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Abstract

The measurements of cosmic-ray electrons and positrons with PAMELA (Adriani et al. 2009),
Fermi-LAT (Ackermann et al. 2012) and AMS-02 (Aguilar et al. 2013) have established the
existence of an additional component of cosmic-ray positrons below 200 GeV. The origin of
this additional component has not been clearly resolved. Two possible scenarios are mainly
considered. In the first case positrons and electrons are accelerated in a nearby source (or a few
sources) for example a pulsar or (aged) shell-type supernova remnant (e.g. di Bernardo et al.
2011). In the second scenario they are produced by self-annihilating or decaying dark matter
(DM) (e.g. Borriello et al. 2012). In both scenarios anisotropies in the arrival directions of
cosmic-ray electrons of different magnitudes are expected. The measurement or constraint of
these anisotropies, therefore, serves as a valuable tool to unravel electron production scenarios
and investigate propagation models of charged particles in the local Galactic environment.

In this study one of the first searches for such anisotropies with a ground based Imaging
Atmospheric Cherenkov Telescope (IACT) was performed. The analysis is based on an un-
precedented data set of 1178 hours of high quality data taken with the H.E.S.S. telescopes
located in Namibia. These events were analyzed at energies above 600 GeV using an advanced
image analysis and gamma/hadron separation (de Naurois and Rolland 2009) technique. Sys-
tematic effects in the data were quantified and minimized employing a unique approach taking
advantage of the large amount of hadronic background events available.

Several different large-scale anisotropy models employing spherical harmonic functions up
to the hexadecapole were fit to the data in an energy range between 0.64 and 1.04 TeV. None of
these models was able to explain the measured electron arrival rates well. Two conclusions were
drawn from extensive statistical and systematic studies. First, the characteristics of cosmic-
ray electron arrival rate fluctuations (relative standard deviation of 34 %) differs significantly
from the arrival rate scatter found in hadronic background events (relative standard deviation
of 8 %). Second, the fluctuations of electron arrival rates are dominant at angular scales
significantly smaller than the hexadecapole (l = 4).

An upper limit on the dipole amplitude in the arrival directions of cosmic-ray electrons
was derived. Due to the irregular exposure available in the different directions of the sky the
upper limits vary between 2.5% and 56% over the sky. These are the first upper limits at TeV
energies.

Additionally, an upper limit on the cosmic-ray electron spectrum is presented at energies
up to 14 TeV. This measurement accesses an energy range, where no measurement of the
cosmic-ray electron spectrum was previously possible. Even an upper limit at these energies
puts considerable constraints on models of cosmic-ray electron acceleration and propagation.



Kurzfassung

Messungen kosmischer Elektronen und Positronen mit PAMELA (Adriani et al. 2009), Fermi-
LAT (Ackermann et al. 2012) und AMS-02 (Aguilar et al. 2013) haben die Existenz einer
zusätzlichen Positron-Komponente unterhalb von 200 GeV nachgewiesen, deren Herkunft bisher
unklar ist. Zwei unterschiedliche Szenarien werden aktuell am häufigsten diskutiert. Im ersten
Fall werden Positronen und Elektronen von einem (oder einigen wenigen) sehr nahen kos-
mischen Beschleuniger z.B. einem Pulsar oder einem gealterten Supernovaüberrest des Scha-
lentyps beschleunigt (z.B. di Bernardo et al. 2011). Im zweiten Fall werden sie von selbst-
annihilierender oder zerfallender dunkler Materie (DM) erzeugt (z.B. Borriello et al. 2012). In
beiden Szenarien wird eine Anisotropie in der Verteilung der Ankunftsrichtungen der kosmis-
chen Elektronen und Positronen vorhergesagt. Beide Fälle unterscheiden sich jedoch in der
erwarteten Stärke dieser Anisotropie. Der Nachweis bzw. die Einschränkung einer solchen
Anisotropie wäre somit ein wertvolles Werkzeug zur Erforschung der Produktionsmechanismen
kosmischer Elektronen sowie bei Untersuchungen von Propagationsmodellen geladener Teilchen
durch die Galaxie.

In der vorgelegten Arbeit wird eine der ersten detaillierten Suchen nach einer Anisotropie
in der Verteilung der Ankunftsrichtungen kosmischer Elektronen und Positronen mit einem
Imaging Atmospheric Cherenkov Teleskop (IACT) vorgestellt. Zu diesem Zweck wurden 1178
Stunden Daten besonders hoher Qualität, aufgezeichnet mit dem H.E.S.S. Teleskop in Namibia,
analysiert. Dazu wurde eine hochentwickelte Methode zur Luftschauer-Rekonstruktion und
zur Separation von Gamma-Strahlung von hadronischer Strahlung verwendet (de Naurois and
Rolland 2009). Der betrachtete Energiebereich dieser Analyse liegt oberhalb von 600 GeV.

Die in den Daten vorhandenen systematischen Effekte wurden quantifiziert und minimiert.
Dazu wurde eine neue Methode, basierend auf der großen Menge an in den Daten enthaltenen
hadronischen Ereignissen, entwickelt.

Im Energiebereich zwischen 0.64 und 1.04 TeV wurden verschiedene Anisotropie-Modelle,
die Kugelflächenfunktionen bis zur Ordnung l = 4 (Hexadekapol) beinhalten, an die Daten
gefittet, jedoch konnten die gemessenen Elektron-Raten nicht zufriedenstellend beschrieben
werden. Detaillierte statistische und systematische Untersuchungen ergaben einen signifikan-
ten Unterschied zwischen den Charakteristiken der Fluktuationen in den Elektron-Raten (rel-
ative Standardabweichung von 34 %) und den Fluktuationen der hadronischen Untergrun-
draten (relative Standardabweichung von 8 %). Darüber hinaus werden die Fluktuationen der
Elektron-Raten von Winkelskalen signifikant kleiner als l = 4 dominiert.

Zudem wurde eine obere Schranke auf die Dipolamplitude der kosmischen Elektron-Rate
berechnet. Sie variiert richtungsabhängig zwischen 2.5% und 56% auf Grund der ungleich-
mäßigen Himmelsabdeckung der Beobachtungen.

Des Weiteren wurde eine obere Schranke auf das Elektron Spektrum bis zu Energien von
14 TeV berechnet. Dadurch wurde ein Energiebereich jenseits aller bisherigen Messungen des
Flusses kosmischer Elektronen erschlossen. Bereits diese obere Schranke auf den Elektronen-
fluss ist ausreichend um Beschleunigungs- und Propagationsmodelle von kosmischen Elektronen
stark einzuschränken.
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Chapter 1

Introduction

Astronomy, the science of studying celestial objects such as stars, galaxies, planets and the like,
has been a cornerstone of human striving for understanding since the ancient Greeks, Egyptians,
Babylonians and others. All of these early civilizations already had a recorded history of
methodical observations of the night sky. Most modern astronomy concentrates not only on
the qualitative study of the positions and motions of celestial objects, but also on physical
interpretations of observed phenomena. Thus, modern astronomy is usually synonymous with
astrophysics, a former branch of astronomy that focused on the physics of the universe, while
classical astronomy also included disciplines such as astrometry, celestial navigation and making
calendars. Astrophysics includes observing the emissions of celestial objects across the whole
range of the electromagnetic spectrum. Radiation at wavelengths above a few millimeters
(radio emissions) emitted by cold objects, e.g. the interstellar gas, is studied as well as the
most energetic photons at energies above 100 keV (corresponding to wavelengths of the order
of 10−12 m) called gamma rays.

In 1912 Victor Hess (Hess 1912) discovered a radiation of great penetrating power enter-
ing our atmosphere from above. This highly ionizing radiation originating from outside the
Earth’s atmosphere, nowadays called cosmic rays, are high-energy particles of intrinsic mass,
for example protons, atomic nuclei and electrons. The energies of cosmic rays range over 10
orders of magnitude from 109 eV to 1020 eV. Thus, the energies of the most energetic particles
are up to 40 million times the energy of particles accelerated by the most powerful collider ever
built by humans, the Large Hadron Collider.

Studying these particles of astronomical origin and their relation to astrophysics and cos-
mology has become a new branch of scientific research emerging at the intersection between
astronomy, astrophysics, particle physics and related branches such as detector physics. Today,
astroparticle physicists study not only cosmic rays, but also gamma rays, neutrinos and search
for the hypothetical dark matter particle. An example for the important findings of the field
is the discovery of neutrino oscillations which resulted in a rapid development of the field in
the early 2000’s. Major topics in astroparticle physics are the questions of dark matter, dark
energy and the inequality of the number densities of matter and antimatter in the universe
(Baryogenesis). Another question concerns the origin and production mechanisms of cosmic
rays themselves. What kind of objects are able to accelerate cosmic-ray particles to the highest
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Introduction

energies? More precisely, the acceleration mechanisms attached to which objects are able to
explain experimental observations, such as the shape of the cosmic-ray spectrum? Supernova
remnants (SNR), pulsars, active galactic nuclei (AGN), quasars and gamma-ray bursts (GRB)
are debated among others.

No matter which messenger particle is chosen to observe astrophysical objects, it will have
difficulties attached to it. Neutrinos point directly towards a hypothetical source, but their in-
teraction cross sections are very small so they are difficult to detect. Gamma rays are thought to
be produced in cosmic accelerators either via pion decay in hadronic scenarios or via Inverse-
Compton scattering by relativistic electrons interacting with target photon fields in electro-
magnetic acceleration scenarios. Gamma rays are absorbed by dense environments, e.g. in
the interstellar medium, and additionally they interact with photons of the microwave back-
ground. Charged particles such as protons have an uncertainty on the directional information
they deliver, since they are deflected by magnetic fields on their way to Earth.

A messenger particle lately receiving a lot of attention are cosmic-ray electrons. Cosmic-ray
electrons may also suffer from deflection of galactic magnetic fields, but additionally they lose
energy much more rapidly than, e.g., protons due to synchrotron losses and inverse Compton
scattering. Thus, high-energy cosmic-ray electrons are expected to originate from distances
closer than approximately 1 kpc (model dependent). This leaves fewer objects as possible
sources, among those being the Vela SNR and the pulsars Monogem and Geminga. Observa-
tions of cosmic-ray electrons up to 10 TeV with the ground-based gamma-ray telescope H.E.S.S.
suggest the existence of at least one such nearby source of cosmic-ray electrons (Aharonian et al.
2008).

Observations conducted with the PAMELA detector (Adriani et al. 2009) have triggered
further attention, because it found an unexpected rise in the positron fraction (positron flux
divided by the total flux of electrons plus positrons). Such a rise suggests that an addi-
tional source of positrons exists, because from the conventional model a continuous drop of
the positron fraction was expected. In the conventional model electrons are accelerated by
diffuse shock acceleration in SNRs only while positrons are of secondary origin produced by
the interaction of cosmic-ray protons with protons of the interstellar medium. To explain the
PAMELA results high energy positrons must be produced in addition to the secondary process.
They could be either produced by a nearby source, e.g. a pulsar or aged shell-type SNR, or
by self-annihilating or decaying dark matter. In both scenarios some type of anisotropy is
expected. The difference lies in the magnitude of the predicted anisotropies. In dark matter
scenarios the expected dipole amplitude is smaller than 2% (Borriello et al. 2012), while in
the close-by source scenarios amplitudes of 20% (di Bernardo et al. 2011) are possible. The
observation of a dipole anisotropy would strongly constrain possible models of electron and
positron production, acceleration and propagation.

This PhD thesis is dedicated to the first ever extensive search for anisotropies in the ar-
rival direction of cosmic-ray electrons with a ground-based Imaging Atmospheric Cherenkov
Telescope (IACT). It is a continuation of the initial diploma thesis by Marco Prüser (Prüser
2012), who derived an upper limit on the dipole amplitude of cosmic-ray electrons based on a
data set of gold-plated events (events of very high quality). IACTs do not detect the primary
cosmic rays directly, but measure the Cherenkov light emitted by secondary particles of the
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cascade they have initiated in the Earth’s atmosphere. The only other two experiments ever
conducting similar searches at energies below 500 GeV were the Fermi-LAT (Ackermann et al.
2010a) and AMS-02 (Aguilar et al. 2013) telescopes using direct measurement techniques. Both
are located in space and are limited to energies below 1 TeV due to their small physical size
and consequently limited collection area (O(m2)). IACTs have the advantage of a much larger
collection area (∼ 105 m2) so that they detect a much larger number of particles, which becomes
especially important at high energies. On the other hand there is an unavoidable lower limit on
the energy of the particles that can be observed given by the energy of the particles required
to emit Cherenkov light (the speed of the particle must be larger than c/n). For electrons
traveling through air this threshold energy is approximately 20 MeV (260 keV in water).

Further, for IACTs there is no obvious way to directly discriminate electrons from gamma
rays and hadrons, as for direct detection methods. Gamma rays (or electrons) and hadrons are
separated based on the shower images they produce in the cameras of the telescope. Neverthe-
less, this method only gives a likelihood of the particle being a gamma ray or a hadron. Thus,
events are called gamma-like or hadron-like. Gammas and electrons produce almost identical
shower images since both initiate electromagnetic showers. Thus, up to now they cannot be
discriminated. It is possible to exclude regions of known gamma-ray emission from the data
sample. The crucial challenge is to determine the residual hadronic-background level. This was
a major difficulty when the electron spectrum was measured with H.E.S.S. (Aharonian et al.
2008). In that study the separation was done on statistical basis simulating the distributions
of the used gamma-hadron separation parameter for electron and proton events, fitting the
obtained distributions to the actually measured distribution of the parameter and finding the
number of electrons and hadrons in the data set. This method has different problems attached:
the first being the large amount of proton simulations required, and the second being the
uncertainties that exist in currently available hadron interaction models.

In this study an experimentally driven approach was applied calculating the background
level from the electron spectrum measured with Fermi-LAT and the H.E.S.S. electron collection
area. The electron flux is not reconstructed individually for every direction of the sky, but
instead the arrival rates of cosmic-ray electrons at Earth are used directly (number of electrons
measured with H.E.S.S. per unit time). Since dependencies on the zenith angle and optical
efficiency of the observations are not corrected the assessment of systematic effects is crucial.
The treatment of systematics is based on the idea that systematic effects are the same for
electron and hadron events. The method takes advantage of the large number of hadron-like
events from which the systematic error is derived. It ensures at least that all systematic effects
that are present in the hadron-like event sample are also taken into account in the analysis of
the gamma-like event sample. The remaining rate fluctuations are studied in the anisotropy
analysis. This thesis is structured as follows:

• Chapter 2 is dedicated to experimental results concerning hadronic cosmic rays and
cosmic-ray electrons. It includes a summary of experimental results concerning spectra
and anisotropies of both types of cosmic rays. Further, the electron fraction is discussed.
Additionally, the theoretical background of cosmic-ray electron production and propaga-
tion is introduced including a discussion of possible sources of cosmic-ray electrons and
positrons.
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• Chapter 3 focuses on detection principles of cosmic-ray electrons. Direct and indirect
detection methods are discussed. The H.E.S.S. experiment is introduced in more detail,
while the Fermi-LAT and AMS-02 detectors are discussed as examples of direct detection
instruments.

• Chapter 4 gives a short summary of the statistical basics required to understand the data
analysis in this study. Topics such as data modeling, hypothesis testing and correlations
between variables are covered.

• Chapter 5 is dedicated to the actual data analysis. It covers three main parts. First,
the selection of the data set used in this study is discussed. Second, the determination
of the level of hadronic background including the calculation of the collection area (here
exposure) for electrons is considered. As a side product an upper limit on the electron
spectrum is presented. Further, extensive anisotropy studies are performed including the
analysis of a dipole model as well as higher order multipole models, such as the calculation
of the two-point correlation function. The employed methods include standard statistical
tests as well as Monte Carlo simulations. The treatment of systematic effects is also
discussed. Finally an upper limit on the dipole amplitude is presented.

• Chapter 6 gives a summary of the obtained results. Further, they are discussed in
terms of possibly un-accounted systematic effects, in the context of previously found
experimental results and physical implications. An outlook is given at the end of the
Chapter.

9



Chapter 2

The Physics of Cosmic-Ray Electrons

The underlying physics of cosmic rays is discussed in this Section. Major attention is given to
cosmic-ray electrons and topics connected to this thesis such as the small and medium scale
anisotropy of galactic cosmic rays. First, experimental results on cosmic rays and in particular
cosmic-ray electrons are discussed with emphasis on their spectra and arrival direction. Second,
the most widely discussed sources of cosmic-ray electrons are introduced and connected to the
previously mentioned experimental results. At last, the propagation mechanisms relevant for
cosmic-ray electrons are explained by the use of simple analytic solutions to the transport
equation.

This short introduction aims to give an overview of experimental results as well as of the
theoretical models of acceleration and propagation of cosmic-ray electrons (and positrons).
Related topics as certain aspects and experimental results concerning hadronic cosmic rays are
shortly discussed but this introduction does not aim to give a full overview on cosmic rays.
For more information on cosmic rays the interested reader is referred to several review articles.
Blümer et al. (2009) discuss experimental results and theoretical interpretations at energies
above the knee and give a comprehensive picture until 2009. Even though, some of the most
current experimental results are missing the basic ideas are explained well. Hörandel (2013)
gives an update on the composition of galactic cosmic rays between 1014 and 1018 eV. Blasi
and Amato (2012) focuses on supernova remnants as the most plausible source of galactic
cosmic rays. Aloisio (2012) gives a short review on ultra-high-energy cosmic rays (UHECR) at
energies above 1019 eV. Cosmic-ray electrons are covered by Panov et al. (2011). Many aspects
of cosmic rays, cosmic-ray electrons and their physics are also covered by Spurio (2015).
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The Physics of Cosmic-Ray Electrons 2.1 Hadronic Cosmic Rays

2.1 Hadronic Cosmic Rays

2.1.1 Spectrum of Cosmic-Ray Hadrons

Cosmic rays (CRs) are high-energy particles between 109 eV and 1020 eV bombarding the Earth
from outside its atmosphere. They originate from outside the Solar System, but also from the
Sun. When CRs enter the Earth’s atmosphere they interact with nuclei in the atmosphere and
initiate hadronic and electromagnetic showers of secondary particles. CRs are mainly composed
of protons (∼ 89 %) and atomic nuclei (∼ 10 %), but also electrons (∼ 1 %) and antiparticles
such as antiprotons and positrons contribute by a small fraction. The flux F of CRs arriving
at Earth has been measured over several decades in energy by detectors that were carried by
balloons or satellites (up to 105 GeV) and air shower detectors on the ground (above 105 GeV).
Figure 2.1 shows the CR spectrum for all charged CRs giving the number of particles arriving
per unit interval of time, area, solid angle and kinetic energy. Additionally, the spectra of
electrons, positrons, protons and antiprotons up to 100 GeV are shown.

The number of electrons is much smaller than the number of protons. At 1 GeV they
contribute only between 1% and 2% to the total CR flux and even less at higher energies. The
flux of positrons and antiprotons is even smaller. The differential CR flux dF

dE , where E is the
particle energy, follows a power law with a spectral index of -2.7 (dF

dE ∼ E
−2.7) up to the knee

at approximately 1015.5 eV. Above the knee the spectrum bends downward (index ∼ 3.1) for
three decades in energy to the ankle at 1018.5 eV, where the spectrum breaks upwards again.
The entire spectrum reaches up to approximately 1011 GeV where only one particle per square-
kilometer and century is expected. Here, the statistics and possibly also the flux peter out.
All elements of the periodic table were found in CRs. The abundance of the elements in CRs
differs somewhat from the abundance found in the solar system. E.g. the light elements such
as lithium, beryllium and boron are more abundant in CRs than in the solar system. They are
assumed to be produced during spallation processes of the CNO, iron and lead groups while
propagating through the Galaxy (Blümer et al. 2009).

It was found by the KASCADE experiment that the knee is measured at higher and higher
energies for continuously heavier nuclei (Apel et al. 2013). Thus, the shape of the knee measured
in the spectrum of all CRs appears to be a superposition of the spectra of protons and heavier
nuclei. This behavior at the knee can be explained in the model of diffuse shock acceleration in
strong magnetic fields of young supernova remnants (SNR) (see Section 2.3.1 for details). The
idea that CRs are accelerated by SNRs goes back to (Baade and Zwicky 1934) who found that
3 supernovae per galaxy and century are sufficient to release enough kinetic energy to deliver
the required power to generate the observed CR flux (CR energy density is ∼1 eV/cm3). Due
to the limited lifetime (∼ 105 years) of a shock the energy attainable via diffuse acceleration
in shock fronts is given by Emax ∼ Z · (0.1− 5)PeV.

However, alternative explanations are under debate, e.g. the leakage of particles from the
Galaxy (Hörandel 2005). CRs propagate through the Galaxy approximately 20 × 106 years.
During this time they are deflected many times by the magnetic field. The galactic magnetic
field is oriented mainly parallel to the galactic plane and has an average intensity of 3 to 4 µG
(see Durrer and Neronov 2013 for a review on cosmological magnetic fields). With increasing
energy the Larmor radius (Equation 2.1) of CRs in the Galaxy increases until it exceeds the
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Figure 2.1: Spectrum of CRs as observed by several experiments at Earth. On the x-axis the
kinetic energy Ekin of the particles is given. The differential CR flux dN

dE times E2, where E is
the energy of the particles, is given on the y-axis. This representation of the differential flux
was chosen to make the features (knee and ankle) of the CR spectrum clearly visible. Adapted
from Hillas 2006.

thickness of the galactic disk (∼ 150 pc). For protons with an energy of 1018 eV the Larmor
radius rL is 300 pc (for B = 4 µG) so that they are no longer constrained to the Galaxy. In
this model the energy spectra of the individual nuclei would similarly exhibit a cutoff at an
energy given by the cutoff energy of protons and the elemental charge Z.

The origin (and, thus, also the acceleration mechanism) of CRs at even higher energies is
less clear. Figure 2.2 shows an overview of objects possibly capable of accelerating particles
to energies up to 1020 eV. The objects on the right-hand side of the locus are possibly capable
of accelerating protons/nuclei up to the highest energies. These include active galactic nuclei
(AGN) and gamma-ray bursts (GRBs). Since CRs at these energies are no longer constrained
to the Galaxy, in this picture, the ankle could be a feature of an extragalactic cosmic ray
component that is less intense, but has a harder spectrum and, thus, starts to dominate over
the galactic component at energies above 1019 eV (Hillas 2005 and Erlykin and Wolfendale
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Figure 2.2: Hillas plot of astrophysical objects that could possibly accelerate CR particles to
the highest energies. The magnetic field strength responsible for acceleration in these objects
is given on the y-axis. The size of the objects is given on the x-axis. The black lines separate
the regions in the plot where protons can be accelerated up to 1020 eV from those where they
cannot. The solid line indicates this boundary for non relativistic shocks and the dashed line
for relativistic shocks. The relation of the maximum energy achievable by the objects to their
properties such as the magnetic field strength B, the size L, the charge of the accelerated
particle Z and the speed of the shock front normalized to the speed of light βs is shown in the
upper right corner. Adapted from Blümer and Kampert 2000.

2005). Naturally, a heavy composition would be expected at the higher end of the galactic
component ending just below 1019 eV. Consequently, the measurement of the composition of
the highest energy CRs (ultra-high-energy cosmic rays UHECR) is crucial for understanding
the origin of the ankle.

If UHECRs are protons an acceleration in active galaxies is most likely due to their isotropic
arrival directions (no large scale anisotropy was found at energies above 1018 eV by, e.g. Ar-
mengaud 2008 and Swain 2006) and correlation with relatively nearby AGNs at energies above
5.7 × 1019 eV as found by Auger (Pierre Auger Collaboration et al. 2007 and Abraham et al.
2008b). However, the HiRes collaboration did not find a significant correlation (Abbasi et al.
2008b) and, thus, this point is still unclear. If the highest energy particles are iron nuclei
the velocities of the shock front involved must not be relativistic and other sources become
reasonable.

Experimental results on the composition of UHECRs are contradictory. While data taken
by the HiRes experiment point towards a proton dominated composition of UHECRs at energies
above 1018 eV (Jui and Telescope Array Collaboration 2012), the Auger collaboration finds a
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proton dominated composition at 1018 eV with a gradual transition to a composition dominated
by heavy nuclei above 1019 eV (Abraham et al. 2010). In these measurements there is a strong
dependence on the hadron interaction models employed and conclusions cannot be drawn safely.
Above 4×1019 eV a suppression of the CR flux was observed by HiRes and Auger (Abbasi et al.
2008a and Abraham et al. 2008a). Composition information may also help to decide whether
the flux suppression is due to interactions of CRs with the microwave background (GZK effect)
or due to a maximum injection energy of the sources.

2.1.2 Anisotropies in the Arrival Directions of Galactic Cosmic-Ray Hadrons

The distribution of the arrival directions of CRs at Earth can give additional information about
their origin and propagation in the Galaxy. The existence of a directional variation of the flux
(anisotropy) of CRs at different angular scales gives information about different aspects of CR
acceleration and transport. A large scale anisotropy would be connected to the propagation of
CRs in the Galaxy (diffusion and magnetic field structure), while small scale anisotropies (up
to roughly 20◦) could point towards CR sources. When CRs travel from the location of their
source to Earth they are scattered on the random and irregular component magnetic field. This
should isotropize the arrival direction of CRs since the radius (Larmor radius, Blümer et al.
2009) of the circular motion of a proton in the galactic magnetic field (B=3 µG) is given by

rL = 1.08 pc
E/PeV

Z ·B/µG
. (2.1)

Thus, for a proton with an energy of 1 PeV the Larmor radius is only 0.4 pc and for a proton
with an energy of 100 GeV even only 3×10−5 pc. This radius is much smaller than the typical
distance to a nearby source (roughly 100 pc) so that it is not expected to see any point sources
at these energies or below. Only at the highest energies it could be possible to find point
sources of CRs.

In the last years several experiments have measured relative CR anisotropies of the order of
10−3 at energies between a few and a few hundred TeV. A large scale anisotropy compatible with
the movement of the Earth around the Sun (Compton Getting effect) has been found. Further,
there is clear evidence for small to medium scale anisotropies (a few to twenty degrees). First,
the Milagro experiment reported localized hot-spots at an angular scale of 10◦ (Abdo et al.
2008). Among others also the IceCube (E ∼ 20 TeV), Tibet III (4 - 50 TeV) and ARGO-YBJ
(up to 20 TeV) collaborations have reported such small to medium scale anisotropies (Abbasi
et al. 2011, Amenomori and Tibet ASγ Collaboration 2006, ARGO-YBJ Collaboration 2013).
Figure 2.3 shows the combined significance map of anisotropy observed with IceCube in the
southern hemisphere and Milagro in the northern hemisphere. The CR anisotropy sky maps of
the northern hemisphere measured by the ARGO-YBJ (shown later in Figure 5.48), Milagro and
Tibet collaborations show clear similarities. Additionally, anisotropies up to median energies
of 400 TeV have been measured by IceCube and IceTop and up to 2 PeV by IceTop. The large
scale structure of the anisotropy changes at an energy above roughly 100 TeV (Abbasi et al.
2012, Aartsen et al. 2013).

Since the diffusion approximation only predicts a simple dipole anisotropy, theoretical ex-
planations for the observed medium to small scale anisotropies are still strongly debated. A
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Figure 2.3: Combined sky map of significance in Gaussian sigma of the anisotropy in the
CR arrival distribution measured by Milagro in the northern hemisphere and IceCube in the
southern hemisphere. Both maps have been smoothed with a 10◦ radius. The figure was
adapted from Abbasi et al. (2011).

wide range of approaches has been suggested. Here, two fundamentally different explanations
are discussed exemplarily.

Since the location of the more prominent of the Milagro hot-spots coincides with the direc-
tion of the heliotail (the shocked solar wind and interstellar medium trailing behind the solar
system) ideas promoting a connection with the heliotail have been proposed. For example
O’C. Drury (2013) has argued that the small scale anisotropy could in part be a reflection of
the electric field structure of the outer heliosphere.

In contrast Giacinti and Sigl (2012) have argued that the local magnetic field configuration
within the mean free path of the CR traveling to Earth may naturally result in small to medium
scale anisotropies provided that a large scale dipole anisotropy is present as predicted by the
diffusion approximation.

Further ideas are covered in the recent literature, e.g. by Ptuskin et al. (2006), Drury
and Aharonian (2008), Amenomori and Tibet Asγ Collaboration (2010), Malkov et al. (2010),
Lazarian and Desiati (2010), Blasi and Amato (2012) and Desiati and Lazarian (2013).
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2.2 Cosmic-Ray Electrons

2.2.1 Spectrum of Cosmic-Ray Electrons

As for hadronic cosmic rays the shape of the cosmic-ray electron spectrum can help to under-
stand acceleration mechanisms and propagation of cosmic-ray electrons. In this context usually
the term electrons refers to both positrons and electrons.

Figure 2.4 shows a summary of the current state of the art (except the recent data from
AMS-02 and Magic) of the measurements of the cosmic-ray electron spectrum. Much attention
was dedicated to the cosmic-ray electron measurement of the Antarctic long-duration balloon-
borne ATIC-2 experiment in 2005 which reported a bump in the electron spectrum between
300 - 800 GeV (Chang et al. 2005, Chang et al. 2008, Panov et al. 2011). ATIC-2 found a
spectral index close to 3.0 between 30 GeV and 300 GeV and a hint at a cutoff at 1 TeV.
The Antarctic PP-BETS experiment discovered also a bump in the spectrum, but with less
statistical significance, different position and broader shape (Yoshida et al. 2008).

No bump like feature was found with the Fermi-LAT instrument (Abdo et al. 2009), which
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Figure 2.4: Differential spectrum of cosmic-ray electrons plus positrons (except the PAMELA
data, which are electrons only) as observed by several experiments at Earth and multiplied by
E3. The black line indicates the proton spectrum multiplied by 0.01. The figure was adapted
from Olive et al. 2014.

16



The Physics of Cosmic-Ray Electrons 2.2 Cosmic-Ray Electrons

on the other hand confirmed the spectral index previously measured by ATIC. Fermi-LAT
extended the energy range of the electron spectrum up to 1 TeV. The High Energy Stereoscopic
System (H.E.S.S.) experiment published the first cosmic-ray electron spectrum measured with
a ground-based Imaging Atmospheric Cherenkov Telescope (Aharonian et al. 2008). This
measurement extended the spectrum of cosmic-ray electrons up to 5 TeV and confirmed the
high-energy cutoff previously measured by ATIC. The spectrum was fit by an exponentially
cutoff power law with a spectral index of 3.05 and a cutoff at 2.1 TeV. H.E.S.S. also published
a low energy cosmic-ray electron spectrum down to an energy of 340 GeV (Aharonian et al.
2009), which is consistent with ATIC data within statistical and systematic errors, but excluded
a pronounced peak as suggested for interpretation by ATIC. The data follow a power-law
spectrum with a spectral index of 3.0, which steepens at about 1 TeV. At these energies the
H.E.S.S. spectrum overlaps with the Fermi-LAT energy range. Notably, the Fermi and H.E.S.S.
electron spectra connect nicely after cross-correlating the energy scales (Meyer et al. 2010).

Further measurements of the cosmic-ray electron spectrum have been recently made by
the PAMELA space spectrometer (Adriani et al. 2011a), the MAGIC telescope (Borla Tridon
2011) and the AMS-02 experiment (Aguilar et al. 2014a). AMS-02 presented the most precise
measurement of the electron plus positron spectrum between 0.5 GeV and 1 TeV. The measured
flux is smooth and can be described, above approximately 30 GeV, by a single power law with
a spectral index of 3.17. Thus, the spectral shape appears softer than the previous measured
spectra, e.g. with Fermi-LAT. The flux measured by AMS-02 is consequently higher at energies
below approximately 100 GeV and lower above this value than previously measured. Figure
B.1 in Appendix B shows the differential electron spectrum measured with AMS-02 and other
experiments up to 1 TeV.

Overall, even though most measurements agree in principle about the spectral index of the
cosmic-ray electron spectrum at least below approximately 250 GeV the question has not been
finally resolved whether a bump like feature exists between 250 GeV - 700 GeV. Unaccounted
systematic effects may play a significant role in understanding these discrepancies. If the
cosmic-ray electron spectrum has a spectral index of ∼ 3.0 it is harder than the one expected
in conventional models (index ∼ 3.1 to 3.5). Further, the cutoff found at approximately 1 TeV
is not expected in conventional models (see Section 2.4 for details).

2.2.2 The Positron Fraction

The ratio of the positron flux to the total number of electrons and positrons allows the decom-
position of the total electron and positron flux, giving a second important parameter capable
of testing source and propagation models of cosmic-ray electrons and positrons. In the conven-
tional picture (discussed in more detail in Section 2.4) electrons are accelerated in supernova
remnants (SNR), while positrons originate from the interaction of CR protons with protons in
the interstellar medium (secondary origin). In this model the positron fraction is expected to
decrease continuously at energies above 1 GeV. Early measurements between 1970’s and 1980’s
(for an overview see review of Panov et al. 2011) already showed deviations from this simple
model above 10 GeV. Nonetheless, statistics were not sufficient to draw meaningful conclusions.

The situation changed with the gain in statistics and precision of data provided by the
PAMELA collaboration. The positron fraction shown in Figure 2.5 indeed increases above 10
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Figure 2.5: The positron fraction measured with PAMELA, Fermi-LAT, AMS-02 and a few
other experiments. Adapted from (Accardo et al. 2014).

GeV (Adriani et al. 2009). The positron fraction measured with PAMELA was overall lower
than the results from previous experiments, but this can be explained by different charge sign
dependent solar modulation at different epochs of solar magnetic polarity. The PAMELA
results were first confirmed by measurements with Fermi-LAT (Ackermann et al. 2012), which
measured the positron fraction by indirectly taking advantage of the Earth’s magnetic field for
separating electrons and positrons. Lately, the PAMELA result was also confirmed by a high
precision measurement with the AMS-02 experiment onboard the International Space Station
(Aguilar et al. 2013). The AMS-02 experiment measured the positron fraction with even higher
resolution than PAMELA and up to 500 GeV (Accardo et al. 2014). Despite the high resolution
of the AMS-02 data no substructure was found in the positron fraction. Further, it was found
that the positron fraction does not further increase above 200 GeV. The state of the art of
positron fraction measurements is presented in Figure 2.5.

The conventional model, discussed in Section 2.4, predicts a continuously decreasing positron
fraction with increasing energy. It is clear that the conventional model cannot explain the re-
sults above, which in turn point towards new physical phenomena. To produce the rise of the
positron fraction new sources of positrons are needed. In literature two different scenarios are
most widely discussed. The first scenario suggests that electrons and positrons are accelerated
by one or a few nearby sources either (aged) shell-type SNRs (see Section 2.3.1) or pulsars (Sec-
tion 2.3.2). In the second scenario electron-positron pairs are produced by self-annihilating or
decaying dark matter (DM) as discussed in Section 2.3.3.
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2.2.3 Anisotropies in the Arrival Direction of Cosmic-Ray Electrons

Both the pulsar (or SNR) and the DM scenario possibly able to explain the electron spectrum
and positron fraction measurements predict some type of large-scale anisotropy in the arrival
direction of cosmic-ray electrons. In contrast to hadronic CRs cosmic-ray electrons lose energy
rapidly through synchrotron radiation and inverse Compton scattering, so that an electron with
an observed energy of 100 GeV must originate from a location within 1.6 kpc (see Section 2.4).
Thus, the electrons measured at Earth possibly originate from one or a few nearby sources, e.g.
pulsars or SNRs (Hooper et al. 2009). Following Mao and Shen (1972) the dipole anisotropy
parameter for a single source in the case of isotropic diffusion is given by

δi =
Imax − Imin

Imax + Imin
=

3D

c

|∇Ni|
Ni

=
3 ri
2 c ti

, (2.2)

here Imax and Imin are the minimum and maximum electron intensities over the whole sky. The
concentration of electrons from a source i with age ti and at distance ri is given by Ni. The
diffusion coefficient D is discussed in more detail in Section 2.4. In such a scenario a dipole
anisotropy with an amplitude up to 20 % at 1-2 TeV is expected (left-hand panel in Figure 2.6,
di Bernardo et al. 2011).

In the DM scenario the anisotropy usually originates from fluctuations of the number density
of DM substructures in the vicinity of the observer as discussed in Borriello et al. (2012). Even
though the DM mass is roughly equally distributed into a smooth halo component and into
clustered DM substructures (found in N-body simulations), the halo component gives only a
relatively small dipole anisotropy pointing towards the Galactic Center. Anisotropies generated
by DM clumps lead to rather large fluctuations of possible dipole amplitudes and directions due
to the stochastic nature of the distribution of high mass DM clumps. The resulting anisotropy
reaches values up to 1% at 500 GeV (right-hand panel in Figure 2.6) and is, thus, much smaller
than in a pulsar/SNR scenario1.

Other studies discussing the distinguishability of an exotic origin from an astrophysical
origin were also performed by for example Cernuda (2010) and Profumo (2015). Cernuda (2010)
found the dipole anisotropy to be a useful tool for discrimination between the two scenarios, but
the differences in amplitude are not as striking as in the studies above. Profumo (2015) even
argues that a dipole anisotropy found in cosmic-ray electrons with the current instrumental
sensitivity would unavoidably point towards an astrophysical origin, because otherwise a clear
signal from the nearby dark matter clump would have to be visible in gamma rays.

One caveat in all discussions is that isotropic diffusion is assumed. In principle a local
magnetic field structure will influence the observed anisotropy and possibly even produce an
artificial anisotropy in cosmic-ray electrons. Nonetheless, the measurement or constraint of a
dipole anisotropy in the arrival directions of cosmic-ray electrons is a powerful tool to constrain
models and possibly able to distinguish between a dark matter and an astrophysical scenario.

The first study of anisotropies of cosmic-ray electrons was published by the Fermi-LAT col-
laboration (Ackermann et al. 2010a). They searched for anisotropies at angular scales between

1The authors mention that anisotropies up to 10−1 due to a single massive clump being the only source of
cosmic-ray electrons are in principle possible. However, in the relevant regions of the parameter space large
boost factors would be required to reproduced the measured electron flux.
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10◦ and 90◦ at minimum energies between 60 GeV and 480 GeV. No significant anisotropy was
found at any of the searched angular scales. Thus, upper limits on the value of the dipole
amplitude were derived and are superimposed in Figure 2.6. The AMS-02 collaboration also
searched for an anisotropy in the ratio of the positron to electron flux between 16 and 500
GeV. The coefficients of the power spectrum were found to be consistent with isotropy at all
energies and an upper limit on the dipole amplitude of δ ≤ 0.030 at 95 % C.L. for energies
above 16 GeV (see Aguilar et al. 2013 and Accardo et al. 2014) was derived (integrated over
the whole energy range). A more detailed study of the upper limit on the dipole amplitude
measured with AMS-02 is presented in the PhD thesis of Cangas 2013-2014. Over its lifetime
AMS will reach a dipole sensitivity of δ ∼ 0.01. AMS-02 and Fermi-LAT upper limits are also
shown in the right-hand panel of Figure 5.55.

The study of Linden and Profumo (2013) is recommended to the interested reader, be-
cause the sensitivity of current and future IACTs, AMS and Fermi-LAT to a possible dipole
anisotropy is discussed.
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Figure 2.6: Left: Expectation of the integrated anisotropy as a function of minimum energy
in a scenario where the cosmic-ray electron flux originates from few nearby sources (mainly
pulsars but also a few SNRs) as derived by di Bernardo et al. (2011). The blue solid lines
indicates nearby pulsars and the blue dashed lines SNRs. The black solid line represents the
total anisotropy dominated by Monogem (red solid line) and the Vela SNR (black dashed line).
The red arrows indicate the 95 % C.L. upper limit published by the Fermi-LAT collaboration.
Right: Upper limit on the intrinsic anisotropy (maximum possible dipole amplitude) derived
by Borriello et al. (2012). The results are shown for different combinations of DM density
profiles (Navarro-Frenk-White NFW, Burkert BUR) and propagation models (Kraichnan KRA,
Kolmogorov KOL and another HA). The different upper limits are indicted by black lines of
different styles and the allowed values for the dipole amplitude are colored dark blue and light
blue for Burkert and NFW DM density profiles. The upper limit on the dipole amplitude
measured by Fermi-LAT (95 % C.L. red circles) and the expected Fermi-LAT sensitivity after
10 years of data taking (red squares) are also shown.
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2.3 Production of Cosmic Rays

There are several different objects that are discussed to produce high-energy cosmic rays.
Among those are supernova remnants, which are known to accelerate cosmic-ray particles, but
do not accelerate antiparticles in the standard picture. In context of the positron-fraction
problem discussed in Section 2.2.2 pulsars are often discussed as possible sources of cosmic-
ray electrons and positrons, because they naturally accelerate also positrons. Often, also a
dark matter origin of cosmic-ray electrons and positrons is debated. These three most popular
source candidates of cosmic-ray electrons and positrons are introduced below in more detail.

2.3.1 Particle Acceleration in Supernova Remnants

One candidate for the acceleration of cosmic-ray electrons (and charged cosmic rays in general)
are shock fronts of shell-type supernova remnants (SNR). The mechanism probably responsible
for CR acceleration in SNRs is called diffusive shock acceleration and was first developed by
Axford et al. (1978), Krymskii (1977), Bell (1978) and Blandford and Ostriker 1978 based
on ideas by Fermi (1949). Such a shock front occurs as the result of a supernova explosion
and can be described as a compression wave that moves supersonically into the surrounding
medium (see e.g. Longair 2011 for an overview). A discontinuity forms at the wave front which
resembles the shock. Gas before and behind the shock front is characterized by individual
pressure, energy and momentum conditions. At the shock front, mass, energy and momentum
must be conserved. In the case of a strong shock this leads to a jump of the density by a factor
of 4 at the shock front leading to a change of velocities of the gas in the regions in front and
behind the shock front.

