometry and notation.

��

�� 0th order

1st order

incident ray
�

�

Figure 2.4: Scattering geometry for a diffraction grating. In this case angles have the following signs:
α > 0, β < 0.

In this case, since S is cylindrical, f can be considered as the only function of z indepen-
dently on the value of y, and one has that x = f(z) is a periodic function of period D (with
spatial wave numberK = 2π/D). Susceptibility is a periodic function of z and can be described
by the Fourier series

δϵ = 4πχ =
∞∑

m=−∞

um(x) exp[imKz] . (2.64)

We want to obtain a diffracted wave, which we express in its most general form as Eq. (2.50),
from the knowledge of the field incident on the grating. Using the relation between ⃗̄P and ⃗̄E,
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and the explicit expression for G in Eq. (2.48) we can write the following integral equation for
the electric field:

⃗̄Ed(r⃗) = ω2

∫
dr⃗′

exp[ik0|r⃗ − r⃗′|]
|r⃗ − r⃗′|

χ(x′, z′)

×
{[

⃗̄Ed(r⃗′) +
⃗̄Ei(r⃗′)

]
− n⃗

[
n⃗ ·
(
⃗̄Ed(r⃗′) +

⃗̄Ei(r⃗′)
)]}

. (2.65)

In general case polarization of the medium is caused by both incident ( ⃗̄Ei) and re diffracted
( ⃗̄Ed) fields, which leads us to self-consistent problem. When we are interested in studying
kinematic effects only, we can limit ourselves to the solution via perturbation theory ignoring
dynamical effects. Assumption is that at all points within the dielectric medium the diffracted
field ⃗̄Ed is much smaller than the incident field ⃗̄Ei. This allows one to neglect the diffracted
electric field on the right hand side of Eq. (2.65) with the incident field ⃗̄Ei, yielding

E⃗d(r⃗) = k20

∫
dr⃗′

exp[ik0|r⃗ − r⃗′|]
|r⃗ − r⃗′|

χ(x′, z′)
[
E⃗i(r⃗′)− n⃗

(
n⃗ · E⃗i(r⃗′)

)]
, (2.66)

where for simplicity we neglected the bar in the notation for the field in the space-frequency
domain.

In order to compute E⃗d in Eq. (2.66) we need to specify the incident field distribution E⃗i(r⃗′)

within the dielectric medium. In fact, according to Eq. (2.66) the integration ranges over all
coordinates dr⃗′, but χ is different from zero inside the dielectric. Consider Fig. 2.5, where we
sketch the geometry for our problem. Monochromatic light from a point source A(x1, y1, z1) is
incident on a point P (x′, y′, z′) located into the grating, i.e. into our dielectric medium. Point
A is assumed, for simplicity, to lie in the xz plane, i.e. A = A(x1, 0, z1). The plane xz is called
the tangential plane (or the principal plane, or the dispersive plane). The plane yz is called the
sagittal plane. As a first step we need to express the incident field E⃗i, appearing in Eq. (2.66),
at the generic point P inside the dielectric. In order to do so, since we deal with a point source,
we can take advantage of the spatial impulse response of free-space. As we have seen, this is
nothing but the expression for a spherical wave originating from A:

E⃗i(x
′, y′, z′) = E0

exp[ik0|r⃗′ − r⃗1|]
|r⃗′ − r⃗1|

. (2.67)

After this, we consider that the beam is diffracted to the point B = B(x2, 0, z2). Mathemat-
ically, diffraction is taken care of by the Green’s function in Eq. (2.66), which represents a
secondary source from point P . Finally, an explicit expression for χ is given in Eq. (2.64).

Even without explicit calculation of the integral in Eq. (2.66), a lot can be said analyzing the
phase in the integrand. In fact, since integration in Eq. (2.66) involves an oscillatory integrand,
the integrand does not contribute appreciably unless the arguments in the exponential functions
vanishes. We therefore calculate the total phase in the integrand of Eq. (2.66), and analyze it.
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r1(x)

x

z

A(x1,0,z1)

P(x′,y′,z′) O′

O

r2(x)

B(x2,0,z2)

Figure 2.5: Schematic diagram of diffraction from a plane grating. The gray area represents the grating
volume. A point source is located at A. Point P is an arbitrary point inside the grating volume. Grating
can be divided into layers. Each layer is either homogeneous or modulated with refractive index that
changes periodically as a function of z at any given height x.

Calculations can be simplified by applying the paraxial approximation. In fact, one can rely
on it for writing expansions for AP = |r⃗′ − r⃗1| and PB = |r⃗2 − r⃗′| entering into the expression
for the phase. This can be done in terms of the distances r1(x) = AO′ and r2(x) = O′B,
where O′ = (x′, 0, 0), x′ being the x-coordinate of point P . However, further simplifications
apply by noting that, in paraxial approximation, light actually traverses a very small portion of
material with susceptibility χ. The range of coordinates x′, y′, z′ inside the grating is much
smaller than the distances r1 and r2. In other words, the grating size and its thickness are much
smaller than r1 and r2. Additionally, we assume that the grating thickness is much smaller
than the relevant transverse size. Thus, we can neglect the dependence of distances r1 and r2
on x′ in the expansion for the incident wave and in the Green function exponent, and use the
approximations r1 ≃ AO and r2 ≃ OB, where O = (0, 0, 0) is a pole on the surface of grating,
Fig. 2.5. Thus, the path AOB defines the optical axis of the beam, and the angle of incidence
and of diffraction, α and β in Fig. 2.4, are simply following that optical axis. If points A and B
lie on different sides of the xz plane, angles α and β have an opposite sign.

Starting from the expressions

AP
2
= [r1 sinα + z′]2 + y′2 + [r1 cosα]

2 ,

PB
2
= [r2 sin β + z′]2 + y′2 + [r2 cos β]

2 , (2.68)

and using a binomial expansion we can write the incident wave phase as
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exp[ik0|r⃗′ − r⃗1|] =

exp

[
ik0

(
r1 + z′ sinα +

z′2 cos2 α

2(r1 + z′ sinα)
+

y′2

2(r1 + z′ sinα)

)]
=

exp

[
ik0

(
r1 + z′ sinα +

z′2 cos2 α

2r1
+
y′2

2r1
− z′3 sinα cos2 α

2r21
− z′y′2 sinα

2r21

)]
,

(2.69)

This exponent originates from Green function under the integral Eq. (2.66) as a function of the
coordinates x′, y′ and z′ of the point P on the grating. Similarly, one obtains

exp[ik0|r⃗ − r⃗′|] =

exp

[
ik0

(
r2 + z′ sin β +

z′2 cos2 β

2(r2 + z′ sin β)
+

y′2

2(r2 + z′ sin β)

)]
=

exp

[
ik0

(
r2 + z′ sin β +

z′2 cos2 β

2r2
+
y′2

2r2
− z′3 sin β cos2 β

2r22
− z′y′2 sin β

2r22

)]
,

(2.70)

We will now show that the periodic structure of the gratings restricts the continuous angular
distribution of the diffracted waves to a discrete set of waves only, which satisfy the well-
known grating condition. In order to do so, we insert Eqs. (2.64, 2.69, and 2.70) into Eq. (2.66).
As noticed above, the integrand does not contribute appreciably unless the arguments in the
exponential functions vanishes. From Eqs. (2.64, 2.69, and 2.70) it follows that the total phase
in Eq. (2.66) can be expressed as a power series

ϕ = k0[r1 + r2 + C10z
′ + C20z

′2 + C02y
′2 + C30z

′3 + C12z
′y′2 + ...] . (2.71)

Typically, third order aberration theory is applied to the analysis of grating monochromators. In
that case, the power series needs to include third order terms. The explicit expressions for the
coefficients Cij are
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C10 =
nK

k0
+ sinα + sin β ,

C20 =
1

2

[
1

r1
cos2 α +

1

r2
cos2 β

]
,

C02 =
1

2

[
1

r1
+

1

r2

]
,

C30 = − 1

2r21
sinα cos2 α− 1

2r22
sin β cos2 β ,

C12 = − 1

2r21
sinα− 1

2r22
sin β . (2.72)

C20 and C02 are the coefficients describing defocusing. C30 describes the coma, and C12 the
astigmatic coma aberration3. In practice, the most important ones are defocusing and coma.
Ideal optics would require the phase ϕ to be independent of z′ and y′ coordinates along the
grating

Note that the presence of the term nK/k0 in the C10 coefficient directly follows from the
insertion of Eq. (2.64) into Eq. (2.66). As said above, it is the periodic structure of the gratings
which restricts the continuous angular distribution of the diffracted waves to a discrete set of
waves. In order to find the direction of incident and diffracted beam, we impose the condition
C10 = 0, yielding:

nK + k0(sinα + sin β) = 0 . (2.73)

Eq. (2.73) is also valid for a plane mirror, if the grating period is taken equal to infinity. This
fact can be seen inspecting Eq. (2.73), which yields α = −β for D −→ ∞, which is nothing
but the law of mirror reflection.

Eq. (2.73) is known as the grating condition. This condition shows how directions of inci-
dent and diffracted waves are related. Both signs of the diffraction order n appearing into the
equation are allowed. Assuming for simplicity diffraction into first order, i.e. n = +1, one has

λ = D(cos θi − cos θd) , (2.74)

where θi and θd are the angles between the grating surface and, respectively, the incident and
the diffracted directions. By differentiating this equation in the case of a monochromatic beam
one obtains

b =
dθd
dθi

=
sin θi
sin θd

(2.75)

Note that b = Wi/Wd is the ratio between the width of the incident and of the diffracted beam.
Fig. 2.6 shows the geometry of this transformation. As has been pointed out elsewhere this is

3Differences in sign for C10, C30 and C12 with respect to literature are due to a different definition of the
direction of the z-axis, which points towards B, and not towards A.
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Figure 2.6: Geometry of the reflection. The properties of the grating are naturally described in terms of
the asymmetry parameter b = sin(θi)/ sin(θd)
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Figure 2.7: Plane grating in the case of a monochromatic point source. The virtual image of the real
source is located at a distance r′ = r · (sin(θd)/ sin(θi))2 behind the grating.

just the consequence of Liouville’s theorem.
The effect of the plane grating on the monochromatic beam is twofold: first, the source size

is scaled by the asymmetry factor b defined in Eq. (2.75) and, second, the distance between
grating and virtual source behind the grating is scaled by the square of the asymmetry factor b,
Fig. 2.7. In order to illustrate this fact, we consider a 1D Gaussian beam with an initially plane
wavefront, described by the field amplitude (along a given polarization component) ψ(x, 0) =
exp[−x2/w2

0]. Assuming that the plane grating is positioned at z, the spatial spectrum of the
Gaussian beam immediately in front of the grating, i.e. after propagation in free-space by a
distance z from the waist point, is given by

ψ(kx, z) =
√
πw0 exp[ik0z] exp

[
−k

2
xw

2
0

4

]
exp

[
−ik

2
xz

2k0

]
. (2.76)

However, according to Eq. (2.75), the transformation of the angular spectrum performed
by grating can be described with the help of k′x = bkx, so that immediately after grating one
obtains
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ψ(kx, z) =
√
πw0 exp[ik0z] exp

[
−k

′2
x w

2
0

4b2

]
exp

[
− ik

′2
x z

2k0b2

]
. (2.77)

We can interpret Eq. (2.77) in the following way: the Gaussian beam diffracted by the grating
is characterized by a new virtual beam waist w′

0 = w0/b and by a new virtual propagation
distance z′ = z/b2. Introducing the dimensionless distance through the relation z/LR, where
LR is called the Rayleigh length, we can conclude that this dimensionless distance is invariant
under the transformation induced by the plane grating.

The treatment of the diffraction grating given above yielded most of the important results
needed for further analysis. In particular, it allowed one to derive the grating condition and it
also makes it possible to study the theory of grating aberrations. Current theoretical approach
reaches into the foundation of electrodynamics, as is based on the use of Maxwell equations.
Note that the treatment considered so far was carried out under the assumption of the validity
of the first order perturbation theory, i.e. we assumed that for all the points in the dielectric
medium, the diffracted field is negligible with respect to the incident field. The properties of
the field actually exploited amount to the fact that in the yz plane, the diffracted field has the
same phase as the incident field plus an extra-phase contribution nKz′. If we go up to second
and higher orders in the perturbation theory we can see that this property remains valid, and
results derived above still hold independently of the application of a perturbation theory. Note
that inside the grating the beam is attenuated with a characteristic length that is much shorter
compared to the range of the grating surface coordinates, and can always be neglected in the
phase expansion. We can immediately extend the range of validity of this analysis to arbitrary
values of the dielectric constant. The general proofs of the grating condition and of the results
of the theory of grating aberration are derived from first principles as follows [60].

First let us note that two-dimensional problems are essentially scalar in nature, and can be
expressed in terms of only one single independent electromagnetic field variable, either Ey or
Hy. Here we will work considering the TE polarization, i.e. we will focus on Ey. The action of
the grating on the electromagnetic field can be modeled, mathematically, as an operator G that
transforms an incident field into a diffracted field, i.e. Ed(z, y) = G[Ei(z, y)]. Since the grating
is periodic and extends to infinity, the action of the operator G is invariant under translation by
a grating period: Ed(z +D, y) = G[Ei(z +D, y)]. Since the incoming beam is incident at an
angle θi, this translation adds an extra path distanceD cos θi to the incident waveEi, for a phase
change

Ei(z +D, y) = exp(ik0D cos θi)Ei(z, y) . (2.78)

Also, since the set of Maxwell partial differential equations is linear, any solution multiplied by
a constant is still a solution and one obtains

G[Ei(z +D, y)] = G[exp(iδϕ)Ei(z, y)] = exp(iδϕ)G[Ei(z, y)] = exp(iδϕ)Ed(z, y) , (2.79)
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where δϕ = k0D cos θi. Now, since

G[Ei(z +D, y)] = Ed(z +D, y) (2.80)

we must have

exp(iδϕ)Ed(z, y) = Ed(z +D, y) . (2.81)

Now, since the product Ed exp[−ik0z cos θi] is a periodic function, it can be represented as a
Fourier series expansion on the grating period D, and we can write the diffracted field as

Ed(z, y) =
+∞∑

m=−∞

Em(y) exp[imKz + ik0z cos θi] . (2.82)

This result is fully general, and all that is required to prove it is that the grating is periodic.
Eq. (2.82) is sufficient for describing the geometry of the beam diffraction by the grating. We
can use Eq. (2.82) to derive the grating condition once again.

In order to illustrate this fact, we see that the phase of the integrand in the integral Eq. (2.65)
consists of three terms: the first term is the phase in the Green function, the second is the phase
in Eq. (2.64), and the third is the phase in E⃗d. The first and the second terms are known, and
have already been analyzed. Eq. (2.82) shows the structure of the phase for E⃗d in the case
for a plane wave impinging on the grating with incident angle θi. In principle, the incident
field E⃗i comes from a point source located in A, and consists of a diverging spherical wave.
Such spherical wave can always be decomposed in plane waves and, due to the validity of the
paraxial approximation, only those plane wave components with angle near to θi should be
considered. Therefore, neglecting small corrections in ∆θi, one can take the phase in Eq. (2.82)
as a good approximation for the phase of the diffracted field. Then, considering the expansion
in Eq. (2.70) to the first order in z′ one obtains, without using a perturbative approach, that the
term in z′ in the integrand in Eq. (2.65) is given by (m+ n)K + k0(cos θi − cos θd). Imposing
that this term be zero, and remembering that α = π/2− θi, one gets back Eq. (2.73).

This result, albeit very general, still says nothing about the grating efficiency. We still do
not know anything about the amplitudes of the diffracted waves. In order to determine these
coefficients we need to model the grooves of the grating. At this point, we need to apply
classical numerical integration techniques [61, 62].

2.3.2 VLS plane grating

A diffractive plane grating can focus a diffracted beam when the groove spacing properly varies
with the groove position; such a grating is called a variable-line-spacing (VLS) grating. A
VLS plane grating can be incorporated into the monochromator to act as both dispersive and
spectrally focusing component. The working principle of such kind of grating can be understood
by expressing the groove spacingD(z) as a function of the coordinate z along the perpendicular
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to the grooves. So it can be expanded as a polynomial series4:

D(z) = D0 +D1z +D2z
2 + ... , (2.83)

where the term D0 is the spacing at the pole of the grating (located, by definition, at z = 0),
while D1 and D2 are the parameters for the variation of the ruling with z. Now susceptibility is
not a periodic function of z anymore, and can be described by the Fourier integral:

δϵ = 4πχ =

∫ ∞

−∞
B(K, x) exp[iKz]dK . (2.84)

Let us assume, for simplicity, that the distance between grooves varies according to the linear
law: D(z) = D0+D1z. Now we also assume thatD1 ≪ 1 and we apply the so-called adiabatic
approximation imposing that the width of the peaks in the spectrum B(K, x) is much narrower
than the harmonic separation K0 = 2π/D0 between the peaks. In this case, Eq. (2.84) can be
represented in the form

δϵ =
+∞∑

n=−∞

Bn(x, z) exp[inK0z] , (2.85)

where the complex amplitudes Bn(x, z) are all slowly varying function of the z coordinate on
the scale of the periodD0. This means that the terms in sum over n in Eq. (2.85) can be analyzed
separately for each value of n. For the case of a linearly chirped grating considered here, the
slowly varying amplitude of the nth harmonic is given by

Bn = An(x) exp

[
i
z2

2

dK

dz

]
, (2.86)

where dK/dz = 2πd(1/D)/dz = −(2π/D2
0)D1 is the chirp parameter.

