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Abstract

With the advent of low-cost and high-performance depth sensors, the usage of three-
dimensional (3D) point clouds is becoming attractive and increasingly popular. Meanwhile,
there is a growing demand to process and understand the 3D data. 3D scan registration is
the cornerstone of several advanced 3D data processing techniques, and the odometry-free
scan registration of 3D point clouds is a research hot spot recently. For the present, the
majority of state-of-the-art registration methods depend on reliable initial estimates or local
salient features. The 3D registration techniques based on global shape descriptors have
not attracted as much attention as they deserve. Generally speaking, the original 3D data
is depicted by a global descriptor, and the transformation between the original data could
be solved by aligning the corresponding global descriptors. In this thesis, we propose two
novel registration methods based on two global shape descriptors, namely Hough Transform
Descriptor and Spherical Entropy Image respectively.

For the Hough Transform Descriptor-based registration method, the original 3D scans are
projected into the Hough domain. In this way, 3D rotation of the original data is decoupled
from its 3D translation, and then the rotation and translation between the original data could
be recovered separately. The rotation is estimated firstly by aligning the corresponding
translation invariant Hough Transform Descriptors, and there is only translation between
the original data after rotating them according to the estimated rotation matrix. The Phase
Only Matched Filter (POMF) is employed to estimate the translation between the rerotated
scans. We also propose a novel shape descriptor named Spherical Entropy Image (SEI), and
develop a novel registration method based on SEI aided by the Spherical Harmonic analysis
techniques. Since SEI is not translation-invariant, it is impossible to estimate the rotation and
translation separately as the aforementioned Hough Transform Descriptor-based registration
method does. In our SEI-based registration algorithm, we integrate the rotation estimation
and translation recovery into an iteration framework, which is one of our major contributions.



x |

Besides, the possibility of using SEI as a local shape descriptor in feature matching task is
also discussed.

Elaborate experiments with regard to public available datasets and the dataset captured
by our custom-built platform are implemented to validate the efficiency of our proposed
registration algorithms. The experiment results illustrate the parameter-insensitivity, runtime
stability, high reliability and efficiency of our novel algorithms in the registration of feature-
less, partially overlapping and largely transformed 3D scan pairs.



Kurzfassung

Die Verwendung dreidimensionaler Punktwolken gewinnt durch die zunehmende Verbre-
itung kostengünstiger und leistungsfähiger Tiefenkameras an Bedeutung. Daraus entsteht die
Anforderung, diese Daten sinnvoll interpretieren und verarbeiten zu können. Dreidimension-
ale Registrierung einzelner Punktwolken ist ein elementares Verfahren in der Verarbeitung,
wobei bislang zur Registrierung a-priori Schätzungen der Scan-Transformationen benötigt
wurden. Momentan stehen besonders die odometrie-freien Registrierungsalgorithmen im
Fokus der Forschung. Hierbei werden die 3D-Daten durch globale Deskriptoren abge-
bildet, wonach die Transformation zwischen einzelnen Scans durch Ausrichtung der jeweils
übereinstimmenden Deskriptoren erreicht werden kann. Diese Dissertation stellt zwei neue
Ansätze zur Registrierung von Punktwolken vor: den Hough-Transform-Deskriptor und das
Spherical-Entropy-Image.

Zur Anwendung des Hough-Transform-Deskriptors wird die Punktwolke in Hough-
Domain projeziert, so dass 3D Rotation und Translation entkoppelt werden. Anschließend
können Rotation und Translation unabhängig von einander rekonstruiert werden: die Rotation
wird durch Ausrichtung der translationsinvarianten Hough-Transform-Deskriptoren geschätzt.
Nach Anwendung der errechneten Rotationsmatrix verbleibt lediglich eine Translation, die
dann durch Anwendung des Phase Only Matched Filter (POMF) rekonstruiert wird. Ferner
werden Spherical-Entropy-Image (SEI) Deskriptoren sowie das darauf basierende Verfahren
der Spherical Harmonic Analysis vorgestellt. Da SEI nicht translationsinvariant ist, können
Rotation und Translation nicht unabhängig von einander ermittelt werden. Deswegen wird
die Schätzung beider Parameter mit Hilfe einer iterativen Architektur erreicht. Zusammen
mit der Möglichkeit, SEI auch zur lokalen Oberflächenbeschreibung zu verwenden, gehört
diese Architektur zu den wichtigen Beiträgen dieser Dissertation.



xii | Kurzfassung

Die vorgestellten Verfahren werden durch Experimente an mehreren Datensätzen validiert.
Dazu gehören sowohl öffentlich zugängliche Beispieldaten sowie Daten von einer eigens
konstruierten, mobilen Scan-Plattform. Die Resultate dieser Experimente bescheinigen die
Parameter-Insensitivität, Laufzeitverhalten, Zuverlässigkeit und Effizienz der Algorithmen.
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CHAPTER1
Introduction

A journey of a thousand miles starts
beneath one’s feet.

Laozi
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1.1 Introduction of shape descriptor

THree-dimensional (3D) data analysis is a hot research topic due to the continuous and
rapid improvement of 3D sensing technologies and the increasingly popular applications

of 3D data. 3D shape descriptors are used to collate the information stored in sensed 3D
point clouds so that surfaces can be represented more compactly and compared efficiently.
3D shape descriptor is a significant 3D data analysis technique which is related to many 3D



2 | Introduction

data processing tasks, such as 3D scan registration, robotic mapping, 3D object recognition,
surface matching and 3D shape retrieval.

1.1.1 Definition

3D shape descriptors are widely used in 3D computer vision and 3D computer geometry
communities for comparing 3D surfaces or detecting the similarity between 3D surface
patches. A 3D shape descriptor is the compact representation of the original 3D data and
maintains as much information as possible; in this way it could be used to compare the
original data effectively and efficiently. A 3D shape descriptor is usually in the form of
a vector calculated based on the geometry information of point clouds; in other words, a
3D shape descriptor could be regarded as a function or black box whose input is the point
permutation of point clouds (sometimes combing the intensity information of points) and
output is a compact vector extracting the information contained in point clouds.

A 3D shape descriptor is a trade-off between compactness and descriptiveness. It tries
to describe the original data using the shortest vector without loss of information, which
is impossible though. Hence, different kinds of shape descriptors with regard to different
applications are designed by balancing compactness and loss of information. Since a large
amount of 3D shape descriptors are proposed due to its significance, several taxonomies of
3D shape descriptors are available.

The shape descriptors could be discriminated according to whether they preserve the
orientation information of original data or not. Specifically, the object-oriented shape
descriptors are calculated under an object-oriented reference frame; in this way, they are
rotation-invariant and exclude the orientation and position information of objects. Object-
oriented shape descriptors are usually employed as local features in 3D object recognition or
as global features in 3D object classification. The viewer-oriented shape descriptors are
calculated under a viewer-oriented reference frame and preserve the orientation information
of original 3D point clouds. These kinds of shape descriptors have not attracted much
attention yet. The two global shape descriptors proposed in this thesis belong to the viewer-
oriented shape descriptors. Since the viewer-oriented shape descriptors maintain orientation
information of the original data, they could be used to recover the transformation between
the original data.

According to size of the support on which descriptors are calculated based, 3D shape
descriptors could be divided into global shape descriptors and local shape descriptors.
The local shape descriptors encode the information of local neighbourhood around the
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keypoints, while for the global shape descriptors, they describe the entire surface. The local
shape descriptors are naturally suited to handle clutter and occlusions. The global shape
descriptors are prone to occlusions, but they are more descriptive in terms of objects with poor
geometric structures such as household objects. Generally speaking, the majority of feature-
based scan registration and object recognition algorithms use the local shape descriptors, and
the majority of 3D object classification and shape retrieval techniques employ the global
shape descriptors.

In addition, the shape descriptors could be categorized into signature-based descriptors
and histogram-based descriptors, which inherently emphasize descriptiveness and robust-
ness respectively. Signature-based shape descriptors describe 3D surfaces by encoding one
or more geometric measurements computed individually at each subset of the 3D surface.
Signature-based methods are potentially highly descriptive thanks to use the of spatially well-
localized information. On the other hand, the histogram-based shape descriptors describe
3D surfaces by encoding counters of local geometrical entities into histograms according
to a specific classification criteria. In broad terms, signatures are potentially highly descrip-
tive thanks to the use of spatially well-localized information, whereas histograms trade off
descriptive power for robustness by compressing geometric structure into bins.

1.1.2 Application in data registration

3D shape descriptors are the foundation of several advanced 3D data processing techniques,
such as 3D object recognition, 3D shape retrieval and 3D scan registration. In this thesis, we
focus on the application of shape descriptors in 3D scan registration, and propose two global
shape descriptors which could be used in 3D scan registration efficiently and outperform the
state-of-the-art methods.

Data registration is the process of spatially aligning two or more datasets of an object
or scene based on the overlap. The alignment process could determine the correspondences
between points in different datasets, enable the fusion of information and estimate the motion
of sensors. Besides, if identities of objects in one of the datasets are available, identities
of objects and their poses in another dataset can be determined by registering the two
datasets. The task of data registration is to find an optimal geometric transformation between
corresponding datasets. The data might be 2D images, 3D point clouds (textured or not), 3D
volumes and so on, which are taken at different times, using various sensors, and from diverse
viewpoints. Data registration could be interpreted as a box taking two or more datasets as
inputs and the geometric transformation between the input datasets as output.
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Specifically, 3D scan registration is the cornerstone of several advanced 3D data pro-
cessing techniques, e.g., model-based object recognition and mobile robotic mapping. The
odometry-free registration of 3D point clouds of large outdoor scenes is a research hot spot
recently, especially in the scenarios where stereo vision is not precise enough and Global
Positioning System (GPS) is unavailable (e.g., underwater robots and mine robots). More-
over, the registration techniques which are successful in large outdoor scenes could be easily
applied to indoor scenes.

For the present, the majority of existing registration methods depend on local shape
descriptors. The 3D local shape descriptor-based registration methods inherit the philosophy
of 2D feature-based image registration techniques, and make use of explicit feature correspon-
dences in the overlap of datasets. The common procedure of local shape descriptor-based
registration methods includes: keypoints extraction, shape description, shape descriptors
matching, transformation estimation and refinement. The 3D local shape descriptor-based
registration techniques are intensively studied and widely used, and various local shape
descriptors have been employed for 3D scan registration. The local shape descriptor-based
registration methods could deal with scan pairs with partial overlaps and large offsets. Besides,
they could also handle clutter and occlusion effectively. But the local shape descriptor-based
registration methods confront challenges about how to eliminate the mismatches, especially
in large scale scenes with numerous similar 3D patches. Furthermore, the performances of
the local shape descriptor based registration algorithms are closely related to some crucial
parameters, such as the size of support, threshold of feature correspondences. It means
the parameters used in local shape descriptor-based methods should be adjusted carefully
through numerous trials based on professional experience. It is more frustrating that the
parameters which perform well in one instance are highly possible to fall down in other
instances.

Less attention is paid to registration methods based on global shape descriptors so far. The
global shape descriptor-based registration methods could also be called global feature-less
registration algorithms since they are not dependent on specific surface patches which are
salient and rich in geometrical information. The global feature-less registration algorithm
depict the original 3D data by a global shape descriptor, and the transformation between the
original data could be solved by matching the corresponding global descriptors. Certainly,
the global shape descriptor should maintain the orientation and position information of the
original data. Generally speaking, the global shape descriptor-based registration methods are
prone to occlusion and the existing techniques have not achieved wide employment. But we
believe the global shape descriptors-based registration methods have untapped potential.
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1.2 Motivation

The 3D scan registration is the cornerstone to Mobile Robotic Mapping, and acquiring the
precise spatial models of physical environments where robots locate themselves is one of the
fundamental issues in building truly autonomous mobile robots, since mapping is essential to
the subsequent tasks, such as path planning and robot navigation.

In the context of 3D rigid scan registration, the registration methods could be classified
into local alignment methods and global alignment methods according to whether an initial
estimate is required. In practice, the initial estimate is usually provided by Inertial Measure-
ment Unit (IMU). However, the drift of information provided by IMU is nearly inevitable.
The local registration methods could give much precise results when they succeed, so they
are usually taken as a refinement technique of some global alignment algorithms, which only
give a coarse solution. Practical application shows that the local registration methods have
the following three distinct drawbacks:

1. requirement of good initial guesses;

2. easy to get trapped in local minima;

3. runtime would vary considerably for different scan pairs, even with same size.

On account of the shortcomings of the local alignment methods, global methods that
make use of the global appearance of 3D scan are increasingly popular. The majority of
global registration methods describe the global appearance of 3D scan by the combination of
many local shape descriptors. Moreover, the local shape descriptors employed by this kind
of feature-based registration methods should be calculated around the keypoints which are
salient under an object-oriented reference frame. The common procedure of feature-based
registration methods includes: keypoints extraction, feature description, feature matching,
transformation estimation and refinement. The performances of this kind of registration
methods depend heavily on the correctness of feature matching. Although many techniques
have been developed to eliminate the false feature correspondences, the mismatches are still
the main reason causing false registration results. The scan registration methods based on
local shape descriptors could cope with large offset, partial overlap and occlusion efficiently
for the cases in which they succeed. But the wide usage found that they have the following
shortcomings:

1. they depend on the salient features of the scan pairs, and give unpromising results with
regard to objects with poor geometric structures such as mugs and cans;
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2. tiny impropriety of crucial parameters could lead to failure of registration, so numerous
trials should be implemented to fix the parameters carefully;

3. they are susceptible to noise since they only use part of the information of the original
data;

4. fluctuation of processing time is also a problem for this kind of registration methods.

So in a word, the motivation of this thesis contains three aspects: the significance of 3D
point clouds registration, deficiency of state of the art registration algorithms, and untapped
potential of global shape descriptors applied in scan registration.

1.3 Objectives

3D scan registration aims to calculate the geometric relation between two overlapped 3D
point clouds. Assume we have two 3D scans S1 and S2, the scan registration task computes
the rotation R and translation T between them. The translation T is usually represented by a
vector containing three elements, while the rotation R has several different representations,
please refer to Appendix B for the details. From the view of mathematics, the scan registration
task solves the following equation:

S1 = R∗S2 +T (1.1)

given S1 and S2. Equation 1.1 is widely used in literatures to explain the scan registration task.
But strictly speaking, it is inaccurate. Because usually the S1 and S2 are partially overlapped,
which means some points in S2 can not find their correspondences in S1. Equation 1.1 does
not hold for all points in S1 and S2.

Let S1o ⊆ S1 represent the points in S1 which have correspondences in S2. By the same
token, let S2o ⊆ S2 represent the points in S2 which have correspondences in S1. Then a more
accurate description of scan registration task is:

S1o = R∗S2o +T (1.2)

Certainly, the S1o and S2o are unknown, and that is an important part of scan registration task.

Considering the significance of 3D scan registration and deficiency of existing registration
methods, we aim to develop new 3D scan registration strategies based on global shape
descriptors to make the registration methods have the following characteristics:
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Target scan: 
S1

Source scan:
S2

Global shape descriptor 
of target scan

Global shape descriptor 
of source scan

Rotation estimation 
algorithm

Translation recovery 
algorithm

Rotation between 
input scans: R

Rotated 
source scan

Translation 
between scans: T

Fig. 1.1 Diagram of the proposed scan registration pipeline.

• feature-less: the global shape descriptors-based registration methods should not de-
pend on any specific features;

• noise-immune: the novel methods ought to resist the noise effectively by using the
overall appearance of scans;

• partially overlapping: the registration methods are supposed to effectively deal with
partially overlapped scan pairs;
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• parameter insensitivity: the insensitivity to specific parameters would help the regis-
tration methods to be used by laymen;

• runtime stability: the stability of runtime is quite significant for practical applications.

We propose two scan registration methods based on two different global shape descriptors
respectively. And these two registration methods share the same pipeline, which is depicted in
Figure 1.1. The similarity and difference between these two registration methods is discussed
in Chapter 5. Generally speaking, the registration pipeline contains three key problems:

1. how to describe the original 3D point clouds using the compact and descriptive shape
descriptors;

2. how to determine the rotation between 3D scans based on the global shape descriptors;

3. how to recover the translation between 3D scans.

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 broadly surveys the existing different kinds of shape descriptors, reviews the
Fourier analysis techniques applied in scan registration, and presents several public resources
related to 3D data analysis.

In Chapter 3, we introduce the way how to convert 3D point clouds into Hough domain
to achieve the Hough Transform Descriptor, and propose the registration method based on
Hough Transform Descriptor.

Chapter 4 presents the details of Spherical Entropy Image including motivation, im-
plementation and discussion. Besides the scan registration algorithm employing Spherical
Entropy Image as a global shape descriptor, we also discuss the possibility using Spherical
Entropy Images as a local shape descriptor.

Chapter 5 concludes the thesis, compares the two scan registration methods proposed in
this thesis, and points out the future work.

1.5 Publications related to this thesis

Some of the work presented in this dissertation has been published in two conference papers.
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• Bo Sun, Wewei Kong, Liwei Zhang, Jianwei Zhang (2014). Fourier Analysis tech-
niques applied in data registration: A survey. Multisensor Fusion and Information
Integration for Intelligent Systems (MFI), 2014 International Conference on, pages
1-5, Beijing, China [135]
Part of Chapter 2

• Bo Sun, Weiwei Kong, Junhao Xiao, and Jianwei Zhang (2014). A Hough Transform
based Scan Registration Strategy for Mobile Robotic Mapping. In Proceeding of IEEE
International Conference and Robotics and Automation (ICRA), pages 4612–4619,
Hongkong, China. [134]
Part of Chapter 3
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2.1 Background

IN the wake of new-generation and low-cost depth sensors, the three-dimensional (3D) data
is becoming easily available. Moreover, with the increase of computational power, the
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usage of 3D data is more and more popular. This leads to an increasing amount of 3D data
and breeds the advancement of 3D data processing techniques, such as 3D data registration,
3D object recognition and 3D shape retrieval. Admittedly, the 3D data processing techniques
are closely related to the two-dimensional (2D) image processing techniques, and a large
amount of 3D data analysis algorithms are extended from or inspired by the corresponding 2D
image analysis algorithms. However, the difference between shape representations of 3D and
2D data makes some 2D computer vision techniques incapable in 3D data analysis, especially
when the photometric properties are not available in 3D data. In 3D data processing, the
objects are typically depicted by geometry rather than appearance.

In this section, we discuss the category of 3D data, which is commonly disregardful, and
then talk about the capture techniques of 3D data.

2.1.1 3D data category

(a) (b) (c)

Fig. 2.1 Examples of 3D data: (a) and (b) Dragon from "Stanford 3D Scan
Scanning Repository" [133] and displayed by Paraview [75]. (c) A MRI

volumetric image as a example included in MATLAB [147].

When the 3D data is acquired by a range scanner, only the boundary of the object is
available. In these cases, which are quite common in reality, the object is represented as a
surface, or called 2D manifold in differential geometry. The internal structure of the object is
almost only available in medical applications, where the 3D data is represented as volumetric
images. We classify the 3D data into three categories: Point Cloud, Polygon Mesh and
Volumetric Image. Point Cloud and Polygon Mesh only represent the surfaces of objects,
while Volumetric Image contains internal structure of objects in addition to the boundary
information. With adding or removing some information, these three kinds of data could be
converted to each other.
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Point Cloud

A 3D Point Cloud is a set of points in 3D space, and these points are usually defined by
x, y and z coordinates and contain one or more channels of data. Photometric information
of points, such as intensity and RGB information, is given as a scalar or a vector which
is referred as texture. Geometric information of points, such as normal, curvature, range,
acquisition viewpoint, could also be given. Please note that the photometric or geometric
information is dispensable, and in general only the locations of the points are available in
majority of 3D point clouds. PCD (Point Cloud Data) [106] is a typical and recent point
cloud file format developed by Point Cloud Library (PCL). An example of Point Cloud is
shown in Figure 2.1a.

Polygon Mesh

Besides the 3D points, Polygon Mesh also contains connectivity information between the
points, such as edges and faces. The edges are defined by two points, or named vertices in
mesh; the faces are defined by three or more vertices. The faces usually consist of triangles,
quadrilaterals or other simple convex polygons. Among them the triangles are most common,
and Triangle Mesh is an important type of polygon mesh. PLY (Polygon File Format) [155]
is a typical polygon file format developed at Stanford University by Turk et al.. An example
of Polygon Mesh is shown in Figure 2.1b.

Volumetric Image

Aided by medical imaging techniques, such as X-ray computed tomography (CT), Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography (PET), the detection of inter-
nal structure of organs could be available. Volumetric Image is a common representation
for this kind of 3D data. Volumetric Image could be regarded as a 3D matrix, where each
voxel describes the properties of objects. And Volumetric Image is the direct extension from
2D image to 3D space. Volumetric Image could also be treated as a stack of 2D image slices.
DICOM (Digital Imaging and Communications in Medicine) [39][116] is the most popular
file format for volumetric images. DICOM is developed by DICOM Standards Committee.
An example of Volumetric Image is presented in Figure 2.1c.

In this section, we just mention one of the most typical file format for each data category,
please refer to [17][160] and [80] for more information about file formats of 3D data.
Naturally, the same data can be represented by different file formats, and by the same token a
file format could represent different kinds of data.
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2.1.2 3D data acquisition techniques

Since we just focus on the Point Cloud data in this thesis, only the techniques to capture
3D point clouds are discussed in this section. We classify the popular 3D scanners into four
categories: Laser Scanner, Structured Light Scanner, Photogrammetry and Sonar. Thereinto,
Photogrammetry belongs to passive methods, while the other three belong to active methods.

(a) (b)

(c) (d)

Fig. 2.2 Examples of Laser Scanners: (a) FARO Focus 3D X 130
[153]; (b) Leica ScanStation P30 & P40 [83]; (c) RIEGL VZ-2000

[81]; (d) SICK S3000 Professional [128].

Laser Scanner

Laser scanner, or LiDAR is a broad term that includes different kinds of technologies
employing laser to estimate the locations of 3D objects. Four laser scanners are depicted in
Figure 2.2. Most basically, LiDAR emits laser pulses and collected feedback relating to what
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happens to the emitted laser pulses. Naturally, the more pulses LiDAR collects, the more
points could be sensed. According to the type of feedbacks LiDAR analyses, the LiDAR
could be divided to pulse-based LiDAR and phase-based LiDAR. Pulse-based LiDAR is
also named as Time-of-Flight scanner. Generally as we known, most of laser scanners are
pulse-based for the present.

As suggested by its name, time-of-flight LiDAR is an active scanner that determines the
location by recording the time between bouncing off the laser pulse to an object and receiving
the feedback of laser pulse. In this way, the accuracy of a time-of-flight LiDAR is heavily
dependent on the precision of its timer. The time-of-flight LiDAR scanners could measure
the objects pretty far away, but only perceive the objects in its direction view. That means
if the time-of-flight scanners want to scan the entire field of view, they have to change the
range finder’s direction of view either by rotating the range finder itself or using a system of
rotating mirrors. So the time-of-flight scanners are relative slow compared with other kinds
of LiDAR, and they can collect about 50,000 points in a second.

The phase-based LiDARs are applied with lasers that continuously emit laser beams, so
they are also named as continuous wave laser scanner. This kind of laser scanning systems
modulate the power of the laser beams. The phase shift between the emitting laser beam and
the returning laser beam is employed to calculate the distance that the laser beam traveled.
The phase-based LiDARs are very fast and could gather about one million points per second.
Besides, the phase-based laser scanning systems could give highly precise measurements.
But phase-based LiDAR could only sense the object within 80 meters.

(a) (b)

Fig. 2.3 Examples of Structured Light Scanners: (a) David SLS-2
[37]; (b) HDI Advance R3 [87].
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Structured Light Scanner

Structured Light Scanners usually contain light sources and cameras. The light source
projects a pattern of light onto an object, the camera records the distortion of light pattern
and then used for the geometric reconstruction of the surface. The patterns of parallel stripes
are most widely used. The structure light scanners could be divided into static scanners, of
which the light source and camera are in fixed location and hand-held scanners which could
be swept over an object.

The precision of structured light scanners depends on several factors: optical quality of
projector, wavelength of light, camera resolution, display resolution, calibration algorithm
and so on. Overall, the precision and range of structured light scanners is far below that
of laser scanning systems. But they are much cheaper than the professional laser scanning
systems. Two structured light 3D scanners are presented in Figure 2.3.

It is worth to note that the Time-of-Flight cameras could also be regarded as a special kind
of structure light scanners. Two examples of Time-of-Flight cameras are depicted in Figure
2.4. Besides, Microsoft Kinect [161] is probably the most famous hand-held Time-of-Flight
camera.

(a) (b)

Fig. 2.4 Examples of Time-of-Flight cameras: (a) PMD
CamCube 3.0 [109]; (b) FOTONIC E70 [49].

Photogrammetry

3D data could also be captured based on a block of overlapped images, and this technique is
called Photogrammetry or Stereoscopy. Photogrammetry is a passive capturing technique.
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(a) (b)

Fig. 2.5 Examples of stereoscopic vision systems: (a) ZED 2K
Stereo Camera [131]; (b) Bumblebee XB3 1394b [110].

2D image-based 3D data acquisition technique has made great progress in the last few
years. The close-range photogrammetry has gained the level where common digital cameras
could be employed to estimate the 3D position of the close-range points. Unlike the early
photogrammetry technique which requires the manually identification of same targets in the
different images, the recent photogrammetry software is able to automatically identify similar
features in different photographs. Although becoming relatively ubiquitous, the quality
of photogrammetry systems and their produced 3D data varies widely. The inexpensive
photogrammetry systems are consumer-oriented, but have little chance to be used for scientific
or industrial purpose.

One of the major drawbacks of the image-based 3D data acquisition techniques is the
requirement to illumination. Without an illumination source, the photogrammetry can not
work. By the same token, the objects in dark areas could not be well located. Two stereo
cameras are shown in Figure 2.5.

Sonar

Sonar, which is an acronym for "SOund Navigation And Ranging", uses sound waves to
determine positions of objects. Sonar is traditionally adopted in 2D technology, and the recent
advancements allow it to be used to create 3D point clouds of underwater environments.

Sonar systems could be categories into passive sonar which just listens the sound made
by external sound sources, and active sonar which emits sound pulses and listens the echoes.
And active sonar systems are widely used in 3D data capture. Normally, an active sonar
system contains a sound transmitter and a receiver. Active sonar systems create a sound
pulse called a "ping", and then collect the reflections of the pulse, commonly named "echo".
The distance between the objects and active sonar system is measured based on the travelled
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time of the sound pulse aided by the speed of sound. Two examples of sonar scanners are
presented in Figure 2.6.

The sonar systems used for 3D data capture contains three sub-categories: single beam
sonar, multi-beam sonar and robust multi-beam sonar. Single beam sonar is the old and
traditional type of sonar, which acquires 3D position in a narrow path with a "ping". It
could be imagined as gathering one point at a time. Multi-beam sonar is the most widely
used, and it creates very dense point clouds of underwater objects. Multi-beam sonar emits
sound waves in a fan shape and extracts directional information from the returning sound
waves based on the spatial filtering techniques. In this way, multi-beam sonar systems could
produce a swath of depth readings from a single ping. Robust multi-beam sonar could use a
large number of sonar beams at a high rate to create real-time 3D point clouds of underwater
environments. Unlike the traditional multi-beam sonar which needs a post-process, the robust
multi-beam sonar could create real-time 3D point clouds just like video. At the present
speaking, the robust multi-beam sonar is not widely used because it is incredibly expensive
and overkills for most of present applications.

(a) (b)

Fig. 2.6 Examples of Sonar Imaging systems: (a) Eclipse 3D Multibeam
Imaging Sonar [154]; (b) Echoscope Real Time 3D Sonar [33].

2.2 3D shape descriptors

2.2.1 The taxonomy

3D shape descriptor is a compact representation of the original 3D data and simultaneously
maintains as much information as possible. It is a trade-off between compactness and
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information loss. Since 3D shape descriptor is an important basic factor for many computer
vision and computer geometry applications, such as scan registration [124] [156], object
recognition [54] [24], surface matching [108], shape retrieval [143], object classification
[13], there are quite a large amount of shape descriptors in literature. Considering the diverse
shape descriptors, it is necessary to category the shape descriptors in order to know the
state-of-the-art well.

Taxonomies in specific area with regard to particular applications are available. For
example, Tombari et al. divide 3D descriptors into two main categories: namely Signatures
and Histograms. [150] [123] And Guo et al. classify existing 3D descriptors into three
broad categories: signature-based, histogram-based and transform-based methods. [54]
But the above-mentioned two taxonomies are presented under the context of 3D object
recognition applications. Jonhan and Remco divide the feature descriptors into four kinds:
global features, global feature distributions, spatial maps and local features [143]. Papadakis
et al. category the shape descriptors into methods based on 2D representations, methods
based on 3D representations and hybrid methods [103]. Actually, the view-based shape
descriptors are increasingly popular and achieve better overall performance compared to
the 3D representation-based shape descriptors in shape retrieval community. And these two
taxonomies are also discussed in 3D shape retrieval community.

In our taxonomy, we category the existing 3D shape descriptors into Local Shape
Descriptors and Global Shape Descriptors according to the support size. It is worthy to
note that 3D shape descriptors based on local features mentioned in [ 143] belong to global
shape descriptor in our taxonomy, since they are gathered up to describe the whole 3D
scan. The popular view-based shape descriptors in shape retrieval application also belong to
global shape descriptor in our taxonomy. And we discriminate the global shape descriptors
according to whether they preserve the orientation and position of original data or not.
Generally speaking, the shape descriptors calculated under object-oriented reference frame
exclude the orientation and position information, and they are usually used in 3D shape
retrieval and object classification. The shape descriptors calculated under viewer-oriented
reference frame preserve the orientation and position information of the original 3D point
clouds. This kind of shape descriptors are not a speck of public interest at present and deserve
more attention. The global shape descriptors preserving orientation and position could be
employed for scan registration and surface matching, which is one of the motivations of this
thesis.

The global descriptors and local descriptors are reviewed separately, and each of them
is reviewed chronologically. We try to describe the shape descriptors in brief, plain and
understandable language to make them accessible even for the non-professionals. Unlike the
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majority of scientific literatures to analyse the theories behind the algorithms, we describe
the algorithms in the view of implementation. In our view, this way is effective and easy
to understand. For some methods, we point out their labels in order to echo available
taxonomies, for example, signature-based or histogram-based for local shape descriptors,
and 3D representation-based or view-based for global descriptors. And limited by the space,
it is impossible to propose all shape descriptors, actually we present the popular and widely
used ones. Further, although we divide the shape descriptors based on their support size, the
global shape descriptors and local shape descriptors are connected closely. For example, the
widely used local descriptors Point Feature Histograms and Fast Point Feature Histograms
are directly extended from the global descriptors Surflet-Pair-Relation Histograms.

2.2.2 Local shape descriptors

(a) (b)

Fig. 2.7 Illustration of typical shape descriptors (a) Point Signature
(b) Spin Image.