Figure 2.7 illustrates the situation in a shock front moving at speed u. The shock front
moves forward relative to the interstellar gas. In the rest frame of the shock front the observer
sees the unshocked gas ahead of the shock front moving at speed u towards the observer (the
shock front). The gas in the shocked region behind the shock is streaming away from the shock
at speed 1/4u in the case of a strong shock. This speed results from energy, momentum and
mass conservation (Longair 2011). An electron initially at rest in the unshocked gas frame sees
the shock front approaching at speed u, but also the shocked gas at 3/4u. When the electron
crosses the shock front it is accelerated to 3/4u and is thermalized to a high temperature.
Now the electron is scattered back on magnetic inhomogeneities. With respect to the shocked
frame where the electron is coming from the shocked gas moves at a speed of 3/4u towards the
electron and, thus, the electron receives a small amount of energy. In this manner the electron
can be scattered across the shock front several times gaining energy with every crossing. The
electrons are scattered back and forth at magnetic inhomogeneities. In the unshocked gas
region they are produced by turbulences initiated by the shock front itself. In the shocked
gas region they originate from streaming instabilities produced by the relativistic particles
themselves (Bell 1978).

The scattering of a particle in the unshocked gas region by the shock front is shown in
Figure 2.8. The energy gain of this particle can be calculated by Lorentz transformation of the
particle into the frame of the shock front and back into the laboratory frame and averaging over
the scattering angles (θ1, θ2) taking into account that the shock front has a defined direction
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Figure 2.7: Hydrodynamics of a shock front. Upper Left: Shock front traveling at speed u.
Upper right: View in the rest frame of the shock front. Lower left: View in the frame of the
unshocked jet. Lower right: View in the frame of the shocked jet. Drawing inspired by lectures
of M. Longair at IMPRES summer school 2013 in Heidelberg.

22



The Physics of Cosmic-Ray Electrons 2.3 Production of Cosmic Rays

Figure 2.8: First order Fermi acceleration at a shock front. Adapted from Kolanoski (2006).

of motion and that particles scattered to the wrong hemisphere are lost to the acceleration
process. Following Longair (2011) the mean energy gain per round trip in a shock front is
given by 〈

∆E
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〉
=
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Here, v = 3/4u is the speed at which the particle in the unshocked gas region (upstream) sees
the shocked gas moving towards it. Thus, the energy after k round trips is given by

Ek = E0

(
1 +

4

3

v

c

)k
= E0 ξ

k. (2.4)

Ek is the energy after k round trips and E0 is the original energy of the particle. ξ = 1 + 4
3
v
c

is the energy gain parameter. Assuming a constant probability P for a particle to stay in the
system after a round trip, the number of particles left after k round trips is given by

Nk = N0 P
k. (2.5)

From Equations 2.4 and 2.5 the energy spectrum expected from diffusive shock acceleration
can be obtained by solving the equations for k and then combining them

lnNkN0

lnEkE0

=
lnP

lnξ
→ N

N0
=

(
E

E0

)ln(P )/lnξ

. (2.6)
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Thus, the differential energy spectrum of charged particles accelerated in diffuse shock fronts
is a power law with spectral index α = −1 + ln(P )/lnξ

dN

dE
=

dN

dE
(E0)

(
E

E0

)α
. (2.7)

Assuming that the number of particles crossing the shock is given by 1/4N c (N is the number
density of particles) and that particles are swapped away from the shock downstream (shocked
gas region) at a rate N v = 1/4N u the fraction of particles lost per unit time is given by
u/c (Longair 2011). Thus, P = 1 − u/c and ln(P )/lnξ = −1 and α = −2 can be derived.
This differs from the measured spectral index of cosmic rays α = −2.7, but is reasonable when
considering the fact that cosmic rays suffer significant energy losses propagating through the
interstellar medium. Chapter 2.4 discusses the propagation mechanisms in the related case of
cosmic-ray electrons briefly.

Energies above the knee cannot be explained in this model, because the return rate to the
shock front due to scattering on magnetic fields is too low at these high energies (Lagage and
Cesarsky 1983, Berezhko 1996). In this standard picture of diffuse shock acceleration only par-
ticles and no antiparticles are accelerated, because supernova explosions only produce particles
and no antiparticles. Consequently, SNRs are exclusive candidates for electron (proton) and
not for positron (antiproton) acceleration. Recently, strong evidence that protons are actually
accelerated in SNRs was found. The Fermi-LAT telescope discovered a characteristic pion
decay feature in the gamma-ray spectra of two SNRs, IC 443 and W 44, which is unlikely
produced by Bremsstrahlung or inverse Compton scattering of high-energy electrons (Acker-
mann et al. 2013). Previously, a similar observation was already made with Italy’s AGILE
spacecraft (Giuliani et al. 2011). Complimentary evidence was found by a group of physicists
in Heidelberg studying the spectrum of visible light emitted by hydrogen atoms in the shock
region of SNR 1006 (Nikolić et al. 2013). From the hydrogen line (two-component Hα line)
intensity and width the speed of the atoms can be deduced, which suggests the existence of
suprathermal protons in the SNR.

Long before these recent developments, the electron source spectrum had been determined
by X-ray (and also radio) observations of synchrotron radiation produced by electrons in SNRs
and was found to have a power law index of −2.2 (Allen 1999). Nevertheless, the idea that
unusual SNRs could produce not only electrons, but also positrons has been discussed as
well. Suprathermal positrons could be produced in the beta decay chains of radioactive nuclei
ejected during the supernova explosion (e.g. Zirakashvili and Aharonian 2011, Ramaty and
Lingenfelter 1979). Possibly, reverse shocks play an important role in the acceleration process
of electrons and positrons (e.g. Zirakashvili and Aharonian 2011, Zirakashvili 2011).

2.3.2 Particle Acceleration by Pulsars

Pulsars are fast rotating neutron stars equipped with extremely high corotating magnetic fields
(for an introduction see Weigert et al. 2005, Spurio 2015 or Longair 2011). A neutron star is
formed after the supernova explosion at the end of the lifetime of a main sequence star with
an initial mass larger than 8 M� (solar masses). Neutrons make up most of the mass of the
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neutron star, while a small amount of protons and electrons (∼ 1% of the stellar mass), due to
the process n↔ e− + p, exist.

The density in the neutron star is extremely high with core densities possibly up to 1018

kg/m3, while the radius of the neutron star is only 10-15 km. The neutron star retains most
of the angular momentum and magnetic field flux of its progenitor star. Since the radius of
the neutron star is much smaller than the radius of its progenitor this leads to extremely large
rotational frequencies w and strong magnetic fields (up to 108 T). Usually the rotational axis
and the axis of the dipolar magnetic field are not aligned, so that a pulsed radiation can be
detected at Earth (if the alignment is right). The rotational velocity declines with time (called
spin down) due to the radiation occurring in a fast rotating magnetic dipole. The spin down
velocity is proportional to ω3. For details on pulsars and their acceleration mechanisms see the
reviews of, e.g. Manchester and Taylor (1977) and Kaspi et al. (2006).

The phenomena leading to particle acceleration in the magnetosphere of pulsars are in
general rather complex (Figure 2.9 shows exemplarily a sketch of the magnetosphere of the
Crab pulsar.), but the simple Goldreich-Julian model (Goldreich and Julian 1969) describes
the basic mechanisms. In this model the pulsar is an aligned rotator, meaning that the magnetic
field axis and the rotation axis are aligned parallel to each other. The magnetic field is static and
described by a point-like dipole. The star is a perfectly conducting sphere and the magnetic
field is frozen into the sphere. Charged particles moving through the material experience a
Lorentz force, which separates the charges and, thus, induces an electric field. The electric
charges reorganize themselves and cancel out the induced electric field. As a result there is a
charge distribution within the star. The electric potential must be continuous at the surface of
the star. Thus, the potentials in the stellar interior and outside the star must be matched to
each other. The electric potential outside the star is described by the vacuum solution of the
Laplace equation and is a superposition of a monopole and a quadrupole.

The radial component of the induced electric field at the surface is much stronger than
the gravitational forces pulling the charged particles downwards. Thus, the charged particles
are pulled out of the surface and make up the plasma around the neutron star. The charge
density in the magnetosphere of the pulsar is called Goldreich-Julian density and is given by
ρGJ = −2ε0 ~ω ~B. Here, ε0 is the electric permittivity, ~ω the angular velocity vector and ~B
the magnetic field vector. This charge distribution has the important property of separating
positive and negative charges along zero charge cones.

The plasma is moving alongside the neutron star, but the particles cannot travel faster than
the speed of light. This condition defines the light cylinder. Within this cylinder the magnetic
field lines are closed, the charged particles gyrate around them, but are preserved within the
magnetosphere. If the magnetic field lines cross the light cylinder they leave the magnetosphere.
Thus, it is assumed that the particles are pulled from the areas of the pole cap region (see e.g.
Ruderman and Sutherland 1975, Baring 2004) and are accelerated along the open magnetic
field lines. For acceleration of charged particles the component of the electric field parallel
to the magnetic field lines cannot be vanishing. The main problem with this simple model is
that in stationary equilibrium the electric fields are screened by electric charges leading to a
vanishing parallel component of the electric field.

In reality, the axis of the rotation of the neutron star and the magnetic field are not aligned.
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Figure 2.9: A sketch of the Crab pulsar’s magnetosphere (exemplarily also for other pulsars)
by Aliu et al. (2008). The rotation axis (blue) and magnetic field axis (green) are indicated. In
this case they are not aligned. The light cylinder is also illustrated. Electrons are trapped and
accelerated along the magnetic field lines. Vacuum gaps/regions occur near the polar cap close
to the surface of the neutron star, in a thin layer on the boundary of the closed magnetic field
lines (called slot gap region) and in a region close to the light cylinder (outer gap region). In
these regions the plasma density is lower than the Goldreich-Julian density and, thus, electrons
can be accelerated.

In these more complicated models the charges are not only accelerated in the polar cap region,
but additionally in a region close to the field line closest to the light cylinder where the charge
density changes sign (~ω · ~B = 0) called outer gap (see e.g. Cheng et al. 1986 or Tang et al.
2008) or in a thin layer close to the last closed magnetic field line called slot gap (see e.g. Arons
and Scharlemann 1979 or Harding et al. 2008). Figure 2.9 illustrates the general structure of
the pulsar magnetosphere (exemplarily for the Crab pulsar) and regions in which acceleration
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is predicted.
If charged particles are accelerated they start emitting synchrotron and curvature radi-

ation. The emerging photons interact with the transverse component of the magnetic field
producing electron-positron pairs. The resulting electrons and positrons are again accelerated
and a cascade is initiated. This plasma forms the pulsar wind nebula (PWN), which expands
through the ambient medium until it reaches the expanding shell of the SNR and a stationary
termination shock is formed. At the termination shock the relativistic pulsar wind is forced to
join the slowly expanding outer nebula and the particles are again accelerated (Slane 2002).

In distinction to the acceleration in SNRs not only electrons but also positrons are acceler-
ated in the magnetospheres of pulsars.

When the charged cosmic rays move through the strong magnetic fields and the radiation
field they can produce high energy gamma rays by inverse Compton scattering, which makes
them interesting objects for gamma-ray astronomy. In ’outer gap’ models the probability that
high energy gammas are produced and not immediately absorbed again is even larger than in
’polar cap’ models.

2.3.3 Dark Matter as a Source of Cosmic-Ray Electrons and Positrons

It was noticed quickly after the measurement of the ATIC peak in the electron spectrum and
the anomaly in the positron fraction measured by PAMELA (see Sections 2.2.1 and 2.2.2) that
self-annihilating or decaying dark matter (DM) could simultaneously explain both features. In
this context the DM particles are usually assumed to be weakly interacting massive particles
(WIMPs), one of the most promising and popular DM particle candidates (for a review see e.g.
Griest 1996 and Hooper 2009). In principle, two different scenarios are discussed.

First, the annihilation and decay of DM in a smooth Galactic halo. In the left-hand panel
of Figure 2.10 the electron spectrum expected from DM annihilation in a smooth Galactic
halo is shown (dashed line). The spectrum exhibits a peak-like feature, but the flux amplitude
is three orders of magnitude smaller than the actually measured spectrum so that the DM
contribution is negligible compared to the expectation from the conventional background (solid
line, discussed in detail in Section 2.4). This is caused by the value of the thermally averaged
velocity weighted annihilation cross section 〈σv〉 ∼ 3 · 10−26cm−3s−1 (Jungman et al. 1996),
which corresponds to the value expected from the cosmological abundance of DM. This value
strongly influences the annihilation rate

R =
1

2
kn2 〈σv〉 (2.8)

and, thus, the amplitude of the spectrum. Here, k is the number of electrons and positrons
produced per annihilation process and n the WIMP number density. While the spectrum in
the left-hand panel of Figure 2.10 shows a peak in the electron spectrum a cross section boost
factor is required to reproduce the amplitude of the flux. Mechanisms possibly producing
such a boost are a Sommerfeld effect and a Breit-Wigner enhancement (for a review see He
2009). Such a model is shown in the right-hand panel of Figure 2.10. Electrons and positrons
are produced in equal parts by DM annihilation so that such a model almost automatically
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produces a behavior of the positron faction very similar to the one found in experimental data
(Panov 2013).

Further, it was found from numerical N-body simulations that DM forms substructures often
called subhalos or clumps with masses between 105 and 1010 M� inhomogeneously distributed
within the Galactic halo (see e.g. Ghigna et al. 1998, Diemand et al. 2008 and Springel et al.
2008). The different simulations roughly agree that the mass density of the substructures scales
approximately as dN

dM ∼M
−2, whereM is the mass of the clump and N the number of clumps.

The distribution of DM clumps within the smooth halo is less certain. Via Lactae II (Diemand
et al. 2008) and Aquarius subhalos (Springel et al. 2008) simulations disagree on the number
of substructures, the amount of (sub)substructures within subhalos and the density profile of
the subhalos.

In the Via Lactea II simulations by Diemand et al. (2008) roughly 10 clumps with 109

M� and 104 clumps with 106 M� were found. The mean distance between small 106 M�
clumps is of the order of 10 kpc, which also corresponds to the expected distance from the
Sun to the nearest clump. The number density within such a clump is expected to be several
hundred times (mean density in the whole clump) to several thousand times (mean density
in the central region of the clump) larger than the density in a smooth DM halo. Since the
annihilation rate scales with the square of the DM density it is, thus, much larger in a DM
clump than in the smooth DM halo. In the case of DM clumps it is in principle possible to get
the correct magnitude of the spectrum without a boost factor, but only for a clump located very
close to the Sun (< 0.1 kpc) (Panov 2013). For the more realistic distance of 10 kpc between
clump and Earth again high boost factors are required. In general, the electron spectrum
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Figure 2.10: Simple analytical models of the electron spectrum produced by a homogenous DM
halo without a boost factor (left-hand panel) and with a boost factor of 500 (right-hand panel).
The electron spectra measured with the ATIC and H.E.S.S. experiments are shown (markers).
The dashed line gives the spectrum expected from DM annihilation in a smooth Galactic halo.
The solid line gives the sum of conventional background and DM spectrum. The following
parameters were used for the DM model: MWIMP = 1.1 TeV, k = 4, 〈σv〉 = 3 · 10−26cm−3s−1,
n = 0.3 GeVcm−3/MWIMP. Adapted from Panov (2013).
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produced by a DM clump is expected to be much harder than the one produced by a smooth
DM halo. This leads to difficulties in reproducing the positron fraction. In combination with
DM annihilation in the Galactic halo also the positron fraction is reproduced (for a review see
Fan et al. 2010). Decaying DM can also produce similar behaviors of the electron spectrum
and the positron fraction as annihilating DM. Since the mechanisms are very similar decaying
DM is not discussed here, but a review is given by Bae and Kyae (2009).

One drawback of the DM explanation, already mentioned above, is the necessity for strong
boost factors. But, there are more troubles attached to DM models. They naturally predict an
anomaly in the antiproton to proton ratio analogue to the one found in the positron fraction.
Such an anomaly is not seen in experimental data by PAMELA (Adriani et al. 2009 and
Adriani et al. 2010). Thus, the annihilation of DM particles must be restricted to leptophilic
channels (Yin et al. 2009). Further, constraints on the thermally averaged and velocity weighted
annihilation cross section 〈σv〉 from gamma-ray observations exclude Galactic halo DM as the
only source of anomalies in the ATIC spectrum and the positron fraction measurement (Zavala
et al. 2011 and Abramowski et al. 2011). However, this is not the case for clumpy DM so that
DM annihilation or decay is still discussed as source of the measured anomalies.
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2.4 Propagation of Cosmic-Ray Electrons

The propagation of cosmic-ray electrons is generally described by the diffusion equation first
proposed in a paper by Syrovatskii 1959. The solution of the diffusion equation will be discussed
by illustrating the main properties of cosmic-ray electron propagation via simplified models
following the approach of Panov (2013) and then discussing more complicated cases briefly and
qualitatively. In the simple case of a homogenous and isotropic medium the diffusion equation
is given by

∂ρ

∂t
=

∂

∂E
[b(E)ρ] +D(E)∇2ρ+Q, (2.9)

where ρ = ρ(r, t, E) is the number density of cosmic-ray electrons at location r, time t and
with energy E. D(E) is the energy dependent diffusion coefficient which is given by D =
D0 · (E/GeV)δ. Typical values of the diffusion coefficient D0 found from fitting diffusion
models to CR data lie between 1 · 1028cm2/s and 5 · 1028cm2/s. The parameter δ takes values
between 0.3 and 0.6 depending on the type of magnetic hydrodynamic (MHD) turbulence
considered (Strong et al. 2007). The source function Q = Q(r, t, E) depends on the location
of the electron source, the time t at which the electrons are emitted by the source and the
energy spectrum (dependence on E) of the emission. b(E) resembles the continuos energy loss
rate of the electrons while propagating through the ISM. In general, for relativistic electrons
ionization losses, bremsstrahlung losses, adiabatic losses as well as synchrotron and inverse
Compton losses must be considered. At energies up to a few TeV and at time scales smaller
than 107 years only inverse Compton and synchrotron losses are important. Thus, the energy
loss is given by

b(E) =
∂E

∂t
= −b0E2, (2.10)

with

b0 =
4

3

σT c

(me c2)2

(
ωphoton +

B2

8π

)
. (2.11)

In Equation 2.11 ωphoton resembles the energy densities of all photons contributing to inverse
Compton scattering. This includes photons from the cosmic microwave background (CMB),
infrared photons emitted by dust and optical starlight photons. All three contributions add
up to a total photon energy density of roughly ωphoton = 1 eV/cm3. The mean strength of
the magnetic field adopts typical values between 3 and 4 µG. The Thompson cross section is
σT = 6.65 · 10−25 cm2, c is the speed of light and me is the electron mass. This gives a value of
b0 lying between 1.2 and 1.6 ·10−16 (GeV · s)−1. The energy of an electron with initial energy
E0 after traveling a time t is given by

E(t) =
E0

1 + b0E0 t
. (2.12)

From this equation it can be inferred that a particle with initially infinitely high energy E(t)→
∞ cooling down to energy E0 cannot have traveled longer than a maximum timespan of Tmax =
1/(b0E0) because in this case t → −1/(b0E0). Thus, the maximum distance an electron with
energy E0 can have traveled is approximately dmax ≈

√
2D Tmax (see definition of the cooling
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length in Equation 2.16). For an electron measured today at 1 TeV this maximum travelled
distance is given by 1.5 kpc (for D0 = 3 · 1028 cm2/s and δ = 0.6). Thus, a cosmic-ray electron
measured at Earth probably originates from a maximum distance of the order of one to a few
kpcs so that potentially only a few nearby sources contribute to the cosmic-ray electron flux
measured at Earth.

The diffusion equation for an arbitrary source function can be solved by convoluting the
source function with Green’s function (Syrovatskii 1959)

ρ(r, t, E) =

∫
G(r, t, E|r′, t′, E′)Q(r′, t′, E′) d3r′ dt′ dE′. (2.13)

The Green function G(r, t, E|r′, t′, E′) is given by

G(r, t, E|r′, t′, E′) =
exp

[
− (r−r′)2

2λ2(E,E′)

]
δ(t− t′ − τ(E,E′))

|b(E)|(2π)3/2λ3(E,E′)
. (2.14)

Here, the cooling time τ(E,E′) of an electron from energy E′ to E is given by

τ(E,E′) =

∫ E′

E

dE′′

|b(E′′)|
=

1

b0E
− 1

b0E′
(2.15)

and the mean square of the cooling length λ2(E,E′) is given by

λ2(E,E′) = 2

∫ E′

E

D(E′′) dE′′

|b(E′′)|
= 2D

[
1

b0E
−
(
E′

E

)δ 1

b0E′

]
. (2.16)

Even in the case of a simple power law source function this approach does not lead to any con-
venient analytical solution. For realistic distributions of the matter in the Galaxy the solution
of the diffusion equation is usually found numerically, e.g. by employing the GALPROP system
(Strong and Moskalenko 1998). This method was used for calculating the electron spectrum
of the conventional model calculated by Moskalenko and Strong (1998). In this conservative
approach the electrons and positrons originate from two different sources. Electrons (such as
protons and heavier nuclei) are accelerated in SNRs, while positrons are produced in collisions
of cosmic-ray protons with protons of the interstellar medium (p+p → π+X). In these inter-
actions mainly pions are produced, which decay into muons and gamma rays (see Equations
3.1 to 3.3). Afterwards muons decay into electrons and positrons (Equations 3.4 and 3.5).

The main predictions of the conventional model can be illustrated by considering a simple
model called thin disk approximation. In this model the depth of the galactic halo is indefinitely
large, while the Galactic disk within which the sources of electrons are distributed is assumed
to be indefinitely thin. Further, since the Sun is located rather close to the Galactic plane the
flux of cosmic-ray electrons at hight z=0 is assumed to be representative for the location of the
Earth. In this model the source function is given by

Q(r, t, E) = Q(E) δ(z). (2.17)
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Here, Q(E) is the electron spectrum at the source, which is constant in time. In this case the
solution of the diffusion equation is given by

ρ(E)|z=0 =
1

b0
√

2π

1

E2

∫ ∞
E

Q(E′)

λ(E,E′)
dE′. (2.18)

Considering a power law source spectrum Q(E) = Q0E
−α (where Q0 is a constant, that could

be calculated) and the previous definitions of λ and the diffusion coefficient D, the integral can
be solved and the following spectrum is expected:

ρ(E)|z=0 = Q0E
−(α+∆) where ∆ = δ +

1

2
. (2.19)

From this equation it is obvious that the initial source electron spectrum steepens by ∆ due to
the propagation mechanisms of cosmic-ray electrons. Since 0.3 < δ < 0.6 the source spectrum
and the measured electron spectrum differ by ∆ ≈ 1. In the two component conventional
model the spectral index of the SNR source of cosmic-ray electrons is not exactly known, but
is probably similar to that of protons (Blandford and Ostriker 1980, Müller 2001) and lies
approximately between 2.1 < α0 < 2.5. The spectral index of the source spectrum of cosmic-
ray electrons was observed via the measurement of synchrotron radiation in SNRs in X-ray and
radio observations (e.g. Allen 1999, Reynolds and Gilmore 1986 and Anderson and Rudnick
1995).The source spectrum of secondary electrons and protons is given by the spectral index of
the observed spectrum of cosmic-ray protons αs ≈ 2.7, since they are produced in interactions
of these protons. The total spectrum of electrons plus positrons Qe++e−(E) is, thus, given by

Qe++e−(E) = Q0E
−(α0+∆) +Qs,elE

−(αs+∆) +Qs,posE
−(αs+∆). (2.20)

Here, Q0 is the amplitude of the primary electron flux and Qs,el, Qs,pos are the amplitudes
of the secondary flux of electrons and positrons. When comparing these results to the data
it is found that the primary component strongly dominates over the secondary and mainly
determines the shape of the actually measured spectrum. In this model a prediction of the
positron to electron plus positron flux ratio R(E) =

Qe+ (E)

Qe++e− (E) , called positron fraction, is
calculated by

R(E) =
Qe+(E)

Qe++e−(E)
=

Qs,pos

Qs,el +Qs,pos +Q0E(αs−α0)
. (2.21)

Thus, the conventional model predicts a decrease of the positron fraction with energy.
As shown in Sections 2.2.1 and 2.2.2 the measured electron spectrum and positron fraction

cannot be explained by the conventional model of electron and positron diffusion. Many authors
have suggested other approaches for solving the diffusion equation. Here, only a few selected
shall be mentioned briefly. Atoyan et al. (1995) found an analytical solution to the diffusion
equation for the case of a burst-like injection of electrons into the ISM, which exhibits a cutoff
of the electron spectrum at high energies. Kobayashi et al. (2004) modified the source function
of burst-like injection by an exponential cutoff term. It was found that the strength of the
contributions of the considered sources (Vela, Monogem, Cygnus Loop) varied strongly with
the chosen diffusion parameters such as diffusion coefficient and release time of the electrons.
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Overall, the shape of the electron spectrum varies strongly with the diffusion parameters, the
assumed distribution of sources that are contributing and the injection history of the sources
(e.g. burst-like or continuos injection).
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Chapter 3

Detection Principles of Cosmic-Ray
Electrons

3.1 Direct Detection

The detection technique applicable to detect cosmic-ray electrons depends strongly on the
energy range considered. At low energies the flux of cosmic-ray electrons is comparably large,
approximately 101 GeV−1cm−2sr−1s−1 at 1 GeV as compared to 10−7 GeV−1cm−2sr−1s−1 at
a few 100 GeV and 10−10 GeV−1cm−2sr−1s−1 at 4 TeV (see Figure 2.4), but the particles
are absorbed in the upper atmosphere. Thus, they have to be detected directly at the top
of the atmosphere or in space, with instruments located aboard a balloon, rocket or satellite.
Particle detectors similar to the ones used on Earth at particle accelerators are employed. The
particles are detected by measuring the energy/momentum the particle transfers to the detector
material. For example the first cosmic rays were measured with electroscopes aboard a balloon
by Victor Hess (Hess 1912). Modern detectors usually contain different parts/layers that are
designed for measuring different properties of the particle including energy (momentum), mass,
charge and arrival direction. In the following, three of the currently operating detectors will
be presented exemplarily to demonstrate their functionality. The list of presented instruments
is not complete, but aims to shortly introduce the most important instruments that appear at
some point in this study.

PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is
an instrument detecting cosmic-ray particles on board the Resurs-DK1 satellite (Picozza et al.
2007). It was designed to measure charged cosmic rays (electrons, protons and light nuclei) from
tens of MeV to several hundred GeV. It was optimized for the identification of antiparticles.
The scientific accomplishments so far include the measurements of energy spectra of electrons,
positrons, protons, antiprotons, helium, carbon and boron. Another goal is the search for
antimatter, e.g. antihelium. The high statistics measurement of the excess of cosmic-ray
positrons shown in Figure 2.5 was one of the PAMELA results.

The setup of the PAMELA detector is shown in Figure 3.1. The magnetic spectrometer
is composed of a permanent magnet and a silicon tracker. With the information from both
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Figure 3.1: Schematic drawing of the components of the PAMELA detector. Measured from
top to bottom the detector is roughly 1.3 m high. It consists of a Time-of-Flight system (ToF),
which comprises the three scintillator planes S1, S2 and S3, an anticoincidence shield system,
a permanent magnet spectrometer, a silicon-tungsten electromagnetic calorimeter, shower tail
scintillator S4 and a neutron detector. The figure was adapted from Adriani et al. (2013).

components the absolute charge, the sign of the charge and the rigidity (momentum per unit
charge) can be obtained. The anticoincidence detector consists of five scintillators covering the
sides and the top of the magnet and is used to identify particles that have not cleanly entered
the detector for example through the magnet. The Time-of-Flight system (ToF) consists of
three planes of fast plastic scintillators. The time of flight information between the first (S1) and
the last plane (S3) is used together with information about the track length from the magnetic
spectrometer to calculate the velocity of the particles and to reject albedo particles. The particle
charge is determined by measuring the ionization in the scintillator layers. The electromagnetic
sampling imaging calorimeter consists of silicon sensors alternated with tungsten absorbers.
The energy released by the interacting particle is measured and the interaction topology of
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the particle in the calorimeter is reconstructed. This allows to distinguish leptons (e+, e−)
from hadrons (p, p). Additionally, the calorimeter allows to reconstruct the energy of the
electromagnetic shower and, thus, of the incoming particle. The neutron detector is also used
to distinguish between electromagnetic and hadronic cascades coming from the calorimeter
(and, thus, electrons and protons) and consists of 36 3He counters and polyethylene neutron
moderators. Before particles can reach the neutron detector they must path through the bottom
scintillator S4, which on the one hand is a high energy trigger for the neutron detector and on
the other hand improves the electron-hadron discrimination by measuring shower leakage from
the calorimeter.

Fermi-LAT The second instrument presented here is the Fermi Large Area Telescope (Fermi-
LAT) pair conversion gamma-ray telescope (Atwood et al. 2009), because the measurement of
the electron spectrum by Fermi-LAT was used in Section 5.2.5. The Fermi-LAT gamma-
ray telescope aims to resolve the gamma-ray sky concerning both unidentified sources and
the diffuse gamma-ray emission. The gamma rays emitted by active galactic nuclei (AGN),
pulsars and supernova remnants (SNR) are studied to improve the understanding of particle
acceleration mechanisms in these objects. Many more topics are studied for example the high-
energy behavior of gamma-ray bursts and the search for an excess of gamma rays from the
center of the Milky Way which is expected in dark matter scenarios. Additionally, studies of
cosmic-ray electrons and positrons are carried out by the Fermi-LAT collaboration.

The Fermi-LAT has a field of view (FOV) of 2.4 sr and is designed to detect gamma rays
between 200 MeV and 300 GeV on board the Fermi satellite orbiting the Earth within roughly
every 1.5 hours. Most of the time Fermi-LAT operates in an all-sky survey mode scanning
the whole sky almost uniformly within two orbits by alternating the boresight of the telescope
between northern and southern hemisphere.

A schematic drawing of Fermi-LAT is shown in Figure 3.2. It consists of a 4x4 array of
16 identical towers each containing a tracker module and a calorimeter module. The tracker
module consists of 16 tungsten converter layers that are interleaved with 18 single-sided silicon
strip detectors. The incoming gamma ray interacts with an atom in one of the tungsten
conversion layers and produces an electron-positron pair. The two charged particles proceed
and interact with the silicon strip detectors creating electron-hole pairs. The strip detectors
track the path of the particles through the detector, since they are arranged alternating in
x- and y-directions. The tracker is divided into two regions called front and back. The 12
tungsten converter foils in the front region are thin (0.03 radiation lengths) in order to optimize
the resolution of the direction reconstruction of the incident photons at low energies, which is
limited mainly by scattering of the electrons and positrons going with ∼ 1/E. At high energies
scattering processes do not play an important role, but due to the lower fluxes a high effective
area is required. Thus, the converters in the back tracker section (last 4 x, y planes) are 6 times
thicker. Moreover, the pair conversion signature in the tracker can also be used for rejecting
cosmic-ray background.

Afterwards the electron-positron pair enters the segmented caesium iodide (CSI) calorime-
ter, where it initiates an electromagnetic particle shower. Each calorimeter module consists of
96 CSI(Tl) crystals that are arranged in 8 layers of 12 crystals each. Each layer is rotated by
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Figure 3.2: Schematic drawing of the components of the Fermi-LAT gamma-ray telescope. The
main parts of the instrument are 16 silicon tungsten tracker modules, 16 segmented caesium
iodide calorimeter modules, as well as segmented anticoincidence detectors (ACDs), which are
composed of plastic scintillators. All components are marked in the Figure by arrows. Picture
credit goes to NASA 2015.

90◦ with respect to its neighboring layers. Their total vertical depth is 8.6 radiation lengths
(total instrument 10.1). At both ends of the crystals a photodiode measures the scintillation
light. The position of the energy deposition along the crystal can be determined from the
difference of light intensities measured on both ends. Thus, the profile of energy deposition of
the shower in the segmented calorimeter can be determined. From this profile the energy of the
initial electron can be derived. Additionally, the shower profile in the calorimeter can be used
for discriminating hadronic background from signal events (usually gamma rays). The whole
instrument is surrounded by a segmented anticoincidence detector (ACD), which tags charged
particles producing a flash of light in the plastic scintillators of the ACD in order to provide a
charged-particle background rejection with an efficiency of 99.97 %.

The information of all three components discussed previously are combined to estimate the
parameters characterizing the measured event. During the reconstruction process the energy
of the particle, the track through the instrument, the vertex and the direction of the incident
particle are determined. Based on this information background particles are identified and can
be rejected. This can be illustrated on the basis of the following two examples. If two tracks
point back to the same vertex this is a clear indicator for an electron-positron pair initiated
by an incident gamma ray. On the other hand, if a lot of hits or tracks occur that are not
associated with a track this is a clear indication that the incident particle was probably a
hadronic background event. Further, information from the calorimeter is used to distinguish
between background and gamma-ray events, since the shower morphologies look different. By
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combining the data from all LAT subsystems the energy reconstruction quality, the track
reconstruction quality and the probability that the incident particle was a gamma ray can be
derived. Overall, Fermi-LAT achieves a relative energy resolution < 15 % at energies above
100 MeV, an angular resolution < 0.15◦ at energies above 10 GeV and < 3.5◦ at 100 MeV (68
% space angle containment radius) and a background rejection with less then 10% residual
contamination (high latitude diffuse sample between 100 MeV and 300 GeV).

Not only gamma rays can be distinguished from charged background particles, but it is
also possible to identify electrons (Abdo et al. 2009, Ackermann et al. 2010b). A charged
particle will cause a signal in the ACD tile aligned with its track, which can be used to
separate electrons from photons. In general electromagnetic tracks are much closer confined
than hadronic tracks, which makes their lateral distributions the most powerful separator.
Thus, electrons can be separated from hadrons by the signature they leave in the tracker and
calorimeter. E.g. in the tracker they leave more clusters in the close vicinity of the track and the
average energy deposition in the silicon foils is larger. In the calorimeter the transverse shower
size for hadrons is much larger than for electrons and the average energy in the ACD tiles is
significantly higher. Additionally, a classification tree (CT) analysis is employed combining
different quantities sensitive to differences in hadronic and electromagnetic event topologies
into a single variable and improving the hadron rejection power.

3.2 Indirect Detection of Cosmic-Ray Electrons with IACTs

The energy spectrum of cosmic-ray electrons follows a power law with index close to 3.0 as
shown in Section 2.2.1. At energies above a few hundred GeV the effective collection area of
direct detection instruments gets too small to detect enough electrons for spectral reconstruc-
tion. Consequently, other detection techniques must be employed at higher energies. Indirect
detection techniques take advantage of high-energy cosmic rays producing showers of secondary
particles when entering the Earth’s atmosphere. Most of these secondary particles never reach
the Earth, but they produce fluorescence and Cherenkov light, that can be detected. Some
of the particles reach the ground and can be detected with, e.g. scintillation counters, drift
chambers or Geiger tubes. In this study data from the Imaging Air Cherenkov Telescope
(IACT) H.E.S.S. was analyzed. In the following, first the physics of particle showers in the
Earth’s atmosphere and the origin of Cherenkov light will be discussed and then the H.E.S.S.
telescopes will be introduced in detail.

3.2.1 Air Shower Physics

When cosmic rays, either charged (electrons, protons, nuclei or their antiparticles) or neutral
gamma rays (photons) enter the Earth’s atmosphere they interact with atoms therein and
initiate a shower of secondary particles. These showers can be separated into two different
types, i.e. hadronic and electromagnetic air showers. The former type is initiated by protons
and charged nuclei and the latter by gamma rays and cosmic-ray electrons (and positrons).
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Hadronic Air Showers Figure 3.3 shows a schematic drawing of an hadronic air shower.
The mean free path λpI of protons in air corresponds to roughly λpI =90 g/cm2 (Table 3.1 from
Spurio 2015), which means on average cosmic-ray protons initiate air showers roughly at a
height of 16 km. There, they interact via inelastic scattering, producing charged and neutral
mesons (mainly pions but also kaons) and atomic nuclei. The pions decay mainly in the three
following channels (Spurio 2015)

π0 → γ + γ, (3.1)

π+ → µ+ + νµ, (3.2)

π− → µ− + νµ. (3.3)

Neutral pions account for roughly one third of the pions and decay almost instantaneously
(lifetime τπ0 = 8.4 · 10−17 s) into two photons, which initiate an electromagnetic cascade. This
component of the hadronic air shower, called soft component, contains mainly particles at
relatively low energies and the details of it’s development will be discussed below (Paragraph
Electromagnetic Air Showers). Charged pions have much longer lifetimes (τπ+/− = 2.6 ·10−8 s),
so that they can in principle interact via inelastic scattering before they decay. Which process
dominates strongly depends on the energy of the particle and the density of the medium it
traverses. If the pion scatters inelastically it again produces pions of which a third are neutral

Figure 3.3: Schematic drawing of an hadronic cascade. The particles are grouped in electro-
magnetic (soft spectrum), muonic (hard spectrum) and hadron components. Adapted from
Hyperphysics (2015).
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and, thus, contribute to the soft component. If charged pions decay they produce muons with
a lifetime 100 times longer than that of pions. Thus, e.g. a 1 GeV muon has a good chance
to reach the Earth’s surface. This muonic component of the hadronic shower consequently
contains more particles at relatively high energies (above a few GeV) and is called the hard
component. Muons decay into electrons and neutrinos via the channels

µ+ → e+ + νµ + νe, (3.4)

µ− → e− + νµ + νe. (3.5)

At ground level an air shower initiated by a 1015 eV (1 PeV) proton consists of roughly 80%
photons, 18% electrons and positrons (soft component), 1.7 % muons (hard component) and
0.3% hadrons (hadronic component) (Kampert 2001). Overall, such a PeV proton produces 106

secondary particles (including photons). In general the composition of the air shower depends
strongly on the height considered.

Electromagnetic Interactions In addition to strong interactions (inelastic scattering) and
weak interactions (pion and muon decay) that were discussed previously also electromagnetic
interactions play a role in the development of hadronic air showers. All charged particles
lose energy via ionization. Electrons and positrons also produce bremsstrahlung and photons
undergo pair production. Ionization losses most important for moderately relativistic charged
particles other than electrons are described by the Bethe-Bloch formula (Landau 1944, Vavilov
1957). The ionization losses for positive muons are shown exemplarily in Figure 3.4. The
energy loss depends on the mass and the energy of the particle. In practice, most relativistic
particles (e.g. cosmic-ray muons) have a mean energy loss rate close to the minimum at 2
MeV cm2/g and are, thus, called minimal ionizing particles.

Bremsstrahlung occurs when an electron is accelerated in the Coulomb-Field of a charged
nucleus when traversing matter. The energy at which bremsstrahlung becomes dominant de-
pends strongly on the type of material (Chapter 32.4 in Olive et al. 2014 and references therein).
For electrons bremsstrahlung becomes dominating in lead at 7 MeV and in air at 100 MeV. At
energies above 100 GeV bremsstrahlung becomes also important for muons. The energy loss
dE
dx via bremsstrahlung is proportional to the distance x traveled

dE

dx
= −E

x0
. (3.6)

The energy of the particle after traveling the distance x is given by

E(x) = E0 · e−x/x0 , (3.7)

where x0 is the radiation length giving the distance after which the electron has lost 1/e of its
initial energy. For electrons in air the radiation length for bremsstrahlung is roughly x0 =36.7
g/cm2.

Both ionization and bremsstrahlung losses depend on the energy of the particle, the mass
of the particle and the atomic number of the material. Ionization losses are proportional to
Z ln(E)/m and bremsstrahlung losses are proportional to Z2 · (E/m2). The critical energy Ec
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Figure 3.4: The energy loss for positive muons in copper in dependance on βγ = E/m is shown
over 12 orders in kinetic energy. The solid curves indicate the total stopping power. The
Bethe-Bloch and radiative loss approximation regimes are indicated among others. Vertical
bands indicate boundaries between different approximations. More details about the different
approximation regimes can be found in Olive et al. 2014. The Figure is adapted from Figure
32.1 in Olive et al. (2014).
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Figure 3.5: Simplified picture of the development of an electromagnetic cascade initiated by
an electron. Adapted from http://www.borborigmi.org.

is the energy at which both energy loss types become equally important. As mentioned, before
this is 100 MeV for electrons in air.

During the shower development photons undergo three types of interactions. First, the
photoelectric effect (Einstein 1905) where its total energy is transferred to an electron in the
shell of an atom. Second, the Compton effect (Compton 1923), where the photon scatters
elastically on a shell electron and transfers part of its energy to the electron. The last type
is pair production where the photon converts into an electron-positron pair in the Coulomb
field of an atomic nucleus (Bethe and Heitler 1934). For photons with energies larger than two
times the electron mass (2 me) the pair production process dominates. The mean free path for
pair production is proportional to the radiation length of electrons (9/7 x0).

Electromagnetic Air Showers Electromagnetic air showers are either initiated by a pri-
mary electron or photon or originate from the decay of neutral pions and are, thus, sub-showers
of air showers initiated by hadrons. Bremsstrahlung and pair production processes are most
important in the development of these electromagnetic cascades. The schematic development
of such an electromagnetic shower is shown in Figure 3.5. A primary photon produces an
electron-positron pair in the Coulomb field of an atomic nucleus. The electron and positron
both produce bremsstrahlung and, thus, new photons which again produce an electron-positron
pair. This process continues until ionization losses dominate over bremsstrahlung losses for all
electrons. Thus, the maximum number of shower particles is given by Nmax ≈ E0/Ec, where E0

is the initial particle energy and Ec the critical energy introduced above. In the simple Heitler
model (Heitler 1944) it is assumed that on average two particles are produced over a splitting
distance of roughly s = ln(2)x0, which is the distance after which an electron loses 1/2 of its
energy via bremsstrahlung (Spurio 2015). Consequently, the number of particles in the shower
is 2n = E0/Ec, where n is the number of splittings. Thus, the depth of the shower maximum
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tmax is proportional to the logarithm of the fraction of the initial energy of the particle and
the critical energy, which can be seen from

tmax = x0 ln (E0/Ec) . (3.8)

In comparison to hadronic showers gamma-ray (or electron) initiated showers are much more
even and less broad, because the scattering on atomic nuclei produce much larger scattering
angles than the radiation processes involved in electromagnetic cascades.