We now substitute Eq. (2.85) into Eq. (2.66) and, as before, we express the phase in the inte-
grand as a power series. Only the C20 term differs, with respect to the expression in Eq. (2.72).
In fact, for a linearly chirped grating we obtain [63]

C20 = − λ

2D2
0

D1 +
1

2r1
cos2 α +

1

2r2
cos2 β . (2.87)

The condition C20 = 0 has to be verified in order to guarantee imaging in the tangential plane.
Here we used Maxwell equations for studying the imaging properties of VLS grating. How-

ever, certain aspects of this theory can be derived in a simple way using ray optics. For con-
venient use in the following discussions, it is necessary to make clear the reference coordinate
systems and rays describing the optical system. Fig. 2.8 shows the VLS plane grating optical
system with an object point A. The coordinate systems (x, y, z) , (x1, y1, z1) and (x2, y2, z2)

correspond, respectively, to the grating, to the incident beam, and to the diffracted beam; the

4Another choice of line-spacing parametrization found in literature is the expansion of the line density n(z) =
1/D(z) = n0 + n1z + n2z

2 + .... With these definitions, n1 and n2 are the same as in Tables 3.3 and 4.2.
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Figure 2.8: Coordinate notation. The coordinate systems (x, y, z), (x1, y1, z1) and (x2, y2, z2) corre-
spond to grating, incoming beam and diffracted beam; the axes z, z1 and z2 are along grating surface,
incident and exit principal rays respectively.

axes z, z1 and z2 are along the grating surface, the incident and the exit principal rays, respec-
tively. As shown in Fig. 2.4, the input beam is incident on grating at angle θi. The diffracted
angle θd is a function of the groove distances according to the grating equation

λ = D(cos θi − cos θd) . (2.88)

By differentiating over z for the case of a monochromatic beam we obtain

dD

dz
(cos θi − cos θd) = −dθd

dz
D sin θd , (2.89)

yielding

[λ/D2
0(sin

2 θd)]D1 = −dθd
dx2

, (2.90)

where we used the relations (2.83), z sin θd = x2 and D1 ≪ 1.
Let us now define a thin lens as a device that deflects every light beam incident parallel to

the optical axis in such a way that it crosses the optical axis at a fixed distance f after passing
through the lens. In paraxial approximation, the thin lens equation assumes the familiar form
dθd = −dx2/f . The physical meaning of Eq. (2.90) is that the VLS plane grating can be
represented by a combination of a planar grating with fixed line spacing and a lens after the
grating, with a focal length f equal to the focal length of the VLS grating

f = [λD1/D
2
0(sin

2 θd)]
−1 , (2.91)

as shown in Fig. 2.9. It may seem surprising that the focal length depends on θd only. How-
ever, it is reasonable to expect an influence of the assumption that the lens is placed after the
grating. One intuitively expects that full transfer matrix for the VLS grating should not depend
on the choice of the lens position. It may be shown that indeed, the transfer matrix satisfies this
invariance (See Appendix A).
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Figure 2.9: Schematic diagram of a VLS grating element used in theoretical analysis. The VLS grating
is represented by a contribution of a planar grating with fixed line spacing and a thin lens.

2.3.3 Toroidal grating

A logical extension of the plane VLS grating concept described above follows from the idea to
rule the VLS grooves on a toroidal surface, producing a toroidal VLS grating [64]. Additional
design parameters, namely tangential and sagittal radius, are then available to control imaging
aberrations and to optimize the grating monochromator performance [65]. We consider a curved
VLS grating and we assume that the surface of the grating is toroidal with tangential and sagittal
radius of curvatureR and ρ respectively (see Fig. 2.10). Let us assume that the distance between
the grooves varies according to quadratic law:

A(x1,0,z1)

B(x2,0,z2)

P(x’,y’,z’)

O

Toroidal grating
Z (tangential 

direction)

Y (sagittal 

direction)

X (normal 

to grating)

r1

r2

�

�

Figure 2.10: Schematic diagram of a toroidal grating. A point source is located at A. Point P is an
arbitrary point of the grating.

D(z) = D0 +D1z +D2z
2 . (2.92)

As before, the susceptibility is not a periodic function with respect to z, and in adiabatic ap-
proximation can be represented in the form
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δϵ =
+∞∑
−∞

Bn(x, z) exp[inK0z] , (2.93)

which is identical to Eq. (2.85), where complex amplitudes Bn are slowly varying functions of
the z coordinate on the scale of the period D0. In the case of quadratically chirped grating, the
nth amplitude is given by

Bn = An(x) exp[iK
′z2/2 + iK ′′z3/6] , (2.94)

where

K ′ = 2π(1/D)′ = −2πD1/D
2
0 = 2πn1 ,

K ′′ = 2π(1/D)′′ = −4π[D2/D
2
0 −D2

1/D
3
0] = 4πn2 , (2.95)

are the linear and quadratic chirp parameters.
From the geometry (see Fig. 2.10), and similarly as done before we can write

AP
2
= [r1 sinα+ z]2 + y2 + [r1 cosα− x]2 ,

PB
2
= [r2 sin β + z]2 + y2 + [r2 cos β − x]2 , (2.96)

where the coordinate x on the toroidal surface is related to z and y by the equation of the torus

x = R−R

[
1− z2 + y2

R2
+ 2

ρ

R

( ρ
R

− 1
)(

1−
(
1− y2

ρ2

)1/2
)]1/2

. (2.97)

The integrand in Eq. (2.66) is oscillatory, and does not contribute appreciably to the total
integral unless the arguments of the exponential function vanishes. Using Eqs. (2.66, 2.69 and
2.70), together with Eqs. (2.93, 2.94, 2.96 and 2.97), it is then possible to expand the phase as a
power series such as

ϕ = k0(r1 + r2 + C10z + C20z
2 + C02y

2 + C30z
3 + C12zy

2 + ...) . (2.98)

The explicit expressions for coefficients Cij are [66]
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C10 =
nλ

D0

+ (sinα + sin β) ,

C20 =
nλn1

2
+

1

2

[
cos2 α

r1
+

cos2 β

r2
− cosα

R
− cos β

R

]
,

C30 =
nλn2

3
− 1

2

[(
cos2 α

r1
− cosα

R

)
sinα

r1
+

(
cos2 β

r2
− cos β

R

)
sin β

r2

]
,

C02 =
1

2

[
1

r1
− cosα

ρ
+

1

r2
− cos β

ρ

]
,

C12 = −1

2

[(
1

r1
− cosα

ρ

)
sinα

r1
+

(
1

r2
− cos β

ρ

)
sin β

r2

]
, (2.99)

where the condition C10 = 0 yields back the grating condition, C20 = 0 yields the position of
the tangential focus, C02 = 0 that of the sagittal focus, and the relation C30 = 0 minimizes the
coma aberration.

In Appendix B it is shown that toroidal grating aberrations can be modeled very straight-
forwardly using a geometrical approach. This derivation is very different from the analytical
method used in literature and it relies on geometrical considerations giving an intuitive under-
standing of Equations (2.99).

2.3.4 Concluding remarks for wave optics simulations

As we mentioned before, the radiation distribution that is modified by an optical component
may be modeled by a phase-shifter in the following way:

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp [i∆Φ(x, y, ...)] . (2.100)

It is convenient to modify convention of coordinate notation, swapping y and z coordinates, so
that coordinate z becomes the principle axis of an optical system, x, y become the axes of a
phase shifter, perpendicular to z. Here the phase shift ∆Φ is determined by various parameters,
depending on the effect we want to model.

For example, a lens introduces a quadratic phase shift:

∆Φ(x, y) = −k
2

(
x2

fx
+
y2

fy

)
. (2.101)

Here the shift in both transverse dimensions x and y is introduced, representing focusing
with different focal distances fx and fy.

Tangential and sagittal curvatures of a toroidal grating act as independent cylindrical lenses
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with the focal lengths in case of a first order diffraction are given by

fsag =

[
sin θi
2ρ

+
sin θd
2ρ

]−1

(2.102)

for sagittal plane and

ftang =

[
λD1

D2
0 sin

2 θd
+

sin θi
2R sin2 θd

+
1

2R sin θd

]−1

(2.103)

for tangential. The latter is composed of curvature and VLS components.
Here R and ρ are tangential and sagittal radii of curvature, θi and θd are incidence and

diffraction angles respectively. Eqs. 2.102 and 2.103 show that focal lengths are wavelength-
dependent, since θd = arccos(cos θi − λD0), according to the grating equation.

While the D0 coefficient defines the dispersive properties of the grating, coefficients D1

and D2 are responsible of VLS focusing and aberration compensation correspondingly. They
are optimized to eliminate wavelength dependence of an image position at a slit and the coma
aberration effect. It is worth mentioning that an effective source position of radiation at the end
of SASE undulator is wavelength-dependent (see Section 4.2.2).

The resulting phase shift from focusing contribution can be expressed as

∆Φ(ω, x, y) = −k0
2

(
x2

ftang
+

y2

fsag

)
. (2.104)

Both C30 and C12 coefficients can be expressed in angles with respect to the surface

C30 =
nλn2

3
+

(
sin2 θi
r1

− sin θi
R

)
cos θi
2r1

−
(
sin2 θd
r2

− sin θd
R

)
cos θd
2r2

,

C12 = −1

2

(
−sin θi cos θi

ρr1
+

cos θi
r21

+
sin θd cos θd

ρr2
− cos θd

r22

)
, (2.105)

resulting in a following phase shift

∆Φ(ω, x, y) = k

(
C ′

30x
3

θ3d
+
C12xy

2

θd

)
. (2.106)

In order to simulate time-dependent phenomena caused by grating one needs to take into
account grating dispersion. We propose to introduce a wavefront tilt, according to an angular
dispersion of the grating. Each wavelength is reflected from the grating at a different angle.
Having an ensemble of wavelengths we can choose a principle ray wavelength λ that will prop-
agate downstream with no wavefront tilt. Each other wavelength will propagate from the grating
at a certain angle from the principle ray, determined by grating angular dispersion, e.g. λ0+∆λ
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will be tilted by:

∆θ =
∆λD0

θd
. (2.107)

In this case a linear phase tilt should be applied with respect to the principal ray fre-
quency ω0:

∆Φ(ω0,∆ω, x, y) = −2πx∆θ

λ0
=

2πx∆ωD0

ω0θd
. (2.108)

Finally, the cumulative effect of the grating modeling may be written as

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp [i∆Φ] ,

∆Φ = k

(
− x2

2ftang
− y2

2fsag
+
C ′

30x
3

θ3d

+
C12xy

2

θd
+

2πx∆ωD0

kωθd

)
. (2.109)

In case of the non-dispersive optical component, phase shift is similar to the grating, butD0,
D1 and D2 VLS coefficients are equal to zero, θi = θd, and no field resizing should be applied.

The total phase shift by such a mirror is given by the following:

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp [i∆Φ] ,

∆Φ = k

(
− x2

2ftang
−− y2

2fsag
+
C30x

3

θ3d
+
C12xy

2

θd

)
,

ftang =
Rtangθi

2
,

fsag =
2θi
ρ
,

C12 = −cos θi
2

[
sin θi
Rsag

(
− 1

z1
+

1

z2

)
+

1

z21
− 1

z22

]
,

C30 = −sin θi cos θi
2

[
sin θi

(
1

z21
− 1

z22

)
− 1

Rtang

(
1

z1
− 1

z2

)]
. (2.110)

Here θi is M2 incidence angle, z1 and z2 are distances the mirror to an object and an image,
respectively.

2.4 Resolution

A preliminary resolution study of the toroidal grating can be performed using Gaussian op-
tics calculations. The reason for first modeling the source as a Gaussian beam was to obtain
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a completely analytical, albeit approximated description of the self-seeding monochromator
operation. In fact, such approach gives the upper estimate of the grating resolving power.

2.4.1 Analytical description

Let us consider the toroidal VLS grating described in the previous section, and the incident
radiation beam, characterized by a Gaussian distribution. Gaussian beam transformation due to
mirrors, and translation in between mirrors can be tracked using the law for the transformation
of q in Eq. (2.30). The relevant geometry is shown in Fig. 2.10. The grating has a local groove
spacing D(z) = D0 + D1z at a position z on the grating surface, a radius of curvature of the
substrate R in the tangential plane, and ρ in the sagittal plane. In the tangential plane, a toroidal
VLS grating is represented by combination of a planar grating with fixed line spacing and lens
after the grating, Fig. 2.9, with a focal length equal to the focal length of the toroidal VLS
grating (Equations 2.102 and 2.103)

In current analysis we calculate the propagation of the input signal to the slit plane of the
monochromator. We start by writing the input field in object plane, that is the source plane, as

Ẽ(x, y) = exp

[
− x2

w2
0

− y2

w2
0

]
. (2.111)

As shown in Fig. 2.4, the input beam is incident on the grating at the angle θi. The diffracted
beam emerges at an angle θd, and is a function of the wavelength according to grating equation.
Assuming diffraction into n = +1 order, one has

λ = D0(cos θi − cos θd) . (2.112)

By differentiating this equation one obtains

dθd
dλ

=
1

D0θd
, (2.113)

where we assume grazing incidence geometry, θi ≪ 1 and θd ≪ 1. The physical meaning
of this equation is that different spectral components of the outgoing beam travel in different
directions. As aforementioned, in the tangential plane the toroidal VLS grating is represented
as a combination of plane grating and convergent lens. We are interested in determining the
intensity distribution in the image plane, i.e. at the slit position. The grating introduces an
angular dispersion, which is transformed into the spatial dispersion in the slit plane bu the
lens. The spatial dispersion parameter, which describes the proportionality between spatial
displacement and optical wavelength is given by

η = λ
dx

dλ
=

d2λ

D0θd
, (2.114)

where d2 is the distance between grating and image plane. In our case study, the relative differ-
ence between focal length and image distance is about 1%. As a result one may approximately
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write d2 = f1. The spectral resolution of the monochromator equipped with an exit slit de-
pends on the spot size in the slit plane, is related with the individual wavelengths composing
the beam, and with the rate of spatial dispersion with respect to the wavelength. For a Gaus-
sian input beam, the intensity distribution in the waist plane, that is the slit plane, is given by
I = exp(−2x2/w2

s), where ws is the waist size on the slit. A properly defined merit function is
indispensable for the design of a grating monochromator. A merit function based on the spread
of the radiation spots is a suitable choice in our case of interest. Let us consider the limiting
case of a slit with much narrower opening than the spot size of the beam for a fixed individual
wavelength centered at x = 0. In this case, the Gaussian instrumental function (i.e. the spectral
line profile of the beam after monochromatization) is given by

I = exp

[
−2

(
f1λ

wsD0θd

)2(
∆λ

λ

)2
]
. (2.115)

The resolving power is often associated to the FWHM ∆λ of the instrumental function through
the relation R = λ/(∆λ). In our case of interest the resolving power is consequently given by

R =
f1λ

1.18wsD0θd
. (2.116)

The effect of a plane grating on the monochromatic beam is, as previously discussed, twofold:
first, the source size is scaled by the asymmetry factor b = θi/θd and, second, the distance
between grating and virtual source before the grating is scaled by the square of the asymmetry
factor. In our case, the waist of the virtual source w′

0 and the distance d′1 are thus given by

w′
0 = w0θd/θi ,

d′1 = d1(θd/θi)
2 . (2.117)

After propagation through a distance d2 behind the lens, the Gaussian beam is said to be focused
at the point where it has a plane wavefront. Using Eq. (2.32), we obtain

ws =
w′

0f1
[(d′1 − f1)2 + z

′2
R ]

1/2
, (2.118)

where z′R = zR(θd/θi)
2 is the Rayleigh range associated with the virtual source. In our case of

interest, f1/d′1 ∼ 10−2, and the waist transforms as

ws = w0
θi
θd

f1
[d21 + z2R]

1/2
. (2.119)

Using this relation we can recast the expression for the resolving power in the form

R =
λzR(1 + d21/z

2
R)

1/2

1.18w0θiD0

=
πw0(1 + d21/z

2
R)

1/2

1.18θiD0

, (2.120)
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and with the help of Eq. (2.31), we finally obtain

R =
πwg

1.18θiD0

, (2.121)

where wg is the actual waist size of the Gaussian beam after propagation through a distance
d1, i.e in the plane immediately in front of the grating. In that plane beam has finite radius of
curvature and its intensity is given by

I = I0 exp

[
−2

x2

w2
g

]
. (2.122)

2.4.2 Self-seeding requirements

As mentioned before, the goal of a self-seeding scheme is to create the longitudinally coherent
pulse. This pulse power should be high enough to overcome the shot noise in the electron beam
and create the electron density modulation (bunching) at a given frequency. Let’s consider an
unchirped transform-limited pulse with a Gaussian shape in time domain:

E(t) = A exp

[
− t2

2σ2
t

]
. (2.123)

We can define a pulse length as a FWHM of the temporal pulse intensity δt ≃ 2.35σintensity
t ≃

1.17σt. In this case the FWHM of the pulse spectrum δω is related to the pulse duration with
the following relation [67]:

δtδω = 4 ln 2 ≃ 2.77, (2.124)

which is more convenient to use in other form:

δs = 0.44λR ,
4 ln 2

ω

ω

δω
, (2.125)

where δs is the pulse length intensity FWHM, λ is the radiation wavelength and R = ω
δω

.
This relation is visualized on the Fig. 2.11. We are interested to obtain a narrow-bandwidth

transform-limited pulse after the monochromator that has the length close to the length of the
electron beam. Longer pulse will lead to an energy loss, since radiation power distributed
beyond the electron beam will not interact with electrons in an FEL process. Shorter pulse
would not provide a coherent density modulation over an entire electron bunch, leading to the
creation of more than one mode in both time and frequency domains.

2.5 Effects of mirror surface height errors

A very important issue of the radiation transport is the preservation of the wavefront from the
source to the entrance of the second undulator. Estimates of the requirements on the mirror for
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Figure 2.11: Monochromator resolving power required to create the bandwidth-limited pulse with a
given FWHM duration for a certain photon energy.

grating monochromators are usually based on ray-tracing codes for incoherent light sources.
Since the XFEL beam is almost transform-limited, one needs to perform simulations of the
effect of the mirror imperfections by wavefront propagation codes. In the wave optical model,
the height error contribution to the scattered field can be expressed as a perturbation of the
wavefront according to an optical path difference (OPD) [68]. It is easy to demonstrate that an
error δh on the optical surface will perturb the wavefront of a phase ϕ, according to

ϕ =
4πδh

λ
sin θi , (2.126)

where θi is the angle of incidence with respect to the surface. In the case of a grating, the phase
shift can be expressed in terms of incidence and diffracted angles:

ϕ = 2π(sin θi + sin θd)
δh

λ
. (2.127)

In practice, ϕ represents the deformation of the wavefront in the propagation direction di-
vided by the wavelength. For the shifter model to be applicable, the phase change must be
small, i.e. |ϕ| ≪ 1.

A reflection from the mirror becomes similar to the propagation through a transparency at
the mirror position, which just changes the phase of the reflected beam without changing its
amplitude, (see Fig. 2.12).