Point Signature shape descriptor is proposed by Chua and Jarvis [31] in 1997. For each
keypoint p, compute the shared points C between a sphere centred at p with radius r and
the surface, for example the points within red lines in Figure 2.7a, and calculate the best-fit
plane P for all the shared points C, this could be achieved by RANSAC (RANdom SAmple
Consensus) or SVD (Singular Value Decomposition) technique in our opinion. The normal
of plane P is recorded as n1. Then, translate the fitted plane P following the direction of
n1 to point p to form a new plane P

′
and then project the points in C onto P

′
to get a new

points set C
′
. Find the point q in C

′
which has largest distance to its correspondence in C,

and n2 is defined by the unit vector from p to q. Please note that q is on plane P
′

and P
′

parallels P, so n2 is perpendicular to n1. The Point Signature of keypoint p is expressed by
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the point set C with each point expressed by two parameters: the signed distance between
the point and its corresponding point inC

′
, and the clockwise rotation angle from n2 around

n1. For the implementation of Point Signature, we do not agree with the opinion regarding
the intersection computing of a sphere with the surface is difficult [124][54], the intersection
could be achieved by finding the points on surface with distance r to keypoint. It is not a
difficult problem both in theory and in implementation.

Johnson and Hebert present Spin Image in 1998 [66][65]. For each keypoints p, compute
its normal and the tangent plane, just like Figure 2.7b shows. And then project every point
in its support q onto the tangent plane to get the signed distance between the projection
q
′

and keypoints p. By the way, the support of a reference point in local shape descriptor
context is the sets of points whose distance to the reference point is less than a fixed threshold.
The distance is named α , and the sign of α is determined by the direction of normal of
p. The distance between q and its projection q

′
is recorded as β . In this way, every point

in support is expressed by two scalars α and β . A 2D histogram is built by accumulating
the number of points that fall into the bins indexed by (α,β ). Finally, the 2D histogram is
processed by bilinear interpolation to form the Spin Image. Spin Image is employed in many
applications and regarded as a benchmark to evaluate the local shape descriptors. But its
descriptive power is limited by omitting the cylindrical angular coordinate. However, please
note that omitting cylindrical angular coordinates is a somehow helpless choice, because of
the ambiguity of coordinate system. Many invariants of Spin Image also prove its popularity,
such as a spherical spin image [117], a spin image signature [5] and a scale invariant spin
image [36].

Point’s fingerprint proposed by Sun and Abidi consists of a set of 2D contours [137]
[138]. For each keypoint p, construct a local reference frame based on its normal and tangent
plane. Then generate 3D geodesic circles around p by finding the points which have the same
geodesic distances to p. The 3D geodesic circles could be calculated with fast marching
methods [125]. Project the 3D geodesic circles onto the tangent plane of p to achieve 2D
contours. The resultant 2D contour is similar to human fingerprint, so it is called Point’s
fingerprint. By the way, geodesic distance is the distance measured along the shortest route
between two points on the surface. Point’s fingerprint is also a 2D image-based representation
just like Spin Image, but more discriminative than Spin Image.

In 2002, Yamany and Farag proposed a new surface representation calledSurface Signa-
ture for the purpose of scan registration and surface matching [165]. Regardless of complicate
theory, it is quite easy to compute Surface Signature from the view of implementation. For
each keypoint p, estimate the surface normal on p, which could be achieved by PCA (Prin-
cipal Component Analysis) by the way. For each point q in the support of p, compute its
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two parameters: the first is its distance to p; the second is the angle between vector −→qp and
normal of p. Surface Signature is a 2D histogram indexed by these two parameters.

An irregular local surface representation is proposed by Chen and Bhanu in 2004 [27][28].
Instead of computing local shape descriptor based on all the surrounding points, this kind
of representation selects points whose normals have large difference with the normal of
reference point in neighbourhood. A 2D histogram indexed by shape index and the dot
product of surface normals is built. Similarly with Spin Image, the 2D histogram is processed
by bilinear interpolation. The abnormality is that the 2D histogram is not the final shape
descriptor. The final local shape representation comprises of this 2D histogram, the centroid
of Local Surface Patch, and the surface type which is determined by the Gaussian and mean
curvatures.

All the aforementioned five shape descriptors try to describe the support of keypoint
using a 2D histogram. It is a trend at the beginning of 21st century. Generally speaking,
these shape descriptors usually build the local reference frame on keypoint using normal and
tangent plane, and they try to project the surrounding points onto tangent plane and extract
features based on the projections. But things changed when 3D Shape Context appeared in
2004.

(a) (b)

Fig. 2.8 Illustration of typical shape descriptors (a) 3D Shape Context, reprinted
from [51] (b) Normal Based Signature (NBS), reprinted from [85].

3D Shape Context is first presented by Frome et al. [51] in 2004. It is a straightforward
extension of successful 2D shape context presented in [11]. For each keypoint p, estimate its
surface normal and determine the spherical support centred at p and its north pole parallels
the surface normal. Then divide the spherical support region equally along the azimuth and
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elevation dimensions, but logarithmically along the radial dimension, just like Figure 2.8a
shows. Each bin stores the weighted number of points located in each sub-volume. The
calculation of 3D Shape Context does not involve any computational complex procedure.
But the problem is that the original 3D Shape Context has a degree of freedom in the azimuth
direction, and calculation of the 3D Shape Context along all azimuth directions requires
large memory. Frome et al. also present the "Harmonic Shape Context (HSC)" to solve
the ambiguity along azimuth by applying the Spherical Harmonic Transform (SHT) to the
original 3D Shape Context. However, HSC performs inferiorly than 3DShape Context. The
exciting news is that a Unique Shape Context (USC) is proposed by Tombari et al. in 2010
[149], which builds a repeatable and dis-ambiguous local reference frame associating the
keypoint. As reported in [149], USC decreases the memory requirement dramatically and
performs better feature matching accuracy than the original 3D Shape Context.

Li and Guskov propose a local surface signature named "Normal Based Signature (NBS)"
in 2005 [85]. Normal and tangent planes are estimated for each keypoint p and sample a
disc around p on tangent plane into N×M grids just like Figure 2.8b depicts. Then project
the normal of each point q in support onto the direction connecting the keypoint p and grid
nodes, and a N×M matrix stores the projections. Since there is a freedom along the radial
direction of disc, a discrete cosine transform and a discrete Fourier transform is applied to
the N×M matrix successively to address this ambiguity. Finally, the upper left corner of the
magnitude of discrete Fourier coefficients is used to form the NBS local shape descriptor.
The NBS performs well in surface matching application as reported in [85]. NBS continues
the trend of using projections on the tangent plane to describe the local surface.

Snapshot is a computational efficient local surface descriptor proposed in 2007 by
Malassiotis and Strintzis [97]. The Local Reference Frame (LRF) is built for each keypoint
p based on eigenvalue decomposition on the covariance matrix of the coordinates of points
within its support. A pin-hole camera is located on the z axis of LRF with a distance d away
from p. The x and y axes of the camera coordinate system share the same direction with the
x and y axes of LRF, while the z axis is the inverse direction of z axis of LRF. The points on
the surface are projected onto the image plane by the virtual pin-hole camera. The common

pin-hole camera could be depicted by a function which inputs 3D points and outputs 2D
positions on camera image plane of the 3D points. So the projection is an easy procedure
known the internal geometrical structure of the virtual pin-hole camera. The snapshot stores
the least distance between the 3D points and camera image plane. snapshot is computed at
least one order of magnitude faster comparing with Spin Image and Surface Signature as
reported in [97]. Although without using tangent plane, snapshot still inherits the idea of
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projecting 3D points onto a 2D plane from Point Signature, Spin Image, Point’s fingerprint
and Surface Signature.

Thrift is a local structure representation inheriting the idea from the proven successful
2D image technique SIFT (Scale-Invariant Feature Transform) [89]. Inspired by SIFT using
image gradients to describe image patches, Thrift employs the surface normals of points as
the basis of shape descriptor [45] [46]. The surface normals are approximated by fitting a
plane using the points in support based on the least-squares techniques. An advantage of
adopting normals to describe the surface is that the normal information is invariant to point
density according to the analysis in [45]. Essentially, Thrift is a 1D histogram accumulating
the cosine function of angle between two normals of the same point in different scale support.
From the view of implementation, Thrift firstly determines the support of each keypoint p;

secondly for every point q in the support compute two normals with regard to two different
scale windows around q using the least-squares method; finally builds a 1D histogram based
on the cosine function of the angle between the two normals.

Rather than a specific local shape descriptor, the variable-dimensional local shape descrip-
tor (VD-LSD) is more like a generalization representation which could be instantiated into
several existing local shape descriptors [139], for example Spin Image and Point Signature.
VD-LSD is presented by Taati et al. in 2007. VD-LSD first builds the covariance matrix of
the coordinates of points in support, and solves the covariant matrix by Eigenvalue Decom-
position to achieve Eigenvalue scalars and Eigenvalue vectors which are used to construct
LRF. Nine different kinds of properties of the point q in support could be calculated based
on LRF and the eigenvalue scalars, and a subset of them are used to form the local shape
descriptors, in other words, the maximum dimension of VD-LSD is nine. The properties
contain position properties, direction properties and dispersion properties. An automatic
selection of the properties employed by final VD-LSD based on the captured geometry and
characteristics of the sensing devices is provided later [140]. With large dimensions and poor
compactness, VD-LSD requires much more memory and runtime. But the time efficiency
of the overall scan registration tasks could be improved since VD-LSD is highly descriptive,
which reduces the feature matching runtime as reported in [139].

Exponential Map is employed by Novatnack and Nishino in 2008 to constitute both
scale-dependent and scale-invariant local shape descriptors [98]. For each point q in support
region of keypoint, it calculates its geodesic polar coordinate {gd(q),α(q)}, where gd(q)
is the geodesic distance between p and q, and α(q) is the polar angle of tangent of the
geodesic between p and q. The final descriptor is a 2D domain indexed by the geodesic polar
coordinates storing surface normals of the points in support region. A geodesic distance-
weighted shape vector image which uniquely maps a 3D surface onto a canonical rectangular
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domain and encodes the surface shape characteristics to form a two-channel shape vector
image is proposed by Hua et al. in 2008 [59]. For each channel, a descriptor is generated
using the similar technique as SIFT [89]. The final descriptor concatenates the two shape
vector images followed by a geodesic distance-weighted inhomogeneous linear diffusion. The
aforementioned two local shape descriptors are based on the obscure differential geometry
theory, so they have not attracted much attention.

(a) (b)

Fig. 2.9 Illustration of typical shape descriptors (a) Point Feature Histograms
(PFH), reprinted from [51] (b) Intrinsic Shape Signature (ISS), reprinted from

[172].

The famous histogram-based local shape descriptor Point Feature Histograms (PFH)
is proposed in 2008 by Rusu et al. [122]. For each keypoint p, it estimates the normal of
every point in its support region. And for each pair of points in support, it defines a Darboux
frame placed at the keypoint and calculates four features inheriting from Surflet-Pair-Relation
Histograms [159] based on the directions of Darboux frame, points’ normals and distance
between these two points. A histogram with 16 bins is built by accumulating these features.
PFH involves huge computational load since four features are calculated for every point pair
in keypoint’s support region, as Figure 2.9a shows. Hence Rusu et al. present a Simplified
Point Feature Histogram (SPFH) based on only the features of point pairs involving keypoints,
and employ neighbouring SPFH values to create the final shape descriptor called Fast Point
Feature Histograms (FPFH) [119].

Similarly with 3D shape context, Intrinsic Shape Signatures (ISS) also places a sphere
centred on the kepoint and computes the shape descriptor based on the spatial information
of points falling in the spherical bins [172]. But rather than dividing the spherical surface
evenly along the azimuth and elevation as 3D shape context, ISS uses a discrete spherical
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grid to divide the spherical angular space relatively uniformly and homogeneously, as Figure
2.9b depicts. And the radial distances are equally divided. The density weights of the points
falling into each bin are accumulated to construct the final ISS descriptor similar to 3D Shape
Context. Generally speaking, ISS has much similarity to 3D shape context.

In 2009, two local shape descriptors involving differential geometry, just like Exponential
Map and geodesic distance-weighted shape vector image proposed in 2008, are presented:
MeshHOG (Mesh Histogram of oriented Gradients) [169] [168] and HKS (Heat Kernel
Signature) [136]. But these two descriptors are much more popular.

MeshHOG requires the gradients of points. So first of all it defines a scalar function f on
the points and calculates the gradients ▽ f . The term f could be normal, texture, curvature,
density and so on. As aforementioned local shape descriptors,MeshHOG also builds a LRF
for each keypoint and projects the gradients onto the planes of LRF. For each plane, firstly it
partitions the plane into four slices according to the spatial information of gradients, and then
divides the spatial slices into eight parts according to the orientation information of gradients.
Thus the final MeshHOG descriptor is a vector containing 96 (3×4×8) elements.

HKS is proposed by Sun et al. considering the advantages of heat kernel, such as stability
to noise and invariance to scales of support. And Sun et al. restricts the heat kernel in the
temporal domain to solve the computation complexity problem, which is a main contribution
of [136]. The HKS descriptor could be interpreted as a multi-scale Gaussian curvature. It
is stable to perturbations of the shape and invariant to isometric deformations, so it could
be used for non-rigid shapes. Further, HKS has several variants [20] [114] [77] [78] [171],
which prove its effectiveness and popularity.

As Thrift, 2.5D SIFT is another extension of the famous 2D SIFT [89]. 2.5D SIFT
proposed by Lo and Siebert in 2009 juxtaposes nine histograms, each constitutes two
histograms: the histogram of range surface topology types and the histogram of range
gradient orientations [88]. From the view of implementation, 2.5D SIFT firstly acquires the
properties of keypoints, including locations, scales, orientations, Gaussian curvatures and
so on, which requires large amount of memory and computation; secondly it places nine
overlapped elliptical Gaussian weighted subregions on the keypoints limited by the scale
of keypoint’s support; thirdly for each subregions, two histograms are built and normalized
respectively: an eight-element histogram accumulates the gradient orientations and a nine-
element histogram stores the surface type based on the shape index values; finally all the
histograms are constituted to form the final 2.5D SIFT. So the final 2.5D SIFT is a vector
containing 153 (9× (8+9)) elements.
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In 2010, another variant of SIFT called Shape Index SIFT, is proposed by Bayramoglu
and Alatan [10] based on the theorem that combination of SIFT and shape index allows
matching surfaces with variable scales and orientations. Its implementation shares much
similarity with other 3D SIFT-based algorithms: divide the local patch around keypoint
into 16 subregions; for each subregion, generate an 8-element histogram with accumulating
the gradient orientations of the shape index; concatenate 16 histograms to form the final
descriptor. Shape Index SIFT requires less pre-process comparing with 2.5 SIFT and its
performance is better than 2.5D SIFT [88] and the shape index-based method in [27][28]
as reported [10]. Another SIFT-like 3D local shape descriptor named LD-SIFT is proposed
in 2012 [36]. one of its contributions is that it uses the PCA of the coordinates of points in
support region to obtain the local coordinate system, and then aligns the local coordinate
system according to the local dominant angle which is determined by the leading local PCA
eigenvector. The following procedure is much similar with other SIFT-like descriptors, and it
computes shape descriptors based on the derivatives of the depth image.

3D SURF (Speeded Up Robust Feature) is an extension of the 2D SURF [9] and is a Haar-
wavelet transform-based local shape descriptor [ 76]. Different with other local descriptors,
3D SURF contains the relative position of keypoint to the shape’s center, since it is initially
designed to be gathered up to constitute a global shape descriptor. After converting the 3D
point clouds into volumetric images, 3D SURF also defines a LRF of the keypoint based on
the Haar-wavelet transform of the volumetric image around keypoint. Achieving the LRF, it
defines a N×N×N grids around the keypoint and computes a description of the keypoint’s
support according to the 2D SURF. A description vector contains 6 elements is calculated for
each grid cell. The final 3D SURF consists of three parts: a 3D vector containing the relative
position of the keypoint to center of shape; a scalar indicating the scale of the descriptor; a
N×N×N×6 vector describing the support of keypoint.

Another interesting local shape descriptor proposed in 2010 is NARF (Normal Aligned
Radial Feature) [130]. From the view of implementation, the achievement of NARF contains
four steps: firstly estimate the normal of keypoint; secondly calculate a normal aligned range
image patch on the keypoint; thirdly overlay a star pattern on the range image patch, just like
Figure 2.10a shows, and variation of the pixels under each beam corresponds to an element
in a vector; finally shift the vector according the dominant orientation to make the final
descriptor to be rotation-invariant.

The recent famous local shape descriptor SHOT (Signature of Histograms of Orientations)
is first proposed in 2010 by Tombari et al. [150]. A main contribution of this paper is the
analysis of significance of a unique, repeatable and robust 3D LRF to local shape descriptors’
performance. Overall, the calculation of SHOT includes four steps: firstly, estimate the
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(a) (b)

Fig. 2.10 Illustration of typical shape descriptors (a) Normal
Aligned Radial Feature (NARF), reprinted from [130] (b) Signatures

of Histograms of Orientations (SHOT), reprinted from [150].

normal of every point and build a repeatable and unique LRF for the keypoint; secondly, place
an isotropic spherical grid centred on keypoint and divide the keypint’s support along the
azimuth, elevation and radial direction, as Figure 2.10b sketches; thirdly, for each sub-volume
build a local histogram accumulating the point number according to the inner product of point
normals; finally the local histograms are gathered up to form the final SHOT. Different from
3D Shape Context, the partition of keypoint’s spherical support is much coarser for SHOT.
The authors recommend 32 spherical bins, which are resulted from 8 divisions along azimuth
direction, 2 along elevation direction and 2 along radial direction. And the recommended
dimension of local histogram is 11, thus the final SHOT contains 352 (8× 2× 2× 11)
elements. A more detailed description of SHOT and its extension to RGB-D data is available
recently in [123].

In 2012, a histogram-based local shape descriptor named HONV (Histogram of Ori-
ented Normal Vectors) is designed [142]. HONV divides the support of keypoint into
non-overlapped partitions; for each partition it builds a 2D local histogram accumulating
the number of points according to the azimuth and elevation angles of points normal. The
descriptor is formed by concatenating the local histograms. Experiments prove that HONV
performs better than HOG descriptor in object detection and classification tasks with regard
to a RGB-D database.
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2.2.3 Global shape descriptors

The famous Extended Gaussian Image (EGI) is proposed in 1984 by Horn [56]. Map the
surface normal vectors of an object onto a unit sphere by placing their tails at the center
of sphere and their heads at the corresponding point on the sphere; in this way, the final
mapping is called Gaussian Image of the object. Further, if divide the spherical surface into
cells and each cell accumulates the weighted number of the surface normals located in it, a
gray-scale image is achieved which is named Extended Gaussian Image. The weights of
the surface normal could be the area of the surface where the normal is calculated, thus sum
of EGI equals the surface area of the object. Rotation of EGI of an object corresponds to
the rotation of object, but EGI is invariant to the translation of the object. Based on this
property of EGI, it is used for 3D point clouds registration combing the Spherical Harmonic
Transform (SHT) in 2006 [96]. This is an early try to use global shape descriptor in scan
registration tasks, but two limitations of EGI restricts its performance: firstly, EGI only
uniquely defines convex objects, and different non-convex objects could produce the same
EGI; secondly, EGI cannot handle the spherical objects where the EGI is constant and less
informative. Unfortunately, the experiments in [96] do not involves the scan pairs with large
translations; in our opinion, the translation recovery step of this scan registration method is
ineffective and requires refinement.

Shape Histogram is a quite primitive and modesty global shape descriptor presented by
Ankerst et al. in 1999 [4]. It moves the 3D scan to the center of scan and partitions the space
into disjoint and complete cells, while each cell accumulates the number of points located
in it. Three methods are suggested to divide the space: a shell model, which decomposes
the 3D space into concentric shells around the center; a sector model, which partitions the
3D space into sectors that emerge from the center; the combined model, which is a simple
combination of the shell model and the sector model which results in a high dimensionality.
Shape Histogram is a very flexible shape descriptor, and for all the three models, the number
of dimensions could be adapted easily to the specific applications. Shape Histogram is
adopted in 3D object recognition task in [4].

Saupe and Vranić employed the spherical harmonics or moments of Spherical Extent
Function to describe the 3D models. Achievement of Spherical Extent Function contains
three steps: firstly normalize the model by a modified PCA; secondly cast several rays from
the center of object; finally the object extents (max distance to center) on all rays constitute a
function on the sphere, named Spherical Extent Function. In order to improve the robustness
of Spherical Extent Function, the absolute values of spherical harmonic coefficients or
moments of Spherical Extent Function are stored as the final vector. Furthermore, the
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experiment results prove that the representation with spherical harmonics performs better
than the representation based on moments. The spherical harmonics provides a natural
method to generate embedded multi-resolution 3D shape vectors, and could be applied to
other functions defined on sphere. However, this spherical harmonics-based representation
requires a normalization preprocess of models, while another spherical harmonics-based
method solves this problem and provides the rotation-invariant representation directly [ 70],
which will be introduced later.

Shape Distribution is essentially a histogram generated based on the shape function
by measuring the geometric properties of 3D objects. Theoretically, any shape functions
could be employed to construct Shape Distribution, but five shape functions are suggested

by [101] considering their simplicity and invariance: A3 measures the angle between three
random points; D1 measures the distance between the centroid of model and one random
point on the surface; D2 measures the distance between two random points; D3 measures the
square root of the area of triangle determined by three random points; D4 measures the cube
root of volume determined by four random points. The shape function employed by Shape
Distribution could be selected flexibly according to the particular models and applications.
Shape Distribution is invariant to rotation and translation, and robust to small perturbations,
which means it does not require pose normalization in shape retrieval and object recognition
tasks.

A Reflective Symmetry Descriptor consisting of measurements of reflective symmetry for
the 3D volumetric model with regard to the planes passing through center of the 3D model
is proposed in 2002 [68] [69]. Essentially, the descriptor is a 2D spherical function whose
values provide a measure of the symmetry of global shape. From the view of implementation,
Reflective Symmetry Descriptor contains three steps: firstly convert the 3D point clouds
into the corresponding volume; secondly, for every plane through the center, compute the
symmetry measurement of the volume; thirdly, all the symmetry distances are stored in a 2D
array which is indexed by the orientation of planes. The peaks of the descriptor indicate the
directions in which the 3D model has strong symmetry. In order to improve its efficiency,
the authors combined the 3D Fast Fourier Transform to reduce the runtime and to provide a
multi-resolution approximation in less time.

Another statistical global shape descriptor named Surflet-Pair-Relation Histograms,
similar to Shape Distribution, is proposed in 2003 by Wahl et al. [159]. This shape descriptor
computes four geometric features based on the oriented points which are named surflets.
The four geometric features are invariant to translation and rotation, just like the shape
functions used by Shape Distribution [101]. In this way, the final shape descriptor is also
invariant to rotation and translation. The calculation of four geometric features is same
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as the PFH and FPFH, or more to the point, the VFH and FPFH inherit the geometric
features of Surflet-Pair-Relation Histograms. The final descriptor is built by quantizing each
geometric feature into N bins, so the final descriptor contains N4 bins. From the view of
implementation, the four geometric features of each surflet pair (p1, p2) are calculated as
following: firstly discriminate the source point whose normal has smaller angle between the
vector −−−−→p1− p2; secondly assuming p1 is the source point, define a Darboux frame originated
on p1: u = n1,v = (p2− p1)× u,w = u× v; thirdly compute the four geometric features
based on points’ normals and distances: α = arctan(w ·n2,u ·n2), β = v ·n2, γ = u · p2−p1

∥p2−p1∥ ,
δ = ∥p2− p1∥.

A rotation-invariant representation of 3D shape descriptors is defined on spherical surface,
which is called Spherical Harmonic Descriptor, in 2003 by Kazhda et al. [70]. It could
be used with regard to several spherical shape descriptors, such as EGI, Spherical Extent
Function, Shape Histogram and volumes. This rotation-invariant representation provides
an alternative for the rotation normalization, which is usually achieved by PCA technique
but unstable, and could offer multi-resolution representations of the shape descriptors. The
key of this rotation-invariant representation is to decompose the spherical functions into
different frequencies and store the energies contained in different frequencies. The employed
decomposition method is Spherical Harmonic transform, which could be regarded as an
extension of Fourier Transform applied to spherical functions. The limitation of this rotation
representation is that it loses the information along the radial direction, which means it could
not detect the spherical rotation of the spherical representations with different radius.

Novotni and Klein propose a shape descriptor named 3D Zernike by naturally generalize
the spherical harmonics-based shape descriptors. 3D Zernike achieves the rotation invariance
by computing the norms of the decomposition coefficients, quite similar to the algorithm
presented in [70]. However, please note that these two similar techniques are published almost
simultaneously. From the view of implementation, the building of 3D Zernike descriptors
contains four steps: firstly normalize the translation and scale of the original model; secondly
calculate the geometrical moments; thirdly compute 3D Zernike moments based on the
geometrical moments; finally define the 3D Zernike descriptor as the norms of 3D Zernike
moments. Since 3D Zernike descriptor also captures object coherence in the radial direction
besides in the direction along the sphere, it could differ independent spherical rotation of
different spherical functions while the rotation-invariant spherical harmonics representation
could not handle this.

As far as we know, the first view-based shape descriptor of 3D data named Light Field
Descriptor (LFD) is proposed by Chen et al. in 2003 [26]. Placing twenty cameras on the
vertices of a regular dodecahedron could achieve 20 silhouette images of the 3D object, but
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only 10 silhouette images rendered from vertices of dodecahedron over a hemisphere are used
by Light Field Descriptor. Light Field Descriptor is defined based on the 2D features of these
10 silhouette images. The 2D features employed by Light Field Descriptor is the combination
of region-based Zernike Moment Descriptor and the contour-based Fourier Descriptor, and
actually 35 coefficients for Zernike Moment Descriptor and 10 for Fourier Descriptor are
adopted. The composite global shape descriptors become a trend immediately with emerging
of this first view-based shape descriptor. It is because the view-based technique gives the 3D
shape descriptors a chance to use the mature 2D shape descriptors. And benefiting from the
burgeoning of the computing power, large quantity of hybrid shape descriptors are used in
3D shape retrieval task recently.

A composite 3D global shape descriptor named DESIRE is proposed by Vranić in 2005
[158]. DESIRE combines the depth-buffer based features, the silhouette-based features and
the ray-extent features. Experiments prove that DESIRE outperforms Light Field Descriptor
in 3D shape retrieval task. From the view of implementation, the achievement of [158]
contains five steps: firstly normalize the 3D model using the Continuous Principal Analysis
technique; secondly extract depth-buffer based feature vector which consists of magnitudes of
186 Fourier coefficients of six depth-buffer images; thirdly calculate silhouette-based feature
vector which is comprised of magnitudes of 150 Fourier coefficients of three silhouette
images; fourthly estimate the ray-extent feature vector by storing the magnitude of 136
spherical harmonic coefficients of the spherical extent function; finally concatenate the
three basis feature vectors to form the composite DESIRE which has 472 (186+150+136)
elements.

The descriptor based on Spherical Trace Transform is proposed by Zarpals et al. in 2007
[170]. The proposed Spherical Trace Transform contains tracing the volume generated by
the 3D model with two kinds of geometric shapes: a set of 2D planes which are tangential
to concentric spheres; a bundle of radius segments. The intersection of 2D plane with 3D
volume is 2D image, and the intersection of radius segment with 3D volume is 1D line. And
the shape descriptor is generated by applying different kinds of functionals, such as Fourier
transform, radial integration transform, Polar wavelet transform, Polar-Fourier transform, to
the set of 2D images and 1D lines. This descriptor could also be regarded as a composite
descriptor.

Another view-based 3D global shape descriptor named Multi-Fourier Spectra Descriptor
(MFSD) is proposed in 2009 [144]. The MFSD is composed of four independent Fourier
spectra from four different kinds of data types: volume representation and three different
kinds of rendered 2D images from 3D model. 3D Fast Fourier Transform is applied to
the volume representation and the magnitude of Fourier coefficients are stored. 2D Fast
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Fourier Transform is applied respectively to three kinds of rendering 2D images: depth-buffer
image, silhouette image and contour image. By the same token, the magnitude of Fourier
coefficients are stored. Specifically, 512 dimensions for the volume representation, 1536
dimensions for the depth-buffer image, 768 for the silhouette image and 768 for the contour
image are stored. The same authors present another spectra-based shape descriptor named
Dense Voxel Spectrum Descriptor (DVD) in 2012 [84]. Rather than rendering the 3D model
into different kinds of images, DVD describes each piece of volume representation of 3D
models by Fourier spectra. From the view of implementation, DVD converts the 3D model
into a volume of size 64×64×64 by assigning distances to the center to the values of voxels.
And then slides the volume by a 32×32×32 block with step 16, for each block compute
the 3D Fast Fourier Transform and stores the magnitudes of the Fourier coefficients of 8 low
frequencies. The final shape descriptor DVD consists of concatenated magnitudes of Fourier
spectra. The total dimension of DVD is supposed to be ((64−32)/16+1)3 ∗83 = 13,824,
but the PCA technique is applied to reduce the dimension to ((64−32)/16+1)3 ∗20 = 540.

Compact Multi-View Descriptor (CMVD) proposed in 2010 also belongs to the category
of the view-based global shape descriptor [35]. 2D image are captured by the cameras placed
at the 18 vertices of the 32-hedron. Similarly with MFSD, CMVD uses difference kinds
of rendering images: silhouette images and depth images. For each image, three rotation-
invariant 2D feature vectors are generated by applying three different kinds of transforms:
2D Polar-Fourier transform, 2D Zernike Moments and 2D Krawtchouk Moments. In order
to improve the compactness of the final descriptor, the low frequencies of these three 2D
transforms are used to form the CMVD while the high frequencies are discarded. Actually,
the final dimensions of the descriptor for each view is 212 (78+78+56).

The 3D global shape descriptor named PANORAMA uses a set of panoramic views of
3D model to describe the model [103]. From the view of implementation, the calculation of
PANORAMA contains four steps: firstly normalize the pose of the 3D model based on PCA
techniques; secondly place three cylinder centred at the centroid of object and paralleled
to the three principal axes, and obtain three panoramic views by projecting the 3D model
onto the lateral surfaces of cylinders; thirdly apply 2D Discrete Fourier Transform and 2D
Discrete Wavelet Transform to the panoramic views respectively; finally rather than simply
concatenating 2D features, the features generated from each panoramic view are weighted
according to the direction of cylinders to form the final 3D shape descriptor.

Just like the shape descriptors proposed in [100] [52], the view-based 3D shape descriptor
DB-VLAT (Depth-Buffered Vector of Locally Aggregated Tensors) [ 145] involves the Bag-
of-Visual Words (BoVW) technique. DB-VLAT first renders 18 depth-buffer images with the
size of 256×256 from the 3D object. It extracts the local features from all 2D depth-buffer
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images using Dense SIFT algorithm, and applies clustering techniques to build the vocabulary
of Visual Words. Then for each local feature, find its nearest feature in vocabulary of Visual
Words and construct a histogram by counting how many times the visual words appear in an
image, thus this histogram is regarded as the feature vector of the image. As other view-based
shape descriptors, the pose normalization of 3D model is necessary for DB-VLAT.

2.3 Fourier Transform applied in scan registration

2.3.1 Basic principles of Fourier Transform

Although scan registration algorithms based on Fourier analysis techniques are not widely
and successfully used so far, we review this kind of techniques here, since we recover the
translations between two 3D scans based on Fourier analysis techniques.

Fourier analysis techniques are extremely significant in signal processing and pattern
recognition, since they decompose the function into a linear combination of sinusoidal basis
functions. Each of these basis functions is a complex exponential of a different frequency. In
other words, the Fourier analysis techniques map a function into a set of coefficients of basis
functions, and the coefficient of the basis function with frequency f gives how much power
the function contains at the frequency f . That is, the Fourier analysis techniques give us
another way to represent a waveform. Admittedly, there are infinite ways to decompose the
signals. But the goal of decomposition is to get something easier to deal with than the original
signals, and the reason why sinusoids are adopted is that they are the eigenfunctions of the
Laplacian operator, hence they maintain fidelity to most real systems. The basis functions
of normal Fourier analysis techniques are induced by the Laplacian operator in Cartesian
coordinate system. By the same token, the Laplacian operator also has effective forms in
other coordinate systems, e.g. polar and spherical coordinate system. The Polar/Spherical
Fourier analysis techniques are connected with Cartesian Fourier analysis techniques by the
Laplacian operator.