3.2.2 Cherenkov Light

In the atmosphere the charged shower particles emit Cherenkov light if they travel faster than
the phase velocity of light in air (Čerenkov 1937). This effect is not only observed in air, but
can in principle occur in every dielectric medium. The traversed medium (here air) is polarized
by the charged particle and electromagnetic light is emitted. When the particle travels slower
than the phase velocity of light in the medium the electromagnetic waves interfere destructive
and no light is emitted macroscopically. If the particle is fast enough the electromagnetic
waves of neighboring atoms cannot interfere destructively and a spherical wave is emitted. The
Cherenkov light is emitted into a cone (analogous to the supersonic cone) along the track of
the particle as shown in Figure 3.6. For the angle at which the light is emitted the following
condition holds

cosϕ =
c/n

v
=

1

βn
. (3.9)

Here, v = β c is the speed of the particle, c/n the speed of light in the medium determined
by the refraction index n and the speed of light in vacuum c. From cosϕ < 1 follows, that

Figure 3.6: Schematic drawing of the Cherenkov cone. The wave front is indicated by blue
arrows. The distance travelled by the particle βct and the light c

n t and the opening angle of
the Cherenkov light cone are shown. Adapted from (Horvath 2006).
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Cherenkov light is only emitted if 1/n ≤ β. This results in a threshold energy for particles
emitting Cherenkov photons, which is given by

Emin = m0 c
2

(
1√

1− 1/n2
− 1

)
. (3.10)

Here, m0 is the rest mass of the particle. For electrons the threshold energy is 20 MeV in air
and 260 keV in water.

In the visible frequency range the spectrum is almost proportional to the frequency, so that
most of the Cherenkov light is emitted in the ultraviolet. The atmosphere strongly absorbs
ultraviolet radiation, so that the maximum intensity is observed at approximately 330 nm (blue
light). The Cherenkov light is emitted into a cone of roughly 1◦. Due to Coulomb scattering
of electrons it is not emitted along a single axis but diffused over an area with a radius of
approximately 120 m on the ground (Völk and Bernlöhr 2009). A flash of Cherenkov light
lasts only a few nanoseconds.
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3.3 The H.E.S.S. Telescope

3.3.1 Experimental Setup

The High Energy Stereoscopic System H.E.S.S. is an array of five Imaging Atmospheric Cherenkov
Telescopes located in the Khoma Highlands of Namibia (Hofmann and H.E.S.S. Collaboration
2001) an area that was chosen due to the excellent optical quality. Phase-1 (H.E.S.S. I) of the
experiment consisted of four identical telescopes that can be pointed at any position in the sky
using a mount consisting of a base frame rotating around a vertical axis and carrying the dish,
which rotates around the elevation axis (altazimuth mount). The telescopes are equipped with
Davies-Cotton reflectors (Davies and Cotton 1957) with a flat-to-flat width of 13 m (Bernlöhr
et al. 2003). The mirror is divided into 382 round segments and has a total mirror area of
108 m2. Due to its excellent reflectivity aluminized glass mirrors were employed. Each of the
mirror facets can be aligned by two actuators. The optics lead to a point spread function
(PSF) with a width of 0.4 mrad at the camera center (radius containing 80% of the light,
Cornils et al. 2003). Each telescope has a camera (Vincent et al. 2003) mounted at a focal
length of 15 m. Each camera consists of 960 photomultipliers (PMTs) with a hexagonal pixel
size of 42 mm (equivalent to 0.16◦). The camera provides a field of view of 5◦ on the sky. 16
PMTs are packed in one drawer, which also contains the electronics for signal storage, signal
digitalization, triggering and readout. The four telescopes are placed in a square with a side
length of 120 m. Figure 3.7 shows a H.E.S.S. I telescope including the mirrors, camera and
the supporting steel space frame. This array of four 13 m telescopes has been fully operational
since December 2003 and was inaugurated in September 2004.

In order to lower the energy threshold (down to 15-25 GeV), to improve the sensitivity at
low energies and the reconstruction quality at high energies (typical H.E.S.S. I energies) a fifth,
larger telescope, called CT5, was built in the center of the original array (Punch et al. 2005).
The new array consisting of four small and one large telescope is called H.E.S.S. II and was
inaugurated in September 2012. The large telescope is equipped with a reflector of parabolic
shape with a size of 32.6 m by 24.3 m. The mirror consists of 875 hexagonal facets and has a
total area of 614 m2. The alignment technique is the same as for the H.E.S.S. I telescopes. The
PSF of CT5 is also comparable to the one of the small telescopes (Abramowski 2015). The
camera is mounted at a focal length of 36 m and consists of 2048 PMTs. It provides a field
of view of 3.2◦. The PMTs are again packed into drawers of 16 containing the corresponding
electronics. A close up picture of CT5 is shown in Figure 3.8. The complete H.E.S.S. II array
is shown in Figure 3.9 illustrating the large difference in size between the large telescope and
the small telescopes.

For more details on the design of the H.E.S.S. telescopes see Bernlöhr et al. (2003) for the
H.E.S.S. I layout and components, Cornils et al. (2003) for the mirror alignment and the point
spread function, Funk et al. (2004) for the trigger system and Punch et al. (2005) for the layout
of the H.E.S.S. II telescope.
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Figure 3.7: H.E.S.S. telescope showing the steel space frame of the dish and the telescope
mount. Also the round mirror facets, the Davies-Cotton reflector design and the camera are
shown. Mirrors are removed in one section of the dish to view the support beams. Adapted
from Bernlöhr et al. (2003).
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Figure 3.8: Large central telescope (CT5) showing the steel space frame of the dish and the
telescope mount. Also the hexagonal mirror facets, the parabolic reflector design and the
camera are shown. Picture was taken by Christian Föhr, MPIK.

Figure 3.9: The complete H.E.S.S. II telescope array. All five telescopes are shown. Picture
was taken by Christian Föhr, MPIK.
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3.3.2 The Trigger System

The trigger system of the H.E.S.S. telescopes was designed in order to take advantage of the
stereoscopic nature of the array (Funk et al. 2004). Typically, the rate at which a single
Cherenkov telescope triggers is dominated by background events (hadrons and muons) because
those are much more numerous than gamma events. In a stereoscopic system this background
is reduced at the trigger level by requiring that an event triggers at least two telescopes. This
requirement reduces the coincident triggers due to the night sky background (NSB) and almost
completely removes muon triggers. For this reason H.E.S.S. uses a two level trigger system,
with a local trigger for each telescope and a central trigger for identifying coincidence events.

Local trigger: The pixels in each H.E.S.S. camera are divided into overlapping sectors each
containing 64 pixels. The camera is triggered if a certain number M (sector threshold, usually
between 2-4) of pixels within a sector exceed a threshold of N photoelectrons (p.e.) (pixel
threshold, e.g. 4 p.e.) within a 1.3 ns time window. Both, sector and pixel threshold are pro-
grammable. The signals from the PMTs are sampled by 1 GHz Analogue Ring Samplers. When
a camera trigger occurs the sampling is stopped and the ring buffer content is digitized within
a 16 ns time window around the signal. The length of the time window is also programmable.

Central Trigger System (CTS): In the central trigger system the coincidence decision is
made. If a telescope triggers another trigger from a second telescope must occur within 80 ns
otherwise a reset signal is sent to the telescope. If this requirement is met the CTS assigns a
unique system wide event number to the event and distributes it to all telescopes. Each camera
connects the event number with the corresponding pixel data for building a system event. After
including the larger H.E.S.S. II telescope this trigger requirement has been modified, so that
also events, where only the large telescope triggered, are recorded in order to provide a minimal
energy threshold.

3.3.3 Data Acquisition

Data are taken with the H.E.S.S. telescopes in runs of 28 minutes (Aharonian et al. 2006).
Usually the telescopes do not point directly at the source but are operated in Wobble mode
meaning that the telescopes point to a position with a little offset from the source. Thus, it is
possible to use the parts of the field of view that do not contain the source but have the same
distance to the camera center for background subtraction. By using these regions systematics
are reduced that originate from a radial drop of the acceptance in the camera. In order to
further reduce systematics the direction of the Wobble offset relative to the source region is
varied between different runs. Often the offset direction is mirrored between consecutive runs.
The region around a (potential) source is called ON region, because this is the region expected
to contain a signal. Regions with the same distance to the camera center that are used for
background determination are called OFF regions. The ON region is usually circular, while the
shape and exact positions of the OFF regions depend on the background subtraction method
employed. Figure 3.10 shows the ON region (blue) and the corresponding OFF regions (green)
exemplarily for the reflected region background method (Berge et al. 2007). In this method
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Figure 3.10: Schematic drawing illustrating the reflected region background estimation method.
The ON region containing the potential source is colored blue, while the OFF regions are
colored green. Adapted from Jahn (2013).

multiple OFF regions of the same shape and distance to the observation position as the ON
region are defined. They are placed in a ring around the observation position, but at a certain
safety distance to the ON region.

3.3.4 Data Analysis Method: Direction and Energy Reconstruction

For the analysis of H.E.S.S. data different methods have been developed by the H.E.S.S. col-
laboration. The classical method uses the Hillas technique calculating the moments of the
camera images (Hillas 1985, Aharonian et al. 2006). The second most established method is
based on a semi-analytical shower model and called Model++ analysis. It was developed by
de Naurois and Rolland (2009). Other methods are also used including a 3D Model analysis,
where the shower is modeled as a Gaussian photosphere in the atmosphere leading to a three
dimensional generalization of the Hillas parameters (Lemoine-Goumard et al. 2006). Some
methods use output parameters from Hillas or Model++ analysis and combine them with a
Boosted Decision Tree (BDT) approach, e.g. Ohm et al. (2009), where the TMVA multivariate
analysis package is used (Hoecker et al. 2007). In this study Model++ is used and described
in Section 5.1.2, while some of the data used for cross checking the results of this study were
analyzed with the Hillas technique combined with a BDT.

Every data analysis with H.E.S.S. requires the following steps. The data must be calibrated,
meaning that the measured analogue to digital converter (ADC) counts must be translated to
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Figure 3.11: Camera images of a gamma ray shower of 1TeV (left-hand panel) and a proton
shower of 2.6 TeV (right-hand panel). Adapted from Völk and Bernlöhr 2009.

image amplitudes in photoelectrons (p.e.). For this purpose the pedestal (base line level of
ADC counts in the absence of Cherenkov light) and the conversion factor between ADC counts
and pixel charge in photoelectrons must be determined. Further, differences between optical
and quantum efficiencies of the PMTs must be accounted for (flat-fielding). Afterwards, the pa-
rameters of the primary incoming event must be reconstructed. This is done by reconstructing
direction, energy, impact distance and sometimes also other parameters of the air shower (and
consequently of the primary particle) from the camera image of the Cherenkov light emitted
by the particle shower.

The H.E.S.S. telescopes were designed to detect gamma rays, but not only gamma rays
produce air showers and Cherenkov light, but also muons, electrons and hadrons. Muons
do not initiate an air shower (at least this is extremely unlikely) and can be seen as rings or
fragments of rings in the camera. These ring fragments look very similar to gamma-ray showers.
However, muon events usually trigger only one telescope and are removed from the data by the
requirement that at least two telescopes must trigger. Hadrons usually produce much broader
images in the cameras than gammas as shown in Figure 3.11. Nevertheless, hadronic showers
can have a large fraction of electromagnetic sub-showers (soft component) so that they can
also produce camera images very similar to the image of a gamma-ray initiated shower. Thus,
in the last step the analysis must provide parameters that can be used for separating gamma
events from hadronic background events. In the following the basic principles of direction and
energy reconstruction with H.E.S.S. will be explained exemplarily using the standard Hillas
method. The Hillas method is the most simple and illustrative method. In Section 5.1.2 the
advanced reconstruction technique Model++ is also discussed in detail, because it is used in
this study.

Calibrating the Camera

Before the parameters of the air shower can be reconstructed the PMTs and the electronic
response must be calibrated (Aharonian et al. 2004). The PMT signal is measured across a
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resistor and amplified into acquisition channels. The low-gain channel detects charges between
15 and 1600 p.e. and the high-gain channel detects charges between 1 and 200 p.e. After the
analogue signal from the PMTs has been amplified it is sampled in an Analogue Ring Sampler
(ARS) at a rate of 1 GHz. Finally, the signal is converted by an Analogue to Digital Converter
to digital counts (ADC counts), so that for every pixel two ADC count values are stored (one
for the low-gain channel and one for the high-gain channel).

Standard Cherenkov analysis requires the signal amplitude per camera pixel. This signal
is the charge induced by light on every PMT corrected by differences between the pixels due
to varying optical and quantum efficiencies and variations of the amplification of the signal
within the PMTs. Thus, the number of ADC counts must be translated into the valid signal
amplitude measured in photoelectrons. Therefore, besides the measured number of ADC counts
three additional quantities must be known. These three quantities are explained below.

Pedestal The pedestal P is the mean number of ADC counts recorded in a pixel in the
absence of a signal (baseline level) due to electronic noise and the night sky background (NSB).
The pedestal due to electronic noise (dark pedestal) is Gaussian and can be obtained for every
channel by measuring the ADC distributions in the absence of background light (all lids of the
camera are closed).

During observations, the NSB contributes to the pedestal and modifies the shape of the
pedestal ADC count distribution. The distribution depends on the level of NSB. At small
NSB frequencies possibly no NSB photoelectron arrives within the 16 ns integration window.
The pedestal ADC count distribution exhibits a negative shift relative to the dark pedestal
distribution (larger absolute value), while the pedestal shape and width remain similar to the
dark pedestal values.

At higher frequencies, e.g. 50 MHz, one or more photoelectrons are contained or partially
contained in the integration window. The number of photoelectrons contained in the integration
window follows a Poisson distribution resulting in an asymmetric pedestal shape. The shape of
the pedestal is a superposition of a rise and a peak at the position of the shifted dark pedestal
followed by a smeared single-photoelectron peak and a tail towards higher values.

At even higher NSB frequencies, well above 100 MHz, the pedestal distribution is dominated
by NSB photoelectron peaks and is, thus, much broader, but again Gaussian. The width of this
distribution is determined by the mean number of NSB photoelectrons (except small corrections
for the electronic noise, the width of the single-photoelectron amplitude distribution and the
effect of photoelectron signals truncated by the integration window).

Since the overall pedestal depends on the temperature of the camera and the level of the
NSB it must be determined for every observation run if possible. For the determination only
the pixels not belonging to the shower image are used. The pedestal is calculated separately
for both acquisition channels.

Conversion Factor The conversion factor1 between ADC counts and the signal charge in
units of photoelectrons γADCe includes the PMT gain, the signal amplification in both readout
channels and the integration of the signal in the Analogue Ring Sampler (ARS). It is determined

1The conversion factor is sometimes also slangily called gain as for example by Aharonian et al. (2004).
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roughly every two days by illuminating each camera with an LED pulser with an intensity of
approximately one photoelectron in each pixel. In the measured ADC count distribution a peak
originating from the single photoelectron can be clearly identified. For each pixel the measured
ADC count distribution is fit by the theoretical ADC distribution fit function. In the theoretical
model the number of photoelectrons follows a Poisson distribution, the single photoelectron
distribution is described by a Gaussian and the electronic pedestal is also approximated by a
Gaussian. Consequently, the light distribution of a given signal of n photoelectrons is described
by a Gaussian with a standard deviation of

√
nσγe, where σγe is the root-mean-square (RMS) of

the charge induced by a single photoelectron, and a mean position in ADC counts P +nγADCe ,
here P is the electronic pedestal. The conversion factor γADCe is one of the free parameters
of this fit and the best-fit value is used for each pixel. This procedure is solely followed for
the high gain channel, because only the high gain channel is sensitive to single photoelectrons.
The conversion factor for the low gain channel is given by the amplification ratio between the
high gain and the low gain channels (HG/LG) and the conversion factor of the HG channel.
Thus, it is given by γADCe,LG = (LG/HG) γADCe,HG .

Flat-Fielding The flat-fielding coefficient FF is used to correct the above mentioned dif-
ference between the pixels due to varying optical and quantum efficiencies. This is done by
comparing the relative efficiency of the considered pixel to the mean efficiency of the whole
camera. The FF coefficients are determined in special flat-fielding runs roughly every two days.
In these runs LED flashers illuminate the cameras uniformly in short pulses with a wavelength
around the PMT peak quantum efficiency. The FF coefficients are calculated by comparing
the pixel amplitudes without flat-fielding to the mean amplitude of the camera. The efficiency
of the pixel is given by the ratio of the pixel amplitude and the mean amplitude over the whole
camera. The mean of the inverse of this ratio for this pixel over the whole run is used as the
final flat-fielding coefficient FF .

The final pixel amplitude for each channel is calculated as follows

Ai =
ADCi − Pi
γADCe,i

· FF, (3.11)

where the ADC counts, the pedestal and the conversion factor depend on the chosen acquisition
channel i =(LG, HG). The conversion factor of the LG channel is calculated from the conversion
factor of the HG channel as shown above.

Hillas Reconstruction Technique

The Hillas reconstruction technique is based on reducing the image properties into a few param-
eters, reflecting the modeling of the image by a two-dimensional ellipse (Hillas 1985). Before
calculating the parameters of this ellipse the camera pixels that actually belong to the shower
image must be identified in order to remove pixels that only contain NSB. During this cleaning
procedure only pixels are kept where the pixel itself contains more than k p.e. and a neighbor
pixel more than j p.e., usually k = 5 and j = 10 (Aharonian et al. 2006). The shape of the
leftover image pixels approximates an ellipse, while the images of hadrons are much wider and
more uneven.
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Figure 3.12: Left: Schematic drawing of the Hillas reconstruction technique. The superimposed
ellipses from two telescopes are shown. The width and length of the Hillas ellipse are illustrated.
Additionally, the camera center, the major axis and the reconstructed direction are shown.
Figure adapted from Aharonian et al. (2006). Right: Shower imaging by a Cherenkov telescope.
The shower ellipse is reflected by the mirrors of the telescope into the focal plane of the camera.
Despite some asymmetry, the shower image has the shape of an ellipse. The direction of the
shower is located on the extension of the major axis of the ellipse. Adapted from Völk and
Bernlöhr (2009).

The Hillas parameters illustrated in the left-hand panel of Figure 3.12 are calculated from
the image. This includes the length and the width of the shower, the distance of the center
of gravity of the ellipse to the camera center (nominal distance) and the orientation of the
image in the camera coordinate system. Further, the image size, which is the sum over the
charges of all pixels left after image cleaning, is needed. These parameters are first extracted
individually for every telescope that triggered (two to four).

Direction Reconstruction With H.E.S.S. the direction of each event is reconstructed
using stereoscopy. The major axis of the ellipse is basically an image of the shower axis.
Thus, it points in one direction towards the image of the source (the direction where the
primary event came from) and in the other direction towards the point where the shower axis
intersects the plane of the telescope dish (Hofmann et al. 1999). The direction of the event
is retrieved by first superimposing the images of the shower taken by two different cameras
and then intersecting the major axes. In the most simple method the intersection point of the
two major axes gives the direction of the primary particle estimated from these two images.
The intersection points of all possible pairs (up to six if all four telescopes have triggered) is
calculated and averaged. With this method the quality of the images is not taken into account.
The algorithm is improved by taking the error ellipse on the center of gravity and the error on
the image orientation for every camera image into account. Employing these errors an error
ellipse for the image of the source can be calculated. Additionally, other methods exist that
for example take the quality of the images into account (Hofmann et al. 1999). The location
of the center of the Cherenkov light pool, which corresponds to the projected impact point
of the original particle track on the ground (also called shower core location), is obtained by
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intersecting the image axes, projected into the plane perpendicular to the system observing
direction. An angular resolution of 0.1◦ to 0.2◦ is obtained.

Energy Reconstruction For a given energy of the primary particle, the measured image
size depends on the impact parameter2 and the zenith angle. Monte Carlo simulations are
used to estimate the energy of the primary particle Ereco(IP, s, z) in dependence on the impact
parameter IP , the image size s and zenith angle z so that the corresponding energy is obtained
from look-up tables containing these information. The energy of the shower is given by the
weighted average of the energy reconstructed for each telescope. The error on the energy
obtained by this method Ereco is given by ∆E = (Ereco −Etrue)/Etrue, where Etrue is the true
energy of the particle. The expectation value of ∆E is called energy bias and increases towards
lower energies. Usually, only the energy range, where the energy bias is smaller than 10% is
used. The energy resolution is given by the width of the ∆E distribution and is around 20%
for the Hillas analysis (Aharonian et al. 2006).

Gamma-Hadron Separation The Hillas parameters are not only used for reconstructing
the energy and direction of the primary particle. They are also employed for distinguishing
between showers that have been initiated by gamma rays, which H.E.S.S. wants to measure,
and hadrons, which constitute an unwanted background contamination. Thus, a parameter
for classifying the events into gamma-like or hadron-like events is needed. Parameters based
on the width (and possibly length) of the shower are defined and called mean reduced scaled
width and mean reduced scaled length (MRSW or MRSW). These are calculated by comparing
the measured value of the parameter (e.g. the width) to the parameter value expected from
Monte Carlo simulations and normalizing it to the uncertainty obtained in these simulations.
For the width w of the image the RSW is defined as

RSW =
w − 〈w〉
σw

. (3.12)

Here, 〈w〉 is the mean value of the width obtained from MC simulations and σw the corre-
sponding scatter. Both quantities depend on the impact parameter, the image amplitude and
the zenith angle of the observation and are stored in look-up tables. The MRSW is obtained by
averaging the RSW values of all telescopes. This parameter is finally used for gamma-hadron
separation.

Figure 3.13 shows the expected distributions of the MRSW for gamma rays and protons
obtained from simulations (left-hand panel). As expected from the definition of the MRSW the
distribution for gammas follows closely a Gaussian and is centered around zero. The MRSW
distribution of a simulated proton exhibits a very different behavior with much larger MRSW
values. Additionally, a distribution of the MRSW from an OFF region (region in the FOV
without a source see Section 3.3.3) is shown. The proton and OFF distributions are very
similar. In the right-hand panel of Figure 3.13 the MRSW distribution of the Crab nebula

2The impact parameter is the projected (perpendicular) distance of the extrapolated shower track to a
telescope (Aharonian et al. 2006). It is calculated as the perpendicular distance between a line (track) and a
point (telescope) in space.
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Figure 3.13: Left: Distribution of the MRSW from gamma-ray MC simulations (gray his-
togram) compared to the MRSW distribution from proton MC simulations (white histogram)
and data obtained from an OFF region (black markers). Right: Distribution of the MRSW
from gamma-ray MC simulations (white histogram) compared to the MRSW distribution of the
Crab Nebula signal region after applying selection cuts (including MRSL cut, but not MRSW)
and subtracting the background. Adapted from Aharonian et al. (2006).

signal region after background subtraction and application of selection cuts (cuts including a
cut on the MRSL but not on the MRSW) is shown. The MRSW distribution of the source
data behaves very similar to the MC gamma-ray distribution. In the H.E.S.S. standard Hillas
reconstruction usually cuts on the MRSW and MRSL are applied.
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Chapter 4

Statistical Basics

4.1 Data Modeling

In physics reality is described by simplified models of the measured data. The question is:
Which model is correct? Or in other words: Which model explains the data best? A model
usually contains adjustable parameters, which are varied until the parameter set is found
describing the data in the best possible way. The figure-of-merit function (also called merit
function or function of merit) is a measure of how well a certain model (particular choice of
parameters) describes the data (Press et al. 2002). It reduces the data and the model to a single
numerical value from which the ability of the model to describe the data is judged (goodness-
of-fit). Usually small values of this function correspond to a good agreement between model
prediction and measured data. Larger values usually indicate that the model does not explain
the data. The best-fit model is the model with the parameter set leading to the minimum
value of the merit function. The process of finding these best-fit parameters is a minimization
problem in many dimensions. There are several different possibilities of choosing the merit
function and the appropriate choice often depends on the requirements the different methods
set on the data and the distribution the random variable follows. In the following the two
methods used in this study are summarized.

4.1.1 χ2-Fitting

One of the many applications of χ2 statistics is in the context of finding the best-fit parameters
of a model. The χ2 function used as merit function is defined as

χ2 =

m∑
i=1

(Yi − yi(Xi, a1, ....., ak))
2

σ2
i

. (4.1)

The χ2 is a bias free estimator, which minimizes the variance. Here, X is the independent
variable and Y the dependent and random variable. The measured data points are given by
(Xi, Yi) and the standard deviation σi of Yi is known. The size of the data sample (number of
data points) is m. The χ2 value is determined by the squared difference between the measured
value Yi of the random variable and the value predicted by the model yi(Xi, a1, ....., ak). The
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aj are the k free parameters of the model. The parameter set leading to the minimum χ2
min is

the best-fit parameter set (a1,best, .... , ak,best). The χ2 is χ2-distributed with m − k degrees
of freedom (d.o.f.). From this distribution the probability p that χ2 exceeds a certain value
of χ2 by chance, even if the model is correct can be calculated. This p-value is a measure of
the goodness-of-fit (this is very similar to hypothesis testing described in Section 4.2.). If the
p-value is very small the model is wrong or assumptions made about errors were wrong. As a
rule of thumb a reduced chi-square χ2/d.o.f.=1 is a good fit, because in this case the difference
between measured value and predicted value is on average one standard deviation and the
p-value is always ≥ 0.3.1 The disadvantage of using χ2-fitting is that it is only applicable if the
random variables are normally distributed. Otherwise it can still be used to simply compare
the values of the data and the model prediction for a quick first estimate, but the p-values will
be incorrect.

The matrix of second derivatives of the model function with respect to the free parameters
of the model is called Hessian Hjl. It measures, evaluated for all data points, how the model
responds to changes in parameters (see e.g. Chapter 15.4 in Press et al. 2002). The Hessian
matrix is given by

Hjl =

m∑
i=1

(
∂y

∂aj

∂y

∂al

)
/σ2

i . (4.2)

The errors on the best-fit parameters are given by the square root of the diagonal elements of
the inverse of the Hessian matrix C = H−1, called covariance matrix, which is evaluated at the
minimum. The off-diagonal elements Cjk are the covariances between aj and al and contain
information about the correlations/ dependencies between the parameters. The errors are only
reliable when the best-fit function gives a good fit to the data.

Is the model function y a linear combination of M specified functions of x (linear model:
yi =

∑
j ajfj(xi)) the minimum and the covariance matrix can be calculated analytically. In

the none-linear case finding the best-fit parameters and the covariance matrix is an iterative
process starting from approximate parameters.

4.1.2 Log-Likelihood-Fitting

χ2-fitting is a quick and intuitive method of fitting data. The drawback is that the p-values
are not reliable, when the data are not normally distributed. A more general approach is to
define a likelihood via the underlying probability distribution Pi(yi = Yi | a1, .... ak), which
gives the probability that the value Yi is measured if the real value is given by the model
yi(a1, ...., ak). The overall probability to measure the random variable data set Yi for a given
model y(xi, a1, ...., ak) is

L =
m∏
i=1

Pi(yi = Yi|a1, ....ak). (4.3)

1Careful: This statement is true for high d.o.f., if the reduced χ2 is exactly 1. But for high d.o.f. e.g. d.o.f.
=100 a reduced χ2 of 2 already corresponds to a p-value of < 10−5, while for 1 d.o.f. a χ2 of 2 corresponds to
a p-value of 0.16. Thus, for high d.o.f. a good fit is only given, if the reduced χ2 is almost exactly 1.
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The model fitting the data best corresponds to the parameter set where L reaches its maximum.
Often the negative logarithm of the likelihood is used, because the parameter set maximizing
the likelihood function also minimizes the negative logarithm of the likelihood function, but it
is much easier to find the minimum of an additive function:

−2 lnL = −2
m∑
i=1

ln(Pi(yi = Yi|a1, ....ak)). (4.4)

This function is minimal for exactly the same parameter set that gives the maximum of the
likelihood. For normally distributed random variables this treatment leads to a value for
−2 lnL, which is identical to the χ2 defined above. Thus, χ2 fitting is simply a special case of
log-likelihood fitting.

4.1.3 Confidence Intervals and Upper Limits

Previously, the best-fit parameter set has been found (a1,best, .... , ak,best). However, these are
not the true parameter values aj,true but the ones resulting from one experimental realization
of the data set. If the experiment was repeated many times many different realizations of
the data set and, thus, of the best-fit parameters would be found. For simplicity lets assume
that the model has only one free parameter for now. The best-fit parameter is a1,best and
the true value of the parameter is a1,true. The probability to find a best-fit parameter a1

in an experimental realization is determined by the probability density function f(a1, a1,true)
giving the probability that the best-fit parameter a1 is found if the true value is a1,true

2. In
reality the true value of the parameter and often also the probability distribution are unknown.
Thus, it is assumed that the experimentally measured best-fit parameter a1,best is a bias free
estimator of the true value. The probability that the true value of the parameter is located in
an interval a1,L < a1,true < a1,H (James 2006) is determined by the probability density function
f(a1, a1,best) and given by

P (a1,L < a1,true < a1,H) =

∫ a1,H

a1,L

f(a1, a1,best) da1 = β. (4.5)

Here, a1 are the possible parameter values of the free parameter. β resembles the probability
content of the probability density distribution between the two boundary values a1,L and a1,H

and, thus, the probability that the true value of a1 is located between a1,L and a1,H . This
definition is also illustrated in the left-hand panel of Figure 4.1. The larger β is chosen the
more likely it is that the true value is actually contained in the interval. In practice first
the probability content β is chosen and then confidence limits a1,L and a1,H are determined
correspondingly. In practice 68.3 % (1 σ), 95.4 % (2 σ) and 99.73 % (3 σ) are commonly
used for β. The concept of confidence intervals can be translated to the more general case of
many free parameters. Neither in the simple case with one free parameter nor in the more
complicated with many free parameters the shape of the confidence region is unique. E.g. in
the simple one-dimensional case a line segment can be shifted somewhat to the left and to the

2Instead the probability density distribution f’ of the difference between a1 - a1,true could be examined. This
translation would only move the true value to the origin.
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β

a1,L a1,H

β
a1,UL

Figure 4.1: An example probability density function is shown. For illustration a normal distri-
bution is used. In the left-hand panel the definition of the confidence limits in a one-dimensional
parameter space is illustrated. The blue colored area under the curve illustrates the symmetric
confidence limits between which the probability content β is contained. The parameter values
at the boundary a1,L and a1,H are also illustrated. In the right-hand panel the definition of
upper limits in a one-dimensional parameter space is illustrated. The green colored area under
the curve illustrates the area where the probability content β (same as in the left-hand panel)
is contained. The upper limit on the parameter a1 is also illustrated.

right of the best-fit parameter value and overall still contain the chosen probability content
β. Since confidence limits are defined to inspire confidence in the measured value of the best-
fit parameter in the simple one-dimensional case the chosen line segment is centered on the
measured value.

In the multidimensional case ellipses or ellipsoids are most frequently used. In the case
of a χ2 fit the choice of the boundaries for the confidence limits is natural. The χ2 for the
best-fit parameters ai,best is minimal (χ2

best). Varying the parameters aj away from the best-
fit parameters the χ2 increases. The value ∆χ2(aj) = χ2(aj) − χ2

best is χ2 distributed with
M d.o.f. Here, M is the number of free parameters that are varied. Thus, a fixed ∆χ2

value defines an M -dimensional confidence region containing the chosen probability content
β. Is a confidence level chosen for example 95.4% and the number of free parameters is for
example 2, the corresponding ∆χ2 value is 6.17. Thus, 95.4% of measurements will find best-
fit parameters that correspond to a ∆χ2 smaller than 6.17. In a multidimensional parameter
space the parameter limits are not only two values as in the one-dimensional case but are (M -
1)-dimensional planes in the M -dimensional parameter space. Since (M -1)-dimensional planes
are difficult to illustrate often only a subset of ν parameters is considered. In that case, the
confidence regions are the projections of the M -dimensional regions defined by fixed ∆χ2 into
the ν-dimensional parameter space.

Instead of using central confidence intervals also upper limits or lower limits are sometimes
used. These are extreme none-central intervals where one of the boundaries is set to −∞ or
+∞. Upper limits are e.g. often used when a parameter value cannot be negative and is
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relatively close to zero. The upper limit in one dimension (see e.g. James 2006) is given by the
following formula

P (a1,true < a1,UL) =

∫ a1,UL

−∞
f(a1, a1,best) da1 = β. (4.6)

In this case, the probability that a measured value of a1 is smaller than a1,U is given by β.
The definition of the upper limit is illustrated in the right-hand panel of Figure 4.1. The ∆χ2

distribution can be used to set an upper limit on a parameter analogous as done in the case of
confidence intervals.

4.2 Hypothesis Testing

The major question after obtaining the result of measurement is whether this result is really
significant or occurred just by chance. The most common approach is to test a null hypothesis
(corresponding to a null result) against an alternative hypothesis (corresponding to the mea-
surement of a signal). This study is dedicated to the search for an anisotropy in the arrival
direction of cosmic-ray electrons, so the null hypothesis would be

• H0 = Electrons are arriving isotropically at Earth.

The alternative hypothesis is given by

• H1 = Electrons are arriving anisotropically and are better described by a dipole model.

The second ingredient is a test statistic TS, which reduces the data set to a single numerical
value and measures how well either hypothesis fits to the data. The probability of measuring
a certain value of the TS for a null result (H0 is true) is given by the probability distri-
bution/probability density function p(TS) of the TS (example for a χ2 test statistic in the
left-hand panel of Figure 4.2). If the measured TS lies well within this distribution the mea-
sured value is compatible with the null hypothesis. The more interesting case occurs when
the measured TS value is rather large (less compatible with null). Here, the p-value gives the
probability that a system where the null hypothesis is true produces a data set with a TS
value at least as extreme as the one found in the measured data set. The smaller the p-value
is the more unlikely it is that the null hypothesis is true. A p-value smaller than 2.7 · 10−3

corresponds to a significance level greater than 3σ (p-value < 5.7 · 10−7 to 5σ).
The p-value can be calculated by using the cumulative distribution function (right-hand

panel of Figure 4.2), which gives the probability P that the TS takes on a value smaller than
or equal to a certain ts.

cdf(ts) = P (TS ≤ ts) =

∫ ts

−∞
p(TS) dTS. (4.7)

This value is defined exactly inverse to the definition of the p-value, so that the p-value is given
by

p = 1− cdf(ts). (4.8)
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Figure 4.2: Examples of a probability density function (pdf) and the associated cumulative
distribution function (cdf). Here, the pdf and the cdf of the χ2 test statistic are shown. The
χ2 test statistic is shown for two different choices of the number of degrees of freedom (ndf).

The p-value p is connected to the significance level SL via the error function defined as

1− p = erf

(
SL√

2

)
. (4.9)

There are several different types of commonly used test statistics. The test statistic must be
defined in such a way that it makes a distinction between the null hypothesis and the alternative
hypothesis possible. De facto the values of the TS for the alternative hypothesis should be
as different from the TS values for the null hypothesis as possible. In principle any kind of
function could be a test statistic. The only requirement is that its sampling distribution for
the null hypothesis can be exactly calculated or approximated, so that reliable p-values can be
derived. Nevertheless, if the TS is not chosen carefully the distributions of the TS may be very
similar for both hypotheses making a distinction impossible. In the following a few commonly
used types of test statistics are presented. The selection concentrates on test statistics that are
used in this study and has not the goal to be complete.

4.2.1 χ2− and ∆χ2-Test

The χ2-test belongs to a group of hypothesis tests where the test statistic follows a χ2-
distribution. It is very commonly used in physics, because its definition is very simple and
intuitive and often applicable. It compares a measured value of a random variable Yj (e.g. ar-
rival rate of electrons) to the value expected under the null hypothesis yj,0 within m0 different
categories j (e.g. values of arrival rates in dependence on the direction of the sky) and is given
by

χ2 =
∑
j

(Yj − yj,0)2

yj,0
. (4.10)
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Here, the yj,0 in the denominator resembles the variance of the underlying Poisson distribution
in a counting experiment (Blobel and Lohrmann 1998). If the null hypothesis is true the
difference is small, so that the value of χ2 is also small. It is required that the random variable
Yj follows a normal distribution. This translates directly to a requirement on the sample size
in counting experiments. As a rule of thumb the minimum number of events in each category
must be 10. In this case, the χ2 follows a χ2-distribution with m0-1 d.o.f.

Often the χ2 is normalized to the error of each random variable σYj , so that it is defined as

χ2 =
∑
j

(Yj − yj,0)2

σ2
Yj

. (4.11)

In the previous definition only the null hypothesis was stated explicitly. The only conclusion
that can be drawn from this simple χ2-test is whether the null hypothesis can be discarded at
a certain confidence level. There is no information about the alternative hypothesis included.

In order to compare two hypotheses (H0 and H1) explicitly often the ∆χ2-test is used. The
∆χ2 is defined as the difference between the χ2s of the null model and the alternative model

∆χ2 = χ2
0 − χ2

1 =
∑
j

(Yj − yj,0)2

σ2
Yj

−
∑
j

(Yj − yj,1)2

σ2
Yj

. (4.12)

Here, yj,0 and yj,1 are the predicted values of the null model and the alternative model. The
∆χ2 is a measure of how much better H1 explains the data as compared to H0 and whether this
improvement is significant. Analogue to the χ2-test the ∆χ2 -test is also only applicable if the
random variable Yj is normally distributed. In physics it is commonly used to test the ability
of two models to explain data against each other. In that case H0 corresponds to a simple
model (Model0 with k0 fitted parameters) and H1 to a more complex model (Model1 with k1

fitted parameters). If certain conditions (see Section 4.2.3) are fulfilled the ∆χ2 is distributed
as a χ2-distribution with DF= (m0 - k0) - (m1 - k1) d.o.f., where m0 and m1 are the number
of data points to which each model is fitted and k0 and k1 are the number of free parameters
of each model. Usually m0 = m1 = m and k0 < k1.

4.2.2 F -Test

The F -test is commonly used in variance analysis to determine wether the variances of two
normally distributed populations (population 1 and population 2) differ. In this case the test
statistic is defined as the ratio of the variances of the random variable Yi of the two populations
(Yi,1 and Yi,2)

Fsample =
1

n2−1

∑n2
i=1(Yi,2 − Y 2)2

1
n1−1

∑n1
i=1(Yi,1 − Y 1)2

. (4.13)

Y 1 and Y 2 are the mean values of the random variable within the two populations. n1 and
n2 are the sizes of the data samples and must not be identical. The test statistic Fsample is
F -distributed with n2 − 1 d.o.f. in the numerator and n1 − 1 d.o.f. in the denominator. The
F -distribution from which the p-values are calculated depends on the d.o.f. of the numerator
and denominator F (n1 − 1, n2 − 1). The numerator and denominator are each χ2 distributed.
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In this study the F -test is used in a slightly different form, sometimes called extra sum-
of-squares F -test. Similar to the ∆χ2 described above it can be used to determine whether a
more complex model describes the measured data significantly better than a simple model. In
this case there is only one population but two different models, so that we have the predicted
values yi,0 for the simple Model0 and yi,1 for the more complex Model1.

The null hypothesis is again that Model0 describes the data best. The alternative hypothesis
is that the introduction of additional free parameters leads to a significant improvement in the
description of the data. Following Bevington (2003) the test statistic is defined as follows

f =
(χ2

0 − χ2
1)/(DF0 −DF1)

χ2
1/DF1

. (4.14)

f is the ratio between the reduced ∆χ2 and the reduced χ2 of the more complex model. The
degrees of freedom are again DF0 = m0 − k0 for the simple model and DF1 = m1 − k1 for the
more complex model. m and k are the sample size of the respective data set and the number of
free parameters of the corresponding model. Rewritten, this equation has a similar structure
as the Fsample distribution and, thus, is also F -distributed with (DF0 − DF1) d.o.f. in the
numerator and DF1 d.o.f. in the denominator

f =

(∑
j

(Yj−yj,0)2

σ2
Yj

−
∑

j
(Yj−yj,1)2

σ2
Yj

)
/ (m0 − k0 −m1 − k1)∑

j
(Yj−yj,1)2

σ2
Yj

/ (m1 − k1)
. (4.15)

If the simple model is a subset of the more complex model there is always a set of parameters of
the more complex model that gives the same fit function as the simple model. Consequently, if
the more complex model has more free parameters it will always fit the data at least as good as
the simple model. This is not taken into account by the ∆χ2-test. There might be a significant
improvement, but it does not take into account that possibly the number of degrees of freedom
was indefinitely high making the improvement meaningless. In contrast the f test statistic
takes into account how many d.o.f. both the simple model and the more complex model have.
The amount of improvement expected by chance (if the null hypothesis is really true) depends
on the number of free parameters and the number of data-points. If the simpler model is true
∆χ2 is expected to increase when going from the more complex to the simpler model by the
relative change in d.o.f. as

(χ2
0 − χ2

1)/χ2
1 = (DF0 −DF1)/DF1. (4.16)

Thus, if the two models compared have the same number of degrees of freedom using the ∆χ2 is
perfectly correct, because Equation 4.16 is zero on both sides. But the improvement expected
only due to the larger number of d.o.f. of the more complex model is considerable for large
differences in the d.o.f. of the compared models. In this case the ∆χ2-test may be unreliable
if there is a large difference in the number of d.o.f. and the F -test should be employed.

4.2.3 Requirements on Hypothesis Tests

Mathematically, the ∆χ2-test and the F -test are only applicable when certain boundary con-
ditions are satisfied. These are:
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• The random variables Yi must follow a Gaussian distribution. The sample size must be
> 10.

• The models must be nested, meaning that Model0 must be a subset of Model1.

• The null model should not lie on the boundary of the parameter space of the additional
parameters of the complex model.

Previously, the ∆χ2-test and the F -test have commonly been used in physics on many occasions
where the last criterion is not fulfilled, e.g. when searching for a line in a spectrum. In
that case the null hypothesis is a background model and H1 is the background model plus
an additive line. Thus, Model0 lies on the boundary of the parameter space of Model1. In
this case the distribution of the null model is unknown, because it lies outside the defined
mathematical theory. Protassov et al. (2002) have shown that applying the ∆χ2-test or the
F -test can lead to incorrect results in such cases sometimes underestimating and sometimes
overestimating the significance. Protassov et al. (2002) propose a solution using posterior
predictive p-values. A more simple approach is to simulate the reference probability distribution
of the test statistic of the null model using Monte Carlo simulation techniques. In this case
the best-fit parameter values of the null model are used instead of parameters simulated from
their posterior distributions (Protassov et al. 2002).