Incident 

wavefront

Reflected 

wavefront

�

ΔΦ = 2�� sin �

�(�, �)

Figure 2.12: Thin-shifter-like behavior of surface roughness for small mean square of surface displace-
ment. Adapted from [69].
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On Figure 2.13 this model is compared with a split-step propagation method, described in
Section 2.2.2.

This comparison shows a very good agreement between the two methods. Unlike a split-step
method, the phase-shifter model allows a quick numerical evaluation of the disturbed wavefront
and is used to model effects caused by height errors of the optical elements later in this work.
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Figure 2.13: Comparison of a phase-shifter model with a split-step propagation method. Strehl ratio after
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Chapter 3

Monochromator study for the LCLS

The Linac Coherent Light Source (LCLS) is the XFEL based at SLAC National Accelerator
Laboratory, California (see Fig. 3.1). The first lasing at this facility was reported in 2009 [70]
making LCLS the world’s first hard X-ray laser in operation. At present, it delivers the radiation
to 6 experimental stations. The typical pulse energy of the LCLS is around 2-3 mJ, the radiation
photon energy ranges from 270 eV up to about 11.2 keV.
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Figure 3.1: Schematic layout of the LCLS accelerator, undulators, and photon distribution lines.
Reprinted from [71].

During the last five years, significant efforts were dedicated to both theoretical investigation
and R&D at the LCLS, leading to the pioneering design of a compact self-seeding setup in the
soft X-ray range, based on a grating monochromator. The evolution of the design can be re-
constructed from [72–74], striving at the same time for the needed resolution and compactness.
Below the latest and current design is discussed.

3.1 Self-seeding setup description

The overall soft X-ray self-seeding FEL operation scheme consists of three parts: the SASE
undulator, the monochromator set-up and the output seeded undulator in which the monochro-
matic seed signal is being amplified. The SASE undulator consists of 8 modules. It is followed
by the SXRSS monochromator setup, designed to occupy the space of the 9-th module. The
seeded undulator consists of the last 22 modules. Parameters of the LCLS undulator modules
are listed in Table 3.1

The LCLS SXRSS set-up was introduced in [74], and includes an electron chicane, and
a grating-based monochromator. The electron chicane (see Fig. 3.3) is composed of 4 dipole
magnets and performs 4 tasks:
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Figure 3.2: The compact soft x-ray self-seeding system, located in U9. The grating is a toroidal VLS
grating, M1 is a rotating plane mirror, M2 a tangential cylindrical mirror, and M3 a plane mirror used to
steer the beam. Reprinted from [74].

• creates the transverse offset of the electron beam to introduce the monochromator optics;

• delays the electron beam accordingly to the temporal delay caused by the optical scheme;

• smears out an electron density microbunching of a beam created in the SASE undulator;

• compensates the electron beam phase mismatch due to the absence of the undulator, re-
placed by this chicane during a conventional non-seeded undulator maintenance;

The monochromator consists of reflective optical components: the toroidal variable-line-
spacing (VLS) grating, the steering plane mirror, the spherical mirror, another plane mirror and
a slit (Figs. 3.2 and 3.4), ending up in a qualitatively symmetrical design.

Parameter Value Units
Undulator period 30 mm
K parameter (RMS) 2.475 -
Section length 3.3 m
Intersection length 0.6 & 0.9 m

Table 3.1: Parameters for the LCLS undula-
tor modules used for simulations. Adapted
from [75, 76].

Parameter Value Unit
e− beam delay 633-930 fs
Delay precision 0.1 fs
R56 477-397 µm
Dipole bend angle 14.91-13.59 mrad
e− beam displ. 19.2-15.9 mm
H. separation 4.3-3.4 mm

Table 3.2: Main parameters of the electron
beam chicane. Adapted from [74].
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Figure 3.3: Stretched sketch of the separation between electrons and the two closest optics, the grating
and M3. The electrons trajectory is represented by the black fat line. A 22 mm free area around is
emphasized by the dashed lines. Reprinted from [77].

Figure 3.4: LCLS SXRSS monochromator optics dimensions. The holes in grating and M3 mirror are
designed to transport the electron beam through. All values are given in [mm]. Reprinted from the [78]
talk slides.

The dispersive grating is illuminated by the SASE FEL radiation produced in the SASE
undulator with the source position inside undulator sections U7 or U8.

Usually, a grating monochromator consists of an entrance slit, a grating, an exit slit and
focusing system. The grating equation, which describes how the monochromator works, relies
on the principle of interference applied to the light coming from the illuminated grooves. Such
principle though, can only be applied when phase and amplitude variations in the electromag-
netic field are well-defined across the grating, that is when the field is perfectly transversely
coherent. The purpose of the entrance slit is to supply a transversely coherent radiation spot at
the grating, in order to allow the monochromator to work with an incoherent source and with a
given resolution. However, an FEL source is highly transversely coherent and no entrance slit
is required in this case [79, 80]. The dispersive grating has a toroidal shape with a variable line
spacing (VLS). It is platinum coated, which allows it to cover the 300-1200 eV range with a
satisfactory efficiency (12-15% [81]). The grating is fixed with and incidence angle of 1 degree
with respect to the surface. This allows one to reflect high photon energies thanks to total in-
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Parameter Value Unit
grating

Line density (n) 1123 l/mm
Linear coeff. (n1) 1.6 l/mm2

Quad coeff. (n2) 0.002 l/mm2

Groove profile blazed 1.2◦ -
Tangential radius 195 m
Sagittal radius 0.18 m
Diffraction order +1 -
Incident angle 1 ◦

Exit angle 3.18-4.39 ◦

exit slit
Location 1.35 m
Width variable -

mirror M2
Location 1.53 m
Radius 23.2 m
Incident angle 0.86 ◦

mirror M3
Location 1.66 m

total
Optical delay 797.9-662.8 fs

Table 3.3: Parameters of the LCLS SXRSS monochromator optical elements within 500 eV - 1000 eV
nominal photon energy range. Adapted from [74].

ternal reflection phenomenon, to increase the irradiated spot area avoiding single shot damage
from an intense FEL radiation and to make it less sensitive to the souse point position within
the seeded undulator. Tangential focal distance of the grating is composed of two components:
surface curvature (tangential radius) and the variable line spacing linear coefficient D1 (more in
subsection 2.3.2). The curvature component gives a wavenength-independent focal distance of
the grating while the VLS contribution depends on a photon energy. This way grating carries
out focusing of the different wavelengths at different directions but almost at the same focal
distance. Sagittal focal distance of the grating is defined only by the sagittal component of the
grating curvature and carries out focusing of the source radiation to the re-imaging point within
the seeded undulator (see Fig 3.7).

The rotating plane mirror M1 is used to steer a certain wavelength of the angularly dispersed
radiation to the slit. It’s pivot point position is optimized to keep the constant transverse offset
of the monochromatized beam (see Fig. 3.5)

The Slit stops the undesired radiation wavelengths from further propagation (see Fig. 3.6).
Slit width may be tuned with discrete steps or fully removed. It was found that slit-less operation
of FEL is possible giving satisfactory results [82], see Section 3.4 for further details.

The spherical mirror M2 is positioned downstream the slit and re-images the radiation from
the slit position to the re-imaging point at the entrance of the seeded undulator. Focusing is
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Figure 3.5: Relative position of the grating and M1 mirror with diffracted beams at different wavelengths
and in zero order mode. The M1 mirror rotation allows one to “steer” the radiation with desired wave-
length onto the slit. Rotation pivot point is optimized to keep deflected beam offset dependency in the “x”
direction close to constant with respect to the monochromator wavelength setting. Reprinted from [77].

Figure 3.6: The design and the photograth of the slit with YAG screens to monitor the dispersed radiation.
Reprinted from [78].

carried out in tangential plane. Due to the small incidence angle, a sagittal focusing distance of
the M2 mirror is very large and therefore can be neglected.

The plane mirror M3 reflects the radiation to the seeded undulator. It introduces two addi-
tional degrees of freedom for an overlap of the electron beam and the monochromatic radiation
inside of the undulator section U10.

Detailed parameters of the monochromator optical system may be found in Table 3.3

3.2 Gaussian beam optics calculations

Understanding principles of the LCLS design was essential in order to implement it for the
European XFEL undulator. We started with the Gaussian beam optics approach knowing the
FEL source parameters within SASE undulator. We found it to be a very useful analytical
method for the monochromator performance characterization. Source properties, such as its
size and distance to the grating were obtained from the LCLS SXRSS PRD [unpublished]. Here
we calculate the waists of the model Gaussian beam, focused by the grating and M2 mirror (See
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Figure 3.7: Tangential (top) and sagittal (side) views of the principal optical components, and radiation
propagation paths and waists. Waist positions arrows reveal the conventions used further in Figures 3.8-
3.12.

Fig. 3.7). Initially we ignore aberrations and an effect of the rest optical components of the
monochromator. Exit slit is assumed to be retracted. Let us revisit the following relations:

zR = k0w
2
0/2 . (2.18 revisited)

for Rayleigh length of the waist,

w2(z) = w2
0

[
1 +

(
z

zR

)2
]
, (2.21 revisited)

for beam spot size at a given distance from the waist,

w2
2 =

w2
1f

2

[(d1 − f)2 + (k0w2
1/2)

2]
. (2.31 revisited)

For the image waist size obtained with a lens with focal distance f , and

d2 = f + f 2 (d1 − f)

[(d1 − f)2 + (k0w2
1/2)

2]
. (2.32 revisited)

for the position of the reimaged waist.
Radiation spot and waist sizes presented on the figures below are defined as RMS of the

transverse intensity profile of the radiation at the point of interest. FWHM and RMS of a
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Figure 3.8: SASE undulator source waist size
and position.
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Figure 3.9: Slit tangential waist size and posi-
tion. Dashed line depicts the slit position

Gaussian beam intensity profile are related to the laser community definition w presented in
Eq. (2.14) as

σint = w/2 ,

FWHM int = 2
√

2 log 2σint =
√

2 log 2w ≃ 1.18w .

Hereinafter green and red lines along the waist position depict the Rayleigh range, pink di-
amonds - position of the geometrical optics images, and black diamonds - size of the SASE
undulator source for comparison. Source properties are shown on Figure 3.8. Position and size
of the source waist are wavelength-dependent, which makes it more complicated to obtain a
wavelength-independent image position on the slit. Effectively, it is done with a D1 VLS pa-
rameter of the grating [77]. Grating carries out reimaging of the waist in tangential plane onto
the slit position located 1.35 m downstream the grating. Reimaged waist size and position are
presented on Figure 3.9.

At the entrance to the seeded undulator the radiation has to be efficiently overlapped with an
electron beam. On Figures 3.10 and 3.11 we present calculations for the sagittal and tangential
planes respectively. Reimaged waist size is compared with the size of the source. In fact,
according to Eq. 2.18, waist size is connected with the divergence of the radiation. If the waist
is too small, the light would diverge within the undulator before effectively interacting with the
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Figure 3.10: Seeded undulator sagittal waist
size and position. Dashed line depicts the
seeded undulator entrance.
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Figure 3.11: Seeded undulator tangential waist
size and position.
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Figure 3.12: Seeded undulator waist evolution for sagittal (left subfigure) and tangential (right subfigure)
planes.
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Figure 3.13: SASE undulator source waist size
and position.
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Figure 3.14: Slit tangential waist size and po-
sition. Dashed line depicts the slit position

electron beam. If the waist is too large - input coupling factor along with resolving power will
degrade. We can see that the waist position dramatically differs from the geometrical optics -
based calculations.

It is also interesting to track the size of the spots at different distances downstream the
undulator (Fig. 3.12).

Although Gaussian beam optics is a very simple method, it can be applied to the FEL source
as an estimation. It requires characterization of the FEL source inside the SASE undulator as a
Gaussian beam with certain parameters, that in general does not apply for the FEL source.

3.2.1 Effect of the source position change by one section upstream

In order to ensure the safe operation of the monochromator with respect to the damage of the
grating, it was chosen to operate the self-seeding set-up with the undulator U8 removed. This
leads to a smaller energy density on the grating due to an increase of the footprint area. Energy
within the pulse is kept the same. From geometrical consideration, the FEL source point is
moved by one section upstream by 3.87 m. Below we present the results of the Gaussian beam
optics for this case. Figures 3.13 and 3.14 show parameters of waists at the source and at the
slit. Waist at the slit position is far off the Rayleigh length, leading to a large spot at the slit in
case of its presence.

Figures 3.15 and 3.16 show that reimaged waists are at the undulator entrance, but their
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Figure 3.15: Seeded undulator sagittal waist
size and position. Dashed line depicts the
seeded undulator entrance.
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Figure 3.16: Seeded undulator tangential waist
size and position.
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Figure 3.17: Seeded undulator waist evolution for sagittal (left subfigure) and tangential (right subfigure)
planes.

54



Rayleigh lengths are considerably smaller in this case. This leads to a very large divergence and
worse coupling with an electron beam.

3.3 Start-to-end self-seeding simulation:
details and approaches

As mentioned before, Gaussian beam optics allows one to calculate the monochromator perfor-
mance based on a certain assumptions, such as a Gaussian profile of the FEL source, no height
errors on mirrors, no aberrations. Also it is very important to calculate the effective resolving
power of the monochromator when no exit slit is inserted.

In the simulations of the current monochromator design, an effect of two slits needs to be
taken into account (see Fig. 3.18). The first slit is physical, which makes it possible to calculate
its effect on the monochromator instrumental function analytically. Another slit is a virtual
one: the electron beam being placed in the spatially dispersed radiation acts as a slit. The latter
case can be barely analyzed analytically since the FEL process is involved in both coupling and
amplification.

Electron beam

Figure 3.18: Physical slit (left figure) blocks undesired wavelengths, passing through only certain band-
width. It is easily controlled and may be moved out.
Since radiation amplification in an undulator takes place via interaction with accelerated electrons, only
a radiation overlapped over the electron beam will be amplified. It can be expressed as a virtual slit (right
figure). This process is not directly controlled.

Genesis

e-beam

radiation
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Propagation
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Figure 3.19: Wave optics propagation algorithm allows us to fill the gap in start-to-end time-dependent
simulations of FEL performance with the SXRSS monochromator.

FEL pulses have a specific temporal and spectral structure, therefore a time-dependent start-
to-end study should be done in order to fully characterize the SXRSS monochromator perfor-
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mance and compare simulation with an experiment. (see Fig. 3.19) The simulation methods
described below allow one to answer all these questions.

We use the “GENESIS 1.3” FEL simulation code [83, 84] to obtain an electric field distri-
bution in space and time at the end of the SASE undulator. The temporal Fourier transform
(Eq. 2.7) allows one to represent this distribution in a frequency domain.

Let us consider a transverse radiation distribution at the end of the SASE undulator at a
frequency ωi. To simulate the transverse distribution of this beam at the grating position, we
apply the Fresnel propagator from Eq. (2.13) with z equal to a distance between the end of the
undulator and the beam’s footprint at the grating. The phase shifter, described in Eq. (2.109)
and the height error phase shifter (Eq. 2.127) are used to simulate focusing of the beam by
the toroidal VLS grating with a certain height error profile. The phase-shifter includes both
aberrations, height error effect and the beam tilt. The tilt is introduced according to a difference
∆ω between the frequency of a beam being currently propagated and the frequency of a beam
that is chosen to be a principle ray of the dispersed radiation (Eq. 2.108).

In our case, the principle ray direction is assumed to pass through an optical centre of
all monochromator components. Physically it is done via M1 pitch angle optimization. The
transformations of the radiation discussed above compute the transverse radiation distribution
(perpendicular to the principle ray after reflection from the optical element), based on optical
element properties and the initial transverse radiation distribution (perpendicular to the princi-
ple ray before reflection from the optical element). We model height error effects associated
with each optical element by applying phase shifters at the position of every optical component,
taking into account the incident angles of the radiation.

After the grating, the beam is propagated to the M1 mirror and, as discussed above, the
height error - related phase shifter is applied. Then after propagation to the slit one may choose
either to model its presence with given width by applying a transparency mask to the field distri-
bution, or to ignore the slit within the algorithm, effectively modeling slit-less monochromator
performance. After modeling M2 (refocusing) and M3 (flat) mirrors and including intermedi-
ate drift spaces one obtains the radiation distribution at the frequency ωi at the entrance of the
seeded undulator. This distribution may be used as an input radiation field for the following
GENESIS application.

Below we present two approaches for an FEL pulse propagation through the monochroma-
tor. Both of them are based on the single frequency beam propagation method, described above
and propagate the same pulse, generated in the SASE undulator. Start-to-end simulated elec-
tron beam was used. Its parameters at the entrance of the SASE undualator are presented at the
Fig. 3.20.

3.3.1 Direct propagation approach

In this straightforward approach the SASE pulse at the end of SASE undulator is decomposed
into monochromatic beams using temporal Fourier transform (Eq. 2.7). As it has already been
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Figure 3.20: Results from electron beam start-to-end simulations at the entrance of SASE undulator.
From left to right: electron beam current, energy and energy spread, emittance along the beam.

mentioned at the beginning of Section 4, every beam is propagated independently through the
monochromator so that every beam obtains a certain tilt with respect to the principal ray at the
grating. At the entrance to the seeded undulator those propagated beams are transformed back
to the time domain. This dispersed 3D SASE radiation distribution is used as a seed for a time
dependent FEL simulations i.e. directly as in real setup without extra approximations.