There are four types of Fourier analysis techniques: Fourier Series (FS), Fourier Trans-
form (FT), Discrete-time Fourier Transform (DTFT) and Discrete Fourier Transform (DFT).
The FS breaks down a periodic continuous function into the sum of infinite sinusoidal
functions. The FT extend the idea of FS to continuous aperiodic functions. The DTFT is
the spectral representation for aperiodic discrete signals, and normally the discrete inputs
are acquired by digitally sampling the continuous function. It is interesting that the DTFT
frequency representation is always a periodic function. So though the result of DTFT is an
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infinite summation, sometimes it is convenient to regard the DTFT as a transform to a ’finite’
frequency representation (the length of one period). The DFT converts a finite list of equally
spaced samples of a function into the list of coefficients of a finite combination of complex
sinusoids, ordered by their frequencies. Since digital computer can only work with discrete
and finite signals, the only type of Fourier analysis technique could be used in computer
software is DFT. Please note that the Fourier Transform is usually used as the generic term
of the Fourier analysis techniques in the literatures.

The sequence of N complex numbers x0,x1, . . . ,xN−1 is transformed into an N-periodic
sequence of complex numbers X0,X1, . . . ,XN−1 according to the DFT formula:

Xk =
N−1

∑
n=0

xn · e−i2πkn/N (2.1)

Equation 2.1 could be interpreted as the cross correlation of the input sequence, xn, and
a complex exponential at frequency k/N. Thus it acts like a matched filter, and Xk is the
Fourier coefficient with that frequency, which represents how much power contained in the
original sequence at that frequency. Based on the coefficients, the original complex data xn

could be expressed as:

xn =
1
N

N−1

∑
k=0

Xk · ei2πkn/N (2.2)

The kernel of Fourier analysis technique is the representation of data in another linear
space. The Equation 2.2 could be regarded as the representation of the original sequence in
frequency domain.

2.3.2 Data registration based on Fourier analysis

According to the Fourier Rotation Theorem, the estimation of rotation matrix between two
3D scans could be converted to the determination of the rotation information between the
magnitudes of the corresponding 3D Fourier spectra.

The early try of registration of translated and rotated images using Fourier analysis
techniques is presented in [38]. The idea of algorithm in [38] is quite naive. Since there is
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only phase drift between the Fourier spectra of datasets if they are pure translational duplicate
version to each other, the authors define a function that is the quotient of the Fourier spectra
and try all tentative values of rotation angle. The true rotation angle approaches the quotient
to the exponential form. In other words, the fully automatic directed search strategy is used
to determinate the rotation angle. Obviously this method is computational expensive. Further,
the authors of [91] point out that the method rests on the observation that if the rotation angle
is rather small (not exceeding ±2 degree), the peak of the quotient may be still spotted out
although considerably lower than that associated with a pure translation. This represents a
serious problem and makes such technique suitable only for applications where rotations are
small and certainly not for general purpose utilizations. Besides, because the rotation angle
is applied to magnitude of Fourier spectra not the original data, and the phase drift relates to
both translation and rotation, the phase drift caused by rotation could not be compensated,
which also reduces its robustness.

More official algorithms of data registration based on Fourier spectrum are proposed
in [29][115]. The essential ideas in these two paper are quite similar. They adopt the well
known invariant function named Fourier-Mellin transform, which is translation-invariant and
represents rotation and scale as translations along the corresponding axes in homologous
parameter spaces. The Fourier-Mellin Invariant (FMI) descriptor of an image, named Fourier
log-magnitude spectra in [115], is obtained by resampling the spectral magnitude of this
image to polar coordinates and then resampling along radial coordinate with a logarithmic
function. And the FMI descriptor could also be achieved by re-sampling the spectral
magnitude directly onto a rectangular polar-logarithmic coordinate in one step, like what
is done in [29][115]. In the polar-logarithmic representation of the spectral magnitude,
both the rotation and scale are transformed to translation. Actually the FMI descriptor is
not firstly proposed in [29], but the previous methods match the FMI descriptors using
cross-correlation, or variants of cross-correlation. Since the FMI descriptor is based on
the magnitude of Fourier transform, the cross-correlation of the FMI descriptors generally
yields a very broad maximum, which leads to the FMI descriptor-based registration methods
are unreliable and may give rise to wrong estimates of correlation peaks. The Symmetric
Phase-Only Matched Filtering (SPOMF) is introduced to match the FMI descriptors in [29],
and this is the main difference from the algorithm in [115]. In this way, the advantages of
the SPOMF, which are sharpness of the correlation peaks and robustness in the presence of
noise, and the decoupling the rotation, scale and translation acquired by the FMI descriptor
are combined together. The problem here is that the limited scale range can be estimated
since large scales would alter the frequency beyond recognition. It should be noted that
the maximum scale recovered by [29] is 2.0 and the maximum scale recovered by [115] is
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1.8. Besides, since the re-sampling of Cartesian frequency values on a polar grid is very
sensitive to interpolation, the accuracy of registration algorithms is severely degraded by the
approximation errors inherited in the computation of the polar and log-polar Fourier spectra.

A novel frequency domain technique which works in Cartesian coordinates and bypasses
the need to transform data from the Cartesian to the polar domain is presented in [91][92][90].
It is an important advance because it is well known that the Cartesian-to-polar coordinate
transformation is a numerically sensitive operation, especially when it is dependent on the
interpolation of the Fourier spectrum. The fundamental idea of this novel method rests on the
properties of the Fourier transform magnitudes of the images: for two roto-translated images,
the difference between the Fourier transform magnitude of one image and the mirrored replica
of the Fourier transform magnitude of the other have a pair of orthogonal zero-crossing lines.
These two lines are rotated with respect to the frequency axes by an angle that is half the
rotational angle. In [91], the difference function of normalized Fourier transform magnitudes
is defined, and the zero-crossing lines of the difference function are used to determine the
rotation angle. Therefore, the estimate of the rotation angle is transformed to the detection of
two zero-crossing lines. Subsequently, the phase correlation technique is applied to solve the
translation parameters.

The research direction of determining rotation angle based on the difference function
of normalized Fourier transform magnitudes is extended to the case of 3D rigid motion in
[93][94]. This kind of 3D data registration method contains three procedures: rotation axis
determination, estimate of the rotation angle around the axis and translation calculation. The
rotation axis is determined in [94] by searching a minimum of radial projection of the polar
resampled differences of the magnitude of Fourier spectra. After obtaining the rotation axis,
the rotation angle estimation is a planar rotation problem, which is solved by a combination
of the a 1D Fourier transform and a 2D polar Fourier transform defined as a cylindrical
Fourier transform. This algorithm involves the interpolation operation in the resampling of
the difference function in rotation axis estimating step, which increases the uncertainty of the
registration result. Another main drawback is that this method requires the common region
between two input data to be known, which means this method could not handle the general
partial overlapped datasets and that constraints its application.

The methods presented in [72][73] inherit the three-step framework, but applied the
3D Pseudo-polar Fast Fourier Transform (FFT) to avoid the interpolation operation. The
Pseudo-polar FFT is firstly proposed in [6]. It could be used to compute the Discrete Fourier
Transform (DFT) on pseudo-polar grids without interpolation of Cartesian Fourier spectra.
The Pseudo-polar FFT is based on the Fractional Fourier Transform (FrFT) [7] [2], which is
a generalization of the conventional Fourier transform. The FrFT depends on a parameters α
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and can be interpreted as a rotation by an angle α in the time-frequency plane with respect to
the conventional Fourier transform. An FrFT with α = π/2 corresponds to the conventional
Fourier transform. Essentially, the α-order FrFT shares the same eigenfunctions as the
conventional Fourier transform, but its eigenvalues are the αth power of the eigenvalues of
the conventional Fourier transform. Concretely, the FrFT samples the spectrum of a vector
with length N at the frequencies: ωk = αl/N, l =−N/2, . . . ,N/2. In other words, the FrFT
could compute the Fourier spectra with arbitrary frequency resolution. Furthermore, the
FrFT of a vector of length N can be computed in O(NlogN) operations for any α .

The most recent registration method based on Cartesian Fourier spectra is presented in
[22][21], named Spectral Registration with Multilayer Resampling (SRMR). The SRMR
re-samples the spectral magnitude of 3D FFT calculated on discrete Cartesian grids of the
3D data to decouple the 3D rotation and 3D translation, just like the previous techniques.
Further, the SRMR also tries to transform the rotation parameters to the translation estimation
problem and adopt the phase correlation techniques to figure it out, and this main idea is
also inherited from the previous techniques. The most remarkable feature of SRMR is that it
uses the spectral structure at a complete stack of layers instead of only one spherical layer.
And it does not rely on finding minima indicating the main rotation axes, which makes it
extremely robust for the partial overlapped datasets. But the strong point is bought at the cost
of working only in a limited range of roll and pitch offsets between input datasets. So the
SRMR is only applicable in robotic mapping scenarios, where there is little roll and pitch
changes. Furthermore, please note that the SRMR also suffers from the sensitive interpolation
of spectral magnitudes.

2.4 Public resources

There are large amount of public available resources related to 3D data, and limited by space,
we only list some representatives, which are well organized and widely used.

In Table 2.1, we list 11 free available datasets, which contain data of reconstructed 3D
models and 2.5D range images. We list 11 free available software in Table 2.2, which include
some shape descriptors, visualization of 3D data and so on. The 12th item of Table 2.2 lists
several software widely used in computer graphics community.
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Table 2.1 Representatives of FREE public available 3D datasets.

No Name and Reference Affiliation URL

1 Stanford 3D Scanning
Repository [34]

Stanford Computer Graphics
Laboratory

http://graphics.stanford.edu/data/3Dscanrep/

2 Princeton Shape Benchmark
[127]

Princeton Shape Retrieval and
Analysis Group

http://shape.cs.princeton.edu/benchmark/

3 Robotic 3D Scan Repository Jacobs University http://kos.informatik.uni-osnabrueck.de/3Dscans/

4 Queen’s Range Image and
3-D Model Database

Queen’s University http://rcvlab.ece.queensu.ca/~qridb/QR3D/index.html

5 RGB-D Object Dataset [79] Washington University http://rgbd-dataset.cs.washington.edu/index.html

6 Large Geometric Models
Archive

Georgia Institute of
Technology

http://www.cc.gatech.edu/projects/large_models/

7 Laser Registration Datasets
[112]

Autonomous Systems Lab in
ETH

http://www.asl.ethz.ch/research/index

8 Toyohashi Shape Benchmark
[146]

Toyohashi University of
Technology

http://www.kde.cs.tut.ac.jp/benchmark/tsb/

9
Canadian Planetary

Emulation Terrain 3D
Mapping Dataset [152]

ASRL at University of
Toronto

http://asrl.utias.utoronto.ca/datasets/3dmap/#References

10 USF Range Image Database University of South Florida http://marathon.csee.usf.edu/range/DataBase.html

11 Ford Campus Vision and
Lidar Dataset [102]

PeRL at University of
Michigan

http://robots.engin.umich.edu/SoftwareData/Ford

http://graphics.stanford.edu/data/3Dscanrep/
http://shape.cs.princeton.edu/benchmark/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://rcvlab.ece.queensu.ca/~qridb/QR3D/index.html
http://rgbd-dataset.cs.washington.edu/index.html
http://www.cc.gatech.edu/projects/large_models/
http://www.asl.ethz.ch/research/index
http://www.kde.cs.tut.ac.jp/benchmark/tsb/
http://asrl.utias.utoronto.ca/datasets/3dmap/#References
http://marathon.csee.usf.edu/range/DataBase.html
http://robots.engin.umich.edu/SoftwareData/Ford
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Table 2.2 Representatives of FREE public available software related to 3D point clouds.

No Name and Reference Developers URL

1 PCL[121] Open Perception, Inc. http://pointclouds.org/

2 SLAM6D [14] Andreas Nüchter et al. https://svn.openslam.org/data/svn/slam6d

3 CloudCompare Girardeau-Montaut Daniel http://www.danielgm.net/cc/

4 ParaView Kitware, Inc. http://www.paraview.org/

5 MeshLab
National Research Council

(Italy)
http://meshlab.sourceforge.net/

6 Rotation Invariant Shape
Descriptors [70]

Michael Kazhdan et al.
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/
ShapeDescriptor/

7 Shape Symmetry Descriptors
[68]

Michael Kazhdan et al.
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/
ShapeSymmetry/

8 3D Shape Descriptors Chris Tralie http://www.ctralie.com/Teaching/ShapeMatching/#egi

9 LightField Descriptors [26] Ding-Yun Chen et al. http://3d.csie.ntu.edu.tw/~dynamic/3DRetrieval/index.html

10 3DGSS: 3D Geometric Scale
Space [98]

Ko Nishino et al. https://www.cs.drexel.edu/~kon/3DGSS/

11 3D Zernike Descriptors [99]
Marcin Novotni and

Reinhard Klein
http://cg.cs.uni-bonn.de/project-pages/3dsearch/
downloads.html

12 Computer Graphics Research
Software (collection)

Ke-Sen Huang http://www.dgp.toronto.edu/~rms/links.html

http://pointclouds.org/
https://svn.openslam.org/data/svn/slam6d
http://www.danielgm.net/cc/
http://www.paraview.org/
http://meshlab.sourceforge.net/
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/ShapeDescriptor/
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/ShapeDescriptor/
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/ShapeSymmetry/
http://www.cs.jhu.edu/~misha/Code/ShapeSPH/ShapeSymmetry/
http://www.ctralie.com/Teaching/ShapeMatching/#egi
http://3d.csie.ntu.edu.tw/~dynamic/3DRetrieval/index.html
https://www.cs.drexel.edu/~kon/3DGSS/
http://cg.cs.uni-bonn.de/project-pages/3dsearch/downloads.html
http://cg.cs.uni-bonn.de/project-pages/3dsearch/downloads.html
http://www.dgp.toronto.edu/~rms/links.html


CHAPTER3
Hough Transform Descriptor

By three methods we may learn wisdom: First, by
reflection, which is noblest; second, by imitation,
which is easiest; and third by experience, which is
the bitterest.

Confucius
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3.1 Background

HOUGH Transform is a voting procedure in a parameter space. The object candidates are
obtained as local maxima in the so-called accumulator space. Hough Transform is an

extensively accepted method for detecting parametrized objects in image analysis, computer
vision and digital image processing [62][132]. Furthermore Hough Transform is also used to
detect planes in 3D data [16].

In this chapter, Hough Transform is used in 3D scan registration. Data registration
is the process of spatially aligning two or more dataset of an object or scene. The task
of data registration is to find an optimal geometric transformation between corresponding
datasets. As to the 3D rigid case, the optimal geometric transformation has 6 Degrees of
Freedom (DOF): 3 for rotation and 3 for translation. So the 3D data registration could
be interpreted as a black box which takes two or more datasets as input and outputs six
parameters describing the geometric transformation between the datasets. The 3D scan
registration is the cornerstone of Mobile Robotic Mapping, and constructing maps is one of
the fundamental issues in building truly autonomous mobile robots. That is because maps
are essential to the subsequent tasks, such as path planning and robot navigation.

In the context of 3D rigid registration, scan alignment methods could be classified into lo-
cal alignment methods and global alignment methods. If an initial estimate of transformation
between two input scans is available, the registration problem could be solved using local
methods through an iterative process. The most famous local methods are Iterative Closest
Point (ICP) [30][12][111][118] and Three-Dimensional Normal Distributions Transform
(3D-NDT) [141][95][60]. The local methods could cope with the scan pairs with good initial
estimates well. Moreover, they are usually adopted as the refinement of global alignment
methods, hence local methods are regarded as the cornerstone of the 3D point clouds registra-
tion. In addition to the requirements of initial guesses, there are two other major drawbacks
of local methods: firstly, they are easy to get trapped in local minima; secondly, their runtime
vary dramatically to different scan pairs.

Considering the shortcomings of local methods, global methods take the overall appear-
ances of scans into account and do not depend on initial estimates. The majority of existing
global registration methods are dependent on specific features. The feature-based strate-
gies make use of explicit feature correspondences in the environment and could deal with
scan pairs with partial overlap and large offsets. The common procedure of feature-based
registration methods includes: key-point extraction, feature description, feature matching,
transformation estimation and refinement. Various features have been adopted for 3D scan
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registration, such as Spin Image [66], Shape Context (SC) descriptor [51], Fast Point Feature
Histograms (FPFH) [119], Depth-Interpolated Local Image Features (DIFT) [ 3], Signature
of Histograms of Orientation (SHOT) [150] and Normal Aligned Radial Feature (NARF)
[130]. The feature-based registration methods confront challenges about how to eliminate
the mismatches, especially in large scale scenes with numerous similar 3D patches. That is
why the feature-based registration algorithms often fail in outdoor mobile robotic mapping
applications. Furthermore, the performance of the feature-based algorithms are closely re-
lated to some key parameters. In other words, the parameters used in feature-based methods
should be selected carefully through numerous trials or effective parameter learning based on
a large amount of data. What is more frustrating is that the parameters perform well in one
scene are highly possible to fall down in other scenes.

The plane-based registration algorithms [105][163][164] are accepted extensively in
robotic mapping scenarios, since it could partially overcome the mismatch issue. The planar
segments could be extracted through region growing algorithms or the Hough Transform
of scans. However, the plane-based registration algorithms induce another limitation. They
require three planar segments with different directions hence only work in plane-rich scenes.
This limitation constraints the plane-based methods to work merely in the urban area and fall
down in plane-less scenarios.

Recently, most research attention involved with scan registration is paid to developing
global feature-less registration algorithms. Generally, the original 3D data is depicted by
a global descriptor, and the transformation between the original data could be solved by
matching the corresponding global descriptors. In [25], the Rough Transform is used to
describe the original 3D data and decouple the 3D rotation information from 3D translation.
While its drawback is that it produces several candidate solutions which cost huge amount
of computation, and requires an extra validation step to pick out the true transformation.
Besides that, the translation determination in [25] is dependent on several peaks of Rough
Transform and prone to fall down. The Spectral Registration with Multilayer Resampling
(SRMR) algorithm, represented in [21], resamples the spectral magnitude of 3D Fast Fourier
Transform (FFT) calculated on discrete Cartesian grids of the 3D range data. In this way,
the 3D rotation is detached from 3D translation, and then the registration problem could
be worked out based on the cross correlation techniques. But this strategy validates only
within a restricted range of roll and pitch offsets between scans, which is common for robotic
mapping scenarios but not for many other applications.

This chapter presents a global feature-less scan registration strategy based on the Hough
Transform Descriptor (HTD) of 3D point cloud. Actually, our algorithm is partially inspired
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by the plane-based registration methods which use the Hough Transform for planes extrac-
tion and Hough Transform-based feature-less registration method HSM3D [25]. The scan
registration technique presented in this thesis projects the scan data into Hough domain as
well as the HSM3D; in this way, the 3D rotation is decoupled from 3D translation. With
regard to rotation recovering, the rotation between two scans could be solved by Generalized
Convolution Theorem or the novel method proposed by this thesis. After the rotation infor-
mation is recovered, the translation is quite easy to determine by Phase Only Matched Filter
(POMF).

The technique presented in this paper has the following characteristics:

• partially overlapped: the convolution theorem based on Fourier Transform is adopted
to effectively deal with partially overlapped scan pairs.

• less dependent on parameters: compared to feature-based registration methods, this
strategy is less dependent on the proper parameters.

• noise-immune: this technique could resist the noise effectively, since it uses the overall
appearance of scans rather than specific features.

3.2 Overview of Hough Transform

Hough Transform is a feature extraction method which could find imperfect instances of
objects within noisy data by a voting procedure. This voting procedure is carried out in a
predefined parameter space. The predefined parameter space corresponds to the parametrized
object which will be detected. The motivation behind the Hough Transform is that each
input measurement indicates its contribution to a globally consistent solution. This consistent
solution indicates the position and orientation of the detected objects. If a particular object
is present in the input data, the mapping of all of its points into the parameter space should
cluster around the peaks which correspond to instances of that object. In other words, Hough
Transform maps distributed and disjoint input measurements into a localized accumulation
point in the parameter space. Hough Transform is an excellent feature detection method
since it could detect the occluded objects on the evidence of their visible parts. Meanwhile,
it ignores the local details of the objects, such as adjacency and disconnection. That means
Hough Transform does not use the local, neighbouring-pixel information to accumulate
evidence for a parametrized object. Therefore, it is fairly stable to random sampling of the
input data. This is the advantage of Hough Transform compared with other vision algorithms
which are computationally expensive.
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The classical Hough Transform is concerned with the identification of lines in 2D image,
but later the Hough Transform is extended to identify positions of arbitrary shapes, most
commonly circles or ellipses. Hough Transform is originally invented for machine analysis
of bubble chamber photographs in 1959 [58] and later patented in 1962 [23] by the U.S.
Atomic Energy Commission. In this patent, the straight lines are parametrized by slope and
intercept: y = ax+b, where the parameter m is the slope of the line and b is the intercept.
It is awkward that the slope-intercept parametrization may lead to an unbounded transform
space because the slope could be infinite. The universally used rho-theta parametrization is
initially proposed in [42]: r = xcosθ +ysinθ , where the parameter r represents the algebraic
distance between the origin and line and θ is related to the orientation of line. Although the
early research about Hough Transform describe the techniques to find straight lines, a similar
transform can be used for finding any other objects which can be represented by a set of
parameters. In particular, [61] reformulates the circle finding problem to two stages. The first
stage involves a two-parameters Hough Transform to find the circle center. The direction
of each point is employed. The second stage identifies the radius of the circle by a simple
histogram, which could be regarded as a one dimensional Hough Transform. A comparative
study of circle detection algorithms based on Hough Transform is presented in [ 166] [167].
Computational load of the Hough Transform-based detection techniques increases rapidly
with the number of parameters which define the object. Lines have two parameters, circles
have three, and ellipses have five. Hough Transform applied to detect ellipse is probably at
its upper limit of practicality. [82] introduces the double transform as an interesting method
of reducing the parameter space for ellipse detection.

The classical Hough Transform aims to find out the location and orientation of objects
which could be defined by an analytic function. And its capacity is limited by the number
of parameters in terms of the object which will be detected. The early effort to enable
Hough Transform to be used to detect an non-analytic object is proposed in [ 8] and named
Generalized Hough Transform (GHT). GHT is the modification of the Hough Transform
using the principle of template matching. GHT maps orientation of an edge point to a
reference point of the object. Every point votes its corresponding reference point. The
maxima of the Hough space indicates possible reference point of the object. The details
of GHT is proposed in Section 27 where GHT is adopted for correspondence grouping to
recognize 3D object.

Hough Transform for the detection of 3D objects is also feasible, and the extension
of Hough Transform to detect 3D plane is straightforward. Similar to the slope-intercept
formulation of 2D line, a plane could be represented by equation: z = ax+ by+ c. This
extension also encounters embarrassment when the planar direction becomes vertical. [157]
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uses this formulation to detect planes in the 3D point clouds acquired by laser scanner since
all planes in that domain are nearly horizontal. The plane parametrization by its normal
vector and one point on this plane is more general. In this way, each point of the input data
votes for a sinusoidal surface in the 3D Hough space, and the intersection of these sinusoidal
surfaces indicates presence of a plane [126]. The survey of 3D Hough Transform for plane
detection in point clouds could be found in [16]. Hough Transform is also applied to find
cylindrical objects in point clouds [113], which contains two steps: first finds the orientation
of the cylinder and then estimates its position and radius.

3.3 Hough Transform Descriptor (HTD) of point clouds

Hough Transform is an extensively accepted method for detecting parametrized objects, and
is widely used in plane-based registration methods. But the plane extraction is inevitable
error-prone and the final goal is scan registration rather than plane detection, we are inspired
to use Hough Transform to align the scans directly by regarding the Hough Transform of the
scan as a global descriptor.

The 3D Hough Transform maps the point cloud into Hough Space which is defined by
(θ ,φ ,ρ), such that each point in the Hough Space corresponds to one plane in R3. In addition,
θ stands for the angle between the normal vector of the plane and xy plane, φ is the angle
between the projection of the normal vector on the xy-plane and x axis, and ρ represents
the distance of the plane to origin. Although the normal Hough Transform method takes
pixel/voxel images as the input, it is not a requisite and a set of unorganized points in R3

could also be used as the input of Hough Transform.

Following the trend of HSM3D [25], we use Hough Transform to describe the original
3D point clouds. Although Andrea Censi and Stefano Carpin also try to describe the 3D point
clouds using Hough Transform [25], the Hough Transform Descriptor based on oriented
points proposed in this thesis is totally different.

3.3.1 Hough Transform Descriptor (HTD)

We use the Hesse normal form of planes [ 15], which uses the normal vector and a point on
the plane to define the plane:

n⃗ · p⃗ = ρ (3.1)

n⃗ = [cosθ cosφ ,cosθ sinφ ,sinθ ] (3.2)
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Algorithm 1: Compute Hough Transform Descriptor (HTD) of 3D point clouds

Input :Point cloud S contains n points, size of Hough Transform Descriptor (HTD): θnum,
φnum, ρnum

Output :HTD of S: 3D array whose size is θnum×φnum×ρnum

TID of S: 2D array whose size is θnum×φnum

1 ▷ initialize HTD and TID
2 HTD(θnum,φnum,ρnum)← 0 ;
3 TID(θnum,φnum)← 0 ;

4 ▷ discretize θ ,φ ,ρ
5 θspace =

π

θnum
;

6 φspace =
2∗π
φnum

;
7 ρspace = (distancemax−distancemin)/ρnum;
8 θ(θnum)← 0 : θspace : π ;
9 φ(φnum)← 0 : φspace : 2∗π ;

10 ▷ calculate HTD
11 for Point Pi in point cloud S: i← 1 to n do
12 for θm : m← 0 to θnum do
13 for φk : k← 0 to φnum do
14 ρ = cos(θm)∗ cos(φk)∗Px

i + cos(θm)∗ sin(φk)∗Py
i + sin(θm)∗Pz

i ;
15 ρi = round((ρ−distancemin)/ρspace);
16 HTD(m,k,ρi)++;
17 end
18 end
19 end

20 ▷ calculate TID
21 for θm : m← 0 to θnum do
22 for φk : k← 0 to φnum do
23 ρ⃗ = HTD(m,k, :);
24 TID(m,n) = sum(⃗ρ2);
25 end
26 end

Given a point p in Cartesian coordinates, we have to find all planes the point lies on, i.e.
(θ ,φ ,ρ) that satisfy equation 3.1. One instance of (θ ,φ ,ρ) corresponds to one point in the
Hough Space. Actually all (θ ,φ ,ρ) satisfy equation 3.1 form a 3D sinusoid plane in Hough
Space.

The Hough Transform descriptor (HTD) of the 3D point clouds could be defined as
follows:

HT D(θ ,φ ,ρ) =
N

∑
i=1

δ (< pi, n⃗ >−ρ) (3.3)



48 | Hough Transform Descriptor

where pi is the ith point and N is the number of points. In practical implementation, the
Hough Space is divided into discrete cells, and the accumulators related to cells increase
with respect to the scores computed by equation 3.3. For each point pi, all the cells getting in
touch with its Hough Transform should increase.

The HTD has two significant properties which qualify it to be a global descriptor for
scan registration. Firstly, the rigid transformation between two scans corresponds to the
transformation of their HTDs, as equation 3.4 shows, whereR ∈ SO(3), t ∈ R3 and HTD |X
means the HTD of scan X . Note that the translation between HTDs is dependent on direction,
which means t̂ ̸= t. This property converts the scan registration problem to determining the
transformation between their corresponding HTDs.

HTD |(R•S+t)= R•HTD |S +t̂ (3.4)

Secondly, the (θ ,φ ) parameters of HTD are related to the rotation of the scan, while
the ρ parameter is correlated with the translation. In other words, the HTD of the rotated
duplication of a scan maintains the ρ invariable, while the HTD of the translated duplication
leaves (θ ,φ ) alone. This property could be used to decouple the 6DOF transformation into
3DOF rotation and 3DOF translation.

Translation-invariant Descriptor (TID)

Integrating the ∥•∥2 of HTD with regard to ρ , the HTD could be mapped onto a spherical
surface S2 and then obtain the translation-invariant version of HTD. Denote the translation-
invariant Hough Transform Descriptor as TID, then

TID(θ̄ , φ̄) = ∑
ρ

∥HTD(θ̄ , φ̄ ,ρ)∥2; (θ̄ , φ̄) ∈ S2 (3.5)

TID |(R•S+t)= R•TID |S (3.6)

In this way, the rotational alignment could be achieved in the TID domain regardless
of the translation. It should attract attention that the variation of ρ between HTDs of the
translated duplicates is related to the (θ ,φ ) parameters, as equation 3.4 depicts, which means
it is impossible to recover the 3DOF translation first without the values of (θ ,φ ). In our
HTD-based scan registration strategy, the rotation is first determined in the TID domain
regardless of ρ , and then the 3D translation is solved based on the determined rotation matrix.

The algorithm about achieving HTD of 3D point clouds is outlined in Algorithm 1.
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Algorithm 2: Compute Hough Transform Descriptor (HTD)

Input :Point cloud S contains n points,
size of Hough Transform Descriptor (HTD): θnum, φnum

Output :HTD of S: 2D array whose size is θnum×φnum

1 ▷ initialize HTD
2 HTD(θnum,φnum)← 0 ;
3 ▷ discretize θ ,φ ,ρ
4 θspace =

π

θnum
;

5 θ(θnum)← 0 : θspace : π ;
6 φ(φnum)← 0 : φspace : 2∗π ;

7 ▷ calculate HTD
8 for Point Pi in point cloud S: i← 1 to n do
9 estimate the normal vector of Pi: θi,φi ;

10 m = round(θi/θspace);
11 k = round(φi/φspace);
12 ρi = (Px

i )
2 +(Py

i )
2 +(Pz

i )
2;

13 TID(m,k) = TID(m,k)+ρi ;
14 end

HTD of oriented points

Please note that in equation 3.3, n⃗ has not relation with pi. That means that for each point
pi, it should dot product every n⃗ determined by each (θ ,φ ) in Hough Space to obtain the
potential ρ . And if the result ρ together with (θ ,φ ) corresponds to a cell in Hough Space,
then the cell should be increased by one.

However, if normal vectors of points can be calculated in advance, they can be used to
speed up the estimation of HTD and increase the reliability. That is because the position of a
point in object space, together with its normal vector, completely defines a plane. In this way,
the point in scan could be directly mapped to a single cell in Hough Space. Moreover, rather
than summing the HTD along ρ , it is possible to map the points onto a two-dimensional
(θ ,φ ) Hough Space to achieve translation-invariant descriptor directly.

The algorithm about achieving HTD of 3D oriented points is outlined in Algorithm 2.
As to the normal estimation of points, we adopt Point Cloud Library [107] to calculate the
surface normals. The Point Cloud Library (PCL) is a standalone, large scale, open project
for 2D/3D image and point cloud processing. The solution for estimating normals in PCL is
converted to an analysis of the eigenvectors and eigenvalues of a covariance matrix created
from the nearest neighbours of the query point. But there is no mathematical way to solve
for the sign of the normal, the orientation via Principal Component Analysis (PCA) [ 67] is
ambiguous, and not consistently oriented over the entire point cloud dataset. The solution
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Fig. 3.1 An example scan showing the inhomogeneity of point clouds

to this problem is trivial if the viewpoint Vp is known. To orient all normals n⃗i consistently
towards the viewpoint, they need to satisfy n⃗i · (vp− pi)> 0. The normal estimation in PCL
adopt this principle to determine the sign of normal. But when the dataset has multiple
acquisition viewpoints, this sign determination method does not work. Actually, the sign
disambiguity method in [19] could handle this situation, but PCL has not implemented this
algorithm so far.