4.2.4 Other Interesting Tests and their Applications

Student’s t-test (e.g. Blobel and Lohrmann 1998) is often used to investigate wether the
measured mean value of a random variable Y is consistent with a theoretical value µ. It can
also be employed to resolve the question wether the mean values (Y 1, Y 2) of two populations
are the same, similar to the variance application of the F -test. The value of the t test statistic
depends on a scaling term. If this term is known, t follows a normal distribution. If the scaling
term is unknown and estimated from data the t test statistic follows a t-distribution.

The Kolmogorov-Smirnoff test (KS test, see e.g. James 2006 or Press et al. 2002) is sensitive
to differences in the global form or tendencies of two distributions. The test does not compare
the two distributions directly, instead it uses their cumulative distributions. The test can also
compare the measured distribution of a random variable to a theoretical distribution. The
test is very stable, because it is nonparametric and does not require normality. Thus, it is
also applicable if the sample size is small. However, it requires the distribution of the random
variable to be continuous.

Instead of using the KS test the Anderson-Darling test (Anderson and Darling 1952) can be
used to compare a measured distribution with a theoretical distribution. First the data set is
transformed to a uniform distribution by using the theoretical distribution. The test statistic
is then given by the distance between the uniform distribution and the transformed, measured
distribution. The Anderson-Darling test is more sensitive then the KS test and, thus, often
used when testing a distribution for normality, where the KS test is rather insensitive.
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4.3 Correlation

4.3.1 Pearson Correlation

The Pearson correlation coefficient is a measure of the linear dependence between two variables
(X,Y ). It takes values between -1 and +1. Where a correlation coefficient of +1 or -1 means
that the data points of the measurement lie perfectly on a straight line. Notably, a correla-
tion coefficient of 0 does not necessarily mean that the two variables are independent of each
other it only means that there is no linear relationship. Thus, independent variables are also
always uncorrelated but this statement is not true vice versa. The Pearson product momentum
correlation coefficient is defined as the covariance normalized to the product of the standard
deviations of X,Y (James 2006)

ρ = corr(X,Y ) =
cov(X,Y )

σXσY
. (4.17)

The mean (expectation value) µX , covariance cov(X,Y ) and the standard deviation (variance)
σX are defined as

µX =
∫ ∫

Xf(X,Y ) dX dY = E(X),
σ2
X = E((X − µX)2),
cov(X,Y ) = E[(X − µX)(Y − µY )].

Here, f(X,Y ) is the joint probability density function for X and Y . The expectation value
for any function g(X,Y ) is defined as E[g(X,Y )] =

∫ ∫
g(X,Y )f(X,Y )dXdY . The standard

deviation and expectation value for Y are defined analogous to those of X. For a data sample
the Pearson sample correlation coefficient is obtained by inserting sample values for the stan-
dard deviation and mean into Equation 4.18. For two data sets xi and yi, both containing n
values, the Pearson sample correlation coefficient is calculated as (Press et al. 2002, Chapter
14.5)

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
. (4.18)

Here, x, y are the sample means and are given by x = 1
n

∑n
i=1 xi. The correlation coefficient

itself is relatively meaningless without a measure of the significance of the result. Thus, a
hypothesis test must be performed in order to test the null hypothesis that the true correlation
coefficient is really zero, even though a value unequal zero was measured. Different methods
for performing such a hypothesis test are applicable, among those are permutation tests, boot-
strapping (see e.g. Good 2004) and Student’s t-test (Press et al. 2002 Equation 14.5.5., see
also Section 4.2.4). Lets assume the correlation is known to be significant. In this case the cor-
relation coefficient can be used as an estimator of the residuals (root mean square deviations)
expected when fitting the data by a straight line. In other words there is a relationship between
r and the χ2 calculated when fitting data to a straight line (Press et al. 2002, Equations 15.2.13
- 15.2.14).
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4.3.2 Spearman’s Rank Correlation

In order to determine wether there is a relationship between two (physical) quantities the
correct measure of association must be chosen. Spearman’s rank correlation coefficient is a
nonparametric measure (using the rank of every value) and is able to detect a monotone
relationship between two quantities. Further, there is no requirement made on the probability
distribution of the considered quantities. These properties are important for the application
(Section 5.3.3) in this study, where the relationship between gamma-like and hadron-like event
arrival rates is examined and it is not important that the relationship is linear, but can also
be monotone. In contrast to Spearman’s rank correlation coefficient the alternative Pearson
coefficient is a measure for a linear relationship and the two quantities must be normally
distributed. Overall, Spearman’s rank correlation coefficient is the more robust choice since
also small deviations from normality are less important and associations between the two
quantities are still detected.

To calculate Spearman’s correlation coefficient ρs for every pair of measured quantities (Xi,
Yi) the ranks (X̃i, Ỹi) are determined. Spearman’s rank correlation coefficient depends on the
distance between the ranks of each data pair Di = X̃i− Ỹi and is 1 if the distance between the
ranks of all pairs is zero, so that there is a perfect monotone relationship. For the sample size
n Spearman’s correlation coefficient (Press et al. 2002 Equation 14.6.4) is given by

ρs = 1−
6
∑

i D
2
i

n · (n2 − 1)
. (4.19)

Spearman’s rank correlation coefficient is technically defined as the Pearson correlation coeffi-
cient for the ranked values. The approximation above is only exact if there are no ties in the
data set. It is a good approximation if the number of ties is smaller than the sample size n.
The significance of the measured correlation coefficient can be computed by employing Stu-
dent’s t-distribution. In this case the t value (Press et al. 2002, Equation 14.6.2) is defined
as

t = ρs

√
n− 2

1− ρ2
s

. (4.20)

This way the probability that a value of t is measured at least as big as the measured value
of t (and corresponding ρs) if the two data sets are really uncorrelated can be calculated
from Student’s t-distribution. This p-value is a measure for the significance of the measured
correlation. Using the t-distribution to test the significance is a robust method, because it does
not depend on the underlying distributions of the two quantities.

66



Chapter 5

Analysis of Cosmic-Ray Electrons

5.1 Data Selection and Reconstruction

5.1.1 Run Quality Selection

In order to guarantee a high quality of the data set analyzed in this study, several run selection
criteria have been defined and were applied during the selection process. The criteria are based
on the standard run selection in the Paris analysis framework (H.E.S.S. collaboration 2015).
The standard selection criteria and applied criteria are summarized in Table 5.1. It contains
only the selections that can be applied using the run selection module. Additional selections
were also applied. All selection criteria applied are discussed below.

Target selection The diffuse gamma-ray emission from the Galactic plane would cause a
considerable background in the analysis of cosmic-ray electrons. Thus, only data taken at a
distance of 7◦ degrees away from the Galactic plane can be used safely in this study.

Telescope tracking selection To minimize systematic effects data taken at zenith angles
smaller than 30◦ are included in this study.

Global run properties Only runs are selected that were taken at a time where all four
telescopes were operational. A minimum run duration of 10 minutes is required, to assure
sufficient statistics for the determination of the pedestal in the camera pixels.

Trigger selection Standard trigger conditions with a sector threshold of 4 pixels and a pixel
threshold of 2.5 p.e. (see Section 3.3.2) were used. Good weather conditions are important in
this analysis to minimize systematic effects on the event rate normalization and fluctuations.
The event rate depends on the atmospheric conditions at the time of data taking.

67



Analysis of Cosmic-Ray Electrons 5.1 Data Selection and Reconstruction

Parameter Standard selection Applied selection
Global run properties
Minimum number of working telescopes 3 4
Minimum run duration 5 min 10 min
Trigger
Pixel threshold 2.5 2.5
Sector threshold 4 4
Zenith corrected average central trigger rate 100-500 Hz 100-500 Hz
Stability 0-4 % 0-4 %
Minimum 2-fold live time fraction 80 % 80 %
Telescope tracking
Maximum zenith angle - 30◦

Weather quality
Radiometer stability 0.0 - 0.5 ◦C 0.0 - 0.5 ◦C
Minimum number of correct tel. 1 1
Technical quality
Broken pixel fraction 0 - 10 % 0 - 10 %
Minimum number of correct tel. 3 3

Table 5.1: Run selection criteria applied by using the run selection module provided within
the Paris analysis software framework. The standard selection criteria, applied per default,
are given in the middle column. The default selections were modified to meet the quality
requirements of this study. The actually applied selections are given in the right-hand column.
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On longer time scales (weeks to month) the atmospheric transparency changes due to a
change in the aerosol concentration, e.g. induced by a higher concentration of dust in the air
or by fires typical from August to October. Thus, the zenith corrected average central trigger
rate1 was required to range between 100 and 500 Hz. On shorter time scales (minutes to hours)
the atmospheric transparency varies due to clouds passing through the field of view (FoV). This
can either lead to a gradual drop of the trigger rate or to trigger rate fluctuations during a run.
Thus, it is required that the relative variations of the zenith corrected average central trigger
rate during a run are smaller than 4 % .

Following a trigger the signals are digitized and read out by the data acquisition system.
During this process an arriving second event cannot be recorded by the camera resulting in a
dead time. The dead time of a single telescope or of the telescope system is derived from the
distribution of time differences between consecutive events in a run. The two-fold dead time is
the dead time of the system with a two-telescope coincidence requirement. The two-fold dead
time fraction is defined as the two-fold dead time divided by the run duration. The opposite of
the two-fold dead time fraction is the two-fold live time fraction, which gives the time fraction
during which the system was able to record arriving events. The two-fold live time fraction was
required to be larger than 80 %2 to ensure that the dead time of every used run is acceptable.

Weather quality selection Each telescope in the array is equipped with a radiometer
measuring the infrared radiation in its FoV (2.9◦, paraxial aligned with the telescope). By
comparing the observed spectrum to a black-body spectrum the radiative temperature of the
sky is determined (see Aye et al. 2003 and Daniel and Chadwick 2015). This temperature is
very sensitive to the presence of clouds and water vapor. The radiative temperature of clouds is
higher than that of the surrounding atmosphere. The sky temperature can also vary from night
to night due to relative humidity and temperature changes. Thus, the radiometer temperature
is used to evaluate the amount of clouds present and general weather conditions. Since the
radiometer information are not always reliable (they can exhibit a big jump when for example
one of the lightning masts enters the FoV) relatively loose selection requirements are applied.
During a run the radiometer temperature may not fluctuate by more than 0.5 ◦C. Only one
telescope must pass this requirement.

Technical quality selection There are several sources of hardware and observation related
errors in the final estimation of the number of photoelectrons recorded in each pixel, e.g. missing
high voltage or a star in the FoV. Pixels with such problems are called broken pixels (Aharonian
et al. 2006). Such pixels can lead to incorrect reconstructed showers. In the selection process
it is required that only one telescope may have more than 10 % broken pixels.

1At large zenith angles air showers are observed through a much greater atmospheric column depth. Thus,
Cherenkov photons in such showers suffer much more from scattering and absorption. The resulting shower
images are dimmer, while the light pool on the ground of showers observed at high zenith angles is larger. In
consequence the telescope and central trigger rates both show a smooth monotonic decrease with increasing
zenith angle. For the comparison of trigger rates the average trigger rate of a run can be converted to its
equivalent at zenith using an empirical formula.

2Note: When using the run selection gui this number is called two-fold dead time fraction. Nonetheless,
from the code it is clear that the given number is really the minimum required two-fold live time fraction.
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Figure 5.1: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.

Data set The Paris analysis run selection software module was employed to select the runs
for the following analysis. The data were taken between 2005 and 2012 with the four H.E.S.S.
I telescopes. 3411 runs distributed between 108 sources passed the applied selection require-
ments. A total observation time3 of 1594 hours corresponding to approximately 1473 hours of
live time4 is available. Due to incorrect database information 4 runs with pointing positions on
the Galactic plane were initially not removed from the data set by the run selection algorithm.
Another 4 sources were located very close to the 7◦ boundary condition. All 8 sources were
removed from the data set for the anisotropy analysis in Section 5.3 to avoid any signal due to
these pointings.

Stability of background rates Figure 5.1 shows the distribution of the run-wise measured
background event rates5. The distributions for all other pointings are given in Appendix F. The
different observations contain runs giving background rates between 1 and 7 Hz. In the majority
of cases the distributions are not Gaussian, but take on a large range of different profiles. The

3This is the timespan between the detection of the first event and last event of the run.
4This is the observation time corrected by the previously discussed dead time.
5Background events are in this case all events that are defined to be hadron-like events in the gamma-hadron

separation procedure discussed in Section 5.1.3. Here, the events with MSSG > 5 are used. The event rates for
each run are calculated by summing up the background-like events for each run and dividing this number by
the total amount of live time of the run.
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Figure 5.2: Distribution of the available observation time over the sky. Black triangles mark
the pulsars Vela, Monogem and Geminga, as well as the Galactic Center SgrA*. The color
scale gives the observation time available for each pointing.

different profiles are a result of observations taken under systematically different observation
conditions (e.g. zenith angle and optical efficiency distributions differ). As mentioned above
there are also shifts in the trigger rate over long time scales due to long term changes of the
atmospheric transparency. The stability requirement placed on the central trigger rate does
not remove long term variations of the trigger rate from the data set. Further, the cut on
the average zenith corrected central trigger rate appears to have been rather loose as can be
seen from the analysis of the pointing-wise background rate distributions. In order to select a
more homogenous data set it is required that the background event rate for each run j used
in anisotropy studies is > 3.5 Hz (Rj,BG > 3.5 Hz). After this last cut 94 pointings and 2780
runs remain with a total live time of 1178 hours.

Sky exposure The available sky exposure for all 94 sources is shown in Figure 5.2. The
data set available for the anisotropy studies (1178 hours) is approximately 5 times the size
(239 hours) of the one used previously for the H.E.S.S. electron spectrum (Aharonian et al.
2008). The sources are not equally distributed over the sky, but are restricted to positions that
can be observed at low zenith angles with the H.E.S.S. telescopes. The live time per pointing
is not equally distributed between pointings. More than 10 % (∼ 170 hours) of the available
live time was dedicated to PKS 2155-304, while some other pointings were observed for only
half an hour.

The available live time is distributed between observations at many different zenith angles,
as shown in the left-hand panel of Figure 5.3 with a mean zenith angle of 16◦. The aging and
optical condition of the telescopes is reflected by the optical (muon) efficiency. The distribution
of the live time in dependence on the optical efficiency is shown in the right-hand panel of Figure
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Figure 5.3: Distributions of the live time of observations in dependence on the zenith angle
(left-hand panel) and the optical efficiency (right-hand panel). In this plots all 107 pointings
were included.

5.3. The optical efficiency ranges from 45 % to 80 %, but most of the observations were taken
at 50 % to 60 % optical efficiency.
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Figure 5.4: Longitudinal shower profile measured from the first interaction point. The num-
ber of charged particles in the shower is given in dependence on the distance from the first
interaction point for primary particle energies between 10 GeV and 20 GeV. The analytical
function for the profile (red) is compared to the results from Monte Carlo simulations (black
histogram). Adapted from de Naurois and Rolland (2009).

5.1.2 Shower Reconstruction with Model++: Calibrating the Data

The Model reconstruction technique is presented in de Naurois and Rolland (2009). It is one of
the widely used event reconstruction techniques available within the H.E.S.S. collaboration. In
this study it was employed for the analysis of the data set. The Model++ algorithm is based
on a semi-analytical model of the particle shower in the atmosphere. It was derived by first
performing Monte Carlo simulations of air showers initiated by gamma rays. Based on this MC
data analytical functions were found that describe the average longitudinal, lateral and angular
shower profiles. Figure 5.4 shows such a longitudinal profile function (red line) in comparison
to the average longitudinal profile obtained from MC simulations (black histograms).

From the longitudinal, lateral and angular profiles of the particles in the air shower the
Cherenkov light density expected in the camera is calculated. Such an intensity distribution is
shown in Figure 5.5.

Average intensity distributions from such shower models were calculated for 40 different
zenith angles z, 40 impact distances6 δ between 0 and (400 m)/ cos(z), 65 different energies
((50 GeV)/ cos(z) to (20 TeV)/ cos(z)) and 6 first interaction depths from 0 X0 to 5 X0. This
produces a database of 2-dimensional shower images in the frame of a perfect camera with a
pixel size of 0.01◦. From this table shower images for new parameter sets are calculated by
interpolating between the generated images on a 4 dimensional parameter space (energy, impact
distance, primary interaction depth and zenith angle). The shower direction and the azimuthal
angle are taken into account by translating and rotating the camera frame (the original models
were obtained for particles at the camera center). Figure 5.6 shows a comparison of the shower
image parameters Length and Width in dependence on the true impact distance produced from
camera images generated by simulations or from semi-analytical shower models. The values

6The impact distance is the projected (perpendicular) distance of the extrapolated shower track to a telescope
(Aharonian et al. 2006).
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Figure 5.5: Intensity distribution of Cherenkov light in the camera calculated from the semi-
analytical shower model for a 1 TeV primary particle started at one radiation length with an
impact distance of 250 m. x- and y-axis are given in units of degrees in the camera frame.
Adapted from de Naurois and Rolland (2009).

obtained from the semi-analytical shower models are very similar to the corresponding average
values from simulations.

In order to obtain the parameter set (energy, direction, impact distance, depth of the first
interaction) a log-likelihood comparison between the actual shower image and shower images
produced from the semi-analytical shower model is performed. For each camera pixel the
probability to observe a signal s (in units of photoelectrons) if the expectation value of the
pixel is µ follows from the convolution of a Poisson distribution with the Gaussian response of
the PMTs and is given by

P (s|µ, σp, σγ) =
∑
n

µne−µ

n!
√

2π(σ2
p + nσ2

γ)
exp

(
− (s− n)2

2(σ2
p + nσ2

γ)

)
. (5.1)

Here, σp is the width of the pedestal. The pedestal is the charge distribution collected in each
pixel in the absence of Cherenkov light and, thus, in the absence of a signal as discussed in
Section 3.3.4. σγ gives the width of a single photoelectron peak representing the resolution of
the photomultiplier. Both quantities are specific for each pixel and are measured (see Section
3.3.4). The Poisson distribution gives the probability to measure n photoelectrons if the expec-
tation value is µ. The Poisson distribution is convoluted with the photomultiplier resolution
which is well described by a Gaussian with width

√
σ2
p + nσ2

γ . Thus, the Gaussian distribution
gives the probability to measure a signal s if the expectation value of the Gaussian distribution
is n due to the photomultiplier resolution. The overall probability is given by the sum over all
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Figure 5.6: Average image length and image width in units of radian of 1 TeV shower images
as obtained from simulations (black) and from the semi-analytical shower models (red) in
dependence on the impact distance. The parameters were obtained via the standard Hillas
parametrization technique. Adapted from de Naurois and Rolland (2009).

possible photoelectron numbers. Thus, a large probability corresponds to a good agreement
between measured signal and the expectation value predicted by the semi-analytical shower
model.

To get a quantity that behaves asymptotically like a χ2-distribution the pixel log-likelihood
is defined as

lnLi = −2 lnP (si|µi, σp, σγ). (5.2)

Thus, a large P (si|µi, σp, σγ) value corresponds to a small pixel log-likelihood value. The
log-likelihood for each telescope lnLtel is given by

lnLtel =
∑

pixel i

lnLi. (5.3)

The shower parameters are reconstructed by a pixel per pixel comparison of the actual measured
shower images (si for each pixel) with the shower images (µi for each pixel) predicted by the
model. The 6 input shower parameters (energy, depth of the first interaction, two parameters
describing the impact, two parameters describing the direction) are varied until the minimum
of the log-likelihood function and, thus, the parameter set fitting the measured shower best
is found. In contrast to the Hillas technique described in Section 3.3.4 all camera pixels are
used in the fit and no cleaning procedure identifying the pixels close to the actual image is
applied. The output of the fit gives the 6 best-fit shower parameters, the corresponding final
log-likelihood and the correlation matrix.

In the semi-analytical shower model and the reconstruction of the shower above it was
always assumed that the primary particle was a gamma-ray. In fact the shower images are
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not only produced by gamma rays but also by other particles, e.g. electrons, hadrons and
muons. Thus, it is necessary to separate actual gamma-ray events especially from the hadronic
background. It was shown in Figure 3.11 that hadrons produce much broader camera images
than gammas, thus, they should produce larger log-likelihood values than gamma rays usually
would. As a discrimination parameter the Goodness of fit is defined for each telescope j

Gj =

∑
pixel i [lnL(si|µi)− 〈lnL〉|µi ]√

2×NdF
. (5.4)

Here, 〈lnL〉|µi is the expectation value of the pixel log-likelihood function and NdF the
number of degrees of freedom of the fit (which is the number of pixels minus the number of fit
parameters, here 6). Per construction every pixel log-likelihood behaves like an independent
variable so that the Goodness of fit itself behaves like a normally distributed variable with
expectation value 〈G〉 = 0 and width σ2(G) = 1.

In the above treatment a Gaussian pedestal was assumed. This assumption is correct if the
NSB is much smaller than the electronic noise. In the low-gain channel the pedestal is also
approximately Gaussian for higher NSB. In the high-gain channel the approximation holds
for high NSB levels above 150 MHz. In the intermediate NSB regime the pedestal exhibits
two peaks produced by fractions of single photoelectron pulses falling by chance within the
acquisition window. Such a none Gaussian pedestal shape can cause a shift in the Goodness.
This is solved by rescaling the Goodness for each telescope by average Goodness 〈Gsimu(q, δ)〉
values and the variance of the Goodness σG,simu(q, δ) obtained from simulations. These values
are stored in look-up tables in dependence on the impact distance δ and image size q7. The
Scaled Goodness is then given by

SGj =
G(qj , δj)− 〈Gsimu(qj , δj)〉

σG,simu(qj , δj)
. (5.5)

The correction tables are only used to calculate the Scaled Goodness SG and not during the
fit. Finally, the mean value for all telescopes j is calculated as follows

MSG =

∑
j SGj√

Ntelescopes

. (5.6)

Ntelescopes is the total number of telescopes.
A variable more sensitive to differences between the model prediction and the actual shower

images is defined by using only pixels belonging to the shower to calculate the Goodness. These
are all pixels with a predicted amplitude > 0.01 p.e. and three rows of neighbors grouped
around them. The pixels are selected after the fit procedure. This pixel classification reduces
the number of degrees of freedom significantly improving the sensitivity of the variable to
differences between model and actual shower image. This quantity is called the Mean Scaled
Shower Goodness (MSSG) and is used in this study to separate gammas from hadrons.

The distribution of the MSSG is shown in Figure 5.7 for ON-OFF data (mainly gammas),
OFF data containing mainly hadrons and the MSSG distribution expected from gamma-ray

7The image size is equivalent to the image amplitude.
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Figure 5.7: MSSG (here called only Shower Goodness) distribution for data taken of the
blazer PKS 2155-304. Blue points mark excess (ON-OFF) events, gray triangles background
events (OFF) and the red histogram shows a Monte Carlo gamma-ray distribution obtained at
a similar NSB level. Adapted from de Naurois and Rolland (2009).

simulations. As expected the MSSG distribution of the simulated gammas and the ON-OFF
data follow quite closely a normal distribution around zero, while the MSSG distribution of
the background (hadrons) looks very different.

The Model analysis is a high performance reconstruction technique obtaining a higher
sensitivity and a better resolution than the standard Hillas technique as shown in Figure 5.8.
The model reconstruction reaches higher effective areas (except at energies above 10 TeV) and
better energy (smaller than 10 % at energies above 300 GeV) and angular resolution (always
< 0.1◦) for all cut choices when compared to comparable Hillas cuts (de Naurois and Rolland
2009).
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Figure 5.8: Left: Effective Area obtained with different cut choices with the Model++ re-
construction technique and comparable Hillas cuts. Right: Angular resolution obtained with
the Model++ reconstruction technique and comparable Hillas cuts. For more details on the
definition of the different cut choices and the energy resolution of the Model++ reconstruction
technique see de Naurois and Rolland (2009).
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5.1.3 Event Selection: Quality Criteria and Gamma-Hadron Separation

For the reliability of the data analysis it is important to solely use well reconstructed shower
events. High-quality shower events are selected by requiring that certain quality criteria, called
shape cuts, are fulfilled for every shower used in the analysis. The event selection is based
on the requirements used for faint sources within the H.E.S.S. collaboration (de Naurois and
Rolland 2009), since in this study we search for a faint signal. The used shape cuts, general
event selection criteria and the gamma-hadron separation requirement are summarized below.

Shape Cuts on Camera Images

1. A minimum image amplitude per telescope of 120 p.e. was required. In the Model++
analysis the image amplitude is the sum over the charges measured in each pixel in
photoelectrons (total image amplitude). In contrast to the Hillas reconstruction technique
discussed in Section 3.3.4 no image cleaning procedure is employed before calculating the
image amplitude, so that the image amplitudes for Model++ are always slightly larger
than the corresponding Hillas analysis amplitudes.

2. The distance of the shower-image barycenter to the camera center (nominal distance)
was required to be smaller than 2◦ for a camera radius of 2.5◦. This requirement removes
truncated images at the camera edge, that often lead to a miss-reconstruction of the
shower direction.

3. All requirements are checked individually for each telescope. Only shower events for
which at least two telescopes pass the above criteria are used in the analysis.

Event Selection

1. In order to improve the reconstruction quality of the events it was required that the
distance of the shower core8 to the center of the telescope array (core distance) must be
smaller than 200 m.

2. This study investigates diffuse electrons, thus photons from the source must be excluded
from the analysis. Therefore, only events with a reconstructed direction more than 0.4◦

away from the source are used (angular distance between source position and recon-
structed direction of the event > 0.4◦). This requirement reduces a spill-over of source
photons as illustrated in the θ2-histogram in Figure 5.9. Figure 5.9 shows the number of
source photons (ON-OFF events) in dependence on the squared angular distance from
the camera center for the 2006 flare of PKS 2155-304 (Aharonian et al. 2007). For this
bright source in its flaring state the number of photons at an angular distance of 0.3◦

(θ2 = 0.1) is almost at the null level, but a contribution of a few spill-over photons at
an angular distance > 0.4◦ cannot be excluded. Even though, since the typical source in

8The shower core is the position of the intersection of the shower axis with the ground plane (observation
level). More precisely, it is the intersection point of the shower axis with a reference x-y plane whose normal
vector points towards the zenith.
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Figure 5.9: θ2 distribution in an ON-OFF data sample of PKS 2155-304 in its flaring state
2006.

this analysis has a flux a factor 10 to 100 smaller than PKS 2155-304 in its flaring state
a contribution of spill-over source photons to the gamma-like events of the used data set
is unlikely.

3. In order to avoid systematic effects due to a decreasing acceptance at the edge of the
camera only events are used that have been reconstructed at an angular distance less
than 1.5◦ away from the pointing position.

Gamma-Hadron Separation The definition of theMean Scaled Shower Goodness (MSSG)
ensures that the distribution of theMSSG of gamma-like events is normally distributed with an
expectation value of 0 and a standard deviation of 1. As shown in Figure 5.7 the distribution of
the MSSG for hadronic background events is totally different from the MSSG distribution of
gamma events with background events usually adopting much largerMSSG values than gamma
events. Thus, in this study the MSSG is used to separate gamma events from hadron events.
To select gamma-like events normally a cut on the MSSG < 0.6 is applied (standard cut).
This cut sustains approximately 70% of gamma events9. Other cut choices were investigated
and the impact on the analysis results is discussed in Section 5.3.5. These selection cuts were
a very stringent cut (MSSG < −0.6) and an intermediate/complementary cut (-0.6 <MSSG
<0.6). For background studies events with MSSG > 5 were employed. The impact of using
other background event selection choices is also investigated in Section 5.3.5.

9For more detailed information on the performance of the gamma-hadron separation cuts in terms of cut
efficiencies and quality factor see Section 5.2.2.
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5.2 Upper Limit on the Cosmic-Ray Electron Spectrum

5.2.1 Computing the Electron Flux

The quantity measured in (astro)particle physics is usually the number of arriving events
respectively the event arrival rate. The number of measured events strongly depends on the
setup of the experiment (or the telescope) and, thus, the specifications of the instruments used
for detecting the events. In the case of gamma-ray telescopes it depends for example on the
size of the light-collection area, the number of telescopes in the array, the employed PMTs and
also the observation conditions. In contrast, the physical quantity related to the arrival rates,
the flux, is independent from the experimental setup and can, thus, be used to compare results
from different experiments.

The differential electron flux10 dF
dE is defined as the number of electrons at a certain energy

Nel(E) divided by the effective area Aeff(E) at this energy, the solid angle element of the
fraction of the sky that was simulated ∆Ω (this should be as large as the solid angle element
covered by the telescope), the width of the energy band in which the events were observed ∆E
and the time interval ∆t of the observation

dF

dE
=

Nel(E)

Aeff(E) ∆Ω ∆E∆t
. (5.7)

To compute the correct electron flux the measured number of electrons Nel(E) in the considered
energy bin ∆E must be precisely known. This is a great challenge for ground-based gamma-ray
telescopes. The gamma-hadron separation procedure presented in Section 5.1.2 can suppress a
large amount of hadronic background events (forMSSG < 0.6 typically 99.5 % ). Nevertheless,
a certain level of hadronic background remains. In addition, the camera images of gamma ray
and electron initiated air showers look almost identical and cannot be separated using the
MSSG. Thus, the great challenge is to determine the correct amount of background present
in the data to be able to calculate the electron spectrum as it was done by Aharonian et al.
(2008).

The effective area Aeff is the quantity which comprises the instrumental dependence. It is
the area over which incoming particles are actually detected by the telescope and depends on
the particle type, zenith angle, optical efficiency and energy. The effective area is determined by
the means of Monte Carlo (MC) simulations of incoming particles. When considering a diffuse
flux it is more appropriate to discuss the exposure ξ = Aeff ∆Ω, because in the diffuse case the
differential flux is given per solid angle element. The exposure is obtained from simulations of
electrons distributed over the solid angle element ∆Ω.

10More precisely the quantity defined here is an intensity, because the flux discussed originates within the
solid angle ∆Ω on the sky (see e.g. Longair 2011 and Weigert et al. 2005). Following the common nomenclature
in literature concerning cosmic-ray electrons the quantity will be called differential electron flux in this study.
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5.2.2 Simulating Diffuse Cosmic-Ray Electrons

For the calculation of the exposure of cosmic-ray electrons a large number of air-shower sim-
ulations was performed. First, the air shower initiated by the chosen primary particle (here
electrons) is simulated, afterwards the air shower is processed in a simulation of the used de-
tector. The output raw data have the same format as real telescope data. Afterwards, the data
are reconstructed analogous to real telescope data with the Model++ reconstruction chain (de
Naurois and Rolland 2009) and data summary tables (DSTs) are stored. The important steps
are illustrated in Figure 5.10 and described below in more detail.

Figure 5.10: Overview chart of the steps necessary to obtain a full shower simulation within
the Model++ H.E.S.S. collaboration framework. Shower simulations are performed with KAS-
CADE, detector simulations with Smash and the event reconstruction is done with hessana.
The obtained data summary tables (DSTs) can be used in the Paris analysis framework (MC
analysis). Image by Anton Jahn.
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Shower simulation with KASCADE

When the primary cosmic-ray electron hits the atmosphere, a shower of secondary particles is
triggered. KASCADE follows the development of these particles in the atmosphere and models
the emission of Cherenkov light emitted by the shower particles. This light is later detected by
the telescope. KASCADE (Kertzman and Sembroski 1994) simulates the shower initiated by
several different types of primary particles: photons, electrons, muons, protons, helium, and
heavier nuclei.

The most important particle interaction processes are included. For electromagnetic air
showers (initiated by electrons, photons, electromagnetic sub-showers of hadronic cascades)
these are ionization, annihilation processes, Bremsstrahlung, pair production as well as energy
losses via several scattering processes (BhaBha, Moeller and Compton scattering). These
interactions are well described in the framework of quantum electrodynamics.

In hadronic air showers several scattering processes play an important role for example
protons scatter inelastically of atomic nuclei in the Earth’s atmosphere producing several types
of secondary particles such as nuclear fragments and mesons (mainly pions). These particles
scatter again or in the case of unstable pions and kaons decay producing electrons, muons and
neutrinos.

Hadronic interaction processes are much more complex and, thus, modeling them is more
difficult. There are two different types of hadronic interaction models. Older models usually
simply interpolate or extrapolate spline functions between experimental data derived from
collider experiments. Recent hadronic interaction models are still of a phenomenological origin,
but are based upon an underlying physical theory. The free parameters of such a theory are
obtained from experimental collider data. Overall the theoretical descriptions available are
strongly model dependent, especially in the forward direction, where it is difficult to obtain
experimental data with colliders.

KASCADE uses an interaction model developed by Gaisser et al. (1983). It determines
the momenta (parallel and transverse) of the leading particle produced by the interaction as
well as the number and momenta of produced mesons. The model is based on data that
was obtained from hadron-nucleus and pion-nucleus interaction measurements in an energy
range between 20 GeV and 20 TeV and is able to reproduce experimental data (Kertzman and
Sembroski 1994). The data available at the highest energies originates from emulsion-chamber
experiments measuring cosmic rays.

Further, KASCADE models the emission and propagation of Cherenkov photons by the
shower particles. In the atmosphere Cherenkov photons are partially scattered by atoms and
molecules (Rayleigh scattering) or by aerosols (Mie scattering). Rayleigh scattering describes
the scattering of electromagnetic radiation by particles much smaller than the wavelength of
the radiation. It is strongly wavelength dependent (∼ λ−4) so that shorter wavelengths (blue)
are scattered much more efficiently than longer wavelengths (red). Rayleigh scattering of the
sunlight, e.g. causes the diffuse sky radiation which is the reason for the blue color of the sky. In
contrast Mie scattering describes the scattering of electromagnetic radiation by particles that
are of similar size or larger than the wavelength of the light. In the atmosphere Mie scattering
is caused by, e.g. pollen, dust, smoke and microscopic water droplets. It occurs mostly in the
lower parts of the atmosphere were larger particles are more abundant. Further, it dominates
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in cloudy conditions.
The atmosphere is modeled in several layers, each is in thermal equilibrium but with dif-

ferent properties such as the atmospheric density and the number density of aerosols. The
atmospheric profile is expressed as a function of atmospheric depth traversed in g/cm2. Here,
an all-year average atmosphere profile, called Windhoek Average (Konrad Bernlöhr 2001), is
used.

This atmospheric profile is based on data of the Windhoek atmosphere recorded with sound-
ing balloons (Konrad Bernlöhr 2001). Sounding balloons carry instruments aloft to measure the
atmospheric pressure, temperature, humidity and wind speed. This data provide input values
for atmospheric models that are constructed with the commercially available MODTRAN pack-
age (Kneizys et al. 1996), which models atmospheric propagation of electromagnetic radiation.
Realistic scattering and absorption coefficients were calculated with MODTRAN. The model
atmospheres are given in the form of text-format tables. For the simulations of Cherenkov
photons, hadrons and muons the atmospheric density values are simply interpolated between
the tabulated values. For electron-gamma shower simulations the tabulated values are fit by
piece-wise exponential functions (Bernlöhr and H.E.S.S. collaboration 2005).

While the total atmospheric transmission can be measured with optical telescopes using
stars, it is impossible to measure the profile of the number densities of molecules and aerosols
directly, which is the reason why the MODTRAN package is used to calculate the atmospheric
profiles. The molecular density profile (and, thus, Rayleigh scattering) is relatively stable in
time and does not introduce large uncertainties in the modeling of the atmospheric transmis-
sion. It is much more difficult to model the concentration of aerosols in a realistic way, because
it changes on short and long time scales due to, e.g. seasonal changes, bush fires or volcanic
eruption. Thus, the main practical problem of modeling the transmission of Cherenkov light
in the atmosphere are the properties and the vertical profile of aerosols. For a discussion of
the impact of different atmospheric profiles on shower simulations see Bernlöhr (2014).

In addition, KASCADE must be provided with a rough description of the instrument
containing size, position, number of telescopes as well as the quantum efficiency of the photo-
multipliers used in each telescope. Here, parameters of the H.E.S.S. I array are used and no
quantum efficiency is provided (KASCADE Configuration: NoQueffProv). The performance
of KASCADE was studied by Guy et al. (2002) who compared the results of KASCADE simu-
lations to the results of the MASS2 balloon experiment (Bellotti et al. 1999 and Circella 1999)
and the air shower generator CORSIKA (Heck et al. 1998). It was found that the longitu-
dinal profile of proton, helium and muon fluxes measured with the MASS2 balloon are well
reproduced by KASCADE and CORSIKA.

Either point-like or extended/diffuse sources of particles can be simulated with the
kaskade_cpp software module by adjusting the angular acceptance range (default: minimum
and maximum angular acceptance are 0◦). The default value is defined for a point-like source
and must be adjusted for diffuse simulations. The choice of the maximum accepted angular
distance is a compromise of the need to cover the entire FoV of the telescopes for diffuse
simulations and to minimize the number of events that are lost, because they are initiated too
far away from the telescopes. For these reasons the maximum angular distance of the simulated
events was set to 3.2◦. Several different azimuth angles (0◦, 90◦, 180◦, 270◦) and zenith angles

84



Analysis of Cosmic-Ray Electrons 5.2 Upper Limit on the Cosmic-Ray Electron Spectrum

of the observation can be selected (0◦, 18◦, 26◦, 32◦, ...., 70◦). The simulations can either be
performed at a fixed energy (parameters: energy and maximum impact distance) or for a given
energy spectrum (parameters: spectral index and minimum energy).

In this study exposures for cosmic-ray electrons are needed. Consequently, electrons were
simulated. For electromagnetic air showers a few hundred thousand simulations are sufficient.
The configuration used in this work is summarized below:

• Primary particle: Electron

• Injection depth: 1 g/cm2

• First interaction height: 0 (interaction height is not fixed)

• Field of View: 7◦ (half the diameter of virtual telescope FoV)

• KASCADE Configuration: NoQeffProv (Qeff=1)

• Site: Namibia

• Magnetic field: Bnorth = 0.12082 G, Beast = −0.03074 G, Bdown = −0.25906 G

• Observatory altitude: 1800 m

• Telescope layout: HESSPhase1 (4 telescopes)

• Zenith angles: 0◦ , 18◦ , 26◦ , 32◦

• Azimuth angle: 180◦

• Min. angular acceptance: 0◦

• Max. angular acceptance: 3.2◦

• Spectral index (integrated): 1 (N ∼ E−1)

• Minimum energy (spectrum): 0.03 TeV

• Number of simulated showers: 800 000

Detector simulation with Smash

Cherenkov light emitted by particles in the shower is reflected by the mirrors of the telescope
onto a camera creating an image of the shower. The detector simulation software Smash (Guy
2003) simulates the detector response to the incident Cherenkov light. First, the incoming
photons are propagated from the mirrors to the pixels of the camera. This includes shadowing
of the camera and masts, optical properties of the mirrors, acceptance of the pixels/quantum
efficiency of the PMTs and loss of photons between mirrors and camera, as well as the reflectivity
of the Winston Cones mounted to collect light more efficiently. Afterwards, the electronic signal
in the trigger channel is simulated and raw data are calculated, where each pixel contains the
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measured number of Analogue-to-Digital Converter (ADC) counts. This includes simulations
of the NSB, the used trigger conditions as well as simulations of the electronic noise.

For a full simulation the camera images must be calibrated to relate the measured numbers
of ADC counts in each pixel to the correct number of photoelectrons from Cherenkov light.
This includes simulating the pedestal and the conversion factor between ADC counts and pixel
charge in p.e. for each camera pixel. The pedestal (see Section 3.3.4) is the baseline signal in
the cameras due to electronic noise and the NSB and must be subtracted from the total signal.
The number of ADC counts above the pedestal value corresponding to one photoelectron is
called the conversion factor (see Section 3.3.4) and is necessary to convert the ADC counts in
the camera pixels to the correct number of photoelectrons. Thus, the conversion factor can
be determined by simulating a single photoelectron run where every pixel in the camera is
illuminated with a light intensity of one photoelectron per pixel on average.

The optical efficiency of the instrument, the combination of all instrumental effects de-
scribed at the beginning of this paragraph, can be determined from images of isolated muon
rings in the data. The mean lifetime of muons in their rest frame is only 2.2 · 10−6 s cor-
responding to a distance of 660 m travelled. Since the muons are created at an altitude of
about 10 km, a non-relativistic muon would decay before reaching the Earth’s surface. Only
highly relativistic muons can reach the surface of the Earth because of relativistic time dilation
(Lorentz factor ≥ 20). These relativistic muons are highly penetrating, undergo virtually no
nuclear interactions and suffer only a small amount of ionization losses. For highly relativistic
muons the emitted Cherenkov light distribution no more depends on the energy of the muon
(β = 1). Close to the Earth’s surface the refractive index and consequently also the Cherenkov
angle are relatively constant. Thus, the total number of emitted Cherenkov photons depends
only on the distance travelled by the muon. There is a defined maximum height from which
Cherenkov photons reach the telescope, which is determined by the Cherenkov angle and the
mirror radius of the telescope. It follows that only Cherenkov photons that were emitted a few
hundred meters above the ground are detected. Since the Cherenkov angle and the traversed
distance are essentially the same for all muons reaching the Earth’s surface it is straight for-
ward to calculate the expected Cherenkov light distribution. By propagating this distribution
through the detector the expected light intensity of the muon ring is determined and compared
to the actual intensity. From the relationship of those two images the current optical efficiency
of the instrument is derived.

The typical overall optical efficiency is of the order of 10 %. With time the instrument
ages and the mirror reflectivity decreases. In addition, dust effects the instrument. These
effects must be taken into account and can also be simulated with Smash. In this study, data
taken over several years are used, so that an accurate treatment of the optical efficiency is
indispensable. Therefore, the detector was simulated for optical efficiencies between 40 % and
90 % of the optical efficiency of a perfect telescope11.

The CamOptimal_hwtrig_effXX configuration was used to simulate the H.E.S.S. I tele-
scope. The CamOptimal_hwtrig configuration simulates a perfect telescope with a realistic
trigger, but without a central trigger and a NSB rate of 0.1 GHz. XX is the optical efficiency in
percent. The total configuration used is for example CamOptimal_hwtrig_eff80. In this case

11Note: often this relative value is called optical or muon efficiency. This study will also follow this practice.
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the telescope was simulated with a 20 % efficiency drop with respect to a perfect telescope.
Muon efficiencies of 40 %, 50 %, 60 %, 70 %, 80 %, 90 % were simulated. The most important
configuration parameters are summarized below.