An example of a propagation algorithm for a pulse at 1000 eV central photon energy is
given below. Monochromator model with no exit slit inserted is used for simulation. First, the
pulse is obtained at the end of SASE undulator in time domain (see Fig. 3.21). Afterwards, it is
transformed to frequency domain (Fig. 3.22). Then the monochromatic beams are propagated
downstream to the grating (Fig. 3.23). At the grating frequency-dependent phase shifters are
applied for simulating focusing and height error (Eqs. 2.109, 2.127). Then the field is propa-
gated to the mirror M1, where the height error phase shifter is applied (Eq. 2.126), to the mirror
M2 (Eqs. 2.110, 2.126), M3 (Eq. 2.126), and then to seeded undulator entrance. In Figure 3.24
we can see the spatial dispersion of our radiation: beams at different wavelengths have different
transverse offsets. Note that due to the spatial dispersion the spectrum is imprinted into the
transverse profile of the radiation (second row, first and second figures from the left). Due to
the limited resolving power of the monochromator individual spikes are not resolved. After the
inverse transformation of the radiation into the time domain we can see all 3 spatial projections
of the spatially dispersed pulse, that, at this point is being overlapped with the electron beam
(Fig. 3.25). In our case the transverse size of the electron beam is typically around 25µm RMS
and is much smaller than the transverse size of the spatially dispersed radiation in the horizon-
tal dimension. Since the radiation will continue to diverge when propagated downstream the
seeded undulator, due to angular dispersion, only a relatively small fraction of the dispersed
beam will interact with the electron beam. Therefore, although an entire spectrum was used in
Figures 9-11 to illustrate the process, during practical simulations we can use fractional spec-
trum to save computing time.
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Figure 3.21: Radiation distribution at the end of SASE undulator in time domain. The average photon
energy is 1000 eV.
Left figure in first row is the transverse intensity distribution. Right figures represent projections of
intensity distributions. Here and below spatial-time domain is represented in spatial coordinates x, y,
and s = ct.
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Figure 3.22: Radiation distribution at the end of SASE undulator in frequency domain.
Left figure in first row is the transverse intensity distribution. Right figures represent projections of beam
distributions at different wavelengths. Note that at this point all wavelengths are transversely overlapped.
Here and below spatial-frequency domain is represented in transverse coordinates x, y, and λ = c/ω.
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Figure 3.23: Radiation distribution immediately after the grating in frequency domain.
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Figure 3.24: Radiation distribution at the entrance of seeded undulator in frequency domain.
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Figure 3.25: Radiation distribution at the entrance of seeded undulator in time domain.

3.3.2 Phenomenological propagation approach

This method is very similar to the one used in the hard X-ray self-seeding (HXRSS) simulations
(e.g. [52, 85, 86]).

In this approach, we first simulate the SASE FEL with GENESIS code to obtain a radi-
ation distribution at the end of the SASE undulator, then apply a temporal Fourier transform
which switches from time to frequency domain (see Figs. 3.26, 3.27). Afterwards, the obtained
radiation spectrum is multiplied by a monochromator instrumental function that characterizes
the monochromator performance based on both monochromator geometry and FEL amplifica-
tion in the seeded undulator downstream the monochromator. In this way the FEL spectrum is
filtered (only a certain spectral bandwidth defined by an instrumental function passes through
the monochromator, while other frequencies are effectively blocked). After applying an inverse
temporal Fourier transform, one obtains the FEL radiation in the time domain that can be used
as a seed for the next undulator section in GENESIS simulations.

In the HXRSS case, the monochromator instrumental function is a transmittance function
of the diamond crystal itself at a given geometry. This function can be either calculated or
measured. In the SXRSS case in order to obtain an effective transmission function one can
make use of a beam propagation method. In the phenomenological approach we use a response
of FEL power amplification of the seed pulse within the seeded undulator section (in other words
- input coupling factor - ICF) from the spatial dispersion effect. Since different frequencies are
spatially separated at the entrance of the seeded undulator, some of them will be overlapped
with the electron beam and some will not. In this way one can measure the mismatching of
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Figure 3.26: 1000eV FEL pulse at the end of the SASE undulator in time domain (a) was transformed
to frequency domain (b). Spectrum was filtered (d) after being multiplied by the monochromator in-
strumental function (Fig. 3.28-f). Afterwards it was transformed back to time domain (c), representing
effective power distribution at the entrance of the seeded undulator.
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Figure 3.27: 500eV FEL pulse at the end of the SASE undulator in time domain (a) was transformed
to frequency domain (b). Spectrum was filtered (d) after being multiplied by the monochromator in-
strumental function (Fig. 3.28-d). Afterwards it was transformed back to time domain (c), representing
effective power distribution at the entrance of the seeded undulator.
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Figure 3.28: Monochromator instrumental functions for different photon energies and source positions
(undulator U8 “in”, leading to source position in this undulator, or undulator U8 “out”, resulting in
the source within undulator U7). Physical slit is not inserted. Inverse Full width at half maximum is
interpreted as an effective resolving power of the monochromator.
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the radiation and the electron beam as a function of the wavelength. It allows one to obtain an
effective monochromator transmission function.

We calculated the instrumental function of the monochromator in the following way. First,
a single wavelength λ0 (or frequency ω0) of a radiation distribution at the end of the SASE
undulator was simulated with the GENESIS code in the steady-state mode. This radiation can
be propagated through all of the optical components of the monochromator to the entrance of the
seeded undulator, used as an input for the GENESIS code that simulates the seeded undulator.
This field is amplified within the seeded undulator in a linear mode of operation for a fixed
distance. At the end the obtained amplified power is recorded. This procedure was repeated for
other frequencies with different wavefront tilts introduced at the grating (Eq. 2.108).

This allows one to simulate an angular dispersion during the radiation propagation with dif-
ferent wavelengths through the monochromator. At the entrance of the seeded undulator the
radiation distributions with different ∆λ with respect to the principal ray will obtain differ-
ent offsets in the dispersive direction: the result of the spatial dispersion of the monochromator.
These radiation distributions can be used as an input radiation field for the GENESIS simulation
within the seeded undulator. Due to the transverse mismatching between the electron beam and
the radiation at different wavelengths, the amplification process will depend on the particular
wavelength offset ∆λ from the principal ray wavelength λ0. If the undulator length is properly
chosen to satisfy the FEL amplification in the linear mode of operation, one may measure the
amplified power as a function of ∆λ. It effectively represents how different frequencies are am-
plified within the seeded undulator after the propagation through the monochromator. In order
to obtain the effective instrumental function of the monochromator, the power distribution must
be properly normalized. Since the radiation propagated through the monochromator is not only
spatially dispersed but also undergoes focusing as well as an aberration and mirror surface error
effects, the amplified power must be normalized by the power obtained with one-to-one imaging
of the radiation at the end of the SASE undulator to the entrance of the seeded undulator. Also
the normalized power dependence should be multiplied by the monochromator transmittance
for a given wavelength, calculated by [81]. In this way the instrumental functions for differ-
ent wavelengths and geometries of the LCLS self-seeding monochromator were obtained (see
Fig. 3.28). If multiplied by the radiation distribution in frequency domain before the monochro-
mator, it gives an effective radiation distribution after the monochromator at the entrance of the
seeded undulator. Nevertheless, in order to maintain causality of the transported radiation in the
time domain, a phase information was introduced into the monochromator instrumental func-
tion. The phases were obtained with Kramers-Kronig relations (this approach was also used for
the HXRSS setup simulation in e.g. [85, 86]). It is worth mentioning that unlike the HXRSS
monochromator simulations, the causality effect is not critical for the SXRSS and is used rather
for purity of the simulation.

What is important is the fact that those instrumental functions are effective ones and are
based on: the source position from which the radiation propagates to the monochromator, the
optical elements properties, the distance to seeded undulator, the FEL amplifier properties,
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etc. The instrumental function curve shows only the spectral bandwidth that will be ampli-
fied downstream of the undulator, but not the bandwidth that is actually transmitted through the
monochromator: while the slit is fully opened, the electron beam filters out a certain spectral
bandwidth to be amplified further (Fig. 3.18). In fact, without the exit slit the entire radiation
spectrum passes through the monochromator.

Consequently, this approach allows one to characterize the self-seeding monochromator
that operates without both entrance and exit slits with an instrumental function. Once it was
done, every propagated pulse is just transformed to the frequency domain, multiplied by the
instrumental function, transformed back to the time domain and amplified further in the seeded
undulator.

3.3.3 Comparison of approaches

Both the direct and the phenomenological approaches used to simulate the slit-less monochro-
mator performance show similar results when comparing the radiation after amplification in the
seeded undulator. In Figures 3.29 and 3.30 one may see that despite an initial difference in
the power and the structure of spectra, the results show a very good correspondence to each
other after amplification in the seeded undulator. The spectrum is shifted due to the electron
energy chirp evolution, induced by wakefields. Initial spectra are different: phenomenological
approach should provide spectrum with a lower spectral density and narrower spectrum since it
includes additional filtering associated with the gain process of the downstream FEL.

The phenomenological approach provides an effective radiation distribution that will be
amplified in the seeded undulator. It is much faster than the direct one in terms of the com-
putational time and is more applicable for batch processing of numerous FEL shots with once
calculated single monochromator instrumental function. This method uses extra assumptions,
since steady-state FEL simulation is used to obtain the instrumental function. Also this method
is not applicable if one wants to perform simulations with a different monochromator or am-
plification parameters, since the monochromator instrumental function depends not only on the
monochromator set-up but also on gain lengths in the SASE and in the seeded undulator as well
as the electron beam parameters. Therefore one must keep in mind that a simulated FEL gain
length during the instrumental function calculation should be similar to the one at which this in-
strumental function would be used for the pulse monochromatization via the phenomenological
approach. Therefore, in general one needs to re-calculate the transmission function for different
setups of FEL.

Unlike the phenomenological method, the direct approach needs significantly more com-
putational power and time to simulate the single SASE radiation pulse propagation through the
monochromator. It does not need a preliminary measurement of the instrumental function, since
dispersion of the radiation is simulated for every run. Also this method is more universal. It
gives a possibility of reusing simulated, monochromatized radiation for simulating the effect of
different configurations of the seeded undulator. Since the radiation after the monochromator
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Figure 3.29: Power of the radiation in seeded undulator. The radiation was propagated through the
seeded undulator with the direct (solid line) and the phenomenological (dashed line) approaches. Photon
energy is 1000 eV .
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Figure 3.30: Spectra of the radiation at the seeded undulator entrance (left figure) and exit (right fig-
ure). The radiation was propagated through the seeded undulator with the direct (solid line) and the
phenomenological (dashed line) approaches. Photon energy is 1000 eV .

is divergent and transversely large, it becomes important to control the interactions between the
propagated radiation and the transverse mesh borders of an FEL simulation software. If non-
absorbing boundary conditions are used (like in the GENESIS code), then after propagation
downstream the seeded undulator, the radiation will be eventually “reflected” from the borders
before the central part starts being amplified. The direct method allows one to obtain the actual
pulse properties after the monochromatization, that makes it very useful for in-depth research of
a monochromator performance. It may be used to cross-check the phenomenological approach
simulations.
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3.4 Comparison with an experiment

The SXRSS monochromator setup commissioning in the LCLS started in November 2013. In
December 19-th the first seeding was achieved at 800 eV photon energy. More systematic study
of the monochromator performance was done during 2014. Results were presented at the FEL
conference in August the same year [78] and published in February 2015 [54]. During that
time an extensive study of the monochromator simulation possibilities was done in parallel to
the commissioning in order to understand the SXRSS setup performance. Self-seeding has
been observed across the nominal photon energy range of 500-1000 eV. Here comparison of an
experiment and start-to-end simulation is presented on the example of seeding at 930 eV energy.

During the experiment the electron beam with a phase space modified with a slotted
foil [87] was used (see Fig. 3.31). It was found that the non-linear energy chirp within the
nominal, e.g. not modified with a slotted foil or collimator, electron beam (particularly, one of
the horns) causes higher heat load on the grating with a little effect on the seeding performance.

(a) nominal electron beam (b) electron beam spoiled with a slotted
foil

Figure 3.31: LCLS electron beams simulation. Phase space (top plots) and current profiles (bottom
plots). Simulation data obtained from [88].

The gas detector [89] and the grating spectrometer [90] located downstream the LCLS un-
dulator modules measure the FEL energy and spectra. By retracting undulators or introducing
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a transverse “kick” of the electron beam it is possible to measure the FEL radiation parameters
between any undulator sections via stopping the FEL process downstream [91]. Exit slit was
retracted during the experiment.

Simulation parameters were reproducing the ones used in the experimental setup. The
electron bunch 6D distribution file was simulated [88] with the “ELEGANT” code [92] up to
the entrance of the LCLS undulator. Initially 150 pC, 10 Million particles bunch with 4 GeV
energy was spoiled with a slotted foil. The simulated foil slit width was 1.3 mm. The electron
bunch was used to provide SASE radiation within the first 7 sections of the undulator. During
the experiment the K value of the first undulator segment U1 was detuned in order to keep the
pulse energy at the grating below 5 µJ. U8 segment of the undulator was retracted to minimize
the incident energy density (fluence) on the grating surface. Evolution of the power and energy
within the SASE undulator is shown on Figure 3.32.
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Figure 3.32: Power and energy evolution within the SASE undulator

After dumping the radiation field and electron beam distributions they were treated sepa-
rately and combined as an input to the seeded undulator simulation. Radiation was propagated
within the monochromator with a direct propagation approach. Electron beam distribution shot
noise in the seeded undulator was automatically arranged by the GENESIS code. This method
is justified by the fact that hromatic dispersion effects in the bypass chicane smear out the mi-
crobunching in the electron bunch produced by SASE lasing in the SASE undulator. But the
chicane dispersion is not strong enough to affect macroscopic parameters of the longitudinal
bunch profile, such as current, emittance, energy spread, etc.

Similarly to the experiment, only fifteen of 23 undulator sections downstream the monochro-
mator were used within the simulation, including drift space at the HXRSS setup which occu-
pies the U16 undulator section. Monochromatized pulse is overlapped with an electron beam
and amplified with improved longitudinal coherence and narrower spectral width compared to
the SASE undulator (see Fig. 3.34). The seeded undulator was tapered [20], and tapering profile
used in simulation was adopted from the experiment (Fig. 3.33). Power and energy evolutions
in the seeded undulator are presented in Figure 3.35.
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Figure 3.33: Undulator tapering profile and quadrupole fields used for simulation and based on corre-
sponding values measured during the commissioning study

The input coupling factor (ICF) in the seeded undulator obtained with the simulation was
found to be inconsistent with the experiment by the factor of 5. It may be explained by a mis-
alignment of optical components. An appropriate power compensation of the seeding radiation
was made to match the simulated power with the experimental values. This compensation re-
sulted in a good agreement of the simulated and measured pulse energy evolutions, presented
on Figure 3.36. Comparison of spectral bandwidth on Figure 3.37 proves a good agreement as
well. It was shown that the self-seeding technique allows one to bring down the LCLS radiation
spectral bandwidth by the factor of 20. Note that the averaged SASE spectrum is additionally
broadened due to an electron energy jitter.

Difference in ICF between the experiment and the simulation shows that seeding quality
may be improved and further study is needed.
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(b) seeded undulator entrance (0m)
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(c) seeded undulator 20 m
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Figure 3.34: The results of the FEL pulse power (left plots) and corresponding on-axis spectra (right
plots) at different positions inside the undulator.
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Figure 3.35: Power and energy evolution within the seeded undulator
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Figure 3.36: Gain length scans showing SASE
growth before the seeding monochromator
(blue squares, three scans) and seeding growth
afterwards (red circles, three scans). During
seeded operation, undulator U1 is detuned to
keep pulse energy on the grating below 5 J
(blue star). Black line shows simulated seed-
ing. Green boxes show undulators inserted dur-
ing seeding; undulator U8 is removed to protect
the grating, and undulators U9 and U16 were
replaced by the self-seeding chicanes. Mea-
sured gain lengths for SASE (∼ 2 ± 0.2m)
and seeding (∼ 1.7±0.2m) match simulations.
All measurements taken with the gas detector.
Reprinted from [54].
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Figure 3.37: Comparison of seeded (solid red
line) and SASE (dashed blue line) spectra at
930 eV for 10 000 shot averages, and seeded
simulation (sim.) averaged over 30 shots
(dotted-dashed black line). Both seeded and
SASE spectra use the slotted foil to produce
a 50 fs beam [87]. Seeded spectra are taken
after undulator U25 and with the slit retracted.
SASE spectra use an optimized configuration
with all undulators. Inset shows the fraction
of FEL energy contained within an integrated
bandwidth when seeding. Reprinted from [54].
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3.5 Commissioning details

During commissioning of the SXRSS monochromator numerous challenges were faced. Below
the main ones are outlined.

3.5.1 Electron beam energy jitter effects

A very important issue of the SXRSS setup operation is an effect of the electron beam energy
jitter. First of all, according to the FEL resonance condition (Eq. 1.1) shot-to-shot fluctuations
in electron beam energy (jitter) cause doubled fluctuations of the FEL amplifier gain curve. On
Figure 3.38 it is illustrated that jitter may be large enough to stop the seed. In case of the current
LCLS operation parameters it is larger than the FEL gain curve.

If the electron beam has an energy chirp, it will affect the properties of the amplified seed
signal. In case of a linear energy chirp, the wavelength of the monochromatic seed will be
shifted. If the chirp is non-linear, then broadening of spectrum will occur. During the com-
missioning a non-linear chirp effect was compensated with a slotted foil. More details were
presented in [78] FEL conference talk.

λ

λ

FEL gain curve

Monochromator line

Jitter

Figure 3.38: An illustration of the effect of an
electron energy jitter. The seeded wavelength
is fixed after the monochromator, so the elec-
tron energy must be set in the way that FEL
gain curve matches it. There will be no seeding
when FEL gain curve due to jitter drifts away.

0

0.2

0.4

0.6

0.8

1

G
D

e
t 
e
n
e
rg

y
 (

m
J
)

0.985 0.99 0.995 1 1.005 1.01 1.015
0

5

10

Relative electron energy (E/E
0
)

fr
a
c
ti
o
n
 o

f
s
h
o
ts

 (
%

)

Figure 3.39: A scatter plot shows the FEL
pulse energy from the gas detector vs measured
electron bunch energy for individual shots at
930 eV. Histogram at bottom shows the jitter
of the central electron beam energy. The seed-
ing monochromator was set slightly below the
average electron energy to match the best las-
ing condition. 45% of the shots fall outside
the FWHM of FEL seeded region. Reprinted
from [54].

Both effects were measured during the SXRSS commissioning and are presented in a cor-
relation plot of the seeded FEL power and electron beam energy on Figure 3.39.

Another possible causes of the wavelength jitter are instability of the M1 mirror pitch angle
and electron beam orbit fluctuations [93]. There are ongoing efforts to reduce the electron
energy jitter and potentially increase the average seeded power by the factor of 2, and there is
always a possibility to overcome the jitter problem by sorting shots with a certain electron beam
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Figure 3.40: A comparison of 20 single-shot
seeded (solid light red lines) and SASE (dashed
grey lines) spectra shows fluctuations in both
peak brightness and central seeded wavelength.
Bold lines show average performance for both
seeding and SASE. Reprinted from [54].