3.3.2 Discussion

There are several implementation details of HTDs worthy to discuss, including how to design
the accumulator of the Hough Space, how to improve the efficiency and so on.

Accumulator design of Hough Transform

The first accumulator design problem is the discretization of the parameters (θ ,φ ,ρ). The
precision of the final solution is closely related to the resolution of accumulators. A trade-off
has to be compromised between the coarser discretization which is more noise-immune
and efficient but presents low accuracy, and the finer discretization offers more precision
but occupies more resource. However, as the proposed HTD is going to be used in global
registration techniques designed for initial crude alignment, the coarser grids are preferred.
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The second accumulator design problem is how the accumulator cells correspond to
patches of the unit sphere. The classic manner samples the unit sphere uniformly in the
spherical longitudinal and latitude coordinates, thus the accumulator cells correspond to the
patches with equivalent polar and azimuthal angles. This manner is straight and intelligible,
but the area of patches are disparate. The patches closer to the equator have larger areas,
and the patches closer to the poles are smaller; thus accumulator cells corresponding to
patches closer to the equator are correlated to more normal vectors. Another accumulator
is presented in [25], and their solution projects the unit sphere onto the smallest cube that
contains the sphere. Each face of the cube is discretized regularly. This design is a trade-off
between efficiency and manipulability, but the area inequivalent problem is still unsettled.
The accumulator designed in [16] leads to each accumulator cell corresponds to the equal
patch area. This design samples the unit sphere uniformly in the longitudinal coordinate, but
the latitude space of the patch is determined by its longitudinal coordinate to make sure the
patches have equal area. Apparently, the azimuthal space between adjacent cells is irregular,
and this disorder makes the projection from unit sphere onto cylinder obscure to express.

In our proposed HTD, the classic manner is adopted, further the values of the accumulator
cells are normalized by the area of their corresponding patches on the unit sphere.

Probabilistic Hough Transform

As shown in Algorithm 1 and 2, the amount of calculation of HTD is directly related to the
number of points in original scan. We use Probabilistic Hough Transform [74] to speed up
the computation of HTDs.

Since Hough Transform is a voting procedure, the performance is slightly impaired when
the subset of original data are used to compute Hough Transform, but the execution time
could be shortened considerably. This Probabilistic Hough Transform is analysed in [74]
and supported by the experiment results. In other words, it is unnecessary to compute the
Hough Transform of every point in scans to obtain HTDs, and the computational complexity
of HTDs is adjustable. In our implementation, we select the points uniformly at intervals of
3.

Increments of accumulator cells

A physical point represents a sinusoid surface in Hough space, and normally all the accumu-
lator cells related with the sinusoid surface are incremented by1. Due to the inhomogeneity
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of the points cloud, the planes with equal numbers of points have variable size depending
on their distances to the scanner. To solve this ambiguity, the accumulator cells are recom-
mended to be incremented by the area of the points. The area of points could be calculated
by its four surrounding closest points. If the scan numbers and the point numbers in the scans
are available, the area calculation is straightforward and does not require the computationally
expensive nearest neighbour search procedure. By the way, the area of point is not adopted
in our implementation of HTD since it is time consuming.

(a) FLIE PTU-D48E (b) Hokuyo UTM-30LX

(c) Platform

Fig. 3.2 Our custom built 3D perception platform



3.3 Hough Transform Descriptor (HTD) of point clouds | 53

Inhomogeneity of point clouds

(a) The first example scan. (b) The second example scan.

(c) HTD of the scan in Figure 3.3a. (d) HTD of the scan in Figure 3.3b.

(e) HTD of the scan in Figure 3.3a
based on oriented points

(f) HTD of the scan in Figure 3.3b
based on oriented points

Fig. 3.3 Examples of Hough Transform Descriptor (HTD) of scans
captured by our custom-built platform



54 | Hough Transform Descriptor

Owing to the scan pattern, the density of point clouds is inhomogeneous. Usually the
ground points closer to the scanner are excessively dense compare to others. Sometimes,
this undue imbalance will overplay the role of the ground and could not fully reveal the
structure of objects above the ground, especially when there are sparse constructions in the
scene, as the Figure 3.1 shows. And the conformation of the objects is crucial to determine
the transformation parameters between scans. To solve this problem, part of points on the
ground are excluded when compute HTD.

3.3.3 Examples

(a) (b)

Fig. 3.4 Example scans captured by our custom-built platform to
prove the superiority of HTDs based on oriented points

Several scans obtained by our custom-built 3D perception platform are used to show
the HTD of scans. Our custom-built platform is built upon a Pioneer 3-AT robot [1] which
is a four wheel drive robotic platform, can be operated on rough-terrain outdoor, and has
an on-board computer. The platform is equipped with an aLRF for 3D perception, which
is constructed by a FLIR PTU-D48E PTU [47] and a Hokuyo UTM-30LX LRF [55], see
Figure 3.2. UTM-30LX is a compact and accurate laser scanner designed for both indoor
and outdoor applications, and it can detect objects within range from 0.1 to 30 m in a 270◦

FoV (up to 0.25◦ angular resolution). A relative low power consumption – 8.4 Watt (12 Volt
0.7 Ampere) – allows it to be used on mobile robotic platforms.

Two examples of scans captured by our custom-built platform and their corresponding
HTDs are presented in Figure 3.3. As the Figure 3.3 shows, the HTDs of scans are sparse
images. The peaks of HTD stand for the planes in original scan. And since the square of
distances between points and origin are summed, the peaks are extreme large comparing to
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(a) HTD of the scan shown in Figure
3.4a

(b) HTD of the scan shown in Figure
3.4b

(c) One view of HTD of the scan in
Figure 3.4a based on oriented points

(d) One view of HTD of the scan in
Figure 3.4b based on oriented points

(e) Another view of HTD of the scan
in Figure 3.4a based on oriented points

(f) Another view of HTD of the scan in
Figure 3.4b based on oriented points

Fig. 3.5 Examples of Hough Transform Descriptor (HTD) of scans
shown in Figure 3.4 to show the difference between HTD based on

direction-less and oriented points.
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other points. Our proposed novel scan registration method determines the rotation between
scans by estimation the rotation between their corresponding HTDs. Although the method
does not depend on the planes in theory, the planes in original scans would certainly reinforce
the robustness of this registration method.

Since the scans present in Figure 3.3 contain only one plane, another two scans captured
by our custom-built platform are presented in Figure 3.4 aiming to show the difference
between HTD based on the direction-less points and oriented points. The HTDs of the
scans proposed in Figure 3.4 are depicted in Figure 3.5. Two planes in scans are paral-
lel, so it is reasonable there is only one peak in HTDs based on direction-less points as
Figure 3.5a&3.5b show. However, as shown in Figure 3.5c&3.5e and Figure 3.5d&3.5f
the HTDs based on oriented points have two peaks. It is worthy to pay attention to the
direction difference of axis of Figure 3.5c&3.5e and Figure 3.5d&3.5f. Moreover, we
find that the coordinates of the two peaks in HTD based on oriented points of scan in
Figure 3.4a are [−0.4274,−0.9037,0.02454] and [0.4274,0.9037,0.02454], while the co-
ordinates of the two peaks in HTD based on oriented points of scan in Figure 3.4b are
[0.7410,−0.6716,−0.02454] and [−0.7407,0.6714,0.02454]. This means the HTDs regard
the two parallel planes have opposite direction. It is because we adopt the consistency to
determine the normal direction of points. In this way, the HTDs based on oriented points are
more descriptive than the HTDs based on direction-less points. Actually, the computation of
HTDs based on oriented points are more efficient.

3.4 Scan registration based on HTD

Consider two scans s1, s2 with the relationship:

s2 = R• s1 + t + ε (3.7)

where R ∈ SO(3), t ∈ R3, ε is the noise, and their Hough Transform descriptors are HTD1

and HTD2, their translation-invariant descriptors are TID1 and TID2. Our algorithm first
recovers the R in the TID domain of the two scans; and then applies the obtained R to the
HTDs to solve the translation parameters.

3.4.1 Rotation determination

Obtained the HTDs of two scans, the rotation between the original scans could be estimated
by aligning their corresponding HTDs. Theoretically, the Spherical Harmonic Transform
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could be used to recover the rotation between two spherical functions defined on unit sphere.
The technique for pattern matching defined on S2 through Generalized Convolution Theorem
based on the Spherical Harmonic Transform is originated by the researchers in applied
mathematics area [40][63], but is attracting more and more attention in pattern recognition
[70][96] and medical image processing societies [129][86]. The Generalized Convolution
Theorem and Spherical Harmonic Transform is described in section 4.3.1 in detail. But the
HTD defined on unit sphere is too spare as Figure 3.3 shows and the Generalized Convolution
Theorem plays poorly in these situations.

The estimation of rotation between spherical graphs could be decoupled into determina-
tion of rotation axis and rotation angle according to Euler’s Rotation Theorem. The rotation
axis could be recovered by minimizing the 3D Angular Difference Function (ADF) defined
in [71], but the performance of this method deteriorates in the case that the scans have
interference and occlusion.

Rotation determination method based on ground surface

A little trick is invented in our previous paper [134] to employ the ground surface to determine
the rotation axis, but this technique only validate in robotic mapping scenarios where the
ground surface is available.

(a) An example scan from
Gazebo Winter [112]

(b) The corresponding loose ground
points extracted by our algorithm.

Fig. 3.6 Example of ground extraction

The rotation R between two scans could be decomposed into R1 paralleling two ground
surfaces and R2 compensating the roll about the normal vectors of ground surfaces. Projecting
this proposition into the TID domain, the rotation R1 paralleling the two peaks of TIDs stand
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for normal vectors of ground surfaces, and the rotation R2 compensating the rotation of TIDs
about the two peaks.

Let the g1 and g2 be normal vectors of ground surfaces, the R1 and R2 could be easily
described by the axis-angle representation:

1. the rotation axis of R1 is g1×g2 and the rotation angle is the angle between g1 and g2;

2. the rotation axis of R2 is g2 and the rotation angle of R2 is symbolized by δ .

Determination of R1

As to the determination of ground direction, the density of points is greater closer to the
scanner because of the scan pattern of the scanner, as shown in Figure 3.6. We develop a
method to estimate the normal vector of the ground surface based on this prior knowledge,
which needs less extra calculation.

In our ground surface estimation method, the xy-plane segment closer to the scanner is
divided into square grids, the dimension of which is a compromise of accuracy and efficiency.
Normally the range of this plane segment could be a quarter of the whole xy-plane. And then
the 3D points, whose (x,y) values are within the scope of the plane segment, are projected
into the cells according to their (x,y) coordinates. For each cell, the point of the smallest z
value is stored as loose ground surface points; in this way, the scan is classified into loose
ground points and non-ground points. The loose ground points of the scan depicted in Figure
3.6a are shown in Figure 3.6b. Our method could not be used to segment the precise ground
surface, since it extracts not only the points belonging to the ground surface but also the
bottoms of objects. But our method is computational efficient and capable to deal with the
slanted surfaces.

Theoretically, computing the TID of the loose ground points, the normal vector of the
ground surface is determined by the main peak of TID. After that, the computation of TID
could continue by calculating the Hough Transform of the non-ground points; hence only
the operation to separate the loose ground points costs extra computation. But in practise,
we found that the normal vector determined by the main peak of TID is sometimes correct
with its z direction but false with its x or y direction. Usually, the second or third large local
maximum of TID corresponds to correct direction of ground surface. Therefore, we adopt
the RANSAC-based (RANdom SAmple Consensus) [44] data fitting algorithm to estimate the
direction of the ground surface in our code. In addition, we believe this is the same reason
why the HSM3D produces several candidate results to improve the robustness [25].

Obtaining the direction of ground surface g1 and g2, the R1 paralleling the ground surfaces
could be calculated.
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Determination of R2

There are several methods to determine the rotation angle δ using the TIDs [25]. We convert
the estimation of δ to a translation recovering problem by projecting the TID defined on
S2 onto its corresponding cylinder surface C2 whose axis parallels the normal vector of
the ground surface, as Figure 3.7 outlines. In this way, the radial translation of the C2

corresponds to the rotation angle δ of S2, and it could be settled by the cross-correlation
techniques, for instance Phase Only Matched Filter (POMF).
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Fig. 3.7 Mapping from a spherical surface onto its corresponding cylinder surface.

As shown in Figure 3.7, let S2 be a spherical surface and C2 be its corresponding cylinder
surface. Consider a point m̃ on S2, its the spherical coordinate is (θ̃ , φ̃ ,1), and its Cartesian
coordinate is [cos(θ̃)cos(φ̃),cos(θ̃)sin(φ̃),sin(θ̃)]. And then, re-sampling the Cartesian
space by the cylinder coordinate system, the cylindrical coordinate of m̃ could be derived:
[sin(θ̃), φ̃ ,cos(θ̃)]. Finally, map m̃ onto C2 through normalizing its radial distance to the
axis of the cylinder. In such a way, a one-to-one projection m̃′ of m̃ is gained:

m̃ = (θ̃ , φ̃ ,1)
Cartesian resample←−−−−−−→ (cos(θ̃)cos(φ̃),cos(θ̃)sin(φ̃),sin(θ̃))
Cylindrical resample←−−−−−−→ (cos(θ̃), φ̃ ,sin(θ̃))

radial distance normalization
==========⇒ m̃′ = (1, φ̃ ,sin(θ̃))
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After mapping the points of S2 onto C2, the rotation angle δ of S2 around the g2 is converted
into the displacement of the cylinder surface along the tangential direction.

(a) The first scan of Gazebo Winter [112] (b) The fourth scan of Gazebo Winter

(c) Ground-calibrated TIDs of first scan (d) Ground-calibrated TIDs of fourth scan

Fig. 3.8 Examples of ground-calibrated TIDs projected on cylinder
surface after R1 compensation.

Two examples of ground-calibrated TIDs projected on cylinder surface after R1 com-
pensation are shown in Figure 3.8. It could be seen that there is only tangential shift left
after the compensation using R1. Achieving the cylinder surfaces, the determination of R2

is converted to a uni-dimensional signal registration issue. But in our implementation, the
two dimensional POMF is adopted since the shift along the axis could be applied to validate
whether the R1 is solid or not.
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The registration method using ground surface to determine the rotation is outlined
in Algorithm 3. This ground surface-based rotation determination method is theoretical
complete when ground surfaces are available and solid. But the dependence on ground
surface is its inherent defect.

Algorithm 3: The registration method based on HTD using ground surface to determine
the rotation

Input :Point clouds S1, S2
Output :Rotation matrix R and translation vector t

1 ▷ Estimate the directions of grounds: g1,g2

2 GS1←GroundExtraction(S1) ;
3 GS2←GroundExtraction(S2) ;
4 g1← RANSAC(GS1) ;
5 g2← RANSAC(GS2) ;

6 ▷ Calculate R1 based on the directions of grounds
7 R1← Euler’sRotationTheorem(g1,g2) ;
8 S

′
2← R1 ∗S2 ;

9 ▷ Compute the HTDs & TIDs of S1, S
′
2

10 HTD1←HoughTransform(S1) ;
11 HTD2←HoughTransform(S

′
2) ;

12 TID1← ∑ρ(HTD1) ;
13 TID2← ∑ρ(HTD2) ;

14 ▷ Estimate the rotation R2

15 TID
′
1← ProjectToCylinder(TID1) ;

16 TID
′
2← ProjectToCylinder(TID2) ;

17 δ ← POMF(TID
′
1,TID

′
2) ;

18 R2← Euler’sRotationTheorem < g2,δ > ;
19 R← R1 ∗R2 ;

20 ▷ Recover the translation
21 S2← R2 ∗S

′
2 ;

22 P1,v1← Rasterize(S1) ;
23 P2,v2← Rasterize(S′2) ;
24 tx, ty← 2D_POMF(P1,P2) ;
25 tz← 1D_POMF(v1,v2) ;

General rotation determination method

Considering the shortcoming of ground surface-based rotation determination methods, we
develop a more general method. In this kind of rotation determination method, the rotation is
divided into two steps: the yaw determination and the roll & pitch determination. Overall
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speaking, we resample the TIDs to convert the yaw/roll/pitch to offsets of resampled TIDs,
and use POMF to recover the offsets.

Yaw Determination

The yaw angle is determined just like the determination of R2 in ground surface-based method
described in section 3.4.1. Project the TIDs onto cylinders just like depicted in Figure 3.7,
and in this way the radial translation of C2 corresponds to yaw angle of spherical functions.
And the radial translation of C2 could be recovered by POMF.

It is worth noting that the roll and pitch are treated as undesirable noise in yaw angle
determination. That means this method also has its own inherent defect: it could not handle
the situations when roll and pitch offsets between scans are too large.
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Fig. 3.9 Project the upper spherical surface onto its corresponding plane.

Roll & Pitch Determination

Before roll & pitch determination, first apply the achieving yaw angle to rerotate the TIDs on
sphere, which is the basis for the following unwrap procedure.
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In roll & pitch determination step, we just unwrap one half sphere to determine the roll
& pitch. It is natural to select the half which contains rich information. So we compute the
entropies of the two halves separately and select the half whose entropy is large, and project
the TID on this half of sphere onto a plane.

Assume we project the TID on the above half sphere onto a plane, just like Figure 3.9
shows, according to the following equations:

d =

√
(y−

Ny

2
)2 +(x− Nx

2
)2 (3.8)

d
r
=

polar
π/2

(3.9)

tan(azimuth) =
y− Ny

2

x− Nx
2

(3.10)

In this way, the determination is converted into the translation of the unwrapped plane:
the roll angle corresponds to the translation of the unwrapped plane along positive y axis,
and the pitch angle is related to the translation of the unwrapped plane along positivex axis.
Moreover if we project the TID on the bottom half sphere onto the unwrapped plane, the roll
angle corresponds to the offset along negative y axis of plane, and the pitch angle is related
to the offset along negative x axis of plane.

This kind of registration method is outlined in Algorithm 4. It is worth to mention that the
sphere rotation in our implementation is based on the public library about spherical harmonic
transforms SpharmonicKit [40].

3.4.2 Translation recovery

Once the rotation R is determined correctly, there is only translation between two scans after
applying the R to the scans. We apply the POMF [57][48] to estimate the shift between two
scans. The POMF employs the fact that two shifted signals carry the shift information within
the phase of their Fourier spectrum and decouples the local signal energy from the signal
structure.

Let f1(xxx) and f2(xxx) symbolize two N-dimensional shifted signals where xxx= {x1,x2, . . . ,xn},
while F1(ααα) and F2(ααα) are their corresponding Fourier spectra. The shift between two trans-
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lated duplicates could be determined by the following equations:

S(ααα) =
F1(ααα)

|F1(ααα)|
• F2(ααα)

|F2(ααα)|
(3.11)

s(xxx) = F−1{S(ααα)} (3.12)

xxxt = argmax
xxx

s(xxx) (3.13)

xxxt is the displacement between f1(xxx) and f2(xxx). In theory, it could be used in arbitrary
dimensional signal registration problems. Ideally, the s(xxx) contains a Dirac peak, but the
Dirac pulse deteriorates in practice due to the noise and the partial overlap. The Fourier
Transform calculated in translation determination is the common Cartesian Fourier Transform
(compared to the Spherical Harmonic Transform proposed in Section 4.3.1).

Algorithm 4: A general registration method based on HTD.

Input :Point clouds S1, S2
Output :Rotation matrix R and translation vector t

1 ▷ Compute the HTDs & TIDs of S1, S2

2 HTD1←HoughTransform(S1) ;
3 HTD2←HoughTransform(S2) ;
4 TID1← ∑ρ(HTD1) ;
5 TID2← ∑ρ(HTD2) ;

6 ▷ Estimate the yaw angle
7 TID

′
1← ProjectToCylinder(TID1) ;

8 TID
′
2← ProjectToCylinder(TID2) ;

9 Yaw← POMF(TID
′
1,TID

′
2) ;

10 R1← Euler’sRotationTheorem < Yaw > ;

11 ▷ Estimate the roll & pitch angle
12 TID2← SphereRotation(TID2,R1) ;
13 TID”

1← Unwrap(TID1) ;
14 TID”

2← Unwrap(TID2) ;
15 (Roll,Pitch)← POMF(TID”

1,TID”
2) ;

16 R2← Euler’sRotationTheorem < Roll,Pitch > ;

17 ▷ Recover the translation
18 R = R1 ∗R2 ;
19 S

′
2 = R∗S2 ;

20 P1,v1← Rasterize(S1) ;
21 P2,v2← Rasterize(S′2) ;
22 tx, ty← 2D_POMF(P1,P2) ;
23 tz← 1D_POMF(v1,v2) ;
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Before applying the POMF or 3D FFT, it is necessary to rasterize the original 3D surface
into volume grids. In general, the way to rasterize the 3D surface is assigning voxels the value
of 1 if they are occupied by the surface, otherwise their values are set to 0. The Euclidean
Distance Transform is applied to 3D surface in [70], and then the value at each voxel is given
by the negatively exponentiated Euclidean Distance Transform of the point located in it.

(a) The first example scan (b) The second example scan

(c) Ground-calibrated TIDs projected
on cylinder of scan in Figure 3.10a

(d) Ground-calibrated TIDs projected
on cylinder of scan in Figure 3.10b

Fig. 3.10 Example scans employed to prove effectiveness of our
translation recovery algorithm

The 3D POMF could be adopted to estimate the translation between two shifted scans
straightforwardly, or in another way, it is also feasible to integrate the scan along the x,y,z
direction and apply the 1D POMF to calculate the translation separately. In our algorithm,
we divide the translation recovery into two steps: recover the offset in(x,y) direction and in
z direction. For two scans after rotation rectification, we project the scans onto its (x,y) plane
to use 2D POMF to estimate the offset in x and y direction. In the projection procedure, the
xy pixel stores the maximum z value of all the points whose (x,y) locate in this pixel, since
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(a) Projection onto xy plane after ro-
tation rectification of scan in Figure
3.10a

(b) Projection onto xy plane after ro-
tation rectification of scan in Figure
3.10b

(c) Projection onto z axis after rotation
rectification of scan in Figure 3.10a

(d) Projection onto z axis after rotation
rectification of scan in Figure 3.10b

(e) Side view of the registration result of
scans in Figure 3.10a&3.10b

(f) Top view of the registration result of
scans in Figure 3.10a&3.10b

Fig. 3.11 Example proving effectiveness of our translation recovery algorithm
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the variation of the original data is significant for the FFT-based techniques. Meanwhile
project the scans onto its z axis to use 1D POMF to calculate the offset in z direction. The
number of points belongs to the specific z interval is stored. It is worthy to point out that
the projection onto (x,y) axis and z axis is accomplished in one iteration, rather than two
separate iteration of points in scans.

In our implementation of POMF, we adopt the functions in FFTW [50] to calculate the
forward and backward of 1D/2D FFT. An registration example to prove the effectiveness of
our translation recovery method is presented in Figure 3.10 and Figure 3.11 . We can see that
there is large translation between two scans, and our translation recovery method could solve
the translation effectively.

3.5 Experiments and results

In this section, the Hough Transform Descriptor (HTD) is applied in scan registration, and
compared with the existing and representative scan registration algorithms based on the
public available datasets and the data captured by our custom-built platform. The reason why
we adopt the public available dataset is that it is convenient for other researchers to compare
our algorithm with their own algorithms.

Experiments have been carried on standard personal desktop computers. Our scan
registration algorithm is implemented in C++, and the code has been published online,
please refer to Appendix A. The Point Cloud Library (PCL) [107] is utilized for reading
and writing point clouds, estimating the normals of points and 3D visualization. The
linear algebra library Eigen [53], a C++ template library for linear algebra, is employed
for matrix processing. The Discrete Fourier Transform library FFTW [50] is adopted in
translation recovery procedure to compute the forward and backward Fourier Transform. The
std::chrono::high_resolution_clock class in C++ 11 is employed to record the runtime.

In section 3.5.1, we review three representative scan registration algorithms, which are
employed to compare with the HTD-based scan registration method. In section 3.5.2, we
introduce the "Barcelona Robot Lab Dataset" which is captured in UPC Nord Campus in
Barcelona and propose the experiment results based on this dataset. We introduce the dataset
recorded at University of Hamburg, Informatik campus by our custom-built platform and
propose the experiment results based on this dataset in section 3.5.3. Due to the space
limitation, we cannot present all the results. Indeed, some typical results have been selected
for explanation.
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3.5.1 Related work

Iterative Closest Point (ICP)

Iterative Closest Point (ICP) [30][12][111][118] is the most famous and widely used regis-
tration method. ICP aims to minimize the difference between two point clouds based on
an iterative procedure. In this kind of algorithms, the given initial transformation matrix is
refined and the point clouds are transformed iteratively to minimize the distance from one
scan to another.

Typically, the ICP algorithms contain four steps:

1. Data Association: for each point in source scan, find its closest point in target scan;

2. Estimate Transformation: estimate the transformation matrix based on the point
pairs built in step 1;

3. Error Minimization: transform the source scan using the achieved transform matrix
estimated in step 2;

4. Check: check if termination criteria is fulfilled, if not, go to step 1.

In data association, usually the Euclidean distance is used and kd-tree is employed to
accelerate the search procedure [43]. Further, the common distance metrics are point-to-point
[12] and point-to-plane [30].

PCL is a good example implementing ICP algorithm. It contains different kinds of ICP
algorithms. In this experiment, we use the pcl::IterativeClosestPointWithNormals class in
PCL which uses a transformation estimated based on point-to-plane distances.

Fast Point Feature Histograms (FPFH)

FPFH-based scan registration is a representative local feature-based registration method.
FPFH is a simplified version of Point Feature Histograms (PFH), and it reduces the computa-
tional complexity but retains most of the discriminative power of PFH. FPFH is calculated
based on the oriented points, but it does not make use of the intensity or color information.

Generally speaking, FPFH calculation of a scan includes three steps:

1. for every point pi in the scan, collect its all neighbouring points within a sphere PN
i ;
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2. for every point pair (pi,p j) where p j ∈ PN
i , the point whose normal has the smaller

angle to the vector −−−−→pi− p j is called source point ps, the other one is named target point
pt ; define a Darboux uvn frame (u = ns,v = (pt − ps)× u,w = u× v) and calculate
three features which together to express the mean curvature at pt :

α = v ·n j

φ =
u · (pt− ps)

∥pt− ps∥
θ = arctan(w ·nt ,u ·nt)

The three features are combined and put into the equivalent histogram bin. The
histograms are called Simplified Point Feature Histogram (SPFH). Note that ever point
pi has its own SPFH.

3. After achieving SPFH of every point, for each point pi redetermine its k neighbours
and use the neighbouring SPFH values to weight the final histogram of pi:

FPFH(pi) = SPFH(pi)+
1
k

k

∑
j=1

1
ωk
·SPFH(p j)

FPFH is also implemented in PCL. We use the pcl::FPFHEstimation class in PCL to
compute FPFH in this experiment.

Plane-based registration algorithm

We adopt the most recent plane-based scan registration algorithm [163] as a representative of
plane-based registration techniques in this experiment to compare with our HTD-based scan
registration methods. This scan registration method contains three steps:

1. extract planar segments from scans utilizing a cached-octree region growing (CORG)
method, which does not require the point clouds to be organized;

2. calculate the area of each planar segments;

3. find corresponding planar segments between overlapping point clouds and calculate
the transformation matrix from determined correspondence.

In Step 3, the transformation is searched globally as to maximize a spherical corre-
lation like metric, by enumerating solutions derived from potential segment correspon-
dences. C++ implementation of this algorithm is available on https://github.com/ junhaoxiao/
TAMS-Planar-Surface-Based-Perception.git.

https://github.com/junhaoxiao/TAMS-Planar-Surface-Based-Perception.git
https://github.com/junhaoxiao/TAMS-Planar-Surface-Based-Perception.git
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(a) Range Image of Scan001 (b) Range Image of Scan005

(c) Range Image of Scan009 (d) Range Image of Scan013

(e) Range Image of Scan017 (f) Range Image of Scan021

(g) Range Image of Scan025 (h) Range Image of Scan029

(i) Range Image of Scan033 (j) Range Image of Scan037

(k) Range Image of Scan041 (l) Range Image of Scan045

(m) Range Image of Scan049 (n) Range Image of Scan053

Fig. 3.12 Range images of the selected scans in "Barcelona Robot Lab Dataset"
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3.5.2 The "Barcelona Robot Lab Dataset"

The "Barcelona Robot Lab" dataset covers about 10000 m2 of the UPC Nord Campus
in Barcelona, which is intended for use in mobile robotics and computer vision research.
Multiple sensor channels are provided in the dataset, including odometry information, com-
pass data, unorganized point clouds, on-board robot imagery as well as imagery from a
camera sensor network. This dataset contains 400 scans with about 195000 points each.
The point clouds are captured by Hokuyo UTM-30LX scanner mounted in a slip-ring, just
like our custom-built platform. The "Barcelona Robot Lab" dataset is public available on:
http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/ index.php.

In this experiment, we select 14 scans in the first 53 scans by the interval of four, in this
way, there are large offsets and less overlaps between the successive scans. We adopt these
14 scans to prove that our HTD-based scan registration technique could handle the scans
share small overlaps. The range images of the selected 14 scans are shown in Figure 3.12.
Further, the range images are generated by pcl::RangeImageSpherical Class and visualized
by pcl::visualization::RangeImageVisualizer Class.

Performance of HTD-based algorithm

The registration results by our HTD-based scan registration algorithm are proposed in Table
3.1. Our scan registration algorithm succeeds in 11 scan pairs, but fails when align the 21th
scan to 17th scan and 41th scan to 37th scan. But if we add 18th & 19th and 39th scans into
the registration chain, the registration algorithm performs well, just like the bottom part of
Table 3.1 depicts.

Figures 3.13 and 3.14 show the central four scan pairs, 25& 21, 29& 25, 33& 29, 37& 33.
It could be seen from the original scan pairs that how large the rotation offsets between the
scans are, while the large translation could be seen from the registration results. For the 25&
21, 29& 25, 33& 29 scan pairs, there are about 90 degree rotations between them. And our
HTD-based scan registration algorithm could handle them easily and stably. For the 37& 33
scan pair, there is large offset between them, and our transformation recovery method could
estimate the translation based on the little overlap.

Please note that the registration results shown in Figures 3.13 and 3.14 are the results of
our HTD-based registration method without the refinement by local registration methods.
Compare with other global registration algorithms, such as FPFH-based registration method
[119], plane-based registration method [163], and SEI-based registration algorithm proposed
in Section 4.3, this HTD-based registration usually produces more precise registration results.

http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/index.php
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Table 3.1 Registration results of our HTD-based scan registration
algorithm applied to "Barcelona Robot Lab Dataset".