Optical Configuration: HESS1

• Dish radius: 7.0 m

• Focal length: 15.0 m

• Radius of the mirror element: 0.3 m

• Fraction of mirror area effected by the shadows of camera and mast: 0.11

• PSF (standard deviation): 0.017◦

• Winston cone efficiency: 73 %

• Global optical collection efficiency: 40 % - 90 %

• Dish Type: Davies Cotton

Electronic Configuration: HESS1

• Duration of the simulated p.e. pulse in trigger and readout channels: 10 ns

• Rise time of the p.e. pulse in the trigger channel (at comparator entrance): 1.5 ns

• FWHM of the p.e. pulse in the trigger channel (at comparator entrance): 2.1 ns

• Width of the time window in which the simulation is performed: 40.0 ns

• Minimum charge over threshold: 7.5 pVs

• Nominal trigger pulse amplitude for a high gain of 80 ADC counts: 25.7 mV

• Rise time of the p.e. pulse in the readout channel: 2.4 ns

• Width of the p.e. pulse in the readout channel: 4.24 ns

• Delay time between trigger signal and start of the read out gate: 6.0 ns

• Width of the readout gate: 16.0 ns

• Delay between start of the background noise simulation and the first shower photon: 10.0
ns

• Number of ADC counts in the high gain channel corresponding to 1 p.e.: 80

• Voltage for one p.e. in pixel threshold: 28 mV

• Voltage for one p.e. in sector threshold: 42 mV
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Background Configuration: 0.1 GHz

• Rate of NSB photons: 0.1 GHz

Trigger Configuration: 4-2.5/2

• Telescope multiplicity: 2

• Pixel threshold: 2.5 p.e.

• Sector threshold: 4 pixels

• Voltage for one p.e. in pixel threshold: 28 mV

• Voltage for one p.e. in sector threshold: 42 mV

Shower reconstruction with Hessana

The output of Smash are raw data camera images. Subsequently, the shower is reconstructed
to get the direction, impact distance, energy and height of the first interaction. The procedure
follows the model reconstruction as described in de Naurois and Rolland (2009). For each
camera pixel the pixel log-likelihood and for each telescope the telescope log-likelihood is
calculated. The pixel log-likelihood and, thus, the telescope log-likelihood depend on the level
of NSB. The expectation value of the pixel log-likelihood (null-level) must be determined in
order to calibrate the found pixel log-likelihoods. The null level is derived from simulations
of gamma rays with a flat spectrum (N ∼ E−1) at a zenith angle of 0◦. Gamma rays are
used because shower pixels can be easily excluded. A correction table containing the null-level
information for all camera pixels is produced. The correction is only applied to the final log-
likelihood values and not during the reconstruction. The output DSTs have the same format
as real data DSTs and can be analyzed in the same way as regular H.E.S.S. data.

MC distributions

The final output of the simulations are artificial data sets of diffuse electrons for all combinations
of simulated zenith angles and optical efficiencies. Figure 5.11 shows the distribution (histogram
with error bars) of the MSSG for different zenith angles at an optical efficiency of 60 %. The
distributions are always roughly centered on zero, as they should be by definition. However,
when going to larger zenith angles the distributions become more asymmetric with a tail
towards larger MSSG values. In this analysis the standard cut for gamma-like events is
MSSG < 0.6. This cut retains roughly 69 % of cosmic-ray electrons (for zenith angle = 0◦).
The more stringent cut MSSG < -0.6 however retains only 29 % of diffuse electrons (see the
discussion in the last paragraph of this section).

Figure 5.12 shows the ratio of the reconstructed energy of an event and the energy at
which the event was originally simulated (true energy) minus one, called relative energy bias,
in dependence on the true energy. The relative energy bias presented here was calculated for all
electrons (no MSSG cut was applied) passing shape and core distance selections discussed in
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Figure 5.11: Distributions of the MSSG for different zenith angles. The distributions shown
were simulated at 60 % optical efficiency. Shape cuts and the core distance cut discussed in
Section 5.1.3 were applied. No restrictions on the energy range were applied.

Section 5.1.3. A constant relative energy bias of zero would mean that the event reconstruction
works perfectly and the energy is on average correctly reconstructed (without bias). Over a
large energy range between approximately 0.4 and 7 TeV the relative energy bias is of the order
of a few percent. Above 10 TeV the energy is underestimated, on average, by up to 50 %. In
the energy range between 0.64 TeV and 1.04 TeV, which will be used for the anisotropy study,
the energy is underestimated by less than 10 % at all zenith angles. At small zenith angles
the relative energy bias is smaller than at larger zenith angles. In the energy range between
approximately 300 GeV and 10 TeV the relative energy bias is comparable to the one found
by de Naurois and Rolland (2009). Differences are found at very small (< 350 GeV) and very
large energies (� 10 TeV) in regimes where the energy bias becomes larger.

At energies below 300 GeV de Naurois and Rolland (2009) find an energy bias smaller than
20 %, while here it was not possible to determine the energy bias below 350 GeV, because the
minimum true energy in the MC data sample is 350 GeV. The relatively high energy threshold
is probably caused by the choice of the image size cut, which is significantly larger (120 p.e.)
than the one used in de Naurois and Rolland (2009) (60 p.e.). This selection removes low
energy showers depositing not enough photoelectrons in the cameras from the data sample.

At very high energies de Naurois and Rolland (2009) mention that they find that very high
energy showers are reconstructed too close to the telescope with underestimated energies. Here,
a similar behavior is found at energies above 10 TeV. The main difference is that the effect is
clearly visible at 20 - 30 TeV while it is not in the study of de Naurois and Rolland (2009),
where it is only mentioned. The large relative energy bias found in this study is mainly due to
MSSG > 0.6 electrons, which are included in this study but were excluded in the standard cut
selection by de Naurois and Rolland (2009). When applying the MSSG < 0.6 cut the large
energy bias at a few tenth TeV is removed.

There were further event selections applied that possibly cause minor differences between
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the relative energy bias profiles found in this study and in the study of de Naurois and Rolland
(2009). The core distance cut that was applied in this study possibly systematically selects
distant high energy showers that are reconstructed too close (and consequently with too low
energy) to the telescope array. Further, the simulations presented here were calculated at 60 %
optical efficiency. Even though, the optical efficiency is taken into account at the reconstruction
level and no further energy correction is necessary at a later stage, the optical efficiency of the
simulations may influence the energy threshold of the events (in combination with the image
size cut). Another trivial difference is the fact that in this study electron simulations were used
while de Naurois and Rolland (2009) used gamma-ray simulations.

Efficiencies of gamma-hadron separation cuts

To measure the power of a cut to separate gammas from hadrons the quality factor (Q-factor)
is commonly used, which is a quantity describing the gain in significance achieved by different
separation algorithms or cut choices. In the analysis concerning cosmic-ray electron anisotropies
the Q-factor is of minor importance, because the relative electron rate fluctuations and, thus,
the dipole amplitude depends on the relative amount of electrons in the analyzed (gamma-
like) event sample called electron fraction and discussed in Section 5.2.5. The electron fraction
depends on the gamma-hadron separation parameter cut choice on the one hand and on the
spectra of electrons and hadrons on the other hand. If the hadron flux is simply too large the
electron fraction may still be too small for an anisotropy search, even though the Q-factor was
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Figure 5.12: Profile of the difference between the reconstructed energy and the true energy
normalized to the true energy in dependence on the true energy. The value of this ratio is
always the mean value of the ratio for each bin in true energy. The error on the ratio is the
standard error on the mean value within each bin in true energy. The black hatched interval
indicates the energy range which is used later in the anisotropy studies. The profile shown was
calculated from events simulated at 60 % optical efficiency. Shape cuts and core distance cut
given in Section 5.1.3 were applied. No MSSG cut was applied.
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optimized.
Here, the Q-factor is calculated in order to characterize the gamma-hadron separation cut

choices used at some point in this study and to allow comparisons with previous and future
studies.

The Q-factor is defined as the ratio of the electron efficiency compared to the square root
of the hadron efficiency

Q =
effel√
effhad

. (5.8)

Here, effel and effhad are the electron and hadron cut efficiencies. In general the cut efficiency
for particle species s is defined as

effs =
Ns,MSSGcut

Ns
. (5.9)

Here, Ns is the total number of events of species s (after previously applying event quality
cuts and an energy cut) and Ns,MSSGcut is the number of events of species s after applying an
additional cut on the gamma-hadron separation parameter (here MSSG).

The MSSG cut corresponding to the highest quality parameter corresponds to the cut
choice with the best relation between retaining gamma-like events and rejecting hadron-like
events12.

The electron efficiency can be calculated from the distribution of diffuse electron MC events
discussed in Section 5.2.2. In this study no hadron MC simulations were performed, instead the
cut efficiency is estimated from the MSSG distribution of events from an OFF region (Section
3.3.3). This data sample contains a certain residual amount of diffuse electrons (exactly those
particles that we are searching for in this study), but for an estimation of the cut efficiency
they are subdominant. The MSSG distribution of OFF-events is shown in Figure 5.13. The
data shown is taken from an ON - OFF (ON minus OFF) analysis of 87 PKS 2155-304 runs
(a subsample of the whole data set). In addition, the MSSG distribution of the ON region is
shown. Both distributions are very similar at highMSSG (MSSG > 5), but in the ON-events
a peak around zero is seen, which originates from source photons. Further, a distribution of
ON - OFF events is shown, where the ON - OFF distribution for MSSG < 0 was reflected to
positive values and fitted by a Gaussian. This approach illustrates the MSSG distribution of
source photons, which is very similar to the MSSG distribution obtained for electrons from
MC simulations in Section 5.2.2 (remember that gammas and electron initiated air showers
look almost identical for gamma-ray telescopes).

Cut efficiencies and the Q-factor in dependence on the maximum allowed MSSG value are
shown in the left-hand panel of Figure 5.14. As expected and required the hadron efficiency
is much smaller than the electron efficiency. The electron efficiency rises steeply and reaches
approximately one at MSSG = 1. In comparison the hadron efficiency rises much slower. In
the right-hand panel of Figure 5.14 the development of the electron efficiency and the hadron
efficiency relative to each other is shown for different MSSG cuts.

12This statement does not necessarily mean that the selected data sample contains more gamma events than
hadronic events, because this relative amount is additionally influenced by the flux levels of the two particle
types.
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Figure 5.13: Distribution of the MSSG for events in the ON region (red histogram) and OFF
region (black histogram) of PKS 2155-304. In addition, a MSSG distribution of ON - OFF
events is shown where the ON - OFF distribution for MSSG < 0, was reflected on zero to
positive values (blues histogram) and fitted by a gaussian (black line). For MSSG > 5 also
the OFF event sample was fitted by a gaussian (black line). Shape cuts and core distance cut
discussed in Section 5.1.3, as well as an energy cut (0.64-1.04 TeV) were applied to the data.
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Figure 5.14: Left: Electron and hadron efficiencies as well as the Q-factor in dependence on the
choice of the cut on the gamma-hadron separation parameter MSSG. Right: Development of
the hadron efficiency relative to the electron efficiency. Previously, all shape cuts (see Section
5.1.3, the core distance cut and the energy cut (0.64 < E < 1.04 TeV) were applied to both,
OFF data and electron MCs. Electron MCs with a muon efficiency of 60 % and at 0◦ zenith
angles were used.

The resulting electron and hadron efficiencies, as well as the Q-factor are summarized
in Table 5.2 for selected MSSG cut choices. The obtained Q-factor of approximately 9 is
relatively large when compared to previous calculations by de Naurois and Rolland (2009).
While the electron efficiency found in this study is almost equivalent to the gamma efficiency
of approximately 70 % (for MSSG < 0.6) calculated by de Naurois and Rolland (2009), the
hadron efficiencies differ by approximately a factor of 10.

The cuts used for the calculations of the efficiencies and the Q-factor are the same that are
used later in the anisotropy search, because the efficiencies and Q-factor characterizing this
specific analysis shall be presented here. In consequence there are several differences in the
event selection process between the analysis by de Naurois and Rolland (2009) and this study.

In this study a cut on the distance of the shower core to the center of the telescope array
(core cut) was applied, but not by de Naurois and Rolland (2009). In addition, only events
with energies between 0.64 and 1.04 TeV were used to calculate the Q-factor. The influence
of these cut choices on the efficiencies and the Q-factor was investigated by calculating both
values, additionally, once without the core cut and once simultaniously without the core cut and
without the energy cut. The resulting efficiencies and Q-factors are presented in Appendix A.
Further, the Q-factor without the application of the core cut (QNC) and without the application
of the energy cut and the core cut (QNC) are also given in Table 5.2. From these calculations
it is obvious that the hadron efficiencies are more strongly influenced by the additional energy
and core cuts than the gamma efficiencies. This results in smaller Q-factors without these cuts
applied. Consequently, the discrepancy between the Q-factor found in this study and in de
Naurois and Rolland (2009) can be partly explained by the differences concerning the discussed
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MSSGmax effel effhad = effOFF Q-factor QNC-factor QNCE-factor
1.0 0.778 0.0072 9.1 7.7 6.5
0.6 0.693 0.0053 9.5 8.0 6.7
0.4 0.635 0.0045 9.4 8.0 6.8
0.0 0.565 0.0037 9.3 7.8 6.7
-0.6 0.288 0.0016 7.2 5.9 5.4
-1.0 0.124 0.0007 4.6 4.2 4.3

Table 5.2: Table of electron and hadron efficiencies as well as the corresponding Q-factor
for different choices of gamma-hadron separation cuts on the MSSG. The efficiencies and
the Q-factor were calculated after applying all event selection cuts except the gamma-hadron
separation cut (MSSG cut). In addition, the Q-factor is also given without the application of
the core cut (QNC) and without the application of the energy cut and the core cut (QNC).

event selection cuts.
The remaining difference may be caused by the discrepancies between the requirements set

on the image amplitude (minimum value of 120 p.e. in this study as compared to 60 p.e. used
by de Naurois and Rolland 2009). This requirement may increase the relative number of high
energy events in the data sample, which will improve the image quality and, thus, the ability
of the MSSG to separate gammas from hadrons.

Even though the found discrepancy has not been completely resolved at this point, it is not
unlikely that it is caused by the special combination of event selection cuts used in this study.
Since the discrepancy is irrelevant for the actual anisotropy analysis it was not investigated in
more detail in this study.
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5.2.3 Exposure Calculation

In the context of diffuse particle simulations it is not possible to separate the effective area
Aeff from the solid angle element of the fraction sky that was observed (Ω), so that it is more
appropriate to use the exposure where ξ = Aeff · Ω. With this definition the exposure is
determined by the fraction of the particles surviving the selection (e.g. quality and gamma-
hadron separation cuts) cuts Ncuts,weighted and the total number of simulated particles Nweighted

multiplied by the surface area AMC in the detector plane on which the events have been
randomly simulated and the solid angle element ΩMC within which the electron incidence
angle was drawn uniformly in cosϑ

ξ = AMC ΩMC
NMC,cuts,weighted

NMC,weighted
. (5.10)

In the simulations a much flatter spectrum (index = 2.0) than the one expected from cosmic-
ray electrons (index = 3.3) was employed in order to increase the accomplishable number of
simulated particles at higher energies. In the exposure calculation this is accounted for by
weighting every event i with a factor depending on its true simulated energy

fi,weighting =

(
Ei,True

0.1 TeV

)−1.3

. (5.11)

The index −1.3 in the weighting factor reintroduces the correct spectral shape (index expected
in the data) and is given by the difference between the index of the simulated spectrum and the
real expected index of cosmic-ray electrons (Iweight = Isimulated − Ielectrons = 2.0− 3.3 = −1.3).
The true energy is divided by a minimum energy. The minimum energy was chosen below the
energy threshold of the simulations ensuring that the weighting factor is always smaller than
one. The weighting procedure is applied to both simulated events and events passing the event
selection cut of this analysis to generate the particular weighted number of events. The MC
area AMC depends on the maximum impact distance (IPmax) from which the most energetic
events can possibly still be seen with H.E.S.S. The impact parameter as well as the energies
that are reasonably simulated depend significantly on the zenith angle as shown in Table 5.3.
The MC area is given by AMC = π · IP2

max.

The solid angle element of the sky ΩMC from within which the electron incidence angle was
drawn is given by the angular acceptance range of the simulation, which was set to [0◦, 3.2◦]

Zenith angle [deg] Energy range [TeV] IPmax [m]
0 0.030-100.000 550
18 0.032-105.146 578
26 0.033-111.260 612
32 0.035-117.918 649

Table 5.3: Dependence of the simulated energy range and the maximum impact distance on
the zenith angle.
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in order to cover the whole H.E.S.S. FoV of 5 degrees (full opening angle)

ΩMC = 2π(1− cos(θ)) = 0.0098 sr with θ = 3.2 deg. (5.12)

Here, θ is defined as half of the opening angle of the view cone. The error on the exposure is
determined by the statistical error of the simulated particles

σξ =

√√√√( AMC ΩMC

NMC,weighted
σMC,cuts,weighted

)2

+

(
AMC ΩMCNMC,cuts,weighted

N2
MC,weighted

σMC,weighted

)2

.

(5.13)

The error on the events passing the selection cuts σMC,cuts,weighted =

√
NMC,cuts

NMC,cuts
NMC,cuts,weighted

and the error on all simulated events σMC,weighted =
√
NMC
NMC

NMC,weighted are determined by
the corresponding unweighted event number. This way the correct spectrum is inserted cor-
rectly simultaneously benefiting from the large statistics at high energies of the simulated flat
spectrum.

The exposure ξ(E, z, ε, d) depends on the zenith angle z, the optical efficiency ε and slightly
on the angular distance between the pointing position and the actual position of the gamma-ray
source that has been cut out d.

For each simulated combination of zenith angle and optical efficiency the exposure can
be calculated following Equation 5.10. The dependency on the offset can be determined by
artificially moving the source position in the camera and selecting only events outside the 0.4◦

radius around this artificial source position. There is only a weak dependency so that only
four different offsets are used to reduce the calculation time. The calculation of the effective
exposure valid for the total data set is presented in the following.

1. Zenith angle and offset: The ξ(E, zi, εj , dk) is interpolated between the available zenith
angles zi to get ξ(E, z, εj , dk). Such an interpolation is shown in Figure 5.15 for ε = 50
% and d between 0 and 0.25.

2. Weighting: The ξ(E, z, εj , dk) is weighted by the relative amount of live time tlk of
observations in the total data set (with total live time Ttotal) measured within a certain
offset/zenith angle bin lk and integrated (in practice summed up), so that

ξ(E, εj) =
∑
l,k

ξ(E, zl, εj , dk) ·
tlk
Ttotal

. (5.14)

The relative observation time tlk/Ttotal is shown in the right-hand panel of Figure 5.15.

3. Optical efficiency: The exposure ξ(E, εj) is interpolated between the different optical
efficiency values to get ξ(ε) as shown in the left-hand panel of Figure 5.16.
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Figure 5.15: Left: Exposure in dependence on the different simulated zenith angles for ε=50
% and d between 0.00 and 0.25 degrees. Right: Live time distribution in the data set in
dependence on zenith angle and offset d in degrees. The live time in seconds is given by the
color code shown on the z-axis.

4. Weighting: The exposure ξ(E, ε) is weighted by the relative amount of live time tm of
observations in the total data set (with total live time Ttotal) measured within the optical
efficiency bin m and integrated. The resulting exposure for the energy band between 0.64
- 1.0 TeV (Fermi energy scale) is given by

ξ(E) =
∑
m

ξ(E, εm) · tm
Ttotal

(5.15)

and shown in the right-hand panel of Figure 5.16.

The errors of the interpolated values are calculated by first calculating the error on the intercept
and the slope of the regression line from the errors of the two sampling points between which
the exposure was interpolated. Afterwards, the error on the interpolated exposure value is
obtained via error propagation of the errors on the intercept and the slope of the regression
line.

The effective exposure obtained for the entire data set in the energy range between 0.64
and 1.047 TeV is given by ξ = 108.52 ±11.67

11.65 m2 sr for the MSSG < 0.6 cut. The obtained
exposure values for all gamma-hadron separation cuts are also shown in Table 5.4 in Section
5.2.5.
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Figure 5.16: Left: Exposure in dependence on the different simulated optical efficiencies. Right:
Exposure after being re-weighted with the relative amount of live time of observations within
a certain relative optical efficiency band (as shown in the right-hand panel of Figure 5.3)
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5.2.4 UL on the Cosmic-Ray Electron Spectrum

Using the H.E.S.S. exposure to diffuse electrons calculated in the previous Section and the
total number of events in the electron-like regime (including the residual hadron and photon
background) an upper limit (UL) on the electron flux can be determined employing a modified
version of Equation 5.7

dF

dEUL
=

Nγ̃(E)

Aeff,el,H.E.S.S.(E) Ω ∆E∆t
. (5.16)

Here, Nγ̃ is the total amount of gamma-like events measured (after all cuts).
Aeff,el,H.E.S.S.(E) Ω is the exposure calculated for electrons in Section 5.2.3. ∆E is the

considered energy band and ∆t the total live time of the observation. This equation necessarily
gives a flux larger than the real electron flux, since the gamma-like event number must be larger
than or equal to the number of electrons.

Thus, this method overestimates the electron flux by the amount of wrongly reconstructed
background events which are treated like electrons. For the calculation of the UL on the
electron flux the more stringent cut (MSSG < -0.6) was chosen in order to get as close as
possible to the shape of the real cosmic-ray electron spectrum.

The actual electron spectrum was not derived in this study, because of the extensive com-
putational and storage costs proton simulations would have required. Since such simulations
were unnecessary for the study of anisotropies in the arrival direction of cosmic-ray electrons,
which is the major focus of this thesis, here only an upper limit on the electron spectrum is
presented.

In the top panel of Figure 5.17 the UL on the electron spectrum derived in this study is
shown in comparison to the Fermi-LAT electron spectrum (Ackermann et al. 2010b) rescaled
to the H.E.S.S. energy scale with an energy calibration factor obtained from cross calibration as
described in Meyer et al. (2010) and the low energy and high energy H.E.S.S. electron spectra
(Aharonian et al. 2008, Aharonian et al. 2009).

The arithmetic mean energy of all events contributing to the particular energy bin is used as
the energy of the spectral point. The minimum and maximum energies determine the error bars
in the x-direction. The error bars on the flux are rather large compared to the ones measured
previously by the H.E.S.S. collaboration. The size of the error bars is mainly determined by
the small statistics of the simulations in this study. Further, the statistics of the data set are
also limited by the very stringent cut chosen for the upper limit (MSSG < -0.6) containing
approximately 29 % of all electrons.

In the lower energy bins the UL lies above or approximately at the measured values by
Fermi and H.E.S.S. and, thus, within the rather large error bars of this measurement the
results are consistent. At energies above one TeV the UL drops down much faster than the
measured H.E.S.S. electron spectrum. Thus, there is a certain tension between the results
presented in this study and results from the previously published H.E.S.S. electron spectrum.
The UL at higher energies (above approximately 1 TeV) lies far below the H.E.S.S. electron
spectrum from Aharonian et al. (2008).

The most obvious difference between the published spectrum and the presented UL is that
the spectral points in the published electron spectrum were always set to the arithmetic mean
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Figure 5.17: The electron spectra measured with H.E.S.S. (black and gray markers) and Fermi-
LAT (dark red markers) are shown together with the upper limit derived in this study (blue
markers). The energy of the spectral points from Fermi and H.E.S.S. are the arithmetic mean
values of the minimum and maximum energies of the corresponding energy bin. The energies of
the Fermi-LAT spectrum have been rescaled by an energy calibration factor obtained by Meyer
et al. (2010) via cross calibration. For the upper limit the arithmetic mean event energy of all
events contributing to the particular bin was used instead (blue markers). For comparison, the
UL is additionally shown in the bottom panel using the arithmetic mean of the minimum and
maximum energies (red asterisks).
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energy of the minimum and maximum of the particular energy bin. This approach does not
take into account what the arithmetic mean energy of the particles contributing to this energy
bin really was. This influences the resulting spectrum/UL strongly as shown in the bottom
panel of Figure 5.17, where the arithmetic mean of the minimum and maximum energies was
used for the UL points (red UL) instead of the arithmetic mean event energy (blue UL). This
does not only effect the energy values on the x-axis, but because of the chosen representation
of the spectra and the UL (differential flux times E3) also the values on the y-axis. When using
the arithmetic mean of the minimum and the maximum as the UL point energy the published
spectrum and the UL are already more consistent. In this study the arithmetic mean event
energy was used for the UL on the electron spectrum, because this is more realistic.

The average energy bias discussed in Section 5.2.2 is smaller than 10% in both studies
and, thus, most likely not responsible for the deviations between the UL and the previously
published electron spectrum.

There are several influencing factors that could cause the remaining deviations between
the published H.E.S.S. spectrum and the results presented here. Two different reconstruction
chains were used, which can lead to differences in the spectra.

Further, hadron interactions at high energies are not well known, because no experimental
data from colliders exists at these energies (and in the forward direction, as well as for high
energy nuclei interactions), where a large number of neutral pions is produced. Comparisons of
different hadronic interaction models have been performed revealing differences of 25 % to 40
% (Spurio 2015). Differences in electron spectra derived employing different interaction models
were previously reported by Egberts (2009) and Kolitzus (2015).

In the study of Aharonian et al. 2008 only proton simulations at a zenith angle of 20◦ were
used, which may introduce uncertainties depending on the level of dependence of the proton
flux on the zenith angle. Even though, the result of the UL obtained in this study does not
depend on proton simulations, the previously published electron spectrum does.

Additionally, the treatment of varying optical efficiencies in this study differs from the ap-
proach followed by Aharonian et al. (2008). There, they corrected the gamma-hadron separa-
tion parameter distributions and effective areas by a factor depending on the optical efficiency,
while the MSSG distribution and exposure in this study were obtained directly from MC
simulations with different optical efficiencies.

In the case of a not negligible anisotropy the deviating pointing patterns could also cause
changes in the spectrum. Difference between spectra obtained from different data sets have
been reported by Egberts (2009).

The rise in the published spectrum at high energies could be mimicked by an overestimation
of the amount of electrons in the original electron analysis due to too small statistics in certain
bins of the gamma-hadron separation parameter at high energies. In this case due to the
large error bars it is easy to get a good fit to the data, but also the uncertainties on the fit
parameters get larger. Combined with correctly calculated effective exposures for electrons
an overestimated amount of electrons could lead to an artificial rise in the resulting electron
spectrum.

Deviations between the published electron spectrum and new spectra currently obtained
within the H.E.S.S. collaboration were also found by Kolitzus (2014). The major difficulty
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appears to be a strong dependence on the optical efficiency when going to larger data sam-
ples taken over a long period of time and the subsequent necessity for proton and electron
simulations at different optical efficiencies Kolitzus (2015).

Further, differences were even found reanalyzing the original data set with the original
method as used in Aharonian et al. 2008. The only difference was the version of the analysis
software used and that the data had been newly calibrated. Thus, the electron spectrum seems
to be quite sensitive to small changes in the analysis chain.

In general, the approach employed in this study has the advantage of not depending on
possibly unreliable proton Monte Carlo simulations nor on the type of the background particle
considered. On the other hand, measured electron spectra, in this case from Fermi-LAT, are
used, which are subject to statistical and systematic uncertainties.
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5.2.5 The Electron Fraction between 0.64 and 1.04 TeV

The energy range of the Fermi-LAT and H.E.S.S. energy spectra overlaps in a small interval
(one bin). Figure 5.17 shows the last Fermi energy bin between 0.615 TeV and 1.0 TeV (on the
Fermi-LAT energy scale), which is equivalent to the energy range between 0.64 - 1.04 TeV on
the H.E.S.S. energy scale. Since in this energy bin there is a very precise electron and positron
flux measurement by Fermi-LAT13 and the effective exposure of the H.E.S.S. instrument to
electrons (previous sections) is known the expected number of electrons can be compared to
the actually measured number of gamma-like events in the data sample used in this study. The
number of expected electrons for H.E.S.S. is calculated from the known Fermi-LAT flux in this
energy binNel = Npred and the effective exposures from the previous simulations Aeff,el,H.E.S.S.Ω

Npred = Nel =
dF

dE Fermi−LAT
Aeff,el,H.E.S.S.(E) Ω ∆E∆t. (5.17)

Here, ∆E is the width of the considered energy bin and ∆t the live time of the measurement.
The integrated flux between 0.64 and 1.04 TeV measured by Fermi is 9.89±1.61

1.22 ·10−5 in units
of cm−2s−1str−1. The total live time of the data sample (all 108 pointings) is 5.3 ·106 seconds.

The actually measured events consist of electrons and background events (mainly protons
and photons), so that the real composition is given by

Nγ̃ = Nel +NBG,

so that the fraction of electrons εel in the total number of measured gamma-like events is given
by

εel =
Nel

Nγ̃
. (5.18)

The error on the electron fraction is governed by the error on the predicted number of electrons
and the error on the measured gamma-like event rate and is calculated via Gaussian error
propagation

σεel =

√√√√(σNel

Nγ̃

)2

+

(
Nel σNγ̃
N2
γ̃

)2

. (5.19)

The resulting electron fractions, exposures ξ and numbers of γ-like events for all different
gamma-hadron separation cuts used are summarized in Table 5.4.

13In principle there is an even better measurement of the electron and positron flux by AMS-02 (Aguilar
et al. 2014a). For a discussion see Section 6.
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γ-hadron cut εel ξ [m2 sr] Nγ̃
MSSG < 0.6 0.63±0.13

0.11 108.52±11.67
11.65 89917± 300

- 0.6 < MSSG < 0.6 0.60±0.12
0.10 82.28±8.38

8.33 71682± 298

MSSG < -0.6 0.76±0.23
0.22 26.24±6.62

6.63 18235± 135

Table 5.4: Resulting effective exposures, the measured gamma-like event numbers and the
electron fractions in the energy band between 0.64 and 1.04 TeV for the three different gamma-
hadron separation cuts investigated in this study. The values and corresponding errors are
given.
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5.3 Search for Anisotropies in Cosmic-Ray Electron Arrival Rates

5.3.1 Electron Arrival Rates

The goal of this study is to evaluate whether cosmic-ray electrons (and positrons) arrive isotrop-
ically at Earth or not. This question is closely related to production and propagation mecha-
nisms relevant for cosmic-ray electrons. The flux of cosmic-ray electrons is the physical quantity
that must be considered in such a study. Aharonian et al. (2008) (AH08) have shown that it
is possible to reconstruct the electron spectrum rather well with IACTs. In AH08 the diffuse
electron flux was obtained from data taken from positions all over the sky and possible dif-
ferences of the electron flux when looking into varying directions were not taken into account.
Due to the rather small data sample and additional systematic effects this was a reasonable
approach.

This study is dedicated to the search for such variations in the flux depending on the
observational direction. It is a continuation of the diploma thesis of Marco Prüser (Prüser
2012), who derived an upper limit on the dipole amplitude based on the data sample already
used by AH08 to derive the cosmic-ray electron spectrum.

The available data samples (even with a much larger data set than in the previous analysis)
are too small to accurately reconstruct fluxes from every pointing direction. In the approach
used in AH08 the simulated distributions of the gamma-hadron separation parameter ζ for
electrons and protons were fit to the distribution of this parameter obtained from the measure-
ment (of gamma-like events) in order to retrieve the relative amount of protons and electrons
present in the data set. In order to obtain a flux as accurate as the one in AH08 for every
direction in the sky the measured distribution of the ζ parameter must be equivalently well
known. In other words the same amount of data as in AH08 would have to be available for every
investigated direction of the sky. In fact the available data is distributed very inhomogeneous
between different directions in the sky making a good flux reconstruction for most directions
impossible with the method used in AH08.

Instead, a more direct approach is employed using the measured arrival rate of cosmic-
ray electrons. This has the advantage that gamma-like events must not be binned within a
distribution but can all be used. The background should consist mainly of protons where the
level of anisotropy is of the order of 10−3 (see the discussion Section 2.1.2) and, thus, much
smaller than the one searched for in this study. Therefore, it is assumed that the background
level is constant over the whole sky. Since the electron flux has been well measured by Fermi-
LAT in the energy range between 0.64 and 1.0 TeV this information was used to obtain the
electron fraction in Section 5.2.5 giving a relative amount of electrons εel in the data set of
63 % (MSSG < 0.6). Consequently, the relative amount of background particles is given by
1 − εel. Thus, the universal background level can be easily subtracted from the gamma-like
event rates employing the electron fraction and the best estimator for the mean gamma-like
event rate as will be shown below.

Another advantage of this approach is that it makes use of proton Monte Carlo simulations
unnecessary. Those are always an uncertainty factor because the strong interaction physics
at TeV energies is not understood (especially in the forward direction most relevant for the
development of air showers) at the proton-proton interaction level. In air showers a large num-
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ber of particles with small transverse momenta is produced. For such particles perturbative
theory is not applicable, because the running coupling constant diverges. Further, only little
experimental data is available in the forward direction from collider experiments. Thus, mod-
els describing strong interaction physics are usually a mixture of basic theoretical ideas and
empirical parameterizations tuned to describe the available experimental data. In regions of
the parameter space not yet covered by experimental data, e.g. in the forward direction, the
models are based on extrapolations. The understanding of nucleus-nucleus interactions is even
worse. The data available from fixed target experiments reaches only up to a few GeV/nucleus.
Consequently, several different interaction models exist resembling the large uncertainties that
result from the poor understanding of strong interaction physics. In dependence on the different
interaction models results may vary between 25% and 40% (Spurio 2015).

The gamma-like event rate (Ri,γ̃) is determined from the total number of gamma-like events
(in this case the number of events left after applying, e.g. the cut MSSG < 0.6) measured for
each pointing Ni,γ̃ in the total live time of the observation of each pointing Ti and is given by

Ri,γ̃ =
Ni,γ̃

Ti
. (5.20)

In a gaussian approximation (valid for Ni,γ̃ & 10) the statistical error (68 % CL) on the
gamma-like event rate is given by

σi,γ̃,stat =

√
Ni,γ̃

Ti
. (5.21)

In a simple approach a relative uncertainty εsyst is assumed for the treatment of the systematic
error. Consequently, the absolute systematic error is defined as follows

σi,γ̃,syst = εsystRi,γ̃ , (5.22)

where εsyst is determined from the background event Rates (Ri,BG =
Ni,BG

Ti
here, e.g. forMSSG

> 5). The derivation of the systematic error will be discussed in Section 5.3.3.
The total error on the gamma-like event rate is then given by

σ2
i,γ̃ = σ2

i,γ̃,stat + σ2
i,γ̃,syst. (5.23)

Addition in quadrature is allowed here, because the statistical and systematic errors are inde-
pendent.

The mean gamma-like event rate 〈Rγ̃〉 over the whole sky can be divided into a mean
hadron rate 〈RHad〉, a mean photon rate 〈Rph〉 and a mean electron rate 〈Rel〉

〈Rγ̃〉 = 〈RHad〉+ 〈Rph〉+ 〈Rel〉. (5.24)

The hadron and photon events make up the background and, thus, together give the mean
background rate 〈RBG〉 = 〈RHad〉+〈Rph〉. The relative amount of electrons in the total amount
of gamma-like events εel was calculated in Section 5.2.5 and amounts to 63 % (MSSG < 0.6).
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This simultaneously gives the relative amount of background events in the entire gamma-like
event sample as 1− εel. Thus, Equation 5.24 is rewritten as

〈Rγ̃〉 = 〈Rel〉+ (1− εel)〈Rγ̃〉. (5.25)

The mean electron rate 〈Rel〉 is then given by

〈Rel〉 = εel 〈Rγ̃〉. (5.26)

Note: Equation 5.26 can be generalized to all directions of the sky. However, in the case of
anisotropy the fraction εel depends on the observation direction and the equation is valid in
the following form

Rel(ϑ, φ) = εel(ϑ, φ)Rγ̃(ϑ, φ). (5.27)

Here, ϑ and φ are spherical coordinates (in this study usually Galactic coordinates are used).

5.3.2 Dipole Model

In previous studies of cosmic-ray anisotropies by, e.g. IceCube (Abbasi et al. 2011) it has been
common to calculate an angular power spectrum from the measured sky map. In this study only
94 directions of the sky were probed. The sky coverage available is approximately 1.5% in a none
continuous way14. Such an extreme windowing function15 has not been investigated in detail
yet and may lead to meaningless results when trying to calculate the power spectrum. Several
models predict a dominating dipole anisotropy in case of electron and positron acceleration by
pulsars (di Bernardo et al. 2011) or even by production via self-annihilating or decaying dark
matter (Borriello et al. 2012). Thus, the simple case of a pure dipole anisotropy is studied first.
This is done by modeling the electron arrival rates with a simple dipole model. The electron
event rate Rel = Rel(R0,el, δ, cosϑ) in each direction of the sky for a dipole with amplitude δ
and a fixed probed direction of the dipole maximum is modeled by

Rel = R0,el (1 + δ cosϑ). (5.28)

Here, cosϑ is the angular distance between the maximum of the dipole event rate and the
present position (e.g. pointing position). Both, δ and R0,el are free parameters of the model
if the direction of the dipole maximum is fixed in advance. If the direction of the maximum
of the dipole is not fixed this introduces two more free parameters defining the best-fit dipole
position (see below). Thus, the dipole model for finding the global best-fit dipole has four free
parameters.

A dipole model for the electron event rates translates into the following prediction for
gamma-like event rates assuming that hadronic and photon background events are isotropic

14Calculated for 94 pointings with a solid angle of 2 msr.
15The windowing function describes the response of an experiment to the power in a particular mode of the

underlying fluctuation spectrum. A windowing function often leads to a coupling of the modes. Mathematically,
the convolution of the real spectrum with the windowing function gives the measured spectrum.
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compared to electrons (〈Rhad〉+ 〈Rph〉 = (1− εel)R0,γ̃):

Rγ̃(R0,el, δ, cosϑ) = 〈Rhad〉+ 〈Rph〉+R0,el (1 + δ cosϑ)

= (1− εel)R0,γ̃ + εelR0,γ̃ (1 + δ cosϑ)

= R0,γ̃ (1 + εel δ cosϑ).

(5.29)

The normalization of the γ-like event rates R0,γ̃ is translated into the normalization of the
electron event rates

R0,el = εelR0,γ̃ . (5.30)

To calculate the measured electron rate for each pointing, the isotropic arrival rate of hadrons
and photons is subtracted from the total γ-like event rate

Ri,el = Ri,γ̃ − (1− εel)R0,γ̃ . (5.31)

The error of the electron event rate is given by the error of the gamma-like event rate

σ2
i,el = σ2

i,γ̃ . (5.32)

χ2-Fitting

For the dipole anisotropy analysis a standard chi-square method for observables with Gaussian-
distributed errors is employed

χ2 =
∑
i

[Ri,el − R0,el (1 + δ cosϑi)]
2

σ2
i,el

. (5.33)

Applying Equations 5.30 and 5.31 to Equation 5.33 the chi-square function is given by

χ2 =
∑
i

[Ri,γ̃ − (1− εel)R0,γ̃ − εelR0,γ̃ (1 + δ cosϑi)]
2

σ2
i,el

. (5.34)

The best-fit parameters for the normalization of the γ-like event rates R0,γ̃ and the dipole
amplitude δ are found by minimizing the chi-square function. A grid-scan of the parameters
R0,γ̃ and δ is performed. This procedure, in future called local fits for short, finds a minimum
χ2 and corresponding best-fit parameters for each locally probed direction of the sky (fixed
directions!).

To find the global minimum, that is the direction of the dipole maximum fitting the data
best, the procedure of finding the best-fit parameters is the same as in the local-fits approach
except that the overall minimum of the χ2 distribution and corresponding best-fit parameters
are found. Thus, in this global fit two more free parameters, the angular coordinates of the
dipole maximum (longitude l and latitude b either in galactic or equatorial coordinates) are
involved. The angular distance cosϑi

16 between the dipole maximum (l, b) and the position of
16The formula for calculating the angular distance between two positions on a sphere was derived in spherical

coordinates.
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Figure 5.18: Left: Sky map color-coded with the values of χ2 for each possible direction of
the maximum of the electron rate in the sky. The white circles depict the 94 pointings and
are scaled with the respective observation time (range from 0.24 to 173 h). The three pulsars
Vela, Monogem and Geminga as well as the Galactic Center are also shown and marked by
white triangles. The black asterisk indicates the position of the global minimum of χ2. Right:
Graph of electron-arrival rates (black, normalized to the best-fit R0,el,best) relative to the best-
fit direction. The statistical (blue error bars) and systematic (green error bars) errors are
shown. The dipole model for the best-fit dipole amplitude is represented by the blue line. The
green dashed lines represent the minimum and maximum of the predicted electron arrival rates.
In addition, information about the χ2-fit are given.

pointing i (direction for which to predict the electron arrival rate li, bi) is given by

cosϑi = cos(bi) cos(li) cos(b) cos(l)

+ cos(bi) sin(li) cos(b) sin(l)

+ sin(bi) sin(b).

(5.35)

Thus, the dipole model for finding the global best-fit dipole has four free parameters.
Figure 5.18 (left-hand panel) shows the result of the χ2-fit for every probed direction in

the sky (local fits) and the result of the global fit for the standard MSSG < 0.6 data set. The
global best-fit direction is located in a direction of the sky where no pointings are located. The
global minimum χ2

min = 211.80 corresponds to a reduced global chi-square χ2
min/d.o.f. = 2.35

for 90 d.o.f. (94 pointings minus 4 free parameters). As discussed in Section 4.1.1 a good fit
requires a reduced χ2 of approximately one with a correspondingly large p-value. The p-value
found here is smaller than 10−11 corresponding to a significance larger than 5σ. Consequently,
either assumptions made about the errors were wrong or the dipole model is not sufficient to
describe the measured arrival rates of cosmic-ray electrons.

In the right-hand panel of Figure 5.18 the electron rates (normalized to R0,el,best) in de-
pendence on their distance to the best-fit direction are shown together with the best-fit dipole
model. The rates scatter around the best-fit dipole model. The relative impact of statistical
and systematic errors differs between the pointings, since individual statistical and systematic
errors have been assigned to each pointing. In most pointings systematic effects dominate the
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Figure 5.19: Left: Sky map color-coded with the best-fit values for the dipole amplitude δbest for
each possible direction of the maximum of the electron rate in the sky. Right: Corresponding
map for the best-fit normalization R0,el,best. The gray circles depict the 94 pointings and are
scaled with the respective observation time (range from 0.24 to 173 h). The three pulsars Vela,
Monogem and Geminga and the Galactic Center are marked by a gray (left) or black (right)
triangle. The black asterisk indicates the position of the global minimum of the χ2-fit.

error, but in some pointings (especially those that have been observed only in a few runs) the
statistical error dominates.