Figure 3.41: Slotted foil selects part of the
beam. Seeded spectrum bandwidth is brought
down when a non-linear chirp is eliminated.
Reprinted from [78].

parameters [54]. This way, the self-seeding setup causes extra demands on the electron beam
energy stability.

3.5.2 Overlap diagnostics

An important aspect of the SXRSS scheme compared to the HXRSS is the need to realign the
seeded radiation after the monochromator with an initial radiation path in order to overlap it
with the electron beam transversely (Fig. 3.42).

Chicane dipoles

Monochromator optics

Overlap required

Radiation

Electrons

BOD10 BOD13

Figure 3.42: Overlap diagnostics at the LCLS SXRSS. Adapted from [94]

The beam overlap diagnostics (BOD) is used to measure the transverse positions of both
photon and electron beams [94]. Each BOD unit consists of crossed wires and a YAG screen
(see Fig. 3.43). The electron beam transverse position is determined by scanning the crossed
wires positions while measuring a current loss downstream. When transverse kick of the elec-
tron beam is applied, seed radiation transverse position is detected on the YAG screen fluores-
cence (Fig. 3.44). The spontaneous emission stripe from the electrons in the final chicane bend
magnet can be used for the vertical alignment of the x-rays and electrons.

Aligning radiation and electrons is achieved by matching 4 degrees of freedom: radiation
offsets and tilts in both “x” and “y” dimensions. Mechanically it is provided by tuning grating
“y” position (sagittal curvature contribution), and M3 “x” position along with pitch and roll an-
gles. Alignment of the optics is proceeded sequentially from the grating to the M3 mirror. Worth
mentioning that a strong CSR background causes additional difficulties in the seed radiation de-
tection on BODs. The exit slit insertion was found to be useful for the alignment. Therefore
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Figure 3.43: Diagram of beam
overlap diagnostics design.
Reprinted from [95]

Figure 3.44: Image of the BOD10 YAG fluores-
cence. Diffracted X-rays are seen on top of the syn-
chrotron radiation stripe. 15 µm exit slit is inserted
limiting the dispersed radiation in “x” dimension.
Reprinted from [95]

slit inclusion into monochromator design is desirable, albeit it was found that monochromator
works well in slit-less regime.
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3.5.3 Grating damage concerns

Due to a high power of the LCLS FEL, damage of the platinum-coated grating was found to be
a matter of a major concern for the SXRSS operation. As mentioned before, the grating was
chosen to be platinum coated. It is expected that a B4C coated grating would have a higher
damage threshold than the platinum coated. However, in X-ray regime mirrors suffer from
carbon contamination effect [96], and platinum coating allows one to perform oxygen cleaning
of the surface [97]. On the other hand, platinum coating is more sensitive to the radiation
damage. The damage of platinum coatings in the soft X-ray at grazing incidences was studied
exclusively [98] in order to determine safe power levels.

An important value for the damage threshold estimation is the energy absorption dose per
atom [98–100] and [101, p. 233]:

DA =
F (1−R) sin θi

latt nA

=
Epulse(1−R) sin θi

2πσ2lattnA

, (3.1)

where F is the fluence,Epulse - the energy in one radiation pulse,R - reflection coefficient, θi
is a grazing incidence angle, nA is a material-specific density of atoms and σ is the RMS of the
Gaussian beam intensity distribution immediately in front of the grating. Here latt is the extinc-
tion length. Multi-shot damage on the platinum-coated silicon substrate at 2 degrees incidence
angle1 was observed at 0.75 J/cm2 average fluence. Based on the experimental conditions,
6− 9 eV absorption dose per atom was estimated. It exceeds the dose, required to bring a solid
to the melt temperature Dmelt ≃ 0.47 eV/atom by approx. 14 times. As mentioned in [98],
this inconsistency can be explained with the so called “two temperature model” [102] (different
heat diffusion within electron and ion systems) and the ballistic transport of electrons [103].
The same effect was reported in [104]. This way the energy deposition length was introduced
extending the depth at which the pulse energy is distributed up to 24 nm (by the factor of 14
with respect to the extinction length d of 1.7 nm). Based on this study, the SASE undulator
pulse energy was chosen not to exceed 5 µJ , or 25 times lower than the measured threshold.

Energy per pulse at the grating can be measured straightforwardly during the commissioning
by retracting the entire monochromator optics along with the undulators downstream. It allows
one to measure the FEL energy produced by the SASE undulators with the gas detectors [89].
The incident energy can be lowered by detuning or removing the frontmost SASE undulator
sections without affecting the FEL source properties. Heat from an absorbed energy is removed
from the grating via a copper heat sink. Another safety measure is the protection of the grating
from a spontaneous radiation from the SASE undulator. This way a boron carbide “chin guard”
is placed at the front side of the grating.

A minimum fluence for seeding was found by start-to end direct method propagation. 9 FEL
runs for four photon energies were studied with the start-to-end simulation using the slotted foil
- treated electron beam. An FEL radiation was propagated though the monochromator with a

1Incidence angle was set to two degrees to mimic 1◦ blaze angle of the grating and 1◦ radiation grazing inci-
dence angle on the grating, designed for SXRSS monochromator.
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Figure 3.45: Pulse energy (subfigure (a)) and peak power (subfigure (b)) evolution of 700 eV FEL pulses
in the seeded undulator. Red dashed curves depicts amplification of noise, while green solid curves
represent amplification of the seed signal along with noise. In deep linear regime at 15.2 m position
pulse power values are compared and pulse energy SNR ratio 50 is found. Power profiles and spectra of
pulses are compared in subfigures (c) and (d) respectively. Note the large difference of a peak spectral
brightness.

direct approach and an electron microbunching was assumed to be smeared with the chicane.
For an every run, simulation in the seeded undulator was done with a seed signal (providing
FEL amplification of both signal and noise) and without (only noise, e.g. SASE radiation was
amplified). This way it became possible to distinguish the contributions of the seeded and SASE
radiation after an FEL amplification and define a signal-to-noise ratio (SNR) for a seeding. The
following definition was accepted: SNR is the ratio of mean pulse energy of a signal (seed) over
a SASE mean pulse energy (noise in the absence of a signal).

SNR =
⟨Esignal+noise⟩ − ⟨Enoise⟩

⟨Enoise⟩
(3.2)

The seeding requirement for SNR value was chosen to be 3, e.g. 75% of the pulse energy is
amplified seed signal and the rest 25% is the noise. Since a spectral bandwidth of a seed signal
is considerably smaller than the one of noise, spectral brightness of noise is low. An example
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Figure 3.46: Black line - minimum fluence to obtain a reasonable signal-to-noise ratio. Dotted blue line
- maximum fluence guaranteed to avoid multi-shot damage. (it is equivalent to 1.25 µJ with undulator
U8 inserted or 5 µJ with undulator U8 removed). Reprinted from [95]

of the FEL signal and noise amplification is presented on Figure 3.45
Both upper and lower limits of the fluence on the grating are depicted on Figure 3.46.
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Chapter 4

Monochromator design for the European
XFEL

In this chapter we present a study of the soft X-ray self-seeding opportunities for the European
XFEL, based on start-to-end simulations for an electron beam with 0.5 nC charge [105]. Sim-
ulations show that the FEL power of the transform-limited soft X-ray pulses may be increased
up to 1 TW by tapering the baseline (SASE3) undulator.

4.1 European XFEL

The European XFEL is an international X-ray research laser facility currently under construc-
tion in Hamburg, Germany. It is based on TESLA (Tera-Electronvolt Superconducting Linear
Accelerator) technology, allowing to reach nominal electron energies up to 17.5 GeV

Figure 4.1: Schematic overview of the electron beam and the radiation distribution between accelerator
and experimental hall. Two electron beamlines include the three undulator systems for SASE FEL. The
distance between the electron switch and the experimental hall is ∼1300 m. Reprinted from [106]
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Figure 4.2: Time structure of European XFEL ra-
diation pulses generated by electron bunch trains
with up to 2700 bunches in each. Bunch charge is
20− 1000 pC. Reprinted from [107]
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Figure 4.3: Radiation pulse length
(FWHM) grows proportionally to the
bunch charge in the SASE saturation.
Reprinted from [108]

Three undulator lines (Hard X-ray specialized SASE1 and SASE2 along with soft X-ray
dedicated SASE3) will deliver FEL radiation to the experimental hall (Fig. 4.1) at certain range
of photon energy each.

SASE3 undulator line is designed mainly for soft X-ray photon energies and provides radi-
ation from ranging from 260 eV to 1.5 KeV within a single electron beam energy of 8.5 GeV
changing only undulator gap (see Fig. 4.4). Switching among nominal electron energies allows
to reach higher photon energies.

Radiation will be delivered to the experimental stations in pulse trains carrying up to 2700
pulses within train that allows to fulfill photon-hungry experiments needs (see Fig. 4.2).

European XFEL single pulse length depends mostly on the electron bunch length. With five
nominal bunch parameters, one can find a linear dependence (see Fig. 4.3).

4.2 SASE3 undulator line

4.2.1 Description

SASE3 undulator is located in the European XFEL tunnel downstream SASE1 undulator. [101,
110, 111] It has a cell structure (see Fig. 4.5) and consists of 21 cells. Undulator gap is variable
and its main parameters are outlined in Table 4.1.

The “fresh-bunch” technique [115] makes it possible to deliver an unspoiled electron beams
to the entrance of the SASE3 undulator. It is achieved by “kicking” the bunch out of the lasing
orbit e.g. in SASE1 and “kicking” it back later to lase in SASE3.

Downstream the undulator the SASE3 photon beamline is located [113, 114], carrying out
distribution and refocusing of the FEL radiation to the instrumental stations. Its layout is pre-
sented on Figure 4.6. The beamline includes VLS monochromator, which allows operation with
10 mJ pulse energies and higher, depending on the FEL beam divergence [113, p. 43].
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Figure 4.4: Combination of European XFEL nominal electron energy working points and undulator
variable gap allows to reach wide range of photon energies at SASE3 beamline. Reprinted from [109].

e -

Intersection 

1.1 m 

Undulator Segment 5m 

Undulator Cell 6.1m 

Figure 4.5: Cell structure of European XFEL undulators. 5 meter undulator section alternate with 1.1 me-
ter intersections, accommodating phase shifters, electron beam optics and diagnostics. Reprinted from
[112].
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Units
Undulator period 68 mm
Operation gap range 10-25 mm
K-range 9.0-4 -
Radiation wavelength range
@17.5 GeV 1.22-0.27 nm
@14.0 GeV 1.90-0.42 nm
@12.0 GeV 2.59-0.57 nm
@8.5 GeV 5.17-1.15 nm
Periods per cell 73 -
Total number of cells 21 -
Segment length 5 m
Intersection length 1.1 m
Physical length 128.1 m
Magnetic length 105 m

Table 4.1: Parameters for the SASE3 undulator. Adapted from [101, 110, 111].

Two scientific instruments utilize SASE3 radiation: Small Quantum System (SQS) [116,
117] and Spectroscopy and Coherent Scattering (SCS) [108].

4.2.2 Source study

In order to perform calculations of the grating beamline performance, one needs the effective
source size and position through the operating photon energy range. In our case of reimaging
the monochromatized FEL radiation, its source is at a same time an object for the focusing
system. In FELs radiation is emitted by the electron beam at an every undulator period with
intensity increasing exponentially with undulator length. This results in development of a com-
plicated non-Gaussian shape of the self-reproducing mode. Properties of the latter depend on
the electron beam parameters. In this section it is described how FEL source was modelled as
a Gaussian distribution with certain parameters, as size of the waist and its position within an
undulator module.

The properties of the effective source are found from the steady-state (single frequency)
simulations with the help of the GENESIS 1.3 code [83, 84]. The simulations include electron
beam parameters (emittance, energy spread, current) correspondent to the nominal 0.1 nC elec-
tron bunch. Beam parameters for the steady-state simulations have to be chosen to match the
ones of the bunch slice with the maximum peak current. The properties of the effective source
can be found from the simulated transverse radiation distribution at the SASE undulator exit.
Position of the model source is obtained by propagating the simulated field backwards from the
undulator exit in order to find the maximum on-axis intensity. Propagation is performed with
the Fresnel propagator algorithm described in Sec. 2.1.2. The RMS size of the model Gaussian
source is calculated based on RMS of the radiation divergence angle. These parameters are

81



Figure 4.6: Optical layout of SASE3 beamline. Location of optical elements is given as a distance from
the FEL source point that is assumed to be fixed and located in the middle of the second to last undulator.
Reprinted from [113, 114].

Intensity

[m]

[m
]

−1 0 1

x 10
−4

−1

0

1

x 10
−4

0 0.02 0.04 0.06

−1

0

1

x 10
−4

FWHM = 5.73e−05 
 RMS= 2.48e−05

Y projection

[m
]

I [a.u.]

−1 0 1

x 10
−4

0

0.01

0.02

0.03

0.04

0.05 FWHM = 5.75e−05 
 RMS= 2.58e−05

X projection

[m]

I [
a.

u.
]

[m]

[m
]

Phase

−1 0 1

x 10
−4

−1

0

1

x 10
−4

(a) transverse distribution

Intensity

[rad]

[r
ad

]

−2 0 2

x 10
−5

−2

0

2

x 10
−5

0 0.02 0.04 0.06

−2

0

2

x 10
−5

FWHM = 1.64e−05 
 RMS= 6.76e−06

Y projection

[r
ad

]

I [a.u.]

−2 0 2

x 10
−5

0

0.02

0.04

0.06 FWHM = 1.64e−05 
 RMS= 6.55e−06

X projection

[rad]

I [
a.

u.
]

[rad]

[r
ad

]

Phase

−2 0 2

x 10
−5

−2

0

2

x 10
−5

(b) angular distribution

Figure 4.7: Transverse and angular distributions of the FEL radiation at the end of a SASE3 undulator
section. Here h̄ω = 1 keV .
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Figure 4.8: Variation of the radiation distribution parameters as a function of the position from the end
of the SASE3 undulator section in linear operation mode with nominal 0.1 nC electron bunch. Two
energies of 500 eV (subfigure ‘a’) and 1000 eV (subfigure ‘b’) presented. Top plots depict standard
deviation of the radiation intensity distribution. Middle plots - measured FWHMs of distributions. Solid
lines represent tangential direction “y” and dashed - sagittal one “x”. Bottom plot - maximum of the
distribution dependence. Dotted lines show corresponding parameters for model beams.

related by
ϵ = σ′σ = λ/4π , (4.1)

where the product of the RMS divergence angle by the RMS source size is the emittance ϵ of the
photon beam. For a two-dimensional distribution the definition of the Gaussian beam emittance
applies to each direction.

A transverse radiation distributions were obtained at the end of the undulator section U5.
The 1000 eV photon energy distribution is presented on Figure 4.7 along with its angular dis-
tribution (directivity diagram).

RMS and FWHM of the transverse radiation distribution and its maximum intensity as a
function of position of the propagated radiation distribution are presented on Figure 4.8. Note
symmetrical and asymmetrical behavior for RMS and FWHM dependences correspondingly.
RMS size of the transverse radiation distribution is a convenient way to characterize size of
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Figure 4.9: Position and size of the model Gaussian source, in the SASE undulator for different photon
energies

its waist and evolves symmetrically when propagated through the waist for any arbitrary non-
Gaussian beam [118]. In fact, an FEL source transverse distribution is not Gaussian. Nev-
ertheless, Gaussian beam was found to be a convenient way to simulate the FEL radiation
propagation analytically.

A resulting dependence of the model source parameters from the photon energy is presented
on Figure 4.9. This correlation of the source properties with photon energy is accounted for in
the current monochromator design.

Transverse coherence properties of an FEL radiation allow to avoid the entrance slit instal-
lation: grating grooves are illuminated coherently [79, 80, 119].

4.2.3 Reimaging study

σ

z

Figure 4.10: The illustration of the spherical wavefront of the Gaussian beam used as an input for the
second undulator. Transverse distribution is generated in a way to converge to the waist of size RMS σ,
at a distance z downstream the undulator.

Another very important aspect of SXRSS monochromator performance is to overlap a
monochromatized radiation (image) with an electron beam in the most effective way along the
undulator. In our case reimaging does not imply focusing to the minimal spot with maximum
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Figure 4.11: Input coupling factor [arb. units] in the seeded undulator as a function of the Gaussian waist
size and it’s position at reimaging. Zero in length scale indicates an undulator entrance.

intensity at certain position, but overlapping the radiation with the electron beam along the
maximum path in order to let them interact more efficiently. Large image waist will cause
small energy density overlapped with electron beam, too small image will diverge way before
electron beam would be able to interact with it. Optimal position of the image along the seeded
undulator is also important. We can model this dependence numerically with GENESIS steady-
state simulation. A Gaussian beam transverse distribution is used as an input radiation field. It
is generated in the way that it converges at certain distance z downstream the undulator to the
waist of a certain size s (see Fig. 4.10). This way we have two parameters of the model image to
optimize: Gaussian waist size and its position downstream the undulator. We can optimize both
size and position of the reimaged waist for the maximum ICF. On Figure 4.11 the parameter
space of ICF is simulated for two energies: 500 and 1000 eV.

We can see that optimal parameters for both energies are approximately the same, but toler-
ances for the lower energy are more restrictive. Also it is technically more desirable to reimage
with slightly larger waists in order to relax requirements for waist position parameter. Here
based of FEL theory we assume that obtained optimum parameters apply for both horizontal
and vertical dimensions for FEL.
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4.3 Monochromator setup description

4.3.1 Optics layout and parameters

Soft X-ray self-seeding (SXRSS) monochromator setup for the European XFEL was initially
designed in 2012 [120], has been noticed in the TDR revision [121]. Since that time a suf-
ficient progress has been made by the LCLS R&D, ending up with a new improved design
[74, 77]. This new monochromator design has been adapted and optimized for the European
XFEL undulator system and its performance has been studied in 2013 [82]. In 2015 successful
commissioning in LCLS proved feasibility of SXRSS of FELs with current design [54] and
provided more information to take into account during SXRSS design for the European XFEL.

The next design iteration that takes into account the LCLS commissioning experience is
presented in this work.