Scan Pairs
Rotation (radian) Translation (m)

Roll Pitch Yaw X Y Z

5→ 1 0.0141 -0.0361 0.3456 7.93056 2.08306 -0.178802

9→ 5 0.0107 -0.0081 0.4095 6.88793 -4.42686 -0.0607769

13→ 9 0.0080 0.0153 1.3060 5.00036 4.13597 -0.0601081

17→ 13 0.0200 -0.0017 1.0877 5.0177 4.17567 -0.101578

21→ 17 —– —– —– —– —– —–

25→ 21 0.0710 0.0048 1.6151 6.58132 7.18973 -0.311634

29→ 25 0.0191 0.0075 1.4624 6.82892 5.88536 -0.0647581

33→ 29 0.0011 -0.0240 1.3753 2.894 4.03988 -0.0834897

37→ 33 0.0179 -0.0139 1.1721 5.79207 -4.92743 -0.188376

41→ 37 —– —– —– —– —– —–

45→ 41 0.0085 -0.0011 0.9090 6.8145 3.88789 -0.105301

49→ 45 0.0254 0.0198 0.1382 8.15788 0.55841 0.047969

53→ 49 0.0019 -0.0032 0.0148 11.1342 -0.756214 -0.181826

18→ 17 0.0210 0.0141 0.1891 2.76644 0.434501 -0.0781493

19→ 18 0.0322 -0.0136 0.2172 2.74701 0.25058 -0.0594296

21→ 19 0.0140 -0.0293 0.2206 5.51585 0.481793 -0.122603

39→ 37 0.0015 0.0362 0.6663 2.59516 -1.05736 0.0456518

41→ 39 0.0186 -0.0297 0.3887 5.15237 -2.13771 -0.202215

The registration is implemented on the standard personal desktop computer with the
following details:

• Memory: 7.7GiB

• Processor: Intel R⃝ CoreTM i5-3750 CPU @ 3.4GHZ

• System: 64-bit Ubuntu 12.04 LTS

Specifically, with regard to efficiency of the algorithm, the processing time without
resampling of the original scans is listed in Table 3.2. We could see from Table 3.2 that
the runtime of our algorithm is quite stable, and most time (more than half) is used to
compute the normal of points which could be implemented offline and separately before
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(a) 25th and 21th scan before registration. (b) registration result of 25th and 21th scan.

(c) 29th and 25th scan before registration. (d) registration result of 29th and 25th scan.

Fig. 3.13 Examples of registration results of "Barcelona Robot Lab
Dataset" by our HTD-based scan registration algorithm (I).

online registration. Particularly, the normal of points in former scan could be calculated while
the robot captures the next scan. The time used for normal estimation and HTD calculation
listed in Table 3.2 contains the time required by both the object and scene scans in each
pair. Actually in the successive registration chain, it is only necessary to calculate one time.
For example, in the procedure aligning 17th scan to 13th scan, the algorithm only needs to
compute the normals and HTD of the 17th scan, since the normal and HTD of 13th scan has
been calculated in the former registration procedure. It is the same to projecting point clouds
onto xy plane and z axis in translation recovery procedure.

It is worthy to point out that we also present the runtime of the algorithm although it fails
in 21& 17 and 41& 37, since it is also important how long the registration methods take to
tell that they could not achieve the goal.
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(a) 33th and 29th scans before registration. (b) registration result of 33th and 29th scan.

(c) 37th and 33th scans before registration. (d) registration result of 37th and 33th scan.

Fig. 3.14 Examples of registration results of "Barcelona Robot Lab
Dataset" by our HTD-based scan registration algorithm (II).

Comparison with the state-of-the-art

In order to prove the superiority of our registration algorithm, we also compare our HTD-
based scan registration method with the state-of-the-art methods introduced in Section 3.5.1.
The code implementing ICP algorithm based on pcl::IterativeClosestPointWithNormals class
in PCL and FPFH algorithm based on pcl::FPFHEstimation class in PCL are also public
available on the Internet, please refer to Appendix A.

FPFH algorithm combining the keypoints detection methods NARF and 3D SIFT is also
accessible in our code, but it is not adopted in this comparison experiments. Instead, we
use the uniformly resampled points as the keypoints, which takes more time but performs
much better. The examples of the keypoints detected by NARF and 3D SIFT are shown in
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Table 3.2 Processing time of our HTD-based scan registration algorithm applied
to "Barcelona Robot Lab Dataset" (without resampling).

Scan Pairs

Time per step (s)

Total (s)Normal HTD Rotation Translation

Estimation Calculation Determination Recovery

5→ 1 1.380134 0.380134 0.015455 0.672082 2.447805

9→ 5 1.361336 0.384292 0.009453 0.743060 2.498141

13→ 9 1.210614 0.335550 0.009496 0.630288 2.185948

17→ 13 1.172073 0.330593 0.009377 0.576633 2.088676

21→ 17
1.397406 0.419999 0.009307 0.706259 2.532971

(FAIL)

25→ 21 1.495730 0.453491 0.009284 0.649925 2.608430

29→ 25 1.378997 0.396082 0.009294 0.667856 2.452229

33→ 29 1.420831 0.395692 0.009355 0.650712 2.476590

37→ 33 1.605091 0.453687 0.009324 0.728680 2.796782

41→ 37
1.358607 0.373290 0.009588 0.638435 2.379920

(FAIL)

45→ 41 1.030726 0.284181 0.009396 0.498335 1.822638

49→ 45 1.174090 0.321975 0.009434 0.589456 2.094955

53→ 49 1.354634 0.379299 0.009353 0.754029 2.497315

18→ 17 1.589441 0.446769 0.009356 0.758911 2.804477

19→ 18 1.934572 0.534620 0.009469 0.830013 3.308674

21→ 19 1.736309 0.510100 0.009504 0.787791 3.043704

39→ 37 1.433463 0.396889 0.009715 0.710188 2.550255

41→ 39 1.060626 0.294575 0.009387 0.588731 1.953319

Figure 3.15. The keypoints detection methods could reduce the runtime of FPFH registration
algorithm dramatically, but the success ratio of FPFH algorithm decreases seriously. Besides,
it is unfair for FPFH in the comparison experiment to apply any algorithms which could
possible reduce its performance.

The performances of the four registration algorithms are presented in Table 3.3. For ICP
method, the max correspondence distance is set to be 5.0 m, which seems to be quite large,
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(a) Keypoints detected by NARF for the
37th scan.

(b) Keypoints detected by SIFT for the
37th scan.

(c) Keypoints detected by NARF for the
41th scan.

(d) Keypoints detected by SIFT for the
41th scan.

Fig. 3.15 Example of keypoints detected by NARF and 3D SIFT.

but this is determined by plenty of trials. Because we selected the scans by interval of 4, there
are large offsets between scan pairs, small values of the max correspondence distance do not
work, actually ICP fails all the scan pairs when this value is set to be 1.0 m. FPFH-based
registration algorithm performs well for object registration, but works poor for outdoor scan
registration tasks since there are too many similar features in large scene scans. With respect
to the plane-based algorithm, it tells that it could not find enough planes in 25th & 21th and
37th & 33 scan pairs. But it gives wrong results for 29th & 25th and 49th & 45th scan pairs,
as Figure 3.16 shows.

In order to compare the efficiency of the four registration algorithms, their runtime on
the same personal desktop computer is depicted in Figure 3.17. As expected, the ICP and
FPFH algorithms need too much more time than HTD-based and plane-based algorithms,
and present large fluctuation. ICP and FPFH-based scan algorithms play well for surface
alignment of handy objects, but they work really poor in outdoor robotic mapping applications.
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Table 3.3 Performances of four registration algorithms applied to "Barcelona
Robot Lab Dataset" (without resampling).

Scan Pairs HTD ICP FPFH plane-based

5→ 1 ✓ ✗ ✓ ✓

9→ 5 ✓ ✗ ✓ ✓

13→ 9 ✓ ✓ ✗ ✓

17→ 13 ✓ ✓ ✓ ✓

21→ 17 ✗ ✗ ✗ ✗

25→ 21 ✓ ✗ ✗ ✓

29→ 25 ✓ ✗ ✗ ✗

33→ 29 ✓ ✗ ✓ ✓

37→ 33 ✓ ✗ ✗ ✗

41→ 37 ✗ ✗ ✗ ✓

45→ 41 ✓ ✓ ✗ ✓

49→ 45 ✓ ✗ ✗ ✗

53→ 49 ✓ ✗ ✗ ✓

Success ratio 0.846154 0.230769 0.307692 0.692308

(a) Wrong registration result of 29th and 25th
scan pair.

(b) Wrong registration result of 49th and
45th scan pair.

Fig. 3.16 Wrong registration results given by plane-based registration algorithm [163].
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Admittedly, it is unfair for ICP to be compared in the scenarios where the scan pairs have
large offsets, since it is a local registration algorithm and the key of its success is the good
initial guess and close enough correspondences. But we adopt ICP in this comparison
experiment because it is a quite famous registration method. The variation of runtime is a
internal defect of ICP, and it usually needs more time when it could not find enough close
correspondences. Maybe the low efficiency of FPFH-based algorithm is partially evocable
by the absence of keypoints detection, but its combination with NARF or 3D SIFT also
requires much more time than our HTD-based registration algorithm. And just like the ICP
method, the variation of runtime is also a internal defect of FPFH-based algorithm. The
plane-based registration method [163] is designed for the outdoor robotic mapping in the
scenarios with plenty of planes. It performs quite well in this experiment and needs slightly
more processing time than our HTD-based algorithm. The algorithm will stop if it could not
find enough corresponding planes, which is helpful to save time for the failed instances. The
plane dependence of this kind of algorithm is a internal defect, which will be presented in
Section 3.5.3. Our HTD-based algorithm could give results in about two seconds for most
scan pairs, and its runtime is quite stable.

Fig. 3.17 Runtime of four registration algorithms applied to
"Barcelona Robot Lab Dataset"(without resample)
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3.5.3 The dataset captured by our custom-built platform

(a) (b)

(c) (d)

Fig. 3.18 Different views of location where our datasets are captured
by our custom-built platform (From Bing Map).

We also validate our HTD-based scan registration method with respect to the dataset
captured by our custom-built platform in University of Hamburg, Informatik campus. Each
scan contains about 420000 points. Different views of location where the datasets are
captured are shown in Figure 3.18. It is a pity that the pictures in Figure 3.18 are from "Bing
Map" in summer, while the scans are captured in winter. The range images of scans are shown
in Figures 3.19 and 3.20. The range images are generated by pcl::RangeImageSpherical
Class and visualized by pcl::visualization::RangeImageVisualizer Class.

It can be seen that there are less planes in the scenes, so the plane-based registration
method [163] performs poor. And compare with the dataset presented in Section 3.5.2, there
are less offsets between successive scan pairs. In this way, the ICP method works better
although still not good enough as our HTD-based method.
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(a) Range Image of Scan000 (b) Range Image of Scan001

(c) Range Image of Scan002 (d) Range Image of Scan003

(e) Range Image of Scan004 (f) Range Image of Scan005

(g) Range Image of Scan006 (h) Range Image of Scan007

(i) Range Image of Scan008 (j) Range Image of Scan009

(k) Range Image of Scan010 (l) Range Image of Scan011

(m) Range Image of Scan012 (n) Range Image of Scan013

Fig. 3.19 Range Images of the scans captured by our custom-built platform (I)
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(a) Range Image of Scan014 (b) Range Image of Scan015

(c) Range Image of Scan016 (d) Range Image of Scan017

(e) Range Image of Scan018 (f) Range Image of Scan019

(g) Range Image of Scan020

Fig. 3.20 Range Images of the scans captured by our custom-built platform (II)

(a) 7th and 6th scan before registration. (b) 9th and 8th scan before registration.

Fig. 3.21 Two scan pairs captured by our custom-built platform
which our HTD-based algorithm fails.
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(a) 5th and 4th scan before registration. (b) registration result of 5th and 4th scan.

(c) 6th and 5th scan before registration. (d) registration result of 6th and 5th scan.

(e) 19th and 18th scan before registration. (f) registration result of 19th and 18th scan.

Fig. 3.22 Examples of registration results of our HTD-based scan registration
algorithm with respect to the datasets captured by our custom-built platform.
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Performance of HTD-based algorithm

Table 3.4 Registration results of our HTD-based scan registration algorithm
applied to our own dataset with resample: [0.1m, 0.1m, 0.1m]).

Scan Pairs
Rotation (radian) Translation (m)

Roll Pitch Yaw X Y Z

1→ 0 0.0140 0.0103 0.0260 -5.61854 -0.399192 0.699518

2→ 1 0.0357 -0.0137 0.4084 -5.93066 -2.48076 -0.0228423

3→ 2 0.0430 0.0697 0.0698 -5.30540 -0.139687 -0.0124463

4→ 3 0.0057 -0.0081 0.0533 -5.05042 0.0907421 -0.0522128

5→ 4 0.0247 -0.0270 0.9960 -4.42280 2.78186 0.0550576

6→ 5 0.0080 0.0138 0.0594 -4.16427 0.0646951 -0.0150615

7→ 6 — — — — — —

8→ 7 0.0259 -0.0163 0.0474 9.47040 -0.566739 -0.152669

9→ 8 — — — — — —

10→ 9 0.0376 0.0269 0.1718 -4.93201 -0.532898 0.00270474

11→ 10 0.0281 0.0010 0.2707 -4.7311 0.900582 -0.0392536

12→ 11 0.0565 -0.0174 0.0610 -4.37175 0.0409229 0.0506028

13→ 12 0.0083 -0.0009 0.0237 -4.74231 0.124113 -0.0172713

14→ 13 0.0129 0.0352 0.0657 -4.60302 0.0418059 -0.0402376

15→ 14 0.0023 0.0047 0.0187 -3.92494 -0.159744 -0.0582144

16→ 15 0.0035 -0.0423 0.0569 -4.34661 -0.201696 0.0865352

17→ 16 0.0009 0.0146 0.0033 -4.68631 -0.0810165 0.0109183

18→ 17 0.0143 0.0331 0.1023 -4.28723 -0.357048 -0.0580377

19→ 18 0.0164 -0.0322 0.2342 -5.19029 -1.23454 0.0449379

20→ 19 0.0787 0.0425 2.8318 -1.52083 -3.94592 -0.152487

The registration results by our HTD-based scan registration algorithm are proposed in
Table 3.4. Our scan registration algorithm succeeds in 18 scan pairs, but fails when align 7th
scan to 6th scan and 9th scan to 8th scan. These two failed scan pairs are shown in Figure
3.21. It can be seen that is is almost impossible to align these two scan pairs based on hardly
any overlaps.
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Three successful example scan pairs, 5th & 4th, 6th & 5th, 19th & 18th, are presented in
Figure 3.22. The registration results are the results of our HTD-based registration algorithm
without the refinement of any local registration methods. It can be seen that our registration
method produces more precise registration results compared with other global registration
methods.

Table 3.5 Processing time of our HTD-based scan registration algorithm applied
to our own dataset with resample: [0.1m, 0.1m, 0.1m]).

Scan Pairs

Time per step (ms)

Total (s)Normal HTD Rotation Translation

Estimation Calculation Determination Recovery

1→ 0 0.161178 0.046802 0.002685 0.161318 0.371983

2→ 1 0.15699 0.045501 0.009327 0.172119 0.383937

3→ 2 0.160137 0.047712 0.002578 0.177229 0.387656

4→ 3 0.169064 0.049445 0.002606 0.19017 0.411285

5→ 4 0.171743 0.050793 0.002841 0.180044 0.405421

6→ 5 0.189796 0.055884 0.009741 0.220836 0.476257

7→ 6
0.305909 0.089268 0.002597 0.239586 0.63736

(FAIL)

8→ 7 0.402581 0.117009 0.009449 0.2618 0.790839

9→ 8
0.267917 0.077392 0.002599 0.259295 0.607203

(FAIL)

10→ 9 0.144578 0.042653 0.002568 0.184877 0.374676

11→ 10 0.164629 0.048999 0.002576 0.169021 0.385225

12→ 11 0.188119 0.055871 0.002633 0.195521 0.442144

13→ 12 0.216315 0.061738 0.002596 0.179709 0.460358

14→ 13 0.225881 0.064858 0.002626 0.169989 0.463354

15→ 14 0.208199 0.060861 0.00905 0.181504 0.459614

16→ 15 0.181902 0.054074 0.002572 0.153685 0.392233

17→ 16 0.182583 0.054017 0.002752 0.164876 0.404228

18→ 17 0.205481 0.064176 0.002709 0.177487 0.449853

19→ 18 0.261451 0.076225 0.002658 0.18162 0.521954

20→ 19 0.217773 0.063314 0.002618 0.174134 0.457839
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In this experiment, our HTD-based registration algorithm is also implemented on the
personal desktop computer depicted in Section 3.5.2. With respect to the efficiency of
the algorithm, the runtime of our algorithm is listed in Table 3.5. Before registration, the
original scans are resampled with 0.1 meter leaf size. So the runtime in this experiment is
much smaller than in the experiment described in Section 3.5.2. For most scan pairs, our
HTD-based registration algorithm could give result in less than 0.5 seconds, and its runtime
is quite stable.

Table 3.6 Performances of four registration algorithms applied to our
own dataset with resample: [0.1m, 0.1m, 0.1m]).

Scan Pairs HTD ICP FPFH plane-based

1→ 0 ✓ ✓ ✓ ✗

2→ 1 ✓ ✓ ✗ ✗

3→ 2 ✓ ✓ ✗ ✓

4→ 3 ✓ ✓ ✗ ✓

5→ 4 ✓ ✓ ✗ ✓

6→ 5 ✓ ✗ ✓ ✗

7→ 6 ✗ ✗ ✗ ✗

8→ 7 ✓ ✓ ✗ ✓

9→ 8 ✗ ✗ ✗ ✗

10→ 9 ✓ ✓ ✗ ✗

11→ 10 ✓ ✓ ✓ ✗

12→ 11 ✓ ✓ ✓ ✗

13→ 12 ✓ ✓ ✓ ✗

14→ 13 ✓ ✗ ✗ ✗

15→ 14 ✓ ✓ ✗ ✓

16→ 15 ✓ ✓ ✗ ✗

17→ 16 ✓ ✓ ✓ ✗

18→ 17 ✓ ✗ ✗ ✗

19→ 18 ✓ ✓ ✗ ✗

20→ 19 ✓ ✗ ✓ ✗

Success ratio(%) 90.0 70.0 35.0 25.0
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Comparison with the state-of-the-art

In order to prove the superiority of our registration algorithm, we also compare our HTD-
based scan registration method with the state-of-the-art methods introduced in Section 3.5.1.
For convenience of other researchers to compare with their own registration algorithm, the
dataset and the code implementation our HTD-based registration method, ICP algorithm
based on pcl::IterativeClosestPointWithNormals class and FPFH-based registration algorithm
based on pcl::FPFHEstimation class in PCL are public available on the Internet, please
refer to Appendix A. Again, FPFH algorithm combining the keypoints detection methods
NARF and 3D SIFT is also accessible in our code, but it is not adopted in this comparison
experiment. Instead, we use the uniformly resampled points as the keypoints, which takes
more time but performs much better.

Fig. 3.23 Runtime of four registration algorithms applied to our
dataset with resample: [0.1m, 0.1m, 0.1m]).

The performance of the four registration algorithms are presented in Table 3.6. For ICP
method, the max correspondence distance is set to be 5.0 meter, which is determined by
plenty of trials. After resampling the original point cloud with leaf size 0.1 meters, the
FPFH-based algorithm resample the scan with leaf size 0.5 meters as the keypoints. ICP
method performs better than in the experiment depicted in Section 3.5.2, since there are
less offsets between successive scans. FPFH-based registration still works poor for large
scale outdoor scenes as before. And the plane-based registration method does not perform
as well as in the "Barcelona Robot Lab Dataset", since the scans in this experiment are not
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plane-rich. Actually, it is unfair for the plane-based registration method to be used in plane
less scenarios, since it is designed for plane-rich scenarios.

In order to compare the efficiency of the four registration algorithms with respect to this
dataset, their runtime on the same personal desktop computer is depicted in Figure 3.23.
As before, the ICP and FPFH-based registration algorithms require too much time than our
HTD-based technique, and show large variation. No matter succeed or not, the runtime of
plane-based method [163] is less than ICP and FPFH-based registration algorithm. When the
plane-based registration method could not find enough corresponding large planar patches in
the scan pairs, it stops and tells that it could not work out the registration task. This property
prevents the plane-based method wasting runtime. And just as in the past, our HTD-based
algorithm needs least time in the four registration algorithms.

3.6 Summary

In this chapter, we propose the Hough Transform Descriptor of 3D point clouds, and develop
a feature-less global registration method based on Hough Transform Descriptor. The novel
registration method estimates rotation and translation information successively. The Hough
Transform Descriptor only maintains the rotation information of the original data, so the
rotation matrix is recovered by matching the corresponding Hough Transform Descriptor.
After rotation recovery, rerotate the original scans according to the determined rotation matrix,
and determine the translation by the POMF technique. The proposed registration method
is validated with regards to two datasets, one is the "Barcelona Robot Lab Dataset" which
is public available on the Internet, another one is the dataset captured by our custom-build
platform in University of Hamburg. The experiment results show that our novel registration
method present good performance and could handle the scan pairs with large offsets and
partial overlaps. Furthermore, the runtime of our novel registration method is short and quite
stable, which is important for practical application.





CHAPTER4
Spherical Entropy Image

To study and not think is a waste. To think and not
study is dangerous.

Confucius
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4.1 Introduction

SHAPE descriptors collate the information stored in 3D surfaces so that the surfaces can be
represented compactly and compared efficiently. Shape descriptors are the foundation

of several advanced 3D data processing techniques, such as 3D object recognition, 3D shape
retrieval and 3D surface alignment. The existing shape descriptors could be categorised into
Signature-based and Histogram-based methods. Signature-based methods, such as Point
Signature [32], 3D Point’s Fingerprint [137] and local depth SIFT (LD-SIFT) [36], describe
the 3D surface neighbourhood of a given point (hereinafter support) by encoding one or
more geometric measurements computed individually at each point of a subset of the support.
Signature-based methods are potentially highly descriptive thanks to the use of spatially well-
localized information. Histogram-based methods, such as Spin Image [66][65], 3D Shape
Context [51] and Fast Point Feature Histograms [119], describe the support by encoding
counters of local geometrical entities into histograms according to a specific classification
criteria. In broad terms, Signature-based methods are potentially highly descriptive thanks to
the use of spatially well-localized information, whereas Histogram-based methods trade off
descriptive power for robustness by compressing geometric structure into bins.

This chapter proposes a novel shape descriptor aiming to inherit the vantage of both
Signature-based and Histogram-based methods, just like Signature of Histograms of Ori-
enTations (SHOT) descriptor [150] [123] does. We propose a novel spherical descriptor
named Spherical Entropy Image (SEI). Technically speaking, SEI is more compact than
SHOT, since it calculates entropy based on histograms. Entropy preserves the robustness of
histogram, and the compactness of entropy allows partitioning the support more densely to
improve the descriptive power. SEI could be used as a global or local descriptor depending
on either viewer-centred or object-centred coordinate system [41] is adopted. Viewer-centred
representations describe surface data with respect to a coordinate system dependent on
the viewer of the surface. Object-centred representations describe the object surface in a
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coordinate system fixed to the object. Incorporating with viewer-centred coordinate system,
SEI could be used for 3D surface registration as a global descriptor. While integrating with
object-centred coordinate system, SEI could be employed as a local shape descriptor for
feature matching.

The shape descriptor SEI proposed in this chapter has the following characteristics:

✓ it is a hybrid structure between Signature-based and Histogram-based methods aiming
at a favourable balance between descriptive power and robustness.

✓ as for the signature structure, it adopts a spherical grid that encompasses partitions
along the azimuth and elevation axes, without partitions along radial axis.

✓ as for histograms, it encodes the depth of points into histograms, and further computes
the entropy of histogram for the sake of compactness. Besides, entropy achieves
robustness to point density variations.

✓ it is not dependent on the normals of points, since normal estimation is time consuming
and not so stable as we expect.

4.2 Spherical Entropy Image (SEI)

4.2.1 Motivation

To begin with, we analyse the theoretical requirements of 3D shape descriptors. The purpose
of shape descriptor is to describe the overall structure of the original data in a compact way
and fulfil the following requirements:

✓ Structural discrimination: the descriptor should capture the structural information
of the original data solely, which means different structures are supposed to result in
different values of structural descriptors.

✓ Locality preservation: similar structures should be mapped to similar values, and in
other words, slight changes in structure should lead to slight shifts in the values of
structural representation. It is critical for the robustness to noise.

✓ Independent of point density: the density of points within the same structure may be
variable in different scans. The shape descriptor should be related to permutation of
points but independent of the density.
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✓ Robust to outliers: notice that the outliers are the points far from the majority of 3D
point clouds, and their portion is limited. So the value of structural representation
should approximate 0 when the probability of its related points approach 0.

Generally, the signature-based shape descriptors have powerful structural discrimination,
while the histogram-based shape descriptors have strong capability of locality preservation.
So SHOT inherits both descriptive power of signature-based methods and robustness of
histogram-based methods. It encodes information about the surface within a spherical support
structure. This support is divided into 32 bins, with 8 divisions along the azimuth, 2 along
the elevation and 2 along the radius. For every bin, a one-dimensional local histogram is
computed. The local geometrical entity chosen for histogram is angle between the normal
of the key-point and the current point within that bins. After all local histograms have been
computed, they are stitched together into a final descriptor.

We continue the trend of SHOT and desire to preserve the vantage of Signature-based
and Histogram-based methods. Rather than stitch histograms directly, we compute entropy
of histogram, since entropy inherits the robustness of histogram but is more compact. Thanks
to the entropy, we could divide the support more densely than SHOT. Further we notice
that there must be only one point along the specific azimuth and elevation combination, so
we discard the partition along radial direction and choose the depth of point as the local
geometric entity for histogram. In this way, we could partition the azimuth and elevation
very densely so as to achieve very strong descriptive power.

Fig. 4.1 Schematic illustration of Spherical Entropy Image (SEI). The calculation of SEI
includes three steps: a) divide the scan/support into several pathes; b) build the histograms
and estimate the probability density function (PDF); c) compute entropy based on the PDF
densely.

4.2.2 Algorithm description

The original data is divided into bins by equally spaced boundaries in the azimuth and
elevation dimensions. In this paper, the way of division is projecting the points into the
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spherical grids corresponding to regular sampling along the lines of longitude and latitude.
As shown in Figure 4.1, the 3D patch is an analogous square pyramid taking the origin of the
scan as the vertex, but the bottom surface is not a plane but a spherical grid [133].

The assessment of information content, prevalent in information theory discipline, mea-
sures up to the above principles related to 3D shape descriptor. The depth of points belonging
to the same 3D patch could be interpreted as the observations of a random variable R,
then the information entropy E(R) of the variable R is regarded as the value of structural
representation of the patch:

E(R) =− ∑
d∈D

p(R = d) · log{p(R = d)} (4.1)

where D is the set of possible values of R, and p is its Probability Density Function (PDF).

The process of calculating entropy is illustrated in Figure 4.1:

1. divide the 3D point cloud into several patches according to azimuth and elevation
angles of points;

2. for each patch, considering the depth of points as the observations of a random variable
R, normalize the depth of points, build the histogram and compute the PDF of variable
R;

3. compute the entropy of variable R based on the probability distribution.

The structural representation of the 3D point cloud is achieved by computing the entropy of
patches in a dense manner. We name this type of representation as Spherical Entropy Image
(SEI). Two examples of SEI are presented in Figure 4.2.

4.2.3 Discussion

The SEI could be used as the global or local descriptor in many 3D data processing tasks, such
as shape retrieve, object recognition and scan registration. There are several tips deserving
more attention when compute the SEI.

Dimension of spherical grids

When acquire the SEIs of the scans, the dimension of the spherical grids is a tradeoff between
precision and efficiency. The tradeoff is extremely common in engineering problems: greater
precision requires more calculation and decreases the efficiency, while higher efficiency and
less amount of calculation would lower the precision.
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(a) The first example scan (b) The second example scan

(c) SEI of the first scan (d) SEI of the second scan

Fig. 4.2 Examples of Spherical Entropy Image (SEI) of scans
captured by our custom-built platform

However, the dilemma of SEI is peculiar since it involves the entropy calculation. It
is well known that the entropy is calculated on the probability of the variable, so the more
samples the better the entropy describes the variable. If the number of points in a patch is
too small, there would be no statistical property of the depth of points and hence the entropy
is meaningless. Consequently, the dimension of the spherical grids could not be too high.
Furthermore, when SEI is adopted in surface alignment as a global shape descriptor, it is
only employed to estimate the initial estimation, and the crude alignment would be refined
by local registration methods. From this point of view, the dimension of the spherical grids is
unnecessary to be too high.

Entropy computation

Firstly, in order to make full use of the range of the histogram, we normalize the depth
of points in the same patch. Secondly, the entropy is based on the statistics, which means
sufficient samples are crucial to entropy calculation. But after the division of the scan/support,
the points located in a single patch is numbered. To solve this predicament, we utilize the
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kernel-based Parzen-window [104] technique during building the histogram, since it yields
more robust PDFs for a small number of observations. Thirdly, there are many other options
for entropy calculation. Within the algorithm proposed in this paper, we regard the depth of
point as a random variable R and estimate the entropy related to it. The variable R could also
be interpreted as angle between the surface normals of points, the mutual distance of points
or their admixture and so on.

Outlier removal

HTD proposed in Section 3.3 is a voting procedure, so the outlier removal is unnecessary
for calculation HTD. While outlier removal is quite important for SEI, since the values
of outliers have effect on the values of entropies. In our implementation, the PCL class
pcl::StatisticalOutlierRemoval is employed to remove outliers, which uses point neighbour-
hood statistics to filter outlier data [120]. This outlier removal algorithm contains two steps:
firstly compute the average distance between each point and its nearest k neighbours, and
then determine a threshold based on the mean and standard deviation of all these distances;
secondly iterate the points and remove the points whose average neighbour distance is above
the threshold.

Translation dependence

The entropy calculation is translation-invariant, since it is merely related to the probability of
the depth of points but independent of value of the depth. What is noteworthy is that even
though the entropy evaluation is translation-invariant, the SEI is not translation-invariant
due to the fact that the way to divide scans is translation dependent. It is because the sphere
is divided into bins by equally spaced boundaries in the azimuth and elevation dimensions
when compute SEIs. In this case, the object far away from the center of sphere covers less
part of the spherical surface, while the object closer to the center occupies larger area. Thus
when SEI is employed as a global shape descriptor, the translation normalization of the scan
is essential before calculating SEI. Actually the translation normalization is theoretically
incomplete, especially when the scans are partially overlapped. The theoretically complete
solution is computing SEIs based on the spectral magnitudes of 3D Fast Fourier Transform
(FFT) of scans. To reduce the adverse effect of translation dependence, it is necessary to
compute 3D FFT of the original data and calculate the SEI based on the spectral magnitude
of FFT. When SEI is used as a local shape descriptor, the translation dependence is not a
problem since the local reference frame is estimated in this case.
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4.3 SEI applied in scan registration

SEI could be employed to develop a global feature-less registration algorithm. Generally, the
original 3D data is depicted by SEI and the transformation between the original data could be
solved by matching the corresponding SEIs. This section proposes a global feature-less scan
registration strategy based on the SEI and the Generalized Convolution Theorem. The 3D
rotation is estimated by the Generalized Convolution Theorem based on Spherical Harmonic
Transform of SEIs. After that, Phase Only Matched Filter (POMF) is adopted for translation
recovery. No particular features in the input data are prerequisite to this scan registration
method. Unlike the feature-based methods, the performance of this registration method does
not reply on specific parameters.