The global best-fit dipole amplitude and best-fit R0,el,best are given in the right-hand panel
of Figure 5.18. The global best-fit dipole amplitude is rather large (43%), while the global
best-fit R0,el,best does not differ much from the weighted mean electron rate 〈Rel〉 = 1.12 · 10−2

1/s. The corresponding best-fit values for the local fits are shown in Figure 5.19. It should be
noted that the best-fit dipole amplitude δbest is largest in the direction where χ2 is minimal,
while the R0,el,best are relatively constant and do not vary much over the sky. Nevertheless,
they also peak at the global best-fit position.

The global best-fit position is located in a region of the sky, where no observational data
is available. In this region the predicted arrival rates are not constrained by observations so
that the free parameters of the fit can obtain relatively large values and consequently relatively
better fits to the data, when probing such directions.

The large minimal χ2/d.o.f. and the resulting very small p-value point towards large dis-
crepancies between the observational data and the predictions made by the dipole model.
Consequently, also the predictive power of the best-fit parameters is impaired and the result
cannot be interpreted as the detection of a dipole anisotropy in the arrival direction of cosmic-
ray electrons with a dipole amplitude of 43%.

∆χ2-Test

The chi-square calculated above constitutes a self-consistent way of evaluating how well a dipole
model for the arriving electrons can describe the event rates measured with H.E.S.S. To find a
statistical measure for the compatibility of the event rates with an isotropic distribution, the
chi-square obtained with the dipole model is compared to an isotropic model, which assumes
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that the electron arrival rate is identical in all directions of the sky. An unbiased estimator for
the isotropic electron rate is calculated employing the relationship in Equation 5.26 from the
weighted mean of the gamma-like event rate

〈Rγ̃〉 =

∑
i
Ri,γ̃/σ

2
i,γ̃,stat∑

i
1/σ2

i,γ̃,stat

. (5.36)

The isotropic chi-square is given by

χ2
isotropic =

∑
i

(Ri,el − 〈Rel〉)2

σ2
i,γ̃

, (5.37)

with Ri,el = Ri,γ̃ − (1 − εel)〈Rγ̃〉. The measure of the compatibility of the data with isotropy
is given by

∆χ2
0(δbest, R0,γ̃) = χ2(δbest, R0,γ̃)− χ2

isotropic. (5.38)

The ∆χ2-test is applied here even though, strictly speaking, only the first two criteria discussed
in Section 4.2.3 (Gaussian distributed random variables and nested models) are fulfilled. The
third criterion is not, but the problem is assessed in more detail in the subsection ’Significance
Calculation via Monte Carlo Simulations’. Nonetheless, the method is used here for a simple
first approximation.

As discussed in Section 4.1.1 the number of degrees of freedom of the fit is given by the
number of data points Ndata (here equivalent to the number of pointings) minus the number
of free parameters. In the case of the isotropic model effectively δ was set to zero, so that only
R0,el is fitted to determine R0,el,best = 〈Rel〉17.

In the dipole model with a fixed probed direction of the sky (local view) there are two free
parameters (δ, R0,γ̃). Consequently, the ∆χ2

0(δbest, R0,γ̃) is χ2 distributed with one degree of
freedom DF = (Ndata − 1) − (Ndata − 2) = 1. From the χ2 distribution the p-value for a
hypothesis test18 is calculated as explained in Section 4.2.

For the global best-fit dipole the procedure is the same except that the coordinates of the
dipole maximum represent two more free parameters, so that the number of free parameters of
the fit is four. Thus, the ∆χ2

0(δbest, R0,γ̃ , lbest, bbest) is χ2 distributed, but with three degrees
of freedom DF = (Ndata − 1)− (Ndata − 4) = 3.

Figure 5.20 shows the results of the ∆χ2-test for every probed direction of the sky (local
fits), as well as for the global fit. The sky map in the left-hand panel shows the ∆χ2

0 distribution
over the sky, while the corresponding local-fit p-value distribution is shown in the right-hand
panel. Further, the p-value of the global fit is given in the right-hand panel (for the calculation
and general meaning of p-values see Section 4.2). The minimum of the local p-values is not
equivalent to the p-value of the global fit, because the number of degrees of freedom of the local
∆χ2

0s (DF = 1) and the global ∆χ2
0 (DF = 3) differ. The global p-value (p = 4.28 · 10−8)

is smaller than 5.7 · 10−7, which corresponds to a 5σ effect. Thus, the null hypothesis that
17In fact the weighted mean of the electron arrival rates is equivalent to the best-fit R0,el parameter for a

χ2-fit, where only statistical errors are taken into account.
18The null hypothesis is isotropy and the alternative hypothesis is the dipole model.
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Figure 5.20: Left: Sky map color-coded with the values of ∆χ2
0 for each possible direction of the

maximum of the electron rate in the sky. Right: Sky map color-coded with the corresponding
p-values. In both maps the white circles depict the 94 pointings and are scaled with the
respective observation time (range from 0.24 to 173 h). The three pulsars Vela, Monogem and
Geminga as well as the Galactic Center are shown and marked by white triangles. The black
asterisk indicates the position of the global minimum of ∆χ2

0.

electrons arrive isotropically can be discarded. The other way around it does not mean that
the dipole model is correct. The improvement is simply large enough that the dipole term leads
to a significant improvement of the fit, while the fit is not matching the data at a confidence
level > 5σ, neither for the isotropic model nor for the dipole model. Thus, higher orders of
multipoles appear to play a significant role19. Two different strategies to access these higher
order anisotropies are presented in Sections 5.3.8 and 5.3.10.

F -Test

The ∆χ2 does not take into account that a certain improvement of a fit is always expected
when introducing additional free parameters. In this study a complex dipole model with four
free parameters (global fit) / two free parameters (local fits) is compared to a simple isotropic
model with one free parameter. The relative increase in the ∆χ2 (going from the dipole model
to the isotropic model) is expected to equal the relative increase in degrees of freedom (see
Section 4.2.2), which is 3 % in the global view and 1 % for the local view.

In this application, where the reduced χ2 is relatively large and the fit of the data conse-
quently bad, the F -test has another advantage over the ∆χ2-test. Due to the definition of the
f test statistic it takes the large absolute value of the χ2 into account. The problem is that if
the fit is bad giving a large χ2 it is easier to achieve large ∆χ2 values when adding additional
free parameters to the model.

Thus, the F -test discussed in Section 4.2.2 is used to resolve the question whether the more
complex model fits the data in fact significantly better than the simple isotropic model, or just
because of its larger number of free parameters (two as compared to one for local fits and four as

19This conclusion can already be drawn implicitly from the χ2-fit result presented in the previous subsection
χ2-Fitting.
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Figure 5.21: Left: Sky map color-coded with the f -values for each possible direction of the
maximum of the electron rate in the sky. Right: Sky map color-coded with the corresponding p-
values calculated from the F -distribution. In both maps the gray circles depict the 94 pointings
and are scaled with the respective observation time (range from 0.24 to 173 h). The pulsars
Vela, Monogem and Geminga as well as the Galactic Center are marked by gray triangles. The
black asterisk indicates the position of the global maximum of f .

compared to one for the global fit). The same criteria of applicability that are valid for the ∆χ2-
test also apply to the F -test. Again, the first two criteria discussed in Section 4.2.3 are fulfilled
(event rates follow a Gaussian distribution and the two models are nested), while the third
criterion is strictly speaking not fulfilled, but further discussed in the subsequent subsection
’Significance Calculation via Monte Carlo Simulations’. The F -statistic is calculated following
Bevington (2003)

f =
(χ2

isotropic − χ2(δbest, R0,γ̃))/(DFisotropic −DFdipole)

χ2(δbest, R0,γ̃)/DFdipole
. (5.39)

Here, DFisotropic = Ndata − 1 are the d.o.f. of the isotropic model and DFdipole = Ndata − 2
(for local fits with fixed directions) or respectively DFdipole = Ndata − 4 (for the global fit)
are the d.o.f. of the dipole model. As discussed in Section 4.2 the p-value (p) is calculated
using the cumulative distribution function of the F -distribution F (x, dn, dd), where dn are the
d.o.f. of the nominator (dn = DFisotropic − DFdipole) and dd the d.o.f. of the denominator
(dd = DFdipole)

p = 1− F (f,DFisotropic −DFdipole, DFdipole). (5.40)

The p-value gives the probability that a system where the null hypothesis (here isotropic
electron arrival rates) is true produces a data set with an f -value at least as extreme as the
one found in the measured data set due to random fluctuations.

In this context, the resulting f -values and corresponding p-values are shown in the sky maps
of Figure 5.21. The f -value for the global fit approach is much smaller than the maximum of
the f -values of the local fits with fixed probed directions. As expected the directions of both
maxima are the same. The different f -value magnitudes are caused by the fact that the
definition of the f -value itself depends on the d.o.f. of the compared models. Analogously, the
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minimum of the local-fit p-values and the global p-value differ by two orders of magnitude. In
general, the obtained p-values are 5 orders of magnitude smaller than the p-values calculated
from the ∆χ2-test (compare the right-hand panels of Figures 5.20 and 5.21).

In conclusion, the improvement in ∆χ2 is most likely only partially caused by a higher num-
ber of free parameters. The p-value of the F -test is 2.17 · 10−3 for the global fit, corresponding
to a significance larger than 3σ (p = 2.7 · 10−3). Therefore, the dipole model explains the data
significantly better than the isotropic model at the 3σ level. Consequently, the three addi-
tional free parameters, describing the dipole term, should be included in a model of cosmic-ray
electron arrival rates. Contrariwise, this does not imply the detection of a dipole anisotropy
since the dipole model does not fit the data well (result of χ2-test at beginning of this Section)
as already discussed in the last subsection concerned with the ∆χ2-test.

Nonetheless, both, the estimation of the significance of the F -test and the ∆χ2-test suffer
from significant associated problems. The ∆χ2-test takes neither the absolute value of the χ2

into account nor accounts it for the improvement that is automatically achieved by introducing
additional free parameters. The F -test accounts for both, but is strictly speaking not applicable
(as also the ∆χ2-test) because the null value of the additional parameter of the more complex
model is at the boundary of the set of possible parameter values, which is mathematically not
allowed (Protassov et al. 2002, see also Section 4.2.3). In the case of the dipole model, the
additional parameter is the dipole amplitude which is set to zero for the simple model. Since
the value range for the dipole amplitude is constrained to δ ≥ 0, the additional parameter δ is
in fact at the boundary of the possible parameter values.

Nonetheless, the F -test is probably a good measure, because in principle δ could be allowed
to obtain negative values, which would just mean that the dipole minimum is located in the pixel
direction. This would lead to a symmetric, second minimum in the ∆χ2-value sky distribution
and a respective second maximum in the f -value sky distribution. Thus, the F -test should
lead to useful results.

To ensure that this argumentation is actually correct simulations of the ∆χ2 and f test
statistics distributions were performed (for isotropy) and are presented in the next subsection.
These simulations can help to estimate the true significance of the result.
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Significance Calculation via Monte Carlo Simulations

N simulations of the null hypothesis, in this case isotropy, are performed. The pointing-pattern
and live times from the real data set are used. The event rates for every pointing are drawn
from a Gaussian probability distribution, where the weighted mean electron rate 〈Rel〉 is used
as the estimate for R0,el of the null hypothesis and the width of the distribution is determined
by the statistical and systematic errors present in the real data set for each pointing.

The dipole analysis (∆χ2 and f -value calculation for every probed direction in the sky
and the global values) is performed on each simulated data set. It is performed for a sky
map with 192 pixels (NSIDE = 4), which is a much smaller resolution than the one used in
the previously shown sky maps (NSIDE=64, 49 152 pixel). It was found, that the resulting
−∆χ2

0 = 33.49 and fbest,global = 4.66 and the minimum of the f -value (local fits) sky map
fbest,min = 14.30 are smaller than the corresponding values obtained with higher resolution
maps (which is expected because with a higher resolution also a smaller χ2 will be reached),
but the basic results of the fit are the same. Therefore, it was chosen to use low resolution sky
maps for the simulations saving computing time. 10 000 simulations of isotropically arriving
electrons were performed. This amount of simulations was a compromise between the desired
achievable significance level (here up to p-values of 10−4) and the amount of computational
time required. 10 000 simulations took approximately 1 day, so that 100 000 simulations would
already require 10 days and 1 million simulations 100 days of computing time20.

From the resulting values of test statistics (∆χ2 and f) two different probability density
functions were retrieved:

1. Global view : The probability density functions of the global ∆χ2
0,global and fglobal values

for the best-fit parameters of the global fit.

2. Best-fit pixel view : The probability density functions of ∆χ2
0,best and fbest values for

the overall best-fit pixel of the local fits. The overall best-fit pixel is the pixel where the
minimum χ2 of all local fits (probed directions of the sky) was found.

The probability density function ρ is given by the number of simulations within a certain bin of
TS-values (test statistic values) Nsimu,i divided by the total number of simulations Nsimu,total:

ρi = Nsimu,i/Nsimu,total (5.41)

Figure 5.22 shows the simulated probability density functions for the global best-fit ∆χ2
0,global

and the ∆χ2
0,best for the best-fit pixel of the measurement, as well as the theoretical χ2 distri-

bution for 3 d.o.f. (χ2(3)) and 1 d.o.f. (χ2(1)), which were the distributions previously used
to calculate the p-values of the corresponding ∆χ2-tests (see also Equation 4.8). At small
∆χ2

0,global the theoretical 3 d.o.f. probability density function and the corresponding simulated
global one are very similar, but they start to differ at ∆χ2

0,global > 10, where the theoretical
function proceeds steeper than the simulated global one. The simulated best-fit pixel proba-
bility density function ρ(∆χ2

0,best) lies a little bit below the theoretical χ2(1) function. Due
to insufficient statistics at ∆χ2

0,best > 15 it is not possible to judge from Figure 5.22 whether

20This time could, in principle, be reduced employing parallel computing.
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Figure 5.22: Probability density functions for ∆χ2
0 are shown. The probability density functions

from MC simulations for the global view ρ(∆χ2
0,global) and for the best-fit pixel ρ(∆χ2

0,best) are
shown as red and blue histograms. The vertical bars indicate the statistical Poisson error (

√
N)

of the simulations. The corresponding theoretical χ2 distributions for 3 d.o.f. (χ2(3)) and 1
d.o.f (χ2(1)) are represented by red and blue markers. The vertical line indicates the measured
value of ∆χ2

0 (for low resolution).

the two functions evolve away from each other similarly to the global functions ∆χ2
0,global and

χ2(3).

In general, the MC and theoretical probability density functions of the global fit lie above
the functions for the overall best-fit pixel of the local fits, except in the very first bin (very small
∆χ2

0), where the probability density for the best-fit pixel of the local fits is much larger than
in the respective value of the global fit. This means that the probability to find large values of
∆χ2

0,best by chance (in the case of isotropy) is much larger when considering the whole sky (as
one would expect).

Figure 5.23 shows the simulated probability density function of the global best-fit fglobal-
values and of the fbest for the best-fit pixel of the measurement (local fits), as well as the
theoretical f -distributions for dn = 3 and dd = 90 in the global view and dn = 1 and dd = 92 for
local fits with a fixed probed direction. These are the probability distributions previously used
to calculate the p-values of the corresponding F -tests (see also Equation 4.8). The simulated
global fglobal and theoretical f(3, 90) probability density functions differ only mildly. The
simulated best-fit pixel probability density function lies a little bit below the theoretical function
f(1, 92). In this case the f(1, 92) function seems to slightly overestimate the probability to
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(for low resolution).

find large f -values up to 1021.
The global MC probability density function and the corresponding theoretical f(3, 90)-

distribution show the overall best agreement, while the global χ2(3)-density function seems
to underestimate the probability density function. This explains the relatively small p-values
obtained with the ∆χ2-test. The p-value from the F -test, thus, seems to be the more reliable
quantity.

The p-value calculated from simulations is given by the number of simulations resulting
in a ts larger than the measured tsdata (N(tssimu ≥ tsdata)) divided by the total number of
simulations Nsimu. It is calculated from the MC probability density functions via the following
equation:

p = N(tssimu ≥ tsdata)/Nsimu (5.42)

Employing χ2 statistics the measured values of ∆χ2
0 are larger than any value occurring in a

MC simulation, making it impossible to calculate actual p-values. In the case of the f statistic
the measured f -value of at least the global view fglobal = 5.26 lies within the corresponding
MC probability density distribution. Nonetheless, since the global MC f -distribution and the

21It should be noted that the f -values found in the global view and the best-fit pixel view are not the same
analogously to Section 5.3.2, because their values depend on the numbers of free parameters of the simple model
and the complex model (as do the f -distributions).
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Test statistic TSglobal pglobal pglobal,MC TSlocal plocal plocal,MC

χ2 211.803 < 10−11 - - - -
∆χ2 37.149 4.28 · 10−8 ∼ 10−4 − 10−5 37.149 1.10 · 10−9 ∼ 10−5 − 10−6

f 5.262 2.17 · 10−3 ∼ 10−2 − 10−3 16.136 1.20 · 10−4 ∼ 10−3 − 10−4

Table 5.5: Summary of the results of the χ2-fit and the different hypothesis tests discussed in
this Section. For the χ2-test only the p-value derived from the χ2-distribution is presented. For
the ∆χ2 and the f test statistics the p-values derived from the χ2 and f probability density
functions are shown as well as approximate ones from MC simulations.

theoretical f(3, 90) distributions are very similar the previously calculated p-value seems to be
a good estimator of the true p-value.

In summary, χ2-distribution and f -distribution p-values suggest a wide range of possible
p-values between 10−3 and 10−8 as shown in Table 5.5. From MC simulations of the χ2 prob-
ability density distribution in Figure 5.22 it can be concluded that the theoretical distribution
underestimates the probability density function and, thus, also the p-value. Consequently, the
∆χ2

0 test statistic is not χ2 distributed and, thus, the p-values calculated from the χ2 distri-
bution are unreliable. Most likely there are two reasons responsible for this behavior. First,
the ∆χ2 distribution does not take the difference between the number of the free parameters
of the two models into account. The improvement of the fit due to the larger number of free
parameters compulsorily leads to higher ∆χ2 values. Second, a large χ2 (bad fit) of the com-
plex model may also correspond to relatively larger ∆χ2 values22. Both aspects are not taken
into account by the ∆χ2-test, but they are accounted for by the F -test. Thus, this numerical
experiment confirms the presumption that p-values obtained by the F -test are more reliable.

If the probability density function of the χ2 in the global view actually saturates or continues
to drop much slower than the theoretical function, the corresponding p-value would possibly
be of the order of 10−4 to 10−5. Consequently, the real p-value is estimated to be smaller than
10−3 and lies probably between 10−3 and 10−5.

22Note: Very small χ2 values can have the same effect.
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5.3.3 Systematic Effects

Since statistics of gamma-like events used in this study are rather small it is difficult to extract
reliable information about systematic effects introduced by observational conditions. Gamma-
like and hadron-like events were subject to the same observation conditions, e.g. weather
and zenith angle distribution. Thus, we can benefit from the large sample of hadron-like (=
background) events in order to assess the systematic uncertainties.

Normalized background rates are displayed in the left-hand panel of Figure 5.24. The arith-
metic mean of the run-wise background event rates (〈Ri,BG〉 = 4.15 Hz) is three/four orders
of magnitude larger than the arithmetic mean of the gamma-like rates (〈Ri,−0.6<MSSG<0.6〉 =
1.35·10−2 Hz and 〈Ri,MSSG<−0.6〉 = 3.44·10−3 Hz) shown in the right-hand panel. The normal-
ized background arrival rates are fit reasonably well by a Gaussian illustrated by a green line.
Due to the high hadron-like event rates, statistical fluctuations do not play a significant role in
their distribution. Therefore, the shape and width of the background distribution is dominated
by systematic effects. The distribution of gamma-like event rates is much broader, since it con-
tains significant contributions from both systematic and statistical effects. Additionally, the
existence of an anisotropy in the arrival rates of cosmic-ray electrons would introduce further
broadening of the gamma-like rate distribution.

The broadening of the gamma-like rate distribution can be characterized by comparing the
relative standard deviation of the gamma-like rate distribution σ̂γ̃ = σγ̃/µγ̃ to the relative
systematic error estimated from the hadron-like event sample σ̂BG = σ̂syst = σBG/µBG and the
statistical error calculated from the mean gamma-like event rate µγ̃ and the average live time
t of a single run σγ̃,stat =

√
µγ̃ t/t. The average live time of the observations is approximately

25.2 minutes. The relative variance expected from the relative systematic error and the relative
statistical error of the gamma-like event rates is given by σ̂2

γ̃,stat + σ̂2
syst. All expectation values

and standard deviations used are obtained from Gaussian fit functions of the distributions.
The relative excess variance is defined by

σ̂2
γ̃,excess = σ̂2

γ̃ − (σ̂2
γ̃,stat + σ̂2

syst). (5.43)

The relative statistical error σ̂γ̃,stat, the relative systematic error σ̂syst, the measured relative
standard deviation σ̂γ̃ and excess variance σ̂2

γ̃,excess of the gamma-like rate distribution are sum-
marized in Table 5.6. For all gamma-hadron separation cut choices a relative excess variance
that cannot be explained by statistical and systematic variances of 5 % to 9 % remains.

Possible sources of systematic rate fluctuations are the season of the year, the azimuth and
zenith angles of the measurement and the year of the observation. Variations of the median,
the 68 % percentile width, the mean and the standard deviation are investigated in dependence
on these quantities in Figure 5.24. A comparison of the median/68 % percentile width and
the mean/standard deviation is useful, because it gives information about the symmetry of the
distribution and whether there is for example a tail in the distribution23.

The right ascension is a measure for the season of the year when the measurement was
carried out (second row of Figure 5.24). The standard error as well as the 68 % percentile

23The mean is more sensitive to a tail, while the median is more stable.
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Figure 5.24: First row: Histograms of normalized hadron-like (left-hand panels) and gamma-
like (right-hand panels) event rates of all observation runs. For the hadron-like events the
standard cut MSSG > 5 is shown. For gamma-like events a strict cut MSSG < -0.6 and
an intermediate cut -0.6 < MSSG < 0.6 are shown. The combination of both gives the
distribution of the standard-cut sample (MSSG < 0.6). The results of Gaussian fits (green
lines) of the distributions are shown in the red and blue boxes. In the second to fourth row the
dependence of the event rates on the right ascension, the declination, zenith angle and year of
the observation run are shown in terms of the median/68 % percentile width (colored) and the
mean/standard error (black) of the binned distributions of the event rates.
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γ-hadron cut µγ̃ [Hz] σ̂γ̃ σ̂γ̃,stat σ̂syst σ̂2
γ̃,excess

MSSG < 0.6 1.67 ·10−2 0.3419 0.1986 0.1423 0.0572
- 0.6 < MSSG < 0.6 1.35 · 10−2 0.5789 0.4770 0.1423 0.0873

MSSG < -0.6 2.91 ·10−3 0.3501 0.2212 0.1423 0.0534

Table 5.6: The relative statistical error σ̂γ̃,stat, the relative systematic error σ̂syst, the measured
relative standard deviation σ̂γ̃ , the relative excess standard deviation σ̂γ̃,excess and variance
σ̂2
γ̃,excess of the gamma-like rate distribution are summarized for all three investigated gamma-

hadron separation cut choices. The systematic error is calculated from hadron-like events with
MSSG > 5.

values lie well within the total width of hadron-like and gamma-like event distributions. No
relevant systematic effect with the season is visible in the data, neither for gamma-like nor
hadron-like events.

The combination of zenith angle cut (z< 30◦) and given declination angles constrain the
azimuth angles contained within a declination band shown in the third row of Figure 5.24. A
small systematic effect in dependence on the declination angle is found for gamma-like events
for the strict cut choice. The systematic variation is of the order of 15-20 %, so well within
the sensitivity to detect this as major contribution to the excess noise. The variation found in
the hadron-like event sample in the left-hand panel of the third row of Figure 5.24 are much
smaller and not dominating.

This effect is possibly related to the East-West effect (Olive et al. 2014). Low-energy cosmic
rays are deflected by the Earth’s magnetic field, because the presence of the Earth effectively
shadows certain trajectories, which are therefore forbidden. In a certain range of momenta and
zenith angles positively charged cosmic-ray particles cannot arrive from the East, while they do
arrive from the West. This effect should affect electrons more strongly, because their energies
are relatively smaller than the energies of the hadrons present in the data sample, so that their
gyroradii are also smaller. However, this effect should be subdominant, because showers from
east and west are most likely mixed in some of the declination bands.

Another effect, possibly capable of causing the small effect in dependence of the declination
angle is the North-South effect. The geomagnetic field influences the shower development and
distorts the images of the air showers in the telescopes. The magnetic field vector depends
on the location of the site considered. Further, the influence of the magnetic field on the
development of a particle shower also depends on the direction from which the particle is
approaching. In the case of the H.E.S.S. observatory (southern hemisphere) the vector of the
magnetic field and the shower axis are almost parallel for particles approaching from the South
and the influence of the magnetic field is negligible. Particles approaching from the North on the
contrary experience a Lorentz force and electron-positron pairs in the air shower are deflected.
As a consequence the effective area of the H.E.S.S. telescopes is most likely somewhat larger
for particles approaching from the South (Krause 2011). On the other hand this effect appears
to be disappearing at energies above 100 GeV in the study of Krause (2011). Since particle
energies larger than 600 GeV relevant for this analysis were not studied by Krause (2011) it is
uncertain whether this effect could account for the observed rate variations. Protons should be
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less influenced by this effect, because they initiate air showers deeper in the atmosphere due
to their relatively higher energies (in this data sample). Thus, the electron-positron pairs of
proton initiated showers would be subject to the influence of the Earth’s magnetic field for a
shorter period of time.

A very small systematic effect is found in dependence on the zenith angle for background
event rates (fourth row of Figure 5.24). The average background arrival rate drops with smaller
zenith angle. This behavior is counter intuitive because the effective area and, thus, the trigger
rate usually decline with larger zenith angle (except at very high energies of several TeV).
However, this effect is still fully reflected in the width of the total background distribution.

The largest variations of gamma-like and background arrival rates are found in dependence
on the year of the observation (fifth row of Figure 5.24). These variations appear not to
be systematic and are probably due to long term changes in the observation conditions and
possibly the optical efficiency of the instrument. These rate variations appear to be similar in
background and gamma-like events. Thus, they can be taken into account by estimating these
systematic effects from the background event data as explained below.

Spearman’s Rank Correlation between Gamma-like and Hadron-like Event Rates

Since gamma-like and hadron-like event rates were obtained under the same observation condi-
tions the minor systematic effects visible in the hadron-like event data should also be present in
the gamma-like event data. Thus, there should be a relationship between the measured event
rates of both event samples. This implied relationship can be assessed using Spearman’s rank
correlation coefficient (for a detailed discussion see Section 4.3.2). It was chosen because this
study is interested in any kind of monotone relationship without requiring linearity. Spearman’s
rank correlation coefficient is calculated both, on the run-wise level and on the pointing-wise
level between gamma-like event rates Ri,γ̃ (e.g. MSSG < 0.6) and hadron-like background
event rates Ri,BG (MSSG > 5).

Figure 5.25 shows gamma-like and hadron-like event rates as well as the calculated corre-
lation coefficients and the corresponding p-values. Here, the p-value gives the probability that
an uncorrelated system produces a correlation coefficient at least as large as the one measured
between gamma-like and hadron-like event rates in this study. Thus, it gives information about
the significance of the correlation.

On the run-wise level a significant moderate positive correlation of 0.45 with a p-value much
smaller than 10−7, corresponding to an effect with a significance larger than 5σ, is found for
the standard MSSG < 0.6 cut. For the hard MSSG < -0.6 cut a low positive correlation of
0.28 with a likewise small p-value and high significance is found.

The correlation coefficients on the pointing and run-wise levels (Figure 5.25) are very sim-
ilar, while the p-values are much larger on the run-wise level. However, for the standard cut
the p-value is still smaller than 10−7 (significance larger than 5σ) on the pointing-wise level.
Even for the strict cut the significance of the correlation is at the 3σ-level on the pointing-wise
level (p-value = 3.25 · 10−3).

The significance on the pointing-wise level generally appears smaller than on the run-wise
level, because the p-values are determined via a t-test (Section 4.3.2) and statistical errors are
not taken into account. Altogether, it can be concluded that there is a significant monotone re-
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Figure 5.25: Left: Relationship between gamma-like (standard cut: MSSG < 0.6 and hard cut:
MSSG < -0.6) and hadron-like event rates (MSSG > 5) on the run-wise level. Spearman’s
rank correlation coefficients and the corresponding p-values are shown. Right: Relationship
between gamma-like (standard cut: MSSG< 0.6 and hard cut: MSSG< -0.6) and hadron-like
event rates (MSSG > 5) on the pointing-wise level. Spearman’s rank correlation coefficients
and corresponding p-values are shown.

lationship/correlation between the two quantities and therefore hadron-like background events
can be used to estimate systematic effects in the gamma-like event data.

Calculating the Relative Systematic Error

From cosmic-ray experiments, e.g. Ice Cube and ARGO-YBJ it is known that cosmic rays
arrive isotropically at Earth with relative deviations less than 10−3 (e.g. Abbasi et al. 2011 and
ARGO-YBJ Collaboration 2013). These are the same particles of which the hadron-like event
data consists. The level of anisotropy searched for in this study is several orders of magnitude
larger so that the hadron-like event arrival rate can be assumed to be perfectly isotropic. By
definition systematic effects introduce deviations from this isotropy in the measured hadron-
like events. Thus, these deviations must be accounted for in this study. The systematic effects
vary between the different pointing positions, because for each pointing a different number of
runs is used with different distributions of zenith angles, right ascensions and declinations, and
also of inaccessible weather conditions. The relative systematic error is calculated in a two
step approach. First, the unbiased estimator of the sample variance of all run-wise measured
background rates is calculated for each pointing. The relative sample error of each pointing i
is given by

εi,sample =

√
1

n−1

∑n
j=1(Ri,j,BG −Ri,BG)2

Ri,BG

. (5.44)

Here, n is the number of runs corresponding to each pointing i. Ri,BG = 1
n

∑n
j=1Ri,j,BG is the

sample mean of the background rates of each pointing. If there is only one run for a pointing

123



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

the relative sample error will be set to zero. The relative sample error alone is not sufficient
to account for the entire systematic deviations, because it does not account for the fact that
the distribution of observation conditions (e.g. zenith angle, optical efficiency and weather
conditions) of the runs contributing to each pointing are very different. This leads compulsory
to an offset of the sample mean of each pointing from the mean background rate of the entire
data set. This offset is accounted for in a second step. The overall relative systematic error for
every pointing is calculated by applying a simple χ2 method. The relative systematic error due
to the offset εi,offset is raised until the measured hadron event rate is consistent with isotropy for
each pointing. If the χ2 defined below equals one, the hadron-like event rates for each pointing
are consistent with the mean measured hadron-like event rate24. The χ2 used to calculate the
systematic error is given by

χ2
i =

(Ri,BG − 〈R〉BG)2

σ2
i,BG,stat + (εi,sample ×Ri,BG)2 + σ2

i,BG,offset

!
= 1. (5.45)

Here, the weighted mean background rate is given by

〈R〉BG =
∑
i

Ri,BG/(σ
2
i,BG,stat + (εi,sample ×Ri,BG)2)

1/(σ2
i,BG,stat + (εi,sample ×Ri,BG)2)

. (5.46)

The systematic error necessary to account for the offset of the mean sample rates of the point-
ings from the overall weighted mean rate of the hadron-like events is given by σi,BG,offset =
εi,offset × Ri,BG. The total systematic error is consequently given by σ2

i,syst,BG = σ2
i,BG,offset +

σ2
i,sample,BG. Thus, the total relative systematic error is given by εi,syst =

√
ε2i,offset + ε2i,sample.

Figure 5.26 shows the relative sample error and the final relative systematic error. The
difference between both values is given by the relative offset error. Figure 5.26 illustrates how
the relative systematic error of pointings with a sample error sufficient to fulfill Equation 5.45
is given by the sample error. Further, pointings for which the relative sample error is small
usually have a large offset error.

Figure 5.27 shows the correlation between the statistical error and the sample error, the
statistical error and the offset error, and the statistical error and the total systematic error.
For the calculation of Spearman’s rank correlation coefficient between the statistical error and
the sample error (top panel of Figure 5.27) only the pointings for which the sample error
was not set to zero were used. A significant moderate negative correlation is found implying
that a small statistical error (i.e. a large number of observation runs) corresponds to a large
sample error. This behavior can be understood when considering that a small statistical error
implies that the pointing has been observed during many runs with many different observation
conditions. In the case of a pointing with fewer observation time less different observation
conditions contribute. Of course a pointing may have been observed during only a few runs

24In fact, not all of the measured background arrival rates of the different pointings lie in reality exactly one
standard deviation away from the mean arrival rate. The systematic error of the ones that lie further away is
probably overestimated. The systematic error of the ones that lie very close to the mean rate are accounted for
already by the first step of the systematic error calculation. If the statistics of the arrival rate is very small for
some reason the statistical error dominates anyway.
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Figure 5.26: Composition of the relative systematic error. The relative sample error and the
total systematic error are shown for every pointing. The difference between both is given by
the offset error, which is not shown in the diagram for a better presentation.

with very different observation conditions, but often runs observing the same pointing are taken
within a short time period. This does of course not apply to sources that are observed very
frequently as, e.g. PKS 2155-304.

The correlation between the statistical error and the offset error is shown in the middle
panel of Figure 5.27. For the calculation of Spearman’s rank correlation coefficient between
the statistical error and the offset error only offset errors that were not zero were considered.
A slightly positive correlation that is not very significant was found. This positive correlation
is mainly caused by pointings with relatively large systematic errors and, thus, zero sample
errors. For those pointings only the offset error contributes which is on average larger than for
pointings for which also a sample error contributes.

The correlation between the statistical error and the total systematic error is shown in the
bottom panel of Figure 5.27. An insignificant negative correlation between the statistical error
and the systematic error was found. This is the expected result, since the statistical error
should not influence the systematic error.

The relative systematic error obtained from BG events is also applicable to electron/gamma-
like event rates, since systematic effects present in BG event rates should also be present in the
gamma-like event rates, which was confirmed previously in this Section by showing that gamma-
like and BG event rates actually correlate significantly. The absolute systematic error on the
gamma-like/electron event rates is calculated by σi,syst,el = εi,syst × Ri,el. The distribution of
the resulting relative systematic errors is shown in Figure 5.28. Most relative systematic errors
lie between 5 % and 15 %, all are smaller than 30 %. For completeness the distributions of the
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Figure 5.27: Relationship between the statistical error and the sample error, the statistical
error and the offset error, and the statistical error and the total systematic error. Spearman’s
rank correlation coefficient and the corresponding p-value are shown for every pair of errors.
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Figure 5.28: Distribution of relative systematic errors εsyst.

relative sample errors and the relative offset errors are presented in Figure C.1 in Appendix C.

Discussion of Systematic Errors

The goal of introducing the relative systematic error above is to account for all effects introduced
by observation conditions. Thus, when searching for a dipole anisotropy in background data
there should be no significant detection of a dipole anisotropy, even if there are systematics in
the data set that would lead to a significant non zero dipole amplitude without the introduced
systematic error.

The left-hand panel of Figure 5.29 shows the result of the dipole fit to the hadron-like
background data without a treatment of systematics. The best-fit ∆χ2

0 is larger than 2800,
which would be a highly significant effect mimicking a false positive detection. Including the
systematic error introduced above the ∆χ2

0 becomes smaller than three (right-hand panel of
Figure 5.29). For 4 degrees of freedom this corresponds to an effect smaller than 1σ.

Figure 5.30 shows the distribution of BG arrival rates. In the left-hand panel the isotropy
model is shown with the corresponding best-fit reduced χ2 and in the right-hand panel the
dipole model is shown with the corresponding best-fit reduced χ2 and dipole amplitude. The
reduced χ2 is smaller than one indicating that the model indeed accounts for the systematic
error. Thus, the BG data is fit well by an isotropic model and, as expected, the improvement
obtained when introducing an additional dipole term is insignificant.

From these results it can be concluded that systematic effects present in the hadron-like
data set were successfully used to estimate systematic uncertainties which we expect to be
present also in the electromagnetic shower sample. The same systematic effects will not lead
to significant dipole anisotropies in the gamma-like event sample, since they are accounted for
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Figure 5.29: Left-hand panel: Result of ∆χ2
0 calculation without systematics. Right-hand

panel: Result of ∆χ2
0 calculation with systematic error calculated following the procedure

introduced in the last Section.
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Figure 5.30: Distribution of BG arrival rates (black, normalized to the best-fit R0,BG,best) in
the best-fit direction of the dipole fit. The statistical (blue error bars) and systematic (green
error bars) errors are also shown. In the left-hand panel the best-fit isotropy model is indicated
by the blue line. In the right-hand panel the dipole fit for the best-fit dipole amplitude is
represented by the blue line. The green dashed lines represent the minimum and maximum of
the dipole fit. In addition informations about the χ2-fit are given in the upper right corners of
the plots.
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by applying the same relative systematic error.
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5.3.4 Split Analysis

To study further unknown systematic influences on the presented results an extensive system-
atic study was performed. The data set (all 94 pointings and corresponding runs) was split in
dependence on the year, the zenith angle and the optical efficiency of the observations.

Yearly splits Studying the results of the dipole analysis on a yearly basis is useful because
the largest variations in the average hadron-like and gamma-like arrival rates were found in
dependence on the year of the observation (see Figure 5.24 in Section 5.3.3). Fluctuations
of the arrival rate in dependence on the year of the observation may be caused by long-term
changes in the observation condition or by the aging of the telescope (especially the mirrors)
with time. Every year contains a certain range of run numbers, so that the yearly splits are
equivalent to run number splits.

Zenith angle splits The trigger rate of the H.E.S.S. array depends on the zenith angle,
because particle showers that are observed at high zenith angles traverse a larger part of the
atmosphere. The Cherenkov photons of such showers undergo a larger amount of scattering
and, thus, have a larger but dimmer footprint on the ground. This increases the effective
energy threshold of the observation. Additionally, a small systematic effect in dependence on
the zenith angle was found in Section 5.3.3. Since the dependence of the measured arrival rates
on the zenith angle is not corrected in this study it is important to ensure that the measured
effects are not caused by zenith angle dependencies. The zenith angles in the data set are
distributed between 0◦ and 30◦. At small zenith angles the smallest amount of live time is
available, therefore the first zenith angle interval contains observations between 0◦ and 10◦.
At higher zenith angles the chosen zenith angle binning is narrower and each bin contains
observations from a 5◦ zenith angle range.

Optical efficiency splits The measured arrival rates may also depend on the optical ef-
ficiency of the instrument at the time of data taking. Even though, the optical efficiency is
taken into account by Model++ at the reconstruction level a low optical efficiency may alter
the energy threshold of the observation and, thus, the arrival rates. An analysis of subsam-
ples of the entire data set with very similar optical efficiencies is used here to ensure that the
measured effects are not caused by optical efficiency dependencies. Compared to the live time
distribution in dependence on the zenith angle the live time available in dependence on the
optical efficiency is distributed even less homogenous, so that the width of the chosen bands
contain optical efficiencies between 40 % and 50 %, 50 % and 55 %, 55 % and 60 % and 60 %
and 80 %. The split choices have been made in order to retain reasonable amounts of data in
each split data set, while being able to study systematic effects.

The previously presented dipole analysis, described in Sections 5.3.2 and 5.3.3, was performed
on every split data set. The electron fraction of the whole data set, calculated in Section 5.2.5,
was used for fitting all split data sets. This approximation is good enough, because the results
do not depend strongly on the assumed electron fraction as shown in Section 5.3.6. It follows
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from the definition of the χ2-distribution that the sum of independent chi-square variables is
also chi-squared distributed. The ∆χ2

0 of every split data set is χ2-distributed and consequently
also the sum of the ∆χ2

0. The corresponding number of degrees of freedom of the total ∆χ2
0,total

(dftotal) is given by the sum of the degrees of freedom of the split data sets dfi. Thus, the overall
significance (∆χ2

0,total) can be calculated via

∆χ2
0,total =

∑
splits i

∆χ2
0,i with dftotal =

∑
splits i

dfi. (5.47)

The stacked ∆χ2
0,total is calculated for every probed direction of the sky.

The results of this split analysis are shown in Figure 5.31. In all three split scenarios the
best-fit directions scatter somewhat around the best-fit direction of the global fit. This is

Galactic
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-33.49 0∆χ 2
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Figure 5.31: Sky maps in galactic coordinates showing the stacked ∆χ2
0 for all three split

scenarios in optical efficiency (upper left-hand panel), zenith angle (upper right-hand panel) and
observation year (lower left-hand panel). The colored markers represent the best-fit directions
of the different split analyses. In addition, the result of the analysis of the whole data set (all 94
pointings, no stacking!) is shown in the lower right-hand panel. Here, the black asterisk marks
the global best-fit position. The white circles represent the pointing positions and their size
scales with the live time available for each pointing (between 0.24 h and 173 h). The pulsars
Vela, Monogem and Geminga as well as the Galactic Center are marked by white triangles. In
all analyses NSIDE = 4 and MSSG < 0.6 holds.
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Figure 5.32: Left: Distribution of electron arrival rates (normalized to the mean electron arrival
rate) in the best-fit direction for the year 2007. The dipole fit for the best-fit dipole amplitude
is represented by the blue line. The green dashed lines represent the minimum and maximum
of the dipole. The statistical (blue error bars) and systematic (green error bars) errors are also
shown. Right: Sky map color-coded with the values of ∆χ2

0 for each possible direction of the
maximum of the electron rate in the sky for the year 2007. The white dots depict the pointing
positions and are scaled with the respective observation time. The pulsars Vela, Monogem
and Geminga as well as the Galactic Center are marked by white triangles. The black asterisk
indicates the position of the global minimum of ∆χ2

0.

expected since every data set contains only a fraction of the observation time available in the
whole data set and, thus, statistical errors are larger. Further, the sky coverage is different
in every split and can be very localized in some cases. The most extreme example is shown
in Figure 5.32. In this split containing all observations from 2007 only very few pointings
are present, which are additionally very localized and contain only a very small amount of
observation time. The best-fit parameters obtained from a fit to such a data set are unreliable
and have extremely large errors.