The overall self-seeding setup proposed here consists of three parts: a SASE undulator, a
self-seeding grating monochromator and an output undulator in which the monochromtic seed
signal is amplified up to the TW power level.

A layout of the self-seeding setup based on the SASE3 undulator system for the European
XFEL baseline is sketched in Fig. 4.12. SXRSS monochromator replaces undulator section U7
without disturbing the “FODO” electron beam focusing system. Calculations show that in order
not to spoil the electron beam quality and to simultaneously reach signal dominance over shot
noise, the number of cells in the first (SASE) undulator should be equal to 4. This way, SASE
radiation is produced in undulator sections U2-U5. Undulator section U6 is always opened,
since monochromator in the current design is optimized for the source position in undulator
section #5: nearly 10 meters from the grating. Doing so allows to decrease the energy den-
sity on the grating footprint, that is crucial for the high repetition FEL operation. Section U1
is reserved for FEL study and low current operation. Undulator sections U8-U22, defined as
“seeded undulator”, amplify monochromati radiation, delivered to the user experimental sta-
tions. Taking advantage of the SASE3 undulator line length and tunable undulator gap it is
convenient to apply undulator tapering technique as way to extract more FEL power than that
at saturation. High monochromaticity of the pulses generated with the self-seeding technique
make the tapering very efficient.

Fig. 4.13 shows the optical configuration of the self-seeding monochromator. Table 4.2
summarizes the optical parameters of the setup.

SASE undulator seeded undulator

undulator

sections

1
2 3 4 5

6
8-22

7

monochromator
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electron 

bunch

Monochromatic

fully coherent

FEL radiation

electron 

dump

Figure 4.12: Design of the SASE3 undulator system for TW mode of operation in the soft X-ray range.
SXRSS monochromator. Undulator sections U1 and U6 are retracted.
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Element Parameter Value at photon energy Required
precision Unit300 eV 700 eV 1200 eV

G Line density (n) 500 0.2% l/mm
G Linear coeff (n1) 0.615 0.5% l/mm2

G Quad coeff (n2) 0.001 50% l/mm3

G Groove profile Blazed 0.8◦ - -
G,M1 Roughness (RMS) - 1 nm

G Tangential radius 195 1% m
G Sagittal radius 0.32 10% m
G Diffraction order +1 -
G Incident angle 1 - deg
G Exit angle 3.82 2.61 2.09 - deg

SASE undulator distance1 8870 - mm
Source distance1 9640 9810 11500 - mm

Source size (σintensity) 20.0 16.3 14.8 - µm
Image distance1 1507 1501 1513 - mm

Image size (σintensity) 0.83 0.87 0.93 - µm
Seeded undulator distance1 4430 - mm

M1 Location12 47.4 63.4 73.9 - mm
M1 Incident angle 2.41 1.80 1.55 - deg
S Slit location1 1505 1 mm
S Slit width variable - -

M2 Location1 1818 1 mm
M2 Incident angle 0.859 - deg
M2 Tangential radius 39.4 1% m
M3 Location1 1948 - mm
M3 Incident angle 0.859 - deg

Optical delay 740 605 547 - fs

Table 4.2: Parameters for the SXRSS monochromator x-ray optical elements
1Distance to the grating.
2 Principal ray hit point.
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4 mm
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M1

M2
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slit

seeded undulator
chicane

dipoles

Figure 4.13: Layout of the SASE3 self-seeding system, to be located in the space freed after removing
the undulator segment U5. G is a toroidal VLS grating. M1 is a rotating plane mirror, M2 is a tangential
cylindrical mirror, M3 is a plane mirror used to steer the beam. The deflection of both electron and
photon beams is in the horizontal “x” direction that matches a dispersive dimension

The design of the monochromator was optimized with respect to the resolving power, seed-
ing efficiency, spatial constraints in the undulator and grating damage concerns. The design
energy range of the monochromator is in the 0.3 keV - 1 keV interval with a resolving power
exceeding 7000. It is only equipped with an exit slit. A toroidal grating with a variable line
spacing (VLS) is used for imaging the FEL source to the exit slit of the monochromator. The
grating has a groove density of 500 lines/mm. The grating will operate in fixed incident angle
mode in the +1 order. The incident X-ray beam is imaged at the exit slit and re-imaged at the
entrance of the seed undulator by a cylindrical mirror M2. In the sagittal plane, the source
is imaged at the entrance of the seeded undulator directly by the grating. The monochroma-
tor scanning is performed by rotating the post-grating plane mirror. The scanning results in
a wavelength-dependent optical path length. Therefore, a tenability of the electron bunch path
length in the magnetic chicane in the range of 0.03 mm is required to compensate for the change
in the optical path.

Unlike the initial European XFEL SXRSS monochromator setup [82], in this work it is
proposed to retract the undulator segment U6 and to use a U5 segment as the last undulator
module in which FEL source is located. This choice has couple of reasons:

1. When the source is located in the segment U6, its reimaging with grating in the sagittal
plane into the seeded undulator cannot be done efficiently due to a significantly larger
undulator section length

2. Larger distance from the source to the grating ∼ 10 m vs ∼ 4 m leads to a larger radiation
footprint on the grating, allowing to relax the grating damage - related requirements.

3. Geometrically it becomes possible to reach higher resolving power of the monochroma-
tor, seeding the entire electron beam with longitudinally coherent pulse.

Compared to the previous design for the European XFEL [82], the slit position is changed
from ∼ 1.35 m from the grating to ∼ 1.5 m distance. Focusing properties of the grating were
modified accordingly. It leads to the higher angular dispersion in the reimaged waist in the
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seeded undulator, eliminating PFT effects downstream the undulator. In fact, referring to [54],
slit itself may not be used during the self-seeding operation. Instead it be used for an alignment
of optical components of the monochromator and for possible FEL study.

4.3.2 Dispersive grating

Similar to the LCLS SXRSS monochromator design, the first optical component is the grating.
It has a fixed incidence angle of 1 degree, that allows one to distribute radiation over a large
area and minimize a radiation damage.
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Figure 4.14: Reflectivity of thick mirrors of platinum and B4C. 2◦ incidence angle is used to simulate
1◦ incidence angle on the grating with ∼ 1◦ blaze angle.

It has a toroidal shape, allowing it to carry out focusing of the incident radiation. The
toroidal shape exhibits two radii of curvature: tangential (in plane with incident radiation) and
sagittal (in plane, perpendicular to the incident radiation). Source in a tangential plane is reim-
aged onto the slit, where according to the initial LCLS design wavelength filtering should take
place. In a sagittal plane source is reimaged directly into the seeded undulator.

Dispersion takes place in the tangential plane. Line spacing of the grating is variable (VLS).
If decomposed polynomially, constant component is responsible for the dispersion. The linear
component compensates the wavelength dependence of the FEL source position, discussed in
section 4.2.2. This component of a VLS grating acts as a lens with a wavelength-dependent
focal distance. The quadratic component allows one to eliminate a coma aberration caused by
a non-elliptical shape of the grating.

The grating is coated with a layer of platinum, since is has both a good reflectivity along the
entire photon energy range (see Fig.4.14) and can be cleaned from a carbon contamination with
the oxygen-discharge method [97].

The efficiency of the grating should be optimized over the range of photon energies where
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Figure 4.15: Efficiency and reflectivity of the Platinum-coated grating as a function of photon energy at
different blaze angles. These plots assume a constant incident angle of 1 degree. The optimal blaze angle
was found to be 0.8 degrees

the grating will be used. It was done by adjusting the blaze angle. The blazed profile is substan-
tially superior to laminar alternative. For the specified operating photon energy range, the opti-
mal blaze angle is 0.8 degree in means of optimal efficiency and overall reflectivity (Fig. 4.15).
These dependencies were calculated using the code “GSolver 5.2” [122].

Compared to the previous monochromator design [82], better grating grooves illumination
along with higher demagnification ratio caused rise in resolving power, that allowed one to
decrease line density. Latter resulted in 1-st order efficiency growth by up to 30% in 500eV
region (see Fig. 4.16)
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Figure 4.16: Comparison of the grating efficiency at two line densities of 1123 and 500 lines per mil-
limeter with an optimized blazed angles for each.
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4.3.3 Radiation transport efficiency

It is important to calculate the expected total transmission of the monochromator beamline. The
reflectivity of the mirrors was calculated using the code CXRO [123]. Mirrors are assumed to
be platinum-coated.

The combining effect of two fixed angle mirrors M2 and M3 cannot be neglected. In
the soft X-ray range, platinum has reflectivity of about 83 % at 0.86 degree grazing angle.
The compound loss over two last reflections is thus appreciable. The most significant factor
in the post grating efficiency is the low reflectivity of the rotating plane mirror M1. This is
because the first post-grating mirror operates at a relatively large incident angle of about 2
degrees. Overall and element-wise efficiency of the monochromator beam transport is presented
on Figure 4.17 for the π-polarization component. Values for the σ-polarization component do
not differ significantly.
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Figure 4.17: Grating efficiency, reflectivity of the post-grating optical components (rotational M1 mir-
ror and combined effect of M2 and M3 mirrors) of the monochromator and overall efficiency of the
monochromator beam transport without the exit slit. The grating and the three mirrors are platinum-
coated.
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4.3.4 Energy tuning and optical delay

In order to maintain a constant direction of the exit beam, a scanning post grating mirror is
placed in the diffracted beam, and rotated to direct the beam towards the exit slit. Thus, with
a fixed grating and exit slit one can maintain a good focus over a wide photon energy range
by simply translating and rotating a plane mirror to aim the diffracted light at the exit slit.
Translating the mirror during rotation scanning can be achieved by pivoting the mirror at a
point above the center of the mirror. During the energy tuning the beam “walks” along the
surface of M1, as shown in Fig. 4.18.

Grating

Rotating mirror M1

0.14 mm

1.99 mm

Figure 4.18: Principle of photon energy tuning. A plane scanning mirror, M1, is rotated to maintain a
fixed exit beam direction and focal spot at the exit slit. The mirror M1 and grating are schematically
shown for two photon energies: 1 keV (solid) and 0.5 keV (dashed line).

The optical delay caused by the use of the grating monochromator is about 0.7 ps and its
energy-dependence is shown in Fig. 4.19.

The delay is not constant, but varies with the energy due to the fact that X-rays reflect off the
post-grating mirrorM1 at different points, and take different optical paths as the energy is tuned.
The image on the slit plane is also found to vary by 1 µm in the dispersion direction, amounting
to a change of 1 µrad in the angle of incidence, which is small compared to the divergence of
the beam at the slit plane. As such, the impact of this effect on the monochromator performance
is negligible.

4.3.5 Electron chicane

The electron beam chicane contains four identical dipole magnets, each of them 0.5 m-long.
The choice of the strength of the magnetic chicane only depends on the maximum delay that we
want to introduce. Parameters discussed below fit with a short, 5 m-long magnetic chicane to be
installed in place of a single undulator module. Such chicane, albeit very compact, is however
strong enough to create a sufficiently large transverse offset for the installation of the optical
elements of the monochromator.
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Figure 4.19: Optical delay caused by the use of monochromator as a function of photon energy.

Contrary to [82], at the current monochromator design proposal, due to reduction of line
density in the grating down to 500 l/mm , maximum optical delay was also reduced down to
740 fs , as presented on Figure 4.19. It allows one to operate SXRSS setup freely with beam
energy 8.5 GeV and 12 GeV along entire working photon energy range in case of an average
magnetic field of 0.82 T along each dipole magnet (see Fig.4.20). Each electron beam energy
has a certain range of photon energies that it can radiate with inside the undulator due to a lim-
ited gap values. At 12 GeV undulator gap limits FEL the resonance photon energies lower than
500 eV . Higher electron beam energies are more beneficial for the FEL process. Electron beam
energies of 14 and 17.5 GeV are already beyond the limits of the chicane performance. In this
way current design satisfies the European XFEL operation with 2 of 4 current nominal elec-
tron energies, allowing relatively flexible interaction with other beamlines in terms of common
electron beam utilization.

4.4 Monochromator performance study

4.4.1 Gaussian beam optics

In general, as discussed in section 4.2.2, FEL source is not Gaussian, but it allows one to opti-
mize monochromator parameters for optimal FEL performance. Further calculations are based
on Gaussian beam optics method described in section 2.1.3. Focusing scheme for both tangen-
tial and sagittal dimensions along with waist positions convention is shown on Figure 4.21.

Dependence of a distance from the grating to the object and the size of the latter from the
photon energy are shown on Figure 4.22. These values are used for analytical calculations. In
tangential plane FEL source is reimaged into the slit position. Location and size of the waist
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Figure 4.20: The dipole magnetic field, required to compensate the optical delay caused by the
monochromator as a function of photon energy.

are presented on Figure 4.23. One can see that drift of the waist with respect to the wavelength
is within its Rayleigh range. M2 mirror carries out reimaging of the waist at the slit into the
seeded undulator in tangential plane (Figure 4.25), while grating reimages it in the sagittal plane
from the undulator source.

Monochromator was optimized to reach an optimal input coupling factor in the seeded un-
dulator along the entire energy range. Waist position of the sagittal plane is off the optimal
one for 1 keV, but as mentioned in section 4.2.3, higher photon energies as well as large waists
greatly relax reimaging requirements. Coupling in the tangential plane was achieved much bet-
ter, because more degrees of freedom among monochromator parameters were available for
this purpose. Also, since dispersion takes place in a tangential plane, improper reimaging in
this plane would affect monochromator’s resolving power. Beam focusing quality in a sagittal
plane affects ICF only. Footprint on the grating is presented on Figure 4.27.
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Figure 4.21: Tangential (top) and sagittal (side) views of the principal optical components, and radiation
propagation paths and waists. Waist positions arrows reveal the conventions used further in Figures 4.22-
4.26.
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Figure 4.22: SASE undulator source waist size
and position.
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sition. Dashed line depicts the slit position
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Figure 4.24: Seeded undulator sagittal waist
size and position. Dashed line depicts the
seeded undulator entrance.
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Figure 4.25: Seeded undulator tangential waist
size and position.
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Figure 4.26: Seeded undulator waist evolution for sagittal (left subfigure) and tangential (right subfigure)
planes.
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Figure 4.27: Radiation intensity footprint on the grating. Grating limits are represented with solid vertical
lines. The grating length of 2.5 cm is assumed in simulations.
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4.4.2 Ray-tracing

The optical system was simulated using the ray-tracing code SHADOW [124] in order to eval-
uate the performance of the monochromator. The reason for modeling the monochromator
using ray-tracing is the need to check the results found by wave optics calculations, especially
minimization of aberrations. The source has been modeled as a Gaussian-shaped beam with a
Gaussian divergence distribution as a function of wavelength, since the XFEL source is nearly
transform-limited. We performed ray-tracing simulations for 500 and 1000 eV cases at three
different photon energies for each. We assumed the RMS values of 17.4 µm for the source size,
and 11.3 µrad for the beam divergence for 500 eV and 15 µm with 6.56 µrad respectfully for
1000 eV case.

(a) 500 eV ± 50 meV (b) 1000 eV ± 200 meV

Figure 4.28: Results from ray tracing simulations at the slit position for 500 eV (a) and 1000 eV (b)
photon energies, 3 lines each, obtained from the ray-tracing program SHADOW. Dispersive axis “x” is
oriented vertically on the plot.

No mirror height errors were accounted for. In this way, the FEL source has been propagated
over the grating and the exit slit plane, and then over the refocusing mirror. Infinite dimensions
of optical elements assumed. Ray-tracing results at the plane of the exit slit for photons of
500 eV and 1000.0 eV are shown in Fig. 4.28. The histograms show that in the dispersive
(tangential) and non-dispersive (sagittal) directions the distributions are almost Gaussian. As
it can be seen from the figure, the focusing properties of the monochromator at these photon
energies are satisfactory, and resolution is larger than 5000. Fig. 4.29 displays results of ray-
tracing simulations 1.5 meters downstream the entrance of the second undulator.

The location of the beam focus, shown in Fig. 4.30, was found to vary with the energy
around the slit. Fig. 4.30 also shows a comparison between results found with ray tracing and
wave optics calculations. Fig. 4.31 summarizes the energy resolution obtained from the linear
dispersion and the FWHM of the spot size at the exit slit plane as a function of the photon energy.
Comparing the waist position to the one found by wave optics calculations, one can see that
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(a) 500 eV ± 50 meV (b) 1000 eV ± 200 meV

Figure 4.29: Results from ray tracing simulations at 1.5 m downstream the entrance of the second
undulator for 500 eV (a) and 1000 eV (b) photon energies, 3 lines each, obtained from the ray-tracing
program SHADOW. Dispersive axis “x” is oriented vertically on the plot.

there is a very good agreement between coherent and incoherent models. However a complete,
straightforward analysis of the full self-seeding monochromator setup can be performed in terms
of wave optics only.
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Figure 4.30: Focusing at the slit position. Vari-
ation of the focus location as a function photon
energy.

400 600 800 1000 1200
8000

10000

12000

14000

16000

18000

20000

22000

24000

R
es

ol
vi

ng
 p

ow
er

Photon energy [eV]

 Gaussian optics
 Ray tracing

Figure 4.31: Resolving power of the
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ray-tracing simulation results provide similar
results.
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4.4.3 FEL simulations

Instrumental function and resolving power calculation

The analytical calculation of the ultimate grating performance works well only when 4σ beam
footprint is not larger than the grating length (see Figure 4.35). The spectral resolution of the
monochromator depends on the spot size in the dispersive plane. The FWHM of this spot size
multiplied by a spatial dispersion in this plane is interpreted as a spectral resolution. Interaction
of this dispersed and focused radiation with an electron beam in an FEL can be simulated
numerically.

The effective resolving power of the monochromator with the exit slit retracted was simu-
lated with an approach, outlined in Section 3.3.2. The FEL radiation wavefront was simulated
at the end of the SASE undulator with the GENESIS simulation code. Than it was propagated
through the monochromator to the entrance of the seeded undulator. Transverse distributions
of the radiation at the slit position and 1.5 m downstream the seeded undulator are presented at
Figures 4.32 and 4.33.
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Figure 4.32: Transverse radiation distribution
at the slit position. Here h̄ω = 700 eV.
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Figure 4.33: Transverse radiation distribution
at 1.5 m downstream the seeded undulator en-
trance. Here h̄ω = 700 eV.