4.3.1 Mathematical background

Although the reason why the Spherical Harmonic analysis techniques could be used to match
patterns defined on 2D sphere has been explained in [40][63] detailedly, it is written by
mathematicians and there are too many obscure mathematical equations which are difficult
to understand by engineers. In this part, we express the profound principles of Spherical
Harmonic analysis behind the obscure mathematical equations in plain language, explain the
reason why the Spherical Harmonic analysis techniques could be used for matching patterns
defined on 2D sphere.

Spherical Harmonic Transform (SHT)

Fourier Analysis is extremely significant in signal processing and pattern recognition, since
it decomposes the function into a linear combination of sinusoidal basis functions. In other
words, the Fourier Analysis maps a function to a set of coefficients of basis functions.
Admittedly, there are infinite ways to decompose the signals, and the reason why sinusoids
are adopted is that they are eigenfunctions of the Laplacian operator, hence they maintain
fidelity to most real systems. The basis functions of traditional Fourier Analysis are induced
by the Laplacian operator in Cartesian coordinate system. By the same token, the Laplacian
operator also has effective forms in other coordinate systems, e.g., polar and spherical
coordinates. The SHT is connected with Cartesian Fourier Transform by the Laplacian
operator.

The angular part of spherical Laplacian operator’s eigenfunctions are named spherical
harmonic functions Y m

l : S2 7→ C, where S2 stands for the unit 2D sphere and C symbolizes
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the set of complex number.

Y m
l (ϑ ,ϕ) =

√
2l +1

4π

(l−m)!
(l +m)!

Pm
l (cosϑ)eimϕ (4.2)

where (ϑ ,ϕ) are the spherical coordinates; l, m are integers, l > 0, |m|< l. The l is called the
degree of spherical harmonics. For the l-th degree, there are 2l+1 spherical harmonics basis
functions indexed in the range of −l ≤ m≤ l. Pm

l is associated Legendre polynomial, and√
2l+1
4π

(l−m)!
(l+m)!P

m
l (x) is called normalized associated Legendre polynomial. Some care must

be taken in identifying the notational convention being used. In Y m
l , ϑ is taken as the polar

(colatitudinal) coordinate with ϑ ∈ [0,π], and ϕ as the azimuthal (longitudinal) coordinate
with ϕ ∈ [0,2π).

Similar to the Cartesian Fourier basis, spherical harmonics represent the different fre-
quency components of spherical functions. In the following, we list some important properties
of spherical harmonics Y m

l (ϑ ,ϕ), all of which are validated based on Mathematica [162].

Properties of Spherical Harmonics

1. P−m
l (x) = (−1)m (l−m)!

(l+m)!P
m
l (x);

2. Based on Property 1, we could deduce:

Y−m
l (ϑ ,ϕ) = (−1)m

√
2l +1

4π

(l−m)!
(l +m)!

Pm
l (cosϑ)ei(−m)ϕ (4.3)

3. Based on super Property 2 (equation 4.3) we could get:

(a) Y−m
l (ϑ ,ϕ) = (−1)mY m

l (ϑ ,ϕ)

(b) Real{Y−m
l (ϑ ,ϕ}= (−1)mReal{Y m

l (ϑ ,ϕ)}

(c) Imaginary{Y−m
l (ϑ ,ϕ}= (−1)m+1Imaginary{Y m

l (ϑ ,ϕ)}

(d) |Y−m
l (ϑ ,ϕ1)|= |Y m

l (ϑ ,ϕ2)|

where |Y−m
l (ϑ ,ϕ1)| = |Y m

l (ϑ ,ϕ2)| is an important property of spherical harmonic, which
means that the complex modulus of Y m

l is unrelated to the azimuth angles.

Let L2(S2) denote the space of square integrate functions defined on sphere S2. The
spherical harmonics of degree l span a (2l +1) dimensional subspace of L2(S2). Spherical
harmonics of different degrees are orthogonal to each other. Furthermore, the spherical
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harmonic functions provide an complete orthonormal basis for L2(S2). In other words, any
function f (ϑ ,ϕ)∈ L2(S2) could be expanded as a linear combination of spherical harmonics:

f (ϑ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

f m
l Y m

l (ϑ ,ϕ) (4.4)

f m
l =

∫ 2π

0
dϕ

∫
π

0
dϑsinϑ f (ϑ ,ϕ)Y m

l (ϑ ,ϕ) (4.5)

where the overline stands for the complex conjugate. Equation (4.4) is named Spherical
Harmonic expansion or inverse Spherical Harmonic Transform, and f m

l is commonly called
the spherical harmonic coefficients of f (ϑ ,ϕ). Equation (4.5) is the Spherical Harmonic
Transform of f (ϑ ,ϕ). In Cartesian Fourier Transform, the translation of signal does not
change the magnitude of Fourier coefficients. Integrating equation 4.4 with property 3d, we
could obtain that the change of ϕ in function f (ϑ ,ϕ) does NOT change the magnitude of
Spherical Harmonic Coefficients.

It is obvious that the SHT has similar formula with the Cartesian Fourier Transform.
Moreover, the SHT is rotation friendly and plays a vital role in matching patterns on S2.

Generalized Convolution Theorem

It is well known that it is possible to detect the translated duplicates of a pattern in an
image by convolving the image with the pattern. And this convolution could be converted to
point-wise product via Fourier Transform. In other words, the convolution in time domain
equals point-wise multiplication in frequency domain, then the original problem could be
solved in frequency domain much more efficiently, just like POMF does. Furthermore, this
convolution theorem could be generalized to the functions defined onS2. Efficient spherical
convolution, aided by a fast Spherical Harmonic Transform and its inverse, contributes to
the registration of graphs on S2.

Following the tradition, let SO(3) denote the rotation group in 3D space, represented by
the 3×3 matrices with determinant one. Given a function f1 on the sphere, and its rotated
version f2 for a rotation g ∈ SO(3): f2 = ∧(g) · f1. Registration of the two functions could
be achieved by correlating functions:

C(g) =
∫

S2
f2(Ω)•∧(g) · f1(Ω)dΩ (4.6)

and the g maximizing the integral (4.6) is the rotation between two functions. However,
evaluating C(g) for all possible rotations is a terrific time-consuming task.
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Spherical Harmonic Transform could be adopted to determine the maximum g efficiently
based on rotation-invariant characteristic of spherical harmonic:

∧(g)Y m
l (Ω) = ∑

|k|≤l
Dl

km(g)Y
k
l (Ω) (4.7)

where Dl
km(g) are called Wigner-D function, and they are the irreducible unitary representa-

tions of SO(3). In some sense, the Dl
km(g) could be interpreted as the k-th component of ∧(g)

acting on Y m
l (Ω). Formula (4.7) signifies that the rotated cousins of a spherical harmonic

could be expressed as a linear combination of spherical harmonics with the same degree.
According to equation (4.4), the Spherical Harmonic expansions of f1 and f2 are:

f1(Ω) = ∑
l

∑
|m|≤l

am
l Y m

l (Ω) (4.8)

f2(Ω) = ∑
l′

∑
|m′|≤l′

bm′
l′ Y m′

l′ (Ω) (4.9)

Substituting equations (4.8) and (4.9) into equation (4.6) and utilizing the "Separation of
Variables" technique and the orthogonality between spherical harmonics, the correlation
function could be rewritten as:

C(g) = ∑
l

∑
|m|≤l

∑
|m′|≤l

am
l bm′

l •
∫

S2
Y m′

l (Ω) ∧(g)Y m
l (Ω)dΩ (4.10)

Recall the rotation-invariant property of the spherical harmonic expressed by equation (4.7),
∧(g)Y m

l (Ω) could be replaced:

C(g) = ∑
l

∑
|m|≤l

∑
|m′|≤l

am
l bm′

l •
∫

S2
Y m′

l (Ω) ∑
|k|≤l

Dl
km(g)Y

k
l (Ω)dΩ (4.11)

= ∑
l

∑
|m|≤l

∑
|m′|≤l

am
l bm′

l • ∑
|k|≤l

Dl
km(g)

∫
S2

Y m′
l (Ω) Y k

l (Ω)dΩ (4.12)

All over again, based on the orthogonality of spherical harmonics, the integral and the
summation on k in equation (4.12) could be zapped:

C(g) = ∑
l

∑
|m|≤l

∑
|m′|≤l

am
l bm′

l ·D
l
m′m(g) (4.13)
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The detailed deduction could be found in [40][63]. It is mainly on the strength of the
"Separation of Variables" technique and orthogonality of spherical harmonics, and makes
full use of the two criteria over and over again.

As prescribed in equation (4.13), the convolution in equation (4.6) is converted to point-
wise multiplication, and the correlation C(g) concerning the whole series of g could be
evaluated uniformly and efficiently based on the spherical Harmonic coefficients. In this
way, the rotation g maximizing C(g) could be easily found. We use the General Convolution
Theorem to estimate the rotation between two spherical representations of scan pairs in our
algorithm.

Algorithm 5: Global feature-less scan registration method based on Spherical Entropy
Image (SEI) as a global shape descriptor (based on 3D FFT).

Input :Points Cloud S1,S2
Output :Transformation matrix (R,T ) between S1,S2

1 ▷ Remove outliers of the original scans
2 RS1← OutlierRemoval(S1) ;
3 RS2← OutlierRemoval(S2)| ;
4 ▷ Compute the magnitude of 3D FFT of scans
5 to resist the translation dependence of SEI,
6 since the SEI is dependent on the translation

7 MF1← |3DFFT(RS1)| ;
8 MF2← |3DFFT(RS2)| ;
9 ▷ Calculate the Spherical Entropy Images(SEI)

10 SEI1← SEICreation(MF1) ;
11 SEI2← SEICreation(MF2) ;

12 ▷ Estimate the Spherical Harmonic coefficients of SEIs
13 SH1← SphericalHarmonic(SEI1) ;
14 SH1← SphericalHarmonic(SEI2) ;

15 ▷ Recover the rotation via Generalized Convolution Theorem [63]
16 R← GeneralizedConvolutionTheorem(SH1,SH2) ;

17 ▷ Rotate the original scans according to R
18 S′1,S

′
2← R(S1,S2) ;

19 ▷ Rasterize the point clouds into xy planes and z axis
20 P1,v1← Rasterize(S′1) ;
21 P2,v2← Rasterize(S′2) ;

22 ▷ Adopt the POMF to determine the translation
23 tx, ty← 2D_POMF(P1,P2) ;
24 tz← 1D_POMF(v1,v2) ;
25 T = (tx, ty, tz) ;
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4.3.2 Scan registration algorithm based on SEI

Obtained the SEIs of two scans, the rotation between the original scans could be estimated by
aligning their corresponding SEIs. The estimation of rotation between spherical graphs could
be decoupled into determination of rotation axis and rotation angle according to Euler’s
Rotation Theorem. The rotation axis could be recovered by minimizing the 3D Angular
Difference Function (ADF) defined in [71], but the performance of this method deteriorates
in the case that the scans have interference and occlusion. A little trick is invented in [134] to
employ the ground surface to determine the rotation axis, but this technique only validates in
robotic mapping scenarios where the ground surface is available.

The technique for pattern matching defined on S2 through Generalized Convolution
Theorem is originated by the researchers in applied mathematics area [40][63], but is attract-
ing more and more attention in pattern recognition [70][96] and medical image processing
societies [129][86]. We apply this technique to recover the rotation in our algorithm.

Overall, the rotation recovery of scans contains four steps:

1. remove outliers and then acquire the SEIs of two scans;

2. implement SHT of two SEIs;

3. combine the Spherical Harmonic coefficients and calculate the correlation functions;

4. find the maximum value of the correlation functions.

We use the freely available toolkit SOFT [64] to obtain the Spherical Harmonic coefficients.

Once the rotation is determined correctly, there is only translation between rerotated
scans. The POMF techniques presented in Section 3.4.2 is employed to estimate the shift
between two rerotated scans.

Resistance to translation dependence

As discussed in Section 4.2.3, the SEIs are dependent on translation. How to reduce the
adverse effect of translation when determine the rotation matrix is the key of success of
SEI-based registration algorithm.

One solution is to render the point clouds into volumes and calculate the 3D FFT of
volumes, since the magnitude of 3D FFT is translation-invariant. The summary of this kind
of global feature-less scan registration strategy based on SEI is shown in Algorithm 5. This
solution is theoretically complete but computational expensive. The code implementing this
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solution is available on the Internet, please refer to Appendix A. Unfortunately, this solution
needs more runtime and its performance is not satisfied, at least not so well as the second
solution.

The second solution is to borrow the iteration idea. Essentially, the rotation determination
and the translation recovery in SEI-based registration algorithm is a Chicken-and-Egg
problem. To recover the translation, it is necessary to determine the rotation firstly. But in
order to determine the rotation matrix accurately, the translation rectification is helpful. This
is a typical Chicken-and-Egg problem. We adopt the iteration idea to solve this dilemma.
And an example is presented in Figure 4.3. Naturally, sometime it is unnecessary to iterate
for some pairs, and commonly two times iteration is enough. The procedure of the global
feature-less scan registration strategy based on SEI and iteration technique is summarized in
Algorithm 6.

4.4 SEI applied as a local shape descriptor

Beside being used as a global shape descriptor in scan registration, SEI could be used as a
local shape descriptor in 3D object recognition. But in order to employ SEI as a local shape
descriptor, it is necessary to achieve the rotation-invariant version of SEI. SEI combining
with the repeatable local coordinate system proposed in [150][18] could be used as local
shape descriptor in 3D model-based object recognition task. Besides that, the property of
SHT of spherical functions could be used to obtain the rotation-invariant version of SEI.

4.4.1 Rotation-invariant version of SEI

Rotation-invariant SEI based on local reference frame

Just like all the other signature-based shape descriptors, SEI requires the repeatable Local
Reference Frame (LRF) when it is used as a local shape descriptor. The building of LRF
is challenging since it should be invariant to translations, rotations and robust to noise
and clutter. But it is significant to the performance of shape descriptors, which is firstly
investigated in [150].

With regard to the LRF of the point clouds, Principle Component Analysis (PCA) [67] is
traditionally the first choice to achieve this. PCA is mathematically defined as orthogonal
linear transformation which transforms the data into a new coordinates system such that the



4.4 SEI applied as a local shape descriptor | 103

(a) Result of rotation recovery
of the first iteration.

(b) Final registration result of
the first iteration.

(c) Result of rotation recovery
of the second iteration.

(d) Final rotation result of the
second iteration.

Fig. 4.3 Examples to prove effectiveness of the iteration framework adopted by
our SEI-based registration algorithm employing 393th and 392th scans in

"Barcelona Robot Lab Dataset".

greatest variance by some projection of the data comes to lie on the first coordinate called
the first principal component; the second greatest variance on the second coordinate, and
so on. PCA can be thought as revealing the internal structure of the data in a way that best
explains the variance in the data. And PCA is usually implemented through Singular Value
Decomposition (SVD) of the covariance matrix of point coordinates within the support of
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Algorithm 6: Global feature-less scan registration method based on Spherical Entropy
Image (SEI) as a global shape descriptor (based on iteration).

Input :Points Cloud S1,S2
Output :The transformed S1 aligned with S2

1 ▷ Remove outliers of the original scans
2 S1← OutlierRemoval(S1) ;
3 S2← OutlierRemoval(S2) ;

4 ▷ Calculate Spherical Entropy Images(SEI) of scene
5 SEI2← SEICreation(S2) ;
6 ▷ Estimate Spherical Harmonic coefficients of scene
7 SH2← SphericalHarmonic(SEI2) ;
8 ▷ Rasterize the scene into xy planes and z axis
9 P2,v2← Rasterize(S2) ;

10 ▷ Iteration Part
11 for Iteration: 0 to n do
12 ▷ Calculate SEI of object
13 SEI1← SEICreation(S1) ;
14 ▷ Estimate Spherical Harmonic coefficients of object
15 SH1← SphericalHarmonic(SEI1) ;

16 ▷ Recover the rotation via Generalized Convolution Theorem [63]
17 R← GeneralizedConvolutionTheorem(SH1,SH2) ;
18 ▷ Rotate the original scan according to R
19 S1← R(S1) ;

20 ▷ Rasterize the object scan into xy planes and z axis
21 P1,v1← Rasterize(S1) ;
22 ▷ Adopt the POMF to determine the translation
23 tx, ty← 2D_POMF(P1,P2) ;
24 tz← 1D_POMF(v1,v2) ;
25 T = (tx, ty, tz) ;

26 ▷ Translate the object scan
27 S1← T(S1) ;
28 end

query point. The main problem with the LRF based on PCA is that the signs of coordinate
system are not determinate. The PCA itself provides no means for assessing the sign of each
axis.

A repeatable, unambiguous and unique LRF is proposed in [150]. It addresses sign
ambiguity using the technique presented in [18]. As Figure 4.4 sketches, the direction of axis
is determined so as it has same direction with majority of the data vectors, so the black real
line in Figure 4.4 is selected as the coordinate axis, while the dashed line is discarded. We
adopt this kind of LRF when use SEI as a local shape descriptor, so we recall its procedure
briefly as follows:



4.4 SEI applied as a local shape descriptor | 105

Fig. 4.4 The sketch showing how to select the direction of local reference frame.

1. compute the covariance matrix M as a weighted linear combination based on all points
laying within the spherical support of radius R:

M =
1

∑i:di≤R (R−di)
∑

i:di≤R
(R−di)(pi− p)(pi− p)T

where p is the feature point and di =∥ pi− p ∥2;

2. calculate the eigenvectors of M and refer to the three eigenvectors in decreasing
eigenvalue order as the x+,y+,z+ axis respectively, and denote their opposite vectors
as x−,y−,z−;

3. the sign of x axis is determined as: compute the inner products of point vectors and
x+/x− and count the number of positive inner products respectively. If x+ has more
positive inner products than x−, choose x+ as the x axis and vice versa. The sign of z
axis is disambiguated as x axis, finally the y axis is obtained as z× x.

In the standard Cartesian coordinate system, the azimuth θ and polar φ could be easily
computed: θ = tan−1 ( y

x

)
, φ = cos−1 ( z

r

)
. While for the new LRF, the azimuth and polar

angles have to be calculated in a more general way:

A. project the point pi onto the xy plane of the LRF, compute the vector −→pi from origin to
projection and normalize it;

B. compute the angle between the normalized
−→
P and the x axis to achieve azimuth θ ;
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C. calculate the angle between the vector from origin to point and z axis to achieve polar
φ .

To conclude, the summary of computing SEIs as a local shape descriptor based on the
local reference frame is depicted in Algorithm 7.

Rotation-invariant SEI based on Spherical Harmonics

As discussed in Section 4.3.1, a key property of SHT is that a rotation in the azimuthal
direction results a phase shift in the frequency domain, so the amplitudes of the harmonics
coefficients are invariant to the rotations along the azimuth direction. The rotation-invariant
of SEI could be achieved based on this important property of Spherical Harmonic Transform.

Algorithm 7: Compute rotation-invariant Spherical Entropy Images (SEIs) on the
keypoints of point clouds combining the local reference frame

Input :Point cloud S and n keypoints: (KP1,KP2,KP3, . . . ,KPn)
Output :n SEIs: (SEI1,SEI2,SEI3, . . . ,SEIn)

1 for KPi: i← 1 to n do
2 ▷ acquire the support of KPi

3 KPSi← SearchForNeighbor(S,KPi,Radius);
4 ▷ estimate the local reference frame(LRF)
5 LRFi← EstimateLRF(KPSi);
6 ▷ compute the azimuth and elevation of points in LRF
7 KPS

′
i← ComputeSphericalCoordinate(KPi,KPSi,LRFi);

8 ▷ divide the points into m patches according
9 to azimuth and elevation of point

10 (P1,P2, . . . ,Pm)← Divide(KPS
′
i);

11 for P j: j← 1 to m do
12 ▷ normalize the distances
13 V j← FormulateVector(P j);

14 V
′
j← Normalize(V j);

15 ▷ build the histogram
16 H j← Histogram(V

′
j);

17 ▷ smooth histogram using Parzen-window technique [104]
18 H

′
j← ParzenWindow(H j);

19 ▷ calculate the entropy
20 SEIi[ j]← Entropy(H

′
j);

21 end

22 end
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Algorithm 8: Compute rotation-invariant Spherical Entropy Images (SEIs) on the
keypoints of point clouds based on Spherical Harmonic Transform (SHT)

Input :Point cloud S, n keypoints: (KP1,KP2,KP3, . . . ,KPn)
and bandwidth B

Output :n SEIs: (SEI1,SEI2,SEI3, . . . ,SEIn)

1 for KPi: i← 1 to n do
2 ▷ acquire the support of KPi

3 KPSi← SearchForNeighbor(S,KPi,Radius);
4 ▷ estimate the normal of point KPi
5 Ni← NormalEstimation(KPi);
6 ▷ build local reference frame (LRF)
7 zi← Ni ;
8 xi← RandomNormalVector ;
9 yi← xi× zi ;

10 LRFi← (xi,yi,zi);
11 ▷ compute the azimuth and elevation of points in LRF
12 KPS

′
i← ComputeSphericalCoordinate(KPi,KPSi,LRFi);

13 ▷ divide the points into m patches according
14 to azimuth and elevation of point
15 (P1,P2, . . . ,Pm)← Divide(KPS

′
i);

16 for P j: j← 1 to m do
17 ▷ normalize the distances
18 V j← FormulateVector(P j);

19 V
′
j← Normalize(V j);

20 ▷ build the histogram
21 H j← Histogram(V

′
j);

22 ▷ smooth histogram using Parzen-window technique [104]
23 H

′
j← ParzenWindow(H j);

24 ▷ calculate the entropy
25 TempSEIi[ j]← Entropy(H

′
j);

26 end

27 ▷ compute the Spherical Harmonic Coefficients of TempSEIi
28 SHCi← SHT(TempSEIi,B) ;
29 SEIi← Amplitude(SHC)i ;

30 end

In order to employ this property of SHT to obtain rotation-invariant version of SEI, the
z axis should be determined since the amplitudes of the harmonics coefficients are only
invariant to the rotation along the azimuth direction. In our implementation, the normals
of the query points are regarded as the z axis, and the pcl::NormalEstimation is adopted to
compute the normals of points [107]. The normal estimation in PCL is based on PCA of a
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covariance matrix created from the nearest neighbours of the query point, and the eigenvector
according to the smallest eigenvalue is regarded as the normal of the query point. And PCL
employs a priori knowledge to select the orientation of the normal: all of points are captured
from a single viewpoint, so PCL orients all normals towards to the viewpoint.

Computation of SEIs as a local shape descriptor based on the Spherical Harmonics is
outlined in Algorithm 8. For any real function, ∥SHCm

l ∥= ∥SHC−m
l ∥, so we only store the

spherical harmonic coefficients of m≥ 0. The final size of rotation-invariant version of SEI
is B · (B+1)/2. It is interesting that the dimensionality of the final feature is NOT related to
the number of azimuth and elevation division.

4.4.2 3D object recognition based on SEI

3D object recognition aims to correctly identify objects in a scene and estimate their poses.
It is a challenging task in complex scenes in the presence of clutter and occlusions. As for
the 3D model-based object recognition, the 3D models of objects are constructed offline and
stored in a model library. Commonly the 3D model of object is constructed by acquiring
its range images from multiple viewpoints and registering them in a common coordinate
system. In the online recognition stage, the range image of scene is converted into the similar
representation as objects in model library and matched with the models in order to recognize
the objects. The key and main challenge in 3D model-based object recognition is the effective
shape descriptors and matching of correspondences between objects and scenes, especially
when there is significant degree of occlusion and clutter in the scenes. Generalized Hough
Transform technique [148][151], which is robust to wrong correspondences and occlusions,
is commonly employed to find the objects in 3D object recognition task.

Generalized Hough Transform

The Generalized Hough Transform (GHT) introduced by Dana H.Ballard in 1981 [8] is the
modification of the traditional Hough Transform aided by the principle of template matching,
and aims to solve the dimensionality curse of the traditional Hough Transform. GHT extends
the traditional Hough Transform to detection of arbitrary shapes by voting each feature for a
specific position, orientation and scale factor of the shape. The principle supporting GHT
is the truth that the problem of finding the model in the scene can be solved by calculating
the position of model in the scene based on the feature correspondences between model and
scene. So intrinsically, GHT is a template matching procedure accumulating the evidence of
positions of models in the scene.
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Algorithm 9: 3D model-based object recognition method using Spherical Entropy
Image (SEI) as a local shape descriptor

Input :Model database M1,M2,M3, . . . ,Mn and scene S
Output :n dimensional vector E indicating the presence of models in the S, and their pose in

scene (R1, t1),(R2, t2),(R3, t3), . . . ,(Rn, tn)

1 for Mi: i← 1 to n do
2 ▷ downsample the point clouds uniformly to extract keypoints
3 MKPi← UniformDownsample(Mi);
4 ▷ compute Spherical Entropy Images for keypoints
5 MLRFi← CalculateLocalReferenceFrame(Mi,MKPi);
6 MSEIi← CalculateSEI(Mi,MKPi,MLRFi);
7 end

8 ▷ downsample the point cloud uniformly to extract keypoints
9 SKP← UniformDownsample(S);

10 ▷ compute Spherical Entropy Images for keypoints
11 SLRF← CalculateLocalReferenceFrame(S,SKP);
12 SSEI← CalculateSEI(S,SKP,SLRF);

13 for Mi: i← 1 to n do
14 ▷ find correspondences between model and scene
15 FeaturePairs← KdTree(MSEIi,SSEI);
16 ▷ correspondences cluttering based on Hough voting
17 HoughPeak← HoughVoting(FeatureParis);
18 if HoughPeak > threshold then
19 Ei = 1;
20 ▷ estimate the pose of object based on
21 Absolute Orientation Algorithm
22 (Ri, ti)← AbsoluteOrientation(FeaturePairs, HoughPeak);
23 else
24 Ei = 0;
25 (Ri, ti) = NaN;
26 end
27 end

GHT converts the problem of finding model’s position to an issue of finding the trans-
formation parameters which maps the model to scene. Thus normally the Hough Space
stores the transformation parameters instead of the shape parameters in GHT techniques.
The position of the model in the scene could be settled as long as the transformation param-
eters are estimated. In spite of that, when GHT is extended into 3D domain to deal with
generic rotations and translations, the Hough Space is 6-dimensional, which leads to a high
computational cost of the voting process.

Most recent GHT designed for 3D object recognition under occlusion and clutter is
proposed in [148][151], and only one 3D Hough space is built. The 3D Hough space stores
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the 3D position of the reference point of model indicated by features. The key of this kind
of GHT is the employment of Local Reference Frame (LRF) related to the features and
rigidity of models. Since the coordinates of the reference point under the LRFs related to the
corresponding features are identical for rigid models, the coordinates of the reference point in
the global reference frame of scene could be calculated known the relationship between LRFs
and global reference frame. Specifically, for a feature in the model FM

i , the coordinate of the
reference point CM

i in the LRF of FM
i could be achieved if the relationship between the global

reference frame of model and LRF of FM
i were known. If the correspondence of FM

i in scene
FS

j could be found, then the coordinate of the reference point CS
j in the LRF of FS

j is equal to
the coordinate of the reference point in the LRF of FM

i . Aided by the relationship between
the global reference frame of scene and LRF of FS

j , the coordinate of the reference point in
global reference frame of scene could be achieved. And a 3D Hough space is built and the
reference point in global reference frame of scene is stored in Hough space. The peaks of the
Hough space indicate the presence of the models, and then the coherent correspondences
related to the peaks are used to compute the pose of models in scene. The key to comprehend
the procedure is the familiarity of transformation of reference frame. The 3D model-based
object recognition algorithm using SEI as a local shape descriptor is outlined in Algorithm 9.

4.5 Experiments about SEI-based registration algorithm

In this section, the Spherical Entropy Image (SEI) is applied in scan registration, and
compared with the existing and representative scan registration algorithms based on the
public available dataset and the data captured by our custom-built platform. The reason why
we adopt the public available dataset is that it is convenient for other researchers to compare
our algorithm with their own algorithms.

Experiments have been carried on standard personal desktop computers. Our SEI-based
feature-less scan registration algorithm is implemented in C++, and the code has been pub-
lished online, please refer to Appendix A. The Point Cloud Library (PCL) [107] is utilized for
reading and writing point clouds and 3D visualization. The linear algebra library Eigen [53],
a C++ template library for linear algebra, is employed for matrix processing. The Discrete
Fourier Transform library FFTW [50] is adopted in translation recovery procedure to compute
the forward and backward Fourier Transform. The SOFT Package [64] is employed to obtain
the Spherical Harmonic coefficients of SEIs. The std::chrono::high_resolution_clock class
in C++ 11 is employed to record the runtime.
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This SEI-based registration algorithm involves much mathematical staff, so in section
4.5.1 we do some simulation to prove the theoretical completeness of this method. And then
in section 4.5.2, two scans captured by our custom-built platform, which are quite challenging
for registration algorithms, are used to prove the effectiveness of our algorithm. In section
4.5.3, we introduce the experiment results based on the selected scans of "Barcelona Robot
Lab Dataset". We introduce the "Dragon" dataset in "Stanford 3D Scanning Repository",
and propose the experiment results based on this dataset in section 4.5.4. Due to the space
limitation, we cannot present all the results. Indeed, some typical results has been selected
for explanation.

Fig. 4.5 A scan captured by our custom-built platform.

4.5.1 Simulation

We will show in the following experiments that our SEI-based registration algorithm works
well for real data, but in this part, the goal is to validate the theoretical completeness of
the algorithm in controlled circumstances. A scan captured by our custom-built platform,
depicted in Figure 4.5, is used in this set of simulations to prove the theoretical completeness
of SEI-based scan registration algorithm. The scan is rotated around x,y,z axis by 45, 60,
90, 125, 180, 225 degrees respectively and translated by the random distance in [0,10] meter.
In this simulations, the dimension of spherical grids when calculate the SEIs is 64×64 and
the bandwidth of SHT is 32. The SEI-based registration algorithm succeeds in the all 18
instances with no exceptions.

Figure 4.6 presents the correlation result of original scan and the scan rotated around y
axis by 90 degree as an example. The joint of the slices in Figure 4.6 is the main peak of the
correlation function. The main peaks in correlation functions are head and shoulders above
others. The joint of the slices are the main peak.
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Fig. 4.6 Spherical correlation result of original scan and the scan rotated around y axis by
90 degree. We represent the rotation by the Euler Angle and the sequence of rotation axis
is (z,y,z). alpha correspond to rotation angle around y, beta correspond to the first angle
around z, and gama correspond to the second angle around z. The joint of the slices is the
main peak.

Figure 4.7 depicts the peak amplitudes of the correlation results relative to that of the
auto-correlation. The main peak amplitudes in the convolution procedure manifest scarcely
any degeneration. If have to say, the peak amplitudes of correlation between the scan and
its duplicates rotated around z axis are greater than that of x and y axis. Meanwhile, we
found that the recovery of rotation around z axis is also more reliable than x and y in practical
applications. This is because the samples of spherical function spread the whole range of
longitudes but partial range of latitudes (exclude the poles) while compute the SHT. However
this is not a limitation for robotic mapping applications, where there tend to be mainly large
changes in yaw and little changes in roll and pitch between scans. This simulation proves
that our algorithm performs well as regards arbitrarily large rotation without noise, in other
words, the method is complete in theory.