The reliability of the individual split analysis results can be estimated by comparing the
number of targets in the data sets, the total live times of the data sets and the median of the
systematic error of the data sets. Figure 5.33 shows the resulting χ2/d.o.f. and ∆χ2

0 values
for every split analysis, the best-fit dipole amplitudes, the number of targets in the data set,
the live time and the median of the systematic error distribution for each split analysis for the
optical efficiency splits. Figures D.1 and D.2 in the Appendix show the same quantities for
the yearly and zenith angle splits. The pointing pattern is the only information relevant for
evaluating the reliability of the fit results that could not be included in these summary tables.
However, if necessary this information is included in the ∆χ2

0 sky maps for every split data set
(an example sky map is shown in Figure 5.32).

In general, the reduced χ2 obtains values between 1.5 and 8 except for splits where the
available observation time is very small and, thus, statistical errors dominate. The p-value of
each fit depends on the χ2 and the number of d.o.f. Thus, the p-values are not necessarily
the same for two splits with the same reduced χ2. For a typical number of 50 data points
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Figure 5.33: Summary figure for the optical efficiency split scenario. The best-fit dipole am-
plitude (upper left-hand panel), the resulting global χ2/d.o.f. (upper right-hand panel), the
number of pointings (middle left-hand panel), the global ∆χ2

0 (middle right-hand panel), the
median of the systematic errors (lower left-hand panel) and the total live time in hours (lower
right-hand panel) are shown for every split data set. A bin number was assigned to every
optical efficiency bin. The bin number is shown above or below every data point and was
assigned the same color in every panel. The number of d.o.f. for the global dipole fit is given
by the number of pointings minus 4. The blue band in the middle right-hand panel depicts the
improvements in the fit represented by ∆χ2

0 that are more significant than 4 σ.
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(pointings) available in a split data set the p-value for a reduced χ2 (d.o.f. = 46) of 1.5 is 0.015
and for a reduced χ2 of 2 it is 6.6×10−5. For a larger number of data points the p-value is even
smaller, e.g. for χ2/d.o.f. = 2 and 56 d.o.f. the p-value is 1.3× 10−5. For a smaller number of
data points the p-value is larger, e.g. for χ2/d.o.f. = 2 and 26 d.o.f. the p-value is 1.8× 10−3.
Thus, the dipole model does not fit the data well in most split data sets and the probability
that the measured χ2 is found if the dipole model is true is always smaller than approximately
10−2.

As expected a smaller amount of live time and a smaller number of targets reduces the
absolute value of ∆χ2

0 as can be seen in Figure 5.33. In zenith angle and yearly splits the effects
are not quite as obvious, since also the pointing pattern and the systematic error influence the
resulting ∆χ2

0. The influence of the systematic error is most obvious in the 4th zenith angle
bin of Figure D.1 in the Appendix. Here, the 4th zenith angle bin contains the most live time
which is distributed between the most sources, but still the corresponding ∆χ2

0 is relatively
small. This could be caused by the fact that the median systematic error is also rather large
in this split, which reduces the significance of the result. The large systematic error is possibly
caused by the large range of observation conditions in the data set due to the large number of
runs contributing. However, also the distribution of the live time between the pointings will
have an additional effect on the results.

Overall the results of all split scenarios confirm the previous results. In most split data
sets, especially in those containing a reasonable amount of statistics, the data is not fit well
by a dipole model. The improvement of the fit by introducing a dipole term evaluated by
calculating ∆χ2

0 even corresponds to effects up to 4 σ in individual data sets (blue band in the
middle right-hand panel of Figure 5.33), when employing ∆χ2 statistics. The stacked scenarios
find the same best-fit positions and larger total ∆χ2

0 compared to the results found in the
analysis of the full data set. In the stacked yearly split scenario the total ∆χ2

0 is even an order
of magnitude lager than in the analysis of the total data set. There are three reasons for the
discrepancy between the ∆χ2

0 of the total data set and the ∆χ2
0,total of the stacked split analysis

results. These are:

• As mentioned above, the number of degrees of freedom of the stacked data χ2
0,total is given

by the sum of the degrees of freedom of the subsamples. Each split ∆χ2
0 has three degrees

of freedom. Thus, the number of degrees of freedom of the stacked χ2
0,total is given by the

number of split samples times three. Consequently, the number of degrees of freedom of
the stacked χ2

0,total is much larger than of the ∆χ2
0 of the whole data set. Therefore, it

is understandable that the χ2
0,totals of the split scenarios are larger than ∆χ2

0 of the total
data set.

• The systematic errors are calculated individually for every split data set. Thus, the same
pointing may have different systematic errors in dependence on the runs used in each
split sample. In general it is likely that they are smaller, since the split data samples
should be more homogenous at least with respect to the attribute (e.g. year) by which
they were defined.

• The best-fit parameters of the fits of the different data samples are not the same. Con-
sequently, the ∆χ2

0 are stacked for different best-fit models.
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Rate-Adjustment Method The results are also confirmed by employing a second, very dif-
ferent method, of treating systematics. In this method called rate adjustment, the γ-like event
rates are corrected run-wise by a factor derived from the hadron-like event rate distribution.
First, the adjustment factor is calculated for every run j

fj,corr =
〈RBG〉 −Rj,BG

Rj,BG
. (5.48)

Here, 〈RBG〉 is the mean hadron-like event rate of all runs and Rj,BG the hadron-like event
rate of every single run. This definition ensures that the gamma-like event rates are scaled to
smaller values if the hadron-like event rate of a run is larger than the mean hadron-like event
rate. The corrected gamma-like event rates are given by

Rj,γ̃,corr = Rj,γ̃ + fj,corr ·Rj,γ̃ . (5.49)

Figure 5.34 shows how the distributions of γ-like events for different background event rates
are corrected/adjusted to very similar mean values. Before the correction there appears to
be an almost linear relationship between the mean values of the gamma-like event rates and
the hadron-like event rates (upper right-hand panel of Figure 5.34). After the correction this
relationship vanishes (lower right-hand panel of Figure 5.34). Applying the dipole fit procedure
to the adjusted rates confirms the previous results in the split analysis with the main difference
that the results are more significant (see Figure D.3 in the Appendix), which is caused by the
fact that no systematic error is introduced. Since variations of the mean corrected gamma-like
event rate in dependence on the observation year were still found after adjusting the rates, the
rate-adjustment method was only used as a cross-check in the split analysis, but not as the
standard treatment of systematics.
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Figure 5.34: The left-hand panels show the distributions of the gamma-like event rates in bins
of the hadron-like event rates before (upper left-hand panel) and after (lower left-hand panel)
correcting the gamma-like event rates. In the right-hand panels the mean gamma-like event
rates in dependence on the mean hadron-like event rates before (upper right-hand panel) and
after correcting the gamma-like event rates by the hadron-like event rates (lower right-hand
panel). The error bars give the 18 % and 82 % percentiles.
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5.3.5 Dependency on Gamma-Hadron Separation Cuts

A detailed study was performed in order to evaluate the dependence of the results on the
choice of gamma-hadron separation cuts. In the first step the dependence of Spearman’s rank
correlation coefficient between gamma-like and hadron-like event rates and the corresponding
significance (p-value) on the gamma-hadron separation cut choice was investigated at the run-
wise level.

The background (BG) cuts were varied in eight steps from MSSG > 3 to MSSG > 20.
The MSSG > 20 data sample contains the smallest amount of events. In contrast applying
MSSG > 3 the hadron-like event sample contains much more statistics, but is possibly slightly
contaminated by electrons (see Figure 5.11). However, the contribution should be negligible.
In the MSSG > 20 data set no contamination by electrons is expected (Figure 5.11).

The gamma-like event cut was varied between MSSG < 1.0 which retains most electrons
(approximately 78 %, see Table 5.2), but also eventually a comparably large amount of back-
ground events (approximately one percent of the total hadron-like events are left after this
cut, see Figure 5.14), and MSSG < -0.6 a very stringent cut, where only approximately 29 %
electrons and one in thousand background events survive.

The dependency of Spearman’s rank correlation coefficient between gamma-like and hadron-
like event rates on the gamma-like and BG cuts is illustrated in Figure 5.35. Spearman’s rank
correlation coefficient ranges from 0.2 to 0.5, while all correlation coefficients are significant
with p-values smaller than 10−7.

Spearman’s rank correlation coefficient gets smaller when going to larger MSSGmin BG
event cuts (top left-hand panel of Figure 5.35). This is understandable as the shape of the
image and the air shower development tends to differ more from the electromagnetic shower
type with increasing MSSG (e.g. longitudinal development, sampling of different parts of the
atmosphere etc.). Further, the significance gets smaller going to larger MSSGmin BG event
cuts (larger p-value) as shown in the bottom left-hand panel of Figure 5.35. This is due to the
fact that with a more stringent cut on the MSSG in the BG event sample, also the number of
events and, thus, the available statistic is reduced.

In the right-hand panels of Figure 5.35 it is shown that the correlation coefficient gets larger
and the p-value smaller (significance larger) with a less stringent (largerMSSGmax) gamma-like
event cut choice. This is caused by better statistics in the gamma-like event sample. Further,
a gamma-like event sample with a less stringent cut on the MSSG will also contain more BG
events, naturally causing a larger correlation. The closer the cut choices of the gamma-like
and hadron-like event sample are to each other the larger is the background contamination
by events really belonging to the other species, which causes larger correlations. Nonetheless,
even for the cut combination separating gamma-like (MSSG < -0.6) and BG (MSSG > 20)
events most efficiently there is still a significant correlation found between the arrival rates.
This finding supports the previous conclusion that there is a significant correlation between
gamma-like and hadron-like event rates as suggested in Section 5.3.3.

For further investigations three gamma-hadron separation cut choices were selected. The
standard MSSG < 0.6 cut dipole analysis results were compared to the results obtained with
the very stringent MSSG < -0.6 data sample and the intermediate -0.6 < MSSG < 0.6 data
sample. The last two data samples are absolutely independent gamma-like event samples. The
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Figure 5.35: Dependency of Spearman’s rank correlation coefficient between gamma-like and
hadron-like event rates on the choice of the gamma-like cut (this is the cut usually used to
separate gammas from hadrons) and BG cuts. Spearman’s rank correlation coefficients (top
panels) and corresponding p-values (bottom panels) are shown. In the left-hand panels the
dependencies are shown for changing BG cut choices for several different fixed gamma-like cut
choices. In the right-hand panels the dependencies of the correlation coefficient and the p-value
are shown for varying gamma-like cut choices for several fixed BG cut choices.
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entirety of the last two data sample gives the standard MSSG < 0.6 data sample containing
most events (largest statistic).

In Section 5.2.2 it was shown that the MSSG < 0.6 cut corresponds to the cut choice with
the best quality factor, giving the choice with the best relation between preserving the largest
possible amount of electrons while eliminating as much BG events as possible. For the dipole
analysis the electron fraction calculated in Section 5.2.5 is more relevant. The most stringent
cutMSSG < -0.6 contains the fewest number of events and, thus, the smallest statistics, while
it is the cleanest electron sample with an electron fraction of 0.76. The intermediate event
sample serves as a cross-check sample and contains the smallest amount of electrons (only
60%). The standard MSSG < 0.6 contains the sum of all events from the two other data
samples with a corresponding electron fraction of εel = 0.63.

In the left-hand panels of Figure 5.36 the ∆χ2
0 plots for all three cut choices are shown.

The best-fit positions are compatible, while the shape of the ∆χ2
0 distribution over the sky of

the standard MSSG < 0.6 cut appears to be a superposition of the two other cut choices.
Likewise, the improvement of the fit by introducing the dipole term represented by the

∆χ2
0 obtained in the standard data sample appears to be a mixture of the improvements in

the stringent and intermediate data samples. In the stringent data sample the obtained ∆χ2
0

is much larger than in the intermediate data sample, implying that the rate fluctuations are
also larger in the stringent cut data sample.

Further, the best-fit dipole amplitudes and the reduced χ2 (χ2/d.o.f.) are shown in the
right-hand panel of Figure 5.36. Again, the values found in the standard data sample originate
from the superposition of the values of the subsamples (stringent cut and intermediate cut
samples). For example, the χ2/d.o.f. = 2.75 of the stringent cut sample is significantly larger
than the χ2/d.o.f. = 1.98 found in the intermediate data sample. This indicates that the
rate fluctuations in the stringent data sample are larger than in the intermediate data sample.
Consequently, the χ2/d.o.f. = 2.35 of the standard sample lies in between the other values
because the standard sample contains all events from the subsamples.

Since the stringent cut data sample contains the largest amount of electrons and appar-
ently also the largest amount of rate fluctuations the results indicate that the measured rate
fluctuations25 originate from the electron component.

25Here, we refer to rate fluctuations that are not present in the BG data and consequently not accounted for
by the systematic error.
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Figure 5.36: Sky maps color-coded with the values of ∆χ2
0 for each possible direction of the

maximum of the electron rate in the sky (left-hand panels) and the distribution of electron
arrival rates (normalized to the mean electron arrival rate) in the best-fit direction (right-
hand panels) for all three investigated cut choices (MSSG < -0.6 in the upper panels, -0.6 <
MSSG < 0.6 in the middle panels,MSSG < 0.6 in the bottom panels). The white dots depict
the pointing positions and are scaled with the respective observation time. The pulsars Vela,
Monogem, Geminga and the Galactic Center are marked by white triangles. The black asterisk
indicates the position of the global minimum of ∆χ2

0. In the right-hand panels the dipole fit for
the best-fit dipole amplitude is represented by the blue line. The green dashed lines represent
the minimum and maximum of the dipole. The statistical (blue bars) and systematic (green
bars) errors are also shown.
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5.3.6 Dependency on the Electron Fraction

In order to investigate the dependence of the results of the dipole fit (∆χ2, R0, δbest and best-
fit position) on the electron fraction, the dipole analysis was performed for electron fractions
between 0 % and 95 %. The improvement of the fit in terms of ∆χ2 depends on the electron
fraction as well as the best-fit parameters, i.e. the dipole amplitude δbest, the rate normalization
R0,best and the best-fit direction, which is represented by the number of the best-fit pixel
(pixelbest). The dependencies of these parameters on the electron fraction are illustrated in
Figure 5.37.

It is shown in the upper left-hand panel of Figure 5.37 that the improvement of the fit
represented by the ∆χ2 is constant above an electron fraction of approximately 20 %. Below
this value the γ-like events are fit by a dominating isotropic component and a small amount
of electrons. In the dipole model the electron component is described by a monopole term and
a dipole term. For very small electron fractions the dipole term is also small and does not
contribute significantly (see Equation 5.29). With growing electron fraction the dipole term
contributes more and more strongly to the predicted electron arrival rate and, thus, a better
fit of the data is possible. This interrelation can nicely be seen from a reformulated version of
Equation 5.34 given by

χ2 =
∑
i

[Ri,γ̃ − (R0,γ̃(δ) + εelR0,γ̃(δ) δcos(ϑi))]
2

σ2
i,el

. (5.50)

Figure 5.37: Dependencies of the global ∆χ2 and corresponding best-fit parameters of the
dipole model on the electron fraction. The black circle shows the value of the electron fraction
used in this study (standard cut choice).
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In the bottom left-hand panel of Figure 5.37 it is shown that the dipole amplitude remains
constant at 100 % below an electron fraction of 20 %, while the best-fit normalization gets
larger (see bottom right-hand panel of Figure 5.37) and the best-fit pixel position converges
towards the overall best-fit position (see top right-hand panel of Figure 5.37). Above an electron
fraction of 20 % the ∆χ2 saturates, as does the best-fit normalization parameter R0,best. In
contrast the best-fit dipole amplitude starts to decline. This behavior can be understood by
remembering the dipole term formula given in Equation 5.29. The dipole term depends on
εel · δ. While εel is artificially changed in this analysis, δ is a free parameter of the fit. After the
best-fit εel · δ has been reached by the fit procedure an artificial change in the electron fraction
is compensated in the fit by a change of the best-fit dipole amplitude. Thus, the best-fit εel · δ
also grows below an electron fraction of 20 % and saturates above.

In conclusion the evaluation of the significance of the improvement of the description of the
data by introducing a dipole term in the electron component does not require exact knowledge
of the electron fraction. However, it influences the magnitude of the resulting best-fit dipole
amplitude and influences, thus, also the error on the dipole amplitude.
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5.3.7 Cross Check

Within the scope of this study it was not possible to obtain a full cross check of the presented
results within a reasonable period of time. Such a cross check would have to include the
following steps:

• Calibrating and reconstructing the data sample using an analysis chain other than the
chain used in this study (e.g. a Hillas based chain).

• Determination of the residual background level including electron Monte Carlo simula-
tions and the calculation of the effective exposure.

• Calculation of electron and background arrival rates.

• Reimplementation of the statistical analysis starting with the isotropic and dipole models.

These steps should be taken in the course of an independent analysis. Given the limited
capacity of the H.E.S.S. collaboration, a cross check is still pending.

Instead another route was taken here to inspire confidence in the presented results. Within
the H.E.S.S. collaboration the only other analysis concerning cosmic-ray electrons was the
calculation of the H.E.S.S. electron spectrum (Aharonian et al. 2008 and Aharonian et al.
2009). Thus, this data sample is used to inspect at least parts of the analysis chain. The data
sample used in Aharonian et al. 2008 is a subsample of the large data sample analyzed in this
study so that it can be employed to check the obtained results at least for a fraction of the
whole data sample.

Figure 5.38: Distributions of the gamma-hadron separation parameter ζ for simulations of
electrons (red), protons (blue), helium (green), nitrogen (black) and iron (brown) in the energy
range between 1 - 4 TeV. The vertical line illustrates the ζ range that was used for the back-
ground determination fit for the determination of the electron spectrum by Egberts (2009).
This is not the gamma-hadron separation cut used in this study. The Figure was adapted from
Egberts (2009).

143



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

The cross-check data sample contains data taken in 29 different directions of the sky and
amounts to 239 hours of live time. The residual background level for this data set was calculated
by Prüser (2012) using the best-fit distributions of hadron and electrons presented in Figure
3.9 of Egberts (2009). The energy range (0.616 - 1.047 TeV) for which the distributions are
available differs slightly from the energy range used in this study (0.64 - 1.04 TeV). The derived
fraction of electromagnetic air showers is given by approximately 53 %.

Further, the measured distribution of the depth of the shower maximum was fit to simulated
distributions of electrons, protons and photons. It was found that photons do most likely not
account for more than 10 % of electromagnetic showers (Egberts 2009). Thus, the electron
fraction is given by εel = 0.53×0.9 = 0.477. In Aharonian et al. 2008 a Random Forest machine
learning algorithm using the Hillas moments of the camera images as input parameters was
employed (here called Hillas RF method). The Random Forest converts the image information
into a single parameter ζ, which is used for gamma-hadron separation.

The distribution of the ζ parameter is shown in Figure 5.38 for simulated electrons, protons,
helium, nitrogen and iron. A stringent cut on ζ > 0.9 was chosen in this cross check to select
gamma-like events. This choice ensures that the residual background for this cut does not
dominate the event sample. Hadron-like events are given by ζ < 0.1.

The same subsample was also analyzed with Model++. The electron fraction of the sub-
sample for the Model++ analysis chain was estimated to be approximately the same as for the
entire data set εel = 0.63 for MSSG < 0.6. This approximation should not strongly influence
the results since it was shown in Section 5.3.6 that the results remain the same as long as the
electron fraction is larger than 20 %.

Spearman’s rank correlation coefficient was calculated between gamma-like and hadron-
like event rates obtained with Model++ (MSSG < 0.6 and MSSG > 5) and Hillas RF (ζ
> 0.9 and ζ < 0.1). The correlation coefficient was calculated on run-wise and pointing-
wise granularity levels. In Figure 5.39 the correlation between gamma-like/hadron-like event
rates obtained with the two different analysis chains is obvious. Relatively large correlation
coefficients of approximately 0.63 are found on the pointing-wise level for both gamma-like
and hadron-like event samples and on the run-wise level for hadron-like events. The statistics
available on the run-wise level for gamma-like events is extremely small which leads to a much
smaller correlation coefficient of 0.23. However, since the correlation coefficient on the pointing-
wise level is also of the order of 0.63, including much more statistics, the larger correlation
is reasonable. The corresponding p-value is much larger on the run-wise level, because its
calculation does not take the actual statistical errors into account, but instead depends on the
size of the data sample (Section 4.3.2).

In addition to the direct comparison of the hadron-like and gamma-like event arrival rates
the dipole model analysis results were obtained for the event rates calculated with both meth-
ods. Figure 5.40 show the χ2 sky maps, the ∆χ2 sky maps and the best-fit direction graph. The
best-fit position is found approximately in the same direction of the sky for both reconstruction
chains. Furthermore, the best-fit dipole amplitudes are compatible within their errors. There
is a large discrepancy between the goodness-of-fit of the results. While the reduced χ2 for the
Hillas RF method is smaller than 1 indicating that systematic errors may have been somewhat
over estimated, the reduced χ2 with Model++ is almost twice as big. The difference between
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Run-wise Pointing-wise

Figure 5.39: Spearman’s rank correlation coefficients calculated for gamma-like (top panels)
and hadron-like (bottom panels) event rates obtained with two different reconstruction tech-
niques (Model++ and Hillas RF). In the left-hand (right-hand) panel the correlations are
shown for run-wise (pointing-wise) calculated event rates. The Model++ gamma-hadron sepa-
ration parameter is the Mean Scaled Shower Goodness (MSSG) and the Hillas RF separation
parameter is the output parameter of the Random Forrest called ζ.

the two data samples is that the Hillas RF sample is much smaller than the one obtained with
Model++. Thus, in the Model++ data sample fluctuations are not dominated by statistics, so
that the correct estimation of the systematic error is even more important. As in the large data
sample the fluctuations cannot be explained with statistical and systematic uncertainties26.

Upper limits on the dipole amplitude obtained with both methods are shown in Figure 5.41.
Even with the extremely small data sample analyzed with the Hillas RF method upper limits

26Again the systematic error was calculated from the background events analogous to the procedure used for
the large data sample.

145



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

Hillas RF Model ++

Galactic

global minimum Geminga

Monogem

Vela

 

-4.376 0∆χ 2
0 (δbest,R0,γ̃,best)

Galactic

global minimum
Geminga

Monogem

Vela

 

-7.105 0∆χ 2
0 (δbest,R0,γ̃,best)

1.0 0.5 0.0 0.5 1.0
cos(ϑbest)

0.0

0.5

1.0

1.5

2.0

2.5

R
i,
el
/ 
R

0,
el
,b

es
t

δbest = 0.406 ± 0.179
R0,el,best = 0.509 ·10−2

χ 2
best/d.o.f. = 0.733

1 +δmin

1−δmin

statistic errors
systematic errors

1.0 0.5 0.0 0.5 1.0
cos(ϑbest)

0.0

0.5

1.0

1.5

2.0

2.5

R
i,
el
/ 
R

0,
el
,b

es
t

δbest = 0.264 ± 0.092
R0,el,best = 1.681 ·10−2

χ 2
best/d.o.f. = 1.444

1 +δmin

1−δmin

statistic errors
systematic errors

Figure 5.40: Top and middle panels: Sky map color-coded with the values of χ2 (top panels)
and ∆χ2

0 (middle panels) for each possible direction of the maximum of the electron rate in the
sky. In all maps the white circles depict the 29 pointings and are scaled with the respective
observation time. The three pulsars Vela, Monogem and Geminga as well as the Galactic
Center are marked by a white triangle. The black asterisk indicates the position of the global
minimum of χ2 and ∆χ2

0. Bottom panels: Graphs of electron arrival rates (black, normalized
to the best-fit R0,el,best) relative to the best-fit direction. The statistical (blue error bars) and
systematic (green error bars) errors are shown. The dipole fit function for the best-fit dipole
model is represented by the blue line. The green dashed lines represent the minimum and
maximum rate values of the dipole fit. In addition, information about the χ2-fit are given.
In the left-hand panels the graphs are shown for the Hillas RF method and in the right-hand
panels for the Model++ method. 146
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Hillas RF Model ++

Figure 5.41: Sky map in galactic coordinates showing the upper limits derived on the dipole
amplitude of cosmic-ray electrons for each possible direction of the dipole maximum based on
the small subsample data set. The white circles depict the 29 pointings and are scaled with the
respective observation time. The pulsars Vela, Monogem, Geminga and the Galactic Center
are also shown and marked by a white triangle. In the left-hand panel the map is shown for
the Hillas RF method and in the right-hand panel for the Model++ method.

on the dipole amplitude between 12 % and 85 % are obtained. They are less stringent than
the limits obtained with the Model++ method due to smaller statistics. It should be noted
that the constraint on the dipole amplitude with the larger data set is only more stringent by
a factor up to two most likely due to overall larger systematic effects in the large data set.
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5.3.8 Multipole Fits

In the previous sections it was found that neither an isotropic nor a dipole model fit the mea-
sured H.E.S.S. electron event rates well. Nonetheless, the rate fluctuations of gamma-like (or
electron) events are much larger than the respective values for background events. This is
already obvious when considering the unbiased sample variance and the statistically weighted
mean of the data samples. The statistically weighted mean of the gamma-like event rates of
all pointings is 〈Rγ̃〉 = 1.78 · 10−2 Hz (MSSG < 0.6). For cosmic-ray electron arrival rates
it is 〈Rel〉 = 1.12 · 10−2 Hz and for background-like event rates it is 4.41 Hz (MSSG > 5).
The unbiased sample variance is the same for gamma-like and electron event rates and is
given by var(Ri,γ̃) = var(Ri,el) = 1.53 · 10−5 Hz2. For background-like events the variance is
var(Ri,BG) = 0.15 Hz2. The square root of the variances gives the standard deviations of the
measured event rates from the expectation value of the sample (in this case the statistically
weighted mean event rates). The standard deviation is a measure of the scatter of the measured
event rates around their expectation value. In order to compare the rate fluctuations in the
data samples the relative standard deviation, also called coefficient of variation, is calculated.
The relative standard deviation (varK) is obtained by dividing the standard deviation by
the corresponding statistically weighted mean event rate. The relative standard deviation of
gamma-like event rates is varK(Ri,γ̃) = 22.0 %, for electron events it is varK(Ri,el) = 34.9 %
and for background events varK(Ri,BG) = 8.8 %. While the rate fluctuations in background
events were sufficiently accounted for by statistical and systematic errors (as discussed in Sec-
tion 5.3.3), the rate fluctuations seen in gamma-like events and, consequently, also in electron
events cannot account for all rate fluctuations (as long as the relative amount of cosmic-ray
electrons in the gamma-like event sample is indeed larger than 20 % as shown in Section 5.2.5).

This Section aims at further characterizing the rate fluctuations in the cosmic-ray electron
arrival rates by investigating multipole models up to l = 4. The fluctuations of the electron
event rates can be described by the multipole expansion of any angular distribution over a
sphere I(n) (analogous to definitions often used in CMB analysis see e.g. Peacock 1999, Bunn
1995 and Tojeiro 2006)

I(n) =
∞∑
l=0

l∑
m=−l

almYlm(n). (5.51)

Here, n is a unit vector pointing to a position on the sphere (depending on polar angle θ
and azimuthal angle φ). I(n) represents the fluctuations of the electron events rates I(n) =
R(n)−〈Rel〉
〈Rel〉 . Y m

l (n) are the spherical harmonic functions defined on a unit sphere (see e.g.
Bronstein et al. 1999)

Y m
l =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimφ. (5.52)

Here, l is a none negative integer taking values between l = 0, 1, 2, ...,∞. l is the multipole and
represents a given angular scale π/l in radians. The parameter m is an integer and takes values
between −l and +l. The functions Pml (cos θ) are the associated Legendre polynomials (e.g.
Bronstein et al. 1999). A real basis of spherical harmonics Ylm can be defined in terms of their
complex analogues. These functions have the same orthonormality properties as the complex
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ones.The coefficients alm are connected to the spherical harmonics and rate fluctuations via

alm =

∫ π

θ=0

∫ 2π

φ=0
I(n)Y ∗lm(n)dΩ. (5.53)

Using real spherical harmonics the dipole model is given by

I(d, α)dip = m0 + px cos(d) cos(α) + py cos(d) sin(α) + pz sin(d)

= m0 + p · n (5.54)
= m0 + |p| cos(ϑ). (5.55)

Here, d is the latitude and α the longitude. They are connected via d = π/2− θ and α = φ to
the spherical coordinates used above. The constants m0, px, py, pz correspond to the multipole
coefficients alm for l = 0 and l = 1. p is the vector of the dipole moment and n the unit vector
pointing to a position on the sphere. cos(ϑ) is the cosine of the angular distance between the
considered position on the sphere and the direction of the maximum dipole amplitude. It can
be shown that Equation 5.54 and Equation 5.28 used previously are equivalent. The dipole
amplitude δ and the rate normalization R0,el are connected to the multipole coefficients and
the mean electron rate: δ = |p|

1+m0
and R0,el = 〈Rel〉(1 + m0). Likewise, models for higher

multipoles are defined. In this study multipoles up to l = 4 are considered, since data from
only 94 directions in the sky are available. The general form of this model is given by:

I(d, α) = M(m0) +D(d, α, px, py, pz) +Q(d, α, q0, q1, q2, q3, q4, q5)

+O(d, α, o0, o1, o2, o3, o4, o5, o6, o7) (5.56)
+H(d, α, h0, h1, h2, h3, h4, h5, h6, h7, h8, h9) + .....

Here, M,D,Q,O and H are functions including the different terms of the multipole expansion
in Equation 5.51 for the different multipoles l expressed by real spherical harmonics. Thus,
M = m0 and D(d, α, px, py, pz) = px cos(d) cos(α) + py cos(d) sin(α) + pz sin(d). The spherical
harmonic functions for higher multipoles are given in Appendix E.

The different multipole functions were fitted to the data by minimizing

χ2 =
∑ (Ri,el − (〈Rel〉+ 〈Rel〉 · I(d, α)))2

σ2
i,el

(5.57)

using MINUIT package routines for python called PyMinuit (James 1998).
Here, the electron rate is calculated from the gamma-like event rate Ri,γ̃ and is given by

Ri,el = Ri,γ̃−(1−εel)〈Rγ̃〉 and the mean electron event rate is given by 〈Rel〉 = εel 〈Rγ̃〉. 〈Rγ̃〉 is
the weighted mean of the gamma-like event rates as defined in Equation 5.36. Different models
were fit to the data by consecutively adding higher multipole moments to the model. The
highest multipole considered is the hexadecapole (l = 4). In this model 25 free parameters are fit
to the data. Figure 5.42 shows the electron rate predictions obtained by including consecutively
higher and higher multipoles in the model (dipole: lmax = 1, quadrupole: lmax = 2, octupole:
lmax = 3, hexadecapole: lmax = 4). In the model with lmax = 4, an additional requirement
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lmax =1

0.008 0.0221/s
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lmax =2

0.004 0.0221/s
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lmax =3

0 0.0221/s

Galactic

lmax =4

0.001 0.0221/s

Figure 5.42: Electron rate prediction sky maps for the best-fit multipole models including
multipoles up to the dipole (lmax = 1, upper left-hand panel), quadrupole (lmax = 2, upper
right-hand panel), octupole (lmax = 3, lower left-hand panel) and hexadecapole (lmax = 4,
lower right-hand panel) are illustrated.

lmax χ2
best Npara d.o.f. χ2

best / d.o.f. p-value
0 248.69 1 93 2.67 3.89 ×10−16

1 209.24 4 90 2.32 1.72 ×10−11

2 182.80 9 85 2.15 4.03 ×10−09

3 164.09 16 78 2.10 4.43 ×10−08

4 150.94 25 69 2.19 4.72 ×10−08

Table 5.7: Results of the fits of the multipole functions to electron arrival rates. The table
contains the maximum multipole lmax included in the model function, the corresponding best-
fit χ2

best, number of free parameters (Npara), number of degrees of freedom of the fit (d.o.f.),
corresponding reduced chi-square (χ2

best/d.o.f.) and p-value.
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lsimple - lcomp ∆χ2 d.o.f. p-value
0 - 1 39.45 3 1.40 ×10−08

1 - 2 26.43 5 7.35 ×10−05

2 - 3 18.72 7 9.10 ×10−03

3 - 4 13.15 9 1.56 ×10−01

Table 5.8: Results of ∆χ2-tests of consecutive multipole fit functions. First, the multipoles of
the simple model lsimple and the more complex model lcomp are given. Further, corresponding
∆χ2 values, the number of degrees of freedom (d.o.f.) and p-values are given.

forcing the predicted electron rates to be positive was included. This was necessary, because
the fit otherwise converges to parameter values predicting unphysical (negative) electron rates.
This leads to a best-fit model that has a much larger χ2 than without the constraint.

Table 5.7 shows a summary of the obtained best-fit χ2
best values, numbers of free parame-

ters, numbers of degrees of freedom, the corresponding χ2
best/d.o.f. and p-values. The best-fit

parameters of every fit are not given explicitly, because these are up to 25 values. Instead,
the best-fit model is illustrated by showing the electron rate predictions of the model (Figure
5.42).

The dipole model serves as a cross-check model to the previous results in Section 5.3.2.
Previously, the dipole fit was carried out for every probed direction in the sky. The models
were calculated on a finite-dimensional grid with smaller or larger resolution. The overall best-
fit model approximately gives the same results that are found in the global fit done in this
Section. The χ2 values are 209.24 as compared to 211.80. The best-fit parameters of m0,
px, py, pz were translated to a dipole amplitude δ = 0.425 ± 0.049 and rate normalization
R0,el = 1.35× 10−2. These values are similar to the ones calculated before. From the left-hand
panel in Figure 5.42 it can be seen that also the directions of the dipole maxima for the best-fit
models are compatible.

For all considered models the χ2
best/d.o.f. is much larger than 1. The corresponding p-values

get larger when including additional multipoles, but even for the hexadecapole the p-value is
still of the order of 10−8. Here, the p-value gives the probability that such a large χ2

best is found
if the considered model is correct (null hypothesis). Since this probability is very small, none
of the models is sufficient to explain the data.

Further, the improvement of the fit achieved by subsequently examining more complex
models by including more multipoles was studied. For this, both, the ∆χ2-test and the F -
test were employed. The results of the ∆χ2-test are shown in Table 5.8, while the results
of the F -test are shown in Table 5.9. Here, the p-value gives the probability that the ∆χ2

(or F ) value is found if the simple model is correct. Thus, a small p-value means that it is
unlikely to find such a large ∆χ2 (or F ) value if the simple model is correct and that the
additional parameters should, consequently, be included in the model. Employing the ∆χ2-
test the improvements are significant at the order of 5 σ going from the isotropy model to the
dipole model, larger than 3 σ going from dipole to quadrupole and larger than 2 σ going from
quadrupole to octupole. The improvement when going to the hexadecapole is not significant

151



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

lsimple- lcomp f p-value
0 - 1 5.66 1.35 ×10−03

1 - 2 2.46 3.95 ×10−02

2 - 3 1.27 2.75 ×10−01

3 - 4 0.67 7.35 ×10−01

Table 5.9: Results of F -tests of consecutive multipole fit functions. First the multipoles of
the simple model lsimple and the more complex model lcomp are given. Further, corresponding
f -values and p-values are given.

at any considerable level. The p-values given by the F -test are comparably larger, because the
F -test takes into account that a certain amount of improvement of the fit is always expected
when introducing more free parameters. With the F -test only the improvement going from
monopole to dipole and from dipole to quadrupole are significant at the much smaller 2 σ level.

5.3.9 Power Spectrum

The assumption of isotropy implies that the harmonic coefficients alm are on average zero. The
variance of the harmonic coefficients alm gives a power spectrum of the measured fluctuations.
This variance taken over many ensembles is given by

〈alma∗l′m′〉 = δll′δmm′Cl. (5.58)

In other words the alms are independent Gaussian random variables with mean zero and
variance Cl. Since there is only one universe available it is only possible to measure 2 l+1 m-
modes for each multipole. Thus, the maximum-likelihood estimator of the Cls is called power
spectrum and given by

Cl =
1

2l + 1

l∑
m=−l

|alm|2. (5.59)

Assuming the rate fluctuations were measured with full-sky coverage and with negligible noise
and the alms are independent identically distributed Gaussian random fields the Cls are χ2

distributed and the variance of Cl is given by

V ar(Cl)

Cl
=

2

2l + 1
. (5.60)

This is the unavoidable minimum uncertainty of Cl in the case of perfect measurement con-
ditions (called cosmic variance). In realistic setups the variance and, thus, the uncertainty of
Cl gets larger with declining sky coverage (roughly anti-proportional to the fraction of the sky
covered). It is important to realize that every theory predicts the expectation values of the Cls

152



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

Dipole Quadrupole

Oktupole Hexadecapole

Figure 5.43: Power spectra of the best-fit multipole models including multipoles up to the
dipole (lmax = 1, upper left-hand panel), the quadrupole (lmax = 2, upper right-hand panel),
the octupole (lmax = 3, lower left-hand panel) and the hexadecapole (lmax = 4, lower right-
hand panel) are shown. The error on C0 has always been set to zero because it is often so large
that displaying it would make it impossible to read the Figure. Cls and corresponding errors
of multipoles that are not included in the model are also set to zero.
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and our sky gives one realization of these Cls. Thus, it will never be possible to distinguish
between models that predict differences in the Cls smaller than the cosmic variance.

Figure 5.43 shows the power spectra for the best-fit lmax = 1 to lmax = 4 models. The
errors of the fit parameters are given by the square root of the diagonal elements of the covari-
ance matrix. The covariance matrix was found by first applying the MIGRAD algorithm and
than applying the HESSE algorithm both included in the MINUIT software package (James
1998). The minimization algorithm implemented in MIGRAD is a stable variation of the
Davidon-Fletcher-Powell variable-metric algorithm (James 2004). This algorithm converges to
the correct error matrix as it converges to the function minimum. It can happen that the
function converges too quickly to its minimum for the algorithm to find a good estimate of
the error matrix. In this case HESSE should be invoked, which calculates the full second-
derivative matrix by finite differences and inverts it. This appears to happen in case of the
octupole model, where MIGRAD found extremely small errors of the order of 10−9. However,
even after using HESSE the error bars became larger, but were still relatively small. Addition-
ally, the covariance matrix was artificially forced to be positive definite. This can be caused by
one of three reasons. A region of the parameter space with unphysical behavior was traversed,
the system was under-determined or numerical inaccuracies occurred (James 1998). In any
case, the resulting minimum is suspicious and the errors are unreliable. Consequently, the
results of the octupole fit are unreliable.

In general, the errors on parameters of the more complicated model are expected to be
larger for a certain parameter than the error bars for the same parameter in a less complex
model (a model where effectively some of the parameters for higher multipoles were set to
zero). This is due to the fact that correlations between the parameters contribute to the errors
on the parameters. Thus, if one of the parameters is fixed its correlation with other parameters
is gone and does not contribute to the error of the other parameters anymore (James 2004).

The error bars of the Cls were calculated via Gaussian error propagation from the diago-
nal elements of the variance matrix calculated by PyMinuit. In a more complete examination
also the off-diagonal elements (= covariance) must be considered, because in this study only
a very small fraction of the sky is covered, which should lead to degeneracies (dependen-
cies/correlations) between the multipoles and, thus, the Cls (Scott and Smoot 2004). In Figure
5.43 the error for l = 0 is always set to zero artificially, because it is often so large that an
illustration is impossible. Instead, the values for m0 and its error are shown in Table 5.10 for
all models. Further, the values of Cls for multipoles that are not included in the considered
model are also set to zero in Figure 5.43.

The Cls derived from different multipole fit functions are quite different, which implies
that also the best-fit parameters for the same multipole vary strongly between the different
functions. Thus, when introducing more and more free parameters, also the free parameters
that were already included in simpler models vary into other regions of their parameter spaces
when searching for the best-fit parameter set. This implies that the parameters of the model
are not strictly constrained by the data. In other words, systematic and statistical errors on
the data appear to be too large to draw any definite conclusions on actual model parameters
and, thus, the actual power at a given multipole. This is consistent with the bad fit between
data and model, which also implies that the best-fit models considered in this study are not
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lmax m0 σm0

0 -0.010 0.019
1 0.210 0.040
2 -0.053 0.174
3 0.175 0.007
4 0.001 4.45

Table 5.10: The best-fitm0 parameter and corresponding error σm0 for all considered multipole
models.

sufficient to explain the data.
Further, the shape of the resulting best-fit rate predictions appears to be strongly dominated

by regions where no experimental data was available. Minima and maxima of the best-fit rate
prediction functions are always located in regions of the sky without data. If the electron
arrival rates are not constrained in extended regions of the sky the predicted rates in those
directions can become arbitrarily large or small.

Conclusion In conclusion, the rate fluctuations in the electron-arrival rates considered in
this study cannot be described sufficiently by isotropy or large scale anisotropy models. The
angular scales at which the rate fluctuations occur appear to be much smaller than the angular
scales considered in this study. However, the amount of data available and distribution over
the sky makes it impossible to investigate such small scale anisotropies with H.E.S.S. at this
point. The only conclusion that can be drawn from this study is that neither isotropy nor large
scale anisotropies alone can account for the observed electron rate fluctuations provided that
systematic effects were sufficiently taken into account.
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5.3.10 The Two-Point-Correlation Function

In Section 5.3.2 it was found that neither isotropy nor a simple dipole model can explain
the H.E.S.S. I measurement of electron arrival rates. It has been suggested that higher or-
der anisotropies may play an important role. In Fig 5.44 a visualization of the measured
arrival rates of cosmic-ray electrons (with a 20◦ smoothing radius) is shown in the top panel
and the cosmic-ray anisotropies measured with IceCube-22 (Abbasi et al. 2010) and Tibet-III
(Amenomori and Tibet ASγ Collaboration 2006) are shown in the bottom panel. In contrast
to all previous plots the sky maps are now shown in equatorial coordinates.