Monochromator instrumental functions along the range of photon energies were calculated
and effectively represent the performance of the monochromator. Results are presented on
Figure 4.34.

Finally, comparison of the monochromator resolving power is presented on the Fig. 4.35.
An effective resolving power stays relatively constant at the level of about 8000. The main
reason of this is an overfill of the grating at the lower photon energies. Nevertheless, this value
is high enough to produce a transform-limited seed pulses with length FWHM from 4 µm at
1000 eV to 17 µm at 300 eV. This seed is to be amplified in the second undulator. When an
instrumental function of the monochromator was calculated, we assumed that the electron beam
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Figure 4.34: Monochromator instrumental functions for different photon energies. Inverse full width at
half maximum is interpreted as an effective resolving power of the monochromator.

has the same properties in the longitudinal dimension, namely - the electron energy. Below it
will be shown that this is not the case with the simulated electron beam for a European XFEL.

Start-to-end simulations

Start-to-end self-seeding simulation techniques are described in Section 3.3. They have proved
their efficiency during the LCLS commissioning: simulation results showed a good correspon-
dence with an experiment. Therefore it is possible to simulate the performance of the proposed
SXRSS setup for the European XFEL. Below a feasibility study for the SASE3 FEL line of the
European XFEL is presented. It is based on a direct simulation approach and statistical analysis;
50 independent runs are presented.

The expected electron bunch parameters at the entrance of the SASE3 undulator are shown
in Fig. 4.36, [105].

The SASE pulse power and spectrum after the first (SASE) undulator are shown in Fig. 4.37,
and the evolution of the energy and peak power per pulse along this undulator are presented in
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Figure 4.35: Comparison of monochromator resolving power calculations: with Gaussian optics analyt-
ically; from the size of the waist in image planes and from the monochromator instrumental function
FWHM

Fig. 4.38.
This pulse goes through the grating monochromator. The monochromator instrumental

function is presented in Fig. 4.34 (700 eV case). At the exit of the monochromator, one ob-
tains the seed pulse, Fig. 4.39. The direct propagation method through the monochromator was
used, the exit slit was assumed to be retracted. Linear amplification of the spatially dispersed
radiation in the seeded undulator proved that propagated bandwidth is large enough (Fig. 4.40).

As explained before, the monochromator introduces only a short optical delay of about
0.7 ps, which can be easily compensated by the electron chicane. The chicane also “washes
out” the electron beam microbunching. As a result, at the entrance to the seeded undulator the
electron beam and the radiation pulse can be recombined.

The most promising way to increase the FEL output power is a post-saturation tapering.
Tapering is a slow reduction of the field strength of the undulator in order to preserve the reso-
nance wavelength, while the kinetic energy of the electrons decreases due to the FEL process.
The undulator taper could be simply implemented as a step taper from one undulator segment to
the next, as shown in Fig. 4.41. Using that tapering configuration one obtains the output charac-
teristics, in terms of power and spectrum, shown in Fig. 4.42. The output power is increased by
about a factor ten after the saturation, allowing one to reach nearly one TW when averaged over
runs. The evolution of the radiation properties as a function of the undulator length is shown
in Fig. 3.26 The spectral width increases after a tapering, but still remains acceptable with an
average inverse relative bandwidth (FWHM) higher than 4000. The most significant source of
a spectrum broadening is a non-linear electron energy chirp.

102



0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000
I [

A
]

s [µm]
0 10 20 30 40 50 60

3

4

5

6

7

8

9
x 10

−7

ε x,
y [µ

m
]

s [µm]

 

 
x
y

10 20 30 40 50 60

2.3435

2.344

2.3445

2.345

2.3455

x 10
4

γ

s [µm]
0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ γ

s [µm]

Figure 4.36: Results from electron beam start-to-end simulations at the entrance of SASE3. (First Row,
Left) Current profile. (First Row, Right) Normalized emittance as a function of the position inside the
electron beam. (Second Row, Left) Energy profile along the beam. (Second Row, Right) Electron beam
energy spread profile. Bunch charge q = 500 pC.

After the SXRSS monochromator, the monochromatic seed induces an electron density
modulation in the electron bunch at a given frequency. In the presence of an energy chirp
within a bunch, regions locating electrons with higher energy will move faster within an undu-
lator than those with a lower energy because undulator has a non-zero R56 compression factor.
If the chirp is linear, the electron beam will either spread out longitudinally, or shrink, and so
will an electron density modulation. FEL radiation will inherit the phase of the bunching, this
way the electron energy chirp causes a phase chirp of the FEL radiation. Linear electron energy
chirp will result in a radiation wavelength shift. Non-linear chirp will cause a broadening of the
FEL spectrum.

The evolution of the energy per pulse in the seeded undulator and of the energy fluctua-
tions as a function of the undulator length are shown in Fig. 4.44. The transverse radiation
distribution and divergence at the end of the output undulator are presented in Fig. 4.43. Worth
mentioning that due to high computational demands of the start-to-end simulation the chosen
tapering profile is suspected to be not the most efficient one.

It is necessary to compare the results for the self-seeded beam with the characteristics of the
baseline SASE pulse generated with the same electron beam. The best compromise between
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Figure 4.37: Power distribution and spectrum of the X-ray radiation pulse after the first (SASE) undula-
tor. Grey lines refer to single shot realizations, the black line refers to the average over a fifty realizations.
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Figure 4.38: Evolution of the energy and peak power per pulse as a function of the first (SASE) undulator
length.
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Figure 4.39: Power distribution and spectrum of the X-ray radiation pulse after the monochromator.
During operation mode without exit slit the entire spectrum of both spatially and angularly dispersed
pulse passes through the monochromator. In the simulation only a part of the spectrum lager than the
monochromator instrumental function is used as a seed. Grey lines refer to single shot realizations, the
black line refers to the average over a fifty realizations.
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Figure 4.40: Power distribution and spectrum of the X-ray radiation pulse after the monochromator 17 m
downstream the seeded undulator. Grey lines refer to single shot realizations, the black line refers to the
average over a fifty realizations.
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Figure 4.41: Taper configuration for high-power mode of operation at 700 eV.
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Figure 4.42: Power distribution and spectrum of the X-ray radiation pulse after the second undulator in
the tapered case. Grey lines refer to single shot realizations, the black line refers to the average over a
fifty realizations.
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Figure 4.43: (Left plot) Transverse radiation distribution in the case of tapering at the exit of the output
undulator. (Right plot) Directivity diagram of the radiation distribution in the case of tapering at the exit
of the output undulator.
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Figure 4.44: Evolution of the energy, energy fluctuations and peak power per pulse as a function of the
undulator length in the tapered case. Grey lines refer to single shot realizations, the black line refers to
the average over a fifty realizations.
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Figure 4.45: Power distribution and spectrum of the baseline SASE X-ray radiation pulse at saturation.
Grey lines refer to single shot realizations, the black line refers to the average over a fifty realizations.
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Figure 4.46: (Left plot) Transverse radiation distribution in the case of the baseline SASE pulse. (Right
plot) Directivity diagram of the radiation distribution in the case of tapering at the exit of the output
undulator.

power and spectral bandwidth of the SASE operation mode was reached after 8 sections: right
before the saturation point. The output SASE characteristics in terms of power and spectrum are
shown in Fig. 4.45. The evolution of the energy in the SASE pulse and of the energy fluctuations
as a function of the undulator length are shown in Fig. 4.47. The transverse radiation distribution
and divergence at saturation are shown in Fig. 4.46. By comparison with Fig. 4.44 one can see
that in case of tapering the divergence reduction is accompanied by an increase in the transverse
size of the radiation spot at the exit of the undulator.

Finally, power and spectrum of the self-seeded European XFEL are compared with those
of the SASE radiation at saturation. The comparison is presented on Figure 4.48. Numerical
simulations proved a hundredfold rise of a radiation spectral density, compared to the SASE at
saturation (1.8 · 1014 photons/0.02% b/w per pulse compared with 8.2 · 1012 photons/0.1% b/w
per pulse). According to [125], the ultimate XFEL performance with a SASE operation regime
and optimal tapering provides 8 · 1013 photons/0.1% b/w per pulse. According to simulation
results, a spectral bandwidth of the seeded radiation is 0.16 eV compared to 1.8 eV for a SASE
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Figure 4.47: Evolution of a maximum power, an energy per pulse and of the energy fluctuations as a
function of the undulator length in the case of the baseline SASE pulse. Grey lines refer to single shot
realizations, the black line refers to the average over a fifty realizations.
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Figure 4.48: Comparison of the FEL pulse power distribution and spectrum for the SASE operation and
seeded operation with a tapering technique. An average over a fifty realizations is presented.
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Figure 4.49: Comparison of the FEL pulse power distribution, evolution and on-axis spectrum for the
second undulator with seed (signal) and without it (noise). Signal and noise comparison is valid before
the saturation only; this way the first 30 meters of the linear amplification regime are presented with
radiation properties at the end of this range. An average for over a 50 (signal) and 25 (noise) realizations
is presented.
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pulse. The reason of the seeded pulse resolving power bandwidth broadening compared to the
instrumental function width by a factor of two is a presence of the non-linear energy chirp within
the electron beam. This problem may be solved with a slotted foil, which selects the optimal
part of an electron beam to lase.

The signal-to-noise ratio in the seeded undulator was calculated for the case of a 6 µJ energy
per pulse at the grating. Simulation results are presented on Figure 4.49. SNR of a pulse energy
is 45, SNR of a power is 40 and about 800 of a spectral density.
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4.5 Effects of mirror height errors

Monochromator optical elements were modeled as a phase shifters, this way the simulation
problem was reduced to the proper description of the phase shifters and to the propagation of
the wavefront in vacuum between these phase shifters. The main wavefront distortion at the slit
position and at the entrance of the second undulator originates from the grating and the plane
mirror M1. Applying the Marechal criterion, i.e. requiring a Strehl ratio larger than 0.8, and
treating the errors from the different optics independently, we obtain the following condition
for the RMS height error hrms [90]:

2hrmsθi
√
N < λ/14 , (4.2)

where θi is the grazing angle of incidence and N is the number of optical elements. The most
tight requirements corresponds to shortest wavelength. The grating operates at a fixed incidence
angle θi = 1 degree, and at 1 keV photon energy, the diffraction angle is about 2.1 degree. This
corresponds to an incidence angle (θi + θd)/2 = 1.5 degree for the mirror M1. From Marechal
criterion we conclude that a height error hrms = 1 nm should be sufficient for a diffraction-
limited monochromatization at the photon energy of 1 keV. This is a realistic requirement given
short length of an optical components (below 12 cm) compared with 60 cm optical element
specifications provided in [113, pp. 54-56].
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Figure 4.50: Effect of surface roughness on the
monochromator performance. Simulations of
the monochromator instrumental function for
different root-mean-square of surface displace-
ments. Here h̄ω = 1 keV.
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Figure 4.51: Effect of surface height errors on
the monochromator instrumental function for
European XFEL based on the measured height
profiles of the LCLS SXRSS monochromator
optical elements. Here h̄ω = 1 keV.

The surface errors were generated from power spectral density (PSD) functions described in
mirrors specifications. The part of the PSD, which makes the most significant contribution to the
overall RMS height error is the low spatial-frequency part. Due to the very small incident angle,
the beam footprint is much larger in the tangential direction than in the sagittal direction. The
lowest spatial frequency that contributes is in order of θi/w ∼ 1/cm in the tangential direction.
Here w is the beam size at the optical element. It follows that the grating and the mirrors will
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disturb the wavefront mainly in the tangential direction. Simulations were performed using a
BPM code. The surface figure can be directly mapped onto the optical field coordinate system
using the geometrical transformation described above. Examples of the simulated focus at the
exit slit for 1 nm, 2 nm and 4 nm RMS quality optics are presented in Fig. 4.50 (left plot).
These simulations were carried out for the previous XFEL SXRSS monochromator design [82],
nevertheless, results apply for the current design as well. Non Gaussian tails are seen on the
sides of the instrumental function. The influence of surface errors on the resolution in the case
when the slit is absent is shown in Fig. 4.50 (right plot). An RMS roughness of order of 1 nm is
acceptable for the self-seeding setup.

Another simulation of the surface error effect was carried out with a measured height profiles
of the optical components manufactured and installed in the LCLS SXRSS monochromator
(unpublished). Straightforward adoption of these height profiles (with residual peak-to-valley
height errors of below 1 nm for grating and below 10 nm) for the rest of optical components
to the European XFEL monochromator optics shows that this effect becomes negligible (see
Fig. 4.51) .
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4.6 Grating heat load and single shot damage issues

The energy deposited onto the optical element is of a great importance, especially for the high
repetition facility. While SXRSS monochromator was adapted from the LCLS design, there is
a difference in a maximum FEL pulse repetition rate between LCLS (100 Hz) and the European
XFEL (2700 pulses per 0.6 ms pulse train or 27000 pulses per second average). Below study
on the subject is presented.

There are two contributions of the energy deposited on the grating: SASE radiation and
spontaneous emission (SE) radiation. The difference between them is in power and wave-
length. The latter determines radiation penetration depth and its reflectivity by the grating.
A SASE radiation has a narrow spectrum in the 300-1200 eV operation range, therefore it is
mainly reflected by the grating (approx. 70%), and its attenuation length (penetration depth
into material at given incidence angle) stays relatively constant with its value around 2 nm (see
Figs. 4.52 and 4.53). SE, on the other hand, has a broad spectrum (Fig. 4.54) with its maximum
in the range of a poor reflectivity of the grating but deep penetration into its volume. Here we
model the grating as a bulk mirror at a 2 degrees grazing incidence. We assume that the grating
incident angle is 1 degree, and that the blaze angle is about 1 degree too.
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Figure 4.52: Attenuation depth in the bulk
platinum mirror. Incidence angle is 2 de-
grees. Presented values are based on the X-ray
database “SXRO” [123] and The National In-
stitute of Standards and Technology database
(NIST) [126].
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Figure 4.53: Reflectivity of the bulk platinum
mirror. Incidence angle is 2 degrees. It corre-
sponds well to the grating reflectivity presented
at Fig. 4.15. Given values are based on the X-
ray database “SXRO” [123].

FEL SE radiation grows linearly with an undulator length in contrast to the exponential
growth of SASE. The interest in the latter is usually at the saturation point, where it is domi-
nant over SE. In our case the undulator length is much smaller and SE radiation should not be
neglected.

Pulse energies and power absorbed by the grating are presented in Table 4.3 and apply for
the start-to-end simulation conditions (Section 4.4.3). The results presented refer to the case of
an impinging pulse train composed by 2700 FEL pulses. The power is averaged over the 0.6 ms
of the pulse train, which is the most extreme approximation (“mean over pulse train” values)
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Figure 4.54: Power spectral density of the SE
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electron beam with undulator tuned 700 eV
fundamental. The SASE3 operation range of
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Figure 4.55: Transverse distribution of the SE
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and over 0.1 s of the repetition rate period (“integrated” values). Results are presented for the
700 eV FEL photon energy.

SASE SE Units
Photon energy 0.7 10-500 keV
Mean pulse energy 6 1250 µJ
Energy deposited onto the grating 6 110 µJ
Incident power (peak) 1x109 2x1011 W
Incident power (integrated) 0.16 33 W
Incident power (mean over pulse train) 27 5600 W
Absorbed power (integrated) 0.05 [30% for 700 eV] 3 W
Absorbed power (mean over pulse train) 8.1 500 W
Footprint surface on the grating 4 (0.26×15 mm) 80 (1×40 mm) mm2

Attenuation length 2 >800 nm
Peak power density (integrated) 0.012 0.067 W/mm2

Peak power density (mean over pulse train) 2 11.2 W/mm2

Dose 73 <2 meV/atom

Table 4.3: Thermal power and power density absorbed by the grating for an incidence angle of 2 degrees
grazing incidence.

Heat load The heat load can be evaluated by considering the average power deposited on the
grating. Main contribution comes from the SE. At 700 eV FEL photon energy only a fraction
(∼ 8%) of a divergent SE radiation is deposited onto a grating optical surface. Installation of
an obstruction on the tip of the grating may cut-off half of the rest thermal power. In terms of
a combined integrated power density peak value on the grating, it reaches 11 W/mm2 at full
repetition rate of 2700 pulses per train and 0.067 W/mm2 on average. An 0.5 nC bunch charge
is assumed with 4 undulators active. It is of the same order with values reported in [113, p. 61]
at the SASE3 beamline soft X-ray monochromator located downstream. This power density
value may be considered as a reference point and may be rescaled for lower repetition rates and
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lower bunch charges proportionally.
Heat load contribution of the SASE radiation is much smaller. Despite the smaller footprint,

which fully covers the grating, the mean pulse energy of the FEL is 6 µJ within a narrow
spectrum bandwidth. Peak power density on the grating surface is 2 W/mm2 and 0.012 W/mm2

for an average over a pulse train and integrated respectively.
Due to a difference in the amplification behavior, the energy deposited onto the grating

cannot be decreased simply by removing or detuning the SASE undulator sections: SNR will
fall dramatically with a very little decrease of a heat load.

Worth mentioning that 2700 pulses per train is the most extreme estimation and each train
will most likely be distributed between 3 beamlines, bringing the heat load down by the factor
of 3.4 [113, p. 23]

Also, stability with respect to heat load effects becomes less important for optical element of
a small footprint size, which is the case of the grating in the proposed monochromator design.

Single-shot damage The peak power within the single pulse from the first SASE undulator
will be in the range of a GW and is even higher for SE. At these power levels the possibility
of ablation of the grating surface, which would result in permanent damage becomes impor-
tant. Ablation depends on the radiation dose per pulse, which can be quantified as the energy
absorbed in the volume defined by the projected beam area on the optical element and by one
attenuation length, which is the depth into the material, measured along the surface normal,
where the radiation intensity falls by e ≃ 2.7 times of its value at the surface. Normalized to
one atom this energy corresponds to the atomic dose near the surface [101]

D =
Epulse(1−R) sin θi

2πσ2lattnA

, (3.1 revisited)

where Epulse is the energy in one radiation pulse, R is the reflectivity, latt is the attenuation
length, σ is the RMS of the Gaussian beam intensity distribution immediately in front of the
grating, and nA denotes the element-specific density of atoms. For the SASE radiation and Pt
coating we find nA ∼ 6.4 · 1022 cm−3, R ∼ 0.7, latt ∼ 2 nm, σ ∼ 0.05 mm, and Epulse ∼ 6µJ .
The calculated dose reaches 73 meV/atom, which is still significantly below a (6− 9 eV/atom)
multi-shot damage threshold observed in the experiment [98].