4.5.2 Data captured by our custom-built platform

This experiment uses the scans captured by our custom-built platform while it turns around.
The maximum range of the sensor is 30 meters. The whole platform is low-cost and the scans
are very noisy since they are capture in rainy weather. The two scans presented in Figure 4.8a
are challenging to align but typical in practical application. Registration of scans captured
by the robots when they turn around at the end of trajectory or go around a corner is the
real challenge in robotic mapping scenarios. Just like the scans depicted in Figure 4.8a, the
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(a)

(b)

(c)

Fig. 4.7 The peak amplitudes of correlation in simulation, while the correlation
result rotated by 0 degree is the auto-correlation result.
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scans captured at the corners often tend to behave large offsets in yaw. However, as to these
cases, the existing registration methods often fail. We apply the ICP, 3D-NDT, FPFH-based
registration method in Point Cloud Library [107] and the latest plane-based method [163] to
align the two scans in Figure 4.8a. All of them break down in this scenario. The registration

result of our novel technique is presented in Figure 4.8b, the dimension of spherical grids
when calculate the SEIs is 64×64 and the bandwidth of SHT is 32. The result shows that our
novel method could handle scans with very large rotation in practice. This is a quite exciting
result for the outdoor mobile robots aiming to build the maps of their work environments.

(a) two scans captured by our custom-built
platform when it turns around.

(b) registration result by our novel SEI-based
registration algorithm.

Fig. 4.8 Experiments involving two scans captured by our
custom-built platform when it turns around.
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(a) Range Image of Scan388 (b) Range Image of Scan389

(c) Range Image of Scan390 (d) Range Image of Scan391

(e) Range Image of Scan392 (f) Range Image of Scan393

(g) Range Image of Scan394 (h) Range Image of Scan395

(i) Range Image of Scan396 (j) Range Image of Scan397

(k) Range Image of Scan398 (l) Range Image of Scan399

(m) Range Image of Scan400

Fig. 4.9 Range Images of the selected scans in "Barcelona Robot Lab Dataset".
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4.5.3 The "Barcelona Robot Lab Dataset"

We also employ the publicly available "Barcelona Robot Lab Dataset" to validate the effec-
tiveness of our novel feature-less SEI-based registration algorithm. In this experiment, we
use the last 13 scans in the dataset. The principle of selecting scans is that there should be
large offsets between successive scans both in rotation and translation, since only this kind of
scans could examine the effectiveness of both rotation determination and translation recovery
of registration algorithm.

The range images of the selected 13 scans are depicted in Figure 4.9. As before,
the range images are generated by pcl::RangeImageSpherical Class and visualized by
pcl::visualization::RangeImageVisualizer Class.

Table 4.1 Registration results of our SEI-based scan registration
algorithm applied to "Barcelona Robot Lab Dataset".

Scan Pairs
Rotation (radian) Translation (m)

Roll Pitch Yaw X Y Z

400→399 0.0059 -0.0133 0.0018 2.79232 0.103961 -0.086873

399→398 0.0068 0.0467 0.0087 2.84329 0.16036 -0.101913

398→397 0.0052 -0.0097 0.0018 2.80793 0.0485357 -0.0795451

397→396 0.000473 -0.0067 0.0038 2.77586 -0.0190202 -0.0625626

396→395 0.0029 -0.0112 0.3494 1.25819 -0.597171 -0.0271549

395→394 0.0027 0.0016 0.1732 2.79958 -0.160575 -0.0698585

394→393 0.0138 -0.0147 0.1891 2.74287 0.489009 -0.138933

393→392 0.0040 -0.0107 0.1772 2.87109 0.0213742 -0.0641087

392→391 0.0234 0.0225 0.0537 2.72459 -0.231774 -0.0951217

391→390 0.0208 -0.0220 0.3544 2.75221 0.514171 -0.0645027

390→389 0.0036 -0.0097 0.0027 4.05985 -0.530137 -0.0535576

389→388 0.0175 -0.096 0.0062 2.70263 0 -0.260445 -0.196451



4.5 Experiments about SEI-based registration algorithm | 117

(a) 391th and 390th scan before
registration.

(b) registration result of 391th and
390th scan.

(c) 395th and 394th scan before
registration.

(d) registration result of 395th and
394th scan.

(e) 396th and 395th scan before
registration.

(f) registration result of 396th and
395th scan.

Fig. 4.10 Examples of registration results of "Barcelona Robot Lab
Dataset" by our SEI-based scan registration algorithm.
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Table 4.2 Processing time of our SEI-based scan registration algorithm applied to
"Barcelona Robot Lab Dataset" (without resample).

Scan Pairs

Time of First Iteration (s) Time of Second Iteration (s)

TotalGenerate SEI Rotation Translation Generate SEI Rotation Translation

scene object Determination Recovery scene object Determination Recovery

400→399 0.098207 0.092583 0.381281 0.557346 0.0 0.077856 0.379776 0.472561 2.059610

399→398 0.127332 0.096020 0.381133 0.571251 0.0 0.095962 0.378689 0.549705 2.200092

398→397 0.160579 0.126263 0.383600 0.750119 0.0 0.096373 0.381492 0.795221 2.693647

397→396 0.167615 0.160188 0.386511 0.792298 0.0 0.133113 0.386311 0.729247 2.755283

396→395 0.158078 0.162675 0.381319 0.756967 0.0 0.158279 0.378327 0.798741 2.794386

395→394 0.140747 0.157486 0.379316 0.678922 0.0 0.123012 0.382918 0.730912 2.593313

394→393 0.129555 0.13625 0 0.385851 0.661151 0.0 0.116663 0.380816 0.669772 2.480058

393→392 0.116299 0.125362 0.383832 0.576671 0.0 0.108322 0.384039 0.567664 2.262189

392→391 0.113246 0.115384 0.377098 0.714632 0.0 0.117601 0.377837 0.686709 2.502507

391→390 0.114355 0.112792 0.377958 0.638937 0.0 0.088154 0.376452 0.609597 2.318245

390→389 0.1377 0.113446 0.384028 0.717251 0.0 0.083286 0.381519 0.673142 2.490372

389→388 0.141409 0.136310 0.383613 0.699412 0.0 0.120870 0.382092 0.660261 2.523967
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Table 4.3 Processing time of our HTD-based scan registration algorithm
applied to "Barcelona Robot Lab Dataset" (without resample).

Scan Pairs

Time per step (s)

Total (s)Normal HTD Rotation Translation

Estimation Calculation Determination Recovery

400→399 0.998135 0.279086 0.002653 0.544034 1.823908

399→398 1.253396 0.340542 0.009601 0.558170 2.161709

398→397 1.635833 0.451452 0.009358 0.731865 2.828508

397→396 1.899219 0.523556 0.009649 0.786792 3.219216

396→395 1.885895 0.517856 0.010126 0.793302 3.207179

395→394 1.674075 0.460510 0.009283 0.741505 2.885373

394→393 1.470301 0.406040 0.009291 0.680845 2.566477

393→392 1.323154 0.375198 0.009354 0.674488 2.382194

392→391 1.235596 0.357126 0.009500 0.724661 2.326883

391→390 1.245816 0.359606 0.009937 0.697608 2.312967

390→389 1.451718 0.402257 0.009315 0.686720 2.550010

389→388 1.595896 0.460185 0.009457 0.661905 2.727443

Performance of SEI-based registration algorithm

The performance of our SEI-based registration algorithm is presented and compared to the
state-of-the-art registration algorithms which are outlined in Section 3.5.1. In addition, the
performance of HTD-based registration algorithm presented in Chapter 3 is also presented
for the sake of comparison.

The registration results by our SEI-based registration algorithm are proposed in Table 4.1.
Our scan registration algorithm succeeds in all the 12 scan pairs without exception. Three
example scan pairs and the registration results are presented in Figure 4.10. By the way, our
HTD-based registration algorithm also succeeds in all the scan pairs.

The registration is implemented on the standard personal desktop computer with the
following details:

• Memory: 7.7GiB
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• Processor: Intel R⃝ CoreTM i5-3750 CPU @ 3.4GHZ

• System: 64-bit Ubuntu 12.04 LTS

Specifically, with regard to the efficiency of the SEI-based registration algorithm, the
processing time without resampling of the original scan is listed in Table 4.2. We could see
from Table 4.2 that the runtime of our algorithm is quite stable, and all the registration could
be finished in less than 3 seconds. Although some scan pairs could be aligned well without
the second iteration, we still apply the iteration technique and record the runtime since it
is impossible to know which scan pairs need the second iteration while which ones not
before registration implemented. For the sake of comparison, the runtime of our HTD-based
registration algorithm is proposed in Table 4.3. For some scan pairs, the SEI-based method
needs less runtime, while for others, the HTD-based method requires less. It is difficult to
say which algorithm has high efficiency since the runtime of the two algorithm is so close. If
have to say, the HTD-based method requires more than 3 seconds for two scan registration
tasks. But as pointed out in Section 3.5.2, the HTD-based method achieves more precise
results than the SEI-based method.

Table 4.4 Performances of five registration algorithms applied to "Barcelona
Robot Lab Dataset" (without resampling).

Scan Pairs SEI HTD ICP FPFH plane-based

400→399 ✓ ✓ ✓ ✓ ✗

399→398 ✓ ✓ ✓ ✗ ✗

398→397 ✓ ✓ ✓ ✓ ✓

397→396 ✓ ✓ ✓ ✗ ✓

396→395 ✓ ✓ ✓ ✓ ✓

395→394 ✓ ✓ ✓ ✓ ✓

394→393 ✓ ✓ ✓ ✓ ✓

393→392 ✓ ✓ ✓ ✓ ✓

392→391 ✓ ✓ ✓ ✓ ✓

391→390 ✓ ✓ ✓ ✓ ✓

390→389 ✓ ✓ ✗ ✗ ✓

389→388 ✓ ✓ ✗ ✓ ✓

Success ratio (%) 100.00 100.00 83.33 75.00 83.33
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Comparison with the state-of-the-art

In order to prove the superiority of our registration algorithm, we also compare our novel
SEI-based registration algorithm with the state-of-the-art methods introduced in Section 3.5.1
and the HTD-based method proposed in Chapter 3. For convenience of other researchers
to reproduce the registration results, the dataset in PCD format and the code implementing
our SEI-based iteration registration algorithm, ICP and FPFH-based techniques are public
available on the Internet, please refer to Appendix A. FPFH algorithm combining the
keypoints detection methods NARF and 3D SIFT is also accessible in our code, but it is not
employed in this comparison experiment. Instead, we use the uniformly resampled points as
the keypoints, which takes much more time but achieve better registration results.

The performance of the five registration algorithms are presented in Table 4.4. For ICP
method, the max correspondence distance is set to be 5.0 meter, which seems to be much
large but is determined by plenty of trials. The FPFH-based algorithm resamples the scan
with leaf size 0.5 meters as the keypoints. ICP method performs better than in the experiment
depicted in Section 3.5.2, since there are less offsets between successive scans. Actually, all
the five registration algorithms work pretty well with regard to this registration task.

Fig. 4.11 Runtime of five registration algorithms applied to
"Barcelona Robot Lab Dataset"(without resample).
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In order to compare the efficiency of the five registration algorithms with respect to this
dataset, their runtime on the same personal desktop computer is depicted in Figure 4.11. As
before, the ICP and FPFH-based registration algorithms require too much more time than
our HTD-based and SEI-based techniques, and show large variation. No matter succeed or
not, the runtime of plane-based method [163] is less than ICP and FPFH-based registration
algorithms and slightly more than our HTD-based and SEI-based methods. For the HTD-
based and SEI-based methods, it is difficult to say which algorithm has high efficiency since
the runtime of the two algorithm is so close. In the next experiment, we will present the
registration task that our SEI-based registration performs well but the HTD-based method
could not, which proves the superiority of SEI-based registration compared with HTD-based
method.

4.5.4 Dragon Stand in "Stanford 3D Scan Scanning Repository"

Our SEI-based scan registration algorithm is a really feature-less registration method, and it
could not only be used to build the maps for robots but also to align the surfaces of household
objects. In this experiment, we adopt the range data of Dragon Stand in "Stanford 3D Scan
Scanning Repository", which is famous in 3D scan processing community and publicly
available on the Internet [133], to validate the ability our SEI-based method to align the
surfaces of household objects without any specific features. By the way, ICP registration
algorithm performs really well for this kind of applications as reported [12] [30] [118].

The 15 scans in Dragon Stand package are employed. The dataset in PCD file format is
available on the Internet, please refer to Appendix A. Since the plane-based [163] and HTD-
based registration algorithms could not handle this kind of applications, their registration
results are not presented and discussed. There is almost no translations between the successive
scans, so the SEI-based method does not need iteration to cope with the adverse effect of
translation when estimate the rotation. The plain ICP algorithm and the normal-based ICP
algorithm are both employed in this experiment. This registration task is difficult for global
registration method, since there are less overlaps between successive scans, just as Figure
4.12 shows. While the less overlap is not a problem for local registration methods, the local
methods could work well if and only if there are less offsets between scan pairs.
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(a) dragonStandRight_96 and
dragonStandRight_72 before

registration.

(b) dragonStandRight_96 and
dragonStandRight_72 after

registration.

(c) dragonStandRight_264 and
dragonStandRight_240 before

registration.

(d) dragonStandRight_264 and
dragonStandRight_240 before

registration.

(e) dragonStandRight_288 and
dragonStandRight_264 before

registration.

(f) dragonStandRight_288 and
dragonStandRight_264 before

registration.

Fig. 4.12 Examples of Dragon Stand scans and the corresponding
registration results by our SEI-based scan registration algorithm.
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Table 4.5 Performances of four registration algorithms applied to Dragon Stand (without resampling).

Scan Pairs SEI Plain ICP ICP based on Normal FPFH

dragonStandRight24→dragonStandRight0 ✓ ✓ ✓ ✓

dragonStandRight48→dragonStandRight24 ✓ ✓ ✓ ✓

dragonStandRight72→dragonStandRight48 ✓ ✓ ✓ ✓

dragonStandRight96→dragonStandRight 72 ✓ ✗ ✓ ✗

dragonStandRight120→dragonStandRight96 ✓ ✓ ✓ ✗

dragonStandRight144→dragonStandRight120 ✓ ✓ ✓ ✗

dragonStandRight168→dragonStandRight144 ✓ ✓ ✓ ✗

dragonStandRight192→dragonStandRight168 ✓ ✓ ✓ ✓

dragonStandRight216→dragonStandRight192 ✓ ✓ ✓ ✗

dragonStandRight240→dragonStandRight216 ✓ ✓ ✓ ✓

dragonStandRight264→dragonStandRight240 ✓ ✓ ✓ ✗

dragonStandRight288→dragonStandRight264 ✓ ✓ ✓ ✓

dragonStandRight312→dragonStandRight288 ✓ ✓ ✓ ✓

dragonStandRight336→dragonStandRight312 ✓ ✓ ✓ ✗

dragonStandRight0→dragonStandRight336 ✓ ✓ ✓ ✓

Success ratio (%) 100.00 93.33 100.00 53.33
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Table 4.6 Processing time of our SEI-based scan registration
algorithm applied to Dragon Stand (without resample).

Scan Pairs

Time of per step (s)

TotalGenerate SEI Rotation Translation

scene object Determination Recovery

~~24→~~0 0.016555 0.014305 0.380083 0.161735 0.572678

~~48→~~24 0.014442 0.010459 0.379623 0.12837 0.532894

~~72→~~48 0.010925 0.008001 0.378071 0.10508 0.502077

~~96→~~72 0.008365 0.010345 0.380985 0.117875 0.51757

~~120→~~96 0.010086 0.014518 0.378677 0.124043 0.527324

~~144→~~120 0.014838 0.017278 0.379016 0.139924 0.551056

~~168→~~144 0.017402 0.017936 0.379491 0.167985 0.582814

~~192→~~168 0.017956 0.016434 0.377876 0.152093 0.564359

~~216→~~192 0.016213 0.013612 0.380421 0.154821 0.565067

~~240→~~216 0.013664 0.009671 0.379452 0.114244 0.517031

~~264→~~240 0.009968 0.008618 0.378251 0.134984 0.531821

~~288→~~264 0.008254 0.011538 0.377983 0.147195 0.54497

~~312→~~288 0.011369 0.016604 0.383193 0.127056 0.538222

~~336→~~312 0.016370 0.017004 0.378389 0.164699 0.576462

~~0→~~336 0.017192 0.016399 0.378903 0.141931 0.554425

For ICP methods, including plain ICP and ICP based on normals, the max correspondence
distance is set to be 0.01 meters. And when estimate the normals of points, we search the
nearest 30 points rather than set the fixed search radius. The FPFH-based algorithm resamples
the scans with leaf size 0.05 meters as keypoints and the support radius of keypoints when
compute FPFH is 0.03 meters. As before, the dimension of spherical grids when calculate
the SEIs is still 64× 64 and the bandwidth of SHT is 32, which proves the robustness to
parameters of our SEI-based algorithm.

The performance of the registration algorithms are presented in Table 4.5. It can be
seen from Table 4.5 that the local registration methods work well, the normal-based ICP
method succeed for all the 15 scans and the plain ICP method succeed for 14 scans. To be
honest, our SEI-based algorithm performs better than expected, considering the less overlaps
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between scans. Our SEI-based method succeeds in all the scan pairs without exception,
and gives pretty good results, as the Figure 4.12 depicted. Please note that the results are
produced by our SEI-based method without refinement by any local registration techniques.
In consideration of the less overlaps between scan pairs, the FPFH-based method works poor
for this dataset.

The details of runtime of our SEI-based registration method is proposed in Table 4.6. We
could see from Table 4.6 that the runtime of our SEI-based algorithm is quite stable, and the
generation of SEIs could be implemented offline and separately before online registration.
Furthermore, although only the generation of SEIs of scenes is needed, the runtime for
generation SEIs of both objects and scenes are listed in Table 4.6. For instance, in the
procedure aligning dragonStandRight48 to dragonStandRight24, the algorithm only needs
to compute the SEI of dragonStandRight48, since the SEI of dragonStandRight24 has been
calculated in the last registration procedure.

Table 4.7 Processing time of four scan registration algorithms
applied to Dragon Stand (without resample).

Scan Pairs SEI Plain ICP ICP based on Normal FPFH

~~24→~~0 0.572678 2.596035 1.01024 57.5285

~~48→~~24 0.532894 1.628604 0.708653 33.3644

~~72→~~48 0.502077 1.399241 0.599606 17.6705

~~96→~~72 0.51757 1.907137 1.07388 22.0373

~~120→~~96 0.527324 2.222456 0.888632 41.0801

~~144→~~120 0.551056 3.081652 0.962245 64.5501

~~168→~~144 0.582814 3.472294 1.12889 76.9048

~~192→~~168 0.564359 3.053031 1.02088 73.0521

~~216→~~192 0.565067 2.647928 0.933933 54.7115

~~240→~~216 0.517031 2.239667 0.617719 33.5312

~~264→~~240 0.531821 3.643474 0.835928 21.9377

~~288→~~264 0.54497 3.723 1.35585 25.1341

~~312→~~288 0.538222 3.37609 1.13287 45.2044

~~336→~~312 0.576462 3.354734 1.32149 65.5567

~~0→~~336 0.554425 3.412242 1.2286 69.598
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Since both our SEI-based method and ICP methods work well, the comparison of the
efficiency seems more important. So the runtime of the four algorithms are listed in Table
4.7 and also depicted in Figure 4.13. We could see that our SEI-based registration algorithm
needs the least runtime and gives results in about 0.5 seconds. Admittedly, it is unfair
for FPFH-based algorithm to be compared when it is not applied combining the keypoints
detection techniques. But the combination with keypoints detection techniques could not
meliorate the fluctuation of its runtime. For the ICP methods, the normal-based ICP needs
less time than the plain ICP method, which breaks free from the expected.

Fig. 4.13 Runtime of four registration algorithms
applied to Dragon Stand (without resample).

4.6 Experiments about SEI-based feature matching

In this section, the SEI is applied as a local descriptor, and compared with the existing and
representative local descriptors based on the public available dataset. The reason why we
adopt the public available dataset is that it is convenient for other researchers to compare our
algorithm with their own algorithms.

Experiments have been carried on standard personal desktop computers. We implement
the two kinds of rotation-invariant SEIs as two separate feature Classes in PCL, and the code
has been published online, please refer to Appendix A. The Point Cloud Library (PCL) [45]
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is utilized for reading and writing point clouds and 3D visualization, and SEI is implemented
as a typical PCL feature class which could be combined seamlessly with other classes of
PCL. The linear algebra library Eigen [24], a C++ template library for linear algebra, is
employed for matrix processing. The SOFT Package [46] is employed to obtain the Spherical
Harmonic coefficients of SEIs. The std::chrono::high_resolution_clock class in C++ 11 is
employed to record the runtime.

In Section 4.6.1, we review three representative local shape descriptors, which are
employed to compare with rotation-invariant SEI. And then in Section 4.6.2, we describe
the methodology of this experiment, including dataset, procedure and measurement. The
key is how to compare local shape descriptors fairly and independent of other techniques.
The comparison results are presented in Section 4.6.3 and the superiority of our algorithm
is discussed in Section 4.6.3. Due to the space limitation, we cannot present all the results.
Indeed, some typical results has been selected for explanation.

4.6.1 Related work

In this part, we recall three typical local shape descriptors, Signature of Histograms of
Orientation (SHOT), 3D Shape Context (3DSC) and Fast Point Feature Histograms (FPFH),
and all of them are popular and widely used in computer vision/geometry community. Even
though FPFH is introduced in Section 3.5.1, we still recall its procedure briefly here for
clarity. And we omit famous Spin Image (SI) [66][65] because 3DSC is regarded as a
successful inheritor and extension of SI.

Signature of Histograms of Orientations (SHOT)

Signature of Histograms of Orientations (SHOT) is a more recent shape descriptor presented
by Computer Vision Laboratory of University of Bologna [150][123]. SHOT superimposes
a 3D grid on the support and calculates a set of local histograms over the 3D volumes
defined by grids. The local histograms are built on the normals of points, since normals
are considered more descriptive than plain 3D coordinates. Finally, all local histograms
are grouped together to form the SHOT descriptor. SHOT combines both the robustness of
histograms and descriptiveness of points location, and is regarded as a successful local shape
descriptor.

Specifically, the calculation of SHOT contains four steps:
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1. for each keypoint, search the points in its support and build a repeatable and disam-
biguated LRF based on the Eigenvalue Decomposition (EVD) of the covariance matrix
of the point coordinates within the support. And then transform the global coordinates
of points into corresponding local coordinates.

2. divide the support by an isotropic spherical grid that encompasses partitions along the
radial, azimuth and elevation axes.

3. build the local histograms of each 3D sub-volume determined by the spherical grids.
The local histograms are built by accumulating point clouts into bins according to
cos(θi), which could be achieved by cos(θi) = n⃗u · n⃗vi where n⃗u is the normal at the
keypoint and n⃗vi is the normal at point vi within the sub-volumes of support.

4. group together all the local histograms to formulate the final SHOT descriptor.

PCL is a good example implementation SHOT feature. In this experiment, we use the
pcl::SHOTEstimation class to compute the SHOT features and adopt the SHOT352 point
type.

3D Shape Context (3DSC)

3D shape context (3DSC) proposed in [51][149] is inherited directly from the 2D shape
context [11]. 3DSC shares quite similar idea with and is a straightforward extension of
2D shape context. 3DSC divides the support of keypoint and accumulates the weighted
count of points located in sub-volumes. SHOT has some similarity with 3DSC, but for each
sub-volume SHOT builds a histogram rather than just counts the number of points. And the
way of support division is different between SHOT and 3DSC.

Overall, the estimation of 3DSC includes three steps:

1. for each keypoint, build its LRF and transform the coordinates of points in its support
to the local coordinates in this LRF.

2. divide the support equally in azimuth and elevation directions and logarithmically
along the radial dimension into several bins.

3. for each bin, accumulate the weighted count of points located in it.

In this experiment, we use the pcl::ShapeContext3DEstimation to compute the 3DSC
features and employ the pcl::ShapeContext1980 point type.
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Fast Point Feature Histograms (FPFH)

FPFH is a simplified version of Point Feature Histograms (PFH) [122], and it reduces the
computational complexity but retains most of the discriminative power of PFH [119]. FPFH
is calculated based on the oriented points, which means just like SHOT and 3DSC, FPFH is

also calculated based on normals of points. But unlike SHOT and 3DSC, FPFH describes
the property of the support independent of the point locations, which means FPFH does not
build a LRF related to keypoints.

Generally speaking, FPFH calculation includes three steps:

1. for each keypoint pi in the scan, search its support;

2. for every point pair in support, calculate three features which together to express the
mean curvature. The three features are combined and put into the equivalent histogram
bin. The histograms are called Simplified Point Feature Histogram (SPFH).

3. After achieving SPFH of every point, for each point pi redetermine its k neighbours
and use the neighbouring SPFH values to weight the final histogram of pi:

FPFH(pi) = SPFH(pi)+
1
k

k

∑
j=1

1
ωk
·SPFH(p j)

FPFH is also implemented in PCL. We use the pcl::FPFHEstimation class in PCL to
compute FPFH in this experiment, and adopt the pcl::FPFHSignature33 feature type.

4.6.2 Methodology

How to compare local shape descriptors fairly and independent of other techniques is the
key to the methodology of this experiment. The local features are usually adopted as one
part in object recognition, but the performance of object recognition depends on not only
the effectiveness of feature matching but also the repeatability of keypoints detection and
efficiency of features cluttering techniques.

In this experiment, we use the "BoD1" dataset publicly available on the Internet: http:
//vision.deis.unibo.it/ research/80-shot, which is created especially for the comparison of
feature descriptors. The dataset is created from six model belonging to the "Stanford 3D
Scan Scanning Repository" [133]. Each scene contains a subset of the 6 models randomly
chosen and randomly rotated and translated so to create clutter conditions.

http://vision.deis.unibo.it/research/80-shot
http://vision.deis.unibo.it/research/80-shot
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We use the same keypoints detector for all the feature descriptors for a fair comparison.
Specifically, we select 100 points randomly in each model, then we extract their corresponding
points from the scenes, in this way, the performance of feature matching is not affected by
error of keypoints detectors. It is worthy to note that the keypoints are selected randomly
but they should be the same ones for all the four feature descriptors: SEI, SHOT, 3DSC and
FPFH. The keypoints of the six model used in this experiments are shown in Figure 4.14.
Limited by the space, we just present the features matching results of selected 5 scenes, the
scenes and the corresponding keypoints are depicted in Figure 4.15.

With regard to the evaluation of local shape descriptors, we adopt the frequently used
criteria named Recall vs 1-Precision curve. It is generated by changing the thresholds for
feature matching and computing the feature recall and precision for each threshold. Precison
and Recall are the basic measures used in evaluating search algorithms, but they are naturally
to be used to evaluate feature matching strategies. In search problems, there is a set of records
in the database which is relevant to the search topic, and the search algorithms will give a set
of retrieved records. The retrieved records could be relevant or irrelevant. And Precison and
Recall is defined as following:

Recall =
Relevant Records∩∩∩Retrieved Records

Relevant Records
(4.14)

Precision =
Relevant Records∩∩∩Retrieved Records

Retrieved Records
(4.15)

Perhaps, an example could be helpful to understand the precision and recall concepts.
Suppose the case for recognizing cups in a scene which contains 35 cups and 20 bottles,
and the algorithm recognizes 20 objects which actually includes 15 cups and 5 bottles. For
this scenario, the recall of the recognition algorithm is 15/35 and the precision is 15/20.
Normally, the recall and precision are inversely related, which means when recall increases
the precision decreases and vice versa.

For our feature matching experiment, the relevant records are the 600 point correspon-
dences, 100 for each model. And the feature matching strategies would build n correspon-
dences under the specified threshold. Assume the n correspondences contain m correct
correspondences, then the recall the the feature matching strategy under this threshold is
m/600 and precision if m/n.

To evaluate the robustness to noise of feature matching techniques, we add different
levels of Gaussian noise to the original datasets. We calculate the mesh resolution of the
models, select the maximum mesh resolution (mr) and add Gaussian noise with standard
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(a) Model Happy Buddha
and keypoints.

(b) Model Thai Statue and
keypoints.

(c) Model Armadillo and keypoints. (d) Model Bunny and keypoints.

(e) Model Dragon and keypoints. (f) Model Asian Dragon and
keypoints.

Fig. 4.14 Models and the keypoints used in the experiments of SEI
as a local shape descriptor.
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(a) Scene 30 in BoD1 and keypoints. (b) Scene 31 in BoD1 and keypoints.

(c) Scene 32 in BoD1 and keypoints. (d) Scene 33 in BoD1 and keypoints.

(e) Scene 35 in BoD1 and keypoints
corresponding with Bunny.

(f) Scene 35 in BoD1 and keypoints
corresponding with Thai Statue.

Fig. 4.15 Scenes and the keypoints used in the experiments of SEI as
a local shape descriptor.
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(a) Scene 30 in BoD1 with 0.1mr
Gaussian noise and keypoints.

(b) Scene 31 in BoD1 with 0.1mr
Gaussian noise and keypoints.

(c) Scene 30 in BoD1 with 0.3mr
Gaussian noise and keypoints.

(d) Scene 31 in BoD1 with 0.3mr
Gaussian noise and keypoints.

(e) Scene 30 in BoD1 with 0.5mr
Gaussian noise and keypoints.

(f) Scene 31 in BoD1 with 0.5mr
Gaussian noise and keypoints.

Fig. 4.16 Example scenes with different level of Gaussian noise and
keypoints.
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deviation 0.1mr, 0.3mr, 0.5mr. The examples of Scene 30 and Scene 31 with different levels
of Gaussian noise are presented in Figure 4.16.

For the correspondence matching algorithm, we compute the phase correlation between
features and find the maximum value for the correlation coefficients by the following equa-
tions:

C(ααα) =
Fm(ααα)

|Fm(ααα)|
• Fs(ααα)

|Fs(ααα)|
(4.16)

c(xxx) = F−1{c(ααα)} (4.17)

d = max{c(xxx)} (4.18)

Theoretically, the phase correlation coefficient, which is regarded as the distance between two
features for our correspondence matching algorithm, should be 1 between the corresponding
features, but in practice, the peak deteriorates because of the noise or keypoints movements.

The SEIs of one example point in Happy Buddha and its corresponding point in Scene
30 of BoD1 with 0.3mr Gaussian noise are depicted in Figure 4.17. Our measured distance
between these two SEIs is 0.997807. Further, the superiority of our measurement could be
proved by the instance proposed in Figure 4.18. The SEIs of one point in Dragon and its
corresponding point in Scene 31 of BoD1 with 0.5mr Gaussian noise are described. It could
be seen that the two features are different at the end part, which is pointed out by red line in
Figure 4.18b. If the similarity of features is measured by Euclidean Distance, which is the
most popular measurement, this point pair could not be considered as the correspondence.
But if measured by our phase correlation coefficients, the distance is 0.999752, and the point
pair is regarded as a quite well correspondence. And for our measured distance, the threshold
could be selected easily, since the maximum of the distances between features is 1, which
means the features match perfectly.

4.6.3 Experiment results

The C++ code to reproduce all the experiment results, including the results of correspon-
dence matching algorithms based on SHOT, 3DSC and FPFH, are published online. In the
experiment, we found that the SEI based on repeatable and disambiguated LRF produces
better results than SEI based on SHT, so in this part, we only present the experiment result of
SEI based on LRF and compare with the state-of-the-art algorithms. However, the C++ code
about SEI based on SHT is still available on the Internet, please refer to Appendix A.
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(a) One point in Happy Buddha and its SEI feature.

(b) Corresponding point in Scene 30 of BoD1 with
0.3mr Gaussian noise and its SEI feature.

Fig. 4.17 Examples of SEI as local shape descriptor (I).
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(a) One point in Dragon and its SEI feature.

(b) Corresponding point in Scene 31 of BoD1 with
0.5mr Gaussian noise and its SEI feature.