The amplitudes of the measured fluctuations are found at very different scales (fluctuations
at the order of 10−3 in cosmic rays compared to fluctuations at the order of a few times 10−1 in
cosmic-ray electrons). This visualization is not a statistical analysis, and the smoothing of the
electron sky map was simply done by calculating a weighted average of the measured electron
arrival rates within 20◦ of a sky map pixel.

Besides fitting multipole models to the data and calculating a power spectrum from the fit
coefficients as it was done in Sections 5.3.8 and 5.3.9 it is possible to perform an analysis of the
two-point-correlation function (TPC function) in order to evaluate the power of anisotropies
at different angular scales. Analogoue to the definition common in investigations of CMB
anisotropies the correlation function is given by the expectation value of the correlation of the
fluctuations of the electron arrival rates27 Ii=

Ri,el−〈Rel〉
〈Rel〉 between two points in the sky with

angular distance cos θ. The correlation function is connected to the angular power spectrum
Cl by the following relation

〈I(n̂) · I(n̂′)〉 =
1

4π

∞∑
l=0

Cl Pl (cos θ). (5.61)

Here, the Cls are the coefficients of the angular power spectrum and the Pls are the Legendre
polynomials. As before l is called the multipole and represents the given angular scale. It is
obvious from Equation 5.61 that the values of the TPC function for points at a given angular
distance n̂ · n̂′ = cos θ contain contributions from different multipoles in contrast to the power
spectrum, where every Cl only gives the angular power exactly at the multipole l (at least
in the case of an all sky coverage). This makes the interpretation of the TPC function more
challenging than the interpretation of the power spectrum. On the other hand both functions
equivalently contain the complete information about the anisotropies. An additional analysis
of the TPC function of a cosmic-ray anisotropy sky map can also help to understand the TPC
function of cosmic-ray electrons better, by investigating for example what imprints certain
features (e.g. hot spots) can have in the TPC function and answering the question whether
these imprints can have an obvious effect. In the power spectrum approach the effects might be
distributed between the Cls of different multipoles, while they are concentrated in one angular
distance bin for the TPC function (see the subsequent subsection discussing the ARGO-YBJ
TPC function and power spectrum).

27In the case of the CMB the temperature is used instead see, e.g. Peacock 1999, Bunn 1995 and Tojeiro
2006.
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H.E.S.S.I

Figure 5.44: Top: Sky map of cosmic-ray electron event rates with 20◦ smoothing radius. In
each pixel the weighted mean of the measured electron arrival rate fluctuations of all pointings
within 20◦ distance is shown. In addition the pointings are marked by a circle with a radius
corresponding to the live time of the observations of every pointing. The colors of the circles
are scaled with the corresponding electron arrival rate value. Bottom: Sky maps of the cosmic-
ray anisotropies measured with IceCube22 (Abbasi et al. 2010) and Tibet-III (Amenomori and
Tibet ASγ Collaboration 2006). Adapted from Desiati 2012.
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The TPC function is determined by the fluctuation of the measured electron event rates
(with Ri,el = Ri,γ̃ − (1− εel)〈Rγ̃〉 and 〈Rel〉 = εel〈Rγ̃〉) for every possible pair of pointings (i, j)
in dependence on their angular separation cos θ. The average of this value is taken within
distinct cos θ bins. The TPC function C1 is given by

C1(θ) =

〈
Ri,el − 〈Rel〉
〈Rel〉

·
Rj,el − 〈Rel〉
〈Rel〉

〉
cos θ

. (5.62)

An alternative definition of the TPC function can also be employed. Here, the absolute rate
fluctuations are compared to the error on the corresponding electron event rate σi,el = σi,γ̃ .
The TPC function C2 is defined similarly to C1 and given by

C2(θ) =

〈
Ri,el − 〈Rel〉

σi,el
·
Rj,el − 〈Rel〉

σj,el

〉
cos θ

. (5.63)

For both definitions of the TPC function the power of the TPC function is large for large fluc-
tuations around the mean independent from correlation or anti-correlation. The C2 definition
has the advantage that rate fluctuations are observed relative to the error on the measured
rate. Consequently, it also gives an information about the strength of the fluctuation compared
to the magnitude of the errors and takes statistical and systematic errors into account. Both
definitions of the TPC function should give similar results.

The significance of all quantities is determined by the means of MC simulations, since the
underlying probability distribution is unknown. The procedure is comparable to the approach
used in Section 5.3.2. With the difference that now the TPC functions are calculated for every
simulated data set and the probability of getting the measured value of C1(θ) and C2(θ) in the
isotropy simulations is determined for every cos θ bin.

Instead of using the expectation value of the relative rate fluctuations also Spearman’s rank
correlation coefficient can be used. Both relative intensity definitions can be employed

Ii,1 =
Ri,el − 〈Rel〉
〈Rel〉

or Ii,2 =
Ri,el − 〈Rel〉

σi,el
. (5.64)

For each angular distance bin cos θ all k possible pairs Pk=(Ii,Ij) of pointings (i, j) with
relative intensities Ii and Ij are built. Thus, two data samples are generated, where the first
sample X contains the first of the two values in each pair so that Xk=Ii and the second
sample contains the second of the two values in each pair Yk=Ij . The corresponding ranked
data samples are calculated xk=Rank(Ii) and yk=Rank(Ij) and Spearman’s rank correlation
coefficient ρs = spear(X,Y ) is calculated as explained in Section 4.3.2. With this method the
p-value and, thus, the significance of Spearman’s rank correlation coefficient can be calculated
via Student’s t-test and is, consequently, independent from MC simulations and any assumption
made concerning systematic errors. Here, it is used for cross checking the results of the previous
methods.

Likewise, the TPC functions and ρs are calculated from the hadron-like event samples. In
this case electron event rates and corresponding errors are simply replaced by the corresponding
hadron-like (BG) event rates and errors.
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Figure 5.45: Top panels: C1 (left) and C2 (right) calculated from the measured BG event
rates (black markers). Middle panels: C1 (left) and C2 (right) calculated from the measured
electron event rates (blue markers). The boundaries of the red bands depict the 16 % and 84
% percentiles from the probability density distributions of the corresponding simulated TPC
function values. Consequently, 68 % of the simulations generate TPC function values within
this band. Bottom panels: The significance given in units of Gaussian sigma calculated from
the simulated probability density functions for each measured TPC function value for the
electron (blue markers) and BG (black markers) rates for C1 (left) and C2 (right).
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Figure 5.46: Example probability density function for C1 obtained via MC simulations for BG
event rates (left-hand panel) and electron event rates (right-hand panel). The red histograms
show the probability density functions found for one example cos θ bin for BG rates (left-hand
panel) and electron rates (right-hand panel). The corresponding measured values in this cos θ
bin are marked by a red line. The gray histogram contains the corresponding probability density
function for all cos θ bins combined. The significances of the measured values considering the
probability density function of the chosen cos θ bin and the combined function are shown.

Figure 5.45 shows the results of the calculation of C1(θ) and C2(θ). Corresponding results
from MC simulations are superimposed as a grey band, which contains 68 % of the simulations
(boundaries are given by the 16 % and 84 % percentiles). For both TPC function definitions
the TPC function values calculated from the hadron-like (BG) data (MSSG > 5) and electron
event data (MSSG < 0.6) are shown in the top and middle panels of Figure 5.45. The
measured TPC function values for, both, electron and BG rates fluctuate around zero. The
amplitudes of the TPC function values are much smaller for BG rates than for electron rates
(for both C1 and C2). Even though, the shapes of C1 and C2 are not identical, the largest
minima and maxima in the functions can be found in both definitions (for electrons and BG
events). Due to the different definitions of C1 and C2 the absolute function values of C1 and
C2 cannot be compared. Via construction C2 adopts values between approximately -1 and +1,
while the amplitudes of C1 depend on the amplitudes of the event rates themselves.

In addition to the measured TPC function a band of the TPC function values obtained
via isotropy simulations is shown. The boundaries of this band correspond to the 16 % and
84 % percentiles from the probability density distributions of simulated TPC function values.
Consequently, the simulation bands in Figure 5.45 contain the innermost 68 % of the TPC
function values obtained via simulations. The probability density distribution of TPC function
values is shown in the left-hand panel of Figure 5.46 for BG events and in the right-hand panel
for electron events for one example cos θ bin of C1.

The BG events for both TPC function definitions lie mostly within this 68 % band showing
qualitatively that the distribution of BG event rates in the sky is compatible with isotropy at
all angular distances considered. This is in agreement with the dipole analysis before. The
measured electron TPC function values acquire values located significantly outside the 68 %

160



Analysis of Cosmic-Ray Electrons 5.3 Search for Anisotropies in CR Electron Arrival Rates

0 20 40 60 80 100 120 140 160 180
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

ρ
1
(θ

)

El

0 20 40 60 80 100 120 140 160 180
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

ρ
1
(θ

)

BG

0 20 40 60 80 100 120 140 160 180
Angular Scale in degrees

0
1
2
3
4
5
6

S
ig

n
if
ic

a
n
ce

 L
e
v
e
l

El
BG

0 20 40 60 80 100 120 140 160 180
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

ρ
2
(θ

)

El

0 20 40 60 80 100 120 140 160 180
0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

ρ
2
(θ

)

BG

0 20 40 60 80 100 120 140 160 180
Angular Scale in degrees

0

1

2

3

4

5

S
ig

n
if
ic

a
n
ce

 L
e
v
e
l

El
BG

Figure 5.47: Top panel: Spearman’s rank correlation coefficients ρ1 (left) and ρ2 (right) cal-
culated from the measured BG event rates (black markers). Middle panels: Spearman’s rank
correlation coefficients ρ1 (left) and ρ2 (right) calculated from the measured electron event
rates (blue markers). The boundaries of the red bands depict the 16 % and 84 % percentiles
from the probability density distributions of the corresponding simulated ρs values. 68 % of
the simulations generate ρs values within this band. Bottom panels: The significance given in
units of Gaussian sigma calculated from the t-distribution for the electron (blue markers) and
BG (black markers) rates.

band. This behavior suggests qualitatively that they are much less compatible with isotropy.
Thus, the probability (p-value) that a TPC function value greater than or equal to the measured
value is found by chance is calculated from the probability density distributions of the TPC
function values for each cos θ bin. From the p-value the corresponding significance in each cos θ
bin is calculated following Equation 4.9. A large significance means that the probability to
find a TPC function value at least as extreme as the measured value, just by chance, is very
small if cosmic-ray electrons really arrive isotropically at Earth. The results of the significance
calculations are shown in the bottom panels of Figure 5.45. The significance of the TPC
function values for the BG events is smaller than 2 σ for all cos θ bins. For electrons the
deviation from isotropy is much more significant with a significance ≥ 4σ in many cos θ bins.
The maximum resolution of the simulations corresponds to a maximum achievable significance
of 4σ, because only 10 000 simulations were performed.

These results are verified by the corresponding results employing Spearman’s rank corre-
lation coefficient shown in Figure 5.47. The shapes of the functions ρ1 and ρ2 are similar to
the shapes of C1 and C2. In particular, the most prominent minima and maxima of ρ1 and ρ2

shown in Figure 5.45 correspond to the minima maxima found in C1 and C2 shown in Figure
5.47.
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In Figure 5.47 the 68 % bands are obtained via simulations, but the significances in the
third panel are calculated via Student’s t-test (remember Equation 4.20 in Section 4.3.2).
This method of calculating the significance does not take statistical and systematic errors into
account as simulations do, but solely depends on the values of ρs and the shape of the t-
distribution. Thus, it gives a significance estimate more independent from the estimation of
systematics. The significance for the coefficients ρ1 and ρ2 calculated from the BG event rates
is somewhat larger than the significances calculated for C1 and C2, but usually < 3 σ, apart
from the last cos θ bin. Here, an outlier is found. For electrons the maximum significance
obtained with this method is comparable to the significance found for C1 and C2 (up to 4 σ).

ARGO-YBJ TPC and Power Spectrum

As mentioned before, the interpretation of the TPC function is much less straight forward
compared to the interpretation of the angular power spectrum, because the TPC function
contains contributions from all multipoles at every angular distance. The idea is to learn from
an anisotropy sky map what imprints or signatures small to medium scale features (e.g. hot
spots) would have on the TPC function. In other words: Do large electron arrival rates make
the power at a certain angular scale larger? How do such features look like in a TPC function
and can they be identified?

For such studies the ARGO-YBJ collaboration provided us with the original cosmic-ray
anisotropy sky maps (signal and background maps) that were used to calculate the published
total sky map shown Figure 5.48 (ARGO-YBJ Collaboration 2013). The ARGO-YBJ sky maps
are of special interest for such an analysis for several reasons. First, even though H.E.S.S.
observes the southern hemisphere and ARGO-YBJ the northern hemisphere there is a certain
overlap between the regions of the sky observed with both experiments. Second, the cosmic-ray
electrons measured with H.E.S.S. should contribute to the data set and consequently possibly
also the anisotropies measured with ARGO-YBJ. Further, the ARGO-YBJ sky maps contain
medium to small scale anisotropies of the type that might also be present in the electron data.
Thus, these sky maps are suitable to study the behavior of the TPC function.
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Figure 5.48: Published ARGO-YBJ cosmic-ray anisotropy sky map in equatorial coordinates
for all events with a stripe multiplicity larger than 25. The relative excess with respect to
the background events is shown. A Gaussian beam smoothing has been applied with an angle
corresponding to the PSF of the detector. The galactic plane is shown as a black dashed
line and the Galactic Center marked by the black circle. Figure adapted from ARGO-YBJ
Collaboration 2013.
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Stripe-multiplicity interval Number of events E50
p [TeV]

25 - 40 1.41673 ×1011 (38 %) 0.55
40 - 100 1.75695 ×1011 (48 %) 1.4
100 - 250 3.80812 ×1010 (10 %) 3.5
250 - 360 1.09382 ×1010 (3 %) 7.3
> 360 4.34442 ×109 (1 %) 20

Table 5.11: Table of the used multiplicity intervals, the corresponding measured event numbers
and the corresponding median energy E50

p from cosmic-ray proton MC simulations. The values
were taken from ARGO-YBJ Collaboration 2013.

ARGO-YBJ28 does not apply any gamma-hadron separation algorithm. Thus, the shown
map does not only contain protons but possibly also photons and electrons. Further, it is not
possible to reconstruct the energy of an individual cosmic-ray particle. Instead, the data set
was split into five multiplicity intervals in order to investigate the energy dependence of the
cosmic-ray anisotropies. Via Monte Carlo simulations of protons the median energy E50

p of
every multiplicity interval was determined (ARGO-YBJ Collaboration 2013). The used stripe
multiplicity intervals, the number of events measured in this interval and the corresponding me-
dian energy from proton MC simulations are shown in Table 5.11. Since the particles detected
with ARGO-YBJ are assumed to be protons, cosmic-ray electrons of 600 GeV would be counted
as protons of roughly 1 TeV (Iuppa 2014). The ratio of the electron flux at 600 GeV (Ackermann
et al. 2010b) and protons at 1 TeV (Adriani et al. 2011b) is φel(600GeV)/φproton(1TeV) ≈ 10−3.
Thus, 1 electron for every 1000 protons is expected in the data set at 1 TeV. Depending on
the amount of anisotropy really existing in cosmic-ray electrons the anisotropy measured with
ARGO-YBJ may also contain an electron contribution. Electrons with energies between 0.64
and 1.04 TeV would, thus, contribute to the lowest two multiplicity interval data sets.

In this study only the first four multiplicity interval sky maps, corresponding to median
proton energies up to 7.3 TeV, were used, because the last one contains not enough statistics.
All four relative intensity (RelIntARGO =Nsignal − NBG/NBG) sky maps are shown in Figure
5.49. To every map a Gaussian beam smoothing with a full-width-half-maximum (fwhm)
corresponding to the individual point spread function (PSF) estimated from Bartoli et al.
(2011) was applied. For the lowest energy map a fwhm = 4◦ of the Gaussian beam was used,
while for the map with the highest median energies only a fwhm = 2.5◦ was used.

The TPC function for the ARGO-YBJ sky maps is defined a little bit different from the
previous definition given in Equation 5.62, because here we have a signal and a background

28The ARGO-YBJ detector is located at an altitude of 4300 m above sea level at the YangBaJing Cosmic
Ray Observatory in Tibet. ARGO-YBJ uses resistive-plate chambers (RPCs) to detect air showers induced by
cosmic rays and gamma rays. The RPCs are operated in streamer mode and cover a total area of 5600 m2.
Each RPC is read out by 80 external strips (in total there are 146880 strips). The multiplicity is the number
of fired strips and is connected to the energy of the primary particle. The charged particles in an air shower
are detected with an efficiency larger than 98 %. The energy threshold of the instrument is approximately
100 GeV. The highest primary particle energies detectable without significant saturation is 200 TeV. For more
information on the ARGO-YBJ experiment see, e.g. Bartoli et al. 2011 and Aielli et al. 2012.
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Figure 5.49: ARGO-YBJ relative intensity sky maps in equatorial coordinates. A Gaussian
beam smoothing was applied to every sky map with a smoothing radius corresponding to the
individual point spread function (PSF). The maps for different pairs of E50

p and fwhm are
shown for E50

p = 0.66 TeV and fwhm = 4◦ in the upper left-hand panel, for E50
p = 1.4 TeV

and fwhm = 3◦ in the upper right-hand panel, for E50
p = 3.5 TeV and fwhm = 3◦ in the lower

left-hand panel and for E50
p = 7.3 TeV and fwhm = 2.5◦ in the lower right-hand panel.
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Figure 5.50: Example relative intensity sky map in equatorial coordinates where the 5 % highest
relative intensity pixels have been removed. The positions of three hot spots are marked by
white asterisks.

map available. The relative intensity fluctuations in each pixel i are given by the number of
signal events Ni,signal minus the number of background events Ni,BG and normalized to the
number of background events. Thus, the TPC is defined as follows

C̃1(θ) =

〈
Ni,signal −Ni,BG

Ni,BG
·
Nj,signal −Nj,BG

Nj,BG

〉
cos θ

. (5.65)

This function is similar to C1 (see Equation 5.62), so that it is called C̃1. The resulting
TPC functions for the three maps with the lowest median energies (map0: E50

p = 0.66 TeV,
map1: E50

p = 1.4 TeV and map2: E50
p = 3.5 TeV) are shown in the left-hand panel of Figure

5.51. They all are qualitatively and quantitatively very similar. Minima and maxima of the
functions seem to shift somewhat to smaller angular scales with higher median energies, while
the amplitudes of the minima and maxima seem to get larger with higher energy. This is
reasonable since also the minimum and maximum of the relative intensity maps get larger with
higher median energy. As expected the TPC function values are fluctuating around zero, while
the function itself is much smoother than the corresponding H.E.S.S. I TPC function shown
in Figure 5.45. This is expected because in the ARGO TPC not only 94 positions in the sky
were probed, but a sky map covering a large area of the sky was used. If considering that only
a few positions in the sky were used, the shape of the H.E.S.S. I TPC function of electrons
seems reasonable.

In order to investigate the impact that prominent features can have on the TPC function
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Figure 5.51: In the left-hand panel the TPC functions of the three maps with the lowest median
energies (map0: E50

p = 0.66 TeV, map1: E50
p = 1.4 TeV and map3: E50

p = 3.5 TeV) are shown.
In the right-hand panel the 5 % highest relative intensity pixels have been removed from these
sky maps before the TPC functions were calculated.

the 5 % highest relative intensity pixels (with the goal to remove the two largest hot spot
areas) have been removed from the sky maps (example map is shown in Figure 5.50) and the
corresponding resulting TPC function is shown in the right-hand panel of Figure 5.51. After
removing the 5 % highest relative intensity pixels the TPC function has obviously changed.
While there is only a small influence on the maxima, the minima have become much smaller.
Also the shift between the minima and maxima has been removed.

In order to investigate the impact of removing hot spots from the sky maps on the power
spectrum, the power spectra of the sky maps are calculated using the anafast algorithm as it is
implemented in the HealPy29/HealPix30 software package (Górski et al. 2005). The resulting
power spectra are shown in Figure 5.52 before (left-hand panel) and after (right-hand panel)
removing the highest 5 % relative intensity pixels. In the power spectrum the differences are
much less obvious than they were in the TPC function. The most prominent changes are that
the power in the l = 0 multipole is somewhat larger, as well as the power at l > 30. In between
the power seems to be a little bit reduced.

Overall the impact is much less striking than in the TPC function, because in the power
spectrum the effect seems to be distributed between the Cls of all multipoles, while the effect
concentrates on certain angular scales in the TPC function. Thus, the TPC function appears
to be the more useful tool to investigate the possible existence of hot spots. It could be argued
that the existence of prominent minima in a TPC function may hint to the existence of hot

29http://healpy.readthedocs.org
30http://healpix.sourceforge.net
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Figure 5.52: In the left-hand panel the power spectra of the three maps with the lowest median
energies (map0: E50

p = 0.66 TeV, map1: E50
p = 1.4 TeV and map3: E50

p = 3.5 TeV) are shown.
In the right-hand panel the 5 % highest relative intensity pixels have been removed from the
sky maps before the power spectra were calculated.

spots in the sky (e.g. the two prominent minima in TPC of cosmic-ray electrons as shown in
Figure 5.45). From the angular scale at which the minima occur it might be possible to derive
the average angular distance between hot spots from the TPC function, while no information
about where exactly these hot spots would be located can be derived.

As mentioned before, cosmic-ray electrons may contribute to the cosmic-ray anisotropy
maps measured with ARGO-YBJ. Therefore, the Pearson correlation coefficient and Spear-
man’s rank correlation coefficient were calculated between the relative intensity fluctuations of
the H.E.S.S. I pointings and the corresponding ARGO sky pixels. For this analysis ARGO-YBJ
relative intensity sky maps were downgraded in their resolution to a pixel size approximately
as large as the solid angle area of the H.E.S.S. I measurement (half angle of 2◦). Figure 5.53
shows the used ARGO-YBJ relative intensity sky map superimposed with all pointings of the
H.E.S.S. I electron analysis. It is obvious that not all of the H.E.S.S. I pointings have a corre-
sponding ARGO-YBJ sky patch. Figure 5.54 shows the results of the Pearson and Spearman’s
rank correlation coefficients and corresponding p-values. A mild anti-correlation is suggested
by the data. The results of the two coefficients are similar. Spearman’s correlation coefficient
is somewhat larger indicating that the relationship is more likely monotone than linear. The
corresponding p-values are rather large so that the result is not significant.
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Figure 5.53: ARGO-YBJ sky map (NSide = 32) of the E50
p = 1.4 TeV energy bin. The

relative intensity of cosmic rays is color coded in the map. On the bottom the corresponding
color bar is shown. Additionally, H.E.S.S. 1 pointings used in this study are depicted. The
relative intensities of the electron arrival rates determine the colors of the circles depicting
all 94 pointings. The color bar on the right-hand side of the map gives the color scale of
electron intensities. Further, the circles are scaled with the respective observation time. The
Galactic Center Sgr A* and pulsars Vela, Monogem and Geminga are shown and marked by
black triangles. The map is given in equatorial coordinates.
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Figure 5.54: Top: Ranks of ARGO-YBJ relative intensities of cosmic rays compared to
H.E.S.S.I relative intensities of cosmic-ray electrons. Spearman’s rank correlation coefficient
and corresponding p-value are shown. Bottom: ARGO-YBJ relative intensities of cosmic rays
compared to H.E.S.S.I relative intensities of cosmic-ray electrons. The Pearson correlation
coefficient and the corresponding p-value are shown.

Conclusion Overall, the analysis of the TPC functions showed that the TPC function values
were not compatible with isotropy at the 4 σ level confirming the results of the previous
Sections. The interpretation of the TPC function beyond this statistical statement is difficult.
Even though, the analysis of a medium to small scale anisotropy sky map provided by the
ARGO-YBJ collaboration showed that imprints of hot spots are more prominent in the TPC
function as compared to the power spectrum. No correlation between H.E.S.S. rate fluctuations
and data from the same positions in the sky derived from the ARGO-YBJ sky map was found.
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5.3.11 Upper Limit on the Dipole Amplitude

In the previous sections it was found that the measured electron arrival rate data could neither
be fit well by a dipole model nor by models including higher order multipoles. Nonetheless,
the fitted models can be used to constrain the model parameter space. Confidence intervals
(Section 4.1.3) of the model parameters can be calculated, in principle, using planes of constant
χ2. In this study the models involved have a large number of free parameters. Consequently,
this method would unlikely give useful, connected regions of the parameter space. Instead, the
H.E.S.S. data are employed to derive an upper limit (Section 4.1.3) on the dipole component.

Previously, Fermi-LAT and AMS-02 have set upper limits on the dipole amplitude of the
cosmic-ray electron plus positron flux and the ratio of positron to electron flux respectively
(Ackermann et al. 2010a, Aguilar et al. 2013 and Cangas 2013-2014). The upper limits were set
in energy regions below the energies considered in this study. They are shown in the bottom
panel of Figure 5.55. The AMS-02 upper limit, which was set on the dipole amplitude of pure
electrons, was translated into an upper limit on the electron plus positron dipole amplitude
using the electron and positron fluxes given by Aguilar et al. 2014b.

The H.E.S.S. upper limit on the electron flux was derived for every probed direction of the
sky by fixing R0,el to its best-fit value (R0,el,best) and then varying δ. The following requirement
on ∆χ2(δ) is valid for a 95 % CL upper limit and one varied parameter

∆χ2(δ) = χ2(R0,el,best, δ)− χ2
best

!
= 4. (5.66)

Here, χ2
best = χ2(R0,el,best, δbest) is the best-fit χ2 of the dipole model discussed in Section 5.3.2.

The dipole amplitude fulfilling the criterion defined in Equation 5.66 gives the upper limit on
the dipole amplitude.

In the top panel of Figure 5.55 the sky map of upper limits is shown. This sky map gives
the upper limit on the dipole amplitude always assuming that the maximum of the dipole is
pointing into the probed direction of the sky. The derived upper limits reach from 2.5 % to 56
% in dependence on the direction of the observation. The dipole amplitude is least constrained
in the direction of the sky where no data was available and much more constrained in directions
where cosmic-ray electron data from H.E.S.S. is available.

In the bottom panel of Figure 5.55 the currently available upper limits on the dipole ampli-
tude are summarized. The upper limits derived in this study depend on the considered direction
in the sky and are, thus, illustrated by a blue band. In the regions of the sky most efficiently
covered by H.E.S.S. observations the upper limits derived in this study are comparable or even
below the upper limits from Fermi-LAT.
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Figure 5.55: Top: Sky map in galactic coordinates showing the upper limits derived from
H.E.S.S. data on the dipole amplitude of cosmic-ray electrons for each possible direction of the
dipole maximum. The white circles depict the 94 pointings and are scaled with the respective
observation time (range from 0.24 to 173 h). The pulsars Vela, Monogem, Geminga and
the Galactic Center are also shown and marked by a white triangle. Bottom: 95 % CL upper
limits on the dipole amplitude δUL derived with Fermi-LAT (Ackermann et al. 2010a), AMS-02
(Cangas 2013-2014) and H.E.S.S. The AMS-02 upper limits were set on the ratio of positron
to electron flux. In dependence of the electron and positron fluxes they were translated to
electron plus positron upper limits for comparison. The Fermi-LAT and AMS-02 upper limits
are given in dependence on the minimum energy of the used events. The H.E.S.S. upper limits
were calculated in a defined energy bin. For H.E.S.S. a blue band of upper limits is illustrated
since the sky is only partially covered by observations and, thus, the upper limits vary strongly
between the different assumed directions.
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Chapter 6

Conclusion: Summary and Outlook

The analysis presented in this study is one of the first investigations of anisotropies in the
arrival directions of cosmic-ray electrons with an Imaging Atmospheric Cherenkov Telescope
(IACT). The analysis is based on an unprecedented, high-quality data set of 1178 hours of
observation time distributed between 94 positions in the sky measured with the four 12 m
H.E.S.S. I telescopes between 2005 and 2012.

Residual Background The first major challenge faced when analyzing cosmic-ray electrons
with IACTs is the determination of the residual background (hadrons and photons). In this
study a data driven approach was chosen. The residual background was approximated over the
whole data set by employing the electron flux measured with Fermi-LAT and the effective elec-
tron exposure of H.E.S.S. The fraction of electrons in the selected event sample was estimated
to be 63 % for the standard gamma-hadron separation cut choice (MSSG < 0.6). Additionally,
an upper limit on the electron spectrum was derived using the effective electron exposure. This
upper limit represents the first cross check of the electron spectrum measured with H.E.S.S.
obtained with an advanced event reconstruction technique based on a semi-analytical shower
model. At low energies (< 1 TeV) the upper limit lies, as expected, above the previously
measured electron spectrum. At energies above 1 TeV the two spectra are in tension, because
the upper limit obtained in this study falls down much steeper than the published spectrum.
Possible reasons for the differences were discussed in detail.

Systematic Effects The second major challenge was the fact that the statistics available
in many directions of the sky are not sufficient to calculate individual fluxes for every posi-
tion in the sky. Instead, the electron arrival rates (gamma-like event rates minus the residual
background) were directly used in the anisotropy analysis. Differences in observation condi-
tions, e.g. zenith angle, optical efficiency and weather conditions, were taken into account by
defining a systematic error large enough to account for such systematic rate variations. In a
unique approach, the systematic error was estimated taking advantage of the high statistics in
the hadron-like event sample, in which systematic variations should be clearly visible. It was
shown that the hadron-like event sample was consistent with isotropy when using the obtained
systematic errors. The same relative systematic error was also applied to the electron analysis
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ensuring that all systematic effects comprised in the hadron-like event sample could not lead
to significant effects in the electron anisotropy search.

Anisotropy Search In the first step an extensive search for a dipole anisotropy was per-
formed. Several different methods were employed including χ2-fitting, ∆χ2-test, and f -test
hypothesis testing as well as Monte Carlo simulations. It was found that neither isotropy
(χ2/d.o.f.=2.67) nor a dipole model (χ2/d.o.f.=2.32) was sufficient to explain the data. The
improvement of the fit when including the dipole term was significant at approximately 5σ with
the ∆χ2-test and 3σ with the f -test. Further, the data set was split into several subsamples
on the basis of zenith angle, optical efficiency and year of data taking. Except in subsamples
with very small statistics again neither isotropy nor a dipole model fit the data well. These
results indicate that higher order anisotropies (smaller scale structures) must be present in the
data.

Multipole Models Higher order multipole functions up to the hexdecapole (lmax = 4) were
fit to the data sample. It was found, that none of the models fit the data sufficiently well (p-
value < 10−8 for all fits) indicating that even smaller scale structures play an important role.
Fits including succeeding multipoles up to the quadrupole give significantly better results (>
3σ with ∆χ2-test), while the improvements gained by including the octupole and hexadecapole
terms are not significant (< 2σ). Since in all cases the best-fit model did not describe the data
well the errors on the best-fit parameters were very large making a detailed characterization of
the anisotropies impossible.

Two-Point-Correlation Function A second method was employed to investigate medium
to small scale anisotropies. The two-point-correlation function (TPC function) gives the power
of correlation at different angular scales. A few clear peaks and minima were visible. It was
found that the values of the TPC function at some angular scales were not compatible with
isotropy at the 4σ level. This result confirms the previous interpretation of the existence of
medium to small scale anisotropies. Beyond this conclusion, the interpretation of the TPC
function appeared difficult, since it contains contributions from different multipoles in each
angular distance bin. For a better understanding of the TPC function a cosmic-ray anisotropy
sky map containing small and medium scale anisotropies provided by the ARGO-YBJ collab-
oration was studied. The imprint of hot spots is much more obvious in the TPC function than
in the power spectrum. Hence, the observation of prominent minima in a TPC function may
hint towards the existence of prominent hot spots. From the angular scale of peaks and minima
in the TPC function it might be possible to draw conclusions about the distance between hot
spots, while no information about their exact location can be obtained.

Upper Limits The only two other experiments previously searching for cosmic-ray electrons,
the Fermi-LAT and AMS-02 experiments, published upper limits on the dipole amplitude.
Since no significant dipole anisotropy was found in this analysis an upper limit was set on the
dipole amplitude for all directions in the sky. The upper limit is derived for the energy bin
between 0.64 and 1.04 TeV accessing an energy range higher than Fermi-LAT and AMS-02.
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The 95 % CL upper limits range from 2.5 % to 56 % and are one of the first upper limits
obtained on the dipole amplitude in this energy range and with an IACT.

Discussion The analysis summarized above found evidence for rate fluctuations in cosmic-ray
electrons that are significantly larger than the fluctuations found in associated hadron events.
It was indirectly shown that these fluctuations are not most prominent on large angular scales
(dipole to hexadecapole), but on smaller angular scales. The cause for this anisotropy signal
cannot be ultimately resolved. Two scenarios are possible.

First, the signal could be of physical origin. In this case the anisotropy would be a result
of the location and distribution of the sources of cosmic-ray electrons and the deflections from
the galactic magnetic field electrons undergo on their way to Earth. In this case a better
determination of the shape of anisotropy would be useful to discriminate between electron
production and propagation models. The magnitude of the anisotropies found in this analysis
and the upper limit derived on the dipole amplitude might already provide a tool to constrain
such models.

Second, the assumption that the systematic error derived from hadrons does also describe
the systematic effects present in electron rates correctly is not valid. Additional systematic
effects regarding only electrons may exist. Such effects would increase the systematic uncer-
tainty on the electron rates only. This would impair the significance of the results found in this
study.

Such a systematic effect could be due to the East-West effect or the North-South effect
discussed in Section 5.3.3, which would influence electron initiated showers more strongly than
hadronic showers. An imprint of these effects may be seen in the systematic variations of
the gamma-like rates in dependence on the declination angle of the observation. Even though,
these effects are most likely not strong enough to explain the measured variations of the electron
rates.

Another possible scenario would be that electron initiated air showers are more strongly
influenced by seasonal variations of the atmosphere than hadrons. Electrons and hadrons in
the data sample probe different parts of the atmosphere. Absorption of photons in particular
by aerosols depends strongly on the height of the part of the atmosphere the air shower tra-
verses. Thus, absorption processes influence electron and hadron initiated showers possibly in
different ways due to a change of the aerosol concentration in certain parts of the atmosphere.
Such a change may be induced by, e.g. bush fires. Nonetheless, the effect of such an event
on the hadronic arrival rates should be strong, so that the applied selection criteria should
have removed these runs from the data sample. Moreover, this argument is disfavored by the
good correlation between gamma-like and hadron-like event rates on the run-by-run basis as
demonstrated in Sections 5.3.3 and 5.3.4.

Further, unresolved sources in the field of view (FoV) may cause fluctuations in the event
rates. However, this effect would most likely be isotropic, because unresolved sources are not
expected to appear predominantly in a certain direction.

In any case, the systematic error would have to be approximately 2 times the size or have
an offset of 10 % of the systematic error obtained in this study, to make the data compatible
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with isotropy1.
Systematics causing rate fluctuations of the magnitude found in this analysis, would also

concern previous results found by the H.E.S.S. experiment, because the same magnitude of
systematic effects would also apply to gamma rays. For flux measurements with H.E.S.S. a
systematic uncertainty of 20% was estimated by Aharonian et al. (2006). The absolute flux
calibration depends on uncertainties concerning the camera response, the optical response and
the interactions of particles and light in the atmosphere (MC simulations). Major contributions
arise from the uncertainty of the atmospheric models used in MC simulations (10 %), the choice
of selection cut (8 %), the effects caused by broken pixels (5 %) and the run-by-run variability
(15 %)2. The run-by-run variability is attributed to variations in the atmosphere. In this study
the uncertainties that only concern the absolute flux level are irrelevant, since the arrival rates
are used directly. Thus, uncertainties arising from MC simulations or cut selection choices
should not be present in the data. Only systematics due to individual observation conditions
of the runs (e.g. atmospheric conditions and broken pixels), which should overall be of the
order of 15 − 16 % according to Aharonian et al. (2006), contribute to this measurement.
Consequently, the systematic error due to individual observation conditions would have to be
larger than assumed previously to explain the results found in this study.

Outlook Even though, this analysis has been carried out with care and a high level of
precision an independent cross check of the data set with a different event reconstruction
technique is pending. Within the scope of this work only a subsample of the data set was cross
checked.

Further, the AMS-02 electron spectrum indicates a lower electron flux at high energies than
Fermi, this would imply that the electron fraction is also smaller. The principle results of this
analysis would not change as long as the electron fraction is above 20 %. A lower flux would
change the obtained upper limits on the dipole amplitude towards higher values.

Altogether, this analysis of cosmic-ray electrons was just the very first step in the quest
of understanding the distribution of arrival directions of cosmic-ray electrons. The picture, as
for hadronic cosmic rays, may be more complicated than what was predicted by the isotropic
diffusion approximation. The distribution of cosmic-ray electron sources, either of dark matter
or pulsar origin, and the effects of the propagation of the particles through the turbulent
magnetic field will play an important role.

In any case, for a better understanding, it is mandatory to collect more data, both, with
direct and indirect measurement techniques. A very good understanding of systematic effects
will be crucial for the analysis of very large amounts of data collected over a long period of
time at very different observation conditions. Additionally, a combination of data taken with a
telescope in the northern hemisphere, e.g. MAGIC or Veritas, should be performed. This way,
the problem that either telescope has blind spots in some parts of the sky would be avoided.

1Note: Also a homogenous systematic error of 20 % would make the data set compatible with isotropy. In
all three cases the ∆χ2 when going from the isotropic model to the dipole model would be of the order of 10 to
12.

2Note: The run-by-run variability found in flux measurements of the Crab of 15 % is very similar to the
standard deviation found in hadron-like rates.
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Further, even though IACTs such as H.E.S.S. are in principle sensitive to large scale
anisotropies, e.g. the dipole (or extremely small anisotropies within a single FoV) with an
irregular observation pattern, they cannot detect medium or small scale anisotropies in this
observation mode. To access those anisotropies it might be necessary to perform all-sky sur-
veys (or in reality probably part-sky surveys). Also in such an observation mode combining
data from different instruments in the northern and southern hemispheres will be necessary to
deduce a complete picture.

In any case, it will probably take several more years of scientific work for this just now
emerging puzzle to be resolved.
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Appendix A

Q-factor

MSSGmax effel effhad = effOFF QNC-factor
1.0 0.810 0.0114 7.7
0.6 0.760 0.0093 8.0
0.4 0.693 0.0075 8.0
0.0 0.592 0.0057 7.8
-0.6 0.267 0.0025 5.9
-1.0 0.155 0.0014 4.2

Table A.1: Table of electron and hadron efficiencies as well as the corresponding Q-factors
without previously applying the core cut for different choices of gamma-hadron separation cuts
on theMSSG. The shape cuts including a cut on the image amplitude and a cut on the energy
of the particles (0.64 - 1.04 TeV) were applied before calculating the efficiencies.
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Q-factor

MSSGmax effel effhad = effOFF QNCE-factor
1.0 0.800 0.0152 6.5
0.6 0.745 0.0122 6.7
0.4 0.666 0.0094 6.8
0.0 0.560 0.0069 6.7
-0.6 0.289 0.0028 5.4
-1.0 0.160 0.0013 4.3

Table A.2: Table of electron and hadron efficiencies as well as the corresponding Q-factors for
different choices of gamma-hadron separation cuts on the MSSG without previously applying
the core cut and the energy range constraint (0.64 -1.04 TeV). The shape cuts including a cut
on the image amplitude were applied before the calculation of the efficiencies.
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Electron Spectrum
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Electron Spectrum

Figure B.1: Differential spectrum of cosmic-ray electrons plus positrons up to 1 TeV as observed
by several experiments at Earth. The Figure was adapted from Aguilar et al. 2014a.
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Systematic Error
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Figure C.1: Distributions of the sample error, the offset error and the total systematic error.
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Figure D.1: Summary Figure for the zenith angle split scenario. The best-fit dipole amplitude
(upper left-hand panel), the resulting global χ2/d.o.f. (upper right-hand panel), the global
∆χ2

0 (middle right-hand panel), the number of pointings (middle left-hand panel), the total
live time in hours (lower right panel) and the median of the systematic errors (lower left-hand
panel) are shown for every split data set. A bin number was assigned to every zenith angle bin.
The bin number is shown above or below every data point and was assigned the same color in
every panel. The number of d.o.f. for the global dipole fit is given by the number of pointings
minus 4. The blue band in the middle right-hand panel depicts the improvements in the fit
represented by ∆χ2

0 that are more significant than 4 σ.

201



Split Analysis

1

1

1

1

1

1

2

2

2

2

2 

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5
5

5

5
6

6

6

7

7

7

8

8

8

6

6

6

7

7

7

8

8

8

Figure D.2: Summary Figure for the yearly/run number split scenario. The best-fit dipole
amplitude (upper left-hand panel), resulting global χ2/d.o.f. (upper right-hand panel), global
∆χ2

0 (middle right-hand panel), the number of pointings (middle left-hand panel), the total live
time in hours (lower right-hand panel) and the median of the systematic errors (lower left-hand
panel) are shown for every split data set. A bin number was assigned to every run number bin.
The bin number is shown above or below every data point and was assigned the same color in
every panel. The number of d.o.f. for the global dipole fit is given by the number of pointings
minus 4. The blue band in the middle right-hand panel depicts the improvements in the fit
represented by ∆χ2

0 that are more significant than 4 σ.

202



Split Analysis
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Figure D.3: Sky maps in galactic coordinates showing the stacked ∆χ2
0 for all three split

scenarios in optical efficiency (upper left-hand panel), zenith angle (upper right-hand panel)
and observation year (lower left-hand panel) for the dipole analysis with adjusted gamma-like
event rates. The colored markers represent the best-fit directions of the different split analysis.
In all analysis NSIDE = 4 and MSSG < 0.6.
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Appendix E

Multipole Fits

Spherical harmonics are given in terms of cartesian coordinates below. The cartesian coordi-
nates x, y, z are related to the spherical coordinates r, θ, φ through the following transformation:

x = r sin θ cosφ (E.1)
y = r sin θ sinφ (E.2)
z = r cos θ (E.3)

The real spherical harmonics are given from the monopole l = 0 up to the hexadecapole
l = 4.
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Figure F.1: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.
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Figure F.2: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.
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Figure F.3: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.
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Figure F.4: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.
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Figure F.5: Distributions of run-wise measured background (hadron-like) event rates for a
selection of pointings. On the x-axis the run-wise measured background rates are given in Hz.
On the y-axis the number of runs is given.
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