In case of the SE radiation, an amount of energy deposited onto the grating is significantly
higher (110 µJ), nevertheless, this energy is being distributed over much larger volume within
the grating. Attenuation length of a radiation in a matter grows with a photon energy, and
reaches values above 0.5 µm for a SE at the photon energy at its peak spectral power density of
100 keV (compared with 2 nm for SASE). This way the atomic dose per atom from the SE is
less than 2 meV/atom, therefore negligible.

Both single shot damage contributions combined are below the melting threshold for Pt,
therefore safe from damage. Worth mentioning that effects of “two temperature model” [102]
(different heat diffusion within electron and ion systems) and ballistic transport of elec-
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trons [103] that relax damage limits further by factor of 14 [98] were not taken into account.
Successful commissioning of the SXRSS monochromator at the LCLS with a smaller radi-

ation footprint on the grating provides another argument for its safety in the proposed design.
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Chapter 5

Summary and conclusions

The X-ray Free Electron Laser emerged as a revolutionary radiation source with unprecedented
properties. The radiation generated by FELs has much higher spectral brightness and coher-
ence, compared to synchrotron sources. Self-Amplified Spontaneous Emission is the baseline
operation regime of Free Electron Lasers: an electron bunch after being accelerated enters an
undulator, where it radiates starting from shot noise in that bunch (spontaneous emission takes
place). The X-rays produced in the SASE process are transversely coherent, but the start-up
from noise leads to poor temporal coherence with a broad and noisy spectrum. There are several
methods to improve this parameter, but the most promising in X-ray region is a self-seeding.
It implies a presence of a spectral filter (monochromator) in the middle of an amplification
process. Overlap of the monochromatic “seed” with an electron beam in an undulator allows
to enforce the growth of a single longitudinal mode in FEL radiation, considerably raising its
spectral brightness.

In order to avoid perturbation of the undulator focusing system, self-seeding implies substi-
tution of a single undulator segment with a weak chicane and the monochromator, which is a
challenging problem. However, a very compact soft X-ray self-seeding setup design fulfilling
these requirements was proposed in SLAC. It is very simple, includes only four optical elements
and it does not include an entrance slit. It was shown [82] that this design may operate without
an exit slit as well.

Simulation of the self-seeding scheme performing with the grating monochromator was of
a great interest. Usually, soft X-ray monochromators operate with incoherent sources and their
design is based on the use of ray-tracing codes. However, XFEL radiation is almost completely
transversely coherent, and in this case the optical system had to be studied using a wave optics
method in combination with FEL simulations. Consequently, two methods to simulate the self-
seeding setup operation were developed and published in [128]. Wave optics analysis takes into
account the actual FEL beam wavefront, third order aberrations and surface errors from each
optical element.

In order to simulate surface imperfections of optical elements, we studied the split-step
propagation method and show its applicability for small angle reflections in the soft X-ray
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photon range. Results of the split-step propagation agreed well with a numerically much simpler
phase-shifter method, proving usefulness of the latter in wave optics simulations.

The SXRSS concept was demonstrated experimentally in LCLS. Numerical simulations
based on developed methods showed a very good agreement with the experimental results [54].
While the SASE radiation bandwidth was 6 eV FWHM (broadened by the electron energy
jitter), the measured bandwidth of the seeded radiation was narrowed down to 0.18 eV at 930 eV
photon energy.

In current work it is shown that the LCLS monochromator design can be adapted for the
European XFEL SASE3 undulator. This optical layout of the monochromator was optimized in
order to satisfy the high pulse repetition rate. The last segment’s gap of the undulator upstream
the monochromator is assumed to be fully opened during the self seeding operation. Realloca-
tion of the source one cell upstream increases the radiation footprint on the grating. This leads
to a significantly smaller energy density on the grating and allows one to improve its efficiency
considerably compared with previously proposed design [82]. Relatively constant effective re-
solving power of the monochromator of 7700-9400 is high enough to produce transform-limited
seed pulses with length from 4 µm at 1000 eV to 17 µm at 300 eV photon energies.

The overall performance of the SXRSS setup is studied with the help of FEL numerical
simulations using the GENESIS code [83, 84]. The start-to-end simulations based on nominal
parameters of 0.5 pC electron beam show the technical feasibility of the 700 eV self-seeded
European XFEL operation. In combination with post-saturation tapering the SASE3 baseline
could deliver a TW-class pulses with a hundredfold benefit in a peak spectral density compared
to the SASE saturation (1.8 · 1014 photons /0.02% b/w per pulse versus 8.2 · 1012 photons /0.1%
b/w per pulse). Radiation bandwidth of the amplified seed is 0.16 eV compared with 1.8 eV for
a SASE at a saturation.

The LCLS SXRSS commissioning experience and European XFEL start-to-end simulations
show that spectral bandwidth of the seeded European XFEL can be improved with an emit-
tance spoiler technique [87]. Even with a non-linear energy chirp present in the electron beam,
the spectral density is one order of magnitude higher than in optimized SASE configuration,
presented in [125].

European XFEL is a high-repetition rate facility, therefore it was important to estimate the
grating performance in such conditions. It was found that the main heat load contribution comes
from the spontaneous emission, while a single-shot damage source is the SASE radiation. The
grating will operate with an incident radiation power densities comparable with the ones at the
soft X-ray monochromator at SASE3 beamline. Therefore the same FEL beam operation modes
are expected to be applicable.

Downstream the SASE3 undulator, the FEL radiation will be distributed between two sci-
entific instruments:

The SQS instrument makes preferential use of the direct non-monochromatized FEL beam,
i.e. focuses on applications requiring the highest intensity and/or highest available temporal
resolution. Nevertheless, benefit from the high spectral resolution is possible during specific
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experiments [116, 117].
The SCS instrument will greatly benefit from the self-seeding scheme. Citing [108], “Most

of the techniques [of soft X-ray spectroscopy and coherent scattering, provided by the SCS
instrument] will require using the soft X-ray monochromator, which induces pulse stretching
and caps the peak intensities. High peak intensities are important to drive nonlinear X-ray-
matter interactions, and NLXS [Nonlinear X-ray Spectroscopy] will require short pulses. Here,
the self-seeding soft X-ray scheme could provide a wavelength-controllable tool to generate
femtosecond-short pulses near the transform limit”.

Before reaching SQS and SCS instruments, radiation spectra can be filtered with a soft X-
ray monochromator. Its resolving power with a baseline 50 l/mm grating in 1000 eV region
is comparable with that of the SXRSS monochromator instrumental function, but spectral ef-
ficiency is in order of 0.6. In certain conditions implementation of the emittance spoiler may
provide experimental stations with comparable radiation bandwidth without additional loss of
spectral density caused by the monochromator optics.

Among other facilities, Swiss-FEL at Paul Sherer Institute [129], PAL-XFEL at Pohang
Accelerator Laboratory [130, 131] and LCLS-II at SLAC [132, 133] can effectively implement
the SXRSS technique and benefit from the simulation methods presented in this thesis.

XFEL is a beautiful scientific instrument, whole potential of which is yet to be discovered.
One of the ways to do so is a self-seeding technique. A tremendous effort of many people made
it possible to seed the LCLS in the both soft and hard X-ray regimes. There is always a room
for an improvement in both technology and understanding of physical processes. I believe that
the work presented in this thesis will make a worthy contribution to the progress in the field and
will help to raise the efficiency of the future designs.
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Chapter 6

List of Abbreviations

BOD Beam Overlap Diagnostics
CSR Coherent Synchrotron Radiation
e/m electromagnetic
EEHG Echo-Enabled Harmonic Generation
FEL Free-Electron Laser
FLASH Freie-elektronen-LASer in Hamburg
FWHM Full Width at Half Maximum
HGHG High-Gain Harmonic Generation
HHG High-order Harmonic Generation
HXRSS Hard X-Ray Self-Seeding
LCLS Linac Coherent Light Source
NLCTA Next Linear Collider Test Accelerator
PRD Physics Requirements Document
RF Radio Frequency
RMS Root Mean Squared
SCSS SPring-8 Compact SASE Source
SDUV-FEL Shanghai Deep Ultraviolet Free Electron Laser
SE Spontaneous Emission
SLAC Stanford Linear Acceleratir Center
SNR Signal-to-Noise Ratio
STD Standard Deviation
SXRSS Soft X-Ray Self Seeding
TESLA Tera-Electronvolt Superconducting Linear Accelerator
TTF Tesla Test Facility
XFEL X-ray Free Electron Laser
YAG Yttrium Aluminium Garnet
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Appendix A

ABCD matrix formalism for the VLS
grating

An ABCD matrix is intended to represent any arbitrary paraxial element, or optical system
located between an input plane and an output plane. It relates initial ray parameters (transverse
position and direction) with final ones in the following form:(

x2

θ2

)
=

(
A B

C D

)(
x1

θ1

)
, (A.1)

where

A =
x2
x1

∣∣∣∣
θ1=0

B =
x2
θ1

∣∣∣∣
x1=0

C =
θ2
x1

∣∣∣∣
θ1=0

D =
θ2
θ1

∣∣∣∣
x1=0

.

In the present case, the optical element is the VLS plane grating with the input plane cor-
responding to the plane perpendicular to the incident beam and with the output plane the plane
perpendicular to the diffracted beam. The most usual application for ray matrices is the deter-
mination of the image of the object located at the input plane. In this case, some important
properties of optical system are obtained when any of the ABCD parameters vanish [134].

The total optical system from the object plane to the image plane is represented by the
matrix: (

Atot Btot

Ctot Dtot

)
=

(
1 r2

0 1

)(
1 0

−1/f 1

)(
1/b 0

0 b

)(
1 r1

0 1

)
, (A.2)

where b is the asymmetric parameter sin θi/ sin θd, see [135]. The explicit expression for the
total matrix elements are
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Atot = 1/b− r2/fb ,

Btot = r1/b− r1r2/fb+ r2b ,

Ctot = −1/fb ,

Dtot = −r1/fb+ b . (A.3)

The condition Btot = 0 has to be verified in order to guarantee imaging of the object at the
output plane. In fact, when Btot = 0, any point source at the input plane focuses at the corre-
sponding point in the output plane, regardless of the input angle. Therefore, the output plane
is the image plane. Dividing the equation Btot = 0 by r1r2 on the left hand side we find the
imaging equation [136]

b

r1
+

1

br2
=

D1λ

D2
0 sin θi sin θd

, (A.4)

which is identical to the imaging condition C20 = 0 which we derived above from first princi-
ples, because sin θi = cosα and sin θd = cos β. It thus follows that the ABCD matrix for the
VLS plane grating in the tangential plane has the general form(

Atot Btot

Ctot Dtot

)
=

(
Atot 0

−1/ftot Dtot

)
(A.5)

with the effective focal length of the entire resizing-focusing system (grating) given by [136]

1

ftot
=

λD1

D2
0 sin θi sin θd

, (A.6)

which is symmetric in θi and θd as it must be. The ABCD matrix elements can be used to
characterize width and wavefront curvature of the Gaussian beam after its propagation through
the VLS grating.
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Appendix B

Method for computing third order
aberrations for a toroidal grating

In this appendix an intuitive geometrical method of computation of aberrations is presented. It
is first necessary to clearly define the reference coordinate systems used to describe the optical
system. Figs. B.1 shows the toroidal grating, the object point A and the image point B. The
three coordinate systems (x, y, z), (x1, y1, z1), and (x2, y2, z2) are used to describe the position
of the wave on the optical surface, the incoming wavefront and the diffracted wavefront, re-
spectively. The ray AOB is referred to as the principal ray. In the following, the wavefront
aberrations, the positions of the object and image plane are specified with respect to this ray.
The wavefront aberration W for a spherical wave passing through a point P in the system is
defined as the path difference between the principal and auxiliary ray: W = APB − AOB.
Here we take advantage of the paraxial approximation obtained by ignoring all terms but the
first quadratic terms in x1 and y1. Let us assume that point A is in the tangential plane and
P (x1, y1, z1) is any point on the grating surface. The equation for the path AP is

AP = z1 +
x21
2z1

+
y21
2z1

= AF +
PF

2
+ PP ′2

2AF
, (B.1)

where AF = AO − OD − FD, OD = |z| sinα, FD = PE = x cosα, PF = CD − CE =

|z| cosα − x sinα. Here (x, y, z) are the coordinates of the point P in the grating coordinate
system. The latter is chosen in such a way that x > 0. Neglecting all terms of order higher than
the second in x and y, the form of a toroidal surface can be expressed by the equation

x =
z2

2R
+
y2

2ρ
, (B.2)

where R and ρ are tangential and sagittal radius of curvature. Thus, the distance PC = x.
Finally, we have
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AP − AO = −OD − FD +
PF

2
+ PP ′2

2
(
AO −OD − FD

)
= z sinα− z2

2R
cosα− y2

2ρ
cosα+

[z cosα + z2 sinα/(2R) + y2 sinα/(2ρ)]
2
+ y2

2 [r1 + z sinα− z2 cosα/(2R)]
, (B.3)

where we used the notation AO = r1. Knowing that r1 ≫ z, denominator may be expanded
with 1/(1 + x) ≃ 1 − x, when x ≪ 1. During multiplication we limit ourselves to third order
terms, e.g. ignore z4, y2z2, . . . Finally,

AP − r1 = z sinα

+
z2

2r1
cos2 α− z2

2R
cosα

− z3

2r21
cos2 α sinα +

z3

2Rr1
cosα sinα

+
y2

2r1
− y2

2ρ
cosα

+
zy2

2r1ρ
sinα cosα− zy2

2r21
sinα. (B.4)

The difference BP − BO can be obtained following the same procedure described above,
simply replacing the incidence angle α with the diffraction angle β. Summing up the optical
path difference

(
AP − AO

)
+
(
BP −BO

)
and grouping the coefficients we obtain

C10 = (sinα + sin β) ,

C20 =
1

2

[
cos2 α

r1
+

cos2 β

r2
− cosα

R
− cos β

R

]
,

C30 = −1

2

[(
cos2 α

r1
− cosα

R

)
sinα

r1
+

(
cos2 β

r2
− cos β

R

)
sin β

r2

]
,

C02 =
1

2

[
1

r1
− cosα

ρ

]
+

1

2

[
1

r2
− cos β

ρ

]
,

C12 = −1

2

[(
1

r1
− cosα

ρ

)
sinα

r1
+

(
1

r2
− cos β

ρ

)
sin β

r2

]
, (B.5)

proving that geometry-determined power series of z and y are identical to (2.99).
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Figure B.1: Optical scheme and coordinate systems for a toroidal grating system.
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Appendix C

Pulse Front Tilt

The grating in the SXRSS monochromator introduces an angular dispersion of the radiation. It
yields to a pulse-front tilt (PFT) effect, which becomes important when dealing with ultrashort
pulses. The geometrical interpretation of the PFT is that due to different incidence and reflection
angles, pulse front immediately after the grating should be tilted in order to keep an optical path
difference along the reflection area the same (AD=BC on Fig. C.1). Since SASE FEL pulse
consists of numerous longitudinal modes, they may be geometrically interpreted as sequential
pulses, and each of them will be tilted after the grating. When operated without the exit slit,
the pulse-front tilt may affect an input coupling factor of the FEL at the entrance of the seeded
undulator. The pulse propagation approach allows us to simulate the SASE pulse front tilt effect
in the SXRSS monochromator. The propagation algorithm simulates an effect of the PFT on
the input coupling factor automatically.

Following simulations were done for the LCLS. In Figure C.2 the 1000 eV SASE pulse
(subfigure - a) is propagated after the grating (b) and through the slit position (c-e). We can
see, that the PFT is present in the time domain when multiple angularly dispersed frequencies
overlap in the frequency domain. At the slit position the PFT is absent. In the frequency domain
wavelengths are focused and well-resolved. Out of the slit position numerous wavelengths over-
lap again, resulting in the PFT in the time domain. Situation will be similar at the entrance to
the seeded undulator, but due to an image magnification and the higher angular dispersion, this
effect will differ from the PFT around the slit position. The design of the SXRSS monochroma-
tor implies re-imaging of the radiation at the slit position to the entrance of the seeded undulator
via mirror M2 with the magnification factor 10. Source point position at the end of the SASE
undulator defines focusing parameters of the optical system of the monochromator. It affects
the size and the position of the waist around the slit area, leading to changes in the structure of
the re-imaged radiation at the entrance of the seeded undulator. It is shown in Figure C.3 that
the optimal source position is located in the section 8 of the SASE undulator. It allows one to
decrease the effect of the PFT.
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Figure C.1: Geometrical illustration of pulse front tilt created by an optical element with angular disper-
sion (grating)
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Figure C.2: Frequency (first row) and time (second row) domains of the vertical dispersive projection of
1000eV radiation pulse propagated after the grating through the slit position.

130



wavelength [m]

top view

x 
[m

]

2.4655 2.466 2.4665

x 10
−9

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

wavelength [m]

top view

x 
[m

]

2.4655 2.466 2.4665

x 10
−9

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

wavelength [m]

top view

x 
[m

]

2.4655 2.466 2.4665

x 10
−9

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

wavelength [m]

top view

x 
[m

]

2.4655 2.466 2.4665

x 10
−9

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

8
z [m]

top view

x 
[m

]

4 6 8

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

(a) U8 source

8
z [m]

top view

x 
[m

]

4 6 8

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

(b) U8 source & 6m
downstream

8
z [m]

top view

x 
[m

]

4 6 8

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

(c) U7 source

8
z [m]

top view

x 
[m

]

4 6 8

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−3

(d) U7 source & 6m
downstream

Figure C.3: Frequency (first row) and time domains (second row) of propagated radiation pulse through
the monochromator. The direct approach with a limited spectral bandwidth was used for propagation.
The radiation source position was simulated in undulator 8 (figs. a-b) and in undulator 7 (figs. c-d). In
order to illustrate further evolution of the pulse, it was additionally propagated 6m downstream seeded
undulator (figs. b,d). The radiation energy is 500 eV. At higher energies this effect is smaller.
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