Fig. 4.18 Examples of SEI as local shape descriptor (II).
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Two examples about correspondences built by SEI-based feature matching technique
is presented in Figure 4.19. In appearance, our SEI-based feature matching algorithm
could search the correspondences precisely and robustly. The quantitative comparison is
demonstrated later.

(a) Happy Buddha and its correspondences in Scene 30.

(b) Asian Dragon and its correspondences in Scene 32.

Fig. 4.19 Example of feature correspondences built by our
SEI-based feature matching algorithm.
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Table 4.8 Performances of SEI-based feature matching algorithm applied to scenes with 0.1mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold 0.0 0.95 0.96 0.97 0.98 0.99 0.999

R G R G R G R G R G R G R G

Happy Buddha 100 90 99 90 98 90 97 90 92 86 86 84 54 53

Dragon 100 79 97 79 95 77 92 76 86 71 75 68 41 41

Armadillo 100 76 99 76 98 76 96 76 91 76 79 69 62 57

Asian Dragon 100 90 98 90 98 90 98 90 94 89 90 87 64 63

Thai Statue 100 91 99 91 98 90 97 90 93 86 88 82 60 57

Bunny 100 57 100 57 99 56 93 55 78 54 62 47 32 29

SUM 600 483 592 483 586 479 573 477 534 462 480 437 313 330

Recall 0.8050 0.8050 0.7983 0.7950 0.7700 0.7283 0.5000
Precision 0.8050 0.8159 0.8174 0.8325 0.8652 0.9104 0.9585
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Table 4.9 Performances of SEI-based feature matching algorithm applied to scenes with 0.3mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold 0.0 0.95 0.96 0.97 0.98 0.99 0.999

R G R G R G R G R G R G R G

Happy Buddha 100 80 98 80 97 80 97 80 92 77 77 68 39 35

Dragon 100 57 97 57 96 57 93 57 76 54 66 50 26 24

Armadillo 100 70 98 69 95 69 86 66 81 63 72 59 42 38

Asian Dragon 100 84 97 84 97 84 96 83 91 82 84 78 46 45

Thai Statue 100 84 99 83 99 83 97 83 93 80 82 75 47 46

Bunny 100 53 100 53 100 53 93 50 80 49 56 41 21 19

SUM 600 428 589 426 584 426 562 419 513 405 437 371 221 207

Recall 0.7133 0.7100 0.7100 0.6983 0.6750 0.6183 0.3450
Precision 0.7133 0.7233 0.7295 0.7456 0.7895 0.8490 0.9367
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Table 4.10 Performances of SEI-based feature matching algorithm applied to scenes with 0.5mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold 0.0 0.95 0.96 0.97 0.98 0.99 0.999

R G R G R G R G R G R G R G

Happy Buddha 100 78 98 78 95 77 94 77 89 75 74 70 33 32

Dragon 100 52 96 50 95 50 88 48 79 45 60 39 11 11

Armadillo 100 64 94 61 91 61 88 60 81 55 68 49 34 28

Asian Dragon 100 79 98 79 95 78 92 78 78 68 69 64 26 26

Thai Statue 100 84 98 82 98 82 96 82 91 78 79 69 30 25

Bunny 100 36 100 36 99 36 88 33 71 29 51 27 12 8

SUM 600 393 584 386 573 384 546 378 489 350 401 318 146 130

Recall 0.6550 0.6433 0.6400 0.6300 0.5833 0.5300 0.2167
Precision 0.6550 0.6610 0.6702 0.6923 0.7157 0.7930 0.8904
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Table 4.11 Performances of SHOT-based feature matching algorithm applied to scenes with 0.1mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 0.80 0.70 0.50 0.40 0.30 0.20

R G R G R G R G R G R G R G

Happy Buddha 100 44 91 43 71 36 33 28 27 24 15 15 8 8

Dragon 100 79 94 77 86 75 64 63 61 60 52 51 42 41

Armadillo 100 85 97 83 96 83 83 77 73 55 61 60 46 46

Asian Dragon 100 73 97 71 84 67 62 56 47 68 39 36 17 17

Thai Statue 100 66 96 65 92 63 56 45 26 78 10 9 4 4

Bunny 100 62 88 60 75 56 56 48 48 29 43 41 34 33

SUM 600 409 563 399 504 380 354 317 282 264 220 212 151 149

Recall 0.6817 0.6650 0.6333 0.5283 0.4400 0.3533 0.2483
Precision 0.6817 0.7087 0.7540 0.8955 0.9362 0.9636 0.9868
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Table 4.12 Performances of SHOT-based feature matching algorithm applied to scenes with 0.3mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 0.80 0.70 0.50 0.40 0.30 0.20

R G R G R G R G R G R G R G

Happy Buddha 100 44 91 43 73 40 36 29 26 24 12 12 8 38

Dragon 100 79 94 77 85 76 66 65 61 60 55 54 41 40

Armadillo 100 85 98 83 98 83 79 76 71 69 59 58 47 47

Asian Dragon 100 74 97 72 83 66 62 56 45 41 40 36 17 17

Thai Statue 100 63 96 62 93 60 56 41 27 21 11 10 4 4

Bunny 100 62 88 60 76 55 59 49 47 43 43 40 32 31

SUM 600 407 564 397 508 380 358 316 277 258 220 210 149 147

Recall 0.6783 0.6617 0.6333 0.5267 0.4300 0.3500 0.2450
Precision 0.6783 0.7039 0.7480 0.8827 0.9314 0.9545 0.9866
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Table 4.13 Performances of SHOT-based feature matching algorithm applied to scenes with 0.5mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 0.80 0.70 0.50 0.40 0.30 0.20

R G R G R G R G R G R G R G

Happy Buddha 100 45 89 43 74 38 38 30 25 23 13 13 8 38

Dragon 100 78 95 76 91 76 65 63 62 60 53 51 42 40

Armadillo 100 82 97 80 96 80 77 72 70 65 59 57 45 45

Asian Dragon 100 72 97 71 84 67 65 56 45 40 38 34 16 16

Thai Statue 100 63 99 63 94 61 52 40 24 20 10 9 3 3

Bunny 100 61 89 59 78 54 58 49 49 44 41 38 35 33

SUM 600 401 566 392 517 376 355 310 275 252 214 202 149 145

Recall 0.6683 0.6533 0.6267 0.5167 0.4200 0.3367 0.2417
Precision 0.6683 0.6926 0.7273 0.8732 0.9164 0.9439 0.9732
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The feature matching results of our SEI-based algorithm under different thresholds and
Gaussian noises are demonstrated detailedly, as Table 4.8, Table 4.9 and Table 4.10 show.
SHOT-based feature method performs best in the state-of-the-art methods (compare with
FPFH and 3DSC), so we present the results of SHOT-based algorithm in Table 4.11, Table
4.12 and Table 4.13. To keep the compactness, we omit the details of FPFH-based and
3DSC-based feature matching algorithms, but they are available in Appendix C.

To compare the feature matching results of different algorithm, we depict the Recall vs
1-Precision curves in Figure 4.20. We can see that our SEI-based and SHOT-based feature
matching algorithms perform orders of magnitude better than FPFH-based and 3DSC-based
techniques. As to the comparison between SEI-based and SHOT-based algorithm, our SEI-
based algorithm performs better than SHOT-based method for the scenes with 0.1mr and
0.3mr Gaussian noise. But SHOT-based feature matching technique gives better results with
regard to scenes with 0.5mr Gaussian noise. And after analysing the results of scenes of
0.5mr Gaussian noise, we found that our SEI-based method gives comparable recall results,
while the precision of SHOT-based method is better than our SEI-based technique. The
reason behind this is partially because SHOT-based method employ the more strict Euclidean
Distance in searching correspondences procedure.

Table 4.14 Memory requirements and computational
efficiency of feature matching algorithms.

Length Radius (mr) Time Normal(ms) Time Feature(ms)

SEI 64 30 0.000 (≈ 24.442)∗keypints_num

SHOT 352 30 (≈ 0.164)∗scan_size (≈ 32.481)∗keypints_num

FPFH 33 10 (≈ 0.164)∗scan_size (≈ 109.723)∗keypints_num

3DSC 1980 30 (≈ 0.164)∗scan_size (≈ 54.838)∗keypints_num

In addition, we also compare the feature matching methods with respect to their memory
requirements and computational efficiency. The experiments are implemented on a laptop
with the following details:

• Memory: 3.8GiB

• Processor: Intel R⃝ CoreTM i5-2430 CPU @ 2.40GHZ

• Graphics: Intel R⃝ Sandybridge Mobile

• System: 64-bit Ubuntu 14.04 LTS
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(a) Recall vs 1-Precision curves for scenes with 0.1mr
Gaussian noise.

(b) Recall vs 1-Precision curves for scenes with 0.3mr
Gaussian noise.

(c) Recall vs 1-Precision curves for scenes with 0.5mr
Gaussian noise.

Fig. 4.20 Recall vs 1-Precision curves of four feature matching
algorithms to scenes with difference levels of Gaussian noise.
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The memory requirements and computational efficiency of the four feature matching
techniques are listed in Table 4.14. The radius of support of feature is set to be 30mr for SEI,
SHOT and 3DSC, while the radius is 10mr for FPFH. That is because the FPFH calculation
with 30mr support size takes really too much time. As we can see from Table 4.14, FPFH
requires the most time even when the support size is 10mr, which is much less than other
methods. Our SEI requires much less memory compared with SHOT and 3DSC. And it is
worthy to note that all the SHOT, FPFH and 3DSC features require estimating normals of
all the points, not only the keypoints. Normally, the normal estimation needs more than 10
seconds in this experiment. While our SEI feature does not require the normal estimation
procedure. By the way, the runtime for repeatable LRF estimation of the keypoints is included
in the feature estimation time shown in Table 4.14.

4.7 Summary

In this chapter, we propose a novel shape descriptor Spherical Entropy Image (SEI), which in-
herits the robustness of histogram-based shape descriptors and descriptive power of signature-
based shape descriptors. We develop a feature-less registration method using the SEI as
a global shape descriptor. This registration method determines the rotation by aligning
the SEIs based on the Spherical Harmonic analysis and calculates the translation by the
POMF technique, and then integrates the rotation recovery and translation estimation into
an iteration framework. Besides, we also show the possibility of using SEI as a local shape
descriptor. Several experiments have been carried on to validate the efficiency of SEI. The
scan registration experiments involving outdoor scenes and handicrafts are implemented. The
experiment results show that the SEI-based registration method outperforms the state-of-the-
art algorithms both in successful ratio and processing time. The feature matching experiment
employing SEI as a local shape descriptor for public available dataset is also proposed. SEI
achieves better performance in terms of Recall vs 1-Precision curve and processing time
compared with the state-of-the-art shape descriptors.





CHAPTER5
Conclusion

Study the past, if you would divine the future.

Confucius
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5.1 Conclusion

IN this thesis, we propose two 3D global shape descriptors, Hough Transform Descriptor
and Spherical Entropy Image, and develop two novel 3D scan registration methods based

on these two shape descriptors respectively.

For the Hough Transform Descriptor-based registration method, we project the 3D scan
data into Hough domain, in this way, the 3D rotation of the original data is decoupled from its
3D translation. Our registration method based on Hough Transform Descriptor recovers the
rotation and translation between scan pairs separately. The rotation recovery is divided into
two steps: yaw determination and roll & pitch determination. Overall speaking, we resample
the Hough Transform Descriptors to convert yaw/roll/pitch rotation into offsets of resampled
Hough Transform Descriptors, and then use phase correlation techniques to determine the
offsets. Assume the determined rotation is correct and complete, there is only translation
between scan pairs after rerotating them according to the determined rotation matrix.
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We apply the Phase Only Matched Filter (POMF), which is based on the Fourier analysis,
to estimate the shift between two rerotated scans. The POMF decouples the local signal
energy from the signal structure because two shifted signals carry the shift information
only within the phase of their Fourier spectrum. Before applying POMF, it is necessary
to convert the original 3D surface into volume grids. The general way to achieve volume
grids is assigning voxels the value of 1 if they are occupied by the surface, otherwise their
values are 0. But we found the volume grids obtained by this method are less informative
and the translation recovery usually fails, because the variation of signal is critical to success
of Fourier Transform-based correlation techniques. In our novel algorithm, we divide the
translation determination into two separate steps: recover the offsets in (x, y) direction and in
z direction. We project the scans onto their (x, y) planes and the xy pixel stores the maximum
z value of all points whose (x, y) locate in this pixel. The offsets in (x, y) direction could be
determined by 2D POMF. Meanwhile, we project the scans onto its z axes to use 1D POMF
to calculate the offsets in z direction. Please note that the recovery of translation in (x, y)
direction and z direction is independent and could be carried on simultaneously.

We also propose a novel spherical shape descriptor named Spherical Entropy Image (SEI)
and apply it in 3D scan registration aided by Spherical Harmonic analysis, which could be
regarded as an extension of Fourier transform. We first divide the original scan into several
small 3D patches according to the elevation and longitude of point. And for each patch,
consider the depth of points as observations of a random variable and compute the entropy
of this variable. The final SEI of the 3D point clouds could be achieved by computing the
entropy of all patches in a dense manner. The transformation between the original data could
be recovered by aligning their corresponding SEIs. The SEI is a spherical function defined
on the sphere. The sphere could be regarded as the critical point between 3D space and
2D surface, and the rotation of sphere could be converted to the translation of 2D spherical
surface. The generalized convolution theorem based on Spherical Harmonic analysis could be
employed to match patterns defined on 2D sphere. The translation recovery in this algorithm
adopts the same method employed by the registration method based on Hough Transform
Descriptor.

Entropy estimation is translation-invariant, since it is merely related to probability of
the depth of points but independent of value of the depth. However, SEI is not translation-
invariant because the way to divide scans is translation-dependent. In other words, unlike
the registration method based on Hough Transform Descriptor, it is impossible to estimate
the rotation and translation separately for the SEI-based registration method. Thus we run
into a classical Chicken-and-Egg problem: it is necessary to achieve the rotation to recover
the translation, while the translation rectified is helpful to determine the rotation matrix
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accurately. In our algorithm, we borrow the iteration idea to handle this dilemma, which is
one of our major contributions. The experiments show that 2 iterations are usually enough,
which ensures our SEI-based registration methods are more efficient than most existing
registration methods. Indeed, iteration is needless when there is only rotation between scan
pairs, in which situation our SEI-based registration method performs efficiently and precisely.
Besides the usage of SEI as a global shape descriptor in scan registration, the possibility of
using SEI as a local shape descriptor in feature matching task is also discussed.

Elaborate experiments prove the efficiency of our novel methods. Specifically, we
employ both the public available datasets and the dataset captured by our own custom-built
platform. We believe the public available datasets and code could help other researchers to
compare our algorithms with their own research. The code and datasets to reproduce all the
experiment results in this thesis are published on the Internet, please refer to Appendix A.
The experiments prove that our novel scan registration algorithms based on global shape
descriptors outperform the state of the art registration methods with regard to the employed
datasets.

The SEI-based feature-less scan registration strategy has much similarity with the HTD-
based scan registration method proposed in Section 3.4.1. Both of these two registration
algorithms describe the original scan by a global shape descriptor, and determine the transfor-
mation between the original scans by aligning the corresponding shape descriptors. Moreover,
these two algorithms both use POMF to recover the translation after rotation matrix is esti-
mated and applied to the original scans.

The difference is the technique how to estimate the rotation matrix between the spherical
images. The rotation recovery technique used in HTD-based scan registration algorithm
divide the rotation recovery into two steps: yaw angle determination and roll & pitch angle
estimation. This method is based on the resampling of the spherical images and is not
theoretical complete. But it is effective and efficient in robotic mapping scenarios. The
generalized convolution theorem based on SHT is applied to determine the rotation between
spherical images in SEI-based scan registration algorithm. It is theoretical complete but play
poor for sparse images such as HTD, so it could not be used in HTD-based scan registration.
From the view of performance, the HTD-based registration method performs well in robotic
mapping, and the existence of planes helps it work well. While the SEI-based registration
method is more general and has broad applicable scenarios, but its precision is lower than
HTD-based registration method.

Generally speaking, our work has the following major contributions:
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• develop a novel Hough Transform Descriptor based registration method, which outper-
forms the state-of-the-art registration methods.

• propose a new transformation recovery technique based on Phase Only Matched Filter
(POMF), the superiority of our translation recovery technique dues to rendering the
original 3D point clouds into a plane and a vector separately instead of a single volume.
This is a far reaching contribution since it improves the performance of translation
recovery of point clouds, which could be used by other registration methods which
estimate rotation and translation separately.

• invent a novel shape descriptor named Spherical Entropy Image (SEI), which inher-
its both the descriptive power of signature-based descriptors and the robustness of
histogram-based descriptors. The possibility of using SEI as a local descriptor is
validated and the experiments prove that SEI performs better than the state-of-the-art
descriptors in the terms of feature matching application.

• a novel feature-less global registration algorithm is proposed based on SEI and Spheri-
cal Harmonic analysis techniques. Meanwhile, we propose an iteration framework to
solve the Chicken-and-Egg problem. This is also a far-ranging contribution, which
could be adopted by all the registration methods based on Spherical Harmonic analysis
techniques.

5.2 Future research directions

View-based 3D shape descriptors use a set of rendered views to represent a 3D model.
Since image processing has been investigated for many decades, the view-based 3D shape
descriptors could benefit from existing image processing technologies. View-based 3D
shape descriptors attract more and more attention recently because they perform well in
content-based 3D object retrieval. Content-based 3D object retrieval is an active research
field that has attracted a significant amount of attention in recent years. This is because the
problem of searching for existing 3D models become necessary and urgent as the increasing
number of 3D objects available in public or proprietary databases.

For the non-rigid 3D object retrieval, the traditional hand-crafted shape descriptors are
difficult to describe the shape precisely and effectively. While the features achieved by deep
learning techniques could play an important role in non-rigid model processing. In our
opinion, view-based 3D shape descriptors employing convolutional neural network (CNN)
may be a good option for this goal. CNN is a quite famous machine learning technique,
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which achieves roaring success in many applications. In the future, we will develop the
view-based 3D shape descriptors based on CNN, and try to apply them into 3D shape retrieval
application.
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APPENDIXA
Code and data to reproduce the
experimental results

We publish the code and data which could be used to reproduce the experimental results
in this thesis online. That is because we believe making the code online at least has the
following benefits:

1 We believe the code would tell everything. Every detail of our algorithm is contained
in the code without exception.

2 As Eric Raymond’s Linus’s Law says, “given enough eyeballs, all bugs are shallow”.
By opening the code to public, we get higher chances to fixed the potential bugs.

3 In case other researcher interested, they could create their new work based on our code.
It is delightful to informed that our algorithms could be used in other area which we
have not foreseen.

The code and datasets to reproduce the experimental results could be found on the
following URL:

1. Examples of HTD based on oriented points: this package is related to Section 3.3.3
of this thesis, and available on https://bitbucket.org/bo_sun/htd_oriented/downloads.
Or if Git is installed, enter the following command in terminal:
git clone https://bo_sun@bitbucket.org/bo_sun/htd_oriented.git

2. Examples of Translation recovery: this package is related to Section 3.4.2 of this
thesis, and available on https://bitbucket.org/bo_sun/translationrecovery/downloads.
Or if Git is installed, enter the following command in terminal:
git clone https://bo_sun@bitbucket.org/bo_sun/translationrecovery.git

https://bitbucket.org/bo_sun/htd_oriented/downloads
https://bitbucket.org/bo_sun/translationrecovery/downloads
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3. HTD based scan registration: this package contains the code and datasets to re-
produce the experiment results of Section 3.5 of this thesis, and is available on
https://bitbucket.org/bo_sun/htd_registration/downloads. Or if Git is installed, en-
ter the following command in terminal:
git clone https://bo_sun@bitbucket.org/bo_sun/htd_registration.git

4. SEI based scan registration: this package is related to Section 4.5 of my thesis, and
contains the data and code to reproduce the experiments results about employing SEI
as a global shape descriptor in scan registration. It is available on https://bitbucket.org/
bo_sun/sei_registration/downloads. Or if Git is installed, enter the following command
in terminal:
git clone https://bo_sun@bitbucket.org/bo_sun/sei_registration.git

5. SEI based feature matching: this package is related to Section 4.6 of my thesis. It
contains the datasets and code to reproduce the experiment results. It is available on
https://bitbucket.org/bo_sun/sei_featurematching/downloads. Or if Git is installed,
enter the following command in terminal:
git clone https://bo_sun@bitbucket.org/bo_sun/sei_featurematching.git

Other code which are not employed in the experiments, for example the rotation invariant
SEI based on SHT and the SEI based scan registration aided by 3D FFT, are available on
requirement: bo.sun.sd@foxmail.com The code about the state-of-the-art methods used in
comparison experiments are also available on requirement.

https://bitbucket.org/bo_sun/htd_registration/downloads
https://bitbucket.org/bo_sun/sei_registration/downloads
https://bitbucket.org/bo_sun/sei_registration/downloads
https://bitbucket.org/bo_sun/sei_featurematching/downloads
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Related concepts

3D rotation representation

There are many ways to represent the rotation in 3D space, but four of them are quite popular
and widely used: rotation matrix, rotation vector, Euler angles and rotation quaternions. And
naturally, the four representations could be converted into each other.

Rotation Matrix: Any rotations in 3D space could be represented by a 3×3 orthogonal
matrix. By the way, the orthogonal matrix means its columns are unit vectors and orthogonal
to each other. We could extract 6 equations which limits a matrix to be a orthogonal matrix,
which means the rotation matrix only have 3 degrees of freedom.

Rotation Vector (Axis-angle representation): Euler’s rotation theorem states that any
displacement of a rigid object in 3D space could be expressed by a single rotation about a
fixed axis. In other words, the 3D rotation could be represented by a four-element vector,
of which three elements indicate the direction of the rotation axis and one element means
the magnitude of rotation. And the first three elements should be a unit vector, which means
they only have two degrees of freedom. Again the rotation vector totally has 3 degrees of
freedom.

Euler Angles: A rotation could be split into three simpler constitutive rotations, and each
of them could be expressed by an axis of reference system and an Euler angle around the
axis. In this way, any rotation could be described by three Euler angles. Unfortunately, the
different sequences of axes three Euler angles applied on result in different rotation since
the rotations are not commutative. Commonly, the sequence of axes according to Euler
angles is one of the following: x− y− z, z−x− z, x−y− x, y− z−y, z− y− z, x− z−x and
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y− x− y. For example, the SOFT(2) library [63] adopt the z− y− z Euler angles to describe
the rotation.

Rotation Quaternions: It is naturally to introduce rotation quaternions based on the
axis-angle representation. Quaternions give a simple way to encode the rotation axis-angle
representation by four numbers. For a rotation around axis v = vxi+ vy j+ vzk through angle
θ could be expressed by a normalized quaternion: q̂ = [qiq jqkqs]

T , where qi = vxsin(θ

2 ),
q j = vysin(θ

2 ), qk = vzsin(θ

2 ) and qs = cos(θ

2 ).

Spherical coordinates nomenclature

A point P in 3D space could be indexed by three numbers as Figure B.1 describes:radial
distance r measuring distance between the point and origin; polar angle θ measuring the
angle from positive z-axis to P; azimuth angle ϕ measuring the angle from x-axis to the
projection of P onto xy-plane.

Y

X

Z

p

O

φ

P

θ

r

γ

Fig. B.1 Sketch to illustrate Spherical Coordinates.



| 173

The problem is that there are many aliases of spherical coordinates, which would confuse
the novitiates. θ could be addressed as polar angle, zenith angle, co-latitude. ϕ could be
named as azimuth angle, longitude. The angle γ is also introduced in geography and used by
other researchers, and it is called elevation or latitude. Some examples would be helpful to
understand the nomenclatures. Take the north polar as an example, its colatitude/polar is 0°
and elevation/latitude is 90°. The colatitude/polar of equator is 90°, and colatitude/polar of
south pole is 180°. The longitude/azimuth of positive x axis , positive y axis, negative x axis
and negative y axis is 0°, 90°, 180° and 270° respectively.

Storage order

There are two different storage orders for matrices when they are stored in memory: column-
major order and row-major order. It is not a trivial when obtain the elements of matrix by
pointers and pass on matrices between libraries which employ different storage orders. A
matrix is stored in row-major order if it is stored row by row; in other words, consecutive
elements of rows are contiguous in memory. Likewise, we say a matrix is stored in column-
major order if consecutive elements of its columns are contiguous in memory. For a matrix
A:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


If A is stored in row-major order, it is stored in memory as:
a11,a12,a13,a21,a22,a23,a31,a32,a33
While if A is stored in column-major order, it is stored in memory as:
a11,a21,a31,a12,a22,a32,a13,a23,a33

For example, C/C++, Mathematica, Python, FFTW employ the row-major order as their
default storage order; while MATLAB, Eigen employ the column-major order. Please note
that the default storage order of Eigen is column-major order, but it is possible to set by users.





APPENDIXC
Detailed results of FPFH-based and
3DSC-based feature matching techniques

The feature matching results of our SEI-based algorithm under different thresholds, applied
in "BoD1" dataset [150] disturbed by different levels of Gaussian noises, are demonstrated
detailedly in Table 4.8, Table 4.9 and 4.10. Meanwhile, the results of SHOT-based feature
matching algorithm are also listed in Table 4.11, Table 4.12 and Table 4.13.

To keep the compactness, the details of FPFH-based and 3DSC-based feature matching
algorithms are omitted in straight matter. So we present the detailed results of FPFH-based
feature matching algorithm in Table C.1, Table C.2 and Table C.3. And Table C.4, Table C.5
and Table C.6 describe the detailed results of 3DSC-based feature matching algorithm.
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Table C.1 Performances of FPFH-based feature matching algorithm applied to scenes with 0.1mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1000.0 500.0 400.0 300.0 200.0 100.0

R G R G R G R G R G R G R G

Happy Buddha 100 29 95 28 85 25 77 22 66 19 46 17 16 9

Dragon 100 59 95 58 83 54 80 53 67 50 52 42 34 31

Armadillo 100 44 99 44 85 44 73 41 59 38 44 35 34 32

Asian Dragon 100 37 94 37 84 37 78 36 67 35 52 31 31 25

Thai Statue 100 22 96 22 92 22 83 22 73 21 57 18 19 10

Bunny 100 52 90 50 73 47 66 47 58 42 48 34 30 23

SUM 600 243 569 239 502 229 457 221 390 205 299 177 164 130

Recall 0.4050 0.3984 0.3817 0.3683 0.3417 0.2950 0.2167
Precision 0.4050 0.4200 0.4562 0.4836 0.5256 0.5920 0.7927
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Table C.2 Performances of FPFH-based feature matching algorithm applied to scenes with 0.3mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1000.0 500.0 400.0 300.0 200.0 100.0

R G R G R G R G R G R G R G

Happy Buddha 100 23 89 20 73 16 63 16 56 16 28 9 5 3

Dragon 100 38 93 37 70 32 56 30 38 24 20 15 4 3

Armadillo 100 37 95 37 71 34 65 32 49 27 32 21 10 7

Asian Dragon 100 34 93 34 78 32 67 30 57 28 46 26 23 20

Thai Statue 100 19 96 19 85 19 75 19 61 17 40 12 10 8

Bunny 100 39 83 37 55 30 44 27 34 20 19 13 5 4

SUM 600 190 549 184 432 163 370 154 295 132 185 96 57 45

Recall 0.3167 0.3067 0.2717 0.2567 0.2200 0.1600 0.0750
Precision 0.3167 0.3352 0.3773 0.4162 0.4475 0.5189 0.7895
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Table C.3 Performances of FPFH-based feature matching algorithm applied to scenes with 0.5mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1000.0 500.0 400.0 300.0 200.0 100.0

R G R G R G R G R G R G R G

Happy Buddha 100 18 90 18 75 17 69 17 60 16 35 12 7 4

Dragon 100 19 87 18 43 12 31 12 22 10 11 5 1 1

Armadillo 100 25 98 25 68 22 50 19 33 13 16 7 2 1

Asian Dragon 100 25 94 25 81 25 69 25 60 23 41 18 11 5

Thai Statue 100 18 96 17 87 17 80 17 71 15 47 10 12 5

Bunny 100 21 81 20 51 14 37 10 19 7 5 4 0 0

SUM 600 126 546 123 405 107 336 100 265 84 155 56 33 16

Recall 0.2100 0.2050 0.1783 0.1667 0.1400 0.0933 0.0267
Precision 0.2100 0.2253 0.2642 0.2976 0.3170 0.3613 0.4848
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Table C.4 Performances of 3DSC-based feature matching algorithm applied to scenes with 0.1mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1.50e+08 1.40e+08 1.30e+08 1.20e+08 1.00e+08 0.50e+08

R G R G R G R G R G R G R G

Happy Buddha 100 11 87 11 78 11 67 11 52 11 27 8 3 3

Dragon 100 11 23 8 16 7 13 7 11 7 5 5 4 4

Armadillo 100 20 85 20 76 20 65 20 58 20 22 14 8 8

Asian Dragon 100 19 86 19 76 19 63 19 48 18 33 17 10 9

Thai Statue 100 17 37 12 31 11 24 10 19 8 13 8 6 6

Bunny 100 27 99 27 99 27 98 27 97 27 92 27 34 20

SUM 600 105 417 97 376 95 330 94 285 91 192 79 65 50

Recall 0.1750 0.1617 0.1583 0.1567 0.1517 0.1317 0.0833
Precision 0.1750 0.2326 0.2527 0.2848 0.3193 0.4115 0.7692
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Table C.5 Performances of 3DSC-based feature matching algorithm applied to scenes with 0.3mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1.50e+08 1.40e+08 1.30e+08 1.20e+08 1.00e+08 0.50e+08

R G R G R G R G R G R G R G

Happy Buddha 100 9 67 8 54 8 46 8 35 8 13 7 2 2

Dragon 100 14 10 5 7 5 4 3 3 3 3 3 0 0

Armadillo 100 19 50 18 42 18 31 16 20 12 12 9 4 4

Asian Dragon 100 19 51 16 42 15 38 14 32 14 21 13 7 6

Thai Statue 100 20 23 10 19 9 15 9 14 9 6 6 2 2

Bunny 100 29 98 29 98 29 97 29 96 29 85 28 31 19

SUM 600 110 299 86 262 84 231 79 200 75 140 66 46 33

Recall 0.1833 0.1433 0.1400 0.1317 0.1250 0.1100 0.0550
Precision 0.1833 0.2876 0.3206 0.3420 0.3750 0.4714 0.7174
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Table C.6 Performances of 3DSC-based feature matching algorithm applied to scenes with 0.5mr Gaussian noise
(R=number of Retrieved records and G = number of Relevant ∩∩∩ Retrieved records).

Threshold +∞ 1.50e+08 1.40e+08 1.30e+08 1.20e+08 1.00e+08 0.50e+08

R G R G R G R G R G R G R G

Happy Buddha 100 10 42 9 34 8 28 8 21 8 6 5 1 1

Dragon 100 14 1 1 0 0 0 0 0 0 0 0 0 0

Armadillo 100 20 14 6 12 6 11 6 9 6 9 6 0 0

Asian Dragon 100 19 32 13 29 12 22 11 17 9 7 6 0 0

Thai Statue 100 19 11 8 8 7 7 7 5 5 4 4 1 1

Bunny 100 24 98 23 95 23 95 23 89 23 69 21 24 12

SUM 600 106 198 60 178 56 163 55 141 51 95 42 26 14

Recall 0.1767 0.1000 0.0933 0.0917 0.0850 0.0700 0.0233
Precision 0.1767 0.3030 0.3146 0.3374 0.3617 0.4421 0.5385
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